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CHAPTER 1

Introduction to
Computer Science

WHAT IS COMPUTER SCIENCE?

Computer Science is defined in different ways by different authors. Wikipedia (http://en.wikipedia.org/
wiki/Computer_science) defines computer science as the collection of a variety of disciplines related to 
computing, both theoretical and practical: theoretical foundations of information and computation, language
theory, algorithm analysis and development, implementation of computing systems, computer graphics, 
databases, data communications, etc.

The US National Coordination Office for Networking and Information Technology Research and
Development (NITRD) defines computer science in a similarly broad way:

the systematic study of computing systems and computation. The body of knowledge resulting from this 
discipline contains theories for understanding computing systems and methods; design methodology, algorithms,
and tools; methods for the testing of concepts; methods of analysis and verification; and knowledge representation
and implementation. (http://www.nitrd.gov/pubs/bluebooks/1995/section.5.html)

Another broad definition comes from the Association for Computing Machinery (ACM) Model Curriculum.
It says that computer science is the “study of computers and algorithmic processes, including their principles,
their hardware and software design, their applications, and their impact on society.”

A famous definition of computer science by Gibbs and Tucker (Gibbs and Tucker, “A Model Curriculum 
for a Liberal Arts Degree in Computer Science,” Comm. of the ACM, vol. 29, no. 3, March 1986) emphasizes
algorithm development and analysis as the central focus of computer science.

It’s also a fair question to ask, “How is computer science a science?” In contrast to physics, biology, and
chemistry, computer science is not based on the study of the natural world. In that sense, computer science is
more like mathematics than science. Some argue that computer science is really computer art (where “art”
means practice). On the other hand, computer scientists do use the scientific method to propose and test
hypotheses, and some very nonobvious discoveries in computer science have important real-world implications.
An example, which we will discuss later, is the discovery that some important problems simply cannot be solved
by computation.

Despite many variations, essentially all definitions of computer science emphasize the study of algorithms.
Algorithms, in one form or another, are central to computer science. Computer science combines the theoretical
concepts of algorithm design and analysis with the practical considerations of how to implement algorithms on
a computer and solve practical problems.

1
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An algorithm defines a detailed and unambiguous sequence of actions for solving a particular problem or
for performing some task. If you have ever followed a recipe when cooking, followed a set of driving directions,
or filled out an income tax form, you have worked with an algorithm.

For example, at some point in time you were probably taught how to determine the greatest common divisor
(GCD) of two numbers. In case you’ve forgotten, the GCD of two positive integers is the greatest integer that
is an even divisor of both numbers. For example, the GCD of 42 and 30 is 6. The algorithm given below can be
used to compute the GCD of two positive integers a and b:

If b is zero, then the GCD of a and b is a. Algorithm ends.
Set r to be the remainder obtained from the integer division of a and b.
Repeat this process using b and r.

Consider computing the GCD of 42 and 30. Let a = 42 and b = 30. We start the process at step 1 of the
algorithm. Since b is not zero, we proceed to step 2. In step 2 we compute the remainder obtained when 42 is
divided by 30, which is 12. Step 3 instructs us to repeat the process, this time using 30 and 12. So on this second
trip through the process a is now 30 and b is now 12. Since b is not zero, we compute the remainder of 30 and
12, which is 6, and repeat the process using 12 and 6. As before, since b is not zero, we compute the remainder
of 12 and 6 and get zero. We will now repeat the process using 6 and 0. This time through, since b is now zero,
we conclude that the GCD of 42 and 30 is 6.

Algorithms are essential to the way computers process information because a computer program is basically
an electronic form of an algorithm that tells the computer what specific steps to perform to carry out a specified
task. In order to study an electronic form of an algorithm, a computer scientist must also understand the computer
that will be used to execute the steps of the algorithm. The term hardware is used to describe the physical, 
tangible parts of a computer. A keyboard, mouse, motherboard, graphics card, and processor are all examples
of computer hardware.

Just as a racecar driver needs to understand the capabilities and limitations of the vehicle they are driving,
a computer scientist must also understand the hardware platform on which computing algorithms will be imple-
mented. It is not enough just to “know how to drive” in the case of the racecar driver, and it is not enough just
to “know algorithms” to be a computer scientist. An algorithm that is optimal for a particular hardware platform
may not be optimal on another.

Algorithms are typically expressed in a form that can be easily understood by a human being. For example,
the algorithm given earlier to compute the GCD of two numbers was written using the English language so that
it would be easy for you to understand.

Even though you may understand more than one language, the only language that a computer understands
is machine language. Machine language is a system of codes that the computer is designed to interpret. Each
word in machine language represents a simple action that can be performed by the computer. For example the
machine language instruction “add” instructs the computer to add together two numbers. (In Chap. 3 on
Computer Organization, we will explain machine language in much more detail.) The set of instructions that,
when executed by a computer, executes the steps of an algorithm is called a program.

It is difficult for humans to work directly with machine language. Machine instruction words consist of
rows of ones and zeros, typically 8, 16, 32, or 64 bits long, and sometimes varying in length. Since people have
difficulty manipulating these strange codes directly, computer languages have been developed to ease the
process of converting an algorithm into a form that the computer can act upon. We refer to these languages as
higher-level languages, because the languages have been designed to allow humans to work at a “higher level”
than at the level of ones and zeros of the computer. Machine language, on the other hand, is often referred to as
a low-level language. Java, FORTRAN, Basic, and ADA are just a few examples of high-level languages that are
used by computer scientists to express the algorithms they have developed. The act of expressing an algorithm
using a low-level or high-level language is referred to as programming.

Over the years, starting in the 1950s, computer scientists have created many higher-level languages. In the
early days some experts thought that it should be possible to develop one language that would be best for all
uses. Since then, however, computer scientists have found that language design always trades off some features
and capabilities for others. As a result, today we have many good higher-level languages, some particularly
suited to symbol manipulation, some particularly good for teaching programming, some good for matrix 

2 INTRODUCTION TO COMPUTER SCIENCE [CHAP. 1



algebra applications, some for fast one-off, one-time programs, some for mission-critical, life-dependent 
applications, some tuned for applications in real-time automation control, and many good ones for general-purpose
use. Computer scientists study the general characteristics of computer languages and formal grammars, and
usually become proficient in several or many different languages.

The term software is used to describe the set of instructions, or programs, that a computer uses to execute
an algorithm. Software contains the instructions that direct the operation of the hardware. The software that
makes the basic functions of the computer accessible is referred to as system software. System software is
responsible for controlling and managing the hardware of a computer system, and for making the computer easy
to use for program developers as well as general users. Examples of system software include operating systems,
display managers, virus scanners, language processors (called compilers or interpreters—to be discussed in the
chapter on software), and device drivers.

Programs such as word processors or spreadsheets are referred to as application software. Application 
software is used to accomplish specific tasks. Application software may consist of a single program, or a small
collection of programs that work together to accomplish a task for a user of the computer.

Operating systems are particularly important and complex system software. They are important because 
the performance of the operating system has a dramatic influence on the quality of the computer user’s experi-
ence and the efficiency of the computer system as a whole. In the days of simpler computing systems, in the
1960s and 1970s, a company might purchase a computer without an operating system, with the intention 
of writing or using its own operating system, but today one always buys an operating system when one buys 
a computer.

The operating system provides easy access to peripheral devices like printers and displays, a file system for
storing information like data, documents, and programs, a user interface to make it easy to start application 
programs, a time-of-day clock, a connection to the Internet using the standard network protocols, a set of “calls”
or “methods” that application programs can use to request services of the operating system, an efficient algorithm
for allocating memory to the various programs active at the same time, and an efficient algorithm for sharing
access to the computer among several people and/or programs at the same time.

Popular operating systems today include Microsoft Windows, Mac OS, Unix, Linux (a variety of Unix),
and IBM’s MVS, among others. In fact, the field of operating system development is still a very active one in
computer science. Not only are operating systems becoming more complex (adding firewalls and other protections,
for example), but operating systems are also becoming more diverse. As simpler devices like thermostats and
dishwashers come under computer control, computer scientists have created specialized “embedded systems”
operating systems for those requirements.

Even into the 1980s many, if not most, computers were stand-alone—not connected to one another. During
the 1970s and 1980s computer scientists explored the advantages of computing networks and proposed 
a number of different physical connections among computers, as well as different networking protocols. At the
time there was hot competition among different vendors of computers, each with a different standard, and each
hoping to “lock in” customers by selling its particular networking products. IBM offered System Networking
Architecture (SNA), Digital Equipment promoted DECnet, Hewlett Packard offered Distributed Systems
(DS), and Xerox offered Xerox Networking Systems (XNS). Even General Motors got into the act, with its
Manufacturing Automation Protocol (MAP). None was directly compatible with any other, but all offered
“bridges” to other systems.

Today the problems for computer scientists in networking are different. For the most part, the world 
has agreed on the IEEE 801 standards and the TCP/IP protocols for the Internet. The problems now have 
to do with expanding the number of Internet addresses without disrupting the operation of the older “installed 
base,” adapting to new and much faster physical connections such as optical fiber, increasing the speed of 
wireless connections, which are by nature slower and more susceptible to interference, managing larger 
data transfers such as movies, which also require strict real-time performance so the movie doesn’t stop 
midaction, and providing low-power, low-cost protocols for the ad hoc connection of hundreds or thousands of
digital sensors.

Supporting almost all applications today is database technology. The dominant database model is the 
relational database, first offered for commercial use in the 1980s. Computer scientists develop algorithms for
storing and retrieving information quickly from absolutely enormous reservoirs of data. How is it, for example,
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that Google can call up almost instantly more than 400,000 images of a “red barn” from over 1.5 billion 
images in its database?

There is a great deal to know about creating a good database, accessing a database from a program, growing a
database, and managing a database. Application programmers and database administrators need to understand
databases at this level in order to use them efficiently. Even computer scientists focused on other specialties
need to know about databases today. For instance, some of the newer operating systems use database technology
in their file systems for the storage of all information, not just information formally devoted to a particular 
database. The benefits to the operating system include speed, space savings, and data security.

At a deeper level, computer scientists develop algorithms for sharing access to a database among many
users simultaneously. For instance, a site like Amazon.com may serve more that 100,000 users at once, and it’s
important that each user’s choices and purchases be kept distinct from one another. Likewise, when you reserve
an airplane seat on-line, it’s important that two people on-line at the same time are not promised space in the
same seat!

Computer scientists also develop algorithms for making backup copies of the database to protect against
the possibility of data loss due to equipment failure. For a site like Amazon, such an algorithm must allow
backup without first stopping the operation of the primary database, for the site must be up at all times!
Algorithms to provide such service reliably and efficiently are very challenging to perfect.

It should not be hard to convince you that computers have dramatically changed the way in which human
beings live their lives. Technologies such as the Internet and the World Wide Web put a vast amount of infor-
mation at our fingertips. Instant messenger systems, electronic mail, and cell phones have revolutionized the
way in which human beings communicate. Computer surveillance systems are being used by police forces to
make the world a safer place to live.

While all of these technologies are primarily being used for the betterment of human kind, it is also possible
to use these technologies to inflict harm, obtain unauthorized access to information, or to spy on people.
Coupled with the ability to develop these technologies is a need to address the social and ethical uses of the
technology. It is just as important, perhaps sometimes even more important, to ask questions about the potential
impact of a technology on society, as it is to build the technology. As more and more people come to depend
on computing technology in their daily lives, computer science must also consider the study of social issues of
the technologies that it produces.

There is a common misconception that computer science is nothing more than the study of computer hardware
and programming. It should be clear to you now that computer science is much more than simply writing 
programs. It includes the study of computer hardware, computer languages, operating systems, networking,
databases, and the social consequences of computing. In order to be effective, a computer scientist must under-
stand and master each of these areas. Further, computer science is a young discipline that is still rapidly evolving
since its beginnings in the 1940s. In the next section we will briefly explore the history of computing from both
a hardware and software perspective.

COMPUTING HISTORY

Though computer science is a relatively young field that only began in earnest in the 1940s, interest in 
computing and computing devices started much earlier. The abacus, a simple counting device invented 
in Babylonia in the fourth century BC, is considered by many to be the first computing device.

In 1614 the Scottish lord John Napier, inventor of logarithms, invented a calculating device consisting of 
a series of rods (often called “bones”) that reduced the complex process of multiplication and division into the
relatively simple tasks of addition and subtraction. Some regard his inventions as the first attempt at mechanical
computation.

Blaise Pascal is often credited with the invention of the first mechanical calculator, the Pascaline, in 1642
(there is evidence that Leonardo DaVinci may have beaten Pascal by 150 years). According to Pascal’s memoirs,
he developed the machine to help his father with his work as a tax collector. Pascal’s device could only add 
and subtract but it was possible to perform multiplication and division operations using a series of additions or
subtractions. What is noteworthy about Pascal’s machine is that it was capable of calculating with eight figures,
and that subtraction was performed using complement techniques. Subtracting using complementary addition
is same technique that is used to implement subtraction in most modern computers.
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Figure 1-1 The Pascaline, photograph by Yves Serra (http://pagesperso-orange.fr/yves.serra/).

Figure 1-2 The Jacquard Loom, photograph by Frank da Cruz 
(http://www.columbia.edu/acis/history/jacquard.html).

In the early 1800s inventors were just beginning to build the power-driven machinery that would fuel the
industrial revolution. One of these inventors, Joseph Marie Jacquard, invented a loom in 1801 that revolutionized
the weaving industry. Although it was not the first mechanical loom, Jacquard’s loom was revolutionary in that
it could be used to weave complex and intricate patterns automatically.

The key idea behind the loom was that the pattern to be woven into the cloth was encoded by holes punched
in a card. A group of these cards, that were literally strung together, provided the information required to 
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control the actions of the loom. The Jacquard loom required fewer people and little skill to operate, and ver-
sions of the loom are still in use today. The Jacquard loom also had a profound impact on computing in that it
was the one of the first devices that could be programmed. The loom gave birth to the concept of punched cards,
which played a fundamental role in the early days of computing.

Charles Babbage, a mathematician and inventor, grew tired of calculating astronomical tables by hand,
and conceived of a way to build a mechanical device to perform the calculations automatically. In 1822
Babbage started work on a computing device, the difference engine, to automatically calculate mathemati-
cal tables. During the course of his work on the difference engine, he conceived of a more sophisticated
machine he called the analytical engine. The analytical engine was meant to be programmed using punched
cards, and would employ features such as sequential control, branching, and looping. Although Babbage
never built a complete working model of either machine, his work became the basis on which many modern
computers are built. (One of Babbage’s earlier difference engines was eventually constructed from draw-
ings by a team at London’s Science Museum in the 1990s. The machine weighs 3 tons and is 10 feet wide
by 6 1/2 feet tall.)

In his work on the analytical engine, Babbage made an important intellectual leap regarding the punched
cards. In the Jacquard loom, the presence or absence of each hole in the card physically allows a colored thread
to pass or stops that thread. Babbage realized that the pattern of holes could be used to represent an abstract
idea such as a problem statement or the raw data required for that problem’s solution.

Because of the connection to the Jacquard loom, Babbage called the two main parts of his Analytic Engine
the “Store” and the “Mill”, as both terms are used in the weaving industry. The Store was where numbers were
held, and the Mill was where they were “woven” into new results. In a modern computer these same parts are
called the memory unit and the central processing unit (CPU).

Perhaps the key concept that separated the analytical engine from its predecessors was that it supported
conditional program execution. This allows the machine to determine what to do next, based upon a condition
or situation that is detected at the very moment the program is running.

Figure 1-3 Jacquard Loom Cards, photograph by Doug Jones
(http://www.cs.uiowa.edu/~jones/cards/history.html).

http://www.cs.uiowa.edu/~jones/cards/history.html


Augusta Ada Byron, the countess of Lovelace, was a mathematician who worked with Charles Babbage on
his analytical engine. Unlike Babbage, who was interested in building a computing device, Lovelace sought to
understand and reason about methods for computing. She studied these methods, their implementations, and the
properties of their implementations. Lovelace even developed a program that would have been able to compute
the Bernoulli numbers. (Bernoulli numbers comprise a sequence of rational numbers that have many roles in
mathematics and number theory.)

In her published analysis of the analytical engine, Lovelace outlined the fundamentals of computer 
programming, including looping and memory addressing. The influence of the Jacquard loom on her work was
evident in her writing, “We may say most aptly that the analytical engine weaves algebraic patterns just as the
Jacquard loom weaves flowers and leaves.”

It is because of this work that many consider Lovelace to be the world’s first programmer. 
The US Department of Defense named the computer language ADA in honor of Lovelace’s work as a 
programmer.

CHAP. 1] INTRODUCTION TO COMPUTER SCIENCE 7

Figure 1-4 Ada Lovelace (http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Lovelace.html).

The 1890 census of the United States proved another milestone in the history of computing when punch
cards were used with automatic sorting and tabulating equipment invented by Herman Hollerith to speed the
compilation of the data. His machines reduced the time required for a full compilation of census results from
10 years to 3 months, and saved $5,000,000 in costs to the census bureau.

Building on the success of his equipment with the US Census Bureau, Hollerith founded the Tabulating
Machine Company in 1896. After merging with two other companies and changing its name, the company
became known as the International Business Machines (IBM) Corp. The punch card remained a staple of data
storage well into the 20th century.

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Lovelace.html


The 1940s were a decade of dramatic events for the world. World War II changed the face of the world and
many lives forever. Although terrible atrocities were taking place during this period, it was also a time of innovation
and invention in computing. During the 1940s the first electronic computers were built, primarily to support the war.
Unfortunately the clouds of war make it difficult to determine exactly who invented the computer first.

Legally, at least in the United States, John Atanasoff is credited as being the inventor of the computer.
Atanasoff was a professor of mathematics and physics at Iowa State. Atanasoff was frustrated at the difficulty
his graduate students were having finding solutions to large systems of simultaneous algebraic equations for
solving differential equations. Like Babbage, almost 100 years earlier, Atanasoff believed that he could build a
machine to solve these equations.

Working with graduate student Clifford Berry, Atanasoff completed a prototype of his machine 
near the end of 1939. Atanasoff and Berry sought simplicity in their computer. The Atanasoff–Berry 
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Figure 1-5 Hollerrith Tabulator & Sorter, photograph IBM Corporate Archives.

Figure 1-6 Clifford Berry with the ABC (www.scl.ameslab.gov/ABC/Progress.html).

www.scl.ameslab.gov/ABC/Progress.html


Computer (ABC) used only 300 vacuum tubes and was capable of performing arithmetic electronically. 
Perhaps what is most important about this particular machine is that is operated on base-2 numbers (binary). 
The ABC did not implement the stored program idea, however, so it was not a general-purpose 
computer.

During the same time period, Howard Aiken was working on the Mark I computer at Harvard University.
As completed in 1944, the Mark I contained more than 750,000 parts, including switches, relays, rotating shafts,
and clutches. The machine was huge, at 51 feet long, 8 feet high, 2 feet thick, and weighing 5 tons. It had 500
miles of wiring, and three million wire connections. The machine sounded like a “roomful of ladies knitting”
when it was running. Aiken showed that it was possible to build a large-scale automatic computer capable of
reliably executing a program.

CHAP. 1] INTRODUCTION TO COMPUTER SCIENCE 9

Figure 1-7 The Aiden/IBM Mark 1 Computer installed at Harvard, photograph IBM Corporate Archives.

One of the people who worked with Aiken on the Mark I was Grace Murray Hopper, a freshly commissioned
lieutenant in the US Naval Reserve. Hopper was involved with programming the Mark I from the very start.
One of her most significant contributions to the field of computing was the concept of a compiler. Hopper was
troubled by the mistake-plagued nature of code writing, and developed a piece of software that would translate
an entire set of programmer’s instructions, written in a high-level symbolic language, into the machine’s language.
The first compiler developed by Hopper was named A-0, and was written in 1952.

Grace Murray Hopper is also credited as the individual who coined the term “bug.” During the summer of
1947 the Mark II computer, a successor to the Mark I, was acting strangely. At times it would produce the cor-
rect answer, and at other times the same program would produce erroneous results. Hopper traced the problem
down to a faulty relay within the computer. When she physically examined the relay to correct the problem, she
discovered that a moth had been trapped in the relay, causing it to malfunction. Once she removed the moth
from the relay, the machine functioned normally. The “bug” was taped onto a page of the laboratory’s notebook
with the inscription “First actual bug found.”



After World War II ended, the allies discovered that Konard Zuse, a German engineer, had been developing
computers for use by the Germans. Zuse’s first computer, the Z1, was built between 1936 and 1938. The
machine contained all of the parts of a modern computer; however, it was not reliable. Its mechanical construction
was very complex and error-prone. Zuse’s Z3 was the first fully functional program-controlled computer in 
the world.

The Z3 was finished in 1941 and predated Aiken’s Mark I. Zuse’s accomplishments are all the more incredible
given the material and worker shortages in Germany during World War II. Zuse couldn’t even obtain paper tape,
so he had to make his own by punching holes in discarded movie film. Zuse also invented what might be the
first high-level computer language, “Plankalkul”, though it, too, was unknown outside Germany.

The work done by the code breakers at Bletchley Park (between London and Birmingham, UK) 
during World War II provided the allies with information that literally turned the tide of the war. Computers
played a vital role in the work of the code breakers and made it possible for them to break the Enigma 
and Lorenz ciphers. Colossus, a computer developed at Bletchley Park to break ciphers, became operational 
in 1943. Colossus was one of the first major computers to employ vacuum tubes, and was capable of reading 
information stored on paper tape at a rate of 5000 characters per second. Colossus also featured limited 
programmability.

When the allies invaded North Africa in 1942, they discovered that the firing tables they used to aim their
artillery were off. This resulted in requests for new ballistics tables that exceeded the ability to compute them.
John Mauchly and J. Presper Eckert used this opportunity to propose the development of an electronic high-speed
vacuum tube computer. Even though many experts predicted that, given the number of vacuum tubes in the
machine, it would only run for five minutes without stopping, they were able to obtain the funding to build 
the machine.

Under a cloak of secrecy, they started work on the machine in the spring of 1943. They completed 
their work on the machine in 1946. The result was the Electronic Numerical Integrator Analyzer and 
Computer (ENIAC), a machine that weighed 30 tons and was built using 17,468 vacuum tubes and 6000
switches. The machine was more than 1000 times faster than any machine built to date. Unlike modern 
computers, reprogramming ENIAC required a rewiring of the basic circuits in the machine. ENIAC heralded
the dawning of the computer age.
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(http://www.history.navy.mil/photos/images/h96000/h96566kc.htm).
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Soon after ENIAC become functional, Mauchly and Eckert formed the Electronic Control Corporation
(ECC) and received contracts from the government to design and build a computer for the Bureau of the Census.
ECC developed financial difficulties and as a result sold its patents to, and became an employee of, the
Remington Rand Corporation. In 1951 Remington Rand delivered the Universal Automatic Computer
(UNIVAC) to the census bureau.

UNIVAC was the fastest computer of the time and was the only commercially available general-purpose
computer. It contained only 5000 vacuum tubes and was more compact than its predecessors. UNIVAC 
computers were sold to government agencies, the A.C. Neilson Company (market researchers), and Prudential
Insurance. By 1957 Remington Rand had sold over 40 machines.

Probably what made UNIVAC most famous was its use by CBS to predict the results of the 1952 presidential
election. Opinion polls predicted that Adalai Stevenson would beat Dwight D. Eisenhower by a landslide.
UNIVAC’s analysis of early returns, however, showed a clear victory for Eisenhower. Newscasters Walter
Cronkite and Charles Collingwood questioned the validity of the computer’s forecast, so they postponed
announcing UNIVAC’s prediction until very late.

For many years, Mauchly and Eckert were considered the inventors of the electronic computer. In fact they
applied for, and received, a patent for their work in 1947. After purchasing ECC, Remington Rand owned the
rights to their patent and was collecting royalties from firms building computers. In a legal battle, initiated by
Honeywell’s refusal to pay royalties, a judge ruled the original patent invalid. Part of his decision to invalidate
the patent was based on the fact that Mauchly had visited John Atanasoff’s laboratory in 1941, and used the
knowledge he gained during the visit to build ENIAC. The results of this lawsuit legally established John
Atanasoff as the inventor of the modern computer.

After the war, commercial development of computers continued, resulting in the development of many new
machines that provided improved performance in terms of computing capability and speed. Computers at this
time were large, cumbersome devices that were capable of performing simple operations. These machines were
very expensive to build and maintain. The only organizations that could afford to purchase and run the 
equipment were the government and large corporations.

Not surprisingly, many individuals working in the computing field felt that the use of computers would be
limited. In a 1950 article, Business Week noted, “Salesmen will find the market limited. The UNIVAC is not the
kind of machine that every office could use.” And though the story is probably apocryphal, the lore of computing
attributes the following prediction to Thomas Watson, the founder of IBM, in 1943: “I think there is a world
market for maybe five computers.”

In the early 1950s, a group of scientists working at Bell Laboratories in New Jersey was studying 
the behavior of crystals as semiconductors in an attempt to replace vacuum tubes. Its work resulted in the 
development of the transistor, which changed the way computers and many electronic devices were built.
Transistors switch and modulate electric current in much the same way as a vacuum tube. Using transistors
instead of vacuum tubes in computers resulted in machines that were much smaller and cheaper, and that
required considerably less electricity to operate. The transistor is one of the most important inventions in the
20th century.

While computer companies such as IBM and Honeywell focused on the development of mainframe 
computers, Digital Equipment Corporation (DEC) focused on the development of smaller computers. DEC’s
PDP series of computers were small and designed to serve the computing needs of laboratories. The PDP-8 was
one of the first computers purchased by end users. Because of their low cost and portability, these machines
could be purchased to fill a specific need. The PDP-8 is generally regarded as the first minicomputer.

The invention of the integrated circuit caused the trend toward smaller, cheaper, and faster computers to
accelerate. Popular Electronics featured an article on a kit that home hobbyists could purchase that would
enable them to build a computer at home. This machine, offered first in 1974, was the Altair 8800, manufactured
by a company named MITS. It ushered in the personal computer era. These initial machines were designed 
to be built at home, which was fine for the home hobbyist but limited the availability of the machine. The first
programming language for the Altair was Altair BASIC, the first product of a little company called Microsoft.

In 1981 IBM introduced its personal computer, or PC, which changed the face of computing forever. 
It was now possible for individuals to simply purchase these machines and use them at home.
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A ROADMAP

After reading this chapter, you should realize that there is much more to computer science than simply writing
programs. Like any professional, a computer scientist must have an understanding of all of the subdisciplines
of the field. Some of the major disciplines of computer science are algorithms, programming, programming 
languages, computer hardware, networking, operating systems, database systems, distributed computing, and
the ethical issues surrounding the use of computer technology.

There are two major schools of thought when it comes to the education of computer scientists. The depth-first
approach is to study one particular topic in depth. For example, many computer science degree programs start
out with a course in programming. After taking such a course, students will be proficient programmers, but
clearly they will not have enough knowledge of the other subdisciplines of the field to be considered computer
scientists.

A second approach is to cover many of the subdisciplines of computer science, but only to the depth
required to teach a basic understanding of the principles of each discipline. After obtaining an overall view of
the field, students will then study certain subdisciplines in depth. This is referred to as the breadth-first
approach, and is the approach we chose to use in this book.

The organization of this text follows the description of computing given in the first section of this chapter.
It begins with a discussion of algorithms, how they are developed, and how they may be compared. We also
introduce a formal model of computation. After reading this chapter you will have a basic understanding of
algorithm development and will be able to develop algorithms to solve simple problems.

After studying algorithms, the text will focus on the basics of computer hardware. In this chapter you will
learn what the major components of the computer are and how they work together. You will also learn about the
binary number system and see how it can be used to encode information at the hardware level.

The next two chapters will focus on programming. We will first study software in general and discuss
how high-level languages can be constructed to provide models in which algorithms can be expressed, and
ultimately expressed in a way that the hardware can work with. In the next chapter we will focus on program-
ming using the programming language Java. The goal of this chapter is not to make you an expert program-
mer, but instead to introduce you to the basics of programming using a language that is readily available and
in wide use.

After learning the fundamentals of programming we will focus on operating systems, networking, and 
databases. The topics covered in these chapters will address common techniques used to manage computer
hardware, provide access to network resources, and manage and store data. Almost every modern computer
application uses the technologies discussed in these chapters.

The last chapter in the book will discuss some of the social issues of computing. In this chapter we 
will discuss intellectual property rights and conflicts, privacy of data, “hacking,” and viruses. We will also discuss
our professional responsibilities when lives depend on the systems on which we work.

REVIEW QUESTIONS

1.1 Write an algorithm for your morning routine, from the time the alarm clock rings until you leave the
house for work or school.

1.2 Find or invent an algorithm to calculate the square root of any number. Apply the algorithm to the
number 2046, finding its square root to 2 decimal places. Do not use a computer or calculator!

1.3 Perl is a computer language that is often used for quick, one-off programming jobs, like converting 
text in a document from one format to another. ADA is a language used for Department of Defense
applications where human life may be at stake. What differences would you imagine to find when you
compare Perl with ADA?

1.4 Why might a computer scientist with a primary interest in databases also need to know about
networking?

1.5 The acronym API stands for Application Programming Interface. What do you suppose API means with
respect to an operating system?
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1.6 If you were offered a job with Microsoft and permitted to choose between working on operating systems,
database products, or applications products like Word or Excel, which would you choose, and why?

1.7 Whom do you believe should be credited as “the inventor of the modern computer?”

1.8 What applications of computing seem to you to be unethical? What are some principles you can declare
with respect to the ethical and unethical use of computers and software?

1.9 List some important ways in which computing has contributed to the welfare of humanity. Which people,
if any, have suffered from the advance of computing technology?
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CHAPTER 2

Algorithms
DEFINITION OF AN ALGORITHM

An algorithm is a method for solving a class of problems. While computer scientists think a lot about 
algorithms, the term applies to any method of solving a particular type of problem. The repair manual for your car
will describe a procedure, which could also be called an algorithm, for replacing the brake pads. The turn-by-turn
travel instructions from MapQuest could be called an algorithm for getting from one place to another.

EXAMPLE—DESIGNING A STAIRCASE

You may be surprised, as we were, to know that every staircase must be custom-designed to fit the circum-
stances of total elevation (total “rise”) and total horizontal extent (total “run”). Figure 2-1 shows these dimen-
sions. If you search the web, you can find algorithms—methods—for designing staircases.

To make stairs fit a person’s natural gait, the relationship of each step’s rise (lift height) to its run (horizontal
distance) should be consistent with a formula. Some say the following formula should be satisfied:

(rise * 2) + run = 25 to 27 inches

Others say the following simpler formula works well:

rise + run = 17 to 18 inches

Many say the ideal rise for each step is 7 in, but some say outdoor steps should be 6 in high because people
are more likely to be carrying heavy burdens outside. In either case, for any particular situation, the total rise of
the staircase will probably not be an even multiple of 6 or 7 in. Therefore, the rise of each step must be altered
to create a whole number of steps.

These rules lead to a procedure for designing a staircase. Our algorithm for designing a set of stairs will be to:

1 Divide the total rise by 7 in and round the result to the nearest whole number to get the number of steps.
2 We will then divide the total run by (the number of steps − 1) (see Fig. 2-1) to compute the run for each step.
3 We will apply one of the formulas to see how close this pair of rise and run parameters is to the ideal.
4 Then we will complete the same computations with one more step and one less step, and also compute the

values of the formula for those combinations of rise and run.
5 We will accept the combination of rise and run that best fits the formula for the ideal.

An algorithm is a way of solving a type of problem, and an algorithm is applicable to many particular
instances of the problem. A good algorithm is a tool that can be used over and over again, as is the case for our
staircase design algorithm.



EXAMPLE—FINDING THE GREATEST COMMON DENOMINATOR

In mathematics, a famously successful and useful algorithm is Euclid’s algorithm for finding the greatest
common divisor (GCD) of two numbers. The GCD is the largest integer that will evenly divide the two numbers
in question. Euclid described his algorithm about 300 BCE.

Without having Euclid’s algorithm, how would one find the GCD of 372 and 84? One would have to factor
the two numbers, and find the largest common factor. As the numbers in question become larger and larger, 
the factoring task becomes more and more difficult and time-consuming. Euclid discovered an algorithm that
systematically and quickly reduces the size of the problem by replacing the original pair of numbers by smaller
pairs until one of the pair becomes zero, at which point the GCD is the other number of the pair (the GCD 
of any number and 0 is that number).

Here is Euclid’s algorithm for finding the GCD of any two numbers A and B.

Repeat:
If B is zero, the GCD is A.
Otherwise:

find the remainder R when dividing A by B
replace the value of A with the value of B
replace the value of B with the value of R

For example, to find the GCD of 372 and 84, which we will show as:

GCD(372, 84)

Find GCD(84, 36) because 372/84 —> remainder 36
Find GCD(36, 12) because 84/36 —> remainder 12
Find GCD(12, 0) because 36/12 —> remainder 0; Solved! GCD = 12

More formally, an algorithm is a sequence of computations that operates on some set of inputs and produces
a result in a finite period of time. In the example of the algorithm for designing stairs, the inputs are the total rise
and total run. The result is the best specification for the number of steps, and for the rise and run of each step. 
In the example of finding the GCD of two numbers, the inputs are the two numbers, and the result is the GCD.

Often there are several ways to solve a class of problems, several algorithms that will get the job done. The
question then is which algorithm is best? In the case of algorithms for computing, computer scientists have
developed techniques for analyzing the performance and judging the relative quality of different algorithms.

REPRESENTING ALGORITHMS WITH PSEUDOCODE

In computer science, algorithms are usually represented as pseudocode. Pseudocode is close enough to 
a real programming language that it can represent the tasks the computer must perform in executing the algorithm.
Pseudocode is also independent of any particular language, and uncluttered by details of syntax, which 
characteristics make it attractive for conveying to humans the essential operations of an algorithm.
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CHARACTERIZING ALGORITHMS

To illustrate how different algorithms can have different performance characteristics, we will discuss a 
variety of algorithms that computer scientists have developed to solve common problems in computing.

Sequential search

Suppose one is provided with a list of people in the class, and one is asked to look up the name Debbie
Drawe. A sequential search is a “brute force” algorithm that one can use. With a sequential search, the 
algorithm simply compares each name in the list to the name for which we are searching. The search ends when
the algorithm finds a matching name, or when the algorithm has inspected all names in the list.

Here is pseudocode for the sequential search. The double forward slash “//” indicates a comment. Note,
too, the way we use the variable index to refer to a particular element in list_of_names. For instance,
list_of_names[3] is the third name in the list.

Sequential_Search(list_of_names, name)
length <-- length of list_of_names
match_found <-- false
index <-- 1

// While we have not found a match AND
// we have not looked at every person in the list,
// (The symbol <= means "less than or equal to.")
// continue ...
// Once we find a match or get to the end of the list,
// we are finished
while match_found = false AND index <= length {

// The index keeps track of which name in the list
// we are comparing with the test name.
// If we find a match, set match_found to true
if list_of_names[index] = name then

match_found <-- true
index <-- index + 1

}
// match_found will be true if we found a match, and
// false if we looked at every name and found no match
return match_found

end
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GCD ( a, b ) Function name and arguments
While b ! = 0 { ! = means “not equal”

indentation shows what to do while b ! = 0
r <-- a modulo b set r = a modulo b ( = remainder a /b)
a <-- b set a = original b
b <-- r set b = r (i.e., the remainder)

} border of the “while” repetition
return a when b = 0, return value of a as the GCD

There is no standard pseudocode form, and many computer scientists develop a personal style of pseudocode
that suits them and their tasks. We will use the following pseudocode style to represent the GCD algorithm:



ANALYZING ALGORITHMS

If we know how long each statement takes to execute, and we know how many names are in the list, we
can calculate the time required for the algorithm to execute. However, the important thing to know about an
algorithm is usually not how long it will take to solve any particular problem. The important thing to know is
how the time taken to solve the problem will vary as the size of the problem changes.

The sequential search algorithm will take longer as the number of comparisons becomes greater. The real
work of the algorithm is in comparing each name to the search name. Most other statements in the algorithm get
executed only once, but as long as the while condition remains true, the comparisons occur again and again.

If the name we are searching for is in the list, on average the algorithm will have to look at half the names
on the list before finding a match. If the name we are searching for is not on the list, the algorithm will have to
look at all the names on the list.

If the list is twice as long, approximately twice as many comparisons will be necessary. If the list is a million
times as long, approximately a million times as many comparisons will be necessary. In that case, the time devoted
to the statements executed only once will become insignificant with respect to the execution time overall. The
running time of the sequential search algorithm grows in proportion to the size of the list being searched.

We say that the “order of growth” of the sequential search algorithm is n. The notation for this is T(n). We
also say that an algorithm whose order of growth is within some constant factor of T(n) has a theta of NL say.
“The sequential search has a theta of n.” The size of the problem is n, the length of the list being searched. Since
for large problems the one-time-only or a-few-times-only statements make little difference, we ignore those
constant or nearly constant times and simply focus on the fact that the running time will grow in proportion to
the length of the list being searched.

Of course, for any particular search, the time required will depend on where in the list the match occurs. 
If the first name is a match, then it doesn’t matter how long the list is. If the name does not occur in the list, the
search will always require comparing the search name with all the names in the list.

We say the sequential search algorithm is Θ(n) because in the average case, and the worst case, its performance
slows in proportion to n, the length of the list. Sometimes algorithms are characterized for best-case performance,
but usually average performance, and particularly worst-case performance are reported. The average case is usually
better for setting expectations, and the worst case provides a boundary upon which one can rely.

Insertion sort—An example of order of growth n2—Q(n2)

Programmers have designed many algorithms for sorting numbers, because one needs this functionality 
frequently. One sorting algorithm is called the insertion sort, and it works in a manner similar to a card player
organizing his hand. Each time the algorithm reads a number (card), it places the number in its sorted position
among the numbers (cards) it has already sorted.

On the next page we show the pseudocode for the insertion sort. In this case, we use two variables,
number_index and sorted_index, to keep track of two positions in the list of numbers.

We consider the list as two sets of numbers. We start with only one set of numbers—the numbers we want
to sort. However, immediately the algorithm considers the list to be comprised of two sets of numbers; the first
“set” consists of the first number in the original list, and the second set consists of all the rest of the numbers.

The first set is the set of “sorted” numbers (like the cards already sorted in your hand), and the second set is the
remaining set of unsorted numbers. The sorted set of numbers starts out containing only a single number, but as the
algorithm proceeds, more and more of the unsorted numbers will be moved to their proper position in the sorted set.

The variable number_index keeps track of where we are in the list of unsorted numbers; it starts at 2,
the first number which is “unsorted.” The variable sorted_index keeps track of where we are among the
sorted numbers; it starts at 1, since the first element of the original list starts the set of “sorted” numbers.

The algorithm compares the next number to be inserted into the sorted set against the largest of the sorted
numbers. If the new number is smaller, then the algorithm shifts all the numbers up one position in the list. This
repeats, until eventually the algorithm will find that the new number is greater than the next sorted number, and
the algorithm will put the new number in the proper position next to the smaller number.

It’s also possible that the new number is smaller than all of the numbers in the sorted set. The algorithm
will know that has happened when sorted_index becomes 0. In that case, the algorithm inserts the new
number as the first element in the sorted set.
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Insertion_Sort(num_list)

length <-- length of num_list

// At the start, the second element of the original list
// is the first number in the set of "unsorted" numbers.
number_index <-- 2

// We’re done when we have looked at all positions in the list.
while(number_index <= length) {

// newNum is the no. being considered for sorting
newNum <-- num_list[number_index]

// sorted_index marks the end of previously sorted numbers.
sorted_index <-- number_index - 1

// From high to low, look for the place for the new number.
// If newNum is smaller than the previously sorted numbers,
// move the previously sorted numbers up in the num_list.
while newNum < num_list[sorted_index] AND sorted_index > 0 {

num_list[sorted_index + 1] <-- num_list[sorted_index]
sorted_index <-- sorted_index - 1

}

// newNum is not smaller than the number at sorted_index.
// We found the place for the new number, so insert it.
num_list[sorted_index + 1] = newNum

}
end

To repeat, the variable number_index keeps track of where the algorithm is in the unsorted set of numbers.
The algorithm starts with the second number (number_index = 2). Then the algorithm compares the number
to the largest number that has been sorted so far, num_list[sorted_index]. If the number is smaller than the
previously sorted number, the algorithm moves the previously sorted number up one position in num_list, and
checks the new number against the next largest number in the previously sorted elements of num_list. Finally,
the algorithm will encounter a previously sorted number which is smaller than the number being inserted, or it will
find itself past the starting position of num_list. At that point, the number can be inserted into the num_list.
The algorithm completes when all of the positions in the num_list have been sorted.

To analyze the running time of the insertion sort, we note first that the performance will be proportional to
n, the number of elements to be sorted. We also note that each element to be sorted must be compared one or
many times with the elements already sorted. In the best case, the elements will be sorted already, and each element
will require only a single comparison, so the best-case performance of the insertion sort is Θ(n).

In the worst case, the elements to be sorted will be in reverse order, so that every element will require comparison
with every element already sorted. The second number will be compared with the first, the third with the second
and first, the fourth with the third, second, and first, etc. If there were four numbers in reverse order, the number of
comparisons would be six. In general, the number of comparisons in the worst case for the insertion sort will be:

n2/2 - n/2

The number of comparisons will grow as the square of the number of elements to be sorted. The negative
term of -n/2, and the division of n2 by the constant 2, mean that the rate of growth in number of comparisons
will not be the full rate that n2 would imply. However, for very large values of n, those terms other than 
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n2 become relatively insignificant. Imagine the worst case of sorting a million numbers. The n2 term will 
overwhelm the other terms of the equation.

Since one usually reports the order of growth for an algorithm as the worst-case order of growth, the insertion
sort has a theta of n2, or Θ(n2). If one computes the average case order of growth for the insertion sort, one also
finds a quadratic equation; it’s just somewhat smaller, since on average each new element will be compared with
only half of the elements already sorted. So we say the performance of the insertion sort is Θ(n2).

Merge sort—An example of order of growth of n(lg n)— Q(n lg n)

Another algorithm for sorting numbers uses recursion, a technique we will discuss in more detail shortly,
to divide the problem into many smaller problems before recombining the elements of the full solution. First,
this solution requires a routine to combine two sets of sorted numbers into a single set.

Imagine two piles of playing cards, each sorted from smallest to largest, with the cards face up in two piles,
and the two smallest cards showing. The merge routine compares the two cards that are showing, and places the
smaller card face down in what will be the merged pile. Then the routine compares the two cards showing after
the first has been put face down on the merged pile. Again, the routine picks up the smaller card, and puts it
face down on the merged pile. The merge routine continues in this manner until all the cards have been moved
into the sorted merged pile.

Here is pseudocode for the merge routine. It expects to work on two previously sorted lists of numbers, and
it merges the two lists into one sorted list, which it returns. The variable index keeps track of where it is working
in sorted_list.

The routine compares the first (top) numbers in the two original lists, and puts the smaller of the two into
sorted_list. Then it discards the number from the original list, which means that the number that used to
be the second one in the original list becomes the first number in that list. Again the routine compares the first
numbers in the two lists, and again it moves the smaller to sorted_list.

The routine continues this way until one of the original lists becomes empty. At that point, it adds the remain-
ing numbers (which were in sorted order originally, remember) to sorted_list, and returns sorted_list.

merge(list_A, list_B)
// index keeps track of where we are in the
// sorted list
index <-- 1

// Repeat as long as there are numbers in both
// original lists.
while list_A is not empty AND list_B is not empty

// Compare the 1st elements of the 2 lists.
// Move the smaller to the sorted list.
// "<" means "smaller than."
if list_A[1] < list_B[1]

sorted_list[index] <-- list_A[1]
discard list_A[1]

else
sorted_list[index] <-- list_B[1]
discard list_B[1]

index <-- index + 1

// If numbers remain only in list_A, move those
// to the sorted list
while list_A is not empty

sorted_list[index] <-- list_A[1]
discard list_A[1]

index <-- index + 1
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// If numbers remain only in list_B, move those
// to the sorted list
while list_B is not empty

sorted_list[index] <-- list_B[1]
discard list_B[1]
index <-- index + 1

// Return the sorted list
return sorted_list

The performance of merge is related to the lengths of the lists on which it operates, the total number of
items being merged. The real work of the routine is in moving the appropriate elements of the original lists into
the sorted list. Since the total number of such moves is equal to the sum of the numbers in the two lists, merge
has a theta of nA + nB, or Θ(nA + nB), where nA + nB is equal to the sum of the numbers in the two lists.

The merge_sort will use the merge routine, but first the merge_sort will divide the problem up into
smaller and smaller sorting tasks. Then merge_sortwill reassemble the small sorted lists into one fully sorted list.

In fact, merge_sort divides the list of numbers until each sublist consists of a single number, which can be
considered a sorted list of length 1. Then the merge_sort uses the merge procedure to join the sorted sublists.

The technique used by merge_sort to divide the problem into subproblems is called recursion. The
merge_sort repeatedly calls itself until the recursion “bottoms out” with lists whose lengths are one. Then
the recursion “returns,” reassembling the numbers in sorted order as it does. Here is pseudocode for the merge
sort. It takes the list of numbers to be sorted, and it returns a sorted list of those numbers.

merge_sort(num_list)
length <-- length of num_list

// if there is more than 1 number in the list,
if length > 1

// divide the list into two lists half as long
shorter_list_A <-- first half of num_list
shorter_list_B <-- second half of num_list

// Perform a merge sort on each shorter list
result_A <-- merge_sort(shorter_list_A)
result_B <-- merge_sort(shorter_list_B)

// Merge the results of the two sorted sublists
sorted_list <-- merge(result_A, result_B)

// Return the sorted list
return sorted_list

else
// If there’s only 1 number in the list,
// just return it
return num_list

end

Let’s follow the execution of merge_sort when one calls it with this list of numbers:

NUMS = { 1, 6, 4, 2 }

1 First, we call merge_sort passing the list NUMS. This is what we call the “top-level” of recursion,
level 0.
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2 merge_sort calls merge_sort again, passing a list of the first two numbers in NUMS. This will
sort the front half of the list. This is level 1 of recursion.

3 Now merge_sort calls merge_sort again, passing only the first number in NUMS. This is level 2.
4 Now merge_sort simply returns; it’s down to one element in the list, merge_sort returns to level 1.
5 Now merge_sort calls merge_sort again, passing only the second of the first two numbers in

NUMS. This is level 2.
6 Again, merge_sort simply returns; it’s down to one element in the list, merge_sort returns to level 1.
7 At level 1 of recursion, merge_sort now has result_A and result_B. merge_sort calls

merge to put those two numbers in order, and then it returns the sorted pair of numbers back to level 0.
The first half of the list is sorted.

8 From level 0, merge_sort calls merge_sort again, passing a list of the last two numbers in NUMS.
This will sort the back half of NUMS. It’s back to level 1 of recursion.

9 merge_sort calls merge_sort again, passing only the first of the last two numbers of NUMS. This is
level 2 of recursion again.

10 Since the list contains only one number, merge_sort simply returns back to level 1.
11 merge_sort calls merge_sort again, passing only the last of the numbers of NUMS. This is level 2

of recursion again.
12 Since the list contains only one number, merge_sort simply returns back to level 1.
13 At level 1 of recursion, merge_sort now has result_A and result_B. merge_sort calls

merge to put the two lists in order, and then it returns the sorted set of two numbers back to level 0.
14 At level 0 of recursion, merge_sort now has result_A and result_B. merge_sort calls merge

to put the two lists of numbers in order, and then it returns the entire set of four numbers in sorted order.

Aside from being an interesting exercise in recursion, the merge_sort provides attractive performance. The
merge sort has a theta of n(lg n), which for large problems is much better than the theta of n2 for the insertion sort.

The recursion in merge_sort divides the problem into many subproblems by repeatedly halving the size
of the list to be sorted. The number of times the list must be divided by two in order to create lists of length one
is equal to the logarithm to the base 2 of the number of elements in the list.

In the case of our 4-element example, the logarithm to the base 2 of 4 is 2, because 22 = 4. This can be written
as log2 n, but in computer science, because of the ubiquity of binary math, this is usually written as lg n, meaning
logarithm to the base 2 of n.

The total running time T of the merge sort consists of the time to recursively solve two problems of half
the size, and then to combine the results. One way of expressing the time required is this:

T = 2T(n/2) + merge

Since merge runs in Θ(nA + nB), and since nA + nB = n, we will restate this:

T = 2T(n/2) + Θ(n)

A recursion tree is a way to visualize the time required. At the top level, we have the time required for
merge Θ(n), plus the time required for the two subproblems:

Θ(n)
T(n/2) T(n/2)

At the next level, we have the time required for the two merges of the two subproblems, and for the further
subdivision of the two subproblems:

Θ(n)
Θ(n/2) Θ(n/2)
T(n/4) T(n/4) T(n/4) T(n/4)
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We can continue this sort of expansion until the tree is deep enough for the size of the overall problem:

Θ(n)
Θ(n/2) Θ(n/2)
Θ(n/4) Θ(n/4) Θ(n/4) Θ(n/4)

...

...

Adding across each row, we find:

Sum
Θ(n) Θ(n)

Θ(n/2) Θ(n/2) Θ(n)
Θ(n/4) Θ(n/4) Θ(n/4) Θ(n/4) Θ(n)
...
...

For any particular problem, because we repetitively divide the problem in two, we will have as many levels
as (lg n). For instance, our example with four numbers had only two levels of recursion. A problem with eight
numbers will have three levels, and a problem with 16 numbers will have four.

Summing over the whole problem, then, we find the merge sort has a theta of n(lg n). There are (lg n) levels,
each with a theta of n. So the merge sort has an order of growth of Θ(n(lg n)).

This is a very big deal, because for large sets of numbers, n(lg n) is very much smaller than n2. Suppose
that one million numbers must be sorted. The insertion sort will require on the order of (106)2, or
1,000,000,000,000 units of time, while the merge sort will require on the order of 106 (lg 106), or 106 (20),
or 20,000,000 units of time. The merge sort will be almost five orders of magnitude faster. If a unit of time is
one millionth of a second, the merge sort will complete in 20 seconds, and the insertion sort will require a week
and a half!

Binary search—An example of order of growth of (lg n)—Q(lg n)

Earlier we discussed the sequential search algorithm and found its performance to be Θ(n). One can search
much more efficiently if one knows the list is in order to start with. The improvement in efficiency is akin to the
improved usefulness of a telephone book when the entries are sorted by alphabetical order. In fact, for most
communities, a telephone book where the entries were not sorted alphabetically would be unthinkably inefficient!

If the list to be searched is already ordered from smallest to largest, the binary search algorithm can find
any entry in (lg n) time. If the list contains 1,000,000 entries, that means the binary search will locate the 
item after reading fewer than 20 entries. The sequential search, on average, will have to read 500,000 entries.
What a difference!

The binary search works by repetitively dividing the list in half. It starts by comparing the element in the
middle of the list with the item sought. If the search item is smaller than the element in the middle of the list,
the binary search reads the element at the middle of the first half of the list. Then, if the search item is larger
than that element, the binary search next reads the element at the middle of the second half of the front half of
the list. Eventually, the search finds the element sought, or concludes that the element is not present in the list.

Here is pseudocode for a binary search:

BinarySearch(list, search_item)
begin <-- 1
end <-- length of list
match_found <-- false

// Repeat search as long as no match has been found
// and we have not searched the entire list.
while match_found = false AND begin <= end

// Find the item at the midpoint of the list
midpoint <-- (begin + end) / 2

22 ALGORITHMS [CHAP. 2



// If it’s the one we’re looking for, we’re done
if list[midpoint] = search_item

match_found = true
// If the search item is smaller, the next
// list item to check is in the first half
else if search_item < list[midpoint]

end <-- midpoint - 1

// Otherwise, the next list item to check
// is in the back half of the list
else

begin <-- midpoint + 1

// Return true or false, depending on whether we
// found the search_item
return match_found

With each iteration, the binary search reduces the size of the list to be searched by a factor of 2. So, the
binary search generally will find the search item, or conclude that the search item is not in the list, when the
algorithm has executed (lg n) iterations or fewer. If there are seven items in the list, the algorithm will complete
in three iterations or fewer. If there are 1,000,000 items in the list, the algorithm will complete in 20 iterations
or fewer.

If the original list happens to be a perfect power of 2, the maximum number of iterations of the binary
search can be 1 larger than (lg n). When the size of the list is a perfect power of 2, there are two items at the (lg n)
level, so one more iteration may be necessary in that circumstance. For instance, if there are eight items in the
list, the algorithm will complete in (3 + 1) iterations or fewer.

In any case, the running time of the binary search is Θ(lg n). This efficiency recommends it as a search
algorithm, and also, therefore, often justifies the work of keeping frequently searched lists in order.

Intractable problems

The algorithms discussed so far all have an order of growth that can be described by some polynomial equation
in n. A “polynomial in n” means the sum of some number of terms, where each term consists of n raised to some
power and multiplied by a coefficient. For instance, the insertion sort order of growth is (n2/2 - n/2).

When an algorithm has an order of growth that is greater than can be expressed by some polynomial equation
in n, then computer scientists refer to the algorithm as intractable. If no better algorithm can be discovered to
solve the problem, computer scientists refer to the problem as an intractable problem.

As an example of an intractable problem, consider a bioinformatics problem. The Department of Genetics at
Yale School of Medicine maintains a database of genetic information obtained from different human populations.
ALFRED (ALlele FREquency Database) is a repository of genetic data on 494 anthropologically defined
human populations, for over 1600 polymorphisms (differences in DNA sequences between individuals).
However, researchers have collected data for only about 6 percent of the possible population–polymorphism
combinations, so most of the possible entries in the database are absent.

When population geneticists seek to find the largest possible subset of populations and polymorphisms for
which complete data exist (that is, measures exist for all polymorphisms for all populations), the researchers are
confronted by a computationally intractable problem. This problem requires that every subset of the elements
in the matrix be examined, and the number of subsets is very large!

The number of subsets among n elements is 2n, since each element can either be in a particular subset or
not. For our problem, the number of elements of our set is the number of possible entries in the database. That
is, the ALFRED database presents us with 2 (494 ∗ 1600) subsets to investigate! To exhaustively test for the largest
subset with complete data, we would have to enumerate all the subsets, and test each one to see if all entries in
the subset contained measurements!

Clearly, the order of growth of such an algorithm is 2n; Θ(2n). This is an exponential function of n, not 
a polynomial, and it makes a very important difference. An exponential algorithm becomes intractable quickly.
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For instance, solving the problem for a matrix of 20 entries will require about a million units of time, but solving
the problem for a matrix of 50 entries will require about a million billion units of time. If a unit of time is a millionth
of a second, the problem of size 20 will require a second to compute, but the problem of size 50 will require
more than 25 years. The ALFRED database is of size 494 ∗ 1600 = 790,400. Students hoping to graduate need
a better algorithm or a different problem!

Another example of an intractable problem is the famous traveling salesman problem. This problem is 
so famous it has its own acronym, TSP. The salesman needs to visit each of several cities, and wants to do so
without visiting any city more than once. In the interest of efficiency, the salesman wants to minimize the length
of the trip.

The salesman must visit each city, but he can visit the cities in any order. Finding the shortest route requires
computing the total distance for each permutation of the cities the salesman must visit, and selecting the shortest
one. Actually, since a route in one direction is the same distance as the reverse route, only half of the permutations
of cities need to be calculated. Since the number of permutations of n objects is equal to n-factorial (n! or n ∗
(n−1) ∗ (n−2) ... ∗ 2 ∗ 1), the number of routes to test grows as the factorial of the number of cities, divided by 2.
So the order of growth for the TSP problem is n-factorial; Θ(n!).
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Figure 2-2 Comparison of orders of growth.

Q Classification
k Constant: run time is fixed, and does not depend upon n. Most instructions are executed once,

or only a few times, regardless of the amount of information being processed.
lg n Logarithmic: when n increases, so does run time, but much more slowly than n does. When n

doubles, lg n increases by a constant, but does not double until n increases to n2. Common in 
programs which solve large problems by transforming them into smaller problems.

n Linear: run time varies directly with n. Typically, a small amount of processing is done on
each element.

n lg n When n doubles, run time slightly more than doubles. Common in programs which break 
a problem down into smaller subproblems, solve them independently, and then combine
solutions.

n2 Quadratic: when n doubles, runtime increases fourfold. Practical only for small problems;
typically the program processes all pairs of input (e.g., in a double nested loop).

2n Exponential: when n doubles, run time squares. This is often the result of a natural, “brute force”
solution. Such problems are not computable in a reasonable time when the problem becomes
at all large.

Table 2-1



A factorial order of growth is even more extreme than an exponential order of growth. For example, there
are about 3.6 million permutations of 10 cities, but more than 2 trillion billion permutations of 20. If the computer
can compute the distance for a million permutations a second, the TSP problem will take 1.8 seconds for 
10 cities, but tens of thousands of years for 20 cities.

Figure 2-2 shows the rates of growth for lg n, n, n(lg n), n2, 2n, and n!
Table 2.1 summarizes some different orders of growth, and the characteristics of associated algorithms.

ALGORITHMS AS TECHNOLOGY

It’s pretty exciting to buy a new computer with twice, four times, or even ten times the clock rate of the old
computer. Many people think of computer hardware speed as the measure of technological advance. Having 
discussed algorithms and their performance, consider whether a better algorithm on a slower computer might
be better than a slower algorithm on a faster computer.

As an example, consider a sorting task. Suppose you need to sort a million numbers (social security numbers,
for example). You have the choice of using your current computer with a merge sort program, or of buying 
a new computer, which is 10 times faster, but which uses an insertion sort.

The insertion sort on the new computer will require on the order of (106)2, or a million million cycles, while
the merge sort will require on the order of 106(lg 106), or 106(20), or 20 million cycles. Even when it runs on
your old computer, the merge sort will still run four orders of magnitude faster than the insertion sort on the
new machine. If it takes 20 seconds to run the merge sort on your old machine, it will take over 27 hours to run
the insertion sort on the new machine!

Algorithm design should be considered important technology. A better algorithm can make the difference
between being able to solve the problem or not, and a better algorithm can make a much greater difference than
any near-term improvement in hardware speed.

FORMAL MODELS OF COMPUTATION

The theory of computing has advanced by adopting formal models of computation whose properties can be
explored mathematically. The most influential model was proposed by the mathematician Alan Turing in 1936.

Turing used the human as the model computing agent. He imagined a human, in a certain state of mind,
looking at a symbol on paper. The human reacts to the symbol on paper by

1 erasing the symbol, or erasing the symbol and writing a new symbol, or neither,
2 perhaps changing his or her state of mind as a result of contemplating the symbol, and then
3 contemplating another symbol on the paper, next to the first.

This model of computation captures the ability to accept input (from the paper), store information in
memory (also on the paper), take different actions depending on the input and the computing agent’s “state of
mind,” and produce output (also on the paper). Turing recast this drastically simple model of computation into
mathematical form, and derived some very fundamental discoveries about the nature of computation. In particular,
Turing proved that some important problems cannot be solved with any algorithm. He proved not that these
problems have no known solution; he proved that these problems cannot ever have a solution. For instance, he
proved that one will never be able to write one program that will be able to determine whether any other arbitrary
program will execute to a proper completion, or crash.

Hmmm... that’s too bad... it would be nice to have a program to check our work and tell us whether or not
our new program will ever crash.

The mathematical conception of Turing’s model of computation is called a Turing machine or TM. A TM
is usually described as a machine reading a tape.

● The tape contains symbols or blanks, and the tape can be infinitely long.
● The machine can read one symbol at a time, the symbol positioned under the “read/write head” of the TM.
● The machine can also erase the symbol, or write a new symbol, and it can then position the tape one

cell to the left or right.
● The machine itself can be in one of a finite number of states, and reading a symbol can cause the state

of the TM to change.
● A special state is the halting state, which is the state of the machine when it terminates normally.
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● When the machine starts, it is in state 1, it is positioned at the extreme left end of the tape, and the tape
extends indefinitely to the right.

A particular TM will have a set of instructions it understands. Each instruction consists of a 5-tuple (rhymes
with couple), which is a mathematical way of saying that one instruction consists of five values. These values are

1 the current state
2 the current symbol being read
3 the symbol with which to replace the current symbol
4 the next state to enter
5 the direction to move the tape (Right, Left, or Stationary)

As a first example, suppose a TM includes these three instructions (∆ means blank):

1 (1, 0, 1, 1, Right )
2 (1, 1, 0, 1, Right )
3 (1, ∆, ∆, halt, Stationary)

The first says that if the symbol being read is a 0, replace it with a 1 and move right. The second says that
if the symbol being read is a 1, replace it with a 0 and move right. The third says that if the symbol being read
is a blank, halt the machine without moving the tape.

Assume the tape presented to this TM contains the symbols:

1 1 0 1 0 1 0 0 ∆ ∆ ∆...

Starting in state 1, and positioned at the extreme left of the tape, the machine reads the symbol 1. Instruction
2 applies to this situation, so the instruction causes the 1 to be replaced by a 0, the machine state to remain 1,
and the machine to move 1 cell to the right on the tape.

Next the TM reads another 1. Instruction 2 applies again, so the TM changes the second 1 to a 0, and moves
right again, remaining in state 1.

When the TM reads the symbol 0, instruction 1 applies, so instruction 1 causes the 0 to be replaced by a 1,
the machine to stay in state 1, and the machine to move right once again.

As the machine advances down the tape, every 1 will be changed to a 0, and every 0 will be changed to 
a 1. Finally, the machine will read a blank. In that case, instruction 3 will apply, and the machine will halt.

This simple TM is a machine for complementing (inverting) the bits of a binary number. The result of the
computation will be a tape that contains these symbols:

0 0 1 0 1 0 1 1 ∆ ∆ ∆...

Complementing the bits of a binary number is a frequently required task, so this is a useful TM.
A slightly more complex task is that of complementing and incrementing a binary number. That operation is

often used by computers to perform binary subtraction. In fact, in the “old days” when the only calculating
machines available were mechanical adding machines, people performed subtraction the same way in base 10,
using the 10’s complement method. To subtract 14 from 17 in base 10, they found the 9’s complement of 14, which
is 85 (subtract 1 from 9 to get the 8, and subtract 4 from 9 to get the 5). They incremented 85 by 1, to get 86, or
what’s called the 10’s complement. Adding 17 and 86 gave 103. Ignoring the carry digit gave the answer of 3!

To perform binary subtraction by the 2’s complement method, the subtrahend is complemented and 
incremented, and then added to the minuend. For instance, to subtract 2 from 5, we can complement and increment
2, and add that to 5 to get 3:

010 2 (in base 2: 0 fours, 1 two, 0 units)
101 2 complemented (1s --> 0s; 0s --> 1s)

110 2 complemented & incremented
(adding 001 to 101 --> 110 in base 2)

+101 5 (1 four, 0 twos, 1 unit)
1011 3 (in base 2: 0 fours, 1 two, 1 unit --

ignore the carry bit to the left)
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Since subtraction is often required, a TM for complementing and incrementing a binary number is interesting.
Here are the instructions for such a machine:

1 (1, 0, 1, 1, Right )
2 (1, 1, 0, 1, Right )
3 (1, ∆, ∆, 2, Left )
4 (2, 0, 1, 3, Right )
5 (2, 1, 0, 2, Left )
6 (3, 1, 1, 3, Right )
7 (3, 0, 0, 3, Right )
8 (3, ∆, ∆, halt, Stationary)

Instructions 1 and 2 are the same as for the simpler TM which complemented the bits on the tape.
Instruction 3 will apply when the TM has complemented all the bits and encountered the blank on the right end
of the tape. When that happens, the machine will go into state 2 and move left.

If the machine is in state 2 and encounters a 0, instruction 4 will cause the 0 to be replaced 
by a 1, the machine to enter state 3, and move right. Once the machine is in state 3, instructions 6 and 
7 will cause the machine to move right without further changing the contents of the tape. When 
the machine finally encounters the blank on the right again, instruction 8 will cause the machine 
to halt.

If the machine is in state 2 and encounters a 1, instruction 5 will cause the 1 to be replaced by a 0, the
machine to stay in state 2, and move left again. This will continue in such manner until the TM encounters a 0,
in which case instruction 4 will apply, as described in the previous paragraph.

Using the binary number 2 as the example again, the TM will create the following contents on the tape as
it executes:

0 1 0 ∆ ∆ original tape
1 0 1 ∆ ∆ complementing complete
1 0 0 ∆ ∆ after executing instruction 5
1 1 0 ∆ ∆ after executing instruction 4
1 1 0 ∆ ∆ halted after executing instruction 8

This TM works for many inputs, but not all. Suppose the original input tape were all zeros:

0 0 0 ∆ ∆ original tape

After the complementing is complete, and all the 0s become 1s, the TM will back up over the tape repeatedly
executing instruction 5. That is, it will back up changing each 1 to 0. In this case, however, the TM will never
encounter a 0, where instruction 4 would put the TM into state 3 and start the TM moving toward the end of the
tape and a proper halt.

Instead, the TM will ultimately encounter the first symbol on the tape, and instruction 5 will command it
to move again left. Since the machine can go no further in that direction, the machine “crashes.”

Likewise, the TM will crash if one of the symbols on the tape is something other than 1 or 0. There are 
no instructions in this TM for handling any other symbol, so an input tape such as this will also cause the TM to
crash:

0 3 0 ∆ ∆ original tape

Another way a TM can fail is by getting into an infinite loop. If instruction 7 above specified a move to the
left instead of the right, certain input tapes containing only 1s and 0s would cause the TM to enter an endless
loop, moving back and forth endlessly between two adjacent cells on the tape.

Algorithms can be specified as TMs and, like all algorithms, TMs must be tested for correctness, given
expected inputs.
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CHURCH–TURING THESIS

The Turing machine is thought to be a very general model of computation. In 1936, logician Alonzo Church
advanced the thesis that any algorithmic procedure to manipulate symbols, conducted by humans or any
machine, can be conducted by some TM.

It is not possible to prove this proposition rigorously, for the notion of an algorithm is not specified math-
ematically. However, the Church–Turing thesis has been widely tested, and is now accepted as true. One would
not want to write a TM for a complex task like designing a set of stairs for a staircase, but it could be done.

The significance of having such a model of computation is that the model has been used to show that some
tasks cannot be accomplished with a TM. If the Church–Turing thesis is true, then tasks for which a TM cannot
be successful are tasks which simply have no algorithmic solution.

UNSOLVABLE PROBLEMS

It would be very useful to have a way of quickly knowing whether any particular program, when provided
with any particular set of inputs, will execute to completion and halt, or instead continue endlessly. In computer
science, this is known as the “halting problem.” Given a program, and a set of inputs, will the program execute
to completion or not? Is there some algorithm one can apply that will, for any program and any set of inputs,
determine whether the program will run to completion or not?

One might suggest simply running the program, providing the particular inputs, and seeing whether the
program halts or not. If the program were to run to completion and halt, you would know that it halts. However,
if the program were to continue to run, you would never know whether the program would continue forever, or
halt eventually. What is needed is an algorithm for inspecting the program, an algorithm which will tell us
whether the program will eventually halt, given a particular set of inputs.

If there is such an algorithm for inspecting a program, there is a TM to implement it. Unfortunately however,
the halting problem has been shown to be an unsolvable problem, and the proof that there is no solution is 
a proof by contradiction. We begin by assuming there is, indeed, a TM that implements a solution to the halting
problem. We will call this TM 'H', for it solves the big halting problem.

The input to H must include both the program under test p, and the input to the program i. In pseudocode,
we call H like this:

H(p, i)

We assume that H must itself halt, and that the output from H must be true or false—the program under 
test must be found either to halt, or not to halt. Whatever H does, it does not rely on simply running the 
program under test, because H itself must always halt in a reasonable time.

Now suppose that we create another TM called NotH that takes a symbolic argument that will include the
encoding of a program, p. NotH will call H, passing the code for p as both the program p and the input data i
to be tested. (TMs can be linked this way, but the details are not important to this discussion.) NotH will return
true if H fails to halt under these conditions, and will loop forever if H does halt. In pseudocode NotH looks
like this:

NotH(p)
if(H(p, p) is false) return true
else

while(true) {} //loop forever
endNotH

Now suppose we test NotH itself with this approach. That is, suppose we pass the code for NotH itself to
NotH. We will refer to the code for NotH as 'nh', and we can ask, “Does the program NotH halt when it is
run with its own code as input?” Saying this another way, does NotH(nh) halt?

If NotH(nh) halts, this can only be because H(nh,nh) reports that NotH does not halt. On the other 
hand, if NotH(nh) does not halt, this can only be because H(nh,nh) reports that NotH does halt. These are
obviously contradictions.
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The original assumption, that a TM does exist that can determine whether any particular program will 
run to completion when presented with any arbitrary input data, must be incorrect. That assumption led to the
contradictory state illustrated by NotH. Therefore, computer scientists conclude that there can be no one algorithm
that can determine whether any particular program will run to completion, or fail to run to completion, for every
possible set of inputs.

It would be very nice to have a program to which we could submit new code for a quick determination as
to whether it would run to completion given any particular set of inputs. Alas, Turing proved that this cannot
be. One can and should write test programs, but one will never succeed in writing one program which can test
every program.

The “halting problem” is one of the provably unsolvable problems in computing (Turing, Alan, “On com-
putable Numbers with an Application to the Entscheidungsproblem”, Proceedings of the London Mathematical
Society, 2:230–265, 1936). No one algorithm will ever be written to prove the correct or incorrect execution 
of every possible program when presented with any particular set of inputs. While no such algorithm can be 
successful, knowing that allows computer scientists to focus on problems for which there are solutions.

SUMMARY

An algorithm is a specific procedure for accomplishing some job. Much of computer science has to do with
finding or creating better algorithms for solving computational problems.

We usually describe computational algorithms using pseudocode, and we characterize the performance of
algorithms using the term “order of growth” or “theta.” The order of growth of an algorithm tells us, in a simplified
way, how the running time of the algorithm will vary with problems of different sizes. We provided examples
of algorithms whose orders of growth were (lg n), n, n(lg n), n2, 2n and n!.

Algorithm development should be considered an important part of computing technology. In fact, a better
algorithm for an important task may be much more impactful than any foreseeable near-term improvement in
computing hardware speed.

The Turing machine is a formal mathematical model of computation, and the Church–Turing thesis 
maintains that any algorithmic procedure to manipulate symbols can be conducted by some Turing machine.
We gave example Turing machines to perform the simple binary operations of complementing and incrementing
a binary number.

Some problems in computing are provably unsolvable. For instance, Turing proved that it is impossible to
write one computer program that can inspect any other program and verify that the program in question will, or
will not, run to completion, given any specific set of inputs. While the “Holy Grail” of an algorithm to prove the
correctness of programs has been proven to be only a phantom in the dreams of computer scientists, computer
scientists at least know that is so, and can work instead on practical test plans for real programs.

REVIEW QUESTIONS

2.1 Write pseudocode for an algorithm for finding the square root of a number.

2.2 Write pseudocode for finding the mean of a set of numbers.

2.3 Count the primitive operations in your algorithm to find the mean. What is the order of growth of your
mean algorithm?

2.4 Write pseudocode for finding the median of a set of numbers.

2.5 What is the order of growth of your algorithm to find the median?

2.6 Suppose that your algorithm to find the mean is Θ(n), and that your algorithm to find the median is Θ(n lg n),
what will be the execution speed ratio between your algorithm for the mean and your algorithm for the
median when the number of values is 1,000,000?

2.7 A sort routine which is easy to program is the bubble sort. The program simply scans all of the elements
to be sorted repeatedly. On each pass, the program compares each element with the one next to it, and
reorders the two, if they are in inverse order. For instance, to sort the following list:

6 7 3 1 4
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Bubble sort starts by comparing 6 and 7. They are in the correct order, so it then compares 7 and 3. They
are in inverse order, so bubble sort exchanges 7 and 3, and then compares 7 and 1. The numbers 7 and 1
are in reverse order, so bubble sort swaps them, and then compares 7 and 4. Once again, the order is
incorrect, so it swaps 7 and 4. End of scan 1:

6 3 1 4 7
Scanning left to right again results in:

3 1 4 6 7
Scanning left to right again results in a correct ordering:

1 3 4 6 7
Write pseudocode for the bubble sort.

2.8 What is the bubble sort T?

2.9 How will the bubble sort compare for speed with the merge sort when the task is to sort 1,000,000 social
security numbers which initially are in random order?
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CHAPTER 3

Computer
Organization

VON NEUMANN ARCHITECTURE

Most computers today operate according to the “von Neumann architecture.” The main idea of the von
Neumann architecture is that the program to be executed resides in the computer’s memory, along with the 
program’s data. John von Neumann published this idea in 1945.

Today this concept is so familiar it seems self-evident, but earlier computers were usually wired for a certain
function. In effect, the program was built into the construction of the computer. Think of an early calculator; for
example, imagine an old hand-cranked mechanical calculator. The machine was built to do one well-defined
thing. In the case of an old hand-cranked calculator, it was built only to add. Put a number in; crank it; get the
new sum.

To subtract, the operator needed to know how to do complementary subtraction, which uses addition to
accomplish subtraction. Instead of offering a subtract function, the old calculator required the operator to add
the “ten’s complement” of the number to be subtracted. You can search for “ten’s complement” on Google to
learn more, but the point for now is that early computing devices were built for certain functions only. One could
never, for instance, use an old adding machine to maintain a list of neighbors’ phone numbers!

The von Neumann architecture is also called the “stored program computer.” The program steps are stored
in the computer’s memory, and the computation cycle of the machine retrieves the next step (instruction to be
executed) from memory, completes that computation, and then retrieves the next step. This cycle simply repeats
until the computer retrieves an instruction to “halt.”

There are three primary units in the von Neumann computer. Memory is where both programs and data are
stored. The central processing unit (CPU) accesses the program and data in memory and performs the calculations.
The I /O unit provides access to devices for data input and output.

DATA REPRESENTATION

We’re used to representing numbers in “base 10.” Presumably this number base makes sense to us because
we have 10 fingers. If our species had evolved with 12 fingers, we would probably have 2 more digits among
the set of symbols we use, and we would find it quite natural to compute sums in base 12. However, we have
only 10 fingers, so let’s start with base 10.

Remember what the columns mean when we write a number like 427. The seven means we have 7 units,
the two means we have 2 tens, and the four means we have 4 hundreds. The total quantity is 4 hundreds, plus
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2 tens, plus 7. The column on the far right is for units (which you can also write as 100), the next column to the
left is for 10s (which you can also write as 101), and the next column is for 100s (which you can write as 102).
We say that we use “base 10” because the columns correspond to powers of 10—100, 101, 102, etc.

Suppose that we had evolved with 12 fingers and were more comfortable working in base 12, instead. What
would the meaning of 427 be? The seven would still mean 7 units (120 is also equal to 1), but now the two would
mean 2 dozen (121 equals 12), and the four would mean 4 gross (122 equals 144). The value of the number 427
in base 12 would be 4 gross, plus 2 dozen, plus 7, or 607 in our more familiar base-10 representation.

Some people say we would be better off using base 12, also known as the duodecimal or dozenal system.
For example, you can readily find a sixth, a third, a quarter, or a half in base 12, whereas you can only find 
a half easily in base 10. Twelve is also a good match for our calendar, our clock, and even our compass. Ah well,
the decision to use base 10 in daily life was made long ago!

The point of this discussion is to show that base 10 is simply one number system of many. One can 
compute in base 10, or base 12, or base-any-other-number. Our choice of number system can be thought of as
arbitrary—we’ve got 10 fingers, so let’s use base 10. We could compute just as competently in base 7, or base
12, or base 2.

Computers use base 2, because it’s easy to build hardware that computes based on only two states—on and
off, one and zero. Base 2 is also called the “binary number system,” and the columns in a base-2 number work
the same way as in any other base. The rightmost column is for units (20), the next column to the left is for twos
(21), the next is for fours (22 = 4), the next is for eights (23 = 8), the next is for sixteens (24 = 16), etc.

What is the base-10 value of the binary number 10011010? The column quantities from right to left are 128
(27), 64 (26), 32 (25), 16 (24), 8 (23), 4 (22), 2 (21), 1 (20). So, this number represents 128, plus 16, plus 8, plus
2—154 in base 10.

We can calculate in base 2 after learning the “math facts” for binary math. You learned the math facts 
for base 10 when you studied your addition, subtraction, and multiplication tables in elementary school. 
The base-2 math facts are even simpler:

0 + 0 = 0
0 + 1 = 1
1 + 1 = 10 (remember, this means 2; and also 0 carry 1 to the next column)

Let’s add the binary value of 1100 to 0110:

1100 (12 in base 10)
0110 (6 in base 10)
10010 (18 in base 10)

rightmost digit: 0 + 0 = 0
next rightmost: 0 + 1 = 1
next rightmost: 1 + 1 = 10 (or 0 carry 1)
next rightmost: carried 1 + 1 + 0 = 10 (or 0 carry 1)
last digit: 1 (from the carry)

So, any kind of addition can be carried out using the binary number system, and the result will mean 
the same quantity as the result from using base 10. The numbers look different, but the quantities mean the 
same value.

COMPUTER WORD SIZE

Each computer deals with a certain number of bits at a time. The early hobbyist computers manipulated 
8 bits at a time, and so were called “8-bit computers.” Another way to say this was that the computer “word size”
was 8 bits. The computer might be programmed to operate on more than 8 bits, but its basic operations dealt
with 8 bits at a time.
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If our program must count, how large a count can an 8-bit computer maintain? Going back to our discussion
of the binary number system, this is the largest number we can represent with 8 bits:

11111111

This number is 128, plus 64, plus 32, plus 16, plus 8, plus 4, plus 2, plus 1—255. That’s it for an 8-bit 
computer, unless we resort to some “workaround.”

The first IBM PC used the Intel 8088 processor. It had an 8-bit data bus (meaning it read and wrote 8 bits
at a time from/to peripheral devices), but internally it was a 16-bit computer. How large a count can a 16-bit
computer maintain? Here’s the number, broken into two 8-bit chunks (bytes) for legibility:

1111111 11111111

This number is 32,768 (215), plus 16,384, plus 8192, plus 4096, plus 2048, plus 1024, plus 256, plus 255
(the lower 8 bits we already computed above)—65,535. That’s a much bigger number than the maximum
number an 8-bit computer can work with, but it’s still pretty small for some jobs. You’d never be able to use 
a 16-bit computer for census work, for instance, without some “workaround.”

Today, most computers we’re familiar with use a 32-bit word size. The maximum count possible with 
32 bits is over 4 billion. The next generation computers will likely use a 64-bit word size, and the maximum
count possible with 64 bits is something like a trillion billions!

The ability to represent a large number directly is nice, but it comes at a cost of “bit efficiency.” Here’s what
the number 6 looks like in a 32-bit word:

00000000000000000000000000000110

There are a lot of wasted bits (leading zeros) there! When memory was more expensive, engineers used to
see bit-efficiency as a consideration, but memory is now so inexpensive that it usually is no longer a concern.

INTEGER DATA FORMATS

So far our discussion has been of whole numbers only, and even of positive whole numbers. Computers
need to keep track of the sign of a number, and must also be able to represent fractional values (real numbers).

As you might expect, if we need to keep track of the sign of a number, we can devote a bit of the computer
word to maintaining the sign of the number. The leftmost bit, also known as the most significant bit (“msb”—
in contrast to the least significant bit, “lsb,” at the right end of the word), will be zero if the number is positive,
and 1 if the number is negative. Here is a positive 6 for an 8-bit computer:

00000110

The msb is 0, so this is a positive number, and we can inspect the remaining 7 bits and see that the value is 6.
Now here’s a counter-intuitive observation. How do we represent −6? You might think it would be like this:

10000110

That would be incorrect, however. What happens if we add 1 to that representation? We get 10000111,
which would be −7, not −5! This representation does not work correctly, even in simple arithmetic computations.

Let’s take another tack. What number would represent −1? We can test our idea by adding 1 to −1. We
should get 0 as a result. How about this for negative 1:

11111111

That actually works. If we add 1 to that number, we get all zeros in the sum (and we discard the final carry).
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In fact, the correct representation of a negative number is called the “two’s complement” of the positive
value. To compute the two’s complement of a number, simply change all the zeros to ones and all the ones to
zeros, and then add one. Here is the two’s complement of 6:

11111001 All the bits of +6 are “complemented” (reversed)
+00000001 Add one
11111010 The two’s complement of 6 = −6

You can check to see that this is correct by adding 1 to this representation 6 times. You will find that the
number becomes 0, as it should (ignoring the extra carry off the msb). You can also verify that taking the two’s
complement of −6 correctly represents +6.

Larger word sizes work the same way; there are simply more bits with which to represent the magnitude
of the number. These representations are called “integer” or “integral” number representations. They provide 
a means of representing whole numbers for computation.

REAL NUMBER FORMATS

Numbers containing fractions are more difficult to represent. Real numbers consist of a mantissa and 
an exponent. Computer designers decide how to allocate the bits of the computer word so that some can be 
used for the mantissa and some for the exponent. In addition, the mantissa can be positive or negative, and the
exponent can be positive or negative.

You might imagine that different designers could create different definitions for real number formats. 
A larger mantissa will provide greater precision; a larger exponent will provide for larger and smaller magnitudes
(scale). As recently as the 1980s, different computer manufacturers used different representations, and those 
differences made it difficult to move data between computers, and difficult to move (“port”) programs from one
make of computer to another.

Since then, the IEEE has created a standard for binary floating-point number representation using 32 and
64 bits. The 32-bit format looks like this:

SEEEEEEEEmmmmmmmmmmmmmmmmmmmmmmm

The msb is the sign of the number, the 8-bit field is the exponent of 2, and the 23-bit field is the mantissa. The sign
of the exponent is incorporated into the exponent field, but the IEEE standard does not use simple two’s complement
for representing a negative exponent. For technical reasons, which we touch on below, it uses a different approach.

How would we represent 8.5? First we convert 8.5 to binary, and for the first time we will show a binary
fractional value:

1000.1

To the left of the binary point (analogous to the decimal point we’re familiar with) we have 8. To the right
of the binary point, we have 1/2. Just as the first place to the right of the decimal point in base 10 is a tenth, the
first place to the right of the binary point in base 2 is a half.

In a manner akin to using “scientific notation” in base 10, we normalize binary 1000.1 by moving the
binary point left until we have only the 1 at the left, and then adding a factor of 2 with an exponent:

1.0001 * 23

From this form we can recognize the exponent in base 2, which in this case is 3, and the mantissa, which is 0001.
The IEEE 32-bit specification uses a “bias” of 127 on the exponent (this is a way of doing without 

a separate sign bit for the exponent, and making comparisons of exponents easier than would be the case with
two’s complements—trust us, or read about it on-line), which means that the exponent field will have the binary
value of 127 + 3, or 130. After all this, the binary representation of 8.5 is:

01000001000010000000000000000000
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The sign bit is 0 (positive), the exponent field has the value 130 (10000010), and the mantissa field has the
value 0001 (and lots of following zeros).

As you can imagine, computing with real numbers requires the computer to do more work than 
computing with integers. The mantissa and exponent fields must be considered appropriately in all math-
ematical operations. In fact, some computers have special floating-point processor hardware to speed such 
calculations.

CHARACTER FORMATS

We think of computing as work with numbers, but in fact most computing operates on character data rather
than numeric data—names, addresses, order numbers, gender, birthdates, etc. are usually, or often, represented
by strings of characters rather than numeric values.

Characters are mapped to integer numbers. There have been many character–to-integer mappings 
over the years. IBM invented a mapping called binary coded decimal (BCD), and later extended 
BCD interchange coded (EBCDIC), which became a de facto standard with IBM’s early success in the 
computer market.

The American standard American Standard Code for Information Interchange (ASCII) was defined in the
1960s and became the choice of most computer vendors, aside from IBM. Today Unicode is becoming popular
because it is backwards compatible with ASCII and allows the encoding of more complex alphabets, such as
those used for Russian, Chinese, and other languages. We will use ASCII to illustrate the idea of character
encoding, since it is still widely used, and it is simpler to describe than Unicode.

In ASCII each character is assigned a 7-bit integer value. For instance, ‘A’ = 65 (1000001), ‘B’ = 66
(1000010), ‘C’ = 67 (1000011), etc. The 8th bit in a character byte is intended to be used as a parity bit, which
allows for a simple error detection scheme.

If parity is used, the 8th or parity bit is used to force the sum of the bits in the character to be an 
even number (even parity) or an odd number (odd parity). Thus, the 8 bits for the character ‘B’ could take 
these forms:

01000010 even parity
11000010 odd parity
01000010 no parity

If parity is being used, and a noisy signal causes one of the bits of the character to be misinterpreted, the
communication device will see that the parity of the character no longer checks. The data transfer can then be
retried, or an error announced. This topic is more properly discussed under the heading of data communications,
but since we had to mention the 8th bit of the ASCII code, we didn’t want you to be left completely in the dark
about what parity bits and parity checking are.

The lowercase characters are assigned a different set of numbers: ‘a’ = 97 (1100001), ‘b’ = 98 (1100010),
‘c’ = 99 (1100011), etc. In addition, many special characters are defined: ‘$’ = 36 (0100100), ‘+’ = 43
(0101011), ‘>’ = 62 (01111110), etc.

A number of “control characters” are also defined in ASCII. Control characters do not print, but can be used
in streams of characters to control devices. For example, ‘line feed’ = 10 (0001010), ‘tab’ = 11 (0001011),
‘backspace’ = 8 (0001000), etc.

For output, to send the string “Dog” followed by a linefeed, the following sequence of bytes would be sent
(the msb is the parity bit, and in this example parity is being ignored, and the parity bit set to 0):

01000100 01101111 01100111 00001010
D o g lf (line feed)

Likewise for input, if a program is reading from a keyboard, the keyboard will send a sequence of integer
values that correspond to the letters being typed.

How does a program know whether to interpret a series of bits as an integer, a character, or a floating-point
number? Bits are bits, and there is no label on a memory location saying this location holds an integer/character/real.
The answer is that the program will interpret the bits based on its expectation.
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If the program expects to find a character, it will try to interpret the bits as a character. If the bit pattern
doesn’t make sense as a character encoding, either the program will fail or an error message will result.
Likewise, if the program expects an integer, it will interpret the bit pattern as an integer, even if the bit pattern
originally encoded a character. It is incumbent on the programmer to be sure that the program’s handling of data
is appropriate.

CPU/ALU

The CPU is the part of the computer one thinks of first when describing the components of a computer. The
repetitive cycle of the von Neumann computer is to a) load an instruction from memory into the CPU, and b)
decode and execute the instruction. Executing the instruction may include performing arithmetic or logical
operations, and also loading or storing data in memory. When the instruction execution is complete, the com-
puter fetches the next instruction from memory, and executes that instruction. The cycle continues indefinitely,
unless the instruction fetched turns out to be a HALT instruction.

The CPU is usually described as consisting of a control unit and an arithmetic and logic unit (ALU). The
control unit is responsible for maintaining the steady cycle of fetch-and-execute, and the ALU provides the
hardware for arithmetic operations, value comparisons (greater than, less than, equal to), and logical functions
(AND, OR, NOT, etc.).

Both the control unit and the ALU include special, very high-performance memory cells called registers.
Registers are intimately connected to the wiring of the control unit and the ALU; some have a special purpose,
and some are general purpose. One special-purpose register is the program counter (PC).

The PC keeps track of the address of the instruction to execute next. When the control unit begins 
a fetch–execute cycle, the control unit moves the instruction stored at the address saved in the PC to another 
special register called the instruction register (IR). When such a fetch of the next instruction occurs, the control
unit automatically increments the PC, so that the PC now “points” to the next instruction in sequence.

The control unit then decodes the instruction in the IR, and executes the instruction. When execution is
complete, the control unit fetches the instruction to which the PC now points, and the cycle continues.

Other registers of the ALU are general purpose. General-purpose registers are used to store data close to
the processor, where the processor can access the information even more quickly than when the value is in
memory. Different computers have different numbers of registers, and the size of the registers will be congruent
with the word size of the computer (16-bit, 32-bit, etc.).

The number of registers, and the nature of the special-purpose registers, comprise an important part of the
computer architecture. In the case of the Intel x86 architecture, there are four 32-bit general-purpose registers
(EAX, EBX, ECX, and EDX), and four 32-bit registers devoted to address calculations and storage (ESP, EBP,
ESI, and EDI). One could say much more about registers in the Intel x86 architecture, but they are now too 
complex to describe completely, as the architecture has been cleverly expanded while maintaining complete
compatibility with earlier designs.

INSTRUCTION SET

The quintessential definition of a computer’s architecture is its “instruction set.” The actual list of things
the computer hardware can accomplish is the machine’s instruction set. Given the wide variety of computer
applications, and the sophistication of many applications, it can be surprising to learn how limited and primi-
tive the instruction set of a computer is.

Machine instructions include loading a CPU register from memory, storing the contents of a CPU register
in memory, jumping to a different part of the program, shifting the bits of a computer word left or right, 
comparing two values, adding the values in two registers, performing a logical operation (e.g., ANDing two
conditions), etc. For the most part, machine instructions provide only very basic computing facilities.

A computer’s assembly language corresponds directly to its instruction set; there is one assembly language
mnemonic for each machine instruction. Unless you program in assembly language, you will have very little
visibility of the machine instruction set. However, differences in instruction sets explain why some programs
run on some machines but not others. Unless two computers share the same instruction set, they will not be able
to execute the same set of machine instructions.



The IBM 360 family of computers was the first example of a set of computers which differed in implementa-
tion, cost, and capacity, but which shared a common machine instruction set. This allowed programs written for one
IBM 360 model to run on other models of the family, and it allowed customers to start with a smaller model, and later
move up to a larger model without having to reinvest in programming. At the time, this capability was a breakthrough.

Today, most programming is done in higher-level languages, rather than assembly language. When you program
in a higher-level language, you write statements in the syntax of your programming language (e.g., Java, C,
Python), and the language processor translates your code into the correct set of machine instructions to execute
your intent. If you want to run the same program on a different computer with a different instruction set, you
can often simply supply your code to the appropriate language processor on the new computer. Your source code
may not change, but the translation of your code into machine instructions will be different because the 
computer instruction sets are different. The language processor has the responsibility to translate standard
higher-level programming syntax into the correct machine instruction bit patterns.

Machine instructions are represented as patterns of ones and zeros in a computer word, just as numbers and
characters are. Some of the bits in the word are set aside to provide the “op-code,” or operation to perform.
Examples of op-codes are ADD, Jump, Compare, and AND. Other bits in the instruction word specify the values
to operate on, the “operands.” An operand might be a register, a memory location, or a value already in the
instruction word operand field.

An example machine instruction is the following ADD instruction for the Intel x86 computers. The Intel x86
instruction set is an unusually complex one to describe, because Intel has expanded the instruction set as it has
evolved the computer family. It would have been easier to create new instruction sets when computing evolved from
16-bit processing in 1978, to 32-bit processing in 1986, to 64-bit processing in 2007. Instead, the Intel engineers
very cleverly maintained compatibility with earlier instruction sets, while they added advanced capabilities. This
allowed old programs to continue to run on new computers, and that greatly eased upgrades among PC users. The
result, however effective technically and commercially, is an instruction set that is somewhat complex to describe.
Here is the bit pattern, broken into bytes for readability, which says, “Add 40 to the contents of the DX register:”

00000001 11000010 00000000 00101000

The first byte is the op-code for ADD immediate (meaning the number to add resides in the instruction
word itself). The second byte says that the destination operand is a register, and in particular, the DX register.
The third and fourth bytes together comprise the number to add; if you evaluate the binary value of those bits,
you will see that the value is 40.

To look at the content of a computer word, you cannot tell whether the word contains an instruction or 
a piece of data. Fetched as an instruction, the bit pattern above means add 40 to the DX register. Retrieved as
an integer, the bit pattern means 29,491,240. In the Intel architecture, instructions (“code”) are stored in a separate
section of memory from data. When the computer fetches the next instruction, it does so from the code section
of memory. This mechanism prevents a type of error that was common with earlier, simpler computer architectures,
the accidental execution of data, as if the data were instructions.

Here is an example JMP instruction. This says, “Set the program counter (transfer control) to address
20,476 in the code:”

11101001 11111100 01001111

The first byte is the op-code for JMP direct (meaning the address provided is where we want to go, not a
memory location holding the address to which we want to go). The second byte is the low-order byte for the
address to which to jump. The third byte is the high-order byte for the address! How odd is that, you may think?
To get the proper address, we have to take the two bytes and reorder them, like this:

01001111 11111100

This “peculiarity” is due to the fact that the Intel processor line is historically “little endian.” That is, it
stores the least significant byte of a multiple byte value at the lower (first) address. So, the first byte of a 2-byte
address contains the low-order 8 bits, and the second byte contains the high-order 8 bits.
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An advantage of the little endian design is evident with the JMP instruction because the “short” version of
the JMP instruction takes only an 8-bit (1-byte) operand, which is naturally the low-order byte (the only byte).
So the JMP direct with a 2-byte operand simply adds the high-order byte to the low-order byte. To say this
another way, the value of the jump destination, whether 8 bits or 16 bits, can be read starting at the same address.

Other computers, such as the Sun SPARC, the PowerPC, the IBM 370 and the MIPS, are “big endian,” mean-
ing that the most significant byte is stored first. Some argue that big endian form is better because it reads more
easily when humans look at the bit pattern, because human speech is big endian (we say, “four hundred, forty,”
not “forty and four hundred”), and because the order of bits from least significant to most significant is the same
within a byte as the ordering of the bytes themselves. There is, in fact, no performance reason to prefer big endian
or little endian formats. The formats are a product of history. Today, big endian order is the standard for network
data transfers, but only because the original TCP/IP protocols were developed on big endian machines.

Here is a representative sampling of machine instructions from the Intel x86 machine instruction set. Most
x86 instructions specify a “source” and a “destination,” where each can in general be a memory location or a
register. This list does not include every instruction; for instance, there are numerous variations of the jump
instruction, but they all transfer control from one point to another. This list does provide a comprehensive look
at all the types of instructions:

MOV move “source” to “destination,” leaving source unchanged
ADD add source to destination, and put sum in destination
SUB subtract source from destination, storing result in destination
DIV divide accumulator by source; quotient and remainder stored separately
IMUL signed multiply
DEC decrement; subtract 1 from destination
INC increment; add 1 to destination
AND logical AND of source and destination, putting result in destination
OR inclusive OR of source and destination, with result in destination
XOR exclusive OR of source and destination, with result in destination
NOT logical NOT, inverting the bits of destination
IN input data to the accumulator from an I/O port
OUT output data to port
JMP unconditional jump to destination
JG jump if greater; jump based on compare flag settings
JZ jump if zero; jump if the zero flag is set
BSF find the first bit set to 1, and put index to that bit in destination
BSWAP byte swap; reverses the order of bytes in a 32-bit word
BT bit test; checks to see if the bit indexed by source is set
CALL procedure call; performs housekeeping and transfers to a procedure
RET performs housekeeping for return from procedure
CLC clear the carry flag
CMP compare source and destination, setting flags for conditions
HLT halt the CPU
INT interrupt; create a software interrupt
LMSW load machine status word
LOOP loop until counter register becomes zero
NEG negate as two’s complement
POP transfer data from the stack to destination
PUSH transfer data from source to stack
ROL rotate bits left
ROR rotate bits right
SAL shift bits left, filling right bits with 0
SAR shift bits right, filling left bits with the value of the sign bit
SHR shift bits right, filling left bits with 0
XCHG exchange contents of source and destination
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Other computer families will have machine instructions that differ in detail, due to the differences in the
designs of the computers (number of registers, word size, etc.), but they all do the same, simple, basic things.
The instructions manipulate the bits of the words mathematically and logically. In general, instructions fall into
these categories: data transfer, input/output, arithmetic operations, logical operations, control transfer, and com-
parison. Upon such simple functions all else is built.

MEMORY

Computer memory is organized into addressable units, each of which stores multiple bits. In the early days
of computing (meaning up until the 1970s), there was no agreement on the size of a memory unit. Different
computers used different size memory “cells.” The memory cell size was also referred to as the computer’s
“word size.” The computer word was the basic unit of memory storage. The word size of the IBM 704 was 
36 bits; the word size of the Digital Equipment PDP-1 was 18 bits; the word size of the Apollo Guidance
Computer was 15 bits; the word size of the Saturn Launch Vehicle Computer was 26 bits; the word size of the
CDC 6400 was 60 bits. These machines existed during the 1950s, 1960s, and 1970s.

The IBM 360 family, starting in the mid-1960s, introduced the idea of a standard memory cell of 8 bits called
the “byte.” Since then, computer manufacturers have come to advertise memory size as a count of standard bytes.

The idea of the computer word size is still with us, as it represents the number of bits the computer usually
processes at one time. The idea of word size has become less crystalline, however, because newer computer
designs operate on units of data of different sizes. The Intel Pentium processes 32 or 64 bits at a time, but it 
is also backwards compatible to the Intel 8086 processor of 1980 vintage, which had a word size of 16 bits. 
To this day, the Intel family of processors calls 16 bits a word, and in any case each byte has its own address in
memory.

Today the byte is the measure of computer memory, and most computers, regardless of word size, offer
“byte addressability.” Byte addressability means that each byte has a unique memory address. Even though the
computer may be a 32-bit machine, each byte in the 4-byte computer word (32 bits) can be addressed uniquely,
and its value can be read or updated.

As you probably know, the industry uses prefixes to set the scale of a measure of memory. A kilobyte is
1024 bytes, or 210 bytes—roughly a thousand bytes. A megabyte is 1,048,576 bytes, or 220 bytes—roughly
a million bytes. A gigabyte is 1,037,741,824 bytes, or 230 bytes—roughly a billion bytes.

We hear larger prefixes occasionally, too. A terabyte is 1,099,511,627,776 bytes, or 240 bytes—roughly a trillion
bytes. A petabyte is 1,125,899,906,842,624, or 250 bytes—roughly a quadrillion bytes. Such numbers are so
large that their discussion usually accompanies speculation about the future of computing. However, we are starting
to hear about active data bases in the terabyte, and even the petabyte range (http://www.informationweek.com/
story/IWK20020208S0009).

Memory is used to store program instructions and data. The basic operations on memory are store and retrieve.
Storing is also referred to as “writing.” Retrieval is also referred to as “fetching,” “loading,” or “reading.” Fetch
is an obvious synonym for retrieve, but what about load? By loading one means loading a register in the CPU
from memory, which from the point of view of the memory system is retrieval.

There are at least two registers associated with the memory control circuitry to facilitate storage and
retrieval. These are the memory address register (MAR) and the memory data register (MDR). When writing to
memory, the CPU first transfers the value to be written to the MDR, and the address of the location to be used
to the MAR. At the next memory access cycle, the value in MDR will be copied into the location identified by
the contents of the MAR.

When retrieving from memory, the CPU first stores the address to read in the MAR. When the read occurs
on the next memory access cycle, the value in that location is copied into the MDR. From the MDR in the
memory controller, the data value can be transferred to one of the CPU registers or elsewhere.

Main computer memory, such as we have in our PCs, is referred to as random access memory (RAM). That
means we can access any element of memory at will, and with roughly the same speed, regardless of address.

By contrast, consider information and data stored on a magnetic tape. Magnetic tape is a kind of memory
(we can store data on a magnetic tape), but magnetic tape is definitely not random access. Magnetic tape is 
serial access. We can read the contents of memory location 4000 only after having read and passed over all those
locations that come before.
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In addition to main memory, which has been the focus of our discussion so far, computer designers also
usually provide small, high-performance memories, called cache memories, that are located close to the CPU.
Cache memory may even be located on the same electronic chip as the CPU.

Cache is the French word for “hiding place.” Cache memory is used to hold a copy of the contents of a small
number of main memory locations. This turns out to be very useful, because program execution demonstrates
a property called “locality of reference.”

By locality of reference, we mean that for relatively long periods of time, the execution of a program will
reference and affect a small number of memory locations. Accesses to memory are not random. Rather, for one
period of time the program will read and write one part of memory, for example, an array of numbers, and for
another period of time the program will store and retrieve from a different part of memory, for example, a record
from a data base.

When the computer copies the contents of main memory currently being accessed to cache memory, the
CPU can avoid waiting for access to slower main memory, and access the cache instead. Since access times for
cache memory are typically 5 to 10 times faster than access times for main memory, this tactic has proven very
generally effective. Almost all computers built since 1980 have incorporated one or more cache memories in
their design.

The management of cache memory is challenging, because the system must keep the contents of the cache
memory synchronized with the contents of main memory. Engineers call this cache “coherency.” As long as the
program is reading from memory, but not writing, there is no problem. When the program writes to memory,
however, both main memory and cache must be updated.

Also, when the program begins to access a new area of memory, one for which the contents are not already
reflected in the cache, the cache management algorithm will typically bring to the cache the needed word as
well as a number of following words from memory. At the same time, the cache management algorithm must
decide which contents of the current cache to discard. As complex as this management is, use of cache memory
usually makes a very noticeable difference in performance, with speedup of average memory access often in the
neighborhood of 50 percent.

INPUT AND OUTPUT (I/O)

Obviously, most data on which we compute resides outside of the computer itself; perhaps it’s originally
on paper receipts, or in lists on paper. And when computation is complete, we want to see the results outside of
the computer’s own memory; on a display, or on paper, for example.

While there is variation in the way CPUs, memory, and caches are implemented, there is even more variation
in the ways in which I/O is implemented. First of all, there are many different I/O devices. Some are for interacting
with humans, such as keyboards, mice, touch screens, and displays. Others are for use by the computer directly,
such as disk drives, tape drives, and network interfaces.

I/O devices also vary enormously in speed, and they’re all much slower than the CPU and main memory. A
typist working at 40 words per minute is going pretty fast, and striking about 200 keys a minute, or one key every
.3 seconds. Let’s compute how many instructions a 1 GHz personal computer might execute during that .3 seconds.

Some instructions execute on one clock cycle, but many require more than one. Let’s assume that an average
instruction requires 3 cycles. If that’s the case, then the 1 GHz computer executes 330 million instructions per
second, or 99 million instructions in the time it takes to type one letter.

To get a feel for the difference in speed between the keyboard and the CPU, imagine that the typist walks
one foot in the time it takes to type one letter, and imagine also that the computer travels one foot in the time it
takes to execute an instruction. If that were the case, then in the time the typist walks a foot, the computer travels
18,750 miles, or about three quarters of the way around the earth!

In the early days of computing, the CPU would wait for each character to be typed. A machine instruction
would ready the keyboard interface to accept a character from the keyboard, and the next instruction would test
to see if the character had been received. If the character had not yet been received, the program would simply
loop, testing (“polling”) to see if the character had been received. This is called “programmed I/O with polling,”
or “busy waiting.” It’s a simple but prohibitively costly approach.

Today computers use an “interrupt system” to avoid busy waiting, and the operating system supervises 
all I/O. Each I/O device is connected to the computer via an “I/O controller.” An I/O controller is a small, 
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special-purpose computer within the computer. It has a few well-defined functions, and a small amount of
memory of its own with which to “buffer” (store temporarily) the information being sent or received.

When a program requires output, for example, the operating system moves the data to the buffer memory of
the I/O controller for the device, and commands the I/O controller to start the operation. From that point on, the
main computer is free to do other work, while the I/O controller handles the details and timing of moving the data
to its destination. When the data transfer is complete, the I/O controller creates an “interrupt” which notifies the
main computer that the transfer is now finished. The operating system responds to the interrupt in an appropriate
way, perhaps by starting another output operation to the same device (think of multiple lines going to a printer).

When a program requires input, the operating system will suspend the execution of the requesting program
and command the I/O controller of the device to start reading the necessary data. The operating system will then
transfer control of the CPU to a different program, which will execute while the first program is waiting for its
input. When the requested data become available, the I/O controller for the device will generate an interrupt.
The operating system will respond by suspending the execution of the second program, moving the data from
the buffer on the I/O controller to the program that requested the data initially, and restarting the first program.

The interrupt system is used for all data transfers today. While that is so, there are also some useful 
categorizations of device types. Devices may be categorized as character devices or block devices. A keyboard
is a character device, and a disk is a block device. A character device transfers a character (8 bits) at a time, and
a block device transfers a buffer, or set of data, at a time.

Other examples of character devices include telephone modems and simple terminals. Other examples of
block devices include CD-ROM drives, magnetic tape drives, network interfaces, sound interfaces, and blocks
of memory supporting devices like displays. Character devices interrupt on each character (8 bits) transferred,
and block devices interrupt only when the entire block has been transferred.

Modern computer designs usually include a facility called direct memory access (DMA) for use with block
devices. The DMA controller is its own special computer with access to memory, and it shares access to main
memory with the CPU. DMA moves data directly between the buffer in the I/O controller and main memory,
and it does so without requiring any service from the CPU.

Block devices can be used without DMA and, when they are used that way, the practice is called 
“programmed I/O with interrupts.” With programmed I/O, the block device interrupts when the buffer is ready,
but the operating system must still use the CPU to move the data between the buffer on the I/O controller and
the destination in main memory.

When DMA is used with a block device, the data are transferred directly between the device and main
memory, without requiring assistance from the operating system and the CPU. The operating system starts the
transfer by specifying an address at which to start and the count of bytes to transfer. The CPU is then free to
continue computing while the data are moved in or out. This is a further improvement in system efficiency, and
today DMA is almost universally used for disk and other block transfers.

SUMMARY

Modern computers implement the von Neumann architecture, or stored program computer design. Program
instructions and data are both stored in main memory. The components of the computer design are the CPU
(including the control unit and the ALU), memory, and input/output.

Computers operate in base-2 arithmetic. Any number base can be used for computation and, just as humans
find 10 fingers a convenient basis for computation, machine builders find 2-state (on–off) devices easy to build and
convenient for computation. We discussed the simple math facts for binary math, and showed how subtraction is
accomplished using 2’s-complement addition. We also discussed the concept of the computer word, and the
implications of computer word sizes of different numbers of bits.

Data are encoded in different ways, depending on the type of data. We described integer, floating-point and
character encodings. The program interprets the bit pattern in a computer word depending on what it expects to
find in that memory location. The same bit pattern can be interpreted in different ways when the program
expects one data type or another. The programmer is responsible for insuring that the program correctly
accesses its data.

The CPU consists of two parts. The control unit is responsible for implementing the steady cycle of 
retrieving the next instruction, decoding the bit pattern in the instruction word, and executing the instruction.
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The arithmetic and logic unit (ALU) is responsible for performing mathematical, logical, and comparison 
functions.

The instruction set of a computer is the list of primitive operations that the computer hardware is wired to
perform. Modern computers have between 50 and 200 machine instructions, and instructions fall into the categories
of data movement, arithmetic operations, logical operations, control transfer, I/O, and comparisons. Most 
programmers today write in higher-level languages, and so are isolated from direct experience of the machine
instruction set, but at the hardware level, the machine instruction set defines the capability of the computer.

Main memory provides random access to data and instructions. Today all manufacturers measure memory
with a count of 8-bit bytes. Most machines, regardless of 16-bit, 32-bit, or 64-bit word size, also offer byte
addressability.

Since access to memory takes longer than access to registers on the CPU itself, modern designs incorporate
cache memory near the CPU to provide a copy of the contents of a section of main memory in order to obviate
the need to read from main memory so frequently. Cache memory entails complexity to manage cache
coherency, but it typically results in speedup of average memory access time by 50 percent.

Input and output functions today are based on I/O controllers, which are small special-purpose computers
built to control the details of the I/O device, and provide a local memory buffer for the information being 
transferred in or out. Computers today use an interrupt system to allow the CPU to process other work while
I/O occurs under the supervision of the I/O controller. When the transfer is complete, the I/O controller notifies
the CPU by generating an interrupt.

A further improvement in I/O efficiency is direct memory access (DMA). A DMA controller is another 
special-purpose computer within the computer, and it shares access to main memory with the CPU. With 
DMA, the CPU does not even get involved in moving the data into or out of main memory. Once the CPU tells
the DMA controller where the data reside and how much data to transfer, the DMA controller takes care of the
entire task, and interrupts only when the entire task is complete.

REVIEW QUESTIONS

3.1 Write the number 229 in base 2.

3.2 What is the base-10 value of 11100101?

3.3 What are the units (values) of the first 3 columns in a base-8 (octal) number?

3.4 What is the base-2 value of the base-8 (octal) number 377?

3.5 Convert the following base-10 numbers to base 2:
37
470
1220
17
99

3.6 Convert the following base-2 numbers to base 10:
00000111
10101010
00111001
01010101
00110011

3.7 Assume a 16-bit signed integer data representation where the sign bit is the msb.
a What is the largest positive number that can be represented?
b Write the number 17,440.
c Write the number −20.
d What is the largest negative number that can be represented?

3.8 Using ASCII encoding, write the bytes to encode your initials in capital letters. Follow each letter with a period.

3.9 Referring to the list of Intel x86 instructions in this chapter, arrange a set of instructions to add the values
stored in memory locations 50 and 51, and then to store the result in memory location 101. You need not
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show the bit pattern for each instruction; just use the mnemonics listed, followed in each case by the
appropriate operand(s).

3.10 What Intel x86 instructions would you use to accomplish subtraction using 2’s complement addition?
This instruction set has a SUB instruction, but don’t use that; write your own 2’s complement routine
instead.

3.11 What are the advantages of a larger computer word size? Are there disadvantages? If so, what are the
disadvantages?

3.12 Assume that cache memory has an access time of 10 nanoseconds, while main memory has an access
time of 100 nanoseconds. If the “hit rate” of the cache is .70 (i.e., 70 percent of the time, the value
needed is already in the cache), what is the average access time to memory?

3.13 Assume our 1 GHz computer, which averages 3 cycles per instruction, is connected to the Internet via 
a 10 Mbit connection (i.e., the line speed allows 10 million bits to pass every second). From the time
the computer receives the first bit, how many instructions can the computer execute while waiting for 
a single 8-bit character to arrive?

3.14 What complexity does DMA present to the management of cache memory?

3.15 Discuss the concept of a “memory hierarchy” whereby memory closer to the CPU is faster, more
expensive, and smaller than memory at the next level. Arrange the different types of memory we have
discussed in such a hierarchy.
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CHAPTER 4

Software

This chapter will introduce a wide variety of topics related to computer software and programming languages.
We will discuss some of the history of computer languages, and describe some of the varieties of languages.
Then we will discuss the operation of language processing programs that build executable code from 
source code written by programmers. All these discussions will be incomplete—they are intended only to 
introduce the topics. However, we hope to impart a sense of the variety of approaches to computer programming,
the historical variety of languages, and the basic mechanisms of compilers and interpreters.

GENERATIONS OF LANGUAGES

To understand the amazing variety of languages, programs, and products which computer scientists collectively
refer to as software, it helps to recall the history of this young discipline.

Each computer is wired to perform certain operations in response to instructions. An instruction is a pattern
of ones and zeros stored in a word of computer memory. By the way, a “word” of memory is the basic unit of
storage for a computer. A 16-bit computer has a word size of 16 bits, or two bytes. A 32-bit computer has 
a word size of 32 bits, or four bytes. A 64-bit computer has a word size of 64 bits, or eight bytes. When a computer
accesses memory, it usually stores or retrieves a word of information at a time.

If one looked at a particular memory location, one could not tell whether the pattern of ones and zeros in
that location was an instruction or a piece of data (number). When the computer reads a memory location
expecting to find an instruction there, it interprets whatever bit pattern it finds in that location as an instruction.
If the bit pattern is a correctly formed machine instruction, the computer performs the appropriate operation;
otherwise, the machine halts with an illegal instruction fault.

Each computer is wired to interpret a finite set of instructions. Most machines today have 75 to 
150 instructions in the machine “instruction set.” Much of the “architecture” of a computer design is 
reflected in the instruction set, and the instruction sets for different architectures are different. For example, 
the instruction set for the Intel Pentium computer is different from the instruction set for the Sun SPARC. 
Even if the different architectures have instructions that do the same thing, such as shift all the bits in a computer
word left one place, the pattern of ones and zeros in the instruction word will be different in different 
architectures. Of course, different architectures will usually also have some instructions that are unique to that
computer design.

The earliest computers, and the first hobby computers, were programmed directly in the machine 
instruction set. The programmer worked with ones and zeros to code each instruction. As an example, 
here is code (and an explanation of each instruction), for a particular 16-bit computer. These three 
instructions will add the value stored in memory location 64 to that in location 65, and store the result 
in location 66.



0110000001000000 (Load the A-register from 64)
0100000001000001 (Add the contents of 65)
0111000001000010 (Store the A-register in 66)

Once the programmer created all the machine instructions, probably by writing the bit patterns on paper,
the programmer would store the instructions into memory using switches on the front panel of the computer.
Then the programmer would set the P register (program counter register) contents to the location of the first
instruction in the program, and then press “Run.” The basic operational loop of the computer is to read 
the instruction stored in the memory location pointed to by the P register, increment the P register, execute the
instruction found in memory, and repeat.

An early improvement in programming productivity was the assembler. An assembler can read mnemonics
(letters and numbers) for the machine instructions, and for each mnemonic generate the machine language 
in ones and zeros.

Assembly languages are called second-generation languages. With assembly language programming, the 
programmer can work in the world of letters and words rather than ones and zeros. Programmers write their code
using the mnemonic codes that translate directly into machine instructions. These are typical of such mnemonics:

LDA m Load the A-register from memory location m.
ADA m Add the contents of memory location m to the contents of the A-register, and leave 

the sum in the A-register.
ALS A Left Shift; shift the bits in the A-register left 1 bit, and make the least significant bit zero.
SSA Skip on Sign of A; if the most significant bit in the A-register is 1, skip the next 

instruction, otherwise execute the next instruction.
JMP m Jump to address m for the next instruction.

The work of an assembler is direct; translate the mnemonic “op-codes” into the corresponding machine
instructions.

Here is assembly language code for the program above that adds two numbers and stores the result in 
a third location:

LDA 100 //Load the A-register from 100 octal = 64
ADA 101 //Add to the A-reg the contents of 101 (65)
STA 102 //Store the A-register contents in 102 (66)

Almost no one codes directly in the ones and zeros of machine language anymore. However, programmers
often use assembly language for programs that are very intimate with the details of the computer hardware, or
for programs that must be optimized for speed and small memory requirements. As an educational tool, assembly
language programming is very important, too. It is probably the best way to gain an intuitive feel for what com-
puters really do and how they do it.

In 1954 the world saw the first third-generation language. The language was FORTRAN, devised by John
Backus of IBM. FORTRAN stands for FORmula TRANslation. The goal was to provide programmers with 
a way to work at a higher level of abstraction. Instead of being confined to the instruction set of a particular
machine, the programmer worked with statements that looked something like English and mathematical statements.
The language also included constructs for conditional branching, looping, and I/O (input and output).

Here is the FORTRAN statement that will add two numbers and store the result in a third location. The
variable names X, Y, and Z become labels for memory locations, and this statement says to add the contents of
location Y to the contents of location Z, and store the sum in location X:

X = Y + Z

Compared to assembly language, that’s quite a gain in writeability and readability!
FORTRAN is a “procedural language”. Procedural languages seem quite natural to people with a background

in automation and engineering. The computer is a flexible tool, and the programmer’s job is to lay out the
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sequence of steps necessary to accomplish the task. The program is like a recipe that the computer will follow
mechanically.

Procedural languages make up one category of “imperative languages,” because the statements of the lan-
guage are imperatives to the computer—the steps of the program specify every action of the computer. The other
category of imperative languages is “object-oriented” languages, which we will discuss in more detail later.
Most programs today are written in imperative languages, but not all ...

In 1958, John McCarthy at MIT developed a very different type of language. This language was LISP (for
LISt Processing), and it was modeled on mathematical functions. It is a particularly good language for working
with lists of numbers, words, and objects, and it has been widely used in artificial intelligence (AI) work.

In mathematics, a function takes arguments and returns a value. LISP works the same way, and LISP is
called a “functional language” as a result. Here is the LISP code that will add two numbers and return the sum:

(+ 2 5)

This code says the function is addition, and the two numbers to add are 2 and 5. The LISP language processor
will return the number 7 as a result. Functional languages are also called “declarative languages” because the
functions are declared, and the execution of the program is simply the evaluation of the functions. We will return
to functional languages later.

In 1959 a consortium of six computer manufacturers and three US government agencies released Cobol as 
the computing language for business applications (COmmercial and Business-Oriented Language). Cobol, like
FORTRAN, is an imperative, procedural language. To make the code more self-documenting, Cobol was designed
to be a remarkably “wordy” language. The following line adds two numbers and stores the result in a third variable:

ADD Y, Z GIVING X.

Many students in computer science today regard Cobol as old technology, but even today there are more lines
of production code in daily use written in Cobol than in any other language (http://archive.adaic.com/docs/
reports /lawlis/content.htm).

Both PL/1 and BASIC were introduced in 1964. These, too, are procedural, imperative languages. IBM
designed PL/1 with the plan of “unifying” scientific and commercial programming. PL/1 was part of the IBM
360 project, and PL/1 was intended to supplant both FORTRAN and Cobol, and become the one language 
programmers would henceforth use for all projects (Pugh, E., Johnson, L., & Palmer, J. IBM’s 360 and Early
370 Systems. Cambridge, MA: MIT Press, 1991). Needless to say, IBM’s strategy failed to persuade all those
FORTRAN and Cobol programmers.

BASIC was designed at Dartmouth by professors Kemeny and Kurtz as a simple language for beginners.
BASIC stands for Beginner’s All-purpose Symbolic Instruction Code. Originally BASIC really was simple, too
simple, in fact, for production use; it had few data types and drastic restrictions on the length of variable names,
for example. Over time, however, an almost countless number of variations of BASIC have been created, and
some are very rich in programming power. Microsoft’s Visual Basic, for example, is a powerful language rich
in modern features.

Dennis Ritchie created the very influential third-generation language C in 1971. C was developed as a language
with which to write the operating system Unix, and the popularity of C and Unix rose together. C is also an
imperative programming language. An important part of C’s appeal is its ability to perform low-level manipu-
lations, such as manipulations of individual bits, from a high-level language. C code is also unusually amenable
to performance optimization. Even after 34 years, C is neck-and-neck with the much newer Java as the most
popular language for new work (http://www.tiobe.com/tpci.htm).

During the 1970s, the language Smalltalk popularized the ideas of object-oriented programming. Object-
oriented languages are another subcategory of imperative languages. Both procedural and object-oriented 
languages are imperative languages. The difference is that object-oriented languages support object-oriented
programming practices such as inheritance, encapsulation, and polymorphism. We will describe these ideas in
more detail later. The goal of such practices is to create more robust and reusable modules of code, and hence
improve programming productivity.

In the mid-1980s, Bjarne Stroustrup, at Cambridge University in Britain, invented an object-oriented 
language called C++. C++ is a superset of C; any C program is also a C++ program. C++ provides a full set of
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object-oriented features, and at one time was called “C with classes.” Until Java emerged in the late 1990s, C++
was the most popular object-oriented development language.

The most popular object-oriented language today is Java, which was created by James Gosling and his 
colleagues at Sun Microsystems. Java was released by Sun in 1994, and became an immediate hit due to its
appropriateness for web applications, its rich language library, and its hardware independence. Java’s growth in
use among programmers has been unprecedented for a new language. Today Java and C are the languages most
frequently chosen for new work (http://www.tiobe.com/tpci.htm).

The variety of third-generation languages today is very great. Some are more successful than others
because they offer unusual expressive power (C, Java), efficiency of execution (C, FORTRAN), a large installed
base of code (Cobol), familiarity (BASIC), portability between computers (Java), object orientation (Java,
C++), or the backing of important sponsors (such as the US Department of Defense sponsorship of ADA).

COMPILERS AND INTERPRETERS

With the development of FORTRAN came a new and more complex program for creating machine language
from a higher-level expression of a programmer’s intent. The new program was called a compiler, and the job
of a compiler is to translate a high-level programming language into machine code.

The input to a compiler is the source code written by the programmer in the high-level language. We will
show a simple example program from a seminal book in statistics entitled Multivariate Data Analysis, written
by William Cooley and Paul Lohnes in 1971. The book was remarkable in its time for its inclusion of many
FORTRAN programs in source code form.

In 1971 the input would have been from punched cards, and the output would have been to a printer. In the
read statements below we have replaced the card reader device ID of 7 with the asterisk character to allow the
program to read from the keyboard of the PC. Likewise, in the write statements, we have replaced the printer
device ID of 6 with an asterisk. This permits the output to go to the computer display.

FORTRAN of that time was a column-oriented language (newer FORTRAN standards have allowed “free
format” statements). Statement numbers appeared in columns 1–5, and statements were written in columns
7–72. Putting a number in column 6 meant that the line was a continuation of the previous line. Putting a C in
column 1 meant that the line was a comment, not a program statement.

Variables beginning with letters I, J, K, L, M, or N were integers, and all others were floating point (characters
could be read into integer-type variables).

If you are interested in trying out this program, a free FORTRAN compiler, called GNU FORTRAN G77, is
available from the Free Software Foundation. You can find the download link at http://kkourakis.tripod.com/.

The following program from Cooley and Lohnes was used to compute average scores on each of several tests
for each student in a study.

PROGRAM CLAVG
C
C COMPUTE AVERAGE OF M SCORES FOR EACH OF N SUBJECTS
C INPUT:
C FIRST CARD CONTAINS N IN COLS 1-5, AND M IN COLS 6-10
C FOLLOWING CARDS ARE SCORE CARDS, ONE SET PER SUBJECT.
C FIRST CARD PER SET CONTAINS ID IN COLS 1-5 AND UP TO
C 25 SCORES IN 3-COLUMN FIELDS. ID FIELD MAY BE
C BLANK IN ADDITIONAL CARDS IN A SET
C COOLEY, W & LOHNES, P, MULTIVARIATE DATA ANALYSIS, 1971
C

DIMENSION X(1000)
READ( *, 1 ) N, M

1 FORMAT( 2I5 )
WRITE( *, 2 ) M, N

2 FORMAT( 'AVERAGES ON ', I6, ' TESTS FOR EACH OF ', I6,
1’ SUBJECTS’ )
EM=M
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DO 5 J=1, N
READ( *, 3 ) ID, ( X(K), K=1, M )

3 FORMAT( I5, 25F3.0/ (5X, 25F3.0) )
SUM = 0.0
DO 4 K=1, M

4 SUM = SUM + X(K)
AV = SUM / EM

5 WRITE( *, 6 ) J, ID, AV
6 FORMAT( I6, 3X, 'SUBJECT ', I6, 3X, 'AV= ', F9.2 )
STOP
END

Example input cards:
5 5

821 3 7 9 4 7
812 1 4 3 3 2
813 3 2 3 1 1
824 7 9 9 9 9
825 6 9 8 8 5

This program starts by reserving an array of 1000 elements for real numbers. Then it reads the first line of
input to get values for N and M, the number of students and the number of scores for each student. Then it writes
a message summarizing the task ahead.

The main loop starts next at the keyword DO. The loop starts there and ends at the statement numbered 5.
The work of the loop begins with reading another line of input, which the program expects to consist of a stu-
dent identifier and five test scores. Inside the main loop, there is a smaller loop that starts at the next DO and
continues just to the following line, numbered 4. The inner loop sums all the scores for that line of input. The
last work of the main loop is to divide the sum of test scores for the student by the number of tests in order to
compute an average score for that student. After writing the result for that student, the loop resumes with the next
student, until the scores for all the students have been averaged.

Obviously, translating such English-like or mathematical statements into machine code is much more chal-
lenging than the work done by an assembler. Compilers process source code in a series of steps.

The first step is called “scanning” or “lexical analysis,” and the output is a stream of tokens. Tokens are the
words of the language, and “READ”, “FORMAT”, “AV”, “4”, and “3X” are all tokens in the example program.

Next, the compiler “parses” the token stream. This step is also called “syntax analysis.” Referring to the “gram-
mar” or rules of the language, the compiler uses a “parse tree” to verify that the statements in the source code comprise
legal statements in the language. It is at this step that the compiler will return error messages if a comma is missing,
for example, or a key word is misspelled. Later in this chapter we will return to the topics of parsing and parse trees.

If all of the statements are legal statements, the compiler proceeds with “semantic analysis.” In this phase,
the meaning of the statements is created. By meaning, we mean implementing the programmer’s intent in 
executable code. Modern compilers often create a program in an intermediate language that is later converted
into machine code, but early compilers either created assembly language code that was then assembled by the
trusty assembler, or created machine language directly. The advantage of the modern approach is that compilers
for different languages can create intermediate code in the common form, which intermediate code can be fed
to a common machine language generator.

The result of compiling a program is a file of object code, which is the binary file of machine instructions that
will be executed when the program is run. Compilers create a special type of object code called relocatable code,
which is object code that can be loaded into any part of memory. When the program is loaded into memory to run,
addresses and references in relocatable files are adjusted to reflect the actual location of the program in memory.

With compilers, the translation of source code to executable code is accomplished once. Once the program is
compiled, executing the program requires no translation, and the program in machine code form executes swiftly.

Interpreters operate differently. Interpreters translate the source code to machine code one source code line
at a time, and they do this every time the program executes. The interpreter is always the program in control; it is
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the interpreter that is actually executing when a program in an interpreted language is run. BASIC is a language
that is usually implemented with an interpreter.

In general, a program executed by an interpreter will run more slowly than a program that is first compiled
into object code. The reason, of course, is that the interpreter must analyze each line and convert each line to
machine code each time the program runs.

On the other hand, interpreters have other compensating advantages in some situations. For instance, when
students are learning to program, the interactivity of an interpreter, and the savings of recompilation time on
long programs, can be more important than final execution speed. Interpreters often can provide better diagnostic
messages, too, since they work directly from the source code, line by line. In addition, with the continuing
increases in hardware computation speeds, speed of execution sometimes becomes less important to users than
other features of a language.

The distinctions are sometimes “fuzzy.” First of all, some languages are implemented both as interpreted
and compiled languages (e.g., BASIC, PERL, LISP). The modern Java language also blurs compiler/interpreter
boundaries, as we will now discuss.

VIRTUAL MACHINES

Java is both compiled and interpreted. The Java compiler (javac) translates Java source code into Java
“bytecode,” which is a platform-independent intermediate code. When the Java program (java) runs, the Java
Virtual Machine (JVM) interprets the Java bytecode.

A virtual machine such as the Java JVM is a computer defined by software rather than hardware. A virtual
machine runs programs like a real computer, but the virtual machine is really another program, a construction in
software, that fetches, decodes, and executes the program’s instructions. The instructions are referred to as bytecode.

In the case of Java, the JVM implements a machine described by the official JVM specification by
Lindholm and Yellin, which you can view on the Sun Microsystems website: http://java.sun.com/docs/
books/vmspec/.

The Java Virtual Machine is the cornerstone of the Java and Java 2 platforms. It is the component of the technology
responsible for its hardware and operating system independence, the small size of its compiled code, and its ability
to protect users from malicious programs.

The Java Virtual Machine is an abstract computing machine. Like a real computing machine, it has an instruction
set and manipulates various memory areas at run time.

Java is both compiled and interpreted; the source code is compiled into bytecode, and the bytecode is 
interpreted by the JVM. Further, many current implementations of the JVM offer just-in-time compilation
(JITC), which means that when the program first executes, the JVM actually compiles the bytecode into
machine instructions. Henceforth, executing the program runs a compiled program in object code form. The
goal of this design is to provide the advantages of both compilers and interpreters.

By the way, the term virtual machine in general describes an additional layer of abstraction between 
the user and the hardware, and so computer scientists also use the term to describe software that makes one 
type of computer appear to be another. For instance, the Digital Equipment Corporation VAX product line, 
running the VMS operating system, was very popular in the 1980s and 1990s, and many programs were 
written for that environment. Since those computers are no longer available, some people install virtual machines
(software) to make Linux (http://www.wherry.com/gadgets/retrocomputing/vax-simh.html) or Windows computers
(http://www.dynawell.com/charon-vax/) execute VAX programs and appear to be VAX/VMS computers.

Another use of the term virtual machine is that by IBM, whose VM operating system provides each user
the illusion of having a complete IBM 370 machine for their personal use.

PROCEDURAL PROGRAMMING

For many new programmers, procedural programming is the natural paradigm. A program can often be
conceived simply as a list of instructions to be executed in order; that is, a procedure to be followed by the 
computer. Procedural programming languages are also called imperative languages.

CHAP. 4] SOFTWARE 49

http://www.wherry.com/gadgets/retrocomputing/vax-simh.html
http://www.dynawell.com/charon-vax/
http://java.sun.com/docs/books/vmspec/
http://java.sun.com/docs/books/vmspec/


In procedural programming, the code for a specific job is contained in a named procedure. Another name
for a procedure is often subroutine. For instance, one might create a procedure to find the standard deviation of
an array of numbers.

The standard deviation of a measure is defined as the square root of the average squared deviation from the
mean. Here σ is the population standard deviation, and µ is the population mean:

(4.1)

If one is working from a sample and intending to infer the standard deviation of the larger population, the
best estimate will be obtained by dividing the sum of deviations by (n−1) instead of n. Here s is the sample stan-
dard deviation, and is the sample mean:

(4.2)

An equivalent formula often useful for computation is the following:

(4.3)

To write a procedure to perform this calculation, one might write a program to do the following:

Set SUM and SUMSQUARES equal to 0.0
Set n = size of the array of scores
Start with the first score, and continue until all the scores have been processed

Set SUM = SUM + score
Set SUMSQUARES = SUMSQUARES + score2

End of loop
Set MEAN = SUM/n
Return the SquareRoot of (SUMSQUARES − n * MEAN2) / (n − 1)

This is the recipe, the procedure, the pseudocode, for calculating the standard deviation of an array of 
numbers. Here is a Java class called Sd that implements such a procedure in a routine called stdDev:

import java.lang.Math;
class Sd {
public static void main( String args[] ){

float[] numbers = { 3, 5, 7, 9 };
System.out.println( "Std. dev. = " + stdDev( numbers) );

}
public static float stdDev( float scores[] ) {

float sum = 0;
float sumSquares = 0;
int n = scores.length;
for( int i = 0; i < n; i++ ) {

sum = sum + scores[i];
sumSquares = sumSquares + scores[i]*scores[i];

}
float mean = sum / n;
float variance = (sumSquares - n*mean*mean) / (n - 1);
return (float)Math.sqrt( variance );

}
}
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Execution starts at main. The main program creates an array of four floating-point numbers, and then it
prints the character string "Std. dev. = ", followed by the number returned from the stdDev routine when
stdDev is passed the array of four numbers. The code in stdDev follows our pseudocode above, using a for
loop to iterate through all the numbers in the array that the main passed to stdDev.

Java was designed to be an object-oriented language, and object orientation provides even more sophisticated
ways to create modules of code than a strictly procedural language like FORTRAN offers. Nevertheless, one
can program procedurally in Java, as we have done above.

Procedural programming captures standard solutions to computational problems in blocks of code that 
can be accessed by name, that are reusable by means of a standard set of inputs (arguments—the variables
passed into the routine), and that return a standard set of outputs. Notice, too, that variables have procedure
“scope;” variables that are declared within the procedure, like sum and sumSquares, and are visible only
within the procedure. This helps avoid confusion regarding the variables being used, and thus adds to program
reliability.

Once you have a routine that calculates the standard deviation of an array of numbers, that routine can be
used again and again. Such reuse can be accomplished by including the routine in whatever new program one
writes, or by adding the routine to a library where other programs can access the procedure by name.

This structuring of code is a giant step beyond unstructured programming where the entire program, whatever
it is, consists of a single monolithic block of code. With unstructured code, branching and repetitive use of code
are accomplished using conditional statements and GOTO or JUMP statements. The result can be programs that
are difficult to read, prone to errors, and difficult to debug—“spaghetti code.”

Structured programming divides the programming task into modular procedures. This important advance
in program design greatly improves program readability, reliability, and reusability. The larger task is broken
down into a series of subprocedures. The subprocedures are then defined (written), and the structured programming
task then becomes one of calling the well-tested subprocedures in the appropriate order.

OBJECT-ORIENTED PROGRAMMING

Object-oriented (OO) programming is a more recent development that provides approaches that further
advance software reliability and reuse, and that often allow the software to “fit” better with our understanding
of the real world that our programs may be reacting to, or trying to control.

Instead of procedures, OO programming relies on software objects as the units of modularity. An individual
object is an instance of a type, or “class.” One creates an instance by using the specifications of the class. 
As an analogy, my car is an instance of the class automobile—it has four wheels, a motor, seats, etc., like all
cars do, but my car is one specific car among the many automobiles in the world.

An instance of a class has its own “state,” or values of its characteristics. My car is red; your car is blue;
both are automobiles. My car has 170 hp; yours has 200 hp. My car is not moving at this moment; your car is
traveling at 34 mph. The class automobile specifies that all automobiles have color, horsepower, and speed
(among other things) as attributes or instance variables.

Objects also have behavior. Behavior is determined by procedures of the class, and such procedures are
called methods. An automobile class will have methods such as changeSpeed (to accelerate or decelerate),
park, refuel, and turn. Given an instance of the automobile class, a program could invoke the
changeSpeed method, for example, to cause that particular car to go faster. The changeSpeed method is
called an instance method, because it affects an instance of the class automobile (one particular automobile).

Making the software object the unit of modularity has some important advantages. First, OO programming
“encapsulates” the state and behavior of objects. Programs wishing to use the code of an object can access that
code only through public instance variables and public instance methods. When a program invokes the
changeSpeed method of an automobile, the invoking program has no visibility of how the change is effected.
This prevents programmers from taking advantage of details of implementation.

It may sound like a disadvantage to prevent programmers from taking advantage of knowledge of imple-
mentation details. However, over many years programmers have learned that “things change.” When one takes
advantage of some particular implementation detail, one risks having one’s program fail when the class is
upgraded. So, in OO programming, the “contract” between the class and the user is entirely in the specification
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of the interface, i.e., the method parameters and the return values. Even if the creator of the class decides to
make a change internally, the interface will remain effective. This encapsulation means reliable operation, 
even as “things change.”

Another very big idea supported by OO programming languages is inheritance. Many times a new 
programming effort is, “the same as the last effort, but different ...” When that is the case, it’s helpful to take
advantage of the earlier code by creating a new class that inherits from the old, and simply adds the new features.

For instance, if a program requires a limousine object, the limousine class might be designed as a subclass
of automobile. A limousine might have additional instance variables, or attributes, related to cost, beverages on
board, schedule, etc. Otherwise, the limousine class could take advantage of the color, horsepower, and speed
attributes already defined for automobiles. A limousine could also share the behavior of automobiles via the
changeSpeed, park, and other methods already defined.

In describing inheritance, computer scientists say that the relationship between a subclass and a superior
class constitutes an “is-a” relationship. The subclass is also an instance of the superior class. The limousine is
also an automobile.

Inheritance allows one class to take advantage of the attributes and behavior of another. Often the design of
an OO programming project is focused in large part on the class hierarchy (the set of classes to be written), and
the relationships via inheritance of the classes to one another. A well-defined class hierarchy can substantially
increase code reuse (decrease the code required), and improve reliability through reduced redundancy or duplication.

Related to inheritance is the concept of polymorphism. Polymorphism means, “taking many forms.” 
In OO programming, polymorphism means that the execution of a method of a given name may be different
depending on the class of the object for which the method is invoked.

For instance, suppose that instances of both the automobile class and the limousine class must be parked
from time to time. However, parking a limousine may require a different behavior; in particular, a limousine
will require a much bigger parking space. Therefore, the park() method of the limousine class will seek a
space of a different size than the park() method of the automobile class.

Suppose that the object vehicle can sometimes be an automobile, and sometimes be a limousine. 
When vehicle must be parked, the program will invoke the park() method on the particular car or 
limousine (e.g., vehicle.park()). The programmer doesn’t have to worry about whether vehicle is an
automobile or a limousine. If the instance is an automobile, the automobile method will be invoked; if the instance is
a limousine, the limousine method will be invoked. The method appears to be the same for both types of object, but
the execution differs depending on the class to which the object belongs. The park() method takes different
forms.

Polymorphism allows programmers to think about their programs in natural ways. For instance, lawnmowers,
cars, boats, and diesel trucks all must be “started,” but the means of starting the different machines can be very different.
Suppose that each type is a subclass of vehicle. Rather than write a differently named procedure for each activity,
the class designer simply implements different start() methods in the different classes, as appropriate. Then 
the user of the classes can naturally invoke the start() method of the lawnmower object and the start()
method of the automobile object, without confusion and without complexity of naming. If the object being
started is a lawnmower, starting may involve pulling a rope; if it is an automobile, starting will involve turning
a key.

Variables such as color, horsepower, and speed, which comprise elements of the state of an individual
object, are called instance variables. Likewise, methods such as changeSpeed() and park(), which affect
the state of an individual object, are called instance methods. If the designer declares such instance variables
and methods to be public, other programs and objects can access them. On the other hand, the designer can also
give a class private instance variables and methods, and such private “members” enable the encapsulation virtue
of OO programming. Private variables and methods are not even visible outside the object.

In addition to instance variables and methods, classes can have static variables and static methods. Whereas
instance members (variables and methods) are associated with individual objects, static members are associated
with a class as a whole. Suppose, for example, that the class automobile includes a static variable called
countOfCars. Each time an automobile is created, the static variable countOfCars gets incremented. The
count, because it is a static variable, is associated with the class, not with any individual automobile. Assuming
the static variable countOfCars is public, any object can discover the number of automobiles created so 
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far by reading the value of Automobile.countOfCars. The dot notation says to return the value of
countOfCars from the Automobile class.

The most common use of static variables is for class constants. If you read the Javadoc for the 
class StreamTokenizer, for example, you will see a set of four class constants that are declared static.
These constants are TT_EOF, TT_EOL, TT_NUMBER, and TT_WORD. These constants represent the possible
values (the token types) that a StreamTokenizer will return when it extracts a token (a String, 
a number, or an EndOfFile/EndOfLine flag) from an InputStream. Another example from Java is the class
Color, which defines a long list of static constants used to represent commonly used colors.

Aside from using static variables for class constants, it is generally wise to avoid static variables unless you
have a special reason to use them (as, for example, a need to keep a count of all the objects created). The reason
is that, typically, many objects can modify a static variable, and over time the probability of some new class
taking such liberties will grow. Discovering the cause of unexpected behavior related to static variables can be
difficult.

Static methods likewise are associated with a class as a whole, and are accessible from any object simply
by referencing the class name that provides the static method. For instance, the Java class Integer has a set
of static methods related to integer numbers. One is the static method Integer.valueOf(String), which
returns a Java Integer object when passed a String that properly represents an integer number.

The Java Math class provides many more examples of static methods. Any object can take advantage of
the static methods in the Math class to compute a transcendental function, square root, log, etc. The object
using the routine must simply reference the class name, followed by the dot notation, and the name of the static
method; for example, Math.sqrt(X) will return the square root of X.

Unless there is a special reason to do so, such as providing a library of functions as the Math class does, 
it is better practice to avoid static methods. The reason is the same as for static variables; the shared code 
provides more opportunity for unexpected “side effects” to occur. The exception to this rule is the Java 
program’s main() method. The JVM must find a public static method called main in the class being 
executed.

Visual Basic .NET uses the term “shared” instead of “static,” and the word shared is a better description 
of the concept. The term static has been used in several ways in different programming languages. For instance,
a static variable in a C procedure (C is a procedural language, not an OO language) is one whose address does
not change between executions of the procedure. While other variables in the procedure get pushed onto and
popped off the stack dynamically, a static variable in C gets allocated to a fixed memory location, and so the
address associated with the variable name remains static. Static variables in C are used for things like counters,
when one must keep track of the number of times a procedure has been executed. A static variable will allow
the count to persist between calls to the procedure.

For OO programming, and specifically for Java, think of static members as shared members. Static members
are accessible to all. Understand how they differ from instance members, and use static members only when
they satisfy a need that a corresponding instance member cannot.

SCRIPTING LANGUAGES

Today there is a large set of programming languages collectively referred to as scripting languages. 
The original idea of a “script” was a set of operating system commands placed in a file. When a user “executes”
the script file, the set of commands in the file is executed in order. This notion of a script is still heavily used.
Scripts are very useful for automating routine tasks which otherwise would require a person to sit at a keyboard
and type the same commands again and again.

Here is an example from the author’s experience. This script is for a Unix computer. The script runs a grading
program against an output file for a student’s project, then runs the student’s original program against a smaller
“extract” file as a second test, and finally prints a set of documents for the student. The script automates the 
execution of a set of commands by accepting a set of parameters in the command line, and then using the values
of those variables to construct the appropriate commands and execute them. When using the script, the user
types “gradeP” followed by six character strings giving the name of the student’s output file, the comments file
to be created, etc., and at last the student’s name:
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#! /bin/sh
# Script gradeP for grading the access_log projects
# Variables:
# $1 student’s output file
# $2 comments/grading file to be created by
# program gradeProj.pl
# $3 student’s source code
# $4 access_log_extract-report
# $5 path to student’s directory
# $6 Name

# Run the grading program against the student’s output file
gradeProj.pl $6 $5$1 $5$2

# Test the student’s program against the extract file
$5$3 /home/fac/chr/public_html/plc/access_log_extract $5$4

# Print the results
nenscript -2 -r $5$2 $5$1 $5$3 $5$4

This script is a script in the Bourne shell (command interpreter) for Unix, and it flexibly executes a 
set of commands that otherwise would require much more typing and be much more prone to errors of 
execution.

The first line, the one beginning with #! (called a shebang), tells Unix to execute the commands in the file
using the program sh, also known as the Bourne shell. The lines beginning with # are comment lines. The
remaining lines are commands whose parameters are constructed from the variables defined by the original
command line arguments.

The Bourne shell scripting language is one of many scripting languages one can categorize as job
control language (JCL) scripting languages. Others include the C shell (csh), the Korn shell (ksh), Bash (Bourne
Again SHell), JCL and JES2 (IBM’s languages for mainframes), and MS-DOS Batch. They are all similar 
in that they can accept a file of commands as input, incorporate values of parameters available at execution 
time, and execute the sequence of commands. Except for JCL and JES2, they all have limited programming 
controls as well, and include conditional expressions and the ability to loop and branch during execution of the 
command file.

Here’s an example MS-DOS Batch file that will copy a list of files to a directory called DUPLICAT. Lines
beginning with twin colons are comment lines. Lines beginning with a single colon are “labels” referred to by
other statements. Note the conditional statement that creates the directory only if it does not already exist. Also
note the looping structure using the GOTO statement with the COPY-FILES label.
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:: myCopy.bat
:: Copies a set of files to a (possibly new) directory
:: called DUPLICAT
:: Wildcards (* and ?) may be Used in File Names
::
@ECHO OFF

::Stops the Batch File if no file is specified
IF "%1" == "" GOTO END

::Makes the new directory only if it does not exist already
IF NOT EXIST DUPLICAT MKDIR DUPLICAT

::Loop to copy all the files.
::Uses the DOS "SHIFT" command to move
:: each file name specified at the
:: command line to the "1" parameter,
:: until none is left to copy.

:COPY-FILES
XCOPY %1 DUPLICAT
SHIFT
IF "%1" == "" GOTO END
GOTO COPY-FILES

:END

These JCL scripting languages have very limited programming tools and primitive error-handling abilities.
They are very useful nonetheless, especially to system administrators who need quick “one-off” applications to
automate repetitive tasks.

The usefulness of scripting languages inspired many authors and inventors to develop new languages with
various features and conveniences. For text processing, for example, the languages awk, sed, and Perl are popular.
Perl has also become popular for general-purpose programming, and the languages PHP, Ruby, and Python are
other languages useful for larger applications.

In general, these scripting languages are interpreted, so execution speed is not their main attraction. Instead,
scripting languages offer a compact, simplified syntax that speeds program development. In many cases, this
write-time advantage outweighs any run-time disadvantage. This is especially true for one-time systems tasks
like reformatting a text file or interpreting a system activity log.

Suppose one wanted to print a copy of a file, with line numbers added to the front of each line. Here’s 
a Perl program called lineNumberFile.pl to do that; run it by typing

>lineNumberFile.pl < fileToPrint.

#!/usr/local/bin/perl # Location of Perl interpreter
#
# Program to open the source file, read it in,
# print it with line numbers, and close it again.

$file = $0; # $0, the 1st cmd line arg
print "$0\n"; # Prints name of file & newLine

open(INFO, $file); # Open the file
while($line = <INFO>) # Read lines of file

{ # Add line number
print " $. ". "$line"; # $. has the input line no
}

close(INFO); # Close the file
>

That’s only seven lines of code, and the job is done.
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FUNCTIONAL LANGUAGES

Functional languages were invented early in the history of computing. In 1958 John McCarthy at MIT
invented LISP. Functional languages represent computing as solving mathematical functions. A function takes
one or more arguments, and returns a value. For example, an equation for a parabola is:

f = 2x2 + 5 (4.4)

When one supplies a particular value for x, the function returns a particular result:

f (3) = 2(3)2 + 5 = 23 (4.5)

With a functional language, computing proceeds by passing input parameters to a function, which then
returns the result of the function. The return value(s) typically provides the input parameter(s) for another 
function(s), and so any level of computational complexity can be programmed.

In any functional language, some basic functions are built in, and they’re called primitives. In LISP these
include the mathematical functions of addition, subtraction, multiplication and division, for example, as well as
the function car, which returns the first element in a list, and cdr, which returns all but the first element in 
a list. (By the way, the function names car and cdr come from acronyms for two registers used by LISP on
the old IBM 704 computer.)

As our example functional language, we will use Scheme, a newer (1975) descendent of LISP, which has
particularly consistent syntax. An expression in Scheme is an atom or a list. An atom is a single number, character
string, name, or function. A list is a collection of expressions contained within parentheses. Note that the elements
of a list may be atoms or other lists.

Computing in Scheme means evaluating the Scheme expressions. In particular, to evaluate a list, Scheme
expects the first element of the list to be a function, and the following elements of the list to be arguments to
the function. Since the elements of the list may themselves be lists, evaluation proceeds recursively, by first
evaluating the lists at the lowest level, and then proceeding to final evaluation of the function at the top level.

To add two numbers in Scheme, one creates a list. The first element within parentheses is the function ‘+’,
and the following elements are the arguments to the function. When an expression is complete, the Scheme
interpreter evaluates the function and returns the result. This cycle is called the REPL—the Read, Evaluate,
Print, Loop. Here is the code to add 3 and 5 together:

(+ 3 5 )
8

If we wish to add more than two numbers, we simply include more parameters to the function. For example,
to add five numbers, we simply increase the number of arguments:

(+ 3 5 7 4 2 )
21

Expressions can be evaluated as arguments, too, so this Scheme expression divides the sum of 3 and 5 by
the difference between 7 and 5:

( / (+ 3 5 ) ( - 7 5) )
4

Another primitive function in LISP and Scheme is the function list, which takes a series of arguments
and makes a list:

( list 1 5 6 )
( 1 5 6 )

If we need the first element in a list, the function car will return that:

( car (list 1 5 6) )
1

The function cdr will return all but the first element of the list:

( cdr (list 1 5 6) )
( 5 6 )
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A list can include many elements, only one element, or no elements:

( list 8 )
( 8 )
( list )
()

One can define a new function at any time using the “lambda notation.” This code creates a new 
function called ‘sum’ which adds two numbers together, just like the built-in primitive ‘+’ does, but for only two
arguments:

(define sum
(lambda (n m)
( + n m)))

The name sum is associated with a function that expects two arguments. The function completes after
adding the arguments n and m together, and the result of evaluating the function is the sum of the two arguments.
Our function sum produces the same result as the built-in function ‘+’ when presented with two arguments, but
sum will not accept an arbitrary number of input parameters:

> (sum 4 3)
7
> (+ 4 3)
7
> (sum 4 3 2)

[Repl(25)] Error: incorrect number of arguments to
#<procedure>.
Type (debug) to enter the debugger.

Looping in a functional language is accomplished by recursion, that is, by having the function call itself
repetitively. Indeed, one of the reasons to study functional programming is to become comfortable using recur-
sion. Even programmers using the popular imperative programming languages can take advantage of recursion,
which can make some programming tasks more compact, self-documenting, and reliable.

For instance, suppose we need a function to compute the factorial of an integer. One way to write such code
in C or Java is this:

int factorial( int n ){
int fact = 1;
while( n > 1 ) {

fact = fact * n;
n--;

}
return fact;

}

This version of the factorial function starts with the number passed in, and then iteratively multiplies that
number by each smaller number until the function works its way down to 1.

A different way to write this function in C or Java, using recursion, is this way:

int factorial( int n ){
if( n <= 1 ) return 1;
return( n * factorial( n-1 ));

}

If the number passed in is greater than 1, the recursive function simply multiplies the number passed in by
the factorial of that number minus 1. The factorial function calls itself repeatedly until the number passed
in is 1, at which point it returns the value 1 to the last caller, which can then return to its caller, etc.

Some would say that the recursive function is more self-descriptive. It’s certainly shorter, and simpler to write.
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To write a recursive function, one first defines the “grounding condition,” or “base case,” at which the 
recursion terminates. In the example of factorial, both 1! and 0! return 1 by definition, and no further 
computation is necessary. When the grounding condition occurs, the function should stop calling itself and
simply return the value 1.

The factorial for a larger number can be defined as the larger number times the factorial of the next smaller
integer. So the factorial function can be thought of as a process: multiply the number times the factorial of
the next smaller number. The process continues until the number being evaluated is 1. At that point, the function
returns 1, which provides the factor for computing 2!, which answer provides the factor for computing 3!, which
answer provides the factor for computing 4!, etc. The recursion “unwinds” providing the answer for the factorial
of the larger number.

In a functional language, all computation proceeds by means of evaluating functions. Assignment of values to
variables in order to maintain state is not permitted, so we cannot use a variable like ‘n’ to keep track of our progress
in a loop. Looping must be accomplished by recursion. Here is a Scheme function to compute the factorial:

(define factorial
(lambda (n)

(if (<= n 1) 1 (* n (factorial(- n 1)))
)))

Here we also see the conditional execution function if. The if function in Scheme is followed by three
expressions. The first is evaluated for its truth. If the first expression following if is true, the second expression
is evaluated and returned (in this case, if n <= 1, return 1). If the first expression is false, the third expression is
evaluated and returned (in this case, if n > 1, return the product of n and the factorial of n−1).

We can elaborate on our simple summation function and illustrate some more ideas. Here is a version of 
sum that takes a list as an argument. This way, our sum function can compute the sum of any number of 
integers:

(define listSum
(lambda (n)

(cond ((null? n) 0)
( (null? (cdr n)) (car n) )
(else (+ (car n) (listSum (cdr n))))

)))

The cond (condition) operator is like multiple if and else-if statements in C or Java. Following the
function cond is a list of condition/action pairs. Cond tests the first condition and, if it’s true, cond executes
the associated action. If the first condition is false, cond checks the second condition. If the second condition
is true, cond executes the action associated with the second condition. There can be any number of conditions,
and cond will execute only the action associated with the first true condition. At the end can be an else condi-
tion that cond will execute if no other condition is true. The else condition is not required, however.

The listSum function tests to see whether the list it was passed is null. If so, the function returns 0. 
If not, then it tests to see if the cdr of the list is null. That will be true if the list consists of a single element,
and in that case the function will simply return the value of the first and only element. Otherwise, the function
recursively adds the first element of the list to the sum of the elements in the back (cdr) of the list.

When we evaluate listSum, we get the correct result:

> (listSum (list 2 4 5))
11

We can go one step further and make a function that behaves like the ‘+’ function, which accepts any
number of addends. Notice that next to lambda, n appears without parentheses. Scheme will accept any
number of parameters; in this case, create a list of the parameters, and pass the list to the function giving the
list the name n.
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(define sum
(lambda n

(cond ((null? n) 0)
( (null? (cdr n)) (car n) )
( else (+ (car n) (listSum (cdr n))))

)))

The code for sum is similar to listSum in its checking for the length of n (the set of parameters in the
case of sum), but if the number of parameters is two or greater, sum uses the listSum function to compute
the sum of elements 2 through n. That is because listSum expects a list as an argument, whereas sum expects
one or more separate arguments that get concatenated into a new list. If sum were to recursively call itself pass-
ing (cdr n), the next call to sum would create ((cdr n)), a list of one element (the element is another list,
the cdr of the list of parameters), and the second line of cond would return a list instead of a number.

Our version of sum now behaves like ‘+’ and will accept any number of parameters and return the sum.

> (sum 2 4 5 6)
17

A more elegant solution accepts the list, builds a new expression by putting the ‘+’ in front of the list, and
passes the new list to the Scheme eval function directly. The eval function is the function that Scheme itself
uses to evaluate expressions.

(define sum
(lambda n

(cond ((null? n) 0)
( else (eval (cons '+ n)))

)))

This solution introduces two new elements of Scheme syntax. To understand this version, you need to know
that the single quote before the ‘+’ stops Scheme from evaluating the function ‘+’, and instead forces Scheme
to treat ‘+’ as a simple character atom. In addition, the function cons creates a new list by adding an element
to the front of a list, in this case adding the ‘+’ to the front of the list of numbers to be summed.

Functional programming has the desirable properties of simple syntax and semantics, and compact code.
Also, since a function may not change any of the parameters passed to it, and since assignment is not used 
to change program state, “side effects” (any changes in variables that endure after execution of the code) are
eliminated, with resulting improvements in reliability.

Historically, functional programming has found advocates in the fields of artificial intelligence and expert
systems. The popular editor Emacs is written in LISP, too, as is the on-line fare search program employed by
Orbitz (http://www.paulgraham.com/icad.html).

LANGUAGE DESIGN

Computer programming languages are developed to make it easier for humans to direct computation. 
At some times in the past it was thought that a single language could be best for all programming tasks. 
For instance, IBM planned to “unify” scientific and business programming in the 1960s with PL1, replacing
both FORTRAN and Cobol. In the 1980s there was talk of Pascal replacing all other languages because of its
superior type checking and block structure.

As time has passed, however, more languages, not fewer, have come into use, and new ones still appear.
We think this is due to the maturing of the programming discipline. Just as any able mechanic will carry several
different tools for working with a 10 mm nut (open-end wrench, box wrench, crows-foot wrench, shallow
socket, deep socket, etc.), any able programmer will carry knowledge of several different languages so that they
can select the best one for a particular circumstance.

Some languages provide better run-time performance, some provide unusually compact syntax for quick
“one-off” programs, some offer particularly strong features for manipulating text, some for working with matrices
of numbers, etc. In evaluating a language, computer scientists consider many properties.
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From the earliest days, efficiency of execution has been a desirable property. In fact, FORTRAN was
widely adopted in large part because it created code that was very nearly as fast as assembly language code.
Without its characteristic efficiency, FORTRAN would have been adopted much more slowly by the programmers
of the 1950s and 1960s who worked in an environment where the cost of running a program was an expensive
multiple of the CPU seconds the program consumed.

Human readability is another desirable trait in a language. Cobol syntax is as “wordy” as it is because the
designers of Cobol wanted the code to be self-documenting. The designers hoped to guarantee that Cobol would
be easy for a human to read, regardless of the commenting style of the author.

A language that is easy to implement has an advantage. The language ADA can serve as a contrary example.
While ADA is an excellent and carefully designed language, ADA has been adopted more slowly than some
others, in part because its size and complexity initially made it more difficult to implement, especially on
smaller computers.

Computer scientists also praise a language for expressiveness. This is a somewhat subjective judgment, but
an example of unusual expressiveness will illustrate the property. Perl offers the “if” conditional familiar to us
in most languages, and Perl also offers the “unless” conditional, which is the converse of “if.” Having both
forms can be called “syntactical sugar,” since there is no functional requirement for a language to have both,
but having both allows more natural expression of some conditions.

Expressiveness is also relative to particular types of applications. C’s built-in facilities for manipulating 
bits mark it as unusually expressive in that way, and make it an especially good language for writing operating
systems and drivers. Matlab’s matrix manipulation syntax is wonderfully expressive for matrix algebra applications
like statistics and image processing.

Another very desirable trait in a language is regularity. Regularity means consistency of behavior, consistency
of appearance, and avoidance of special cases. In C, an example of an irregularity is the use of the ==Boolean operator.
Any two values can be compared using ==, but two arrays cannot be compared using ==; arrays must be compared
element by element. The == operator cannot be applied in a general way to all data structures. There are almost
always good reasons for irregularities, but, other things being equal, a more regular language is more desirable.

Computer scientists praise languages that are extensible. Many languages today allow the writer to define
new data types, for instance. That was not an option in early versions of FORTRAN, which came on the scene
supporting only integers and floating-point data types. Languages can also be extended by adding to libraries
of shared routines. A language like LISP even allows the writer to extend the keywords of the language by 
writing new functions.

Standardization is another advantage; a language with a formal standard encourages wider adoption. Ada, C,
Cobol, Java, and many others now boast international standards for the languages. Perl, on the other hand, does
not—Perl is whatever Larry Wall and the Perl Porters decide they want “everyone’s favorite Swiss Army
Chainsaw” to be (http://www.perl.com/pub/a/2000/04/whatsnew.html).

Another desirable property of a language is machine independence. Java is the best example of a machine-
independent language. Given that a Java Virtual Machine is available for the host hardware, the same Java
source code should run the same way on any machine. (This promise of “write once, run anywhere” has largely
been fulfilled today, but in the beginning days of Java, the popular quip was, “Java: write once, run away.”)

On the other hand, programmers using C must keep in mind the hardware platform on which the code will
run since, for example, the sizes of data types vary on different machines. An int variable may be 16 bits long
on one computer, and 32 bits long on another. The programmer seeking to write a C program to run on multiple
platforms must accommodate these differences somehow.

Finally, some languages are more secure than others. Strict type checking is one feature designed to
enhance security. This was one of the lauded virtues of Pascal, when Pascal was being promoted in the 1980s
as the answer to all programming problems. Boundary checking on arrays is another feature designed to promote
security, and descriptions of the Java security model boast Java’s array boundary checking as an advance over
languages such as C.

While all these properties may be desirable, they are not all possible to achieve in the same language. For
instance, the security of strict type checking probably will reduce some forms of programmer expressiveness
(e.g., treating characters as integers, which can be used to improve execution speed in some applications),
increase program size, and perhaps reduce ultimate efficiency. Tradeoffs make language design a challenging
occupation, and different tradeoffs make different languages more suitable for different types of tasks.
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LANGUAGE SYNTAX AND SEMANTICS

To prepare a user-written program for execution, the language processor must perform several tasks. In order,
computer scientists refer to these tasks as scanning (lexical analysis), parsing (syntax analysis), and code generation
(semantic analysis).

Scanning, the first step, reads the character sequence that is a source code file and creates a sequence of
tokens of the language. Tokens are the words of a language, and tokens fall into several categories. A token 
may be a key word like return or a reserved word like String, a special symbol like ‘+’, a variable name
or identifier like myCount, or a literal constant like the number 3.14 or the character string Please enter
your name:.

After the scanner “tokenizes” the source code, the parser accepts the list of tokens as input and builds 
a “parse tree” according to the syntax rules of the language. The parser tests the token stream against the syntax,
or grammar rules, of the language, and in the process finds many of the errors we programmers make.

The syntax of a language describes the allowable statements in the language. Following correct syntax does
not guarantee correct programming, but correct programming requires correct syntax. For instance, in English, the
sentence, “The octopus combed his hair” is syntactically correct, but foolish. On the other hand, the sentence, “The
mab ran after the bus” is not syntactically correct because the dictionary does not recognize the token ‘mab’. In
programming languages, as in English, many syntax errors occur because of misspellings and typographical errors.

Today, language syntax rules are usually expressed in Backus-Naur form (BNF), or extended Backus-Naur
form (EBNF), after John Backus (inventor of FORTRAN) and Peter Naur. BNF uses a set of rules or “productions”
to describe the grammar, or syntax.

On the left-hand side of a production, BNF shows a linguistic concept known as a “non-terminal.”
Examples of non-terminals from English include “verb-phrase” and “sentence.” In a programming language,
examples of non-terminals might be “term” or “expression.”

Non-terminals are so-called because they can be broken down into combinations of smaller concepts. For
instance, a verb-phrase can consist of a verb and a direct-object-phrase. Ultimately, the grammar defines the
units of the language that cannot be further reduced, the words of the language, and these are called “terminals.”

On the right-hand side of a production, BNF shows the possible combinations of non-terminals and/or terminals
that can be substituted for the higher-level non-terminal on the left-hand side. Here is a grammar for mathematical
expressions:

1 expression -> term | expression add_op term
2 term -> factor | term mult_op factor
3 factor -> identifier | number | - factor | (expression)
4 add_op -> + | -
5 mult_op -> * | /

The vertical lines mean “or.” To simplify the discussion so that we need not also supply rules for creating
“identifiers” and “numbers,” assume that identifiers are valid variable names and numbers are valid numbers.
We will treat them as terminals.

Production 1 says that an expression can consist either of a term, or of an expression plus an add_op 
(addition operator) plus a term. Production 2 says that a term can be a factor, or it can be another term plus 
a mult_op (multiplication operator) plus a factor.

For example, we can parse the following expression according to the grammar:

X * 3 + 4

We can, by rule 1, replace the original expression with another expression (X * 3), an add_op (+), and
a term (4). By rule 2 the single-token term (4) can be replaced by a factor, which can, by rule 3 be replaced
by a number (4), which is a terminal for us.

It remains for us to parse the expression (X * 3). At this point, by rule 1 the only legal substitution for
(X * 3) is a term. By rule 2 the term (X * 3) can be replaced by another term (X), a mult_op (*), and
a factor (3). Again, rule 3 says the factor (3) can be replaced by a number (3), which is a terminal.

By rule 2 the term (X) can be replaced by a factor (X), which by rule 3 can be replaced by an identifier
(X), which we said was a terminal for us.
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Such decomposition of a more complex expression into its terminals according to the rules of the grammar
is called a derivation. The result of a successful derivation is a parse tree or syntax tree. Here is the parse tree
for the derivation we just completed:

( X * 3 + 4 ) expression
/ | \
/ |  \

(X * 3) + 4 expression add_op term
/ | \ 4 factor
/ | \ 4 number
/ | \
/ | \
X * 3 term mult_op factor
X factor  3 number
X identifier

To compute the meaning of the expression, the parse tree can be traversed from the bottom up, computing
the multiplication first and then performing the addition.

If an expression can be parsed according to the grammar of the language, the expression conforms to 
the syntax of the language. Once the parser creates the parse tree, the compiler can work from the bottom of the 
tree to the top, creating the machine instructions to implement the expression. This last phase is called code 
generation.

Today most descriptions of language syntax use a version (there are several) of EBNF. Some notational
changes simplify the representations of productions. In particular, EBNF uses curly brackets to denote “zero 
or more occurrences of,” and it uses square brackets to denote optional parts of a production. EBNF uses 
parentheses and vertical “or” separators to denote multiple-choice options for a single element. We can rewrite
the grammar above using this EBNF notation:

expression -> term { (+ | -) term }
term -> factor { (* | /) factor }
factor -> identifier | number | - factor | ( expression )

If it is not obvious that these rules agree with our earlier grammar, consider our earlier first rule for 
expressions:

expression -> term | expression add_op term

From this rule, we can generate:

expression -> term
expression -> expression + term
expression -> expression + term + term
expression -> expression + term + term + term
...
expression -> term + term + term + term ...+ term

So, the EBNF notation says more simply:

expression -> term { (+ | -) term }

An expression is a term followed by zero, one, or many additive terms.
Here is an example of EBNF used to represent an optional element in a production:

if-statement -> if( expression ) statement [else statement]

This production says that an if-statement consists of the key word if, followed by an open parenthesis, followed by
an expression, followed by a closed parenthesis, followed by a program statement, optionally followed by the
key word else and another program statement.
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A very important requirement for a programming language grammar is that it be unambiguous. 
Given an expression in the language, there must be one and only one valid derivation in the language. 
To illustrate an ambiguous grammar, consider this simplification of the grammar for mathematical 
expressions:

1 expression -> expression operator expression | identifier |
number | - expression | ( expression )

2 operator -> + | - | * | /

We can again parse the expression (X * 3 + 4) proceeding from the left to the right, and the result will
be the same parse tree we derived from the more complex grammar. However, this simpler grammar would also
allow a rightmost approach, with the following result:

( X * 3 + 4 ) expression
/ |    \
/ |     \
X *   (3 + 4) expression operator expression
|           \
X Identifier  \

(3 + 4) expression operator expression
/     \

/ |   \
/ |   \
/ | \

3 number + 4 number

The meaning of the second parsing is very different from the first, because in the rightmost parsing the
addition occurs before the multiplication. That is not the customary hierarchy of operations, and the second
parse tree will, in general, produce a different value for the expression than the first.

Because the simpler grammar can produce two different and valid parse trees for the same expression, the
grammar is ambiguous. Programming language grammars must be unambiguous.

Look again at the first grammar, the more complex example, and notice how the grammar enforces a hierarchy
of operations; multiplication and division occur before addition or subtraction. Correct grammars place higher
“precedence” operations lower in the cascade of productions.

Another key to a correctly specified grammar is the “associativity” of language elements. Does a mathematical
operator associate left to right, or right to left? This makes a difference with expressions like (9 - 4 - 2).
Left associativity of operators yields 3, while right associativity yields 7. How do the grammar rules express
associativity?

A production like this is left-associative:

expression -> term | expression add_op term

A production like this is right-associative:

expression -> term | term add_op expression

The significant difference is that the recursion (where an expression is part of an expression) is on the left
in the first case, and on the right in the second case.

Using the left-associative production to parse (9 - 4 - 2) results in this parse tree:

( 9 - 4 - 2 ) expression
/ | \
/ | \

(9 - 4) - 2 expression add_op term
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Using the right-associative production to parse the same expression results in this tree:

( 9 - 4 - 2 ) expression
/ | \
/ | \
9 - (4 - 2) term add_op expression

The result is 3 in the left-associative grammar, and 7 in the right-associative grammar.

SUMMARY

The machine instruction sets themselves constituted the first generation programming languages. 
Programs were conceived as sequences of machine operations, and programmers worked directly with the 
hardware, often entering code in ones and zeros directly through the front panel switches. Assembly 
languages, using mnemonic character strings to represent machine instructions, made up the second 
generation of programming languages. Beginning with FORTRAN in 1954, third-generation languages 
allowed programmers to work at a higher level, with languages that were much more independent of the 
computer hardware.

Programs can be compiled or interpreted. Compilers generate machine instructions that can run 
directly on the computer, independent of further availability of the compiler program. Interpreters, on the 
other hand, are programs that read and execute source code a line at a time. Java is an environment that 
uses both. Java source code is compiled into machine-independent bytecode, and the Java Virtual Machine 
interprets the bytecode at execution. Many JVM implementations today also compile bytecode to machine
instructions.

Some languages are described as imperative, and of these we discussed procedural, object-oriented, 
and scripting languages. Other languages are described as declarative, and of these we discussed functional 
languages.

When designing a new language, computer scientists value execution efficiency, human readability, ease 
of implementation, expressiveness, regularity, extensibility, standardization, hardware and operating system
independence, and security. It is not possible to achieve all virtues simultaneously, so language design means
making wise tradeoffs for the intended use.

Language processing programs like compilers and interpreters go through the phases of scanning, parsing,
and code generation. Scanning is also known as lexical analysis, and the output of the scanner is a stream of
tokens in the language (key words, variable names, etc.). Parsing is also known as syntactical analysis, and the
parser must verify that the stream of tokens conforms to the rules of the language grammar. The output of the
parser is a parse tree. Finally, code generation, also known as semantic analysis, consists of traversing the parse
tree from the bottom up, creating the necessary machine instructions.

Half a century into the computer age, the world of software encompasses a wide variety of general-purpose
and special-purpose languages based on formal definitions and grammars. Interpreters, compilers, virtual
machines, or all three, support the myriad programs written in these languages. The future will probably bring
further differentiation and specialization of languages and programs as computer scientists further refine their
thinking about how best to translate human intention into machine instructions.

REVIEW QUESTIONS

4.1 Why was it important to the history of programming languages that, even at its introduction, FORTRAN
generated efficient programs?

4.2 Given what you know of computer languages, what language would be a good choice for:
a Processing a file of text, such as a system error log, looking for particular types of events?
b Developing an artificial intelligence application to diagnose disease, given a list of symptoms?
c Writing driver software for a new computer printer?

4.3 Here is a C function that computes the sum of a range of integers. You can assume that begin will
always be less than or equal to end (begin <= end):
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int summation( int begin, int end ) {
int result = begin;
begin = begin + 1;

while( begin <= end ) {
result = result + begin;
begin = begin + 1;

}
return result;

}

Rewrite this function so that it uses recursion instead of iteration.

4.4 Assume that a language describes a statement-sequence as a sequence of one or more statements
separated by semicolons (assume statements are defined elsewhere), but with no punctuation at the 
end of the statement-sequence. Write the EBNF production.

4.5 Given the following grammar:

expr Æ term + expr | term
term Æ factor * term | factor
factor Æ (expr) | number
number Æ number digit | digit
digit Æ 0|1|2|3|4|5|6|7|8|9

Draw the full parse tree for the expression:

2 * (3 + 5) + (6 + 8)

4.6 Describe the form in which a program is passed from:
a The scanner to the parser.
b The parser to the semantic analyzer.

4.7 Here is a context-free grammar in BNF form:

expr --> expr + term | expr - term | term
term --> term * factor | term / factor | factor
factor --> ex ** factor | ex
ex --> (expr) | id

Rewrite this grammar in EBNF form.

4.8 What does this Scheme function do?

(define whatsThis
(lambda (n)
(cond((null? n) 0)

((null? (cdr n)) (car n))
((> (car n) (whatsThis (cdr n))) (car n))
( else (whatsThis (cdr n)))

)))

4.9 Give an example of an irregularity in a language with which you are familiar.

4.10 Would it ever make sense to write a program in one language, planning from the beginning to rewrite
the program later in a different language? Give an example of a situation in which such a plan might
make sense, and not simply result in wasted time and effort.
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CHAPTER 5

Programming in Java
INTRODUCTION

Java is one of a great many computer programming languages in use today. Since it is a fairly new language,
having been first released in 1994 by Sun Microsystems, its design takes advantage of modern ideas about what
makes a good programming language. Historically, new programming languages have usually taken years to
become popular, but Java enjoyed unprecedented growth in popularity from the very day of its release. In fact, today
Java is by some measures the most popular language for new work (http://www.tiobe.com/tpci.htm).

Many long books have been written teaching Java programming, and it is not our purpose in this chapter
to provide a complete tutorial on Java programming. Instead, we will introduce basic programming structures
and techniques with Java. We hope this exposure to one very good language will help readers to understand
ideas presented in other chapters on topics of software, algorithms, operating systems, etc.

In this chapter we will show small but complete programs you can try out for yourself. If you do not already
have access to a Java compiler and Java Virtual Machine (also called the Java Runtime Environment), you can
quickly download the entire Java package, including excellent documentation, directly from the Sun website
(http://java.sun.com/javase/). For work with this chapter, download the Java Standard Edition Development Kit
(JDK), which also includes the Java Runtime Environment.

It’s also a good idea to download the documentation (called JavaDocs) to your own computer, if you have
the room on your disk. You can get to the same documentation on-line at the Sun website, but your access will
be faster if the files are resident on your own computer.

To write programs in Java, you can use any editor or word processor you like. There are also several 
integrated development environments (IDEs) available. At first we recommend you simply use an editor with
which you are already comfortable, for the IDEs have a learning curve of their own for you to deal with, and
our focus here will be on the basics of the language.

JAVA TYPES

Every programming language defines a set of data types that it recognizes. In the case of early FORTRAN,
the language only recognized integers and floating-point numbers. More modern languages recognize a wider
range of data types, such as numbers of different levels of precision, true-or-false values, and strings of alphanumeric
characters. Most modern languages also allow the programmer to define new types of data.

Java is an object-oriented language, which means that the Java language operates on software objects. The idea
of a software object is a modern idea, and object orientation means that the programmer can define a new type of
data element by defining a new class. Having defined a new class (e.g., automobile), the programmer can create
an example object of the class (called an instance of a class; e.g., a Ford Mustang with a particular vehicle ID) and
manipulate it as a unique object. This means that programs are not limited to computing numbers, strings of 
characters, etc. Programs can also compute automobiles, factory orders, concert schedules, etc. directly.
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If this sounds magical, wait to read more in the classes and objects section coming later in this chapter. 
Rest assured that, in the end, it all boils down to bits (1s and 0s) in the computer. Object orientation is just 
a different way of naming and thinking about what’s going on in the computer, and it’s helpful because it usually
makes thinking about the computation more natural. Also, object orientation often leads to software that is more
easily used for multiple purposes, thus constantly expanding our resource of useful, tested programs.

But Java programmers need some basic data types to get started. These Java primitive types are not objects,
but are simply the definitions of the varieties of data with which all Java programs can work. The primitive types
fall into three categories:

1 integral types integers and characters
2 floating-point types fractional numbers
3 boolean type true or false values

It may seem strange to call characters one of the integral types, but the reason is that each character is 
represented by an integer value. For instance, when you type an “A”, the keyboard sends the integer value 65,
the integer code for “A”, to the computer. The code for “B” is 66, etc. Lowercase characters have different codes.
For instance the integer code for “a” is 97, and the code for “b” is 98. So letters are just integers underneath,
and software treats the bits as numbers or character codes depending on the context.

The Java primitive types, by category, are these:

1 integral types
byte 8 bits wide −128 to 127
short 16 bits wide −32768 to 32767
int 32 bits wide −2 billion to 2 billion
long 64 bits wide very small (−263) to very big (263 −1) integers
char 16 bits wide Java uses “Unicode” character codes

2 floating-point types
float 32 bits wide +/− 3.4 × 1038 with 6–7 significant decimal digits
double 64 bits wide +/− 1.8 × 10308 with 14–15 significant decimal digits

3 boolean type
boolean logical true or false

Among the integer and floating-point types, the cost of computing with greater precision is that the 
higher-precision types require more space to store, and computations involve larger numbers of bits.

Here is an example Java program that uses only primitive data types:

public class Primitive {
public static void main( String[] args ) {

int x;
int y;
int z;

y = 7;
z = 4;
x = y + z;

System.out.println( "x = " + x );
}

}

Every program in Java is a class, and that is why the first line says that this is a public class (available for
use by anyone) called “Primitive.” The next line says that this is the start of a “method” called “main.” Any Java
program must have a “main” method declared exactly as this is. The line

"public static void main( String[] args ) {"
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is where the program starts. This line will be in all your programs. This line tells the Java Virtual Machine
(JVM) where to start running your program.

“Public” means that anyone can run the program, “static” means that there is only one main method for the class,
“void” means that the main method will not return any values, and “String[] args” means that if the user provided any
“command line arguments,” they are available to the program in an array of String variables called “args”. Some of
this probably doesn’t make sense to you right now, so for now simply remember that every one of your programs
must have a main method, and the first line of the main method must be written exactly as this example is written.

Notice that every statement in Java ends with a semicolon! Notice, too, that the Java language is “case-sensitive.”
The variable “x” is different from the variable “X.” The class name of “Primitive” is different from a class name
of “primitive.”

The next three lines “declare” three variables of type int. The variables x, y, and z are each int vari-
ables, which means that each one requires 32 bits for storage, and each one represents an integer value. The
JVM will reserve the required space for x, y, and z.

The next three lines assign the value of 7 to y, 4 to z, and the sum of 7 and 4 to x.
Finally, the last line displays the characters x = and the value of x, which is 11, on the “standard output

device,” usually the display. The result is:

x = 11

Notice the “curly braces” (i.e., { ... }) in the code. One pair of curly braces surrounds the “body” of the
class Primitive, and one pair of curly braces inside Primitive surrounds the body of the method main.
You must use curly braces to mark the beginning and end of a “code block” in Java. A code block is a “com-
pound statement,” and a code block can consist of variable declarations and statements. Classes, methods, loops
(which we have not yet discussed), and control structures (which we have not yet discussed) all define code
blocks, and blocks can be nested within one another to any level.

Use your favorite editor to type this code, and then save your work as file Primitive.java.
The next step is to compile your code using this command:

javac Primitive.java

When that is successful, you can run your program by typing:

java Primitive

Make sure all this works before continuing.
Aside from the Java primitive types, all data types in Java are classes. In other words, every class in Java

represents a new data type. A programmer in effect creates a new Java data type every time the programmer 
creates a new class. The class Primitive above is a class, but it doesn’t have any facilities for use by other
programs, so it’s not a good example of a reusable new data type. Soon we will show classes that do create new
data types that can be useful to other programs, however.

Sometimes you will find it necessary to operate on objects instead of primitive types. This is because
objects are reference types, and are handled differently internally than primitive types. For the purpose of 
converting variables of primitive types to reference types, Java provides a set of “wrapper classes” so that the
programmer can always create an object having the same value as a corresponding variable of a primitive type.
The Java wrapper classes corresponding to the primitive types are these:
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Primitive Wrapper Class
byte Byte
short Short
int Integer
long Long
char Character
float Float
double Double
boolean Boolean



For example, if the programmer needs an object corresponding to the integer 22148, the programmer can
use this code:

Integer ix;
ix = new Integer( 22148 );

The first line declares that ix is a variable of type Integer. Since Integer is a class, not a primitive
type, ix is an object. The JVM will reserve space for an Integer object, not just 32 bits for an int.

The second line says to create a new Integer object whose value is 22148, and assign that object to the variable ix.
Another built-in Java class that you will use very, very often is the class String. A String object

consists of none, one, several or many characters which are treated as one object. For instance:

String myName;
myName = "Carl";

The first line declares that the variable myName is of type String. If the programmer prints the variable
myName, all the characters in the word Carl will be printed:

System.out.println( "name: " + myName );

The plus sign in the println statement says to “concatenate” (combine together) the characters "name: "
and "Carl". The result will be:

name: Carl

ARRAYS

A data structure is a way of organizing data, and arrays are among the simplest of data structures. An array
is a data structure that holds multiple values of the same type. One speaks of an array of Strings, or an array 
of ints.

One declares an array by using square brackets, either after the type declaration or after the name:

int[] x; // either form declares an array of ints
int y[];

Declaring an array simply gives it a name. To create the elements of an array, one must also use the new
key word, along with an integer within square brackets to indicate the number of elements in the array:

x = new int[15]; // 15 int elements, each set to 0
y = new int[10]; // 10 int elements, each set to 0

Once the array is created, its size cannot be changed.
Individual elements in an array receive default values of zero for numeric types, nulls for characters, and

nulls for Strings and other objects.
By using a subscript, one can assign values to elements of an array, or read the value of an element. In Java,

arrays are zero-based, which means that the first element of the array is referred to with a subscript of 0.

x[4] = 66; // assign the value 66 to the 5th element
c = y[1];// read the value of the 2nd element into c

Each Java program’s main method declares an array of Strings, by convention called args, for 
accepting any arguments that the user might supply from the command line. If the user types:

java myProg firstParam secondParam
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the program myProg can retrieve the String “firstParam” from args[0], and the String “secondParam” from
args[1].

JAVA OPERATORS

Operators are symbols in a language that stand for built-in functions. Java has a great many operators and,
since this chapter will only serve to introduce the Java language, we will not discuss them all. Here are the 
operators we will discuss:

By assignment, we mean taking the value on the right side of the equal sign (sometimes called RS) and giving
that value to the variable on the left side of the equal sign (sometimes called LS). If the value of k is 5, after the 
following statement is executed, the value of cwill also be 5. Likewise, the value of kwill remain 5 after execution:

c = k;

The arithmetic operators perform their expected functions. For example, if the value of a is 3, and the value
of b is 5, after the following statement executes the value of x will be 15:

x = a * b;

In contrast to some other languages, Java has no operator for exponentiation. If a programmer wants to raise
a number to some power, the program must perform the exponentiation either by repeatedly multiplying, or by
using the pow() method of the Math class which is part of the built-in Java library.

The ++ and -- operators are convenience operators that many programmers like because they save some
typing. The following two statements have the same effect:

m = m + 1;
m++;

In either case, the value of m will increase by 1. The -- operator works similarly, except that the value of
the variable will decrease by 1.

The rest of the operators in our list are logical operators. We use logical operators to test the truth of conditions
important to our programs. For example, if our program were going to find all the houses in a neighborhood
whose assessed values were greater than $200,000, our program might have a statement like this in it:

if ( assessedValue > 200000 ) {
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Operator Function
= assignment
+ add
- subtract
* multiply
/ divide
++ increment by 1
-- decrement by 1
&& logical AND
|| logical OR
== equal (notice that there are 2 equal signs)
!= not equal
> greater than
< less than
>= greater than or equal
<= less than or equal



We will discuss the use of if statements in the section on Java control structures, so for now simply
observe that the “>” operator allows one to test the truth of the condition that assessed value is greater than
$200,000. If the value of the variable assessedValue at the time the statement executes is greater that
200000, the logical operator “>” will return a value of true. Otherwise, it will return false.

We will discuss the other logical operators in the section on Java control structures. Remember, too, that
we have not discussed all Java operators. Java also has operators for testing and shifting bit values, conditional
statement execution, modulo arithmetic, and some other functions.

JAVA IDENTIFIERS

Every programming language has its rules for how to name elements of a program. In Java, names must
always begin with a letter. Letters in Java include all lowercase and uppercase letters, as well as the underscore
character “_” and the currency symbol “$”.

After the first letter, any number of letters and/or digits may follow. A Java identifier may be of any length,
and it is good programming practice to use names long enough to be self-descriptive. More experienced 
programmers generally use longer variable names, because longer names usually make programs much easier
to read and maintain.

Java is a “case-sensitive” language. That means that Java recognizes uppercase and lowercase letters as 
different. The identifier university is different from University, and both are different from 
UNIVERSITY.

While one is not required to do so, standard programming practice is to begin all class names with an 
uppercase letter, and to begin all other names with a lowercase letter. Also, when an identifier consists of more
than one word, the usual practice is to use what’s called “camel case” capitalization (it’s “humpy”). Here are
some example variable names:

highWindWarning
wonLostRecord
mothersMaidenName

BASIC CONTROL STRUCTURES

All programming languages provide ways to alter the sequence of instructions that actually get 
executed when a program runs. This ability to select which logic to apply, or to choose an appropriate 
number of times to cycle through a section of code, is what makes programs flexible enough to be 
useful in the real world. Imagine a program to compute the average grades for students in a class, 
but imagine that the program requires all classes to have exactly the same number of students, and 
has no way to properly handle a missing grade! Such a rigid program would not be worth the trouble 
to write.

if

The most common control structure for selecting a block of code to execute is the if statement. The if
statement can be used in its simple form, or in its extended if-else form. Here is an example of a simple 
if statement:

if(grade > 0) {
sumOfGrades = sumOfGrades + grade;
numberOfGrades++;

}

This statement says, if the variable grade is greater than 0, then add the grade value to the variable
sumOfGrades, and increment the variable numberOfGrades by 1. Otherwise, do nothing. Either both
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statements following the if statement will be executed, or neither will be, because they are both within the
curly brackets which follow the if. The curly brackets mark a code block.

If the tested condition is true, then the code block of the if statement will be executed. If the condition 
is false, the code block will be skipped.

Here is the syntax of the simple if statement:

if( <conditional expression> ) <statement>

The conditional expression must evaluate to either true or false. If the conditional expression is true, 
the following statement will be executed, but not otherwise. The <statement> can also be a compound
statement, which is another way of saying that <statement> can be a code block enclosed in curly braces.
A compound statement or code block is enclosed in curly braces, and each statement inside must be terminated
with a semicolon.

Here is an example of an if-else statement:

if( windSpeed > 20 ) {
hoistSmallSail();

}
else {

hoistLargeSail();
}

The if-else statement allows the program to select one of two mutually exclusive paths of execution. In
this case, if the wind is strong, the program calls a method to hoist a small sail. Otherwise, the program calls a
method to hoist a large sail. By the way, you can tell that hoistSmallSail() and hoistLargeSail()
are methods because a pair of parentheses follows the name. A method is a named block of code, and we will
talk about methods when we discuss classes and objects in more detail later.

Here is the syntax of the if-else statement:

if( <conditional expression> ) <statement_one>
else <statement_two>

If the conditional expression is true, statement_one will be executed. If the conditional statement is
false, statement_two will be executed. As before, statement_one and statement_two can be 
compound statements, i.e., code blocks framed in curly braces.

for

Programs frequently must iterate or loop through a block of code repeatedly. Java has several control structures
for this purpose, and one of the most commonly used control structures of this type is the for loop.

Suppose we want to compute the average grade in a class of students. We have the scores in a file 
called Students, and each line in the file contains a single score. Each score is the grade of one of the stu-
dents (e.g., 89.5). We could write code such as this to read the scores from the file and compute the total of
all the scores:

double total = 0.0;
BufferedReader in = new BufferedReader(

new FileReader( "Students" ) );

for ( int i = 1; i <= numberOfStudents; i++ ) {
String score = in.readLine();
total = total + Double.parseDouble( score );

}
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The first line declares a thing called a BufferedReader, which is “wrapped around” a FileReader
that opens the file called Students. We will discuss these sorts of input/output statements further in the 
section on Input and Output. This statement declares the variable in to be a BufferedReader associated with
the file Students.

Notice that programming statements in Java can continue to a second, third, or more lines. The Java 
compiler will continue to interpret the lines as one statement until it encounters the semicolon, which marks the
end of the statement.

The for statement begins with parentheses enclosing three expressions, which are separated by semicolons.
The first expression defines initial conditions in the for loop. In this case, the expression declares an 
int called i, and sets the value of i to 1.

The second expression in the for statement establishes a condition which will evaluate to either true or
false. When the condition is true, the code block of the for statement will be executed. In this case, as long as
the value of i is less than or equal to the number of students, the loop will execute.

The third expression in the for statement specifies what to change each time the loop is executed. This
expression is sometimes called the “increment expression,” because it is usually employed to change the value
of the variable being tested in the second expression. That is the case here, because the third expression says to
increment the value of the variable i each time the loop executes.

The body or code block of the for statement follows the three expressions within parentheses. In this case,
the readLine() method of the BufferedReader reads the next line of the file into a String variable
called score. Since the BufferedReader reads character strings, we must convert the characters into an
internal floating-point number before we can do our math. The last line says use the parseDouble() method
of the Double class to interpret the character string in score (e.g., 89.5) as a double (a floating-point
number which can include a fractional part). The Double class is one of Java’s “wrapper classes,” which we
discussed in the section on data types.

In summary, this for loop will begin executing with the value of i set to 1. After each execution of the
loop, the value of i will be incremented. The loop will continue to execute as long as the value of i is no greater
than the number of students. When i becomes greater than the number of students, the conditional test in the
second expression of the for statement will fail (will be false), and the program will “drop out” of the loop and
continue at the next statement following the for loop body.

Here is the syntax of the for statement:

for( <initial>; <test condition>; <increment> ) <body>

The conditional expression must evaluate to either true or false. If the conditional expression is true, the
body of the for loop will be executed, but not otherwise. The <body> is usually a compound statement, which
is a code block enclosed in curly braces. Each statement within the body must be terminated with a semicolon.

while

Another structure to control looping (iteration) is the while statement. Suppose we don’t know how many
student scores are in the file of student scores. We can use a while statement to read the file until there are no
more scores in the file to be read:

double total = 0.0;
BufferedReader in = new BufferedReader(

new FileReader( "Students" ) );

String score = in.readLine();

while( score != null ) {
total = total + Double.parseDouble( score );
score = in.readLine();

}
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We use the same BufferedReader as before to read the file Students. After reading the first line in
the file, the while statement checks to see if the variable score has a value of null. The variable score will
be null only if there was nothing in the file to read. As long as score is not null, the body of the while state-
ment will execute—it will “parse,” or interpret, as a fractional number, whatever the BufferedReader just
read, and then it will read the next line in the file.

The while statement syntax is very simple:

while( <loop condition> ) <statement>

Again, the statement can be a code block enclosed in curly braces. As long as the test condition remains
true, the body of the while statement continues to execute. This is a very appropriate control structure when
we do not know in advance how many times a code block must execute.

do-while

A variation of the while statement is the do-while. In the case of the do-while statement, the body
of the loop executes before the code checks the loop condition. When a program must execute a block of code
at least once, the do-while may be the best choice for controlling a loop. Here is code to use the do-while
statement instead of the while statement for reading the file Students:

BufferedReader in = new BufferedReader(
new FileReader( "Students" ) );

String score;
do {

score = in.readLine();
total = total + Double.parseDouble( score );

} while( score != null )

At first glance, it looks like this version saves code. However, in this particular case, this code exposes us
to danger. If the file should ever be empty, the first call to parseDouble will cause the program to fail with
a run-time exception, because Double.parseDouble cannot parse a null value. In this application, we
would do better to use the while instead of the do-while.

This is the syntax of the do-while loop:

do <loop body>
while( <loop condition> );

The loop body can be, and usually is, a code block framed by curly braces. As long as the loop condition
remains true, the loop body will execute again and again. The do-while structure is particularly appropriate
when you require the loop body to execute at least once every time the program runs.

switch

The last control structure we will discuss here is the switch statement. Like the if statement, the
switch statement allows your program to select certain statements to execute under certain conditions. The
switch statement is more complex, and one can always use a series of if statements instead of a switch
statement, but switch is very appropriate and readable for some programming problems.

Suppose we have a group of students and want to assign them to different dorms depending upon whether
they are freshmen, sophomores, juniors, or seniors. Let’s assume that the variable yearInSchool is coded
as an int, and is set to 1 for freshmen, 2 for sophomores, 3 for juniors, and 4 for seniors. We could then use
this code to decide to which dorm each student should be assigned:
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switch( yearInSchool ) {
case 1: System.out.println( "Oberlies Hall" );

break;
case 2: System.out.println( "Kiriazides Hall" );

break;
case 3: System.out.println( "Glisson Dorm" );

break;
case 4: System.out.println( "Valk Hall" );

break;
default: System.out.println( "illegal year" );

}

If a student is a freshman, the student will be assigned to Oberlies Hall; if the student is a sophomore, the
student will be assigned to Kiriazides Hall; etc.

Notice the break statements. The break statement says to exit the switch statement. If the break
statement is missing, the execution of the switch statement will “fall through” to the next case. Sometimes
you will want that to happen, but certainly not always. Forgetting to insert the break statement appropriately
is a common programming error.

Here’s an example using the switch statement to allow “falling through” from one condition to the next
in a helpful way:

switch( dayOfChristmas ) {
case 12: System.out.println( "Twelve drummers drumming" );
case 11: System.out.println( "Eleven pipers piping" );
case 10: System.out.println( "Ten lords a-leaping" );
case 9: System.out.println( "Nine ladies dancing" );
case 8: System.out.println( "Eight maids a-milking" );
case 7: System.out.println( "Seven swans a-swimming" );
case 6: System.out.println( "Six geese a-laying" );
case 5: System.out.println( "Five golden rings" );
case 4: System.out.println( "Four calling birds" );
case 3: System.out.println( "Three French hens" );
case 2: System.out.println( "Two turtle doves" );
case 1: System.out.println( "And a partridge ... tree" );

break;
default: System.out.println( "?Day = " + dayOfChristmas );

}

Notice that in this example, the case statements proceed from highest to lowest, instead of the other way
around. The cases can be ordered in any way that makes sense, even nonsequentially. The switch statement
executes by taking the value of the integral expression inside the parentheses (assume that dayOfChristmas
is an int). The switch statement then compares the value of the integral expression to each case value.
When it finds a match, the code for that case begins to execute.

In this example, the switch statement helps us write the lyrics for the song The Twelve Days of Christmas.
For instance, if the dayOfChristmas equals 3, execution will begin at case 3 and continue until it encounters
the break at the end of case 1. The one break statement is necessary to avoid executing the default
error message. The result will be the lyrics for the third day of Christmas:

Three French hens
Two turtle doves
And a partridge in a pear tree
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Here is the syntax for the switch statement:

switch( <integral expression> ) {
case value_one: <statement_one>
case value_two: <statement_two>
case value_three: <statement_three>
. . .
case value_n: <statement_n>
default: <statement_default>

}

The integral expression must evaluate to an integer value. This usually means that the integral expression
is an int or a char value. In particular, the expression cannot be a String (although that option would be
nice to have sometimes).

The statements can be compound statements, and in a “switch” from other syntax, compound statements
within a switch case need not be framed in curly brackets. However, if you like curly brackets, the Java 
compiler will accept curly brackets around the compound statements.

The default case is optional, but we believe a default case should always be included, if only to 
provide error checking. If your program expects the days of Christmas to vary between 1 and 12, it’s good 
practice to put in a default statement which will let you know if the value of dayOfChristmas ever turns
up as some value other than 1 through 12. Especially with more complex programs, such default code could
save you many hours of debugging. Without the default statement, if none of the cases match the integral
expression, the JVM simply skips over all the switch code. Having the default case will catch the 
anomalous condition and show you where the problem is.

Here is a complete program to print the words to the 12 verses of The Twelve Days of Christmas. The program
uses a while loop to iterate through the 12 verses. Then it uses an if-else statement to decide whether this
is the first verse or one of the later verses; that is necessary because the line about a partridge in a pear tree has
the word “And” in it for the 2nd through 12th verses, but not for the 1st verse. The \n at the end of the lines
having to do with a “partridge in a pear tree” is an example of an escape sequence. An escape sequence begins
with a backslash, and the following character has special meaning for the Java compiler. The \n means to insert
a linefeed, so that there will be a blank line between verses. There are other escape sequences for tabbing and
other functions, too.

Finally, this program illustrates how to add comments to a program written in Java. Any typing that follows
// on a line is treated as a comment; that is, the typing is ignored by the Java compiler. Also, any typing
between the characters /* and */ is also a comment, and such comments can extend over multiple lines. If
such a multiline comment begins with /**, it is a javadoc (Java documentation) comment, and will be included
by the javadoc processor in the automatically generated documentation of the program. Javadoc 
comments can include special tags, such as @author, which the javadoc processor recognizes when it 
generates the HTML format of the documentation.

We will not be describing the javadoc processor in any more detail in this chapter, but you can read 
about javadoc comments here: http://java.sun.com/j2se/javadoc/. In our opinion, the javadoc processor is 
one of the magnificent contributions Java has made to programming practice. The javadoc processor uses 
comments within the programs themselves to generate attractive and complete documentation of every 
class. Wonderful!

As a matter of programming style, I like to put a comment following closing curly braces that tells me
which block of code is being terminated. Particularly when many code blocks are nested within one another,
such comments help me keep track of my curly brackets. This style is a personal preference, not a standard.
Adopt it only if you wish.
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/**
* A program to print the words to the Twelve Days of Christmas
* @author Carl Reynolds
*/
public class DaysOfChristmas {

public static void main(String args[]) {

int dayOfChristmas = 1; //start with the 1st day of Christmas

while( dayOfChristmas <= 12 ) {
if( dayOfChristmas == 1 )
{

System.out.println( "A partridge in a pear tree \n" );
}//if
else
{

switch( dayOfChristmas )
{

case 12: System.out.println( "Twelve drummers drumming" );
case 11: System.out.println( "Eleven pipers piping" );
case 10: System.out.println( "Ten lords a-leaping" );
case 9: System.out.println( "Nine ladies dancing" );
case 8: System.out.println( "Eight maids a-milking" );
case 7: System.out.println( "Seven swans a-swimming" );
case 6: System.out.println( "Six geese a-laying" );
case 5: System.out.println( "Five golden rings" );
case 4: System.out.println( "Four calling birds" );
case 3: System.out.println( "Three French hens" );
case 2: System.out.println( "Two turtle doves" );

System.out.println(
"And a partridge in a pear tree \n" );

break;
default: System.out.println( "?Day = " + dayOfChristmas );

}//switch
}//else

dayOfChristmas++;
}//while

System.out.println("The End" );
}//main

}//class

OBJECT-ORIENTED PROGRAMMING

Java is an object-oriented language, which means that Java facilitates the writing of object-oriented 
programs. Object orientation is more a matter of how one thinks about programming than it is a particular 
programming technique. When one writes object-oriented code, one thinks of software “things” that are analogous
to things in the outside world.

For instance, if our job is to write software for the State Thruway Authority for automated toll collection,
we would think about the job differently depending upon whether we take the older “procedural” approach or
the newer object-oriented (OO) approach.

CHAP. 5] PROGRAMMING IN JAVA 77



Using the procedural approach, we would break the job down into subtasks, or subroutines, write the 
routines, and combine the routines with a main program into a sequence of activities to be performed. We might
have a carEntersThruway procedure, and a carExitsThruway procedure, and we might keep informa-
tion in a file about the cars using the Thruway.

Using the OO approach, we would think about the “things” in our problem domain, and create analogous
software classes. For instance, we would probably have a Vehicle class, and we might have a
ThruwayInterchange class, and a VehicleOwner class. We would give Vehicles characteristics that
are important to our application, such as licenseNumber, state, make, model, and color. Since we
need to track where vehicles enter and leave the Thruway, we might add Vehicle properties
enteredAtInterchange and exitedAtInterchange. Likewise, the properties of a VehicleOwner
might include firstName, lastName, streetAddress, city, state, and zipCode.

The logic of an OO program gets coded as “methods” of the objects. Instead of having an isolated 
or application-wide carEntersThruway procedure, as we might using the procedural approach, we can 
have similar code in a method of the Vehicle class. The logic may be the same, but in the OO approach we 
think of a Vehicle object having “behaviors” appropriate to the application. When a Vehicle enters
the Thruway, we will call the Vehicle’s enterThruway method, and the Vehicle object will deal
appropriately with that event.

The data one operates on and the logic one encodes may be the same for the procedural approach and 
the object-oriented approach, but the object-oriented approach organizes the work differently. When an object-
oriented program is complete, a set of classes is the result. These classes, if well designed, can be reused 
and extended more easily so that future programming projects have a head start.

Putting the code inside classes also allows functionality to be encapsulated, which leads to more effective
testing and more reliable use later on. The software classes exist as their own entities, with known properties
(attributes), and well-defined methods. Using inheritance, the OO approach also offers a standard way to add
functionality without changing at all the code that has already been written. There is less temptation to modify
the classes that have already been defined, implemented and tested. The result is usually more stable and 
reliable code.

Object orientation is an advance in how programmers think about their work. The OO approach leads to
software classes which more closely model the real world, and therefore make the application more natural 
to think about. In addition, building classes usually leads to code which is more easily reused. Both effects lead
to better programming productivity.

CLASSES AND OBJECTS

People new to OO programming often have difficulty distinguishing what are called classes from what are
called instances. A class is a specification, a blueprint, or maybe even a concept, like vehicle; an instance is a
specific example of a class. From the class Automobile, one can build or identify particular cars. My Ford
with vehicle ID 1FABP64T1JH100161 is said to be an instance of the class Automobile.

Often the word object is used as a synonym for the word instance. One also says that my Ford is an object
of the class Automobile. This can be confusing, especially at first, because Java, like some other OO 
languages, also recognizes a class called Object (capital O). In fact, every class in Java inherits from the class
Object (we will discuss inheritance soon); the class Object is the root of the Java class hierarchy. Though
the use of the word in two senses can be confusing, generally one should understand the word “object” to mean
“instance,” unless the word “Object” is capitalized.

We say that <an instance> “is” <a class>. Some writers say that an “is-a” relationship exists between 
an instance and its class. For instance, my Ford is an Automobile.

OBJECT STATE AND BEHAVIOR

Grady Booch, a well-known writer on the topic of OO programming, has defined an object as 
something “that has state, behavior, and identity.” In other words, an object has characteristics (which may
change over time), an object can perform certain prespecified actions, and an object provides us a way to 
refer to it.
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The state of an object is provided by variables. As the values of variables change, the state of the object
changes. At any point in time, the values of the instance’s variables provide its state. For example, the speed
of my Ford varies over time. At any particular moment, the state of my Ford includes the speed at which it is
currently moving.

The behavior of objects is provided by methods. A method is a programming procedure. In the case of my
Ford, the accelerate() method allows my Ford to change speed. In the world around us, we observe that
different members of the same class behave similarly; it’s easy to distinguish a dog from a cat by the way the
individual animals move. Likewise, we expect different instances of the same Java class to behave similarly, so
methods are defined by procedures in the class, not in the individual instances. The class Automobile will
have the definition of the accelerate() method, and any particular instance of Automobile will behave
similarly by changing speed using the same method.

INHERITANCE

You may be thinking that one accelerate() method might not work for all instances of the class
Automobile. May be the acceleration behavior a Ferrari should be modeled differently from the acceleration
behavior of a Kia. If we want to model such differences, we can take advantage of the OO programming 
paradigm called inheritance.

One class can inherit from another, in which case the new class (called the subclass or subordinant class
or child class) carries all the variables and methods of the higher-level class (called the superclass or superior
class or parent class). In addition, the child class can add state variables unique to the child class, and add
behavior methods unique to the child class. In addition, the child class can override methods of the parent class
in order to give the child class different behavior, even though the name of the method implementing the behavior
has the same name as the method of the parent class.

These sorts of considerations lead software developers to create a class hierarchy. The programmer defines
the more general state variables and behavior methods in higher-level classes. Then, when writing the subordinant
classes, the programmer uses the inherited state and behavior when it fits, and adds state variables, methods,
and overriding methods to subordinant classes in order to implement differences between the superior and 
subordinant classes.

The beauty of this technique is that classes which are written and tested do not change. Existing software
functionality can be reused. When the programmer requires new features in a class, the programmer can inherit
from an existing, tested class, and write new software simply to meet the new requirements.

If one decides to implement the accelerate() method differently for different Automobiles, one
would write the parent class Automobile, and then have subordinant classes inherit from Automobile.
In our example, we might design several classes to inherit from Automobile, a class called EconomyCar,
a class called FamilyCar, and a class called SportsCar. Each of these subordinant classes would inherit
the accelerate() method from the Automobile class, and could override the inherited accelerate()
method to change the acceleration behavior of instances of the subordinant class. If a subordinant class does not
override the method of the superior class, instances of the subordinant class will respond to the method just as
instances of the superior class do. If my Ford “is” a FamilyCar, my Ford also “is” an Automobile, because
FamilyCar inherits from Automobile.

INSTANCE AND STATIC VARIABLES AND METHODS

One twist of complexity is that some state information and some behaviors belong to the class, while others
belong to the instances of a class. For instance, we would maintain the speed of each Automobile as part of
the state of each individual car (part of the state of each instance). On the other hand, we would maintain a
count of the total number of Automobiles as part of the state of the class Automobile. It seems natural
that speed should be associated with a particular car, but we need a central place to keep track of the total
number of Automobiles.

Perhaps we’re stretching the analogy a little bit, but imagine a Ford on the road. It has a speed we can
measure, but after the Ford exits the factory, there is no easy way for the Ford to be kept apprised of the total
number of Automobiles that have been built. If we want to know how many Automobiles have been
built, we must go back to the factory and get the count. The factory is the class.

CHAP. 5] PROGRAMMING IN JAVA 79



Variables like speed, which represent the state of an instance of a class, are called instance variables.
Variables like count, which are maintained by the class itself, are called static variables. The word static
means many things in computer science, and this use of the word static may be confusing. Other languages label
the same idea with a different name; for example, Visual Basic calls variables of this kind “shared” variables,
because they’re shared by all instances of a class. That term may be more helpful as you learn, so when you see
“static,” think to yourself “shared,” or “class.”

Similarly, methods can be instance methods or static methods. If two different instances of a class both
call the instance method accelerate(), it will be as if there were two different copies of that method, and
each instance had its own. (In reality, there will not be two copies of the code, but each instance will get its own
“stack” for local variables, which will keep the execution of the two calls separate, as if the code existed in two
places.) On the other hand, if two different instances of a class call the static method getAutomobileCount(),
the two instances will be using exactly the same code, because there is only one copy, and that is shared.

Variables and methods will always be instance variables and methods, unless you specifically label them
static. If you label a variable or method static, the variable or method will exist only at the level of the
class, and will be shared among the instances.

Below is our example Automobile class. Notice that there is no main method in the Automobile
class. This class cannot be executed directly. If we were to add a public main method, the class could be exe-
cuted, and whatever the main method were coded to accomplish would be done. However, this Automobile
class is intended to be a “factory” to create Automobile objects for use by other programs and classes, 
rather than to be a program to be run by itself. You can think of the Automobile class as creating a new data
type—Automobile.

Notice also that in the class Automobile there is a method named Automobile; the name of the
method is the same as the name of the class. The method named Automobile is the constructor for the class.
Whenever another program needs an instance of an Automobile, the other program will use the new key-
word to request a new Automobile. We can tell from the Automobile constructor that the constructor
expects four parameters whenever a new Automobile is requested; these are the make, the model, the year,
and the horsepower. The first two parameters are String values, and the last two are ints.

When another program asks for an instance of an Automobile, the constructor will create an
Automobile object and return to the other program a reference to the new Automobile. A reference is an
address. The other program can then use the reference to the new Automobile object to manipulate it.

/**Class Automobile
* Illustrating instance and static varibles
* and methods
* @author Carl Reynolds
*/
class Automobile {

//static variable
private static int count;  //count of automobiles

//instance variables
private String make;
private String model;
private int year;
private int hp;
private double speed;

//Constructor
Automobile( String mk, String mdl, int yr, int power ) {

make = mk; //assign constructor parameters
model = mdl; // to private instance variables
year = yr;
hp = power;

count++; //add to count of Automobiles created
}
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//static method
static int getCount() {

return count;
}

//instance methods to set and get speed
public void accelerate( double newSpeed ) {

if( newSpeed > 70. ) speed = 70.;
else speed = newSpeed;

}

public double getSpeed() { return speed; };

//returns a text representation of an Automobile
public String toString() {

return year + " " + make + " " + model;
}

}

Here is a class which uses the Automobile class:

/**
* Class AutomobileFactory
* @author Carl Reynolds
*/
class AutomobileFactory {

public static void main( String[] args ) {
Automobile economy, family, sports;

economy = new Automobile(
"Kia", "Rio", 2006, 110 );

family = new Automobile(
"VW", "Passat", 2002, 170 );

sports = new Automobile(
"Ford", "Mustang", 2005, 300 );

System.out.println(
Automobile.getCount() + " Automobiles" );

System.out.println( economy );
System.out.println( family );
System.out.println( sports );

}
}

The class AutomobileFactory can be executed directly, because it has a main method coded in 
the standard way. The main method declares three variables to be of type Automobile (notice you can 
declare several variables of the same type on one line, as we did here), and then it creates three Automobile
objects by using the new keyword to invoke the constructor for the Automobile class three different 
times.

The first println statement calls the static method getCount() by specifying the class name
Automobile, followed by a dot (period), followed by the method name getCount(). The getCount()
method will return the number 3, because each time the constructor of the Automobile class generates a new
Automobile, it increments its static count variable.
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Finally, the three println statements at the end print a text representation of each Automobile. Such
use of an object’s name, such as economy, inside println causes the JVM to use the toString() method
of the class. When that happens here, the result on the screen is this:

3 Automobiles
2006 Kia Rio
2002 VW Passat
2005 Ford Mustang

Inheritance

OO programming makes it easy to add functionality to software without rewriting the code one has already
written and tested. Suppose we want to add distinctions between types of Automobiles. A Ferrari can go
much faster than a Kia, so the accelerate() method should be different, and perhaps other behaviors
should also be different for such different Automobiles.

We can add a new class called SportsCar that will inherit from Automobile, and we can give the
SportsCar class a different accelerate() method. Here is the Java class for SportsCar:

/**
* Class SportsCar
* Inherits from class Automobile
* @author Carl Reynolds
*/
class SportsCar extends Automobile {

private double maxSpeed = 150.;

//constructor
SportsCar( String mk, String mdl, int yr, int power )
{
super( mk, mdl, yr, power );

}

//override of inherited accelerate() method
public void accelerate( double newSpeed )
{
if( newSpeed > maxSpeed ) speed = maxSpeed;
else speed = newSpeed;

}
}

The SportsCar class extends the class Automobile; that means SportsCar inherits from
Automobile. Any instance of a SportsCar will also be an Automobile, and except where there are 
differences between the code for SportsCar and the code for Automobile, an instance of a SportsCar
will have exactly the same state variables and behavior as any instance of the class Automobile.

The SportsCar class must also have a constructor; it’s called SportsCar. The constructor for
SportsCar simply uses the constructor for Automobile, the superclass, by using the super key word to
pass the same values for make, model, year, and power to the constructor for the Automobile class.

The only difference between instances of SportsCar and instances of Automobile will be the 
behavior provided by the accelerate() method. In the case of an Automobile, the maximum speed will
be 70, but in the case of a SportsCar, the maximum speed will be 150. We say that the subclass SportsCar
overrides the accelerate() method inherited from the superclass Automobile.

Everything else that is true about an Automobile object will be true about a SportsCar object.
All will have instance variables to store make, model, year, horsepower and speed. Creating either a new
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Automobile or a new SportsCar will increment the count of Automobiles maintained by the
Automobile class.

We didn’t have to change any of our existing code to enhance our work to treat sports cars differently from
other automobiles!

POLYMORPHISM

The word polymorphism means “many forms.” When a subclass overrides a method of a superior class, the
behavior of the method will depend upon which type of object is being used in the program, an instance of the
superior class or an instance of the subclass. This characteristic of OO programming is called polymorphism,
and it is a powerful feature of the OO approach.

We will add some lines to our AutomobileFactory class to set the speed of a family car to 120 and
set the speed of a sports car to 120. Looking back at the accelerate() method for the class Automobile,
you will see that the maximum speed for an instance of the Automobile class is 70. Compare that with the 
accelerate() method for the SportsCar class; the top speed for a SportsCar is 150.

When we call the same accelerate() method for an instance of Automobile and an instance of
SportsCar, the results are different. The Automobile speeds up to 70, and the SportsCar speeds up to
120. To show this, add code to the AutomobileFactory class:

/**
* Class AutomobileFactory
* @author Carl Reynolds
*/

class AutomobileFactory {
.
.
.

family = new Automobile(
"VW", "Passat", 2002, 170 );

sports = new SportsCar(
"Ford", "Mustang", 2005, 300 );

.

.

.
//same method call to instances of 2 different classes
family.accelerate(120. );
sports.accelerate(120. );

//polymorphism will cause the effects to be different
System.out.println( family + " " + family.getSpeed() );
System.out.println( sports + " " + sports.getSpeed() );

}

This will be the new output:

3 Automobiles
2006 Kia Rio
2002 VW Passat
2005 Ford Mustang
2002 VW Passat 70.0
2005 Ford Mustang 120.0

Polymorphism allows us to write programs in a more general way. We can reference the superior class as
we write programs, and if the object being used by the program happens to belong to a subclass of the superior
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class, the methods in the subclass which override the corresponding methods in the superior class will insure that
methods appropriate to the particular instance will be called. This is another way in which OO programming
reduces the amount of code that must be written and tested, and also promotes reuse of existing code in new
applications.

INTERFACES

In Java, we can also specify an interface to enforce a common set of behaviors among different classes.
For example, think about the problem of sorting a group of Automobile objects. How should Automobiles
be ordered? By year? Alphabetically by make? By horsepower? This problem arises frequently when we’re
working with objects, so the Java language specifies an interface that any new class can implement in order 
to facilitate sorting instances of the new class.

An interface consists of one or more method signatures, but it does not contain any code implementing any
of the methods. (An interface can include constants as well as method signatures, but we will focus on the meth-
ods.) A method signature is like the first line of a method; the signature specifies what the method will return,
the name of the method, and what arguments the method expects when it is called.

For example, Java provides the interface Comparable, and the Comparable interface specifies a single
method called compareTo(). The compareTo() method expects an object as an argument (the object with
which to compare the first instance) and it returns an int. The value of the returned int will be 0 if the two
objects being compared are equal, -1 if the first object is “smaller” (should be ordered first), and +1 if the first
object is “larger” (should be ordered second).

We can implement the interface Comparable in our Automobile class by adding this code to our class
Automobile:

class Automobile implements Comparable<Automobile> {
.
.
public int compareTo( Automobile car )

{
return this.toString().compareTo( car.toString() );
}

The new first line of our Automobile class now declares that the class Automobile will implement
the interface Comparable. The <Automobile> syntax says that we will only be comparing an Automobile
object with another Automobile. If, by some error of programming, our program tries to compare an
Automobile object with a Thermostat object, the JVM will generate an error.

The new compareTo() method implements the Comparable interface for the class Automobile.
We’ve taken a shortcut here which takes advantage of the toString() method we already have for
Automobile. The phrase this.toString() will return a String object which represents this instance
of an Automobile. The key word this always references the particular instance itself. The String
returned will be of this form:

2002 VW Passat

The year will be followed by the make and the model of the Automobile. Likewise, the phrase
car.toString() will return a String representing the other Automobile, such as this:

2006 Kia Rio

The String class has a compareTo() method that orders Strings in “ASCIIbetical” order, which is
like alphabetical order, except that it follows the ASCII encoding values of characters. In ASCII the letters are
coded in alphabetical order, but all uppercase letters come before any of the lower-case letters, and digits and
symbols are included as well as letters. For our purposes of ordering Automobiles, we thought that the
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toString() representation of Automobiles sorted in ASCIIbetical order would be fine. Older 
cars will be ordered first, and among cars of the same year, cars will be sorted ASCIIbetically by make and
model.

The interface idea is similar to the idea of a class, in that an interface creates a new data type. When 
the class Automobile implements the interface Comparable, instances of Automobile can also be
treated as instances of Comparable. Just as good design of a class hierarchy can reduce programming and
improve reliability, good interface design can also.

For instance, the sort() method of the Java Collections class will sort lists of Comparable
objects. Our Automobile class implements Comparable, Java’s String class implements Comparable,
Java’s Date class implements Comparable, etc. One sort() method will work for any group of objects
whose class implements Comparable. That alone is a great example of code reuse.

It’s easy to design and use your own interfaces, too. However, in this brief chapter we will not be discussing
that topic.

ERROR HANDLING

Java uses Exceptions to represent error conditions. 
Exception is actually a class in Java, and when a program creates an Exception, it creates a new

object, which is an instance of the Exception class. An Exception object can have information about what
went wrong, usually including an error message, and a “stack trace” showing which method created the error.

Having created an Exception object when something goes wrong, the program “throws” the Exception
using the key word throw. The JVM will print an error message and stop execution when a program throws
an Exception, unless the programmer has provided code to “catch” the exception and handle the error 
condition in the program. This approach to handling program errors is called “exception handling” for obvious
reasons, and it’s a relatively modern idea.

One advantage of handling errors this way is that code to handle error conditions will be segregated into
code blocks separate from the main logic of the program. This makes it much easier to follow the intent of the
programmer, both in the main logic and in the error handling code.

Java provides many subclasses of Exception so that different problems result in different classes 
of Exception objects being thrown. Some examples include FileNotFoundException,
NullPointerException, and NumberFormatException.

Java recognizes two types of Exceptions, checked and unchecked. The names come from what the Java
compiler does with them. The compiler “checks for” appropriate handling of checked Exceptions, but does
not check for handling of unchecked Exceptions.

An unchecked Exception represents an error that is probably too serious for an application to correct. 
An example is the NullPointerException, which occurs when the program tries to access a variable
which should contain a reference to an object, but which contains null instead. The compiler assumes that such
an exception should cause the program to terminate with an error condition, so it does not check to see that the
program has code to handle that error condition itself.

A checked exception such as FileNotFoundException represents an error condition from which 
the program potentially could recover. In the case of FileNotFoundException, for example, the 
program could prompt the operator for a new file name and try again. If the compiler recognizes that a 
method could encounter a checked exception, the compiler will require that the method either provide a 
handler for that exception or declare with its own throws declaration that it can itself generate the checked
Exception.

The way to add exception handling to a Java program is to enclose program statements which might gen-
erate an Exception within a try block. A try block begins with the key word try and an open curly brace.
At the end of the code being included in the try block is a close curly brace. Immediately following the try block
will be one or more catch blocks. A catch block contains the code to handle the error.

Let’s go back to our Automobile class and its accelerate() method. Instead of simply setting the
speed of the Automobile to its maximum value when the argument to the accelerate() method is too
large, we can have the Automobile class generate a special subclass of Exception appropriate to this
application. Here is the code for our new ExcessiveSpeedException class:
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public class ExcessiveSpeedException extends Exception {
ExcessiveSpeedException( Automobile a ) {

super( "New speed exceeds maximum speed of "
+ a.toString() );

}
}

Our ExcessiveSpeedException inherits from Exception. The ExcessiveSpeedException
constructor expects an Automobile object as an argument. To take advantage of the message attribute inher-
ited from the superior class, it incorporates the toString() description of the Automobile into the mes-
sage that it passes to the constructor of the superior Exception class.

Now we can rewrite the accelerate() method of Automobile as follows:

public void accelerate ( double newSpeed )
throws ExcessiveSpeedException {

if( newSpeed > 70. )
throw new ExcessiveSpeedException( this );

speed = newSpeed;
}

The reference to this means that the particular instance of Automobile that generates the
ExcessiveSpeedException will be passed to the ExcessiveSpeedException constructor. Notice
that the method header for accelerate() now includes a declaration that the method can throw an
ExcessiveSpeedException. If you forget to include the declaration, the compiler will require such a 
declaration when it sees that some statement within the method throws an ExcessiveSpeedException.

Finally, notice that we no longer require an else clause after the if statement. Once a method throws an
exception, execution stops, except for whatever code is ready to catch the Exception. Therefore, we no
longer need else to insure two non-overlapping paths of execution in response to the test in the if statement.

We can rewrite the AutomobileFactory class to handle the possible occurrence of an
ExcessiveSpeedException.

.

.

.
try {

family.accelerate( 120. );
sports.accelerate( 120. );

}
catch( ExcessiveSpeedException ex) {

System.out.println( ex.getMessage() );
}
System.out.println( family + " " + family.getSpeed() );
System.out.println( sports + " " + sports.getSpeed() );

}

In this case, the catch block simply reports the error, and the program continues on. With other errors, the
catch block might try to correct the problem, ask the user for a decision, or simply terminate the program by
calling System.exit().

The output from this version of AutomobileFactory looks like this:

3 Automobiles
2006 Kia Rio
2002 VW Passat
2005 Ford Mustang
New speed exceeds maximum speed of 2002 VW Passat
2002 VW Passat 0.0
2005 Ford Mustang 0.0
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When AutomobileFactory tries to accelerate the VW to too great a speed, the Automobile class
throws an ExcessiveSpeedException which stops execution of accelerate() and transfers control
to the catch block. The catch block reports the problem by printing the message attribute of the Exception
object. When the catch block completes, the program continues, but the speeds of both Automobiles remain
0.0, because the path of execution never set the speed of either one.

There can be more than one catch block; in fact, you can have several. Each one can specify a particular
class of Exception to handle. That is important to segregating code for handling different kinds of problems.
If a method throws a FileNotFoundException, it may be easy to fix by asking the operator to enter the
file name again. On the other hand, if a read of the file fails and the method throws an IOException, it may
be difficult for the program to recover. In the first case the catch block may “soldier on,” and in the second case
the catch block may simply report the error and then call System.exit().

When more than one catch block follows a try block, the catch blocks should be ordered such that lower-
level Exception classes occur before higher-level, more general classes of Exceptions. When a method
throws an exception, the try block searches down the list of catch blocks until it finds a match between the
Exception class that was thrown and the Exception class declared in the catch block. The first acceptable
match will be invoked to handle the error. If the first catch block specifies objects of class Exception, the
most general class, the first catch block will handle all Exceptions, regardless of whatever other catch 
blocks there may be. So, if a program wants to attempt to recover from a FileNotFoundException and
terminate on any other failure, the catch block for the FileNotFoundException should come before the
catch block for the class Exception.

There’s one more option. After the try block and all the catch blocks, a programmer can add a finally block.
A finally block contains code that will always be executed, whether an error occurs or not. A finally block is 
a good place to put general “clean-up” code, like the statement to close a data base.

Here is the syntax for the try/catch/finally construction:

try {
.
. //main line logic goes here
.

}
catch( SpecificException ex ) {

.

. //handle SpecificException

.
}
catch( LessSpecificException ex ) {

.

. //handle LessSpecificException

.
}
catch( Exception ex ) {

.

. //handle everything else that might happen

.
}
finally {

.

. //tidy up — this code will always be executed

.
}
//If code is successful, or exception is caught and
// handled, execution will continue here.
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Java’s error-handling mechanism is one of its great strengths. Exception handling with try/
catch/finally is very robust and leads to very supportable code. Since one can easily add application-spe-
cific exception classes to support one’s own work, this approach is also very extendable.

INPUT AND OUTPUT

Java programs read and write data by means of streams. A stream is a series of data elements that flows
from some input device to the program, or from the program to some output device. The general approach to
input and output (I/O) from a Java program is to:

Open the stream

While there is data to read or write
read and process data, or write data

}

Close the stream

The stream classes for I/O are grouped together in a Java package called java.io. A package is just a
collection of related classes. One can create packages of one’s own classes, but we will not be describing that
in this brief introduction to the language. The reason to mention the package name here is that a programmer
must import a package in order to take advantage of the classes within it. In order to use the stream classes
we will soon discuss, your program must have a statement at the very beginning, even before the class 
statement, that says,

import java.io.*;

The asterisk means to import all the classes in the package. If the programmer wants only one of the
classes, the programmer can substitute the class name for the asterisk. Usually one simply types the line as we
have shown it.

The stream classes in Java are divided into two great categories: Reader/Writer and InputStream/
OutputStream. If the class is in the Reader/Writer category, it is a stream for reading and writing char-
acter data—letters, numbers, and symbols. If the class is in the InputStream/OutputStream category, it
is a stream for reading and writing bytes—raw data, 8 bits at a time.

Students are sometimes confused thinking about the difference between character data and bytes. Are not
bytes used to encode characters? Yes they are. In fact, we could get along with just the InputStream/
OutputStream classes, and let programs be responsible for making sense of the data by converting the data to
characters when that was appropriate.

However, often data sources consist of character data, and it is very convenient to have I/O classes for 
that common situation. If the information exists in the form of characters, a Reader/Writer will interpret
the information correctly and return a set of characters to the program. This saves the programmer having to
write a tedious conversion that would otherwise be necessary frequently.

If the information exists in some other form than characters, such as binary numbers in integer or floating-
point format, as in an image file, then it will not make sense to interpret the bit patterns as characters. In that
case, the programmer should use the InputStream/OutputStream classes, which will simply transfer the
bytes. Then the program will be responsible for interpreting the bytes correctly.

One other situation calls for the use of InputStream/OutputStream classes, too. That is when one
does not care what the data represent. This would be the case, for example, when the task is to copy a file. The
program doing the copying does not need to know what the content of the file means; it just needs to copy 
each byte to a new file. In that case, using the InputStream/OutputStream classes instead of the
Reader/Writer classes makes sense, even if the file to be copied consists of characters, because the
InputStream/OutputStream classes will be more efficient—the step of translating bit patterns to char-
acters will be skipped.
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There are 50 classes in java.io, and we will describe only a few here. To read a file of character data,
one would use a BufferedReader “wrapped around” a FileReader. The Java I/O design is very flexible,
and this is a good example of that. A FileReader reads characters from a file, and by wrapping the
FileReader with a BufferedReader, the I/O will be accomplished more efficiently by reading a group
of characters at once. The BufferedReader also provides a method called readLine(), which allows the
program to read a whole line at a time from a file into a String variable. Without the BufferedReader, a
FileReader only has methods to read characters.

Here is a little program to read a file of character data and display it on the screen:

import java.io.*;
/**
* A program that opens a character based file,
* specified on the command line,
* and shows its contents on standard output.
*
* @author Carl Reynolds
*/

public class ShowFile {
public static void main( String args[] ) {

BufferedReader in = null;
String line;

// Make sure the number of arguments is correct
if ( args.length != 1) {

System.err.println( "Usage: ShowFile sourceFile" );
System.exit(1);

}

// Attempt to open the file for reading
try {

in = new BufferedReader( new FileReader( args[0] ) );
}
catch ( FileNotFoundException e ) {

System.err.println( "ShowFile: " + e.getMessage() );
System.exit( 1 );

}

// Read and display
try {

while ( (line = in.readLine() ) != null ) {
System.out.println( line );

}
}
catch ( IOException e ) {

System.err.println( "ShowFile: " + e.getMessage() );
System.exit( 1 );

}
finally {

// Close the file
try{
in.close();

}
catch( Exception e ) {}

}
}//main

} //ShowFile
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This program checks the command line arguments in the array of Strings called args to make sure that the
user provided a parameter for the file name. If the user provided exactly one argument, the program assumes this
argument is the name of a file, and it attempts to open the file using a BufferedReader inside a try block.

If all goes well, the program enters a while loop calling the readLine() method of the
BufferedReader to read a line of the file at a time into the String variable line, and then display the
text using the println() method. The loop will terminate when readLine() returns a null value; that is
the signal that the BufferedReader has encountered the end-of-file (EOF).

The program uses the finally block to close the file. Since the close() method can itself 
throw an IOException, the call to close() within the finally block must also be surrounded by 
a try block. If an error occurs here, however, this program simply ignores it; the catch block is empty 
of any code.

Our second example reads a file for the simple purpose of copying the bits in the file to a new file. For this
purpose we use a BufferedInputStream wrapped around a FileInputStream. The program copies
the bits literally, one byte at a time. This approach is highly efficient because there is no overhead of translat-
ing the bit patterns into characters.

import java.io.*;
/**
* Copy files from the command line.
* @author Paul Tymann
* @author Carl Reynolds
*/
public class FileCopy {

public static void main( String args[] ) {
BufferedInputStream in = null;
BufferedOutputStream out = null;
int data;

// Check command line arguments
if ( args.length != 2 ) {

System.out.println(
"Usage: FileCopy sourceFile destFile");

System.exit(1);
}

try {
// Open the input file.
in = new BufferedInputStream(

new FileInputStream( args[0]) );
// Open the output file.
// If the output file exists, it will be overwritten.
out = new BufferedOutputStream(

new FileOutputStream( args[1] ) );
}
catch ( FileNotFoundException e ) {

System.err.println("FileCopy: " + e.getMessage() );
System.exit( 1 );

}
// Now copy the files one byte at a time
try {

while ( (data = in.read() ) != -1) {
out.write( data );

}
}
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catch ( IOException e ) {
System.err.println( "FileCopy: " + e.getMessage() );
System.exit( 1 );

}
finally {

// Close the files.
try {
in.close();
out.close();

}
catch( Exception e ) {}

}
}//main

} //FileCopy

When the program opens the BufferedOutputStream, the new FileOutputStream opens an
existing file for overwriting, or, if the output file does not exist, it creates a new output file for writing. There is a
second parameter in the constructor for the FileOutputStream which would allow a program to append to
an existing file, but we have not used that here.

With the read() method of the BufferedInputStream, either a byte of data is returned, or, if the
program encounters the EOF, a binary -1 is returned. As long as the read() continues to return bytes, the
program calls write() to copy the data. Though you see individual bytes being read and written, the transfer
is much more efficient than you might think, because the InputStream and OutputStream are buffered.

SCANNER

Often we need to read information from the user of the program. We might prompt the user, for example,
to ask them what kind of car they drive. We can ask the question of the user by displaying the question using
System.out.println(). We have shown many examples of displaying information on the screen.

Java provides a class called Scanner that makes it easy to read information from the keyboard into the
program. To create a scanner object for reading from the keyboard, we simply pass the standard input “stream”
to the constructor for a new Scanner. For example, here is a snippet of code to create a new Scanner for
reading from the keyboard, and then to use the Scanner to read a floating-point number:

...
Scanner scanner = new Scanner(System.in);

// Obtain input
System.out.print("Enter balance: ");
double balance = scanner.nextDouble();

...

The Scanner class has many methods, and you should consult the Java API documentation to see what
they are, and what choices you have.

You can also use a Scanner to read from a file. To associate a Scanner with a file of text, just pass 
a FileReader object to the Scanner constructor:

sc = new Scanner(new FileReader( myFile.txt ) );

To read lines of text, you can use the nextLine() method of Scanner to transfer a line of text 
into a String variable. You can also use the hasNextLine() method to test to see whether there is 
something to read. Here’s a snippet of code to loop, reading text for processing into a String called
lineOfData.
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String lineOfData;
Scanner sc = new Scanner( myFile.txt );

while( sc.hasNextLine() ) {
lineOfData = sc.nextLine();
...

}//while

When the program reaches the EOF, the hasNextLine() method will return false, and the program will
exit the while loop.

PRINTWRITER

The PrintWriter is another very convenient I/O class; it makes writing text to a file as easy as writing
text to the display. To create a PrintWriter that is associated with a file, you simply pass the name of the
file to the constructor. Then you can write to the file simply using the print() and println() methods you
have learned to use for writing to the display.

A PrintWriter can be used with any output stream, but a very common use is to make it very easy to
write formatted text to a file. Here is a simple program that reads lines of text typed at the keyboard, and writes
the same text into a file using a PrintWriter. Using the println() method, this program adds a line
number at the front of each line as it writes the line to the file.

import java.io.*; //PrintWriter is here
import java.util.*; //Scanner is here

public class PrintToFile{

public static void main( String[] args) {

PrintWriter myWriter;
Scanner sc;
String lineOfData;
String fileName;
int lineNumber;

try {
System.out.print("Enter file name: " );

sc = new Scanner( System.in );
fileName = sc.nextLine();
myWriter = new PrintWriter( fileName );

System.out.println( "Now enter lines of text." );
System.out.println( "When you are done, " +

"type only Cntrl/z (EOF) on the line." );
lineNumber = 1;

while( sc.hasNextLine() ) {
lineOfData = sc.nextLine();
myWriter.println( lineNumber + ". " + lineOfData );
lineNumber++;
}
myWriter.close();

}
catch( IOException e ) {
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System.err.println( "I/O error: " + e.getMessage() );
}

}
}

SUMMARY

Java is a modern object-oriented programming language. This chapter discussed how to compile and run
Java programs. We discussed the “primitive” data types in Java, as well as the frequently used “reference” types
including String and Array types. We explained the use of control structures for selective code execution
and iteration. These statements included the if-else, for, while, do-while, and switch statements.

Java takes advantage of the OO concept of classes, and the attendant principles of inheritance, encapsulation,
and polymorphism. An instance of a class is called an object, and objects have state and behavior. Classes define
both instance and static variables, which manifest the state of an object. Classes also define both instance and
static methods, which endow objects with their characteristic behaviors. Java also provides the concept of an
interface, which makes it possible to enforce similar behavior across different classes.

Error handling in Java is accomplished using Exception objects. When an error occurs, a program can
throw an Exception, which can describe the problem. Exceptions can be caught within the application
when the code generating the Exception is enclosed in a try block. Following the try block can be mul-
tiple catch blocks and a finally block. Catch blocks can specify which subclasses of Exception they
will handle. Code in a finally block will always be executed, whether an error occurs in the try block or not.
If the application does not catch an Exception, the Exception will propagate up to the JVM, which will
handle the Exception by reporting it and terminating the program.

Input and output in Java occurs using streams. A stream is a sequence of data elements. The many types of
streams available in Java can be classified into Input/OutputStreams, which handle raw binary data as
bytes, and Reader/Writer streams which handle character data, and automatically perform translations to and
from character encodings. For efficiency, good programming practice is to wrap a base stream object in a
buffered stream to provide efficient buffering of I/O.

The Scanner class in Java is a handy class for reading text from the keyboard, a file, or other input stream.
The PrintWriter class is another convenience class that facilitates the common task of writing formatted
text to a file.

REVIEW QUESTIONS

5.1 Write a Java program that divides the number 74.3 by 12.6 and reports the result of the division. Store
the dividend and divisor in variables named dividend and divisor before performing the division.
What will be the type of these variables? What will be the type of the result? What is the quotient?

5.2 Write a Java program to compute the area of a circle whose radius is 5. For the value of PI, use 3.14.
Now rewrite your program so that it uses the very precise value of PI available as a static constant in 
the Math class that comes with Java. Here is how you use the Math class constant:

double pi = Math.PI;

How much does your result change?

5.3 Write a Java program that prompts the user for a number, and then tells the user whether the number is
an even multiple of 5. Use Scanner to read the number from the user, and use the modulo operator
(%) to decide whether the number is a multiple of 5.

5.4 Write a Java program that asks a user to enter five Strings, one at a time. Have it save the Strings
in an array of strings. Then have the program display the words in reverse order. Use a for, or a
while, or a do while loop to read in the Strings, and another for, while, or do while loop
to print them out.

5.5 Write a Java program that can categorize vehicles based on the number of wheels the vehicle has. 
Your program should prompt the user for the number of wheels on the vehicle, and then read the number
into an int variable. If the user says the vehicle has 2 or 3 wheels, the program will report that it is a
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motorcycle, if it has 4 wheels the vehicle will be labeled a “car or light truck,” if it has 6, 8, 10, 12, 14,
16, or 18 wheels, it will be categorized as a truck. Any other number of wheels will be reported as an
error. Use a switch statement to compute the decision.

5.6 Write a Java class called Vehicle. The Vehicle class will have instance attributes for color, make,
model, speed, number of occupants, and maximum number of occupants. The Vehicle class will also
have a static variable called vehicleCount that can be used to track the number of vehicles in the
application. The constructor for Vehicle should expect values for make, model, maximum number of
occupants, and color, and it should set the vehicle speed to zero, the number of occupants to 1, and
increment the count of vehicles each time the constructor is called. Each of the instance and static vari-
ables should have an accessor (get) method that will return the appropriate value, and all except the
vehicleCount variable should also have a mutator (set) method so that the value can be modified.
You should also give the Vehicle class an instance method called changeSpeed. The
changeSpeed method should expect a floating-point value for the new speed, and it should return a
floating-point value representing the difference between the new speed and the previous speed of the
vehicle. Include a public static void main(String[] args) method that creates a few
vehicles, sets some speeds, and reads some variable values, so that you can test your code by launching
the class from the command line.

5.7 Write a Skateboard class that inherits from Vehicle. Override the changeSpeed method for the
Skateboard class, so that instances of the Skateboard class can never exceed 10 mph. If a larger
value is supplied, the method will simply set the speed of the Skateboard to 10.

5.8 Write a Bus class that inherits from Vehicle. An instance of the Bus class must always have a
named driver. In the constructor for a Bus, make sure that your code expects and stores the name of the
driver. Also, the Bus class should have accessor and mutator methods for returning and changing the
name of the driver.

5.9 To the class Vehicle, add a refuel method that expects two parameters, fuelQuantity and
milesSinceLastFueling. Also add instance variables to the Vehicle class for totalMileage
and totalFuelConsumed. Further, add an accessor method called fuelEconomy that will return
the total miles per gallon of the vehicle.
What will you do to make the refuel method work properly when invoked on an instance of
Skateboard? Write a test class called ManyVehicles that creates a variety of different
Vehicles, exercises all the methods you have created, and checks for proper execution. Try to set the
speed of a Skateboard to 60, for example, or to refuel a Skateboard. Check that the fuel economy
calculations are being performed correctly.

5.10 Write a class that extends Exception and is called TooManyOccupantsException. Have the
Vehicle class mutator for number of occupants throw such an exception if the numberOfOccupants
would exceed the maximum number of occupants for the vehicle. What will you need to change in your
ManyVehicles test class?

5.11 Change your ManyVehicles class so that it reads from a text file called Vehicles.txt the specifica-
tions for the Vehicles to create. Use a BufferedReader or a Scanner to read the file. Using a
Scanner is probably easier in this case. Here is a sample Vehicles.txt file. The first word in a
line is the color, the second word in a line is the make, the third word is the model, and the fourth word
is the maximum number of occupants:

red Ford F-150 3
silver BMW 328i 4
blue GM bus 32
gold Chrysler PTCruiser 4
orange WorldIndustries ProBoard 1

5.12 Write a Java program that iterates through the integers from 1 to 20, computing the square of each
number and writing the information to a file called squares.txt. Use a PrintWriter to write the
file of the first 20 integers and their squares. Arrange for two columns with a line of column headings at
the top. You will find this easy to do using the println() method of the PrintWriter.
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CHAPTER 6

Operating Systems
CAPABILITIES OF THE HARDWARE

“It ain’t nuthin’ but aarn,” one of my (Reynolds) instructors at Hewlett Packard used to say. He was big man
from Georgia with a strong accent, and by “aarn” he meant iron. The computing machinery itself, without any 
operating system, is as useful to the average person as a chunk of iron. Maybe it is less useful, for a sufficiently
large piece of iron could at least serve as a boat mooring.

The precise list of things a particular computer can do directly is very short. The list is the “instruction set”
of the computer. Modern computers have instruction sets of about 70 to 150 instructions.

The instructions the machine understands allow the machine to move bits from one memory location 
to another, or to move bits to/from memory from/to a register, or to shift the bits in a computer “word” (most
computers today regard 32 bits as a “word”) some number of positions left or right, or to compare the values of
two words, or to complement the bit values of a word (change the ones to zeros, and vice versa), or to add two
values. The machine can also compare two values, and skip an instruction if the values are different (or, using
a complementary instruction, if the values are the same). There’s also a jump instruction to allow the machine
to execute an instruction elsewhere in the program.

Such primitive operations are a long way from doing anything really useful for people, and even at that,
with nothing but the bare machine, one would have to know the bit code for each instruction, enter the sequence
of instructions one bit at a time, and then press the start button! Early computers (even as recently as the early
1980s) usually had a “front panel” with rocker switches and lights to allow one to do just that.

If one were to write a program to act as a simple four-function integer (no decimals) calculator, with 
nothing but the bare machine, one would write something like the following.

1 Enable a read from the keyboard by using one of I/O instructions in the machine instruction set to ready
the keyboard interface (the electronics behind the connector port to which the keyboard is attached) to
accept a character from the keyboard.

2 Wait by entering a “loop,” continuously testing the flag signal on the keyboard interface. If the flag is
false, check it again, and again, and again, until it becomes true.

When the flag becomes “true,” a character will have arrived at the keyboard interface from the
keyboard. However, the character will arrive as the ASCII encoding of the character we know, not as 
a binary numeric value.

You can see the encodings of various characters by looking at a table of ASCII encodings. One
reference is this: http://www.lookuptables.com/. If you consult the table, you will see that the character 0
is encoded as the bit pattern equivalent to the decimal number 48. The character 1 is encoded as 49; the
number 2 as 50; and so on, up to character 9, which is encoded as 57. Likewise, the equal sign is 
encoded as 61, the plus sign as 43, etc.

If the user types a 3, it will arrive as the decimal value 51.
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3 When the user types a character, the signal flag on the keyboard interface becomes true, and our program
exits its endless loop testing the signal flag. Now the program can use another I/O instruction to read the
character on the keyboard interface into a register of the central processing unit (CPU).

4 Check to see if the character now in the register is one of the characters we’re interested in, i.e., a number,
operation sign or equal sign. If the character is not one of those, ignore the character, and enable another
read from the keyboard.

5 If the character is a number, see if the previous character was a number. If so, then this is the next digit in
a multidigit number. In that case, multiply the previous number by 10, add the new number to it, and store
the result in a known memory location.

Before you can add the new number, however, you must decode the ASCII and convert the character
into a binary number. A commonly used “trick” is simply to subtract 48 from the coded value of the number
(e.g., if the number is 3, subtracting 48 from 51, the encoding, returns the binary numeric value 3).

On the other hand, if this is the first digit in a number, just decode the ASCII and store the binary value
in a memory location set aside by the program for one of the operands.

6 If the character is one of the operation signs, store the sign in a memory location set aside for storing the
operator. The program will refer to this later, after the program receives an equal sign.

7 If the character is an equal sign, load the operands saved in memory into CPU registers, retrieve the
operator character, and, depending on the operator, jump to the instruction(s) to perform the arithmetic
operation on the contents of the registers. Then store the result back in the memory location for operand 1,
construct the character string to send as the result, and send the result back to the display.

Here’s how the program constructs the characters to send to the display:

a If the result is greater than 9, then the result will require more than one character, so divide the result by
10 until further division results in a number less than 1.

b Add 48 to the integer result to encode it as ASCII.
c Load the interface register in the computer with the character, and issue the I/O instruction to have the

first character sent to the display.
d Wait (loop again) until the character is sent, and acknowledged by the display via the flag being set on

the display interface.
e Having sent the most significant digit, subtract the appropriate value from the result and repeat the

formatting and output operations until the entire character string result is sent to the display.

8 Reenable the keyboard interface to read the next character.

What a lot of work! And many programs need to read from the keyboard and write to the display! And
many programs need to decode strings of numeric characters, and also to encode numbers into character strings!
We don’t want every programmer reinventing this code, and making similar mistakes over and over again.
Obvious problems like this I/O programming and formatting prompted interest in common, efficient, debugged
programs that different programmers could easily reuse.

At first such code came into use as libraries of standard “routines.” Later, computer scientists created the
first “resident monitors” or “operating systems” os which made it easier for programmers to use such shared
code, and made use of the machine more efficient and secure.

The operating system of a computer is a program, often called the “kernel,” which is always running on the
computer, and which governs the execution of all the other programs that run on the computer. The operating
system makes it much easier to write programs and execute them, because the operating system handles all the
complex details, like performing I/O and formatting input and output.

Two or three key motivations lay behind the development of the first operating systems. The first was to
make the computer much more easily useful. The second was to use what were at the time very expensive com-
puting resources efficiently. The third was to provide security and reliability in computing.

In general, operating systems are programs written to run on the bare machine and provide services to user
programs. The services operating systems provide include:

● Management of I/O
● Management of memory
● Scheduling of user processes (start, interrupt, and stop)
● A secure and reliable environment for programs and users
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● A convenient interface for users
● Networking services
● Messaging and synchronization services between processes
● Utility “system software” such as editors, loaders, help, etc.

OPERATING SYSTEMS HISTORY

Batch Jobs

Early conceptions of computing revolved around computing “jobs.” A computational job would be presented
to the computer, the computer would process the job, and the computer would deliver an answer. The first operating
systems made this sort of use easier, and were known as “batch” operating systems (1955–1965). 
A “resident monitor” (the operating system) provided the commonly needed routines to perform I/O to the
devices of the day (most of the OS code consisted of device drivers), and to format data back and forth between
encoded form and binary values. The resident monitor also provided a simpler user interface through job
control language (JCL).

The user would embed JCL commands to the operating system in the sequence of program instructions and
data presented to the computer as a “batch job.” A user could prepare a payroll job, for example, using a deck
of punched cards where the first card identified the job and the user, the next called for a particular compiler
(probably FORTRAN), the next group of cards comprised the program source code, the next card called for the
“loader” to assign particular addresses in memory, the next card called for the OS to run the program, and the
following cards presented data on which the program would operate, probably the hours worked by each person
that week.

Multiprogramming (mid-1960s on)

In the mid-1960s, operating systems were enhanced to provide multiprogramming capability. That meant
that several programs could be loaded at the same time, and the operating system would switch among them to
make sure the machine stayed as busy as possible. Computers were extremely expensive, so the OS was
improved to make better use of the computer time. If one program was waiting for a magnetic tape to be
mounted by the computer operator, another could be scheduled to run while the first waited. IBM’s OS/360 was
a good example of such a multiprogramming batch operating system.

Multiprogramming required some important advances. Because several programs could execute concurrently,
I/O control of unshareable devices became even more important. For instance, printed output that interleaves lines
of output from different programs is not very useful! So the OS provided more than just device drivers; the OS
also provided locking mechanisms so that only one program at a time, for example, could send data to the printer.

“Interrupt systems” were added to the I/O hardware so that slow I/O tasks could be started without requiring
all the jobs on the computer to wait. Once the I/O for a job was started, the system could schedule some other
computation until the I/O task completed and generated an “interrupt,” signaling readiness to continue with the
first job.

With more than one program in memory, it also became important that one user was not able to address,
even by accident, memory allocated to another program. Memory protection hardware, comprising “base”
(starting address) and “limit” (maximum program size) registers along with address checking hardware, was
added to the machines, and the operating system managed the contents of the memory protection registers.

With this new dependence of user programs on services provided by the operating system came the requirement
that some instructions be reserved for use only by the operating system. For instance, only the OS should 
be allowed to change the contents of the base and limit memory protection registers. Only the OS should 
determine which print request goes to the printer at any particular time.

The solution was a hardware “mode” switch to provide a “user mode” context and a “privileged mode” 
context. (Other words for privileged mode include system mode, monitor mode, and kernel mode.) Certain
instructions, such as loading the base and limit registers, and all I/O instructions, became “privileged instructions.”
Privileged instructions can only be executed when the computer is in privileged mode.

When the computer boots up, the hardware sets the computer to privileged mode and the operating system
begins executing. As soon as the OS starts a user program executing, the OS sets the mode to user mode. 
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Any attempt by the user program to execute a privileged instruction is trapped by the hardware as an error, and
causes a special interrupt to occur. When any interrupt occurs, the OS regains control and the mode switches
back to privileged mode. In the case of the errant user program, the OS issues an error message, terminates the
faulting program, and resumes computing with another process.

Timesharing (1970s and 1980s)

When computers were so extremely expensive, a vision of the future for many was that a central 
expensive computer would provide services to many users via remote terminals. Timesharing was developed as
an extension of multiprogramming where the job commands came to the central computer via the terminal 
communication lines.

Timesharing required an important advance in program scheduling called the “timeslice.” In round-robin
fashion, each user program in turn received a small unit of time on the CPU. Since the central computer was so
fast, each user had the illusion that they had the computer to themselves.

With timeslicing, the system clock became a source of important interrupts. At programmed intervals, the
clock interrupts; the interrupt invokes the OS in privileged mode; the OS decides if the currently executing
process should continue, or if its timeslice is up; then the OS either resumes the currently executing process or
schedules another, as appropriate.

SINGLE-USER OS → NETWORK OS

With the advent of inexpensive personal computers, the vision of the future migrated from terminals 
connected to a powerful central host to small inexpensive computers distributed widely, and loosely connected
by network services. Operating systems for such machines now incorporate all the features of large computer
operating systems of the past.

In fact, operating systems such as UNIX, originally developed to support terminals connected to a central
computer, have been moved to personal computer platforms. Microsoft’s operating systems, on the other hand,
have grown from single-user-only environments to fully featured operating systems that even include multiuser
and multiprocessor support.

When computers on the network provide resources to other computers, such as a web server does, the 
computers are called servers. Networked computers that access the services and data of other machines on the
network are called clients. Often a single computer may act as both client and server at different times.

MULTIPROCESSOR OPERATING SYSTEMS

Computers with multiple processors offer the potential of greater computational speed. With this potential
comes complexity, however. The complexity surrounds the shared resources that must be managed properly in
a multiprocessor environment.

For instance, there will be a Ready queue of processes to be run. Should there be a Ready queue of 
programs to run for each CPU? Should instead each CPU inspect the same Ready queue that all share? Should
one CPU handle the scheduling for all the other CPUs? Or, should each CPU make its own scheduling 
decisions? What about shared I/O devices and device tables? What about shared memory and the allocation of
processes to memory?

The simpler approach to a multiprocessor OS is to have one CPU be the “master” and have it make decisions
on behalf of the other “slave” CPUs. This approach is called “asymmetric multiprocessing.” For a small number
of processors (say, 10 or fewer), asymmetric multiprocessing can work well. As the number of processors
increases, however, the master becomes a bottleneck, for it must be consulted for all important resource 
allocation decisions.

A more sophisticated approach to multiprocessor support is called symmetric multiprocessing (SMP). With
SMP there is only one copy of the OS code in the shared memory, and all processors execute it. There is only
one set of system tables, which all processors share. SMP dynamically provides load balancing, but the trick to
making SMP work is in synchronizing access among the processors to the shared resources.
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With multiple CPUs, the OS does not have the luxury, as is the case in a single-processor system, of simply
disabling interrupts while it completes uninterruptible work. With multiple CPUs, each has its own interrupt
system, and synchronization can require additional hardware like an interprocessor bus with a locking protocol,
and very careful analysis of other resource-locking mechanisms.

REAL-TIME OPERATING SYSTEMS

A small but important category of operating systems is called “real time.” Real-time systems are constrained
to execute within limited and defined time windows. A computer recording frequent readings from an instrument
such as a frequency counter or voltmeter could be an example. Recording the values and reacting to them, if
necessary, within a specified time is critical for real-time systems.

Real-time operating systems include special features that tailor them to critical real-world responsiveness.
For instance, process scheduling is usually based strictly on priority rather than on some round-robin timesharing
scheme. The highest-priority task is always the one that will be executing. For example, with a real-time system,
when the valve controlling cooling water to the nuclear reactor needs adjustment, that task will get the CPU,
and it will not have to share time with a word processor.

Some real-time systems also permit preallocation of disk space, either as part of the file system or independent
of the file system. When a program writes to the disk, it will not incur the overhead of a general-purpose file
and directory manager.

Memory management may be more wasteful but faster to execute in a real-time system. Rather than tailor
the amount of memory allocated to a process, the OS may simply dispatch a process to a fixed, large block of
main memory, thus reducing the setup time for the process.

In all these ways, real-time systems support fast interaction with instruments and devices in the outside world.

EMBEDDED SYSTEMS

By far the most common type (by simple count) of operating system today is the embedded system.
Embedded systems lie within the automobiles, airplanes, thermostats, and other devices we use every day. It’s
easy to overlook the fact that they are there, but our day-to-day lives are ever more dependent on such systems
to supervise the execution of the built-in programs for the microprocessors controlling everything from 
dishwashing to transportation.

MANAGEMENT OF INPUT AND OUTPUT

The early operating systems consisted largely of a collection of code for device drivers. One could argue
that the most fundamental service of the operating system is to manage I/O, so that programmers can focus on
higher-level activity, and so that shared I/O devices are shared properly.

Strictly speaking, the operating system (or any software doing I/O directly) interacts with the device’s interface
(or “controller,” or “adapter”), rather than the device itself. Every I/O device such as a printer, disk, or mouse
connects to an interface, often a separate printed circuit board, and the interface connects to (plugs into) a bus
(an electronic connection path consisting of multiple lines) in the computer.

When information is sent out to a device, the information is passed to the device controller, and the controller
is given a command by the computer to transfer the information to the device. The controller then does so. When
the transfer is complete, the controller signals the computer that the task has been accomplished.

The controller itself represents a significant off-loading of detail for the computer. For example, the 
computer can tell the disk controller that it wants to write a set of bytes at a certain address (track and sector),
and the controller will take care of commanding the disk read/write heads to move, and of actually causing the
bits to be written in the right place.

In general, devices are classified as “character” or “block” devices. Roughly, these terms equate to “slow”
or “fast,” respectively. A character device like a keyboard or printer transfers one character, or byte, at a time.
A block device like a disk or a tape drive transfers a whole buffer, some multiple number of bytes, at a time.
On the other hand, some devices don’t fit in this classification, such as a monitor with “memory mapped video.”
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Programmed I/O

Simple character-at-a-time (byte-at-a-time) I/O is sometimes called programmed I/O to distinguish 
it from interrupt-driven I/O or direct memory access (DMA), which we will discuss shortly. With programmed
I/O, the driver checks to see if the device is available (not busy). If so, the driver will write a character 
to the buffer on the controller, and command the transfer to begin with a “set control; clear flag” (different 
computers may name these status bits differently). Set control tells the device to start, and clear flag 
makes the device appear busy. The driver then loops, testing for the flag to be set. When the byte 
is transferred, the controller will clear the control bit and set the flag bit. The driver will find the flag 
bit is set, and that will indicate that the transfer is complete and the device is again available to accept 
another character.

The unfortunate characteristic of programmed I/O is that the computer can spend a great deal of time 
waiting for a slow device. In the time it takes to process a character out to a 56K baud modem, for example, the
computer could easily perform 200 to 1000 other instructions.

Interrupt-driven I/O

To avoid the waste of computing power using programmed I/O, virtually all operating systems today use
interrupt-driven I/O. With interrupt-driven I/O, the program requesting the transfer is blocked (suspended) while
the bytes are being transferred. The operating system copies the bytes to be transferred into system memory
space so that the suspended program can be temporarily removed from memory, if necessary. Then the OS calls
the “initiator” section of the device driver. The initiator moves the first byte into the controller’s buffer, commands
the controller to begin, and then returns to the OS. The OS then decides which process to execute while waiting
for the I/O to complete.

When the character has been transferred, the controller generates a hardware interrupt. An interrupt causes
the OS to take control. The OS saves the state (register contents, program counter value, etc.) of the currently
executing program, and calls the “continuator” section of the driver for the interrupting device. If there are 
additional bytes to transfer, the continuator puts the next byte into the controller’s buffer, commands the 
controller to begin again, and returns to the OS. The OS then restores the state and resumes execution of the
other process.

When the last character has been transferred, the continuator will return to the OS, signaling that the 
suspended process can be restarted. Now the OS can choose among the available processes, and restart
whichever one is of highest priority.

The key advantage of interrupt-driven I/O is that the CPU works on other processes while the controller
transfers the data to the device. This is a very substantial improvement in the efficient use of computing
resources, but it is still true that processing interrupts imposes overhead which can be substantial, especially
when interrupts are frequent.

Direct Memory Access

A further improvement in efficiency is possible when the I/O device is relatively fast, like a disk drive 
or a tape drive. The computer design may include one or more direct memory access (DMA) controllers 
(or channels). A DMA controller is a computer within the computer that specializes in I/O, and its purpose is
to drastically reduce the number of interrupts that the OS must service.

When DMA is used, the driver sets up the DMA transfer once, passing the address of the buffer to be 
transferred to the DMA controller and telling the DMA controller which device to transfer to/from. The driver
then returns to the OS, and the OS begins executing another process. The DMA controller takes care of moving
the information directly from/to memory and to/from the device. The only interrupt the OS sees is the one from
the DMA controller when the entire transfer is complete.

Strictly speaking, DMA can be used with any device, but usually DMA is used only by drivers 
of fast devices that would otherwise generate many frequent interrupts. DMA channels are usually 
few in number, so their use is usually reserved for devices for which the DMA channels make the most 
difference.



Memory Mapped I/O

Most computers of the 1960s, 1970s, and 1980s had a special set of instructions for I/O, and many computers
still do. With such architecture, reading from a buffer on an interface requires a different instruction than 
reading from a memory location. In one computer architecture, for instance, the I/O instruction to read from the
interface in slot 7 is LIA 7, “load into the A-register from slot 7.” The memory reference instruction to read from
memory location 7 is LDA 7, “load into the A-register from memory location 7.” The instructions LIA and LDA
are different. LIA is a privileged instruction, available only in privileged mode, and LDA is not; any program
can execute LDA.

In the 1980s the idea of memory-mapped I/O gained currency. With memory-mapped I/O, certain memory
locations are reserved for reference to the control registers and buffers of the I/O interfaces. Communicating
with the controllers becomes as easy as writing to and reading from memory.

Memory-mapped I/O offers several advantages. First, since I/O uses the same instructions as memory 
references, I/O programs (drivers) can be written entirely in a high-level language. Second, protection against
issuing I/O commands in user mode can be effected using the memory protection hardware already required for
enforcing bounds on a user program’s access to memory. No special mechanism for detecting the privileged
status of I/O commands is required.

A disadvantage of memory-mapped I/O becomes apparent when the computer design includes separate
buses for memory and I/O. Since the controllers cannot “see” the transfers to memory, some mechanism is 
necessary to intercept reads and writes to I/O mapped-memory locations and pass them off to the I/O bus.

Another disadvantage of memory-mapped I/O is that most modern computers, in order to speed access to
memory, use local “cache” memory to hold the contents of recently accessed memory locations. A cache holds
a copy of what is in memory in a location closer to the CPU. If a driver needs to read the control flag register
to learn if the interface is busy, and the contents of the memory location are cached, the driver may never see
the device become available. Some additional mechanism must be added to provide for selective caching—
a mechanism that avoids caching of I/O mapped addresses.

Some computers use both special I/O instructions and memory mapping. For instance, the PC architecture
uses memory mapping for the transfer of buffers to I/O controllers, and also uses I/O instructions to write to the
control registers of the interfaces.

PROCESSES AND SCHEDULING

The conceptualization of a running program has been refined as the field of computing has matured. Early
on, one spoke of running a job, or program. The program would be loaded on the computer, and it would run
to completion.

Later, computer scientists made the distinction between a program and a process. The program is the set of
instructions that will be executed when the program runs, and a process is an instance of a running program.
The difference is that the process maintains the state information about that execution of the program; it has 
certain values for variables, for example, and a program location counter value at any particular moment, and 
a certain section of the computer memory assigned to it.

In a multiprogramming environment (the name “multiprogramming” emerged before the widespread use
of the term “process,” for in today’s language one would call it “multiprocessing”), the distinction between 
program and process becomes important. Two instances of an editor program, for example, may be simultane-
ously operating on different files. Therefore, two processes with different state information are executing the
same program. It’s important for the operating system to maintain the distinction between the two processes.

Later still, the concept of a process was broken into two concepts: the process and the “thread.” The process
is the set of resources assembled for the execution of the program (files, memory allocation, etc.), and the thread
is a line of execution within the program.

Before programmers had access to threads, tasks that required multiple lines of execution would be writ-
ten as separate processes that communicated with one another somehow (shared memory, messages, shared file,
etc.). However, as we will show, setting up a new process is a fairly high-overhead task for an operating system,
and the communication of messages between processes can itself require a significant programming effort and
entail additional operating system overhead. These problems, which were encountered frequently, motivated the
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distinction between threads of execution within a process, and the process itself as a set of resources available
to all threads.

Not all, but a significant number of, programs can take advantage of threads. A common example is a word
processor that checks one’s spelling as one types. One thread attends to the typing at the keyboard, and a second
thread constantly checks to see if the words typed match any of the words in the dictionary. Both threads are
part of the same process; they share access to the same files, the same user, the same memory, etc.

In the case of the word processor, the keyboard thread gets priority, so that the user feels the computer is
quickly responsive to his or her typing. When the computer is waiting for more typing to occur, the “back-
ground” spell-checking thread can inspect the words for correct spelling. This approach to program design is
referred to as multithreading.

Getting back to the concept of a process, let us consider what the operating system does when one “runs” a
program. The operating system creates a table entry for each process running on the machine. Usually the entry
is referred to as a process control block (PCB), but the name for the concept varies among operating systems.

The PCB is used to track all the information about the process, and it includes fields such as the program
name, code location on the disk, priority, state (ready/waiting/running), open files, memory boundaries, parent
process (the process which started the process), user ID, group ID, and storage for the register contents and 
program counter value when the process is interrupted. The PCB is a fairly large structure; a PCB for a single
process in Linux is over 350 bytes in size.

When a program is run, the process does not necessarily execute immediately. First the OS creates the PCB,
and then it adds the process to the Ready queue; the process enters the Ready state. The operating system will
select one of the Ready processes to execute, and that process will enter the Running state.

A process in the Running state will continue to run until the process completes, the OS decides that a
higher-priority process should run instead, the OS decides to give another process a chance to use the CPU for
a while (i.e., the “time quantum,” or “timeslice,” expires on the running process), or the running program 
must pause to perform some I/O, wait for some resource to become available (e.g., a shared file), or receive a
message or signal from another process.

How is it that, “the OS decides to give another process a chance to use the CPU?” There’s only one CPU,
and the executing process has control. It seems an impossibility that the OS could have any influence at all, once
it turns the CPU over to the executing process.

The answer to this conundrum is the system clock. The OS programs the computer’s clock to generate an
interrupt at set intervals. For example, the SunOS has the clock interrupt at 10 ms intervals, so 100 times per
second the clock generates an interrupt, just like an I/O device.

When the clock interrupts, the hardware shifts to monitor mode automatically, and the instruction stored in 
the memory location associated with the clock device “vectors” to the OS code that handles “clock tick processing.”
At every clock tick, the OS will check to see if the time quantum of the executing program has expired, if any
I/O device has “timed out,” and if any process priorities need adjustment (some scheduling algorithms use such
time-based adjustments). It will also update the system time-of-day clock to keep it accurate. When the OS 
completes its clock tick processing, it will again put the computer in user mode and transfer control of the CPU
to the appropriate user process.

Besides being in the Ready or Running state, a process can also be in the Waiting (or Blocked) state. Some
OSs have more than one waiting state as a way to segregate processes waiting for different conditions, such as
waiting for I/O, waiting for child processes to complete, waiting for memory, etc. The SunOS recognizes five
states: Running, Runnable in Memory (i.e., Ready), Runnable Swapped (i.e., Ready, but the code is on the disk
at the moment because the process was removed from memory in favor of another process), Sleeping in
Memory (i.e., Waiting), and Sleeping Swapped (i.e., Waiting for some event like an I/O completion, and the
code is on the disk so that another process can occupy the memory).

When a process moves out of the Waiting state, it does not go directly to the Running state. Instead, when
the event for which it was waiting occurs, a Waiting process becomes Ready. The OS then chooses from among
the Ready processes one process to run.

THREADS

Modern operating systems often provide the thread model for execution control. Threads allow multiple
lines of execution within a single process. This is much like multiple processes, but without the overhead of
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managing multiple PCBs, and with the built-in facility for sharing memory and other resources among threads
of the same process. Instead of a PCB, a thread requires a much smaller thread table entry, primarily to provide
storage for register and program counter contents when the OS switches among executing threads.

In an operating system that supports threads (“kernel threads,” which we will discuss shortly), the object
that gets scheduled, and which gains control of the CPU, is the thread. The process is still important, but as 
a collection of resources. Threads are what get executed, and threads are what enter the states of Ready,
Running, and Waiting.

Since threads resemble processes, some operating systems refer to threads as “lightweight processes” 
(e.g., SunOS). And just as OSs came to be described as multiprogrammed when they began to support multiple
processes simultaneously, OSs that support threads are described as “multithreaded.”

Threads are useful because many applications benefit from separating the whole job into semi-independent
parts. Earlier we mentioned the word-processor/spell-checker example. Another example could be a time-
and-attendance application where one thread does a quick check of the employee ID as the employee enters or
leaves the plant, and another thread updates the payroll data base in the background. In this threaded design, the
quick gate-check thread can keep people moving through the gates, even if the more complex data-base thread
takes a little more time.

Web servers are almost universally multithreaded. The main server thread waits for a request to arrive, and,
when one does, it creates a new “worker thread” which then handles the request and provides the reply. The
main server’s only job is to recognize a request and then to create a thread to do the work of responding. This
multithreaded approach keeps the web server responsive to new requests. Multithreading is efficient compared
to the alternative of using multiple processes, because creating a new thread requires about one hundredth the
time that creating a new process requires.

Another advantage of threads appears when the computer contains multiple CPUs. In that case, different
threads can be executed on different CPUs, with the potential for completely parallel execution and great speed
improvement.

Threads can be provided as “user threads” or “kernel threads.” Threads provided by the OS are kernel
threads. If the OS itself does not support threading, it is possible to implement threading using a user thread
library that executes as a user process. For example, the POSIX thread package is a user thread package 
available for UNIX computers.

Kernel threads have the advantages associated with the OS itself being aware of the threads. For instance,
since the OS does the scheduling of the threads, if one thread must wait for some reason (e.g., for I/O to 
complete), the OS can schedule another thread from the same process. Likewise, when one thread exhausts its
timeslice, the OS can choose another thread from the same process to receive the next timeslice.

User threads have some advantages, too. Since the OS has no knowledge itself of the threads, the OS 
does not get involved with thread creation and scheduling. This lack of OS involvement means less overhead,
so creating threads and switching among threads can be more efficient with user threads.

The disadvantages of user threads are the reverse of the advantages of kernel threads. When one thread must
wait, the OS will block the entire process, for the OS has no knowledge of the different threads within the user
process. Likewise, a user thread may claim all of its process’ CPU time, to the exclusion of the other threads. When
the user thread package transfers control to a thread, the user thread package has no way to interrupt the executing
thread after some timeslice, because the user thread package does not gain control on a clock tick as the OS does.

In the case of Java and some other languages, threads are provided as part of the language. The implementation
of the Java Virtual Machine determines how the Java Thread class is mapped to the thread model of the OS. 
The Java programmer is protected from having to know the details of the underlying threading model of the
computer.

SYNCHRONIZATION

Often processes or threads must share access to the same information. For instance, imagine an application
where one thread, the server thread, adds requests to a list of pending tasks, and another thread, the worker
thread, reads from the list, removes the task from the list, and executes the task. Appreciate, too, that “adding a
request to a list” will require more than one machine instruction to accomplish; the list object must be 
referenced, the address of the last element must be calculated, and some reference to the new task must be 
calculated (perhaps the address of a String buffer) and stored in the appropriate list memory location. In addition,
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such an application will almost always limit the number of elements in the list so that a flood of requests will
not simply swamp the computer and leave no time or memory for processing requests. So the server thread will
also include a check to see if the number of pending requests is already at its maximum value; if so, the server
thread will wait until the worker thread can complete at least one of the tasks.

On the other side, imagine the worker thread taking tasks off the list. Again, removing a task from the list
will require multiple machine instructions. The worker thread will also be checking to see if the list is empty,
for there may be no work to do. In that case, the worker thread will wait until some task is added to the list by
the server thread.

Since an interrupt can occur between any two machine instructions, and since the operating system may
choose to execute any ready thread at any moment, it is possible that the server thread will be interrupted as it
adds a task to the list, and that the worker thread will be scheduled to execute next. Without some control to
insure that items are added to and removed from the list at appropriate times and as whole items, it’s possible
that the coordination will fail.

For instance, suppose the server thread finds the address of the last element of the list and then is interrupted.
After the OS services the interrupt, the OS schedules the worker thread, which removes a task from the list and
completes processing. In fact, the worker may continue to execute and remove several tasks from the list before
the OS intervenes to schedule another thread. When the server thread eventually regains the CPU, it will continue
from the point it was interrupted, and store a reference to a new task in the location it previously computed.
Now, however, the address is incorrect. Depending on the situation, one of several possible errors will occur,
but the application will surely fail, and it will fail in a way that cannot be reliably reproduced. Such errors can
be devilish to debug.

The section of code that must be executed in isolation in order to avoid corruption is called the “critical
section.” Guaranteeing correct execution of the critical sections requires that “mutual exclusion” be enforced
when the critical sections are executing. The code of a cooperating thread that is not in the critical section (and
often most of the code is not in the critical section) is called the “remainder section.”

Since operating systems themselves are often also implemented as multiple threads, coordination between
executing threads or processes is important both to people writing operating systems (“systems programmers”)
and applications programmers. This synchronization problem occupied a great deal of computer science
research during the 1960s, 1970s, and 1980s. Several solutions have been developed.

Dekker offered the first software solution to the problem in 1965, and a simplification by Peterson 
was published in 1981. These solutions involved shared variables and employed “busy waiting” (i.e., the 
waiting process or thread had to wait continually check to see if the condition had changed). While these papers
were groundbreaking, one would not use this approach today. For one thing, these approaches are limited to sit-
uations where only two processes are cooperating, and for another, the busy wait is wasteful of CPU time.

A hardware approach to synchronization is relatively simple, but does have the limitation that it, too,
requires a busy wait. All that is necessary is a single machine instruction that tests some condition and also sets
the condition in the same instruction execution cycle. Since it can’t be interrupted, such a “test-and-set” instruction
can be used for coordination. In pseudocode, here is what a test-and-set instruction does:

boolean testAndSet( boolean lock ) {
if( !lock ) {

lock = true;
return true;

}
else return false;

}

This code says:

The routine name is testAndSet, and
it will return either ‘true’ or ‘false’ (a boolean value).
testAndSet operates on a variable we will call ‘lock’,
and ‘lock’ can have the value ‘true’ or ‘false’ (it’s a boolean variable).
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If lock is not true (!lock), then
make lock true, and return the value true to the calling program.
Otherwise, return the value false to the calling program.

Some boolean variable called lock is used to lock or unlock the resource. If the resource is not 
locked at the time of the call, the instruction will lock it and return true meaning, “It’s OK to proceed.” 
If the resource is locked at the time of the call, the instruction will return false meaning, “You must 
wait.”

If such an instruction is part of the machine instruction set, code like this can take advantage of it:

boolean thisLock;
. . .
while( !testAndSet( thisLock ) ) { /* Do nothing */ }
/* Now do whatever needs to be done in isolation */
. . .
/* Now free the lock */
thisLock = false;
. . .
/* Carry on */
. . .

This code says:

While testAndSet returns false (!testAndSet), do nothing.
When testAndSet returns true,
do whatever needs to be done in the critical section.
(Note that the locking variable is now set ‘true, and competing
processes using the same testAndSet routine will have to wait.)
When the critical section is complete,
indicate that by changing thisLock, the locking variable, to false.’

Because the test-and-set instruction requires a busy wait, it often is not the best choice of synchronization
mechanism. However, this approach is quite useful for coordinating threads in an operating system on 
a multiprocessor machine. The effect of the busy wait is much less onerous when the waiting thread has its own
processor, and the wait is not likely to be long.

There are other variations on the test-and-set instruction idea. A ‘swap’ or ‘exchange’ instruction that
atomically (without interruption) exchanges the values of two arguments can be used the same way. Here is
pseudocode for a swap instruction:

void swap(boolean a, boolean b) {
boolean temp = a;
a = b;
b = temp;

}

This code says:

Given two boolean values (a and b can each be either true or false),
exchange the two values, using the variable temp for temporary storage.”
(The void means that this routine does not return any value. It simply swaps a and b.)

Application code such as the following uses the swap instruction:

CHAP. 6] OPERATING SYSTEMS 105



boolean lock; // shared data; initialized to 'false'

boolean key = true; // not shared; used for this thread only
. . .
//Wait until key becomes false, which means lock was false
while ( key ) swap(lock, key);

/* critical section */
...
/ ∗ Now free the lock ∗/
lock = false;
...
/* remainder section */
. . .

This code says:

While the variable key is true, swap the values of key and lock.
(When key becomes false, it will mean that lock was false,
and because key was true before, lock will now be true.)
When key becomes false, execute the critical section.
When the critical section is complete, release the lock by setting it back to false.

The swap instruction has the same applications and limitations as the test-and-set.

SEMAPHORES

In 1965 one of the most prolific contributors to computer science proposed the construct of a “semaphore”
which could be used to provide mutual exclusion and to avoid the requirement for busy waiting. Edgar Dijkstra
proposed that the operating system execute a short series of instructions atomically to provide such a service.
The operating system can execute several instructions atomically, because the operating system can turn the
interrupt system off while the code for a semaphore is being executed.

Basically, the semaphore is a short section of code that operates on an integer variable. A semaphore offers
two operations. Dijkstra (from the Netherlands) called these operations “proberen” (P, or test) and “verhogen”
(V, or increment). As time has passed, other names for these methods have included “wait,” “down,” and “sleep”
for P, and “signal,” “up,” and “wake” for V. Multiple names for the same operations can make it difficult to read
different accounts of semaphores, but the idea is simple.

When a process or thread invokes the P operation, the semaphore P method decrements the integer, and if
the value is now less than 0, the operating system blocks the process. Later, some other process will invoke the
V operation using the same semaphore. The V operation will increment the value of the integer, and if the integer
value is now equal to or greater than zero, the process that was blocked will be unblocked.

The semaphore construct is very flexible. Its integer value can be initialized to allow for a variety of uses.
Most often it is initialized to 1, which allows the first process access via the P operation, and blocks any other
process until the first process completes its critical section and executes the V operation.

A semaphore also may be initialized to 0, which will cause the first process that executes a P operation to
block. Some other process will have to execute a V operation on the same semaphore before the first process
will be unblocked. Programmers can use this mechanism to insure that one of two processes always executes first.

A semaphore also may be initialized to some number greater than 1, say 3. That would allow the first 
three attempts to execute the P operation to succeed without blocking. To show how this might be useful, here
is an example of two cooperating programs where one produces a series of n items to be consumed by the other
(this is the “producer–consumer” problem, much like the “server thread–worker thread” example we discussed 
earlier).
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// 'empty', 'full', and 'mutex' are all semaphore objects
empty = n // n = the maximum number of items

// permitted to be waiting to be consumed
full = 0
mutex = 1

/* Producer: */

while( true ) { // while( true ) means continue looping forever
. . .
produce an item
. . .
P(empty);
P(mutex);
. . .
send item to consumer
. . .
V(mutex);
V(full);

}

/* Consumer: */

while( true ) {
P( full )
P( mutex );
. . .
consume an item
. . .
V( mutex );
V( empty );
. . .

}

When the producer has an item ready to give to the consumer, the producer executes a P operation on the
empty semaphore. As long as there are fewer than the maximum permitted items waiting to be consumed, the
producer does not block. Then the producer executes a P operation on the mutex semaphore. The mutex
semaphore is there to make sure that the producer and consumer cannot simultaneously add and consume items,
for that would lead to elusive errors of synchronization. When the producer succeeds and produces a new item,
the producer executes a V operation on the mutex semaphore to release control of the group of items to be 
consumed, and a V operation on the full semaphore. The full semaphore keeps a count of the items 
waiting to be consumed, and the consumer will test that semaphore with a P operation before trying to consume
an item.

When the consumer is ready to do something with the items provided by the producer, the consumer executes
a P operation on the full semaphore to be sure that something is there to consume. If so, the consumer 
does not block, and instead goes on to test the mutex semaphore using the P operation. If the P operation on
the mutex semaphore does not block, it means that the consumer has exclusive access to the set of items 
ready to be consumed. After the consumer removes an item from the set, the consumer releases the 
mutex semaphore by executing a V operation on the mutex. The consumer then increments the count of 
additional items permitted to be in the set of items to be consumed, by executing a V operation on the 
empty semaphore.

Semaphores are simple and powerful, but it can be difficult to design more complex interactions between
processes using semaphores. For instance, suppose a number of threads share read and write access to a file.
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Perhaps the designer wants to avoid the situation where a writer changes something while a reader is reading.
It’s fairly easy to use three semaphores to design the application so that as long as any reader is active with the
file or waiting to be active, no writer is permitted to make any changes.

On the other hand, suppose the designer wants to avoid having a writer change the file contents while 
a reader is reading, but also wants to give a writer priority over waiting readers so that readers will get the latest
information. To implement this writers-first policy requires five semaphores and very careful thinking about
how to use them.

MONITORS

In the mid 1970s, researchers Hoare and Brinch Hansen proposed the monitor idea. A properly written
monitor can simplify the coordination of processes or threads. Monitors are either built into the programming
language, as with Java, or if the application language does not provide monitors, they are specially written.

A monitor is a special object, or “abstract data type,” that can insure that only one process or thread is active
in it at one time. A process enters the monitor by calling one of the monitor’s methods. Once a process enters
the monitor, no other process can enter until the first process exits the monitor. If another process calls one of
the monitor’s methods while a process is active within the monitor, the second process blocks, waiting for the
first process to exit the monitor.

Since the monitor insures mutual exclusion by virtue of the fact that only one process may be active within
it, the programmer using the monitor can dispense with worrying about semaphores or other mechanisms to
assure mutual exclusion. In fact, the first lines of code in a monitor’s method may use a semaphore internally
to enforce the mutual exclusion, but the programmer need not be concerned with the mechanism.

In addition to insuring mutual exclusion, a monitor can be used to synchronize access by different threads
or processes by using “condition variables” to allow a process to wait, if some condition necessary for success
is absent at the time it is active in the monitor. Condition variables also allow the waiting process to be restarted
when the condition changes. The two operations defined for condition variables are usually called ‘wait’ and
signal (to reactivate).

For instance, suppose a consumer process using a monitor finds there is nothing to consume at this moment.
The monitor would provide a condition variable, perhaps called itemsReady, on which the process could wait.

When a process is waiting on a condition variable within the monitor, another process may enter. In fact,
if another process has been waiting for the monitor, as soon as the active process in the monitor waits for a 
condition variable, the process that has been waiting will gain access to the monitor and become the monitor’s
active process.

At some point, some cooperating process will change the condition on which another process has been
waiting. For instance, a producer process will create an item that the consumer can process. When a process
makes such a change, the active process will signal the condition variable. A signal will cause the monitor to
reactivate one of the processes waiting (there may be more than one process waiting) on that condition variable.

Signals are not counters, as semaphores are. If a signal occurs and no process is waiting on that condition
variable, nothing happens. The signal is like the old tree falling in the forest. The noise makes no difference if
no one is there to hear it.

Suppose that a monitor called PC (for Producer–Consumer) is available to support a set of processes that coop-
erate producing items (e.g., product orders) and consuming them (e.g., making entries in shipment schedules for dif-
ferent distribution centers). The monitor has two methods, addOrder and retrieveOrder; addOrder takes
an Order as an argument, and retrieveOrder returns an Order. The application code becomes very simple:

Producer:

while( true ) {
Order newOrder = createOrder( orderNumber );
PC.addOrder( newOrder );

}
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Consumer:

while( true ) {
Order thisOrder = PC.retrieveOrder( );
distributeOrder( thisOrder );

}

The complexity of guaranteeing mutual exclusion and proper coordination is hidden in the monitor’s code. While
a monitor may require some thought to create, it greatly simplifies the rest of the code for the cooperating processes.

Java provides a simple and general-purpose monitor feature. Every object in Java has an associated monitor
that is entered by a thread when the thread enters code that is synchronized on the object. If a thread attempts
to enter synchronized code, and another thread already occupies the object’s monitor, the thread blocks.

A block of code may be explicitly labeled as synchronized with this Java syntax:

synchronized( someObject ) {
. . .
/* Code executed within the monitor of someObject */
. . .

}

As a convenience, a class in Java can also declare some of its methods to be synchronized. Such a declaration
is the same as synchronizing on this particular instance of the class. Thus, when one thread is executing any one
of the synchronized methods of the class, no other thread will be allowed to execute any synchronized method
of that instance of the class, whether the same synchronized method or a different one.

Java monitors differ from the classical monitor idea in that Java monitors do not support condition variables.
However, a thread can decide to wait while in the monitor, and give up the lock on the monitor while waiting,
by using the synchronizing object’s wait() method. Likewise, a thread waiting in the monitor can be awakened
when another thread in the monitor uses the object’s notify() method.

Here is an example of a class that could be used to implement a producer–consumer relationship between
threads in Java. As long as the producer and consumer reference the same instance of the class PC, their interaction
will occur correctly because the putMessage and getMessage methods are synchronized:

import java.util.*;
public class PC {
static final int MAXQUEUE = 5;
private List messages = new ArrayList();
// called by Producer

public synchronized void putMessage(){
while ( messages.size() >= MAXQUEUE )
try {
wait();

}catch(InterruptedException e){}
messages.add(new java.util.Date().toString());
notify();

}

// called by Consumer
public synchronized String getMessage(){
while ( messages.size() == 0 )
try {notify();

wait();
}catch(InterruptedException e){}

String message = (String)messages.remove(0);
notify();
return message;

}
}
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Here is code called PC_demo, along with code for Producer and Consumer thread classes, that 
exercises the PC class as a monitor to synchronize activities:

public class PC_demo {
public static void main(String args[]) {

PC monitor = new PC();
Producer producer = new Producer( monitor );
Consumer consumer = new Consumer( monitor );
consumer.start();
producer.start();

}
}

public class Producer extends Thread {
PC monitor;
static final int MAXQUEUE = 5;

Producer( PC theMonitor ) {
monitor = theMonitor;

}

public void run() {
while ( true ) {
monitor.putMessage();
try { Thread.sleep( 1000 );
}catch(InterruptedException e){}

}
}

}

public class Consumer extends Thread {
PC monitor;

Consumer( PC theMonitor ) {
monitor = theMonitor;

}

public void run() {
while ( true ) {
String newMessage = monitor.getMessage();
System.out.println( newMessage );

}
}

}

Since every object in Java has an associated monitor, using a monitor in Java is very convenient. The 
trick is to be sure that all the cooperating threads are synchronizing on the same object. A frequent error 
by beginners is to have multiple threads synchronizing on different objects, which of course leads to failure 
of synchronization. In the example above, the class PC_demo creates an instance of the monitor, and then
passes that same particular instance to both the Consumer and the Producer in the constructors of the
Consumer and the Producer. This insures that the Consumer and Producer are synchronizing on 
the same object.
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DEADLOCK

In the multiprocessing, multithreaded environment, conditions can occur which produce a deadlock, a conflict
of needs and allocations that stops all computing. For instance, suppose processes A and B share access to files
X and Y, and assume the usual case that when a process opens a file for writing, the operating system gives that
process an exclusive lock on the file. Process A opens file X for writing, and then tries to open file Y for writing.
Process A cannot open file Y, however, because process B has file Y open for writing, so process A blocks. 
Then process B tries to open file X for writing. However, process B cannot succeed because process A already
has file X open. Now both processes are blocked indefinitely. A deadlock has occurred; the processes are locked
in a deadly embrace.

Four conditions are necessary for deadlock to occur:

1 Mutual exclusion
2 Hold and wait
3 No preemption
4 Circular wait

By mutual exclusion, we mean that resources are allocated exclusively to one process or another (and
throughout this discussion you can substitute “thread” for “process”). If, in the example at the start of this 
section, the files had been opened in shared mode, mutual exclusion would not apply, and the deadlock would
not occur.

By hold and wait, we mean that a process can continue to hold exclusive access to a resource even as it
waits to acquire another. If either process in the example had been compelled to release any file it had locked
when it requested exclusive access to another file, the deadlock would not occur.

By no preemption, we mean that the operating system will not force the release of a resource from 
a blocked process in order to satisfy a demand by another process. If, in the example, the operating system 
had forced blocked process A to release its control of file X in order to grant access to file X to process B, the
deadlock would not occur.

By circular wait, we mean that there exists some chain of processes waiting for resources such that one
process waits for another, which waits for another, etc., until the last process waits for the first again. In the
example, there are only two processes, and each waits for the other, so the circular wait is a short chain and easy
to discern. If, on the other hand, process B blocked waiting for some resource held by process C, and C could
eventually complete and release the resource required by process B, there would be no circular wait, and the
deadlock would not occur.

Deadlock prevention

Deadlocks may be prevented by insuring that at least one of the conditions necessary for deadlock cannot
occur. While this sounds straightforward at first, applying this idea is often impractical.

Suppose one decides to do away with mutually exclusive access to resources? What if two processes use
the printer at the same time? Some real-time systems allow such things to occur because the operating system
is so simplified and streamlined for real-time performance that no provision is made for exclusive access to I/O
devices. The result is that the lines of output from two simultaneously executing processes get intermingled,
leading to unintelligible output on the printer. In the general case, one does not have the option of doing away
with mutual exclusion.

Suppose one decides to do away with hold and wait? An alternative is to require a process to request in
advance all the resources it will need during the course of its execution. If it receives all the resources it needs,
it proceeds; if it cannot reserve everything at once, it blocks until it can. This approach can work, but at the cost
of reduced efficiency. Suppose a long-running process requires a printer only at the end of its run; the printer
will be unavailable to other processes in the meantime. Some systems, especially older mainframe systems,
employ this design, but most modern systems do not, for reasons of efficiency.

Suppose one decides to do away with no preemption? Alternatives providing for preemption run into the
same problems as alternatives doing away with mutual exclusion. For example, it usually won’t make sense to
take a printer away from a process that has blocked because it’s waiting for a file. The resulting intermingling
of output will fail the needs of both processes.
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Suppose one decides to do away with circular wait? There is a workable alternative for doing away with
circular wait. The solution is to apply a numerical ordering to all the resources, and to require processes to lock
resources in numerical order. For instance, suppose these resources are given this numerical ordering (the order
is arbitrary):

1 File X
2 File Y
3 Printer
4 Tape drive
5 CD-ROM drive
6 Plotter

If a process needs to have exclusive access to file X and file Y, it must lock the files in that order. Likewise,
if a process first locks the printer, it may not then lock either file. Having locked the printer, however, the
process could still go on to lock the CD-ROM drive.

It can be shown rather easily that such a scheme will prevent circular wait. The difficulty in a general-purpose
operating system is to enforce such a discipline among all the application programs. In addition, if the more
abstract resources such as entries in various system tables, and individual records in files, are considered
resources, the complexity of the ordering becomes much greater.

Because of these implementation problems, general-purpose operating systems do not provide such a facility
for deadlock prevention. However, this principle can be of great practical value to application developers who
work with complex, multithreaded applications. The application developer can impose their own ordering on
the shared resources of the application (files, timers, data-base tables, etc.) and insure that threads or processes
within the application access the resources in order. Doing so can insure that the application never deadlocks.

Deadlock avoidance

Since deadlock prevention is not, in general, practical, another approach is to have the operating system
maintain a vigilance that will avoid situations where deadlock is possible. In 1965, Edgar Dijkstra published the
“banker’s algorithm” for deadlock avoidance.

The banker’s algorithm behaves as a banker might in considering whether to grant loans. If granting a new
loan would put the bank at risk of failing, should too many borrowers make demands on the bank’s resources,
the banker will deny the loan. Thus does the banker avoid difficulty.

The banker’s algorithm requires that each process declare at the start the maximum number of resources of
each type (e.g., how many printers, how many tape drives, etc.) it will require over the course of its execution.
Then, whenever a process requests exclusive access to new resources, the OS simulates granting the request, and
checks to see that there is some way for all processes to complete, even assuming that each process immediately
requests its maximum requirement of all resources. If the check is favorable, that means that the system will remain
in a “safe state,” and the OS grants the resource request. Otherwise, the OS blocks the requesting process.

As appealing as the banker’s blgorithm may be, it is not usually applied in practice, for several reasons.
Many times, processes do not know in advance what their maximum requirement for resources will be; 
it depends on the results of the computation or the dynamic needs of the application. The number of processes
is not fixed, either; processes can be added to the mix at any moment, rendering previous calculations of 
the safe state invalid. Likewise, the number of resources may change, as when a device fails or goes off-line
(e.g., a printer runs out of paper).

Deadlock detection

Some systems or subsystems (e.g., data-base systems) implement deadlock detection. This is different from
deadlock prevention and deadlock avoidance, which we have discussed and concluded are impractical in 
general purpose systems. On the other hand, deadlock detection can be implemented with beneficial results in
some systems.

Deadlock detection works by having a deadlock detection routine run either periodically, or in response to
some circumstance (e.g., low CPU utilization), to determine if a deadlock exists. Such a routine will inspect the
resources allocated to each process, and examine all the pending requests by processes for additional resources.
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If there is some way for all processes to have their pending requests satisfied and run to completion, then deadlock
does not exist. Otherwise, deadlock does exist, and some action must be taken to break the deadlock.

The deadlock detection algorithm works by maintaining several data structures. First, the algorithm maintains
a vector with the count of available resources of each type. This vector is called Available. If a system has
seven printers, two CD-ROM drives, and six plotters, and all devices are allocated to one or another process
(none is available), then the vector

Available = [0, 0, 0]

A matrix called Allocated records the counts of resources of each type already allocated to each active
process. In a particular case of five active processes, where all of the resources listed in the previous paragraph
have been allocated, the matrix Allocated might look like this:

A matrix called Requests maintains the counts of all pending resource requests, at this particular moment,
by each process. Suppose this is the matrix Requests for the same set of five processes at a particular instant:

With this information, the system can determine whether deadlock has occurred. All it needs to do is determine
whether there is some way all processes can have their requests met, and then continue to execute. If there is
some way all processes can complete, then there is no deadlock.

In this case, no resources are available; all resources are already allocated. However, P0 and P2 are 
not requesting any more resources. Suppose P0 and P2 run to completion; P0 will release one CD-ROM drive,
and P2 will release three printers and three plotters. At that point Available = [3, 1, 3]. Now the
requests of P1 for two more printers and two more plotters can be satisfied; P1 can complete; and P1 can return
the two printers it already has, plus the two more it requested. Now Available = [5, 1, 3]. It’s obvious
that similar reasoning shows that the requests of the remaining processes can be satisfied, and therefore there is
no deadlock at this time.

Suppose, however, that one small change is made to the matrix Requests. Suppose that P2 has a pend-
ing request for one plotter. Now the matrix Requests looks like this:

Allocated
P CD Plot

P0 0 1 0
P1 2 0 0
P2 3 0 3
P2 2 1 1
P2 0 0 2

CHAP. 6] OPERATING SYSTEMS 113

Requests
P CD Plot

P0 0 0 0
P1 2 0 2
P2 0 0 0
P3 1 0 0
P4 0 0 2

Requests
P CD Plot

P0 0 0 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2



P0 can still proceed as in our earlier analysis, and when it completes it will return one CD ROM drive. Then
Available = [0, 1, 0]. Unfortunately, there is no way to satisfy the requests of any other process, and
P1, P2, P3, and P4 are deadlocked.

Deadlock recovery

Once the system detects a deadlock, the next question is what to do about it. Some resource could be preempted
from one of the processes, but the operating system probably will not know the consequences of such an action.

One of the processes could be terminated, but again the consequences will probably be unknown. What if the
deadlocked process had just withdrawn $1000 from a savings account, and was now blocked as it attempted to deposit
that money in a checking account? One wouldn’t want to terminate the process; nor would one want to restart it.

An exception might be if one of the processes were a compiler or some other process whose computation
could be restarted from the beginning. Since such a process could be safely restarted, it could be terminated in
order to free resources. Such action might or might not, depending on the circumstances, remove the deadlock.

Most data-base systems have the ability to roll back transactions that fail, and a data-base management
system may provide for rollback in the face of deadlocked access to data-base tables and rows. In fact, modern
data-base management systems are the most likely application area to find implementations of deadlock detection
and recovery.

In the end, it may be best for the system to simply announce that a deadlock has occurred and let the 
operator take some action the operator thinks appropriate.

Deadlock detection is potentially expensive of computing time, especially if run frequently, and the question
of what action to take when a deadlock occurs is usually too difficult to automate. As a result, general-purpose
operating systems almost never try to manage deadlock. On the other hand, data-base management systems
often do try to detect deadlocks and recover from them within the narrower purview of data-base management.

SCHEDULING

One of the very most important tasks of an operating system is to schedule processes and threads for execution.
In the early days of computing, the programmer would load the program into memory somehow (front panel
switches, paper tape, etc.), and then press the start button. Very soon the task of starting, interrupting, and
restarting processes became the bailiwick of the OS.

The question of which task to schedule for execution at any moment has been the subject of much research
and considerable design effort. The answer depends in part on the type of operating system. If the system is a
batch system, the scheduling plan should optimize throughput (the number of jobs completed per hour), CPU
utilization, and/or “turnaround time” (the average elapsed time between the submission of a job and its completion).

If the system is an interactive system, the scheduler should provide responsiveness and the impression 
of fairness to all users. Interactive systems often have less well-defined boundaries of jobs, so the criteria 
mentioned for batch systems are not as relevant. A more important criterion is response time to the user, the
time delay between input from the user and some response back from the process.

If the system is a real-time system, with important constraints on execution time, the scheduler will be
judged by the consistency with which applications meet their deadlines, and the predictability of performance.
Some real-time systems are hard real-time systems, meaning that important absolute limits bound performance
requirements (imagine a system that coordinates process equipment in a chemical plant). Other real-time systems
are soft real-time systems, meaning the highest priority processes should execute as fast as possible, but absolute
limits on processing time do not exist.

An important way in which schedulers differ is in whether or not the scheduler is preemptive. A preemptive
scheduler can interrupt an executing process and switch to a different one. Such a change is called a “context
switch,” and entails a substantial amount of system overhead in changing the contents of registers, memory
maps, and cache memory.

First come first served (FCFS)

Early batch systems used a simple FCFS (FCFS—also called FIFO, for first in first out) scheduling 
system. With FCFS, the first process to the system is scheduled, and it runs to completion or until it is blocked
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(e.g., for I/O). When a job completes or blocks, the next process on the waiting queue of processes is allowed
to execute. As a process becomes unblocked, it goes to the end of the FCFS queue as if it had just arrived.

While simple to implement, FCFS does not perform as well as other algorithms on the measures of 
turnaround time and throughput, particularly when some processes are much more “compute-bound” (need
extended time with the CPU for computation) and others are more “I/O-bound” (use less CPU time, but require
many interruptions for I/O).

Shortest job first (SJF)

With SJF, the operating system always chooses the shortest job to execute first. The merit of this plan 
is that such a scheme will insure the minimum average turnaround time and the maximum average throughput
(in terms of jobs per hour).

The challenge is to know in advance which job is the shortest! The usual solution to this problem of 
estimation is to require the user to declare the maximum execution time of the job. Since shorter jobs get 
executed first, the user is motivated to provide an estimate that is only as large as necessary. However, if the job
exceeds the estimate provided by the user, the job is simply terminated, and the user learns to estimate more
accurately in the future.

Shortest remaining job first (SRJF)

SRJF is a preemptive version of SJF. When a new process becomes ready, the operating system inspects
both the newly ready process and the currently executing process, and chooses the process with the least time
remaining to run. If the new process will complete more quickly than the one that was interrupted, the new
process is scheduled to execute.

Round robin (RR)

Round robin scheduling is frequently used in interactive systems. As the name implies, each process is
given a share of time with the CPU, and then the next process gets a turn. RR scheduling came into widespread
use with timesharing systems, beginning in the mid 1960s.

Each unit of time allocation is called a “timeslice” or “quantum.” RR schedulers can be tuned by changing
the value of the quantum. If the quantum is sufficiently large, the system effectively becomes FCFS. With 
a smaller quantum, the system interleaves ready processes giving the illusion of simultaneous computation. 
If the value of the quantum is too small, the overhead of context switching among the processes can hurt 
overall system throughput (however measured). Most RR schedulers use a quantum value of 20 to 50 ms
(Tanenbaum, Andrew, Modern Operating Systems, Saddle River, NS, Prentice Hall, 2001).

Priority based

Scheduling based strictly on process priorities is characteristic of real-time systems. The ready process with
the highest priority is always the process chosen to execute. Usually real-time schedulers are also preemptive,
so any time a higher priority process becomes ready, a context switch occurs and the higher priority process 
is dispatched.

Priority-based scheduling is also used in other contexts. For instance, a system may use priority-based sched-
uling, but decrement a process’s priority for every quantum of CPU time the process is granted. This is one way
to implement a RR scheme, but using priorities instead of position in a queue to choose the process to execute.

More commonly today, a system will implement multiple queues with different queue priorities, and then
schedule processes from the highest priority queue that has processes ready to run. The scheduling rule within
a particular queue may be RR or something else.

Starvation (withholding of CPU access) is always a possibility with any priority-based scheme. A system that
is at saturation (i.e., full capacity) will not be successful with any priority system. Imagine an airport commanded
to handle more air traffic than it can accommodate. One can give priority for landing to those short of fuel, but
if, in a given period of time, there are more airplanes to land than the airport can accommodate, very soon all
the aircraft in the sky will be short of fuel.
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Multilevel queues

A simple example of multiple queues with different priorities is a system where processes are classified as
interactive “foreground” processes and batch “background” processes. As long as there are foreground
processes ready to run, the system uses RR to share the CPU among the foreground processes. Only when 
all the foreground processes terminate or are blocked does the system choose a process from among the 
background processes to run. To keep things simple and minimize context-switching overheads, the system
might use FCFS to schedule the background tasks.

Multilevel feedback queues

A more complex and dynamic use of multiple queues of different priorities uses experience with the executing
processes to move interactive processes to a higher-priority queue, and batch or CPU-bound processes to 
a lower-priority queue. A process which proves to be a heavy user of the CPU gets moved to a background
queue, and a process which blocks often for I/O (and is likely, therefore, to be an interactive process) gets moved
to a foreground queue. Foreground queues will use RR schedulers, and higher-priority foreground queues will
use smaller timeslices. Background queues may be scheduled FCFS and background processes, when finally
scheduled, may enjoy longer intervals of CPU time, so that once the low-priority jobs get the CPU, they can finish.

Any specific implementation of a scheduler is usually based on a combination of scheduling strategies. For
instance, traditional UNIX scheduling used multiple queues. System functions like swapping processes and
manipulating files ran in higher-priority queues, and user programs ran in the user process queue. User process
priorities were adjusted once a second. Processes that proved to be CPU-bound had their priorities lowered, and
processes that proved to be I/O-bound had their priorities raised. The effect was to give preference to interactive
processes, which were I/O-bound serving users at terminals (Stallings, William, Operating Systems: Internals
and Design Principles, 5ed, Saddle River, NS, Prentice Hall, 2005).

On the other hand, Hewlett Packard’s Real-Time Executive (RTE) of the 1980s used a strictly priority-based
real-time scheduler. There were 32,767 different priority levels (something of an over-supply of priority levels!),
and whichever ready process had the highest priority was the one that was dispatched.

MEMORY MANAGEMENT

The operating system is responsible for assigning to processes memory in which to execute. In fact, the
operating system is responsible for managing a whole array of memories in support of processes, principally
main memory, cache memory, and disk memory.

To set the stage for this discussion, recall that the computer must have a prepared sequence of machine 
language instructions before a program can be executed. The programmer writes in source code and submits the
source code to the compiler. The compiler translates the source code to machine language, but since the compiler
has no way of knowing which address in any particular computer is the first available address (lower memory
may be occupied by operating-system code or another process), the compiler starts putting variables and
instructions at address zero. The file the compiler creates is called a relocatable file, because the addresses in
the file still need to be adjusted (relocated) before the code can be executed.

One approach to adjusting the relocatable addresses is to have the loader add the offset of the first available
memory location to all the addresses in the relocatable file. For example, if the compiler creates variable X at
location 100, and the first available memory for a user program is at location 1112, then the loader can adjust
the address of X in the executable file (machine code file) to be 1112 + 100.

In early computers without multiprogramming capability, a process executable, or “image,” was first created
by the loader. Then the image was loaded into memory, executed, terminated, and removed from memory. 
One could execute a second program only after the first was completed.

MEMORY MANAGEMENT WITH MULTIPROGRAMMING

With multiprogramming came more sophisticated memory management. More than one program could be
in memory at one time, and it became important that an executing process did not change the contents of
memory devoted to the operating system itself, or of memory belonging to another process.
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The solution in the mid-1960s and 1970s was to use two registers whose contents would be set by the 
operating system just prior to turning execution over to the user process. One register was called the “base” or
“relocation” register, and it held the starting address of the memory allocated to the process. The other register
was called the “limit” register, and it held the maximum size of the program.

Each time a process accessed memory, the computer hardware (called the memory management unit
(MMU)) would check the address to make sure it was less than the limit register contents. If not, the MMU
would trap the error and generate an interrupt (an interrupt caused by software is called a trap) that would 
activate the operating system in kernel mode. Then the OS could deal with the problem, probably by generating
a memory protection error and terminating the offending process.

On the other hand, in the usual case where the address was within legal range, the MMU hardware would
add the contents of the relocation register to the address. The sum would then be the correct physical address
for the program executing on this machine at this time, and the access would proceed. Having an MMU with a
relocation register meant that a program could be loaded into one part of memory at time 1, and into a different
part of memory at time 2. The only change between times would be to the contents of the relocation register.

The part of memory concept became more sophisticated over time. Initially, memory was divided into partitions
of fixed sizes when the operating system was installed or generated (called a system generation or “sysgen”).
A program could run in any partition big enough to accommodate it.

Later, operating systems gained the feature of being able to support dynamic memory partitions of varying
sizes. This complicated the operating system’s task of tracking and controlling memory usage, but it increased
flexibility. The operating system would maintain a list or bit-map of memory allocations and free memory.
When a program became ready to run, the operating system would find a big enough block of memory to
accommodate the program, and then dispatch the program to that chunk of memory.

In a dynamic multiprogramming environment, with processes of different sizes starting and terminating all
the time, it became important to make wise choices about how to allocate memory. It was all too easy to end up
with processes scattered throughout memory, with small unallocated blocks of memory between, and no blocks
of memory large enough to run another program. For example, a ready program might require 12K of space,
and there might be more than that much unused memory, but the unused memory might be scattered widely,
with no one block being 12K or larger.

Unusable memory scattered between allocated partitions is called “external fragmentation.” On the other
hand, unused memory within an allocated block is called “internal fragmentation.” Internal fragmentation
results because the OS allocates memory in rather large units, usually in “pages” of 1024 to 4096 memory
addresses at a time. Almost always the last page allocated to a process is not entirely used, and so the unused
portion constitutes internal fragmentation.

Unused memory blocks are called “holes,” and much research was devoted to finding the most efficient
way to allocate memory to processes. The “best fit” approach sought the smallest hole that was big enough for
the new process. As desirable as that approach sounds, it did require the OS to look at every hole, or to keep the
holes in order sorted by size, so that it could find the best fitting hole for a new process.

Another approach was called “first fit,” and, as it sounds, first fit accepted the first hole that was large
enough, regardless of whether there might be another hole that fit even better. The thought in favor of first fit
was that it would execute more quickly.

Believe it or not, another contending algorithm was “worst-fit.” The argument for worst fit was that it would
leave the largest remaining hole, and hence might reduce the problem of external fragmentation. As a matter of
fact, the research showed worst fit lived up to its name, and was worse than best fit and first fit.

TIMESHARING AND SWAPPING

Timesharing systems exposed the need to move a partially complete process out of main memory when the
process was forced to wait for the impossibly slow (in computer time) user at a terminal. Even an actively typing
user might cause the process to wait for the equivalent of 1000 instructions between typed characters.

The solution was called “swapping.” When a process blocked for I/O, it became eligible to be swapped to
the disk. If another process were ready to use the memory allocated to the blocked process, the OS simply
copied the entire contents of the blocked process’s memory, as well as the CPU register contents, to a temporary
“scratch” or “swap” area on the disk.
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Since the process state at the time of the swap included the values of the registers and the values of the 
variables, the OS had to save the image of the executing process. Later, when the I/O completed, the OS could
decide to bring the swapped process back into memory, and it was essential that the interrupted image be
brought back. The OS could not bring in an original copy of the program from the original executable file,
because the original executable file would not have the current values for the registers or variables.

Most general-purpose operating systems today continue to use swapping as part of a more sophisticated
virtual memory management capability.

VIRTUAL MEMORY

The concept of virtual memory further separated the concepts of logical address and physical 
address. The logical address is the address as known to the program and the programmer; the physical address
is the actual address known to the computer memory hardware. The relocation register was the first 
mechanism we discussed by which a logical address (the relocatable address) was converted into a different
physical address.

Virtual memory completely separates the concepts of logical and physical memory. Logical addresses 
can be much, much greater than the maximum physical memory. With virtual memory, an entire program 
need not be in memory during execution, only the part of the program currently executing. Also, memory 
allocated to a program need not be contiguous, and instead can be scattered about, wherever available 
memory exists.

Many advantages attend virtual memory and justify its complexity. Most importantly, programmers can
ignore physical memory limitations. This greatly simplifies software development. Virtual memory also allows
a greater degree of multiprogramming, which can improve CPU utilization. More processes can be in memory
ready to run, because each process can occupy much less memory than its full program size would otherwise
require. Virtual memory also facilitates sharing of memory between processes, for purposes of sharing either
code or data.

Virtual memory is implemented using demand paging or segmentation, or both. By far the more common
approach is demand paging.

Paging

A paging system divides main memory, physical memory, into blocks called frames. The size of a frame 
is some power of 2 (for reasons that will become clear), and systems have implemented frames of sizes from
512 bytes to 64K. A typical size is 4K (1024 addresses in a system with a 32-bit, or 4-byte, word size).

A paging system divides logical memory into “pages” of the same size as the frames. When the operating
system needs to allocate memory to a process, it selects one or more empty frames, and maps the process pages
to the frames by means of a “page table.”

The page table for a process has an entry for each page in the process’ logical address space. When the
process requires access to memory, the system inspects the logical address to determine which page it references.
Then the system consults the page table entry for that logical page to learn what frame in physical memory the
process is referencing. Finally, the system executes the reference to the proper physical memory location in the
appropriate frame.

Making the frame and page size a power of 2 speeds the process, because it means that the logical address
can be conveniently split into two fields, a “page number” and an “offset.” The page number can become a quick
index into the process page table, and the offset remains simply the address of the reference within the page/frame.

For instance, if a 32-bit system (addresses are 32 bits long) has a frame size of 4K, it means that 12 bits of the
address are required for the offset within the page (212 = 4096 bytes on a page). The low-order (least significant)
12 bits of the address become the offset, and the high-order (most significant) 20 bits become the page number.

Suppose the process references memory location 1424. Since that number is less than 4096, the reference is
to page 0, the first page. The number 1424 represented as a 32-bit binary number is the following (for readability,
the address is broken into bytes, and the page number field is underlined):

00000000 00000000 00000101 10010000
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Notice that the high-order 20 bits are all zeros, so this logical address is on page 0, the first page.
Suppose instead that the process references memory location 10304. Since the page size is 4096, this 

reference is to a location on the third page, page 2 (remember that the first page was page 0). The number 10304
in binary is the following:

00000000 00000000 00101000 01000000

The high-order 20 bits now create the binary number 2, so this reference is to page 2. The offset within 
the page is given by the low-order 12 bits as 2112 (the sum of 2048 and 64 from bits 11 and 6; remember, the
first bit is bit 0). Multiplying the page number (2) by the page size (4096) gives 8192, and adding the offset of
2112 gives 10304, the original address. Isn’t that clever?

Now imagine how this works with a page table. The page address becomes an index into the page table.
The entry in the page table contains the physical frame number. The system simply substitutes the contents 
of the page table entry, which is the physical frame number, for the page field of the address, and the result is
a complete physical address.

Suppose that the frame allocated for page 2 (the third page) of the process is frame 9. The page table entry
for page 2 would be the following (remember, there are only 20 bits for the frame address):

00000000 00000000 1001

Now the memory reference to location 10304 will result in the frame address of 9 being substituted 
for the page address of 2, and the resulting physical address will be this address, which is located in 
frame 9:

00000000 00000000 10011000 01000000

The physical address is 38976, in the 10th frame (again, the first frame is frame 0). Figure 6-1 shows 
a representation of the page table for a process. Note that the pages of memory allocated to the process need
not be contiguous. The operating system can assign any free frame of memory to a process simply by including
the frame in the page table for the process.
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Virtual Memory using Paging

A virtual memory operating system that uses paging will map into the process’s page table only those pages
of logical memory necessary for the process at a particular time. When a process starts, the OS will map in some
number of pages to start. This number of pages is determined by an algorithm that takes into account the number
of other processes running, the amount of physical memory in the machine, and other factors.

In addition to a frame number, a page table entry also includes several important status bits. In particular,
a bit will indicate whether the page mapping is “valid.” When the OS maps in several frames for a process, 
the process’s code and data are copied into the frames, the frame numbers are written into the several page 
table entries, and the valid bits for those entries are set to “valid.” Other entries in the page table, for which no
mapping to frames has been made, will have the valid bit set to “invalid.”

As long as the process continues to reference memory that is mapped through the page table, the 
process continues to execute. However, when the process references a memory location that is not mapped
through the page table, the fact that the valid bit for that page is set to “invalid” will cause the reference to 
generate a “page fault.” A page fault causes a trap to the operating system, and the operating system must 
handle the page fault by:

1 Locating the required page of code or data from the process image
2 Finding an unused memory frame
3 Copying the required code or data to the frame
4 Adding a mapping of the new frame to the process’s page table
5 Setting the valid bit in the new page table entry to valid
6 Restarting the instruction which faulted

The processing of a page fault can also be more complex, as when all memory is allocated, and some 
previously allocated page mapping must be replaced. Also, because of the wait for disk I/O in reading the
process image into memory, it’s likely that another process will be scheduled while the disk I/O completes.

Virtual Memory Problems and Solutions

It’s fine that each process has a page table mapping its logical address space to physical memory. However,
there are additional problems to solve in real systems, in order to make virtual memory systems work well.

First, every reference to memory first requires a reference to the page table, which is also in memory. Right away,
even when there is no page fault, using a page table cuts the speed of access to memory by a factor of 2.

A solution to this problem is to use an associative memory called a translation lookaside buffer (TLB).
An associative memory is a small, expensive, “magic” piece of hardware that can perform a whole set of 
comparisons (usually 64 or fewer) at once. As a process is executing, the TLB, which is part of the MMU, maintains
the recently accessed page table entries. When the process makes a reference to memory, the MMU submits the
page number to the TLB, which immediately returns either the frame for that page, or a “TLB miss.” If the TLB
reports a miss, then the system must read the page table in memory, and replace one of the entries in the TLB
with the new page table entry.

Virtual memory, and particularly the TLB speedup, works because real programs display the property of
locality. That is, for extended portions of a process’s execution, the process will access a small subset of its 
logical address space. Real programs use loops, for example, and arrays and collections, and real programs make
reference repeatedly to addresses in the same vicinity. Thus, having immediate access to a relatively small
number of pages of the process’s total logical address space is sufficient to maintain efficiency of execution.

A second problem is that page tables themselves become very bulky in modern systems. Our example,
which was realistic, showed 20 bits being used for the page number in a 32-bit address. That means that each
process has a logical address space of over one million pages. If a page table entry is 32 bits (typical today),
then 4 Mbytes of memory are required for each running process, just for the process’s page table! Imagine the
problem with the newer 64-bit machines—even imagining is difficult!

One widely used solution is the multilevel page table, a nested page table. To return to our example, 
suppose we break the 20-bit page address into two 10-bit fields. Ten bits will represent 1024 entities. The first
10-bit field will be an index into the “top-level” page table, and the second 10-bit field will be an index into 
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a “second-level” page table. There can be 1024 second-level page tables, each with 1024 entries, so all one million
pages in the logical address space can still be mapped.

However, almost no program requires the full million-page logical address space. The beauty of the multilevel
page table is that the OS does not need to devote space to page table entries that will never be used. Each
second-level page table can represent 1024 pages, and if each page is 4K, then each second-level page table can
represent 4 Mbytes of address space.

For example, as I write, Microsoft Word is using almost 11 Mbytes of memory. That much memory could
be mapped with only three second-level page tables. The sum of entries from the top-level page table and three
second-level page tables is 4096. If each entry is 32 bits (4 bytes), then the page table space required for Word is
16K, not the 4 Mbytes required to represent the entire logical address space. Depending on the actual locations
being referenced, the OS may in fact require more than the minimum number of second-level page tables to
manage the mappings, but the improvement in memory utilization by means of the nested page table is still apt
to be two orders of magnitude.

With the introduction of 64-bit computers, a new solution to the problem of large page tables is being
implemented. This approach is called the inverted page table. The page table as we have discussed it so far has
one entry for each page of logical memory. Flipping this idea on its head, the inverted page table has one entry
for each frame of physical memory. And, instead of storing a physical frame number, the inverted page table
stores a logical page number.

Since the number of frames of physical memory is likely to be much smaller than the number of pages of
logical memory in a 64-bit computer (with 4K pages, 252 = way too many logical pages to contemplate—
millions of billions), the page table size remains reasonable.

Each entry in the inverted page table contains a process identifier and a logical page number. When 
a process accesses memory, the system scans the inverted page table looking for a match of process ID and logical
page number. Since each entry in the inverted page table corresponds to a physical frame, when the system finds
a match, the index into the inverted page table becomes the frame number for the actual memory reference. For
instance, if a match occurs in the 53rd entry (entry 52, since the first entry is entry 0) of the inverted page table,
then the frame for physical memory is frame 52. The system adds the offset within the page to the frame number
of 52, and the physical address is complete.

The inverted page table keeps the size of the page table reasonable. Note, too, that there is only one page
table for the whole system—not one page table per process. The only problem is that searching through the 
page table for a match on process ID and logical page number can require many memory references itself. 
Once again, the TLB delivers a workable solution. Programs still show strong locality, so the TLB continues to
resolve most address lookups at high speed. TLB misses do require a lengthy search, but engineering means
making sensible tradeoffs.

Finally on the subject of page tables, page table entries have additional status bits associated with them.
Earlier we mentioned the valid bit, used for signaling whether the page was in memory or not. In addition, read
and write permission bits allow the system to provide protection to the contents of memory, page by page.

There are also bits to indicate whether the page has been accessed and whether it has been modified. When
it comes time to replace the mapping of one page with another, the accessed bit allows the OS to replace a page
that isn’t being accessed very often instead of one which is.

The modified bit also helps during page replacement decisions. Other things being equal, it makes more
sense to replace a page that has not been modified, because the contents of memory don’t need to be written to
disk as the page is replaced; nothing has been changed. On the other hand, a modified, or “dirty,” page will need
to be written to disk to store the changes before its memory can be reallocated.

Page Replacement Algorithms

When a process needs a page that is not yet mapped into memory, and another page must be replaced to
accommodate that, the OS must decide which page to sacrifice. Much research and experimentation have gone
into creating efficient algorithms for replacing pages in memory. As an example, we will discuss the “clock” or
“second chance” algorithm.

The clock algorithm uses the Referenced bits in the page table, and a pointer into the page table. Every read
or write to a page of memory sets the Referenced bit for the page to 1. On every clock tick interrupt to the
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system, the OS clears the Referenced bit in every page table entry. The system also maintains a pointer, the
“clock hand,” that points to one of the page table entries, and the system treats the page table as a circular list
of pages.

When a page fault occurs and one of the mapped pages must be replaced, the system checks the page table
entry pointed to by the clock hand. If the Referenced bit for that page is 0, it means that the page has not been
referenced since the last clock tick. In that case, that page of memory is written to the disk, if necessary (if it’s
“dirty”), and that frame of memory is reallocated for the new page.

On the other hand, if the Referenced bit for the page pointed to by the clock hand is 1, it means that the
page has been accessed recently. Since recently accessed pages are more likely to be accessed in the near future,
it would be unwise to replace a recently used page. So the clock algorithm sets the Reference bit for the page
to 0, and moves to the next entry in the list. It continues in this manner until it finds an entry whose Referenced
bit is 0, and in that case it reallocates the frame for new use with the new page.

The clock algorithm is also called the “second chance” algorithm because sometimes a page comes up for
a second chance to be sacrificed. If the Referenced bits are set for all pages, then the pointer eventually will
point to the page it started with. Since it cleared the Referenced bit for this page the first time around, on the
second chance the page will be selected for replacement.

FILE SYSTEMS

The file system is one of the most visible facilities of an operating system. Since the early days of operating
systems, the OS has provided a permanent means to store information. A file collects related information
together and provides access to the information via the name of the file. Over time, many file types have been
developed to suit different purposes.

Just as files organize information, file directories organize files. Today it seems almost beyond question that
file directories should be of “tree” form, but that wasn’t always true.

File Types

A widely used file type is the fixed-length record file. The file consists of records, or rows, each of which
contains values for each of the fields of a record. This form was natural, especially in the days of punched cards.
When one visualized a record, one saw in one’s mind’s eye a punched card. The card’s 80 columns were divided
into sets of columns (fields), where the values of the fields were punched. Such a conception of information
storage seems natural for many purposes. Imagine your holiday greeting card list as a fixed-length record file,
where each record represents a person, and each person record has a field for name, for street address, for city, etc.

An advantage of fixed-length record files is that the system can easily calculate exactly where information
exists. If the user requests the 3rd field from the 57th record, simple arithmetic will provide the exact location
of the information.

A problem with fixed-length record files is that often field values are naturally of varying length, and to
make the file a fixed-length record file, the designer must make each field big enough to accommodate the
largest value. Since most records do not need all the space, space will be wasted most of the time.

Another file type is the variable-length record file. In this case, each record consists of the same set of
fields, but the fields can be of varying length (including zero length). While a variable-length record file fits the
use of storage to the data, its format must provide the information about the size of each field in each record.
This wastes some space, and it adds an overhead during reading and writing.

A special type of file is an “indexed-sequential file.” Its special structure is designed to promote fast
searches of a large file. The records in the main file are sorted by the value of the “key” field. In addition, the
file system associates with the main file a much smaller file of pointers to records in the main file.

Suppose the indexed-sequential file contains records for a million people, and suppose that the key field,
the field that uniquely identifies each record, is a social security number (SSN) field. The records in the file are
ordered by SSN. Without indexing, finding any particular person would require, on average, reading 500,000
records (half of them).

However, now suppose that the associated indexing file has 1000 entries; each entry consists only of a SSN
and a pointer to the record in the main file with that SSN. To find a person, the system will read the indexing
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file to find the indexing record with a value for SSN that is largest, but still less than or equal to the SSN being
sought. Using the pointer from the indexing record, the system can now read the main file starting from a point
near the record being sought. On average, the system will make 500 reads of the indexing file followed by 500
reads of the main file (one million records divided among 1000 index values means 1000 records per index, and
on average the system must read half of them). So, indexing reduces the number of reads from 500,000 to
1000—improvement by a factor of 500.

Files may contain information in both character form (ASCII, UNICODE, or EBCDIC) and binary form.
Executable files, for example, are binary files in the special format required by the operating system. Executable
files are process images ready to be brought in from the disk, stored in memory, and executed.

UNIX takes the unique approach that any file is just a stream of bytes. If there’s any structure to the 
information in the file, it’s up to the application program to create the structure, and later to interpret it. In some
applications this shifts some responsibility away from the file system manager to the application, but it is 
a simple, consistent conception.

File System Units

The file system relies on the disk hardware, of course. Disks almost always transfer multiples of a 512-byte
sector. Even if your program tries to read a street address that is no more than 25 characters long, the disk will
actually return to the operating system at least one sector, and somewhere within will be the street address. The
sector is the unit of storage for the disk hardware.

Usually the file system has a larger unit of storage than the sector. This minimum storage allocation for 
a file is called a block or cluster. Even a file consisting of a single character will require one cluster of space on
the disk. The file system tracks free clusters, and allocates clusters of space to files as necessary. The wasted
space within a file due to unused space in the last cluster is internal fragmentation with respect to the file system.

Directories and Directory Entries

Today almost all operating systems represent the file system organization as a tree of directories and 
subdirectories. The directory entry for a file will contain information such as the file name, permissions, time
of last access, time of last modification, owner, file size, and location of the data on the disk.

When a file is opened by a process, information from the directory is copied to an in-memory data structure
often called a file control block or an open file descriptor. In addition to the information from the directory entry,
the file control block may have information about read and write locks on the file, and the current state of the
file (open or closed, for reading or writing).

An interesting approach taken by UNIX was to make directories files. A directory is just a file that contains
information about files. This sort of stunningly simple consistency is part of the charm of UNIX for its admirers.

File Space Allocation

There are several general approaches to allocating file space. One is contiguous allocation. With this 
conceptually simple approach, the file system allocates adjacent blocks or clusters for the entire file. Contiguous
allocation has the merits that writing to and reading from the file are fast, because all the information is in the
same place on the disk. Some real-time systems and high-speed data acquisition systems use contiguous file
allocation for the reason of speed.

One of the problems with contiguous allocation is that external fragmentation of the file system becomes
a problem very quickly. The system must deliver a potentially large set of blocks to any new file, and the free
space between existing files may be unusable because each is, in itself, too small. Another problem is that
extending a file can be impossible due to lack of available space between allocations.

Another type of allocation is linked allocation of file space. Each block in a file is linked to the next 
and the previous with pointers. This removes any requirement for contiguous allocation, eliminates external
fragmentation as a cause of wasted space, and permits extending files at any time. The starting block of a file
is all the system needs to know, and from there the system can follow the links between blocks. Free space can
be maintained likewise in a linked list of blocks.
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There are some disadvantages of linked allocation. First, access to random records in the file is not possible
directly. If an application needs the 57th record in a file using linked allocation, the system will have to read
through the first 56 records to get to the 57th. It’s also true that the pointers take up some space in the file
system; that’s overhead, although bits on the disk are cheap these days. Finally, if the blocks of a file really are
scattered all over the disk, accessing the file contents will be slowed by all the mechanical delays of 
positioning the read/write heads again and again.

Windows uses linked file allocation, and the “defragmentation” exercise brings the dispersed blocks of files
together so that access will be faster. When the linked blocks are in fact adjacent to one another, reads and writes
occur faster.

A third approach to file allocation is indexed allocation, championed by UNIX. With indexed allocation,
the file directory entry has pointers to the blocks containing the information in the file. The blocks need not be
contiguous, and files can be extended by adding blocks at any time. Another advantage of indexed allocation is
that the locations of all the blocks in the file can be determined from the directory entry, so random access 
is possible. A disadvantage is that any corruption of the directory entry can make it impossible to recover the
information in the file.

In UNIX a file directory entry is called an i-node or inode, for index-node. Among other things, the inode 
contains pointers to the file blocks, permissions, ownership information, and times of last access and modification.

Since directories are just files in UNIX, each directory has an inode, too. When a program opens a file like
/usr/work.txt, the system locates the inode for the root directory (almost always set to inode 2), and then reads
the blocks of the root directory looking for something called “usr.” When it finds “usr,” it will also find the inode
for “usr.” Then it can read the file that is the directory “usr” and look for something called “work.txt.” When it
finds “work.txt,” it will also find the inode for “work.txt.” From the inode of “work.txt” the system will find
pointers to all the blocks of the file.

Journaling File Systems

Some newer file systems incorporate logging or journaling of file system transactions. A transaction is 
a series of changes that must either all be successful, or none be successful.

For example, if one moves a file from one location to another (cut and paste), the new file directory entry
must be written and the old file directory entry must be erased. Both actions must occur, or neither must occur.

A journaling file system first writes any intended changes to a “write-ahead” log file. Then it makes the
required changes to the file system. If the changes to the file system fail for some reason (e.g., a total system
failure at just the wrong moment), the file system can either recover the changes by redoing the transaction, or
roll back the changes to the original state.

The Windows NT File System (NTFS) incorporates journaling features, and so does Sun’s UFS and Apple’s
Mac OS X. There are also several journaling file systems available for Linux.

SUMMARY

Operating systems are programs designed to make the use of the computer hardware easier, more efficient,
and more secure. They manage the scheduling of processes, the allocation of memory and other resources to
processes, and all input and output of data. In addition, operating systems provide a file system for managing
programs and data, and various system software utilities for facilitating program development and execution.

There are several varieties of operating systems, including interactive, batch, and real time. Each is
designed to best meet the peculiar requirements of its intended use.

Most modern operating systems support the concept of threads in addition to processes. A process 
represents a set of resources such as memory, open files, common variables, network connections, etc., and 
a thread represents a particular path of code execution. Threading allows for easy sharing of resources among
the threads, which are essentially separate cooperating tasks.

Multiprogramming, multiprocessing, and multithreading require careful consideration of thread and
process synchronization techniques. These same operating system advances also introduce the possibility of
deadlock. For process synchronization, most operating systems provide semaphores, a simple, effective 
construct first proposed by Edgar Dijkstra in 1965.
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The four conditions necessary for deadlock to occur are: mutual exclusion, hold and wait, no preemption,
and circular wait. Avoiding deadlocks, or detecting and correcting them, turns out to be costly of performance
and difficult to implement in the general case. We discussed various mechanisms for preventing deadlocks, and
we discussed the banker’s algorithm for deadlock avoidance.

Today most general-purpose operating systems employ paged virtual memory. A page is a unit of logical
address space, and a frame is a same-size unit of physical memory. By means of a page table data structure,
which maps pages to frames, the operating system maps logical addresses to physical addresses. The advantages
of virtual memory include a very large logical address space, and a higher degree of multiprogramming.

The file system is a very visible feature of any operating system. We discussed various file management
systems, including systems based on linked allocation of file blocks and systems based on indexed allocation
of file blocks. Newer file systems are incorporating journaling of transactions in order to better insure file
system stability.

REVIEW QUESTIONS

6.1 What is the advantage of managing I/O with interrupts? If an active typist is typing 30 words per minute
into a word processor, and the computer operates at one million machine instructions per second, how
many machine instructions can be executed in the time it takes a character to be typed on the keyboard?

6.2 Explain why a DMA channel would or would not be useful in a computer without an interrupt-based 
I/O system.

6.3 What scheduling concept was critical to the development of timesharing computers, and has remained 
an important part of scheduling for interactive computer systems?

6.4 Categorize the following programs as system software or application software, and explain your 
categorization:
● Java Virtual Machine
● Excel
● PowerPoint
● C compiler
● C library
● Oracle data-base management system
● Employee payroll system
● Web browser
● Media player
● Control panel
● E-mail client

6.5 Why is it that threads are faster to create than processes?

6.6 What advantage do kernel threads provide over user threads? Give an example of a user thread package.

6.7 When a process is multithreaded, which of these resources are shared among the threads, and which are
private to each thread?
● Memory
● Program counter
● Global variables
● Open files
● Register contents
● Stack/ local /automatic variables

6.8 List four events that transfer control to the operating system in privileged mode.

6.9 How can a semaphore be used to insure that Process First will complete before Process Second executes?

6.10 Describe how transaction logging might apply to a file system, and give an example of a file system
that employs transaction logging.

CHAP. 6] OPERATING SYSTEMS 125



6.11 If a memory access requires 100 nanoseconds, and the computer uses a page table and virtual memory,
how long does it take to read a word of program memory?

6.12 If we add a TLB to the computer in the previous question, and 80 percent of the time the page table
entry is in the TLB (i.e., the required memory access results in a “hit” in the TLB 80 percent of the time),
on average, how long does it take to read a word of program memory?

6.13 A paging system uses pages with 1024 addresses per page. Given the following page table:

What are the physical addresses corresponding to the following logical addresses?

Logical address
0

430
2071
4129
5209

6.14 Why do virtual memory systems include a modified bit in the page table entry?

6.15 Why would fixed-length record files be a good choice for storing data from data-base tables?

6.16 How would you expect process scheduling policies to be different on batch computing systems and
interactive systems?

6.17 How would you measure the success of a batch operating system? Would you measure the success of
an interactive system like Unix or Windows the same way? If not, how would you measure the success
of an interactive operating system?
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CHAPTER 7

Networking

INTRODUCTION

If you were to ask someone what invention of the 20th century had the most impact on the way in which
people live their lives, a person might answer by saying, “computers.” Clearly the computer and the application
of computing technology have had a significant impact on the lives of people. One of the technologies that has
benefited from computing technology is communications. Today we take for granted the fact that almost all of
the computing devices that we own are often connected together, exchange information, and function cooperatively
to make our lives easier.

A computer network is a group of computers that use common protocols to exchange information and share
resources. The computers in a network communicate in a variety of ways. Some of the computers may commu-
nicate using electromagnetic signals transmitted over traditional copper wires or light being sent through fiber-
optic cables. Others may communicate using radio, satellite, or microwaves. Two computers can communicate even
if they are not directly connected. They can utilize a third computer to relay information.

In the context of a computer network, a protocol is a formal description of the message formats and the
rules the machines in the network follow to exchange messages. Think about using a telephone to communicate
with a friend. There are two aspects to the call: establishing the connection that makes it possible to talk, and
the rules, or the protocol, you use once the connection is established.

Establishing the telephone connection consists first of dialing the number. Then the person you called
answers, “Hello,” and then you say, “Hi, this is George.” Your connection is established.

The protocol following a connection on the phone is for one person to speak, and then the other. If two
people speak at once, we expect both to stop speaking, and then listen for the other to begin again, after a short
interval. Computer protocols are sometimes quite analogous to such human behavior.

Computer networks can be classified based on their size. A small network that connects computers contained
in a single room, floor, or a single building is called a local area network (LAN). LANs have become very 
commonplace, and you may have a LAN in your home. A LAN is typically owned by an individual and 
connects computers that are relatively close together.

A wide area network (WAN) covers a large geographical distance. For example a WAN may span several
cities, several states, or an entire country. A WAN, unlike a LAN, is typically owned and maintained by an
organization and has the capacity to carry large amounts of data.

To understand the difference between a LAN and a WAN, consider for a moment the pipes that carry water
to your house. Inside a typical home, water is carried in pipes that are from one-half to three-quarters of an inch
in diameter. The pipes are part of the house, and if one springs a leak, the owner of the house is responsible 
for fixing the problem. The pipes buried under the street that supply the water to your house, however, are
owned by the town in which you live and if they spring a leak, the town is responsible for making the repair.
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Furthermore these pipes are typically much larger (some may be more than a foot in diameter), and because
they connect many homes, have the capacity to deliver more water than the pipes in your home.

Computer networks that most people use on a daily basis appear to span the globe. In reality, most computer
networks consist of smaller networks, which are in turn connected together to form larger networks. An internetwork,
or Internet, is formed when two networks are connected together. In an internet the networks are not connected
directly, but instead are connected using a computer that is connected to each of the individual networks. This
common machine is referred to as a gateway or router, and passes information between the two networks.

In this chapter we will take a look at computer networks. We will learn how they are organized, how they
work, and some of the applications they can provide.

REFERENCE MODEL

As with any complicated technology, networks are often divided into a number of layers in order to make
it easier to understand how they work and to make them easier to build. Each layer is responsible for a different
part of the communication process. One of the advantages of using layers is that in order to use a layer you do
not need to understand how it works inside, you simply need to know what services it provides and how to ask
for them. For example, consider making a call on a cell phone. You only need to know how to make the call and
how to speak into the phone. You do not have to understand the technical mechanisms that convert your voice
into a form suitable for transmission using public airwaves.

Several reference models have been developed to define a standard way to split the functionality of a network
into a series of layers. This layered approach has resulted in casual talk of “the network protocol stack.” 
The reference model most commonly used in networking was developed by the International Standards
Organization (ISO) and is called the Open Systems Interconnection (OSI) model, or the ISO OSI model 
(How’s that for acronym reuse!?). The OSI model consists of seven layers as shown in Fig. 7-1.

The physical layer is responsible for the transmission of a bit stream between two or more machines. 
You could think of the physical layer as a pipe through which individual bits flow. The basic objective of the
physical layers is to make sure that when a “1” is sent, the other side receives a “1.” The physical layer defines
a medium through which messages can be sent.

The services provided by the physical layer are not that different from the services provided by the post
office. When you send a letter using standard first-class mail, the post office promises that it will attempt to
deliver the letter, but it provides no guarantees. In most cases the letter will arrive at the intended destination,
but there are times when the letter may be lost. In those cases where you require reliable mail delivery, you
might send a letter using a higher-level service like registered mail.

The data link layer uses the physical layer to provide reliable point-to-point delivery within a network.
While the underlying physical layer may not be entirely error free, the data link layer transforms the connection
into a facility that appears free of errors. It does this by means of error checking and retry mechanisms built into
the protocol.

Note that the term point-to-point means that the machines involved in the communication are directly 
connected. As long as the two computers are directly connected, one to the other, with no intervening computers,
the data link layer provides a service similar to that when you send a letter via registered mail.
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In addition to reliable transmission, the data link layer, unlike the physical layer, provides structure to 
the messages that are being transmitted. The physical layer is concerned only with the delivery of the 
individual bits that make up the messages, and does not care about the structure of those messages. The data
link layer, on the other hand, often divides messages into frames and adds additional information to the frames
to provide synchronization and flow control. By synchronization we mean that the sender and receiver 
must agree on the start and end of each frame, and by flow control we mean that the receiver must have 
a mechanism for pacing the sender, so that the sender does not flood the receiver with data at a pace faster 
than the receiver can accept it.

The network layer is concerned with end-to-end communication between computers that are not necessarily
directly connected one to another. When machines that wish to communicate are not directly connected, they
must rely on other machines that are directly connected to relay their messages. The network layer is the lowest
layer of networking protocol with a focus on exchanging messages by means of relaying communications
between intervening computers.

For example, you have probably passed notes in class. If the person to whom you want to pass the note 
is on the other side of the classroom, you have to rely on the people sitting between you to pass the message. 
It may be the case that you know that your message will be safely exchanged between yourself and the person
sitting next to you (i.e., point-to-point communication), but once the message is in the hands of the next person
in the chain, it may be lost.

We can also use the analogy of passing notes in a classroom to illustrate one of the most important 
services provided by the network layer: routing. You may realize that there are several paths by which your 
message could make its way to your friend. Some of these paths may be faster than others, or some may be
more reliable. Routing refers to the process of identifying the possible paths that you may use to transmit your
message, and selecting the best path based on criteria that you specify. Routing is a service provided by the 
network layer.

The network layer usually does not make any guarantee of the end-to-end correctness of the message 
transmission. Because computers on the network can fail at any time, and new computers can be added to the
network at any time, it is possible for frame routes to change in midmessage. As a result, frames of a message
can arrive out of order, or frames can be duplicated, or frames can be lost.

In most cases, we care that the entire message be transmitted correctly, so another layer of protocol provides
that guarantee. Ensuring not only that the message will be successfully passed between pairs of computers, 
but also that the message will be received correctly at the destination, is the job of the transport layer protocol.
The transport protocol keeps track of the sequencing of frames in a message, and insures that regardless of
whatever bad things may happen during transmission, the receiver will get all the frames, in the correct order,
without duplications.

The OSI model provides three higher layers: the session, presentation, and application layers. While the
OSI model distinguishes the services to be provided by each of these layers, this portion of the OSI model has
never been widely adopted in practice.

Instead, the highest layers of the protocol stack have been joined together as the application layer. The rationale
has been that once the message has been reliably transmitted between computers, possibly via a world wide 
web of computer connections, understanding the meaning of the message, and reacting appropriately, is the
responsibility of whatever application program received the message. This approach has become known as the
internet reference model, and it is shown in Fig. 7-2. The internet reference model is the most widely used
model in practice.
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The internet model contains only four layers, yet the widely used internet model also can be mapped to the
more general OSI model:

1 The subnet (data link) layer of the internet model takes on the responsibility of both the physical and data
link layers of the OSI model. In most computers, this layer is implemented by the firmware on the network
interface card and the corresponding drivers in the operating system.

2 The internet (network) layer of the internet model provides computer-to-computer delivery using the
internet protocol (IP), and it corresponds to the network layer of the OSI model.

3 The end-to-end (transport) layer of the internet model maps to the transport layer of the OSI model. 
The internet model implements reliable end-to-end communication over many intervening networks using
the transaction control protocol (TCP). TCP insures that, even if parts of a message travel by different
routes to the destination, the message will be reassembled in the correct sequence, and presented without
duplication, omission, or corruption of data.

4 Finally, the application layer of the internet model subsumes the session, presentation, and application
layers of the OSI model. As the name implies, application programs have responsibility for the application
software layer. For instance, web browser applications have responsibility for formatting and displaying
the data sent to them from distant web servers.

Why has the internet model persisted in practice instead of being replaced by the more general and more
layered OSI model? A big part of the answer is that the internet model was implemented first, and users found
that its model, though simpler, was successful. By the time the OSI model was widely promulgated, the internet
model was already in wide use. The advantages of a more elaborate layering of services were not persuasive to
those already successful with the existing protocols. Nevertheless, the OSI model persists as the best general
description of networking services, and is frequently referenced in textbooks and research relating to networks.

For our further discussion of the operation of different network layers and protocols, we will use the 
four-layer internet model because it is the model in wide use. Our goal in this chapter is to discuss how 
networking is actually implemented today.

SUBNET (DATA-LINK) LAYER

The responsibility of the subnet layer is to send and receive streams of bits between one machine and
another. Computers transmit information by sending signals in the form of electromagnetic energy using some
transmission medium. Computers that are connected using copper wires as the transmission medium will send
signals in the form of electrical signals. Computers that are connected using fiber-optic cable will transmit 
signals in the form of light. Computers connected wirelessly broadcast and receive radio signals. Hardware 
at the physical layer generates signals of the appropriate type for the medium of transmission.

Because of the layering architecture of the networking protocols, one subnet approach may be substituted
for another. Thus, my laptop computer can use a wired Ethernet connection if one is available, or can instead
use a wireless connection if a Wi-Fi network serves the location where I wish to compute.

Most wired networks today use the Ethernet data link. Ethernet protocols were first developed at Xerox’s
Palo Alto Research Center in the 1970s. Today the descendent Ethernet data link is standardized in the IEEE
802.3 standard. The Ethernet protocol is interesting in its simplicity and its similarity to human speech interaction
in groups.

Ethernet uses a CSMA/CD protocol. The full description is carrier sense, multiple access/collision detection.
Each computer on an Ethernet network attaches to the same wire. This is referred to as a “bus” architecture;
each computer can listen to all signals on the wire; that’s the multiple access part. When a computer wants to
send information, the protocol requires the computer to “listen” to what’s on the wire, waiting for a quiet time,
before broadcasting; that’s the carrier sense part.

When a computer sends its message, it also listens to its own message. If the sender hears a jumbled mess
instead of a clear message, it knows that another computer must have started broadcasting at exactly the same time;
that’s the collision detection part. When a sender detects a collision, the sender stops, and then waits a randomly
chosen interval of time before trying again.

Doesn’t this sound like what humans do in group conversation? When a person wants to speak, the person
listens for a break in the conversation, and then begins. If the speaker hears interference from another voice,
both people stop talking, and wait an interval of time before trying again to speak: CSMA/CD.
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The Wi-Fi connections popular today use standards specified in IEEE 802.11. IEEE 802.11 is actually 
a family of standards using different encoding and transmitting techniques, and different speeds, with a common
protocol. Wi-Fi uses CSMA/CA, where CSMA still stands for carrier sense multiple access, but CA stands for
collision avoidance.

With wireless networks, it can be harder to detect collisions. If two computers are sharing a common 
Wi-Fi network, for example, both may be able to contact the access point, but one may not be able to detect the
other, making collision detection difficult, even though simultaneous messages are garbled at the access point.
Also, the radio environment may be naturally noisy, with cell phones and microwave ovens in the vicinity, for
example, so collisions may be difficult to distinguish from normal noise.

For these reasons, 802.11 standards adopt the CA approach where a sender first waits for the clear radio
channel, and then sends a short request-to-send (RTS) message to the destination computer. When the receiver
replies with a clear-to-send (CTS) message, the sender proceeds. This approach results in fewer collisions and
less wasted time on retransmissions.

Many other data-link standards exist. FDDI is a standard for computers linked with fiber-optic connections
instead of wires. Token Ring is a standard that IBM popularized in the 1980s. Because the network protocols
are layered, improvements in techniques for link-level connections can be adopted without disrupting the 
protocols that provide higher-level services.

INTERNET (NETWORK) LAYER PROTOCOL

An important higher-level service is that for the routing of messages between networks. When I send a message
from my computer to my friend in the UK, the message must pass through many networks. Starting from my
home network, the message must go to my internet service provider (ISP), which maintains connections with
other ISPs and networks to enable my worldwide access. The routing of a message is the responsibility of the
internet (network) layer protocol.

The internet layer protocol is responsible for transporting a “packet” of data from one computer to another
over possibly many intervening networks. When one computer sends a message to another, the internet layer
protocol breaks the message into pieces (packets), and appends a header to each packet that identifies the 
destination computer as well as the source. The internet layer then passes the packet, called a datagram, to the
data-link layer to be broadcast onto the local network.

If the message is destined for a computer not attached to the local network, the router that connects the local
network to another network will read the message. The router will rebroadcast the packet on the other network, and
by such process repeating, the message will find its way through myriad intervening networks to its destination.

The most popular network layer protocol is internet protocol (IP). Each computer attached to the internet
has a unique IP address. Most IP addresses today are 32 bits long (called IP version 4). With the enormous
growth in the use of the Internet, network experts see the need in the future for a larger address field in order to
accommodate a much larger number of computers on the internet. A new standard IP address called IP version
6 has an address field 128 bits long. Over time, more computers will begin using IPv6. In any case, the IP 
protocol identifies both the source and destination computers by their IP addresses.

You may be surprised that the IP protocol, on which we all depend, is specifically an unreliable
protocol! IP simply builds datagrams and gives them to the link layer to send. The only error checking in 
the IP protocol uses a checksum in order to insure the header information has integrity. The checksum is 
a simple mathematical function of the bits in the header. Each receiver recomputes the checksum to make 
sure the checksum in the header matches. If the header is corrupted, the receiver simply discards the datagram!
IP provides no checking whatever of the data in the datagram, so even if the header is intact, the data may 
be corrupted.

Also, it’s possible that a data link, router, or a computer will fail at a time when datagrams are being sent.
Such failures will result in loss of the datagrams, and nothing in the IP protocol will do anything to recover 
such losses. Further, since failures in the network can result in dynamic changes to routes between networks,
datagrams sent later may actually arrive sooner than datagrams sent earlier.

Most of the time these problems don’t occur. In fact, experiments over wired networks show amazing reliability
most of the time. Error-testing devices often measure the bit error rate of networks in bits per billion sent! That’s
on the order of one to several errors per hour on a busy network. Nevertheless, to insure that datagrams all
arrive, uncorrupted, in order, without duplication of datagrams, requires a higher-level protocol designed to
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insure reliable communication over the inherently unreliable IP network layer. The end-to-end (transport) 
layer protocol performs this magic every day.

END-TO-END (TRANSPORT) LAYER PROTOCOL

The transport layer protocol of the internet is transmission control protocol (TCP). TCP uses the IP layer
to send messages through the internet, and TCP adds a whole set of services that together insure that complete
messages always arrive, uncorrupted, in order, without duplication of data, at the intended destination, regardless
of hardware or network failures or changes during the time the many datagrams comprising the message are
being sent.

TCP is a connection-oriented protocol, which means that the two computers first establish a connection
with one another before either begins sending data. To do this, one computer, the server, reserves a port for
communication. Some writers call this the “passive open” of a connection, for nothing happens outside of the
server; the server simply makes itself ready to communicate.

When another computer, the client, wishes to communicate with the server, the client contacts the server
requesting a connection. This step is sometimes called the “active open.” To do so, the client must identify the
server, and must know in advance the port on which the server is “listening.”

Since each computer has thousands of ports available, you may be wondering how the typical client 
application could possibly guess on which port to call the server? The answer is that the use of a small number
of ports is standardized, and those port numbers are well known. For instance, web servers listen on port 80, so
all of those visits you make to websites are really contacts with web server programs listening on port 80 of the
web server computer.

After the client contacts the server, the client waits for an acknowledgement from the server of the client’s
request to open a connection. When the client receives one, the client acknowledges back to the server that the
client has received the server’s acknowledgement. At this time, both computers have established a connection
on which to communicate.

This three-step connection establishment protocol may remind you of how people use telephones. We dial
the other person (the server, or object of connection), we hear the other person pick up the phone and say,
“Hello,” (akin to the server’s acknowledgement of the client’s open request), and we identify ourselves in 
confirmation, “Hi. This is Carl,” (confirming the server’s acknowledgement). Once we have established the 
connection with one another, we proceed to exchange information with each other.

Once the TCP connection is established, the client and server begin to exchange messages and data. 
The TCP protocol uses sequence numbers to indicate the order in which pieces of the total message go together.
Both the client and server exchange initial sequence numbers (ISNs) during the connection establishment
exchange. One number is used for messages from the client to the server, and one is used for messages in the
other direction.

When the client sends a message, the client labels the message with a sequence number. The client expects the
server to acknowledge receipt of the message by responding with a sequence number one greater than the one sent.

If the client does not receive confirmation of a message it sent within a set period of time, the client assumes
that the message was lost, and the client sends the same message, with the same sequence number, again.

On the server side, the server can use the sequence numbers to determine if it receives the same message
twice. If a client mistakenly sends a message twice when the server already received the message, the server
can simply discard the duplicate message.

Since different pieces of a message may travel by different routes to the destination, it’s possible for 
component pieces of a message to arrive out of order. The sequence numbers on messages make it possible to
put the pieces into correct order before delivering the full message to the application (e.g., the web server or the
web browser).

Both the header and the data in a TCP packet are protected with a checksum. This allows the TCP protocol
to insure that data in the message have not been corrupted. As you can imagine by now, if the destination 
computer detects corrupted data in a packet, it can simply ask the sender to resend data corresponding to 
a particular sequence number.

We have simplified the discussion of sequence numbering somewhat in hopes of making it easier to under-
stand conceptually. In practice, every byte in a TCP message is sequenced. The message header in a TCP packet



has the starting sequence number, and the receiver will increment that number by the number of bytes in the
message. The receiver will expect the next packet to start with the incremented number plus one. The sequence
numbering scheme insures correct sequencing of bytes in the message, efficient resending of corrupted or lost
packets, and correct disposal of duplicate packets.

Yet another service of the TCP protocol is regulating the speed of senders. Data communications people
refer to this as flow control. With every message and acknowledgement, each computer informs the other of the
number of bytes it is ready to receive. This number of bytes is known as the data window. If a fast sender 
starts to overrun a slower receiver, the acknowledgement for a packet will soon show a zero for the data window.
The sender will stop transmitting until it receives another packet from the receiver announcing that it has room
in its data window again.

To the application programs on both sides of the connection, TCP presents a byte stream of the data, very
much like a file. Applications can write to and read from a TCP connection very much as they would write and
read files.

APPLICATION LAYER

The application layer is everything above the transport, network, and data-link layers. Application programs
such as web browsers, file transfer programs, web servers, distributed data bases, and electronic mail use the
application program interface (API) of the network protocol stack, and libraries of common networking 
routines, to access other computers over the network. The Java language also has many built-in classes that
make network programming much easier.

PUTTING IT ALL TOGETHER

To put it all together, envision this. A web server is in the middle of sending a file containing HTML text
to a web browser. The web server has just read the next line of the file, so it writes the line to the TCP socket
the server opened for communication with the browser. To the web server, this write operation is very much like
writing to a file.

When the TCP software receives the buffer of text, it builds a header for a TCP packet that, among other
details, includes the source and destination IP addresses and port numbers of the two computers, and the
sequence number information. The TCP software also computes the checksum for the header and data of the
TCP packet, and writes the checksum into the header. When the header is complete, the TCP software passes
the original line from the file, prefixed with the TCP header, as a single buffer (a buffer is a series of bytes) to
the IP protocol.

The IP software may separate the full TCP buffer into several smaller series of bytes. For each IP packet,
the IP software builds an IP header that includes the source and destination IP addresses, and a variety of other
details. The IP software calculates a checksum for the IP header, and inserts that number in the checksum field
of the IP header. As the IP software constructs each IP packet, the IP software passes each packet to the 
data link software, which in most cases today means the driver for the network interface. However, if the 
destination IP address is not on the local network, the command to the data link layer tells the data link layer
to send the message to the local router, or gateway, computer.

The data link software will build an appropriate data link header of its own, whose format depends on the
type of data link, and write the bits to the destination computer. At this point, the destination computer is either
another computer on the local network, or a router attached to the local network.

When the IP packet arrives at the router, the router’s data link software will remove the data-link-level
header, and forward the IP packet to the IP software. The IP software in the router will check the IP header
checksum, and consult its tables to decide where to forward the message in order best to move the 
message toward its destination. The IP software will pass the IP packet back to the data link layer of the router, 
with instructions to send the packet over the adjoining network to the appropriate computer, or to the 
next router.

Eventually the destination computer will be a local computer on a network served by the last router in the
chain. When the data link software at the destination computer receives the message, the data link software will
strip the data link header from the IP packet, and pass the IP packet to the IP software. The IP software 
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will verify the IP header checksum, reassemble the IP packet, if necessary, strip the IP header off the TCP
packet, and pass the TCP packet to the TCP software.

The TCP software will check the sequence number and verify the TCP checksum. If everything is in order,
the TCP software will remove the TCP header and transfer the line of HTML text to the waiting application 
program, in this case a web browser.

THE WORLD WIDE WEB, HTTP, AND HTML

What we now call “the Internet” started with a US military project called ARPAnet. ARPA stands for
Advanced Research Projects Agency, which is part of the US Department of Defense. Work on ARPAnet began
in the late 1960s, with the goals of creating a universal and fault-tolerant mechanism for linking computers in
a wide network.

Packet switching, now the primary messaging technique of the Internet, was a new concept at the time, and
the ARPAnet developed its protocols around packet switching. A small team of seven people at Bolt, Beranek,
and Newman (BBN), a research organization based in Cambridge, MA, developed the initial protocols and 
had a working network connecting Stanford, UCLA, UC Santa Barbara, and the University of Utah by the end
of 1969.

In 1971, one of the researchers sent the first e-mail message over the network, and in 1973, the file transfer
protocol allowed a file to be moved from one computer to another over the network. These were major
advances—those who did not live through this period can hardly imagine how exciting these advances were!
Work on core network protocols continued as well, and the TCP/IP protocols became standard in 1983.

In 1985, the National Science Foundation took over the nonmilitary portions of the ARPAnet, and renamed
it the NSFnet. The NSFnet supported the NSF’s supercomputer centers at Princeton, UC San Diego, Cornell,
University of Illinois, and University of Pittsburgh, as well as other major academic computing centers. The
NSFnet became an international network, with connections to Canada, Europe, Central and South America, 
and the Pacific Rim. During this time, the NSF permitted only noncommercial use of the NSFnet. For a good
technical description of the Internet, it’s still worth reading Ed Krol’s memo A Hitchhiker’s Guide to the Internet
from 1989 (http://rfc.sunsite.dk/rfc/rfc1118.html).

In 1989, Tim Berners-Lee of CERN, the European Laboratory for Particle Physics, proposed a project 
to develop “browsers” for users’ workstations and a mechanism to allow users to add content that could be 
universally accessible over the Internet. The idea was to provide universal readership of information collectively
available on the network.

This idea of the world wide web (WWW) was arguably even more important than the technical miracles
worked by those who developed the protocols and applications of the ARPAnet and NSFnet. The WWW was
conceived as a client–server arrangement, with browser applications that could present information, regardless
of the origin of the information, running on the client computers. The server applications would be responsible
for extracting information and sending it to the client applications.

At the heart of the WWW was a new protocol called hypertext transport protocol (HTTP). The idea behind
hypertext is that text need not be sequential. A reader should be able to follow links to related information, and
back, in whatever sequence suits the needs of the reader.

By the end of 1989, the small team at CERN had created HTTP and demonstrated the first WWW servers
and a browser. Tim Berners-Lee and his associates wrote the Internet standard RFC1738 to define the uniform
resource locator (URL) for use with HTTP (1994), and also wrote the Internet standard RFC1945 defining 
revision 1.0 of HTTP (1996).

The WWW made the Internet useful to nontechnical people. Besides e-mail and file transfers, nontechnical
users could easily access a rapidly growing body of content made available very inexpensively by many 
different providers. In 1995, the NSF turned the the NSFnet over to private organizations, and commercial use
of the Internet began.

HTTP remains at the heart of the WWW. It is a simple application-level protocol, which means that it 
is a protocol used by programs at the application level. The TCP/IP protocols have no knowledge of HTTP or
of URLs. HTTP is simply a language understood by application programs, particularly web server and browser
applications. According to RFC1945, HTTP has “the lightness and speed necessary for distributed, collaborative,
hypermedia information systems.”
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HTTP is a simple request/response protocol. When a web server program is listening for messages on port
80 of its computer, the server will respond to a HTTP request from a client computer. The two basic forms of
request are GET and POST. Both are requests of the server, but the POST allows the client to enclose data in
the body of its request. The server replies with an HTTP RESPONSE.

The GET request is simply a request for information. Usually a GET is for information on a web page, but
it can also be for a file, such as a download of a program the user is interested in using. A GET request is usu-
ally a single line, and might look like this:

GET /pub/www/TheProject.html HTTP/1.0

or:

GET http://www.w3.org/pub/www/TheProject.html HTTP/1.0

The RESPONSE will include a status line and the data requested. The RESPONSE might look like this:

HTTP/1.0 200 OK
<HTML>
<HEAD>
<TITLE>Project Home Page</TITLE>
</HEAD>
<BODY>
[content of the web page, marked with HTML tags--see below]
</BODY>
</HTML>

When the client must provide data in order for the server to perform the requested action, the client uses 
a POST request. The POST protocol provides for the data to be contained in the body of the POST request. 
A POST request providing Carl for field fn and Reynolds for field ln might look like this:

POST /servelet/SomePhoneBook HTTP/1.0
Content-Length: 19
Content-Type: application/x-www-form-urlencoded
fn=Carl&ln=Reynolds

The simplicity of the WWW protocol is one of the reasons for its success. It is quite easy to implement 
both web servers and browsers. In fact, today computer science students often write a simple web server as 
a programming exercise.

Another reason for the success of the WWW is that Tim Berners-Lee and the others made all their code
freely available to all. They encouraged the participation of academic and commercial parties, and the resulting
collaboration brought millions of people to the WWW.

The related technology of the hypertext markup language (HTML) also allows people with limited technical
understanding to format information to be made available over a web server. HTML is a text formatting 
language that browser programs understand. To ready a file for presentation as a web page, the author “marks
up” the text with HTML “tags” which tell the browser how to present the information.

Many students today, from all disciplines, create their own web pages, having learned enough HTML on
their own to do an adequate job, or having purchased an inexpensive program to help them do it. There are many
books and web pages available to help web authors learn HTML, so we will not provide a full tutorial here.
However we will show an example web page that demonstrates the general use and form of HTML.

There are 80 to 100 “tags” in HTML that tell the browser what to do with the text on the page. For instance,
the <P> tag marks the beginning of a paragraph. Each tag has a closing form, which is the same as the opening
form, except that a forward slash precedes the tag. The closing tag for a paragraph is </P>. One can use 
uppercase and lowercase interchangeably for the tags; <P> and <p> will work equally well.
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Many of the tags have attributes one can set to modify their effect. One sets the attribute value by including
the attribute name in the opening tag, following the attribute name with the equal sign, and following that with
the value of the attribute in quotation marks. For instance:

<H1 ALIGN="center">Carl Reynolds’ Home Page</H1>

This line will cause the text to be in the size of a large heading (H1), and the text will be centered on the line.
One can add comments to a HTML file by starting with the four characters <!-- and ending with the three

characters -->. For instance:

<!-- Any browser will ignore this comment -->

One of the beauties of the HTML standard is that it is pretty forgiving of errors. If a browser does not 
understand the HTML on a page, the browser simply displays what it can. The browser will not “crash” or issue
cryptic error messages; the browser will simply do the best it can. So, all is not lost if the author forgets to
include the closing form for a paragraph, for example.

As an example, Figure 7-3 is a simplification of the home page of one of the authors.
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And here is the file of HTML that created the page:

<!-- DOCTYPE tells the browser what version of HTML is being used -->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML> <!-- Start of HTML document -->
<HEAD> <!-- Heading -->
<TITLE>Carl Reynolds’ Home Page</TITLE>
</HEAD>

<!-- Start of the BODY, and set the background color to light blue -->
<BODY BGCOLOR="#F6FFFF">
<!-- H1 is a large heading, and center it on the page -->
<H1 ALIGN=center>Carl Reynolds’ Home Page
</H1>
<!-- H3 is a smaller heading, and center these lines, too -->
<H3 ALIGN=center>Carl Reynolds, Ph.D.
<!-- BR is a line break, or line feed -->
<BR>Office: Bldg 70-3569 (3rd floor, west side)
<BR>Office Hours: 4:00 to 5:00pm Mon thru Thurs
</H3>

<!-- P is a paragraph marker -->
<P><BIG>Fall Quarter Courses (20061)</BIG> <!-- use big font -->

<UL TYPE=disc> <!-- "Unordered List"; use a "disc" as bullet type -->
<!-- LI is the tag for "List Item" -->
<!-- A is an "anchor", or hypertext link to a URL -->

<LI><A HREF="http://www.cs.rit.edu/~cs1s/">
Computer Science 1 — Studio</A>

<UL TYPE=disc>
<LI><A HREF="http://www.cs.rit.edu/~chr/cs1s/CourseNotes/">

CS1S notes & homework</A>
</ul>

</li>
<LI><A HREF="http://www.cs.rit.edu/~chr/plc/plcHomePage.htm">

Programming Language Concepts</A>
<UL TYPE=disc>
<LI><A HREF="http://www.cs.rit.edu/~chr/plc/CourseNotes/">

PLC notes & homework</A>
</ul>

</li>
</UL>

</p>

<!-- Insert an image on the right side of the page -->
<!-- Find it in directory Images below the working directory -->
<P><IMG SRC="Images/CHR.gif" ALIGN=right>
</p>

</BODY> <!-- End of the BODY section -->
</HTML> <!-- End of the page -->

SUMMARY

The widespread networking of computers is a relatively recent phenomenon, and it may also be the aspect
of the computer revolution that has most changed human life. Networks can be described as LANs, which are
local to a building or campus, and WANs, which span wide, or even global, distances. The technical challenges
are somewhat different between LANs and WANs, but the distinction between the two is not always clear.
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When several networks are themselves connected together, the result is an internet. The world wide web
we have come to know and depend upon is not one network, but many connected together, and hence is called
the internet. A computer on a LAN connects to the wider internet through a gateway or router computer, which
connects the LAN to the internet.

Computers communicate over a network by conforming to network protocols. Protocols are required 
at more than one level. At the hardware level, the computers must use the same signaling technology, the same
medium of connection, the same speed of transmission, etc. At higher levels, the computers must agree on 
what the signals mean, and when to take turns sending and receiving. One describes and implements network
protocols as multiple layers of software and hardware. The resulting set of software and hardware is often
described as the network stack.

The OSI reference model is the standard network protocol model, and it has seven layers. The internet 
reference model is simpler, with four layers. For historical and pragmatic reasons, the internet model is the one
in wide use, and that is the model we described in detail.

The link level consists of the interface card and operating system driver for the physical connection between
computers. Common links today are Ethernet and Wi-Fi (wireless). Both have been standardized as IEEE standards.

The network-level protocol of the internet is IP, or internet protocol. IP is the protocol that is responsible
for moving datagrams from one computer to another, possibly distant computer, over multiple intervening 
networks. IP does not provide a guaranteed service. Most of the time datagrams get delivered efficiently, but 
IP provides no guarantees that packets will arrive uncorrupted, in order, and without duplication.

The transport-level protocol of the internet is TCP. TCP is a connection-oriented protocol that adds 
reliability to the underlying, unreliable, network protocol. After first establishing a connection with a remote
computer, TCP provides guaranteed delivery of complete, uncorrupted messages.

The application-level protocol over the internet is provided by the applications that take advantage of the
network. There is no internet standard application-level protocol.

The technical advances in networking and protocols have had even greater impact on every day life since
Tim Berners-Lee and his colleagues developed the HTTP protocol and the HTML language, beginning around
1990. Their vision of client browsers on workstations providing easy universal access to information made
available by millions of servers has made the internet the “data superhighway.”

REVIEW QUESTIONS

7.1 Explain how an IP packet might become duplicated and arrive twice at its destination.

7.2 Some researchers in networking complain that networking protocols have become “ossified.” What do
they mean by that, and why might that be so? Who benefits from “ossified” protocols?

7.3 Using Google or some other source, find a list of other “well-known ports” in networking besides port 80.

7.4 Most internet communications use the TCP protocol, but some do not. Some communications use only
the IP protocol. Another name for the IP protocol is user datagram protocol (UDP). Why would an
application choose to use UDP? Can you think of a category of applications that might prefer UDP?

7.5 IPv6 uses addresses that are 16 bytes long (128 bits). How many addresses is that per person in the world?

7.6 What classes does Java provide to make network programming easier? Which classes are for TCP
communications? Which classes are for UDP communications?

7.7 It’s hard to imagine today how hot the competition was between different vendors of proposed
networking standards in the 1980s. Today most wired LANs are implemented using 802.3 Ethernet
protocols. General Motors strongly backed a competitive standard called manufacturing automation
protocol (MAP) that became IEEE standard 802.4. Do some research to answer these questions: 
Why did GM favor 802.4 over 802.3? Why did most of the world end up choosing 802.3?

7.8 The HTTP protocol is essentially a protocol providing for file transfer between the server and the 
client. Therefore, the HTTP protocol is said to be “stateless;” i.e., the server receives a request, and the
server satisfies the request with a file transfer, regardless of what has happened before with this client. 
This statelessness has been a challenge to those developing applications to be delivered over the web. 
For instance, a banking application will need to keep track of the account number of the individual
making inquiries, even though the individual makes repeated inquiries and updates using several different
screens (web pages). How is application state maintained in such applications?
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CHAPTER 8

Database
THE UBIQUITOUS DATABASE

Today databases are ubiquitous. Almost every application we encounter has a database foundation. When
we buy something on-line, when we renew our driver’s license, when we inquire about a flight schedule, when
we look up the sports scores, we are using applications that rely on databases. Databases provide efficiency,
security and flexibility of data storage, and are employed in applications ranging from library card catalogs to
machine automation in factories. This was not always so.

Soon after computers entered the second generation of the modern era (i.e., the late 1950s), the availability
of high-level programming languages and large storage capacities (usually magnetic tape) led to larger and
larger collections of data. The data were stored in files—collections of data records—and it soon became clear
that this approach presented a number of difficulties.

First, larger files took longer to search. Recall from our discussion of algorithms that a sequential search
operates in O(n) time. Therefore, the larger the file, the more time a search for any particular item requires. That
may not be a problem when you’re keeping track of the birthdays of your friends, but if you’re keeping 
a record of every MasterCard purchase transaction for millions of customers, the slow retrieval of information
by serial search becomes prohibitive.

Other problems appeared as well. For instance, if you store the billing address of the customer in each
record of each sale, you waste a lot of space storing data redundantly. Suppose that a customer changes their
address; you have to rewrite all the transactions on record, using the new address. You might decide to solve
this problem by putting the billing addresses in a separate file. That would save space in the transaction file, but
now in order to compute a customer’s bill, you must search serially through two files.

DATABASE TYPES

Starting in the late 1960s, database systems were developed to deal with these and other problems. Two early
types of databases were the hierarchical and networking types. IBM offered DL/1, a hierarchical database, and var-
ious other hardware and software companies offered networking databases on the CODASYL (Conference On
DAta SYstems Language, Database Task Group) model. IDMS was a particularly successful CODASYL database.

The hierarchical and networking database structures organized files together to provide more rapid 
access to the information, better security, and easier updates. However, the structures were complex, tied to the
implementation details of the file system, and fairly rigid.

In 1970, E. F. Codd (Edgar, “Ted,” an Englishman who moved to the US after serving in WWII) of IBM
proposed the relational database model. The relational model relied heavily on mathematical theory. At the
time, it may have sounded “dreamy,” as data were simply to be stored in tables (called “relations”). Each relation/
table would maintain information about one entity type (type of thing), and entities would be related to one
another by virtue of information stored in the tables, rather than by external pointers or other devices.
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Codd also proposed a language for data access that was based on set theory (in the 1980s IBM would bring
structured query language (SQL) to the world). To many professionals at the time, Codd’s proposals seemed
impossible to implement efficiently.

However, in the 1980s, Oracle became the first company to offer a commercial implementation of a relational
database, and IBM began selling its relational database called DB2. Today the relational data model is 
predominant, and that is the model on which this chapter will focus.

With the advent of object-oriented programming, new data management designs called object-relational or
object-oriented database management have been developed. These systems promise convenience and congruity
of operation with OO programming techniques. While they have not yet become widely successful, they may
become so in the future.

ADVANTAGES OF USING A DATABASE

The primary motivation for using a database is speed of access. Assuming proper database design, access
to individual pieces of information can be essentially instantaneous, regardless of the number of data records 
or the size of the database. The experience of instantaneously finding exactly the record in which you are 
interested, from among millions, can be a stunning one.

Access speed can be essentially zero and constant, regardless of n, the number of records. This can be
expressed as O(k), where k is a constant of a small value. Such performance becomes possible because the 
database management system stores data about the data (metadata) as well as the data itself.

Metadata also makes data stored in a database self-describing. This means that programs accessing the data
don’t need to know so many details regarding how the data are stored. If a program reads from an ordinary file,
it must know about data types, formats, and the order of fields. However, when a program reads from a data-
base, it often needs only specify what information it requires.

A database also allows for efficient utilization of storage space. One of the consequences of good database
design is that duplication of data is minimized. When mass storage devices were more expensive, this virtue
was more important, but minimizing redundancy is still helpful in promoting efficiency, avoiding errors, and
protecting against corruption of data.

Database management systems (DBMS) also promote data security in a variety of ways. For instance, data
backup and recovery facilities are always built into the DBMS, and data can be copied to a backup medium,
even as the database continues to operate.

Database systems also support the concept of a transaction. A transaction is a group of related changes to
the data, where all changes must occur, or else none must occur. The familiar example is removing funds from
a savings account and depositing those funds in a checking account. We want both the withdrawal and the
deposit to succeed, but if the withdrawal succeeds and the deposit fails, we want the withdrawal to be “rolled
back” and the money put back into the savings account. The two changes constitute a single transaction which
must either succeed in its entirety, or be rolled back to have no effects whatsoever. Database systems allow
changes to the data to be grouped into transactions that are either “committed” upon full success, or entirely
“rolled back” upon any failure.

DBMSs also promote data security by organizing use by multiple users. Imagine an enterprise like
Amazon.com where many users from all over the world interrogate the database of available titles, and place
orders, simultaneously. The DBMS coordinates multiuser access so as to preserve data integrity. Changes made
by one user will not interfere with the use of the database by another. The DBMS manages potential conflicts
by providing temporary locks on the data when necessary.

For all these reasons, database systems have become ubiquitous. As we will see, the use of database 
systems has been facilitated, too, by a set of language standards called SQL. It is difficult to imagine any 
substantial application today that does not include a database, or provide a direct link to an existing database.

MODELING THE DATA DOMAIN

Before creating a relational database, the designer goes through a process called data modeling. 
The modeling phase identifies the “entities” which will be of interest, the “attributes” of each entity type, and 
the “relationships” between different entity types.
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For instance, in developing a database for a college, entity types would include students, professors, 
dormitory buildings, classroom buildings, majors, courses, etc. Attributes of a student would include name,
address, dorm, room number, major, advisor, etc. One relationship between entity types would be the advisor/
advisee relationship between a professor and a student.

Entities are the “things,” the “nouns,” the database will store. Often entity types correspond to classes of
real-world objects, such as professors, cars, and buildings. Sometimes entity types correspond to more abstract
objects, like a college within a university, an order for an on-line bookstore, and a privilege afforded a group of
users. A big part of data modeling is deciding which entity types to model.

For those familiar with object-oriented programming concepts, an entity type is similar to a class. Each
individual entity of an entity type (think of an instance of a class) will be characterized by a set of attribute
values. Attributes are the “adjectives” or descriptors of the entities the database will store. For instance, extending
the example from two paragraphs above, a particular student could have the attributes “Bill Smith,” “Akron, OH,”
“Fisher Dorm,” 323, “Computer Science,” “Professor Findley,” etc.

The structure of a database is described by its “schema.” As we will see later, in order to convert the 
data model to a relational database schema, each entity instance of an entity type must be unique. Something in
the set of attributes must make each entity different from all other entities of the same type. Returning to the
example in the previous paragraph, we expect only one Bill Smith, and if there are two or more, we will find 
a way to make the different Bill Smith entities unique. We will assign a “key” to each entity of the student entity
type such that we can distinguish each student.

Having selected the entity types to include in the database, the data modeler then specifies the relationships
among the entities. For instance, we mentioned previously the advisor/advisee relationship between professors
and students. One of the important decisions to make is whether the relationship will be 1:1 (one-to-one), 
1:N (one-to-many), or N:M (many-to-many). These ratios are called cardinality ratios.

In the case of the advisor/advisee relationship, the designer might decide the relationship is 1:N, with 
1 advisor advising N students. On the other hand, if the school assigns multiple advisors to each student (for
instance, one for the student’s major field and one for student life questions), the relationship could be defined
as N:M, multiple advisors for each student, and multiple students for each advisor.

Another pair of decisions related to the cardinality ratio of a relationship is the specification of minimum
cardinalities. Must a student have an advisor? If so, then the minimum cardinality on the professor side of 
the advisor/advisee relationship must be 1. If not, then the minimum cardinality on the professor side of the
relationship will be 0; a student entity may exist who is not associated with any advisor.

Likewise, must every professor be an advisor? If so, then the minimum cardinality on the student side 
of the advisor/advisee relationship must be 1. If not, then the minimum cardinality on the student side will be
0; a professor entity can exist with no associated advisees.

Other relationships might be 1:1. Imagine an entity type called Parking Permit, and that the policy is to allow
each student one and only one parking permit. The relationship between student and parking permit could be called
“parks/permit-to-park,” and the relationship is 1:1. The minimum cardinality on the student side would probably be
1, since otherwise it would mean the database tracks parking permits that are not issued to anyone. The minimum
cardinality on the parking permit side would probably be 0, since some students probably will not have cars to park.

A many-to-many, N:M, relationship would exist between students and courses. We could call this relation-
ship “takes/is-taken-by.” Each student will take many courses, and many students will take each course. The
minimum cardinality for both sides of the relationship will be 1, because each student will certainly take some
courses and - each course will be attended by some students. On the other hand, if we keep courses in the data-
base that are no longer actively taught for some reason, then the minimum cardinality on the student side of the
takes/is-taken-by relationship will be 0.

Figure 8-1 shows a data model for the entities and relationships we have been discussing, using one of
many standard approaches for graphically representing the entity-relationship diagram. Figure 8-1 was created
using Microsoft Visio.

The rectangles represent entities, and the label in the upper portion of an entity rectangle specifies the identi-
fier, or key, for the entity type. For dormitories, for example, the dorm name is the identifier; the name of the dorm
distinguishes the record of one dorm from that of another. The labels in the lower portion of the entity rectangles
represent the other attributes of the entity. The dorm entity includes information for each dorm about the total
number of rooms in the dorm, the number of vacant rooms in the dorm, and the room rental rate for the dorm.
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The lines represent relationships between entities, and the marks at the ends of the lines represent the cardi-
nalities. A circle at the end of a line means that the relationship is optional with respect to that entity; a bar at the
end of a line means that only one instance of that entity type may participate in an instance of the relationship; and
a “crows foot” means that many instances of that entity type may participate in an instance of the relationship.

For instance, a single department offers one or many courses; every department offers at least one course.
Also, a dorm may be associated with one or many students, and a student may be associated with no dorm, or
with one dorm. Some students are commuters who will not be associated with a dorm, but if a student is associated
with a dorm, the student is associated with at most one dorm.

These processes of defining entities, their attributes, and the relationships among entities are effective for
most entities and relationships. There are a few more special cases, however, that come up often enough to
require some additional discussion.

Some entities belong in the database only if another entity is already part of the database. For instance, we
would include dependents of a professor in the database only if the professor were already included. 
If a professor leaves the university, the professor’s information would be removed from the database, and it
would no longer make sense to store information about the professor’s dependents, either. An entity type such
as “Dependent” is called a “weak entity.” A weak entity is modeled like other entity types, except that it is identified
as being dependent upon a “strong entity” in the database.

A particular type of weak entity is the “ID-dependent entity.” An ID-dependent entity is a weak entity, such
that the ID of the associated strong entity is also part of the identifier of the ID-dependent entity. Imagine the
strong entity “Building” and the ID-dependent entity “Room”. Attributes of a room may include size, seating
capacity, number of windows, etc., but a room only makes sense in the context of a building, and the identity
of a room will include the building name as well as the room number.

Another application of ID-dependent entities occurs when attributes are “multivalued.” For instance, 
a professor may have more than one degree, or more than one telephone number. We model such multivalued
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attributes as ID-dependent entity types, and we specify 1:N relationships between the strong entity and the 
ID-dependent entities.

Relationships may also be recursive. That is, a relationship can exist among instances of the same entity type.
For example, we might want to model the relationship between students who room together. In that case, we would
define a recursive N:M student:roommate relationship to model the fact that students may room with one or more
others. If all rooms permitted only two roommates, the relationship could be 1:1, but probably some suites allow for
three, four, or more roommates, so the relationship between student and roommates will be N:M, and we will call
it “rooms-with”. The minimum cardinality on either side can be 0, if we have some students who will room alone.

Finally, some entity types can represent subclasses and superclasses. For instance, students may be either
undergraduate or graduate students. We would model “student” as the superclass, and we would model “under-
graduate” and “graduate” as subclasses. Attributes of student would include those attributes relevant to all students,
such as name, address, etc. Attributes of undergraduate entities would include those attributes relevant only to
undergraduates, such as student life advisor (assuming graduate students have no such advisor assigned).

Figure 8-2 illustrates weak and ID-dependent entities, multivalued attributes, and superclass and subclass
entities.

In Fig. 8-2, the Dependents table is an id-dependent weak entity. The identifier for that table includes the
key for the related strong entity Faculty, plus the name of the dependent (spouse’s name, child’s name, etc.).
The FacultyDegrees entity represents a multivalued attribute. A single faculty member may have multiple
degrees from multiple institutions, and this entity allows us to represent that fact. Finally, the Student entity
shows two subcategories of students, grads and undergrads. An undergrad will have a faculty member serving
as his or her Student Life Advisor, and a grad may (or may not) have a faculty member serving as the chair of
his or her thesis committee.
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BUILDING A RELATIONAL DATABASE FROM THE DATA MODEL

The data model comprises the conceptual schema, or the description of the structure of the database. This
is one of three schemas, or designs that database developers refer to. The other schemas include the external
schema, which is the database as conceived by the end-users, and the internal schema, which is the set of actual
file structures on disk used by the database management system (SQL Server, Oracle, etc.).

With the conceptual schema created, the next task is to convert the data model into tables, relationships, and data
integrity rules. An entity type is represented as a table, where each row in the table represents an instance of that entity
type. In relational database terminology, a table is called a “relation.” Note that a relation is a table, not a relationship.
Later we will also create means to represent relationships. A relation consists of rows, each of which represents an
instance of the entity type, and of columns, each of which represents one of the attributes of the entity type.

Each row of a relation is called a tuple. Practitioners use the word row more often than tuple, but a tuple is
a row of a table, an instance of a relation, an instance of an entity type. Each tuple consists of the values of the
attributes for that instance of the entity type.

Another word for attribute is field. So, in discussions of relational databases, you must keep in mind these
synonyms: relation and table, tuple and row, attribute and field.

The first step is to create a relation for each strong entity in the data model. Each of the attributes of 
the entity type in the data model will become a column name in the relation. At this time one must choose an
attribute, or set of attributes, called a primary key, which will uniquely identify each row of the relation.

The ideal key is short, numeric, and never-changing. The ideal is not always possible to achieve, but it can be
helpful to keep the ideal in mind when choosing a key. For instance, if the “Student” table includes the attributes
of name, address, and social security number (SSN), in addition to other attributes, one could probably choose
the combination name–address, or the single attribute SSN, to uniquely identify students. Choosing SSN would
be wiser, because SSN will be more efficient to process, due to its numeric type, and it will change even less
frequently than a name or an address.

Sometimes there is no obviously good key attribute among the attributes of the table. One choice is to 
concatenate the values of several fields to achieve an identifier that will be unique for each row. If this approach
leads to long, alphanumeric keys, it can be better to use a surrogate key. A surrogate key is simply a number,
generated by the DBMS, which is assigned to each tuple. In the case of the “Student” table, if SSN were not
one of the attributes to be stored for each student, one might decide to generate a surrogate key for the Student
table and call it “StudentID”.

The second step is to create a relation for each weak and ID-dependent entity type. As with strong entities,
each attribute of the entity type in the data model becomes a column in the new relation. In addition, one must
add a column to the weak or ID-dependent relation that will hold the foreign key of the strong entity tuple to
which it is related.

A foreign key is a column in a relation, which establishes a relationship with data in another relation. 
For instance, suppose our data model includes entity type “StudentComputer”, and that “StudentComputer” is
a weak entity associated with “Student”. That is, the database will track the information about each student’s
computer only as long as the student is part of the database.

In addition to attributes of the student’s computer such as make and serial number, the StudentComputer 
relation will have a column identifying the student who owns the computer. If SSN is the key of the Student relation,
the foreign key in the StudentComputer relation will contain values of student social security numbers. It is not
necessary for the column names in the two relations to be the same. Thus, even though the key column of the
Student relation is named “SSN”, the foreign key column in StudentComputer might be called “StudentSSN”.

The new relation created for the weak entity must also have a primary key of its own. Choosing the primary key
for the weak entity relation involves the same considerations as choosing the primary key for a strong entity relation.
If the weak entity is ID-dependent on the strong entity, then make the key of the ID-dependent relation 
a combination of the foreign key field, and one or more other attributes of the ID-dependent relation.

Another application of ID-dependent entities is in modeling multivalued attributes. For instance, one may
want to provide for multiple addresses for each student; many will have one address during the academic year,
and another during the summer, for instance. In such a case, model an ID-dependent entity called “Address”,
and create a relation with attributes such as “Street”, “City”, “State”, etc., as well as a foreign key attribute that
will hold values of the primary key for the Student relation.
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With relations created for all entities in the data model, it is time to provide for the relationships in the data
model. For each 1:1 relationship, choose one relation to be the “parent” and the other to be the “child.” To
implement the relationship, create a foreign key column in the child relation that will be used to associate each
tuple in the child relation with the appropriate tuple in the parent.

If the minimum cardinality on both sides of the 1:1 relationship is 1, it does not matter which relation is
chosen as the parent. However, if the minimum cardinality on one side is 0, then make the other relation the
parent. For instance, if there were a 1:1 relationship between “Room” and “Projector”, but not all rooms had
projectors, you would make the Room relation the parent, and put a foreign key column in the Projector 
relation. This will be more space-efficient, since you will have a foreign key field only when there is a Projector
tuple to associate with a Room tuple.

For 1:N relationships, the relation on the 1 side will be the “parent,” and the relation on the N side will be
the “child.” All one must do is add a foreign key column to the child relation so that the “many” children can
be related to the “one” parent entity. For instance, to implement the advisor/advisee relationship, simply add 
a foreign key column to the Student relation, name the foreign key column “FacultyAdvisor”, and prepare to
populate the column with values of the primary key of the Faculty relation.

Many-to-many relationships are more complex. To implement an N:M relationship, one must create a new
table, a new relation. Such a relation is sometimes called an intersection table or a relationship relation. The
intersection table includes foreign key columns for both entities in the relationship. Each tuple in the intersection
table will include values of primary keys from both relations. For each association between an instance of one
entity type and an instance of the other, there will be a row in the intersection table making the connection.

For instance, to create the M:N relationship between the Student and Course tables, one would create 
the “StudentCourseIntersection” relation. StudentCourseIntersection would have foreign key columns 
for Student (perhaps called StudentSSN) and for Course (perhaps called CourseNumber). Each row in
StudentCourseIntersection will record the fact that a particular student took a particular course. Any particular
student may take many courses, and many students may take any particular course.

The primary key of an intersection table usually is the composite of the two foreign key values. Since the
foreign key values must be unique among tuples in their respective relations, the combination of the two keys
must be unique among the tuples in the intersection table. This rule would only change in special circumstances.
For instance, if one were to decide to record multiple attempts by a student to take a particular course, the 
primary key of the intersection table would have to be expanded to include another attribute that would allow
one to distinguish different attempts by the same student to take the same course.

Recursive relationships sound difficult to create, but they are not. Suppose some students are student 
advisors. The relationship is 1:N. One can create this recursive relationship by adding a column to the Student
relation named “StudentAdvisor”. The StudentAdvisor column is essentially a foreign key column that contains
values of the primary key from the same relation. Creating a 1:N recursive relationship is just like creating 
a standard 1:N relationship, except that the “parent” foreign key links to the same table that contains the “child”
entity. A 1:1 recursive relationship is handled similarly.

An M:N recursive relationship requires creating an intersection table, just as for standard M:N relationships.
In this case, however, the foreign key columns will both contain primary key values from the same relation.
Imagine the recursive roommates relationship. Each row in the intersection table will associate one student with
a roommate, another student.

NORMALIZATION

Some models are better than others. In particular, poor decisions regarding entity definitions can increase
data redundancy and lead to update anomalies. Update anomalies include behavior such as requiring information
about a second entity (e.g., a dorm) when inserting information about a first entity (e.g., a student), or losing
information about a second entity (e.g., a dorm) when an entity of a different type is deleted (e.g., the last student
in the dorm). Normalization is the process of subjecting relations to tests. Passing the tests will insure that the
relation will show desirable properties.

The goal of normalization is to insure that each relation represents a single theme. For instance, a relation
should have information about students, and a relation should have information about dorms, but a relation that
has information about both students and dorms will lead to trouble.
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There are various normal “forms” which have been identified for relational databases. Higher levels of 
normalization lead to designs that reduce data redundancy and avoid the update anomalies mentioned above.
Any higher normal form also conforms to all lower normal forms. Thus, a relation in third normal form (3NF)
is also in second normal form (2NF), and first normal form (1NF).

Discussions of normal forms rely upon the concept of functional dependency. When the value of one attribute,
or set of attributes, determines the value of another attribute, a functional dependency exists, and the first attribute,
or set of attributes, is called the determinant.

Suppose that we created a relation with the attributes shown in Figure 8.3.

The key of the Student relation is the composite of Sname and Dorm (assuming that no students with the
same name will live in the same dorm).

This horizontal box representation is a common way to represent a relation—vertical lines separate the 
attribute names, and the attributes that comprise the key are underlined. The key attributes do not need to be adjacent
to one another, and they do not need to be on the left side, but often people choose to show them this way.

The key of any relation is always a determinant; by definition, the key identifies the entire tuple. Given
values for Sname and Dorm in the Student relation, the values for all the other attributes are determined.

Not all determinants are keys, however. In the Student relation, there is a functional dependency between
MajorAdvisorName and AdvisorDept. Given a value for the advisor name, the department value is determined.

First normal form is simply the definition of a relation. Each attribute must be an atomic, single-valued
attribute. For example, if an attribute in the Student relation is TelephoneNumber, any one tuple in the relation
can have only one value for TelephoneNumber. If one wants to store multiple telephone numbers for a student,
then one must create a separate relation for that purpose. Then each tuple in the new PhoneNumber relation 
can have a single telephone number, and multiple tuples in the PhoneNumber relation can be associated via 
a 1:N relationship with a particular student.

Second normal form requires that every nonkey attribute be functionally dependent on the entire key. Said
another way, each nonkey attribute value must provide a fact about the entity as a whole, not a fact about a part
of the key. If the key of a relation is a single attribute value, for example a surrogate key, any relation is 
automatically in 2NF. All the nonkey attributes are dependent on (i.e., determined by) the key.

Without thinking too much about it, anyone might think that the Student relation is a reasonable design for
a database that will track students. On closer reflection, however, note that the relation includes information
about resident advisors (RAs), and faculty advisors, as well as about students.

Is every non-key attribute in the Student relation dependent upon (determined by) values of the entire key?
In this case, the answer is “No.” Assuming that there is one RA per Dorm, then the value of RA depends upon
Dorm, but not upon Sname. To bring the design into 2NF, make a new relation called Dorm, and remove the
RA attribute from the Student relation (Fig. 8.4).
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This is progress, but it’s still true that the Student relation tracks information about something other than
students. In particular, the relation is tracking information about advisors; it’s tracking not just who the advisor
for each student is, but also what department the advisor belongs to. If a relation is to focus on a single theme,
this doesn’t seem right.

Third normal form requires that a relation has no transitive dependencies. Said another way, each non-key
attribute must provide a fact about the entity as a whole, not about another nonkey attribute. That is what is still
wrong with the Student relation. MajorAdvisorName and AdvisorDept are both dependent upon the key of the
Student relation, but AdvisorDept is also transitively dependent upon MajorAdvisorName. Once we know who the
student is, we can determine the student’s advisor, and once we know the advisor, we can determine the advisor’s
department. This is a transitive dependency: A determines B, and B determines C. To make the design conform
to 3NF, one must remove the transitive dependency from the Student relation. Fig. 8.5 shows the design in 3NF.

Now the original Student relation has been broken into three relations, each with a single theme—
one records information about students, one records information about dorms, and one records information
about faculty members who act as advisors.

In a more complete implementation, one would choose better key values for the Student and Faculty relations.
Perhaps one would choose some sort of ID number instead of relying on a name and hoping one never has to
deal with the possibility of including two John Smiths in the database. A Faculty relation likely would also have
additional attributes, such as office address, salary, etc.

Boyce–Codd normal form (BCNF) is a refinement of 3NF. A relation is in BCNF if every determinant in
the relation is a candidate key. A candidate key is a valid choice for the key of the relation.

Suppose in our example that room numbers in different dorms were different, such that the value of the
room number itself determined which dorm the student was in (room numbers less than 100 were in Arthur
Dorm, for instance, and room numbers between 100 and 199 were in Brooks Dorm). Room would then be 
a determinant, but it obviously would not be a candidate key, so the Student relation would not be in BCNF. 
To put the Student relation in BCNF, we would have to create a new Room relation in which dorm room number
was the key and Dorm was a nonkey attribute.

Normal forms exist at even higher levels. In ascending order, the forms are fourth normal form, fifth normal
form, and domain key normal form. In day-to-day work with databases, one is less likely to focus on these
higher forms, so this chapter will end its discussion of normalization with BCNF. The important guide to
remember is that each relation should embrace a single theme, a single topic.

SQL—STRUCTURED QUERY LANGUAGE

IBM first brought SQL to database processing. It is a high-level language for creating databases, 
manipulating data, and retrieving sets of data. SQL is a nonprocedural language—that is, SQL statements
describe the data and operations of interest, but do not specify in detail how the underlying database system 
is to satisfy the request.
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ANSI standards for SQL were published in 1986, 1989, 1992, 1999, and 2003. In practice, different database
vendors offer SQL with small differences in syntax and semantics. For any particular vendor, most SQL 
statements will conform to the standard, and there will also be numerous small differences. As a result, one must
always supplement knowledge of standard SQL with information specific to the database vendor one is using.
The desktop reference SQL in a Nutshell by Kevin Kline (2004) finds it necessary, for example, to include 
separate sections for ANSI Standard, DB2 (IBM), MySQL (open source), Oracle, and SQL Server (Microsoft)
varieties of the standard.

SQL statements are often distinguished as being part of the data definition language (DDL) or the data
manipulation language (DML). DDL statements create database structures like tables, views, triggers, and 
procedures. DML statements insert data, update data, retrieve data, or delete data in the database.

SQL is not case sensitive. Commands and names may be entered in uppercase or lowercase. However, 
some people have a style preference for using uppercase and lowercase letters to segregate SQL key words from
database names.

DDL—DATA DEFINITION LANGUAGE

The first DDL statement to learn is CREATE. The CREATE TABLE command is the means by which to
create a relation. In SQL, a relation is called a table, a tuple is called a row, and an attribute is called a column.
Here is the syntax for the CREATE TABLE statement:

CREATE TABLE <table_name>
( <column_name> <dataType> <attributes>

[,<column_name> <dataType> <attributes>]
[CONSTRAINT [<constraintName>] <constraintType>
[,CONSTRAINT [<constraintName>] <constraintType>]]

);

This syntax specification says that the statement must begin with CREATE TABLE followed by your choice of
table name (shown between the less-than and greater-than brackets). Following the table name, you must type an open
parenthesis, followed by one or more sets of specifications for the name of each column, the data type of each column,
and attributes of each column (such as allowing nulls or not). After the list of column names, you may optionally 
provide one or more table constraints by typing CONSTRAINT, an optional constraint name, and a constraint
type (such as PRIMARY KEY or UNIQUE values). Finally, you must type a close parenthesis and a semicolon.

The database designer is free to specify any name for a table, column, or constraint. The SQL standard
specifies rules for names, but each database vendor has its own rules that vary somewhat from the standard. For
instance, the SQL2003 standard says that names may be up to 128 characters long, but MySQL limits the
designer to 64 characters, and Oracle limits the designer to 30 characters.

The data types for SQL also vary with the vendor of the database management system. In general, these
types are available:

● Integer
● Number/Numeric (decimal floating point)
● Varchar (variable length character strings)
● Date/DateTime
● Char (character string of fixed length)

You must consult the documentation for your DBMS to determine correct choices for data types.
The most common attributes one specifies for columns are NOT NULL, DEFAULT, and CONSTRAINT.

The NOT NULL attribute requires a value for that column for every row that one adds to the table. By default,
a column may contain a null value.

The DEFAULT attribute allows one to provide an expression that will create a value for a column, if a value
is not otherwise provided when one inserts a new row. For instance, the following column declaration specifies
the default value for the state column to be “NY”:

State Char(2) DEFAULT 'NY',
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There are four constraints that can be specified: PRIMARY KEY, FOREIGN KEY, UNIQUE and CHECK.
The primary key constraint identifies the column or columns that comprise the primary key.

A foreign key constraint identifies a column that contains values of a primary key in a different table.
Foreign keys are the mechanism for creating relationships among rows (entities) in different tables.

A unique constraint requires all rows in the table to have unique values for the column or set of columns
specified in the constraint. A unique constraint is sometimes called a candidate key, because the unique
column(s) could be used as a primary key for the table, in place of the chosen primary key.

Here are examples of several CREATE TABLE commands:

CREATE TABLE Student
( Sname VarChar(25) Not Null,

Dorm VarChar(20) Not Null,
Room Integer,
Phone Char(12),
Major VarChar(20),

MajorAdvisorName VarChar(25),
CONSTRAINT StudentPK PRIMARY KEY( Sname, Dorm ),

CONSTRAINT StudentDormFK FOREIGN KEY( DORM )
REFERENCES Dorm( Dorm ),

CONSTRAINT StudentFacultyFK FOREIGN KEY( MajorAdvisorName )
REFERENCES Faculty( Fname )

);

CREATE TABLE Dorm
( Dorm VarChar(20) Not Null,

RA VarChar(25),
CONSTRAINT DormPK PRIMARY KEY( Dorm )

);

CREATE TABLE Faculty
( Fname VarChar(25) Not Null,

Dept VarChar(20),
CONSTRAINT FacultyPK PRIMARY KEY( Fname )

);

Another kind of constraint is the CHECK constraint. A CHECK constraint allows one to specify valid 
conditions for a column. For instance:

CONSTRAINT FoundedCheck CHECK ( FoundedDate > 1900),
CONSTRAINT ZipCheck CHECK ( zip LIKE '[0-9][0-9][0-9][0-9][0-9]' ),

The first constraint will insure that the column FoundedDate has a value more recent than 1900, and the
second will insure that the column zip will consist of five numeric characters. In the case of the second CHECK
constraint, the syntax says that zip must be “like” five characters, each of which is a numeric character
between 0 and 9. This syntax, too, varies by database vendor, so you must consult the documentation of your
DBMS for implementation specifics.

Having created tables in the database, one sometimes must dispose of them. One might guess that the key-
word would be “delete” or “dispose” or “destroy”. While “delete” is a key word in SQL, it is used for remov-
ing data from the database, not for getting rid of structures like a table. The way to remove a database object
like a table is to use the DROP command. Here is the syntax:

DROP < object_type > < object_name >;

The key word DROP must be followed by the type of database structure and the name of the database struc-
ture. Object types include TABLE, VIEW, PROCEDURE (stored procedure), TRIGGER and some others.
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To dispose of the Student table, one can use this command:

DROP TABLE Student;

When one must modify a database object like a table, the command to use is ALTER. For instance, to 
add a birthdate column to the student table, one could use this command to add a column named Birthdate
of data type Date:

ALTER TABLE Student ADD COLUMN Birthdate Date;

In addition to adding columns, one can use the ALTER TABLE command to drop columns, add or drop
constraints, and set or drop defaults.

DML—DATA MANIPULATION LANGUAGE

The first DML statement to learn is SELECT. The SELECT statement provides the means of retrieving
information from the database. It is a very flexible command with numberless variations and much to know
about using it.

In the simplest case, use SELECT to retrieve values for certain columns in a table, such as the Sname and
Major values in the Student table we created in the previous section:

SELECT Sname, Major FROM Student;

This statement will retrieve one row for each student and display the student’s name and major.
One can also be selective about which rows one displays by adding a WHERE clause:

SELECT Sname
FROM Student
WHERE Major = 'Computer Science';

This statement, or query, will return the names of all Computer Science majors, and no others.
If one wants to retrieve all columns for each qualifying row, one can use the asterisk to specify that all

columns be displayed:

SELECT *
FROM Student
WHERE Major = 'Computer Science';

The WHERE clause itself is very flexible. In addition to the equal sign, one can use the comparison and 
logical operators given in Table 8-1.

Suppose one wants to find all the students named Jones who are not math or computer science majors, and
who live in either Williams or Schoelkopf dormitory. One possible query is the following:

SELECT *
FROM Student
WHERE Sname LIKE '%Jones'
AND Major NOT IN ( 'Math', 'Computer Science' )
AND ( Dorm = 'Williams' OR Dorm = 'Schoelkopf' );

The results of a query can be sorted, too. All one need do is add the ORDER BY clause. For instance:

SELECT Sname
FROM Student
WHERE Major = 'Computer Science'
ORDER BY Sname;
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This will report the CS majors in alphabetical order by name. To sort in reverse alphabetical order, add the
word DESC (descending) at the end of the query.

What would this query report?

SELECT Major FROM Student;

It would return one line for each student, and each line would contain a major field of study. If 300 students
major in computer science, there will be 300 lines containing the words “Computer Science”. Such a report is
probably not what one had in mind. Probably one is interested in a list of the different major fields of study of
the students. One can get such a report by adding the word DISTINCT to the SELECT query:

SELECT DISTINCT Major FROM Student;

What if the information in which one is interested is spread among several tables? Such a query requires 
a JOIN of the tables. There is more than one way to specify a JOIN, and there are different types of JOINs for
different situations. Suppose one is interested in a list of student names and the names of the Resident Advisors
in their dormitories. Here is one way to JOIN the Student and Dorm tables to combine the information:

SELECT Sname, RA
FROM Student, Dorm
WHERE Student.Dorm = Dorm.Dorm;

Conceptually, a JOIN works by concatenating the rows in the two relations where the specified test is true.
In this case, each row in the Student table is concatenated with the row in the Dorm table where the value of
the Dorm column in the Dorm table is the same as the value of the Dorm column in the Student table
(Student.Dorm is how the Dorm column in the Student table is specified. Likewise Dorm.Dorm
specifies the Dorm column in the Dorm table.). Then the selection of columns Sname and RA occurs from the
concatenated row.
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Operator Meaning
= equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
!= not equal to
!< not less than
!> not greater than
AND True if both boolean comparisons are true
OR True if either boolean expression are true
NOT Reverses the truth value of another boolean operator
IN True if the operand is one of the listed values, or one of the values returned by a subquery
LIKE True if the operand matches a pattern

% matches anything
_ (underscore) matches any one character
Other characters match themselves

BETWEEN True if the operand is within the range specified
EXISTS True if a subquery returns any rows
ALL True if all of a set of comparisons are true
ANY True if any one of a set of comparisons is true
SOME True if some of a set of comparisons is ture

Table 8-1



Another way to write the same JOIN query would be to use this syntax:

SELECT Sname, RA
FROM Student JOIN Dorm
ON Student.Dorm = Dorm.Dorm;

Either syntax is acceptable. In both cases, the column named Dorm, which exists in both tables, must be
“disambiguated” by qualifying each use of Dorm with the name of the table to which it applies.

One might add two more tables to the University database to track clubs and student participation in them.
Many students can join any club, and each student can belong to many clubs, so the relationship will be M:N.
One must create a table to track the clubs, and an intersection table to track club membership:

CREATE TABLE Club
( Cname VarChar(20) Not Null,

Dues  Integer,
Building  VarChar(20),
Room  Integer
CONSTRAINT ClubPK PRIMARY KEY (Cname)

);

CREATE TABLE ClubMembership
( Cname VarChar(20) Not Null,

MemberName VarChar(20) Not Null
CONSTRAINT ClubMembershipPK PRIMARY KEY (Cname, 

MemberName),
CONSTRAINT ClubMembership_Club_FK

FOREIGN KEY (Cname) REFERENCES Club( Cname );
CONSTRAINT Member_FK

FOREIGN KEY (MemberName) REFERENCES Student( Sname );
);

To retrieve a list of students, their majors, and the clubs to which they belong, one could use this query that
joins the Student and ClubMembership tables:

SELECT Sname, Major, Cname
FROM Student JOIN ClubMembership
ON Student.Sname = ClubMembership.MemberName;

The “dot notation” in the last line says that we are interested in joining rows where the Sname column in
the Student table matches the MemberName column in the ClubMembership table. The results of this
query will include a row for each student who participates in a club, and if a student participates in more than
one club, there will be multiple rows for that student. What if one also wanted to know which students did not
participate in any clubs? A solution would be to use an “outer join.”

A standard, or “inner,” join assembles information from a pair of tables by making a new row combining
the attributes of both tables whenever there is a match between tables on the join condition. In the previous
example, whenever there is a match between Sname in the Student table and MemberName in the
ClubMembership table, the join creates a new row that includes all the attributes of both tables. The
SELECT then reports the values of Sname, Major, and Cname from the combined row.

An outer join includes each row in one or both tables, regardless of whether the row matches on the join
condition. For instance, to show all students, regardless of club membership, the query above can be modified
with the word LEFT:
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SELECT Sname, Major, Cname
FROM Student LEFT JOIN ClubMembership
ON Student.Sname = ClubMembership.MemberName;

The word LEFT says that the table on the left, Student, not ClubMembership, is the one for which
all rows will be reported. Now the query will return one row for every student (more than one for students who
belong to more than one club), and if a student is not a member of any club, the Cname column will be NULL.

The word RIGHT can be used to affect the rows reported from the table on the right. Rearranging the order
of tables in the join, and switching to the word RIGHT, gives a new query that reports the same result:

SELECT Sname, Major, Cname
FROM ClubMembership RIGHT JOIN Student
ON Student.Sname = ClubMembership.MemberName

If one wants to include all rows from both tables, regardless of whether the join condition is satisfied, use
the word FULL instead of LEFT or RIGHT.

To report only those students who are not members of any club, simply add a WHERE clause:

SELECT Sname, Major, Cname
FROM Student LEFT JOIN ClubMembership
ON Student.Sname = ClubMembership.MemberName
WHERE Cname IS NULL;

Notice that one uses the word IS, instead of the equal sign, to test for the presence of a NULL value. 
A NULL value literally has no value. Since the value does not exist, one cannot test for equality of the value to
any other, even to NULL. When testing for NULL values, always use IS NULL or IS NOT NULL.

Suppose one wanted to know how many students participated in each club? SQL has built-in functions for
simple and frequently needed math functions. The standard five functions are COUNT, SUM, AVG, MIN, and
MAX, and many DBMS vendors provide additional nonstandard functions as well. One could report the count of
students in each club this way:

SELECT Cname, COUNT(*) AS Membership
FROM ClubMembership
GROUP BY Cname
ORDER BY Cname;

COUNT(*) says count the occurrences of rows. The AS Membership phrase sets the column 
heading for the counts in the report to Membership. The GROUP BY phrase tells SQL how to break down
the calculations when using the built-in function; that is, count rows (members) for each club.

If there were clubs that no students had joined, and one wanted to include that information in the report,
one could use an outer join along with the built-in count function to achieve the desired report:

SELECT Club.Cname, COUNT(ClubMembership.Cname) AS Membership
FROM Club LEFT JOIN ClubMembership
ON Club.Cname = ClubMembership.Cname
GROUP BY Club.Cname
ORDER BY Club.Cname;

Here a left join on Club and ClubMembership insures that all clubs are included in the report, even if
the clubs have no members (no entries in ClubMembership). Also, since Cname is a column heading in both
tables, each reference to Cname must also specify which table is being referenced. This query says to execute
an outer join on Club and ClubMembership so that all clubs are included, and then count the occurrences
of records for each club by grouping on club names.
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If one wanted to report the revenues for each of the clubs, this query using the SUM function would work:

SELECT CM.Cname, SUM( C.Dues ) AS Revenue
FROM ClubMembership CM JOIN Club C
ON CM.Cname = C.Cname
GROUP BY CM.Cname;

This statement introduces the use of aliases for table names. In the FROM clause one may follow the name
of the table with an abbreviation. In that case, the abbreviation may be used wherever the table name would 
otherwise be required, even in the beginning of the SELECT clause before the FROM clause is encountered!
Most experienced SQL people make extensive use of table aliases to reduce the size of SQL statements and
make the statements easier to read.

SQL queries can also be nested, one within another. Suppose one were interested in finding all those 
students whose major advisor was not in the Math Department. One way to learn that is to nest one query
regarding faculty and departments inside another regarding students:

SELECT Sname, Dorm
FROM Student
WHERE MajorAdvisorName
IN (

SELECT Fname
FROM Faculty
WHERE Dept != 'Math'

);

This is called a nested query, or subquery. Usually it is possible to use a join instead of a nested query, but
not always. Later we will discuss correlated subqueries, which cannot be translated into join expressions. In this
case, however, here is the same query example executed as a join:

SELECT Sname, Dorm
FROM Student JOIN Faculty
ON MajorAdvisorName = Fname
WHERE Dept != 'Math';

In this case, since there is no ambiguity about which table is being referenced, the column names do not
need to be qualified with a table reference.

When using a subquery, the result columns must all come from the table named in the FROM clause
of the first SELECT clause. Since that is the case in this example, one has the choice of using a join or 
a subquery.

We will return to the SELECT statement later to touch on some additional topics, but now we will turn our
attention to the other SQL DML statements. Having created the tables for a database, the next step will be to
enter data. The SQL statement for adding rows to a table is INSERT. Here is the syntax for INSERT:

INSERT INTO <table_name> ( <columnX>, <columnY>..., <columnZ>)
VALUES( <valueX>, <valueY>..., <valueZ>);

This says that the key words INSERT INTO must be followed by the name of a table. Then you must 
provide an open parenthesis, a list of one or more column names, and a close parenthesis. Then the key word
VALUES must appear, followed by an open parenthesis, a list of column values corresponding to the column
names, a closed parenthesis and a semicolon.

And here is an example:

INSERT INTO Student( Sname, Dorm, Room, Phone )
VALUES ('Mary Poppins', 'Higgins', 142, '585 223 2112');
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In this example, notice that some columns are not specified. This student has not yet declared a major. 
The values for the unspecified columns (Major, MajorAdvisorName) will be null.

The order of column names need not be the same as the order of the columns in the table, but 
the order of the values in the VALUES clause must correspond to the order of columns in the INSERT
statement.

In the common case that every column will receive a value, it is not necessary to include the list of column
names in the INSERT statement. In that case, the order of values must be the order of columns in the table.
Here is another example:

INSERT INTO Student VALUES ('Mark Hopkins', 'Williams', 399,
'585 223 2533', 'Math', 'William Deal');

With data in the database, changing the information requires one to use the UPDATE statement. Here is the
syntax for UPDATE:

UPDATE <table_name>
SET <columnX> = <valueX>, <columnY> = <valueY>...,
<columnZ> = <valueZ>
WHERE <condition>;

And here is an example:

UPDATE Student
SET Major = 'English', MajorAdvisorName = 'Ann Carroway'
WHERE Sname = 'Mary Poppins';

Mary has discovered her major field, and this statement will add that information to the row for Mary in
the Student table.

The WHERE clause in the UPDATE statement is the same as, and has all the power and flexibility of, 
the WHERE clause in the SELECT statement. One can even use subqueries within the WHERE clause. The
WHERE clause identifies the rows for which column values will be changed. In this example, only one row qual-
ified, but in other cases the UPDATE statement can change whole groups of rows.

For instance, suppose the Computer Science department changes its name to Information Technology
department. The following UPDATE statement will change all Faculty rows that currently show Computer
Science as the department, so that they will now show Information Technology:

UPDATE Faculty
SET Dept = 'Information Technology'
WHERE Dept = 'Computer Science';

This one statement corrects all appropriate rows.
Deleting rows of information from the database is very straightforward with the DELETE statement.

Here is the syntax:

DELETE FROM <table_name>
WHERE <condition>;

Again, the WHERE clause provides the same flexible and powerful mechanisms for identifying those 
rows to be deleted.

To remove Mary Poppins from the database, this DELETE statement will work:

DELETE FROM Student WHERE Sname = 'Mary Poppins';

To remove all rows from a table, one simply omits the WHERE clause—be careful not to do so by accident!
Remember also that to remove the table itself from the database, one must use the DROP statement.

CHAP. 8] DATABASE 155



Having discussed the DML statements, we will return to the SELECT statement to discuss correlated 
subqueries. When the evaluation of a subquery references some attribute in the outer query, the nested or subquery
is described as a correlated subquery.

To imagine the workings of a correlated subquery, imagine that the subquery is executed for each row in
the outer query. The outer query must work through all the rows of a table, and the inner query must have 
information from the row being referenced in order to complete its work.

For example, suppose one wants to know if there are any dormitories in the database that have no students
assigned to them. A way to answer this question is to go through the Dorm table, one row at a time, and see if
there are, or are not, any students who list that dormitory as their own. Here is such a query:

SELECT Dorm
FROM Dorm
WHERE NOT EXISTS (

SELECT *
FROM Student
WHERE Student.Dorm = Dorm.Dorm
);

The outer query works through the rows of the Dorm table inspecting the Dorm column (Dorm.Dorm).
For each value of Dorm.Dorm, the inner query selects all the students who have that dormitory name in the
Dorm column of the Student table (Student.Dorm).

This query introduces the NOT EXISTS function (and, of course, there is also an EXISTS function).
EXISTS and NOT EXISTS are used with correlated subqueries to test for the presence or absence of 
qualifying results in the subquery. In this case, whenever no qualifying student is found (the result NOT
EXISTS), then that row of the Dorm table qualifies. The result is a list of dormitories to which no students 
are assigned.

Likewise, one could create a list of all dorms to which students have been assigned by changing the NOT
EXISTS to EXISTS.

A famous and mind-bending use of NOT EXISTS can find rows where all rows in the subquery satisfy
some condition. For instance, suppose one wants to know if there is any club to which all math majors belong.
One can use NOT EXISTS to find clubs to which no one belongs, and then use NOT EXISTS again to find clubs
to which everyone belongs. Here is the example:

SELECT Cname
FROM Club
WHERE NOT EXISTS (

SELECT *
FROM Student
WHERE Student.Major = 'Math' AND NOT EXISTS (

SELECT *
FROM ClubMembership
WHERE Student.Sname = ClubMembership.MemberName
AND Club.Cname = ClubMembership.Cname));

This query works through each row in the Club table. For each row in the Club table it works through
each row in the Student table. Then for each Club row/Student row combination, it works through each
row in the ClubMembership table.

The innermost query finds clubs in which at least some math majors do not participate. However, if ALL
math majors participate in a particular club, the innermost query will return a NULL. If the innermost query is
NULL, then the innermost NOT EXISTS will be true (it’s NULL; it does not exist; so NOT EXISTS is true). If
the innermost NOT EXISTS is true, then that club qualifies, and that club is reported as being one to which all
math majors belong.

It can take a while to digest this idea!
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STORED PROCEDURES

Most database management systems allow users to create stored procedures. Stored procedures are 
programs that are precompiled and stored in the database itself. Users can access the stored procedures to
inquire of, and make changes to, the database, and they can do this interactively using commands, or by using
programs that call stored procedures and receive the results.

Stored procedures are written in a language that extends standard SQL to include more programming
constructs, like conditional branching, looping, I/O, and error handling. Each vendor’s language is different
in details, so one must learn the language of the particular database management system to which one is
committed.

There are several advantages of stored procedures as a way to access a database. First, a procedure may be
complex in its work, and yet be easy for a casual user to invoke. The skilled database programmer can create
stored procedures that will make day-to-day use of the database more convenient. For instance, the user may
simply want to record a sale to a customer, and the user may not be aware that the database will require updates
to both the Customer and Product tables. A stored procedure can accept the facts (customer name, price, quantity,
product, etc.) and then accomplish all the updates behind the scenes.

Second, stored procedures usually improve performance. Without stored procedures, SQL commands
must be presented to the DBMS, and the DBMS must check them for errors, compile the statements, develop
execution plans, and then execute the plans and return the results. On the other hand, if the procedure 
is precompiled and stored, less error checking is necessary, and the execution plan is already in place. 
For database applications that are concerned with performance, using stored procedures is a standard strategy
for success.

Third, using stored procedures is a way to achieve reuse of code. To the extent that different users and 
programs can take advantage of the same stored procedures, programming time can be saved, and consistency
among applications can be assured.

Fourth, stored procedures are secured with the same mechanisms that secure the data itself. Sometimes the
procedures encapsulate important business rules or proprietary data processing, so keeping them secure is
important. Stored procedures are stored in the database itself, and access to them is secured just as access to the
data is. This can be an advantage compared to separately securing source code.

The only disadvantage of using stored procedures is that using them introduces a requirement for another
programming expertise. For example, a programmer may know Java, and may also know SQL, but may not
have any experience with Oracle’s language PL/SQL. The highest performance approach might be to use stored
procedures, but in order to shorten development time, and reduce training and support requirements, a group
might decide to simply put SQL statements into Java code instead of writing stored procedures.

The SQL CREATE command is used to create stored procedures. To give the flavor of a stored procedure,
here is an example of a stored procedure from an Oracle database. This procedure was written by the authors
to support an example database from David Kroenke’s book Database Processing, 9th Ed., 2004. We will not
explain this syntax here, as an entire book could be written on the topic of PL/SQL. We present this code simply
to illustrate our discussion with a realistic example.

Create or Replace Procedure Record_sale
(
v_CustomerName IN Customer.Name%TYPE,
v_Artist IN Artist.Name%TYPE,
v_Title IN Work.Title%TYPE,
v_Copy IN Work.Copy%TYPE,
v_Price IN NUMBER,
v_Return OUT varChar2 --Return message to caller

)

AS
recCount int;
v_TransactionFound Boolean;
v_CustomerID Art_Customer.CustomerID%TYPE;
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v_WorkID Work.WorkID%TYPE;
v_ArtistID Artist.ArtistID%TYPE;
v_SalesPrice Transaction.SalesPrice%TYPE;
v_testSalesPrice Transaction.SalesPrice%TYPE;

CURSOR TransactionCursor IS
SELECT SalesPrice
FROM Transaction
WHERE WorkID = v_WorkID
FOR UPDATE OF SalesPrice, CustomerID, PurchaseDate;

BEGIN
/*

Selecting and then looking for NULL does not work
because finding no qualifying records results in
Oracle throwing a NO_DATA_FOUND exception.
So, be ready to catch the exception by creating
an 'anonymous block' with its own EXCEPTION clause.

*/
BEGIN
SELECT CustomerID INTO v_CustomerID

FROM Art_Customer
WHERE Art_Customer.Name = v_CustomerName;

EXCEPTION
WHEN NO_DATA_FOUND THEN
SELECT CustomerSeq.nextval into v_CustomerID from Dual;
INSERT INTO Art_Customer (CustomerID, Name)
VALUES ( v_CustomerID, v_CustomerName );

END;

SELECT ArtistID into v_ArtistID
FROM Artist
WHERE Artist.Name = v_Artist;

SELECT WorkID INTO v_WorkID
FROM Work
WHERE Work.Title = v_Title
AND Work.Copy = v_Copy
AND Work.ArtistID = v_ArtistID;

--We need to use a cursor here, because a work can re-enter the
-- gallery, resulting in multiple records for a given WorkID.
--Look for a Transaction record with a null for SalesPrice:
v_TransactionFound:= FALSE;
FOR Trans_record in TransactionCursor LOOP

IF( Trans_Record.SalesPrice is null) THEN
v_TransactionFound:= TRUE;
UPDATE Transaction SET

SalesPrice = v_Price,
CustomerID = v_CustomerID,
PurchaseDate = SYSDATE
WHERE CURRENT OF TransactionCursor;

END IF;
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EXIT WHEN v_TransactionFound;
END LOOP;

IF( v_TransactionFound = FALSE ) THEN
v_Return:= 'No valid Transaction record exists.';
ROLLBACK;
RETURN;

END IF;

COMMIT;
v_Return:= 'success';

EXCEPTION
WHEN NO_DATA_FOUND THEN
v_Return:= 'Exception: No data found';
ROLLBACK;

WHEN TOO_MANY_ROWS THEN
v_Return:= 'Exception: Too many rows found';
ROLLBACK;

WHEN OTHERS THEN
v_Return:= ( 'Exception: ' || SQLERRM );
ROLLBACK;

END;

You probably recognize some SQL statements in this procedure, and you also see statements that are 
nothing like the SQL discussed in this chapter. PL/SQL is a much more complex language than SQL. Other
vendors have their own equivalent procedural language extensions to SQL, too. In the case of Microsoft, for
example, the language is called Transact-SQL. We will show an example of Transact-SQL in the next section
about triggers.

TRIGGERS

A trigger is a special type of stored procedure that gets executed when some data condition changes in 
the database. Triggers are used to enforce rules in the database. For instance, suppose that room numbers for
different dormitories have different domains. That is, the room numbers for one dorm use two digits, for another
dorm use three, and for another use four. Validating all room numbers automatically would be impossible 
with standard CHECK constraints, because CHECK constraints do not support such complex logic. However, a
trigger could be written to provide for any level of complexity.

Unlike stored procedures that are executed when called by a user or a program, triggers are executed when
an INSERT, UPDATE, or DELETE statement makes a change to a table. Triggers can be written to fire
BEFORE, AFTER, or INSTEAD OF the INSERT, UPDATE, or DELETE.

Here is an example AFTER trigger written in Microsoft Transact-SQL. Whenever a row is inserted in the
Student table, and whenever a row in the Student table is updated, then this code executes after the change
has been made to the Student table. The data change triggers the code. Again, we provide this code as a real-
istic example only, and we will not explain the syntax in any detail.

CREATE TRIGGER RoomCheck ON Student
FOR INSERT, UPDATE
AS

declare @Dorm varchar(20)
declare @Room int

IF UPDATE (Room)
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Select @Dorm = Dorm from inserted
Select @Room = Room from inserted
IF @Dorm = 'Williams' and (@Room > 999 or @Room < 100)

BEGIN
PRINT 'Williams dorm has 3 digit room numbers.'
ROLLBACK TRAN
RETURN

END
IF @Dorm = 'Appleby' and (@Room > 9999 or @Room < 1000)

BEGIN
PRINT 'Appleby dorm has 4 digit room numbers.'
ROLLBACK TRAN
RETURN

END
IF @Dorm = 'Arpers' and (@Room > 99 or @Room < 10)

BEGIN
PRINT 'Arpers dorm has 2 digit room numbers.'
ROLLBACK TRAN
RETURN

END

Once again, you see some phrases that look like standard SQL, and you also see many constructs that are
not SQL-like at all. One must learn another programming language to take advantage of stored procedures 
and triggers. Nevertheless, most production databases make use of triggers to enforce data and business rules
automatically and efficiently.

DATA INTEGRITY

Database systems provide tools for helping to maintain the integrity of the data. An important set of base
rules for insuring good and consistent data in the database is called referential integrity constraints.

The built-in rules for enforcing referential integrity are these:

1 Inserting a new row into a parent table is always allowed.
2 Inserting a new row into a child table is allowed only if the foreign key value exists in the parent table.
3 Deleting a row from a parent table is permitted only if there are no child rows.
4 Deleting a row from a child table is always allowed.
5 Updating the primary key in the parent table is permitted only if there are no child rows.
6 Updating the foreign key in a child row is allowed only if the new value also exists in the parent table.

As a database designer, one can count on the DBMS to enforce these basic constraints that are essential if
relationships between entities are to be maintained satisfactorily. Many times additional constraints must be
maintained in order to satisfy the business rules that must be enforced by the database.

For instance, it is sometimes true that business rules require at least one child row when a parent row is first
inserted. Suppose that one is running a database for a sailing regatta. Each boat has a skipper and crew, and the
relationship between boat and crew is 1:N (1 boat:many crew). The boat is the parent row to the crew child rows.
A data rule could be that a boat may not be added to the database unless at least one sailor immediately is registered
as crew (after all, there’s no need to store information about boats that aren’t racing). Such a constraint would
not be naturally enforced by any of the default referential integrity constraints, but one could create a trigger
that would automatically prompt for and add a sailor’s name when a new boat is inserted. This would be an
additional and custom referential integrity constraint.

Another key facility offered by a DBMS to support data integrity is the transaction. A transaction is 
a mechanism for grouping related changes to the database for those occasions when it’s important that either all
changes occur, or that nothing at all changes.
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As we described earlier in this chapter, the familiar example is the act of moving money from a savings
account to a checking account. The customer thinks of the act as a single action, but the database must take two
actions. The database must reduce the balance in the savings account, and increase the balance in the checking
account. If the first action should succeed, and the second fail (perhaps the computer fails at that instant), the
customer will be very unhappy, for their savings account will contain less and their checking account will con-
tain what it did. The customer would prefer that both actions be successful, but if the second action fails, the
customer wants to be sure that everything will be put back as it was initially. Either every change must be suc-
cessful, or no change must occur.

Database management systems allow the user (or programmer) to specify transaction boundaries. Every
change to the database that occurs within the transaction boundaries must be successful, or the transaction will
be rolled back. When a transaction is rolled back, the values of all columns in all rows will be restored to the
values they had when the transaction began.

Transactions are implemented using write-ahead logging. Changes to the database, along with the previous
values, are written to the log, not to the database, as the transaction proceeds. When the transaction is completely
successful, it is committed. At that point the changes previously written to the log are actually written to the data-
base, and the changes become visible to other users. On the other hand, if any part of the transaction fails, for any
reason, the changes are rolled back, i.e., none of the changes written to the log are actually made to the database.

Write-ahead logging is also useful in recovering a database from a system failure. The log contains all the
changes to the database, including information about whether each transaction was committed or rolled back.
To recover a database, the administrator can restore a previous backup of the database, and then process the
transaction log, “redoing” committed transactions. This is called roll forward recovery.

Some database systems use a write-ahead log, but also make changes to the database before the transaction is
formally committed. In such a system, recovery from failure can be accomplished by restarting the DBMS and
“undoing” transactions in the log that were not committed. This approach is called rollback recovery.

TRANSACTION ISOLATION LEVELS

When multiple users access a database simultaneously, there is a chance that one person’s changes to the data-
base will interfere with another person’s work. For instance, suppose two people using an on-line flight reservation
system both see that the window seat in row 18 is available, and both reserve it, nearly simultaneously. Without
proper controls, both may believe they have successfully reserved the seat but, in fact, one will be disappointed.
This is an example of one sort of concurrency problem, and it is called the lost update problem.

The database literature describes desirable characteristics of transactions using the acronym ACID—
transactions should be atomic (all or nothing), consistent (all rows affected by the transaction are protected from
other changes while the transaction is occurring), isolated (free from the effects of other activity in the database
at the same time), and durable (permanent). The ideas of consistency and isolation are closely related.

Besides the lost update problem, there are several other potential problems. For instance, dirty reads occur
when one transaction reads uncommitted data provided by a second simultaneous transaction, which later rolls
back the changes it made.

Another problem is the nonrepeatable read, which occurs when a transaction has occasion to read the same
data twice while accomplishing its work, only to find the data changed when it reads the data a second time.
This can happen if another transaction makes a change to the data while the first is executing.

A similar issue is the phantom read. If one transaction reads a set of records twice in the course of its work,
it may find new records when it reads the database a second time. That could happen if a second transaction
inserted a new record in the database in the meantime.

The solutions to all these problems involve locking mechanisms to insure consistency and isolation of users
and transactions. In the old days, programmers managed their own locks to provide the necessary protection,
but today one usually relies on the DBMS to manage the locks. To prevent the lost update problem, the DBMS
will manage read and write locks to insure lost updates do not occur. To address the other possible 
problems, one simply specifies the level of isolation required, using one of four levels standardized by the 1992
SQL standard. The reason the standard provides different levels of protection is that greater protection usually
comes at the cost of reduced performance (less concurrency, and therefore fewer transactions per unit time).
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The four transaction isolation levels are, in order from weakest to strongest, read uncommitted, read 
committed, repeatable read, and serializable. Read uncommitted provides no protection against the concurrency
issues we have been discussing, but it does provide maximum performance.

Read committed insures against dirty reads by never allowing a transaction to read data that have not
been committed to the database. Repeatable read also insures against the problem of nonrepeatable reads.
Serializable provides complete separation of concurrent transactions by locking all the rows necessary during
the entire transaction. Such safety comes at the cost of a significant impact on performance for multiuser
applications.

Usually the default transaction isolation level is read committed.

ACCESSING THE DATABASE PROGRAMMATICALLY

Creating a database and accessing it interactively using SQL can be pretty marvelous in itself, but in almost
all cases production databases are accessed and updated via programs. The programs present a familiar face to
the user, and they conceal all the details of the SQL language. If a user wants to know, for example, who is the
RA for Martin Jones, the user shouldn’t have to worry about specifying the JOIN statement, or even about what
columns appear in what tables.

There are many paradigms for programmatic access. The Microsoft approach with the .NET languages is
one. The JDBC approach is another. PHP has another. In this chapter we will review JDBC as a “neutral”
approach that is characteristic of the way databases can be accessed from software.

In general, a program will create a connection with a database using a user name and password, just as 
a person would. Then the program will send SQL code to the DBMS. The SQL code is the same as would be
issued interactively, but the SQL is stored in character strings inside the program, and then sent to the DBMS
for execution.

In the case of JDBC, there is also a very first step required, which is to load the driver code for connecting
to the database. There are several mechanisms, or types of drivers for JDBC. Some will connect by translating
the calls into another standard called open database connection (ODBC); some will convert the JDBC calls into
the native application programming interface (API) of the DBMS; some will convert the calls into an independent
or vendor-specific network DBMS protocol. One should check with the DBMS administrator for advice about
which driver to load for the particular DBMS in use. One can find information about JDBC drivers at:
http://industry.java.sun.com/products/jdbc/drivers.

A typical snippet of Java code loading a JDBC driver is the following:

// Dynamically loads a class called OracleDriver which is in
// the file classes12.zip
// The environment variable CLASSPATH must be set to include
// the directory in which the file classes12.zip exists.

Class.forName("oracle.jdbc.driver.OracleDriver");

Once the driver is loaded, the program can establish a connection to the database. The Connection class
is available by importing the java.sql.* package. To create a Connection, the program needs a user
name and a password, just as a person would. Here is a typical snippet of code to create a Connection object
for the database:

import java.sql.*;
...

// The url means: JDBC driver: Oracle's version:
// "thin" driver type, located on cpu reddwarf,
// in domain cs.rit.edu, default port number 1521,
// database sid "odb"

String url="jdbc:oracle:thin:@reddwarf.cs.rit.edu:1521:odb";
// Create a connection object
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// Note that, by default, a connection opens in
// auto-commit mode
// (every statement is committed individually).

Connection con = DriverManager.getConnection(url, dbUser, dbPassword);

Once the Connection is established, the program can read from and write to the database by creating a
Statement object and supplying the Statement with the SQL code to be executed. For instance:

Statement stmt = con.createStatement();
// RETRIEVE STUDENT DATA

String query = "SELECT Sname, Dorm, Room, Phone FROM Student";

The Statement object has two methods, one for reading from the database, and one for updating the 
database.

// 1) executeUpdate—statements that modify the database
// 2) executeQuery—SELECT statements (reads)

// For a SELECT SQL statement, use the executeQuery method—
// The query returns a ResultSet object
ResultSet rs = stmt.executeQuery(query);

Instead of returning a single value, queries return a set of rows. In JDBC, the set of rows is called 
a ResultSet. To inspect the values in the rows of the ResultSet, use the next() method of the
ResultSet to move among the rows, and use the appropriate “getter” method to retrieve the values.

// The ResultSet object is returned
// with a cursor pointing above row 1.
// The next() method of the ResultSet
// moves the cursor to the next row.
// The next() method will return FALSE
// when the cursor moves beyond the last row.

while (rs.next()) {

// Note that you must know the datatype of the column
// and use the appropriate method to read it:
// rs.getString( <"columnName" or indexStartingAtOne> )
// rs.getInt ( <"columnName" or indexStartingAtOne> )
// rs.getFloat ( <"columnName" or indexStartingAtOne> )
// others include getDate, getBoolean, getByte, getLong,
// getCharacterStream, getBlob, etc.
// These work with lots of lattitude. e.g., you can
// read a varchar2 column with getInt, if you know
// the characters comprise a number.
// getObject will read ANYTHING
// getString will read anything and covert it to a String

String studentName = rs.getString("Sname");
String studentDorm = rs.getString("Dorm");
int studentRoom = rs.getInt("Room");
String studentPhone = rs.getString("Phone");

System.out.println(studentName + ", " + studentDorm + ", " +
studentRoom + ", " + studentPhone);

}
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Updating the contents of the database is done similarly, but one uses the executeUpdate() method of
the Statement object:

stmt.executeUpdate("INSERT INTO Student
VALUES('Maggie Simpson', 'Williams', 144,

'585-223-1234', 'Biology', 'Ivan Heally')");

When the program finishes reading from and writing to the database, the Statement and Connection
objects should be closed:

// DATABASE CLOSE/CLEANUP
stmt.close();
con.close();

There are two other interfaces that inherit from the Statement interface and provide additional 
functionality. A PreparedStatement object creates a precompiled SQL command that can be executed
repeatedly with new values for the column variables. Precompilation leads to efficiency of execution.

PreparedStatements are used for repetitive tasks such as loading a table with data. For instance, the
program might repetitively (1) read a record of data to be stored, (2) set each field of the PreparedStatement
to the proper value, and (3) executeUpdate().

Here is an example of using a PreparedStatement to insert one of several new students into the database:

// A prepared statement is precompiled, and can be
// used repeatedly with new values for its parameters.
// Use question marks for parameter place-holders.

PreparedStatement prepStmt = con.prepareStatement(
"INSERT INTO Student (Sname, Dorm, Room, Phone)"

+ "VALUES ( ?,  ?,  ?,  ? )" );

// Now supply values for the parameters using "setter" methods
// This assignment and execution would usually be within
// a loop, so that the same work could be done repeatedly for
// different values of the column variables.
// Parameters are referenced in order starting with 1.

prepStmt.setString( 1, "Jack Horner" );
prepStmt.setString( 2, "Arpers" );
prepStmt.setInt ( 3, 31 );
prepStmt.setNull ( 4, Types.VARCHAR );

// The PreparedStatement object methods:
// 1) executeUpdate — statements that modify the database
// 2) executeQuery — SELECT statements (reads)

prepStmt.executeUpdate();

Note that the PreparedStatement has different “setter” methods for different data types. Note, too,
that if a null value is required, the type of the null must be specified using one of the constants in the Java
Types class. The Types class has the Java database types, which may be different from the types used by the
DBMS. For instance, Oracle uses a type called VARCHAR2, but the corresponding Java type is VARCHAR.

The last interface we will discuss is the CallableStatement, which extends the PreparedStatement
interface. A CallableStatement object provides a single mechanism for a Java program to call a stored pro-
cedure in any DBMS. A programmer sets up a CallableStatement object much like a programmer does for
a PreparedStatement object, but the syntax uses curly braces, and the stored procedure can return one or more
ResultSets as well as other parameters. We will not discuss all the possible configurations of the
CallableStatement, but here is an example of a CallableStatement that invokes a stored procedure.
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In this case, the stored procedure is named Add_Student, and besides adding the new student, it finds
and assigns an advisor for the new student, based on the new student’s major. All the program needs to do is set
the parameters and then execute the stored procedure. The procedure will do all the complex processing, and
then return an indication of success in the sixth parameter.

// CallableStatement object to access the stored procedure.
// Inside the curley braces, you call the procedure, and use
// question marks for parameter place-holders.
// Five are for "IN" variables to be set,
// One is for an "OUT" varible to be returned to the program

CallableStatement callStmt = con.prepareCall(
"{call Add_Student( ?, ?, ?, ?, ?, ?)}" );

// Now supply values for the parameters
// Parameters are referenced in order starting with 1.

callStmt.setString(1, "Billy Bob" );
callStmt.setString(2, "Appleby" );
callStmt.setInt (3, 1004 );
callStmt.setString(4, "585 223 4599" );
callStmt.setString(5, "Math" );

// And register the OUT variable
// This variable returns information to this program
// from the stored procedure.

callStmt.registerOutParameter( 6, java.sql.Types.VARCHAR );
// The CallableStatement object has an additional method*
// for use when the stored procedure uses multiple SQL
// statements.
// 1) executeUpdate — statements that modify the database
// 2) executeQuery — SELECT statements (reads)
// *3) execute — procedures with multiple SQL
// statements

callStmt.execute();

Everything that one might do interactively using SQL commands can be done programmatically from a
Java program using JDBC.

SUMMARY

Although several types of database exist, almost all database systems in wide use today conform to the 
relational database model first described by Codd in 1970. Data are stored in tables where each row is unique,
and each column holds the value of a particular item of data. Rows in each table are identified by a unique key
value, which can be the value of a particular key column, or a combination of values from more than one
column.

Database systems offer advantages by storing data with a minimum amount of redundancy, speeding access
to data, providing security and backup of data, and controlling multiuser access. Databases also offer transac-
tion management to insure that related modifications to the database either all succeed, or that no change at all
is made. By storing metadata as well as data, databases also allow programs and users to access the 
information without concern for the details of physical storage.

One creates a database by first modeling the data domain using an entity-relationship (E-R) diagram. 
The E-R diagram identifies the entities, the attributes of the entities, and the relationships between entities the
database will track. One then converts the E-R diagram directly to tables and relationships in a database system,
using a set of rules for translation.
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The structured query language (SQL) is the industry-standard language for creating database structures and
manipulating data in a database. SQL can be used interactively, or it can be embedded in programs that access
the database.

Built-in controls help to insure that the data remain consistent and valid. These controls are called referential
integrity constraints. In addition to, or instead of, the standard constraints, a database designer can implement
different controls using triggers. Triggers are stored programs that become active when some data element of
the database changes.

Transactions group related database commands together in order to insure database consistency. If all the
actions in the transaction are successful, the transaction will be committed and the changes made permanent,
but if any action fails, the transaction will be rolled back, and the database restored to the state it was in at the
beginning of the transaction.

Database management systems also support stored procedures in order to simplify and streamline
access to the data. Stored procedures are programs written in an extended version of SQL. They can be
invoked passing parameters, and they can return data to users or programs. Stored procedures have the
advantage of being precompiled for extra speed and fewer errors. A database programmer can put substantial
application logic into stored procedures, which can then be shared among users and application programs.

One can write programs to access databases in a very wide variety of languages. We discussed using JDBC
to access databases from the Java language. Other languages use similar techniques to connect to a database,
pass commands in SQL, and retrieve sets of data.

REVIEW QUESTIONS

8.1 Consider designing a database for an antique store. What entities would you include? What would their
attributes be?

8.2 Create a full ER diagram for the antique store mentioned in question 1. The store handles household 
furnishings, jewelry, toys, and tools. The owner of the store owns most of what they have for sale, but
they handle some items on consignment (i.e., they sell the item for the owner, thus earning a commission
on the sale). Some customers require delivery, so the owner maintains relationships with several local movers.
The owner wants to keep track of customers in order to do a better job of marketing. In particular, they
know that some customers are particularly interested in certain types of antiques, and they’d like to be
able to find, for example, all those customers interested in cameo jewelry.
For business auditing and tax purposes, it’s very important that the database tracks expenditures and 
revenues. The owner wants to track what they spent for each item, and what they earned in selling it.
These requirements also mean that they have to track store expenses like rent and heat, and their
employee expenses (they employ two part-time people to help run the store).

8.3 An inexperienced database designer suggested the following schema for one of the tables in the antique
store database:
Sales

Is this schema in 1NF?
Is this schema in 2NF?
Is this schema in 3NF?
If the answer to any of these questions is, “No,” redesign the table so that the result is in 3NF.

8.4 Two of the tables in the antique store database will be a table of Deliveries, and a table of
Delivery_Services. Here are the schemas for the two tables:

166 DATABASE [CHAP. 8



Line Item

Consignment_Seller

Write SQL queries to report the following information:
a Report all of the consignment sellers located in NY, and list them in order by their consignment fee 

percentages.
b Find all of the items in the store that are on consignment from “Parker Smith”. Report only the

items for sale (Price_Sold is NULL).
c Report the total of all sales during last March.
d Find all the items on consignment from “Parker Smith” that sold this month.
e Report the amount due to “Parker Smith” for all sales of his items this month.
f Report all sales of items not on consignment (Consignment_Seller_ID is NULL) this month.
g Report the profit on all non-consignment items this month.

8.6 When a customer buys an item (or several) from the store, several changes to database tables will occur.
Explain what those might be.

8.7 The owner of the antique store doesn’t want to train his people in SQL, or to teach them about all the
tables in the database. He asks you to write a program that will take sales information, and then make all
the changes automatically, including whatever error checking may be necessary. The clerk will enter 
a customer phone number (assume this is used as the Customer_ID primary key in the Customer
table), an item ID (from a tag on the item), and the sale price.

Delivery_Services

Write the SQL code to create these tables. Specify which columns may not be NULL, and specify primary
and foreign key constraints. Note that the Delivery_Service column in the Deliveries table is
meant to have the same meaning as the Name column in the Delivery_Services table.

8.5 Here are the schemas for a few more of the tables in one implementation of the antique-store database:
Item

Sale
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In pseudocode, outline how your program would record a sale. Show how you would use a transaction 
to insure the integrity of the database updates. Also, explain the error checking (such as verifying that the
customer is already in the database) you would perform in your program, and how your program would
recover from problems such as:

• The customer is not in the database.
• The item number is not in the database.
• The item is already sold.

8.8 When an item is sold, should the item row be removed from the Items table? Why or why not?

8.9 What transaction isolation level should apply to this application? Why do you make this choice?
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CHAPTER 9

Social Issues
ETHICS THEORIES

Ethics is the rational study of different moral beliefs. A very good book on the subject of ethics with respect
to information technology is Michael Quinn’s Ethics for the Information Age, 2nd Ed., 2006. Quinn discusses
a number of ethical theories. An ethical theory is a means by which to reflect on moral questions, come to some
conclusion, and defend the conclusion against objections.

Quinn lists six or seven ethical theories, depending upon whether one groups the two forms of utilitarian-
ism together:

1 Subjective relativism
2 Cultural relativism
3 Divine command
4 Kantianism
5 Act utilitarianism
6 Rule utilitarianism
7 Social contract theory

Quinn discards the first three as being inappropriate to reasoned debate of moral questions. The relativism
theories provide no objective basis for recommending one action over another, and the divine command theory
provides no basis for argument when people of different faiths consider the same moral dilemma.

On the other hand, Kantianism demands that we make our choices only according to rules that we would
be comfortable making universal moral rules. As a trivial example, if a Kantian considered the question, “Is it
alright to waste printer paper?” the Kantian would consider whether they would endorse a universal moral rule
saying, “It is OK to waste printer paper.” Since the philosopher probably would not accept that rule as a universal
moral rule, the Kantian would conclude that one should not waste printer paper.

The utilitarian positions are consequentialist positions, because they evaluate the consequences of a decision
to decide whether it is good or bad. An act or a rule is good if it generates more total good for all concerned. 
In considering the question of wasting printer paper, the utilitarian would ask what the cost of the paper is, and
what the benefits of wasting the paper might be. A complete analysis would include the environmental impact
of the waste as well as the values of such things as time saved, clear separation of print jobs, etc.

Finally, social contract theory says that rules are moral when rational people will agree to accept them, on
the condition that others do likewise. With respect to the question of wasting paper, the people concerned must
discuss the issue. If all agree to be bound by the rule not to waste paper, then wasting paper will be bad and not
wasting paper will be good.

Different ethical theories can lead to different decisions with respect to what is right or wrong. For 
instance, a Kantian might conclude that copying a copyrighted CD is wrong, while a utilitarian might 
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reach a different conclusion, at least in some circumstances (and notwithstanding that breaking the law is 
itself a problem!).

The study of ethics is very interesting, and certainly one needs some ethical framework in order to consider
the social issues and dilemmas that information technology has created or now influences. For our discussion
of social issues we will refer to the Code of Ethics and Professional Conduct adopted by the Association 
for Computing Machinery (ACM) in 1992. You can find a complete statement of the code of ethics at
http://www.acm.org/constitution/code.html.

The first section of the code of ethics declares its support of general moral imperatives. We list here only
the paragraph titles, without the underlying detail, which you can find in the complete statement:

1.1 Contribute to society and human well-being.
1.2 Avoid harm to others.
1.3 Be honest and trustworthy.
1.4 Be fair and take action not to discriminate.
1.5 Honor property rights including copyrights and patents.
1.6 Give proper credit for intellectual property.
1.7 Respect the privacy of others.
1.8 Honor confidentiality.

The code goes on to declare more specific professional responsibilities:

2.1 Strive to achieve the highest quality, effectiveness and dignity in both the process and products of
professional work.

2.2 Acquire and maintain professional competence.
2.3 Know and respect existing laws pertaining to professional work.
2.4 Accept and provide appropriate professional review.
2.5 Give comprehensive and thorough evaluations of computer systems and their impacts, including

analysis of possible risks.
2.6 Honor contracts, agreements, and assigned responsibilities.
2.7 Improve public understanding of computing and its consequences.
2.8 Access computing and communication resources only when authorized to do so.

The code also recognizes these organizational leadership imperatives:

3.1 Articulate social responsibilities of members of an organizational unit and encourage full acceptance
of those responsibilities.

3.2 Manage personnel and resources to design and build information systems that enhance the quality of
working life.

3.3 Acknowledge and support proper and authorized uses of an organization’s computing and
communication resources.

3.4 Ensure that users and those who will be affected by a system have their needs clearly articulated during
the assessment and design of requirements; later the system must be validated to meet requirements.

3.5 Articulate and support policies that protect the dignity of users and others affected by a computing system.
3.6 Create opportunities for members of the organization to learn the principles and limitations of 

computer systems.

As we consider different social issues related to computing, we will discuss them in light of the ACM Code
of Ethics.

INTELLECTUAL PROPERTY

Modern societies recognize physical property rights as a necessary foundation of economic activity.
Without the incentive to profit from the act of creation, fewer people would invest the time, energy, and
resources to create new property. For example, if a farmer builds a new plow, and anyone can come to their
farm, take the plow away, and appropriate the plow for the use of someone else, the farmer will not likely build
another. The effect of abandoning property rights would be a decline in economic activity, which would impov-
erish the greater society.
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The same thinking has been applied to intellectual property. If authors, scientists and artists cannot profit
from their efforts, such activity may decline, leading again to a general impoverishment of society.

Yet, there are differences between physical and intellectual property. For one thing, intellectual property
can be copied, while physical property cannot be. One can copy the design of a plow (the intellectual property),
but if one wants a second plow (the physical property), one must build a second plow, and that takes material,
energy, and time. Making a copy of intellectual property also leaves the original owner in possession of what
the original owner had. Copying intellectual property is, therefore, not exactly the same as stealing physical
property.

Another difference between intellectual and physical property is that only one person can own a particular
intellectual property, but any number of people can own physical property. Only one person can own the design
of the plow, but any number of people can build and own physical plows made to the design. Even when more
than one inventor independently creates the same intellectual property, the intellectual property must still be
assigned, and belong, to only one inventor. In contrast, any number of people can own instances of the physical
property. This makes it easier to spread the benefits of physical property ownership among multiple people.

The interest of society as a whole is to maximize the good for the largest possible number of its members.
While most think rewarding inventors for their ideas is for the good, most also feel that disseminating better
ideas widely, so they can be used by many, is also for the good. There is a tension between the desire to make
creativity rewarding to inventors, so they will continue to invent, and the desire to let many in society benefit
from new inventions.

With physical property, property rights are almost absolute. Only in special cases such as eminent domain,
where a community can appropriate, after compensating the owner, private property for public use, is there 
a limit on one’s right to what one owns. With intellectual property, the tension between promoting the good 
of the inventor and promoting the good of the larger group has resulted in more limitations on the rights of 
property owners. Intellectual property is not perfectly analogous to physical property, as we discussed above,
so the rules relating to intellectual property are different.

There are four recognized ways in which people protect their intellectual property, and each has its limitations.
The four are trademarks, trade secrets, patents, and copyrights.

Trademarks and Service Marks

Trademarks are the symbols, names, and pictures that companies use to identify their companies and products.
Service marks are essentially the same thing, but they identify a service, such as insurance, rather than a tangible
product. The Kodak logo, for instance, is a trademark. So is the Kleenex brand name. The name “Novell Online
Training Provider” is a service mark of the Novell Corporation.

Trademarks are granted by the government, and they can have a very long life. A trademark granted by the
US Patent and Trademark Office has a term of 10 years, and it can be renewed indefinitely for 10 year terms.
The application is relatively inexpensive, and can cost as little as a few hundred dollars. Renewals also carry 
a fee, and with each renewal the owner must submit an affidavit of use, attesting to the owner’s ongoing use of
the trademark.

A company can lose its exclusive right to use a trademark if the term used becomes part of the language.
This is called trademark genericide. In Britain, the word “hoover” has come to be the common word for vacuum
cleaner, so Hoover is no longer a registered trademark in Britain (however, Hoover remains a trademark in 
the US). Today the trademarks Xerox and Band Aid are in danger of genericide, and you will perhaps see 
advertisements for “Xerox copies” and “Band Aid brand strips,” which are attempts by the companies to 
preserve their trademarks.

Trade Secrets

Of more importance to software creators are the other three approaches to protecting intellectual property.
First, a trade secret is just that, a secret kept by a company because the secret provides the company an advan-
tage in the marketplace. A famous trade secret is the formula for Coca-Cola. By the way, the name Coca-Cola
is trademarked, and some say it is the most widely recognized brand in the world. The formula for Coca-Cola
is a trade secret, and has been since Coca-Cola was invented in 1886 by John Pemberton, a pharmacist in
Atlanta, GA. We know the formula has changed over the years, because originally it included some cocaine,
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which today’s formula does not! In any case, the formula has always been a closely and successfully guarded
secret, and resides in a bank vault in Georgia.

Writers of software can protect their work by keeping the code secret. In the early days of computing, 
customers often received source code to the software they ran. However, as software has become appreciated
as valuable intellectual property itself, software publishers have begun to regard their source code as a trade
secret. What gets shipped to the customer today is almost always the object code, in machine language, which
is not easily readable by humans. And what the customer buys today is not ownership of the software, but 
a license to use the software; the software supplier remains the owner of the intellectual property.

Intellectual property can be protected as a trade secret provided the owner of the secret takes care to protect
the information. The owner must restrict access to the information, so that only those with authorization can get
to it. The source code could be kept in a secure archive, for instance. The owner must also limit access to the
information. Even though the code is in a secure archive, the owner also must be vigilant in providing access
only to authorized individuals. The owner must also require those who have access to the information to sign
an agreement not to disclose to others anything about the code. Such an agreement is called a nondisclosure
agreement, and it may be required of employees as well as any outsiders who might have a need to see the
source. To protect their trade secret rights, the owner must also mark any material related to the secret as 
proprietary. The source code itself, training manuals, and other documentation should include a statement that
the software is proprietary.

A trade secret can last indefinitely, and it costs nothing except being serious about protecting the secret.
The courts will enforce the owner’s rights to the trade secret, as long as the owner remains diligent in efforts to
protect the secret. However, if the owner becomes sloppy about security surrounding the secret, the owner can
lose the trade secret rights. Suppose, for instance, that (perhaps mistakenly) the owner posts the source code on
a web page for a while. Such disclosure of the secret to the public could invalidate any future claim of the owner
to legal protection of the secret.

Patents

A patent protects an inventor’s intellectual property for a limited period of time. After 20 years, the patented
idea becomes public property, and anyone can use it. During the lifetime of the patent, the patent gives the
owner the right to prevent others from making or using the invention, unless the owner grants permission. 
The purpose of seeking a patent, which often costs many thousands of dollars in legal and filing fees, is to gain
protection from competition, so the inventor can bring the invention to market and profit from it. A patent is 
a short-term monopoly right granted to reward the genius of the inventor.

To be patentable, an invention must be novel, nonobvious, and useful. Many suitcases today have wheels
on them, so they can be rolled about as well as carried. If someone tried to patent a three-wheeled suitcase, arguing
that only two- and four-wheeled suitcases existed prior to the patent application, the patent would probably be
denied as being obvious. A three-wheeled suitcase might be novel, and it might be useful, but once someone
comes up with the idea of a wheeled suitcase, the number of wheels seems to be a minor detail—something
obvious to someone in the business of designing suitcases.

Since 1981, software has been patentable in the United States, if the software is part of a patentable device.
In general, software is not patentable because “scientific truths” and the “mathematical expressions” of scientific
truths are not patentable. The 1981 case involved a patent for a rubber curing device which incorporated a computer
for control. Since software was part of a patentable rubber molding device, the software was patentable.

Mathematical algorithms remain unpatentable, so a new sorting algorithm could not be protected by 
a patent (It could be protected as a trade secret, of course.). Since 1981, software has been patentable if the 
software is part of an invention of a new machine or process. A key to making the distinction has been whether
the software manipulates measurements obtained from real-world sensors. A program controlling a toaster, or
a robotic warehouse, for example, would likely be patentable.

Patents granted to software have not been as protective as patents granted to more traditional inventions.
When deciding whether an invention is novel, patent examiners usually rely on inspection of earlier patents.
Since software has only recently become patentable, the “prior art” of the field is difficult for examiners from
outside the field to learn. As a result, many “bad patents” have been issued for software, with the result that 
software patents are more subject to challenge than other types of patents, and the individual holding a software
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patent is more responsible for defending the patent against charges that prior art invalidates it. These considerations
add to the cost of a software patent, and limit the protection the patent affords.

Copyright

Copyrights apply to written and artistic works, and a copyright gives the author of the work exclusive rights
to copy, distribute, perform, and display the work, and it gives the author exclusive rights to any derivative work
(e.g., The Return of...). The author can be an individual, a group of individuals, or a company. Copyright to work
created by employees in the course of their employment belongs to the company for which they work.

To consider all the industries that rely on copyrighted works, one must include book, journal and newspaper
publishing, the recording industry, the film industry, the software industry, advertising, theater, and radio 
and TV broadcasting. In addition, a substantial set of related industries print, copy, or distribute copyrighted
materials, and so are dependent upon the copyright industries. In the United States, in 2001, the copyright industries
accounted for over $535 billion, or 5.24 percent of the total GDP of the United States. If one also includes the
dependent industries, the total jumps to $791 billion and 7.75 percent of GDP. The copyright industries have
been growing at a rate of 5.8 percent per year (Stephen Siwek, “Copyright Industries in the U.S. Economy: The
2002 Report,” Economists Incorporated, 2002, http://www.iipa.com/). Clearly, copyrights and the copyright
industries are very important to the economy.

One copyrights one’s particular expression of an idea, not the idea itself. Your poem about the beauty 
of the sunset can be copyrighted, but others may also write about the beauty of sunsets, in their own words, of
course.

Obtaining a copyright to one’s work product is free and automatic. As soon as one creates the work, one
owns the copyright to the work. The law does not require that the work be published, and does not require even
that notice of copyright be made on the product. Nevertheless, it is good practice to put a notice of copyright
on one’s work, using the copyright symbol © or the word “copyright,” followed by the year of creation and the
author’s name. Such notification often will put the author in a stronger position in court when prosecuting an
infringer.

While not necessary to secure copyright protection, an author can also register a copyright with the 
government. One completes an application, and submits two copies of the work along with a filing fee of $45.
Registration creates a public record of the copyright, and strengthens further one’s position in court should
someone later infringe on the copyright. For one thing, successful prosecution of an infringer will result in the
infringer having to pay court and legal costs of the prosecution, as well as any damages the court awards
(http://www.copyright.gov/).

Copyright protection continues from the date of creation of the work until 70 years after the author’s death.
If the copyright is held by a company, the protection extends 120 years from the date of creation, or 95 years
from the date of publication, whichever is shorter.

Copyrights are free or inexpensive, easy to obtain, long-lasting, and economically important. These 
characteristics make copyright an attractive protection for the intellectual property in software. However, 
a copyright protects only the expression of an idea, not the idea itself. If an author creates an excellent accounting
program and protects it with only a copyright, someone else could look at the program, rewrite it in a different
language, and sell the new version without violating the copyright of the original creator.

Software companies usually protect their intellectual property by distributing only the object code, the
machine language program, and protecting the object code with copyright. Companies protect the source code
as a trade secret by keeping it confidential. What the user buys is not the software itself, but a license to use the
software. Usually the license agreement grants the user the right to make a copy of the software for backup 
purposes, but it may not even permit that. The license agreement may also prohibit the user from disassembling
the object code in an attempt to recover a version of source code. Note that the user may not copy the software
and distribute it to anyone else, for pay or for free, without violating the copyright.

There are those who argue that society’s interests are better served when software source code is distributed
freely. When no one owns the intellectual property in software, they argue, many people can contribute to the
product, and this benefits all. Further, users of the software need not fear the failure of their vendor, and need
not wait for their vendor to implement changes the users desire. Those who take this position have created the
open source movement. Apache is an open-source web server that runs more than half of all internet servers,
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Linux is a popular open-source operating system, and there have been many other very successful examples 
of open-source products as well.

Whether you side with the vendors of proprietary software or with the open-source advocates, you must
know and respect the copyright and patent laws. Sections 1.5, 1.6, and 2.3 of the ACM Code of Ethics clearly
require the computer professional to recognize and respect copyright and patent protections.

PRIVACY

There is no question that information technology poses risks to our traditional beliefs about privacy.
Governments and companies can and do collect vast amounts of personal information about all of us. Usually the
information is collected and used for appropriate purposes, but the existence of the information does pose risks.

When you enter a toll road using an electronic tag to pay the toll, your travel will be tracked from the on-ramp
to your exit. When you use a grocery store card to get a discount on your shopping, the store will be collecting
your personal shopping history. When you complete your taxes, your personal financial details get stored in 
a vast data base of the tax-paying citizenry. When you use a charge card, your purchases and payment history
are recorded for purposes of rating your credit.

There have been occasions when such data bases have been used in ways that some would say infringed on
rights of privacy. For instance, supposedly confidential census records were used by the US government during
WWII to locate Japanese Americans and confine them to internment camps.

Data mining has also permitted governments and organizations to associate personal information from 
a variety of sources in order to learn more about individuals. Many companies, and even governments, make
available for use or for sale various data bases. Such secondary use of data has a commercial value, because
companies can refine their profiles of individuals and tailor marketing to them. The government can use data
mining to identify people who probably have underreported their taxes, or who apparently have links to terrorist
organizations.

It’s also true that information technology has been used to collect information from sources we usually consider
private. Governments have listened in to telephone conversations, both by wiretapping and by monitoring 
the radio transmissions of cell phones, for example, and also intercepted e-mail messages. These actions have
usually been justified as necessary for national security, or required as part of an ongoing investigation.

In the United States, a citizen’s right to privacy is inferred from the Fourth Amendment which insures, “the
right of the people to be secure in their persons, houses, papers, and effects, against unreasonable searches and
seizures ...” That’s all there is. Privacy is not a right on the same plane as the rights to life, liberty, and property.

In fact, there is a tension between the individual’s right to privacy and the needs of others to know about
the individual. After all, a person needs to know certain things about another before deciding whether or not to
trust the other in a business or personal relationship. For instance, have you ever “Googled” a person with whom
you were considering a first date? Governments enforce privacy rights in a balance between the individual’s
desire for privacy and the needs of others to know.

We usually think of our e-mail and instant messaging conversations as personal correspondence, but think
again, if you communicate in such ways at work. The American Management Association reported in 2003 that
over half of all US employers now monitor e-mail (quoted in Nord, G.D., McCubbins, T.F., & Nord, J.H., 
E-”Monitoring in the Workplace,” Communications of the ACM, 49:8, August 2006, pp. 73-76.). Such monitoring
varies from storage of messages for later review, to active software surveillance.

There is very little legal constraint on the monitoring of employee communications when the communica-
tions are carried on at work, on company time, using company facilities. Employers monitor such behavior
because they have an interest in employee productivity, because they want to protect trade secrets and company
data, and because they want to avoid liability for bad behavior by their employees (Nord et al. [2006] report that
over 10 percent of US companies have been subpoenaed as a result of employee e-mail!). The courts in most
cases support the employer’s right to monitor, based on the employer’s legitimate need to know.

As a software professional, the ACM Code of Ethics provides excellent guidelines for people collecting,
managing and reporting private information. They are summarized in section 1.7. Information professionals should:

● Protect the privacy of data.
● Collect only data that is required.



● Insure the accuracy of data.
● Provide a means for individuals to review data about themselves for accuracy.
● Provide a means for correction of inaccurate data.
● Protect against “secondary use” of data.

ENCRYPTION

Related to the question of privacy is encryption. In an effort to keep communications secure from eavesdropping,
people encrypt their communications. Before 1976, if one wanted to encrypt communications, one probably
used a single key, or symmetrical encryption, mechanism. Each user knew the key, and each user encrypted their
messages with the key, and decrypted incoming messages using the same key. The problem with this method is
that all users had to share in advance the secret of the key. Passing the single key around to all users created
risks of discovery for all.

In 1976 Diffie and Hellman published an asymmetric key cryptosystem. It and several related mechanisms
became known as public key encryption. In this system, each user has a pair of keys, one of which the user 
publishes and is therefore public, and one of which the user keeps secret only to themselves. If Joe wants to
send Mary a secret message, Joe encrypts the message using Mary’s public key. In this system, the only way 
to decrypt such a coded message is to use Mary’s private key. Joe cannot even decrypt the message using the
public key he used to encrypt the message!

Because of the mathematical relationship between the public and private keys, it is theoretically possible
to deduce the private key value from the public key. However, the problem of guessing the private key becomes
much greater as the size of the key becomes larger. Large keys, such as 128-bit keys, are thought to provide
good security. It should take something like 1000 years using a powerful computer to directly break (as contrasted
with a lucky guess) such a public key encryption code.

In the last quarter of the 20th century, the US government prohibited the export of encryption technology
in an effort to prevent the spread of public key encryption systems that offered strong security. The reason for
this was that the government had an interest in monitoring certain communications for reasons of national security
and the prosecution of criminals. After the technology spread outside the US anyway, some people felt the 
government’s actions seemed to punish or hold back US companies, while the rest of the world went ahead
using strong encryption anyway.

Starting in 1999, the government’s efforts to restrict export of strong encryption technology suffered reversals
in the courts. In 1999, for example, the US 9th Circuit Court of Appeals ruled 2–1 in the Bernstein case that the
restriction on exporting source code for encryption products was an infringement of free speech, since source
code is “expressive.” The court said the government did not have the right to impose a “prior restraint” on such
speech.

While the ruling could have been appealed further, the US State Department decided to discontinue its
efforts to control encryption technology. Such public key systems can now be used and exported to support 
private communications between computer users.

VIRUSES, WORMS, AND TROJAN HORSES

Viruses are programs that are concealed within another program. When the user executes the “host” program,
the virus gets control and may perform actions unrelated to the host program’s apparent function. While it has
control, the virus program also replicates itself by attaching itself to another executable on the user’s computer.
The self-replication property of a virus permits it to spread rapidly among networked computers.

A Trojan horse is similar, in that a Trojan Horse is a program with a second, unadvertised function in addition
to its apparent function. A Trojan horse does not self-replicate, however, so the spread of a Trojan horse depends
upon tricking users into downloading its code. Sometimes this is accomplished using “social engineering” to
trick naive users into clicking on an internet link which then downloads an executable file with the hidden 
functionality.

Trojan horses are often spread with pornography, for example. The file download may promise, and 
perhaps deliver, erotica, but it also delivers a Trojan horse which could make the user’s computer accessible to
the attacker remotely. Such a variety of Trojan horse is called a remote access Trojan (RAT).

CHAP. 9] SOCIAL ISSUES 175



KaZaA is a file-sharing community used to exchange music files, video and movie files, and games. The
company has a checkered record of conflicts over its facilitation of copying of copyrighted materials
(http://en.wikipedia.org/wiki/Kazaa). A study in 2003, and reported in Wired magazine (Zetter, K., “Kazaa
Delivers More Than Tunes,” Wired, January 11, 2004), found that 45 percent of the 4778 executable files the
researchers downloaded from KaZaA during one month contained viruses or Trojan horses!

A worm is a program that travels through the network by exploiting weaknesses in the security systems of
computers on the network. Often the weakness has to do with an array of data where there is no checking being
done on the boundaries of the array. Programs written in the C programming language, perhaps the most popular
system programming language, can be vulnerable, because C does not provide built-in boundary checking on
arrays. A worm program can change data beyond the boundary of an array, thus altering, perhaps, the return
address on the call stack so as to cause the method to transfer control to the worm.

Why do people write and release viruses, Trojan horses, and worms? Sometimes it is for clearly criminal
intent. The perpetrator wants to gain access to private information, perhaps with the intention of stealing money
or credit. Sometimes it is for a quasi-commercial purpose, such as gaining access to another’s computer to
employ it to send spam e-mail to others. Sometimes it is simply to prove one’s technical ability, and perhaps
also to gain recognition among one’s peer group or reference group.

Sometimes the perpetrators claim to be doing the victims a favor by exposing a weakness in the victims’
security! That argument can be addressed by analogy. What would a homeowner think if some stranger came
to the front door, the back door, the basement door, the windows, etc. looking for a way to get in? Most would
think they were under assault, and would call the police! Most people feel they have a right to what is theirs,
and to their peace of mind, regardless of the quality of their locks.

Software professionals should never condone the spreading of viruses, Trojan horses, or worms. The ACM
Code of Ethics provides clear guidance:

1.2 Avoid harm to others.
1.3 Be honest and trustworthy.
1.7 Respect the privacy of others.
2.8 Access computing... resources only when authorized to do so.

HACKERS

Hackers are people who believe themselves to be, and who often are, astute technically. One page on the
web defines hackers this way (http://tlc.discovery.com/convergence/hackers/glossary/glossary.html):

hacker n. 1. A person who enjoys exploring the details of programmable systems and how to stretch their 
capabilities. 2. One who programs enthusiastically. 3. A person who is good at programming quickly. 4. An expert
at a particular program, as in “a Unix hacker.” 5. [deprecated] A malicious meddler who tries to discover sensitive
information by poking around. The correct term for this sense is ‘cracker.’

The current sense of the word is generally positive. That is, a hacker knows a lot and uses that knowledge
to improve systems and expand capabilities. Hackers do not create viruses or worms. They might, on the other
hand, create a new operating system (Dennis Ritchie and Ken Thompson—Unix), found the Free Software
Foundation (Richard Stallman), or design a new computer (Steve Wozniak—Apple I).

In the past, the word hacker also meant a technically sophisticated person who used their skills in sometimes
illegal ways. Robert Morris unleashed a computer worm in 1988 from Cornell University. Kevin Poulsen got
control of the telephone lines going to a Los Angeles radio station in 1990 in order to insure himself of a win
of a Porsche in a contest to be the 102nd caller. Vladimir Levin managed to trick Citibank computers out of
$10M in 1995 (Hackers Hall of Fame, http://tlc.discovery.com/convergence/hackers/bio/).

Even though today “hacking” may be seen as a positive and creative attitude combined with exceptional
skills, it may also be true that a certain technical arrogance among hackers may lead to inappropriate behavior.
There may be a tendency among hackers to feel that the rules governing ordinary users should not apply 
to them, and that authority need not be respected in the technical domain of hackers. Hackers may also see
bypassing the rules, without being caught, as a kind of on-line game. A hacker may enjoy finding a way to learn
credit card numbers, for example, even though they may have no intention of committing fraud with the information.
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In any case, the US law provides serious penalities for both “harmless” hacking and computer fraud. The
Computer Fraud and Abuse Act was first passed in 1986, and it was amended in 1994, 1996, and 2001.
Accessing a government computer without authorization, and communicating any information with respect to
national defense or foreign relations to anyone not otherwise authorized, carries a penalty of a large fine and
imprisonment for up to 20 years.

Accessing the computer of any financial institution when one is not authorized to do so can be punished
with up to 10 years in prison, and a large fine. Simply obtaining the information is a crime, whether one does
anything with that information or not. Trafficking in password information can also draw a 10-year prison term.

Simply damaging a computer, for instance by releasing a computer virus, can be punished with 5 years in
prison. Even causing damage by accident while improperly accessing another computer can be punished with
a year in prison!

Many sections of the ACM Code of Ethics appropriately warn against unauthorized access of another’s
computer. These include sections 1.2, 1.3, 1.7, and 2.8, as well as:

1.8 Honor confidentiality.
2.3 Know and respect existing laws pertaining to professional work.
3.3 Acknowledge and support proper and authorized uses of computing resources.

CAN COMPUTERS KILL?

In particular, can software kill? Can software maim? Can software inflict damaging financial loss? As software
and computers have become ever more integrated into all the appliances, tools, medical devices and weapons
of the modern world, the question of software quality has become a question of more urgency.

Most of the time, developers experience the failure of a program as an unfortunate but correctable defeat.
From time to time, however, software failures can be very serious. Some are merely expensive, though 
dramatically so. In 1999 the Mars Climate Orbiter, launched in 1998, crashed when the NASA spacecraft team
used different units of measure for distance than the navigation team. One team used English units, and the other
used metric units (http://mars.jpl.nasa.gov/msp98/news/mco990930.html).

Three months later, the companion project, Mars Polar Lander, crashed when the jolt from the deployment
of its parachute made the software respond as if the probe had touched the surface of the planet, and the software
turned off the retro rockets. Without the braking rockets, the craft fell from about 130 feet and was destroyed.
These two mission failures were due to problems with software, and wasted about $180 million
(http://news.bbc.co.uk/2/hi/science/nature/4522291.stm).

One can argue that the problems were not with the software but with the humans who created the software.
That way of looking at the problem focuses attention on the responsibility of the engineers. That is why these
failures are properly reviewed in a chapter on the ethics and the social issues of computing.

With software controlling pacemakers, automobile engine controls, antilock brake systems, missile targeting,
medical equipment, driverless transports, elevators, robotic equipment, and industrial processes, when software
fails, the results can be fatal. One example is the overexposure to radiation suffered by cancer patients in
Panama during 2000.

During November of 2000, 28 people being treated for cancer at the National Cancer Institute in Panama
were accidentally exposed to much more radiation than prescribed. At least five died of the experience, and
many of the others risked “serious radiation-related complications” from excessive exposure to radiation,
according the the US FDA (http://www.fda.gov/cdrh/ocd/panamaradexp.html, July 6, 2001). When investigated, the
cause turned out to be an erroneous software algorithm in the Multidata software controlling the Theratronics
Cobalt-60 machine.

The Multidata software provided a way for operators to digitize representations of metal shields called
blocks, which are used to protect healthy, delicate tissue from exposure to x-rays. The doctors prescribed the
use of various blocks for individual patients. The machine operators entered descriptions of the blocks into the
software, and the Multidata software then calculated the amount of radiation to deliver.

When investigating the cause of the radiation overexposures, investigators found that operators could 
enter data about the blocks in such a way that the software would “misunderstand” the digitized representation,
mistaking holes in the pattern of blocks for the block itself. Multidata later recognized the problem as the 
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“self-intersecting shape outline” problem. In that circumstance, the software calculated radiation doses that
were too high by margins of 20 percent to 100 percent.

Because the problem only manifested itself with certain combinations of blocks, and with certain data input
practices of individual operators, the cause of the few overexposures (the hospital treated about 100 people per day)
was difficult to determine. You can read a more complete account of the accidents and the investigation in an
eWEEK article from March 2004 at http://www.findarticles.com/p/articles/mi_zdewk/is_200403/ai_ziff121063.

In 1991 during the first Gulf War, a software anomaly caused a Patriot missile battery protecting a barracks
of the US Army in Dhahran, Saudi Arabia to fail to fire at an incoming Iraqi Scud missile, even though the
system detected the missile en route. Twenty-eight soldiers died. The cause of the Patriot missile’s battery 
failure turned out to be an obscure software bug related to truncation of a variable used to keep time. 
The Information Management and Technology Division of the US General Accounting Office provided 
a complete report (http://www.fas.org/spp/starwars/gao/im92026.htm).

Originally the Patriot missile was designed to operate against aircraft and cruise missiles. It is a mobile
system designed to be set up in a location and operated for a few hours at a time before moving again. The
system was adapted to attack faster short-range ballistic missiles. To avoid firing the Patriot battery at false
alarms, the software controlling the battery would confirm the presence of an incoming missile by predicting
the incoming missile’s future position based on the battery’s early detection of the missile target.

To compute the predicted position of the enemy missile, the Patriot battery relied on highly accurate 
time-keeping to focus the attention of its radar on a “range gate.” If the incoming missile were again detected
in the range gate at the predicted time, the Patriot battery concluded that the incoming missile was real, and
automatically launched its attack.

The problem discovered in the tragic Dhahran incident was that the time-keeping variable used in the
Patriot software lacked sufficient precision, and this resulted in truncation of the time measurement. That truncation
slowly accumulated a difference between actual and computed time. In Dhahran, the missile battery had been
in place for over 100 hours, and the time difference had accumulated to 0.34 seconds. Since the Scud was
moving fast, the Patriot battery miscalculated the predicted position of the Scud by about a half mile. As a result,
the battery did not detect the incoming missile in its range gate, and so concluded that no attack was in progress.
The battery sat silent as the Iraqi missile killed the US soldiers.

Such subtle problems in software illustrate the tremendous challenge, and the tremendous responsibility,
developers have to create and test their programs and systems. As someone observed, in most states you need
a license to cut hair, but not to write software, even for medical and military systems! Computing professionals
must shoulder their ethical burden and use every means at their disposal to insure their systems are correctly
specified and implemented.

Testing is important, but it is not enough. Any system of reasonable complexity will be impossible to test
exhaustively. Many authorities have made this point. For example, Jeffrey Voas of the Defense Advanced Research
Projects Agency (1998, http://www.stsc.hill.af.mil/crosstalk/1998/11/voas.asp) cites, “the many practical and
theoretical deficiencies of software testing.” In addition to testing, developers need to use best practices throughout
specification and creation of their systems, and to perform their work with the utmost conscientiousness.

The ACM Code of Ethics again provides guidance:

1.2 Avoid harm to others... computing professionals must minimize malfunctions by following generally
accepted standards for system design and testing...

2.1 Strive to achieve the highest quality, effectiveness... in both the process and products of professional work.
2.2 Acquire and maintain professional competence.
2.5 Give comprehensive and thorough evaluations of computer systems and their impacts, including

analysis of possible risks... Computer professionals are in a position of special trust, and therefore
have a special responsibility to provide objective, credible evaluations to employers, clients, users,
and the public... Any signs of danger from systems must be reported to those who have opportunity
and/or responsibility to resolve them...

SUMMARY

Ethics is the rational study of different moral systems. We described very briefly some of the different 
ethical theories, and then introduced the ACM Code of Ethics, developed to guide the behavior of people in the
computing industry.
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The development of the software industry has brought new emphasis to the topic of intellectual property
rights. Software is now considered valuable intellectual property, and companies and individuals protect their
rights with a variety of tools. We discussed trademarks, trade secrets, patents, and copyrights. The most
common ways of protecting software rights are to maintain source code as a trade secret and protect object code
with copyright.

Individual privacy can be endangered in this age of large data bases and marketing of data resources to
commercial interests. In addition, actions many consider by their nature to be private, such as e-mail commu-
nications, may in fact not enjoy the protection of the laws, if the communications occur at the workplace. 
For people working with data resources, the ACM Code of Ethics prescribes a set of rules to fairly protect 
individual privacy.

Encryption can be viewed as a matter of privacy rights. But privacy rights are not absolute, since there is 
a tension between the individual’s right to privacy, and others’ need to know with whom they are interacting. 
In the past, the US Government resisted the export of strong encryption technology, because the government
monitors certain communications for the purposes of insuring national security and prosecuting criminals. Since
1999, however, the government has withdrawn its export controls on encryption technology.

Viruses, worms and Trojan horses are misleading or malicious programs that can damage or subvert 
a victim’s computer. Whether the purpose of such a program is simply mischievous, or destructive, or criminal,
the law provides severe penalties of up to 20 years in prison for offenders. The ACM Code of Ethics clearly
rejects such behavior.

Hacker is a word meaning someone with great computer skills whose work contributes in an unusual way
to the industry. Today the word is generally positive, but in the past the word hacker also included those who
created cleaver but destructive or criminal applications of computer technology. Today the word used for the
“bad guys” is cracker. In any case, hackers must be careful to avoid a feeling of superiority that might tempt
them to think that rules which apply to others do not apply to them.

Finally, as computers become ever more highly integrated into many critical applications, more and more
responsibility falls on developers to take every precaution in creating reliable applications. Computer-controlled
weapons, medical equipment, transportation systems, food processing, chemical manufacturing, and other
applications make quality computing systems a matter of life and death. Thorough testing must be part of the
activities of developers, but since testing cannot be exhaustive for most systems, because of their complexity,
developers must use a combination of best practices and relentless conscientiousness to create safe and 
effective systems.

REVIEW QUESTIONS

9.1 Should software be copyrightable or patentable? Ignoring the law for the moment, argue the question
from the Kantian, Utilitarian, and Social Contract Theory perspectives.

9.2 Why does a copyright provide better protection for object code than for source code?

9.3 How can you apply the ACM Code of Ethics to the practice of sending “spam” e-mail (unsolicited messages
to strangers). What sections of the ACM Code apply, and does the ACM Code permit the practice?

9.4 Inspection of a computer program controlling a weapons system shows 54 “if” statements (23 with 
“else” clauses), 4 “switch” statements (with 5, 7, 4, and 8 “cases”), and 17 “for” or “while” loops with
parameterized looping boundaries. How would you exhaustively test such a program to prove its safety?

9.5 Assume you have just created a program to schedule taxicabs in real time. You’re sure that your approach
is entirely new and much better than anything else available. Every taxi company in the world is going to
want your software. Explain how you would best protect your work—patent? copyright? secret?
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Answers to 
Review Questions

INTRODUCTION TO C0MPUTER SCIENCE

1.1 Write an algorithm for your morning routine, from the time the alarm clock rings until you leave the
house for work or school.

Awake to alarm clock.
Get out of bed.
Go downstairs to the kitchen.
Fix and eat breakfast.
Go to my room.
Check the temperature and listen to the weather forecast.
Get dressed.
etc.

1.2 Find or invent an algorithm to calculate the square root of any number.  Apply the algorithm to the
number 2046, finding its square root to 2 decimal places.  Do not use a computer or calculator!

First take a guess: in this case 40.
Divide the number by the guess: 51.15
Find average of guess and quotient: (51.15 + 40) / 2 = 45.575
Repeat with the new guess (45.575 after the first round).
Second round result: 45.23
Third round result: 45.232
(from: http://www.homeschoolmath.net/teaching/square-root-algorithm.php)

1.3 Perl is a computer language that is often used for quick, one-off programming jobs, like converting text
in a document from one format to another.  ADA is a language used for Department of Defense
applications where human life may be at stake.  What differences would you imagine to find when you
compare Perl with ADA?

Perl: little type checking of variables
lots of default assumptions and short-cuts
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informal code style
emphasis on speed of coding

ADA: rigorous type checking
no default assumptions — full declarations required
documentation/comments required
emphasis on correct and verifiable process

1.4 Why might a computer scientist with a primary interest in databases also need to know about
networking?

Today many databases are accessed over a network, and some are even distributed over multiple 
networked computers.  Understanding networking will be essential to understanding issues of 
database security and performance.

1.5 The acronym API stands for Application Programming Interface.  What do you suppose API means with
respect to an operating system?

The API of an operating system documents the manner in which programs can request operating
system services, like accessing peripheral devices, writing files, starting other processes, and 
accessing the network.

1.6 If you were offered a job with Microsoft and permitted to choose between working on operating 
systems, database products, or applications products like Word or Excel, which would you choose, 
and why?

This is a matter of opinion.  The question is designed to stimulate thinking about the different 
programming demands and rewards in different arenas.

1.7 Whom do you believe should be credited as “the inventor of the modern computer?”

This, too, is a matter of opinion.  Some will argue John Atanasoff, some will argue Howard Aiken,
some will argue Konard Zuse, and some will argue Mauchly and Eckert.

1.8 What applications of computing seem to you to be unethical?  What are some principles you can declare
with respect to the ethical and unethical use of computers and software?

Unethical uses of computers include using computers to defraud others, using computers to 
improperly obtain personal information, using computers to cause damage to others, and using 
computers to steal intellectual property.

Computing should be used in ways that protect individual rights and property.
Computing should be used in ways that conform to the law.
Computing should be used to benefit society.
Computing should cause no harm.

1.9 List some important ways in which computing has contributed to the welfare of man.  What people, if
any, have suffered from the advance of computing technology?

Molecular modeling of drugs has speeded development of medical cures.
Election results are reported much faster and more accurately than before.
Manufacturing and service industries have streamlined their processes, resulting in less expensive
and higher quality goods and services.
People of limited education have found fewer low-level jobs available as a result of automation.
Professional people have found themselves competing with people around the world, as the Internet
has advanced globalization.
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ALGORITHMS

2.1 Write pseudo code for an algorithm for finding the square root of a number.

guess <-- number / (1 + count of digits in the 
number)
while(absoluteValue((guess * guess) - number) > .01 
){
guess = (guess + number/guess) / 2
}
return guess
(from: http://www.homeschoolmath.net/teaching/square-root-algorithm.php)

2.2 Write pseudo code for finding the mean of a set of numbers.

mean( list_of_numbers )
length <-- length of list_of_numbers
index <-- 1
sum   <-- 0

while index <= length {
sum <-- sum + list_of_numbers[index]
index <-- index + 1

}
return sum / length

2.3 Count the primitive operations in your algorithm to find the mean.  What is the order of growth of your
mean algorithm?

setup 4
loop 5 * length (length = n, the count of numbers to be averaged)
return 2

Θ( n )

2.4 Write pseudo code for finding the median of a set of numbers.

median( list_of_numbers )
length <-- length of list_of_numbers

merge_sort( list_of_numbers )

if length is odd
// return middle number
return list_of_numbers[(length + 1) / 2]

else
// find subscripts of 2 middle values
m1 <-- length / 2 
m2 <-- m1 + 1
// and return the average of the middle two
return (list_of_numbers[m1]+list_of_numbers[m2]) / 

2
end

2.5 What is the order of growth of your algorithm to find the median?

Θ( n( lg n ) ), based on merge_sort
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2.6 Suppose that your algorithm to find the mean is Θ (n), and that your algorithm to find the median is 
Θ (n lg n), what will be the execution speed ratio between your algorithm for the mean and your
algorithm for the median when the number of values is 1,000,000?

mean : median ::  1,000,000 : 1,000,000 * lg 1,000,000
mean : median ::  1 : lg 1,000,000
mean : median ::  1 : 20
It will be 20 times faster to find the mean than the median.

2.7 A sort routine which is easy to program is the bubble-sort.  The program simply scans all of the elements
to be sorted repeatedly.  On each pass, the program compares each element with the one next to it, and
reorders the two, if they are in inverse order.  For instance, to sort the following list:

6 7 3 1 4
Bubble-sort starts by comparing 6 and 7.  They are in the correct order, so it then compares 7 and 3.
They are in inverse order, so bubble-sort exchanges 7 and 3, and then compares 7 and 1.  The
numbers 7 & 1 are in reverse order, so bubble-sort swaps them, and then compares 7 & 4.  Once
again, the order is incorrect, so it swaps 7 & 4.  End of scan 1:

6 3 1 4 7
Scanning left to right again results in:

3 1 4 6 7
Scanning left to right again results in a correct ordering:

1 3 4 6 7
Write pseudo code for the bubble-sort.

bubbleSort( list )
length       <-- length of list

// look through the whole list to find
//  mis-ordered pairs, and continue until
//  we get through the whole list without
//  swapping any pairs
do {

// start at the left end of the list: index = 1
swapped_pair <-- false
index      <-- 1
while index <= length - 1 {

// if this pair is mis-ordered, swap them
if list[index] > list[index + 1] {

swap( list[index], list[index + 1] )
swapped_pair = true
// increment the index to look at the
//  next pair up
index <-- index + 1

}
}

// quit only when we have gone through the whole
//  list and found it unnecessary to swap any pair
} while( swapped = true )

end

2.8 What is the bubble-sort Θ?

Θ( n2 )
2.9 How will the bubble sort compare for speed with the merge sort when the task is to sort 1,000,000 social

security numbers which initially are in random order?
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bubble-sort:merge-sort::(1,000,000)2:1,000,000*lg 1,000,000
bubble-sort : merge-sort  ::  1,000,000 : lg 1,000,000
bubble-sort : merge-sort  ::  1,000,000 : 20
bubble-sort : merge-sort  ::  50,000 : 1
The merge-sort will run 50,000 times faster than the bubble-sort!
If the merge-sort takes 10 seconds, the bubble-sort will take
almost 6 days!
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COMPUTER ORGANIZATION

3.1 Write the number 229 in base-2.

11100101

3.2 What is the base-10 value of 11100101?

229

3.3 What are the units (values) of the first 3 columns in a base-8 (octal) number?

64s  8s  units

82 81 80

3.4 What is the base-2 value of the base-8 (octal) number 377?

11111111

3.5 Convert the following base-10 numbers to base-2:

37
470
1220
17
99

100101
111010110

10011000100
10001

1100011

3.6 Convert the following base-2 numbers to base-10:

00000111
7

10101010
170

00111001
57

01010101
85

00110011
51

3.7 Assume a 16-bit signed integer data representation where the sign bit is the msb.

a What is the largest positive number that can be represented?
b Write the number 17,440.
c Write the number −20.
d What is the largest negative number that can be represented?

a 32,767
b 0100010000100000
c 1111111111101100
d -32,768
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3.8 Using ASCII encoding, write the bytes to encode your initials in capital letters.

CHR
C   67   1000011
H   72   1001000
R   82   1010010

3.9 Referring to the list of Intel x86 instructions in this chapter, arrange a set of instructions to add the
values stored in memory locations 50 and 51, and then to store the result in memory location 101. You
need not show the bit pattern for each instruction; just use the mnemonics listed, followed in each case
by the appropriate operand(s).

MOV 50, EDX  // copy what’s in 50 to the register
ADD 51, EDX  // add what’s in 51 to the register
MOV EDX, 101 // store the result in 101

3.10 What Intel x86 instructions would you use to accomplish subtraction using 2’s complement addition?
This instruction set has a SUB instruction, but don’t use that; write your own 2’s complement routine
instead.

MOV 51, EDX  // copy what’s in 51 to the register
NEG EDX      // take 2s complement of register
ADD EDX, 50  // subtract contents of 51 from 52
MOV EDX, 101 // store the result in 101

3.11 What are the advantages of a larger computer word size?  Are there disadvantages?  If so, what are the
disadvantages?

Advantages:
Easy to represent large numbers.
Easy to address large memory space.

Disadvantages:
Memory use is likely to be less “bit-efficient” when numbers are small.
Processors and supporting hardware are more expensive.

3.12 Assume that cache memory has an access time of 10 nanoseconds, while main memory has an access
time of 100 nanoseconds.  If the “hit rate” of the cache is .70 (i.e., 70% of the time, the value needed is
already in the cache), what is the average access time to memory?

.70 * ( 10ns ) + .30 * ( 100ns ) = 37ns average access time

3.13 Assume our 1GHz computer, which averages 3 cycles per instruction, is connected to the Internet via 
a 10 Mbit connection (i.e., the line speed allows 10 million bits to pass every second).  From the time
the computer receives the first bit, how many instructions can the computer execute while waiting for 
a single 8-bit character to arrive?

8 bits * 1 sec./10,000,000 bits = .0000008 sec./character
1Billion cycles/sec. * 1 instruction/3 cycles * .0000008
sec./character = 267 instr/char

3.14 What complexity does DMA present to the management of cache memory?

DMA directly updates main memory, or directly reads from main memory.  If the CPU takes
advantage of cache memory to accelerate reads and writes, a “cache coherency” can develop. 
The CPU may be reading memory location x via a cached copy that has been changed in main
memory via a DMA transfer.  The cached value is, therefore, “stale.”  Likewise, if DMA is being
used to write values from main memory to a device, and values the CPU has written to cache
memory have not yet been “flushed” to main memory, stale or incorrect values may be written.
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3.15 Discuss the concept of a “memory hierarchy” whereby memory closer to the CPU is faster, more
expensive, and smaller than memory at the next level.  Arrange the different types of memory we have
discussed in such a hierarchy.

The smallest, fastest, most expensive memory locations are the registers on the CPU.  
Adjacent to the CPU are cache memories that are smaller, faster and more expensive than main
memory, but larger, slower, and less expensive than the set of registers.  The next level in the
memory hierarchy is main memory, which modern machines have in some abundance, often 
measured in gigabytes.  After main memory, the next level in the memory hierarchy is mass 
storage, today almost always on magnetic disk drives.  Such memory is more expansive, less
expensive per byte, and slower than main memory.  Beyond magnetic disks, optical disk 
memory today represents the next step in the memory hierarchy, with lower costs, higher 
densities, and slower speeds.
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SOFTWARE

4.1. Why was it important to the history of programming languages that, even at its introduction, FORTRAN
generated efficient programs?

There was a widespread belief that a higher-level language could never approach the efficiency of
hand-coded assembly language.  If FORTRAN had been less efficient, it would have been much
more difficult to persuade the assembly-language-oriented programmers of the 1950s to try 
higher-level languages.  Such resistance would have slowed the development of language 
theory, higher-level languages, and the productivity of the software industry.

4.2 Given what you know of computer languages, what language would be a good choice for

a Processing a file of text, such as a system error log, looking for particular types of events?

Perl, awk, sed, PHP, Ruby, and Python

b Developing an artificial intelligence application to diagnose disease, given a list of symptoms?

Lisp
Prolog

c Writing driver software for a new computer printer?

C, C#, C++

4.3 Here is a C function that computes the sum of a range of integers.  You can assume that begin will
always be less than or equal to end (begin <= end):

int summation( int begin, int end ) {
int result = begin;
begin = begin + 1;

while( begin <= end ) {
result = result + begin;
begin = begin + 1;

}
return result;

}

Rewrite this function so that it uses recursion instead of iteration.

int summation( int begin, int end ) {
if( begin == end ) return begin;
return begin + summation( (begin + 1), end );

}

4.4 Assume that a language describes a statement-sequence as a sequence of one or more statements
separated by semicolons (assume statements are defined elsewhere), but with no punctuation at the end of
the statement-sequence.  Write the EBNF production.

statement-sequence Æ statement { ; statement }

4.5 Given the following grammar:

expr Æ term + expr | term
term Æ factor * term | factor
factor Æ ( expr ) | number
number Æ number digit | digit
digit Æ 0|1|2|3|4|5|6|7|8|9
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Draw the full parse tree for the expression:

2 * (3 + 5) + (6 + 8)

term         + expr
2*(3+5) 6+8

factor * term        term  + expr
number factor factor    term
digit    (expr) number factor
2 (3+5)         digit number

6      digit
term + expr                8
factor  term
number  factor
digit   number

3     digit
5

Abstract parse tree on next page . . .

+
/    \

/      \
/        \

/          \
*              +

/   \          /   \
/     \        /     \

/       \      /       \
2        +     6       8

/   \
/     \

3       5

4.6 Describe the form in which a program is passed from

a the scanner to the parser.

stream of tokens

b the parser to the semantic analyzer.

parse tree

4.7 Here is a context-free grammar in BNF form:

expr --> expr + term | expr - term | term
term --> term * factor | term / factor | factor
factor --> ex ** factor | ex
ex --> ( expr ) | id

Rewrite this grammar in EBNF form.

expr   --> term   { ( + | - )  term  }
term   --> factor { ( * | / ) factor }
factor --> ex     { ** ex }
ex    --> ( expr ) | id
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4.8 What does this Scheme function do?

(define whatsThis
(lambda (n)

( cond((null? n) 0)
((null? (cdr n)) (car n))
((> (car n) (whatsThis (cdr n))) (car n))
( else (whatsThis (cdr n)))

)))

The function whatsThis returns the largest element in a list:

> (whatsThis (list 1 2 4 5 3))
5
>

4.9 Give an example of an irregularity in a language with which you are familiar.

In Java, one can test for the equality of two variables of a primitive type, such as int x and int y, using
the double equal sign ( == ) operator, but objects must be compared using the equals() method.
The Java switch statement takes only “integral” data types (e.g., int, char, short, byte) for case
values, and many times it would be convenient to use Strings or other objects as case labels.

Return values in Visual BASIC look like assignments.

In C, a function cannot return an array.

Etc.

4.10. Would it ever make sense to write a program in one language, planning from the beginning to rewrite
the program later in a different language?  Give an example of a situation in which such a plan might
make sense, and not simply result in wasted time and effort.

This strategy is often used.  A prototype for a system will be built using a language that is particularly
suited to rapid development, thus leading quickly to working code for testing.  When the concept
has been proved, the algorithms can be rewritten in a language particularly suited for high 
performance and scalability.

190 ANSWERS TO REVIEW QUESTIONS



PROGRAMMING IN JAVA

5.1 Write a Java program that divides the number 74.3 by 12.6 and reports the result of the division.  Store
the dividend and divisor in variables named dividend and divisor before performing the division.  What
will be the type of these variables?  What will be the type of the result?  What is the quotient?

public class Divide {
//A Java program that divides the number 74.3
//  by 12.6 and reports the result

public static void main( String[] args ) {
double dividend = 74.3;
double divisor  = 12.6;
double result   = dividend / divisor;
System.out.println( "Result: 74.3 / 12.6 = " + result);

}
}

Result: 74.3 / 12.6 = 5.896825396825397

5.2 Write a Java program to compute the area of a circle whose radius is 5.  For the value of PI, use 3.14. 
Now rewrite your program so that it uses the very precise value of PI available as a static constant in the
Math class that comes with Java.  Here is how you use the Math class constant:

double pi = Math.PI;

How much does your result change?

public class CircleArea {
//A Java program to compute the area of a circle
//  whose radius is 5

public static void main( String[] args ) {
double r = 5.;
System.out.print  ( "Using pi = 3.14: " );
System.out.println( "Area when r = 5: " + 3.14*r*r );
System.out.print  ( "Using Math.PI:   " );
System.out.println( "Area when r = 5: " + Math.PI*r*r );

}
}

Using pi = 3.14: Area when r = 5: 78.5
Using Math.PI:   Area when r = 5: 78.53981633974483

5.3 Write a Java program that prompts the user for a number, and then tells the user whether the number is an
even multiple of 5.  Use Scanner to read the number from the user, and use the modulo operator (%)
to decide whether the number is a multiple of 5.

import java.util.Scanner;
public class Mod5 {
//A Java program to detect a multiple of 5
public static void main( String[] args ) {

Scanner sc = new Scanner(System.in);
System.out.print( "Enter an integer: " );
int number = sc.nextInt();
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if( number % 5 == 0 ) {
System.out.println( number + " is a multiple of 5." );

}
else {
System.out.println( number + " is not a multiple of 5.");

}
}

}

Enter an integer: 115
115 is a multiple of 5.

5.4 Write a Java program that asks a user to enter five Strings, one at a time. Have it save the Strings in an
array of strings. Then have the program display the words in reverse order. Use a for, or a while, or a do
while loop to read in the Strings, and another for, while, or do while loop to print them out.

import java.util.Scanner;
public class FiveStrings {
//A Java program to read and display 5 Strings

public static void main( String[] args ) {
Scanner  sc        = new Scanner(System.in);
String[] stringList = new String[5];

for( int i=0; i< 5; i++ ) {
System.out.print( "Enter a String: " );
stringList[i] = sc.nextLine();

}
System.out.println( "In reverse order:" );
int n = 4;
while( n >= 0 ) {

System.out.println( stringList[n] );
n--;

}
}

}

5.5 Write a Java program that can categorize vehicles based on the number of wheels the vehicle has. 
Your program should prompt the user for the number of wheels on the vehicle, and then read the number
into an int variable.  If the user says the vehicle has 2 or 3 wheels, the program will report that it is a
motorcycle, if it has 4 wheels the vehicle will be labeled a “car or light truck,” if it has 6, 8, 10, 12, 14,
16, or 18 wheels, it will be categorized as a truck.  Any other number of wheels will be reported as an
error.  Use a switch statement to compute the decision.

import java.util.Scanner;
public class Wheels {
//A Java program to categorize a vehicle

public static void main( String[] args ) {
Scanner sc = new Scanner(System.in);
System.out.print( "How many wheels? " );
int number = sc.nextInt();

switch (number) {
case 2: case 3:
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System.out.println( "motorcycle" );
break;

case 4:
System.out.println( "car" );
break;

case  6: case  8: case 10: case 12:
case 14: case 16: case 18:

System.out.println( "truck" );
break;

default:
System.out.println( "Error: "

+ number + " wheels?" );
}

}
}

5.6 Write a Java class called Vehicle.  The Vehicle class will have instance attributes for color, make,
model, speed, number of occupants, and maximum number of occupants.  The Vehicle class will also
have a static variable called vehicleCount that can be used to track the number of vehicles in the
application.
The constructor for Vehicle should expect values for make, model, maximum number of occupants, 
and color, and it should set the vehicle speed to zero, the number of occupants to 1, and increment the
count of vehicles each time the constructor is called.  Each of the instance and static variables should have
an accessor (get) method that will return the appropriate value, and all except the vehicleCount
variable should also have a mutator (set) method so that the value can be modified.
You should also give the Vehicle class an instance method called changeSpeed. The changeSpeed
method should expect a floating-point value for the new speed, and it should return a floating-point value
representing the difference between the new speed and the previous speed of the vehicle.
Include a public static void main( String[] args) method that creates a few vehicles,
sets some speeds, and reads some variable values, so that you can test your code by launching the class
from the command line.

// The Vehicle class
public class Vehicle {

private String color;
private String make;
private String model;
private double speed;
private int    maxOccupants;

private static int vehicleCount = 0;

public Vehicle( String mk, String mdl, int maxOcc, String clr )
{

make = mk;
model = mdl;
maxOccupants = maxOcc;
color = clr;
speed = 0.;
vehicleCount++;

}

public String getColor() { return color; }
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public String getMake() { return make; }
public String getModel() { return model; }
public double getSpeed() { return speed; }
public int getMaxOccupants() { return maxOccupants; }

public void setColor( String clr ) { color = clr; }
public void setMake ( String mk ) { make = mk; }
public void setModel( String mdl ) { model = mdl; }
public void setSpeed( double spd ) { speed = spd; }

public double changeSpeed( double newSpeed ) {
double accel = newSpeed - speed;
speed = newSpeed;
return accel;

}

public static void main( String[] args ) {
Vehicle v1, v2, v3;

v1 = new Vehicle( "Ford", "Mustang", 2, "red" );
v2 = new Vehicle( "BMW",  "328i",    4, "silver" );
v3 = new Vehicle( "Chrysler", "PT Cruiser", 4, "gold" );

System.out.println( "There are " + vehicleCount +
" vehicles." );

System.out.println( "Make of v1 (Ford): " + v1.getMake() );
System.out.println( "Model of v2 (328i): " +

v2.getModel() );
System.out.println( "Color of v3 (gold): " +

v3.getColor() );
System.out.println( "Max occupants of v1 (2): " +

v1.getMaxOccupants() );
double accel = v1.changeSpeed( 70. );
System.out.println( v1.getModel() + " accelerated by " +

accel + "mph to " +
v1.getSpeed() + "mph." );

v1.setMake( "Chevrolet" );
v1.setModel( "Malibu" );
v1.setColor( "white" );
v1.setSpeed( 60. );
System.out.println( "v1 is now a " + v1.getColor() + " "

+ v1.getMake() + " " + v1.getModel() +
" going " + v1.getSpeed() + "mph." );

}
}

5.7 Write a Skateboard class that inherits from Vehicle.  Override the changeSpeed method for the
Skateboard class, so that instances of the Skateboard class can never exceed 10mph.  If a larger
value is supplied, the method will simply set the speed of the Skateboard to 10.

class Skateboard extends Vehicle {

public Skateboard( String mk, String mdl, String clr ) {
super( mk, mdl, 1, clr );

}
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public double changeSpeed( double newSpeed ) {
if( newSpeed > 10. ) { newSpeed = 10.; }
double accel = newSpeed - speed;
speed = newSpeed;
return accel;

}
}

5.8 Write a Bus class that inherits from Vehicle.  An instance of the Bus class must always have a named
driver.  In the constructor for a Bus, make sure that your code expects and stores the name of the 
driver.  Also, the Bus class should have accessor and mutator methods for returning and changing the 
name of the driver.

class Bus extends Vehicle {
private String driver;
public Bus( String driver ) {

// A "convenience constructor" that defaults all the
//   parameters except for driver name.  The "this"
//   says create a bus passing the 4 default parameter
//   values, plus the driver name, to the other
//   constructor for the Bus class.
this( "GM", "Metro", 42, "Silver", driver);

}
public Bus( String mk,  String mdl, int maxOcc,

String clr, String driver  ) {
// super says create a vehicle instance for this bus
//   super invokes the vehicle (superclass) constructor
super( mk, mdl, maxOcc, clr );
// We also need to store the name of the bus driver.
// this.driver refers to the private instance variable
//   that has the same name as the constructor

parameter
this.driver = driver;

}

public String getDriver() { return driver; }

public void   setDriver( String driver ) {
this.driver = driver;

}

public static void main( String[] args ) {
// A main method for testing use only
Bus firstBus  = new Bus( "Joe" );
Bus secondBus = new Bus( "Mercedes", "B302", 60,

"Black",   "Mary" );
System.out.println( "First bus: "  + firstBus.getMake() +

" driven by " + firstBus.getDriver() );
System.out.println( "Second bus: " + secondBus.getMake() +

" driven by " + secondBus.getDriver() );
secondBus.setDriver( "David" );
System.out.println( "Second bus: " + secondBus.getMake() +

" driven by " + secondBus.getDriver() );
}

}
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5.9 To the class Vehicle, add a refuel method that expects two parameters, fuelQuantity and
milesSince LastFueling.  Also add instance variables to the Vehicle class for
totalMileage and totalFuelConsumed.  Further, add an accessor method called
fuelEconomy that will return the total miles per gallon of the vehicle.

private double totalFuel  = 0.;
private double totalMiles = 0.;

.

.

public void reFuel( double fuelQuantity,
double milesSinceLastFueling ){

totalMiles += milesSinceLastFueling;
totalFuel  += fuelQuantity;

}

public double fuelEconomy() {
return totalMiles / totalFuel;

}

What will you do to make the refuel method work properly when invoked on an instance of Skateboard?

class Skateboard extends Vehicle {

public Skateboard( String mk, String mdl, String clr ) {
super( mk, mdl, 1, clr );

}

public double changeSpeed( double newSpeed ) {
if( newSpeed > 10. ) { newSpeed = 10.; }
double accel = newSpeed - this.getSpeed();
this.setSpeed( newSpeed );
return accel;

}

public double fuelEconomy()
throws UnsupportedOperationException {

throw new UnsupportedOperationException(
"Skateboard uses no fuel" );

}

public void reFuel(double gallons, double miles)
throws UnsupportedOperationException {

throw new UnsupportedOperationException(
"Skateboard uses no fuel" );

}
}

Write a test class called ManyVehicles that creates a variety of different Vehicles, exercises all the
methods you have created, and checks for proper execution.  Try to set the speed of a Skateboard to
60, for example, or to refuel a Skateboard.  Check that the fuel economy calculations are being
performed correctly.

public class ManyVehicles {
// main method: tests the Vehicle class
public static void main( String[] args ) {

Vehicle v1, v2, v3, v4;
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v1 = new Vehicle( "Ford", "Mustang", 2, "red" );
v2 = new Vehicle( "BMW",  "328i",    4, "silver" );
v3 = new Vehicle( "Chrysler", "PT Cruiser", 4, "gold" );

System.out.println( "There are " + Vehicle.vehicleCount
+ " vehicles." );

System.out.println( "Make of v1 (Ford): " + v1.getMake() );
System.out.println( "Model of v2 (328i):" + 

v2.getModel());
System.out.println( "Color of v3 (gold: " + 

v3.getColor());
System.out.println( "Max occupants of v1 (2):

" + v1.getMaxOccupants() );

double accel = v1.changeSpeed( 70. );
System.out.println( v1.getModel() + " accelerated by "

+ accel + "mph to " + v1.getSpeed()
+ "mph." );

v1.setMake( "Chevrolet" );
v1.setModel( "Malibu" );
v1.setColor( "white" );
v1.setSpeed( 60. );
System.out.println( "v1 is now a " + v1.getColor() + " "

+ v1.getMake() + " " + v1.getModel()
+ " going " + v1.getSpeed() + "mph."

);

v4 = new Skateboard( "Mako", "Shark", "red" );
accel = v4.changeSpeed( 5. );
System.out.println( "v4 is a " + v4.getMake() + " "

+ v4.getModel() + " " + v4.getColor()
+ " Skateboard going "
+ v4.getSpeed() + "mph.");

accel = v4.changeSpeed( 22. );
System.out.println( "The Skateboard is now going "

+ v4.getSpeed() + "mph." );

v2.reFuel( 11.3, 295.); //should be 26.1 mpg
System.out.println( "The " + v2.getMake() + " mileage: "

+ v2.fuelEconomy() );
try{

System.out.println( "Refueling skateboard" );
v4.reFuel( 0., 5.);

}
catch( Exception e ) {

System.out.println( e.getMessage() );
}

}
}

5.10 Write a class that extends Exception and is called TooManyOccupantsException. Have the
Vehicle class mutator for number of occupants throw such an exception if the numberOfOccupants
would exceed the maximum number of occupants for the vehicle.  What will you need to change in
your ManyVehicles test class?
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public class TooManyOccupantsException extends Exception {
TooManyOccupantsException( int occupantCount ) {
super( "Vehicle cannot accommodate " + occupantCount );

}
}

In ManyVehicles test class:

try{
System.out.println( "adding people to Ford" );
v1.setOccupants( 6 );

}
catch( Exception e ) {

System.out.println( e.getMessage() );
}

5.11 Change your ManyVehicles class so that it reads from a text file called Vehicles.txt the
specifications for the Vehicles to create.  Use a BufferedReader or a Scanner to read the file.
Using a Scanner is probably easier in this case.  Here is a sample Vehicles.txt file. The first
word in a line is the class, the second word in a line is color, the third word in a line is the make, the
fourth word is the model, and the fifth word is the maximum number of occupants.  In the case of a bus,
there is a sixth word in the line giving the driver’s name:

Vehicle red Ford F-150 3
Vehicle silver BMW 328i 4
Bus blue GM bus 32 Jones
Vehicle gold Chrysler PTCruiser 4
Skateboard orange WorldIndustries ProBoard 1

If there is a file name on the command line, read from the file; otherwise simply create some hard-coded
examples in the ManyVehicles main method.  This is the code snippet that decides how to create the
Vehicles and then creates them:

if( args.length == 0 ) {
//There is no file name on the command line, so
//  make up some vehicles with hard coding

vehicles[0] = new Vehicle( "Ford", "Mustang",
2, "red" );

vehicles[1] = new Vehicle( "BMW",  "328i",  
4, "silver" );

vehicles[2] = new Vehicle( "Chrysler", "PT Cruiser",
4, "gold" );

System.out.println( "There are "
+ Vehicle.vehicleCount + " vehicles." );

System.out.println( "Make of vehicles[0]:   "
+ vehicles[0].getMake() );

System.out.println( "Model of vehicles[1] (328i):  "
+ vehicles[1].getModel() );

System.out.println( "Color of vehicles[2] (gold):  "
+ vehicles[2].getColor() );

System.out.println( "Max occupants of vehicles[0]: "
+ vehicles[0].getMaxOccupants() );

}
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else {//There is a file name on the command line, so
//  read from a file using Scanner.
Scanner sc = null;
try {

sc = new Scanner(
new File(args[0]) );

}
catch(Exception e) {

System.out.println( e.getMessage() );
}
int     index = 0;

while( sc.hasNext() ) { //read line in file
vehicle = sc.next();
color = sc.next();
make = sc.next();
model = sc.next();
maxOccupants = sc.nextInt();

if( vehicle.equals( "Vehicle" ) ){
vehicles[index] = new Vehicle(

make, model, maxOccupants, color );
}
else if(vehicle.equals( "Bus" ) ) {
vehicles[index] = new Bus( make, model,

maxOccupants, color, sc.next() );
}
else if(vehicle.equals("Skateboard") ) {

vehicles[index] = new Vehicle(
make, model, maxOccupants, color );

}
else {
System.out.println(

"Unrecognized vehicle type: "
+ vehicle );
System.exit(1);

}
System.out.println( "Created "

+ vehicles[index].getModel() );
index++;

}//while
}//else

Note that you must also add these import statements at the very beginning of your source code file, above
even the declaration of public class ManyVehicles {...

import java.util.Scanner; //for access to the Scanner class
import java.io.*; //for access to file I/O

5.12 Write a Java program that iterates through the integers from 1 to 20, computing the square of each
number and writing the information to a file called squares.txt.  Use a PrintWriter to write the
file of the first 20 integers and their squares.  Arrange for 2 columns with a line of column headings at
the top.  You will find this easy to do using the println() method of the PrintWriter.
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import java.io.*;
public class Squares {

public static void main( String[] args ){
PrintWriter output = null;

try {
output = new PrintWriter( new File(

"Squares.txt" ) );
}
catch( Exception e ) {

System.out.println( e.getMessage() );
System.exit(1);

}

output.println( "number\tsquare\n______\t______" );

for( int i = 1; i <= 20; i++ ) {
output.println( i + "\t" + i*i );

}

output.close();
}

}
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OPERATING SYSTEMS

6.1 What is the advantage of managing I/O with interrupts?  If an active typist is typing 30 words per minute
into a word processor, and the computer operates at one million machine instructions per second, how
many machine instructions can be executed in the time it takes a character to be typed on the keyboard?

While the I/O device is performing the transfer, independent of the CPU, the CPU can be doing
other useful work, instead of simply waiting for the I/O device to complete its work.

30 words-per-minute * 5 characters-per-word = 150 characters-per-minute
(1 min / 150 chars) * (60 sec / min) = 60/150 = .4 seconds-per-character.

.4 seconds * 1,000,000 instructions / sec = 400,000 instructions executed per character typed.

6.2 Explain why a DMA channel would or would not be useful in a computer without an interrupt-based 
I/O system.

A DMA channel would be much less useful in a computer without an interrupt-based I/O system.
The benefit of a DMA channel is that it proceeds with an I/O task independently of, and in parallel
with, the CPU.  For full efficiency, the CPU should not have to stop and poll the DMA channel 
periodically for its state; the CPU should be allowed to continue its other work until the DMA 
channel accomplishes the entire transfer and signals the CPU with an interrupt.

6.3 What scheduling concept was critical to the development of timesharing computers, and has remained an
important part of scheduling for interactive computer systems?

The round robin scheduler was the basis of the first timesharing computers.  Each user in turn
received his “time slice.”  The effect was to make each user feel he was the sole user of the machine.
Variations on round robin scheduling continue to be important mechanisms for providing interactive
computing on multiuser computers.

6.4 Categorize the following programs as system software or application software, and explain your
categorization:

Java Virtual Machine
system software—facilitates program development and execution

Excel
application software—used specifically for spreadsheet applications

Powerpoint
application software—used specifically for creating presentations

C compiler
system software—facilitates program development and execution

C library
system software—facilitates program development and execution

Oracle database management system
difficult to say, but I would choose system software.  A general database management 
package is a tool for application development

Employee payroll system
application software—very specific to the payroll function of a company

Web browser
difficult to say, but I lean toward calling a browser system software, because of the 
generality of a browser’s application.  A browser supports a multitude of user intentions,
and it includes features that facilitate web-based applications of many types
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Media player
application software—specific to presenting audio and video material

Control panel
system software—the control panel makes configuration and management of the system
easier, and system administration supports all applications

Email client
application software—specific to the email application

6.5 Why is it that threads are faster to create than processes?

When the operating system creates a process, it must allocate memory for the process and create a
process control block.  To create a thread, the operating system need only create a much smaller
thread control block.  Because threads within a process share memory and other resources (e.g.,
open files) available to the process, the operating system has much less set-up to do when creating a
new thread.

6.6 What advantage do kernel threads provide over user threads?  Give an example of a user thread package.

A major advantage of kernel threads is that when a kernel thread blocks for I/O, other threads 
continue to execute.  This is because a kernel thread is visible to the operating system, and each
thread can separately scheduled.  User threads, on the other hand, are not visible to the OS.  
With a user thread package, the process is the only entity of which the operating system is aware.
POSIX is a user thread package, although some operating systems (e.g., Solaris) implement the
POSIX interface using calls to the kernel threads offered by the operating system.

6.7 When a process is multithreaded, which of these resources are shared among the threads, and which are
private to each thread?

Memory
shared between threads

Program counter
private to each thread

Global variables
shared among all threads

Open files
shared among all threads

Register contents
private to each thread

Stack/local /automatic variables
private to each thread

6.8 List four events that transfer control to the operating system in privileged mode.

I/O interrupt
System clock interrupt
Process makes a system call (e.g., read, write, file open, etc.)
A process page-faults
A process causes a memory protection error

6.9 How can a semaphore be used to insure that Process First will complete before Process Second executes?

The semaphore must be shared between processes First and Second.  The semaphore must be set 
to 0 initially.  At the beginning of Second, Second must execute a P() operation (also called test,
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wait, acquire, etc.) on the semaphore.  The P() operation will block Second.  When First completes,
the last thing First must do is execute a V() operation (also called increment, release, signal, etc.) 
on the semaphore.  The V() operation will release the waiting process Second, thus guaranteeing 
that First will complete before Second.

6.10 Describe how transaction logging might apply to a file system, and give an example of a file system that
employs transaction logging.

Microsoft’s NTFS is one file system that uses transaction logging to protect the file system from 
corruption due to system failure.  When a change must be made to the file system, such as adding 
a new file, the file system first writes the changes to a write-ahead log.  When the system has
recorded all the changes in the write-ahead log, the system marks the transaction as committed.
When the system finds it convenient to do so, the system writes the committed changes to the file
system itself.  When all the changes have been transferred to the file system, the system can delete
the record of the transaction in the write-ahead log.

If the system should fail some time during this process, the system can look in the write-ahead log
when the system recovers to see what transactions were committed but not yet written to the file
system itself.  The system can roll back partially complete transactions.

6.11 If a memory access requires 100 nanoseconds, and the computer uses a page table and virtual memory,
how long does it take to read a word of program memory?

It takes 100ns to read the page table entry, plus 100ns to read the memory location itself.  The total
access time is 200ns.

6.12 If we add a TLB to the computer in the previous question, and 80% of the time the page table entry is in
the TLB (i.e., the required memory access results in a “hit” in the TLB 80% of the time), on average,
how long does it take to read a word of program memory?

Assuming that TLB access time is negligible:

.8 * ( 100ns ) + .2 * ( 200ns ) = 120ns

6.13 A paging system uses pages with 1024 addresses per page.  Given the following page table:

What are the physical addresses corresponding to the following logical addresses?

Logical address
0 4096

430 4526
2071 6167
4129 5123
5209 memory protection error

6.14 Why do virtual memory systems include a “modified” bit in the page table entry?

If a process has written to a page, it will take more time to reallocate that memory to a new page.  
If a page has been modified, the system must write the page to disk before the frame of memory 
can be used for another page mapping.  On the other hand, the system does not need to write and
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unmodified page to disk before remapping the frame for other use, because an unmodified page is
always available in its original form on the disk already.  Often page replacement algorithms take
this difference into account in order to speed execution.  Other things being equal, the system will
remap an unmodified page before it will remap a page that has been modified.

6.15 Why would fixed-length record files be a good choice for storing data from database tables?

With fixed-length record files, the system can easily calculate the exact address within the file of any
record in the file.  Databases often use fixed-length record files to speed indexed access to informa-
tion in its tables.

6.16 How would you expect process scheduling policies to be different on batch computing systems and
interactive systems?

Interactive computer systems like Unix and Windows use scheduling policies that share the com-
puter in some “fair” way among the concurrent users.  This means some variation of round robin or
time-slice scheduling, perhaps mixed with additional policies for background, non-interactive pro-
cessing.

Batch computer systems will use scheduling policies that in some way maximize the number of jobs
accomplished per hour or day.  There is no moment-to-moment concern with fairness, but there is
still pressure to be as efficient as possible.  Perhaps a FCFS or SRJF policy will be used, or a policy
that queues waiting jobs by priority.

6.17 How would you measure the success of a batch operating system?  Would you measure the success of
an interactive system like Unix or Windows the same way?  If not, how would you measure the success
of an interactive operating system?

Batch operating systems are often measured by the average number of jobs they complete per hour,
or by average CPU utilization.

Interactive operating systems are evaluated differently.  Often the measure of success for interactive
operating systems is response time; when a user enters a command, how much time elapses before
the user receives the first response from the system?
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NETWORKING

7.1 Explain how an IP packet might become duplicated and arrive twice at its destination.

Suppose a TCP message is sent from Host A to distant Host Z.  Because of network congestion,
Host A does not get a confirmation from Host Z within its timeout period for the message confirmation.
Therefore, Host A assumes the message was lost, and it sends the message again.  Perhaps all of 
the IP packets will eventually arrive at Host Z, and that will mean that many or all packets are 
duplicated at Host Z.

It’s also possible that an error in a router’s routing table could result in a packet being sent twice by
different paths to the distant host.

7.2 Some researchers in networking complain that networking protocols have become “ossified.”  What do
they mean by that, and why might that be so?  Who benefits from “ossified” protocols?

As the Internet and its protocols have become central to many business applications, the conse-
quences of any change to the protocols have become much more serious.  When only a hundred aca-
demics used the Internet regularly, there was more opportunity to try new protocols and approaches.
Now with millions of people, thousands of businesses, and billions of dollars dependent on current
protocol definitions, it is almost unthinkable to disturb the protocol infrastructure.

Our “ossified” protocols support the business, shopping and communications of end users of 
the Internet.

7.3 Using Google or some other source, find a list of other “well known ports” in networking besides port 80.

See http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

7.4 Most Internet communications use the TCP protocol, but some do not.  Some communications use only
the IP protocol.  Another name for the IP protocol is user datagram protocol (UDP).  Why would an
application choose to use UDP?  Can you think of a category of applications that might prefer UDP?

UDP is a low-overhead, high-speed protocol. By doing away with checks for out-of-order, duplicated,
or lost packets, UDP offers higher performance.  Many networks have extremely low error rates
anyway, so the cost of reduced reliability may be small, and the gain in speed substantial.

Audio and video streams may well be communicated via UDP.  If the error rate on the network is
low, the occasional bad packet will hardly be noticed, except for the infrequent audio or video
“glitch.”

7.5 IPv6 uses addresses that are 16 bytes long (128 bits).  How many addresses is that per person in the
world?

The population of the world in 2007 is about 6.6 billion; 128 bits can represent numbers up to 
3.4 * 1038.  With addresses occupying 128 bits, we have approximately 5 * 1028 addresses per person!

7.6 What classes does Java provide to make network programming easier?  Which classes are for TCP
communications?  Which classes are for UDP communications?

For TCP: ServerSocket, Socket
For UDP: DatagramSocket, DatagramPacket

7.7 It’s hard to imagine today how hot the competition was between different vendors of proposed
networking standards in the 1980s.  Today most wired LANs are implemented using 802.3 “Ethernet”
protocols.  General Motors strongly backed a competitive standard called manufacturing automation
protocol (MAP) that became IEEE standard 802.4.  Do some research to answer these questions:  Why
did GM favor 802.4 over 802.3?  Why did most of the world end up choosing 802.3?
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GM was concerned with the predictability of response on the network.  GM anticipated robots and
other automated equipment attached to the network, and predictability of response to a problem was
very important.  MAP was a token-passing protocol that provided relatively uniform access time to
each device on the network.  In contrast, Ethernet’s CSMA/CD protocol could not guarantee any
worst case access time to the network, because the frequency of collisions and retries on the network
depended on the loading of the network.

GM also liked the broadband, cable TV wiring specification of MAP.  With broadband, the wiring
could handle many channels at once, allowing for networking, video, and other communications over
common cable.  The broadband wiring also provided greater immunity to electrical noise, such as
that from welders and other equipment in the factory.

Ethernet, or 802.3, was more successful with most customers, partly because it had a head start.
Also, the imagined problems of responsiveness with Ethernet generally did not occur in practice. 
In addition, the wiring was less expensive and less complicated.

7.8 The HTTP protocol is essentially a protocol providing for file transfer between the server and the client.
Therefore, the HTTP protocol is said to be “stateless;” i.e., the server receives a request, and the server
satisfies the request with a file transfer, regardless of what has happened before with this client.  This
statelessness has been a challenge to those developing applications to be delivered over the web.  For
instance, a banking application will need to keep track of the account number of the individual making
inquiries, even though the individual makes repeated inquiries and updates using several different screens
(web pages).  How is application state maintained in such applications?

Web applications often use “cookies” to store information about the current interaction with the user.
Cookies are files kept on the client’s computer and facilitated by the client’s web browser.

A second way of saving information about the current interaction is to use “hidden fields” in the web
page sent to the client.  The browser does not display these fields to the client, but information saved
from the previous transactions with the client can be stored in the hidden fields, so that the server
has that context available when the user submits his next page to the server.

A third way to save transaction state is with a user session object on the server.  When a user logs 
in to the server, the server creates a “session” on the server that is identified by a session_ID.
The server can then attach the session_ID to each form exchanged with the client.

Some application “frameworks” provide additional tools.  For instance, Microsoft’s .Net framework
provides a ViewState property for each “control” (button, table, etc.) on a web page.  The state of 
the control (whether the button was pushed, whatever data are shown in the table, etc.) is saved
invisibly in the ViewState property of the control as the web page is passed back and forth
between server and client.



DATABASE
8.1 Consider designing a database for an antique store.  What entities would you include?  What would their

attributes be?

Entities and attributes:

Item: ID, type, description, cost, sales price, consignment seller
Customer: ID, Name, Phone, Address
ConsignmentSeller: SellerID, Name, Address, Phone, Commission%
Sale: InvoiceNo, Customer, Date
Sale Item: InvoiceNo, ItemID, ItemPrice, Quantity
Etc.

8.2 Create a full E-R diagram for the antique store mentioned in question 1.  The store handles household
furnishings, jewelry, toys, and tools.  The owner of the store owns most of what he has for sale, but he
handles some items on consignment (i.e., he sells the item for the owner, thus earning a commission on the
sale).  Some customers require delivery, so the owner maintains relationships with several local movers.
The owner wants to keep track of his customers so that he can do a better job of marketing. In particular,
he knows that some customers are particularly interested in certain types of antiques, and he’d like to be
able to find, for example, all those customers interested in cameo jewelry.

For business auditing and tax purposes, it’s very important that the database track expenditures and
revenues.  The owner wants to track what he spent for each item, and what he earned in selling it.
These requirements also mean that he has to track store expenses like rent and heat, and his
employee expenses (he employs 2 part-time people to help him run the store).

There is no single correct answer to such a challenge, but here is a possible E-R diagram
for an antique store database:

ANSWERS TO REVIEW QUESTIONS 207

Item

PK ItemID

Type
Description
Cost

FK2 SellerID
Price

Customer

PK CustomerID

Name
Address
Phone
Email

FK1 PrimaryInterest

Types of antiques

PK type

Seller

PK SellerID

Name
Address

Sale

PK InvoiceNo

Date
FK1 CustomerID

Cont’d....

LineItem

PK,FK1 InvoiceNo
PK,FK2 ItemNo

Price

Antique Store

Item type Interest

C
om

m
is

si
on

 it
em

Fee(%)



208 ANSWERS TO REVIEW QUESTIONS

Delivery_Services

PK ServiceID

Name
Address
Phone
PrimaryContact

StoreExpense

PK StoreExpenseType
PK Date

Payee
Amount
CheckNo

FK1 ExpenseType

EmployeeExpense

PK EmpSSN
PK Date

FK1 EmpExpenseType
Amount
CheckNo

StoreExpenseType

PK ExpenseType

EmployeeExpenseType

PK EmpExpenseType

Delivery

PK CustomerID
PK Date /Time

FK1 ServiceID
Cost

FK2 InvoiceNo
Driver

Rent, heat, etc. Wages, training, etc.  

8.3 An inexperienced database designer suggested the following schema for one of the tables in the antique
store database:

Sales

Is this schema in 1NF?
yes

Is this schema in 2NF?
No, aside from attributes Description and Price, none of the attributes of the Sales table is
functionally dependent on the key Item_ID.

Is this schema in 3NF?
No, several transitive dependencies exist; for instance, Addr, City, St, ZIP, and Phone are
dependent upon Customer_Name.

If the answer to any of these questions is, “No,” redesign the table so that the result is in 3NF.

Sales

Customer

Customer_ID | Customer_Name | Addr | City | St | ZIP | Phone

Item_ID | Description | Price | Date | Customer_Name

Item_ID | Description | Price | Date | Customer_Name | Addr | City | St | ZIP | Phone



8.4 Two of the tables in the antique store database will be a table of Deliveries, and a table of
Delivery_Services.  Here are the schemas for the two tables:

Deliveries

Delivery_Services

Write the SQL code to create these tables.  Specify which columns may not be NULL, and specify primary
and foreign key constraints.  Note that the Delivery_Service column in the Deliveries table is
meant to have the same meaning as the Name column in the Delivery_Service table.

CREATE TABLE DELIVERIES (
DATETIME TIMESTAMP NOT NULL,
CUSTOMER_ID INT NOT NULL,
DELIVERY_SERVICE VARCHAR(20) NOT NULL,
COST NUMERIC(8,2), NOT NULL
INVOICE_NO CHAR(8) NOT NULL,
DRIVER VARCHAR(20),

PRIMARY KEY(DATETIME, CUSTOMER_ID),
FOREIGN KEY(DELIVERY_SERVICE) REFERENCES

DELIVERY_SERVICES(NAME)
);

CREATE TABLE DELIVERY_SERVICES(
NAME VARCHAR(20) NOT NULL,
PHONE CHAR(12) NOT NULL,
ADDR VARCHAR(30) NOT NULL,
ST CHAR(2) NOT NULL,
ZIP CHAR(5) NOT NULL,
CONTACT VARCHAR(20),

PRIMARY KEY(NAME)
);

8.5 Here are the schemas for a few more of the tables in one implementation of the antique store 
database:

Item

Sale

Line Item

Invocie_No | Item_ID | Unit_Price | Quantity | Line_Item_Price

Invoice_No | Customer_ID | Date

Item_ID | Type | Description | Cost | Consignment_Seller_ID | Price_Sold

Name | Phone | Addr | City | St | ZIP | Contact

Date/Time | Customer_ID | Delivery_Service | Cost | Invoice_No | Driver
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Consignment_Seller

Write SQL queries to report the following information:

a Report all of the consignment sellers located in NY, and list them in order by their 
consignment fee percentages.

SELECT name, fee_percent FROM CONSIGNMENT_SELLER
WHERE state = 'NY'
ORDER BY fee_percent;

b Find all of the items in the store that are on consignment from “Parker Smith”.  Report only the
items for sale (Price_Sold is NULL).

SELECT item_id, description
FROM ( ITEM JOIN CONSIGNMENT_SELLER ON

Consignment_Seller_ID = Seller_ID)
WHERE name = 'Parker Smith' AND Price_Sold IS NULL;

In all of these examples, the specific syntax may vary by database product.  Here is the proper
syntax for Microsoft Access:

SELECT item_id, description
FROM Item INNER JOIN CONSIGNMENT_SELLER ON

Item.Consignment_Seller_ID =
Consignment_Seller.Seller_ID

WHERE name = 'Parker Smith' AND Price_Sold IS NULL;

c Report the total of all sales during last March.

SELECT SUM (Line_Item_Price)
FROM (Sale JOIN Line_Item ON Invoice_No)
WHERE Date LIKE '%2007-03%';

In Access:
SELECT Sum (Line_item.line_item_price)
FROM Sale INNER JOIN Line_item

ON Sale.Invoice_no =
Line_item.Invoice_No
WHERE Sale.date Like "*3/*2007*";

d Find all the items on consignment from “Parker Smith” that sold this month.

SELECT item_id
FROM (Sale JOIN Line_Item ON Invoice_No)
WHERE Date LIKE '%2007-11%'

AND item_id IN
(SELECT item_id

FROM ( Item JOIN Consignment_seller ON
Consignment_Seller_ID = Seller_ID)

WHERE name = 'Parker Smith'
AND Price_Sold IS NOT NULL);

Seller_ID | Name | Addr | City | State | ZIP | Free_Precent



In Access:

SELECT item_id
FROM Sale INNER JOIN Line_Item ON

Sale.Invoice_No = Line_Item.Invoice_No
WHERE Date LIKE '*11*2007'

AND Line_item.item_id IN
(SELECT Item.item_id FROM Item INNER JOIN

Consignment_Seller ON
Item.Consignment_Seller_ID =
Consignment_Seller.Seller_ID

WHERE name = 'Parker Smith'
AND Price_Sold IS NOT NULL);

e Report the amount due to “Parker Smith” for all sales of his items this month.

SELECT SUM (Line_Item_Price * fee_percent) as
Smith_comission
FROM ( ( ( Sale JOIN Line_Item ON Invoice_No  )

JOIN Item      ON Item_ID )
JOIN Consignment_Seller ON
Consignment_Seller_ID = Seller_ID )

WHERE name = 'Parker Smith' AND Date LIKE '%2007-11%';

In Access:

SELECT SUM(Line_Item.Line_Item_Price *
Consignment_Seller.fee_percent) AS Smith_comission

FROM ((Sale INNER JOIN Line_Item ON
Sale.Invoice_No = Line_item.Invoice_No)

INNER JOIN Item ON
Item.Item_ID = Line_Item.Item_Id)

INNER JOIN Consignment_Seller ON
Consignment_Seller.Seller_ID =
Item.Consignment_Seller_ID

WHERE Consignment_Seller.name = 'Parker Smith'
AND Sale.Date LIKE '*11*2007*';

f Report all sales of items not on consignment (Consignment_Seller_ID is NULL) this month.

SELECT Item_ID
FROM ( ( Sale JOIN Line_Item ON Invoice_No  )

JOIN Item      ON Item_ID )
WHERE Consignment_Seller_ID IS NULL

AND Price_sold IS NOT NULL
AND Date LIKE '%2007-11%';

In Access:

SELECT Line_item.Item_ID
FROM (Sale INNER JOIN Line_Item ON

Sale.Invoice_No = Line_Item.Invoice_No)
INNER JOIN Item ON
Line_Item.Item_Id = Item.Item_ID

WHERE Item.Consignment_Seller_ID Is Null
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AND Item.Price_sold Is Not Null
AND Sale.Date Like '*11*2007*';

g Report the profit on all non-consignment items this month.

SELECT SUM(Line_Item_Price) - SUM(Cost) as Profit
FROM ( ( Sale JOIN Line_Item ON Invoice_No  )

JOIN Item      ON Item_ID )
WHERE Consignment_Seller_ID IS NULL

AND Price_sold IS NOT NULL
AND Date LIKE '%2007-11%';

In Access:

SELECT SUM(Line_Item_Price)-SUM(Cost) AS Profit
FROM (Sale INNER JOIN Line_Item ON

Sale.Invoice_No = Line_Item.Invoice_No)
INNER JOIN Item ON
Line_Item.Item_ID = Item.Item_Id

WHERE Item.Consignment_Seller_ID Is Null
AND Item.Price_sold Is Not Null
AND Date Like '*11*2007*';

8.6 When a customer buys an item (or several) from the store, several changes to database tables will occur.
Explain what those might be.

a If the customer does not yet exist in the database, a customer record must be 
added.

b The row in table Item for the antique the customer purchases must have the column Price_sold
updated.

c The sale must be recorded in tables Sale and Line_Item.

8.7 The owner of the antique store doesn’t want to train his people in SQL, or to teach them about all the
tables in the database.  He asks you to write a program that will take sales information, and then make 
all the changes automatically, including whatever error checking may be necessary.  The clerk will enter 
a customer phone number (assume this is used as the Customer_ID primary key in the Customer table),
an item ID (from a tag on the item), and the sale price.
In pseudo code, outline how your program would record a sale.  Show how you would use a transaction 
to insure the integrity of the database updates.  Also, explain the error checking (such as verifying that 
the customer is already in the database) you would perform in your program, and how your program
would recover from problems such as:

• The customer is not in the database.
• The item number is not in the database.
• The item is already sold.

a Select the customer from the Customer table.
One row should be returned.  If so, continue at b.
If no row is returned, we must add the customer to the database.
Insert a new customer row in the Customer table to add this new person
to the database.

b Start the sale transaction.

c Select the row for the Item_ID from the Item table.



One row should be returned.
Check the Price_sold column to be sure it is null
(has not been sold already).
If the Sale_price is null, proceed to d,
otherwise report the error and roll back the transaction.
If no row exists for the Item_ID, report the error, and
give the clerk the option of entering a corrected Item_ID,
or canceling the transaction.
If the clerk cancels the sale, roll back the transaction.

d Insert new rows in the Line_item and Sale tables.

e Update the Price_sold column in the Item table for this Item_ID.

f Commit the transaction.

8.8 When an item is sold, should the item row be removed from the Items table?  Why or why not?

Probably not.  The rows in the Items table maintain information about costs and revenues, which
allow us to calculate profit.  These rows also provide information about consignment sales, and we
need that information to pay our consignment sellers correctly.

Very old entries in the Items table may be deleted, perhaps on an annual basis, to keep the size of
the database smaller.  However, we must be sure not to delete any information that may be required
for business and tax reporting.

8.9 What transaction isolation level should apply to this application?  Why do you make this choice?

This is a rather undemanding database application.  Apparently there are only three people, the 
proprietor and two part-time workers, who will be accessing the database. Probably there will also
be only one computer from which to access the database, unless the owner, working from home, 
also logs in.

In these conditions, one could argue that the default read_committed isolation level will be
more than adequate.  One could also argue that the modest performance requirements of this applica-
tion mean that we should use the serializeable isolation level.  Such precaution will give us the most
protection, and no one will notice any performance impairment, since the application is undemand-
ing of high performance.
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SOCIAL ISSUES

9.1 Should software be copyrightable or patentable?  Ignoring the law for the moment, argue the question
from the Kantian, Utilitarian, and Social Contract Theory perspectives.

While there is not a single correct answer to this question for all people, answers to this question
should include observations along the following lines:

The Kantian would ask the question, “Am I comfortable with everyone being able to copyright or
patent their software?”

The Utilitarian would try to sum the advantages and disadvantages to all concerned.  The writers
would gain because they could demand payment for use of their software.  The users would lose
because buying software would be more expensive.  On the other hand users might gain because
more software may become available to buy.

The Social Contract Theorist would ask, “Are most people willing to agree to allow copyrighting 
and patenting of software, probably because it achieves a reasonable balance between the needs 
of the writers and the needs of the users, so that all agree to be bound by such rules, as long as the
others are also?”

9.2 Why does a copyright provide better protection for object code than for source code?

Copyrighting protects the expression of the idea, not the idea itself.  Since a programmer can read
source code, a programmer could readily adopt a good idea expressed in C, and create a similar 
program in another language, perhaps Java.  Because the “expression” of the idea is now different
(in a different language), the copyright holder would have no means of protecting his idea from 
free adoption by others.

Object code, on the other hand, is not generally readable by humans.  Therefore, copyrighting the
object code, and shipping only object code, is a fairly effective way of protecting both the idea and
its expression via copyright.

9.3 How can you apply the ACM Code of Ethics to the practice of sending “spam” e-mail (unsolicited
messages to strangers)?  What sections of the ACM Code apply, and does the ACM Code permit the
practice?

Several sections of the ACM code apply to the practice of spamming email:

1.2 Avoid harm to others:  Spam email imposes costs on others, on the ISPs that must store and 
forward the spam, and on the receiver who must spend time deleting unsolicited messages. 
Also, often to goal of spam is to trick the receiver into revealing information about the receiver’s
identity, so that the spammer can then steal the receiver’s money or identity.

1.3 Be honest and trustworthy:  Spam is nothing if not dishonest.  The receiver did not ask for the
spam message, and the spammer designs the message to trick the receiver into responding to it.

1.5 Honor property rights:  Spammers often create messages using the trademarks of legitimate 
businesses.  This is a violation of property rights, as well as a deliberate attempt to deceive the
receiver and make him vulnerable to further attack or theft.

1.7 Respect the privacy of others:  Spammers violate this principle directly.  The whole point of
spam is to gain surreptitious access to private information about the receiver.

2.3 Know and respect existing laws pertaining to professional work:  The US Can-Spam Act of
2004 prohibits the practice of spamming.  The name of the act stands for Controlling the Assault
of Non-Solicited Pornography and Marketing.

2.8 Access computing and communication resources only when authorized:  Clearly, spammers are
not authorized by the receivers to send their unsolicited messages.

By violating all these principles, spamming is clearly not acceptable to the ACM Code of Ethics.
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9.4 Inspection of a computer program controlling a weapons system shows 54 “if” statements (23 with 
“else” clauses), 4 “switch” statements (with 5, 7, 4, and 8 “cases”), and 17 “for” or “while” loops 
with parameterized looping boundaries.  How would you exhaustively test such a program to prove 
its safety?

To exhaustively test all possibilities, you would have to test all paths through the program:

31 * 2 (if statements) * 23 * 3 (if else) * 5 * 7 * 4 * 8 (switches) * 17 (loops) * 4 (loop test cases
per loop) ~ 325 million test runs

9.5 Assume you have just created a program to schedule taxicabs in real time.  You’re sure that your
approach is entirely new and much better than anything else available.  Every taxi company in the world
is going to want your software.  Explain how you would best protect your work—patent?  copyright?
secret?

There is no single correct answer to this question.

I would probably not use a patent to protect this program.  First, such software may not be patentable.
If I wanted to patent the program, however, I would argue its patentability on the basis of its 
connection to a real world taxi scheduler.

Another risk would be that filing for a patent would force me to reveal the details of my 
implementation, and such details might well allow another to take advantage of my thinking, 
while allowing the other to change his implementation sufficiently to avoid violating my patent.

Probably the best protection for me would be secrecy.  I will simply keep my source code secret 
as a trade secret.  I will be obligated to maintain the secret carefully, exposing the source code only
to individuals who have a need to know, and I will have such individuals sign a non-disclosure
agreement with me first.

To protect the software that I sell, I will ship only object code, and I will copyright the object 
code.  Such copyright will make it illegal for my customers to copy the object code without my 
permission.

ANSWERS TO REVIEW QUESTIONS 215



This page intentionally left blank 



INDEX



This page intentionally left blank 



219

Aiken, Howard, 9
algorithm, 2, 14

order of growth of (see order of
growth)

application software, 3
ARPAnet, 134
ASCII (American Standard Code for

Information Interchange), 35, 95
assembler, 45
assembly language, 36, 45
Atanasoff, John, 8, 11–12
Atanasoff-Berry Computer (ABC),

8–9

Babbage, Charles, 6–7
Backus-Naur form (BNF), 61
BASIC, 46
binary, 32
binary search, 22–23
block device, 41
BNF (Backus-Naur form), 61
bubble sort, 29–30
busy waiting, 104
byte, 39

C, 46
C++, 46–47
cache memory, 40
central processing unit (CPU), 7, 36
character data, 35
character device, 41
Church-Turing Thesis, 28

class, object oriented programming,
78. See also inheritance

clients, 98, 132–133
Cobol, 46
compiler, 10, 47-8
computer science, definition, 1
computer virus, 175–176
computer word

data representation in, 33–36
size, 32–33, 39

computing history, 4–12
copyright, 173–174
CPU (Central Processing Unit), 7, 36

data definition language (DDL),
148–149

data manipulation language (DML),
148, 150–157

data modeling, 140–143, 142, 143
database management systems

(DBMS), 140
databases, 3–4, 139–140

advantages of, 140
building, 144–147
data integrity in, 160–162
modeling data for, 140–143
program access to, 162–165
relational, 3, 139–140
SQL and, 147–157
stored procedures and, 157–160

DDL (data definition language),
148–149

deadlock, 110
avoidance, 112
detection, 112–114
prevention, 111–112
recovery, 114

declarative language, 46
difference engine, 5
Digital Equipment Corporation

(DEC), 12
direct memory access (DMA), 41
DML (data manipulation language),

148, 150–157

EBNF (extended Backus-Naur form),
61–62

Eckert, J. Presper, 11
encapsulation, 52, 78
encryption, 175
ENIAC (Electronic Numerical

Integrator Analyzer and
Computer), 11

ethics, code of, 170
extended Backus-Naur form (EBNF),

61–62

file systems, 122–124
FORTRAN, 45, 47–48
functional language, 46, 55–56

hacker, 176-177
“halting problem,” 28–29
hardware, 2

Tables and figures in bold



higher-level languages, 2–3
Hollerith, Herman, 8
Hopper, Grace Murray, 10
HTML (hypertext markup language),

135–137
HTTP (hypertext transport protocol),

134–135

IBM (International Business
Machines Corporation), 8

imperative language, 46, 49
inheritance, 52, 78, 79, 81–82
insertion sort, 17–19
instance method, 51, 52, 78, 79–80
instance variable, 51, 52, 78, 79–80
instruction set. See machine language
International Business Machines

Corporation (IBM), 8
internet, 128

reference model, 129, 129–134
internet protocol (IP), 131–132
interpreter, 48–49
I/O, 40-1

direct memory access (DMA), 100
interrupt-driven, 100
management, 99
memory mapped, 101
programmed, 100
See also Java: input/output

IP (internet protocol), 131–132,
133–134

ISO OSI reference model, 128,
128–129

iteration. See looping

Jacquard, Joseph Marie, 5
Jacquard loom, 5, 7
Java, 47, 49, 50–51, 66

control structures, 71–77
data types, 66–70
error handling, 85–87
identifiers, 71
input/output, 87–92
interfaces, 83–84
operators, 70

variables and methods, 79–84
Java Virtual Machine (JVM), 49
JDBC, 162–165
job control language (JCL), 97

LAN (local area network), 127–128.
See also network

languages
design properties of, 59–60
history of, 44–47, 59
syntax and semantics of, 61–64
See also compiler; interpreter;

specific language

lexical analysis, 61–64
LISP, 46, 55–57
local area network (LAN), 127–128.

See also network
looping, 57–58, 72–74
Lovelace, Augusta Ada, 7

machine instruction set. See machine
language

machine language, 2, 36–39, 44–45,
95–96

Mark I, 9–10
Mauchly, John, 11
memory, 39–40

management, 116–122
merge sort, 19–22
methods

instance, 51, 52, 78, 79–80
static, 52–53, 79–80

monitors, 108–109
multiprogramming, 97

network, 3, 127
protocol, 127–134
wireless, 131

normalization, 145–147
NSFnet, 134

object, 78. See also object-oriented
programming

object code, 48
object-oriented language, 46–47,

66–67
object-oriented programming, 51–53,

77–82
Open Systems Interconnection (OSI)

model, 128, 128–129
operating systems, 3, 96–97

embedded system, 99
file systems and, 122–124
history of, 97–98
memory management and, 

116–122
multiprocessor, 98–99
process scheduling and, 

101–116
real-time, 99

order of growth (Q), 17
Q(lg n), 23, 24
Q(n), 17, 24
Q(n!), 24, 24–25
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paging, 118–122
parse tree, 62–64
parsing. See syntax analysis

Pascal, Blaise, 4
patent, 172–173
PL/1, 46
polymorphism, 52, 82–83
privacy issues, 174–175
procedural language, 46, 49
procedural programming, 49–51
program, 2
programming, 2
protocol, network, 127–134
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punched card, 5–8

random access memory (RAM), 39
recursion, 20, 57–59
relational database, 3, 139–147
relocatable code, 48

scanner, language. See lexical 
analysis

Scheme, 56–59
scripting language, 53–54
search
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sequential search, 16–17
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software, 3

application, 3
system, 3
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merge, 19–22

SQL (Structured Query Language),
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static variable, 52–3, 79–80
structured programming, 51
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symmetric multiprocessing 

(SMP), 98
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system software, 3
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threads, 102–103
timesharing, 98
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traveling salesman problem, 24
Trojan horse, 175–176
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URL (uniform resource locator), 134
UNIVAC (Universal Automatic

Computer), 11

variables
instance, 51, 52, 78, 79–83
static, 52–53, 79–80

virtual machine, 49
virtual memory, 118–122
virus, computer, 175–176
von Neuman computer, 31

WAN (wide area network), 127–128.
See also network

wide area network (WAN), 127–128.
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world wide web (WWW), 134–135
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