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e mathematics needed for the siudy of coconomics and business continues to grow with cach passing
vedar i'll_nru!j ever more demands on students and faculty alike. Tnfroduction o Matherviatical
Economucs, third edition, introduces three new chaplers, one on comparative stabics and concave
programming, one on simultaneous differential and difference equations, and one on optimal control
theory. To keep the book manageable in size, some chapters und sections of the second ¢dition had 1o
be excised. These include three chapters on linecar programming and a number of sections dealing with
basic clements such as lactoring and completing the square. The deleted topics were chosen in pant
because they can now be found in one of my more recent Schaum books designed as an easier, more
detatled introduction to the mathematics needed for ccononucs and business, namely, Mathematical
Methods for Business and Economic

The objectives of the book have not changed over the 20 years since the introduction of the first
edition, originally called Mathematics for Economists. Introduction to Mathematical Economics, third
edition, is designed to present a thorough, casily undersiood introduction to the wide armay of

mathematical topics economists, social scientists, and business majors need to know today, such as
lingar algebra. differential and ntegral calculus, nonlinear progrimming. differential and dilference
cquations the calculus of vanahons, and uplmul. control theory, The book also offers a bricl review
ol basic algebra {or those who are rusty and provides direct. requent, and practical applications o
everyday economic problems and business situations

Ihe theory-and-solved-problem format of each chapter provides concise explanations llustrated
by cxamples, plus numerous problems with fully worked-out solutions. The topics and related
problems range in difficulty from simpler mathematical operations to sophisticated applications. No
mathematical proficiency beyond the high school level is assumed at the start. The learning-by-doing
pedagogy will enable students to progress at their own rates and adapt the book to their own
needs

Thosc in need of more ume and help in getling started with some ol the clementary lopics may
fecl more comfortable beginning with or working in conjunction with myv Schaiem's (wiline of
Mathemarical Methods for Business anmd Economucs, which offers a kinder, gentler approach to ithe
discipline. Those who prefer more ngor and theory, on the other hand, might find 1t ennching 1o work
along with mv Schaum s Chatline of Calcnlus for Business, Economicy, and the Social Sciencey, which
devoles more time o the theoretical and struciural underpinnmings

Introduction 10 Mathernatical Economics. third edition, can be used by usell or as a supplement
1o other texts for undergraduate and graduate students in economics, business, and the socuil scences
It is largely self-contained. Starting with a basic review ol high school algebra in Chapter 1. the book
consistently cxplains all the concepts and techniques needed for the matenal in subseguent
chapters

Since Lhere 18 no umiversal agréement on the order in which differential calculus and hnear algebra
should be presented, the book is designed so that Chapters [0 and |1 on lincar algebra can be covered
immediately alter Chapler

2. il s0 desired, without loss ol continuity

This book contains over 1600 problema, all solved in considerable detail. To get the most from the
book, students should strive as soon as possible 1o work independenily ol the solutions. This can be
done by solving problems on individual sheets of paper with the book closed. If difficulties anse, the
solution can then be checked in the book

11
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w PREFACE

For best results, students should never be satisfied with passive knowledge—the capacity merely
to follow or comprehend the various steps presented in the book. Mastery of the subject and doing well
oft exams requires active knowledge—the ability 10 solve any problem, in any order, without the aid
of the book.

Experience has proved that students of very different backgrounds and abilitics can be successful
in handling the subject matter presented in this text if they apply themselves and work consistently
through the problems and examples

In closing, | would like to thank my friend and colleague at Fordham, Dr. Dominick Salvatore, for
his unfailing encouragement and support over the past 25 years, and an exceptionally fine graduate
student, Robert Derrell, for proofreading the manuscript and checking the accuracy of the solutions
I am also grateful to the entire staff at McGraw-Hill, especially Barbara Gilson, Tina Cameron,
Maureen B. Walker, and Deborah Aaronson.

Eowarp T. Dowiisa
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2 . REVIEW [CHAP 1

d) () = 2y e ' Rule 4
[y )® = Oey My W day) = (5 x-x-aly -y y-y) = o'y
o) (5)-1,a’-m-'-. Rule §
¥ ¥ ¥ ¥
I(!":,Lﬂiﬂﬂiﬂl_*!iﬁl
¥ )y ¥
N Lnt'"-.t"-lir“ Rules 2 and &
'y 1
.I'_"t O ,1]
™ XX X% X
g} V=g Rule 7
Since Vi Vi =& and from Rule | exponents of a common base are added in multiplication, the
nt of Vi, when added to itself most equal 1. With | +] = 1, the exponent of Vx is L Thus
Vy Vre g2, % w 1300 o g
) V= Rule &
Just as ';'l \:I\:; - III.IH '|.1| gt - it .tl -y
l} ‘?I - l"l' f"l o {..'I'l_l £ Ruh. -g

4 = (499" = (VA)' = (22)" = =8, or equally valid, 4* = (4)'" = (64)'" = Vo4 = 28]
X1 l

1 i
L R T A
{ P I I 1

e B 15 ] - . e
BTy Oy ot ™ cumally valid, 277 = e = TP T 9

Rule 10

23 .

Sce Problem 1.1

1.2 POLYNOMIALS

Given an expression such as Sr', x is called a varigble because it can assume any number of
different values, and 5 is referred o as the coefficient of x. Expressions consisting simply of a real
number or of a coelficient times one or more variables raised to the power of a positive integer are
called monomials. Monomials can be added or subtracted to form polynomials. Each of the monomials
comprising & polynomial is called a term. Terms that have the same variables and exponents are called
like terms. Rules for adding. subtracting. multiplying. and dividing polynomials are explained n
Examples 3 through § and treated in Problems 1.2 1o 1.4

EXAMPLE 3. Like terms in polynomials can be added or subtracted by adding thetr coclficients. Unlike terms
cannol be so added or subtracted. Sec Problems 1.2 and 1.3,

a) 4+ = 14 b) 12xy = Jay = Sy

e) (T + 87 <K+ (e’ =9 - 2x) = 1Re’ = ~ Ll

dy (2a=1%9)* (bx »5z)= Mx= 17y = 5z

EXAMPLE 4. Like and unlike terms can be multiplied or divided by multiplying or dividing both the cocfficicnts
nmd variables

a) (Sx13y') = 685xy” B (T N y) = 2R’y

15rty'
Wys T

€) (2OyMITY ) = Mty et )
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dey's
rl e p——— L m——
'y’ 2z

EXAMPLE 5. In multiplying two polynomials, each term in the first polynomial must be multiplied by cach term
in the second and their products added. See Problem 1.4,

(6 « Tydde + Oy} = 24" + Sduy + 2Rey + 637

= zn-l[: L] Ell-," - ﬂi“:
& RO ; = T2) = 16" = Jxy ~ 1dxz + Moy — 15" - 2yz
p s

“ 16’ & lday — 1daz - 21yz — 15y'

L3 EQUATIONS: LINEAR AND QUADRATIC

A mathematical statement setting two algebraic expressions equal 10 cach other is called an
equation. An equation in which all variables are raised to the first power is known as a linear equation.
A lincar equation can be solved by moving the unknown variable to the left-hand side of the equal sign
und all the other terms 1o the right-hand side, as is illustrated in Example 6. A quadratic equation of
the form ax™ + bx + ¢ = 0, where a. b, and ¢ are constants and @ # 0, can be solved by factoring or using

the quadratic formulic
~b = Vb - dac
= S

Solving quadratic equations by factoring is explained in Example 7 and by the quadratic formula in
Example 8 and Problem 1.6,

(n.n

EXAMPLES. The lincar equation given below is solved in thice casy steps.

1 X
1-!1-3:‘-.
4 5 :

1. Move all terms with the unknown variable 1 to the left, here by subtracting /S from both sides of the
equation
-2
4
2 Move any term without the unknown vanable to the right, here by adding 3 1o both sides of the
equation.

L )
3';“1

T X
P R T T
el

3 Simplify both sides of the equation until the unknown varable is by itself on the left and the solution is
on the nght, here by multiplying both sides of the cquation by 20 and subtracting,
I X
0-(3-%) =42

Si—dr = 80
1= N

EXAMPLE7. Factoring is the casicst way 1o solve a quadratic cquation, provided the factors are casily
recognized integers. Ciiven

i s =0
by factoring. we have

(e +3)x+10)=0



4 REVIEW [CHAP 1

For (x + 3)(x + 10) 1o equal 0, x + 3 or x + 10 must equal 0. Setting each in turn equal to 0 and solving for ¥,

we have

s+3=0 s+ 0=0D
r==}3 x= =10

Those wishing a thorough review of factoring and other basic mathematical techmig wes should consult another
of the author's hooks, Schaum's Outline of Mathematical Methods for Businesy and Economics, for a geatler, more
gradual approach to the discipline.

EXAMPLES. The quadratic formula is used below 1o solve the quadratic equation
S’ - SSu 4+ 140 =0
Substituting @ = 5, b = =55, ¢ = 140 from the given equation in (1.1) gives
~(~55) = V{-55)" - 4{5){140)
_‘ -
2(5)
 SS=VI02S-2M0 S5+ VS S5 1S

10 10 10
Adding +15 and then ~ 15 to find cach of the two solutions, we get
55+ 15 5-15
- --1 - -
BT el T Tk

See Problem 16

14 SIMULTANEOUS EQUATIONS

To solve a system of two or more equations simulianeously, (1) the equations must be comsisfent
(noncontradictory ), (2) they must be independent (not multiples of each other), and (3) there must be
as many consistent and independent equations as variables. A system of simultancous linear equations
can be solved by cither the substinution or elimination method, explained in Example 9 and Problems
2.11 to 2.16, as well as by methods developed later in lincar algebra in Sections 11.8 and 11.9,

EXAMPLE 8. The equilibrium conditions for two markets, butter and margarine, where P, and P are the prices
of butter and margarine, respectively, are given in ([.2) and (1.3)

B =3P. =7 (L2
P4 TP, =19 (1.5
The prices that will bring equilibrium 1o the model are found below by using the substitution and climination
methods
Substitution Method

1. Solve onc of the equations lor one variable in terms of the other, Solving (1.73) for P, gives
Po=TP.—19
2. Substitute the value of that torm in the other equation, bere (1.2), and solve for P

BP~Pu=?
(TP = 1N =3P =?
SOP, =152 =3P, =7
53P. =19
P.=3
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3. Then substitute P = 3 in either (/.2) or (1.3) 10 find P,

8P, ~33) =7
8P, = 16
.F.. = I
Efwrunation Method
1. Multiply (1.2) by the cocfficient of P, (or £.) in (1.7) and (1.7) by the coefficient of P, (or P} in (1.2).
Picking P.., we get

HRP, =3P, = T) sl - 2P =4 (1.4
“H{-P,+ TP = 19) IP, = 2Py = -5 (1.5)

2. Subtract (1.5) from (J.4) to ¢liminate the selected variable

S3P, = 106
p; =32

3. Substitute P, = 2 m (1.4) or (1.5) to find P_ as in step 3 of the substitution methaod.

LS FUNCTIONS

A function [ is & rule which assigns to each value of a varable (x), called the argument of the
function, one and only one value [ flx)], referred to as the value of the function at x. The domain of a
function refers to the set of all possible values of x; the range is the set of all possible values for flx).
Functions arc generally defined by algebraic formulas, as illustrated in Example 10, Other letters, such
as g h, or the Greek letter é, are also used to express functions. Functions encountered frequently in
economics are listed below.

Linear function:

fix) =mx+b
Quadratic function:
fAx)=axr' +bx+ ¢ (a*0)
Polynomial function of degree n:
fix) = o va, (2 "'+ +a, (n= nonnegative integer; a, = ()
Rational function:

&(x)
= iy

where glx) and hix) are both polynomials and kix) # 0. (Note: Rational comes from ratio,)

Power function:
fx) = ax* (n = any real number)

EXAMPLE 10. The function flx) = 8x = 5 is the rule that 1akes a number, multiplies it by & and then subtracts
5 from the product. If a value s given for 1, the value is substituted for x in the formula, and the equation solved
fior flx). For example, if © = 3,

fix) = 8(3) - 5= 19
Ifx =4, fix) = 8(4) - § = 27
Sc¢e Problems 1.7 to 1.9



EXAMPLE 11. (Given below are examples of different {unctions:

Lincar: fix)=Tu—4 glx) = = hix) = 9

Cuadratic: )=3r +8-2 gld=r~-tu  hix) =&

Podymrial: fx)=4" + 28 -9 4+ 5§ gle)y=2"~2"+7
-9 Sx

Rational, fix) = Y ix# —4) g{::-m (xe2)

Perwer fix)= 2"  plxd=2*"  hix)=dx’

L6 GRAPHS, SLOPES, AND INTERCEPFTS

In graphing a function such as v = f(x), x is placed on the horizontal axis and is known as the
independent variable; v is placed on the vertical axis and is called the dependent variable. The graph
of a lincar function is a straight line. The slope of a line measures the change in v (Ay) divided by a
change in x (Ax). The slope indicates the stecpness and direction of a line. The greater the absolute
vilue of the slope, the steeper the line. A positively sloped line moves up from left to right; a negatively
sloped line moves down. The slope of a horizontal line, for which Ay = 0, is zero. The slope of a vertical
line, for which Ax = 0, is undefined, i.e., does not exist because division by zero is impossible. The y
imtercept is the point where the graph crosses the y axis; it occurs when x = 0, The x intercept is the
point where the line intersects the x axis; it occurs when y = (), See Problem 1.10,

EXAMPLE 12. To graph a lincar equanon such as
¥= =ix+3

one need only find two points which satisfy the cquation and connect them by a straight line. Since the graph of
a lincar function i a straight line, all the points satisfying the equation must hie on the line

To find the v intercept, set 1 = () and solve for v, getting v = —}{(0) + 3, ¥y = 3. The v intercept is the point
{x. ¥} = (0,3). To find the ¥ mtercopt, set v = 0 and solve for v. Thus 0 = —jr + 3, Jx = 3, x = 12 The x intercept
is the point (v, v) = (12,00, Then plot the points (0, 3) and (12.0) and connect them by a straight line, us in Fig.
1-1, to complete the graph of ¥ = ~[x + X See Examples 13 and 14 and Problems 1.10 10 112

EXAMPLE 13. For a line passing through points (x,.¥,) and (x;, ;). the slope m is calculated as follows:

LAy _wewn

A.l 1:_.“ ¥ ‘l]
For the line in Fig. 1-1 passing through (0, 3) and (12,0),
Ay _0=-3 1}
& 12-0 K

and the vertical intercept can be seen to be the point (0, 3)
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EXAMPLE 14, For a lincar cquation in the slape-intercept form
v=mx+h mi, b = comtants

the slope and intercepts of the line can be read directly from the equation. For such an equation, m is the slope
of the line; (0,h) s the v intercept; and, as seen in Problem 110, (~&m, 0) s the ¢ intercept. One can tell
immediately from the equation in Example 12. therefore, that the slope of the line is -}, the ¥ intercept is (0.3),
and the x intercept is (12.0).

Solved Problems

EXPONENTS
LL  Simplify the following, using the rules of exponents:

a) -1
_“‘..’rf"""—l’-
b) x'-x7?
-l.'*'I |=.'!n h='l
| ¥ ! I ‘
LD | .lr-;—-‘-'_‘-lrlax.ld‘-lﬂxll-]-.;
¢) xx
: 1
1 - B o
X “=x i A *
|r‘ X T ! *']'-]
K-x yexcxex A
dy £-1"7
£ D o 330 0
[ = adVE)
= (Ve Vx-V:-VaVx) = (') = 5*)
v
X
r) P
. -
FI:_[ I=‘l‘
-
f) .
o .
=
i XK XX 1
. . "
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POLYNOMIALS

L Perform the indicated arithmetic operations on the following polynomials:
a) 3xy + Sxy b)) 13y - 2WMy' o) 3y - 2507y
d) 26m,x; + S8,x;  €) M6y S - A
ayKey, B -15¢27, o) LY, d)Bdna,  f) -200yS
LY Add or subtract the following polynomials as indicated. Note that in subtraction the sign of

every term within the parentheses must be changed before corresponding elements are
added.

@) (M ~By)+ (13x + 12¥)

(Mx ~ By) + (13x + 12y) = 47x + dy
b) (26x - 19y) = (17x — SOw)

(26 ~ 19%) = (172 = S0¥) = 9x + 31y
€) (55 =B ~23) - (2r° + Tx)

(S -Bx—2)- (2 ¢+ )= W - 15a-23
d) (137 + 35x) ~ (4r" + 17x - 49)
(18" % 35x) = (4 + 170 = 49) = 9’ + J8r = 49
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14, Perform the indicated operations, recalling that cach term in the first polynomial must be
multiplied by cach term in the second and their products summed.

a) (25 +9)(3x - 8)
LT Y = 6 = 166+ 2 -T2 = & + 15 -T2
-

b)  (6x -~ dy)(Ix -~ Sy
{@}‘I=ilﬁ-mydlhy+wwlﬂr‘~my+mf

¢ (x-7)
Q=70 = (fc - THAx - 7) = 9 — 2hx - 21x+ 49 = 9 — 420+ 49

d) (x+ylx-y)
II*EEI- V) = r=xy+ay-y =g =y

SOLVING EQUATIONS

LS.  Solve cach of the following lincar equations by moving all terms with the unknown variable to

the left, moving all other terms 1o the right. and then simplifying.

a) Sx+6=9%-10 b) 26-x=8x—44
S+ 6= 9~ 10 26 -~ 2y = Rx - 44
Sy -Op = ~10~h ~2r—8r = —4d =26
~dx = ~16 -10¢ = =70
r=4 x=17
¢ 93x+4)-2c=11+5Ex-1) d) fj-m-i‘?u
Ylr+4)-2x = 11 +5{dr - 1) . s
x4+ 36- 2w =11+ 2Ma~§ yolemgtie
2x -2~ =11 -5-36 =
Sy o= ~30 T R
X m =iy

Multiplying both sides of the equation by the least common denominator (LCD), here 12, gives

r X
o e | W 2
12 (1 =) = %012
dx = xr = 34
= 120
5 L T
- = - 0, -4
‘) I x+4 x I ]
5 i 7
_..+_-.._.p.:|:r-
¥ x+rd x

Multiplying both sides by the LCD, we get
3 7
v+ H(%‘I-m) ';-Ji.l'fl“

Six4d)+ 3= Tx v+ 4)
By +20=Ts+28
y=5
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16, Solve the following quadratic equations, using the quadratic formula:
a) SP+2u+12=0
Using (7.1) and substituting @ = 5, b = 23, and ¢ = 12, we get

b2 VP —dex
Ji—-——-ﬂ——

2a
_ SR VERY -45)12) -3 Va9 -240
2(5) 10
~M=VI -23+17
10 10
2417 -2 - 17
~ e T

b)) 3 -4lx+26=0
Lo (A = VY - 30)26) 41 = ViesT 312

2 f
M=Viw q1=37
6 6
4 +3 -1
LY | . l_l:_;

FUNCTIONS
L7.  a) Given fix) = x" + dx = 5, find f(2) and f(-3).
Substituting 2 for each occurrence of x in the function gives
f2)= (2~ 242 ~5=7
Now substituting - 3 for cach occurrence of 1, we get
fl=3)=(-3y +4-3) -5~ -8
by Given f{x) = 2¢' — 5 + R = 20, find f(5) and f{-4).

f15) = AS)" - $(5)" + 8(5) - 20 = 145
fl=4) = 2{=4)' = §{~4F + 8{~4) = 2 = ~260

I3, In the following graphs (Fig. 1-2), where y replaces f(x) as the dependent variable in functions,
indicate which graphs are graphs of functions and which are not.

For a graph 1o be the graph of o function, for each value of x, there can be one and only ooe value
of v. I a vertical line can be drawn which intersccts the graph at more than one point, then the graph is
not the graph of a function. Applying this criterion, which is known as the vertical-line text, we sec that (a),
(&), and (d) are functions: (), (¢), and (f) are not

L9.  Which of the following equations are functions and why?

a y=-Ik+]
¥ = —2i = T » lunction because for cach value of the independent variable x there is one and
only one value of the dependent vaniable y. For example, if x = 1, vy = <2(1) + 7 = 5, The graph
would be similar 10 (a) in Fg. 1-2
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b)

€)

d)
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Fig. 1-2
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¥ = x. which is equivalent 1o y = =V, is not a function because for each positive value of x.
there are two values of v. For example, if ¥ = 9, y = =3. The graph would be similar to that of (¢)
in Fig. 1-2. ilustrating that a parabola whose axis is parallel 1o the x axis cannot be a function.
y=x

y = & i a function. For each value of x there is only one value of y. For instance, if x = —§,
v = 25 While it is also true that v = 25 when x = 5, it is irrelevant. The definition of a function simply
demands that for each value of x there be one value of v, not that for each value of v there be only
one value of x. The graph would be like (d) in Fg |-2. demonstrating that a parabola with axs
parallel 1o the ¥ axis is a function.
y = -3* + hx + 15

y = ~x + fir + 15 is & function. For cach value of 1 there is a unique value of v. The graph would
be like (b) in Fig 1-2.
oy =6l

4 v = 64 is not a function. If x = 0, ¥' = 64, and y = =& The graph would be a circle, similas
o (¢) in Fig. 1-2. A circle does not pass the vertical-line test.
x=4

g = 4 is not a function. The graph of & = 4 is a vertical line. This means that at x = 4, v has many
values. The graph would look like (/) in Fig 1.2.

GRAPHS, SLOPES, AND INTERCEPTS
L.10. Find the x intercept in terms of the parameters of the slope-intercept form of a linear equation

y=mx+b,
Setting v = 0, 0= mx+b
mx = —b
b
l- -
[Li]

Thus, the ¢ intercept of the slope-mtercept form is (-~ M, 0).
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LIL  Graph the following equations and indicate their respective slopes and intercepls:
@) 3y+ 15 =30

B) 2y -6 = 12

Copyrighted Material

REVIEW

¢) By—2x+16=0

i il
il
f
1

-
]_T
K .

21 w210
d) I+ 1%~ 3
= =18+
ym =S I
Slope m = ~§
y mmlercept: (0, 10)

)

x imtercept: (2.0)
By-2t+ =0
By = 2x~ I
y=}r-2
Slope m = |
v mlercepl: (0, -2)
¥ inlercept: (K, 0)

(4]

d)

-.I'
b E
=|2

B e § I'
I

1T

2y —tr = 12
2y = Bx+12
y=3xr+6
Slope m = 3
¥ intercept: (0,6)
©nlercept: (= 2.0)

oy +r - 18=1
fv=-Ja+]8
y==lr+l

Slope m = —|

¥ mteroept: (0,3)

¥ imtercepl: (6.0)

d) 6y +x-18=0

To graph an cquation, first set it in slope-intercept form by solving it for y in terms of x. From
Example 14, the slope and two intercepts can then be read directly from the equation, providing three
pieces of information, whereas only two are needed to graph a straight line. See Fig. 1-3 and Problems
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112, Find the slope m of the linear function passing through: a) (4,12), (8.2); b) (~1,15), (3.6); ¢)
{2-_3]1 [5.]3].

a)  Substituting tn the formula from Example 13, we get

_r;'_'r._Z'II_ 'lﬂ'_ K l
- Xy — X E-‘ "' !1
h-15 - 1
%) ey

1I8-(-3) 21
m o= B o=

§=2 ¥

)

L13.  Graph (a) the quadratic function ¥ = 2" and (») the rational function y = 2.

|
¥
—f - - ,L_t:'!
@| x fix) = 2% = y Points 'r }
“2 [ f(-D=A-= 8 |(-28) \ ;
=1 | fi-)=A-1'= 2 | (=LD) $ y
0 fioy = 20" - 0O (0, 0y \.*:..-
v o = 2P =2 (.2 ?
2| S - AW - 8 28
k] i) = X3 =18 (3, 18) - |- i 2 |
fal
| x fix) = 2x = y Points y I
-4 | - =U-9 ==} | (-4 -} % -
=2 | (=) =2{===1 | (=2 =) !
“1 | === = =2 | (=1, =2) :
4 | fl-h =AY = =4 | (=} -4 -
| th =24 - 4 (4. 4) - BER
1 Ji) = 21 = 2 (L2
2| )= 22 = 1 @n \
4| f4) - 24 = }§ 4
™

Fig. 1-3
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L1 ISOCOST LINES

AR oo’ e 1 senils Lh | I combmmations of wo mmpuls or [actors of production that
can be purchascd wit IVEN sun y. 1 encral formula is Py K + P, L = E, where K and
L. are capitad and labor, d Pt respective prices, and E the amount allotted to expenditury
In isocost analvsis the mdividual pri and the expenditure are mitially held constani; onlv ithe
iiflferent combin.aton ' il re allowed to change. The function can then beé graphed by
cxpressing one vanablo rmis of the other, as scon in Exampl ind Problems 2.5 and 2.6

EXAMPLE 1. G, i

This s the familia function f i A e | EIp. i veitical inlerc
me= =P = he ope 1Th e 1 by il wlid Hi Fig

From the equa! iphi, 1l {8 o hange in any one of t1h T 1 re casily discornib W
increase in the expendiiure fron E' w wrcase the vertical in p | catis . 4
br the nght (dashed i/ rallel 1o th fope i fected bocaune the sho pends on the relatiy
prices (= PPy )and i ted by expenditure cf et A change in P, will alter th 1
bt leave the ven ¢l A\ chang oW et Jivg nd the vertecal mtercey
Problems 2.8 amil
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Fig. 2-1
22 SUPPLY AND DEMAND ANALYSIS
Equilibrium in supply and demand analysis occurs when @, = (. By equating the supply and

demand functions, the equilibrium price and guantity can be determined. See Example 2 and Problems
211024 and 2.11 10 2,16

EXAMPLE 2. (Ciiven: Q=5+ (Q.=10=-2P
In equilibrium, Q.= Q
Solving for F, KL P JO-2P

SP=15 P=3
Substituting F = 3 in cither of the cguatons,
Q.= =5+3P=-5+4N) =4 =0,

23 INCOME DETERMINATION MODELS
Income determination models generally express the equilibrium level of income in a four-sector
economy as
Yo C+I1+G+(X-Z)
where Y = income, € = consumption, [/ = investment, (7 = government expenditures, X' = exports,
and Z = imports. By substituting the information supplicd in the problem, it is an easy matter 1o solve
for the equilibrium level of income. Aggregating (summing) the vanables on the nght allows the

equation of be graphed in two-dimensional space. See Example 3 and Problems 2.7 1o 2.10 and 2.17
to 2.22.

EXAMPLE 3. Assume a simple two-sector economy where Y = C+ L C = (= bY, and 1 = [, Asume further
that C, = 85, & = 09, and {4, = 55. The equilibnium level of income can be calculated in terms of (1) the general
parameters and (2) the specific values assigned 1o these parameten

1. The equilibrizm cquation s
Ye=C+f

Substituting for € and /,
¥ =Gt hY 4 1,
Solving for Y.
Y=bY=Cytly
(=B = G+ I

:‘.+,ﬂ.
Y ==i
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The solution in this form s called the reduced form. The reduced form (or solution equation) expresses
the endogenous vanable (here ¥) as an explicit function of the exogenous variables (Co. /,) and the
parameters (b).

2 The spealic equilibrium level of income can be calculated by substituting the numerical values for the
parametens in ¢ither the onginal equation (@) or the reduced form (b):

Cotlh B85+55

@) ¥ =€t hY 41, =85 4 09Y « 55 b ¥e

I-» 1-09
¥ - 08Y = |40
01y = 140 -E-lm
Y = 140

The term L1 = &) is called the antoaomons expendinate mauliiplicr in economics 1t measures the multiple
elfect each dollar of autonomous spending has on the equilibrium level of income. Since b = MPC in the
income determination model, the multiplier = 141 = MPC).

Note: Decimals may be converted to fractions for ease in working with the income determination
model. For example, 0.1 = L 09 = G 05 =102 = L clc.

24 IS-EM ANALYSIS

The IS schedule is a locus of points representing all the different combinations of interest rates and
income levels consistent with equilibrium in the goods (commodity) market. The LM schedule is a
locus of paints representing all the different combinations of interest rates and income levels consistent
with equilibrium in the money market 18-LM analysiy secks to find the level of income and the rate
of interest at which both the commaodity market and the money market will be in equilibrium. This can
be accomplished with the techniques used for solving simultancous equations. Unlike the simple
income determination model in Section 2.3, 1S-LM analysis deals explicitly with the interest rate and
incorporates its effect into the model. See Example 4 and Problems 2.23 and 2.24.

EXAMPLE 4. Ihe commaodity market for o simple two-sector economy i in equilibrium when Y = C+ 1. The
moncy market s in equilibriom whea the supply of moncy (M) equals the demand for money (M), which in turn
i composed of the transaction-precautionary demand for moncy (M) and the speculative demand for
money (M) Asume a two-sector economy whote C = 48+ ORY, 1= 98 - 75i, M, = 250, M, = 03Y, and
M, = 52— S0
Commaodity equilibrium (15) exists when ¥V« C + 1 Substituting into the equation,
Y= 48+ 08Y ¢« 9B -T5
¥~ 08Y = 146 - 75
02Y « 7% - 146 = 0 2

Monetary equiliboium (LAM) exists when M, © M, + M. Substituting into the equation,

250 = 3Y « 52 - 1NN
0D3Y — 150 — 198 = D (2.2}

A condition of suimultancous equilibrium in both markets can be found. then, by solving (2./) and (2.2)
simulianeously:

02Y +7% ~ 146 =0 2.1
AY - 15 - 198 = D 22
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Multiply (2.7) by 2. add the result (2.9) 10 (2.2) to climinate i, and solve for ¥’

OAY 4 15N - 292 =
DAY - 150§ - 19 = 0
Ty = &) = 0

¥ =7

Substitute ¥ = T00 in (21) or (2.2) 1o find &
02Y + 75 — 146 =0
0.2(700) + 75~ 146 = 0
140 475 = 146 = )
T8 = h
i = 3 = 008

17

(2.9)

The commodity and money markets will be in simultancous equilibrium when Y = 700 and i = 008 Ay
that point C = 48 + OR{TO0) = HOR, / = 98 - T5(0.08) = 92, M, = D.3{700) = 210, and M, = 52 - | SO0(0.0K) = 40

C+l=6B=+92 =700 and M+ M, = 21040 =250 = M_

Solved Problems

GRAPHS
21 A complete demand function is given by the equation

Qu = ~30P + DOSY « 2P, + 4T

where P is the price of the good, Y is income, F, is the price of a related good (here a substitute),

and T is taste. Can the function be graphed?

Since the complete function contains five different variables, it cannot be graphed as is In ordinary

demand analysis, however, it s assumed that all the independeni variables except price are held constant
so thal the effect of a change in pr m the guantity demanded can be memsured independentily of the
influence of other factors, or ceteris , wobie. I the other vanables (Y, P, T') are held constant, the function

can be graphed.

(@) Draw the graph for the demand function in Problem 2.1, assuming Y = 5000, P, = 25, and
T = 30. (b) What does the typical demand function drawn in part (@) show? (c) What happens
to the graph if the price of the good changes from 5 to 67 (d) What happens if any of the other
variables change? For example, if income increases to 74007

) By adding the pew data 0 the cguation m Problem 2.1, the function » casily graphable. See
Fig 2-2.

Q= ~30P + DOSY + 2P, + &7 = ~ 30/ + DOS(S000) + 2(2S) + 4(M) = —30P + 420

by The demand function graphed in part (@) shows all the diferemt quantities of the good that will be
demanded at dilferent poces, assuming a given level of income, taste, and prices of substitutes (here
SO0, 30, 25) which ure not allowed 1o change.

¢) If nothing changes but the price of the good, the graph remains exactly the same since the graph
indicates the different quantities that wall be demanded ot all the possible prices. A simple change in
lhcprh:r.ﬂthﬁmdmammm:km;thtmmﬂﬂlnﬂﬂtda:wmm
demanded. When the price gocs from S 1o 6, the quantity demanded falls from 270 [420 - WY 5] 1o
240 [420 - MM A)], a movement from A to B on the curve,
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Fig. 2.2

d) I any of the other vanables change, there will be a shift in the curve. This is called a change in demmand
because it results in a totally new demand function (and curve ) in response to the changed conditions
If mcome increases 1o 7400, the new demand function becomes

Q. = ~ 0P + 005(7400) + 2(25) + 4(30) = - 30P + $40
This s graphed a a dashed line i Fig. 2.2

In economics the independent variable (price) has traditionally been graphed on the vertical

axis in supply and demand analysis and the dependent variable (quantity) has been graphed on

the horizontal. (¢) Graph the demand function in Problem 2.2 according to the traditional

method. (b) Show what happens if the price goes from 5 10 6 and income increases to 7400,

a}  The function (2, = 420 - 30F is graphed acoording o traditional economic practice by means of the
inverse function, which s obtained by solving the onginal function for the independent variable in
terms of the dependent variable. Solving algcbraically for P i terms of (), therefore, the invene
function of @, = 420 - 300 ks P = 14~ 4@, The graph appears as a solid line in Fig. 2-3,

by I P goes from S to &, O, falls from 270 10 240,

P=14-40, P=14-40,
$=14-40, 6= 14~ 40,
wid; =9 Wil = M
Q. =20 ﬁi"m
The change is represented by a movement from A 1o # in Fig 2-3,

If ¥ = 7400, us in Problems 2.2(d), 0, = 540 ~ 3P Solving algebraically for P in terms of Q. the
inverse function is P = 18 ~ L0, It is graphed as a dashed line in Fig 2-3.

Giraph the demand function
Q= =d4P + 001Y = 5P, + 10T

when Y o= 8000, P, = 8, and T = 4, (b) What type of good is the related good? (¢) What happens
if T increases to 8, indicating greater preference for the good? (d) Construct the graph along
the traditional economic lines with 7 on the vertical axis and Q on the horizontal axis

a) @y = =4F + 001(BD00) = 5(K) + 1(4) = ~4P + 8O

This is graphed as a solid ling in Fig. 2-4(a).

b)  The related good has a negative coellicient. This means that a rise in the price of the related good will
lead W a decrease in demand for the onginal good. The related good s by definition, a

complementary oo,
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€)M T = K indicating greater preference, there will be a totally new demand.
Oy = 4P+ 001 (BO0D0) ~ $(8) + 1{8) = —4F + 120
See the dashed ling in Fig 2-4(a).

d)  Graphing F' on the vertical calls for the inverse function. Solving for P in terms of (0, the invene ol
G.!I]JPI:F"ﬂ.{hmdh.,ruphdnlmﬂdﬁntmﬁg.*dtbl]hmmm
Qs = 120 = 4P bs P = 30 [0, 1t is the dashed linc in Fig. 2-4(b),

25 A person has $120 1o spend on two goods (X, Y) whose respective prices are $3 und $5. (a)
Draw a budget line showing all the different combinations of the two goods that can be bought
with the given budget (). What happens to the original budget line (b) if the budget falls by
25 percent, (c) if the price of X doubles, (d) if the price of ¥ falls to 47

a) The gencral function for a budget ine s PLX 4 P Y =
P =3 Py=5 and K= 120, IX+5Y = 120
Solving for ¥ in terms of X in order to graph the function, ¥ =24 - [X
The graph is given as a solid line in Fig 2-5(a).

W oON W om e X ™
i) Increase m Py iv) Redoctuon in Py

Fig. -8
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b) I the budget falls by 25 percent, the new budget is 90 [120 - {(120) = 90} The equation for the new
budget live is
AX+«5¥=m
Y=18-¢X
The graph is & dashed line in Fig 2-5(a). Lowering the budget causes the budget line 1o shift paralicl
1o the left
¢) U Py doubles. the onginal equation becomes

6X+ 8Y = 120
Y=24-tX
The vertical intercept remaim the same, but the slope changes and becomes steeper. Sec the dashed
tine in Fig 2-5(h). With a higher price for X, less X' can be bought with the given budget.
d) U Py now cquals 4,
I +4Y = 120
¥=30-3X

With & change in I, both the vertical intercept and the slope change. This is shown in Fig. 2-5(c) by
the dashed line.

Either coal (€) or gas (G) can be used in the production of steel. The cost of coal is 100, the
cost of gas 500. Draw an isocost curve showing the different combinations of gas and coal tha
can be purchased (a) with an initial expenditure (£) of 10,000, (b) if expenditures increase by
50 percent, (c) if the price of gas is reduced by 20 percent, (d) if the price of coal rises by 25
percent. Always start from the original equation,
a) PeC+PyG=E
100C + S00G = 10,000
C = 10-5G

The graph is a solid line in Fig 2-6(a).

h) A 30 pereent increase in expenditures makes the new outlay 15,000 (10,000 + 0.5{10.000)]. The new
cquation s

100C + S00C = 15,00

= 1% -5G
The graph is the dashed hine in Fig. 2-6{a),
O n i
- . -
il i i

= 4 8 8 8 § &

e W o W m om w o ows w w W w 8 W o

(@) Incresse i budpet ib) Reduction i I, e} Incroase in
Fig. 2-6
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I the price of gas is reduced by 20 percent, the new price i 400 [300 - 0.2(S00)]. and the new
oquation is

OO+ 40 = 1000
Co= |0 - 46
The graph is the dashed line in Fig. 2-6k)

d) A 25 percent rise in the price of coal makes the new price 125 | 100 + 0.25(100)].

125C + SO0 = 10,000
C=8-4G

The graph appcars as a dashed line in Fig 2-6(c).

GRAPHS IN THE INCOME DETERMINATION MODEL

Given: ¥ = C + [, C = 50 + OBY, and [, = 50. {a) Graph the consumption function. (h) Graph
the aggregate demand function, C + [, (¢) Find the equilibrium level of income from the

graph.

7.

a)

b

€)

Since consumption is a function of income, i » graphed on the vertical axis; income is graphed on the
horizontal. See Fig. 2-7. When other components of aggregate demand such as 1, G, and X - Z are
added o the model, they are also graphed on the vertical axis. It is casily determined from the lncar
form of the consumption function that the vertical intercept is 50 and the slope of the line (the MPC
or AC/AY) s 08,

Investment in the model is autonomons investment. This means investment is independent of income
and does not change in response to changes in income. When considered by itsclf, the graph of a
constant is a honzontal line: when added 1o a linear function, it causes a paralicl shift in the original
function by an amount equal to its valuc. In Fig 2-7, astonomous mvestment causes the aggregale
demand function to shift up by S0 paralicl to the initial corsumption function.

To obtain the equilibrium level of income from a graph, a 45° dashed hine 8 drawn from the origin.
I the same scale of measurement is used on both axes, a 45° line has a slope of 1, meaning that as
the line moves away from the origin, it moves up vertically (AY) by one unit for every unit it moves
across horizontally (AX'). Every point on the 45° linc, therefore, has a horizontal coordinate {abscia)
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exactly equal to its vertical coordinate (ordinate). Consequently, when the aggregate demand function
intersects the 45° line, aggregale demand (as graphed on the vertical) will equal national income (as
graphed on the horvrontal ). From Fig 2-7 it is clear that the equilibrium level of income is 500, since
the aggregate demand function (C + I) intersects the 457 line at SO0,

Given: Y = C+ 1+ G, C=25+075Y, I = I, = 50, und G = G = 25, (a) Graph the aggrepate
demand function and show its individual components (5) Find the equilibrium level of income.

(¢) How can the ageregate demand function be graphed directly, without having to graph cach
of the component parts?

a) SccFig 28

b) Equilibrium income = (K,

¢} To graph the aggregate demand function directly, sum up the individual components,
Agg D » C+ 1+ G=25+075Y + 50+ 25 = 100 +075Y

The direct graphing of the aggregate demand function coincides exactly with the graph of the
summation of the individual graphs of €, 7, and € above

LG
n

Use a graph to show how the addition of a lump-sum tax (a tax independent of income)
influences the parameters of the income determination model. Graph the two systems indi-
vidually, using a solid line for (1) and a dashed line for (2).

1) Y=0C+1/ 2) Y=C+I] Yd=Y-T
C=100+08Y C = 100+ 06Yd r=50
Jh"ﬂ'. fu“'m

The first system of equations presents no problems; the second requires that C first be converted from
a fanction of ¥d 1o a function of ¥
1) Agg D=C+1 2) Age D= C+1i
= |00 = (L6Y + 40 = 100+ 0.6Yd + 40 = 140+ OB Y - T)
= L4l + D&Y = 140+ 06(Y - 50) = 110+ 0.6Y
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A lump-sum tax has a negative effect on the vertical intercept of the aggregate demand function equal to
=MPC(T). Here ~O6(50) = — 30, The slope is not affected (note the parallel lines for the two graphs in
Fig. 2-9). Income falls from 350 10 275 as a result of the tax. See Fig. 2.9

Explain with the aid of a graph how the incorporation of a proportional tax (a tax depending
on income) influences the parameters of the income determination model. Graph the model
without the tax as a solid line and the model with the tax as a dashed line.

1) ¥Y=C+1 2) Y=C+1] Yd=Y¥Y-T
C =85+ 0.75Y C =BS +0.75Yd T=2+02Y
I‘n.m fnﬂm
1) Agg D=C+1I 2) Agg D=C+1
“~BS+075Y + X0 “~RE4 0TSV + M= 115+ 078Y-T)
= 115+ 0.75Y = 115+ 075(Y - 20-02Y})

= 115+ 0.75Y = 15 - 0.15Y = 100 + O.6Y

Incorporation of a proportional income tax into the model affects the slope of the line, or the MPC. In this
case it lowers it from 0.75 to (16, The vertical intercepd is also lowered because the tax structure includes
a lump-sum tax of 20, Because of the tax structure, the equilibrium level of income falls from 460 10 250,
See Fg 2-10,

EQUATIONS IN SUPPLY AND DEMAND ANALYSIS

211

Find the equilibrium price and quantity for the following markets:

@) Q= -204+3P b) Q.= -45+8P
Q, = 220 - 5P Q. =125-2p
) Q+32-7P=0 d) 13P-Q, =27

Q- 12849P =0 Q+4ar-24=1
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Each of the markets will be in equilibnum when {0, « Q.
"} 0!"0& h] {?-‘ﬂ'.-
-2+ =20-5P ~dS+HP = 125~ 2P
8P = 240 e = 170
P-3 P=17
Q.= <& 3P = <2+ }W) Q.= 135-2P= 125-217)
Q.=M=0, Q.=9 =0,
€) Q=7r-3 ) Q. =-21+12p
ﬂ,*l:ﬂ-'ﬂ' Q‘-H'—'U'
WP-1=|28~-9pP =T+ 13P=24-4P
16F = 6D 17P =51
=10 P=3
Q.=1Tr-n=700~-1 Q= 2=4F = 24 - 4N)
Q. =W=(Q, Qe=12=0,

212 Given the following set of simultancous equations for two related markets, beel (B) and pork
(), find the equilibrium conditions for each market, using the substitution method.

lj Q‘.'TEZ--SF.‘“F.- 2] ﬂ,ﬁr"ﬂ""lp.-ipp

er- -5+ ISP' Q-r"*'ﬁ*npr
Equilibrium requires that (2, = (0, in cach market.
1} Q™ Qun 2) Qur = Qur
S+ 15Py = R =3P+ P, =+ 2P =93P, AP,
18Py = Pp = K7 36~ 2Py = 98
This reduces the problem 1o two equations and two unknowns
lBF"‘Frtm {lﬂ

~2Pp 4 36P, = 98 (25)
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213

214

Solving for Py in (2.4) gives

Py = IRP, - 87
Substnuting the value of this term in (2.5) gives
2P 4+ (I8P, ~ KT) = UK 2Py + 648, - 3132 = 98
taPy = 3230 Py=5
Substituting Fy = S in (1.5), or (2.4),
-2(5) + 6P, = W

.‘ﬁ.\“‘p-l[l .Fp"j

Finally, substituting the values for P, and £, in either the supply or the demand function for cach
market,

1) Qus ™ B2 <3P, + Pr= K2 - 35) +(3) 2) Qur=92+2P%~ 4Py =02 + X5) - Y3)
Qus =T =0, Qo =% =0,

Find the equilibrium price and quantity for two complementary goods, slacks (8) and jackets
(J), using the elimination method.

1) Qﬁ*-llﬂ-ih-Zﬁ 21 Q.U':-M"'P;"JP;

Qus = —60+ 3P Qu = —120+ 2P,
In equilibrium,
1) Qo = Qs 2) Qu = Qu
llﬂ-—ﬂ";-—ll';- "'H}*]F| NS-'F.v.“";--IHHIH
m*-!r,-zr;'u 4!5"’-"5";-“
This leaves twi equations
-“'ﬂ*l'lP,-IP;"U tz-ﬂ'l
-ll5~ﬂ;-.“";'ﬂ ‘ln
Multiplying (2.7) by 8 gives (2.5), Subtract (2.6) from (2.&) 1o climinate P,, and solve for P,.
MX -RP - 40P, =0 (25
-—{Hl'.-‘ﬂ-ﬁl"i- If";'-ﬂj
m HP;EU
Py=T5

Substituting P, = 75 m (2.6),
'.-“1 = ”_"‘ 2[7"5] =
=8P, Py~

Finally. substituting P, = 75 and P, = 40 into 0, or @, for each market,

1) Qus =410 = 8P = 2P, = 410 — 5{40) — 2(75) 2) Qu=295- P =3P, = 295 - 40 - X75)
Ca = 60 = O Qu = 30=(Q,

Supply and demand conditions can also be expressed in quadratic form. Find the equilibrium
price and guantity, given the demand function

P+Q'+30-20~0 (2.9)
and the supply function
P-3Q°+10Q =5 (2.10)
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Either the substitution method or the climination method can be used, since this problem involves
two equations and two unknowns. Using the substitution method, (2.10) is solved for P in terms of Q.

P-I0+10Q =5
P=3F-100+5
Substituting P = 30" — 10Q + 5 in (2.9).
(3 - 10Q+5)+F+3Q-20=0
=170 ~15=0

Using the quadratic formula Q. (), = (—b = VI - dac)i(2a). wherea = 4. b= ~T,and ¢ = =15, Q, = 3,
and Q: = ~1.25. Since neither price nor quantity can be negative, (= 3. Substitute {0 = 3 in (29) or
(2.10% to find P.

P +3})-2W0=0 P=2

2.15. Use the climination method 1o find the equilibrium price and quantity when the demand
function is
WP+ Q' +5Q -1 =D (2.11)
and the supply function s
P-20°+3Q+T =0 (212)
Multiply (2.12) by 3 to get (2.17) and subtract it from (2.17) to elimmate P
WP+ F+50-102=0
~(AP-6QF+90Q+213=10) (2.03)
0740 - M5 = 0

Use the quadtatic formula (see Problem 2.14) 10 solve for (. and substitute the result, @ = 7, in (2./2)
or (LI1) to solve for P

P-NTY+ X NH+T=0 P=6

2.16. Supply and demand analysis can also involve more than two markets. Find the equilibrium price
and quantity for the three substitute goods below,
Qu=D-5P,+ P+ Py Q.= -8 +6P,
QJ::]:S"‘F1'JF=+2P; E.;--II*-E!P;
Qo= 19+P+2P,~4P, Q,=~-5+3P,

For equilibrium in each market.
041 - Q-l Qo= 'E-.'r gﬂ - ﬂ--
23~ 5P 4+ Py + Py= -8 + 6P, 15+ P =3P+ 2P = =11 + 3Py 194 P, + 2P, = 4Py = ~5 + 3P,
N=11P,+P;+ P=0 h'*Fl_Er.'*zFi""n H*‘F|+2F:|-TF|..“
This leaves three equations with three unknowns:

M-1UPp+P+P=0 (2.14)
2+P-6P,+2P,=0 (215)
U+P,+2P=TP,=0 i2i6)

Start by eliminating onc of the variables (here /). Multiply (2.14) by 2 10 get
62 -22P,4+2P,+2P,=0
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From this subtract {2./6).
ﬂ'-HP,*IP;*IP. = )
{24 4 PL":’;'TFJ-“
AR - 3P, +9p, =0

Multiply (2.16) by 3.
T2+¥P,+6P-21P =0

Add the result 1o (2.75).
Iﬁ" .F.""IFI' IP|'ﬂ
TE*JF.*&F;-I”"'-U
“""w‘ -!“P-I-D

(217}

(2.18)

Now there are two equations, (2./7) and (2 15), and two unknowns. Multiply (2./7) by 19 and (2.75) by

% then add to elimmate £,

722~ 437P, + IT1P, = 0
BE2 + 36P,— 171P, = 0
1604 — 3017, -0

P-4

Substitute P, = 4 in (2. /8) to solve for P,

98+ 44) - 19F, =0
19P, = 114 Py=6

Substitute P, = 4 and P, = 6 into (2. 14), (2.15), or (216}, to solve for P
IM=114)+ Py + (6) » 0O Py=17

EQUATIONS IN THE INCOME DETERMINATION MODEL
217. Given: Y= C+ 1+ G, C= Co+ bY, I = Iy and G = G, where C, = 135, b = 08, I, = 75. and

Gy = 30. (a) Find the equation for the equilibrium level of income in the reduced form. (b)

Solve for the equilibrium level of income (1) directly and {2) with the reduced form.

@) From Section 2.3, Y=CH+I+G
= Oyt bY 4 I+ G,
Y=b¥=C+l,+ G,
(I=MY=+0+ 0

Co vy Gy
V=i
b) n YeC+l+G = 138+08Y+75+30  2) 1’-C°:f:ﬂ‘
¥ - 08Y ~ 240
0.2¥ = 240 135475430
¥ = 1200 | - 0.8
= $(240) = 1200

2.18. Find the equilibrium level of income ¥V = C + [, when € = 89 + 08Y and [, = 24.

¥ =S0b s (w9 4 24) = s
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From Problem 2.17. the value of the multiplier [1/(1 = b)] is already known for cases when b = 0.8, Use
of the reduced form 1o solve the equation in this instance is faster, therefore, although the other method
i also correct.

(@) Find the reduced form of the following income determination model where investment is
not autonomous but is a function of income. (b) Find the numerical value of the equilibrium
level of income (Y,). (¢) Show what happens to the multipher.

Y=C+1 C=Co+bY I=I+aY
where Cy = 65, I = 70, b = 0.6, and a = 0.2,

i) Y=C+I b) Y= C+/

- g+ bY + [, +al = G + 0.6Y « TO « 0.2Y
Y=bY-a¥Y=0(C+l Y=06Y-02Y =65 +70
(I=b-a)¥=Cotl 02Y = 138

V- o+ iy Y =675
1-bh-a

c) When investment s & function ol income, and no longer autonomous, the multiplier changes from
{1 —5) w V(] ~h-a) This increases the value of the multiphier because it reduces the
denominator of the fraction and makes the guoticnt larger, as substitution of the values of the
parameters in the problem shows:

| 1 1 | | I

i — = e w
1-b 1-06 04 l=b=a 1-046-02 02

Find (a) the reduced form, () the numerical valuc of ¥, and (¢) the effect on the muluplier
when a lump-sum tax is added to the model and consumption becomes a function of disposable
income (Yd).
Y=0C+1 C=Co+b¥Yd [I=l Yd=Y-T
where C, = 100, b = 0.6, J, = 40, and T = 50.
'II Y'C*f"fn*brd"l.,'{"lHf"fl+h=fﬂ*br—ﬁ'?’*fq
Y=bY=Cot I - 0T
Cov I, - bT

L=
__ltl!*rﬂ‘ﬂ.ﬂiﬂl__l_l_g

1 -06 n4

b) Yoo 100+ 06Yd 4 40 = 140+ 06(Y-T) or Y

= {40 + 0.6 Y - 50) = 140 + (.6Y - 30 =275
¥ =0aY =110
D4Y = 110
¥ =275
The graph of this function is given in Problem 2.9,
€} Asscen in pan a), incorporation of 3 lump-sum tax into the model leaves the multiplier at V(1 - b).
Only the ageregate value of the exogenous variables is reduced by an amount equal 1o —AT.
Incorporation of other autonomous variables such as G Xy or Z; will not affect the value of the
multiplicr either.
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l |

2.21. Find (a) the reduced form, (b) the numerical value of ¥, and (c) the effect on the multplier
if a proportional income tax (1) is incorporated into the model.

Y=C+I C=0CG+b¥Yd T=T,+1Y VYd=Y-T
where I = 1, =30, C, =85 b =075 r=02 and T, = 20.

a) YulCsl=CotbYdtl,
- Cat MY = T) 4 Iy = Gyt DY = T, = 1Y) + 1,
w Co+ BY = BTy~ MY + I,
Y =BY + WY = Cy+ I, ~ bT,
(1=b+BY = Cy+ I, - bT,
v Cotla=bT,
I=b+be

b) Onee the reduced form is found, its use speeds the solution. But sometimes the reduced form is not
available, making it necessary to be (amiliar with the other method.

Yo C+I=B85+075Yd+30= 115+0T8{Y-T)
« 115+075(Y -~ 20~ 02Y) = 115+ 0.75Y ~ 15 - Q.15Y
Y = 075Y « 0.18Y = 100
04Y = 100
Y =250

The graph of this function is given in Problem 2.10.

¢) The multiplicr is changed from 1/(1 = &) to 141 = & + k). This reduces the size of the multiplicr
because it makes the denominator larger and the fraction smaller:
e SPORS. [EreaE ey
I-6 1-075 025
1 1 1 |

1-b+bt 1-075+07502) =075 7015 04 =

222 If the foreign sector is added to the model and there is a positive marginal propensity 1o import
(), lind (a) the reduced form, (b) the equilibrium level of income, and (¢) the elfect on the
multiplicr,

Y=C+I4+G+(X~-2Z) C=Cy+bY Z=2.4+zY
where [ = [, =90, G=Gy=65,. X = X,=80,Cy =70, Z,= 40, b = 09, and z = 0.15,

a) YeC4l1+Go(X=-Z) = GHbY + [+ Gt Xy~ &y— 2
Y-bY +2Yu Gt v Gt Xy~ 2
(M=b+2) Y= G+t L+ G+ Xu—- 2y
_i‘.‘u+!.+ﬁ,,+.l“.~2.

4 l=b+;

b} Using the reduced [orm above,

_'m+m+as+m-m= 265 L

" 1 -09+015 0.2s

1060
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¢)  Introduction of the marginal propensity 10 import (2) into the model reduces the size of the multiplier.
It makes the denominator larger and the fraction smaller:

4

I-bez 1-09+015 035

IS-LM EQUATIONS
223 Given: C = 102+ 0.7Y, [ = 150 ~ 1004, M, = 300, M, = 025Y, and M, = 124 — 200¢. Find (a) the

equilibrium level of income and the equilibrium rate of interest and (b) the level of C, 1, M,

and M, when the cconomy is in equilibrium,

#) Commodity market equilibrium (/85) exists where

Y=C+I
= 102 + 0.7Y + 150 ~ 1008
Y ~=07Y = 252 — 1000
O3Y « Ny =242 = O

Mooctary equiibrium (LM) exiis where

l";‘”.'*l“l
M) = 0257 + 124 - 20y
O25Y ~ 20048 = 176 = 0

Sumuliancous equilibrium in both markets requires thai

03Y & 1y~ 252 = 0 (219)
0.25Y - 20y - 176 = 0 (2.20)
Multiply (2.79) by 2, and add the resull to (2.20) to eliminate @
0AY + 200y ~ S -~ 0
N25Y - 20N - 176 = 0
RSy - i
Y = NN

Substitute ¥ = 800 in (2 1¥) or (2.20);
D25Y -0 - 176 =0
O25800) - MW ~ 176 = ()
2008 = ~24
i=012
by AtY =800 and i =012,

C = 102 + OT(800) = b2 M, = 0.25(800) = 200
F=150-100002) = 138 M, = 124 - 200(0.12) = 100

C¥lmy M,+M,= M,
662 « 138 « B0 200+ 100 = 30

2.24. Find (a) the equilibrium income level and interest rate and (b) the levels of C, I, M., and M,
in equilibrium when

C=890+06Y [=120- 15K M =215 M=01Y M.=240-25)
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For IS;
Y =89+ 06Y + 120 - 1506
Y =~ 06Y = 209 - 150
04y + 1508 - 2N = 0
For LM:
M, =M+M,
275 = 0.1Y + 240 — 2504
01Y - 250 — 35 = 0
In equilibrium,
04Y + 1SN — 29 « 0
DIy -250 -3 =0
Multiply (2.22) by 4, and subtract the result from (2.2/7) to eliminate Y.
0O4Y + 150 - 20 = 0
=(04Y = 1000 ~ 140 = ()
11504 =
i = 006

Substitute / = 006 in (2.27) or (2.22).
DAY = [50(0.06) - 209 = 0
0.4Y = N
Y = &
ALY = 500 and | = 0,06,
C = 89 + (L6(500) = 189 M, = 0I(3) = S0
= 1200 = [S§006) = 111 M, = 240 - 254006 = 225

C+lnYy M.+M, =M,
389 4+ 111 = 500 50+ 225 = 278

31
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The Derivative
and the
Rules of
Differentiation

Al LIMITS

If the funcrional values f{x) of a function f draw closer to one and only one finite real number L
for all values of x as x draws closer to a from both sides, but does not equal a, L is defined as the limir
of f{x) as x approaches a and is written

lim f(x) = L

Assuming that lim,_, f{x) and hm,_,g(x) both exist, the rules of limits are given below, explained
in Exampie 2 and treated in Problems 3.1 to 3.4.

L. limk =i {k = a constant)
=i

L]

2 limx*=a" (n=a positive integer)
3 lim Af{x) = klim f(x) (k = a constant)
i~ ]

lim [flx) = g(x)] = lim f(x) = lim g(x)

L et

=

S him [x) - g(x)] = lim f{x) : lim g(x)

g el

6. lim [flx) + g{x)] = lim f{x) + lim g{x) [Iim glx) # [l]

== r—a

T lim|fix)]" = limﬂxlr (n=>0)

32
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EXAMPLE 1. &) From the graph of the function f{x) in Fg. 3-1, it is clear that as the value of x approaches 3
from either side. the value of f{x) approaches 2. This means that the limit of f{x) as x approaches 3 is the number
2, which is written

lim f{x) = 2
)

As x approaches 7 from either side in Fig. 3-1, where the open circle in the graph of f{x) signifies there is a
gap in the function at that point, the value of f{x) approaches 4 even though the function is not defined at that

point.
T ‘-E]_l'_ B il /" 1 1 -
[T fix] [ [ o l 1_ ‘ T
b . = e ! il T
i_ 2 | H - |
I | ]
‘ll i [ — i3 i L I i,
ll-_-:'— : | I B i . { o ————
| -1 | { i T e
: i g 34 § I EERLD —_—— } A HE S i
e T e
Fig. 31 Fig, 32

Since the limit of a function as x approaches a number depends only on the values of x close to that number, the
limit exists and is written

lim f(x) = 4

d==T
b) In Fig. 3-2, as x approaches 4 from the lefi (from values less than 4), written 1= 4~ g(x) approaches 3, called
a one-sided limir; as x approaches 4 from the right (from values greater than 4), written x — 4", g(x) approaches

4. The limit does not exist, therefore, since g{x) does not approach a single number as x approaches 4 from
both sides.

EXAMPLE2. In the absence of a graph, limits can be found by using the rules of limits enumerated above.

a) lim9=9 Rule 1
-

b) limx* = (6) = 36 Rule 2
vl

¢) lim 2x* = 2lim x* = 2(3)" = 54 Rules 2 and 3
=l =1

d) lim(x* + 3x) = limy* + 3limx Rule 4
=] ==l =]

=2)'+32) =22

) lim[(x + 8}z 5)] = lim(x + 8) - lim(x - 5) Rule 5

L] il e

=(4+8):-(4-5)=-12

32 CONTINUITY

A continuous function is one which has no breaks in its curve, It can be drawn without lifting the
pencil from the paper. A function [ is continuous at x = a if:

1. fix) is defined, i.c., exists, at x = a
2. lim f{x) exists, and
3. lim f{x) = fla)
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All polynomial functions are continuous, as are all rational functions, except where undefined, ie.,

where their denominators equal zero. See Problem 3.5.

EXAMPLE 3. Given that the graph of a continuous function can be skeiched without ever removing pencil from
paper and that an open circle means a gap in the function. it is clear that f{x) is discontinuous at x = 4 in Fig. 3-3(a)

and gix) is discontinuous at x = § in Fig 3-3(h), even though lim,_.:gix) exists.

33 THE SLOPE OF A CURVILINEAR FUNCTION

Fig. 3-3

The slope of a curvilinear function is not constant. It differs at different points on the curve. In
geometry, the slope of a curvilinear function at a given point is measured by the slope of a line drawn
tangent to the function at that poini. A tangent line is a straight line that touches a curve at only one
point. Measuring the slope of a curvilinear function at different points requires separate tangent lines,

as in Fig. 3-4(a).

{ai

Fig. 3-4

Tangent line T

Secant kine 5

’
g

¥, = flx, + Ax}

» Ay
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The slope of a tangent line is derived from the slopes of a family of secant lines. A secant line §
is @ straight line that intersects a curve at two points, as in Fig. 3-4(b), where

L Fi TN
Slope § remr
By letting x, = x, + Ax and y, = f{x, + Ax), the slope of the secant line can also be expressed by a
difference quotient

_ﬁl;+-.'i.x}—ﬂ.t,,'|
Slope § {x; + Ax) — x,

- flx, + Ax) = fix;)
Ax

If the distance between x, and x, is made smaller and smaller, i.e., if Ax— 0, the secant line pivots back
to the left and draws progressively closer to the tangent line, If the slope of the secant line approaches
a limit as Ax =0, the limit is the slope of the tangeni line T, which is also the slope of the function at
the point. It is written

Slope T = lim flx, + Ax) - flx,) (3.1
hr—=0 Ax
Note: In many texts h is used in place of Ax, giving
Stope T = Em 2Lt M = /i) (3.1a)
" h

EXAMPLE4. To find the slope of a curvibnear function, such as fix) = 20, (1) employ the specific function in
the algebraic lormula (4.7) or (3.Ja) and substitute the arguments x, + Ax (or x; + h) and x;, respectively, (2)
simplify the function, and (1) evaluale the limit of the function in its simplified form. From (1.1),

Ax— A

1) Employ the function f{x) = 2x* and substitute the arguments.

Slope. T = lim 2x + Axy - 7
Al Ax

2) Simplify the result.

b ] + :__.1'1
R P 2[r+1'-=1ML (Ax)7] - 2¢
Bl

o Ax{Ax) + 2{.".‘-.1'}3
- 1 ——
im

Divide through by A.
Slope T = lim (4x + 24x)

3} Take the limit of the simplified expression.
Slope T=4x

Note: The value of the slope depends on the value of x chosen. Al x = 1, slope 7= 4(1) = 4, at x = 2, slope
T=42)=8
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34 THE DERIVATIVE

Given a [unction y = flx), the derivative of the function f at x, written [(x) or dy/dx, is
defined as

Fix) = lim flx d:.: —fx) if the limit exists (3.2)
A
or from (3.1a), £@) = lim &t "’: —fix) (3.2a)
il

where f'(x) is read “‘the derivative of f with respect to x” or “f prime of x.”
The derivative of a function f'(x), or simply f, is itself a function which measures both the slope
and the instantaneous rate of change of the original function f(x) at a given point.

35 DIFFERENTIABILITY AND CONTINUITY

A function is differentiable at a point if the derivative exists (may be taken) at that point. To be
differentiable at a point, a function must (1) be continuous at that point and (2) have a unique tangent
at that point. In Fig. 3-5. f{x) is not differentiable al a and ¢ because gaps exist in the function at those
points and the derivative cannot be taken at any point where the function is discontinuous.

Conlinuity alone, however, does not ensure (is not a sufficient condition for) differentiability. In
Fig. 3-5, fix) is continuous at b, but it is not differentiable at & because at a sharp point or kink, called
a cusp, an infinite number of tangent lines (and no one unique tangent line) can be drawn.

36 DERIVATIVE NOTATION

The derivative of a function can be wrilten in many different ways. If y = f{r), the derivatives can
be expressed as

& & =
d.t' d.l' til' [ﬂI]] or DSUII}]

If y = &(r), the derivative can be written

dy do
dt de

fixy ¥

b0y Sl o DIs()]

If the derivative of y = f{x) is evaluated at x = g4, proper notation inclodes f'(a) and —-:% ;
'}
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EXAMPLES. Il y = S + 7x + 12, the denivative can be writlen

¥y :;_y i—[ix’ +Tx+12) or DS+ Tx+12)
If z = %8 -3, the derivative can be expressed as
dz il — —
o= —=(VH=-3 D(v8 -1
z - n'rt ) or W }

See Problems 3.6 1o 3.8,

37 RULES OF IFFERENTIATION

Differentiation is the process of finding the derivative of a function. It involves nothing more
complicated than applying a few basic rules or formulas to a given function. In explaining the rules of
differentiation for a function such as y = f{x). other functions such as g(x) and h(x) are commonly
used, where g and h are both unspecified functions of x. The rules of differentiation are listed below
and treated in Problems 3.6 to 3.21. Selecied proofs are {ound in Problems 3.24 to 3.26.

3. 7.1 The Consiant Funciion Rule
The derivative of a constant function f{x) = k, where k is a constant, is zero.

Given fix) = k, flix)=0
EXAMPLEG. Given f(x) = &, fFlx) =0
Given flx) = -6, fix)=10Q

3.7.2 The Linear Funciion Rule

The derivative of a linear function fix) = mx + b is equal to m, the coefficient of x. The derivative
of a variable raised to the first power is always equal to the coefficient of the variable, while the
derivative of a constant is simply zero.

Given flx) = mx + b, Flx)=m
EXAMPLE 7. Given f(x) = 3x + 2, Fix) =3

Given flx) = 5 —r. fiixy=—4
Given flx) = 12, fix) =12

3.7.3 The Power Function Rule

The derivative of a power function f{x) = kx", where & is a constant and # is any real number, is
equal to the coefficient k times the exponent n, multiplied by the variable x raised to the n -1
power,

Given flx) = kx" Fix)=k-n-x"""

EXAMPLEB. Given flx) = 4 Fixy=4-3-x""'= 127
Given flx) = 5, fily=52-2"= 1
Given fix) = »*, fixi=1-4-x*"'= &

See abo Problem 3.7,
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3.7.4 The Rules for Sums and Differences

The derivative of a sum of two functions f(x) = g{x) + h{x), where g{x) and h{x) are both
differentiable functions, is equal to the sum of the derivatives of the individual functions. Similarly, the
derivative of the difference of two functions is equal to the difference of the derivatives of the two
functions

Given f(x) = g(x) = h(x), filx)=g'(x) xh'(x)
EXAMPLE S8, Given fix) = 12 — &%, {'{x) = 6" — 165"
Given fix) =9+ 25 =3, Fixy= 18x+2

See Problem 1.8, For derivation of the nule, see Problem 1.24,

3.7.5 The Produci Rule

The derivative of a product f(x) = g(x)-h(x), where g{x) and h{z) are both differentiable
functions, is equal to the first function multiplied by the derivative of the second plus the second
function multiplied by the derivative of the first. Given flx) = g{x) - h{x),

F(x) = g(x)- h'(x) + h(x) - g'(x) (3.3)
EXAMPLE 10. Given f{x) = 3x*(2x = 5), let g(x) = 32" and A(x) = 2x - 5. Taking the individual derivatives,
g'{x) = 12¢" and h'(x) = 2. Then by substituting these values in the product-rule formula (3.9),

£(x) = 3%(2) + (2x - S)(12x")
and simplifying algebraically gives
Fix) = fix* + 24x* — 60" = Ue* — 60
Sce Problems 1.9 1o 3.11; for the derivation of the rule, see Problem 3.25.

3.7.6 The Quotient Rule

The derivative of a quotient fix) = g{x} = h(x), where g{x) and h(x) are both differentiable
functions and hix) # 0, is equal to the denominator times the derivative of the numerator, minus the
numerator times the derivative of the denominator, all divided by the denominator squared. Given

fix) = g(x)lh(x),
_ hix) - g'(x) — glx) - H'{x)
[h(x)P

f(x) (3.4)

EXAMPLE 11. Given

)= =3

where g(x) = S and h{x) = dx + 3, we know that g'(x) = 15" and h'(x) = 4, Substituting these values in the
guoticnt—rule formula (1.4,

_ (dx +3)(15¢) - 5¢'(4)
{dx + 3P

fiix)

Simplifying algebraically,

80’ + 45x° - 200 _-Iﬂx"‘+45r"_ Sci(Br + 9
(4x+3) (4x + 3y (dx + 3)°

See Problems 3.12 and 3.13; for the derivation of the rule, see Problem 326

fix)=
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3.7.7 The Generalized Power Function Rule

The derivative of a function raised to a power, f{(x) = [g(x)]", where g(x) is a differentiable
function and n is any real number, is equal to the exponent n times the function g(x) raised to the n — 1
power, multiplied in turn by the derivative of the function itself g'(x). Given fix) = [g{x)]".

f'(x) = nlgloP " g'(x) (3.5)
EXAMPLE 12. Given fix) = (' + 6)°, let g(x) = £’ + 6, then g'(x) = 3r’. Substituting these values in the
generalized power function formula (1.5) gives
f(3) = S+ 61 3¢
Simplifving algebraically,
Fix)= 5"+ 6)* - 3 = 157 + 6)*

Note: The generalized power function rule is derived from the chain rule which follows below. See Problems 3.14
and 3.18.

3.7.8 The Chain Rule

Given a composite function, also called a function of a function, in which y is a function of « and
u in twrm is a function of x, that is, y = f(u) and & = g{x), then y = flg(x)] and the derivative of v with
respect to x is equal to the derivative of the first function with respect to u times the derivative of the
second function with respect to x:

L
dx

e
BlE

(3.6)
See Problems 3.16 and 3.17.

EXAMPLE 13. Consider the function y = (5x* + 3)*. To use the chain rule let y = & and & = 5x* + 3. Then
dyidu = 4u* and dufdx = 10x. Substitute these values in (3.6)

%-lu"'-llh--ﬂltu’
Then 1o express the derivative in terms of a single variable, substitute S¢* + 3 for u.
dy
— = Sx? +3)
o ¥

For more complicated functions, different combinations of the basic rules must be used. See
Problems 3.18 and 3.19.

38 HIGHER-ORDER DERIVATIVES

The second-order derivative, written f"(x), measures the slope and the rate of change of the first
derivative, just as the first derivative measures the slope and the rate of change of the original or
primitive function. The third-order derivative f“(x) measures the slope and rate of change of the
second-order derivative, etc. Higher-order derivatives are found by applying the rules of differentia-
tion to lower-order derivatives, as illustrated in Example 14 and treated in Problems 3.20 and 3.21.

EXAMPLE 14. Given y = f{x), common notstion for the second-order derivative includes ™(x), d° yidx®, y°, and
£*y; for the third-order derivative, f®(x), 4" widx®, ¥*, and D"y; for the fourth-order derivatives, [*“(x). d*v/dx®,
¥ and 'y, el



40 THE DERIVATIVE AND THE RULES OF DIFFERENTIATION [CHAF 3

Higher-order derivatives are found by successively applying the rules of differentiation to denvatives of the
previous order, Thuos, if fx) = 2x* + 5" + 307,
f(x) = 8"+ 1527 + 6
fr{x) = 24x°* + 30x + 6
JFPix) = 48z + 30
fOx) =48 [Hx)=0
See Problems 3.20 and 3.21,

19 IMPLICIT DIFFERENTIATION

Introductory economics deals most often with explicit functions in which the dependent variable
appears to the left of the equal sign and the independent variable appears (o the right. Frequently
encouniered in more advanced economics courses, however, are implicit funcions in which both
variables and constants are to the left of the equal sign. Some implicit functions can be easily converted
to explicit functions by solving for the dependent variable in terms of the independent variable; others
cannol. For those not readily convertible, the derivative may be found by implicit differenniation. See
Exampie 16 and Problems 3.22, 3.23, 4.25, and 4.26; also see Section 5.10 and Problems 5.20, 5.21, 6.51,
and 6.52.

EXAMPLE 15. Samples of explicit and implicit functions include:

e 3
Explicir. y=d& y=r+6c-7 o T
Implicit: Bx+5v—2l=0 If-Ry-Sy-49=0 35y -106=0

EXAMPLE 168. Given Ix* — 79" — 86 = 0, the derivative dy/dx is found by means of imphicit differentiation in two
casy sleps,
1) Differentiate both sides of the equation with respect to x while treating ¥ as a function of x,

d d
Elll‘—fj —F-EJ'EW} (3.7)
i d d d
;Ill“:l“zﬁ!”}'z[ﬂﬂ el
whir i{h‘]=12.t"iﬂﬁ=ﬂ.,iﬂ=ﬂ Using th alteed function rule fi -i'l'y’
cd.: 'd:rlj d.r{‘:l - Lsing the gener power Ulﬁ[ )
and noting that %””“%‘““‘
LTI PP N P
S Or =TSy () = 38y
Substitute the above valpes in (1.7). )
dy
L T L
120735y = = 0 (3.8)
(2) Now simply solve (3.8) algebraically for dy/dc

d} 5
35 = -
y‘[ 12x

dy _12¢
dr 357

Compare this answer 1o that in Example 16 of Chapier 5.
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Solved Problems

LIMITS AND CONTINUITY
3.1  Use the rules of limits to find the limits for the following functions:

a) lim[x'(x + 4)]
=2 !
lim [+'(x + 4)] = lim x* - lim (x + 4) Rule 5
==l e ]
=(2)-(2+4)=8-6=48

At - 5x
x+6

h) lim
H‘ im (3¢ — S
— XT0 Im ix + 6}

Rule 6

e
3(4)' - 5(4) _48-20
e T
=28

) lim Voxr +1

=z pa—
lim V' 4 1 = lim (& + 1)
=g =

= [iim (6 + 1)]'* Rule7

-

= [ﬁ;z;‘ + []iff = (49}” = +=7

32. Find the limits for the following polynomial and rational functions.
a) lim (Sx* = dx +9)

From the properties of limits it can be shown that for all polynomial functions and all rational
functions, where defined, im,, fix} = fla). The limits can be taken, therefore, by simply evaluating
the functions at the given level of a.

lim (527 = dx + 9) = S(IF = 4(3) + 9 = 42
=
b) lim (3x° + Tx - 12)

=l

bm (3 + 71— 12) =34y +H-4)-12=8

y 1 4 — 2 —8
e ﬂ S + 6

i AP =208 4(6F-26)-8 _

242
— 46 S{(6) + 6 186 3

3.3. Find the limits of the following rational functions. If the himit of the denominator equals zero,
neither Rule 6 nor the generalized rule for rational functions used above applies.
x=17

t- ]
u) X0
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The limit of the denominator s rero, 5o Rule 6 cannot be used. Since we are only mterested in
the function as x draws rear to 7, however, the limit can be found if by factoring and canceling, the
problem of zéro in the denominator B removed.

fim =7 lim x=17
=8 L (x+THx=T)

—r X +T 14

. x—17
) ITH
T it | . =17
,l_l.n:lgf—'l-q-fr{I*THJ_T}
9
l—-—'l-'+."

The limit does not exist.

©=2r-24
him ——

r) :-r-nﬁ i—6a
With the limit of the denominator equal 1o zero, factor.
Hm:’—zx—zu - g O —6)

] =6 i x=0h

= lim{x +4) = 10
i

Find the limits of the following functions. noting the role that infinity plays.
a) hmE {x #0)
a—i) &

As seen in Fig. 1-3(b), as x approaches 0 from the right (x — 0" ), f{x) approaches positive infinity;
as v approaches 0 from the left (x —07), fix) approaches negative infinity. If a imii approsches either
positive or negative infinity, the limit does not exist and is written

fim 2= lim>=-= The lmit does not exist.

gt X " X

] limE lim E

g X o

As also seen in Fig. 1-3(b), as x approaches =, f(x) approaches (; as x approaches —=, f(x) also
approaches 0, The limit exists in both cases and is writlen

o=t linZ=0
g X a——
-
¢) bmom—

A3 x— = both numerator and denominator become infinite, leaving matters unclear, A trick in
such circumstances is to divide all terms by the highest power of x which appears in the function. Here
dividing all terms by £ leaves

- 3= . 3=(lx) 3=

Im =2 - I T e 4=

0_3
0 4
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3.5. Indicate whether the following functions are continuous at the specified points by determining
whether at the given point all the following conditions from Section 3.2 hold: (1) f{x) is defined,
(2) lim,_, flx) exists, and (3) lim,__ f{x) = fla).
a}) Ax)=5°-8x+9 atx=3

1) AN=53V-8(3)+9=30
2) lim(52 -8 +9) =53 -#3)+9=30

3} limfix)=30=3) fix) is continuous
=3

C+3ir+12

h) f[r}=T atx=4¢
_@P+34)+12 _40 _
b M=y g Y
r+ix+12
% E x=23 -

3) limflx) = 40 = f{4)  fix) is continuous
e

x=3

c) ﬂx}=?_—q atx=3

N A=y

With the denominator equal bo zero, fix) is not defined at x = 3 and so cannot be continuous
ol x = 3 even though the limil exists al x = 3, See steps 2 and 3.
x—3 x—3 | 1
2 = |3 = | -
) Efu? !J_I,Jn[x-l-l}[:-]] E.r+3 6

3) limf{x) =} # f{3). So fx) is discontinuous at x = 1,
a—="

DERIVATIVE NOTATION AND SIMPLE DERIVATIVES
36. Differentiate each of the following functions and practice the use of the different notations for

a derivative.

a) flx)=17 b) y=-12
F{x) =0 (constant rule) i:'—: =

) y=5x+12 d) fixy=9x-6
¥ = 5 {linear function rule) ff=9

37. Differentiate each of the following functions using the power function rule. Continue to use the
different notations

a) y=8 b) fix) = —65°

d
5 (&) = 2 from= =t
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flx) = 5577
10

fx)=5(-2) &M= 10 = -

=—gr
i-"_'= ST L ) [ —1=,,3",i
5= ~¥-4)-4 36e7% = =5
yp=~-=Tx"

"

=1} 1 =1 o o .
DT ) =T ~-1)x Tx 3
flx) = 18Vx = 187

ﬁ= _',_ a-1 . -11.:1
dx m(!} x » Vx

38. Use the rule for sums and differences to differentiate the following functions Treat the
dependent variable on the left as y and the independent variable on the right as x.

a)

R=8F+5—6 by € =4 -9 + 28— 68

iR rers C' =127~ 18+ 28

o

p=6q"- 3¢ d) q=7Tp"+ 15"

d

P -0t~ D,(7p* + 15p™") = 28p* ~ a5p~*

THE PRODUCT RULE

39, Given y = f(x) = 5x*(3x = 7), (a) use the product rule to find the derivative. (b) Simplify the
original function first and then find the derivative. {¢) Compare the two derivatives

a)

By

cl

Recalling the formula for the product rule from (3.3),
fiix) = glx) - h'(x) + h(x) -g'(x)

let g(x) = S¢* and A{x) = 3x— 7. Then g'(x) = 20x* and A'(x) = 3. Substitute these values in the
product = rule formuln.

¥ o= fix) = 5£%3) + (Ix = TH20x")
Simplify algebraically.
¥ o= 15" + 60 ~ 140" = 75 ~ 1400°
Simplify the onginal function by multiplication.
y=5%%-7)= 15" - 35

Take the derivative.
y' = 75r* - 140y

The derivatives found in parts (@) and (b) are identical. The derivative of & product can be found by
either method, but a6 the functions grow more complicaled, the product rule becomes mote useful.
Knowledge of another method helps to check answers.
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3.10. Redo Problem 3.9, given y = f{x) = (x* + B)(* + 11).

a) Let g{z) = 2 + 8 and h(x) = 2"+ 11. Then g'(x) = 8 and A'(x) = 6. Substituting these values in
{131,

¥ o= f(x) = (" + BHOc”) + (2 + L1){8x")
=6 + 48" + Re'' + 8Br7 = 140M + B8 + 480

by Simplifying first through multiplication,
VLB - 11) ="+ 115"+ B + BR
Then ¥ o= 14 + 88’ + 480°
¢} The derivaiives are sdentical.

AlL Differentiste cach of the following functions using the product rule. Note: The choice of
problems is purposely kept simple in this and other sections of the book to enable students to
see how various rules work. While it is proper and often easier to simplify a function
algebraically before taking the derivaiive, applyving the rules io the problems as given in the long
run will help the student to master the rules more efficiently.

a) y= (4 =3)2c")
%{-tf—]}lilﬂr‘}+1r*{'h] = 40 - 30" + 165 = S6x* — 300!
b) y =703 - 12)
L = 7060+ (3 12063 = 420 + 1895 TS6e* = 214’ - 756
¢) y= (2 +35)3 - 8)
:_-:’ = (4% + S)(ISKY) + (3" — B)(BN) = e + T8 + 2s" — 644 = 5dx* + 755" - bds’

d) z=(3- 12005+ 4r)

§={3_1y}lz4ﬁ}+(5+4¢"}¢—3&’}= TP — 2RA" — 180 — 1448 = —432" + 727 — 1Bl

QUOTIENT RULE
112 Given
2x
{u) Find the derivative dircctly, using the quotient rule. (&) Simplify the function by division and
then take its derivative. (¢) Compare the two derivatives.
@)  From (3.4), the formula for the quotient rule is
hix) - g'(x) — glx) - b'(x)
2 [CoF

where glx) = the pumerstor = 100" — 6’ and A(x) = the denominator = 2x. Take the individual
denvatives.

g(x) = 80x" — 42"  A'(x) =2
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Substitute in the formula,
A 2x(BOx" ~ 42¢%) = ( 10x* = 627 )(2)

(=¥
- 160® — 8dr" — 20® + 127 . 140x* - 72¢7
4! 45"

= 35" - 18

b)  Simplifying the original function first by division,

et -
_—lz‘[—'ﬂ

y = 35 - 18"

5x’ - 3t

€) The derivatives will always be the same if done comrectly, but as functions grow in complexity, the

guotient rule becomes more important. A second method is also a way 1o check answers

3.13. Differentiate each of the following functions by means of the quotient rule. Conatinue to apply
the rules to the functions as given. Later, when all the rules have been mastered, the functions

can be simplified first and the easiest rule applied.

-l
i S T
Here g{x} = 3" - 4x" und hix) = 4x', Thus, g'(x) = 24y - 280% and h'(x) = 1247, Substituting in the
quotient formula,
. Ar'(24x" - 28:%) = (3" - 42")(1207)
. {’41_1-}]
mm_ ‘Il.li_hrw_‘_m'l fﬂ:"“—ﬁdx' .
= T = 16 = 3 754 — 4y
4.]:"
b P =
J Ao g i)

(Note: The qualifying statement is added because if x = {, the denominator would equal

zero and the function would be undefined. }
dy _ (1-3e)(200") —4e(—3) _ 200" - 6007 + 126" 200 - 4847

d (1-3xp -3r  (1-%

=
SR A

d_y_{.'s:’-n-?;-l}{lur}—iiﬁ{uﬂl

dx (2 +Tx = 3)
_ 60e’ + 21007 - 90x - 602" - 105 _ 1056 - 9x
- (2¢ + 7x - 3) (26 + 7x - 3F
fr—7
d) y=g—s (#d

dy _ (8x = 5)(6) ~ (fx—~ 7)(8) _ 48x — 30 - 48x + 56 26

dx (B - 5P [Re - SF ~ (Bx-SP



CHAP 3] THE DERIVATIVE AND THE RULES OF DIFFERENTIATION 47

Sx'—9x+8
e} i Y e
dy (2 + 1){(10x — 9) — {52* — 9x + 8){2x)
dr (F+17
L0 - 97 + 10k~ 9~ 10" + 1807 — 16 _ 9" -6 -9
1) TP

THE GENERALIZED POWER FUNCTION RULE

Al14.

315,

Given y = (5x + 8), (a) use the gencralized power function rule to find the derivative: (b)
simplify the function first by squaring it and then take the derivative; (¢) compare answers.

a) From the generalized power (unction rule in (3.5), if fix) = [g{x)]",
F'(x) = njg(x)f " g'(x)

Here gix) = 5x+ 8, g'lx) = 5, and n = 2. Substitute these values in the generalized power function
rule,

¥=25x+By " 5=10{5 +§)=50r+BD
b) Square the function first and then take the denvative,

v = {Sx+8){5xr + 8) = 25 + Blx + 64
y' = 50x + B0

¢} The derivatives arc identical. But for higher, negative, and fractional values of . the generalized
power funclion rule is fasier and more practical.

Find the derivative for each of the following functions with the help of the generalized power
function rule.

a) y = (6 +9)*
Here g{x) = 6’ + 9, g'{x) = 18¢%, and a = 4. Substitute in the generalized power function rule,
y' = 46 + 9) - 187
= 46’ + 9)° - 18 = 7236’ + 9)
b) y=(2F"-5x+7)
y = Wt =Sz + TP - (4x - 5)
= (12r = 15)(2 = Sz + 7)

1
R S = e T
First convert the function to an easier equivalent form,
yo= {7+ 13x + 3)"!
then wse the gencralized power function rule,
y' = =17 + 13x + 3)71- (207 + 13)
= =(212 + 137 + 13+ 3)7°
-~ +13)
(7' + 13x + 3)
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d) y=V34-6r
Convert the radical 1o a power function, then differentiate.
y = (34 - &°)'?
y' =34 - 67) 1% (= 12x)
—fix
= —6p(M - 6r7) e ———
( ) g
e e ———
by Vixr + 94
Convert (o an equivalent form; then take the derivative.
y={4r' +94)'7
¥ = —HAr +94) 77 (120) = —6a(da’ + 94
—bue’ -

T ad+ o4y B Vi +94)

CHAIN RULE

316. Use the chain rule to find the derivative dyv/dx for each of the following functions of a function.
Check each answer on your own with the generalized power function rule, noting that the
generalized power function rule is simply a specialized use of the chain rule.

a) y=(3"+5)
Let y = u* and u = 3x* + 5. Then dyldu = 6u® and di/dx = 12+, From the chain rule in (1.6),
dy . 4y du
dv | du dx
Substituting. % = 6’ 120° = 720w
But 4 = ir* + 5, Substituting again,
L - (et + 5y

by y=(Tx+9)
Let y= o and u= 7x +9, then dy/du = 2u and du/dy = 7. Substitute these values in the

chain rule,
dy
= om Q-7 = 14y
dx
Then substitute Tr + 9 for .
%-H[?ﬁ?l-ﬂum
e) y=(4"-1y
Let v = &' and u = 4x° — 1; then dy/du = 7", dw/dx = 20r*, and

da
E’=1u‘-mx'=twu'
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Substitute u = 4x* - 1.

d_}'_: PP ST
e 140x"(4x" — 1)
317. Redo Problem 3.16, given:
a) y=(r+3ix-1y
Let y = i’ and & = £ + 3x — 1, then dy/du = Su* and du/dx = 2x + 3. Substitute in (1.6).

l—’=su11:+z—1=um+|s)u-

Bul g = £ + 3z — 1. Therefore,
d
= = (105 +15)(7 + 3x = 1)°

b) y= -3 -8 +7)"
Lety = —3u" and u = 2" — 8 + 7. Then dyldu = =12, du/dx = 2¢ - 8, and

% = —12u’(2e - B) = (~24x + 961’

= (=24x + )" - 8x + 7Y

COMBINATION OF RULES
3.18. Use whatever combination of rules is necessary to find the derivatives of the following

functions. Do not simplify the original functions first. They are deliberately kept simple to

facilitate the practice of the rules
_ Ix2x—-1)

Sx-2
The function involves a quotient with a produect in the numerator. Hence both the quotient rale
and the product rule are required. Stant with the quotient rule from (3.4).
= hix)-g'(x) — glx) - h'(x)
[h{x)F

where g{x) = 3x(2x - 1), hix) = Sx -2, and k'(x) = 5. Then use the product rule from (3.3) for
g'(x).

a) ¥

gix) =324 (2xr=1)-3=12¢=-13
Substitute the appropriate values in the guotient rule.
= (Sx - 2H12x ~ 3} = [3e(2x — 1)} §

{5x —2)
Simplify algebraically.
] ﬁﬂ.r’—lix—ll:+6—3ﬂ1‘+15:_3ﬂt’—zdz+6
(Sx - 2¢ (5c 27
Note: To check this answer one could let
”'3"% o "5;312'{1*_”

and use the product rule involving a quotient,
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b) y = 3x({4x—35)

The [unction involves a product in which one function is raised o a power. Both the product rule
and the generalized power function rule are needed. Starting with the product rule,

y' = g(x)  h'(x) + h(x) - g'(x)
where glry=3r hx)=(4x-5" and g'(x)=3
Use the generalized power furction rule lor A'(x).
h'(x)=24x—35) 4 = 8(4r - 5) = 32x - 40
Substitute the appropnale values in the product rule,
y' = 3x. (322 - 40) + (dr = 53
and simplify algebraically,
¥ o= 960" = [20x + (16" = J0x + 25) = 144" = 240x + 75

Sx+1
x+7

Here we have a product invalving a quotient. Both the product rule and the quotient rule are
needed. Start with the product rule,

y' = glx) - W'(x) + hix) - g'(x)

where glx)=3x-4  hix)= :::

y=(x—4)

and  g'(x) =13
and use the quotient rule for A'(x).
(2x + THS) — (5x + 1){2) - 3

N = (2x + 77 e+ 7
Substitule the approprisie values in the product rule,
33 Sx+1 Wxr-132 15x+3
i -4 w4 =
Y= e S t T S T T med

LB -2+ (M 4+ 3Y2x+T) 30t + 210x — 111
(2x+ 77 (Zx+ 7P
One could check this answer by letting ¥ = (3x — 4)(5x + 1J/(2x + T) and using the quotient rule
involving a product.

_(8x-9)

¥ =x+9)

Start with the quotient rule, where
glr)=(Bxr -5 A =Tx+4 K(x)=7

and use the generalized power function rule for g'(x).

g'(x) = 3(Bx - 57 - B = 24(Re - 5
Substitute these values in the quotient rule.

. (Tx+4)-24(8x — 5)" — (Bx — 5)*- 7
y= (7x +4)
. {168x + 96){Bx ~ 5y — T(Bx - 5)°
(Tx + 4y
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To check this answer, one could let ¥ = (Bx = 5)"- (Tx + 4) " and use the product rule invalving the
peneralized power function rule twice.

3 +4 Y
Starl with the generalized power function rule,

Ww+4\ d[3x+d
- e i i
Y ‘:1:+5} de\Ze+5 (3:9)

Then use the quotieni rule,

dfdx+4d ) _(2e+5)3) - (3x+4K2) _ 7
m{zﬂs (Zx + 5 (2x + 5Y

nnd substitute this value in (1.9},

2(1”4 7 W3x+d) 42 +56
2+5) (245 (45 (xS

To check this answer, let y = (3x + 4)* - (2c + §) =, and use the product rule involving the generalized
power function rule twice.

A19. Differentiate cach of the following, using whatever rules are necesary:
a) y=(5x-1)(3x+4)
Using the product rule together with the generalized power function rule,

% = (5x = 1)3(3x + 4¥'(3)] + (3x + HY(S)
Simplifying algebeaically,
i—” = (5x = 1}(9)(3x + 4)F + S(3x + 4)" = (450 — 9){3x + 4F + S(3x +4)°

(95 —2)(7x + 3)

8 =
Using the quotient rule along with the product rule,
o in Sxf(9x — 2N7) + {7x + 3}(18x)] — (9" — 2)(7x + IN5)
(5x)
Simplifying algebraically,
5 Sx(63r’ — 14 + 12607 + 5dx) = 5(63c° + 270" ~ 1dx ~ 6) _ A30¢" + 135+ + 30
) 350 Tag
3 e 15¢ + ?.?;
(3 + 1)
Using the quotient rule plus the generalized power function rule,
N 1¥ (15) = (15x + 23)(2(3x + 1)(3)]
(3x+ 1)
Simplifying algebraically,

15(3 + 1) = (185x + 23)(18x + 6) _ ~135¢° - 4142 — 123
@A+ 1y (Ax+ 1)
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d) y={tx+1)

X
9x -1
Using the product rule and the gqootient rule,

9x — 1M4) ~4x(9) ¢

(
= G D 1y -1

(6)

simplifying algebraically,

_ (6t 1)36e-4-36x)  24x 216 - d8x 4
t {(9x - 1Y Ox ~ 1 (9x = 17

kx-1Y
D I \mws
Using the generalized power funclion rule and the quotient rule,

__1{3;—1 ! (2x+ $)3) - (3x - 12)
A Y (25 +5)

Simplifying algebraically,

,ﬁ‘l{llr—l}’ 17 Hﬁlfih'—ljl‘
(2c+5)° (2e+5)° (2a+5"

HIGHER-ORDER DERIVATIVES

320, For each of the following functions, (1) find the second-order derivative and (2) evaluate it at

xr =2 Practice the use of the different second-order notations

ay y=T+5%2+12

1 i—”=:u’+1u= ) Atx=2, %"?m”“
i:-;nrlnm S

b) fix)=x"+3x'+x

1) fix) =6 +120 + 1 2) Atx=2, fix)=302)"+3602F

fix) = 30s* + 36 =624

c) y=(2x+3)(Bx"-6)

1 Dy ={2c+ 3)16g) = (B —6H2) 2) Atx=2, D'y =96(2) +48
= 320 + 48c + 16" - 12 = 240
= AR + 48y — 12
[Py = % + 48

d) Ax) = (x* =3}z’ =2)

B == 3r) + (2 - 2)Ar) 2) Atx=2, f=442)"- 242y - 182)
= 3rf — O + dr® — R’ = 1212
=Tt =i’ -0

fr = 420" - 240 - 18s
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Sx
e = -
o (1= 3x)(5) - Sn(-3) _ _ 30-%02)
M (13 R =
_S-I5x+15 _ 5 =150
(- -y (-s)
o (L= 32P(0) = 5121 — 3)(-3)] _ 6
! {1 —3x) 25
_CS(-6+18) _30-90x 30
(1- ) (1-3)' (1-2)
-Ipﬁ
n _-,-:xf]
. _ = 1)(14x) - 74(1) - L4
1) ¥y= (e 1] 2) Atx=2 y -1y
_ 14 - 1x =70 76 - ldx ik
(x =1 (x=1)
(x = 1)*(14x - 14) — (72 - 140)[2x - 1)(1)]
= -1y
o= 2+ 114 - 14) - (7 — Mx)(2x - 2)
(x - 1)*
_le-1 M
(x=1)*  (x=1Y
g) fix) = (Bx - 4)’
1} f = 3{8c— 4F(8) 2) Atx=12, f =384[8(2)-4]
= 24(R — 4) = 4608
7 = 2(24)(8x — 4)(8)
= J84(8x - 4)

h) y=(5x' =)

1) Dy =2(5x" = T2H15 - 14x) 2) Atx=2 [DPy=T750(2)" - 1400(2)" + SBR(2)
= 150r" - 350x* + 1965 - 3152
D'y = 750x* — 1400x° + S8

321. For each of the following functions, (1) investigate the successive derivatives and (2) evaluate

them at x = 3.
a) y=+35+%-7
1) ¥=3"+6249 ) Atx=3, ¥ =33 +6(3)+9 =54
Y=6a+h ¥ o 6(3)+ 6 = 24
gy y =6
g Y =0
by y=(4c-T)(9x+2)
1)y = (dx = THI) + (9 + 2)4) 2) Atx=3, y' =TI} -55=161
=3Mr-63+Mx+E= T2r =55 Y = T2
Yy =72 y'=0

¥ =0
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) y=(G-x
1) D, =45-xp'(-1)=-45-x) 2) Atx=3 D ,=-45-3=-32
D7 = -12(5 - 2)*(-1) = 1S — xF° Di=125-3F =48
D} = 24(5 - z)(~1) D} = 24(3) - 120 = -48
= =245 - x) = J4x — 120 Di=24
Di=24 D=0
D=0
IMPLICIT DIFFERENTIATION
3.22. Use mpheit differentiation to find the derivative dy/dx for each of the following equations.
a) Ad—y' =97

Take the derivative with respect to x of both sides,
d d,, d
o @) - ) =20 (3.10)
whcm;Tr{iF]-EL %{W}*&a:hdmnlhng:nmﬂudpuwuhmmmuc:m;hmm
sidered a functiom of x.
d d
L0 =37 =0)

Set these values in (3.1 and recall that %U} = E

s:—af(% =0

e

Bis

3|2 ) = —tx

dy Bz

dr 3y
b) 3y° —6y*+ 5x* = 243
Tuking the derivative with respect to x of both sides,
d d d i
2e ') = o (6y") + 2 (5x%) = = (243)
LA dy -
15y'(¢] 24f(m]+3u:=‘ 0
Solve for dyidr,
- ¥ Q N e -
(15 m,-;(ﬂ) 30x
dy - 30x*

dx 15— 24y
¢ 20+ T8 +8) =136

d d d . d
E[HHE[“‘]*E[“}'I = =, (136)
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8+ 210+ doy{ 2 ) =0

m;p'(—u = —(8x" + 21x%)
dy _ —(fx' +21¢")

=l

dx 40y

G5

3.23. Use the different rules of differentiation in implicit differentiation to find dy/dx for each of the
following:

a) x'y' =89
d d
Eh"ﬂ=zfﬁ}
Use the product rule and the generalized power function rule.,
d d d
xt =) +y = () = 2= (89)

:*-Ey’%+}"~lﬁ=ﬂ

Solve algebraically for dyfdx.
dy . _
6y T = —ary
dy Y Y
dr 6y 3r

b) 2x'+ Sxy + 6y = 87
d . d
Eill’-fitr 6y) =&'%)
Note that the derivative of Jxy requires the product rule.
d d
&:‘+|5;- (EE] +;..-|[5}] + tzy{d——i} =0
Solving algebraically for dy/dx

(se+129)(F) = 65y

dy _ —(6 +5y)
dx Sx + 12y
¢) Txt+ 3ty + Oxyt = 406
mﬂ+[3ﬂ(i~l) +yr'h-‘] - [ﬂ:-z,:(%} +y‘-".'] =0
Iﬂx’+h’(%)+ﬂx‘y+lﬂzy{%) +9y =0

(A + mq}(i{) = =280 = 9ty — 9y

dy _ -(288 + 9y + 9y)
dx ' + 18y
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d) (Sy-21) = &«
£ fesy 217 = (60
Use the generalized power function rule.
33y - 21)° (d—i} - 30"
15(5y - 21}1{%) - 3

dy _ 30
de  15(5 - 21)

e) A+ =x
08+ T = ()
2{1€+?y}~—[1r"+1y1=
{4;-‘+l4\-}[ﬁr+7 )l = 5¢*
5 ld ﬂ n
24:+E‘Er{dr}+u4r’y+ﬂﬁy(ﬂ) S¢t

(280" + 99y) 2 = 5~ 24 - 4’y

dy  5x'—24x" - Bax'y
dx R’ + DBy
See also Problems 4.24, 425, 530, 5.21, .51, and 6.5

DERIVATION OF THE RULES OF DIFFERENTIATION

[CHAP 3

3.24. Given fix) = g{x) + h{x), where g{x) and h(x) are both differentiable functions, prove the rule

of sums by demonstrating that f'(x) = g'(x) + h'(x).
From (1.2) the derivative of fix) 5
. fix+ Ax)— fix)
Fiz) = lim Ax

Ar—
Substituting f{x) = g(x) + h{x),
[3{: + &x) + hix + Ax)] - [glx) + A(x)]

fe= :u--qr Ax
Rearrange terms
. Rix+ Ax)—glx)+ hix + Ax) — hix)
= |
fix) im o

Separate lerms, and take the limits

)t [ S 80 ) M 8) -G

o, S A g | + A) - A(x)

= g'(x) + h'(x)
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325,

3.26.

Given flx) = glx) - k{x). where g'(x) and k'(x) both exist, prove the product rule by demonstrat-
ing that f"(x) = g{x) - &'(x) + h{x) - g"(x).

g St A0 - flo)
f) = lim ==

Substitute f{x) = g{x) “h(x).

, . gle+ Ax) - Blx+ Ax) — g(x) - hlx)
}- I .
fix im
Add and subiract g{x = Ax) - hix),

Pix) = lim SEL Asix + Ax) ~ glx + ADhix) + glx + Ax)Ax) - glx)hix)
A &

Partially factor out gix + Ax) and hix).

fr(x) = tim T2 Ax)h(x + _‘5"'} - "{;J: + hix)[g(x + Ax) - g(x)]
]

- i S+ AR} (e +ax) — kix)] | tirm hix)|elx + Ax) — g(x)]

Aix + Ax) - + hx) =
u:ml{r;ﬁr].limw-plimhill.“mu
Ae—D Al Ax Ag—di A} A

= glx) - k'(x) + hix)- g'(x)

Given fix) = g{x)Vh(x), where g'(x) and #’(x) both exist and h(x) # 0, prove the quotient rule
by demonstrating
_ hix)-g'(x) - g(x) - h'(x)

[hix)f

fix}

Start with fix} = glx)/hix) and solve for glx),
glx) = flx) - hix)
Then take the derivative of gix), using the product rule.
g'(x) = fix)-k'(x) + hix) - f'{x)
and solve algebraically for f'(x).
h(x)- £ (x) = g'(x) = fix) - h'(x)
#lx) = fix) kix)

fi(x) = 5
Substitute g{xrVhix) for fix).
gt - ELK
r=—0

Now multiply both numerator and denominator by h(x),

_ hix)-g'(x) — gix) - K'(x)
[A(x)F*

Ix)



Uses of the
Derivative in
Mathematics and
Economics

41 INCREASING AND DECREASING FUNCTIONS

A function fx) is said to be increasing (decreasing) at x = a if in the immediate vicinity of the
point Ju. fla)] the graph of the function rises (falls) as it moves from left to right. Since the first
derivative measurcs the rate of change and slope of a function, a positive first derivative at x =a
indicates the function is increasing at 5; a negative first derivative indicates it is decreasing. In short,
as scon in Fg -1,

ffla)y=10 increasing function at x = a
Fla)< decreasing function at x = a

A function that increases (or decreases) over its entire domain is called & monotonic function. 1t is said
to increase (decreuse) monotonically. See Problems 4.1 to 4.3.

42 CONCAVITY AND CONYEXITY

A lunction fLx) is concave atl x = a il in some small region close 1o the point [a, f(a)] the graph of
the function lies completely below its tangent line. A function s convex at x = a if in an area very close
10 [a, flu)] the graph of the function lies completely above its tangent line. A positive second derivative
gl & = g denotes the function is convex at x = 4; a negative second derivative at x = @ denotes the
function 8 concave at a. The sign of the first derivative is irrelevant for concavity. In brief, as seen in
Fig. 4-2 and Problcms 4.1 to 4.4,

Fla) >k flx) s convex at x = a
Fla)y<D fix) is concave at x = a

58
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i

|

|

(']
Slope > 0
Increasing function at x = a
(&)

Fig. d-1

I
|
1
"

{a) fla)>0
Sa)>0

Convex al x = g

E e e o

Concavepai x =g

Fig. 4-2

[ ) eS——

" Slope =0
Decreasing flunction at x = a

&)

o = —

b}y fla)<0
fa) >0

o s

a X

{d) fla)<0
fa) <0

If f~(x) >0 for all x in the domain, f{x) is strictly convex. If f{x) <0 for all x in the domain, f{x) is

strictly concave.

43 RELATIVE EXTREMA

A relative extremuom 15 4 point al which a function is at a relative maximum or minimum. To be
al a relative maximum or minimum ai a point g, the function must be al a relative plafeau, 1.e., neither
increasing nor decreasing at a. If the {unction is neither increasing nor decreasing al a. the first
derivative of the function at ¢ must equal zero or be undefined. A point in the domain of a function
where the derivative equals zero or is undefined is called a critical point or value.
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To distinguish mathematically between a relative maximum and minimum, the second-derivative
fest is used. Assuming f'(a) =0,
1. U ffla) >0, indicating that the function is convex and the graph of the function lies completely
above its tangent line at x = a, the function s at a relative mainimum at x = 4.
2. If f*{a) <0, denoting that the function is concave and the graph of the function lies completely

below its tangent line at x = g, the function is at a relative maximum at x = a.
3. Il f"(a) = 0, the test is inconclusive.

For functions which are differéntiable at all values of x, called differentiable or smooth functions, one
need only consider cases where f'(x) = 0 in looking for critical points. To summarize,

fllay=0 f(a)>0  relative minimum at x = g
flay=0  fla)<(: relative maximum at x = g

See Fig. 4-3 and Problems 4.5 and 4.6.

£

=

Sla) =0 Jia} =0
[la)>0 fHla)<0
Relative Minimum st x = a Relative Maximum al x = a
(a) ih)

Fig. 43

44 INFLECTION POINTS

An inflection paint is a point on the graph where the function crosses its tangent line and changes
from concave to convex or vice versa. Inflection points occur only where the second derivative equals
zero or 1s undefined. The sign of the first denvative is immaterial. In sum, for an inflection point at a,
as seen in Fig. 44 and Problems 4.6 and 4.7(c).

1. ffla) = 0 or is undefined.
2. Concavity changes at x = a.
3. Graph crosses its tangent line at x = a.

4.5 OPTIMIZATION OF FUNCTIONS

Optimizarion is the process of finding the relative maximum or minimum of a function. Without
the aid of a graph, this is done with the techniques developed in Sections 4.3 through 4.4 and outlined
below. Given the usual differentiable function,

1. Take the first derivative, set it equal to zero, and solve for the critical point(s). This step
represents a necessary condition known as the firsr-order condition. It identifies all the points
at which the function is neither increasing nor decreasing, but at a plateau. All such points are
candidates for a possible relative maximum or minimum.
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| I [
I ] !
| | 1

'y L] ol A 7] A i 1
Sfia)=10 [a) =0 [y <0 [la)>0
fla)y=10 [Ma)=0 [ia) =0 fMta) =0

{a} (h) e} i

Inflection Points 8l x = a

Fig. 4-4

2. Take the second derivative, evaluate it at the critical point{s), and check the sign(s). If at a
critical point a,
f(a) <0, the function is concave at a, and hence at a relative maximum.
f'(a} >0, the function is convex at a, and hence at a relative minimum.
Fla) = 0, the test is inconclusive. See Section 4.6.

Assuming the necessary first-order condition is met, this step, known as the second-order derivative
test, or simply the second-order condition, represents a sufficiency condition. In sum.

; , R
[la)=0 fla)=0
Ma)<0 flay=>0

Note that if the function is sirictly concave (convex), there will be only one maximum (minimum),
called a global maximum (minimum). See Example 1 and Problems 4.7 to 4.9.

EXAMPLE 1. Optimige flx) = 2v" = 30 + 126x + 59.
a) Find the critical points by taking the first derivative, sening it equal 1o zero, and solving for x.
[i{x) =6’ — 60x + 126 =0
6(x—3)(x-=T7)=0
=31 =T  critical points
{b) Test for concavity by laking the second derivative, evaluating it at the critical points, and checking the
signs to distinguish beteween a relative maximum and minimum.
f{x)= 12x - 60
Fi{3)=12{3)—60=-24<0 concave, relative maximum
F(N=12(7)-60=24>0  convex, relative minimum

The function s maximized at £ = 3 and minimized at x = 7.

4.6 SUCCESSIVE-DERIVATIVE TEST FOR OPTIMIZATION

If f(a) = 0, as in Fig. 4-4({a) through (d), the second-derivative test is inconclusive. In such cases,
without a graph for guidance, the successive-derivative test is helpful:
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1. [If the first nonzero value of a higher-order derivative, when evaluated at a critical point, is an
odd-numbered derivative (third, fifth, etc.), the function is at an inflection point. See Problems
4.6(b) and (d) and 4.7(c).

2. If the first nonzero value of a higher-order denivative, when evaluated at a critical point a, is
an even-numbered derivative, the function is at a relative extremum at a, with a negative value
of the derivative indicating that the function is concave and at a relative maximum and a
positive value signifying the function is convex and at a relative minimum. See Problems 4.6(a)
and (c), 4.7(d), and 4.9(c) and (d).

4.7 MARGINAL CONCEFIS

Marginal cost in economics is defined as the change in total cost incurred from the production of
an additional unit. Marginal revenue is defined as the change in total revenue brought about by the sale
of an extra good. Since total cost (TC) and total revenue (TR ) are both functions of the level of output
(), marginal cost (MC) and marginal revenue (MR) can each be expressed mathematically as
derivatives of their respective total functions Thus,

- _ 41C
if TC = TC(Q), then MC = 70
and if TR = TR(Q)., then MR = %

In short, the marginal concepl of any economic function can be expressed as the derivative of its tolal
function. See Examples 2 and 3 and Problems 4.10 to 4,16,

EXAMPLE 2.

l. TR =T750-4(F, then MR = dTR/dQ = 75 - 8(Q.
2 HTC=("+7Q+ 23, then MC = dTCQ =20+ 7.

EXAMPLE 3. Uiven the demand function P = 30~ 20, the marginal revenue function can be found by first
finding the total revenue function and then taking the derivative of that function with respect 10 Q. Thus,
TR = PQ = (30-20Q)Q = 30Q - 2¢F
dTR
Then MR-E-]{]-.;Q

Q=4 MR =30-4(4) =14 if Q=5 MR = 30 - 4(5) = 10.

48 OPTIMIZING ECONOMIC FUNCTIONS

The economust is frequenily called upon to help a firm maximize profits and levels of physical
output and productivity, as well as 1o minimize costs, levels of pollution, and the use of scarce natural
resources. This is done with the help of techniques developed earlier and illustrated in Example 4 and
Problems 4.17 to 4.23.

EXAMPLE 4. Maximize profits = for a firm, given total revenue R = 40000 -33Q" and total cost
C = 2¢" - 3(* + 4000 + 5000, assuming @ > 0.

a) Set up the profit lunction: == R-C.

o = 40000 - 33Q° - (207 - 307 + 400Q + 5000)
= =20 - W + 600Q ~ 5000
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b} Take the first denvative, set it equal w zero, and solve for { to find the critical points

w = -60°—600 + 3600 =0
= ~6{QF + 100 — 600) = 0
= =6 +3NO-201=0
Q=-3 Q=20 eritical points
¢} Take the second derivative; evaluate il at the positive entical point and ignore the negative critical point,
which has no economic significance and will prove mathematically 10 be a relative minimum. Then check
the sign for concavity 1o be sure of a relative maximum

7 = =120 - &0
#"(20) = =12(2) = 60 = -300<D concave. relative maximum
Profit s maximized at 0 = 20 where

=(20) = - 2(20)" - 300205 + 3600 20) — 5000 = 39,000

49 RELATIONSHIF AMONG TOTAL, MARGINAL, AND AVERAGE CONCEPTS

A rotal product (TP) curve of an input is derived from a production function by allowing the
amounts of one input (say, capital) to vary while holding the other inputs (labor and land) constant.
A graph showing the relationship between the total, average, and marginal products of an inpul can
easily be sketched by using now familiar methods, as demonstrated in Example 5.

EXAMPLE 5. Given TP = 90K7 — K*, the relationship among the total, average, and marginal products can be
illustrated graphically as follows,

1. Test the first-order condition to find the critical values
TP = |80K -3K" =0
AK(60 - K} =0
K=10 K=80 critical values
Check the second-order conditiona
TP* = 180 - 6K
TF(0) = 180 >0 convex, relative minimum
TFi{60) = —180=0  concave, relative maximum
Check for inflection poinis.
TP = B0-6K =0
K= 30
K =3 TP =0 COTVEX
K>3 TF =0 concave
Since, a1 K = M), TP = 0 and concavily changes, there s an inflection point al K = 30,
2.  Find and maximize the average product of capital AP.

™
AP, = — = 90K - K*
* K

APy =9-1K=10
K= 45 critical value
APg m=2 <} concave, relative maximum
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3. Find and maximize the marginal prodoct of capital MP,, recalling that MP, = TP' = 180K — 3K
MP; = 180 - 6K = 0
K=3  cntical value
MP; = -6<0  concave, relative maximum
4. Sketch the graphs, as in Fig. 4-5.

Note that (@) MP, increases when TP is convex and increasing at an increasing rate, is al a maximum
where TP is at an inflection point, and decreases when TP is concave and increasing at a decreasing rate;
{b) TP increases over the whole range where MP; is positive, is al 8 maximum where MP, = 0, and
declines when MP, is negative: (c) APy is at a maximum where the slope of a line from the origin to the
TP curve is tangent 1o the TP curve. i.e., where MP, = AP,: (d) MP; > AP, when AP, is increasing,
MPy = AP, when APy is at a maximum, and MP; < AP, when AP, decreases; and (¢) MP, is negative
when TP declines See also Problem 4.26.

Solved Problems

INCREASING AND DECREASING FUNCTIONS, CONCAVITY AND CONVEXITY

4.1 From the graphs in Fig. 4-6, indicate which graphs (1) are increasing for all x, (2) are decreasing

for all x. (3) are convex for all x, (4) are concave for all x, (5) have relative maxima or minima,
and (6) have inflection points.
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a, d: increasing for all x,
b, f: decreasing for all x.
b, ¢ convex for all r.
i, ¢ concave for all x,

¢, e exhibil a relative maximum or minimam.
a, f: have an inflection point.

Indicate with respect o the graphs in Fig. 4-7 which functions have (1) positive first derivatives
for all x, (2) negative first derivatives for all x, (3) positive second derivatives for all x, (4)
negative second derivatives for all x, (5) first derivatives equal to zero or undefined at some
point, and (6) second derivatives equal to zero or undefined at some point.

1) a, b, h: the graphs all move up from left to right.

2) d. f, g the graphs all move down from left to right,
3} d. e, h: the graphs are all convex,

4) a,c, f the graphs are all concave.

5) ¢, e the graphs reach a plateau (at an extreme point),

6) b, g the graphs have inflection points.
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Fig. 47



[ USES OF THE DERIVATIVE IN MATHEMATICS AND ECONOMICS [CHAR 4

43. Test to see whether the following functions are increasing, decreasing, or stationary at x = 4,
a) y=3r-14x+5
y =6r—14
yi4)=6(4) - 14 = 10>0  Function is increasing.
B) y=x=Ta+6x-2
¥=3r'-14x+6
¥(4) =34y - 14d)+ 6= -2<0 Function is decreasing.
€) y=x'-6r'+4x"-13

¥ =4~ 18¢7 + Bx
v'(4) = 4{4) - 18{4) +8(4) =0  Function is stationary.

44. Test to see if the following functions are concave or convex at x = 3,
a) y=-2+4r* + W~ 15
o= b+ Bx+9
y=12x+B
yi{3i==12{3)+8=-28<10 CONCAvE
b) y = (57 -8y
¥ = 2(5ax — 8)(10x) = 2e(5x" — 8) = 100" — 160x
¥ = 30007 ~ 160
¥(3) = 3003 - 160 = 2540 >0  convex

RELATIVE EXTREMA
45. Find the relative extrema for the following functions by (1) finding the critical value(s) and {2)
determining if at the critical value(s) the function is at a relative maximum or minimum.
a) fix)=-T +126c-23
1) Take the firsi derivalive. set it equal 10 zero, and solve for 1 to find the critical value(s).
fix) = —1dx + 126 = D
r=9  critical value
2) Take the second derivative, evaluate it at the critical value(s), and check for concavity to
distingeish between a relative maximum and minimum,

fixy = -14

Fi(9) = —-14<0 concave, relative maximom
Bb) Ax)=3x" =36 +135x - 13

) Fix) =97 -T2 +135=0
=0 -Re+ 15)=0
=0{x-3x—-5)=0

x=3 x=5 eritical values

2) flx) = 18x- 72

F(3)= 18(3) -T2 = =18=<0D concave, relative maximum
f(5) = 18(5) -T2 = 18>0 convex, relative minbmum
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) flx)=2"- 16" +32" + 5
1) flz) = R’ ~ 48 + 64y = D
- R~ Gy +8) =0
= fr(x—20x-4) =0
x= =1 =4 eritrcal values
2) F(x) = 24x" - 9%6x + 64
0y = 24{0) — 9%6{0) + 4 =64 >0 convex, relative minimum
F(2) =24(2¥ - 96(2) + 64 = -32<0  concave, relative maximum
(4 = 24(4) - 96(4) + 64 = K4 > D convex, relative minimum

4.6. For the following functions, (1) find the critical values and (2) test to see if at the critical values
the function is at a relative maximum, minimum, or possible inflection point.

a) y=—{x—8)°

1) Take the first derivative, set it equal to rero, and solve for ¥ 1o ohiain the critical value(s).
y' = —4x—By'=0
r—f=0
=8 eritical value
1) Take the second derivative, evaluate it at the critical value(s), and check the sign for
concavity to distinguish between a relative maximum, minimum, or inflection point.

Y = —12(x -8y
ViB)= -12(8—8F =0  1est inconclusive
If the second-derivative test is inconclusive, continue 1o ake successively higher dervatives

and evaluate them at the critical values until you come to the first higher-order derivative
that s nonzero;

¥oo= 2z - 8}
¥ViBy=24{8-8)=0 sl inconclusive
Y= -2

YI(8) = ~24<0

As explained in Section 4.6, with the first nonzero higher-order denvative an even-numbered
derivative, v is al a relative extremum. With that derivative negative, y is concave and at a
relative maximum. See Fig. 4-8(«).

b) y=(5-x)
1) ¥ u¥5-aP[=1)==-}5-xF =0
r=5 eritical value
2) Y= 6(5-x)

¥iS)=&(5-5)=0 lest inconclusive

Continuing o take successively higher-order derivatives and evaluating them a1 the
critical value(s) in search of the first mgher-order denvative that does not egual #ero,
we pet

y*=-6
V5= —a=()
As explained in Section 4.6, with the first nonzero higher-order derivative an odd-

numbered derlvative, y 5 al an inflection point and oot al an exireme poini. See Fig
4-B(b).
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) y=-2x-6)"
1} = =1x=8=1
x=f critical value
2) ¥ = =6lx - 6)*

V{6) = =60(0)" = 0  test inconclusive
Continuing, we get
¥ o= =240z - &)' Y6y =0 fesl inconchusive
¥ = —T20(x-6F y6)=0 test inconclusive
P = —4i(x-6) N6} =D test inconclusive
¥ -~ 1440 y*(6) = —1440 <0

With the first nonzero higher-order derivative an even-numbered derivative, v is at an
extreme point: with y"*(6) <0, ¥ is concave snd at a relative maximum.

d) y=(4-xy
1) V'S4 =2 (=1)= -5(d-x)* =0
x=4  critical value
2) ¥ = 2004 - x)’

¥(4) = 20(0) =0  1est inconclusive
Moving on to the third- and higher-order derivatives, we get

y'=—60{4-xF ¥"d)=0 test inconclusive
YU =1204-x)  ¥d)=0  test inconclusive
Y - ~120 y4) = -120<0

With the first nonzero higher-order derivative an odd-numbered derivative, y is at an
inflection paodnt.

OPTIMIZATION

4.7.  For the following functions, (1) find the critical values, (2) test for concavity 1o determine
relative maxima or minima, (3) check for inflection points, and (4) evaluate the function at the
critical values and inflection points
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a) fix) =x"— 1&* + 9%x — B0
1) fix) =37 - 36x + 96 =0
=3Nzx—4)ix—-8)=0
x =4 xm 8 critical values

2) f(x) = 6x =36
Fla)=6{4)-36=-12<0  concave, relative maximum
Fi8)=6(B)=36=12>0 gonvex, relative minimum

1) ff=fr-3%=0
=6
With f7(6) = 0 and concavity changing between 1 = 4 and x = B, as seen in step 2, there is
an inflection point at x = 6,
4) fid) = (4 — 18(4y' + 96(4) — B0 = 80 (4. 80) relative maximum
fif) = (6 — 186 + 96(6) - 80 =64 (6, 64)  inflection point
f(B) = (8 = I8(EF + 96(R) - 80 = 48 (A, 48)  relative minimum

b) flx)= =+ 6" + 15~ 32
1) Flx)= =3+ 12xr +15=0
= =Yg+ | x=5)=0
r= -] x=15 critical values
2) Fix) = ~6x + 12
F(-1)= -6&6{—-1)+12= 18>0 convex, relative minimum
f(5)=-6{5)+12=-18<D concave, relative maximum

1) fx)= —6x+12=0
x=21  inflection point at x = 2
4) f=1)==40 (=1, =40) relative minimum
fi2) =14 (2, 14) inflection point
JF{5) = 68 (5, 68) relative maximum

¢) flx)=(&x-7y

b fx) =32 =TF(2) = 6(2c = 7F = 0
x=35 critical value
2) Fx) = 12(2x ~ THD) = 24(2x - T)

F(35) = 242(35) - 7] =0  test inconclusive
Continuing on to successively higher-order derivatives, we find

Jo =48
(35 =48>0

3)  Asexplained in Section 4.6, with the first nonzero higher-order derivative an odd-numbered
derivative, the function is at an inflection point &t x = 3.5, With an inflection podnt at the oaly
critical value, there 18 no relative maximum or minimum.

4) A35)=0 {3.5.0) inflection point
Testing for concavity to the left (x = 3) and right (x = 4) of x = 3.5 gives

f(3) = 24[2(3) -7 = -24<0  concave
F(4) = 2424) - 7] = 24 =0 COnvex
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d) flx) = (x+2)

1) Fix)=4x+2) =0
x=-2 critical value
2) [(x) = 12(x + 27

Fi(=2)=12{=2+2y =0  1est inconclusive
Continuing, st explained in Section 4.6, we gel
Fo(x) = 24{x + 2)
F(=2) = (=242 =0 test inconclugsive
fNx) = 24
f™(=2)=24>0 relative minimum

With the firsti nonzero h:.;hﬂmdcr denvative even-numbered and greater than 0, fix) is
minimired at x = =2,

3) There is no inflection point.
4) fA=-21=0 (-2,  relative minimum

Optimize the following quadratic and cubic functions by (1) finding the critical value(s) at which
the function is optimized and (2) testing the second-order condition to distinguish between a
relative maximum or minimum.
a) y=Tr+112c - 54
1} Take the first derivative, set it equal to zero, and solve for x to find the critical value(s).
yo=lde+112=0
x=-8  eritical value

2 Take the second derivative, evaluate it al the enitical value, and check the sign for a relative
maxtmum and mankmum.

Y= i4
V(=8 = 14>=0 convex, relative minimum
Here. with y* = a constant greater than zero, v is stricily convex and so we can draw the
further conclusion that y is at a global minimum at x = ~8,
b) y=-9 +T2c—13
1) ym—lix+MN=0
x=4  critical value
2) y'=-18
Vid) = —18<0  concave, relative maximum
Here, with " = a constant less than zero, y is strictly concave and so we can also conclude
that v is st a global maximum at x = 4.
€) y=x -’ —135x+4
1) Y= -12x-135=0
=N -dx-45)=0
= N+ 5Hx—9=0
x==5 x=5%  critical values
2) yVi=éx-12
Vi=5) = &(=5)=-12 = =42 <D concave, relative maximum
Y9 =6{9)-11=42>0 convex, relative minimum
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d) y==2+ 15" +84x - 25
1} y'= =6 + 30+ B4 =
= =x+2Mx=-T)=10
xm =3 x=7 critical values
2) yVi=—-12x+3

vi(=2)= -12(-2)+30=54>0  convex, relative minimum
¥YiTi==-12(T)+ 30 = =54<0 concave, relative maximum

49. Optimize the following higher-order polynomial functions, using the same procedure as in
Problem 4.8,

a) y=x*=B8c - B0 + 15
1) y' = dx’ — 247 — 160z = 0
= do{r + 4z - 10} = O
=0 x=-4 x=10  critical values
2) ¥ = 124% - 4 - 160

Y(~4) = 12(~4) - 48(~4) - 160 = 224 >0  convex, relative minimum
y(0) = 12(0)" - 48(0) - 160 = 160 <0 cofcave, relative maximum
¥ (10) = 12(10)* — 48(10) — 160 = 560>0 convex, relative minimum

b) y=-=3&"—200"+ 144x* +17
1) y = =12~ 60x" + 28R = 0
= =2y —Ix + H) = (
x=10 r=3 r=-8 critical values

2) ¥ = =36a® — 120x + 288
¥(-B) = —36(—8)" — 120{—8) + 288 = - 1056 <0 concave, relative maximum
¥(0) = —36(0) — 120(0) + 288 = 288 >0 convex, relative minimum
¥(3) = —36(3)" - 120(3) + 288 = -396<0 concave, relative maximum

¢) y=—{x+13)°

1) Y= —4x+13) =0
x+13=0 x==]3 critical valone
2} = =12(x + 13

Vi{—13) = —12{—-13+13" =0  test inconclusive
Continuing as ¢xplained in Section 4.6 and Problem 4.6, we get

y" = —2{x+13)
vi(=13) = =24{0}) = O lest inconclusive
Y= 24
vi¥(=13) = -M <0  concave, relative maximum

d) y=(9-4x)
1) Vo= A9 = dx)'(~4) = ~16(9 ~ 42}’ = 0
' 9-dx=0 x=20 critical value
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2) ¥ = —4B(9 - 4x)(~4) = 192(9 - 4x)
¥(2]) = 192(0 =0 test inconclusive
¥ = 384(9 — 4x)(—4) = —1536(9 - 4x)
y"(2}) = —1536(0) =0 test inconclusive
y"" = Gldd
V2] = 6144 >0  convex. relative minimum

MARGINAL, AVERAGE, AND TOTAL CONCEFTS

4.10.

41

Find (1) the marginal and (2) the average functions for each of the following total functions
Evaluate them at @ =3 and @ = 5.

a) TC=30"+70+12

dTC TC 12
1) MC=——m= 7 2) AC=—=30+T+—
: ag ~*¢* g g
At Q=3 MC=63)+7=125 AtQ=3, AC=3(3)+7+%=20
At Q=5 MC=6(5)+7=37 AL =5 AC=35)+7+% =244

Note: When finding the average function, be sure to divide the coastant term by (.
b) w=QF 130+ 78

de ™ ™
1} E—ZQ—H 2} ﬁw—E=E—13+E

AMQ=3Ar=3-13+%=16

dw
At =3 2g -~ D=7 ALQ=5 Ar=5-13+B=176

d
ALQ =5, St = 5 =13 = =3

dg
¢y TR=120-¢¢
dTR TR
1 [ J— -  ——} —
) MR 40 12=-2Q Z) AR o 12-Q
AtQ=3 MR=12-2(3)=6 AtQ=3 AR=12-3=9
AtQ=5MR=12-2(5)=2 At =5 AR=12-5=7
d) TC=35+50-20°+20°
_ 1 S B
1) MC=—5 5—4Q +6Q° ) AC= 0 —E+5 20 + 20
AL Q = 3. MC = 5 - 4(3) + 6(3)* = 47 At Q=3 AC =% +5-2(3) + 2(3) = 2867
AL Q =5 MC =5 —4{5)+ 6(5)" = 135 At Q=5 AC=¥+5-25)+2(5) =52

Find the marginal expenditure (ME) functions associated with each of the following supply
functions. Evaluate them at Q0 = 4 and Q@ = 10

a) P=@"+20+1

To find the ME function, given a simple supply function. find the total expenditure (TE) function
and take its derivative with respect to (2.

TE=PQ=(FP+20+1)0 =@ +20°+ 0

dTE
!-[E-E-‘.!E%dan

Al Q=4 ME = 3(d) + 4(4) + | = 65 At Q = 10, ME = 3{10)° + 4(10) + 1 = 341,
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412

4.13.

4.14.

4.16.

b) P=(F+050+3

TE = PO = (F +0.5Q + 3)Q = " + 0.50° + 30
ME =30F + Q+3

AQ=4 ME=34)"+4+4+3=55 At Q0 =10, ME = 3{10)" + 10+ 3 = 313,

Find the MR functions for each of the following demand functions and evaluate themat 0 = 4
and Q = 10.

@) Q=3-2P by 4-4P-Q =10
P=18=050 P=11-0250
TR = (18- 050)Q = 1BQ - 0.5¢" TR = (11 -0.250)Q = 11Q - 0.25¢°
dTR CdTR
MR = —o-= 18- MR = == = 11050
AlQ=4 MR=18-4=14 Alg=4 MR =11-054)=19
AlD=10 MR =18-10=8 AL =10, MR =11-05{10) = &

For each of the following consumption functions, use the derivative to find the marginal
propensity to consume MPC = 4C/dY.

a) C=0C,+b¥Y b) C = 1500+ 0D.75Y
n E - - E ]
MPC ¥ b MPC G 0.75

ﬂi'-ren- C=1200+08Yd, where Yd=Y~=T and T = 100, use the denvative 10 find the
MPC,

When C = fi¥d). make C = f{¥) before taking the derivative. Thus,
C = 1200 + 0.8(F = 100) = 1120 + 0.8Y

d
MPC = v 0.8

Miote that the introduction of a lump-sum 1ax into the income determination model does not affect the
value of the MPC (or the multiplier).

Given C = 2000+ 09Yd, where ¥d = ¥ — Tand T = 300 + 0.2Y, use the derivative 1o find the
MPC.

C = 2000+ 0HY - 300 - 02Y) = 2000 + 09Y - 270 - 0.IBY = |TH) +0.72F

dC
MPC = v 0
‘The introduction of a proportional tax into the income determination model does affect the value of

the MPC and hence the multiplier.

Find the marginal cost functions for each of the following average cost functions.

@) AC=L5{?+4=‘-%'
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(Given the average cost function, the marginal cost function is determined by first finding the total
cost function and then taking its derivative, as follows:

TC = (AC)Q = (15@+4+%)g = 1.5Q° +4Q + 46

dTC
HC-H-JQ*‘*

b) AC=%+5—3Q+IQ’

1%

1c=(3

+5-3Q+EQ-‘]Q = 160 + 50 - 3Q° + 20°

dTC
MC }E" 5- 60 +60°

OPTIMIZING ECONOMIC FUNCTIONS
4.17. Maximize the following total revenue TR and toial profit « functions by (1) finding the critical
value(s), (2) testing the second-order conditions, and (3) calculating the maximum TR or .
a) TR=32Q0-¢
1) TR =32-20=10
Q=16 critical value
) TR" = -1<0  concave, relative maximuom
3) TR = 3216) - (16} = 256

Mote that whenever the value of the second derivative is negative over the whole domain of the
function, as in {2) above, we can also conclude that the function i strictly concave and at a global
MAXImum.

b)) w=-0+110-24
) #==-20+11=40
=55 ecntical value
2) #«"=-2<0 concave, relative maximum

3 we==(55F+11(55)-24 = 625

¢} w= 4" - SCF + 2000Q — 326
1} = =—(F-100+2000=10 (4.1}
=¥+ 100 —2000) =0 (42)
(Q +50}Q-40)=0
g=-5 Q=40 cnitical values
2) " ==-20—-10
7 (40) = =2(40) = 10 = =90 <0 concave, relative maximum
o(=50) = =2[=50) = 10 = 9] >0 coavex, relative minimium

Megative critical values will subsequently be ignored as having no cconomic significance,
3) == —k40)" - 5(40)° + 2000(40) — 326 = 50,340.67

Note: In t1esting the second-order conditions, as in step 2, always take the second derivative from
the original first derivative (4.1) before any negafive number has been factored out, Taking the
second derivative from the first derivative afier a negative has been factored out, as in (4.2), will
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reverse the second-order conditions and suggest that the function is maximized at @ = —50 and
minimized at {J = 400 Test it vourself
d) w=—-0"-60"+ 14400 — 545
1) #=<30P-120+1840=0
~HO-2ANQ +24) =0
Q=20 Q=-24 cntical values
2) o= =60 12
*(20) = —6(20) - 12 = =132 <0 concave, relative maximurn
3) == =200 - &(20) + 1440(20) — 545 = 17 855

418, From ¢ach of the following total cost TC functions, find (1) the average cost AC function, (2)
the critical value at which AC is minimized, and (3) the minimum average cost.

‘;} T‘[:-Q’—-jﬂ’d-ﬁﬂﬂ
) AC= — =

2) ACC=20-5=10 Q=215
AC =21 convex, relative minimum
3) AC(LS) = (2.5 —5(25)+ 60 = 53.75

Mote that whenever the value of the second derivalive is positive over the whole domain of the
function, as in (2) above, we can also conclude thal the function is strictly convex and at a global
muniumn.

b) TC = @ - 21 + 500Q

a’-zlcéhsma = Q- 210+ 500

2) AC'=20-21=0 Q=105
AC"=2>0  convex, relative minimum

3} AC = (10.5) — 21{10.5) + 500 = 389.75

1) AC=

4.19. Given the following total revenue and toial cost functions for different firms, maximize profit
w for the firms as follows: (1) Set up the profit function w= TR — TC, (2) find the critical
value(s) where mis at a relative extremum and test the second-order condition, and (3) calculate
the maximum profit.

a) TR = 14000 -6Q° TC = 1500+ 80Q
1) == 14000 - 60" — (1500 + BOQ)
= —6Q" +1320Q - 1500
2) ¥=-12041320=0
0= 110 critical valoe
w=-12<0 concave, nelative maximum
3} == —6(110% + 1320(110) — 1500 = 71,000
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b) TR =1400Q - 7.50° TC = Q° -60"+ 1400 + 750
1} == 1400Q —7.5Q° — (" - 60" + 1400 + 750)
= =" = L5 + 12600 - 750
2} & =3P -304+1260=0
==-HNF+Q-42)=0D
= 3@ +2IHQ - 20) = 0
O==21 Q=20 critical values

[CHAP. 4

(4.3)

Take the second derivative directly from (4.3), as explained in Problem 4.17(c), and ignore

all negative critical values.
ve=-60-3

(10 = -6{20)=3=-123<0  concave, relative maximum

3) o= =(20)" - 1.5(20)* + 1260{20) - 750 = 15,850
c) TR=4350Q-130° TC='-550°+1500 +675
1) == 43500 - 130" - (Q" -~ 550" + 1500 + 675)
= =@ = 1.5(F + 42000 - 675
2) w o =300 = 150 + 4200 = 0
= —3{Q*+ 50— 1400) =0
= —3(Q + 40NQ - 35) = 0
Q=-40 (=35 eritical values
n = =60 =15
w(35) = —6(35) - 15 = -225<0  concave, relative maximum
3) = ~(35) = T.5(35)F + 4200(35) - 675 = 94 262.50
d) TR =5000Q - 10Q° TC=20"-40" + 1400 + 845
1) == 59000 ~ 10F — (20" - 407 + 1400 + 845)
= —20" - 60F + 57600 — 845
2) W= 600120+ 5760 =0
= ~6(0° + 20 - 960) = 0
= —6(0 +32Q-30) =0
Q=-32 @=30 critical values
¥ =-120-12
(M) = =14 - 12= =32 <D consave, relative maximem
3} == 230§ - 6{30)° + 5760(30) — 845 = 112.555

4.20. Prove that marginal cost (MC) must equal marginal revenue (MR) at the profit-maximizing

level of output.
z=TR=-TC
To maximize =, dw/d{) must equal zero,

Q" dg a0
4TR _dTC
dQ0  dQ
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A producer has the possibility of discriminating between the domestic and foreign markets for
a product where the demands, respectively, are

2, =21-01P, (4.4)
;= 50— 04P; (4.5)

Total cost = 2000 + 10Q where Q = Q, + ;. What price will the producer charge in order to
maximize profits (a) with discrimination between markets and (b) without discrimination? (¢)
Compare the profit differential between discrimination and nondiscrimination.

a)

b)

To maximize profits under price discrimination, the producer will set prices so that MC = MR in each
markel. Thus, MC = MR, = MR, With TC = 2000 + 100,

dTC
MC = *E = 10
Hence MC will be the same at all levels of output. In the domestic market,
Qi=2-01P
Hence, Py =210 - 109,
TR; = (210 - 10Q,) Q, = 2100, - 10(7
and MR, = ‘:;:' =210 - 200,
When MR, = MC, 0=, =10 @, =10
When {2, = 10, Py = 210 - 10(10) = 110
In the foreign market, 0, = 50-04P,
Hence, P, = 125 - 250,
TR; = (125 - 25Q,) 0, = 125Q, — 2.5(%
Thus, MR, = d:;‘ =125 - 50,
When MR, = MC, 125-5Q;= 10 Q=23
When @, = 23, Py=125-25(23) = 675

The discriminating producer charges a lower price in the foreign market where the demand is
relatively more elastic and a higher price (P, = 110} in the domestic market where the demand is
relatively less elastic

If the producer does not discriminate, F; = P; and the two demand functions (4.4} and (4.5} may
simply be aggregated. Thus,

Q=0 +Q=121-01P+50-04P =71 - 05P
Hence. P=142-20
TR = (142 - 20)Q = 1420 - 20"

- TR =
and MR = 10 = 142 — 40
When MR = MC, 12-4Q0=10 Q=33
When Q = 33, Po= 142 - 2(33) = 76

When no discrimination takes place, the price (alls somewhere between the relatively high price of
the domestic market and the relatively low price of the foreign market. Notice, however, that the
quantity sold remains the same: at P =78, ) = 134, @, = 196, and Q = 33.
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With discrimination,
TR = TR, + TRy = P, 0, + P, (2; = 1110} + 67.5(23) = 2652.50
TC = 2000 + 100, where 0 = (), + Oy
TC = 2000 + 10{10 + 23) = 233)
Thus, 7w TR =TC = 2652 50 — 233 = 322.50
Without discriminaton,
TR = PO = TH{33) = 2508

TC = 2330 since costs do nol change with or without discrimination. Thus, = = 2508 - 2330 = 178, Profits
arc higher wilth discrimination (322.50) than withoul discrimination.

Faced with two distinct demand functions

Q| = 14 = D-EP| 'Q; = 10=- U-HSFJ

where TC = 35 + 400, what price will the firm charge (a) with discrimination and (b) without
discrimination?

a)

by

With Q; = 24 —02P,,
.Fq = M) - SQ;

TR, = (120-5Q4) @, = 1200, - 5Q1
MR, = 120 - 10Q,

The firm will maximize profits where MC = MR, = MR,

TC = 35+ 400
MC = 40
Wheo MC = MR,, 4 = 120 - 100, 0,=8
When (), = 4, =120~ 5(8) = 80

In the second market, with @, = 10 - 0LO5P,,
Py = 200 ~ 200,

TR, = (200 - 20Q,) (1 = 2000, - 200
MR, = 200 - 400,

When MC = MR,, W=200-40, Q=4
When 0, = 4, Fy =200 - 20(4) = 120

If the producer does not disciminate, P, = P; = P and the two demand functions can be combined,
s follows:

O=0+0=4-02P+10-005P = 34 -025F
Thins,
P = 136 =40

TR = (136 - 4Q) @ = 1360 - 4Q°
MR = 136 - 80

At the profit-maximizing level, MC = MR.
40 = 136 - BQ =12
ALQ =12, P=13-412) = B8
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4.23. Use the MR = MC method to (a) maximize profit = and (&) check the second-order conditions,
given

TR = 1400Q - 7.5¢° TC= Q%607 + 140Q + 750
a) MR =TR’ = 1400 - 15Q, MC = TC" = 30" - 120 + 140
Equate MR = MC. 1400 - 150 = 30" - 120 + 140
Solve for Q by moving evervthing to the right.

P +I0-1260=10
NP +2HQ-20) =0
Q=-21 Q= XN) critical values
by TR" = =15 TC' =60 - 12

Since w = TR — TC and the objective is to maximize m, be sure to subtract TC" from TR, or you will
reverse the second-order conditions and select the wrong critical value.

o =TR -TC
==15=-60+12=-60Q-3
(20} = =6{M) -3 =-123<0 concave, relative maximum

Compare these resulis with Problem 4.19(56).

THE MARGINAL RATE OF TECHNICAL SUBSTITUTION

4.24. An isoquant depicts the different combinations of inputs K and L that can be used to produce
a specific level of output . One such isoquant for the output level ) = 2144 is

lﬁKlHLH - 2]“

(@) Use implicit differentiation from Section 3.9 to find the slope of the isoquant dK/dL which
in economics is called the marginal rate of technical substitution (MRTS). (b) Evaluate the
marginal rate of technical substitution at K = 256, L = 108,

@} Take the derivative of each term with respect to L and treat X as a function of L.
d d
— (16K L) = — (2144
df."' KL df.{n )
Use the product rule singe K i being treated as a function of L,

mx"“';{;'lw] + L% ﬁilﬁﬁ”*] =4 2144)

dl.
3 1 dK

mx“*-—f:'“} ( W16 =KW =0
{ i it r dl.
: dK

KL+ 4K ML 2 =0

Solve algebraically for dK/dL.
dK _ —12K™L™  -3K

dL - Ak mpW T

By AtK=256and L = 108

. i
dL 108
This means ihat if L & increased by | relatively small unit, K must decrease by 7.11 unils in order 1o
remain on the production isoquant where the production level is constant. See also Problem 6.51.

MRETS = = =711
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4.25. The equation for the production isoquant is
HKL“!LH = 5400

{a) Find the MRTS and (b} evaluate it at K = 243, L = 18].

a) Treal K as a function of L and use the product rule to find dK/dL, which s the MRTS.
2 3 d&
o S T P e -
25K 51. L*™25 SK dL 0

dK
¥ g -3 vsyus U8
10K L™+ 15K L T 0

Solve algebraically for dK/dL.
dK  —10K¥L™» -2K
dL " sK-mLB 3 - MRTS

f) Al K =243 and K = 181,
dK  —2(243)

MRTS 8 — = ——— = ={).895
dlL 3{1R1)

This means that if L is increased by | relatively small unit, K must decrease by 0895 unit in order to
remain on the production isoguant where the production level is constant, See Problem 6.52.

RELATIONSHIF BETWEEN FUNCTIONS AND GRAPHS
426. Given the total cost function C = Q* — 180* + 7500, use your knowledge of calculus to help
sketch a graph showing the relationship between total, average, and marginal costs.

Take the first and second derivatives of the total cost function

a)
C' =3¢ - 360+ 750
C=60-30
and check for (1) concavity and {2) inflection points
1} For @ <6, C"=0  concave
For Q =6, C"=>=0 COnVER
2) &2 -36=10
Q=6

CU6) = (6) — 18(6) + T50(6) = 4068

With C{(}) changing from concave 0 convex at O = 6,
(6, 4068)  inflection point

Find the average cost function AC and the relative extrema.
TC
AC = F = - 18Q + 750
AC' =20 -18=0
=9 critical value
conves, relative minimum

k)

AC =2 >0
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¢) Do the same thing for the marginal cost function

MC = C' = 30° - 36Q + 750
MC'=60-3%=10
=6 crtical value
MC"=6>0  convex, relative minimum
d) Sketch the graph as in Fig. 4-9, noting that (1) MC decreases when TC is concave and increasing at
& decreasing rate, increases when TC is convex and increasing at an increasing rate, and is at a
minimum when TC is at an inflection point and changing concavity; and (2) AC decreases over the
whole region where MC < AC, is at a minimum when MC = AC, and increases when MC > AC.
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Calculus of
Multivariable
Functions

51 FUNCTIONS OF SEVERAL VARIABLES AND PARTIAL DERIVATIVES

Stucly of the derivative in Chapter 4 was limited to functions of a single independent vaniable such
a8 ¥ = flx). Manv economic activities, however, involve functions of more than one independent
variahle. = = f(x, v) is defined as a function of two independent variables if there exists one and only
one value of ¢ in the range of f for each ordered pair of real numbers (x, ¥) in the domain of f. By
convention, # is the dependent variable; x and y are the independent variables.

1o measure the effect of a change in a single independent variable (x or y) on the dependent
varahble (2) in & multivariable function, the partial derivative is needed. The partial derivative of z with
Fespect fo X measures the instantaneous rate of change of z with respect to x while y is held constant.
It is written dzlax, affdx, f.(x, ¥), f.. or z,. The partial derivative of z with respect to y measures the rate
of change of ¢ with respect to y while x is held constant. It is written dz/dy, dffay, f(x.¥), [, or z,.
Expressed mathematically,

# _ o FEH 855) ~ fx.y) (5.1a)
ETS Ax
oz _ . flx.y +4y) - flay)
— = hm (5.1
N A Ay )
Partial differentintion with respect to one of the independent variables follows the same rules as
ordinary differentiation while the other independent variables are treated as constant. See Examples

1 and 2 and Problems 5.1 and 5.23.

EXAMPLE 1. The partial derivatives of a multivariable function such as 2 = 3’y are found as follows:

a)l  When dificrentinting with respect to x, treat the y term as & constant by mentally bracketing it with the
coefligent:

= [3}"‘] Y

B2
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Then take the derivative of the x term, holding the ¥ term constant,
a2 . A
Pt [3¥] = (x*)

=[3) -2

Recalling that a muliplicative constant remains in the process of differentiation, simply multiply and
rearrange terms to obtain

%"’--'ﬁrﬁ’

k) When differentiating with respect Lo v, treal the x lerm as a constant by bracketing it with the coeflicient;
then take the derivative as was done above:
z2 =3y
.. TR e

= [37] 3y = 0y

EXAMPLE 2. To find the partial derivatives for z = 5’ — Iy + Ty
a} When differentiating with respect 1o x, mentally brackel all ¥ terms 1o remember lo treat them as
constants:
2= 5 - [yl + [7y']

Then take the derivative of each term, remembering that in differentiation multiplicative constants
remain but additive constants drop out, because the derivative of a constani is zero,

at _d . d ..
== ) = ) = () + =y
= 157 = [3y'] - 2x +0
= 15¢° - Gy’
b) When differentiating with respect to y, block off all the x terms and differentiate as above.
z = [S] = [3]y* + 7
oz o d d
3 = H 1B 20N+ 29
= (= [3?] - 2y + 35y*
= =y + 35

See Problem 5.1.

5.2 RULES OF PARTIAL DIFFERENTIATION

Partial derivatives follow the same basic patterns as the rules of differennation in Secbon 3.7. A
few key rules are given below, illustrated in Examples 3 to 5, treated in Problems 5.2 to 5.5, and verified
in Problem 5.23.
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5.2.1 Product Rule
Griven 2 = glx, y) - hix, y),

3z et
p——— W) —+ hlx.v) -
= glx.y) - (x.y)

FlR &l

= aley) 5+ hxy)-
EXAMPLE 3. Given z = (3x + 5)(2x + 6y), by the product rule,

% = (3x+5H2) + (25 + 6y)(3) = 12x + 10+ 18y
o = (3% 5)(6) + (20 + 67)(0) = 18x+ 30
5.2.2 Quotient Rule

Given z = g{x, ¥Vh(x,y) and h(x,y) #+ 0,
iz _ h(x.y)- dglix— glx.y) - dhlax

i [P
92 _ hix.y)- a51dy = g(x.y) - Wiy
% G T

EXAMPLE 4. Given £ = (6x + Ty)i{5x + 3y), by the quotient rule,
a2 _ (5x + 3y)(6) - (6x + Ty)(5)

ax {5z + 3y)
o Hx+ 18y —30x-35y = -1y
(Sx + 3y) {5z + 3y)
a " (Sx + 3yHT) — (6x + Ty)(3)
gy (5x + 3y
_35.:+2|y*lh—2|y_ 17
(5x+ 3yF {3x + 3y)

5.2.3 Generalized Fower Funcrion Rule
Given z = [glx, v)]".

Ez —l,f‘E
% = gl

9 _ w1, 9%
» niglx, ¥)) F”

EXAMPLE 5. Given z = (x' + 7¥')", by the generalized power function rule,

T~ 4@+ TP (30 = 12000+ Ty

% = 408+ TP) - (14y) = S6y(x" + Ty)'

[CHAP. 5

{(3.2a)

(5.2b)

{3.3a)

(5.3b)

(5.4a)

(5.4b)
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53 SECOND-ORDER PARTIAL DERIVATIVES

Given a function z = f(x, y), the second-order (direct) partial derivative signifies that the function
has been differentiated partially with respect to one of the independent variables twice while the other
independent variable has been held constant:

— N AN ., _ 4 fez\ _ 'z
f'*_[ﬂ}'_ﬂ(g)_ﬁ Iw“{frly_"a;(@)'—dy;

In effect, f,, measures the rate of change of the first-order partial derivative f, with respect to x while
y is held constant. And f,, is exactly parallel. See Problems 5.6 and 5.8,

The cross (or mixed) partial derivatives f,, and f,, indicate that firsi the primitive function has been
partially differentiated with respect to one independent variable and then that partial derivative has
in turn been partially differentiated with respect to the other independent vanable:

- _efae\ &z - LY AT
fo=th=2(E)=5m S-r=-2(5) -5

In brief, a cross partial measures the rate of change of a first-order partial derivative with respect to
the other independent variable. Notice how the order of independent vaniables changes in the different
forms of notation. See Problems 5.7 and 5.9.

EXAMPLE 8. The (a) first, (b) second, and {c) cross partial derivatives for £ = 71" + Yxy + 27 are taken as
shown below.

a) %—z.-11f+ﬂy %E-:,,-‘h+lﬂ}"

k) a:_f=z.,=¢2t d—z-§=z,,=4ﬂlfj

) ;J;=§(%}=§{Hx‘+ﬂﬂ=z“=9
:—;=£(%}=%iﬁx+m}‘}=z"=9

EXAMPLE 7. The (a) first, (b) second, and (¢) cross partial derivatives for £ = 3¢ y" are evaluated below at
=4 ym ],

a) 2, = ixy’ 2, =9y

£,4,1) = 6(4)(1)" = 24 2,(4,1) = KAV (1) = 144
b) 2 =6y : I, = 185y

£(4,1) = 6(1)" = 6 £,(4,1) = 18(4)(1) = 288
0 1= %{ﬁﬂ"] = 1y’ 2= L 06y = 18y’

(4, 1) = 1B)1) = 72 2,48,1) = 18A)1) = T2

ByYoung's thearem, if both cross partial derivatives are continuous, they will be identical. See Problems 5.7
o 5.9.

54 OPTIMIZATION OF MULTIVARIABLE FUNCTIONS

For a multivariable function such as z = f(x,y) to be at a relative minimum or maximum, three
conditions must be mel:

1. The first-order partial derivatives must equal zero simultaneously. This indicates that at the
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given point (a, b), called a critical point, the function is neither increasing nor decreasing with
respect 1o the principal axes but is at a relative plateau.

The second-order direct partial derivatives, when evaluated at the critical point (a, b), must
both be negative for a relative maximum and positive for a relative minimum, This ensures
that from a relative plateau at (a, b) the function is concave and moving downward in relation
to the principal axes in the case of a maximum and convex and moving upward in relation to
the principal axes in the case of a minimum.

The product of the second-order direct partial derivatives evaluated at the critical point must
exceed the product of the cross partial denvatives also evaluated at the critical point. This
added condition is needed to preclude an inflection point or saddle point.

In sum. as seen in Fig. 5-1. when evaluated at a critical point (a.b),

; ,=0 !
=0
&) 7
1 ¥ I

Fig. 5-1
Relarive maximum  Relative mininwm
L ff, =0 L. fiufy=0
2. o S <0 2 fwl>0

% .ru 'ﬂr}[ﬂ_r}z 3. fu'.fvr}{.ﬂ}]:

Note the following:
1) Since [, =f, by Young's theorem, f,, ‘f.. = (f,). Step 3 can also be written f.-f,

2)

=1 ")1 >0

If fo. - f,, < (f.,), when f,, and f,, have the same signs, the function is at an inflection poins;
when f,, and f,, have different signs, the function is at a saddie point, as scen in Fig. 5-2, where
the function is at @ maximum when viewed from one axis but al a minimum when viewed from
the other axis -
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3) I fi,-f,y, = (f,), the test is inconclusive. See Example 8 and Problems 5.10 and 5.11; for
mflection points, see Problems 5.10(c) and 5.11(5) and (c): for saddie poinis see Problems
5.10{d) and 5.11(a) and (d).

4) 1If the function is strictly concave (convex) in x and y, as in Fig 5-1, there will be only one
maximum (minimum}, called an absolute or global maximum (minimum}). If the function is
simply concave (convex) in x and y on an interval, the cntical point is a relative or local
maximum {minimum).

EXAMPLE B. (a) Find the critical points. (b) Test whether the function is at a relative maximum or
minimum, given
==+ 4T =S4y + 12
) Take the first-order partial derivatives, set them equsl o 2ero, and solve for £ and v

5L=-10+147=0 L, =6F=54=0 (5.5)
=49 ¥=9
= =7 y= 3
With x = =7, y = =3, there are four distinet sets of eritical points: (7,3), (7.-3). (—7.3), and
(—1,-3),
k) Thake the second-order direct partials from (3.5), evaluate them at each of the critical points, and check
the signs;
L™ ~hr I" - 12.?
1) LT, 3) = —6(T) = —42<() 2,(7.3) = 12(3) = 6 >D
2} L.01.— 3= -6(7) = —42 <=0 L 7. —3)=12—-3)=-3<0
3 LT3 =-6(-T)=42=0 2,(~7.3) = 12(3) = 36> 0

4) 2(=7,-3) = =6(=T) = d2>0  2,(=7,-3) =12(-3) = ~36<0

Since there are different signs for each of the second direct partials in (1) and (4), the function
cannot be at & relative maximum or minimum at (7, 3) or (=7, —3). When [, and f,, are of different signs,
fus [y cannot be greater than (f,, ), and the function is at a saddle point,

With both signs of the second direct partials negative in (2) and positive in (3), the function may be
at a relative maximum at (7, —3) and at a relalive minimum ai {—7,3), but the third condition musi be
tested first to ensure against the possibility of an inflection point.

¢} From (5.5). take the cross partial derivatives and check 10 make sure that z..(a, b) - z,,(a, b) > [z, (a. B)F.

=0 2z.=0
2.l b) -z, 4a.B) > [z, e b)Y

From (2}, {—42) + (—36) > (oY
15120

From (3), (42) - (36} = (0
1512>0

The function is maximized at (7, —3) and minimized at {—7, 3); for inflection points, see Problems 5.10{(c)
and 5.11{h) and (c).

55 CONSTRAINED OPTIMIZATION WITH LAGRANGE MULTIPLIERS

Differential calculus is also used to maximize or minimize & function subject to constraint. Given
a Tunction f(x,v) subject to a constraint g{x.y) = k (a constant), a new function F can be formed by
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(1) setting the constraint equal to zero, (2) multiplying it by A (the Lagrange multiplier), and (3) adding
the product to the original function:

Flx.y,A) = flx,¥) + Alk = glx. »)} (5.6)

Here Fix, v, A) is the Lagrangian function, f(x.v) is the onginal or ebjective funcrion, and gix, y) is the
constraint. Since the constraint is always set equal to zera, the product A[k — glx, y)] also equals zero,
and the addition of the term does not change the value of the objective function. Critical values xg, V.
and A, at which the function is optimized, are found by taking the partial derivatives of F with respect
1o all three independent variables, selting them equal to zero, and solving simultancously:

Flx.y.A)=0 Elx,y,A)=0 Filx,v,A) =0

Second-order conditions differ from those of unconstrained optimization and are treated in Section
12.5. See Example 9; Problems 5.12 to 5.14; Sections 6.6, 6.9, and 6.10; and Problems 6,28 to 6,39 and
6,41 to 6.44.

For constraints involving inequalities, see Chapter 13 for concave programming.

EXAMPLE 9. Optimize the function
£ =dx' + day + 6

subject to the constraimt x + y = 56,

I. 5ot the constrammt equal 1o fero by subtracting the vanables from the constant as in (5.6), for reasons 1o
be explained in Section 5.6,

Sb-x—y=0

Multiply this difference by A and add the product of the two to the objective function in order 1o form
the Lagranpan funchon £,

Z=4+3ay + 6y + A(S6 - x ~ ¥) (57

1. Take the first-order partiald, set them equal to zero, and solve simulianeously.

Z,=8r+3y—-A=0 (5.5)
2, =3+ 12y~A=0 (5.9)
H=S8-x-y=10 (5.1

Subtracting (5.9 from (3.8) 1o eliminate & gives
Sx=-9%=0 x=18
Substitute x = 1.8v in (3, 1),
S6-18y—v=0 =20
From which we find
I, = 36 Ao = 348
Substitute the critical valees in (5.7),
Z = 4(36) + 3(36)(20) + 6(20)" + (3I48)(56 - 36 - 20)
= o 1296) + 3T + 64000 + I48(0) = 9744
In Chapter 12, Example 5, it will be shown that £ is at a minimum. Notice that at the critical values, the

Lagrangian function Z equals the objective function z because the constraint equals zero. See Problems
5.2 w 5.14 end Sections 6.6, 6.9, and 6.10.
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56 SIGNIFICANCE OF THE LAGRANGE MULTIPLIER

The Lagrange multiplicr A approximates the marginal impact on the objective function caused by
a small change in the constant of the constraint. With A = 348 in Example 9, for instance, a 1-unit
increase (decrease) in the constant of the constraint would cause Z to increase (decrease) by
approximately 348 units, as is demonstrated in Example 10, Lagrange multipliers are often referred 1o
as shadow prices. In utility maximization subject to a budget constraint, for example, A will estimate
the marginal utility of an extra dollar of income. See Problem 6.36.

Note: Since in (5.0) above Alk ~ g(x,v)] = Alg(x.y) = k] = 0, either form can be added 10 or
subtracted from the objective function without changing the critical values of x and y. Only the sign
of A will be affected, For the interpretation of A given in Section 5.6 to be valid, however, the precise
form used in Equation (5.6) should be adhered to. See Problems 5,12 to 5.14,

EXAMPLE 10. To verify that a l-unit change in the constant of the constraint will cause & change of
approximately 348 units in Z from Example 9, take the original objective function z = 4v' * 3ay + 6 and
optimize it subject to a new constraint x + ¥ = 57 in which the constant of the constraint is | unit larger,

Z =4’ 4 Zuy + 6 4 AST -~ x - y)

L,=B+Iy=-A=10

Z=+12y-A=0

2, =51-x~ym
When solved simultancously this gives

= 3661y, = 2036 A - 3542
Substituting these values in the Lagrangian function gives Z = 10,098 which is 351 larger than the old construined
optimum of 9744, close to the approximation of the 348 increment suggested by A,

57 DIFFERENTIALS

In Section 3.4 the derivative dy/dx was presented as a single symbol denoting the limit of Ay/Ax
as Ax approaches zero. The derivative dyv/dx may also be treated as a ratio of differentials in which
dy is the differential of y and dx the differential of x. Given a function of a single independent
vanable y = f(x). the differential of y, dv, measures the change in v resulting from a small change
in x, written dx.

Given y = 20" + St + 4, the differential of y is found by first taking the derivative of y with respect
to x, which measures the rate at which v changes for a small change in 1.

:—i =de+5 a denvative or rate of change

and then multiplying that ratc at which v changes for a small change in x by a specific change in x(dx)
to find the resulting change in v(dy).

dy = (4x + 5)dx __ a differential or simple change
Change in v = rate at which y changes for a small change in x - a small change in x.

EXAMPLE 11.
L Iy =de'+5¢° = 7, then dyidx = 12¢" + 10x and the differential is
ddy = (126" + ey ele
2 Hy=(2x-5), then dyldy = 2(2x = §}2) = & - 20 and the differential is
dy = (Rx ~ 20}y
Sce Problem 5.15.
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58 TOTAL AND PARTIAL DIFFERENTIALS

For a function of two or more independent variables, the rotal differential measures the change in
the dependent variable brought about by a small change in each of the independent variables. If
z = f(x,y), the total differential dz s expressed mathematically as

dz = 2.dx + 2,dy (s.11)

where z, and z, are the partial derivatives of z with respect to x and y respectively, and dx and dy are
small changes in x and y. The total differential can thus be found by taking the partial derivatives of
the function with respect to each independent variable and substituting these values in the formula
above,

EXAMPLE 12. The total differential is found as follows:
1. Given: z = x* +Bxy + 3y
=4 +8y g =K+9
which, when substituted in the total differential formula, gives
dz = (4 + By) dx + (Rx + 97)dy
2 Given:z=(x—y}¥z+1)

LA -(e-yRl) _ y+l

- (= + 1) (x+1)
={I+1]{—l}—fx—y}{ﬂ]=—'I{:-I'-I}: =1
% [x+ 1y x+1y 1+

, ] y+1 1
The total differential is de = s de (I+l)dy

If one of the independent variables is held constant, for example, dy = 0, we then have a partial
differential:
dr =z, dx
A pardal differential measures the change in the dependent variable of a multivariate function

resulting from a small change in one of the independent variables and assumes the other independent
variables are constant. See Problems 5.16 and 5.17 and 6.45 1o 6.52.

59 TOTAL DERIVATIVES

(Given a case where z = f{x,y) and y = g(x), that is, when x and y are not independent, a change
in v will affect z directly through the function f and indirectly through the function g. This is iltustrated
in the channel map in Fig. 5-3. To measure the effect of a change in x on : when x and v are not
independent, the total derivative must be found. The rotal derfvative messures the direcr effect of

P |—f— § |=—f | T
53

Fig.




CHAP §) CALCULUS OF MULTIVARIABLE FUNCTIONS 91

on 2, dgidx, plus the indirect effect of x on z through y, Ed}'

Py o In brief, the total derivative is

2 d
== z.+:,£ (5.12)
See Examples 13 to 15 and Problems 5.18 and 5.19.

EXAMPLE 13. An alternative method of finding the total derivative is to take the total differential of 2
dr = g de + 2, dy
and divide through mentally by dr. Thus

dx “dr dx
. dz dy
ance dyldx = 1, o z,t:.a

EXAMPLE 14. (iven
z=flx.y) = 6 +Ty
where y = g(x) = 4’ + 3x + 8, the total derivative dz/dx with respect to x is

i
Fr A
where z, = 180, z, = 7, and dy/dx = & + 3. Substituting above,

E: 182° + 7(8x + 3) = 187 + S6x+ 21

To check the answer, substitute y = dx” + 3x + 8 in the original function to make = a function of x alone and then
take the derivative as follows:
2 =60 + T(4 + 3x + 8) = A’ + 28 + 21x + 56

Thus, %-1ﬂﬂ+ﬁﬁz+21

EXAMPLE 15. The 1otal derivative can be expanded 1o sccommodate other interconnections es well, Given
r=8F+3y s=& y=5
the total derivative of 2 with respeat to r then becomes
dz dx dy

—_— - —

+ a——
& @ T
where 2, = lhx, 7, = v, drfdr = 4, and dv/di = 5, Substituling above,

E-]ﬁ:[ﬁ-hﬁy[i}-ﬁh-rﬁﬂy

Then subsiituting x = 41 and y = 5 immediately above,

E = 64(4r) + (51 = 4061
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510 IMPLICIT AND} INVERSE FUNCTION RULES

As seen in Section 3.9, functions of the form y = f(x) express y explicitly in terms of x and are
called explicit functions. Functions of the form f{x, v} = () do not express v explicitly in terms of x and
are called implicit functions. If an implicit function f(x, v) = 0} exists and £, # 0 at the point around
which the implicit function is defined, the total differential is simply f,dx + f, dy = 0.

Recalling that o derivative is a ratio of differentials, we can then rearrange the lerms to get the
implict function rule;

dy .
dx  f,

Notice that the derivalive dy/dx is the negative of the reciprocal of the corresponding partials.
dy_-h__ 1

e f, [

Given a function ¥ = f(x), an imverse function x = f~'(y) exists if each value of y vields one and
only one value of x. Assuming the inverse function exists, the inverse function rule states that the
derivative of the inverse function is the reciprocal of the derivative of the original function. Thus, if
@ = f{P) is the original function, the derivative of the original function is dQ/dP, the derivative of the
inverse function [P = f(Q)] is dP/d(, and

P 1 . dO
a0 " dgiap ~ Providedgp#0 .

See Examples 16 and 17 and Problems 5.20 to 5.22, 6.51, and 6.52.

(5.13)

EXAMPLE 18, Given the implicit functions!
(o) IF=y=0 (B) -7 -BE=0
the derivative dyidx is found as follows:

dy A
ay From (5.13), R L |
ilx L
Here [, = 145 and [, = — . Substituting above,
d 14x ;
i L

The function in this case was deliberately kept simple so the answer could easily be checked by solving
for y in terms of x and then taking the derivative directly. Since y = Tr®, dvidr = 1dx.

B dy  _f__12¢ 120
dx f, =3 35

Compare this answer with that in Example 16 of Chapter 3.

EXAMPLE 17. Find the derivative for the inverse of the following functions;
l. Given QQ = 20-2P,

ar 1
dQ dQidP

where dQ/dP = ~2. Thus,
P11

&g -2 12
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2. Given Q =23+ 3P,

ar 1 1
—= - 20
40 dQidP 9 w29

Solved Problems

FIRST-ORDER PARTIAL DERIVATIVES
5.1. Find the first-order partial derivatives for each of the following functions:

al ;=E_|1+I-‘|m].-+5}re b) zﬂl;l.‘l-l-?.!j_v—?f
2, = 16x+ 14y £, = 1267 4 dry
I, = ldx+ 1y z, = 2x* = 35

€) 2z =6w +dwx+ 3" — Ty — 8 d) z=2w"+8wxy—x'+y
.= 18w + dx 2. = dw = Rey
,=dw+bc— Ty L, =8wy—2r
£, = =Tx— 16y 7, = Bwx + 3y

5.2. Use the product rule from (3.2) to find the first-order partials for each of the following
functions;
a) z=3(5x+7Ty)
2, = 3(5) + (53 + Tw){6x)
= 455" + 42xy
and 7, = A7) + (5x+ Ty)(0)
=xr
B) 2= (9x-4y)(12x +2y)
z, = 19— 4pH12) + (120 + 2¥)(9)
= 108x — 48y + 108x + 18y = 2165 — Ny
and 7, = (8x = dy)2) + (12x + 2y} - 4)
= 18x = 8y — 48x — By = — 30 — 16y
c) 2= (2*+6y)(5x—3y")
z, = (27 + By)5) + (Sx — Iy Ndx)
= 10 + 30y + 2’ = 120y"
= 30’ + 30y - 120y
and g, = (2 + 6y} —9') + (5x = 3y')(6)
= =187 = S4y" 4 e = 18y"
= =T = 1822 ¥ + Mix
d) z={(w=x—y}3w +2x—dy)
Zu = (w=x = ¥} + (3w + 2x = 4y)(1)
=6w—x—Ty
L={w=—x=y)2)+ 3w+ 2x— 4y —1}
= —w —4x+ 2y
and =, = (w-x—=y)—4)+ 3w+ x4yl 1)
w —Tw+ 2z + By
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£3.  Use the quotient rule from (5.3) 1o find the first-order partials of the following functions:

- S P + ¥
ﬂ} L ﬁl' o T_F b] - 3?
L (6x = Ty)(5) ~ (SxN6) . = )-GO
3 (6x — Tyy ' (3yr
- =l
6x - TyP 3y
__ (6x=Ty)0) ~ (5x)(=T) 4 o o -3
sl (6x-T3p new GyF
- X _ -x
- {6x = Tyy (3yy 3
y on k=Y 2=y
) =Ty D Tavy
__ (5x +2y)(4) - (4 = 5y)(5) il (3x + 2y W2x) = ( — ¥ N3)
b (5x +2y) . {3z + 2yF
o _ 37+ dxy + 3y
(5x + 2y) {3x + 2)°
o (5x 4+ 29N -9) - (4x — Sy )2) _ (B4 20(=2) = (£ - F)D)
nt 5 (5x + ) "l & (Ax + 2y
— Lo by -2y
(Sx4+ 2y (3x + 2y)

5.4,
generalired power function rule from (5.4):

a) z=(x+y)?
2.= x+yHl)
=2z+y)
= 2{x + y}1)
= Xx+y)
= (T +4¥7%)
2. = 5T + ") 14x)
= The{7x* + 4"y
and z, = 5(Tx + & )N12¥)
= 6y (7x" + H7)

L,

and z, and 1z,

c)

i
i

and g,

b) z=(2~

d) =[5

Find the first-order partinl derivatives for each of the following functions by using the

sy

= 3{2x - 5¥)'(2)

= 6{2r — Sy}

= }2x - Sy (-5)

= ~15{2c - Syy
+4x + 7y)?

= 3(5w + dx + Ty)'(5)
= 15(5w + 4x + Ty}
= 3(5w + dx + TyP(4)
= 12(5w + 4x + Ty)
= 35w + 4 + Ty)(T)
= 21(5w + 4x + Ty)*

55. Use whatever combination of rules is necessary (o find the first-order partials for the following

funections:

_(5¢ =T3¢ + 8y)
$ dx+ 2y

a)
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Using the quotient rule and product rule,
L G+ 2[5 - Ty)(6a) + (30 + By)(102)] - (S ~ Ty)(3x* + By)(4)
; {dx + vy
_fax+ 23)(30x" = d2xy + 30" + Blyy) = (57 = Ty)(12¢7 + 32y)
(4x + 2y)

_ {4x + 2y)60e" + 38xy) — (5% — Ty M12¢* + 32y)

{4o + 2y)°
_ (A + 2)[(8° — Ty)8) + (3¢ + SyN-T)] - (8¢~ 7936 + By)(2)

(4x + 2p)°
_ [4x 4 2y)(4n — 56y — 217 — 56v) — (54" ~ Ty)(6c” + 16y)
(dox + 2y)

_ (4 +29)(19¢° — 112y) — (52 — Ty N6’ + 16y)

(dx + 2y}

and 2z,

by z=(5%' —4;]’[11: + ')
Using the product rule and the generalized power function rule,
7, = (50 = dy)(2) + (2x + T H2(5x* - 4y) 10x)]
= 2(5 — 4y) + (2x + TN 1002 - Blley)

and 2, = (S = dpP(2197) + (2e + Ty)[2(5 — 4y}~ 4)]
= 2157 = dy) + (2r+ Ty =400 + 32y)

- (3x + 11y)*
2x + Gy
Using the quotient rule und the generalized power function rule,
(2x + 63)|3(3x + 11yF(3)] - (3 + 11)%2)
= (2 + by)’
(18 + 54y)(3x + L1y} = 203 + 11y)
(2x + 6y)
_ (2r + 69)[3(3x + 11y)P(11)] — (3x + 11y)'(6)
) (2¢ + )’
- (66 + 198y)(3x + 11y} — 6(3x + 11y)
(Zx + 6y)

)

and z,

& + Ty\*
d) z (M1r+ly)

Using the generalized power function rule and the guoatient rule,
o z{Ex - ‘?:.r){ [5x + 2vKB) — (Bx + Ty}5)

Sx+2y (Sx+ 2y
_ 1654 1dy[ =19 | _ ~(266y + 304xy)
Sx+2y | (5x+ 2y {5z + 2
fr+ T Ax+ W7 = (Br + Tyi(2)
o "‘2{5: +=:)[{ IJPi:s:-+- 2y : ]
_l6x v My 19x _ 3047 + 26y
Sx+2y | {5+ 2y) | {5x + 2v)
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SECOND-ORDER PARTIAL DERIVATIVES
5.6. Find the second-order direct partial derivatives z,. and z,, for each of the following functions:

g) z=L+Ay+y
L=+ E=2r+ly
L ™2 Ty =2
b) z=x"-9%xy-3
L=d'-% =%~
2y = hx z,, = —18y
) z=ly'+7c
2= '+ 21y 2, =8y’ + 70
2o = 42xy Iy, = xy’
d) z=2'+2y -3y’ -2
2, =4+ Ity - 3y z, =2ty — Sy’ — 6

z,, = 122 + xy? 7, = 2r' = 18xy — 12y
e) z=(12x-N)
z, = 212 - Ty)12) 2, = 212z = TyH~7)
= 2RAx — 168y = —|68x + 98y
2o ™ 248 2, =9

N z=(Tx+3)
o = 3T + 39T £, = ¥ 7x + 3vf(3)

=2(Tx + 3y = ¥Tx + 3y
2o = 42(Tx + YNT) z,, = 18(7x + 3y)(3)
= 208Kz + B&2y - I7Re + 162y
B z=(x"+2)
2, = 402 + 2y (Lr) = Brl{a® + 2y¥) £, = d(x" + 2y)Y(2) = B(x’ + 2p)"
2o = B3+ 20020)) + (F + 2)(B) 2y, = 24087 + 2y)(2) = 48(7 + 2y)
= 482°(x + Jy)* + B{xF + yY

5.7. Find the cross partial derivatives z,, and z,, for each of the following functions:

@) z=3+12y+5y
Ly=0c+12y z,=1lx+10y
Ty =12 2.=12

by z=2-xy-2
r,mif-y 2, = —x—6y
L=l I =—1

c) z=8cy-1lxy’
2, = 16y —11y*  z, =8 — 33
z,, = 16x = 33y 2, = 16k — 337

*Bly the product ruke.
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d) = (8x-dy)’

7, = 5(8Bx — 4¥)(K) z, = 5(8x —dy)'(—4)
= 40(8x — 4y} = —20(8x — dy)*
2, = 160(8x = 4y)’(~4) Ty = —B0(8r — dy)'(8)

= —~640(Rx — 4y)’ = —(40{8x — 4y)*

In items {a) through (d ) above, notice how, in sccord with Young's theorem, z,, = 2, no matter which first
partial is taken initially.

58. Find the first-order and second-order direct partial derivatives for the following functions:
a) z=x"y"
2, = 0Ax 04yt g, = 0.6y 0
2= —(x 9A8 g o 24Py
by fla.y)=x"7y"

[, =07y f, = 02y ™8
fu = 02171322 foo = ~016:27y 13
c) =2ty

r, = 12wy’ £, = 10wty £, = Gue'y
Tue ™= 60y 7, =40wiXy oz, =12w'2y
d) flx,yz) = 106y
fomNeps [ =y
ru—ﬂhf:" ,f,,,-:ﬂr":‘ for = 120" y* £

589. Find the cross partials for each of the following functions:
a) z=x""y™
z, = 0dx u'r},ns 2, - IJJJ'“_T'”
Iy = 01500 y=02 Do = (L15x™0Ty~02

b)) flx,y) = 20y

£, =0jx"1%y08 f, = 08Bty
fo = 008 99y~ £ = 00Rx %y o2
) z=w'x'y

2. = Wix'y' z, = dw'x'y z, = 3n'x'y
T = 12wy 2. = 12472y 7 = Owid'y
Luy = ngx‘f Loy = ﬂll-""-l'"_i"l Lo ™ ilﬂ"_l’l}']

d) flx.y.z)=x'y ™z

fi= 3y ™ f, = =4y 3 fo= =Syt~

e L A e

fo = —180y7 2 fo=200y7 2" fo = M’y 22"
Note how by Young's theorem in (¢) Zu, = Zews T = 2o, 80d 2, = £, 80d in (d) £, = fow fic = fio, and
er: ™ ﬂ_.-
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OPTIMIZING MULTIVARIABLE FUNCTIONS

5.10. For cach of the following quadratic functions, (1) find the critical points at which the function
may be optimized and (2) determine whether at these points the function is maximized, is
minimized, is at an inflection point, or is at a saddle point.

g) z=3—xy+2y ~dx-Ty+12
1) Take the first-onder partial derivatives, set them equal to zero, and solve simultaneously,
using the methods of Section 1.4,

,=bc-y-4=0 (5.15)
5, = —x+dy—=T=0 {5.16)
=1 y=1 (L2) critical point

2)  Take the second-order direct partial dervatives from (5.15) and (5.16), evaluate them at the
critical point, and check signs.
Im=0 =4
1.(1,2)=6>0 g, [1.2)=4>0

With both second-order direct pariial derivatives evervwhere positive, the [unction is
possibly at u global minimum. Now lake the cross partial from (5.15) or (5.16),

ip==lwmg,
evaluate it at the critical point and tesi the third condition:

-:n{lrz." =)= :"“.2}

u(l2) - 2,1.2) > [2,(L2)P
6 - 4 > (-1¥

With 2,2, > (z,,) and 2., 2., >0, the function is st a global minimum at (1.2).

b) flx.y) = 6lx + My —dxy -6 -3 + 5
1} Take the first-order partials, set them equal to zero, and solve,

f=60-d4p-12x=0 (5.17)
f=3-6y-axr=0 (5.18)
tr=4 y=3 (43} critical point

2) Tuke the second-order direct partials, evaluate them at the critical point, and check their
sigms.

.r"= =iz fn = —6
fud8.3)==12<0 fold3) = —-6<0

Take the cross partial from (3./7) or (5.18),
L- i K .f,u
evaluate it at the critical point and test the third condition:

Jold3) = =4 = [,{4,3)
fuld.3) - [14.3) > | £44,3)F
-12 « -6 > (-4p

With _f,,f.,:-(_.",,_l“ and f,.f,, <0, the function 15 al a global maximum st (4,3).
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€) z=48y-3c'-fuy-2y' + Tk
1)
;_;—ﬁ.t—ﬁ_v+12=[l
2, = —6r—4dy+48=0

r=0 y=12 (0,12)  critical point

2) Tewt the second-order direct partials at the crilical point.

T = 6 S

1.(0,12) = -6<0  2,(0,12) = -4<0
With z,, and z,, < 0 for all values, the function may be st & global maximum, Test the cross

partials 1o be sure
Ijr = _ﬁ = :_'j
z,(0,12) = —6 = ,(0,12)
2, 12) - 2,00, 12) > [2,,(0.12))°
-6 - =4 <(=6f
With ¢, and z,, of the same sign and 2z, < (z,,F, the function is at an inflection point ai
(0, 12).

d) fixy)=5 =3y =30x+ Ty + &y

1) fi=10x+4y-30=0
f,=dr-6y+7m0

x=2 y=25 (2,25) critical point
fu=10 fn= =6

2)
fA2,25)=10>0  f,(2,25)= -6<0

Testing the cross partials,
fo=4=]a
£u(2.2.5) - fAR.25)>[f(2.25)F
10 v o=-f o« &
Whenever f,, and f,, are of different signs, f,,f,, cannot be greater than (f,,), and the
function will be at a saddle point,

§.11. For the following cubic functions, (1) find the critical points and (2) determine if at these points
the function is at a relative maximum, relative minimum, inflection point, or saddle point.
a) z{x,y) =3 -5 - 225x+ 0y + 23

1) Take the first-order partials and set them equal to zero.
L= -225=0

L=—ly+70=0

(519
(5.20)

Solve for the critical points,

0 = 5 =10y = =70
X =25 y=1
x= =5

(5.7) {(—5.7) critical points
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From (5.9} and (5.20), take the second-order direct partials,
I, =18 z,=~-10
evaluate them at the eritical points and note the signs

Z.(5.7) = 18(5) =90 >0 7, A5.7) = —-10<0D
(=57 = 18(-5) = =<0 z, (-5N=-10<0

Then take the cross partial from (5.79) or (5.20),
m=0=1,
evaluate it at the critical points and test the third condition.

ulab) - g e k) = [gla b))
AtL(5,7), 9 - -10 < 0
At{-5.7), -90 - -10 > 0

With 2,2, >(2,,) and 2z, 2,,<0 at (-57), 2{-57) is a relative maximum. With
Teely < (2,0 and 7, and z,, of different signs =1 (5,7), 2(5,7) is a saddie point.

B) flxy) = 3¢ + 1.5y = 18xy + 17

1}

2)

Set the first-order partial denvatives equal to zero,
=9 =18y =0 (5.21)
fi=3—-18&=0 (5.22)
and solve for the critical values:
18y =9  3y=18c
y=k  y=f (5.29)

Selting v equal to v, b = 6
£—12x=10
He=12)=90
x={] r=1]2
Substituting x = 0 and x = 12 in ¥ = fx from {5.23),
y=6(0)=0
y=06{12)=T2
Therefore, (0.0) (12,72}  critical puoints

Take the second-order direct partials from (5.27) and (5.22),

fo=18r f, =3
evaluate them at the critical points and note the signs
fA0.0) = 18(0) =0 £,40,0) =3>0

£.(12,72) = 16{12) = 216 =0 fA12,72) =30
Then take the cross partial from (5.21) or {5.22),
fop = =18 = fo
evaluate il at the critical points and test the third conditon.

fulab) - fla,b) > [f,la.b)]

At (0,0), 0 + 3 < (~18)

At (12, 72). 26 - 3 > (-18)
48 = 324
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With fo.f, > (f,F and fuf,,>0 at (12,72). f(12.72) is & relative minimum, With
fuf, <(f,,) and f.. and [, of the same sign at (0,0), £0,0) is an inflection point.

=3 -%y+3

1) fim 9P =9y =0 (5.24)
L=9-%=0 (5.25)
From (5.24), Gym Gy y=r
Substitute y = ¥ in (5.25),
9 -9 =0
Ox'—Qr =10
(' = 1) =0
Gx=l or -1=0
x=0 =1
x=1
Substituting these values in (5.24), we find that if x=0 y=0, and if x=1, y=1.
Therefore,

{0,0)  {1,1) eritical points

2} Test the second-order conditons from (5.24) and (5.25).

foo = 182 £, = 18y
[(0,0) = 18{0) = 0 f,,(0,0) = 18(0) = 0
[, 1)=18(1) = 18>0  f,.(1,1) = 18(1) = 18>0
L=-9=F,
fda.b) - flab) = [flab)]
At (0.0). 0 - 0 = (-9
A1(1.1). 15 - 18 > (-9¢

With f,, and f,, = 0 and £, £, = (f ) at (1.1}, the function is at & relative minimum at (1. 1),
With f,, and f,, of the same sign a1 (0,0) and £, f,, < (foF, the {unction is at an inflection
point a1 {0,0).

d) f(x,y)=x"—6+2)" + %" — 63x — 6lly

1) L= -1k-63=0 j;,-ﬁf-rm_\r—mﬂﬂ (5.20)
e —4xr-21)=0 6 +3y—10)=0
{x+3)x=-T) =1 =2y +51 =0
x= =3 x =7 y=2 y= -5

Hence (-3.2) (=3,-5) (.2} (7.-5) critical points

21 Tesi the second-order direct partials at each of the critical points. From (5.26),

fa=06x-12 f.=12y+18
(i)  ful=3.2)=-3<0 fi{=3,2)=42>0
Gij fu(=3,-5)=-30<0 fl=3,=5) = —42<0
L] Jul7,2) = 30>0 7.2y =42 >0
{iv) FA7.-5)=30=0 fi{7.=5) = —a2 <l
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With different signs in (i) and (iv), (=3, 2) and (7, —5) can be ignored, if desired, as saddle
points. Now take the cross partial from {5.26) and test the third condition.

fr=0 =‘I‘:.,_
foda,b) - foha,b) > |f (a.B)F
From (i), (=30) - (=42) > (0)
From (iii), {3m - (42) = (0

The function is at a relative maximum a1 (—3, —5), 81 a relative minimum at (7.2), and at
2 saddle point at (—3,2) and (7. -5).

CONSTRAINED OPTIMIZATION AND LAGRANGE MULTIPLIERS

512, (1) Use Lagrange multipliers to optimize the following functions subject to the given constraint,
and (2) estimate the effect on the value of the objective function from & 1-unit change in the
constant of the constraint.

a) =4 -2xy+6y  subjecttox+y=T2
1) Set the constraint equal to zero, multiply it by A, and add it o the objective function, to
obtain
Zwdd ~2ay+ 607 + A(T2=x~ )
The first-order conditions are

Z =8-2y-A=0 (5.27)
Z, = -2x+12y-A=0 (5.28)
Z,=T2-x-y=0 (5.29)

Subtract (5.25) from (5.27) (o climinate A.
10r— 14y =0  x=14y
Substitute x = 1.4y in {5.29) and rearrange.
ldy +y=T2 ¥p=30
Substitute v, = 30 in the previous equations to find that at the critical point
=42 y=3 =176
Thus, Z = 4(42) ~ 2(42)(30) + 6(30) + 276(72 — 42 - 30) = 9936

2} With A = 276, a 1-unit increase in the constant of the constraint will lead to an increase of
approximately 276 in the value of the objective function, and Z'= 10212

by fix,y) =26x =37 +5xy—6y* + 12y  subject 1o Ix+y = 170
1) The Lagrangian function is
F=2r -3+ Sxy— 6y + 12y + MIT0 -3~ y)

Thus, F,=26—6x+5-3=0 (5.30)
F,=5x-12y+12-A=0 (5.31)
Fo=10-3x—-y=0 (5.32)

Multiply (5.31) by 3 and subtract from (5.30) to eliminate A,
~2x+41y-10=0 (5.33)

Multiply (5.32) by 7 and subiract from (5.33) to eliminate x.
48y ~1200=0  yo=25
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Then substituting v, = 23 into the previous equations shows that st the critical point

145 | - 139
—3"—433' Yo= 25 Ay=——=—44

= 1

= 3 3
Umk=$.y.=25.and A¢=$.F=—31ﬂ1

2) With A = — 464, a 1-unit increase in the constant of the constraint will lead to a decrease of
approximately 46} in the value of the objective function, and F= —3206.33,

¢) flx,y.z)=4xys® subjecttox+y+z =356

1) F=4opr + M6 —x-y—2)
Fadyr'~-A=0 (5.34)
F, =4 -A=0 (5.35)
F,=Bxyz—A =0 (5.35)
FiomSf=y=-y=gm( (3.37)

Equate &'s from (5.34) and (5.35).
dyr' =4’ y=x
Equate A's from (5.34) and (5.38)
dyr=Rey: =2x
Substitute y = r and 7 = 2x in (5.37).
S6-x-x-=0 dr = 56 xp= 14
Then substituting x, = 14 in the previous equations gives
=14 yom14 =28 Ag= 43904
Fy = 614,656

2) Fy = Fy+ Ay = 614,656 + 43,904 = 658 560
See Problem 12.28 for the second-order conditions.

d) flx,y.2) =5Sxy+8cz+3yz  subject to 2xyz = 1920

1) F = Sey + 8gz 4 3pz + M1920 - 2xyz)
F,=8y+8z-2Avz=10 (3.38)
F=0r+3z2-2Axz=0 (5.39)
F,=8r+3y-2uy=0 (5.40)
F,=1920-2xye = 0 (5.41)

Solve (5.38), (5.39), and (5.40) for A,
jmytle 2203

5.42
vz Ty i
Sx+3z 15 1S
W e T —— —— -3
A o = e (5.47)
4
Aoty 4 1S 5.4

2xy Yy x
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Equate A's in (5.42) and {5.47) w climinate 2.5z,

4 1.5 » _15

; = ? axr = 1.5¢ x= 2 ¥
and A5 in (5.43) and {5.44) to eliminate 1.50x.

25 4 25

— = 4z = 2 5y ==
z v ) 4P

Then substitute x = (1.5/M4)y and £ = (2.54)y in (5.41).
L5 25
lﬂu=2-(T}'}*r'(T!’)

¥ = 1920 = 4096

¥o = 16
and the critical valoes are &y = 6, y; = 16, 2o = 10, and &y = 0.5
Fo= 1440
2) Fy = Fy % A= 1440 + 0.5 = 1440.5

In Problem 5.12(a) it was estimated that if the constant of the constraint were increased by 1
unit, the constrained optimum would increase by approximately 276, from 9936 to 10212
Check the accuracy of the estimate by optimizing the original function z = 4x° — 2xy + 6y°
subject to a new constraint x + y = 73,

Z=4xr -2y + 6y + AMT3—x—y)
L, =8c-2y-A=0
L, ==x+12y=-A=0
Li=M—x—y=10
Simultancous solution gives x, = 42.58, v, = 3042, A; = 2798, Thus, Z; = 10,213.9, compared to the
10,212 estimate from the original A, a difféerence of 1.9 units or 0L02 percent.

Constraints can also be used simply to ensure that the two independent variables will always
be in constamt proportion, for example, x = 3y. In this case measuring the effect of A has no
economic significance since a |-unil increase in the constant of the constraint would alter the
consiani proportion between the independent variables With this in mind. optimize the
following functions subject to the constant proportion constraint:

a) z=4"-x+5y-8y+2y subjecttox=2
With x = 2y = 0, the Lagrangian function is

Z=4r-Jx+Sxy-8y+2v' + AMxr—2y)
Z,=Rx=3+5v+A=D
L, =5r—8+4-24=10
L,=x—=2y=0

When solved simultancously, 1, = (0.5, v, = 0.25, and A, = =2.25. Thus, £, = =1.75,
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by z=-5+Tr+10xy+9% -2

The Lagrangian function is # = =5 = T + M0y + 9y = 27 + A5y — y)

Solving simultancously, x; = 52, w, = 26 and A, = —43. Thus, Z, = 135.

S¢¢ also Problems 12.19 10 12.28.

DIFFERENTIALS
515. Find the differential dy for each of the following functions:

5.16.

a) y=7-5F+6x—3
%=alf—lm+6
Thus, dy = (216 — 10x + 6)dx

b) wy=(dx+ 33 -8)
dy

Thus, dy = (24x - 23)dx

CALCULUS OF MULTIVARIABLE FUNCTIONS

subject to y = Sx

o= =lx+T4+ 1y +54=0
Z,=10t49-dy—A=0
Z,=Sx-y=0

E-[h+3}[3}+{3.:—3]{4}=m—23

j 1=M
C ¥ 51_
dy _Sx(9) - (x-4)(5) _ 20
dx (Sx¥ TSy
4
dy = S5

d) y=(1le+9)
g'x'j—r“ Hilx +99(11)

dy = 33(11x + 9V ds

Find the total differential dz = z,dx + z, dy for each of the following functions:

a) z=5"—12xy -6’

o= 150 =12y  z, = ~11x- '
dz = (15¢ = 12y)dx — (12 + 30v") dy

b) 1= Ty

= 4o’

z, = 21xy?

de = ldxy' dx + 27y dy

€) z=37(8x-Ty)

2, = Ar'(R) + (Bx - Ty)hix)

dz
d) z=(5C+Tvi(2x - &)

2= (55 4 Ty)(2) + (2~

= (720 — 42xy) dx — 20 oy

4y"K(10x)

2

2, = AF(=7) + (8 - Ty)(0)

2, = (527 + T)(—12y7) + (2¢ = &"XT)
dz = (3® — 4lxy” + Ldv)dx = (112" + 6007 " — 14x) dy

105
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9y
g z=——
=y
wii (x = ¥)0) - H(1) 5im {x = yNZTY") = W'(-1)
' (x-¥) 4 (x - y¥
- — iy 27oy* — 18y
dz [J_”E:h+ =7p dy
N z=(x-3y

,o=3x—3P(1) 2, =3Hx-)H-3)
dz = x = 3yPdy = 0 = WYy

Find the partial differential for a small change in x for each of the functions given in Problem
5.16, assuming dy = 0,

a) dr={15*— 12¥)dx b) dr= ldxy dx €} dr= (72— 42xy)alx
d) dz= (3 - 4y’ + 1dy) dx e) d:=$d1 0 dr =3(x = 3y)Pdy

TOTAL DERIVATIVES

518,

Find the total derivative dz/dx for each of the following functions:
a) =6+ 15xy+3y  where y =T
e S .
dr - T
= (12x + 15¥) =+ (15x + 6y ) 14x)
= 210" + Bdxy + 12x + 15y

b) z=(12x—18y) wherey=x+8

E=l|+=;f£
dx dx

= 26(13x = 18y} — 36(13x — 18y)(1)

= —10(13x - 18y)
Yx =Ty . %

) z =m w{'mre;. =3r—4
dl_z"::.{.: ﬁ
dx "dx
S9y 9x . _ Sy -3n)

"Er5E TGP T sy
d) z=8r—12y  where y = (x + 1)/x*
d.—z:::‘-i-zvﬂ
dx dx
1= -2
=~
12 +2)

rl

=j

-—g+
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519,

Find the total denvative dz/dw for each of the following functions:
a) z=Tc+4y  where x = 5w and y = dw

dz dx dy
e Z‘;w—+ Y 14x{5) + By{4) = Tlx + 32y

k) :tll].t’—ﬁty'—ﬂ}" where x = 2w and y = 3w

dw

IMPLICIT AND INVERSE FUNCTION RULES
5.20, Find the derivatives dy/dx and dy/dy for each of the following implicit functions:

&2l

g) yv—6x+T=1
E-i-ﬂ-ﬁ d—'t-_—'r'--,_.ll-.l
dv [, 1 dy f. -6 &
B) Iy-12x+17=0

z.';%+£_.:% = (20x = 6yN2) + (= = 24y)(3) = 22x - Bdy

dy =L _-C1B)_, & _of -1
dx j 3 dy j A =] 4
c) P+6x=13+y=0
dy —f —(Z+6) de _—f D 1 -
"7 | 2e+6 L i e (x» =3)
Notce that in each of the above cases, one derivaiive is the inverse of ihe other.
Use the implicit function rule to find dv/dx and, where applicable, dy/dz.
a)  flx,y) =38+ Ly + 4y b) flx.y) =122y
& “h_ _ S+l dy 6 0 s
de f, 1Y+ & f =2
€)  flx,p) =7+ 2xy? + O d) flx,y) =62~ 5y
dy _—fe_ _lx+2y dy = _ 18 e
dr 36y’ + dry & f -5
) flxy)=xy++xz N fley.2)=x"+y +4xyz
dy _f_ _ytyz dy f_ 3T +dy
de Aty + a2 dr Iy dxz
&y _-f__ rxy dy _—h, _Witdwy
de T, Iy 4z dr [, 3y + dxz

Find the derivative for the inverse function dP/dQ.
a) @ =210-3F
dar 1 1

d0  dQidP 3

107
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by Q=35-025P
dF_; 3

dg  —025

¢) Q=14+P

£-L =0

aQ 2P

d) Q=P+2P+7P

dP 1
Q@ IF+4P+7

VERIFICATION OF RULES

523. For cach of the following functions, use (1) the definition in (5./a) to find #z/dx and (2) the
definition in (5.75) to find 4z/#y in order to confirm the rules of differentiation.

a) 1=38+Tx-dy

gz _ o flet Axy) - flxy)
1) From (5 1a), #*ﬂ e
. : R
Substituting, B g 1B T+ Ax) —dy] - (38 + 75— 4y)
@ s Ax
= um?-a+7x+?a;-4,-_3g_-;r+,.y
A=t Ax
TAx
= fim—= m7=7
Po—— S
2 _ . flxy+ay) - fzy)
2} From (51b), — = lim
} e A st Ay
Substituting, . 25 ﬁmlm"?"*{.*‘+¢r}]'(33+?x-4yl
Y s Ay
- g By -y -B-NtYy
Ayy—elt ay

= fim —— = fim (~4) = -4
s A¥ e

b) z=18Bx—Sxy+ 14y
L mpeon [13{: + Ax) — S{x + Ax)y + My] — (182 — Sxy + 14y}

K=l M
18x + 18Ax — Sxy — SAxy + 1y — 18¢ + Sxy — 14y
= lim 2 £
Ar=)
BAx -
i iy e 2

= lim (18- 5y) = 18— 5
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& i {182 — Safy + &y) + 14(y + Ay)] — (18x — Sxy + 14y)
Ay
- lim 18r = Say = Sx Ay + 14y + 144y — 18x + Sxy - 14y
ay

S}

2)
e

= MME lim {(—5x+ 14) = =5z + 14
Ayt Ay Al
€) z=3'y
2 .. O umlﬁ""'d"'?."l_jf."
ax Aigmsl) Ax
_ Hm3f1+ﬁxﬁ:y+3tﬂ.t}?}'—3fr
Ax

. Awy + 3Ae) y
= i ——————
S Ax

= lim (ficy + 3Axy) = iy
EY ]

r—

3y + Ay)] - 3ty
Ay

Ay + 3T Ay — Iy = “m.’a".it o lim 3 = 3
Ay A= QY A=)

aT
2 — = |im
.j ﬂ}r dp—sln

= lim

[

d) z=4dxy

a _ [+ AxF ] - Aty
2 dx ﬂ Ax
_ ﬁmﬁﬁszwwmn*f—wf
Aty Ax
. 8rAn + 4(Ax)'y
e

= lim (8" + 4Axy") = Rxy’
Byremil
A+ 8] - ety
“ > Ay
Ar'y' + 8y Ay + 4x(Av) - 4y
= lim
Ar—t Ay

: a
- tim PO TGN | G (ardy s atay) =8y
Ap-=D 'ﬁ-IP L e
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CHAPTER 6

Calculus of
Multivariable
Functions in
Economics

61 MARGINAL PRODUCTIVITY

The marginal product of capital (MP,) is defined as the change in output brought about by.a small
change in capital when all the other factors of production are held constant. Given a production
ﬂ-tma;ﬂ] stich ns

Q=36KL-2K*-3L*
the MPy I8 measurcd by taking the partial derivative #Q/dK. Thus,

o 22 s -
MPy = =% = 36L - 4K

Similarly. for labor, MP, = #Q/dL = 36K — 6L. See Problems 6.1 1o 6.3

62 INCOME DETERMINATION MULTIPLIERS AND COMPARATIVE STATICS

The partial derivative can also be used to derive the various multipliers of an income
determination model. In calculating how the equilibrium level of the endogenous variable can be
expected to change in response to a change in any of the exogenous variables or parameters. income
determination multiplicrs provide an elementary exercise in what is called comparative static analysis
or, more simply, comparative statics, which we shall study later in greater detail in Chapter 13.
Givet

Y=C+I+G+[(X-1Z)

110
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where C=G+bY G=G, 2=%4
I=L+aY X=X,
Using simple substitution as in Problem 2.19, the equilibrium level of income is
1
l-b—n

Taking the partial derivative of (6.7) with respect to any of the vanables or parameters gives the
multiplier for that variable or parameter. Thus, the government multiplier is given by

-

(Co+ R+ G+ Xy - Ty) {6.0)

R—F= 1
alry il-b—-a
The import multiplier is given by
A
aZy 1=b-=a

And the multiplier for a change in the marginal propensity to invest is given by #¥/da, where, by means
of the gquotient rule,

aF _(1=b-a)0)— (Co+ lo+ Go+ Xo— Zo)(—1) _ Co+ o+ Go + Xu— Zo

da (1-b-ay (1-b-a)
This can alternately be expressed as
a¥ 1

% 1-b-a
which from (6.1) reduces to

: . a 1
= {(rﬂ"'fn"‘f'u“'-rn_-‘fﬂ}(l_b"ﬂ)

i ¥
da l1-b-a
See Problems 6.4 to 6.8,

6.3 INCOME AND CROSS PRICE ELASTICITIES OF DEMAND

Income elasticity of demand ¢, measures the percentage change in the demand for a good resulting
from a small percentage change in income, when all other variables are held constant. Cross price
elasticity of demand €. measures the relative responsiveness of the demand for one product to changes
in the price of another, when all other variables are held constant. Given the demand function

Qi=a-bP +cPy+mY
where ¥ = income and P; = the price of a substitute good, the income elasticity of demand is
.. L f‘&(_‘i)
@ Y ¥\
and the cross price elasticity of demand is

LY
9

[
Sec Examples | and 2 and Problems 6.18 o 6.21.

Ey
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EXAMPLE 1. Given the demand for beef
Qp = 4850 = 5P, + L5P, + 0.1¥ (6.2)

with ¥ = 10,000, F, = 20, and the price of pork P, = 100, The calculations for (1) the income clasticity and (2)
the cross price elasticity of demand for beef are given below.

2, ¥ WY
Y * & Y ay¥ (Qn) (@3)
% _
From (6.2), o 1
and (3, = 4850 = 5(200) + 1.5(100) + 0.1({10,000) = 5000 {6.4)

Substituting in (6.3), & = 0,1 10,0005000) = 0.2.

With €, < 1, the good is income-inelastic. For any given percentage increase in national income,
demand for the good will increase Jess than proportionately. Hence the relative market share of the good
will decline as the cconomy expands. Since the imcome elasticity of demand suggests the growth potential
of a market, the growth potential in this case s limited.

_2_, £ = ﬂ - EL - ﬂ[fﬂ)
@ P, dP\Q
From (6.2}, 2Q/dF, = L5 from (6.4), @ = S000. Thus

n=15[%)=um

For substitute goods, such as beef and pork, #Q,/P; >0 and the cross price elasticity will be
positive. For complementary goods, dQ,/dP; <0 and the cross price elasticity will be negative, If
a0y /aP; = (), the goods are unrelated.

EXAMPLE 2. Continuing with Example I, the percentspe change in the demand for beef resulting from a 10
perceni increase in the price of pork is estimated as follows:

o=, o,
Qﬁ Fr
Rearranging terms and substituting the known parameters,

@ - &F - e
r "'_F,.L (DL03N0.10) = 0,003

The percentage change in the demand for beefl #2,/Q, will be (.3 percenl.

td DIFFERENTIALS AND INCREMENTAL CTHANGES

Frequently in economics we want to measure the effect on the dependent variable (costs, revenue,
profit) of a change in an independent vanable (labor hired, capital used, items sold). If the change is
a relatively small one, the differential will measure the effect. Thus, if z = f(x, ¥}, the effect on z of a
small change in r is given by the partial differential

dr = z,dx

The effect of larger changes can be approximated by multiplying the partial derivative by the proposed
change. Thus,

Az =z, Ax
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If the original function z = f{x,y) is linear,

and the effect of the change will be measured exactly:
Ar =gz, 4x
See Examples 3 and 4 and Problems 6.9 10 6,17,

EXAMPLE 3. A firm's costs are related to its output of two goods x and v, The functional relationship is

TC=x"-08xy+y
The ndditional cost of a shght increment in outpul x will be given by the differential

dTC = (2x— 0.5y} dx
The costs of larger increments can be appronimated by multiplying the partial derivative with respect 1o x by the
change in x. Mathematically,

drC
ATC == g Ax (6.5)

Since JTC/dx = the marginal cost (MC,) of x, we can also write (6.5) as
ATC = MC, Ax
I imitially x = 100, y = 60, and Ax ~ 3, thea
ATC = [2({100) — 0.5(60)] = 510

EXAMPLE 4. Assume in Section 62 that b = 0.7, a = 0.1, and ¥ = 1200, The differential can then be used fo
calculate the effect of an increase in any of the independent variables. Given the partial derivative

1
#y 1-h-a
the partial differential is
1
dP = ——— 0,
l-b-a "
In a linear model such as this, where the slope is everywhere constant,
o _ AP
i, 4G,
= 1 :
Hence AY I-b-n“’“

If the government increases expenditures by $100,

1
ai?-—l_u_?_ulumhﬁm

65 OPTIMIZATION OF MULTIVARIABLE FUNCTIONS IN ECONOMICS

Food processors frequently sell different grades of the same product: quality, standard, economy;
some, too, sell part of their output under their own brand name and part under the brand name of a large
chain store, Clothing manufacturers and designers frequently have a top brand and cheaper imitations for
discount department stores. Maximizing profits or minimizing costs under these conditions involve
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functions of more than one vaniable. Thus, the basic rules for optimization of multivariate functions (see
Section 5.4) are required. See Examples 5 and 6 and Problems 6.22 106.27.
EXAMPLE 5. A firm producing two goods x snd v has the profit function

m=6r— 20 +dry — 47 + 32y - 14

To find the profit-maximizing level of output for each of the two goods and test to be sure profits are
maximized:

1. Take the first-order partial derivatives, se1 them equal 1o zero, and solve for x and y simultaneously,
m=f—dr+dy =10 (6.6)
o, =dr—8y+32 = (6.7)

When solved simultancously, ¥ = 40 and 7 = 24.
2. Take the second-order direct partial derivatives and make sure both are negative, as is required for o
relative maximum. From (6,.6) and {4.7),

T = —4 Ty =4
3. Take the cross partials to make sure =, 7, > (=, ). From (6.6} and (6.7), 7, = 4 = . Thus
’u *pr}{#ryj?

[—4) - 8) = (4)
32>16

Profits are indeed maximized ot £ = 40 and ¥ = 24. At that point, = = 1650,

EXAMPLE 6. In monopolistic competition producers must determine the price that will maximize their profit
Assume that a producer offers two different brands of a product, for which the demand funclions are

0, = 14-025P, (6.8)
Q.= 24—-05P, (6.9)

and the joinl cost function is
TC=0+50,0,+ 07 (6.11)

The profit-maximizing level of output, the price (hat should be charged for cach brand, and the profits are
determined as follows:

First, establish the profit function w in terms of £, and ). Since = = total revenue (TR ) minus total éost (TC)
and the total revenue for the firm is P Q, + P:Q,, the firm's profit is

m=F0+P:-TC
Substitoting from (6.6,

= PO+ P0: - (01 - 50,0, + O0) (6.11}
Next find the inverse functions of (6.8) and (6.9) by solving for £ in terms of (. Thus, from (6.8,
P, = 56— 40, (6.12)
and from (6.9), P, = 48 - 20, (6.13)

Substituting in (6.11),
w= (56 -40Q,)0Q; + (48 - 2090, - 01 - 50,0 - O
= 56Q, - 5¢% + 480, - 301 - 50, O, (6.14)
Then maximize (6.04) by the familiar rules
m = 56-10Q, 50, =0 wm=48-60Q,-50,=0
which, when solved simultaneously, give {, = 275 and (0, = 5.7
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Take the second derivatives 1o be sure w is maximized:
= =10 Mo = =0 Ty = =3 = ay
With both second direct partials negative and m, 7n = (m)°, the function s maximized at the aritical values
Finally, substitule 0, =275 and 0. = 5.7 in (6.2} and (6.13). respectively, to find the profil-maximizing
price,
Pi=5-4[275)=45 P.=38-257) = 3.6

Prices should be set at $45 for brand 1 and $36.60 for brand 2, leading to sales of 2.75 of brand 1 and 5.7 of brand
2. From (6.21) ot (6./4), the maximum profit is

w = 45(2.75) + I6.6{5.7) = (.75 — S(2.T5H5.7) - (5.7F = 213.94

6.6 CONSTRAINED OPTIMIZATION OF MULTIVARIABLE FUNCTIONS
IN ECONOMICS

Solutions to economic problems frequently have to be found under constrainis (e.g., maximizing
utility subject 1o a budget constraint or minimizing costs subject to some such minimal requirement of
output as a production quota). Use of the Lagrangian function (see Section 5.5) greatly facilitates this
task. See Example 7 and Problems 6.28 to 6.39, For inequality constraints, see concave programming
(Section 13,7} in Chapter 13,

EXAMPLE 7. Find the critical values for mimimizing the costs of a firm producing two geods x and y when the
total cost function is ¢ = &' = xv + 12" and the firm is bound by contract to produce 4 minimum combination
of goods totaling 42, that is, subject (o the constraint £ + y = 42,
Set the constraint equal to rero, multiply it by A, and form the Lagranglan function,
Com B = xy+ 1257 + Ad2 =2~ ¥)

Take the first-onder partials,

Ci=lac-y—A=10

C==x+2y-A=(

C,=82—x-y=10

Solving simultancously, ¥ =25, y= 17, and A=3K3 With A =3#3, a l-unit increase in the constraint or
production guota will lead 10 an increase in cost of approximately $383. For second-order conditions, see Section
115 and Problem 12.27{a}.

6.7 HOMOGENEOUS PRODUCTION FUNCTIONS

A production function is said to be homogeneous if when each input factor is multiplied by a
positive real constant k, the constant can be compleiely factored out. If the exponent of the factor is
1, the function 1s homogeneous of degree 1; if the exponent of the factor is greater than 1, the function
is homogeneous of degree greater than 1; and if the exponent of the factor is less than 1, the function
is homogeneous of degree less than 1. Mathematically, a function £ = f(x. y) is homogeneous of degree
n if for all positive real values of k, flkx, ky) = k" f(x, ¥). See Example 8 and Problem 6.40.

EXAMPLE B. The degree of homogeneity of a function s illustrated below.
1. z=8r+ 9% is homogencous of degree | because
fikx, ky) = Bkx + 9%y = ki{&x + 9y)
2. z=x"+xy+y is homogeneous of degree 2 because
Slker, ky) = (kx¥ + (kxdky) + (ky) = B + xv = )
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3. ="'y is homogeneous of degree less than | because
I{h1 kj‘] - {hjﬂ ‘{t}'}l‘ - kﬂ.‘ I-ﬂll{‘tﬂ_,}ﬁl] - tﬂ‘w'l}ﬂ.l.]
4. 1= 2xly is homogeneous of degree ) because

f{h.tn-z:—:-l(%) soce K = 01

5 r=yx'4 2w+ s not homogeneous because k cannot be completely factored out:

flkx ky) = (k) + 2(ke)(ky) + (ky)
" 2 xy + kR + 2y 4 kyT)

6 @ =AK"L? 5 homogencous of degree o + B because
kK, kLY = AKK) (KLY = Ak"K*Kk*L® = k"*3(AK"L")

68 RETURNS TO SCALE

A production function exhibits constant returns to scale if when all inputs are increased by a given
proportion k, output increases by the same proportion, If output increases by a proportion greater
than k, there are increasing returns to scale, and if output increases by a proportion smaller than k,
there are diminishing refurns to scale, In other words, if the production function is homogeneous of
degree greater than, equal lo, or less than 1, returns to scale are increasing, constant, or diminishing,
See Problem 6.40.

69 OPTIMIZATION OF COBB-DOUGLAS PRODUCTION FUNCTIONS

Economic analysis frequently employs the Cobb-Douglay production function g = AK“LP (A >();
0 <o, f<1), where g is the quantity of output in physical units, K is the quantity of capital, and L is
the quantity of labor. Here e (the outpuf elasticity of capital) measures the percentage change in g for
a | percent change in K while L is held constant; B (the owtpur elasticity of labor) is exactly parallel;
end A is an efficiency parameter reflecting the level of technology.

A strict Cobb-Douglas function, in which a+ 8= 1. exhibits constamt returns to scale. A
generalized Cobb-Douglas function, in which e + 8 # 1, exhibits increasing refumns to scale if a+ 8> 1
and decreasing returns to scale if a + < 1. A Cobb-Douglas function is optimized subject to & budget
consiraint in Example 10 and Problems 6,41 and 6.42; second-order condtions are explained in Section
12.5. Selecied properties of Cobb-Douglas functions are demonsirated and proved in Problems 6.53
1o 6.58.

EXAMPLE 0. The first and second partial derivatives for (a) g = AK"L® and (b) g = SK™*L** are illustrated

Tt low.
a) qe=aAK™ ' LP g. = BAK*LF
qux = afa— DAK*L? g = BB - 1JAK*L*?
gxr = afAK=' LM Qix = efAK*' L*
hj gx = H—M‘iLlu QL = :}xﬂlL—ﬂ-l
q“ - 1‘2."' IlLu.I qLﬂ'_ = _llxﬂ.ij‘ L
Qs = 12K7M LM Gix = 12K 0514

EXAMPLE 10. Given a budget constraint of 5108 when Py = 3 and P, = 4, the genmeralized Cobb-Douglas
production function g = K™ L% is optimized as follows:

1. Set up the Lagrangian function.
Q= K™L" + A(108 - 3K - 41.)
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2. Using the simple power function rule, take the first-order partial derivatives, sel them equal to zero, and
solve simultancously for Ky and L, {and J, if desired).

{E = Q= 04K LY -3a = (6.15)
;—JE=QL=U.5K“'L M—qa=0 (6.16)
%g--ﬂ,-mﬂ-3xuﬂ.mﬂ' (6.17)

Rearrange, then divide (6.15) by (6 /6) to eliminate A.

quk'-ﬂﬁ Lﬂﬁ _ 3_1'!.
DSK™L 4

Remembering 1o subtract exponents in division,
08K 'L'=075

L 075

-_—n I — - j
Al L =0.9375K

Substitute L = 0.9375K in (6.17).

108 - 3K - 4{0.9375K) =0 K, =16
Then by substituting Ke = 16 in (6.17), Ly=15

EXAMPLE 11. The problem in Example 10 where g = K™ L%, P = 3, P; = 4, and & = 108 can also be solved
using the familiar condition from microeconomic theory for oulpul maximization

MUy Py
MU, P,

a5 demonstrated in (a) below and ilustrated in (b).

ﬂ: MU]. - % -D_‘x -UILII'I HU[_ -% _anML-ﬂ-!-
Substituting in the equality of ratios above,
Tl B |
OSKS4 L 4
and solving as in Example 10,
08K 'L'=0.75
L= 09375K
Then substituting in the budget constraint,
IK + 4l = 108
3K + 4(0.9375K) = 108
Ky =16 Ly=15

which is exactly what we found in Example 10 using the caleulus, See Fig. 6-1.
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x
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JK

Shope AP MP/MPy

K
{ Slope = Tk PelPy
15 n [

Fig. 6-1

6.10 OFPTIMIZATION OF CONSTANT ELASTICITY OF SUBSTITUTION
PRODUCTION FUNCTIONS

The elasticity of substitution o measures the percentage change in the least-cost (K/L) input ratio
resulting from a small percentage change in the input-price ratio (P /Pg).
d{KiL) d{KiL)
P KiL _ _ d(P/Fy)
d(Pp/Pyx) Kl
PPy PPy

where 0 =o== If o =0, there is no substitutability; the two inputs are complements and must be
used together in fixed proportions. If ¢ = =, the two goods are perfect substitutes. A Cobb-Douglas
production funclion, as shown in Problem 6.57, has a constant elasticity of substitution equal 1o 1. A
constant elasticity of substiution (CES) production function, of which a Cobb-Douglas function 1s but
one example. has an elasticity of substitution that is constant but not necessarily equal 1o 1.

A CES production function is typically expressed in the form

g=AlaK *+(1—a)L ?]'® (6.19)

(6.18)

where A is the efficiency parameter, « is the distribution parameter denoting relative factor shares, g
is the substitution parameter determining the value of the elasticity of substitution, and the parameters
are resiricied so that A >0, 0 < a <1, and g > ~1. CES production functions are optimized subject to
budget constraints in Example 12 and Problems 6.43 and 6.44. Various important properties of the
CES production function are demonsirated and proved in Problems 6.59 to 6.69.

EXAMPLE 12. 'The CES production function
g = T5[0.3K" + (1 = 0.3)L~ ™)~
15 maximized subyect 1o the constrant 4K + 3L = 120 as follows:
1. Set up the Lagrangian function.
Q = THOIK ™™ + DIL"F) "™ 4 A(120 - 4K - 3L)
2. Test the first-order conditions, using the generalized power function rule for (J, and (.
Qx = —187.5(03K  + 0.TL ") " -0.12K ") ~dA = 0

= 225K 03K 4+ 0TL M) P —4a=0 (68.20)
Q= —187.5(03K % + 0.7L-24) 2 ~0.28L ) = 3A = 0
= S25L7403K M+ 0L ) M -3a =0 (8.21)

0. =120-4K=3L =10 (6.22)
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Rearrange, then divide (6.20) by (A.21) to eliminate A

RSKH0IK M+ 0TL ) aa
S2SL 403K MM +0TL My m

25K 4

S28L 4 3
Cross multiply. 67.5K 14 = 2100714
K =311L"
Take the —1.4 root, K= (3.11)""ML = (3.11)"07L

and use a calculator. K= (45L
Substitute in (6.22).
120 - 4(0.45L) 3L =0 L,=25 K =1125

Noie: To find (3.11)™"" with a calculator, enter 3.11, press the [Z' key, then enter (.71 followed by the
[#/= | key to make it negative, and hit the [ = | key to find (311} °7" = 0.44683.

Solved Problems

MARGINAL CONCEFPTS

6.1. Find the marginal productivity of the different inputs or factors of production for each of the
following production functions {:

a) Q=67"+3xy+2y
£ﬂ= ¥
MP, e 12x + 3y

a0
MP, =< m=ir+4
r Ty ¥

b) Q=05K"-2KL+L*

MP. = K- 2L
MP, = 20 - 2K

¢) Q@ =20+8xc+ 3t —-0252 + Sy + 2y — 05y

MP, = 8 + 6x - 0.75¢°
MP, = 5+ dy - 1.5

d) Q=x'+2Xxy+3y +15vz+ 027
MP,=2x +1y
MP, = 2x + iy + 1.52
MP, = | Sy + 0.4z
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6.2 (o) Assume ¥ = 4 in Problem 6.1(a) and find the MP, for x = 5 and x = 8. (&) If the marginal
revenue at ¥ = 5, ¥ = 4 is 33, compute the marginal revenue product for the fifth unit of x,

a) MP, = 12¢ + 3y b} MRP, = MP,(MR)
Atx=5F=4 MP, = 12(5)+3(4) = T2. Alg=5y=4 MRP, = (T2}{3) = 216,
Atx=8 =4, MP, = 12(8)+ 3(4) = 108

6.3. (#) Find the marginal cost of a firm's different products when the total cost function is
¢ =3¢ + Tx + LSxy + 6y + 2)". (b) Determine the marginal cost of x when x = §, v = 3,

a) MC, = fix + T+ 1.5y
MC, = 1.5¢ + 6 + dy

b} The marginal cost of x when x = 5 and v is held constant at 3 15
MC, =6(5)+ 7+ 1L5(3) = 415

INCOME DETERMINATION MULTIPLIERS AND COMPARATIVE STATICS
64 Given a three-sector income determination maodel in which
¥=C+L+Gy Yd=¥Y-T Co Iy G T =00 O0<h <l
C=Cﬂ.+bYd T=T|_1+IY

determine the magnitude and direction of a 1-unit change in (a) government spending, (b)
lump-sum taxation, and (c) the tax rate on the equilibrium level of income. In short, perform
the comparative-static exercise of determining the government muliiplier, the autonomous tax
multiplier, and the tax rate multiplier.

To find the different multipliers, first solve for the equilibrium level of income, as follows:
Y = Cy+ bY - bTs— WY + L+ Gy

1
¢ 1-b+M

Then take the appropriate partial derivatives.

{_Crr - bru + fq + EﬂJ [ﬁrﬂ}

o
#Mig 1—-b+Mb

Since 0<b<1, a¥/0G,>0. A 1-unit increase in government spending will increase the equilibrium
level of income by 1/i(1 = b + br).

a)

a¥ -b

— —im——
ary 1=b+b o

by

A l-unit increase in aulonomous taxation will cause national income to fall by Bi{1 — b + br).
e} Since ¢ appears in the depominator in (6.27), the quotient rule is necessary,
8% (1= b4 b{0) — (Ca = bTo + fo + Ga)(b)

at (1= b+ bty
=-h{£‘.—bT,+.l',+Gn_j= —h (C,—nT.,+f.,+G,)
(1-b+)y 1—-b+ bt 1—b+bt
af -b¥
Thus, from (6.27), ?-mﬁu

A l-unit increase in the tax rate will cavse national income (o a1l by an amount equal 1o the Lax rate

multiplier.
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6.5,

Given a simple model
Y=C+h+Gs, Yd=Y-T
C=({+bYd T=T,

where taxation does no! depend on income, calculate the effect on the equilibrivm level of
income of a 1-unit change in government expenditure exactly offset by a l-unil change in
taxation. That is, do the comparative-static analysis of finding the balanced-budget multiplier
for an economy in which there is only autonomous taxation.

Y=Co+ MY =T+ L+G,
F= Ti—btt'u— BT, + Iy + Gg)

Thus, the government multiplier is

ay 1
3G, 1-b (624)
and the tax multiplier is
¥ -b
T 1-b (4.25)

The balanced-budget effect of 3 1-unit increase in government spending matched by a 1-unit increase in
taxstion is the sum of (A.24) and (6.25). Therefore,

1 =b 1 h 1-b
_1? - + - _ - =
1—-b (I—bJ 1-b 1-b6 1-b !
A change in government expenditure maiched by an equal change in government laxation will have a

positive effect on the equilibrium level of income exactly equal to the change in government expenditure
and taxation. The multiplier in ibis case is +1.

Civen ¥=C+L,+G, Yd=¥Y-T
C=C,+bYd TF=T,+1Y
where taxation is now a funetion of income. demonstirate the effect on the equilibrium level of
income of & 1-unit change in government expenditure offset by a 1-unit change in autonomous
taxation T, That is, demonstrate the effect of the balanced-budget multiplier in an economy in
which taxes are a positive function of income.
From (6.23), ¥ = [Li(1 = b + bi)j(Co = BTy + Ly + G,). Thus,

¥ 1

G, 1-b+br (4.26)
2 iTe 1-b+M (

The combined effect on ¥ of a l-unit increase in government spending and an equal increase in
autonomous taxation is the sum of (A.26) and (6.27). Thus
- 1 -b 1-b
S vy (l—b+b¢) “T-b+br

which is positive but less than | because 1 = b <1 = b + bi, A change in government expenditures equaled
by a change in aulonomous taxes when taxes are positively releted to income n the model, will have a
positive effect on the equilibrium level of income, but the cffect is smaller than the initinl change
in government expenditure. Here the multiplier is less than | because the total change in taxes
(AT = AT, +1AY) is greater than the change in G,
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6.7. Given
F=C+In+Gg+Xn-z T:TH+IY

C=0C,+bYd L=, +1¥d
where all the independent variables are positve and 0 < b, z, 1< 1. Determine the effect on the
equilibrium level of income of a 1-unit change in {a) exporis, {b) autonomous imports, and {c)
sutonomous taxation. In short, perform the comparative-static analysis of finding the export,
autonomous import, and aulonomous taxation multipliers, [Note that Z = f(Y,)].
From the equilibrium level of income,

I"= Cn"'b[r_ rn_fn"‘fn"' Gn+L—2¢—z(Y—Tﬂ—IY}

¢ 1

'=mifu‘57-+fu+ﬂa+xﬂ‘zu+27ul

¥ 1
. SRS
Xy 1=b+bter—nt
because 0 < b, z < 1. A 1-unit increase in exports will have a positive effect on ¥, which is given by
the multiplier,
b) L8 = <0

Edl—b+b:+z—:.*
An increase in autonomous imports will lead Lo a decrease in F.

ar z-b
— T — 22 )
Ty, l=-b+btz-ut

because a country’s marginal propensity to import z is usually smaller than its marginal propensity to
comsume b, With z=<b, z = b <0, An increase in autonomous laxes will lead to 3 decrease in national
ineome, as in (6.27), but the presence of z in the numerator has a mitigating effect on the decrease
in income. When there is a positive marginal propensity to import, increased taxes will reduce cash
vutfows for imports and thus reduce the negative effect of increased taxes on the equilibrium level
of income.

e}

68 Determine the effect on ¥ of a 1-unit change in the marginal propensity to import z in

Problem 6.7,
W _q — b+ bit g = 2T = (Co= bTo+ Iy Go + Xo— Zo+ 2ToH1 = 1)
iz (1=b+h+z-z)
. Ty P Y(1-0
l=b+bid+z—z1 1=b+bt+z-zr
* ~[F = (Ty+1F)) _ ~¥d

l-b+lt+z—21 1-b+bt+z—zi

DIFFERENTIALS AND COMPARATIVE STATICS
6.9, YuCkly+ Gy YdmY-T Cy = 100 Iy =90 b= (075
C=0C+bYd T=T,+1Y Gy = 330 T, =240 =020

(@) What is the equilibrium level of income ¥? What is the effect on ¥ of a $50 increase in (b)
government spending and (¢) auwtonomous taxation T,?
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a)

b)

c)
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From {6.27), F= (Co— BTy + Iy + Gy)

1
1-b+ M
- |

| =075 + 0,75(0.20)

[100 = 0.75(240) + 90 + 330]

1
= mum = 180 + 90 + 330) = 2.5(340) = 850

If government increases spending by 50,

v ... 1
I autonomous taxation T}, increases by 50,
L b ~0.7

If the full-employment level of income Yy, in Problem 6.9(a) is 1000 and the government wishes
lo achieve it. by how much shouid it change {a) government spending or (b) autonomous
taxation?

i)

b)

The desired ipcrease in economic activity i the difference between the full-employment level of
income (1000) and the present level (850). Thus, the desired AY = 150. Substituting in the formula
from Problem 6.95),

a¥
f--—
A aﬂ,*ﬁ“

150 = 254G,  AG, =60
Increased government expenditure of 60 will increase ¥ by 150,
If the government wishes lo alter avtonomous taxes to achieve full employment, from Problem

6.9(c),

¥
AP = a—nﬁru

150 = —~1.8754T, AT,=-H
The government should cut autonomous taxes by 80,

Explain the effect on the government deficit (a) if policy a in Problem 6.10 is adopted and (b)
if policy b is adopted instead.

)

The governmem's financial condition is given by the difference between receipts T and expenditures
(7. At the initial 850 level of income,

T = 240 + 0L.2(B50) = 410 Gy = 330 T=Ggy=410-330 =80

The government has o surplus of 80,

If the government increases spending by 6, expenditures rise by 60. But tax revenues also
increase as a result of the increase in income. With A¥ = 150, AT = 0.2(150) = 30. With expenditures
rising by 60 and receipis increasing by 30, the net cost 1o the government of stimulating the economy
to full employment is only $30. At the new ¥ = 1000,

Ted0+001000) =40 Gy,=3W0+60=390 T-G,=440-390=35]
The government surplus is reduced to $50 from the previous $80 surplus.
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b} I the government reduces T, by 8, tax revenue falls mitially by 80. But the $150 stimolatory effect
om income has 4 positive effect on total tax collections, since AT = 0.2{150) = 3. Thus, the net cost
of reducing autonomous taxation to stimulate the economy te fall employment iz $50. The
government surphus is reduced to $30;

T=160+0201000) =360 Gp=33 T-0G,=360-330=30

{a) If the proportional tax in Problem 6.9 is increased by 10 percent, what is the effect on ¥7?
(b} If the government wants to aiter the original marginal tax rate of 20 percent to achieve
¥ = 1000, by how much should it change 7
@) 1f the proportional tax is increased by 10 percent,
At = 0.10(0.20) = 0,02
The resulting change in income is
aF
AV = ;d-l

Substituting from Problem 6.4{c},

s ~-b¥
1-b+bt

Since a change in one of the parametem, unlike a change in ooc of the independent variables, will alter

the value of the multiplier, the multiplier will only approximate the effect of the change.

S —0.75(850)
04

h) The government wants to raise ¥ by 150. Substituting A¥ = 150 in the equation above,

—0.75(850)
04
Ar = —0.09

The tax rate should be reduced by approximately 0,09, The new tax rate should be around 11 percent
(0.20 - 009 = 0.11).

AY (0.02)

AY {0L02) = —31.88

150 = ar

Given Y=C+L+Gy+ X;-Z T=T,+itY
C=Cy+bYd Z=Fy+2Yd
with b=09 t =02 Co=125
Xo =150 Z, =55 =925

r=10.15 =150 Gy = 60

Calculate (@) the equilibrium level of income, (b) the effect on ¥ of an increase of 60
in autonomous exports X, and (c) the effect on ¥ of an increase of 30 in autonomous
impors Z;.

a) From Problem 6.7,
1
y= mfﬂ—hﬂ+h+ G+ Xy—Zu+zTh)
. 1
1-0.9+0.902) + 0.15 - 0.15(0.2)
= 2 5(800) = 2000

[125 = 0.9(150) + 92.5 + 600 + 150 - 55 + 22.5)
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6.14.

6.15.

6. 16,

a¥ 1

] AV = :ﬁ;;ﬂg = m{m] = 2.5060) = 150
ay -1

c) ﬁf-ﬂ—zjﬁzﬁ“—_mfm}= =2.5(3) = -T5

If the [ull-employment level of income in Problem 6.13 is 2075, (a) by how much should the
government increase expenditures to achieve it? (b) By how much should it cut autonomous
taxes to have the same effect?

a)  The effect of government spending on national income is

substituting AY = 75,
1

R R e ———— = ' fﬂn- 30
T t—a+bu+:—z:'m“ 25A06, AG
¥
i AV = 2L AT
} AY ma .
I=h .
75 AT, = =1K75AT, AT,=-40

1-b+b+2—2t

The government should cul atonomous taxation by 40,

Calculate the effect on the government deficit if the government in Problem 6.14 achieves full
employment through (a) increased expenditures or (b) a tax cut.

da)  If the povernment increases expenditures by 3, the government deficit increases ndtially by 30
However, income is stimulated by 75. With A¥ = 75, AT = 0.2(75) = 15. Tax revenue increases by 15.
Thus the net cost to the government from this policy, and the effect on the defieil, s 813
(30 - 15 = 15).

b) M the government cuts putonomous taxation by 40, tax revenues fall initially by 40. But income
increases by 75, causing tax revenues to increase by 15 Thus the net cost to the government of this
policy is 25 (40— 15 = 25), and the povernment deficit worsens by 25,

Calculate the effect on the balance of payments (B/P) from (a) government spending and {b)
the tax reduction in Problem 6.14.

a) Since B/PF = X - Z, substituting from Problem 6,13,
BP=X-(L+:z¥di =X, - Zy—z¥ — Ty + ¥ (6.25)

With an increase of 30 in government spending, AY = 75, Since ¥ is the only variable on the
right-hand side of (6.25) to change,

A(B/P) = ~2(75) + 21(75)
Substituting z = 0.15, zr = 003, A(BF) = -9,
b) When the government cuts autonomous taxes by 40, AY = 75, Adjusting (6.28),
A(B/P) = —2(75) + z(—40) + 2e{75) = <15

The reduction in taxes feads to a greater increase in disposable income than the increased government
spending. resulting in a higher level of imports and a more serious balance of payments deficit.
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Estimate the effect on ¥ of u one-percentage-point decrease in the marginal propensity to
import from Problem 6.13.

| 4
AY k:.
Substituting from Problem 6.5,
-¥d
By e
where Y = ¥~ Ty— ¥ = 2000 - 150 - 0.2(2000) = 1450
Thus, AY = ':lf“{»n.nu- +36.25

PARTIAL ELASTICITIES

6.18.

6.19.

Given @ = 700 - 2P + 0,02Y, where P = 25 and V= 5000, Find (a) the price elasticity of
demand and (b) the income elasticity of demand.

a) “'g({%}

where a(Naf = <2 and Q0 = 700 ~ 2(25) + 0.02(5000) = 750. Thus,

o= -z(%] - {067

») o a—"g(g) -mu(%) “ 0133

Given @ = 400 — 8P + D0OSY, where P = 1S and ¥ = 12,000, Find (@) the income clasticity of
demand and (b) the growth potential of the product, if income is expanding by § percent a year.
(c) Comment on the growth potential of the product.

4) Q= 400 - K(15) + 0.05(12,000) = K30 and HQAY = 0.05. Thus,

o 2() <o 29) o

b ) Ay

.._.'M---p--i--

r
Rearranging terms and substituting the known paramcic,

ﬂ- ﬁ- =
) "Ir" LAS(0LOS) = D04

The demand for the good will increase by 3.4 percent.

¢)  Since 0< ¢, < 1, it can be expected that demand for the good will increase with national income, but
the increase will be less than proportionate. Thus, while demand grows absolutely, the relative market
share of the good will decline in an expanding economy. If «, > 1, the demand lor the product would
grow faster than the rate of expansion in the economy, and increase its relative market share. And if
ey < 0, demand for the good would decline as income increases.
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ﬁ-m- Gi\"ﬂ'ﬂ. Q] = ll]] i .I“: + ﬂ.?ﬁf"z - U.szj, + D‘.[[.'r"?SY. A[ P - II.I .Fg ,?..I] .P'q, — 2 4” Enli
Y = 10,000, @, = 170. Find the different cross price elasticities of demand.

a0, [ P; 2,

= -#P:{u,] a‘;s{m 0.088
90, Py R

“ @.) ﬂl‘i(lm) 0.059

621, Given ) =50-4P, - 3P+ 2P+ 000LY. At Py =5, P, =7, Py =3, and ¥ = 11,000, @, = 26,
(a) Use cross price elasticities to determine the relationship between good 1 and the other two
goods. (b) Determine the effect on @, of a 10 percent price increase for each of the other goods
individually.

a) Bz ™ '3{175}" =08l h;.'E[é]"Jﬂ
With ¢, negative, goods 1 and 2 are complements. An increase in P, will lead to a deerease in (..
With &,, positive, goods 1 and 3 are substitutes. An increase in Py will increase Q.

b]’ -Ep"%"‘?

Rearranging terms and substituting the known parameters,

[ T ey

Qr = ffy; —— P, OEL0LID) = ~0.08]
If P; increnses by 10 percent, Q| decreases by 8.1 percent,
@+ ﬂP‘
a Pmn
%;:— - !:!ﬂ_ﬂ = L.230.10) = 0.023
i /P, increases by 10 percent, (), increases by 2.3 percent

3 =

OFTIMIZING ECONOMIC FUNCTIONS

6.22. Given the profit function o = 160x — 3x® — Zvy — 2 + 120y - 18 for a firm producing two
goods x and y, (@) maximize profits, (b) test the second-order condition, and (c) evaluate the
function at the critical values ¥ and ¥.

a) o= 160-6x—2y =0 oo —r—dy+ 1M =
When solved simultaneously, ¥ = 20 and ¥ = 20.
b) Taking the second partials,
ey = =6 Wy = =4 ®,, = =1
With both direct second partials negative, and o, =, = (7, ), 7 is maximized ot £ = ¥ = 20,
) == 2782

6.23. Redo Problem 6.22, given o= 25r — x* —xy — 27 + 30y — 28,
al m=dS--y=10 m=—x—4y+¥H=10
Thus, £ = 10 and ¥ = §.
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b) T = —2 W= —d ey = —1
With =, and m,, both negative and =, w,, > (7., )", v bs maximired
el =172

A monopolist sells two products x and y for which the demand functions are

x =25~ 05P, (6.29)
y=30-P, (6.30)

and the combined cost function is
c=x+2y+y' +20 (68.31)

Find {a) the profil-maximizing level of output for each product, (b) the profit-maximizing price
for each product, and (c) the maximum profit.

a) Since = TR, + TR, - TC, in this case,

w=Fx+Py~-c (6.32)

From (6.29) and {430,
P,=50)=2x (6.33)
P,=30-y (6.34)

Substituting in (6.32),
= (50 = Zxjx + (30 = y)y = (x* + Zuy + ¥ + 20)
= 50r = 3¢ + 0y = 2y* = 2ey =20 {6.35)
The first-erder condition for maximizing (6.35) &
w,=50-fx—-2y=0 m=m3-dy-x =0

Solving simultancously, ¥ = 7 and 7 = 4. Testing the second-order conditon, %, = —6, m,, = —4, and
7y ™ —2 With both direct partials negative and =, 7, > (7,,)°, 7 is mazimized,
b) Substituting ¥ = 7, 7 = 4 in (6.33) and (634,

P,=50-2{T)=36 P,=30-4=2
c) Substituting ¥ = 7, ¥ =4 in (6.35), v = 215.

Find the profit-maximizing level of (a) output, (&) price, and (c) profit for a monopolist with the
demand functions

x=350-05P, (6.36)
y=T76-P, (6.37)
and the total cost function ¢ = 3x* + 2xy + 2y + 35.
@) From (6.36) and (6.37),
P, =100-2x (6.38)
P,=76~y (6.39)
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Substituting in w= P.x+ Py -«
woe (100 = Zeke 4+ (76 = )y = {3 + 2oy + 29" + 55)
= 100y — 527 + 76y — 3y — 2ey — 55 (6.4U)
Maximizing (6.40),
= 100—1r—2y=0 @ =76—6y—2x=0

Thug, ¥ =8 and 7 = |0 Checking the second-order condition, w,, = -10, =, = =6, and m,, = -1,
Since ®,,. m, <0 and 7,7, >(m,), =is maxdimized at the critical values.

b) Substituting ¥ = 8, 7 = 10 in (6.38) and (6.39),
P,o=100-2(8) =84 P, =76-~10= 66
¢} From (6.40), = = 725,

Find the profit-maximizing level of {a) output. (b) price, and (¢) profit for the monopalistic
producer with the demand functions

0, =454 - 3P, (6.41)
Q. = 36— 1P, (6.42)

and the joint cost function ¢ = @ + 20, Q; + Q3 + 120.

a) From (6.41) and (6.42),
P, = T4 - 150, {6.47)
Py=T2-20, {6.44)
Substituting in w= P,Q,+ Py ().,
m= (74 - 15000, + (72 -2Q)Q, - (01 +2Q, @y + ¢ + 120)
= 740, - 2508 + 120, - 301 - 20,0, - 120 {6.45)
The first-order condition for maximizing (6 45) is
m=T4-5Q, -2, =0 m=T2-6Q:-20,=0

Thus, @ = 11.54 and (; = 8.15. Testing the second-order condition, wy = =5, wy = -6, and
w = =2 Thus, m, 7 <0 m e > (m,), and w is maximized.

k)  Substituting the critical values in (6.43) and (6.44),
Py = 74— 15(11.54) = 5669 Py = T2 - 2(8.15) = 55.70
el = G046

Find the profit-maximizing level of {g) output, (b) price, and {c) profit when

0, = 5200 - 10P, (. )
Q4 = B200 — 20F, (6.47)
and c=01F+01Q,Q; +0205+ 325
a) From {(6.44) and (6.47)
P, =350-010, (.48}

P, = 410 - 0,050, (6.49)
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Thus, o= (520 = 0100, + (410 = 00500, = (0LIQH + 010, O, + 0205 + 325)
= 5200, = 0.207 + 4100, = 02508 - 0.10, (., - 325 {6.50)
Maxamazing (6. 50},
m=520-040, - 010, =0 m=410-050,-010,=0
Thus, (3, = 1152.63 and Q; = 5R9.47. Checking the second-order condition, =, = —04, 7y = —0.5,

and m, = =01 = =, Since ®, 7o <0 and m ey > (=), 7 is maximired s @, = 115263 and
0, = 589.47.

b) Substituting in (6.48) and (6.49),
Pyo= 5320 = 0L 1{1152.63) = 404,74 Py = 410 - 0.05(589.47) = 38053
c) w = 42020132

CONSTRAINED OPTIMIZATION IN ECONOMICS
6.28. (a) What combination of poods x and v should a firm produce to minimize costs when the joint
cost function is ¢ = fu” + 10y* — xy + 30 and the firm has a production quota of x + y = 347 (b)
Estimate the effect on costs if the production quota is reduced by 1 unit.
a) Form a new function by setiing the constraint equal to zero, multiplying it by A, and adding it to the
original or objective function. Thus,
Co= e+ W —xy + 30+ A3 —x—y)
C,=12t—y—A=0
C,=2y=-x=A=0
C,=H-—x—y=1(
Solving simultaneously, ¥ = 21, 7 = 13, and A = 239, Thus, € = 4093. Sccond-order conditions are
discussed in Secton 125

B) With A = 239, a decrease in the constant of the constraint (the production quota) will lead to a cost
reduction of approximately 239,

6.29. (a) What output mix should a profit-maximizing firm produce when iis total profit function is
7 = Br — 2x° = xy — 3y* + 100y and its maximum output capacity is x + y = 127 (b) Estimate
the eifect on profits if outpul capacity is expanded by 1 unit.

a) N = Blie = 2¢* = xy = 3y* + 100y + A(12 - x = ¥)
M,=81-dx—y-A=0
M=-x—6y+100-A=10
M=12-x-y=0
When solved simultancously, ¥ = §, # = 7, and A = 53. Thus, = = 868,
b) With X = 53, an increase in outpul capacity should lead 10 increased profits of approximately 53.

6.30. A rancher faces the profit function
= 110x — 3 — Zey — 29" + 140y
where x = sides of beel and ¥ = hides. Since there are two sides of beel for every hide, it follows
that output must be in the proportion

X
— = =}
2 ¥ ¥
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6.31.

At what level of output will the rancher maximize profits?

A= 110x = 3x" = 2xy = 2" + 140y + A(x = 2y)
M=1=-bx=2y+4=10
II,=-2x -4y + 40 -2A =0
I,=x-2y=10

Solving simultaneously, § = 20, ¥ = 10, A = 30, and w = 1800.

(@) Minimize costs for a firm with the cost function ¢ = Sx*+ Zey + 3y" + 800 subject to the
production quota x + y = 39, (b) Estimate additional costs if the production quota is increased
to 40.

a) C=8r+2ny+ 3y + 800+ A39-x-y)
C,=llg+2y=—A=0
C,=2r+6y—A=0
C,=¥W-x—-y=10
When solved simultancously, ¥ = 13, § = 26, A = 182, and ¢ = 4349,
b) Since A = 182, an increased production quota will lead to additional costs of approximately 182,

A monepolistic firm has the following demand functions for each of its products x and
x=T72-05P, (6.51)
x=120-P, (6.52)

The combined cost function is ¢ = x° + xy + y* + 35, and maximum joint production is 40. Thus
x+y =40, Find the profit-maximizing level of (a) output, (b) price, and () profit.

a) From {#.51) and (6.52),

P,=144=1x (6.33)
B, =120-y (6.54)
Thus, 1= {144 = 2l + (120 = )y = (1 + oy = '+ 35) = Lddx = 3o =y = 297 + | My = 35,
Incorporating the constraint,
M= 14dx = 3x” = gy = 2" + 120y = 35 + Md0 = x = v}
Thus, MN=14-8x—yp-A=0D

M= -x—4y+120-A=0
My=df-x—y=0
and, ¥ =18, ¥ =22, and A = 14,
b) Substituting in (6.55) and (6.54),
P.=184-2(IR)=108 P =120—-22=98
£) w = 1861

A manufacturer of parts for the tricycle industry sells three tires (x) for every frame (y).
Thus,

;-r x =3y
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If the demand functions are
x=63-025P, (6.55)
y=60-4pP, (6.56)
and costs are .
c=xr+xy+y +1%
find the profit-maximizing level of (a) output, (b} price, and (c) profit.
a)  From (6.55) and (6.56),
P, =252 -4 (6.37)
P, =180 -3 (6.58)
Thus, & = (252 — dy)e + (180 — W)y — (2 + 1y + ¥ + 190) = 252x - 527 — xy + 180y — 190 — 4°
Forming & new. constrained function,
I = 252c — 5% —xy — 4y’ + 180y — 190 + A{x — 3¥)
M=22-10x-y+A=0 T, =-x-8By+180-3A=0 [, =x-3y=0
and =27, ¥=9,and A = 27.
b) From (6.57) and (6.58), P, = 144 and P, = 153.
c) 7= 422

Problem 4.22 dealt with the profit-maximizing level of output for a firm producing s single
product that is sold in two distinet markets when it does and does not discriminate. The
functions given were

@, =21-01P (6.59)
Q: = 50 - 04FP; (6.60)
c=2000+10Q0 where O = O, + O: (6.61)

Use multivariable calculus to check your solution to Problem 4.22.
From (6.59), {6.60), and (6.61),
Pyo= 210 - 100, (6.62)
P; = 125 - 250, (6.67)
c = 2000+ 102, + 102,
With discrimination F; = P, since different prices are charged in different markets, and therefore

o= (210 = 10Q4)Q, + (125 - 2.5Q:)0; ~ (2000 + 100, +10Q,)
= 2000, ~ 100 + 1150, - 2.5Q% — 2000

Taking the first partials,
w.=m-m1=ﬂ #;-1[5-59,-1{}

Thus, @, = 10 and @, = 23. Substituting in (6.62) and (6.63), P, = 110 snd P, = 67.5.
If there is no discrimination, the same price musi be charged in both markets. Hence P, = P,
Substiwting from (6.67) and (6.63),
20 -10Q, = 125 - 250,
lSﬂ'}_" IML - -*35
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Rearmanging this as a constraint and forming & new function,

11 = 2000, < 10Q] + 1150, - 2.50Q7 - 2000 + A(RS ~ 100, + 2.50.)
Thus, 01, = 200-200Q, ~10A =0 [, =115-5Q, + 254 =0 I, = 8S = 10Q, + 2.50Q; = 0
and O, = 134, O, = 196, and A = - 6.8, Substituting in (6.62) and (6.67),

Pio= 210 = U134) = T
Pyo= |25 = 215196) = 76
Q= 134+196 =13

635, Check your answers to Problem 4.23, given

Q) =24 - 02P, Q; = 10-005P;
c=35440Q  where Q0 = Q, + Q:
From the information given,

P, = 120 - 5Q, (654)
Py = 200 - 200, (6.65)
= 15 4 400, + 400,
With price discrimination,
w = (120 = Q)0 + (200 - 200,)Q: ~ (35 + 400, + 40Q,) = 800, — 507 + 1600, — 2007 - 35
Thus, m=80-100,=0 my = 160 - 400, = 0

and O, =K. @, = 4, P, = B0, and P, = 120.
If there is no price discrimination, £, = P, Substituting from (6.64) and (4.65),

120 ~ 50, = 200 - 200,
00, - 50, = =0 (61.06)
Forming a new function with (6.66) as a constraint,
1 = 80Q, ~ 50 + 1600, — 200¥ — 35 + A(80 + SQ, — 20Q,)
Thus Tl =80~ 100, +S5A=0 Il = 160 — 400, — 204 = 0 I, =80+ 50, -200,=0
and O, = 64, (0, = 5.6, and A = ~3.2. Substituting in (6.64) and (6.65),

P, o= 120 - 5(6.4) = 88
F:-Il.ﬁ--i!lli.ﬁl-sﬂ.
Q=64+56=12

636. (a) Maximize utility u = Q, Q; when P, = 1, P, = 4, and one's budget B = 120, () Estimate the
effect of a 1-unit increase in the budget.

a) ‘The budget constraint is @, + 4Q, = 120, Forming a new function 10 incorporate the constraint,
U=0,0:+ MI20- Q, -40Qy)
Thus, UVi=0:=A=0 =0,=-dA=0 [, =120-0,~40;=0
and @, = 60, 0. = 15, and A = 15.

b) With A =15 a $1 increase in the budget will lead to an increase in the wiility function of
approximately 15. Thus. the marginal utility of money (or income) at (), = 60 and O, = 15
approximately 15,
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() Maximiee utility w = @, (2. subject to P, =10, P, =2, and B = 240. (/) What is the
marginal utility of money?
w) Form the Lagrangian function U = Q.0 + M240 - 100, - 20.).
UVi=@:-10A=0 Us= Qy=24=0 =240~ 100, -2 =0
Thus, @, = 12, Q0 = 60, and A = 6
b)  The marginal utility of money at 0, = 12 and Q, = &0 is approximately 6.

Maximize utility 4 = Q,Q;+ @, « 2Q:, subject to P, = 2, P, = 5, and B = 51,

Form the Lagrangian function U = Q,Q: + (; + 20: + A(51 - 2Q, - 5Q.).
U=+ 1=2=0 U= 42-5A=0 U, =51-20,-50:.~0
Thus, @, = 13,0, = 5, and A = 3

Maximize utility u = xy + Jxv + y subject to P, = 8, P, = 12, and B = 212.
The Lagrangian function i L' = xv + 3x + v + A(212 — By = 12y).
Unys3-BAml U=xel=12A=0 U=212-8~12y=0
Thus, £ = 15, 7 = 7], and A = 1}

HOMOGENEITY AND RETURNS TO SCALE

6.40.

Determine the level of homogenecity and returns to scale for each of the following production
functions:
a) Q= +hy+ Ty

here (2 s homogeneous of degree 2, and returns 10 scale are increasing because

fiks, ky) = (ke)' & B(keMky) + T(ky)' = B'(x" + Gy + Ty')

d) O=x"-xy+3y +xy

here () is homogencous of degree 3, and returns 1o scale are increasing because

Sikx ky) = (hx)' = (kxdky) + 3ky)' + (keYiky) = kM = xy* + 3y* + y)

A
€) 0";;;}
hete 2 is homogeneows of degree 0, and returns 1o scale are decreasing because
LT U
flkx, ky) Y 5y and &' =1

dy Q@ =09K*L""
hete © is homogencous of degree 008 and returns 1o scale are decreasing because
UK EL) = DWHAKY (ALY = AR K5 kL
= W“‘{ﬁ?“"ﬂ'" = llt{&gqull}

Note that the returns to scale of a Cobb-Douglas lunction will always eqgual the sum of the exponents
o+ i, as is illustrated in part 6 of Example .



i o Bk - b ST E SR LR ]

CHAP 6] CALCULUS OF MULTIVARIABLE FUNCTIONS IN ECONOMICS 135

CONSTRAINED OPTIMIZATION OF COBB-DOUGLAS FUNCTIONS

6.41. Optimize the following Cobb-Douglas production functions subject to the given constraints by
(1) forming the Lagrange function and (2) finding the critical values as in Example 10,

a) = K"'L™  subject to 6K + 2L = 384

1) Q= K" 1"« M384 - 6K - 21L)

2) Qp = 03K "L ~bA =0 (6.67)
Q= 05KV L M- =0 (.68)
Q.= IBA-6K-2L =0 (s 69)

Rearmange, then divide (6.67) by (64.68) 1o climinate A
03K “'L* 6
0SK*'L* A
Subtracting exponents in diviskon,
06X "'L'=3
L_3

T L=5K

Substitute L = 3K in (6.69),
BI-6K-2(5K)=0 K.~ M Ly= 120
Second-order conditions are tested in Problem 12.27(b),
b) q= 10K" L™, given Py =28, P; = 10, and B = 4000
B Q = 10K L™ 4 A4000 —~ 28K ~ 10L)
2) Ous=TK "M =280 =0 0 7)
Oy = 1KLL "™-10A=0 ia7l)
@, = 4000 - 28K — 0L = 0 16.72)
Divide (6.70) by (6.71) to eliminate A.
TE -)LIJ =_'_2E
IK*'L ™ 1o
TIK 'L = 28

I 2%
-E = 5 L = 04K

Substituting in (6, 72), K= 125 Le= 50
See Problem 12.27(c) for the second-order condinons.

6.42. Maximize the following utility functions subject to the given budget constraints, using the same

steps as above,
@) u=x"' given P, =8 P, =5 and B = 680
) U = "' 4 M680 ~ 81 ~ Sy)
2) U, =0 "y * < KA = 0 (6.73)

U, = 0255y ™ =52 = 0 (6.74)
U, = 680 - K¢ - Sy = 0 (6.75)
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Divide (677 by (6.74).

(L .
“ﬁ.lmnr am 5!

2dx 'y = 1A
y=ix
Substitute in (6 75). =060 oy =40
b) u=x""y" given P, =5 P, =3 and B =75
1) U=22 5 A(75-5x—- )
2) U, = DRy "W - 5 =0 (A.76)
U, =02y ™ -Ja=0 (8.77)
U,=75-5r-3y=0 (6. 7%)
Divide (6 76) by (6.77).
0Ky *7y8e E _E
[T L i T |
an 'y -
¥
Substitute in (A 78], =12 Yu=3

CONSTRAINED OPTIMIZATION OF CES PRODUCTION FUNCTIONS
6.43. Optimize the following CES production function subject to the given constraint by (1) forming
the Lagrange function and (2) finding the critical values as in Example 12
q = BO[04K “F + (1 - 04)L T "= subject to 5K + 2L = 150
1) © = B{0AK 97 4 06L ") ¥+ A(150 - SK - 2L)
2) Using the gencralized power function rule for 0 and ;.
Qy = ~320004K "2+ 06L ") N(~0IK ")~ SA =0

= XK "H0AK "+ 06L ") -Sa=0 (6.79)
@, = ~32004K "5+ 06L "T) (~0IASL ") ~24 =0

= 48L 04K "F 06l ") -2 =0 (6.80)
Q. =150-5K-2L=0 (6.81)

Rearrange. then divide (6.79) by (4.80) 10 eliminate A

RK I MOAK TP+ 06L T SA
5L TTOAK el ") Y 2

x. [ F - - 3]5'_-“:‘!
Take the —1.25 root
K= (17%) =L = (375 "L

To find (3.75) “*, enter 175 on a calculator, press the key, then enter 08 followed by
the | +/- | key to make i negative, and hit the | = | key to find (3.75)°°" = 034736
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Thus,
K =035k

Substitute in (6.81).
150=5(035L) -2L =0 Ly=40 K,=4

6.44. Optimize the CES production function
q = 100[0.2K % + (1 = 02)L* *%)1e-en
subject to the constraint 10K + 4L = 4100, as in Problem 6.43.

1) @ = 10{02K"" + O.8L™")" + A4100 ~ 10K - 4L)
2) Ok = 2000025 + ORLYNOIK ')~ 104 = O
= 20K "Y02K" + 08L*") ~ 10A = 0 (0.82)
O = 200002K*" + ORL'NOAL *) - da =0
= BOL “(02K™ + 08L" )= 4A = O (6.87)
Q= 4100 - 10K - 4L = 0 (6.84)

Divide (6.82) by (6.87) to climnate A

K *NO2K" + 081" _10a
0L 02K+ 08L"Y)  dA

20K "
oL
ﬂ- TR ] - .w‘ L% ]
Take the =05 ool K= {10)""*L = (10)"* L
K =00y
Substitute in (6.84). Ly= 1000 K, =10

PARTIAL DERIVATIVES AND DIFFERENTIALS
645, Given Q = 10K" L™, (a) find the marginal productivity of capital and labor and (b) determine
the effect on output of an additional unit of capital and labor at K = 8, L. = 20,

@) MP, = g-uqlmx NALRA = QKA MP, +§ = (06{10)K* L™ = g04 [, -

b) AQ = (MNK)AK. For a L-unit change in K, at K =K, L = 20, AQ ~ 4K “*L"" = 4(8) "*(20)"*,
Using a calculator,
AQ =~ 4K "L 4(8) M0Y = HO28T1TH6.03418) ~ 6.93

\'mrlonndlsj“‘mnukﬁatm :ntcrs.ptmlbci ¥ key, then enter 06 followed by the

[ 47| key 1o make it negative, and hit the tw find (8) " = 025717, To find (20)**, enter
key to find (20)"* = 603415,

20, press the | »* | key. llu-ncnmtlﬂ.ndhhllu-

For a J-unit change in L,
AQ = 6K" 1 ™% w 6(8)"4(20) ™ = 6(2.20740)(0.30171) ~ 4.16

6.46. Redo Problem 6,45, given Q = 12K L™ at K = 10, L. = 15.
a) MP, = 36K “TL"  MP, = 6KV L
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b) For a l-unit change m K. at K = 10, L = 15, AQ ~ 36K *"L*"

AQ ~ 36010) (15 = L6(0. 19953 3.87298) ~ 278
For a 1-unit change in L.,

AQ =615 ™" = 6l 1L99526)(0.25820) = 300

Given @ = 4VKL. find (¢) MP, and MP,, and () determine the effect on Q of a 1-unit change
in K and L. when K = 50 and L = 600,

4) Q= 4AVKL = 3KL)". By the generalized power function rule,

- - (O] - 2L — = - i3, = 1#
MP, = Qu = 2AKL) (L) VRL MP, = Q, = AKL) "(K) 77X

b) For a l-unit change in K at K = 50, L = 600,
AQ = 2| SO(600)) HE00) = 2000577 H60) ~ 693
For a 1-unit change in L,
AQ = 2]S0(600)] “I(80) = 2000STTHS0) = (5K

Redo Problem 647, given Q = 2VKL, where K = 100 and L = 1000,
a) Q = AKL)"

MP, = (KL) "H{Ly = ;;‘E MP, = (KL) "(K) = ?:_—I

b) For a Lunit change in K at K = 100, L = 1000,
AQ = [100{1000)] “*(1000) = (0.00316)( 1000) = 3.16
For a 1-unit change n L,
AQ = [HOO(1000)] F(100) = (0.00316)( 100) ~ 0,316

A company’s sales s have been found 1o depend on price P, advertising A, and the number of
field representatives r il maintains

5 = (12,000 ~ W00MA" 7
Find the change in sales associated with () hiring another ficld representative, (#) an extra $1
of advertising, (c) a $0.10 reduction in price, at P = $6, r = 49, and A = $8100.
|Iﬂ' _‘.—Ek-%{lz.{“}'miif-l'zb

= |[12,000 - 900(6))(8100)* 7(49) 'F(1) = [O600)(F0)(}) = 42429

b) 1-" -1 B b3 b2 :-!- L -
Avm S84 = S(12000 - 00PA 2rEa4 2{&1!:1(”]:1:{11 256,67

0 K %a_p . SOAYE AT AP = ~QOO(90)(TH ~0.10) = 56,700

Given the sales function for a firm similar to the onc in Problem 6.4% 5= (15000
~ 1000P)A 'Y, estimate the change in sales from () hiring an extra field representative, (b)
a $1 increase in advertising. and (¢) a $0.0]1 reduction in price, when P =4, A = $S6000, and
r=24
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a) As = J1S.000 < 1000/)A e ™ &r
= L1, 000)(6000)(24) (1)
= 27SO(330.19)(0.09222) ~ §3,740
b) A = (15,000 - 1000P)A 71 AA

=~ {(11,000)(6000) ““(24)"4(1)
w (7333.33)(0.05503)(2.21336) = K93

<) Ai== = Imﬂ 'r""‘.ﬁ..F
= — LOOM(GBO00Y"(24)" 4 001
=~ 10{A319K(2.21136) ~ TMR

6.51. Given the equation for a production oquant
16KV LY = 2144

usc the implicit function rule from Section 5.10 to find the slope of the isoquant dK/dL which
is the marginal rate of vechnical substingtion (MRTS).

Sct the eguation equal 1o 2¢ro lo got
AK.L) = 16K L™ ~ 2144 = 0
Then from the implicit function rule in Equation (5.13),
dK _-F. _-12K*L “'_—JE_
dl.  Fy 4K-M L™ L
Compare this answer with thal in Problem 4.24.

MRTS

6.52.  Given the equation for the production isoquant
25K LY = 5400
find the MRTS, using the implicit function rule.
Set up the implicit function,
AK. L) = 25K 1.2 - 5400 = 0
and use (3.17),

E.E -~ i - HIM“L-“ - 2K =
dL. Fy ISK-¥ % 3L
Compare this answor with that in Problem 4.25,

MRTS

PROOFS
6.53. Usc the properties of homogencity to show that a strict Cobb-Douglas production function
q = AK*L", where a+ B = 1, exhibits constant returns (o scale.
Multiply ¢ach of the inputs by a constant k& and lactor,
GUEK KL) = ARKY(ELY" = AL“Kk"17
= A HAKLE) = k" Hg)

As explained in Section 6.9, if @+ @ = 1, returms 1o scale are constant; if a + B> 1, retormns 10 scale are
increasing; and il a + < |, returns to scale are decreasing,
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654  Given the utility function 4 = Ax*y" subject to the budget constraint P.x + P,y = B, prove that
at the point of constrained utility maximezation the ratio of prices P /P, must equal the ratio
of marginal utilitics MU /MU .

U= Ay + MB = P.x = P,y)
U, =ade 'y —AP, =0 (6.&5)
U, = bAs*Y* ' = AP, = 0 (6.86)
Uy=B-Px-Py=0
whore in [6.85) aAs® "y" = u, = MU, and in (6.80) bAX"y* ' = u, = MU,.

sAr 'y MU,
From (6.85), A= " P
bAYY ' MU,
From (6.86), A= -
P, o
2 MU, ML ML, - ﬂ .
Equating A's s giTr QEA

6.55, Given a generalized Cobb-Douglas production function g = AK*L" subject 10 the budget
constraint Py K + P, L = B, prove that for constrained optimization the least-cost input
ratio is

K aof,
L Py
Using the Lagrangan method,
Q=AK*L"+ MB- P, K- P L)

Ox = aAK* " L2 = AP, =) (6.57)

Q, = BAK*L" '~ APy = 0 (6.85)

Q= 8=-PxK~Prl.=0

From (6.57) and (6.85),

aAK*'L*  BAKTLY

P P
) P, BAK"1*'
ReMTARging Ve, P aAKLF
whete L2 = LYL und 1K= = KIK*. Thas,
Bk K_a,
pets T3k oEb (6.89)

6.56. Prove that for a lincarly homogencous Cobb-Douglas production function @ = AK"L",
a = the output clasticity of capital (egx) and § = the output clasticity of labor (g, ).

From the defimition of output clasticity,

| QK /oL,
e SR e 77)
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Sncca+f=Llktf=1~-aand et k= K/l Then
K\"
- ot ik —_ - -
Q= AK"L A(L}L Ak L
Find the marginal functions.
w- -l o e ol | a0l E'..- il
o = aAKT L= Ak L M(L) aAk

g*— - - " - - E.-l =
“F = (= a@AKTL "= () am(,_) (1 - a)Ak”

Find the average lunctions.

X K - AR
Q@ _AR°L
I L
mmmﬂwmwmﬂrmmﬂuprmmm;
"Q-’JK_MI:' o QED.

T oIk T AR

UL (1~ a)AR*
o = "ot AL

=l-a=f OQED.

Equation (6.89) gave the least-cost input ratio for a generalized Cobb-Douglas production
function. Prove that the elasticity of substitution o of any generalized Cobb-Douglas production
function is unitary, i.c., that o = |,
In Scetion 6.10, the clasticity of substitution is defined as the percentage change in the least-cost KL
ratio resulting from a small percentage change in the inpul-price matio P /Py,
dIKIL)  dKIL)
oo Kl Py
dlPiPg) KL
PPy PulPy
Since a and B are constants in (6.89) and Py and P, are independent variables, KiL can be considered a

function of I',/P,. Noting that in the second ratio of (6.97), ¢ = the marginal function divided by the
average function, first find the marginal function of (6.89).

(6.90)

diKIL) _a

PP B
Then find the average function by dividing both sides of (6.89) by P, /Py,

b 2

PPy B
Substituting in (6.90),

WKL)
I}
w-%- 5%- I QED
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6.58. Use the least-cost input ratio for a Cobb-Douglas function given in (6.89) 1o check the answer
to Example 10, where g = K™'L", Py = 3, and P, = 4.

With @ = 04 and 8 =~ (OS5, from {A.59),
K 'IHM] s

L 0S¥ 18

Capital and labor must be used in the ratio of [6K:15L. This confirms the answer found in Example 10
of Ks=16, L,= |5

6.59. Given the CES production function
g=AlaK "+ (1 =a)L. | '?* (6.91)
and bearing in mind from Problem 6.54 that the ratio of prices must equal the ratios of marginal

products if a function is to be optimized, (@) prove that the elasticity of substitution o of a CES
production is constant and (b) demonstrate the range thal o« may assume.

@)  Find-order conditions require thal
aQlal. P,

J0IK ~ Py (hE
Using the generalized power function rule to take the first-order partials of (6.91),
%-— - -A[ﬁK R L A R [ TU P | Al
Canceling = f's, reartunging | = o, and adding the exponents = (1/8) ~ |, we get
?Jf = (1 =ajAlaKk™"+(l - a)l "] AR L R
Substituting A'“MA" « A fir A,
? - ] - ']'A_'I'E Pifl - a)l .l AT g —lem
From (6.91), A" Mak "+ (1 - a)l | 1% o O Fand L1 = 11LR Thas,
0 _1-a(0)
i~ 1) o
*’ u i»p
Similarly, == 5(%) (6.94)
Substituting (6.97) and (6.94) in (6 92), which leads 1o the cancellation of A® and Q,
s (k)
a I F[
(E )F'F - a ﬂ
L l-a p‘
E - LD P' =
i) (5 (699

Since a and B are constants, by considering K/L a function of P, /P, s in Problem 6,57, we can find
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the elasticity of substitution as the ratio of the marginal and average functions. Simplifying first by
letting

a il =8
X (I - ﬂ)
K P\
- k| — 6. 96
77"%) (659
The marginal function s
dK/L) h (F, prrp-t
&P ary Tea\R) 7
and the average function is
RIL  MPPYN PR
PPy L .( Py ) (9%
By dividing the marginal function in (697) by the average function in (A.9¥), the clasticity of
substitution is
- ‘IP‘!F" - ! +F{P‘ .‘Pl] = I {'ﬁm
KiL U S R
PP,
Since B is a given parameter, o = 1/(1 + B) is a constant,
B) H=-1<p<0 o>l UB=0,o=1.HO<f<wm o<l
6.60. Prove that the CES production function is homogeneous of degree | and thus has constant
returns to scale.
From (6.97), Q= AlaK *+ (1 -a)L " "**

6.61.

Multiplying inputs K and L by k, as in Section 6.7,

SIAK. L) = Ala(kK) * + (1 = a)(kL) #] **
= Ak "ak *+ (1 - a)l. "] **
- A ) Mok P+ (1= a)l VP
“kAlaK "+ (1 -a)L ] =kQ QED

Find the elasticity of substitution for the CES production function,
g = T503K "4+ 07L ") *, given in Example 12.

1
From (6.99), ’-l-.-ﬁ

where fi = (L4, Thus, o = 1/{1 + 0.4) = 071,

Use the optimal K/L ratio in (6.95) to check the answer in Example 12 where

k

= 75(03K"* +07L “*) " was optimized under the constraint 4K + 3L = 120, giving

= 1125 and [ = 25.
£ & ﬁ}nl-n

vEom {a.0oh L \1=al%
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Substituting & = 0.3, 1 - a = 0.7, and g = 0.4,
K _(033\'"* (o9\*" =
== - ﬁ) =03y =04s

With £ = 1125 and £ = 25, K/ = 1125725 = 0,45,

Use (6.95) to check the answer to Problem 6.43 where g = S0(0.4K “= + 0.6L *™) * was
optimized subject 1o the constraint 5K + 2L = 150 st K = 14 and [ = 40,
Substituting o = 0.4, 1 = o = 06, and # = 0.25 in (6.95),
R 04?2 s M-nt
- (5ss) =(3) ~ox

3
Substituting K = 14 and [ = 40, i = 038

Find the elasticity of substitution from Problem 6.63.

|
From (5.9V), "1I*ﬂ-m—

0R

Use (6.95) 1o check the answer 1o Problem 6.4 where g = 100(0.2K"* + 0.81.°%)" was oplimized
subject to the constraint 10K + 4L = 4100 wt K = 10 and £ = 1000.

Withs =02, 1 -~ a = 08 and 8« -0,

@) @) () -er-om

xd-
L
Substituting K = 10 and £ = 1000, Jji, = 0.01.

Find the clasticity of substitution from Problem 6.65.
1 1

From (6.99), o=

(@) Use the clasticity of substitution found in Problem 6.64 to estimate the effect on the
least-cost (K/L) ratio in Problem 6,43 if P, increases by 25 percent. (b) Check your answer by
substituting the new P in (6.95).

@) The clasticity of substitution measures the refative change in the K/L ratio brought about by a
relative change in the price ratio F, /Py, If Py increases by 25 percent. Py = 125(2) = 2.5. Thus,
PPy = 255 = 05 w § = 04 in Problem 6,43

The percentage increase in the price ratio, therefore, is (0.5 - 04004 = 0.25. With the clasticity
of substitution = 08 from Problem 6.64, the expecied percentage change in the K74 ratio is

ﬂé"}}"rﬂ-umm “02 or 20%

With (KiL), = 035, (KiL): = 1.2(D.35) = 0.42.
b)  Substituting P, = 2.5 in {6.95),

h
4

s5) () -ow

K
£\
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6.68. (a) Use the elasticity of substitution to estimate the new K/L ratio if the price of capital

decreases by 20 percent. Assume the initial data of Problem 6,43, (b) Check your answer,

a) M Py decreases by 20 percent, Py = BR(S) = 4. Thus, P, 1Py = i = 0.5 which is a 25 percent increase
in the P, [Py ratio, as seen ahove. Therclore,

%ﬂ-l = LE{0.25) = 0.2 or 20"
and (K/L); =~ 1L.2(035) = 0.42
B) Substituting Py = 4 in (6.99),
K 0.4 2400 O/
7-(Gss) =(55) =ow

(@) I the price of labor decreases by 10 percent in Problem 6.44, use the elasticity of substitution
1o estimate the cffect on the least-cost K/L ratio. (b) Check your answer.

a) I P, decreases by 10 percent, Pr = 09(4) = 1.6, and the P, /Py ratio also decreases by 10 percent,
With & 10 percent decrease in Py (P and an elasticity of substitution = 2,
5‘{1‘3 ~2-010) = -020 or ~20%
With the old K/L = 001, (K/L£); = (1 = 0.2H0.01) = O.8(0.01) = 0,008
b)  Substituting /*;, = 3.6 in mﬁu
ll" 16

08 m) (M‘ = (0.097° = 00081
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Exponential and
Logarithmic
Functions

1.1 EXPONENTIAL FUNCTIONS

Previous chapicrs deall mainly witl mwier functions, such as v, in which a variabl
¥ s rabved to COns KON . In this chapter we introduce ar mportant new functiot
which a const.int b is rai 1o & vanab sponent ©. It s called an exponential function and
15 defined as

Commaonly usedd 1o cxpr ites of growth and decay, such as interest compound ind depreciation
exponential fun.tion ' [ollowing general properties. G y f i

1. The domu the funct the sel of real numbers: the ranee of i}
of all po::itin n - ven i 0
Fora>1.: iuncon I8 Increasing and convex; lor < g the function 15 decreasing and
CONVEX.
31 Atx=0

L]

See Example 1 and Problen i for a review of exponents e ot
Problem 1.1.

EXAMPLE 1. G- a ; Jrve prope ol exvooential fanct
be ween [rom the .f f , i Fie. 7-1. More complicated exponet faniiios
eatimated with th. | o 1h v'
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Fig. 7-1

72 LOGARITHMIC FUNCTIONS

Interchanging the variables of an exponential function f defined by ¥ = @' gives nisc (0 a new
function g defined by x = @’ such that any ordered pair of numbers in fwill also be found in g in reverse
order. For example, if f{2) = 4, then g(4) = 2;if f{3) = 8, then g(8) = 3. The new [unction g. the inverse
of the exponential function f, is called a logarithmic function with base a. Instead of x = o, the
loganthmic function with base @ is more commonly written

y=logx a=0a+#l

Log, x is the exponent 1o which a must be raised to get 1. Any positive number except | may serve as the
base for a logarithm. The commaon logarithm of x, written log_ x or simply log x, is the exponent to which
10 must be raised (o get x. Loganthms have the following properties Given y = log, v.a > 0,a # 1:
1. The domain of the function is the set of all positive real numbers:, the range is the set of all real
numbers—the exact opposite of its inverse function, the exponential function.
2. Forbasca > 1, fix) is increasing and concave. For 0 < a < |, flx) is decreasing and convex.
3 Atx = 1, v = Dindependent of the base.

See Exampiles 2 to 4 and Problems 7.5 and 7.6,

EXAMPLE 2. A graphof two functions fand g in which x and y arc interchanged, suchas y = 2*andx = 2" inFig.7-2,
reveals that one function is a mirror image of the other along the 457 line y = &, such that if fix) = y.then g{v) = x.
Recall that x = 2 s equivalent 1o and more commonly expressed as v = log, x.

(L8

a) y=2' b) y=logxex=2"

x ¥ % ¥

i [
L

L~

O B b e e e -

O S Pd == e g —
i

i Pl o= D e b el
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EXAMPLE 3. Knowing that the common logarithm of 1 w the power to which 10 must be raised 10 get x, it
follows that

loglh =1  since 10 = 10 logl =0 since 10° = |
logl00 =2  since 10F = 100 loghl = =1 since 107" = 0.1
log 1000 = 3 gince 10" = 1000 Jog0]l = -2 since 10 ¥ = 001

EXAMPLE 4. For numbers that are exact powers of the base, logs are casily calculated without the md of

calculators
log, 49 = 2 since 7 - 49 log, 16 = 4 since 2* = 16
bogu = § snce 0P = 6 logu2 = since 16'* = 2
logs) = =2 sinced =] log:h = =3 since2 ' = |

For numbers that are nol eéxact powers of the base, log 1ables or calculators are needed.

7.3 PROPERTIES OF EXPONENTS AND LOGARITHMS
Assuming a. b >0, o, b # 1; and x and y are any real numbers:

. a'-a" =g'*" 4. (a') =a"
2 ;—=n' 5 a" b = (ab)
"I_ " ﬂl4 E L]
ol e b (h)
For a, x, and y positive real numbers, n a real number, and @ # 1:
Loodogxy = log.x + log, ¥ 3. log,x" = nlog,x
2 Iﬂg.'-:-lng_,s-log.r 4. hﬁ.‘ﬂ’?hgb&x

Propertics of exponents were treated in Section 1.1 and Problem 1.1, Properties of logarithms arc
treated in Example 5 and Problems 7.12 to 7.16.

Tuble 7.1

x logx i log x X log x 1 log x

1 ), 000Ky 6 DTTR | Il Lodid | 16 1L204)
2 D30l0 7 DB4SI 12 10m92 | 17 1234
I 04T X 09503 13 LW | IR 125583
4 602 9 0982 | 14 L1460 | 19 L27RR
5 6% | 10 oo | 15 LITe | 20 L3I0

EXAMPLE 5. The problems below are kept simple and solved by means of logarithms to illustrate the propertics
of logarithms.

a4) xm=7-2 h) t=18+3
logx = log7+ log2 logs = log 18 - log3
loge = (L845] « 03010 logx = 1.2553 - 04771
logx = 11461 logx = 0.7T7R2

=14 =B
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¢ x= dy x =V
logx = 2log3 logx = Llog®
logx = 2(0.4771) logs = {(0.9031)
logx = 0L.9542 logx = 03010
y=9 ¥ =2

74 NATURAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The most commonly used base for exponential and logarithmic functions is the irrational number
e. Expressed mathematically,

rnlim(l+:-;) ~ 271828 (7.1)
Exponential functions to base e are called natural exponential functions and arc written y = ¢'; loganthmic
functions to base ¢ are termed natural logarithmic functions and are expressed as v = log x or, more
commaonly, In x. Thus In ¢ is simply the exponent or power 10 which ¢ must be raised to get x.

As with other exponential and logarithmic functions to a common base, one function is the inverse
of the other, such that the ordered pair (a.5) will belong to the set of ¢ if and only if (b, a) belongs
to the set of Inx. Natural exponential and loganthmic functions follow the same rules as other
exponential and logarithmic functions and are estimated with the help of tables or the [¢] and [ Inx |
keys on pockel calculators See Problems 7.3, 7.4, and 7.6.

75 SOLVING NATURAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Since natural exponential functions and natural logarithmic functions are inverses of each other,
one is generally helpful in solving the other. Mindful that In x significs the power 1o which ¢ must be
mised to got x, it follows that:

I, e raised 1o the natural log of a constant (¢ > 0), a vanable (x >0), or a function of a variable
[ flx) > 0] must equal that constant, variable, or function of the variable:

=g Mex M=) (7.2)

2. Conversely, the natural log of ¢ raised to the power of a constant, vanable, or function of a
variable must also equal that constant, vanable, or function of the variable:

Ine®=a Ine* =x Ine*' = fix) (7.3)
See Example 6 and Problems 7.18 10 7.22,
EXAMPLE 6. The principles of (7.2) and (7.9) arc used below to solve the given equations for x
o) 5 l= 2
1) Solve algebraically for &,

=120
=
2) Take the natural log of both sides 1o elimimate ¢,
Ine*"" = In24
From (7.7), r+2=In24
x=in24-2

Enter 24 on your calculator and press the [Inx ] key 1o find In 24 = 317805, Then substitute and solve.
x=1ITROS -2 = | ITHIS
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b) 6lmx-7=122
1} Solve algebraically for Inx,

Ginx = 192
Ing= 12

2)  Ser both sides of the equation as exponents of ¢ 1o climinate the natural log expression,

el
From (7.2), x =
Enter 3.2 an your calculator and press the [ ] key 10 find ¢'7 = 24.53253 and substitute.
¥ = 2453253

Note: On many calculators the [¢ ] key is the inverse (shift, or second function) of the key,
and to activate the [¢' | key. one must first press the [INV] ([Shift ], or [20dF ) key followed by the
key.

76 LOGARITHMIC TRANSFORMATION OF NONLINEAR FUNCTIONS

Lincar algebra and regression analysis involving ordinary or two-stage least squares which are
common tools in economic analysis assume lincar functions or equations Some nonlinear functions,
such as Cobb-Douglas production functions, can easily be converted to linear functions through simple
logarithmic transformation; others, such as CES production functions, cannot. For example, from the
properties of logarithms, it is clear that given a generalized Cobb-Douglas production function

q=AK"L’
Ing=InA+alnk +8inL FTJ']_

which is log-lincar. But given the CES production function, [:l
g=AlaK *+ (1 - a)L. "'
Ing=InA - %Iﬂ[nh’ Fr{l-a)l®)
which is not linear even in logarithms because of K "and L . Ordinary least-square estimation of the
coefficients in a log transformation of a Cobb-Douglas production function, such as in (7.4), has the

nice added feature that estimates for o and B provide direct measures of the output elasticity of K and
L, respectively, as was proved in Problem 6,56,

Solved Problems

GRAFPHS

7.1.  Make a schedule for cach of the following exponential functions with base # > | and then sketch
them on the same graph to convince yourscll that (1) the functions never equal zero; (2) they
all pass through (0, 1), and (3) they are all positively sloped and convex.
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a y=3 b) y=4& €) y=§ ¥
a) b e)
X ¥y 1 b 1 v
-1 h -3 =3 iy
2 ' 2 | & -2 &
-1 | -1 i -1 |
0 | 0 1 L] |
| 3 1 4 1 5
2 9 2 16 2 s
E | 27 3 “ 3 125
L]
Fig. 7-3

7.2.  Make a schedule for each of the following exponential functions with 0 < a < | and then sketch
them on the same graph to convince yourself that (1) the functions never equal zero; (2) they
all pass through (0, 1), and (3) they are all negatively sloped and convex.

a) y=(r=3" b y=@@yr=4" ¢ y=@'-=5"

y=5"°
a) b) )
y= 4"
X V | ¥ X ¥ ym 3
-3 27 -3 el -3 125
-2 9 -2 16 -2 F i
ot | k| | 4 -] 5
] 1 ] 1 L] 1
! ] I ) | |
2 | 2 % 2 4
3 | 4 3| & 3 | ik
T
Fig. 74

7.3,  Using a calculator or tables, set up a schedule for each of the following natural exponential
functions v = ¢** where k >0, noting (1) the functions never equal zero; (2) they all pass
through (0.1), and (3) they are all positively sloped and convex.
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u} y= IJ“" h] y= e ¢) y = ‘-Fh

a) h) )
X v X ¥ i ¥
2 a7 ” 014 2 002
1 nl = | 037 -1 004
0 1N} 0 10K} ] 1.
1 148 | p Jy ¢ 4 | .m
2 i 2 | .% 2 S4.60
Fig. 7.8

74.  Set up a schedule, rounding 10 two decimal places. for the following natural exponential
functions v = ¢** where & <0, noting (1) the functions never equal zero; (2) they all pass
through (0, 1); and (3) they are all negatively sloped and convex.

@) y=¢e®* b) y=e¢"' ) y=e™
a) b) c)
y=¢
I ¥ L] I W x v y=g"
-2 2mn -2 13 -2 54.60
-1 | 165 -1 | 272 -1 7.39
0 | 100 0 | L0 0 100 ym g
1 | 0sl 1 | 037 1 0.4
2 037 2 014 2 002
- L]
Fig. 7-6

75  Construct a schedule and draw a graph for the following functions to show that one is the mirror
image and hence the inverse of the other, noting that (1) the domain of (a) is the range of (b)
and the range of (a) is the domain of (h); and (2) a logarithmic function with 0<a<1 5 a
decreasing function and convex.

a) y=(@{y=2" B) x=(3) ory = loga

W
U] b
L1 v ) 1
=3 ] R -3
-3 4 4 -2
-1 r | 2 =1
0 1 | i
1 | { 1
2 | 4 2
k} i i 3

Fig. 7-7
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76.  Given(a)y = ¢ and (b) y = Inx, and using a calculator or tables, construct a schedule and draw
a graph for cach of the functions to show that one function is the mirror image or inverse of the
other. noting that (1) the domain of (a) is the range of (b) while the range of (a) s the domain
of (b), (2) Inx is negative for O<x< 1 and positive for x> 1; and (3) Inx is an increasing
function and concave.

L]
"o = g -
a) y=e B) v=lInx 4 V2 A
X ¥ X ¥
-2 013534 013534 -2
1 L AGTRE LAGTES -1
L (RLELLT IRLLLLE] (1]
1| 2nses 271828 1
2 | 7.38%06 738906 2

Fig. 7-8

EXPONENTIAL-LOGARITHMIC CONVERSION
7.7.  Change the following loganthms 1o their equivalent exponential forms:

7.8,

@) log6d = 2 b) logs125 =3
6d = §° 125 =§
¢) log:d=—1 d) logyd = 4
=y a=3
€) logub =} N logu2=]|
6= 36! 2= 16
g log vy = 6 hy log,y = Tx
y=a™ y= 2

Convert the following natural logarithms to natural exponential functions:

i) In32 = 346574
32 = AT

by InDS = —-022314
D.H = ¢ LEAL T

c) In20= 299573 d) In2.5 = 091629

m;‘r"ﬂ‘\ I-." r.'“-'-"
¢) Iny= ~4x NN ny=2+1
yom g y =g

70. Change the following exponential forms to logarithmic forms:
a) Bl =W by 32=2¢
log.81 = 2 logs 32 = §
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c) | =37 () =2
logy} = -2 log, f = —4
e¢) 5=128 H n=121'2
logn 5 = | loges 11 =
) N1=9¥ h) 64 = 256"
loga27 = | loge 64 = |
710, ::onwn the following natural exponential expressions to equivalent natural logarithmic
orms:
a) 48 =it b) 15=¢""
In4 8 = | S6RA2 In 18 = 270805
c) 06 =g 0N d) 130 = %
In0.6 = 051083 In 130 = 486753
€) y= N y=e?
Iny = Iny=i-%

.11, Solve the following for x, v, or & by finding the equivalent expression:

a) ¥ = logss %00 by ¥ = log: s
0 = WY =2
y=2 =5
¢) logyx =3 d) logax =}
‘_n‘t l'ﬂl“
= I-H
€) log,27 =13 N logd=§
N =y 4 =g
a=21" a=4M
a=3 a=§
g) log 125 =1 h) log.8 = §
l.ﬂ"’l‘.: E-‘!-I
a = 128" a=§
a=125 a=16

PROPERTIES OF LOGARITHMS AND EXPONENTS
7.2, Usc the properties of logarithms to write the following expressions as sums, differences, or

products:
a) log, Sex b) log, 33

log. 61 = log, 56 + log.x log 33 = Jog, 33+ dlog. x
c) log sy d) logu'v*

log, e y' = 2logx + Jlog, ¥ logu'y * = Slog,u - dlog, v
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713

1.4

715

fix
€) bs-;_;
fux
Iﬂl.;;-hl.ﬁr-b:.'fr

« o, 6 + loga x — (g, 7 + 1o y)
= 0.6 + logx ~ log.7 ~ logy

N lop. 8 logVs
log 5 = Tlog.x - 4log.y ton. ¥ = Jlog.z

Use of the properties of logarithms to write the following natural logarithmic forms as sums,
differences, or products:

a) In76ax’ b)) Iney
In76" = In76 + 3nx Inc'y =Slnx+2iny
xt Ky
l.']' h;,i i ‘n lnq—?
x L0
Iu;-lhuﬂ'llnr In-— = In&r — In9y
“InS+Inx - (In9+Iny)
“n&+*nx-In9-Iny
¢) Invi f) In(xVy)
In Vi = {inx ln{xVy) = Sinx + liny
Wa f
In— h) In =
wWh 1
h?}ﬂ-lniilhl-llnr m‘E-mm—mﬂ

Use the properties of exponents to simplify the following exponential expressions, assuming a,
b0 and a # b

a) a-o b) a*-a™
g g =gt g g™ - gt
a* a
) o d) »
sl @ ey
- e 73
¢) Va" n @
V™ = (a")'? = g (@)™ = o'

Simplify the following natural exponential expressions:

a) e b) (™)
et =g (e*) =™
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706, Simplify the following natural logarithmic expressions:

) In8+Inx b Inx'~Inx'
Ll nx’ - I’ = la % = I’ = 2ln s
¢y Ini2+In5-In6 d)y In7-Inx+n9
124108 - 06 In et = W10 in7-lnx+ 109 = oo = In >
L] 1 T
¢) lingl N Sinl
Linkt = In81" = Inv Sind = In(})' = Ing

) lin27 +4In2

ih27+a4in2=02?" +In2* = in(3-16) = In48
k) 2ind -~ |In%

2ind -~ |In8 = Ind* ~In8'" = In¥§ = InK

717, Sumplify each of the following exponential expressions:
i) el

™ e MY But from (7.2), M = flx), 0

Pl T

b“I t.l-hl-'.il.-m.
FAmeesier #-‘ '.ur* -~ -l‘.‘"'
¢) Vs
e I R T

ln El-lll' L1 T

-
e LT F' =

o

¥

SOLVING EXPONENTIAL AND LOGARITHMIC FUNCTIONS
7.08. Use the techniques from Section 7.5 to solve the following natural exponential functions
for &
@) AeM = 8943
1) Solve algebracally for ¢™.
Call |
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2) Then take the natural log of both sides to climinate e,
Ine* = In 2981
From (7.7), Sx = In 298]

To find the value of In 2981, enter 2981 on 3 calculator and press the [Inx ] key 1o find
In 2981 ~ ROO0O] = K Then substitute and solve algebraically,

=8
=16
b) 4" % =360
1) Solve for ¢ ', P L
2) ‘Take the natural log Ine™ " = In90
From (7.5), Ir-15=1n%
mm.mmnummumummm@mmwhmu,m:--t.s.sumnmnﬂ
Ir-185=d48 =2
c) ¥'=25
1) Solve for ¢ ' =518
2) Take the natural log. Ine” = InS18

From (7.3), Fub2498 =625 x= 228

7.19.  Using the techniques of Section 7.5, solve the following natural logarithmic functions for x:
a) Sinx+8 =14
1) Solve algebraically for Inx.
Sinx=6 inx=12
2)  Set both sides of the equation as exponents of ¢ to ehiminate the natural log.
H“"f"
From (7.2), x =it

To find the value of ¢'*, enter 1.2 0n a calculator, press the (@] key 1o find ¢'* = 332012, and
substitute. If the [@] key is the inverse of the [lnx] key. enter 1.2, then press the [INV | key
followed by the [Inx] key.

x=33212 =332
b) In(x+4)y =3
1) Simplify with the laws of logs then solve for Inx.

2in(x+4) =3
Infx+4) = 1.5

2) el o 18
From (7.2), P4d =t
Using a calculator, x4 d = LARIY

= 448169 - 4 = Q45109
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| |

¢) InVx+3 =255

1) Simplfy and solve, Hn(s + M) = 255
In(x + 34) = 5.1

2y Fom (72) b M=e= 14
=130

Solve each of the following equations for x in terms of y:
a) logx=y' b) log.x = log.3 + log, ¥

g=g = 3y since addition in logs = multiplication in algebrs
¢) Inx=3y d) Inx=logy ) logx=Iny

x - ™ 1= gt 3= g™
[) y=ge™

To solve for x when @ s an exponent in a natural exponential function, takc the natural log of
both sides and solve algebraically, as follows:

Iny=ing+hrine = Ing+ hx

3 Iny~-Ing
h
E y=ar
Iny=lat+{z+1)ine=lna+x+1|
x=lny=Ins—1
h) y=p(l+i)

When £ is an exponent in an exponential function with a base other than ¢, take the common log
of both sides and swolve algebhraically.
logy = logp + xlog(l + i)

y = 08y ~logp
log(l + i)

Use common logs 1o solve each of the following equations:

l |

@) y = 625(0.8)
1) Take the common log of both sides of the equation, using the properties of logarithms from
Section 7.3

logy = log 625 + log 0.8

Tnﬂndlhckpﬂh.. and (L8, enter each number individually on the calculator. press the
ogx key to get the common log of esch number, and perform the required arithmetic.

logy = 279588 & (~0.09691) = 269897

2} Since logy = 269597 indicates that 10 must be raised (o the 269897 power 1o get v, 1o find
the wntifogarithm of 269897 and solve for v, enter 269897 on a calculator, press the [10°] key
to find that 10 « S00, and substitute. 1f the [10°] key is the inverse of the [log x| key, enter
269897 and press the [INV] key followed by the key.

¥ = antilog 269697 = 107" « S0

" _ PR L SR SR B W PR e e
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b) y= %

1 logy = log40 - log 100

2) fogy = 160206 —2 = ~(.39794

¥ = antilog (-0.39794) = 10 "™ =04

€) y= L.

0.25

1 log v = log 130 - log0.2$

2 logy = 211394 — (- 0.60206) = 271600

¥ = antilog 271600 = 107 7" = 519,996 = S20

d) v = (1.06)"

1) logy = 10log 1.06

2) logy = 1002531 ) = 0254

¥ = antilog0.2531 = 1P = 1,79]

€) v = 1024

1 log ¥ = 0.2 log 1024

2 logy = 0.2(3.0103) = 0,60206

¥ = antilog 060206 = |01 = 4

N y=Viod

1) logy = {log 1024

2) logy = WA0103) = 0.60206

¥ = antilog 0.60206 « 1070 . 4

The answer is the same as in part (¢) because y = [024'" = 1024™ = 4, Taking the fifth root
is the same thing as raising to the 0.2 or onc-fifth power. in one case the log is divided by
§; in the other, it is multiplied by 0.2,

722, Use natural logs to solve the following equations:
a) y=125
1) Iny = 1lni25S

To find the natural log of [2.5, enter 12.5 on a calculator and press the [Inx] key 1o find
In125 = 252573 Then substitute.

2) Iny = 32.52573) = 757119

Since Iny « 757719 indicates that ¢ must be raised to the 7.57719 power to get y, to find the
antilogarithm, of 757719 and solve for y, enter 757719 on a cakulator press the [¢] key to
find that ¢ = 1953.1 and substitutc. If the [@] key i the inverse of the [inx] key, enter
757719 and press the [INV] key followed by the [nx] key.

o= lﬂ-lihll,'fmlq - l't'#ﬂ" = 0531

b) y = V28561
1) Iny = |In28.56]
2) Iy = J(10.25980) = 256495

¥ = antilog, 256495 = £% = |13

I _ PSR PN BTN N W (e e e |
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2 Semiannually, § = Pl1 + (dm)]™, where m = 2 and ¢ = 2
0,10 |
5= m(l ' T‘] = 100(1 + 0.08)*
To find the value of (1.05)", enter 1.05 on a calculator, press the [¥*] key. enter 4, and hit the [=] key to

find (1.05) = 1.2155. Then substitule.
S = 100(1.215%) = 121 58

1. Continuously, § = P¢”,
5= 100647 = [0
For ¢*%, enter 0.2 o a calculator, press the [¢*] key to find that "7 = 12214, and substitute. If the [¢] key

is the inverse (shift, or second function) of the [lnx] key, enter 0.2 and press the [INV] ([Shift], or [20d F))
key followed by the [lnx] key.

S = 100{1.2214) = 12214

8.2 EFFECTIVE VS, NOMINAL RATES OF INTEREST

As seen in Example 1, a given principal set out at the same nominal rate of interest will carn
different effective rates of interest which depend on the type of compounding. When compounded
annually for 2 years, $100 will be worth $121; when compounded semiannually, § =~ $121.55; when

compounded continuously, § = $122.14.

To find the effective annual rate of interest i, for muliple compounding: |

P|‘1+H‘=P(I +—?
Dividing by F* and taking the rth root of each side.

1L+ = (1 2 ._.)
]
I
= ‘1 + ;) -1 (8.4)
To find the cifective annual rate of interest for continuous compounding:
I+l =¢
fe=e¢ =1 (8.5)

Sce Example 2 and Problems 8.7 and 8.5,

EXAMPLE 2. Find the effective annual rate of interest for a nominal interest rate of 10 percent when
compounded for 2 years (1) semiannually and (2) continuously.

1. Semiannualy, .—,-(ui) 1= (LOSY -1

For (1.05), qurlﬂSm.ulwlllmmlh@hywmﬂw@kqﬂ%cmer!lﬂh&c&
by the l:y to find (1.05) = 11025, and substitute.

o= L1025 = | = (L1025 = 10.25%
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2 Continuously, ===~
To find the value of ', enter (L1 on a calculator, press the key 10 learn ' = L1517, and
substitute

i, = 110817 = | = Q10517 = 10.52%

83 DISCOUNTING

A sum of money to be received i the future is not worth as much as an equivalent amount of
money in the present, because the money on hand can be lent at interest to grow 1o an even larger sum
by the end of the vear. If present market conditions will enable a person (o carn 8 percent interest
compounded annually, $100 will grow to $108 by the end of the year. And $108 1 year from now,
therefore, is worth (has a present value of) only $100 1oday.

Discounting is the process of determining the present value F of a future sum of money §. If under
annual compounding

S=Pl+iY

s e S

then P= a+ir = §(1 +i) (86)
Similarly, under multiple compoundings P = §[1 + (#/m)] ™, and under continuous compounding
P = $¢ ". When finding the present value, the interest rate is called the discount rate. See Example 3
and Problems B.18 1o 8.22.

EXAMPLE 3. The present value of a S-year bond with a face value of $1000 and no coupons is calculated below.
It is assumed that comparable opportunitics offer inlerest rates of 9 percent under annual compounding.

P S04 0) " = 100001 + 009"

To find the value of (1.09) °, enter 109 o a calculator, press Ihc@tq. and cnter — 5 by first entering 5 and then
pressing the [+/- | key followed by the [=] key 1o find (109) ' = 064993, and substitute.

P = 10000.64993) = 649493

Thus, & bond with no coupons promising to pay $1000 5 years from now is worth spproximately $649.93 today
unce $649.93 at 9 percent interest will grow 1o $1000 in § years.

B4 CONVERTING EXPONENTIAL TO NATURAL EXPONENTIAL FUNCTIONS

In Section 8.1 we saw that (1) exponential functions are used to measure rates of discrete growth,
ie, growth that takes place at discrete intervals of time, such as the end of the year or the end of the
quarier as in ordinary interest compounding or discounting: and (2) natural exponential functions are
used to measure rates of continuows growth, e, growth that takes place constantly rather than at
discrete intervals, as in continuous compounding, animal development, or population growth. An
exponential function § = P(1 + ¢m)™ expressing discrete growth can be converted to an equivalent
natural exponential function § = Pe¢” measuring continuous growth, by setting the two expressions
equal to each other, and solving for r, as follows:

e e

By canceling s
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Taking the natural log of cach side,
l:n(l R -"-) -l
m
ml'ln(l + i] = rf
"
Dividing both sides by 1,

r"mtn(l + ~'—)
"

2
"I"h“’.I S‘ - P(I 4 é) - Miu-#—ﬂ t&n
S¢e Examples 4 and $ and Problems 837 to 842
EXAMPLE 4. A natursl exponential function can be used to determing the value of $100 at 10 percent interest
compounded semiannually for 2 years, as shown below,

5=P"
where r = min(l + i/m). Thus,

r- Iln(l +u'—zH-1 = Xin 108 = HOUMETY) = 009758

Substituting shove,
§ = |00 o gt T
Using a calculator here and throughout,
§ = 1 1.2158) = 12158

as was found in Exampie 1.

Note that with natural exponential functions, the continuous growth is given by rin Fe”, Thus, the continuous
growth rate of $100 at 10 percent interest compounded semiannually is 009788, or 9.758 percent a year. That is
to say, 9.758 percent interest at continuous compounding is equivalent to 10 percent interest when compounded
semiannually.

EXAMPLES. A small firm with current annual sales of $10,000 projects a 12 percent growth in sales snnually.
Its projected sales in 4 years are calculated below in terms of an ordinary exponential function.

¥ = 10,0004 ] +0.12)*
= 0000 1.5735) = 15,735

EXAMPLES. The sales projections specified in Example § are recalculated below, using a natural exponential
Tunction with r = mind] ¢ im) and m = 1.

r=Inl.12 = 011333
§ = 10,000 "N 100000 1.5735) = 15,735

85  ESTIMATING GEOWTH RATES FROM DATA POINTS

Given two sets ol data for a function—sales, costs, profits—growing consistently over time, annual
growth rates can be mearured and a natural exponentinl function estimated through a system of
simultancous equations. For example, if sales volume equals 2.74 million in 1996 and 4.19 million in
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2001, Jet 1 = 0 for the base year 1996, then r = § for 2001. Express the two sets of data poinis in terms
of a natural exponential function § = P¢”, recalling that ¢ = 1.

1= P = p (&8)
419 = Pt (89)
Substitute £ = 2.74 from (8.8) in (8.9) and simplify algebraically.
419 =274
153 = ¥

Take the natural log of both sides

In1.53 = Ine™ = Sr
042527 = Sr
F= 008505 = B.5%
Substituting. § = 2744
With r = (L08S, the rate of continuous growth per year is 8.5 percent, To find the rate of discrete growth
i, recall that

r-mln(l+$)

Thus, for annual compounding with m = 1,

0,085 = In(1 + i)
1 4 i = antilog, 0,085 = ™ « | O8X72
i = LORST2 - 1 = 00RS72 = 8.9%

See Example 7 and Problems §.43 1o 845,

EXAMPLE 7. Given the original information above, an ordinary exponential function for growth in terms of
5 = Pil + iy can also be estimated directly from the data
Sei the data in ordinary exponential form.

2MU=Pl+0)"=P (&.10)
419= M1 +8y (&1

Substitute /* = 274 from (8 107) i (8./7) and simphify.

419 = 2T ~ £Y
153 = (1 + )

Take the common log of both ides

log 1.53 = Slog(1 + i)
(0. 18469) = log(1 + 1)
log(1 + 1) = 003694
1+ 4 = antilog 00060 = 100™™ « | (K878
= 1LORETE ~ | = QOSK7K ~ §.9%

Substituting. § = 274(1 « 0089y
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Solved Problems

COMPOUNDING INTEREST

R1. Given a principal P of $1000 a1 6 percent interest § for 3 vears, find the future value § when the
principal is compounded (a) annually, (b) semiannually, and (c) quarterly.

a) From (&1), 5= P40y = 1000(1 +006)"

For (1.06)", enter 1.06 on a calculator, press the [y*] key. enter 3 followed by the [=] key 1o find
{1.06)" = 119102, then substitute.

§ = 1000{1.19102) = 1191.02

- LT
b) From (£2), $= r{l +$) . mm{n'%f] = 1000(1.03)"
For (1.03)", enter 1.0, hit the [¥'] key and then 6. and substitute.
5= 100 1.19405) = 1194.05

wily
e) S mn(l +‘1? = 1000(1.015)"

Enter 1,015, hit the [y*] key then 12, and substitute.
§ = 1000(1.19562) = 119562

8.2. Redo Problem 8.1, given a principal of $100 at 8 percent for § years,

a) § = 100(1.08)'
= 100(].46933) ~ 14693

w MY
b) s-im(ng‘-}'f) = 1001.04)"
= 100(1.48024) = 14802
Wy
o s-nlm(n“‘Tm) = 100(1.02)

“ 100(1.48595) = 148.60

B3.  Redo Problem K1, given a principal of $1250 at 12 percent for 4 yvears

a) 5= 125001,12)" = 12500 1.57352) = 196690
bj S o= 12500 1.06)" = 12504 1.99385) = 1992.31
c) S = 12500 1.03)" = 1250(1.60471) = 2005589

BA.  Find the future value of a principal of $100 at § percent for 6 years when compounded (a)
annually and (b) continually.

a) S = 100 LOS)" = 1000 1.34010) =~ 13401
by From (83), S = P = 100 = 00

For ¢"7, enter 0.3, hit the [¢ ] key, and substitute.
S = 10O 1.34986) = 1 3.9
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85, Redo Problem 84, given a principal of $150 a1 7 percent for 4 years,
a) § = 151.07)" = 150{1.31080) = 196,62
b) 5 = 15067 w 150 w 150(1.32313) = 19847
86, From Problems 8.4 and 8.5, use nutural logs to find (a) § = 100" and (b) § = 150",
a) InS = In100+03Ine = 460517 + 0.3(1) = 490517
§ = antilog, 490517 = ¢**9"" = 13499
b) InS = Inl50+028Ine = 501064 + 028 = 529064
5 = antilog, 529064 = ¢ 7 =~ 198 47
8.7. Find the effective annual interest rate on $100 at 6 percent compounded (4) semiannually and
(&) continuously,
a) From (£4). :.-(141) -1
m
= |06k - 1 -n.num-EE
k) From (K5), = =1 =f™=]
= [ 618 = | = DLBIE =~ 6. 18%
88.  Calculate the rate of effective annual interest on $1000 at 12 percent compounded (a) quarterly
and (&) continuously.
a) b= (1) -1=ao-1
m
= 112551 = | = 0L1255] = 1255%
b) L= 1mf-]
= 12750 - | = 012750 = 1L75% |
TIMING
89. Determine the interest rate needed to have money double in 10 years under annual

compounding.
S=M1+i)

I moncy doubles, § = 27 Thus, 2 = P + ()™
Dividing by P. and taking the tenth root of each side,

2=(1+0" (+H=%2

For V2, enter 2, press the | Vy|key, then lmmmmum y|is the inverse
(shift. or second function) of the [y*] key, ([Shift]. or [20dF]) key followed by the [y*]
ke, and then enter 10 ndhi.uh:E)lqr.

1 +i= LM
i = 107177 =1 = 007177 ~ T.18%

Note that since €2 = 299 = 2°1 €7 or any root can also be found with the [*] key.
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K10, Determine the interest rate needed to have money double in 6 vears when compounded
semiannually.

5= (1 -#)-
m-r(h';-)“

2= 11 +05)"
1+ 05 = V2
In(l +08i) = Lin2 « MOES31S) = 005776
1408 = M = | 05044
0.5 = 105946 - | = (L05946
i= (L1892 = 11.89%

8.11. What interest rate is needed o have money treble in 10 years when compounded guarterly?
’ o iR
s=r1 *3)
If moncy trebles
i e
3= p1 ;3)
1= (1+025)*
I +0285 = O3
htl+n.ﬁjE$h3=tl.IﬂHT

| #0285 = ¢ = | I2TRS
i=00114 =~ 11.14%

812 At what interest rate will money treble if compounded continuously for 8 vears?
K= P
AP = P
Ind=Ine
109861 = Hr r= 01373 = |1.73%

8.1} At what interest rate will money quintuple if compounded continuously for 25 vears?
S=M
5w g
InS = 25
160044 = 25 ro= 0064 ~ H44%

B.14. How long will it take money to double at 12 percent interest under annual compounding?
Round answers (o two decimal places

S=M1+iy 2=(1+012)
n2=¢inl.12 069315 = 011333
=612 vears



168 EXPONENTIAL AND LOGAKTTHMIC FUNCTIONS IN ECONOMICS [CHAP &
815 How long will it take money to increase to 2! times its present value when compounded
semiannually a1 § percent”
s=p(1 *5'3-'2-3 25 = (Ld4)>
In28=2nld4 091629 = 0022
F= 1168 yoars
K.16. How long will it take money to double at § percent interest when compounded gquarterly?
5=F(l-5:?5- 2 = (1.0125)
In2 = 4kl 1.0025 069315 = 3(0.01242)r
t= 1195 years
8.17. How long will it take money (a) to quadruple when compounded continuously at 9 percent and
(&) 1o treble at 12 percent?
a) S=n" 4 = S~ by 8= P J= MNP
Ind = (LMY 13869 = QRN Ind = L1 L0986R] = 002
1= 154 years =~ 916 years
DISCOUNTING
8.18. Find the present value of §750 to be paid 4 years from now when the prevailing interest rate

£.19.

is 10 percent if interest is compounded (a) annually and (b) semiannually.
a)  Using (86) and ity modifications throughout,
F=501+i)"=T301.100 *

For (1.10) ", enter 110, hit the [y*] key, enter 4, then press the [#7=] key 1o find (1.10) * = 0.68301,
and substitute.

P = TSN0.68301) = 512.26

[ W =
b) P-s(l-;) = 750(1,05)
= TSMLATOR | = 507,63

Redo Problem K18, for $600 to be paid 7 years hence at a prevailing interest rate of 4
percent.
@) P =6l0s) b) P=ab0(102) "

= GO TS992) = 455,95 = HIN(),7T578K) = 454.73

Find the present value of $500 in 3 years at 8 percent when interest is compounded (a) annually
and (b} continuously,
a) P = SoM1L08) " by P = Se " = S00e V™Y = 00 "M

= SO0, TUARI) =~ 396,92 = SOINOL.TEAH63) ~ 39132
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8.21.

R22.

Redo Problem 8.20, for $120 in 5 years at 9 percent.

a) P 12000.09) " b) P= 120" [ 20"

= 120(0L6499%) = 77.99 = 12000.63763) = 76,52

Uise natural logs to solve Problem 8.21(h).
P = | 20"
InP = In 120+ (-045) = 478749 - 045 = 433749
P = antilog 433749 = ¢ """ = 76.52

EXPONENTIAL GROWTH FUNCTIONS

8.23.

A firm with sales of 150,000 a year expects to grow by 8 percent a vear, Determine the expected
level of sales in 6 vears.
§ = 150,000(1.08)"
= | S0.000( | SN6KT) = 238,031

Profits are projected to rise by 9 percent a year over the decade. With current profits of 240,000,
what will the level of profits be at the end of the decade?
== 2400000 1.09)™
= 40,0000 L I6TI6) = 568,166

The cost of food has been increasing by 3.6 percent a year. What can a family with current food
expenditures of 3200 a month be expected to pay for food each month in § years?
F o= 20001 036)"
= 200( 1.19344) =~ 23864

If the cost of living had continued 10 increase by 12.5 percent a year from a base of 100 in 1993,
what would the cost-of-living index be in 20007
= 100(1.125)
= |2 2ZR0TD) = 22R.07

A discount clothing store reduoces prices by 10 percent each day until the goods are sold. What
will a $175 suit sell for in § days?
P = 17501 - 010y
= 175{0.9)" = 175(0.59%049) ~ 103,34

A new car depreciates in value by 3 percent a month for the first year. What is the book valuc
of a $6000 car at the end of the first year?
B~ 60097y
= AL A8 ) = 416304

If the dollar depreciates at 2.6 percent a year, what will a dollar be worth in real terms 25 years
from now?
D = | 0974y
= 1LOO0S1758) = (15176 or 51.76¢
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B.M. The cost of an average hospital stay was $500 at the end of 1989, The average cost in 1999 was

LR B

$1500. What was the annual rate of inercase?

LS00 = ST + i)™
3= (145"
1+i=V3

For U3, enter 3, press the | ¥ v key then 10, and substitute
1 4#i= 111612 i=011612=11.6%

A S.year development plan calls for boosting investment from 2.6 million a year to 4.2 million.
What average annual increase in investment is needed each year?
42 = 2601 + i)’
L&IS = (1 +4)
1+ i = V618 = 110061
i= 0006] ~ 10%

A developing country wishes to increase savings from a present level of 5.6 million to 12 million.
How long will it take if it can increase savings by 15 percent a year?
12 = 5.6(1.15)
To solve for an exponenl. use i loganthmic transformation
12 = nS6+tin LIS

TASA9] = 172277 + 013976
0139760 = 076214 1~ 5.45 years

Population in many third-world countries is growing at 3.2 percent. Caleulate the population 20
years from now for u country with 1000000 people.
Since population increases continually over time, a natural exponential function is needed.
P 1 000 000 I w f 000000
= 1000 000( | 89648) = | K06 480

If the country in Problem 833 reduces its population increase 1o 2.4 percent, what will the
population be in 20 years?
P ) D0,0006" 45 o 000,000 *
w1000 1 A1EIT) = 1,616,070

If world populution grows at 2.6 percent, how long will it take to double?
2 = W
In2 = (026
069315 = 002 ¢ = 2666 yoars

If arable land in the Sahel is eroding by 3.5 percent a year because of climatic conditions, how
much of the present arable land A will be left in 12 years?
F = dé (LS 1L ] § . Al"-'ﬂ
= [LASTIMTA o 66%
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CONVERTING EXPONENTIAL FUNCTIONS

R.37.

RAL

R.42,

Find the future value of a principal of $2000 compounded semiannually at 12 percent for 3
years, using (@) an exponential function and {b) the cquivalent natural exponential function.

Fy™ 0.12\*"
a) S« p(142) =2000(1+=5] = 2000(1.06)" = 2000(1.41852) = 28374
b) § = P
where r= min{l + im) = 21n 1.06 = 2{0.055827) = 011654,
Thus, § = 200065 4 = 2000 = 2000( 1 41853) = 2837.06

Redo Problem 8.37 for a principal of $600 compounded annually at 9 percent for 5 years.
a) § = o0 1.09)" = o00(]1 53862) ~ 923.17

by 5= P, where r= Inl.09 » 008618 Thus,
s'w-l‘ﬂlqwm L MIM}-EJE‘

Redo Problem 8.37 for a principal of $1800 compounded quarterly at 8 percent iterest for 24
years
a) 5= 1800(1.02)" b) r=dinl02 = $(0.01980) = 0.07920
= RO 1.21899) = 219,18 § = 1800N TN o JgOnet
= |800(1.21896) = 2194.13"

Find the equivalent form under annual discrete compounding for § = Pe*7™™,
]
remin(142)

Since compounding is annual, m = |
00769 = In(l + 1)
| + i = antilog, 0.0769% = 1,08
i = (LOR
Thus, 5= PLOR)Y

Find the equivalent form under semiannual discrete compounding for P,

r=2In(l +0.5)
009758 = 2ln (1 + 0.5i)
| + 0.5 = antilog, 0.04879 = 1.05
0Si=005 =010
Thus, S = MLOSy*

Find the equivalent form for § = Pe" ™™ under quarterly compounding.

r=d4ln(l +02%)
HOA5688) = In () + 0.25)
1 + 025 = antidog, 003922 = 1.04
i=016
5= MLDY)*

* Slight discrepancy i due 1o carlier rounding,
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ESTABLISHING EXPONENTIAL FUNCTIONS FROM DATA

843 An animal population goes from 3.5 mllion in 1997 1o 4.97 million in 2001. Express population
growth P in terms of a natural exponential function and determine the rate of growth.

150 = Poe'™ = P, (812)
497 = Pt (K13)
Substitute Py = 3.50 from (& 12) in (£/3) and simplify.
497 = 180"
142 = ¢*

Take the natural log of both sides
In 142 = Ine* = 4r

(L3800 = 4r
r= (008767 = 8 8%
Thus, P = 1 508 r=E5%

B4 Costs C of a government program escalate from 539 billion in 1995 10 10.64 billion in 2001,
Express costs in terms of an ordinary exponential function, and find the annual rate of
growth.

$.3 = Cll +4)' = G, (8.14)

10.64 = Coll + i)' (K15)
Substitute € = 539 from (X /4) in (X 15) and simplily.
1064 = S W) + 0"
1974 = (1 +4)*
Take the common log of both sides
log 1.974 = 6log (1 + 1)
HN29538) = log (1 +{)
log (1 + 1) = 0.04923
1 +1 = antilog D.04923 = 107 = 112
i=1L12-1 =012 =12%
Hence, C=5W1+012y i=12%

845, Redo problem 844, given € = 280 in 1991 and € = 5.77 in 2001.
200 = CA1 + i)' = G, |5.16)
571 = Cd1 + i)™ (£17)
Substitute Cy, = 280 in (8./7) and simplify.
577 = 2801 + i)™
206 = (1 +i)™

Take the logs log2.06 = 10logd! + i)
GA031387) = log (1 + 1)
log(1 + i) = 003139
1+ i = antilog 003139 = 10F"™ = | 07498
(= L0498 = | = 007495 = 7.5%
Hence, C o= 281 + 0078 i=75%



CHAPTER 9

Differentiation of
Exponential and
Logarithmic
Functions

91 RULES OF DIFFERENTIATION

The rules of exponential and logarthmuc diiferentiation are presenied below, illusirated in
Enmph:‘i I o 4, and treated in '|"|l-"r1.|, ms Y.l iy U8 Selected |."'Ill"‘=~ for the rmiles are ollered o
Problems 9.35 10 9 40

9.1.1 The Narural Exponential Function Rale
Given filx) where glx) 18 a differentiable function of x, the denvative s
fix)=r¢ g (x) {9.1)
In short, the derivative of a natural exponential function is equal to the original natural exponential
function times the denvative of the exponent
EXAMPLE 1. Tht denivatives ol cach of the natural exponential functions below are found as follows

L. fix) =¢
L".H-TI" L. TheEn 5 i) Subshitutir nivr)

The dérivative of ¢ s simply ¢, the otiginal functios

2 fix)=¢"
Simke f{tfl v, Lher () Y Subseditutimg in
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3 fix)=3"*
Here gix) = 7 - 2x, 80 g'(x) = ~2. From (%./),
Fla)y =X’ M =2 w g™
Evaluating the slope of this function st x = 4,

1
2.TIR28

[(4) = ~be" "0 = "' = -ﬁ( } = =22

See alio Problem 9.1

9.1.2 The Exponential Function Rule for Base o Other Than ¢
Given flx) = ™", where a >0, 4 # 1, and g{x) s a differentiable function of x, the derivative is
Fx)=a""-g'(x):Ina (9.2)

The derivative is simply the original function times the derivative of the exponent times the natural
log of the base.

EXAMPLE 2. The cxponential function rule for base @ b demonstrated in the following cases:
L. flx) =o' ™ Let g(z) = | = 2x, then g'(s) = =2 Substituting in (9.2),
fin)=g" - =2:-lnu=~24"""na
2 y=a'. Here g{z) = x and g'(x) = 1. From (9.2),
¥=a'-l-lha=a"lna
Remember that o may also asume a numerical value Sec Problem 9.2(¢) through (g).
I v=xa” With y s product of «* and a*, the product rule is necessary,

¥ = x(a™-3 Ina) + a™(2x)
w 2™ (dxlnag + 2)
See also Problem 9.2

9.1.3 The Nawral Logarithmic Function Rule
Gaven flx) = Ing(x), where g{x) is positive and differentiable, the derivative is

o - L « ' - "L‘-}.
(x) ) g'(x) ) (9.3)
See Example 3 and Problems 9.3 10 9.5,

EXAMPLE 3, Finding the derivative of a natural logarithmic function is demonsirated below:
L flx) = Infe’, Let glx) = &, then ¢'(x) = 12 Substituting kn (9.3),
1 2
Fix) "EF' j2r = -
2 ¥=Inx, Since glx) = x, g"(x) = 1. From (9.3),

i

"-—-]--.-

X X
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3 w=In(r +fix+ 2} The derivative is

Evalusting the slope of this function at ¥ = 4,
Vi) =4=|

9.1.4 The Logarithmic Function Rule for Base a Other Than ¢
Given f{x) = log, g{x), where a >0, a # 1, and g(x) is positive and differentiable, the derivative
(11
1 | |
w — - p'(x) - "(x) = —-g'(x) - — 04
[(x) ) g'lx)-loge or  [ix) 20 8(x) = (9.4)

since log. ¢ = na. Sce Example 4 and Problems 9.6 and 9.40.

EXAMPLE 4. Dcrivatives of logarithmic functions 10 base @ are found as shown below.
1. fin) = log (2 + 1). Let glx) = 2¢° + 1; then g'(x) = 4dr. Substituting in (Y.4),

I Ax
Fia) = 5o cloge = s lop.e

-
(2 + 1)Ina
2. ¥ = log.x. Here g{x) = x, and g'(x) = 1. From (2.4),
u t uﬁ:
s 1-log.e =

or, from (9.4), [ix) =

9.2 HIGHER-ORDER DERIVATIVES

Higher-order derivatives are found by taking the denvative of the previous denvative, as
illustrated in Example § and Problems 9.9 and 9.10.

EXAMPLE 5. Finding the first and second derivatives of exponential and logarithmic functions is illustrated
below:

1. Given v = ™. The first and second denvatives are
dy o s
ilx =)
d’y .
—r 25¢™
o Se(5) =
2. Given v = " The first derivative is

E =a(1)lne = o lna
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l

where Ine &5 a comstanit. Thus ibhe second denvative is

&£ )
3‘.—' = a'(lnal1}inu) = a'(lna) = o*In’a

i Given v = In2e The first derivative is
dy |

d 2x

I ]
{1]**; o™ X

By the simple power function rule,
&£y
dr
4  Given y = log, 3x, The first derivative s
:?1' - il:”]ll:_: e l]:ll
By the quotient rule, where Ina is a constant. the second derivative is

d'y y tina(0) - 1lna 5 ~Ina p— |
dy’ (xina)’ “in'a lna

|

I | s -

LI
v

9.3 PARTIAL DERIVATIVES

Partial derivatives are found by differentiating the function with respect to one variable, while
keeping the other independent variables constant. See Example 6 and Problem 9.11.

EXAMPLE 8. Finding all the first and second partial denivatives for a function is lustrated below;
1. Givem 2z =™ ™" The first and sccond partials are
AT s ) Lo " TP N P
Zep @ ITUINR) - QMY o 23T e gt
Sy =G T - g,
2. Given : = In(5x + 9y), the partial derivatives are
s 9

T Sxey

R Y "

By the simple guotient rule,
_ (Sx + OyH0) - 3(5) . o (Sx 4 9)0) - %9)

S (55 + Oy) (Sx+ 9y)
- 25 %l
TSy R
-45

:,,+W":"

94 OPTIMIZATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Exponential and loganithmic functions follow the general rules for optimization presented in
Sections 4.5 and 54. The method is demonstrated in Example 7 and treated in Problems 9,12
to 9.21.
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EXAMPLE 7. The procedure for finding critical values and determining whether exponential and loganthmic
functions are mavimized or mimmized is illustrated below:
1. Given v = 2oe™. Using the product rule and setting the derivative equal to zero, we get
d

L = 2e(4eV) 4 2e™) = 0
iy

= 2Mdx+ 1) =0
For the derivative 1o equal zero, either 2¢* = 0 or dx + 1 = 0. Since 2 ¢ 0 for any value of x,
dr+]=0 fg=-}
Testing the second-order condition,
% = 267(4) + {4z + 1)(26")(4) = Re*"(4x + 2)
Evaluated at the critical value, £ = -}, d'wde® = 8 '(~1+2) = Ble >0, The function is thus at a
minimum, since the second denvative is positive.
Given y = In(x’ - 6z + 10), By the natural log rule,
& --6
de £ -6tx+ 10
Multiplying both sides by the denominator x' — fur + 10,
kx=b6=10 =3
Using the simple quotient rule for the second derivative,
ﬂ _{.r' = i + 102} = (2x = 6} 2x — B)
dr’ (' = &+ 10)
Evaluating the second dervative al £ = 3, & yide® = 20, The function is minimized.
A Given g = " Wrrim,
g, = (2= 2 Map g =@y-6)d B S =g
Since ¢ % 0 0 for any value of ¥ or y,
Au-2=0 2y-6=0
i=1 j=2
Testing the second-order conditions, using the product rule,
Zoe ™ (20 = 22k = 2} -Dor o) 4 - Der-Gi(3)
2 = (2p = 6)2y = G)e* Dot 4 PP 0N])
When evaluated st @ = 1,5 = §,
2,=042">0 2,=042e™>0
since ¢ 1o any power is positive, Then testing the mixed partials,
2 = (2 22y ~ ) N = g,

Evalusted st £ = 1, ¥ = 3, z,, = 01 = z,,. Thus, the function is a1 a minimum at £ = | and ¥ = 3 since 2,
and 2, >0 and 2.2, > (2.).

R

0

9.5 LOGARITHMIC DIFFERENTIATION

The natural logarithm function and its derivative are frequently used to facilitate the differen-
tistion of products and quotients involving multiple terms The process is called [logarithmic
differentiation and 8 demonstrated in Example 8 and Problem 9.22,
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EXAMPLEB. To find the derivative of a function such as

(Sc" = B3+ T)h
(9 -2)

glx) =
use loganthmic differentiation as follows:
) Take the natural logarthm of both sides

(5" = KNIt + T)
(95" -2)
= In(Sy" — %)+ In{3r' + 7) = In (9" - 2)

Ing(x) = In

by Take the derivative of Ingix).

d g'lx) 187 124 45
Pl o) Bl el gt o fagt

¢} Solve algebraically for g'(x) in (96),

o [ 18¢ 120 4
FR= st T m'-z)'“”
d) Then substitute (2.5) for gx) in (2.7).

IS0 a2t ast ) (S B e T)
SR W7 w2 (o = 2)

g'is) =

9.6 ALTERNATIVE MEASURES OF GROWTH
Growth ¢ of a function v = f{1) is defined as

G- il _[0) _y
¥ i v

[CHAP 9

(#.5)

(9.6)

.9

From Section 9.1.3 this is exactly equivalent 1o the derivative of Iny. The growth of a function,
therelore, can be measured (1) by dividing the derivative of the function by the function itselfl or (2)
by taking the natural log of the function and then simply differentiating the natural log function. This
latter method is sometimes helpful with more complicated functions. See Example 9 and Problems 9.23

o 930,

EXAMPLE 8. Finding the growih rate of V = P, where P is a constant, is illustrated below by using the two

methods sutlined ahove.
1. By the first method, G= I’?
where V' = PeSir) = v, Thus

2 Tor the second method, take the natural log of the function.
InV=mmP+ine" =InP+nrt
and then take the derivative of the natural log function with respect to r.

. 1 dv d i
G v ar I"\[hﬂr"] ;lh!’-‘-ﬂ'l O+r=r



CHAP 9]  DIFFERENTIATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS 179

9.7 OPTIMAL TIMING

Exponential functions are used to express the value of goods that appreciate or depreciale over
time. Such goods include wine, cheese, and land. Since a dollar in the future is worth less than a
dollar 1oday, its future value must be discounted to a present value. Investors and speculators scek
to maximize the present value of their assets, as is llustrated in Example 10 and Problems 9.31
1o 934,

EXAMPLE 10. The value of cheese that improves with age is given by V = 1400(1.25)"". If the cost of capital

under continuous compounding is 9 percent a year and there is no storage cost lor aging the cheese in company
caves, how long should the company store the cheese?

The company wants to maximize the present value of the cheese: P = Ve ", Substituting the given values of
Vand r, P = 1400(1.25)"" ¢ ™ Taking the natural log,

In P = ln 1400 + '"%In 1. 25 - 009

Then taking the derivative and setting it equal 10 #¢ro 1o maximure P,

| dP
— e () -l 125 " —0.08 =0
A |
dr I - I
LI R 00| =0 o8
o = |3 128 " (9.8)
Since I # 0, Win 1.28) " - 0.9 = 0
s 08
In1.28
In 125\’ ﬂ.zz:m]'_”_‘ .
Iy 018 cal i

Using the product rule when taking the second derivative from (9.8), because P = flt), we get

or ol [ e ]
d—rﬂf'["-“llt:ﬁ}l I' |i“l|1.15H' ﬂ,m] p

Since diPidt = 0 at the critical point.

£p_ [ 1 o . -
> Fl ‘{lnl.lill I PSS T ")

With P, ¢ =0, & Prdr’ <0 and the lunction is al a maximum.

98 DERIVATION OF A COBB-DOUGLAS DEMAND FUNCTION USING A
LOGARITHMIC TRANSFORMATION

A demand function expresses the amount of a good a consumer will purchase as a function of
commodity prices and consumer income. A Cobb-Douglas demand function is derived by maximizing
a Cobb-Douglas utility function subject to the consumer’s income. Given i = x*y" and the budget
constraint p,x + p,v = M, begin with a logarithmic transformation of the utility function

Inu = alnx+ Biny
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Then set up the Lagrangian function and maximize.
U=oinx+Blny + MM -p,x=p,¥)

U‘zn.inip-ﬂﬂ “*M’II
|

UrEﬁ';'*ﬁ-"" B= Ap,y

L"l=‘“.'PI"ILP'I-‘.=u

Add a+ 8 from U, and U, recalling that px +p. .y = M.
a+f=Ap.x+p,y)=AM

a+
Thus, A v,
Now substitute A = (a + BVM back i U, and U, to get
“ M
() )6 e
B_(arBy _. B \(M
e L ’"(nrﬂ)(ir'. i
For a strict Cobb-Douglas function where a + = |,
= ﬂ and ¥= BM (9.9¢)
p! Fi

EXAMPLE 11. Given the utility function « = x""y"" and the income constraint M = 200, from the information
derived in Section 9.8, the demand functions for x and v are (@) derived and (b) evaluated st p, = 5, p, = 8 and
p. =6, p, = 10, as follows:

a) From (9.9%). iw ™ ol Jalt
. P,
by Atp,=5%p. =8
13
.--EL;"E!-,; ad 0.H200) _ \a5
Alp, =6, p, = 10
§ = SHDD 0 and ¥ - S 14
10
Solved Problems

DERIVATIVES OF NATURAL EXPONENTIAL FUNCTIONS

9.1. [Differentiate cach of the following natural exponential functions according to the rule
didx[e™*’) = &) g'(x):

a) y=e" b) y=¢g 't

Letting g{x) = 2x. then g'(x) = 2, glx) = —ju, g'(x) = |, and
lﬂd,l“ -'rntz}”'th r' - "r.""-l}u -kl LR
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|

) y=¢ d)y y=23"
¥ o= (i) = e Vo= 3¢ (2x) = bxe”’
¢) },__r!.r-l n _i"'t‘""
v =2 - 2! A
g) y=5e" k) y = 2xe*
y'= =]0xe' " By the product rule,
¥ o= 2ale") + (2) = 2(x + 1)
i) y= 3z i) y=xe"
¥ o (26 4 €(3) = (20w 1) ¥ o= (5eM) + eM(20) = xe™(Sx + 2)
r"'_..
 puit

By the quotient rule,

e (e + IHSY) = (e™ = 1)5") L 10e™
Y (e + 1y (e + 1y
e +1

L o=

o e = 1)) - (@ 1)2e) A
J (@ =1y @ -1y

DIFFERENTIATION OF EXPONENTIAL FUNCTIONS WITH BASES OTHER THAN ¢
92. Differennate cach of the following exponential functions according to the rule
dideja™"'] = "' - g'(x) - Ina
a) y=a"
Letting g{x) = 2x, then g'(x) = 2, and
¥ = a(2)Ina = 2 Ina

V=da
¥ = a" (10x)Ina = 10xa™ Ina
) y=t
¥'o= (2 Ind = 2(4)" " Ind
Using a ealculator, ¥ = 21IR629)(4)* T = LTT2SRAY T
dy y=2'
¥ =21)n2 = 2In2 = 0.69315Q2)
g) y= 7
¥ o= T2)InT = 2(7) InT = 24(7)" (1.94591) = I89N82(7)"
) y=x2

By the product rule, recalling that x' is a power function and 2* is an exponential function,
¥ o291 2]+ 2(3) = £ 2(xIn2 + 3)
g) y=x2"
¥ = C[2"(S)In2] + 2*(20) = x2¥(SxIn2 + 2)
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DERIVATIVES OF NATURAL LOGARITHMIC FUNCTIONS
9.3. Differentiate each of the following natural log functions according to the rule
didxin g(x)] = Vgix)] - g'(x):

a) y=in2x' by y=In7
= ¥ ] - ":'L I!
Let gix) = 20, then g'(x) = 6, and .,r,llhi o

R S
¥ 1._.I[l-'n”ll -

€) y=In(l +x) d)y y=In(4x+7)
F ! ul ] L = 4
".:Ii-: 4 “‘1[4]. dr+7
¢) v=intx N y=6lnx
l'--l:---!— --E ! - -I. -E
’ I.'tlm" X ¥ &(‘) 1

Notice how a multiplicative constant within the log expression in pan (¢) drops out in differentiation,
whereas a multiplicative constant outside the log expression in part (f) remains.

9.4. Redo Problem 9.3 for each of the following functions:

a) yv=In'c = (Inx)y
By the generalized power function rule,

. d 1 2inx
v = 2z (ng) m.(.) :
b) y = In’&x = (In&x)
2inKx
3

y = zmm{i—){a: -

¢) ¥=In'(3x+ 1) = [In(3xc + HF

Gln(3x+ 1)

d) y=In'(Sx +6)

I P” » 100n (Sx + 6)

¥ = 2in(Se o) oo 46

¢) v=In"(4x+ 13)

1
dr+ 13

¥ = 3fin (e + 19 )u; - 3in(dx + m( In'(4x + 13)

4 )‘ 12
dx+ |3 dx + 13
N v=In(x+5 ¢ [In(x+ 5

Letting g(x) = (x + 5F, then g'(x) = 2(x + 5), and

Rix+35)] = —=

_—
Yo e sy
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g) v =In(x-8)

) g.,m: Hl==5

hy v=3In(l +xy

. | hH
_3I“ *ﬂ’lll" v 1)) e

95, Use the laws of logarithms in Section 7.3 10 simplify the differentiation of each of the following
natural log functions:

a) v=Inlx+5)y
From the rules for logs, In (x + $) = 2ln(x 4 5). Thus, as in Problem 9.4(/),

y - z(%)m s

r+ 5
b) v=In(2x+7y ¢) v In[(3x+ T)4x + 2))
y=2in{2e +7) y=ln(le+T7)+Infde + 2)
4 3 4
y '2{"—-]”’ +7 e s sy
d) y=In|5 (3" - 7)) e) v=In Elr'
r =]
y=InS' +In(’-7) y=ni ~ln(d~1)
..-E-u—lqr—-——qr‘ ':—z.l--.—_h
¢ Ar-7 ' T ¥ B=1
2 L
Rl =
f y=tn "t j g et
Yy By=ayEre
y = Inx' = In(2c + 5§ y o= in(2e" 4 3) = In (x* + 9)]
) 1 Lo A x
yie3ue) 1(1;-!)"1} 4 z{zﬁu x‘+-'i]
. e
x r+3 &'+3 X+9

DERIVATIVES OF LOGARITHMIC FUNCTIONS WITH BASES OTHER THAN ¢
96. Dilferentiate cach of the following logarithmic functions moﬂﬁn; to the rule

1

Hh[lufra'--m:t-\rl]* ——-x{xl log.e = EI_} g'(x) ge=

@) ¥ = log, (4 - 3) b ¥ = log, 9’
I a1l P 23
yoE -lf*imn(lnu] ) ﬂr'inﬂ}{hl)

Ry 3

: (4 - 3)Ina xind
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c) v=log:(8 - x) d) v=x"log,x
om | ‘_”{"["l By the product rule,
(8- 1) In2 _ | |
k™ y "’_;“’(ﬁ” + loga x(3)
(K= x)in2 e

T

v) }mlug."h"?-?
From the law of logs, v = }log, (= 7). Thus
T

v =3|z5e(ee) |- v

COMBINATION OF RULES
9.7. Use whatever combination of rules are necessary to differentiate the followng functions:
a) y=cnx'
By the product rule,

o' ;J(%)m’: o Inx'(2s) = 3r+ 2xlar® = A+ Gxinx = 3c(l + 2inx)

b) y=x"Inx’
y - 1'(«:3]{1;1 + Inf(3F) = 26 + 6 nx = 2¢(1 + 3nx)
¢) v=¢'Inx
By the product rule,

- r'(%} + (Inx)e’) = r{i + |u)

d) y=e¢ *Inle
y = r"'[;—#)ﬂl"hm*b"‘l - l""(}’““h]
¢) y=Ine"?
i I' "\ e
y = =y (e =3

since Ine™ ! = A + 2 dslne™?) = dids(3x +2) = 3.
f): preait

el ()

since ¢*" = 1.
s} y - rhh.‘.nll

y = e =2

singe ¢ 1 = 204 1.
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k) y =™

o
y'= r""-&trh-ll

Then using the product rule for didy(x In x),
|
y'm t“'“'[r[;) '*llnle‘,ljll = "1 4 Inx)
i) y=eun

y' = l"""‘]f(;;)[.h +In .hﬂlll

= ¢ " M(x 4+ 20indx) = xe* = ¥(1 + 21n Jx)

SLOPES OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
98.  Evaluate the slope of cach of the following functions at the point indicated:

a) y= 3 atx =5,
¥ - Ohe"
Ate =Sy = 06" = 0.6(2.71828) = 1.63097,
b) y=2e'" atx =4,
i e
Atx=d,  y= =3¢ e <30 o < JOM248) = 000744,
) y=hn(xr+8c+4) atx=2

21 +K
YeRi+ 4

L

_‘d.l.l‘.

Ax=2 y=§|=05
d) y=In'(x+4) atx=6

) \ 2in(x + 4

7= mes il g)m - S5
ol 210 220089

L ) e 046052

1 10

SECOND DERIVATIVES
9.9.  Find the first and second derivatives of the following functions:

a) y=e" b) y=etin
¥ At ¥ = ‘!l‘ M
¥ o= Gt y = h, iV
€) y=3eM! d) v = e
y' = 15eM! By the product rule,
y = 78! y'= ) + Q) = 2 (x + 1)

Y =2(1) 4 (x + 1| 2e') = 2e(x + 2)

185
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9.10.

mmmancru_uﬂéﬂmgmw FUNCTIONS

) y=iIn' fi v=4dinx
1 5 - Y = 1 -f-. 4
e LS y 4(!){:1 St
yoo-tries Y.

Tuke the first and second derivatives of each of the following functions:
a) y=a"
v =a"{(Nina=%"Ina
where Ina = a constant. Thus,

Y o= (3a™Ina)3)ina = %a"(lna)
'll y= ‘\ul
!r = g™ rl{jjh' i !'h '.Hil'
¥ = (Sa™ ' Ina)S)Ina = 25" (Ina)’
c) v =log.5x

= I L:L: L
4 {}'Il'll xina ko 2

Using the generalized power function rule,

2 -lag. 1
y==lume) me “ina rlina
d) y = log,
-— --— - :
- Lol e
-Inl 1
= i 1) = - -
¥ Hxin3) (In}) T3 Jina
e) y= e
By the product rule.
v = xle') + (3) = A+ 1)
Vo (1) 4 (x4 IN3) = Aex + 2)
dx
n Jlrm.’!-h'lmr
By the quotient rule,
Pe (3lnx)4) —4fIVa)  12iny-12 12{nx -~ 1)

Uin v Uin' x Din'x

[CHAP 9

e (91’ ) 12(0ix)] = 124105 = 1)[[H2) Inaj(1ix)] (108 e’ x) = (2160 Inx = | }Inx)

Klin*x Klln*s
_dinx-Snx-1) _ -dlnx+8 42 -lnx)
rin’s Sxin'x gln'x
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PARTIAL DERIVATIVES
9.1L  Find all the first and second partial derivatives for each of the following functions:
a) z=e "
L=20T g, =2y
By the product rule,
T = D)4z, = D) 2 (D)
= 2e" (26 + 1) =272y 4 1)
L= daye’r -2,
b) z="*>
n- '..II'M"" =f - P}*‘h
2= Arldxe™ ") + M) 2, = 9N
=4 M4 + 1)
™ 11“!'."' = i
f} 7= ‘.'I:iH'
=" " Dina L=a""Yina
=2 "Ina -3 ¥ing
2o = 20 Y(lnad2iina)  z,, = 3 T(lna)INina)
=4 "In'a =00 "™ in'g
2= Min'a =2z,
o} =g
2, = 4"""(3)n4 z, =4"*%(5)Ind
= N4)"" " In4g = 5(4)"""Ind
T N4 M(In AN g) 2, = S M(Ind)5)KInd)
= ﬂ'“"""h"- - m‘}’""hll

2, = 154 4 = 2,

€) 2= lIn(Tx+2y)

7 3
T dy % Tx+2y

By the quotient rule.
. o UXANO)-7T) -4 SO+ 200 -22) -4

T T ey x+2yy 7 (7x + 2y) 7x + 2yF
-14
™ Gr e F e Rl
N z=In(x+4y)
p SE
T S Eray
oL EAHID -y B2 (a7 - Sy(ly) 8- Ry
= (" = 4y (" + 4y s (F = 47y (o + 4y
= |Gy
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g z=log(x-2y)

| =2
T -2yne T =2y na
— “lina -1 s dlna 2 4
U x=29YIn'a  (x=2)'Ina ™ (r=-2YIn'e (x-2¥yine
2

Ilr“m-:fi
k) 2= log (3 + §)

S .. T A
A s ine T Ad 4 ) Ina
(37 + P)iInad) - bx{fxinag) . (37 4 ¥)ina)?) - 2v2yina)
o (i <y )ina il (e + ¥y In'a
6y’ - I8 far’ - 2y
et yrme RN
-1 Zxy

OPTIMIZATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS

912 Given v = 4xwe", (@) find the critical values and (b) determine whether the function is
maximized or minimized.
a) By the product rule,

¥ o= Ay ey b eM4) =0
4™ v 1) =0

Since there is no value of x for which 4¢™ = 0, or for which ¢ = 0,
Irsl=0 &=~}
by W = de™(3) + (Ax + 1K126Y) = 126%(3 + 2)
ALE = ~L v = 12¢ (1) And ¥ = 12(0.36758) >0. The function is minimized.

9.13. Redo Problem 9.12, given y = Sxe **

a) ¥ o= S =02 ") 4 2 " MS5) = 0
e —02e) =0

Since Se "“»0, (1 ~0D2)=0 =5
by ¥ o= Se =02 4 (1 - D2~ le ") = ¢ (02— 2)
ALS =5y =¢ (12 And y" = (036788) — 1)< 0. The function is al a maximum.

9.14. Redo Problem .12, given y = In(x’ = 8y + 20),
: 208
o e b
Multiplying both sides by & — Kx + 20 gives 2¢ = 8 = 0 and § = 4,

_u’-m + 2012) = (2x — 8} 2x ~ R)
(' = &y + 200

AtN =4 ¢ = & 50 The function is ot & minimum.

&) v
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9.15. Redo Problem 9.12, given v = In (22" = 20x + §).
a) P, ot
L T
dr-=20=0 i=5
b) f*[h‘ﬂllh+5ﬂ41-{h—2ﬂﬂh‘m}
2 (2" — 20x + 5

Atd =5,y = ~|BV2025 < 0. The function is a1 a maximum.,

n

9.16. Given the function & = In(2¢" — 12¢ + v ~ 10y), (@) find the critical values and (b) indicate
whether the function is at 4 maximum or minimum.
&2 . -0
2. L Iy 10y 1ty "
&x-1250 §=3 29-10=0 §=5$

28 < 1204y~ 10yHA) - (dx - 12)dx - 12)

(1] :, =

& o @F 120+ Y - 1y
. Q6= 1204y - 100)2) - 2y - 10)2y - 10)
" (2 - 12c 4+ v - 10y)’
Evaluated st ¥ = 3, v = §,
4 -0 -1n LN -0 -8
B T TTT

I et 31 () ;
I T T T [
Ali=3§=5: =0=: Withgz,z, <0and .z, >(z,)F, the function is al a maximum.

9.17. Redo Problem 9.16, given = = In(x* — 4x + 3y" — 6y).
) R P e i S R e T
d-4=0 §F=2 Gy-6=0 F=i
(0 —dx + 37— 6y)H2) - (20 - 4)(2e - 4)

* - (¥ —dc + 37 - byy
o o W —dr 4 37— 6y)6) — (6y — 6)6y ~ 6)
= (' —dx + 3y -~ ty)
A T=2 §=1,
(~TH2) -0 14 6 -0 A2
. Q- dey-6)

R 7 e pre e
Ati=2 §=1z,=0=z_ Withz, s, <0and z,,z,, > (,,), the function ix at a maximum.

9.18. Recdo Problem 9.16, given ¢ = ¢™" % ™,
@) 2, = (G =B)d™ P W) o w2y - BN g

tr—6=0 i=1 2y-B=0 j§=d
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) Using the product rule,
™ 'h = ﬁ'"_h -ﬁ}fiw h"t'-l-l-f"h"h""hl{ﬁ’
&y ™ [:f = m’ - I}""‘ oyl -y 'E'“L."L'"iﬂ

Evaluated st i = 1, ¥ = 4,
2., 2046e">0 ,=0+2"">0
Then testing the cross partials,
2o = (Gr = 6)2y ~ B)et™ " m 2,
Ati=1,§F=4 2, =0=z, The function is st & minimum since 2,,, 2,, >0 and 2,2, >(2,.).

9.19. Given ¢ = &' 2 0 8 redo Problem 9.16,

) 2, = (dr = 12- ) B2y 4l 2 )
dg=2y=12=0 (9.10)

2, = (=2x+2y~ ,“,lh‘*-m Zverl bt o 0
- +y—-4=10 (w11

Solving (¥./0) and (9.17) simultancously, © = &, ¥ = 10,

2 = (4r =12~ 2yp)(dx - 12~ Il-'l'l‘"'l e Bupn b g ‘.m'-m-:.p-.l-q.,‘“
2, = (=2 1.3?._'"_1'1,2_,,___4”;1-'-|n-.1.n1-.’—{,|+'|.h'-1h-l-u-r'-l.rp-ﬂ-l

Evalusted at i = & 7 = 10,

k)

Zu=0+ide™>0 2, =0+2e™>0

Testing the mixed partials, by the product rule,
S = (dr =12 =2y —2x +2r“-|}l”‘"“""‘""""‘+¢'“'""‘""""""‘“{—1] =2,

Evaluated at # = 8. ¢ = 10, z,, = 0 - 2¢"™ = 2 .. Since 2,..2,, >0 and £,,2,,>(2,,). the function is
al & minmum.

9.20. Given the demand function

P = 825" 9%2¢ (9.12)
() Determine the quantity and price at which total revenue will be maximized and (b) test the
second-order condition,
al TR = PO = (2% "= 0
By the product rule,
dTR e —
o = (B2 Uy(1) 4 Q- 002)(8.25¢ *®0) = ()

(B.2% ") -2y = D
Since (825 “¢) £ 0 for any value of @, 1 - 0.02Q = 0; @ = 50.
Substitusting O = 50 in (9.12), P = B25 0% = 825" And P = B25(0.36788) =~ 104,
b)) By the product rule,
%.Ei = (K25 *SVY~0.02) + (1 - 0.020N ~0.0218.25¢ ““¥) = (~0.02NB.25*“V)(2 -~ 0.02Q)

Evalusied at 0 = 30, FTREQ = (~0MNE2Se 'N1) = ~01650I6TE8) <0 TR is al & maxi-
mum
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I

9.21. (a) Find the price and quantity that will maximize total revenue, given the demand function
P = 12.50¢ "™ _(b) Check the second-order condition.

a) TR = (1250 **¢) 0
% = (12.50¢ “"Y 1) + Q(-0.005K12.50¢ ")
= (12.50¢ ““R0)(] - 0.005Q) = 0
1=0008Q =0 Q=200
Thus, P e |250e "W L 12 800 | = 12.50{0.36788) = 4,60
4'TR

&) ic

= (12.50¢ “"SY - 0.005) + (1 = 00050 ) —0.005) 12 50e "0y
= (=005 H 12.50¢ )2 - 0005Q)

Evaluated st @ = 200, #TRIAQ = (-0.00S)12.50¢ ')1) » ~0.0625(0.36788) < (. The function is
maximired.

LOGARITHMIC DIFFERENTIATION
9.22. Use logarithmic differentiation to find the derivatives for the following functions:
a) glx) = (" = 2)(x* = 3)(8x - 5) (9.17)
1) Take the natural loganthm of both sides.
| Ing(x) = (e’ - 2) + ln(e - 3)+ In (8 - )
2}  Take the denvalive nl‘lnp[x*.

L LEE) | A A 8
ey~ P a Py &3 i)

3)  Solve algebraically for g'(x) in (9.14).

2K
= +
-3 &

g0 = ;f: . “_5}-:1:1 (9.15)

4)  Then substitute (9.17) for g(x) in (9.75).

. |
= (5 5+ - 5 I - 200 - 3y - 9)
k) glx) = (2" + T+ 6)a" + 2) (9.16)
1) Ing(x) =lIn(x*+7) ¢ In(x* + 6) + In(x" + 2)
o g 4’ St At
2) d;""‘“‘“ glx) x"+7+r'+ﬁ+:‘+1
; 4y i @

4)  Finally, substituting (9./8) for glx) in (9.17),

' 5"
i*lll- {‘f.?+ rq,ﬁ*r?fl)‘{x'+?ﬂf+h}[,l‘+ll

3 _ 442
c) gix) = (3¢ (h‘“_":}*g]’

1) Ing(x) = ln (X" = 4) + In (2" + 9) = In(T2* - 5)
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;1:: 1S a2

2) _"“3‘"] W-4 w08 -8
L] u-
3} ‘ {l] (!r'l ‘ 1' e g ?‘J ‘ l x{I‘
o l!u" o' (3 - 42" = 9)
4) FR = w3 e e ] -5

GROWTH
9.23. The price of agricultural goods is going up by 4 percent each year, the quantity by 2 percent.
What is the annual rate of growth of revenue R derived from the agricultural sector?
Converting the revenue formuls R = PQ to natural logs.
InR=InP+inQ

The derivative of the natural log function eyuals the instantancous rate of growth G of the function (see
Secthon 9.6). Thus,

d d d
G = 4 nR) = S (in )+ £ (@)
But %{lnﬂ=mhﬂﬂ=lh i—';{lnﬂ;aymhul@ﬂ
d
Thus, G = (nR) = 004 + 002 = 0.06

The rate of growth of & function involving a product is the sum of the rates of growth of the individual
componenis

9.24. A firm experiences a 10 percent increase in the use of mpults at 4 ume when inputl costs are
rising by ¥ percent. What is the rate of increase in total input costs?
C=P0
nC=InP+inQ
d id

: d
] Iﬂniltsllﬂﬂ I{In{li 003 « 0,10 = 0.)3

925. Employment opportunities £ are increasing by 4 percent a year and population F* by 2.5
percent. What is the rate of growth of per capita emplovment PCE?

E
PCE F

IMPCE=InE-Inl
Taking the derivative 1o find the growth rale.

o o d
‘-* . — tn : = e = ! - = .I] =
G mﬂnl’(‘l’.l d.'l'l E) milnl"} 004 - 0,025 = 0015 = L5%

The rate of growth of a function mvolving a quoticnt is the difference between the rate of growth of
the numerator and denominator.
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9.26. National income Y s increasing by 1.5 percent a year and population P by 2.5 percent a year.
What is the rate of growth of per capita income PCY?

Y
H."!'-—P

ImPCY =lnY-inpP

d d d
- — B - - ‘ e -
[ - {In PCY) {iln¥) I: {ln ") = 0015 = D02 0.0 1%

Per capita income is falling by 1 percent a year.

9.27. A country exports two goods, copper ¢ and bananas b, where carnings in terms of million
dollars are

e = cltg) = 4 b= bt,) =1

If ¢ grows by 10 percent and b by 20 percent, what is the rate of growth of export
camnings E?

Emc+h
InE =In(c+b)

. i a
G mﬂﬂfl - Ihtrrhl

From the rules of derivatives in Section 9.1.1,
1

Gy = vy e (ry + () (9.15)
From Section 9.6,
C=er P wn
Thus, () = Gelt) B = Gub)
Substituting in (9.18), Gp= F:ITIG, OB )
; S
Rearranging terms, (e c*bb' <30
Then substituting the given values,

. _ 4 L] 4 1 .
Gy FYes (0.10) ) (0.20) Ftﬂ.lﬂ.’r-# 5{020] 012 o 12%

The growth rate of a function involving the sum of other functions is the sum of the weighted average
of the growth of the other functions

9.28. A company derives 70 percent of its revenue from bathing suits, 20 percent from bathing caps.
and 10 percent from bathing slippers. If revenues from bathing suits increase by 15 percent,
from caps by 5 percent, and from slippers by 4 percent, what is the rate of growth of total
revenue”

Gy = OT0.15) + 0.2000.05) + GI004) = 0,105 + 001 + 0008 = 0119  or 11.9%
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9.29, Find the relative growth rate G of sales at 1 = 4, given S(1) il
I 5(¢) = In 100,000 + Ine®**" = In 100,000 + 0.5V7

Take the derivative and recall that 0.5V} = 057,

3 N, 08

d’lnﬂi 30 M(i)' v
Al =4, fs’“—_z-‘ﬂ..lﬁ 125%
4

9.30. Find the relative growth of profits at 1 = §, given m(1) =

250,000¢" ",
In w() = kn 250,000 + 1.24"
-5 LU L A e
and G = lnst) = 0 '1{3]
Attr=8§, L

f:'-ii-;'—r'uii-l“

OPTIMAL TIMING

931, Cut glass currently worth $100 is appreciating in value according to the formula
Vo 100 = 100¢

[CHAP 9

How long should the cut glass be kept to maximize its present value if under continuous

compounding (a) » = 0.08 and (h) r = 0127
a) The present value P is P = Ve ° Substituting for V and r,

"= I[ﬁl"“r LT “n\'r-nm
Converting 1o natural logs, In F

« I 100 + Ine*" "™ = g 100 + % ~ 0,08 Taking the derivative,
setting it equal to zero, and recalling that In 100 is & constant

d 1d4F 1 .5
f#{tuf'} Pﬂ-zl 0.0
dP ol -
pr "{z' “”“) o
Since P # 0, b= 0om
¢ "= 0,06
:-{n.m-*-ul = W

Tmuphmm-cmumﬁﬁm mmmmﬁmr-m
) o) 4

o B
df vy

Sinee dPidr = 0 a1 the antical value,

which is negative, since P and r must both be positive. Thus, ¢ = 39.06 maximizes the function,

(9.19)
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by M r= 002, substituting 0.12 for 0.08 in (2./9) above,

AP
I"F( —u.lz}-u
I - 012

= (024) " = = 17.36

0.0576

The second-order condition is unchanged. Note that the higher the rate of discount », the shorier the
period of storage.

9.32.  Land bought for speculation is increasing in value according to the formula
V = 1000e ¢

The discount rate under continuous compounding is 0.09. How long should the land be held to
maximize the present value?

P 1000e 7o 9 = 000 ¥t

Convert to natural logs InP = In 1000+ ¢ -
vail LR e 000
Take the denvative. [ Py " ;' =009 =0

—n - o
2 P(Jr mﬂ] 0

R =009 =027 =713 yoan
mﬂw«dﬂcundﬂinn.mnﬂingdﬂdl-ﬂﬂlh:mliﬂlﬂmh

d'r : P 2p
dr’ 9 )+ '.llr ﬂm)nﬁ q.i:."}{u

933, The an collection of a recently deceased painter has an estimated value of
Vo= 200,000(1.28)*7

How long should the executor of the estate hold on to the collection before putting it up for
sale if the discount rate under continuous compounding is 6 percent?
Substituting the value of Vin P = Ve ",
P = 200,000(1.25) ¢ 2=
In P = In 200000 + " 1n 1.25 ~ 0.06¢

LI B 2
unn 5 = 3 (n1.25)r " - 006 = 0

—- FlE{hlzs}r *"‘+u.m| =0

;1 . 3006) _ous |

— - "-
2In 128 20.22314) G0 " =154 yeera

9.34. The estimated value of a diamond bought for investment purposes is
Vo= 250,000(1.75) "
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I |

If the discount rate under continuous compounding is 7 percent, how long should the diamond
be held?
P o= 250,000(1.75) "¢
In P = In 250,000 + " (In 1.75) = 0.0

i{hﬂ- iﬁ--‘-mlﬁu Mo0DT =0

P e, i
I = FIIHH 175\ ﬂ.tl"ll i}

{
illhl.?ﬁjl 00T =0 u:( k28

am
—= ) = (0.50)*" = 2.52 years
hms) =0

SELECTED PROOFS
935, Derive the denivative for Inx.

From the definition of a derivative in Equation (1.2),

+ Ax) - fix)
A

£ = tlim -2
M~
Specifying fix) = Inx,

) Inix + Ax) ~ Inx
B - A

From the propertics of logs, where Ina - Inb = In(a/b).
iﬂn:} i h]l‘.‘l * h}i’x!
dx o Arx

Rearranging fint the denominator and then the numerator,

%um- Hm(ih”"") - m ﬁh(l-r%”

"..--i-l 1

Multply by v/x.
o ¥l X Ax
T.Ilnﬂ- hm[;---h(I*T)I

From the propertics of logs, where alns = Inx®,
d 1 Ax "
i~ 102

e
R gy 3

Since the loganithmic function is continuous,
L
dx
Let no= w/Ax and note that as Ax =0, n == Then

iﬂllj = Eln

. 1y
i _lﬂ(“n]]
Bui from Section 7.4, ¢ = ihe limit s n—= ol {1 + l/a)*, 50
| 1

d |
E[Iluj ;-ll:lr _,I =

*""EE"'[E(' r%]ﬁh
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9.36. Derive the denvative for v = Ing(x), assuming g(x) is positive and differentiable.

Using the chain rule notation from (3.6), et v = Inw and & = g(x). Then

oy . o
e du dx
dy 1 da |
where E;'; and E.l'_ (x)
. d 1
Substituting, i £ix)
Then replacing o with g{x),
U T~
dx Hﬂ'hl
_‘_ a.iL. o -ﬂﬂ
Hence, d‘.cm‘ﬂl“ e ') (%)
Show that the derivative of the function v = ¢ is ¢*.
Take the natural logarithm of both sides,
Iny = In¢
From Equation (7.7), Iny = 1
Use implicit differentiation and recall that v is & function of x and so requires the chain rule,
Ly
¥ lx
d
o,
Replace y with ¢,
o
;;{t"l*l"
Given v = ¢, prove that dyvidy = ¢« g'(x).
Use the chain rule, letung v = ¢ and u = g(x}): then
. A
dy  du dx
& o
where o & andd e g'lx)
_ dy ,
Substituting. E-:““;lﬂ

Then replace ¥ with ' on the lefi-hand side and u with g(x) on the night-hand side,

J - L -
d.th" ) = " g'(x)

197
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9.39. Prove that log, (v/y) = log x = log, v.
Let 5 = log, « and £ = log, y. Then from the definition of & logarithm in Section 7.2
@ =x and o=y

a

and e

Substituting from the property of exponents, where a'la’ = o ',

o
¢ v
Again using the definition of a loganithm,
u
Iﬂ',y el |
But 3 = log. x and 1 = log, v. so
log. ] = logx ~ log.

9.40. From Equation (%.4), prove that log,e = Vna.
5S¢t each side of the given equation as an exponent of a.
gt _..I.lu-
But o = ¢ Substituting.

i
Then taking the log of both sides,

- L .

log.e = log, @ o



CHAPTER 10

The Fundamentals of
Linear (or Matrix)
Algebra

10.1 THE ROLE OF LINEAR ALGEBRA

Linear alecbra (1) permits expression of a complicated svstem of equations in a succinet, simplified
way, (2] prowides a shorthand method to determine whether a solution exists before it s attempted
and (3) lumishcs the means of solving the equation system. Lincar algebra however, can be applied
rm.l'_rtu-r}'ilcm- of linear equalions. Mnce many economid relabonshups can be approximated by hinear
ﬂ]l.'lﬂti{'ll'l.i gt others can be converted to hinear relationships, this limitation can in part be averted
See Example 2 and Scction 7.6

mm‘. E--f company with several dilforent outlets selling several dillerent produocts, a o lrx provides

o concse way of kcoping track of stock

Cdatden Sis Punle Hinding ETTHT

|
¥ | &) |
T
| GHl d |
i 1T = ]

By reading Beross o row of the matnx, the firm can determine the level of stock in any of its outlets. By
reading dowm B ol umn of the mainy, the firm can determine the stock of any line of its prodect

m1 A Bnlincar [unction, such as tl raliomal function | 1 i | WwilY conver 11 e at
function by a simplc rcarrangement

followed by & loganihmic iransiormation
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which s log lincar. In similar fashion, many exponential and power functions are readily convertible 1w lincar
functions and then handled by linear algebra. See Section 7.6,

102 DEFINITIONS AND TERMS

A muairix is o rectangular array of numbers, parameters, or variables, cach of which has a carefully
ordered place within the mairix. The numbcers (parameters, or variables) are referred (o as elernenis
of the matrix. The numbers in a horizontal hne are called rows; the numbers in a vertical line are called
columns. The number of rows r and columns ¢ defines the dimensions of the matrix (7 X ¢), which is
read “r by ¢ The row number always precedes the column number. In a square mairix, the number
of rows equals the number of columns (that is, r = ¢). If the matrix is composed of a single column.
such that its dimensions are r % |, #t is a column vector, if a matrix s a single row, with dimensions
1 % ¢, it is a row vector. A matrix which converts the rows of A to columns and the columns of A to
rows is called the transpase of A and is designated by A’ (or A”). See Example 3 and Problems 10,1
o 103,

EXAMPLE 3. Given

Wy By gy 1 9
iy d” ﬂ"‘ """ |-* I : = c-
@y gy Wy e

Here A s a gencral matrix composed of 3 % 3 « 9 clements, arranged in three rows and three columns It s
thus a square matrix. Note that no punctuation separates the clements of a matrix. The clements all have double
subscripts which give the address or placement of the element in the matnx; the first subscript identibics the row
in which the clement appears, and the sccond identifies the column. Positioning is precise within a matrix. Thus,
@y, b8 the element which appears in the second row, third column; 4, is the element which appears in the third row,
second column. Since row always precedes column in matrix notation, it might be helpful to think of the subscripts
in terms of RC cola or some other mnemonic device. To determine the number of rows, slways count down: 1o
find the number of columns, count acrow

Here B ooa 2 % 3 matrixn. Its by, element is 9, its by, clement is 4. And C is a column vector with dimensions
3 1; D is o row vector with dimensions 1 % 3.

The transpose of A is
dyy WAy @u
A= ayy ayy ag
Wy Wy W

C=[7 4 5

A=

7
4 D=3 0 1}
LT

5§

and the tramspose of € 1

103 ADDITION AND SUBTRACTION OF MATRICES

Addition (and subtraction) of two matrices A + B (or A — B) requires that the matnices be of
equal dimensions. Each element of one matrix is then added to (subtracted from) the corresponding
clement ol the other matrix. Thus, a,, in A will be added to (subtracted from) by, in B a,; 1o b,;: elc
See Examples 4 and 5 and Problems 10,4 1o 108

EXAMPLE 4. The sum A + B i calculated below, given matrices A and B

B9 7 1 3 b B+1 9+3 7T+6 g 12 13
A=13 & 32 B=]5 4 A+B=|314+8 642 2+4 =| 8 K B
L ﬁ ‘u (Th ] : Yah ""'T 5"'9 I“*Z iTH ] l' 1" .2 ]

=4
= P4
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The difference € - D, given matrices C and D, is found as follows:

4 9 17 4=-1 9=-7 3 2
':'-l- == - = =
[: ""‘I:r-z 0 Is 4y €0 I1‘5 641 l“-‘ ZLJ

EXAMPLE S. Suppose that deliveries D are made 1o the outlets of the firm in Example 1. What s the new level
of stock?

0 0 S 10
D = 233 M 0 w0
1S5 0 0 N

60 40 10 50

To ind the new level of stock, label the imitial matrix § and solve for § < ). Adding the corresponding
clements of cach matnx,

2N+ 25 180+ 3 210+ 10 110+ 60 225 210 220 170
175415 19+0 J60+40 BRO+T70 19 190 200 150
140 + 6 170+ 40 18D+ 10 140 + SO 200 210 19 190

120+40 110+20 90+50 [(50+10 160 13 140 160
5+D = =

104 SCALAR MULTIPLICATION

In matrix algebra, a simple number such as 12, —2, or 0.07 is called a scalar, Multiplication of a
matrix by a number or scalar involves multiplication of every clement of the matrix by the number.
The process is called scalar multiplication because it scales the matrix up or down according 1o the size
of the number. See Example 6 and Problems 10.10 1o 10,12

EXAMPLE 8. The result of scalar multiplication KA, given & = 8 and

h 9
A=]2 7
8 4]
% shown below
86) ) 4 n
kA= | B(2) BT = | 16 56
RE) B{4)|i.: |4 32),.;

105 VECTOR MULTIPLICATION

Multiphication of a row vector A by a column vector B requires as a precondition that each vector
have precisely the same number of elements The product is then found by multiplying the individual
clements of the row vector by their corresponding elements in the column vector and summing Lhe
products:

AB = (a;, < bhy) +{ay: X by) + (@ % by) ele,

The product of row-column multiplication will thus be a single number or scalar, Row<olumn vector
multiplication is of paramount importance. It serves as the basis for all matrix multiphication. Sce Example 7 and
Problems 10,13 1o 1018
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EXAMPLE 7. The product AB of the row vector A and the column vector B, given

12
A=[4 7 2 9 l-[;l
6 fuus
is caleulated as follows:
AB = (12} + 1)+ AS) +N6) =48 + T+ 10+ 54 = 119
The product of vecton
2
C=[3 6 8 l'h-[-l]
$ s
o CO» (I r(bxq)+(RxS5)=H+24+40 =70

Note that since each set of vectors above has the same number of clements, multiphication s possible.

Reversing the order of multiplication in either of the above and having column-row vector
multiplication (BA or DC) will give a totally different answer. See Problem 10.36.

EXAMPLES. The meaning of vector multiplication is perhaps casiest understood in terms of the following
example. Assume Q is a row vector of the physical quantities of hamburgers, frics, and sodas sold, respectively,
on a given day and P is a column vector of the cormesponding prices of hamburgers, fries. and sodas.

1.25
Q=12 8 10] P=|078

0.50

Then by vector multiplication the total value of sales (TVS) for the day i

S = QP = [12(1.25) + R0.75) + 1(0.50)] = 26.00

10,6 MULTIPLICATION OF MATRICES

Multiplication of two matrices with dimensions (r X ¢); and (r X ¢); requires that the matnces be
conformable, i.c., that ¢, = ry, or the number of columns in 1, the lead matrix, equal the number of rows
in 2, the lag mairix, Each row vector in the lead matrix is then multiplicd by cach column vector of the
lag matrix, according to the rules for multiplying row and column vectors discussed in Section 10.5. The
row-column products, called inner products or dot products, are then used as elements in the formation
of the product matnx, such that cach element ¢, of the product matrix C is a scalar derived from the
multiplication of the ith row of the lead matrix and the jth column of the lag matrix. See Examples 9
to 11 and Problems 10,19 1o 1033,

EXAMPLE 9. Given

6 12
I 6 7 1 7 &
= = 5 -
A ' 2 9 1 Il‘l' = [.1 |g] = 2 4 :!'|.|.h
w =7

A shorthand test for conformahility, which should bhe applied before undertaking any matrix multuplication,
i 1o place the two sets of dimensions in the order in which the matrices are to be multiplied, then mentally circle
the lnst number of the first set and the first number of the second set. If the iwo numbers are equal, the number
of columns in the lead matrix will equal the number of rows in the lag matrix. and the two matrices will be
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conformable for multiplication in the given order. Moreover, the numbers outside the circle will provide, in proper
order, the dimensioas of the resulting product matrix. Thus, for AB

253 = A2

Nyt

2x2

The number of columns in the lead matrix equals the number of rows in the lag matrix, 3 = 3; the matrices are
conformable for multiplication; and the dimensions of the product matrix AB will be 2 % 2. When two matrices
such as A and B are conformable for multiplication, the product AB is said to be defined.

For BC,

1¢3 = Ix3

Nogs?

Ix)

The number of columns in the lead matrix equals the number of rows in the lag matrix, 2 = 2; hence B and C are
conformable. The product BC is defined. and BC will be a 3 % 3 matnix.
For AC,

2%3 + 23

A and € are not conformable for multiplication. Thus, AC is not defined.

EXAMPLE 10. Having determined that A and B in Example 9 are conformable, the product AB = D can be
found. Remembering to use only rows R from the lead matnx and oaly columns € from the lag matrix, multiply
the first row R, of the lead matrix by the first column C, of the lag matnix to find the first clement ), (= R, C))
of the product matrix D, Then multiply the first row R, of the lead matrix by the second column C, of the lag
matrix to get o (= R, C;). Since there are no more columns left in the lag matrix (o be multiplicd by the first row
of the lead matrix, move (o the second row of the lead matrix. Multiply the second row R, of the lead matrix by
the first column €, of the lag matrix 1o get dy, (=R, C,). Finally, multiply the second row R, of the lead matrix
by the second column C; of the lag matnx 1o get dy (= R, C) Thus,

u~n_|""-’-‘- "—'ff':l IHM+H5}+ 3 3012)+ 610) + N2) 1o
R, €, 12(6) + 9(5) + 11(13)  12(12) + %10} + 1142) |, zm 256 |+,

The product of BC is calculated below, using the same method:
R, RC KRG, 1)+ 12(2) HT)+12(4) &E)+12(3) 30 W 84
BC = E = | R,C, n,c R,C, S(H+102) SN+ 10d) WM+ | «|28 15 M
R\, s RG M)+ 2A2) 1T+ 2(4) IHB)+ 203) fues |07 99 11O fyy

EXAMPLE 11. Refernng to Example 1, suppose that the price of skis s $200, poles $50, bindings $100, and
oulfits $150. To find the value ¥ of the stock in the different outlets, express the prices as a column vector P, and

multiply § by P,
120 110 9 150
vogpo|200 180 210 110

l: -Iiﬂ]lu

178 190 Il.'n‘.l L]
140 170
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The matrices are conformable, and the product matrix will be 4 x | since

AXd = __"il(;n
N ool

a4x1

R.C, 2004 2N0) 4 1RI(SO) + 210(100) + 110{150) 86,500
R,C, 175(200) + 190(50) + 160100) + R 150) 72,500

R.C, 1200200) + 110{50) + S0(100) + 15X 150) 61,000
R.C 1400200 + 170(50) + 1800100) + 1300150 |.., | 75.500 L.,

10.7 COMMUTATIVE, ASSOCIATIVE. AND DISTRIBUTIVE LAWS IN MATRIX
ALGEBRA

Matrix addition s commutative (that is,. A + B = B + A) since matrix addition merely involves
the summing of corresponding clements of two matrices and the order in which the addi-
tion takes place is inconsequential. For the same reason, matrix addition s also associative,
(A+B)+C=A+(B+C) The same is truc of matrix subtraction. Since matrix subtraction
A~ B can be converted 1o matnx additon A + (~B), matrix subtraction is also commutative
and associative.

Matnx multiphcation, with few exceptions, is not commutative (that i AB #» BA). Scalar
multiplication, however, is commutative (that is, kA = Ak). If three or more matrices are conformable,
that is, X, ., ¥, ou. Z,. o where b = ¢ and d = ¢, the associative law will apply as long as the matrices
are multiplied in the order of conformability, Thus (XY)Z = X(YZ). Subject to these same conditions,
matrix multiplication is also distributive: A(B + C) = AB + AC. Sec Examples 12 to 14 and Problems
10L34 to 1048

EXAMPLE 12. CGiven
4 11 3 7
& |1? n| o [n 2]
Tor show that matrix addifion and matny subtraction are commutative. demonsirate that (1) A + B = B + A and
(2)A -B = -B+ A The calculations are shown below.

443 1147 7 18 3+ 4 T+ 7 18
N “"‘I::-a a-:]“[za al"""" 6+17 2+ al"[ﬂ sl
4-3 11=7 14 ~34 4 =T+11 14
%) - '"ln 6 a-zl' 1 -:I' """'[-ﬁ-l:r -2+ a]'[u 4]
EXAMPLE 13. (ilven
6 12
16 7
A= | B-| s 10
8- 1en 13 2
It can be demomtrated that matrix multipheation is not commutative, by showing AB » BA, as follows:
Matrix AB is conformable.  2x3  « Ix2  ABwillbe2x2
.u—[ 3(6) + 6(S)+ 13) 312+ 6(10)+ T2 _[139 110
12(6) + 9(5) + 11(13)  12012) + 910) + 11(2) |y | 260 286 ;.
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Matrix BA is conformable.  3%@ = 2x3  BA willbe 3%3

-

S(3)+ 10{12)  S(6) + 1{9)  N7)+ 10(11) 135 120 |45
M3+ 2I12) 1Ma)+ 2(9) 1X7T)+ 211) 63 % 113

Hence AR # BA. Frequently matnices will not even be conformable in two directions.

I 63+ 1212)  o(6) + 12(9)  &T7) + 12(11) [II.'IZ 14 174
BA

EXAMPLE 14. Given
75

5 4 9 '||J
L3 "lz : 5
B 6wy e 7 Lol

To illustrate that matrix multipheation is associative, that i, (AB)C = A{BC). the calculations are as follows:

h:

[7(4)+ 5(2) 7(9) + 5(6) 7(10) + 5(5) W93 9]
AB = [ 1(4) + q2) 1(9)+3(6) 1(10) + H5) m 21 25
[B(4) +6(2) K(9)+6{6) B(10)+&(S) |y.» 108 110 fy.y
(3 91 98 W2+ IHO)+ 95(T) 1299
(AB)C - m '-'.r 25 1M2)+ 27(6)+ 25(7) | = | 37
10 .., 1 ber LH2) 4 108¢6) + 11OCT) [oo, (1506,
2) + o) + 1(7) [I.IZI
[T =
22) + 6(6) + S(T) ).
T 5] rym T(132) + S(75) 1299
amoy= |1 af (U5 <o vaos) w| Q&b
(8 6] | 8(132) ¢ 6(75) Jiy [ 1506 |y

108 IDENTITY AND NULL MATRICES

An identity matrix 1is a square matrix which has | for every element on the principal diagonal
from left to right and 0 everywhere else. Sce Example 15. When a subscript is used, as in L. n denotes
the dimensions of the matnx (n %X n), The idnnlily matrix s similar to the pumber 1 in algebra since
multiplication of a matrix by an identity matrix lcaves the original matrix unchmgm:t (that is,

Al = IA = A). Multiplication of an identity matrix by itself lcaves the identity matrix unchanged:
1x1=F =1 Any matrix for which A = A’ is a symmetric matriv. A symmetric matrix for which
A XA = A an wdempotent marrix. The wdentity matrix is symmetric and idempotent.

A null mrateix is composed of all Os and can be of any dimension: it is not necessanly square,
Addition or subtraction of the null matrix leaves the original matrix unchanged: multiplication by a
null matrix produces a null matnx, See Example 15 and Problems 10.49 to 10.51.

EXAMPLE 15. Given

*H—'

T M 147 1 00
] T I 0 P
I 3 1 0 0 1
it is possible to show that (1) muluplication by an identity matrix leaves the onginal matnx unchanged, that s,

Al = A, (2) multiplication by a null matrix produces a null matrix, that ix BN = N, and (3) addition or sublraction
of a mull matrixn leaves the onginal matnx unchanged. that ix B + N = B. The calculations are shown below.
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(7 10 41 0 07 [7(1)+10(0)+ 14(0) 7(0)+ 10(1) + 14(0) 7(U) + 10{0) + 14(1)
n Ar=|9 2 &flo 1 n]:{qm A+ 60) O+ 2A1)+ 6(0) HO}+ 2(0)+ 6(1)

13 7o 0 1) [ns 3@+ 0) 10+ )+ ) 10+ 3O+ ()

'7 10 147

=l9 2 8| OED
1 3 7]
[ 50)+12(0)  5(0) + 12(0) _[n UJ
2) BN = |0+ 40) 200+ 40 ~|o of OED
5+0 12+0 5 127

3 “""'[mw 4+n]'[zu 41 BRI

109 MATRIX EXPRESSION OF A SYSTEM OF LINEAR EQUATIONS

Matrix algebra permits the concise expression of a system of linear equations. As a simple
illustration, note that the system of linear equations

?Il + 3."2 - 45
4.!'1 +5, =0
can be expressed in matrix form
AX=8B
where A= [T 3] X= [#'] and B= [45
4 5 X3

Here A is the coefficient matrix, X is the solurion vector, and B is the vector of constant terms. And X
and B will always be column vectors. See Examples 16 and 17.

EXAMPLE 16. To show that AX = B accurately represents the given system of equations above, find the
product AX. Multiplication is possible since AX is conformable, and the product matrix will be 2 X 1.

(2x1)
7 3 ?;.+3.x,l
I s [" 5”";] [4‘1"'5#: 2%
o [Tm+3x] _[45
and AX =B [411 4 5:1] = [29] Q.ED.

Here, despite appearances, AX isn 2 ¥ | column vector since each row is composed of a single element which
cannotl be simplified further through addition,

EXAMPLE 17. (Given

Bw+ 128 =Ty + 2z = 139
Aw = 13y + dy + 97 = 242
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T express this system of equations in matrix notation, mentally reverse the order of matrix multiplication:

{5 -1,

Then, letting A = matrix of coefficdents, W = the column vector of variables, and B = the column vector of
constants, the given system of equations can be expressed in matrix form

Ay Wee, =B,

12
—-13

L.}
3

=7 4
a4 9

139
242

Mo W E

Solved Problems

MATRIX FORMAT

18.1. (a) Give the dimensions of cach of the following matrices. (b) Give their transposes and indicate
the new dimensions.

. 12926 12
A-g;:] B=)] 7 5 8 3 C=|19
L 9 1 0 4 25
2 1 125
7 8 5 9 3
= = ..f -
D=y, E=[10 29681 F=| _ -
9 5 3 8 9

a) Recalling that dimensions are always listed row by column or re, A=2x3 B=31x4, C=3x],
D=4dx2 E=1x6 and F=4%3 C isalso called a column vector; E, a row vector,

b) The transpdse of A converts the rows of A to columns and the columns of A to rows,

; 51
A'=|7T B i [ ;F A C=[12 19 25,
q ‘1-1 -ﬁ 3 '**.':‘
ll-!“q
2
1 5 6 3
we[2130]  we|? F!]
o s 5 36 9.
-I-lnil

to complete the following matrix:

10.2. Gavenay = 4, ayp = 5,43 = 3,4y = 6,0;; = 10, and @y, = —35, use your knowledge of subscripts
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Since the subscripts are always given in row-column order, gy = 4 means that 4 is located in the
second row, first column: ayy = 5 means that 5 appears in the third row, second column; ete. Thus,

6 10 3
A= -I'?ﬁ]

=5 39

103, A firm with five retail stores has 10 TVs 1, 15 stereos s, 9 tape decks 4, and 12 recorders r in store
1: 20¢. 145, Bd. and 5r in store 2: 162, 8s, 154, and 6r in slore 3; 251, 155, 7d, and 16r in store 4;
and 5z, 12s, 204, and 18r in store 5. Express present inventory in matrix form.

Renail

store T
1)1 15 9 12
2120 14 8B 5
3|l B 15 6
4125 15 T 14
SLS 12 20 18

MATRIX ADDITION AND SUBTRACTION
10.4. Find the sums A + B of the following matrices:

g 9 13 4
&) “_[m 4 n=[2 4

A+B=

7 -10 -85 4
na-|g 75 =2 4
[ TH(-8) -10+4 _ =1 =
A+n_[-—s+lz 2+I-ﬁ1] [ 4 —4]
) A=[12 16 2 7 8 B=[0 1 9 5 6
A+B=[12 17 11 12 14]

8+13 9+d'|_[2l 13
12+ 2 7+6 14 13

9 4 1 3
2 7 5
d A=l, 5| B=|, 4
g 6 9 2

w7

12

A+B 5 13

17 8

10.5. Redo Problem 104, given

01 -6 2 7 2 12 6 5§
A=(-3 5 8 7 B=|4 3 8 10 6
2 9 =1 6 1 ¢ 5 11 9
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Mairices A and B are not conformable for addition because they are not of equal dimensions;
A=1xXx4d B=1X5

10.6. The parent company in Problem 10.3 sends out deliveries ID to its stores:

4 35 2]

09 6 1

D=| 57 2 6

12 2 4 8

9 6 3 5

What is the new level of inventory?

0 15 9 12 4352 14 18 14 14
20 14 B8 5 09 6 1 W B3 M4 b
L=1+-D=|16 8 15 6&6|+]| 5 7 2 6|=|21 15 17 12
25 15 7 16 12 2 4 8 17T 11 M
5 12 X 18 9 6 3 5 14 18 23 3

10.7. Find the difference A — B for each of the following:

37T 11 6 8 1
9 “'[11 9 1] "'[q 5 ﬂ]

i-6 7-8 11-1 -3 -1 10
A-B=11-9 9-5 2-3 'l 3 4 —a]
16 77
2 11
DIA=11s Sl E
9 8|
16- 7 9
2-11 -9
A=B=ls 3"l
9— & 1
13 -5 8 14 2 -5
) A=| 4 9 1 B=| 9 6 8
0 6 -2 -3 13 N

-1 =T 13
A-B=|-5 3 -7
13 T =13

10.8. A monthly report R on sales for the company in Problem 10.6 indicates

8 12 6 9
10 11 8 3
R=|15 6 9 7
21 14 5 18
6 11 13 9
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What is the inventory left at the end of the month?

14 1% 14 14 B 12 H 9 6 & B 3§
A 23 14 6 I 11 8 3 6 12 & 3
L-R=]21 15 17 12|15 6 9 7|=| 6 % & 3§
37 17T 11 24 21 14 5 18 & 3 & &
14 18 23 3 6 11 13 9 E 7 10 14
CONFORMABILITY
109. Given
72 6 1
A=|5 4 8 nz{: E] C=| 4
(31 9 13
[14
D= 4] E=[8 1 10)] F=[13 3

Determine for each of the following whether the products are defined, i.c., conformable for
multiplication. If so, indicate the dimensions of the product matrix. (@) AC, (b) BD, {c) EC, (d)
DF, (¢) CA, (f) DE, (g) DB, (h) CF, (i) EF.

a)

b)

)

d)

£)

h)

i)

The dimensions of AC, in the order of multiplication, are 3 x "?: = 3"‘ * 1. Matrix AC is defined

since the numbers within the dashed circle indicate thal the numhn of columns in A equals the
number of rows in C. The numbers outside the circle indicate that the product matrix will be
ix 1

The dimensions of BD are 2 X(2 = 2)% 1. Matrix BD is defined: the product matrix will be
2 %1 —

The dimensions of EC are | X3 = 3)x 1 Matrix EC is defined; the product matrix will be

1 % 1, or a scalar. i
The dimensions of DF are 2 (1 = 1) 2. Matrix DF is defined; the product matrix will be
X2 s TR

i ——

Thcdimmdmsﬂfthm'ixl #* 3-.”'!1 Matrnix CA 5 undefined. The matrices are not

conformable for multiplication in rJut nrd-nr [Note that AC in part (a) is defined. This illustrates that
mtrix multiplication is not commutative: AC + CA.)

The dimensions of DE are 2 x(I = 1)% 3. Matrix DE is defined; the product matrix will be
2x3 s ]

The dimensions of DB are 2 x tj_# # 113_}9-: 2. The matrices are not conformable for multiplication.
Matrix DB is not defined. T

_

The dimensions of CF are 3 % LI = E‘;x 2. The matnices are conformable; the product mairix
willbe 3 ¥ 2. T -
The dimensions of EF are 1 1-:"5 # i;x 2 The matrices are not conformable, and EF is noi
defined. s ma
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SCALAR AND VECTOR MULTIPLICATION
10.10. Determine Ak, given
3 2
A=|9 5§ k=4

6 7
Here k is a scalar. and scalar multiplicstion is possible with o matrix of any dimension. Hence the
product is defined.
N4y 2(4) 12 B
Ak = |%4) 5(4)| =36 20
6(a) Ti4) 24 IR

10.11. Find kA. given

7 =3 2
k=-2 A=|-5§ f 8

2 -7 -9

AT -3} =22 14 & -4

kA =|-2(—-5) -2(8) -2{8) ‘ = ! o0 —-12 -Iﬁ‘
=2(2) ==y -9 -4 14 18

10.12. A clothing store discounts all its slacks, jackets, and suits by 20 percent at the end of the year.
If ¥, is the value of stock in its three branches prior to the discount, find the value V; afier the
discount, when

10000 12000 7,500
BODD 9000 11,000

A 20 percent reduction means that the clothing is selling for 80 percent of its original value. Hence
V. = LAY,

|:5£[IJ 4.500 ﬁ.{llt.i]
v, =

5000 4500 6,000 4000 3600 4800
BO0O0 9000 11,000 6,400 7200 8.800

v,=u.s[mmu 12000 7.500 BODD 9600 6,000

10.13. Find AB, given

2
A=p 1 3 E=H

7

Matrix AB is defined; 1 > H = -‘3}'} ¥ 1; the product will be a scalar, derived by multiplymg each
element of the row vector by its _n_ﬂr_r:t;ondmg element in the column vector and then summing the
products.

AB = %2+ 11(6) + T} = 1B+ 66+ 21 = 105
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3
2
A=[12 -5 6 11 III_E‘

6

10.14, Find AB, given

Matrix AB is defined: 1 xf{__:_jx 1.
AB = 12(3) + (= S)2) + 6(—8) + 11{6) = 44

10,15. Find AB, given

2

13

A=[9 6 2 0 -5 B=|S5

8

o 1

Matrix AB |s defined; 1 x{.-.:_“-r:‘g;:-c 1. S

AB = 9(2) + 6(13) + 2(5) + 0(8) + (-5){1) = 101

6
A=[12 9 2 4 n={1
2

Matrix AB is undefined: 1 X # 3)x 1. Multiplication is not possibie.

10.16. Find AB, given

[CHAP. 10

10.17. If the price of a TV is $300, the price of a stereo is $250, the price of a tape deck is §175, and

the price of a recorder is §125, use vectors to determine the value of stock for outlet 2 in

Problem 10.3.

The value of stock is V=0P. The physical volume of stock in oullet 2 in wvecior form is

Q=[20 14 B 5] The price vector I can be written

300
250
175
125

r1=

Matrix QP is defined: 1 (3 = )% 1, Thus
V=QF
= 200300) + 14{250) + B(175) + 5(125) = 11,535
10.18. Redo Problem 10.17 for outlet 5 in Problem 10.3.
Here Q=[5 12 20 18], P remains the same. Matrix QP is defined. Thus,
¥ o= 5{300) + 12(250) + 20{175) + 1B(125) = 10,250

MATRIX MULTIPLICATION

10.19. Determine whether AB is defined, indicate what the dimensions of the product matrix will be,

and find the product matrix AB, given

S ER B 1
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e

Matrix AB is defined; 2 x{? = I} 1, the product matrix will be 2 X 2. Matrix multiplication

is nothing but a series of row-column vector multiplications in which the a,, element of the product matrix

is determined by the product of the first row R, of the lead moatrix and the first column C, of the lag

matrix; the a,, element of the product matrix is determined by the prodoect of the first row R, of the lead

matrix and the second column C, of the lag matrix; the a, element of the product matrix is determined
by the product of the ith row R, of the lead matrix and the jth column C, of the lag matrix, etc. Thus,

R,C, R.C;] - 112(3]+H{ﬂ] 12{9}+H{2_}l | l'iﬁ 13&]
C

AB= | rc, 20(3) + S(0) 20(9)+ S(2)

10.20. Redo Problem 10.19, given

(4 7 i85
e 9 1] “"[2 6 ?]
_—
Matrix AB is defined; 2 x{2 = 2’3

P

RC RG R:C}] _ [M3)+T(2) 4(8)+7(6) 4{'5}'*7{?]] L [Eﬁ T4 ﬂ]
&G R:G R L9(3) + 1(2) 2(8) + 1(6) 9(3)+ 1(7) 29 1 32

% 3, the product matrix will be 2 x 3,

|

10.21. Redo Problem 10.19, given

2 9
|
A= & 3 B=|4 6
75
Matrix AR i not defined; 2 x;z, # 3"‘:-: 2 The matrices cannot be multiplied because they are

oot conformable in the given order. Thl l.:iuml:n:r of columns (2} in A does not equal the number of rows
(3)in B.

10.22. Redo Problem 10.19 for BA in Problem 10.21.

— S~

Matrix BA is defined; 3 %(2 = z}xlthtprnduﬂmnm:wﬂlheiﬁl

3 1 RG KRG 23} + B} 1)+ N1) TR 20
BA = (4 E][ [R & RIL;] = | 4(3) + 6{B) (1) +6(2)|= ’ﬁ] 16
R,C, T(3) +5(8) T(1)+5(2) 61 17

16.23. Redo Problem 10.19 for AB’ in Problem 1021, where B’ is the transpose of B:

. [2 47
"[Qﬁs}

Matrix AB' is defined: 2 X2 = 'i_‘;:-: 3; the product will be & 2 X 3 matrix.

| Hz 4 7 |3-:2]+l{9] 34+ 1{6) MT)+1S) 15 18 26
@ 6 5 B(2) +2{9) 8(4)+2{6) B(7)+2Z{5) 4 44 66

(Note from Problems 1021 wo 1023 that AB # BA + AR, The noncommutative aspects of matrix
multiplication are treated in Problems 1036 to 10.41.)
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10.24. Redo Problem 10.19, given

A:

7 12 4 5
2 9 B= 36 1
10 6

=
-

Matrix AB is defined; 3 x:z = 2';>c 3; the product matrix will be 3 % 3,

R.C. RC: RG T(12) + 11(3) T+ 16 TS +11(1)] [117 M 46
AB = | R,(, R,C: R G 412)+ %3) 24+ A6) 2AS)+ K1) [=| 51 62 19
RC, R G Ry 10(12) = &3) 10(4)+ 6(6) 1S)+ 6(1)| [138 76 56

10.25. Redo Problem 10.19, given
10 1
A<[$25] mefus
29

-

Matrix AB is defined; 2 x{3 = 3)x 2; the product matrix will be 2 X 2.

g

AR = R, C, R.Cz]=[ﬂlﬂ:l*1(11]+5ﬁ} 5{'!}1-2[3}4-5{9]]:[9:}! 5'?]
1

R:C R.G 7(10) + S(11) + 4(2) T(1) + H3) +49)

10.26. Redo Problem 10.19, given

716
=2 3 5} B=|5 2 4

9 21

Matrix AB is defined; 1 ws = 3‘*=< 3. The product matrix will be 1 x 3.
=[R,C;, R,C; R.L]—[:{?}+3{5}+5{91 A+32)+5(2) U6+ +5TN)] =14 18 59]

5 39 4
=) 1 218
10 56 1

Matrix AB is not defined; 3 Xxl b jr.ﬂ 3. Multiplication is impossible in the given order.

10.27. Redo Problem 10.19, given

10.28. Find BA from Problem 10.27.

i

Matrix BA is defined; 3 X 3 = 3} 1. The product matrix wil be 3 x 1.

e i

39 47 51 [RGT [H5H+%1)+410)] [64
BA=|2 1 8| 1|=|RC |= 1{5}+|¢1}+sum]={m]
s 6 1]lw] |&cC S(5) +6(1 + 1010y | |41
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10.29. Redo Problem 10.19, given

2 15 0 1 2
A=|3 2 6 B=|5 3 6
1 4 212

——

Matrix AB is defined: 3 x@ = }}x 3, The product matrix will be 3 x 3,

Lt

AB=|RC RiC RCy | = 30100+ 205 + 6(2) 1)+ 2(3) +6(1) 32) +26) + 6(2)
RC RG RG] 1104 4(5)+32) 1)+ 4(3) +3(1) 12} +4(6) + 3(2)

35 10 EI}]

"RC, R R.{"] [I{Iﬂj-d-lﬁ]-‘-ﬂi] )+ 1(3)+5(1) :[2:.+I(ﬁ}+5{2]‘

-|52 15
(36 16 32

10.30. Redo Problem 10.19, given

B=[2 6 5 3

Matrix AB is defined; 4 x {f_‘::i}x 4. The product matrix will be 4 X 4.

RC, RC: RCs RCT [32) 36) 3(5) 33 6 18 15 9
R.Cy R R:G R.C J W2y L6} LS 103) = 2 & §5 13
R, C, R RC R.C, 4(2) 4(6) 45y 43 ¥ 24 20 12
RC, RC: RC. R.C, 52y S6) 55 5(3) 10 30 25 15

AR =

10.31. Find AB when

2
A=[3 b 8 7] H"ljl
3
Matrix AB is undefined and cannot be multiplied as given: 1 :-:f; # J.‘-!‘-‘}x L.

LS

10.32. Find BA from Problem 10.31.
Matrix BA is defined; 3 x (I = 1) 4 The product matrix will be 3 x 4,
S -

RC, RC, RC, RC,] Z
M ] Rl {:‘. R: c"] RI E], R] {‘* Ll 5 [3 g E ?]
_H! C| H! {.II .R! [:! R! r_:‘_. ]

6 18 16 14

[2(3) 2(9) 2(8) HT) [
= |5(3) S5(9) 5(8) S(N|=|15 45 40 3§
(33) 39) 38) 37| |9 27 4 A
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10.33. Use the inventory matrix for the company in Problem 10.3 and the price vector from Problem
10.17 to determine the value of inventory in all five of the company’s outlets

V=QP. QPisdefined;s x@ = &)x L Vwillbes x 1.

10 15 9 2] R,C, 100300) + 15(250) + 9(175) + 12(125) 9,825
W 4 B s|C o R:C, 200300) + 14(250) + B(175) + 5(125) 11,525
V=16 8 15 6| |=|RC | =|16(300)+ B(250)+15(175)+ 6(125) | = | 10.175
315 7 16| . R.C, 25(300) + 15(250) + 7{175) + 16{125) 14,475
5 12 20 18 R.C, 5(300) + 12{250) + 20(175) + 18(125) 10,250

THE COMMUTATIVE LAW AND MATRIX OPERATIONS

10.34. To illustrate the commutative or noncommutative aspects of matrix operations (that is
A+*B=B=xA, but in general, AB # BA), find (a) A+ B and (b) B + A, given

B I 2 05
A=|14 6/ B=|3 41
25 4 796

[(T+2 340 2457 [2 3 77
@) A+B=|1+3 4+4 6+1|=]4 B 7
[2+7 5+9 4+6] |9 14 10|
[Z+7 0+3 54271 [9 3 7]
by B+A=|3+1 d4+4 1+6|=|4 B 7
| 7+2 9+5 6+4] |9 14 10

A+B=B+ A Ths illustrates that the commutative law does apply to matrix addition.

Problems 10.35 10 1042 illustrate the application of the commutative law to other matrix
operations,

10.35. Find (a) A — B and () =B+ A given

5 3 3 13
4 9 7 9
A“lio s B=1s
6 12 E 6
|'5-3 31-13 2 =10
4-7 9-9 -3 0
@ A-B=lwo-2 s-1|"| s 2
6-8 12-06 -2 f
=345 -3+ 2 =10
=744 -949| -3 0
5) =BrA=| 2410 -1+8 8 7
=H+B =6+]12 =2 f

A-B=-B+ A Ths illustrates that matrix subiraction is commutative
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10.36. Find (a) AB and (b) BA, given

13
3
-2
7

A=[4 12 9 6] B=

Check (or conformability first and indicate the dimensions of the product matrix.

a)

)

e e

Matrix AB is defined; 1 !{:,1‘ - :l:}‘r: 1. The product will be a 1 X 1 matrix or scalar,

——

AB = [4{13) + 12(5) + H=2) + &(7)] = 136

Matrix BA is also defined; 4 x{1 = 1) 4 the product will be a 4 % 4 matrix.
L. ,

13(4)  1312) 139 13(6) 52 156 117 78
ga-| 9 S0 59 5@ _[20 e 45 30
A -2012) 29 -2(6) 8 =24 =18 -12
4 12y MY (6) B 84 63 42

AB # BA_ This illusirates the noscommutative aspect of matrix multiplicanion. Products generally
differ in dimensions and clements if the order of multiplication is reversed.

10.37. Find (a) AB and (&) BA, given

a)

b)

7 4
-3 91
A=|6 2 H=[ ]
]:! J 4 12 7

—

Ti=3+H2) T+ H12) T(L)+4T) -13 111 357
AB = |6i—-3)+22) 6(9)+2{12) 6{1}+3{Tl]=[—14 1 20

W-3)+82) 1(9)+812) 1(1)+¥7) 13 105 57
i = 3)x 2 the product will be 2 X 2

=37+ 9{6}+111} =3{d) + 9(2) + L(B) =’3-| 14
AT+ 1263+ 7(1)  2(4) +12(2) + 7(8) 93 BB

AB # BA. Matrix multiphication & nol commutative. Here the products again dilfer in dimensions
and elemenis

-

Matrix BA is also defined; 2 > 3

|

10.38. Find (a) AB and (b) BA, given

4 9 B8 1 2 0
A=|T 6 2 B=|5 31
1 5 3 n 2 4

——

a) Matrix AB is defined: 3 x(3 = 3 3 the produet will be 3 x 3.

4(1) +9(5) + B{0) 4(2) + 9(3) + 82) 4(0) + N1) + &(4) 49 51 41
AB=[7(D+6(5)+2(0) T2+6(3)+2(2) MO +6(+24) =37 3 14
1)+ 5(5)+ 3(0)  1(2)+5(3) +3(2) 1(0) + 5(1) + 3(4) % 23 17
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Mauirix BA s also defined and will result ina 3 ® 3 matrnix.

L)+ 2(T)+0{1) 19)+26)+N35) L(B)+2(2)+0{3) 18 21 12
BA = |5(#)+3T)+1{1) 3(9)+6)+1(5) SB)+3(2)+1(3)|=|42 68 49
O(4) + 2(7) + &(1} O(9) + 2(6) + 4(5) 0(B) + 2(2) + 4(3) I8 32 14

AB # BA. The dimensions are the same bui the elements differ.

10.39. Find (a) AB and (b) BA, given

a)

3

SRS

Matrix AB is defined: 2 x{j-.:_-—- :-_i}x 1: the product will be 2 X 1.
A F[m S(0) +2(-1) + 6{31] | [23]
1(1) + 3(0) + 9H—1) + 4(3) 4

b) Matrix BA s not defined; 4 % ti; " i:}x 4, Multiplication is impossible. This is but another

= =

way in which matrix multiplication Is noncommutative,

10.40. Find («) AB and (b) BA, given

T 6
[ sale 5]
1 3

.
Matrix AB is not defined; 2 X(2 # 3)x 2 and so cannot be multiplied.

Zoge -

b) Matrix BA is defined; 3 X (2 = 2)% 2 and will produce 8 3 % 2 matrix,

TEHLp+ 602y T(14) + 6{6) BY 134
BA = |4(11) +5(2) 4{1#]+5{ﬁ}]=[5¢ Hﬁ}

HLL) + 32} 1{14) + 3(6) 17 12
BA # AB, because AB does not exist

10.41. Find () AB and (b) BA, given

a)

&)

-2
n=[ 4} B=[3 6 -2

7
.,
Matrix AB is defined; 3 x 1 = 1% 3: the product will be a3 X 3 matrix.

.

-3y -6y -2(-2) -5 =12 4
43 4n) -1 =] 12 24 -8B
3 ey T-2) 1 42 -14

e -,
Matrix BA is also defined; 1 ®{3 = 3)x 1 producinga | X 1 matrix or scalar,

BA = [3(=2) + 6(4) + (~2)(7)] = ¢

Since matrix multiplication is not commutative, reversing the order of multiplication can lead 10
widely different answers. Matrix AB results in a 3 X 3 matrix, BA results in a scalar.

AB =
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10.42. Find (a) AB and (b) BA, for a case where B is an identity matrix, given

23 6 14 1 00
A=|18 12 9 B=|0 1 0
24 2 6 001
a) hhui:lliudcﬁncd'ixgr = 3‘13Tbcpmdu:lm:m:mllahnbc1 g

18(1) + 12(0) + 90} 18(0) +12(1) + B(0) 18(0) +12(0) + 9(1) 1B 12 9
1)+ A0+ 600 24(0)+ 1)+ 6(0) 24(0)+ 2{0)+ 6(1) M 2 6

b) hhmxnmuhud:ﬁudaw’g '-'J:f;x 3. The product matrix will also be 3 x 3,

[23[1}+ ﬁ{ﬂ}+]4{ﬂ}nﬂm}+ 6(1) + 14(0) 23(0) + ﬁ[ﬂ}*-l-‘rl_]}} I.B & 14]

1[23}+uus}+u(z4| C1(6) + D{12) + 02)  1(14) + {Y) + 0(6) 23 6 14
BA = | 0(23) + 1(18) + 0(24) O(6) + 1{12) + 0(2) O{14) + 1{9} + {6) IR 12 9
0(23) + 0(18) + 1(24) O(6) + O{12) + 1{2) O{14) + W) + 1(6) 24 2 6

Here AB = BA. Premultiplication or postmultiplication by an identity matrix gives the original
matrix. Thus in the case of an identity mairix, matrix multphcation & commutative, This will also be
true of & matrix and its inverse. See Section 11,7,

ASSOCIATIVE AND DISTRIBUTIVE LAWS

1043, To illustrate whether the associative and distributive laws apply 1o matrix operations [that is
(A+B)+C=A+(B+C),(AB)C = A(BC), and A(B + C) = AB + AC, subject to the condi-
tions in Section 10.7], find (&) (A + B) + C and () A + (B + C), given

6 27 9 1 3 74 5
‘“[953] B'[qzﬁ] Cz[wsﬂ]

[(G+0 241 T+ 15 3 1D
a) ATl Nen 3+i]=[13 7 9]
15+ 7 3+ + A
m+m+ﬂ-_:i+m -3,+: 13”1;]'[;: 10 :;]
: Bec=[(li0 203 se8)Lia 5 4]
asmro=[srle 208 1 0]-(3 . b

Thus, (A + B) + C = A + (B + C). This illustrates that matrix addition is associative, Other aspects of
these laws are demonstrated in Problems 10,44 1o 10,47,

10.44. Find (a) (A — B) + C and (b) A + (~B + C). given

7 3 13
A= ﬁ‘ B=[E] C=[ 1]
5 6
- T=3 (=34 13 10
i) A-B=| 6-8]= -1 b) ~B+Co | =G+ 2|m|-6
(12§ | =5+ 6 1
T 4+ 13 17 [ T+10 17
(A-B)+Cw= | =24 2| m™ A+(-B+C)=| G+(-06) | = ﬂ‘
| 7+ 6 13 |12+ 1 13

Matnx subtraciion is alo associative,
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10.45. Find (a) (AB)C and (b) A(BC), given

6
A=[7 1 §) n=[z ] = }
3

———

@) Mﬁtnxﬁltsd:ﬁntd.led - *XIpmdm:ingalxlmuhi:.

S

AB = [T(6) + 1(2) + 5(3) TS5+ L(4) + 5(8)] = [59 79]

i ikt

Ty

Matrix (AB)C is defined; | Iﬁ = 2% 2.leaving a 1 X2 matrix.
!AB}C i |_59-:9}+?913] 53(4) + 79(10)) = [768  1026]
M-tr{xnt‘udnﬂm-dsxtz = Lx 2. creating a 3 % 2 matrix.

6(9) +5(3) 6(4) + 5(10) 69 74
BC = |29+ 4(3) 24)+4(10) | =30 48
3{9;+313} 3(4) + 8(10) 51 %2

Matrix A(BC) is also defined: | :-cé.' = 3)x 2, producing a 1 % 2 matrix.
A(BC) = [7(69) + 1(30) DT SG1) T4+ 1(48) + 5(92)] = [768 1026]
Matrix multiplication is associative, provided the proper order of multiplication is maintained.

10.46. Find (a) A(B + C) and (b) AB + AC, given

v ] o
ﬂ i

Matrix A{B + C) is defined; 1 K{j = 3} % 1. The product matrix will be 1 x 1.

A(B + C) = [4(15) + 7(10) + 2(9)] = 148
b) Mawix AB is defined; 1 x3 = 3)x 1, producing a 1 X 1 matrix.

L

AB = [4(6) + 7(5) + 2(1)] = 61

.....

Matrix AC is defined; 1 x 8 = 33 1, also producioga I % 1 matrix.

s S

= [4(9) +7(5) + 2AB)] =
Thus. AR + AC = 61 +E7 = 148. This illustrates the distributive law of matrix muluplication.

10.47. A hamburger chain sells 1000 hamburgers, 600 cheeseburgers, and 1200 milk shakes in a week.
The price of a hamburger is 45¢, a cheeseburger 60¢, and a milk shake 50¢. The cost to the chain
of a hamburger is 38¢, a cheeseburger 42¢, and a milk shake 32¢. Find the firm's profit for the
week, using (a) total concepts and (b) per-unit analysis to prove that matnx multiplication is
distributive.
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a) The quantity of goods sold (), the selling price of the goods P, and the cost of goods C, can all be
represented in mairix form:

L0 0.457 0.38
Q= | &K P= |60 C=|042
12040 0.50 | 0.32
Total revenue TH is

(.45 7 1000
TR = M) = | (L60 (L]

(.50 || 1200
which is not defined as given. Taking the transpose of P or © will render the vectors conlormable
for multiplication. Note that the order of multiplicution is all-important. Row-vector multiplication
(P Q) or Q'P) will produce the scalar required; vector-row multiplication (PQ’ or QP') will produce
a3 * 3 matrix that has no economic meaning Thus, taking the transpose of P and premultiplying,
we gel

1000
TR = P'Q = [045 060 0.50]| 600
1200

i ——

where P'Q is defined; 1 x{3 = 3)x 1, producinga | X 1 matrix or scalar,
e

= |0.45(1000) + 0.60{600) + 0.50{1200)] = 1410
Similarly, total cost TC is TC = C'(Q
10060

-ﬁfﬂ] = [0.3B{1000) + 0.42(600) + 0.32(1200)] = 1016

TC = [038 042 032]
1200
Profits, therefore, arc

I=TR~-TC = 1410 - 1016 = 384
b) Using per-unit analysis, the per-unit profit U is

U-'IS
U=F-C= = = ﬂ'lS
ﬂSD 1'.]11 0.18

Total profit II is per-unit profit times the number of items sold

0077 1000
M=UQ=|018) 600
0.18 || 1200
which is undefined. Taking the wranspose of U,
1000
IL=UP=[007T 018 O0.15]| 600
1200

= [0.07(1000) + 0.18(600) + 0.18(1200)] = 394 Q.ED.

10.48. Crazy Teddie's sells 700 CDs, 400 cassettes, and 200 CD players each week. The selling price of
CDs is $4, cassetles 36, and CD players $150. The cost to the shop is $3.25 for a CD, $4.75 for
a casselte, and $125 for a CD player. Find weekly profits by using (a) total and (b) per-unit
concepls.
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700 4 325
a) Q=|40| P=| 6] cC=| 475
200 | 150 125.00

TO0
TR=PQ=[+ 6 150]|400 | = [4(700) + 6(400) + 150(200)] = 35,200
200

700
TC=C'Q=[325 475 125] mu] = [3.25(700) + 4.75(400) + 125(200)] = 29,175
200

Il =TR -~ TC = 35200 — 29,175 = 6025
B) Per-unit profit U is
[ 32§ 0.75
- 475 =] 125
| 125,00 25.00

[ 704
M=U'Q=[075 125 25|(400 | = [0L75(700) + 1.25(4D0) + 25(200)] = 6025
200

&
U=P-C= B
150

Towl profit I1 is

UNIQUE PROPERTIES OF MATRICES
10.49. Given

6 -12 12 6
a-[5 7] e[
{a) Find AB. (b) Why is the product unique?

6(12) - 12(6)  6(6) —12(3) _l'u uJ
-3(12)+ 6(6) -3(6)+ 6(3)] |0 0

b) The product AR is unique (o matrix algebra in that, unlike ordinary algebra in which the product of
two ponrero numbers can never equal zero, the product of two non-null matrices may produce a null
matrix. The reason for this is that the two original matrices are singular. A singular matrix is one in
which a row or column is a multiple of another row or column (zee Section 11.1). In this problem, row
1of Ais —2 times row 2, and column 2 is —2 times column 1. In B, row 1 15 2 times row 2, and column
1is 2 trmes column 2. Thues, m matrix algebra, muoltiplication involving singular matrices may, but need
not, produce a null matnix as a solution. See Problem 10.50.

2 AB=|

10.50. (@) Find AB and (b) comment on the solution, given

& 12 12 &
aefs o =% 3]
B(12) = 12(6) 6{6) + 12(3) _lm 7
312) = 6(b) 3H6)+ 6f3) 72 3%

b)  While both A and B are singular, they do not produce a null matrix. The product AB, however, is also
singular.

a) AB =
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10.51. Given
4 B 2 1 =2 1
infds] B=[z3] =%
a) Find AB and AC. (b) Comment on the unusual property of the solutions.

A2)+B(Z) 4(1)+82)] [24 Zﬂ]

K2)+22) HH+22)] |6 S

4 -21+8{4) 411}+s{2}] _ [2-1. m]

=2+ 24 1)+ 22) i 5

B)  Even though B # C, AB = AC. Unlike algebra, where multiplication of one number by two different
numbers cannot give the same product, in matrix algebra multiplication of one matrix by two different
matrices may, but need not, produce identical matrices. In this case, A is a singular matrix.

) Al=[

AC =



Matrix Inversion

1.1 DETERMINANTS AND NONSINGULARITY

The detcrminant |A| of a 2 % 2 matrix, called a second-order determinant, is derived by taking the
product of the two elements on the principal diagonal and subtracting from it the product of the two
elements olf the principal diagonal. Given a general 2 X 2 matrix

A [ﬂn ﬂl::|

dn dn
=]
(+)

gy dyz

iy x iy

The determinant is a single number or scalar and is found only for square matrices If the
determinant of a matrix is equal to zero, the determinant is said to vanish and the matrix is termed
pingudar. A singular matrix is one in which there exists linear dependence between at least two
fows of columns If |A| # 0, matrix A is nonsingular and all its rows and columns are linearly
independent.

Il linear dependence exists in a sysiem of equations, the system as a whole will have an infinite
number of possible solutions, making a unique solution impossible. Hence we want to preclude linearly
dependent equations from our models and will generally fall back on the following simple determinant
fest to spal potential problems. Given a system of equations with coefficient matrix A,

the determinant is |Al = = @y day — @2y

If |A| = [ the matrix is singular and there is linear dependence among the equations. No unique

solution is 'Pi'IH‘\iI"'lL'.

If JA! # L. the matrix is nonsingular and there is no linear dependence among the equations A
unigue solution can be found.

The rank p ol a matrix is defined as the maximum number of linearly independent rows or columns
in the mutrix. The rank of a matrix also allows for a simple test of linear dependence which follows
nmediately. Assuming a square matrix of order n,

If ptA) = n. A is nonsingular and there is no linear dependence.
If plA) = n, A is singular and there is linear dependence.

See Example | and Problems 11.1, 113, and 11.17. For proof of nonsingularity and linear
independénee, sce Problem 11.16.

224
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EXAMPLE 1. Determinants are calculsted as follows, given
i 4 4 6
a-55] =-s

|A| = 6(9) - 4(7) =

From the rules stated above,

Since | A| # (. the matrix is nonsingular, 1.c.. there is no linear dependence between any of its rows or columns.
The rank of A is 2, written p{A) = 2. By way of contrast,

IB| = 4(9) - 6(6) = 0

With |B| = 0, B is singular and linear dependence exists between its rows and columns. Closer inspection reveals
that row 2 and column 2 are equal to 1.5 times row 1 and column 1, respectively. Hence p{B) = 1.

11.2 THIRD-ORDER DETERMINANTS

The determinant of a 3 ¥ 3 malrix

iy gy
A=lay an an
dy dyg dy

is called a third-order determinant and is the summation of three products To derive the three
products:

1. Take the firsi element of the first row, a,;, and mentally delete the row and column in which
it appears. See (a) below. Then multiply a,, by the determinant of the remaining elements.
2. Take the second element of the first row, &, and mentally delete the row and column in which

it appears. See (b) below. Then multiply @,; by —1 times the determinant of the remaming
elements.

3. Take the third element of the first row, a4, and mentally delete the row and column in which
it appears. See (c) below. Then multiply @5 by the determinant of the remaining clements

13 1Y Bif

fiyy iy dn iy dpp U
dyy dy; dam iy @y gy @y A3z ﬂu

(a) (5)

Thus, the calculations for the determinant are as follows:

o v & a a
Al =ay| 2 P +an(-D] " P +au| " "
dyy s dz Oy iy T
= a@yy{gdy — Gnay) = dplan dn = dpdy) + aga(ay dyg — apay) (1.1}
= g scalar

Sce Examples 2 and 3 and Problems 11.2, 11.3, and 11.17.

In like manner, the determinant of a 4 x 4 matrix is the sum of four products; the determinant of
a 5 % 5 matrix is the sum of five products; etc. See Section 11.4 and Example 5.
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EXAMPLE 2. Given

W onoDm
= e e

L =3
—

the determinant | A | is calculated as follows:

4 7 & 7 h 4
IA] E|| 3 ”{_”L 3| *3s 4

= 8{4(3) = 7(1)] - 3{6(3) ~ T(S)] + 2[6(1) - 4(5))
= 8(5) - H-1T) + - 14) = 63

With |A| # 0, A is nonsingular and ®{A) = 3.

113 MINORS AND COFACTORS

The clements of a matrix remaining after the deletion process described in Section 11.2 form a
subdeterminant of the matrix called a minor. Thus, a minor | M| is the determinant of the submatrix
formed by deleting the ith row and jth column of the matrix. Using the matrix from Section 11.2,

f dp
&y iy

dn On dy iy

|Ml:|'

lM|z|= |Hu|=

dyy Gy 1 day

where | My, | is the minor of a,,, |M ;| the minor of a,=, and | M| the minor of a,;. Thus, the determinant in (11.7)
can be writlen

| A= @y | My |+ @ =DM ] + a1 My | (11.2)
A cofactor | C,| is & minor with a prescribed sign. The rule for the sign of a cofactor is
Gyl = (1) | M|
Thus if the sum of the subscripts is an even number, |C,| = | M|, since —1 raised to an even power is

positive. If i + j is equal 10 an odd number, | C,| = — | M|, since —1 raised to an odd power is negalive.
See Example 3 and Problems 11.18 1o 11.24.

EXAMPLE 3. The cofactors (1) |Cy], (2) |Cial and (3) |Cyy| for the matrix in Section 11.2 are found as

follows;
1) |c:|l'={']}1'||-‘“n|
Since (—1)'*! = (=1F =1,
[Cul = 14| = 72 2
2) |Cial = {=1)"*?|M,s 3) |Cpal = (—1)*3| Ay,
Since (=1 = (-1)* = —1. Since (=1 = (=1)*= L,
e r=r ! | G - _ lan o
| Cial = = [ Mial g [Chal = IMul {6y an
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114 LAPLACE EXPANSION AND HIGHER-ORDER DETERMINANTS

Laplace expansion is a method for evaluating determinants in terms of cofactors. It thus simplifies
matters by permuiting higher-order determinants to be established in terms of lower-order deter-
minants. Laplace expansion of a third-order determinant can be expressed as

|A| = ay|Cu| + @i Cra| + 813 Cia (11.3)

where |C,| is a cofactor based on a second-order determinant. Here, unlike (11.7) and (11.2), a,; is
not explicitly multiplied by —1, since by the rule of cofactors |Cy;| will automatically be multiplied
by -1

Laplace expansion permits evaluation of a determinant along any row or column. Selection of a
row or column with more zeros than others simplifies evaluation of the determinant by eliminating
terms. Laplace expansion also serves as the basis for evaluating determinants of orders higher than
three, See Examples 4 and 5 and Problem 11.25.

EXAMPLE 4. Given

the determinant is found by Laplace expansion along the third column, as demonsirated below:
|A| = 15[ Cy3] + 83| Cis| + 83| Cy

sm '"_ IM iy = '}

Al = 84| Csl (454
Deleting row 2 and column 3 to find |Cyl,
12 7
|= - 3+ d

= (-D)[12(7) - 7(6)] = —42

Then substituting in (I1.4) where gy = 3, |A| = 3(-42) = —126. S0 A is nonsingular and p{A) = 3.
The accuracy of this answer can be readily checked by expanding along the first row and solving for |A|.

EXAMPLE 5. Laplace expansion for a fourth-order determinant is
|A| = 4y Cy| + | a4ty | Cos| + 03] €l

where the cofactors are third-order subdeterminants which in turn can be reduced to second-order subdeter-
minants, as above. Fifth-order determinants and higher are treated in similar fashion. Sec Problem 11.15(d)
o (e).

1.5 PROPERTIES OF A DETERMINANT

‘The following seven properties of determinants provide the ways in which a matrix can be
manipulated to simplify 118 elements or reduce part of them to zero, before evaluating the
determinant:

1. Adding or subtracting any nonzero multiple of one row (or column) from another row {or
column) will have no effect on the determinant.

2. Interchanging any two rows or columns of a matrix will change the sign, but not the absolute
value, of the determinant.

3. Multiplying the elements of any row or column by a constant will cause the determinant o be
multiplied by the constant.
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4. The determinant of a miangular matrix, i.e., a matrix with zero elements everywhere above or
below the principal diagonal, is equal to the product of the elements on the principal
diagonal.

5. The determinant of a matrix equals the determinant of its transpose: |A| = |A'].
6. If all the elements of any row or column are zero, the determinant is zero.
7. I two rows or columns are identical or proportional, i.e., linearly dependent, the determinant

is Zero,

These properties and their use in matrix manipulation are treated in Problems 11.4 10 11.15.

1L6 COFACTOR AND ADJOINT MATRICES

A cofactor matrix is & matrix in which every element a, is replaced with its cofactor |C,|. An
adjoint matrix is the transpose of a cofactor matrix, Thus,

[Cul |Caal |Cul ICul |1Cul |Cxl

C=||Cul |Cal |Cs| AdiA=C'=||Cy| |Cal Csl

|C1|| IC'.!.'!F |Cu| rCn' “:I.ll ICJ!r'

EXAMPLE 6. The cofactor mainx C and the adjoint matrix Adj A are found below, given
231
A=|4 1 2
5 3 4

Replacing the elements a, with their cofactors |C, | according to the laws of cofactors,

12 _ill 41
34 5 4 53
' -2 -& 1
. 31 21‘ 23
c=|- - =l-9 3 9
3 4 5 4 53 $ 0 =1b
311 |21 23
}. 2 42 4 1]

The adjoint matrix Adj A is the transpose of C,

-2 =B 5
MjA='C'=[—ﬁ 3 ﬂl]

7 9 -10

1L7 INVERSE MATRICES

An inverse marrix A ', which can be found only for a square, nonsingular matrix A, is & unique
matrix satisfying the relationship

AA ' =1=AT"A

Multiplying a matrix by its inverse reduces it 1o an identity matrix. Thus, the inverse matrix in linear
algebra performs much the same function as the reciprocal in ordinary algebra. The formula for
deriving the inverse is

1
A'l'=—AdiA
V.

Sce Example 7 and Problem 11.25,
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4 1 -5
A=|-2 3 1
3 -1 4

Check that it is a square matrix, here 3 % 3, since only square matrices can have inverses
2. Ewvaluate the determinant 1o be sure | A| » (), since only nonsingular matrices can have inverses
| A= 4{3(4) = 1(=1)] = L(=2H4) = 13 + (=520 -1) = 3(3)]

=514 11435=0040

EXAMPLE 7. Find the mverse lor

i

Matrix A is nonsingular; p{A) = 3.
3.  Find the cofactor matrix of A.

31 -2 1 -2 3]

S St i sem (4 & [PH 9
C=1"1-1 4 s 4] |3 =™t

1 -5 | 4 -5 4 1 Lol

31 2 1 S

Then transpose the cofactor matrix to get the adjoint matnix.

13 1 16

AdA=C=| 11 31 &

-7 7 W4

4, Multiply the adjoint matrix by 1/|A| = & to get AL

(13 16 h Ja i. 01327 00102 0.1633
“'_l:ﬁ 11 1 6= 01122 03163 00612
-7 7 4 00714 00714 01429

5.  To check your answer, multiply AA " or A™"A. Both prou:lum will equal 1 if the answer is correct. An
inverss is checked in Problem 11.26(a).

1L8 SOLVING LINEAR EQUATIONS WITH THE INVERSE
An inverse matrix can be used Lo solve matrix equations. If

hqux‘:—l = n‘u.-il

and the inverse A" exists, multiplication of both sides of the equation by A™', following the laws of
conformability, gives

AL AL Xe = ALLB,
From Section 11.7, A 'A =L Thus,
Bn Xy = Al By
From Section 10.8, IX = X. Therefore,
X1 = (A By

The solution of the equation is given by the product of the inverse of the coefficient matrix A™" and
the column vector of constants B. See Problems 11.27 10 11.33,
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EXAMPLE B. Matrix equations and the inverse are used below 10 solve for x,, 1, and x,, given

lll‘.l+ I]-jﬂ'j. 3‘
_h1+h]+ .I'—.I.l
ir, - .1']+4I|= b

First, express the system of equations in matrix form,
AX =8B

44
|-{&-E

From Section 11.8,

Substituting A~ from Example 7 and multiplying.

B & HJ[ 8 Bl
x=[ HOoE a‘[11]=[ ®+ W+
~h kL s) |-+ E+

Thus, X, =2, 5; =5, and &y = 1.

~its e e

1LY CRAMER'S RULE FOR MATRIX SOLUTIONS

Cramer’s rule provides a simplified method of solving a system of linear equations through the use
of determinants. Cramer's rule states

ir=-lil

where x; is the ith unknown variable in a series of equations, |A| is the determinant of the coefficient
matrix, and | A, | is the determinant of a special matrix formed from the original coefficient matrix by
replacing the column of coefficients of x, with the column vector of constants. See Example 9 and
Problems 11.34 1 11.37. Proof for Cramer’s rule is given in Problem 11.38.

EXAMPLE®. Cramer's rule is used below to solve the system of equations

fix, + Sx= = 49
k|+“1-]2

1. Express the equations in matrix form.
AX =B

6 5 [
314 2
Al =6{4)-5(3)=9
3.  Then to solve for x,, replace column 1, the coefficients of x;, with the vector of constants B, forming a

new matrnx A,.
49 5
"“”[31 1]

Xy

o

2.  Find the determinant of A
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Find the determinant of A,
Ay = 49(4) - 5(32) = 36
and use the formula for Cramer’s rule,

4. To solve for xs. replece column 2, the coefficents of x;, from the orging! matrix, with the column vecior
of constants B, forming a new matrix A;.
6 49
=3 )

i xn
Take the determinant,
A;| = 6(32) - 49(3) = 45
and use the formula

. Ay 45
U T e

For a system of three linear equations, se Problem 11.35{8) 1o (e).

=5

Solved Problems

DETERMINANTS
1L1. Find the determinant |A| for the following matrices:

(9 13 40 -10

9 A=lis 13] 5 ""‘[25 -5]

|A| = 9(18) = 13(15) = ~33 A = 40(~5) = (~10)(25) = 50
(7 6

Q) A=|9 s
2 12

The determinsnt does aot exist becanse A is a 3 % 2 matrix and oaly & sguare matrix can have a
determinant.

11.2. Find the determinant | A | for the following matrices. Notice how the presence of zeros simplifies
the task of evaluating a determinant.

3 6 35
a) A=|2 1 8
79 1

1 8] {2 8| |2 1
'”'3[9 1|'6i1 1 +5|7 9‘
= 3[1{1) = B(9)] - 6{2(1) = B()] + S[2() - L(7)]
= 3(~71) - 6(~54) + 5(11) = 166
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P
= O R ]

=LA b
e

1
b) A=| 9
4

9 9 2
|A|-12|§ f ~|}‘ 3 +3|

41 4 6|
=12(2-30)—0+3{(54—8) = —198

el A

]
Jr——
-l W o
o LA On
L= L =]
| S—

3.3

5 20 |3 2
l‘“'"‘ﬁ 9|'ﬁ‘1 9|+"[? 6

=0-6(2T-14)+0D = —-78

RANK OF A MATRIX
113. Determine the rank p of the following matrices:

6 2
5 4
-8 2
| 1 4 1 5
|A| = -3 -+ﬁ{—1|‘4 1_l+1 —a|

| 5 4
-8 2| 4
= ~3[10 - (~32)] - 6(2 ~ 16) + 2{~8 — 20) = ~98

-3
a) A=

1
4

With |A|# 0, A is nonsingular and the three rows and columns are linearly independent. Hence,
KA) =3,

5 -¢ 3
by B= 2 12 —4
-3 -18 &6
12 12
~18 -18
= 5[72 = (+72)] + 912 — {+12)] + 3 —36 — (—36))
= 5(0) + %(0) + }(0) = 0

-4 2 -4 2
= 5 - g{=1
Il | g ™% Jl—s ﬁ|+3‘—3

With |B| =0, B is singular and the three rows and columns are not linearly independent. Hence,
p{B) # 3. Now test to see if any two rows or columns are independent. Starting with the submatrix
in the upper left corner, take the 2 X 2 determinant.

5 =B
=60 (-18)=T78+0
|2 12 (=18)

Thus, p{B) = 2. There are only two linearly independent rows and columns in B, Row 3 is — 1.5 times
row 2, and column 3 is —} times column 2.
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% T =6
o €=| 10 -25 175
4 -6 18

25 75 0 75 10 -25

'E"‘E|—ﬁ 18 *H'”|1-n 18 |' (24 -6 |

= —8[—45 — (—45)] — 2(150 — 180) — 6] —60 — (—60)] = 0
With |C| = 0, p{C) # 3. Trving various 2 X 2 submairices,

-8 2 2 -6
10 =g5| “2-0=0 a5 gs)<WC1B0
10 -25| ~25 15

| m =)= =AY = () = =45 = (=d5) = 0
3 ¢ = 1% =

With all the determinants of the different 2 % 7 submailrices equal 1o zéro, no two rows or columns
of C are linearly independent. So p(C) # 2 and p{C) = 1. Row 2 is —1.25 times row 1. row 3 is —1
times row 1, column 2 is —} times column 1, and column 3 is § times column 1.

2 5
di D=7 11
3 1

Since the maximum number of linearly independent rows (colummns) must egual the maximum
number of linearly independent columns (rows), the rank of D cannot exceed 2. Testing o
submatrix,

2 5
17 11

While it is clear that there are only two linearly independent columns, there are also only two linearly
independent rows because row 2 = 2 times row | plus row 3.

=R =3= =130 D=2

PROPERTIES OF DETERMINANTS
114. Given A=

Compare (a) the determinant of A and (b) the determinant of the transpose of A. (c) Specify
which property of determinants the comparison illustrates.

a) IAl=2(4-16)-5(6-4) +1(12-2) = -24
2 31

B A'=|5 2 4
1 4 2

|A | =24-16)-J10-4) +L{H0-2)=-24

¢} This illusirates that the determinant of a matrix equals the determinant of ils transpose. See
Section 11.5.

ILS. Compare (a) the determinant of A and (b) the determinant of A’, given

A= [ﬂu ﬂu]
dyy
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-
“] 1Al = a,,80. = a:8; H A'wm ['11 =.I] |1‘| il iy < @iy

dg dp,
2
4
2

{a) Find the determinant of A. (b) Form a new matrix B by interchanging row 1 and row 2 of
A, and find | B|. (¢) Form another matrix C by interchanging column 1 and column 3 of A, and
find |C|. (d) Compare determinants and specify which property of determinants is illustrated.

LS I -

1
Given A=|3
2

a) | Al =1{10=12) - H6-8) + 2(9 - 10) = 4
[3 5§ 4]
b} B=|1 4 2
(2 3 2]
[Bl=38—-6)—5(2-4) +43-8) = —4
[2 4 1]
£) C=|[4 5 3
|2 3 2]

|C] = 2(10=9) = &4(B = &) + 1(12 = 10) = =4

d) |B|==|A|. Interchanging any two rows or columns will affect the sign of the determinant. but niot
the absolute value of the determinant,

Given W= [w I]
¥y z

{(a) Find the determinant of W. (b) Interchange row | and row 2 of W, forming a new matrix

Y. and compare the determinant of Y with that of W,

a) |W| = wz-yx

5) ¥ [“P I] 1¥] = yx ~ we = ~{wz - yz) = ~|W|
35 7

Given A=|2 1 4
423

{a) Find the determinant of A. (b) Form a new matrix B by multiplying the first row of A by
2, and find the determinant of B. (¢) Compare determinants and indicate which property of
determinants this illustrates.

a) [A] = 3(3 - 8) ~ 5(6 ~ 16) + 7(4 - 4) = 3§
& 10 14

b) "[2 1 4] | B = &3 — 8) — 1006 — 16) + 14(4 — 4) = 70
4 2 3

c) |B|=2|A|. Multiplying a single row or column of & matrix by a scalar will cause the value of the
determinant to be multiplied by the scalar. Here doubling row 1 doubles the determinant,
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2 5 8
11.9. Given A=13 10 1
1 15 4
(a) Find | A|. {b) Form a new matrix B by multiplying column 2 by | and find |B|. (¢) Compare
determinants.
al Al = 2040~ 15) = 5(12 = 1) + B(45 - 10) = 275

b) Recalling that multiplying by i is the same thing as dividing by or factoring out 5,

218
B=]3 21 |B|=2(8-3—-1{12—-1)+8(9-2) =55
1 3 4

) |B| =} Al
1110, Given A= l"" "“] B = ["” ““]
dn @n ki
Compare (a) the determinant of A and (b) the determinant of B.
a) |A| = ayan — apay b) |B| = ay kay, — kapey = ke 8) — k(agpay)

= kit dm = Gpay) = k|A|

51 4
11.11. Given A=|3 2 5
4 1 6

(a) Find | A|. (b) Subtract 5 times column 2 from column 1, forming a new matrix B, and find
|B|. (¢) Compare determinants and indicate which property of determinants is illustrated.

a) |A] = 5(12 - 5) - 1{18 — 20) + 4(3 - 8) = 17
01 4

h) l-[—? 2 5] |B| =0=1({-424+5)+ &{-T+2)= 17
=116

) |B|=|A|. Addition or subtraction of a nonzero multiple of any row or column 1o or from another
row or column does not change the value of the determinant.

1L12 (&) Subtract row 3 from row 1 in A of Problem 11.11, forming a new matrix C, and (&)

find |C|.
1 0 -2
al C=13 2 5
4 1 ]
k) ICl=1(12=3)-0+(-2W3 -8 = 17

1L.13. Given the upper-triangular matrix
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which has zero elements everywhere above the principal diagonal, () find |A|. (») Find the
product of the elements along the principal diagonal and (c} specify which property of
determinants this illustrates.

a) |A]==3(-20-0)-0+0=60

&)  Multiplying the elements along the principal diagonal, {~3)(—5}{4) = 60.

¢) The determinant of a triangular matrix is equal to the product of the elements along the principal
diagonal.

1L14. Given the lower-triangular matrix

2 =5 =}
A= [ﬂ i ﬁ]
6o 0 -7

which has zero elements everywhere below the principal diagonal, find {a) |A| and (b) the
product of the diagonal elemenis.

a) |Al=2{-21 - —(—5)0—-0)— 1{0—0) = —42
b) BN=T) = —42
12 16 13
L1115, Given A= 0o 0 0
-15 20 -9
() Find |A|. (b) What property of determinants is illustrated?
) |A| = 12(0 ~ 0) = 16(0 = 0) + 130 -0} = 0

b) If all the elements of & row or column equal xero, the determinant will equal zero. With all the
elements of row 2 in A equal to zero, the matrix is, in effect, a 2 % 3 matrix, not a 3 X 3 matrix. Only
square matrices have determinants,

SINGULAR AND NONSINGULAR MATRICES

11.16. Using a 2 % 2 coefficient matrix A, prove that if |A| # 0, there is linear independence between
the rows and columns of A and a unique solution exists for the system of equations.

Start with two linear equations in two unknowns
g x+ dggy = by (11.5)
Ay I+any=b {11.6)
and solve for x by multiplying (71.5) by ay and (71.6) by —ay; and then adding 1o eliminate y.
Ayl X + apany = anh,
“@yAn X~ dyudny = ~apb,
(@32 — @ )X = apb; — 4 b,

=
- auby = a3,
iy ﬂu - ﬂ.;u?J

(11.7)

where a, a8, — a8y, = |A) IL in (J1L.7), |A| = ay,8, — @365 = 0, x has no unique solution, indicating
linear dependence between the equations; if |A] = @, a3; = @3a;, % 0, x has a unique solution and the
equations must be linearly independent.
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1L.17. Use determinants to determune whether a unique solution cxists for cach of the following
systems of equations:

i) 1311 + TI;_!- = 147
15x, + 19x, = 168

To determine whether a unigque solution exists, find the coefficient matrix A and take the
determinant [A|. If |A| # 0. the matrix is nonsingular and a unique solution exists If [A{ =0, the
matrix is singular and there is no unique solution. Thus,

12 7
e [ls ml
|A| = 12(19) - (7)15 = 123

Since |A # 0, A is nonsingular and a unique solution exists

b] Zrt+3.rz=2?
ﬁrl+"h:==ﬂl
23

e ol |Al=20-63)=0

|

There is no unigue solution. The eguations are linearly dependent, The second equation is 3 times
the first equation.

¢) Tlx; —5dx; =216

bdx; —48x; = |92
T2 =54
AE[M 48 |A| =T72{—48) — (—54)(64) = — 3456 + 3456 = 0

A unique solution does not exist because the equations are linearly dependent. Closer inspection
reveals the second equation is § times the first equation.

d] 4I|+1I:+5.I_1.=.2-T
x|+ﬁx=+2‘1:]g
3.-I:| + 11‘1“3.:3:‘ 15

4
A=|]
3

A unigue solution exisis.

2 IA|=4(1B=2) -3 -6)+5(1-18) = =12

e T

£ “.f|+2.l]n+ ﬁ]’;=23
1!|+ X3+ 1&'}=2ﬂ
lu[1+5:1+]5]_'|.=m

4 2 6
A=] 3 2 |A] = 415 - 10) — 2{45 - 20) + 6(15 - 10) = 0
0 5 15
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There is no unigue solution because the eguations are linearty dependent. Closer examination
reveals the third equation is 2.5 times the first equation.

f) 56x, +47x, + By =365

Bdx, — 30x, + i2x, = 249
EEIL -E]I;-f' 4I_| = 168

56 47 &
A= |84 =39 12
28 -8Bl 4

Factoring out 28 from column 1 and 4 from column 3 before taking the determinant,

2 47 2
|Al=28(4)(3 -39 3
1 -81 1

The linear dependence between column 1 and column 3 is now evident. The determinant will
therefore be rero. and no unique solution exisis

|A] = 112{2(—39 + 243) —47(0) + 2(-243 + 39)] = 12(0) = 0

MINORS AND COFACTORS
11.18. Find (a) the minor |M,| and (b) the cofactor |C,| for each of the elements in the first row,

11.19.

11.20.

given

A LTI
dy  dp
a) To find the minor of a;;, mentally delete the row and column in which it appears. The remaining
clement is the minor. Thus, |M;;| = ay. Similarly, |M;| = a5.

&) From the rule of colactors,

|Cyy| = f—ll“‘IHnI = +1({dx) = dn
|C|.:I - {.-l:llhlzl-luul i -liﬂn} — -dII

Find (a) the minors and (b) the cofactors for the elements of the second row, given
13 17
A= [19 15]
'ﬂ] |M:|:|I =17 Hul =13

b) 1Cal = (=17 |My|=-1(1T) = =17
€| = (=1 |Myu| = +1{13) = 13

Find (a) the minors and (b) the cofactors for the elements of the second column, given

6 7
A=
13 o
i} |Mp| =12  |My|=6
&) 1Cul = (=1)"* | My| = -12

ICal = (=1 |Mzu| =6
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11.21. Find (&) the minors and (b) the cofactors for the elements of the first row, given

5 2 -4
A=|6 -3 7
1 2 4

g}  Deleting row | and column 1,

=3 7
|M‘|j: e 2 ‘l = =26
Simialarly, 6 7
) | Ml = ‘ -1
1 4
ﬁ —
I= =
| M) 1 II i5

by |C|||=('l]=|.|“"|=-1ﬁ
|Cu| = ('”ilulﬂ = ~17
|Coal = (17| Mys| = 15

11.22. Find (a) the minors and (b) the cofactors for the elements of the third row, given

9 11 4
A=|3 27
6 10 4

a] Deleting row 3 and column 1,

| 11 4
:Hnl- 7 7 = 49
9 4

37
9 1

iMy) = 31 2 =13

b) [y = {=1)"| My, | = 69
|Cxf = (=1)| M| = =51
“:n- - {‘U‘E-Hul = =]5

Similarly, IMy| = ‘ =5

11.23. Find (a) the minors and (b) the cofactors for the elements in the second column, given

13 6 11
A=|12 9 4
7 10 2

1z 4
a) Ml = 7 S| =4
13 11
T 2
13 1
12 il‘

b) |Cazl = (=17 | Mya| = ~1(=4) = 4
|Cal = (-1)'| M| = =51
€l = (—1)'|Mg| = —1(—80) = 80

IMJII =

|H::| ==
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11.24. Find (1) the cofactor matrix C and (2) the adjoint matrix Adj A for each of the following:

(7 12
a) A.-—[q 3]
» €l |Cial - |My] =Ml N 3 -4
% & [|c.u| |f::|] - |My| wnl] [-u ?]
2) Adj.t-l:*-[_: “‘?]
=2 5
% ‘“:[13 ﬁ]
é =13 = f —5
. c=[_$ -2 ¥ "'“"“‘”[—13 -z]

9 -16
) “E[—zu ?]

7 20 . [7 16
. c-[lﬁ 9] 2) "‘""""[m 9]
6 2 7
d A=|5 4 9
331
49 |59 5 4|7
31 L | 33
ICul |Cul Cul 2 7 6 7 6 2 =235 X2 3
1) C= ||Cu| |Cnl ICal]|=]~- 3 1 31 3 3 - 19 =15 =12
€| |Gl |Cssl 27| |67 . 3 -10 -19 14
L |4 9 59 5 4
-3 19 -10
2) AdjA=C'=| 22 -15 -19
I -12 14
13 -2 B
)] A=|-9 h —d
-3 2 =1
3 6 4] |-9 -4 -9 6]
2 -1 -3 -1 -3 2|
2 3 0
l]|t2=~—d=Ii 133_:34]:“ 11 -20
2 -1 -3 =1 -3 2 40 -20 &
-2 8/ |13 8 13 —|
i 6 —4 -9 —4 -9 6

2 14 -40
0 -2 &0

2) AdiA=C'= |:] 1 =20
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LAPLACE EXPANSION

11.25. Use Laplace expansion to find the determinants for each of the following, using whatever row
or column is easiest:

15 7 9
a) A= 2 5 6
9 0 12

Expanding along the second column,

A ] 15 9
|A|-an|c.=n+nnlc=|+~.-_=!ful="Hl\q 2l *3|'s m|*"
= =T(~30) + 5(%99) = 705

23 35 0
By A=|T72 4 10

15 29 0
Expanding along the third column,
|A| = ay| Coa| + 20| Caa| + 82| Csl
23 35
0+ 10(—1) 15 29 + 0= —10{142) = — 1420
12 98 15
c) A=| 0 25 0
21 B4 19
Expanding along the second row,
12 15
IAI’=ﬂnlf'n|+ﬂnlifal+ﬂnlcnl=U+I5hl 19 +0=25-87)=-2175
2 4 1 5
3 2 5 1
o R 1 21 4
3 4 3 2

Expanding along the first row,
|A] = ﬂnl':::l"‘ﬂulcul + 0| Cya| + l‘ulful

2 51 331 3121 325
=2(-1)"""2 1 4[+4-1P71 1 4| #1012 e 451t 2
4312 B 341 343

Then expanding each of the 3 % 3 subdeterminants along the frst row,

1 4 2 4 21 1 4 1 4 1 1
""|=2[2|3 3 F"lq 2 “I; 3|]“‘H3 2 5‘3 z‘+'|3 3 ]

£ P B I R B | B I B MRS ]
= 22(~10) ~ S(~12) + 1(2)] ~ 4{3(~10) ~ 5(~10) + 1(0)]

+1[3(=12) - 2A~10) + 1(=2)] - 5[3(2) ~ 20) + $(~2)]
= Ha2) - {20+ 1{=18) = 5(-4) = §
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s 01 3
4 2 60
) A=l301 5
o1 4 2
Expanding along the second column,
|A| = @2| Ciaf + | Czz| + 83| Cra| + 22| Ce
513 513
=0+2-1Y**3 1 5|+0+U-1"?4 & O
0 4 2 318
Then substituting the values for the 3 ¥ 3 subdeterminants,
| A} = 2({—60) + 1(§8) = —32
INVERTING A MATRIX
11.26. Find the inverse A" for the following matrices Check your answer to part (a).
24 15
o) A=y ?]
A"-L.Adjl
IA]
Evaluating the determinant, |A|=24(7T) - 15(R) = 48
Then finding the cofactor matrix to get the adjoint,
7 -8
c-[—lﬁ 24
; : 7 -15
und A-:IJA-C-’_B 14]
L[ 7 -15 % —1“;1
1-—- -
- A m[—s z*J l—é i b
Checking to make sure A7 'A = I, and using the unreduced form of A ' from (11.8) for easier
compulation,
sonaLf ¥ -15] 24 Iﬁ}nl 7(24) - 15(8)  7(15) - 15(7)
48| -8 24| 8 7] 48[ -8(24)+24(8) -B(15)+24(7)
__l_[-su ul_ 1 ul
48|10 4 o1

m a=[g ]

The cofactor muinx s

[A]=T(12) - 9(6) = 30

c-[2 9
and MjA-C‘-l_i: _:]
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1 [12 -9 ;-2
Th A= — = iw
- 30 [—ﬁ ?] [—5 :’a]

|Al=-T{13)— 16{-9) = 53

3 9
L=
[—15 F-.-I

Agia=c |1 __Ifj]
=35 508 ]

|A] = 4(7 - 48) - 2(21 - 72) + 5(18 - 9) = —17

The cofactor matrix is
[ |0 8| _|3 8 13 1]
& 7 9 7 i 6
ca|_J2 3 45 '-42__'; f;:
6 7 9 7 9 6] | B
285 |45 4 2 Kb =R
1 8 3.8 3 1))
-41 16 1
and AdA=C=| §1I =17 -17
9 -6 -2
(-8 18 8 -5 -#
Thus, At=-=] 51 -17 -17[=[-3 1 1
¥y & -4 fohh

14 0 6
el A=| 9 5 0
0 11 8

The cofactor matrx s

IA| = 14(40) = 0 + 6{99) = 1154

o -7 %
C=| 6 112 -154
-30 54 70
The adjoint is
40 6 =30
AdiA=|-72 112 54
W —154 0
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[ [ % 6 -3 o -@
Then A-'-ﬁ[—n 1n2 54]-[—#, - F-,‘
N -1 T G~

MATRIX INVERSION IN EQUATION SOLUTIONS

11.27. Use matrix inversion to solve the following systems of linear equations. Check your answers on
vour own by substituting into the onginal equations.

ﬂ'] 4X| +11'] =28
2 + Sx. =42

P ]l b

2 5|lel |42

where from Section 11.8, X = A~'B. Find first the inverse of A, where |A| = 4(5) ~ 3(2) = 14. The
cofactor matrix of A is

5 =2
“'l—z -:J
_ , [ 5 -3
and Ad,ﬁﬂ:—[_z 4]
_:_L i -3 - 'I%- -iéi
., i |4[-1 al® =

Then substituting in X = A "' B and simply multiplying matrices,

o B W W e R H

Thus, £ =1 and 5, = &
b) 6x, +Txs = 56
21'| +]‘I:=44

HH MR
where |A| = 6(3) - 7(2) = 4.

[} 7] man-ee[ 3]
. et 14

T S ] e B -

and ¥, = =3 and i; =38

11.28. The equilibrium conditions for two related markets (pork and beef) are given by

18P,— P,=87
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Find the aquﬂil:lnu.m 'pﬂl.ﬂ: for each market.
18 -l][fql [H?]
2 WBILPA )

J 1
2 18

where |A| = 18(36) = (~1)(~2) = 646.

c-[% 2] aua-]

- &[5 JJ-[2 4
m xe[d HEHEG

and P, =Sand P, = 3.
This i= the same solution as thal obtained by simulianeous equations in Problem 2.12. For practice iry
the inverse matrix solution for Problem 2.13,

11.29. The equilibrium condition for lwo substitute goods is given by

5P, — 2P, = 15
-+ EP} = 16

-1 alle]= L)

[B 1 B 2
C= ] Ade=[ }

Find the equilibrium prices.

where |A| = 5(8) - (=1}(-2} = 38,

(2 5 15
- w4l 3-8 4
60 + 16
~ S A B
38

l—ﬂdlu1"|'mp_1-25.

11.30. Given: the IS equation 03Y + 100§ — 252 = 0 and the LM equation 0.25Y - 200¢ = 176 = ().
Find the equilibrium level of income and rate of interest.

The IS and LM equations can be reduced Lo the form
0.3Y + 100 = 252
0.25Y - 200i = 176
and then expressed in matrix form where

03 100 Y 252
"'[M& ~200 I'[i] e l?'-‘-]
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Thus, |A] = 0.3(~200) ~ 100(0.25) = ~85
c_[—zm ~025
-100 03
o [-200 -100
AgA= [ 2o s
- =2
L 1[-w0 -] |77 T
i AT w025 03] [ons _oos
17 17
40 20 [ 10,080 + 3520
717 ([ 17 800
T X=loas o0s [m. 7| 126-1036 _[u.u]
7 L

In equilibrium ¥ = B0O and 7 = 0.12 as found in Problem 2.23 where simultaneous equations were used.
On your own, practice with Problem 2.24,

11.31. Use matrix inversion to solve for the unknowns in the system of linear equations given

below.
11'1+4I;'_3:.I,1 =12
31’1 "'5-1’; +11.1. =13
—-xy + 3%y + 2y = 17

2 4 -3x) [12
3 -5 2f|x|=|13
-1 3 2| |17

where |A| = 2(~16) — 4(8) — 3(4) = =76,

-5 4 _| % 2 3 -5
3 2 -1 2 -1 3
4 -3 2 -3 2 4 =Hh =8 @
€=1=| a2 4 9 Tl ATy 2l
4 -3 |2 -3 2 4 = SR S
| -5 2 3 2 3 -5|]
-16 —-17 ~7
AdiA=| -8 1 -13
4 -10 -2
[ -7 =7 g 1
Al=-co| -8 1 -13|= £ -4 §
4 -10 -2 - 4 3
where the common denominator 76 is deliberately kept to simplify later calculations.
(192 4221 +119 ]
7%
£ H s 71 [4&
96 - 13 + 221
% R &llv a8+ 1304374 | L8] LD
76
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1132, The equilibrium condition for three related markets is given by

1P, - P= Py=31

_"F|+EP1_2.F3=25

_F1_1P3+TP:|"='I4
Find the equilibrium price for each markel.

1 -1 -1 F.‘
=1 i] "2 P]
-1 -2 7 F;J

where | A| = 11(38) + 1(~9) — 1(8) = 401.

6 =2| _|=t -2 -1 6
i?_I* Hoap | TS A
Cwm | = | - =| 2 7% 23
=1 -Il A 11 =1 11 =1
i 6 -2 -1 =2 -1 6]
® 0 B
AdiaA=|9 76 3
B 23 65
8 & & &
~-— 9 n-. sl=|& & &
B I3 65 & & &
(1178 + 234 + 192
401 =
& & &N 4 P
|3 & 8x]- 2ol ]
| |
o ]l 248 + 598 + 1560 . Py
L 401 J

Sec Problem 2.16 for the same solution with simultancous equations.

1033, Given Y = C + [, where C = ( + bY. Use matrix inversion to find the equilibrium level of ¥
and C.

The given equations can first be rearranged so thet the endogenous variables C and ¥, together with
their coefficients —b, are on the lefi-hand side of the equation and the exogenous variables C; and I, are
on the night.

Y-C=1],
-b¥Y+Cm

1 - ¥ Iy
b [ alle]=[e)
The determinant of the coefficient matrix is |A| = 1{1) + 1{=b) = 1 — b. The cofactor matrix is

1 b
E_[‘l 1

nan=( 3|
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1 11
T
and A& 1—&[& 1]
Y 11 1k 1 r.+c.}
1"'““‘“1'[::]‘ x l-h[b 1][ I-b[bfu-rl‘:'n
1 1
This, ¥F= m{.ﬂ,+ Co) C= *ﬁ[{.’p+ Bl

Example 3 in Chapter 2 was solved for the equilibrium level of income without matrices.

CRAMER'S RULE
11.34. Use Cramer's rule to solve for the unknowns in each of the following:
a) 2x,+6r; =22
~x, + 5x; = 53
From Cramer's rule,
Al

Eow =t

1Al

whera A, is a special matrix formed by replacing the column of coefficients of x; with the column of
constants. Thus, from the original data,

1 slla)-1s]
where |A| = 2(5) - 6(—1) = 16.

Replacing the first column of the coefficient matrix with the column of constants,
22 6
A= s 5]
where |A,;| = 22(5) = 6(33) = -208. Thus.

- A 208
- E——=-—[3
AT T e

Replacing the second column of the original coefficient matrix with the column of constants,

2
"l'l— 53
where |A,| = 2(53) —22({—1) = 128. Thus,
_=JM—E=
B=TAl " 16 ¢
b) Tp, +2py = 60
p1+8p; =78
T 2
"‘_[1 8

where |A| = T{8) = 2{1} = 54.
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where | Ay ] = 60(8) — 2(78) = 324,
T 60
A= [: ?3]

where |A,| = 7(78) - 60(1) = 486,

_EM_”EE:! 'tﬂuﬁz
PETAT s =% = AEte =t
c) 18P,- P, =87
—zf'b+3ﬁ?,=gﬂ
[ 18 =1
""_-2 Sﬁ}
where | A = 18(36) — (—1){—2} = H44.
87 -1
Ay = 98
where |A;| = B7{36) + 1(98) = 3230,
| 18 87
A= |2 o
where |A;| = 18(98) - 87(-2) = 1938,
P, T 5 and P, T 3

Compare the work invalved in this method of solution with the work involved in Problems 2.12 and
11.28 where the same problem i trealed first wath simultaneous equations and then with matrix
inversion.

11.35. Redo Problem 11.34 for each of the following:
a) 04Y + 150i = 209

01Y-250i = 35
04 150
L ISR ]
where |A| = 0.4(=250) = 150(0.1) = -115,
9 150
A= as —zsnl
where | A, | = 209( - 250) - 150{35) = —57,500.
04 209
M \_ﬂ.l 351
where | A;| = 0.4(35) — 209(0.1) = —6.9.
_-lﬁd-‘_ﬂ'fm-l T:M:ﬂ:
-y vy e S e ST

Compare Lhis method of solution with Problem .24,
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b’ S.I-L_h;‘l‘l'l:]."_— 16
1'[;+3.[:_51'_|=' 2
4.tt-*5.r;+ﬁx!= ?

5 =2 3
|A|=]2 3 =5|=5(18-25)+2(12+20)+}-10-12) = =37
4 =5 6
16 =2 3
| A =] 2 1 =5)1=16{18-25)+ H12+ 35} + 3 =10-21)= =111
| 7 -5 &
5 16 3]
|Ag| =2 =5 | = 5{12 + 35) = 16{12 + 20) + 3(14 - B) = —-259
(4 7 6]
'8 =2 18]
|| = | 2 I 21 =521+10)+X14-8&)+ 16{-10-12) = —185
|4 =5 7]
. 1Al -1 _ A 259 |As|  —185
Y — W — e B — T F e E———— ]
YETAL T = S 7Y A ¥ =

I:'} 1'[1 +4‘A’;_ Xy =52
b 11 +5::+3I;.=?2
34'1 -Tl}""lﬁ = 10

7 4 -
IAl=1-1 5 3| =201)-4(-11)-1(~8) = 114
3 -1 2
2 4 -1
Ad=|T2 5 3| =52031) - 4(114) - 1(~554) = 1710
10 =7 2
3 52 -
Agl= =1 72 3| =20114) - 52(~11) - 1{-226} = 1026
110 2
i
Mgl = |=1 5 72| =2(554) - 4(~226) + 52(~8) = 1596
3 -7 10
--M-_]-”'U- _Iﬁu_‘lm £ M_—.ﬁn
A o Tt Y e 7 il G Y e 7 fln

d) 1lpy— pa— ps=31
—pi +6p;—2p; = 26
“p1~2p:+Tp; = 24
1M -1 -1
|&]=|=1 & =2| = 11{38)+ 1{—9)— 1{B) = 401
-1 -2 1

Ay = = J1(38) + 1{230) = 1{~196) = 1604

¥Rz
o
™
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11 31 -1
[Azl=|-1 26 -2 =11(230)-31(-9) - 1(2) = 2807
-1 24 7
11 -1 M
lAsl=|=1 & 26| =11(196)+ 1(2) + 31(8) =
-1 =2 M
(A, 1604 _ 1A |A,| 2406
Th B s B s—— P 3. _-_ iy & —— i —
“  ASR T “TAl T PEAT T
Compare the work involved in this type of solution with the work involved in Problems 2.16 and
1132

11.36. Use Cramer’s rule to solve for x and v, given the first-order conditions for constrained
optimization from Example 7 of Chapter &:

E-lﬁr-r-l-ﬂ
ix

aTC
—_— My - - 0
P HWy-x—-A=
4TC
) 2-x-y=0
Rearrange the equations,
lr= y=A= 0
-x+My—-A= 0
-x= ¥ = =47
and set them in matrix form.
lﬁ —l —1

" —l ] [-42]
Expanding along the third columa,
| Al = (=1K1+24) = (-1H-16-1) + 0= —-42

0 -1 =17
A= 0 24 -1
-2 -1 0
Expanding along the first column, |A,| = =42(1 + 24) = —1050.
[ 16 0 =17
A.=| -1 a -1
-1 -42 0]
Expanding along the second column, |A;| = —(=42)(=16=1) = =714,
[ 16 -1 0
A= =1 24 i
-1 -1 -42]

Expanding along the third column, |A,| = ~42(384 — 1) = -16,086.
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pa N 100 g 001 STHE
Thus, I TAl = 25§ TV 17
- Ayl =16/86
and A Al —0 383

11.37. Use Cramer’s rule to find the critical valves of @, and Q,, given the first-order condi-
tions for constrained utility maximization in Problem 6.37: Q,—10A =0, 0, -2A =0, and

240 - 10Q, — 20, = 0.
o0 1 -10)e o
1 ] -2 Qz - ]
=10 =2 Ol A =240

Thus. Al = =(1}-20) + (-10)(-2) = 40.
i a 1 =10
A= 0 0 =2|=-240(-2)= 480
| -240 -2 ]
L 0 ~10
A; = 1 0 =2|=—{-240)(10) = 2400
| -10 -240 O
[ D 1 0
A=l 1 0 0| = ~240(-1) = 240
=10 =2 =240
. Ao MM
T Q=TAT" 0 -2 Q=T =@
= |Ay| 240
and AnL e =g
Al 40
1138, Given
H1+&I;-g {"Ir'r'p]
cx tdx;=h (11.10)}
Prove Cramer's rule by showing
| 4 : A
gair B sl L e K] A
“la b| IA " la B| IA
c d c d
Dividing (11.9) by b,
intn=f (r.1)
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Multiplying (17.11) by d and subtracting (11.20),

Similarty, dividing (/1.9) by a, PR e
a

Multiplying (71.12) by —c and adding to (11.10),

b
—u!-dq—r.:!-i—fi
[

cxy +dry = h

ad — bc ah—cg
==

a §
¢ h

Al

Al

Q.ED

253

(11.12)



Special
Determinants
and Matrices and
Their Use in
Economics

121 THE JACOBIAN

Section 11,1 showed how 1o test for linear dependence through the use of a simple determinant.
In conteast, 8 Jocobian determinant permits testing for functional dependence, both linear and
nonlinear. A Jacobian determinant |J| is composed of all the first-order partial derivatives of a system
of equations, arranged in ordered sequence. Given

v = filx), X3, %5)
¥1 = falxy, 2 x3)
¥3 = filxy, x5, X%3)

dyy dyy dyy

ax, ax ox

13| = ayy, 0¥, 0¥y . #_v ﬂ j_v_
axy, Xy, Xy diy ok oXs

o
'EUH I'T-IJ- Xy

Motice that the elements of each row are the partial derivatives of one function v, with respect io
euch of the mde pendent variables xy, x;, 13, and the elemenis of each column are the partial derivatives

254
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of each of the functions yy, y;, s with respect to one of the independent variables x;. If |J]| = 0, the
equations are functionally dependent; if |[J| = 0, the equations are functionally independent. See
Example 1 and Problems 12.1 to 12.4.

EXAMPLE 1. Use of the Jacobian to test for functional dependence is demonstrated below, given
¥ =3n + 3
»= 25x} + 30y x; + 903

First, take the first-order partials,

ay, iy vy s
=l=§5 =3 L3505 +3r, —==30x+I8
ar, ar, ar ! LT ' :

Then set up the Jacobian,

i | 28 3
{ S, + 30wy 3x, + 18x, )
and evaluate,

| 3] = 5(30x; + 18ry) — 3(50x, + 30x;) = 0

Since |J| =0, there is functional dependence between the eguations. In this, the simplest of cases
(52, + :"II;F = 1'.'5-['}+HI’|I-| + qr-';

122 THE HESSIAN

Given that the first-order conditions z, = z, = 0 are met, a sufficient condition for a multivariable
function z = f{x,y) to be at an optimum is

1) Zonin >0  for o minimum
Zinndyy<(  for a maximum
2) ZuZon > ()

See Section 5.4. A convenient test for this second-order condition is the Hessian. A Hessian |H| is a
determinant composed of all the second-order partial derivatives, with the second-order direct partials
on the principal diagonal and the second-order cross partials off the principal diagonal. Thus,

:EJ 'z.'l

Iyn Tyy

where z,, = z,,. If the first element on the principal diagonal, the first principal minor, |H,| = z,, is
positive and the second principal minor

|'HI1| = = Ly T (‘:.I:.h_j: =0

Zus z“J
the second-order conditions for 3 minimum are met. When |H, | >0 and |H;| = 0, the Hessian |H| is
called positive definite. A positive definite Hessian fulfills the second-order conditions for a
minimum.

If the first principal minor | H,| = z,, <0 and the second principal minor

-
Lav  Lay

|H;| = >0

zl}' 'zJJ'

the second-order conditions for & maximum are met. When |H,| <0, |H;|>0, the Hessian |H| is
negative definite. A negative definitc Hessian fulfills the second-order conditions for a maximum. See
Example 2 and Problems 12,10 1o 12.13.
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EXAMPLE 2. In Problem 5.10{a) it was found that
AP -ay+ 2y -dx-Ty+ 12
is optimized ai 1, = | and y, = 2. The second partials were z,, = 6, z,, = 4, and z,, = —1. Using the Hessian to
test the second-order conditions,
. -] —l[
l

& #F
Lat S

|H| = ]
-

o L w

Taking the principal minors, |H,| = 6 >0 and

6
-1
With |H,|>0 and | H;| > 0, the Hessian |H| is positive definite, and z is minimized at the critical values

|Hy| = | _:| = 6(4) - (-1(~-1) = 23>0

123 THE DISCRIMINANT

Determinants may be used to test for positive or negative definiteness of any quadratic form. The
determinant of a quadratic form is called a discriminant |D|. Given the quadratic form

z = ax® + bxy + ¢y

the discriminant is formed by placing the coefficients of the squared terms on the principal diagonal
and dividing the coefficients of the nonsquared term equally between the off-diagonal positions
Thus,

ﬂ E
2
|D| = b
1 [ &
Then evaluate the principal minors as in the Hessian test, where
‘ E
2 b*
|Dyl=a and |Ds|=| "|=ac-—
E c

If | D,|, |D;| >0, D] is positive definite and z is positive for all nonzero values of x and y. If |D,| <0
and [D;] >0, z is negative definite and z is negative for all nonzero values of x and y. If | D;| #0, z is
not sign definite and z may assume both positive and negative values. See Example 3 and Problems
125 t0 12.7.
EXAMPLEJ. To test for sign definiteness, given the guadratic form
z =27 + Sxy + By
form the discriminsnt as explained in Section 123,
2 25

il Jli 8 ‘

Then evaluate the pancipal minors as in the Hessian rest.

|y =20  |Dy = "’l =16~-625=075>0

‘2 L
35 B
Thus, 7 is pomtive definite, meaning that it will be greater than zero for all nonzero values of x and y.
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124 HIGHER-ORDER HESSIANS
Given y = f(x,, x;, x3), the third-order Hessian is

Yu Yun ¥
Yan ¥a ¥n
¥ ¥ Yo

where the elements are the various second-order partial denivatives of y:
a’y >y ¥y
i ‘B.T‘f Y= oy iy Yo ax; fxy ete

Conditions for a relative minimum or maximum depend on the signs of the first, second, and third
principal minors, respectively. If |H,| = y,; >0,

Yu Yu
Y ¥u

where | H,| is the third principal minor, |H| is positive definite and fulfills the second-order conditions
for a minimum. If |H,| = y,, <0,

Yu ¥a
yYun ¥n

|H| 15 negative definite and will fulfill the second-order conditions for a maximum. Higher-order
Hessians follow in analogous fashion. If all the principal minors of |H| are positive, |H| is positive
definite and the second-order conditions for a relative minimum are met. If all the principal minors of
|H| alternate in sign between negative and positive, |H| is negative definite and the second-order
conditions for a relative maximum are met. See Example 4 and Problems 12.8, 129, and 12.14 10
12.18.

|H;| = =0 and |Hy| = |H|<0

EXAMPLE 4. The function
¥ = =50+ l0x, + 5,5, — 25 + 4ny + 2ny 1y — 4

is optimized as follows, using the Hessian 10 test the second-order conditions.
The first-order conditions are

dy
—— =y =10x, + 10+ 1]
a, ¥ = T Xy =
d
L oayym—dry 2,4 4= 0
Xz
au
E";-l;=,’t'1=x1+1!:-ﬂlu=ﬂ

which can be expressed in matrix form as

=10 0 17 =10
n - 2ll= =] -4 121y
1 2 =Bl 0

Using Cramer’s rule (see Section 11.9) and taking the different determinanis, (A = —10{28) + 1{4) = -IT6 = 0.
Since |A| in this case is the Jacobian and does not equal zern, the three equations are functionally
independent.
' [A)| = —10{28) + 1{—8) = —288  |Ay|= =10(32) = (= 10)( =2} + 1{4) = —336
|As| = =10(8) — 10(4) = ~120
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288 oAl -3 Al 120

. _ Al
Thus. A Al _nﬁll.{H E Al — 122 5 Al _nhiﬂ.{!-
taking the second partial derivatives from the first-order conditions 10 prepare the Hessian,
yu=—10 V=0 Pa=1
¥n =0 Ya=—4 yn=2
=1 ya=12 yu= -8
; -0 0 1
Thus, Hi=| 0 -4 2
1 < -8B

which has the same elements as the coefficient matrix in (72 1) since the first-order partials are all linear. Finally,
applying the Hessian test, by checking the signs of the first, second, and third principal minors, respectively,
=10 L]

06 -4
Since the principal minors aliernate correctly in sign, the Hessian 8 negative definite and the function is
maximized at £, = 1.04, §; = 1.22, and £, = 043,

[H,| = ~10<0 |H;|-| ‘-m:‘»u (H,| = (H] = |A] = -276.<0

1.5 THE BORDERED HESSIAN FOR CONSTRAINED OPTIMIZATION

To optimize a function fix,y) subject 10 a constraint g(x,y), Section 5.5 showed that a new
function could be formed F(x.y,A) = fix.y) + A[k — g(x,y)], where the first-order conditions are
F,=F, = F, =0 )

The second-order conditions can now be expressed in terms of a bordered Hessian |H| in either
of two ways:

= Fo Fy & 0 & &
H|=|F. F, &g or |g F. F,
B & 0O & Fu Fy
which is simply the plain Hessian
P ¥
F,, F,

bordered by the first derivatives of the constraint with zero on the principal diagonal. The order of a
bordered principal minor is determined by the order of the principal minor being bordered. Hence |H|
above represents a second bordered principal minor | H, |, because the principal minor being bordered
is2 X2

For a function in n variables f{x;, xs,..., x,), subject to g{x;, xz,.... %),

Fy Fy - F, g 0 & & " &
= Fa Fo ' P & g Fy F3 - F
|H| il e or gx Fy F - Fs

Fa Fa *t Fu I - :

&i £ g D Ba Fu Fu v F,

where [FI| = |,], because of the n X n principal minor being bordered.

If all the principal minors are negative, i.e., if |[,]. |/, ..., |A,.]<0. the bordered Hessian is
positive definite, and a positive defimite Hessian always satisfies the sufficient condition for a relative
minimum.

If the principal minors alternate consistently in sign from positive to negative, i.e, if [H;|>0,
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| A5 <0,|H,| >0, etc,, the bordered Hessian is negative definite, and a negative definite Hessian always
meets the sufficient condition for @ relative maximum. Further tests beyond the scope of the present
book are needed if the criteria are not met, since the given criteria represent sufficient conditions, and
not necessary conditions. See Examples 5 and 6 and Problems 12.19 to 12.27. For a 4 X 4 bordered
Hessian, see Probiem 12.28.

EXAMPLES. Refer to Example 9 in Chapter 5. The bordered Hessian can be used to check the second-order
conditions of the optimized function and to determine if £ is maximized or minimized, as demonstraled below.

From Equations (5.8} and (5.9), 2, =8 Z =12 Z_ = Z _ = 3 From the consiraint, t + y = 56, ¢, = 1, and
B, =1 Thus,

K

(] = 1

" - -]
b

= = =

1
Starting with the second principal minor | ),

|| = 8| =8(-1)-}-1)+1(3-12) = -14
With | ,] <0, |H| is positive definite, which means that Z Is at a minimum, See Problems 12.19 10 12,22,
EXAMPLES. The bordered Hessian is applied below to test the second-order condition of the generalized
Cobb-Deouglas production function maximized in Example 10 of Chapter 6.

From Equations (6./5) and (6. 16), Qe = 04K 2L, @y = 025K L™, Qg = Qi = 02K "L
and from the constraint, 3K + 4L = 108, g, = 3. 5. = 4,
-0.24K * L™ Q2K L™ 3
[H| = | 02K44f 0 —-0,25K" 1,1 4
3 4 {Q
Starting with | /] and expanding along the third row,
|H;] = 3(0.8K "L+ 075K L") - 4{~096K "L - 0L.6K """ L")
225K 4.8 384057
L:I:I * WLM*‘-_.EE_:J.U
With || >0, |H| is negative definite and ( is maximized. See Problems 12.23 to 12.28.

- FASKOA LN p YRR DT L RN IO

126 INPUT-OUTPUT ANALYSIS

In a modern economy where the production of one good requires the input of many other goods
as intermediate goods in the production process (steel requires coal, iron ore, electricity, etc.), total
demand x for product i will be the summation of all iniermediate demand for the product plus the final
demand b for the product arising from consumers, investors, the government, and exporters, as
ultimate users, If gy, is a technical coefficient expressing the value of input i required to produce one
dollar’s worth of product §, the total demand for product i can be expressed as

Xo=apXk tagh o+ @k, b

for i = 1,2,...,n. In matrix form this can be expressed as

X=AX+B (12.2}
X1 gy #Ay vt Wya by
X» gz Gp v g

where Xw| A= B =

S L
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and A is called the matrix of technical coefficients. To find the level of total output (intermediate and
final) needed to satisfy final demand, we can solve for X in terms of the matrix of technical coefficients
and the column vector of final demand, both of which are given. From (J/2.2),

X-AX=B
(1-A)X=B
X=(1-A)'B (12.3)

Thus, for a three-sector economy
Ly 1=ay —dyz g3 o by
Xz | = = il 1= ilay = iy b:
X —dy —dp l—day by

where the I = A matrix is called the Leontief matrix. In a complete input-output table, labor and capital
would also be included as inpuls, constituting value added by the firm. The vertical summation of
elements along column j in such a model would equal 1: the input cost of producing one unit or one
dollar’s worth of the commodity, as seen in Problem 12.39. See Example 7 and Problems 12.29 to
12.39.

EXAMPLET. Determine the total demand  for industries 1, 2, and 3, given the matrix of technical coefficients

A and the final demand vector B,
03 04 01 0
A=|05 02 06 B=|10
01l 03 01 M
From (12.3), X = (1- A)"'B, where
1 00 03 04 01 07 =04 =01
I-A=|0 1 O]=|05 02 06]=|-05 08 =06
o o1 01 03 0.1 -1 =03 0.9
Taking the inverse,

(I-A)'=——|051 062 047

: 054 039 032
0.151

(023 025 036
and substituting in (/2.3),

054 039 0327[207 1 3 160.93 X
X=—0Ho|I051 062 047|100 |=———|305 |= | 200 |=| 12
— 023 0325 036]] 30 | o 17.9 118.54 b

127 CHARACTERISTIC ROOTS AND VECTORS (EIGENVALUES, EIGENVECTORS)

To this point, the sign definiteness of a Hessian and a quadratic form has been tested by using the
principal minors. Sign definiteness can also be tested by using the characteristic roots of a matrix.
Given a square matrix A, if it 15 possible to find a vector ¥V # () and a scalar ¢ such that

AY =¥ (12.4)

the scalar ¢ is called the characteristic root, latent root, or eigenvalue, and the vector is called the
characieristic vector, latent vecior, or eigenvecior. Equation (/2.4) can also be expressed

AV = IV
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which can be rearranged so that

AV =¥V = D

(A-c)V =0 (12.5)
where A =l is called the characteristic matrix of A. Since by assumption V # 0, the characteristic

matrix A — cl must be singular (see Problem 10.49) and thus its determinant must vanish. If A = 3% 3
matrix, then

@y = cC g [ 71
IA=cl=] #n @n-¢ a4y | =0
LT @y g =L

With |A —cl| = 0 in (/2.5). there will be an infinite number of solutions for V. To force a unique
solution, the solution may be mormalized by requiring of the elements v, of V that o7 = 1, as shown
in Example 9.

If

1) All characteristic roots (c) are positive, A is positive definite.

2) All ¢'s are negative, A is negative definite.

3) All ¢'s are nonnegative and at least one ¢ = 0, A is positive semidefinite.

4) All ¢'s are nonpositive and at least one ¢ = (), A is negative semidefinite.

5) Some c's are positive and others negative, A is sign indefinite,

See Examples 8 and 9 and Problems 12.40 to 12.45, and Section 9.3.

EXAMPLEB. Given

-6 3
a=[73 ]
To find the characteristic roots of A, the determinant of the characteristic matrix A — of must equal zero, Thus,
—b—=c i
A-cd= = ) 126
| | ‘ 3 el el

(=6=c)—6—c)—(2)2)=0
E+12642T=0 (c+Wec+3)=0
r,= =9 o ==3

‘Testing for sign definiteness, since both characieristic roots are negative, A is negative definite. Note (1) that ¢, + ¢,
must equal the sum of the elements on the principal diagonal of A and (2) ¢, c; must equal the determinant of the
original matrix |A].

EXAMPLE®. Conlinuing with Example 8, the first rool ¢; = =9 is now used 10 find the characteristic vector.

Substituting ¢ = —9 in (12.6),
[—ﬁ“i_“] 3 :I[I-'L]‘:
3 —6= (=9} ]| v

HHAR

Since the coefficient matrix is linearly dependent, (12.7) is capable of an infinite number of solutions. The product
of the matrices gives two equations which are identical,

Solving for v in terms of v,
N— (12.8)
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Then, normalizing the solution in (/2.8) so that
Aed=1 (129)
¥y = =gy is substituted in (72.9), getting
i+ (~n) =1

Thus, 264 = 1, ¢! = L. Then taking the positive square root, v, = Vi= V0.5 From (/2.6), 1, = —v;. Thus,
5 = —405, and the first characteristic vector is

w38

When the second chamactéristic root ¢; = =3 is used,

=i = [=3) 3 [u. _ [-3 3][;-,] -0
3 ot e I | T 3 =3llw

Multiplying the 2 % 2 matrix by the column vector,
=3+ =0
Iy =3y =0

Thus, v, = v;. Normahzng,

vi+d=1
(v +25 =1
28 =1

r,!;——-\.-'fiﬁ v = VIS

Thus, V= lg]

Solved Problems

THE JACOBIAN

12.1. Use the Jacobian to test for functional dependence in the following system of equations:
» = 6y + dx;y
W= ?I'J_ + Sy

Taking the firsi-order partials to set up the Jacoban ||,

iy ¥y iyy dy;
— = f - =7 — =
ﬂ.l1 a.l': axl ﬂI-!

6 4
Thus, |¥] = |? 9| = 6(9) = 7(4) = 26

Since |3] # 0, there is no functional dependence. Notice that in a system of linear equations the
Jacobian |J| equals the determinant | A | of the coefficient matrix, and all their elements are identical. See
Sectiom 11.1, where the determinant test for nonsingularity of a matrix is nothing more than sn application
of the Jacobian to a system of linear equations.
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12.2. Redo Problem 121, given

yy = 3x, — 4x;
¥z '91{ = 24x,x, + ]6-‘%
The first-order partials are

ay; ¥y Vs s

—_—=] . | == = | By, = Zdx —— m =Jdx

i, ax, ax; TR e i+ 321

3 —d
Thus, |3 m 3 =2l 4+ 32x.) + 4{1Bx, = Jdx.) = O

" 18, - 245, —24x, + 325,
There is functional dependence: (3x, — 4k, = 97 — 24x,x; + 16,

123. Redo Problem 12.1, given

Nn=xi-3n+5
¥: =X — G+ 9
day d iy oy
J_.I!::_:hi -&Ii:m_'! EZI:‘I:_ileI: H:'_ﬁlf"'lﬂh
lll "_.3

|J|= =?.t;{—ﬁ.t"|'+|3:t;]+3f'h':—111‘|-¥:]=u

dn — 126x; —6n + 18x;
There is functional dependence: ¥; = (y, — 5§, where

w=S=x-3n+5-5S=x-3r
and {x} = 3, = af — Gy + Ol

12.4. Test for functional dependence in each of the following by means of the Jacobian:

a) v, =45 -xn

2= 1607 + 8x,x; + 23

4 =1
3‘1‘["’&! h| +h1
The equations are functionally mdependent.

5] = = 4(8x, + 2r)) + 1(32x, + Bry) = 64x, + 162, # D

b) yi = 1.5 + 12x,x, + 2453
y2 = 2x, + 8,

+ s
13| = = 2“"‘ m‘;“"‘ = 8(3x, + 12x,) — 2(12x, + 48x,) = 0

There is functional dependence between the equations

c) J';=4-‘f+h2+9
vy = 16x] + 24 x5, + 95 + 12

- R, 3
64x) + 48z, 240 + 18x,

The equations are functionally dependent.

] = fr,(24x] + 18x;) - 3{6dx] + 48r, 1) = 00

263
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DISCRIMINANTS AND SIGN DEFINITENESS OF QUADRATIC FUNCTIONS

125, Use discriminants 10 determine whether each of the following quadratic functions is positive or
negative definite:
a) y=-3x +dnx -4

Since the coefficients of the squared terms are placed on the principal diagonal and the coefficient
of the nomsquared term x, x; is divided evenly between the a,; and a;, positions, in this case,

-3 12
D= | 2 —4‘
-3 2
whaoe i=-3<0 IDil= |7, | =(-B-0- @2 =8>0
With | D,| <0 and | D,| > 0, y is negative definite and y will be negative for all nonzero values of
x; and x3
b) }'-51'}-1!1::"'?&
The discriminant is |D| = _f ﬂ.l‘,’

where |[D,| =550 and |Dy] = |D| = 5(7) = (-1)(=1) = M>0. With |D,|>0 and |Dy|>0, v is
positive definite and ¥ will be positive for all nonzero values of 1, and x;.

12.6. Redo Problem 12.5 for y = Sxi = 6ix,xs + 313 = 2ryxs + 83 — 31y x,.

For a quadratic form in three variables, the coefficients of the squared terms continue to go on the
principal diagonal, while the coefficient of x,x, is divided evenly between the a,, and &y, positions, the
coefficient of 1.1, is divided between the ay; and ay: positions, etc. Thus,

s -3 -18
D=[-3 3 -1
45 1 &
| & <3
where Dy =5>0  [Dol= | 1| -6>0

and | D] = |D| = 5{23) + 3(—25.5) - 1.5(7.5) = 27.25 > 0. Therefore, y is positive definite.

127. Use discriminants to determine the sign definiteness of the following functions:
@) y= ‘11'% +4x,x; - 5-'4';1[ + 22,1y — 1"% +xyxy

-2 2 1
pj=] 2 -5 1
1 1 -3
-2 2
where |Dy]| = =2<0 | Dy] = ‘ 5 _$| =0

and | D)= |D| = —2(14) = 2{—-T) + 1(7) = =7 <0. So y is negative definile.
by y= =7xi = 2u} + 2xyx, — 4dxj - 6, x,

-7 0 =3
g -2 |
-3 1 -4

|D| =
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=T 0

here D= =7 1Dy =
w 1D, =0 _
and |Dy| = |D| = =7(7) = 3{(—6) = =3L. And ¥ is negative definite.

‘ = 14
THE HESSIAN IN OPTIMIZATION PROBLEMS

128. Optimize the following function, using (a) Cramer’s rule for the first-order condition and (b)
the Hessian for the second-order condition:

¥y= 3.[% _5]] — X1 +6I%"4I: +1¥:I;+h§+h]'—1f‘_[3
a) The first-order conditions are

yi=bg-5-x-dn=0

VBre=—x+lin—4+25=0 (12.10)
ya=dn+Br+2-3x,=10

6 -1 =3[z 3
which in matrix form is =1 12 2||=]|=| 4
=3 1 B||lxn =2

Using Cramer’s rule, |A| = 6(92) + 1{—2) — 3(34) = 448 Since | A | also equals |J|. the equations are
functionally independent.

| Ay| = 5(92) 4 1(36) ~ 3(32) = 400
| Aq| = 6(36) — 5(-2) - 3(14) = 184
| Ay| = 6(=32) + 1{14) + 5(34) = -4
400 184
Thus, i.r—m-ﬂﬂ.ﬂﬂ f;=m--ﬂ.ﬂ

-8
=g~ 002

b} Testing the second-order condition by laking the sécond-order partials of (J210} to lorm the
Hessian,

yu=6 yp= -1 Fia= =3
.\":1'—1 ,-.'3-12 J"_-q-z
m=-3 ym=12 ¥ =8
f -1 =3
Thus, Hi=|=-1 12 2
-3 2 ]
where

6 -1
\H,| =6>0 |H,|—|_1 12‘='H:-n

and |H;| = |H| = |A| = 448 > 0. With |H| positive definite, v is minimized st the critical values

129. Redo Problem 12.8, given y = —5x7 + 10, + x;xy — 263 + 4y + 2vpx; — dad,
al ==l +10+x,=10

Jrzz—h:+l+h-|,ﬂﬂ
HEntin—i=0

=10 0 170 =, =10
In matrix form, 0 =4 2|z =] -4
l 2 _H -'Clq ﬂ

(1211}
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Using Cramer's rule, Al = —10(28) + 1(4) = 276
|A,| = —10(28) + 1(~8) = —288
|As| = —10(32) + 10(=2) + 1(4) = —336
| Ay = —10(8) — 10(4) = 120

- 288 -336 - _ =120
T W ———— ], To W e i ] S 43
Thus, ~37 104 = ~376 1.2 I, —ITE*D‘
b) Taking the second partials of (J211) and forming the Hessian,
-1 0 1
|H| = 0 -4 2
1 2 -B

where [I,| = -10<0, |H;| = 40>0, and |H,| = |A| = —276 < 0. Thus, |H| is negative definite, and

¥ is maximized.

12.10. A firm produces two goods in pure competition and has the following total revenue and total
cost functions:
TR = 150, + 180, TC =201 +20,0, + 30}

The two goods are technically related in production, since the marginal cost of one is dependent
on the level of output of the other (for example, TC/3Q, = 40, + 20,). Maximize profits for
the firm, using (@) Cramer’s rule for the first-order condition and (b) the Hessian for the
second-order condition.

a) M=TR-TC=15Q, + 180, - 20} - 20.0; - 33
The first-order conditions are
";'IS“En_zﬂ:‘ﬂ
N,=18-20,-60;=0

e
Solving by Cramer’s rule,

JAl=24—d4 =20 |A|=90-36=54 |Ay|=T2~30=42

In matriz form,

; 54 42
Thus, @ 20~ 7 0y = =21
b) Using the Hessian to test for the second-order condition,

_4_|
-2 =6

where |H,| = =4 and [ H;| = 20. With |H| negative definite, T is maximized.

12.11. Using the techniques of Problem 12.10, maximize profits for the competitive firm whose
goods are not technically related in production. The firm's total revenue and total cost
functions are

TR=170,+90; TC=0Q}+20, +50;+20%



CHAP 12] SPECIAL DETERMINANTS AND MATRICES AND THEIR USE IN ECONOMICS 267

a) =70, +90: - Qf - 20, - 5, - 205
m=7-204-2=1 {}.=2.5
M=9-5-40:=0 O,=1

-2 i

0 -4

WhmtlH',l:-—2Ind|H=I=B,54:||H|ism:galiwdcﬂrﬁi:.mdﬂismximhcd.

b} H| =

12,12, Maximize profits for 8 monopolistic firm producing two related goods i.e.,
Py =0 Q2)
when the goods are substitutes and the demand and total cost functions are
P,=80-50,-2Q; Py=50-Q,-3Q, TC=30{+Q 0,+20
Use {a) Cramer's rule and (b) the Hessian, as in Problem 12.10.
a) I1=TR-TC where TR = P,0, + P.Q,.
M= (80 - 5@, - 2Q:) @, + (50— @, - 30:) @: - (307 + @, 02 + 20)

= 80Q, + 50Q; - 40, Q- BQ{ - 504
I, =80 —4Q;— 160, =0 [l = 50-40Q, - 100, =0

+ '_16 _'4 E; | _m
in matee form, [ a9
| Al = 160~ 16 = 144 |Ay] = 800~ 200 = 600  |A;| = 800~ 320 = 480
00 480
and Q.-m-lf.l‘f Q;-m-ll‘r
-16 -4
) IHI=‘ - —ID‘

where | H,| = —16 and |H,] = 144. So I1 is maximized.

1213, Maximize profits for a producer of two substitute goods, given
P,=130-40Q,-Q: P=160-20Q,-5Q; TC=20Q7+20Q,0,+40"
Use (g) Cramer’s rule for the first-order condition and (b)) the Hessian {or the second-order
condition.
a) = (130 4@, - Q) Q, + (160 - 20, - 50,1 O, — (207 + 20,0, + 409)
= 1300, + 1mﬂ:'5ﬂ1'ﬂ1'&m-9ﬁ
ﬂ|=13ﬂ—r5ﬂj-12ﬂ1=ﬂ n;=1m—5@.~*13§h=ﬂ
-12 -5][Q,] _[-130
Thus, [ -5 —m] f.h] - [—1'5'1
|A] =191
1540
|ﬁ,|=15{| o;’w“‘ﬂ-ﬁ
12710
191
=12 -5
=5 13|

A =1270 ()=

= .65

b) Hj =

|H;| = 12 and | H;| = 191. So Il is maximized.
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12.14. Redo Problem 12.13 for a monopolistic firm producing three related goods, when the demand
functions and the cost function are

P, =180 -304 — Q. — 20 Py =200~ Q, - 40, £y =150-Q; - 30,
TC = 0 + 0,0y + Q3 + 0,0 + 0F

a) [l = (180 - 3Q, — 02— 2Q4) Q1 + (200 — O, — 4Q,) Q: + (150 — ¢, = 3Q4) Uy
-(B+0,0:+ 0+ 0.0, + 23)
= 1800, + 2000, + 1500, - 30, @, - 20: Qs - 20, @, - 40} - 501 — 40}
I = 180—-30, - 20. - 80, =0 ;= 200= 30, =20 - 100, =0
I =150-20.-20, - 80, =0

In matnx form,
-8 =3 =270, =180
=3 =10 =2 Q;|=[-200
-2 =2 =Bl =150
|A| = —B(76) + 3(20) — 2{-14) = =520
| Ay | = = 180{76) + 31300} — 2{—1100) = ~TSBO
| Ag| = ~B(1300) + 180{20) — 2{50) = —&9X00
| Ay = =B{1100) + 3{50) — 180{~14) = —6130
Thus, @ = :;L;] ~1458 O, = % ~1327 Q.= '_—mﬂ%- 11.79
-f =3 =2
B |Hj=|=-3 =10 =1
-2 =2 -B

where |H,| = <8, |H;| = 71, and |H,| = |H| = |A| = =520. And I] is maximized.

12.15, Maximize profits as in Problem 12.14, given

P=70-20,-Q:-0y P=120-0,-40:-20; P=%-0,-0,-30;
TC= Qf+ﬂ10:+2{2§+20:{2:+ ﬂ§+ﬂ1aﬂ
a) M =700, + 1200, + 900, - 30,0, - 5¢: 0, - 30,0, - 30 - 607 — 405

M=70-30,~-30,-6Q, =0 M= 120-3Q, ~ 50y~ 120, = 0
My =% =30, -50: - 80, =0

-6 -3 =31[Q: -10
Thus, -3 =12 =5|l@.|=]-120
-3' -5 -8 Ej =%

|A|=-336
|yl = =2000 Q) =—0—c~595
|Agl = -2160  0:= —2 w 6,43

= 1680
|Ay| = —1680 Q}"_"'_'S
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-6 =3 =3
(el |H|=|-3 =12 -5
-3 =5 -8B

where |H,| = —6. |H,;| = 63, and |H,| = |H| = |A| = —336. Il is maximized.

12.16. Given that () = F(FP), maximize profits by (a) finding the inverse function P = f{Q), (b) using
Cramer's rule for the first-order condition, and (¢) using the Hessian for the second-order
condition. The demand functions and total cost function are

Q. =100-3P, +2P, (Q.=T75+05P,—P, TC=Q?+20,0.+0Q>

where (), and (), are substitute goods, as indicated by the opposite signs for P, and P; in each
equation (i.e., an increase in P; will increase demand for J; and an increase in P, will increase
demand for Q).

a) Since the markeis are interrelated, the inverse functions must be found simuliancously. Rearranging
the demand functions 1o gel P = f{(), in order ultimately to maximize [1 as a function of () alone,

=3P+ 2P = (- 100
UJF| - FJ-= Q:. =75

[os -alln]=[e 2]

|A]=2

In matrix form,

Using Cramer's rule,

o, -10 2

= |80 | =@t 0-20, 41502 2%0-0,-20,

Al _250-0-20, . N
-PI [-I‘l 2 I.H {}.S-ﬂ| E:

-3 Q- 100
Al | os 0.-75
p. o |Aal _ 275050, -3¢
T Y] 2
b) IT= (125 - 0.5Q, - @)@, + (1375 - 025Q, - 1.50Q:)Q: ~ (@i + 20, 0: + QD)
= 1250, + 13750, — 3250, 0 — 1.507 - 2.502
M=125-3250,-30,=0 I, =1375-325¢Q,—50. =0
-3 =250 -125
Then {—.us -5 HQ-, [—m.s
|A| = 44375

= =3, + 225 - 050, + 50 = 275 - 050, - 30,

f = 137.5-0.25Q, - 1.50,

178.125

24375
6.2%

= aass

=3 —3.15'

|A=178125 O, =

= 40,14

|l"'l-| ='ﬁ.ﬁ ':?:' I."

‘) )= ‘-3.15 P

|H,| = =3, |H,;| =|H| = |A] = 4.4375, and I1 is maximized.
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12.17. Redo Problem 1216 by maximizing profits for
Q@ =9%0-6P, ~2P, Q;=80-2P, —4P, TC =207 +30Q,0; + 203

where 0, and @, are complements. as indicated by the same sign for P, and P, in each
equation,

@) Converting the demand functions to functions of (2,

-6 -:l ﬂl_ Ur"m]
-2 -4 ['Fl Q; - 80

| A =20
m,|-ig::: :‘ ~ 40, + 360 + 20, ~ 160 = 200 - 40, + 20,
= T 10020, + 010,
gl = |2 Q- | + 480 + 2 |8 = A0 +2
] | _._z ur W: UI" 'WI 4-01
Py = 65‘ 2 . 15030, + 010,
b) M= (10 - 020, + 0100, + (15 - 030, + 0.10,)Q: - (20] + 30,0; + 20))

-qu.+|:sg,—m.m—uoi—ua§
M =10-280,-440Q, =0 I, = 15-280, -46Q, =0

Thos T2 —aslla] = [Ss
Al =124
Al=4 Q= p~0n
N
o) (H] = :;'; :i‘:|

] = =44, |H;| = |A] = 124, and 1] is maximieed,

12.18, Redo Problem 12.16, given
Q = 1S0-3P, + P,+ P, Qs = 1804 P, —4P, +2P, Q) =200+ 2P, + PSP,
TC = Qi+ 0.0, + 201+ 0.0, + 01 + 0, 0,
a) Finding the inverses of the demand functioos

T g

A= (0~ 150M20 = 2} = 1{~5Q; + W00~ 20 + 400) + L, ~ 180 + 40, ~ 800)
= ~d980 + 1BQ, « 60, + 60,

Pt m?;,. 00 T 001 13833 - 050, - 0,170, - 0170,
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| Aq| = =3(=5Q; +900 - 20, + 400) = (@, - 150)(~5 — 4) + 1(Q, — 200 - 20, + 360)

= —5090 + 90, + 130, + 7Q,

—5090 + 90, + 130, + 70,
-36

|As| = =3(~40Q; + 800 — Q. + 180) — 1(2 — 200 - 20 + 360) + (Q, — 150)(1 + B)

= —4450 + 90, + 50, + 11Q,

~4450 + 90, + 5Q; + 110,

Py= = 141.39 - 0.25Q, - 0.360, —0.190,

P= 3% = |23.6] - 0250, - 0140, - 0310,
b) M=FP0+P:0:+ P00~
= 138330, + 141390, + 123,610, - 1420, 0,
-1.330, 0, — 1.420,0, - 1507 —Ej-ﬂﬂzz— 1.3104
fH, = 13833 - 1420, - 1.420, - 30, =0
0, = 141,39 - 1.420, - 1,330, - 4720, = 0
L= 12361 - 1330, - l.‘lﬂ'. - 2620, = ()
-3 -1.42 -1.42 -13833
Thus, =142 =472 =133 - 14139
=142 =133 =262 =123.61
|A| = -22.37
—=612.27
| Ay | = —812.27 = H"- 27.37
=329.14
= =379.14 = = 14.71
| A 1 0, B3
— 556,64
= _M S - 74
A= -55664 0= 2ot ung
-3 -142 -142
c) |Hil= =142 =472 =133
=142 =133 -262

|Hy| = =3, |Hy| = 12.14, and |H,| = |A| = =22.37. And 11 is maximized.

THE BORDERED HESSIAN IN CONSTRAINED OPTIMIZATION
12.19. Maximize utility u = Zxy subject to a budget constraint equal to 3x + 4y = Y by (a) finding the
critical values ¥, 7, and A and (b) using the bordered Hessian |H| to test the second-order
a) The Lagrangun function iy U= 2gy + A0 - 3x — dy)
The first-order conditions are
U,=2y-3=0 U=2-4A=0 U, =90-3x-dy=0

ERE: TE I

Solving by Cramer's rule, [A| = 48, |A,| = 720, |A;| = 540, and |A,| = 360. Thus, ¥ = 15, j = 11.25,
and & = 7.5,

In matrx form,
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b)) Taking the second partials of U with respect to « and v and the first partials of the constraim with
respect to . and v o form the bordered Hiessian,

[""- =0 l-‘In -0 uu = :\" a uu LY *3 by = J'

From Section 115,

023 n 34
M= 12 0 4 or  [H =3 0 2
340 £ 20

= W= =2-12) = HB) = 48>0 [Fiy| = ] = ~3(=H)+ 4(6) = 48>0

The bordered Hessian can be set up in cither of the above forms without affecting the value of the
principal minor. With || = |A] >0, from the rules of Section 12.5 || is negative definite, and U is
maximized.

12.20. Maximize utility w = xv + x subject to the budget constraint fx + 2y = 110, by using the
techniques of Problem 12,19,

a) U= xy+ x+ A(110 = 6 - 2y)
Uy=y+1-6A=0 U =x=2A=0 U, =110-6x-2y=0

g e

Solving by Cramer’s rube, & = 9, ¥ = 27, and A = 4],
] =8| =24

In matnx form,

b)) Siwell,~0U,=0 U, =1=U,c,~6ande, =2
D1 6
1 b 2
6 20

With [#, >0, |l is negative definite, and U s maximized

12.21. Minimize a firm's total costs ¢ = 45¢° + Ny + 90y" when the firm has 1o meet a production
quota g equal 1o 2x « 3y = 60 by (@) finding the critical values and (b) using the bordered
Hessian to test the second-order conditions.

) C = A5 + Nhey + Wy 4+ 460 — 20~ Iy)
C, =%y + Wy =24 =0 C,=Ws+ 18y -3A=0
C, =00~ 2=y =0

2% k3

Solving by Cramer's rule, ¥ = 12, ¥ = 12 and A = (080

#I Since t'.u - ll.'l_ l“u = l!ﬂ. {.n =9 = {-‘gu h= 2—-’” K= »‘.
0 9 2

" - ‘m 180 3

In matnix form,

} 0
(A = 450 Wk | /.| < 0, 'R is positive definite and € is minimized.
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12.22. Minimize a firm's costs ¢ = 3¢’ + Sxy + 6y° when the firm must meet a production quota of
3x + Ty = 732, using the techniques of Problem 12.21.

al C = 3% + Sxy + 6 + M732 - 5x = Ty)
C,=fx+Sy—-3Aa=0 C,=5+12y-TA=0
C,=732-5x-Ty=0

Solving simultaneously, ¥=75 F=51 A=141
b] wimf.l’.l-ﬁ'lc-:r--llCJ|-5-C,113I=51.-“L1E’--T1
& 3 5
A|=(5 12 7
5 740

| Fy| = 5(35 - 60) ~ 7(42 — 25) = —~244. Thus, |H| is positive definite, and C is minimized.

12.23. Redo Problem 12.21 by maximizing utility u = x™°y** subject 1o the budget constrainl
10x + 3y = 140,

) U = g82y22 4 A(140 - 10x — 3y)
U, =05x %" 104 =0 U, =03y =34 =0
U= 140~ 1y~ 3y =0
Saolving simultancously, as shown in Example 10 of Chapler 6,
T=875 §F=175 and A=004
b) With U,, = =025, U, = =02y, U, = U, = 0155y, g, = 10, and g, = 3,
~0.25c M y™ 018 ™ 10
|H|=| 015"y ™" -2y 3
10 3 0

Expanding slong the third column,
|H=I[ - lu{nl*sx I'I.ﬂ..}I a7 & llxﬂ'ﬂy I.‘j A, 3{-“;?5‘ I.‘F.I..'I =i 15: ﬂ‘r IFTJ
=2y 7+ 00y 0 225 VM >0

singe x and y >0, and a Enitiw number £ raised to a negative power —n equals Lix", which is also
positive. With || = 0, |H| is negative definite, and U is maximized.

12.24. Maximize utility u = 2" y™ subject 10 the budget constraint 2x + 8y = 104, as in Problem
1223

a) U = g"5y0% 4 (104 - 2x - By)
U, =025 %"y ~20 =0 U, = 0"y ™-81=0
U,=104-2x—8y =0
Solving simultaneously, ¥ = 20, ¥ = 8, and A = 0.03,
=0.1875c ' Py QxR 2
[H|=| 0L @y 024"y '+ 3
2 R 0
Expanding along the third row,
|H!I -2{!.].3.: l:l.'.|'!JIr t“"'ﬂ.ﬂ!‘”}' I.Jl:'_S{_Ijx-'l..'l'!‘y!#_ﬂit-nﬂy—ﬂij
= 09" By 18432 MM 08 4 [2x VRS
Thus, JH| is negative definite, and U is maximized.

b)
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12.25. Minimize costs ¢ = 3r + 4y subject to the constraint 2ry = 3375, using the technigues of
Problem 12.21(a) and (b). () Discuss the relationship between this solution and tham for

Problem 12.19.
al C =1+ dy+ A[3375 - 2y)
C,=3~y=0 a-? (1219
¥
Co=d=2~0 A-E (1214)
(I1215)

Co=20185 -y =0
Equate A's mn (12.15) and (72.14).

1S

T L]

o= (75

=

Substitute in (12.15),

337.5 = e(0.78x) = 1. 5*°
=22 i=|5

Thus, ¥ = 11.25 and A = 0.133,

b) With C,, =0, C,, =0, and C,, = C,, = =24 and from the constraint 2xy = X375, g, = 2y, and

=2
0 =2 2y
i#l=|-2a 0 2
2y Zr 0

[Fly] = ={=2A) ~dxy) + 2y(=4xA) = = 16Axy, With A, &, y>0, [H;|<0. Hence B is positive
defimte, and C is mimmired.

¢) This problem and Problem 12.19 are the same, except that the objective functions and constraints are
reversed. In Problem 1219, the objective function & = 2xy was maximized subject 1o the constraint
Ar 4 dy = 9 in this problem the objective function ¢ = 3x + 4y was minimired subject 1o the
constraint Loy = 3375 Thercfore, one may maximize utility subject 1o 4 budgel constraint or
minimbiee the cost of achieving a given level of utility.

12.26. Minimize the cost of 434 units of production for a firm when Q = 10K"" L™ and P, = 28,
P, = 10 by (a) finding the critical values and (b) using the bordered Hessian. (¢) Check the
answer with that of Problem 6.41(h).

a)  The objective function is ¢ = 28K + 104, and the constraint is 10K"7 L% = 434, Thos,
€ = 28K + 104 + A(434 - 10K"" L)
Cy =2-TAK "M =0 (12108)
Co = 10=AK""L " =0 HxIn
C,= 44 - 10K*7L* =0 (1218)

Rearmanging and dividing (12.76) by (1217) 10 climinme A,

m 3 1‘K-”.L-1
10 AMOL

7L
Il = — K=15L
K

- s sl e ke S Bl abawlal
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Substituting in (/2 15) and using a calculator,
dM = 102571 434 = 19L°%
L=(Q28)"=(258)"=5%5
Thus, K = 125 and A = 11.5.
b) With Cax = 21AK "“L*, Coy =09AK™'L ", and Cgy = ~0.TAK *'L** = C;y and from the
constraint g = 7K L% and g, = K*'L""",
llu IlLﬁl _“T‘x-n.lL av K -jLnl
(Al = | =0TAK*'L°*" 0OAK™L-** KWL
TK-I"LI"I r""-i'l u
Expanding along the third row,
() = TK P LA (=0TAK™ L " = 63AK™ L ') = KL *Y2IAK L s 490K "L *)
= ~dAKV LY -TAKM LY = ~SaAKt LM
With K, L, A >0, [} < 0; IH] ts positive definite, and C i+ minimized.

¢} The answers are identical with those in Problem 6.41(4), but note the difference in the work involved
when the lincar function is selected as the objective function and not the constraint. See also the
bordered Hessian for Problem 6.41(h), which is calculated in Problem 12.27(c).

12.27. Use the bordered Hessian to check the second-order conditions for (a) Example 7 of Chapter
6, (b) Problem 6.41(a), and (¢) Problem 6.41(5).

1 =1 1
a) =] -1 24 1
110

] = 1(=1 ~24) = 1(16 + 1} = ~42. With | },] < 0, |H| is positive definite and € is minimized.

021K VL™ 0ISK VL™ 6
OASK2IL S 02K LY 2
6 2 0
1] = 6{0.30K 2L 4 LSK™' L") = 2(-042K "1™ - 09K 2T L)
= QKL S 43K YL M 408K VLM >0
With |/, >0, |H| is negative definite, and i maximized.
~21K UM 0K VL 28
7KL -09K*L Y 10
28 10 0
) = 2R(TK ™YL %%+ 252K L YY) = (=~ 21K LM - 196K ML)
= JOS.6K°7L V4 392K LY 210K VLY >0
With | ;| >0, 1] is negative definite, and O is maximized.

b [H] =

) R =

12.28. Use the bordered Hessian to check the second-order conditions in Problem 5.12(¢), where
4xyz’ was optimized subject to the constraint x + y + 2 = 56; the first-order conditions were
F,=dyz*—A=0, F,=4xz'-A =0, and F, =Reyz— A =0; and the critical values were
=14, ¥=14,and I = 28

™ ems sl cababa & Ll aba slasl
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Take the second partial derivatives of F and the first partials of the constraint, and set up the bordered
Hessian, as follows:
0

B 1
1 ‘l 'FH' 'Flr
{H| =
| lrl F“ Fﬂ
:l Fl Flrp
Start with | F1,). the 3% 3 submatnix in the upper lefi-hand comer.
|0 = 0= 1{=4) = 1{4z") = Br* =0

Next evaluate |/,], which here equals |HL. Expanding along the first row,

I 42 By:z 1 O Ry 1 0 &
[Hd=0=1|1 0 Rez|+1]1 4F Bxz| =11 42 0
| Mz Ky 1 8y By 1 8yz Bz

[#] = = 1[1(0 - Ruz - 8z) ~ 47 (Buy ~ Kaz) + Byz(Syz ~ 0)]
# 1| 14" - Ruy ~ Byz - Ruz) = 0 = Kyz(8yz - 427
“11(dz" - Raz — 0) = 0 + dg'(8yz - 42°)]
] = =1 =607 2° = Rhayz’ + 32" + 6diy’) + 10202 = Bdaye’ + 64" 2" - 32y2)
(322" + R2y2" - 162%)
LG = 162" - e’ — bdyz" — Blaye® + 6405 2 + 6y

Evaluated at i = 14, § = 14, § = 28,
[B] = < 19,668992 < 0
With | #1,1 =0 and | /1, <0, |H| is pegative definite and the function is maximized.

INPUT-OUTPUT ANALYSIS
12.29. Determine the total demand for industries 1, 2, and 3, given the matrix of technical coefficients
A and the final demand vector B below.

Output industry
i1 2 3
02 ﬂ.J ILZ] spul 150
A=|04 B=|200
03 ﬂs 02 |3 dusiry 210
From (12.3). the 1ota) demand vector is X = (1 - A) 'B. where
08 =03 -02
I-A=| =04 09 =03
-3 085 08
Taking the inverse of 1 - A,
. 057 0.M 027
(I=-A) "= —104] 058 032
P00 049 om0
Substituting in X = (1- A) 'B,
1 057 03 0x7 2102 X
X=——|041 0S8 u.'!! - 2-!4? - =x
0230 047 049 *"Iﬂ ﬂJ..'W

e sal ek o Rl abasdal
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12.30. Determine the new level of total demand X, for Problem 12.29 if final demand increases by 40
in industry 1, 20 in industry 2, and 25 in industry 3,

AX = (I-A) 'AB

| 057 034 02 36387 [152.09
AX = ——— | 04] 058 032 | = | 1 9A3
0239|047 049 050 “3‘“ 60] e

152097 131 59
Xy=X,+4XK = lﬂll.ﬂﬁ 15063 | = | 117448

12222 [me4n] 141468

1231, Determine the total demand for industries 1, 2, and 3, given the matrix of technical coefficients
A and the final demand vector B below.

Output industry

1 2 3

04 03 0171 140
A=|02 02 oafz P 4 [sz

02 04 02]3dusty 180

X=(I-A)'B

o6 -03 -l
where I-A= | =02 g -03
-02 -04 O

and the inverse

022 DA6 D20
024 030 042

052 028 n.n]
M-A)'=

{ 052 028 I].IT 74324
Thus, X= EEE 032 046 = | 75676 | = I;
024 030 ﬂ 42 TE9.19

1232, Determine the new total demand X, if final demand increases by 30 for industry | and decreases
by 15 and 35 for industries 2 and 3, respectively, in Problem 12.31.

AX “(I-A) 'AB

028 017
4X = D46 020 -~ IS = —-—— —"." ‘!'I'
0.21.. ﬂ.!-t nin 042 = 1200 -ﬂiﬂ

14324 24.55 T67.79
X=X, 4+ AKX = | 756.T6 | + -!I.M TI3.R8
T89.19 73504

Famstelablbas s blabsrisl
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12.33. Given the interindustry transaction demand table in millions of dollars below, find the matrix

of technical coefficients.

Sector of Destinalion

Final Toial
Sector of Origin Steel Coal [ron Auto Demand Demand
Steel 8O 20 110 230 160 00
Coal 200 30 o 120 140 0
Iron 0 110 30 40 0 400
Auto i 140 160 ELLY] 1003
Value ndded 40 ZBi) 10 370
Gross production L1 i1 400 1000

The technical coefficient a, expresses the number of units or dollars of input i required to produce one unit
or one dollar of product j. Thusa,, = the percentage of steel in one dollar ol steel. a;, = the percentage of conl
in one dollar of sieel, ay, = the percentage of iron in one dollar of steel, and a,, = the percentage of autos in
one dollar of steel. To find the technical coefficients, simply divide every element in each column by the value
of gross production at the bottom of the column, omitting value added. Thus,

™ an M T

A

& & W

0.133 0033 0275

B O& & 8| |o33 o0 oxs

TR OB OB &l oz cisa oors
010 0233 040 024

0.23
0.1z
04

1234, Check the matrix of technical coefficients A in Problem 1233,

To check matrix A, multiply it by the column vector of total demand X. The product should equal the
intermediate demand which is total demand X — final demand B. Allow for slight errors due to rounding.

0133 0033 0275 0.23]

Ax = |03 0083 0225 012
~ lo367 018 0075 0.04
010 0233 040 024

6007 [1607

60| |[140

X-R= e o

1000 | 400

600 439.6
600 | | 4596
400 | 400
1000 599.8
440
_ &Ly
400
£

12.35. Given the intenndustry transaction demand table below, (a) find the matrix of technical
coefficients and (F) check your answer.

Sector of
Destination
Final Total
Sector of Origin 1 ! 3 Demand Demand
H 20 [l4] 10 50 140
2 50 10 B0 10 150
3 40 30 20 40 130
Vilue added an 50 20
Gross production 140 150 130
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%o & 0286 02 0154

(L1453 04 COTTI 140 %)
b) AX = | 0357 0.067 0615|150 | = | 140

0.286 0.2 0154 || 130 L1
144 50 ol

X-B= [ISI}]— lﬂ‘ = Hﬂ]
130 40 o0

12.36. Find the new level of total demand in Problem 12.35 if in year 2 final demand is 70 in industry
1, 25 in industry 2, and 50 in industry 3.

X={I-A)'B

& % 0.143 04 0077
a) A= % &]ﬁum 0.067 n.m]

D857 -04 =007
where 1 - A = | —0357 0933 -0615
-0.286 02 0846

1
I- b= —— 10478 O g
and 1= A) 0354 | > U3 ().55°

rL666  0.354 u_alﬂ}

|0.338 0286 0.657

i 0666 0354 03187170 | 71377 201.61
Thus, X=—— 0478 0703 0.555 =—— | TeT9| = | 22257
R 0338 0286 0657 || 50 . B1.66 | 179,83

12.37. Having found the inverse of I— A, use it to check the accuracy of the matnix of coefficients
derived in Problem 12.35; ie,, check tosee if (I~ A) 'B=X.

0666 0354 O031R7[50 i 49 56 140
= = | 53,13 | = | 150
e 4604 130

(1-A)'B= {leﬁ 0478 0703 0355 || 10
0338 0286 0.657 || 40
12.38. Assume in Problem 12.35 that value added is mmpmcd entirely of the primary input labor.
How much labor would be necessary to obtain the final demand () in Problem 12.35 and (b)
in Problem 12.367 (c) If the amount of labor available in the economy is 100, is the output mix
feasible?

@) To get the technical coefficient of labor 4, in Problem 1235, simply divide the value added in each
column by the gross production. Thus, a;, = 7§ = 0214, g, = & = 0333, and a;, = {§ = 0.154. The
amouni of labor needed 10 meet the inal demand will then equal the row of technical coeflicents lor
labor times the column vector of totzl demand. since labor must also be used to produce the
intermediate products. Thus,

(140
Ly=[0214 0333 0.154]| 150 | = 99.93
Ll:ml
20161
b) L,=[0214 0333 0.154] 122.5?]-144.95
179.83

¢) Final demand in Problem 12.35 is feagable since 99.93 < 100. Final demend in Problem 1236 is not
feasible since socicty does nol have sufficient Isbor resources to produce it
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I |

12.39, Check the accuracy of the technical coefficients found in Problem 1238

Having found the technical coefficients of labor for Problem 1235, where value added wias due totally
1o labor inputs, the accuracy of the technical cocfficients can be casily checked. Since each dollar of output
must be completely accounied for in terms of inpuix, imply add cach column of technical cocfficients to

be sure il equab 1.
1 2 3

1] 043 04 0o

2| 0357 0067 0615

3| 028 02 154

Value added (labor) | 0214 0333 0154
LG o000 1000

EIGENVALUES, EIGENVECTORS

12.40. Use eigenvalues (characteristic roots, latent roots) to determine sign definiteness for
10 3
=[5 ]
To find the charactensiic roots of A, the determinant of the charactetistic matrix A — o must equal
rero. Thus

0= k.
A ﬂl'l 3 d=e
Wi =1 -9=0 -1+ =0

Using the quadratic formula,

| =0

o 142 VI96 - 4(31) 14 = 8485
]

z £
0= 11.2428 Py = 23578

With both characterstic roots positive. A positive definite.

12.41. Redo Problem 12.40, gven

-4 -2
3]
-4=¢ =2
|A=cl] = 3 By =0

Wrcd+lk-4=0 S+10c420=0
102 VIO - 3(20) _ 10+ 44721
2 2

-5 14472
2N e 20 gy B ! .

o= ~723%

With both characteristic roots negative, A is negative definile.

I _ D R TR T B N (A e
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12.42. Redo Problem 12.40, given
6 2
a2 3
6=¢ 2
a-dl-| 2 2-¢!
12+ =-8c—4=0 C=Be+B=10
=ﬂ:‘\r’6¢-—4{3f|=81'5.ﬁﬁ
¢ 2 2
l:| b 1-1? l.':_-ﬁ..u

4 6 3
A=|0 2 5
013

4d=-¢c & 3
n 2-c 5
0 1 I~

=)

A is positive definite.

12.43. Redo Problem 12.40, given

|A-d|=

Expanding along the first column,
[A-d|=(E-c)2=eM3-c)=5] =0
~C 49 = e+d =10

281

(12.19)
{12.20)

To solve (12.20), we may use a standard formula for finding cube roots or note that (12.20) will equal zero

if in (J2.19)
d=-c=1 or (2-e)3-c)-5=0
Thus. the characteristic roots are
d-¢c=10 (2—cHi—-e)=5=0
o =4 eE—%+1=0
f_s:mls—4_s:4.5n
2 2
;= 4.79 o= 021

Witk all three characteristic roots positive, A is positive definite.

12.44. Redo Problem 12.40, given

6—c 1 ]
13 4-¢ ]
5 1 Q=g

|A=cl|m

Expanding along the third column,
|A=cl| = (9=c){b=cHd=c)=13] =0
-+ 19" = 10lc+9W =0

(12.21)
(12.22)
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which will equal zero if in (J2.21)
Q—c=10 or (b=cld=c)=13=0

Thus, 6 =9 F-10c+ 11 =0
_ 10 VI00-4(11) _ 102748
[ 2 2

ey = 874 ey =126
With all latent roots positive. A is positive definite.

1245. Redo Problem 12.40, given

= 1 2
A= 0 =2 ]
4 2 -3
-3=r 1 2
|A=el] = 0 -2=¢ 0 =)
4 2 -3-¢j
Expanding along the second row,
A=-d|=(-2-¢)[(-5-cK-3-¢c)-8]=0
Thus, =2-¢=0 o (-5-cl-3-c)-8=0
e =~2 C+Be+T7=0

e+ THe+1) =10

'l.‘-g-_? :_l-"']

With all latent roots negative, A is negative definite.

. 6 [
12.46. Given A [ﬁ _3]
Find (a) the charactenstic roots and (b) the charactenstic vectors.
b=¢ [ |
°) IA=dl= "™ s

=18+t =-2-3=0
-3 -54=10
(c=9c+6)=0
;L-rﬂ ‘-;1:-—5
With one root positive and the other negative, A is sign indefinite.
b} Using ¢; = % for the first characteristic vector V,,

" sl =6 -alli]-
vy = 2,
Normalizing, as in Example 9,
(o) +9i=1

Sed = 1
ﬁ.\l’f[ﬁ p!-h?_-l\ﬁ
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Thus, vie [V
Using c; = —6 for the second charactenistic vector,

{ﬁ_f‘-_m —sft—n}][ﬂl]'[l: :[:]'ﬂ

Vo= =2y
Normaloing,
A+ (=) =1
S =1
m=V02 =2 =-2V02
X
- we[ ]
12.47. Redo Problem 12.46, given [3 "2]
o a-ai= [0 | =0
F=de=-21=0
=7 ta=-3
With ¢, =0 and ¢; =0, A & sign indefinile
by Using ¢y = 7 to form the first characieristic veéctor,
[5—1 3 ”u, =[-1
3 =2-7)lw i -
= 3y
Normalizing 3oz +15 =1
Ni+=1
104 = 1
w=VD1  and @y =3 =3V01
VoL
Cs v.-[ viﬁ]
Using c; = =3,
[ﬁ~{—l’-.’l 3 ][w.]=['ﬂ 3][1-.]‘:{}
3 =2=(=3)]1 e 3 1|
v = =y,
Normalizing. W+(-Inf=1
=1

p= V01 and = -3 = -3V0L

Thus, [ 3\*0.!]



Comparative
Statics and
Concave
Programming

131 INTRODUCTION TO COMPARATIVE STATICS

Comparatve-siatic analysis, more commonly known as comparative statics, compares the different
equilibrium values of the endogenous variables resulting from changes in the values of the exogenous
variables and parameters in the model, Comparative statics allows economists to estimate such things
as the responsiveness of consumer demand to a projected excise tax, tariff, or subsidy; the effect on
national income of a change in investment, government spending, or the interest rate; and the likely
price of & commodity given some change in weather conditions, price of inputs, or availability of
fransportation. Comparative statics essentially involves finding the appropriate derivative, as we saw
earlier in Section 6.2.

132 COMPARATIVE STATICS WITH ONE ENDOGENOUS VARIABLE

Comparative statics can be used both with specific and general functions. Example 1 provides a
speeific function ilusiration: Example 2 demonstrates the method with a general function. In the case
of specific funclions the prerequisite derivatives can be derived from either explicit or implicit
functions In the case of general functions, implicit functions must be used. Whenever there is more
than one independent variable (Problem 13.2), partial derivatives are the appropriate derivatives and
are found in a similar fashion (Problem 13.3).

EXAMPLE 1. Asume the demand @), and supply Q; of a commodity are given by specific functions, here
expressed in lerms of parameters.

OQp=m—-nP+LkY m,n k=0
Os=a+hP ab=0

284
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where P = price and ¥ = consumers” meome. The equilibnum condition is

Q=0
Substituting from above and solving for the equilibrium price level P, we have
m-nP+EY =a+hP {13.1)
m=a+ kY =({bh+n)P
m=a+ kY
 —— &
F i Yy {13.2)

Using comparative statica we can now determine how the equilibrium level of the endogenous varinble F* will
change for a change in the single exogenous variable (Y) or any of the five parameters (a, b, m,n, k), should the
latter be of interest. Comparative-siatic analysis simply involves taking the desired denvative and determining its
sign. To gauge the responsiveness of the equilibrium price to changes in income, we have from the explicit function
(13.2).

ars _ _k
dY b+en

=) (13.3)

This means that an increase in consumers' income in this model will lead 1o an merease in the equilibriam price
of the geod. Tf the values of the parameters are known, as in Problem 13.1. the specific size of the price increase
can also be estimated,

Comparative statics can be applied equally well to implicit functions. By moving everything to the l2ft in
(13.1), so that Qp - Q; =0, or excess demand equals zero. we can derive the implicit function F for the
equilibrium condition:

F=m-nP+kY-a-bP=0 (13.4)

Then the implicit function rule (Section 5.10) can be employed 1o find the desired comparative-static derivative.
Assuming F, = 0,

LAY
dY Fa
where from (/3.4), Fy = k and Fp = = (n + B), Substituting and simplifying. we have
dpP* k k

o miby BER T

Comparative statics can also be used to estimate the effect on P* of a change in any of the parameters
{m,n,k,a, b}, bt since these merely répresent intercepts and slopes in demand and supply analysis, such as we
have sbove, they generally have little practical relevance for economics. In other imstances, however, such as
income determination models {Problem 13.3), the parameters will frequentiy have economic significance and may
warrant comparative-static derivatives of their own,

EXAMPLE 2. Now assume & genersl model in which the supply and demand of a commodity are given solely
by general funciions;

Demand = D{F, ¥) 0, <A, Dy =1,

Supply = S(P) 5.0
The equilibrium price level P* can be found where demand equals supply:
D(P.Y) = 8(P)

or equivalently where excess demand equals zern,
HMPYiI-5F=n (FE&]]
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With general functions, only implicit forms such as (3.5} are helpful in finding the comparative-static derivatives.
Assuming Fp 0,

i 5
d¥ Fr
where from (13.5), Fi = Dy and Fp = Dp— 5 Substituting,

~
dY Dp—35p
From theory, we always expect 5> 0. If the good is a normal good, then Dy >0 and Dp<0.
Substituting above, we have in the case of a normal good
P (4

NI .5 Y |
dy et B

If the good is an inferior good but not a Giffen good, then Dy =0 and Dp < 0 so that dP*/d¥ = 0; and if the good
is a Gilfen good, then Dy <0 and 0, >0 and the sign of the derivative will be indeterminate and depend on the
sign of the denominator. See Problems 13.1 10 13.7,

133 COMPARATIVE STATICS WITH MORE THAN ONE ENDOGENOUS VARIABLE

In a model with more than one endogenous variable, comparative statics requires that there be a
unique equilibrium condition for each of the endogenous variables A system of n endogenous
variables must have n equilibrium conditions. Measuning the effect of a particular exogenous variable
on any or all of the endogenous variables involves taking the total denivative of each of the equilibrium
conditions with respect to the particular exogenous variable and solving simultaneously for each of the
desired partial derivatives. If the functions have continsous derivatives and the Jacobian consisting of
the partial denvatives of all the functions with respect to the endogenous variables does not equal zero,
then from the implicit function theorem the optimal values of the endogenous variables can be
expressed as functions of the exogenous variables, as outlined in Problem 13.8, and the comparative-
static derivatives can be estimated with the help of Cramer’s rule, as demonstrated in Example 3 below.
The method is also illustrated in terms of a tvpical economic problem in Example 4.

EXAMPLE 3. For simplicily of exposition, assume a model with only two endogenous variables and two
exogenous variables, expressed in terms of implicit gencril functions in which the endogenous variables are listed
first, followed by the exogenous variables, with a semicolon separating the former from the latter. The model can
be easily expanded to any number of endogenous variables (a) and any number of exogenous variables (m), where
n need nod cqul.l .

Fi{piyaxx)=0
Fiy,yix.5) =0
To find the comparative-siatic partial denvatives of the system with respect to one of the mdependent
vanables. say x;, we take the rotal derivative (Section 5.9) of both functions with respect to x,.
aF' iy, X aF"  ay, x aF"
dyy dxy  dyy drp dn
1 : 3
o rﬂ-‘- aF .E-{-i:ﬂ

dy dn o an o
When evaluated at the equilibriem point, which is also frequently indicated by a bar, all the partial derivatives will

= {)
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have fixed values and so can be expressed in matrix nolstion. Moving the partial derivatives of both {unctions with
respect 1o x; to the right. we have

aFl afF' iV, _-ﬁ‘.’"’lI

% (] |-

aF: oF (fav: | | _oF

ayy d Xy dx;
JX=8

If both functions have continuous first and second derivatives and the Jacobian ||, consisting of all the first-order
partial derivatives of both {unctions (F) with respect to both endogenous variables (y,), does not equal zero,

then by making use of the implicit function theorem we can express the optimal values of the endogenous values
as implicit functions of the exogenous variables and solve for the desred comparative-static derivatives in X using
Cramer's rule. Specifically, assuming |J| = 0,
L
ar, |J]

Thus, to solve for the first derivative, #y,/dx,, we form a new matrix |J;| by replacing the first column of J with
the column vector B and then substitute it above in (13.6).

. {13.6)

_9F oF'

ax, dy;

BB (P PP )
E:Lﬂ: ax, & = dar, dy;  dxy Ay,
w "D W P e b

ayy, s vy dva Ay

o oF

M A

o _on

vy ax,

a#F | Ei.if:_ﬁi.i-"_‘}
ﬁuwa "}II #1 = l?_i'| :h1- #1 fh';
T i TS S iy

T dy, dyy Ay

oF? oF

iy dv

The partigls with respect 10 x; are found in like fashion, after starting with the total denvatives of both
functions with respect o x;. See Problem 13.9.

EXAMPLE 4. Assume that equilibrium in the goods and services market (1S curve} and the money market (LM
curve) are given, respectively, by
FUYLCM P)aY-C-ClY.)ml 0<Cy<l,C<D (13.7)
FAY.,CaMy Py = L(Y.i) - MJ/P=10 Ey>=0,1,<0 (13.5)

where L{Y,{) = the demand for money, M, = the supply of monsgy, €, = autonomous consumption. and P = the
price level, which makes My/P the supply of real rather than nominal money. For simplicity, we will hold P
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constant. The effect on the equilibrium levels of ¥ and § of a change in €, using comparative statics is
demonsiraied below,

a)

by

¢)

d)

)

Take the total derivative of the equilibrium conditions. (/37) and (/3.8), with respect to the desired
exogenous vanable, here C,

&Y . ¥ . =
(o) lag) -

['% +(:..-£)=-n

Rearranging and setting in matnx form,

F i
[I—r.‘. tl Fl o ”III
e L - 0

oy

Then check 1y make sure the Jacobian |3 # 0 s the implicit function theorem holds

13 = {1 = Cy)l,+Cly
Applying the signs, Ml =(+H=)+(=H*)=(~)<0
Therclore, |J] » O
Salve for the first derivative, #¥75C, by forming & new matrix |3, | in which the first column of 1 is
replaced with the column vector B and substituted in (/.9.6).
v =G
10 L
if‘- - E’_l = = L - !.:—! :l-ﬂ
W, Bl A=Cpls+Chy (~)
An increase in autonomous consumption C, will Jead o an increase in the oquilibrium level of
income.
Solve for the second derivative, #/aC, by forming |3, | in which the second column of J is replaced with
the column vector B and substituted in (73.6).

1=-Cy 1
13, | = - =
Ml | Ly O 2

™ {s] — Ly = [(+) o

" D CA-CoL+CLy . (™

{hninﬂ:mmC..wlllnh!h:dlnmhﬂcmmlh:qﬁﬁbdmkvddmmm:ﬂmmf'md
i of a change in M, is treated in Problem 13.10. See abo Problems 13.8 to L1LIS

)= L,

Thus,

0

134 COMPARATIVE STATICS FOR OPTIMIZATION PROBLEMS

In addition to their general interest in the cffects of changes in exogenous variables on the
equilibrium values of their models, economists frequently also want to study the effects of changes in
exogenous variables on the solution values of optimization problems. This is done by applying
comparative-static techniques to the first-order conditions from which the initial optimal values are
determined. Since first-order conditions involve firsst-arder derivatives. comparative-static analysis of
optimization problems. as we shall see, is intimately tied up with second-order derivatives and Hessian
determinants. The methodology is set forth in Example 5.
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EXAMPLE 5. A price-taking firm has a stricily concave production function Q(X, L). Given P = oulpul price,
r = reatal rate of capital, and w = wage, its profit function is

w=PHK.LY—rK —wil.
If we take the derivatives, dnfdK and d=/dl., for the fist-order optimization conditions, and express them as
implicit [unctions, we have
FUK.Lir,w,P) = POQAR,E)—r=0
FAK . Lir,w P) = POK,Ly-w=10

where the bars indicate that the first derivatives 0, and {1, are evaluaied al the optimal values of the profit
function. From these first-order conditions we can determine the effects of a change in the exogenous variables
(r,w) on the optimal values of the endogenous variables (K, L) by use of comparative statics as follows:

a) Thke the total dervatives of the first-order conditions with respect to either of the exogenous variables
and set them in the now familiar matrix form. Starting with the rental rate of capital r and noting that
ench of the firat derivatives 'y and {3, is a function of both K and L, we have

[oF' aF'1[ K i
K L || & | _ i
o aFt |\al| | _aF
| oK AL || o or
aR
’ [(PQOyx PQuxe]| or - 1
Al PO PO | iL lo
ar
IX=B8

I-” - Pa{'ﬂuﬂu_ e ELIQ.I‘.L]

Provided the second-prder sufficient conditions, as expressed within the parentheses above, are met,
|J| = 0. Here we observe that when finding the comparative-static derivatives from the first derivatives
of the first-order optimization conditions, |J| = |H|, the Hessian (Section 12.2). For optimization of a
{2 x 2) system, we also recall |H|>0.

b) Since |J| = |H|# 0, and assuming comtinpous first and second derivatives, the conditions of the implicit
function theorem are met and we can use Cramer's rule (o find the desired derivatives

il PQu
£=M= 10 PO _ POy 20
ar |3 |3 P(Qxx Qs — O Q1)

whaere ai/dr < 0 because we are assuming strictly concave production functions, which means Q,, <0,
Oex <0, and Qeeis = 0x Qi over the entite domain of the function. We also know from
microtheory that a profit-maximizing firm will only produce where the marginal productivity of inputs
(0. Ox) I8 declining. Hence al the optimal level of production, Q. <0 and Qe <0. Similarly, we

can find
Pxs 1
£=@=|Pﬂuﬂ _ -PQix
or |‘l |J| F{QHQLL_EILﬂLrJ

To be able to sign this comparative-static derivative, we need to know the sign of the cross partial (.,
which is the effect of u change in capital on the marginal productivity of labar ;. If we assume il is
positive, which is likely, an increase in the inlerest rate will cause a decrease in the use of labor due to
the negstive sign in the numerator. For the effects of a change in wage w on K, L, see Problem 13.19.
See also Problems 13.20 to 13.24,
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135 COMPARATIVE STATICS USED IN CONSTRAINED OPTIMIZATION

Comparative-static analysis can also be applied 10 constrained optimization problems. In
constrained optimization, the Lagrangian multipher is an endogenous variable and in comparative-
static analysis it is evaluated at its optimal value (X). If the second-order sufficient condition is satisfied,
the bordered Hessian |H| may be positive or negative, depending on the type of optimization, but it
will never equal zero. If |[H| # 0, the Jacobian will not equal zero since |J| = |H|, as scen in Example
6. When |J| # 0 and assuming continuous first and second derivatives, we know from the implicit
function theorem that the optimal values of the endogenous variables can be expressed as implicit
functions of the exogenous variables and the desired comparative-static denivatives found by means
of Cramer's rule. An illustration is provided in Example 6.

EXAMPLE 8. Assume a firm operating in perfecily competitive input and output markets wanis to maximize its
output gi{K, L) subject to a given budgetary constraint

rtK+wl=8
The Lagrangian function 1o be maximized is
Q=qg(K L)+ A(B - rK=-wl)

and the three first-order derivatives (#Q/aK,AQ/aL, #0/3X) representing the first-order conditions can be
expressed as the following implicit functions:

FUKLXrw.B) = QuR.Ly-rk=0
FA{EL.xr,w,B)=QuUE.LY-whk=0
FNE L. irwB)=B-rK-wL =0
From these first-order conditions for constrained optimization, assuming continuous derivatives and satisfaction
of the second-order sufficient condition, we can determine the effects of a change in any of the exogenous
variables (r,w.B) on the optimal values of the three endogenous variables (K. L, A) with comparative-static
analysis.
To find the effect of a change in the budget B on the optimal values of the endogenous variables, we take the
total derivative of euch of the three functions with respect 1o 8.

o aF' [ R] [ _oF']
ak afl a a8 aR
aF* aF? aFf* || oL _ _aF?
ok oL X || oB 7]
Lol | B
3k oL a Jlaw) | B
" Kk
a8
Qex Qs =i d'ﬁ 0
or specifically, Qe Qe -w i 0
—F = 1] I -1
| 2B

|3 = Querd =) = Qe —rw) = r(rQy . — wQik)
[J] = =w? Qex + rwlyy =P Qs +rw(li e >0

since |J| = |H| (Section 12.5) and, if the second-order sufficient condition is met, |H|>0 for constrained
maximization. Since profil-maxmizing frms in perfect competition operate only m the arca of decroasing
marginal productivity of inputs {Q ey, .. < 0), the second-order condition will be fulfilled whenever K and L are
complements (P, . Qe p = 0) and will depend on the relative strength of the direct and cros partials when K and
L are substitutes (Qy,, Qrx <0)
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With |[J] = |H # 0, and assuming continuous first- and second-order derivatives, we can now use Cramer's

rule to find the desired derivatives

0 Qu -r
0 Qe -w
I £=l||'___ -1 -w 0 =H'-QA..L"QJJ.
a8 |3 | 4|
aK!aB >0 when K and [ arc complements and indeterminate when K and L are substitutes
Qex 0 =F
Qe 0 -w
2 £=M= =r =1 0 ="ﬂu.‘"'g'u
a8 |3 | ]
al/38 >0 when K and L are complements and indeterminate when K and L are substitutes
Cex Qus, 0
Qe Qu 0
3. 'ﬂ'_i - M - T -w =] w, ~ U QueWrs = Urr Qi)
' a8 (3] 4] 4]

Al is indeterminate. See also Problems 13,25 10 13.29,

136 THE ENVELOPE THEOREM

The envelope theorem enables us to measure the effect of a change in any of the exogenous
variables on the optimal value of the objective function by merely taking the derivative of the
Lagrangian function with respect to the desired exogenous variable and evaluating the derivative at
the values of the optimal solution. The rationale is set forth in Example 7 and an illustration is offered
in Example 8. The envelope theorem also provides the rationale for our carlier description of the
Lagrange multiplier as an approximation of the marginal effect on the optimized value of the objective
function due to a small change in the constant of the constraint (Section 5.6). One important
implication of the envelope theorem for subsequent work in concave programming is that if A = 0 at
the point at which the function is optimized, the constraint must be nonbinding. Conversely, if the
constraint is nonbinding, A = 0.

EXAMPLE 7. Assume onc wishes to maximize the function
zix, ya, b))
subject to fix, y.a.b)
The Lagrangian function is
Zlxy, ka b} = zix. viab) + Af(x.via.b)
anid the first-order conditions are
Z, = zAR.Fa,b) + MR, Foa. b) =0
Z.= g%, ¥.a,b) + A% Fia,b) =1
£, =f(%,¥.a,b)=0
If we assume all the functions have continuous first- and second-order derivatives and if
twtle  WtMs
3] = | 2,, + Af., I.+Af, | #0
i 5 a
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wie know from the implicit function theorem that we can express the optimal values of the endogenous variables
as functions of the exogenous variables.

2007, Kab) = el il b), o bla,b] + Ala, B)f[#(a, b), Wa. by, a, b]

The objective function, when evaluated i the values of the optimal solution, s known as the indirect obpective
Juncoon.

Ha b) = z{ila. bl via. bY.a.b] = 2{a. b)

The envelope theorem states that the partial derivative of the indirect objective function with respect 1o any
one of the exogenous varables, say b, equals the partial derivative of the Lagrangian function with respect 1o the
same exogenous variable. To prove the envelope theorem. then, we need to show

[ 4

ah b

Making use of the chain rule to take the derivative of the indirect objective function, and recalling that i is
always evaluated at the optimal solution, we have
. Y.

B vptonty
Then substituting 2, = —Af,. 2, = —Af, from the first two first-order conditions,
Aba froim the third frst-order condition, we know

flita. b), Ha.b).a.b] =0

Taking the denvative with respect 1o b ind rearranging.

f.%*f.%= =

Then sebstituting - f, in (/19) and rearranging.

g . &7
e (2 *Afy) = ™ QED.

The denvative of the Lagrangian function with respect to a specific exogenous variable, when evaluated at the
optimal values of the problem. s a reliable measure of the ¢lfect of thal exogenous variable on the optimal value
of the objective function.
EXAMPLE 8. Assume a utility maximization problem subject 1o a budge! constraint:

maximize s, v) subjectio pxepyv= B

Il there are continuous first and second denvatives and the Jacoban determinant consisting of the derivatives of
the first-order conditions with respect to the endogenous variables does not equal #ero (or vanish), then the
Lagrangman function can be written

UL Y. o popo B) = w(i.5) + MB = p,i = p,¥)
and the indirect objective function is
VIE ¥.ppy. BY = uliip, p.. B). ¥ p.p. B)]
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Then using the envelope theorem (o ¢stimate the effect on the optimal value of the objective function of a change
in any of the three exogenous variables, we have

aj — = = AT
W W
o o
dpy  op,

¢) 2.3
B B

In (), A can be called the muarginal ulility of money, 1,2, the extra utility the consumer would derive from a small
change in his or her budget or income. Notice that with the budget constraint {5) appearing only in the constraint,
the derivative comes imore easily from the Lagrangian function. In (g) and (b}, assuming positive utility for income
from {c), & change in the price of the good will have n negative impact welghted by the quantity of the good
consumed when utility is being maximized. ln both cases, with prices appearing only in the constraint, the
derivatives once again come more readily (rom the Lagrangian function. S5ee also Problems 13,30 w 1332,

137 CONCAVE PROGRAMMING AND INEQUALITY CONSTRAINTS

In the classical method for constrained optimization seen thus far, the constraints have always
been strict egualities Some economic problems call for weak inequality constraints, however, as when
individuals wanl to maximize utility subject to spending not more than x dollars or business seeks 1o
minimize costs subject to producing ao fess than x units of outpul, Concave programming, so called
because the objective and constraint functions are all assumed to be concave, is a form of ronlinear
programming designed to optimize functions subject to inequality constraints, Convex functions are by
no means excluded, however, because the negative of a convex function is concave. Typically set up
in the format of a maximization problem, concave programming can nevertheless also minimize a
function by maximizing the negative of that function,

Given an optimization problem subject 1o an inequality constraint with the following differenti-
able concave objective and constraint functions,

maximize f(x,,x;)  subject to glx,x;) =0 x,x;=0
and the corresponding Lagrangian function,
Flxy, 22, A) = flxy.x1) + Ag(x1.X3)

the first-order necessary and sufficient conditions for maximization, called the Kuhn-Tucker conditions,
ure

dF

1. a) E=ﬁ{f:-fﬂ + AgdE. ) =0
by x;=0
&) £ :r—F -0, i=12
I
aF
2. a) - gl ) =0
b) Az0
- dF
f} l£=ﬂ

where the conditions in (c) are called the complementary-slackness condinions, meaning that
both £ and f*(f) cannot simultancously both be nonzero. Since a linear function is concave and
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convex, though not stnctly concave or strictly convex, a concave-programming problem
consisting solely of linear functions that meet the Kuhn-Tucker conditions will always satisfy
the necessary and sufficient conditions for a maximum.

Note: (1) condition 1(a) requires that the Lagrangian function be maximized with respect to x; and
X3, while condition 2(a) calls for the Lagrangian to be minimized with respect to A. This means concave
programming is designed to seek out a saddle point in the Lagrangian function in order to optimize
the objective function subject to an inequality constraint.

(2) in the Kuhn-Tucker conditions the constraint is always expressed as greater than or equal 1o
zero. This means that unlike equality constraints set equal 1o zero, where it makes no difference
whether vou subtract the constant from the variables in the constraint or the variables from the
constant, the order of subtraction is important in concave programming (see Problem 13.33),

The rationale for the tripartite conditions (a)-{c) can be found in Example 9 and a demonstration
of the basic maximization method is offered in Example 10, For minimization, see Problem 13.34. For
multiple constrainis, see Problem 13.39. For other applications, see Problems 13.33 to 13.42.

EXAMPLE 8. Conxider a single-variable function for which we seek a local maximum in the first quudrant where
x =0. Three scenarios are possible, each with slightly different conditions, as seen in Fig. 13-1.

-F ﬂ -l'_l

Mz

{a) ik} i)

Fig. 131

a} For the maximum st F, an interior solution,

fliry=0 and x>0
&)  For the maximum gt G, a boundary solution,

fir)=0 and x=0
¢} For the maximum at H or J, both boundary solutions,

fix)<0 and x=0

All the possibilities for a maximum in the first quadrant can be summarized more succinctly,
however, as

Flxy=0 =0 and fixy=10
which we recognize as part of the Kuhn-Tucker conditions. Note that the conditions automatically
exclude a point like K in (g) which is not 0 maximum, because f(K) >0,
EXAMPLE 10. A consumer wishing lo maximize utility while spending no more than a predetermined budget
faces the following concave-programming problem,
maximize u(x,¥)  subject to B—p,x—p y=0 nyz0
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and Lagrangian function,

U=wulx,y)+MB=-p,x-p,¥)

Using the Kuhn-Tocker conditions, the Laprangian function is first maximized with respect to the choice variables
x and v and the related conditions checked.

b)

ol - au -
) —h—=u*—m,su 3;=u,—u:-,sn
b} =0 =0
£) ﬂu-_ IP!} =0 .ﬁ.ur_":p!.} =0

Then the Lagrangian is ruinimized with respect to the constraint variable A and the related conditions
checked,

all

— =B-pi-pizl
a) rm P.X—p,¥
b) A=0
€) MB-pi-p,y)=0

This leaves three categories of solutions that are nontrivial: (a) £,7>0, (B) ¥ =0, ¥>+0, and {(c) F>0,
¥ = 0. We deal with the first two below and leave the third to you as a private exercise.

First scemario. U £, ¥ >0, then from 1{c),
"-“spx:n “}'_jp_t=0
Therefore, == A== (13.10)
Py 2y
With p,.p, >0, and assuming nonsatiation of the consumer, i.c., u,,u, >0,
A=0
If A >0, then from 2(c).
[ _"f"lr’-I 'p:i =0

and the budget comsiraint holds as an exact equality, not & weak inequality. This means the optimal point,
X, ¥, will e somewhere on the budget ling, and not below it
By reconflguring (13.10). we can also see

iy _ P
oy Dy

Since u,/n, = the slope of the indifference curve and p,/p, = the slope of the budget line, whenever both
I, 7 > 0, the indifference curve will be tangent Lo the budget line at the point of optimization and we have
an interior solution, With the budget constraint funciioning as an exact equality, this first scenario, in
which both F, ¥>0, exactly paraliels the classical constrained optimization problem, as seen in Fig.
13-2(a).

Second yeenaria. Il £ = 0, § =0, then from 1ic),

u,—j;u,ﬂﬂ “I_IP:-'D
and Bl =X (13.11)
P Py

Assuming p..p,. 4., 4, >0, then A >0, From 2(c), therefore, the budget constraint holds s an exact
equalily, not a weak inequality, even though only one variable & greater than zero and the other equals
zero, This means that once again the optimal point, &, ¥, will ie on the budget line, and not bedow it.
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0. y)

(a) (B}
Fig. 13-2

Substituting A = u,/p, from the equality on the right in (12.11) for A in the inequality on the left in
(13.11), we have
e Wy o P
Py Py u, Py

This means that along the budget line the indifference curves are everywhere flatter than the budget line,
leading to a comer salution in the upper left, as seen in Fig 13-2{b). At the corner solution, the slope
of the highest indifference curve that just iouches the budge! line may be fiatter than or equal 1o the slope

of the budget line

Solved Problems

COMPARATIVE STATICS WITH ONE EXOGENOUS VARIABLE
131. Given the model from Example 1,
Qo=m—nP+kY m,n, k>0
Oy=a+bP ab=0
and now assuming we know the value of income and the parameters where
Y=100.m=60.n=2 k=01, a=10 and b =05

{a) find the equilibrium price and quantity, (&) use comparative statics to estimate the effect on
the equilibrium price P* of a §1 change in income, and (c) confirm the comparative statics
results by reestimating the equilibrium price.

a) Op= Qs
6 =27+ 0.10100) = 10+ 0.5°
—25P = —6l)
P*=24 g*=2
dp k
b) From (13.3), et

Substituting k = 0.1. b =05 n =2,
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A S5l increase in income can be expected to cause a 4¢ increase in the equilibrium price of the
commodity
¢} Reestimating the equilibrium equation for ¥ = 101,
60 =2PF +0.1(101) = 10+ 0O5F
-15P = —60.1
P o= 2404 QED

132. Assume Qp=m-nP-cP, + sP, m.n,cx>
Qg=ﬂ'+bp_jpg ﬂ,l..:l,f:-"'“
where P = price of the good, P, = price of a complement, P, = price of a substitute, and
P, = price of an input. (a) Find the equilibrium price P*. (b) Find the comparative-static
derivatives resulting from a change in P, and P. (¢) Find the implicit function for the
equilibrium condition and (d) from it derive the comparative-static derivative for a change
in P,.
@) The equilibriom condition is
m—nP—-cP +3sP,=a+bP—iPF, (13.12)
m=g=cP, + 3P, +iF;= (H+n)P
—a—cP. + 5P + IP,
b4n

pre=T

b} Whenever there is more than one independent variable, we have to work in terms ol partiai
derivatives which will keep the other independent variables constant.

P -c o i

P, b+n P, b+n

¢l  From (13.12),
H=nP=eP, 43P, —a=-bP+iP=0

P En T
d — e 5
) aF, 'FF li+n

133, Assume a two-sector income determination model where consumption depends on income and
investment is autonomous, o that

C=>bY, I=1,0<b<l

and equilibrium occurs where Y = C + [. (a) Solve for the equilibrium level of income ¥*
explicitly. (b) Use comparative siatics to estimate the effect on Y* of a change in autonomous
mvestment /. (¢) Find the same comparative-static denvative from the implicit function. (d)
Evaluate the elffect on ¥* of a change in the marginal propensity to consume b explicitly and

(e) implicitly.
i) Y=C+1
Substituting. Yo b¥V+i, (13.13)
¥=b¥=1I
yo = 08 (U3.14)

1-H
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b)  ‘The effect on ¥* of a change in autonomous investment [, is

P
gince D b1,
¢)  Moving everything to the left in (/3.13), we obtain the implicit function,
Y-bY-Iy=0 (13.15)
From the implicit function rule, always under the usual assumptions,
ave __F
di, Fy

where F, = =1 and Fy, = 1-5, 8o,
' ol B
dly I=h 1-=8

d) 1f we treal the marginal propensity to consume b as an exogenous variable instead of as a parameter,
we have a function of more than one independent vanable and musit find the partial derivative, which
will hold £, constant. First applying the quotient rule on the explicit function in (/3.14),

ay* L

@b (I-bF
Substituting from (13.14) where ¥* = 11 = b), we have
o e
b (1=b)
¢} Next using the implicnt function rule on (13.15) when evaluated at ¥*,

Though scemingly difficult at first, implicit functions are frequently faster and casier to work with in
the long run. See Problems 135 10 13.6.

From (a) the explicit and (b) the implicit function, find the effect on the profit-maximizing level
of output of a per-unit tax ( placed on a monopoly with total revenue and total cost
functions:

TR =mQ - nlF, TC = kQ mn k>0
a) Profit = for the monopoly is
m=mQ - nd - kQ - 10

dm
Jg =M oR-k-r=0 (13.16)
m-—k—t oy
U"ﬂT profit-maximizing level of output

Then from the explicit function above, the comparative-static derivative estimating the effect on Q*
of & change in the per-unit tax ¢ is
dQ* 1

_.-'_._._....r_:ﬂ

el
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13.7.

k)  From (13.16), the implicit function for the optimum condition i
m-=WmQ*-k-t=0
By the implicit function rule,

Assume a two-sector income determination model expressed in general functions:
C=CY)iI=1

with equilibrium when ¥ = C + L (@) Determine the implicit function for the equilibrium level
of income Y*. (b) Estimate the effect on Y* of a change in autonomous investment /.

) Y-y ) =-hL=10

b} — = o

In the model of Problem 6.4 we found the equilibrium condition and explicit function for the
equilibrium level of income ¥ derived from it were, respectively,

Y=o+ bY =bTo—Y + [+ Gy (13.17)
s = AL
1 =b+b

We also found, after considerable simplification. the comparative-static derivative for the effect
on the equilibrium level of income ¥ of a change in the tax rate 1 was

¥y L hY

® 1=-b+b
(@) Find the implicit function for the equilibrium condition in (73.17) and (b) from it derive the

same derivative ¥/t to convince yourself of the convenience of working with implicit
functions

@)  From (1117), the implicit function for the equilibrium condition is
P-Co—bY +bTo+ MY -1~ Gy=0
b)  From the implicit function rule.

and Y (Co=bTo+ lo+ Gy)

. F_  =hY
a Fp l‘h“'hf

In Problems 6.7 and 6.8 we found the equilibrium condition and explicit function for the
equilibrium level of income denved from it were, respectively,

YeG+MWY=Ta=tY)+ L+ G+ Xy — Za—2(Y = Ty —1tY) (13.18)

y 1

=l—b+h+:—:r

(Ca—=bTa+ L+ G+ Xo— Lot 2Ty)
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We also found, after considerable simplification, the comparative-static denvative for the effect
on ¥ of a change in the marginal propensity 1o import z was

#___-F

a2 1-b+h+z—2u
{@) Find the implicit function for the equilibrium condition in (73./8) and () from it derive the
same derivative #¥72 10 see once again the convenience of working with implicit functions
a) From (13.18), the implicit function for the equilibrium condition is

f' "._.._HF - T, _'ﬁ '-’.'Eﬂ' x"‘l'?.u':{F"’ Tﬂ"!ﬁ
b) From the implicit function rule,
J‘_F.__-F,-‘_ 'F—T.—t? ""f'.i

A= Fy 7I-b*h‘+:-ﬂ'l—b+bﬂzﬁzr

COMPARATIVE STATICS WITH MORE THAN ONE ENDOGENOUS VARIABLE

13K

13.9.

Set forth the implicit function theorem,
Civen the set of simulianeous equations,
U oo YR s X)) = 0

r't.'*'l-.l:. T _!'.LJI;.J;. — .'I,-_} =0

ol all the above functions in f have continoous partial derivatives with respect to all the x and v vaniables,
and Bt & point (¥o Yoo o oo Voot i Ko oo Kua), The Jacoblan consisting of the partial derivatives of all
the functions [ with respect to all of the dependent variables v, is nonzero, as indicated below:

yq .9
oy e
@ a ¥ X
M= o el #0
¥y ¥ X
ey .

then there exists an m-dimensional neighborhood N in which the variables v, vs, ..., ¥, are imphicit
functions of the variables 1, 1., . . . 5. in the form

Yia 'Pt'ml:.-.-,.‘l_}

Yo = L Bos <« o Kt)

Yoo = (8100 230 -+ o0 L)

The implicit functions, f'.f°, ... /", are continuous and have continuous partial derivatives with
respect 1o all the independent variables Denvation of the comparative-static derivatives is explained
in Example 3

Waorking with the model from Example 3 in which

FUvevix.xg) =0
Fiy.ynx. o) =0

find the comparative-static partial derivatives of the system with respect o x;,
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Taking the total derivative of both functions with respect to x,.

__E.E_J_F:':ﬂ
dyy ey dyy g dig

Moving the partials of the functions with respect o x, to the right, we have

aF!
L g
aF*

where |3 =

aF* [ aw .:lF"
Es m] [
aF? || aw
ENIE

JX=0
oF oFt o oF .
My dy: A A

To solve for the first derivative, dy,/x,, form & new matrix |J, |, replacing the first column of J with the

column vector B and substitute in (f1.4).

o ar
e dyy
_IE _(;‘ﬂ.ﬂ_f‘“_j'“’_’.ﬂ_*“
o _ Il _ 1 @ dnl  \axy dy axy by
w P | P o P aF
dyy  dy; dy; dyx: dy, s
Ll
avy Ay
e
Y, axy
wo_a ('*_Fl.ifih?f.i'}
o B _Tdn dxz | A\ ax; oy, dn
sty w T AP T R P e
LU P ay, dyy @ i
e
% 9
Assume the model from Example 4,

Y=-G=CY,.)=0
L(Y.i)= My/P =0

D=<Ce=1,C, <0
Ly>0,L, <0

and use comparative-static analysis to find the effect on the equilibrium levels of ¥ and i of a
change in the money supply My, recalling that P is constant.

Taking the total derivatives with respect to M,

Y
M,

- (o) - (e-3g) =0

My

o) (1)
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and setting them in matrix form,

aF
[IACF _CI] I;.I"u n[“]
Ly L J| & | |up
My
IX=8
where = {1 —Cylly+ Ciluy

= (+X=-)+(=}+)=(-)<0
We then solve for the first derivative, 3¥/aM, by forming the new matrix |, |.

|]|=!ﬂ ] <
"““lup L | P

if.._ |I‘| G —t..}u
My |‘| H“ =Lyl + 'CJL?‘I (=)

An increase in the money supply M, will cause the equilibrium level of income to increase. For ai/aM,,

ot

and

Ill-']_c" n|_1—c',,
? Ly 1P P

M, 3] Pl-CoL,~GLy  (-)

An increase in My will cause the equilibrium interest rate to fall

Working with a system of three simultaneous equations similar to Problem 6.4,
Y=C+ly+ G, C=Cot+b(Y-T T=Tot1¥

{a) Express the sysiem of equations as both general and specific implicit functions. (k) Use the
simultaneous equations approach 1o comparative statics to find the Jacobian for both the
general functions and the specific functions (¢) Express in matrix form the total derivatives of
both the general and the specific functions with respect to G,. Then find and sign (d) #¥/9G,,
(e) dC/aG,, and (f) dT/aG,.

al) F (Y, C.TColh Go To. b ) » ¥Y=C-IL,=Gy= 0
FUY.C.TCo hnGo To b ) = C—C—BY-T) =0
FUY.CTCulo Gy Tob ) = T=To=1¥ =0

b)  The Jacobian consists of the partial derivatives ol all the equations with respect 1o all the endogenous
or dependent variables

£ aF!' af!

ar' M AT i <1 8
T ool N A
| a¥ eC 4T e o 13

AFY  aF*  aF?

dY oC 4T

Expanding along the first row,
¥ =UH1)=({-1M-b+br)=1-b+bteD
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¢) ‘Taking the total dervatives of the gencral functions with respect to G, setting them in the now
familiar matnix form, and using bars over the endogenous vanables to indicate that they are 10 be
evaluated at the point of equilibrium in the model, we have

roft A Y[ aF '“#ﬂ'
-II"' I JT mq "";U
LA ol | IO, ) ) I
Y o ar || ¥ 5,
aF*  aF  aF* || oT _aF!
- ‘r 'K" H - brx;'i - "K;n_
The same derivatives in terms of the speafic functions are
r ai’ E
1 10 f? |
- | [} F =0 1319
ey
- 0
r 0 1 -'_f
[ AGy, |
JX-B

where the signs in the B matrix change as the matns s moved to the right of the equal sign.

d) To find 4/, the a;, element in the X matrix in (/3.19), we create a new matnix [J, | by substituting
B in the first column of J and using (/3.6).

1 =1 0
0 1 b
oF 13 g 0 1 1
Gy Il Y i
¢)  To find #C1aG,, the as element in the X matrix in (1319), we create [, by substituting B in the
second column of J and using (1.1.6).
1 1 0
=k O &
o |9 -t 0 1 pl -0
—uw= = - =)
P FT ) 3] I=-b+M
1) To find #1706, the ay, clement in the X matrix in (/3.19), we create |35 by substituting B in the third
column of J and using (136).
1 =1 1
o I'.l]
#_{“E,_[, -t 0 0] 1 +i
oli, 3] 4] 1=b+h

1312 Using the previous model in Problem 13,11, where the original Jacobian || will remain the
same, (a) express in matrix form the total derivatives of both the general and the specific
functions with respect to T, Then find and sign (h) #¥7a1,, (¢) #C/aT, and (d) 37767,
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@) In matrix form. the total derivatives of the general functions with respect to T, are

[aF' aF' aF1[e¥] [ oF
@ & ar || T, T,
aF: aFt af||aC | _| aF
¥ o€ T ||eT| | o
aF*  aF* aF || ot _aF*
R ST | T B T

The same derivatives in terms of the specific function are

-a_?-

1 -1 0 I:E' 0

= 1 d|j=—|=|0
ﬂT{.

=t 0 1 T 1
o7, |

b) To find a¥/aT,, the a,; element in the X matrix, create |J,| by substituting B in the first column of J
and using (13.6).

0 -1 0
0 1 b
a¥ |4 1 0 1 ~b
Ty |3 {3 1-b+b

¢) For al/aT,, the oy element in the X matrix, create |J;| by substituting B in the second column

of 1.
1 00
-h 0 b
B L= 1 1] -0 o

T e T

T '3 T l=b+be

S|&

d) For aT1aT,, substitute B in the third column of J and use (13.6).

1 -1 0
—-b 1 D0
o |0 = bt D 1 1—b

0 [l 3 1-b+h

=0

13.13. Retaining the same model from Problem 13,11, (a) express in matrix form the total derivatives

of both the general and the specific functions with respect to the tax rate £. Then find and sign
(b) a¥fa, (c) oCion, and (d) T/

@) The total derivatives of the general functions with respect to 1 are

CaF'  aF' aF' [ [ aF ]
¥ o ]|l a TR
aFt aFr aFr || € aF?
w w wllw® T Tx
aF' . aF* aF || &t _oF

(¥ &€ Tl a] | & |
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The same derivatives in terms of the specific functions are
F P

by For d¥iar,
0 -1 0
[[. ; b]
i_ﬂ_ ¥ o 1 _ -b¥ <0
o J |3 | =b+
¢) For aCia,
1 a o
[—h 0 h]
o |4 ¢t F 1 hY
_— = <}
a I |3] 1-b+Mh
d) For allan,

1 -1 0
5 1 0
of 1 |-t 0 Pl _0-mF

0

PENE] ¥ “1-b+be

13.14. Given the income determination model
Y=C+L+Gy+X;-2Z C=,+bY =0 +1¥Y
where X = exports, £ = imports, and a zero subseript indicates an exogenously fixed variable,
{a) express the system of equations as both general and specific implicit functions. (b) Express
in matrix form the total derivatives of both the general and the specific functions with respect
lo exports X, Then find and sign (c). 6¥/0X,, (d) aClaX,, and (e) ¢2/dX,.

) FY,.C.Z,Co 1o G X Zo. b, 2) = Y= C == G- X+ Z =0
FUY.CZ.Co. [ G Xpn Zp 0, 2) = C - = bY =0
FY.CZ:C o Go X Zp b, 2) = Z =Ty —2¥ =1

[aF' aF' s [ af] [ oF)
¥  aC a7 || ax, aXs
b) aF ot e || aC | _| _aF
a¥ oC aZ || X, Xy
L |
Lay aC ez JLlax,) | ax,
iaf-l
1 =1 1 i?_’ 1
= ¥
F A i 1 E L1
I-axu-

[J]| = 1=p+z=0
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¢} For a¥iaX,,
1 -1 1
D 1 0
oF K] _|o 0 1] 1
X ] 1] bz )
d) For aClaX,
| 1 1
oC |kl |-z 0 1 b
P 2 T TR | i-bez ]
¢) For a2ioX,
1 -1 1
[_,, : }
&E_l:ﬂ = 4 0 0 4
aX, || {4 l—b+z}u

13.15. Using the model from Problem 13.14, (a) express

in matrix form the total derivatives of the

specific functions with respect 1o the marginal propensity to consume b. Then find and sign (b)

a¥iab, (c) oClab, and (d) allab.

e
1 -1 1 :;. 0
a) b 1 of[=|=]7
= o 15l Lo
-M‘
rg =1 17
¥ 1 0
4 (4] |0 0 1 ¥
£) | ] i=b¥z
10 17
-5 f 0
; B _f-z 0 1] (+gF
<) il (S T N T ¥
1 -1 0]
b 1 ¥
aZ |5 -z 0 0 ¥
9 E T =hez

13.16. Continuing with the model from Problem 13.14, (a)

of the &
(b) é¥iaz, (c) aCloz, and (d) 0Z/az.
o
d
1 =1 1]] .a

az
a2

i

ar

a)

express in matrix form the total derivatives

pecific functions with respect to the marginal propensity to import 2. Then find and sign

0
0
Y

gt
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1317,

b) For a¥idz,

T 1] T1-b+:
) For aCiaz,
1 @ 17
[ b 0 0
o 1hj -z ¥ 1 -5¥
B | = 0
P 7] T-btz
d) For aZlaz,
1 =1 0]
l—b 1 0
2 L |-z 0 P]_a-my o
ar || 1] I—=b+z
Having introduced the foreign trade market 1o the goods market in our national income model,

let us now combine them with the money marker. Assume

The goods market: I= [(i) {I,<0)
5= §(Y.i) (<8< 1:5>0)

The foreign trade market: Z = Z(Y.i) D<Zy<1;Z,<0

X=X,
and the money market: My, = L(Y,i) Ly>0,L <0
M; b Mn

where Z = imports, 5§ = savings, X; = autonomous exports, My, = demand for money, My =
supply of money, and all the other symbols are familiar. (¢) Express the equilibrium conditions
for the combined goods market and the money market. (b) Express the equilibrium conditions
as gencral and specific implicit functions. (¢) Express in matrix form the total derivatives of
these functions with respect to M, Find and sign (d) the Jacobian, () #¥/aM,, and (f)
il aM,.

i) The combmned goods market is in equilibrium when injections equal leakages:

Ki) + Xo = S(Y.i) + Z(Y.i)
The money market is in equilibrium when the demand for money equals the money supplhy:
LiY. 0= M,
B FUY, i My, Xy) = I + Xg= S(Y,0) = Z(Y,i)
F(Y, My X)) = L{Y.Q) - M,

2 Ly
a¥ M aM, | My
aF: aF a | aF?
¥ | |aMy] | oM,

[ 4
Fsr_Zp .F,"..i',"z,‘ 'I;Mu 'ﬂ
Ly L, 1| & 1

b 'liMr.

JX =B
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d) | = Li{=8y= Zy) = LAl - 5, Z) >0
€} Using Cramer's rule for a¥/aM,,
ﬂ 1',‘.5',—2.
iu“_lnl_g l f" o _{11_5_1_1} }u
aMy |3 |4 Li=5y=Zy) = Llli= 5~ Z))
1 For ailaM,,
‘—Er—zy 0
Aol ol cmey
aM,  |J) 1] L{=Sy=Zy)= L{l,~ 5~ Z)

13.18. Using the model in Problem 13.17, (a) express in matrix form the total derivatives of the specific
functions with respect to exports X, Then find and sign (b) 4¥7/6X, and (¢) d/aX,.

®
a) [—5,-—?.’,- J'.—S,—I-:,] Xy [—1.]
Ly L, s 0
Xy
b) For a¥/éX,
-1 §-5-4&
£= m e ﬂ fq = _I-q }n
aX, |4 | L8y = Zy)= Lll,= 5~ Z)
¢) For ailaX,,
‘_Sr_zr _1‘
A _ 1%l o L2 = Sy >0
aX, |4 |3 Li=5y=Zy)=LAl=5~-2)

COMPARATIVE STATIC ANALYSIS IN OPTIMIZATION PROBLEMS
13.19. Returning to the model in Example 5, where the first-order conditions were

FYK,L:r.w.P)= POAK.L)=r=0
FAK . Lir.w.P)= PQUR.LY-w=0

(@) express the total derivatives of the functions with respect to the wage w in matrix form. Then
find and sign (b) aK/ow and (c) dl/aw.

d_if
o [P\Qn -F'.?xrl i =[‘3]
PQus PQu | oL 1
W
| = P{Qux Crs — Qru@x1) >0
by For akiow,
0 PQw
K _hl_ 1 POu_ ~POxs
aw  |J | P{Ouxx Qe = Qre Ore)

Without specific knowledge of the sign of the cross partial 0, . it s impossible Lo sign the derivative.
Assuming the marginal productivity of capital will increase for an increase in labor, Qg >0 and
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K/ iw < 0, meaning that the optimal level of capital will likely fall in response 10 an increase in

wage.
¢) For allow,
PQuu 0
ﬂ - !_l.'ﬂ - FQ“ I - Pa" {'u
it FJI 4 F‘ﬂllgu . En.u'u]

The optimal level of labor will decrease for an increase in wage since Qg <0

13.20, Staying with the model in Example 5, where the first-order conditions were
FNK. L:row P) = POUK.L)~r=0
F(K,Lir,w,P) = PQ(K.L) ~w=0

(@) express the wial denvatives of the functions with respect to the commaodity price F in matrix
form. Then find and sign (b) aK7aP and (c) allaP.

S

u)

PQu PQMJ

[0 |
PO PQu

ap
fE = 01
P

by For aK/aP,

) “Ox PQu
E = !_’JJ - @ PO - H*Qxa'u. + 0 Q) - (Q: Quy ~ Qlﬂu}
4P |3 el PiQux Qe — Qe Qus)  PIOQxxQrs ~ Qus Qi)

Since Q= MP >0, Q, = MP, >0, 0, <0 for maximization. and |J| > 0 in the denominator, the

sign depends completely on the cross partial Qg If X and L are complements, 5o that an increased
use of one input will lcad 10 an increase in the MP of the other input, Oy >0 and the
comparative-static derivative JR/aP > 0L If (5, < 0, the sign of 2K/éP is indeterminate.

f" F“"D‘Pb

Fﬂ'n = Qﬂ
,'i_‘r' - _1_‘!3,! - PO 04 = -0 Qus * OuQix) = Qe Qiw = O i)
ar |3 | P(Qxe Qii = Qui Qun)  PIQun Qs = Qua Qin)

and the sign will depend on the cross partial 4, exactly as w (b).

13.21. Assume now a firm secks to optimize the discounted value of its profit function,
o= POX. Ve "-P,X-PY
where the first denvatives of the first-order conditions, #n/aX and aw/dY, when expressed as
implicit functions, are
FUX.Y; Po. P Pt t) = PoQAX, P)e " =P, =0
FZ‘X‘ Pﬁipll Fn'i”’ - Pﬂﬂ;{-ﬂf- Pk-" = .P, =0

(@) Express the total derivatives of the functions with respect 1o Py, in matrix form, recalling that
r and ¢ are constants. Then find and sign (b) the Jacobian, (c) aX/aP, and (d) aY/aP,.

X
PaQue™ PoQ..e"]| &P, N -0,
" F‘Qur-- Pﬂ'ﬂnf " J_? [ _a'r—n

by



310 COMPARATIVE STATICS AND CONCAVE PROGRAMMING [CHAP. 13

h} iJI _ Pa‘_h{'ﬂuﬂrt e Qn Qu} =0
With Fie " >0 and (@, Q,. — 0. 0,,) > 0 from the second-order sufficient condition, |J| >0,
¢} For aX/aP,

|-Q‘,e'" Polde ™
& _(h_ -0 Pgue

Pu'-lﬂ{o:-an 0 Q!Qn} - IEan == ﬂrﬂnl

aPy, .I_J-l B! . ﬁf.h{ Cu a!_i' T ﬂ:ﬂ Qu} 'FII{EH ﬂ_u- o thl Eﬂ}
As in Problem 13.20(b), the sign will depend on the cross partial Q...
d) For a¥iaP,,

Pﬂgn'e = _Q'l‘gv"
Wl _ | PaQue™ —0Q,e™| For” Q. 0.~ Q,0.) . _(2.0.-00.)
3 b TR ™0u0,-0.0.) P00, - C.0.)

¥
aP,

13.22. Using the same model in Problem 13.21, (a) express the total derivatives of the functions with
respect 1o time f in matrix form. Then find and sign (b) 457 and (¢) #¥/a.

ok

PoQue™ PoQue™|| @ | _frPoQee™
" PO, PiQye || 2| = [regye]
rl
FoQue™ FoQue™
by POt PuGue| | e (0.0,-0,0.) _ H0.0,-0.0,)
o |¥ |J| Fie H(Quﬂ_w - 2uQy) (Qulyw -~ CQuly)
PoQue™ rPyie™
) ﬂ _@_‘ "I:'Ir.ii.;l_i-llel_Jlll rpnﬂlf_" = r}“.,r'”l;{]'r ¢.-0,0.) - '{GJ Q.- 0, ﬂ_;u'r

o |‘| |J| Fﬂ‘-m(ﬂluﬂﬂ_ﬂyﬂu] {QIJQ”_QpE!j}

In both cases, if the cross partials are positive, the comparative-static derivatives will be negative and
if the cross partials are negalive, the comparative-siatic denvatives will be mdeterminate.

13.23, Assume the production function in Example 5 is specified as a Cobb-Douglas function with
decreasing returns to scale (Section 6.9), so that the competitive firm’s profit function is

7=PAK*LP—rK-wL
and the first derivatives #m'dK and éw/él from the first-order conditions are
FUK,L:r.w,P.A.a.8) = aPAK™ 'LP = r=0
FAK.L;r,w,P.A,a.B) = BPAK°"L? ' -w=10

(a) Express the total derivatives of the functions with respect to the wage w in matrix form.
Then find and sign (k) the Jacobian, (c) aK/éw, and (d ]= dllddw.

ak

. {n{n—l]FAK' I afBPAKT LA ] w _[u]

£ apPAK='L*'  p(B-1PAK-L**]| oL | ~ |1
'm-

b) 3] = aler = LYPAK="*L": B(B — 1)PAK"L** — (aBPAK" ' LA}

3] = apll - a = BIF AT K= L# 250
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since |J| = |H| and |H| = |H,|>0 in unconstrained optimization problems. This condition implies
that a profit-maximizing firm in perfect competition operates under decreasing returns to scale since
|J| >0 requires (a+ B) <1.

c) For dK/ow,

0 aBPAK*'LP!
9B |0l _ |1 BB-1PAK"LF?| _—apPAKILA

<0

since the numerator, independent of the negative sign, is unambiguously positive and the
denominator is positive, the comparative-static derivative dK/dw is unquestionably negative. An
increase in the wage will decrease the demand for capital. Through further simplification, if desired,
we can also see

oK —aBPAK~ ' LF1 —-KL

K _ -~ <0
ow  aB(l—a— BPPA’K*2[%# 2  (1-a-B)TR

d) For dL/w,

a(a—1)PAK*?LF 0
oL _|3,| | epPAK*'LPF' 1| _ a(a—1)PAK*LP

w 3] |J] B 3]

since a <1, making (a — 1) <0. An increase in the wage will lead to a reduction in the optimal level
of labor used. Through further simplification, we can also see

oL _ a(a—1)PAK*2LF _ ~(1-a)l?

- = <0
w  ap(l—a— B)PPA’K* [ (1-a-B)TR

13.24. Working with the same model in Problem 13.23, (a) express the total derivatives of the
functions with respect to output price P in matrix form. Then find and sign (b) 9K/6P and (c)

dLI3P.
P
[a(a Si= 1)PAKa_2L‘B aBPAK“‘lLB”l ] aP _ I: _aAKa—l LB:|
2 afPAK* 1LF! B(B—1)PAK=LF2 i?é | ~BAK=LF1
oP
b) For 9K/dP,
‘ —aAK*'LP afPAK*'LF!
oK || —BAK*LF' B(B—1)PAK*LFP?| afPA2K? 122
oP {3 B |J| af(l—a— B)P2A2K2a—2L23~2
oK K
= > O
P (1—a—B)P
c) For oL/4P,
a(a—1)PAK* '[P —aAK*'LFP
oL || _ | opPAK*T'LPF' —BAK°LF'| aBPA? K2 [ 1
oP |3 i |J| aB(l_a_B)P2A2K2a~2L23—2

Al o BE a
P (l—a-PB)P
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[ i

COMPARATIVE STATICS IN CONSTRAINED OPTIMIZATION
s - axumuze utility wia, b) subject to the constraint p.a+p.bh =Y, a
U = ufa,b) + MY = pa = p.b)

and assuming the second-order sufficient condition is met so that [l = [§] # 0, the endogenous
variables in the first-order conditions can be expressed as implicit functions of the exogenous
variables, such that

Ft{'ﬂ- b, "H"‘-P-h- H - L:l —Ap, = 0
Fl{ﬂ.ﬁ.ﬁiﬂ.‘ﬂh ¥)= Up — *P;. = {) H.f.lﬂl
Flab. XpopeY) =Y = pa-pb=10

(a) Express the total derivatives of the functions with respect 1o p, in matrix form and (b) find
ildp,.

Uo Us -p, A
) [ Uy Us = ] f— - l ]
P, i

5 s o i

[ . )
= il pupslin v pupy U = pill, >0

since |3 = [HI >0 from the second-order sufficient condition for constrained maximization. Rut
theory leaves unspeeified the signs of the individual second partials

by For diip,,
A U “ P
0 tw -m

i B 1ll|| : W = P L] - ﬁ':F'LIu —Fiuﬂl . jpz

. 2 2l Uat]

where the sign s indeterminate because the signs of the second partials are unknown.

1326, Working with the same model in Problem 13.25, (a) express the total derivatives of the
functions with respect to p, in matnx form and (b) find #h/ap,.

kg
l.l"_ U‘. "'F.. ';. '“
i) Ve Ui ~Ps ; n A
- p. “ [y 0 ';‘: ﬁ
| % |
by For b,
Ve 0 =p,
tr].' ﬁ P
iy i ~p, b o ﬁl)’a Ves = Palls) = if'i
— ] — - - .'.
P ] N )

which ks aleo indetlerminate.
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13.27. Continuing with the same model in Problem 13.25, (a) express the total derivatives of the
functions with respect to Y in matrix form and find (b) #/2Y and (c) ab/aY,

ki
e Us Pa :: 0
i) Ul'u Uﬂ, — P J_}" = 0
P« —m 0 a =1
L F.r__l
i) For da/dY,
0 Us -p.
Uie  —ps
ad |3 -1 -p; 0 =(p. Ui = paUa)
vl 1] ] )

which cannot be signed from the mathematics but can be signed from the economics. If ¢ is a normal
good, Aa/d¥Y >0; if @ 5 a weakly inferior good, #/d¥ = (; and if a is a strictly inferior good,

adrdY = 0,
¢)  For ablay,
L'.-l u “.PJ
'L"H ] .
|1 ps =1 O (e U — paUs)
sl s | S5 - 1124
P 1] ] (529

which can also be signed according to the nature of the good, as in (b) above,

13.28. Derive the Slutsky equation for the effect of a change in p, on the optimal quantity of the good
demanded @ and determine the sign of the comparative-static derivative aa'dp, from the
information gained in Problems 13.25 to 1327.

From (13.21), with slight reartangement,
od ﬁ = d(pa U — ppUas)

—_— 3
Bul Ilnl“ [13.23}, == u"‘lﬁl' | L h-'['ﬂ’

Substituting —a5/7Y in (J3.25), we get the Slutsky equation for 4, where the first term on the right i the
suhbwitution gffect and the second term is the income effect.

&__N_, (2)

A, J| ay

Substitution effect Income effect
Since |J| = |H| >0 for constrained maximization and from (73.20),

the substitution effect in the lirst term is unambiguously negative. The income effect in the second term
will depend on the nature of the good. For a normal good, a1/#Y > 0 and the income effect above will be
negalive, making 4@ dp, < 0. For a weakly inferior good, &i/4Y = 0, and A3/dp, < 0. For a strictly inferior
good, a1/aY <0 and the sign of adfdp, will depend on the relative magnitude of the different effects. If the
income effect overwhelms the substitution effect, as m the case of a Giffen good, adl#p, >0 and the
demand curve will be positively sloped.
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13.29. Derive the Slutsky equation for the effect of a change in p,, on the optimal quantity of the good

demanded b and determine the sign of the comparative-static derivative ab/dp,.

W ML BpuUs -~ puUs)

From (13.22), = -2y
e FNETT 7
b _ ~(psla—p.Ui)
But from {/3.24), P 2l
Substituting above, = 3l b (-EF)

where the substitution effect in the first term on the right is unguestionably negative and the income effect
in the second term will depend on the nature of the good, as in Problem 13.28

THE ENVELOPE THEOREM
1338, A firm in perfect competition with the production function @ = f(K, L) and a production limit

of @, seeks to maximize profit
m=PQ-rK—wL
Assuming conditions are satisfied for the implicit function theorem, the Lagrangian function
and the indirect objective function can be written, respectively,
MK L.Q A row, P,Qg) = PO(r,w, P, Qy) = rK(r,w, P, Qy) — wL{r,w, P, (o)
+ A|Qs— (K. L)]
WK, L.Q.r,w, P.Qs) = PO(r.w, P, Q) = rR(r,w, P, Qs) — wL{r.w, P, Q)

Use the envelope theorem to find and comment on the changes in the indirect objective
function signified by (a) du/dr, (b) dmiow, (c) anlaP, (d) dmaQ,

am  dll

) Sk -Kir,w, P, Q)
) §=£=-E[w.ﬁaﬂ}

Differentiating the profit function with respect 1o mpul prices gives the firm's demand for inputs
MNotice here where input prices (r, w) appear in the objective function and not in the constraint, the
desired denvatives can be readily found from either function.

af Al
) P Olrow, P20
Differentiating the profit function with respect to cutput prices gives the firm's supply function. Since
output price (P) appears only in the objective function, the derivative can once again easily be found
from either function,

L | S
d e )\
) L2, v
Differentiating the profit function with respect to an output constraint gives the marginal value of
relaxing that constraint, ie., the extra profit the firm could earn if it could increase output by one unil
Notice here where the outpul limit {(,) appears only in the constraint, the derivative can be derived
more guickly and readily (rom the Lagrangan function.
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13.3L A consumer wants to minimize the cost of attaining a specific level of utility:
cmpx+py subject to ufx,y) = U,
If the implicit function theorem conditions are fulfilled, the Lagrangian and indirect object
functions are
C':I*}'-"-:F'J-Fy- Uy = P:I{PHPh UIJ'I.. "'.Fu."'(P--Fﬂ Uﬂ] + "‘-[Url = ”{I-}'"
E{i!;"-':‘.p-'lipﬁ Uh:l = Flfl:PnPyl Uu] +P}F{PJIF]‘1 f—‘ri}}

Use the envelope theorem to find and comment on the changes in the indirect objective
function signified by (a) a&ap,, (b) &ap,. (¢) aFall,

it il
i) ;‘:'E'ﬂﬂu?r”ﬂ
a3 =
b s = * ‘U
' ¥, ®, Trefaly)

In both cases, a change in the price of a good has a positive effect on the cost that is weighted by the
amount of the pood consumed. Since prices appear only m the objechive function and not the
constraint, the desired derivatives can be easily taken from either function.

& aC

v, avs

£)

Here A measures the marginal cost of changing the given level of utility. Since the utility lmit L/
appears only in the constraint, the derivative is more easily found from the Lagrangian function.

13.32. Assume the model in Example 7 is a function with only a single exogenous variable a. Show that
at the optimal solution the total derivative of the Lagrangian function with respect to a is equal
o the partial derivative of the same Lagrangian function with respect 1o a.

The new Lagrangian function and first-order conditions nre
Zix, v, A;a) = zlx(a). v(a): a] + Ma)fIx{a). v(a); a]
za - zl{'FF.F;'I:' +*Ef_|ifufiﬁ'} =1
2, =z (F Fa)+ M IE Fia) =0
Z, = fit.y.a)=0

Taking the total derivative of the original Lagrangian function with respect to a,
d£ - _dx = df A i
— = — —_—
prm L.,-'-J'u,l’lli.:ﬁu+{r,,-,+M‘L]'iliE fjﬂﬂzﬁif.}
But from the first-order conditions,
LA =0, z,+Af, =0, and [f=0

so the first three terms cancel and the total derivative of the function with respect to the exopenous
varinble @ ends up equal 1o the partial derivative of the funciion with respect to the exogenous
variable o

dZ = a
PR R R
This suggests we can find the total elfect of a change in a single cxogenous variable on the optimal value

of the Lagrangian {unction by simply taking the partial derivative of the Lagrangian function with respect
Lo thal exogenous varable,
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CONCAVE PROGRAMMING
13.33. Given the typical format for constrained optimization of general functions below,
{a) maximize f{x,y) subject 1o g(x.y) =B
(b) minimize f(x.y) subject to g{x,y} =B
express them in suitable form for concave programming and write out the Lagrangians.
#) For less than or equal to constraints in maximization problems, subtract the variables in the constraint
[rom the constant of the constraint.
Maximize fix, v} subject to B-pgiz.y)=0 ILy=0
Max F = f(x,y) + A|B - g(x, ¥)]
by For minimization, muliiply the objective function by —1 to make it negative and then maximize the
negative of the original function. For the corresponding greater than or equal 1o constraints n
minimization problems, subtract the constant of the constraint from the variables in the constraint.
Maximize — fix.y) subjecito  glr.y}—B=0 5¥y=0
Max F = —f(x,y) + Alg(x.¥) - B]
13.34. Assume a firm with the production function (X K.L) and operating in a purely competitive

market for inputs wishes to minimize cost while producing no less than a specific amount of
output, given by

minimize ¢ = rK + wlL subject to QK. LY=0,

(@) Express the problem in concave-programming format, () wnte out the Lagrangian
function, and (c) solve the problem.

a) Multiplying the objective function by —1 to make it negative and maximizing it,
Maximize =rK =wl.  subject lo MK, L)= Q>0 K.L=0
b) Maximize C = —rK — wlL + A[Q{K, L) — Q4

¢} Applying the Kuhn-Tucker conditions, we first maximize the Lagrangian function with respect (o the
choice variables K and L and check the related conditions.

aC - aC ;
1. a) —g=-r+AQs=0 L= W HAs0
<) E{_"""j@ﬂ'ﬂ Li-w+AQ,) =0

We then miinimize the Lagrangian with respect to the copstraint variable A and check the related
conditions

2. a) é—f=ﬂ[ﬂ£}—ﬂ,aﬂ

b) Az=0
e} A[QK.L)-Q)=0

Assuming production depends on both inputs, K, L >0, the two expressions within the parentheses
in lic) have to be equalties

_F+i'u‘.'=ﬂ —H'+i|‘},'.,=ﬂ

Rearranging, we see

A=m— = —30 (13.26)
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since input prices 7, w > 0 and marginal productivities Q. Q. > 0. With A >0, from 2{c) the budget
congtraint binds ax an equality, with

G%ﬂﬁ} = o
Rearranging (/3.26), we have an interior solution with the isoquant tangent 1o the isocost line,
e _w

Qu

13.35. Maximize profits

r=hdy — 20 + Wy — 4 - 13

subject to the production constraint

x+y=20
We first set up the Lagrangian function
[l=6de—2e"+ 90y — 4y - 13+ A(H~-x-¥)

and set down the Kuhn-Tucker conditions

I.'r

a) I, =64—di- k=0 M,=9-8-A<0
] r=0 y=0

c) 64 —4F =) =0 F(96—=8F = A) =0
@) I,=20-i-y=0

b) A=0

€) A -F-7) =0

We then test the Kuhn-Tecker conditions methodically.

L

Check the possibility that & = 0 or A> 0.
If A =0, then from 1(a),

M—-4i=0 96—8f=0
Therefore, 4f =64 B =%
i=16 y=12

But this violates the initial constraint since £ + § = 28> 20. Hence A # 0 and from 2(h) we conclude
A=0.

If A>0, from 2(c), the constraint holds as an equality, with
W-F-7=0

MNexi check 1o see if either of lthe choloe variables ¥ or ¥ can equal fero
a) If¥=0, ¥=70and the second condition in 1(c) is violated.
20{96 — 820} — (A >0)] # 0
by W §F=0,7=20 and the first condition in 1{r) is violated.
20[64 — 4(20) — (A =0)] =0
So neither choice variable can equal zero and from 1(6).
ifxe0,f>0 amd fye0 F>0
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4. U £ § A>0, then from I(c) and 2(c). the following equalitics hold,
64~ 4F-A =0
96~ 8F - A= D0
W=f-§=0

Setting them down in matrix form,

-4 0 =1 x - ind

0 -8 -1|jF]=|-%

-1 -1 0 i -2
and solving by Cramer's rule where |A| = 12, |A;| = 128, |A;| = 112, and |A, = 256, we get the
solution:

£=10467, § =933, and A = 21.33

which we know 10 be optimal because none of the Kuhn-Tucker conditions is violated. With A = 21,33,
& unil increase in the constant of the production constraint! will cause profits W increase by
approximately 2133

13.36. Maximize the profit function in Problem 13.35,
7 = 64z — 2 + 96y - dy* - 13
subject to the new production constraint
x+y=36
The Lagrangian function and the Kuhn-Tucker conditions are
= 6dx = 2c* + 96y — dy” = 13+ A(36 = x = ¥}

L a) I, =64—4i— k=0 Il, =9%-8y—A=0
by F=0 F=0
c) A6 —45 - A)= 0 (96~ 8F —A) =0
2 a) N,=%-x-y=0
b) k=0
c) AB—-F—-71=0

We then check the Kuhn-Tucker conditions systematically.

1. Test the possibility of 4 = 0 or A>0.
If A =1, thén from 1(a),

64— 4i=0 96 - B =0
Therefore, i=16 F=12
Since § + § = 28 < 36, no condition is violated. Therefore, it is possible that A = 0 or A> 0,
1. Now check to see il either of the choice variables ¥ or ¥ can equal zero,
a) I F=0 =36, and the second condition in 1{c) is violated.
3696 — B(36) — (A=0)] » 0
b} U ¥ =0, ¥ =36, and the first condition in 1(c) is violated.
3664 — 4{36) - (A= 0)] 20
Therefore, neither choice variable can equal zero and from 1(b),
>0 and =0
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3. Check the solutions when () A>0 and (b) A = 0.
a) If A, %, >0, then from the Kuhn-Tucker conditions listed under (c),
64—4x— A =0
9%6—8y—A=0
36—-x—y=0
In matrix form,
-4 0 -17[x —64
0 -8 —-1]||y]|=]-96
-1 -1 0 A =36
Using Cramer’s rule where |A| = 12, |A;| = 256, |A,| = 176, and |A5| = —256, we get
% =21.33, 5 =14.67,and A = —21.33
which cannot be optimal because A <0 in violation of 2(b) of the Kuhn-Tucker conditions. With A<0,
from 2(c), the constraint is a strict equality and decreasing the level of output will increase the level
of profit.
b) If X =0 and %, y >0, then from 1(c),
64—4x=0,x =16
9% —-8y=0,y=12
This gives us the optimal solution, ¥ = 16, y = 12, _and A =0, which we know is optimal because it
violates none of the Kuhn-Tucker conditions. With A = 0, the constraint is nonbinding as we see from
the optimal solution X + y = 28 <36.
13.37. Minimize cost c = 5x* — 80x + y* — 32y
subject to x+y=30

Multiplying the objective function by —1 and setting up the Lagrangian, we have
Max C = —5x% + 80x — y* + 32y + A(x + y — 30)

where the Kuhn-Tucker conditions are,

1.

a) C,=-108+80+A=0 C,=—25+32+A=0
b) x=0 y=0

c) %(—10£+80+1) =0 F(=27+32+1) =0
a) C,=%+7-30=0

b) A=0

c) AE+7—30)=0

Check the possibility of A = 0.
If A = 0, then from 1(a),

—-10x+80=0 —2y+32=0
Therefore, x=8 y=16

But this is a violation because X + j = 24 fails to satisfy the initial constraint X + y = 30. So A>0.

Check to see if ¥ or y can equal zero. ~
From 1(a), if ¥ =0, A= —80, and if y = 0, A= —32, both of which violate the nonnegativity
constraint on variables. So ¥,y > 0. '



320

13.38. Minimize the same function as above,

subject to a new constraint,
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Now check the Kuhn-Tucker conditions when X,y >0 and A>0. If A>0 and %, 7>0, all the
partials are strict equalities and we have

-10 0 17[*% —80
0o -2 1||5|=|-3
1 1 of[A 30

where |A| =12, |A,| = 109, |A,| = 252, and |A;| = 440, giving the optimal solution, which viol
none of the Kuhn-Tucker conditions:

=9, y=21,A=36.67

5x> — 80x + y* — 32y

x+y=20
The Lagrangian function and Kuhn-Tucker conditions are,

Max C = —5x% + 80x — y* + 32y + A(x + y — 20)

a) C,=—-10x+80+A=0 C,=-29+32+2=0
b) =0 y=0

c) #(—10x+80+21) =0 J(—25+32+1)=0
a) C,=X+7—-20=0

b) A=

) A(X+7—20) =

Check the possibility of A = 0.
If A =0, then from 1(a),

—10x+80=0 —2y+32=0
Therefore, ¥=8 y=16
This violates no constraint because x + y =24 satisfies ¥ + y = 20. So A=0or A>0.

By the same reasoning as in step 2 above, we can show %,y > 0.

So we are left with two possibilities, depending on whether A = 0, or A >0.

a) If A>0 and ¥,7 >0, all the derivatives are strict equalities and we have

-10 0 17[«x —80
0 -2 1|ly|l=]|-3
1 1 0|]|A 20

With |A| = 12, |A,| = 88, |A,| = 152, and |As| = —80, the solution is
$=1733,7=12.67, A= —6.67

Since A is negative, condition 2(b) is violated and the solution is nonoptimal. The s
suggests we can reduce the cost by increasing output.

b) If A =0 and %,7>0, from 1(c),

—10%+80 = 0 —25+32=0
£=8 7=16
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This satisfies the new constraint x + y =20 and violates none of the Kuhn-Tucker conditions, so
the optimal solution is

£=8,7=16,A=0

With A =0, the constraint is nonbinding. The firm can minimize costs while exceeding its
production quota.

13.39. Maximize the utility function,

u=xy

subject to the following budget and dietary constraints,

3x+4y=144 budget constraint
5x +2y=120 dietary constraint

The Lagrangian function and Kuhn-Tucker conditions are

Max U = xy + A;(144 — 3x — 4y) + 1,(120 — 5x — 2y)

a) U,=7—30—50,=0 U,=%—4h—21,=0
b) =0 y=0

c) FF—30—51)=0 F(T—4h; —24) = 0
a) U, =144-3x—4y=0 U, =120—-5x—-2y=0
b) M=0 »=0

c) 0144 —3x—4y) =0 (120 -5 —2y) =0

Given the nature of the objective function, we assume neither of the choice variables, X, ¥, can equal
zero. Otherwise the utility function, u = xy = 0. If X,y >0, from 1(c),

F=30—510,=0

x— 4A1 - ZAZ = 0
Noting that the MU, = u, = y, MU, = u, = %, and assuming MU’s > 0, both A’s cannot equal zero, so
at least one of the constraints must be binding. This leaves us with three possibilities: (a) A; >0,
X =0, (h) A; =0, A,>0, and (c) A, >0, A, >0. We examine each in turn.
X, >0, X, = 0, % 7> 0. From the 1(c) and 2(c) conditions we have four equalities, three of which still
call for solution.

y—3X—5A,=0

F—4M—220=0

144-35—45 =0

L=0
Putting the latter in matrix form,
0 1 =-31=x 0
1 0 -4y |= 0
-3 -4 0 A —144

and solving by Cramer’s rule, where |A| = 24, |A,| = 576, |A,| = 432, and |A;| = 144, we have
$=24,7=18,1,=6
But checking the answer for internal consistency, we find
U,, = 120 —5(24) —2(18) = =36 <0

This is clearly a violation of the Kuhn-Tucker conditions which require dU/dA;=0 and hence the
solution is not optimal.
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by Ay =0, Ay>0, 720, From 1(c) and 2{c). we have four equalities. three of which must still be

sofved. = =
F=3 =5 =D
f“;;‘ﬂ}'ﬂ
I1='U
120-5i-2 =0

Setting the latter in matrix form and solving by Cramer's rule,

0 1 -=5\Ix 0
1 & =2||l¥Fl= 0
-5 =2 0 ]| A - 120

we have |A| = 20, |A,| = 240, | A,| = 600, and | A,| = 120, and
T2, =30, A =6
But checking for internal consistency once again, we find
Uy, = 144 — 3(12) ~ 4(30) = ~12<0
This violates the Kuhn-Tucker conditions and so the solution cannot be optimal.

¢} Ay >0, A >0, 55> 0. From 1{c) and 2(c), all four derivatives are strict equalities which we set down
immedhately in matrix form.

0 1 -3 -$5\[: 0
1 0 -4 -=2||¥ 0

=3 —4 8 oll&l" 11
s =2 0 olli -120

From Cramer's rale, where [A| = 196, | A, | = 2688, | A;| = 5040, |A,| = 240, and | A,| = 864, we find
the optimal solution, which violates none of the conditions:

£= 1371, = 2571, A, = 1.22, A, = 4.41

13.40. Confirm the results of Problem 13.39 with (@) a graph and (b) explain what the graph
illustrates

@) See Fig 13-3.

ix 4+ 2y = 120 Dristary Constrain

wn
22 ¥ g

18

Jxeadyg 44
Incoime Constraing

12
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b) At point A, ¥ =24, y = 18, the income constraint is exactly fulfilled, but the dietary constraint is
violated. Hence A cannot be optimal. At point B, X¥ = 12, y = 30, the dietary constraint is exactly
fulfilled, but the income constraint is violated. Hence B cannot be opuimal. At poimt C, x =131,
7 = 25.71, and both the income constraint and the dietary constraint are binding with no Kuhn-Tucker

condition violated. Hence C is optimal and note that it occurs exactly at the intersection of the two
constraints.

~ 13.41. Following a fair-rate-of-return policy, regulators of natural monopolies, such as utility com-
panies, restrict profits to a certain fixed proportion of the capital employed. The policy, however,
leads to a distortion of inputs on the part of regulated industries that has been termed the
Averch-Johnson effect. Assuming a firm wishes to maximize profits

n(K,L) = E(K,L) —rK—wL
subject to the fair-rate-of-return constraint,
E(K,L)—wL=mK

where E = earnings and Ex, E; >0, Exg, Er <0, and EggErr > Ex; E; g, r = cost of capital,
w = wage, m = maximum rate of return on capital, and m — r >0, use concave programming to
demonstrate the possibility of a distorting effect predicted by Averch-Johnson.

The Lagrangian function and the Kuhn-Tucker conditions are

II(K,L) = E(K,L)—rK—~wL + A[mK - E(K,L) + wL]

1. a) g =Ex—r+Am—AEx=0 O, =E,—w—AE, +Aw=0
b) KE=0 L=0
c) R(Ex—r+Am—2AEg) =0 L(E,—w—AE_+iw) =0
2. a) M,=mK+wL—-EK,L)=0
b) A=0
c) AmK +wL - E(K,L)] =0

Making the common sense assumption that K, [ =0, adding and subtracting Ar within the parentheses
of the equation on the left in 1(c), and rearranging we have,

(1= N(Exg—r)+A(m—r) =0 (13.27)
A-A)(EL.-w)=0 (13.28)
mK+wL —EK,L)=0
A[mK +wL - E(K,L)] =0

If A=1 in (I3.27), m—r =0 and this would contradict the assumption that the maximum
allowable rate of return is greater than the cost of capital m>r. So A # 1. But if A # 1, from

(13.27),
Ex=r- %__—;)) (13.29)
and from (13.28),
EL=w (13.30)
Dividing (13.29) by (13.30),
[y
By LU=N1 1 A& 7 (13.31)

By, w w (1-w
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If & =, the constraint is not binding and we have the unregulated oplimum.,
E‘ F

— T —

E, w

where Eg = MRPy and E, = MRP;. Dividing numerator and demrominator on the left by the
common output price, the above expression is equivalent (o the familiar,

MPy _
MP,
But if A # 0 and the constraint is binding, regulation interferes with the economically optimal solution

in which the ratio of marginal products exacily equals the ratio of respective prices Thus if A 20,
there will be a distorting effect on the profit-maximizing level of output.

r
W

13.42. (a) Specify the direction of the distortion the Averch-lJohnson effect predicts and ()
demonsirate the conditions necessary to verify it in terms of the previous model.

a)

b)

The Averch-Johnson effect predicts the distortion will lead to a higher K/L matio than in an
enregulated market. If more than the optimal amount of capital is wsed, the marginal productivity of
capital will be diminished and the result predicted by the Averch-Johnson effect will be

J“Fx F
HF; w
In terms of (13.31), the biss towards greater than optimal capital intensity will be true whenever
Alm = r)
L W e ‘
(- D)w =10 {13.32)

Since we know r >0, w > 0, and by the assumption from commaon practice, m — r > 1), (13.32) will be
positive whenever & <1. To determine the sign of A, we revert to comparative-static techniques

Having determined that 7. 7, A # 0, we know that all three partial derivatives in the Kuhn-Tucker
conditions must hold as equalities:

(1=AEy—-r+Am =10
(1= ANE,~w)=0
mK +wl - E(R,Ly=0

These eguations are the same as the first-order conditions we would obtain if we had maximized the
original function subject 1o the equality consiraint:

Maxm(K. L) = E(K, L) —rK —wl
subject 1o E(K,L) = wL = mK
The secend-order conditions for maximization require that the Bordered Hessian be positive:
(1- .i:}E“ {(1-A)Ex; m~— Eg
Bl =](1=AEx (1=NEyu w=E |>0
m= .E‘ “"-.E_L u
Expanding along the third row,
[H| = (m— Eg)liw— E N1 - i]‘-gm. = {m = Eg)(1 - 'i:IE_:u.]
= [w— E:.H_["""_ .Ei.Hi - AEgy — (i — E‘H!. —A]E;_;I
Since w = E; al the optimum, all the (w — E,) terms = 0, leaving
|H = —(m = EgY'{(1 - D)Ey,
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For [H| =0,
(1=AE ;<0
Since E;; <0 from our earliér assumption of strict coneavily, it follows Lhat
A<l
With A< 1. (/3.32) > 0 and from (13.31),

H.P[ F
MFL L ; ﬂ.E.DJ




Integral Calculus:
The Indefinite
Integral

141 INTEGRATION

Chapiers 3 to 6 were devoled to differential calculus, which measures the rate of change of
functions. Dilferentiation, we learned, is the process of finding the derivative F'(x) of a function Fx).
Frequently in economics, however, we know the rate of change of a function F'(x) and want to find
the original function. Reversing the process of differentiation and finding the original function from
the denivalive is called integration, or antidifferentiation. The original function F(x) is called the
integral, or wntiderivative, of F'(x).

EXAMPLE 1. Lctting fix) = F'(x) for simplicity, the antiderivative of f{x) is expressed mathematically as
I.ﬂﬂd: = Fx)+¢c

Here the lefi-hand! side of the equation is read, “the indefinite integral of f of x with respect to x.” The symbol J
i an fnsegral sign, 7(1) is the integrand, and c is the consiant of infegraiion, which is explained in Example 3.

142 RULES OF INTEGRATION

The following rules of integration are obtained by reversing the corresponding rules of
differentiation. Their accuracy is easily checked, since the derivative of the integral must equal the
integrand. Each rulc is illustraied in Example 2 and Problems 14.1 to 14.6.
Rule 1. The integral of a constant k 1s

J-.kd,t=kx+r

326
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Rule 2. The integral of 1, written simply as dx, not 1 dx, is

Idx=.t*c

Rule 3. The imegral of a power function x", where n # —1, 1s given by the power rule:

1
J-x"'d.t— 4 m#* =1
n+1

Rule 4 The integral of x~' (or Lix) is
JJ.‘ ‘dx=Inx+¢ x>0
The condition x>0 is added because only positive numbers have logarithms. For negative numbers,

I:"d.:-ln:i.rhc x#0

Rule 8. The integral of an exponentual function is

me=

klna “

Rule 6. The integral of a natural exponential function is

If"’d,r-=$+r since Ine=1

Rule 7. The integral of a constant times a function equals the constant times the integral of the
function.

jkf[:]dx » kjf{:}dx

Rule 8 The integral of the sum or difference of two or more funclions equals the sum or difference
of their integrals.

J‘U{I} + glx)]dx = j.f{ﬂdx + Ig{x}d‘.r

Rule 9. The integral of the negative of a function equals the negative of the integral of thai
function.

I‘fl‘ﬂdr = - fﬁx}*ﬂ

EXAMPLE 2. The rules of imegration are illustrated below. Check each answer on your own by making sure that
the derivative of the integral equals the inlegrand.

i) Jlir=3.:+r (Rule 1)

. = | i —Fog. "
i) J-I:d_'r—mij +f—§r +c {Rule 1)
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i) JS.E"J.E =35 j.r':.lt {Rule 7)
= S(lx’ +¢ } {Rule 3)
5 I g
=+

where ¢, and ¢ are arbitrary constants and S¢, = ¢. Since ¢ is an arbitrary constant, it can be ignored in the
preliminary calculation snd included only in the final solution.

) I:y—ﬂlmﬂjﬂrjxdnfﬁ (Rules 7, 8, and 9)
T T e T (Rules 2 and 3)
=it -+ x+c

v) IE-:'de = 3j;-l dx (Rule 7)

=3In|x|+¢ {Rule 4)

vi) Izhi"amz” (Rule 5)

vii) fﬂe'“dx -qi—;u {Rule 6)

- =3 M4

EXAMPLE 3. Functions which differ by only a constant have the same derivative, The lunction Flx) = 2e + k
has the same derivative, F'(x) = f(x} = 2, for any infinite number of possible values for k. If the process s
reversed, it s clear that J2 dx must be the antiderivative or indefinite integral for an infinite number of funclions
differing from each other by only a constant, The constant of integration ¢ thus represents the value of any
constant which was part of the primitive function but precluded from the derivative by the rules of
differentiation.

The graph of an indefinite integral [ flx) dx = F(x} + ¢, where ¢ is unspecified, is a family of curves parallel
in the sense that the slope of the tangent to any of them at x is fix), Specifying ¢ specifies the curve; changing ¢
shifts the curve. This is illustrated in Fig. 14-1 for the indefinite integral [ 2dr = 2r + ¢ where ¢ = -7, =3, 1, and
3, respectively. If ¢ = 0, the curve bepins at the origin,
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143 INITIAL CONIMTIONS AND BOUNDARY CONDITIONS

In many problems an (nitted condinen (y = v, when x = ) or a boundary condition (y = ¥, when
x=pxy) w given which uniquely determines the constant of imegration. By permitling & unigue
determination of ¢, the initial or boundary condition singles out o specific curve [rom the family of
curves illustrated in Example 3 and Problems 14.3 to 14.5.

EXAMPLE 4. (Giiven the boundary condition y = [1 when x =3, the integral ¥ = [2dy is evaluated as
Todlorers:

}'=rj1d.r=21'-‘-r

Substituting ¥ = 11 when © = 3,
11 =2%¥+e =5

Therefore, p = Xr + 5 Mow that even though ¢ & specified, J2dy remalns an indefieite integral because x is
unapecificd. Thus the integral 2k -+ 5 can assumie &n infinie number of possible values

144 INTEGRATION BY SUBSTITUTION
Integration of a product or quatient of two differentiable functions of 1, such as

j.'lh"{f-l-E}dr

cannct be done directly by using the simple rules above. However, if the integrand can be expressed
a5 g consian! multiple of another function & and ifs derivative du/dy, integration by substitution s
possible. By expressing the integrand fix) s a function of & and s derivative du/dr and integrating

with respect to x,
Im;.n= j(u%)d.r

J.f{x}ir=jun‘u=f'{uj+r:

The substitution method reverses the operation of the chain rule and the generalized power function
rufc in differcntial calculus See Examples 5 and 6 and Problems 14.7 1o 14,18,

EXAMPLE 5. The substitution method is nsed below to determine the indefinite integral
J.tlr‘{r'wz}d.r
1. Be sure that the integrand can be converted to a product of another function o and its denvative dfdx
times 8 constans multiple, (¢) Let & equal the function in which the independent variable is raised to the
higher power in 1zrms of nbaolute vahse; bere let u = 3 4+ L {(F) Take the derivative of w; dwlds = 327, (&)
Solve algebraically for dis dr = di/3c”, (d) Then substitute u for x° + 2 and d/3x° for dx in the original
integrand:
dn
J.I.'E'.l:’Lr'+1:|.n'r= Ilhi-u--ﬂcj-h:iu ==1-J-ud'|-|

where 4 i a constant multiple of a.
2. Integraie with respect o u, using Rule 3 and ignorimg ¢ in the fiest step of the caicalation

4Ju#u=4{j.ﬂ=hr‘+1:
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3, f.h.m:ﬂhn:kwﬂu terms of the orfginal problem by substituting " + 2 for u.
J-llﬁf+1]d:=2n’+r= U+ 4 ¢
4, Check the onswer by differentinting with the generalized power function rule or chain rule.
i—[zu-‘ F 27+ 6] = 4 + 200 = TS+ 2

See also Problems 147 to 1418,

EXAMPLE 8. Determine the integral [ do{x + 17 oy
Let u=x+1, Then dwidr =1 and dv = dw'l = die, Substitute u =1+ | and dy = du in the original
integrand.

j-hﬂ{:+'[}’d.l . jm’# =-|J.=H"du
Since x is a variable multiple which cannot be factored out, the onginal inegrand cannot be transformed 1o a

constav multiple of udw'ds, Hence the substitution method is ineffectual. Integration by parts {Section 14.5) may
be helpiul

145 INTEGRATION BY PARTS

If an integrand is a product or guotient of differentiable functions of x and cannot be expressed
a% a constant multiple of u dw/idr, integration by parts is frequently useful. The method is derived by
reversing the process of differentiating a product, From the product rule in Section 3.7.5,

ilﬂﬂz{ﬂl = flxhg'{x} + plx) S (x)
Taking the itniegral of the derivatlve gives
Jix) glx) = J-.i"m:'{r}d-r + J glx) fix)dx

Then solving algebraically for the first integral on the night-hand side,

j Flxg (¥) dx = flx)gte) - f B0 (x) e (141)

See Examples 7 and 8 and Problems 14,19 1o 14,24,

For more complicated functions. integration fables are generally used. Integration tables provide
formulas for the integrals of as many a8 300 different functions, and they can be found in mathematical
handhooks.

EXAMPLE 7. Integration by parts is used below o determine
I dx(x +1)dx
I. Secparate the integrand indo two parts amenable to the formuls in (14.7). As a peneral rule, consider first
the slmpler function for fiz) and the more complicated function for g'(x). By letting fir) = 4r and
glxy = (x+ 1Y, them F'{z) = 4 and gix}) = [ (x + 1) dx, which can be¢ imtegrated by using the simple
power rule {Rule 1):

glx) = j:n 1y = J(z+ 1) + ¢
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[§)

Substitute the values for f(x), f'(x), and g(x) in (I4.1); and note that g'(x) is not used in the formula.
[[astes 7ax = e 500~ [ tsco- rreonas
=4x[F(x +1)*+¢] - f Gx + 1)* + ¢i)(4) dx

= x(x +1)* +4c;x — j [(x+ 1)* + 4¢;] dx
3. Use Rule 3 to compute the final integral and substitute.

j 4x(x+ 1) dx = x(x +1)* +dcix —3(x + 1) —dcix + ¢
=x(x+1)*-ix+1)y+c

Note that the ¢, term does not appear in the final solution. Since this is common to integration by
parts, ¢, will henceforth be assumed equal to 0 and not formally included in future problem solving.

4. Check the answer by letting y(x) = x(x + 1)* — 3(x + 1)° + ¢ and using the product and generalized power
function rules.

y'(x)=[x-4x+1P+(x+1)*1] - (x+ 1)* = 4x(x + 1)°

EXAMPLE 8. The integral [2xe*dx is determined as follows:
Let f(x) = 2x and g’(x) = 5 then f’(x) = 2, and by Rule 6, g(x) = [ e*dx = ¢*. Substitute in (I14.1).

[ e = 1098 - [ 500 r@r
=2x-e"—J'e"'2dx=2xe"l—2fe"dx
Apply Rule 6 again and remember the constant of integration.
foe”dx =2xe*—2e"+c

Then let y(x) = 2xe* — 2¢* + ¢ and check the answer.
y'(x) =2x- e +e-2—2e = 2xe"

14.6 ECONOMIC APPLICATIONS

Net investment I is defined as the rate of change in capital stock formation K over time . If the
process of capital formation is continuous over time, [ (¢) = dK(¢)/dt = K'(f). From the rate of
investment, the level of capital stock can be estimated. Capital stock is the integral with respect to time
of net investment:

K, = f[(t) dt = K(t) +c=K(t) + Ky
where ¢ = the initial capital stock K.
Similarly, the integral can be used to estimate total cost from marginal cost. Since marginal cost

is the change in total cost from an incremental change in output, MC = dTC/dQ, and only variable
costs change with the level of output ‘

TC=JMCdQ=VC+c=VC+FC
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since ¢ = the fixed or initial cost FC. Economic analysis which traces the time path of variables or
attempts to determine whether variables will converge toward equilibrium over time is called
dynamics. For similar applications, see Example 9 and Problems 14.25 to 14.35.

EXAMPLE 9. The rate of net investment is given by I(f) = 140>, and the initial stock of capital at ¢ = 0 is 150.
Determining the function for capital X, the time path K(r),

K= J 140 dt = 140J £ dt

By the power rule,
K = 140(t"*) + ¢ = 80/ + ¢
But ¢ = K, = 150. Therefore, K = 80”4 + 150.

Solved Problems

INDEFINITE INTEGRALS

14.1. Determine the following integrals. Check the answers on your own by making sure that the
derivative of the integral equals the integrand.

a) f 3.5dx

J3.5 dx=35x+c¢ (Rule 1)
b) f —Ldx
j—%dx=—f%dx:—%x+c (Rules 1 and 9)
c) fdx
fdx=x-|-c (Rule 2)
d) fxs dx
f Pde=U"+c (Rule 3)
e) f4x3 dx
f4x3 dx = 4[ x*dx (Rule 7)
=4@EH+c=x"+c (Rule 3)
i) J 2 dx
fxm dx =3P+ ¢ (Rule 3)
g) fx"“s dx

fx~1/5 dx =3 + ¢ (Rule 3)
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" J-l.:"d:
Ju'*ﬂ: ST B -Eﬂ- (Rule 3)
i) I:""':ﬂ:
_-;'“d_.;n:—g,: Mir= = +¢ (Rule 3)
3 e

14.2. Redo Problem 14.1 for each of the following:

a) I-i_—x

jE:J‘ld‘I :|:'||'|]_1|+; ‘“'lull:'q']
3 A
b) I51_1£[I
j‘ix ‘dr = Slajx| +e {Rules 7 and 4)
e —Lit
T
LI X [ Rules 7 and 4
j.‘h _3,‘-‘ 3|1.t| Fd f and 4)
i) j"l.""id.r
fﬁdx=f.r""#r=ir’"1+c (Rule 3)
e
) ?
IT—'-“’:'*;&F—%{!+: (Ruake 3)
oy
L f B
J%FI: ""-:'_t-%.lr""’-l-'r (Hule 3)
£) J.{:i:ﬁ+1f+3.ﬂdx
J’:sfu.r‘ﬂ:m:njfdnzj'fﬁﬁj'm (Rules 7 and 8)
= S{3x") + 204" + ) + £ {Rule 3)

-tk gt A R
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h) j (2x5 — 3x%) dx

f(2x6—3x4)dx =& -3 +¢

[CHAP. 14

(Rules 3, 7, 8, and 9)

14.3. Find the integral for y = [ (x> + 3x~") dx, given the initial condition y = 0 when x = 0.

y = f (2 +3x" ) dx =22 + 6x2 + ¢

Substituting the initial condition y = 0 when x = 0 above, ¢ = 0. Hence, y = 2x*? + 6x2.

14.4, Find the integral for y = [ (2x* — 3x™"*) dx, given the initial condition y = 6 when x = 0.

y= f (2x° = 3x Mydx =10 —dx + ¢

Substituting y = 6 and x = 0, ¢ = 6. Thus, y = 3x° — 4x>* + 6.

14.5. Find the integral for y = [(10x* — 3) dx, given the boundary condition y =21 when x = 1.

y=f(10x4—3)dx=2x5—3x+c

Substituting y = 21 and x = 1, 21 = 2(1)° = 3(1) + ¢
y=2x—3x+22

14.6. Redo Problem 14.1 for each of the following:

a) f 2%

4In2

g 24x
2%dx = +: (Rule 5)

c) f e>dx

Sx
f S dx = % +e (Rule 6)

=1+ ¢

e) f (6€* — 8e %) dx

f (6 — 8e ™) dx =

INTEGRATION BY SUBSTITUTION

c=22

b) fS"dx

8.X.'
fS"dx= +c

In8

d) f 16e~* dx

16e~%

f 16e *dx =

8e =

—2

+c=2e"+4e >+

+c=—4e*+¢

14.7. Determine the following integral, using the substitution method. Check the answer on your

own. Given [10x(x* + 3)* dx.
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149,

14,140.

14.11.

Let w = x* + 3, Then diwidx = 2x and dx = di2x. Substituting in the onginal integrand to reduce it to
a fusction of udwidy,

[ e st [ttt

Integrating by the power rule, 5 w'de =5’ =t 4o
Substituting & = x° + 3, JiiE + P dr =t s e = (B4 3  +¢

Redo Problem 14.7, given [ %2y ~ 5)" dx.
Let w = L' = 5, dwidy = 1, and dy = duf1 0", Substituting in the original integrand,

3 W
I:‘{h 5 d J’m. 2 mju‘.ﬂ;
Ini i 3 #JJH—L{_H.'I A
niegrating, l'ﬂJ. =0ls }—m 3

Substituting. Ix‘{lﬁ' —5}*41'.r=;—unr"+: =~;E{lr‘—5]’-rr

Redo Problem 14.7, given [ (x - 9)™ dx,
Let b = & =4 Then dwide = 1 and dx = du. Substteling,

j-fx-lil}“d.r— J.n“du

Integrating, J.u“'iu - lila;”"--:
Substituting, J’tr-';}“‘d.: =% (x=9y" +¢
Whanever dufde = 1, the power rule can be wed immediately for integration by substitation.

Redo Problem 14.7, given [ (fx - 11) " dx.
Let w = fir — 11, Then dwidy = § and dx = dw’h. Substituting,

I{ﬁ:-ll}"ir- i ;!u-wu

Int ! H-Il:ﬁ.r"-!{—l'ﬂ‘_*. - -iu" F
& o f B\ —4 J 2

Subatituting., Jr[m-du'u:--ﬁ{ﬁ:-u]"u

Motdee that here dwfle = 6 # 1, and the power rnale cannot be wed direetly.

Redo Problem 14.7, given

f{éx’dﬂﬂim

f Tt I el
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Lot i = de’ + 7, dwide = 129, and dx = dw'i2y’. Schatituting

U “Tdi
[ |1-f 1: ;

1
Imtegratimg. 12 Tl e gy L4
st oy
Substituting, @+ T 1 +T)

14.12. Redo Problem 14.7, given

ﬁﬁ+4:+1ﬂ'dr
f F-t-rt-l-i[;

Let w= ' 4.0+ 5x. Then dwlde = 3r° + 2 + 5 and dr = duw(3c" + 2r + 5), Substituting,
J{&t’+d¢-¢1ﬂ]u"-i-—-ﬂ?1.u"d‘u

+ix+5
Integrating. 1ju ‘du=—-u""+c
i |
Substituting, g e

Ao+ uP " [B+o+sp ¢

14.13. Redo Problem 14.7, given
dx
-5
# — =1
[T

Let w = 9r — 35, dwlly = 9, and dlx = ¥, Sobslituting,

ju"% =-;Ju Ll

Integrating with Rule 4, § fu " du = {in|u|+ ¢, Since u may be 20, and only positive numbers have logs.
abways use the absolute value of u See Rule 4, Substitutme,

dx 1 q
I-E:-i-rslnl'h'-E +

14.14. Redo Problem 14.7, given

3’1"'2.1;
Ja

Let i = 4x + 8r, digde = 12¢° + 8, and dr = digf 1205 + B), Substituting,

I{.’lf+2!|u"$+s=ifu"iu

Imtegrating, !_ij.n"du—::-lnjuhr
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I +2

e *ﬂrd—t‘:—lﬂ'h'l"l‘ﬂl' 4

Substiruting, j

14.15. Usc the substitution method to find the integral for [ x'e” dx. Check your answer.
Lei = x*. Then dwidr = dr' and dr = die'dr’. Substituting, and noting that u i now an cxponent,

If.-— =—Jr‘d&r

L
Inicgrating with Rule 6, Iﬂm=if+i'
1
Substituvting, j.l:’r"d.r = Is‘ e

14.16. Redo Problem 14.15, given [ 24xe™ dx.
Let n = 3, duidy = fx, ond ds = di'br, Subatiturkng,

JH.::"—-II;J
Integrating, l]r‘d# =4+ ¢

Substituling, J-EJ«::"' dr = 4" +¢

14.17. Redo Problem 14.15, given [ 1de™ Tde,
Let w=72r+ 7 then dwidy = 2 and dy = duf2 Substilufing,

J‘l-i.r'df=?J‘e"du=‘Fr+:

Submtituting, J e My = T

1418 Redo Problem 14.15, given | See™ * d.
Let w = 507 + 3, dwdds = 1, and dr = du/10x. Substitvting,

J’sn-"—“‘ —ljfd-

10 2
i ! 1
Iniegrating. 2 c"ﬂ'u=ir“+r
Substituting, Sxe™ gy = ‘1?_,1-"*: +£

INTEGRATION BY PARTS

14.19. Use imtegration by parts (o evaluate the following integral. Keep in the habit of checking your
answers. Given [ 15x(x + 4)" dx.
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Let fix} = 15x, then f{z) = 15, Let g'(x) = (x+ 4P, then g{z) = [(x+ 4)"%dr = §{x + 4)*%. Sub-
stiluting im (J4.7),

j 185(s 4 472 dr = f(x)glx) - Jﬂzlffr}ﬁ
= Lx(dix + 47— J.i.[:+4}*!154; = frx + 4 —ﬁj {x+ 4y dy
Ewvaluating the remaining intepral,

JIS:'{: 4%y = e + 4 - Wx + ) =

1420, Redo Problem 14.19, given

=0

Let fix} = 2z, f(x) = 2, and g'(x) = {x = B)"" then g(x) = [ (x - 8) " dr = ~§{z = §)~L. Substituting
in (140,

j—;& :u: —-[.u ua-’] J‘-él’,rwﬂ}" lﬂ--x{xvﬂ}'ﬂj’ﬁx-t}"h

Imtegrating for the lass tme,

l' -3 ol ,_.__,_1,_
I{I-Eﬁ:dr_ alr =8 ' =fx =8 "%c g i s

14.21. Redo Problem 14,19, given
Six
{x— l}ﬁh

Let fix) = Sx, {'{x) = 5, and g'{x} = (x=1)"% then gix) = [{xr—1)"2dr = —{x— 1)". Substituting
in (741,

I{I?n!l# = Sef—(x—1)""] - J-_['T_ Ll I]-I+5-[EI_ L
Integrating again,

S5 : -4
el - = + _T| o —— -l %p
J'll_w#.r Sx(x— 1"+ 5Smlz—1| +e =1 Shnjx—~1]+¢

14.22. Redo Problem 14.19, given [ fuee®*" dex.
Let fix) = 6o, Flx) =6, g'(x) = ¢, and glx) = [ Tl = ¢*7, Using (14.0),

Iw*‘d: - ﬁ:c'"—Jr‘"ﬁd: 'E.te'"—ﬁ-[l‘”dr
Imiepgraiing again,

Jhmr*"'.i-.-- BT — et T
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14.23. Use integration by parts to evaluste [ Laxe ™™ dx.
Let 7(x) = 16x, F'(x) = 16, i) = &%, and p{x} = f &9y = —¢-=*", Using (J4.1),

‘[lﬁ-ﬂ'_'"r’d-: e 151‘!-""? - j‘__.l.-l.n-'lllﬁ_it s |'ﬁ;t-l.'_':""ﬂ'|' 16 J-I-w-hi...
Integrating once more,

J]hrf""‘""'d,r-r = a0 = 1RV M 4

14.24. Redo Problem 14.23, given [ £ e™ dy.
Let fix) =, F'(x} = 2z, g'lx) = ¢, and glx) = [ dx = }¢™. Substituting in {747}
J‘fednﬁwﬂ—jjrﬁ{hm:wﬁ—an (142}

Using parts again for the remaining integral, fix) = &, f{x) = 1 g'(x) = ¢*, and gz} = [£5dr = je™.
Using {140,

Jn-hu:: = xlpe™) - Jiﬂ'd: = Lo = Yie™)
Finally, substiuting in {74.3),

J‘fﬁn_wﬁ—gmﬂﬂﬂ

ECONOMIC APPLICATIONS

14.25 The rate of net investment is T = 400", and capital stock at ¢ =0 is 75. Find the capital
function K.

E=II#=JW”#=4{EB“}+r=1§F’+r
Subgituting 1 = 0 and K = 75,
Ta=0+rc c=T75
Thus, K = 257 + 75,
14.26. The rate of net investment is J = 60", and capital stock at /= 1 is BS. Find K,
I-IE&"’&-M:‘"*#

Atr=1and K = &S,
BS = 45{1} + ¢ o= 40
Thues, K = 4577 + 40L

14.27. Marginal cost is given by MC = JTCAQ = 25 + 300 - 90°. Fixed cost is 55. Find the (a} total
cost, (&) average cost, and (¢) variable cost functions

a) ’ﬁ'_‘=J]-'ll:dE= f{u+m—9w1da=ﬁa+ 15G —30 +¢
With EC = 55, 01 @ = 0, TC = FC = 35, Thus, ¢ = FC = 55 and TC = 250 + 157 - 30" + 55.
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T 5%
) C o o o 2§ -3+ =
) AC= = + 150 - 3¢¢ 5

c} VO =TC - FC = 150 + 150" - 3¢¢

1428, Given MC = dTC/Q = 32 + 180 - 12¢°, FC = 43. Find the {a) TC, (b) AC, and (¢) VC

functions.
a) TE-JHWE-J{E+IH-E—IEE’ME-HE-‘J{!’—-‘EJH
ALQ =0, TC = FC= 43, TC = 320 490 < 40" + 43
T R
b AC=—=2+93~ —
} ) + 9 d-ﬁ"+ﬂ
) VC =TC—-FC =310 + 3° — 4

14.29. Margmal revenue 15 given by MR = dTR/d(Q = 60 — 2 — 2{¥. Find {a) the TR function and
(#) the demand function P = f{{J).

a m=JHRdE=j{m—ze—zmdu=m—e’—i-z*+r
AL Q@ =10, TR = . Therefore ¢ = 0, Thus, TR = 600 — * — i

k) TR = P Thersfore, F= TR, which is the same ms saying that the demand function and the
average revenue function are identical. Thus, P = AR = TRIQ = &0 — Q — .

14.30. Find (2) the 1otal revenue funciion and (&) the demand function, given
MR = B4 = 40 = ¥

) "'H'JMRdE-I{h—iﬂ-ﬂ‘}dﬂ*mﬂ—?@‘—iﬂ’ﬂ
AL =10, TR = 0. Thercfore ¢ = 0, Thus, TR = 840 — 207 — [0",

TR 1
b F'=H.R=‘F—M—1E—3f

14.31. With C = f(¥), the marginal propensity to consume is given by MPC = dCHY = (V). I the
MPC = (.8 and consumption 15 40 when income is zero, find the consumption fonction.

C=If’tﬂd’f=[fhﬂdl’=ﬂ.a}’+¢
Al Y =10, O =4l Thiss, & = $H} o C = 0EY + 43
1432, Given dCdY = 06+ 0 VY = MPC and C=45 when ¥ =0, Find the consumpiion
function,
= J‘(D.ﬁ+n'—l,}d'i'- I{ﬂﬁ+ﬂ.h¥""]aﬁ'-ﬂ.ﬁf+ 015 + ¢
VY.

At Y =0,C =45 Thuy, C = DAY + (L15Y* 4 45,
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The marginal propensity to save is given by dS/dY = 0.5 — 0.2Y 2. There is dissaving of 3.5
when income is 25, that is, S = —3.5 when Y = 25. Find the savings function.

S= J (0.5-0.2Y""*)dY = 0.5Y - 0.4Y" +¢

At Y =725,8 = =35,
3.5 = 0.5(25) — 0.4(V25) + ¢ ¢=—14
Thus, S = 0.5Y — 0.4Y"? - 14.
Given MC = dTC/dQ = 12¢*°2 and FC = 36. Find the total cost.
TC = J 12¢%524Q = 12—0—1‘5—60'5Q +c =242 +¢

With FC = 36, TC = 36 when Q = 0. Substituting, 36 = 24¢%5® + ¢. Since € = 1,36 = 24 + ¢, and ¢ = 12.
Thus, TC = 24¢°°2 + 12. Notice that ¢ does not always equal FC.

. Given MC = 16¢%*¢ and FC = 100. Find TC.
TC = j 16e*2dQ = 16 (61—4) %42 4 ¢ = 40e*2 + ¢

At Q =0, TC = 100.
100 = 40e° + ¢ c =60
Thus, TC = 40¢°2 + 60.




Integral Calculus:
The Definite
Integral

151 AREA UNDER A CURVE

There 15 no geometric formula for the arca under an irregularly shaped curve, such as y = f{x)
Between & = o and © = b in Fig. 15-1(a). Il the interval [a, b] is divided into n subintervals [x,, 5],
[rix), ele, dnd rectangles are constructed such that the height of each is equal 10 the smallest value
of the function in the subinterval, as in Fig. 15-1(b), then the sum of the arcas of the rectangles
£ e b Ay, called a Riemann sum, will approximate, but underestimate, the actual area under the
crve. The smallcr the subintervals (the smaller the Ax,), the more rectangles are created and the closer
the combined arcs of the rectangles E, fix) Ax, approaches the actual area under the curve. If

¥ = f{x)

./f"ﬁl]

|

X I I; I, Ip Iy X E

T ——

fani {Bry
Fig. 151
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{
i

the number of subintervals is increased so that n—, each subinterval becomes infinitesimal
(Ax; = dx; = dx) and the area A under the curve can be expressed mathematically as

A = lim 2 () Ax,

n—e =1

15.2 THE DEFINITE INTEGRAL

The area under a graph of a continuous function such as that in Fig. 15-1 from a to b (a<5)
can be expressed more succinctly as the definite integral of f(x) over the interval a to 5. Put
mathematically, '

b n
j fGydx = tim >, f(x) Ax,

Here the left-hand side is read, “the integral from a to b of f of xdx.” Here a is called the lower [imiz
of integration and b the upper limit of integration. Unlike the indefinite integral which is z set of
functions containing all the antiderivatives of f(x), as explained in Example 3 of Chapter 14, the
definite integral is a real number which can be evaluated by using the fundamental theorem of calculus
(Section 15.3).

153 THE FUNDAMENTAL THEOREM OF CALCULUS

The fundamental theorem of calculus states that the numerical value of the definite integral of 2
-ontinuous function f(x) over the interval from a to b is given by the indefinite integral Flx) =<
evaluated at the upper limit of integration b, minus the same indefinite integral F(x) + ¢ evaluated at
the lower limit of integration a. Since ¢ is common to both, the constant of integration is eliminated
in subtraction. Expressed mathematically,

f F(x) dx = F(x)

where the symbol [%, 12, or [---]Z indicates that b and a are to be substituted successively for x. Se=
Examples 1 and 2 and Problems 15.1 to 15.10.

" F(b) - F(a)

EXAMPLE 1. The definite integrals given below
4 3
1) f 10xdx () f (4° + 6x) dx
1 1
zre evaluated as follows:

" SR - 52 =175

1

4
1) J 10x dx = 5x*
1

2) f (4 + 6x) dx = [x* + 37} = [(3)* +3(3)%] — [(1)* +3(1)°] = 108 — 4 = 104

EXAMPLE 2. The definite integral is used below to determine the area under the curve in Fig. 15-2 over the
mnterval 0 to 20 as follows:

20
= 420~ }(0)* = 100
0

20
A=J Lrdx = 1

0



INTEGRAL CALCULUS: THE DEFINITE INTEGRAL [CHAP 15

The answer can be checked by wing the geometric formula A = Loy

A = Ly = J(20)(10) = 100

154 PROFPERTIES OF DEFINITE INTEGRALS

1.

Tt

Reversing the order of the limits changes the sign of the definite integral

[ frera= - [ e (15.1)
F] 1]

If the upper limit of integration equals the lower limit of integration, the value of the definite
integral 15 zero.

j " fix)de = Fla)— Fla) =0 (15.2)

The definite integral can be expressed as the sum of component subiniegrals

£ L]
f}’{ﬂd:=[ ﬁﬂiﬁfﬂx}ir ashsc (159}
] [ &

The sum or difference of two definite integrale with identical limits of integration is equal to
the definite integral of the sum or différence of the two funclions.

1] 1]
j Flxydx = r gix) dx = j’ [fx) = g} d (15.4)

The definite integral of a constant times a function is equal to the constant times the definite
integral of the function.

r kf(x)dx = k r flx) dx (15.5)

Sec Example 3 and Problems 15.11 to 15.14.
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ENAMPLE 3. To illustrate a sampling of the properties presented above, the following definite integrals are
fnated:

3 1
1. j 2x3dx=—J 2x3 dx
1 3

Checking this answer,

3 3
J 26%dx = 3x*| =3(3)* —5(1)* = 40
1 1

1 1
J‘ 2%dx = x| =3(1)*—3(3)" = —40
3 3

5
2 4[ (2x+3)dx=0
s
Checking this answer,

f 5 Qx +3)dx = (@ +3xE = [(52 +3(5)] - [(5 +3(5)] = 0

4 3 4
3. j-6xdx=j 6xdx+J’ 6x dx
0 0 <]

4 4
6rdx = 3x%| = 3(4) = 3(0) = 48
0
3 3
6xdx = 3x*| =3(3)>—3(0)* =27

0

S ™

4 4
J 6xdx =3x*| =3(4?-33)*=21
3

3

Checking this answer, 48 =27 +21

5 AREA BETWEEN CURVES

The area of a region between two or more curves can be evaluated by applying the properties of
\=nite integrals outlined above. The procedure is demonstrated in Example 4 and treated in

mhlems 15.15 to 15.18.

AMPLE 4. Using the properties of integrals, the area of the region between two functions such as

y,=3x"—6x+8

y,=—2x"+4x+1
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&) MNale the r:[-hnq:hip between e coarves, Sinoe ¥y les ilbove s, the dettred n:g;iuﬂ H :l.i.l'l:lpl'_l.' the prea
under v, minus the area under y; between x = (and x = 2, Hence,

| q
.4=L {1&—&”3};:-[ (=2 4+ dr + 1} dr
]
o
From (15.4), A=L [{36° — fir +8) — (~2¢" + dr + 1)

- J:uﬁ 1 + Tidr
= -+ T =T -0="7

156 IMFROPER INTEGRALS

The area under some curves that extend infinitely far along the x axis, as in Fig. 15-d{a), may be
estimated with the help of improper integrals A definite intcgral with infinity for gither an upper or
lower limit of integration s called an improper integral,

- b
Jﬂr}ﬂ and I flxyax

are improper integrals because = ks pot 3 number and cannot be substituted for x in Fiz). They can,
however, be defined as the limits of other integrals, a8 shown below.

L] L] ]
J‘f{lliw h'mj flxydx  and j. flx)de = Ifmj flx)dx

If the limit in either case exists, the improper intégral is said to comverge. The integral has a definite
value, and the area under the curve can be evaluated. If the imit does not exist, the improper integral
diverges and is meaningless. See Exampie 5 and Problems 15,19 10 15.25.

¥ ¥

Fig. 154

EXAMPLE 5. The improper integrals given bebow

"3 "6
(a) J‘—d.: {&) j‘—ar.:
If o |

are sketched im Fig. 15-4He) and (b)) and evelonted s follows:

o [[Fte= m [t v [ 2]
| 3 (=3]_ - <
- pa[2- 2] o (03] -
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because as b— %, —3/b— 0. Hence the improper integral is convergent and the area under the curve in
Fig. 15-4(a) equals 3.

co6 b
b) J —dx = lim J gd.x
1 X b—soo 1 X

= lim [6In|x[]2 = lim [61n|b|—61n|1]]

b—oo b—0

= lim [61n|p|] since In{1|=0
b—rx
As b— o, 61n|b|— o. The improper integral diverges and has no definite value. The area under the curve
in Fig. 15-4(b) cannot be computed even though the graph is deceptively similar to the one in (a).

7 LHOPITAL’S RULE

If the limit of a function f(x) = g(x)/h(x) as x —a cannot be evaluated, such as (1) when both
sumerator and denominator approach zero, giving rise to the indeterminate form 0/0, or (2) when both
merator and denominator approach infinity, giving rise to the indeterminate form oo/, L’Hoépital’s
i can often be helpful. L’Hopital’s rule states:
80 _ ()

= 15.6
i b W) e

% = illustrated in Example 6 and Problem 15.26.

PLE 6. The limits of the functions given below are found as follows, using L’Hopital’s rule. Note that
merator and denominator are differentiated separately, not as a quotient.
x—4 . 6x—2

(@) bmir—a &) hmod

2) Asx—4,x—4and 16 — x*— 0. Using (15.6), therefore, and differentiating numerator and denominator

separately,
fm 2=t = = -1
v 16— L4 —2x 8

5) As x— o, both 6x —2 and 7x + 4— . Using (15.6),

e IX T4

. 152 CONSUMERS’ AND PRODUCERS’ SURPLUS

, A demand function P; = fi(Q), as in Fig. 15-5(a), represents the different prices consumers are
~ wailing to pay for different quantities of a good. If equilibrium in the market is at (Qo, Po), then the
. mmsumers who would be willing to pay more than P, benefit. Total benefit to consumers is represented
4w the shaded area and is called consumers’ surplus. Mathematically,

o)
Consumers’ surplus = J 0 fi(@)dO — Q0P (15.7)
0

A supply function P, = f,(Q), as in Fig. 15-5(b), represents the prices at which different quantities
¢ 2 good will be supplied. If market equilibrium occurs at (Qo, Po), the producers who would supply
" 2 lower price than P, benefit. Total gain to producers is called producers’ surplus and is designated
W the shaded area. Mathematically,

Qo
Producers’ surplus = Q¢ P — f f-(Q)dO (15.8)
0

' Se= Example 7 and Problems 15.27 to 15.31.
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lﬂ

f,(Q)

fi(Q)

(a) (b)

Fig. 15-5

EXAMPLE 7. Given the demand function P = 42 — 50 — Q° Assuming that the equilibrium price is 6. the
consumers’ surplus is evaluated as follows:

At P, = 6, 2-50-0°=6
36—-50— Q%=
(Q+9(-Q+4)=0

So Q, = 4, because Q = —9 is not feasible. Substituting in (15.7),

4
Consumers’ surplus = f (42-50 - Q%) dQ — (4)(6)
0

=[420 - 250" —3Q°[ - 24
= (168 —40—21}) —0—24 = 823

159 THE DEFINITE INTEGRAL AND PROBABILITY

The probability P that an event will occur can be measured by the corresponding area under =
probability density function. A probability density or frequency function is a continuous function f{x
such that:

L. A (x) = (). Probability cannot be negative.

2. 7 flx)dx=1. The probability of the event occurring over the entire range of x is 1.

3. P(a <x<b)= f f(x) dx. The probability of the value of x falling within the interval [a.b] =
the value of the definite integral from a to b.

See Example 8 and Problems 15.32 and 15.33.

EXAMPLE 8. The time in minutes between cars passing on a highway is given by the frequency functioz
f(?) = 2¢™* for t=0. The probability of a car passing in 0.25 minute is calculated as follows:

025 0.2s
P= f 2e7Hdt = —e7* = —e % — (—¢°) = —0.606531 + 1 = 0.393469
0
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Solved Problems

DEFINITE INTEGRALS
151. Evaluate the following definite inlegrals:

a) FSI dx
0

b) J.mzui.e:
i

" - 256 - 25(0F = %

]
J. Sxdr = 2.5¢
a

Jmszw -xf'|:'- 10y = (1) = 999

£} J‘M M

L) T
=3 Ve -3IVI=9

¥

e
J PRaLl T T
I

L]
d) j(r’ +x+ 6) dr

rn;;" x4 6) e = [w+¢.=+r5;}|i = J31 + W3+ 6(3) — (M1 + BIPE +6(1)] = 36
‘) -r (57 + 3%y s

J'{; 7+ 3y = (217 +1ﬂi}l+ = 2V + VA = (VI + 2VTT = 16
I I

1
i J’dﬂ""dt
i
| 3
, J:#-.u:w = 30— g
a
= 2(4034 - 1) = 8045
14
g j 26 ds
L] @ *
j’ Ze gy = —:'1'[ =g A (M = B P |
3] n
SUBSTITUTION METHOD

152, Use the substitution method to integrate the folowing definite integral:

j]htlﬂ + 3)dl



153,

15.4
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Let w = 2% + 3, Then dw'dx = 4x and dx = dwdy. Ignore the limits of integration for the moment,
amd ircat the integral as an indefinite integral. Substituting in the original integrand,

J- h{lﬂ+3}dx=Jhw%=2ju#u
Integrating with respect 1o u,
].J‘uiu=2{§}+¢=uz+t {153

Fenally, by substsiuiing w = 25" + 3 in (159 and recalling that ¢ will drop out ia the infegration, the definite
integral can be wrilten in 1erms of 1, incorporating the original limi:

3 L]
J- Ex{lﬁ+3]a&t=fl‘:=+3‘,|’| = [23F+AF - [H0P + A =41 -0 =432
o i
Because in the original substitution & # x but 2¢° + 3, the limiis of integration in 1=rms of x will differ
from the Bmits of integration in terms of o The limits can be expressed in terms of , if so deszred. Since
we hive set w =20 + 3 and x ranges from 0 to 3, the limits in terms of & are 0= 2031+ 3 =21 and
w =20 =3 =3 Using these limils with the integral expressed in terms of &, a8 in (159,

at E- ]
zj udi-r=ru1‘ - 441 -9 = 432
] a

Redo Problem 15.2, given [Jx(x" — 5)7 dx.
Let w = x — 5, du'dr = 307, and dr = duf3r’. Substituting independently of the limits,

j,z{,.l_s;u: . I:’r.ﬂ% -%JE&H
Intégrating with respect 1o w #nd lgnoring the conant,
[ =iy = b
Subetinuting u =« - § ind incorporsting the lmit for x,
ffr,e—:nw = i - SPE

- Y(2F = 5P = {1y = 5] = K27) = b -6} = 10,11

Sipce W= =5 and the limis for © sre x =1 and x = 2. by substitution (he Hedtz for w are
u={1r=5=—4and u = (2) =5 = 3. Incorporating these mits for the imegral with respect to i,

1
Wi = (BT = $EY — J(-4) = 1011

Redo Problem 132, given

i
LW’“
Let e = x' = |, Then dw'dy = 3x" and dy = daf2", Substituting,

ar . g -
Imiﬁ—jﬂfﬂ E‘IJ—J‘# ? ol
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145,

Integrating with respect to o and ignosing the constant,

ju-l.,:u- -

Substituting w = ©' 4 | with the original limits

S | A ~| —1 1 ]
iy =i 1)V [ e o s i ]
_[t:r‘+l]' i A gl oy e
With u = x" + 1, and the limits of » ranging from 0 to 2. the limits of ¥ sre u =0y +1=1 and

=027 +1 =19 Thax
L]
J' Ny = -t
|

Integrate the following definite integral by means of the substitution method:
¥
fix
J; et lir
Loty = o &1, duide = 2r, and dx = dufZe. Substinating,
fir o :
J]'}—Hi.h—f&!m "h—a-Jk Vel

Integrating with respect to w,
J-J.u".:h = 3ln|u|

I=[—$]—{—l}=5

Substituting u = +* + 1,

i
hx
J:E‘ I|1':r—.‘|!|:_~.lr'+l|

=]
=3lni¥+1|=3n|F+1]=3n10=3In]
Since Im i = dJ, = 3o 1 = A.FTH
The limits of u are w = (007 4 1 = 1 and u = (3 + 1 = UL Integrating with respect to o,
i

=3in10—3nl =310 = 65078

i
Jj i ' du=3n|u

Redo Problem 15.5, given [[4re” % dx.
Let w = ¥ + 2 Then dwidr = 2x and dx = duw2y. Substituting.

J#:rr"““dx = IhHgF:IJ--‘.ﬁu
Integrating with respect 1o & and ignoting the constant,
IJ-t‘du=2r'
Substiming u = 5 + 2,

ri-n""'d.r'-ﬂlr"" g v = g )
i i
= 240343 - 20.09) = 76,68




352 INTEGRAL CALCULUS: THE DEFINITE INTEGRAL [CHAR &

With u = x*>+ 2, the limits of u are u = (1)*+2 =3 and u = 2)*+2 =6.

6
= 2(ef — &°) = 766.68

3

6
2] edu = 2ée*
3

157. Redo Problem 15.5, given [,3x*¢* "1 dx.
Let u = 2x®+ 1, du/dx = 6x*, and dx = du/6x”. Substituting,

d 1
J’3xzez"3“dx =J’3xze“6—;‘!2 = Ef e“du

Integrating with respect to u,

Substituting u = 2x° + 1,

1
=1(e® —e") = 4(20.086 —2.718) = 8.684

1
2 253 +1 = LB
| 3x%e dx = ze
5 0

With u = 2x® + 1, the limits of « are u = 2(0)*+1 =1 and u = 2(1)* + 1 = 3. Thus

3 3
1 u — 1,
§J e“du = ze
il

=1(e*—¢") = 8.68

1

INTEGRATION BY PARTS
15.8. Integrate the following definite integral, using the method of integration by parts:

5 3
L Grip™

Let f(x) = 3x; then f'(x) = 3. Let g'(x) = (x+1)7% then g(x) = [(x +1)2dx = —(x +1)7".

stituting in (14.1),

faix—lydx =3x[-(x+17] - f —x+ 1) 13dx

=—8ﬂx+ﬂ*+3f@+1r%u

Integrating and ignoring the constant,

3x _
f (x+1)2dx = —3x(x+1)""+3In|x + 1|
Applying the limits,

5 B
———dx = [3x(x+1)"+ +1]
L(x+1)2dx [3x(x+1)*+3In|x+ 1|}

— 7 4 1 5+ — —_—— 4+ +

=—3+3In6+2—3In3
=3(In6 —1In3) —1 =3(1.7918 — 1.0986) — 0.5 = 1.5796

v

W

'ff
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159. Redo Problem 158, given

3
dy
JI ~—-—-~—[I+1},d.r
Let flz) = dx, Flx) =4, g'(x) = (£ +2)7", snd g{z) = J{x + 2] de = <Hx + 27, Substituting in
(141},
e Lt B TR el B TR
(x+2) i 2
=—2rl_.r-'*2l'1+IJ'[I+I] *dx
Integraning,
—-‘—;--- = - - g - -1
[:+.1}’dx 2efx + 2) Hx+2)
Applying the limils,

. S W
J:E:+EJ“ Hx+ 2

= =AM =2F+ 2 = =2+ =21+ 7YY
= =febeit{= &

1510, Redo Problem 15.8, given [ See*? dx.
Let fix) = 5x, f'fx} = 5. g'{x) = ¢**%, and g{x) = [¢**de = ¢**%. Applying (14.1),

Jﬁu“’d'r = Sxe‘"—jr’"ﬁdr =iru-‘"—5jr'".::l‘.r
Integrating.
J'.'F:.l""-lil: = Sttt — 5t
Applying the limits,

L]
j' STy = [Sxe”"E = 5eT T = (156" = 5¢) = (3¢’ = 5e') = 10" = VO{T4B4) = 1484
1

PROPERTIES OF DEFINITE INTEGRALS
1510, Show [°, (8 + 9y de = [ (8 + 0 e + [/ (8 + 9l

&
j (B! +9efyely = 2"+ A¢'| = W -3 = 384
-d

]

J-n{E:r’+'iEr.1:!ﬁh=1l‘+3f = [— 3 = =320

J" (B + %5 e = 20 + 3| = T04— 0= M

u

Checking this answer, =FH) 4 T = 384
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1502 Show [*(x™"% + dx)adx = L% + 3x)dx + [l 4 Schae + f(x 717 + 3x) .

L] b
(7% 4 )y = 20 4 15 | = 392 -0 = 302

i
‘[L:'“+3.r}d:=1r"‘+l.5.r' =XM-0=28
-

W L1
I (' +3x)dr ="+ 157 =175 =95
'l
4
as

I
j (" + Ajdr = 20" + 157" | =32 - 1275 =265
¥

Checking this answer, 28 + 9.5 + 2645 = 392
1513 Show

S 1 ' & T ' b
LEH‘““J: F+|‘f”.[ F+1“"'+j;,c'+1‘1L1r
From Problem 155,

L1

dy =3l +1|| =310
: :

-
dr=3lmlr+1]| =3im5-31in2
211 Rl
m 3

——dr=3ln|x+1|| =3n10-3in5
r+l :

b

J;f+1

[Llﬁrjlu}f+l| e imI-0=32
£+l . y

J‘ fur

5§

Checking this answer, Ip2+3ni-3m2+3inll-3n5 =310

1514, Show J/Sxe"*?dx = [ See**Zdx + [} Sxe**7dx.
From Problem 15.10,

J‘Iiu""’ir - [Aret? = St - i
]

Jr-.'i'-t-r":n'-r=r [Sxe=*? — 51 = (106" — 5¢*) — (5¢° - 5¢’) = 5¢'
]

£l
j‘ Eﬂl"ﬂ -.-[mrfl_srf'l]iz tlﬁh—ﬁj—{[ﬂﬂd“wll - “1!’—5!!'.
]

Checking this answer, S¢' + 1 — 5¢ = 10

AREA BETWEEN CURYES
1515, (a) Draw the graphs of the following functions, and (f) evatluate the area between the curves
over the stated interval:
vw=T-x and y=d&x-xr fromx=lnx=4
oy See Fig. 1546
b) From Fig 15-6, the desired region o the area under the curve specified by v, = 7 - x from £ = 1 {0
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T ¥
T
.- #
j— I ] ¥
i I i
i 1 .
ik . 3
1 1 Fp=T=21
2F i ] . 2
ik 1 {5 =dr—r i
1 i
1 & ) 1 x
Fig. 154 Fig. 15-7

¥ = 4 minus the aren under the curve specified by w=dx =" from x = | o x = 4. Using the
properties of definite integruls

A= rn—:m—r{h—fm: r:,r*—ﬁﬁﬂ.t:
i | i
= [{¥* = 252 + Tx]
= [J4)* = 2.5(4F + )] = [J(1Y = L5(1F + TL)] = 4.5

15.16. Redo Problem 15,15, given
m=6-xr and w=4 fomx=0toxr=3
MNotice the shift in the relative positions of the curves st the point of intersection.

@ See Fig 157,

t}  From Fig 15-7, the desired orea is the arca botween vy = 6= x snd yy = 4 from x = @ o x = 2 plos
the area between v, = 4 and ¥, = 6 — x from 5 = 1 10 3 = 5. Mathematically,

A= fi{h--:h -qﬁmfu o (6 ~ 2] ol

-f{z—;m+f{; ~ Zpdx
=[2- W+ - U =2 -0+ 25— (-2) =65

1517, Redo Problem 1515, given

pr=x—4x+8 and y=Zx fromx=0tox=3
a) See Fig 158,

b) A=f{h’—-hﬁE}—:'.rld'.r+f[2:—h’—=h+3}1d1
=‘[t[_r=-5;+s}.ﬁ+f{-:=+ﬁ.r—ﬁ‘}ir
= [he* = A 4 Baefd o =4’ 4 At = Bs = 7)

1518, Redo Problem 1515, given

y=x—dx+ 12 and [P o fromx=0wr=4
a) See Fig 159,
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U

HEa -4k 12

N T T T

LY N ——

b) A-r[r,r--m:z;—:=1¢.+j'w-rf-wun¢:
7] b |

- ruz—mm+r{4x— 12} dx
] ]
= [12x = 28R + |17 — 126}t = 20

IMPROPER INTEGRALS AND L'HOPITAL'S RULE

15.19. (@) Speafy why the integral given below is improper and (b)) test for convergence. Evaluale
where possible.

2x
——
, 1P

a} This is an example of an improper integral becouse the upper limit of integration is infinite,

= b ol
™ J,'zﬁﬁ?*".“f.‘;,rffﬁ*“

Lot i = p* = 1, duidy = 2v, and dr = dufls. Substituting,

2 di
Lx’ﬂi’lﬁ_jhﬂ tE:J.HH"

Integrating with respect 1o u and ignoting the constant,

J’l.r"du= —u?

Substituting w = 1° + | and incorporating the limits of &,

2 [ I e
.'.—:r‘HF‘i"._.m.[md’"{’“” i |

N, LSRRI TP
B+l (1¥+1 2 M+l

A h—m, LiH + 1) =10, The integral converges and has a valoe of §.
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15.20. Redo Problem 15.19, given
idx

x+7
1
a)  This & an improper integral because one of its limits of integration is infinife.

B
b —— = In 7
} j‘ T+7 J.['FT e JI
=In|b+ T =nj1+7|

Anb—= ln b4 Tl—x The integral diverges and §s meaningless

1521. Redo Problem 15.19, given [ e dx.
a)  The lower limit is infinite
b) -"m- hmj e dy = jﬁ'l
= o
As i— =, fe'* — 1), The integral converges and has a wlu: of |

15.22. {a) Specily why the integral given below s improper and (&) test for convergence. Evaluate

where possible:
r (5-x%dx

b) J Goxytds= b [ (S—nds

@l The bvwer [mii 1s Infinie.

Liet se = 5 =, diwdady = =1, andd di = -—du-Sul:ummjug,

J'i_'i—:j“‘ﬁt.r =Ju - = —Iu T

Integrating with respect Lo i,
- J’u‘*:{u = g

Substituting W = § — r and incorporating the limits of T,

J" (5=x)tdr= lim rcﬁ - x) = (5~ x)! i

Az g— ==, 1[5 —a)—10. The intcgral converpes and cquals |.

15.23. Redo Problem 1522, given [*_ Zxe dx.
@] The bower limit 5 mfindte
1] ]
b} e = lim | Zeedy

—
[
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15.24.

15.25.

15.26.

INTEGRAL CALCULUS: THE DEFINITE INTEGRAL [CHAP. 15

Using integration by parts, let f(x) = 2x, f'(x) = 2, g'(x) = €*, and g(x) = [ ¢*dx = ¢". Substituting in
(14.1),

f2xe"dx = 2xe"—J‘e"2dx
Integrating once again,
f 2xe* dx = 2xe* — 2¢*
Incorporating the limits,

0 0 0
f 2xe*dx = lim | 2xe*dx = (2xe* — 2¢*)

a——o0 a
a

[2(0)e° — 2€°] — (2ae” — 2¢7)
= -2-2a¢°+2¢* since =1
As a— —, ¢*— (. Therefore the integral converges and has a value of —2.

Redo Problem 15.22, given

J‘G dx
0 x—06

a) This is also an improper integral because, as x approaches 6 from the left (x—67), the integrand

— —00,

6 d b b
b) f ~J _SYY
0x—6 b—6 0x—6 0

=In|b—6|—In|0—6|
As b—67, |b—6|—0 and In0 is undefined. Therefore, the integral diverges and is meaningless.

Redo Problem 15.22, given f: (8 —x)"Y*dx.

a) Asx— 87, the integrand approaches infinity.
b

b—8 0

8 b
b) j (8 —x) "dx = lim j (8—x)Ydx = —2(8 —x)*?
0 0

= (-2V8-b)—(-2V8-0) =2V8—-2V8—b
As b—87, —2V8— b— 0. The integral converges and has a value of 2V8 = 4V2.

Use L'Hopital’s rule to evaluate the following limits:

a) lim x—9

X—0

As x— o, both 5x — 9 and ¢* tend to o, giving rise to the indeterminate form co/oo. Using (15.6).
therefore, and differentiating numerator and denominator separately,
5x—9 8 5

lim = lim—="=

o € roo € @

1/x

. =
b) ,lcl_r.?o 1/x
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As x—=, | — " and La— (. Using (158}, thercfore, und recalling that Lixr = x"',

11—t — (=Tt
E Lix E -
Simplifying algebraically,
fim Aot o i (e = —g = =
e T i LR -
fim I Zx
t] LR r'l|

As x—= In2x aod ¢ —=. Agnm using (/5.6),

mZy . W= 0 (1 . .
ET-E;;»:-I} ﬁm:anmmmﬂmmelﬂrm

& -7
9 Ty
F“
T, I

s D040 B

) b =
gy T3

. -1 | Bx=7
sl T e
Whenever application of L'Hopdal's rule gives rise 10 3 pew guotienl whose lmit is a0 an
mdetermunate form, L'HoOpials rule muss be applicd again. This,

=7 6 13
lm =—— = lim === Hge Problem 3.4c)

. R -5t 4+ 15k
H EEH’P—]&;
Using L'Hipilal's rule repeatedly,
"= 57 + 13 2408 — 10 + 13 A8y — Iy
S Tl D atl-18 i

= limf@=4
e

CONSUMERS' AND PRODUCERS' SURPLUS
15.27. Given the demand function P = 45 = 0,502, find the consumers' surplus CS when P, = 32.5 and

Eu. oy 25.
" Using (15.7),
5 = r (45 = B5Q)AQ - (5H25) = M50 - LIS - B12S

= |45(25) — D.25(25)] — 0 - BIZS = 156.25
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15.28. Given the supply function P = (@ +3Y, find the producers' surplus PS at P, =81 and
Q. =6,
From (15.5),
{ ]
Ps = {ﬂi]{ﬁ-}—j (0 +3PFdQ = 486 - [{(Q + ¥

= 4fif — [H{6 — 37 - §(0+ 3)"] = 252

15.29, Given the demand function P; = 25 - (7 and the supply function F, = 20 + |. Assuming pure
competition, find (a) the consumers’ surplus and (b) the producers’ surplus.

For market equilibrium, 5 = 4. Thus
W+1=18-0 420 -4=0
(Q+6){Q2—4)=0 =14 Po=9

smoe {1 cannol equal =6

a) cs-J' (25 = QF1Q — (9] (4) = (25 — QM - 36
= [25(4) = }{a)"] = 0= 36 = 4267
5) BS Jﬂ}ﬂl}-j.iiﬂﬂ}dﬂ

=¥%-|F+08=16

1533, Given the demand function Py = 113 — { and the supply function P, = ({J + 1} under pure
competition, find (a) C5 and (&) P5.
Multiptving the supply function out and equating supply and demand,
P +20 %1 =113 - (¢ WG+ Q- 56) = 0
(@+8{R=-T)=0 Q=7 Py = 6d

a) EEJ-LT{IJE—Q’}JE—:HHH-[llm—lﬂ’ﬁ—ﬂﬂ-ﬂﬂ.ﬁ?

b PS = (64)(T) -J:m:, 17 a0 = 448 = [HQ + 1P = 448 = (170:67 = 0.33) = 277.67

15.31. Under a monopoly, the guantity sold and market price are determined by the demand function.
If the demand function for a profit-maximizing monopolist is P = 274 — ¥ and MC = 4 + 3Q,

find the consumers” surplus.
Citven P = 274 = (¥,
TR =P0 = QM- )0 = 2740 - (F

dTR o
and MR = = = 27430

The monopolist maximizes profit ai MB = MC Thas,

T4 -3F =4+30 NP+ Q-0 =0
(@+1(Q-9=0 =9 Py= 193

]
and c3=L (74— GO ~ (193)(9) = [2740 — §OPE - 1737 = 486
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FREQUENCY FUNCTIONS AND PROBABILITY

15.32. The probability in minutes of being waited on in a large chain restaurant is given by the
frequency function f(¢) = z;° for 0 <¢=3. What is the probability of being waited on between
1 and 2 minutes?

2,

2
P= f gt dt = git* | = g1(16) —gr(1) = 0.1852
1 il.

15.33. The proportion of assignments completed within a given day is described by the probability
density function f(x) = 12(x* — x°) for 0 =<x < 1. What is the probability that (a) 50 percent or
less of the assignments will be completed within the day and (b) 50 percent or more will be

completed?
0.5 3,405
a) Pazf 12(x* —x*) dx = 12[£—£}
L 3 4,
_ 12[(0_'13§_ %) —o} — 03125
3 4
i, 3 471
b) P, = 12— de =12 [x_ - x_}
0.5 3 4 os
1 1 0.125 0.0625
12| (2-2) = (222 0N _ 6875
G-3)- (555

As expected, P, + P, = 0.3125 + 0.6875 = 1.

OTHER ECONOMIC APPLICATIONS

15.34. Given I(¢) = 92, find the level of capital formation in (@) 8 years and (b) for the fifth through
the eighth years (interval [4, 8]).

8
= 6(8)*>— 0 = 962 = 135.76

0

8
a) K= f 9712 gt = 67
0

8
b) K= f 912 dr = 6% | = 6(8)** — 6(4)** = 135.76 — 48 = 87.76
4

8
4




CHAPTER 16

First-Order
Differential
Equations

161 DEFINITIONS AND CONCEPTS

A differerial cquation 15 an equation which expresses an exphcit or implicit relationship between
o function ¥ = ({1} and one or more of its derivatives or differentials. Examples of differential
pguations melud.
dy v 5 ;.
?'I—.'TH-';I ¥ o= 12y and Y=+ 18 =0
Equations imvolving a single independent variable, such as those above, are called ardinary differential
dguations. The olution or integral of a differential equation is any equation, without derivative or
differantinl, than s defined over an imerval and satisfies the differentinl equation for all the values of
the independent variable(s) in the interval. See Example 1.
The arder of & differential equation is the order of the highest derivative in the equation. The
ilegree of a differcntial equation is the highest power (o which the derivative of highest order is raised.
Ste BExnmple Tand Problem 16.1.

EXAMPLE Y. Th solve the differentinl equation ¥7{(r) = 7 for all the functions v(f) which satisfy the equation,
sty integrate both sides of the equation to find the integrals,

¥t} = J'.'dr =TI+

i) = J[T:-- ot = 35 i+
Thin 68 caliedl w gereral solufon which mdicates that when ¢ is unspecified, a differential equation has an infinite
pember of possifle solutions. If c can be specified, the differential equation has a particular or definite. solution
whach lane of all powible solwtions is relevant.

i,
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EXAMPLE 2. The order and degree of differential equations are shown below.

i

1.
dt

=2x+6 first-order, first-degree

drt

d’y dy\?
2 — = =
e + ( t) +x*=0 second-order, first-degree

AN
2. |— )| —-5=0 first-order, fourth-degree

azy\’ Py\® .
. 9 | === — " _
4 ( a7 ) ( Py ) 75y third-order, fifth-degree

16.2 GENERAL FORMULA FOR FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS

For a first-order linear differential equation, dy/dt and y must be of the first degree, and no product
y(dyldt) may occur. For such an equation
dy

__+ =
dt AR

where v and z may be constants or functions of time, the formula for a general solution is
y(t) = e'f”d‘(A + j zef”d‘dt) (16.1)

where A is an arbitrary constant. A solution is composed of two parts: e "4 A is called the
complementary function, and e % [ ze/? dt is called the particular integral. The particular integral y,
equals the intertemporal equilibrium level of y(r); the complementary function y. represents the
deviation from the equilibrium. For y(t) to be dynamically stable, y. must approach zero as t approaches
infinity (that is, k in ¥ must be negative). The solution of a differential equation can always be checked
by differentiation. See Examples 3 to 5, Problems 16.2 to 16.12, and Problem 20.33.

EXAMPLE 3. The general solution for the differential equation dy/dt + 4y = 12 is calculated as follows. Since
v = 4 and z = 12, substituting in (16.1) gives

y(t) = e‘“‘”(A + J’ 12ef4d‘dt)
From Section 14.2, [ 4dt = 4t + c. When (16.1) is used, c is always ignored and subsumed under A. Thus,
y(t) = e"“(A + f 1264‘dt) (16.2)

Integrating the remaining integral gives [ 12¢%dt = 3e* + c. Ignoring the constant again and substituting in
(16.2),

y(£) = e #(A +3e*) = Ae™¥ +3 (16.3)

since e~ = ¢ = 1. As t— o, y, = Ae~— 0 and y(¢) approaches y, = 3, the intertemporal equilibrium level.
y(¢) is dynamically stable.
To check this answer, which is a general solution because A has not been specified, start by taking the
derivative of (16.3).
dy

= —4Ae™*
dt ¢
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From the original problem,

dy
Z4ap=17 V] T
j kd ¥

B |2

Substituting ¥ = A=~ = 3 from (J&.3),
dy

g 12=dAde ¥4 3) = =gAe™

EXAMPLE 4. Given dy/di + 27y = ¢ where ¢ = %" and £ = . To find the general solution, first substitute in
[1&.T,

¥1) = ..--“‘*f.q. B fﬁl*‘*d;'} (16.4)

Integrating the exponents, [ 37 dr = r°, Substituting in {[6.4),
W)= ..--"(.q. 4 I :‘e"dr:] (16.5)

Integrating the remaining integral in (76.5) calls for the substitution method, Letting w = . duldr = 37°, and
dt = duf3r,
du 1 1 1
1 = ! p— L — == | -
."rr"a'r J'r.e'__u; SJ..r'du 37 3-_-"
Fimatly, substituting In (716.5),
HE = e (A + 1) = Ae " 4| (16.6)

As f—, y, = A¢™" = 0 and p(i) approaches & The equilibrium is dynamically stable.
Differentiating [14.6) to check the general solution, dyidr = =37 Ae™". From the original problem,

ay - S ay _ o
+iy=r =@ -y
Substituting ¥ from (1468,

“I_J"_ - T # I}I__ wd
P 34'|I.4|' +3 = —3" e

EXAMPLE 5. Suppose that y(D) = | in Example 4, The definite solution is calculoted as follows: From (14.5),
y=Ae "+ Atr=0,00) = L Hence, 1 = A + | since ¢® = |, and A = §. Substituting A = { in (16.6), the definite
solution is y = e " +

6.3 EXACT DIFFERENTIAL EQUATIONS AND PARTIAL INTEGRATION

(riven a function of more than one independent vanable, such as Fy, 1) where M = 4F8y and
N = dFjdy, the total differential is written

dF(y, 1) = Mdy + Ndt (16.7)

Since F is a function of more than one imdependent variable, M and N are partial derivatives and
Equation (16,7} ix called a parnial differential equarion, If the differential is set equal to zero, so that
Mdy+Ndr=10, it Is called an exact differenal equation because the left side exactly equals the
differential of the primitive function My, t). Por an exact differential equation, aM/H muost equal
aNiay, that is, &' Fi{(atay) = o Fi{ayar). For proof of this proposition, see Problem 16.49.

Solution of an exact differential equation calls for successive integration with respect to one
independent variable at a time while holding constant the other mdependent variable(s). The
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procedure, called partial integration, reverses the process of partial differentiation. See Example 6 and
Problems 16.13 to 16.17.

EXAMPLE 6. Solve the exact nonlinear differential equation

(6yt + 9y*)dy + (3y* +8t) dt = 0 (16.8)

1. Test to see if it is an exact differential equation. Here M = 6yt + 9y* and N = 3y* + 8t. Thus, dM/dr = 6y
and dN/dy = 6y. If aM/ot # dN/ady, it is not an exact differential equation.

2. Since M = 9F/dy is a partial derivative, integrate M partially with respect to y by treating f as a constant,
and add a new function Z(¢) for any additive terms of ¢ which would have been eliminated by the original
differentiation with respect to y. Note that 9y replaces dy in partial integration.

F(y,t) = J (6yt +9y?) ay + Z(t) = 3y*t + 3y + Z(1) (16.9)
This gives the original function except for the unknown additive terms of ¢, Z(t).
3. Differentiate (16.9) with respect to ¢ to find oF/at (earlier called N). Thus,

aF
—=WHZ0) (16.10)

Since aF/ot = N and N = 3y? + 8¢ from (16.8), substitute 9F/at = 3y + 8¢ in (16.10).
32+ 8t =3y*+Z'(t) Z'(t)=8t

4. Next integrate Z'(¢f) with respect to ¢ to find the missing ¢ terms.
Z(t) = JZ’(t) dt = JStdl =47 (16.11)

5. Substitute (6.11) in (16.9), and add a constant of integration.
F(y,t) = 3y*t+3y°*+ 4 +c¢

This is easily checked by differentiation.

16.4 INTEGRATING FACTORS

Not all differential equations are exact. However, some can be made exact by means of an
integrating factor. This is a multiplier which permits the equation to be integrated. See Example 7 and
Problems 16.18 to 16.22.

EXAMPLE 7. Testing the nonlinear differential equation Syrdy + (5y* + 8t) dt = 0 reveals that it is not exact.
With M = Syt and N = 5y* + 8t, 0M/at = 5y # dN/9y = 10y. Multiplying by an integrating factor of ¢, however,
makes it exact: Sy dy + (5y*t + 81%) dt = 0. Now aM/ot = 10yr = 9N/ay, and the equation can be solved by the
procedure outlined above. See Problem 16.22.

To check the answer to a problem in which an integrating factor was used, take the total differential of the
answer and then divide by the integrating factor.

16.5 RULES FOR THE INTEGRATING FACTOR

Two rules will help to find the integrating factor for a nonlinear first-order differential equation,
if such a factor exists. Assuming dM/at + dN/ay,
1 (aM oN

Rulel. If —|———|= alone, then //®% is an integrating factor.
et 1t 3 (2-2)=10) grating
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1 [oN oM : . ;
Rule 2. If 7 (—a~ - ?> = g(¢) alone, then /8@ % is an integrating factor.
y

See Example 8 and Problems 16.23 to 16.28.

EXAMPLES8. To illustrate the rules above, find the integrating factor given in Example 7, where
oM oN

Sytdy + (5y*+81)dr = 0 M = 5yt N =5y*+8t —5;-=5y7&—67:10y
Applying Rule 1,
_Sy
Sy —10y) =
5y2+8t(y ») 5y* + 8¢
which is not a function of y alone and will not supply an integrating factor for the equation. Applying Rule 2,

1 59 1

— 10y —5y) = ——=~

Syt (10y =5y) Syt t

which is a function of ¢ alone. The integrating factor, therefore, is e/ /9% = glnf = ¢,

16.6 SEPARATION OF VARIABLES

Solution of nonlinear first-order first-degree differential equations is complex. (A first-order
first-degree differential equation is one in which the highest derivative is the first derivative dy/dt and
that derivative is raised to a power of 1. It is nonlinear if it contains a product of y and dy/dt, or y raised
to a power other than 1.) If the equation is exact or can be rendered exact by an integrating factor,
the procedure outlined in Example 6 can be used. If, however, the equation can be written in the form
of separated variables such that R(y)dy + S(t) dt = 0, where R and S, respectively, are functions of y
and ¢ alone, the equation can be solved simply by ordinary integration. The procedure is illustrated in
Examples 9 and 10 and Problems 16.29 to 16.37.

EXAMPLE 9. The following calculations illustrate the separaticn of variables procedure to solve the nonlinear
differential equation

@ s

t 16.12
i (16.12)
First, separating the variables by rearranging terms,

d

2 = rar

y

where R = 1/y* and S = r. Then integrating both sides,

fy‘zdy = ftdt

t2
-1 e
-y +Cl-—2—+(,'2

"_1__t2+2C2_201
y 2
=2

Letting ¢ = 2¢, — 2¢;, =
g > ! Y ?+c

(16.13)

Since the constant of integration is arbitrary until it is evaluated to obtain a particular solution, it will be
treated generally and not specifically in the initial steps of the solution. e° and In c can also be used to express the
constant.
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This solution can be checked s follows: Taking the derivatives of ¥ = =2{¢' + ¢} " by the generalied power
Tusiction rube,

ﬂ = {— - 1 =i = o
= (1M =2HF + &) () ey
From {1612}, dyldr = v Substitating into (18.12) from (18,13},

O o[t }1...
dr P+, {r+ ey

EXAMPLE 10, Given the nonlinear differential equation

Pdy+vdi =10 (1614}
where M # f{y) and N # /i) Bat multiplving (1619 by 1P v"} 1o separate the variables gives

i

i
S+ it =0 (16, 14a)

Integrating the separated variables,

[ars [rram-tyreriec
and Flyy= —4y*—rt+¢

] |

Fot comphcated functions, the answer s frequently beft in this form. It can be checked by differctitiating and
comparing with (16.74a), which can be reduced v (J6.74) throagh multiplication by v' . For other forms in which
an afgwer can be expresied sep Prohlenss 1620 1o 1622 and 16,29 1o 16,35,

16,7 ECONOMIC APPLICATIONS

Differential equations serve many functions in economics They are used to determine the
conditions for dynamic stability in microeconomic models of market equilibna and 1o race the time
path of growth under various conditions in macroeconomics. Given the growth rate of a function,
differential equations enable the economist to find the function whose growth is described; from point
elasticity, they enable the economist to estimate the demand function (see Example 11 and Problems
16.38 to 16.47). In Section 14.6 they were used (o estimate capilal functions from investment functions
and total cost and Lotal revenue functions from marginal cost and marginal revenue funciions,

EXAMPLE 11. Given the demand function ;= ¢ + b and the sapply fonction {3, = g + AP, the squilibrium
price s
- c=g
= — &y
3 b= b [ :I

Agsusne that the rate of change of price in the market J£Pdr is a positive Hnear function of excess demand 0, = O,
such that

Com@-0)  m=ncomstm >0 (16.16)

The conditions for dynamic peice siability in the market [Le., under what conditions P{r) will converge 1o P as
1= | can be cabculated as shown below,
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Substituting the given parameters for 0 and €2, in (Id 16},

aF
== mi(c+ BF) — {5+ hPY] = m{c + hP — g — hF)

Rearranging to Gt the general format of Section 16.2, AP/dr + mth = b} P = mic - g). Letting ¢ = mik = b) and
r = mlc— g}, bnd using (f4.7),

Pi)=¢ = v fﬂ“""d‘l = 8 "'..-4 *fic“d'l]

i-

- [.4+—1_-] A4 = (16.07)

Atr=0 M0 = A+ 2y and A = P — v,
Substitwting in (f6 17,

Pis) = [ﬁnl—i]r =
LY ]

Finally, replacing & = wlh — b) and £ = m{c - g).

Pty = [P0y = [y 2K

nnd making wse of (I8 F5), the Hime path is
PAr} = [P0 — Ble—iti g po {1618

Simce P(0), P, wn =0, the firet term on the right-hand side will eosverge woward zero a8 1= = snd thus P} will
converge toward P only if & — b > 0. For normasl cases where demand is negatively sboped (b <0) and supply &
positively sloped (h =0), the dynamic stubility condition is assured. Markets with positively sloped demand
functions or negatively sloped supply functions will also be dynamically stable as long as ki == b,

168 FPHASE DIAGRAMS FOR DIFFERENTIAL EQUATIONS

Many nonlinear differential equations cannot be solved explicitly as functions of ume. Phase
diagrams, however, offer qualitative information about the stability of equations that is helpful in
determining whether the equations will converge to an intertemporal (steady-state) equilibrium or not.
A phase diagram of a differential equation depicts the derivative which we now express as y for
simplicity of notation as a function of y, The steady-state solution is casily identified on i phase
diagram ag any poiat at which the graph crosses the horzontal axis, because at thiat point ¥y = 0 and
the function is not chimging. For some équations there may be more than one intersection and hence
more than one solution,

Dingrammaticilly, the stability of the steady-state solution(s) is indicated by the arrows of motion.
The arrows of motion will point to the right (indicating y is increasing | any time the graph of v is above
the horizontal axis (indicating v > 0) and to the left {indicating v is decreasing) any time the graph of
¥ is below the horizontal axis (indicating y <0}, If the arrows of motion point towards a steady-state
solution, the solution iz stable; if the arrows of motion point away from a steadv-state solution, the
solution i5 unstable,

Mathematically, the slope of the phase diagram as it passes through a steady-state equilibriom
point tetls us if the equilibrium point is stable or not. When evaluated at a steady-state equilibrium
podnt,

if ﬂ,” 0, the equilibrium is stable

if ‘:f >0, thepoint i unstable
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Phase diagrams are illustraied in Example 12. The derivative test for stability is used in Example 13,
See also Problems 16,48 1o 1650,

EXAMPLE 12. Given the nonlinear differential equation

¥ =By =29
a phase disgram cnn be consirocted and emploved i six gasy steps
1. The intertemporal or steady-state solation{s). where there i po pressore for change, is found by setting

¥ = [ and solving algebraically,

:'.- = ﬂ.l-,l - :_jll = (i

24—y =10

F=0 ¥=4  steady-stele solutions

The phase deagram will pass through the honzontal axis sl p =0, y = 4,

2. Since the function passes through the horizontal axis twice, it has one turning point, We next determine
whether that point i 4 maximum or mmimum,

d

Eﬂﬂ—lly—-ﬂ ¥ = 28 & critical value
d'y A .
F= ~&= ] concave, relative maximum

Y A roggh, but accurate, sketch of the phase dingram can then easily be drawn. See Fig, 16-1.

=40 3 \2?

Fig. 16-1

4, The arrows of motion complete the graph. As explained above, where the graph lies above the borizontal
axis, y = 0 and the arrows most point 1o the right; where the grapgh lies below the horizontal axis, y <0
anid the armoss mast paint 1o the laft

5, The stabulity of the steady-state equiliboiam ponts can now be read from the graph, Since the arrows of
modion point away from the first interiemporal equilibrium ¥, = 0, ¥, i an anstable equilibrivm. With the
arrows of mation pointing toward the second mieriemporal equilibriom ¥ = 4, ¥ i 0 stable equs-
lihraam.

fi, The skope of the phase dingram ot the steady-staie solutions can also be used o test siability
independently of the arrows of motion. Sincs the slope of the phese dingram is positive st ¥, = 0, we can
conclude 7, is an unstable oquilibrium. Since the slope of the phase dingram s negative at 7, = 4, we
know ¥ must be stable,

EXAMPLE 13, Withoul even resorting to a phase disgram, we can use the smple first-denvative evaluated at
the interfemparal equilibrivm level(s) to determime the stebility of differential equations. Givea y = Hy = 2y,

& s-d
& y
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Evaluated at the steady-state levels, ¥; =0 and y, = 4,
dy d
Doy=8-40)=8>0  L)y=8-4(4)=-8<0
dy dy

= 0 is unstable ¥, = 4 is stable

Solved Problems

ORDER AND DEGREE
16.1. Specify the order and degree of the following differential equations:

d*y [(dy dy .,
a) a‘z-‘f‘(dx) =12x b) 5—3)6

d3y4 d2y6 d2y3 d4y

— | +(==) =4- d +—=—75y =
) (dﬁ) (de) oy ) @) T ™ =0

A’y d*y
e) d3+xy(d) 4y* =0

(a) Second order, first degree; (b) first order, first degree; (c) third order, fourth degree; (d) fourth order
first degree; (e) third order, first degree.

FIRST-ORDER FIRST-DEGREE LINEAR DIFFERENTIAL EQUATIONS

16.2. (a) Use the formula for a general solution to solve the following equation. (b) Check vo
answer.

dy
dt
a) Here v =15 and z = 0. Substituting in (16.1),

HD=e 3% A+ | 0el5%4;
y

+5y=0 (16.1¢

Integrating the exponents, [5dt = 5t + ¢, where ¢ can be ignored because it is subsumed under 4
Thus, y(t) = e (A + [0di). And [0dt =k, a constant, which can also be subsumed under 4

Hence,
y() =e A = Ae™™ (16.2¢
b) Taking the derivative of (16.20), dy/dt = —5Ae™>. From (16.19), dyldt = —5y. Substituting y from
(16.20),
d
= = ~5(Ae™) = —54e 7
16.3. Redo Problem 16.2, given
dy

Il

== y(0) =2 (16.21
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s Rearranging to obtain the general format,

dy _
T 3y=0

Here v = —3 and z = 0. Substituting in (16.1),
y(t) = e‘f‘“‘(A ¥ f 0e1->4 )

Substituting [ —3dt = —3t, y(t) = e¥(A + [0dr) = Ae¥. At t=0, y=2. Thus, 2= A®, A =2,
Substituting,
y(t) = 2¢* (16.22)

5) Taking the derivative of (16.22), dy/dt = 6¢*. From (16.21 ), dyldt = 3y. Substituting y from (16.22),
dyldt = 3(2¢*) = 6¢™.

W4 Redo Problem 16.2, given

I d
d—)t’ =15 (16.23)
a) Here v =0 and z = 15. Thus,
y(t) = e_“’d‘(A + J' 1Sef°d'dt)
where [0dt = k, a constant. Substituting and recalling that e* is also a constant,
y(t) = e“"(A + f 15¢* dt)
= e KA +15teF) = Ae ¥+ 15t =15t + A (16.24)

where A is an arbitrary constant equal to Ae™* or simply c. Whenever the derivative is equal to a
constant, simply integrate as in Example 1.

b) Taking the derivative of (16.24), dyl/dt = 15. From (16.23), dy/dt = 15.

165. Redo Problem 16.2, given

2 _6y=18 (16.25)
a) Herev=—6,z=18 and [—6dt = —6t. Substituting in (16.1),
y(t) = eﬁ’(A + j 186_6’dt)

where [ 18¢~%dt = —3e™®. Thus,
y(t) = e(A —3e™) = Ae” -3 (16.26)

b) Taking the derivative of (16.26), dy/dt = 6Ae®. From (16.25), dy/dt = 18 + 6y. Substituting y from
(16.26), dyldt = 18 + 6(Ae™ —3) = 6Ae".

16.6. Redo Problem 16.2, given

Zay=-20  y(0)=10 (16.27)
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#) Here v =4, 1 = — N\ and [4dr = 41 Thus,
ey = t""'(.ﬂ. nj —mew;]

where [ <20eVdr = =3¢*, Subsumuting, pi) = ¢ ™A - 5%") = A -5 Al 1=0, p= 10 Thus
0= Ae M@ — 5 and A = 15. Substituting.
Wi =15 —5= 53" - 1) {16.28)

b} The derivative of (I6.28) i dyldr = —60e™ From (16.27), dvidt = —20— 4. Substituting from
(18.28) tor y, dyfdy = =20 — {18 — ) = —&0e ",

Redo Problem 16.2, given

‘%szm (16.29)
g} w=d, =6 and fdrds = 2% Thas
ﬂfzae-=*|{a+fmﬂ*’m}| (16.30)

Using the substitution method for the remaining integral. let w = 27, dwdr = 41, and dr = duwid.
Thus,

I&Fﬂr-Iw% = l.sfﬁu = 1.5

Substituting back in (/4.30),
P = e ¥ (A + 155 = e ™ + 15 (16.31)

b} The derivative of (I631) is dyldr = —dsAe ™. From (76.29), dy/de = 6t — dty. Substitating from
(16.31), dyide = 65 = ditAe™ & 1.8) = —~dpde™,

(@) Solve the eguation below uwsing the formule for 5 genersl solution. (#) Check vour
ANSWET.

I%-Eﬂj‘ = gy W)= =25 (1632}
a) Dividing through by 2. dwidi = Py = 457, Thus, ¢ = =, 2 = 4.5, and [ - #*dr = —{t". Substituting,

yif) = r'"“"l[..-i s I#.#rfm‘ urr} (16.33)

Let u = —§', dwids = -, and dt = —dut’. Thus,
J.ili-llljhllﬂ'* j"‘flp%_ _'ﬂ-.SIEFﬁH " l_‘.&_““ul

Substituting in (16.37),
R et P K e R P &
Alr=il, =25=A-45A4=2 Thn,
pit) = 20 g5 (16.349)

B)  Taking the derivative of (F6.34), dwidr = 27 '™ From (16.32), dyidr = 4.5 4 P y. Substinuzing from
(16.34), dyldt = 4.5 + A2 — 4.5) = 25,
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16.9. Redo Problem 16.8, given

—2y=¢"
dt y=e

v=—2tz7=¢" and [ —2tdt = —t* Thus,

y(t) = e’z(A + je’le_’zdt> = e’Z(A +Je°dt)

where ¢® = 1 and [ 1dt = 1. Substituting back,
y(@) = e (A+1)
b)

The derivative of (16.36), by the product rule, is dy/dt = 2’ (A +1)+ (1)
From (16.35), dyldt = ¢ + 2ty. Substituting from (6.36),

dy

o e +2t[e’ (A +1)] = ¢ + 2t Ae” + 242"

16.10. Redo Problem 16.8, given

&

dt
v =23, z =6t and [3dt= 3t Then,

+ 3y = 6t y(0) = %
a)

y(r) = e'”(A + f 6te3‘dt)

Using integration by parts for the remaining integral, let f(z) = 6t, then f* (1) = 6; let g'(¢) = €*, then
g(r) = [e*dt = L. Substituting in (I4.1),

f 6te* dt = 6t(3e™) — f le¥6dt

=¥ —12 f & dr = 2te* — e
Substituting back in (16.38),

y(t) = e (A + 2 —5¥) = Ae > + 2t — z
Att=0,1=A4e79+2(0)-% A = 1. Thus,

b)

y(f) =e ¥+2t—3

Taking the derivative of (16.39), dyldt = —3¢ 3 +2. From (16.37), dyl/dt = 6t— 3y
(16.39) directly above, dy/dt = 6t —3(e™ + 2t — 5= —3e¥+2.

16.11. Redo Problem 16.8, given

a) v=-1t,z=0,and [ —(1/f)dt = —Inr. Thus,

y(t) = eh”(A £ j Odr) = At

since e®' = 1. Att =3, 12 = A(3); A = 4. Thus,

y(t) = 4t

373

(16.35)

(16.36)
= 2tAe" + 212" + ¢ .

(16.37)

(16.38)

(16.39)

. Substituting

(16.40)

(16.41)
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b) The derivative of (I6.41) is dy/dt=4. From (I6.40), dyldt= ylt. Substituting from (I6.41),
dyldt = 41/t = 4.

16.12. Redo Problem 16.8, given

ay _
dt

a) With rearranging, dy/dt+y = 0. Therefore, v =1, z =0, and [ 1dt = 1. Thus,

-y y(3)=20 (16.42)

y(t) = e_’(A + f 0dt> = Ae™
Atr=3, 20=Ae % 20=A(0.05),s0o A = 400. Thus,
y(t) = 400e™ (16.43)

b) Taking the derivative of (16.43), dyl/dt = —400e™". From (16.42), dy/dt = —y. Substituting from
(16.43), dyldt = —(400e™") = —400e™".

EXACT DIFFERENTIAL EQUATIONS AND PARTIAL INTEGRATION
16.13. Solve the following exact differential equation. Check the answer on your own.

(4y + 83 dy + (16yt—3)dt =0
As outlined in Example 6,

1. Check to see if it is an exact differential equation. Letting M = 4y + 8> and N = 16yr— 3,
aM/at = 16t = dN/dy.
2. Integrate M partially with respect to y and add Z(¢) to get F(y,t).
F(y,t) = J (4y + 812 dy + Z(t) = 2y* + 81y + Z(1) (16.44)
3. Differentiate F(y,t) partially with respect to ¢ and equate with N above.

aF
— = +Z'(t
7 Y 16ty (®
But aF/at = N = 16yt — 3, so
16ty + Z'(t) = 16yt — 3 Z'(t)y=-3
4. Integrate Z'(t) with respect to ¢ to get Z(¢).
Z() = fZ’(t) dt = f —3dr= -3t (16.45)

5. Substitute (16.45) in (16.44) and add a constant of integration.
F(y,1) =2y*+ 8y —3t+c

16.14. Redo Problem 16.13, given (12y + 7t + 6) dy + (7y + 4t —9)dt = 0.
1. aMiat =7 = aN/dy.

2. F(y,t) = f (12y + 7t + 6) ay + Z(t) = 6y> + Tyt + 6y + Z(z)

3. 9Flot=T7y+Z'(¢). But oF/ot = N=Ty+4t—9, so
Ty+Z'(t)=Ty+4t—-9 Z'(t)=4t—-9
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4. E{:}-J‘:wm.ﬁ-zﬂ—h
5 Fiy.ry=6¥+ T+ 8y + 2 -N+¢

16.15. Redo Problem 16.13, given (1271 + 10v) dy + (8y71) dlt = 0,
1. aMiie = H}Fr = -|'|,.'I||'|'d_'|-'.

- Fly.n = j‘ (1277 + 10y} oy + Z{r) = 4°F + 57* + Z(1)

3 AFE =B+ 270, Bul N = By's so

B = By'r + 2°(1) Z(ry=10
4. A = [0dr = &k, wihich will be subsusmed under ¢,
5. Fivil=4¢'r +5%" 4 ¢

16.16. Redo Problem 16.13, given Brey' = ={367 + 4y%),
By rearranging,
Biydy = (3 & ") s Biydy + (30 + 4 )dr = 0
1. auliad = By = aNlay.
2. F[;-.:}—Jm_rﬁyqﬂz[rj—kp‘ + Z(1)

3. aFlar = 47+ Z'(1). But aFar = N = 3¢ + 4¥', a0
4" + 21} = 362 + 4y Z'{r) = 38

4, FALS) =[Jr‘dr= r
5 Fiy,t)= ' v 4y v ¢

16.17. Redo Problem 16.13, given 607y = —(12 + 20).

By rearrunging, Bley® dy + {120 + 20} dr = 0
1. aMis = 60y = aNiay.
z Fiy, 1) = IHH]’H}-+ Z(r} = 200" + Z(i)

1 AR =20 = 2. Bt aFrar = N = 120 + 209, 5o
Wyt + Z) = 127 + 20 2y =128

4. Iiiﬁ-."lll'ld.r'-:h"
5 Flv, =30 + 2y’ + ¢

INTEGRATING FACTORS

16.18. Use the integrating factors provided in parentheses to solve the following differential equation.
Check the answer on your own (remember to divide by the integrating factor after taking the
tetal differcntial of the answer].

Grdy + 12ydi =0 (1)
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aMidl = & # dMidy = 11, Bui multiplying by the integrating facior §,
Gldy+ 12ytdi =0
where aMiit = 12 = aNiay. Cootinuing with the new functios,

Ay.n= I & ay + Z0) = 6y + ZI)

aFe = 12y + Z°(0), But 8F% = N = 12y, s0 2'(1) = (.
Z(r) = [0dt = &, which will be subsumed under the ¢ below,
Fly.n=&"y+¢

16.19. Redo Problem 16.18, given

L,

=

i

fdy+3pde=0 (1)
aMfat = 2 # aNiay = 3r, Bul multiplying by ¢,
Cdy+ 3 di =0
where aMiar = 3¢ = aNiay.
Fly.1) = Jfay+ Zir) = 'y + it}

SFTEr = 30y + 21, But aFiow = N = 3y, s0 Z'(r) = 0 and Fly.0) = 'y +c.

16.28. Redo Problem 1618, given

dy Y L)
dr 1 i
Hearranging, Py = i Ly = gt = 1)
1. aMftae =1 = aNidy = —1. Multiplying by 1),
L
b I

LN

where aMISt = O = ANy, since neither function contains the varkable with respect to which it s
being partially differentinted,

1
Fiv.t) =J ;n'lj-'+.3ir:| = |n ¥+ Z{1)
At = &) Bul 5= N = =1/, 50 2'() = =14,
El[i}-j -—-:-d'r-—l.n!
Fiy 1y = oy — Inr + ¢ which can be expressed in different ways. Since ¢ is an arhitmry constani,
wi can write Iny — Ind = ¢, Making wse of the laws of logs (Section 7.3). Iny — Ins = Ini {7} Thus,
in (@) = c. Finally, expressing each side of the cquotion & expomenis of &, and recalling that

A - x,

N o
==¢  or y=i

For other treatmenis of ¢, see Problems 1629 (o 1637
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16.21. Redo Problem [6.18, given
decdy + (Moy = )dv =0 (1)
1. M = 4 # aNliy = 16, Multiplying by o, 4'dy + (16°y = ") di = ) where aMide = ja" =
LY
r Fly.r = j#‘-ﬂ_r + 2ty = 4y + Z{1)

3 aFt =16y + Z'(f). But aFdt = N = 16"y - %, 50
16y + Z() = 16y —F 2= -r

‘. 20)= [ ~tar= e
5. My =4ty = +e= 'y —i*+¢
or Hly-1r"=¢

1622, Redo Problem 16,18, given
Swidv 4 (57 +R)dr =0 (1)
I. #Miir = 3y # 8Niay = 10y. Multiplying by ¢. #s in Example 7, Syfdy + (571 + 87 di = 0 where
dMiar = 10 = adiay.,
L Fiw. iy = Jﬁl-";""}' +Z[t) = 15y°r + Z{r}

1, aFaE= Sy + Z'() Bul aFai = N = 571+ &% so
S+ =57+ 87 Z() =8¢

i z{p]--j'mu.rmw

5, Ay =25t +{ +c= 15 ¢+ 8 +¢

FINDING THE INTEGRATING FACTOR
1623, (@) Find the integrating factor for the differential equation given below, and (b) solve the
equation, using the fve steps from Example 6.

(Ty + 4y dy + devdt =10 (16.46)
a) aMiat = Bt # aNfay = &. Applying Rule | from Scction 16.5, since M = Ty + 47 and N = 4y,

1 .
Fi}h—“]'m'; = fiy}  alone

Thns the infeprating feor s
L
) Muhiplying {76.40) by the integratmg factor y, (79 + dpr') dy + 40" it = 1),
I, éMiar= 8y = sy, Thus,

2 F{r.i}-Jt?f*drﬂar--z{ri-}.w"lfa‘+3{rl

i %ﬂ = 4y i+ Z'(r)
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4. aFldr = N = &7, so0 Z'(i) = 0 and Z{1) is a constant. Thos,
5 Flpl =i+l +e=TV+ 6" + ¢

16.24. Redo Problem 16.23, given
Yidy + i dr = 0 (16.47)
a) oMiat = v & aNigy = 2y, Applying Rule 1,

1 2 2
F{‘f_m_l_"{_ﬂ=_;_ﬂ'ﬂ alome
Thﬂi-.. ,I'-I.I'J.r:;'-i-!'fh"-:r'l

b} Multiplying (16.47) by ¥, yedy + v'dt = 0.
L aMigt = y = aNfay, Thus

2 m.r}=J#ar+ﬂr:=Lr’-+zm
3, -';fn—é}ﬂ-rz'n:a;

aFiae = N = 4% 50 Z'{r) = 0, and Z(1) is 2 constunt, Thus,
A Fiv.ty = br+¢

16.25. Redo Problem 16.23, given

atdy + (16y ~ F)dt =0 (16.48)
g} M=4& N=16y-F, and oM/ = 4 # gNay = 16. Applving Rule 1,
I =12
]'ﬁ}'—ll“'_lﬁ} Tﬁy—_'?#m:h alone
Applying Rule 2,
1 3
;Elﬁ—-u-r;'r.{r} abome
Thus, gl g Pl gy a1

b} Multiplying (7648} by ', 4 dy + {16 — ("}di = 0 which was sclved in Problem 16.21.

16.26. Redo Problem 1623, given
dy + Syrdt = 0 (16.49)
@) Here M =, N = 3w, and aMJar = 2t # 3N/dy = 3¢ Applying Rule 1,
| o |
— (A=W — = — = alone
31‘1": H) e v}

Thus el ity o = OaE gy 10

Consequently, v~ is an integrating factor for the equation, although in Problem 16,19 ¢ was given
as-an integrating factor. Let us check y*'” first.

b Multiptying (f6.48) by ¥ % Fy Py + P dr = 0,
1. aMiar =2y~ = aNfay. Thus,
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2 F(y,t) = frﬁz“m ay + Z(t) = 1.5y + Z(r)
oF

3. — =3P+ Z'(t
it ()

4. 9F/ot = N = 3ty*3, 50 Z'(t) = 0 and Z(¢) is a constant. Hence,

5. Fi(y,t) = 1.5y + ¢ (16.50)

Here F, is used to distinguish this function from the function F, below.

16.27. Test to see if 7 is a possible integrating factor in Problem 16.26.
Applying Rule 2 to the original equation,

1 t 1

- (3¢—21) (S |

ThllS, ef(l/t)dt = elnz =t

Hence ¢ is also a possible integrating factor, as demonstrated in Problem 16.19, where the solution was
Fy(y,t) = >y + c. This differs from (16.50) but is equally correct, as you can check on your own.

16.28. Redo Problem 16.23, given
(y—t)dy—dt=0 (16.51)
a) M=y—t N= -1, and oM/dt = —1 # dN/3y = 0. Applying Rule 1,

—Ll(—l -0)=1=f(@y) alone
Thus, eIl = ¥
b) Multiplying (16.51) by e’,
(y—t)erdy—e’dt=0 (16.52)

1. M/t = —e’ = dN/dy. Thus.
2. F(y,t) = f (y—0eay + Z(t) (16.53)

which requires integration by parts. Let

=yt FO=1 g0=e )= [em=e
Substituting in (14.1),
f(y—t)eyay = (y—t)ey—jeyldy =@y-nNe—¢
Substituting in (16.53), F(y,t) = (y — 1)’ — e’ + Z(t).
aF

3. i -+ Z'(t)

4. 9F/ot= N = —e” in (16.52), so Z'(t) = 0 and Z(z) is a constant. Thus,
3. Fiy,t) =(y—t)&—e&+c or (y—-1e—te+c
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SEPARATION OF VARIABLES
16.29. Solve the following differential equation, using the procedure for separating variables described
in Section 16.6.
dy -5t
&ty
Separating the vanables,
ydy = =5idi ey + Stadr =0

Integruting each term separately,

v S
z Tz
_PJ"I"S.I'-:="E.I‘."1
Letting © = iy, B =
1630, Redo Problem 16.29, given
dy s
a) TR, b Pdy=ydi=0
] . T S E-—E-—-
iy =de = 0 S p ]
. [ . S
Intcprnting ?—E=r.. Integrntimg, —J—f+?—¢'
By — 5* = 3, y—I = ¢ty
Letting ¢ = 3¢, & -5=r¢
1631 Redo Problem 16,29, given rdy + ydr = [L
¥ f
Integrating, lny+nr=In¢  {on arbstrary constant)
By the male of logs, Inyi = Ine =g

1632, Use separation of variables to solve the following differential equation.

Sepuraiing the variahles,
fl = —g

i

Integrating both ades and using lnc for the constant of inlegration,
loy= =r+lane

Then playing with the conatant of integration for ultimate simplicity of the solution.
Iny=lnc==r
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Setning both sides as cxponents of e,

'i-=r"'
i
¥
16.33. Redo Problem 1632, given
)
E'P = h—ay
Separating the variables and then multiplying both sides by =1,
aly
i ol
dy :
ot

Integrating both sides and being creative once again with the constant of integration,
llutu_f b)) == ]'-1u.:
a i

Multipiying both sides by ¢ and rearranging.
In{ey—=tb)= —m +1ng

o2t -

@

ay = b

Idjl--- _ -E!’-— . —

§+9 1+5
Integratmg, =W =Infre5) =lne
By the rule of logs, mf'_':uu.r

Fee
P+5

=¢ or y+¥=¢gi+35)

16.35, Using the procedure for separating variables, solve the differential equation dy = 3y dt.

J'JI—'F—El-l’z.li'h‘={l
¥

Integrating, Imy—¢'=In¢
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Expressing each side of the squation as an exponent of «,

II!j.l|-r".= Elln’
‘J-.ut-r"-l_ll.r
yelme

y=ed

16.36. Redo Problem 1635, given v + 1)dv + £y’ — 5)dt = 0L

¥ i
y_,_ﬁdy+r_._+ln':=n

Imtegrating by substitution,

ih‘f—.ﬁ}'P hﬂ{l':'+'|] =lnro
Wi =5t +1)=mc {(F—5)r'+1)=¢

16.37. Redo Problem 16.35, given
3y + o dt =0

integrating, +ib(f=1)=¢

Scitimg the lefi-hand side as an exponent of ¢ and ignoring ¢, because, as on arbitrary constant, it can be
expressed equally well as ¢ or o,
g T~ 11 g

etremit e o et = 1) - e

USE OF DIFFERENTIAL EQUATIONS IN ECONOMICS
16.38. Find the demand function @ = /) if point elasticity € (s ~1 for all 2>0,

_dQP__ do__Q

E — — —

CdP g ar P
Separating the variables,
dp  dP
st e
IRk
Integrating. In @ + kn P = Inc
QF=c Q-3

16,38, Find the demand function = () if £ = =k, a constani.
(HQP L a0 kO
dP ¢ dF F
Eeparating the variables,
40  k

farl_Cod ¥ =1
A Ll

Ingd+klnF=c
QF = Q= cpt
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16.40, Find the demand function ¢ = fiF) if e = —{5P+ 2F°Y( and Q = 500 when P = 10,
_HdQ P _—(3P+2F)

dP @ o
“{5.!’1-1?‘1! o
dF =g p-G+m
Sepirating the variahles,
40 4 (5 4 24P = 1)
Integrating, Q+5P+ P =¢ [ R T o -

Al P =10 ond {F = 50,
SO0 = — 100 — 50+ ¢ c = 650
Thus, Q = &5 — 5P — &,

1641, Derive the formula P = P{0)#" for the wial value of an initial sum of money P{0) m.-:uu: fior
f years al inlerest rate 1, when [ 18 compounded continuoasly.

[f i t& compounded continuously,

dP
I =i
Separating the variabbes,
dar
e = il = ]
F
Infegrating, hP=it=¢
Setting the lefi-hand side a% an exponent of «,
lll Fef Fa

Pe =i P=ce
Abt=0, P = P{0), Thus P(0) = c¢’, ¢ = P(0). and P = P{0)e",

16.42. Determine the stahility condition for a two-sector income determination model in which o
¥ are deviations of consumption, investment, and income, respectively, from their equilibriom
values C.. [ ¥. That is, & = C(1) = C,, etc., where ¢ is read “C hat.” Income changes at a rate
proportional to excess demand €+ 7 — ¥, and

ey = g¥ir) Nty = b¥i1) dFm

Substituting the first two equations in the third,

d¥
—ealgrb-1F

=all+]-1) D<a b g<1

Separating the varinbles and then integrating,

E:F_F—-Fa{g-tﬂ— 1) dr

n¥=alg+b—1r+c
o = e tiiee
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Letting the constant ¢ = ¢,
¥ = pplariin
At (=0, ¥=¥0)-¥, =¢c Svbstitwiing sbove, ¥=[¥F{0)—¥.]e'* ™ Since ¥F=¥0-Y.
¥{) = ¥,+ ¥. Thus,
Yty = Y, + [¥({0) - ¥ ]ttt

As t—=, ¥{}—= Y. only if g+b<1, The sum of the marginal propeasily 1o consume g and the
marginal propensity 1o invest & mist be less than 1.

In Example 11 we found P(1) = [F{0)— Ple™"*" + P, (a) Explain the time path if (1) the
initial price P(0) = P, {2) P({0)> P, and (3) P(0) < P. (b) Graph your findings
a) 1} If the initial price equals the squilibrium price, M0} = P, the firsi term on the ripht disappears
and F{r) = P. The time path i 3 horizontal Hne, and adjustment is immediate. See Fig. 16-2.
2) 1t A0y = P, the first term on the right ls positive. Thus Pir) = P and Pir) ap]:unlcht;s?ﬂ'um.ahmt
as {— = and the [irst term on the right — 0.
3) If P < F, the lirst term on the right is negative. And Pf) < P and approaches it from below as
== and the first term — (L,

b) Ses Fig 16-2

Pith

P
F Pli) whes Py = P
Firy when Py <

Fig. 16-2

P

A change in the rate of investment will affect both aggregate demand and the productive
capability of an economy. The Domar model secks 10 find the time path along which an
economy can grow while maintaining full utilization of its productive capacity. If the marginal
propensity 10 save 5 and the marginal capital-outpot ratio & are constant, find the investment
function needed for the desired growth.

The change in aggregate demand i5 equal 1o the changs in invesiment times the mualiiplier L,
dy _1dl
dr s ot

The change in productive capecity 15 equal to the change in the cagetal Wock umes the reciprocal of the
marginal capital-ontpat rafso,

{16.54)

do_ 1 aK 1 e 9K _
= .l:'.n!i'_i:; EinCe I*—I (1a55)
Exquating (16.54) and (J16.55) for fully utilized capacity,
il -1 1 I
R R o
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Separating the variables,

dl s
——=dt=0
I k
. s
Integrating, Inl- Et =c
Ie—(s/k)t =c I= Ce(s/k)t

At ¢ =0, I(0) = ¢, and I = I(0)e®*.
Investment must grow at a constant rate determined by s/k: the savings rate divided by the
capital-output ratio.

16.45. The Solow model examines equilibrium growth paths with full employment of both capital and
labor. Based on the assumptions that

1. Output is a linearly homogeneous function of capital and labor exhibiting constant
returns to scale,

Y= f(K,L) (16.56)
2. A constant proportion s of output is saved and invested,
dK .
—=K=sY 16.57
I s (16.57)

3. The supply of labor is growing at a constant rate r,

L= Lye" (16.58)
derive the differential equation in terms of the single variable K/L, which serves as the basis of
the model.

Substituting Y from (26.56) in (16.57),
dK

22~ Sf(K,L) (16.59)
dt
Substituting L from (16.58) in (16.59),
dK
o sf(K, Lye™) (16.60)

This is the time path capital formation (dK/df) must follow for full employment of a growing labor force.
Preparing to convert to a function of K/L, let z = K/L, then K = zL. Making use of (16.58),

K = zLye" (16.61)
Taking the derivative of (16.61) and using the product rule since z is a function of 7,
%If— = z(rLoe™) + Loe’f% = (zr + %) Loe™ (16.62)
Equating (16.60) and (16.62),
sf(K, Loe™) = (zr + %) Lye™ (16.63)

Since the left-hand side of (16.63) is a linearly homogeneous production function, we may divide both
inputs by Lee” and multiply the function itself by L,e” without changing its value. Thus,

1) (16.64)

K
KL 23 — L T
SF(K, Loe™) = sLoe"f (7
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Substituting {1664} in (16.67) and dividing both sides by Loe”

K dr
"”{E.F‘I]' e (16.65)

Finally, substituting z for K/'Loe" and subtracting zr from both sides,
‘%- sfiz. 1) = zr {16.66)

which is a differential equation in terms of the single variohle 7 and two parameters r and s, where z = KL,
r= the rate of growth of the labor force, and 5 = the savings rate.

16.46. Assume that the demand for money 15 for transaction purposes only, Thus,
My = kPN Q {16.67)

where & i constant, P is the price level, and ( iz real outputl. Assume M, = M, and &
exogenously determined by monetary authorities. If inflation or the rate of change of prices is
propartional (o excess demsnd for goods in society and, from Walras™ law, an excess demand
for goods 15 the same thing as an excess supply of money, 20 that

d_}:}_ =b{M,— M) (16.68)

find the stability conditions, when real output {7 is constant.
Subsriiuing (667 in {(faad),
WP

— = M, — bkP()Q {16.09)
If we let P=pPu-P {16, 70)
where P is the devintion of prices from the equilibrivm price level P, then taking the derivative of
{16.20),
4P _dP) _ dP.
i i dt
But in equilibrium dP/dr = (. Heace,
df  dP(i)
W {1671}
substitutmg m (668,
% = bM, = B&P(r) O (16.72)
In equilibrivm, M, = M, = kP, (2. Henee M, = kP, = 0 and b{M, = kF,(3) = (). Subtracting this from
{1672},
%‘p = b, = BEP{i ) ~ BM, + BkP, [ = =bkQ{P(1) = P.] = —bk(F (I6.7)
which = a differential equution. Separating the variables,
P
T = ket

Integrating, In P = —bkQr +c, P = Ae™™ where & = A,
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16.47.

Since b, k, @ =0, P~ 0 ay r — =, and the system is stable, To find the time path M) from P, see the
conclusion of Problem 1642, where ¥ir) was derived from ¥,

If the expectation of inflation is a pesitive function of the present rate of inflation
dPi) -k dPir)
dr e dr
and the expectation of inflation reduces people’s desire 10 hold money, so that

m=aﬂr}u—g[i‘%ﬂ ; (16.75)

(16.74)

check the stahility conditions, assuming that the rate of inflation s proportional to the excess
supply of moncy as in (76.68),

Substitating (16.74) in {16.75),

Hg-kﬁiiﬂ;gﬁ%ﬂ {16 76)
Substinating (16, 78] in (16.68),
aPy . dPy)
i M, = b kP02 = gk i }
By a process similar to the steps mvobmng (P A7) fo (16 7T,
2 o M~ AP0 + bgh L a4 b0 = bk s b L (17
Substinusing (£6.71) for 4P{rpar in (1677,
L 5 df _ bEQP
P R e e
Separuting the variables,
daF bk
gy el

Imtegrating, In P = —bkQil] — bgh)
P = pp Tl

Since b, k. Q=0 P—0as t—=, if bgh< 1, Hence even if & is greater than |, meaning people expect
inflation o acceletais, the ccomomy need nof be unstabie, s long as b and g are sefficenily small,

PHASE DIAGRAMS FOR IMFFERENTIAL EQUATIONS
16,48, (a) Construct a phase diagram for the following nonlincar differential equation and test the

dynamic stability using (&) the arrows of motion, (c) the slope of the phase line, and (d) the
derivative test.

¥ - 18y

a} By setting ¥ = 0, we find the intertemporal equilibrium solution{s} where the phase diagram crosses
the horieontal axis

3:.-[u-ﬁ}-[l
Fi=0 HB=h
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We then find the critical valee and whether it represents a maximum or minimum.

i—f-m--uu-n y=3  critical value
diy z S
—==§=>0 relative minhmum
a7
Armed with this information, we can then draw & rough but accurate sketch of the graph, as i
Fig, 16-3
¥
- ﬁ
[f] A . ¥

The phase disgrum o 7= 378 - 13y
Fig. 16-3

b)  Abuve the borizontal anis, where y > (L the arrows of molion point to the right; below the horizontal
axis, ¥ = ) and the arrows of motion paint to the left. Since the arrows of motson point towards ¥, = 0
and away from ¥; = &, ¥, is siable and ¥ i= unstable,

) Winth the slope of the phase dagram negatve &5 0 passes through 7 = 0, we know 5 must be stabie.
With a positive slope at ¥; = 6, ¥; must be unsisble

d} Thkimpg the derivative of the eguation, indepemdently of the praph, and evaluating it st the critical
values, we sep

v
P fiy — 18

"
ﬁtﬂ}=ﬁtﬂ]—lﬁ=—[acﬂ 5, =0 is stable

&
ﬁ:ﬁ}ﬂtﬁ}—m = 18>0 ¥, =6 is unstable

16.49. Repeat the exercise in Problem 16.48 for
yu=y +by=35

a)  Setting v =, {y—1X-y+5)=0
_F|,= | j;=j
Optimiring, %— Ay 4=

p=13 critical vahee
7 -21=0 Lt ximum
Y relative mn

Then sketching the graph, as in Fg 16-4
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i
i
i

7 5&5
The phase diagram for y=— + fiy - §

Fig. 16-4
b}  Since the arrows of motions point away from ¥, = | and towards §; = 5, 7, is unstable while ¥; 1s a
stable inlertemporal equilibrium,
¢} The positive slope al #, = | and the negative slope at ¥, = 5 indicate that ¥, is an unstable equilibrium
and ¥, is a stable equilibrium,.
dy
d —_— = ﬁ,
) dy 2y +
dv - ;
I{l}=—2{1j+ﬁ=4}ﬂ ¥ = 1 & unstable

P
T(5)=-USH+6=—4<0  F= s stable

16.50. Repeat Problem 16.49, given
¥v=y=10y+16
a) r=2y-8) =0
h=t y=4

::'i=2y—lﬂ=tﬂ ¥=25  eritical value
I
%-E}U relative minimum

‘Then sketching the graph., as in Fig. 16.5.

N P

-]
P
g

The phase disgram for y =2 = 10y + |6
Fig. 165
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b) Since the arrows of motion point towards ¥, = 2 and away from ¥, = B, ¥, is stable while ¥, is an
unstable intertemporal equilibrium.
¢} The negative slope at ¥, = 2 and the positive slope al #, = B indicate that ¥, s a stable equilibrium
and ¥, s an unstable equilibrium.
dy
— - n
d) dy 2y —1
dy
— @ =22)-10=-6<0 $i = 2 s stable

%{ﬂ]=1ﬂﬂ—1ﬂ-&}n ¥s = B is unstable



First-Order
Difference
Equations

1.1 DEFINITIONS AND CONCEPTS

A differenice equation expresses a rclationship between a dependent variable and a lagged
independent . variable (or variables) which changes at discrete intervals of time, for example,
L= 0¥, ) where [ and Y are measured at the end of each year, The order of a difference equation
i& determined by the greatest number of periods lagged. A first-order difference equation expresses a
time lag of one period: a second-order, two periods; etc. The change in y as r changes from r to 1+ |
i ealled the first difference of y. It is written

_.=-1}'r=}'rrl__'!'r {-F?!}
where & 18 an operator replacing d/dr that is used to measure continuous change in differential

egquations. The =olunon of a difference equation defines y for every value of r and does not contain a
dilference expression. See Examples 1 and 2.

EXAMPLE 1. Euch of the following is a difference equation of the order indicated.

foma(¥ =Y, 3) order 2
Qi=a+bP_, order 1
Vot = W+ 20+ 6, =8 order 3
Ay, = Sy, order 1
Substituting fram (/7. 1) for Ay, above,
¥ "N = 5}'.- Yeer ™ ﬁ:l'j order 1

EXAMPLE 2. Given that the initinl value of y is y,. in the difference equation
Yesr = by, (17.2)

391
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a solution is found as follows. By successive substitutions of ¢ = 0,1, 2,3, etc. in (17.2),
y1="by, ys = by, = b(b’y0) = by,
Y2 = by, = b(by,) = b*y, ys = bys = b(b’yo) = by,
Thus, for any period ¢, -
y: =Dy,

This method is called the iterative method. Since y, is a constant, notice the crucial role b plays in determining
values for y as ¢ changes.

172 GENERAL FORMULA FOR FIRST-ORDER LINEAR DIFFERENCE EQUATIONS

Given a first-order difference equation which is /inear (i.e., all the variables are raised to the first
power and there are no cross products),

Ye=byi1+a (17.3)

where b and a are constants, the general formula for a definite solution is
Y= (yo _Tﬁ?)bt+1_f_b when b#1 (17.4)
Vi = yo+at when b =1 (17.4a)

If no initial condition is given, an arbitrary constant 4 is used for Yo—al/(1 —b) in (17.4) and for y, in
(17.4a). This is called a general solution. See Example 3 and Problems 17.1 to 17.13.

EXAMPLE 3. Consider the difference equation Ye= —7y,-1 + 16 and y, = 5. In the equation, b = —7 and a = 16.
Since b # 1, it is solved by using (17.4), as follows:

16 16
= N - t+ == AV r
y (5 1+7)( s = (=T 42 (17.5)

To check the answer, substitute 1 = 0 and ¢ = 1 in (I7.5).

Yo=3(=7+2=5 since (-7)°=1
Yy =3(=7)' +2=—19

Substituting y; = —19 for y, and Yo =5 for y,_; in the original equation,
—-19=-7(5)+16 = —35+16

17.3 STABILITY CONDITIONS
Equation (77.4) can be expressed in the general form
nw=Ab+¢ (17.6)

where A = y;—a/(1 — b) and ¢ = a/(1 — b). Here Ab' is called the complementary function and c is the
particular solution. The particular solution expresses the intertemporal equilibrium level of y; the
complementary function represents the deviations from that equilibrium. Equation (17.6) will be
dynamically stable, therefore, only if the complementary function Ab*— 0, as t— =, All depends on
the base b. Assuming A = 1 and ¢ = 0 for the moment, the exponential expression b’ will generate
seven different time paths depending on the value of b, as illustrated in Example 4. As seen there, if
b1>1, the time path will explode and move farthes and farther aw ay from equilibriom; 1§ \b| < 1. th=
time path will be damped and move toward equilibrium. If b <0, the time path will oscillate betwe==
positive and negative values; if b >0, the time path will be nonoscillating. If A # 1, the value of ==
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b! b’
|
]
e 1
:.—J
0 t 0 t
(a) b>1 (b) b=1
b’ B!
S —
o
0 t 0 t
(c) 0<b<l (d) b=0
b' bt |
=1
|
| ey | | ] |
L | | ' :
ot o} ———— | :
! ' e | : : (
|
I I [ I [
(e) —1<b<0 f) b=—1
b' P
[
[
— |
1 | |
N B TEE— ,
| i |
| |
] |

(g) b<—1

Fig. 17-1 Time path of b’

multiplicative constant will scale up or down the magnitude of &', but will not change the basic pattern
of movement. If A = —1, a mirror image of the time path of b’ with respect to the horizontal axis will
be produced. If ¢ # 0, the vertical intercept of the graph is affected, and the graph shifts up or down
accordingly. See Examples 4 and 5 and Problems 17.1 to 17.13.

EXAMPLE 4. In the equation y, = b', b can range from —¢ to . Seven different time paths can be generated,
each of which is explained below and graphed in Fig. 17-1.

1.

o

If b>1, b' increases at an increasing rate as t increases, thus moving farther and farther away from
the horizontal axis. This is illustrated in Fig. 17-1(a), which is a step function representing changes at
discrete intervals of time, not a continuous function. Assume b = 3. Then as ¢ goes from 0 to 4, &' =1,
3, 9, 27, 8i.

If b =1, b* = 1 for all values of #. This is represented by a horizontal line in Fig. 17-1(b).

If 0<b <1, then b is a positive fraction and b’ decreases as 7 increases, drawing closer and closer to the
horizontal axis, but always remaining positive, as illustrated in Fig. 17-1(c). Assume b = 1 Then as ¢ goes
fromO0tod, b'=1,% 5 5, ¢ ;

If b = 0, then b* = 0 for all values of ¢. See Fig. 17-1(d).

If —1<b <0, then b is a negative fraction; b" will alternate in sign and draw closer and closer to the

horizontal axis as ¢ increases. See Fig. 17-1(e). Assume b = —1. Then as 7 goes from 0 to 4, b' =1, -1z

L 1
27> 81+
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6. If b= —1, then b’ oscillates between +1 and —1. See Fig. 17-1(f).
7. If b<—1, then b' will oscillate and move farther and farther away from the horizontal axis, as illustrated
in Fig. 17-1(g). Assume b = —3. Then b* = 1, =3, 9, —27, 81, as ¢ goes from 0 to 4.

In short, if |b|>1  the time path explodes
|b|<1  the time path converges
b>0 the time path is nonoscillating
b<0 the time path oscillates

EXAMPLE 5. In the equation y, = 6(—})' + 6, since b = — <0, the time path oscillates. Since |b| <1, the time
path converges.
When y, = 5(6)' +9 and b = 6> 0, there is no oscillation. With |b| > 1, the time path explodes.

174 LAGGED INCOME DETERMINATION MODEL

In the simple income determination model of Section 2.3 there were no lags. Now assume that
consumption is a function of the previous period’s income, so that

Cr = CO + CYt—l Yt =5 Ct 7+ II
where I, = I,. Thus, Y, = Cy + cY,_; + I,. Rearranging terms to conform with (17.3),
Yt = CYt—l + CO + IO (17.7)

where b =c and a = C, + I,. Substituting these values in (I7.4), since the marginal propensity to
consume ¢ cannot equal 1, and assuming Y, = Y, at ¢ = 0,

Co+1L\, . Co+l
- .
Y, (Yo . C)(c)+ e (17.8)

The stability of the time path thus depends on c. Since 0 <MPC <1, |c¢|<1 and the time path will
converge. Since ¢>0, there will be no oscillations. The equilibrium is stable, and as t— o,
Y,— (Co + Ip)/(1 — ¢), which is the intertemporal equilibrium level of income. See Example 6 and
Problems 17.14 to 17.20.

EXAMPLE 6. Given Y, = C,+1, C, =200+ 0.9Y,_;, I, = 100, and Y, = 4500. Solving for Y,,

Y, =200+ 0.9Y,_; + 100 = 0.9Y,_, + 300 (17.9)
Using (17.4),
300 300
Y, = (4500 mEp. ) (0.9) + T 1500(0.9)" + 3000 (17.10)

With [0.9] <1, the time path converges; with 0.9 > 0, there is no oscillation. Thus, Y, is dynamically stable. As

t— oo, the first term on the right-hand side goes to zero, and Y, approaches the intertemporal equilibrium level
of income: 300/(1 — 0.9) = 3000.
To check this answer, let 1 = 0 and ¢ = 1 in (17.10). Thus,

Y, = 1500(0.9)° + 3000 = 4500
Y, = 1500(0.9)" + 3000 = 4350

Substituting ¥; = 4350 for Y, and Y, = 4500 for Y,_, in (17.9),

4350 — 0.9(4500) = 300
4350 — 4050 = 300
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175 THE COBWEB MODEL

For many products, such as agricultural commodities, which are planted a year before marketing,
current supply depends on last vear's prices. This poses interesting stability questions. If

Oa=c+bP and O.=g+hP_;

in equilibrium, c+bP, =g+ hP,_, (17.11)
BP,=hP, ,+g—c {(I7.12)
Dividing (17.12) by b 1o conform to (I17.3),
- h -
P' = L—Pj-_t s b

Since b <0 and h >0 under normal demand and supply conditions, A/b # 1. Using (17.4),
e - S8 e

1L=h/b |\b 1= hib
g-c\/AY g-c
- - i r
(‘P” b—h)(.‘:)+h—h =5)
When the model is in equilibrium, P, = P, ,. Substituting P, for P, and P, , in (/7.1])
Fo= (17.13a)

Substituting in (J7.13),
h "
P.= 8- P)(3) +P.
With an ordinary negative demand function and positive supply function, b<0 and A >0.

Therefore, Wb <0 and the time path will oscillate.

If || > |b], |h/b| > 1, and the time path P, explodes.
If |h] = |b|, kb = —1, and the time oscillates uniformly.
If |h] =< |b], |h/b]| <1, and the time path converges, and P, approaches P..

In short, when @ = f{P) in supply-and-demand analysis, as is common in mathematics, the supply
curve musi be flatter than the demand curve for stability. See Example 7 and Problems 17.21 to 17.25.
But if P = flQ), as is typical in economics, the reverse is true. The demand curve must be Aatter, or
more elasuc, than the supply curve if the model is 10 be stable.

EXAMPLET. Given (J, = B6—08F and (), = =10+ 0.2F,_,. the market price P, for any time period and the
equilibrium pnice P, can be found &s follows, Equating demand and supply,

B& —08F, = -10+0.2P,._, —0.8F, = 02P._, - 9%
Dividing through by —(0.8 10 conform to (17.3), P, = —025F, | + 120. Using (17.4),

120}
1+0.25

] (-025) +

p= (P~ = (Py— 96)(~0.25) + 96

1
1+0.2%
which can be checked by substituting the appropriate values in (17.13). From (I7.13a}), P, = (=10~ B&)/
(—0.B—0.2) = {—96)/{-1) = 96.

With the base b = —0.25, which is negative and less than 1, the time path oscillates and converges. The
equilibrium is stable, and P, will converge 10 P, = 96 a5 1 — =,
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176 THE HARROD MODEL
The Harrod model attempts to explain the dynamics of growth in the economy. It assumes
5 =¥

where 1 is a constant equal to both the MPS and APS. It also assumes the acceleration principle, i.e.,
investment is proportional to the rate of change of national income over time.

I =a(¥ - ¥.,)

where @ is a constant equal to both the marginal and average capital-output ratios. In equilibrium,
I, = &, Therefore,

Y=Y =35 (a—-5Y=a)._,
Dividing through by a — s to conform to (17.3), ¥, = [a/(a — 5)] ¥~ ;. Using (I7.4) since a/(a - 5) # 1,

}:=u;-ul( =

=35

¥ a L

The stability of the time path thus depends on a/(a - 5). Since a = the capital-output ratio, which is
normally larger than 1, and since 5 = MPS which is larger than 0 and less than 1, the base a/{a — 5) will
be larger than O and usually larger than 1. Thercfore, ¥ is explosive but nonoscillating. Income will
expand indefinitely, which means it has no bounds. See Examples 8 and 9 and Problems 17.26 and
17.27. For other economic applications, see Problems 17.28 to 17.30.

EXAMPLE 8. The warranted rate of growh (i.e., the path the economy must follow to have equilibrium between
saving and investment each year) can be found as follows in the Harrod model.
From (I7.14) ¥, increases indefinitely. Income in one period is a/{a ~ ») times the income of the previous
period.
Y, = (-—}Yn (17.15)
a=x
The rate of growth G between the periods is defined as

_F.'Fﬂ
G——h

Substituting from (17.15),
G falla—x)] Y, - Y, _lafa=-5)=1]¥%

Y, ¥
a \ a =5 1
a=3 a=x a=y a=x
The warranted rate of growth, therefore, 8
2
G, = 1716
e ( )

EXAMPLE®. Assume that the marginal propensity to save in the Harrod model above is 0.12 and the
capital-output ratio is 2.12. To find ¥, from (J7.14),

212V
Y= (1.12 - mz) h= (LY

The warranted rale of growih, from ([7.16), 18

012 012
““In-oaz 2 o
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17.7 PHASE DIAGRAMS FOR DIFFERENCE EQUATIONS

While linear difference equations can be solved explicitly, nonlinear difference equations in
general cannot. Important information about stability conditions, however, can once again be gleaned
from phase diagrams A phase diagram of a difference equation depicts y, as a function of v, . If we
restrict the diagram to the first quadrant for economic reasons so all the variables will be nonnegative,
a 45° line from the origin will capture all the possible steady-state equilibrium points where v, = ¥, .
Consequently, any point at which the phase diagram intersects the 45° line will indicate an
intertemporal equilibrium solution. The stability of a solution can be tested diagrammatically
(Example 10) and mathematically (Example 11). Mathematically, the test depends on the following
criteria for the first derivative of the phase line when it is evaluated at a steady-state point.

1. I ‘ﬂ—{_ﬂ < 1, ¥ is locally stable. If ﬂﬁ]i =1, ¥ is locally unstable.
d}';—t d]"*-l I
2. If oy, (¥) = 0, no oscillation. If dy, (¥) < 0, oscillation
' dy— " Ty ) '

EXAMPLE 10. Given a nonlinear difference equation, such as
Yo Y = Ve,
wo can constrict a phase disgram in o few easy sieps.

1. Find the steadv-state solution(s), where v, = v,_,, by setting both y, and v, , = 7 and solving algebraically

for v.
=i
7 -§=0
L
'{‘iq) =§F P -1=0
¥
¥y =0 »y =] steady-siate solutions

The phase diagram must intersect the 45 line m 5, = 0 and ¥, = L
2. Take the first-derivative 1o see if the slope is poditive or negative.
| b1
s sy =50
dy,_y v,y

Assuming y,. ¥, >0, the phase dingram must be positively sloped.
3. Take the second derivative to see if the phase line is concave or convex.
-0.25
d’y, W &

= o i = e | 1 X
dyi 023y, 0.25y, Vo 0  concave

4. Draw a rough sketch of the graph, as in Fig. 17-2.

n A3 lime: v = gy (Shope = 1)

Muive line
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5. To analyze the phase diagram for stability conditions, we pick an arbitrary value for v, ., say y, | = 0.25,
and in a repeated sequence of steps (shown as dotted arrows) move up vertically to the phase diagram,
then across horizontally to the 45° line, to see if the process converges to an equilibrium point or diverges
from an equilibrium point. Here, starting from a valoe 0 <y, , < 1, the process converges towards ¥; = 1
and diverges from ¥, = 0. We conclude, therefore. that sturting from a value <y, <1l. B =1k a
locally stable equilibrium and ¥, = 0 is locally unstable.

We next pick a value v, > 1, here v, = 2, and repeal the process. From the pattern of dotied
arrows thal emerges, we conclude that starting from a value y. =1, ¥y = 1 is also locally stuble when
approached from a value =1,

EXAMPLE 11. Here we confirm the results of the phase diagram test with the simple caleulus test described
above. Assuming once again, v, = '),

. d..r
L sy
d}"'_ | } ]

Ewvaluated in absolute value al §, = 1,
0.5
10.5(1)% = |¥—J =05<1 locally stable.
Evaluated simply as 7, = 1,
0.5
051y ™= 'Tl_ =050 npo oscillaton

Evaluated at ¥, = 0, the derivative is undefined but approaches infinity as v,., — 0. Therefore, ¥, = 0 is locally
unstable. See Problems 1731 to 17.33,

Solved Problems

USE OF GENERAL FORMULA FOR FIRST-ORDER LINEAR DIFFERENCE EQUATIONS

17.1. (a) Solve the difference equation given below; (b) check your answer, using r = O and r = 1; and
{c) comment on the nature of the time path.

Yo =6y,
@)y Here b=6and a = 0. Using (I7.4) for all cases in which b+ 1,
¥ = (¥ — O)6) + 0 = y b)Y = A(6) (17.17)

where A, as & more generally used unspecified constant, replaces y,.
i)  Estmating (1707 at = Oand 1= |,

Vo= A6 =A  y = A(6) = 6A

Substituing y, = A lor ¥, and y, = 6A [or v, m the onginal problems, 64 = 6{A).

c)  With the base b = & in (!7.17) positive and greater than 1, that 1, b >0 and |b| > 1, the time path is
nonoscillating and explosive.

17.2. Redo Problem 17.1 for v, = jy,.1.
a) Using (17.4),
Y= (= O)) + 0 = yoll) = AR
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17.3.

17.4.

17.5.

17.6.

17.7.

b) Att=0,y,=AG°=A Att=1y = A() = LA. Substituting yo, = A for y,, and y; = 1A for y, in
the original equation, ;A = §(A).
¢) With b =1 b>0and |b|<1. The time path is nonoscillating and converging.

Redo Problem 17.1, given y, = —5y,—1 + 60 and y, = 8.

) (35 2) (1) + 5Ly = (-3 v
L 1+3)\7a) T 143 4
b) At t=0, yo=—40(—3)°+48=8 Atr=1, y; = —40(—1) + 48 = 58. Substituting in the original

equation, 58 = —(8) + 60 = 58.
c¢) Withb = -1 b<0and |b|<1. The time path oscillates and converges.

Redo Problem 17.1, given x, + 3x,—1 +8 =0 and x, = 16.

a) Rearranging to conform with (17.3),

x,=—3xt71—8
Thus, b = —3 and a = —8. Substituting in (17.4),
8 8
=16+ ——=|(-3)——= =18(-3)'—
* ( 1+3)( Yoy B2

b) At 1= 0, xo=18(—3)°-2=16. At t=1, x; =18(=3)-2= —56. Substituting in the original,
—56+3(16) +8 = 0.
¢) With b= —3,b<0 and |b|>1. The time path oscillates and explodes.

Redo Problem 17.1, given y, — y,—1 = 17.

a) Rearranging, y, = y,-1+17. Here b = 1. Using (I7.4a), therefore, y, = yo+ 17t = A+ 17t
b) Att=0,y,=A. Att=1,y,=A+17. Substituting in the original, A +17 —A=17.

¢) Here b = 1. Thus b>0 and y, will not oscillate. But with |b| = 1, 1 < |b| < 1. This presents a special
case. With a # 0, unless y, = A = 0, the time path is divergent because the complementary function
A does not approach 0 as t— . Thus, y, approaches A + at, and not the particular solution, at, itself.
For b =1 and a = 0, see Problem 17.17.

Redo Problem 17.1, given g, = g1 — 25 and g, = 40.

a) Using (17.4a), g, = 40 — 25t
b) Att=0,g=40. Att=1g=15 Substituting in the original, 15 = 40 — 25.
¢) Withb=1,a#0and A =g #0. The time path is nonoscillatory and divergent.

Redo Problem 17.1, given 2y, = y,—1 — 18.
a) Dividing through by 2 to conform to (17.3) and then using (17.4),

1 9 1\ 9 TN
= y—9=[yo+—](z) ——3=4(5) 18
Yi=3¥e? (y° 1—%)(2> -1 (2)

where A is an arbitrary constant for y, + 18.

b) Atf=0,y,=A—18 Atz=1,y, = A —18. Substituting in the original, 2GA —18) = A ~18 —18;
A-36=A-36.

¢) Withbh =3 b>0and|b|<1. Soy,is nonoscillating and convergent.
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17.8. (a) Solve the following difference equation; (&) check the answer, using 1 = 0 and ¢ = 1; and
{c} comment on the nature of the time path.
S+ 2y, - 140 =10 vo =30
a} Dividing by 5, rearranging terms, and using (17.4),
8 ){—lli]l 2

|+ o — l+
1404 1404 e e

b)Y Atr=0 v =30 Atr=1, y, = 16 Substituting in the original, 5(16) + 2(30) - 140 = 0.
¢) With b= -04, b<0and |b| < 1. So y, oscillates and converges

yo= —0dy., +28 = (

179. Redo Problem 17.8, given x,., = 4x, — 36.
@) Shifting the time periods back one peried 1o conform with (17.3), x, = 4x,_; — 36, Using (I7.4) and
allowing A o replace x, = a/{1 — b) a& in Problem 17.7.

3
Af4) =4 AldY + 12

by Atr=0.x=A+12 Att=1, x =44 + 12, Substituting x; = 44 + 12 for x,., and xy = A + 12 for
x, in the original equation, 44 + 12 =4(A < 12) -3 44 + 12 =44 + 12,

¢) Withh =4, b>0and |6 > 1. 50 x, does not oscillate but it explodes

17.18. Redo Problem 17.8, given .5 + 2y,.4+ 57 = 0 and y, = 11.
a} Moving the time periods back 5 peniods. rearranging terms, and nsi.ng (i7.4),

pom <2y = 57 = (104 2505 ) (-2F - 35 = 30(-2Y - 19

By Atr=0,5 =1L Atr= 1,y = =79 Substituting v, for v,.s snd ¥, for ¥,,. in the ariginal equation,
79+ 2{11)+ 57 = 0,

£} Withb=-2,b<0and |b| =1y, oscillates and explodes.

17.11. Redo Problem 17.8, given By, — 2¥,-s = 120 and y, = 28,
a) Divide through by 8, shift the time penods ahead by 2, and rearrange terms.

¥ = %,v._, +15= [zs l'fj](i]'+%=s(%)r+zﬂ

b)Y Ate=0, v, =28 At1=1, y, = 22 Substitute v, for v, and v, for ¥,
B(22) - 2(28) = 120 120 = 120
¢) Withb=4 b>0and b|<1. S50y, is nonoscillating and comvergent,

1711, Redo Problem 17.8, given Ag, = 14.
@) Substituting (J7.1) for Ag,,
Ba—g=14 (17.18)
Set the ume periods back | and rearrange terms
L= t14
Using (I7.4a). g, = go+ 145 = A + 14t
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17.13.

b) At t=0, gg=A. At t=1, g = A +14. Substituting g; for g.; and g for g in (17.18),
A+14—-A =14

¢) With b =1, g, is nonoscillatory. If A # 0, g, is divergent.

Redo Problem 17.8, given Ay, = y,+ 13 and y, = 45.
a) Substituting from (17.1), moving the time periods back 1, and rearranging terms,
y: =2y, 113 (17.19)
13 13
Usi 17.4 = = T r_
sing (17.4), Vi (45 =) ) 2) - 58(2)—13

b) Att=0,yo=45. Atz=1,y, = 103. Substituting in (17.19), 103 = 2(45) + 13; 103 = 103.
¢) With b =2, b>0and |b|>1. Thus y, is nonoscillatory and explosive.

LAGGED INCOME DETERMINATION MODELS

17.14.

17.15.

17.16.

Given the data below, () find the time path of national income Y’; (b) check your answer, using
t=0and ¢ = 1; and (¢) comment on the stability of the time path.
C,=90+0.8Y_4 I,=50 Y, = 1200

a) In equilibrium, Y; = C, + L. Thus,

Y, = 90+ 0.8Y,_, + 50 = 0.8Y,_; + 140 (17.20)

Using (17.4), Y, = (1200 -7 1_48.8) (08) + 5 1_48‘8 = 500(0.8)" + 700
b) Y, =1200; Y, = 1100. Substituting in (17.20),
1100 = 0.8(1200) + 140 1100 = 1100

c) Withb =08 b>0and |b| < 1. The time path Y, is nonoscillating and convergent. Y, converges to the
equilibrium level of income 700.

Redo Problem 17.14, given C, = 200 + 0.75Y;_,, [, = 50 + 0.15Y,_4, and Y; = 3000.
a) Y, = 200 + 0.75Y,_; + 50 + 0.15Y,; = 0.9Y,_, +250
250 250
i . = - 9)" + ——— = 500(0.9)" + 2500
Using (17.4), Y; (3000 1__0.9)(09) +1_0'9 500(0.9)

b) Y, =3000; ¥; = 2950. Substituting above, 2950 = 0.9(3000) + 250; 2950 = 2950.
¢) With b = 0.9, the time path ¥; is nonoscillatory and converges toward 2500.

Redo Problem 17.14, given C, = 300 + 0.87Y,_y, I, = 150 + 0.13Y,_,, and Y, = 6000.
a) Y, = 300 + 0.87Y,_, + 150 + 0.13Y,_, = Y,_; +450 (17.21)

Using (17.4a), Y, = 6000 + 450z.
b) Y, = 6000; ¥; = 6450. Substituting in (17.21) above, 6450 = 6000 + 450.
¢) With b =1and A # 0, the time path ¥ is nonoscillatory but divergent. See Problem 17.5.
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17.17. Redo Problem 17.14, given C, = 0.92Y,_,, J, = 0.08Y,_,, and ¥, = 4000.
a) Y, =092V, ,+008Y =¥,

Using (17.4a), ¥, = 4000 + 0 = 4000,
B) ¥, = 4000 = ¥,
¢} When b= | and a = 0, ¥, s a stationary path.

17.18. Redo Problem 17.14, given C, = 400 + 0.6Y, + 0.35Y,_,, [, = 240 + 0.15Y,,, and ¥, = 7000,
a) Y, = 400 + 0.6Y, + 0.35Y,_, + 240 + 0.15Y, , 0.4¥, = 0.5Y,_, + 640
Divide through by 0.4 and then use (17.4).

1600
1-12%

By Y, = T000: ¥, = 10,350, Substituting in the initial equation,
10350 = 400 + 0.6{10,350) + 0.35(7000) + 240 + 0.15(7000) = 10,350
¢) With b = 1.25, the time path ¥, is nonoscillatory and explosive.

¥,= 125, + 1600 = ( 7000~ ) .25y + 50 = 13.40001.25 - 6400

17.19. Redo Problem 17.14, given C, = 300 + 0.5Y, + 0.4Y,_, I, = 200 + O.2Y,_,, and ¥, = 6500.

i) ¥,=300+05Y,+04¥_, + 200+ 02Y,_, 0.5Y, = oY, + 500
Dividing through by (L5 and then wsing (/7.4),
Y, = 1.2¥_, + 1000 = (nﬂm— % (1.2) + 11-?“1“2 = 11,500{1.2)' - 5000

B) ¥, = 650 Y, = 8800. Substituting in the initial equation,
BS500 = 300 + (.5(8800) + 0.4(6500) + 200 + 0.2{6500) = 8500
¢} With b = 1.2, ¥ is nonoscillatory and explosive.

17.20. Redo Problem 17.14, given C, = 200 + 05Y, [, = 3(¥, - ¥..,), and ¥; = 10,000
) Y,=20+045Y, +X¥,- ¥ )) —-25Y, = -3, ,+ 20
Dividing through by —2.5 and then wsing {/7.4),

Y, = 12Y,_, - 80 = [m.mu—%){ur— = 9600(1.2)’ + 400

1-13
by ¥, = 1000 ¥, = 11,920, Substituting in the initial equation,

11,920 = 200 + 0.5(11,920) + 3(11,920 — 10,000) = 11,920
¢} With b = 1.2, the time path ¥, explodes but does not oscillate.

THE COBWEB MODEL

17.21. For the data given below, determine (a) the market price P, in any time period, (b) the
equilibrium price P, and (c) the stability of the time path.

Q4 = 180 — 0.75P, Q.= —-30+0.3F,., Po=220
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a) Equating demand and supply,

180 - 0.75P, = —=30+ 0.3P,., (17.22)
- 075P, = 0.3P,_, - 210

Dividing through by —0.75 and using (I17.4),

= }.r,-n.ar+ - 20(-04Y +200  (17.23)

250}
1+04 1+04
£ U the market is in equilibrium, F, = P, ;. Substituling P, for P, and P, in ({722},

180 — 0.75P, = 30+ D3P, P, = 200

which is the second term on the right-hand side of (17.23).
€} With b= =04, the time path P, will oscillate and converge,

P, = —u.m_.+2m-(1*m—

17.22. Check the answer to Problem 17.21(g), using r=0and 1 = 1.

From (17.23), Py = 20(=0,4)" + 200 = 220 and P; = 20(=0.4) + 200 = 192, Substituting P, for P,
and Py for P, in (17.22),

180 = 0.75(192) = =30+ 0.3(220)
36 = 36

17.23. Redo Problem 17.21, given Qs = 160 - 08P, Q, = 20+ 04P,_,. and P; = 153
a) 160 = 0.8P, = =20 + 0.4P, , (17.24)
- 08P, = 0.4P,_, - 180
Dividing through by —0.8 and using (/7.4).

22:5 [
Fy= A vl (m lu}.s)"ﬂ“'“un.s

b} As shown in Problem 17.21(k), P, = 150, See also Section 17.5.
e} With b = —0.5, P, oscillates and converges toward 150,

= 3{—0.5Y + 150 (I7.25)

17.24. Check the answer to Problem 17.23(a), using i =0 and r= 1.
From (7.25), P, = 3{(—=05)"+ 150 = 153 and P, = 3(—0.5) + 150 = 148.5. Substituting in (/7.24),

160 - 0.B{148.5) = —20 + 04(153)
412 =412

17.25. Redo Problem 1721, piven Q,, = 220 = 0A4P, Q,, = =30 + 0.6P,_,, and P, = 254.

a) 20 -04F, = =30 +06F._,;
—{4F, = 06F,.; — 250

Daviding through by =14 and then using (77.4),

f2S H2S
S - - - — -1, ! )
F; LSP_, + 625 {?.54 ]+|.5}{ LSy T 15 4(—-1.5) + 250
b) F, =130

¢} With b = =15, P, oscillaies and explodes.
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THE HARROD GROWTH MODEL

17.26. For the following data, find (@) the level of income ¥; for any period and (b) the warranted rate
of growth.

I, =2.66(Y;,— Y,_y) S, =0.16Y; Y, = 9000
a) In equilibrium,
2.66(Y, - Y,_;) = 0.16Y, 2.5Y, =2.66Y,;
Dividing through by 2.5 and then using (17.4),
Y, = 1.064Y,_; = (9000 — 0)(1.064)" + 0 = 9000(1.064)’
b) From (17.16), G, = 0.16/(2.66 — 0.16) = 0.064.

17.27. Redo Problem 17.26, given I, = 4.2(Y, - Y;_,), S, = 0.2Y;, and Y, = 5600.

a) 42(Y, - Y,_,) = 02Y,
4Y, = 42V, ,
Y, = 1.05Y,_,

Using (17.4), Y, = 5600(1.05)".

02

b) Gv=92"02

= 0.05

OTHER ECONOMIC APPLICATIONS

17.28. Derive the formula for the value P, of an initial amount of money P, deposited at i interest for
t years when compounded annually.

When interest is compounded annually,
P =P +iP,=(1+i)P,
Moving the time periods back one to conform with (17.3),
P,=(1+i)P.,
Using (17.4) since i # 0, P=(Py+0)A+i)+0=Py(1+i)

17.29. Assume that Q4 = c+ zP,, Q, = g + hP, and
Py =P —a(Qu— Qu) (17.26)

i.e., price is no longer determined by a market-clearing mechanism but by the level of inventory
Qs — Qg Assume, too, that a >0 since a buildup in inventory (Q, > Q) will tend to reduce
price and a depletion of inventory (Q,, < Q) will cause prices to rise. (a) Find the price P, for
any period and (b) comment on the stability conditions of the time path.

a) Substituting Oy, and Q,, in (17.26),

Pyy=P—a(g+hP,—c—2zP)
=[1—ah—2)]Pi—a(g—c) = [L+a(z—h)]P.—a(g—c)
Shifting the time periods back 1 to conform to (17.3) and using (17.4),

= a(g—¢) T a(g—c)
P"{P°+1—[1+a(z—h>]J[”"(z Rl Ay

~ (P S e -y + £

C
17.27
z—h h ( :
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Substituting as in (/7./3a),
P, = (Po=P)[1+a(z = W) +P, (17.28)

b} The stability of the time path depends on b = 1 + a{z — k). Since a >0 and under normal conditions
r<0and A>0, alz - h)<0. Thus

If0<|a(z -h)|<1, D=hb<l: P, converges and s nonoscillatory.
If a{z — h) = —1, b=0; P, remains in equilibrium (P, = P,).
H-2<a{r—h)< -1, -1<h=<0 P, converges with oscillation.

If oz —h) = -2, b=-1; uniform oscillation takes place

If afz — ) < -2, b<-1: P, oscillates and explodes.

17.30, Given the following data, («) find the price P, for any time period: (b) check the answer, using
f=0and r=1; and (c) comment on the stability conditions.
Q4 = 120 - 05P, Q.= =30+ 03P, Py =P—020,— Q4) Py =200
al  Substituting, Poy=P=02{-30+03P,- 120+ 05P,) = 0.84P, + 30
Shifting time periods back 1 and using (17.4),

0 .
= 08481+ 30 = (20— 7o Joser s =0

- A1, :
084 12.5(0.84) 4+ 187.5

by Py=200; P, =198 Substituting in the first eguation of the solution, 198 = 200 - 0.2]-30 +
0,3(200) = 120 + 0.5(200)] = 198.

¢l With b = 0,84, P, converpes without oscillstion toward 1875

PHASE DIAGRAMS FOR DIFFERENCE EQUATIONS

17.31. (a) Construct a phase diagram for the nonlinear difference equation below, (b) use it to test for
dynamic stability, and (c) confirm vour results with the derivative test.

Y= ¥ia
aj Setting y, = y,_, = ¥ for the intertemporal equilibrium solution,
F=y
Wil-F)=0
V=0 Fa=1 intertemporal equilibrium levels

The phase diagram will intersect the 45° line at y = 0 and y = 1. We next take the first and second
derivative 1o determine the slope and concavity of the phase line.

dy, in
E.;.L= 3t =0  positive slope
Fe=1
d'y,
d_y’:}.:_. = Gy, =0 Comvex
With the above information we then draw a rough sketch of the graph, as in Fig. 17-3.

F Yo'™ ¥l

1

i
1) L | 1.5 L |
The phase dingram for % = v\

Fig. 17-3
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) Swrimg from a value of y, = 0.75 and following the senes of moves mdicated by the dotted arrows
we see the function converges to 7, = 0 and diverges from ¥; = 1. From a starting point of y, = 1.5,
the function also diverges from 7, = 1. We conclude, therefore, that ¥, = 1 is an unstable equilibrium
when approached from either side and ¥, = 05 & stable equilibrium when approached from a positive
value.

¢) Independently of the phase diagram, we can also test the stability conditions by taking the first
derivative of the equation and evaluating it at the steady-state solutions.

dy, _
e i
dv,
——(0}| =HI) =0<1 locully stable
dy, .y
v,
?[]}‘ = [3|>1 locally unstable

With the derivative positive at ¥, = 0 and ¥, = 1, there is no oscillation.

17.32. Repeat the steps in Problem 17.31 for the nonlinear difference equation,

1
. .~
¥, = "i-,. i S —
¢.'|"'; 1
a) Setung v, = ¥y = ¥, and substituting above,
y =y
F-yFe0
i.{] _r,i,- tl.‘il =)
¥y=0 y=l
Since ¥ =0 is undefined at ¥, there is only one interiemporal equilibrium, ¥ = 1. Taking the
dervatives,
dy, —0.25 :
2 - 0252 = =% =0 negative slope
=1 ar=1
d’y,
——=031255">0  convex
dy, i

We can then sketch the graph, as in Fig 174,

b} Starting at o value less than |, say v, = 075, the function csciflates between values larger and
smaller than one bul converges o ¥ = 1. If we start at a value lorger than 1. we also get the same
results,

armsehuedew
ol |
[]

-

e et

LU & L T ¥
The phase dingram for w = 473"

Fig. 174
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¢) Working simply with the derivative and evaluating it in absolute value at the steady-state equilibrium
solution, we have

d,
—tl m =25 :—”'1
dy, ¥ri
——(1)| = |-025(1)|<1  locally stable
|d_ri—l
dy,

e (1} =-025(1)<0 oscillation

17.33. Redo Problem 1731 for the equation
»= FJ_:IJ
¢) The intertemporal equilibrium solution is again § = 1,

d a - .
=2 = 1 5y <0 negauve shope
dy,

d*y,

-—. = ".'l!}
., 3Ty =0 CONVEX
See Fg. 17-5

M

b |
1 -!‘.“
0 07i ¥

The phase diagram for v, = v
Fig. 17-5

B)  Starting ai a value less than 1, gay ¥, = (1.7, the function oscillstes between valoes larger and smaller
than one and ultimately diverges from ¥ = 1.

c) Waorking solely with the first derivative of the function,
| _dy,
! v,y
dy,

——(1) = =15<0 oscillation
d,'r'..a‘-' )

(1)} =|-15]=1 locally unsiable



CHAPTER 18

Second-Order
Differential
Equations and
Difference
Equations

181 SECOND-ORDER DIFFERENTIAL EQUATIONS

Second-order differential equations require separate solutions for the complementary function y,
anel the particular integral y,. The general solution is the sum of the two: ¥(r) = v, + ¥,. Given the
second-order lincar differential equation

Vi + byt + bavll) =a (181}

where b, b, and a are constants, the particular integral will be

a
Yp = f;_, b.#0 (18.2)
ok s -
Yy = b—lr b.=0 B #0 (18.2a)
Yp=a8  by=by=0 (18.2b)
The complementary function is
Ye=n+n (18.3)

408
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where y o= A, (18.3a)
Y= A7 ffﬂ..?b}
and rirs = =02 ‘f' =% (18.4)

Here, A, and A, are arbitrary constants, and b} # 4b,. r, and r; are referred to as characteristic roots,
and (/8.4) is the solution to the characteristic or auxiliary equation: r* + byr + b, = 0. See Examples 1
to 4 and Problems 18.1 to 18.1%1, 20.9, 20.10, 20.13, 20.14 and 20.16 to 20.20.

EXAMPLE 1. The particular integral for each of the following equations
(1) Y -5¥'(N+an=2 (2) Y+ =12 @) V=16
is found as shown below.

For (1), using (78.2), vo=1=1 (J18.5)
For (2). using (/8 2a), ¥y = Y=t (18.5a)
For (3), using (J8.2b), y, =¥ =pp (18.5b)

EXAMPLE2. The complementary functions for equations (1) and {2) in Example 1 are calculated below.
Equanon {3) will be treated in Example 9.

For (1), from (18.4),
+5 V(=57 - 3(3) _5+3 _

n.MnR= 2 7 1.4
Substituting in (/8.3a) and (/8.35), and finally in (18.7),
]'¢=A|f'+-“1f- fh‘-ﬁ]
=T = Y - - =
For (2), rony - "‘;} 10 223
Thus, ¥ = Ay + AgeV = A+ Age™™ (8. 6a)

EXAMPLE 3. The general solution of a differential equation is composed of the complementary function and
the particular integral (Section 16.2), that is, ¥(r} = y. + v,. As applied to the equations in Example |,

For (1), from (f846) and (78.5), vit) = Ape + Age* + | (A7)
For (2}, from ([8.64) and (18.%5a), W) = A; + Aze™™ + 4t {18 Ta)
EXAMPLE4. The definite solution for (1) in Example 3 is calculated below. Assume »(0) =5 and
y'i(0) = 11.
From (187),
Wi = A ¢ + Az '5'! (188}
Thus, V1) = A+ dAye (18.84)

Evaluating (18.8) and (1884) at 1 = 0, and setting ¥(0) = 5} and y'{0) = 11 from the initial conditions,

¥0)=A,"+ A+ b =8 thus A +A;=5
yi0) = A+ 44,6 =11 thus A, +44; =11

Solving simultaneously, A; = 3 and A, = 2. Sobstituting in (f17),
yit) =3¢+ 264 + | : (189)
To check this solution, from (/5.9).
My =3¢+ 2%+
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Thus, Vi) =3 +8eY (1) = 3 + 32"
Substituting in the original equation [(1) in Example 1],
(3¢ +32) - S(3 + BeM) + W' + 24 + ) = 2

182 SECOND-ORDER DIFFERENCE EQUATIONS

The general solution of a second-order difference equation is composed of a complementary
function and a particular solution: y{f) = y, + y.. Given the second-order linear difference equation

Vetbivytbhya=a (18.10)

where by, by, and @ are constants, the particular solution is

a
,'-’F—m b+ b2 —1 (18.11)
a
Yp = 2+blr by+by=-1 b#-2 (18 11a)
y,=%f bi+by==1 by=-2 (18.11h)
The complementary function is
Ye=AntAn (18.12)

where A, and A; are arbitrary constants and the characteristic roots r; and r, are found by using (18.4),
assuming b7 # 4b,. See Examples 5 to 8 and Problems 18.12 to 18.20.

EXAMPLE 5. The particular solution for each of the following equations:
l:' }'r_lu_"l 'I.""IE_Fl':---Ili 2} J"r_ﬁ."'s-l"'-i!"r:.!-i'1 3] ..'F'd-zj"r-|+}'1—1-s
is found as shown below,
14

i ﬁ L e ———r 1
For (1}, using (I18.11), g s %= 2 (18.13)
: 12
For (2), using (18 1 7a), ¥y = .‘-!_—6' = = 3f (18.13a)
For (3), using (/&8.118), ¥ =i =4 (I8.13b)

EXAMPLE 8. From Example 3, the complementary functions for (1) and (2) are caleulated below, For (3), see
Example 9.
For (1), using (/&4) and then substituting in (78.72),
Pt

W=VI100—-4(16) 106
Fi.fy = 7 A16) - 2 =28
Thus, ‘ ¥ = A;(2) + A,(8) I814)
=36 - 4[5 =
For {2}, ,|-'l_|n:!=ﬁl 3.: IIH::'=E+2'4=|_§

Thus, ¥ = A1)+ AS(SY = A, + Ay(5Y (18.14a)
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EXAMPLE 7. The general solutions for (1) and (2) from Example 5 are calculated below.
For (1), y(t) = y. +y,. From (18.14) and (18.13),

Y(t) = A1(2) + A,(8) +2 (18.15)
For (2), from (18.14a) and (18.13a),
y(©) = Ay + Ax(5) = 3¢ (18.15a)
EXAMPLE 8. Given y(0) = 10 and y(1) = 36, the definite solution for (1) in Example 7 is calculated as follows:
Letting ¢ = 0 and ¢ = 1 successively in (18.15),
y(0) = A;(2)° + A,(8)° +2=A; + A, +2 y(1) = A1(2) +A,(8) +2=2A,+84,+2
Setting y(0) = 10 and y(1) = 36 from the initial conditions,

A1+ A2+2=10
24, +8A,+2 =36

Solving simultaneously, A; = 5 and A, = 3. Finally, substituting in (18.15),
y(&) =52) +3(8)'+2 (18.16)
This answer is checked by evaluating (18.16) at t =0,¢t =1, and t = 2,
y(0)=5+3+2=10 y(1)=10+24+2=36 y(2)=20+192+2 =214

Substituting y(2) for y,, (1) for y,_;, and y(0) for y,_, in y, — 10y,_; + 16y,_, = 14 of Equation (1) in Example 5,
214 —10(36) + 16(10) = 14.

18.3 CHARACTERISTIC ROOTS
A characteristic equation can have three different types of roots.

1. Distinct real roots. If b2 > 4b,, the square root in (18.4) will be a real number, and r; and r, will
be distinct real numbers as in (18.6) and (18.6a).

2. Repeated real roots. If b3 = 4b,, the square root in (I8.4) will vanish, and r, and r, will equal
the same real number. In the case of repeated real roots, the formulas for y. in (18.3) and
(Z8.12) must be changed to

ye= As€" + Ayre” (18.17)
Yo =Air' + Aytr’ (18.18)

3. Complex roots. If b} <4b,, (18.4) contains the square root of a negative number, which is
called an imaginary number. In this case r; and r, are complex numbers. A complex number
contains a real part and an imaginary part; for example, (12 + i) where i = V—1.

[As a simple test to check your answers when using (18.4), assuming the coefficient of the y'(¢) term is 1,
1, + r, must equal —b;; r; X r, must equal b,.]

EXAMPLE 9. The complementary function for Equation (3) in Example 1, where y"(¢) = 16, is found as follows:

From (18.4),
0+=V0—4(0)
2

Fi,Fy = =10

Using (18.17) since r; = r, = 0, which is a case of repeated real roots, y. = A e’ + Azte® = A, + Ayt
In Equation (3) of Example 5, y, — 2y,—1 + y,—» = 8. Solving for the complementary function, from (18.4),

2+Va—4(1) 220 _
2 2
Using (18.18) because r; =1, = 1, y. = A;(1) + Ayt(1) = Ay + Aat.

1

Lt =
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184 CONIUGATE COMPLEX NUMBERS
If b} < 4b, in (I184), factoring out V=1 gives

_bli v —1 Md‘b:_bi e _b|:i\'4bg_b|

FialFz =

2 2
Put more succinctly, r.ra=g*hi
where g=-, and h=\Vab,-b] (18.19)

g = hi are called conjugare complex numbers because they always appear together. Substituting
(18.19) in (I8.3) and (18.12) to find y. for cases of complex roots,

Vo= ALY 4 4, 0 NK o B4, M 4 Aoy (18.20)
¥ = Ay(g + hi) + Ax(g — hi)’ (18.21)
See Example 10 and Problems 18.28 (o 1835, 20.11 and 20.12.

EXAMPLE 10. The complementary function for y"{¢) + 2y'(¢) + 3¢{r) = 18 is calkculated as shown below. Using
(18 19) since b < 4b,,

g=—K2)= -1 b= IVA(5) - (2 = l(4) = 2
Thus, ry, ry = =1 = Zi, Substituting in (18.20), y. = ¢ (A" + Aze™™).

185 TRIGONOMETRIC FUNCTIONS

Trigonometric functions are often used in connection with complex numbers. Given the angle # in
Fig. 18-1, which is at the center of a circle of radius k and measured counterclockwise, the trigono-
metric functions of A are

sine(sin)=—  cosine (con)d =2
k k
h g
tangent {tan) 8 = E cotangent {cot) 8 = h
k k
secant (sec) f = — cosecant (csc) § = =
.4
]
k
B
iC # A
o e
D

Fig. 18-1
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The signs of the trigonometric functions in each ol the four quadrants are
+| + ~ | + — | +
=T= "=l& ‘SElw
sin, cs¢ cos, sec  tan, cot

The angle @ is frequently measured in radians. Since there are 2 radians in a circle, 1° = =/180
radian. Thus 360° = 2 radians, 180° =  radians, W° = 72 radians, and 45° = =/4 radians.

EXAMPLE 11. If the radius O in Fig. 18-1 starts at A and moves counterclockwise 3607, sin 8 = h'k goes from
DatA, 10l at B to0at C, o —1 at 2, and back to 0 at A. Cosine # = gik goes from | st A, o0 at B, 10 -1 @t
C, to 0 at D, and back to | at A. This is summarized in Table 18-1 and graphed in Fig. 18-2. Notice that both
functions are periodic with & period of 2w (i.e., they repeat themselves every 360° or 2« radians). Both have an
amplitede of fluctuation of | and differ only in phase or location of their peaks,

i' '\jl/!r i: in | l-\—i/h ;'l' i'\;lr

sin cos §
Flg. 18-1
Table 18-1
Degrees | O 90 180 270 sl
; T 3

md“ﬂi U a o i " : mw

sin @ ] 1 1] =] i

oos & 1 L] =] ] i

186 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS
Giiven thal w is a differentiable function of x,
idu

g o d L du
1) Efﬂnu] = cosu—- 4) E{m’lu,‘l = mciudx
du

2) %(mm}=—sinud£ 5) %[mcu}=s¢cut&mua

3) %['lﬂﬂ}:ﬂiud—u 6) %(mu]=—m:umtud—"

dx dx
See Example 12 and Problems 1B.21 to 18.27,
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EXAMPLE 12. The derivatives for the trigonometric functions
1) y=sin(3x*+6) 2) y=4cos2x 3) y=(1+tanx)’
are calculated as follows:

dy

& o 2(1 + tanx)(sec*x) = 2sec’x(1 + tanx)

dy 5 .
iy — 2
1) B 6x cos (3x* + 6) 2) 8sin2x 3)

18.7 TRANSFORMATION OF IMAGINARY AND COMPLEX NUMBERS

Three rules are helpful in transforming imaginary and complex numbers to trigonometric
functions.

1. g and h in Fig. 18-1, which are Cartesian coordinates, can be expressed in terms of 6 and k,
which are called polar coordinates, by the simple formula

g = kcosf h =ksin 6 k>0
Thus for the conjugate complex number (g * hi),
g+ hi = kcos 6 = iksin 6 = k(cos 6 = i sin 0) (18.22)
2. By what are called Euler relations,
e =cosf*isinf (18.23)
Thus, by substituting (78.23) in (18.22) we can also express (g = hi) as
gt hi = ke™"® (18.23a)
3. From (I18.23a), raising a conjugate complex number to the nth power means
(g £ hi)" = (ke™™)" = k"e™™® (18.24)
Or, by making use of (18.23) and noting that n6 replaces 0, we have De Moivre’s theorem:
(g £ hi)" = k"(cosn £ isinn6) , (18.25)

See Examples 13 to 15 and Problems 18.28 to 18.35, 20.11 and 20.12.

EXAMPLE 13. The value of the imaginary exponential function €% is found as follows. Using (18.23), where
0=2m,

e*™ = cos2m+isin2m

From Table 18-1, cos2#7 = 1 and sin2m = 0. Thus, ¢¥" = 1 +i(0) = 1.

EXAMPLE 14. The imaginary exponential expressions in (18.20) and (18.21) are transformed to trigonometric
functions as shown below.
From (18.20), y. = e¥(A, €™ + A,e ). Using (18.23) where 6 = ht,
y. = e¥[A (cos ht + isin ht) + A,(cos At — isin k)]
= ef[(A; + Ay)cosht + (A, — A,) i sin k]
= ¢¥ (B, cos ht + B, sin ht) (18.20)
where Bl = Al +A2 and BZ = (Al _Az)i.
From (18.21), y. = Ay(g + hi)* + Ax(g — hi)'. Using (18.25) and substituting ¢ for n,
Ye = A1 k'(costd + isint0) + A, k'(costd — isinth)
= kt[(Al + Az) COS te -+ (Al - A2)181n t9]
= k'(B;costf+ B,sint) (18.27)

where B; = A; + A, and B, = (A; — 4,)"
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EXAMPLE 15. The time paths of (I8.26) and (I8.27) are evaluated as follows: Examining each term in
(18.26),

1. Here B, cosht is a cosine function of ¢, as in Fig. 18-2, with period 2#/h instead of 27 and amplitude of
the multiplicative constant B, instead of 1.

2. Likewise B,sin At is a sine function of ¢ with period 27/h and amplitude of B,.

3. With the first two terms constantly fluctuating, stability depends on €*'.

If g >0, e** gets increasingly larger as ¢ increases. This increases the amplitude and leads to explosive
fluctuations of y,, precluding convergence.

If g = 0, ¢ = 1 and y, displays uniform fluctuations determined by the sine and cosine functions. This
also precludes convergence.

If g<O0, e approaches zero as ¢ increases. This diminishes the amplitude, produces damped
fluctuations, and leads to convergence. See Fig. 18-3. )

+1 +1

/\/\ ,O\Af,+;/\AL,
Mo

VARV Voo

g>0 g=0 g<0

Fig. 18-3 Time path of y.(9).

Since (I8.27) concerns a difference equation in which 7 can only change at discrete intervals, y. is a step
function rather than a continuous function (see Fig. 17-1). Like (18.26), it will fluctuate, and stability will depend
on k. If |k| <1, y, will converge. See Problems 18.8 to 18.11, 18.18 to 18.20, and 18.31 to 18.35.

18.8 STABILITY CONDITIONS

For a second-order linear differential equation with distinct or repeated real roots, both roots
must be negative for convergence. If one of the roots is positive, the exponential term with the
positive root approaches infinity as ¢ approaches infinity, thereby precluding convergence. See
Problems 18.8 to 18.11. In the case of complex roots, g in ¥ of (18.26) must be negative, as illustrated
in Example 15.

For a second-order linear difference equation with distinct or repeated real roots, the root with the
largest absolute value is called the dominant root because it dominates the time path. For convergence,
the absolute value of the dominant root must be less than 1. See Problems 18.18 to 18.20. In the case
of complex roots, the absolute value of k in (18.27) must be less than 1, as explained in Example 15.
For economic applications, see Problems 18.36 and 18.37.
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Solved Problems
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
Diztinct Real Roois

18.1. For the following equation, find («) the particular integral y,, (5} the complementary function
¥, and {c} the general solution y(r).

YO+ 9 (1) + 1dv(e) =7
'”' Uﬁiﬂg '.IIH'-J:I Yo = ;J = E'
b) Using (184).
~9= VBl - 4(14) _ =95 _

r|.r: = 2 2 —?... -]
Substituting in (78.3), v, = Aje™ ™ + A e7",
) =y +y, = Ae  + Ae M+ (18.25)
18.2. Redo Problem 18.1. given y"(t) = 12y¢'(r) + 20y(r) = —100.
a) From (182), y,= —'§f = -5,
b} From (J45.4),
+Vida x
r..ﬁnlz 1 4[1‘5!}5!2 E=1 10
2 2
Thus, ¥, = A, 7™ + Ase'™,
c) W)=y +y,= A"+ Aye'™ -5 (18.29)
183. Redo Problem 18.1, given y"(r) — 4y'(1) — 5y(t) = 35.
a} From (182), ¥, =f—55 = -7
by  From (18.4)
_4=VI1H-4-5) .:":f':g, e
f"]..!"z . 2 2 "
Thus, y, = Ay + Age’
) pE) = Aje™+ Age™' =7 (18.30)
184. Redo Problem 18.1, given y"(r) + 7y'(t) = 28
a} Using (/82a), v, = Ft=4.
b} From (184),
i ~7:V4-40) -7+7 i -7

Z 2
Thl.ﬁ._l-'_-=ﬂ|l"1n.+.4.;|f 1':=.I*|-§'H.Jf.-”
c) w(t) = A, + Ay T+ 4t (I18.31)
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1B.S. Redo Problem 18.1, given y*(1) — iy'(t) = 13.

3
a) From (I82a), y, = i—!: = —261.

i) FiFy =

Thits, v. = 4, + r"l;i.'”ﬂ
) Wit) = Ay + Ay e - 260 (18.32)

Repeated Real Roots

18.6. Find (a) the particular integral y,, (b) the complementary function y., and (c) the gencral
solution y{r), given y"(r) = 12y'(1) + 36y(r) = 108.

a) yo=F =3
= V144 — 4{36) + :
by Kt 12 1 4{16) . 12 Du.&
2 2
Using (I817)since ry =r, =6, ¥, = A, e™ + Aa1e™.
) 1) = A e™+ Ay + 3 (18.33)
18,7. Redo Problem 18.6, given y'(1) + y'(¢) + by(1) = 9.
) ¥p = i k1
|
-1 =%1-—4 -1=
" I T e L
2 2 2
Using (/8.17) since r, = r, = —i. ¥, = Aye~ 0 4 4 pe (120
c) y(E) = Ay V4 Aogem T 4 36 (18.34)

DEFINITE SOLUTIONS AND STABILITY CONDITIONS

188. Find (a) the definite solution for the following equation, () check your answer, and (c)
comment on the dynamic stability of the time path, given »*(r) + 9y'(1) + 14y(t) = 7, y(0) = =2},

and y'(0) = 31.
a) From (I5.28),
Wiy = Aye™ + A+ (18.35)
Thus, ¥l = =24 ¥ =TA e ™ (1&35a)

Evaluating (1835) and (7833a) at r= 0,
W)= A, +A;+1 yi0) = —24, - 1A,
Setting wi) = -—2! and ¥'{0) = 31 from the initial conditions,

A+ -‘11+§= _Ei
=24, = TA;y = 1]

Solving simultancously, A, = 2 and A; = =5, which when substituted in (18.35) gives
W) =20 -5+ | (18.35)
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b) From (18.36), y(t) = 2e¥ — 5™ + {, Thus,
V() = —de ¥ 35T ) = Be T 2Ase
Substituting these values in the original problem, where ¥ + 9'(1) + 1dw{t) = 7,
Be ¥~ 245"+ O —de ¥ +35e ) + 14(2e Y =S¢ M +§) =7

¢} With both charscteristic roots negative, (/8.35) will approach | as r— =, Therefore ¥(r) is convergent.
Any tme both characteristic roots are negative, the time path will converge.

189, Redo Problem 18.8, given y(r) — 8y'(1) = Sy(1) = 35, y(0) = 5, and y'(0) = 6.
a)  From (18.30),

vt = Age¥+ Age™ =7 (18.37)
Thus, ()= 54,6 - Aye™! (18.37a)
Evaluating (/8.37) and (/8.37a) at 1 = 0 and setting them equal to the initial conditions where y{0) = §

and y'(0) = 6,
yO)=A; +A:=T=35 thus A+ Ay =12
#¥{y=54,-A:=06
Solving simultancously, A, = 3 and A; = 9, which when substituted in (/837) gives
i) =3 4+ %" -7 (18.38)

b) From (18.38), y{t) = 3™ + %' = 7. Thus, y'(r) = 15" — %™ and y"(1) = 75e¥ + 9"
Substituting these values in the original problem. where v*(1) — 4y'(t) — Sylr) = 35,

75" + % —A(15¢ - Y ~') — 5(3¥ + %' = T) = 35

¢)  With one characteristic root positive and the other negative, the time path is divergent. The positive
rool dominates the negative root mdependently of their relative absolute values because as 1 — =, the
positive root — = and the negative root — (0

18.10. Redo Problem 18R, given y*(r) - i}"{!} = 13, y(0) = 17, and ¥'(0) = =19
a) From (78.32), .
wt) = A, + AV = 260 (18.39)
Thus, y) = Ay - 26 (18.3%a)
Evaluating (18.39) and (78 39a) at r = 0 and setting them equal to the initial conditions,
y0)=A,+A, =17
v(0) =4, =26 = ~19 A; =13
With A, = 13, A, = 4, Substituting in (/8.39) and rearranging terms,
¥(t) = 136" = 26 + 4 {18.40)
b)  From (J8.40). y{(t) = 13" - 26¢ + 4. Thus,
¥ () = 6.5~ 26 ¥(1) = 3. 25413
Substituling these values in the original equation,
3254070 — (6,517 - 26) = 13
¢} With both characteristic roots positive, the time path will diverge.



CHAP. 18] SECOND-ORDER DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS 419

18.11. Redo Problem 18.8, given y"(¢) + y'(t) + 3y(t) = 9, y(0) = 30, and y'(0) = 15.
a) From (18.34),
y(t) = Are 2 + A re (2 4 36 (18.41)
Using the product rule for the derivative of the second term,
V(1) = —2A 67D — 1A, 1= 4 A, = W" (18.41a)
Evaluating (18.41) and (18.41a) at t = 0 and equating to the initial conditions,

9(0) = A, +36 =30 A = —6
y(0) = —3A, + A, = 15

With 4, = —6, A, = 12. Substituting in (18.41),
() = 12fe~VEF —6g~ U2 + 36 (18.42)
b) From (I8.42), y(¢) = 12te” 2" — 6e~("?* + 36. By the product rule,

yl(I) = _6167(1/2)14_ 1267(1/2)z+ 36—(1/2)1
y”(lf) — 3tef(1/2)t spm 667(1/2)t _ 667(1/2)t _ 1.56_(1/2)t . 3te—(1/2)t _ 13.56—(1/2)t

Substituting in the original equation,
(3te™ WP — 13,5~ WD) + (—6te™ 2" + 15~ ") + 1(12te= W2 — 6e=V2" +36) = 9

c¢) With the fepeated characteristic roots negative, the time path will converge since te” follows basically
the same time path as e”.

SECOND-ORDER LINEAR DIFFERENCE EQUATIONS
Distinct Real Roots

18.12. Find () the particular solution, (b) the complementary function, and (c) the general solution,
given Vi + 7_)’#1 + 6)’:—2 = 42.
42
%=1i7+6 >
~7+V49—4(6) -T*5

a) From (18.11),

b) From (18.4), Fi, by = 5 = = -1, -6
From (18.12), Yo = Ay(—1) + Ay(—6)
c) ¥() = yo+ ¥, = Al(=1)' + Ay(—6)'+3 (18.43)

18.13. Redo Problem 18.12, given y, + 12y, ; + 11y,_, = 6.

6 1
a) From (18.11), Y~ mial

—12+V144-4(11) -12+10
b) rLty = 5 = = —1, =11

Thus, Ye = As(=1) + Ax(-11)
c) y() = Ay(=1) + A(—11) +3 (18.44)
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18.14. Redo Problem 18.12, given y,.; — 11y,., + 10y, = 27.
@) Shifting the time periods back 2 to conform with (I8.10), y,— 11y, + 10v,; = 27. Then from

(18.11a),
27
Lt we T
" pory w MEVI2L-300) 1129
z 2
v = Ay + A 010)
) 1) = A, + A;(10) = X {18.45)
1815. Redo Problem 18.12, given v, + Tv,_, — 8y,_; = 45.
45
a) From (1811a), ,13.=1+T-'-5.r
-7+ V9 -4(-8) -7=9
b) ruts = = =1, -8
2 2
Yo = Ay + A8
c) o= A A -BY+ & (18.485)
Repested Aeal Roots

18.16. Redo Problem 18.12, given v, — 10y,_, + 25y,_, = 8.
R 1

“ = 1-10+25 2
10 = V100 — 4025 100
b] Fi.ly = 5 ( ] - - = 5
Using (I8.18) because ry =1y = 5, 5, = A.{;j}' + Age(3).
£) w(r) = A(8Y + A5y + 1 (18.47)

18.17. Redo Problem 18,12, given y, + 14y, + 4%y, = 128,
128

a) L rerrYT it
~14+VI96-449) -14%0
b i | 196 — 44 ]q 4 B
2
From {[8.18), v, = A [(=T) + Ae(=T).
e} yif) = Af~=T) + Agr(~T) + 2 (18.48)

DEFINITE SOLUTIONS AND STABILITY CONDITIONS

18.18. (o) Find the definite solution, (&) check the answer, and (¢) comment on dynamic stability, given
¥ ¥+ Ty + 6,3 = 42, y(0) = 16, and y(1) = =35.

a) From (J5.437), #lr) = As(— 1Y = Ad—6) + 3 (18.49)
Letting £ = 1) and ¢ = | successively in (/8.49) and making use of the initial conditions,
}'I:ﬂ]*'.'!.+ﬂ;+3=lﬁ _"{I}i-d|"m'_l+3- 15
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Solving simultaneously, A, = 8 and A, = 5. Substituting in (18.49),

y(@) = 8(=1)+5(-6)"+3 (18.50)
b) Evaluating (18.50) att =0, ¢ =1, and t = 2 to check this answer,
y(0)=8+5+3=16 y(1) = -8—-30+3 = =35 y(2)=8+180+3 =191

Substituting in the initial equation with
¥(2) =y y(1) =Y y(0) = yi2 191 +7(=35) +6(16) = 42

¢) The characteristic roots are —1 and —6. The characteristic root with the largest absolute value is called
the dominant root because it dominates the time path. For convergence, the absolute value of the
dominant root must be less than 1. Since | —6|> 1, the time path is divergent.

18.19. (2) Find the definite solution and (b) comment on dynamic stability, given
Yerz = 1yier + 10y, = 27 y(0) =2 y(1) =53
a) From (18.45), y(t) = A; + A,(10)' — 3¢ (18.51)
Letting t = 0 and ¢ = 1, and using the initial conditions,
yO0)=A, +A, =2 y(1) = A, + 104, -3 = 53
Solving simultaneously, A; = —4 and A, = 6. Substituting in (I18.51),
y(t) =6(10) —3t—4

b) The time path is divergent because the dominant root 10 is greater than 1.

18.20. Redo Problem 18.19, given y, — 10y,_; + 25y,_, = 8, y(0) = 1, and y(1) = 5.
a) From (18.47),
y(£) = A (5) + Apt(5) + 3 (18.52)
Letting t = 0 and ¢ = 1, and using the initial conditions,

y(0)=A;+3=1 Ay
y(1) =54,+54,+3=5

With A, = 1, A, = % Substituting in (18.52),
y(£) =3(5) +5(5) +3 (18.53)

b) Convergence in the case of repeated real roots likewise depends on |r| <1 since the effect of r*
dominates the effect of ¢ in the second term A,#r'. Here with » = 5> 1, the time path is divergent.

B—=

DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

18.21. Find the first-order derivative for the following trigonometric functions. Note that they are also
called circular functions or sinusoidal functions.

a) y=sinTx b) y=cos(5x +2)
d—y=7cos7x Q=—5sin(5x+2)
dx dx

¢) y=tanllx d) y=csc(8x+3)

d d
D 11sec11x 2 —8[csc (8x + 3) cot (8x + 3)]
dx dx



422

18.22.

18.23.

18.24,

18.25.

18.26.

18.27.

SECOND-ORDER DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS [CHAP 18

¢) v=sin(3-x) N y=sin(5-x)
2. ~2reos (3 - 1) Z.- ~H5-x)cos(S—x)f  (chain rule)
ifx ax . ’

Redo Problem 18.21, given y = »“tanx.

By the product rul:.% = o (sec” x) + (tan x){2x) = x¥sec’ x + Ixtanx

Redo Problem 1821, given y = x'sinx.

g = x" (cosx) + (sinx){ 3y = ' cosx + 3 sinx

Redo Problem 18.21, given y = (1 4 cosx)’.

dy

By the chain rule, de = X1 +cosx){—sinz) = (-=2snx}1 + cosx)

Redo Problem 18.21, given y = (sinx + cosx)’,

i—r = 2(sinx + cosxMcosx — sinx) = 2icos’x — sin'x)

Redo Problem 18.21, given y = sin Sx, where sin” Sx = (sin 5x)°.

d 3 A
By the chain rule, E:{ = 2sin Srcos Sx(5) = 10sin Sx cos Sx

Redo Problem 18.21, given y = esc’ 1 2x.

E- (2esc 120){ ~csc 12x cot 12¢(12)] = ~24¢sc® 125 cot 12¢

COMPLEX ROOTS IN SECOND-ORDER DIFFERENTIAL EQUATIONS

18.28.

1R.29,

Find (a) the particular integral, (k) the complementary function, and (c) the general solution,
given the second-order linear differential equation ¥7(r) + 2y'(r) + 10w(r) = 80.

a) From (I&2), y,=H=8
b) Using (18.19) since bi < 4by, that is, (2)" < 4(10),
g= -} =-1 h=3Va(10) - (2 = 3
Thus, ry, 7, = —1 = 3i. Substituting g and & in (18 26),
y.=¢ (B co83+ Bz )
c) ¥t)=y, +¥, =e¢'(Bjcosdt+ Basin3e) + 8 {1854)

Redo Problem 1828, given v*(1) — 6y'(t) + 25p(1) = 150.
) Yo = H -6
b)Y From (1819), g = =H{—6) = 3 and k = 'E'quﬂ——i—ﬂj = 4, Substituting in (/4.25),
¥ = (B, cos 4t + B, sin &)
c) w(t) = (B cos dt + Bysindt) +~ 6 {18.5%)
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18.30. Redo Problem 1B.28. given y'(r) + dy'(1) + 40y(s) = 10.

a) »=8=1
B) From (1819). g = ~2 and h = V160 — 16 = 6. Thus. y, = ¢ (B, cosbe + B, sin ).

o} ¥{1) = e (B, cos 6/ + B, sin6r) + | (18.56)

18.31. (a) Find the definite solution for the following data. (b) Comment on the dynamic stability,
VIO+2v(D) +10vt) =80 w(0) =10 v'(0) = 13
a) From (1854}, Mty = e '(Bycon3e+ Bysm i)+ 8 (J857)
By the product rule,

¥ty =e (38, sin 3t + 3B cos 3t) + (B, cos Xt + Bosin 3 ){—e ')
=e (38,0063 - 3, sin M) = ¢ (B, cos 31 + B, 5in ) (1&57a)

Evalunating (18.57) and (18.57a) at ¢ = 0 and equating them to the initial conditions,
¥(0) = (B, cosh + B,sin0l) + B = 10
From Table 18-1, cos0) = 1 and sin() = 0. Thus,
yilly =8B, +0+8=10 B,=2
Similarly, ¥'(0) = (3B, cos 0 — 38, 5in0) — ¢*( B, cos 1 + B,sin0) = 13,
y'(0y=38,— B, =13
Since 8, = 1 from above, B; = 5. Finally, substituting in (/8.57),
¥ =e'(2cosdr+ 5sin i)+ 8
B) With g = =1, the time path converges, as it does in Fig. 18-3 (see Example 15).

18.32. Redo Problem 1831, given v"(¢) — 6y'(¢r) + 25y(¢) = 150, ¥(0) = 13, and y'(0) = 25.
a) From (18.35), vith = e¥(B,cosdt + Bisindt) + 6 (18.58)
Thus. ¥t} = e¥(—48, sindr + 48, cosdr) + 3" (B, cos 4 + B;sindr) (18.580)
Evaluating (/8.558) and (72 58a) at 1 = 0 and equating them to the initial conditions,
¥(0) = (B, cos0 + Bysin0) + 6 = 13

¥l =B +0+6=13 B,=17
and v'(0) = ¢(—48,sin0 + 4B;cos() + 3B, cos 0 + B, sin 0).
yi)=48,+38, =15 =1

Substituting in (/858), ¥(1) = ¢ (Tcosdt + sin4) + 6.
b1 With g = 3, the time path s divergent,

1833, Redo Problem 1831, given y"(t) + 4y'(1) + 40v(1) = 10, y(0) = &, and y'(0) = 2}
a) From (14.56), W) = ¢ *=(B, cos bt + B,sin br) + | (18.59)
Thus, V(1) = e ~68, sin b + 68y cosbn) — 2e (B, cos bt + By sin 6¢) (18.5%)
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Evaluating (18.59) and (J5.5%a) at ¢ = 0 and equating them 1o the initial conditions,
Wo)=8,+{=1 B, =}
y'(0) = 68, - 2B, = 24 B: =}
Thus, y(r) = ¢ (feosbr + isinbe) = § = je ¥(cosbi + 2sin 67) + |
b)Y With g = ~2, the time path is convergent.

COMPLEX ROOTS IN SECOND-ORDER DIFFERENCE EQUATIONS

18.M. Find (a) the particular solution, (&) the complementary function, (¢} the general solution, and
(d) the definite solution. (¢) Comment on the dynamic stability of the following second-order
linear difference equation:

¥, tdy_=15 ¥(0) =12 vil)=11

13

*1+0+4 >

a) From (I&11), ¥

b) From (I8.1V), ¢ = —;Eﬂ} = and h = | V4{4) - 0 = 2. For second-order difference equations we now
need k and 8. Applying the Pythagorean theorem to Fig 18-1,
E=g+K k= ‘\.*m

Substituting with the parameters of (J4.19) for grealer generality,

[+ ab.— b
k= \.'Mi;"—b'—= Vb, (18.60)
Thus, k = V4 = 2. From the definitions of Section 18.5,
i h 4
gsinf = F cos B L (I8.61)
Substituting the values from the present problem.
sin @ = % - | COE f - g =
From Table 181, the anple with zsinf=1 and cmf=0 s 2 Thus, #= =2 Substituting in
(18.27),
W= 2‘[& »:u!.(;.l) + B, sin E:)]
A ﬁn=1{3wm(§q+ﬂﬁm(gq1+3 (1862)
d) Using Table 18-1 to evaluate (1862} at r = 0 and 1 = 1 from the imtial conditions,
¥0) = (B, +0)+3 =12 B =9
Mly=20+B)+3=11 B,=4
m 4.
Thus, y{l‘}—l"[:ﬁimif+4unir)+3

¢) With k = 2, the time path is divergent, as cxplained in Example 15,

18.35. Redo Problem 18.34, given y, + 2y,.; = 24, y{0) = 11, and v(1) = 18,

24

BT TS B

a) From (I8.11), ¥
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b) From (18.60), k = Vb, = \/2. From (18.19)
= —40)=0 h=1V42)-0=V2
V2
From (18.61), sin6=—\/—5= 1 cos =0

From Table 18-1, # = w/2. Substituting in (18.27),

Ve = (\6)’[31 cos (gt) + B,sin (gt)}

<) (1) = (\/E)’[Bl cos (g:) + B,sin (;:H +8 (18.63)
y(1) = V2B, +8=18 B, =107
Thus, y(t) = (\/i)‘(?;cong— 7.07 singt) +8

e) With k = V2>1, the time path is divergent.

ECONOMIC APPLICATIONS
18.36. In many markets supply and demand are influenced by current prices and price trends (i.e.,

whether prices are rising or falling and whether they are rising or falling at an increasing or
decreasing rate). The economist, therefore, needs to know the current price P(t), the first
derivative dP(t)/dt, and the second derivative d” P(t)/df’. Assume

Qszcl+W1P+U1P,+U1P” Qd=C2+W2P+u2Pl+U2P” (1864)

Comment on the dynamic stability of the market if price clears the market at each point in
time.

In equilibrium, Q, = Q. Therefore,
e+ wPtu P+ P =ctw,P+u, P +uv, P’
(W1 — )P+ ( —uz) P+ (W —wp) P = —(c1 — )
Letting v =v; — 1y, U=1U;—Uy, W= W3~ Wy, C=C —Cy and dividing through by v to conform to

(18.1),

p+ip+¥p=_Z (18.65)
v v v
Using (18.2) to find the particular integral, which will be the intertemporal equilibrium price P,

- —clv c
P oo} P — =

P

wiv w

Since ¢ = ¢; — ¢, and w = w; —w, where under ordinary supply conditions, ¢; < 0, w; >0, and under
ordinary demand conditions, ¢, >0, w, <0, —c/w >0, as is necessary for P. Using (I18.4) to find the
characteristic roots for the complementary function,

—ulv = V(ulv)* — dwlv
2

(18.66)

Fi, 72 =

which can assume three different types of solutions, depending on the specification of w, u, and v:

1. If (uv)>4wfv, r, and r, will be distinct real roots solvable in terms of (18.66); and
P(t) = Ajen' + A% —clw.
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2. U (wey = dwlv, r; and r, will be repeated real roots. Thus, (18.66) reduces to - (w2 or —u/2e,
Then from (JRI7), P(1) = A e” ™" + A.pe™ " - piw,

3 U (wey<dwl, r, and r, will be complex roots and from (18.26), P(r) = (B coshs +
B, sin ht) — ciw, where from (J8.19), g = —u/(2v) and h = I Viwiy — (wiv).

Specification of w. u, v depends on expectations, If people are bothered by inflationary psychology
and expect prices to keep rising, u, in (/8.64) will be positive; if they expect prices 1o ultimately fall and
hold off buying because of that expectation. u; will be negative; and so [orth,

18.37. In a model similar to Samuelson’s interaction model between the multiplier and the accelerator,

assume
Y,=C+1,+G, (18.67)
C, = Co+ ¥, (18.68)
=l +w(C, - () (18.69)

where D<e< 1, w>0, and G, = G, (a) Find the time path ¥(1) of national income and (b)
comment on the stability conditions.

a) Substituting (/&£68) in (18.69),
L=hh+ew(Y = Y.3) (18.70)

Substitoting &, = Cre, (JE70), and ([848) mto (J&467), and then rearranging o conform with
(& 1,

Yi=Co+cY  + L +ew(Y =¥, :}""Gu
Y=el+w)Y, +ow¥, s =C+ 1+ Gy (18.71)
Using (/&.#1) for the particular solution,
G+h+G,  G+h+G,
i-c(l+w)+ow  1-¢

which is the intertemporal equilibrium level of income ¥. Using {14 4) to find the churacteristic roots
for the complementary [unction,

el +w) = V=l + w)F - dew

Py = >

which can assume three different types of solutions depending on the values assigned to c and w:

L If &1 + w) >dow, or equivalently, if e{l +wy > 4w, ry and r, will be distinet real roots
solvable in terms of (18.72) and

{18.72)

Yi0) = Aurf + Agrg + ST
2. Ifefl + w) = 4w, r, and ry will be repeaied real roots, and from (18.72) and (15.75),
i P
Y(r) =AJ|:IEL~[I +w]:| +.»1:l'[%c“ "+ w}] +w
3. el +wl <dw, ry and ry will be complex roots; from (18.27),
Co+ L+ Gy

¥ir) = k'(B,cosefl + Bysind) + :
=&

where from (7860, k = Vew, and from (J&67) @ must be such thai

P " |
ﬂ.llﬂ'—t l:ulﬂ—i_

where from (18.19), g = (1 +w) and h = 1 Vicw — 1 + w),
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b) For stability in the model under all possible initial conditions, the necessary and sufficient conditions
are (1) c<1 and (2) cw < 1. Since ¢ = MPC with respect to the previous year’s income, ¢ will be less
than 1; for cw < 1, the product of the MPC and the marginal capital-output ratio must also be less than
1. Tf the characteristic roots are conjugate complex, the time path will oscillate.



" CHAPTER 19 —

Simultaneous
Differential and
Difference
Equations

SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS, PART 1

system of # first-order, autonomous, linear differential equations in which no derivative
another derivative and which we limit here to # = 2 for notational simplicity.
us simply means all a; and b; are constant.

Y1 =auy: tapy,+b

V2 = any1 T any, + b,

[Yl] _ [au 012] JﬁJ 4 |:b1}
V2 Q1 QA (| V2 b,
Y=AY+B

lution to such a system will consist of n equations, each in turn composed of (1) a
lution y, and (2) a particular solution y,,.

(19.1)

trix form,

our earlier work with single differential equations, we can expect the complemen-
olution of the system of equations, given distinct real roots, to take the general

Ye= D kiCie" =k Ciet + ky G (19.2)
=1

re k; =a scalar or constant, C; = (2X 1) column vector of constants called an

igenvector, and r; = a scalar called the characteristic root. See Section 12.8.

428
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As demonstrated in Problem 19.13, the charactenistic roots, also called eigenvalwes, can be
found by solving the quadratic equation

. _ TA) = VITGAT 414
' 2
where |A| =« determinant of A, Tr(A) = rrace of A, and Tr(A) = I of all the elements on
the principal diagonal of A. Here where A = (2 % 2),

TriA) = ay +an

(19.3)

As explained in Problem 19.12, the solution of the system of simultaneous equations
requires that

(A-r1)C,=0 (19.4)
thn'." ':* a r.[} = Id“ IIIIII} . r‘[l u] - {ﬂ“ =K 2 }
dy 8n 01 [ 83y — F;

r, is a scalar, and I is an identity matrix, here I,. Equation (19.4) is called the eigenvalue
problem. The eigenvectors are found by solving (79.4) for C,. To preclude trivial, ie.,
null-vector, solutions for C,, the matrix (A — r;1) must be constrained to be singular,

2. The particular miegral, v, 15 simply the intertemporal or steady-state solution. As
demonstrated in Problem 19.14,

,=Y=-A"B (79.5)

where A ' = the inverse of A and B = the column of constants

The stability of the model depends on the characteristic roots.

If all r, < 0. the model is dynamically stable.
If all r; >0, the model is dynamically unstable.

If the r, are of different signs, the solution is at a saddle-point equilibrium and the model is
unsiable, except along the saddle path. See Section 19.5 and Examples 10 and 12.

EXAMPLE 1.

Solve the following system of first-order. autonomeus, linear differential equations,

=5y —05n-12 »i0) =12
Fp= =2y + - y0) =4

I. Coavert them (o matrices for ease of computation.

i B 4

Y =AY +B

2. Then find the complementary functions. From {192}, assuming distinct real roots,

J'. - k|C]lf'l + k:‘:thl

But from {19.3). the characteristic roots are

E—
TriA) = V[Tr(A) —4|A
P ry = 3
where TiA =gy *ap=5+5= 10

and

|A|=25-1 =24
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Substituting,

10+ V0¥ -424) _10=2
2 B

=4 rs="H characteristic roots or cigenvalues

nin=

3. We next find the cigenvectors. Using (/9.4) and recalling (A = rT) is singular,

{‘ e ﬂIJC_] = )

e s

a)

b)

d!. EH Cy

Substituting first for r, = 4,

] R e

Then, by simple multiplication of row by column, we have
o= ﬂ‘_ﬁ.‘: . 'n = n-_ﬁl:;
_2"| +t‘;’=ﬂ Cy =‘ﬂ.5¢1

Since (A = r1) is constrained 1o be singular, there will ulways be linear dependence between the
equations and we can work with either one. With linear dependence, there is also an infinite number
of eigenveciors that will satisfy the equation. We can normalize the equation by choosing a veclor
whose length is unity, ie., ¢ + ¢f = 1, which is called the Euclidian distance condition, or we can
simply pick any arbitrary value for one element while maintaining the relationship between elements
Opling for the latter, let ¢, = 1.

1
e =1, then & E=2
Thus, the eigeavector C, corresponding 1o ry = 4 is
(2]
2

and the first elements of the complementary function of the general solution are

. IJ,._:[.I:..E“
e *‘[1’ 2k, o™

7]

C|'=I

Cy

Substituting next for r; = 6.

[ sallel=1% Sl

Multiplying row by column,

=rj —ﬂ.ﬁi‘.‘, = [} = _D..jfx
_E'I.'l_'fz.‘n' C'| - —{1.5!:1
lig = l.thﬂﬂf;=%=_2

Thus, the eigenvector C; corresponding 10 ry = 6 is

" {n] ) [—IzJ
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and the second elements of the complementary function of the general solution are

1 k, %
=k 6t — 2
e 2[—2]" szzeﬁf]

Putting them together for the complete complementary solution to the system,
yi(f) = kye¥ + kye®
yz([) = 2k1 64' - 2k266t
4. Now we find the intertemporal or steady-state solutions for y,. From (19.5),

Yp = Y=-A"'B

—12 5 —0.3
where [_24}, [_2 5 }, |A|=25-1=24,
5 2 :
the cofactor matrix is C = [ , the adjoint matrix is Adj. A =C' = ol ,
05 3 2 5
and the inverse is A= —1—[5 s
2412 5

Substituting in (19.5),

‘-{z_i{S 0.5][—12]
2412 5 || —24

v-[3] =zl - s
v 24144 6
Thus the complete general solution, y(£) = y. + ¥, 1S

yi(t) = kye* + kpe® +3
ya(t) = 2k ¥ — 2k, €% + 6

Multiplying row by column,

(19.6)

With r, = 4>0and r, = 6>0, the equilibrium is unstable. See also Problems 19.1 to 19.3.

EXAMPLE 2. To find the definite solution for Example 1, we simply employ the initial conditions, y(0) =12,
y,(0) = 4. When (19.6) is evaluated at t = 0, we have

y1(0) = k; +kp, +3 =12
y2(0) = 2k, — 2k, + 6 =4
Solved simultaneously, ki =4 k,=5
Substituting in (19.6), we have the definite solution,
yi(t) = 4€* + 5¢% +3
y,(t) = 8e* —10e* + 6

which remains dynamically unstable because of the positive roots.

192 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS, PART 2

Assume a system of n first-order, autonomous, linear differential equations in which one or more
derivatives is a function of another derivative, and which we limit here to n = 2 simply for notational
simplicity,

a1 +anys = aizy1 + @ay2 + b (19.7)
an Y1 + GnY: = @Y1+ @yt bo '
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In matrix form,

a; A || V1 _|®3 Q|| N1 n by
Gy ax || Y2 a3 O || V2 b,
AY=AY+B
The general solution y(f) will consist of a complementary function y. and a particular integral or

solution y,. As in previous examples, for distinct real roots we can expect the complementary function
to assume the general form

Ve = kiCie + k, Cye™ (19.8)
As explained in Problems 19.15 to 19.16, the eigenvalue problem here is
(Ay—1A)C, =0 (19.9)
Nl ] ] ] i
The characteristic equation is
|A, — 1A =0 (19.10)
the particular integral is
Y=-A;'B (19.11)

and the stability conditions are the same as in Section 19.1.

EXAMPLE 3. Solve the following system of first-order, autonomous, nonlinear differential equations.

Vo= =3y + 15y, - 25, +24  y(0)=14
Y2 = 2y;1 =5y, + 16 y2(0) = 154

1. First rearrange the equations to conform with (79.7) and set them in matrix form,
[1 2.5][391} _ { -3 1.5} [le N [2.4]
0 1 [y 2 =5]1lw 16
2. Assuming distinct real roots, find the complementary function.
.=k Cie" + k,Cye*
a) Start with the characteristic equation to find the characteristic roots. From (19.10),
|A, —r;A|=0
b) Substituting and dropping the i subscript for simplicity,

-3 15 1 25 —3—r 15-25r
A, —rAy| = - = =
|82 =7 Hz —5] ’[o 1” ‘ 2 —5—y
(=3-n(-5-rnN-2(15-25r=0
P+13r+12=0
= —1 r,=—12 characteristic roots

3. TFind the eigenvectors, C,. From (19.9),
‘ (Az—riAl)Ci= O

~3—r, 15-25r
where (A, —r,A,)C; = [ no 15-25 "Mﬂ
2 _‘5_ri Cr
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@) Substituting first lor 7 = — 1,

e P

By simple matrix multiplication,

—2f|+=|-c:=l] fltzf_-
!.fI_*'zﬂﬂ q*lfl

c.=[a]=[1]

and the first elements of the general complementary function for /; = =1 are

2] 2k
Ty - 1 -
i ‘[t.' [h ]“'

Ifwe let o =2, ;= 1, Thus,

b} Now substituting for 7/, = <132,

~3~(~12) 13—1ﬂ—uy[q'
2 -5—(-12)

- FLE] -

gf] g 3] .Sf] = “ f. = "3.5".':
21‘!'1 * Ti‘: - ﬂ fl - - 3;&-‘1

[
1
and the second elements of the complementary function for r, = <12 are

=357 s '—J_ﬂ,] =3
ve=ks [ 1 ]f ks g
Adding the two iogether, the complementary functions are
wif) = 2kie " — 3.5k "™
wlt) = ke ™+ kye™™

Tz

Multiplying row by column.

Lﬂﬂiﬂﬁ & = —35, 6= L. 5o,

0y

e

0

(19.12)

4. Find the particular integral ¥, which is simply the intertemporal equilibrium Y. From (J9.11),

Y= -A;'B
24 -3 L3] |
where BE[IE]' ﬁ;={2 _5]. A;|=15-3=12
: =5 =2 ; S J . [=3 =15
thu:uhmnrmllmu{:-l 15 _1I,tlﬂadjmnlmnln:|shdj.h=ﬂ -[—I _1]
15 =13
Iﬂ-—'—
and the inverse s A 11[--1 _]J
Substituting in {19.11),

v=[1--d2 Se]-(4]
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5. By adding the particular integrals or steady-state solutions to the complementary function in (/9.12), we
derive the complete general solution.

_:l".f.!‘_] - H.f r‘]ﬂ:!’ u"'i'.:l
volt) = ke + kye™ M + 4.4

With r, = =1=0, r, = =12 <0, the system of equations is dynamically stable. See also Problems 19.4
tw 19.6,

(19.13)

EXAMPLE 4. To find the definite solution [or Example 3, we simply employ the initial conditions, y,(0)) = 14,
vl = 15.4. When (19.03) is evaluated a1 = (), we bave

w0y =2k, =35k +3m 14
¥aoll) = &y + &y +44 = 154

Solved simultancously, k=9 k=2
Substituting in {(/9./3) for the definite solution,

Vilth = 182" —Te ™™ + 3
v =%+ 2"+ 44

193 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENCE EQUATIONS, PART 1

Assume a system of n linear first-order difference equations in which no difference is a function
of another difference, the coefficients are constants, and we again set n = 2 for nolational simplicity.

X, = X F Yty
¥ = GnXeq Han¥_ + b

o e Pl sl

; i Xy By
Letting ¥, = v Yoy == , B =
[F-] : LH] ba

In matrix form,

] ,and A = the coefficient matrix, we have

| |

Y, =AY, ,+B (19.14)

The complete solution will consist of n equations, each m turn composed of the complementary
solution y. and the particular solution y,. Based on our earlier work with single difference equations
and assuming distinct real roots, we can expect the complementary function will take the general
form,

[
Yo = E k‘C‘!f = k.E,r: + t:c—;f; I:fu.fj'}
=1

As demonstrated in Problem 19.17, the eigenvalue problem breaks down to
(A=rDC =10 (19.16)

By similar steps to the demonstrations in Problems 19.13 to 19.14, it can be shown that the
characteristic equation is

|A=rdl=0
where the characteristic roots can be found with (/9.3). and the particular solution is
yo= (1-A)"'B (1917
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The stability conditions require that each of the n roots be less than 1 in absolute value for dynamic
stability. If even one root is greater than 1 in absolute value, it will dominate the other(s) and the time
path will be divergent.

EXAMPLE 5. Solve the following system of first-order linear difference equations,

= —d4x,_,1+y,_1+12 =16
Xy Xe—1 T Ye—1 Xo (19.]8)
y:=2xt~1—3)’z—1+6 Yo = 8
1. Set them in matrix form,
L1-15 Al L)
yt 2 _3 yt—-l 6
Y,=AY,_,+B

2. We next find the complementary functions. Assuming a case of distinct real roots,
Ye=kiCiri+ kyCyrs

and the characteristic roots are

Tr(A) = V[Tr(A)? —4]A|

PPy =

2
where Tr(A)=-4-3=-7 and |A|[=12-2=10
Substituting,
I ~7+ V(=T -4(0)] _ —7%3
2 2
=2 r,=—5 characteristic roots or eigenvalues

3. We then find the eigenvectors. Using (19.16) and recalling (A — r;I) is singular,

(A—r~I)C-= [all_ri a1z }{ﬁ] _
' ' as apn—riilG

a) Substituting first for r, = —2,

57 LG E Al
2 —3-(-2)]lec 2 -llle
Then by multiplying row by column, we find

—2¢;+¢,=0 = 2¢;
2c,—¢, =0 ¢ =20

Letting ¢, =1, ¢, =2

Hence the eigenvector corresponding to 7y = —2 is

&=

and the a;, elements of the complementary function are

S st

b) Then substituting for r, = =5,

PR [ o P
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Multiplying row by column,

CI+C2:0 Cy = —C
2C1+2C2 =0 €y = =Cx

IfClzl,CZ:_l

The eigenvector for r, = =5 is

and the a;, elements of the complementary function are

L[ A]er=[ 5]

Combining the two for the general complementary function, we have

X, = ki(=2)" + kp(=5)
Ye = 2ka(—=2)" — ky(=5)'

4. Now we find the particular solution for the steady-state solutions , y. From (19.17),

v, = (A-A)"'B
where a-n=[, -5 Z]-15 7

Following a series of steps similar to those in Example 3,
_ {f' _1r4 1 [12} _ [3}
P T18l2 s]le 3
This makes the complete general solution,

X, = ky(=2) + ky(—5) +3
Ve = 2y (=2) = kp(~5)"+ 3

With | =2|>1 and | —5|>1, the time path is divergent. See also Problems 19.7 to 19.8.

EXAMPLE 6. For the specific solution, we need only employ the initial conditions. Given x, = 16, y, = 8, at
t = 0, the general functions reduce to

ki +k,+3=16
2k —k,+3 =28
Solving simultaneously, ki =6, ky =17

By simple substitution, we then find the specific solution,
X, = 6(—=2)+7(=5)+3
Y= 12(=2) =T7(=5)+3
To check the answer, substitute # = 1 and ¢ = 0 in (79.19).

X, = 6(=2)t+7(=5)' +3 = —44 Xo=6(=2)°+7(~5)°+3 =16
y1=12(=2)t = 7(=5)' +3 = 14 Yo=12(=2)°=7(=5)°+3 =8

(19.19

Then go back to (19.18) and substitute x,,y; for x, and y,, and x,,y, = for x,_; and y, ;.

—44 = —4(16) + 8+ 12 = —44
14 = 2(16) — 3(8) + 6 = 14
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19.4 MATRIX SOLUTION OF SIMULTANEOUS DIFFERENCE EQUATIONS, PART 2

Assume a system of # linear first-order difference equations in which one or more differences is
a function of another difference, the coefficients are constant, and we again set n = 2 for notational
simplicity.

Ay X, + @12y = A13X—1 + A1y + by

19.20
A1 X+ Gy = Ax3X,—1 + Ay, 1 + by ( )

or [an aip || Xt _ [ala Q14 || Xe—1 4 b
a1 Ay || V: Azz  doa || Vi1 b,
AY, =AY +B

From previous sections we can expect the general solution y, will consist of a complementary
function y, and a particular solution y,, where the complementary function for distinct real roots will
take the general form

Ve = k1 Ci(r)' + k2 Co(ra)'

As demonstrated in Problems 19.18 to 19.19, the eigenvalue problem here reduces to

(A, —1r:A1)C; =0 - (19.2)
where (Ao — 1A, = [aw Aia | _ # Gy G| _ | G137 0uli Gia— Gali
Gy U4 dz1 02 Qa3 — Ao t; Goq — A2t
and the particular integral is '
Y=(A-A)'B (19.22)

The stability conditions remain the same as in Section 19.3.

EXAMPLE 7. Solve the following system of linear first-order difference equations.
X; = 4xf_1 . 2yt,1 +yt~ 10 Xo = 20
(19.23)
_ y, = 3%, t 6y, —4 Yo=23
1. Rearrange to conform with (19.20) and set in matrix form.
et P v A
0 1 ||y 3 6 |ly —4
AY, =AY 1 +B
2. For the complementary function, begin with the characteristic equation derived from (19.21)
|A2 b riA1| e 0

and substitute the parameters of the problem,

1Ay —7,A4] = 4 =QEF ~0
2 T T 3 5~ r
(4~r)(6—r)—3(——2+r)=0
2—13r+30=0
r1:3 r2:10

3. Find the nontrivial solutions for the eigenvectors C;. From (19.21),

(Az e r,-Al)C,- == 0
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4-r =1+
where [h,~r.h.}(‘,-[ 3’ ﬁ_:“::I

@) Subsatitating for r, = 3,

15 I el

'r."'fj"'n ==y
k.*-]t,-ﬂ 0= =&y

Mep = 1, cs = =1 1he gigenvecton u
N 1
=1

making the a,, clements of the complementary function for r, = 3,

e [ A
jt'|-1]‘""1" -k

| s wemllalmls “lal=e

By matrix multiplication,

b‘] Fill‘: = I.ﬂ,

=g, + By =0 e = 0.75¢,
kl‘h‘;-n fr'“.?jf|

Letting ¢, = 1, ¢; = 0,75, the corresponding cigenvector becomes

1
c"lmsl

and the a; clements of the complementary function for ry = 10 s
C P (] P/
Combining the two, the complete complementary function becomes
x = k() + 10y
v, = —k(3) + 078k 10)
4. Now find the particular or steady-state solution v, = Y. From (19.22),
Ve(A-A)'S

1 1] (4 -2)_[-3
N "‘"*"Iu 1I‘13 a]'lq.

i i1f-=s -=1]|-10
flows S M ]| Iy
S. The complete general solution, v, = v, + ¥,. then becomes
x = ki(3) + kA10)Y + 3

¥ = ~k(3) + 0.T5h10) - )

Singe r, = 3, £ = 10> |11, the system of equations is dynamically unstable. See alo Problems 199 10
19.10

(19.24)

(19.25)
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EXAMPLE 8. The specific solution is found with the help of the initial conditions. With x, = 20 and v, = 3, mt
f = 0, (J9.24) reduces to

t;*i;*’]"m
4075k, ~1 =3

Solving simultancously, k=8 k=12
and by substituting into (/9.25), we come to the definite solution,
X = 33 + 12(10) + 3
¥ =33 + Aoy -}
To check the answer. substitute ¢ = | and ¢ = 0 in (19.26).

o= S0+ 12(10) + 3 = 138 K= S5+1243=20
You =53+ H10) - 1~ T4 Yo =S+ 9=1=3

Then substitute x,, v, for x, and v, and x,. v, = for 1, , and v, , back in (/9.23).

138 = 4(20) = 2(3) + 74~ 10 = 138
74 = }20) + 6(3) - 4 = 74

(79.26)

195 STABILITY AND PHASE DIAGRAMS FOR SIMULTANEOUS DIFFERENTIAL
EQUATIONS

Given a system of linear autonomous differential equations, the intertemporal equilibrium level
will be asymptotically stable, i.c., v(1) will converge 1o ¥ as r—=_ if and only if all the characteristic
roots are negative. In the case of complex roots, the real part must be negative. If all the roots are
positive, the system will be unstable. A saddle-point equilibrium, in which roots assume different signs,
will generally be unstable. If, however, the initial conditions for v, and y, satisfy the condition

= (u)[_h “F)+ e
dyy | |
where ry = the negative root, we have what is called a saddle path, and y,(1) and y;(r) will converge to
their intertemporal equilibrium level (see Example 10).
A phase diagram for s system of two differential equations, lincar or nonlinear, graphs y; on the
vertical axis and v, on the horizontal axis The y,. v, planc is called the phase plane. Construction of

a phase diagram is casiest explained in terms of an example.

EXAMPLE 9. Given the system of lincar autonomous dilferentinl equations,

¥yo= =4y, + 16
Yr=—S5p+13

a phasc diagram s used below 1o test the stability of the uuhl.ﬁmndthﬂvm‘tﬁmm
variable in this simple model, each equation can be graphed separately '

L. Find the intertemporal equilibrium level, ¥, Le., the locus of points at which y, = 0.
?.':_"‘lrl"lﬁ"l"u‘ f.F‘

The graph of ¥, = 4. a vertical line ai y, = 4, v called the v, isocline. The v, socline divides the phase
plane into two regions called fiosectors, one (o the left of the v, socline and one 1o the ughl[
2 Find the intertemporal equilibrium level, ¥y, Le., the locus of points al which y; = O,

fom =Sy 4 15 = 1) Fy=3
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A

3 =0

G| O\

Ll -

4 L

Fig, 19-1

The graph of ¥, = 3 is a horizontal line at y, = 3, called the v, isocline. The v, isocline divides the phase
plane into two isosectors, one above the y; isocline and the other below it. See Fig. 19-1.
The intersection of the isoclines demarcates the intertemporal equulibrium level.
(¥i. ¥2) = (4,3)
Determine the motion around the v, isocline, using arrows of horizontal motion,

a) To the left of the v, isocling, v <4, B} To the right of the v, mocline, v, > 4.
By substituting these values successively in ¥, = -4y, + 16, we see
If y, <4, 9,0, and there will be If y1 >4, 3, <0, and there will be
motion to right motion to left.
Determine the motion around the y; isocline, using arrows of vertical motion.
a) Above the v Bocling, v, >3, k) Below the v, isocline, v, <3,
Substitution of these values successively in ¥; = ~5y; + 15, shows
If wy>3, ¥, <0, and the motion Iy, <3, 9,>0, and the motion
will be downward, will be upward.

The resulting arrows of motion in Fig. 19-1, all pointing to the mtertemporal equilibrium, suggest the
system of equations is convergent, Nevertheless, trajectory paths shoulkd be drawn because the arrows by
themselves can be deceiving, as seen in Fig. 19-2, Starting from an arbitrary point, such as (3,2) in the
southwest quadrant, or any poml in any guadrant, we can see that the dvnamics of the model will lead
to the steady-state solution (4, 3). Hence the time path converges to the steady-siate solution, making that
solution sishie,

Since the equations are linear, the answer can be checked using the techniques of Chapter 16 or 19,
getting

ity = ke ™ +4
yli) = kpe ™+ 3

With both characteristic roots negative, the system must e stable.

" - $a=0 T__
;;-:‘[;%\\‘:j/ ¥ =0
L \\ (&)

] _\-T
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EXAMPLE 10. A phase disgram is constructed in Fig. 192 and used below 1o test the dynamic stability of a
saddle point equilibrium for the system of eguations

¥ =2y =6
92 = By, — 16

Find the ¥, isocling on which ¥, =0,
Vi =2y,—6=10 =13
Here the vy, isocline is @ horizontal ine at v = 3,
Find the v, isoeline on which y, = 0.
¥y =By, — 16 =2
The y, mocline s a vertical line at ¥, = 2. See Fig 191
Dietermine the motion around the v, isocline, using arfows of horzontal molion,

@) Above the y, isocling, y; =3, b} Below the y, isoclineg, y;< 3.
Substitution of these values seceessively in ¥, = 2y, — 6, shows
If y; >3, ¥, >0, and the arrows of motion If y; <3, y;, <0, and the arrows of motion
point to the right. point o the lefl.
Determine the motion around the y; isochne, using arrows of vertical motion.
a) Tothe left of the y,; socline, », <2, b) To the right of the y, isocline, y, > 2.
By substituting these values successively in ¥, = By, = 16, we sce
If vy < 2. ¥, <10, and there will be motion If y,=2, #, =10, and there will be motion
dowmnward. upward,

Despite appearances in Fig. 19-2, the system is unstable even in the northwest and southeast
guadrants. As explained in Example 11, we can show by simply drawing trajectories that the time paths
diverge in all four quadrants, whether we start at point a, b, ¢, or d.

EXAMPLE 11. The instability in the model in Fig. 19-7 is made evident by drawing a trajectory from any of the
quadrants. We do two, ome from @ and one from b, and leave the other two for you as a practice exercise. In cach
case the path of the trajectory is best described in four steps

1.

Departure from point a.

i) The trajectory moves n a southeasterly direction,

k) But as the time path approaches the v, isocime where ¥, = 0, the y, motion castward slows down
while the y; moton southwiard continues unabated.

£) At the y, isocline, 7 = 0, Consequently, the trajectory musl cross the y, isocline vertically,

i) Below the v, isocling, the arrows of motion point in & southwesterly direction, taking the time path
away from the equilibrium and hence indicating an unstable equilibrium.

Departore [rom point b,

@) The trajectory once again moves in a southeasierly direction.

b} But as the time path approaches the v, isocline where ¥, = 0, the y; motion southward ebbs while
the ¥, motion castward continues unalfected.

¢} Since y; = 0 at the y; isochne, the time path must cross the y; isocline horizontally.

d) To the nght of the y; isocline, the arrows of motion point ip a northeasterly direction, taking the time
path away from the equilibrium and belying the appearance of a stable equilibrium.

EXAMPLE 12. 'The dotted line in Fig. 19-2 is 4 saddle path. Only if the initial conditions fall on the saddle path
will the steady-state equilibrium prove 10 be stable. The equation for the saddle path is

¥ = (r’ _a"}l;"'l. = ¥i) * ¥;

L F]
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where we already know all but r,, the negative root. From the onginal equations,
LT [0 2
- - =16
iy ﬂn! !# ﬂﬁ ,
Any time |A| < 0, we have a saddic-point equilibrium. Substituting in (/9.3).
_TnA) = VITrHA) ~4|A]
ol

| A =

0= Vo= H=T8)
L LI I

LITLE B ~
-

Then substituting in the saddle-path equation above,
-4 =10
i | —— - . |
¥ l‘ 3 Oy =2)+1
Vr=T=2m saddle path

Note that the intertcmporal equilibrium (2 2) fally on the saddle path. Only if the initial conditions satiafy the

saddlc-path condition will the intertemporal equilibrium be stable.

Solved Problems

SIMULTANEOUS DIFFERENTIAL EQUATIONS

19.1. Solve the following system of first-order, autonomous, lincar differential equations,

§y = =8y, +Sy; +4 »(0) =7
¥y = 3125y -4y, + 22 yil0) = 21.5
1. Putting them in mairix form for ease of computation,
¥i e - 0 | Y 4
|| Fl =i e
Y=AY+B

ra

Then find the complementary functionn.  Assuming distinct real roots,
v, = kG + &, Cor'™
Te(A) = VT A - 4]A]

whete F oy =

TelA) = =12, and (Al = 1575,
122 V2P -4(157%) _-1229
2 2
R = =105
1. Next we find the cigeavecton €, from
2
3y

f;.f: -

oy = LH

(A-r)C, = =0

gy iy =N
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Forr, = - 15,
I-!~{—I.Sl s ” I [-h.!
3.2 -4 -{~-1.5)
By simpie multiplication of row by column,

=08, + 8 =10 0= L3¢,
Lﬂr.-m,-ﬂ l";-'q‘ﬁ

e, = 1, then ¢; = LY Thux the eigenvector € cotresponding to r, = — 1.5 is
£y » 1
a-=[a] =[]

and the first elements of the complementary function of the general solution are

| ke ¥
. AN i
¥e "‘I 13]° ll..’«l'.r "'I

Substituting next for ry = ~ 105,

=8~ (~10.5)
325 -4

Then simply multplying the first mhythn*mndmth!uﬂmﬂhﬁuwhrheum
due to the singularity of the (A = 7,1) matrix

m|'&g“n f|-:‘1f:
Ih:. - l.lh'l‘."ﬁ{" = =2 {he m‘mmc;h rp==105

ol i
and the second elements of the general complementary function are
L . iy
y= hl Illr v, [ ~2kse I

nt]l" e
This makes the complete complementary solution,
rltﬂ' - l|f . H:f‘ mN
¥ilf) = 13ke 'Y 4 kye O™

4 Huwﬁndthchuntmnﬂ:qﬂhmmmmmr,.

, ~4 =5} ... V[ -4
e 4 !m -4]{" [-s g JAEA [-.us : _"“ u.n[qzs -8
Substituting above,

r,"i" -A 'R

-4 -325 -5

O[]l s Sllal- (]

Thus the complete gencral solution, y(i) = y, + v, is

i = ke '* = 2kye ¥ 4 8

yolt) = 13k e " * + ke MY+ 12 (1927)
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5 Tofind the definite soluthon, simply evaluate the above equations at 1 = 0 and use the initial conditions,
vi(0) = 7, w:l0) = 21.5.

y{) = &, - 2k; + 8 =7

yol0) = 13k, + k;+ 12=213
Solved simultancously, k=5 ky=3
Substituting in (19.27),

."J"j = S l.h_.h.-hﬂl ¥

vdl) = 6.5 "N+ 2" 4 12

With #, = =15 <0, r, = ~ 105 <0, the equilibrium s dynamically stable.

19.2. Solve the following system of differential equations,

V= 2y—6 vil) = 1
¥; =8By, ~ 16 va(0) = 4

(] =[s all] [l

Y-AY +B

1. In matrix form,

2 Finding the charactenstic rools,
TrA) = VA - 4Al

Fiufy =

F i
0= VY -4 16) =8
r".rr = 1 = -—;-*

v"|="_'. f;"*'l

Y. Now determine the cigenvecton

l} Fﬂl‘ﬂ = —d,
| 4 ‘ Il I| l " l
H ﬂ—l—-l} €3 K 4 s

4oy 42, =0 6= =2
M e, = 1. then «; = ~2, and the first clements of the complementary function are

=0

ke ¥
"""“l -lz|"= ke
B Fore =4,
[l'll—il 2 “r, !I-l 2 nltu
8 0-4)le 8 -4]le
~dc; + 20y =0 €y ™ Qe
e, =1, then ; = L and the second elements of the complementary function are

1 ke
U o P

L o ke AR R BB
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This means the general complementary functions are
wull) = koo™ + kye*
¥alt) = =2kje ™" + 2k e
4. For the steady-state solutions v,
y,=¥==A"B

go[Blo__L[0 -2][-6]_[2
¥ -16| -8 0 16 3
Thus the complete general solution, y(f) = ¥, + y,. is

i) =kje "+ ke +2

podt) = =2k, ™ 4 2k g™+ 3 (1929)

5. We then find the definite solution from the mitial conditions, ¥, (0) = 1. y,(0) = 4.

ywi=k+k;+2=1
,v;{ﬂ}=—2k:+2k,+3=4

Solved simultanecusly, ky = —0.75 k;=-025
Substituting in (/9.28), we have the final solution.

vilt) = =075 % -025" + 2
Wl = L5+ 0S5k e™+ 3

With r; = —4 <0 und r; = 4= 0, we have a saddle-point solution. Saddle-point solutions are
generally unstable unless the initial conditions fall on the saddle path:

3= (%)u.—f.}—i

= 0
Sﬂbﬂi[ﬂting. Y= ( "2 }[.'I"'r =2)+3

yr=1=2y,

This is the equation for the saddle path, which was graphed in Fig. 19-2 of Example 10. Substituting
the initial conditoms, y,(0) = 1, y{0) = 4, we sce

4#T-21)=5
Since the initial conditions do not fall on the saddle path, the system is unstable.

193. Solve the lollowing svstem of equations.

yi=4 +Ty+3 yi(0) =7
n=En-2ptd ¥:(0) = 10
1. Converting to mairices,
i 4 T 1y 3
[,""'Jlm[l -:] r;]+|¢l
Y=AY +B

2. The characieristic rools anc
2xV(2P—-4{~15) 2*8
2

Fi.F3 ™

Bl

r=—3 ry=3
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3. The eigenvector for 7 = =3,

7 2wllal=l ]

Toy+Tea=0 O™ =
ey =1, then ¢, = -1, and
=17 —he""
L ¥ -
- [ 1 ]" [ ke |
FﬂrI]"‘S‘
4-5 7 I'z.',, =1 71[= -0
1 =2=5 Ly 1 "'-.Ir_ Ca
MHey=1,thene, =7, and
7 Tk, e
- ¥ - -
% *Il]' ke

The general complementary functions are

_'l"q“} - _k|¢”*+ T*;fi
yoll) = kye ™+ kye

The steady-state solutions y, are
w=¥Y==A"B
= [a]--=s3 VIR
and the complete general solution is
vl) = —kye ¥+ Thye™ -6
vilt) = kye ¥+ ke =1

. The definite solution, given y,(0) = 7, y,(0) = 10, is

willll = ~k; + Tk, —6=7
yal0) = ky + ky— 1 =10

-k:] =8 k-: =3
Substituting in (/9.29) for the final solution,

ylf) = -Be ¥+ 21" -6
¥ = Be™™ + 377 - |

[CHAPR 19

(19.20)

With r, = =3 <0 and r; = 5>0, we again have a saddle-point solution which will be unstable

unless the initial conditions fulfill the saddle-path equation:

i =0 - "
.\‘1“‘( : ")U’:“}’:H‘J':
&

Sl.lblliﬁll.il‘la. Y= ( -3.; 4}[}'| —f—ﬁﬂ +(=-1)

¥i==T—¥
Employing the milal conditions, v,{0) = 7, w{) = 1,
0w -7T-(T)= 14
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Since the initial conditions do not satisfy the saddle-path equation, the system of equations s
unstable.

194, Solve the following system of nonlinear, autonomous, first-order differential equations in which
one or more derivative is a function of another derivative.

=4y +y+6 wl(0) =9
V2 =8y, +5ys=»—06 vol0) = 10

. Rearranging the cquations 10 conform with (19.7) and sctting them in matrix form,

i all]= (s Il + (5]

ALY =AY+ B
2 Find the characterntic roots from the charactoristic cquation,
1Ay = rAl =0
where, dropping the 1 subscript for simplicity,
4 1 0 d=r
LU M 8 ) | Y S B
F-fre12=0
= re= b
3. Find the cigenvecton C, where
(As = nA)C =0
s Hu—'.ﬁdca‘[‘-h 1 ”r.]
8=r S5=rlic

Substituting for ry = 2,

|I‘-‘1‘ I ”ﬁ il 2 IJ[nI!u
B~-2 §5-2 3 6 3 Cy

z‘|'€j"“ l.';""":l'.

e, =1 eg= -2 and
" *'1—1 = —--"'-h]"n
Now substituting for ¢, = 6,
'-l-ﬁ | Ir. -[_2 l"r. i
B=6 S—6 €y 2 -1 )1 &3

-2c ey =0 oy =36,

Wep=l.co=2, and
=y ]e

Adding the two components of the complementary functions,
_"d'} - *1"‘ * ltj-l’-
volr) = ~2kye™ + 2k, e

PPN R RO O B W R A |
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4. For the particular integral v,
Y=-A;'B

L3 4 1 ifs -1
whertl=[_6].&¢=[ﬂ 5].'Aq|—ll] £=12, and A;' =ﬁ[ 8 ]

4
- [# 175 -1][ 6 -3
el F B Y B R g
Adding the particular integrals to the complementary functions,
yilf) = kye® + kye* = 3
i) = =2k €™ + 2k, 0™ + 6
5. For the definite solution, set ¢ = 0 in (J9.3) and ese y,(0) = 9, y,(0) = 10

j;fﬂ[l=i:,+i:;—3='9
¥a0) == -2k, + 2k, + 6 =10

k|7"'.‘|- *:--T

Substituting,

Then substituting back in (/9.30),

yilt) =5"+7e* -3
Vo) = —10e® + 14 + 6

With r, = 2> 0 and r; = 6> 0, the system of equations will be dynamically unstahle.

19.5. Solve the following system of differential equations.
i =-—yntdy-05,-1 »nl0) =45
Vi = dyy — 2}';_ 10 rl‘{ﬂ} =16
1. Rearranging and seiting in matrix form,

o FIRI=(4 200 5]

AY=AY+B
2. From the characteristic equation,
|ﬁ:"hh|‘=i IIII r 4_2li5rr] S
we find the characteristic roots,
F+ir-14=10
r==1 =2

3. We next find the eigenvectors C, from the eigenvalue problem,

=l=r 4=05
[*z_ﬁﬂw}ci:[ ’ _'1“:]{ J’=

Substituting for r, = -7,

ﬁ,_j—?: ti.s{r_—;;][ ] [ﬁ T.!“ﬂ]-_-ﬂ

&'. +* 15{'; = Cy = "I.lﬁ(‘z

[CHAP 19

(19.30)
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Hey=1, ¢, = —1325 and
-1.25 ~1.25k,e”™
Fi I - 1%,
e "'[ 1 ]' [ kye™ ]

Substituting for r, = 2,

PRy | et [ R
e S ]f:
-3, + 3y =10 Oy = iy
[rf;-t.f1.|q“d
: - II " k""fa‘
. ILJ’II i P

Thiz makes the complete general complementary functions,
yi() = =125k, e "+ kye™
_'I-":{u - lh! ‘r+k;|l'n

Finding the particular integral ¥ = —A;'B,
-1 4 aia Y [=2 5
where A; [d _1],4&: —_14[_4 _1].and
[+2 -4 =17 _[3
-3 -1][-1!1]_[1]
By adding the particular integrals to the complementary functions, we get

vilty= =125k e ™ + kye” + 3
wal1d = k=" + ke + 1

=l

For the definite solution, we set r = 0 in (J9.37) and use v, (0) = 4.5, y 0} = 16

_r.ﬂ'-'} = =125k +k;+3=45
yi(0) =k +ky+1=16

k=6 ky=19
Finally, substituting in (/9.37),

yilt) = =756 + 0¥ 4 3
valt) = 6"+ 9e¥ 4 1

449

(19.31)

With characteristic roots of different signs, we have a saddie-point equilibrium which will be unstable

unless the initial conditions happen 10 coincide with a point on the saddle path.

196, Solve the following,

L

Y = =3y — yy— 03y + 5 yl0) =

iy i e A

AY=AY+B

In matnx form.,
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[

1 The characteristic equation is

i

-3=r =1=0L%
057 + 5+ 10=0

Multiplying by 2 and using the quadratic formula, the characteristic roots are
i R -T7235 Iy = - 1. 765

The cigenvector for vy = =7.235 is

~3=(~1238) ~[-0.5(-7235) [r.]_[uﬁ Ml?ﬁ”ﬁl-ﬂ
3 €3

-2 = (=7235) -4—(-7235) 518 218
‘m:"ulm]-u f;--l-m|
M, = 1, 6= —1.62, and

= e

& "‘"'I ~ 162k e "2

‘ I
.62
For r, = —2.765,

-3 - (~2.765) —1~nﬂ_zmxllc.l_l-um m"nl_n
C C

~2-(=2765) ~a~(-276%5) |l 0765 -1235
=0, 235, + 03825, =0 € = 162

"ﬁ't.l‘."‘l.ﬁllﬂd
y. =k
The complete complementary function, then, o

(1) = kye ™+ 1,62k 0" 1
yolt) = = 1.62%k e TI% & kyo 1N

l.ﬁEl'_,“‘ 1 62k 2™
1 | i

The particular integral ¥ = A, 'Bis
- [a]==%l3 Sllo]=[2]
and the general solution s

win = ke "™ + L2k e ™ + |
y) = =) 62k e T + ke T 5 2

Using y,(0) = 222, y,(0) = 3.9 1o solve for k, and k,.

k,+ 162k, + 1 = 222
-l-ml "t3+1 -3.'“

t. =% *t = 10
Substituting in (/9.92) for the definite solution,

) = S T+ 16207 2 )
vodt) = =8.de " L 10e MY 42

With both characteristic roots negative, the intertemporal equilibrium is stable.

(19.32)
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SIMULTANEOUS DIFFERENCE EQUATIONS

19.7.  Solve the following system of first-order linear difference equations in which no difference is
a lunction of another difference.

L

3

.

3,

Xp = 14
yo=123

£ = 04z, + 06y, , + 6
?_, = '1,1!’. i +’0...3}"_| i + 5

T e

T,"'*v..’.

Using (19.3) on the characteristic equation |A -

r A = 0, find the characteristic rooix

07 = VI07) - 4(0.06) 07205
rl_r:lu g
2 >
o= 0G l"j"'".'l-
The cigenvector for r, = 06w
lu.# 0.6 l}.b ” ] I-M ﬂ.ﬁ”r. -0
0l -03 ..-,]
'“-.n.l.'| *0.&1 -kl
g™ L, ¢, = 3 and we have
3 & Ak, (0.6)
*‘l I Imr ky(0.6)
For r, = 0.1,
I =101 "t. [ﬂ-.! 061 -0
u_1 0.1 u,zl c,]
IJ.J:. + Lo, = 0 = -Il‘;
uf,-l.ﬂr"z.ml
-2 _ [ ~2kst0ny
O i U
Combining the two for the general complementary functions,
x, = 3k, (06) - 2k A00)
¥, = k,(06) < kA0.1Y
For the particular solution.
=({0-A)"'B
04 06 -6
e i In || [m n,!] [—-:u ]
0.7 06
. Yo ™ i- ll]ﬁ[nl m][;]'lm

This makes the complete gencral solution,
£, = MG(06) - 2000.1) + 20

¥, = k,(0.6) + k0.1 = 1D (19.33)
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5. Employing the initial conditions, x; = 14, y, = 23, (19.37) reduces 10

3*.‘2*;4‘10-1‘-
ky+k+10=23

Solved simultancously, k=4 k=9
Substituting in (/9.37),

X o= 106) — 18k, (0.1} + 20
v, = 4{0.6Y + 901+ 10

With |0.6/< 1 and [0.1|< 1. the time path is convergent. With both roots positive, there will be no
it

19.8. Solve the following system of first-order linear difference equations,
-t. = _'ﬁaﬁlf 1 + u-l."rl + g .In = T.m

v, =05z, -02y,_,+42 Y= 5734
1. In matrix form,
)=los Zallsn] el
¥ 05 =02}y, 42
Y, =AY, ,+B

2. The characteristic roots are

—0.8 = V(—0.8Y - 4{0.07)| _—08=06
2 p)

rp=—{.1 = =07

rhr] -

3. The eipeavecior for r, = —0.1 is

{6 - {—0.1) o ][r]]_ =035 0l (e il
[ 0.5 =02-{-01)lcx [0.5 —D.l][cl]

-‘ﬁj{.‘.-ﬁ-ﬂ.lf;"’ﬂ o = 5

k, [;] (=0.1y = [;;I.{{-(:Illfly]:*l

1Tr|=[.1:;='5.i:nd

For e = =07,
{-n.ﬁ-{-u.?} 0.1 ' 'cL]_J'ELI 01 r']-u
0.5 -02=(=07) || ¢ 05 05]|e;
Oley + 0.1y = O &= =gy
e;=1,¢ =~1, and
i (el e

This makes the general complementary functions
£, = ki(=01Y = Li(-07)
¥ = Sky(=0.1) + ko -0.7)
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| |

4. For the particular solution,

Y»=({-A)'B
I 0] [-06 01 16 -04
ire "'”‘Iu || luj -02]{ " |-05 12
” __If "le m”nl_lanz
: YTl T imlos el T 3w

This makes the complete general solution,

0= ky(—00)Y = k(-0T) + 802

¥ = SEU=00Y + kyf -0T7) + 3834

5. Using x, = 702, v, = §7.4, (19.24) reduces to
ky = ks + 812 = T.00
Skivk:+MM~-510

Solved sumullancously, ky=3 k=4
Substituting tn (IY.34),

(19.34)

&= 3(-00Y - 4 -07) + 802
¥, = IS(~01) + 4 ~0.7) + 3834

With both characteristic roots in absolute value less than 1. the system of equations will approach a
stable intertemporal equilibrium solution. With the roots negative, there will be oscillation.

19.9.  Solve the following system of first-order linear difference equations in which one difference is
a function of another difference.

5= =075, — 04y, , +40 Xg = 24
¥ ==0575,., - 05y, - x,+6 Yo= =32
1. Rearranging and setting in matrix form,
B IR B b B
1 1ilw -0575 05|, 6
AY, =AY ,+8B
2 We then find the characteristic roots from the characteristic equation,
(A= rA =0

07 -04 =l I ﬂ]_[ -0.7 =, =4
-0578 0.5 111 ~O575 -9, -05-4,

| -0
rFe08+012=0
= b rn=-02
3. The cigenvector for r, = 0.6 ks
I =0,7 = {=0uh) =04 “ rl] '[ -1 —ll.-i”r.l -0
~0.575 < (~0.6) —05-(-06) || s oms ol e
~0.1¢; — Dby = 0 o = —4c,
Wep = 1oy = —4 and the eigenvecton is

-4 ~4k,(~06
h' , Il-ﬂm’=[ o B d

ko ~0.6)
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H:f r; = "'I}.E.‘
[ -0.7-(-02) -4 t']] - [ ~05 —ﬂ.l-“ﬂ;] -0
=-0575=(-02) -05-{-021) =0375 .03 ||

—l.'!.!i-:!. e U.ik'. = () Oy = = I.:ﬁl‘]
ey =1, = -1125, and the eigenvector for r; = =02 15

: O PR ki ~02Y
"*[ —l.rs]‘ L ["1-?-5*:('9-2}'1

Adding the two sigenvectors, the complementary functions are

x, = —&4k,(—-0.68) + k(—0.2)
¥. = ky(—0.6) = 1.25k(-0.2)

4, For the particular solution y, = Y,
Y=(A-A)'B

10 -07  -04 17 04
where L'M'A:}“[l 1]-[—&5?5 —D.!]-[I.ETS [j]

wd i‘c[;] I‘H[ 1.57 -l?:][m] [ -275

Adding v, and y,, the complete general solution is
x, = =dfe,( =0.6Y + k(=02 + 30
¥ = ki(=0.6) = 1.25ky(-0.2) -
5. Finally, we apply the initial conditions, x, = 24 and y, = —32, 1o (19.35),
=dy + ey + 30 = 24

k=~ 125k - 215 = -22
-t1=3 t;|=‘ﬁ

and substitute these values hack in (/19.35) for the definite solution.

x, = =12(=0.6) +6{-02) + 30
¥ = 3~0.6) - 7.5(-02) - 27.5

With both charactenstic roots less than 1 in absolute value, the solution is stable

19.10. Solve the following system of first-order linear difference equations
XI= U-ﬁl}—; + u.sﬁ}".—| = rr i [5 Xp = 21

¥, =02¢_, +04y,, +6 Yo = 38
1. In matrix form,
] I bt e e A
AY, =AY  +B

2 For the characteristic roots, |A; — A | = 0.
[U.E 0.85 [ I}ﬁ rp 08S—p =0
0z 04 0d~-r
P =08r+0.07 =0
r|-'=l17 l']-=ﬂ.|.

[CHAE 19

{(19.35)
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Y Forrn =107,
N6=07 OB5S-07 [r.]_ =01 0157 -
2 04-07 }|es N2 -03)le
—l].1|'.'1 +“.15¢'_l =1 &y = 1.55:

Ife; =1, = 1.5 and the eigenvector is

157 o _ [15K(07Y
"[ ]mﬂ k(0.7

For r; = 0.1,

06~-0.1 085 -0.1 Iq us 0,75
0.2 04-01 |l e 03

0.5¢, +0.75¢; = 0 6 = —15g
Ife; =1, ¢, = —1.5 and the sigenvecior is
-1.5 —I.Sk;{u_l}‘]
b Jear- [ ey
4. For the particufar solution,

Y—'l*l_*]‘] ‘B
1 1] _[06 085 04 0I5
Here [A,—A;}=[D I] [nz nq-] [-rU.E ﬂ.ﬁ]
06 —013][15 30
and [ ] nm[ﬂz 04 H&]n[m]

Adding y, and y,,
£ = 1.5k,(0.7) - 1.5kx{0.1)"+ 30
¥ = ki{0.7Y + ky(0.1) + 20
5. For the definite solution, we apply 1, = 27 and y, = 38 1o (]9.38),

1.5k, = 1.5k, + 30 = 77
k.+k;+l"l}=.‘ﬂ

*; =8 -k: o iﬂ
Substituting back in i /#.36),

x, = 12{0.7) = 15{0.1) + 30
¥ = B{0.7Y + 10(0.1Y + 20

With both characteristic roofs less than 1 in absolute value, the solution is stable.

PHASE DIAGRAMS FOR SIMULTANEOUS DIFFERENTIAL EQUATIONS
19.11. Use a phase diagram 1o test the stability of the system of equations,

Yy=3y—18
Y= =2v;+ 16
1. Delermine the sleady-slinte solutions ¥ where y, = 0 to find the isoclines.
h=3n-18=0 ja= =2y +16=0

7= 6 the y, isocline ¥mB the v, isocline

455

{19.34)
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=0

;:Il

|
1

Fig. 19-3

As seen in Fig 19-3, the intersection of the isoclines demarcates the imteriemporal equilibrium level,
(¥ ¥} = [6,5)

Determine the motion around the v, socline using artows of horzontal motion.
a)  To the left of the v, sosting, ¥, <6 b)) To the rght of the y, isocline, v, > 6.

Substituting these values successively in ¥, = 3y, — 1K, we see
I v, <8, <0, and there will be I wy > 6, 3 >0, and there will be
motion 1o the left. motion 1o the right.
Determine the motion around the v, socline, using arrows of vertical motion,
a) Above the v, mocline, v, =8, b) Below the v, isochine, y; < K

Substitution of these values successively in ¥, = =2y, + 16 shows
If ¥, == 8, ¥;= 0, and the motion If o< K, gy >0, and the motion
will be downward. will be upward.

The resulting arrows of motion in Fig. 19-3, all pointing away from the intertemporal equilibrium,

suggest the system of cquations is divergenl. Drawing trajectory paths 1o be sure confirms that the
sysiem is indeed divergent.

Proofs and Demonsirations

19.12. Given [*"‘] . l"“ "’][h] B [b'l
Vil o emjly: b

Y=AY+B (19.37)

show in terms of Section 19.1 and Example 1 that

(A-rD)C, =0
Starting with the homogencous form of the system of equations in which B = 0, or a null vector, and

assuming distinet real rools. we can expect the solution 1o be in the form

Y =4&Ce (19.38)

where k, = o scalar, C, = (2 % 1) column vector of constants, and r, = a scalar, Taking the denvative of
(19.35) with respect 1o £, we have

Y = ek Ce” (19.39)
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Substituting (/9.38) and (/9.39) in the homogencous form of (/9.37) where B = (),
rk,Cie’ = Ak, C.e”
Canceling the common &, and ¢ terms. we have

rC, = AC,
AC,-rC,=0

Factoring out C, and recalling that A is a (2 % 2) matrix while r, is a scalar, we multiply r, by a (2% 2)
identity matrix 1., or simply I, 1o gel

(A=rD)C,;=0 QED (19.40)

19.1). Continuing with the model in Problem 19,12,

Tr(A) = VTHA — 4]A]
2
I (A~ nl) s ponsingular in (/9.4)), meaning it contains no lincar dependence, then €, must be a null

column vector, making the solution trivial. To find a nontrivial solution, (A — # 1) must be singular. A
necessary condition for a nontrivial solution (C, # 0), then, & that the determinant

iA=nll=0 (redr)

where equation (19.41) is called the characteristic equation or characteristic polyvaomial for matrix A
Dropping the subscript for simplicity and substituting from above, we have
iy = r iy
iy Wy = F

show that ryry; =

=0

Byl = @ =B P4 P = @iy, = 0

Rearranging. P =y + agh + (a0 —agay) =0
O, using matrix notion,
F=To(Ay+ Al =0
which is a quadratic equation that can be solved for r with the quadratic formula,

Tr(A) = VITHA)] - 4 1A
2

QED.

Fihy =

19.14. Continuing with the model in Problem 19.13, show that the particular integral or solution is
ypm¥=-A"'B (19.42)

The particular integral is simply the intertemporal or steady-state solution Y. To find the stcady-state
solution, we simply set the column vector of derivatives equal to zero such that Y = 0. When Y = 0, there

is no change and ¥ = ¥. Substituting in (19.97),

Ye=AV+B =0
AY - B
Y=-A'B QED

=l i)+ [o]

or AMY=A.Y+B (19.43)

19.18. Given l"' 2

fn n
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show in terms of Section 19.2 and Example 3 that to find the complementary function, one must
solve the specific eigenvalue problem

(A;—rA)YC =0

Starting with the homogeneous form of ([9.47) in which B = 0, or a null vector, and assuiring distinet
real reots, we can expect the solution and its derivative to take the forms

Y = kC.e” Y = rkC e (19.44)
Substituting from (/9.44) into the homogeneous form of (/9.47) where B =0,
Ar kGt = Ak Ce?
Canceling the commeon &, and ¢ terms, we have

AqnC= AL
(A =rA)C =10 QED.

19.16. In terms of the model in Problem 19.15, show that the particular integral is

yo=Y==A;'B (19.45)
The particular integral is the steadv-state solution ¥ when ¥ = 0. Substituting in (19.43),

AY=AY+B=0
AY =-B
ir, —h;’n QE-:D

19.17. Given Lo | |90 S || Fe-a ] b,
¥i fy @z || Yie1 by

or Y, =AY, ,+B (19.46)

show in terms of Section 193 and Example 5 that the eigenvalue problem for a system of
simultaneous first-order linear difference equations when no difference is a function of another
difference is

(A-rDC =0

Starting with the homogeneous form of the system of equations in which B = 0, and assuming & Gisc
of distinct real roots, from what we know of individual difference equations, we can expect that

Y, =kC(r) and Y., =kClr)" (19.47)

where &, and r; are scalars, and C, = (2 x 1) column vector of constants Substituting in (/9.46) when B = 0,
we have

kCir) = Ak, Cfr)""
Canceling the common &, ierms and rearranging.
AC(ry ' =Clry =0
Evalusted at r =1,
(A-rI)C,;=0 QED.

1918, Given bl el el i

AY, =AY, +B (19.48)
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show in terms of Section 19.4 and Example 9 that for a system of simultancous first-order lincar
difference equations when onc or more differences is a function of another difference the
eigenvalue problem is

(A; = rA)C =0
From carlier work, assuming distinet resl rools, we can anticipate
Y, = kCir) and Yios = RCir)"! (19.49)
Substituting in the homogencous form of (/9.48) where B = (), we have

Ak ChrY = ARChrY!
A ChnY ' - Ay =0

Evaluated at 1 = |1,
(A: = rA)C, = 1) OED

19.19. Remaining with the same model as in Problem 19.18, show that the particular solution is
v=Y=(A-A)'B (19.50)
For the particular or steady-state solution,
L=x ,=F and yey.,=§

In matrix notation, Y=Y. =%
Substituting in {19.48),

AY=AY+B
Solving for Y,

Y=(A-A)'B  QED



CHAPTER 20

The Calculus
of Variations

2.1 DYNAMIC OPTIMIZATION

In the stonc optimization problems studied in Chapters 4 and 5, we sought a poinrt or points that
would maximizc or minimize a given function at a pﬂl‘tlﬂ.llir peint or period of time. Given a function
= wix), the first-order condition for an optimal point x* is simply y*(x*) = 0. In dynamic optimization
I'#lﬂi. i etrve x*(1) which will maximize or minimize a given integral expression. The integral 1o be
optimized typically defines the area under a curve F which is a function of the independent variable
t, the fnnnthﬂl x(1), and its derivative dx/dt, In brief, assuming a time period from i, =0tot, = T and
using & for the derivative dyide, we seek to maximize or minimize

T
J Fltx(0). £(1)) dr (20.1)

where F s sssumced continuous for ¢, x(r), and £(r) and io have continuous partial derivatives with
respect 1o x ankl &. An integral such as (20.7) which assumes a numerical value for each of the class
of fusctions #(1) is called a functional. A curve that maximizes or minimizes the value of a functional
15 called an exerernal. Acceptable candidates for an extremal are the class of functions x(t) which are
contintously differentiable on the defined interval and which typically satisfy some fixed endpoint
conditions. In our work with extremals, we start with the classical approach, called the calculus of
variations, pioncered by Isaac Newton and James and John Bernoulli toward the end of the
seventeenth centurs

EXAMPLE 1. A firm wishing to maximize profits w from time &, = 0 to f; = T finds that demand for its product
depends an not only the price p of the product but also the rate of change of the price with respect to time dp/dt.
By assuming that o=t are fixed and that both p and dpidr are functions of time, and employing p for dp/dr, the
firm's Objective can be expressed mathematically as

-
m“J:, it plr). plr)] de
Acsecond fiem has found that its total cost C depends on the level of production x(1) and the rate of change

460
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ol production dy/di = 1, due to start-up and tapering-off costs Assuming that the firm wishes Lo minimire oorsts
and that x and 1 are functions of time, the firm’s objective might be writicn

minr Clo,afe), 5(¢)) e

subjéct 10 L) =5, anid ki) = x,
These initial and terminal constraints are known as endpoint comditions.

20.2 DISTANCE BETWEEN TWO POINTS ON A PLANE

The length 5 of any nonlinear curve connecting two points on a plane, such as the curve connecting
the paints (£, x5) and (f,, x,) in Fig. 20-1(a), can be approximated mathematically as follows. Subdivide
the curve mentally into subintervals, as in Fig. 20-1(h), and recall from the Pythagorean theorem that
the square of the length of the hypotenuse of a right triangle equals the sum of the squares of the
lengths of the other two sides. Accordingly, the length of an individual subsegment ds is

(ds)* = (dt)’ + (dx)

niry "

| e
l e
I ot
|
L 1 i
L [ I L f [
L) (1]
Fig. 20-1
Simplifying mathematically,

ds = \{d)* + (dry’
Dividing, then multiplying, both sides by V{dr)’, or simply dr,

ﬁz I¢ E.

dr \II (d!i
di

ds = flfi-&—;idl

ds = V1 + (20 di

from which the length of the total curve § from ¢, to ¢, can be estimated by simple integration
o get

or, using the more compact symbol,

§= ‘r V1 + (a) de
iy

See Problems 20,1 to 203,
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203 EULER'S EQUATION: THE NECESSARY CONDITION FOR DYNAMIC
OPTIMEZATION

For a curve X* = x*(t) connecting points (f, xo) and (1, 1) to be an extremal for (Le., to oplimize)
a functional

j " Fle.x(e), #(0) dr
[ ™Y

the necessary condition, called Ewler’s equation, is
aF d (EF )

—_— i — .&_i

ax (an)

Although it is the equivalent of the first-order ncoessary conditions in static optimization, Euler's
equation is actually a second-order differential equation which can perhaps be more easily understood
in terms of slightly different notation. Using subscripts to denote partial derivatives and listing the
arguments of the derivatives, which are themselves functions, we can express Euler’s equation in
{(20.2a) as

Firx x)= %[F.{l..r.i:}] (20.2b)
Then using the chain rule to take the derivative of F, with respect to r and omitting the arguments for
simplicity, we get

F, = F; + Fi (%) + Fu(f) (20.2¢)

where & = £ x/dr.
Proof that Euler’s equation i1s a necessary condition for an extremal in dynamic oplimization is
offered in Example 2. See also Problems 20.26 1o 20.33.

EXAMPLE 2. To prove that Euler's equation in (20.2a) is a necessary condition for an extremal, let X* = x*(r)
be the curve connecting points (. %) and {1, x,) in Fig 20-2 which optimizes the functional (ie, posits the
optimizing function for)

J”' Flt,x{1), #(0)] dt (20.3)

Let X = x*(1) + mA(r) be a neighboring curve joining these points, where m is an arbitrary constant and k(r) is
an arbitrary function. In order for the curve X to also pass through the points (i, %) and (4, x,). that is, for X to
also satisfy the endpoint conditions, it is necessary that

Altg) =0 and  HK{n) =0 {204

By holding both =*(r) and kit) fixed, the value of the integral becomes a function of m alone and can be
written

glm) =j" Flr.x*(t) + mhb(r), £*(r) + mh(r)] de (20.5)

i}

Xe

X o=+ mh

= e
e e i o

Fig. 20-2
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Sinee x*(1) by definition optimizes the functional in (20.3), the fuaction gim) in (20.5) can be optimized only when
m = 0 and

| =0
{2016}
To differentiate under the integral sign in (20.5), we use Leibnitz’s rule which states that given
gim) = J-'I_m,mjd':
where i, and , are dilferentiable functions of m. -
:Ti“fam + Fltm) o = flia ) 2 (20.7)

Since the boundaries of integration f, and ¢, are Axed in the present example, drfam = a/a, = 0, and we have
to consider only the first term in Leibnitz's rule. Applying the chain rule to (20.5) 1o find §F'im, because F is a
function of x and %, which in tum are functions of »1, and substitwting in (20.7), we have

S [ Ao, o0 sl
dm dx i ax

With a(x* + mh)im = h and 3(i* + mh)am = h, and using (20.6).
dg

r1
- [ o+ i Jar=0 (20
x| I ©+2Li0) 5
Leaving the first term in the brackets in {20.8) untouched snd integrating the second term by means of parts

dg n gF aF i "d faF )
e 8 — + | = | =(=]nnrdr=
oo § #{:}dr Mﬁ{r}]“ L d:{a.i (dr =0
With A(r.) = &{r,) = 0 from (20.4), the second term above drops oul. Combining the other two terms and
rearranging,

=l

dg

cher

Since M(r) s an arbitrary function that need not equal zero, it follows that a necessary condition for an extremal
is that the integrand within the brackets equal zero, namely,

aF_d[aF} 0 o« .4 'aF)
ay ot ax el {ﬂi
which is Euler’s equation. See also Problems 20.26 1o 20.33.

ax  dt

H-I = d(””.&mm—n (20.9)

20.4 FINDING CANDIDATES FOR EXTREMALS

Finding candidates for extremals to maximize or minimize a given integral subject to fixed
endpoint conditions in dynamic optimization problems is facilitated by the following five sieps:

Let the integrand equal F. Normally F = F(1,x,x).

Take the partial derivatives of F with respect to x and ¥ to find 0F/dx = F, and aFjax = F,.
Substitute in Euler’s equation from (20.2a) or (20.2b).

Take the derivative with respect to r of F,, recalling that the chain rule may be necessary
because F, can be a function of 1, x, and %, and x and x are functions of 1.

5. 1f there are no derivative terms (¥ or £), solve immediately for x; if there are ¥ or ¥ terms,
integrate until all the derivatives are gone and then solve for x.

i ol
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Illustrations of this technigue are provided in Examples 3 and 4 and Problems 204 1o
20.18.
i
EXAMPLE3. Given J’ e PP
]
the functional is optimized by using the procedure outlined in Section 20.4 and the notation from (20.2a), as
follows:
1. Let F=fa'e" + dux
L ¥ .
2 Then i 12ve and 2% 4
3. Substituting in Enler's equation from (20.2a),
d
12xe" = = (4r)
4. But d{4)/di = 4. Substituting above,
120e* = 4
5. Solving for x directly since there are no ¥ or  terms, and expressing the solution as x(1),
) = e

This satisfics the necessary condition for dynamic optimization, which only makes the solution a candidate
for an exiremal. The sufficency conditions, which follow in Section 20.5, must also be applied.

EXAMPLE 4. The functional

1.
Z
3

F
J (&5 + 120 - Sty de
i

subject 1o x{0) = 1 x2) =4
is optinuzed as above, but now with the notation from (200.20).

Lat F=d45 + 12xr - 5t

Then Fo=12%t and F,=8i

Substituting in Euler’s equation from (20.25b),

d .
12r = d—fl_'E:r,‘.l
: . dx d (de\  &x
Recalling that & = = and th.ltdr(-a—) St
12r = Hf

Since an £ term remains, integrate both sides of the equation successively twice, using only one constant
of integration ferm at cach step.
J 12t = I e ds

6F + ¢, = B
Intcgrating again,
I[E’+r.]ﬂ - Jﬂim
r+ef+re=hr
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Integrating both sides directly and rearranging,

Ay

'\,.W = _{-I_{'L’

Squaring both sides of the equation and solving algebraically for v,

Ky e (x =) (1 +50)
A = (k= Py = (x - )

PPN | 2
“:_{I_"JF

; £ = 0

’v=: " L]
Val=lx—g)

Integrating both sides. using integration by substitelion on the right, gives,

y=o= 2 VAl=(x-q)f

which, by squaring both sides and rearranging, can be expressed as a circle
(x=ef +(y-cf =¥
where c;, cz;, and A nre determined by x,. x, and k.

20.7 VARIATIONAL NOTATION

A special symbol 8 is used in the calculus of variations which has properties similar to the
differential 4 in differential calculus
Given a function Ft, x(1), ¥(1)] and considering r as constant, let

AF = Flt,x{r) + mh(1), £(r} + mh(0)] = Fl¢, x(1), £(1}] (20.15)

where m is an arbitrary constant, k() is an arbitrary function as in Example 2, and the arguments are
frequenily omitted for succinctness. Using the Taylor expansion which approximates a function such
as x(t) by taking successive derivatives and summing them in ordered sequence to get

x(1) = x{te) + R (o)t ~ 1) + ﬂ"";——tﬂ +
we have
F{:,x-rmh,i+m.\‘i:|HF[:,1,x'}+Emh +£mﬁ+-“ (20.16)
ax dax
Substituting (20.16) in (20.15) and subtracting as indicated,
aF
AF = Emﬁ + a—th.ﬁ + - {20.17)

where the sum of the first two terms in (20./7) is called the variation of F and is denoted by &F.
Thus,

5F = :J—F i+ Em.h (20.18)

From (20.18) it is readily seen that if F = x, by substituting x for F, we have
ax = mh (20.19)
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206 DYNAMIC OPTIMIZATION SUBJECT TO FUNCTIONAL CONSTRAINTS
To find an extremal that maximizes or minimizes a given integral

¥
I Fle x(1), ()] el (20.10)
0
under a constraint that Keeps the integral
r
I Gilr. x(0). %)) dt = k (20.11)
L]

where k is a constant, the Lagrangian multiplicr method may be used. Multiply the constraint in
(20.11) by A, and add it to the objective function from (20./0) to form the Lagrangian function:

r
I (F+ AG) dt (20.12)
i)

The necessary, but not sufficient, condition 1o have an extremal for dynamic optimization is the Euler
equation

a d (aH

ax de\ai

ay de
See Example 6 and Problem 20.25,

) where H = F+ AG {20.13)

EXAMPLE 8. Constrained optimiration of functionals s commonly used in problems to determine a curve with

a given perimeter that encloses the largest arca. Such problems are called soperimetric problems and are usually
expressed in the functional notation of yix) rather than x(r), Adjusting for this notation, 1o find the curve ¥ of
pven length & which encloses & maximum arca A, where

ﬂ-ljlxl‘rrmh
2
and the length of the curve is
I Vieyde =k
.
set up the Lagrangian function, as explained in Section 20.6,
L
J [ixy = ¥) + -l.Vr'I-T:i:‘[d.: (20.14)
g

Letting M equal the integrand in (20.14), the Euler equation is
aH d (sl

ay e\ ay |
where from (ML),

Substituting in Euler’s equation,
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Integrating both sides directly and rearranging,

N e
\!'(i_;_;: l" tl’
Squaring both sides of the equation and solving algebrascally for v,
¥ (k- ) (1 +§)
Ny = (r=a)y = (x - o)
5, _x=a)
¥ A= (x =)
b Xy
-G-ar
Integrating both sides. using integration by substitution on the right, gives,

y=cr=2VA=(xr=¢q)f

which, by squaring both sides and rearranging. can be expressed as a circle
(F-al+ly—c)=»
where ¢, ¢;, and A are determined by ;. 1, and k.

20.7 VARIATIONAL NOTATION

A special symbol 8 is used in the calculus of variations which has properties similar to the
differential o in differential calculus
Griven a function F[r, x(1), 5(7)] and considering ¢ as constant, let

AF = Flt,x(t) + mhli), £(2) + mhin)] - Flr, x(1), £(2)] (20.15)

where m is an arbitrary constant, h(s) is an arbitrary function as in Example 2, and the arguments are
frequently omitted for succinciness. Using the Tavlor expansion which approximates a function such
as x(r) by taking successive derivatives and summing them in ordered sequepce to get

A0) = xlta) + XN~ &) @ $ooe

2!
we have
Fit.x + mh i + mh) = Flt.x. i)+ Emh + a—fmﬁ $on (20.16)
11y Ty
Substituting (20./6) in (20.15) and subiracting as indicated.
Aanmb+i£mﬁ+--- (20.17)

where the sum of the first two terms in (20.17) is called the variation of F and is denoted by 8F.
Thus,

d af
P LN (20.18)
i Ax

From (20.18) it is readily seen that if F = x, by substituting x for F, we have
Av = mh (20.19)
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Similarly, if F = 1

& = mh (20.20)
Hence an alternative expression for (20.15) is
aF aF _.
6F = —8g + E& (20.21)

and the necessary condition for finding an extremal in dynamic optimization can aslso be expressed
s

5 I Flex(n). i) di = 0

s

For prool, s¢e Problems 2034 and 20.35.

208 APPLICATIONS TO ECONOMICS

A firm wishes 10 minimize the present value at discount rate i of an order of N units to be
delivered st time 1. The firm's costs consist of production costs a[¥(1)]° and inventory costs ha(s).
where a and b are positive constants: x(f) is the sccumulated inventory by time 1. the rate of change
of inventory is the production rate x(¢), where £(¢) =0; and ax(?) is the per unit cost of production.
Assuming +(t,) = 0 and the firm wishes to achieve x(#) = N, in terms of the calculus of variations
the firm must

mmf'.- “(ai® + bx)di

subject to xtg) = 0 i) =N

To find a candidate for the extremal that will minimize the firm's cost, let
Fle.x(n). x(0] = e *“(ax* + bx)
then F,=be®™ oand F,=2ae "%
Substituting in Euler’s equation from (20.25),

- _‘_[ s
be m[Idr )

Using the product rule and the chain rule to take the denvative on the right since x 1s a function of
1, we have
be ™ = 20e""(K) + 3{~2oe ")
= Jae "t — 2aie” "%

Canceling the ¢ “ terms and rearranging to solve for 1,
) - axdy) = % (20.22)

With £(6) = ix(t) + b(2a) from (20.22) and (1) =0 by assumption, £(t) in (20.22) must be positive,
indicating that the firm should maintain a strictly increasing rate of production over time.

Equation (20.22) is a second-order linear differential equation which can be solved with the
method outlined in Section 181, Using Equation (18.24) o find the particular integral, since in terms
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of (I81) by = =i, by = 0, and a = b2a, and adjusting the functional notation from v = w{1) to x = x(r),
we have

Using (/8.4) to find ry and ry for the complementary function,
D=V -H0) it
2 2

Pl =
=i r; =10

Substituting in (/&.3) 10 find x, and adding to x,,
I{l'] = J‘;i""d;"_ %l {2&33}

Leting &, = 0 and ¢, = T, from the boundary conditions we have

) =A+A:=0 Ay = =A,

.:(n-a.e“u—a.;—%r-ﬁ

Solving x(T') for A,

A|EI‘II‘I}-H+%T

_ N+ [had] T

M -1

(20.24)

Finally, substituting in (20.23), and recalling that A, = —A,, we have as a candidate for an extremal:

(N[BT, (N+[baDIT\ b
0 ( -1 )" ( -1 ) 2ai'
:(r,'l"(h’-* %T);;}!m%: OstsT

Then testing the sulficiency conditions, where F, = be " and F, = 2ae “x,
Fu Fu a 0 0
Foo Ful |0 2ae*
D=0 DY =0

Fo Fo| _ |20 O
o Fo 0 0
|| = 2ae >0 IDi[ =0

|| = |

With the discriminant of the quadratic form of the second-order derivatives of the functional positive
semidefinite when tesied for both ordenngs of the variables, the sufficiency condition for a local
minimum is met. For further economic apphications, see Problems 20,19 to 2024,
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Solved Problems

DISTANCE BETWEEN TWO POINTS ON A PLANE
20.1. Minimize the length of a curve § connecting the points (i xy) and (1, x;) in Fig, 20-1 from

Section 20.2, ie.,
|
mmj VI+odi
&
subject to x{ty) = xy x1) = x,
Using the procedure outlined in Section 204 to find a candidate for an extremal to minimize the
functional,

2, Take the partial derivatives F, and F,. noting that there is no x term in F, only an £ term, and that
the chain rule or generalized power function rule is necessary for Fj.
I

1
Fo=0 Fi==(1+5)" 2i=——
I“ ' V1 o+t

3. Substitute in Euler's equation.

d X
dr \Vi+ @

4. Since there are no variables on the lefi-hand side, integrate both sides immediately with respect
lo b Integrating the derivative on the righl-hand side will produce the original function. With
[0dr = ¢ a constant, we hiave

x

TVire
Squaring both sides and rearranging to solve for 1,
cfl + 1Y) = a4
F=f-df=(l1-AF
) - J t‘ L
"‘-_\'1—,,-*_'&" a constant

5. With an x term remaining, inlegrate again to gel
x{6) = kgt + ks (20.25}

fi.  With only one vanable x in the functional, the sufficiency conditions of concavity or convexity can
be determined solely by the sign of the second denivative. From F; = ¥(1 + £¥) 7%, we have by the

product rule,
Fu={(1+2)" -1+
Fu=Q+2"|(1+4) -2
i
Vil +59*

dmce the square rool of a dislance can never be negative, F,, = (I, The functional is convex and
the sufficiency conditions for a minimum are satisfied.

Note the solution in (20.25) is linear, indicating that the shoriest distance between two points
is a straight Ene. The parameters k, (slope) and &, (vertical intercept) are uniquely delermimed
by the boundary conditions, as is illustrated in Problem 20,2,

Fu=(1+#) "=
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r
282, Minimize J. V1 + 2 dr
(i)
subject to x(0)=3 x(2)=8
From (20.25), xl1) = kyt + ky

Applying the boundary conditions.
) =k(0)+ky=3 k=3
A =k(D+3=8 k=25
Substituting,
x(1)=25:+3

203, (a) Estimate the distance between the points (f, xs) and (1, x,) from Problem 20.2, using the
functional; (b) draw a graph and check your answer geometrically.

a} Given J" Wi+fdr and  x()=251+3
by 1aking the derivative j{r}“- 2.5 and substituting, we have
rxmm = J" V125 di = V725
’ = 265058(2) ~ 269258(0) = 5.385

b) Applying the Pythagorean theorem to Fig. 20-3,
’=§eP
x= V29 = 5385

1

A BEBCCE ;
5410, Bl i g -

]

1. d " - .- 1 1

—v——-——' [}

3 1 1+ ! . L__'.

T O |

r— T . Ok Bl 4—

I N S ) I O

Fig. 10-3

FINDING CANDIDATES FOR EXTREMALS

20.4. Optimize
J (2 - 420 + 1) dr
W
subject to x{to) = X () =x
Using the now familiar six steps 1o find a candidate for an extremal,
1 F=28"—d2vr+ 11t

Z Fp= =4 Fy=4x
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Substituting in Euler’s oequation,
Sy
=AY {48
~42 = 4K
Integrating both sides 1o climinate the £ term and using only one constant of integration term at
each step throughout,
-er'*r.--l.i
Integrating again to climinate the 1 term,
=T v ey i v ey = dx
Solving for x,
) = ‘I.Tﬂ’*ﬂlﬁf.l*ﬂl‘f:
Testing the sufficiency conditions,
Fou F 0 0
V| = - e -
|n| 'Fu F|iul- L ‘
iDi| =0 DY =0
Fu Fo| _|4 0
Ll Fa Fa 0 0
Y] = 4>0 |Dj| =0
The discriminant of the sccond-order denvatives of the functional i positive sermidelinite when
tested for both orderings of the variables. which satisfies the sufficiency condition for a Jocal
20.5. Optimire
I (& + 60" x) dt
™
subject o 2(ta) = %o () = x
F=x" by

F.=6' F,=2%

Substituting in Euler's equation,

e’ =« %m:

o' = 2x
Integrating both sides and combining constants of integration for cach step,

1574, = X
Integrating again and solving for 1,

Meratr=2r
o) = 150 = 05,1+ 05,

The sufficiency conditions, when tlested as in step 6 of the previous problem, reveal the functional
is 5t a local minimuem.
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206. Optimize
i
I[IJI-J.&’+MMI
0
subject 1o x(0) =2 xl) =4
l. F = 1%~ X" + 3wt
2. F, = 3o Fi= -6k
o o
i | JEI-EI‘M]
My = —hi
4. Integrating both sides twice but using only one constant of integration cach time,
IRF 4 e, =~
HJ‘"I‘I_"'I']- - hr
i T ey
. )= =r =1=%
Applying the initial conditions.
nm-—-%-z o =-12
Ne—t-2s2=4 - 18
x 6 iy
Then substituting above,
n==r+N+2
6. Finally, testing the sufficiency conditions,
| Fou l-
LRl Ponlin| o P
|n'|-u illii-ﬂ
i.l 'F.u = ﬂ
D] = Fu F, |
(D] = ~6<0 ID!:=ﬂ
When tested for both orderings of the vanables, the discriminant ol the second-order derivatives
is negative semidefinite. This fullills the sufficiency conditions for a local maximum.
20.7. Optimize
f A" + 4P 8) dr
iy
subject to x(ta) = xy X)) = x,

Fo e+ 4ri
F,=6u®  F =40
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3. Substituting in Euler’s equation,

ﬁlf“'%ﬂf',‘l
4 e = 13
With no & terms Jefi, simply solve for v algebraically.
f) = 2™
&  Checking the sulficiency conditions,
LR vl el A BB Pl ]

(D} = 6™ >0 D}« 0 || =0 |Dj| =0

For both ordenngs of the variables, the discriminant of the second-order derivatives is positive
semidefinite, fulfilling the sufficiency condition for a local minkmum.

208, Optimize
h 12
[
s
sulyect to AR Al = &
HJ
1 yrm v
fu  Af
2 F,=0 Fi= .*'_- = F
1. Substituting in Euler’s equation,
d (&
0-al@)
4. With F, = 0, integrate immediately.
LT
;= F‘
jj - 3 k;'l
With an 1 still temaining. micgrale again.
s I-'|nl" s

5 i) = %l' * ?

C C
“k*+ky  where t,-;‘ t,--i!

6 When lested, ws above, the sufficiency conditions reveal a local minimum.

209. Optimize
I"(.'u-’:' -4 ")t
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subject 1o x(lg) = Xy x(n) = x
1 F =505 —do "
- F, = —Bxe™™ F,=5
3 —Bre 0¥ = %{Sr‘} = 10¢
— Ry W o 10r
4.  With no derivative term remaining and no need to ntegrate, we solve directly for x.
5 x(f) = =1256"™
6 Testing the sufficiency conditions,
F. F. =8e" 0 Fy F o 0
Ll Pouliod I B B L T sl ) P
|D}| = ~8e "™ <0 |D3| =0 [Di| =0 |Df| = 0

With both orderings of the variables, | D| is negative semidefinite, making F concave and fulfilling
the sufficiency condition for a local madmum,

20.10. Optimize
I (7 + 2x*n) dr
)|
subject 1o x(ty) = xg x(h) = x,
1. F=7'+2"
r F.=0 F; = duy
i
3, 0= - (4in)

4. Integrating immediately,

ey = &E1 =

,t-=%l,r|r+r.',

5, x(f) = ky 1+ k; where K, = 5“- ks = ey

6. The sufficiency conditions for & relative minimum are satisfied,

20.11. Optimize
r (152 — 132 + 198 + 126%) di
L]

subject to x(fg) = xy x(n)=x
L F= 15 - 132x + 191 + 12¢°
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& F,=3x— 132+ 192 F,= 19z + 24z
3 :m:-131+1a:‘-{:;[wnzu1
4. 30— 132 + 19% = 195 + 244!
Solving algebraically,
£—125c = -55 (20.20)

5. Equation (20.26) is a second-order differential equation which can be solved with the techniques
of Section 18.1. Using Equation (/8.2) to find the particular integral x,, where b, = 0, b, = —1.25,

and a = —5.5,
a =53
 — i —
Then using (784} to find the characterstic roots,
= - —
O 0=W0—4-125) -a\13s

2
and substituting in (/8.7) to find the complementary function x,,
X m AT g Y~V
Finally, by adding x, and x,, we have
2{1) = AV 4,0 VT gy
6. Checkiog the sufficiency conditions,

pi| = | Fo F,,.l_ 0 19

Fu Fu 19 24
D3 =30>0 |D3| =359>0

With D, | >0 and |Dy| >0, [D| is positive definite, which means F is strictly convex and we have
an absolute minimum, There is no need to test in reverse order with |D?].

20.12. Optimize
'
J (~162 + 144 + 11k — 48%) dt
L1}
subject 1o x(0)=8 1) =86
L F= =16’ + 144x + | Lo = 457
2 F,m -5 +184 411 F,=1lx- 8
3 =32x+ 144 + 11x -%[lh-ﬂi]

=3x+ 144+ 1lx = |1z — Bi
Simplifving and rearranging to conform with (18.1),
I—4r=—18
4. From (/8.2), the particular integral is
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From (15.4), the characleristic rools are
0+ V- 4(-4)
2

r o= 2 rym= =2
Thus, xi) = A e+ A ¥+ 4.5
Applying the initial conditions, x(0) = 8, x(1) = &5,

M) =A+ A, +45=8
(1) = 738914, + 013534, + 4.5 = B6

Solving simultaneously, Ay=05 4,=3
Substituting, ) =05"+3e ¥+ 4.5
Applying the sufficiency conditions,

.=

‘*31 11
o~ 2| = Sl
i Fiy Fai |

|D}|=-32<0 D }- 135>0

Since | D, | <0 and |D,| >0, |D| is negative definite. F is strictly concave and there is an absolute
maximom. Hence |D?| need not be tested.

20,13, Optimize

J‘"{1ﬁe+m+ Ré?) di

subject to x{fy) = xg x(n) = x,

F= 162" + 9xx + B

F, = 32x+9% F, = 9x + 16x
- d .
31:+9.t=I|‘,9;+1ﬁ.t]

32k + 9k = 95 + 16k
t-2=0

Using (182) where b, = 0, b, = 2, and a = 0 to find x,,

.I,.-—E=_—:=ﬂ
LUsing (J&4) to find r, and r;,
= V=4(-2)
ri.-r: 1‘{ 2}-:vfi
and substituting in (/4.3) 10 find x,

Xo= A e 4 Ay
Then since 1, =0,
ity =x, = Ale“'i‘ + Aae vh

Sufficiency conditions reveal an absolute minimum,
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20.14. Optimize
h
j(?f+4.:i—63f}dt
™
subject 1o x(tg) = x, x(r) = x,
L. F o= 787 4 dui = 6307
3 E, = 4 — 126x F, = 14 + 4x
3, ﬁ—llﬂ:ﬂr%(14f+4:]
4. dy — 126x = 145 + 4
i+ =10
where in terms of (I87), by =0, b, =9, and & = 0.
5. Using (18.2) for x,. .:,=g—-l}
Using (/8.19) since bi < 4b,, Py = g & ki
where g=~iby = ~§0)=0  h={Vib-bf=IVI6=3
and Fh=023i= £3

Substituting in (18.26),
x.= B, cos X+ 8,5 3
With x, =0,
x(t) = Bycos3r + Bysin 3t
6. Sufficiency conditions indicate an absolute minimum.

20.15. Optimize
' 4
fllsf+l?x—ﬁﬁ—j*}dr
L]
subject to x(to) = Xo x(h) =x
. F =52+ 27x — Bk — &
2. F, = 10x + 27 ~ &é F, = ~Bx~2#
3 1m+2’r-sj-i{-&-2.ﬂ
dr
4, lir + 27 — B = —8z — 2&
I+ Sr==135%
5. Using (1&2), :,n'—lj’—‘in—z.?
Using (18.19), g=-i0)=0  he=}VaE =VE

rors =02 V5 = V5
Substituting in (J4.26),
x. = Bycos V5t + B,sin V¢
and x(f) = B, cos Vi + Bysin VS~ 2.7
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6. For the second-order conditions,

F, F, o -8
. - Fa g o -
D" Fix FH‘ ‘ -8 =2
D} =10=0 |D}| = ~84<D
With |D,| <0, |D| fails the test both for concavity and convexity. F is neither maximized nor
minimized. N is at a saddle point.

20.16. Optimize
jlz""'(!ii‘ - 18x)dr
[N
subject to x{tn) = Xq x(h) =x
1. F = "¥(55* — 18x)
i F, = -18M% F, = 105"t
3 ._IE'ﬂ-.lh - %{lﬂi’z"‘"‘]
4. Using the product rule,
= 18" = 10£(0.12¢™'™) + £*'*{10£)
Canceling the ¢ terms and rearranging algebraically,
I+012 = -18
5. Using (18.2a) and (18.4),
-1.5
K, = (E—ﬁ—}l = =] 51
- + V70,122 - 0)
— 012 2{0.12 o) - —012.0
= A s .
and )= A e ™ ¥+ A4, - 150
6. Checking the sufficiency conditions,
Fu Fu 6 0 (Fu Fu| _ |106* 0
1 = = 3 —
L F.. F,,‘ [u 1013 Ld | Foy Fp‘ ‘ 0 n|
|Di| =0 |Di =0 || = 106" >0 iDj| =0

|D| is positive semidefinite, F is convex, and we have a local minimum.

20.17. Optimize
f Ir‘"‘“‘{&“ + 15x) dr
subject to x(to) = xq x(y) = x,
1. F= e *(di + 15x)

2 F, = 15e e F;, = Bxe ™™
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3. 15:""‘"" - %(ﬁ'—ﬂ.fﬂt}

4. 15705 w Bi( ~(L05e 2% + ¢ M N(R§)
Canceling the e ™ terms and rearranging,
¥ =005z = LB7S
5. Usng (18.2a) and (124),

o= (22)ee ms

=(=008) = V{~0.05f -0 _
2
= A ™4+ A,
and x{n) = A, "™+ A, -5
6. The sufficiency conditions indicate a local minimum.

0.05, 0

r.,r; =

20.18. Find the curve conpecting (f4. xs) and (ry, x;) which will generate the surface of minimal area
when revolved around the ¢ axis, as in Fig. 20.4. That is,

[
Minimize IwI 1+ Y dr
LT
subject to x(fo) = £y x(t) = x
L. F=x(1+ 192
1, Using the chain rule for F..
F,= (1 +3)7 F, = xi(1 + )2

) (148 = L1+ )77

4. Using the product rule and the chain rule,

(1 + 277 = [ —4(1 + %)% - 282) + (1 + 8%) V3 xk + 35%)
=~ Y1+ )7+ (2 + )1+ )72
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Multiplying both sides by (1 +%%)*,
(1 +%%)? = —xX?% + (x££ + #2)(1+ %)
1+ 202 + 34 = —xi%% +xk + %2+ x02% + &
2 q
L= (20.27)
X X
5. Letx = u = dx/dt, then
g du_dudx_du
dt dx dt dx Y
Substituting in (20.27),
du w1
f——— ==
de x =
Separating the variables and integrating,
du 1
—==(1+u
“ax x( %)
= : dx
e _dm= | 2
1+u? #
In(Q+u?)+c=Inx
Solving for u,
elnm = elnx
Cp Vv 1+ le =X
where ¢, = ¢°. Squaring both sides and rearranging algebraically,
2
7
1+’ ==
u p
Vi2—c3 dx
u -_——— . —
(&) dt
Separating variables again and integrating,
dx dat
—= | = 20.28
J \Vx?— c% f 2 ( )
Using integral tables for the left-hand side,
VE_gy= e
In(x+Vx¥—c3)= (20.29)
C

or by applying trigonometric substitution directly to (20.28),

cosh”f- LAl -
2 C2
i+
x(t) = c;cosh = (20.30)
C

The curve in (20.30) is called a catenary from the Latin word for chain because it depicts the
shape a chain would assume if hung from points (Z, x,) and (t1,%;). The constants ¢, and c; can
be found from either (20.29) or (20.30) by using the initial conditions x(z,) = %, and x(t;) = x1.
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ECONOMIC APPLICATIONS

20.19. The demand for a monopolist’s product in terms of the number of units x(¢) she or he can sell
depends on both the price p(¢) of the good and the rate of change of price p(¢):

x(t) =ap(t) +bp(t) + ¢ (20.31)
Production costs z(x) at rate of production x are
z2(x) =mx*+nx+k (20.32)

Assuming p(0) = p, and the desired price at time 7 is p(T) = py, find the pricing policy to
maximize profits over 0 =¢ = 7. That is,

Maximize f T[p(t)x(t) —z(x)] dt

Substituting from (20.31) and (20.32),

f [p(t)x(t) — z(x)] dt = J [p(ap + bp + c) — (mx* + nx + k)] dt

Substituting from (20.31) again,
T E
f [p(®)x() — z(x)]dt = J [ap® + bpp + cp —m(ap + bp + ¢)* —n(ap + bp + ¢) — k] dt
0 0

T
= jo (ap* + bpp + cp — ma?p* — mabpp — macp — mabpp — mb*p?
—mbcp — mécp — mbcp —mc* — nap — nbp — nc — k) dt
T
= J; [a(1 — ma)p® + (c — 2mac — na)p + (b — 2mab) pp
— (2mbc + nb)p — mb*p* — mc* — nc — k| dt (20.33)
Letting F = the integrand in (20.33),
F, =2a(1—ma)p + ¢ —2mac — na + (b —2mab)p
and F; = (b —2mab)p — 2mbc — nb — 2mb’p
Using the Euler equation,
2a(1 —ma)p + ¢ —2mac —na + (b — 2mab)p = -;it[(b — 2mab)p — 2mbc — nb — 2mb*p]
2a(1 — ma)p + ¢ —2mac — na + (b — 2mab)p = (b — 2mab)p — 2mb*p
Rearranging algebraically,

2mb*p + 2a(1 — ma)p = 2mac+ na —c
5 al-ma)]  2mac+na—c
P mb? T omb?

Using (18.2) and (18.4),

_ (2mac +na - c)/(2mb®) _ 2mac+na—-c
L a(1 — ma)(mb?) 2a(1 — ma)
0+ V0 —4a(l — ma)/(mb?) . . [a(ma—1)
2 o mb?

r, =
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Thus,

. " fa(ma-1) _ l[m—rl)} Zmac+na-rc
H_.l'] Alm( W mb? }"*AJW ( mh? L+ Ml _m]
If a<0 and m>0, as one would expect from economic theory, independently of the sgn for b,
Va(ma — 1)/(mb”) > 0 and the time path p(r) will have distinct real roots of equal magnitude and opposite
signs.

Note: This is a classic case that has appeared in one form or another in the economic literature over
the decades.

20.20, Maximize the stream of instantaneous utility U(r) from the flow of consumption C(r) where

20.21.

Cir) = GIK({t)] - K
i I l (20.34)
Flow of consumption = production — investment

and the endpoints are fixed at K(0) = Ko, K(T) = K. That is,
r T
Maximize I ULC (1)) d =f UIGIK(1)] - K(e)} dt
o a

subject to K(0) = K, K(T)=K;
Lening F = UIGIK{1)] - K(1)), U' = dUMC, and G' = dGIdK,
Fy = U'[C(NG'IK{N) Fi = =U(C(r)]
Substituting in Euler’s equation,
UICWIG KO = 5 (-UICO)

= ~UTC]- €
where, upon using the chain rule on (20.34),

o®" =
C=—5=GK@0]-K-K
Substituting above,
UCOIGIKM] = —U[C)] - (G (K] - K - K)

The Euler equation thus yields a second-order ordinary differeotial equation, the solution of which
maximizes the given extremal.

Maximize the discounted stream of utility from consumption C(1) over 0 =r= T, that is,

Maximize I "le Ui de (20.35)

where C(1) = G[K(1)] — K(r) — bK(1), 0= b = 1, G[K(1)] is the rate of production, K(r) + bK(r)
is investment, and b is a constant rate of capital depreciation,

Substituting in (20.35), we seek lo maximize

r
f (e " U|G[K(1)] - K(r) - BE(1)] dr
u

With F = e *UIGIK()] - R(e) - BK (1))
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and letting U’ = dUIdC and G* = dG/dK, while retaining K = dK/dr,

Fy = e " U|GIK()] - Kir) - bR (1)} - {G'[K(2)] - b)
Fx = —e " U'|G[K ()] - K(r) — bK(1)]

Substituting in Euler's equation and simplifying notation,
¢ '[U‘-{G'—b)]=§;l-r"ﬂ'] (20.36)
Using the product and chain rules for the derivative on the right,
e U (G =B = —e " Ur-(G'K-K-bK)+ U'ie™
and canceling the ™ terms,
U (G =b)= - (GK-K-bK)+ i
With L G[K(1)]} unspecified, we cannot proceed further. Going back to (20.36) and using general notation
for the derivative on the right, however, we see that
e U (G = b)) = —f-"%m'p U (ie™)
Canceling the ¢ * terms and rearranging.
d o= T — T . v
—(U)=Ui-U'-(G'~b)

d(U"ydr ,
T i+bh-G

where the term on the left, the rale of change ol the marginal utility, eguals the discount rate plus the

depreciation rate minus the marginal product of capital. In brief, if we consider the term on the left as

capital gains, the optimal time path suggests that if capital gains are greater than the discount rate plus the

depreciation rate minus the mrgm.a! product of capital, then more capital and hence more consumption:

should be fortbcoming IT it is less, capital accumulation and consumption should be scaled back.

20.22. Maximize the discounted stream of utility from consumption C(¢) over 0 =¢<T, that is,

Maximize I re"'U[l'I'{.r}] dr (20.37)
-]
given (a) UlC{n)] = [C{)]" where O=n=1
(B) Clr) = G[K(@] - I
l l |

Flow of consumption = production — investment
where G|K(r)] = aK(r), a linear production function with a >0 and
(¢) I{t) = K(t) + B + bK(t) 0=bh=1 B>0
derived from

Kin = K = [B+bK(1)]
| l l
A in K stock = invesiment — linear depreciation

Substituting in (20.37), we wish 1o maximize

ra *laK(e) = K(t) = B = BK(0)]" dt
a
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which by rearranging and omulting the arguments for simplicity becomes
T
J; e "(mK—- K- B)ydt
where m = a - b, Letting F = ¢ “(mK — K - BY",
Fr=nmmne “(mK - K- By Fi=—ne “(mK-K- By
Using Euler's equation,
mnae *(mK—-K- By '= %l—m'"{ml’— K-8y
Using the product rule and the chain rule on the right,
mne “(mK - K- BY' ' = —ne "(n - 1)(imK - K- By *(mK - K)+(mK - K~ BY "(ine™")
Dividing both sides by ne *(mK - K - By""',
m=—(n=1UmK-K-8)"'(mK-K)+i

_,_[]-n}{mf-f}
s K -K-B
Cross-multiplying and simplifying.
{(l=mK+(i+mn—2m)K+{m—im)K=(m—i)B
i+mn—2Im m — im m=i
K+ 1=-n K+ 1=-n K_]-HB (#0.38)
Letting
i+ mn = 2m m = im m—i
z:-lT & l=-n E"'-l—n*E
X, Zy_ Blm-iy(l-n) _(m-DB _1.

TZ (mW-imW{l-n) mim-i) m
where m=a~-b, a is the marginal product of capital (dG/dK = a), and b s the constant rate of

depreciation.
K. = ﬂ1f’"+ AT
-2, = VI —-4Z,
where Fy Py = 2

and A, and A, can be computed from the boundary conditions.

20.23. Maximize I L e i) dr
given the discount rate i = 0.12, the endpoints K(0) = 320 and K(5) = 480, and the utility
function U[C(r)] = [C(1)]"*, where

C(r) = G{K{1)] — I{r)
GIK(1)] = 0.25K{(1) ) = K + 60 + 0.05K(r)
Substituting in the given lunctional, we seek 1o maximize

f e ME[0.25K (1) — K(r) — 60 — D.OSK ()] de
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Rewrranging and omitting the arguments for simplicity,
J” e 02K — K — 60)™ dr
o

Letting F= e 502K - K — 60y
and using the chain rule or the peneralized power function rule,
Fi=01e (02K - K - 60)™"*  Fg= -0.5"%{02K - K - 60)~**
Substituting in Euler's equation, then using the product rule and the chain rule,
0.1e (02K ~ K - 60) ™ = %[m.sﬂ (0.2K - K - 60)~"]
= =05 [ ~0.5(0.2K - K - 60) (028 - K)]
+ (02K — K — 60) *(0.06e 1)
Dividing both sides by 0.5¢ %'*(0.2K ~ K - 60) ** and rearranging,
_ 050028 - K)
02K - K - 60
0.08{0.2K - K - 60) = 0.1K - 0.5K
K - 036K +0.032K = 96 {20.39)

02 +0.12

Using (78.2) and (18.4)

ST R

. -(=0.36) = V(-0.36)" - 4(0.032) _ 0.36 = V0.0016
2 2

n=02 rp=0.16
Thus, K(6) = A ™ 4+ A ™ 4 300
Applying the endpoint conditions,
K(0) = A, + Ay + 300 = 320 Ay =20 A,
K(5) = A, "™ + (20 - A,) "™ 4 300 = 480
A (2. TI828) + (20— A, )(2.22554) = 180
Ay =2049T = TT5 A =0-275=-2155

Fiu 2

Substituting,
K(r) = 275°% < 2556°1% 4 300

2024. Since Problem 2023 is a specific application of Problem 20.22, check the sccuracy of the answer
in Problem 20.23 by substituting the given values of a =025, b =005, 8=60, i =0.12,
m = 0.2, and n = 0.5 in Equation (20.38) to make sure it yields the same answer as Equation
(20.39).

Substituting the specific values in (20.38),

0.12 + (0.2)(0.5) - 2(0.2) (0.2) - (0.12)}{02) ], f0.2-0.12
K+[ 1-05 ]E+[ 1-05 ]K'( 1-05
K = 036K + 002K = 96
On your own, check the values of ry, ry, K. and K(r) by substituting the specific values in the equations
immediately following (20.38) in Problem 20.19 snd comparing them with the solutions found in Problem
20.20,

)60
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CONSTRAINED OPTIMIZATION

20.25. Minimize f e (ai® + by) dr
|
subject to f X(t)dt=N
where x(t) =0 and x(t)) =N

Setting up the Lagrangian function, as in Section 20.6,

f [e(ak? + bx) + A%] dt

Letting H equal the integrand, the Euler equation is

o0H d (aH )
dx  dt\ dx
Taking the needed partial derivatives, ‘
H,=be™™ H, =2axe ™+ A

Substituting in Euler’s equation,
be™ = i(Zm&e“" +A)
dt
Using the product and generalized power function rules,
be i = —2agixe " + 2ajke "

Canceling the e™” terms and rearranging,

b
2a

X—ix =

which is identical to what we found in (20.22) without using constrained dynamic optimization. This is
another example of an isoperimetric problem, and it can be solved as it was in Section 20.8.

PROOFS AND DEMONSTRATIONS
20.26. In seeking an extremal for

L
j F(t,x,x)dt
o
show that Euler’s equation can also be expressed as
d . oF oF
—| F=f—|=—=0 (20.40)
dt ax at
Taking the derivative with respect to ¢ of each term within the parentheses and using the

chain rule,

dF _9F 9F dx  8F di _ 9F oF , 0oF

o B e ——if o —— i

— =t — —+ —
dt ot ax dt ox dt at dx 0x

d(,aF) .d(aF) oF
— |l x—|=x—|—|+—X
drt\ ox dt \ ox ox
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and substituting in (20.407),

aF oF . oF dfaFy aF 1 oF
b mjte—g= i =]+ —=2|-==0
~RELRI ["ﬂu) ai] at
[ #F d[ﬂf‘)]
3l el =Y | =
dr dr\ &r
oF d |aF d
Ex-dr(a.i) o B=gfd

20.27. Show that if F is not an explicit function of 1, the Euler equation can be expressed as
F—i£=c a constant
ax
If ¢ is not an explicit argument of F, 3F# = 0 and Equation (20.40) reduces o
4{r-s0)
Integrating both sides with respect 1o 1,

., @F
F xE=c

20.28. (a) Show that if F = F(r,x), with xr not one of the arguments, the Euler equation reduces to
F;=¢ aconstant
(b) Explain the significance.
ay With F= Fli, x)
F,=0 Fy= F;
Substituting in Euler's equation,
0= S(F)

Integrating both sides with respect to 1,
Fi=c¢ (20.41)

b) Equation (20.41) is a first-order differential equation with arguments of r and £ alone which, when
salved, provides the desired extremal. See Problems 20.7 and 208

20.29. (a) Show that if F = F(x), that is, a function of ¥ alone, the Euler equativon reduces to
Fuk=0
and (b) explain the significance. .
a) Given F=Hi)
F,=0 F,=F,
Using Euler's equation,

d g
0= I[ﬂ‘.’ﬂ] = Fi.2 {20.42)



CHAP. 20] THE CALCULUS OF VARIATIONS 489

20.30.

20.31.

20.32.

b) From (20.42), either # = 0 or F,; = 0.If & = 0, integrating twice yields x(t) = c1t + ¢z, which is linear.
If F;; = 0, F; = ¢, a constant, which means that F is linear in x. If F'is linear in %, the solution is trivial.
See Problems 20.30 and 20.31.

Find extremals for

51
f e ¥ dr
£

Subject to X(t()) = X9 X(tl) — Xy
F,=0 Fy= —6ie™™

_d £y R
O—dt( 6xe ")

By the product rule,
0 = —6%(—6ie 3 %) + e ¥ (—6%)
6ie ¥ (632 —1) =0 (20.43)
which is a nonlinear second-order differential equation, not easily solved. However, since X in (20.43) must
equal zero for the equation to equal zero, from Problem 20.29 we know that the solution must be linear.
Thus,

x(t) =cttc

Find extremals for

f ' (27— 5%)dt
4}

subject to x(to) = Xo x(t) = x1
d
0=—(-5)=0
dt( )

The Euler equation is an identity which any admissible value of x satisfies trivially, as was indicated in
Problem 20.29. This becomes clear upon direct integration of the extremal in this problem:

J 1 (27 — 5%) dt = 27(t: — to) — 5[x(t1) — x(10)]

and any x satisfying the endpoint conditions yields the same value for this integrand.

(a) Show that if F = F (t,x), with X not one of the arguments, the Euler equation reduces to
F.=0

(b) Explain the significance.

a) With F = F(t,x),

Substituting in Euler’s equation,
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B) When there is no £ term in F, the optimization problem is static and not dynamic. The condition for
optimization, therefore, is the same as that in static optimization, namely,

F,=0

20.33. Show that if application of Euler’s equation results in a second-order differential equation with
no x or { terms the second-order differential equation can be converted to a first-order
differential equation and a solution found by means of equation (/6.1), Demonstrate in terms
of Equation (20.22) from Section 20.8.

From Equation {20.22},
i -|:'.t'+-"Ii
2a

Since there are no x or 1 lerms in {20.22), it can be converted 1o a first-order Imear differential equation
by letting

TRl nnd T ]
Substituting in (20.22) above and rearranging,

Ii-—t'"=-£l—
2a

which can be solved by means of the formuls in (16.1). Letting v = —i and z = bf2a.

b
- i =iy A _rﬂ‘ﬂ-‘d )
- ( -I-J. I

celae[4ee)

Taking the remaining integral,

But u = £(f) by definition, so we must integrate once again to find x(s). Replacing A with ¢, for notational
consistency wilh ordinary integration, '

afiy B
x(t) = .!’. f+cs (20.44)
Letting £, = 0 and ¢; = T, from the boundary conditions we have

[ €y
ln -—+c -ﬂ “-—r—l
© =24 = =2

/]
x{n-%r"-ﬁru,-w

Substituting ¢; = —cyfi in x(T) and solving for ¢,

PR b Lo LS

3 (20.45)
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Finally, substituting in (20.44) and noting that the i in {20.45) cancels out the { in the denominator of ¢/,
we have as & candidate for an extrémal:

H+IM[M}|T b N+ [bi{2a) T
e i T e 5

b _\f&=1\ b
'(N+ET)(ef-1)"E' o

Compare the work done here with the work done in Section 208, and note that coaversion of a
second-order differential equation to a first-order differential equation before integrating does not
necessarily reduce the work involved in finding a solution.

VARIATIONAL NOTATION
20.34. Show that the operators § and d/dr are commutative, i.e., show that

dx d
(&)=t
From (26.19) and (20.20),
fx=mh ond &f =mh

where m is an arbitrary constanl and & i3 an arbitrary function & = k(r). Substituting ds/df for 5 above on
the right.

ﬁ[%] = mh
Expressing i as dhi/dr and recalling that m is a constant,

dx d
"’H =5 0mh)

dr
Then substituting from (20.19),
dx d
o%) =@
2035, Given

i
j Ft,x(0), 5(1)) de
L]
show that in terms of variational notation a necessary condition for an extremal is

"y
Ej Flt,x(t), #(0)]dt = 0
L1
Moving & within the integral sign,
n
I 8]t x(0), 5(0)) dt = O
]

From (20.21),

“faF  aF
— s+ —8& |t =0
J (a.: PR )
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Substituting from (20./9) and (20.20) where
Ax = mh & = mh

I'[-‘-fmhofgnﬁ)m-u
" iy Ax

j" £a+£5)a-n

[CHAP. 20

(20.46)

Equation (20.46) is identical to Equation (20.18) in the Euler equation proof from Example 2 and can be

concluded in the same manner.



Optimal Control
Theory

2Ll TERMINOLOGY

Clptimal control theory is a mid-twentieth-century advance in the field of dynamic optimization
that can handlc any problem the calculus of variations was designed for. More importantly, optimal
control theory is more powerful than the calculus of variations because it can manage some problems
the caleulus of variations cannot, such as commer solutions, and other problems the calculus of
variations cannot handle readily, such as constraints on the derivatives of the functions being
sought.

In optimal control theory, the aim is to find the optimal time path for a control variable, which we
shall denote & y. The variable for which we previously sought an optimal time path in the calculus of
variations, known as a state variable, we shall continue to designate as x. State variables always have
Eguations of motion or transition set equal to x. The goal of optimal control theory is to select a stream
of values over 1ime for the control variable that will optimize the functional subject to the constraint
set on the stale variable.

Cptimal control theory problems involving continuous time, a finite time horizon, and fixed

endpoints are gencrally written:
;

Maximize J=I flxte), w(e), 1] de
0

subject o £ = glx(r), y(1).1] (21.1)
x(0) = xq x(T) = xy

where J = the waluc of the functional to be optimized; y(r) = the control variable, so called because
its value is selectcd or controlled to optimize J; x(r) = the state vanable, which changes over time
pecording 1o the differentinl equation set equal to % in the constraint, and whose value is indirectly
deétermined by the control variable in the constraint; and 1 = time. The solution to an optimal control
problem demarcates the optimal dynamic time path for the control variable y(¢).

493
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21.2 THE HAMILTONIAN AND THE NECESSARY CONDITIONS FOR
MAXIMIZATION IN OPTIMAL CONTROL THEORY

Dynamic optimization of a functional subject to a constraint on the state variable in optimal
control involves a Hamilronian function H similar to the Lagrangian function in concave programming.
In terms of (21.1), the Hamiltonian is defined as

H{x(0). (1), A1), 1] = flx(e), y(0), ] + M()glx(r), ¥(0).1] (21.2)

where A(r) is called the costate variable. Similar to the Lagrangian multiplier, the costate variable A(¢)
estimates the marginal value or shadow price of the associated state vanable x(r). Working from (21.2),
formation of the Hamiltonian is easy. Simply take the integrand under the integral sign and add to it
the product of the costate variable A(r) times the constraint.

Assuming the Hamiltonian is differentiable in y and strictly concave so there is an interior solution
and not an endpoint solution, the necessary conditions for maximization are

1. %: 0

ok ol ax et
2. 4) —= A -E b) E L H
3 a) x{0) = x4 b) x(T)=xy

The first two conditions are known as the maximum principle and the third is called the boundary
condition. The two equations of motion in the second condition are generally referred to as the
Hamiltonian system or the canonical system. For minimization, the objective functional can simply be
multiplied by —1, as in concave programming. If the solution does not involve an end point, aH/dy
need not equal zero in the first condition, but H must still be maximized with respect to y. See Chapter
13, Example 9, and Fig. 13-1(b){(c), for clarification. We shall generally assume interior solutions.

EXAMPLE 1. The conditions in Section 21.2 are used below 10 solve the following optimal control problem:

Masimize r (4x — Sy dt
o

subject Lo 2=Ry
x(l) =2 x(3) =117.2

A. From (21.T), set up the Hamiltonian.
H = 4x = 5y + M8y)
B. Assuming an interior solution, apply the maximum principle.

1. —_— )
'y = 0.8 (21.3)

A= -4 (2L.4)

by Em—
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But from (21.3), v = D.KA. So,
£ = BIOEAY = 640 (21.%)

Having employed the maximum principle. we are left with two differential equations, which we now solve
for the state vanables £(7) and the costate variable A(r).
By integrating (2/.4) we lind the costate variable.

Alf) = J’J;& = I ~ddt = -8t v ¢y (21.6)

Substituting (21.6) in (27.9).
£ = 64(-dr+c,)= =250 + H.dc,
Integrating.

x(rh = I[-—Ii.ﬁ + bude, )t

.I{'l .- Iz.ﬂl’ * El“cpl + 0y {2’1?}

€. The boundary conditions can now be used o solve for the constants of integration. Applying x(0) = 2,
a(d) = 117.2 successively wo (21.7),

:f,ﬂ] = ~12)|{Ujl + bl () + 0= 2 = 2
¥3) = 12803 + 646, () +2 = 1172 ¢ =12

Then by substituting ¢, = 12 and ¢; = 2 in (21.7) and (2].6), we have,
)= =128 + Tef +2  sale variable (21.5)
M) = =4t + 12 contale vanahle
D. Lastly, we can find the final solution for the control variable ¥(r) in cither of two ways
L. From (21.3), v(t) = 0.8A, so
W) = 08(-4+12)= -3 +96  control variable
2 Or taking the derivative of (21.8),
&= =250 + 768
we substitute for & in the equation of motion in the constraint, |:|

i =Ry
~25.60 + THR = By
wify= =32+ 96  control variable

Evaluated at the endpoints,

¥(0) = —32{0) ~ 9.6 = 96
W3 =-3¥N+96=10D

The optimal path of the control variable is lincar starting at (0,9.6) and ending at (3,0). with a slope of
=3.2. For similar problems involving fixed endpoints, see also Problems 21.1 to 213,

213 SUFFICIENCY CONDITIONS FOR MAXIMIZATION IN OPTIMAL CONTROL

Assuming the maximum principle representing the necessary conditions for maximizalion in
optimal control is satisfied, the sufficiency conditions will be fulfiled if:

1. Both the objective functional flx(r), ¥(r). 1] and the constraint glx(r), v(r).1] are differentiable
and jointly concave in x and v, and
[
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2. A{f)=0, if the constraint is nonlinear in x or y. If the constraint is linear, A may assume
any sign.

Linear functions are always both concave and convex, but neither strictly concave or strictly convex.
For nonlinear functions, an easy test for joint concavity is the simple discriminant test. Given the
discriminant of the second-order derivatives of a function,

_ V| Sy
b S
a function will be strictly concave if the discriminant is negative definite,
IDy| =f,<0 and [Dy=|D|>0
and simply concave if the discriminant is negative semidefinite,
Dy =fu=0 and |Dy|=|D|=0

A negative definite discriminant indicates a global maximum and is, therefore, always sufficient for a
maximum. A negative semidefinite discriminant 15 indicative of a local maximum and is safficient for
a maximum if the test is conducted for every possible ordering of the variables with similar results

EXAMPLE 2. The sufficiency conditions for the problem in Example 1 are demonstrated below. Starting with
the objective functional which is nonlinear, we take the stcond dervatives and apply the dscnmunant test.

Ju fo 0
. -‘ —|u|

D fails the strict negative-definite criteria but proves to be negative semidefinite with || =0 and |Dy| = |D|=0.
However, for the semidefinite test we must also test the variables in reverse order.,

o fu| _|=10 ©
fo ful 0 0

With both discriminant tests negative semidefinite, the objective functional f is jointly concave in x and v, Sinee
the constraint is lnear, it is also jointly concave and doecs not need testing. We can conclude, therefore, that the
functipnal is indeed maximized.

D= where [Dy|=0 and [Dy| = |D|=0

D= where [Dy|=~10  and  |Dy|=|D|=

21L4 OPTIMAL CONTROL THEORY WITH A FREE ENDPOINT

The general format for an optimal control problem involving continuous time with a finite time
horizon and a free endpoint is

Maximize J= Irﬂx[:}.ﬂ:].:] dr

o
subject to x = gle(e), (1), 7]
x(0) = x, xT) free
where the upper limit of integration x(T) is free and unrestricted. Assuming an interior solution, the

first two conditions for maximization, comprising the maximum condition, remain the same but the
third or boundary condition changes:

(21.9)

1. —=1

FA a) =A=—g b) E=i-—

Y
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3, a) x(0) = x, b) MT) =0

where the very last condition is called the rransversality condition for a free endpoint. The
rationale for the transversality condition [ollows straightforward from what we learned in
concave programming. I the value of x at T is free to vary, the constraint must be nonbinding
and the shadow price A evaluated at T must equal 0, i.e., A(T) = 0. For probiems involving free
endpoints, see Examples 3 1o 4 and Problems 21.4 1o 21.6.

EXAMPLE 3. The coaditions in Section 21.4 are used below Lo solve the following optimal control problem with
a free endpoint:

Maximize Jq (3x - 2v*)di
subject 10 - By
x{0j=35 x2)  lree
A. From (21.1),
H = 3xr—2y" + A(8y)
B. Assuming an intenor solution and applving the maximum principle.

1. E=l}

¥ =2IA (21.10)

a) A e

1<

A==3 {20.71)

by Em—

But from (21.10), y = 2A. So,
& = B(2A) = 164 (21.12)
From the maximum principle, two differential equations emerge, which can now be solved [or
the state variable x{r) and the costate variable A{r).
Integrating (21.17),
Miy= | Adi = I =3dir = =3+ ¢ {21.13)
Substituting (21.13) in (21.12),
= 16-3+c)=—d8r+ 16,
Integrating,
xif) = =247 = 16c, 1+ s (21.14)

C. We now use the boundary conditions 1o specify the constants of integration.
1. Start with the ansversality condition A{T) = 0 for a free endpoint. Here

AMZ) =0
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Substituting in (27.13}),
AM2)= -32)+e =0
=10
Therefore, Al = =X+ 6  costate variable (21.15)
2. Now substilute ¢, = 6 in (27.]4),
x(t) = =241 + 1606} + ¢,
x(t) = =240 + 96t + 5
and apply the initinl boundary condition, x{0) = 5.
x{0) = —24{0F + 96(0) +¢; = 5 =35
S0, aty=—24"+ MW+ 35 state variable (21.16)
. The comirol vanable w(r) can then be found in either of two ways
1. From (2110}, vt} = 2A. Substituting from (21.15) for the final solution,
My =2{-3+8)= -6t +12  control variable (2117}
2, Or take the derivative of {27,16),
i om =48+ Of
and substhitute in the equation of transition in the constraint,
i =8y
—~4B7 + ¥6 = By
y{1)= ~61+ 12  control variable
Evaluated al the endpoints,
vy = —6(0y+12 =12
2 =-6{+12=10
3: :E:pﬂmal path of the control variable is linear starting at (0, 12) and ending at (2,0), with a slope

EXAMPLE 4. The sufficiency conditions for Example 3 are found in the same way as in Example 2. Taking the
second derivatives of the objective functional and applying the discriminant test,

P fr a0

0= j" f = | whire 'B:|='ﬂ and |D£]=|D‘|.:u

0 -4

D is not negative-definite but it is negative semidefinite with |, | = 0 and |D,y| = |D| = 0. For the semidefinite test,
however, we must test the variables in reverse order.

|
.rn ,{J.l

With bath discriminants negative semidefinite, the objective functional f is jointly concave in 1 and y. The
constraint is linear and so needs no testing. The functional is maximized.

D=

=i_[l" g‘ where |D|= -4 and  |[Dy) =|D|=0

2.5 INEQUALITY CONSTRAINTS IN THE ENDPOINTS

If the terminal value of the state variable is subject 10 an inequality constraint, (7)) = X,
the optimal value x*(T) may be chosen freely as long as it does not violate the value set by the
CONSITAING Xyue. If £%(T) = Xy, the constraint is nonbinding and the problem reduces to a free endpoint
problem. So

AiTY=10 when x*(T) > x 0
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If x*{T) < xp. the constraint is binding and the optimal solution will involve setting ©(T) = .
which 1s equivalent to a fixed-end problem with

AMTYz=0 when x*(T) = 1.0

For conciseness, the endpoint conditions are sometimes reduced to a single siatement analogous to the
Kuhn-Tucker condition,

ATI=0 x(T)=Xei [#(T) = X M(T) = 0

In practice, solving problems with inequality constraints on the endpoints is straightforward, First
solve the problem as if it were a free endpoint problem. If the optimal value of the state variable is
greater than the minimum required by the endpoint condition, i.e., il x*{T) = x,,, the correct solution
has been found. I x*{T) < x,, set the terminal endpoint equal to the value of the constraint,
A T) = x4, and solve as a fixed endpoint problem. The method is illustrated in Examples S and 6 and
further explained and developed in Example 7 and Problems 21,7 10 21.10,

EXAMPLE 5,
Mixinsizs I (3x - 29" dlt
I'I.Ihj&l:l to n.t = By

x(0) = 5 x2} =95

To solve an optimal control problem involving an inequality constraint, solve it first as an unconstrained
prablem with a free endpoint. This we did in Example 3 where we found the state variable in (27.16) 10 be

)= =24+ 9%+ 5
Evaluating {27.16) at x = 2, the terminal endpoint, we have
2(2) = 101 > 95

Since the free endpoint solution satisfies the terminal endpotnt constraint f T') = 95, the constraint is not binding
#nd we have indeed found the proper solution. From (27./7) in Example 3,

vif) = =&+ 12

EXAMPLE 8. Redo the same problem in Example 3 with the new boundary conditions,
0)=35 2 =133
A. From Exampie 5 we know that the value for the state variable when optimized under free endpoint
conditions is
() = 101 <133

which fatls 10 meet the new endpoint constramis. This means the constraint is binding and we have now
to optimize the functional as a fixed endpoint problem with the value of the constraint as the terminal
endpaint,

=35 xf{2y =133

B. The firs! two steps remain the same as when we solved the problem as a free endpoint in Example 3.
Employing the maximum principle, we found:

m (211, y =2

in (27.11), Aw =3

in (25.12), 1= 1bA

in (21.13), All) = =3r+¢,

in (21.14), )= =240 + 16c,t + ¢y

Now we continue on with the new boundary conditions {or a fixed endpoint.
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C. Applying x{0) = 5 and x(2) = 133 successively in (21.14), we have

2(0) = —24(0F° + 16¢3(0) + = 5 £y =5
x(2) = -24(2)" + 16¢y(2) + 5 = 133 a=1

Then, substituting ¢, = 7, ¢; = 5§ in {21.13) and (2/1.14), we derive

Alf) = =31+ 7 costate variable
() =248+ 114 +5 state variable

D.  The contral veriable can be found in either of the two familiar ways. We opt once agatn for the first. From
{21,141,

Wil =2A=2-3r+T)=—6r+14  control variable

EXAMPLE 7. With an inequality constraint as & terminal endpoint, in sccord with the rules of Section 21.5, we
first optimize the Hamiltonian subject 1o a free endpoinl. With a free endpoinl. we set A{T) = 0, allowing the
marginal value of the state variable to be taken down to rero. This, in effect, means that as long as the minimum
value gel by the constraint is met, the state variable is no longer of any value to us Our interes! in the state variable
does not extend bevond time T.

Most variables have value, however, and our interest generally extends beyond some narrowly llmim.t time
horizon. In sech cases we will not treat the stare variable as a free good by permitting its marginal value (o be
reduced to zera. We will rather reguire some minimum value of the state variable 1o be preserved for use beyond
time T. This means maximizing the Hamiltomian subject to & fixed endpoint determined by the minimum valee
of the comstraint, In such cases, A( T) = 0, the constraint s binding, and we will not use as much of the state variable
as we would if it were a free good.

21.6 THE CURRENT-VALUED HAMILTONIAN
Optimal control problems frequently involve discounting, such as

T
Maximize J= f e~ flx(e), w(1), 1) di
subject to & = glx(0), y(0.1]
x(0) = xg x(T) free

The Hamiltonian for the discounted or present value follows the familiar format

= e " fle(n), y(r). 6] + Alr)glx(), y(1). 1]

but the presence of the discount factor ¢ ™ complicates the derivatives in the necessary conditions. If
we let wif) = Alf)e”, however, we can form a new, “current-valued” Hamiltonian

H. = He* = fla(e), y(1).1] + w(nhglx(), y().1] (21.18)

which is generally easier to solve and requires only two adjustments Lo the previous set of necessary
conditions. Converting condition 2(a) from Section 21.2 to correspond to the current-valued
Hamiltonian, we have

al i

... P
i i 4

Taking the derivative of A1) = u(i)e ™, we have
'A. = F"E_F- — H‘:_H
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Equating the A's, canceling the common ¢ '* tetms, and rearranging, we derive the adjusted condition
for 2{a):

| — ﬁ

h=pp = —
The second adjusiment involves substituting A(f) = u(t)e ™ in the boundary conditions. The transver-
sality condition for a free endpoint then changes from A(T) = 0 to the equivalent p(T)e = = 0,

In short, given the current-valued Hamiltonian in (2/./8) and assuming an intenior solution, the

necessary conditions for optimization are

afH

L e PO

i A, ax aH,
T —_—Em g i — Y B —
< 2} == by — =1 i
3 a) (0) = x, b) w(T)e ™ =0

If the solution does not involve an end point, #f,/dy need not equal zero in the first condition, but #,
must still be maximized with respect to y. With i, = He”, the value of y that will maximize H, will also
maximize M since € is treated as a conslant when maximizing with respect to y. The sufficiency
conditions of Section 21.3 remain the same, as shown in Example 9. Maximization of a current-valued
Hamiltonian is demonstrated in Examples & to 9 and followed up in Problems 21.11 to 21.12.

EXAMPLE 8.
Maximize I-e'm{; - 3¢ - 2)
subject to #=y—05¢

x(0) = 9391 ©2)  free
A. Setup the current-valued Hamillonian.
H.=x-3% -2+ uly — 05x)
B.  Assuming an interior solution, apply the modified maximum principle,
1. %H' = ()

o,
ay
yu 0250 21019
2 a) fgo=002u— () —6r—15u)
o= 052u+6r—1 (21,20

S

aH.
b) i=—==y-05
g

Substituling from (21.19),
£ =025~ 0.5x (2r.21)

Arranging the two simultaneous first-order differential equations from (21, 20) and (27.27) in matnx form
and solving with the technigues [rom Section 19.3,

1= [om Ssllt]+[3]
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or Y=AY+B
The charactensiic equation i
052-r [
Lt iy 02 -05-r¢ -

From (]9.3), the characieristic rools are,

002 = V(002) - 4(—1,76)
Fiufy ™ :

= 13367 F= ‘ljlﬁ?
For r; = 1,337, the cigenvecton is

[IHI—IJM? 6 ” I Irﬂ.ﬂlﬂ 6 ”t']-ll
028 = 0.5 - 1.3367 ~1.R367 ||

~RITe, + b= = 1) o, = T.34ab6c,

N el
For ry = ~ 13167, the eigenvecton is
082 + L&Y ” |_ 1L.Ki67 ” .]_u
0n.2s ~05+ 13167 || «; 028 08167 ||

I-m’r.‘, +* h: - “ t‘ - "'3.&7{.‘]
= 3.2667
|

] i;f ot

From (/9.5), the particular solution is
¥Y~-A'B

‘hll‘:l= -IT!-”-IJ.?.:'- m“ ] Iu.u

Adding the complementary and particular solutions, we have
plf) = 13866k, ¢’ ™ — 32667k e 4 028 (21.22)
ofr) = ke ™ & ke " 04 (21.23)

€. Next we apply the boundary conditions
1. From the transversality condition for the free endpoint, p(F)e = = 0, we have at 7' = 2,

a(2)e NN =
Substituting for u(2),
(734668, ¢ "0 - 1266Tk;e VT 4 028)e "M = 0
TINO2R2K, - 0.23504k; + 0.26590 = O (21.24)
2. Evaluating afr) at x(0) = 939,
ky+ ky 4014 = 93,91 (21.25)

Solving (21.24) and (21.2%) simultancously,
t'l -l ll.z t.‘l - 93'151
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Then substituting k, = 0.2, k, = 93.57 in (2] 22) and (21.23), we get

plr) = 14693 " — 305 6651 ' "™ + 0.28  costate varinble
x(1) = 02" £ 435719 L 0,14 stzle variable

D.  The salution for the control varable can now be found in either of the two ususl wavs We choose the
casier. From (21.19), w1} = 0.25g. Substituting from the costate variable above,

¥ = 036737 — 76 4163 L 0 07 comtrol variable

EXAMPLE 9. The sulficiency conditions follow the wsual rules.
] -6 0
D - ‘LT 'r.} - | |
e ful 10 —4

Witk |D,| = —6<0, and |D;| = 24> 0. D is negative definite, making f strictly concave in both x and y. With g
linear in x and y, the sufficiency condition for a global maximum is fulfilled.

Solved Problems
FIXED ENDPOINTS
r
21.1. Maximize I (6x — 4v") dt
i
subject 1o X = 16y

x(0) =24 x(2) = 408
A. The Hamiltonian is
H = 6ix — 4y* + A{16y)

B. The necessary conditions from the maximum principle are

ait
1. —= =Ry 164 =0
Y i
y = Zh (21.26)
. a#H
2 - — -
2 a) A ~ 6 (21.27
M
b) 1 = 16y
From {21.26), = 16210) = 324 (21.28)
Integrating (21.27). A = =6 + ¢ {21.2¢)

Substituting in (21.28) and then integrating,
i =36 +0;) = — 192 + 32¢,

. Applying the boundary conditions, ¢(0) = 24, x(2) = 408,

x(0) =c; =24 ;=24
x(2) = —96(2)" + 32¢,(2) + 24 = 408 =12
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Substituting ¢, = 12 and ¢; = 24 in {2/.29) and (21.30),
Aff) = =ft 4 12 costate variable (21.31)
X)) = —96¢ +384: =24  state variable {21.32)
D. For the control variable solution, we then either substitute (27.31) into (27.246),
Mi)=2A=2—0+12) = -1+ 24 control varable
or take the derivative of (21.32) and substitute it i the eonstrainl = 16y
£=—1921+ 384 = 16y
¥lo)=—-1k+24 control varable

E. The sufficiency conditions are met in analogous fashion to Example 2

1
212, Maximize f (5x + 3v — 2y*) di
L]
subject to X =6y
x{0) =7 x(1) =70
A. The Hamilloman is
H = 3x + 3y — 2§ + A(6y)

B. The necessary conditions from the maximum prnciple are

dff
1. —=3-4y+6A=1
ay
y=075+135 (21.13)
B daif
:.r. [ — —5
") ko= (21.34)
alff
b -, e——= =
1) b 4 A fy
From (21.31), £=6(075+ 130 =45+ 9% {21.35)
Intograting (21.34), Alr) = =5¢ +¢ {21.36)

Substituting in (21_35) and then integrating,
2 =45+ H=5r+¢) = 4545+ 9%,
Y1) = 45— 22.5¢ + %yt + oy (21.37)

C. Applying the houndary conditions, x(0) = 7, x(1) = 70,

MiM=c=7 6=T
K1) =45-225+9,+7=70 a=9

Substituting ¢, = 9 and ¢y = 7 in (21.36) and (27.37),
M= =5+9  costate variable (21.38)
x(1) = —225F +855r+7  state variable (21.39)
D. For the final solution, we then simply substitute (21.3%) into (27.33),
wit) = 075+ 1.5(=5¢+9) = =75+ 1425  conirol variable

E. The sufficiency conditions are once again similar to Example 2.
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213, Maximize J' (=8¢ = ')t
L1
subject to 1=02
x(0) =3 x(5) =56
A H o= =Ky =y + M0.2)
B L —?g = =2y +0.2A
¥y =(L1A
atl
2 B = e il - - o
2. a) A = {(-8)=8
aH
b) Im= i 02y
From {2].40), = 0200.14) = 002
Integrating (21.41), AR = 8t + ¢,

Substituting in (21.42) and then integrating.
&= 0028+ ¢,) = 0.16¢ + 0.02¢,
(1) = 0,08 + 0.02¢,1 + o,

C. Applying the boundary conditions, 5(0) = 3, ¥(5) = S,

.‘lﬂ]} il = B J = J'
x(5) = DORSY « 002,(5)+3 =56 ¢ =6

Substituting ¢, = 6 and ¢, = 3 in (2).47) and (2].44).
M) =% +6  costate variable
) =008 + 012+ 3 state vanable
D, Substituting (21.45) into (21.40) for the final solution.
wir) = 0 QA = 0.8 + D6 control variable

or taking the derivative of (2/.46) and sulstituting it in the constraint £ = 0.2y,

=006+ 012 = 02y
vie) = il + 06  control variable

FREE ENDPOINTS
21.4. Maximize f{ﬁx = 10y*) dit
subject 1o 1 = 2y
x0) =7 x(4) free
H = 8e - 10y + A(24y)
atl
B L — =~y +24A = 0
e 20y
ye= L2\

ol
. a) Ao e = () o

(]

(21.40)
(2141

(21.42)
(21.43)

(21.44)

(21.45)
(21 46)

(21.47)
(21.48)
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aH
b) i 24y
From (21.47), &= 24{1.21) = 28.8A
Iniegrating (21.48), A(t) = —8i + ¢,

Substituting in (21.49), &= 2B8(-8 + ;) = —230.41 + 288,
and then integrating, ()= ~115.2r" + 2B8e, 1 + ¢y

C.  We now apply the transversality condition A(4) = 0.
Me)= =B(d)+e,=0 ¢ =32
Therefore, M) = -Bt+32  costate variable
Next we substitute ¢, = 32 in (2].50) and epply the initial condition x(0) = 7.

x(r) = =115.20% + 921.6¢ + 3
Wy=0+D+e;=7 6=T
S0, )= -U527 +921L6c+ 7 siate vaniahle

D. Then substituting (21.51) in (21.47), we have the final solution,
wit) = 1.2{-8 +32) = —9.6 + 384 contral variable
E. The sufficiency conditions are easily confirmed as in Example 2.

3
21.5. Maximize f (2x + 18y - 3y") dt
L]
subject to X=12y+7
) =5 x(3) free
A, H=2c+ 18y =37 + M12y + T)
B L %=iﬂ—ﬁr+lu=ﬂ
y=3+2A
2 a) iu—%--mu-z
aH
b) X = F.;L. 12y +7
From {21.52), 2o 12T+ 28)+ T =434+ 244
Integrating (27.53), My = =2 +¢

Substituting in (21.54), =43+ 24(-2+ ) =43 - 48+ 24,
and then integrating, x(£) = 43¢ = 248 + ey 1 4 65

., We now resort to the transversalily condition A(3) = 0.
M) = =H3) 4+ =0 g =b
Therefore, A} = =2t+6  costale vanable
Next we substitule c; = 6 in (21.55) and apply the initial condition x{0}) = 5.

[CHAE 21

(21.49)

(21.50)

(21.51)

(21.52)

(21.53)

(21.54)

{21.55)

(21.56)
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= =24+ 187r+cs
() =0+0+¢,=5 =5
S0, x(t) = 240 + 181 + § state variable

D. Then substituting (27,56} in (27.52), we have the final solulion,
Wi =3+2(-2r+8)=—-4+15  control variable
E. The sufficiency conditions once again follow Example 2.

1
21.6. Maximize J{@-f—:—:ﬁm
4]
subject to t=x+y
x{0) = 6.15 x(l)  free
A H=dv—=y —xr-2+Ax+¥)
ol
B 1 — =42y A=0
oy i
y=2+05 (21.57)
: aff
2. a) ﬁ——‘;=—l:—1—d.l+ﬂl—|:+k—.ﬂ
&) Jﬂﬁ=x+r
Ak :
From v in (21.57), E=x+2+ 05
In matnx form,
Al _[-1 #[A 1
[e]=as 321+ 2]
Y=AX +B

Lisng ([9.3) for the characterisiic roois,
0 V0 -4(-3)  =3484
2 i

The eigoowector corresponding o e, = 1.732 =

I Tk - gl [-212 4 [a].
L I 0.5 1-1.?;1”:,1 {n.s -njsz”c_-] !

-2732, +4¢; = 1) e = L464c,

e l ITH] kTR

The eigenvector cormesponding o r; = ~1.732 s

-1+1.732 4 1;-.‘31'&.131 4
0.5 1+1.732 | e 05 2732

I.]I.TJZ-::, ‘*‘-"i'; =0 0= —5.4&-‘(;

= [ _5;‘“ o

=178

.=

A .-n—|

o]0
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For the particular solution, ¥ = ~A~'B.
e={5]--(3)s -1
I -3/]1-05 =-1}{2 -0.83
Combining the complementary and particular solutions,
Alf) = 1464k, " ™ — 5464k e T - 233 (21.58)
(1) = kye' ™ 4 ke - 083 (21.5%)
Applying the transversality condition for 2 free endpoint A{1) = 0.
A1) = 82744k, - 0.966Tk, — 233 = [
From the initial condition x(0) = 6.15,
x(0) = k, + k, — 0.83 = 615
Solved simulinneousiy, k, =098, k, = 595
Substituting in (27.58) and (21.59),
Aff) = 143472 ¥ — 32811 ™ - 2.33 costate variable -~ (21.60)
x{f) = D98 4 595, 083 siate variable (21.61)
Finally, substituting (2/.6d) in (21.57), we find the solution.
1) = 07174 ™ - 162567 + (0.83S
For the sufficiency conditions, with f=dy—y —x=2¢ f, = =1 —dx, and f, = 4 — 2y, we have
Jrn -Fu . -4 0
» T ,I',,' 0 -2
Dy| = ~-4<0 |Iy| = 8>0
Therefore, IV is negative-definite and [is strictly concave. With the constraint (x + y) lincar sand hence
alzo concave, the sufficiency conditions for a global maximization in optimal control theory are
satisfied,
INEQUALITY CONSTRAINTS
<
2L.7. Muwamize J (8x — 10y*) dt
L]

subject to X = 2dy

x(0) =7 x(4) = 2000

For inequality constramis, we always start with a free endpoint. This problem was previously solved
s a free endpoint in Problem 21.4 where we found

Ay = -8+ 32 costale variable
= -11520 + 92160+ 7 state variable
)= 1L =8r+32) = =06+ 384 conirol variable

Evaluating the stale variable at £ = 4, we have
x(4) = 18502 <2000 & constraint violation
Faced with a constraint violation, we have lo redo the problem with a new fixed terminal endpoint:
x0y=7 x{4) = 2000
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thiimnllhhmpmﬂmntnﬂumnhn;emhlh:mnmhnblcmﬂjum-lthmdurpun
B where we found

Al) = =8¢+ ¢,
xfr) = ~118.2r° + 2881+ ¢y

Now instead of the transversality condition, we apply cach of the boundary conditions.
00) = =11520" + 28R 0 4 ey = 7 =7
Suhﬂimlhur;-Ththnmnﬂnllbnum)’muﬂw
x(d) = =1 1527 + MBe, 1+ 7 = 2000 o =333

This gives us
Alr) = =8 + 333 comlate varahle
M= = 1152F + 05004 4+ 7 state varuble

Then for the final solution, from (2].46) we have
M) = LU ~8r+333) = ~0iw + 399  control variable

1
21.8. Maximize I (Sx + 3y = 2%)dr
L]
subject to £ =6y

ll‘

x(0) =7 x1)=70

For an inequality construint, we always start with a free terminal endpoint. Here we can build on the
work already done in solving this problem under fived endpoint conditions in Problem 21.2. There we
found in (27.36) and (21.37),

M) = =S¢+ ¢
W) =48 -22857 + 9,1+ ¢,

Now applying the transversality condition A(7) = 0,
MI)==54¢ =D =5
and then substituting ¢, = 5 and solving for the initial condition,
M) =45 -228" + A4St 4+ ¢y = 7 =7

This leads to, M) = -5+ § comtale variable
o) = =225+ 495 +7  stae variable

Then from v = 075 + 1.5A in (21.33). the solution ix,
wif) = <75+ 828 control variable
To see if the solution is acceptable. we evaluate the state variable at ¢ = |
1) = ~225F + 495+ 7= U<  constraint violation

thm“mmw:mm“mmmmmlhnnbhmmhulmdmd‘uu
x(1) = 70. We did this carbier in Problem 21.2 where we found

Alr) = =5+ 9 costale vanable

x(r) = ~22.5° + K5.5¢+ 7  state variable

ylt) = =750+ 1425 control variable

To determine if the control variable is an acceptable solution, we evaluate the state variable at the
terminal endpoint and see that it fulfills the constraint

1) =-R5" +KSS8+7 =70
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|
219. Maximize j (4y =y = x = 2") e
L

subject to t=xty
x(0) = 6.15 H1)=5

We have already optimized this function subject to free endpoint conditions in Problem 21.6. There
we found,

A(r) = 1.4347' ™ - 32784 "7 - 223 costate variahle
a1y = 0.98¢" " + 6e ' ™ - 0.53 state variable
y) = 07174e' ™ — 16392 "™ + 0435 control variable

Evaluating the state varable at the terminal endpoint, we have
x(1) = 0.98¢' ™ 4 6¢~' ¥ ~ 0,83 = 57705 > §
Since the endpoint constraint is satisfied, we have found the solution to the problem.

21.10. Redo Problem 21.9 with a new set of endpoint constraints,
x(0) = 615 x(1)=8

From Problem 21.9 we know the free endpomnt solution fails to meet the new terminal endpoint
constramt x(1) = & We must optimize under fixed endpoint conditions, therefore, by setting x{1) = &
Starting from (2/.55) and (2].56) where we found
A(l) = 1,464k, " — 5.464k,¢™ "' ¥ - 233
(1) = k" ™ 4 ke — (L83
we apply the endpoint conditions where we have

at x(0) = A.15, k, + k; -08i=615
at x{1) = 8, 56519k, + 01769, - 083 = §
When solved simultaneously,
k, = 13873 ky = 5.5927

Substituting in {27.55) and (21.56) repeated immediately above,

Alr) = 2,0310¢' ™ - 305585 " ™¥ =233 costate variable
al) = 1AM 4 5502777 — 83 state variable

Then from y = 2 + (154 in (21.34), we derive the solution,
y() = 1.0155¢' ™ - 152793 ' " - D835  control variable
Finally, to be sure the solution is acceptable, we evaluate the stale vanable at 1 = 1,
2(1) = 13873 ™ 4+ 55027V - 083 = §

and see that it satisfies the terminal endpoint constrainl.
CURRENT-VALUED HAMILTONIANS
3
2111 Maximize J e " Paxy = x" = y7) di
o

subject to Imyp+y
x(0) = 134,35 x(3) free
A, Sening up the current-valued Hamiltonian,
Ho=xy—x'=y'+ulc+y)
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B.  Assuming an interior solution, we first apply the modificd maximum principle.

af,

£

!.. m— o = z‘ + - ﬂ
¥ =05{x+ p) (21.59)

. aH,
2. a) = pp=a=
=005~ (¥y—2r+pu)

ji==0%p+lx—y

Using (21.59), o= —095, +2x — 0.5x + p)
jh=—=145u+15
all
b} f = —t =g 4
x o £+ y
From (21.59), 4= 15¢+ 05
In matnx form,
[ﬁ]ﬂl—l,di 1,5[,". lﬂl
X 05 15])|« 0
The characterisiic equation is .
| a5 =r 1.5
| A rl[—‘ 0.5 15-;| 0

and from {79.3], the characteristic roos are
g - 005 V{0.05) - 4(—2.925)
2
ro= 1.7354 r; = — 16455
For r; = 1.7354, the cigenvector is

[—1.45—1.7‘.’-54 1.5 ”q]_ [-3..‘:354 L5 ][r.] 0
0.5 15=-1.7354 || s 0.5 ~0.3354 || e,

—3.18%c; + 1.5c, =0 gy = 21236,

P [ ! J
o7 {21326
For r; = —1.6855, the cigenvecior is
I'—~}.45+I.6I155 1.3 ]Ia:-,J= 0.2355 LS HQJ_D
0.5 1.5+ 16855 || s 0.5 31855 ]| s
0,2355¢, + 1.5¢c; = 0 c, = —6.3604de,

yi= [ """::ﬁg‘] k9%

= = i {
WithB=0in¥V=-A"'B. 'f=["f]=r[ ]
x 0

'kl r"-"'—‘*"‘

Adding the complementary functions for the general solution, we have
plr) = kye' ™ — 63694k, ¢ 18 {21.60)
2(1) = 21236k, ' T + kg1 W00 (20.61)
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. Mext we apply the transversality condition for the free endpoint, p({T)e ™ =0,
(3 O = (k! T — 6369dky e Ao 01T m g
1569928k, — 0.034%, =0 {21.62)

and evaluate x(f} at x(0) = 134.25,

x(0) = 21236k, + k; = 134.25 (21.63)
Solving (21.62) and (21.67) simulkanecusly,

Ey =003 k; = 131819
Then substituting &, = 0.03, k; = 134.1819 in (21.60) and (21.61), we find

pir) = 003" % — B54 f502 1% costate vanable
x(f) = D.0637 ™ + 134, 1819 1 855% state vanable

D, From (21.59), ¥(1) = 0.5(x + p). Substituting from above,
(1) = 0.04685¢' ™ - 36023817 control variable
E. For the sufficiency conditions,

fu I.;,l_l—l I[
fu fl 11 -2

With || = —2 <0, and |D;| = 3>0, D is negative-definite, making f strictly concave in both x and
v. With g linear in x and v, the sufficiency condition for a global maximum is fubfilled,

1
21.12, Maximize J’ e "B 10x + 4y + xy — 20 = 0.5 di
o
subject to i=x+2y
x(0) = 8852 x(1) free
A H, o= Mix + 4y + xy = 20 = 0.5 + fx + 2)
B Assuming an interior solution,
aff_
I —;=-ﬁ+:-_~.-+2u=t}
y=x+2u+d (21.64)
iff
- = —-.—'.
2. a) b=

o= 008y - (v —dx + 2+ 10)

p==-0u+dx-y-10
Substituting for y from (21.64)

o= —=292u +3x— 14

.
b) I=s—=x+1y
£

From {21.64), f=du+ir+8

W iy

In matrix form,
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where the charscteristic equation is

F =292 =rp 3
—-rjl = =)
1A= 4 i-y

and the characterstic roots are

(LO8 = V{0.08) — 4(—20.76)
2

ry = 4 5963 ra= —4.5165
The cigenvecior for r, = 45905 s

=292 - 45965 3 al _ [ 75165 3 r']i-l:l
RPN (] B It |

-7.5165¢c, +3c: =0 ; = 2.5055¢

1
25055

Fify ™=

v "—"

| e

The eigenvector for r; » —-4.5165 is

[—2.92+4.5155 3 ][:,]_[I.S'?ﬁﬁ 3 ][q]_u
4 I+ 45165 )| e0f F) 75168 || o]

lﬂm“r+k;=ﬂ €)™ —lﬁ?'ﬂl.‘;

: [ - 18791
yi=

' Ji.:r-i.irﬁr

For the particular solutions, ¥ = A 'B,

vefl=- () el
i L =2076/] -4 =292 b 1.5723
Combining the complementary functions and particular solutions for the general solution.

plt) = k%Y — | 8791k, e 4P — 31792 (21.65)
x(¢) = 25055k, "% 4 kpe 9 + 15723 (21.05)

C. Applying the transversality condition for the free endpoint, u(T)e * = 0,
pl1)e 00N = (, AR _ | GIQ1 ke 4N - 3,1702)¢ 0 = @

915147k, — 001894, — 298 = 0 (21.67)
and evabaating w1} at x{0) = BE.52,
z(0) = 2.5055k; + k: + 1.5723 = BR.52 (21.68)

Solving (20.67) and (21.68) simultaneously,
*. - ﬂ."s .i: . Mm
Then substituting these values in (27.65) and (21.66), we find

plr) = 005" — 163.1491 *¥* 31792 costale variable
r(t) = 0125345 & BA K230 *95% 4 1 5723 state variable

0. From (2/.64), W) = x+ 2u + 4. Substituting for x and p from above,
¥(f) = 02253 ™ — 239.4752 "% - 0. 7861 control variable
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E. For the sufficiency conditons,

o-ft £-[7* 4

| R

(D = ~4<0, and [IDy] = 3>0 D is negative-definite and f ix strictly concave in both x and v, Since
the constraint is lincar in x and v, the sufficiency condition for a global maximuam s satisfied.
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of exponential function, 173-174, 181p
ol generalired power function, 38, 47-48p, Wp
higher-order. 3940, $2-534p, K5, %97
of an integral, 463
of lincar function, 37, 43p
of logarithmic function, 174-175, 182-18dp
notation, 36-37, 43-44p
partial, E2-85, 93-105p, 176, 1K7-188p
cross {mined), RS, 96-Y7p
second-order, K5, %6-97p
ol power fanction, 37, 43-4p, Y3p
of product, I8, &-45p 9p
of guoticnt, 38, 45-47p, Mp
rules of (ver Differentiation rules),
of sums and differences, 38, 44p
total, W01, 106-107p
of trigemometric lunction, 413414, 421-422p
Determinant, 224-226, 211-232p
Discriminant, 256, 264-265p
Hessian, 255-256, 265-271p
bordered, 258-259, 271-27hp
Jacobvian, 254-255, 262-263p
properties of, 227-128, 233-2346p
vamshing, 124
Determinant test for:
stgn-deliniteness of quadratic form, 253-255,
264-205p
singular matrin, 224-225, 236-234p
Deviation from equilibrium, 363, 302, 49
Diagonal (principal), 220
Difference (first), 391
Differcnce equation:
and Cobweb model, 35, H2-H13p
economic apphcations of, 404-408p, 425-427p
first-onder, 391-392, 398-401p



Ihfference cquation (Con);
and Harrod model, 396, 404p
and lagged income determination model, 394,
401 -40p
second-order, 410-411, 419-420p, 424-425p
Difference quotient, X5
Differentiable functhom, 36
Differentiability, 16, &)
Diffcrential, 8950, 105- 106, 112-113, 122-126p
and imcremental change, 112-113
pariial, W, (06, 122-126p
total, W, 105-106p
Differential equation. 362
cconomic apphications of, 367-368, 382-387p
exact, Wt 368, 374-378y
first-order lincar, 363-365, 370-374p
und imtegrating Esctoes, Md-305, 374-375p
nonlinear, Mdh-347, 801K
ordinury, 362
partial. 364
secinid-order, J08-410, 416-417p
and separation of variables, 366367, 380-382p
Differentiation. 36
of cxponential function, 173174, 181p
implicit, 40, $4-Shp
logarithmic, 177-178, 191-192p
of loganthmic function, 174-175, 183-184p
partial. 82-85, 93-105p, 176, 187-188p
total, Y091, 106-107p
of Irigonomeinie function, 413414, 421.422p
{Ser ahso Differentiation rules and Derivative)
Dhifferentiation rules, 37-30, K188
chain rule, A8, 48-49p
combination of mles, 49-52p, 94-95p
composite function rule, 18, 48-49p
constant function rale, 37, 43p
exponcntial lunction rule, 173-174, 181p
derivation ol 197p
function of a function rale, 18, 45-49p
generaled power function rule, 39, 47-48p
imphlicit function rule, Y2, HITp
invenie function rale, 92, 107108
lincpr function male, 37, £3p
logarithmic lunction rule, 174-175, 182-184p
derivation of, 196p
pewer funcuon rale, 17, 43-34p
prodoct rule, 38, 44-45p
derivation of, 37p
quatient nile, 38, 45-47p
derivation of, 5Tp
s and dilference rule, 38, 4p
dervation of, Sep
Drimension of matrix, 200, 207-208p
Diminishing returns, 116, 13Mp
Discounting, 162, 168-168p
Discrete growth, 162

INDEX 517

Discriminant, 256, 264-265p
Discrimination, in pricing. 77-T8p, 132-133p
Distance between two points on a plane, 461,
AT0-471p
Distribution parameter, 118
Distributive law, 204-205, 219-222p
Divergence, M6- 347, 156-159
Domain, §
Domar model, 184-385p
Dominant oo, 415
Dynamic optimization, 462-463, 471-481p
coonomic applications, 482486
under functional constrainis, 466467, 487p
Dynamic stability of equilibrium, 343, 391, 428

¢, the number, 149

Effective rate of interest, 161-162

Efficiency parameter, |16

Eigenvalue (vector), 260-261, 280-283p, 409-411,
416-421p, 428439, 342-445p

Eigenvalue problem, 429, 458-459p

Elasticity:

cross, 111-112, 127p
of demand, 126-127p
of income, 111112, 126-127p
ol price. 127p
of supply. 126-127
Elasticity of substitution, 118, 140-145p
of CES function, 118, 142-145p
of Cobb-Douglas function, 140-141p
Elements of a matrix, 200
Elimination method for solving simultancous
cquations, 4. 26p
Endogenous vanable, 16
Endpoint condition, 461
Envelope theorem, 291-293, 14-316p
Equation, 3
auxiliary, J08-UW, 457p
characterstic, 408409
difference. 391-392, J98-401p
diflerential, 362-365, 370-374p
equilibrium, 15
in income determination models, 15-16, 37-30p
in IS-LM models, 16-17, 30-31p
linear, 3
Yuadratic, 3
ol motion, 493
reduced form, 16, 27-30p
simultaneous, 4-5, 25-27p
solution of, 9-10p
using logarithms, 158-159p
i supply and demand analysis, 23-2Tp
ol transition, 493
Eguilibrium*
dvnumic stability ol 363, 391, 428
inter-temporal, 363, 391, 428



Equilibrium (Conz )
stendy-state, 363, 391, 428
Euclidian distance condition, 431
Euler equation, 414
proof of, 462-463
Euler relations, 414
Exact differential equation, 364-365, 374-375p
Exogenous variable, 16
Explicit function, 40
Exponent, rules of. 1, 7 8p, 148, 154-156p
Exponential function, 146, 150-151p, 160
hase conversion oL 162-163, 170-171p
derivative of, 173-175, 1Kip
and discounting, 162, 168-169p
and growth, 163164, 16%-170p
and interest compounding, 160-161, 165-168p
integration of, 327, 337p
logarithmic solutions of, 149, 156159
natural, 149-130, 151-153p
and optimal timing, 179, 194 1%6p
optimization of, 176-177, 188-191p
relationship to logarithmic functions, 149150,
156-159p
slope of, 185p
Extremal, 460
finding candidates for, 463465, 471-481p
Extremum [relative), 6, 66-72p

14
Final demand, 159260
Firat difference. 391
Fint-order condition, &0
Frequency functions and probability, 348, 361p
Free endpoint, 496498, 505508
Function. 5, 10-11p
Cobb-Douglas, 116-118, 135-137p
complementary, 163, 392, 390
composite, 39, 45490
concave (convex). $5-59, b-nhp
constant, 37
constant clasticity of substitution (CES), 118
curvilinear, shope of, 34-35
decreasing (increasing), SK, 64-66p
differentiable, 60
explicit, 40
exponcntial, 146, 1530-151p, 160

115116, 1Mp
implicit, 40, 54-56p, 92, 107
inverse, 18p
linear, §
logarithmic, 147
monolonic, 58
multivariable, 82, 110
objective, §7-88

INDEX

Function {Cont.);
optimization of, 60-63, 68-T2p, 74-T9p, 8557,
95-102p, 113-115, 127-1Mp
periodic, 413
polynomial, §
power, §
primitive, 39
yuadratic. 4-5. 10p. 13p, 256, 264-265p,
28i-245p
rational, 5. 13p
sinusoidal, 421
smooth, 6
trigonometric, 412-413, 421-422p
Functional, 460
Functiopal dependence, 254-255, 262-261p
Fundamental theorem of calculus, 343

Gieneralized power function rule, 38, 47-48p, Hp
Giillen good, 286
Cilobal maximum (minimum}, 61
Croonda:
complementary (substitute), 111-112
final (imtermediate), 259-260
Graph. 6, 11-13p
of exponential function, 147, 150-152p
in income determination model, 21-23p
of hinzar function, 6, 17-23p

Growth, 192-194p

continuous (discrete), 162-163

conversion factor for, 162-163, 171p

measures of, 178
Girowth functions, exponential, 163-164, 169-179
Growth rates:

estimation (rom data points, 163-164, 172p

pet capita, 192p

warranied, 3%

Hamiltonian, 494-495, 503-510p
current-valued, S00-503, 510-514p
systom, 494
Harrod model, 396, $04p
Hessian. 255, 256, 265-271p
bordered, 258-259, 271-276p
Higher-order derivative, 3940, 52-54p, 85, %6-¥7p
Homogeneity, 115-116, 13p

i, the number, 412
ldempotent matrix, 208
Identity matriv, 205-206
Image. mirror, 147, 152-153p
Imaginary number, 411-412
transformation of, 414-415



Implicit differentiation, $, 34-56p, 92, 107p
Implicit function, 40
rule. 40, 54-S6p, 92, 10Tp
thearem, 286, 3Xp
Improper inlegral, 346-347, 336.-350p
and L'Hopital's rule, 347, 356-3%9p
Income determination model, 15-16
equations in, 27-30p

graphs in, 21-23p
lagged, 394, 401-402p
Income determination multipher, 15-16, 27-30p,
1201 26p
Income clasticity of demand, 111-112

Increasing function. 58, 64-66p
Indefinite intcgral. 326
Independence, 4
Independent varable, 6
Indirect objective function, 292
Incquality constraints, 293-206, 316-323p,
im endpoints, 498-500, S08-510p
Inferion god, 286
Inflection point, 60, 66-68p, 8587, 98-102p
Initial condition, 129
Inner product, 200
Input-output analysis, 259-260, 276-280p
Integral, 126, 143
probabvlity and, 348, 36ip
propertics of, M4-145, 181184,
of differential equation, 362
improper, M6-347, 156-350p

sign, 126
Integral calculus, 326, 342
Integrand, 326
Integrating lactor, 365-366, 375-379p
Integration, 126, 342
conslant of 326-328

and consumers’ and producens” surplus, 347-348,

359 380p
economic applications of, 331-332. 339-31p,
I59-361p
and initial conditions and boundary conditions,
329, 4w
limits of, 343
partial, 364-366, 374-379p
by parts, 330-331, 337-339p, 352-353p
rules of, 326-32%, 112-14p
by substitution, 329-33), 334-13Tp, M9-352p
tables; 330
Intercept (1, y-). 6, 11-13p
Interest compounding. 160, 163-168p
Interest rate (effective, nominal), 161
and timing, 166-168n
Interior solution, 204

INDEX

Intermediate pood, 259
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Intestemporal equilibrium level (solution), 363, 392

Inverse function, 18p
rule, 92, 107-108p
Inverse matrix. 228-229, 242-248p

and solution of lincar-equation sysiem, 229-230,

242-248p
IS-LM analysis, 16-17, 30-31p, 287-288p
Isocline, 339-342
Isocost (isoprofit) line, 14-15
Isoperimetric problem, 466367
Isoquant, T9-8lp, 139p
Isomector, 439-442
lerative method, 392

Jacobian, 254-255, 262-263p
Joint concavity (convexity ), 465466

Kuho-Tocker conditions, 293-294, 316-125p

Lag. 395
Lag matrix, 207
Lagrange multiplicr, 87-89, 102-105p, 115,
130-) Mp
in calculus of variations, $66-467, 457p
and inequality constraints, 203206, 316-325p
in optimal control theory, 4932496, S03-514p
and shadow prices, 59
Lagrangian function. 87-89, 102-105p, 115,
130-14p
Laplace expansion, 227, 241-243p

Latent root (vector). 260-261, 280-283p, 409 411,

416-421p, 428439, 442-445p
Lead matrix, 202
Least common denominator (L.CD), 9p
Leibnite's rule, 463
Leonticl matrix, 260
L'Hapitals rule, 347, 356-359p
Like terms 2
Limits, 32-33, 41-43p
lower (upper), 343
one-sided, 13
rules of, 312-33 4143p
Lincar algebra, 199
commuiative, associative, dstnbutive laws,
204-208, 216-222p
expression of set of linear systems by, 206-207
Linear dependence, test for, 224-225, 236218y
Lincar equationx:
solving with Cramer’s rule, 230-231, 248-253p
solving with the inverse matrix, 228-224,
242-23%p
Linear function, 5
Linear function rule, 37, 43p
LM schedule. 16, 287-28%p
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n, 149-1 50
Logarithm, 147-14%
comvenion formulas, 162-163
natural, 149-150
propertics of, 148, 154-136p
Logarithmic diflerentiation, 177-1T8, 191-192p
Logarithmic function, 147-148
conversion ol 174175, IR3-184p
desivative of, 191, 195-199p
optimization ol 176-177, 188-191p
relatioaship to exponential functions, 147
slope of, 185
Logarithmic transformation, 1 §)
Lower-trnangular matnx, 236p

Marginal concepts, 62-63, T2-Tdp, 110, 119-120p
relationship o tolal and average concepts,
62-63, 72-T4p, 110, 119-120p
Marginal product (MP), 110
Marginal rate of technical substitution (MRTS),
TU-80p, 1W9p
Margmal utility of money, 133
Matrix(oes), 200
adddition and subtraction, 200-201, 208-XMp
adjoint, 228
associative, commutative, distributive liws,
204205, 216-222p
characteristic, 261
coctlicient, 206
colactor, 228-229, 242-248p
column vector, 200
eonformabdlity, 202, 210p
idempotent, 208
Identiny, 208206
inverse, 228-229, 242-248p
lag, 202
lead, 112
Leanticl, 260
multiplication, 202-204, 212-216p
nonsingular, 224, 236-238p
null, 205-200, 222p
rok of. 224-225, 232-2\3p
row voctor, 260
singutar, 222p. 224, 236-238p
square, 20
symmetric, 205
technical coctlicients of, 264
transpose, 300, 207p
triangular, 228, 235-236p
unique properties ol 222-223p
Mutrix algebra, (ver Lincar algebra)
Matrix inversion, 228229, 242. 248p
Maximum principle. 494
modified. SO00-501
Maximisation, (Minimization), (see Oplimization)

INDEX

Minot, 226, 238-240p
principal, 255
bordercd, 158
Misror image, 147, 152-153p
Mixed partial derivative, &5, 96.97p
Modified maximum principle, S00-501
Muonoumial, 2
Monotonic lunction, 58
Multiplication of matrices. 202-204, 212-216p
scalar and vector, 201-202, 211-212p
Multiphier. 15-16. 110-111
autonomons expenditure, 16, 28p
autonomous (lump-sum) tax, 28p
balanced-budget, 121p
forcign-trade, 29-Mp, 122p
government, 120-121p
proportional tax, 29p
Multivariate functions, K2, 110
opimization of, K587, 8-12p, 113-115,
127-1M)p

Nutural exponential function, 149
comversson of, 133154
derivative of, 173-174, 180-181p
graph of, 153
optimization of, 176-177, 188-191p
dope ol, 174-17%
swlytion of, 149
Naturul logarithmic function, 149
convenion of, 153-154
detivative of, 174-178, 183-184p
graph of, 153
optimuation of, 176-177, 18S-191p
slope ol 174-175
solution of, 149
Negative Jefiniteness, 256, 260-261, 264-265p,
280-282p
Negutive semi-definiteness, 260-261, 26d4-205p,
2RD-IR2p
Nominal rate of inlerest, I61
Nonlinear programming. 293-296, 316.-323p
Nonnegativity constrmint, 293
Nonsingulanty of matnces, 224-225, 236-218p
Nootrvial solutions, 429
Normal good, 286
Normalization, 261, 430
Null matris. 208-206, 222p
Numbers,
complex, 411-412
conjugate, 411-412
imaginary, 411-412

Objective function, §7-88

Optimal control theory, 493
fived endpoints, 494495, S03-S0%p
free endpoinis, 496498, S05-SKy



Optimal control theory (Cont, ):
inequality constraints in endpoints, 495-500,
S08-510p
Optimal timing 179, 194-19%p
Optimization, 60-63, 68-72p, 74-79p, 85-87,
S8-102p, 113115, 127-130p
constrained, 87-89, 102-105p. 115, 130-13p,
254259, 271-276p
of CES production function, 118119,
136-137p
of Cobb-Douglas production function,
116-11K, 115-137p, 259, 275p
dynamic, 462363, 471-486p
constriined, 466467, 487p
ol expancntial functions, 176-177, 158-191p
ol logarnhmic functions, 176-177, 1R8-191p
ol multivariable functions, 85-K7, 98-1(2p,
3115, 127-10p
Order:
of difference equation, 391
of differential equation, 362, 370p
Ordinate. 22p
Oscillation, 392-394
Output elusticity, 116

Parabola, 13p
Purameter
distribution. 116-118
efficiency, 116-118
substitstion, 116-118
Panial denvative, 82-85, 93-105p, 176, 187-188p
cross (mixed), 85, 96-97p
exponential, 176, 187 188p
logarithmic, 176, 187 188p
woeand-order direct, B8, 96-0Tp, 102
Partial differentiation, N2-KS, 93-105p, 176,
187 188
rules of, X185, 93-97p
Partial differcntial, 90, 106p, 122-126p
Partial integration, 364-365, 374379
Particular integral, 363, 458p
Parts. integration by, 330-131, 137-339p, 182-153p
Per capita growth, 192p
Period, 413
Periodic funciion, 413
Phase, 411
diagram, 368-370, 397308
in difference equation. 397-398, 405-407p
in differential equation, 368-370, 387-390p,
439442, 455459
Phase plane, 439
Polsr coordinate, 414
Polynuomial, 2, 8-9p
Polynomial function, $
continuity of, 3
limit of, 41p
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Population growth, 162
Positive definitencss, 256, 200701, 264-265p,
2M0-282p
Positive semi-delinitenca, 260-361, 264-265p,
2R0-282p
Power function, $
denvative of, 37, 43-34p
peneralized, 38, 47-48p
Power function rule, 37, 43-44p
gencraliced, 38, 47-48p
Precautionary demand for money, 16-17
Present value, 162
Price, shadow, 89
Price discrimination, 77-78, 132-133p
Price clasticity, 127p
Primitive function, 39
Principal diagonal, 208
Principal minor, 255
bordered, 258
Probability, and definite integral, 345, 361p
Producers” surplus, 347-348, 359-3a0p
Prodisct rule. 38, 44-45p, B4
dervation of. $7p
Production [unction:
CES, 115119, 136-137p
Cobb-Douglas. 116-115, 135-136p
elasticity of substitution of, 115, 140-145p
output clasticity of, 116
homogencous, 115-116, 134p
Production isoquant, 79-80p, 139
Prool of:
addition rule, Stp
Cramer's rule, 252-253p
¢ rule, 197p
" rule, 197p
Euler’s equation, 462-463
n v rule. 196p
In g(x) rule. 197p
PP, = MU /MU, lo¢ optimization, 140p
product rule, S7p
propertics of logarithins, 148, 154-156p
quotient rule, $7p
Pyihagorean theorem, 461

Quadratic cyuation, 3
graph of, 13p
solution by
factoring. 3-4
guadratic formula, 34, lip, 26p
Quadratic formula, 34, 10p, 26p
Quadratic function, 4-5, 10p, 13p, 156, 264-205p
discriminant and sign-definitencss of, 256,
Md-265p
Quoticnit rule, 38, 45-47p
derivation of, $7p
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Radian, 413
Range. §
Rank, 224-225, 232-233p
Ruie ol change. 36
Rate of discount, 162, [68-169p
Rational function. §,

continuity of, 34

graph of 13p

limits of, 32-33
Reduced form equition, 16, I7-30p
Relative extremum, 39-6i), fih-6ip
Returns to scale, 116, [Mp
Ricmann sum, 342
Root:

characiensiic, 260-261, 280-253p, #9411,

416-421p, 425439, 442-455p

complex, 411
distinet real, 411, 416-417p
dominant, 415
latent, 260-261, 280-283p, 409411, 416-421p,
428439, 442455p
repeated real, 411, 417, 420p
Row, Xx)
Row vector, 200
Rules:
Cramer's, 2M0-23), 248-253p
De Modvre's, 414

of differentiation (see Differentiation rules)
ol exponents, |, 7-Kp

foe intcgrating {actor, 365366, 375-379p
of Intepration, 326-128, 322-344p

for inverse Tunction, Y2, 107-108
L'Hopital's, 347, 356-159p

Leibnite’s, 463

of limits, 32-33, 41-43p

of logarithms, 148, 154-156p

Saddle path, 429, 439
Saddle pount, 87
Saddic point solution, 439
Samuclson model, 20
Scalar, 26
multiplication, 201, 211p
Secant function, 412
derivative of, 413414, 421-422p
Secant line, 35
Second-derivative test, 80
Second-order condition, 61
Semi-definiteness, 260-26]
Shadow price, §9
Separation of vanables, 166-167, 380-382p
Sign-definitencss of quadratic tunction, 256,
200261, 264-265p, 280-282p
Simublancous equations, 4-5, 25-27p
difference equations, 434-439, 451-455p
differential equations, 428404, 242 -A50p

INDEX

Sine function, 412
derivative of, 413414, 421-422p
Singular matrix, 224
test for, 224-225, 262-26}p
Slope, 6. 11-11p
of curvilinear function, M-8
of exponential Tunction, 17H-174, 185y
of lincar function, 6, 11-13p
of logarithmic function, 174175, 185p
Slope-intercept form, 7, 11-13p
Shutsky effect, 313-314p
Smooth function, i
Solow model, 345-386p
Soluton:
delinite, 143, 392
general, 363, 302
particular, a3, 392

Speculative demand for money, 16
Stability conditions;
Cobweb model, 395, #2-4003p
difference equation, 391398, 8407p, 415,
A20-421p
differential equation, 362-370, 370-3%)p, 415,
417419
State variables, 493
Steady atate solution, 368, 307
Strictly concave (convex), $8-59, 64-66p
Subintegral, 344-34%
Substitution:

clasticity ol, 115, 142-143p
integrution by, 329-130, 34-337p
method for solving simublancous equations, 4,

26p

Subiraction of matrices, 200-201, 20%-210p
Succesive-derivative test, 61-62, 67-T2p
Sum and difference rule, 38, 44p

derivation of, Sep
Supply, elasticity of. 126-127p
Supply and demand analysis, 15, 23-27p
Surplus, comumens’, producers’. 3J7-H8, 159-360p
Symmetric matrix, 208

Tables of integration, 130
Tangent function. 412
derivative of, 413414, 421-421p
Tangent line, 24
Taylor expansion, 467
Technical coeflicient, 259-260
Terms. 2
Time path, 384p, 92-393_ 413, 415
Timing. optimal, 179, 194196
Total concepts, 63-64, 72-T4p, BD-81p
relationship to marginal and average concepis.
6364, T2-T4p



Total derivative, 90-91, 106-107p
Tota! differential, 90, 105-106p
Trace, 429
Transaction demand for money, 16
Transformation,
of complex and imaginary numbers, 414-415
logarithmic, 150
Transpose malrix, 200
Transversality condition, 497
Triangular matrix, 228
lower (upper), 235p
Trigonometric function, 413414
derivative of. 413414, 421-422p

Uppertnangular matrix, 235p
Ultiliny:
marginal, of money, 133p
optimization of, 133-134p

Value, critical, 59

of function, 5
Vanishing determinant, 224
Variahle, 2

control, 493

oostate, 491

dependent and independent, 6

INDEX 523

Variable (Cont ).
endogenous and exogenous, 16
separated, 366-367, 380-182p
state, 493
Variation of F, 467
Variational notation, 467468, 491.-492p
Variations, the calculus of, 460
Vector:
characteristic. 260-261, 280-283p, 400411,
416-421p, 428-439, 242-455p
column and row, 200
of constant terms, 229
cigen, 260261, 280-283p, 409-411, 416-421p,

425439, 442-455p

latent, 200-261, 280-283p, 4069-411, 410-421p,
425439, $42-455p

multiplication of. 201-202, 211-212p

solution, 206

Vertical line test, 10p

Warranied rate of growth, 396

Young's Theorem, 85, 97p
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