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Preface

Like the first edition, as well as all of the Schaum’s Series books, this second
edition of Heat Transfer is intended to function as (1) an independent, self-teaching
text and/or (2) a supplemental aid for students taking a college course in heat
transfer at the junior or senior level. To fulfill these dual roles, there are several
factors that must be considered. One of these is the long-standing argument over
the nature of treatment, that is, mathematical derivations of the thermal transport
rate equations or collections and applications of empirical equations. Again, as in
the first edition, we believe we have achieved a useful compromise between these
two approaches.

Another major factor is the choice of a unit system. The unit system must be
compatible with that in current college textbooks on this subject. Many, if not most,
heat transfer texts are using the Systéme International d'Unités (SI unit system)
exclusively. The ASME has required that all publications of the Society since July
1, 1974, must be in SI units. However, the slow transition from the English system
of units decrees that most students currently studying heat transfer will need to be
familiar with both SI and English units for many more years. In this book we have
208 solved problems having units and 63 solved problems with no units. The
percentage split between SI and English units is approximately 75/25 whereas the
first edition had approximately 60/40 English/SI problems. But we have included
enough English unit system solved problems to satisfy the needs of students and
professionals using English units only or those needing a dual system experience.
In support of this nced a very useful approach to obtaining property values has
been incorporated. Basically, we have included rather complete tables for both SI
and English units. The English tables continue to feature conversion factors at the
bottom of each page.

While the field of heat transfer is constantly growing in useful knowledge, we
have intentionally emphasized the more traditional and familiar approaches to
each of the major subtopics of this subject. In many areas, we note that newer
empirical correlations yield very nearly the same results as do the older ones. We
have utilized simpler approaches wherever suitable.

As in the first edition we have continued the approach where each chapter
begins with a statement of the class of heat transfer, or related topics to be
considered. This is followed by abbreviated textual treatment(s), mathematical
and/or empirical. Then the focus turns quickly to the Solved Problems which are
the very essence of the presentation. Note that “related topics” include Fluid
Mechanics—Chapter 5. Although not in most heat transfer texts, this book will be
used by many persons with no background in Fluid Mechanics. This subject is very
important, indeed, essential to understanding the material in Chapters 6, 7, and 8,
and to a lesser extent, Chapter 10.

In summary, for each chapter we (i) present a concise textual treatment of a
major subtopic emphasizing theory, analyses and empiricism important to that
subject, (ii) provide an extensive set of Solved Problems, practical and theoretical,
including a mixture of unit systems with unit inclusion in many problems, and
finally (iii) include a set of unworked, Supplementary Problems (usually with
answers) to enhance opportunities for self evaluation.

iii



PREFACE

We believe that this second edition meets the changing needs for a self-
teaching text for working professionals and students in this field and the need for
a supplemental aid for junior- and senior-year college students. We wish every user
a fulfilling experience in study from this book.

We wish to express our appreciation of the efforts of Ms. Mary Loebig Giles

of McGraw-Hill for her continued support of this project, and to Ms. Janine
Jennings who typed the manuscript.

Donarb R. Prtrs
Knoxville, TN

LeigHTON E. Sissom
Cookeville, TN
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Chapter 1

Introduction

The engineering area frequently referred to as thermal science includes thermodynamics and heat
transfer. The role of heat transfer is to supplement thermodynamic analyses, which consider only
systems in equilibrium, with additional laws that allow prediction of time rates of energy transfer.

These supplemental laws are based upon the three fundamental modes of heat transfer, namely
conduction, convection, and radiation.

1.1 CONDUCTION

A temperature gradient within a homogeneous substance results in an energy transfer rate within
the medium which can be calculated by

g=—kA P (1.1)
where 4T/dn is the temperature gradient in the direction
normal to the area A. The thermal conductivity k is an
experimental constant for the medium involved, and it may
depend upon other properties, such as temperature and
pressure, as discussed in Section 1.4. The units of k are
W/m-K or Btu/h-ft-°F. (For units systems, see Section 1.5.)

The minus sign in Fourier’s law, (1.1}, is required by the
second law of thermodynamics: thermal energy transfer EANTAS
resulting from a thermal gradient must be from a warmer to A CA
a colder region. ke x

If the temperature profile within the medium is linear
(Fig. 1-1), it is permissible to replace the temperature
gradient (partial derivative) with

AT T,-T,

A nox (1.2)

Such linearity always exists in a homogeneous medium of fixed k during steady stare heat transfer,

Steady state transfer occurs whenever the temperature at every point within the body, including
the surfaces, is independent of time. If the temperature changes with time, energy is either being stored
in or removed from the body. This storage rate is

aT

Guored = mcp‘? (fj')

where the mass m is the product of volume V and density p.

1.2 CONVECTION

Whenever a solid body is exposed to a moving fluid having a temperature different from that of
the body, energy is carried or convected from or to the body by the fluid.

1



2 INTRODUCTION [CHAP 1

If the upstream temperature of the fluid is 7. and the surface temperature of the solid is 7, the
heat transfer per unit time is given by

q = hA(T, - T.) (1.4)

which is known as Newton's law of cooling. This equation defines the convective heat transfer coefficient
h as the constant of proportionality relating the heat transfer per unit time and unit area to the overall
temperature difference. The units of # are W/m?-K or Btw/h- ft?-°F. It is important to keep in mind that
the fundamental energy exchange at a solid-fluid boundary is by conduction, and that this energy is
then convected away by the fluid flow. By comparison of (1.1) and (1.4), we obtain, for y = n,

- aT
hA(T, - T.) = - kA (5) (1.5)

where the subscript on the temperature gradient indicates evaluation in the fluid at the surface.

1.3 RADIATION

The third mode of heat transmission is du¢ to electromagnetic wave propagation, which can occur
in a total vacuum as well as in a medium. Experimental evidence indicates that radiant heat transfer
is proportional to the fourth power of the absolute temperature, whereas conduction and convection
are proportional to a lincar temperature difference. The fundamental Stefan—Boltzmann law is

q = gAT*® (1.6)

where T is the absolute temperature. The constant ¢ is independent of surface, medium, and
temperature; its value is 5.6697 X 10~* W/m?- K* or 0.1714 X 107* Btw/h- f*- °R*.

The ideal emitter, or blackbody, is one which gives off radiant energy according to (1.6). All other
surfaces emit somewhat less than this amount, and the thermal emission from many surfaces (gray
bodies) can be well represented by

q = €cAT* (1.7)

where €, the emissivity of the surface, ranges from zero to one.

14 MATERIAL PROPERTIES
Thermal Conductivity of Solids

Thermal conductivities of numerous pure metals and alloys are given in Tables B-1 (SI) and B-1
(Engl.). The thermal conductivity of the solid phase of a metal of known composition is primarily
dependent only upon temperature. In general, k for a pure metal decreases with temperature; alloying
elements tend to reverse this trend.

The thermal conductivity of a metal can usually be represented over a wide range of temperature
by

k= ko(1 + b6+ c6?) (1.8)

where 6 = T — T, and k, is the conductivity at the reference temperature 7, For many engineering
applications the range of temperature is relatively small, say a few hundred degrees, and

k = k(1 + b6) (1.9)

The thermal conductivity of a nonhomogeneous material is usually markedly dependent upon the
apparent bulk density, which is the mass of the substance divided by the total volume occupied. This
total volume includes the void volume, such as air pockets within the overall boundaries of the piece
of material. The conductivity also varies with temperature. As a general rule, k for a nonhomogeneous
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material increases both with increasing temperature and increasing apparent bulk density. Tables B-2
(SI) and B-2 (Engl.) contain thermal conductivity data for some nonhomogeneous materials.

Thermal Conductivity of Liquids

Tables B-3 (SI) and B-3 (Engl.) list thermal conductivity data for some liquids of engineering
importance. For these, k is usually temperature dependent but insensitive to pressure. The data of this
table are for saturation conditions, i.e., the pressure for a given fluid and given temperature is the
corresponding saturation value. Thermal conductivities of most liquids decrease with increasing
temperature. The exception is water, which exhibits increasing k up to about 150°C or 300°F and
decreasing k thereafter. Water has the highest thermal conductivity of all common liquids except the
so-called liquid metals.

Thermal Conductivity of Gases

The thermal conductivity of a gas increases with increasing temperature, but is essentially
independent of pressure for pressures close to atmospheric. Tables B-4 (SI) and B-4 (Engl.) present
k-data for several gases at atmospheric pressure. For high pressure (i.e., pressure of the order of the
critical pressure or greater), the effect of pressure may be significant.

Two of the most important gases are air and steam. (No distinction is made between a gas and a
vapor in this chapter.) For air the atmospheric values listed in Table B-4 (SI) are suitable for
most engineering purposes over the ranges: (i) 0°C<T=1650°C and 1atm<p<100atm; (i)
—75°C=T=<0°C and 1 atm = p = 10 atm.

Thermal conductivity data for steam exhibit a strong pressure dependence. For approximate
calculations the atmospheric data of Tables B-4 (SI) and B-4 (Engl.) may be used together with Figure
B-3. For other gases, one must resort to more extensive property tables.

Density

Density is defined as the mass per unit volume. All systems considered in this book will be
sufficiently large for statistical averages to be meaningful; that is, we will consider only a continuum,
which is a region with a continuous distribution of matter. For systems with variable density we define
density at a point (a specific location) as

. 8m
P oV (1-10)
where 8V is the smallest volume for which a continuum has meaning.

Density data for most solids and liquids are only slightly temperature dependent and are negligibly
influenced by pressure up to 100 atm. Density data for solids and liquids are presented in Tables B-1,
B-2, and B-3 in both SI and English Engineering units. The density of a gas, however, is strongly
dependent upon the pressure as well as upon the temperature. In the absence of specific gas data the
atm;)spheric density of Tables B-4 (SI) and B-4 (Engl.) may be modified by application of the ideal
gas law:

P
p=p|— 1.11
2 ( p]) (1.11)
The specific volume is the reciprocal of the density,

1
v=— 112
; (1.12)
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and the specific gravity is the ratio of the density to that of pure water at a temperature of 4°C and
a pressure of one atmosphere (760 mmHg). Thus

§=— (1.13)
where § is the specific gravity.

Specific Heat

The specific heat of a substance is a measure of the variation of its stored energy with temperature.
From thermodynamics the two important specific heats are:

au
specific heat at constant volume: ¢, = T (1.14)
v
i oh
specific heat at constant pressure: ¢, = 77 (1.15)
r

Here u« is the internal energy per unit mass and A is the enthalpy per unit mass. In general, « and A
are functions of two variables: temperature and specific volume, and temperature and pressure,
respectively. For substances which are incompressible, i.e., solids and liquids, ¢, and ¢, are numerically
equal. For gases, however, the two specific heats are considerably different. The units of ¢, and ¢, are
J/kg-K or Buw/lb,,-°F.

For solids, specific heat data are only weakly dependent upon temperature and even less affected
by pressure. It is usually acceptable to usc the limited ¢, data of Tables B-1 (SI), B-1 (Engl.), B-2 (SI),
and B-2 (Engl.), over a fairly wide range of temperatures and pressures.

Specific heats of liquids are even less pressure dependent than those of solids, but they are
somewhat temperature influenced. Data for some liquids are presented in Tables B-3 (SI) and B-3
(Engl.).

Gas specific heat data exhibit a strong temperature dependence. The pressure effect is slight except
near the critical state, and the pressure dependence diminishes with increasing temperature. For most
engineering calculations the data of Table B-4 (Engl.) (other than density) can be used for pressures
up to 200 psia, while Table B-4 (SI) is suitable for pressures up to 1.4 X 10° Pa.

Thermal Diffusivity
A useful combination of terms already considered is the thermal diffusivity «, defined by
k
a=— (1.16)
Pep

It is seen that « is the ratio of the thermal conductivity to the thermal capacity of the material. Its units
are fth or m%s. Thermal energy diffuses rapidly through substances with high a and slowly through
those with low a.

Some of the tables of Appendix B, in both ST and English units, list thermal diffusivity data. Note
the strong dependence of « for gases upon both pressure and temperature; these data for gases are
only for atmospheric pressure, and they are only valid for the specified temperature.

Viscosity

The simplest flow situation involving a real fluid, i.e., one that has a nonzero viscosity, is laminar
flow along a flat wall (Fig, 1-2). In this model, fluid layers slide parallel to one another, the molecular
layer adjacent to the wall being stationary. The next layer out from the wall slides along this stationary
layer, and its motion is impeded or slowed because of the frictional shear between these layers.
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Continuing outward, a distance is reached where the

retardation of the fluid due to the presence of the wall is Y j'
no longer evident. j]
Consider plane P-P. The fluid layer immediately P o R

below this plane has velocity u — 6u, and the fluid layer
immediately above has velocity « + du. Here u is the uty)

value of the velocity in the x-direction at the y-location

of the P-P plane. The difference in velocity between 2727 2272722772 2722772727
these two adjacent fluid layers produces a shear stress 7. Fig. 1-2
Newton postulated that this stress is directly proportional

to the velocity gradient normal to the plane:

s (1.17)

The coefficient of proportionality is called the coefficient of dynamic viscosity, or more simply the
dynamic or absolute viscosity.

Viscosity units As shown by (1.17), the units of u, are N-s/m? or 1bg s/ft’. In many applications it is
convenient to have the dynamic viscosity expressed in terms of a mass, rather than a force, unit. In this
book, u,, will denote the mass-based viscosity coefficient. In the SI system the units of u,, are kg/m-s,
and w,, is numerically equal to p. In the English Engineering system g,, has units lb,/ft-s, and,
numerically, p,, = (32.17)u; In those contexts in which the units are irrelevant we shall simply write
u for the dynamic viscosity.

For gases and liquids dynamic viscosity is markedly dependent upon the temperature but rather
insensitive to pressure; data are presented in Tables B-3 (SI), B-3 (Engl.), B-4 (SI), and B-4 (Engl.).

As in the case of gas thermal conductivity, gas dynamic viscosity is pressure dependent at pressures
approaching the critical value, or greater. The generalized chart of Figure B-4 may be used in the
absence of specific gas viscosity data at high pressure. For air, however, the variation of u with pressure
is negligible for most engineering problems; in particular, use of the generalized chart will seriously
overcorrect the viscosity.

The ratio of dynamic viscosity to density is called the kinematic viscosity v:

M
p=r1m L18
p (1.18)
The units of v are ft%s or m?/s.
Warning: Unlike the dynamic viscosity, the kinematic viscosity is strongly pressure dependent
(because the density is). The data of Tables B-4 (SI) and B-4 (Engl.) are for 1 atm only; they must be
modified for use at higher pressure (if used at all).

L5 UNITS

Table 1-1 summarizes the units systems in common use. The proportionality constant g, in
Newton's second law of motion,

F=—ma, 1.19
2 (1.19)
is given in the last column.
In this book only the SI and English Engineering systems will be employed. For convenience,
conversion factors from non-SI into SI units are given in Appendix A.
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Table 1-1
Units System Defined Units Derived Units Proportionality
Constant, g,
Metric Absolute Mass, g Force:
Length, cm em em
Time, s dyne = g - 1-E -
Temp., °K s dyne-s
English Absolute Mass, Ib Force:
Length, ft )
Time, s poundal = Ib'“z f 1 Ib“'—ﬂr
Temp., °R 13 poundal-s
British Technical Force, Ib; Mass:
Length, ft 2 i
Time. S Slug = tbt—s Slﬁ%
Temp., R f‘ lbf' S
English Engineering Force, 1b; {None)
Mass, tb,,
Length, ft
Time, s 32.17%
Temp., °R Ib;-s
International Length, m Force:
System (SI) Mass, kg ) )
Time, s newton (N) = 221 | ';f';'
Temp., K § ¥

Solved Problems

1.1. Determine the steady state rate of heat transfer per unit area through a 4.0cm thick
homogeneous slab with its two faces maintained at uniform temperatures of 38 °C and 21 °C.

The thermal conductivity of the material is 0.19 W/m- K.
T

The physical problem is shown in Fig. 1-3. For the steady state,
(1.1) and (1.2) combine to yield

iz_k(ﬂ) | -
A Xy — Xy
W (21 -38\°C T
=~ 0.19—— — = +80. 2
0 m_K( o )m 80.75 Wim

1.2. The forced convective heat transfer coefficient for a hot fluid
flowing over a cool surface is 225 W/m?-°C for a particular
problem. The Auid temperature upstream of the cool surface
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1.3.

is 120 °C, and the surface is held at 10 °C. Determine the heat transfer rate per unit surface area
from the fluid to the surface.

q =hA(T, - T.)
% = (225 Wim?-°C) [(120 - 10)°C]

= 24 750 W/m?

After sunset, radiant encrgy can be sensed by a person standing near a brick wall. Such walls
frequently have surface temperatures around 44 °C, and typical brick emissivity values are on
the order of 0.92. What would be the radiant thermal flux per square foot from a brick wall at
this temperature?

Equation (1.7) applics.
% = eoT* = (0.92)(5.6697 X 107 *}(W/m?- K*)(44 + 273)" K*

= (0.92)(5.6697 X 10"*)(317)* = 527 W/m

Note that absolute temperature must be used in all radiant energy calculations. Also, o is frequently
abbreviated by 5.67 X 107" W/m?-K",

Determine the dynamic viscosity p,, and the kinematic viscosity » of hydrogen gas at 90 °R and
38.4 atm.

From Table B-4 (Engl.) at 90°R = —370 °F,
fy = 1.691 % 10" b Jft-s p = 0.031 81 Ib/ft
From Table B-5 (Engl.) the critical state is p, = 128 atm; T, = 59.9°R. So,

38.4 90
P, === =3 = —=1.
28 0 T

From Figure B-4, w,,/pt,,; = 1.53, so that
=155 X 1691 X 10 © =262 % 10°°Ib,/ft-s

At high pressure (P, = 3.0) the ideal gas law must be modified in order to calculate p and thence v.
For a real gas we write the equation of state as pv = ZRT, where Z is the compressibility factor and
R = %/M is the universal gas constant divided by the molecular weight. It follows that

p_v_ plZ
m v mig
For the present problem, standard tables give Z = (.81, Z, = 1. Thus,

p _ 38.4/081
0.031 81 Ib,/ft* /1

p =151 Ib,/ft*

and

2.62 X 107" Ib,fft-s

IO

v:ﬁ'—"—:
P

In general, whenever the pressure effect upon viscosity p or thermal conductivity & is significant, the
deviation from ideal gas behavior will affect the value of p significantly.
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In the summer, parked automobile surfaces frequently average 40-50 °C. Assuming 45 °C and
surface emissivity of 0.9, determine the radiant thermal flux emitted by a car roof.
% = e T* = (0.90)(5.67 X 10 ¥} (W/m?- K*)(318 K)*
=522 W/m?

Note that absolute temperature must be used in all radiant energy calculations.

Determine u in English Engineering units (Ib,/ft-s) for nitrogen gas at 80 °F and 2000 psia.
(This is a common bottle pressure for commercial sales.)

From Table B-5 (Engl.), the critical state is p, = 33.5 atm; T, = 226.9 °R. Thus,

B (2000/14.7) atm _ 539.7°R
"7 335atm 226.9°R

From Figure B-4, w/u, =~ 1.25. From Table B-4 (Engl.), gy = 11.99 X 10~ Ib/ft-s, so
pw=11.99x 10 *x 1.25 = 14.99 X 10~ Ib,/ft-s

=406 T,

=2.379

Estimate the thermal conductivity in W/m-K of steam at 713K and 130 atm (13.17 x< 10°
pascals).

From Table B-4 (SI), by interpolation at 1 atmosphere pressure and 440 °C,
For use with Fig. B-3 for steam

130 atm
= f L —— .. = .y
P, = pip, 7183 atm (.5955 = 0.60
700K
7,=TT, = = 1.10
’ . 6474 K
From Fig. B-3,
k
‘E'l' = 1.3
and

k = 1.3(0.0516) = 0.0671 W/m-K

Estimate the thermal conductivity of steam at 1283 °R and 1925 psia.
From Table B-3 (Engl.), by interpolation at 1283 °R (823 °F) and one atmosphere pressure
ky = 0.029 84 Btu/h-ft-°F
For use with Fig. B-3 for steam

1925 psia

P, = plp, = —— = 0.060
PP 3208 psia
1283 °R
T,=TIT, = ———=1.
" ‘" 11653°R 1101
From Fig. B-3.
k
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1.9.

1.10.

and
k = (1.3)(0.029 84) = 0.038 79 Btuw/h -ft-°F

What is the approximate density of nitrogen gas at 27 °C and 13.79 X 10° pascals? (Common
pressure and temperature for commercial cylinder of gas.)

From Table B-3 (SI), at one atmosphere pressure and 27 °C, (300 K)
K
o= 11421 -5
=

By eq. (1.11) with p; = 1 atm = 1.013 X 10° pascals
P ke ]3.79x10")
= o (2) = 1140 28 (20T
? ”‘(pl) b m3(1.013x10’

p = 155.5 kgfm®

1

A hollow cylinder having a weight of 4 b, slides Rod
along a vertical rod which is coated with a /
light lubricating oil (see Fig. 1-4(a)). The steady
velocity (terminal) of the slide is 3.0 ft/s. The Stide
hole diameter in the slide is 1.000in and the Shide

radial clearance between the slide and the rod is ' 4
0.001 in. The slide length is 5in. Neglecting all
drag forces except the viscous shear at the inner l
surface of the cylinder and assuming a linear

velocity profile for the lubricant, estimate the i
dynamic viscosity of the oil. Compare this with

tabulated values for engine oil at 158 °F. (@) (b)

/////‘

=
g

NNNNANN

L

2
RS

0.001 |

Since the radial clearance is small, the suggested Fig. 1-4
linear velocity profile, shown in Fig. 1-4(b), will be a
suitable first-order approximation. The velocity in the fluid ranges from 0 at the rod surface to 3 fus at the
slide surface, and
du _Au _ (3-0)fus
dy Ar  (0.00112)ft

From a free-body diagram of the slide, the total downward force is the weight, and the total upward force
is the product of the shear stress and the inner surface area. So 7A = 4 Ib;, whence

7= ﬂ.’ﬂ = 41b, = 367 h
A (d rt)(ﬁ! ft) Tl

=36x10%s"!

By (1.17),
_du _ 1b,
7= #"dy =36.7 i
_36.71byft’  (36.7 Ib/ft})s N
= ™ dudy 36X 10 019X 107

From Table B-3 (Engl.), the dynamic viscosity of engine oil at approximately 158 °F (70°C) is

1 Ib,, i tby-s?
= pr— = [5357—2) (0.6535 x 10-3 1 | (__Tors”_
= pve ( i ) (0 65353107 = ) (32.1? ft-Ib,, )

Ib[‘ s

=1.08x10"%
i
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which compares well with the preceding estimate. Note that the conversion from Ib,, to Ib, was
accomplished by use of the factor

ft-ib,

2172

1

obtained from Table 1-1. This factor can always be introduced when using English Engineering units if
needed for dimensional conversion.

1.11. A manometer fluid has a specific gravitv § = 2.95 at 20 °C. Determine the density of this fluid
in (a) kg/m® and (b) Ib,/ft".
(a) From Table B-3 (SI) at 20°C (68 °F)
p. = 1000 kg/m*
p = Sp. = (2.95)(1000 kg/m*) = 2950 kg/m*
(b) Using p, = 62.46 Ib,/ft* (from Table B-3 (Engl.))
Ib,,

= | 62.46
p ( ft

)2.95 = 184.2 Ib,/it’

1.12. Determine the thermal diffusivity of helium gas at 260°C and 8.274 < 10° pascals (approx.
8.17 atm). You may assume no effect of pressure on thermal conductivity.
From Table B-4 (SI), by interpolation,
k =0.2109 W/m-K

k
o= 00924 —2
m

3

J
- = 52X 0P ——
€ 2x 10 ke K

By cq. (1.11)

p=pr (ﬁ) = {).m)zak—g(

8.274 X 10° pascals )
P m?

1.013 25 X 10° pascals

Thus, by cquation (1.16)

k s A kg K
uE__=(u.2m9 s )( il ]( £2 )
P\ m-K /L0754 kg J\5.2x10°)

a=5383% 10 *m’fs

1.13. A camera used by astronauts during exploration of the lunar surface weighed 2.0 Ib; on earth.
Average lunar gravitational acceleration is one-sixth that of the earth. What was the camera
weight on the moon in Ib, and in N?

Since the camera weighs 2.0 Ib, where gravitational acceleration is standard, its mass is 2.0 Ib,,; i.e., by
(1.19). with F = wt_,

= (W) g, (2015,)(32.17 ft-1b,, /b s*)
u 3217 fitfs?

= 2.01b,,
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Hence, on the moon,

oL, (201b,)((32.176) fUs?)
T M T T 37 b by s

= 0.331b,
In SI units (by Table A-1),

N
wt. = (.33 1b; x 4.4482 e 1468 N
T

1.14. What is the kinematic viscosity of air at 450 K and 1.00 X 10% pascals?
From Table B-4 (SI), at 450 K and 1 atmosphere pressure,

k
py = 2.484 X 1075 —~E_
m-s

o = 0.783 kg/m®

By eq. (1.13),

_(p\_ 1.00x 10° | kg
P p'(p.) N 0'783(1_013 X 10’) m?

= 7.729 kg/m®

Thus, by (1.18)

_ 2484 X10- kg/m's

kgt S212% 10 ms

Checking, plp. = 9.87; TIT, = 3.40, so by Fig. B-4 p/p; = 1.0.

L.1S. Determine the dynamic viscosity u., of hydrogen gas at SOK and 11.67 X 10° pascals.
From Table B-4 (SI), at SOK = —223°C

Yot = 2.516 % 10-5—KE-
m-s

kg
p = 0.5095 a‘i
From Table B-5 (Engl.), the critical state is

pe = 12.8 atm; T, =599 "R(Bs-o—-l;-) =33.27K

Thus, with p = (11.67 X 10° Pa)/(1.013 X 10° Pafatm) = 115.2 atm

152 50

X T,=—=——=150
12. "3327
Then from Figure B-4, w,/i,; = 3.0, so that

P = 3.0(2.516 X 107 ig—) = 7.55 x 10-° &
m-+Ss m-s
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1.16. A proposed experiment package weighs 132N on earth. For a simulated gravity in a space
platform of one-fifth that of earth’s gravity, what is the weight of the package (@) in SI units?;
() in English engineering units?

_wt 132N 5
(a) M= e ws 13.47 Nfm/s
In the space platform,
1347N\ /9.80m
F=ma= ( o )( 5S¢ ) =1264N

(b) In English engineering units by Table A-1,

wt = force = 26.4 N( tb )

4.448 N
= 5.94 ]b[
1.17. Verify the conversion factors

(a) 1fus=0.3048 m/s
(b) 1ft/h = 8.4666 % 105 m/s
(¢) 1km/h =0.2777 m/s

fty /0.3048 m
(a) (I ;)( m ) = 0.3048 m/s

ft\/03048m\/ h .
(b {Ihs)( i )(36005)—8.4666><}0 m/s

km\ /1000 m h
© (1 T)( - )(m) ~ 02777 mls

1.18. Verify the conversion factors
(@) 1Btu/ft®-h = 3.1525 W/m?
(b) 1Btu/h =0292875W
(¢) 1Btu/h-ft-°F = 1.729 W/m-K
Btu \ /1054.35) ft! h J w
@ (' nz-h)( Btu )((D.3O48m)2)(360[)s) TIBB TG =3B
Btu )/ 1054.351) h
(5) (l—h—]( - )(mS)_o.zgzmsw
Btu 1054.351 ft h 9°F w

© (l h‘n-°!=)( Btu )(0.3048m)(36005)(§7(—) = 172958 %

1.19. Estimate the thermal conductivity of steam at 65 atm pressure and 575 K.

These conditions arc relatively extreme and this pressure undoubtedly alters the value for one
atmosphere. Using Fig. B-3, with T, = 647.4K

515K 65 atm
T, = ——— = 3 [ —
" 647K 089, F 218.3 atm '
From Fig. B-3 obtain k where k, is the value at 1.0 atm,
k
—=1.29
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1.21.

From Table B-4 (SI), at P = 1atm and T = 575K,

ky = 0.040 05 W/m-K

and hence
k = 1.29 (0.0401) =~ 0.0517 W/m-K

To show the sensitivity of k of steam to pressure, repeat Problem 1.19 at 87.5 atm.
Since the temperature is unchanged from that of Problem 1.19,
7,=0.89

and

From Fig. B-3, k/k, = 1.5 and using k, from Problem 1.19,
k = 1.5 (0.0401) = 0.0601 W/m-K

A 34% increase in pressure caused a 16% increase in k. So steam thermal conductivity is quite pressure
sensitive at high pressure.

The air inside an electronics package housing has a temperature of 50°C. A “chip” in this
housing has internal thermal power generation (heating) rate of 3 X 107" W. This chip is
subjected to an air flow resulting in a convective coefficient # of 9 W/m?-°C over its two main
surfaces which are 0.5cm X 1.0cm (see Fig. 1-5). Determine the chip surface temperature
neglecting radiation and heat transfer from the edges.

The heat transfer rate is, by eq. (1.5),
q=hA(T,—T.)

In this case g is known (3 %X 107* W), and this is from the two surfaces having total area

BIPYALCINR Y RS N 5 10-4 = 104 2
A, 2(lmm)( m) 2(0.5m?) x 1074 = 10*m

100
q IX107YW
=T.+—=50°C+
T hA, 30°C O Wim?°C)x 10 *m?
Thus

7, = 50°C +333°C = 5333°C ]
1.0cm
\\an?

Air
T_=50°C
-.’-ﬁ-ﬂf-‘

Fig. 1-§
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1.22.

1.23.

1.24,

1.25.

127

1.28.

1.29.

1.30.

131

132,

1.33.

1.34.
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Supplementary Problems

A plane wall 0.15cm thick, of a homogeneous material with
k =040 W/m-K, has steady and uniform temperatures T, = 20°C
and T,=70°C (see Fig. 1-6). Determine the heat transfer
rate in the positive x-direction per square meter of surface
area.  Ans. —133 Wim?

Forced air flows over a convective heat exchanger in a room heater,
resulting in a convective heat transfer cocfficient & = 200 Btuth-f*-°F.
The surface temperature of the heat exchanger may be considered

constant at 150 °F, and the air is at 65 °F. Determine the heat exchanger | 1

surface area required for 30 000 Btu/h of heating.  Ans.  1.765 ft* + + x
| 2

Asphalt pavements on hot summer days exhibit surface tcmpera- Fig. 1-6

tures of approximately 50°C. Consider such a surfacc to emit as a
blackbody and calculate the emitted radiant energy per unit surface
area.  Ans 617 W/m?

Plot thermal conductivity versus temperature in SI units for copper and cast iron over the range of values
given in Appendix B-1 (SI). Which of these is the better thermal conductor?

Plot thermal conductivity versus temperature in SI units for saturated liquid ammonia and saturated liquid
carbon dioxide over the ranges of temperature given in Table B-3 (SI). Does the behavior of either of these
depart from the general rule that k for liquids decreases with increasing temperature?

Determine the thermal conductivity for steam at 530°F and 100 psia.
Ans.  0.0219 Bw/h-ft-°F (ktk, = 1.0)

Determine the thermal conductivity of steam at 700 K and 1.327 % 107 N/m’.

Ans.  0.0505 W/m-K (kik, = 1.0)

Determine the thermal conductivity of carbon monoxide gas at 1 atm pressure and 93.7 °C.
Ans  0.0299 W/im-K

Approximate the density of gaseous carbon monoxide at 550K and 827kPa.  Ans 506 kg/m®

Using the density of mercury at 50°C, determine its specific gravity.
Ans.  13.49 (based on density of water at 20 °C)

A 1.5 in diameter shaft rotates in a sleeve bearing which is 2.5 in long. The radial clearance between the
shaft and the sleeve is 0.0015 in, and this is filled with oil having g, = 1.53 X 1072 Ib,,/ft-s. Assuming a
rotational speed of 62 rpm and a linear velocity gradient in the lubricating oil, determine the resistive
torque due to viscous shear at the shaft-lubricant interface. Ans. 0.0079 1t -1b,

Plot the kinematic viscosity of steam at 300 psia for the range of temperature of steam properties in Table
B-4 (Engl.). Ans v = 24814 x 107* ft¥/s a1 530 °F, p = 0.5102 Ib,,/ft* at 530 °F

During launch a NASA Space Shuttle Vehicle had a maximum acceleration of approximately 3.0 g, where
g is standard gravitational acceleration. What total weight in lb; and in N should be used for a 180 Ib,, crew
member? Ans. 5401b; 2402 N
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1.35.

1.36.

1.37.

1.38.

A land vehicle to be used in the future manned exploration of the moon surface weighs 493.8 Ib, on earth.
This is loaded weight minus crew. Assume an average lunar gravity equal to one-sixth standard earth
gravity. (@) What is the vehicle mass in kg? (b) What is the vehicle weight on earth in N? (¢) What is the
vehicle weight on the moon in Ib,?  Ans  223.9kg; 2196 N; 82.3 by

Verify the viscosity conversion factors
(@) 1 stoke =1.0X10°m’/s

(b)) 1ft¥s = 92903 X 10"* m¥s

(©) 1f%/h = 2.5806 X 10* m%s

Verify the following pressure conversion factors:
(a) 1lbgfi? = 47.8803 N/m?

(b) 11bdin? = 6.8947 % 10° N/m?

() 1mmHg = 1.3332 X 10> N/m?

The lunar temperature range on the side facing the earth is approximately —400°F to +200 °F. These
correspond to the lupar night and day. What is this range in (@) °C, (b) °R, (c) K?

Ans. —240°C to 93.33 °C; 59.67 °R 10 659.67 °R; 33.15 K to 366.48 K



Chapter 2

One-Dimensional Steady-state Conduction

2.1 INTRODUCTORY REMARKS

The conductive heat transfer rate at a point within a medium is related to the local temperature
gradient by Fourier’s law, (1./). In many one-dimensional problems we can write the temperature
gradient simply by inspection of the physical situation. However, more complex cases—and the
multidimensional problems to be treated in later chapters—require the formation of an energy
equation which governs the temperature distribution in general. From the temperature distribution,
the temperature gradient at any desired location within the medium can be formed, and consequently
the heat transfer rate may be calculated.

- Ax ———

2.2 GENERAL CONDUCTIVE ENERGY
EQUATION

A
R
N

Consider a control volume consisting of a small
parallelepiped, as shown in Fig. 2-1. This may be an element 4,
of material from a homogeneous solid or a homogencous
fluid so long as there is no relative motion between the
macroscopic material particles. Heating of the material
results in an energy flux per unit area within the control /
volume. This flux is, in general, a three-dimensional vector. z
For simplicity, only one component, g,, is shown in Fig. 2-1.

Application of the first law of thermodynamics to the
control volume, as carried out in Problem 2.1, yields the
general conduction equation

d aT d aT\ o aT aT
—|k—]|t+—k—}+— | k— ]|+ q" = pc— .
. dx (k ax) ay (k ily) az (k az) q"=pe ot @1

{
rm——r-

)

;!

|
b

\
Ay

A

Fig. 2-1

for the temperature T as a function of x, y, z, and t. (The M designates an important equation.) Here,
k is the thermal conductivity, p is the density, c is the specific heat per unit mass, and g is the rate of
internal energy conversion (‘“‘heat generation™) per unit volume, A common instance of ¢” is provided
by resistance heating in an electrical conductor.

In most engineering problems & can be taken as constant, and (2.1) reduces to

2 2 2
where « is given by (1.16).
Special Cases of the Conduction Equation
1. Fourier equation (no internal energy conversion)
L @3)
Ax Ay az a ot

16
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2. Poisson equation (steady state with internal energy conversion)

AT #T FT q"
o + o + s + e 0
3. Laplace equation (steady state and no internal energy conversion)
T T  o'T
+ +

=0
ax?  ay?r  az?

Cylindrical and Spherical Coordinate Systems

The general conduction equation for constant thermal conductivity can be written as
" 1aT
| VT + 9 _2 —
k a ot

in which V2 denotes the Laplacian operator, In cartesian coordinates,

o ()
V2T=V'VT=( p. J‘—+k_—) (.-‘Eﬂ‘ﬁ kﬂ)

ay a9z ax dy az
dzT o’ T, (F T
ax? dyz

Forming V27 in cylindrical coordinates as given in Fig. 2-2 results in

dT 14T 1H2T+d’T
o T Faqbz iz’

and the result for the spherical coordinate system of Fig. 2-3 is

VT =—

2 1 @ 1 3T
vir= ,2( n+ rzsmn,bacp(m'p ) 2sin’ y 3¢’

17

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

In the following sections the general conduction equation will be used to obtain the temperature

gradient only when such cannot be found by inspection or simple integration of Fourier’s law.

Fig. 2-2 Fig. 2-3
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2.3 PLANE WALL: FIXED SURFACE TEMPERATURES

[ ernert
The simplest heat transfer problem is that of one-dimensional,
steady state conduction in a planc wall of homogeneous material having 4
constant thermal conductivity and with cach face held at a constant
M

beger. 7 /A
uniform temperature, as shown in Fig. 2-4. —T,
Separation of variables and integration of (/.7) where the gradient
direction is x results in
T Ty I Ax |
qj dx=-kAj dT x x
Ty T
or Fig. 2-4
Tz -1 Tz - Tl
= —kA = —kA 2.9
q Fap A (2.9)
This equation can be rearranged as
7,— 7, th 1 potential diffi C
- 1 2 _ thermal potenti : ifference (2.10)
Ax/kA thermal resistance

Notice that the resistance to the heat flow is directly proportional to the material thickness, inversely
proportional to the material thermal conductivity, and inversely proportional to the area normal to the
direction of heat transfer.

These principles are readily extended to the case of a composite plane wall as shown in Fig. 2-5(a).
In the steady state the heat transfer rate entering the left face is the same as that leaving the right face.
Thus,

= u and = Tz_ T‘j
9 '&xﬂ';kﬁA q Axbt!kbA
Together these give:
—_ T] — T3
7" (AxJk,A) + (Axylky A) (2.11)

Equations (2.10) and (2.17) illustrate the analogy between conductive heat transfer and electrical

A/
Ax, ﬁ
"‘\w KA kA
g ——— q - > .
a ‘Tﬂ Ly ,\/\I T, ‘\/\, T,
VNV
1 2 3

(a) (&)
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current flow, an analogy that is rooted in the similarity between Fourier’s and Ohm’s laws. It is
convenient to express Fourier’s law as

overall temperature difference
summation of thermal resistances

conductive heat flow = (2.12)
In the case of the composite two-layered plane wall the total thermal resistance is simply the sum of
the two resistances in series shown in Fig. 2-5(b). The extension to three or more layers is obvious.

24 RADIAL SYSTEMS: FIXED SURFACE TEMPERATURES

Figure 2-6 depicts a single-layer cylindrical wall of a homogeneous material with constant thermal
conductivity and uniform inner and outer surface temperatures. At a given radius the area normal to
radial heat flow by conduction is 27rL, where L is the cylinder length. Substituting this into (1.1)) and
integrating with ¢ constant gives

q n
= —=L _m2 .
L-Ty= - irin” (2.13)
or
 2akL(T, - T))
T In(nn) (214)

From (2.74) the thermal resistance of the single cylindrical layer is [in(ry/r)]/27kL. For a
two-layered cylinder (Fig. 2-7) the heat transfer rate is, by (2.12),

- 27L(T; — Ts)
Uk, In (rafry) + (Ltky) In (r/rs)

and this too is readily extended to three or more layers.

q (2.15)

=

dr

Fig. 2-6 Fig. 2-7

For radial conductive heat transfer in a spherical wall the area at a given radius is 47r7°. Substituting
this into Fourier’s law and integrating with ¢ constant yields

_amk(T, — T,)
9 Wy = (Uny)

From this the thermal resistance afforded by a single spherical layer is (1/r, —1/r)/4wk. In a
multilayered spherical problem the resistances of the individual layers are linearly additive, and (2.12)
applies.

(2.16)
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2.5 PLANE WALL: VARIABLE THERMAL CONDUCTIVITY

From Section 1.4 we recall that material thermal conductivity is temperature dependent, and
rather strongly so for many engineering materials. It is common to express this dependence by the
linear relationship (7.9). Then, as shown in Problem 2.12, (2.10) is replaced by

T| - Tz

97 Ak, A @.17)
where
6 +6
K = k.,(l +b— > 2) = ko(1 + b8,,) (2.18)
is the thermal conductivity evaluated at the mean temperature of the wall,
p _6+6, T\ +T,
'™ 2 2 rel

Often, however, the average material temperature is unknown at the start of the problem. This is
generally true for multilayer walls, where only the overall temperature difference is initially specified.
In such cases, if the data warrant an attempt at precision, the problem is attacked by assuming
reasonable wvalues for the interfacial temperatures, obtaining k, for each material, and then
determining the heat flux per unit area by (2.12). Using this result, the assumed values of the interfacial
temperatures may be improved by application of Fourier’s law to each layer, beginning with a known
surface temperature. This procedure can be repeated until satisfactory agreement between previous
interfacial temperatures and the next set of computed values is obtained.

The temperature distribution for the plane wall having thermal conductivity which is linearly
dependent upon temperature is obtained analytically in Problem 2.13, and the treatment for a
cylindrical wall with linear dependence of k upon temperature is considered in Problem 2.15.

2.6 HEAT GENERATION SYSTEMS

Besides /?R heating in electrical conductors, heat generation occurs in nuclear reactors and in
chemically reacting systems. In this section we will examine one-dimensional cases with constant and
uniform heat generation.

Plane Wall

Consider the plane wall with uniform internal conversion of energy (Fig. 2-8). Assuming constant
thermal conductivity and very large dimensions in the y- and z-directions so that the temperature
gradient is significant in the x-direction only, the Poisson equation, (2.4), reduces to

aT g
W-'-T:O (2.19)

which is a second-order ordinary linear differential equation. Two boundary conditions are sufficient
for determination of the specific solution for T(x). These are (Fig. 2-8(a)):

T=T, at x=0 and T=T, at x=2L

Integrating (2.79) twice with respect to x results in

e

T= ‘g_kxz+C|I+C2
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Fig. 2-8

The boundary conditions are then used to give

T,-T "L
=T G=——+i=

Hence,

_ Tg_Tl qm _
T—[ T +2k(2L x)]x+T|

The heat flux is dependent upon x-location; see Problem 2.18.
For the simpler case where T, = T, = T, (Fig. 2-8(b)), (2.20) reduces to

T= T,+g—k(2L—x)x

Differentiating (2.21) yields

so that the heat flux out of the left face is

dT ¢"L
= —kA=—| =-kAT==-g"AL
q kA dx =0 k q

21

(2.20)

(2.21)

(2.22)

The minus sign indicates that the heat transfer is in the minus x-direction (for positive g™); the product
AL is one-half the plate volume. Thus (2.22) can be interpreted as indicating that the heat generated

in the left half of the wall is conducted out of the left face, etc.

Cylinder

Consider a long circular cylinder of constant thermal conductivity having uniform internal energy
conversion per unit volume, ¢”. If the surface temperature is constant, the azimuthal gradient #7/a¢
is zero during steady state, and the length precludes a significant temperature gradient along the axis,

dTlaz. For this case, (2.7) simplifies to

d*T 1dT

2= a7
v dr2+rdr
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and (2.6) becomes for steady state
d*T 1dT

q" _
P i e (223)

a second-order ordinary differential equation requiring two boundary conditions on T(r) to effect a
solution. Usually the surface temperature is known and thus

T=T, at r=rg (2.24)

A secondary boundary condition is provided by the physical requirement that the temperature be
finite on the axis of the cylinder, i.e., dT/dr =0 at r = 0.

Rewriting (2.23) as
d{dr\ _ ng"
ar\"dar k
and then performing a first integration gives
dT __r q" + E

a2k r

Integrating again, we obtain

2
r
T: "'&‘%"' C]lnr‘l’c‘z
The finiteness condition at r = 0 requires that C, = 0. Application of the remaining boundary
condition, (2.24), yields

rnq
T, +—==
CZ 5 k
and consequently
rzqm r 2
T-T,== 1-[— .
T 4k [ (r,)] (2.25)

A convenient dimensionless form of the temperature distribution is obtained by denoting the
centerline temperature of the rod as 7, and forming the ratio

T-T, r\?
=T =1 (Fs) (2.26)

2.7 CONVECTIVE BOUNDARY CONDITIONS
Newton's law of cooling, (1.4), may be conveniently rewritten as
g = hAAT (2.27)

where A = convective heat transfer coefficient, Btu/h - ft?- °F or W/m?-K
A = area normal to the direction of the heat flux, ft2 or m?
AT = temperature difference between the solid surface and the fluid, °F or K

In this section we will consider problems wherein values of /# are known or specified, and we will direct
our attention to the solution of combined conductive~convective problems.
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Overall Heat-Transfer Coefficient

It is often convenient to express the heat transfer rate for a combined conductive—convective
problem in the form (2.27). with 4 replaced by an overall heat-transfer coefficient U. We now
determine U for plane and cylindrical wall systems.

Plane wall A plane wall of a uniform, homogeneous material a having constant thermal conductivity
and exposed to fluid ¢ at lemperature 7, on one side and fluid ¢ at temperature 7, on the other side
is shown in Fig. 2-9(a). Frequently the fluid temperatures sufficiently far from the wall to be unaffected
by the heat transfer are known, and the surface temperatures 7, and 7, are not specified.

Applying (2.27) at the two surfaces yiclds

&= h(Ti~ 1) = h(T:~T,)

or

T.-T -7,
S — =3 — 2‘
T kA " URA (2.28)

where the overbar on # denotes an average value for the entire surface.

T,
Fluid r

\le : R, R, R,
Fluid o T VV R VVTEVVTS

{a) )
Fig. 2-9

In agreement with the electrical analogy of Section 2.3, 1/4A can be thought of as a thermal
resistance due to the convective boundary. Thus, the clectrical analog to this problem is that of three
resistances in serics, Fig. 2-9(b). Here, R, = L, /k,A is the conductive resistance due to the
homogeneous material a. Since the conductive heat flow within the solid must exactly equal the
convective heat flow at the boundaries, (2.712) gives

q ?-: - Tn _ (AT)UV[!I'H]]

AUkt Lk, + Uk, ASR, (2:29)

Defining the overall heat-transfer cocfficient U by
- 2.30
T AR, (2.30)

for any geometry, we see that

{
&= U (2.31)
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and for the plane wall of Fig. 2-9(a),

1
=— — 2.32
U=+ Lk + 1K, (2.32)
For a multilayered plane wall consisting of layers a,b, ...,
1
= - 2.33
v Wh, + L.k, + Lytk, +---+ 1/h, ( )

Radial systems Consider the cylindrical system consisting of a single material layer having an inner
and an outer conveetive fluid flow as shown in Fig. 2-10(a). If 7 is the temperature at r,, etc., then
(2.12) gives

_ (a‘T)m.rcmll _ T: - 7‘0

SR, SR, (2.34)
where the thermal resistances are:
R, = inside convective Ry, = m
R, = conductive R,, due to material a = 1—;%
R, = outside convective R, = m

In these expressions L is the length of the cylindrical system. Summing the thermal resistances,
1 + In (rofry) + 1

" 2mr, Lk, 2wk,L | 2ar,Lh,

2Ry,

Now by definition U = 1/(A3R,), and for A it is customary to use the outer surface area,
A, = 271, L, so that
U = 1
“ O (radr k) + [rIn (rfn )ik, + (17R,)
where the subscript o denotes that U, is based on the outside surface area of the cylinder. For a
multilaycred cylindrical system having n — 1 material layers,
1
(r”;ﬁ E,:' + [r,, In (rz;rl)kaz] +--- 4 [r,,ln (]’,Jr"_l)!‘k"_]‘u] + (IH{“)

Un =

(2.35)

Fig. 2-10
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where the subscripts on k denote the bounding radii of a layer (e.g., for a two-layered system with the
outer layer of material b, &k, = k,3).

Critical Thickness of Cylindrical Insulation

In many cases, the thermal resistance offercd by a metal pipe or duct wall is negligibly small in
comparison with that of the insulation layer (see Problem 2.27). Also, the pipe wall temperature is
often very nearly the same as that of the fluid inside the pipe. For a single layer of insulation material,
the heat transfer rate per unit length is given by

q A 2n(T; ~T,)
LU, =AT= 2.36
L u L AT [In (rir)ik] + (1ihr) (2.36)
where the nomenclature is defined in Fig. 2-11.
Tﬂ
- h,=h
{a) Pipe System (b) Rod or Wire System
Fig. 2-11
As a function of r, g/L has a maximum at
k
= | Jp— 2. 7
F= tem h (2.37)

Thus, if r; < r;,, which is sometimes the case with small tubes, rods or wires, the heat loss rate increases
with addition of insulation until ¥ = r;, and then decreases with further addition of insulation. On the
other hand, if r, > r_,,, the heat loss rate decreases for any addition of insulation.

28 HEAT TRANSFER FROM FINS

Extended surfaces or fins are used to increase the effective surface area for convective heat
transfer in heat exchangers, internal combustion engines, electrical components, etc.

Uniform Cross-Section

Two common designs, the rectangular fin and the rodlike fin, have uniform cross-section and lend
themselves to a common analysis.
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Rectangular fin Figure 2-12 shows a reclangular fin having temperature 7, at the base and

surrounded by a fluid at temperature T... Applying the first law of thermodynamics to an element of
the fin of thickness Ax gives, in the steady state,

(energy conducted in at x) = (energy conducted out at x + Ax)
+ (energy out by convection)
Assuming no temperature variation in the y- or z-directions, the three energy terms are respectively
dT

= —kA—
« dx

where P is the perimeter, 2(w + 7). Substituting these three expressions, dividing by Ax, and taking the
limit as Ax — 0 results in

= —kA—

THAY X

q q

Geony = H(P AX)(T — T..)

v x+Ax

d&*T  hP
'ax—z—H(T— T-;) ={ (238)

if the thermal conductivity k is constant.

¥

\\

/ %z J:

-/I,

_---—“/’
rb
. . .
Fig. 212
Letting 6 = 7 — T, and n = VhP/kA, (2.38) becomes
d* o
"‘F_YFB:O (2.39)
which has the general solution

0(x) = C, "™ + Ce™™ (2.40)

One boundary condition on (2.40) is 6(0) = T, — T.. = 6, which requires that C, + C, = 6,. Table 2-1
presents the solutions corresponding to three useful choices for the second boundary condition. For

Case 3, h, is the average heat transfer cocfficient for the end area; it may differ from A along the
sides.
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Table 2-1
Second
Rectangular Fin Boundary Condition 616,
Case 1. Very long, with end B(+=) =0 e ™
at temperature of
surrounding fluid
Case 2. Finite length, a6l _y cosh [n(L — x)]
insulated end dx | x-y coshnl
Case 3. Finite length, heat s de 8L cosh [n(L — x)] + (hy /nk)sinh [n(L — x)]
loss by convection dxle., " coshnL + (hy/nk)sinh nlL
at end

In all three cases the heat transfer from the fin is most easily found by evaluating the conductive
flux into the fin at its base:

dT de
= —kA— = —kA—
1 dx x=0 dx v=>0
where A = wt and where the gradient at x = 0 is derived from Table 2-1. We have:
Case 1: g = kAn@, (2.41)
Case 2: g = kAn6,tanhnL (2.42)
sinhnL + (h /ink) coshnL
3 g= .43
Case 3t g = kAnf [cosh nlL + (hy/nk)sinhnL (2.43)
Remark (a). For a thin fin, w>r and P = 2w, 50
thin fin: n == i—E (2.44)
I

Remark (b). The preceding solutions for temperature distributions and heat fluxes would be
unchanged for a solid cylindrical rod or pin-type fin other than in the expressions for P and n. If r is

the radius of the rod,
pinorrod: n= f-i—ﬁ— (2.45)
¥

Remark (c). The insulated-end solution (2.42) is often used even when the end of the fin is
exposed, the heat loss along the sides being typically much larger than that from the exposed end. In
that case, L in (2.42) is replaced by a corrected length only in evaluation of g:

rectangular fin: L.=L +%

cylindrical pin or rod: L.=L +£-

Nonuniform Croess-Section
The differential equation for the temperature distribution is now

2
d’e 1 dA de E(l d‘g)er.o

A E KA X

P TI T (2.46)



28 ONE-DIMENSIONAL STEADY-STATE CONDUCTION [CHAP. 2

where A = A(£) and § = S(£) are respectively the variable cross-sectional area and variable surface
area.

Annular fin of uniform thickness Consider the annular fin shown in Fig. 2-13. For no circumferential
temperature variation and for ¢ small compared with r, —r,, the temperature is a function of r only
(€ = r). The cross-sectional area and the surface area are A(r) = 27t and S(r) = 2m(r* — r{) so that
(2.46) becomes

4’6 1de 2h

-l =
drr  rdr ki =0 (247)

This is a form of Bessel’s differential equation of zero order, and it has the general solution
6= C] Iﬂ(nr) + CzKﬂ(nr) (2-48)
where n = V2hiki

I, = modified Bessel function of the 1st kind
K, = modified Bessel function of the 2nd kind

The constants C, and C, are determined by the boundary conditions, which are:

de
n=T,—-T. =6 — =0
9( 1)' b b d" pory
The second of these conditions assumes no heat loss from the end of the fin. This is generally more
realistic for the annular fin than for the rectangular case because of rapidly increasing surface area with

increasing r.

T, T

k-

¢ Y-

-l

Fig. 2-13

With C, and G, evaluated, (2.48) becomes
6 - Io(nr) Ky(nr;) + Ko(nr) i (nr,)
6, Iy(nn)Ky(nr) + Ky(nn) I(nr)

Determining the heat loss from the fin by evaluating the conductive heat transfer rate into the base,
we obtain

(2.49)

Ky(nry) Ii(nr)) — Li(nr) Ky (nr2)

q = 27ki6y(nr,) I(nn) Ky(nr,) + Ko(nr) 1(nry)

(2.50)

A table of Bessel functions sufficiently accurate for most engineering applications is included in
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Jahnke, E., E Emde, and E Losch. Tables of Higher Functions, 6th ed., McGraw-Hill, New York,
1960.

Straight triangular fin The solution of (2.46) for the fin shown in Fig. 2-14 (for t<<L, the
temperature will be a function of x alone) is
6 _ I,(2px'?
- (I( pj’ ”2) (2.5’)
6, 1o(2pL'")

where
p= f% f=V1+ (.n'ZL)E

The heat loss from the fin per unit width (z-direction) may
be found by application of Fourier’s law at the basc of the
fin; this results in

_ —ktb,p L(2pL')
LI!Z ]{;(2{)].:“2)

(2.52)

Fin Efficiency

The primary purpose of fins is to increase the effective heat transfer surface area exposed to a
fluid in a heat exchanger. The performancc of fins is often expressed in terms of the fin efficiency, ny,
defined by

actual heat transfer

u (2.53)

" heat transfer if entire fin were at the base temperature
In terms of 7y, the heat transfer rate is given by the simple expression

q = h(A, + 1pA[) b, (2.54)
where Ay is the total surface area of fins and A, is the surface area of the wall, tube, etc., between fins

(Fig. 2-15).
A

¢ o8 : _ “‘/

/

e

>
() (b}
Fig. 2-15

Analytical expressions for # are readily obtained for several common configurations. Consider, for
example, the simple case of a rectangular fin with no end heat loss. The efficiency is, from (2.42),

_ VhPkA6O,lanhnl. 1

PLG, = ;;ElanhnL (2.55)

Wi
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If the fin is thin, (2.44) gives

25”2 i 2}; lr2_ 2 25 12
nL (E) L=1 (E) =L (E) (2.56)

where A, = Lt is the profile area of the rectangular fin.

In Fig. 2-16 the fin efficiency of (2.55) is plotted against nL/2'? of (2.56), in which L is replaced
by L. = L + (#/2) to account for tip loss. Similar graphs for the straight triangular fin and the annular
fin of uniform thickness are also presented in this figure. Note that the product L ¢ is the profile area
A, for the rectangular and annular fins, whereas A, is one-half of the product Ltz for the triangular fin.
There is, of course, no length correction for the triangular fin. For the annular fin, rp. = r; + (1/2).

100 =TT T T T
- L Ll"‘ 4
NN i i |
\1\\\ ! T _
© \\‘.\\\ 1_"/ / .
®OL !\:\:Q\ ‘ y
& £ NN ~—
0 'I.L |"’|" N \"“‘-.. -
L redr, o e N
™~ —
0} 24, S el
f@‘ v =SS
L
0 ] 2 3

L7 (hikAL)'? = nl12'7

Fig. 2-16

Solved Problems

2.1. Derive the general conduction equation, (2.7).
For the control volume in Fig. 2-1, the first law of thermodynamics may be expressed as

(rate of heat transfer in) + (rate of work in) + (rate of other energy conversion)
= (rate of heat transfer out) + (rate of work out)
+ (rate of internal energy storage) (1)

For an incompressible substance the net work done on the control volume is converted to internal energy.
Denoting the rate of energy conversion (from work, chemical reaction, etc.) as g”, (1) becomes

al
e, * G, t g, +q"AxByAz = g, +q,, + G, + —a-‘- 2)

Examine the heat transfer terms in (2). In the x-direction the two terms may be grouped to form

aT aT
W= = —byAz| lk—] - [k—
™ i zl( ﬂx).‘. ( ﬂx),,

3
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2.2

by application of Fourier’s law. Notice that k may be temperature dependent and hence spatially
dependent. By a Taylor’s series expansion about the center point P,

(+5) ,."‘EE*(‘?)E;("E;)+
al aT fAx\ 9o aT
o P A A D
(kax) 2 kﬂx+(2 )&x(kax)
so that (3) becomes
] aT
- = —_— — )t
o &yﬁz[mﬂx(k ﬂx) ] (4)
Similarly,
] ar
q)‘l_q}fi_ﬁ‘tAZ[ayg(ka—y)'}"--] (5)
a aT
q:.‘@:z_AIA}’I‘AZE(RE)+---] 6)

Finally, the internal energy storage per unit volume and per unit temperature is the product of density
and specific heat, so

all aT
o~ pe(BxbyAz) = (7)

Substituting expressions (4) through (7) into (2), dividing by the volume AxAyAz, and taking the limit as
Ax, Ay, and Az simultaneously approach zero yields (2.1).

Beginning with the general conduction equation, show that the linear temperature distribution
of Fig. 2-4 is correct.
The appropriate coordinate system is cartesian and hence the equation to be used is (2.2):
F#T 3#T &FT " 1ar
— t—t—t—=——
axr A k am
Assumptions:
1. The plane wall is very large in the y- and z-directions, hence

AT AT small number

— T ——

Ay Az  very large number

Further, the rate of change of, say, AT/Ay with y will be even smaller, so

a*T >*T
ay? az?

2. No internal energy conversion, hence g = 0.
3. The problem is steady state, so aT/at = 0.
Under assumptions 1, 2, and 3, the conduction equation reduces to

L

dx!

Integrating twice gives 7' = Cyx + Cy, which is a linear temperature distribution. The constants C; and G,
are then chosen to satisfy the boundary conditions

T] = C|I| +C2 T; = Clxz + Cz
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Obtain dT/dr for the single-layered cylinder of Fig. 2-6 directly from the appropriate steady
state conduction equation. Substitute this into Fourier’s law and obtain (2.13).

Since the problem is cylindrical and steady state, and there is no internal energy conversion, the
appropriate conduction equation is

#FT 1aT 1 @PT T
VT = st-—t5—+t—=0
ar roar rt o iz

Assumptions: Very long cylinder (or negligible z-direction temperature change) and no angular
temperature variation; hence,

ﬂ:g =() ﬂ ={
az- gt
Thus, the equation reduces to
LR A
drt  r dr rdr\ dr
A first integration pives
r ar B or dT =B ar
dr r
and a second integration yields
T=8BIlnr+c

The boundary conditions, T(r,) = 7| and T{(r;) = T>, determine

Lot
In(rJ/r,)
Fourier's law hecomes
(!T Tl. - ?‘z
= -k 1y— = —k(2wL)B = 27kl. ——
q k(27r )dr (2wL)B k In ()

which is the desired result.

A laboratory furnace wall is constructed of 0.2 m thick fireclay brick having k, = 1.0 W/m-K.
This is covered on the outer surface with a 0.03 m thick layer of insulating material having
ky, = 0.07 Wim-K. The furnace inner brick surface is at 1250 K and the outer surface of the
insulation material is at 310 K. Calculate the steady state heat transfer rate through the wall in
W/m?, and determine the interfacial temperature T, between the brick and the insulation.

Equation (2.11) applies, as does Fig. 2-5, where the temperatures over surfaces 1 and 3 are 1250 K and
310 K, respectively. In this problem the thickness of material a (the brick) is greater than that of material
& (the insulation). Procecding to apply (2.11),

q . Ih—~Ts _ (1250 - 310)K
A (AxJk,) + (Ax/k,) (0.2 m/1.0 Wim-K) + (0.03 m/0.07 W/m-K)
= 1495 Wim®

For the interfacial temperature T, we can apply eq. (2.10) to cither the brick layer or the insulation layer.
Choosing the brick
q ’rl - 'rl q (&‘rﬂ)
72 T =T, — 422«
A Ak, O T Ak,
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T, = 1250 K — 14953(0‘2—'“
o mZ\ 1.0 W/m-K

) = 951 K (or) 678°C
2.5. A common engineering problem is to determine the insulation thickness for a specified heat
transfer rate. If the maximum allowablc heat transicr rate through the wall of the furnace in

Problem 2.4 is 900 W/m?, how thick must the insulating layer be? The brick is unchanged, and
the same insulation material is to be used as in Problem 2.4.

We can apply cq. (2.71) with everything known except Ax,,. Thus

(1250 - 310) K
(0.2 m/1.0 Wim-K) + (Ax,/0.07 W/m-K)

900 Wim?* =

Solving for Ax,,

940
Ax,, = (0.07) (% - u.z) m = 0.059 m

2.6. The ceilings of many American homes consist of a 5/8 in thick shect of Celotex board supported
by ceiling joists, with the spacc between the joists filled with loose rock wool insulation (Fig.
2-17). Neglecting the effect of the wooden joists, determine the heat transfer rate per unit area
for a ceiling lower surface temperature of 85 °F and a rock wool upper surface temperature of
45°F.

""1 1§ |- ' Ty
= _ =

\ R

f-.\ Rock Wool A b5l R, R

f { '_—’W_._'\N_.
] \ 3 b / ¥ T, T LE

(a) ()
Fig. 2-17

The thermal conductivity of rock wool at 65°F average temperature may be taken as
k; = 0.0192 Buw/h-ft-°F and that of the Celotex board is k, = 0.028 Btwh-ft- °F. (The latter value is at 90 °F,
which should be acceptable for this problem.) By the electrical analogy (Fig. 2-17(b))
9 nLi-Ty
A R +R
The thermal resistances per unit arca of the Celotex and the insulation (rock wool) are
R = (0.62512) 1t
* 0.028 Bw/h-ft-°F
(55120
" 0.0192 Btuh-ft-°F

= 1.86 h-ft*-°F/Btu

= 23.87 h-ft>- °F/Btu

Hence,

(85 - 45)°F

= 1.55 -ft?
(1867 23.87) bt FBw 0 Bwh-ft

1.
A
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A composite three-layered wall is formed of a 0.5 em thick aluminum plate, a 0.25 cm thick layer
of sheet asbestos, and a 2.0 cm thick layer of rock wool (at 93 °C, k = 0.0548); the asbestos is
the center layer. The outer aluminum surface is at 400 °C, and the outer rock wool surface is at
50°C. Determine the heat flow per unit area.

From Table B-1 (SI), at 400°C, ky = 249 W/m-K
From Table B-2 (S]), at 51 °C, k4, = 0.166 W/m-K
At 93°C, k.. = 00548 W/m-K

Note that the asbestos sheet average temperature is certainly greater than 51 °C, but this is the only & value

provided for rock wool. Also, the other two thermal conductivities were taken at reasonable temperatures
for this problem. By (2.12),

q_ (400 — 50) °C
A~ (05 X 104249) + (0.25 X 10-4/0.166) + (2.0 X 10-2/0.0548)] m/W/m-K
350K W
= o3ondmiw - 0P

Repeat Problem 2.7 for a two-layer composite wall consisting of the asbestos sheet and the rock
wool, with the same overall temperature difference.

Using the thermal conductivities given in the solution of Problem 2.7 and applying (2.12),

q_ (400 - 50) K — om000 ¥
A (025 X 10-2/0.1660) + (2.0 X 10-2/0.0548)] m/W/m-K U m?

Clearly, the thermal resistance of the aluminum sheet is negligibly small.

A simple thermal conductivity measuring device is ]
shown in Fig. 2-18. The center rod is a metal with ' i
unknown thermal conductivity k which is to be deter-
mined. The upper surface of the rod is maintained at
80 °C with an electric heater, while the lower end
surface is held at 22°C with a cooling water flow
through a plate-type heat exchanger. Assume that
over this temperature range, 22 to 80 °C, b in eq. (1.9) —{_ —D—
is zero and determine the value of k if the electric | ]
power input is 18.45 W and the specimen length and
diameter are 0.1 m and 0.03 m, respectively. From an
examination of Table B-1 (SI), is there a metal having
this approximate value of k?

—+-1— Insulation

Specimen

.

Fig. 2-18

With b = 0, k is independent of & (or temperature) and we have

g= kA i—: o %= -k %}
Hence,
_(glih) _ —aby
AT/IAy AT-A
Where:

q=—1845W; A= %’(0.03 m)? = 7.07 X 10~* m?

AT = -58K; Ay =01m
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2.11.

Thus,

(1845 W)(0.1m)
 (58K)(7.07 x 107* m?)

From Table B-1 (8), with k¥ = 44,99 W/m-K = 26.02 Btu/h ft-°F, this metal could be 1.0% carbon steel
which has k = 43 W/m-K over the range of 0 10 100 K.

= 4499 W/m-K

A 3in o.d. steel pipe is covered with a 1/2 in layer of asbestos (p = 36 Ib,/ft*) which is covered
in turn with a 2 in layer of glass wool (p = 4 Ib/ft*). Determine (a) the steady state heat transfer
rate per lineal foot and (b) the interfacial temperature between the asbestos and the glass wool
if the pipe outer surface temperature is 400°F and the glass wool outer temperature is
100 °F.

Reported conductivity values at 392 °F and 200 °F for asbestos and glass wool, respectively, are

Btu Btu
=0.03
h-ft-°F Kew = 00 ”h-ft"’F

k",,h = 0120

These temperatures should be reasonably close to the average values for these two materials.

(a) By (2.15),

q_ 277 (400 — 100) °F
L [In(2.01.5)kyp + [In(4.02.0)) kg

- 2m(300) °F
~ (0:288/0.120 Btwh-ft-°F) + (0.693/0.0317 Btu/h-ft-°F)

_ 188496°F o Bt
"~ 24.261 h-f1-°F/Btu “heft

(b) Since the heat transfer per ft is now known, the single-layer equation, (2.13), can be used to
determine the interfacial temperature. Thus, considering the glass wool layer,

.69 | 40 ]°F
27(0.0317) 2.0

T, = 270.37 + 100 = 370.37°F

T, - (100 °F) = l

We could have instead used the asbestos layer to find T, since g/L is the same for either layer in
steady state. Note that the average temperature of the glass wool is about 235 °F, which is reasonably close
to the temperature at which the thermal conductivity was chosen.

A steel pipe (k = 45.0 W/m-K) having a 5.0cm o.d. is covered with a 4.2cm thick layer of
magnesia (k = 0.07 W/m-K) which is in turn covered with a 2.4 cm layer of fiberglass insulation
(k = 0.048 W/m-K). The pipe wall outside temperature is 370K and the outside surface
temperature of the fiberglass is 305 K. What is the interfacial temperature between the
magnesia and the fiberglass?

Figure 2-7 with (2.15) applies, where material a is 85% magnesia and b is fiberglass. Then for

rn=25cm=0.025m r, = 6.7cm = 0.067m
rn=101cm=0.101 m
T,=370K T,=305K

Ky = Kpyy = 007 Wim-K Kk, = k, = 0.048 W/m-K
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(2.15) yields
q _ 27(370 - 305) K
L [(1/0.07)In (6.772.5) + (1/0.048) In (10.1/6.7)] m-K/W
o 2n(65)
~ 508 - 855 (04 Wim

The interfacial tempcrature desired is 75 of Fig. 2-7.
By eq. (2./4) with ¢/L. = 18.04 W/m,
27 (0,07 Wim-K)(370 K — T3)

18.04 Wim = In(6.7/2.5)

30K - T, = 18041n (g—;) K = [2m(0.07)] = 4043 K

1,=3296K

Derive (2.17).
For a linear dependence of thermal conductivity upon temperature, k = ko{1 + b8), Fourier's law

becomes (in terms of the variable 8)

q

de
q = —ko(1+ bOYA o A

dx = —ky(1 + b6)db

Integrating with g/A constant (steady statc) gives

q X iy
ZJ dx = ~k.,j (1 +bo)de
Ty y

b
%(’52 - = knle] -6+ '2' (9% - HE)]

= k(o - o)1+ 52222

Writing x; — x; = Ax, 6, — 6 = 75— T, = AT and defining k,, as in (2.18), the last equation becomes
q o
—Ax = —k, AT
A

which is equivalent to (2./7).

Obtain an analytical expression for the temperature distribution 7(x) in the plane wall of Fig.
2-19 having uniform surface temperatures T, and 75 at x, and x,, respectively, and a thermal
conductivity which varies lincarly with temperature: k = k(1 + bT).

T 0 >0
i
;(’ri} (&=0)
I, — (/-G >0
{const.)
1._ r,
{const.)
N
— =

Fig. 2-19
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Separating variables in Fourier’s law,

daT
q= “kA'Zx'

and integrating from x, to arbitrary x yields

q x T
;j dx=~k.,j (1 +bT)dT
4 1] T

L (x-x) = —k(.[(T+§TZ) - (T, +§T§)]

or, completing the squares on the right,

= (reg) - ()
= x-x)=(T+=) - [T+ !
bAk, < ) 5) \T*s )
Since the curve (1) must pass through the point (x3,73),
I BN .‘.’_( 1)2( l) -
pa=x) = (Torg) - (R g) =2(Tr g )T @)
with T,, = (T, + T,)/2. Divide (1) by (2) and solve for 7, obtaining
1 1y W -1, ]"?
=-= =) + ) x- b#0 3
=y [(neg) woreg)(F )] @r0 3)
If b = 0, Fourier's law gives directly
7,- T,
T=T\+=—@x-x) (b=0) (4)
X — X

Refer to Problem 2.13. Verify that for b >0 the temperature profile is concave downward, as
drawn in Fig. 2-19.

Differentiate Fourier’s law,

q dT
—_— — + a—
Aky (+6h dx
with respect to x:
dTy? 4’7
0=b(3) +(l+bT)-;f_.;2-

or

a*T ( b )(d?')z
—_— — 1 <0
de* 1+bT/\dx

The second derivative is negative, as was to be shown. Note that the result is independent of the boundary
conditions.

A hollow cylinder having inner and outer radii r, and ry, respectively, is subjected to a steady
heat transfer resulting in constant surface temperatures 7, and 7T, at r; and r,. If the thermal
conductivity can be expressed as k = ky(1 + b6), obtain an expression for the heat transfer per
unit length of the cylinder.
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In terms of 6, Fourier's law is
- _kA,-""'
1 dr

where A, is the area normal to r. Substituting ¥ = k(1 + b6) and A, = 27rrL, where L is cylinder length,
results in

3 do g dr
i = ku{] + bB)(Zm*L) dr or Il 1 = k“(] +b6}d’8

In the steady state, ¢/2#L is constant. Hence, integrating through the cylinder wall yields, after
rearrangement,

92 - 9]
In(ry/ry)

/A
L_ 21Tk.,ll+2{ﬂz+9|)J

Using (2.18) to define the mean thermal conductivity, we can simplify this result to

q 6, — 6, -1
—_——= =7 km.—..—..—.— = = km —_—
TR Y Sl

In a single experiment with a 2 cm thick sheet of pure copper having one face maintained at
500°C and the other at 300°C, the measured heat flux per unit area is 3.633 MW/m?
(1 MW = 10 W). A reported value of k for this material at 150 °C is 371.9 W/m-K. Determine
an expression for k(7) of form (1.9).

For the experiment, (2.17) yields

q w QT| 200K
—=3633X10" = =k, | —| = k|55
A 633 IOﬂmz k Ax 2% 107%m

k,, — 363.3 Wim-K
Using kg = 371.9 W/m K and 6 = T'— 150°C in (2.18),

4 p (500 150);(300— 150)]

w W AT
363.3—— = [ 371.9—— || 1
m-K ( m-K)[

3
(363 |) x L _925% 1075 K"!

b —_
371.9 250

i

and
k = (371.9)[1 - 9.25 X 10"3(T — 150 °C)] W/m-K
where T is in degrees C.
The accuracy of this expression may be checked by comparison with tabulated values in Table B-1(S1).

At 300°C,

k = (371.9)[1 = 9.25 x 10 *(300 - 150)] = 366.7 W/m-K = 212.0 Btu/h-ft-°F
At 600°C,

k = (371.9)[1 - 9.25 X 10 *(600 — 150)] = 356.4 W/m-K = 206.1 Btu/h-ft-°F
These values are in reasonable agreement with the tabulated data. The lack of agreement is simply due

to the actual nonlinearity of the k(T) relationship, and the linear representation of (7) obtained should
not be applied over an excessive temperature range.
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A thick-walled copper cylinder has an inside radius of 1 cm and an outside radius of 1.8 em. The
inner and outer surface temperatures are held at 305 °C and 295 °C, respectively. Assume k
varies linearly with temperature, with k, and b the same as in Problem 2.16. Determine the heat

loss per unit length.
From Problem 2.15,

g _ _ ,-T,
L 2k In(ryfry)

where k,, = ky[1 + b8,,]. For this problem,

_ 8 +6 _ (305 150) +(295 - 150) _

s 2 5 150°C

and from Problem 2.16,
k,, = (371.9) Wim-K[1 —9.25 X 107* K~'(150) °C] = 366.7 W/m-K

Hence,
W \(295 = 305) K

=3920kW
m K] sy o fm

% = —-27r( 366.7

Consider a plate with uniform heat generation ¢” as shown in Fig. 2-8(a). For k = 200 W/m-K,
g" = 40MW/m®, T, = 160°C (at x = 0), T, = 100°C (at x = 2L), and a plate thickness of 2 cm,
determine (a) T(x), (b) g/A at the left face, (c) g/A at the right face, and (d) g/A at the plate
center.

(a) By (2.20),
T= [(100 —160)°C  (4x 10" Wim*)(0.02 m — x)
(0.02 m) 2(200) Wim-K

where 7'is in °C and x is in m.
(b) Obtain dT/dx at x = 0 and substitute into Fourier's law.

]x+ 160 = 160 ~ 10°x — 10%»?

dT " s dT _ N
i [-10° = (2)(10%) x] K/m ol =10*K/m
q dT (200 W) ( K)
— = k —_— = = — 100 =1 = + 2
Al o, — 1¢° o 200 kW/m
The + sign signifies a heat flux into the left surface.
dar
(©) —| =[-10"-2(10)°(0.02)] = —5(10)" K/m
dx |z
q| _ _ if_?_ _ _[200W —5(10)* K _ 2
Alz dx| ( m-K )( m ) = 1 MWim

An energy balance on the plate,

4q =g| , 4" X volume
A 2L A Li] A
can be used to check the above results.
dT N
(d) el B [-10*-2(10)°(0.01)) = -3 X 10* K/m
In

200WY/-3x10°K

1 =-( )( )=+60<‘J|<Wfrn2

A IR l'l'l‘K m
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For the heat generation problem depicted in Fig. 2-8(b), determine an analytical expression for
the dimensionless temperature (T — T))(T, — T,), where T, is the temperature at the center of
the wall.
From (2.21),
qm ’ 2

g 0y P AT _q'L
r-1, 2k{2L x)x and T, -7, 2k(2L LyL >k

50

T-T, =(2L-x)x=2(£)# (x)z

T.-T. 12 L L

This shows the parabolic form of the nondimensional temperature distribution,

For the heat generation problem of Fig. 2-8(b), show that the temperature at the center, 7, is
the maximum temperature when g" is positive and the minimum temperature when g” is
negative.

By differentiating (2.21),

T _¢"
—=T(L-»

and at x = L, which is the center plane, d7/dx vanishes. This is the condition for an extremal; T is either
a maximum or 2 minimum at this location. To determine which, examine the second derivative,

&T g

dx? k
This is negative for positive ¢, the condition for a maximum, and positive for negative g”, the condition
for a minimum.

An electrical resistance heater wire has a 0.08in diameter. The electrical resistivity is
p = 80% 10 * ohm-cm, and the thermal conductivity is 11 Btu/h-ft-°E For a steady state current
of 150 A passing through the wire, determine the centerline temperature rise above the surface
temperature, in °F.

It will be convenient to solve this problem in SI units, since we will deal with electrical power
dissipation and electrical resistivity, and then to convert the temperature difference from K to °F. Using
Appendix A,

d= (G,DBin)(D.0254%) — 2032% 10 m

p=(80x IO'“Ohm-CM)(U‘Ol %) =8x10"7 ohm-m

Btu

Wim-K W
k= (II h‘ft-"F)(]'ng 577 m_Bluﬂ\-fl-°F) = 19.0253 —

Assuming uniform energy conversion within the wire, g”(mr2) L = I?R, where r, is the wire outside radius;
1 is the electric current; and R is the electrical resistance of the wire, which is

L L
R=PE=P—;

T,
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2.23.

Thus,

2 2 2 -7 .
PR PPp (150 AY(8x 10~ ohm m}=]'7“6x109%

T = G L~ T w2032 % 102y m]

By (2.25),

rig [l B (_r_)?] _ (1016 X 107" m)?(1.7116 x 10° W/m"*) [1 _ (E)zl - 2322K

T-1=" I 4(19.0253) Wim-K

Since (AT ) = YAT), T T, = 41.79°F.

Ty

Show that the temperature inside a rod of material having uniform heat generation per unit
volume, g", and uniform thermal conductivity, can be expressed as

T=a—br
where a and b are constants and r is the radius measured from the rod centerline.

Equation (2.25) applies where subscript s denotes the rod surface condition, so

_rig” ry?
== [' (5]

Rearranging,
545 (2)
= —_— | —
T=T1 ak 4k \r?
Letting
2w
r
and
qlﬂ
b=
4k
yields the desired form,
T=a—br

A prototype nuclear reactor has a fuel element design consisting of a thin aluminum tube
(cladding) filled with the nuclear material. The resulting nuclear fuel pin is 2r, in diameter
where the subscript s denotes the nuclear material outer surface (or the cladding inner surface).
The interfacial temperature 7, is measured via thermocouples. Parameters are:

g =65x10"W/m*  T,=550K
ky=2.5Wim-K r, = 0.008 m

where subscript f denotes the nuclear fuel material. Determine the maximum temperature in
the nuclear fuel pin. Compare this with the temperature at r = 0.004 m.

From the last problem, the temperature in the nuclear material (rod) is given by
T=a-br )

where:

2 2 " s
o= T +59" _ 550 4 (QO08m)(65 X 107 Winr')
4k 4(2.5 W/im-K)

= 550+ 416 = 966 K

¢ 6.5x10" Wim®
b= =—-r—— —§(5§x z
& " T@sWimK) 00X 10Km
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Thus, since T is maximum for r = 0 by inspection of (A),
Tox =T, = T(r=0)=a=96K
At r=0.004 m.

T =a-br? = 966 K ~ (6.5 X 10° K/m?)(0.004 m)?
= 862K

The reader should verify that eq. (/) yields 550K at r = 0.008 m = r,.

A 6in thick concrete wall, having thermal conductivity k = 0.50 Btu/h-ft-°F, is exposed to air
at 70 °F on one side and air at 20 °F on the opposite side. The heat transfer coefficients are
h, = 2.0 Btu/h-ft?-°F on the 70 °F side and k,, = 10 Btu/h- ft’-°F on the 20 °F side. Determine the
heat transfer rate and the two surface temperatures of the wall.

By (2.29) and with reference to Fig. 2-9,

q_ T,-T. _ (70 - 20) °F - 3195 Bl
A (k) + (LJk,) + (k) [(172) + (05/0.50) + (1/10)]h-IC-°F/Btu  ~  h-it?

The surface temperatures can be determined from (2.28):

q _ T,“T|
A Uh,
P 1 RSN Btu )(h-fﬁ-“F) _ o
T=T-- _*-70 F (31.25——h_“2 0B = 54375 °F
g 05-T,
A 1/h,,
g 1 Btu \/ h-ft:-°F
== —_ = = 2 3 . —_— = .
T, T"+Ah,, 20 F+( lzsh.n_)( mBm) 23.125°F

A 12in thick brick outer wall is used in an office building in a southern city with no insulation
or added internal finish. On a winter day the following temperatures were measured: inside
air temperature, 7, = 70 °F; outside air temperature, T, = 15 °F; inside surface temperature,
T, = 56 °F, outside surface temperature, T, = 19.5°F. Using k = 0.76 Btu/h-ft-°F from Table
B-2 (Engl.), estimate the average values of the inner and outer heat transfer coefficients, A,
and A,,.

With reference to Fig. 2-9, the heat transfer per unit area may be determined by applying Fourier’s
law to the solid brick wall. Thus

q AT -0.76Btu(19.5-56)°F Btu
AT TP AT ThieE TR
Now, from (2.28),
q Btu Cegye - Btu
G TS = R[(0-56)°F]  or B = 1981
g Btu _ - Btu
—_— 7. —_— = - o = 0. —
p 2 74h_“2 hJ(195-15°F] or h,=6 ]64h-flz-°F
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Determine U for the situation of Problem 2.25, using SI units throughout. From U and the
overall temperature difference, determine g/A in W/m’. Compare this with the result of

Problem 2.25.

Using the conversion factors of Appendix A,

_ Btu \/3.1524 Wim?\/9 “F) ,
= [ 1.981 = 11.241 W/m*-K
hi (1 h-nz'“F)( Btwh- ¢ )(51{ m
_ Btu 3.1524 W/m?\[ 9 °F
_ (e = 34.976 W/m?-K
h, (6164h-n?-°F)( Btuh fC )(51() m

L, = (12in)(0.0254 m/in) = 0.3048 m

Btu 1.729 577 Wim-K
=10 = 1.314 Wim-K
k, (076h-rt-°F)( Btwh-ft-°F ) m
Applying (2.32),
1
= =2.861 W/m?* K
v [(1/11.241) + (0.3048/1.314) + (1/34.976)] m?*- K/'W o
Now
5K
(Anﬂ\'umﬂ = [(70 - IS) c'F] ?'(‘g"gl-: = 30555 K
S0
qg 2861W
- = = 87. fm?
TR (30.555 K) = 87.421 W/m

Converting to English Engineering units,

q w Btuwh- ft? ] Btu
L= (87142 S | ——— | =213 —
A ( m’)(3.1524 W/m? 211 h-ft?

which agrees well with the result in Problem 2.25. Note that the conversion (9 °F)/(5 K) may not be used
to convert a specific temperature but may be used for AT conversions and for unit conversions.

Steam at 250 °F flows in an insulated pipe. The pipe is 1% carbon steel and has an inside radius
of 2.0in and an outside radius of 2.25in. The pipe is covered with a one-inch layer of 85%
magnesia. The inside heat transfer coefficient, #,, is 15 Btu/h-ft?-°F, and the outside coefficient,
h,, is 2.2 Btu/h-ft?-°F. Determine the overall heat transfer coefficient U, and the heat transfer
rate from the steam per foot of pipe length, if the surrounding air temperature is 65 °F.

In terms suitable for (2.35),

n=3 kLz = kml =25 Btufh'fl°°F
n =20in kz;; Ekm,s='0.041 Btu/h-ft-°F
r; = 225in h, = 15 Btw/h-ft?-°F

r;=r,=325in h, = 2.2 Btu/h-ft*-°F

where thermal conductivity data are from Tables B-1 (Engl.) and B-2 (Engl.) at temperatures reasonably
close to the expected average material temperatures. By (2.35),
_ 1

(3.25/2.0 x 15) + [(3.25/12) In (2.25/2.0)/25] + [(3.25/12) In (3.25/2.25)/0.041] + (1/2.2)

Uﬂ
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where each term in the denominator has units h-ft?-°F/Btu. Thus,

1

= = = LFp2.e
0.1083 + 0.0013 + 24291 + 04545 2.9932 03341 Btuh-ft7F

Uo

Clearly, the thermal resistance of the stecl pipe wall is negligibly small in this problem. The heat transfer

per unit length of the pipe is

0.3341 Btu
h-ft?-°F

q

A 325
7= Uy T (A = (2m) ( — rc) [(250 — 65) °F] = 105.18 Btu/h-ft

In Problem 2.27 the thermal conductivity of the magnesia was taken at 200 °F. Determine the
two surface temperatures of the magnesia using g/ = 105.18 Bw/h-ft, and evaluate k,,, at the
average temperature.

Refer to Fig. 2-20. Since £, and A, are specified together with T, and T,, we need to determine T,
beginning with 7, and working from the inside out; and we should calculate 73 beginning with T, and
working inward. From the steam to the inner wall of the steel pipe:

% = 2anh(T, - T))

gL [0S0 ] o \4 2
=1, 2-,-rr.ﬁ,"[250 217(2.0;12)(15)] - A0 ™. “

Through the steel pipe:

I
q _ 2aky(T, ~ T)
L In (J"zfﬁ) ﬁg- 2‘20
o (gt} In(rair) [ 105.181n (2.25/2.0)
T, =T, — """ = (24330 - =241.33°
2 1 2k, 3.30 Im(25) 241.33°F
From the ambient air to the magnesia outer surface:
T=2arh (1~ T,)
105.18
= i — — <]
h [65 27(3.25/12)(2.2) 93.09°F
Hence, the average temperature of the magnesia is
241.33 + 93.09°
Top = [~——2—J = 167.21°F

and by linear interpolation of the data of Table B-2 (Engl.), k. =~ 0.0403 Btw/h-ft-°F. However, it is
questionable that Table B-2 (Engl.) is sufficiently accurate to justify recalculation of U, and ¢/L for
Problem 2.27.

It is sometimes necessary to account for radiation loss (or gain) from a surface either in
conjunction with or without convection at the surface. From Chapter 11, it can be shown that
the heat transfer by radiation from a relatively small gray body surface to much, much larger
surroundings is given approximately by

Gysurr
A_‘. = & U(T: - _F.:ur.-] (I)

where A, is the gray body surface having cmissivity €,. To apply this as a boundary condition
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it is helpful to obtain an expression for a pseudo-radiation heat transfer coefficient, h,, where
this is defined by

qs-s“’r i
- = h, Ts - ?;un 2
S (T~ Toun) @

s
Determine an analytic expression for #,.
By equating (1) and (2) there results

AT = Tow) = €0(T} = T)

Continuing,
AT, = Tun) = € (T, = Toue (T + T XT3 + T

and hence

h, = €T, + T (T3 + Tiu) &)

which is the desired result.

A fiat panel used on a spacecrafl is fabricated from a single layer of SiC/SiC composite, 0.010 m
thick. The spacecraft has inner air temperature 7, = 298 K, and the spacecraft is in orbit with
the panel exposed only to deep space, where 7, = 0K (zero Kelvin). This material has
k.= 5.0W/m-K and € = 0.8. The inner surface of the panel is exposed to airflow resulting in
h; = 70 W/m*-K. Determine the outer surface temperature 75. Determine g/A.

h T, T
=t I} o
g AN e\ AN
q, VA, Lfk, 1k,
(a) ®
Fig. 221

h_The electrical analog to this is shown in Fig. 2-21. Hence the heat flux is by (2.29) with A, instead
of h,

q._ I-T,
A (Vh)+(LJk)+ (1h,)

where
h, = e.o(Ty + 0)(T3 + 0?) = €0T] = (0.8)(5.67 X 1078 W/m?- K*) T3 = 4.536 X 10-* W/m?-K* T3
So,
q (298 - 0)K
A [(1770)(m?- K/W) + (0.01/5)(m?- K/W) + (1/4.536 X 10~ W/m?-K° 73] 0

which can also be determined solely by radiation from the outer surface

% = €. 0(T} ~ T#) = 0.8(5.67 x 108 Wim?-K*)(T%) 2)
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Combining expressions (1) and (2)

q 298K

- = = 4. b'e -8
A [0.01428 +0.002 + (1/4.536 X 107% T3)] 4.536 X 107%(T3)

Solving by trial and error and noting that T, <298 K, the results are:

Assumed T, glA by (1) g/A by (2)
(K) (Wim?) (Wim?)
285 307.6 2993
287 314.1 307.7
293 3338 3343
292 330.5 3298
292.5 332.1 332.03

A satisfactory solution is 75 = 292.5 K and ¢/A = 332 Wim’.

2.31. To reduce the relatively high g/A value, the physical situation of Problem 2.30 is modified by
bonding a very thin layer of polished aluminum to the outer surface of the SiC/SiC panel. The
polished aluminum has € = 0.04 and its thickness is such that (L/k), = (. Determine the outer
surface temperature and g/A with all other parameters unchanged from Problem 2.30.

The clectric analog is shown in Fig. 2-21(b), where:
h, =70 Wim’ K
T, =298 K 7,=0
and from Problem 2.29 (3)
h, = (0.04)(5.67 X 10°")T, + 073+ 0) = 2268 % 10° T3

Then
q _ T-T, ~ (298-0)K a
A (UR)+(LJk)+ (UhAY  (170(m*-KIW)) + (0.01/5(m?- K/W)) + (1/2.268 X 10~ W/m?- K T3) )
and
% = F(Ty—0) = 2268 X 10~ W/m?-K T3 @)
A trial-and-error solution is:
Assumed T, qlA by (1) g/A by (2)
(K) (W/m?) (Wim?)
295 17.3 17.2
296 17.5 174
297 17.68 17.65

Thus, the outer surface temperature is 297 K resulting in a radiant heat loss of 17.7 W/m? from the panel.
The addition of the very thin polished aluminum sheet reduced the heat loss by 94.7%.
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232, Begin with eq. (2.36) and show that the heat transfer rate per unit length g/L is a maximum at

T given by eq. (2.37).
Rewrite equation (2.36) as

where
R =R _ln(rfr,)+ 1

= Tl = ook 27k

which is the sum of the conductive and convective radial resistances.
Now if a maximum or minimum for R’ occurs, it will be at

R’ _ -1 __1_
dr 2mwkr  2wrth
which yields eq. (2.37),
1_1 _k
kK m ¢ Th

Examining the second derivative of R’,

d’R'= -1, !
dr*  2ukr* @'k

At r,,, = (k/h) this becomes

. s WS S (1_}_)
dr? | 20(KHY) " 7Y (ki) \k 2k

2.37)

1
= I

0

Since the second derivative is positive at r.,,, then r = k/h is the condition for a minimum value of R’ and
a maximum value of g°. Hence there is no optimum insulation thickness. Addition of insulation below the
value of r,,;; will increase the heat transfer rate. For values of r above r,,,, increasing thickness (increasing

r) will decrease ¢'.

A thin-walled copper tube having an outside metal radius r = 0.008 m carries steam at 383 K.
It is inside a room where the surrounding air temperature is 298 K. It is insulated with 85%
magnesia insulation having an approximate thermal conductivity of 0.071 W/m-K.

(a) What is the critical thickness of insulation for an external convective coefficient
h = 4.0 W/m?-K? (Assume negligible conductive resistance due to the wall of the copper

tube.)

(b)
q’, for:
(i) a 0.004 m thick layer of insulation
(ii) an r,, thick layer of insulation
(iii) a 0.05 m thick layer of insulation

The solution to part (@) is given by (2.37)

. E _ 0.071 W/m-K
TR 40WmE-K

Under these conditions, determine the radial heat transfer rate per meter of tube length,

= (0178 m = 17.8 mm
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The solutions to part (b) are obtained with (2.36), i.e.,
L _q_ 1.-7, LT,
T =L T In@iry2ak) + (127hr) R
Solving for R{, with r = 12 mm = 0.012 m and r, = 0.008 m (see Fig. 2-11) yields

R = [ln(lﬂ&) + 1 ]m-szmm-K
T 2m(0071)  2#@4)0.012)| W T w
and
, _q T,—-T, 38K-298K
q12 = L R 4225 m KW 20.12 W/m
Likewise
. e _ [In(17.8/8) ] m-K m-K
Rim = Rizn = 27(0071) | 27(4)(0.0178)] W =485
and
(383 —298) K
= o= = 21L10W
LT 4028 m-KIW 21.10 W/m
and
In (50/8) 1 ]m-K m-K
Ry = + = 4,904 ——
* [277(0.071} 27(4)(0.050) | W w
with

. (383-298)K

T Topamw Lo Wi

Note that g° increased by about 5% when the insulation thickness increased from 0.004 m to the critical
value of (.0178 m. Adding insulation beyond the critical thickness, say to 0.05 m thick, decreased the
q" loss.

Determine the critical radius in cm for an asbestos-cement covered pipe. From Table B-2 (SI),
k.., = 0.208 W/m-K. The external heat-transfer coefficient is 1.5 Btu/h-ft*-°F,

First, we need 1o convert A to SI units. Using Appendix A,

3.15248 Wim*\/9°F
={l. 2 F) | —————— )| — | = 851 W/m?-
h = (1.5 Btu/h-ft F}( B ie )(SK) 8.51 W/m*-K
By (2.37)
k0208 Wim-K
Tan = 0 S BRI WK 0.0244 m = 244cm

Plot g/L (Btw/h-ft) versus r (in) for the situation of Problem 2.34 if r, = 0.5in, 7, = 250 °F, and
7T, = 70°F. Consider the range r = r,to r = 1.5in.

Converting units,

k=( w )( Btu/h-ft-°F ) Biu

0.20. =0.120 ——=
8m-l-( 1.729 577 Wim-K lmlmh»fl-"F
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By (2.36),
q 2T, -T,) 27250 — 70) °F 1130.97

L [n(rir)ik] + (Uhr)  [In(r/0.5)0.120] + (12/1.5r)/(h-ft-"F/Btu)  [In (r/0.5)/0.12] + (8/r)

in which r is in inches.
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Btu/h-ft

Values of g/L are displayed in Table 2-2 and Fig. 2-22. Observe that 1.0 in of insulation (r = 1.5in) still
results in a higher /L. than the bare or uninsulated pipe! This illustrates the necessity of checking the critical
radius prior to specification of an insulation thickness, especially for small pipes, ducts, or wires. As a final
comment, the critical radius is strongly dependent upon A, which was arbitrarily specified to be constant in this

problem. Accurate determination of A can be made using the methods of Chapters 6,7, and 8.

Table 2-2 o

gll. » N
r(in) | (Btu/h-ft) r| q/L |
80 1
0.5 70.69 1.0 | 82.10 /'( |
- I
0.6 76.15 11| 8170 ol 1'
E |
0.7 7946 || 12| 81.00 = - L
3 |
0.8 81.27 13 | 8012 e g
|
0.9 82.03 14 | 719.12 1
72 T
0961 | 8214 1.5 | 78.06 ] f
10 |

0.5 o7 09 [N ()
r(n)
Fig. 2-22

2.36. An aluminum cylindrical rod (k = 132 Btu/h-ft-°F), having a diameter of 0.375in and a length
of 41in, is attached to a surface having a temperature of 200 °F. The rod is exposed to ambient
air at 70 °F, and the heat transfer coefficient along the length and at the end is 1.5 Btu/h- ft?-°F.
Determine the temperature distribution and the heat flux (a) neglecting the heat transfer at the

end and (b) accounting for the heat transfer at the end.

For a cylindrical rod, (2.45) gives

2.
n i e e - 1aon
{a) Using the solution for &6, given in Table 2-1 (Case 2),
T-70°F _ cosh [1.2060(;5 — x)]
(200 = 70)°F  cosh [(1.2060)(i3)]
cosh [1.2060(:5 — x)]
1.0819

T = 70°F + (130 °F)

Ewvaluating 7 at 1/2 in intervals, we obtain Table 2-3.
The heat transfer rate is, by (2.42),

g = kAné,tanhnl

N LAYAEZE S o . iy
= (132 Btw/h-ft- F)(-a-)(—) ft? (1.2060) ft " (200 — 70) °F tanh [(1.2060) ft* () fi]

12
= 6.058 Btu/h
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(b) The appropriate solution (Case 3) from Table 2-1, with h /nk = hink = 0.009 42, gives

cosh [1.2060 ft ({5 ft — x)] + 0.009 42 sinh [1.2060 ft (55 ft — x)]]
cosh [1.2060 ft (3 ft)] + 0.009 42 sinh (1.2060) ft~"(5 ft)]

Evaluating 7" at 1/2in intervals yields Table 2-4. The values in Tables 2-3 and 2-4 are only slightly
different, the largest difference being near the rod end (x = 4 in).

T="70°F+ (130 °F}{

‘Table 2-3 Table 2-4
x (in) T (°F) x T x (in) T(°F) X T
0.0 200.00 2.5 | 19153 0.0 200.00 25 | 191.26
.5 197.67 3.0 | 190.77 0.5 197.63 3.0 | 190.45
1.0 195.66 35 | 19031 10 195.56 3.5 | 189.94
1.5 193.97 4.0 | 190.16 1.5 193.81 4.0 | 189.73
20 192.59 20 192.38

The heat transfer rate from the rod is, by (2.43),
2
4 = 132 Btuh - ft-°F (g)(%) (1.2060 ft~")(200 — 70)(°F)

sinh [(1.2060 ft)( ft)] + 0.009 42 cosh [(1.2060 ft*)(55 )]
cosh [(1.2060 ft~1)(5 ft)] + 0.009 42 sinh [(1.2060 ft~")( ft)]
= 6.185 Btu/h

If, instead of this exact solution for g, we use the corrected length L, = (4 +0.375/4)in in (2.42),
we find

4.0938
12

The solution for g in part (a) is 2.04% low, whereas the L approach yields a result essentially the same
as the exact solution.

2
g =132 Btulh-fl-“F(g) (%) (f?)(1.2060 ft~)(130 °F) tanh [(1.2(}60) fl‘l( )ft] = 6.185 Btu/h

2.37. A thin fin of length L has its two ends attached to
two parallel walls which have temperatures 7, and T
(Fig. 2-23). The fin loses heat by convection to the
ambient air at 7... Obtain an analytical expression for
the one-dimensional temperature distribution along
the length of the fin.

The general solution for the rectangular fin,

0=Ce™+ Ce ™

TERSARRARRRARARS ALY

o
b
1 SRNSERRRRGRRRRS

w

where 8 = T — T, applies to this problem. The two bound- Fig. 2-23

ary conditions are

60)=7,-T.= 6 HLYy=T,-T.=6,
Applying these gives
6 e

C' 6"" _ e—:rl.

Cz=6‘|—Cl
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2.38.

2.39.

Substituting,
— @, e "k _
6= (%T”")(f" —e'"‘) + Ge™™
elu — e—-nx e—ru(en.[. ".-'4?':‘“‘.) _ e—mr.(em _.J:”T
= 63 e;l!. — e—ul,) + Bl eﬂL _ e—nl’.

Since sinhy = (¢f — e ¥)/2,
= g Sinhn(L — x) N sinh nx
sinh nl sinhnl

This result is, of course, applicable to cylindrical rods of small diameter as well as to rectangular fins.
Also, the total heat loss from such a fin or rod with both ends fixed could be obtained by applying
Fourier's law at cach end and algebraically summing the two conductive heat transfer rates into the

fin. See Problem 2.57.

Consider a thin cylindrical rod with its ends fixed to two parallel surfaces (similar to Fig. 2-23).
Let dimensions, properties, and temperatures be such that n =09m™', 6, = 10K, 6, = 10K,
and L = 0.3 m. (g) Determine the temperature at x = 0.12 m using the result found in Problem
2.37, if the ambient temperature is 24 °C. (b) Obtain the same numerical result by considering
the symmetry of the problem and using the temperature distribution given in Table 2-1 for the
insulated-end case.

(@) From Problem 2.37

sinh [0.9(0.3 - 0.12)] . sinh[0.9(0.12)]
sinh [0.9(0.3)] sinh [0.9(0.3)]

0(0.12) = 10

or
6(0.12) = 5.954 + 3.959 = 9.913°C
so that
T(0.12) = 6(0.12) + T.. = 9913 + 24 = 3391 °C

(b) Since the problem is symmetrical about the midpoint of the rod, the insulated-end solution applies
with L = 0.15m. So

cosh [0.9(0.15 - 0.12)]

cosh [0S B

6(0.12) = 10

and
7(0.12) = 33.91°C

as before in part (a).

A very long, 1 cm diameter copper rod (k = 377 W/m-K) is exposed to an environment at 22 °C.
The base temperature of the rod is maintained at 150 °C. The heat transfer coefficient between
the rod and the surrounding air is 11 W/m?-K. Determine the heat transfer rate from the rod
to the surrounding air.

Since the rod is very long, (2.47) may be used. We have
2h 2(11 W/m?-K) 12
= —_— = 3. -1
" Nk [(377 W/m- K)(0.005 m) 416 m

q = kAng, = (377 Wim- K}(%’)(om m)2(3.416 m )[(150 — 22) K] = 12.95 W

Thus,
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2.40. Repeat Problem 2.39 for finite lengths 2, 4, 8, . . ., 128 cm, assuming heat loss at the end, i.e., Case
3 of Table 2-1. Assume h; = 11 W/m?-K also.

The heat loss from the rod may be calculated from (2.43). We need the parameters
n=3416m~'  (from Problem 2.39)

h, 11 W/m?-K B
nk (3416 m ")(377 Wim-K) 0.008 54

kAn6, = 1295 W (from Problem 2.39)

For L = 2cm,
nL =3416 m ' % 0.02 m = 0.068 32
sinhni. = 0.068 37 coshnl = 1.00233
and by (2.43)
0.068 37 + 0.008 54(1.002 33)
1.002 33 + 0,008 54(0.068 37)

Repeating for lengths of 2, 4, 8, 16, 32, 64, and 128 cm we obtain the results plotted in Fig. 2-24. This
problem illustrates that when k is large there are significant differences between the finite-length and
infinite-length cases.

g = (12.95 W}[ ] = 0993 W

T T
-

logy [L(cm))

=
-
~
-
[ry=
> =
-

Fig. 2-24

2.41. An annular aluminum alloy fin (k = 90 Btu/h- ft-°F) is mounted on a 1 in o.d. heated tube. The
fin is of constant thickness equal to 1/64 in and has an outer radius of 1.5in. The tube wall
temperature is 300 °F, the surrounding temperature is 70 °F, and the average convective heat
transfer coefficient is 5 Btu/h-ft?-°F. Calculate the heat loss from the fin.

Equation (2.50) may be used, with the parameters

= G] e (e (53) oo

Thus,

_ 1 o K,(0.385) 1,(1.155) — 1,(0.385) K ,(1.155)
4 2”(90)[64(12)l(300 70){0'385)[IL.(O.SSS}KI(I.]SS)+K[.(D.385).'.(1.155)



CHAP. 2] ONE-DIMENSIONAL STEADY-STATE CONDUCTION 53

2.42.

2.43.

The modified Bessel functions are obtained from standard tables of higher functions, and thus

(2.2860)(0.6793) — (0.1961)(0.4667)
(1.0374)(0.4667) + (1.1483)(0.6793)

The main drawback to the use of {2.50) is the effort required to obtain accurate values of the Bessel
functions.

q= (65.18)[ ] = 75.35 Btu/h

Repeat Problem 2.41 using the fin-efficiency approach with no length correction for the
tip loss.

_1 _A(
L=50 4= |G|

o) = () Pon ] o

| —

From Fig. 2-16, n, = (.75, so that (2.53) gives

Gacr = TyFA By ~ (0.75)(%) [ ( %)(W)(lﬁ’ - 0.5% rﬁ](m °F) = 7527 Btwh

which is very close to the previous solution. If we had used a correction for tip loss, then r,. = 1.508 rather
than r, = 1.5 which is a negligible difference when using Fig. 2-16.

A 2.5 cm od. tube is fitted with 5.0 cm o.d. annular fins spaced on 0.50 cm centers. The fins are
aluminum alloy (k = 161 W/m-K) and are of constant thickness 0.0229 cm. The external free
convective heat transfer coefficient to the ambient air is 8.5 W/m?-K. For a tube wall
temperature of 165 °C and an ambient temperature of 27 °C, determine the heat loss per meter
of length of finned tube.

We will first determine the fin efficiency with Fig. 2-16 and then apply (2.54).

50-25 00229
L, = 2 + 7= 1.261 cm; = 1261 +1.25=2511cm
h 1 71261\2 8.5 x 10 2
] - (| =
(L) [kA,,] 100 161 x 1.261 x 0.0229 01910
2511
n 125 2009

From Fig. 2-16, 7, = 0.94. Then the number of fins per meter of tube length is

100 cm
hno. =

= 05 cmifin 200 fins/m

Area of fins per meter length:
A= (no)(2)(m)(r3, — r7) = 200(2m)(2.5112 - 1.25%) = 5959 cm¥m
Area of exposed tube per meter length:

25 0.0229
Ap = lﬁ(Dd)](L —200!) = w(ﬁ)[l - ZUO(W) ] = 7.494 X Iqullefm

The heat transfer per lineal meter is

% = h(A, + 7,A,) 6, = (8.5)[0.074 94 + (0.94)(0.5959)](165 — 27) = 744.9 Wi
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2.44.

2.45.

2.46.

2.49.

2.50.

2,51

2.52.

2.53.
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Supplementary Problems

Begin with an appropriate form of the general conduction equation for the steady state radial flow in a
single-layered spherical shell. Obtain the temperature gradient d7/dr by solution of the equation and
substitute this into Fourier’s law to obtain (2.16).

If insulation thickness in Problem 2.4 is changed to .05 m, determine T3, the interfacial temperature
between brick and insulation. Ans. T, =10444K

For the ceiling of Problem 2.6, what is the temperature at the center of the rock wool insulation (Z3in
below upper surface)?  Ans. 63.6°F

Steam at 120 °C flows in an insulated 1% carbon steel pipe. The pipe inner radius is 10 cm and the outer
radius is 11 cm. This is covered with a 3 em thick layer of asbestos having a density of 577 kg/m®. The outer
asbestos surface is at 45 °C. Using carbon steel thermal conductivity, ¥ = 43 W/m-K and asbestos thermal
conductivity £ = 0.192 W/m-K, determine the heat transfer from the steam per meter of pipe length. Use
SI units throughout. Ans. 375 W/m

Problem 2.16 presents an expression of the form k = ky[1 + b(T — T,.)] for the thermal conductivity of

copper in SI units, where k, = 371.9W/m-K at T, = 150°C and b = —9.25x107° K™'. Convert this

expression to English Engineering units. Compare k from the resulting expression with the four values in

Table B-1 (Engl.). Comment on any lack of agreement.

Ans. k= (215.02)[1 - 5.14 X 10"5(T — 302)] Btu/h-ft-°F; ks, = 223, ks = 219, kagz = 216,
ksyz = 213 Btu/h-ft-°F; not highly accurate but good enough for many engineering applications.

Estimate the conductive heat transfer in the insulated copper

wire between the two liquid surfaces for two thermocouples }
located in boiling water and an ice bath (Fig. 2-25}. The wire
length between the surfaces is 35 cm; the wire is AW.G. no. 28
(0.032 cm diameter) and it is pure copper. Use linear interpola-
tion of Table B-1 (SI) to obtain k,,. Ans. For each wire,
qg=878%X10°W

\insulated | ]

Determine a linear expression for k(7T) for 1% mild carbon steel Fig. 2-25
in the temperature range between 0 °C and 300 °C. Comment on

the applicability of the resulting expression outside of the stated

temperature range.

Ans. k= (45.8338)[1 — 1.8868 X 10" * T) W/m °C, where T is in °C
k = (26.5)[1 — 1.0482 X 10 (T - 32)] Btu/h-ft-°F, where T'is in °F

A wall has a freshly plastered layer which is 0.5 in thick. If g" due to the chemical reaction during “curing”
of the plaster is approximately constant at 5000 Btw/h-ft*, the outer surface is insulated (no heat transfer),
and the inner surface is held at 90 °F, determine the steady state temperature of the outer surface. Assume
that k of the fresh plaster is 0.5 Btu/h-ft-°F (which is higher than usual values due to increased moisture
content). (Hinr: This problem is mathematically the same as that of a plaster wall 1in thick with both
surfaces held at 90 °F.) Ans. 98.68 °F

An electric resistance wire (.25 cm in diameter and 0.5 m long has measured voltage drop of 25V for a
current flow of 40 A. The material thermal conductivity is 24 W/m-K. Determine (a) ¢” in W/m?® and (b)
the maximum temperature in the wire if the surface temperature is 650 K.

Ans. (a) g" = 4.074 X 10" W/im® (b) T ~ 656.63 K

A rectangular steel tank is filled with a liquid at 150 °F and exposed along the outside surface to air
at 70°F, the inner and outer convective heat transfer coefficients being /i, = 4.0 Buw/h-f2-°F and
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2.55.

2.57.

2.58.

h, = 1.5 Btwh-ft?-°F. The tank wall is 1/4 in carbon steel (k = 26 Btu/h-ft-°F), and this is covered with a
1in layer of glass wool (k = 0.024 Btw/h-ft-°F). Determine (a) the overall heat transfer coefficient U and
(b) the heat transfer rate per sq. ft.

Ans. (a) 0.2278 Buw/h-{t*-°F; (b) 18.224 Btuh-fe?
(Note that the thermal resistance due to the steel wall is negligible in this problem.)

Determine the critical radius of insulation for rock wool, 10 Ib/t®, at 32 °C if the external heat transfer
coefficient is 6.8 W/m?-K and k& = 0.040 W/m-K.

Kk 0.040
Ans. 1. = - es 0.00588 m = 0.59 cm

Determine the critical radius of insulation for asbestos felt, 40 laminations per inch, at 100°F, if the
external heat transfer coefficient is 1.2 Btu/h-ft>-°F. For k,, see Table B-2 (Engl.). Ans. 0.33in

Repeat Problem 2.40 for an aluminum alloy rod (k = 161 W/m-K). All other factors remain un-
changed. Ans. Selected values of L and g are: L==, g=8465W, L =16cm, g = 5848 W,
L=32cm,g=7903W

Using the expression for the temperature distribution obtained in Problem 2.37, determine an analytical
expression for the heat transfer from a fin or rod attached to two parallel walls as shown in Fig. 2-23.

de _ do ) kAn
x=1i

Ans. QEM(E =1 dx zsinhnL

(g is the sum of the two conductive heat transfer rates into the fin at its ends.)

[:(coshnL — 1) + Gy(coshnL — 1)]

Show that for the straight rectangular fin, (2.46) reduces to (2.39).



Chapter 3

Multidimensional Steady-state Conduction

31 INTRODUCTION

The steady-state temperature in a three-dimensional cartesian coordinate system obeys, when
thermal conductivity is constant, the Laplace equation,

7T 82T+E}2T
- —
ax? oy ezt

3.0

The solution of this equation, T(x,y, z), can be differentiated and combined with Fourier’s equation
to yield the components of the vector heat transfer rate. These components are
aT oT aT
4 Sl vy I (3-2)
where A, is the area normal to g,, etc.
A number of methods of solving the Laplace equation are available, including analytical,
numerical, graphical and analog techniques.

3.2. ANALYTICAL SOLUTIONS Y
Method of Separation of Variables

We illustrate this classical method of solution by means of
an example.

EXAMPLE 3.1. A very long (z-direction) rectangular bar has three of 8=0 il \\9 =0
its lateral sides held at a fixed temperature; the temperature distribution
across the fourth side is sinusoidal with a maximum value 8,, (see Fig
3-1). Find the temperature distribution within the bar.

By using the shifted temperature 6 = 7 — T, we may suppose the Ng=p
fixed temperature to be zero. Since there is no z-direction temperature
gradient, the Laplace equation is

—t—= (3.3)

(Iy 60,y)=0 (O<y<W)
(2) 6(L.y)=0 (O<y<W)
() 6x0)=0 (0<x<L)

(4) 9(-¥,W)=8,,,sin% (0<x<L)

Assume a solution of the form 6(x,y) = X(x) ¥(y). When substituted into the Laplace equation this yields

_l&x 1av
X dr " Y dy

56
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The left side, a function of x alone, can equal the right side, a function of y alone, only if both sides have a constant
value, say A2 > 0 (see Problem 3.1). Then, letting the term with the two homogeneous boundary conditions have
the A? coefficient

X, &Ly
—_— = —_— Y=40
AKX 0 ] A

The general solutions to these separated equations are:
X = C,cos Ax + Cysin Ax Y=Ce ™+ Che
so that
6 = (C, cos Ax + Csin Ax)/(Cye™ + Cye™)
Now, applying the boundary conditions, (1) gives C, = 0 and (3) gives C; = — C,. Using these together with
(2) yields
0= C,Cy(sinAL)(e” —e™™)

which requires that
. ni .
sinAL =0 or = —L—(r: a positive integer)

Because the original differential equation (3.3} is linear, the sum of any number of solutions constitutes a solution.
Thus, # can be written as the sum of an infinite series:

6= E C, sin%sinh? (3.4)

n=1

where the constants have been combined and where we have replaced e® —e™* by Zsinh Ay.
Finally, boundary condition (4) gives

- Y
6, sinfL’i = 2 C, sinf’{isinh ”I (3.5)
which holds only if C; = C; = Cy=--= 0 and
ail'l
G =5 (WIL)
Therefore,
= 0=8 sinh (my/L) | 7x (3.6)

" Sinh (7W/L) " L
which is the final expression for the temperature distribution in the plate.
EXAMPLE 3.2. Example 3.1 is changed so that the shifted temperature along y = W is given by the arbitrary
function f{x). Find the temperature distribution within the bar.

Everything in Example 3.1 through (3.4) remains valid for the present problem. The new fourth boundary
condition gives, instead of (3.5),

noW

f) =Y C,sin %smh

n=1

O<x<l)
Thus, the quantities C,sinh (n7W/L) must be the coefficients of the Fourier sine series for f(x) in the interval
0<x< L. From the theory of Fourier series,

nwW_ 2
L

i
C, sinh [ fx) sinnLLxdx
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and

_ 2 sinh(nmy/L)
=1 5—" sinh (nwWIL)

=l

nmwx L . nmx
smTJ:f(x)sm T dx

For the special case f(x) = 6, = constant, (3.7) reduces to

2 (=)™ +1 sioh (nmylL) . nmx
6= 3‘@2{ n smh(raWiL) " L

Note that only odd-order terms appear in (3.8).

Principle of Superposition

[CHAP. 3

(3.7)

(3.8)

The linearity of the Laplace equation requires that a linear combination of solutions is itself a
solution; this is the principle of superposition. Examples 3.1 and 3.2 dealt with problems having only
one nonhomogeneous boundary condition (for present purposes, a nonhomogeneous boundary
condition is one for which the dependent variable 6 is not zero). A problem having more than one
nonhomogeneous boundary condition can be resolved into a set of simpler problems each with the
physical geometry of the original problem and each having only one nonhomogeneous boundary
condition. The solutions to the simpler problems can be superposed (at the geometric point being

considered) to yield the solution to the original problem.

EXAMPLE 3.3. Determine the temperature at the center of Fig. 3-2.

y

200 °C

400 °C 100 °C

100 *C 1
Fig. 3-2

Two of the nonhomogeneous boundary conditions can be removed by defining § = T — (100 °C). Then the

resulting problem may be separated into the two subproblems of Fig. 3-3.

Either by use of (3.8) or by intuition (see Problem 3.24), the solutions are & = 75°C and &, = 25°C.

Consequently,
8=75+25=100°C and T=6+100=200°C
Y y
. 6,=0 8 =100°C
01=300°C 0‘.=0 83"0 a,::o
0. -0 1 X 0 ~0
{a) Subproblem 1 (b) Subproblem 2

Fig. 3-3
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3.3 CONDUCTIVE SHAPE FACTOR

Figure 3-4 represents a heated pipe with a thick layer of insulation. The inner surface of the
insulation is at uniform temperature 7, the outer surface is at uniform temperature 7, and there is
a resulting outward heat flux for 7,> 7,,. Constructing uniformly spaced lines perpendicular to the
isotherms results in a group of heat flow lanes. In Fig. 3-4 there are four such lanes in the quadrant
selected for study, and the other three quadrants would be similar due to the problem symmetry. If we
can determine the rate of heat transfer for a single lane, then we can easily find the total. Note that
there is no heat transfer across one of the radial lines, such as line a-b, because there is no angular
temperature gradient.

Typical isotherms

Typical heat /q

flow Jane d

O

Fig. 34

By Fourier's law applied to the element a-b—c-d of a typical lane, the heat transfer per unit
depth is

q _ kl(Tou— The)
P — (3.9)

For the case where I, = [; (then the element is called a curvilinear square) this simplifies to
T = kTt~ Tod) (3.10)

In this case, I, = (ab + ¢d)/2 and [, = (ad + bc)/2.
Now if the isotherms are uniformly spaced (with regard to temperature difference) and if there are
M such curvilinear squarcs in the flow lane, then the temperature difference across one square is

T‘t - Ta
M

Using this together with (3.70) and noting that the entire system consists of N flow lanes yields

AT = @.1n

q _ T-T\_S, .
I‘N"( = ) KT, T.) (3.12)
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where the conductive shape factor per unit depth is

S_N
L M
Note that although the configuration of Fig. 3-4 results in a one-dimensional conduction problem, the

development just presented is equally applicable to two-dimensional problems (see Example 3.4).

Freehand Plotting

One method of obtaining the conductive shape factor is by freehand plotting. As illustrated in the
preceding development, a graphical plot of equally spaced isotherms and adiabatics is sufficient to
determine the shape factor. The graphical net formed by isotherms and adiabatics can frequently be
obtained by freehand drawing to quickly yield heat transfer results, as well as temperature distribution
data, which are quite accurate.

(X
Y

ii5m

h—snn—

(@ (&) (©)

Fig. 3-5

EXAMPLE 34. A heatcd pipe in a squarc block of insulation material is shown in Fig. 3-5(a). Find S/L by
freehand plotting.

Since the inner and outer surfaces have constant temperatures T, and T, respectively, the vertical and
horizontal centerlines, as well as the corner-lo-corner diagonals, are lines of geometrical and thermal symmetry.
These are also adiabatics, 0 we need to construct the flux plot for only one of the typical one-eighth sections; the
resulting shape factor for this scction will be one-eighth of the overall shape factor.

Figure 3-5(b) illustrates the beginning of the frcehand sketch, Notice that the plot was begun by fixing the
number of heat flow lanes to be four; the choice is quite arbitrary, but the use of an integral number is advisable.
The freehand work is continued in Fig. 3-5(c) by progressing outward by the formation of curvilinear
squares. Upon completion the average number of squares per lane for this sketch is M = 3.7, whence
SIL = 8(4)/3.7 = 8.65.

Techniques for freehand plotting include:

Identify all known isotherms.
Apply symmetry (geometrical and thermal) 1o reduce the art work.
Begin, if possible, in a region where the adiabatics can be uniformly spaced.

Begin with a crude network sketch to find the approximate locations of isotherms and
adiabatics.

il e

5. Continuously modify the network by maintaining adiabatic lines normal to isothermal lines
while forming curvilinear squares.
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Electrical Analog
A second technique for determination of the conductive shape factor for a two-dimensional
problem is afforded by the fact that the electric potential E also obeys the Laplace equation:
"l -7
f—f + i—f ==
dy

dx
for steady state conditions. Consequently, if the boundary conditions for E are similar to those for
temperature and if the physical geometry of the problem is the same as for the thermal problem, then
lines of constant electric potential are also lines of constant temperature. This analogy leads to a more
accurate grid of curvilinear squares than obtainable by freehand plotting and consequently to a
somewhat better value of the conductive shape factor. (Sec Problem 3.31.)

0

Tabulated Values of §
A summary of useful conductive shape factors is given in Table 3-1, page 62.

34 NUMERICAL ANALYSIS

Consider a general two-dimensional body as shown in Fig. 3-6. The body has uniform thickness
L in the z-direction and no temperature gradient in that direction. Choosing an appropriate Ax and
Ay, the body is divided into a network of rectangles, cach containing a single nodal point at its center.
It is convenient to consider the heat transfer as occurring between nodal points only, these being
connected by fictitious rods acting as conductors/resistors for the heat flow. Thermal energy is
considered to be “stored™ at the nodal points only. The horizontal and vertical conductances are

given by
kAL Ay = kL(Ay) Ax and kA, /Ay = kL(Ax)/Ay

. n.‘___‘
= | s | » | = | = | & | = 4
\N\
[..,.... « N
e
w | &« | * | & [ = | & .
A
\\:. - - . . s | . 1 n 3
\\‘\" ] L B .y T
NHHEE , :
i Lx

Fig. 3-6

A steady state energy balance on an interior nodal point n (see the enlarged section of Fig,
3-6) is

Gi—n + qz—-n + q:*—m + q-l—m =0 '(3 }'3)

where g is taken positive for heat flow into n. Using the product of a conductance and a finite
temperature difference for each conductive flux, (3./3) becomes

kL(ﬁy)(——-—T‘;xT”) + kL(ﬁx)(—-—ngyT") + kL(ay)(T‘;tT”) + kL(Ax) (__n;y?‘,,) =0




Table 3-1. Selected conduction shape factors. [From several sources.|

Physical Description

Sketch

Conductive Shape Factor

Conduction through a
material of uniform k from
a horizontal isothermal
cylinder to an 1sothermal
surface

(a) L>2r

g = 27l
" cosh™!(z/r)
by L=2r
®) z>3r

S _ 2w
L In(2zir)

Conduction in a medium of
uniform & from a cylinder
of length L to two parallel
planes of infinite width and
length L

%
® T, - L%m

¢ 2ol
“ In(4z/7r)

corner at intcrsection of

three plane walls, cach of
thickness 7, with uniform

inner temperature T; and
outer tempcrature T,

z2®r

.2z
Conduction from an T
isothermal sphere through a 1 Azr
material of uniform & to an T, z §= 1 (r22)
isothermal surface p ]

I>r

r

Conduction between two . S _ 27
long isothermal parallel | L cosh™'[(x>—ri—r})i2n 1)
cylinders in an infinite @
medium of constant k n r Lerr

Lex
Conduction betwecn a - S = 2wl
vertical isothermal cylinder ~_.1 ~T " In(4Lid)
in a medium of uniform & T L d
and a horizontal isothermal ™ L . Z L
surface d— ~—

e = = I

Conduction through an edge S=051L
formed by interscction of a>1ts
two plane walls, with inner
wall temperature 7' and b>il5
outer wall temperature T,
as shown*
Conduction through a 5=015¢

inside dimensions > /5

*§ for the plane wall is simply A/r, where A for the top wall shown is A = al; for side wall, A = biL.
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or, when we choose Ax = Ay,
N+, +T:+T,—4T7, =40 (3.14)

For cases where the boundary temperatures arc known (specified) an equation of the form (3.14)
can be written for each interior nodal point of a body, and the simultaneous solution of the resulting
set of equations yields the temperatures at the nodal points. These temperatures can then be used to
approximate lemperature gradients for calculation of heat transfer rates over finite areas. For other
boundary conditions such as convective or insulated boundaries, see the section Exterior Nodal
Points.

EXAMPLE 3.5. Write the set of nodal temperature equations for a
six-square grid for the square chimney shown in Fig. 3-7. Assume the
material to have uniform thermal conductivity, uniform inside temperature
T; = 300°C, and uniform outside temperature T, = 100°C,

In the indicated quadrant of the chimney, the only unknown nodal
temperatures are T,, T, and T,, since clearly 7. = T, T. = T, etc. The
nodal equations are, from (3.14),

node a: T, + T, + 100+ 100 - 47T, =0
or T,+100-27,=0

node b: 300+ 7, +100+7,—-4T7,=0
or 40+T, +T,~-4T, =0

nodec: 300+ T, +100+ T,— 47, =0
or 200+ 7T,-2T7T, =0

In conventional form, the set of equations is
27, - T, +0 =100
—-T,+4T,— T.= 400
=T, +27,. =200

and the problem is reduced (o solving this set of lincar algebraic cquations.

Computer Solution

The widely used methods for solving a set of linear algebraic equations are the matrix inversion
technique (Gaussian elimination); the relaxation technique; and Gauss—Seidel iteration. We will next
examine these methods in the order listed.

Gaussian Elimination
EXAMPLE 3.6. Solve the system
X, +2x +3x, = 20 (a)
=35+ xn=-3 (b)
11 (c)

2+ ot oxn

by Gaussian elimination.

First, triangularize the given sct of equations. This can always be accomplished by repeated application of
three basic row operations: (i) multiplication of a row by a constant, (ii) addition to another row, (iii) interchange
of two rows,

Thus, eliminate x, from (b) and (c) by respectively adding to these equations —1 times (a) and —2 times (a).
The result is:

X+ 213 -+ 31_\ = 20 (a')
—5x 2%y = -23 (5"
- 3x; —5x,=-29 (c")
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Now eliminate x, from (¢’) by adding to it —3/5 times (b'):

xn t 2."3 + 3.(1 =20
S0 +20 =23
xy= 4
This is the triangularized set of equations.

Finally, “‘back substitute,” beginning with the bottom equation and working upward, to obtain successively
x; = 3 and x, = 2. Thus, the final solution is

X = . Xy = 3 Xy = 4

To solve large systems of equations by Gaussian elimination, it is convenient 10 express the
equations in matrix form:

a1, A2 ... AN [Ty [ BO)]
A1) AQR2) ... AN || TQ) B(2)

=1 (3.15)
_Au;f,l) A(&,z) A{N’,N}_ _T(hz)_ | B(V) |

Figure 3-8 presents one possible flow diagram which is useful in formulating a computer program for
solution of a set of linear algebraic cquations such as (3.15).

Relaxation Technique

A method of solving a set of linear algebraic equations without the use of a digital computer will
be considered next. This method is frequently useful for nonrepetitive-type problems involving a
relatively small number of nodal points, say not more than 10, in a conduction problem.

EXAMPLE 3.7. Determine the steady state temperatures at the four interior nodal points of Fig, 3-9.
The nodal equations, obtained with the aid of (3./4), are

node 1: 400+ 500+ T, + T, - 4T, =0 )
node 2: S00+200+7,+ T, -4T, =0 2)
node 3: 200+300 + 15+ T,-47T, =0 3)
node 4; 300+ 400 + 71 + T — 47T, =0 )

which comprise a set of four linear algebraic cquations containing the four unknown nodal temperatures. The
relaxation method of solution proceeds as follows:

1. Assume (guess) values for the four unknown temperatures. Good initial guesses help to minimize the
ensuing work.

2. Since the initial guesses will usually be in error, the right side of each nodal equation will differ from zero;

a residual will exist due to inaccuracies in the assumed values. Consequently, we replace the zeros in
equations (f) through (4) with R, R;, R,, and R, respectively:

900+ T, + Ty 4T, = R, (5)
00+ T+ T -4T, = R, (6)
SO0+ T, + Ty~ 4T, = Ry %)
700+ 7y + Ty — 4T, = R, (8)

3. Set up a “unit change™ table such as Table 3-2, which shows the effect of a one-degree change of
temperature at one node upon the residuals. The fact that a “block™ (overall) unit change has the same
effect upon all residuals is unusual, this being due to the overall problem symmetry.
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[ata1=AU)-AKI* A1 F—

{a) Triangularization

M>N

Eqs. Not Independent

[x{L)=(B(L)-SUM)/AILL)

L>t L<i

(b) Back Substitution

Fig. 3-8

/-T=300°C

Ax = Ay

T=400°C'\

! ' /T=200°C

\T=500°C

Fig. 3-9
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Table 3-2

AR, AR, AR, AR,
AT, = +1 -4 +1 0 +1
AT, = +1 +1 -4 +1 0
AT, = +1 0 +1 ~4 +1
AT, = +1 +1 0 +1 -4
Block
Change = +1 -2 -2 -2 -2

[CHAP. 3

4. Calculate the initial residuals for the initially assumed temperatures using the “residual equations™ (5)

through (8).

5. Set up a relaxation table such as Table 3-3. Begin with the initially assumed temperatures and the resulting
initial residuals. The left-hand column records the changes from the initially assumed temperature values.
Notice that the procedure begins by “relaxing™ the largest initial residual (or perhaps by making a block
change, a technique useful when all residuals are of the same sign).

Table 3-3. Relaxation table.

T, R, T, R, T R, T, Ry

Initial

Values 400 —25 325 +75 275 +75 350 -25
AT, = +20 400 -5 E‘E -5 275 +95 350 -25
AT, = +25 400 ~5 ) 345 +20 | 300 -5 1 350 0
AT, = +5 400 0 350 0 300 0 350 0
Check by J J v J
equations 0 0 0 0
Solution 400 350 300 350

In the present problem, we should begin by reducing R, or R,. Arbitrarily choose R, and proceed by
over-relaxing slightly. At this point the convenience afforded by Table 3-2 becomes evident; this facilitates rapid
calculation of the changes in the residuals without recourse to the equations. Notice that the +20° change in T,
reduced the residuals at nodes 1 and 2 but unfortunately increased Rj.

The first row in Table 3-3 shows the new residuals and temperatures; the only lemperature changed is
underlined. Proceeding, we next relax the largest resulting residual, this being R;. Following a temperature change
of +25° at node 3, we see that Ry = 0. This does not necessarily mean that we have obtained the correct
temperature at node 4, but rather that the set of as yet incorrect temperature values happens to satisfy eq. (4)
exactly. Proceeding, the largest residual is now R,, which is reduced to 0 by a +5° change in T;,. This also reduces
all remaining residuals to zcro. A check is made by substituting the temperatures thus obtained into egs. (1)
through (4); this verifies the solution.
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Gauss—Seidel Method
To illustrate this very popular method of solution of a set of nodal equations, return to Fig. 3-9
and associated temperature nodal equations (7), (2), (3), and (4). Naming the set of equations (3./6a)
we have
400+50+T,+T,—4T, =0
500+200+ T, + T, — 4T, =0
200+300+ 7, +T,— 4T, =0
300+400+ 7, + T, - 4T, =0

(3.16a)

Next, we rearrange these equations to have the unknown temperature at each node to appear on one
side of the equation alone and with the coefficient +1. This is done by solving the first equation in
(3.16a) for T,, the second for T, and so forth, yielding (3.16b).

T, =225 (-17,-1iT)
7,=175- ('% T — :liTJ)

7, =125 - (- T, - 4T) (3.166)
T,=175— _%TI - 573)
More generally, this can be written
T, =C—(CaTy+ C3Ty+ -+, Ty)
T,=C~(CuTy + Cyy T+ -+ Gy, Ty,)
Ty=C—(Cy T+ CpuTy+ - + G5, Ty)
(3.16¢)

Tﬂ= C,,"(C,,l T|+CMT2+"‘+C"”_1T,‘ ])

Proceeding to solve (3.16b) with the Gauss-Seidel method, an initial set of temperatures T, through
7, is assumed. Obviously, reasonable choices here will facilitate the solution, and the temperatures
must be bounded by 200 °C and 500 °C. Choosing 7, = 450, T, = 350, Ty = 250, and 7, = 350, all in
°C, is a reasonable guess. We next insert these 75 and 7, values in the right side of the first equation
of (3.16b) and calculate a new estimate of 7, viz.

Ty = 225 — [—4(350) — ¥(350)], 7, =400

Proceeding to calculate new estimates of 7,, T3, and T,, always using the newest value available for
each temperature, yields (3.16d).

7, = 400.00
T, = 175 — [—4(400.00) — }(250.00)], T, = 337.50
Ty =125 — [-1(337.50) — §(350.00)), 73 = 296.87
Ts = 175 — | —3(400.00) - 4(296.87)], T, = 349.22

(3.16d)

At this point we have completed one iteration. To proceed, we next use the newest temperature values
from set (3.16d) together with the solution set (3.16b) to calculate the next iteration set, always using
the newest 7 value available. Thus, to calculate a new 7, defined in set (3.16b), we use the T, and T,
values from (3.164), obtaining

T, = 225 — |-3(337.50) — }(349.22)], T, = 396.68
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Again, proceeding to calculate new estimates for 75, Ty, and T, always using the newest value
available for each temperature, yields (3.716e).

T, = 396.68
T, = 175 — [ -§(396.68) — }(296.87)). T, = 348.39 (3.16¢)
o= 125 — | —-3(348.39) - }(349.22)], T, =299.40
T, = 175 — | -3(396.68) - §(299.40)], T, = 349.02
The next (third) iteration through the set of equations yields
T, = 225 — [—4(348.39) — }(349.02)], T, = 399.35
T, = 175 — [—1(399.35) — 4(299.40)], T, = 349.68 (3.16f)
T, = 125 — [-3(349.68) — }(349.02)], T, =299.67 '
T, = 175 — [—§(399.35) — §(299.67)], T, = 349.76
and the next (fourth) iteration yields
T, = 225 — | —§(349.68) — (349.76)), T, = 399.86
T, = 175 — | —§(399.86) — §(299.67)], T, = 349.88 (3.16¢)
To= 125 — |-5(349.88) — 1(349.76)), T, =299.91 '
Ty =175 — [—4(399.86) — (299.91)], T, = 349.94

All temperatures are in °C.

At this point we question the value of additional iterations. Usually, temperature values within +
a few per cent accuracy are suitable for engincering calculations. If we use m as a superscript to denote
the previous iteration and m + 1 to identify the iteration just completed, a computer program could
use a test such as

&-Test: |7 P =T <8
Applying &-Test to the equation sets (3.76f) and (3.16g) with, say, 8 = _2°C, we find that the maximum
value of
|yt =T =0

is 0.51 °C, and we stop the process. Clearly, we can satisfy smaller values of 8 with additional iterations,
but it is doubtful that we would know the thermal conductivity with sufficient accuracy to justify a
smaller value of &.

Exterior Nodal Points

Frequently the temperatures of exterior nodal points are not specified or known at the outset but
must be determined as a part of the solution. For example, consider the boundary nodal point
subjected to a convective heat transfer, as shown in Fig. 3-10. A steady state energy balance on nodal
point n is

2 2

where L is again the thickness of the body in the z-direction. Note that —ax
the effective horizontal conductance between nodes 1 and n, or that _ﬂ-—q*x-:.l
between 3 and n, involves only one-half the area that is associated with 7 T
a horizontal conductance between a pair of adjacent interior nodal 1
points.

ﬂ"}' TI - :r!l 'rJ B ?:I ﬁj' ?i - ‘Tnl
Ax

kL= (o )+k!,(ir)( Yo ) )+hL(Ax)(T,~T,1)=0 (3.17)

1 h/n 3
T.

Fig. 3-10
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For a square grid, (3.17) simplifies to

1 Ax
E(T,+2TZ+T,)+’1’(—(L)—(f'-;ﬁn)rﬁo (3.18)

For numerical solution using a digital computer, this last equation is suitable for each exterior nodal
point along a plane boundary experiencing convective heat transfer. For solution using the relaxation
method, we simply replace the zero on the right-hand side of (3.18) with a residual, R,,.

A summary of useful nodal equations (in residual form) is given in Table 3-4. Simply replace the
R,, with zero to use any of these in a computer solution. Although not an exterior nodal point per se,
the case of an interior nodal point near a curved boundary has been included in this table for
convenience.

Table 3-4. Nodal equations for numerical calculations, square grid,

Convective boundary at exterior corner:

1 hAx hAx
3 T T+ 22 ()= (S 1) =,
4
T _Ar Convective boundary at internal corner:
y
1
JI n 3 _l_ T|+T4+§(T2+T3}+}%(Tx)
- h
2 - (-;h + 3) r.,=R,
k
l-ﬁx—-l

Nodal point along a line of symmetry
(or on an insulated boundary):

1
E(TI +TZ)+T]_'ZTH =R,

Nodal point near a curved boundary:

T 7, T3 T,
+ + +
a(a+1) b+1 a+1 bb+1)

1 1
—(;+3)Tﬂ—Rﬂ
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Solved Problems

3.1. Show that, in the solution of (3.3), the sine function boundary condition (4) requires a positive
separation constant A%

The equation for X(x),
d?X
——— + XX =0
o MX
has general solutions (for other than A2> ()
X= Cs + C(.I (AI = 0) X= ij-lu‘ + Cge"“"‘ (A2< 0)

In neither case could X fit a sine function along the edge y = W.

3.2. Consider a two-dimensional problem of the type shown in Fig. 3-1. The linear dimensions are
W = L = 2m, and the temperature on three sides is 7, = 280 K. The temperature along the
upper surface is 7, = 320 K. Determine the temperature at the center of the plate.

The answer is obtained from the infinite series (3.8), with

oy _mx _o(l) _w oW w(2)

= e—— = — = — = qr

L L 2 2 1L 2
0 =T -T,=320-280 = 40K

Using six significant figures, we compute in Table 3-5 the quantities needed in the first three
nonvanishing terms of the infinite series.

Table 3-5
el
n (”—+l- sinhEE sinhnw sinE
n yA 2
1 2 2.301 30 11.5487 1.0
3 213 55.6544 6195.82 -10
5 2i5 1287.98 331781 x 10° 1.0
Thus
2 sinh (m2) | (rr) 2sinh (37/2) |
I,1y=40{—]|2—= -+ - 3n/2
L. 1) (w)[ sinh 7 s 2 3 sinh3#w sin(3wl2)
+gsinh(5'm'2)_ (5_« ..
5 sinhS57 sin 2)

= 80 [0.398 538 — 0.005 988 +0.000 155 - ---} = 10.0002 K
v

and 7(1,1) = 10.0002 + 280 = 290 K.
It can be shown (Problem 3.19) that the exact answer is 6(1, 1) = 10 K. The very slight error in the
series solution is due to round-off and truncation errors.

3.3.  For the situation shown in Fig. 3-11, determine the steady state temperature at the point

t5))
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¥

T = 140 °C

T =100°C T =100 °C

0 T=100°C 2

Fig, 3-11

The problem in 8 has only one nonhomogeneous boundary condition, and consequently (3.8) gives
the solution as

e [2)[, sinh (4) 2 sinh (3714)
66,3 = (40°C) («)[2 siha S0 (M3 =G, s G)

2 sinh (S74) 2 sivh (Tm4) _ ]
S sinhsn sin (57/4) + 2 sinbTm sin (7l4) +
80 [ (0.868671 2 (522197
-2 Iz ( "1"1'_5'4'67") (©0107107) + 3 (317;5_1';3) (0.707 107)
2/ 25367 20 122073
5 (3.317 81 X 1m) (=0707107) +3 ( 1.776 66 X% 10")(_'0""07 107)+: ]

80
= —1[0.106374 + 0.000 398 ~ 0.000002 — -] = 2.71888 ~ 2.72°C
and T(},}) = 102.72°C.

34. Flo; the two-dimensional configuration of Fig. 3-2, determine the temperature at the point
(3)

The problem can be separated into two simpler subproblems in 8, as shown in Fig. 3-3, and the final
temperature is given by 6 = 6, + &, where 6 is T — (100 °C). To solve the two subproblems, we first must
reorient subproblem 1 to match the orientation used in the derivation of (3.8). This is shown in Fig.
3-12(a); notice that in the new (x’,y") coordinate system the point in question is (3,3), obtained by a 90°
clockwise rotation of the original problem.

i v
/-9:-300"(: /-a,-wo'c
1 1
8 =0 a0 o =0 *@.d
1 \ \8;=0 2 = \9,=0
= X

"
1 1
/ e, =0 f-le, =0
{(a) Subproblem 1 (k) Subproblem 2
Fig. 3-12
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Solving,

2)|2mnh(3m'4) 2 ﬂl‘!‘_@_ﬂi‘l sin (9m/4)

6;(3.3) = 300 (-1; ey n(37i) + 3 =
2 sinh (15m‘4)
S sinhSw
600 [ 2(5.227 97) 2(587.241)
= | ———(0.707 107) + ———
- l T1sag7 TN+ e )
2(6.537 04 x 10%)
5(3.3178 x 107

= 6—09 (0.640 199 + 0.044 680 — 0.005573 + ---) = 129.7379°C = 6,(3.3)

in(157/4) + - l
(0.707 107)

(=0.707 107) + -+ ]

z smh(9m'4)

n(n/4) + h37

2)[251nh(3m"4) sin (3m/4)

82(414_ (‘rr Slh

2 bll‘lh(lSﬂMv}
5 sinh 57
_ @ 2(5.22797)
T 11.5487

2(6.53704 % 10%)
S(331781 x 10F)

in (5m/d) +- I

2(587.241)

207107
(0.707107) + 3 6195 82)

(0.707 107)
(~0.707 107) + ]

200
= Z=(0.640 199 + 0.044 680 — 0.005 573 + --) = 43.2460°C
v

Therefore,
ﬁ(;‘,,}) =609+ 6,43 = 17298°C and 7(.3) = 172.98 + 100 = 272.98 °C

It should be noted that in the solution of the two subproblems, the infinite series for 6](3.3) is
numerically the same as that for 6,(3,3); this is intuitively correct from a physical viewpoint.

3.5. Consider an 8.0in o.d. pipe with a 12.3 in thick insulation blanket. By flux plotting determine
the heat transfer per unit length if the inner surface of the insulation is at 300 °F, the outer
surface is at 120 °F, and the thermal conductivity of the insulation is 0.35 Btu/h-ft-°F

Starting with an accurately scaled set of two concentric circles. as shown in Fig. 3-4, construct a
network of curvilinear squares as explained in Section 3.3. Since this has been done in Fig. 3-4, it will not
be repeated here. From Fig. 3-4, there are approximately 3} squares in each heat flow lane, and there are
4 flow lanes per quarter-section. So, M = 3.33, N = 16, and

s 16
Z - m = 4.80
Thus,
0.35 Bt
=480Kk(T,~-T,)=4 BO(TO:) [(300 — 120) °F] = 302.4 Btw/h-ft
Since this is actually a one-dimensional problem, we can readily check the result by use of (2.74).
Hence
q _2ak(T,-T) 2=
L In(nir)  In(163/4) &)(T. = To)
0.35 Btu Btu
=447 | ——— | [(300 - ° —
( TS )[(‘!00 120) °F} = 281.61 b
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This exact result is 7% lower than the result by freehand plotting; this is an indication of the accuracy to
be expected from freehand plotting. Note that in this case, the analytical representation for S/L is
27l (r,/r;).

3.6. Consider a 4 X 4in square block of fire clay having a
1in square hole at the center, as shown in Fig. 3-13. If
the inner and outer surface temperatures are 150°C
and 30 °C, respectively, and the thermal conductivity is
1.00 W/m-K, determine the heat transfer from the
inner surface to the outer surface per meter of length
by freehand plotting. -

I\

Since this problem has isothermal boundaries, freehand
plotting is applicable. Due to symmetry, it is necessary to | —
construct the freehand grid of curvilinear squares for only
one-eighth of the body, as shown in Fig. 3-13. From the

plot,
_B15+825+835+870+900 4
av 5 - 0.
. Fig. 3-13

and, for the entire block, N = 8 X 5 = 40. Thus,

§ 40

S = =47

L 85
and

1.00 W
m-K

9 _Sur-1,)= @

s )[(150 —30) K] = 564.7 W/m

Notice that because S/I. depends only on the ratio of linear dimensions, no conversion from inches 10
meters was required.

3.7. A 2.0m long pipe with 3.25 cm o.d. carries hot water. The outer surface temperature is 55 °C
and it is buried 30 cm deep in damp soil. The soil upper surface temperature is 8 °C. The damp
soil conductivity is 0.78 W/m-K. Using a tabulated expression for S, determine ¢ in watts.

The uppermost sketch in Table 3-1 may apply. Since there are two expressions for § given, we necd
to see that one or the other is appropriate. For this problem:

L =200em; r=1625cm; 2r=325cm
For expression (a)
200 = 3.25; $0 L®2r
Hence

5= 2wl - 27 (2m)
cosh™'(z/r)  cosh™'(30/1.625)

For expression (b)

z=730cm; 3r=4.875cm; 50 z>3r
200 > 3.25; SO L®2r
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Hence,

2wl 27(2m)
In(2z/r)  In(60/1.625)

and either expression for § is suitable. Then,

=3482m

g §
- = = > =T,
;- T

so,
g = 348 m(0.78 W/m-K)}(55 — 8) °C

= 1276, say 127 W

Note that we do not usually have £ value accuracy better than two significant figures, o an answer of 120
to 130 W is suitable.

In Problem 3.7, there appear to be two expressions for the conduction shape factor S that yield
answers that are very close to cach other. Is this circumstantial or not?

We can check this by examining values of cosh '(z/r) and In (2z/r) for the stated lower limiting value
of z, z = 3r, and a large value of z, say z = 100r.

For z = 3r,

cosh '(z/r) = cosh™' (3) = 1.763, and
In(2z/r) = In(6) = 1.792

These differ by about 1.6%. This is surely close enough for most practical applications.

For z = 100r,

cosh™! (z/r) = cosh™' (100) = 5.296
In(2z/r) = In(200) = 5.298

Thus, within the specified ranges of L, r, and z, both expressions for a long, buried cylinder appear to be

adequate for engineering applications. Keep in mind that our k data set is probably only accurate to
*10%.

Problem 3.6 illustrates the typical accuracy obtainable by flux plotting (freehand sketching). An
often encountered problem is the circular hole centered in a square block of equal length as
shown in Fig. 3-14(a).

L

12¢cm

(@ ®)
Fig. 3-14(a) Fig. 3-14(b)
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3.10.

3L

The block-hole system is very long; thus the temperature distribution is two-dimensional. A solution
for this problem is given in some texts as

E_ 27

L In(1.08z/r)
z=r

L»2z

For a specific case with L very long, z = 12cm and r = 6cm,
S_ 27
L In(1.08 X 12/6)
The careful flux plot of Fig. 3-14(b) yields
S5+37+42+43
M= 3

= 8.16

=3.93
4

S 8N 8x4

LM 393 oM

This apparent high accuracy is misleading, although a careful flux plot was drawn. Five to 10% accuracy
is more common with this method. See Problem 3.20.

Using Appendix B, determine the heat transfer per unit length from a 2.0in o.d. pipe located
in the center of a 10 in thick cinder concrete wall. The wall is very wide and very high, resulting
in the two-dimensional problem of Fig. 3-15.

70 °F
1 =
5”
5 110 °F
N0 °F
Fig. 3-15

From Table 3-1 with z = 5in and r = 1.01in,

:S: _ 27 _ 27
L In(4zlwr)  In[4(5)]

From Table B-2 (Engl.). & = 0.44 Btu/h-ft-°F and thus

0.44 Btu
h-ft-°F

=339

s
9. ZKT,~T) = (339) (

7 ) [(110 — 70) °F] = 59.6 Btwh-ft

A hollow cube having outside dimension 0.5 m is made of 0.05 m thick asbestos sheets. If the
inside surface temperature is 150 °C and the outside surface temperature is 50 °C, determine the
rate of heat loss in watts from the cube.

There are six 0.4m square surfaces [0.5~2(0.05)] which can be treated as one-dimensional
conduction problems. There are twelve edges each 0.4 m long, as shown in the next-to-last sketch in Table
3-1; these are two-dimensional problems. Finally, there are eight three-dimensional corners, as shown in
the bottom sketch of Table 3-1.
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The asbestos thermal conductivity may be taken as

0.111 Btu W/m-K
= ————— s — = . -
= (I'ng'aBtuih-ft-“F) 0.192 Wim-K
Square Surfaces:
AT
= 6kA,—
q, A

(150 - S0) K
= 6(0.192 W/m-K)(0.4 m)* *——1— = 368,64 W
6(0.192 Wim-K)(0.4 m)? == = 36

Edges: From Table 3-1, S, = (0.54)(0.4 m) = 0.22 m and

0.192wW
m-K

Comers: From Table 3-1, §, = (0.15) ¢ = (0.15)(0.05 m) = 0.0075 m and

0192w
m-K

g. = 12(S.kAT) = 12(0.22 m)( )(100 K) = 50.69 W

4. = 8(S. kAT) = 8(0.0075 m)( )(100 K)=LISW

The total heat transfer rate is then
Growt = G5 T g+ q. = 368.64 + 50.69 + 1.15 = 420.48 W, say 420 W

since clearly §, and §, are approximations.

Solve by Gaussian elimination the set of algebraic equations obtained in Example 3.5.

The nodal equations to be solved are

27, — To+ 0=100 (1a)
-T,+4T,— T, =400 (2a)
-T,+2T, =200 (3a)
Multiplying (/a) by 1/2 and adding to (2a) yields
2T,— T,+ 0=100 (1b)
7
U+5Tb~ T, = 450 (2b)
=T+ 2T, =200 (3b)
Multiplying (2b) by 2/7 and adding to (3b) yields
27,- T,+ 0=100 (Ic)
% Tp— T,=450 (2¢)
12 2300
7T )
Thus, by back substitution,
2300
T =——=19167"
} 2 67 °F

2
T, = ;(4504» 191.67) = 183.33 °F

T, = %(100 + 183.33) = 141.67°F
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3.13. Using the flow diagram of Fig. 3-8, write a computer program for Gaussian elimination in
Fortran IV. Allow for 10 equations in the DIMENSION and FORMAT statements.

The program given below is one suitable solution. It can easily be modified to handle more equations
by appropriate renumbering in the DIMENSION statement and suitable FORMAT statement(s) changes. It
is best not to heavily overdimension in the DIMENSION statement as this fixes computer storage
requirements.

Part 1. Triangularization

0060 OIMENSION Aigfps10! + Siig) exiig)
0070 READ (ss1000) N

0080 N1 = N

0030 OD 100 1 = 1 4 W

0100 READ (5010103 tAtlad)ie JalaNl)
0310 READ (35,10103 (Bi1Ysl=iaN)
0320 WRITE (gs30201 N

0130 WRITE 16,1030)

0140 0D 200 I= 1%

0200 wWRITE (621040) (AtladiadulaNt) s 8111
0220 K =1

0260 I = K¢y

0270 IF (ALKaK)«EQ-0) Q0 TO e10
D280 ALl = AlJsR)1ZA0KK)

0290 BII) = Bil)-BiK)sAl

0300 J = K

0310 AlIsJd) = AlQaJ)=AINsJ]ImAl
0320 IF 1JsQEsN) GO TO 350

0330 J = Je}

0380 GD TD 310

0380 IF (I+«GEsN) OD TO 380

0360 1 = e}

0370 GD TD 270

0380 IF (KsGEsiN=1)) G0 TO 550
0390 K = Kel

0800 G0 TO 260

0410 M = Xel

Daz0 IF (1AIMsK)DaNEQ) GO TD as0
0430 H = Mel

o640 IF IneLE+NI! GO TD %20

0430 WRITE (6+1050)

Oa8% GO TO 2000

Oag0 CL1 = HK)

0470 BIK) = BIN}

O480 BiM) = C1

Ca®0 pO 8520 J=1.N

0500 Zi1=A(KsJ)

0510 AMKsJ) = alMaJl

D520 AlMaJlall

Os3p GO TD 280

0550 WRITE (&.,1060)

0560 DO 570 I=1.M

0570 WRITE 1621040) (ALIsd)sJd=laNL)
OS75 WRITE 1s.107D)

Os80 WRITE (§21040) IS11)sT=1sNI

Part 2. Back Substitution

0385 WRITE[6210%0)
0590 L=y

0§00 SBUNa0

0810 IF tL+LTeN; QD TO 700

0820 XIL)®{SIL)=BUM)/AILaIL)

0640 IF {L+LEs+1.0) 00 TO 21200

0850 L=Le~1

0&s0 QD TD #00

0700 J=| el

0730 SUMSSUMeAIL)JIsXIJ}

0720 IF(J«QEeM) OQ TO 420

0730 JsJel

0740 aD TD 710

1000 FORMATIIZ)

1010 FORMATI10 FB.3}

1020 FORMAT('1';"THERE ARE'21322X, 'EQUATIONS? /1
1030 FORMAT(' '5*THE EQUATIONS ARE:'/)
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108p FORMATI'Q'agiF1102)
1050 FORMATiI'1*,'THE EQUATIONS ARE NOT INDEPENOENT')
1060 FORMATI'1',' MATRIX A TRIANGULARIZEpR'//!}
1070 FDRMATI'D',' MATAIX B TRIANGULARIZED'//)
1090 FORMAT!'1',' THE EQUATION ROOTS AREI'//)
1100 FORMAT{¢Dr,1 ROOT #i5122% = 1,F10e3)
1200 00 1210 L=1:N
1240 WRITE(6,1300) L2 XEL}
2000 COMTINUE

CALL EXIT

END

3.14. Repeat Example 3.5 using a 3 cm square grid of nodal points (Fig. 3-16), and inner and outer
temperatures 300 °C and 100 °C, respectively.

The nodal equations are, by (3.14), 18 cm |
4o - 6em— j
node a: 27, +27,-4T,=0
node b: 300+ 7, + T+ T,—4T,=0 K
node ¢ 300+ Ty+ T+ T, — 4T, =0 P
node d: 300+ 2T, +T,-4T, =0 ! M (2
node e: 2T, + 2T, —4T, =0 by —4—1)
node f T,+T,+T,+7T,—4T;=0 - m;.(.
nodeg: Tp+T,+T,+T,-4T,=0 Tmf,c b g |m
node h: T+ T,+ T, +T,~4T, =0 NIL e 3n (ean
nodei: T, +27,+T7T,-4T,=0 + 7 1 ~-4—
node j: 2T, +2(100)— 47, =0 J. Db e
node ki T.+ T,+ 100+ T, - 4T, = 0 < TR e
node I T,+T,+100+T,—-4T,=0
nodem: T, +T,+100+7,-47, =0
node n: T+ 7T,+1004+ T, —47,=0
nodeo: T, +27,+100-47T,=10 !
where, due to thermal and physical symmetry, T, = T}, etc.
Putting these equations in the matrix form (3.15) for sub-
sequent computer solution, we have
Fig. 3-16
a b ¢ d e f g h i j k I m n o
-4 2 2 T, 0
1 -4 1 1 T, -300
1 -4 1 1 T, =300
2 -4 I T, -300
-4 2 2 T, 0
1 1 -4 1 1 T, 0
1 1 -4 1 1 T, 0
1 1 -4 1 1 T, | = 0
1 2 -4 1 T, 0
-4 2 T, -200
1 1 -4 | T, —100
1 1 -4 1 T, -100
1 1 -4 1 T, —100
1 1 -4 1 T, -100
1 2 —4f| T -100
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3.15.

3.16.

The computer solution is (where units are °C):

T,=194.41 T.=140.34 T, =190.34 T, =137.58
T, = 228.11 T, = 160.71 T,=109.99 T, =14223
T, =239.53 T, = 178.51 T, = 11997 T, =143.70
T, =1242.35 T, = 187.65 T,= 12956

Derive the nodal temperature equation for the case of an
exterior corner node with one adjacent side insulated and
one adjacent side subject to a convective heat transfer, as
shown in Fig. 3-17.

The rates of energy conducted between nodes 1 and n and
between nodes 2 and n are, respectively,

ﬁy "h-T, E(TZ&'I}:) -—-4;—4
kLZ(M) and kLz—————ﬁy

where L is the depth perpendicular to the xy-plane. The rate of
energy convected from T. to T, is

Fig. 3-17

Ax
hL —(T.—T,)
2
For steady state, the summation of energy transfer rates into node n must be zero, and thus

Ay T,-T,,) M(TE—T,,) Ax
| — _— ——— ] + _— =—d,)=
kL 2( +kL2 iy hLz(T 7,)=0

For a square grid, Ax = Ay and this simplifies to

h
T,+:rz+’-’—f(n}— (%u)rﬁo

Consider a 1/4in thick, rectangular, stainless steel fin (k = 8 Btu/h-ft-°F) which is 1.0in
long in the x-direction and very wide in the direction perpendicular to the xy-plane of
Fig. 3-18. The external convective heat-transfer coefficient is # = 96 Btu/h- ft*-°F, the surround-
ing fluid temperature is 7. = 80°F; the fin base temperature is T, = 200°F; and the end
of the fin is insulated. Using the 1/8 in square grid shown, determine the nodal temperatures
T, through T

Due to symmetry about the horizontal centerline, there are only 16 different nodal conditions. This
set consists of interior nodal points, exterior nodal points with a convective boundary, an exterior nodal
point with an insulated boundary, and an exterior corner nodal point having both an insulated and a
convective boundary. Treating these by type:




80 MULTIDIMENSIONAL STEADY-STATE CONDUCTION [CHAP. 3

Interior Nodes [by use of (3.14)]

node 1: 200427, + T, — 47, =0
node 3: T\ +2T,+T,—4T;, =0
node 5: T2 +2T + T, -47T5=0
node 7: Ts+2Ty+ Ty—4T, =0
node 9: T,+2T+ 1, —4T,=0
node 11: Ty+ 2T, + T3 —4T, =0
node 13: T +2T,+Ts—4T,; =0

Exterior Nodes with Convective Boundary (by use of (3.18))

Ax
node 2: %(200 YT+ T + "T(sn)— (%+ 2) T,=0
hAx (96 Btu/h-f-°F)[(0.125/12) ft]
= - = 0.125
k 8 Bw/h-{t-°F
thus, 200 + 2T, + T, + 0.25(80) —4.25 T, = 0
or, 220+ 2T, + T, — 425 T, = 0

node 4: 42T+ T, +20~-4257,=0
node 6: Ta+2Ts+ Ty +20-425T,=0
node 8: To+275+ T, +20-425T3=0
node L0 T +2T,+ T, +20-425T,=0
node 12: Tw+2T, + T a+20-425T,=0
node 14: T +2T34 T +20-425T,,=0

Exterior Node with Insulated Boundary (by use of Table 3-4)
1
node 15: E(T‘ﬁ-i_Tlh)-'- T|3—2T|5=(J

or, Tt T~ 2Ts =0

Exterior Corner Node (by the result of Problem 3.13)

h Ax h
node 160 Ty, + Ty + T(T,) - (%"’2) Te=0

or, Tiat Tys+10-2125T,, =0

Solving the system on the computer gives (units are °F):

T, = 167178  Ty=124928  T,=104533 Ty = 96366
T,= 163118  T,=122242 T, = 103.049 Ty, = 95375
Ty= 142474 T, =112753 T, = 99232  Tis = 95432
T, = 13889  T,=110776 T, = 98115 Ty = 94.497

3.17. For the two-dimensional conduction problem of Fig. 3-19, determine the steady state nodal
temperatures 7, through 7, using the relaxation technique. Consider the answers to be
satisfactorily accurate for this problem when the absolute value of the largest residual is equal
to or less than 1.0.
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3.18.

The nodal equations obtained with the aid of
(3.14) are, in residual form:

node 1: 300+ T,+T,—4T,= R,
node 2: 200+ T, +T;+Ts—47T, = R,
node 3: 400+ T, +T.—4T, =R,
node4: 200+ 7,+Ts—4T,= R,
node 5: 100+ T, + T, + T, —47T;= Ry
node 6: 300+ T,+Ts—47,=R,

100 *C

Table 3-6 shows the effects of unit temperature
changes.

Table 3-6

AR, AR, AR, AR, AR, AR,

AT, = +1 -4 1 0 1 0 0
AT; = +1 1 -4 1 0 1 0
AT, = +1 0 1 -4 0 0 1
AT, = +1 1 0 0 -4 1 0
AT; = +1 0 1 0 1 -4 1
AT, = +1 0 0 1 0 1 -4
Block = +1 -2 -1 -2 -2 -1 -2

We next begin the relaxation effort. Setting up the relaxation table, Table 3-7, we make an initial guess
for each nodal temperature. Using the six initial temperatures (guesses) and the set of six nodal equations,
we calculate the initial residuals and record these in the relaxation table. The work proceeds by relaxing,
in turn, the residual of largest absolute value. Since all initial residuals were of the same sign, a “block”
10 degree reduction in all temperatures was the first step. The block change is usually advantageous
whenever all residuals are of like sign. Following this, the residual of largest absolute value was R,; this
was relaxed by reducing 7,, Table 3-6 showing the effect per degree of temperature change in T, upon all
residuals.

Continuing, all residuals are within the specified tolerance for the bottom set of temperatures in the
relaxation table. The work could have been reduced somewhat by over-relaxing. Notice that T, for
example, was reduced three times. By reducing it more than apparently needed the first time, the work
could have been shortened. Excessive over-relaxation, however, could increase the required effort.

Estimate the heat transfer rate from the horizontal 100 °C surface in Fig. 3-19. Use the nodal
temperatures determined in Problem 3.17. The material is magnesite and the grid size is
Ax = Ay = 15cm.

From Table B-2 (SI), the thermal conductivity of magnesite at 200 °C (nearest listed temperature to
conditions of this problem) is k = 3.81 W/m-K. Dividing the body into heat flow lanes (Fig. 3-20) and
assuming the lower right-hand corner to be at the average of the two adjacent surface temperatures, we
proceed to approximate the heat transfer rate through each lane by one-dimensional methods. Thus for
depth L perpendicular to the plane of the figure,

q A, AT 381w (100—100 K w
o —_— mk—-—-:—-———— . e —_—
Lane a (:) Las mK M= cm) -
o {9\ _381W (Trloo K)
Lane b: (L)b o (15 cm) 5 o
W

= 3.81(120.5 - 100) = 78.11 —
m
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Table 3-7
T\ R . R, Ty Ry Te Ry Ts  Rs Te  Re
Initial

Guesses 160 -20 |180 -20 [190 -15 {140 -50 |150 ~15 |165 -20
Block = ~10 | 150 0 (170 -10 {180  +5 {130 -30 (140 -5 {155 0
AT, = -8 150 -8 |17 —10 Jigo +5 |22 2 140 13 |55 0
ATy = =3 1o 8 170 13 j180 S [ "1 w37 -1 piss 3
AT, =-3 | 150 -~ 167 -1 |180 *2 |45 71 |q37 4 |1ss -3
AT, = -3 147+l |47 4 | 180 *2 fqp T4 g3y T4 |5 3
Check by J J / J J J
equations 147 +1 | 167 -4 |[I180 +2 |122 -4 [137 -4 |I55 -3
AT, = —1 147 ()] E 0 180 +1 122 -4 137 -5 155 -3
ATs = ~1 147 0 |166 —1 |18  +1 [122 -5 [136 -1 |15 -4
AT, = ~1 147 -1 166 -1 180 +1 121 -1 136 -2 | 155 -4
AT, = -1 147 -1 | 166 -1 | 180 0 {121 -1 | 136 -3 [ 154 0
AT = -1 147 -1 166 -2 180 0 121 -2 135 +1 154 -1
ATi=-3 | M6 0 |y (180 <3 e 72 ojns 0 f1se -
Check by v J J J J J/
equations 146} 0 | 165! -5 | 180 -5 1206 -} 135 0 | 154 -1

q 381w (135-—100 l() W

AR ) =13335—

Lane ¢ (L) m-K (15 cm) 15 c¢m 3 5m

g\ 381W (154—100 K) W

S = 15 —— —} = 205.74—

Lane d (L)ﬁ, mK PN T Sl

C (q) 381w (200—150 K ) _ W

Lane e (L ) ~ K (7.5cm) T = 95.25 -

q w
Total: 7 = 7811+ 13335+ 20574 + 9525 ~ 512~

The approximation could be improved by using a smaller grid size; in fact, almost any desired level of
accuracy can be attained at the expense of computational time.
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3.19. Repeat the solution for the temperatures T), T3, T3, and T, of Fig. 3-9 using the Gauss-Seidcl
iterative method, but begin with the initial guess of all four temperatures being at the average
value of the four exterior surfaces. Use & = 1.0°C. This solution will indicate that the
Gauss—Seidel method is relatively insensitive to guessed starting values.

From previous work on this problem (in example Problem 3.7) we have the following set of equations
where all temperatures are in °C.

Ty =225+ (4T, +iTy)
T, = 175+ (GTy +3T)
7,= 125+ (T, + }T2) (18
T, =175+ T, +iTy)
Using T\ = T, = T: = Ty = (200 + 300 + 400 + 500)/4 = 350 °C obtains the set, all values in °C,
T, = 225 + }(350.00 + 350.00) = 400.00
T, = 175 + $(400.00 + 350.00) = 362.50 3.18b
T, = 125 + 4(362.50 + 350.00) = 303.12 (0-188)
Ts = 175 + §(400.00 + 303.12) = 350.78
The first iteration by the Gauss-Seidel method gives
T, = 225 + §(362.50 + 350.78) = 403.32
T; = 175 + 4(403.32 + 303.12) = 35161 1180
T, = 125 + 4(351.61 + 350.78) = 300.60 (3.18¢
Ty = 175 + 5403.32 + 300.60) = 350.98
The second iteration yiclds
T, = 225 + X351.61 + 350.98) = 400.65
T, = 175 + 3(400.65 + 300.59) = 350.31 3184
T, = 125 + 4(350.31 + 350.98) = 300.32 (3.78d)
T. = 175 + 3(400.65 + 300.32) = 350.24
The third iteration gives, with all values in °C,
Ty = 225 + §(350.31 + 350.24) = 400.14
75 = 175 + }(400.14 + 300.32) = 350.11
? 0 ) (3.18e)

Ty = 125 + §350.11 + 350.24) = 300.09
Ty = 175 + }(400.14 + 300.09) = 350.06

Now by inspection we see that the largest absolute difference between T7"*! and T7' is approximately
0.6 °C which satisfies our specified & value, 1.0 °C, and the problem is satisfactorily solved.

3.20. Consider again the case of a round hole in a square block shown in Fig. 3-14(a). The
z-dimension is 12 em while the hole radiuvs is 2.5 cm. Determine S/L by the analytic result given
in Problem 3.9 and by freehand plotting.

By the equation

£ 2m

L In{(1.08 x z/r)
S___w
[ In(1.08 X12/2.5)

It

]

3.82
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By freehand plotting, using three lanes in 1/8 of the square (Fig. 3-21)
_(54+56+57) 5

M 5
3 7
and
S 8x3
" 557 4

The two values of S/L differ by approximately 11%. This could probably be improved by using more than

three flow lanes in the one-eighth section and by giving more attention to forming the curvilinear
squares.

12 cm

RAN

|
|
i

25cm

Fig. 3-21

3.21. A 0.60 m square block of fiber insulation (k = 0.048 W/m-K) has a 0.20 m square hole centered

in the insulation as shown in Fig. 3-22. The block is very long and Ty = 30°C and 7; = 110 °C,
both constant over the length. Determine S/L using the free-hand plotting method and then
find g/1.

Using one-eighth of the block due to symmetry and five heat flow lanes (N = 5 X 8 = 40) yields
6. . B8+72+74
M~ 6+67+68+72+74

6.94
5
60 cm .
i “T,=30°C
20 cm +
T,=110“C
- >
{(a) Configuration (&) One-Eighth section

Fig. 3-22
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Then
% - % ~ ¢:_0 ~ 576
The heat loss per unit length is
% = k%(T, ~Ty) = 9'%8;(—“’— (5.76)(110 — 30) °C
% ~22.1 W/m

Supplementary Problems

3.22. From (3.8) infer the solution to the steady state problem illustrated in Fig. 3-23.

_])u*l +1 sinh(ﬂﬂxfw) Siﬂm
n sinh (nwL/W) W

I ANK
Ans. 8(x,y) = et.wz

n=]

)
L 0=0
W ¥.1
8=0 ha
~a ~g=6,
0 L "
#=0
Fig. 3-23

3.23. Use the result of Problem 3.22 to obtain the temperature 6, at the
point (4, 3) for subproblem 1 of Fig. 3-3.  (Hint: Rotate the figure
180°.) Ans. 1297379 °C using three terms of the series

3.24. A square plate (Fig. 3-24) has three sides held at temperature
T, = 0, while the fourth side is held at temperature 7,. Use the T=T,
principle of superposition to show that the steady state tempera-
ture at the center of the plate is T./4. (Hint: Break up the

85

problem shown in Fig. 3-24 into four subproblems.)
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3.25.

3.26.

3.27.

328,

3.29.

331
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Find the steady state temperature at the center of the Y r-s0°C
rectangular plate shown in Fig. 3-25. 2

Ans. TG 1) ~439°C

Determine by freehand plotting the heat transfer per unit
length for the square chimney configuration of Fig. 3-16 if T =0°C T=0°C
k=05 (Wm-K). Ans. S/L,u = 0.78 (using 7 heat
flow lanes); g/L = 624 Wim

Repeat Problem 3.26 using the method presented in

Problem 3.18 and the numerical temperature values for -—x
nodes j, k, I, m, n, and ¢ from Problem 3.14. 0 T=0°C 1

Ans.  g/L = 644.7 W/m, about 3% higher than obtained by

flux plotting Fig. 3-25

Repeat Problem 3.10 for a 4 cm o.d. pipe at 40 °C in the center of a 30 cm thick cinder concrete wall with
both surfaces at 25°C. Ans  g/L =21.1 Wim

A long, 1}in 0.d. tube at 120 °F and a long, 3/4in o.d. tube at 40 °F are located paraliel and 3.0 in apart
(center-to-center distance) in a service tunnel filled with plass wool (k = 0.022 Btu/h-ft-°F). Estimate the
net heat transfer per foot of length from the hotter to the cooler tube, assuming the medium length to be
infinitee. ~ Ans. /L = 3.27 Btwh-ft

Derive the nodal temperature equation for the case of an exterior corner node as shown in Fig. 3-17,
except both adjacent sides are insulated (i.e. the upper surface is insulated rather than subjecied to a
convective environment).  Assume a square grid.  Ans. YT, +T,)-T,=0

Using the electrical analogy discussed on page 61, devise an analog device for obtaining a grid of
curvilinear squares to get the conductive shape factor for a two-dimensional, steady state problem.

Ans.  The usual technique involves the use of a paper uniformly coated with a thin layer of conductive
material. A commercially available paper 18 known as “Teledeltos,” but other papers such as those used
in some types of strip-chart recorders work equally well. The paper is cut into the exact shape of the
two-dimensional model of the heat transfer problem, and a suitable d.c. electrical potential is impressed
by the use of large electrodes at the boundaries. The resistance of the paper is large compared with that
of the electrodes, and lines of equal potential can easily be found by using a null detector system as shown
in Fig. 3-26. These lines are analogous to lines of constant temperature; constant heat-flow lines can be
found by reversing the analog to apply the potential along the edges which are lines of symmetry in Fig.
3-26. The null detector can be replaced with a sensitive voltmeter if desired.

Null

detector t+——— Brass clectrode

Voltage
supply

|
||Ill|l|

EfffmmmmMMc

|
7777
Line of symmetry
Fig. 3-26



Chapter 4

Time-Varying Conduction

41 INTRODUCTION

To this point we have considered conductive heat transfer problems in which the temperatures are
independent of time. In many applications, however, the temperatures are varying with time. Analysis
of such transient problems can be undertaken with the general conduction equation, (2.2). In the
present chapter we will deal primarily with one spatial dimension, in which case (2.2) reduces to

Fr_1or @1
ax a dt
For the solution of (4.7) we nced two boundary conditions in the x-direction and one time condition.
Boundary conditions are, as the name implies, frequently specified along the physical extremities of the
body; they can, however, also be internal-—e.g., a known temperature gradient at an internal line of
symmetry. The time condition is usually the known initial temperature.

4.2 BIOT AND FOURIER MODULI

In some transient problcms, the internal temperature gradients in the body may be quite small and
of little practical interest. Yet the temperature at a given location, or the average temperature of the
object, may be changing quite rapidly with time. From (4.1), we see that such could be the case for
large thermal diffusivity a.

A more meaningful approach is to consider the general problem of transient cooling of an object,
such as the hollow cylinder shown in Fig. 4-1. For very large r,, the heat transfer rate by conduction
through the cylinder wall is approximately

(4.2)

T,— T, -
qz—k(zm,l)(‘ ' d T“)

. ) = k{21‘rr.l)( 2

where [ is the length of the cylinder and L is the material thickness. The rate of heat transfer away from
the outer surface by convection is

5

q = hQarI)T,—T.) (4.3)

= I>T,

Hollow cylinder

Fig. 4-1

87
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where / is the average heat-transfer coefficient for convection from the entire surface. Equating (4.2)
and (4.3) gives

Tl_Tx
Ts'_'T:

The Biot number is dimensionless, and it can be thought of as the ratio

hi
== Biot number (4.4)

resistance to internal heat flow
1= -
resistance to external heat flow

Whenever the Biot number is small, the internal temperature gradients are also small and a transient
problem can be treated by the “lumped thermal capacity” approach wherein the object for analysis is
considered to have a single mass-averaged temperature.

In the preceding derivation, the significant body dimension was the conductive path length,
L = r,— r. In general, a characteristic linear dimension may be obtained by dividing the volume of the
solid by its surface area:

v
L=— (4.5)

Using this method to determine L, objects resembling a plate, a cylinder, or a sphere may be
considered to have uniform temperature and the resulting error will be less than 5% if the Biot

number is less than 0.1.
The Fourier modulus is the dimensionless time obtained by multiplying the dimensional time by
the thermal diffusivity and dividing by the square of the characteristic length:

dimensionless time = z—; = Fo (4.6)

43 LUMPED ANALYSIS L.

A typical transient problem which may be treated by a 3
lumped analysis if the Biot modulus is suitably small is the
cooling of a metal object after hot forming. In Fig, 4-2, h
denotes the average heat transfer coefficient for the entire
surface area, A,. Thermal energy is leaving the object from

all elements of the surface; this is shown for simplicity by the q=hA(T-T)
single arrow.
The first law of thermodynamics applied to this problem Fig. 4-2

is
heat out of object)  { decrease of internal thermal
during time df | \energy of object during time dt

Now if the temperature of the object can be considered to be uniform, i.e., independent of location
within the object, this equation may be written as

dT —hA,
= dt
T_ Tz pC V
Integrating and applying the initial condition 7(0) = 7; yields

T_T1=ex = hA, f 4.7
-7, P (pCV) (47)

hAJT(t) - T.)dt = —pcVdT  or
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The exponential temperature decay given in (4.7) is analogous to the voltage decay during
discharge of an electrical capacitor, which is given by

E —i(RC),
Z—e 0.
E,
To make the analogy complete, we define the thermal time constant by
(RO, = (%—){pc V) = (thermal resistance)(thermal capacitance) (4.8)
so that
T-T. ~H#(RC), ~(Bi)(Fo)
=e h=¢ (4.9)
7,-T.

where the last equality follows from (4.4), (4.5), and (4.6).

Multiple Lumped Systems

A lumped analysis may be appropriate for each material lump of a system consisting of two or
more parts such as two solids in good thermal contact or a liquid in a container. Assuming the Biot
number is suitably small for each subsystem, we may treat each as having a single transient
temperature; thus a two-body system would result in two time-dependent temperatures. See Problems
4.9 and 4.10.

44 ONE-DIMENSIONAL SYSTEMS: FIXED SURFACE TEMPERATURE

Some transient conduction problems may be treated approximately by considering the body to be
initially at a uniform temperature and suddenly having the temperature of part of the surface changed
to and held at a known constant value different from the initial temperature.

Semi-Infinite Body

Consider a three-dimensional body that occupies the half-space x = 0. The body is initially at the
uniform temperature 7, including the surface at x =0. The surface temperature at x =0 is
instantaneously changed to and held at 7, for all time greater than ¢ = (.

The temperature obeys (4.1), subject to

boundary conditions:  7(0,t) = T, fort>0 (4.10)
T(x,t) =T, fort>0 (4.11)
time condition: 7T(x,0) = T, (4.12)
The solution is
Tx,0)— T, X
— = =erf| ———= 413
Tr - Ts 4ot ( )

where the Gaussian error function is defined by

2 (™ _.
effu=——=1| e "d 4.14
\/‘?—TJ: n ( )

Suitable values of the error function for arguments from 0 to 2 may be obtained from Fig. 4-3. More
accurate values, which can be obtained from mathematical tables, are usually not necessary in
conduction problems of this type, due to larger errors in thermal properties and other conditions.
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08

x
Viat

"'\-..../0_6

'__H.oz

o 03 o 15 10

*Viat

Fig. 4-3. Gaussian error function.

Of interest is the heat transfer rate at a given x-location within the semi-infinite body at a specified
time. By (4.13),

2 Aol
M) = T+ (1= T) j e dn

which may be differentiated by Leibniz’ rule to yield
ar T, T, .
ax mat

~edut

Substituting this gradient in Fourier’s law, the heat flux is

q _ kK(T,—T) g~ ¥idar

A e (4.15)
We are frequently interested in the heat flux at x = 0; it is
i - k(Tx_ T:)
Alx=o VTt (4-16)

and this heat flux clearly diminishes with time.

Finite Body

The preceding analytical solution for the temperature as a function of location and time was
obtained under the condition that the temperature approaches T; as x approaches infinity, for all values
of time, If the temperature at some point within a relatively thick, finite body is still unaffected by heat
transfer, the temperature distribution in the portion of the body that is affected is similar to that in a
semi-infinite body under otherwise identical circumstances. A useful criterion for the semi-infinite
solution to apply to a body of finite thickness (slab) subjected to one-dimensional heat transfer is

x>365Vat (4.17a)
or
v’% >1.825 (4.17b)

where 2x is the thickness of the body. This criterion results in (T — T;) greater than 99% of (T, — T,)
for any value of the half-thickness x greater than 3.65Vat, and the slab meeting this criterion is
effectively infinite in thickness.
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4.5 ONE-DIMENSIONAL SYSTEMS: CONVECTIVE BOUNDARY CONDITIONS
Semi-Infinite Body

Consider again the semi-infinitc body x =0 imitially at uniform temperature T, The surface at
x = 0 is suddenly exposed to a cooler or warmer fluid at 7. and a constant heat transfer coefficient A
is applicable to this surface.

Again, (4.1) must be solved subject to (4.17) and (4.12). However, (4.10) must be replaced by

aT
T.—T =—k— 4.18
¢ ) =0 X | =g ( )
obtained by equating the convective and conductive heat fluxes at the surface.
The solution can be shown to be
T-T, hx Rat hVat
~=1-crfé—exp|—+—||{1—erf[ &+ -

=T erf & [ucp(k 2z )][1 er(g X )] (4.19)

where & = x/\V4at.

Slab of Finite Thickness

We will examine next the case of a large slab of x-thickness 2L, as shown in Fig. 4.4(a). The slab
is of infinite, or at least of very large, dimensions in the y- and z-directions, Initially at a uniform
temperature 7j, it is suddenly exposed 1o the convective environment at 7... The Biot number is such
that a lumped analysis is not suitable.

_A_/\E;\f ¥
= =T ‘/\‘A_/- r=T,
b — | el f(init{allly} -A-/(initiaﬂ;)
. |
t>0) | T.(1>0) T.(r>0)
| e
- — 2_[,— = ﬁa——z—-ﬁi
0 x
{a) @)
Fig. 4-4

The geomeltry, boundary conditions, and temperature distribution are symmetrical about the
vertical centerline; consequently we may consider one-half of the problem as shown in Fig. 4.4(b).
Also, the symmetry assures us that the centerline is adiabatic; thus one boundary condition is that
dT/dx is zero at the centerline.

The one-dimensional conduction equation appropriate for this problem is

70 130
P (*20)
where 6= T — T... The boundary and time conditions are
.. a0
boundary conditions: a—r(ﬂ,r) =0 (4.21)
a0

h
S0 ==0 (4.22)
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time condition; 6(x,0) = 6 (4.23)

where (4.22) results from equating the conductive and convective heat transfer rates at the surface.
The classical separation-of-variables technique, which was used in Section 3.2, applied to equation
(4.20) yields

6= e *"“(C, sin Ax + C, cos Ax) (4.24)

where the separation parameter, —A? is chosen negative to ensure that 8-—0 as t— . Boundary
condition (4.21) requires that C, = 0, and (4.22) then gives the transcendental equation

A AL
cotAlL = m or cotAL = Fi (425)

for A. Equation (4.25) has an infinite number of positive roots, Ay, Az, ..., and in terms of these
eigenvalues the solution for 6 is

0= Coe ™ cosA,x (4.26)
n=1
One method of determining the A, is by means of an
accurate plot of the type shown in Fig. 4-5. Usually the {
first three or four roots are sufficient to yield an accurate
answer.
Finally, (4.23) requircs that

6 = Z C,cosA,x
H=1
which indicates that the C, must be chosen so that 8, is

represented by an infinite series of cosine terms over the
range 0 <x < L. From the theory of orthogonal func-

tions we find Fig. 45
26,sin A, L
C. = AL+ (sind, L)(cos A, L) (4.27)
so that (4.26) becomes
0 . e sin A, L
6 22{ ¢ ML+ GinA, Ly(cos L) M (4.28)

Using (4.28) for the temperature, one can show (see Problem 4.16) that the thermal energy
transferred to or from the slab is given by

o o1 sin? A, L o
o 2;AnL[A,,L+(sin.\,,L)(cosA,,L)]u e ) (4.29)

where O, = Vpc6, = ALpc6, is the thermal energy above the reference state, T., initially stored in the
half-slab per unit depth.

4.6 CHART SOLUTIONS: CONVECTIVE BOUNDARY CONDITIONS

The results obtained in Section 4.5 can be put in dimensionless form by use of the Biot and Fourier
moduli. The resulting dimensionless equations have been solved for a wide range of values of Bi and
Fo; these solutions are available in the form of graphs, obtained as follows.
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Slab of Finite Thickness
Letting 8, = A, L, (4.28) can be wrilten as

sin A,
8, + (sin 8,)(cos 6,)

" "
—=2 ~8, F O, xIL
r E exp ( 0) cos (8, x/L)

& =1

and, at x = (), the dimensionless centerline temperature is

Furthermore, (4.29)

T —-T. 8 sin §,,

—_ . =Z=7 . — &2 Fe
T.-T. 9 E“P( W) S in 5,)(cos 5,)

1

becomes

=

Q 1 sin® 8,
—_ = 2 I o o F
o ..E_‘f 8, 8, + (sin 8,)(cos 8,) [1-exp(1 - 8;Fo)]

Note that the §, are functions of Bi via (4.25):

cot 8, = &,/Bi

93

(4.30)

(4.31)

(4.32)

Consequently, (4.30), (4.37), and (4.32) indicatc that # and Q are functions of Bi and Fo. Heisler's
plot of the temperature at the centerline of a slab versus Fo and Bi is given in Fig. 4-6. The temperature
at any other x-location in the body at a specificd time (Fo) can be determined with the aid of Fig.
4-7 together with the centerlinc temperature at that Fo. Notice that Fig. 4-7 implies that 6/6, is
independent of Fo, which is very ncarly, but not exactly, the case. Finally, Graber’s chart for the
dimensionless heat removal or addition is presented in Fg. 4-8, The use of these charts is illustrated
in Problems 4.17 and 4.18.
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Fig. 4-6. Centerplane temperature for a slab. [From M. P. Heisler, © 1947, The American Society of Mechanical

Long Solid Cylinder

Engineers, Trans. ASMI, 69: 227, New York. Used with permission. |

The temperature differential equation for purely radial heat transfer in a cylinder of radius R is

a0 1a8 1 an
4+ — = ——

ar o orar  a it

where 6 = T{(r,t) — T.. The solution satisfying

(4.33)
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Fig. 4-7. Temperature correction chart for a slab. [From M. P. Heisler, ©1947, The American Society of
Mechanical Engineers, Trans. ASME, 69: 227, New York. Used with permission.]
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Fig. 4-8. Total heat flow for a slab. [H. Grober, S. Erk and U. Grigull (1961), Fundamentals of Heat Transfer, 3rd
edn, Courtesy of the McGraw-Hill Book Company, New York, NY.]

boundary conditions: ‘;—f =0 atr=0
0 ho

ol atr=R

time condition: €= 6; att =0

is given by

0 1 o Jo(8.1R)I(S,)
E-zzs—“e gFe JATn T A OnS (4.34)

T§(8,) +J3(3,)
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where J, and J, are the Bessel functions of the first kind of zero and first orders, respectively, and
8, = A, R. Since Ji(0) = 1, the dimensionless temperature at the centerline is

*

) 1 e 1(5,)
R —e fi Fo Won) 4.35
9;' n=1 8:; lei('an) + "?(aﬂ) { )

The dimensionless total thermal energy to or from the cylinder is obtained as it was for the slab
(Problem 4.15); this is

*

0 _, g1 £
O, A BTN TIN5

In all the equations for the cylinder, the §, are obtained as roots of the transcendental equation

(1 — e ~%F) (4.36)

Jl(an) .
£ = B *
L@
and the Biot and Fourier numbers are based upon the radius of the cylinder, i.e.,

) AR af
Bi* = T Fo* — ﬁi

We usc an asterisk to indicate a deviation from the general definition of a characteristic length, (4.5).
The results of numerical solutions of (4.35) and (4.36) ave presented in Figs. 4-9 and 4-10. A position
correction chart is given in Fig. 4-11.
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Fig. 4-9. Centerline temperature for a solid cylinder. [From M. P. Heisler, ©1947, The American Society of
Mechanical Engincers, Trans. ASME, 69: 227, New York, Uscd with permission.|

Solid Sphere

The problem of determining the transient temperature distribution within a solid sphere of radius
R which is initially at a uniform temperature and is suddenly exposed to a convective heat transfer at
uts surface has been studied extensively also. Dimensionless temperatures are presented in the Heisler
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charts of Figs. 4-12 and 4-13. Here the moduli are defined as

S

Bi* = —  Fo*=—

R ot
k R?

and 7, denotes the temperature at the center. The dimensionless total heat transfer is given by the
Grober chart of Fig. 4-14.
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4.7 MULTIDIMENSIONAL SYSTEMS Y

Consider the temperature distribution during heat treat-
ment of a long rectangular bar (Fig. 4-15). If such a body is |
initially at a high temperature and is suddenly cxposed to a bI
cooler surrounding fluid, there will be two-dimensional heat + i X
transfer within the body, assuming the z-direction length is L |
sufficient to result in negligible temperature gradients in that b, e
direction.
Applying the separation-of-variables method to the con- Fig. 4-15
duction equation for 6=7T-T,,

a0 40 148
_
S e

we assume that 8(x, y, 1) = X(x.t) Y(y.t) and realizing that the x- and y-solutions must have the same
form, we easily reduce the problem o two one-dimensional problems of the type resulting in (4.28).

Thus,
6 T-T. T-T. T-T.
—_= =[—= 4.3
o, (Tl - T. )long bar ( Tr - T. )Zre-slah( T: & T )’Zb—slah ( 7)

where the 2a-slab and the 2b-slab solutions may be taken from Figs. 4-6 and 4-7. It can also be shown
that the transient temperature in a cylinder with both radial and axial heat transfer is given by

‘T~ T. T—-1T. T-T.
= 4.38
( Te -T. )\hnn oyl ( T; -T. )inl l:)'l( Tl -T. )ZL-dah ( )
and that in a rectangular parallelepiped (box-shaped object) it is given by
T-T. T-T. T—T. T-T.
= 4.39
( Tr . T‘& )hm( ( 'r! - T,_ )Zﬂ'-\l:lb( Tf - T:- )25-»1::1-:( T; - T=f- )2(‘-slah ( )

where 2L is the total length of the cylinder and 2¢ is the total z-dimension of the parallelepiped.
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48 NUMERICAL ANALYSIS

The fundamental approach to numerical analysis of a transient conduction problem lies in the
replacement of the differential equation, which represents a continuous temperature distribution in
both space and time, with a finite-differcnce equation, which can yield results only at discrete locations
and at specified times within the body.

For the partial derivatives of 7(£ 7) at the point (£, 7), these being independent variables, we
employ either the forward finite-difference approximations

(%)g it BlEIT(“ 8¢, 1)~ (&) (4.40)

((Z); o &rm'f 7 é1) ~ T(6.7)] (441
or the backward finite-difference approximations

(%)f  bowd ’“aig”(f" 7) = T(¢~ 86,7)] (4.92)

(%1,: )g. o é [T(&7) - T(&7— 7)) (4.43)

By definition of the derivative, these approximations become exact as 8¢ and 8t approach zcro.
Second partial derivatives in the conduction equation are usually replaced by their central

finite-difference approximation:

3T
(357)&‘ (56)? [T(€+ 8 ) — 2T(£, 7) + T(§ — 8¢, 7)) (4.44)

Again, the approximation becomes exact as 6&—0.

Explicit Finite-Difference Conduction Equation
Let us apply the above to the two-dimensional conduction equation

HZT_]_EJET__ 14T 445
w2 N aa (4.45)

From (4.44), with £ = x, 6 = Ax, and 7= 1,

2
(%) mx):"T(”“'“) 27(x,1) + T(x = Ax, 1))

which for the general nodal point n of Fig. 4-16 results in

;T -
? " (m)2[‘r‘ 2T”+T|] (44ﬁ)

where, for example, 73 is the temperature at node 3 at time r. Similarly,

PT , ,
-‘-9? m.f,cent (A )2 [T‘ 2Tﬂ * TZ] (447)

The forward finite-difference formulation of the time derivative is obtained from (4.4/) with 7 = ¢
and 87 = At at point n:

‘?T 1 r+1 1
(5 ).t s
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- U \ 1 /

Fig. 4-16

where T:*! is the value of T, at time 1 + Ar. Substituting (4.46), (4.47), and (4.48) into (4.45) yields

1
S B2+ T+ )2[12 2+ T = — (T =T (4.49)

(-’l) (4

Note that this equation expresses the future temperature at node n in terms of the present temperatures
of node n and its adjacent nodes. This gives rise to the notation “explicit formulation,” since the future
temperature is explicitly specified in terms of temperatures existing one time increment earlier.

To this point, the increments Ax and Ay may be different; and indeed, they may vary with location
within the body. For simplification, we now choose

Av = Ay = As
and (4.49) reduces to
A (‘;f;z (Ti+ T3+ T+ T + [1 s &A)‘z T (4.50)
Defining the parameter M by
_ (&sy
M="—c (4.51)

the one-, two-, and threc-dimensional explicit nodal equations for uniform and equal spatial
increments are, respectively,

1 2
L. R KRR [ e I 4.5
1 1 ~f b ol f f 4 £
T; = H(?] + r: + T\ + T:} 5 1_ ?:t (4‘53)
+ 1 ] 6
T,:'=—M(T{+Tz'+ r{+H+T£+ﬂi)+(1—'ﬁ)T§ (4.54)

Note that (4.52) implies that the surrounding nodes in the one-dimensional case are nodes 1 and 3,
whereas (4.54) implies that the z-direction nodes in the three-dimensional case are nodes 5 and 6.
Stability of the numerical solution during repetitive computations for succeeding time steps is
assured by requiring the coefficient of 7, in (4.52), (4.53), or (4.54) to be nonnegative. (A negative
coefficient of T, would mean that a larger value of 7, would result in a smaller value of T/*': this would
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in return result in a larger value of T!*?, etc., yielding unstable fluctuations in the numerical solution.)
To assure all coefficients being nonnegative we require

M =2 for one-dimensional problems
M=4 for two-dimensional problems (4.55)
M=6 for three-dimensional problems

Equations (4.52) through (4.55) are appropriate for interior nodes of a body. For an exterior nodal

point subjected to convective boundary conditions in a one-dimensional system, as shown in Fig. 4-17,
an energy balance on the shaded area having unit depth is

2 +1 1 __ et _
pc(a;)(T" T")=km(T‘mT")+hM(ané)

At
or
2 hAs 2 (hbs
+1 ' — !
T! M(T1+ - T3)+[1 M( . +1)]T,, (4.56)

For an exterior nodal point subjected to a convective boundary condition in a two-dimensional system,
as shown in Fig. 4-18, a similar approach yields

T,‘}*‘=%(T{+2T5+ r{+2ﬁ%n)+[z—i—(—@?—+2)]ﬁ (4.57)
Sufficient stability requirements for convective boundary conditions are
M=2 (—h-;ﬁ + z) for one-dimensional problems
(4.58)

h As . .
M=z=2 (T + 2) for two-dimensional problems

r;-—‘\l_—‘"M
- h—" i
h"-u_“-——"'"‘"-_.-"'_"—""""“—'_'
T n *; . ;_Is
noalat e | - T
J L -
As As
=3 T as —I 2 th—l
Fig. 4-17 Fig. 4-18

Additional nodal equations for cases involving interior or exterior corners and/or surface heat flux
such as that due to radiation can be derived in similar fashion. The stability requirement for each such
situation can be obtained by requiring the grouped coefficient of 7 to be nonnegative. The most
stringent of the stability requirements applicable in a given problem dictates, through (4.57), the
maximum time increment that can be used in the numerical solution.

The numerical solution proceeds by writing a nodal equation for each interior and each exterior
nodal point not having fixed (constant) temperature, determining the maximum time increment At for
the selected grid size and specified material thermal diffusivity, and then using the nodal equations to
advance the solution in steps of Ar until the desired total time is reached.
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Implicit Finite-Difference Conduction Equation
In the explicit formulation, the nodal equations were obtained by replacing (4.45) by

a*T PT 1/aT
+ =—(—
ax? n.r.cent 6}'2 nacem @&\ A [

If, instead, (4.45) is replaced by

(azT) +(azr) _I(JT)
‘?-rz .+ Arcent 5‘)’2 n, 1+ A cent o at n, 1+ Ar bkwd

one obtains the implicit form of the nodal equations:

l i+1 THl i 1
- + T +
(&x)z{TE‘ ZTn i ) (ﬁy)z

or, when Ax = Ay = As,

(T =2T0 4 T = (T =T (459)

(1+1)Té”=-1—(7".*'+73*'+71*'+T.1+')+T; (4.60)
M M

In (4.59) or (4.60) the future temperature of node n is seen to depend upon the future
temperatures of the adjacent nodes in addition to its present temperature. Consequently, a set of
simultaneous algebraic equations must be solved for each time step, there being the same number
of equations as the number of nodes. For more than three or four nodes, the implicit for-
mulation normally requires computer solution using matrix inversion (Gaussian elimination) for
each time step. Because all coefficients are positive in (4.60) there is no stability restriction on
the size of M.

In order to treat boundary conditions in the implict approach, we multiply (4.59) by k(Ax)(Ay) and
rearrange, to obtain

T:H - T,:+] T5+]‘T,:+i T{+l‘ T;ILI T_{H— ‘r::H T:“- Ta:
+ + — + =C,|——— !
Rm R2n R.‘n RM ( m ) (4 61)
where, per unit depth,
Ax
Ry, =—, . ,
"= T ay etc (4.62)
and
C. = pc{Ax)(Ay) (4.63)

Generalizing (4.61) through (4.63) to any number of spatial dimensions and to a grid spacing As that
may vary with position and direction, we have:

implicit: Ti''= T} + m[ 2 %] (4.64)
where m represents the nodes adjacent 1o node r;
Ry = KAr o for conduction
) (4.65)
Ry = m for convection
C.=pcV, (4.66)

Here, A; ., represents the area for conductive heat transfer between nodes m and n; A, . is the area
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for convective heat transfer between nodes m and n; and V,, is the volume element determined by
the value(s) of As at node n. Boundary nodes are simply included by proper formulation of the R,

and C,.
The corresponding generalization of the explicit formulation is

l' it: T.H—l — T: T""’ — Tf:
explict: =T, + At Z:m

The advantage of the implicit formulation is that relatively large time steps can be taken even
though the nodal spacing (or the thermal capacitance of a node) is small. This advantage is
accompanied by the disadvantage of requiring a simultaneous solution of the complete set of nodal
equations for each time step. Thus one is usually faced with a choice between large computer core
storage (required for implicit solution by matrix inversion—Gaussian elimination) and large computa-
tional time (required for explicit solution with small nodal thermal capacity).

(4.67)

Solved Problems

4.1. Determine the Biot modulus for a 2.5 cm diameter, 1% carbon steel sphere at 100 °C subjected
to a convective air flow resulting in # = 55 W/m-K.

From Table B-1 (81), k = 43 W/m-K. The characteristic linear dimension is

Thus,

_ A(R/3) _ (55 Wim-K)(1.25 cm/3)(m/100 cm)

P WK = 0.0053 <0.1

Bi

Clearly, internal temperature gradients are small, and a lumped thermal analysis would be quite
accurate.

42. Aniron (kK = 64 W/m-K) billet measuring 20 X 16 X 80 cm is subjected to free convective heat
transfer resulting in /1 = 2 Btu/h-ft*>-°F. Determine the Biot number and the suitability of a
lumped analysis to represent the cooling rate if the billet is initially hotter than the
environment.

The characteristic length is L = V/A,
A, = 2(20 % 16) +2(16 x 80) + 2(20 X 80) = 6400 cm?
S0

_ (20x16x80) cm® _

L 6400 cm?

40cm

Using conversion factors of Appendix A,

2 Btu y 3.1525 W/m? » 9°F
h-£?-°F Btu/h-ft? 5K

h= =11.35 W/m?-K

Thus

_ AL _ (1135 W/im?-K)(0.04 m)

Bi
Tk 64 Wim-K

= 0.0071

and a lumped analysis will represent the transient temperature quite well.

103
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Determine the time required for a 1.25cm diameter carbon steel (1% C) sphere to cool
from 7,=500°C to 100°C if exposed to a cooling air flow at 7. =25°C resulting in
h =110 W/m*-K.

The characteristic linear dimension is L = R/3 (Problem 4.1). From Table B-1 (SI), the thermal
conductivity of 1% C steel at the average temperature, (500 + 100)/2 = 300 K is 40 W/m-K. Thus,

AL (110 Wim?-K)(0.0125 m) + (3% 2)

s 40 Wim-K = 00057
and a “lumped analysis™ is suitable. By (4.9) the time (Fo) for T(r) to reach 100 °C satisfies
——ggg — g E- = 0.1579 = ¢"(®Fo
Solving
(Bi)(Fo) = 1.845
(= (323.7)(R/3)*
a
From Table B-1 (SI),
40 Wim- K

= 1.084 % 1073 m¥s

“ 7 (7801 kg/m*)(473 W -slkg - K)
Thus

~323.7(0.0125 m/6)?
" 1.084 X 10" m¥s

= 129s = 2.16 min

Determine the time constant for a spherically shaped, copper—constantan thermocouple at an
average temperature of 32 °F, exposed to a convective environment where b = 8 Btu/h- ft?-°F,
for (@) bead diameter 0.005 in and (b) bead diameter 0.010 in.

For a spherical object of radius a, L = V/A; = a/3. The properties of the two metals may be
taken as:

ke, = 224 Btuth-ft-°F ke = 12.4 Bru/h-ft-°F
¢ = 0.091 Btw/ib,-°F ¢ = 0.10 Bw/lb,,,-°F
P = 558 Ib /it Peen = 357 b/t

Assuming linear averaging to be valid, the thermocouple bead properties are

k = (224 + 12.4)72 = 118.2 Bw/h-ft-°F
¢ = (0.091 + 0.10)/2 = 0.096 Btu/lb,,-°F
p = (558 + 557)/2 = S57.5 Ib,/it*

(a) From (4.8)
(RC)w = pcV peal3  (557.5 lb,/ft)(0.096 Btu/lby, - °F){(0.0025/3 X 12) ft]
" hA, h 8 Biw/h-ft>-°F
=4.646 X 10"*h = 1.6725s
(b) The only difference from part (a) is that the radius is twice the previous value. Since (RC),, is
linear in aq,

(RC),, = 2(1.67255) = 3.3d5 s
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4.5.

4.6.

4.7.

Before leaving this problem, we should verify that the Biot modulus is sufficiently small to insure the
validity of a lumped analysis. Checking for the larger thermocouple,
AL (8 Btu/h-fi-°F)[0.005/(3)(12)] ft

] = — = =9.4x10-ﬁ
Bi=— 118.2 Bu/h-ft-°F

and the lumped analysis is certainly suitable.

If the initial temperature is 32 °F and the surrounding air temperature is 45 °F, how long will it
take the 0.005 in diameter thermocouple of Problem 4.4 to reach (a) 44 °F, (b) 44.5 °F, (¢) 44.9°F,
and (d) 44.99 °F? Assume all property values remain unchanged.

In general, the time required for the thermocouple junction to reach a given temperature is obtaincd
by use of (49). Thus,

'“[ Tg)—_n ] - - o
or

t = —(1.6725s)In |~T(—I)_—T:]

-7,
where the numerical value of (RC),, was taken from Problem 4.4(a).
(@) For T,=32°F, T. = 45°F and T(t) = 44°F,

(=- 1.6725]n(32 45) =429s
(b) = - 16725l (4;25 41_5 ) = 5455
(©) t=-1.6725I (4:29 4"5) = 8.145
(d) (= - 1.67251n(%;:5) =11.99s

Notice that (4.9) indicates that a body subjected to a warming or cooling convective fluid can never
reach the surrounding fluid temperature. While this is mathematically correct, it is important to rcalize that
the difference in temperature between the body and the convective fluid can be reduced to an
insignificantly small value by allowing a sufficient time period, as illustrated by the present problem.

A 7.5 cm diameter orange is subjected to a cold environment. Assuming that the orange has
properties similar to those of water at 20 °C and that £ = 11 W/m?-°C, determine the suitability
of a lumped analysis for predicting the temperature of the orange during cooling.

From Table B-3 (SI), the thermal conductivity of water at 20°C is 0.597 W/m-K. Also, for a sphere

Vv
L= <3 (see Problem 4.1)
and
. il ~ (11 Wim?-K)(0.0375m)3
== 0.587 Wim-K =023

Consequently a lumped analysis would not be highly accurate.

What is the maximum edge dimension of a solid aluminum cube at 100 °C subjected 10
a convective heat transfer with A =25W/m>.K for a lumped analysis to be accurate 10
within 5%7
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For an object of this shape, the lumped approach is accurate to 5% if the Biot modulus is less than
0.1. From Table B-1 (SI), ¥ = 206 W/m-K. Thus,

. B hL _(25Wim*-K)L _
Bi=01-= - 0 Wim K or L=0824m

Now

/- 6L =6(0.824m) = 4.94 m

For the situation of Problem 4.3, determine (a) the instantaneous heat transfer rate 2 minutes
after the start of cooling and (b) the total energy transferred from the sphere during the first
2 minutes.

Either we could calculate the numerical value of the temperature of the sphere at the instant specified
and use this in Newton's law of cooling to determine g and Au, or we could use the more general approach
of substituting (4.9) into Newton's law of cooling to obtain an analytical expression for g. Choosing the
latter,

(a) q = hA(T = T.) = hA (T, - T.) e "R
From Problem 4.3, at t = 2.16 min, Bi-Fo = 1.845, and T, — T, = 475°C. Thus at 1 = 2.0 minutes,

l'2 _ . _ ‘2 . _ L _
Rey, ~ (BiFo), = - (Bi-Fo g = 570(1.845) = 1.708

and

q = (110 W/m?- K)[(4)(0.006 25 m)?| (500 — 25)°C xe '™ = 465 W
(b) The tolal energy transferred is

Iy 1y
Q- f gdt = j RA(T, = Tx) e "®Ondt = Cp(T, = TY(1 — ”¥*Om)
(1] n

where C,, = pcV. Using property data of Table B-1 (SI) at 20°C (no higher temperature data
available for p and ¢},

Cy, = pcV = (780! k—g‘){w)(ﬁ)(ﬂﬂﬁﬁ 25m)* = 3,773 x 107 *kJ/K
m- kg-K 3

and

0- (3.773 X 10° !‘%)(500 ~25)°C(1 - e~ ™) = 1,467 kJ

Consider the container of fluid shown in Fig. 4-19. The system is brought to a uniform initial
temperature 7,> T.. by wrapping it in an insulating blanket (which corresponds to opening
switch §,), running the eclectric heater (close switch §,), and waiting until both 7, and T, reach
7, {at which point open S, and close S,). Give a lumped analysis of the ensuing process, which
is one of convective heat transfer from container to environment and from inner fluid to
container.

The rate at which thermal energy (heat) leaves each body is equal to the negative of the rate of change
of its stored thermal energy. Hence, the energy balances on the two lumps are

- T,

lump a: hnAﬂ(Tu - Tb) = T Pula vuidT"— (1)
_ dT,

Iump b‘* haAlr(Tb - ?-Jr) + EfrAh(Tb - Tﬂw) == Phch Vh_ (2)

dt
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These constitute a pair of simultaneous linear differential equations for T,(t) and T,(r). The initial
conditions are
r(0y=T(0) =T, (3}

To solve (1) and (2) subject to (3), we first usc (7'} to obtain T, in terms of T, and d7,/dt. Substituting
this expression into (2) gives the lollowing second-order equation for T,

&7,  dT, .
?-l- C1?+(,ZT,,=C2T¢ (4}

where

h,A h,A fin A
cl - wd gy + ad da + h! &
PuCaVe PcrVe  prcp Vs

E“Al‘l EJA r
= GevlGav)
PuCa V« PrCe ¥y
The steady state solution (particular integral) of (4) is clearly T, = T.., while the transient solution {general
solution of the homogeneous equation) is

T,=Ae™ + Be™
where A and B arc arbitrary constants and

_ —Cy + [C] = 4G ~C, — [C} - 4C)"?

", > 1, = >
Thus,
T,=Ae™ +Be™' + T, (5)
Finally, A and B are determined by applying to (5} the initial conditions T,(0) = 7, and
di,

dt | e
which is implied by (3) and (/). The results are

ny m,

A= r-—-T. B=- 7,—T.
nlg_m]( ) mz_nh( )
50 that, in dimensionless form,
T:., - T (5] "y
— P ™
T.-T. my—m my — m, 6)

The simplest way to obtain the container temperature, T,(1), is to substitute (6) into (7).



108

4.10.

4.11.
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Consider a lumped system consisting of two metal
blocks in perfect thermal contact (there is negligible
contact resistance between the two blocks at their
interface). Only one block is exposed to a convective
environment at 7., as shown in Fig. 4-20. Both blocks
are initially at 7,. Determine an analytical expression
for the temperature of block a.

The heat transfcr rate from block a and to block b is

i:- Tim_Tn):_ (Tb“’rml)
A k“( wol2 kn w2 B

Eliminating T,,, the interfacial temperature, between these
two equations for g/A gives

9 _ 4o _ gy _
A A, K(T,—Tv)

whcre

— z(kﬂ!wﬂ') (kbfwb)

(Kulwa) + (kplwy)

[CHAP. 4

a b
A, r+— Ay, b,
o T.

w, | W

Fig. 4-20

)
(3)

Using (2) to write the energy balances on the two blocks, we find them to be identical to (7) and (2)
of Problem 4.9 with A, replaced by K. Furihermore, the initial conditions are identical to (3} of Problem
4.9. It follows that all the results of Problem 4.9—in particular, (6)—apply to the present problem if &, is

everywhere replaced by K.

For a system consisting of two metallic blocks as shown in Fig. 4-20, with only block b exposed
to the convective environment (f, = 5 Btu/h-ft*-°F), the following approximate data apply:

Material a Material b

Brass

¢, = 0.092 Btu/lb,,-°F
k, = 60.0 Btu/h-ft-°F

Type 304 stainless steel
¢, = 0.11 Bw/lb,,-°F
k, = 9.4 Btu/h-ft-°F

w, = 3.0in wy, = 2.01in
p. = 532 Ib, /(¢ ps = 488 b, /ft*
T, = 300°F 7. = 100°F

(@) Is a lumped analysis suitable? (b) If the answer to (a) is yes, plot the temperature—time

history of lump « from 360 °F down to 150 °F.

(a) An appropriatc Biot modulus for material b is

where

Bi, =

"-’FJ = AI‘

EIJ Lb
k(,

Vi _ (1) _

oo "
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if we neglect the heat transfer to body a. So

Bi, - DD _ 6
94

As for Bi,, the resistance for heat transfer from lump a 1o the environment at T, is clearly greater
than that for heat transfer from lump b, hence a suitable k, < k), Also,

k., 60 94 &k,

so that Bi, < Bi,. As both moduli are smaller than 0.1, a lumped analysis of the system is suitable.
(b) Determining the constants to use in the solution given in Problem 4.10,
C AkJw)(kdwy)  2[60(12)/3][9.4(12)12]
 (katwa) + (kntwy) — [60(12)73] + [9.4(12)/2)
C - KAn+ KAa+E,,A;,= K + K + hy,
PoCaVa Ve PnCVi  paCaWu  PoCLWy  prCowy,
__0139(12) | 0139)(12) _ 5012)
532(0.092)(3)  488(0.11)(2) 488(0.11)(2)
=746+ 1021 + 056 = 1823 h™!
C, = (7.46)(0.56) = 4.18 h2
~18.23 + [(18.23)? — 4(4.18) ]2

= 91.34 Bw/h-ft?-°F

m, = > =-023h"
— , 3 —_ . 2 _ . 172
= 18.23 - [(18 223) L)) R

Then, by (6) of Problem 4.9,
Lo100 <180 gy (-023)
300—-100 -18.0-(-0.23) —18.0 - (—0.23)
T, = 100 + 202.59 ¢™0% ~2.59 ¢~ "8%

where ¢ is in hours and 7, has units of °F. Plotting, we obtain Table 4-1 and Fig. 4-21.

Table 4-1
«(h) T,(°F)
0 300.00 300
0.5 280.58 0
1.0 260.96
15 243.48 0 \
20 227.89 0 N
25 214.00 o \
3.0 201.61 o
35 190.58 e
4.0 180.74 150
5.0 164.15 60
6.0 150.97 N N
6.1 149.81 e T T e s e 7
7.0 140.50 1(h)

Fig. 4-21
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4.13.

4.14.
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At what depth should a water pipe be buried in wet soil (a = 7.75 X 1077 m%s) initially at a
uniform soil temperature of 5°C, for the surrounding soil temperature to remain above 2 °C if
the soil surface temperature suddenly drops to —20°C and remains at this value for 10
hours?

Treating the soil as a semi-infinite body, (4.13) applies. At the critical depth the temperature will just
reach 2 °C after 10 h. Thus

Ton—T, 2—-(-20) ( x )
T-T 5 ~(=20) = (0.88 = erf Tdm

From Fig. 4-3, x/V4ar = 1.1, s0

x = 1.1[4(7.75 % 10 7 m%s)(10 h)(3600 s/h)}'? = 0.37 m

A large aluminum slab 10 cm thick and at a uniform initial temperature of 300 °C has its surface
temperature on one side of the slab suddenly lowered to 60°C and maintained at that
temperature. What is the maximum time that this slab can be treated as one of infinite thickness
with (T— T,) = 0997 ~ T,)?

This problem is schematically shown in Fig. 4-22, where there
are material and temperature symmetry about the centerline. Thus, w ______
the half thickness is 10 cm. From Table B-1 (SI) we have |

a = 8.418 X 10 Sm%s (at 20 °C) |
The criterion N T— 7,=300°C

x
= |.825
\;4crr

where x = 10cm applies. Thus ‘

10 em (m/100 cm) A B |
[4(8.418 x 10~ m¥s)(]"? > (1.825) 10 cm I

~
f
3
s

Solving for 1, r = 8.92 5, which is the maximum time.

To illustrate the significance of the criterion x =3.65V af,
return to Problem 4.13. Determine the temperature at x = 0.06 m at

(a) the maximum time criterion of (4.17a) or (4.17b) and
(b) an arbitrary choicc of 1 = 16 s which violates the criterion.

(a) Applying (4.17a) to determine the maximum time for treating the slab as semi-infinite yields, with
« from Problem 4.13,

Vat < (x/3.65) (4.17a)
Hence,
£ =< [(x/3.65)(1/a)]
or»

( 0.06 m )? 1 )
=
3.65 (8.418 X 107 m¥s ]

r=321s

Forming the argument of the error function,
x 0.06 m

Vi PEABX 10 mis G2 88
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as expected since this part of the problem agrees with the criterion (4.17). From Fig. 4-3 we find the
error function of 1.825 to be approximately 0.99. Then, with

T-T, (T-60)°C _

- = erf(1.825
T = Gw_aoyc - 0829

we obtain
T = T(0.06m, 3.215) = 60°C + 0.99(300 — 60) °C = 297 °C

For x = 0.06 m and 1 = 165, we have
X 006 m

Vot = 08174
4ot [4(8.418 x 10 mfs)(165)]" 0

From Fig. 4-3,
erf(0.8174) = 0.75

Then,
T(0.06m, 16s) = 60°C + 0.75(300 — 60) °C = 240°C

Clearly, failure to take the non-infinite nature of this slab temperature at 16 seconds results in a
significant error in the temperature of the body.

4.15. A water pipe is buried 0.37 m (cf. Problem 4.12) below ground in wet soil (a = 7.75 X 10" m%s
and k = 2.59 W/m-K). The soil is initially at a uniform temperature of 5°C. For sudden
application of a convective surface condition of wind with A = 57 W/m?-K and T.. = —21°C,
will the pipe be exposed to freezing temperature (0°C) in a 10 hour period?

We may treat this as a convective boundary condition applied to a semi-infinite body initially at T,;

thus (4.19) applies. The arguments of the erf terms in (4.9} are:

AVar  5TWm-KV(7.75 107 mls)(36000s) 3

k 2.59 Wim-K '
x 037m

8= Ve V4(7.75 x 10~ m¥s)(36 000s)

68

=111

Using Fig. 4-3

erf £ = erf(1.11) = 0.89

erf(f +ﬁ\/ﬂf_‘r ) = erf(1.11 + 3.68) = 1.0

Thus, we need only keep the first two terms on the right of (4.79):

T—T,
T.-T,

=]1—erfé

T=T+(1-erf&)(T.~T,)=5°C+(1-089)(~21-5)°C =2.14°C

Freezing will not occur.

4.16. Using the temperature expression (4.28), develop (4.29).

The energy transferred to or from the slab in the time interval from 0 to ¢, is

Q=J"qdf
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where
aT a6
g = -kAE - -_kAE »
Thus
iy ﬂa
=—-kA| — dt 1
¢ -[I X lx=t. o
From (4.28),
70 N sind, L .
—_— = A at - A
poatsl Z ¢ [Jl,,L + (sin A, L)(cos A, L)]( sin A x)A,
and consequently
0 = A, Sin® A, L ar
P Z4 N L+ (sinA,L)(cosA, L) )
Substituting (2) into (1),
N Ausin A, L “
Q= 2kA8, "Z_; ML+ (sinA,L){cosA,L) ), € &
The integral in (3) has the value (1 - e %)/A2or. Hence, noting that « = kipc,
2kAB, (L\ <0 | A,sin?A, L )
= —_— 1 — g Naehy
Q= ine (L) 2. X [J\,,L TeinaLyoshD 0 e
Noting that Q, = ALpc6, and replacing ¢, by ¢,
x s 2
g, -'—[ S L ](1~e"“3"")
Q, 4 AL LA L+ (sinh,L)(cos A, L)

which is (4.29).

A large steel plate (1.0% carbon) 5.0 cm thick is initially at a temperature of 425°C. It is
suddenly exposed on both sides to a convective environment with h = 285 W/m?-°C, and
7. = 65 °C. Determine the centerline temperature and the temperature inside the body 1.25 cm
from the surface after 24 minutes.

From Appendix Table B-1 (SI), assuming an average temperature of 250 °C,
k=41 Wim-K a = 117210 *m¥s (at 20°C)
Correcting o for the temperature of 4(43 W/m-K) at 20°C

41
a =73 (1172107 = 1117 > 107 m¥s

Then
Lot (1117% 10-)(m¥s)(24 X 60) s _
B T T s amp(tmi0oemy 2
1k 41 Wim-K s
Bi kL (285 W/m*-K)(25100)m

Note that Bi = 0.15. This is too large for a lumped analysis, although one would not expect large



CHAP 4] TIME-VARYING CONDUCTION 113

4.18.

temperature differences at a given time within the body. From Fig, 4-6 using the values of Fo and 1/Bi, the
centerline slab temperature is

% == (.015, T, = 65°C + 0.015(425 — 65) °C = 704 °C
From Fig. 4-7 at x/L = (.5,

T-T. .

T~ 098 or T=65°C+098(704—-65)°C=T703°C

The closeness of the two temperatures is in kecping with the relatively small Biot number. Note also that
the average temperature of the slab is (425 + 70.3) °C/2 or 248 °C, very close to the assumed temperature
for property evaluation.

A large wall made of 4 in thick common brick ™ 1
is originally at a uniform temperature of 80 °F, Perfect
It is well insulated on one side, as shown in insulation.___| T.=30°F

Fig. 4-23. The uninsulated surface is sud-
denly exposed to free convective air flow
at 30°F, resulting in a heat transfer coeffi-
cient A = 2.0 Btu/h-ft*-°E Determine (a) the
temperature of both surfaces (x =0, x = 4) A T
after 5.5h and (b) the total thermal energy (I)._L_.'
removed per unit arca of wall during this

period. Fig. 4-23

<—F = 2Bwh-h2-°F

x=4in

This problem may be treated as 1/2 of the similar problem of an 8in thick wall (with no insulation)
exposed to the same convective environment on each surface. Clearly the Heisler chart for a slab of
thickness 2L is suitable. From Table B-2 (SI), converted to (Engl.} units,

k = 0.4 Bw/h-ft-°F a = 0.02 ft/h
¢ = 02 Bw/lb,,-°F p = 100 b, /ft?
The dimensionlcss parameters are
0 = af _ (0.02 £/h)(5.5 h)
L (412)* 1t?
]_ _ k- _ 04 Btwu/h-ft-°F - 06
Bi AL (2Bwh-f*-°F)(4/12)ft

= 0.99

Note that Bi = 1.67; clearly a lumped analysis is inappropriate.
(a) From Fig. 4-6, using the above Fo and 1/Bi,

T‘:'_‘Tz _ Tu_Ta
T-T. T,-T.

=041 or  T,=30+(0.41)(80 - 30) = 50.5°F

where T, is the surface temperature adjacent to the insulation. From Fig. 4-7 at x/L = 1.0 and
1/Bi = 0.6,
T—+T. T,—T. -

T(_ T. N T(I_T:-c.

052 or  Ty~30+ (0.52)(50.5 — 30) ~ 40.7 °F

and this is the exposed surface temperature.

(b) The thermal energy removed per square foot of wall surface is found with the aid of Fig. 4-8. At
Fo = 0.99 and Bi = 1.67, Q/0, = 0.68. Now

[ _( 1bw (m 4 Ay eF] — 2
== pel.f = 100 “,) 1h,.,-°F)(12")[(80 30) °F] = 333.33 B/t
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and
% = (0.68)(333.33) = 226.7 Btu/ft?

As a very crude check, the linear average temperature of the brick is

_ 505 +407

T s = 456°F

and
0 4
=5 = PCLAT, = Tw) = (100)(02) (E) (80 — 45.9) = 229.3 Buw/fi?

The linear average temperature is, of course, too low during transient cooling (see Problem 4.29); it
would likewise be too high during transient heating.

4.19. A long, 6.50 cm diameter, solid cylinder is made of Cr-Ni steel, 18% Cr, 8% Ni. It is initially
at a uniform temperature 7, = 150 °C. It is suddenly exposed to a convective environment at
7, = 50°C, and the surface convective heat transfer coefficient is & = 285 W/m?- K. Calculate
the temperature at {(a) the axis of the cylinder and (b) a 2.5 cm radial distance, after 5 minutes
of exposure to the cooling How. (¢) Determine the total energy transferred from the cylinder per
foot of length during the first 5 minutes of cooling. (Since p and ¢ are available only at 20 °C in
Table B-1 (SI), this temperature will alsa be used for &.)

First, check the Biot modulus based upon

With k = 16.3 W/m-K from Table B-1 (SI),

_ (285 Wim?-K)(3.25 cm)(m/100 cm)/2 _

Bi
! 16.3 Wim-K

0.284

Clearly a lumped analysis is inappropriate. The problem can be solved with the aid of the transient
conduction charts. The dimensionless terms for use with Fig. 4-9 are

. of (0444 X107 m?/s)(5 X 60s)
For =%~ (325 x 10 > m) =126

where « is from Table B-1 (SI), and

1k 16.3 Wim-K
Bi* AR (285 W/m2-K)(3.25 X 10 2 m)

=1.76

(a) From Fig. 4-9

T —T.
77 =035 or  T,=50°C+035150~50)°C
T, ~85°C
(b) From Fig. 4-11 at 1/Bi* = 1.76 and r/R = 2.5/3.25 = 0.77
T-T.

r—— =086 or T=50°C +(0.86(85 — 50)*C = 80 °C

(¢) From Fig. 4-10 at Fo* = 1.26 and Bi* = (.57

o
— =~ 0.69
0 0

'
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Now with p and ¢ from Table B-1 (SI),

% = 7R pe( T, — T..) = m(0.0325 m)? (7817 kg/m?)(460 J/kg - K)(150 — 50) K

= 1193000 W-s/m
During the first 5 minutes of cooling,
010 = 0.69
So
(Q/L)s = 0.69(1 193 000 W-s/m) = 823 170 W -s/m

4.20. A solid, mild steel, 2 in diameter by 2.5 in long cylinder, initially at 1200 °F, is quenched during
heat treatment in a fluid at 200°FE. The surface heat transfer coefficient is 150 Btu/h-{t*-°F.
Determine the centerline temperature at the midpoint of length 2.7 min after immersion in the

fluid.
Checking for suitability of a lumped analysis (length = 2a),
[ - vV _ wR*(2a) _ R(2a)
A, 2uR(2a)+27R* 2(2a)+2R
125 .
"+ 0.361n

and, using k for 0.5% carbon mild steet at T,, = 700 °F to be 25 Btuh-ft-°F,

_ RL _ (150 Bru/h-f-°F)(0.36/12) ft _

Bi k 25 Bw/h-ft-°F

0.18

A lumped thermal capacity analysis is not suitable.

An appropriate visualization of this problem is shown in Fig. 4-24. The axial conduction is treated by
assuming the cylinder to be a slab of thickness 2a (the length of the cylinder), but infinite in the y- and
z-directions. The radial conduction is treated by assuming the cylinder to be of finite radius R and infinite

8
=
S
+
-..._,-P’
A Y
NI
~4 -~
N ot

\

A
\

—-—— e — -

Fig. 4-24
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in length. From the solutions of the slab and cylinder subproblems, the dimensionless temperature is given
by the product equation (4.38). The material properties are, from Table B-1 (Engl.),

‘C'm(. = 25 Bw/h-ft-°F kﬁs = 31 Btw/h-ft-°F

k 25
= — = {0.57) = = 0.46 ft*/h
@ = am - 057 33 t
Cylindrical Subproblem
1k 25 at  (0.46)(2.7/60)
=== =20 Fot=— =" =209
Bi* hR (150)(112) ° R? (112
From Fig. 4-9,
T-‘- - Tu: )
= 0.079
( Tr - T inf eyl
Slab Subproblem
1k 25 ~ _ at _ (0.46)(2.7/60) _
B e ey 0 FTE T a1
From Fig. 4-6,
T - Ter_,
: ~04
( -7 )maah

Complete Solution

T —-T.
T = (0.079)(0.4) = 0.032
( Tf - Tx )shuﬂq;l { )( }

and
T, = 200°F + (0.032)(1200 — 200) °F = 232°F

which is the temperature at the axial and radial center of the cylinder.

For the conditions of Problem 4.20, determine the temperature at a location within the cylinder
0.5 in from one flat face and at r = 0.5in, 2.7 min after immersion.

Cylindrical Subproblem
From Problem 4.20,

1
—— =20  Fo* =2.
g 20 For=299 e

At /R = 0510 = 0.5, from Fig. 4-11,

(T—TI) ~0.94
T -T. inf cyl
Now
T-T. _ ( T-T. )(?‘ T,)
T,-T. T -TJ\T,-T.
SO
T—T,)
= (0.94)(0.079) = 0.074
(?—;_Tuc- inf eyl ( )( )

atr=05in.
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422,

Slab Subproblem
From Problem 4.20,

1 T - Tu;
— =1 Fo = 1.92 < = (0.4
g6 T,- T
Using Fig. 4-7 with
x 125-05
2 125 0.6
yields
T-T. )
= (.905
( Ta -T. 2a-slab
Thus
T-T.
- = (0.905)(0.4) = 0.36
at 0.5 in from an end.
Complete Solution:
By (4.38),
T—T.
= (0.074)(0.36) = 0.0266
-1 (0.074)(0.36) = 0.0

T = 200 °F + (0.0266)(1200 — 200) °F = 226.6 °F

An important consideration in applying (4.38), or any of the muitidimensional equations, is that the
dimensionless temperatures used to form the product must be at the correct locations in the one-
dimensional subproblems. In the present problem, the location is the circular curve formed by the
intersection of the thin cylinder r = 0.5in with the plane x = 0.75in, the plane being normal to the
cylinder.

For the configuration and conditions of Problem 4.20, determine the time required for the
temperature at the center (radially and axially) of the solid cylinder to reach 205 °F.

To find the time required to attain a given temperature in a transient multidimensional problem, a
trial-and-error solution is required. From Problem 4.20, we know that the time is greater than 2.7 minutes.
A logical approach is to use this as a beginning point and to calculate T, for several larger values of time.
A graph of the results will yield the required answer.

Try t = 3.25 min
Cyl. Solution: # =20; Fo*= %@—1 =36
From Fig. 4-9, ( %:—:—%)inm] = (.047
Slab Solution: % =16, Fo= wzﬁ—)z(;fsz;zﬂ}- =23

From Fig. 4-6, (u) = (.33
7] - 7« Zu-slab

T-T.
Complete Solution: =7 = (0.047)(0.33) = 0.016

T =200 °F + (0.016)(1200 — 200) °F = 215.5°F
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Try t = 3.9 min
Cyl. Solution: L. 2.0; Fo* = Fo? (_3_2_) =473
e OB T 325 325 .
T.-T.
From Fig, 49, ( ‘ ) - 0.025
I 1g, T-T. e

1 39
Slab Solution: B =16, Fo= Fo,_;s(m) =276

T.-T.
From Fig. 4-6, ( : ) ~0.26
T; T fe F 2uslab
. T- Tnu
Complete Solution: T (0.025)(0.26) = 0.0065

T = 200 °F + (0.0065)(1200 — 200) °F = 206.5 °F

Try t = 43 min

Cyl. Solution: ! = 2.0; Fo* = Fo? (ﬁ)—d‘m
yi. ation: Bi* = £&\U] 0 25 325 .

From Fig. 4-9, (L:-If-) =(.017

T Tt inf cyl

Slab Solution: L-Hfr Fo=F (ﬁ)—am

a Olutnon: Bi 0, = FOz2s 3.25 -
T.- T.

From Fig. 4-6, ( ) =~ (0,22
£ T =T. [ asiae

=

Complete Solution:

7
= (0.017)(0.22) = 0.0037
T.-T- ( X022) =0

T = 200 °F + (0.0037)(1200 - 200) °F = 203.7 °F

Plotting these results in Fig. 4-25, we find t = 4.07 min.

30

d

- \\\

210

"
m}.l o 33 IGL 43
{, min
Fig. 4-25

[CHAP 4

4.23. An 8.0 cm thick concrete slab having very large dimensions in the plane normal to the thickness
is initially at a uniform temperature of 20 °C. Both surfaces of the slab are suddenly raised to
and held at 100 °C. The material properties are k = 1.40 W/m-K and a = 0.0694 X 107> m?/s.
Using a nodal spacing of 1 cm, numerically determine by the explicit method the temperature

history in the slab during a 1/4 h period.
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The nodal designations are given in Fig. 4-26; since the
problem is symmetrical about the centerline, only one-balf of
the slab is treated. The stability requirement for the explicit

method, one-dimensional case, is

_(as)?
M= o At =2
from which
z 0.01 m)*
(B = @F _ @ m)-ﬁ 2
2a 2(0.0694 X 1077} m*fs

=72.05s =0.020h

For this time increment, M = 2 and (4.52) simplifies to

rl
=

2

T+ 1}
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cm cm

.--—-\_,.-—J"'_""'
_Josk1o0_]

°d

L]

Fig. 4-26
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*d

where the subscripts 1 and 3 are for the two nodes adjacent to node n. Thus, for the present problem the

nodal equations are

T = (T + T2
T = (T} + THR2
T = (T + TH1
T = (T + T2 = T}

L]

No equation is required for node a since it has constant temperature. Since T, is initially 20°C and is
suddenly changed to 100 °C, an appropriate value for 7, during the first time increment is the average of
these two extremes. The solution is carried out in Table 4-2, where the units are h and °C. In this solution
we chose the maximum time step for simplicity of the resulting equations. In practice, especially when
using a digital computer, a smaller time step is preferable since this would (i) reduce truncation (round-off)

error and (ii) further ensure stability.

Table 4-2
.nmeNOdc a b c d e
0.0 60 20 20 20 20
0.02 100 40 20 20 20
0.04 100 60 30 20 20
0.06 100 65 40 25 20
0.08 100 70 45 30 25
0.10 100 725 50 35 30
0.12 100 75 53.8 40 35
0.14 100 769 57.5 44,4 40
0.16 100 78.8 60.6 48.8 44.4
0.18 100 80.3 63.8 525 48.8
0.20 100 819 66.4 56.3 52.5
022 100 832 69.1 59.4 56.3
0.24 100 84.6 71.3 62.7 594
0.26 100 85.6 73.6 654 62.7




120

TIME-VARYING CONDUCTION (CHAP, 4

A cylindrical tube of metallic impregnated, ceramic material is 1.2 cm long and has inner and
outer radii of 0.6 and 0.9 cm, respectively. It is subjected to a convective airflow at T, = 30°C
and & = 400 W/m?-K. The tube material contains copper particles resulting in an average
thermal conductivity of 85 W/m-K. Form a table for a cooling process from 0.1 s to 10.0s for
initial temperature of 800°C. Other properties are: p = 1922kg/m*, ¢ = 878 J/kg K, and
a = 5.037 X107 m?/s.

First, examine the possibility of using a lumped thermal analysis. Finding the surface area and volume
with r, = 0.9cm, r, = 06cm, and / = 1.2 cm

A, = [7(2n) + 7(2r)|l + 2m)(r} - 1)

= 27(0.6 + 0.9)(cm)(1.2 cm) + 27[(0.9)* ~ (0.6)’] cm?
= 11310 ecm? + 2.827 cm? = 14.137 cm?

or
m2
A, = 14.137 cm? X Fomd =~ 14137 X107 m?
V = w(ri—r)l = 7[(0.9 cm)* — (0.6 cm)?] X 1.2 cm
V=169 cm®=1695x10"*m*
Vv 1.695 em?
== — = (1119
L= = Taas7cme - 411%8cm
or
1.695 x 10" m®
= —— e = .‘] * -3
13710 e~ 198X 10Tm
The Biot number is
i Wim-K)}1.2x10°?
g = L _ @OWmMK)(12X1070m) oo

k 85 W/m-K
and a lumped analysis is clearly suitable. Forming the Fourier modulus,

at  (5.037 x 1073 m¥s)t

Fo= Z= " oaxi0omy ~ >0
Thus,
Bi-Fo = (0.005 65)(35.09) = 0.196¢
By (4.9),
T—T. )
T-T. exp (—BiFo)

and consequently
T =T.°C+ (T,— T.) °Clexp (—0.196¢)] = 30°C + 770 °C ¢ 1%
For
t=0S5s, T=30°C+770°Ce """ = 728°C
and

T-T. =728-—3O
T.-T. 800-30

= (.906

Values of T, Bi-Fo and (7 - 7.)/(T, — T.) are presented in Table 4-3 for ¢ = 0 to 10.0 seconds.
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Table 4-3
. T-T. (o
((s) Bi-Fo T—T. T(°C)
0.0 0 1.000 800
0.1 0.0196 0.980 785
0.5 0.098 0.906 728
1.0 0.196 0.822 663
20 0.392 0.676 551
5.0 0.980 0.375 319
10.0 1.960 0.141 138
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4.25. A 7.5cm diameter orange originally at T, = 26 °C is placed in a refrigerator where the air
temperature (7-) is 2 °C and the average convective heat transfer coefficient over the surface
of the orange is A = 57 W/m?- K. Estimate the time required for the center temperature (7.) of

the orange to reach 4 °C.

Since an orange is mainly water, we will take the properties to be those of water at

T = (26 +2) °C/2 = 14 °C. Thus from Table B-3 (S1), by linear interpolation,
a=1393x10"" m¥s k =0.584 Wim-K

The dimensionless parameters for the Heisler chart are
1 k 0.584 Wim-K T,

0.27

Bi* AR (57 Wim» K)(0.0375m) T, -

From Fig. 4-12, Fo* =~ (.48 and thus

[ Fo*R?  (0.48)(0.0375 m)”
a  1.393%107" m¥s

=484 x10°s =135h

Although we intuitively believe that the above solution is the correct approach, we should re-examine

the Biot number for the lumped capacity approach. Since

“A T anRE 3

pi = FURI3) _ (57 Wim’-K)(0.0375/3 m)

=122

k 0.584 Wim-K

and clearly a “lumped” analysis is not suitable.

4.26. A wrought iron ingot at an initial uniform temperature of 1200 °C is formed into the shape of
a rectangular parallelepiped with dimensions of 0.3 m by 0.15 m by 3.0 m. The ingot is air cooled
in a room where the air temperature 7., is 50 °C. The average heat transfer coefficient is
h =55W/m?-K. Can a lumped analysis be used to find the time required for the center

temperature at x = 0.15m, y = 0.075m, and z = 1.5 m of the ingot to reach 200°C?
At T,q = 3(1200 + 200) °C = 700 °C, k = 34.5 W/m-K from Table B-1 (SI). Moreover

V= (03x0.15%15)m* = 0.0675 m’

A, = (03%1.5) m?+ (0.3 X0.15) m? + (0.15 X 3.0) m? = 1.89 m?

LoV _ 00675

A 18m 0.0357m
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and

Bi = AL _ (55 Wim?-K)(0.0357 m)
T 345 Wim-K

Bi = (0.0569<0.1

= 0.0569

Therefore, the internal resistance can be neglected and the bar considered to maintain a uniform
temperature.

Supplementary Problems

A magnesium cube 20 cm along each edge is exposed to a convective flow resulting in h = 300 W/m*-K.
The initial metal temperature is 100 °C. Determine the Biot number, using the conductivity from Table B-1
(SI) evaluated at the initial temperature.  Ans.  Bi = 0.0595

Repeat Problem 4-12 for dry soil (a = 0.01 ft/h) and 7, = S0°F.  Ans. x = 046 ft

In the solution to Problem 4-18, it was stated that the linear average temperature was too low because this
was a cooling problem. Show this by determining temperatures throughout the slab at = 5.5h and
compare these with the linear representation obtained in Problem 4.18(b) with the two surface
temperatures only.

Ans. | x(@n) | 08 16 2.0 2.4 32 36

T(CF) | 501 48.8 47.8 46.8 44.0 424

Determine the temperature at the center of a lead cube, having edge dimension 3.0 in, one minute after
exposure to a convective fluid at 100 °F with 4 = 75 Btu/h-ft*-°F. The initial uniform temperature of the
cube is 300°F. Is a lumped thermal capacity analysis suitable? Use properties at 7,,, = 212°F, i.e.,
k = 19 Bww/h-ft-°F, a = 0.9 ft’/h.

Ans.  Bi, based upon L = V/A,, is 0.16; Fe, based upon L., = 1.5in, is 0.96; Bi, based upon L = 1.51in,

is (.49;
(g) ~07. T ~168.6°F at¢=1min
?l - ?nt 2a-slab



Chapter 5

Fluid Mechanics

51 FLUID STATICS
In the study of convective heat transfer (Chapters 6, 7, and 8) we shall be primarily concerned with

the behavior of fluids in motion. However, we must also be able to analyze static fluids— fluids at rest
or moving at constant velocity—to understand many flow situations.

Pascal’s Law
The pressure at a point in a static or uniformly moving fluid is equal in all directions. Pascal’s law
is also valid for an accelerating, frictionless (u = 0) fluid.

Hydrostatics

The pressure differential, p, — p,, between two points in a static or uniformly moving fluid is
proportional to the difference in elevation, y, — yy, between the points, the fluid density p, and the local
acceleration of gravity g.

Pg
pz—p.=—g—(yz—y1) (5.7)
If elevation y, is taken as a datum at zero pressure, (5.1) simplifies to
p=1vh (5.2)

where v = pglg.; (5.2) is known as the hydrostatic equation.

It is often more convenient to use gauge pressure, the pressure above that of the atmosphere,
P — Pam, SiNce many pressure-measuring devices indicate pressure with respect to the surroundings.
Figure 5-1 shows the relationship among absolute, gauge, and vacuum pressures.

GaL Standard Atmospheric Pressure
pressure .
-# —————— T———_-M Atmospheric Pressure
Absolute
preasure Negative (vacuum) gauge pressure 1 atm
A 14.696 psi
) 2116 psf
Barometric .
2992 inHg
pressure 33.94 ftH,0
1.013 x 10° N/m?
Absolute pressure
- -5 Absolute Zero (vacuum)

Fg. 51
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Manometry
Problems 5-7 and 5-8 illustrate the use of the hydrostatic equation in manometry.

Buoyancy

A body seems to weigh less when partially or wholly immersed in a fluid. This apparent loss of
weight is the buoyant force, Fp, which is the vertical resultant of the pressure distribution exerted by
the fluid on the body.

Buoyancy, which is central in natural convection (parcels of lesser density are buoyed upward), is
governed by Archimedes’ principle. The buoyant force is equal to the weight of fiuid displaced. The line
of action of the buoyant force is through the centroid of the volume of fluid displaced.

5.2 FLUID DYNAMICS

Analogous to the heat flow lines of the preceding chapters are streamlines in the flow of fiuids.
Shown in Fig. 5-2, a streamline is an imaginary line, taken at an instant of time in a flow ficld, such that
the Ruid velocity at every point of the line is tangent to it. Since movement occurs only in the direction
of the velocity vector, no mass crosses a stream tube surface.

V=1lu+tjv+kw

Fig. 5-2

A family of streamlines which forms a cylinder of infinitesimal cross-section is a stream filament.
A stream tube is a finite surface, made up of an infinite number of streamlines, across which there is
no flow. The concept of a stream tube simplifies the analysis of fluid flow, since fluid which enters a
stream tube must leave it, assuming no creation or destruction of mass within.

By noting that the velocity components in the x- and y-directions are

u= -‘(% v= %—‘:: (5.3)
we can get the differential equations of a streamline by eliminating dt, giving
udy =vdx (5.4)
Similarly,
vdz = wdy (5.5)
wdx = udz (5.6)

If, at the specified instant, u, v, and w are known functions of position, any two of (5.4) through (5.6)
may be integrated to give the equation of the streamlines.
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Substantial Derivative

When concentrating attention on a fixed region in space without regard to the identities of the
fluid particles within it at a given time—Kknown as the Eulerian approach, as contrasted with the
Lagrangian method, which focuses on the motion of individual particles—the velocity field is given in
carlesian coordinates by

V =iu+ju+kw (5.7)
where the velocity components are functions of space and time, i.e.
u=ulxy,zit)
v =1v(x,y,z,1) (5.8)

w = w(x,y,2,t)
Using the chain rule for partial differentiation, the rate of change of the velocity V is given by
dv _ aVadx N oVdy oVdz oV

BT T T T T )
Since, for a moving particle, u = dx/dt, v = dy/dt, and w = dz/dt, (5.9) may be written
A\ dV aVv av\ V¥V
| a=d—=(u—+v—+w—)+— (3.10)
dt x ay az a

. which is known as the substantial, total, or fluid derivative, designated DV/Dt. The influence of time
on a particle’s behavior is given by the local acceleration, #V/at, space dependence is given by the
convective acceleration, the terms in parentheses.

Types of Motion

When the local acceleration is zero, #V/dr = 0, the motion is steady. Even though the velocity may
change with respect to space, it does not change with respect to time. Streamlines are fixed in steady
flow. A flow which is time dependent, 4V/at # 0, is unsteady.

Uniform flow occurs when the convective acceleration is zero. The velocity vector is identical at
every point in the flow field. The flow may be unsteady, but the velocity must change identically at
every point. Streamlines are straight. An example is a frictionless fluid flowing through a long straight
pipe. Nonuniform flow is space dependent. A frictionless fluid would flow nonuniformly in a pipe
elbow.

In laminar flow, fluid particles move very smoothly parallel 10 each other. A dye stream injected
in a laminar flow field would move in a thin line. Low velocities in smooth channels can produce
laminar flow. At high velocities, however, turbulent flow, characterized by random motion of fluid
particles, occurs. A dye injected in the stream would break up and diffuse throughout the flow field.
Turbulent flow is always unsteady in the strict sense. We sometimes, however, think in terms of
steady and unsteady turbulent flow, illustrated in Fig. 5-3, which also shows steady and unsteady
laminar flow.

In discovering the difference between laminar and turbulent flow in 1883, Osborne Reynolds
noted that the type of flow depended upon the dimensionless parameter VD/v, where V is the average
fluid velocity in a pipe of diameter D and v = u,,/p is the kinematic viscosity of the flowing fluid. More
generally, the Reynolds number is defined as

Re=— (5.11)
where [ is a characteristic length. In pipe fiow the motion is usually turbulent for Re > 2000. In flow

over a flat plate, when the plate length is taken as the characteristic length, the transition from laminar
to turbulent fiow commonly occurs at 300 000 < Re < 600 000.
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Steady| Unsteady | teady]  Unsteady 1
’ |
u l\/- u

Mean velocity

(a) Laminar (&) Turbulent

Fig. 5-3

The velocity in turbulent flow consists of the average value V and a fluctuating part V":
V=V+V (5.12)

Taking the time average over a long period of time, we get

A== A‘

i.e., the fluctuations cancel out in the long term. Any fluid property, say viscosity g, may be similarly
time-averaged: p = 1+ u'.
The simple equation for shear stress in laminar flow

_ 1
V=lim-— | Vat (5.13)
™

laminar: T= py— (5.14)

is not valid in turbulent flow. The relation is complicated by the eddy viscosity €, which is a function
of the fluid motion as well as its density.

turbulent: T= (W+ w-e)t-i-f‘- (5.15)

Eddy viscosity € is not a fluid property as the absolute viscosity u is.
A perfect fluid has zero viscosity or negligible viscosity; a viscous fluid is a real fluid.

Similitude

Because of the impossibility of individually varying the several parameters in fluid mechanics
and heat transfer studies, it is often desirable to group variables in order to compare one system
(model) with another system (prototype). Three techniques of methodically grouping variables are
in common use:

1. An algebraic method known as the Rayleigh or Buckingham Pi theorem.
2. Use of the governing differential equations. This technique will be illustrated in Section 7.2.

3. Similitude. Requiring geometric, kinematic, and dynamic similarity, this method is the most
commeonly practiced technique,

For geometric similarity between model and prototype the fields and boundaries of both systems
must be in the same geometric proportions and have the same orientation. Kinematic similarity
requires that the velocity fields of the corresponding systems be proportional in magnitude and be
identical in orientation, producing streamlines, or heat flow lines, of the same pattern for model and
prototype. These two modes of similarity are adequate for describing flows which involve nearly
perfect fluids (p = 0).
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Real fluids, however, additionally require dynamic similarity. In dynamically similar systems each
of several force ratios is respectively equal at corresponding points in the model and prototype fields.
Some ratios which occur often enough in dimensionless form to warrant special designation are:

_ VL _ inertial force, [pV?A]

Reynolds number: Re ” viscous force, [[V,] (5.16)
Mach number: M= % = \/ i“:’l;::cfg:;[’[";f] 5.17)
Froude number: Fr= % = ‘/ ine;l;?gl:::r;:;b[f;; ;A] (5.18)
Euler number: Eu= p';’/ - is::f:;:rfo:z:’?’pl‘fﬂ] (5.19)
Weber number: We = ¥ lp _ inertial force, [pV7A] (5.20)

o surface force, [of]

Here, [ is a characteristic length, A = [?, ¢ is the local speed of sound, E is the bulk modulus, o is the
surface tension, and square brackets denote dimensions.

Often two of the dimensionless numbers suffice to assure similarity. In wind tunnel testing,
for example, flows are similar when the Reynolds and Mach numbers are each identical in model
and prototype. Equality of Reynolds numbers is sufficient in geometrically similar, incompressible

pipe flow.

5.3 CONSERVATION OF MASS

For steady flow the mass entering a stream tube is equal to the mass leaving, Thus, if 71 denotes
the rate of mass transport through a cross-section,

| m=p AV, =p,A, V, = constant (5.21)

where V is the average velocity taken normal to the cross-sectional area A, and p is the density,
assumed uniform over a cross-section. This equation is known as the continuity equation. The mass
velocity, G = pV, 1s often used in heat transfer calculations, giving

m = AG = constant (5.22)

If, in addition to being steady, the flow is incompressible (p = constant), the continuity equation
reduces to

Q = A, V, = A, V, = constant (5.23)

where Q is termed the volumetric flow rate.
The differential form of the continuity equation, which holds for steady or unsteady flow, is
derived in Problem 5.20. In cartesian coordinates, it is

dp  dpu) a4 F
—£+ ;“ + (‘;u)+ (;;:)20 (5.24)

and in general vector form,

o)
n 3“3 +V-(pV) =0 (5.25)
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where V- is the divergence, which may be conveniently expressed in any orthogonal coordinate system.
If the flow is steady and incompressible, the continuity equation in the cartesian coordinate system
reduces o

_du Ay ow

+—=0 (5.26)

v VA
ax Ay 07

54 EQUATION OF MOTION ALONG A STREAMLINE

In Problem 5.23 Newton’s second law is used to derive an equation for the motion of any fluid
along a streamline. It is:

1op goz 1 19 [V? 1 aV
+ +t—t——| =+ ——= .
pos g s pR, g 63( 2) (527)

Here, s is the arc length along the streamline and z is the vertical coordinate. Equation (5.27) is valid
for viscous or frictionless fluid and for steady or unsteady flow.
The frictional term in the equation of motion is referred to as the head loss, i.e.

ah;_ T

as ,OR;,

In this book we shall suppose it is given in its integrated form, h,, and use empirical data 1o evaluate
it in engineering calculations.
Assuming a uniform gravitational field (g = constant) and steady, incompressible flow (aV/at = 0,
p = constant), we can integrate (5.27) along the streamline from s = 5, to 5 = 5,. The result is:
vi- Vi
—+h, =0 5.28
28 (5.28)

steady, P2— P
incompressible: p

+§g:(z2_7.l)+

L—— Total head line {(energy gradient)
—— Pressure line (hydraulic gradient)

j F | J o

Fig. 5-4
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in which head loss is measured relative to station 1. If the flow is also frictionless (b, = 0), (5.28)
reduces to Bernoulli’s equation:
P { Vi

Vi _pm 2
—_— +—_= _—
[ Y 41 % v +2z+ 28 constant (5.29)
where y = pglg.. The “constant™ in (5.29) will, in general, vary from streamline to streamline.
Figure 5-4 depicts the physical significance of the terms in Bernoulli’s equation: the pressure head,
pl. the elevation head, z; and the velocity head, V*/2g. The sum of these three heads is called the rotal
head, H. The hydraulic and energy grade lines are also defined in the figure. The hydraulic and energy
gradients are parallel for sections of pipe of equal cross-sectional area where frictional effects are

negligible.

§5 CONSERVATION OF ENERGY

The terms of Bernoulli’s equation represent mechanical energy possessed by the flowing fluid due
to pressure, position, and velocity. The concept of the energy gradient reflects this. In (5.28) the head
loss term results from energy lost (dissipated into internal energy) in the flow process. H, in addition
to these energy terms, we permit energy to be added to or extracted from a given flowing mass, an
energy balance requires that

useful
energy at + energy | [energy| | energy _ [energy at (5.30
station 1 added lost extracted station 2 30)

where the “energy added” and “energy extracted” terms have meaning only when energy is
transmitted across the boundaries of the system. The heat generation term g¢" in Chapter 2 is an
example of energy addition.

In algebraic form (5.30) may be expressed as

P BD V%) (Pz B2 V%)
—+ 2+ —|+g—h,-w =+ 2 5.31
(p g 2) 1™ P g 28 (5:31)

where ¢ 1s the heat transfer, positive when added to the system, and w; is the work transfer, positive
when done by the system. Each term in (5.37) is an energy per unit mass. The work term is often
called shaft work to distinguish it from the flow work, plp, which is the work required to maintain
the flow.

Identifying the head loss with the gain in internal energy between stations 1 and 2, ie.,
hy = u; —uy, puts (5.37) into the more convenient form

P1 144 V%) (P2 EZ2 Vi
—tuy+—=—+—|+g—w,=|—+u+===+_—= 5.32
(p g 21 P B 2% ¢-32)

Both the internal energy u and the enthalpy

a=N =

are tabulated for common fluids,
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Solved Problems

Demonstrate Pascal’s law by taking a force balance on the triangular fluid element shown in
Fig. 5-5.

Assume the pressures are uniformly distributed over the faces of the element. The force on each face
is the product of the pressure on that face and its area. The forces on the vertical xy-faces are equal and
opposite, and the weight W is the product of specific weight, ¥ = pgl/g,, and volume.

Summing forces in the x-direction,

piAy(l) = [p(l) cjsxa] sina

and, since
1
ey 25y
2
the y-direction force balance yields

Ax AxAy(1
P’M(l) = [P(1)m]co5a+ -y-——.?}-,-(—l

Noting that (sin a)/(cos a) = tana = Ay/Ax, we have

Ay
Px=P Py=PrY5

and the latter equation reduces to p, = p as Ax and Ay approach zero, i.e., as the element approaches a
point in the limit. Therefore, the pressure at a point in a static fluid is equal in all directions, which is
Pascal’s law.

y pr Oly(m hz)

p(Ax ﬁn)' ]

Ay
x p(dy AZ) Pregs (Ay A2)

X
W = y(Ax Ay Az)

p: &y (1)

a ]
1 ] !
Ax ¢ l
L py M (t) P.q,(llx 6)’)
Fig. §-5 Fig. 5-6

Determine the pressure variations in the x-, y- (vertical), and z-directions at an arbitrary point
in an unaccelerated fluid.

Figure 5-6 shows a small fluid parallelepiped centered on the given point. The forces acting on this
element consist of surface forces (pressure times area) and body forces (weight).
The conditions for equilibrium in the x-, y-, and z-directions are

ps(AyAz) — pr.alByAz) =0
Py(AxAz) — py.ay(AxAz) ~ YAxAyAz) = 0
p:(Ax Ay) ~P: *az(m ﬁ}') =0

Dividing each equation by the volume, AxAy Az, and taking the limit as Ax, Ay, and Az approach zero,
we get
op op P

— — I == —=0
dx ay Y Az
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5.4.

5.6.

Thus, the pressure is independent of x and z. To determine its dependence on y it is necessary to know
the variation of v, i.e., the variation of p and g.

How does the pressure vary with depth in an unaccelerated incompressible fluid in a constant
gravitational field (with gravity acting in the negative y-direction)?

By Problem 5.2, p = p(y) and

dp
— = — y = constant
dy

since p and g are both constant. Integrating,

r ¥
f- Lo
P Yur

P—Po=— vy~ )
which is the form (5.7) of the hydrostatic equation.

How deep can a diver descend in ocean water (y = 1.005 X 10° N/m*) without damaging his
watch, which will withstand an absolute pressure of 5.50 X 10° Pa?

Assuming a standard atmospheric pressure of 1.013 25 X 10° Pa, the hydrostatic equation,
P~ Pam = yh
gives
(5.50 — 1.013) X 10° N/m? = k(1005 % 10°) N/m?
thus,

(550 - 1.013) x 10°

h 1.005 x 10*

m = 44,6 m

How might an ordinary garden hose be used to establish whether the corners of a building
under construction are at the same level?

With its ends by a pair of corners, fill the hose with water and expose the ends to the atmosphere.
Because the pressures at the water surfaces will be equal, the surfaces will be at the same height (p = yh).
This principle holds regardless of the length of the hose or its shape.

A mercury (y = 13.59y,..) barometer, depicted schematically in Fig. 5-7, has a column height
h of 728.2 mm at 20°C. What is the barometric pressure (a) in kPa and (b) in meters of water?

(a) A force balance on the fluid column gives

Py = Pam = Dy +(Th) ﬂ"‘\/vapcrm'p'
|
But the vapor pressure of mercury is negligible; therefore, — I
Pr= Yuph
h
From Table B-3 (SI) at 20 °C
! 1Pm
pre = 13579 kg/m? ted| (444
and

Yog = &Pre = (9807 mvs®)(13 579 kg/m"*)
= 133165 kg/m?s? Fig. 5-7
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Thus,
Po = Yue-h = (133 165 kg/m?-5?)(0.728 m)
= 96944 kg/m-s* = 96.9kPa.

(b) Converting with the equality from Table A-2
1 N/m* = (98.0638) ' cm H,0
results in
P = 9.88 meters of water.

For the manomecter shown in Hg. 5-8, what is the pressure at D7 Express in terms of the column
heights given and the specific gravity S = y/v,, where v, is the specific weight of water.

For this class of problems it is convenicnt to begin at some point (any point, usually an interface) and
add pressures resulting from fluid columns when going
downward; subtract when going upward. Beginning at D,
we gel

Pn + Tu'h'_? - Tthl = Pam
or

Pi— Pam = ?u{Sth] - hl)
or
P!J'|g,lug.c b ]’ﬂ(sllghl - h.?.)

since the point B and the interface C are at the same
elevation and joined by a common fluid, making their
pressures identical.

A differential manometer (Fig. 59) is used 0 Fig. 5-8
measure the pressure drop across a porous plug in a horizontal oil (S, = 0.8) line. For a
deflection of 30 cm in the mercury (S; = 13.6) column, what is the pressure drop?

Beginning at A and proceeding through the manometer to point E, we have
Pa— = yhot ylh +hy) = pe
or
Pa—Pe=hyr—n) = vhoS5: - 81)

10 ke
- [( m* } ](98%] I {0.30 m)(13.6 — 0.8) = 0.376 X 10° N/m?

where we have used p, = 10°kg/m* and y = 9.8 m/s”.
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59.

5.10.

5.11.

(See Table A-1 for the definition of the newton.) It should be noted that il was unnecessary to know the
height h,.

The hydrometer shown in Fig. 5-10 has a stem diameter of
0.5 cm and a mass of 0.040 kg. What is the distance on the scale
between specific gravity (5) markings 1.0 and 1.047

Let ¥V, be the volume displaced when the hydrometer floats in
water (§ = 1). The buoyant force is then v,V which is equal to the
weight of the hydrometer. In a fluid of unknown specific gravity §, the
buoyant force is ¥(V, — A Ay), where A is the stem cross-sectional
area and Ay is the decrease in depth. Therefore,

'ywo"{'w = y("ifw —A Ay)

Fig. 5-10
or
Vv, §S—1
BTA TS
Substituting
2 2
A _md” _ m(0S5cm)” = 0.1963 cm?
4 4
_W_M__0040kg _ 3
V= ™ = o 107 kglen?® 40cm
(M is mass) and § = 1.04 yields
Ocm® 1.04-10
Ay 40cm” 1 = 7.837cm

T 01963 e’ 1.04

For the flow field described by V = 2xyi + xj determine (a) the equation of a streamline, (b) the
equation of the streamline which passes through the point (1, 2).

(a) From (5.4)

dy _v_x _
dx w2y O ZIydy—de
ory! =x+C.
(®) C(1,2)=4-1=3 whence yY=x+3

Find (a) the velocity and (b) the acceleration of a particle at x=1, y =2, t=1 in a field
described by V = 3y%i + x*y4j.
(@ V(1,2,1)=12i+7j
(b) The acceleration is given by (5.10).
a(x,y,f) = -'?-‘—’ + ﬂ+ iAd
XNy =u—-+u Py
= 3y'3x"yf) + x*yr(6yi + 1) + x*yj
= 6x’y2ti + (9x2y 1 + x®yr? + xPy)j
Hence, a(1,2,1) = 24i + 76j.
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5.12.

5.13.

5.14‘

5.15.

FLUID MECHANICS [CHAP. 5

Describe the motion produced by an airplane flying through quiescent air at a velocity V.

The fluid velocity at a point in the path of the aircraft is unsteady. It is zero before the plane reaches
it, varies widely as the plane passes, and settles back to zero as the plane leaves.

If the same airplanc is fixed in a large wind tunnel with the air blowing past it at velocity V., = —V,
the same effects are produced on the aircraft. But the flow is now steady, since the local acceleration is
zero at each point.

What is the maximum discharge in liters per second of glycerin at 30°C and standard
atmospheric pressure from a 20 mm i.d. (inside diameter) tube if l[aminar flow is maintained?

To assure laminar flow the Reynolds number should not exceed 2000. Therefore,

v 2000
Re=D—£2000 or V= z
v

From Table B-3 (SI), v = 0.0005 m%s. so

2000(0.0005 m?/s)
V -_
= 0%X10°m 50 m/s
and the maximum discharge is
1000 lit
0= VA = (50 mfs)(%)(o.m m)Z(—mT'fE) ~ 15.7 liters/s

Water having a temperature of 60 °C flows through a long, 50.0 mm i.d. tube at a rate of 1.5 liters
per second. Is the flow laminar or turbulent?

Since Reynolds number is an indicator of whether the flow is laminar or turbulent, determining it
will suffice. We will need the property, viscosity. Choosing to work with p and p, we obtain from Table
B-3 (SI)

= pr = (985.46 kg/m*)(0.478 X 10~* m¥s)
=471 %X 10 *kg/m-s
p = 985.46 kg/m’

Forming velocity,

_ (1.5 liters/s)(m*/1000 liters)

V=0A-= =0.764
¢ (12)(0.05 m)’ mis

The Reynolds number is

_ DVp _ (0.05 m)(0.764 m/s)(985.46 kg/m®)

=799 x
I 471 %10 *kg/m-s 7.99%10°

Re

and this flow is clearly turbulent.

Atmospheric air heated to 350 K flows over a long, flat plate at 12 m/s. At what length will the
flow cease to be laminar?

Under average conditions, laminar flow over a flat plate can be expected at Reynolds numbers up to
300 000. Hence
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5.16.

5.17.

5.18.

From Table B-4 (SI), » = 20.76 X 107" m%s, so

; — (300000)(20.76 X 10~ m¥s)
12m/s

=0519m

A model is used in the design of a spillway for a dam. For a model-to-prototype ratio of 1:10,
what is the velocity at a point in the prototype when the velocity at the corresponding point in
the model is 1.4 m/s?

Assuming geometric similarity of model and prototype, equal Froude numbers assure dynamic
similarity; i.e., from eq. (5.18),

VoL VL

Since gm = &

V, = Vm‘/:—:- = (1.4 m/s)V10 = 443 m/fs

A flow meter model is 1/6 the size of its prototype. The model is tested with 20 °C water
(v = 1.006 X 10~° m?%s) while the prototype operates at 80 °C, (v = 0.364 X 10™° m?%s). (These
viscosity values should be verified with Table B-3 (SI).) For a velocity of 3.05 m/s in the 0.3m
diameter throat (minimum flow area) of the prototype, what discharge is required in the model
for similitude?

For incompressible flow, identical Reynolds numbers will assure similarity, assuming geometrical
similarity; therefore,

Re, = Re,
VoD _ Vo Dy
U, vy
or
D,», 1.006 X 10°°
Vm =__rmy = e — .
Doy, 7~ © (0.364 x 10'“) (.05 ms)

Vo = 50.57 = 50.6 m/s
This velocity results in a discharge volumetric flow rate of

03
O = VA = (50.6m Is)( )(—31"-) = 0.099 m¥s = 0.1 mY¥s

Derive the continuity equation for steady compressible flow, considering flow through the
stream tube of Fig. 5-11.

Taking sections 1 and 2 normal to the streamlines forming the stream tube, the mass passing section
1 per unit time is p.A,V,, or (pAV),; similarly, (pAV),. . passes section 2. For steady flow

M = (pAV);44, = (pAV);
Dividing by As and taking the limit as As approaches zero, we get

Axy—( As
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But this is

L (pav) =0
from the definition of a derivative. Therefore,
pAV = constant
which is (5.21). By taking the natural logarithm,
Inp+InA+InV=InC

and differentiating, we get the useful form

dp  dA 4V _

p A Vv

LY
'GPHHJM
L

i

A =100 —"

®
V, = 4fps Ay =21t
O] /

0

Ay =121t
Vy=31ips
Fig. 5-11 Fig. 5-12

5.19. Water flows through the Y-section shown in Fig. 5-12. What is the velocity at section 3 for
one-dimensional fow (i.e., flow in which the fluid properties may be expressed in terms of one
space coordinate and time)?

Equation (5.2/) modified for multiple inlets and outlets is

> oAV = D (pAV)

Therefore, A, V, + A,V = A, V5, where the constant
density p has been canceled out. Using the given
values, we get

(@) +(1.)3) =2V,  or  V,=38fps

5.20. Develop the differential form of the continuity
equation by considering the unsteady flow of
a fluid through an element having mutually
orthogonal dimensions Ax, Ay, and Az (Fig.
5-13).

The mass accumulated within the parallelepiped,
due to the unsteady flow, is equal to the mass flowing
into the element minus the mass flowing out of it.
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5.21.

Using an average value of density over the volume element, the mass accumulation per unit time is
. a3
accumulation = —‘-;'lhx AyAz

and the respective fluxes are
influx = (pu), Ay Az + (pv), Ax Az + (pw), Ax By
efflux = (pt)yracBy BZ + (p0)ysa) Bx Bz + (pW), 1 s, Bx By

Thus,

Py
%Axﬁyaz = [(pu), Ay Az + (pv), Ax Az + (pw), Ax Ay)
~ [(pt)xs 2 By BZ + (L)) ay DX AZ + (pW), 5, Ax By]
Dividing by the volume Ax Ay Az and rearranging, we have

WPy + (PU)y+ax — (Pu).t + (PU)way = (pv)y + (PW)zea: — (PW): =0
ot Ax Ay Az

By letting Ax, Ay, and Az approach zero, the volume element approaches point P, and the avcrage valuc
of density approaches the local value. From the definition of the derivative the flux terms become gradients
in their respective directions, giving (5.24):

w  Kew)  pv)  Hew) _
H ax a3y az

Does the velocity field V(x, y, z) = (2x + cos y)i + (sinx — 2y)j — 4k represent a possible incom-
pressible flow?

The incompressible continuity equation,

u  dv dw

— — — = 0
ax dy &z
must be satisfied for the flow to be possible. In this case,
u=2u+cosy v =sinx — 2y w= —4
ax ay 9z
so the flow is possible.
(a) If the velocity field satisfies the condition
i j k
a4 4 a2
VXV=curlV=|— — —| =0
a dy o0z
u v o w

the flow is irrotational, the fluid does not rotate as it translates. (For example, a toothpick placed
on the surface of an irrotational stream will have the same orientation at every point
downstream.) Show that the flow field described by

V(x,y) = (x* - y?)i — 2xyj
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is irrotational. (b) In two-dimensional irrotational flow a velocity potential, ¢(x,y), exists

such that
ﬂ¢ v = _‘ﬁ
ax ay
Determine the velocity potential for the flow of part (a).
Y B
(a) curl V=| — — —| =k{ ay | =k(=2y+2y)=0
X ay iz X2~ —2xy
-y 2y 0

so the flow is irrotational.
(b) The velocity potential must satisfy

M M __
pelall ¥ rrie 2xy

Integrating the first equation with respect to x, and the second with respect to y, gives
xl
¢=FYxtPO)  ¢=-xy+ 0

These two expressions for ¢ will be equal only if

3

% — Q(x) = —P(y) = constant

Therefore,
X
¢ = 3 y2x — constant

and the constant may be equated to zero, since only the derivatives of ¢ have significance.

5.23. Develop (3.27), the equation of motion along a streamline.

Figure 5-14 is the free-body diagram for an element of
fluid, of average length As, within a stream tube. The pressure
forces act normally on the ends of the element. The frictional
force, which acts on the circumferential surface to retard
motion, is the product of shearing stress 7, the mean circum-
ference ¢, and the average length As. The weight is given by

W= 'yﬁT:-yﬂsl._A"'i;-‘_Aa] H
where y = pglg,. the component of the weight in the
+s-direction is (pA),
~Weosa= ~wiE Fig. 5-14
As
Writing Newton’s second law for a fixed mass, (1.19), in the +s-direction,
W dv
(PA), — (pA)s 1 — W——- 7cAs = -S—E (2)

or, substituting (1) into (2),

(PA)sia:— (PA),+7ml I+A,+A]

A ‘}' A’-I—N + A‘ dV
—+ As= —As| ———— | —
As ¢ g l 2 dr 3
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5.24.

Using the hydraulic radius, R, = Alc, defined as the cross-sectional area divided by the wetted perimeter,
replacing v by pgig., and dividing by p4s, we get

1 (PA)ssas— (PA)J [ svar + A, | A2 a: = TA __]-_[A.na"'Aa]ﬂ 4
P hs " K &5 PRy &

Taking the limit as As—0, and noting that A,,..— A, so that in the limit the area divides out, we have
1dp g oz 7 1 dVv

— By LR, s ©)

pds g a5 pR, g di

In (5) the independent variables are arc length 5 and time ¢. However, by definition, ds/d! = V along
the streamline. Therefore,

v _év dvVds _av v av (V’)
+ v

dt of as dt & s a &\2
and (5) becomes
I, &z, v Li(ﬁ) AV _,
pds g pRy g as\2)] g at
which is (5.27).

A Pitot-static tube (Fig. 5-15) is used with a mercury
manometer to measure the flow of an inwiscid fluid with
S=1in a 4in diameter pipe. What is the flow rate
through the duci?

Assume that the flow is steady, incompressible and fric-
tionless, making Bernoulli’s equation valid.

2 Vl
B il V3 @)
Y

g v 2
Station 2 is a stagnation point, where the flow is completely
stopped (V,=0), and the two stations are at the same Fig, 5-15
elevation (z; = z,); therefore,

= @

The pressure differential can be determined by using the hydrostatic equation, p = A, along the path
1—3 —4—2 through the manometer.

Pt vh+ yugho— vih + ho) = py

Py _Yug, _ . _ »
= ?hn hy = ho(Syg — 1) (€))

Substituting (3) into (2),

Vi = V2ghy(Sue - 1) = ‘/2(32.2 -;1) (%&)(13.& 1) = 11.63 fps
and

Q=AV= [M](u as—)(T'ﬁfa') ;0:1) 455.49 gpm
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5.25. A simple Pitot tube, sometimes called an impact

5.26.

FLUID MECHANICS [CHAP. 5

tube, may be used 10 measure the velocity in a
flowing stream as shown in Fig. 5-16. Derive an
expression for the velocity in terms of the given
quantities.

Writing Bernoulli's cquation along the strcam-
line between 1 and 2, we get

Yi,m_p
28 v v Fig. 5-16

But, from the hydrostatic equation, p, = p.m + vh.
P2 = Pam + vho + h), whence

P2= P _ hy
Y
Therefore, V, = V2gh,.

A liquid discharges through a small orificc in a large tank (Fig. 5-17) which is kept full. What
is the discharge velocity?

For flow along a streamline from the surface to the orifice, Bernoulli’s equation gives

P Vi
_I"'Zl"" 21 "%4‘22*2—;
But V, =0, p, = p; = pw. and 2, — z; = h; hence
Vz‘: \ngh

P

= (.10 m dia. 0.18 m dia.

et

Fig. 5-17 Fig. 5-18

5.27. Gasoline with a specific gravity S = 0.82 flows with negligible loss through a divergent section

(Fig. 5-18) at a rate of 0.028 m*/s. What is the pressure at station 2 if the pressure at section 1
is 1.8 X 10° N/m?? The gasoline temperature is 20 °C.

The volumetric flow rate Q is constant and

Q=W = VA,

S0
_ 0.028 m%s — 356 m
' (#8010 mye: ™S
0.028 m*
Vs o o 110mis

2T (8018 m)
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5.28.

5.29.

Then, by the Bernoulli equation
Vi-Vvi
p2=prty —"2'—")

From Table B-3 (SI), p = 1000 kg/m* (water at 20°C) and with § = 0.82, p = 820 kg/m’ (gasoline). Since
v = pg the Bernoulli equation becomes

(54
=P T pE %

or

(154
Pr=ptp 2
Substituting values yields

567 - 1.10
%) mefs?

= (1.8 X 10° Nfm?)4700 kg/m-s? = 1.847 X 10° N/m?

P2 = (1.8 X 10° Nfm?) + (820 Icglm-‘}(

A gas turbine operates with an average inlet velocity of 122 m/s and an inlet temperature of
1477 K. The exit velocity and temperature are 275 m/s and 1033 K. For a mass flow rate of
0.3023 kg/s and a heat loss of 59 J/s, what power does it develop in kW? In horsepower?

By eq. (5.32) in ratc form we have

. . . V! — V!
0 =W, = i (hs =) + g(as - 20 + (52|

Often the potential energy term and the kinetic energy term are negligible. With this assumption the rate
equation becomes

Ws = Q - me(T2 - TI)
From Table B-4 (SI) at 7, = 1255 K, for air

¢, = 1.1827 X 1¢° Jkg-K
Thus,

W, = — 59 J/s — (0.3023 kg/s)(1.1827 X 10° Vkg-K)(1033 — 1477) K
= + 158684 W = + 158.7 kW (212.7 hp)

Return to the complete equation and consider the kinetic encrgy term, —m(Vi— V2. With V, = 275 m/s
and V| = 122 m/s, this term gives —9181 W lowering W, to 149 503 W = 149.50 kW (200.41 hp), which is
6% lower. The kinetic energy term is negligible.

A centrifugal air compressor receives ambient air at 1 atmosphere pressure and 300 K. At a
discharge pressure of 4.0 atmospheres, a temperature of 477 K, and a velocity of 90 m/s, what
power is required to drive the compressor for a mass flow rate of 90 kg/min?

Assume the inlet velocity so low that its effect is negligible. Take the flow as steady, assume
the process is adiabatic (no heat transfer), and neglect elevation changes. The energy equation (5.32)
reduces to

Vz
w,=hl-hz-72
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5.30.

5.31.

5.32.

5.33.

534.

5.35.

5.36.

FLUID MECHANICS [CHAP. 5§

The corresponding rate equation is, assuming constant specific heat,

®

) V3
W, = nllcp(Tl —T3) BEE

The specific heat for an average air temperature of 388.5 K is, from Table B-4 (SI), 1012.9 J/kg- K.
Proceeding,

: 90 m/s)?
101291(300_4??)1(_( 5) ]

W.=(15 kgls)[ ke K 3

1
l.5[—|?9283 —%] Its (W)

—2749993/s (W)  or  —369hp

Supplementary Problems

A 3m by 3m tank contains hydraulic fluid (§ = 0.84). With the deflection of mercury shown in the
manometer (Fig. 5-19), what pressure cxists at A in the tank. Ans. 9675 Pa gauge

Neglecting friction, what pressure is required to pump water to the top of thc Empire State building, 381 m
high?  Ans. 3.73x10"Pa

5

)
(s
2

1.5mdia.

Fig. 5-19 Fig. 5-20

An inverted conical tank contains water as shown in Fig. 5-20. What force is exerted on the tank bottom
by the water? Ans. 20760 N

What is the maximum depth from which water may be pumped by a suction-type (shallow well) pump?
Ans. 10.35m (33.95 ft)

In a flood two people jump onto an empty 208 liter (55 gal) oil drum, which then floats barely, but
totally, submerged. What is the combined weight of the two people if the drum weighs 222.4 N?
Ans. 18185N

What is the acceleration of a particle at the point (2,1) in the two-dimensional field described by
V = 2% + x*yj? Ans. 72i+ 112

Determine the maximum flow rate of gasoline (p; = 7 % 10™*1b-s/ft?, § = 0.68) for laminar flow in a 1in
dia. tube.  Ans. 6.95X 10 *cfs
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5.40,

541,

5.42.

Air at 300 K (v = 16.84 X 10~ m?s) flows parallel with a 5.0 m long flat plate at 5.0 m/s. Assume the flow
to remain laminar until the Reynolds number, based on the distance from the leading edge, reaches
300 000. Over what fraction of the plate is the flow laminar? Ans.  Lanfl = 0.202

A model of a river is one-hundredth scale. Predict the surface velocity in the river if the model surface
velocity is 0.3m/s.  Ans. 30m/fs

A jet engine burns 4000 Ib,, of fuel per hour while inducting air at 150 lb,/s in flight at 500 mph, The
combustion products exhaust at 2000 fps relative to the engine. Determine the engine thrust, assuming
p]A) = pzAz. Ans. T= (m“ + "-1[) Vz - l’ﬁa V] = 5969.6 Ib[

What gauge pressure is required in a 3 in i.d. fire hose just upstream of a horizontal nozzle to result in a
lin dia. water jet having a velocity of 60 ft/s at the nozzle exit plane? Assume standard gravitational
acceleration and y = 62.4 Ib/ft>.  Ans.  23.92 psig

Water flows through a turbine at the rate of 10cfs. Inlet and outlet pressures are 25 psia and —4 psig,
respectively. The 12in dia. inlet is 6 ft above the 24 in dia. outlet. What horsepower is delivered by the
water to the turbine? Ans. 4693 hp

What power is available from a 3in dia. jet of water discharging into the atmosphere at 100 fps?
Ans 173.1hp



Chapter 6

Forced Convection: Laminar Flow

The primary resistance to heat transfer by convection is normally controlled within a thin layer of
the fluid, adjacent to the immersed body, in which viscous effects are important. The quantity of heat
transferred is highly dependent upon the fluid motion within this boundary layer, being determined
chiefly by the thickness of the layer. While greatly affecting heat transfer, the boundary layer and the
general velocity field can be treated independently of it, provided fluid properties do not vary with
temperature. Otherwise, the heat transfer and fluid flow processes are interlinked.

6.1 HYDRODYNAMIC (ISOTHERMAL) BOUNDARY LAYER: FLAT PLATE

Fundamentals of boundary layer flow can best be understood from laminar flow along a flat plate,
since the fluid motion can be visualized and since an exact solution exists for the fluid’s behavior.

Consider a very thin, flat plate with an unbounded, incompressible, viscous fluid flowing parallel
to it with an approach (free-stream) velocity V... This is shown in Fig. 6-1, with the y-dimensions greatly
exaggerated with respect to the x-dimensions. Shown also are velocity profiles at two stations,
indicating how the velocity varies from zero at the surface (no-slip condition) to 0.99 V.. at what, by
convention, is taken as the edge of the boundary layer. A streamline is shown for reference in the
inviscid region, where Bernoulli’s equation is valid. Continuity requires that streamlines diverge as the
fluid is retarded more and more in moving along the plate. The divergence of streamlines suggests
motion in the y-direction, normal to the plate. (At this point it should be noted that a mirror profile
exists underneath our hypothetically thin plate.)

V. inviscid
region

Streamline “'i“_-’o'-"

Prandtl’s Boundary Layer Equations

By applying Newton’s second law and the continuity equation to an infinitesimal, two-dimensional
control volume within the boundary layer, and assuming that

1. fluid viscosity is constant

2. shear in the y-direction is negligible

3. the flow is steady, and the fluid is incompressible

4. the vertical pressure gradient is negligible (ap/ay = 0)

144
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we obtain (see Problem 6.1):

ou  ou_ gdp Fu

- : —+ - =t v—F 6.1

x-momentum: u Y iy S dx v P (6.1)
d

y-momentum: LA (6.2)
ay

. au  a

continuity: MyZ oy 6.3)

ax  dy

Since the pressure can be determined in the inviscid region from Bernoulli’s equation,

Ly

P28

2

= constant

the pressure at a given lengthwise location within the boundary layer is known from (6.2). Equations
(6.1) and (6.3) can then be solved simultaneously to give the velocity distribution.

Blasius’ Solution (Exact)
Problem 6.2 establishes the order-of-magnitude relationship

8 / v

Experiments have shown that velocity profiles at different locations along the plate are geometrically
similar, i.e., they differ only by a stretching factor in the y-direction. (Refer again to Fig. 6-1.) This
means that the dimensionless velocity 1/V. can be expressed at any location x as a function of the
dimensionless distance from the wall, y/&:

w _(y
- ¢( 5) ©5)
or, using (6.4),
1]
o =g (66)

where 7 = yVV../ix denotes the stretching factor.
We seek the function g(n) which will satisfy Prandtl’s equations. To this end let us define a
continuous stream function , having continuous first partial derivatives, such that

A _

o — (6.7)

Then (6.3) is automatically satisfied. Holding x constant,

y= Judy FOW) = V. Js(n)%dn +C) = Vo jg(n)dn + Cl)
= VVoux f(n) + C0¥), ©8)

where we have dropped the integration “constant” on dimensional grounds (¥ and V'V, vx have the
same units, e.g., m%/s). We now use the chain rule with (6.8) to express u and v and their derivatives
in terms of f and its derivatives. Substituting the results in (6.1), and further assuming constant pressure
(dPldx = 0), we obtain

d&’f d&f
[} —=+2—===0 .
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an ordinary (but nonlinear) differential equation for f. The boundary conditions are:

Physical System Transformed System
af

= = =0

u=0 at y=0 dn =0 at 7

v=0 at y=0 f=0 at 9=0

a—u—-vO as y—« df—-'lﬂ as np—x

Jdy
Blasius’ numerical solution of (6.9), with the corresponding values of 4 and v, is plotted in Fig. 6-2. It
is seen that the boundary layer edge, u/V.. = 0.99, corresponds to n = 5.0; hence, since the edge is also
given by y = 8,

& -v;': =50
vx
or
= == \/l;t_e: (6.10)
/ v fi(n)= ;,!'
o f(n){ p ‘
' / // ]
ﬁ inf'(n) — f(n)}
oe / y, s =V VRe,
A4
!/
AN/
L
n = yVVlix

Fig. 6-2. Flat plate boundary layer functions. [From H. Blasius, Z. Math. Phys., §6: 1 (1908). English
translation in NACA Tech. Memo No. 1256.)

Using the fundamental equation for shear stress, 7= uddu/dy), we can get the drag on the plate
by evaluating the local shear stress at the surface, 7,(x):

p,f-;"; = V. ‘/7 2= (0) = V. \/— 0332)
¥=

in which Fig. 6-2 has been used to evaluate f”(0), equal to the slope of the f' curve at n = 0. The local
skin-friction coefficient is defined by

T{x) =

s

G g (6.11)
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Substituting for 7;, and using v = w,,/p = g u/p and p = p., (incompressible flow),

0.664  0.664
Cy = = 6_12
! V.x VRe, ( )
v
The average skin-friction coefficient for 0 <x <L is then
1(* 1.328
| Ci=— cpelx = 6.13
L J: T VRe, (6.13)

where Re;, = V_ L/v.

Integral Momentum Equation (Approximate)

The technique of the Blasius solution is limited by one’s ingenuity in discovering transformations
which satisfy the boundary conditions. And, of course, the Blasius solution was for the simplest of
cases. Although approximate, there is a simpler, more general method which yields good engineering

results.
The von Kdrman integral technique involves the application of Newton’s second law to a finite

control volume, as opposed to the infinitesimal element of Blasius. Problem 6.7 obtains the result for
the flat-plate case, cited here.

dT [* dv.
f,=£EM (V,—u)udy]+£——1;(v —u)dy (6.14)
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]
> |-

(1] >

o L3ty S e
= V. 2 2\ & g
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/:p 5’, u ! 1
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1] 0.2 o4 [-2 1 ol 1.0
ufv,_

Fig. 6-3. Several assumed velocity profiles used in the von Kirmin integral technique. [From E. Pohlhausen,
Z. Angew. Math. Mech., 1: 115 (1921).)
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If, as in the Blasius solution, a constant pressure is assumed, then V. is also constant and the second
term in (6./4) vanishes. In that case, equating 7. to

au
pfﬁ_y

y=u

gives the following integral equation for the boundary layer thickness:

d &
» =a[[ (V,ru)udy] (6.15)

To solve (6.15), or the more general (6.14), requires knowing, or assuming, a velocity distribution
within the boundary layer that satisfies the boundary conditions

au

| PE;

u
aty=0. (1) u=0; (Z)a—yz-=0
] (6.16)
au
aty—S. (3)!«!—1/:-,, (4)-";—0

Boundary conditions (1), (3). and (4) arise from the physics of the velocity profile; boundary condition
(2) then comes from (6.1) for a constant-pressure condition.

At first glance the mere suggestion of assuming a velocity profile seems ridiculous. In actuality,
however, the thinness of the boundary layer helps to lessen the significance of errors inherent in
assumptions. Figure 6-3 shows three possible assumptions, ranging from a simple linear to a cubic
profile; the Blasius exact profile is shown for reference. The results yielded by these three profiles for
the boundary layer thickness and the average skin-friction coefficient are displayed in Table 6-1.
Problems 6.8 and 6.9 show how these results are obtained.

Table 6-1. Integral Momentum Equation Results.

Boundary Conditions 8, — f—
Velocity Profile Satisfied x Re. | C/VRe.
aty=0 aty=3
u y [y\?
v 23 - (-5) =10 u=V. 547 1.462
u
ay
w 3y 1iyy?
—=z=- (L =0 = V. : :
V. 2% 2(8) i u 4.64 1.292
ay ay
Blasius solution 50 1.328
(exact)




CHAP. 6] FORCED CONVECTION: LAMINAR FLOW 149

6.2 THERMAL BOUNDARY LAYER: FLAT PLATE

When a fluid at one temperature flows along a surface which is at another temperature, the
behavior of the fluid cannot be described by the hydrodynamic equations alone. In addition to the
hydrodynamic boundary layer, a thermal boundary layer develops.

Figure 6-4 shows temperature distributions within the thermal boundary layer, having a gradient
which is infinite at the leading edge and approaches zero as the layer develops downstream. Shown
also is a heat balance at the plate’s surface, where the heat conducted from the plate must equal the
heat convected into the fluid; thus,

k| = (T, T.)

L]

or

(6.17)

/ )
h(T,~T.)

y x _—— T,

o _///////77_11 I

Xy ar X3

THT

Fig. 6-4

Our problem in this section is to obtain an expression for the convective heat transfer coefficient
h,, which obviously reduces to finding the temperature distribution. To that end, in Problem 6.12 an
energy balance is made on an infinitesimal control volume within the boundary layer, giving
| u o +v aT_ T 6.18

ax  ay oy (6.18)
with boundary conditions, analogous to (6.16),
-2
aty=0. (1) T=T: () 2L=g

ay*

aT (6.19)
aty = 8, (3) T=T, (4) -‘g =0

Analpgoﬂs to the hydrodynamic case, the thermal boundary layer thickness 8, is defined as the distance
required for the temperature T to reach 99% of its free-stream value T... The assumptions underlying
(6.18) are:

1. steady, incompressible flow
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2. constant fluid properties evaluated at the film temperature,
T, +T.
=7

3. negligible body forces, viscous heating (low velocity), and conduction in the flow direction

Recalling that the x-momentum equation for a constant-pressure field is

. ou au
ety — =1 (6.20)

ax ay ay
we note the similarity between this and the energy equation (6.18). The temperature and velocity
variations are identical when the thermal diffusivity « is equal to the kinematic viscosity ». Complete

analogy exists when the temperature is nondimensionalized by
T
T.—-T;
and the velocities are nondimensionalized by dividing by V., making the thermal boundary condition

# = 0 at y = 0 analogous to w/V., = 0 at y = 0. Temperature and velocity profiles are identical when the
dimensionless Prandtl humber,

=

Pr=_ (6.21)

a

is unity, which is approximately the case for most gases (0.6 <Pr <1.0). The Prandtl number for
liquids, however, varies widely. ranging from very large values for viscous oils to very small values (on
the order of 0.01) for liquid metals which have high thermal conductivities.

Pohlhausen Solution (Exact)

The similarity between the momentum and energy equations led Pohlhausen [Pohlhansen, E., Z.
Angew. Math. Mech., 1: 115 (1921)] to follow Blasius’ assumption of a similarity parameter and stream
function,

n=y\/§i g =VuxV.f(n)

giving the ordinary linear differential equation

d’6 Pr _dé
W-I——z-f-&;l-—@ (6.22)

490
p-gs_ /|

with boundary conditions 6(0) = 0, 6(=<) = 1. The solution 32

15

n B X
L exp(—'—;}j_ fa)da) dg o
6(n) = (6.23) e
= Pr (¥ ="
L cxp(-—?‘[ fla)da }dp /
03
where f(a) is known (in numerical form at least) from the ML/
Blasius solution. The temperature distribution (6.23) is 0 02 04 06 058 10
plotted in Fig. 6-5 for Pr= 0.6, Similar plots of 6 for 6=(T-T)(T.=T,)

06 <Pr<1000 are available in several heat transfer
textbooks. Fig. 6-§
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The slope of the temperature profile at the surface, y =0, is well represented by

d T Va: dB V:: .
Whe TN e Vi © : 6.2
(ay ),.-.. (T.—T,) - (dn)n;u (T.—T,) — (0.332) Pr (6.24)

for 0.6 < Pr < 15. Substitution of this expression into (6.17) yields

h, = (0.332)k }Ki Pr'? (6.25)
v
Multiplying through by x/k, we get the local dimensionless Nusselt number,
Nu, = h!:x = (0.332)Re}?Pr'” (6.26)

Taking averages over the interval 0 <x < L, we find the average heat transfer coefficient and Nusselt
number to be

B=2hr (6.27)
- _hL 172 p 173
Nu === = (0.664) Re}”Pr (6.28)

(For constant g7, the coefficient 0.322 in eq. (6.26) becomes 0.453, effecting an increase of the
coefficient in eq. (6.28).)

Integral Energy Equation (Approximate)

The von Karmén integral technique can be applied to the thermal-hydrodynamic boundary layer
just as it was to the hydrodynamic layer alone. As shown in Problem 6.14, the result for the flat
plate is

| o2z

= % £ (T.- T)udy] (6.29)

which should be compared with (6.15). To solve (6.29) for 5, we need to know, or to assume, a velocity
profile and a temperature distribution within the boundary layer that respectively satisfy the boundary
conditions (6.16) and (6.19). If third-degree polynomials are used for u/V.. and 8 (see Problem 6.15),
the resultant local Nusselt number for convective heat transfer from a flat plate is

AI4T-113
Nu, = "’;x = (0.332) Re!” Pr“’[l - (‘%) ] (6.30)

Here, x; is the length of an unheated leading section of the plate; when x; = 0, (6.30) is identical to the
Pohlhausen solution, (6.26).

6.3 ISOTHERMAL PIPE FLOW

If we imagine the flat plate of the preceding sections to be rolled into a duct, we can apply the
concepts of the boundary layer 1o flow in pipes. There is one major difference, however. Whereas the
boundary layer continues to increase in thickness as a fluid passes along a flat plate, the boundary layer
thickness in a pipe is physically limited to the radius of the pipe.

Figure 6-6 shows the successive stages of development of the boundary layer of an incompressible
viscous fluid in the entrance region of a circular tube. At the tube’s entrance slug flow, or uniform flow
at the free-stream velocity, exists. As the fluid moves down the tube, shear between the fluid and the
wall, and between adjacent fluid particles, retards the motion, causing the boundary layer to grow until
it is fully developed at station 3. From this point on, the velocity profile remains unchanged.
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1 dp
. i R!_'J
wm e ®

(parabolic profile)

L]
~ |
e
;ﬂ

Edge of boundary layer |

0 ' ©
I'— Entrance region (x,) —i Fully-developed region ——%=—t

Fig. 6-6. Laminar hydrodynamic boundary layer in the developing region in a round tube,

Entrance Region
The length required for the velocity profile to become invariant with axial position is known as the
entry length, x.. It may be approximated by the simple Langhaar equation
x. =~ (0.05)Rep D (6.31)

In most cases the entry length of a pipe is negligible when compared with its total length. Most
engineering calculations are, therefore, made assuming fully developed flow throughout.

Fully Developed Region
For steady, fully developed, laminar flow in a tube, the velocity profile is parabolic:

1 dp
u=—--——(R"- 6.32
el (6.32)

where the minus sign is required because the pressure decreases in the flow direction. This result is
obtained from a force balance in Problem 6-17. The maximum velocity, which obviously occurs when
r=0,is .

I dp

The average velocity, V, may be obtained by equating the volumetric flow to the integrated
paraboloidal flow, i.e.,

.
VaR? = J u(2nr)dr
]
giving
=-——R (6.53)

In engineering practice it is customary to express the pressure gradient in terms of a friction factor, f,
defined by

- = (6.34)

where pV'?/2g. is the dynamic pressure of the mean flow and D is the tube diameter. Integrating this
expression, we get the Darcy-Weisbach equation,
Ap _ f oV
L 2g.

=

(6.35)
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where Ap=p,—p, and L =x,—x;. By (5.28) the head loss between stations 1 and 2 is
he = (py— p2)/p; thus,

L V?
= f— 6.36
Together, (6.33) and (6.34) give the friction factor as a simple function of Reynolds number, i.c.,
64
=—-— 6.37
= R (6.37)
which is valid for laminar tube flow, Re < 2000.
In terms of volumetric flow rate, Q = AV, the head loss is given by
A L
hy =22 _ g Okt (6.38)
P 7D%p
Or, the volumetric flow rate may be conveniently expressed in terms of the pressure drop, i.e.,
7 R
= ——(p — 6.39

a result known as the Hagen—Poiseuille equation.

Noncircular Ducts

The Darcy-Weisbach equation, (6.35), is valid for noncircular ducts when the geometric diameter
is replaced by the hydraulic diameter D,, defined by

D, = 7 (6.40)
where A is the cross-sectional area and P is the wetted duct perimeter (the perimeter touched by the
fluid). The friction factor must, of course, be evaluated for the particular duct configuration. Values of
the product of friction factor and Reynolds number for the two most important industrial duct
configurations were reported by F. M. White, and are given in Tables 6-2 and 6-3.

Table 6-2. Laminar flow friction factors for a
concentric annulus. [From E M. White, Fluid
Mechanics, 2nd edn, ©1986, McGraw-Hill
Book Company, New York, NY, p. 328
Reproduced with permission of the McGraw-

Hill Companies.)
Ratio of

Radii f-Re
0.001 74.68
0.01 80.11
0.05 86.27
0.10 89.37
0.20 92.35
0.40 94.71
0.60 95.59
0.80 95.92
1.00 96.00

Table 6-3. Laminar flow friction factors for

rectangular ducts. [From F. M. White, Fluid

Mechanics, 2nd edn, ©1986, McGraw-Hill

Book COmpany, New York, NY, p. 331

Reproduced with permission of the McGraw-
Hill Companies.]

Ratio of
Sides f-Re
0.05 89.91
0.10 84.68
0.125 82.34
0.166 78.81
0.25 72.93
0.40 65.47
0.50 62.19
0.75 57.89
1.00 56.91




154 FORCED CONVECTION: LAMINAR FLOW [CHAP. 6

6.4 HEAT TRANSFER IN PIPE FLOW

A large class of heat transfer problems of engineering importance involves the flow of fluids
through pipes, particularly in heat exchangers. The thermal boundary layer, which develops similarly
to the hydrodynamic boundary layer shown in Fig. 6-6, is significant in the heat transfer process.
Although heat transfer in laminar flow is not too common because the rate is lower than that
encountered in turbulent flow, it is sometimes desirable due to the lower pumping power required in
the laminar case.

For both laminar and turbulent flow, Newton's Law of Cooling is

gs = h(T,— T,) at any location, x (6.41)
Over a finite length of tube, the convective heat transfer is
Geanv = q= rhcp(Th.fr - Tfu} (6'42)

where T, is the enthalpy-average temperature of the fluid bulk,

R R
T, [ pe,u2mr dr = I pc,uT2ar dr
¥ ]

which, for an incompressible fluid having constant specific heat, reduces to

R
[ uTrdr
}

T, =2 (6.42a)

R
I urdr
)

In engineering practice, a simple approximate average value,

Th - Tb,lnlul ';Thxmllel

is used in the calculation of average heat transfer coefficients.
For internal flow in a tube, the differential conservation of energy expression for an ideal gas or
incompressible liquid is

(6.43)

d conv = mc dTh 6.44)
q P
and using this with Newton’s Law of Cooling yields

dT, gq;P P _

dx  mc,  ric, (T, = To) (6.45)

where for a circular tube, P = wD. There are two frequently encountered cases: (@) ¢ = constant and
(b) T, = constant as shown in Fig. 6-7(a) and 6-7(b). For either case the laminar thermal entry region
for fully developed laminar flow (velocity profile) is

x., = 0.05Rep PrD (6.46)

In practice we frequently encounter situation (b) where T, ;.. is known, and we cannot immediately
calculate T}, since T, ouue is unknown. To proceed we can guess a value of 7}, ,,uc 2nd then use (6.43)
to obtain a trial 7, for property evaluation to apply equations (6.41) through (6.45).

The exponential nature of Tj(x) in the case (b) dictates the use of a logarithmic temperature
expression, which will be explained in the applied solved problems with 7 constant. For uniform
(constant) heat flux, no logarithmic temperature is necessary since (T}, * T;) is constant.

In purely laminar flow the heat transfer mechanism is conduction, resulting in large heat transfer
coefficients for fluids with high thermal conductivities, such as liquid metals. Figure 6-8 shows the
variation of entrance region Nusselt numbers with axial distance along a tube in fully developed
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Entry Developed

region TEgION

(a) ®)

Fig. 6-7. Axial temperature representations for heat transfer inside a twbe. (a) Constant surface heat flux;
(b) constant surface temperature.

\
15
N \
\
(=1
12 N N \
] S
4 <
z
- N

10 A Nup,q, = const
i AN i
a h N1 TH 1l
s - Nug, T, = const
g i P
< N
[ h
5 \"‘-. \'-._
g s S 4.364
5 P — “q,__
E 7
g Nup, T, = const 366

0 3 x 107" 1wt ot 10" 03

Gz = (xID)/Rep Pr, lnverse Graelz number

Fig. 6-8. Local and average Nusselt numbers for circular tube thermal entrance regions in fully developed
laminar flow. [From J. P. Holman, Heat Transfer, 8th edn, ©1997, McGraw-Hill Book Company, New York, NY,
p- 294. Reproduced with permission of McGraw-Hill Companies.)

laminar flow. Three cases of boundary conditions are shown. Note that these conditions yield two local
and one average Nussell number curves. Also note that as the thermal profile becomes developed
(leaves the entry region) the asymptotic values of the Nusselt numbers are approached, viz, Nup for
q constant approaches 4.364 while that for constant 7, approaches 3.656.

Figure 6-8 introduces the inverse Graetz number, Gz~' = (x/D)/(Rep Pr) and the Peclet number,
Pe = Re, Pr.
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Constant Heat Flux, g,

Here the local value of ¢, is constant in the thermally developed region, so we have over the
thermally developed length L

q = Geonv = g5 (P-L) (6.47)
Combining this with eq. (6.42) we have
q= QI(P'L] = n'icp(Tb.{: - Tl‘u') (6"‘8)

which allows determination of the temperature change (7, — Tp,).
For constant g, the right side of (6.45) is constant, yielding

dT, gq/P _
= ey = constant (6.49)
Integrating over 0 to arbitrary x, there results
Tp(x) =T, +9-’:£r (g< = const.) 6.50
] by f'.;lcr. - q.t - ( - )

Convective correlations for constant g; in laminar flow are dependent upon whether or not the flow
is fully developed. These include

1. Fully developed velocity and thermal profiles

Nu,, = 4.364 (6.51)
2. Fully developed velocity profiles with developing (entrance region) thermal profiles

Use Fig. 6-8

All properties in these correlations are to be evaluated at 7, as given by eq. (6.43).

Constant Surface Temperature, T,
Defining AT as T, — T,, eq. (6.46) can be written
ar, _ _d(AT) P

dx dx me,

Separating variables and integrating with respect to x over the length 0 to L yields

AT, _ L
[H8D [
s, S Jy

hAT (6.52)

Thus

In22e — — hdx = (6.53)
m

AT, —-PL ([t 1 _PLH
AT,  rmgc, A L H

where h is the average value of the convective coefficient over the tube length, L. This can be
expressed as

AT, _ T, — Ty _ ~PL _
AT TCT exp( - E) (7, = const.) (6.54)

P
Integration of eq. (6.53) from 0 to x would yield an expression for T,(x), viz.

T, Ty(x) =cxp(_£

Ts - Th,t' n‘ﬂ:p h) (Ts B COHSL) (6.55)
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Combining (6.55) with (6.42) we obtain

Goornw = A AT, (T, = const.) (6.56)
where
AT, — AT,
AT =15 (AT,/AT) (6.57)

Convective correlations for the constant surface temperature laminar case also depend on whether or
not the flow is fully developed and include:

1. Fully developed velocity and thermal profiles
Nug, = 3.66 (6.58)

2. Developing thermal profile and developed velocity profile
— 0.0668 (D/L)RepPr

=3 ti 6.59
Nu, = 3.66 + T+ 004[(D/L) Rep P} (Hausen equation) (6.59)
Nu,, or Nu,, (From Fig. 6-8)

3. Combined entry lengths (Sieder-Tate equation)
— Re,Pr\'" [ p\""*
= 1.86 — 6.60
Nu, 3+(uo) H‘) (6.60)
T, = constant
048 <Pr<16700
0.0044 < (ﬁ) <9.75
M

All properties in these average Nu correlations, with the exception of the u,, are evaluated at 7, given
by eq. (6.43). The p, term is evaluated at 7. Local Nu expressions use properties at 7).

6.5 SUMMARY OF TEMPERATURES FOR PROPERTY EVALUATIONS
In general, the temperatures for property evaluations are:
® External isothermal flow
- properties at T, or 7.
® External flow with heat transfer
— properties at T, = (T. + T,)/2
® Internal isothermal flow
- properties at T,

® Internal flow with heat transfer
- properties at local 7), for local Nu

— properties at average T, = (T),; + T,,)/2 for average Nu approximation
Other specific temperatures for use in property evaluations are given in the text or solved

problems.
These guidelines for property evaluations are generally valid for Chapters 6, 7, and 8.
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Solved Problems

Determine the x-direction equation of motion for steady flow in a laminar boundary layer.
Assume p and p are constant.

For a fixed control volume and steady flow, Newton's second law, for the x-direction, states that the
resultant applied x-force equals the net rate of x-momentum transfer out of the volume, i.e.,

2 F,.= gl[(x-momentum efflux) — (x-momentum influx)] 03]
We apply this equation to an infinitesimal control volume (Ax by Ay by unit depth) from within the
boundary layer (see Fig. 6-9). Mass enters the left face at the rate pu, Ay, producing an x-momentum influx
of (pu, Ay)u,. Similarly, momentum

efflux through right face: (ptty s a By )ty s s
influx through bottom face: (pv, Ax)u,
efflux through top face: (7. 3 TTR

yl—‘
Uoia X
’ ’l Ty+ay A'xl

p, Ay Ay Paeac Ay
?1- —;‘:-ou
Ax
Dr‘ Ty Ax
Fig. 6-9

The acting pressurc and shear forces are as shown in the figure. Substituting in (I), for constant p,
P
Py = preacBy + 708,80 — 7,Ar = 8_ [(u)y e sy + (VU)y sy Bx] — gﬂl(“”)aay + (vu), Ax]
Rearranging, dividing by AxAy, and taking the limit as Ax and Ay approach zero, the result is
p a ) d
_RL T E [f—{uu}+—(vu)]
ax dy g [dx ay
But
a a au au au  av
— () + —(vu) =nu—+v—+ (-—-+ -)u
ax ay ax ay ax ay

and the term in the parentheses vanishes, by the continuity equation. Moreover, 7 = p,du/dy; therefore,
pf au  du a Fu
—(u—+v—-)=—'£'+p.]"'—2 2)
& ax dy ax ay

since gy is constant, Assuming that p = p(x) in agreement with Prandtl’s boundary layer assumptions, and
recalling that v = p,./p = g u,/p, we see that (2) is equivalent to (6.1).

By use of an order-of-magnitude analysis find a functional relationship for the boundary layer
thickness 8, assuming constant fluid properties and zero pressure gradient.
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6.4.

The governing equations are:

tinuit du + v
continuity: —_—t+t—=
y ax ay
auw ou  du
Xx-momentum: u—tv—=v—y

Except very close to the surface, the velocity u within the boundary layer is of the order of the free-stream
velocity V.., i.e., u~ V... And the y-dimension within the boundary layer is of the order of the boundary
layer thickness, y ~ 8. We can then approximate the continuity equation as
Ve
X
giving
Vb

U ———

X

Using the estimates of &, y, and v in the x-momentum equation gives

Vo Va8V. Ve X
S et S

Dividing by x? to make dimensionless,

5 [» _ [1
X Vax Re,
which is (6.4).

Air at 350 K and standard atmospheric pressure (v = 20.76 X 10™* m?s) flows along a smooth
flat plate at 12 m/s. For laminar flow, at what length from the leading edge does the boundary

layer thickness reach 0.5 cm?

For laminar flow (6.10) can be solved for x:

&V (0.5 %1072 m)(12 mis)
250y 25(20.76 X 10~* m%s)

x=578x10"m

X =

A Pitot tube, located on the undercarriage of an airship 0.1 m aft of its leading edge, is to be
used to monitor airspeed which varies from 32 to 130kmh (kilometers per hour). The
undercarriage is approximately flat, making the pressure gradient negligible. Air temperature
is 4°C and the pressure is 24.8inHg. To be outside of the boundary layer, at what distance
should the Pitot tube be located from the undercarriage?
From Table B-4 (SI), the dynamic viscosity and density for air at standard atmospheric pressure and

277K are

p = 17553 X 10 3 kg/m-s

p = 1.2856 kg/m’

The ideal gas law is
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and forming the ratio
p _PIRT _p
p PJ/RT py

Since p, is standard atmospheric pressurc (101325N/m’) and p is 24.8 inHg = (8.398 X 10° N/m?) we
obtain

8.398 X 10° N/m?
= L Mo | = 1.065 kg/m?®
p = 12856 kg/m ( 101 325 N/im? ) g/m
The kinematic viscosity is
. (O :
p=E- 17553 %10 " kgm s = 1.647 X107  m?¥s

p 1.065 kg/m’

Assuming the flow is laminar, which must be checked, the boundary layer thickness at a given location
varies inversely with the square root of Reynolds number, see (6.10). The critical case occurs, therefore,
at the minimum speed.

E:‘.f (130 km/h)(10° m/km)(0.1 m)

= = 219254 = 219000

Re = = = (1647 % 10 m¥s)(3600 s/h)

and the flow is laminar.

Thus,
32x10°x0.1
= = 53970 = 54 000
Re 1.647 x 10 *(3600)
Therefore
8. - 5.0x 5.0(0.1 m) —2152% 10 m

VRe., V53970

The Pitot tube must be located at some distance greater than this, which is easy to do since the
boundary layer is so thin at this point.

Approximate the skin friction drag on a 1 m long by 60 cm diameter cylinder, located axially in
a wind tunnel, when the air speed is 4.5 m/s. The pressure is atmospheric and the temperature
is 50 °C.

From Appendix Fig. B-2, v = 1.9 10~ m?/s. Since the cylinder is located axially, the characteristic
length for the calculation of Reynolds number is the length of the cylinder rather than its diameter;
therefore,

VoL  (45m/s)(1m)
v 1.9X107° m¥s

Note that from the Table B-4 (SI), v = 18.02 X 107* m%s which is very close to the value from Fig. B-2. The
flow is laminar, and the average skin friction coefficient, from (6./3), is

Re, = 236 000

1328 1.328
C, = - = 2728 % 10
" \VRe, V236000

The skin-friction drag force, F;, is given by the product of average shear stress and total area, i.e.,
2
6= a
2
where p. = 1.0949 kg/m” from Table B-4 (SI). Hence

_ 2.728 % 107* ( 1.0949 kg) (4.5 m

F‘l 2 3

)z(w)(()‘ﬁ m)(1.0 m)

m -]

e fel
= 5700 10 2 KIS
m

= 5700 x 107*N
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Conversely, we may express the friction force equation using g, = | (kg-m)/(N-s?) as

p- Vi 2728 x 107 £1.0949kg\/4.5m)?
= ()4 s |
2g. 2 (kg-m/N-s%) m 5
X (m)(0.6 m)(1.0 m)
=570%x 102N

Note that this is a very small skin-friction force duc to the small Reynolds number and velocity.

6.6. A thermal sensor is to be located 2m from the leading edge of a flat plate along which 10°C
glycerine flows at 19m/s. The pressure is atmospheric. In order to calibrate the sensor
the velocity components, u and v, must be known. At y = 4.5cm determine the velocity

compaornents.
From Appendix Fig. B-2, v = 2.79 X 107" m?s. The Reynolds number is

Vox  (19mfs)(2m)
= — = 1
R, = = 220% 10 s~ 2%
and the flow is laminar. But is the sensor within the boundary layer? From (6.70), at x = 2m,

s_ 50 _ 52m)
VRe, V13620

so that the sensor is within the boundary layer.
The velocity components are obtained from the Blasius solution (Fig. 6-2). At

V. 19 mfs
=y 2= = - 263
M=\ T 005 m) \/ (279 % 10 * m¥s)(2 m)

=857ecm>45¢m

we have

L ZV/Re, ~
o= 0775 D-VRe, ~048

giving
u = (0.775) V. = (0.775)(19 m/s) = 14.73 mfs

p ~ (048) Vo (048)(19)
VRe, V13620

= 0.078 m/s

6.7. Derive (6.14) for steady, incompressible, laminar flow over a flat plate.

Consider the dashed control volume in Fig. 6-10, which is infinitesimal in the x-direction but finite in
the y-direction. The forces acting on the volume are shown (there is no shear at the upper face, which is
outside the boundary layer), as well as the mass fluxes through the faces, Notice that the mass efflux
through the upper face exactly cancels the net mass influx through the other two faces; this is required by
the equation of continuity. The corresponding x-momentum fluxes are:

h
influx through left face: J: putdy

x

[
efflux through right face: J puldyl
| x4 AT

h h
efflux through upper face: Ve [J pudy' - J pudyl ]
) x ) Frax
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h h
IpudyL—I pudyly.as
/ , ,

Fig. 6-10

where, in the last expression, V., is evaluated at some point between x and x + Ax. Newton’s law, (1) of

Problem (6.1), then gives
h h
*[mdyl ]—Jm‘dy I
x x+Ax ) x

Rearranging, dividing by Ax, and taking the limit as Ax approaches zero, we get (p = constant):

1 h h
p.h-p,mh-nﬂx=§-u pu*dy +Vm” pudy
€ |

x+ax

dp p d (* d (" }
— =—{-— +V,—
hdx‘r-r, &{ dxludy de udy 1)
But, outside the boundary layer, Bernoulli’s equation gives
dp p ., dV.
— IS — Vm —
dx g = dx @)
Also,
d [* d " dv,, [*
V,.— =— | Voudy—— d
dx[ udy dxl ud i [ udy 3
Substituting (2) and (3) into (I} and recombining terms, we get
Ve
,__- J; (V. —u)udy + -‘lﬁ—-[ (Voo — u)dy )

The upper limit of integration in (¢) may be replaced by 8, yielding (6./4), since V.. — « is zero outside the
boundary layer.

Assuming a velocity profile of the form

u 3
V-ﬂ=c+c.”+g(”) +C,(§)

within the boundary layer, evaluate the constants subject to the boundary conditions (6.16).
Since u=0fory =0, C =0. Applying u = V. when y = 8 gives
1=C|+C2+C3 (j)

Differentiating the assumed profile (V.. and § are functions of x alone),

Lu_6 260,360
Voay s+5(a+aa @
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6.9.

But aul/dy = (0 when y = §; therefore,
0=C, +2C,+ 3G
A second differentiation of the velocity profile gives

1 Pu 2C2+%(£)
Voay: & & \8

from which (at y = 0, #ufdy® = 0) we get

0= C}_
Solving (7}, (3), and (5) simultaneously, the resulting constants are:
3 1
Cl = E 'C3 - E

giving the cubic velocity profile cited in Fig. 6-3 and Table 6-1, viz.

163

(&)

4)

%)

Using the cubic velocity profile from Problem 6.8 in the von Karmén integral cquation (6.15),
determine the boundary layer thickness and the average skin-friction coefficient for laminar

flow over a flat plate.
From (2) of Problem 6.8,

1 du
V. dy

¢ 3

)'—II_' 8 *ﬁ

where now, by hypothesis, V.. is constant. Equation (6 15) becomes
3 3 y 1 y a
2V 5 dx] [ 25 2 )][55 E(E)]d”

3 _ 39 ab
2V.6 280 dx

which integrates to give

()

which is a first-order differential equation for 8. Separating the variables and integrating (8 = 0 at

x =0),

140v
A J J. 5dd

and this gives

& 28013 5 464
< Vexiv O X7 VRe,

as shown in Table 6-1.
From the definition of local skin-friction coefficient, (6.11),

= —
= ——

pVi2g,
and Newton's law of viscosity,

o
! p'fay y=0

163
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we get, using (1),
3v 3
V.d  (Re)(8/x)

G =

Substituting for 8/x from (2). we get

0.646
G = 3
' Ve, @
from which the average value may be determined as
1" 1.292
C=—1 ¢dx= 4
"L J:n ! VRe,, )

Air at 20°C and onc atmosphere flows parallel to a flat plate at a velocity of 3.5 m/s. Compare
the boundary layer thickness and the local skin-friction coefficient at x = 1 m from the exact
Blasius solution and from the approximate von Kdrméan integral technique assuming the cubic
velocity profile.

From Appendix Fig. B-2, v = 1.5 X 10™* m¥s and the Reynolds number is

Vox _ (3.5 mis)(1 m)

Rec = = =15%10 " ms

= 233300

Therefore, from the exact solution, (6.10') and (6.12):

5. BOx (5.0 m)
VRe, V233300

664 0.664
_ o686 a7xi0

" VRe, V233300

=0.01035m = 1.035cm

("o

From the approximate solution, (2) and (3) of Problem 6.9:

(4.64)x 0.646 .
§=—=—=0961cm ;= =134 x 10
VRe, " VRe,

We note that the approximate solution deviales from the exact solution by 7.2% for the boundary
layer thickness and 2.9% for the local skin-friction coefficient, deviations which are quite acceptable for
the usual engineering accuracy.

What is the drag per unit width on one side of the plate of Problem 6.10 for a 1 m length
beginning at the leading edge?

The drag force Fj is given by

P Vi)
F=Cl——|A
! F( zg‘ (I)
From Table B-4 (S1), p. = 1.210kg/m*, and in SI units
kg-m
, = 100 ——
5 N-s?

The average coefficient of friction {Blasius solution) is given by (6.13):

oo 1328 138

- - =275 107
" VRe, V233300
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6.12.

6.13.

where the Reynolds number based on L = 1 is the same as that based on x = 1. Therefore,

(1.210 kg/m?)(3.5 mJs)?
2(1 kg-m/N-s%)

F, = (275 % 107%) (1 m) = 0.020 38 N/m

Assuming constant fluid properties (k,¢,, u), determine the energy equation for a steady,
incompressible laminar boundary layer by making an energy balance on a small control volume
from within the boundary layer. Neglect conduction in the flow direction.

Choosing an element, Ax by Ay by unit depth, from the boundary layer of Fig. 6-4, the respective
energy terms are shown in the enlarged view of Fig. 6-11. The convective terms g, may be written in terms
of the specific heat, assumed constant, i.e.,

way Bx
qn = me(T = Toep) Boly-sr
. . . . . Ax Qulyray Ax
where m = pu in the x-direction and r1 = pv in the UysayTyssy '
y-direction. The conductive terms are, from Fourier's X
law,
aT qnl: By Gnlxear by
gy = —k -é— — -
y ay
The remaining terms, designated urAx, account for the Ax
heat generated by fluid friction—a work rate in which TAx Med Uy T, Ox
is the force and u is the velocity at which the shear occuss. I |, Ax
This term arises because fluid on the top face of the Ul
control volume moves faster than fluid on the bottom qul, Ax
face.
Fig. 6-11

Equating the rate of energy entering the control
volume to the rate of energy leaving, we get

Gn |xa)' + qh{ym g, Iyﬁx + Uy aayTyen X = thnhﬂy + qﬂ‘y*ﬁym + ql:lyvap'm + 1, T, Ax

Rearranging, dividing by AxAy, and taking the limit as Ax and Ay approach zero, the equation
simplifies to

%4—%-& iqh-:-_— ___B(H‘r)
ax ay dy ay

or, in terms of measurable parameters, where 7= Ml dy,
d a d a a au
—(puc, T) + —(pve, T) +—| ~k —| =— —
e 1)+ S, )+ 2 k) = 2 o ay)
Further simplification yields
aT aT a
pcp[(u—+ v—) + T(£+i?-)] = kﬁgi-i(up.fﬂ)
ax ay ax  ay ays  ay ay

where the term multiplying T is zero from continuity and the last term is negligible except in high-speed
flows; therefore,

where a = kipc,. This is (6.18).

How do the thermal and hydrodynamic boundary layer thicknesses from the Pohlhausen and
Blasius results compare?
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From Fig. 6-2,

N
VI _gam
a7 n=0
But this can be approximated as
AulV-) =1=onz 1)
31} w=I 8
From (6.24),
de
-— = 0.332Pr'"?
dn | =g

which can be approximated as

de 6.~ 6, 1 T.—- T,

=

1
iy & T-T, & &
Combining (1) and (2), we get

= 0.332Pr'? @)

| b ==

6.14. By making an energy balance on the finite control volume shown in Fig. 6-12, find an expression
for the heat conducted into the laminar, incompressible boundary layer at the surface of a flat
plate, assuming p, ¢, and k are constant.

Vo ! ! '
h | i 1-
1 | 8
qx 1 — ™ Gxeax §,
— o)
y ' a '
] ]
x L -l Jpp——|
y
b x — Y,
Fig. 6-12

Mass enters the left face of the control volume, of unit depth, at the rate

h
I pudy
o

carrying with it (convecting) energy (enthalpy)

X

m=[m%ﬂ@'
0 x

Similarly, at x + Ax the enthalpy flux is

n
Feran = I pu(c,,T}dy
0

X +4x
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The mass leaving the top face of the volume is, by continuity,

h h
qudy *j pudy
0 x "

and the temperature is constant at T, since this face is outside the thermal boundary layer. Hence, the

x+Ax

energy flux is

h L]

q,,=c,,ﬁl[ pudy -J pudy ]

o x o x+4x

Energy is conducted into the lower face of the control volume at the rate
aT
y=—k—| Ax
B ay y=0

Balancing these individual energy terms for the element, we get

gt g = Gx+ax + s

h aT h h L
pcpj uTdy | —k— ax=pcpf uTdy +pcpT¢[J- udy —f udy ]
0 x U y=0 o vy o x o x+Ax
Transposing the first term to the right-hand side, dividing by —pc, Ax, and letting Ax — 0, we obtain
(6.29):
aT d " d [*
a— = — quy*FTa'—j ud

ay y=0 dx (1] dx (i} g

d A d 8
=E[J‘; (T.,—T)udy] =E[L (T,,—T)udy]

since 7,,— T =0 for y > §,.

6.15. Using cubic velocity and temperature distributions in the integral boundary layer energy
equation, (6.29), determine the convective heat transfer coefficient for laminar flow over a flat
plate that has an unheated starting length x;.

The cubic velocity profile was obtained in Problem 6.8. Since the boundary conditions on

T-T,
b= 2
T.—- T,

[see (6.19)] have the same form as those on /V,, the cubic temperature distribution is simply

ﬂxéz_l(zr O

and (6.29) becomes

aT
ol
ay

(T — 4, 3y
=(T- T,)V,de; [1 35t

y=(}

Multiplying and simplifying, we get

oT d[5[3 9 1 3 3 1
= = (T-T)Vee| | =y ==y - —
vl B ) de; [25” Il 25”“(455&"“45’3,)”‘ 45353)’6]“"’
d[38 38 18 38 & 18
= (To-Tyv. L |25 35 15 S(a ) 1%
( ) dx[48 a%s sa”’zo(s*sﬁ) B
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Differentiating (/) to get the temperature gradient for the left side of the equation, and letting = §/8§,
the result simplifies to

3a . 4 .E‘.z_ﬁ_a)]
2;5""“@['5(20; 780 ° 2

From Problem 6.13, 8, = 8Pr'”. Since Pr is close to unity for most gases and quite large for most viscous
fluids (except for liquid metals), { = I, and {* < % hence, we may neglect the {*-term, yielding

10a d dai dé
Bo v, Lo =v,( sty 2—)
o A GO TV Oy
or
10«
de =208 dL + [*8d8 3)
From Problem 6.9, the hydrodynamic solution,
32= ggg.fi
13 V.
Using this and 8d8 = (140/13)(v/V..)dx in (3) yields
a 28 wx 14 »
—dx =20 = —dl+ = —dx
Ve % 13 V. ¢ ;13 V.
which simplifies to
dl 13 a
3 + 2.0 _ =
AR s Vi

This equation can be expressed as an ordinary differential equation in {*

axdrr ., 13
—_—_— =
3 T @
with boundary condition
3
at x = x;: §3=(%) =0 (&)
The general solution of (4) is
13
i - -4 Pl -1
I's Cx + MPI
and (5) gives
14 Pr
Therefore,
_ 8§ 0976 x, M
(-8 (3

The local heat-transfer coefficient A, is defined by

@ = (T~ T) = k2
ay

y=0
or

k 3 3k
he=~———— (T~ T,) =—
N (7, - T.) 23,( ) 25,
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Substituting the expression (6) for &, and (2) of Problem 6.9 for 8, the local heat transfer coefficient is

Ik I x 34 -3 Pl.lﬂ ReI.'Z
h I = - %

2 x ! ( X ) l (0.976)(4.46)
which, upon multiplying both sides by x/k, gives (6.30):

34 7-13
Nu, =h—;{i = (0.332)Re}”h"’|1 - (?) ]

6.16. Castor oil at 38°C flows over a wide, 6 m long, heated plate at 0.06 m/s. For a surface
temperature of 93 °C, determine: (a) the hydrodynamic boundary layer thickness & at the end
of the plate, (b) the total drag on the surface per unit width, (c) the thermal boundary layer
thickness §, at the end of the plate, (d) the local heat transfer coefficient A, at the end of the
plate, and (e) the total heat flux from the surface per unit width. Assume the thermal diffusivity
a to be 7.22x10*m?%s and the thermal conductivity to be 0.213W/m-K at the film

temperature.

For moderate temperature differences between the free stream and surface, good results are obtained
by assuming constant fluid properties evaluated at film temperature T; therefore,

T4

=655°C
2

I,

At the end of the plate the Reynolds number is

_ Vel _ (0.06 m/s)(6.0 m)

s 60x10 S mys - o000

Re,

where the kinematic viscosity is taken from Appendix B, Fig. B-2. The flow is laminar throughout. Using
the dynamic viscosity from Appendix B, Fig. B-1 at the film temperature, the density is
6.0 %X 1072 kg/m's

M
= — = = 1 3
P T Te0X 10 w000 kg/m

Note that the round numbers such as 6000, 1000, are merely a circumstance of the author’s reading of
property values in Figs. B-1 and B-2.

(a) From (6.10),
SOL _ 5.0(6.0m) _

§= —==——=0387Tm
VRe, V6000
(b) The average skin-friction coefficient is given by (6.13):
1.328 1.328
C = = = 0.017 14
" VRe, Vo000

and the drag F; is given by

2 2 3 2
F =AY 0017 14('5 m ) (1000 kg/m)(0.06 mis}
2 m 2
k >
=0.185 g’: S = 0.185N/m

(c) To get the thermal boundary layer thickness the Prandtl number is needed: it is

v 60X10" % m¥s
Pr=—=— _ " - . 2
a 7.22x10"*m¥s 83110
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From Problem 6.13, the & and 3, relationship is

8 0.387 m
= -P-Fa- = WU.O‘" m

and we see that the thermal boundary layer thickness is an order of magnitude less than the
hydrodynamic boundary layer thickness.

(d) The local heat transfer coefficient at x = L is given by (6.25) as

— Ve i3
h, = (0332)k I:.-L Pr

= 0.332(0.213 W/m-K)

0.06 m/s

8.31 x 10%)!A
(6 X 107> m%s) 6m (83 )

= 858 Wm?-K

(e) From (6.27) we can get the average heat transfer coefficient required in evaluating the total heat
flux, ie.,

h =2h, = 2(8.58) = 17.16 Wim*- K
The total heat transfer is then given by
q; = EA;(Tr - Tﬂ)

) (E5) 3 -390)

m

= (17.I6

= 5665 W/m

6.17. Find the velocity distribution for fully developed, steady, laminar flow in a tube by considering
the force equilibrium of a cylindrical element of fluid.

- T
e — ===
r ]
= | _
Py 1P
] ]
bLo=—=—=—===——==—== o |
il T
WW
L 1
Fig. 6-13

Taking the element shown in Fig. 6-13, the forces are (1) shear on the cylindrical surface and (2)
normal forces due to pressure on the ends. There is no change in momentum since the velocity is the same
at stations 1 and 2. Therefore, a force balance gives

(7 —p) wr’ = v(2nrl)
But

_ e
dr

T=
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6.18.

6.19.

50
f’_ﬁ _phhTp
dr Zp.fL

(]
PP
= - d
J;d 2#J'L,[rr

Y Sl e 7
Ly

Separating variables and integrating,

which is equivalent to (6.32) with

dp _ _pr—p2
dx L

What is the pressure drop in an 18 m length of smooth 1.0 cm i.d. tubing when 25 °C benzene
flows at an average velocity of 0.12 m/s?

Assume fully developed flow. The Reynolds number is

_ (012 m/s)(0.01 m)

4
v 7x 107" m¥s =17

Ren =

where the kinematic viscosity is from Appendix Fig. B-2. Since Rep <2000, (6.37) gives the friction
factor as

f——%=ﬁ-6:z' 3.73x 107 = 0.0373
and the pressure drop is given by (6.35),
_ LoV
D 2
where p = p/v. From Fig. B-1, u = 6 X 10~ kg/m-s, so
- X1 Tk _ g oy 102 kgm?

7 %1077 m¥fs

and

18m | /8.57 X 10°k
Ap = (0.0373) ( o ]':'n)( = g)( )(0 12 mis)?

= 4.14 X 10 kg/m-s? = 414 Pa

Note: We could write the Ap expression to include g, ie.,

414 kg/m-s?
lkg-m!N-s"’

= 414 N;r'rn2

What volumetric flow rate of 50 °C water can be developed in 20 m of smooth 2 cm i.d. tubing
by a pump having a total head capacity of 0.60 N/m??

Assuming laminar flow, the Hagen—Poiseuille equation, (6.39), holds. Using the data of Table B-3 (SI),
the dynamic viscosity is

1w = pv = [(61.80)(16.018)][(6.11 X 10%)(0.0929)] = 0.000 56 kg/m-s
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or u, = 0.000 56 N-s/m*. Hence,

m (0.01 m)*

= 8(0.00056 N-sfm*) 20m (0.60 N/m?) = 42 % 10 “m¥s

Q

or

, .
Q= (4.2>< 10 *1)( lmi"“)( “) = 15.1 liter/h
s m h

To check the assumption of laminar flow, the mean velocity is required.
Q 42x10%mYs
V=="=—"——==00/34m/)
A (m4)002m) s
and the kinematic viscosity is v = 5.7 X 10" 7 m%s, from Table B-3 (SI), giving a Reynolds number of
VD (0.0134 m/s)(0.02m)

=470
57x10 7" m¥s

Re,, =

Since Re,, <2000, the assumption of laminar flow was valid.

What is the pressure drop in 100 fect of 1/2in by 1 in rectangular duct when 125 °F water flows
at 0.2 fps?

Assuming the duct flows full, the hydraulic diameter is

_ 44 _ 405 in)(1in)

P 3in = {.667 in

D,

The Reynolds number is

_ VD, (021Us)(0.667/121t)

R - ~ 1853
€= 6 % 10" f1¥s

where the kinematic viscosity is taken from Appendix Fig. B-2; the flow is laminar. Hence, the Darcy-
Weisbach equation, (6.35), is valid when the friction factor is taken from Table 6-3 at the ratio 0.50, i.e.,

62.19

-Re = 62.1 =——=0.0335
f-Re = 62.19 oo f 1853 356
Therefore,
L sz 100 (62.4 Ib /it (0.2 fus)?
Ap = f— S— = (0.033 56 =2.340
P = 1D g ¢ ) 066712 2322 Ib,,-fUlb;. 53) psf

Derive an expression for Nusselt number for fully developed laminar flow in a tube with
constant heat flux.

Neglecting axial conduction, Fig. 6-14 shows the radial conduction and the axial enthalpy transport
in an annular control element of length Ax and thickness Ar. An energy balance on the annular
element gives
ar

ar

Ax + 2mr&rpc,ub), .z,

r+ Ar

aT
~2mrk '? AX + (27rAr pe,t0), = —2m(r + Ar)k
¢ r

where 8 = T — T, Rearranging, dividing by 27 AxAr, and taking the limit as Ar and Ax approach zero,
we obtain the governing energy equation

K HT) _wraT

dar (r ar) ¢ ax )

for constant fluid properties and a = k/pc,.
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v . 1t _ aT}
v, R 2n(r +Ank 51, .o B
WAAIAIIY,
/ . / Jw
I ) i T,
- \\ [2r Arpeu(T- Tl B | Alr e
A ; A,
D ——— 2k T : !
D . ‘_Vn )_ 2nrk arl, Ax : N i
7 i i
7 : :

[2vr e pe (T~ T D)0,

]
YL T 7o a T T S i s b7 b Ao b Ao 7 7o /o7 ////////////7/7////////1/// /VA’/////////// 7

g;  constan

Ax

Fig. 6-14. Fully Developed Laminar Flow in a Tube with Constant Heat Flux

In order to solve the energy equation, an expression for the local velocity u is needed. This is
furnished by combining (6.32) with the expression for V,, giving

rI

— T — — 2
V(I 1 RZ ( )
where V), is the centerline velocity. We then have
o ( aT\ 14T r
ar ( ar) a ax PG (1 F)r G

For a fully developed thermal field and constant heat flux, @7/2x is constant. Thus (3) integrates to give

aT 1arT 7o

o aax (2 4R?) G @
1aT r

T=-""vy, =
o ox V°(4 16R?)+C""’+C2 ©)

The boundary conditions are
at r=10: T is finite
aT
at r= R: —k-ér—=q,”= constant
r

The first boundary condition requires C, = 0, whence C; = T, the centerline temperature. The second
boundary condition could be used to determine T, as a function of x (see Problem 6.31), but an explicit
expression is not needed here. Therefore,

(6)

The bulk temperature T,,, which is needed in order to get the heat transfer coefficient, may be
obtained using (6.46):

K rz V(; al f“
J’ Vu(l —-—Rz)[fﬂ e (—4 - IﬁRz)]rdr ,
T, = n _ 7 V"R aT
H = = T‘_+-___ (7)

R 7 9% a ax
f V‘.(l—j)rdr
4] R
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The heat transfer coefficient may be determined from the fundamental convection and conductance
equations,

aT kK aT
q—hA(Ts—T,,)—kA-E; . or h—T'_n; . (8)
Making use of (6) and (7), the heat transfer coefficient is given by
k VyR aT
- T Mk @k
(T‘ +_3_ VyR? E) B (T‘ +l Vo R? ﬂ‘) 11R 11D
16 o« ax 96 o ax
or, in terms of Nusselt number,
hD
N“.l'} = T = 4364

which is the asymptotic value cited in (6.51).

Compare the hydrodynamic and thermal entry lengths of mercury (liquid metal) and a light
oil flowing at 3.0mm/s in a 250mm diameter smooth tube at a bulk temperature of
75°C. The pertinent parameters of the fluids at that temperature are: my, = 1.0 X 10 7 m?%s,
Von = 6.5 X 107% mZs; Pryy, = 0.019, Pr, = 85.

The Reynolds numbers based on the tube diameter are:

VD _ (0X10 ' m/s)250x 107 m)

= 50
e = 10X 107 mfs

VD (3.0X107mfs)(250 X 10 m)
Rew = oa ™ 6.5% 10 “m%s -3

The hydrodynamic entry lengths are given by (6.37) as

Xe, = (0.05)(750)(25.0 mm) = 937.5 mm
X, = (0.05)(11.53)(25.0 mm) = 144 mm

For the thermal entry lengths, (6.46) gives, assuming fully developed flow at start of heating,

Xea, = (0.05)(750)(0.019)(25.0 mm) = 17.8 mm
Xo., = (0.05)(11.53)(85)(25.0 mm) = 1225 mm

The short thermal entry of mercury compared to the hydrodynamic entry gives rise to the assumption

often made in solving liquid metal problems—that the flow is uniform across the tube when solving the
temperature inlet problem.

For heating water from 20 °C to 60 °C an electrically heated tube resulting in a constant heat flux
of 10kW/m? is proposed. The mass flow rate is to be such that Re, = 2000, and consequently
the flow must remain laminar. The tube inside diameter is 25 mm. The flow is fully developed
(velocity profile). Determine (a) the length of tube required and (b) if this proposed heating
system is feasible with regard to wall temperature.

From Table B-3 (SI), at

= (20+ 60)

= 2 C=40°C

h T
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we obtain

p=994.6 l-:g)'m3 ¢, = 4.1784 kl/kg-K
Pr =434 k = 0.628 W/m-K
y=0.658 X 10" m¥s

(a) The required tube length is obtained by an energy balance, i.e.,

Goow = ’ﬁcp(Tb.u - Tb.f) = q:{As) (l)
To determine 71 we need V. Since Rep = 2000,
Dv 2000 v 2000(0.658 X 10~° m%/s)
— = 2000 = = = 0.0526 m/
v - V=3 0.025m 00526 mis

and
. wD? 9946 kg w
me, = pV (-4—) (c;) = (——ms-")(U.US% m/s) (:)
% (0.025 m)? (4178 J/kg-K) (i)
= 1073 W/K
Rearranging expression () we have
- " _ . - ff&(Th.a —Ts)

A, = wDLgi = e (Th o — Tha)i L wDq;

Inserting numerical values with mc, from expression (ii) yields

_ (107.3 WIK)(60 °C - 20°C)

= = 5.46
(0025 m)(10 000 W/in?) m

L

(b) Is this flow feasible? Is the wall temperature realistic?
With the flow developed, we check the length of the thermal entry section, viz., eq.
(6.46) gives

x., = 0.05 Re, Pr D = 0.05(2000)(4.34)(0.025 m)
=10.85m

and clearly this is a case of constant g;; developed velocity and developing thermal profile. The
Nusselt number may be obtained with Fig. 6-8. The inverse Graetz number at the exit is

546 m
0.025m

= 00252 = 2.52 %1072

Gz' = (x/D)/Rep-Pr = ( )1(2000)(4.34)

and from Fig. 6-8
Nu =50

where this is the local value at the tube exit where the wall temperature will be maximum. Hence,

k 0.628 Wim-K
h=—Nup = [ ——— | (5.0) = 125.6 W/m®-
D P ( 0.025m )(5 ) = 125.6 Wim™-K
Then with known g7, T},,, and h, the exit plane surface temperature is
" _ . _ 4
q: - h( Ts Th,ﬂ)v 5 T"‘ Tﬂ.u
10kwW 1
I, = +60°
m? (125.6 Wim’-l() 60°C

7,=1396°C=412K
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which requires a pressurized water heater at approximately 3 atmospheres. This low pressure should
be satisfactory. If necessary, the wall heat flux could be reduced thereby lengthening the tube,
increasing the Graetz "' number, and lowering Nuy, and h very slightly. The 7, is more affected by the
q. than the h, su, for example. a 50% reduction in g, would lower 7, by approximately 35 °C.

6.24. For a fully developed velocity profile, approximate the length of 0.101n i.d. tube required to
raise the bulk temperature of benzene from 60°F to 100°F. The tube wall temperature is
constant at 150 °F, and the average velocity is 1.6 fps.

At an average bulk temperature of
F o= T,+T, 60+100

» 3 7~ 80°F
the fiuid properties are
p = 54.61b,/ft’ k =0.092Bwh-ft-°F ¢, = 0.42 Bu/lb,,-°F
o = 3.96 X 107% b /ft-s Pr=65
The Reynolds number is
Re, = VDp (16 ft/s)[(0.10/12) t](54.6 Ib,/ft’) - 1838

Mo 3.96 X 10 *Ib,/ft-s

which is laminar.
The average Nusselt number is given by (6.59)

(0.0668)[(D/L) Re,, Pr]

Nu,, = 3.66 +
U = 366 F T G08)|(DIL) Rey, Pr|

Equating Nu,, to AD/k,

AO10N2) ] o (O0668)|(0.1012L)(1838)(6.5)]
0.092 Btwh-ftF 1+ (0.04)[(0.10/12L)(1838)(6.5)]

we have an equation in two unknowns, A and L, which can be simplified to give

(73.42/L)

h = 40406 + = (0.04)[99.56/L [ )

where the units for i are Btu/h-ft’-°F when L has units of ft. Another equation must now be found.
Making an energy balance on the fluid, we get

q = e, AT, = heDL(T, - T,)
or

pV(wD*4)c, AT, _ PVDc, AT,
TJ'DL(T, - T},) 4L(T, - T},)
_ (54.6 Ib,/f°)(1.6 Us)[(010/12) t](0.42 Btu/lb,,- “F)(40°F) (3600 s
4L[(150 — 80) °F] h )

i =

157.25 o
———L-——Btu!h-n- F (2)
Eliminating / between () and (2), we get

157.25 (73.4211)
2 = 40,406 +
L 0406 + 15 0a[9 6/ LI

which can be readily solved by trial and error to give L = 2.64 ft.
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Before leaving this problem, it is instructive to note the influence of the viscosity variation. At the
surface temperature 7, = 150 °F, the viscosity is p, = 2.60 X 107* Ib,/ft-s; therefore,

( m )ﬂ 14 N (3-%x 10—4)“.]4 _ 1 061
w!  \260x10°¢)

Multiplying the second term of (6.59) by this factor and solving simultaneously with the energy balance
equation, the resulting length is 2.57 ft, 2.7% less than that given by ignoring the viscosity correction.
It is also interesting to note that the asymptotic solution (6.58),
hD _
- =366 or  h=40.406 Bi/h: ft>-°F
coupled with the energy balance equation (2) gives L = 3.89 ft. It should be pointed out, however, that
this result neglects axial conduction, buoyancy effects and the influence of viscosity variations.
The best answer, therefore, is 2.57 ft.

6.25. Air at 1.0 atmosphere pressure and 77 °C enters a 5.0 mm i.d. tube with a bulk average velocity
of 2.5 m/s. The velocity profile is developed and the thermal profile is “developing.” The tube
length is 1.0 m, and a constant (uniform) heat flux is imposed by the tube surface on the air over
the entire length. An exit air bulk average temperature, 7, = 127°C, is required. Determine
(a) the exit h value, h,, (b) the uniform g, and (c) the exit tube surface temperature.

We will need air properties at the bulk average remperature inside the tube,
Do+ T, _ (77 +127)

=102°C=375K
2 2 02
From Table B-4 (SI) we obtain
p = 0.9403 kg/m* ¢p = 1.0115 kJ/kg-K
p=2.1805 % 10 °kg/m-s v=2333%10""m%s
k = 0.031 84 Wim-K Pr = 0.693

The Reynolds number is

Re,, = 9__1’ _ (0.005 m)(2.5 m/s)
1

2333% 10 m¥s 336

and the flow is laminar. The thermal entry length is by eq. (6.46)
(x../D) = 0.05Re,(Pr) = 26.8(0.693) = 18.6

The L/D for this tube is (1.0/0.005) which is 200. A reasonable approach is to consider the flow, both
velocity and temperature, to be fully developed over its entire tube length, since only about 10% is
experiencing entry effects. For fully developed flow, constant g.', the Nusselt number is 4.364, so

N“" = % = 4‘3‘6‘4

k(003184 Wim K)
h = 4364 D= 4.364 0005 m
=27.79 Wim?-K = h; = h = constant ans. (a)

Use an overall energy balance
Qeorw = q:(‘qs) = me(pr - TP-J)
where:

A, = 7DL = 7(0.005 m)(1 m) = 1.57 X 10" ? m?
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6.26.

FORCED CONVECTION: LAMINAR FLOW [CHAP. 6

and
m=pA V= (%) (-’-') (0.005 m)*(2.5 m/s)
m 4
= 4.615 % 107* kg/s
Thus,
Geonv = q:(.As} = 'ﬁcp(Tl‘r,u - Tb.i)
1011.5)
= 47(1.57 %107 m?) = (4615 m*kgfﬁ’( kg K )(m -77)°C
148.7)
;= ——— = 148.7 W/m’ (b
9 =T m ans. (b)
At the exit plane
h=(-To) =g T,=To+3
148.7 Wim?
=127°C+ oo = 127+
L= T S Wimt K 12535
= 132-4 OC ans. (c)

Notice that we found g, and g, without the use of the heat transfer coefficient. However, to determine
T, from g, k is needed at x = L.

Repeat Problem 6.25 with the tube heated length shortened to 0.08 m. All other parameters,
including questions to be answered, are unchanged. The flow is fully developed before entering
the heated length.

From Problem 6.25 we have

T, = 375K ¢, = 1.0115 kJ/kg-K
p = 0.9403 kg/m® v=23.33 %107 m¥s
k =0.03184 W/m-K Pr = 0.693

The Reynolds number is unchanged, Re;, = 536. The tube dimensionless length is
(x/D) = (0.08 m/0.005 m) = 16
but the thermal entrance length remains unchanged at
(x.,/D) = 18.6

from eq. (6.46). Thus, this flow is in the developed velocity and developing temperature region. To use Fig,
6-8, we calculate the inverse Graetz number at x = L = 0.08 m

Ge' = (—3)(&:“) = (gf(fsn;)(s% ><10.693)

=430x107?

From Fig. 6-8 at the exit for constant g, the local Nuy, is

Nll.g = 4.?
and the local, exit value, of the heat transfer coefficient is
k 0.031 84 Wim-K
h=h; = —=Nu, = ————————(4.7)

D 0.005m
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6.27.

or
h, =299 W/m* K ans. (a)
The value of g may be determined with
Joomv = ¢, (PL) = q)(7DL) @)
and
Qamv = H‘ICF(T,,,, - Th_r) (ﬁ}

From Problem 6.25,
m = pAV = 4.615x 10  kg/s

and

(T,,—T,,)=50°C

so by (i) and (i)
Geonv = q1'(7)(0.005 m)(0.08 m) = 1.25 X 107" m?*-q.’

1011.5]
50°C
x )( )

qr = 1.86 X 10° W/m? ans. (b)

= (4.615% 107 kgfs)(

At the exit,
hL( T; - Tf}.l’) = q_\#; ?:s - Tl':,o = q:fhf,

1.86 % 10" Wim?
29.9 Wim?-K

127 +62.2 = 189°C ans. (c)

Ty = Tpo+qith, = 127°C +

Notice that this tube length is only 8% of the length of the previous one in Problem 6.25, so for similar
h values it requires about 12 times the temperature difference, T, — T},,,, of Problem 6.25.

Nitrogen gas at atmospheric pressure and a bulk inlet temperature of 27 °C is heated in a 2.5 cm
i.d. tube having a constant surface temperature of 100 °C. The bulk average velocity is 1.2 m/s
and the tube is 1.5 m long. Determine the net heat transfer rate to the nitrogen, gcony.

Trigl I: The exit temperature 7, , is unknown, so an iterative approach is needed to determine suitable
property values. Try 7,,,, = 53 °C; then

- 27 +53

Thy = =40°C=313K
Then, from Table B-4(SI) we obtain
p = 1105 kg/m? k = 00271 Wim-K
¢, = 1.0415 % 10" J/kg-K Pr=0710
v = 16,94 X 10" m¥s p = 1837x10""kg/m-s

s = oo = 20.86 X 10" kg/m-s
The first trial Reynolds number is

DV _ (0.025m)(1.2 m/s)
" 16.94 X 107" m¥fs

Re, = = 1771
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and the flow is laminar. The entry region lengths are, by egs. (6.37) and (6.46),

(X..fD). = 0.0SRQ;H = 0.05(]7?]) = 88.6
(x.,/D), = 0.05Re,,(Pr,) = 88.6(0.710) = 62.9

(The second of these expressions is accurate only for fully developed flow (velocity profile). It is used here
to determine that the temperature is developing over much of the length.)

Since the 1.5 m long, 0.025 m i.d. tube has (x/D) = (1.5/0.025) = 60, both the velocity and temperature
profiles are “developing.” For this case (combincd entry lengths) we can use the Sieder-Tate eq. (6.60) to
determine the average Nusselt number. Thus,

—_— Re,,-Pr  Lx] 014
Nujy = 1.36(——{?’—5) (—”—)

AN
1771 x 0.710\'* 11837\
- "86( 60 ) (20'86) 0
Then
- ki — 0.0271 Wim-K
iy = ﬁ(nuv_l) = ( —m)(s.{m) = 5.46 W/m?-K

By eq. (6.54) for constant surface temperature we can now determine the exponential term allowing
determination of T, ,. Obtaining riic,

me,, = %T(DZ](V}(p)(C,.) = (*:-‘-T) (0.025 m)? (1.2 m/s)(1.105 kg/m’)(1041.5 J/kg - K)

= (L678 W/K
Then

00°C—T,, _ [ =#(0.025 m)(1.5 m)(5.46 Wim- I()]
100°C-27°C  *P 0.678 W/K

Thon = 100°C — 73 °C(0.387) = 71.7°C

To obtain a more accuralc answer, we now assume a new trial 7,, Use T,,=72°C and
Th2=(27+72)2 =495 = S0°C.
The property values at 50 °C are (from Table B-4(SI}, at 323 K)

p = 1076 kg/m? k = 0.0278 W/m-°C
¢, = 1.0419 X 10° J/kg°C  Pr = 0.708
v = 17.95 % 10~ m¥s p = 1879 107 kg/m-s

and the viscosity at the surface temperature (373 K) is
= 208610 %kg/m-s
unchanged from Trial 1. Procceding as in Trial 1,
Trial 2:

DV {0.025 m)(1.2 m/s)
R = e—— = =
2= = sk 10 - mls 07

(x./D),0.05(1671) = 83.5
(x./D); = 0.05(1671)(0.708) = 59.1

1671 x 0.708 )“-‘ 18.79 x 10°¢
60 2 (20.86 x107%

0.0278 Wim-K
0.025m

ui14
Nl.ln_} = |.86( ) = 495
2

&
o = 2 (N, ) = ( )(4.95) = 5504 Wim®-K
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6.28.

ric, = = (0.025 m)?(1.2 m/s)(1.076 kg/m*)
"3

x 1.0419 x 10* kg-°C

= 0.660 W/K
Al this point, notice the small difference in ric; for Trials 1 and 2 as well as in h for the two trials.
Proceeding,
100°C -7, _ [ —w(0.025 m)(1.5 m)(5.504 W.frn’-l(}]
100°C - 27°C 0.660 W/K
Ioﬁ C - Tl'l.ll.?, _ {)_374

73°C
Tpo2 = 100°C — 73°C(0.374) = 72.7°C

Since T, changed only 1°C from T}, the second value is a suitable answer. Turning to determination
of geonv. WE €an use either eq. (6.56) or eq. (6.42). Choosing the latter

Goonw = 116 Th0 — T} = (0,660 WIK)(72.7 - 27) °C
=302W

Checking by eq. (6.56)
Georv = HA AT,
where by eq. (6.57)
AT, - AT, _ (100 - 72.7) — (100~ 27) ,
In(ATJAT)  In[(100 — 72.7)/(100 — 27)]

_213-73 _ —451
In(27.3/73) In0.374

a-Tlm =

=465°C

and

Geonv = 2;._].51{_2}?% (11')(0'025 l'l'l)(l .5 m)(46-5 OC)

=302W

Saturated ammonia liquid at 30°C bulk average temperature 7, flows inside a 20 mm id.
circular tube. The bulk average velocity is 0.03 m/s and the tube is 1.5 m long. The inside tube
surface temperature is 40 °C, constant. The flow begins at the heated tube inlet with no
upstream developing section. Determine (a) the velocity and thermal entry lengths and (b) the
average heat transfer cocfficient over the 1.5 m length.

Since the fluid bulk average temperature is given (30 °C) we can obtain properties from Table B-3(SI)
without interpolation, yielding:

k=0507Wim-K ¢, =489 Jkg-K

p = 596.37 kg/m? v=0.349 X 10" m’fs
o, = 580.99 kg/m? v, = 0340 %X 10 " m?fs
Pr=201

where these are at 7, except p, and v, which are at 7.
The Reynolds number is

_ DV (0,02 m)(0.03 m/s) _
Ren == = 0agox 10 mis 17

and the flow is clearly laminar.
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6.31.

6.32.

6.33.

6.36.
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The entry lengths are, by eqs. (6.37) and (6.46),

x. = 0.05Re, D = 0.05(1719)(0.02 m) = 1.72m
Xe; = 0.05Re, DPr = 1.72m(2.01) = 345 m

where the thermal entry length equation is based on fully developed flow (velocity), so the problem is
one of developing velocity and temperature profiles. The Sieder-Tate eq. (6.60) is applicable for
determining A.

Thus with p = pv

N = 1 86( 1719 X 2.01 \* (596.3? % 0.349 X 107 ).,,..
u, =1 1.5 m/0.02 ) 580.99 % 0.340 X 10~*
_ . kNuy,
=6.717, h 5
- K)(6.717
= QTWIMKNOTID) _ 170 wim-K
0.02m

Notice that the ratio of viscosities did not markedly change the result. This is because the ammonia liquid
viscosity is not highly temperature dependent.

Supplementary Problems

What is the drag on a thin model airfoil, of 0.3 m chord length, in a 38 °C airstream moving at 6 m/s? Treat
the airfoil as a flat plate. ~ Ans. 5.12x 107> N/m

Glycerin at 104 °F flows over a flat plate at a free-stream velocity of 25 fps. What is the thickness of the
hydrodynamic boundary layer 2 ft from the leading edge? Ans. 0.069ft = 21.0 mm

What is the thickness of the thermal boundary layer in Problem 6.30, at the same location?
Ans. 155mm

Using the linear velocity profile w/V. = y/8 in the integral momentum equation, verify the expression for
boundary layer thickness given in Table 6-1.

For the linear velocity profile of Problem 6.32, verify the average skin-friction coefficient shown in
Table 6-1.

What is the heat loss from both sides of a 1 m square plate maintained at 90 °C when air at 64 °C flows
parallel to it with a free-stream velocity of 6.0 m/s? Ans. 494W

For the flow of Problem 6.21 show that

T =T, b

“kv,R"

where T, is the centerline temperature at x = 0.
Glycerin at 0°C flows at V.. of 50 ft/s parallel to both sides of a 0.3 m square, thin fiat plate at 20 °C, which

is suspended from a balance. (@) What drag should be indicated by the balance? (b) Determine the heat
transfer to the glycerin. Ans.  (a) 886.3N. (b) 2753 W
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6.37. A parallel flow of liquid water at 40 °C and V.. = 1.5 m/s over a flat plate 1.8 m long, experiences a constant
heat flux from the plate over the laminar region. Compute h, for x = x;, if Reg;, = 5 X 10°. (See note
following eq. (6.28).  Ans. 1498 W/m?-K

6.38. Repeat Problem 6.24 using the logarithmic tcmperature difference expression of eq. (6.57) to replace
(T,—Tp). Ans 274ft



Chapter 7

Forced Convection: Turbulent Flow

Turbulent flow is characterized by random motion of fluid particles, disrupting the fluid’s
movement in lamina as discussed in the preceding chapters. It is the most common type of motion,
however, because of the minimal disturbances which might cause it to occur.

The time-average equation (5.13), written for velocity, is valid for any quantity ¢ which has a
time-average value ¢ and a fluctuating component ¢’, i.e., ¢ = ¢ + ¢'. Thus

é= lim% oy (7.1)

—c
ar o

where At = ¢ — t,. Properties of the time average are:

¢|+¢?=&’l+‘¥'2
C_fi’n:(:tﬂl
& = b (7.2)
s s
¢ =0

where C is independent of ¢ and s is any spatial coordinate. In addition, it is almost always the case that
$1 92 # 0if ¢ and ¢, are turbulent flow properties.

7.1 EQUATIONS OF MOTION

By use of the boundary layer concept the general equations of motion, called the Navier-Stokes
equations after their formulators, can be simplified to the point of being solved. The x-direction
momentum equation for incompressible, laminar, boundary layer flow over a flat plate was derived in
Problem 6.1. Since it is a simplified form of the more general x-direction Navier-Stokes equation, we
shall extend it to the case of turbulent flow, i.e.,

. | du gedp  Fu
laminar: u3;+v_f?:\’-= __a.,.p?
g (7.3)

A d
turbulent; (E+u')«§;(ﬁ+u')+(5+v‘)—(;y—(¢?+u’)
g d ?

= —Fa(ﬁ+p')+p:y—z(ﬂ+u')

The instantaneous quantities in the laminar equation have been replaced by the sum of their average
and fluctuating components in the turbulent equation. Inherent in this move is the assumption that the
Navier—Stokes equations are valid for turbulent flow.

184
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Along with the momentum equations, we may consider the two-dimensional incompressible
continuity equation:

laminar: —+—=
(7.4)
turbulent: —?—(:‘E+u‘)+—ﬁ-—(ﬁ+u’)= 0

N Ay

Combining the turbulent equations (7.3) and (7.4), taking the time average of the resultant equation,
and applying the rules (7.2), we obtain

i gdp  Fa [(w'u Hw'u
H—+0—=———+vr - +
ax Ay p dx ay? x Ay

which is the x-direction equation of motion for a viscous incompressible fluid with negligible body
forces. This equation can be expected to hold in the turbulent portion of the boundary layer shown in
Fig. 7-1(a). The laminar portion at the leading edge and the laminar sublayer are governed by the
relations developed in Chapter 6. This chapter deals with the turbulent regime, which is often idealized
as shown in Fig. 7-1(b), in which the critical length x, is taken as that distance required to produce a

Reynolds number of 500 000 (although this may vary from 300 000 to 2 800 000 depending upon such
factors as surface roughness and free-stream turbulence).

(7.5)

Transmon

r Laminar }»
Turbulent region ‘
v Laminar

¥
~ Bufer layer sublayer
%—-x z—*

Laminar
sublayer

LI

(a) Laminar-to-Turbulent Transition {b) Simplified Model

Fig. 7-1

Upon comparing (7.5) with the laminar equation (7.3), we note that an additional term occurs in
the equation for turbulent flow. The three terms on the right-hand side of (7.5) express the effects of
pressure (normal stress), viscosity (shear stress), and turbulent fluctuations (Reynolds, or apparent,
stress). The last term produces an apparent
volume force

y
T AT N
plov'u’  w'u _
srent — — + 7.6 )
Flapre sc( o ) o |
which will be interpreted in the next sub- A===TX 7 _/ - ————A
section. c 0
Eddy Viscosity
Assume turbulent motion along the surface 777y —"

of Fig. 7-2. At a typical plane parallel to the
surface, A-A, a lump of fluid designated 1 is Fig, 7.2
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moved by turbulent fluctuations to a region of increased velocity. It is replaced by lump 2 moving
downward to a region of lower velocity. Since momentum is the product of mass and velocity, a change
in momentum results. This change can be evaluated quantitatively by considering the velocity
components

u=u+u v=0+v

where ¢ = 0 results from zero mean flow in the y-direction. The instantaneous mass flow per unit area
across plane A-A is pv’. Multiplying by the x-velocity deviation «’ gives the rate of momentum change
per unit area pv’u’, whose average value, pv’u’, is negative. Thus there is a shear stress —(p/g v’ u’
over and above the laminar shear (u./g )(i/dy), ie.,

ay

«

1 o —
T = Tam + Trah = g_(pm_ _.pv'u,) (?:7)

This result is not readily usable, except through measurement of the fluctuating components, since
the fluctuating velocities are not related to fluid properties. It is convenient to assume that the viscosity
effect is increased because of the turbulence and define an eddy viscosity € such that

r*l(nf. +pe)@
g ay

or, since v = w,./p,
. N
T8 v+ e) - (7.8)
p dy
If, instead of parallel flow, two-dimensional turbulence exists, there is an additional normal stress
1 . —
= — 4 T i
Ty g(_(pm. E® puu ) (7.9)

We see that the time-averaged products of the fluctuating components, v’ u’ and u’ u’, which arose in
(7.5), produce shear and normal stresses as shown in (7.7) and (7.9). It is then only necessary to
measure the eddy viscosity, which is directional-dependent, in order to effect a solution to the equation
of motion.

Eddy Diffusivity
An argument analogous to that of the preceding subsection can be made for the influence of

turbulence on heat transfer. If a temperature fluctuation exists in the flow field of Fig. 7-2, so that
T = T+ T', the heat transfer per unit area would be given by

’ T == aT
4" = Glam + Giurs = —k5+pcpv T' = —(k+ pc,en) —

or, since a = kipc,,

E=—(atey)— (7.10)

where the time-averaged product of the fluctuating velocity v’ and fluctuating temperature 7' has been
replaced by an eddy diffusivity for heat, €,,. Equations (7.8) and (7.10) are now of identical form, which
suggests the analogy between momentum transfer and heat transfer of the following section.
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7.2 HEAT TRANSFER AND SKIN FRICTION: REYNOLDS’ ANALOGY

In the vicinity of a surface the fluid is essentially stationary, requiring that the transfer of heat take
place by conduction. Such is the case in the laminar sublayer, where the heat transfer and shear stress
are in the ratio

T Ll 8(IULDYY i dtt | e—const

! —k(aT/ kg . dT
QIRC I

At some distance from the surface, where the random fluctuations transport momentum and heat, the
turbulent shear stress and heat transfer (at fixed x) have the instantaneous values

Tueh = L v’ Au qrum = pC;,v' AT

3

giving, in the limit,

q"’ dT
e = —( g, — 7.
( T /b v8 d € =comnst ( 12)
A comparison of (7.11) and (7.12) shows that when k/p,, = ¢,, i.e., when
_ HmGp
Pr X 1
then the single equation
., 9T
- v o (7.13)

is valid through the entire boundary layer. Reynolds’ analogy results from making the approximation
that 7 and u change at proportional rates through the boundary layer. Then each side of (7.13) is a
constant, i.e.,
9" _ _ 45 _ dr
.~ = constant . p8e

X=gcnst

where g; and 7, are the surface values. Integrating through the boundary layer and applying the known
surface boundary condition (u = 0, T = T;), we have:

1 g
——-—-ifdu =I T (7.14)
Cpbe Ts ), T,

The condition Pr =1 necessary for (7.14) is approximated by many real fluids. Most gases at
atmospheric pressure have Pr=0.7.

The upper limits of integration in Reynolds’ analogy will depend upon the fiow configuration. The
following sections will complete this relation between heat transfer and fluid friction for external (flat
plate) and internal (pipe) flow configurations.

7.3 FLOW OVER A FLAT PLATE

Two unknowns, g; and 7,, are present in (7.14). We shall at first concentrate on determining 7, for
the case of no temperature variation (isothermal). Then we shall use the isothermal result and (7.14)
to determine g; for the nonisothermal case. The flow configuration is shown in Fig. 7-3.
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Fig. 7-3

Isothermal Flow

The integral momentum equation, (6.14), is equally valid for turbulent flow since no flow
assumption was required when choosing the control volume. Therefore, in the incompressible case,

. _E'&?U v. —u}udy] (7.15)

Observe that the mean turbulent velocity & is used over the whole range of integration; this is

tantamount to neglecting the laminar sublayer and the buffer zone.
In the fully turbulent portion of the boundary layer the velocity increases approximately as the

one-seventh power of distance from the wall, giving

E _ Z- 7
oo (a) (7.16)

which is known as the one-seventh-power law. For the same regime, Blasius experimentally deduced
that the shear stress is related to the boundary layer thickness by

2 1/4
7 = (0.0225) Y= (va‘) (7.17)

for Reynolds numbers ranging from 5 X 10° to 10, Usmg (7.16) and (7.17) in (7.15), the boundary
layer thickness and the local skin-friction coefficient are found to be

& 0.376 0.376

" X (V)™ Re” (7.18)
71 _ 00576
| = oVing  Rel (7.19)
and the average skin-friction coefficient is
Fy _0.072
C, = !
e (sz IZgJL Rel 5 (720)

where Fyis the friction drag per unit width.

These equations make no allowance for the laminar boundary layer, 0 <x < x,, which precedes the
turbulent portion. They are quite accurate, however, beyond the critical length x, when the length is
taken as if the turbulent boundary layer begins at the leading edge of the plate. Both laminar and
turbulent drag can be accounted for by subtracting the turbulent drag for the critical length and adding
the laminar drag for that portion, ie.,

Rem R s L ; ’_Re,.,}: (7.21)
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where the last term is from the Blasius solution of Table 6-1. For a critical Reynolds number of 5 X 10°%,
(7.21) simplifies to
0072

- 1S
Re L

n G — (0.003 34) xz (7.22)
Flow With Heat Transfer

Reynolds’ analogy—flat plate. At the edge of the boundary layer u = V. and T = T, which permits
the upper limits of integration to be added to (7.14). The integration yiclds

_ q:V-T~T or 4 L _1_=
o8 T x w s T.—-T,pc, V. 2 pVEfth.
which, by use of (6.17) and (6.17), can be put in the form
h C
— =1 7.23
TR (7.23)

The dimensionless group of terms on the left side of (7.23), called the Stanton number, St, is the
Nusselt number divided by the product of the Reynolds and Prandtl numbers, i.e.,

(7.24)

which is Reynolds’ analogy for the fiat plate, relating the skin friction to the heat transfer. A. P.
Colburn showed that the analogy may be modified to pertain to Prandtl numbers ranging from 0.6 to
50 by

ju=St.Pr" =g-f (7.25)

where jg is known as the Colburn factor, or simply the j-factor, for heat transfer.
Taking average values over 0 <x < L, we obtain

e
== 7.
pc, V. 2 (7.26)
T Qe pe?? — C)‘
| ja‘f = StPr” = 7 (727}

The appropriate expression for the average skin-friction coefficient, either (7.20) or (7.21) or
(7.22), may be substituted into the Colburn equation (7.27) to get the average convective heat transfer
coefficient. The third choice gives (for a critical Reynolds numbcr of 500 000)

] Nu= % = Pr'3(0.036Re’* — 836) (7.28)

Thus far, we have ignored the laminar sublayer and the buffer zone. T. von Kdrmén, including both
of these, found the local Stanton number for flow over a plane surface to be
_ _Nu, /2

Re Pr 145V 2((Pr—1)+In[(5Pr + 1)/6]}
which reduces to Reynolds’ analogy for Pr = 1. If the one-seventh-power friction law, (7.19), is
introduced into (7.29), the result is

hx (0.0288) Re"* Pr 30
k 1+ (0.849)Re, " [(Pr— 1) + In[(5Pr + 1)/6]} (7.30)

St,

(7.29)

n Nu, =
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In all the equations of this section the pertinent parameters should be evaluated at the film
temperature, T, = (7, + T.)/2.

74 FLOW IN PIPES

Isothermal Flow

Smooth pipes. From a series of experiments, 1. Nikuradse [Forsch. Anb. Ing.-Wes. No. 356 (1932)]
concluded that the velocity distribution for turbulent flow in smooth pipes is of the power-law
form, ie.,

i B i Lin
T~ ( R) (7.31)

where u is the local time-average velocity, V., is the time-average velocity at the centerline, R is the
pipe radius and y = R — r is the distance from the pipe wall. (For simplicity we shall omit the overbar
denoting the time average.) The value of n varics with Re ranging from 6.0 at Re = 4.0 x 10° to 10.0
at Re = 2.0 % 10" Increasing Re to 3.2 x 10° does not increase n above 10.0. Recall that the isothermal
flat plate power law is given by cq. (7.16), whereas the smooth pipe power law is given by eq. (7.31).
As shown in Table 7-1, the similarity is noteworthy. [See Boundary Layer Theory, by H. Schlichting,
McGraw-Hill Book Company, 6th English edn, 1966, p. 563.]

Table 7-1. Flat plate and pipe flow power

laws.
Configuration Power Law
Flat plate flow i y\V¥’
V. (Ts)
Pipe flow u__ ( y )”“
Vo \R
The Darcy-Weisbach equation (6.36),
Ap L V2
h‘_ = e = —
p "~ DZg

is equally valid for turbulent flow, but the friction factor f must be determined experimentally, rather
than analytically as for laminar flow. In this equation V is the average velocity over the cross-section,
which for the power-law profile is expressed by

v 2n?

Vowr  (2n+ D)(n+1) (7.32)
(see Problem 7.6).
For 10 000 < Rep < 100 000, the friction factor f is well represented by
f=(0.184) Rep"? (7.33)
beyond the dimensionless distance given by H. Latzko:
% = (0.623) Rep* (7.34)

[From Z. Angew. Math. Mech. 1: 268 (1921); English translation NACA Tech. Memo 1068, 1944.]



CHAP. 7] FORCED CONVECTION: TURBULENT FLOW 191

This is the distance required in turbulent flow for the friction factor to become constant, which is much
less than the 40 to 50 diameters required for the turbulent velocity profile to develop.

Commercial (rough) pipes. In rough pipes, where surface imperfections extend beyond the laminar
sublayer, the friction factor fdepends upon both Rey, and the roughness height e. Figure 7-4, commonly
referred to as Moody’s diagram, is a plot of friction factor versus Reynolds number, with the relative
roughness e/D as parameter. Included are the results for hydraulically smooth pipes, discussed earlier
in this section, as well as the straight-linc laminar flow rclation (6.37). In the region of complete
turbulence (high Reynolds number and/or large /D) the friction factor depends predominantly upon
the relative roughness, as shown by the flatness of the curves. Typical values of e for various kinds of
new (i.e., rougher for being unworn) commercial piping arc given in Table 7-2.

Pipe fittings and minor losses. In piping systems having short lengths of pipes the pressure drop is
sometimes more significant in the fittings than in the straight piping itself. Such minor losses, although
they are not always small as the name might suggest, are due primarily to flow separation and form
drag (Section 7.5).

For convenience, head-loss experimental data are often expressed in the form of dimensionless
loss coefficients k;, where

V_Z

hy = ky— (7.35)
2.
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Fig. 7-4. Friction factors for pipe flow. [Adapted by permission from L. F. Moody, Trans. ASME, 66: 672,
© 1944, The American Society of Mcchanical Engineers.]
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Table 7-2. Average roughness of commercial pipe.

Type e (mm)
Drawn tubing 0.0015
Brass, lead, glass, spun cement 0.0076
Commercial steel or wrought iron 0.046
Cast iron (asphalt dipped) 0.12
Galvanized iron 0.15
Wool stave 0.18 10 0.91
Cast iron (uncoated) 0.259
Concrete 0.30 to 3.05
Riveted steel 091 to 9.1

Table 7-3. Loss coefficients ~ 1.0 in. iron pipe size (IPS). [From
several sources.)

Item kg

Angle valve, fully open, screwed 31-5.0
Ball check valve, fully open 4.5-7.0
Gate valve, fully open, screwed 0.19-0.24
Globe valve, fully open, screwed 8.2-10
Swing check valve, fully open, screwed 23-35
Regular-radius elbow, screwed, 90° 0915

Flanged 0.3-0.50
Long-radius elbow, screwed 0.6-0.72

Flanged 0.23-0.40
Close return bend, screwed (180%) 1.5-2.2
Flanged return bend, two elbows, regular
radius 0.38-0.41

Long radius 0.25-0.40
Standard tee, screwed, flow through run 0.6-0.90

Flow through side 1.8

Use of an equivalent length of pipe,
L., -%2 (7.36)

permits minor losses to be accounted for by adding equivalent lengths to the straight pipe length. In
any case, the head loss is incorporated in the energy equation, (5.31).

Table 7-3 gives loss coefficients for some common valves and fittings. The values given are valid
only when fully turbulent flow exists upstream. Since at least 10 pipe diameters are required
downstream of any obstruction for the flow to become fully developed, when fittings or valves are close
together actual loss coefficients are less than those tabulated, resulting in conservative calculated
values for pressure drop. Equipment manufacturers can provide more accurate k; data.
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Flow With Heat Transfer

Reynolds’ analogy—tube flow. Returning to (7.14) for the case of turbulent flow in a tube (Fig. 7-5),
we have as the upper limits of integration u = V, T = T,. Here, V is the mean velocity (as in (7.32))
and 7, is the bulk, or mean, temperature of the fluid:

- Toi+ Ty

T, = b - b,
where 7, and T, , are the average fluid temperatures at the inlet and outlet. Integrating (7. 14), we get,
analogous to (7.23),

(7.37)

he _ T
pe,V o pVig,

(7.38)

T yommm . 4 Luminar

T ' sublayer

Turbulent
core

- L -

Fig. 7-5

A simple force balance on a cylindrical control volume of length L and diameter D gives

. = P = p)D
£ 4L
which can be combined with (6.35) to give
_ oV
=1 8g. (739)
Substituting (7.39) into (7.38), we get
he _f
| St,=—"_== .
V8 (7.40)
The same form is also valid for average values, i.e.,
o _/f
t=2 (7.41)

Equations (7.40) and (7.41) are, of course, restricted to Pr = 1. The Colburn modification is applicable
for the case of internal tube flow, giving

" jn=StPr? = (7.42)

00|~

for fluids with Prandtl numbers from 0.5 to 100.
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Substituting the expression (7.33) for finto (7.42) yields a working relation for Nusselt number:

hD UR 113
[ ] Nu, = - (0.023)Re},"Pr'” (7.43)
valid for 10 000 < Re,, < 100000, 0.5 < Pr <100 and L/D > 60. Fluid properties, except specific heat,

are cvaluated at the average film temperature,

_I+T,

T,
/ 2

(7.44)

while specific heat is evaluated at the bulk temperature T),.

Entrance-region modifications. For short tubes Latzko recommended the following approximate
relations for the average heat transfer coefficient in the entry region, A,

E( Relfs 0275 L L

= (1.11)[(—55—’};5] for  5<5| (7.45)
h, C L L

}?:14_-5{_5— for E]- '<'5<60 (746)

Table 7-4 gives some selected values for the coefficient C in (7.46), for 26 000 < Rep, < 56 000. In (7.45)
and (7.46) / is the asymptotic heat transfer coefficient for fully developed flow and (L/D), is given by
(7.34).

Table 7-4. Values of C for use in eq. 7.46.
{From L. M. K. Boelter, G. Young, and
H. W. Iverson, NACA Tech. Note 141

(1948).]

Inlet Configuration C
Bell-mouthed with screen 1.4
Calming section, LID = 11.2 1.4

LiD =28 3.0
45° bend 5.0
90° bend 70

Design equations. A relation in which the fluid properties are evaluated at the bulk temperature T},
making it much easier to use than (7.43), is the widely used Dittus~Boelter equation:

D
- Nu, = f‘;(- = (0.023) Re* Pr" (7.47)

where

_ |0.4  for heating the fluid
0.3 for cooling the fluid

This equation is valid for 10 000 < Rep < 120000, 0.7 < Pr <120, and L/D > 60. Use of this equation
should be limited to cases where the pipe surface temperature and the bulk fluid temperature differ
by no more than 10 °F for liquids and 100 °F for gases.
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For higher Prandtl numbers, 0.7 < Pr < 16 700, and bigger temperature differences the Sieder-Tate
equation, which accounts for large changes in viscosity, is recommended.

0.14

] Nup = % = (0.027)Rey*Pr'® (ﬂ) (7.48a)
Valid for Rep > 10 000 and L/D > 10, this equation may be used for both heating and cooling. Except for
s, which is evaluated at ihe surface temperature, all properties are evaluated at the bulk temperature.

A somewhat more accurate equation for turbulent flow inside of tubes is the Petukhov
equation

(f/18) Rep Pr
= 7.48b

u Nup =107+ 12.7(fI8)"(Pr®* — 1) ( )
where the friction factor can be obtained from the Moody diagram or for smooth tubes from eq.
(7.48c).

£=(0.790 In Rep,, — 1.64) 2 (7.48¢)

In the Petukhov equation, n = 0 for gases, n = 0.11 for heating a liquid and n = 0.25 for cooling a
liquid. This equation is for fully developed, turbulent flow with

5000 < Rep,,<125x10% 0= <40
My

and
2<Pr, <140

Equations (7.47), (7.48a), and (7.48b) can be used as a first approximation for average 4, i.c., for Nu
over the tube heated length, by using properties cvaluated at the bulk average temperature,
7, = (Tp: + Ty.,)/2. These equations can likewise be used for noncircular ducts with D replaced by the
hydraulic diameter of eq. (6.40).

7.5 EXTERNAL FLOW OVER SUBMERGED BODIES

Section 7.3 covered a special case of external flow in which the boundary layer remains attached
to the surface and grows throughout its length. The results were obtained for a uniform velocity field,
V. = constant, producing fully developed flow, dp/dx = 0. Such is not the case when the fluid path is
oblique to the surface.

For the blunt-nosed body of Fig. 7-6(a) the boundary layer detaches, separating from the surface
at the upstream end and producing a wake. The boundary layer remains attached to the round-nosed
body, Fig. 7-6(b). The airfoil of Fig. 7-7 experiences accelerating flow from A to B and deceleration
from B to the trailing edge. At point C, known as the separation point, the velocity gradient is
zero, i.c.,

m‘ —_—
ﬁy y=0

while the flow is actually reversed between C and D. The corresponding pressure gradients shown in
the figure come from Bernoulli’s equation of potential flow theory. Separation can only occur in
decelerating flow. Beyond the point of separation the pressure gradient is said to be adverse.

Isothermal Flow

The drag on submerged bodies, such as those shown in Figs. 7-6 and 7-7, is made up of two
components: skin-friction drag, Fy, and form, or profile, drag, F,.

Fo=F,+F, (7.49)
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Profile drag is not as amenable to analysis as skin-friction drag, particularly in the case of turbulent
flow. Because of this, it is common practice in engineering to evaluate the total drag in terms of an
empirical drag coefficient Cp:

pVZ

F,=Cpl=—1A 7.50
u »=Co(5) (7.50)
where A is the projected frontal area. Drag coefficients for flow over some common submerged bodies
are given in Table 7-5. Flow over cylinders is laminar for Reynolds numbers up to approximately
5 X 10°, compared to about 3 X 10° for spheres. The drag for a streamlined body is strongly dependent
upon Reynolds number, but for a bluff body is essentially constant over a wide range of Reynolds
numbers.

Flow with Heat Transfer

Many heat exchangers arc designed to transfer heat from cylinders subjected to crossflow.
Pebble-bed heaters involve heat cxchange in flow over spherical, or near-spherical, particles.
Convective heat exchange in such cases is complicated by the flow separation discussed in the
preceding subsection. Reynolds’ analogy, which permits the calculation of heat transfer from the
skin-friction factor. does not apply, since the profile drag may be substantially larger than the shear
drag. Hence most heat transfer calculations for problems of this type are based on empirical
correlation equations. The most common cases are considered in the following paragraphs.
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Table 7-5. Drag coefficients. [Adapted from several sources.]

Configuration LID Rep = V.D/v Co
Circular cylinder, axis 1 10° 0.63
perpendicular to the flow 5 0.74
l 20 0.90
V. = 0 1.20
—— D
T 5 >5x 10° 0.35
< 0.33
Circular cylinder, axis 0 >10° 1.12
parallel to the flow 1 0.91
V. ~—-L—} 2 0.85
: - - 4 0.87
t D 7 0.99
Elliptical cylinder O @:n* * 4x 10 0.6
v 10 0.46
— D @ 25x 10°to 10° | 032
— > @y 2.5 x 10* 0.29
2 x 10* 0.20
Airfoil (1:3) @ 4 x 10° 0.07
Rectangular plate, normal to | >10 1.16
the flow 5 1.20
L = length 20 1.50
D = width o 1.90
D 2
Square cylinder |, ~ _"_:!:Di 3.5 x 10* 2.0
" Obp = | 10 to 10° 1.6
_1

*Ratio of major axis t0 minor axis
tRatio of chord 10 span at zero angle of attack

Single cylinder in crossflow. 'The local heat transfer coefficient (Nusselt number) for a single cylinder
subjected to the crossflow of air at a uniform approach temperature and velocity varies widely from

point to point. The average Nusselt number is well represented by the empirical correlations (7.51a)
for air and (7.51b) for liquids.

<= _hD
Ntlpf = k_ = CK Re’b,« (751&)*

f

hD
anf‘z —f-(}_ = C; Pl}":’Re’f_}f {75]!7)

where the constants for the various Reynolds number ranges are given in Table 7-6. As indicated by
the subscript f, the parameters are evaluated at the film temperature, T; = (T.. + T)/2.
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Single sphere. For Reynolds numbers less than unity and for Pr =1, Nu, = 2. For more common
flow conditions, the following relations are recommended.

gases: 5«2 = (0.37)(Rey)"" (17 <Rep < 70 000) (7.52q)

1
H ED 112 13

falling water drop: = 2 + 0.6 Re}Z Pr (7.52b)

f
_D 02s
liquids: - [1.2 + 0.53(Rep..)" S| P23 (ﬁ"i)
= Hs
1 <Rep.. < 200000 (7.53)

Table 7-6. Constants for use in eqs 7.51a and 7.51b. [Data from several
sources as reported by M. Jakob, Heat Transfer, Vol. 1, ©1949, John Wiley
& Sons, Inc., New York, and J. G. Knudsen and D. L. Katz, Fluid Dynamics
and Heut Trunsfer, 1958, McGraw-Hill Book COmpany, New York, NY,

p. 505.]
Configuration Reny Cy n (o
1004 0.891 0.330 | 0.989
v - 4 to 40 0.821 0.385 | 0911
WC D 40 to 4 000 0615 | 0.466 | 0.683
t. 4 000 to 40 000 0.174 0618 | 0.193

40000 10 250000 | 0.0239 | 0.80S | 0.0266
LN | 2we7s00 | o2l | 062
. P 5000 to 1000000 | 0222 | 0.588

3 2500 0 8000 | 0.160 | 0.699
: 4+ P | 5000t 100000 | 0092 | 0675

N 5000 10 19500 | 0.144 | 0.638
. P 11950010 100000 | 0035 | 0782

*OID 5000 to 100000 | 0.138 | 0.638

- ' L D 4000 to 15000 0.205 0.731

- CO¥ D 25000 15000 | 0224 | 0612

—
— O ! D 3000 to 15000 0.085 0.804

*Some sources include Pr)” in equation (7.51a) for gases.
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In the equations subscript f indicates property evaluation at the film temperature, T, = (T.. + T})/2,
subscript = means propertics at the free stream temperature, 7., and subscript s means surface
temperature property evaluation.

Tube bundles in crossflow. Closely spaced cylindrical tube bundles are commonly used in heat
exchangers. In this situation the wakes from the upstream tubes influence the heat transfer and flow
characteristics at downstream tubes. Variations occur from tube to tube for the first 10 tubes, after
which no discernible changes take placc. Tube arrangement is obviously another influencing factor; the
two most common arrangements are shown in Fig, 7-8.

{e) In-Line {b) Staggered

Fig. 7-8

The results of several investigators were evaluated by E. D. Grimison, who found that the average
heat transfer coefficient for bundles at least 10 tubes deep in the flow direction is given by the Hilpert
equation:

hD
T = C‘l (Remax)" (754&)
1

This equation is valid for air (Pr = 0.7) only. For fluids with other values of Pr, the following
maodification of the Hilpert equation is better.
hD
% = 1.13C\(Re,,,,)" Pr}"? (7.54b)
f

In both of these expressions, Re,,,, = V... D/v;and the constants, C, and n, are given in Table 7-7. The
maximum velocity, V.., occurs at the minimum flow passage. Referring to the shaded unit cells of Fig,
7-8, we see that the minimum passage for in-line bundles is a-D, so that, by continuity,

V.a
Vi = ———
max .ﬂ — D
For staggered bundles, the minimum passage is the smaller of (a — D)/2 and \/(m’Z)z +bI— D (the
diagonal), and V.., is (V.a/2) divided by this smaller value.
For tube bundles having less than 10 tubes in the flow direction, the correction coefficients given
in Table 7-8, where Ay, is given by (7.54a), are widely used.
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Table 7-7. Cross flow of gases over tube banks. [From E. D. Grimison, Trans. ASME, 69: 590 (1937).
Used by permission of the American Society of Mechanical Engineers.)

alD
b 1.25 1.5 2 3
D C, n C, n (o n C, n
In-line tubes:
1.25 0.348 0.592 0.275 0.608 0.100 0704 | 0.0633 | 0.752
1.5 0.367 0.586 (.250 0.620 0.101 0702 | 00678 | (.744
2 0418 0.570 0.299 0.602 0.229 0.632 | 0.198 0.648
3 0.290 0.601 0.357 0.584 0.374 0.581 0.286 0.608
Staggered tubes:
0.6 0.213 0.636
0.9 0.446 0.571 0.401 (.581
l (.497 0.558
1.125 0.478 0.565 0.518 0.560
1.25 051K 0.556 0.505 0.554 0.519 0.556 0.522 0.562
1.5 0.451 0.568 0.460 0.562 0.452 0.568 0.488 0.568
2 0.404 0.572 0416 0.568 (.482 0.556 0.449 0.570
3 0.310 0.592 0.356 0.580 0.440 0.562 0.421 0.574

Table 7-8. Ratio of h/h,, in tube banks. [Attributed to W. M. Kays and R. K. Lo. Stanford University Tech. Report
No. 15, Office of Naval Research Contract N6-ONR-251, Aug. 1952. Used by permission.]

Number of Tubes

i 2 3 4 5 6 7 8 9 10
Staggered 0.68 0.75 0.83 0.89 0.92 0.95 0.97 0.98 0.99 1.00
In-line 0.64 0.80 0.87 0.90 0.92 0.94 0.96 0.98 0.99 1.00

7.6 HEAT TRANSFER TO LIQUID METALS

Because of their high thermal conductivity and low viscosity, liquid metals, such as mercury,
sodium and lead-bismuth alloys, are ideally suited to transferring large amounts of heat in small
spaces.

Flat Plate Analysis

Since the thermal conductivity is so high, the principal mode of energy transfer to liquid metals
is conduction, both in laminar and in turbulent flow. Since convection is secondary to conduction,



CHAP. 7] FORCED CONVECTION: TURBULENT FLOW 201

turbulent fluctuations add little to the transport mechanism. This being the case, we may recall from
laminar flow over a flat plate that the hydrodynamic and thermal boundary layer thicknesses are
related by

8
%= By
Since the Prandtl numbers of common liquid T - T.-'l
metals range from 0.004 to 0.029, the boundary a1
layers may be represented by the relative mag- _...-/
nitudes shown in Fig. 7-9. The velocity profile is = |
very blunt over most of the thermal profile.
We may, therefore, assume slug flow as a first 5
KA : . y T - T
approximation, i.e., « = V.. Using this value of V.
uniform velocity together with the cubic tem- ¥
perature profile /‘D / 5
¥
o= T-T. 3y 1(yY
T.— T, 28 2\§ Fig. 7-9
in the integral energy equation (6.29), we solve to find:
Bax
& = v (7.55)
whence
—k(aTlay),-o 3k _3V2 [V.
h'=m:_—..—=_—k - (7.56)
Ti— T 28, B x
or, in dimensionless form,
hy
Nu, = 2% = (0.530)VRe, Pr = (0.530)\/Pe, (7.57)

k

Here, the Peclet number, Pe = Re-Pr, is a measure of the ratio of energy transport by convection o
that by conduction.

Flow Inside Tubes

A number of correlation equations are available for various flow conditions. Among them, the
following are representative,

For constant heat flux at the wall, and with fluid properties evaluated at the bulk temperature,
T,

D
Nup, = hD _ 4.82 + (0.0185) Pe 3t (7.58)

h

which is valid for 3600 < Re,, < 9.05 X 10° and 100 < Pe,, < 10%.
For constant wall temperature,

hD
Nup = == = 5 + (0.025) Pe}* (7.59)

b

for Pe;, > 100 and L/D > 60. Fluid properties are evaluated at the bulk temperature.
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Crossflow Over Tube Banks
For the flow of mercury (Pr = 0.022) over a staggered tube bank 10 tubes deep in the flow
direction, with 1/2in o.d. tubes arranged in an equilateral triangular array with a 1.375 pitch-to-
diameter ratio, the following equation has been recommended:
—— hD
Nup, = T = 4.03 + (0.228) Pej "‘M
!
where 20000 < Repmax < 80000 and fluid properties are evaluated at the film temperature,
Ty = (T, + T,)2. The maximum Reynolds number is based on the maximum velocity in the passage.

(7.60)

Solved Problems

7.1. Verify that ¢] @5 # 0 for the functions of Fig. 7-10.

& + &3

.+ & é

Fig. 7-10

Here, ¢5 = —¢), so that

brds = —(¢7)1<0

since ¢ vanishes at only a finite number of points in any finite time interval.

7.2. By using the one-seventh-power law, (7./6), and the experimental expression (7.77) in the
integral momentum equation, (7.15), derive expressions for the boundary layer thickness and
the skin-friction coefficient for turbulent flow over a flat plate.

The integral momentum equation becomes

w22 £l [ (3 (3o

Integrating and simplifying, we get
v 1/4 7
vxs) - 7_2

(0.0225) (

Q.l:ﬁ.
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7.3.

Separating variables and integrating:

v 14 rx 5
(T/‘) f dx = (4.321)] 5 ds
= 0

n
or

0376 0376
(Voxiv)!®  Re)®

()

L
X

which is (7.18). It should be noted that in the limits of integration we have tacitly assumed that the
turbulent boundary layer begins at the leading edge.
By definition, the skin-friction coefficient is

T,

L
v pVii2g.
Using (7.17) for 7,
_ (00225)(oVEIg) (V)" _ ( v )”‘
But from (1),
_ 0.376x
" Re!”®
Hence
vRel®
o = 0.045 (o.mv.,x)
and
0.0576
Cr ‘“‘R;fs_

which is (7.19).

Hydrogen gas at 60 °C and a pressure of 1 atm flows along a flat plate at 122 m/s. If the plate
is at 93°C and 1.22 m long, determine the following quantities, assuming a critical Reynolds
number of 500000: (@) the thickness of the hydrodynamic boundary layer at the end of the
plate, (&) the local skin-friction coefficient at the end of the plate, (c) the average skin-friction
coefficient, (d) the drag force per meter of the plate width, (e) the local convective heat transfer
coefficient at the end of the plate, (f) the average heat transfer coefficient, and (g) the heat
transfer from the plate to the hydrogen per meter of width.

At the film temperature

60 + 93

T, = = 76.55 ~ 77°C = 350K

the appropriate properties from Table B-4 (SI) are

p = 0.0716 kg/m* v= 1419 X 10~ m?s
¢, = 14.436 X 10° J/kg K k = 0.206 Wim-K
= 10.245 X 107" kg/m-s a=2031X%10"*m¥s

p=9.954 X107 %kg/m-s Pr = 0.697
At the end of the plate the Reynolds number is

VoL (122 m/s)(1.22 m)
R = = =1,
LS T atox 10 s - PHOX 10
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and the transition from laminar to turbulent flow occurs at

_Re,v (500000)(141.9 X 10~ m%s)

X, V. 22 mis = 05816 m

(@) Assuming the boundary layer grows turbulently throughout the length of the plate (which gives good
results in the turbulent regime), the hydrodynamic boundary layer thickness is given by (7.18).

5= (0.376)L  0.376(1.22 m)

Re/®  (1.049x 109"

=0.0287 m

(b) Equation (7.19) gives

00576 0.0576

9= Re® - (1049 < 107yF 00360

(c) Accounting for both the laminar and the turbulent portions of the boundary layer, the average
skin-friction coefficient is given by (7.22).

0.072 0.5816 m
= m—— 03 -_ = 0
€ (1.049 x 107" 00 34( l.22m) 002907

(d) Using C, from (¢), the total drag per unit width on one side of the plate is, by (7.20),

pVIL (0.0716 kg/m*)(122 m/s)?(1.22 m)
F; = ¢, —=— = 0.002907
T 2 2(kg-m)/(N-s?)
= | 88Y N/m

(e) The Colburn equation, (7.25), gives the local convective heat transfer coefficient:

. y h.x C

St P2t = Y

2 or p e Pr >

Thus
0.206 W/m-K 0.003 60
By = ———" (1.049 X 10°)(0.697)"* [ ——
e 22m 0 H0.697) ( 2 )
= 282.7 Wim*-K

Because this result ignores the effect of the laminar sublayer and the buffer zone, it is appropriate
to check their influence by use of (7.30).
; 0.206 Wim-K
1 9y & ——
b 1.22m
9 (0.0288)(1.049 X 10°)"*(0.697)
1+ (0.849)(1.049 x 107)~"1[(0.697 — 1) + In{[5(0.697) + 1]/6}]

= 2543 x 10" Wim*- K

which is approximately 10% smaller than the value given by the Colburn equation.

(f) Since the von Karman equation s too formidable to integrate, except numerically, we shall be
content with the average heat transfer coefficient given by (7.28).

% = Pr'*(0.036 Re}" - 836)

0206 W/m-K
122 m

=2282 % 10 Wim!- K

h (0.697)"[0.036(1.049 x 10°)"* — 836]
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74.

7.5.

(g) The heat transfer per meter of width from one side of the plate is given by
q" = Guigm = EL(T, ~T.)
= (228.2 W/m?-K)(1.22 m)(93 — 60) °C = 9187 W/m

A smooth, thin, model airfoil is to be tested for drag in a wind tunnel. It is symmetrical and can
be approximated by a flat plate. Its chord length is 150 mm. At an airstream velocity of 200 m/s
and a temperature of 27 °C, what is the drag per unit width?

Assuming the pressure to be approximately atmospheric, the pertinent parameters in SI units from
Table B-4 (SI) are:
p = 1177 kg/m*
v =1.684 X 107° m¥s

At the trailing edge the Reynolds number is

_ VoL _ (200mis)(015m) _

Re. v 1‘684><10‘5m2!s_]'781x10ﬁ

which is turbulent. Assuming the transition from laminar to turbulent occurs at a Reynokls number of
500 000, the critical length is

v 1.684 X 107° m%s
X, = V_.,Re‘ = 200 s (500 000) = 0.0421 m
The average skin-friction coefficient is given by (7.22).

0.072 X,

= "R—e:;:; —(0.003 34) A
0.072 0.0421 m
= (0.00334) [ ———] = 3.11 x107*
(1.78 x 109" ( ) ( 015m )

If the boundary layer had been assumed turbulent from the leading edge, the average skin-friction
coefficient,

~ 4048 x10°?

wrb

G

would be 23% higher than the more accurate value obtained by accounting for the influence of the laminar
portion. The drag force per unit width is given by

F V2
L=2 pzT L = (3.1 X 107)(1.177 kg/m*)(200 m/s)*(0.15 m)

2
X(N i ) = 21.9 N/m
kg-m

where the factor of 2 accounts for both sides of the airfoil.

(a) In a chemical processing plant glycerin flows over a 1 m long heated flat plate at free-stream
conditions V.. = 3m/s and T.. = 10°C. If the plate is held at 30 °C, determine the heat transfer
per unit width, assuming Re. = 500 000. (b) Repeat for ammonia.

(2) At a film temperature of

_T.+T, _10+30

2 > =20°C

Ts
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the Auid properties for glycerin, given in Table B-3 (Engl.), are:

p = (16.018 46)(78.91) = 1264 kg/m® k = (1.729 577)(0.165) = 0.2854 W/m-K
v = (0.0929)(0.0127) = 0.001 18 m*s  Pr = 12500

The critical length is
v 0.001 18 m*s

x.=—Re =

500000) = 196.7
Vo Im/s ( ) m

Therefore, the Aow is laminar throughout, and the average heat transfer coefficient is given by
(6.28) as

ETL = (0.664)Re}? Pr'”

The Reynolds number at the end of the plate is
VoL (3mis)(1m)

Re, = o001 18mis - 2%
Hence
Fi= M{"_‘;'E (2542)"2(12 500)" = 333.9 W/m?-K
m

and the heat transfer is given by

A R -T = (333.9

W w ) (1 m)[(30 — 10) K] = 6.679 kW/m

m?-K

For ammaonia at 20°C, properties from Table B-3 (Engl.) are

p = (16.01846)(38.19) = 611.75 kg/m’ k = (1.729 577)(0.301) = 0.521 Wim-K
v = (0.0929)(0.386 x 107%) = 359 x 10" m¥%s Pr = 2.02

and the critical length is

_ 3.59%x10"7 m%s

500 000) = 0.0598
Imis ( ) m

X, =

T:-::Re‘
The Reynolds number at the end of the plate is
VoL  (3mfs)(1 m)

= = = B.36 x 10¢
Re, v 3.59% 107" m¥s 8.

and the average heat transfer coefficient is given by (7.28).

i—L = Pr'?(0.036 Re}* - 836)

0.521 W/m-K
Im
= (0.6586)[12 418 — 836] = 7.628 kW/m?-K

In this case the reduction due to the laminar portion at the leading edge is minor, being only 7.2%
of the total.
The heat transfer is

h= (2.02)"[(0.036)(8.36 x 10°)"® — 836)

LT _'Q’V__) _ _
W hI(T, - T.) = (7,628 K (1 m)[(30 — 10) K] = 153 kW/m

This problem illustrates extremes. With glycerin, the fiow was laminar throughout. With
ammonia, very little of it was laminar—only 5.98%.
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7.6. (a) For the power-law velocity profile, (7.31), determine an expression for the ratio of the
average velocity to the maximum velocity. (b) Compare the ratio for turbulent flow, with n = 7,
to that for laminar flow.

(¢) In terms of the pipe radius the power-law profile is

=) ()
Vi \R R
where r is the radius and R is the pipe radius. The average velocity may be obtained by integrating
this velocity over the flow area. i.e.,

R
I [(R = P)R]" Vn27ir dr
_Jo

.4 lin
v = W (l—i) rdr

R R? R
I 2ardr "
(i}

Integrating, we get

—|=+2

V 2 1 r \ {12 1 p\(mel QR
—_— L _— (1 -= - (1=
Veux RE| 1 (1 )(1 R) 1 (1 )( R)

R*\n R?

_ _2[ n__n ] _ 2n?
Zn+1 n+1 @n+1)n+1)
(b) For turbulent Aow with n = 7,
vV 2(7)? 49

Vo RO+ 1)(7+1) 60

which is considerably greater than the ratio for laminar flow given by (6.33):

!
2

V —
Veur

7.7. Water at 20 °C flows at the rate of 0.028 m* per minute in a 0.025 m i.d. smooth, drawn copper
tube 60 m long. (a) Determine the friction factor and the length required for it to reach a
constant value. (b) What is the pressure drop? (¢) How would three globe valves, equally spaced
in the line, influence the pressure drop?

The average velocity is

¢ (0.028 m*min)(1 min/60 s)
V = —= = {).
A, (7/4)(0.025 m)? 095 mis
which gives a Reynolds number of
Vv X .
Re = DV _ (0.025m)(0.95 m/s) — 23608

v 1.006 % 10~ m¥s
(a) Equation (7.33) gives a friction factor of
f=(0.184)Re;"* = (0.184)(23 608) 2 = 0.0246
which compares very favorably with the value given by Moody's diagram (Fig. 7-4).
The distance required for the friction factor to reach a constant value is given by eq. (7.34) as

L
5| = 0623(23608)" = 7.72
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ar
L. = (7.72)D = 7.72(0.025 m) = 0.193m

a negligible amount in a total of 60 m; therefore, we shall assume that f = 0.0246 throughout.
(b) The pressure drop is given by the Darcy-Weisbach equation (6.35).

LV ( 60 m \ (1000.52 kg/m*)(0.95 m/s)’
A =15 = (00290 G5 ) 2(kg-m/N-s?)
= 26 656 N/m”
(c) By (7.36), adding three globe valves in the line would be equivalent to adding tubing of maximum
length
kD 10(0.025m) _
(3) I3 (3) 00046 - 305m=1L,

where &, is from Table 7-3. This increases the pressure drop by 50.8% to

_ (60 +30.5) m
a 60 m

In this case, the globe valves cause losses which cannot be ignored.

(26 656 N/m?) = 20206 N/m? ar Pa

What is the pressure drop in a 600 m length of 0.15 m i.d. galvanized iron pipe when 40 °C water
flows through it at a velocity of 0.173 m/s?

From Table 7-2, the relative roughness is

e 152x107'm
D 015m

The Reynolds number is where v is from Table B-3 (Sl).
Re. = YD _ (0173 mis)(0.15 m)
°T v 0658X10°mYs

With these values of relative roughness and Reynaolds number, Moody's diagram, Fig. 7-4, gives f = 0.025,
and (6.35) yields the pressure drop.

LpVv?
=55 -0.025(

= 1.488 % 10° N/m?
where e is from Table B-3 (SI).

=101x107*

= 3,04 x 10¢

600 m ) (994.59 kg/m*)(0.173 m/s)*
0.15m 2(kg-m/N-s?)

Compare the heat transfer from a 2in o.d. rod with atmospheric air flowing parallel to it
(external flow) with that from a 2in i.d. tube with air flowing through it (internal flow). In both
cases the air velocity is 100 ft/s, and the air temperature is 60 °F. The heated portions of the rod
and the tube are each 2 ft long, and both are maintained at 100 °F. The heated section of the
tube is located sufficiently downstream that fully developed flow occurs.

Rod: External Flow
For the case of the rod the fluid properties are evaluated at the film temperature,

T+ T, 60+100
o2 2

and the required properties, from Table B-4 (Engl.}, are:
v=1688%10""ft¥¥s  k =001516 Btu/h-ft-°F  Pr = 0.708

7, = 80°F
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If the thickness of the boundary layer at the end of the rod is of the same order of magnitude as (or
preferably, an order of magnitude less than) the radius of the rod, we may neglect the effects of curvature
and treat the external surface of the rod as a flat plate. Assuming that it can be treated as a flat plate, the
Reynolds number at the end of the rod is

VL (100 ft/s)(2 ft)

Re, = — = 2 USRED) g 485 % 10°
T T T 1688 X 10°° fit¥s

which gives a boundary layer thickness, from (7.18), of

_(UITO)L _(0376)(211)

- = 0.046 ft = 0,551
Rel® (1185 x 10°)" 33in

Since § < R, we shall use the flat-plate equation (7.28) to get the average Nusselt number.

Nu = h—kL— = Pr'?(0.036 Re}* — 836)
or

0.015 16 Bww/h-ft-°F
21t
= 11.93 Bw/h-ft*-°F

= (0.708)'2[(0.036)(1.185 X 10°)°* — 836}

Since the surface area is

A, = fr(]?'—z ﬂ)(z ft) = 1.047 ft*

the heat transfer is

Btu

;‘ﬁ?:,;) (1.047 £%)[(100 — 60) °F] = 499.7 Biw/h

q=hA(T,- T.) = (11‘93

Tube: Internal Flow

The case of flow through the tube is not as straightforward as that for the rod above since the tube
equations require that properties be evaluated at the mean bulk temperature T, = (Tp,+ T,,)2 or at an
average film temperature T; = (7, + 7,,)/2. In either case the outlet temperature T}, , is unknown, requiring
a trial-and-error solution to the heat balance equation.

The Dittus-Boelter equation, (7.47), gives the heat transfer coefficient

= % (0.023) Re}* Pr"¢ (I

required in the heat balance
q= EAD(TJ’ - fﬁ) = ’hcp(Tb.v - TJ‘J.J

or

i Tl.f + T N .
| 7, (P57 | = sy Ty~ 1)

which may be rearranged to give the outlet temperature

ro- RA, T, + [ric, — (RAJI)) T,
b (riic,, + hA,I2)

)
Assuming an outlet temperature T,,, = 70 °F, the Auid properties, evaluated at 7, = 65 °F, are (from
Table B-4 (Engl.))

p = 0.076 Ib,/ft’ v=1577x10%fs  Pr=071
¢, = 0.24 Btu/lb,-°F  k = 0.0148 Btwh-ft-°F
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Using these properties, the pertinent parameters are:

fe. L VYD _ Q00121 _
0 T T s % 10 s

= pAV = (0.0?6-'}'-?-,‘1)H(én)z](m%)(%ﬂos) = 596.9 Ib,/h

_ (0.0148 Bw/h-ft-°F) o an Buu
- 023)(1.057 X 10" 5(0.71)"* = 18.62 ——e
h @i 021057 x10YH0.7D) h-fe-°F

1.057 x 10°

From (2),

_ (18.62)(1.047)(100) + [(596.9)(0.24) — 3(18.62)(1.047)}(60)

- = 65.09°
Too (596.9)(0.24) + 3(18.62)(1.047) 65.09°F

which is approximately 5 °F lower than assumed.
For a second trial, take T},., = 65 °F, giving T,, = 62.5 °F. Properties from Table B-4 (Engl.) are:

p = 0.0764 Ib,, /ft* v = 15.585 X 107> ft¥/s Pr = 0.7107
¢, = 0.24 Bullb,,-°F  k = 0.01471 Bu/h-ft-°F

These values give
Re, = 1.07x10°  m =60001b,/h  h = 18.69 Bwh-f®-°F
Calculating the outlet temperature, we get

_ (18:69)(1.047)(100) + [(600)(0.24) ~ (18.69)(1.047)](60)

b (600)(0.24) + (18.69)(1.047) = 65.08°F

We note that the calculated outlet temperature is relatively insensitive to the assumed value because of
the small difference in fluid properties.
Taking T, to be 65.08 °F,

- + 65
7 _ 60+6508

b= 5 = 62.54°F

and the heat transfer is

q = RA(T,~ T)) = ( 18.69 h_ﬁ;‘_',F) (1.047 £2)[(100 - 62.54) °F] = 733.0 Bwh
Therefore
Guee 330 _ 00
Gra 4997

7.10. Ethylene glycol enters a 5 m length of 90 mm i.d., hard-drawn copper tube in a cooling system
at a velocity of 5 m/s. What is the heat transfer rate if the average bulk fluid temperature is 20 °C
and the tube wall is maintained at 80 °C? There is a 0.27 m long calming section upstream.

At the outset we note that this is a constant 7, case, but we do not have inlet or outlet fluid
temperatures. Consequently we cannot use eqgs. (6.56) and (6.57). In lieu of (6.56) we will use the
approximate relation

GQeonv = EA;(Ts - T&)
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where these temperatures are known, i.e., T, = 80 °C and 7, = 20 °C. Proceeding to determine A, the fluid
properties at 20 °C from Table B-3 (SI) are:

pp = 1116 kg/m* Cpp = 2382J/kg-K

e = (1077)(2.98 X 10" %)Y kg/m-s v, = 19.18 x 1074 m%s

= (1116)(19.18 X 10 %) kg/m s Pr, = 204

k, = 0.249 Wim-K

The Reynolds number is
VD _ (5 m/s)(0.09 m)

= = _ _ .
Hew v, 1918 X 10~* m?%s 23 460 — Turbulent
and
50m
b= =556
u 0.09m
and by (7.34)
L 174
p| = (0623)Rep® =771
L L
BI. <p 60 (use(740)
h, C
_ =]+ —
h LID

The given calming section has its L/D = 0.27/0.09 = 3.0, so the C value from Table 7-4 should be
approximately 3 (same as for L/D = 2.8). Thus

h, 3.0
==1+4+—=1,
7 5z 1.054

To obtain A, we could choose either the Sieder-Tate (7.48a) or the Petukhov (7.48b) equation. Both of
these are valid for large property variations and relatively large temperature differences between 7, and

T for liquids (and gases). Using eq. (7.48a):
— ola
Nup = E"’—D = O.M(Ren)“-“(rrh)m( ."‘_")
k_l, ,.r.

5

2.14 x 1072

014
321 % w-’) = 650

= 0.027(23 460)"*(204) (
_ 0.249 Wim-K
0.09m

(To use Nu,, as average over entire length, evaluate properties at T), except p,.)
Using eq. (7.48b):

oy (650) = 1.798 x 10° W/m?*-K

— (f/8)Rep Pr uy \ "
Nu = T T 127 ) (P — 1) (E)

where by eq. (7.48¢)

f= (0790 In Rep - 1.64)_2 (0[) (] 82 log]" RBD - 1.64)-2
= [0.790In (23 460) - 1.64] 2 = 0.251

Thus,

Nu,,, = (0.0251/8)(23 460)(204) (2.14 x 10-1)ﬂ"
Up: =

1.07 + 12.7(0.0251/8) (204" — 1] \ 321 X 107
= 740
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which is 13.8% larger than Nu,, ;. Choosing the Sieder-Tate result,
Geone = E-'JJA)(Ta - Tb)
= (1.798 % 10° W/m?- K)(5 m)(m)(0.09 m)
% (B0 ~20) °C = 152511 W
The Petukhov equation result is 173 626 W, 13.8% larger than that obtained with the Sieder-Tate equation.
The Sieder-Tate equation is usually no better than 20% error, whereas the Petukhov equation is within
10% error. The advantage of the Sieder-Tate equation is its simplicity, making it easier to use. Note

that we have omitted the 5.4% increase in /i, over the short entry region which is about 5% of the tube
surface area.

Estimate the heat transfer rate from internal water flow at a mean bulk temperature of 20°C
to a 0.9 m long by 0.15 m diameter pipe at 0 °C. The velocity is 0.16 m/s.

At the bulk temperature the fluid properties, from Table B-3 (SI), are
= 1.006 X 10 "m%s k = 0.597 W/im-K Pr =702
The Reynolds number is

VD _ (0.16 mis)(0.15 m)
v 1.006X 105 ms

Re[) = = 2.39)‘: lO‘

This is a short-tube case, since L/D = 6. Equation (7.34) gives the length-to-diameter ratio required to
ascertain whether to use (7.45) or (7.46).

L

L L L
= X . '.1’4=7.'7 o —_= — T —
(0.623)(2.39 % 10%) 5 D 6 or ) D|.-

making (7.45) applicable.
A,
h
For i we shall use (7.47):

175 0275 1S 275
Re,,l :L“[(Z.sgxm‘)] =130

= (1.11) [W &

= X (0023)Regr P12

"».‘J

which, to use as an approximate value over the tube length, requires property evaluation at Ty
Then
i = (0.597 W/im-K)
0.15m
= 523 x 10° W/m*-K

(0.023)(2.39 x 10*)"¥(7.02)**

Therefore, the heat transfer coefficient in this entrance region pipe is
h, = (1.30)(523 Wim?-K) = 680 W/im*-K
The heat transfer rate from the water is given by
q = h.A(T, — T.) = (680 W/m?- K)[#(0.15 m)(0.9 m)](20 - 0) °C = 5768 W

Note that we were forced to use the linear temperature difference for this constant 7, problem since
insufficient information is available to use the better AT, eq. (6.57), (see Problem 7.20). Also, in Problem
7.11 we have fixed (T, — T,), area, and parameters determining 4. Then a single value for g is the
result.

What force is exerted by a 13.5 m/s wind blowing normal to a 1.5 m diameter disk-shaped sign
mounted on a 0.15 m diameter by 3.0 m long post? Air temperature is 27 °C (300 K).
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7.13.

At 27°C, from Table B-4 (SI) v = 15.68 X 10 “m%s and p = 1.1774 kg/m*. The total drag force is
found by summing that on the cylindrical post and that on the circular disk, using (7.50).

Vi

Fn - 28

[(CHA )pml + {C,, A )uusk]

For the post

V.D _ (135mis)(0. Hm)
1568 % 107" m

=1.291 x 10°

Re, =

and the drag coefficient for the post s 0.90 (from Table 7-5 with LfD = 20). For the disk,

V.D (135 m/s){(1.5m)

Re, = S Tsesx i0rmys - PIXI0
Table 7-5 gives C;, = 1.12. The total drag is, therefore,
Vz
Fp = 5 (Co A + (€]

where areas are projected frontal areas. Thus
(11774 kg/m*)(13.5 m/s)
P 2(kg-m/N-s?)
= 2558 N(57.51b)

[0.90(0.15 m)(3 m) + 1.12(;)(1.5 rn)z]

A 6in diameter by 2 ft long cylinder is located axially with a stream of 68 °F water flowing at
10 fps. Compare its profile drag to its skin-friction drag.

From Table B-3 (Engl.), p = 62.46 b, /ft’, v = 1.083 X 10~* ft¥s, and

V.D _ (10fus);fr)

To83x 10 1 H62x10°

Re, =

giving a drag coefficient of 0.87, from Table 7-5, since L/D = 4. The total drag is given by (7.50).

pVi
2g )A

it

&—Q(

l = 16.57 I,

- (©87) l (62.46 Ib, Ji*)(100 f2/s?) | ]

2(32.2 1b,, - ft/lb;-s%)
Considering the shear, the appropriate Reynolds number is

VoL _ (10fus)2 ft)

s 0B %10 s - X0

Re, =
and the flow is turbulent. Treating the cylindrical surface as a fat plate, the boundary layer thickness at
the end of the cylinder is given by (7.18) as

_(0316)L _ (0376)(211)
Re/>  (1.85 x 1072

= 0.042 ft

and we may neglect the effects of curvature since §< R. The average skin-friction drag coefficient is given
by (7.20):
0.072 0.072

C= = =
TR (Iasx oy POM02
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where for simplicity we have assumed a negligible laminar leading edge. The skin-friction drag is

pVZ
56 (%)

(62.46 Ib,,/ft*){ 100 ft¥/s?) ] ﬂ_( 1

= (000i02) [ 2(32.2 b, -ft/lb, - s?) Eﬂ) @ =122l

The profile drag may now be determined as

Fp =F, - F, =16.57-122=15351b,
and
F, 15.35
L =" = 1258
F 1.22 5

which gives us some feel for the influence of the wake in Fig. 7-6(a).

Air at 27 °C flows normal to a 77 °C, 30 mm o.d. water pipe. The air moves at 1.0 m/s. Estimate
the heat transfer per unit length.

Assuming atmospheric pressure, the required properties (from Table B-4 (Engl.)), evaluated at

T.+T,
2

T, =52°C

are:
v = (19.63 X 107%)(0.0929) = 1.824 X 10~* m?/s
k, = (0.016 255)(1.7296) = 0.0281 W/im-K  Pr, = 0.702

which agree well with values from Table B-4 (SI).
The Reynolds number is

VoD (1 m/s)(0.030 m)
Y, 1.824 X 10> m%s
which defines the appropriate constants from Table 7-6 to be used in (7.5/a); therefore,

0.0281 Wim-K
0.030m

= 1645

Re!); =

k= (0.615)(1645)"* = 18.16 W/m?- K

Hence, the heat transfer is

q

_ W
T = hnD(T,~ T.) = (Is.lﬁﬁ) (0.030 m)(50 K) = 85.58 W/m

Estimate the heat transfer from a 40 W incandescent bulb at 127 °C to a 27 °C airstream moving
at 0.3 m/s. Approximate the bulb as a 50 mm diameter sphere. What percentage of the power
is lost by convection?

From Table B-4 (Engl.) the required parameters, evaluated at 7, = (T, + T.)/2 = 77°C, are:
v = (22.38 X 107%)(0.0929) = 2.079 X 10~° m?¥s
k= (0.017 35)(1.729) = 0.0300 W/m-K  Pr = 0.697

which agree well with values from Table B-4 (SI).
The Reynolds number is

_ VaD _ (0.3 mis)(0.050 m)

Reoy v 2079% 10" m¥s

=T7215
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7.16.

and (7.51a) gives the average heat transfer coefficient as
_ k
k= —5 (037)(Re,,))"*

_ 0.0300 Wim-K

ﬂﬁ= 2.
Tos0m (03N(721.5)" = 11.52 Wim’-K

The heat transfer is given by

w
m?

g=FA(T.~T.) = (u,sz K)(%) (0.050 m)2[(127 — 27) K] = 9.05 W

The percentage lost by forccd convection is therefore

9.05
—5 (100%) = 2261%

In Problem 8.8 it will be shown that the loss by free convection is about the same as this forced
convection loss; hence both mechanisms should be considered.

A 5.0 cm square shaft rotates at a constant velocity. The shaft temperature is 500 K, and 300 K
atmospheric air flows normal to it at 6.70 m/s. Estimate the heat transfer.

From Table B-4 (8I), at T, = (7. + T,)i2 = 400 K, the required properties of the air are:
v =2590X 10 "m¥s  k,=0.03365 Wim-K Pr, = 0.689

Since the shaft is rotating, we shall take the average of the two As given by (7.51a) for the second and third
configuration rows of Table 7-6. With the flat face normal, the Reynolds number is

(670 m/s)(0.05m)
Rew = 2590 10 omrs 20 X 10"

With the shaft in the diamond configuration,

(670 m/s)(0.05V2Zm)
Rew = o0 x 10rmys 00X 10°

The respective convective coefficicnts are:

_ 0.03365W/m-K
flr 0.05m
= 3255 Wm?-K

i 003365 Wm K
‘diamuend 005 m 2

(0.092)(0.689)(1.29 x 10%)0#7S

(0.222)(0.689)(1.83 X 10%)° 5#

= 29.94 Wim*-K
so that
_  32.55+29.94
h= — = 31.25 Wim?-K

Then if P is the perimeter of the shaft, the heat transfer is given by

-fj = AP(T, — T.) = (31.25 W/m?-K)(4)(0.05 m)(500 — 300) K
= 1250 W/m
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Water droplets at 87 °C in a cooling tower have an average diameter of 0.15 cm. The airstream,
which moves at a velocity of 0.9 m/s relative to the water drops, is at 17 °C. Determine the heat
transfer coefficient from water to air.
At the film temperature, 7, = (T, + T.))2 = 52°C, the necessary air properties are taken from Table
B-4 (SI):
vy = 182X 107" m?s k, = 0.028 14 W/m-K Pr,; = 0.703
The Reynolds number is

VD (0.9mis)(0.15% 107% m)

- =74,
y 182 % 10 *m?/s 74.2

Ren,r =
If we assume the interference from adjacent water droplets is negligible, (7.52a) is valid; hence:
_ k
h= B"-(l]ﬁ?)(Re,,,)”"

_ 0.02814 W/m-K

—————————— 06 2,
01510 T (U3TNT1.2)"" = 91.98 Wim™- K

An in-line tube bundle consists of 19 rows of 2.5 cm o.d. tubes with 12 tubes in each row (in the
direction of flow). The tube spacing is 3.75 ¢cm in the direction normal to the flow and 5.0 cm
parallel to it. The tube surfaces are maintained at 400 K (127 °C). Air at 300K (27°C) and |
standard atmosphere pressure flows through the bundle with a maximum velocity of 9 m/s.
Calculate the total heat transfer from the bundle per meter of length.

At the film temperature 1, = (7. + 7,)/2 = 350 K, the fluid properties from Table B-4 (SI) are
¥y =2076x10""mis  k,=0.03003W/m-K  Pr, = 0.697
resulting in a maximum Reynolds number of

Vi D _ (9 m/5)(0.025 m)
” 2076 107

Remux.,' = = 10 838

and both eqgs. (7.54a) and (7.54b) apply. In terms of Fig. 7-8, the geometric configuration is

35 5 bS50
25 ’ D 25

Table 7-7 gives ; = 0.299 and n = 0.602. Thus
C,(Re,,,)" = 0.299(10 838)" "2 = 80.299

a—

=2

)

Then, by the two equations

k 0.03003 W/m-K
7.54a): =dc = e~ (80.
(7.54a) R Dc.(lte.,,...) 005 m (80.299)
= 96.45 Wim*- K
ok 003003 Wim-K
7.54b): i = =L C\(Re,,, ) (1.13)(Pr )1 = e (80 ) 697)
( ) 1= Ci(Ren,)"(1.13)(Pr) G035 m (80-299)(1.13)(0.697)

= 96.64 W/im*-K

The closeness of results with thesc two equations is as expected since both should be equivalent for air with
Pr=107.

The total heat transfer per unit length is g/l. = AwDN(T, — T..), where N is the total number of
tubes.
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Choosing the first result (arbitrally)

% = (96.45 W/m?- K)(#)(0.025 m)(19)(12)(400 — 300) K
= 1.727 X 10° W/m

7.19. Repeat Problem 7.17 using the Nu,, expression (7.52b) which is for a falling liquid drop.

For eq. (7.52b) propertics are evaluated at T, which in the present case is 17 °C (290 K). From Table
B-4 (SI)
v, = 1479 X 10" ms k. =0.02545 Wim-K Pr. = 0.7108

The Reynolds number is

(0.9 m/s)(0.15 X 1072 m)

Re, = V. D/v= =01.27
o v 1479 % 10-F m¥s

Then,

Nu,, = 2 + 0.6Re!Z Pr'”
=2+ 0.6(91.27)"2(0.7108)"* = 7.11

h = (kID)(Nuy)
_ 0.025 45 W/m-K

98) = 120.73 Wim?-
15570 T (6.98) = 12073 Wi K

Note that this £ is 30% larger than that obtained with eq. (7.52a). But equation (7.52a) is more specifically
valid for rigid sphercs, whereas eq. (7.52b) is more suited to the falling water droplet.

7.20. Reconsider Problem 7.11 with all parameters unchanged except that the water inlet and outlet
temperatures are known and the tube length is unknown. 7,,=15°C and T,, =25°C.
Calculate the required tube length, L, for the heat transfer rate of 5768 W.

The mean bulk temperature is (15 +25)/2 = 20°C, so the propertics from Table B-3 (SI) are
unchanged from those in Problem 7.11. Thus Re,, A, p, and ¢, are:

Re;, = 2.39 % 10* p = 1000.52 kg/m*
k=523 Wim*-K ¢, = 4181.8 Vkg-K

and we will assume a trial L/D of 6 (which is assuming I = 0.9m), as in Problem 7.11, since L is
unknown. Then

h. = 1.30h = 1.30(523 W/m-K) = 680 W/m* K
At this value of #,, the g is known from Problem 7.11,

g = 5768 W
The energy balance and rate equation give
g = h,AAT,,
where
AT, — AT, -0)-(15-
Al =5 (zrufi;) -2 I: ()251(1]5:; 2= 10s8C
Then

q = h(7D)(L)(AT )
[ = q _ 5768 W
h(7D)(AT,,) (680 Wim?-K)(=)(0.15 m)(19.58 °C)

=092m
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To improve the result, we could use this L value in eq. (7.45) to refine the inlet region A value, but
the increased length is within the expected accuracy of the equation. The refined f, would be
h, = 1.27h = 1.27(523) = 653 W/m?-K. The length based on this latter value is 0.96 m. Notice that we used
the AT, for this constant 7, case, and that with inlet and outlet temperatures known, the area (in this case
length) is the result. If area were also stipulated at the outset, the problem would be over-specified.

Notice also that we are using A as average value over the tube length. This approach yields a first
approximation provided the fluid properties are evaluated at T,. Finally, note that A7, has almost the
same value as the arithmetic (7, — T7,).

Liquid sulfur dioxide in a saturated state flows inside a 25 mm i.d. tube, 5.0 m long with a mass
flow rate of 0.15 kg/s. The tube is heated at a constant surface temperature, T, of —10°C, and
the inlet fluid temperature is T, = —40 °C. Using the Sieder—Tate equation (7.48a), determine
the exit fluid temperature T, . This will require use of (7.48a) averaged over length; hence
properties are evaluated at Ty,

Since T),, is unknown, a fluid mean temperature 7, must be estimated for property evaluation.
Clearly —40°C=< T, < —10°C. For a first trial, guess 7, , = —30°C (T, = —20°C), then:
Trial I: From Table B-3 (SI) at =30°C = 7, , and 7, = —10°C:
pp1 = 1520.64 kg/m?* vy = 0.371 X 1079 m?/s
~ kyy = 0230 Wim-°C Pr,, =331
ot = Vo1 pea = (0.371 X 107° m¥s)(1520.64 kg/m*)
= 564X 107" kg/m-s
Cppt = 13616 Jkg-K
= v,-p, = (0.288 X 107° m%s)(1463.61 kg/m*)
=4.22x10""kg/m's

The Reynolds number is
4z 4(0.15kg/s)

Re,,,; = Pnpr = 7(0.025 m)(0.371 X 10" ® m%s)(1520.64 kg/m’)

1.35 X 10* = 13500 (Turbulent)

Equation (7.48a) is suitable, i.e.,
— IR}
NUD_1 = ﬂ.ﬂ'Z?(Re;,)" “(Pl) vi ( ﬂ)
He

= 0.027(13 500)"*(3.31)%(5.64/4.22)"'* = 84.44
Checking entry length,

L 50m
—| =————=200>60
D l 1 0.025m
and no entry length correction is necessary. Thus,
Kk _ 0230 W/m-°C _ 2.0
h, = 3 (Nu,, ;) = 0005 (84.44) = 777 Wim*-°C

By eq. (6.55) the outlet temperature at x = . may be written as

—PL _
’r.h, v = Ts - (Tr - T-‘I‘!)Bxp“ m h ]

Cp

Thur = (~10°C) = [(~10) — (—40))(°C)
~m(0.025 m)(5 m)(777 Wim’*-°C)
(0.15 kg/s)(1361.6 W-s/kg-K)

= (~10-6.73)°C = —16.73°C

XexP[
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This value of 7,,,, together with the given T,,,, would yield T, = (40 — 16.73)/2 = —~28.36 °C. Since we
assumed T,, = —30°C, (7., = —20°C), we may need to iterate. Choosing T}, , = —15°C we have
Ty2 = (—40—15)/2 = -27.5°C. The properties are:
Trial 2: From Table B-3 (SI) at T, , = —27.5°C:

Pua = 1512 kg/m? vp2 = 0.359 X 107 ms

ky2 = 0.229 Wim-°C Pr,, =3.22

Hp2 = (0.359 X 107%)(1512) kg/m-s

Cpna = 1361.8 J/kg-K
i, = (unchanged)
i 4(0.15 kg/s)

Puyspna  w(0.025 m)(0.359 X 1074 m¥s)(1512 kg/m”?)
= 14 073 (Turbulent, in range of Sieder-Tate equation)

Re,,; =

Thus,
543 x107*

a4
322 % 10-‘) = 86.03

Nu,,, = 0.027(14 073)"“(3’22)113 (

and
0229 Wim-K

.03) = fm?-
P sy < i

k
by = =2 (Nups) = (

Calculating 7}, 2
Tpu2 = (—10°C) = [(=10) - (—40)](°C)
— 7(0.025 m)(5 m)(788 W/m?-K)
(0.15 kg/s)(1361.8 Wkg-K)

X exp

= —-16.59°C

Since we assumed for Trial 2 a value of T},,,; = —15 °C, further iteration is probably not necessary. Either
result, —16.59°C or —16.73 °C, is suitable for most purposes.

7.22. Repeat Problem 7.21 using the Dittus-Boelter eq. (7.47) in place of (7.48a).

Assume a trial T, of —15°C, giving T, = —27.5°C. Then the Reynolds number is unchanged,
LID = 200, and the Pr number is unchanged from Trial 2 of Problem 7.21. Hence the length-average Nu,
based on properties evaluated at 7, is

Nu,, = 0.023 Rel* Pr"¢ = 0.023(14 073)°*(3.22)"*
= 76.48

which is about 11% lower than that obtained in Problem 7.21. Then

(kN 0299 Wim-K - ,
= ( D)Nu,, S (765) = 101 Wim* K

and the value of T}, , is

Th." = Ta - (Ta - Tb.l)exp[ _FC)L h-]

mip

= ~10°C - (~10 + 40)(°C) exp | —LLZ DU M)(TOL) Wi’ K]

0.15 kg/s(1361.8 W-sikg-K)
~17.79°C

This is probably slightly less accurate than the result in Problem 7.21 due to the large temperature
difference (more than 6 °C for liquids). But either answer is reasonable, since the correlation egs. (7.47)
and (7.48a) are only accurate to within +20%.
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Supplementary Problems

Parallel flat plates are spaced 7.6 cm apart. Estimate the length required for the boundary layers to meet
when air at 27 °C flows between them at 30 m/s.

Ans.  2.08 m, assuming the laminar leading edge effect is negligible

Air at 300 K and 1 atm flows at 30 m/s over a 0.6 m long flat plate, which is maintained at 400 K. What is
the heat transfer per unit width from one side of the plate, assuming Re, = 500 0007

Ans. 3169 W/m

A 32 kmv/h wind blows parallel to a 30 m long by 6 m high wali. Determine the heat transfer from the wall,
which is held at 21 °C, to the ambient air, which is at —1°C. Ans. 65984 W

Ethylene glycol at 0°C flows at the rate of 23 m/s parallel to a 0.6 m square, thin flat plate at 40 °C, which
is suspended from a balance. Assume the fluid flows over both sides of the plate and that the critical
Reynolds number is 500 000. (a) What drag should be indicated by the balance? (b) What is the heat
transfer rate from the plate to the fluid? Ans. (@) S38N; (b) 63900 W

Determine the heat transfer coefficient for the flow of liquid ammonia at a bulk temperature of 20°C in
a long, 30 mm diameter tube which is at 40 °C. The velocity is 6 m/s. Are the effects of viscosity significant?
If the fluid were water, would the effects of viscosity be significant?

Ans A= 18612kW/m*-K: +1.48%: +6.22%

A 3in o.d. steam pipe without insulation is exposed to a 30 mph wind blowing normal to it. The surface
temperature of the pipe is 200 °F and the air is at 40 °F. Find the heat loss per foot of pipe.

Ans. 1291 Bw/h-ft

Atmospherie air at 70 °F flows normal to a tube bank consisting of 15 transverse and 12 longitudinal rows
arranged in-line with ¢ = 0.38in, b = 0.31 in. The tubes, which are 0.25in o.d., are kept at 200 °F The
maximum air velocity is 4 fi/s. What is the average film coefficient of the bundle? Sce Fig. 7-8.

Ans. 8467 Btu/h-ft?-°F

Determine the average heat transfer coefficient in a staggered tube bundie having twelve 20 mm o.d. tubes
per row spaced 40 mm apart in both directions. Water at 20 °C flows over the 100 °C tubes at a free-volume
velocity of 020 m/s.  Ans. 3.497kW/im? K



Chapter 8

Natural Convection

The past three chapters dealt with heat
transfer in fluids whose motion was caused
primarily by changes in fluid pressure
produced by external work. In this chapter we
shall consider natural or free convection, in
which fluid moves under the influence of
buoyant forces arising from changes in
density.

In natural convection the velocity is zero
at the heated body (no-slip boundary condi-
tion), increases rapidly in a thin boundary
layer adjacent to the body, and becomes zero
again far from the body. In practice, natural
convection and forced convection commonly
occur simultaneously. The analysis which we
make in a given case must then be determined
by which is predominant. If both natural and
forced convection are approximatcly of equal
importance, both must be accounted for in our
analysis.

8.1 VERTICAL FLAT PLATE

One of the most common, and simplest,
natural convective problems occurs when a
vertical plane surface is subjected to a cooler
(or warmer) surrounding fluid. Figure 8-1
shows the boundary layer adjacent to a heated
vertical plane surface. For convenience, the
hydrodynamic and thermal boundary layers
are shown as coincident, which occurs only
when the Prandtl number is unity (as was the
case with forced convection). When the verti-
cal plate is cooler than the surrounding fluid,
the physical problem is inverted, but the
mathematical treatment is unchanged.

At the outset the boundary layer is
laminar; but at some distance from the leading

C 7N\
C @

(GrPr > 10%)

o

control volume
_3 for integral Laminar
analysis (10* < Gr Pr < 10°%)

Fp = -;—”ﬁ(n ~T.)g

B

Fig. 8-1

edge, depending upon fluid properties and the thermal gradient, transition to turbulent flow occurs. As
a rule of thumb, transition from laminar to turbulent flow occurs when the product of the Prandtl

number and the Grashof number, where

Gr=

gB(T, - T)L' . buoyancy foree

VZ

(8.1)

viscous force

221
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equals approximately 10”. To determine Pr and Gr, consider all properties constant at either their film
temperature or their reference temperature values (see (8.16) below). In (8.1), B is the coefficient of

volume expansion, defined by
l v
= ( dT)P (8.2)

for an ideal gas having the equation of state p = pRT, B = 1/T. The Grashof-Prandtl number product
is sometimes called Rayleigh number, Ra = Gr-Pr.

Resulting as it does from density variations, free convective flow is compressible flow. However,
if the temperature difference between the plate and fluid is small, an analysis for u(x,y), v(x,y), and
T(x,y) can be made in which the density is treated as constant, except in the body force term, pg/g.,
where p must be considered a function of temperature. (It is the variation of p in this term that is
responsible for the buoyant force.)

The boundary layer assumptions of Section 6.1 are equally applicable in this quasi-incompressible
analysis. The derivation of the x-direction, laminar flow, equation of motion is identical to Problem 6.1
when the body force is included, giving

p{ du  ou ap p u
lu—+v - 8.
8 (" ax ﬁy) gty *3)
The pressure gradient along the plate results from the change in elevation; hence,
ap P
== 8
ax g ® (84)

To relate p on the right-hand side of (8.3) to temperature, we introduce the volume coefficient of
expansion written across the boundary layer:

ﬂn_l vUs ) lp—1lp.
-1.) "\t-T.

p—p=pB(T-T.) (8.5)

The approximation becomes more accurate as the temperature differential approaches zero. Substitut-
ing (8.4) and (8.5) into (8.3), we have the free convective x-momentum equation for a vertical flat
plate. Noting that the energy equation (6./8) and the continuity equation (6.3) are unchanged from
the forced convective, incompressible boundary layer case, the governing equations are:

or

X-momentum: u u + uﬂ =gB(T—T.) + udz—u (8.6)
x ay dy?
energy: u£+v£=aﬂ (8.7)
ax Ay ay* )
continuity: WMLy (88)
ox dy

Boundary conditions for an isothermal plate are:
aty =0 u=0, v=0 T=T,
aue aT

aty = = u=0 T=7T., —=0, —=0
dy ay



CHAP. 8] NATURAL CONVECTION 223

Note that the momentum and energy cquations are coupled in temperature. In forced convection,
the hydrodynamic problem could be solved independent of the thermal problem; this is not possible
in free convection.

Similarity Solution: Isothermal Plate

The free convective velocity and temperature profiles exhibit a similarity property, analogous to
that observed by Blasius for the forced convective poblem. Using the similarity parameter

y er 174
=< 8.9
n x[ 2 ] (8.9)
where Gr, is given by (87) with L replaced by x, and the dimensionless temperature
T-1T,
6= 810
T.\' -T. ( )

S. Ostrach solved the governing equations for a wide range of Prandtl numbers. His results are shown
in Figs. 8-2 and 8-3. Problem 8.1 outlines the reduction of three partial differential equations to two
ordinary differential equations,
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Fig. 8-2. Laminar, free velocity temperature profiles. Fig. 8-3. Laminar, free convective temperature
[From S. Ostrach (1953), NACA Report 1111.] profiles. [From S. Ostrach (1953), NACA Report

1111]
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Knowing the temperature distribution permits determination of the local heat flux. At the wall,
heat transfer takes place by conduction only, since the fluid velocity is zero; therefore,

aT k Gr.\'* d6

il MR (T) = @11

This energy must be convected away; hence,
q_ WT,~T.) (8.12)

A

Combining (8.11) and (8.12), the local Nusselt number is
hx Gr \'"* d6

Nllx = T = - ( 2 ) 5 - (813)

It is obvious from Fig. 8-3 that the slope of the temperature profile at the wall depends upon the
Prandt]l number of the fluid. With the slope at the wall, —(d#/dmn)|,-,, written as a function of Prandtl
number, —F,(Pr), (8.13) becomes

174
Nu, = F.(l’r)(G:") (8.14)
Some values of F; are given in Table 8-1.
Table 8-1. Similarity solution values of F,(Pr) = Nu, (Gr/4)™"* for laminar flow along an
isothermal, vertical wall.
Pr 0.0 0.72 0.733 1.0 20 10.0 100.0 1000.0
Fi(Pr) 0.0812 | 05046 | 05080 | 05671 | 0.7165 1.1694 2.19 3.966
By the usual method of averaging,
1"
h=—| h
LJ (x)dx
1
resulting in
— hL 4 Gr \"*
=—==-F(Pr){ — .
u= ot =2 r)( 4) (8.15)

This result is valid for an isothermal vertical plate in the laminar flow regime 10* < GrPr < 10°, below
which the boundary layer approximations are invalid and above which the flow becomes turbulent, and
for constant fluid properties except for density. Properties are evaluated at the reference temperature

Tu=T,+ (038)(7;- -T) (8'16)

Similarity Solution: Constant Heat Flux

For a uniform heat flux along the plate, (8.6), (8.7), and (8.8) are valid, but the boundary condition
which must be used is g/A = constant. With this condition we obtain

Nu=

i 1/4
TL = Fy(Pr) (9:-&) (8.17)

where F(Pr) = Nu,Gr, '
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where F,(Pr) is the negative of the 8 slope at n = 0 for constant g/A. Some values of F; are given in
Table 8-2.

Table 8-2. Similarity solution values of
F,(Pr) = Nu(Gr /4)" for laminar flow along a uniform
surface heat flux, vertical wall.

Pr 0.1 1.0 10.0 100.0

Fx(Pr) 0.335 0.811 1.656 3.083

Integral Solution: Isothermal Plate

By equating the sum of the external forces in the x-direction to the net x-momentum flux out of
a control volume which extends through the boundary layer (see Fig. 8-1), we get the integral
momentum equation

d %, 8 Au

1

y=0

in which the thermal and hydrodynamic boundary layers have been assumed of equal thickness, as
shown in Fig. 8-1. The integral energy equation is obtained as in Problem 6.14:

aT

a_

ay

These equations, which are coupled because of the gravitational body force, may be solved

simultaneously when the velocity and temperature profiles are known or can be closely approximated.

Logical assumptions for the profiles are:

d &
- = [J: (T — T)udy] (8.19)

_T-T. (. y¥
0= T T = (1 3) (8.20)
and
22 1_y2 821
V & & (8.21)

In (8.21) the fictitious velocity V, chosen to nondimensionalize the expression, is an unknown function
of x, as is 8. These parameters may be intuitively expressed as exponential functions:

V=Cx" and 5= GCx"
Substituting (8.20) and (8.27) into (8.78) and (8.19) and integrating, we get

1d, ,. 1 v

105 ax (V) =388~ )8 — v
T,-T. 1 d

20— = (T, - T) 5 (V)

which can be further simplified by substituting the expressions for V and 8, and equating exponents
to get a = 1/2 and b = 1/4. Upon simplification, the results are

0.952 + Pr)”“

&
—=(3.93
X ( )( Gr, Pr?

(822)
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and
v Gr, 12
V=617 (0.952 n Pt) (8.23)
At the wall the heat balance is
q aT
—=—-k— =T, — Tx
A= Koy THET

from which A = 2k/8, upon using the temperature profile, (8.20). This, together with (8.22), gives the
local Nusselt number as

hx  2x Gr, Py? |
= =2 - (0.508) | —ot—— .
= Nu, = -~ = = = (0.508) [ 05 T T (8.24)
Whenever Nu, x Gr!”, as in (8.74) and (8.24), the average heat transfer coefficient is given by
— hL 4
u="7=>Nu (8.25)

In (8.24) and (8.25), as in the exact solutions (8.74) and (8.15), fluid properties are evaluated at the
reference temperature (8.16).

When GrPr>10% the flow becomes turbulent. Assuming the one-seventh-power law for the
velocity and temperature profiles, E. R. G. Eckert and T. W. Jackson obtained a turbulent
[free-convective equation

Nu, = - (0.0295) [l

it 25
Gr. Pr ] (8.26)

+ (0.494) Pr>”
where the fluid properties arc cvaluated at the mean film temperature, 7= (T, + 7..)/2. Obtained by

an integral analysis, this result can be approximated by a simplified equation and integrated to give an
average Nusselt number

=~

Nu = — = (0.0210)(Gr, Pr)** (8.27)

8.2 EMPIRICAL CORRELATIONS: ISOTHERMAL SURFACES

In the preceding section we have seen that the Nusselt number for free convection is a function
of the Grashof and Prandtl numbers. Engincering data, for both the laminar and turbulent regimes,
correlate well for many simple geometric configurations in a single equation,

hL —
= i Nu = C(Gr.Pr)* (8.28)
where L is a characteristic length appropriate for the configuration. As a rule of thumb, the exponent
is usually 1/4 for laminar and 1/3 for turbulent flow. All fluid properties are evaluated at the mean film
temperature, 7, = (T, + 7.)/2.

Table 8-3 gives the constants in (8.28) for common geometric configurations. The characteristic
lengths L, and L, in the table refer to vertical and horizontal dimensions, respectively. “Large”
cylinders are those with radii which are large compared to the boundary layer thickness 8. The values
cited for horizontal plates are for square configurations; however, they are sufficiently accurate for
engineering calculations on rectangular plates when the length-to-width ratios are small. For

horizontal circular disks of diameter D, the constants pertaining to horizontal plates may be used,
together with L = (0.9)D.
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Table 8-3. Corrections for several free convection situations. [Summary of works from
several investigators.]

Characteristic

Configuration Gr; Pr Length, L C a
Vertical Plates and Large Cylinders
Laminar 107" to 10° L. See Fig,. 8-4
Laminar 10* to 10° i, 0.59 1/4
Turbulent 10° to 10" L, 0.13 113

Small Vertical Cylinders (Wires)
D Sec Fig. 8-5

Horizontal Plates
Laminar (heated surface

up or cooled surface

down) 10° 1o 2 x 1¢Y L=+ L) 0.54 1/4
Turbulent (heated surface

up or cooled surface

down) 2% 107 to 3% 10" L= (L,+Ly)2 0.14 173
Laminar (heated surface

down or cooled surface
up) 3IX 107 to 3 x 1Y L= (L, +L)2 0.27 1/4

Inclined Plates (small 6)
Multiply Grashof number by cos 6, where 6 is the angle of inclination from the vertical,
and use vertical plate constants

Long Horizontal Cylinders (0.005 cm < D < 30.0 cm)

Laminar <10? D See Fig. 8-6
Laminar 10* to 10° D 0.53 1/4
Turbulent 10° to 10'2 D 0.13 173
Fine Horizontal Wires (D < 0.005 cm)

Laminar D 0.4 0
Miscellaneous Solid Shapes (spheres, short cylinders, blocks)

Laminar 107* to 10° r_a1.1 Sce Fig. 8-7
Laminar 10% to 10° L L. L, 0.60 1/4

8.3 FREE CONVECTION IN ENCLOSED SPACES

227

Free convection is influenced by other surfaces or objects being near the surface which generates
the convective currents. Two cases, horizontal and vertical fluid layers, commonly occur. In both we

define an average heat transfer coefficient /i by

q =hA(T, - T)

(8.29)
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Fig. 8-4. Correlation for heated vertical plates.
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where T, and 7, are the temperatures of the opposing surfaces, each of which has area A. Fluid
properties are evaluated at the arithmetic mean of the two surface temperatures, (7, + 7,)/2. And the
characteristic length in the Grashof number is the distance between the surfaces, b; e, if 7, > T,

_ 3

Horizontal Air Layers—Isothermal Walls

For horizontal air layers there are two cases: (1) if the upper plate is at the higher temperature,
no convection occurs (since the lighter fluid is above the more dense fluid); (2) if the lower plate is
warmer, an unstable condition exists, and convective motion occurs.

Upper plate warmer. As there is no fluid motion, the heat transfer is by conduction, and the heat
transfer coefficient in (8.29) can be evaluated by
- T,— T
q= hA(T[ - Tz) = kA(sz)
or

Nu, = - 10 (8.31)

Lower plate warmer. The fluid motion depends upon the Grashof number Gr,,. At Grashof numbers
less than about 2000, the convective velocities are very low; heat transfer is primarily by conduction,
and (8.37) applies. As the Grashof number increases, the conduction and convection modes coexist,
until convection predominates at Gr, > 10°, and the following correlations apply:

Nu, = (0.195)Gr}*  10°< Gr, <4 x 10° (8.32)
or
Nu, = (0.068)Gr}®  Gr,>4 x 10° (833)

The lower range, (8.32), corresponds to a
well-ordered process in which the fluid circu-

lates in small hexagonal cells, called Benard NS b
cells, rising in the center of each cell and 7 4 A
descending at the boundaries (Fig. 8-8). P <
Cold
T > o~

Horizontal Liquid Layers—Isothermal "] W
arm
Walls F ﬂ

S. Globe and D. Dropkin recommended
the following correlation for mercury, water
and silicone oils, over the wide range
0.02 < Pr < 8750:

Fig. 8-8. Sketch of Benard cells.

Nu, = (0.069)Gr}*Pr*4” 3% 10°< Gr, Pr<7 x 10° (8.34)

Fluid properties are evaluated at the average of the two surface temperatures.

Vertical Enclosed Spaces

The effects of geometry are more complicated in vertical spaces than for horizontal layers. Both
plate height L and spacing b are important, in addition to the Rayleigh number Ra, = Gr,Pr. R.
K. MacGregor and A. F. Emery characterize the behavior in regimes, as shown schematically in
Fig. 89.
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Vertical air layers—isothermal walls. The following results have ranges of applicability approxi-
mating the regimes shown in Fig. 8-9.

Nu, = 1 Gr;, < 2000 (8.35)

or
1%
Nu, = (0.18) Gr}* E 2X 10V < Gr, <2 X10° 8.36
5 )

or

_ L —im

Nu, = ((]‘065)6:,'."‘(—5) 2x10°< Gr, < 1.1 x 107 (8.37)

Fluid properties are evaluated at (7, + 73)/2. These equations are valid for L/b > 3; for smaller values,
the correlation for a single vertical plate should be applied to each surface.

Typical velocity and temperature profiles

AoE A

e

Laminar
| boundary layer flow

—

|-——.- Turbulent
| boundary layer flow

|
- Asymptotic flow *-I
l -ll |

q
A

Conduction
regime
Transition

|

|

ir, T
|

|

. W’

!
|
]
-0

' i’ 3% 0%
Gr, Pr

Fig. 8-9. Schematic diagram and flow regimes of the vertical convection layer. [From R. K. MacGregor and
A. FE Emery, The American Society of Mechanical Engineers, Trans. ASME, J. Heat Transfer, 91: 361 (1969).
Reprinted by permission.]

Vertical liquid layers—constant heat flux. The heat wransfer coefficients for a number of liquids in
vertical enclosures with constant heat flux are given by the following relations.

. -(30
Nuy, = (0.42)(Gr,, Pr)" Prt"? (%) (8.38)
for
10° < Gr, Pr < 107 l<Pr<2x10* 10<L/b<40
and
Nu,, = (0.046)}(Gr, Pr)'* (8.39)
for

10° < Gr, Pr < 10¢ 1<Pr<20 1< Lib<40
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Other Geometrical Configurations
For air enclosed between two concentric spheres E. H. Bishop, L. R. Mack, and J. A. Scanlan give
the convective parameter in terms of the effective thermal conductivity, k.,
k
-k-" = 0.106Gr}? (8.40)

for
2 %X 10* < Gr, <3.6 X 10° 0.25<bir;<1.50

where b is the difference between the sphere radii, b = r, — r,. The heat transfer is then given by the
steady-state conduction equation for a spherical shell,

_A4mk,nr,

r‘! - rl

q (T\—T,) (8.41)

L. B. Evans and N. E. Stefany showed that transient free-convective heating or cooling in closed
vertical or horizontal cylindrical enclosures is correlated by

Nu, = f-’,-?- = (0.55)(Gr Pr)*  075<LID<20 (8.42)

where the Grashof number is formed with the cylinder length, and the fluid properties are evaluated
at Ty = (T, + T.)/2.
Free-convective coefficients inside spherical cavities of diameter D are given by FE Kreith:

Nup = (0.59)(GrpPr)*  10° < GrpPr<10° (8.43)
Nup = (0.13)(GrpPr)"?  10° < GrpPr < 10" (8.44)

In these equations the Grashof number is based on the cavity diameter, and fluid properties are
evaluated at the mean film temperature.

84 MIXED FREE AND FORCED CONVECTION

Throughout Chapters 6 and 7, on forced convection, the effects of buoyancy were neglected, a
valid approach in moderate- to high-velocity fluids. Free convection may be significant, however, when
low-velocity fluids flow over heated (or cooled) surfaces. A measure of the influence of free convection
is provided by the ratio

Gr N buoyancy force
Re’ inertia force

(8.45)

whose significance may be verified by combining (5.7/6) and (8.1). For Gr/Re? > 1.0 free convection is
important. The regimes of convection are:

1. Free convection: Gr> Re? (Sections 8.1, 8.2, and 8.3)

2. Forced convection: Gr < Re? (Chapters 6 and 7)

3. Mixed free and forced convection: Gr = Re? (this section)

Combining these with the two hydrodynamic domains—laminar and turbulent—yields 3 X2 = 6
subregimes. These are mapped in Fig. 8-10 for flow in vertical tubes and in Fig. 8-11 for flow in

horizontal tubes. These figures may be used to ascertain whether superimposed free convection is of
significance for

D
—2 —
107 <Pr—<1.0
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Fig. 8-10. Regimes of flow in vertical tubes. [Adapted from B. Metais and E. R. G. Eckert, Trans ASME,
Ser. C, J. Hear Transfer, 86: 295 (1964). Used by permission of the American Society of Mechanical Engincers.]

The Grashof number is formed with the tube diameter as the characteristic length and with the
difference between the tube wall and the bulk fluid temperatures.
In the correlation equations given in Fig. 8-11, Gz is the Graerz number, defined as

D
Gz = ReDPrI (8.46)

85 NEWER CORRELATIONS

There continue to be newer correlation equations in the area of natural convection. These may be
found in more extensive heat transfer texts, but we will introduce only a few of the more frequently
encountered geometries/empirical equations. Specifically, we will treat only those for the vertical planc
wall and the horizontal cylinder with isothermal surfaces.

Long Horizontal Circular Cylinder— Isothermal Surface

A widely used cquation is the Churchill and Chu correlation, which covers a wide range of
Rayleigh numbers. This is

(8.47)

— 0.387Ralé 2
Nu, = {(}.6(} + a5 ]

[1 + (0.559/Pr)*1]¥27

which is valid 10~* < Raj;, < 10'? and propertics are evaluated at T;. For gases 3 = 1/T;.
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Fig. 8-11. Regimes of flow in horizontal tubes. [Adapted from B. Metais and E. R. G. Eckert, Trans. ASME,
Ser. C, J. Heat Transfer, 86: 295 (1964). Used by permission of the American Society of Mechanical Engineers.]

Vertical Plate —Isothermal Surface

For constant 7,, Churchill and Chu recommend the following correlation which is valid over the

entire range of Ra, with properties evaluated at 7,

——me (0.387Ral* 2
Nu, = {0.325 + ar }

[1 + (0.492/Px)* 1]

Slightly improved accuracy results for laminar flow with constant 7, by using

0.670Ra}"
[1+ (0.492fpr)9m.]4;g

where Ra, <t 10° and properties are evaluated at 7).

Nu, = 0.68 +

Vertical Plate — Constant Heat Flux

(8.48)

(8.49)

The foregoing two equations for the isothermal plane wall can be used with good accuracy for the
constant heat flux problem provided that Nu, and Ra, are based on the temperature difference at the
plate height midpoint. Thus, properties and AT are based on A7, = T(L/2) — T... Then h = ql/AT .,

and a trial-and-error solution is necessary.
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Solved Problems

Using Pohlhausen’s similarity parameter,
B y Gl’, 144
K x\ 4
and a stream function y(x, y) that involves an unknown function f(n),

o) = 10 [ ()|

outline the reduction of the three partial differential equations (8.6), (8.7), and (8.8) to two
ordinary differential equations. Cite the boundary conditions.

From the definition of a stream function ,

oY
u=— and v=-——
dy ox

s0 that (8.8) is satisfied. Expressing the velocity components in terms of x and 7, we get

W= e [4»(-‘1)] ! (G")m - Wnap

ay  an ay P! 2 P
e ro ol o
=2 -3
Defining a dimensionless temperature,
=

and taking the respective derivatives and substituting into (8.6) and (8.7), we get

T3 - 2AL ) 6=0
6" +3Prfe’ =0
where the primes indicate differentiation with respect to . Although 8 can be eliminated between these
two equations, it is simpler to consider them as simultaneous equations coupled through the function f.

Each solution must be for a particular Prandtl number, since Pr appears as a parameter. The boundary
conditions are:

at = f=0, =0 6=1
as n— x: ff—0 6—0

Figures 8-2 and 8-3 give the solution for a wide range of Prandtl numbers.

Water is heated by a 15 cm by 15 cm vertical flat plate which is maintained at 52 °C. Using the
similarity solution of Section 8.1, find the heat transfer rate when the water is at 20 °C.

At the reference temperature, 7T, = 7, + (0.38)(7.. — T,) = 40°C, the pertinent parameters from
Table B-3 (SI) are:

p = 994.59 kg/m’ k = 0.628 Wim-K
v = 0.658% 10 “m¥s Pr =434
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84,

From Fig. 8-3, the temperature gradient at the wall is, for Pr = 4,
do

— = —0.9=—-F(P
d_n et 1( ')
and (8.15) gives the average heat transfer coefficient as
- 4 k {Gr, )""

In order to get the Grashof number, the coefficient of volume expansion 8 may be obtained from
(8.5), where p. is taken as the density at a temperature only slightly removed from the reference or film
temperature, Choosing this as 38 °C,

p= = pag = 995.18 kg/m*
by interpolation in Table B-3 (SI) therefore,

- 1/994.59) — ;
B = P [—-———-——("":g - ;gp’*‘)] = 995.18 [( LR '8)] = 297%10°*°C"!
Then
T,-T.) L
Gr, - 8B8( - )
_ (98 m/s?)(2.97 X 1071 °CY)|(52 - 20) °CJ(0.15 m)* _
B (0.708 x 107y m¥/s? = 724x10°
and

4 X . . X w4
IE=§m9][045.28\.wm K”?244 10*‘] P

0.15m
The heat transfer is then
g = hA(T, — T..) = (583 W/m?-K)(0.15 m)?[(52 - 20) °C] = 4198 W

Solve Problem 8.2 using the empirical equation (8.28).
At the mean film temperature, 7, = (T, + 7..)/2 = 36 °C, the pertinent parameters are:
k = 0.6218 Wim-K Pr=4876 Gr.=6.019 %10 Ra = Gr, Pr = 2.935 x 10

p = 99577 kg/m* v=0.7275 % 10~* m%s e = 3.01 X 1074 K™!
The flow is turbulent; Table 8-3 and (8.28) give
hL

* - (0.13)(Gr, Pr)'"

0.6218 W/m?-K

b= 15m

(0.13)(2.935 X 10°)'* = 771.6 Wim?-K

This gives a larger value for the heat transfer than that obtained in Problem 8.2, i.c.,
771.6
Gemp =~ (4198 W) = 556 W

Itis worth noting here that this value is perhaps more reliable than that of Problem 8.2, since the similarity
solution required an estimation of the slope in Fig. 8-3.

Assume that the heating element of Problem 8.2 is a 5.0 cm by 45.0cm rectangle rather than
being square. With the five cm dimension vertical, estimate the heat transfer rate.
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This changes the Grashof number, viz.

Scm
15cm

Gr, = ( ) (6.018 X 10%) = 2.229 X 107

and
Gr, Pr = (2229 x 107)(4.876) = 1.087 X 10°

The laminar constants of Table 8-3 give

% = (0.59)(Gr, Pr)'"

where

06218 Wim-K

i = 0.59)(1.087 x 105)** = 2.
i T (0-59)(1.087 0%)"* = 749 W/m?-K

This gives the heat transfer rate:
q = RA(T, — T.) = (749 W/m?-K)(0.0225 m?)(52 — 20)(°C) = 539 W

Comparing this result with the square-plate empirical result of Problem 8.3, we conclude that the square
plate is better.

Estimate the heat loss from a vertical wall exposed to mitrogen at one atmosphere and 4 °C. The
wall is 1.8 m high and 2.45 m wide. It is maintained at 50 °C.

From Table B-4 (SI), for nitrogen at a mean film temperature of 7, = (T, + T.)2 = 27°C = 300 K,

p = 1.1421 kg/m* k =0.026 20 W/m-K
v=1563x10 “m¥%s  Pr=0713

For the gas, B = UT = 1/300 = 333 X 107*°K "', piving a Grashof number of

T,-1.)L
Gr, - 8B : )

[

(9.8 m/s)(3.33 X 107 °K ")[(50 - 4) K}(1.8 m)"
- = 358 X 10"
(15.63 X 10"*)2 m¥s* 10

and

Gr, Pr = (3.58 x 10')(0.713) = 2.55 x 10"

The flow is turbulent; (8 28) with the appropriate constants from Table 8-3 gives

hil.
“IF = (0.13)(Gr, Pr)"
where

00262 Wim-K
h= ——-——I-g—n—:—"——{u.m)(z‘ss X 10" = 5570 Wim?-K

and the heat loss is given by

W
2,

~ RA(T.- T = (5.
q = FA( ) (5570 -

) (1.8 m)(2.45 m)[(50 - 4) °C] = 1130 W

m
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8.6. What is the maximum vertical velocity in the boundary layer of Problem 8.5 at x = 0.90 m (from
the bottom of the wall)?

Using (8.22) and (8.23) and the parameters from Problem 8.5, we get
9\ 58x10"
(0 9) Gr, - 3.58

18 8

Gr, = = 4.48% 10°

0.952 + Pr | 0.952 +0.713 e 2
8= (3.93)x [W] = (3.93)(0.9m) [(448 = ]09)(0‘?13)2] =184 x10"*m

v Gr, " 1563 10" m¥s\ [ 4.48x10° \"*
_ v[_6n "6 = 466
V=(5.17)- [0.952 " p,] & 1"')( 09m )(0.952 n 0.713) s
Hence, from (8.21),
u_y (1 _x)z
vV & 5
4.66 y Y
— — —— — A3 - 54. 5 2 I

3 0,01343’(1 0.0184) (253.3)y(1 — 54.35y) @)

Setting du/dy equal to zero to maximize, we get
(8858)y* — (217.36)y +1 =0

217.36 £ V47245 — 35432

yﬂ'li‘.l" =
17716
The root y = 0.0184 corresponds to « = 0, the boundary layer edge. Thus, ym, = 0.0061 m, and,
from (1),

=00184m or 0.0061m

U = 253.3(0.0061)[1 — 54.35(0.0061)]? = 0.690 m/s

8.7. In Problem 8.5, what is the mass flow rate of nitrogen past the station x = 0.90 m?

Assuming the density is constant, the mass flow rate is given by (W = width):
H
m=pW J‘ udy
0
f
= (253.3)9“’[ (y = 108.7y* + 2954y*)dy
1]

A=00184

2
= (253.3)pW| L - 36.23y* + 738.5)"
2

]

(0.0184)?
2

= (253.3) ( 1.1421 %gj) (2.45m) [ ~ (36.23)(0.0184)" + (73&5)(0.0184)‘] -":—2

= 0.0200 kg/s

8.8. Estimate the heat transfer from a 40 W incandescent bulb at 127 °C to 27 °C quiescent air.
Approximate the bulb as a 50 mm diameter sphere. What percentage of the power is lost by free
convection?

From Table B-4 (SI) the required parameters, evaluated at 7, = (7, + T.)/2 = 77°C, are:

v=2076x10"m¥%s  Pr=0697
k=003003Wm-K  B=UT=1350=2857x10K""
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Evaluating the Grashof number, where the characteristic length L is the diameter of the sphere, gives

_gAT, - T)D*
2

v

Gr,,

_ (980 m/s?)(2.857 x 107K ~')(100 K)(0.050 m)?

= 8.1 % 10°
(2076 X 107°)2 ms?

Equation (8.28) governs when the appropriate constants are chosen from Table 8-3; hence,
hD
'-'k— = (060)(6]’; l:'l'll'r4

~ 003003 W/im-K

v 2,
B = e (O60)[(B.1 X 10°)(0.697)]* = 9.67 Wim?-K

The heat transfer is

q=EA(T,—T.,]=(9A8? w )m{u.nsorn)l(mok):?.?sw

m?-K
The percentage lost by free convection is, therefore,
% (100%) = 19.37%

This result is of the same order of magnitude as that obtained for the same configuration in forced
convection (Problem 7.15). In such cases, both free and forced convection should be considered, as in
Section 8.4.

What heat load is generated in a restaurant by a 1.0 m by 0.8 m grill which is maintained at
134 °C? The room temperature is 20 °C.

The appropriate parameters from Table B-4 (SI), evaluated at the mean film temperature,

T +T.
T‘f= 2

=77°C

are:

v=2076% 10" m¥s
k = 003003 Wim-K
Pr = 0.697

For air, B = 1/T = 1/350 = 2.857 X 10 *K', and the Grashof number is
. a
Gr,, LEATLZT)L ;T’)L

v
where L = 0.9 m, the average of the lengths of the two edges.

_ (9.80 mis?)(2.857 X 10K )14 K)(©.9 m)®

Gr. (2.076 % 10-)2 m¥s?

= 540x 10°

Therefore, using (8.28), with the constants from Table 8-3 for a heated plate facing up, we get

% = (0.14)(Gr, Pr)'®

and

0.03003 W/m-K

h=
0.9m

(0.14)[(5.38 X 10°)(0.697)]'"* = 7.27 Wim*-K
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8.10.

8.1L

This gives a heat transfer of

W

g = hA(T, - T..) :(7'275T-E

)[(1.0 x 0.8) m?}(114K) = 663 W

What electrical power is required to maintain a 0,076 mm diameter, 0.6 m long vertical wire at
400K in an atmosphere of quiescent air at 300 K? The wire’s resistance is 0.0118 ohms per

meter.
At a mean film temperature T, = (7, + 7.)/2 = 350K, fluid properties from Table B-4 (SI) are:

v=20.76 X 107" m%s Pr = 0.697
k=003003W/m-K B=UT=1/350= 000286 K}

The characteristic length for the wire is its diameter, giving

—_ 3
Gry - BATTo)D

= (9-8 m/s7)(0.002 86 K~1)[(400 — 300) K][0.076/10%) m)*

= 2.855x 1077
(20.76 % 107%)? m¥s? 85510
The parameter required for using Fig. 8-5 is
D 0076 X 107?
GrpPr— = (2.855 % 10"‘)(0.697)(&) =252x10""
L 0.6
and
log (Gl‘;, l"r-iz) = —6.60
From Fig. 8-5,
—— kD
Nup, = -k_ = (0.37
where
_ 0.030 03 Wim-K
h=037)|—————1] = 2.
( )( 0076 10 mm ) 146 Wim?-K

The ohmic power loss is given by I’R = g = hA(T, — T..). Thus

IR = (146 Wim?-K)[(0.076 X 10" m)(0.6 m)](400 — 300) K
- 209 W

Atmospheric air is between two parallel, vertical plates separated by 2.5 cm. The plates, which
are 1.8 m high and 1.2 m wide, are at temperatures of 50 °C and 4 °C, respectively. Estimate the
heat transfer across the air space.

Evaluating the fluid properties at the average temperature of the two plates, 300 K, we have, using
Table B-4 (SI)

v=1568%10""m¥s k = 0.026 24 Wim-K
and

B=1T=1300=333x10"*K"
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The Grashof number is based upon the thickness between the plates:

— 3
ey = P T

_ (98m/s})(3.33 % 107K )[(50 — 4) °CJ(0.025 m)?

= 9.54 x 10°
(15.68 x 10™* m¥s)? o
and (8.36) gives the heat transfer coefficient, i.e,
—— _hb Ly
Nl.h-, = —k‘- = (0.]8) Gl'_ul,u (E)
where
0.026 24 W/m-K 1.8m

E =
0.025m

The heat transfer is given by (8.29):
q = hA(T, — T>) = (2.06 Wm?-K)(2.16 m?)[(50 — 4°C)] = 204 W

CANFC)
(0.18)(9.54 X 10%) [ oS

-1
] = 2.06 W/m?-K

Air at 344 700 N/m? is contained between two concentric spheres having radii of 10cm and
7.5 cm. Estimate the heat transfer when the inner sphere is at 322 K and the outer sphere is at
278 K.

The required parameters may be determined using the data from Table B-4 (SI) when the properties
are evaluated at the average temperature, 300 K.

o = 1.846 X 10" kg/m-s  k =002624Wm-K  p, = 1.1774kg/m’
Since the air is above atmospheric pressure, the density is given by

P D 344700 N/m?

o = E; €= m(l.lﬂfi kgfm]) = 4.005 kgim3

which gives a kinematic viscosity of

e 1846 X 107 kg/m-s -6 2
=—= = 4.610 X 107" m*/s
p 4.005 kg/m* !

The coefficient of volume expansion is the reciprocal of absolute temperature, i.e.,
B=1T=1/300K =333x10*K""
For this configuration the Grashof number is based upon the gap spacing, b = r, ~ r.:
., = 8B = b

vl

G

_ (9.8m/s)(3.33 X 107 K )|(322 - 278) K](0.025 m)®
(4610 X 10 m¥s?

= 1.056 x 10°

The effective thermal conductivity, k., is determined from (8.40) (bir, = 0.33).

k, = k(0.106) Gr 7
= (0.026 24 W/m- K )(0.106)(10.56 X 10°)°7 = .1279 W/m-K

The heat transfer is then given by (8.4/):

_ Ank.nr,

q (T, - Ty)

r,—r

_ 47(0.1279 Wim-K)(0.075 m)(0.1 m)
(0.1 - 0.075) m

(322 -278)K = 21.21W
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8.13.

Atmospheric air passes through a 20 mm diameter horizontal tube at an average velocity of
30 mm/s. The tube is maintained at 127 °C, and the bulk temperature of the air is 27 °C. Estimate

the heat transfer if the tube is 1 m long.
For the bulk temperature, we get the fluid properties from Table B-4 (Engl.).
v = (16.88 X 107%)(0.0929) = 1.568 X 10" m%*s  Pr = 0.708
= (0.015 16)(1.729) = 0.0262 W/m-K p = (1.241 X 10-%)(1.488)
= 1.847 X 10~ kg/m-s
and
B=1T=1300=333x107K"
At the wall the viscosity is
u, = (1.536 x 107%)(1.488) = 2.286 X 10 *kg/m-s

In order to determine the regime of interest, we need the Reynolds and Grashof numbers.

VD (0.030 m/s)(0.020 m)
R = —_— = = 2R
€= 1568 % 10 m¥s | °F
gB(T, - T}) D?
p?_
_ (980 mi/s?)(3.33 X 107 K~)[(127 - 27) K](0.020 m)*
(1.568 X 107* m¥s)’

Gl‘;, =

= 1.06 x 10°

and

= 1504

Gr,,rr—= (1.06 x 10‘)(0708)(0020)

Using these parameters, we see from Fig. 8-11 that the flow is laminar, mixed convection; Oliver’s equation
will be used to evaluate the Nusselt number. The Graetz number is, from (8.46),

Gz = ne,,PIE = (38.28)(0. 703)( 020) = 0.542

Thus,
hD 1.847 x 10~ 7014
Nup, = — = (1.75) l—ﬁ_‘] {0.542 + (0.0083)[(1.06 X 10%)(0.708)]**)'” = 5.72
and
_ ok 0.0262 Wim-K
h=—(572) = ——(5.72) = 7.49 W/m?-
D( ) 0.020m ( ) = 7.49 Wim*-K

The heat transfer for a length of 1 m is given by

g = BA(T, - T) = ( : mY"K) [7(0.020 m)(1 m)][(127 — 27) K] = 47.1 W

As a matter of interest, we might compare the result for & with that obtained from the equation given
in Fig. 8-11 for the forced convection, laminar regime.

- i h1a
Nuy, = P2 _ (1.86)Gz'? (ﬂ)
k [T

_ 0.0262 W/im-K 1.847 x 1073\
h = ——m—m—m——— 1 . 13 —e = 93 W 1.
0.020m (1.86)(0.542) (2286 x IU“-‘) L fm:-K
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Therefore, if the calculation were made on the basis of forced convection, laminar flow alone, the result
would be highly erroneous.

8.14. A large fireplace in a ski lodge has a glass firescreen which covers a vertical opening in the
fireplace. The opening is 1.2 m high and 2.50 m wide. Its surface temperature is 230 °C and the
ambient air temperature is 24 °C. Determine the convective rate of heat transfer from the
fireplace to the room.

The film temperature is (24 + 230) °C/2 = 400 K. The air properties are, at 7, = 400K,
k = (0.033 65 Wim'K B=1T=1/400K =250 x 107*K"!
p=2590%10"%m¥%s  Pr=0.689

To apply Newton's law of cooling, g = hA,(T, — T.), we will determine & by use of eq. (8.48) or (8.49),
depending upon whether the flow is laminar or turbulent.
The Grashof number is

_ 3
Gr, = gB(T, 21'2)(1‘)
v
(9.8 m/s?)(2.50 X 107*) K™'(230 - 24) °C(1.2 m)?
B (25.9 X 107* m¥/s)?

=130 x 10"
The Rayleigh number is
Ra, = Gr, Pr = (1.30 X 10')(0.689) = 8.97 x 10°

This indicates that the flow is partly turbulent with transition laminar to turbulent occurring on the glass
plate. (The reader should note that the flow becomes turbulent at approximately 0.47 m from the bottom.)
Thus, the most appropriate of the recent correlations is eq. (8.48). Proceeding,

0.387(8.97 x 10%)"¢
(1 + (0.492/0.689)**%)5%

Nu,-k _ (243)(0.033 65 W/m-K)
L 12m

— 2
Ny, = |0.825 + l =2427

h= = 6.81 Wim*-K

and

g = (681 Wim?-K)(1.2 X 2.5) m?(230 — 24) °C = 4208 W

8.15. Repeat Problem 8.14 using eq. (8.28) and Table 8-3. By Table 8-3 the correlation eq. (8.28)
requires C = 0.13 and a = 1/3 for turbulent flow along a vertical surface. Hence,

Nu, = 0.13(Gr, Pr)"”
From Problem 8.14, Gr, = 1.30 X 10" and Pr = 0.689. Hence,
N_ll;_ = 0.13(1.30 X 10" x 0.689)'"* = 270
Then

(0.033 65 Wim-K)
1.2m

—k
E = NI.I; I = 270
= 7.57 Wim?.K
q= EA:{ Tx . T:J

= (7.57 Wim*-K)(1.2 X 2.5) m*(230 — 24) °C
= 4678 W
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This is 11% higher than the result obtained with eq. (8.48). The difference is within the accuracy of these
correlation equations. The result in Problem 8.14 is very probably more accurate and should be so
considered.

8.16. A long, horizontal, pressurized hot water pipe of 15 cm diameter passes through a room where
the air temperature is 24 °C. The pipe surface temperature is 130 °C and the emissivity of the
surface is 0.95. Neglecting radiation loss from the pipe, what is the rate of the heat transfer to
the room air per meter of pipe length.

The air properties at T, = (7, + T.)/2 = 350K are, from Table B-4 (SI),
k = 0.03003 W/m-K Pr = 0.697
v =20.76 X 10 *m%s B=1UT=1/350K = 0.00286 K™}
The Grashof number is

T,— T.)D
Gr,, & : )

v
_ (9.8 m/s)(0.002 86 K™'(130 — 24) °C(0.15 m)®
- (20.76 X 107 m?s)?

=233%10°
and the Ra,;, number is
Ra;, = Gr,Pr = 233 x 107 X 0.697 = 1.62 X 107

This problem has laminar flow over the entire cylinder. Then the Churchill-Chu equation (8.47)
applies and

— 0.387Ral |2
= 1060+
Nus [0 60+ (o.ssqxrr)w'*]w}

0.387(1.62 x 107y**
[1 + (0.55%9/0.697)" ¥

2
= [0.6(]+ ] =32.53

Thus,

k 0.03003 Wim-K
p N =5, 0253)

= 6.51 Wim?- K

h=

The heat loss per meter of length, g°. is

q' =hA(T,- T.)
= (6.51 Wim2-K)(m X 0.15 m)(130 — 24)°C
= 325 W/m

Supplementary Problems

8.17. For an ideal gas having the equation of state p = pRT, show that the coefficient of volume expansion
is UT.

8.18. Using the empirical equation (8.28) for turbulent flow on a vertical flat plate, show that the heat transfer
coefficient is independent of plate height L.
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8.19. For film properties evaluated at 127 °C, estimate the temperature difference (7, — T..) required to lose 4 W
by natural convection from a 120 mm diameter sphere to surrounding air. ~ Ans.  17.75°C

820. The front panel of a dishwasher is at 95 °F during the drying cycle. What is the rate of heat gain by the
room, which is maintained at 65 °F? The panel is 2.5 ft square. Ans.  108.9 Btu/h using (8.28)

8.21. An uninsulated 10.75 in o.d. steam line passes through a 9 ft high room in which the air is at 120 °F. What
is the heat loss per foot of pipe if its surface is at 760 °F when (a) horizontal, (b) vertical?

Ans. (a) 2193 Btu/h-ft; (b) 2394 Btwh-ft using (8.28)



Chapter 9

Boiling and Condensation

This chapter deals with the two most common phase change processes: vaporization and its inverse,
condensation. As in simple convection, a heat transfer coefficient 4 is used to relate the heat flux to
the temperature differential between the heating surface and the saturated liquid.

q = hA(T,— T.u) o.n

However, since phase change processes involve changes in density, viscosity, specific heat, and thermal
conductivity of the fluid, while the fluid’s latent heat is either liberated (condensation) or absorbed
(vaporization), the heat transfer coefficient for boiling and condensation is much more complicated
than that for single-phasc convcctive processes. Because of this, most engineering calculations
involving boiling and condensation are made from empirical correlations.

9.1 BOILING PHENOMENA

Consider a pool of fluid being heated from below, e.g., by a submerged wire. For low rates of heat
addition, vapor will be formed at the free surface. As the heat flux increases, bubbles form at the heater
surface and change in size while rising through the fluid, in addition to the free-surface vaporization.
This bubble formation, with its attendant agitation, is called boiling, or ebullition.

The behavior of the fluid during boiling is highly dependent upon the excess temperature,
AT = T, — T,,, measured from the boiling point of the fluid. Figure 9-1 indicates six different regimes
for typical pool boiling; the heat flux curve is commonly called the boiling curve.

Free-Surface Nucleate ) »
Evaporation e Boiling — " Film Boiling

e |t |t [ —— [V — eV e V]

Free convection Individual Bubble |. . Unstable | Stable | Radiation D

6 - ~

10 bubbles columns B| v film film affects
* film

100 \

w0

Approximate Heat Flux ¢/4, Wim?

/

‘l"l L L Il 1 L 1 i
1 3 6 10 30 100 300
Approximate Excess Temperature AT =7, - T,,,, °C

Fig. 9-1. Horizontal Chromel C 0.10 em diameter heating wire in water at 1 atm.
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Regime I. Heat is transferred by {ree convection, described in detail in Chapter 8.

Regime II. Bubbles begin to appear at the heating surface and rise to the free surface
individually.

Regime III. The boiling action becomes so vigorous that individual bubbles combine with others
very rapidly to form a vapor bubble column reaching to the free surface.

Regime IV, Bubbles form so rapidly that they blanket the heating surface, preventing fresh fluid
from moving in to take their place. The increased resistance of this film reduces the heat flux, and the
heat transfer decreases with increasing temperature differential. Because the film intermittently
collapses and reappears, this regime is very unstable.

Regime V. The film on the heater surface becomes stable, As AT reaches about 1000 °F, radiant
heat transfer comes into play—in fact, becomes predominant—and the heat flux again rises with
increasing AT.

Regime VI. Radiation from the heater surface becomes significant.

The peak heat flux, point B, is called the burnout point. It is the condition at which the increased
heat flux produced by a rise in AT is offset by the increased resistance of the vapor blanket around the
heater. The two effects balance, producing what is sometimes called the boiling crisis, burnout, or
departure from nucleate boiling. For many common fluids, the temperature at D is above the melting
point of most heater materials, and failure of the heater occurs before reaching it. If the heater does
not melt, the boiling curve continues to rise beyond point D.

As boiling is predominantly a local phenomenon, the heat transfer coefficient & is normally given
without the overbar, as in (9.7). Most applications, however, require an average heat flux. Since
burnout of heating elements is a common problem in boiling, and since the largest heat flux is a local
quantity for a given regime, the local value is the one that should be used in design, being the
conservative value.

9.2 POOL BOILING

Free Convection (Regime I)
Using the general equation (8.28), the heat transfer in this regime is given by

¢ k
Zf = Co(Gr PO (T, = Ty) (9.2)

where T, is the bulk temperature, and where the constants a and C are taken from Table 8-3. Since
Gr, = gB(T, — T,)L*/V* and since the exponent a is usually 1/4 for laminar flow and 1/3 for turbulent

flow, the heat transfer in this regime varies with AT to the 5/4 power for laminar flow, 5/3 for
turbulent.

Nucleate Boiling (Regimes II and III)

The most commonly accepted general correlation for heat transfer in the nucleate boiling regimes
is that due to W. M. Rohsenow [Trans. ASME, 74: 969 (1952)].

— — T ) 3
] 4q _ b ‘g(pr ) | €Ty sal
A My iy gt o hlgPr}J CI}- (9.3)
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where ¢; = specific heat of saturated liquid, VVkg-K or Btu/lb,-°F
Cg, = surface-fluid constant
= local gravitational acccleration, m/s* or ft/s?
g‘. = constant of proportionality, 1.0 kg-m/N-s? or 32.17 Ib,,,- ft/lb;-s*
hg = enthalpy of vaporization, I’kg or Buu/lb,,
Pr}' = Prandtl number of saturated liquid (n = 1.0 for water, 1.7 for most other fluids)
glA = heat flux per unit arca, W/m? or Btu/h-ft?
T, — T.u = excess temperature, K or °F
i, = liquid viscosity, kg/m-s or Ib,/ft-h
o = surface tension, N/m or Ib/ft
pr = density of saturated liquid, kg/m” or Ib,/ft*
po = density of saturated vapor, kg/m* or Ib,/t?

Note: In the above, and throughout this chapter, i denotes the mass-based viscosity coefficient.
Subscripts / and v refer to the liquid and vapor states, respectively.

The surface—fluid constant which is a function of the surface roughness (number of nucleating
sites) and the angle of contact between the bubble and the heating surface, ranges from 0.0025 to 0.015
(from the literature). Values of surface tension o of some common fluids are given in Fig. 9-2. Many
values of C, are reported in the boiling heat transfer literature. For water,

a = (0.00528)(1 — 0.00137) (9.4)

where 7 is in °F and o is in 1b/ft. It should be noted that the heat flux in the nucleate boiling regimes
is proportional to the cube of AT,

Peak hear flux. At the point of maximum heat transfer (point B of Fig. 9-1), the recommended

correlation is
q|l _ o(p— pe )88, ~10
|- (0.149)&.}%[ ] Lﬁp]/ (9.5)

Observe that the pcak heat flux is independent of the heating element, and the last term in this
equation is usually unity.
01
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Fig, 9-2
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Film Boiling (Regimes 1V, V, and VI)

Horizontal tube. From a study of conduction through the film on a heated tube and radiation from

the tube, L. A. Bromley [Chem. Eng. Prog. 46. 221 (1950)] proposed that the boiling heat transfer
coefficient in these regimes be given by

h /3
h=h, (F) +h, (9.6)
_ Ky pop(pr = Py )g(hy + 0.4¢,, AT)
he= (0-62)[ Dy AT (9.7)
— oe(T] — T4
b T T (98)

In (9.8) o is the Stefan-Boltzmann constant and € is the emissivity of the surface. In (9.7), D is the
outside diameter of the tube, and, as indicated by the additional subscript f, vapor propertics are taken
at the mean film temperature, Ty = (T, + T.,)/2.

Equation (9.6) is difficult to usc since 4 is in it implicitly. The following explicit equations are much
simpler when the inherent approximation errors and ranges are acceptable, which is the case in most
problems of engineering interest.

3 lhr 1 hr
4+ 0, . = - -_— < —
*03%: h h‘+h,[4+4h‘ (2.62+(h,ﬁ:‘))] ({} h{<10)
3 ; )
o/ . = - ar
*+5%: h h‘+4h, (h.<l)

L)

Vertical rube. For vertical tubes, Y. Y. Hsu and J. W. Westwater [Chem. Eng. Progress, Symp. Series,
56, Storrs Conn.; 15 (1959)] proposed the correlation

ool 8oolpr— po)ko 7
h= (0.0020)Re'-“[~—‘-’-—-—-3—-—-—— (9.10)
where
i
Re = % (9.11)

and m is the vapor mass flow rate at the upper end of the tube. For like conditions, the rate of heat
transfer is greater for vertical than for horizontal tubes.

Horizontal plane. Verified for boiling in pentane, carbon tetrachloride, benzene, and ethyl alcohol,
the following correlation is due to P. Berenson {Trans. ASME, J. Heat Transfer 83: 351 (1961)]:
kﬁﬁu(ﬂt B pv)g(hfg + 0°4cpv QT) 1

M ATVagt "g(ﬂ' - pu)

where o once again denotes the surface tension. The similarity between this result and (9.7) should be
noted.

| h= (0.425)[ (9.12)

Minimum heat flux. Using the hydrodynamic instability of the liquid-vapor boundary, N. Zuber and
M. Tribus [University of California, Los Angeles, Dept. Engineering Report 85-5 (1958)] found the
following equation for the minimum heat flux in film boiling (point C of Fig. 9-1).

q g — pog) |"° BT 1
m L = 0.09)p,h [ ] 9.13
Ao o ot Puy g(p.' - puf) ( )
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Based upon the Zuber-Tribus analysis, Berenson [op. cit.] found an expression for the excess
temperature A7 at the point of minimum heat flux (point C), viz.

pvfhfgl:g(pl - p) m[ g0 ]"2[ 1y ]ns ors
k"f P + Pu i g(p;— pv) gn(p‘, — pv) ( . )

Properties designated by a subscript fin (9.73) and (9.14) are evaluated at the mean film temperature,
Ty = (T, + Ty )/2; go is the earth’s standard gravitation, 32.17 ft/s” or 9.81 m/s”.

AT¢ = 0127

9.3 FLOW (CONVECTION) BOILING

Flow Boiling Characteristics

Flow boiling may occur when a liquid flows through a passage or over a surface which is
maintained at a higher temperature than the saturation temperature of the liquid. The flow is a
two-phase mixture of the liquid and its vapor.

Figure 9-3(a) shows a vertical-tube evaporator. A subcooled liquid enters the evaporator, passing
over the hotter wall where local nucleate boiling occurs. The flow is bubbly when there is less than
about 10% vapor. With an increase in bubble agitation, there is an increase in the heat transfer

Mixed
boiling

Heat Flux, ¢/A4

o
Initial [ %
boiling E

[l 1
° Quality, Percent 100
(Subcooled liquid) (Saturated vapor)

{a) Flow Description (b) Quality

Fig. 9.3. Description of flow and quality inside a vertical tube evaporator.
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coefficient. At higher qualities the flow becomes annular, with a thin liquid layer on the wall and a
vapor core. The velocity of the vapor is much higher than that of the liquid. Heat is transferred through
the film by conduction, and vaporization takes place at the liquid-vapor interface primarily, although
some bubbles still form at the wall.

In the transition from annular to vapor (also called mist or fog) flow, the heat transfer coefficient
drops sharply. Burnout sometimes occurs at this transition because a liquid film of high thermal
conductivity is replaced by a low-thermal-conductivity vapor at the wall. Vapor flow continues until the
quality reaches 100%, after which the heat transfer coefficient may be determined by the appropriate
equations for forced convection, Chapters 6 and 7, using vapor properties.

A simplified approach for determination of the heat transfer in flow boiling is to sum the
convective effect, either forced or natural convection without boiling, and the boiling effect.

9_4
n 1_4
A A

q
+ —
conv A

Here (g/A)cony = h(T,— T,), where T, is the bulk temperature, and A is given by the appropriate
relations of Chapters 6 and 7. The heat transfer due to boiling, (g/4)s,, is given by the relations of
Section 9.2, where convection is absent.

(9.15)

bo

Nucleate Boiling

Fgure 9-4 shows the boiling curve for a submerged heating wire, with the effects of convection
superimposed upon it in the nucleate boiling regimes. The fully developed flow boiling curve tends to
become asymptotic to a projection of the nonflow boiling curve. The forced convection effects, as

Ial b=

1wt -

Approximate Heat Flux ¢/A. W/m?

100 K30 1000
Excess Temperatuwre AT~ T, -7, . °C

Fig. 9-4. Heat flux as a function of excess temperature for forced convection imposed on nucleate boiling.
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shown in the figure, were determined by the use of (7.5/b) for normal liquid flow at V.., T., across a
single cylinder at T,.

In the fully developed boiling region, little heat is transferred by forced convection. In this region,
the heat flux for subcooled water inside tubes is given by (English units only):

% = (0.078)(ATY™ (30 <p <90 psia) (9.16)

or, for higher pressures,

q _p" o ,

—==—(AT) 100 < p <2000 9.17
L= (aTy  (100<p <2000psia) ©.17)
Peak heat flux. For water flowing in a pipe of diameter D and length L, a simplified correlation for
burnout heat flux was developed by W. K. Lowdermilk, C. D. Lanzo, and B. L. Siegel [NACA Tech.
Note 4382 (1958)]. Their result, valid for the full range of quality and for inlet subcooling from 0 to

140 °F, is (English units only):

v . q _270(pV)*s pV
low velocity, high quality: Al = DELDy 1 (___(UDF <150 (9.18)
. . L q| 1400(pV)es° pV
high velocity, low quality: Al = DDy 150 < (LIDY < 10000 (9.19)

with g/A in Btu/h-ft?, p in 1b,/ft*, V in fps, L in inches and D in inches. The individual parameters in
(9.18) and (9.19) are restricted to the ranges

147<p<100psia 25<LID<250
01<V<98fps 0.051<D<0.188in

Film Boiling
For forced convection of a liquid flowing normally across horizontal tubes, formulas (9.6), (9.7),
and (9.8) may be used when V. < VgD. If V..>2VgD, (9.7) is replaced by

V.kosporhe, + 0.4c,,AT) '
;,‘_-;(2.7)[ £ ’{L;SM“ Cof )]

(9.20)

These laminar flow relations have been verified for benzene, carbon tetrachloride, ethanol, #-heptane;
tube diameters from 0.387 to 0.637 in; and free-stream velocities from 0 to 14 fps.

94 CONDENSATION

Condensation, the inverse of boiling, occurs when a saturated vapor comes in contact with a
surface at a lower temperature. The liquid collects on the surface, from which it drains under the
influence of gravity or is carried off by the drag of the moving vapor. If the motion of the condensate
is laminar, which is generally the case, heat is transferred from the vapor-liquid interface to the surface
by conduction. The rate of heat transfer depends upon the thickness of the film, depicted for a vertical
surface in Fig. 9-5. The film thickness depends upon the rate of condensation and the rate of removal
of the condensate. For an inclined plate the drainage rate is lower, which increases the film thickness
and decreases the rate of heat transfer.

Two distinct modes of condensation may occur, or they may occur together. The more common
mode, film condensation, is characterized by a thin liquid film forming over the entire surface. This
occurs on clean wettable surfaces in contact with noncontaminated vapors. Dropwise condensation
occurs on nonwettable surfaces, such as Teflon in the presence of water vapor. In this case minute
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Fig. 9-5

drops of condensate form, growing in size until they are carried away by gravity or vapor motion. In
dropwise condensation, a portion of the condenser surface is exposed to the vapor, making heat
transfer rates much larger than those in film condensation.

Only film condensation will be treated in this book.

Laminar Film Condensation

Since most condenser surfaces are short and the film velocity is small, condensation is usually
laminar film condensation. For this case the Nusselt analysis provides an insight into the mechanism
of condensation.

Making a force balance on a unit depth of the shaded element of Fig. 9.5, neglecting inertia terms
(low velocity), we get

1 du 1

Ef”'d_ydx = gg(p: ~po)(8—y)dx (9.21)
The term on the left is the viscous shear force at y, and the term on the right is the difference between
the weight and buoyancy forces. The underlying assumptions are: (1) linear temperature gradient in
the film; (2) uniform surface temperature 7; (3) pure vapor at the saturation temperature 7T,,; and (4)
negligible shear at the liquid-vapor interface, i.e., low velocity. For the no-slip boundary condition,
u=0aty=0,(9.21) integrates to give

— 2
y= 8P p) (ya - y—) (9.22)
Moy 2
The condensate mass flow rate per unit depth, #2’, at any elevation x is given by
& 3
., pg(p— pu)d
m' = udy = ————— (9.23)
~[r P ey 3u
from which the rate of change of mass flow with respect to condensate thickness is
d b - 52
m' _ pg(p— po) (9.24)

dﬁ j i

The excess mass flow rate dm' must come from the condensation at the interface, which is given by

dri' = -1 (9.25)
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where h,, is the enthalpy of vaporization (see also Problem 9.16). Moreover, since the liberated heat
is conducted through the film,

k!('rsal — T.\) dx

f = 9.26
dq s (9.26)
Combining (9.24), (9.25), and (9.26), we obtain, upon integration, a relation between the film thickness
8 and the elevation x:
_ /4
5 — [4#1‘&1)((?‘:\:11 Tt)—l (927)
pig(p— pYhe
Since the heat convected into the film is conducted through it to the plate
kT — T, k
h(Tu= Ty =D o g =2 (9.28)

which, combined with (9.27), gives

hox _ [ pig(p— po)hex 1™
= 029
N = [ 4110k (T — T (0:29)

Examination of this result shows that the thickening of the condensate film is analogous to the growth
of a boundary layer over a flat plate in single-phase convection. Contrary to simple convection,
however, an increase in temperature differential, being accompanied by an increase in film thickness,
reduces the surface conductance.

By integrating the local value of conductance over the entire height L of the plate, we get the
average heat transfer coefficient

_ A4
E = %hL = (0.943)1plg(p1 pu)hl'gkd' ]

”lL(?;ul - Ts)
More generally for a plate inclined at an angle ¢ with the horizontal, the result is

— h k,! 74
}; — 0'943 918{91’ pt') g sin ]
( )[ mL(To— 1)) ¢

Experimental results have shown that this equation is conservative, yielding results approximately
20% lower than measured values. Therefore, the recommended relation for inclined (including
vertical) plates is

- i = (1.13) [p:g(p; — poheki ¢]m (9.30)

(T — T)

Vertical tubes. Equation (9.30), with sin ¢ = 1, is also valid for the inside and the outside surfaces
of vertical tubes if the tubes are large in diameter D compared to the film thickness 8. However, (9.30)
is not valid for inclined tubes, since the film flow would not be parallel to the axis of the tube.

Horizontal tubes. A Nusselt-type analysis for external condensation yields

] h‘ - ((]725] [Prg(l)l - ptr)hfg ?:Ilm (9-31)

!-MD(TMI . T\)

When condensation takes place in a bank of n horizontal tubes arranged in a vertical tier, the
condensate from an upper tube flows onto lower tubes affecting the heat transfer rate. In this case, an
estimate can be made of the heat transfer, in the absence of empirical relations which account for
splashing and other effects, by replacing D in (9.31) by nbD.
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Turbulent Film Condensation

When a liquid film is vigorous enough, heat is transferred not only by conduction but also by eddy
diffusion, a characteristic of turbulence. This may occur on tall vertical surfaces or in banks of
horizontal tubes. When such behavior occurs the laminar relations are no longer valid. This change
occurs when the film Reynolds number, Rey, defined by

_VDyp _ 4p AV
B Py,

™ Re, (9.32)

is approximately 1800; here the hydraulic diameter, D, = 4A/P, is the characteristic length. In this
relation, A is the area over which the condensate flows and P is the wetted perimeter. For inclined
surfaces of width W, A/P = LW/W = L; for vertical tubes, A/P = «aDL/wD = L; and, for horizontal
tubes, A/P = wDLI/L = wD. It should be noted at this point that the transition Reynolds number for
a horizontal tube is 3600 rather than 1800, since the film flows down two sides of the tube. This is
academic, however, since turbulent flow rarely occurs on a horizontal tube, because of its small vertical
dimension.
Noting that #1 = p,AV and that w1’ = m/P, the film Reynolds number may be expressed as

Re, = (9.33)

where m’ is the condensate mass flow per unit width for surfaces or per unit length for tubes. Its
maximum value occurs at the lower edge of the surface.

Turbulent film condensation on vertical surfaces. The average heat transfer coefficient, developed
by C. G. Kirkbride [Trans. AIChE, 30: 170 (1934)], is

— 13
= i = (0.0076)Re}* [E'-*‘i(-‘-"}—"i)f’-] (9.34)

!

which is valid for Re,> 1800.

Determination of the Film Fiow Regime

Since the condensate velocity V is unknown in (9.32), a trial-and-error approach is necessary.
Expressing the mass flow rate in terms of the heat transfer, we get

EA ( Ty — TJ)
hl’g

q
Hl = ==
hyg

which, substituted into (9.33), gives

_ 4hA(Te — Ty

Ref P]‘.L;h[s

(9.35)

Since the transition film Reynolds number is known (Rey).; = 1800), the process can be simplified by
eliminating the heat transfer coefficient for the initial calculation of the film Reynolds number.
From (9.30) and (9.35), flow on vertical or inclined plates and vertical tubes is laminar if

(4'52)[ Pfg(pf — p::skjgrsul - Ts)} L3 Sil‘l ¢:| 14 < 18m (9.36)
1 g
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From (9.31) and (9.35), flow on a bank of n horizontal tubes is laminar if

- - Ty 14
(9.11) [ pig{ps P:’)G k:;g T — Ty) n’ DS] < 3600 (9.37)
g

From (9.34) and (9.35), flow on vertical surfaces is turbulent if

(0.002 96)[ p8(p — pv)k?(rsu - ?;)3 L3:|m > 1800 (9.38)

S L3
i ftig

If condition (9.36), (9.37), or (9.38) is satisfied, the left side gives Rey.

The condensation mechanism is somewhat different if the condensing vapor is superheated rather
than saturated. Experimental results have shown that in most cases the effect of superheat may be
ignored, and the equations for saturated vapors may be used with negligible error. It should be
emphasized, however, that (T, — T) is still the driving differential, and that the actual superheated
vapor temperature does not enter the calculations. In all the condensation relations, condensate
properties are evaluated at the mean film temperature, T; = (T + T,)/2; vapor properties are evaluated
at the saturation temperature; and hy, is that at the saturated vapor temperature.

Solved Problems

9.1. Using Fig. 9-1, estimate the excess temperature for a 0.10 cm diameter, horizontal, 15 cm long,
Chromel C wire submerged in water at atmospheric pressure. The voltage drop in the wire is
147V and the current is 42.8 A.

An energy balance gives
qg= El = hAAT
Since 1 W = 1V-A,
g = (14.7)(42.8) = 629 W
The surface area of the wire is
A =aDL = w(0.10ecm){15 cm) = 4.71 cm?

therefore

629 W ( 100cm

2
- 2
e\ ) 133 X 10° W/m

q._
A

From Fig. 9-1, AT = 30°C.

9.2. A 1.0mm diameter wire, 180 mm long, is submerged horizontally in water at atmospheric
pressure. The wire has a steady state applied voltage drop of 10.1 V and a current of 25.3 A,
Determine the heat flux in W/m” and the approximate wire temperature in degrees Celsius.

The electrical energy input rate is
g = EI'=(10.1)(52.3) = 255 W
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The wire surface area is
A= aDL = 7{1.0 X 107 m)(180 X 107> m) = 5.65 X 10~* m?
The boiling energy flux is

g 255 W ,
AT AR SAx 10 Wim

To approximate the excess temperature use Fig. 9-1. From Fig. 9-1,
AT =12°C
and
T,=100+12=112°C

A 15 cm long, 0.10 cm diameter nickel wire submerged horizontally in water at 792 kPa requires
131.8 A at 2.18 V to maintain the wire at 177 °C. What is the heat transfer coefficient?

From steam tables, the saturation temperature at p = 792 kPa, absolute, is 170.0 °C and therefore
AT =177.0—170.0 = 7°C. A heat balance on the wire gives

g = El=hAAT
whence

El  [(218)(131.8) W]

- B = 2o
AAT  «(0.001 m)(0.15 m¥7 °C) 8.72 % 10* Wim?*°C

h

In a laboratory experiment, a current of 193 A burns out a 12 in long, 0.040 in diameter nickel
wire which is submerged horizontally in water at atmospheric pressure. What was the voltage
at burnout? The vapor density is 0.0374 Ib,/ft* and hy, is 970.4 Btu/lb,,,.

The peak heat flux is given by (9.5):

1n2

q

o(pr— p.)g&. 4
- (0.149) p.,h,,[ (1 f)gs ] [ P
pu pr+py

-

Taking the remaining parameters from Table B-3 (Engl.), and from equation (9.4) we get

4

b, Btu
= (0. 0374 — 4—
(© 149)(00374 = )(970 lb,.,)

y [ (0.0038 Ihy/ft)(59.97 — 0.0374)(Ib/f)(32.17 fUs)(32.17 Ib,,- fU/lby - 5) 1
(0.0374 b, /i)

Imax

[ 59.97 ]"’2
59.97 + 0.0374

= (133.34 &) (36003) = 3.93 X 10° Btw/h-ft?
s-fi? h

The burnout voltage, E,, must satisfy E,I = gp,,. Thus,

E, = dm _ Ag _ m(0.040/12) fr] (1 “)(3.93>< 107 Btu )( 1V-A )

T T Al 193 A h-f2 J\3.413 Btwh
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9.5. Estimate the peak heat flux, in W/m?, for boiling water at normal atmospheric pressure.

Equation (9.5) may be used with the parameters in SI units. From Table B-3 (Engl.) and with a vapor
density of 0.0374 b, /ft* and hy, = 970.4 Btu/lb,,,

q o(p — p.)gE. :IIM’Ln/ﬂ'ﬂJﬂ ~1.0
- = (0.149)p,
A I Max ( )p h'g [ ﬂ.‘: ] + Po

o = (1/0.0167 15)(16.02) = 958.42 kg/m®
= (0.0374)(16.02) = 0.60 kg/m*

Btu Ib, J
—_— 4.8 —
(970 )(0454!( )(105 8Btu)
= 2.25 % 10" J/kg = 2.25 MW s/kg

(ooms'b‘)(zms—-)( ! ") 0.0554 N/m, from €q. (9.4)

Iby /\0.3048 m
g = 1.0kg-m/N-s?
g = 9.80 m/s?

g

= (0.149}(060-—)(225 MW S)

kg
(0.0554 N/m)(958.42 — 0.60) kg/m*(9.8 m/s?)(1.0 kg- m/N-s?) ]m
(0.60 kg/m®)?

><| 958.42 j—m =10
a7 + 0.60

= 1.240 MW/m?

a
A

|rn.m:

9,6. A heated nickel plate at 106 °C is submerged horizontally in water at atmospheric pres-
sure. What is the heat transfer per unit area assuming C,, = 0.006, h, = 2256.9k)/kg, and
po = 0.598 kg/m*?

For an excess temperature
AT =T1,- T, =106-100=6°C

Fig. 9-1 indicates that the boiling is most likely nucleate, with (9.3) being valid. Then

_ gtpf po) elTs = Tw)
il hy P C,,

The required parameters, from Appendix B (SI) except where noted, are:

o = 957.8 kg/m? ¢ =4216kllkg-K
m=p, = 2824 X 10" * kg/s'm Pr,= 174
o = 0,057 N/m, from eq. (9.4) C;y = 0.006, from the boiling heat transfer literature

The heat transfer is

m/s?)[(957.8 — 0.598)(kg/m”))
(kg-m/N-52)(0.057 N/m)

% = (2.824 X 10~* kg/m-5)(2256.9 kJ/kg) J ©8

[ (4.216 kl/kg-K)(6°C) 1*
(2256.9 kJ/kg)(1.74)*(0.006) ]

= 3,19 % 10° W/m?
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The peak heat flux for water at 1 atm was found in Problem 9.4 to be 3.93 X 10° Btwh-ft? or

41 - 124 %100 Wim?
Al

Since g/A < (g/A ). nucleate boiling does in fact occur, and the heat transfer is as calculated.

Estimate the excess temperature, AT = T, — T, for a 0.10 cm diameter, horizontal, 0.25 m long
polished copper wire submerged in water at standard atmospheric pressure. The wire is
electrically heated with g = EI = 629 W. Nucleate boiling is observed.

An energy balance is
g = EI= hA,AT = 629 W

The wire surface area is

_ B 0.10cm _ 4.2
A, = wDL = 11'( lmcwm){o.zsm)—wﬁxw m
and therefore
q 629 W o
A %W s x10°W,
A T8 x10 TmE - S01X 10" Wim

With g/A and other parameters for eq. (¢.3) known, AT may be calculated. Rearranging eq. (9.3),

AT = (hf;)(Pl':")(C#)[ glA \/&T ]tm
“ mihg N g(pr— po)

For boiling water n = 1.0 and for polished copper-water C,,= 0.0128 (from the boiling heat trans-
fer literature). From eq. (9.4) o= 0.00382 Ib/ft = 0.056 N/m. The vapor density is 0.595 kg/m® and
hyg = 2257 kJ/kg. The remaining properties are from Appendix B (SI).

Thus,
¢ =4217Jkg-K p = Uy = 958 kg/m®
Pr,=1.76 gy =279 % 107° N-s/m?
or
g = yp = (0.294 X 107" m¥s)(958 kg/m®) = 2.82 X 10~ kg/m-s
Substituting
AT = (2257 kJ/kg)(1.76)(0.0128) [ 8.01 x 10° Wim? T”
4217 Mkg°C (2.82 X 10" *kg/m-s)(2257 kJ/kg)

y [ (1 kg-m/N-s9)(0.056 Nfm) 1°®
(9.8 m/s?)(958 — 0.595) kg/m’

=174°C
Using a more accurate value of o, 0.0589 N/m, yields AT = 17.5 °C, which is a negligible difference.

If the plate of Problem 9.6 were copper, what would be the heat transfer rate?

We note from the Rohsenow equation, (9.3), that all parameters are identical to those in Problem 9.6
except the surface-fluid constant C;; therefore, if the boiling remains nucleate,

_ [ Ciricker ]3}( a
copper

7 |
Csfuwcr A nickel

A
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9.9.

9.10.

From boiling heat transfer literature, C,;per = 0.0128; hence

q [ ~ ( 0.006
Al coper 10.0128

The boiling is certainly nucleate, since the peak heat flux, which is independent of the heater material, has
the same value as in Problem 9.6.

a
) (3.19 X 10° Wim?) = 3.28 X 10* W/m?

A brass plate which is submerged horizontally in water at atmospheric pressure is heated at the
rate of 0.7 MW/m’. At what temperature, in °C, must the plate be held? Cpprass = 0.006.

Assume that nucleate boiling occurs. Except for the excess temperature AT = T, — T, and the brass
surface-fluid constant C,, the parameters are identical to those in Problem 9.6. We may, then, use the
Rohsenow equation, (9.3), to simplify the computation, viz.

(Q"A)hms - (AT)NGSS Csfnic'kctjla
(9/A )Ynicker (AT )nicxei Cofbrass

From Problem 9.6 Cyypiyer = 0.006 and
(@A) mieret = 3.19 X 10° Wim?

Also
(AT)paa = 6°C
Using these values in the above relation, we get
0.7 X 10°W/m? (M)m(o.ooﬁ)]’

319X 10°W/m2 | 6°C \0.006
Solving,
0.7 x 10% \'?
AT s = (6°C) [ ————| =7.80°C
(AT Jhews = ( )(3.19><10’)
and

(T:)br.\ss - (&T)!wm + Tsxl =7.80+ 100 = 107.80°C

Since the excess temperature AT = 7.80°C, the assumption of nucleate boiling appears to be reasonable
from Fig. 9-1.

A polished metal plate of unknown material has a measured surface temperature of —24 °C
while submerged horizontally in saturated liquid ammonia at —50 °C. The measured heat flux
from the surface is 0.3 MW/m’. Determine the correlation constant Cy for the Rohsenow
equation.

The properties of saturated liquid ammonia at —50°C adapted from gas tables and Appendix B
(SI) are:
o = 701.33 kg/m’ Pr, =260
oo = 0.379 kg/m® €ps = 4463 Jikg-K
hyy = 1420.7 kl/kg
w = prvy = (70133 kg/m*)(4.35 X 107 m¥s) = 3.06 X 10 *kg/s-m

From the literature we find o = 0.038 N/m for the saturated liquid ammonia at —50°C. Solving the
Rohsenow equation (for nucleate boiling) for C,; gives

C. = (mh@)"“[s(m-p.,)]”"(cp,fﬁ'r)
I\ glA, a e Pr}
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where n = 1.7 for fluids other than watcr. Evaluating the three terms on the right-hand side of this
expression

=0.113

( pihyg ) we [(3‘[)6 x 10~* kg/s-m)(1420.7 k)/kg) 1"
giA, ] (0.3 10" W/m?)

-3- ) 16 - (9.8 mr32}(701.33 —0.379)(1(3;“13) 16 s
I o (0= o ‘ B (0.038 N/m) ] =1.

AT ( (4463 J/kg-K)(26 K)
he Pr7 \(1420.7k)/kg)(2.6)'7

and then C,; = (0.113)(7.52)(0.0161) = 0.0137 = 0.014

This value of the empirical constant C,; is within the range of values in the boiling heat transfer literature,
0.0025 < C,, < 0.015.

) = 0.0161

9.11. What is the peak heat flux for nucleate boiling of saturated liquid ammonia at —50°C? Is this
greater than the g/A value specified in Problem 9.10?

For saturated liquid ammonia at —50°C we obtain from Problem 9.10

p = 70133kg/m*  p, = 0379 kg/m?
h, = 1420.7kkg o = 0.038 N/m

Then by eq. (9.5) with the last term on the right side being approximately 1,

— U4
LI = 0.149p,hy = ii(_&ﬁffﬂ.&iil
mhax ( -

= 0.149(0.379 kg/m*)(1420.7 k)/kg)

. [ (0038 Nim)(701.33 - 0.379)(kg/m")(9.8 mis”) (kg /N %) ]"‘
| (0.379 kg/m*)?

= 523 820 W/m’

Since this peak heat flux is signilicantly larger than the measured g/A, in Problem 9.10), and within the
nucleate range of Fig. 9-1, we can conclude that nucleate boiling was experienced in that problem.

9.12. A 2in diameter polished copper bar having emissivity of (.023 is submerged horizontally in a
pool of water at atmospheric pressure and 68 °F. The bar is maintained at 300 °F. Estimate the
heat transfer rate per foot of the bar.

The excess temperature is AT = T, — 7, = 300 — 212 = 88 °F, which may be in the nucleate boiling
regime III as shown in Fig. 9-1; therefore, (9.3) will be tried and compared with the peak heat flux, (9.5).

The required parameters, taken from Table B-3 (Engl) except where noted, are given below. The
enthalpy of evaporation Ay is 970.4 Btu/lb,, and p,. is 0.0374 Ib,,/ft’. Note that the liquid parameters are
evaluated at the saturation condition at 212 °F, since the temperature of the pool of water has little effect
on the heat transler. Except for a slight effect due to subcooling, which is usually negligible in engineering
calculations, the same heat is transferred whether the pool is ar 68 °F, 150 °F, or 212 °F.

pr = 59.97 b, /it

we = vy = (0.316 X 107" [t¥5)(59.97 Ib,/ft?)
= 1.895 X 107" Ib,/ft-s = 0.682 Ib,,/ft-h
o = (.004 Ib/ft, from Fig. 9-2 converted to Engl. units
¢, = L.007 Btu/lb,-°F
Pr,=1.74
C,; = 0.013. from boiling heat transfer literature
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Substituting these values into (9.3), we get
£ - (oesa o2 (sr0422)
" (0.682 h 9704 o

(322 1/s2)[(59.97 — 0.0374) Ib /'] [ (1.007 Btu/lb,,-°F)(88°F) 1°
(32.2 1t tb, /b, 52)(0.004 Ih,/ft) [ (970.4 Btu/lb,,)(1.74)"(0.013)

= 5.33 X 10 Btw/h-ft?

which is out of the range of validity of eq. (9.3).
The maximum heat flux is as found in Problem 9.4:

%I ~ 3.983 x 10° Btu/h- 2

Since (§/A)m,x is less than that given by the Rohsenow equation, film boiling exists, and (9.6), (9.7), and
(9.8) will be used to evaluate. Four additional vapor properties are required, evaluated at the mean film
temperature,

_ T+ T, 300+212

2 = 2 = 256°F

7

hence, from Table B-4 (Engl.):

ks = 0.0150 Btu/h- ft-°F

€puy = 0.482 Buw/lb,,-°F

g = 0.0348 b, /f1°

poy = 8.98 X 1070 Ib fft-s = 0.0323 Ib,/ft-h

and
€ = 0.023, from problem statement
Using these values, the appropriate heat transfer coefficients are:
kﬁ;ﬂuj(ﬂ - Pu@(hlg +0.4¢,,AT) ] v
Du, AT

Y 2)1 (0.0150 Btu/h - ft-°F)*(0.0348 Ib,,/ft*) (59.97 — 0.0348)(1b,, /%) (32.2 ft/s?)(3600 s/h)> "
‘ [(2/12) ft](0.0323 Ib./ft- h)(88 °F) ]

Btu Btu 1a
x| 970.4 — X .
|_ 0 lbm+04(04821bm-°F)]

h = (0.62)[

= 30.84 Btu/h- ft>-°F
_ oe(T$ = T4)
T_\ - Ts:ul

_ (0.1714)(0.023)[(760/100)* — (672/100)']
88

h,

= 0.0581 Btuth-fi2-°F

The radiation heat transfer coefficient is negligible, which could have been guessed from the outset since
the surface temperature is relatively low. Therefore, h = h,, and

|

= hAT = (30.84)(88) = 2713.9 Btu/h-ft?
Since

A=mDL = ﬂ(%n)L ~ (0.524)L
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the heat transfer per length of bar is

{-— = (0.524)(2713.9) = 1422 Btu/h-{t

By determining the excess temperature for the minimum heat flux, using (9.14), the boiling curve can
be sketched for this configuration.

(0.0348 Ib,,/ft*)(970.4 Beuflb,,) [(32.2 ft/s7)(59.97 — 0.0374)(Ib,./ft) ]w
(0.0150 Btu/h-ft- “F)(h/3600's) (59.97 + 0.0374) b, /it

" (32.2 Ib,- fUlby-s2)(0.004 1bg/f) | [ (h/3600 5)(0.555 Ib,./ft- h) ] s
(32.2 ft/s?)(59.97 — 0.0374) b, /1t (32.2 fUs?)(59.97 — 0.0374) Ib,,/ft*

=366°F

AT, = (0.127)

The boiling curve is shown in Fig. 9-6.

log glA

393XIQ == === m s S

2N X WO fp~m~mmmm e e 2

-
U

2
g

log AT
Fig. 9-6. Boiling curve for Problem 9.12.

9.13. A 0.040 in diameter wire, 6in long, is submerged in water at atmospheric pressure. The wire is
maintained at a surface temperature resulting in AT = 50 °F and g/A is 4.1 X 10° Btu/h - ft”. What
change in heat transfer would occur if the water were flowing normal to the wire at 10 fps?
Assume the water temperature to be 212 °F

The change is that due to convection, (¢/A)cwn Of (9.16), which can be assessed by the use of
(7.51b),
hD _ CPr/” Rejy,
k,

where the constants C and » depend upon the flow regimes as given in Table 7-6.
Evaluating the fluid (vapor) properties at the film temperature

T.+ T, AT 50
o T b= =212 4% = 237°F
> Wt =M =23

T =
we get the following values from Table B-4 (Engl.)

k, = 0.0145 Btw/h-ft-°F  Pr, = 1.0528 v=2431X107*ft’fs
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9. 140

Therefore

VD _ (10 fus)[(0.04012) fi]

= 13712
2431 X 107*f’fs

RED“ =

The appropriate constants are C = 0683, n = 0.466; hence,

0.0148 Btw/h- ft-°F
(0.040112) ft

h= (0.683)(1.0528)'*(137.12)"** = 30.56 Btu/h-ft*-°F

and

q

S| =A(T,~ T) = (30.56 Bwh-f*-F)[(262 — 212) °F] = 1528 Bru/h- (¢

cony

If we add this value to that obtained for boiling, we get

9_4q

A A

+4

<ony A

= 1528 + (4.1 X 10°) = 4.12 % 1(° Btwh-fi®

ho

which is approximately the value shown in Fig. 9-4 at AT = 20°C.
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It should be noted that the “convective” contribution in this case is negligible, which is what the

shaded portion of Fig. 9-4 emphasizes.

Film boiling occurs when water flows normal to a polished 15 mm diameter copper tube at the
rate of 3 m/s. Determine the boiling heat transfer coefficient when the tube is maintained at

114 °C and the surface emissivity is 0.023.

The tube size and fluid velocity are such that (9.20) applies. It must be used together with (9.6) and

(9.8); i.e.,

hc 173
=h|=] +
h=h, ( h ) h,

_ VKugpo(hyy + 0.4, AT) 7'
hats (2'7’[ DAT ]
_oe(T) - T

T;- - Tsal
Except where noted, the required fluid properties, evaluated at
_ T+ Ta _114+100
2 2
are taken from Table B-4 (Engl.) and hy, = 2.25 X 10" J/kg.
k= (0.0142)(1.7296) = 0.02456 W/m-K
pur = (0.0366)(16.02) = 0.5863 kg/m*
Cpr = (0.492)(4184) = 2058.5 Ikg-K
o = 5.6697 X 107 W/m?-K*
€ = 0.023, from problem statement

h,

Tf = 107°C

Then

h, = (2.7)[
= 1841.58 W/m?-K

(0.015 m)(14K)

(3 m/s)(0.024 56 W/m - K)(0.5863 kg/m*){(2.25 X 10° W-s/kg) + 0.4(2058.5 W-s/kg-K)(14 K)) ]"2
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9.16.
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and
(56697 X 107* Wim?- K*)(0.023)[(387)* — (373)*] K* _ s
h, = (387 - 3T K = 0.2863 W/m*- K
Therefore,
1/3
h = (1841.58)( ]841'58) + 0.2863

Solving by trial, & = 1841.79 Wim?-K.

A wide vertical cooling fin, approximating a flat plate 0.3 m high, is exposed to steam at
atmospheric pressure. The fin is maintained at 90 °C by cooling water. Determine the heat
transfer and also the condensate mass flow rate per unit width.

Assuming that the condensate film is laminar, (9.30) will be used to get the average heat transfer
coefficient, with condensate properties evaluated at the mean film temperature,

T+ 7, 100+90
2 2
and the values at 7., of p, and Ay, are 0.598 kg/m* and 2.27 X 10° J/kg, respectively.

Since sin ¢ = 1, the equation is:

T, = =95°C

i = (113) [ pig(p— p b ki 1™

J‘-"JL(TWI - Ts)
where the remaining terms are from Tables B-3 (Engl.) and B-3 (SI).
= 961.9 kg/m*
g = 9.8 m/s?

= (0.3913)(1.7296) = 0.6767 W/m-K
w=3.0x10""kg/m-s

Thus,

F=(113) [(%1.9 kg/m*)(9.8 m/s?)(961.9 - 0.598) kg/m*(2.27 X 10° J/kg)(0.6767 Wim - K)* "
T (3.0 10 *kg/m-s)(0.3 m)(10K) ]

= 1.04 x 10 ¥s-m?-K = 1.04 x 10* Wim?-K
Checking the flm Reynolds number with (9.35), we get

ARL(To—T,)  4(1.04 X 10* Wim?- K)(0.3 m)(10K)
wihg, (3 x 10 " kg/m-s)(2.27 x 10° W-s/kg)

and the laminar assumption was correct. The heat transfer rate is, therefore,

Re, = = 183 < 1800

I = B(To — T.) = (1.04 % 10" Wim?- K)(10 K) = 0.104 MW/m?
and, by (9.33).

o= 1 Re, - (3.0 % 107 kg/s-m)(183)
4 4

= 0.0137 kg/s-m

A horizontal, 2 in o.d. tube is surrounded by saturated steam at 2.0 psia. The tube is maintained

at 90°F What is the average condensation heat transfer coefficient if p, and h,, are
0.005751b,,/ft* and 1022.1 Btu/lb,,, respectively, at Ty,

The average heat transfer coefficicnt is given by (9.31), which requires the following property data,
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taken from Table B-3 (Engl.). The liquid properties are evaluated at the mean film temperature,
Tp= (T + T,}2 = (126 + 90)/2 = 108°F.

o= 62.03 Ib/ft*
k= 0.364 Btu/h-ft-°F
= 4.26 X 10 * by /ft-s

Using these data, we get

114

0:8{pr — po)higk?
f""i'D(Tm: - Ta)

(62.03 Tby/f13)(32.2 fU/5)(62.03 — 0.005 75)(1by,/ft*)(1022.1 Btw/lb,,)(0.364 Btu/h- ft-°F)* ]"‘
(4.26 X 10~* Ib,/ft-s)[(2/12) ft](126 — 90) °F(h/3600 5)

h= {0.725)[

= (0.725)

= 1241.6 Bww/h-ft®-°F

9.17. The relations given in Section 9.4 are somewhat simplified, although sufficiently accurate for
most engineering calculations, since they do not account for the change of enthalpy from the
saturation temperature, 7,,, to the film temperature, T. which varies across the film. This
refinement can be taken into account by considering the total enthalpy change, Ah,, as the
vapor condenses and cools to the film temperature. In equation form,

1 &
= | T =T (1)
\]
Calculate Ah,, for a linear temperature profile in the condensate film, i.e.,
T=T,+%(Tw~T) @

Using (9.22), (9.23), and (2) for u, m’, and T, respectively, we get

3 * piglo — pu) % y
A €= 3 A s - Is) T o sat = f§
g p:g(p:-pv)B‘L o (”'S 2) "[(T T)—5(T T}]dy

_ 36T~ T)) * __31 y _ 3ep(Tea = T)) }'25_}’3 »*1°
=== J;(yﬁ 2y2+28)dy— —+—]

3
= 26T~ T) )

For more accurate results in Section 9.4, hy, should be replaced by hy, + Ahy, = hy,.

9.18. What effect does the refinement developed in Problem 9.17 have on the heat transfer coefficient
of Problem 9.16?

At T, = 108 °F the specific heat of water is 0.998 Btu/lb,,-°F; therefore, using (3) of Problem 9.17,

Bw 3 Btu
hi, = he, + Ahg, = 10221 ——+ ={ 0. - °F] = .
o = b + Ay ot 8(0998 ]bm_oF)[(lzé 90) °F] = 1035.6 Buw/b,,
Hence, a more accurate result for Problem 9.16 is
1035.6\'*
E = (1241. (_) = ) ft2.°
(1241.6) 10221 1245.7 Btu/h-ft*-°F

giving an error of 0.33%, negligible in most engineering calculations.
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A vertical plate 4ft high is maintained at 60°C in the presence of saturated steam at
atmospheric pressure. Estimatc the heat transfer per unit width and the condensation rate per
unit width. Use p, = 0.293 kg/m* and hy = 2308.8 kl/kg at T,

The remaining parameters which will be required, with condensate properties evaluated at the mean
film temperature,

T +T, 100460

T 2 2

80°C

are:

pr = 1/0.001 029 mVkg = 971.8 kg/m’

Cpe = 4.1964 X 10° Jkg-K

e = v = (9718 kg/m*)(0.364 X 107 “m?s) = 353.7 x 107" kg/s-m
k; = 0.668 W/m-K

A=LW=(12m)(03m)=036m*

P=W=03m

Testing for laminar flow with (9.36):

(971.8 kg/m*)(9.8 m/s?)(971.8 — 0.293)(kg/m")(0.668 W/m-K)*(100 — 60)*(K)*
(3537 % 10~ kg/s- m)*(2308.8 k/kg)’

(4.52)[ (1.2 m)i*]m = 1169 <1800

Thus, the flow is laminar and Re; = 1169. We may now get the condensate rate from (9.33):

9(353. ~“ kg/s-
 — R?p, _lie {353?><4|0 kg/s-m) _ 0.1033 kefs-m

or m’ = 371.9 kg/h-m. The heat transfer per unit width is then

q' = 1’ hy = (371.9 kg/h-m)(2308.8 k}/kg) = 8.586 X 10*J/h-m = 2.385 X 10° W/m

How would doubling the plate height of Problem (9.19) affect the heat transfer rate?
The fluid parameters are identical (o those of Problem 9.19. The flow will likely be turbulent, however.
Testing with (9.38), we can express our previous solution of Problem 9.19 as

Re, , = 4.52[A-(1.2)']"* = 1169

Where 1.2 refers to plate height. Note that the term bracketed contains A, which is dependent on fluid

properties, temperatures, and g. Thus A will be unchanged in Problem 9.20 from that of Problem 9.19.
Solving for A,

116917 (11694’4.52)“
AY1.2Y = (_) - =
(A)12) 4.52 (1.2)
A = 2589 % 10°

Now for the increased height, we write, assuming turbulent condensation,

Re; , = 0.00296[A -2.4)')* = 0.002 96[(2.589 % 10°)(13.824)]"
= 2160 > 1800

Conversely, we can substitute the fluid properties, temperature, g, and plate height into eq. (9.38) to obtain
this value of Re.
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9.21.

9.22.

9.23.

9.24.

9.25.

9.26.

9.27.

The film is turbulent, as assumed, and Re = 2160. Since g’ = Rey, the ratio of the heat transfer
rates is

o, 2160 _
G2 1169

and the heat transfer rate is approximately doubled by doubling the plate height.

The heat transfer rate increases more rapidly, however, as the plate is heightened further. For
example, increasing the plate height by a factor of 4 (to 4.8 m) gives more than a sixfold increase in heat
transfer. This illustrates the effect which eddy diffusion has on the heat transfer rate.

Supplementary Problems

For equilibrium of a spherical vapor bubble in a liquid, a balance of forces gives
¥ (p, — pi) = 2mro

where r is the bubble radius, o is the surface tension, and subscripts v and ! represent the vapor and liquid,
respectively. Combining this equilibrium condition with the Clausius-Clapeyron equation,

dp _ hy
dT v, T,

which relates the pressure and temperature between a saturated liquid and its saturated vapor, and with
the ideal gas law, determine the relationship between the degree of superheat and bubble radijus.

2R, Tlo

Ans. T,— T, = hopor
g Fu

A tungsten wire submerged horizontally in water at atmospheric pressure is electrically heated,
maintaining the surface at 107 °C. The wire is 0.001 m diameter and 0.3 m long, £ =2V and I = 20 A.
Determine the heat transfer coefficient.  Ans.  h = 6.06 % |0} Wim?-°C

A heated brass plate is submerged vertically in water at atmospheric pressure. The plate is maintained at
108 °C. What is the heat transfer rate per unit area? C,, = 0.006. Ans. 7.56 X 10° W/m?

Estimate the maximum nucleate boiling heat flux for water in a pressure cooker at 200 kPa.
Ans. 168 % 10" W/m?

For laminar film condensation, what is the ratio of heat transfer to a horizontal tube of large diameter to
that to a vertical tube of the same size for the same temperature difference?  Ans.  (0.64)(LID)"

What L/D ratio will produce the same laminar-film-condensation-controlled heat transfer rate to a tube
in both the vertical and horizontal orientations? Assume the tube diameter is large compared with the
condensate thickness. Ans. 590

A 1t high vertical plate is exposed to saturated steam at atmospheric pressure. If the plate is maintained
at 188 °F, determine the heat transfer per unit width and the condensation rate per unit width.

Ans. 40445 Btu/h-ft; 41.7 1b,/h - ft



Chapter 10

Heat Exchangers

A heat exchanger 1s any device that cffects the transfer of thermal energy from one fluid to another.
In the simplest exchangers the hot and cold fluids mix dircctly; more common are those in which the
fluids are separated by a wall. This type, called a recuperator, may range from a simple plane wall
between two flowing fluids to complex configurations involving multiple passes, fins, or baffles. In this
case conductive and convective heat transfer, and sometimes radiation, principles are required to
describe the energy exchange process.

Many factors enter into the design of heat exchangers, including thermal analysis, size, weight,
structural strength, pressure drop, and cost. Qur primary concern in this chapter shall be thermal
analysis. Except for structural strength and cost, the remaining factors may be adequately evaluated
utilizing the principles of carlier chapters. The ASME Code for Unfired Pressurc Vessels sets structural
design standards, while cost evaluation is obviously an optimization process dependent upon the other
design parameters.

10.1 TYPES OF HEAT EXCHANGER

Common heat exchangers include the flas-plate, shell-and-tube, and crossflow types. A double-pipe
exchanger, the simplest form of the shell-and-tube type, 1s shown in Fig. 10-1. If the fluids both flow
in the same direction, as shown, it is referred to as a parallel-flow type; if they flow in opposite
directions, a counterflow type. Figure 10-2 shows a shell-and-tube exchanger with several tubes, two
passes and baffles.

In crossflow heat exchangers the fluids flow at right angles to each other, as illustrated in Fig. 10-3.
If a fluid can move about freely while passing through the exchanger, the fluid is said to be mixed.
Figure 10-4 shows a crossflow type with both fluids unmixed. Here the temperature distribution with
distance is skewed because the fluid in a given flow path is subjected to a temperature difference unlike
that experienced by the fluid in any other path at the samc distance from the inlet.

Fluid a

AQ_I_ |!/[:l Fluid b
T i A

Fluid a

F]uﬂb

Section A-A

Fig. 10-1

268
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Fluid a Fluid b

\- rad %

O 7 <
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-y |

a
Falls N 2
r ~— ~—

I'I
. Fluid b

Fluid a

Fig. 10-2. Typical shell-and-tube heat exchanger.
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10.2 HEAT TRANSFER CALCULATIONS

The primary objective in the thermal design of heat exchangers is to determine the necessary
surface area required to transfer heat at a given rate for given fluid temperatures and flow rates. This
is facilitated by employing the overall heat transfer coefficient, U, introduced in Section 2.7, in the

fundamental heat transfer relation
[ ] g = UAAT (10.n)

where AT is an average effective temperature difference for the entire heat exchanger.

Overall Heat Transfer Coefficient

Equation (2.30) shows that the overall heat transfer coefficient U is proportional to the reciprocal
of the sum of the thermal resistances. For the common configurations which we shall encounter,

1
plane wall: U= Vh. ¥ Lk + U, (10.2)
o . _ 1
cylindrical wall: U, v, ¥ [0 (rr3Vk + Uk, (10.3)
1
U, (710-4)

T Uk, + [rin(rir)l/k + ridryhy

where subscripts i and o represent the inside and outside surfaces of the wall, respectively. It is
important to note that the area for convection is not the same for both fluids in the case of a cylindrical
wall; therefore, the overall heat transfer cocfficient and the surface area must be compatible, i.e.,
q=U,A,AT = U,A;AT.

For the preliminary design of heat exchangers it is advantageous to be able to estimate overall heat
transfer coefficients. Table 10-1 gives approximate values of U for some commonly encountered fluids.
The wide range of values cited results from a diversity of heat exchanger materials (of different
thermal conductivities, k) and flow conditions (influencing the film coefficients, 4), as well as geometric
configuration.

Log-Mean Temperature Difference
Before making heat transfer calculations it is

necessary to define the remaining term in (10.17), T
AT. Consider, for instance, a parallel-flow fiat-
plate exchanger, whose temperature profiles are -7

shown in Fig. 10-5. We shall assume that:

1. U is constant throughout the exchanger AT,

dg
2. the system is adiabatic; heat exchange 7 H To T
takes place only between the two fluids dx

3. the temperatures of both fluids are con-
stant over a given cross-section and can x
be represented by bulk temperatures

4. the specific heats of the fluids are

constant
T VAP II VI INIT I IS T IINITS. T
Based upon these assumptions, the heat transfer T’" [ ""T""
between the hot and cold fluids for a differential " CIIITIITII7TTIP7ITIFTIFTT “

length dx is
dg =U(T,—TJ)dA (10.5) Fig. 10-5
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Table 10-1. Approximate values of U.

Fluid v
Wm?-K Btu/h-ft>-°F

Brick exterior/wood panel

interior wall, uninsulated 22-28 0.4-0.5
Steam to:

Fuel oil, heavy 60-170 10-30

Light 170-340 30-60

Gases 28-280 5-50

Water 990-3400 175-600
Water to:

Alcohol 280-850 50-150

Brine 560-1100 100-200

Compressed air 60-170 10-30

Condensing alcohol 255-680 45-120

Condensing ammonia 850-1400 150-250

Condensing Freon-12 454-850 80-150

Condensing oil 227-567 40-100

Gasoline 340-510 60-90

Lubricating oil 115-340 20-60

Water 850-1700 150-300

since dA is the product of length dx and a constant width. The energy gained by the cold fluid is equal
to that given up by the hot fluid, i.e,,

dq = mc.dT, = —myc,dT, (10.6)

where 1 is the mass flow rate and c is the specific heat. Solving for the temperature differentials from
cgs. (10.6) and subtracting, we get

1 1
d(Th_ Tt-)— _(m+ mcc':)dq (107)
Eliminating dg between (70.5) and (/10.7) yields
d(T,~T,) ( 1 1 )
—=—U|l—+——)dA 10.8
(Th=T) MyCy, M (108)
which integrates to give
AT, 1 1
In—= - UA{= + 10.9
AT, (mhq. mccc) (10.9)

where the AT terms are as shown in Fig. 10-5.
From an energy balance on each fluid,

q . q

1, Ch = —————— T
T T To) e = T —To)
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and substitution of these expressions into (/0.9) gives
ﬂTz _ (Tm - T!w} + (Tw - Ta)

In AT, UA 7
or, in terms of the differences in end lemperatures,
_ AT‘_} - AT|
- 9= VAT AT, (10.10)
Upon comparing this result with eq. (10.1), we see that
— AT, AT,
u AT = fnaryary = AT e

This average effective temperature difference is called the log-mean temperature difference (LMTD).
It can easily be shown that the subscripts 1 and 2 may be interchanged without changing the value of
AT, hence, the designation of ends for use in (/0.10) and ([0.11) is arbitrary.

Equations (/0.70) and (10.11) can also be shown to hold for other single-pass exchangers such as
the counterflow flat plate and the parallel flow or counterflow double-pipe configurations. Also, these
equations are valid for single-pass parallel flow and counterflow evaporators and condensers where
one of the fluids remains at a constant temperature.

Correction Factors for Complex Heat Exchangers

For more complex heat exchangers, such as those involving multiple tubes, several shell passes, or
crossflow, determination of the average effective temperature difference is so difficult that the usual
practice is to modify (10.1) by a correction factor F, giving

[ q = UAFAT,, (10.12)

in which AT, is that for a counterflow double-pipe exchanger with the same fluid inlet and outlet
temperatures as in the more complex design. Correction factors for several common configurations are
given in Figs. 10-6 through 10-9. In these figures the notation (7, ) to denote the temperatures of the
two fluid streams has been introduced, since it is immaterial whether the hot fluid flows through the
shell or the tubes.
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Fig. 10-6. Heat exchanger correction factor plot for one shell pass and an even number of tube passes. [From
R. A. Bowman, A. C. Mueller and W. M. Nagle, © 1940, The American Society of Mechanical Engineers,
Trans. ASME, 62: 283, New York. Used with permission.]
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Engineers, Trans. ASME, 62: 283, New York. Used with permission.]
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Fig. 10-8. Heat exchanger corvection factor plot for single pass, crossflow with one fluid mixed. [From R. A.
Bowman, A. C. Mueller, and W. M. Nagle, ©1940, The American Society of Mechanical Engineers, Trans.
ASME, 62: 283, New York. Used with permission.]
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Fig. 10-9. Heat exchanger correction factor plot for single pass, crossflow with both fluids unmixed. [From R. A.
Bowman, A. C. Mueller, and W. M. Nagle, ©1940, The American Society of Mechanical Engineers, Trans. ASME,
62: 283, New York. Used with permission.
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10.3 HEAT EXCHANGER EFFECTIVENESS (NTU METHOD)

If more than one of the inlet or outlet temperatures of the heat exchanger are unknown, the
LMTD method of Section 10.2 is unwieldy, requiring a trial-and-error iterative approach. Another
approach introduces a definition of heat exchanger effectiveness:

actual heat transfer _ Gacual
maximum possible heat transfer  Gmax

€ (10.13)
where the maximum possible heat transfer is that which would result if one fluid underwent a
temperature change equal to the maximum temperature difference available —the temperature of the
entering hot fluid minus the temperature of the entering cold fluid. This method uses the effectiveness
€ to eliminate the unknown discharge temperature and gives a solution for effectiveness in terms of
other known parameters (11, ¢, A, and U).

Letting C = riic,

Gactual = Cﬁ(Thr - Tho) = Ct( Tm - Tc.t) (I 0.14 )

which indicates that the energy given up by the hot fluid is gained by the cold fluid. The maximum
possible heat transfer occurs when the fluid of smaller C undergoes the maximum temperature
difference available, i.e.,

Gmax = Cn'lirl(Thi = Tﬁ') (10 !5)

This transfer would be attained in a counterflow exchanger of infinite area. Combining (10.13) and
(10.15), we get the basic equation for determining the heat transfer in heat exchangers with unknown
discharge temperatures:

n Gacum = €Conin(Thi — Ti) (10.16)

Parallel-Flow Heat Exchanger
Consider the simple parallel-flow heat exchanger of Fig. 10-5 under the same assumptions used in
Section 10.2 to determine the log-mean temperature difference.
Combining (10.13), (10.14), and (10.15), we get two expressions for effectiveness, viz.
— Ch(Tm - Tfm) - Ct‘(Tm - Tn}
Crmn( Thi— Tci) Crnm(Thi = T.,-i)
Since either the hot or the cold fluid may have the minimum value of C, there are two possible values
of effectiveness:

(10.17)

C;, < Ct- L ey = 'H
" (10.18)

C<C : €= T T

L h - - Tm‘ — T{-,'

where subscripts on e designate the fluid which has the minimum C. Returning to (10.9), it may be
written in terms of the Cs to give

Tfm - Tcu 1 1
2= _pA|—+— .
8 Ty—T, (Ch Cc) (IO 19)

or

Tho_"rtn=ex *_%_ 1+_C._"' 10.20
Tfn - ?:t P Ch Cr ( . )
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From the energy balance equation (70.14),

= T+ (T~ T (10.21)

T C.

o

Combining (10.20) and (10.21) with the first equation (10.18), which assumes that the hotter fluid has
the minimum value of C, we get

6 = 1 —exp[—(UA/C,)(1 + C/C.)]

h = 1+ G,IC. (10.22)
If the colder fluid has the minimum value of C,
1 —exp[-(UAIC)(1 + C.IC,)]
&= 1+ GG, (1023)
Equations (10.22) and (10.23) may both be expressed as
- = 1 — exp|—(UA/Cirin)(1 + Crrin/ Crnax)] (10.24)

1 + CTI‘III‘IICI'I'IEIX

giving the effectiveness for a parallel-flow heat exchanger in terms of two dimensionless ratios. One
of these, UA/C,., is called the number of transfer units, i.e.,

NTU = UA/C,,, (10.25)

The NTU may be considered as a heat exchanger size factor. It should be noted that (70.24) contains
only the overall heat transfer coefficient, area, fluid properties, and flow rates.

Other Configurations

Expressions for the effectiveness of other configurations are given in Table 10-2, where
C = Cin/Crrax- Note that for an evaporator or condenser C = 0, because one fluid remains at a
constant temperature, making its effective specific heat infinite.

10.4 FOULING FACTORS

The performance of heat exchangers as developed in the preceding sections depends upon the heat
transfer surfaces being clean and uncorroded. Should surface deposits be present, thermal resistance
increases, resulting in decreased performance. This added resistance is usually accounted for by a
fouling factor, or fouling resistance, Ry, which must be included along with other thermal resistances
when calculating the overall heat transfer coefficient.

Fouling factors are determined experimentally by testing the heat exchanger in both the clean and
dirty condition, being defined by

Rj= = — (10.26)

Typical values of Ry in m?-K/W range from 0.000 09 for clean vapors to 0.0002 for hot river water or
hot seawater. For more details, contact the Tubular Exchanger Manufacturers Association, Tarrytown,
NY, or manufacturers of specific equipment.



Table 10-2. Summary of effectiveness equations.

Exchanger Type Effectiveness Figure
Equation
Parallel-flow: single- 1 —exp[-NTU(1 + ()] Fig. 10-10
pass €= 1+C eq. (10.27)
Counterflow: single- € 1 = exp[-NTU(1 - C)] Fig. 10-11
pass 1 — Cexp[-NTU(1 - C)] eq. (10.28)
Shell‘a“d‘lubc _ 12 -
{one shell pass: € = 2[] +C+ 1 +exp[NTU( + C,})ml (1+ C’)"?] Fig. 10-12
2.4, 6. etc., tube 1 —exp[-NTU(1 + C?)'?] eq. (10.29)
passes)
Shell-and-tube 1-¢C\" 1-C\" ! )
S [ [ ]
L i orn=2
2n, 4n, 6n, eic., eq. (10.30)
tube passes) T
Crossflow (both o I 022 B a7 Fig. 10-14
streams unmixed) e =1 exp{ ( C) (NTU)Yexp[-C(NTU)™™) — 1] eq. (10.31)
Crossflow (both € = NTU NTU (NTU)C) _ I-l_' No figure
streams mixed) 1 —exp(—NTU) 1 -exp|[-(NTU)CO)) eq. (10.32)
Crossflow (stream 1 Fig. 10-15
~ i €= (= |{1 —exp[~C[l — exp(~NTU)]}} dashed curves)
Conn unmixed) C
eq. (10.33)
Crossflow (stream 1 Fig. 10-15
C,. unmixed) €=1-exp{~ (E)ll —exp[~(NTU)O)])) (solid curves)
eq. (10.34)
Parallel-flow: single- | — exp(—2ZNTU) No figure
pass C = 1 €= 2 eq. (10.35)
Counterflow: single- _ NTU No figure
pass C = 1 TNTU+ 1 cq. (10.36)
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eq. (10.27) 2 , eq. (10.28)
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Fig. 10-10. Effectiveness: parallel-flow, single-pass
heat exchanger.

Fig. 10-11. Effectiveness: counter flow, single-pass
heat exchanger.
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(both streams unmixed). exchanger (one stream unmixed).
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Solved Problems

10.1. In a food processing plant a brine solution is heated from 6°C to 12 °C in a double-pipe heat
exchanger by water entering at 50 °C and leaving at 40 °C at the rate of 0.166 kg/s. If the overall
heat transfer coefficient is 850 W/m’-°C, what heat exchanger area is required for (a) parallel

flow and (b) counterflow?
The heat transfer from the water is given by

q = mc, AT
where ¢, = 4.180 kJ/kg-K taken from Table B-3 (SI); therefore,
q = (0.166 kg/s)(4.180)(k)/kg- K)[(S0 - 40) °C] = 6.967 X 10° W

(a) Figure 10-5 is a qualitative representation of the temperature distribution for the parallel-flow case.
The log-mean temperature difference is given by (70.11),

_ ATZ_3T|
Al =10 (AT>/AT,)

for which AT, = 50 - 6 = 44°C and AT, = 40 — 12 = 28 °C; hence,
28 — 44

e ————— ] 9
AT, In (28/44) 354°C
and
q 6.967 X 10°'W

A = 0231 m?

T UAT,, (850 W/im?°C)(354°C)

(+) The temperature distribution for the counterflow case is shown qualitatively in Fig. 10-16, from

which
AT, =50-12=38°C T
and 1 ] T,
AT, =406 = 34°C ,_\%,__ 1.
Equation (J0.11) yields
- d 7)
AT = -———-——]3‘:3 4;; = 35.96°C 4 A
n dx __I = AT,
and T,
q
= x
A UAT
_ 696'}'W ;}“_- ISP IIIIIIIIFIFIIFTIIIFIIIII TM
(850 Wim?-°C)(35.96 °C) e FTITTTITTITITTIITIIIITIIIT . a
= 0228 m* Fig. 10-16

10.2. Hot oil is used to heat water, flowing at the rate of 0.1 kg/s, from 40 °C to 80 °C in a counterflow
double-pipe heat exchanger. For an overall heat transfer coefficient of 300 W/m?-K, find the
heat transfer area if the oil enters at 105 °C and leaves at 70 °C.,

The heat gained by the water is given by
q= P?'IWC,(T.W - Tm)
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10.3.

10.4.

From Table B-3 (SI) the specific heat of water at (40 + 80)/2 = 60°C is
¢, = (0.9994)(4.184 x 10%) = 4184 J/kg-K
This gives a heat transfer
q = (0.1 kg/s)(4184 W-s/kg-K)[(80 — 40) K] = 1.67 X 10° W
Using (10.10), where AT, = 70 — 40 = 30K and AT, = 105 — 80 = 25K, we get

_ g In(AT/AT,) _ 167X 10°W In(30/25)

= == -_-.2_03 z
U AT,—AT, 300Wm?-K (30-25)K "

A

In a double-pipe counterflow heat exchanger, water at the rate of 60 Ib,/min is heated from
65 °F to 95 °F by an oil having a specific heat of 0.36 Btu/lb,,-°F. The oil enters the exchanger
at 200 °F and leaves at 140 °F. Determine the heat exchanger area for an overall heat transfer

coefficient of 50 Btu/h-{t*-°F.

The total heat transfer to the water, using ¢, = 1.0 Bu/lb,,-°F, is

. by, (Gﬂmin ( Btu )
= AT = | 60— 1.0 95 — 65) °F} = 108 000 Btw/
g = mc, ( min) h ) by, -°F [( ) °F} twh
Referring to Fig. 10-16, the log-mean temperature difference is given by
AT, — AT,
ATy = —
™ In(ATH/AT,)
where AT, = 140 — 65 = 75°F and AT, = 200 — 95 = 105 °F; hence,
75 - 105 =30 o
Alim = In(75/105) -0336 89.16°F
and the area is
108 000 Btw/h
A=—12 = 204.23 2

T UAT,, (50 Btu/h-f-°F)(89.16 °F)

Hot ail (¢, = 2.09 kJ/kg-K) flows through a counterflow heat exchanger at the rate of 0.63 kg/s.
It enters at 193 °C and leaves at 65 °C. Cold oil (¢, = 1.67 kl/kg-K) exits at 149 °C at the rate
of 1.0 kg/s. What area is required to handle the load if the overall heat transfer coefficient based
on the inside area is 0.7 kW/m?-K?

The unknown inlet temperature of the cold oil may be found from an energy balance on the two
fluids, i.e.,

r’.’l: Cc( Tur - Tu) = 'ﬁhch{ Tm - Tlm)

Tu = Tu\r - n.l"Ch (Tln - T!m]
mcC,
0.63 kg/s)(2.09kJ/kg-K
- 1a9°¢ - LE3keB)( 2%) (193 - 65)°C] = 48.08°C

(1.0kg/s)(1.67 kI/kg-K)

Knowing the inlet and exit temperatures for both fluids, we may now use (/¢.10) in conjunction with an
energy balance on one fluid to determine the area. From an energy balance on the hot fluid, the heat
transfer is given by

q= ";’hch{ T — Tn.;)
= (0.63 kg/s)(2.09 ki/kg- K)[(193 - 65) K] = 168.54 k}/s = 168.54 kW
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10.5.

10.6.
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Referring to Fig. 10-16 and using (10.10), we have

4-4 In(ATS/AT))
U ATz - AT|
where
AT, =T,,—-T,=65-4808 = 16.92K
AT, =T, —T,=193-149 = 44 K
Thus,

168.54kW  In(16.92/44)

= =85m?
A = 5700 kWim? K (1692 - 48 K 5m

A brine solution is heated from 6°C to 30 °C in a one-shell-pass (hot water)—two-tube-pass
(brine) heat exchanger. The hot water cnters at 55 °C and exits at 40 °C. The water flow rate is
0.25kg/fs, and the overall heat transfer coefficient is U = 900 W/m?-K. What heat exchanger
arca is required?

The heat transfer rate is
q = (mcp&,r)wmut
where the ¢, for water at T,,, = 47.5°C is 4.181 x 10* J/kg- K from Table B-3 (SI). Thus,

B (0.25 kg)(4.]8] % 10°)
7 5 kg-°C

The AT, and AT; for the double-pipe, counterflow heat exchanger are
AT, =55-30=25°C; AT, =40-6 =34°C

)(55 -40)°C = 15678 W

and
_ AT,-AT,  34-25 .
AT = In(ATJAT,) In(3425) 29.27°C
Now
g= UAFAT,; A=—3
UFAT,,

We will determine F by use of Fig. 10-6. For this, temperatures T;, T, are for the shell side (water) and
1,, 1, are for the two tube passes (brine).

L,"f,' 3‘0_6

Ty, 55-6 040
7,—-7T, 55-40
= r ” = = 0_6
!” - I,' 30 - 6 25
From Fig. 10-6, F = 0.92 and thus
1S678 W

A = (1.647 m?

~ (900 Wim?-K)(0.92)(29.27 °C)

Repeat Problem 10.5 for two shell passes and four tube passes.

The dimensionless parameters for this case are the same as those of Problem 10.5, but Fig. 10-7 must
be used to obtain F, which approaches unity. Therefore, A = 0.601 m>.
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10.7.

10.8.

What area would be required for the conditions of Problem 10.2 if a shell-and-tube heat
exchanger were substituted for the double-pipe heat exchanger? The water makes one shell
pass, and the oil makes two tube passes.

Assuming that the overall heat transfer coefficient remains at 300 W/m?- K, we must get a correction
factor F from Fig. 10-6 to use in (10.12), viz.

q = UAFAT,,
The temperatures for use in the figure are:
T,=40°C T,=80°C =105°C 1 =70°C
The dimensionless ratios are
t,—4 70-105 -7, 40-80

=0.54 Z= = =1.14

P= 4= " w010 L—1 70-105

which gives a correction factor F = 0.62; therefore,

___ g9 _qIn(ATYAT) 2.03m’
UFAT., UFQAT,- AT) 0.62

A =327m’

A crossflow heat exchanger with both fluids unmixed is used to heat water (¢, = 4.181 kJ/kg-K)
from 40 °C to 80°C, flowing at the rate of 1.0 kg/s. What is the overall heat transfer coefficient
if hot engine ail (c, = 1.9 kJ/kg-K), flowing at the rate of 2.6 kg/s, enters at 100 °C? The heat
transfer area is 20 m>.

The heat transfer is given by

de - ﬂTl

= .w T..-T. =-ct Y S AT AT N
q m CW( f) m.c (Tﬁ Tﬂ) UAFID(&T;"&T])

The second equality will be used to get the exit oil temperature so that the log-mean temperature
differences and the correction factor can be determined.
My C
Trw = Tl'l - "“" (Tm - Tu't]
i€,

(3

(1.0 kg/s)(4.181 kJ/kg-K)

= 100 = e S kg (19 kiAg K)

[(80 — 40) °C] = 66.15°C

This gives:
AT, = T~ 1, = 66.15-40=2615°C ATy =T,—T,,=100-80 = 20°C
In the nomenclature of Fig. 10-9,
I,=100°C T,=6615°C 1=40°C ,=80°C
Evaluating the dimensionless parameters, we get

_l,—1  80—-40 _T,-T, 1W0-66.15

h?‘.—f._ll’lﬂ—40=0'6? Z P = 80—40 = (.846
and the correction factor is F = 0.81.
From the above heat transfer equations,
U- My Cy(T,, — T,:)In(ATH/AT))
1.0 kg/s)(4.181 kJ/kg: K)[(80 — 40) K] In(26.15/20

(20 m?)(0.81)[(26.15 - 20) K]
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10.10.
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Estimate the surface area required in a crossflow heat exchanger with both fluids unmixed to
cool 50000 Ib,/h of air from 120°F to 100 °F with inlet water at 60 °F flowing at the rate of
1150001b,,/h. Assume that the average value of the overall heat transfer coefficient is
30 Btu/h-ft>-°F

The total heat transfer from the air is

g = (Fic,AT), = (50 000 !’hﬂ) (0.24 IbBl-l‘]‘F ) [(120 - 100) °F) = 240 000 Btw/h

From an energy balance we can get the exit water temperature, i.e.,

M, Ca AT, = My Co, AT, = 240 000 Btw/h

240 000 Btu/h

AT = (715000 1b,/h)(1.0 B/l °F)

=2.09°F

and
T.,,=T,+AT, =60+ 209 = 62.09°F
The surface area is given by (10.12) as

_ q
A UFAT,,
where F is taken from Fig. 10-9 and AT, is the log-mean temperature difference for a counterflow
double-pipe heat exchanger having the same fluid inlet and outlet temperatures. Referring to Fig. 10-16,
AT, =120 -62.09 = 57.91 °F and AT, = 100 — 60 = 40 °F. Equation (I{.11) gives the log-mean tempera-
ture difference as

AT, — AT, _ 40-57.91

In(ATHATY) ~ In@ais7on)  “B40°F

ﬂ Tlm =

Letting the lowercase temperature nomenclature of Fig. 10-9 represent the air, the required dimensionless
parameters are:

t,—t, _100-120 _T,-T, 60-6209
T,—r,_ﬁﬂ—lzo‘o'n Z= t,—1f 100-120

P= 0.10

The correction factor, from Fig. 10-9, is approximately unity; therefore,

240 000 Bu/h

= = 2
A (3{]‘ Blu!h - 'tz 'OF}( I ‘0)(48'40 oF) 165.29 fl

What error would have been introduced in Problem 10.9 if the arithmetic mean temperature
difference, defined by AT,,, = (AT, + AT,)/2, had been used rather than the log-mean tempera-
ture difference, AT\?

The arithmetic mean temperature difference is

a7 -0+ 25?.91

= 4896 °F
This gives an area of

{4840 ~ ,
Aum = ( 856 )(165‘29} = 163.42 ft

which underspecifies the area by

165.29 — 163.42
= —_—— X = 1.
error 165.20 100% = 1.13%
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10.11. For what value of AT,/AT, is the arithmetic mean temperature difference,

AT, = (AT, + AT
5% larger than the log-mean temperature difference, AT7,,,?
We have
AT L 1 (ATYAT) + 1
AT, _ 3(AT, + AT)) _ V(AT /ATY) In(AT,/ATY)

AT,, (AT,—AT)In(AT,/AT,) 2 (AT,AT)) -1
For AT, JAT,, = 1.05,
(ATJAT) + 1

In(AT,/AT,) = 2.10
@GTat)—1 MATIAT)

Solving by trial, AT,/AT, = 2.2 -

It can be shown analytically that AT, /AT, is a strictly increasing function of AT,/AT; for
AT,/AT, = 1. Consequently, the simple arithmetic mean temperature difference gives results to within 5%,
when the end temperature differences vary by no more than a factor of 2.2,

10.12. When new, a heat exchanger transfers 10% more heat than it does after being in service for six
months. Assuming that it operates between the same temperature differentials and that there
is insufficient scale buildup to change the effective surface area, determine the effective fouling
factor in terms of its clean (new) overall heat transfer coefficient.

The heat exchange ratic may be written as

qdeun Ucl.,-dnA ﬁ— Umm
= —= = 1.10 Uiy = ——+
qdil'ly UdirlyA &T or dirty I.IO
Substituting this into (J/0.26), we get
1 1 110 1 010

R = — 3
! Udiu)r Ucll:an Ucll:an U:Iunn Ucltan

10.13. A double-pipe, parallel-flow heat exchanger uses oil (¢, = 1.88 kJ/kg:°C) at an initial tempera-
ture of 205°C to heat water, flowing at 225 kg/h, from 16°C to 44°C. The oil flow rate is
270 kg/h. (@) What heat exchanger area is required for an overall heat transfer coefficient of
340 Wim?-°C? (b) Determine the number of transfer units (NTU). (c) Calculate the effective-
ness of the heat exchanger.

(a) At an average water temperature of 30°C, the specific heat is ¢, = 4.18 kI/kg-°C; therefore, an
energy balance gives

(’ﬁcp aT)nil = (mcp AT}wan:r
(270 kg/h)(1.88 k3/kg - °C)(205 °C — T,)) = (225 kg/h)(4.18 k)/kg-°C)(44 — 16) °C
e 225(4.18)(28)
Toi . 205 (270)(1.88)

This gives end temperature differences: AT, = 205 — 16 = 189°C and AT, = 153 — 44 = 109°C, and
the log-mean temperature difference is

AT, -AT,  109-189
In(AT/AT,) In(109/189)

The total heat transfer is g = (Hic, AT )y = (225 kg/h)(4.18 kI/kg-°C)(44 — 16 °C) = 7315 W and
the area is given by

=205-519=153°C

&T]m =

=1454°C

q9 3I5W
UAT,, (340 Wim?-°C)(145.4 °C)

A= =0.148 m’
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(b) The number of transfer units is given by NTU = UA/C,,,,. To determine C;, we must compare the
products of the mass-flow rate and specific heat for the water and oil.

(M) warer = (225 !(Hg_) (4'18 -k—g-k{,—c) =9.405 X 10° J/h-°C
(Yo = (270 %) ( 1.8 kg“_{c

Therefore, C,,, = 5.076 X 10° J/h-°C = 141 W/°C and C,.. = 9.405 Jth-°C = 261 W/°C. Hence,

Ua _ (340 W/m?-°C)(0.148 m?)

Coin 141 WrC

(¢) The effectiveness is given by (10.24).

1= expl - NTU(L + CunlCu)] _ 1 = exp —(0.36)[1 + (141/261)]]
€= 1+ CondCon 1+ 1417261

) ~ 5.076 X 10° J/h-°C

NTU = = (.36

= 28%

which agrees very well with that shown graphically in Fig. 10-10.

10.14. Water enters a counterflow, double-pipe heat exchanger at 38 °C, flowing at the rate of 0.75 kg/s.
It is heated by oil (c, = 1.884 kJ/kg-K) flowing at the rate of 1.5 kg/s from an inlet temperature
of 116°C. For an area of 13.0m? and an overall heat transfer coefficient of 340 W/m?-K,
determine the total heat transfer rate.

Since the inlet temperatures are known and the (mc,,) products can be calculated, (10.16) may be used
to determine the heat transfer after finding the heat exchanger effectiveness, €. Since the specific heat of
water is approximately 4.18 kl/kg-K (at approximately 40 °C),

kg

KJ
i L =1{075=21{418 ——| = 3.14klss-
(1€ Dwaer (0?55)(418kg_K) 3.14klis-K

; kg kI y
(Cy)on = (I.S—S-)(I.BS kg-l() = 2.82klIis-K

Therefore

C 2.82
mn = _ 0-90
Cmax 3]4

and

UA (340 Wim?-K)(13.0m?)
Cum (282 Kis-K)

NTU = 1.57

Using these parameters with Fig. 10-11, we get € = 0.62; hence,
q = €C. (T, — T,) = (0.62)(282 kI/s-K)(116 — 38) °C = 136 400 W

10.15. Water enters a crossflow heat exchanger (both fluids unmixed) at 16 °C and flows at the rate of
7.5kg/s to cool 10.0kg/s of air from 120°C. For an overall heal transfer coefficient of
225 Wim?-K and an exchanger surface area of 240 m?, what is the exit air temperature?

Taking the specific heats of the air and water to be constant at 1.014 and 4.182 kJ/kg- K, respectively,
we get

. _ kg Ky oy
(mep)aic = (10.0 s )(l.Ong‘K) = 10.14 kWrC

. kg k¥
(mc[‘)wucr = (75?)(4.182k—g'—l2) = 31.37 kaoC
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which gives
Cmin _ Calr _ 10'14

= =032
Cowe  Coner 3137 "

Also,

AU (240 m?)(225 Wim® K)
NTU = Coir aakwre 02

and from Fig. 10-14, € = 0.94.
The heat transfer is given by

q= ECtmu(T!rr =T
~ (0.94)(10.14 KW/K)(120 — 16) °C = 9.91 X 10°' W

An energy balance on the air then gives the exit temperature:

q =mcy(T,~ T,)
T,=——L+T,
ritcy
9.91 X 10°' W

+120°C = 22.27°C

~ (10.0kg/s)(1.014 kl/kg-°C)

10.16. Solve Problem 10.15 for a one-shell-pass, 10-tube-pass heat exchanger.

The same dimensionless parameters hold, but the heat exchanger effectivencss is lower. From Fig,
10-12, € = 0.84; therefore,
q= ECmin(ThJ . ?:I} = [r';lcfi("rr_ T‘u}].nlr
(0.84)(10.14 kWr°C)(120 — 16)(°C) = (10.14 kW/°C)(120°C - T,)
T, = — 0.84(120 — 16)(°C) + 120 °C = 32.6 °C

10.17. Hot water at 80 °C enters the tubes of a two-shell-pass, eight-tube-pass heat exchanger at
the rate of 0.375kg/s heating helium from 20°C. The overall heat transfer coefficient is
155 W/m?-°C and the exchanger area is 10.0 m% If the water exits at 44 °C, determine the exit
temperature of the helium and its mass flow rate.

Since the Aow rate of the helium is unknown, there is no way to determine a priori the minimum heat
capacity rate. Assuming that the minimum fluid is the water, with ¢, = 4.185 kl/kg-K a1 55°C,

] kg J
= = : —-= - | = W
C. = mc, (03‘?5 S )(4]85 kg-K) 1570 W/IK

Based upon this assumption, the number of transfer units is
UA (155 Wim?-°C)(10.0 m’)
Crin (1570 WIK)
The top equation (10.18) holds, giving
_n,~-T, 8-44
hi—-7, 80-20

From Fig. 10-13 these parameters give C = Cin/Crux = 0.25, which validates the initial assumption of
the water as the minimum fuid. Hence,

c C. _ (1570wn<
He 0.25

NTU = =099=1.0

= 0.60

=035 " ) = (6280 W/K) = (ricy ),
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In the temperature range being considered, the specific heat of helium is 5.2 kJ/kg-°C; therefore,

An energy balance gives the helium exit temperature, i.e.,

e (T, — T)lw = ey (T = Tl
y e oy

i, He { |1 )H':
1570 W/K

o =20 Cfm(%‘“) C=29°C

T,

He

T,

10.18. Hot oil is used in a crossflow heat exchanger to heat a dye solution in a carpet manufacturing
plant. The mixed-flow dye solution (¢, = 1.12 Btu/lb,,-°F) enters at 60 °F and exits at 130 °F at
a flow rate of 3000 Ib,,/h. The unmixed-flow oil (¢, = 0.46 Btu/lb,,- °F) enters at 400 °F, and the
flow system produces an overall heat transfer coefficient of 50 Btu/h-ft?-°F. For an exchanger
surface area of 80 fi?, what mass flow rate of oil is required, and what is its exit temperature?

The given conditions do not permit the direct determination of the minimum fluid. If the minimum
fluid is the dye solution, we can solve for e and NTU and use Fig. 10-15 to get Ciixea/Cunmizea, Which would
permit the oil flow rate to be determined. If the minimum fluid is the oil, a solution requires
trial-and-error.

Assuming that the minimum fluid is the dye solution, the second equation (10.18) gives

_ To— 1‘".,_!30 60
Cve =& T T T 300 - 60

= (.21

Under the same assumption,

I Bt
Crixed = Caye = (M1 )aye = (3000%"')(1,]2% “F) = 3360 Buw/h -°F

and

vA (50 Btu/h- ft?-°F)(80 ft?)
Cooinen 3360 Btu/h-°F

With these parameters, it is apparent from Fig. 10-15 that the ratio C,uxea/Cunmixea do€s not exist; therefore,
the minimum fluid is the oil.

We must now assume 2 value of Cumpes (Which amounts to assuming ), determine the pertinent
parameters and compare calculated results with Fig. 10-15 until a solution is found. A first trial in this
procedure is outlined below; subsequent assumptions and results are presented in Table 10-4. Assume

Cunmimu] = Cﬂll = Cl'lllll = 1000 Btu/h-°F

NTU = = 1.19

Then

Coea_ 3360 _ UA _50(80) _
Cunm’x-:d IOOO =336 - Cmm 1000

From Fig. 10-15, €= 0,84; an energy balance gives

(mc ﬂT)dyc — mmd(aT)dw
(mcr')ml Cunrlultd
(AT)u 2352

E,,=€m|= Tkr—'}:l=4m—6{}=0.69

=4.00

AT, = AT, = =(3.36)(130 - 60) = 2352 °F

and the assumed C,,y0q 1S incOrrect.
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10.19.

Table 10-4
€
Trial Cunmixed .E&‘.ﬂ.—
No. (assumed) Ciomixed | NTU AT, Calculated | From Fig. 10-15
1 1000 Btu/h-°F 3.36 4.00 235.2°F 0.69 0.84
2 2000 1.68 200 117.6 0.35 0.67
3 1500 2.24 2.67 156.8 0.46 0.77
4 880 3.82 4.55 2673 0.79 0.87
5 750 4.48 5.33 | 3136 0.92 0.92

Fig. 10-17

Figure 10-17 illustrates how such a trial-and-error solution may be refined from a simple plot of the
data from the trial solutions. Curve A is an extrapolation of the data from the first three trials, giving
Cunmixes = 880, where Ae is the difference between the value from Fg. 10-15 and the calculated value.
Curve B is a refinement using the values determined in trial number 4. No further refinement was
necessary.

The required parameters may now be determined.

Cos _ 750 Btuh-°F
Gpon  0.46 Buu/lb,,-°F

(A'T)nii = 3136 = TM - T’m = 400 — T!m
The = 400 - 313.6 = 86.4°F

=16301b,,/h

My =

Supplementary Problems

In a double-pipe, counterflow heat exchanger, water at the rate of 0.45 kg/s is heated from 19°C to 35°C
by an oil having a specific heat of 1.5 kJ/kg-°C. The oil enters the exchanger at 94 °C and exits at 60 °C.
Determine the heat exchanger area for an overall heat transfer coefficient U = 285 W/m?-°C, and ¢, for
the water is 4.181 kltkg-°C at T,,, =27°C.  Ans. 2138m?
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10.20.

10.21.

10.22.

10.23.

10.24.

10.25.

HEAT EXCHANGERS [CHAP. 10

In a one-shell-pass, one-tube-pass (double-pipe) heat exchanger one fluid enters at 60 °C and leaves at
250 °C. The other fluid enters at 450 °C and leaves at 300 °C. What is the log-mean temperature difference
for (a) parallel low and (b) counterflow? Ans. (a) 165.5°C; (b) 2194°C

Hot gases enter a parallel-flow heat exchanger at 425 °C and leave at 260 °C, heating 25 kg/s of water from
32°C to 82 °C. For a surface area of 370 m?, what is the overall heat transfer coefficient?

Ans. 5214 Wim*-°C
What is the cxit water temperature, in °C, for the heat exchanger of Probiem 10.14? Ans. 8l14°C

A counterflow heat exchanger has an overall heat-transfer coefficient of 225 W/m?-°C and a surface area
of 33.0 m%. The hot fluid (¢, = 3.56 ki/kg-°C) enters at 94 °C and flows at the rate of 2.52 kg/s. The cold
fluid (¢, = 1.67 kl/kg-°C) enters at 16 °C and flows at the rate of 2.27kg/s. What is the rate of heat
transfer?  Ans. 287X 10°W

How much heat would a crossflow heat exchanger having one fluid (air) mixed and one fluid unmixed
transfer under the conditions given in Problem 10.157 Ans. 970X 10°W

For the same parameters as in Problem 10.3, what area is required when using a shell-and-tube heat
exchanger with the water making one shell pass and the oil making two tube passes?

Ans. 2498 ¢



Chapter 11

Radiation

11.1 INTRODUCTION

Radiation is a term applied to many processes which involve energy transfer by electromagnetic
wave phenomena. The radiative mode of heat transfer differs in two important respects from the
conductive and convective modes: (1) no medium is required and (2) the energy transfer is
proportional to the fourth or fifth power of the temperatures of the bodies involved.

The Electromagnetic Spectrum

A major part of the electromagnetic spectrum is illustrated in Fig. 11-1. Thermal radiation is
defined as the portion of the spectrum between the wavelengths 1 X 10" m and 1 X 10~ m. Of interest
also is the very narrow visible spectrum, which runs from 3.9 X107 m to 7.8 X 10 ' m.

Thermal

w? ! 10? ulr‘ —_—Am

-12 .10 -1 - -4
l“ o 10 o ‘.; L L L 4 L L i
_‘_.—_Wm } 4 ¥ t ' $ 4 $

Cosmic X-rays Ultra- Infrared Hertzian Radio
Rays violet {microwave)

Visible

Fig. 11-1

A convenient wavelength unit is the micrometer: 1 um = 107° m. In these units, thermal radiation
has the range 0.1 to 100 um, and the visible portion of the spectrum is from 0.39 to 0.78 pm. Another
common unit of wavelength is the angstrom: 1 A = 107""m.

The propagation velocity for all types of electromagnetic radiation in a vacuum is

c=Av=3Xx10°m/s (11.1)

where A is the wavelength and v is the frequency of the radiation.

11.2 PROPERTIES AND DEFINITIONS

The word spectral is used to denote dependence upon wavelength for any radiation quantity. The
value of the quantity at a given wavelength is called a monochromatic value.

Absorptivity, Reflectivity, and Transmissivity
Whenever radiant energy is incident upon any surface, part may be absorbed, part may be
reflected, and part may be transmitted through the receiving body. Defining
a = fraction of incident radiation absorbed = absorptivity
p = fraction of incident radiation reflected = reflectivity
7= fraction of incident radiation transmitted = transmissivity

289
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it is clear that
atp+r=1 (11.2)

Most solids, other than those which are visibly transparent or translucent, do not transmit radiation,
and (71.2) reduces to

atp=1 (11.3)
Frequently, (11.3) is applied to liquids, although the transmissivity of a liquid is strongly dependent
upon thickness.
Gases generally reflect very little radiant thermal energy, and (11.2) simplifies to
atr=1 (11.4)
Emissive Power and Radiosity

The total emissive power, denoted by E, is the total (over all wavelengths and all directions)
emitted radiant thermal energy leaving a surface per unit time and unit area of the emitting surface.
Note in particular that this is the energy leaving due to original emission only; it does not include any
energy reflected from the surface (and originating elsewhere). Other names are “total hemispherical
emissive power,” “radiant flux density,” or simply “emissive power.” The total emissive power of a
surface is dependent upon (1) the material or substance, (2) the surface condition (including
roughness), and (3) the temperature.

Radiosity, 1, denotes the total radiant thermal energy leaving a surface per unit time and unit area
of the surface. Thus the radiosity is the sum of the emitted and the reflected radiant energy fluxes from
a surface. Like total emissive power, total radiosity represents an integration over the spectral and
directional distribution.

Specular and Diffuse Surfaces

Reflection of radiant thermal energy from a surface can be described with the help of two ideal
models. The perfect specular reflector is shown in Fig. 11-2(a); in this case the angle of incidence, ¢,
is equal to the angle made by the reflected ray, ¢,. A diffuse reflector is shown in Fig. 11-2(b); in this
case the magnitude of the reflected energy in a specific direction ¢, is proportional to the cosine of ¢,,
¢, being measured from the normal N.

If the roughness dimension (height) for a real surface is considerably smaller than the wavelength
of incident irradiation, the surface behaves as a specular one; if the roughness dimension is large with
respect to wavelength, the surface refiects diffusely.

Source é l ¢, Source

Specular or
mirror-type surface

(@)

Fig. 112
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Intensity of Radiation

We shall define the radiation intensity, I, as the radiant energy per unit time per unit solid angle
per unit area of the emitter projected normal to the line of view of the receiver from the radiating
element. For the geometry depicted in Fig. 11-3, the energy radiated from element dA, and intercepted
by element dA; is

dg\_, = I(cos dpdA,)dw (11.5)
Here

dA
do = 72 = sin pdbd¢ (11.6)

is the solid angle subtended by dA,, and cos ¢pdA, is the area of the emitting surface projected normal
to the line of view to the receiving surface. Substituting (77.6) into (71.5) and integrating over the
hemispherical surface results in

2w w2
% = f f I cos bsin ¢pddde (11.7)
Ay 0 0

which is the general relationship between the total emissive power of a body (in this case, the element
dA)) and the intensity of radiation.
If the emitting surface is diffusc, / = constant, and (/1.7) integrates to

1z
dA,

» /

~E=mal (11.8)

Incident
irradiation

Fig. 11-3 Fig. 11-4

11.3 BLACKBODY RADIATION

The ideal surface in the study of radiative heat transfer is the blackbody, which is defined by
oy, = 1. Thus the blackbody absorbs all incident thermal radiation, regardless of spectral or directional
characteristics. As shown in Problem 11.4, such a body can be approximated by a small hole leading
into a cavity (German, Hohlraum). See Fig. 11-4.

Blackbody Emissive Power

The total (hemispherical) cmissive power of a blackbody is given by the Stefan-Boltzmann
equation:

E, = oT* (I1.9)
where o, the Stefan-Boltzmann constant, is 0.1714 X 10 * Btu/h- ft?-°R* or 5.6697 X 107% W/m? - K*.
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Blackbody Spectral Distribution

In general, a surface emits different amounts of encrgy at different wavelengths. The total emissive
power can be expressed as

E= I E,dA (11.10)
(1
where E, is the monochromatic emissive power at wavelength A. For a blackbody,
E, = j E,.dAx = oT* (11.11)
(i}
The first accurate expression for E,, was determined by Max Planck; it is
CA'’
Era = exp (Co/AT) — 1 (11.12)
in which
- “ - 4
C, = 3742 % 108 By 1875 qgr DRpmT
m h-ft

C, = 14387 X 10* um-K = 2.5896 X 10° um-°R

Plots of E,, versus A for several different temperatures are given in Fig. 11-5. The shift in location of
the maximum value of the monochromatic emissive power to shorter wavelengths with increasing
temperature is evident. This wavelength shift is described by Wien’s displacement law,

A T = 2897.6 um-K = 5215.6 um-°R (11.13)

which plots as the dashed curve through the peak values of emissive power in Fig. 11-5.

A = 2897.6 pm-K
= 5215.6 um-°R

15

Epy X 107 Wim®- um
2
1

Ey, ¥ 107* (Btu/h -ft?- um)

Approximate wavelength (um)

Fig. 11-5. Blackbody spectral emissive power.
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It is frequently nccessary to determine the amount of energy radiated by a blackbody over a
specified portion of the thcrmal radiation waveband. The energy emitted within the range O to A at a
specified temperature 7 can be expressed as

T

The fraction of the total energy within this range is then

AT
Epo-any _ Evp an _ Ep,
E, oT? A T’

Values of the integrand and of the integral in (71.15) are presented in Table 11-1.

AT ]
Evoorny = J L Epd(\T) (11.14)
i

d(AT) (11.15)

Blackbody Intensity
Emission from a blackbody is independent of direction, so that (/1.8) gives

E, = oT* = i, (11.16)

11.4 REAL SURFACES AND THE GRAY BODY

A real surface has a total emissive power E less than that of a blackbody. The ratio of the total
emissive power of a body to that of a blackbody at the same temperature is the total emissivity (or total
hemispherical emissivity), €:

E
E,
Some total emissivity; general trends are shown in Fig. 11-6.

The monochromatic (hemispherical) emissivity, €,, will be useful in dealing with real surfaces
which exhibit spectrally sclective emittance values. This is

€=

(11.17)

6= (11.18)

where E, is the emissive power of the real surface at wavelength A, and E,, is that of a blackbody, both
being at the same temperature.

Kirchhoff’s Law

Consider a black enclosure as shown in Fig. 11-7. Suppose that this contains a small body, say body
1, which is also a blackbody. Undcr equilibrium conditions, energy is absorbed by the small body 1 at

\

=]

N
onm"d'-'ﬂors

Total Emissivity

Conductors

Temperature

Fig. 11-6 Fig. 11-7
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Table 11-1.Blackbody radiation functions. [From R. V. Dunkle, ©1954, The

American Society of Mechanical Engineers, Trans. ASME, 76: 549-552, New York.

Used by permission.]

|

Epa X 10° Eyy X 10°
AT oT* Ebm—ar} AT oT? Eb(tl- AT)
(um-°R) (um-"R)"! oT* (nm-°R) (pm-°R)™ oT*
1000.0 0.000 0394 0.0000 10 400.0 5.146 0.7181
1200.0 0.001 184 0.0000 10 600.0 4925 0.7252
14000 0.011 94 0.0000 10 800.0 4.714 0.7378
1600.0 0.061 8 0.0001 11000.0 4.512 0.7474
1 800.0 0.2070 0.0003 11200.0 4.320 0.7559
2000.0 0.5151 0.0009 11 400.0 4.137 0.7643
2200.0 1.038 4 0.0025 11 600.0 3.962 0.7724
2400.0 1.791 0.0063 11 800.0 3.795 0.7802
2600.0 2.753 0.0098 12 000.0 3.637 0.7876
2 800.0 31872 0.0164 12 200.0 3.485 0.7947
3000.0 5.081 0.0254 12 400.0 3.341 0.8015
3200.0 6.312 (.0368 12 600.0 3.203 0.8081
3400.0 7.506 (.0506 12 800.0 3.071 0.8144
3600.0 8.613 0.0667 130000 2.947 0.8204
3 800.0 9.601 0.0850 13200.0 2.827 0.8262
4 000.0 10.450 0.1061 13 400.0 2,714 0.8317
4 200.0 11.151 0.1267 13 600.0 2.605 0.8370
4400.0 11.704 0.1496 13 800.0 2.502 0.8421
4 600.0 12.114 0.1734 14 000.0 2.416 0.8470
4 800.0 12.392 0.1979 14 200.0 2.309 0.8517
5000.0 12.556 0.2229 14 400.0 2.219 0.8563
5200.0 12.607 0.2481 14 600.0 2.134 0.8606
5400.0 12.571 0.2733 14 800.0 2.052 0.8648
5600.0 12.458 0.2983 15 000.0 1.972 0.8688
5 8010.0 12.282 0.3230 16 000.0 1.633 0.8868
6 000.0 12.053 0.3474 17 000.0 1.360 0.9017
6200.0 11.783 03712 18 0000 1.140 0.9142
64000 11.480 0.3945 190000 0.962 0.9247
6 600.0 11.152 0.4171 20 000.0 0.817 0.9335
6 8000 10.508 0.4391 210000 0.702 0.9411
7000.0 10.451 0.4604 220000 0.599 0.9475
7200.0 10.089 0.4809 23 000.0 0.516 0.9531
7400.0 9.723 0.5007 24 000.0 0.448 0.9589
7 600.0 9357 0.5199 25 000.0 0.390 0.9621
78000 8997 ().5381 26 000.0 0.341 0.9657
8000.0 8.642 0.5558 270000 0.300 0.9689
8200.0 8.293 0.5727 28 (00.0 0.265 0.9718
8400.0 7.954 0.5890 29000.0 0.234 0.9742
8 600.0 7.624 0.6045 300000 0.208 0.9765
8 800.0 7.304 0.6195 40:000.0 0.0741 0.9891
9000.0 6.995 0.6337 50 000.0 0.0326 0.9941
9200.0 6.697 0.6474 60 000.0 0.0165 0.9963
9400.0 6.41] 0.6606 70 000.0 0.0919 0.9981
9600.0 6.136 0.6731 80 000.0 0.0055 0.9987
9 800.0 5.872 0.6951 50 000.0 0.0035 0.9990
10 000.0 5.619 0.6966 100 000.0 0.0023 0.9992
10:200.0 5.378 0.7076 *® 0 1.0000

[CHAP 11
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the same rate as it is emitted, A, E;. Now suppose that the small body is replaced by another body
having the same size, shape, geometric position, and orientation. Denote this as body 2. Clearly the
energy impinging upon this second body is the same as before, A, E, = A, E,,. An energy balance on
the second body under steady state conditions is

C[gAzEp, = Az E
and consequently, for any arbitrary body,

X =

£ € (11.19)
b

since F/E, is by definition the total hemispherical emissivity. Equation (11.19) is known as

Kirchhoff’s law.

Note that (11.19) was obtained under conditions of thermal equilibrium in an isothermal black
enclosure. It is applicable to a surface receiving blackbody irradiation from surroundings at the same
temperature as itself;, serious errors may result from extending this result to other situations.

For monochromatic values, however, it can be shown that Kirchhoff's law is

ax(T) = &(T) (11.20)
that is, for specified wavelength, the monochromatic absorptivity and the monochromatic emissivity of
a surface at a given surface temperature are equal, regardless of the temperature of the source of the
incoming irradiation.

Real Surface Emission and the Gray Body Approximation

As seen in Fig. 11-8, the monochromatic emissive power of a real surface is not a constant fraction
of that of a black surface. A very useful idealization is that of a gray body, defined by

(€x)gray = constant

The computational advantages of this are apparent from a consideration of the expression for the total
emissive power of a body:

E=£ Ehd)l = L f‘\EbhdA (11.21)
40 T=2000K
£ = 1.0 (black surface)
3.0
1
4
“. 2‘0-
g
X
=)
1.0
0 1 i I I I L
0 10 20 30 4.0 50 60

Approximate wavelength ( um)

Fig. 11-8. Dlustration of black, gray and red surfaces.
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which for constant e, simplifies to

E = ej- E,,d\ = ecT! (11.22)
]

Directional Dependence of Properties

In addition to the previously discussed variables which influence surface properties, the emissivity
of a smooth surface depends strongly upon the polar angle ¢ between the direction of the incoming
radiation and a normal to the surface. In general, nonconductors emit more strongly in the direction
normal to the surface (or at small polar angles), whereas conductors emit more strongly at large polar
angles.

11.5 RADIANT EXCHANGE: BLACK SURFACES

In this section, and in those that follow, we will limit our discussion to diffuse surface behavior, and
further, we will consider only rotal hemispherical properties unless otherwise specifically stated. The
following subscript notation will be used in the remainder of this chapter:

q. = net rate of energy given up by surface {
g,—; = rate of energy leaving surface J and striking surface j

q., = rate of energy emitted by surface i and absorbed by
surface j

T. rl
q., = net rate of energy exchange between surface ¢ and surface j {

The “net rate of energy given up” is that above the rate of -
absorption of energy. E

Consider the simplest physical configuration, that of two infinite, E,,
black, parallel planes maintained at diffcrent (but constant) tem-
peratures, 7, and 75, as shown in Fig. 11-9. The net exchange of L
energy between surfaces 1 and 2 is

2= q;az =~ g = E A —aEpA; = EnA— EpnA; @ @

since @, = a, = 1. Then, per unit area,
Fig. 11-9
Gr2/A = Ep— Epp = o(T1— T3) (11.23)

Configuration Factors

Engineering problems of practical interest invariably involve one or more surfaces of finite size,
and the radiant exchange is strongly dependent upon the geometry. Hence, we must determine the
configuration effect upon the radiant heat transfer rate. This is accounted for by introduction of the
configuration factor, which is defined as the fraction of radiant energy leaving one surface which strikes
a second surface directly, both surfaces assumed to be emitting energy diffusely. The term “directly”
means that none of the energy is transferred by reflection or reradiation from other surfaces. Other
names in the literature for this factor include the “‘radiation shape factor,” the “shape factor,” the
“view factor,” and the “angle factor.”

Infinitesimal areas. To develop a general expression for the configuration factor, consider the surface
elements shown in Fig. 11-10. The energy leaving dA, and incident upon dA, is, by (11.5),

dg,—; = I,cos ¢, dA,dw, ; (11.29)
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where dw,, is the solid angle subtended by dA, at dA, ie.,
cos ¢, dA,
=2

r

d&h.z =

(11.25)

The total energy radiated from dA, is (compare (11.8))
dg, = I, 7wdA, (11.26)
The configuration factor, Fya,_44,, is by definition the ratio of dg,_, to dg;:

cos ¢ cos b dA
Fiaymdn, = i W2¢’2 ’ (11.27)

Note that the configuration factor involves geometrical quantities only.

d4,
dd, cosp,

Fig. 11-10

Infinitesimal-to-finite area. Consider the case of a very small emitter and a finite-sized receiving
surface. Forming the ratio of g,_, from (/1.24) to dg, from (11.26),

I, cos ¢, dA, cos ¢ dA,Ir?
_ J;I l Guddy ? _I COS by cOS Pod A,
Ay

F = 11.28

A —A; 11'!] d/q] mz ( }
since both /; and dA, are independent of the integration. It should be noted that this equation is simply
the integral over A, of (11.27), the configuration factor for infinitesimal-to-infinitesimal areas. The
integral is cvaluated for one configuration of interest in Fig, 11-11.
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Fig. 11-11. Configuration factor — spherical point source to a plane rectangle. [Adapted from D. C. Hamilton
and W. R. Morgan, NACA Tech. Note TN-2836, 1952.]
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Finite-to-finite area. From the definition of configuration factor,

f f I, cos ¢y dA, cos ¢, dAL T
Ja, Ja

J ‘JT!]dAl
A

1

FAl—Az =

which for constant [; (valid for diffuse surfaces) becomes

FA!_"AZ =

! COS 1€08d2 4 i, (11.29)
TTA 1 s Ja, re

Some graphical evaluations of (17.29) are presented in Figs. 11-12 through 11-15, in which F,, _,, is
abbreviated to F;,. In the last of these configurations, area A, “sees itself,” and consequently F,, is
of practical importance.
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Fig. 11-12. Configuration factor — two identical, parallel, directly opposed flat plates. [Adapted from D. C.
Hamilton and W. R. Morgan, NACA Tech. Note TN-2836, 1952.]

Configuration Factor Properties

There are four useful properties that should be understood prior to attempting to calculate radiant
heat transfer rates between finite areas.

1. Subdivision of receiving surface. By examination of (71.27) and (11.28), we see that

COS by 08 da el A
Fupon, = j 4—‘7"7“62-——3 =f Fiaytn, (11.30)
As Az

which reveals that the fractions of encrgy radiated from dA, to each of the subareas dA, are simply
summed to obtain the total fraction radiated to A,.
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Fig. 11-13. Configuration factor - two perpendicular flat plates with a common edge. [Adapted from D. C.
Hamilton and W. R. Morgan, NACA Tech. Note TN-2836, 1952.]
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Fig. 11-14. Configuration factor — parallel concentric disks. [Adapted from D. C. Hamilton and W. R.
Morgan, NACA Tech. Note TN-2836, 1952.]

2. Subdivision of emitting surface. The expression for the configuration factor from a finite-sized
area to a finite-sized area is, by (/1.29),

1 cos ¢y cos ¢, dA, 1
FAI—AE B -“1—1 J;: J:\z ﬂrz dAl N AI Ay F'IAI_'Aszl (1131)

i.e., the average valuc of F,., .., over the arca A,. This can be approximated as

. 1
Faens = = D AAFuy_a, (11.32)
! i
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where the AA, are the subdivisions of A,. As an example,
consider the system shown in Fig. 11-16, where A, (ir-
radiating surface) is divided into subareas Aj and AJ. In

this case, (11.32) gives 4,
1 ‘ .
F{AHA'.’)—-A,E M(A[Fdi—Az+A?FAI—Az) (II:{J’) | Al/‘l/
3. Enclosure property. The third important property is Fig. 11-16

that the summation of configuration factors for any
surface has the value unity. For an cmitter A, completely
enclosed by n receiving surfaces A, (which possibly in-
clude A, itself),

D Faa=1 (11.34)
1=1

4. Reciprocity theorem. Multiplying both sides of (11.29) by A, yields

€OS ¢y COS
AlFAl—oAg - J J qbﬂl?.z ‘i}z dAldAz
Az YAy

Clearly, we can write the similar expression
cos ¢, cos
ArFarp = J Mfmzdﬁu
wr
A, A,

since the assignment of subscripts 1 and 2 is arbitrary. The integrand of both expressions is the same,
and it is a continuous function; hence the order of integration is immalterial, and

| A] FAI"*Az = AZFA.;—-AI (11.35)

which is known as the reciprocity theorem.

Black Enclosures

For an enclosure system consisting of 7 black surfaces, the net rate of energy exchange between
any two of the surfaces is

q;-; = Q:; e q;-a = A:Efn 'F;-,F - A;Efl,t F:F-r
where we have simplified the notation F,, _,, 10 F,, and have used the fact that all the radiation that
strikes a blackbody is absorbed by it. Application of the reciprocity theorem gives
i, = A, Fc-;(Em - E.'};) = T (1136)

The net heat transfer rate from any one of the surfaces is

q. = z qij— zq;‘-: = EQ;'-;' (11.37)
1=t 11 =1

Substituting g,., from (11.36) and using (71.34), we obtain

‘?: = AI [Ebi = z F;-;EF;U:I (1138)
i=1

where the summation includes the term for j = i. The system of equations (77.37) (i = 1.2...., n), with

gi, given by (11.36), suggests an clectrical network analogy. For n = 3 the analog is illustrated in Fig.

11-17, where the nodal points arc maintained at potentials equal to their respective blackbody emissive

powers. The resistances between nodes are spatial resistances, R,, = 1/A, F,,.
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Fig. 11-17. Three blackbody enclosure analog.

Reradiating Surfaces

Often encountered in engineering practice are adiabatic walls which can have no net gain or loss
of thermal energy (g; = 0). Such a surface must reflect and/or reemit all radiant energy incident upon
it, and it reaches an cquilibrium temperature dependent upon its absorptivity and emissivity and the
temperatures of the surrounding surfaces.

If an enclosure system includes rcradiating surfaces, the quantities g;, cannot be cvaluated as
before, because of reflection. However, the type of reasoning that led to (711.37) gives in this case

Gu= 2 Qs 2 B = 2, Al =) (11.39)

where the indices a and s run over all surfaces. The J's are the surface radiosities (Section 11.2); for
a black surface, J = E,,. Thus, if an enclosure consists of n black (active) surfaces (1,2, ..., n) and m
reradiating surfaces (rl,r2, ..., rm), we can rewrite (77.39) as

4= D AF (En=Ep)+ > AFu(En—1Ju) (11.40)
=1 k=1
for each active surface, i = 1,2, ..., n; and

0= ApFu,— Ep)+ 2 A Fren(o = 1) (11.41)
=1

=1

for each of the reradiating surfaces, k = 1,2, ..., m. Equations (/1.40) and (11.41) constitute a set of
m + n equations in the n unknown g,’s and m unknown J,;'s.

Modified Configuration Factors

In order to determine the net heat exchange rate between two of the active surfaces, A, and A,
i the enclosure described by (11.40) and (11.41), we define the modified configuration factor F,; to be
the fraction of the radiation from A, that rcaches A,, directly or via reflection or reradiation. Thus,

_ 4y
A:Ebr
Consider now a “reduced problem™ in which E,, = 1 and all other active surfaces have E, = 0
denote by g, the net rate of heat transfer from A, in this reduced problem. Since all the radiation

F, or  qi,=AEnF, (11.42)
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striking A, must ultimately have been emitted by A,, and since A; itself emits nothing,
qij = —q (11.43)

But, on physical grounds, it is clear that the fraction of the output of A, that reaches A, has the same
value in the reduced and original problems. Therefore,

F, = 73,% = _—/f:'i (11.44)
The modified configuration factor also obeys the reciprocity theorem:
[ AR, = A/F;, (11.45)
From (11.42) and (11.45),
Gy = Gy = qpi = AiFij(Epi— Ep) = —q; (11.46)

This being identical in form to (71.36), the electrical network analogy also applies when reradiating
surfaces are present, provided the spatial resistances are chosen as 1/4,F,,.

While solving the system (/1.40) and (711.41) for the appropriate g,, will always permit
determination of the modified configuration factors, expressions for :‘-'",-_J for some often-encountered

configurations are available.

One reradiating zone. Denoting the single reradiating zone as A,, the modified configuration
factor is

(11.47)

One reradiating zone, only two active surfaces. In this case, (I1.47) gives for the two active
surfaces:

_ 1
2= + .
Fre = Bt W,y + (UF) (11.45)
One reradiating zone, two planar or convex active surfaces. Whenever F, | = F,, =0,
_ A lA,) — (Fy2)?
F]_2= ( 2 l) ( IZ) (II‘IQ)

(AZIAJ + (] - 2F1_2)

Note that the geometry of the reradiating surface is immaterial in the last case, since there is no
F.., in the expression.

11.6 RADIANT EXCHANGE: GRAY SURFACES

To begin a study of radiant heat transfer between gray bodies, consider the system composed of
two infinite parallel gray planes depicted in Fig. 11-18. The upper plane is at uniform temperature 7,
the lower plane is at uniform temperature T, and both planes are assumed to have uniform radiation
characteristics, « and p. For simplicity, the diffuse radiant energy per unit area leaving plane 1 is shown
as a single ray. The radiant energy transfer rate per unit area from plane 1 to plane 2 is

’
di2

S = eEitamppEvt apiplE o agplpRE + o = —
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Fig. 11-18. System of two infinite, parallel gray planes.

Likewise, the rate of energy transfer from plane 2 to plane 1 is
Ba_ @b
A 1-pp
Therefore the net rate of energy exchange from plane 1 to plane 2 per unit area is
Dz _Gra_Gu_nE-ab (11.50)
A A A 1-—- P2

Since we are considering gray surfaces, E may be expressed as eaT"*. Also, assuming solid surfaces
with zero transmissivity, p =1 — « = 1 — € [this follows from ¢, = constant = € and (/1.20)]. Then
(11.50) can be simplified to

Q2 o(Ti—T3)
. A

T le) + (e — 1 (11.51)

A different approach to the same problem affords insight into the electrical analogy. With
reference to Fig. 11-18, an energy balance on either surface in terms of the radiosity and the irradiation
G (the total radiant thermal energy incident on the surface per unit time and unit area of the
surface) is

q9_y-
$=1-G (11.52)
But
J = 'EE}, + pG (JI.SS)
Eliminating G between (71.52) and (11.53),
_ Ep, _!
47 (1= eyea (1.59)

Equation (71.54) provides the basis for the gray body electrical analog. The numerator, E, — J, can
be regarded as a potential difference, while the denominator, (1 — €)/€A, can be considered as a surface
resistance. Thus, the unknown potential J can be replaced by the known potential E, = oT* by means
of the surface resistance. Also, the previously discussed spatial resistance to radiative heat transfer
between two surfaces i and j, 1/4,F,,, can be used together with the surface resistances to form a
complete electrical analog such as that for the two-gray-body system shown as Fig, 11-19,
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Fig. 11-19. Two gray body analog.

The net radiant heat transfer rate between two gray surfaces is, by the electrical analogy,

Ehl - Ehz — Eb! - Ehz
ZR [ -e)eA,]+ (/A FL) +[(1 - e)eA;]

For the case of two infinite gray planes with A, = A, and F, = 1,
1/1 1 . T!-T}
( ) and G2 o(T) 2)

(11.55)

| qi2 =

2R=2lgte ! A (1e) + (eg) -1

A\g &

in agreement with (11.57).
Consider next a more complicated geometry, resulting in the analog network of Fig. 11-20. In this
case, a specific rate of heat transfer, say q,,, is given by
Jl - J'z

9= A (11.56)

but J, and J, are unknown. They can be found only be a complete solution of the general equations

T

Fig. 11-20. Electrical analog network for an enclosure consisting of three active gray surfaces and one
reradiating surface.
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(11.39), which hold for gray as well as black enclosures. Again using the index i for active surfaces, k
for reradiating surfaces, and s for all surfaces, we have from (11.54) and from the adiabatic
condition,

T A= eyea,
g =0 k=12,...m
Substituting these expressions in the left side of (71.39) gives m + n linear equations in the m +n
unknown J’s;
S AF,~1)+ A, T-};(J. —E)=0 (11.57)

fori=1,2, ..., n;and

S A Fusd = 45) = 0 (11.58)

fork=12,...,m.

Gray Body Configuration Factors

A convenicnt way to determine the rate of radiant heat transfer between two gray surfaces ¢ and
j is by use of the gray body configuration factor ¥, ;. Analogous to (11.44),

—Gia A €
it = 21Ty, (11.59)
1 i ]

the last equality holding for j # i. The J,, are obtained by solving the set of equations (11.57) and
(11.58) when E;, = 1 and all other E,’s are zero. Analogous to (11.46),

‘?:-; = A: gr-; Efn N A; g;_f-t Ei‘).l = Ar g;l-j(EM - Ebj) = ._er (1160)

where the reciprocity property has been used. Some special cases are given below.

F,, =

Two-gray-surface enclosure. For a complete enclosure consisting of two gray surfaces, A, and A,,
1 1 A1 1
—=—+t—[——1}+[—-1 11.61
Fra Fia Az ('52 ) (61 ) ( )

One gray surface enclosing a second. For a gray surface A, which does not “see” itself and which
is completely enclosed by a second gray surface A,, Fy.; =1, and (71.6]) becomes

L_Lrﬁ(l_ ) (11.62)
Fra & A\e '

Two planar or convex gray surfaces with no other radiation present. For two surfaces which do not
“see” themselves (F,, = F,, = 0) but do not form a complete enclosure and are located in an
otherwise radiation-free environment, an enclosure may be considered to exist by defining a third

surface having J = 0. Then
Fia

$12 7 W)~ (Ve — 11(1/e) ~ TATADF )

(11.63)
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One reradiating zone enclosing two active gray surfaces. In this case,

1 1 A1 1

=t 1)+ =1 11.64

Fo Fis Al(fz ) (Gz ) ( )
where the modified blackbody configuration factor F,, is given by (7/1.48) or (11.49), as
appropriate.

11.7 RADIATION SHIELDING

An important application is the use of shielding to reduce the rate of heat transfer by radiant
exchange. A specific example is the use of aluminum-foil-backed insulation in building walls, with the
foil serving as the shield. Consider the infinite gray walls of Fig. 11-21(a), for which (11.51) gives

Aa(Ti—T3)

T3 = "9 = ey (e < 1 (11.65)

7
/
’
7
7
7
4

q 4
?
g
g
’
; —
’
ﬁ 1-¢ L 1— e

€, F., L3 ]
® AN AN ——e——AN—
E.. J. J] E'I
(a) (b)

Fig. 11-21. System consisting of two infinite, parallel gray walls,

If a thin radiation shield, body 2, is placed between the two walls (Fig. 11-22(a)), the heat transfer rate
per unit area for steady state is

or

q__oTi-Ty) _  o(T3-TY
A (Ue)+(lig)—1 (lig)+(lleg) -1

(11.66)
For the case where €, = ¢;, we obtain from (11.66)

Ti= (1t TY
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-« 1 1-g 1-e 1 1-&
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(a) ©®)

Fig. 11-22. System consisting of two infinite, parallel gray walls plus a radiation shield.

so that, if also € = €, the resulting heat transfer rate is
a_l a(T1—T) | _1(qus)
A 2| (-1 2 A

where the subscript 0 denotes no radiation shield. Similarly, for n radiation shields each having the
same emissivity as the two active walls,

(11.67)

(‘?l-s)n: L (g1
A ntl A

(11.68)

A second shielding problem of importance is that of protecting a thermocouple used to measure
the temperature of a flowing hot gas from loss by radiation to a cooler duct wall (Fig. 11-23(a)).
Considering the shield and the duct to be very long, the steady state heat loss from the thermocouple
can be approximated by

A, U(T? — Tg)
(V&) + (AdA)[(le) — 1]
_ _ Azf’(Tg - Tg)

923~ (lg) + (A4AD(Ve) — 1]

fia= 2~

(11.69)

and clearly the heat loss rate is dependent upon the size and the emissivity of the shielding material.

Duct (3)

T TTITTTTIETTIFFIFS

—— g
‘ Ey J, Iz Ej, Ja 5 Ey
- i 1- 1- 1 1~
\ Shield @) a hi e &
Ag AFi, Arep A6 A Fpy Aye
T TTTITTIETTTETETE s
(a) (b)

Fig. 11-23. Schematic and analog for thermocouple shielding inside a duct.
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(The shield’s inner surface “sces™ itself; however, there is no net heat transfer with itself, and so, for
clarity, the path joining node J; to itsell has been omitted from Fig. 11-23(b).)

11.8 RADIATION INVOLVING GASES AND VAPORS

In general, gases with nonpolar symmetrical molecules do not emit or absorb thermal energy
within the temperature ranges encountercd in engineering applications. Typical of this class are O;, N,,
H,, and mixtures of these, including dry air. On the other hand, gases with nonsymmetrical molecules,
such as CO,, H,0O, SO,, and many of the hydrocarbons, exhibit absorption and emission over certain
wavelength ranges or bands. The absorptivity of such a gas is dependent upon molecular structure,
wavelength and gas layer thickness. A typical case is shown in Fig. 11-24, in which (a) refers to a 50 mm
layer of CO, at 1 atm and (b) refers to a 30 mm layer.

10 o ||
Gas layer
i T
a,
o ® i -
o 1 T 1 T ---—x—..l _dx
1 2 3 4 5
ot
A, pm
Fig. 11-24 Fig. 11-25

As an aid to undcerstanding the absorption phenomenon. consider a beam of monochromatic
radiation having intensity /,, as it enters a layer of gas shown in Fig. 11-25. The decrease in intensity
is dependent upon wavelength and thickness, and is given by

{il',\.\ = _Kaf_)‘rdx (1170)

where I, is the monochromatic intensity at depth x and «, is the monochromatic absorption coefficient,
which depends upon the state of the gas (i.c., temperature and pressure} as well as upon the
wavelength. To a first approximation, k, increases linearly with pressure at constant temperature; and
in a gas mixture involving both absorbing and nonabsorbing gases, k, should be proportional to the
partial pressure of the absorbing species.

Separating variables and integrating (/7.70) lor constant k, yields

L= e ™ (11.71)
By the definition of the monochromatic transmissivity, =, = [,,/[,, so that
T, =e (11.72)
and the absorptivity is
ay=1—1,=1—¢F (11.73)

which is also the monochromatic emissivity. €,, if Kirchhoff's law is valid.
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Fig. 11-26. Emissivity of carbon dioxide at 1 atm total pressure. [Adapted from H. C. Hottel, Chapter 4 in
Heat Transmission, 3rd edn (ed. W. C. McAdams), © 1959, McGraw-Hill Book Company, New York, NY.
Reproduced with permission of the McGraw-Hill Companies.]

A typical engineering computation requires that all radiant heat exchange between a mass of gas
and each element of a surrounding solid boundary (container, etc.) be accounted for. The geometry
of most configurations results in a rather complicated integration to yield the absorptivity (or
emissivity) of a gas mass with respect to a boundary element.

In the special case of a hemispherical mass of gas, the emissivity for radiant exchange from the gas
to the center of the hemispherical base can readily be analytically determined. Using this approach,
H. C. Hottel and R. B. Egbert determined the effective emissivity of a hemispherical gas system of
radius L at a partial pressure p; radiating to a black surface element located at the center of the
hemispherical base. Their results for carbon dioxide and water vapor are given in Figs. 11-26 through
11-29. These results are also applicable to other shapes of practical interest by use of the equivalent
beam lengths given in Table 11-2.

To determine the effective emissivity of a mass of carbon dioxide gas, Fig. 11-26 may be used to
obtain the emissivity of a hypothetical gas system at one atmosphere total pressure, having radius L,
partial CO, pressure p,.,, and a given uniform system temperature. For other system geometry, the
equivalent beam length for use in the parameter p L is obtained from Table 11-2. If the total gas
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Table 11-2. Some selected equivalent beam lengths.

Configuration Equivalent Beam Length, L
Volume between infinite planes - irradiation onto planes 1.8 X distance between planes
Sphere - irradiation into surface 2/3 X diameter
Infinitely long cylinder - irradiation onto convex surface 0.95 X diameter
Cube 2/3 % side
Arbitrary Surface =3.6 X (volume/surface area)

Cea = (€ca)p/ (€caky

;:,m 008 0.1 0.2 03 0.5 08 10 10 Y] 30
Total Pressure p, atm

Fig. 11-27. Effect of total pressure on carbon dioxide emissivity. [Adapted from H. C. Hottel (1954), Heat
Transmission, 3rd edn (ed. W. C. McAdams), McGraw-Hill Book Company, New York, NY, Chapter 4. Used
by permission.]

system pressure is different from | atmosphere, Fig. 11-27 is used to account for the broadcening of the
absorption bands with increasing pressure.

Turning to the case of water vapor, Fig. 11-28 gives the emissivity of a hypothetical system having
a water-vapor partial pressure of zero (1o be corrected later) as a function of the product of the actual
partial pressure and the equivalent beam length, p,. L, and the uniform gas system temperature. Again,
the equivalent beam length is taken from Table 11-2, and the emissivity obtained from Fig. 11-28 is
modified by use of Fig. 11-29, which accounts for the fact that the total system pressure may be other
than 1 atm and the partial pressure of the H,O vapor may be other than zero.

For a mixture of gases containing only water vapor, carbon dioxide, and nonactive species having
symmetrical molecules, the mixture emissivity may be approximated by simple addition of the
individual values for the water vapor and the carbon dioxide.

Solved Problems

11.1. The incident solar radiant flux at the earth’s mean orbital radius from the sun is
G = 1402.6 W/m?. Using this fact, determine the solar flux in the vicinity of (a) the planet
Mercury, which has a mean orbital radius of 5.7936 X 10" m; (b) the planet Pluto, which has a
mean orbital radius of 5.9079 X< 10" m,
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Fig. 11-28. Emissivity of hypothetical water vapor system at 1 atm total pressure. [Adapted from H. C,
Hottel, Chapter 4 in Heat Transmission, 3rd edn (ed. W. C. McAdams), ©1959, McGraw-Hill Book Company,
New York, NY. Reproduced with permission of the McGraw-Hill Companies.|
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Fig. 11-29, Effect of partial and total pressures on emissivity of water vapor. [Adapted from H. C. Hottel,
Chapter 4 in Heat Transmission, 3rd edn (ed. W. C. McAdams), ©1959, McGraw-Hill Book Company, New
York, NY. Reproduced with permission of the McGraw-Hill Companies.]
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11.2.

11.3.

114.

11.5,

Considering the sun as a point source, the incident energy upon a sphere having radius 1.4967 x 10" m
equal to the earth’s orbit is the total O from the sun, i.e,

O.n = (1402.6 Wim?)(4)(1.4967 X 10" m)? = 3.9483 x 10* W
(a) At Mercury, the incident radiation is

Ouin 39483 % 10" W
4=(Mercury orbital radius)?  (4m)(5.7936 X 10" m)?

(b) Similarly, at Pluto,

= 9.3605 % 10* W/m?

Gﬂl =

3.9483 % 10 W

~ = 0.9002 W/m?
P = am(5.9079 % 107 m)y? m

The total incident radiant energy upon a body which partially reflects, absorbs, and transmits
radiant energy is 2200 W/m?. Of this amount, 450 W/m? is reflected and 900 W/m® is absorbed
by the body. Find the transmissivity 7.

Determine the total emissive power of a blackbody at (a) 1000°C and (b) 1000 °E

(a) E, = oT* = (56697 X 10 * Wim?- K*)(1273.15 K)*
= (5.6697)(12.7315)° = 148967.67W/m?  or  148.97 kW/m?

Btu
h-fe2-°R*

= (0.1714)(14.60)* = 7787.93 Btu/h-ft?

(b) E,=oT*= (0.1714 x 107* )(1460°R)‘

Note that in either unit system it is convenient to divide the absolute temperature by 100, which
results in
T )‘ Btu

T\ 2
E, = (01714) (‘iaa ﬁf = (56697)(@) W/m

Show that a hohlraum approximates a blackbody.

With reference to Fig. 11-4, if the entering irradiation is G, the irradiation after the first internal
reflection is pGy; after the second, p* Gy; . . .; after the nth, p" G, (which approaches 0 as n — =). Since the
few rays that emerge from the hole will have suffered many reflections, the emergent flux is essentially
Zero, L.e., apge = 1.

For a blackbody maintained at 115°C, determine (a) the total emissive power, (b) the
wavelength at which the maximum monochromatic emissive power occurs, and (c) the
maximum monochromatic emissive power.

@) E, = oT" = (5.6‘?0 x 10—8;%(-,) [(115 +273.15)-K*] = 1287 W/m?

(The number 5.67 X 10~ is often used for o for simplicity in engineering applications—as are 273 and
460 for absolute temperature conversions.)

®) AmxT = 2897.6 um-K (o)  5215.6 um-°R
97. .
Aﬂul = Mm_l<. = 7.465 wm

388.15K
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(c) By Planck’s law, (11.12),

3.742 x 108

— _ 2'
(7.465)° [exp(14387/2897) — 1) 113.3 W/m?- um

Eb&

Derive Wien's law, (11.13), from Planck’s formula, (11.12).

Differentiating (11.12) at constant 7,
aEp (€T = 1)(=5C,A7%) — (Ci A ) (e TY~C,.A2T)

P (eSPT-1)

For a maximum, the numerator on the right must vanish. This gives, after cancellation of common
factors,

G _
e 0 2
where x = Ap. 7. For A =1 um, T = 10° K, we have
G
G 10
Thus, as a first approximation, we neglect e~ ** in comparison to 1, and (I) gives
x = ESE = 2877 pm-K

which is quite close. If this value is used as the first approximation, xp, in Newfon'’s iterative method, a single
iteration gives

(2877) = 2897 um-K

X

1-6e (cz) _ 0.9595

T1-7e+e™\5 /09528

Reflectivity measurements, which are relatively easy to make, are often used to obtain other
surface radiation properties. A set of reflectivity measurements for a certain solid surface
at 1000°R is roughly graphed in Fig. 11-30. Estimate the total emissive power at this
temperature.

By (11.21) and Kirchhoffs law,

E = J EAEh.hdA = I a;Ebjda
a o

4 €
LK R o Y Y
o8-y
0.6
p. q
04 3=
Ly E o
i s b ri
H‘
L T _'
3 L] »
A pm

Fig. 11-30
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11.8.

11.9.

But for a solid surface, o, = 1 —p,, so

o 3 6
E= f (1 - Pa)Emd’* = (] - Pa)m:i-,' Ebad‘l + (1 = Pa):—ﬁf Ep\dA
u o 3

9

+(1- PA}&-QJ'

(]

Epdh +(1 — Pa)MJ. EpdA
9

From Fig. 11-30,

(] - PA}II—} = 1.0_0.1 = 0.9 (l _ph)(y—O = 1-0_0.6 = 0'4
(1-p)ra=10-03=07 (1= ploe=10-10=0

Using Table 11-1,

3 3000 1
E =
J; sxdA L 1000 Epd(AT)
= Eppaonny = (0.0254) o(1000)* = 43.54 Btu/h-ft
6
f Ep,dA = EMD—HIII] - Emu-"um}
3

= (0.3477 - 0.0254) o(1000)* = 552.42 Buw/h-f1?

9
j EppdA = Epgyoo0) = Eno-soon
6

= (0.6340 — 0.3477) 0(1000)* = 490.72 Btwh-ft
Substituting into the expression for E,
E = (0.9)(43.54) + (0.7)(552.42) + (0.4)(490.72) = 622.17 Btwh-{t?

Using the definitions of total emissive power and total absorptivity, show that € and a are not

necessarily equal for irradiation of a surface at temperature 7 from a source at a different
temperature, 7*.

The total emissivity is, by (I1.17), (11.10), (I1.11), and (11.18),

J GI(T)EQA(T)dJ\
= m— = 0 =
¢ E, oT* «7)
The total absorptivity is, by definition,
I a,(T)YGA(T*)dA
a=energyabsorbed_ o = o(T.T*)

energy incident G(T*)
Since a depends on T*, while € does not, the two will generally be unequal.

Approximate the radiant energy leaving a 30 mm diameter sphere at 1200 K and impinging

upon a 1 m by 1.5 m wall 1 meter away from the sphere (Fig. 11-31). Assume all surfaces to be
blackbodies.

The sphere is small enough to be treated as an infinitesimal disk,
dA, = nR*
From Fig. 11-11 with
B=075 and y=05
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the configuration factor to one-fourth the wall is ap-
proximately 0.021. Thus, for the cntire wall A;,

Fuarn, = 4(0.021) = 0.084

and
T, =
Qun—a, = Fan-a(0T)(dAL) 1 i
= (0.084)(5.6697 x 107 W/m?-K*) Sphere
% (1200 K)* m(15 % 10"*m)? 0.5 m
= 698W
0.5m

—

Two blackbody rectangles, 1.8 m by 3.6m, are
parallel and directly opposed, as shown in Fig.
11-12; they are 3.6m apart. If surface 1 is at Fig. 11-31
T, = 95°C and surface 2 is at 7, = 315°C, deter-
mine (a) the net rate of heat transfer g, 5; (b) the

net energy loss rate from the 95 °C surface (side facing surface 2 only) if the surroundings other
than surface 2 behave as a blackbody at (i) 0.0 K, (ii) 295 K.

(a) Using Fig. 11-12 with g = 12/12 and y = 6/12, F}.; = 0.12. Thus, the net rate of heat transfer is, by
(11.36),

G122 = Ay Fl-za(Tf - Tg)
= (1.8 m % 3.6 m)(0.12)(5.670 X 10~ * Wim?-K*) X [(368 K)* — (588 K)*] = —4461 W
(b) (i) Surface 1 is irradiated only by surface 2; hence the net energy loss rate from surface 1 is
g1 = A Ep — Ay Fa By = A(E — FiaEy)
= (1.8 m X 3.6 m)(5.670 X 107" W/m?- K*)[(368 K)* — 0.12(588 K)*] = 1468 W
(ii) The summation of configuration factors from any surface to its total surroundings is 1, hence
Fl-qw:r = l - F|_| '_Fl_z = l —0-012 — 0.88
Thus, the net energy loss rate from surface 1 is
g4 = AI Em - AI F!-I EM - Aqmw Fs[mcc-l E.‘upilm

= AI(EM —FiaEy, - Fl-\,n.ugnwnc)
= 6.48 m*(5.670 X 10 * W/im?-K*)[(368 K)* — 0.12(588 K)* — 0.88(295 K)*] = —981 W

A large black enclosure consists of a box as shown in Fig. 11-32. Surface 1 (bottom) is at 262 °C,
surface 2 (top) is at 177°C, and all vertical surfaces
(including the back wall, 3) are at 205 °C. Find (a) the net

heat transfer rate ¢, ,, and (f) the net heat-transfer rate 25m
o > @
(a) From Fig. 11-12 with =10 and y= (2.5/3) = 0.833; i
F].z =(.17. ! - -
N N
G2 = A F (B — Ewg) : e
= (3 X 2.5)(m2)(0.17)(5,670 X 10"* W/m?-K*) im i
% [(535 K)* — (450 K*)] ~ 2058 W PPt otal niniks)>
s Al
(b) From Fig. 11-13 with 8 = 0.83 and y = 1.0; F,, = 0.21. -~ R

Gra = 7.5(0.21)(5.670 % 10 *)[(535)* — (477)"]
= 2693 W Fig. 11-32
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11.12. For the configuration illustrated in Fig. 11-15, with the flat annular area between the two

11.13.

11.14.

cylinders at one end designated as A;, obtain expressions for Fy 3, Fiy, Fi,, and Fi 3 in terms of
F,., Fi; and the three areas A, A;, and A, Fy, is the configuration factor between the two
annular areas at opposite ends. A, is the inner surface of the outer cylinder and A, is the outer

surface of the inner cylinder.
By (11.34),

1
2F 3+ F,+F =1 or Fii= 5(1 - F,—F.)
and by reciprocity
A .
Fii= Zﬁ:_,“ -Fa- f‘l.l)

Also, since F,; = 0,

1

2F2,3 + FZ-I =1 or f"z-; = E(] - Fz_l}

and reciprocity gives

Again by (11.34),
Foy+t R+ Fa=1

or

Fia=1=-F,-F,

A A A
- l*ﬂ;(l—Fl.z—Fl.:)"ﬁ(l‘A—;ﬂ.z)

A+ A

Ay
+—(2F,,+ F
24, 2‘43( Fia+ Fy)

For two concentric cylinders as shown in Fig. 11-15, having r; = 20cem, r, = 10cm, and
L = 20 cm, determine F),, Fy ;, and Fi 3, where the end annular plane area is A;. Usc the results
of Problem 11.12.

From Fig. 11-15, with y = 2.0 and 8 = 2.0, F,,, = 0.23; F,, = 0.34. The areas are:

Ay = 27(20)(20) = 2513cm? A, = 2a(10)(20) = 1257 cm?
Az = 7{(20 cm)? ~ (10 cm)?’] = 942 cm?

From Problem 11.12,

2513 em’ + 1257 cm’ 2513 cm?
. + (). = ().
2(942 cm?) 2(942 o) [2(0-34) +0.23] = 0213

Fua=1-

{See Problem 11.29 also.)

Determine the configuration factor F,_, for Fig, 11-33.
By reciprocity, F; = (A/A;) F2,. By subdivision of the receiving surface,

Fogay = Fo+ Fyy or Foy=Fay— Fa
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Fig. 11-33 Fig. 11-34

Both F,; and F,,,, are obtainable from Fig. 11-13.

Fz.gi ﬂ =

Il
e
i)

~2

li

=02, F,;=0125

|t
LALBRY LA

Fousy B=

I
e
o

<

I

= 0.4, Fz."_j,} = (.190
Hence,

Fp = 0.190 - 0.125 = 0.065 and Fla= (15—5) (0.065) = 0.195

11.15. Determine the configuration factor F,; for Fig. 11-34.

Using the graphical data of Fig. 11-13,

Fosmasey B=5=15 y=-=10, Fys.a4=0150

salon Bl
PTCRF NN

)

F[L;’.q,: ﬁ = 1-5, Y

= 0'.5, Fua).q =(.108

By subdivision of the receiving surface,

Fulg’_z = FII.JHZ.‘I ) 1 g 0.150 — 0.108 = 0.042
Again from Fig. 11-13,

Figag: B=

i
=
-]
hd
<

]

Slw DWW

Fie B=

i
it
-
N

-

I

and, by subdivision of the receiving surface,

F;.z = Fmﬂ - F).‘ = (,250 - 0.175 = 0.075
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Now by subdivision of the emitting surface, (71.33),

1
Fose= m (A Fiz + AsFyy)

0.042 = ( )[IZF, 2 +12(0.075)]

12+ 12
F,, =~ 0.009

11.16. Suppose that in Fig. 11-14 the two concentric parallel disks are 3 m apart, with disk 1 (1 m
radius) being at 200°C and disk 2 (1.5m radius) being at 400°C. Calculate g, and g,; as
appropriate for: (a) the two disks being blackbodies, with no other surfaces present (no other
radiation present); (b) both disks being blackbodies, with a single reradiating surface in the
form of a right frustrum of a cone enclosing them; (c) both disks being blackbodies, with a single
black surface (right frustrum of a cone) at 0°C enclosing them.

In each case the enclosing surface shall be denoted as surface 3 (this may be chosen as a black surface
at 0 K in (a)). To find the configuration factors we shall use, instead of the graphed results for F, ,, the exact
equation

Fia=i[x~ Vx* - 4(Bv)]

where x = 1+ (1 + 8%)+%, and B and v are as defined in Fig. 11-14. Here, B = 1.5/3=05and y = 3/1 = 3;

hence,
x=1+(1+0259=1225
and
F = [(12.25 - V(12.25)* - 4(1.5)7] = 0.1865
Then

Fy3=1-0.1865 = 0.8135
and, by reciprocity (A, = m, A; = 2.257),

Fpi = ——(0.1865) = 0.0829  and  Fy3 = 1 —0.0829 = 0.9171
2.25

Also, the area of the enclosing frustrum is given by

Ay=aS(ri+r) where S=V(np—nr)*+ (L)

S0
Ay=1V(15 - 1) + (3)2(1.5 + 1) = 23.887 m?
Thus
0.8135
Ag F].; = AgF).l; F3,| = %éﬁ-) = (.1070
2250911
A2F2.3 = AgF).z; Fg_z = 1—%8'7_-2 =(.2714

Fiy=1-F— F,=1-0.1070 - 0.2714 = 0.6216
(a) By (11.36),

@12 = A F,,0(TS — T4) = 7 (1-m)?(0.1865)(5.670 x 108 W/m?-K*)[(473)" — (673)*(K*)
= —=5152W = ~G2.1
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B}' (f’38) with F1.| =F,,=0,

¢ = AolTi— FI-ZT;I
= 7(5.670 X IU'“)[{473)4 - {0.1865){673)‘] =2101 W
4, = AZU[T;‘ Fz-l.Tl‘]
= (2.257)(5.670 x 107%)}[(673)* — (0.0829)(473)*] = R0 556 W

(6) By (11.49),

L (AdA) - (Fa) 2.5 (0.1865) o770
T (AdA) F (1 -2F,) 225+ (1 -2(0.1865))

Using (11.46).
G2 = A FLo(Ep — Eny)
= m{0.T70)(5.670 X 107%)[(473)* — (673)°) = —21 212 W = —qz,

It is physically evident that ¢, = —¢q, = ¢,.»; this may be verified by solving (11.40) and (11.41) for
Gy, qz and J;.

(¢) By(11.36)
Gia = A Fi(En — Ep)
= 7(0.8135)(5.670 < 10 ") [(473)* — (273)"] = 6448 W = —¢q3,
From part (a),
iy = —512W = —gy,
Also, by (11.36),

Q23 = AP (Ep — Ey)
— (225m(0.9171)(5.670 X 1077 [(673)" — (273)] = T3362W = —qs.,

The g,s are given by (11.38). Thus, since F,,, = F,, =10,

@ = AJEy — FiaEy — Fis Byl
= 7(5.670 X 10 7)[(473)" — (0.1865)(673)* — (0.8135)(273)%] = 1296 W
qy = Ay Eps — For Epy — Faa Byl
= (2.257)(5.670 X 10™"){(673)" — (0.0829)(473)* — (0.9171 }(273)‘ = 80556 W
¢y = Aj|Epy— FayEy — Fas By — Fis Bl
= (23.887)(5.670 x 107" {(273)* - (0. I(]'?'l:l)(fﬁrli)4 - (0.2714){673)4 - (0.6216)(273)"]
= —T9815W

11.17. Two parallel infinite black planes are maintained at 200 °C and 300 °C. (a) Determine the net
rate of heat transfer per unit area (SI units). (b) Repeat for the case where both temperatures

are lowered by 100°C and determine the ratio of the reduced heat transfer to the original
value.

(a) Denoting as plane | the hotter plane,

% = o(Ti— T%) = (5.6697 % 107%)[(573.15)* — (473.15)%] = 3276.78 W/m?
) ﬂf = (5.6697 X 107*)[(473.15)* - (373.15)%) = 1742.31 W/m?

(1274 )200.100 - 174231
(§12/A) 0020 3276.78

= 0.5317

A reduction in temperature of 100 °C reduces the net heat transfer rate approximately 47%!
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11.18. Two blackbody rectangles, 0.6m by 1.2m, are parallel and directly opposed. The bottom

11.19.

11.20.

rectangle is at 7; = 500 K and the top rectangle is at T, = 900 K. The two rectangles are 1.2 m
apart. Determine (a) the rate of radiant heat transfer between the two surfaces, (b) the rate at
which the bottom rectangle is losing energy if the surroundings (other than the top rectangle)
are considered a blackbody at 0.0 K, (¢) the rate at which the bottom rectangle is losing energy
if the surroundings (other than the top rectangle) are considered to be a blackbody at 300 K.

(@) Using Fig. 11-12 with 8 =1.2/12 =10 and y = 0.6/1.2 = 0.5, F,; = F, = 0.12; therefore,

12 = "‘ll-Fl-zo'(F"ml1 - T‘})
= (0.72)(0.12)(5.6697 X 107*)[(500)* — (900)"] = 2908 W

(b) By (11.38), with F,, =0 and E, .. =0,
g1 = A[En — FiaEpz) = (0.72)(5.6697 x 107%) [(500)* — (0.12)(900)*] = —662.6 W
i.e,, a net gain for surface 1.
(c) Fignee =1-Fu—Fa2=1-0-012=088
Again by (11.38),

¢ = A Ew — Fia B — Frpace Ehspm:l:]
= (0.72)(5.6697 X 10~#) [(5'00)“ - I[‘.'fr.12)(900)'n - {0.88}(300}4] = ~-053.6 W

i.e., an even larger gain for surface 1 than in part (b).

Repeat Problem 11.16(a) for both disks being gray with € = € = 0.7 and no other radiation
present.

By (11.60),
Q2= FLo(TV-T3) = —q2y

where &, is given by (11.63) with F,; = 0.1865, 4, = m, and A, = 2.25# (from Problem 11.16). So

5, - 0.1865 009

1 1 1 T 2
(077 (b'.?_ l)(ﬁ.?_ 1)(2.25?7)(0.1365)
g1z = m0.092)(5.67 — 10-%)[(473)* — (673)"] = —2542 W = — g3,

The net heat transfer from either surface is given by (/1.38) or by physical reasoning:

q, = (energy emitted by A,) — g,
= A, 0T} — g, = m0.7)(5.67 X 10 *)(473)* — 2542 = 3699 W

Also,
G = A60T3 - qi,
= (2.25m)(0.7)(5.67 X 107*)(673)* — (—2542) = 60 096 W
Repeat Problem 11.16(b) for both disks being gray, €, = €; = 0.7, and the disks surrounded by

a reradiating surface which is a right frustrum of a cone.
By (11.64), and using areas from Problem 11.16 and F, ; from Problem 11.16(b),
o1, (L)(i- 1) + (i— 1) =19177 ., =052143
F.. 0770 2257 /\0.7 0.7
By (11.60),
Gr2 = m0.52143)(5.67 X 10 ") [(473)* — (673)*) = —14405 W = —¢,,

As in Problem 11.16(b), 4,2 = ¢, = —qa.
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11.21. Consider Fig. 11-14 with r, = 1.0ft, r,=151ft, and L =3ft. Both disks are gray with
e =6 =07, T, =660°R, T, = 860 °R and the surrounding right frustrum of a cone is an active
gray body with € = 0.4 and 75 = 760 °R.

From Problem 11.16 (since F;_, is independent of units on geometrical terms),

F1-2 = 0]865 FI—S = 08135
F,;=00829 F,,=0917
Fyy = 01070 Fi,=02714 F;3 = 06216

Also,
E,, = (0.1714 X 107 ¥)(660)" = 325.23 Btu/h-ft?
E,; = (0.1714 x 107*)(860)* = 937.57 Btu/h-ft®
Epy = (0.1714 X 107*)(760)* = 571.83 Btw/h-fi?
and
S -2 23333 2 = 0.6667
1—¢g — €& |

Equations (11.57) (there are no reradiating surfaces present) are, after canceling the areas:

€

Fia(dy — ) + Fis(dy — ) + (h-En)=0

l-q

Fo(Jo - h) + Fos(Jo = 1y) +

&
J:—Ep)=0
]_ﬁfz b2)

€
Fyi(Ja— J0) + Fia(z — 43) +'l":3;'(f.l —Epn) =0
3

Inserting known numerical values and collecting terms,

3.3333J, - 0.1865 J, — 0.8135 J; = 758.859
—0.0829J; + 3.3333 J, - 09171 J, = 2187.632
—0.10704, — 0.2714 1, + 1.0451 J, = 381.239

Gaussian elimination (hand or computer solution) yields
Ji=4215 J,=8393 J;=6265

Then, from (71.54) and A; = 23.887 fi?,

325.23 - 427.5
=22 " %00 7497 Biwh
O Gompena . 0T
937.57 - 839.3
= T oryonesey | 008 Buh
571.83 - 626.5 706 Bruh

T = (1= 04)/(04)(23887)

To determine the ¢,,'s, we solve equations (11.57) for the appropriate Ji;’s and then calculate
the &, 's.
i=1 Ey =1, E; =0, E; = 0. Using the previously stated values of F's, €'s, etc,, we have
3.3333J|'| - 0.1865 .’2‘1 - 0.8135 13,1 = 2-3333
—0.0829.J,, +3.3333/,; — 09171 J,, =0
-0.1070 1y, —0.2714 /5, + 1.0451 J;; = 0

Solving by Gaussian elimination,
"l.l = 0.7230 jz.l = 0.041 29 J.‘.l = {1084 ?4



CHAP. 11} RADIATION 323

and by (11.59),

F,a = ﬁ( = )le 225'”(2 3333)(0.041 29) = 0.2168

Ay

€
G = —
a=2(

1_‘63

)a‘:u = 2: (0.6667)(0.084 74) = 0.4296

Repeating the procedure for i = 2, with £, =0, E,; =1 and E,; =0,

33333/, 018654, - 0.8135J;;, =0
—0.0829J,, +3.3333 J,, — 09171 /5, = 2.3333
—0.1070J,5 — 0.2714 /5, +1.0451 1, = 0

Solving by Gaussian elimination,

112 =009291 J, = 07592 Jy2 = 0.2067
Then

€ -
- )J.; o= (23333)(0.09291) = 0.09635

gz.ﬁﬂ( 2 )133—2388?(0666?)(02067) 0.4657

A check on the solution is:

AyF g = AT,
m(0.2168) 2 (2.257)(0.096 35)
0.6811 = 0.6811
By reciprocity,
_ A
Fsi = Fi = 5 337 = 0.056 50
A 2.25
Fop = 2 Fy, = =27 (0.4657) = 0.1378

Ay 77 23.887
Next, using (11.60),

Gr2 = Ay F\2 O'(T? - T;)
= 7(0.2168)(0.1714 X 10°%)[(660)* - (860)*] = ~417.07 Btwh = —s,
Q13 = A1F0(TH - T3)
= 7(0.4296)(0.1714 X 10~*)[(660)* - (760)°] = —332.82 Btu’h = —ga,
23 = A Fp30(T3 - T%)
= (2.25m)(0.4657)(0.1714 x 10~#)[(860)* — (760)*] = 1203.97 Btu/h = —G32

11.22. A gray body having a surface area of 0.37 m? has ¢ = 0.35 and 7, = 407 °C. This is completely
enclosed by a gray surface having an area of 3.33 m?, ¢, = 0.75, and T, = 37 °C. Find the net rate
of heat transfer g,.; between the two surfaces if F,, = 0.

By (11.62),
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11.23.

11.24.

11.25.
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Thus
Gr2 = A Fr0(TV - T3)
= (.37 m*(0.3455)(5.67 % 107*)[(680)* = (310)*] = 1483 W
Two parallel metal walls of a kitchen oven have temperatures T, = 232 °C and T; = 27 °C, and

emissivitics € = & = 0.30, where subscripts 1 and 3 denote the inner and outer walls,
respectively. The space between the walls is filled with a rock-wool-type insulation. Assuming
this insulation material to be transparent to thermal radiation, calculate the radiant heat
transfer rate per unit arca between the two walls (a) with no radiation shield and (b) for one
radiation shield of aluminum foil having €, = 0.09.

(a) By (J1.51),
o(Ti—T3)  (5.67x 10 %)[(505)* — (300)°]

Qf{i Wy rlie) 1 3 ranm-1 Wim
q a1 - 73) o(T3 - T3)
) A (Ve +(Va) -1 () + (&) -1
but since € = &, the two denominators are equal; hence
"N-Ti=T:1-T;
TH= 27 T = SS0S)" + (300y),

and T, =431.7K
Then

a1 = 183 W
Checking:

q _xa _ (567X 107)[(437.7)" - (300)"] _ 120.6 W/m?

A A (1/0.09) + (1/0.3) - 1
Determine the effective emissivity (for radiation from the gas to the surface) of CO, gas at

2500 °R in a very long cylinder which is 2 {t in diameter. The partial pressure of the CO, is
0.2 atm and the gas system total pressure is 0.3 atm.

From Table 11-2, L. = 1 X D = 2{t. From Fig. 11-26 at p,L = 0.2 x2 = 0.4 atm-ft and T = 2500 °R,
(€&4) = 0.102. From Fig. 11-27 at p = 0.3 aum and p 4L = 04 atm-ft, C 4 = 0.78. Thus

(€, = (0.78)(0.102) = 0.08

A combustion exhaust gas at 2500 °R has a CO, partial pressure of 0.08 atm, a water vapor
partial pressure of (.16 atm, and a total gas system pressure of 2.0 atm. Estimate the effective
gas mixture emissivity in a long cylindrical flue 3 ft in diameter. The other major gas constituents
are O, and N,.

The O, and N; constituents do not absorb or emil radiant energy in the temperature range of this
problem. We may approximate the gas system emissivity by linear addition of the individual emissivities
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11.26.

11.27.

11.28.

11.29,

11.30.

of the CO, and the water vapor; thus,

CO,;: L=1xD=3ft
Poel = 0.08 X3 = 0.24 atm-ft
From Fig. 11-26, (€.,); = 0.085
From Fig. 11-27, C,, = 1.2
and (€4), = (0.085)(1.2) = 0.102
H,O: L=1xD=3ft
pul =016 %3 = 048 atm-ft
From Fig. 11-28, (e.); = 0.115
From Fig. 11-29 at (p,, + p¥2 = 2.16/2 = 1.08 atm, C,, = 1.5
and (e,),., = (0.115)(1.5) = 0.173

It follows that €, = 0.102 + 0.173 = 0.275.

Supplementary Problems

Determine the monochromatic emissive power at 2.30 um of a blackbody at a temperature of 2500 °F.
Ans. 40645 Btu/h-ft*- pm

Determine A, and the maximum value of the monochromatic emissive power of a blackbody at (a)
3500 °R, (b) 3000 °R, (c) 2500 °R, (d) 2000 °R, (e) 1944 K, and (f) 1667 K.
Ans. (a) 1.4902 pm, 1,134 99 % 10° Btu/h-fi*-pm;  (d) 2.6078 um, 6.9152 % 10* Btu/h- ft*- um;

(b) 1.7385 um, 5.2512 % 10° Btuth-ft*- um; (e) 14902 pm, 3.580 X 10° W/m?- um;

(¢) 2.0862 um, 2.1103 x 10* Btu/h-ft*- um; (f) 1.7385 pum, 1.656 X 10° W/m?- um

Obtain (11.35) by thermodynamic reasoning. (Hint: g, must vanish when T} = T.)

For the situation of Problem 11.13, determine F;, and F,, where area 3 is the annular area at one end of
the set of concentric cylinders. Use these to confirm the answer to Problem 11.13.

Ans. F].] = 0580, F].: = 0220, and F1.| + Fg; + EL.‘G = 1.01

Two blackbody rectangles, each 6 ft by 12 ft, are parallel, directly opposed, and 12 ft apart. One rectangle
is held at T, = 200 °F; the other is at T, = 600 °F. Find: (a) the rate of radiant heat transfer g, ,, (b) the
rate at which the 200 °F rectangle is losing energy if the surroundings are at 0 °R, and (c}) the rate at which
the 200 °F rectangle is losing energy if the surroundings are considered as a single blackbody at 70 °F.

Ans. For F, = 0.115: (@) —15 224 Btuth; (b) 5499.4 Btu/h; (¢) —3118.3 Btu/h
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Appendix A

Table A-1. Conversion factors for single terms.

To convert from 10 multiply by
Energy
Btu (thermochemical) joule (1) 1054.350 264 48
calorie (thermochemical) joule (J) 4.184
foot by joule (J) 1.3558179
foot poundal joule (J) 0.042 140 110
kilowatt hour joule (J) 3.60 % 100
watt hour joule (J) 3600
Force
dyne newton (N) 1.00 % 107°
kilogram force (kg) newton (N) 9.806 65
ounce force
(avoirdupois) newton (N) 027801385
pound force, Iby
(avoirdupois) newton (N) 444822161526
poundal newton (N) 0.1382549543
Length
angstrom meter (m) 1.00x10 '°
foot meter (m) 0.3048
inch meter {m) 0.0254
micron meter (m) 1.00x 107"
mil meter (m) 2.54 X 107°
mile (US. statute) meter {m) 1609.344
yard meter {m) 0.9144
Mass
gram kilogram (kg) 1.00 x 107}
kg, second’ meter kilogram (kg) 9.806 65
Ib,, (avoirdupois) kilogram (kg) 0.453 59237
ounce mass
(avoirdupois) kitogram (kg) 0.028 349 523
ton (long) kilogram (kg)  1016.0469
ton (metric) kilogram (kg) 1000
ton (short, 2000
pound) kilogram (kg) 907.184 74
Temperature
Celsius Kelvin K =C+273.15
Fahrenheit Celsius C =3(F-32)
Fahrenheit Kelvin K = 3(F + 459.67)
Kelvin Celsius C=K-273.15
Rankine Kelvin K =%R

Source: Table A-1 and A-2, [From E. A. Mechtly, NASA SP-7012, 1973]
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Table A-2. Conversion factors for compound terms.*

To convert from to multiply by
Acceleration
foot/second’ meter/second’ (m/s?) 0.3048
inch/second’ meter/second’ (m/s?) 0.0254
Density
gram/centimeter’ kilogram/meter® (kg/m*) 1000
b /foot® kilogram/meter® (kg/m®) 16.018 463
slug/foot® kilogram/meter® (kg/m®) 515.379
EnergylArea-Time
*Buu/foot?- hour °F watt/meter? °C (W/m?-°C) 3.1524808
*calorie/cm? - minute watt/meter? (W/m?) 697.333 33
watt/centimeter? watt/meter? (W/m?) 10 000
Power

Btu/second watt (W) 1054.350264 4
calorie/second watt (W) 4184
foot Iby/second watt (W) 1.3558179
horsepower

(550 ft ib/second) watt (W) 745.699 87
horsepower (electric) watt (W) 746.000 00
horsepower (metric) watt (W) 735.499

Pressure

atmosphere newton/meter? (N/m?) 1.01325 % 10°
bar newton/meter’ (N/m?) 1.00 x 10°
millimeter of

mercury (0°C) newton/meter’ (N/m?) 133.322
centimeter of

water (4 °C) newton/meter? (N/m?) 98.0638
dyne/centimeter? newton/meter? (N/m?) 0.100
kg/centimeter? newton/meter? (N/m?)  98066.5
Ib//inch? (psi) newton/meter? (N/m?) 6894.7572
pascal newton/meter® (N/m?) 1.00
torr (0°C) newton/meter? (N/m?) 133322

Speed

foot/second meter/second (m/s) 0.3048
kilometer/hour meter/second (m/s) 0.27777778
knot (international) meter/second (m/s) 0.514444 44
mile/hour (U.S. statute) meter/second (m/s) 0.447 04

Btu inch/foot?:
second°F

Btu/foot- hour-°F

Thermal Conductivity

joule/meter-second-K (J/m-s-K) 518.873 15
joule/metes-second-K (J/m-s-K)

1.729577 1
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Table A-2. (continued)

[APPENDIX A

To convert from to multiply by
Viscosity
centipoise newton second/meter? (N-sfm?)  1.00 x 107?
centistoke meter¥/second (m?/s) 1.00x 107
foot®/second meter’/second (m?/s) 0.092 903 04
Ib,,/foot-second newton second/meter’ (N-s/m’>)  1.4881639
Ib second/foot? newton second/meter’ (N-s/m?)  47.880 258
poise newton second/meter” (N-s/m?)  0.10
poundal second/ft?  newton second/meter? (N-s/m?) 14881639
slug/foot-second newton second/meter® (N-s/m?)  47.880258
stoke metersecond {m?¥s) 1.00x107%

fluid ounce (U.S.)
foot®

gallon (British)
gallon (US. dry)
gallon (US. liquid)
liter (H,O at 4 °C)
liter (SI)

pint (U.S. liquid)
quart (U.S. liquid)
yard®

Volume
meter’ (m*)
meter’ (m*)
meter® (m*)
meter® (m*)
meter® (m?*)
meter® (m*)
meter® (m?)
meter’ (m®)
meter® (m*)
meter® (m%)

295735295 x 10~*
0.028 316846 5
4.546 087 x 107?
4.40488377x107?
3.785411 78 x 1073
1.000 028 x 10~
1.00 % 1072
473176473 x 1074
9.463 5295 % 10™*
0.764 554 857

*All Bwu and calorie terms in Table A-2 are thermochemical values.
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Fig. B-1. Dynamic (absolute) viscosity of liquids.

Specific gravity (§) values apply at 70 °F or 21.4°C.
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Temperature, °C

Kinematic Viscosity v, ft¥/s

_1s o 25 50 b 100 125
T I | [ T ] I
! _____T_ =y —r——— S T — :-’m-z
' === 7 -
‘ l
_____ 1-— -1 5
. }
- 1
|
2 1
————— - — s
| -3
Tl = = -
Y Sl . 1-
s La l -+
FX— ——T 1 .
4 \ 1 |
[ _\__UnivisJ-43 _ [ __ R B R I SR NI 4,
hydraulic fluid | | | | |
. = 0848 | | I ! !
_____ \ SRR S Y v —" . P
! | . | |
‘u-).—..-__l__\-._-J—-—— "'j::“"—____L Casw‘o'l——— -—l———-——- ------ ~ 10!
TN 1 LN\ 1 1 - B =
1 [r T £
F—F — == 4 Hd===—=4 —1s .
] | z
| (1 ﬂllm) g
B e = T L
Carbon diox =
—{— (1 atm)_ —_. 4 w0t 2
~ [ |
F————H——=— -
l l
e =
| |
| ]
<.K——--'————— s
]
T I R
o]
..... e 3
| I
_|_._... - +--.... - 5
i |
walcr -I-l— ————— —
l ‘Jl\
. t \‘._,__==:_ yFreon-12 (sat. liquid) r‘l\‘
SRR CRN ) VU S TSN (N QU S -
| | ! | ! |
m_‘_____!____T_JE‘EEF-- _ _ L Mercury . ____ _I,. 1o’
-30 a 0 100 150 200 50 300

Temperature, °F

Fig. B-2. Kinematic viscosity of liquids.
Specific gravity (5) values apply at 70°F or 21.4°C.
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p. = critical pressure (3208 psia = 218.3 atm) = 2.212 X 0" N/m*
7, = critical temperature (1165.3 °R) = 6474 K

Tl T T T
[/l

% :l “: / f'/ /
E 1.2 —5" 3’/ é’,‘/ -?/ Ry /
: [/ /

(R
/ 14///_4’
=
Lo 0 02 04 06 08
Reduced Pressure (P, =pip_)

Fig. B-3. Ratio of steam thermal conductivity & to the value k,, at one
atmosphere and the same pressure.
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Viscosity Ratio, ufu,

[APPENDIX B

u, = dynamic viscosity at | atm and same temperature
P = critical pressure
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Fig. B-4. Generalized correlation chart of the dynamic viscosity of gases at high pressures. [From E. W. Comings,
B. J. Mayland, and R. S. Egly, The Viscosity of Gases at High Pressures, University of Illincis Engineering
Experiment Station Bulletin No. 354 (1944). Used with permission of the University of Illinois, Urbana,

Ilinois.)



SI UNITS

Table B-1 (SI). Property values of metals.*

Properties at 20°C Thermal Conductivity A\(W/m-K)
P [ k o —100°C| 0°C |100 °C200 °G300 “C}400°C| 600°C| 800°C|1000°C{1200°C
Metal (kg/m®)| (Jkg-K) {(Wim-K) (m?/s) —148 °F| 32 °F (212 °F|392 °F|572 °F|752 °F| 1112 °F | 1472°F | 1832 °F | 2192°F
Aluminum:
Pure 2707 | 0.896x10° 204 8418x107%| 215 |202 [206 (215 (228 [249
Al-Cu (Duralumin) 94-96 Al, 3-5 Cu,
trace Mg 2787 | 0.883 164 6.676 126 (159 |182 |194
Al-Mg (Hydronalium) 91-95 Al, 5-9 Mg 2611 | 0.904 112 4.764 93 109 |125 (142
Al-Si (Silumin) 87 Al, 13 Si 2659 | 0871 164 7.099 149 163 {175 | 185
Al-Si (Silumin, copper bearing) 86.5 Al,
1Cu 2659 | 0.867 137 5933 119 [137 (144 152 |161
Al-Si (Alusil) 78-80 Al, 20-22 Si 2627 | 0.854 161 7172 144 157 |168 |175 (178
Al-Mg-Si 97 Al, 1 Mg, 1 8i, 1 Mn 2707 | 0.892 177 7.311 175 | 189 |204
Lead 11373 | 0.130 35 2.343 369 351 334 315 298
Iron:

Pure 7897 | 0452 73 2.034 87 73 a7 62 55 48 40 36 35 36
Wrought iron (C H 0.5%) 7849 | 046 59 1.626 59 57 52 48 45 36 33 33 33
Cast iron (C = 4%) 7272 | 042 52 1.703
Steel (C max = 1.5%)

Carbon steel C=0.5% 7833 | 0465 54 1.474 55 52 48 45 42 35 31 29 31
1.0% 7801 | 0473 43 1.172 43 43 42 40 36 33 29 28 29
1.5% 7753 | 0486 36 0.970 36 36 36 35 33 31 28 28 29

Nickel steel Ni = 0% 7897 | 0452 73 2.026

10% 7945 | 046 26 0.720
20% 7993 | 046 19 0.526
30% 8073 | 046 12 0.325
40% 8169 | 0.46 10 0.279
50% 8266 | 046 14 0.361
60% 8378 | 046 19 0.493
0% 8506 | 046 26 0.666
80% 8618 | 0.46 35 0.872
% 8762 | 0.46 47 1.156
100% 8906 | 0448 €N 2.276




Table B-1 SI). (continued)

Properties at 20 °C Thermal Conductivity k(W/m-K)
p [ k a —100°C| 0°C [100°Cj200°C|300 °C}400 °C| 600°C| 800°C|1000°C |1200°C
Metal (kgm® | (kg-K) [(Wim-K)| (m¥s) —148 °F|{ 32 °F (212 °F|392 °F|(572 °F|752 °F| 1112°F | 1472°F | 1832°F | 2192°F
Invar Ni = 36% 8137 | 046X 10° 107 | 0.286
Chrome Steel Cr = 0% 7897 | 0.452 73 2.026 87 73 |67 |62 |55 |48 40 36 35 36
1% 7865 | 0.46 61 1.665 62 | 55 |52 | 47 | 42 36 33 33
2% 7865 | 0.46 52 1.443 54 | 4B | 45 | 42 | 38 33 3 3
5% 7833 | 046 40 1.110 40 |38 |36 |36 | 33 29 29 29
10% 7785 | 046 3l 0.867 31 K| 31 (29 | 29 28 28 29
20% 7689 | 046 22 0.635 22 |22 |22 |22 |24 24 26 29
30% 7625 | 0.46 19 0.542
Cr-Ni (chrome-nickel): 15 Cr, 10 Ni 7865 | 0.46 19 0.526
18 Cr, 8 Ni (V2A) 7817 | 046 163 | 0444 163} 17 | 17 19 | 19 22 26 31
20 Cr, 15 Ni 7833 | 046 151 | 0415
25 Cr, 20 Ni 7865 | 046 12.8 | 0361
Ni-Cr (nickel-chrome): 80 Ni, 15 Cr 8522 | 046 17 0.444
60 Ni, 15 Cr 8266 | 046 128 | 0333
40 Ni, 15 Cr 8073 | 046 116 | 0305
20 Ni, 15 Cr 7865 | 046 14.0 | 039% 140| 151 151 | 163 | 17 19 22
Cr-Ni-Al: 6 Cr, 1.5 Al, 0.55 Si (Sicromal 8) 7721 | 0.490 22 0.5%4
24 Cr, 2.5 Al, 0.55 Si (Sicromal 12} 7673 | 0.49%4 19 0.501
Manganese steel Mn = 0% 7897 | 0.494 73 1.863
1% 7865 | 046 50 1.388
2% 7865 | 046 38 1.050 38 |36 |36 |36 |35 33
5% 7849 | 046 22 0.637
10% 7801 | 046 17 0.483
Tungsten steel W = 0% 7897 | 0452 73 2026
1% 7913 | 0.448 66 1.858
2% 7961 | 0444 62 1.763 62 | 59 | 54 | 48 | 45 36
5% 8073 | 0435 54 1.525
10% 8314 | 0419 48 1.391
20% 8826 | 0.389 43 1.249
Silicon steel Si = 0% 7897 | 0.452 73 2.026
1% 7769 | 046 42 1.164
2% 7673 | 0.46 31 0.8838
5% 7417 | 046 19 0.555




Table B-1 (SI). (continued)

Properties at 20 °C Thermal Conductivity k(W/m-K)
P [ k [+ —100°C| 0°C |100°C|200 °C[{300 °C{400 °C| 600°C| 800°C |1000°C|1200°C
Metal (kgm*)| (kg-K) [(Wm-K)| (m¥) |-148°F|32°F |212°F|392 °F|572 °F|752 °F| 1112 °F | 1472 °F | 1832°F | 2192°F
Copper:
Pure 8954 | 03831x10°| 386 [11.234x107%| 407 386 |379 [374 369 363 353
Aluminum bronze 95 Cu, 5 Al 8666 | 0.410 83 2.330
Bronze 75 Cu, 25 Sn 8666 | 0.343 26 0.859
Red Brass 85 Cu, 9 Sn, 6 Zn 8714 | 0.385 61 1.804 59 71
Brass 70 Cu, 30 Zn 8522 | 0385 111 3412 88 128 (144 |147 |147
German silver 62 Cu, 15 Ni, 22 Zn 8618 | 0.3% 249 | 0.733 19.2 31 40 45 48
Constantan 60 Cu, 40 Ni 8922 | 0410 22.7 | 0.612 21 222} 26
Magnesium:
Pure 1746 | 1.013 171 9.708 178 171 {168 |163 |157
Mg-Al (electrolytic) 6-8% Al, 1-2% Zn 1810 | 100 66 3.605 52 62 74 83
Mg-Mn 2% Mn 1778 | 100 114 6,382 93 111 |125 130
Mg-Mn 2% Mn 1778 | 1.00 114 6.382 93 111|125 |130
Molybdenum 10220 | 0251 123 4.790 138 125 |18 |114 |111 |109 106 102 99 92
Nickel:
Pure (99.9%) 8906 | 0.4459 920 2.266 104 93 83 73 64 59
Impure (99.2%) 8906 | 0.444 69 1.747 69 64 59 55 52 55 62 67 69
Ni-Cr 90 Ni, 10 Cr 8666 | 0.444 17 0.444 17.1| 189 209| 228| 246
80 Ni, 20 Cr 8314 | 0444 12.6 | 0.343 12.3| 13.8) 15.6| 17.1| 18.9] 225
Silver:
Purest 10524 | 0.2340 419  |17.004 419 (417 415 (412
Pure (99.9%) 10524 | 0.2340 407 16.563 419  |410 [415 [374 |362 |[360
Tunsten 19350 | 0.1344 163 6.271 166 (151 (142 {133 (126 112 76
Zinc, pure 7144 | 0.3843 1122 | 4.106 114 112 (109 |106 [100 93
Tin, pure 7304 | 0.2265 64 3.884 74 65.91 59 57

*Adapted 1o SI units from E. R. G. Eckert and R. M. Drake. Analysis of Heat and Mass Transfer, ©1972, McGraw-Hill Book Company, New York, NY. Adapted by permission of the current copyright

holder, E. R. G. Eckert.
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Table B-2 (ST). Property values of nonmetals.®
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[APPENDIX B

Temperature k P < ax10’
Substance (°C) (W/m-°C) (kg/m®) (kJ/kg-°C) (m?%s)
Structural and heat-resistant materials
Aluminum oxide,
sapphire 30 46 3970 0.76 150
Aluminum oxide,
polycrystalline 30 Je 3970 0.76 120
Asphalt 20-55 0.74-0.76
Brick:
Building brick,
common 20 0.69 1600 0.84 52
Face 1.32 2000
Carborundum brick 600 18.5
1400 111
Chrome brick 200 232 3000 0.84 92
550 247 98
900 1.99 79
Diatomaceous earth,
molded and fired 200 0.24
870 0.31
Fireclay brick 500 1.04 2000 0.96 54
Burnt 2426 °F 800 1.07
1100 1.09
Burnt 2642 °F 500 1.28 2300 0.96 58
800 1.37
1100 1.40
Missouri 200 1.00 2600 0.96 4.0
600 1.47
1400 1.77
Magnesite 200 3.81 1.13
650 277
1200 1.90
Cement, portland 0.29 1500
Mortar 23 1.16
Coal,
anthracite 30 0.26 1300 1.25 1.6
Concrete, cinder 23 0.76
Stone, 1-2-4 mix 20 1.37 1500-2300 0.88 8.2-6.8
Glass, window 20 0.78 (avg) 2700 0.84 34
Corosilicate 30-75 1.09 2200
Graphite, pyrolytic
parallel to layers 30 1900 2200 0 12 200
perpendicular to
layers 30 5.6 2200 0.71 36
Particle board,
low density 30 0.079 590 1.3 10
high density 30 0.17 1000 13 13
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Table B-2 (SI). (continued)
Temperature k p c ax 107
Substance (°C) (W/m-°C) (kg/m®) (kJ/kg-°C) (m%fs)
Structural and heat-resistant materials
Plaster, gypsum 20 0.48 1440 0.84 4.0
Metal lath 20 0.47
Wood lath 20 0.28
Polyethylene 30 0.33 960 2.1 1.64
Polypropylene 30 0.16 1150 1.9 0.73
Polyvinylchloride 30 0.09 1700 1.1 0.48
Rubber, hard 30 0.15 1200 20 0.62
Silicon carbide 30 490 3150 0.68 2290
Stone:
Granite 1.73-3.98 2640 0.82 8-18
Limestone 100-300 1.26-1.33 2500 0.90 5.6-59
Marble 2.07-2.94 2500-2700 0.80 10-13.6
Sandstone 40 1.83 2160-2300 0.71 11.2-119
Teflon 30 0.35 2200 1.05 1.5
Titanium dioxide 30 84 4150 0.7 29
Wood (across the grain):
Balsa, 8.8 Ib/ft* 30 0.055 140
Cypress 30 0.097 460
Fir 23 011 420 272 0.96
Maple or oak 30 0.166 540 24 1.28
Yellow pine 23 0.147 640 28 0.82
White pine 30 0.112 430
Acoustic tile 30 0.06 290 1.3 1.6
Asbestos:
Loosely packed —45 0.149
0 0.154 470-570 0.816 3.34
100 0.161
Asbestos-cement 20 0.74
boards
Sheets 51 0.166
Felt, 40 laminations/in 38 0.057
150 0.069
260 0.083
20 laminations/in 38 0.078
150 0.095
260 0.112
Corrugated, 4 pliesfin 38 0.087
93 0.100
150 0.119
Asbestos cement -~ 208
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Table B-2 (SI). (continued)
Temperature k p ¢ a X 107
Substance (°C) (W/m-°C) (kg/m*) (kJ/kg-°C) (m%s)
Insulating material
Balsa wood, 2.2 Ib/ft* 32 0.04 35
Cardboard, corrugated - 0.064
Celotex 32 0.048
Corkboard, 10 Ib/ft* 30 0.043 160
Cork, regranulated 32 0.045 45-120 1.88 2-53
Ground 32 0.043 150
Diamond, Type 1la,
insulator 30 2300 3500 0.509 12 900
Diatomaceous earth
(Sil-o-cel) 0 0.061 320
Felt, hair 30 0.036 130-200
Wool 30 0.052 330
Fiber, insulating board 20 0.048 240
Glass wool, 1.5 [b/ft? 23 0.038 24 0.7 22.6
Glass fiber,
duct liner 30 0.038 32 0.84 14.1
Glass fiber,
loose blown 30 0.043 16 0.84 32
Ice 0 222 910 1.93 126
Insulex, dry 32 0.064
0.144
Kapok 30 0.035
Magnesia, 85% 38 0.067 270
93 0.071
150 0.074
204 0.080
Rock wool, 10 b/t 32 0.040 160
Loosely packed 150 0.067 64
260 0.087
Sawdust 23 0.059
Silica aerogel 32 0.024 140
Styrofoam 32 0.033
Wood shavings 23 0.059

*From 1. P. Holman, Heat Transfer, © 1997, McGraw-Hill Book Company, New York, NY. Reprninted by permission of the

McGraw-Hill Companies.
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Table B-3 (SI). Property values of liquids in a saturated state*
t p Cp v k o B
(°C) (kg/m*) (kg -K) (m?s) (Wm-K) (m?fs) Pr (K™Y
Water, H,O
0 1002.28 42178 >x 10* | 1.788 % 10°* 0.552 1.308 % 1077 13.6
20 1000.52 4.1818 1.006 0.597 1.430 7.02 0.18x 107
40 994.59 4.1784 0.658 0.628 1.512 434
60 985.46 4.1843 0.478 0.651 1.554 3.02
80 974.08 4.1964 0.364 0.668 1.636 222
100 960.63 4.2161 0.294 0.680 1.680 1.74
120 945.25 4.250 0.247 0.685 1.708 1.446
140 928.27 4.283 0.214 0.684 1.724 1.241
160 909.69 4.342 0.190 0.680 1.729 1.099
180 889.03 4417 0.173 0.675 1.724 1.004
200 866.76 4.505 0.160 (.665 1.706 0.937
220 842 .41 4.610 0.150 0.652 1.680 0.891
240 815.66 4.756 0.143 0.635 1.639 0.871
260 785.87 4.949 0.137 0.611 1.577 0.874
280.6 752.55 5.208 0.135 0.580 1.481 0.910
300 714.26 5.728 0.135 0.540 1.324 1.019
Ammonia, NH;
—-50 703.69 4.463 > 107 0.435x10°* 0.547 1.742 %107 2.60
—40 691.68 4.467 0.406 0.547 1.775 228
-30 679.34 4476 0.387 0.549 1.801 2.15
-20 666.69 | 4.509 0.381 0.547 1.819 209
-10 653.55 4.564 0.378 0.543 1.825 207
0 640.10 4.635 0.373 0.540 1.819 2.05
10 626.16 4,714 0.368 0.531 1.801 2.04
20 611.75 4.798 0.359 0.521 1.775 202 245x%107°
30 596.37 4.890 0.349 0.507 1.742 2,01
40 580.99 4.999 0.340 0.493 1.701 2.00
50 564.33 5.116 0.330 0476 1.654 1.99
Carbon dioxide, CO,
-50 1156.34 1.84 x 1¢° 0.119 x 107" 0.0855 0.4021 x 1077 296
—40 1117.77 1.88 0.118 0.1011 0.4810 2.46
-30 1076.76 1.97 0.117 0.1116 0.5272 222
=20 1032.39 205 0.115 01151 0.5445 2.12
-10 983.38 2.18 0.113 0.1099 0.5133 2.20
0 926.99 247 0.108 0.1045 0.4578 238
10 860.03 3.14 0.101 0.0971 0.3608 2.80
20 772.57 5.0 0.091 0.0872 0.2219 4.10 14.00 x 1973
30 597.81 (364 0.080 0.0703 0.0279 28.7
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Table B-3 (SI). (continued)
t p Cp v k a B
(°C) (kg/m*) (Mkg-K) (m?/s) (W/m-K) (m¥s) Pr (K™
Sulfur dioxide, SO,
-50 1560.84 1.3595x10° | 0484 %107 0.242 1.141 x 1077 424
—40 1536.81 1.3607 0.424 0.235 1.130 3.74
-30 1520.64 1.3616 0.371 0.230 1.117 3.31
-20 1488.60 | 1.3624 0.324 0.225 1.107 293
-10 1 463.61 1.3628 0.288 0218 1.097 262
0 1438.46 1.3636 0.257 0211 1.081 2.38
10 1412.51 1.3645 0.232 0.204 1.066 2.18
20 1 386.40 1.3653 0.210 0.199 1.050 2.00 1.94 x 1073
30 1359.33 1.3662 0.190 0.192 1.035 1.83
40 1329.22 1.3674 0.173 0.185 1.019 1.70
50 1299.10 1.3683 (.162 0.177 0.999 1.61
Methyl chloride, CH,Cl
—50 1052.58 1.4759 x 10° | 0320x 107" 0215 1.388 X 1077 231
—40 1033.35 1.4826 0.318 0.209 1.368 232
=30 1016.53 1.4922 0.314 0.202 1.337 2.35
=20 999.39 1.5043 0.309 0.196 1.301 2.38
-10 981.45 1.5194 (.306 0.187 1.257 243
1] 962.39 1.5378 0.302 0.178 1.213 2.49
10 94236 | 1.5600 0.297 0.171 1.166 2.55
20 923.31 1.5860 0.293 0.163 1.112 2.63
30 903.12 | 1.6161 0.288 0.154 1.058 272
40 883.10 | 1.6504 0.281 0.144 0.996 2.83
50 861.15 1.6890 0.274 0.133 0.921 297
Dichlorodifluoromethane (Freon), CCL,F,
=50 1546.75 | 0.8750x10° | 0310x107¢ 0.067 0.501 % 1077 6.2 2.63x107?
—40 1518.71 | 0.8847 0.279 0.069 0.514 54
=30 1489.56 0.8956 0.253 0.069 0.526 4.8
-20 1460.57 0.9073 (.235 0.071 0.539 4.4
-10 1429.49 0.9203 0.221 0.073 0.550 4.0
1] 139745 | 0.9345 0.214 0.073 0.557 38
10 1364.30 | 0.9496 0.203 0.073 0.560 36
20 1330.18 | 0.9659 0.198 0.073 0.560 3.5
30 129510 | 0.9835 0.194 0.071 0.560 35
40 1257.13 1.0019 0.191 0.069 0.555 3.5
S0 121596 | 1.0216 0.190 0.067 0.545 35
Eutectic calcium chloride solution, 29.9% CaCl,
-350 131976 | 2.608x10° |3635x10°° 0.402 1.166 X 1077 312
-40 1314.96 | 2.6356 24.97 0415 1.200 208
-30 1310.15 | 2.6611 17.18 0.429 1.234 139
-2 130551 | 2.688 11.04 0.445 1.267 87.1
-10 1300.70 | 2.713 6.96 0.459 1.300 53.6
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Table B-3 (SI). (continued)
t p <p v k a B
(°C) (kg/m*) (Mkg-K) (m?*/s) (W/m-K) (m?s) Pr (K™
Eutectic calcium chloride solution, 29.9% CaCl, (continued)
] 1296.06 | 2.738 x 10° 439 x107¢ 0.472 1.332x 1077 33.0
10 129141 | 2.763 335 0.485 1.363 246
20 1286.61 | 2.788 272 0.498 1.394 19.6
30 1281.96 | 2.814 227 0.511 1.419 16.0
40 1277.16 | 2.839 1.92 0.523 1.445 133
50 1272.51 2.868 1.65 0.535 1.468 113
Glyc@ril'l. C;Hf,(OH);
0 1276.03 | 2.261 x 10" 0.008 31 0.282 0983x1077 | 84.7x10°
10 1270.11 2319 0.003 00 0.284 0.965 31.0
20 1264.02 | 2.386 0.00118 0.286 0.947 12.5 0.50 % 107
30 1258.09 2445 0.000 50 0.286 0.929 5.38
40 125201 | 2512 0.000 22 0.286 0.914 245
50 124496 | 2.583 0.000 15 0.287 0.893 1.63
Ethylene glycol, C,H,(OH,)
0 1130.75 | 2294 x10° |5753 107" 0.242 0.934x 1077 615
20 1116.65 2382 19.18 0.249 0.939 204 0.65 % 1073
40 110143 2474 8.69 0.256 0.939 93
60 1087.66 | 2.562 475 0.260 0932 51
80 1077.56 | 2.650 298 0.261 0.921 324
100 105850 | 2.742 203 0.263 0.908 224
Engine oil (unused)
0 §99.12 | 1,796 x 1(° 0.004 28 0.147 0911 %1077 47100
20 888.23 | 1.880 0.000 %0 0.145 0.872 10400 0.70 x 1073
40 876.05 | 1.964 0.000 24 0.144 0.834 2870
60 864.04 2047 0.839 x 10~* 0.140 0.800 1050
80 852.02 | 2131 0.375 0.138 0.769 490
100 840.01 2219 0.203 0.137 0.738 276
120 82896 | 2307 0.124 0.135 0.710 175
140 816.94 | 2.395 0.080 0.133 0.686 116
160 805.89 | 2.483 0.056 0.132 0.663 84
Mercury, Hg
0 1362822 | 0.1403 x 10° | 0.124 x 10~¢ 820 |[42.99x1077 0.0288
20 13 579.04 0.13%4 0.114 8.69 |46.06 0.0249 1.82x107*
50 13505.84 | 0.1386 0.104 9.40 |50.22 0.0207
100 13 384.58 0.1373 0.0928 10.51 [ 57.16 0.0162
150 13264.28 | 0.1365 0.0853 11.49 |63.54 0.0134
200 1314494 | 0.1570 0.0802 12.34 | 69.08 0.0116
250 13025.60 | 0.1357 0.0765 13.07 | 74.06 0.0103
3155 12 847 0.134 0.0673 1402 (815 0.0083

*Adapied to SI units from E. R. G. Eckert and R. M. Drake, Analysis of Heat and Mass Transfer, © 1972, McGraw-Hill
Book Company, New York, NY. Adapted by permission of the current copyright holder, E. R. G. Eckent.
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Table B-4 (SI). Property values of gases at atmospheric pressure.*
T P Cp In v k o
(K) | (kg/m?) (J/kg-K) (kg/m-s) (m%s) (Wim-K) (m?s) Pr
Air
100 | 3.6010 1.0266 % 10° 0.6924 x 1073 1.923> 107" | 0.009246 | 0.0250x 10~* | 0.768
150 | 2.3675 1.0099 1.0283 4.343 0013735 | 0.0574 0.756
200 | 1.7684 1.0061 1.3289 7.490 0.018 09 0.1016 0.739
250 | 14128 1.0053 1.5990 11.310 0.02227 0.1568 0722
300 | 1.1774 1.0057 1.8462 15.690 0.026 24 0.2216 0.708
350 | 0.9980 1.0090 2075 20.76 0.03003 0.2983 0.697
400 | 0.8826 1.0140 2286 25.90 0.033 65 0.3760 0.689
450 | 0.7833 1.0207 2.484 7 0.037 07 0.4636 0.683
500 | 0.7048 1.0295 2671 37.90 0.040 38 0.5564 0.680
550 | 0.6423 1.0392 2.848 4427 0.043 60 0.6532 0.680
600 | 0.5879 1.0551 3.018 51.34 0.046 59 0.7512 0.682
650 | 0.5430 1.0635 3.177 58.51 0.049 53 0.8578 0.682
700 | 05030 1.0752 3.332 66.25 0.052 30 0.9672 0.684
750 | 0.4709 1.0856 3.481 7391 0.05509 1.0774 0.686
B0O | 0.4405 1.0978 3.625 82.29 0.057 79 1.1951 0.689
850 | 0.4149 1.1095 3.765 90.75 0.060 28 1.3097 0,692
900 | 0.3925 1.1212 3.899 99.3 0.062 79 1.4271 0.696
950 | 0.3716 1.1321 4.023 108.2 0.065 25 1.5510 0.699
1000 | 0.3524 1.1417 4.152 117.8 0.067 52 1.6779 0.702
1100 | 03204 1.160 444 138.6 0.0732 1.969 0.704
1200 | 0.2947 1.179 4.69 159.1 0.0782 2.251 0.707
1300 | 0.2707 1.197 493 182.1 0.083 7 2583 0.705
1400 | 0.2515 1.214 517 205.5 0.0891 2.920 0.705
1500 | 0.2355 1.230 5.40 229.1 0.0946 3.266 0.705
1600 | 0.2211 1.248 5.63 254.5 0.100 3.624 0.705
1700 | 0.2082 1.267 5.85 280.9 0.105 3.977 0.705
1800 | 0.1970 1.287 6.07 308.1 0.111 4.379 0.704
1900 | 0.1858 1.309 6.29 338.5 0.117 4.811 0.704
2000 | 0.1762 1.338 6.50 369.0 0.124 5.260 0.702
2100 | 0.1682 1.372 6.72 399.6 0131 5.680 0.703
2200 | 0.1602 1419 6.93 4326 0.139 6.115 0.707
2300 | 0.1538 1.482 7.14 464.0 0.149 6.537 0.710
2400 | 0.1458 1.574 7.35 504.0 0.161 7.016 0.718
2500 | 0.13%4 1.688 7.57 543.0 0.175 7.437 0.730
Helium
3 5.200 % 10° 842x 1077 0.0106
33 | 1.4657 5.200 50.2 342x10™* 0.0353 004625 %107 | 0.74
144 | 3.3799 5.200 125.5 37.11 0.0928 0.5275 0.70
200 | 0.2435 5.200 156.6 64.38 0.1177 0.9288 0.694
255 | 0.1906 5.200 181.7 95.50 0.1357 1.3675 0.70
366 | 0.13280 5.200 230.5 173.6 0.1691 2.449 0.71
477 | 0.10204 | 5.200 275.0 269.3 0.197 3.716 0.72
589 | 0.08282 | 5.200 3113 375.8 0.225 5.215 0.72
700 | 0.07032 | 5.200 3475 494.2 0.251 6.661 0.72
800 | 0.06023 | 5.200 381.7 634.1 0.275 8.774 0.72
900 | 0.05286 | 5.200 413.6 781.3 0.298 10.834 0.72
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T p Cp I v k a
(K) | (kg/m*) (J/kg-K) (kg/m-s) (m?s) (Wim-K) (m%s) Pr
Hydrogen
30 | 0.84722 | 10.840 x 10° 1.606 x 107* 1.895x 107" | 0.0228 0.02493x 107" | 0.759
50 | 0.509 55 10.501 2,516 4.880 0.0362 0.0676 0.721
100 | 0.24572 11.229 4212 17.14 0.0665 0.2408 0.712
150 | 0.163 71 12.602 5.595 34.18 0.0981 0.475 0.718
200 | 012270 | 13.540 6.813 55.53 0.1282 0.772 0.719
250 | 0.09819 | 14.059 7.919 80.64 0.1561 1.130 0.713
300 | 0.08185 14.314 8.963 109.5 0.182 1.554 0.706
350 | 0.07016 14.436 9.954 141.9 0.206 2.031 0.697
400 | 0.06135 14.491 10.864 177.1 0.228 2.568 0.690
450 | 0.054 62 14.499 117719 215.6 0.251 3.164 0.682
500 | 0.04918 14.507 12.636 2570 0.272 3.817 0.675
550 | 0.044 69 14.532 13.475 301.6 0.292 4.516 0.668
600 | 0.04085 14.537 14.285 349.7 0.315 5.306 0.664
700 | 0.03492 | 14574 15.89 455.1 0.351 6.903 0.659
800 | 0.03060 | 14.675 17.40 569 0.384 8.563 (.664
900 | 002723 | 14821 18.78 690 0.412 10.217 0.676
1000 | 0.02451 14.968 20.16 822 0.440 11.997 0.686
1100 | 002227 | 15.165 21.46 965 0.464 13.726 0.703
1200 | 0.02050 | 15366 2275 1107 0.488 15.484 0.715
1300 | 0.01890 | 15.575 24.08 1273 0.512 17.394 0.733
1333 | 0.01842 | 15.638 24.44 1328 0.519 18.013 0.736
Oxygen
100 | 3.9918 0.9479 x 107 7.768 x 107° 1.946 x 107" 0.00903 | 0.023876 x10°* | 0.815
150 | 2.6190 0.9178 11.490 4.387 0.01367 | 0.05688 0.773
200 | 1.9559 0.9131 14.850 7.593 0.01824 | 0.10214 0.745
250 | 1.5618 0.9157 17.87 11.45 0.02259 | 0.15794 0.725
300 | 1.3007 0.9203 20.63 15.86 0.026 76 | 0.22353 0.709
350 1 1.1133 0.929 23.16 20.80 0.03070 | 0.2968 0.702
400 | 0.9755 0.9420 25.54 26.18 0.03461 | 03768 0.695
450 | 0.8682 0.9567 217 31.99 0.03828 | 04609 0.694
500 | 0.7801 0.9722 29.91 38.34 0.04173 | 0.5502 0.697
550 | 0.7096 0.9881 31.97 45.05 0.04517 | 0.6441 0.700
600 | 0.6504 1.0044 33.92 52.15 0.04832 | 0.7399 0.704
Nitrogen
100 | 3.4808 1.0722x10° 6.862 x 107° 1971107 | 0.009450 | 0.025319x 10°* | 0.786
200 | 1.7108 1.0429 12.947 7.568 0.01824 | 0.10224 0.747
300 | 1.1421 1.0408 17.84 15.63 0.02620 | 0.22044 0.713
400 | 0.8538 1.0459 21.98 25.74 0.03335 | 0.3734 0.691
500 | 0.6824 1.0555 25.70 37.66 003984 | 0.5530 0.684
600 | 0.5687 1.0756 29.11 51.19 0.04580 | 0.7486 0.686
700 | 0.4934 1.0969 3213 65.13 0.05123 | 0.9466 0.691
800 | 0.4277 1.1225 34.84 81.46 0.05609 | 1.1685 0.700
900 | 0.3796 1.1464 37.49 91.06 0.06070 | 1.3946 0.711
1000 | 0.3412 1.1677 40.00 117.2 006475 | 1.6250 0.724
1100 | 0.3108 1.1857 42.28 136.0 0.06850 | 1.8591 0.736
1200 | 0.2851 1.2037 44.50 156.1 007184 | 20932 0.748




346 SI UNITS [APPENDIX B
Table B-4 (SI). (continued)
T p Cp I v k o
(K) | (kg/m®) (Jkg-K) (kg/m-s) (m%s) (W/m-K) {m¥s) Pr
Carbon dioxide
220 | 24733 0.783 x 10° 11.105 x 107¢ 4.490 x 107° 0.010805 | 0.05920x10~* | 0.818
250 | 2.1657 0.804 12.590 5813 0.012884 | 0.07401 0.793
300 1.7973 0.871 14.958 8.321 0.016 572 | 0.10588 0.770
350 1.5362 0.900 17.205 11.19 0.02047 | 0.14808 0.755
400 1.3424 0.942 19.32 14.39 002461 | 0.19463 0.738
450 1.1918 0.980 21.34 17.90 0.02897 | 0.24813 0.721
500 1.0732 1.013 23.26 21.67 003352 | 03084 0.702
550 | 0.9739 1.047 25.08 25.74 003821 | 03750 0.685
600 | 0.8938 1.076 26.83 30.02 004311 | 0.4483 0.668
Carbon monoxide
220 | 1.55363 1.0429 < 10? 13.832 x 10~¢ 8903 x10°° 001906 | 0.11760x10~* 1| 0.758
250 | 08410 1.0425 15.40 11.28 0.02144 | 0.15063 0.750
300 | 1.13876 1.0421 17.843 15.67 0.02525 | 0.21280 0.737
350 | 0.97425 1.0434 20.09 20.62 0.02883 | 0.2836 0.728
400 | 0.85363 1.0484 22.19 25.99 0.03226 | 03605 0.722
450 | 0.75848 1.0551 24.18 31.88 0.043 6 04439 0.718
500 | 0.68223 1.0635 26.06 38.19 0.03863 | 0.5324 0.718
550 | 0.62024 1.0756 27.89 44.97 0.04162 | 06240 0.721
600 | 0.568 50 1.0877 29.60 52.06 0.04446 | 0.7190 0.724
Ammonia, NH,
220 | 0.3828 2.198 x 10° 7.255%10°° 1.90x 1073 0.0171 0.2054 X 10™* 0.93
273 0.7929 2177 9.353 1.18 0.0220 | 0.1308 0.90
323 | 0.6487 2.177 11.035 1.70 0.0270 | 0.1920 0.88
373 0.55%90 2.236 12.886 2.30 0.0327 | 0.2619 0.87
423 0.4934 2315 14.672 297 0.0391 0.3432 0.87
473 | 04405 2.395 16.49 374 0.0467 | 0.4421 0.84
Steam (H,O vapor)
380 | 0.5863 2.060 % 10° 1271 x107¢ 216x 1073 0.0246 | 0.2036 X 10™* 1.060
400 | 05542 2014 13.44 242 0.0261 0.2338 1.040
450 | 0.4902 1.980 15.25 3.11 0.0299 | 0.307 1.010
500 | 0.4405 1.985 17.04 3.86 0.0339 0.387 0.99%
550 | 0.4005 1.997 18.84 4.70 0.0379 0.475 0.991
600 | 0.3652 2.026 20.67 5.66 0.0422 0.573 0.986
650 | 0.3380 2.056 2247 6.64 0.0464 0.666 0.995
700 | 03140 2.085 24.26 772 0.0505 0.772 1.000
750 | 0.2931 2.119 26.04 8.88 0.0549 0.883 1.005
800 | 0.2739 2.152 27.86 10.20 0.0592 1.001 1.010
850 | 0.2579 2.186 29.69 11.52 0.0637 1.130 1.019

*From J. P. Holman, flear Transfer, © 1997, McGraw-Hill Book Company, New York, NY, Reprinted by permission of the
McGraw-Hill Companies



ENGLISH UNITS

Table B-1 (Engl.). Property values of metals.*

Properties at 68 °F k, thermal conductivity, Btu/hr-ft-°F
p [ k a —148 °F| 32 °F |212 °F|392 °F|572 °F|752 °F| 1112 °F | 1472 °F | 1832 °F | 2192 °F
Metal (/i) | (Btwlb-°F) {{Btu/hr-ft-°F)| (ft%) |—100°C} 0°C {100 °CJ200 °C}300 °C|400 °C] 600°C| 800°C|1000°C | 1200°C
Aluminum: Pure 169 0.214 118 3.262 124|117 |119 |124 132 | 144
Al-Cu (Duralumin) 94-96 Al, 3-5 Cu,
trace Mg 174 0211 95 2.587 73 92 1105 |112
Al-Mg (Hydronalium) 91-95 Al, 5-9 Mg 163 0.216 65 1.846 54 63 | 73 | 82
Al-Si (Silumin) 87 Al, 13 Si 166 0.208 95 2751 86 94 (101 107
Al-Si (Silumin, copper bearing) 86.5 Al,
1258§,1Cu 166 0.207 79 2.299 69 |79 | 83 | 88 | 93
Al-Si (Alusil) 78-80 Al, 20-22 Si 164 0.204 93 2.179 83 9N 97 (101 (103
Al-Mg-Si 97 Al, 1 Mg, 1 §i, 1 Mn 169 0213 102 2.833 101 (109 (118
Lead 710 0.031 20 0.908 213 20.3| 19.3| 182| 172
Iron: Pure 493 0.108 42 0.788 50 (42 |39 |36 |32 | 28 23 21 20 21
Wrought iron (C H 0.5%) 490 on 34 0.630 34 |33 [30 |28 | 26 21 19 19 19
Cast iron (C =~ 4%) 454 0.10 30 0.660
Steel (C max = 1.5%)

Carbon steel C = 0.5% 489 011 k]| 0.571 32 |30 [ 28 |26 | 4 20 18 17 18
1.0% 487 0.113 25 0.454 25 |25 |24 | 23 | 2 19 17 16 17
1.5% 484 0.116 21 0.376 21 21 21 | 20 19 8 16 16 17

Nickel steel Ni = 0% 493 0.108 42 0.785

10% 496 0.11 15 0.279
20% 499 0.11 1n 0.204
30% 504 0.11 7 0.126
40% 510 0.11 6 0.108
50% 516 0.11 8 0.140
60% 523 011 11 0.191
0% 531 01 15 0.258
80% 538 o.n 20 0.338
90% 547 011 27 0.448
100% 556 0.106 52 0.882




Table B-1 (Engl). (continued)
Properties at 68 °F k, thermal conductivity, Btu/hr-ft-°F
p <, k o —148 °F| 32 °F (212 °F|392 °F|572 °F|752 °F| 1112 °F | 1472 °F | 1832°F | 2192°F
Metal (Ib/ft*) | (Btu/lb-°F) ((Btwhr-fi-°F)| (ft?) —100°C| 0°C {100 °Cj200 °Cj300 °C|400 °C| 600°C| 800°C|1000°C [1200°C
Invar Ni = 36% 508 0.11 6.2 0.111
Chrome steel Cr = 0% 493 0.108 42 0.785 50 42 39 36 32 |28 23 21 20 21
1% 491 0.11 35 0.645 36 32 30 27 24 21 19 19
2% 491 0.11 30 0.559 31 28 [ 26 |24 | 22 19 18 18
5% 489 0.11 23 0.430 23 22 21 21 19 17 17 17 17
10% 486 0.11 18 0.336 18 18 18 17 17 16 16 17
20% 480 0.11 13 0.246 13 13 13 13 14 14 15 17
30% 476 0.11 11 0.210
Cr-Ni (chrome-nickel): 15 Cr, 10 Ni 491 0.11 11 0.204
18 Cr, 8 Ni (V2A) 488 0.11 94 0.172 94 10 10 11 11 13 15 18
20 Cr, 15 Ni 489 0.11 8.7 0.161
25 Cr, 20 Ni 491 0.11 74 0.140
Ni-Cr (nickel-chrome): 80 Ni, 15 Cr 532 0.11 10 0172
60 Ni, 15 Cr 516 0.11 74 0.129
40 Ni, 15 Cr 504 0.11 6.7 0.118
20 Ni, 15 Cr 491 0.11 8.1 0.151 81| 87| 87| 94| 10 n 13
Cr-Ni-Al: 6 Cr, 1.5 Al, 0.5 Si (Sicromal 8) 482 0.117 13 0.230
24 Cr, 2.5 Al, 0.5 Si (Sicromal 12) 479 0.118 11 0.194
Manganese steel Ma = 0% 493 0.118 42 0.722
1% 491 0.11 29 0.538
2% 491 0.11 22 0.407 22 |21 21 21 20 19
5% 490 0.11 13 0.247
10% 487 0.1 10 0.187
Tungsten steel W = 0% 493 0.108 42 0.785
1% 494 0.107 38 0.720
2% 497 0.106 36 0.683 36 34 | 31 28 | 26 21
5% 504 0.104 31 0.591
10% 519 0.100 28 0.539
20% 551 0.093 25 0.484
Silicon steel Si = 0% 493 0.108 42 0.785
1% 485 0.11 24 0.451
2% 479 0.11 18 0.344
5% 463 o1 1 0.215




Table B-1 (Engl.). (continued)

Properties at 68°F k, thermal conductivity, Btu/hr-ft-°F
P [ k a —148 °F| 32 °F |212 °F|392 °F|572 °F|752°F| 1112°F | 1472°F | 1832°F | 2192°F
Metal (Ib/f) | (Btwib-F) |(Btuhr-ft°F)| (ft’) |—100°C| 0°C [100°C[200°C|300°C|400°C| 600°C| 800°C |1000°C|1200°C
Copper:
Pure 559 0.0915 223 4353 235 223 1219 (216 [213 210 204
Aluminum bronze 95 Cu, 5 Al 541 0.098 48 0.903
Bronze 75 Cu, 25 Sa 541 0.082 15 0.333
Red Brass 85 Cu, 9 Sn, 6 Zn 544 0.092 35 0.699 34 41
Brass 70 Cu, 30 Zn 532 0.092 64 1322 51 74 83 85 85
German silver 62 Cu, 15 Ni, 22 Zn 538 0.094 14.4 0.284 11.1 18 23 26 28
Constantan 60 Cu, 40 Ni 557 0.098 131 0.237 12 128] 15
Magnesium:
Pure 109 0.242 99 3.762 103 99 97 94 91
Mg-Al (electrolytic) 6-8% Al, 1-2% Zn 13 0.24 38 1397 30 | 36 | 43 | 48
Mg-Mn 2% Mn 111 0.24 66 2473 54 64 72 75
Molybdenum 638 0.060 7 1.856 80 72 68 66 64 63 61 59 57 53
Nickel:
Pure (99.9%) 556 0.1065 52 0.878 60 54 48 42 37 34
Impure (99.2%) 556 0.106 40 0.677 40 |37 |34 |32 |30 | 32 6 39 40
Ni-Cr 90 Ni, 10 Cr 541 0.106 10 0.172 9.9 10.9] 12.1} 13.2} 14.2
80 Ni, 20 Cr 519 0.106 13 0.133 7.1 RO 9.0 991 109 13.0
Silver:
Purest 657 0.0559 242 6.589 242 241 240 |238
Purc (99.9%) 657 0.0559 235 6.418 242 237 |240 (216 [209 208
Tunsten 1209 0.0321 9% 2430 96 R7 82 77 73 65 44
Zing, pure 446 0.0918 64.8 1.591 66 65 63 61 58 54
Tin, pure 456 0.0541 37 1.505 43 38.1( 34 33

*From E. R. . Eckert and R. M. Drake, Meat and Mass Transfer, 1959, McGraw-Hill Book Company, New York, NY, pp. 496498, Used by permission of the McGraw-Hill Companies.
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ENGLISH UNITS

Table B-2 (Engl.). Property values of nonmetals.”

[APPENDIX B

Temperature k
Substance (°F) (Btwhr-ft-°F)
Structural and heat-resistant materials:
Asphalt 68-132 0.43-0.44
Bricks:
Building brick, common 68 0.40
Building brick, face 0.76
Carborundum brick 1110 10.7
Carborundum brick 2550 6.4
Chrome brick 392 1.34
Chrome brick 1022 143
Chrome brick 1652 1.15
Diatomaceous earth, molded and fired 400 0.14
1600 0.18
Fire-clay brick (burnt 2426 °F) 932 0.60
1472 0.62
2012 0.63
Fire-clay brick (burnt 2642 °F) 932 0.74
1472 0.79
2012 0.81
Fire-clay brick (Missouri) 392 0.58
1112 0.85
2552 1.02
Magnesite 400 22
1200 16
2200 1.1
Cement, Portland 0.17
Cement mortar 75 0.67
Concrete, cinder 75 0.44
Concrete, stone 1-2-4 mix 69 0.79
Glass, window 68 Avg 045
Glass, borosilicate 86-167 0.63
Plaster, gypsum 70 0.28
Plaster, metal lath 70 0.27
Plaster, wood lath 70 0.16
Stones:
Granite 1.0-23
Limestone 210-570 0.73-0.77
Marble 1.20-1.70
Sandstone 104 1.06
Wood (across the grain):
Balsa, 8.8 1b per cu. ft 86 0.032
Cypress 86 0.056
Fir 75 0.063
Maple or oak 86 0.096
Yellow pine 75 0.085
White pine 86 0.065
SI Units W
m-
To convert to SI units, multiply tabulated values by 1.729577
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ENGLISH UNITS

Table B-2 (Engl.). (continued)

Temperature k
Substance (°F) (Biw/hr-ft-°F)
Insulating materials:
Asbestos:
Asbestos cement boards 68 043
Asbestos sheets 124 0.096
100 0.033
Asbestos felt, 40 laminations per in [300 0.040
500 0.048
100 0.045
Asbestos felt, 20 laminations per in {300 0.055
500 0.065
100 0.05
Asbestos, corrugated, 4 plies per in [200 0.058
300 0.069
Asbestos cement 1.2
=50 0.086
Asbestos, loosely packed { 32 0.089
210 0.093
Balsa wool, 2.2 Ib per cu. ft 90 0.023
Cardboard. corrugated 0.037
Celotex %0 0.028
Corkboard, 10Ib per cu ft 86 0.025
Cork, regranulated 90 0.026
Cork, ground 90 0.025
Diatomaceous earth (Sil-o-cel) 32 0.035
Felt, hair 86 0.021
Felt, wool 86 0.03
Fiber insulating board 70 0.028
Glass wool, 1.51b per cu ft 75 0.022
Insulex, dry 90 0.037
0.083
Kapok 86 0.020
100 0.039
. 200 0.041
Magnesia, 85% 300 0.043
400 0.046
Rock wool, 101b per cu ft 90 0.023
300 0.039
Rock wool, loosely packed { 500 0.050
Sawdust 75 0.034
Silica aerogel 90 0.014
Wood shavings 75 0.034

*From A. 1. Brown and 8. M. Marco, Introduction to Heat Transfer, 2nd edn, © 1951, McGraw-Hill, New
York, NY. Used by permission of the McGraw-Hill Companies.

Note: See p. 348 for SI unit conversion factor.
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352 ENGLISH UNITS [APPENDIX B
Table B-3 (Engl.). Property values of liquids in a saturated state.*
T
P <y v k ! B
°F °C (Ib,/ft}) |(Btuw/lb,-°F) (ft’/s) (Btu/hr-ft-°F)|  (ft¥hr) Pr (1/FR)
Water (H,0)
32 0 62.57 1.0074 1.925 % 107° 0.319 507x107% | 13.6
68 20 62.46 0.9988 1.083 0.345 5.54 7.02 0.10x107?
104 40 62.09 0.9980 |0.708 0.363 5.86 4.34
140 60 61.52 0.9994 0.514 0.376 6.02 3.02
176 80 60.81 1.0023  [0.392 0.386 6.34 2.22
212 100 59.97 1.0070 {0316 0.393 6.51 1.74
248 120 59.01 1.015 0.266 0.396 6.62 1.446
284 140 57.95 1.023 0.230 0.395 6.68 1.241
320 160 56.79 1.037 0.204 0.393 6.70 1.099
356 180 55.50 1.055 0.186 0.390 6.68 1.004
392 200 54.11 1.076 0172 0.384 6.61 0.937
478 220 52.59 1.101 0.161 0.377 6.51 0.891
464 240 50.92 1.136 0.154 0.367 6.35 0.871
500 260 49,06 1.182 0.148 0.353 6.11 0.874
537 280 46.98 1.244 0.145 0.335 574 0.910
572 300 44.59 1.368 0.145 0312 513 1.019
Ammonia (NH;)
-58 =50 43.93 1.066 0.468 x 103 0316 6.75x 1073 2.60
—40 —40 4318 1.067 0.437 0.316 6.88 2728
-22 -30 42.41 1.069 0.417 0317 6.98 215
—4 -20 41.62 1.077 0.410 0316 7.05 2.09
14 =10 40.80 1.090 0.407 0314 7.07 2.07
32 0 39.96 1.107 0.402 0.312 7.05 205
50 10 39.00 1.126 0.396 0.307 6.98 2.04
68 20 38.19 1.146 0.386 0301 6.88 202 1.36 x 1073
86 30 37.23 1.168 0.376 0.293 6.75 2.0
104 40 36.27 1.194 0.366 0.285 6.59 2.00
122 50 35.23 1.222 0.355 0.275 6.41 1.99
Carbon dioxide (CO,;)
—58 -50 72.19 0.44 0.128 x 107* 0.0494 1.558 X 107*| 2.96
—40 -40 69.78 0.45 0.127 0.0584 1.864 246
~22 -30 67.22 0.47 0.126 0.0645 2.043 222
-4 —-20 64.45 0.49 0.124 0.0665 2.110 2.12
14 -10 61.39 0.52 0.122 0.0635 1.989 220
SI Units ke J m’ w m? 1
m’ kg -K 5 K s - K
To convert to Sl
units multiply
tabulated 1.601 846 4.184 9.290 304 1.729577 2.580 640 — 1.80
values by x10" x1¢? x1072 x10-%
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Table B-3 (Engl.). (continued)
T
p <, 7 k o B
°F °C (Ib,/it") |(Btu/lb,,-°F) (ft¥/s) (Btu/hr-ft-°F)|  (ft*/hr) Pr (1°R)
Carbon dioxide (CO,) (cont.)
32 0 57.87 0.59 0.117 0.0604 1.774 2.38
50 10 53.69 0.75 0.109 0.0561 1.398 2.80
68 20 48.23 1.2 0.098 0.0504 0.860 4.10 7718 %1072
86 30 37.32 8.7 0.086 0.0406 0.108 28.7
Sulfur dioxide (SO;)
-58 -50 97.44 03247 0521 %107° 0.140 442x 107 4.24
—40 -40 95.94 03250 [0.456 0.136 438 374
—-22 -30 94.43 03252 (0399 0.133 433 3.31
-4 -20 92.93 03254 |0.349 0.130 4.29 293
14 -10 91.37 0.3255 [0310 0.126 4.25 262
32 0 89.80 0.3257 0277 0.122 4.19 238
50 10 88.18 0.3259 0250 0.118 4.13 218
68 20 86.55 0.3261 0.226 0.115 4.07 2.00 1.08 x 1077
86 30 84.86 03263 0.204 0.111 4.01 1.83
104 40 82.98 03266 |0.186 0.107 395 1.70
122 50 81.10 03268 |0.174 0.102 3.87 1.61
Methylchloride (CH,CI)
~58 —-50 65.71 0.3525 |0344x10°° 0.124 538 %10 231
-40 —40 64.51 0.3541 0.342 0.121 5.30 232
—-22 =30 63.46 0.3564 0338 0.117 5.18 235
-4 ~20 62.39 0.3593 | 0.333 0.113 5.04 2.38
14 -10 61.27 0.3629 0.329 0.108 4.87 243
32 0 60.08 03673 [0.325 0.103 4.70 249
50 10 58.83 03726 (0.320 0.099 452 255
68 20 57.64 0.3788 [0.315 0.094 4.31 2.63
86 30 56.38 0.3860 0310 0.089 4.10 272
104 40 55.13 0.3942 | 0.303 0.083 3.86 2.83
122 50 53.76 0.4034 ]0.295 0.077 3.57 297
Dichlorodifluoromethane (Freon = 12)(CClL,F;)
—58 —-50 96.56 0.2090 0334 x10°° 0.039 1.94x 1077 6.2 1.46 x 1071
-40 -40 94.81 0.2113  [0.300 0.040 1.99 5.4
-22 =30 92.99 02139 (0272 0.040 2.04 48
-4 =20 91.18 02167 |0.253 0.041 2.09 44
14 -10 89.24 02198 |0.238 0.042 213 40
SI Units kg J m? w m’ 1
m* kg-K ] m-K s B K
To convert to SI
units multiply
tabulated 1.601 846 4.184 9.290304 1.729 577 2.580640 — 1.80
values by x10! xX10° X102 x10~*
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Table B-3 (Engl.). (continued)

T
p Cp v k a B
°F °C (Ib/f%) |(Btu/lb,-°F)|  (ft¥s)  |(Bwhr-ft-°F)|  (ft¥/hr) Pr (1°R)
Dichlorodifluoromethane (Freon = 12)(CCLF;) (cont.)
32 0 87.24 02232 |{0.230 0.042 2.16 38
50 10 85.17 02268 0219 0.042 217 36
68 20 83.04 0.2307 |0.213 0.042 217 35
86 30 80.85 0.2349  (0.209 0.041 217 35
104 40 78.48 0.2393 |0.206 0.040 215 35
122 50 75.91 0.2440 0.204 0.039 21 3.5
Eutectic calcium chloride solution (29.9% CaCl,)
—-58 -50 8239 0.623 39.13x10°° 0.232 452x107% | 312
—40 —40 82.09 0.6295 26.88 0.240 4.65 208
-22 =30 81.79 0.6356 |18.49 0.248 4.78 139
-4 =20 81.50 0.642 11.88 0.257 491 87.1
14 -10 81.20 0.648 7.49 0.265 5.04 536
32 0 80.91 0.654 4.73 0.273 5.16 33.0
50 10 80.62 0.660 3.61 0.280 5.28 246
68 20 80.32 0.666 293 0.288 5.40 19.6
86 30 80.03 0.672 244 0.295 5.50 16.0
104 40 79.73 0.678 2.07 0.302 5.60 13.3
122 50 79.44 0.685 1.78 0.309 5.69 11.3
Glycerin [C;H;(OH);5)
32 ¢ 79.66 0.540 0.0895 0.163 3.81x107° | 847 x 10°
50 10 79.29 0.554 0.0323 0.164 3.74 310
68 20 78.91 0.570 0.0127 0.165 3.67 125 028 <1073
86 30 78.54 0.584 0.0054 0.165 3.60 5.38
104 40 78.16 0.600 0.0024 0.165 354 245
122 50 77.72 0.617 0.0016 0.166 3.46 1.63
Ethylene glycol [C;H.(OH,)]
32 0 70.59 0.548 61.92x107° 0.140 362x10°° 615
68 20 69.71 0.569 20.64 0.144 3.64 204 0.36 x 1073
104 40 68.76 0.591 9.35 0.148 3.64 93
140 60 67.90 0.612 5.11 0.150 361 51
176 80 67.27 0.633 321 0.151 357 324
212 100 66.08 0.655 218 0.152 352 224
SI Units kg J m? w m? 1
m kg-K s m-K s - K
To convert to SI
units multiply
tabulated 1.601 846 4.184 9.290 304 1.729 577 2.580 640 - 1.80
values by x10' x10° %1072 x107%
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Table B-3 (Engl.). (continued)

T
p Cp v k (44 B
°F °C (Ib/ft) |(Btu/lb,,-°F)|  (ft¥rs) |(Btwhr-ft-°F)| (ft¥hr) Pr (1°R)
Engine oil (unused)
32 0 56.13 0.429 0.0461 0.085 353x 1072 | 47100
68 20 55.45 0.449 0.0097 0.084 3.38 10400 | 039x10°?
104 40 54.69 0.469 0.0026 0.083 323 2870
140 60 53.94 0.489 0.903 x 107* 0.081 3.10 1050
176 80 53.19 0.509 0.404 0.080 2.98 490
212 100 52.44 0.530 0.219 0.079 2.86 276
248 120 5175 0.551 0.133 0.078 2.75 175
284 140 51.00 0.572 0.086 0.077 2.66 116
320 160 50.31 0.593 0.060 0.076 2.57 84
Mercury (Hg)
32 0 850.78 0.0335 |0.133x10°° 4.74 166.6x107*| 0.0288
68 20 847.71 0.0333 [0.123 5.02 1785 0.0249 | 1.01x10™*
122 50 843.14 0.0331 |0.112 543 194.6 0.0207
212 100 835.57 0.0328 [0.0999 6.07 2215 0.0162
302 150 828.06 00326 [0.0918 6.64 246.2 0.0134
392 200 820.61 0.0375 |0.0863 7.13 261.7 0.0116
482 250 813.16 0.0324 | 0.0823 7.55 2870 0.0103
600 316 802 0.032 0.0724 8.10 316 0.0083
SI Units kg J m? w m’ 1
m kg-K s ‘K s - K
To convert to SI
units multiply
tabulated 1.601 846 4.184 9.290304 1.729577 2.580 640 - 1.80
values by x10' x10° x107? x107°

*From E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer, © 1959, McGraw-Hill Book Company, New York, NY. Used
by permission of the McGraw-Hill Companies.



Table B-4 (Engl). Property values of gases at atmospheric pressure.*

I
[ Cp B v k a
°F °C (Ib,/ftY) | (Buylb,,-°F) (Ib,,/ft-s) (ft3/s) (Btu/hr-ft-°F)| (ft%hr) Pr
Air
-280 -173 .2248 0.2452 0.4653 x 107° 2.070 % 105 0.005 342 0.09691 | 0.770
—-190 123 0.1478 0.2412 0.6910 4675 0.007 936 0.2226 0.753
~100 -73 0.1104 0.2403 0.8930 8.062 0.01045 0.3939 0.739
-10 -23 0.0882 0.2401 1.074 10.22 0.012 87 0.5100 0.722
80 27 0.0735 0.2402 1.241 16.88 0.01516 0.8587 0.708
170 77 0.0623 0.2410 1.394 22.38 0.01735 1.156 0.697
260 127 0.0551 0.2422 1.536 27.88 0.01944 1.457 0.689
350 177 0.0489 ().2438 1.669 31.06 0.021 42 1.636 0.683
440 227 00440 0.2459 1.795 40.80 0.023 33 2.156 0.680
530 2717 0.0401 0.2482 1.914 47.73 0.02519 2.531 0.680
620 327 0.0367 0.2520 2.028 55.26 0.026 92 2911 0.680
710 77 0.0339 0.2540 2.135 62.98 0.028 62 3.324 0.682
800 427 0.0314 0.2568 2.239 71.31 0.030 22 3.748 0.684
890 477 0.0294 0.2593 2.339 79.56 0.031 83 4175 0.686
980 527 0.0275 0.2622 2.436 88.58 0.033 39 4.631 0.689
1070 577 L0259 0.2650 2.530 97.68 0.034 83 5075 0.692
1160 627 L0245 0.2678 2.620 106.9 0.036 28 5.530 0.696
1250 677 0.0232 0.2704 2703 116.5 0.03770 6.010 0.699
1340 127 0.0220 02727 2.790 126.8 0.03901 6.502 0.702
1520 827 0.0200 0.2772 2.955 147.8 0.041 78 7.536 0.706
1700 927 0.0184 0.2815 3.109 169.0 0.044 10 8.514 0.714
1880 1027 0.0169 0.2860 3.258 192.8 0.046 41 9.602 0.722
2060 1127 0.0157 0.2900 3.398 2164 (0.048 80 10.72 0.726
2240 1227 0.0147 .2939 3533 240.3 0.050 98 11.80 0.734
2420 1327 0.0138 0.2U82 3.66K 2658 0.053 48 12.88 0.741
2600 1427 0.0130 0.3028 3.792 291.7 0.055 50 14.00 0.749
2780 1527 0.0123 0.3075 3915 318.3 (0.057 50 15.09 0.759
2960 1627 0.0116 0.3128 4.029 347.1 0.0591 16.40 0.767
3140 1727 0.0110 0.3196 4.168 378.8 0.0612 17.41 0.783
3320 1827 0.0105 0.3278 4.301 4009 0.063 2 18.36 0.803
3500 1927 0.0100 0.3390 4.398 439.8 0.064 6 19.05 0.831
3680 2027 0.0096 0.3541 4.513 470.1 0.066 3 19.61 0.863
3860 2127 0.0091 0.3759 4611 506.9 0.068 1 19.92 0.916
4160 2293 0.0087 0.4031 4.750 546.0 0.0709 2021 0.972
Helium
—-456 27 1.242 5661077 0.0061
400 —240 | 0.00915 1.242 337 3.68x 1077 0.0204 0.1792 0.74
=200 -129 0.211 1.242 84.3 39.95 0.0536 2044 0.70
=100 -73 0.0152 1.242 105.2 69.30 0.0680 3.599 0.694
0 —18 00119 1.242 122.1 102.8 0.0784 5.299 0.70
200 93 0.008 29 1.242 154.9 186.9 0.0977 9.490 0.71
SI Units kg I ke m? w m?
m' kg- K m-s $ m-K s a
To convert to SI
units multiply
tabulated 1.601 846 4.184 1.488 164 9.290 304 1.729 577 2.580 640 -
values by x 10 x10° x10 2 *x1073%




Table B-4 (Engl). (continued)

T
p < Hm 7 k a
°F °C (b, /ft*) | (Bu/lb,,-°F) (b /ft-s) (ft2s) (Btu/hr-ft-°F)|  (ft/hr) Pr
Helium
400 204 0.006 37 1.242 184.8 289.9 0.114 14.40 0.72
600 316 0.00517 1.242 209.2 404.5 0.130 20.21 0.72
800 427 0.00439 1.242 233.5 531.9 0.145 25.81 0.72
1000 538 0.003 76 1.242 256.5 682.5 0.159 34.00 0.72
1200 649 0.00330 1.242 277.9 841.0 0172 41.98 0.72
Hydrogen
—406 —243 0.052 89 2.589 1.079 x 107* 2.040x 1077 0.0132 0.0966 | 0.759
-370 —223 0.031 81 2.508 1.691 5253 0.0209 0.262 0.721
—280 —-173 0.01534 2.682 2.830 18.45 0.0384 0.933 0.712
—190 —123 0.01022 3.010 3.760 36.79 0.0567 1.84 0.718
-100 =73 0.007 66 3.234 4.578 59.77 0.0741 2.99 0.719
-10 -23 0.006 13 3.358 5.321 86.80 0.0902 4.38 0.713
80 27 0.005 11 3419 6.023 1179 0.105 6.02 0.706
170 71 0.004 38 3.448 6.689 152.7 0.119 7.87 0.697
260 127 0.003 83 3.461 7.300 190.6 0.132 9.95 0.690
350 177 0.00341 3.463 7.915 2321 0.145 12.26 0.682
440 227 0.003 07 3.465 8.491 276.6 0.157 14.79 0.675
530 277 0.00279 347 9.055 324.6 0.169 17.50 0.668
620 327 0.002 55 3472 9.599 376.4 0.182 20.56 0.664
800 427 0.002 18 3.481 10.68 489.9 0.203 26.75 0.659
980 527 0.001 91 3.505 11.69 612 0.222 33.18 0.664
1160 627 0.001 70 3.540 12.62 743 0.238 39.59 0.676
1340 727 0.001 53 3.575 13.55 885 0.254 46.49 0.686
1520 827 0.001 39 3.622 14.42 1039 0.268 53.19 0.703
1700 927 0.001 28 3.670 15.29 1192 0.282 60.00 0.715
1880 1027 0.00118 3720 16.18 1370 0.296 67.40 0.733
1940 1060 0.001 15 3735 16.42 1429 0.300 69.80 0.736
Oxygen
—280 -173 0.2492 0.2264 5.220x10°* 2.095%10°* 0.005 22 0.09252 | 0.815
~190 —-123 0.1635 0.2192 7721 4.722 0.007 90 0.2204 0.773
—-100 =73 0.1221 0.2181 9.979 8.173 0.010 54 03958 0.745
-10 -23 0.0975 02187 12.01 12.32 0.01305 0.6120 0.725
80 27 0.0812 0.2198 13.86 17.07 001546 0.866 2 0.709
170 77 0.0695 0.2219 15.56 22.39 001774 1.150 0.702
260 127 0.0609 0.2250 17.16 28.18 0.020 00 1.460 0.695
350 177 0.0542 0.2285 18.66 34.43 0.02212 1.786 0.694
440 227 0.0487 0.2322 2010 41.27 0.02411 2132 0.697
530 2717 0.0443 0.2360 21.48 48.49 0.026 10 2.496 0.700
620 327 0.0406 0.2399 22.79 56.13 0.027 92 2.867 0.704
SI Units kg J kg m? w m?
m’ kg K m-s s m-K s o
To convert to SI
units multiply
tabulated 1.601 846 4.184 1.488 164 9.290 304 1.729577 2.580 640 -
values by x10! x10° x107? x107*




Table B-4 (Engl.). (continued)
T
P , TN v k o
°F °C (Ib/ft*) | (Btwlb,,-°F) (Ib,, /ft-s) (ft%/s) (Buu/hr-ft-°F)| (ft¥hr) Pr
Nitrogen
—280 -173 0.2173 0.2561 4611 x10°° 2122 %1073 0.005 460 0.09811 | 0.786
-100 -73 0.1068 0.2491 8.700 8.146 0.01054 0.3962 0.747
80 27 0.0713 0.2486 1199 16.82 0.01514 0.8542 0.713
260 127 0.0533 0.2498 14.77 271.71 0.01927 1.447 0.691
440 227 0.0426 0.2521 17.27 40.54 0.02302 2.143 0.684
620 327 0.0355 (0.2569 19.56 55.10 0.026 46 2.901 0.686
800 427 0.0308 0.2620 21.59 70.10 0.029 60 3.668 0.69
980 527 0.0267 0.2681 23.41 87.68 0.032 41 4.528 0.700
1160 627 0.0237 0.2738 25.19 98.02 0.035 07 5.404 0.711
1340 727 0.0213 0.2789 26.88 126.2 0.037 41 6.297 0.724
1520 827 0.0194 0.2832 2841 146.4 0.03958 7.204 0.736
1700 927 0.0178 0.2875 29.90 168.0 0.041 51 8.111 0.748
Carbon dioxide
—64 —-53 0.1544 0.187 7.462 X 10°¢ 4.833%10° 0.006 243 0.2294 0.818
-10 =23 0.1352 0.192 8.460 6.257 0.007 444 0.2868 0.793
80 27 0.1122 0.208 10.051 8.957 0.009 575 0.4103 0.770
170 77 0.0959 0.215 11.561 12.05 0.011 83 0.5738 0.755
260 127 0.0838 0.225 12.98 15.49 0.01422 0.7542 0.738
350 177 0.0744 0234 14.34 19.27 0.016 74 0.9615 0.721
440 227 0.0670 .242 15.63 23.33 0.01937 1.195 0.702
530 277 0.0608 0.250 16.85 21N 0.02208 1.453 0.685
620 327 0.0558 0.257 18.03 32.31 0.0249 1.737 0.668
Carbon monoxide
—64 ~53 0.096 99 0.2491 9.295 % 10°° 9.583x%10°° 001101 0.4557 0.758
-10 =23 0.0525 0.2490 10.35 12.14 001239 0.5837 0.750
80 27 0.071 09 0.2489 11.991) 16.87 0.014 59 0.8246 0.737
170 77 0.060 82 0.2492 13.50 22.20 0.016 66 1.099 0.728
260 127 0.053 29 0.2504 14.91 27.98 0.018 64 1.397 0.722
350 177 0.04735 0.2520 16.25 34.32 0.0252 1.720 0.718
440 227 0.042 59 0.2540 17.51 41.11 0.022 32 2.063 0.718
530 277 0.038 72 0.2569 18.74 4840 0.024 05 2418 0.721
620 327 0.03549 0.2598 19.89 56.04 0.02569 2.786 0.724
Ammonia (NH,)
—58 —-50 0.0239 0.525 4875 x107°° 204x10* 0.0099 0.79% 093
32 0 0.0495 0.520 6.285 1.27 0.0127 0.507 0.90
122 50 0.0405 0.520 7.415 1.83 0.0156 0.744 0.88
212 100 0.0349 (1534 8.659 248 0.0189 1.015 0.87
302 150 0.0308 0.553 9.859 3.20 0.0226 1.330 0.87
392 200 0.0275 0.572 11.08 4.03 0.0270 1.713 0.84
SI Units kg J kg m’ W m?
m’ kg-K m-s s m-K s -
To convert to SI
units multiply
tabulated 1.601 846 4.184 1.488 164 9.290304 1.729 577 2.580 640 —
values by x10! x10° x107? x1073
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Table B-4 (Engl.). (continued)
T
P <p " v k o
°F °C (Ib/f®) | (Btu/lb,°F) (Ib/ft-s) (ft%s) (Btu'hr-ft-°F)|  (ft’/hr) Pr
Steam (H;O vapor)
224 107 0.0366 0.492 8.54x10°° 233x107* 0.0142 0.789 1.060
260 127 0.0346 0.481 9.03 2.61 0.0151 0.906 1.040
350 177 0.0306 0.473 10.25 3.35 0.0173 1.19 1.010
440 227 0.0275 0.474 11.45 4.16 0.0196 1.50 0.996
530 277 0.0250 0.477 12,66 5.06 0.0219 1.84 0.9%
620 327 0.0228 0.484 13.89 6.09 0.0244 222 0.986
710 377 0.0211 049 15.10 7.15 0.0268 2.58 0.995
800 427 0.0196 0.498 16.30 831 0.0292 2.99 1.000
890 477 0.0183 0.506 17.50 9.56 0.0317 3.42 1.005
980 527 0.0171 0.514 18.72 10.98 0.0342 3.88 1.010
1070 577 0.0161 0522 19.95 12.40 0.0368 438 1.019
SI Units kg J kg _rp_’ w ﬁ _
m’ kg-K m-s s m-K s
To convert to SI
units multiply
tabulated 1.601 846 4.184 1.488 164 9.290 304 1.729577 | 2.580 640 —
values by x10! x10° %1072 %1073

*From E. R. G. Eckert and R. M. Drake, Hear and Mass Transfer, © 1959, McGraw-Hill Book Company, New York, NY. Used by
permission of the McGraw-Hill Companies
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Table B-5 (Engl.).

ENGLISH UNITS

Critical constants and molecular weights of gases.

[APPENDIX B

Critical Constants*

Molecular

Gas Weight p. (atm) T, °R) T(K)
Air 28.95 37.2 238.4 1324
Argon 39.944 48.0 272.0 151.1
Oxygen 32 49.7 277.8 1543
Nitrogen 28.02 335 226.9 126.0
Carbon dioxide 4401 73.0 547.7 304.3
Carbon monoxide 28.01 350 241.5 134.2
Hydrogen 2.02 12.8 59.9 33.3
Ethyl alcohol 46.0 63.1 929.3 516.3
Benzene 78.0 47.7 1011 562.0
Freon-12 120.92 39.6 692.4 384.4
Ammonia 17.03 111.5 730.0 406.0
Helium 4.00 2.26 9.47 5.26
Mercury vapor 200.61 =200 >3281.7 >1822.0
Methane 16.03 45.8 343.2 190.7
Propane 44.09 42.0 665.9 369.9
Water 18.016 2183 1165.3 647.4
Xenon 131.3 58.0 521.55 289.75




Absorption, monochromatic, 309
Absorptivity, 289, 309, 315
Acceleration, particle, 133

Adiabatic line, 60

Angle factor (see Configuration factor)
Angstrom (unit), 289

Archimedes’ principle, 124

Back substitution, 64, 76, 77
Barometer, 131
Bernard cells, 229
Bernoulli’s equation, 129, 139, 140
Bessel’s differential equation, 28
Biot modulus (number), 87, 88, 104, 105, 108
Black surfaces, 296
Blackbody, 2, 291
radiation, 291
radiation functions, 293
spectral distribution, 292
Blasius’ equation, 145, 147
Block change, 64
Boiling, 245
crisis, 246
curve, 245
film, 245, 246, 248
flow (convection), 249
nucleate, 245, 246, 250, 260
pool, 245, 246
Boundary conditions
convective (see Convective boundary) conditions
sine-function, 70
Boundary layer
hydrodynamic (isothermal), 144
thermal, 149
Boundary layer thickness, 159, 164, 202, 203, 213
hydrodynamic, 165, 169
thermal, 165, 169
Bromley equation, 248
Buoyancy force, 124
Burnout, 246, 256
Burnout point, 246

Capacitance, thermal (see Thermal capacitance)
Characteristic dimension, 88, 103, 104
Clausius-Clapeyron equation, 267
Coefficient:

convective heat transfer, 2

monochromatic absorption, 309

overall heat-transfer, 54
Colburn factor, 189

Composite wall, 33, 34

Index
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Compressibility, liquids (table), 341, 350
Concentric spheres, free convection, 231, 240
Condensation, 245

dropwise, 251

laminar flow, 252

turbulent flow, 254
Conductances, 61, 66
Conduction, 1
Conduction equation, 30

general, 16, 87

plane wall, 18

radial systems, 19

steady-state, 16, 32

steady-state, multidimensional, 56

time-varying, 87

two-dimensional, 70, 71
Conductive shape factor (see Shape factor,

conductive)

Conductivity (see Thermal conductivity)
Configuration factors, 296, 316, 317

gray body, 306

modified, 302, 321

properties, 298
Conservation of energy, 129
Conservation of mass, 127
Continuity equation, 127, 135, 137, 140

differential form, 127, 136

vector form, 127
Continuum, 3
Control volume, 149
Convection, 1

forced, 144, 184

mixed. 231

natural (see Free convection)

(see also Free convection)
Convective acceleration, 125
Convective boundary conditions, 22

chart solutions, 92

semi-infinite body, 91

slab of finite thickness, 91
Convective heat-transfer coefficient, 189, 203
Conversion factor, 328
Cooling tower, 216
Coordinate systems, 17
Critical constants, gases, 358
Critical length, 185, 206
Critical radius, 48, 54
Critical thickness, 25
Cross flow:

single cylinder, 198

single sphere, 198

tube bundles, 199
Curved boundary, nodal equation, 69
Curvilinear square, 59, 60
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Cylinder:
cross flow, 198
hollow, 37

Darcy-Weisbach equation, 152, 172, 190, 208
Density, 3, 10

gases (table), 344

liquids (table), 341, 350

metals (table), 335, 347

nonmetals (table), 338, 348
Diffusivity, thermal (see Thermal diffusivity)
Dittus-Boelter equation, 194, 209
Divergence, 128
Drag, 164, 169, 203, 205, 213

coefficient, 196, 213

coefficient (table), 197

form or profile, 160, 195, 213

friction, 188

skin-friction, 160, 195. 213

Ebullition, 245
Eddy diffusivity, 186
Eddy viscosity, 126
Effectiveness, heat exchanger, 274, 284
table, 276
Efficiency, fin (see Fin efficiency)
Eigenvalues, 92
Electrical analog:
conduction, 61, 86
radiation, 305
Electromagnetic spectrum, 289
Emissive power, 290
blackbody, 291, 313
hemispherical, 290
monochromatic, 292
total, 314
Emissivity, 2, 315
carbon dioxide, 310, 311
gas, 324
monochromatic, 294, 309
table, 359
total, 294
water vapour, 312
Empirical correlations, free convection, 226
Enclosed spaces, free convection, 226

(see also Horizontal layers; Vertical enclosed

spaces)

Enclosures:

black, 301

gray, 306, 323
Energy equation, 141

integral, 225

steady, 165
Energy gradient, 128
English Engineering system, 5, 6
Enthalpy, 129

change, in condensation, 265

INDEX

Entrance region, heat-transfer, 194, 212

Entry length, friction factor, 191
tube flow, hydrodynamic, 174
tube flow, thermal, 174

Equation of motion, 137, 184
steady laminar flow, 158

Equivalent beam length, 311

Equivalent length, 191, 208

Error function, 89

Euler number, 127

Eulerian approach, 125

Excess temperature, 245, 258

Film boiling, 282
flow, 251
Film temperature, 150, 190, 239, 248, 255
Fin efficiency, 29, 53
Finite-difference approximations, 99
Finite-difference equation:
explicit, 99
implicit, 102
Fins, 25, 50
annular, 28, 52, 53
nonuniform cross section, 27
rectangular, 26, 55, 79
rod, 49, 50, 51
triangular, 29
uniform cross section, 25
vertical, 264
Fittings, pipe, 191
Flat plate:
flow with heat transfer, 189
isothermal flow, 188
Flow:
fully developed, 151
incompressible, 127
irrotational, 137
laminar, 125, 144
nonuniform, 125
slug, 151
steady, 125
turbulent, 125, 184
uniform, 125
unsteady, 125
Flow field, 133
Flow with heat transfer, 193
Fluid derivative (see Substantial derivative)
Fluid dynamics, 124
Fluid mechanics, 123
Fluid statics, 123
Flux plotting, 72
Form drag (see Drag, form or profile)
Fouling, 275
Fouling factors, 275, 283
Fourier equation, 16
law, 1, 31, 32



Fourier equation (Cont.)
modulus (number), 88, 103, 105
Free convection, 221
integral solution, 225
similarity solution, 223
Freehand plotting, 60, 73, 74, 84
Friction factor, 152, 207
table, 153
Frictionless fluid, 123
(see also Perfect fluid)
Froude number, 127, 135

Gaussian elimination, 63, 76, 77, 102, 322
computer program, 77
flow diagram, 65
Gaussian error function, 89
Gauss-Seidel method, 67, 83
Graetz number, 241
Grashof number, 221, 235, 236, 239, 240, 241
Gravitational acceleration, 10
Gray body, 2, 294, 295
heat transfer, 321
Gray enclosure, 306, 323
Gray surfaces, 303
Grober chart
cylinder, 95
slab, 93
sphere, 96, 98

Hagen-Poiseuille equation, 153, 171
Hausen equation, 157
Head:
elevation, 129
pressure, 129
total, 129
velocity, 129
Heat exchanger, 268
correction factors, 272
counterflow, 268, 278
crossflow, 268, 281, 284, 286
double-pipe, 268, 278, 283, 284
flat-plate, 268
parallel-flow, 268
shell-and-tube, 268, 280, 285
Heat flow lanes, 59
Heat generation, 16, 20, 39, 40
Heat transfer, steady-state, 6
Heat transfer coefficient, 206, 209, 226
laminar tube flow, 155
local, 170
overall, 23
sphere, 214
Heisler chart:
cylinder, 95
slab, 93
sphere, 95, 96, 97

INDEX

Hohlraum, 291, 313
Horizontal cylinder, forced convection, 232
Horizontal layers, free convection:
air, 229
liquids, 229
Horsepower, 141
Hydraulic diameter, 153
gradient, 128
radius, 137
Hydrometer, 132
Hydrostatic equation, 123, 131, 140

Impact tube, 140
(see also Pitot tube)
Incompressible laminar boundary layer, 165
Insulation:
critical thickness, 25, 47
pipe, 35, 43
Integral equation:
energy, 151, 166, 167
momentum, 147, 161, 202
Intensity:
blackbody, 294
radiation, 291
Internal energy, 16, 129
Irradiation, 304
Isotherms, 59, 60

J-factor, 189
Kirchhoff's law, 293, 314

Lagrangian method, 125
Laminar tube flow:
Nusselt number, 172
pressure drop, 171, 172
thermal profile, 177
velocity distribution, 170
velocity profile, 174, 176, 177
Langhaar equation, 152
Laplace equation, 17, 56, 61
Latzo Equation, 190, 194
Leibniz’ rule, 90
Liquid metals, 200
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Log-mean temperature difference, 270, 282, 283

Loss coefficient, 191

Losses, minor, 191

Lumped analysis, 88, 103, 104, 105, 108
multiple system, 106

Lumped system, 108

Mach number, 127
Manometer, 132
differential, 132
Mass velocity, 127
Matrix, 78
inversion, 63
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Minor losses, 191

Molecular weights, gases, 358
Momentum equation, integral, 225
Moody's diagram, 191, 208
Multidimensional system, 98

Navier-Stokes equations, 184
Newton's law of cooling, 2, 106, 154
Nodal equation, 63, 64, 78
explicit, 100, 102
exterior corner, 79
Gauss-Seidel method, 67, 83
implicit, 102
stability requirements, 101
table, 69
Nodal points, 61
exterior, 68
interior, 69
Nodal temperatures, 79, 80
Noncircular ducts, 153
No-slip condition, 144
NTU method, 274, 283, 286
Numerical analysis, 61, 99
Nusselt number, 151, 155
free convection, 224, 226

Ohmic power, 239

Ohm’s law, 19

Oliver’s equation, 241

One-seventh-power law, 188, 202

QOstrach solution, 223

Overall heat-transfer cocfficient, 270
table, 271

Pascal’s law, 123, 130
Peak heat flux (boiling), 246, 247, 251, 256, 257
Pebble-bed heaters, 196
Peclet number, 201
Perfect fluid, 126

(see also Frictionless fluid)
Pipe flow, 154

isothermal, 151

turbulent, isothermal, 190
Pitot tube, 140, 159
Pitot-static tube, 139
Planck radiation functions, 293
Planck’s Law, 292, 314
Pohlhausen solution, 150
Poisson equation, 17
Power-law velocity profile, 190, 206
Prandtl number, 150

gases (table), 344

liquids (table), 341, 350
Prandtl’s boundary layer equations, 144
Pressure:

absolute, 123

atmospheric, 123

Pressure (Cont.)
barometric, 123, 131
gauge, 123
variation with depth, 131
Pressure, sensitivity to, 13
Pressure drop, 208
in fittings, 191
Profile drag (see Drag, form or profile)
Prototype, 126, 135

Radiation, 2, 289
gases and vapors, 309
shields, 324
Radiation loss, 44
Radiosity, 290, 304
Rayleigh number, 222
Rayleigh or Buckingham Pi theorem, 126
Real fluid, 126
Real surface emission, 295
Reciprocity theorem, 301, 302
Recuperator, 268
Reference temperature, 222, 224
Reflectivity, 289
Reflector:
diffuse, 290
specular, 290
Relative roughness (see Roughness of pipes,
relative)
Relaxation, 64, 80
table, 66
Reradiating surfaces, 302, 319
Residual equations, 64
Resistance, thermal (see Thermal resistance)
Reynold’s analogy, 187
tube flow, 19
Reynold's number, 125, 127, 134, 135, 241
Reynold’s stress, 185
Rohsenow equation, 246, 258, 259
Roughness height, 191
Roughness of pipes, 191
relative, 191, 208

Scale buildup, 283
Semi-infinite body, 89, 111
Separation of variables, 58, 92, 98
Separation point, 195
Shape factor:
conductive, 59, 74, 76
table, 62
Shear stress, 126, 146
Shielding, radiation, 307
SI units, 5, 11, 43, 54
conversions, 12
Sicder-Tate equation, 212
Similarity:
geometric, 126, 135
kinematic, 126
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Similarity (Cont.) Thermal diffusivity (Cont.)
parameter, 150, 234 liquids (table), 341, 350
solution, 234 metals (table), 335, 347

Similitude, 126 Thermal entry length, 181

Skin-friction coefficient, 146, 160, 188, 202, 203, Thermal entry region, 154

205, 213 Thermal flux, radiant, 8
average, 163 Thermal power generation, 13
local, 163 Thermal radiation, 289

Skin-friction drag, 160, 195, 213 Thermal resistance, 18, 23, 33, 89

Solar radiant flux, 311 Thermal time constant, 89, 104

Specific gravity, 4, 10 Total derivative (see Substantial derivative)

Specific heat, 4 Transcendental equation, 92
gases (table), 344 Transient conduction, 89
liquids (table), 341, 350 chart solution, 113, 121
metals (table), 335, 347 chart solution, three-dimensional, 115, 116, 117
nonmetals (table), 338, 348 numerical solution, 117

Specific volume, 3 Transient cooling, §7, 114

Sphere, cross flow, 198 Transient temperature, 103

Stagnation point, 139 Transmissivity, 289, 311

Stanton number, 189 monochromatic, 309

Steady state, 1 Triangularization (see Gaussian elimination)

Stefan-Boltzmann constant, 291 Tube bank, 216
equation or law, 2, 291 Tube bundle, 216

Stream filament, 124 cross flow, 199

Stream function, 145, 150 Tube flow:

Stream tube, 124 entry length, 152

Streamlines, 124, 128, 133 fully developed region, 152

Stress, apparent or Reynolds, 185 Turbulent flow, 184

Stretching factor, 145 )

Subcooling, 260 Unit change, 64, 66

Submerged bodies, 195 Units systems (table), 6

Substantial derivative, 125
Superposition, 58, 85
Surface tension, 247

Vacuum, 123
Velocity, power-law, 190
Velocity field, 137

Sur?aces: Velocity potential, 137
diffuse, 290 Velocity profile, 162
specular, 290 cubic, 164

parabolic, 152

Taylor’s series, 31
Temperature distribution:
counterflow heat exchanger, 278

Vertical enclosed spaces, free convection, 220, 233
View factor (see Configuration factors)

Viscosity, 4

parallel-flow heat exchanger, 278 absolute, 5
Thermal capacitance, 89, 103, 106 dynamic, 5, 9, 11, 331
Thermal conductivity, 1, 2, 3, 7, 8, 12 eddy, 185 » 2 11,

gases, 3 ases

5, 334

gases (chart), 333 s (table), 144

gases (table), 344 B . e

lincar. 35. 3 6, kinematic, 5, 11, 332

liquids, 3' liquids (table), 341, 350

Viscous fluid, 126
Volume expansion, coefficient of, 222
von Karmén integral technique, 147, 151, 163

liquids (table), 341, 350
metals (table), 335, 347
nonmetals (table), 338, 348

soli_ds, 2 Weber number, 127
variable, 20 Wien’s displacement law, 292, 314
Thermal diffusivity, 4, 10 Work, flow, 129

gases (table), 344 shaft, 129



