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Preface

The theory of graphs, with its diverse applications in natural and social sciences in
general and in theoretical computer science in particular, is becoming an important com-
ponent of the mathematics curriculum in colleges and universities all over the world. This
book presents the basic concepts of contemporary graph theory in a sequence of nine
chapters. It is primarily designed as a supplementary textbook for mathematics and com-
puter science students with a wide range of maturity. At the same time it can also serve
as a useful reference book for many academic and industrial professionals who are inter-
ested in graph theory.

Graph Theory can be considered a companion volume to Combinatorics, which was
published as a Schaum Outline in 1995. The style of presentation of the matenial is the
same in both outlines. In each chapter the basic concepts are developed in the first few
pages by giving definitions and statements of the major theorems to familiarize the reader
with topics that will be fully explored in the selection of solved problems that follow the
text. The problems are grouped by topics and are presented in increasing order of maturity
and sophistication. In some cases the results established as solutions of problems are
some deep theorems and proofs of conjectures that have remained unsettled for several
years.

In writing this book I have benefited enormously from the contributions of other
mathematicians and scientists. My book brings together the main ideas of graph theory
that I learned from the scholarly writings of others distinguished in the field, and no
originality is claimed as far as the results presented in the outline are concerned. At the
same time, if there are any errors, I accept complete responsibility for their occurrence,
and they will be rectified in a subsequent printing of this outline once they are brought to
my attention. Any feedback from the reader in this context will be gratefully acknowl-
edged. My e-mail address is vkbal@gauss.umemat.maine.edu and may be used for this
purpose.

Since this outline provides basic theory and solved problems, in many cases explicit
references are not made to the source of the material. Many people deserve recognition
for their specific contributions, and a partial list of books that helped me to prepare this
outline is appended as a Select Bibliography for further study.

I am grateful to Dan Archdeacon and Lowell Beineke for the valuable suggestions
they made during the course of reviewing parts of the manuscript. In this connection 1
would also like to thank Kenneth Appel and Douglas West for their helpful hints in the
clarification of several results during the preparation of the manuscript. Paul Erdds is no
longer with us to show the way. We all miss him dearly. [ consider it a singualar blessing
that I could discuss with him some of the exciting results presented in this outline, and 1
am forever beholden to him for the kindness and warmth he bestowed on me as well as
for his encouragement.

The credit for creating the artwork in this book goes to Dr. Arvind Sharma of the Los
Alamos National Laboratory, and it is indeed a great pleasure to acknowledge my indebt-
edness to him in this regard.

In conclusion I would like to express my immense gratitude to the editorial and
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Progressive Publishing Alternatives for the unfailing

production staffs at McGraw-Hill and
the production of this outline.

cooperation and encouragement extended to me throughout

V. K. Balakrishnan
University of Maine
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Chapter 1

Graphs and Digraphs

1.1 INTRODUCTION

Many structures involving real-world situations can be conveniently represented on paper by means of a
diagram consisting of a set of points (usually drawn as small circles or dots) together with lines (or curves)
joining some or all pairs of these points. For example, the points in a diagram could represent different cities
in a country, and a line joining two points that does not pass through a third point may indicate that there is
direct air service between the two cities represented by those two points. In some instances, it may happen that
there is direct air service from A to B but not from B to A. In such situations, an arrow (directed line or directed
curve) is drawn from A to B so that the line joining A and B becomes oriented or directed. The possibility that
there can be more than one line joining two points or that there is a line joining a point to itself cannot be ruled
out in a more general setting. It is also possible that there can be an arrow from A to B and another arrow from
B to A. The particular manner in which these lines and arrows are drawn on a piece of paper is not relevant
for our investigations. What really matters is to know whether lines and arrows exist connecting the various
points. In some situations, it may be pertinent to ask whether these lines can be drawn such that no two lines
intersect except possibly at those points to which they are already joined. A mathematical abstraction of such
structures involving points and lines leads us to the concept of graphs and digraphs.

A graph G consists of a set V of vertices and a collection E (not necessarily a set) of unordered pairs of
vertices called edges. A graph is symbolically represented as G = (V, E). In this book, unless otherwise
specified, both V and F are finite. The order of a graph is the number of its vertices, and its size is the number
of its edges. If « and v are two vertices of a graph and if the unordered pair {u, v} is an edge denoted by e,
we say that e joins u and v or that it is an edge between » and v. In this case, the vertices # and v are said to
be incident on e and ¢ is incident to both # and v. Two or more edges that join the same pair of distinct
vertices are called parallel edges. An edge represented by an unordered pair in which the two elements are not
distinct is known as a loop. A graph with no loops is a multigraph. A graph with at least one loop is a
pseudograph. A simple graph is a graph with no parallel edges and loops. The term graph is used in lieu of
simple graph in many places in this book. The complete graph K, is a graph with n vertices in which there is
exactly one edge joining every pair of vertices. The graph K, with one vertex and no edge is known as the
trivial graph. A bipartite graph is a simple graph in which the set of vertices can be partitioned into two sets
X and Y such that every edge is between a vertex in X and a vertex in Y; it is represented as G = (X, Y, E).
The complete bipartite graph X,, , is the graph (X, Y, E) with m vertices in X and # vertices in Y in which
there is an edge between every vertex in X and every vertex in Y. The union of two graphs G, = (V,, E,) and
G, = (V,, Ey) is the graph G = G, U G, = (V, E), where V is the union of V, and V, and E is the union of
E, and E,.

A directed graph or digraph consists of a finite set V of vertices and a set A of ordered pairs of distinct
vertices called arcs. If the ordered pair {«, v} is an arc a, we say that the arc a is directed from u to v. In this
context, arc a is adjacent from vertex i and is adjacent to vertex v. In a mixed graph, there will be at least
one edge and at least one arc. If each arc of a digraph is replaced by an edge, the resulting structure is a graph
known as the underlying graph of the digraph. On the other hand, if cach edge of a simple graph is replaced
by an arc, the resulting structure is a digraph known as an orientation of the simple graph. Any orientation of
a complete graph is known as a tournament.

Structures thus defined are called graphs because they can be represented graphically on paper. Such
graphical representations of structures often enable us to understand and investigate many of their properties.
Here are some examples of graphs and digraphs.

Example 1(a). In Fig. 1-1, we have a graph in which the vertex set is V = {1,2,3,4,5,6,7}. The order is 7 and the
size is 8. This is a pseudograph with a loop at vertex 6 and three parallel edges between vertex 2 and vertex 4.

Example 1(b). Suppose each vertex of a graph represents either a recent college graduate or a firm that is hiring college
graduates. Join a vertex representing a college graduate and a vertex representing a firm if and only if the firm is interested
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2 GRAPHS AND DIGRAPHS [CHAP. 1

Fig. 1-1

in hiring that graduate. In this situation, we have a bipartite graph G = (X, Y, E), where every vertex in X represents a
graduate and every vertex in Y represents a firm.

Example 1(c). Suppose a certain commodity is manufactured at one location denoted by S (the source) and then is
transported by trucks to another location denoted by 7' (the terminal or the sink) along different routes passing through
several intermediate locations. This situation can be represented by a digraph in which the intermediate locations, the source,
and the terminal are all vertices. We draw a directed edge from a vertex A to another vertex B if it is possible to transport
the commodity from the location represented by A to the location represented by B in a truck that does not stop at another
location en route.

Example 1(d). Here is an example of a graph in which the number of edges is not finite. Let V.= {1,2,3, . . . . n}
be the set of vertices. Corresponding to each real number in the open interval (7, i + 1), where i = 1,2,...,(nm—1),
we draw an edge joining the vertex i and the vertex (i + 1).

Example 1(e). Here is an example of a graph in which we have an infinite set of vertices. Let V.= {1,2,3, . . .} be
set of vertices. So each positive integer represents a vertex. Join the vertex representing a prime number p and the vertex
representing the integer p -+ 2 if and only if (p + 2) is also a prime number. It is not known whether the set of edges is
finite or infinite.

Example 1(f). Let V be a finite set of open intervals of real numbers. Join the vertex i representing the open interval /
and the vertex j representing another open interval J (which is not equal to I) if and only if the intersection of { and J is
nonempty. The graph thus constructed is a simple graph known as an interval graph. For example, in the interval graph
defined by the open intervals (3, 8), (7, 9), (3, 6), and (5, 10) represented by vertices A, B, C, and D, respectively, it is easy
to see that there is an edge between every pair of vertices except between B and C.

Example 1(g). Fig 1-2(a) is the diagram of the complete graph with four vertices. An orientation of this graph describing
a tournament with four vertices is shown in Fig. 1-2(b).

(a) (b)

Fig. 1-2
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1.2 GRAPH ISOMORPHISM

Two graphs G = (V, E) and G' = (V', E') are identical if V = V' and £ = E’. This rigid approach to the
identification and classification of graphs is too restrictive. It is often possible that two graphs have the same
structure even though they are not equivalent. In this case, we may consider them to be the same for all practical
purposes. For example, any simple graph with vertex set {a, b, ¢} and an edge set consisting of one edge is
not structurally different from some other simple graph with vertex set {p, g, r} and an edge set consisting of
one edge. This structural equivalence between two nonequivalent graphs leads us to the concept of isomorphic
graphs.

Two graphs G = (V, E) and G' = (V', E') are said to be isomorphic if there exists a one-to-one corre-
spondence f, called an isomorphism, from V to V' such that there is an edge between f(v) and f(w) in G" if
and only if there is an edge between v and w in G. For all practical purposes, two isomorphic graphs can be
considered as one and the same graph. Obviously, two equivalent graphs are isomorphic, but the converse is
not true, as pointed out in the previous paragraph. Thus any complete graph with n vertices is isomorphic to
any other complete graph with n vertices.

In the cyclic graph C, = (V, E) (where n>2), V is the set {1,2, ... ,n} and E is {{1,2},
(2,3}, .. .,{n—1,n}, {n, 1}}. A triangle is a cyclic graph with three vertices.

Example 2. Consider the three graphs in Fig. 1-3. The graphs G, and G, are isomorphic because of the isomorphism f
defined by

fo) =wy, f) =we, fv) =ws, fn) = we flv) = ws, and  flve) = w,

G, is not isomorphic to either G; or G,.

(G)) Gy (G;)

To show that two graphs are isomorphic, one must point out an explicit isomorphism between them. The
definition of isomorphism between two digraphs is analogous.

Since we consider two graphs to be the same if they are isomorphic, the trivial graph is the only graph of
order one. A simple graph with two vertices may have no edge or one edge. Thus there are two nonisomorphic
simple graphs of order two. Any simple graph with three vertices gives rise to four nonisomorphic cases:
(1) with no edge at all, (2) with one edge joining a pair, (3) with two edges such that there is no edge joining
a pair, and (4) with three edges. In other words, there are four nonisomorphic simple graphs of order 3.

Given two arbitrary simple graphs of the same order and the same size, the problem of determining whether
an isomorphism exists between the two is known as the isomorphism problem in graph theory. In general, it
is not all easy (in other words, there is no “efficient algorithm™) to solve an arbitrary instance of the isomorphism
problem.



4 GRAPHS AND DIGRAPHS [CHAP. 1

1.3 SUBGRAPHS

The graph H = (W, F) is a subgraph of the graph G = (V, E) if W is a subset of V and F is a subset of
E. (More generally, an arbitrary graph H can be considered as a subgraph of G if H is isomorphic to a subgraph
of G.) If a subgraph H of the graph G is a cyclic graph, H is called a cycle in G. A complete subgraph of G is
a clique in G. Any graph G’ for which a given graph G is a subgraph is called a supergraph of G.

Any subgraph H(V, F) of G = (V, E) is a spanning subgraph of G. A factor of a graph is a spanning
subgraph with at least one edge. If F is a set of edges in G = (V, E), the spanning subgraph obtained by deleting
the edges of F from G is denoted by G — F. If F consists of one edge f, we write G — finstead of G — {f}.
If Wis a set of vertices in G = (V, E), the graph obtained from G by deleting every vertex in W as well as any
edge in E that is adjacent to a vertex in W is denoted by G — W. If W consists of a single vertex w, we write
G — winstead of G — {w}.

If H = (W, F) is a subgraph of a graph G = (V, E) such that an edge exists in F between two vertices in
W if and only an edge exists in E between those two vertices, the subgraph H is said to be induced by the set
W and is denoted by (W), which is the maximal subgraph of G with respect to the set W.

A subgraph G’ of G = (V, E) is a vertex-induced subgraph (or simply an induced subgraph) of G if
there exists a set W of vertices in G such that (W) = G’. Observe that if W is a subset of vertices of graph G,
the subgraph G — W is the induced subgraph (V — W), where the set V — W is the relative complement of W
in V.

We next consider the edge analog of induced subgraphs. Suppose F is a set of edges in G = (V. E). The
subgraph induced by F is the minimal subgraph (F) = (W, F), where v is in W if and only if v is adjacent to
at least one edge in F. A subgraph G’ of G is an edge-induced subgraph if there exists a set F of edges in G
such that G’ = (F).

Example 3. In graph G, shown in Fig. 1-3, the graph H = (W, F), where W = {v,,v,,v5, s} and F =
{{v,, v}, {v1, vs}, {¥s» v} }. is a subgraph of G,. It becomes an induced subgraph H' if we also adjoin the edge joining v;
and v, to F. Then H' = (W). Here G — W is the subgraph consisting of two vertices v; and v, with an edge joining the
two, and this graph is the vertex-induced subgraph (V — W).

14 DEGREES, INDEGREES, AND OUTDEGREES

If there are p loops at a vertex v that has also ¢ edges (not loops) incident to it, the degree (also known as
valence) of v is 2p + ¢. In a graph with no loops, the degree of a vertex is the number of edges adjacent to
that vertex. In a graph with no loops, a vertex is said to be an isolated vertex if its degree is 0 and an end-
vertex if its degree is 1. The maximum degree among the vertices of a graph G is denoted by A(G), and the
minimum is denoted by &G). A graph is k-regular if the degree of each vertex is k, and it is regular if there
exists a nonnegative integer k such that it is k-regular.

When the degrees of the vertices of a graph are added, each edge is counted exactly two times. Thus we
have the following result, known as the first theorem of graph theory due to Euler.

Theorem 1.1. The sum of the degrees of a graph is twice the number of edges in it. (See Solved Problem
1.36.)

The result stated above (which implies that the sum of the degrees is even) is also known as the hand-
shaking lemma because the number of hands shaken in a party is always even since each handshake involves
exactly two hands of two different individuals. A vertex in a graph is an odd vertex if its degree is odd.
Otherwise, it is an even vertex.

Theorem 1.2. Every graph has an even number of odd vertices. (See Solved Problem 1.38.)
Example 4. In graph G shown in Fig. 1-1, let 4, be the degree of vertex i, where i € V = {1, 2,3, 4,5, 6, 7}. Then

di=d,=0,d,=4,d,=4,d; = 3,ds = 3, and d; = 2. The sum of the degrees is 16, which is equal to twice the number
of edges. The vertices v; and v are odd.
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In a digraph, the number of arcs adjacent to a vertex is the indegree of that vertex, and the number of arcs
adjacent from a vertex is the outdegree of that vertex. When the outdegrees (or indegrees) of all the vertices
are added, each arc is considered once in the counting process. We thus have the following result.

Theorem 1.3. In a digraph, the sum of the outdegrees of all the vertices is equal to the number of arcs, which
is also equal to the sum of all the indegrees of all the vertices. (See Solved Problem 1.42.)

Example 5. The outdegrees of the four vertices 1, 2, 3, and 4 of the digraph in Fig. 1-2(b) are 2, 1, 2, and 1. The
indegrees are 1, 2, 1, and 2. There are six arcs.

1.5 ADJACENCY MATRICES AND INCIDENCE MATRICES

Let G = (V, E) be a graph where V = (1,2, . . . , n}. The adjacency matrix of the graph is the
n X n matrix A = [a;], where the nondiagonal entry g, is the number of edges joining vertex i and vertex j
and the diagonal entry q;; is twice the number of loops at vertex i. The adjacency matrix of a graph is obviously
symmetric, that is, a; = a; for every i and every j. The adjacency matrix of a simple graph is a binary matrix
(0, 1 matrix) in which each diagonal entry is zero. Notice that in the adjacency matrix of the complete graph
K., each nondiagonal entry is 1.

Since the n vertices of a graph can be labeled in n! different ways and for each such labeling of vertices
we have an adjacency matrix of the graph, by an abuse of notation any of these matrices is considered the
adjacency matrix of the graph. At any rate, the adjacency matrix is uniquely determined apart from the ordering
of its rows and columns. See Solved Problem 1.61 for more on this.

The adjacency matrix of a digraph with vertex set {1,2, . . . , r} is the n X n binary matrix A =
{a;] in which a; = 1 if and only if there is an arc from vertex i to vertex j. Each diagonal entry in the adjacency
matrix A of a digraph is zero, and A need not be symmetric.

Theorem 1.4. (i) In the adjacency matrix of a graph, the sum of the entries in a row (or a column) corre-
sponding to a vertex is its degree, and the sum of all the entries of the matrix is twice the
number of edges in the graph. (ii) In the adjacency matrix of a digraph, the sum of the entries
in a row corresponding to a vertex is its outdegree, the sum of the entries in a column corre-
sponding to a vertex is its indegree, and the sum of all the entries of the matrix is equal to the
number of arcs in the digraph. {See Solved Problem 1.59.)

Example 6(a). The adjacency matrix of the graph of Fig. 1-1 is

0 0 0 0 0 0O 071
0003100
0 00 00 O0O0
6 3 004001
01 00011
0000120

L0 0 0 1 1 0 0d

Example 6(b). The adjacency matrix of the digraph of Fig. 1-2(b) is

01 1 0
0 0 0 1
01 0 1
1 0 0 O
Let G = (V, E) be asimple graph where V = {1,2, . . . ,n}andE = {e;, ¢;, . . . , e,}. Theincidence

matrix B = [b;] of G is defined as follows. Row i of B corresponds to vertex i for each i. Column & corresponds
to edge e, for each k. If ¢, is the edge that joins vertex i and vertex j, the entries b, and b are 1 and all the
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other entries in column & are zero. If G is a digraph and e, is the arc from vertex i to vertex j, we define
by = —1 and b, = 1 in column k. Again, all the other entries in column k are zero. Thus the incidence matrix
of a simple graph with n vertices and m edges is an n X m matrix in which each entry is 0 or 1, whereas the
incidence matrix of a digraph with n vertices and m arcs is an n X m matrix in which each entry is O or 1 or
—1. Each column of an incidence matrix has exactly two nonzero entries. We have the following analog of the
previous theorem.

Theorem 1.5. (i) The sum of the entries in a row of the incidence matrix of a simple graph corresponding to
a vertex is its degree, and the sum of all the entries in the matrix is twice the number of edges.
(ii) The sum of the entries in a row of the incidence matrix of a digraph is its outdegree minus
its indegree, and the sum of all the entries in the matrix is zero. (See Solved Problem 1.60.)

Example 7(a). The six edges in the simple graph of Fig. 1-2(a) are e, joining 1 and 2, e, joining 1 and 3, e, joining 1
and 4, ¢, joining 2 and 3, e; joining 2 and 4, and ¢, joining 3 and 4. The incidence matrix of this simple graph is

1 11 000
I 001 1 0
01 01 01
001 0 1 1

Example 7(b). The six arcs in the digraph of Fig. 1-2(b) are a, from 1 to 2, a, from 1 to 3, a, from 2 to 4, 4, from 3 to
2, as from 3 to 4, and g, from 4 to 1. The incidence matrix of this digraph is

-1 -1 0 0 0 1
1 0 -1 1 0 0
0 1 0 -1 -1 0
0 0 1 0 1 —1

1.6 DEGREE VECTORS OF SIMPLE GRAPHS

The degree vector d(G) of a simple graph G is the sequence of degrees of its vertices arranged in non-
increasing order. If G and G’ are isomorphic, d(G) = d(G"). But the converse is not true. The three graphs in
Fig. 1-3 have all the same degree vector [3 3 3 3 3 3], but G; is not isomorphic to G, or G.

Every simple graph has a unique degree vector (which can be easily constructed), and the sum of the terms
in the vector is even. Notice that each term in a degree vector with » components is nonnegative and is at most
(n — 1), where n is the order of the graph. On the other hand, a finite nonincreasing vector v =
[d, d, --- d,]of nonnegative integers, where eachd; = (n — 1) and the sum of the terms is even, need not
be the degree vector of a simple graph. Consider, for example, the vector v = [3 3 3 1]. If there were a
simple graph with v as a degree vector, the subgraph obtained by deleting the vertex of degree 1 (with three
vertices and four edges) would not be simple.

A vector v is called a graphical vector if there exists a simple graph such that v is the degree vector of
that graph. Thus [3 3 3 1] is not a graphical vector. The following theorem gives a necessary and sufficient
condition for a vector to be a graphical vector.

Theorem 1.6 (Hakimi-Havel). letv =[d, d, d; --- d,] be anonincreasing vector of k (where k is
at least 2) nonnegative integers such that no component d; exceeds (k — 1). Let v' be the vector
obtained from v by deleting d, and subtracting 1 from each of the next 4, components of v. Let
v, be the nonincreasing vector obtained from v’ by rearranging its components if necessary.
Then v is a graphical vector if and only if v, is a graphical vector. (See Solved Problem 1.68.)

Example 8. Considerv =15 4 3 3 3 3 3 2] witheight components in which no component exceeds 7.

Delete the first component 5, and subtract | from the next five components of v. We obtain ' =
[3 2 2 2 2 3 2]. By rearranging the components of v', we get the nonincreasing vector v, =
[3 3 2 2 2 2 2]with seven components.



CHAP. 1] GRAPHS AND DIGRAPHS 7

According to Theorem 1.6, v is a graphical vector if and only if v, is a graphical vector. Proceeding further, we see in
the next iteration that v, is a graphical vector if and only if v, = [2 2 2 2 1 1]is a graphical vector. At the next
iteration, we see that the vector v, is a graphical vector if and only if v, = [2 1 1 1 1] is a graphical vector. Then v,
is a graphical vector if and only ifv, = [1 1 0 0] is a graphical vector. At the next stage, we getvs = [0 0 0]. Now
vs, being the degree vector of a simple graph of order 3 with no edges, is a graphical vector. So the given vector v is also
a graphical vector.

Using Theorem 1.6, it is possible to test whether an arbitrary vector with integer components is a graphical
vector as outlined in the following algorithm.
Algorithm to Test Whether a Given Vector Is Graphical

The input is a nonincreasing vector v with integer components.

Step 0. (Initialization) The current vector is v.

Step 1. If the current vector with k components has a component that exceeds (k — 1), go to step 3.
Otherwise, go to step 2.

Step 2. If the current vector has a negative component, go to step 5. Otherwise, go to step 3.
Step 3. If the current vector is the zero vector, go to step 6. Otherwise, go to step 4.

Step 4. (Iteration) Rearrange the components of the current vector so that it becomes nonincreasing
with d, as the first component. Delete d, from the rearranged vector, and subtract 1 from each of the
next d, components of the rearranged vector. The vector thus constructed is the updated current vector.
Go to step 1.

Step 5. The input vector is not graphical. Go to step 7.
Step 6. The input vector is graphical. Go to step 7.
Step 7. Stop.

(Note: The zero vector of step 3 with k components is graphical since it is the degree vector of a simple graph
with k vertices and no edges.)

Example 9. Using this algorithm it can be verified thatv =[5 4 4 3 3 3 2]isa graphical vector.

Iteration 1:
v=[5 4 4 3 3 3 2] and v,=[3 3 2 2 2 2]
Iteration 2:
v=[3 3 2 2 2 2] and v, =[2 2 2 | 1]
Iteration 3:
v=[2 2 2 1 1] and v =01 1 1 1]
Iteration 4:
v=[l 1 T 1] and v,=[1 1 Q]
Iteration 5:

yv=[l 1 0] and v, =[0 O]

At the end of the fifth iteration we get the zero vector. So the given vector v is a graphical vector.

A simple graph for which the graphic vector v given above is the degree vector is shown in Fig. 1-4.
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Fig. 1-4

Example 10. Using the algorithm, we now show that the vectorv = (3 3 3 1lisnota graphical vector.
At the end of the first iteration, we get [2 2 0]as the current vector. At the end of the next iteration, we get n -1
as the current vector, which has a negative component. The conclusion is that v is not a graphical vector.

Even if a vector is graphical, it is not the case that it is the degree vector of a unique (up to isomorphism)
simple graph. The vector v = (3 3 3 3 3 3lis graphical, but both G, and G, in Fig. 1-3 have v as the
degree vector.

Solved Problems

INTRODUCTION
11  Draw the diagram of each of the following graphs G = (V, E):

@ V=1{1273 4,5y and E = {{1, 2}, (1, 4}, {1, 5}, {2, 3}, (3, 4}, (4, 4}}
b v=1{1,273, 4,5,6}and E = {{1,2}, (1,4}, {1, 4}, {2, 3}, {2, 5}, {3, 51}
Solution. See Fig. 1-5. '

(2) (b)

Fig. 1-5
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1.2 Draw the diagram of each of the following graphs G = (V, E):

(@ V=1{1,234>56}and E = {{1, 2}: {1, 3}, {L, 4}, {2, 5}, {2, 6}, {3, 5}, {3, 6}, {4, 5},
{4, 6}}.
by V=1{1,2,3,4,5}and E = {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {3. 4}, {3. 5}}

Solution. See Fig. 1-6.

(a) (b)

Fig. 1-6

1.3 Identify the simple graphs in the previous two problems. If a simple graph is identified, determine
whether it is (/) a bipartite graph, (if) a complete graph, (iii) a complete bipartite graph, or (iv) a complete
nonbipartite graph.

Solution. The two graphs in Fig, 1-5 are not simple. The graph in Fig. 1-6(a) is a complete bipartite graph
(X, Y, E), where X = {1, 5, 6} and ¥ = {2, 3, 4}. The graph in Fig. 1-6(J) is simple and nonbipartite.

1.4  The complement of a simple graph G = (V, E) is the simple graph G = (V, F) in which there is an
edge between two vertices v and w if and only if there is no edge between v and w in G. Obviously,
the complement of the complement of G is G. Draw the diagrams of the complements of the simple
graphs identified in Problems 1.1 and 1.2.

Solution. The complement of Fig. 1-6(a} is Fig. 1-7(a), and the complement of Fig. 1-6(b) is Fig. 1-7(b),
as shown in Fig. 1-7.

(@ (b)

Fig. 1-7

1.5 Show that the complement of a bipartite graph need not be a bipartite graph.

Solution. Figure 1-6(a) shows a bipartite graph whose complement, shown in Fig. 1-7(a), is not bipartite.
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1.6

1.7
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Draw the diagram of an orientation of the simple nonbipartite graph that is not complete identified from
Problems 1.1 and 1.2.

Solution. An orientation of the simple graph in Problem 1.2(b) is as shown in Fig. 1-8.

Fig. 1-8

Any orientation of the complete graph with vertex set {1, 2, . . . , n} is a tournament, and it isa
transitive tournament if there is an arc from i to k whenever there is an arc from i to j and an arc from
j to k for all choices of i, j, and k. Construct both a transitive tournament with four vertices and one that
is not transitive.

Solution. A transitive tournament with four vertices is shown in Fig. 1-9. If we replace the arc (1, 3) by the
arc (3, 1), the resulting tournament is not transitive.

Fig. 1-9

GRAPH 1ISOMORPHISM

1.8

1.9

Show that every simple graph of order n is isomorphic to a subgraph of the complete graph with n
vertices.

Solution. LetV = {v,,v,, . . . ,v,} be the vertex set of the simple graph G. Label the vertices of K, as 1,
2, ... ,n Define a one-to-one mapping f(v;) = i from V to the vertex set of K,. Let H be the subgraph of K, in
which there is an edge between i and j if and only if there is an edge between v, and v, in G. Then G is isomorphic
to H. Thus every simple graph with n vertices is (isomorphic to) a subgraph of the complete graph K.

If two graphs G and G’ are isomorphic, the order of G is equal to the order of G’ and the size of G is
equal to the size of G'.

Solution. Let G = (V,Eyand G’ = (V', E"). If G and G’ are isomorphic, there is a bijection f between 1%
and V'. So both G and G’ have the same order. Furthermore, the bijection preserves adjacency and nonadjacency:
There is an edge between vertex x and vertex y in G if and only if there is an edge between f(x) and f(y) in G’ and
there is a loop at x if and only if there is a loop at f(x). So both G and G’ have the same size.
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1.10  Show that two graphs need not be isomorphic even when they both have the same order and same size.

Solution. Let G = (V. E'Yand G’ = (V', E"), where V=V’ = {a, b, ¢, d}, E = {{a, b}, {b, ¢}, {c, d}},
and E' = {{a, b}, {b, ¢}, {b, d}}, be two graphs. It is impossible to define a bijection between V and V' that will
preserve adjacency and nonadjacency even though both G and G’ have the same order and same size.

1.11  Show that two simple graphs are isomorphic if and only if their complements are isomorphic.

Solution. Suppose G = (V, E) and H = (W, F) are two simple isomorphic graphs with IVl = [W| = n and
IEl = Fi = m. Then their complements are also of order n. An isomorphism from V to W that preserves adjacency
and nonadjacency between G and H is an isomorphism from V to W that preserves nonadjacency and adjacency
between their complements.

1.12 Determine whether the three graphs given in Fig. 1-10 are isomorphic.

b A A

(a) (b) (c)

Fig. 1-10
Solution. Both Figure 1-10(a) and (b) are isomorphic to K5 and so they are isomorphic to each other. But
Figure 1-10(c) is not isomorphic to Kj 5.
1.13  Suppose N(n, k) is the number of nonisomorphic simple graphs with n vertices and k edges. Find

N4, 3).

Solution. There are exactly three graphs in this category, as shown in Fig. 1-11. So N(4, 3) = 3.

[ 1IN I

G) (G,) (Gy)
Fig. 1-11
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114 Find all nonisomorphic simple graphs of order 4.

Solution. The maximum number of edges in a simple graph with four vertices is 6. The complete graph K,
is the only graph of order 4 and size 6. There is one nonisomorphic graph of order 4 and size 5, and there are two
nosisomorphic graphs of order 4 and size 4, as shown in Fig. 1-12. So N4, 6) = 1, N4, 5 = 1, and N4, 4) =
9 In Problem 1.13 it was shown that N(4, 3) = 3. It is easy to see that N(4, 2) = 2 and N4, 1) = N(4,0) = 1.
So the total number of nonisomorphic simple graphs of order 4 is N4, 0) + N4, 1) + N4, 2) + N4, 3) +
N(4,4)+N(4,5)+N(4,6)=1+1+2+3+2+1+1=11.

N I

Fig. 1-12

1.15 A simple graph that is isomorphic to its complement is called a self-complementary graph. Find a self-
complementary graph of order 4.

Solution. The number of edges in the complete graph with four vertices is 6. So if G is a self-complementary
graph with four vertices, it should have three edges. Among the three nonisomorphic graphs of order 4 and size 3
shown in Fig. 1-11, the complement of G, is isomorphic to G, the complement of G, is isomorphic to G;, and the
complement of G, is isomorphic to G,. Thus G, is the only self-complementary graph of order 4.

116 Find two self-complementary graphs of order 5.

Solution. It is easily verified that the graphs G and H shown in Fig. 1-13 are self-complementary.

(G) (H)

Fig. 1-13

SUBGRAPHS
1.17 Find a vertex-induced bipartite subgraph of the graph in Fig. 1-6(a).
Solution. The subgraph induced by the set W = {1,2,3,4, 5} is Ky5.
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1.18

1.19

1.20

1.21

1.22

A set [ of vertices in a simple graph G = (V, E) is an independent set (also known as an internally
stable set) in G if no two vertices in / are adjacent. A set K of vertices in G is called a vertex cover if
every edge in the graph is incident to at least one vertex in K. Show that a set K of vertices is a vertex
cover if and only if its complement (V — K) is an independent set.

Solution. If K is a vertex cover, no two vertices in (V — K) can be adjacent, so (V — K) is an independent
set. On the other hand, if / is any independent set in G, out of the two vertices joined by an edge at least one should
be in (V — I). In other words, every edge is adjacent to some vertex in (V — I), so (V — [) is a vertex cover.

An independent set / in a simple graph G is a maximum independent set if there is no independent
set I in G such that [/’ > |Il. The number of vertices in a maximum independent set in G is the
independence number «(G) (also known as the internal stability number) of the graph G. A vertex
cover K in a graph G is a minimum vertex cover if there is no vertex cover KX’ such that |1K’| < [K|.
The number of vertices in a minimum vertex cover is called the vertex-covering number S8(G) of the
graph G. Find the vertex-covering number and the independence number of the graph in Fig. 1-14.

Fig. 1-14

Solution. The set {1, 3, 7, 5} is a maximum independent set, so the vertex-independence number of the
graph is 4. The set {2, 4, 6} is a minimum vertex cover, so the vertex-covering number is 3.

Show that in a simple graph G of order n, a(G) + B(G) = n.

Solution. Let 7 be a maximum independent set in G. Hence Il = a(G) and (V — Dl = n — a(G). But
(V — 1) is a vertex cover. So I(V — )l = B(G), and consequently, n = &(G) + B(G). On the other hand, suppose
K is a minimum vertex cover in G. Then IKl = B(G) and [(V — K)| = n — B(G). But (V — K) is an independent
vertex set. So (V — K)I = a(G), and consequently, n = a(G) + B(G). Thus the equality is established.

A subset D of vertices in a simple graph G is a dominating vertex set (also known as an external
dominating set) if every vertex not in D is adjacent to at least one vertex in D. Find (a) a dominating
vertex set that is not independent, (b) an independent set that is not a dominating vertex set, and (¢) a
set that is an independent set as well as a dominating vertex set in the graph of Fig. 1-14.

Solution, (a) {2, 6, 7}. (&) {1, 3}. (c) {1, 4}.

A dominating vertex set D is a minimum dominating vertex set if there is no dominating set D’ such
that ID’1 < IDI. The number of vectors in a minimum dominating vertex set is the vertex domination
number o(G) (also known as the external stability number) of the graph. Show that the vertex
domination number of a simple graph cannot exceed its independence number.

Solution. Let X be any minimum dominating set, ¥ any set that is both dominating and independent, and Z
any maximum independent set. Then ¢(G) = 1X| = Y] = |Z| = a(G).
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1.23

1.24

1.25

1.26

1.27

1.28
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An independent set is a maximal independent set if it is not a proper subset of another independent
set. Show that an independent set is a dominating vertex set if and only if itis a maximal independent
set. (A maximal independent set is not the same as a maximum independent set defined in Problem

1.19)

Solution. Let/bea maximal independent set. If this set is not a dominating set, there will be a vertex v {not
in J) that is not adjacent to any vertex in I. In that case, I U {v} is an independent set violating the maximality of
1. Conversely, suppose the independent set [ is also a dominating set. If [ is not a maximal independent set, there
exists an independent set J such that I is a proper subset of J. So there is a vertex in (J — I) that is not adjacent to
any vertex in [ contradicting the assumption that I is a dominating set.

Show that if there are at least two people who do not know each other among a set of individuals, it is
possible to choose people from that set to form a committee such that no two individuals in the
committee know each other and that every individual in the set not included in the committee is known
1o at least one person in the committee.

Solution. Construct a graph in which each vertex represents an individual in the set V of people. Join two
vertices by an edge if the two individuals represented by these vertices know each other. The simple graph G thus
constructed is known as the acquaintance graph of the set V. By hypothesis, G has an independent set consisting
of at least two people. Now any maximal independent set in G will be an independent dominating set as shown in
Problem 1.23. And a commiftee is nothing but a dominating independent set. (If G is complete, the problem is
trivial. The singleton set consisting of any individual is a committee.)

A committee S as described in Problem 1.24 is a minimum committee if there is no committee S’ such
that 15" < 1S!. The committee number of a set is the cardinality of a minimum committee in the set.
Find the committee number of the acquaintance graph in Fig. 1-14.

Solution. The set W = {1, 4} is both dominating and independent. There is no set with only one vertex that
is dominating. So the committee number is 2. (The commiitee number of any complete graph is 1.)

A set M of edges in a graph is called a matching (also known as an independent edge set) if no two
edges in M have a vertex in common. A set of edges L 1s an edge cover if every vertex of positive
degree 1s a vertex of at least one edge in L. Show that the complement of a matching need not be an
edge cover. (Compare this result with that of Problem 1.18)

Solution. Consider any simple graph G with three vertices and two edges. The set consisting of one of these
edges is matching in G. But the complement of that set is not an edge cover in G.

A matching M in a simple graph is a maximum matching (also known as maximum cardinality
matching) if there is no matching M' such that IM | > |M|. The edge independence number «,(G)
of a graph G is the number of edges in a maximum matching. An edge cover L of a simple graph G is
a4 minimum edge cover if there is no edge cover L' of G such that L1 < |Ll. The edge-covering
number B,(G) of the graph is the sum of the number of edges in a minimum edge cover and the number
of isolated vertices. Find the edge independence number and the edge-covering number of the graph of
Fig. 1-14.

Solution. The set {{1, 21, {3, 4}, {5, 6}} is maximum matching, so the edge independence number is 3.
The set {{1, 2}, {3 4}, {5, 6}, {6, 71} is a minimum edge cover, O the edge-covering pumber is 4.

(Gallai’s Theorent) Show that in a simple graph, a; + By, = n.

Solution. Suppose M is a maximum matching. If M is an edge cover, B = oy, which implies that a, -+
B, =20 =1 If M is not an edge cover, 3 = @, + (n — 2a;). Thus in any case, the sum of the two numbers
cannot exceed n. Next we establish the reverse inequality. Suppose L is a minimum edge cover in G. Let H be the
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1.29

1.30

1.31

subgraph of & induced by L, and let M be a maximum matching in H. If W is the set of unmatched vertices in this
subgraph, the subgraph of H induced by W has no edges since M is a maximum matching. Thus ILI — IM] =
(L — M)|, where (L — M) is the relative complement of M in L. Now I(L — M)I = |W| = n — 2IMI|. Hence
LI + IM| = n. Since M is matching in G, @, = IM|. Thus &; + B, = IM| + IL| = n. This completes the proof.

A set F of edges in a graph G = (V, E) is a dominating edge set if every edge not in / has a vertex
in common with an edge in F. The edge domination number o(G) is the number of edges in a
minimum edge domination set. Find the edge domination number of the graph of Fig. 1-14.

Solution. The edge domination number is 3 since the set ({1, 2}, {5, 6}, {4, 7}} is a minimum dominating
edge set.

Show that the edge domination number cannot exceed the edge independence number.

Solution. The proof is as in Problem 1.22.

Find a necessary and sufficient condition to be satisfied by a matching so that it is a dominating
edge set.

Solution. A matching is a dominating edge set if and only if it is a maximal (not necessarily a maximum)
matching.

DEGREES, INDEGREES, AND OUTDEGREES

1.32

1.33

1.34

1.35

Find the number of edges in the complete graph with n vertices.

Solution. Suppose the vertex set is V.= {1,2, . . . , n}. A vertex { can be selected in n ways. There are
exactly (n — 1) edges between a selected vertex i and the remaining (n — 1) vertices. The edge joining 7 and another
vertex j is the same as the edge joining j and i. Thus the number of edges in K, is n(n — 1)/2. Equivalently, an
edge in K,, is constructed by choosing any two vertices out of a set of »n vertices and joining them. The number of
ways of choosing any two elements out of a set of n elements is n{n — 1)/2.

Using techniques from graph theory, show that 1 + 2 + -+ - + n = n(n + 1)/2.

Solution. Consider the complete graph with (n + 1) vertices. By Problem 1.32, it has n(n + 1)/2 edges.
Now the total number of edges in the graph can be computed as follows. Suppose the vertices are labeled
1,2, ..., (n+ 1). Joining vertex 1 and the remaining vertices are n edges. Delete these edges. Then joining
vertex 2 and the remaining vertices are (n — 1) edges, which are also deleted. Continue the process until all the
edges are deleted. The total number of edges deleted is n + (n — 1) + --- + 2 + 1, which is equal to the total
number of edges in the graph.

Show that the number of vertices in a self-complementary graph is either 4k or 4k + 1, where k is a
positive integer.

Selution. Consider a self-complementary graph G = (V, E) with n vertices and m edges. Since G is iso-
morphic to its complement, both G and its complement have the same number of edges. Now every edge in the
complete graph with V as the set of vertices is either an edge in G or an edge in its complement. Thus m + m =
n(r — 1)/2, showing that n(n — 1) = 4k, where k is a positive integer. So n = 4k or 4k + 1.

Find the number of edges in the complete bipartite graph K, .

Solution. Suppose K, = G(X, Y, E). There are n edges adjacent to a vertex in X, No vertex in X is joined
1o a vertex in X. There are m vertices in X. So the total number of edges is mn.
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1.36

1.37

1.38

1.39

1.40

1.41

GRAPHS AND DIGRAPHS [CHAP. 1

Prove Theorem 1.1: The sum of the degrees of a graph is twice the number of edges in it.

Solution. An edge that is not a loop contributes to the degrees of two distinet vertices. A loop at a vertex
by definition contributes twice to the degree of that vertex. Thus when the degrees of the vertices are added, each
edge (whether it is a loop or not) is counted exactly two times. Thus the sum of the degrees is twice the number
of edges.

Use Theorem 1.1 to find the size of K, and K,,, ,

Solution. (i) Suppose the size of K, is m. The degree of each vertex is (n — 1). There are 7 vertices. Thus
the sum of the degrees of the n yertices is n(n — 1), which is 2m by the theorem. Hence m = n(n — 1)/2. (i) Let
the number of edges in K, = G(X, Y, E) be p. The degree of each vertex in X is n, and the degree of each vertex
in Y is m. The sum of the degrees of the m vertices in X is mn. The sum of the degrees of the n vertices in Y is
also mn. The sum of the degrees of all the vertices is 2mn, which is 2p. Hence p = mi.

Prove Theorem 1.2: Every graph has an even number of odd vertices.

Solution. Suppose the sum of the degrees of the odd vertices is x and the sum of the degrecs of the even
vertices is y. The number y is even, and the number x + y, being twice the number of edges, is also even. Soxis
necessarily even. If there are p odd vertices, the even number x is the sum of p odd numbers. So p is even.

Construct two nonisomorphic simple graphs with six vertices with degrees 1,1,2,2,3,and 3. Find the
size of the graph thus constructed.

Solution. Since the sum of the degrees is 12, the size is 6. Two nonisomorphic graphs G and G' with six
vertices and six edges are shown in Fig. 1-15.

O—0O

(a) (b)

Fig. 1-15

Show that if G and G are isomorphic graphs, the degree of each vertex is preserved under the isomor-
phism.

Solution. Suppose G = (V. E) and G' = (V', E') are two isomorphic graphs with f as the bijection from V
to V' that preserves adjacency and nonadjacency. Suppose the degree of v in G is k. Then there are k vertices

adjacent to v in G. Let these verticesbev, (i = 1,2, . . . k). Then the only edges adjacent to f(v) are those edges
joining (v} and f(v) fori=1,2, . ..,k So the degree of f(v) is also k.
Show that two graphs G and G” with the same set V.= {1,2, . . . ,n} of vertices such that the degree

of vertex i is the same for both the graphs for every i need not be isomorphic.

Solution. The two graphs in Fig. 1-16 are not isomorphic.
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(G) (G)
Fig. 1-16

1.42  Prove Theorem 1.3: In a digraph, the sum of the outdegrees of all the vertices is equal to the number
of arcs, which is also equal to the sum of the indegrees of all the vertices.

Solution. The outdegree of a vertex is the number of arcs adjacent from that vertex. So when we add all the
outdegrees, each arc is counted exactly once. Likewise, when the indegrees are summed, each arc is counted exactly
once. Thus the sum of the outdegrees and the sum of the indegrees are both equal to the total number of arcs in
the digraph.

1.43  Show that there is no simple graph with 12 vertices and 28 edges in which (i) the degree of each vertex
is either 3 or 4, and (i7) the degree of each vertex is either 3 or 6.

Solution. Suppose there is a graph with p vertices of degree 3 in the graph. (i) If the remaining (12 — p)
vertices have all degree 4, the equation 3p + 4(12 — p) = 56 gives a negative value for p. (ii) If the remaining
(12 — p) vertices have all degree 6, the equation 3p + 6(12 — p) = 56 gives a noninteger value for p.

1.44  Show that there is no simple graph with four vertices such that three vertices have degree 3 and one
vertex has degree 1.

Solution. Suppose there exists a graph G as stipulated. The size of this graph is 5 since the sum of the
degrees is 10. So G is a graph with four vertices and five edges. There is only one (up to isomorphism) graph with
four vertices and five edges, as shown in Fig. 1.12 with degrees 3, 3, 2, and 2. So there is no simple graph that
satisfies the given requirement.

1.45 A labeled graph with n vertices is obtained by assigning the labels 1,2, . . . , 7 to the vertices of a~
given graph G with n vertices and m edges. Two labeled graphs thus obtained from a given graph G
are necessarily isomorphic, but they need not be equivalent. Label the vertices of a simple graph with
four vertices of degrees 1, 1, 1, and 3, creating three isomorphic graphs G,, G,, and G, such that (i) Gy
and G, are equivalent, and (/i) G, and G, are not equivalent.

Solution. See Fig. 1-17.
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1.46

1.47

1.48

1.49

1.50
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(G) (G,) (Gy)
Fig. 1-17

Find the number of nonequivalent labeled graphs with 7 vertices.

Solution. Let L(x, k) be the number of nonequivalent Jabeled graphs with n vertices and k edges. Then the
number of nonequivaient graphs of order n is L(xn, 0) + Lin, )+ - F L(n, r), where r is the number of edges
in a complete graph with n vertices. Now we can choose k edges out of 7 edges in C(r, k) ways, where C(r, k) is
the binomial coefficient representing the number of ways of choosing & elements from a set of 7 elements. Thus
Ln, k) is equal to C(r, k). So the total number of labeled graphs with » vertices is C(r, 0) + C(r, B+t
C(r, r), which is the binomial expansion of (1 + 1). Thus the answer is 2/, where r = nn — D2

Show that the number of vertices in a k-regular graph is even if k is odd.

Solution.  If the number of vertices n, the product kn is twice the number of edges. Thus n is even if k
is odd.

Show that it is not possible to have a group of seven people such that gach person in the group knows
exactly three other people in the group.

Solution. Construct an acquaintance graph with seven vertices such that each vertex represents a person.
Join two vertices by an edge if the two individuals know each other. If cach knows exactly three people, we should
have a 3-regular graph with seven vertices, which is a contradiction by Problem 1.47.

Prove that in any group of six people, there will be either three people who know one another or three
people who do not know one another.

Solution.  Suppose G 18 the acquaintance graph involving six people. Then its complementary graph can be
considered as the ronacquaintance graph in the sense that there will be an edge (in that graph) between two vertices
representing two people if and only if they do not know each other. Suppose v is a Vertex. Then either in G or in
its complement there will be at least three edges incident to v since the degree of every vertex in the complete
graph with six vertices is 5. Assume without loss of generality that v is adjacent to vertices p, g, and r in G If
there is an edge joining any two of these three vertices, v and these two vertices form a set of three mutual
acquaintances. Otherwise, the three individuals p, g, and r form a set of three nonacquaintances.

The positive integer 7 has the (p, q)-Ramsey property if for every graph G with n vertices, either K,
is a subgraph of G or K,isa subgraph of the complement of G. Show that the positive integer 6 has
the (3, 3)-Ramsey property whereas the positive integer 5 does not.
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Solution. It follows from Problem 1.49 that for any graph G with six vertices, there is a triangle either in G
or in its complement. So the number 6 has the (3, 3)-Ramsey property. The cyclic graph with five vertices has no
triangle and is isomorphic to its complement. So the number 5 does not have the (3, 3)-Ramsey property.

Show that the following properties are equivalent: (i) the positive integer n has the (p, g)-Ramsey
property, (if) every simple graph with n vertices has a clique of p vertices or an independent set of ¢
vertices, and (iif) the edges of K, can be colored using two colors such that there will be either a clique
K, in which all edges are of one color or a clique K, in which all edges are of the other color.

Solution. These statements are reformulations of the definition given in Problem 1.50.

The smallest integer n that has the (p, g)-Ramsey property is called a Ramsey number, denoted
R(p, q). Show that (a) R(p, q) = R(q, p), () R(p, 2) = p, and (c) R(3, 3) = 6.

Solution. (a) This is an immediate consequence of the definition. (b) For any graph G with n vertices, either
G or its complement has an edge. (¢) This follows from Problems 1.49 through 1.51.

Show that if a bipartite graph G = (X, ¥, E) is regular, both X and ¥ have the same number of elements.

Solution. Suppose there are x vertices in X and y vertices in ¥, If the degree of each vertex is r, the total
number of edges is rx, which is also equal to ry. Thus x = y.

A cubic graph is simple graph in which the degree of each vertex is 3. Construct two nonisomorphic
cubic graphs each with six vertices.

Solution. The bipartite graph K, ; is a cubic graph with six vertices. A nonbipartite cubic graph of order 6
is the graph in Fig. 1-10(c).

Find the maximum number of edges in a bipartite graph.

Solution. Suppose in G = (X, Y, E) there are m vertices in X and #n vertices in Y. The number of edges in
G cannot exceed mn, which is a maximum when m = n. So the maximum number of edges is n2 when G has 2n
vertices.

The k-cube (also known as the hypercube) is the graph Q, whose vertices are the ordered k-tuples of
binary numbers, two vertices being joined by an edge if and only if they differ exactly in one component.
Show that a k-cube is a k-regular bipartite graph, and find the number of vertices and edges in a k-cube.

Solation. et X denote the set of k-tuples consisting of the zero k-tuple and all the k-tuples that differ from
the zero k-tuple in an even number of components, and let ¥ be the set of k-tuples that differ from the zero k-tuple
in an odd number of components. Then every edge in the cube is between a vertex in X and a vertex in Y. Moreover,
both X and Y have the same number of vertices. Since each component of the k-tuple is either 0 or 1, there are 2*
vertices. For any vertex that corresponds to a fixed k-tuple, there are k vertices with k-tuples that differ from the
given k-tuple in exactly one component. Thus the k-cube is a k-regular bipartite graph with (k)(2%)/2 edges.

Find the fewest vertices needed to construct a complete graph with at least 1000 edges.

Solution. If the number of vertices is n, we have the inequality n(n — 1) = 2000. So n = 46.
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ADJACENCY MATRICES AND INCIDENCE MATRICES
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Show that the vertices of the bipartite graph G = (X, Y, E) with m vertices in X and n vertices in ¥ can
be enumerated so that the adjacency matrix has the form

[+ o]

where A is an m X n matrix in which each entry is 0 or 1, AT is the transpose of A, and 0 is a matrix
in which each entry is zero.

Solution. Label the vertices in X from 1 to m, and label the vertices in ¥ from (m + 1) to (m + n). Then
the adjacency matrix is of the form given above.

Prove Theorem 1.4: (i) In the adjacency mairix of a graph, the sum of the entries in arow (or a column)
corresponding to a vertex is its degree, and the sum of all the entries of the matrix is twice the number
of edges in the graph. (if) In the adjacency matrix of a digraph, the sum of the entries in a row corre-
sponding to a vertex is its outdegree, the sum of the entries in a column corresponding to a vertex is its
indegree, and the sum of all the entries of the matrix is equal to the number of arcs in the digraph.

Solution. Suppose the vertex set of G is {1,2, . . . ,n}. (i) In the adjacency matrix, the (i, j) entry is equal
to the number of edges joining vertex i and vertex j. When we add all the entries of the ith row (or the ith column),
we count the number of edges adjacent to vertex i and add them. So the sum of the ith row (column) is equal to
the degree of vertex i. When all the entries in the matrix are added, we obtain the sum of the degrees of all vertices,
which is twice the sum of edges by Theorem 1.1. (ii) If the (i, j) entry is positive, there is an arc from i t0 j. So
the sum of the entries in the ith row is the outdegree of i, whereas the sum of the entries in the jth column is the
indegree of j. When we add all the entries of the matrix, we get the sum of all outdegrees (which is also the sum
of all indegrees), and by T heorem 1.3, this sum is equal to the number of arcs.

Prove Theorem 1.5: (i) The sum of the entries in a row of the incidence matrix of a simple graph
corresponding to a vertex is its degree, and the sum of all the entries in the matrix is twice the number
of edges. (ii) The sum of the entries in a row of the incidence matrix of a digraph is its outdegree minus
its indegree, and the sum of all the entries in the matrix is zero.

Solution. Let the verticesbe 1,2, . . . , 1. (i) Suppose the edges are e, (=12, ...,m), and let the jth
column correspond to e;. The sum of each columu is 2, so the sum of all the entries in the matrix is 2m, which is
twice the number of edges. Moreover, if the (i, /) entry 1s positive, there is an edge joining i and j. So when all the
entries in the ith row are added, all the edges adjacent to / are accounted for. Thus the sum of the ith row is the
degree of vertex i. (if) Suppose the arcs are a; (i = 1,2, . . . , m). Each column has two nonzero entries (+ 1 and
—1), and therefore each column sum is zero. So the sum of all the entries in the matrix is zero. If the (i, j) entry
is — 1, it indicates that there is an arc from i, and if it is + 1, it indicates that there is an arc directed to vertex L.
So the sum of all the entries in the ith row is equal to its outdegree minus its indegree.

A permutation matrix is a square binary matrix that has exactly one 1 in each row and column. Two
matrices A and A’ are isomorphic if there is a permutation matrix P such that A’P = PA. Show that
two graphs are isomorphic if and only if their adjacency matrices are isomorphic.

Solution. Suppose A and A" are the adjacency matrices of two isomorphic graphs. Then one of these matrices
can be obtained from the other by rearranging rows and then rearranging the corresponding columns. Now rear-
ranging rows of A is equivalent to premultiplying by a permutation matrix P obtaining the product matrix PA. The
subsequent rearrangement of corresponding columns is equivalent to postmultiplying PA by P~'. (Recall that any
permutation matrix P is nonsingular.) Thus A" = PAP ™. Conversely, if A'P = PA, A" can be obtained from A by
rearranging columns and then rows, showing that the two graphs are isomorphic.

Find the adjacency matrices A and A’ of the two isomorphic graphs given in Fig. 1-18, and obtain a
permutation matrix P such that A'P = PA,
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(G) (G)
Fig. 1-18

Solution. The adjacency matrices are A and A’, where

01 00 1 0 001O
1 0 10 0 0 0 1 1
A=10 0 0 1 O and A'=}0 0 0 1 1
01101 111 00
1 0010 01100

An isomorphism f from G to G' is f(1) = 5, f(2) = 2, f(3) = 1, f(4) = 4, and f(5) = 3. To obtain A’ from A, we
replace the fifth row of A by its first row, the first row of A by its third row, and the third row of A by its fifth row.
Suppose the resulting matrix is denoted B. Then replace the fifth column of B by its first column, the first column
of B by its third column, and the third column of B by its fifth column. The resulting matrix is A’. To obtain the
following permutation matrix P from the 5 X 5 identity matrix I, we perform the same sequence of operations on
I that was performed on A to obtain B:

0 01 00O
01 000
P=10 00 0 1
0 0010
1 0 000

It is easy to verify that PA = B = A’P. (The permutation matrix P depends on the isomorphism f.)

The characteristic polynomial of a simple graph with n vertices is the determinant of the matrix
(A — AD), where A is the adjacency matrix and I is the n X n identity matrix. Show that if two graphs
are isomorphic, their characteristic polynomials are the same. (Note: The determinant of A is written
det A.)

Solution. Suppose A and A’ are the characteristic polynomials of two isomorphic graphs G and G’. Then
A" = PAP~1. So (A" — Al) = (PAP~! — M) = (PAP~' — APIP~') = P(A — Al)P-'. Thus

det(A’ — A = det P(A — AI)P-!
= det Pdet(A — AJ) det P!
= det Pdet(A — Al(1/det P)
= det(A — AD)
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1.64 By computing the characteristic polynomials of the two graphs shown in Fig. 1-19, show that two
nonisomorphic graphs can have the same characteristic polynomial.

A

Fig. 1-19

Solution. By expanding the appropriate determinants and simplifying, it is verified that both graphs have
the same characteristic polynomial 4)\3 — A5. But obviously the two graphs are not isomorphic.

1.65 If A = [a;] is the adjacency matrix of a simple graph G with n vertices, the binary code of G with
respect to A is the nonnegative integer ap2’ + a2 T a, 2t a2t et a,, 2% 73 +
-+ oa,_ 25", where k = n(n — 1)/2. Find the binary code of the adjacency matrix of the graph

>

G = (V, E), where V. = {1, 2, 3,4} and E = {{1, 2}, {L, 4y, {2, 4}, {3, 4}}.

Solution. The adjacency matrix is

—_— O = Q
_— O —
—_ 0 O O
o = = =

The binary code of A is 1.2° + 020 + 122+ 025+ 120+ 1.2 = 53.

1.66 Show that it is possible to construct a simple graph G if the binary code of one of its adjacency matrices
and the order of G are known.

Solution. The given binary code can be uniquely expressed as the sum of terms like a;2/, where the coef-
ficient a, is either 0 or 1. This information gives all the entries above the diagonal of the adjacency matrix provided
we know the order of the graph. For example, suppose the binary code is 573, which is equal to 512 + 32 +
16 +8+4+1=120+02"+ 122 + 123 + 1244+ 1.22 +02° + 0.27 + 0.28 + 1.2°

(i) Suppose A and A are the adjacency matrices of graphs with 5 and 6 vertices, respectively. Then these two
matrices are

01 11
01 0 1 1 01 ]

1L o1 100
L o110 010100

a=10 10 0 o] and A=

1 01000
L 1001 100000
L0010

L1 0o 0 0 0 0l

(i) If the order of the graph is 7, it can be easily verified that vertex 3 is an isolated vertex since the third row
(and the third column) of the 7 X 7 adjacency matrix is the zero vector.
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The minicode of a graph is its smallest binary code, and the largest binary code is the maxicode of
the graph. Find the minicode and maxicode of a simple graph with three vertices and two edges.

Solution. The three vertices give rise to 3! adjacency matrices, out of which three are distinct. These matrices
give the binary codes 3, 5, and 6. Thus the minicode is 3 and maxicode is 6.

DEGREE VECTORS AND GRAPHICAL VECTORS

1.68

1.69

1.70

Prove Theorem 1.6: Letv = [d, d, d; --- d,] be a nonincreasing vector of k (where k is at least
2) nonnegative integers such that no component d, exceeds (k — 1). Let v be the vector obtained from
v by deleting d, and subtracting 1 from each of the next d, components of v. Let v, be the nonincreasing
vector obtained from v’ by rearranging its components if necessary. Then v is a graphical vector if and
only if v, is a graphical vector.

Solution. (i) Suppose v, is graphical. So there exists a graph G, of order (k — 1) for which the degree vector
is v;. Now relabel the vertices of G, as x,, X3, . . . , x, such that the degree of x, is the ith component of v’
Construct a new vertex x, and join x, to each of the first d, vertices in the ordered set {x,, x5, . . ., x.}. The first
component of the degree vector of the new graph G thus constructed is d,, and the next d, components are d;. Thus
the first d, + 1 components of the degree vector of G are the same as the first d, + 1 components of v. The
remaining components of the degree vector are the same as the lastk — (d;, + 1) components of v. Thus the degree
vector of G is v, and v is graphical.

(i) Suppose v = [d, d, --- d]is a graphical vector. There can be more than one graph with (the ordered)
vertex set V = {x,, x, . . ., x;} such that degree x; = d,. Choose a graph G with degree vector v such that the
sum of the degrees of those vertices adjacent to the first vertex x, is as large as possible. Then we prove that x, is
adjacent to the next 4, vertices, starting from x; in the ordered set V. Suppose this is not the case. So there exist
vertices x; and x; such that (1) x; is not adjacent to x;, (2) x, is adjacent to x,, and (3) d; > d,. Let the sum of the
degrees of all vertices adjacent to x, in the graph G bed, + ¢, where r = 0. Since d; > d,, there should be a vertex
x; that is adjacent to x; but not adjacent to x,. In the graph G, we now delete the edge joining x, and x, and the edge
joining x; and x;. Then construct an edge joining the nonadjacent vertices x; and x, and another edge joining the
nonadjacent vertices x; and x;. The degree vector of the newly constructed graph G’ is also the same vector v. In
G’, the sum of the degrees of the vertices adjacent to x, is d; + ¢, which is more than d, + ¢. This contradicts the
assumption that the sum of the degrees of the vertices adjacent to x; in G is a maximum. So x, is adjacent to the
next d, vertices in the ordered set V starting from x,. Thus the vector v, constructed from the vector v as in the
hypothesis of the theorem is the degree vector of the graph G — x,. So v, is also a graphical vector.

Prove that the algorithm in Section 1.6 determines whether a given vector of nonnegative integers is a
graphical vector.

Solution. It is enough if we show that the repetitive process in step 4 of the algorithm eventually results in
a zero vector or a vector with at least one negative component. Suppose we start with a vector with n components.
Each component is at most (n — 1). At the end of the next iteration, we have a vector with (n — 1) components.
Each component is at most (n — 2). At the end of the kth iteration, we have a vector with (n — k) compo-
nents. Bach component is at most n — k — 1. If step 4 were applied (n — 2) times, we have a vector with two
components. Each component is at most 1. At this stage we have either the vectorv = [1 1] orw = [1 0]. By
iterating once more, we have either the zero vector with one component or the vector with — 1 as the only com-
ponent.

Test whether [5 4 3 3 3 3 3 2]is a graphical vector. If it is graphical, draw a simple graph
with this vector as the degree vector.

Solution.
Iteration I; v=105 4 3 3 3 3 3 2landv,=[3 3 2 2 2 2 2]
lteration2: v=1[3 3 2 2 2 2 2landv,=[2 2 2 2 1 1]
Iteration3: v=1[2 2 2 2 | Handv,=[2 | 1 1 1]
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Iteration4: v=12 1 1 1 Mandv, ={1 1 0 0]
Iteration 5: v=1[1 1 0 Olandv, =[0 O 0]

So the given vector is graphical. A simple graph with v as degree vector is shown in Fig. 1-20.

Test whether [6 6 5 4 3 3 1] is graphical.
Solution.

Iteration 1: v=1[6 6 5 4 3 3 andv, =[5 4 3 2 2 0]
Iteration 2: v=1[5 4 3 2 2 0Olandv, =[3 2 1 1 —1]

Since we obtain a vector with a negative component, we conclude that the given vector is not graphical.

Letv=1d, d» --- dJandw =]w, W,y -~ W w, ], where w; = n — 1 — d,. Show that v
is graphical if and only if w 1s graphical.

Solution. Suppose v is the degree vector of G = (V,E), where V= {1,2, . . . ,n}. It is easy to see that
w is the degree vector of the complement of G. Thus v is graphical if and only if w is graphical.

Show that there is no simple graph with six vertices of which the degrees of five vertices are 5, 5, 3, 2,
and 1.

Solution. Suppose there is a simple graph, and let x be the degree of the sixth vertex. The sum of the 6
degrees has to be even, and x cannot exceed 5. Sox = O or2 or4.

x =0 jmplies v=1[5 5 3 2 1 0]. At the end of the first iteration we get [4 2 1 O —1]. So x is
not 0.

x = 2impliesv=1{5 5 3 2 2 1]. At the end of the second iteration we get[1 0 O —1]. So x 1s not 2.
x=4impliesv=1[5 5 4 3 2 1], At the end of the second iterationwe get[2 1 0 —1]. So x is not 4.

Findxif[8 x 7 6 6 5 4 3 3 1 1 1] is a graphical vector.
Solution. Obviously x is either 8 or 7.

x = 8 eventually leadsto [—1 0 0 0 0] Soxisnot8.
x = 7 eventually leadsus tov =[0 0 0 0 0].Sox=T1.

Show that a finite nonincreasing vector in which no two components are equal cannot be a graphical
vector.
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Solution. Consider the nonincreasing vector v with k components in which each component is a nonnegative
integer. If no two components areequal,v = [k —1 k—2 --- 2 1 O] If we delete the first component and
subtract 1 from each of the remaining components, we get a vector v, in which the last component is negative. So
v, is not graphical, and therefore v is not graphical.

Show that in a simple graph, there are at least two vertices with equal degrees.

Solution. Suppose no two degrees in a simple graph G are equal. Then no two components of the degree
vector of G are equal. This is a contradiction, as established in Problem 1.76.

Show that there exists a simple graph with 12 vertices and 28 edges such that the degree of each vertex
is either 3 or 5. Draw this graph.

Solution. Suppose there are p vertices of degree 3. Then the equation 3p + 5(12 — p) = (2)(28) gives the
unique solution p = 2. So if there exists a graph with two vertices of degree 3 and 10 vertices of degree 5, its
degree vectorisv=1[5 5 5 5 5 5 5 5 353 5 3 3] Toshow thatthere exists a graph with the desired
property, it is enough if we demonstrate that v is a graphical vector. After nine iterations we get the 0 vector:

vw=I[5 5554 4 4 4 4 3 3]
v,=04 4 4 4 4 4 3 3 3 3]
v=[4 3 3 3 3 3 3 3 3
vw=[B 333 2 2 2 2
v=[2 2 2 2 2 2 2
=02 2 2 2 1 1

v =2 1 1 1 1]
ve=[1 1 0 0]

vw=[0 0 0]

So v is indeed a graphical vector. A simple graph with v as the degree vector is shown in Fig, 1-21.

Fig. 1-21

Show that there exists a simple graph with seven vertices and 12 edges such that the degree of each
vertex is 2 or 3 or 4.

Solution. Suppose there are p vectors of degree 2 and g vectors of degree 3. Then the only solution in
positive integers of the equation 2p + 3g + 4(7 — p — ¢) = 24 isp = 1 and ¢ = 2. Thus if there is a graph with
the desired property, it should have one vertex of degree 2, two vertices of degree 3, and four vertices of degree
4, giving a unique degree vectorv =[4 4 4 4 3 3 2] Itis easily verified that this is indeed a graphical
vector.
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Supplementary Problems

Find the complements of (a) K, and (b) K,,, .-
Ans. (@) The graph with n vertices and no edges. (b) The graph with (m + 1) vertices consisting of two parts
(components): a complete graph with m vertices and a complete graph with n vertices.

Find the number of nonisomorphic graphs with four vertices and at most 3 edges.
Ans. N4, 0) + N4, 1) + N4,2) + N4, 3) = 1+1+2+3=7

Find the vertex covering number and the independence number of K, and K.
Ans. aK,) = 1. alK,.) = max{m, n}, BK,) =n— 1 and B(K,,,.) = (m + n) — max{m, n}

Find the vertex dominating number of K, and K,,, .. Ans. o(K) = land o(K,,,) = min{m, n}
Find the committee number of (@) K, and (b) Ky n- Ans. (a} 1; (b) minimum of {m, n}.

If I is an independent set in a graph, find the subgraph induced by 1.
Ans. The graph with I as vertex set and no edges.

Find the maximum number of edges in (@) & simple graph with n vertices and (b) a bipartite graph (X, Y, E), where
the cardinalities of X and Y are m and n, respectively. [Hint: (a) Since K, has exactly n(n — 1)/2 edges, the number
of edges in a simple graph with n vertices cannot exceed n(n — 1)y/2.] (b) Since K,,, has exactly mn edges, the
number of edges in the bipartite graph cannot exceed mr.

It is known that there exists a simple graph with 12 vertices and 28 edges in which the degree of each vertex is
either 3 or 5. Find the number of vertices of degree 3.
Ans. There are two vertices of degree 3 and 10 vertices of degree 5.

Find the number of nonequivalent graphs with four vertices and three edges. [Hint: The complete graph K, has six
edges, out of which any three can be chosen in C(6, 3) = 20 ways. Thus there are 20 nonequivalent graphs with
four vertices and three edges, out of which there are exactly three nonisomorphic graphs, as established earlier. ]

Find the number of nonequivalent graphs with five vertices and three edges. [Hint: The complete graph K has 10
edges. Out of these 10 edges, any three can be chosen in C(10, 3) = 120 ways. So there are 120 nonequivalent
graphs.]

If G is a k-regular graph with n vertices, find the number of triangles in G and its complement.
Ans. Cn,3) — nk(n — k = 1)/2

Show that if every edge in a graph joins an odd vertex and an even vertex, the graph is bipartite. Is the converse
true?

Ans. Let X be the set of all odd vertices and Y be the set of all even vertices in the graph G. Then G =
(X, Y,E)isa bipartite graph where F is the set of edges in G. The converse is not true since it is possible to have
a bipartite graph in which there is a left vertex (in X) that is odd (or even) and a right vertex (in Y) that is even (or
odd).

Any root of the characteristic polynomial of a graph is an eigenvalue of the graph. The spectrum of a graph is the
collection of all its eigenvalues. Find the spectrum of @) K, (b) Ky, and (¢) Ky,

Ans. Since the adjacency matrix is symmetric, every cigenvalue is & real number. (@) — 1, =1, and 2; (b)) — 1,
—1, —1,and 3; (¢) 0,0,2, —2

Find the spectrum of K,,. Ans. The number — 1 repeated (n — 1) times and the number (n — 1)
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1.93  Find the minicode and the maxicode of the simple graph with four vertices such that the degrees of the vertices

are 1, 2, 2, and 3.
Ans. The minicode is 15, and the maxicode is 60.

1.94  Find the minicode and maxicode of K.
Ans.  Since every nondiagonal element of any adjacency matrix is 1, both the minicode and the maxicode are equal

tol +2+224 -+ 281 where k = n(n — 1)/2.



Chapter 2

Connectivity

2.1 PATHS, CIRCUITS, AND CYCLES

Let v and w be two vertices in a graph. A walk between v and w in the graph is a finite alternating sequence

V= Vg, €1, Vi, €2, Var €35 « 0 3 €y Vg = W of vertices and edges of the graph such that cach edge ¢, in the
sequence joins vertex v, ; and vertex v;. The vertices and edges in a walk need not be distinct. Two walks vg,
€1, Vis -« s € voand g, fis s - s fns W, are equal if n = m, v; = u;, and ¢, = f, for 0 = i = n. Two

walks are said to be different if they are not equal. The pumber of edges in a walk is the length of the walk.
If the graph is simple, the edges in the sequence defining a walk between v and w need not be explicitly listed;
the walk v = vg, €1, Vi, €2, V2, €3, « - - > €45 Vy = W, C2I be expressed as v — v — v, —— - -~ V, Unam-
biguously. A walk in which no edge is repeated is a trail. The walk v = vy, €1, V15 €2, V2, €35 - -+ > Va-15 €n>
v, = w, in which the vertices v (0 < i < m) are all distinct is a path between v and w; the (n — 1) vertices
v{0 < i < n) are called the intermediate vertices of the path. Obviously, every path is a trail.

If v and w are vertices in a directed graph, a directed walk from v to w is a finite sequence v = Vg, dy,
Vi, Gg, Vay O3y« « o 5 Gpy V¥ = W, of vertices and arcs of the digraph such that each arc a, in the sequence is an
arc from v,_, to v;. This is written vy —> v, > v, =+ = = ¥y, A directed walk is a directed trail if the arcs
are distinct. A directed path from v to w in a digraph is a directed walk from v to w in which no vertices
repeat.

Example 1. In graph G in Fig. 2-1(a), the sequence 2, e,, 1, €1, 4, €5, 1, ey, 4 is a walk between vertex 2 and vertex 4.
The sequence 2, €3, 1, €5, 4,e,,1,€,2,e5,31isa trail between 2 and 3. The sequence 2, es, 3, €, 4, e, 1 is a path between
2 and 1. In the directed graph shown in Fig. 2-1(b), 2 — 3 — 4—1-—2—>3— 6 is a directed walk from 1 to 6, 1 —>
72— 4 — ] — 3 1is a directed trail from 1 to 3, and 1 — 2 — 5 — 7 is a directed path from 1 to 7.

Theorem 2.1. Every walk in a graph between v and w contains a path between v and w, and every directed
walk from v to w in a digraph contains a directed path from v to w. (See Solved Problem 2.1.)

Theorem 2.2. If A is the adjacency matrix of a simple graph G = (V. E), where V= {1,2, . . . ,n}, the
(i — j) entry in the kth power of A is the number of different walks of length k between the
vertices i and j. In particular, the (i — i) diagonal entry in A? is the degree of vertex i for each
i. (See Solved Problem 2.2.)

Example 2. The adjacency matrix A of the simple graph shown in Fig. 2-2, the matrix A?, and the matrix A* are

01010 2 0 2 0 1 9 3 11 1 6
1t 01 01 0 3 1 2 1 3 15 7 11 8
A=1l0 1 0 1 1], A2=12 1 3 0 14, and As=111 6 15 3 8
10100 02 0 21 111 3 9 6
01 100 1 11 1 2 6 8 8 o6 8

The degrees of the vertices 1, 2, 3,4, Sare 2,3, 3, 2, 2, respectively, in agreement with the diagonal entries of A2
The (1, 5) entry in A* is 6, indicating that there are six different walks of length 4 between 1 and 5. These walks are
]—4—1—2—51—2—1—2—35, 1—4-—3-—-2-—5,1—2—5—2—35, 1—2-—3—2—35, and
1—2—5—3-—35.

28
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(a) (b)

Fig. 2-1

A closed walk in a graph is a walk between a vertex and itself. A closed walk in which no edges repeat
is a circuit. A cycle is a circuit with no repeated vertices. Notice that the closed walk v, ¢;, w, e,, v is a cycle,
but the closed walk v, e,, w, ¢,, v with no repeated intermediate vertices is not a cycle since it is not a circuit.
The subgraph C of a simple graph G is a cycle in G if and only if C is a cyclic graph. In a simple graph G,
any cycle consisting of k vertices (that is, passing through k vertices) is a k-cycle in G; it is an odd cycle if k
is odd and an even cyecle if k is even. The terms directed circuits and directed cycles in the case of digraphs
are defined analogously.

Example 3. In the simple graph G shown in Fig. 2-3, the closed walk 1, e, 2, es, 3, €, 3, &3, 4, ¢4, 5, €5, 1 is a circuit,
and the closed walk 1 — 2 — 3 — 4 — 1 is an even cycle.

One way to ascertain whether or not a given graph is bipartite is by identifying its cycles. If there is an
odd cycle in a graph G, G is not bipartite. In this context, we have the following theorem, which characterizes
bipartite graphs.

Theorem 2.3. A simple graph with three or more vertices is bipartite if and only if it has no odd cycles (See
Solved Problem 2.10.)

2.2 CONNECTED GRAPHS AND DIGRAPHS

A pair of vertices in a graph is a connected pair if there is a path between them. A graph G is a connected
graph if every pair of vertices in G is a connected pair; otherwise, it is a disconnected graph. A connected
subgraph H of a graph G is a component of G if H = H' whenever H' is a connected subgraph (of G) that
contains H. In other words, a component of a graph is a maximal connected subgraph. A graph is connected if
and only if the number of its components is one.
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Fig. 2-3

If Fis a set of edges ina graph G = (V, E), the graph obtained from G by deleting all the edges belonging
to F is denoted by G — F. If F consists of a single edge G —Fis denoted by G — f. A set F of edges in G
is called a disconnecting set in G if G — F has more than one component. If a disconnecting set F consists of
a single edge f, that edge is called a bridge (also known as a cut edge or an isthmus). A graph is said to be k
edge connected if every disconnecting set in it has at least k edges. The edge-connectivity number A(G) of
a graph G is the minimum size of a disconnecting set in G; by definition, it is 2e10 when G is the trivial graph
K,. Thus A(G) 1s Zer0 if and only if Gis a disconnected graph or the trivial graph, and it is k edge connected
if and only if A(G) is at least k. A disconnecting set F is said to be a cut set (also known as a bond) if no
proper subset of F is a disconnecting set.

Example 4. The graph G of Fig. 9.4 with 13 vertices is not connected since there are several pairs of vertices that are
pot connected. For example, vertex 5 and vertex 12 do not form a connected pair. The components of G are G', G?, and
G, as shown in the figure. The set {{1, 6}, {2, 6}} is a disconnecting set but not a cut set. The set {{10, 121, {10, 13}}
is a cut set. The edge {2, 6} is2 bridge. Since G is disconnected, its edge-connectivity number is zero. The edge-connectivity
number of the component G? i8 2. and it is thus two edge connected.

o D O—0 @
] 1/
b of—m O
(G Gy (Gy)

We now define analogous concepts regarding the deletion of vertices. If W is a set of vertices in G =
(V, E), the graph obtained from G by deleting all the vertices belonging to W as well as the edges incident to
the vertices in W is denoted by G — W. If W consists of a single vertex w, the graph G — W is denoted by
G — w. A set W of vertices in G is called a separating set (also known as a vertex cut) in Gif G — W has
more than one component. Observe that neither Vnor V — w are separating sets. If a separating set consists of
a single vertex w, w is known as a cut vertex (or articulation vertex). The connectivity number k(G) of a
graph G is the minimum size of a separating set in it. Since a complete graph has no separating set, we adopt
the convention that the connectivity number of the complete graph of order n is (n — 1) forall n. A graph G
is said to be k-connected if k(G) = k. Thus K, is (n — 1)-connected for all n, and a graph that is not complete
is k-connected if and only if every separating set in it has at least k vertices. The connectivity number of a
graph G is zero if and only if G is either the trivial graph K, or is a disconnected graph. A cyclic graph is 2-
connected. In Fig. 2-4, vertex 6 is a cut vertex and the subgraph G' is 1-connected, whereas both the subgraphs
G2 and G® are 2-connected.
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Theorem 2.4 (Whitney’s Inequality). For any graph G, k(G) = A(G) = 8(G). (See Solved Problem 2.11.)
(Edge connectivity and connectivity are discussed in more detail in Chapter 6 in the context of
Ford - Fulkerson theorem and Menger’s theorem.)

The number of edges in a path with as few edges as possible between two vertices v and w of a connected
graph G is denoted by d(v, w). The eccentricity e(v) of the vertex v is the maximum value of d(v, w), where
w varies through all the vertices of G. The radius r(G) of G is the eccentricity of the vertex of minimum
eccentricity. A vertex v is a central vertex if its eccentricity is equal to the radius of the graph. The center
C(G) of a graph is the set of all its central vertices.

Example 5. In Fig. 2-5(a), the eccentricities of the vertices A, B, C, D, E, F, and G are4, 3, 2, 4, 3, 2, and 3, respectively.
The central vertices are C and F. The center is the set {C, F}. In Fig. 2-5(b), the eccentricity of vertex E is 1 and the
eccentricities of the other vertices are 2. E is the only central vertex, and the center is the singleton set {E£}.

(2) (b)

Fig. 2-5

In the case of digraphs, the concept of connectivity becomes more variegated. A digraph G is strongly
connected if there is a directed path from each vertex to every other vertex. A strong component of a digraph
is a maximal strongly connected subgraph. A digraph is unilaterally connected if for every pair of vertices v
and w in G, there is either a path from v to w or from w to v. A digraph is weakly connected if its underlying
graph is connected.

Example 6. The digraph G of Fig. 2-1(b) is not strongly connected since there is no directed path from vertex 5 to
vertex 3. It is weakly connected because the underlying graph is connected. It is easy to verify that this digraph is unilaterally
connected.

A mixed graph is a structure G = (V, E), where V is a finite set of vertices and F is a finite set of pairs
of vertices in which some pairs are ordered (defining arcs of G) and some pairs are unordered (defining edges
of G). The undirected graph U(G) obtained by converting each arc of a mixed graph G into an edge is the
underlying graph of G, and G is connected (by definition) if /(G) is connected. The digraph D(G) obtained
from G after replacing each edge between v and w by two arcs (v, w) and (w, v) is called the directed graph of
G, and G is strongly connected (by definition) if D(G) is strongly connected. An undirected edge ¢ in a connected
mixed graph G is a bridge if the deletion of e makes G disconnected.

2.3 TREES AND SPANNING TREES

An acyclie graph (also known as a forest) is a graph with no cycles. A tree is a connected acyclic graph.
Thus each component of a forest is a tree, and any tree is a connected forest.

Example 7. The graph in Fig. 2-6 with 13 vertices is a forest consisting of three trees.
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Fig. 2-6

Theorem 2.5. The following are equivalent in a graph G with n vertices.

(i) Gisatree.
(i) There is a unique path between every pair of vertices in G.
(iii) G is connected, and every edge in G is a bridge.
(iv) G is connected, and it has (n — 1) edges.
(v) G is acyclic, and it has (n — 1) edges.
(vi) G is acyclic, and whenever any two arbitrary nonadjacent vertices in G are joined by an edge, the
resulting enlarged graph G’ has a unique cycle.

(vii) G is connected, and whenever any two arbitrary nonadjacent vertices in G are joined by an edge,
the resulting enlarged graph has a unique cycle.
(See Solved Problem 2.56.)

Theorem 2.6. The center of a tree is either a singleton set consisting of a unique vertex or a set consisting of
two adjacent vertices. (The converse is not true. See Example 5.) (See Solved Problem 2.62.)

Example 8. In the tree shown in Fig. 2-7(a), the center is the set {1, 2}. In the tree shown in Fig. 2-7(b), the center is
the singleton set {2].

(2) (b)

Fig. 2-7

An acyclic spanning subgraph of a graph G is a spanning forest in G. A spanning forest in the graph of
Fig. 2-4 is the forest shown in Fig. 2-6. An acyclic connected spanning subgraph (if it exists) of G is called a
spanning tree in G. In the connected graph G of Fig. 2-3, the set {e,, €., €. €; } of edges constitutes the edges
of a spanning tree in G.

Theorem 2.7. A graph is connected if and only if it has a spanning tree. (See Solved Problem 2.57.)
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Theorem 2.8. Let G be a simple graph with n vertices. If a spanning subgraph H satisfies any two of the
following three properties, it will satisfy the third property also. (i) H is connected. (ii) H has
(n — 1) edges. (iit) H is acyclic. (See Solved Problem 2.58.)

A tree with n vertices is a labeled tree if each vertex is assigned a unique positive integer between 1 and
n such that no two vertices get the same label. Two labeled trees 7 = (V, E) and T" = (V, E') are distinct if
E and E' are not the same set. For example, the labeled tree T' = (V, E) with edge set {{1, 2} and {2, 3}} and
the labeled tree T* = (V, E') with edge set {{1, 3}, {2, 3}} are distinct even though they are isomorphic. Two
nonisomorphic labeled trees are, of course, distinct labeled trees.

Theorem 2.9 (Cayley’s Theorem). The number of distinct labeled trees with n vertices is n"~2, which is
also equal to the number of spanning trees in K,,. (See Solved Problem 2.73.)

Given a graph with n vertices, it is natural to ask whether it is connected. One method to test the connectivity
of a graph is by using a recursive procedure known as the depth first search (DFS) technique in which we
relabel the vertices as follows.

Suppose the vertices of G are v,, v,, . . . , v,. Start the search from any vertex, and relabel that vertex
1. If this vertex has no adjacent vertices, the graph is disconnected. Otherwise, select any vertex adjacent to
vertex 1 and relabel it vertex 2, marking the edge {1, 2} joining vertex 1 and vertex 2 as a used edge. If vertex
2 has an adjacent vertex other than vertex 1, relabel that vertex 3. If vertex 2 has no other adjacent vertex,
revert back to vertex 1 and see whether vertex 1 has an adjacent vertex other than vertex 2. If the answer is no
and if n > 2, the graph is disconnected. If the answer is yes, relabel the newly located vertex as vertex 3. In
either case, mark the edge {2, 3} as a used edge. After relabeling a vertex as vertex i, select an arbitrary vertex
that is not yet relabeled and that is adjacent to i, relabel that vertex (i + 1). Mark the edge joining i and
(i + 1) as a used edge. If a newly relabeled vertex v has no adjacent vertex, go back to vertex w, which is
adjacent to v with used edge {v, w}, and continue the search from w. The procedure continues until all the n
vertices are relabeled 1, 2, . . . , n, indicating that the graph is connected; or, we are back at vertex 1 with
the number of relabeled vertices less than n, showing that the graph is not connected.

If we find that a graph G of order n is a connected graph by using the depth first search, the set of
(n — 1) used edges in G constitutes the edges of a spanning tree (in G) known as DFS spanning tree.

Example 9. The DFS technique described above is used to test the connectivity of the simple graph with vertex set
v,(i=1,2, ... ,8), the adjacency matrix of which is

"0 1 0 0 0 0 0 17
I 01 0 0 1 10
0t 011100
0 01 00O0O0GCO0
6010 O0O0O0GC
0 1100010
01 00 0101

L1 0 0 0 0 0 1 Od

Take v, and relabel it vertex 1. A vertex adjacent to v, is v,, as can be seen from the adjacency matrix. So v, is labeled
vertex 2, and edge e, joining v, and v, is marked as a used edge. Then vy is labeled vertex 3, and edge ¢, joining v, and v,
is marked as a used edge. At the next stage, v, is labeled vertex 4 with used edge e; = {vg, v3}, and v, is labeled vertex 5
with used edge e, = {v;, v,}. Now vertex v, (labeled 5) has no adjacent vertex other than v; (which is labeled 4). So we
revert to vertex 4 and start the search from there. A vertex adjacent to v, is vs, which now gets the label 6, and es =
{vs, vs} becomes a used edge. The search now reverts to vertex v, (labeled 2), and v, is an adjacent unlabeled vertex that
now becomes vertex 7 with e, = {v;, v;} as a used edge. Finally, label vertex vy as vertex 8 with used edge e; =
{vq, v;}. Since all the eight vertices are relabeled, we conclude that G is connected. The seven used edges obtained in this
search constitute the edges of a spanning tree, as shown in Fig. 2-8.
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2.4 STRONG ORIENTATIONS OF GRAPHS

If each edge of a simple graph G is replaced by an arc and if the resulting digraph G’ is strongly connected,
the digraph G’ is called a strong orientation of G. A simple graph is strongly orientable if it has a strong
orientation. If each street in a certain region of a city is to be converted into a one-way street, after the conversion
one should be able to drive from any street corner to any other street corner in the region. So a conversion of
this type is possible only if the streets in the region consfitute a strongly orientable graph with street Corners
as vertices. For a graph to be strongly orientable, it has to be a connected graph in the first place. Furthermore,
it should not become disconnected if an edge is deleted from the graph. In other words, a strongly orientable
graph is necessarily a connected graph in which no edge is a bridge. The converse of this assertion is also true.
Thus we have the following theorem.

Theorem 2.10 (Robbins’s Theorem). A graph is strongly orientable if and only if it is connected and has
no bridges. (See Solved Problem 2.87.)

Example 10. The edge joining vertex 3 and vertex 4 in the connected graph of Fig. 2-9is a bridge. This graph has no
strong orientation.

Fig. 2-9

Given a sirongly orientable graph with n vertices and m edges, one algorithm mimics the depth first search,
enabling us to orient the edges such that the resulting digraph is strongly connected. The procedure is as follows.
Suppose the n vertices are relabeled 1, 2, . . ., n with (2 — 1) of the m edges specially designated as used
edges. A used edge between i and j is converted into an arc from i to jif i < j, and an unused edge between i
and j is converted into an arc from i to jif i > J.

Theorem 2.11 (Roberts’s Theorem). The orientation procedure using the depth first search in a connected
graph with no bridges yields a strongly connected digraph. (See Solved Problem 2.93.)
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Example 11. The graph G in Fig. 2-10(a) is connected in which no edge is a bridge. A spanning tree in G obtained by
the depth first search is shown in Fig. 2-10(b), with the eight vertices labeled 1, 2, . . . , 8, respectively, and with seven
used edges. After orienting the edges according to the rule stipulated in Theorem 2.11, the strongly connected digraph is
as shown in Fig. 2-10(¢).

)

Fig. 2-10

Solved Problems

PATHS, CIRCUITS AND CYCLES

2.1

2.2

Prove Theorem 2.1: Every walk in a graph between v and w contains a path between v and w, and every
directed walk from v to w in a digraph contains a directed path from v to w.

Solution. Let W be a walk between v and w. If v = w, there is the trivial path with no edges. Therefore,
assume that v and w are not the same vertex. Suppose W is the walk v = vy — v; — --- — v, = w. It is possible
that the same vertex has more than one label in this sequence. If no vertex of the graph appears more than once in
the sequence, we have a path between v and w. Otherwise, there will be at least one vertex that appears as v; and
v; in the sequence with i < j. If we remove the terms v, ., v;,», . . . , v; from the sequence, we still have a walk
between v and w that contains fewer edges. We continue this process until each repeated vertex appears only once
in the walk; at that stage, we have a path between v and w. The proof in the case of directed walks is similar.

Prove Theorem 2.2: If A is the adjacency matrix of a simple graph G = (V, E), where V =
{1,2, . . ., n}, the (i —j) entry in the kth power of A is the number of different walks of length &
between the vertices i and j. In particular, the (i — i) diagonal entry in A? is the degree of vertex i for
each i. (See Solved Problem 2.2.)

Solution. The proof is by induction on k. This is true when & = 1. Assume that the result is true for
(k — 1). By the induction hypothesis, the (i, j) entry in A¥~! is the number of walks between ¢ and j of length
(k — 1). The (i, ) entry in A is 1 if and only if i and j are adjacent. Now A% = A*=1. A So the (i, j) entry in A* is
the number of walks between i and j of length k. Thus it is true for .
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2.3

24

2.5

2.6

2.7
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If the edges in a graph are labeled ¢,(i = 1,2, . . . , m) and the set of paths between two vertices v
and w are labeled p, i = 1,2, . . . k), the v, W path matrix is the k X m binary matrix P, in which
the (i, j) entry corresponding to the path p, is 1 if p, contains the edge ¢; and O otherwise. Obtain a path
matrix between vertices 1 and 3 in Fig. 2-2.

Solution. In the graph shown in Fig. 2-2, there are three paths, p;: 1 — 2—3, p:1—4—3, and
py: 1 — 2 — 5 — 3, between vertex 1 and vertex 3. The cdges are labeled as shown. The 1, 3 path matrix of this
graph with respect to this labeling 1s

101000
P=P,=10 0 0 0 1 1
110100

(The columns are labeled in the order of the edges: ¢, . . . , €.)
Let B be the incidence matrix of the simple graph G = (V,E) in which V= {L1,2, . . ., n}, £ =
{e1, €5, . . - »€,}, and the paths between vertex i and vertex j are labeled py, py, -+ - 5 P If Pis

the (i, j) path matrix, the (binary) product BPT is the binary matrix S in which the only nonzero entries
are those in the ith and jth rows. (Multiplication of binary matrices here is mod 2.)

Solution. The product of the ith row of B and any column of PT is 1. Likewise, the product of the jth row
of B and any column of P” is 1. The product (modulo 2) of any other row of B with every column of P7is 0.

Verify the assertion in Problem 2.4 by considering a path matrix in Fig. 2-2.

Solution. In Fig. 2-2, the binary product BP”, where B is the incidence matrix and P is the (1, 3) path matrix
(obtained in Problem 2.3), is equal to the 5 X 3 binary matrix in which row 1 and row 3 are nonzero vectors and
the other rows are zero vectors:

1 0 1
1 00 0 01 11 1
0 01
111000 0 0 0
1 00
BPT=10 0 1 1 1 0} X =]1 1 1
0 0 1
00 00 1 1 0 0 0
01 0
01 0100 0 00
L0 1 0.
If the edge set in a simple graph is labeled E = {e, €5, . . . » e,,} and the set of cycles is labeled
{(C,,Cy, . . ., C}, thecycle matrix of the graph is the k X m binary matrix C defined as follows. In

the row corresponding to the ith cycle C;, the (i, j) entry is 1 if and only if ¢; is an edge in C,. Obtain
a cycle matrix of the graph of Fig. 2-3.

Solution. The five cycles in Fig. 2-3 are C, = {ey, es, es), Cy = ey, €5, 66}, C3 = {3, €, es}, Cy =
{e,, €5, ¢5}, and Cs = {ey, &, €3, €4} The cycle matrix C is the following 5 X 8 matrix:

1 0001 001
01001 100
c=10 0100110
0 001 00 1 1
11 1t 10000
(The columns are labeled in the order of the edges: ey, . . . , €3.)
Let B be the incidence matrix of the simple graph G = (V, E), where V= {1,2, . . ., n}, E=

{e, €2, - - - 5 €}, and the cycles in G are labeled C,, Cy, . . . , C. I Cisthek X'm cycle matrix,
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2.8

the (binary) matrix product BC” and the (binary) matrix product CB" are zero matrices. (Mutltiplication
of binary matrices here is mod 2.)

Solution. The product of any row of the incidence matrix and any column of the transpose of the cycle
matrix is 0 (mod 2). Similarly, the product of any row of the cycle matrix with any column of the transpose of the
incidence matrix is O (mod 2).

Verify the assertion of Problem 2.7 by considering the cycle matrix in Fig. 2-3.

Solution. In Fig. 2-3, the cycle matrix C is as in Problem 2.6, and the incidence matrix B is

1 0 010001
11001000
B=|0 110 0100
001 1 0010
00001111

It is easily verified that the binary matrix product BC” and the binary matrix product CBT are both zero matrices.

CONNECTED GRAPHS AND DIGRAPHS

29

2.10

Show that a graph G is bipartite if and only if every component of G is bipartite.

Solution. Every subgraph of a bipartite graph G is bipartite. In particular, every component of G is bipartite.
Conversely, suppose that the components of G = (V, E) are G, = (X;, ¥;, F)), where i = 1,2, . . ., k. LetX=
UX,Y=UY,and F= UF, Then G = (X, ¥, F).

Prove Theorem 2.3: A simple graph with three or more vertices is bipartite if and only if it has no odd
cycles.

Solution. Let G = (X, ¥, E) be a bipartite graph. It is easy to see that if there is a cycle C in G, C should
have an even number of vertices (and therefore an even number of edges) since the vertices of C are alternatively
from X and from Y. Thus C is an even cycle.

On the other hand, suppose G = (V, E) has no odd cycles. Assume without loss of generality that G is
connected as in Problem 2.9. Let d(u, v) be the length of a path between u and v of minimum length. A u, v path
of length d(u, v) is called a shortest path between u and v. Let u be any vertex in G.

Define X = {x € V: d(u, x) is even} and ¥ = V — X. We have to establish that whenever v and w are two
vertices in X (or in Y), there is no edge joining v and w.

Case (i): Let v be any vertex in X other than u. There is a path of even length between u and v. If there is an edge
between u and v, we will get an odd cycle. So # is not adjacent to any vertex in X.

Case (ii): Let v and w be two vertices in X other than u. Suppose there is an edge e joining v and w. Let P be a
shortest u, v path of length 2m, and let Q be a shortest u, w path of length 2n. If these two shortest paths have no
common vertex other than u, these two paths and the edge together will form an odd cycle. If the two paths have
common vertices, let 4’ be that common vertex such that the subpath P’ between u’ and v and the subpath Q'
between 1’ and w have no vertex in common. Since P and Q are shortest paths, the subpath of P between u and
u' is a shortest (u, u') path. The subpath of O between u and u' is also a shortest (4, u') path. Thus both these
subpaths have equal number of edges. Let the length of the shortest path between u and u’ be k. Then the length
of the subpath of P between u’ and v is 2m — k, and the length of the subpath of Q between 4’ and w is 2n — k.
If there is an edge between v and w, we will have a cycle of length (2m — k) + (2n — k) + 1, which will be an
odd cycle. So no two vertices in X are adjacent.

Case (iii): Suppose v and w are in Y. Then, as in (ii), the subpath from « to v of length (2m — 1) — k, the subpath
from u’ to w of length (2 — 1), and the edge joining v and w will form an odd cycle. Thus no two vertices in ¥
are adjacent.
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2.12

2.13

2.14
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Case (iv): Suppose u is the only vertex in X. The remaining vertices are all in Y. Every edge is from u (o some
vertex in Y.

This completes the proof.

Prove Theorem 2.4: For any graph G, k(G) = MG) = 8(G).

Solution. The set of edges incident to a vertex of minimum degree is a disconnecting set, so MG) =<
8(G). If A(G) is zero, the graph is either trivial or disconnected, implying that k(G) is also zero. If MG) = 1, the
graph G has a bridge, implying that the graph has a cut vertex, thercfore, xK(G) = 1. Let us assume that A(G) >

1. If we delete A(G) — 1 edges from the graph, we get a connected subgraph with a bridge joining two vertices v

and w. For each deleted edge, we can choose a vertex incident to it other than v and w. Let W be the set of vertices
thus chosen. Suppose the deletion of all the vertices in W results in a graph G'. If G’ is not connected, it follows
that k(G) < AMG). If G' is connected, it has a vertex u whose deletion results in a trivial graph or a disconnected
graph. Thus the set of vertices consisting of u and the chosen vertices [at most MG) — 1 in number] constitutes a
separating set for G, implying that k(G) = AMG).

Exhibit a graph for which the inequality established in Problem 2.11 is strict.

Solution. For graph G in Fig. 2-11, vertex 3 with degree 4 is a vertex of minimum degree. So 8(G) = 4.
Edges {3, 6}, {5, 6},and {5, 8} constitute a cut set. Thus A(G) = 3. Vertices 3 and 5 together constitute a separating
set of minimum cardinality. Hence k(G)} = 2.

Fig. 2-11

A matrix is called a totally unimodular (TU) matrix if the determinant of every square submatrix is
either — 1 or 0 or 1. Show that each entry in a TU matrix is — 1 or 0 or 1 but that the converse is not
true.

Solution. Each entry of a TU matrix is the determinant of a1 X 1 matrix; therefore, it is —1 or O or 1. On
the other hand, the matrix with first row [ — 1] and second row [1 1] is not a TU matrix since its determinant
is 2.

Show that the matrix A = [a;] in which each element is — 1 or 0 or 1 is a TU matrix if it satisfies the
following two conditions: (i) no column can have more than two nonzero elements, and (if) it is possible
to partition the set 1 of rows of the matrix into sets I, and I, such that if ¢, and a,; are the two nonzero
elements in column j, row 7 and row k belong to the same subset of the partition if and only if they are
of opposite sign. '

Solution. Let C be any k X k submatrix of A. The proof is by induction on k. If k = 1, the theorem is true.
Suppose it holds for (k — 1). Let C "be any (k — 1) X (k — 1) submatrix of A. By hypothesis, the determinant of
C'is —1 or 0 or 1. There are three different possibilitics:

1. Chas a column in which every entry is 0. Then the determinant of C is 0.
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2. C has a column with exactly one nonzero entry that could be —1 or 1. By expanding the determinant of C
along this column, we find that that determinant of C'is —1 or Q or 1.

3. Every column of C has exactly two nonzero entries.

Suppose E = {ry, r5, . . . , 1y} is the set of rows of C. By hypothesis, the set of k rows is partitioned into
two subsets I, and I,. Without loss of generality, let us assume that /, is the set of the first p rows and /, is the set
of the remaining (k — p) rows. It is possible that p = 0.

By the way these two subsets are constructed, it is easy to see that ry +ry+ -+ r,=r t Ty,
showing that E is a linearly dependent set. Thus the determinant of Cis 0 in this case.

Show that (a) the incidence matrix of a digraph and (b) the incidence matrix of a bipartite graph are
both TU matrices.

Solution. A matrix in which each element is — 1 or 0 or 1 is totally unimodular if in each column there is
at most one + 1 and at most one — 1 as a consequence of the result established in Problem 2.14. So the incidence
matrix of a digraph and the incidence matrix of a bipartite graph are totally unimodular.

Show that a graph is bipartite if and only if its incidence matrix is a totally unimodular matrix.

Solution. If G is bipartite, its incidence matrix is a TU matrix, as shown in Problem 2.15. Suppose the
incidence matrix of G = (V, E) is a TU matrix. If G is not bipartite, there is at least one odd cycle in G. Let

V=1{1,2,3,...,n}, and assume that the first (2k + 1) vertices constitute an odd cycleas | —2 —3 — ---
— @2k+ 1) —1.

Let A be the incidence matrix such that the first (2k + 1) rows correspond to the first (2k + 1) vertices and
the first (2k + 1) columns correspond to edges {1, 2}, {2,3}, . . ., {2k, 2k + 1}, and {2k + 1, 1}. Then the

determinant of the submatrix formed by the first (2k + 1) rows and the first (2k + 1) columns is 2. (In fact, the
determinant of the incidence matrix of an odd cycle is always —2 or 2.) This contradicts that A is a TU matrix.

The smallest number of colors needed to color the vertices of a graph such that each vertex gets a unique
color and no two adjacent vertices get the same color is called the chromatic number (or vertex
chromatic number) of the graph. Show that a graph is bipartite if and only if its chromatic number is
two.

Solution. In the bipartite graph G = (X, Y, E), assign the same color (say red) to each vertex in X. Then
assign a unique color other than red (say blue) to each vertex in Y. Thus the chromatic number of G is 2. On the
other hand, suppose the chromatic number of G = (V, E) is two. Let X be the set of vertices such that each vertex
in X has the same color. Let Y = (V — X). Then every edge in G is between a vertex in X and a vertex in Y. So
G=X7Y E).

Show that the following are equivalent in a simple graph G: (a) G is bipartite, (b) G has no odd cycles,
(¢) the incidence matrix of G is a totally unimodular matrix, and (d) the chromatic number of G is two.

Solution. This is a consequence of Problems 2.10, 2.16, and 2.17.

Suppose each set in a family of subsets of a finite set is represented as a vertex. Two vertices repre-
senting two distinct subsets belonging to the family are joined by an edge if they have at least one
element in common. The simple graph thus constructed is called the intersection graph of the family
of subsets of the given set. Construct the intersection graph of the family of subsets of the
set X=1{1,2,...,10} with the family {A, B, C, D, E, F}, where A ={1,3,5,7,9}, B =
(2,4,6,8,10},C={1,2,3},D = {4,5,6,8,9}, E={5,6,7,9},and F = {4, 6, 10}.

Solution. The only nonempty intersections between pairs of distinct sets are A N C, A N D, ANE,
BNC,BND,BNF,DNE DNF, and EN F. Thus we join A and C, A and D, A and E, B and C, B and D,
Band F, D and E, D and F, and, finally, E and F by edges. The intersection graph thus constructed has six vertices
and nine edges, as shown in Fig. 2-12.
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Show that every simple graph is (isomorphic to) the intersection graph of a family of subsets of a finite
set.

Solution. Let G = (V, E), where V is the set {1,2, . .. ,n}, be asimple graph. We construct a unique
intersection graph corresponding to this graph as follows. For each vertex i in G, we define the set X(i) as the union
of the set {i} and the set of all edges in G adjacent to i. Thus we have a family of n sets, each representing a vertex.
It is easy to see that the intersection of X(i) and X(j) is nonempty if and only if there is an edge between i and jin
G. The graph G is isomorphic to the intersection graph of the family {X(1), X2, ..., Xm}.

The intersection number «(G) of a graph G is the minimum number of elements in a set X such that
G is an intersection graph of a family of subsets of X. Show that the intersection number of a connected
graph cannot exceed its size.

Solution. Suppose the connected graph is G = (V, E), where v=1{12, ...,n} Let X(i) be the set of
edges adjacent to vertex i. Then the union of the family {X(1), X(2), . . . . X(n)} is the set E. Thus G is the
intersection graph of the family. So the intersection number cannot exceed the size of the graph.

Construct (a) a connected graph such that its intersection number is equal to its size and (b) a connected
graph such that its intersection number is less than its size.

Solution.

(@) Consider the cyclic graph C, withedges ¢;(i = 1,2, 3, 4). The intersection number of this graph is four since
it is isomorphic to the intersection graph defined by the family {le,, e}, (e, €3}, {eas euls {ea e }}

(b) Construct the graph G of size 5 by joining two nonadjacent vertices of the graph C, by an edge denoted by
¢s. The intersection number of this graph of size 5 is four since it is isomorphic to the intersection graph
defined by the family {{e,, e;}, {e1, &3}, {e2, e}, {en, esl}-

Show that the intersection number of a connected graph with at least four vertices is equal to its size if
and only if it has no triangles.

Solution. Consider any connected graph G = (V, E) with n vertices and m edges, where n is at least four
with no triangles. If &(G) = k, there exists a set X of cardinality k such that G is isomorphic to an intersection
graph of a family of subsets of X. Specifically, there exists a family {X,, X5, . . . , X, } of nonempty subsets of X
such that (1) each vertex of G corresponds to a unique set in this family and (2) each edge of G corresponds to a
pair of unique sets in the family with a common element that does not appear in any other subset in the family. So
the cardinality of X should not be less than the number of edges of G. In other words, k = . But k£ = m, as
established in Problem 2.21. Thus k = m.

On the other hand, consider a connected graph G = (V, E) with n vertices, m edges, and w(G) = m. We now
prove that G has no triangle. Suppose G has a triangle. Let G; = (V, E;) be a maximal triangle-free spanning
subgraph of G with m; edges. Then «XG) = m,. Thus there exists a set X of cardinality m, such that G, is the
intersection graph of a family of subsets X. Specifically, there exists a family {Xi, X5, . . - » Xa) Of subsets of X
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such that vertex v; of G, corresponds to the subset X, for each i. Let ¢ be any edge of G that is not in G, and let
G, = (V, E,) be the spanning subgraph obtained by adding e to the graph G,. This addition creates a unique triangle
in G,. Assume that this triangle is formed by vertices v,, v,, and v,, and assume that edge e is the edge that joins
v, and v,. Notice that the intersection of X, and X, is not empty since {v,, v,} is an edge in the graph G,. Let

e X, NX,).
Two mutually exclusive cases need to be examined. (§) In G4, the degree of v, = 2. In this case, we replace
X, by {#} and X; by X; U {¢} in the family {X,, X,, X5, . . . , X, } of subsets of X. (ii) In G, the degree of v, >

2. In this case, we replace X5 by X5 U {¢} in the family. In either case, we have a family of subsets of X defining
the intersection graph of G,. If G is isomorphic to G,, graph G will have a triangle that contradicts the hypothesis.
So assume that this is not the case. In that case, letm — Gm, + 1) = m,, where m, > Q. So the intersection number
of Gism; + my, =m — I < m, which is a contradiction.

Find the intersection number of K,,, where n > 1.

Solution. The complete graph with two vertices is the intersection graph of the family {{1}, {1, 2}}, so its
intersection number is two. The complete graph with three vertices is the intersection graph of the family
{11, 2}, {1, 3}, {2, 31}, so its intersection number is three. The intersection number of any complete graph with
n vertices (where > 3) is less than its size as established in Problem 2.23. It is easy to see that K, is the intersection
graph of the family {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}}, so its intersection number is three. To obtain a family of
subsets for K, we introduce a new element 4 and adjoin it to each of the sets in the family for K,. The family
consisting of the four enlarged sets and the singleton set {4} defines the intersection graph corresponding to K.
Thus the intersection number for K is four. By a simple inductive argument, it follows that the intersection number
of a complete graph with 5 vertices (wheren > 3)is n — 1.

The intersection graph of a finite family of open intervals of the real line is called an interval graph.
Show that the cyclic graph with n vertices is (isomorphic to) an interval graph only when n = 3.

Soluation.

(i) Suppose the vertices of a cyclic graph with three vertices are A, B, and C. Give an assignment of open intervals
to these three vertices as I(A) = (a, a’), [(B) = (b, "), and I(C) = (¢, ¢'), where a < b < ¢ <d <b' <
¢'. The vertices of C; correspond to these three open intervals.

(i1) We must show that such an interval assignment is not possible for a cyclic graph when n > 3. It is enough
if we show this when n = 4. Suppose the vertices are A, B, C, and D such that there is no edge between A
and C and no edge between B and D. So any interval assignment {{(A), I(B), I{C), and (D)} should satisfy
the requirement that the intervals I(B) and I(D) are disjoint and the intervals I(A) M KB) and I(A) N I(D) are
nonempty. Once these assignments are made for A, B, and D, we have to make an assignment for I(C) such
that I(C) N I(A) is empty and, at the same time, both sets I(C) M I(B) and I(C) N {(D) are nonempty. It is
simply impossible to make an assignment /(C) without violating the earlier assignments.

Thus every interval graph is an intersection graph, but an intersection graph need not be an interval graph
in general.

Show that (a) any induced subgraph of an interval graph is an interval graph, and (#) an arbitrary
subgraph of an interval graph need not be an interval graph.

Solution.

(a) Let H = (W, F) be an induced subgraph of the interval graph G = (V, E). The interval assignments in G for
the vertices in W will serve as the interval assignments for the vertices in W for the graph H as well.

(&) The graph G obtained by joining any two nonadjacent vertices of the cyclic graph C, is an interval graph in
which the subgraph C, is not an interval graph.

A graph G is called a chordal graph if in every cycle C in G there is an edge (belonging to () joining
two nonadjacent (in C) vertices, Show that every interval graph is a chordal graph.
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Solution. Suppose an interval graph G is not a chordal graph. Thus it has a cycle C with four or more
vertices such that there is no edge in G between any pair of nonadjacent (in C) vertices. In other words, G has a
cyclic subgraph C, as an induced subgraph, where n is more than three, which is not an interval graph; this
contradicts that an induced subgraph of an interval graph is an interval graph.

2.28 Show that a graph G is chordal if and only if C, is not an induced subgraph of G for any n > 3.

Solution. This is a consequence of the definition and that C, is not chordal when n > 3.

229 Give an example of a chordal graph that is not an interval graph.

Solution. Each of the two graphs in Fig. 2-13 is a chordal graph but not an interval graph.

O

Fig. 2-13

2.30 The graph G = (V, E) is called an indifference graph if for every positive number &, there exists a
mapping f from V to the set of real numbers such that |f(v) — f(w)l < 8 if and only if v and w are
adjacent. Show that the graph in Fig. 2-14 is an indifference graph.

(b)—(d)

Fig. 2-14

Solution. First notice that without loss of generality, we may take & = 1. By assigning the values f(a) =
0.2, fb) = 0.7, f(c) = 0.9, fid) = 1.3, and fle) = 1.8, we see that the graph is indeed an indifference graph.

2.31 Show that every indifference graph is an interval graph.

Solution. Let G = (V, E) be an indifference graph that assigns the value f{(v) for each vertex v in the graph.
Corresponding to each vertex v, we define the open interval I(v)y = (f(v) = &2, f(v} + 8/2). Then G is an interval
graph.
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By constructing an example, show that an interval graph need not be an indifference graph.

Solution. In graph K, shown in Fig. 2-15, let I(a) = (2, 6), I(b) = (8, 10), I(c) = (13, 17), and I(d) =
4,15). Thus G is an interval graph. Suppose G is an indifference graph with weight function f. Assume without
loss of generality that fla) < fib) < f(c). If flc) — fla) < 26, either f(B) — flc) < & or fla) — f(b) < &. Thus
flc) — fla) = 28. Then f(d) cannot be within 8 units of both fla) and f(c). Thus K| ; is an interval graph but not
an indifference graph.

(@D——(D—()

Fig. 2-15

Show that every indifference graph is an interval graph, every interval graph is a chordal graph, and
every chordal graph is an intersection graph.

Solution. This follows from Problems 2.20, 2.27, and 2.31.

An interval graph is called a unit interval graph if the length of the open interval that corresponds to
a vertex is the same for every vertex. Show that a graph is an indifference graph if and only if it is a
unit interval graph.

Solution. Suppose G = (V, E) is an indifference graph with a weight function f defined on V. Let 6 = 1.
For each vertex v of G, define the open interval I(v) = (f(v) — 1f(v) + §). Now v and w are adjacent in the
indifference graph G if and only if [f(v) — fiw)l < 1. This is true if and only if the intervals /(v) and /(w) have a
nonempty intersection. Thus G is a unit interval graph. Conversely, suppose G is a unit interval graph with & =
1. If vertex v corresponds to the unit interval (a, b), define f(v) = (a + b)/2. Thus G is an indifference graph.

(Ghouila—Houri Theorem) A digraph D is a transitive digraph if there is an arc from u to v whenever
there is an arc from u to w and there is an arc from w to v for any set of three distinct vertices u, v, and
win D. A simple graph G is a transifively orientable graph (or a comparability graph) if G has an
orientation D that is a transitive digraph. Show that the complement of an interval graph is a transitively
orientable graph.

Solution. Let {{(v): v € V} be the interval assignment for the vertices in the interval graph G = (V, E).
Suppose v and w are two nonadjacent vertices in G. Then I(v) and I(w) are disjoint. So either /(v) is completely on
the left of /(w) or completely on the right. Let us write I{v) < I(w) if I(v) is on the left of I(w). Since v and w are
not adjacent in G, there is an edge between v and w in the complement of G. If I(v) <C I(w), let the edge between
v and w become an arc from v to w. Otherwise, the edge is an arc from w to v. Thus we have an orientation of the
complement of G. If I(u) < I(v) and I(v) << I(w), I(u) < I(w). Thus the digraph thus constructed is transitively
orientable.

Obtain a transitive orientation for the complement of the interval graph K| ;.

Solution. The complement of K| ; is the graph consisting of an isolated vertex and a triangle, the edges of
which can be oriented such that it becomes transitively orientable.

Show that if the complement of G is transitively orientable, it is not necessary that G is an interval
graph by constructing an example.
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ycle 1 —5 —3—4— 1 with no edge joining 1

Solution. The bipartite graph G in Fig. 2-16(a) has a c
terval graph. But its complement is transitively

and 3 or 4 and 5. So G is not chordal; therefore, it is not an in
orientable, as shown in Fig. 2-16(b).

(—

\ O —E—@
e“o “
© e

Fig. 2-16

238 Suppose G = (V,Ejisa simple graph with at least one edge. The line graph L(G) (also known as the
interchange graph, adjoint graph, derived graph, or edge graph) of G is the graph (W, F), where
there is a one-to-one correspondence ¢ from E to W such that there is an edge between ¢(e) and ¢f(e")
if and only if the edges e and e’ have a vertex in common. Construct the line graph of the graph of K,-

Solution. The line graph of K, is as shown in Fig. 2-17.

Fig. 2-17

239 Find the line graph of the graph shown in Fig. 2-18(a).
Solution. The line graph is shown in Fig. 2-18(b).

o] Pl

(a) (b)

Fig. 2-18
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Show that the line graph of G = (V, E) is the intersection graph of a family of subsets of the product
set VXV,

Solution. Each edge in G defines a two-element set in the product set. Then L{(G) is the intersection graph
of the set § of all two-element sets that correspond to the edges of G.

If v is the vertex in the line graph L(G) that corresponds to the edge joining vertex x and vertex y in G,
find the degree of v in L(G).

Solution. The degree of v in L(G) = (degree of x in G + degree of ¥ in G) — 2.

Find the order and size of L(K,).

Solution. The order of L(K,) is n(n — 1)/2, which 1s the size of K. An edge joining two vertices in K, is
adjacent to 2(n — 2) edges. So the degree of each vertex in L(K,) is 2(n — 2). Hence, the sum of the degrees of
all the vertices in L(K,) is n(n — 1)(r — 2), which is twice the size of L(K,).

Find the order and size of the line graph L(G) of a simple graph G with 7 vertices and m edges.

Solution. By definition, the order of L(G) is m. In counting the number of edges in L(G), we have to examine
only those vertices in G with degree more than 1. Each edge of L(G) cotresponds to a pair of vertices. Let V =
{1,2, . .., n} be the vertex set of G, and let d, be the degree of vertex i. If d, > 1, any two of the d; edges that
are incident at vertex i can be chosen in C(d;, 2) ways. Two edges ¢ and e’ of G that are incident at vertex i
correspond to two adjacent vertices in L(G) joined by an edge. Let the degrees of the verticesof Gbed,, d,, . . . ,
d,. Thus the total number of edges in L(G) is

r=0C@d, 2+ Cd.2) + -+ C(d,, 2)

19

Then

F = dl(dl _ 1) o dn(dn - 1)
2 2

P +---+ @)yl —ld +---+d)} _ {{d)+ -+ d)] — 2m}
2 2

Suppose G is a simple graph with five vertices with degrees 1, 2, 3, 3, and 3. Find the number of vertices
and edges in L(G).

Solution. The sum of degrees is 12, so G has six edges. Thus L(G) has six vertices. The sum of the squares
of the degrees is 32. Hence, the number of edges in L(G) is (32 — 12)/2 = 10.

Find the line graph of (a) a simple path with k edges, where k > 1, and (b) the cyclic graph C, with n
edges, where n > 2.

Solution.

(a) The line graph of a path with k edges is a path with (k — 1) edges.
(b) 'The line graph of C, is C,.

Show that there is no graph G such that L(G) = K, ;.

Solution. Since K ; has four vertices, if there is a graph G it should have four edges. Suppose these four
edges are a, b, ¢, and d. Assume that the left vertex of K, . corresponds to the side a and that the other three
correspond to the right vertices. There is no graph G with four sides a, b, ¢, and d such that ¢ has a vertex in
common with the three edges and at the same time no two of these three edges have a vertex in common.
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Construct an example to show that if L(G) and L(H) are isomorphic, it is not necessary that G and H
are isomorphic.

Solution. It is easy to see that L(K3) = K; = LK, 3).

Show that (@) a graph G is isomorphic to its line graph if and only if the degree of each vertex is 2,
(b) a connected graph is isomorphic to its line graph if and only if it is a cyclic graph, and (c¢) the line
graph of a connected graph G is (isomorphic to) K, if and only if G is (isomorphic to) K, when
n>3.

Solution.

(a) If the degree of each vertex of G is 2, the degree of each vertex of L(G) is also 2, and G and L(G) both have
the same number of vertices and the same number edges. So G and L(G) are isomorphic. Conversely, if both
G and L(G) are isomorphic, they both have the same number of vertices and same number of edges, and the

degree of each vertex is 2.
(b) This is a special case of (a).
() fn>3 LK, =K, Conversely, if L(G) = K,, Ghas n edges, and all these edges have exactly one vertex

ne

in common since the degree of each vertex in K, is (n — 1.

Let X be the set of all the vertices and edges of a graph G with n vertices and m edges. Construct a
graph 7(G) = (X, F) in which two elements x and y are joined by an edge if (a) x and y are adjacent
vertices in G, (b) x is a vertex and y is an edge such that one of the vertices of y is x, or (c) if both x
and y are edges, they have a vertex in common. The graph thus constructed is called the total graph
of the graph. Construct the total graph of the complete graph with three vertices.

Solution. The total graph is a four-regular graph with six vertices.

TREES AND SPANNING TREES

2.50

251

Show that a graph is a tree if and only if there is a unique path between every pair of vertices in the
graph.

Solution. Suppose the graph G is a tree. Let v and w be any two vertices in G. Since G is connected, there
is a path P between v and w. If @ is another path between these two vertices, let e = {v,, v; . |} be the first edge
in P that is not in Q as we go from v to w along P. Let W and W' be the set of intermediate vertices between v;
and w in P and O, respectively. If W and W' have no vertices in common, we have a cycle in the graph that is
acyclic by assumption. If the intersection of W and W' is not empty, let u be the first common vertex as we go
from v, to w either along P or along Q. In this case, we also locate a cycle in the graph. Hence, there is a unique
path between every pair of vertices in the tree. Conversely, let G be a graph in which there is a unique path between
every pair of vertices. Then G is connected. Suppose G is not a tree. Then there is a cycle C in G. Obviously, there
are two paths between any pair of vertices in C, which contradicts the hypothesis.

Show that a graph is a tree if and only if it is connected and every edge in it is a bridge.

Solution. If G is a tree, it is connected by definition. By Problem 2.50, there is a unique path between every
pair of vertices in G. In particular, edge ¢ joining two vertices v and w is the path P: v, e, w. If e is deleted, there
is no path between v and w. Thus every edge in a tree is a bridge.

To establish the converse, suppose the connected graph in which every edge is a bridge is not a tree. Let G’
be the subgraph of G obtained from G after deleting edge e = {v, w} belonging to some cycle C in G. This graph
G’ is not connected since ¢ is a bridge in G. Let p and ¢ be any two arbitrary vertices. Since G is connected, there
is a path P between p and g in G. If e is not an edge in this path P, P is a path in G' between p and g. Suppose €
is an edge in P. Let P, be the subpath of P between p and v, and let P, be the subpath of P between w and g.
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Moreover, let P’ be the unique path between v and w in the cycle that does not contain e. Suppose Q is the union
of these three paths. Then Q is a path in G' between p and g. Thus there is a path between every pair of vertices
in G'. But G’ is not a connected graph. This is a contradiction.

Show that a graph with n vertices is a tree if and only if it is connected and has (n — 1) edges.

Solution. Suppose G is a tree with n vertices. It is a connected graph. We prove that it has (n — 1) edges
by induction on ». If n = 1, it is certainly true. Assume that it is true for n = 1, 2, ... ,{(n—1). Since every
edge is a bridge (as established in Problem 2.51), the subgraph G’ obtained from G after deleting an edge will have
two components G, and G, with n, and n, vertices, respectively, where n, + n, = n. By the induction hypothesis,
the number of edges in both the components together is (n, — 1) + (n, — 1) = (n — 2). Thus the number of edges
inGwillbe m — 2y + 1 = — 1).

Suppose the connected graph G with n vertices and (n — 1) edges is not a tree. Then it has an edge e that is
not a bridge. If e is deleted, the resulting subgraph is still a connected graph with » edges and (n — 2) edges. We
continue this process of locating edges that are not bridges and deleting them until we get a connected subgraph
G’ with n vertices and (n — k) edges (where k > 1) in which every edge is a bridge. But G’ is a tree, so it should
have (n — 1) edges. Thus n — 1 = n — k, where k > 1. This is a contradiction.

Show that a graph with n vertices is a tree if and only if it is acyclic and has (n — 1) edges.

Solution. If G is a tree with 1 edges, it is acyclic by definition and has (n — 1) edges, as established in
Problem 2.52. On the other hand, consider an acyclic graph G with » vertices and (n — 1) edges. Suppose G is not
connected. Let the components of G be G, = 1,2, . . . , k) such that G, has n; vertices, where n, + n, +
.-+ + 5, = n. Notice that each component G, is a tree with n, — 1 edges. Thus the total number of edges in G is
n — k, where k > 1. This contradiction establishes that G is connected. Thus G is a tree.

Show that a graph G is a tree if and only if it is acyclic and whenever any arbitrary two vertices in &
are joined by an edge, the resulting enlarged graph G’ has exactly one cycle.

Solution. If (7 is a tree, it is connected and acyclic. Let u and v be any two nonadjacent vertices in . There
is a unique path between « and v. If we join u and v by an edge, this edge and path P create a unique cycle in the
enlarged graph G'. On the other hand, suppose G is an acyclic graph in which # and v are two any arbitrary
nonadjacent vertices such that the linking of the two by a new edge creates a unique cycle in G'. This implies that
there is a path in G between u and v. So G is connected and hence is a tree.

Show that a graph G is a tree if and only if it is connected and whenever any two arbitrary vertices in
G are joined by an edge, the resulting enlarged graph G’ has exactly one cycle.

Solution. If G is a tree, it is connected and acyclic. If two nonadjacent vertices are joined by an edge, the
unique path G between the two vertices and the edge together form a unique cycle. On the other hand, suppose G
is connected. There cannot be a cycle in G since the enlarged graph GG’ obtained by joining two nonadjacent vertices
has a unique cycle. So G is a tree. '

Prove Theorem 2.5.

Solution. The proof follows from Problems 2.50 through 2.55.

Prove Theorem 2.7: A graph is connected if and only if it has a spanning tree.

Solution. Let G be a connected graph. Delete edges from G that are not bridges until we get a connected
subgraph H in which each edge is a bridge. Then H is a spanning tree. On the other hand, if there is a spanning
tree in G, there is a path between every pair of vertices in G: thus G is connected.
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Prove Theorem 2.8: Let G be a simple graph with n vertices. If a spanning subgraph H satisfies any
two of the following three properties, it will satisfy the third property also. (i) H is connected. (i) H
has (n — 1) edges. (iit) H is acyclic.

Solution. The proof follows from Problems 2.54 and 2.55.

Show that if a graph is disconnected, its complement is connected.

Solution. If a graph G is not connected, it will have at least two components. Suppose i and v are two
vertices belonging to two different components of G. Then these two vertices are adjacent in the complement of
the graph. In other words, G and its complement cannot both be disconnected graphs. So whenever G is a discon-
nected graph, its complement is necessarily a connected graph.

A vertex of degree 1 in a graph is called a terminal vertex (or pendant vertex or end-vertex). Show
that every tree of order two Or more has at least two terminal vertices.

Solution. Suppose the degrees of the n vertices of a tree are d;, where i = 1,2, . . . ,n Thend, + d, +
v+ d =2n—2.1f each degree is more than 1, the sum of the n degrees is at least 27 So there is at least one
vertex (say vertex 1) with degree 1. Then d, + dy+ - td,=2n— 1. At least one of these (1 — 1) positive
numbers is necessarily 1. So there is one more vertex of degree 1. Thus at least two of the degrees must be 1.

Show that the vector d = [d, d, ... djJof positive integers, where d=d=... =4, is the
degree vector of a tree with n vertices if and only if d; + dy +--++td,=20n— 1).

Solution. The necessity is obvious. We prove the sufficiency by induction on 7. The property holds for
n =1 and n = 2. Assume that the property holds for (n — 1) integers, where n = 3 1et0<d =dy =0
=d, and dy + dy + - +d, = 2n — 1). At least one of these numbers is 1. So d; = L. Also d, > 1. Let
d=d,—1.Thend, + -+ + d,_, +d =2n—12. So by the induction hypothesis, there exists a tree T with
(n — 1) vertices and degrees dody - - - 5 dia and 4'. Construct a ncw vertex x and join that to the vertex of
degree d’. Now we have a tree with n vertices with degrees L, d, . - - » d,. Thus the property hold for n. (Notice
that an arbitrary vector satisfying the propetty stipulated in the problem could also be the degree vector of a graph
that is not a tree.)

Prove Theorem 2.6: The center of a tree is cither a singleton set consisting of a unique vertex or a set
consisting of two adjacent vertices.

Solution. If a tree has two vertices, the center is the set of those two vertices. If there are three vertices in
a tree, the center is the set consisting of the nonterminal vertex. A tree with four vertices is either K, 5 (with three
terminal vertices) or a path with two terminal vertices. In the former case, the cardinality of the center is 1; in the
latter case, the center is the set of two adjacent nonterminal vertices. More generally, let T be a tree with five or
more vertices, and let T' be the tree obtained from T by deleting all terminal vertices of T’ simuitaneously. Observe
that the ecceniricity of any vertex in T’ is one less than the eccentricity of that vertex in T. Thus the center of T'is
equal to the center of T'. If the process of deleting terminal vertices is carried out successively, we finally have a
tree with four or fewer vertices.

A path P between two distinct vertices in a connected graph G is a diametral path if there is n0 other
path in G whose length is more than the length of P. Show that (a) every diametral path in a tree will
pass through its central vertices, and (b) the center of a tree can be located once a diametral path in the
tree is discerned.

Solution. Let ¢ be the length of any diametral path in a tree, and let P be a fixed diametral path joining the
vertices v and w.
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(a) Ifriseven, there exists a unique vertex ¢ in P that is equidistant from either v or w. In this case, c is a central
vertex. Suppose Q is another diametral path. Since the graph is connected, the two diametral paths should
have a vertex in common. If ¢ is not a common vertex, it is possible to obtain path whose length is more than
t. So if the length of a diametral path is even, there exists a unique central vertex on that path through which
every diametral path passes.

(b) If tis odd, there exist two vertices ¢’ and ¢” in £ such that the number of edges in the path between v and ¢
is equal to the number of edges between w and ¢”. In this case, both ¢’ and ¢” are central vertices. Suppose
Q is another diametral path. Then both P and  share the edge joining ¢’ and ¢” as a common edge. Thus
once a diametral path in a tree is located, it is easy to find the center of the tree.

A tree with exactly one vertex v of degree 2 in which the degree of every nonterminal vertex (other
than v) is 3 is called a binary tree, and the root of the binary tree is the unique vertex of degree 2.
Show that the number of vertices in a binary tree is odd.

Solution. Every vertex other than the root is an odd vertex. The number of odd vertices is even, If we now
include the root also, the total number of vertices is odd.

Show that the number of terminal vertices in a binary tree with n vertices is (n + 1)/2.

Solution. Suppose there are k terminal vertices. Then the sum of the degrees of the n vertices is k + 2 +
3(n — k — 1), which is equal to 2(n — 1) since the graph is a tree. Thus k = (n + 1)/2.

Show that if T is a tree with r vertices and G is a graph with 8(G) = (n — 1), T is isomorphic to a
subgraph of G.

Solution. The proof is by induction on . This is true when the tree has two vertices. The induction hypothesis
is that if 7' is any tree with (n — 1) vertices and G’ is any graph with 8(G') = (n — 2), then 7" is isomorphic to
a subgraph of G'. Let T be any tree with n vertices, and let G be any graph with 8(G} = (n — 1). Let v be any
terminal vertex in 7, and let u be the vertex adjacent to vin 7. Then T — vis a tree with (n — 1) vertices. Moreover,
Gy = (n — 1) > (n — 2). So by the induction hypothesis, the tree T — v is isomorphic to a subgraph of G. Let
u' be the vertex in G that corresponds (for this isomorphism) to vertex u. Then 8(z’) = (n — 1) in G. The graph
T — v has only n — 2 vertices in addition to vertex u. So there should be a vertex w in G that is adjacent to '
such that w does not correspond to any vertex in 7 — v. By identifying v with vertex w, we see that T is isomorphic
to a subgraph of (. Thus the theorem is true for » as well.

Show that a tree with n vertices is isomorphic to a subgraph of the complement of the cyclic graph with
(n + 2) vertices.

Solution. The complement of the cyclic graph with (n + 2) vertices is an r-regular graph G, where » =
n > n — 1. So by Problem 2.66, any tree with n vertices is isomorphic to a subgraph of G.

A graph is said to be a unicyclic graph if it has exactly one cyclic subgraph. Show that if any two of
the following conditions are satisfied in a graph with »n vertices and m vertices, the third condition also
is satisfied: (a) G is connected, (b) G is unicyclic, and (¢) n = m.

Solution.

(a) Suppose G is connected and unicyclic. Let the vertices in the cycle be v, v,, . . . , v, and let 7; be a tree
with root at v; containing n, — 1 vertices, excluding the root and the two roots adjacent to the root in the
cycle. Then the total number of vertices in the graph is (rn, — 1) + (#, — 1) + --- + (n, — 1) + k, which is
equal to the total number of edges in G.

(by Suppose G is connected and n = m. Since m > (n — 1). there is at least one cycle. Suppose there is more
than one cycle. Then m > n.

(c) Suppose G is unicyclic and m = n. If G is not connected. m < n.
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Show that each labeled tree with n vertices corresponds to a unique vectors = [s; 85 - Sp-2ls where
s; EN={12, ... ,nlfori=1,2, ... ,(n— 2).

Solution. Let 7 be any labeled tree, and let W be the set of terminal vertices in T. Arrange the vertices in W
such that their labels are in increasing order. If w, is the first element in W, find the label s, of the unique vertex
adjacent to w,. Then delete w, from 7'to obtain a tree T'. Let W’ be the set of all terminal vertices in T'. Arrange
the vertices in the set W' such that their labels are in increasing order. If wj is the first element in W', find the label
s, of the unique vertex adjacent t0 w} in T'. The operation is repeated until s, 5 has been defined, leaving behind
a tree with exactly two vertices with labels p and g, where p < g. We take s, , = p. Thus each spanning tree
defines a unique vector with (n — 2) components.

Find the unique vector corresponding to the labeled tree shown in Fig. 2-19.

Fig. 2-19

Solution.  Since there are 12 vertices in T, we are looking for a vector s with 10 components, each component
being an integer between 1 and 12. Here W = {5, 6, 7, 8, 9, 10, 11, 12} is the set of all terminal vertices in T,
with labels arranged in increasing order. The vertex adjacent to 5is 1, s0.5; = 5. Deleting vertex 5 from T, we get
the subtree (the current tree, again denoted by T') in which the set of terminal vertices (the current set, again denoted
by W)is W = {1, 5,6,7.8,9, 10, 11, 12}. The vertex adjacent to 1 is 4, so s, = 4,

Deleting 1 from the current tree, we get W=1{6,7,8,9,10,11,12} and 55 = 2. In the next iteration, W =
{7,8,9,10,11, 12} and s, = 2 In the next iteration, W = {2, 8,9, 10, 11, 12} and 55 = 4, In the next iteration,
W = {8,9, 10, 11, 12} and 55 = 3. In the next iteration, W = {9, 10, 11, 12} and s; = 3. In the next iteration,
W = {10, 11, 12} and 53 = 3. In the next iteration, W = {11, 12} and s, = 4. At the final stage, we have the tree
consisting of two vertices 4 and 12, s0 5y = A Thuss=1[1 4 2 2 4 3 3 3 4 4jis the unique vector
defined by the given labeled trec.

Show that every vector s with (n — 2) components, where each component is an element of N =
(1,2, . . . ,n}, corresponds to a unique labeled tree with n vertices.

Solution. Observe that in Problem 2.69, when we construct the vector s for the given labeled tree, the vertex
i (with degree d,) of T occurs d; — 1 times in s. In particular, terminal vertices do not appear in 5. We exploit this
idea to prove the reverse implication.

Let v, = the first element in N that is not in s, v, = the first element in N — {v,} that is not in the subvector
s — 5, obtained by deleting s, from s, v = the first element in N — {v,, v,} that is not in the subvector s — s, =
s, obtained by deleting s; from s — s, and so on. This process is repeated until we get the set
(Vi Vs « - - » Vun). The two remaining vertices are denoted by x and y. Now join s; and v, for each i. Also join
x and y. The graph thus defined wiih 7 vertices has n — 1 edges and acyclic-giving a spanning tree that is unique.
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Obtain the unique labeled tree corresponding to the vectors = {1 4 2 2 4 3 3 3 4 4]

Solution. Since there are 10 components in s, we are looking for a labeled tree with 12 vertices. So N =
{1,2,3,4,5,6,7,8,9, 10, 11, 12}. Since the elements in s are 1, 2, 3, and 4, the first element in N that is not in
515 5. Sov, = 5, and we join 5, and v, by an edge. Thus the first edge in T is obtained by joining 1 and 3.

At this stage, N — {v,} = {1, 2, 3,4,6,7,8,9, 10, 11, 12}, and the elements in the subvector § — s, =
4 2 2 4 3 3 3 4 4lare?,3, and 4. The first element in N — {v,} that does not appear in the subvector
is 1. Sov, = [. We now join 4 and 1.

At the next iteration, N — {v, v,} = {2,3,4,6,7, 8,9, 10, 11, 12}, and the corresponding subvector s —
5 —si8[2 2 4 3 3 3 4 4] Thus vy = 6. Join 2 and 6.

Continuing this process, we get v, = 7, vs = 2, v, = 8, v, = 9, vy = 10, vy = 3, and v,;, = 11. We then join
each of these vertices to the corresponding components of the subvector [2 4 3 3 3 4 4], whichis obtained
by deleting the first 3 components of s.

At the end, we have the set N — {5, 1,6, 7,2, 8,9, 10, 3, 11} consisting of exactly two vertices, 4 and 12.
At this stage we join 4 and 12. The unique labeled tree is the tree in Fig. 2-19, as expected.

Prove Theorem 2.9 (Cayley’s theorem): The number of distinct labeled trees with n vertices is n" 2,
which is also equal to the number of spanning trees in K,,. (@) Show that the number of distinct labeled
trees with » vertices is n”~2. (b) Show that the number of spanning trees in K, is also n*~2,

Solution.

(@) Avectors =1[s; s, - 5, ,]of (n — 2) components from the set N = {1, 2, . . . , n} can be formed in
n"~* ways. From Problems 2.69 and 2.71, we see that there is a bijection between the set of all distinct labeled
trees with » vertices and the set of these vectors.

(b) Every labeled tree with n vertices corresponds to a unique spanning tree in K,. On the other hand, every
spanning tree in K, is a uniquely labeled tree. Thus the total number of spanning trees in K, is n"~2,

A directed tree T such that there is a unique vertex v of indegree zero and that the indegree of every
other vertex is 1 1s called an arborescence rooted at v. Find the number of distinct labeled arborescences
with n vertices.

Solution. If T is a tree with n vertices, we can choose a root v to construct an arborescence in n ways. Once
a root v is selected, a unique arborescence rooted at v is obtained by orienting each edge so that any vertex w can
be reached from v by a unique directed path. By Cayley’s theorem, for each choice of a root there are n”~2 labeled
arborescences. Thus there are n.n"~2 = n”~! labeled arborescences with » vertices.

(Palmer’s Generalization of Cayley’s Theorem) A tree with n vertices is an edge-labeled tree if each
edge is assigned a unique positive integer between 1 and (n — 1). Show that the number of distinct
edge-labeled trees with (n — 1) labeled edges and » unlabeled vertices is n” 3.

Selution. Suppose v is a fixed vertex in a labeled tree with n vertices. There is a unique path P from any
vertex 7 to the vertex v. Define f,(i) = j if j is the first vertex in the path P after the vertex i. Thus f,(f) = jfori =
L2, ...,(m— 1. Thefunctionf: {1,2, . . . ,(n — D} = (1,2, . . ., n} is the tree function with respect
to v of the vertex labeled tree. Assign the label i to the edge joining 7 and j if f,(i) = j. Thus each edge is assigned
a label from the set {1,2, . . . ,(n — D}

Let X be the set of all vertex labeled trees, and let ¥ be the set of all edge labeled trees with unlabeled vertices.
The cardinality of X is n”~2 by Cayley’s theorem.

We have a mapping of X into ¥ via the tree function. If n = 3, each edge-labeled tree is the image of n vertex-
labeled trees since the vertex v can be chosen in n ways and the labels of the other vertices are uniquely determined
by the labels of these edges. Thus there are n"~%n = n”~* edge-labeled trees with n unlabeled vertices.

Let G be an undirected graph with 7 labeled vertices and m labeled edges. Assign each edge an arbitrary
orientation, and let A be the incidence matrix of the resulting digraph. Show that (a) if G is connected,
the rank of A is (n — 1); and (b) the determinant of any nonsingular submatrix of A is either — 1 or 1.
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Solution.

(@) Each column has (n — 2) zeros. The other two entries are 1 and — 1. So the sum of all n rows is a zero vector
with m components. Thus the rank of A is less than n. If k < n, the sum of any k rows should not be zero,
otherwise, G would not be connected. So any set of kK rows is linearly independent if k < 7. Thus the rank of

Ais at least (n — 1).

(b) If Bisany nonsingular r X 7 submatrix, no column in B can be the zero vector. If each column of B contains
two nonzero entries, B will become nonsingular. So there is at least one column in B with exactly one nonzero
entry. We then expand the determinant of B along this column. Thus the determinant of B is the product of
the nonzero entry in that column and the determinant of B', where B’ is a (k — D X&Ek—-D nonsingular
submaitrix. By a simple inductive argument, we conclude that the determinant of B is either —1 or L.

Suppose an arbitrary incidence matrix A of a connected graph G = (V, E) with n vertices is defined as
in Problem 2.77. The reduced incidence matrix A, is the matrix obtained from A by deleting a row,
say the nth row. Show that any (n — 1) X (n — 1) submatrix B of matrix A, is nonsingular if and only
if the edges corresponding to the columns of B constitute the edges of a spanning tree in G.

Solution. Let Bbean (n — DXhr-1 submatrix of the reduced incidence matrix. Let F = (V, E) be the
spanning subgraph of G defined by the columns of B. Then B is the reduced incidence matrix of F and is nonsingular
if and only if its rank is (n — 1). Hence, B is nonsingular if and only if F 18 connected. But F has n vertices and
(n — 1) edges. So B is nonsingular if and only if F is a spanning tree.

(Matrix Tree Theorem) Show that if A, is the reduced incidence matrix (as defined in Problem 2.77)
of a connected graph G and if (AT is its transpose, the number of spanning trees in G is equal to the
determinant of A (A)".

Solution. Suppose Pisap X g matrix and Q is a ¢ X p mairix, where p = ¢. Then it is a known result
(known as Cauchy-Binet formula in matrix theory) that det PQ = T (det B)(det C), where the sum is taken over
all p X p matrices B and C of P and Q such that the columns of P in B are aumbered the same as the rows of O
inC.LetP=A,and 0 = (A,). Then (det A,)(det (A7) = 2 (det B)(det By = X (det B)* = 3 1, where the last
summation is over all (n — DXn—1 nonsingular submatrices of A,. According to Problem 2.77, each such
matrix corresponds to a spanning tree.

If e is an edge in graph G, G — ¢ is the subgraph of G obtained from G by deleting € from G. After
edge e joining the vertices v and w is deleted, suppose the vertices v and w are merged to constitute a
single vertex. The resulting graph G' is called the contracted graph obtained by contracting edge €
and is denoted by G.e. If 7(G) is the number of spanning trees in G, show that 7(G) = G — e) T
7(G.e).

Solution. Every spanning tree in G that does not contain edge € corresponds to a spanning tree inG — e
Every spanning tree in G that contains edge e corresponds to 2 spanning tree in the contracted graph G.e.

Show that if T, = (V,, E;), where i=1,2, ..., kare subtrees of T = (V, E) such that every pair of
subtrees have at least one vertex in common, the entire set of subtrees have a vertex in common,

Solution. Let n be the number of vertices of T. The proof is by induction on n. The desired property holds
if p = 2. Assume that the property holds for all trees with at most 72 vertices.

Let T be a tree with (n + 1) vertices in which x is a terminal vertex adjacent to a vertex y. Suppose the subtrees
T T o - -5 T of T are such that every pair of them has at least one vertex in common. If x is not a vertex in
any of these trees, the trees are subtrees of a tree with n vertices; thus the property holds for the graph T with
(n + 1) vertices. 1f one of these trees is the tree with just one vertex x, x is common to all the vertices; thus the
property holds in this case.

We now examine the remaining case. Let T'(x) be the subtree of 7, obtained by deleting x from T,. If x is a
vertex common to T; and 75, y is also a vertex common to T; and 7. Therefore, y is a common vertex for 7{(x) and
T(x). Thus by the induction hypothesis, the subtrees T,(x) have a common vertex. Therefore, the entire collection
{7} bas a vertex in common.



CHAP. 2] CONNECTIVITY 53

2.81

Obtain a DFS spanning tree starting the search from vertex 2 in the graph shown in Fig. 2-20.

Fig. 2-20

Solution. From 2, we go to 3 and then from 3 to 4. Return to 3 and from 3 to 5. Return to 3 and then 3 to
6,610 7,7to 8, and finally 8 to 1. If the search starts from 2, the edges of a DFS spanning tree are {2, 3}, {3, 4},
{3,5}, {3,6}, {6,7}, {7, 8}, and {8, 1}.

STRONG ORIENTATIONS OF GRAPHS
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Show that a digraph G = (V, E) is strongly connected if and only if the following property is satisfied:
For every nonempty subset X of vertices, there exists an arc from a vertex x in X to a vertex v in the
complement of X.

Solution. Suppose G = (V, E) is strongly connected and X is an arbitrary nonempty subset of V. Let u be
an arbitrary vertex in X and y be an arbitrary vertex in ¥ = (V — X). Then there is at least one directed path P
from « to v that will have an arc of the form (x, y), wherex € X andy € Y. So a strongly connected graph satisfies
the property. To prove the sufficiency part, assume that G is a digraph that satisfies the property. Suppose G is not
strongly connected. Suppose » and v are two vertices such that there is no directed path from u to v in the digraph.
Let X be the set of all vertices that are terminal vertices of directed paths that originate from the vertex u, By
assumption, X is a proper subset of V. So there exists an arc e from vertex x € X to vertex yE (V—X). Now x
is the terminal vertex of a directed path P from u, and this path can be enlarged into path P’ from u to y using arc
e. Thus the vertex y cannot be in (V — X), which is a contradiction.

Show that if a tournament has a directed circuit, it has a directed triangle.

Solution. If a tournament G = (V, E) has a directed circuit, it will have a directed cycle C. Suppose C:
Vi =V, .- >, — v s a directed cycle of minimum length in G. We have to show that k = 3. Suppose
k > 3. There are two cases: (i) There exists an arc from v, to v,_, creating a directed cycle passing through three
vertices. This is a contradiction. (i/) There is an arc fromv,_, to v, creating a cycle of length (k — 1). This also is
a contradiction, So k = 3.

If G is a tournament with n vertices, the vector whose components are the n outdegrees arranged in a
nondecreasing order is called the score vector of the tournament. A tournament is a transitive tour-
nament if whenever (x, v) and (v, w) are arcs, (1, w) is also an arc. Show that a tournament G with n
vertices is transitive if and only if its score vectoris [0 1 2 ... (n — DI

Selution. Let G be a transitive tournament. In any tournament, the outdegree is at most (n — 1). Suppose
there are two vertices u and v with equal outdegrees. If there is an arc from  to v, the outdegree of u is more than
the outdegree of v. If there is an arc from v to u, the outdegree of v is more than that of u. In other words, in a
transitive tournament, the outdegrees are all distinct. Now suppose G = (V, E) is a tournament with score vector
s=[0 1 2 -« (m=DLIEV={v,v, ...,v},Ewil be the set {(vi, v): 1 = j <i = n} because of the
way the outdegrees are defined. Then G is obviously transitive.

Suppose D’ is the digraph obtained from a strongly connected mixed graph G (see Section 2.2) by
deleting an undirected edge e = {x, y} from G and replacing every other edge in G by two arcs in
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opposite directions. Let X be the set of all vertices v such that there is a directed path in D’ from x to
vy consisting of at least one arc. Likewise, let ¥ be the set of all vertices v such that there is a direct path
in D' from y to v consisting of at least one arc. If xisnotin ¥ and yis notin X, e = {x, y} is a bridge
in the mixed graph.

Solution. Notice that x is not in X and y is not in ¥ by definition. Let w be any vertex that is neither x nor
y. To go from x to w in G, (i) either we have to use a path emanating from x that does not go through y or (if) first
go to y using e, and then use a path from y to w. Thus w has to be either in X or in Y.

Suppose w is both in X and in Y. Then there is a directed path P, (using arcs from D) from x to w, and there
is a directed path P, (using arcs from D') from y to w. Let D(G) be the digraph obtained from G by converting
each edge into two arcs in opposite direction. By definition, G is strongly connected if and only if D(G) is strongly
connected. By hypothesis, there is a directed path P [consisting of arcs from D(G)] from w to x and a directed
path P, [consisting of arcs from D(G)] from w to .

There are three cases to be examined:

(i) Both P; and P, did not use e in cither direction. In that case, there is a path in D' from x 10 y that will imply
that y is in X, which is a contradiction, and there is a path in D' from y to x that will imply that x is in ¥,
which also is a contradiction.

(iiy Path P is from w10y, using arcs from D' and then using the arc (y, x), which will imply that there is a
directed path in D" from x to y. In that case, y will be in X, which is a contradiction.

(iii) Path P, is from w o Y, using edges from D' and then using the arc {x, y). This will imply that x is in ¥,
which is also a contradiction.

Thus sets X and Y are disjoint, consequently, there is no edge or arc connecting a vertex in X and a vertex in
Y. So the only reason that the mixed graph is connected is because of the existence of edge e joining x and y. In
other words, e is a bridge.

Show that if G is a strongly connected mixed graph, it is possible to convert any edge that is not a
bridge into an arc such that the resulting mixed graph is also strongly conaected.

Solution. Let e = {x, y} be any edge in a strongly connected mixed graph G. Construct X and Y as in
Problem 2.87. If ¢ is not a bridge, either x jsin Yoryisin X. If xisin ¥, edge e is converted into an arc from x
to y. If y is in X, edge e is con<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>