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Preface

In the early years of the 19th century the French mathematician J. B. J. Fourier
in his researches on heat conduction was led to the remarkable discovery of certain
trigonometric series which now bear his name. Since that time Fourier series, and
generalizations to Fourier integrals and orthogonal series, have become an essential
~ part of the background of scientists, engineers and mathematicians from both an ap-
plied and theoretical point of view. ‘

The purpose of this book is to present the fundamental concepts and applications of
Fourier series, Fourier integrals and orthogonal functions (Bessel, Legendre, Hermite,
and Laguerre functions, as well as others).

The book is designed to be used either as a textbook for a formal course in Fourier
Analysis or as a comprehensive supplement to all current standard texts. It should be
of considerable value to those taking courses in engineering, science or mathematics in
which these important methods are frequently used. It should also prove useful as
a book of reference to research workers employing Fourier methods or to those inter-
ested in the field for self-study.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems, together with illustrative and other descriptive material. The solved prob-
lems serve to illustrate and amplify the theory and to provide the repetition of basic
principles so vital to effective learning. Numerous proofs of theorems and derivations
of formulas are included among the solved problems. The large number of supple-
mentary problems with answers serve as a complete review of the material of each
chapter.

Considerably more material has been included here than can be covered in most
first courses. This has been done to make the book more flexible, to provide a more
useful book of reference, and to stimulate further interest in the topics.

I wish to take this opportunity to thank Henry Hayden and David Beckwith for
their splendid cooperation.

M. R. SPIEGEL

January 1974
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Chapter 1

Boundary Value Problems

MATHEMATICAL FORMULATION AND SOLUTION OF PHYSICAL PROBLEMS
In solving problems of science and engineering the following steps are generally taken.

1. Mathematical formulation. To achieve such formulation we usually adopt mathematical
models which serve to approximate the real objects under investigation.

Example 1.

To investigate the motion of the earth or other planet about the sun we can choose points as mathe-
matical models of the sun and earth. On the other hand, if we wish to investigate the motion of the
earth about its axis, the mathematical model cannot be a point but might be a sphere or even more accu-
rately an ellipsoid.

In the mathematical formulation we use known physical laws to set up equations

describing the problem. If the laws are unknown we may even be led to set up experi-

ments in order to discover them.

Example 2.

In describing the motion of a planet about the sun we use Newton’s laws to arrive at a differential
equation involving the distance of the planet from the sun at any time.

2. Mathematical solution. Once a problem has been successfully formulated in terms of
equations, we need to solve them for the unknowns involved, subject to the various
conditions which are given or implied in the physical problem. One important con-
sideration is whether such solutions actually exist and, if they do exist, whether they
are unique.

In the attempf to find solutions, the need for new kinds of mathematicai analysis —
leading to new mathematical problems — may arise.

Example 3.

J.B.J. Fourier, in attempting to solve a problem in heat flow which he had formulated in terms of
partial differential equations, was led to the mathematical problem of expansion of functions into series
involving sines and cosines. Such series, now called Fourier series, are of interest from the point of view
of mathematical theory and in physical applications, as we shall see in Chapter 2.

3. Physical interpretation. After a solution has been obtained, it is useful to interpret it
physically. Such interpretations may be of value in suggesting other kinds of problems,
which could lead to new knowledge of a mathematical or physical nature.

In this book we shall be mainly concerned with the mathematical formulation of physi-
cal problems in terms of partial differential equations and with the solution of such equations
by methods commonly called Fourier methods.
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DEFINITIONS PERTAINING TO PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation is an equation containing an unknown function of two
or more variables and its partial derivatives with respect to these variables.

The order of a partial differential equation is the order of the highest derivative
present.

Example 4.
2u
ox oy .
equation. Here u is the dependent variable while x and y are independent variables.
A solution of a partial differential equation is any function which satisfies the equation
identically. :
The general solution is a solution which contains a number of arbitrary independent
functions equal to the order of the equation.

= 2x —y 1is a partial differential equation of order two, or a second-order partial differential

A particular solution is one which can be obtained from the general solution by particu-
lar choice of the arbitrary functions. :

Example 5. R

As seen by substitution, u = %2y — lay?+ F(x) + G(y) is a solution of the partial differential equation
of Example 4. Because it contains two arbitrary independent functions F(x) and G(y), it is the general
solution. If in particular F(x) = 2sinz, G(y) = 8yt—5, we obtain the particular solution

u = w?y — lxy? + 2sine + 3yt — 5

A singular solution is one which cannot be obtained from the general solution by par-
ticular choice of the arbitrary functions.

Example 6.

If w = Lol Gl BF where % is a function of x and y, we see by substitution that both

u =xF(y) - [F(y)]? and u = x2/4 are solutions. The first is the general solution involving one arbitrary
function F(y). The second, which cannot be obtained from the ‘general solution by any choice of F(y),
is a singular solution.

A boundary value problem involving a partial differential equation seeks all solutions
of the equation which satisfy conditions called boundary conditions. Theorems relating to -
the existence and uniqueness of such solutions are called existence and uniqueness theorems.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS

The general linear partial differential equation of order two in two independent vari-
ables has the form

Pu Pu ~0%U u u o
where A,B,...,G may depend on z and y but not on u. A second-order equation with

independent variables # and y which does not have the “orm (1) is called nonlinear.

If G =0 identically the equation is called homogeneous, while if G = 0 it is called non-
homogeneous. Generalizations to higher-order equations are easily made.

Becagse of the nature of the solutions of (1), the equation is often classified as elliptic,
hyperbolic, or parabolic according as B?—4AC is less than, greater than, or equal to zero,
respectively. '
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SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

1.

9% 9%
Y _ %Y

Vibrating string equation 22 T Ca

This equation is applicable to the small
transverse vibrations of a taut, flexible string,
such as a violin string, initially located on the 4
r-axis and set into motion (see Fig. 1-1). The
function y(z,t) is the displacement of any
point x of the string at time t. The constant yl, t) x
a® = 7/u, where 7 is the (constant) tension in |
the string and . is the (constant) mass per
unit length of the string. It is assumed that
no external forces act on the string and that Fig.1-1
it vibrates only due to its elasticity. }
The equation can easily be generalized to higher dimensions, as for example the
vibrations of a membrane or drumhead in two dimensions. 'n two dimensions, the
equation is

o’z /% 9%
w = (G
. . u
Heat conduction equation 5 K V2

Here u(x,y,2,t) is the temperature at position (x,¥,2) in a solid at time ¢{. The con-
stant «, called the diffusivity, is equal to K/ou, where the thermal conductivity K, the
specific heat ¢ and the density (mass per unit volume) ;. are assumed constant. We call
V2u the Laplacian of wu; it is given in three-dimensional rectangular coordinates

x,¥,2) by : ,
( ) u &*u azﬁ

ax? | oy | 92

Vu

Laplace’s equation Vv = 0

This equation occurs in many fields. In the theory of heat conduction, for example,
v is the steady-state temperature, i.e. the temperature after a long time has elapsed,
whose equation is obtained by putting du/dt = 0 in the heat conduction equation above.
In the theory of gravitation or electricity v represents the gravitational or electric
potential respectively. For this reason the equation is often called the potential equation.

The problem of solving WV2v =0 inside a region ® when v is some given function
on the boundary of ® is often called a Dirichlet problem.

u L, 0%u

Longitudinal vibrations of a beam B = Com

This equation describes the motion of a beam (Fig. 1-2, page 4) which can vibrate
longitudinally (i.e. in the x-direction) the vibrations being assumed small. The variable
u(x, t) is the longitudinal displacement from the equilibrium position of the cross section
at #. The constant ¢> = E/;, where E is the modulus of elasticity (stress divided
by strain) and depends on the properties of the beam, ;. is the density (mass per unit
volume).

Note that this equation is the same as that for a vibrating string.
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5. Transverse vibrations of a béam — 4+ b2 =

This equation describes the motion of a beam (initially located on the z-axis, see
Fig. '1-3)“which is vibrating transversely (i.e. perpendicular to the z-direction) assuming
small vibrations. In this case y(z,1?) is the transverse displacement or deflection at any
time t of any point . The constant b2 = EI/Au, where E is the modulus of elasticity,
I is the moment of inertia of any cross section about the z-axis, A is the area of cross
section and p is the mass per unit length. In case an external transverse force F(z,1)
is applied, the right-hand side of the equation is replaced by b*F(x, t)/EI.

s

Fig.1-2 . . Fig.1-3

THE LAPLACIAN IN DIFFERENT COORDINATE SYSTEMS

" The Laplacian V2 often arises in partial differential equations of science and engi-
neering. Depending on the type of problem involved, the choice of coordinate system may
be important in obtaining solutions. For example, if the problem involves a cylinder, it
will often be convenient to use cylindrical com’d’mates while if it 1nvolves a sphere, it will:
. be convenlent to use spherical coordmates
The Laplac1an in cyhndrlcal coordinates (p, ¢, %) (see Fig. 1-4) is given by

‘ ' Pu.  low 18w w0
2 = 2% - — .
V % . 6’)2’ ‘p'ap + pzaq’)z + 9z? ; (2)
The transformation equations ‘between i'ectangul‘ar and cylindrical coordinates dre
. w=gcmsp y=psing z=2 @
Where pEO 0=¢ <2z, —x <2< 0w, ‘

The Laplacian i in spherical coordmates (’r 9, ) (see Fig. 1-5) is glven by

Fig.1-4 ﬁ Fig.1-5
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10 ou 1 a/ . ou 1 %u
2 _ i 2 il — —_—
v = 72 9r <T ar> + 72 8in 0.96 <s1n 6 60> + 72 8in? § 9¢2 - (4)

The transformation equations between rectangular and spherical coordinates are

x = rsinfcos¢, y = rsinfdsing, z = rcosd (%)

where r=0, 0=0=x, 0= ¢ <2n.

METHODS OF SOLVING BOUNDARY VALUE PROBLEMS

There are many methods by which boundary value problems involving linear partial
differential equations can be solved. In this book we shall be concerned with two methods
which represent somewhat opposing points of view.

In the first method we seek to find the general solution of the partial differential equa-
tion and then particularize it to obtain the actual solution by using the boundary condi-
tions. In the second method we first find particular solutions of the partial differential
equation and then build up the actual solution by use of these particular solutions. Of the
two methods the second will be found to be of far greater applicability than the first.

1. General solutions. In this method we first find the general solution and then that par-
ticular solution which satisfies the boundary conditions. The following theorems are of
fundamental importance.

Theorem 1-1 (Superposition principle): If u,,us, ..., u. are solutions of a linear ho-
mogeneous partial differential equation, then ey +couz+ --- + Cnlhn,
where c1, ¢s, . . ., ¢, are constants, is also a solution.

Theorem 1-2: The general solution of a linear nonhomogeneous partial differential equa-
tion is obtained by adding a particular solution of the nonhomogeneous
equation to the general solution of the homogeneous equation.

We can sometimes find general solutions by using the methods of ordinary differen-
tial equations. See Problems 1.15 and 1.16.

If A,B,...,F in (1) are constants, then the general solution of the homogeneous
equation can be found by assuming that « = e**%  where a and b are constants to be
determined. See Problems 1.17-1.20.

2. Particular solutions by separation of variables. In this method, which is simple but
powerful, it is assumed that a solution can be expressed as a product of unknown func-
tions each of which depends on only one of the independent variables. The success of
the method hinges on being able to write the resulting equation so that one side depends
on only one variable while the other side depends on the remaining variables — from
which it is concluded that each side must be a constant. By repetition of this, the un-
known functions can be determined. Superposition of these solutions can then be used
to find the actual solution. See Problems 1.21-1.25.
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Solved Problems

MATHEMATICAL FORMULATION OF PHYSICAL.PROBLEMS

11

1.2

1.3.

Derive the vibrating string equation on page 3.

Referring to Fig. 1-6, assume that As represents el
an element of arc of the string. Since the tension is A/sA___ b2 1
assumed constant, the net upward vertical force acting , “n _I 14
on As is given by | -
. . 6y
rsing, — 7 sinég, 1) o= :
|
. . _ . | |
) Since sin 6 = tan ¢, approximately, for small angles, x o+ Az
this force is
3y - Fig. 1-6
Tax z+Ax Tam z 2) 18- 16
. . oy . . 0y oy
using the fact that the slope is tane = -=. We use here the notation -%| and -*> for the
ox 0x |z 0x |x+Ax

partial derivatives of y with respect to x evaluated at x and = + Ax, respectively. By Newton’s law
this net force is equal to the mass of the string (z As) times the acceleration of As, which is given by

2
Py + ¢ where ¢>0 as As > 0. Thus we have approximately

at2
J - (uAs)<327§+e> ‘ @)

If the vibrations are small, then As == Ax approximately, so that (3) becomes on division by u Ax:

9y

_ %
™| ax

x+Ax ox

9 — %
-+ 0%

z+Az dx iz g2y
© Ax T

e 4

- Taking the limit as Az — 0 (in which case ¢ = 0 also), we have

where a? = 7/

rafoy\ _ Py a8
wox\ax, a2 %7 G T %oz

Write the boundary conditions for a vibrating string of length L for which (a) the
ends =0 and x =L are fixed, (b) the initial shape is given by f(z), (c) the initial
velocity distribution is given by g(x), (d) the displacement at any point z at time ¢
is bounded.

(a) If the string is fixed at x = 0 and « = L, then the displacement y(x,#) at « =0 and x=L
must be zero for all times ¢t > 0, i.e.

y(0,t) = 0, y(L,t) = 0 t>0
(b) -Since the string has an initial shape given by f(z), we must have
y(x,0) = fla) 0<ae <L
{(¢) Since the initial velocity of the string at any point « is ’g(m), we must have
yi(x,0) = g(x) 0<ae<L
Note that y,(x, 0) is the same as dy/dt evaluated at ¢ = 0.

(d) Since y(x, t) is bounded, we can find a constant M independent of « and ¢ such that

ly(x, )] < M 0<ax<IL, t>0

Write boundary conditions for a vibrating string for which (@) the end =10 is
moving so that its displacement is given in terms of time by G(t), (b) theend z=1L
is not fixed but is free to move.

(@) The displacement at x = 0 is given by 4(0,t). Thus we have

¥(0,t) = G(t) t>0
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14.

1.5.

1.6.

(b) If r is the tension, the transverse force acting at any point z is

d
T% = 1y, t)

Since the end « = L is free to move so that there is no force acting on it, the boundary

condition is given by
y (L, t) = 0 or y(L,t) =0 t>0

Suppose that in Problem 1.1 the tension in the string.is variable, i.e. depends on the
particular point taken. Denoting this tension by r(x), show that the equation for the
vibrating string is

0 ay:l _ %y
wl W] = rop
In this case we write (2) of Problem 1.1 as
9y - 9y
7(x) 0x |z+Ax (@) 0x |z
so that the corresponding equation (4) is
9y _ 9y
7(x) 3z |z+Ax 7() ox |z 2y .
= —="+ €
nAx at2

Thus, taking the limit as Ax — 0 (in which case ¢~ 0), we obtain

Il | = %
oz [T(”) x| T Faw
after multiplying by u.

Show that the heat flux across a plane in a conducting medium is given by —K g%,

where » is the temperature, » is a normal in a direction perpendicular to the plane
and K is the thermal conductivity of the medium.

Suppose we have two parallel planes I and II a dis- I II
tance An apart (Fig. 1-7), having temperatures u and
u+ Au, respectively. Then the heat flows from the plane
of higher temperature to the plane of lower temperature.
Also, the amount of heat per unit area per unit time, called
the heat flux, is directly proportional to the difference in
temperature Au and inversely proportional to the distance
An. Thus we have

u u+ Au

An

Heat flux from Ito II = —K%:L—L (1)

where K is the constant of proportionality, called the ther-
mal conductivity. The minus sign occurs in (I) since if
Au > 0 the heat flow actually/takes place from II to I. Fig.1-7

By taking the limit of (Z) as An and thus Au approaches zero, we have as required:

Heat flux across plane I = —Kg%’ (2)

We sometimes call g—: the gradient of u which in vector form is Vu, so that (2) can be written

Heat flux across planel = —-KVu 3)

If the temperature at any point (z,y, z) of a solid at time ¢ is u(x,¥,2,t) and if K, ¢
and u are respectively the thermal conductivity, specific heat and density of the solid,
all assumed constant, show that
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3—1: = xVu where « = K/op

Cdnsider a small volume element of the solid V, as indicated in Fig. 1-8 and greatly enlarged

in Fig. 1-9. By Problem 1.5 the amount of heat per unit area per unit time entering the element

. ou Jou

through face PQRS is —K a_xL’ where 9% |z

ated at the position x. Since the area of face PQRS is Ay Az, the total amount of heat entering
the element through face PQRS in time At is

indicates the derivative of u with respect to x evalu-

ou
'—K—I Ay Az At (1)

Similarly, the amount of heat leaving the element through face NWZT is

ou
K% 2
0x |x+Azx Ay Az At )
where —gi; ‘A indicates the derivative of u with respect to x evaluated at x -+ Ax.
x X

The amount of heat which remains in the element is given by the amount entering minus the
amount leaving, which is, from () and (2),

ou

{K ox

In a similar way we can show‘that the amounts of heat remaining in the element due to heat
transfer taking place in the y- and z-directions are given by

ou

- K= L} Ay Az At (3)

z+Az ox

ou ou
{K 3y ly+ay Kay L} Ax Az At . (4)
ou ou
and {K 32 |o+az Fw z} Ax Ay At 5)

respectively.

The total amount of heat gained by the element is given by the sum of (3), (4) and (5). This
amount of heat serves to raise its temperature by the amount Au. Now, we know that the heat
needed to raise the temperature of a mass m by A is given by mo Au, where o is the specific heat.
If the density of the solid is p, the mass is m = pAx Ay Az. Thus the quantity of heat given by
the sum of (3), (4) and (5) is equal to

ou Az Ay Az Au (6)

If we now equate the sum of (8), (4) and (5) to (6), and divide by Ax Ay Az At, we find

ou M ou ou ou ou
KX - K& ou - g% K% - K%
dx |z +ax oz iz \ 4 Kay y+ay Kay y + 02 |z+a2 Kaz z = ,,-’ué_"’_‘
Ax Ay Az At
In the limit as Ax, Ay, Az and At all approach zero the above equation becomes
a ou d ou a ou du
I (gou 9 (gt 9 ( gou - ou
ax< ax> * ay(K 6y> * o (K az> T @)
or, as K is a constant,
\ 2u | 0%u |, 8 _ ou
K(ax2 + W + az2> vy 8)
This can be rewritten as
du ’
5 = xV2y (9)

K
where «x = ; is called the diffusivity.
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Fig.1-8 ‘ © . Fig.19

1.7. Work Problem 1.6 by using vector methods

Let V be an arbitrary volume lying within the solid, and let S denote its surface (see Fig. 1-8).
The total flux of heat across S, or the quantity of heat leaving S per unit time, is

ff(—KVu)-nds L

where n is an outward-drawn unit normal to S.  Thus the quantity of heat entering S per unit time is
f (KVu)+ndS = ff Ve (KVu)dV (1)
s v i .

by ‘the divergence theorem. The heat contained in a volume V is given by

fff oun dV DT
V..o ' ‘
Then the time rate of increase of heat is

W omav = fff e
Btf : tr,u,udVJ = ok dv i (2).

v : ) .
Equatlng the rxght~hand sides. of (1) and (2 )

fff ["“ st Y '\(K’Vu):' v = 0‘

and since V is arbltrary, the mteg‘rand assumed contmuous, must be identically zero, so that

~

au R (P
- A oGy = VKV
or if K, o, u are constants, A
’ ou K
L = AT = 2
o % o VeVu | kV2y ; €))

1.8. Show that for steady-state heat flow the heat conduction equation of Problem 1.6 or
L7 reduces to Laplace’s equation, V2 = 0. ) ,
In the case of steady-state heat flow the temperature u does not depend on txme t, so that

Eij
3?— = 0. . Thus the equatlon 3—? = «V2u Dbecomes Vi = 0.

1.9. A thin bar of diffusivity « has its ends at z = 0 and z =1L on the z-axis (see
Fig. 1-10). Its lateral surface is 1nsulated 80 that heat cannot enter or -escape.
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(@) If the initial temperature is f(x) and the ends are kept at temperature zero, set up
the boundary value problem. (b) Work part (e) if the end « = L is insulated. (¢) Work
part (a) if the end z = L radiates into the surrounding medium, which is assumed to
be at temperature .

This is a problem in one-dimensional heat con-

duction since the temperature can only depend on x
the position x at any time ¢ and can thus be de-
noted by w(x,t). The heat conduction equation is
thus given by
ou 2u .
- = — > 1 Fig.1-10
i Ko 0<x<L t>0 (1 g
(@) Since the ends are kept at temperature zero, we have
u(0,t) = 0, wlL,t) = 0 t>0 (2)
Since the initial temperature is f(x), we have
ulx,0) = f(x) 0<az<L’ 3)
Also, from physical considerations the temperature must be bounded; hence
Julx, )] < M 0<a<L, t>0 (4)

The problem of solving (1) subject to conditions (2), (3) and (4) is the required boundary
value problem. A problem exactly equivalent to that considered above is that of an infinite
slab of conducting material bounded by the planes # =0 and x = L, where the planes are
kept at temperature zero and where the temperature distribution initially is f(x).

(b) If the end = = L is insulated instead of being at temperature zero, then we must find a
replacement for the condition w(L,t) =0 in (2). To do this we note that if the end =z =1L
is insulated then the flux at & = L is zero. Thus we have

ou _ . _
—K aleer = 0 or equivalently wu (L,t) = 0 (5)

which is the required béundary condition.

(¢) It is known from physical laws of heat transfer that the heat flux of radiation from one object
at temperature U; to another object at temperature U, is given by a(U?—Ué), where o is
a constant and the temperatures U, and U, are given in absolute or Kelvin temperature which
is the number of Celsius (centigrade) degrees plus 273. This law is often called Stefan’s
radiation law. From this we obtain the boundary condition

—Ku (L, ) = afu]—ud) where u; = w(L,t) {6)
If u; and uy do not differ too greatly from each other, we can write

4 4 _ 3 2 2
uy — Uy = (uy — ug)(uy + ujuy + ugug + “‘(t))

3
. (m-%)u%[(%) + (Z—;) ot 1]

=~ 4“?)(741 — %)

I

since (u1/uo)3, (uy/ug)?, (uy/uy) are approximately equal to 1. Using this approximation, which is
often referred to as Newton’s law of. cooling, we can write (6) as

—Kuy(L,t) = Bu; — uy) V4]
where 8 is a constant.

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

1.10. Determine whether each of the following partial differential equations is linear or

nonlinear, state the order of each equation, and name the dependent and independent
variables.
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ou *u
L = — linear, order 2, dep. var. u«, ind. var. x, ¢
@ 5 o2 i 1
3 2
(&) o2 g—yg = y3% linear, order 3, dep. var. R, ind. var. z,y
o*W . .
(¢) WW = st , nonlinear, order 2, dep. var. W, ind. var. r,s, t

2 2 2
@ L2499 _

922 6y2 522 linear, order 2, dep. var ¢, ind. var. x,¥,z

(e

~—

2 .
Qi + a—z : = 1 nonlinear, order 1, dep. var. 2, ind. var. u, v
ou v

1.11. Classify each of the following equations as elliptic, hyperbolic or parabolic.

P P _
(a) o2 ayz = 0

u=¢, A=1, B=0, C=1; B2—4AC = —4 < 0 and the equation is elliptic.

du _ Pu
®) T = com

y=1t A=«x, B=0, C=0; B2—4AC =0 and the equation is parabolic.

Py _ L%
(C) at2 = a axz
y=t u=y, A=a? B=0, C=—-1; B2—4AC = 4a2> 0 and the equation is hy-
perbolie.
*u *u u ou ou
—— — — — 22— 4y = 22 — 3
(@) 6x2+36x6y+4ay2+5ax 26y+ U Y
A=1 B=3 C=4; B2—4AC =—7 <0 and the equation is elliptic.
.0t *u LU

A=2, B=0, C=y; B2—4AC = —4xy. Hence, in the region xy > 0 the equation
is elliptic; in the region zy < 0 the equation is hyperbolic; if xy = 0, the equation
is parabolic.

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS
1.12. Show that u(z,t) = e % sin2x is a solution to the boundary value problem
ou o%u

ot zaxz’

#(0,t) = u(r,t) = 0, wu(x,0) = sin2x

From wu(z,t) = e 8t sin 2¢ we have

w(0,t) = e 8sin0 = 0, wu(rt) = e 8sin27 = 0, wu(x,0) = e 0sin2x = sin2x
and the boundary conditions are satisfied.

ou

Also E

2
= —Be—8 gin 2z, du 2¢~8¢ cos 2, 6_1% = —4¢— 8t gin 22
dx ox

Then substituting into the differential equation, we have

—8e¢—8t sin2x = 2(—4e 8 sin 2x)
which is an identity.
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1.13. (a) Show that v = F(y—38x), where F is an arbitrary differentiable function, is a
general solution of the equation

av o
%%-3@—0

(b) Find the particular solution which satisfies the condition »(0,y) = 4 siny.

(@) Let y—3x =wu. Then v = F(u) and

W wou (W)(—3) =  —aF
dx du ox F')(=3) 3F(u)
o awou : -
= sy F/(u)(1) F' ()
v v
Thus % + 3@ 0

Since the equation is of order one, the solution v = F(u) = F(y — 3x), which involves one
arbitrary function, is a general solution. -

(b) v(x,y) = Fly—38z). Then v(0,y) = F(y) = 4siny. But if F(y) = 4siny, then v(z,y) =
F(y —38x) = 4 sin{y —3x) is the required solution.

L14. (a) Show that y(x,t) = F(2z +5t) + G(2x —5¢) is a general solution of

Py %y
45 = By,

(b) Find a particular solution satisfying the conditions
¥(0,t) = y(r,t) = 0, y(x,0) = sin2xz, yi(x,0) = 0

(@) Let 22 +5t =u, 26 —5¢ =wv. Then y = F(u)+ G(v).

W oG X = P@E) + CON-5) = 5P — 5G'() @)
o= Lerw-see) = si o WX = 255w + 256" (0) )
S_Z = % S—Z + %%Z_Z = F'w@ + G2 = 2F'u) + 2G'() @
g—i% = (%[2F”(u)+2G’(v)] = 2%% + zaa—(i g% = 4F"(u) + 4G"(v) 03]

2 2
From (2) and (4), 4% = 253713 and the equation is satisfied. Since the equation is of

order 2 and the solution involves two arbitrary functions, it is a general solution.

() We have from y(x,t) = F(2x+ 5¢t) + G(2x — bt),

y(x,0 = F@22) + G2x) = sin2 - (5)
Also vz, ) = %1;— = B5F'(2x+5t) — 5G'(2x — bi)
so that Ye(x,0) = BF'(2x) — 5G'(2x) = 0 (6)
Differentiating (5), o 2F'(2x) + 2G'(2x) = 2 cos2x )
From (6), F'2x) = G'(2x) ®

Then from (?), and (8), F'2z) = G'(2x) = 4 cos 2z
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from which F(2z) = 4sin2x + ¢, G(2x) = 1sin2x + ¢,
ie. y(z,t) = 4sin(2x+5¢) + Isin(2x—5¢) + ¢ + ¢

Using 9(0,t) =0 or y(=,t) =0, ¢;+¢co =0 sothat
y(z,t) = 4 sin(2x+5t) + } sin(2x—5t) = sin 2% cos bt

which can be checked as the required solution.

13

METHODS OF FINDING SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

2

115. (a) Solve the equation = x?y.

ox oy
(b) Find the particular solution for which =2(x,0) = 2%, 2(1,¥) = cosy.

(a) Write the equation as %(g—;) = g2y. Then integrating with respect to z, we find

9z

L = 1.3
% rady + F(y)

where F'(y) is arbitrary.
Integrating (1) with respect to y,
z = tady? + fF(y) dy + G(x)

where G(x) is arbitrary. The result (2) can be written

z = 2(z,y) = a3y + H(y) + G(x)
which has two arbitrary (independent) functions and is therefore a general solution.

(b) Since z(x,0) = 22, we have from (3)
x2 = H(0) + G(x) or G(x) = x2 — H(0)
Thus z = 3a%y? + H(y) + «2 — H(0)
Since 2(1,y) = cosy, we have from (5)
cosy = }y2+ H(y) + 1 — H(0) or  H(y) = cosy — 4y>2 — 1 + H(0)

Using (6) in (5), we find the required solution

z = 3%y + cosy — Jy2 + 22 — 1

0% o _
1.16. Solve . tw -+ 2% EEE /AN

d
Write the equation as F t%% + 2u:] = z2 Integrating with respect to z,
ou ou 2 F(t)
ou = .2 o L2, = 24 Q)
t6t+2u x2t + F(1) or at+tu x2 + :
This is a linear equation having integrating factor J @ — e — et = 2 Then
;—t(tzu) = 222 + tF(f)

Integrating, 2w = Qo223 4 ftF(t) dt + H(x) = 1«23 + G(t) + H(x)
and this is the required general solution.
%u u

Fri 3axay

. . u
1.17. Find solutions of + ZW = 0.

€3]

@

®

03]

)

(6)
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Assume u = e®x+by, Substituting in the given equation, we find
(a2 + 8ab + 2b2)eax+by = 0 or a2+ 3ab 4 2b2 = 0

Then (a+b)(a+2b)=0 and e¢=-b, a=—2b. If a=—b, e bx+by = gbly—2) {g a solution
for any value of b. If a = —2b, ¢—2bx+by = ¢by—20) g g solution for any value of b.

Since the equation is linear and homogeneous, sums of these solutions are solutions (Theorem
1-1). For example, 3¢2(v—2) — 2¢8(w—a) 4 5em(¥—2) js a solution (among many others), and one is
thus led to F(y — x) where F is arbitrary, which can be verified as a solution. Similarly, G(y — 2x),
where G is arbitrary, is a solution. The general solution found by addition is then given by

u = Fly—2z) + Gy —2x)

. . : ou o u 0w | u
1.18. Find a general solution of ‘(a) 255+ 3@ = 2u, (b) 4 92 4 Gz oy + T 0
(@) Let u = eww+by, Then 2a+3b = 2, a = :2_,“2_31” and  e[(2~30)/21z + by — Exe(b/2)(2y—82)

is a solution.

°

Thus » = e*F(2y — 3x) is a general solution.

(b) Let u = ewtby, Then 4a2—4eb+ b2 =0 and b = 2a,2¢. From this u = ea=+2» gnd
so F'(x + 2y) is a solution.

By analogy with repeated roots for ordinary differential equations we might be led to
believe 2G(x +2y) or yG(x +2y) to be another solution, and that this is in fact true is easy
to verify. Thus a general solution is

+

u = F(z+ 2y) + «G(x + 2y) or * u = F(x+2y)+ yG(x + 2y)

Fu %u
1.19. Solw — —— = 10e%xty,
Solve 922 + P
. 2u |, 2u _ . _ . X
The homogeneous equation W+5§2— = 0 has general solution u = F(x+iy) + G(x — iy)

by Problem 1.39(c).

To find a particular solution of the given equation assume u = «e22+v where ¢ is an unknown
constant. This is the method of undetermined coefficients as in ordinary differential equations.
We find o = 2, so that the required general solution is

u = F(e+iy) + Gloe —iy) + 2e2x+y

d*u Fu
1.20. Solve e 46y2 = ¥ty

The homogeneous equation has general solution
u = F@r+y) + G2z —y)

To find a particular solution, we would normally assume u = ae22+¥ as in Problem 1.19 but
this assumed solution is already included in F(2x + y). Hence we assume as in ordinary differential
equations that u = awe2r+¥ (or u = aye2c+v), Substituting, we find « = 1

Then a general solution is

u = F@r+y + G2x—1y) + 1xe2z+y

SEPARATION OF VARIABLES
1.21. Solve the boundary value problem

ou ou
_— = —_— — -3
9z 4 3y’ #(0, ¥) 8¢~ %
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1.22.

1.23.

is a solution. By the last boundary condition,

by the method of separation of variables.
Let u = XY in the given equation, where X depends only on x and Y depends only on y.

Then XY = 4XY’ or X'/4X = Y'/Y
where X’ = dX/dx and Y’ = dY/dy.

Since X depends only on x# and Y depends only on y and since # and y are independent vari-
ables, each side must be a constant, say ec.

Then X’ —4¢X =0, Y —c¢Y =0, whose solutions are X = Ae%®, Y = Be%,

A solution is thus given by

u(x,y) = XY = ABecUr+w) = Kecldz+y)

From the boundary condition,

u(0,y) = Kev = 8e 3

which is possible if and only if K =8 and ¢ = —8. Then u(x,y) = 8¢~ 3(4x+y) = 8e¢—122—3y g
the required solution.

Solve Problem 1.21 if %(0,y) = 8e~% + 4e~%,

As before a solution is Kec42+¥), Then Kiet1(4zt¥) and Kyecz(4+¥) are solutions and by the
principle of superposition so also is their sum; i.e. a solution is

ww,y) = Kjenr+y) 4 Koecrtz+y)
From the boundary condition,

w(0,y) = Kje¥ + Kpets¥ = 8e= 3 + 4e 5

which is possible if and only if K; =8, Ky =14, ¢; =3, ¢, = —5.
Then u(x,y) = 8e—3(4z+1) 4 ge—5(z+y) = 8e—122—3y 4 4202~ 5y jg the required solution.

ou u .
Solve i ZW’ 0<x <38, t>0, giventhat u(0,t) = u(3,t) =0,
u(x,0) = 5gindrx — 3sin8xx + 2sin10=z, lu(z, t)] < M

where the last condition states that  is bounded for 0 < x <3, > 0.

Let u =XT. Then XT' = X"T and X'/X = T'/2T. Each side must be a constant, which we
call —22. (If we use +)2, the resulting solution obtained does not satisfy the boundedness condi-
tion for real values of A\.) Then

X" 4+ XX = 0, '+ 2\2T = 0
with solutions X = A;coshxr + Bl‘ sin Az, T = ¢ 2%
A solution of the partial differential equation is thus given by
wr,t) = XT = cpe= 2%t (A{coshx + By sinax) = e 2"(4 cos Az + B sin \x)
Since u(0,t) =0, ¢e"t(A)=0 or A=0. Then
w(x, t) = Be~2\’t gin g

Since u(3,t) =0, Be~2" sin3\ =0. If B =0, the solution is identically zero, so we must have
sin3\ =0 or 3\ =mw, A =mz/3, where m =0,*1,+2,.... Thus a solution is

u(e®,t) = Be—2m*rt/9 sin 27%
Also, byvthe principle of superposition,

myrx Mgr X

Mo X
- 022 . 2.2 . 2 2_2 .
w(w,t) = Bje 2mimt/9 gin + Bye—2m;mt/9 gin + Bge—2mymt/9 gip

(1)
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1.24.

Thus (2) becomes

' BOUNDARY VALUE PROBLEMS  [CHAP.1

m ) . Mg
u(x, 0y, = 31 sin ——— 3 + Bjsin

Mol
+. B, sin 3

3

= 5sgindwrax — 3 sm 8raw + 2 sm 1072
which'is pOSSIble if.and only if By =5, m; =12, By, = 3, my = 24, By = 2, mg = 30.
Substituting these in (1), the required solution is . 5
w(o, t) = Be— 320t gin 4y ~— Se—1287" sin 872 + 26_2OQ7T2t sin 107 (2)

This boundary value 'problemshas the following interpretation as 4 heat flow problem. A bar

" whose surface is insulated (Fig. 1-11) has a length of 3 units and a diffusivity of 2 units. If its ends

are kept at temperature zero units and its initial temperature w(#,0) = 5 sin 41:-00 — 3 sin 87x 4+
2-8in 107%, find the temperature at position % at time: £, i.e. ﬁnd u(zx, t). -

Fig. 1-11

Solve %t% = 163 ?ﬁ, 0<x<2, t>0, subject to the conditions y(0,t) =0, y(2,t) =0,
y(2,0) = 6 sinwzx — 8 sindw, y(x,0)=0, |y(x,?)] <M. \

’ Let y = XT, where X depends only on %, T depends only on t. Then substitution in the
differential equation yields - :

X1 = 16X"'T or X'/X = T"/16T
on separating the variables. Since each side must be a constant, say —X2, we have

X" +NX =0, I+16\2T = ¢
Solving these we find ‘

X = aycosXx + bysinrx, T = ay cos 4Nt + by sin4At

Thus a solution is ,
Yy, t) = (a1 cos Mc + by sin Mc)(az cos 4xt + b2 sin 4\E) 64

To find the constants it is simpler to proceed by using first’ those boundary conditions involving
two zeros, such as y(0,%) =0, y,(%,0) = 0. From y(0,t) = 0 we see from () that :

ay(as cos 4Nt + by sin 4rE) =
so that to obtain a non zero solution (1) we must have a; = 0. Thﬁs (1) becomes
y(w, ) = (by sinA&)(ay cos 4Nt + by sin 4NE) [ @
Differentiation of (2) with respect to ¢ yields h

Y@, 8) = - (by sin Me)(—4ray sin 4NE + 4ND, cos 4NE) .

‘so that we have on puttlng t =0 and using ’che condition y;(x,0) = 0

yi(e, 0y = (by sinAx)(4adby) = 0 g - o .3 —k

In order to obtain a solutlon (2) Whlch is not zero we see.from (3) that we must have b2 =0,

y(x, t) ‘B sm A COS 4>\t

~on puttmg by =10 and wrltlng B = b1a2

From y(2 t) = 0 we now find :
B sin2\cosAnt = 0

and we see that we must have sin2\ =0, ie. 2x =mz or A = m#/2 Where m=0,%1,%32, ... \.
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1.25.

mrx

g €08 2mart 4)

Thus y(x,t) = B sin
is a solution. Since this solution is bounded, the condition |y(x,t)| < M is automatically satisfied.

In order to satisfy the last condition, y(x,0) = 5 sinzz — 3 sin4rx, we first use the principle
of superposition to obtain the solution

Mowr®

. MyTx . 2 .
y(x,t) = Bysin cos 2myzt + B, sin 5 cos 2mart 5)
Then putting ¢ =0 we arrive at
. My | Maw
y(x,0) = Bjsin 5 + B, sin 2

= 6sin7x — 3 sin 4rx

This is possible if and only if B; =6, m; =2, By=—3, my; =8. Thus the required solution
(5) is
y(x,t) = 6 sinzx cos4rt — 3 sin drx cos 167t (6)

This boundary value problem can be interpreted physically in terms of the vibrations of a string.
The string has its ends fixed at * =0 and 2 = 2 and is given an initial shape f(x) = 6 sin 7 —
3 sin4rx. It is then released so that its initial velocity is zero. Then (6) gives the displacement
of any point x of the string at any later time .

2,
Sove T2=22% 0<z<3, t>0, given that u(0,8)=u(3,t) =0, u(z,0)= (@),
lu(z, t)] < M.

This problem differs from Problem 1.23 only in the condition wu(x,0) = f(x). In seeking to
satisfy this last condition we see that taking a finite number of terms, as in () of Problem 1.23,
will be insufficient for arbitrary f(x). Thus we are led to assume that infinitely many terms are
taken, i.e. w
u(x,t) = 3 Be-2m'n’t/9 gin ML

m=1 3

The condition wu(x,0) = f(x) then leads to

< mrx

fle) = E B,, sin 3
m=1

or the problem of expansion of a function into a sine series. Such trigonometric expansions, or
Fourier series, will be considered in detail in the next chapter.

Supplementary Problems

MATHEMATICAL FORMULATION OF PHYSICAL PROBLEMS

1.26.

1.27.

If a taut, horizontal string with fixed ends vibrates in a vertical plane under the influence of gfav-
ity, show that its equation is
Py 29%

2 a2

where g is the acceleration due to gravity.

A thin bar located on the xz-axis has its ends at x =0 and « = L. The initial temperature of the
bar is f(x), 0 <2 <L, and the ends x* =0,z = L are maintained at constant temperatures Ty, T,
respectively. Assuming the surrounding medium is at temperature %9 and that Newton’s law of
cooling applies, show that the partial differential equation for the temperature of the bar at any
point at any time is given by

ou 92u

9t T fogm T Blu—w)

and write the corresponding boundary conditions.
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1.28.

1.29.

1.30.

131,

BOUNDARY VALUE ‘PROBLEMS [CHAP. 1

Write the boundary conditions in Problem 1.27 if (a) the ends # =0 and x = L are insulated, ’
(b) the ends = =0 and x = L radiate into the surrounding medium according to Newton’s law

of cooling.

The gravitational potential v at any point (x,y, 2) outside of a mass m located at the point (X, Y, 2)
is defined as the mass m divided by the distance of the point (x,¥,2) from (X,Y,Z). Show that
v satisfies Laplace’s equation VZ2v = 0.

Extend the result of Problem 1.29 to a solid body.

A string has its ends fixed at £ =0 and « = L. It is displaced a distance k at its midpoint and
then released. Formulate a boundary value problem for the displacement y(x,?) of any point x
of the string at time ¢&.

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

1.32. Determine whether each of the following partial differential equations is linear or nonlinear, state
the order of each equation, and name the dependent and independent variables.
(@) 3271; 26?02:;1/ + %% =0 © ¢g§ - %:—/% (e) ar + = z1_2
® @+l = L+ 20 R Y
1.33. Classify each of the following equations as elliptic, hyperbolic or parabolic.
(@ %*;-gi; =0 (©) (x2—1)\ +2”Ta—+(2_1)ay2
(b) au ai“’gy - 4 = xg—z + y%;i
() g—:;—zaiz;y+2g—2% = x + 8y N (Mz—l)—z—i—';—% =0 M>0
(d) xz% + 2wy::—g'y + y23277; =0
SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS
1.34. Show that z(x,y) = 4e~3% cos 8y is a solution to the boundary value problem
3_92; g-;% 0, =z2(x,%/2) = 0, 2(x,0) = 4e3>
135. (a) Show that wv(z,y) = xF(2x+y) 1is a general solution of x%g — 2 g—; =

1.36.

1.37.

(b) Find a particular solution satisfying 2(1,y) = »2.

hd -~

Find a partial differential equation having general solution u = F(x— 3y) + GQ2x + y).

Find a partial differential equation having general solution

(@) =z = €7f(2y —3w), ® z = f2x+y)+ glx—2y)

GENERAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

1.38.

(a) Solve

axay +@ = 0.

(b) Find the particular solution for which  2(x,0) = «5+ = —5;—8, z2(2,y) = 3yt
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1.39.

1.40.

141,

142.

Find general solutions of each of the following. _
2u d%u

Ru _ Ru : du . _ Pu  Pu _
(a) 3;2‘ = a—yz‘ « (b) F™ + 26y = 3u (c) 6:1:2 31/2 0

92z 92z a2z 8%z a2z %z - 0
@ 2 " 2azay w0 © 52~ 2ozay T
Find general solutions of each of the following.

du du 84 tu
(a) P + 2ay = x (c) pyon + 2a—x3 3

Py _ P, e Pz g% G L
(b) v R ¥ + 12¢ (d) 322 36x o7 + 26y2 x siny

9% du tu
Solve e + 2W + Py 16.
. v , 24 _ 142w . _ Fir—ect) + G(r+ct)

Show that a general solution of 372 + Tar T ZoaE s v = - .

SEPARATION OF VARIABLES

1.43.

144,

1.45.

1.46.

147.

Solve each of the following boundary value problems by the method of separation of variables.

@ 3%+2g—’; =0, ulz0 = 4=t

_aﬂ — a_u' = —5z —3x
(b = 2&1/ +u, u(x,0) 3e + 2e
ou _  Pu _ _ _ : :
(¢) il 4(—3;5, u(0,8) = 0, u(mt) = 0, wu(x,0) = 2sin3x — 4 sinbx
du _ u = = = 3rx _ I
(d) 3% = 32 u0,t) = 0, w2t =0, u(x,0) = 8 cos 1 6 cos 2
9& = 8_1£ = —2
(e) priie 3695’ u(x, 0) 8¢~ 27
du _ du _ - -z _ ge—4
4] Fr il 2u, u(x,0) = 10e~% — e~ 4=
@ 2= 405 =0 wat) =0 ww) = 6sin">+3si
g ot - o2’ ’ - ’ » - y ) - sin ) sSin =%

Solve and give a physical interpretation to the boundary value problem

P~ 4% 40,0 = 58 = 0 0 =0 0) = 0<z<5,t>0
32 - (9&72’ y\, = Yo, - » y(x’ ) - ’ yt(x: ) _f(x) ( < » )

if (o) f(z) = 5 sinzz, (b) f(x) = 3 sin2rx — 2 sin 5rz.

Codu _ d%u . _ . .
Solve % e 2u if u(0,t) =0, u(3,t) =0, wux,0) = 2sinrx — sin4zrx.

Suppose that in Problem 1.24 we have y(z,0) = f(x), where 0 < z < 2. Show how the problem
can be solved if we know how to expand f(x) in a series of sines.

Suppose that in Problem 1.25 the boundary conditions are w,(0,t) =0, (3,8 =0, u(x,0) = f(z).
Show how the problem can be solved if we know how to expand f(z) in a series of cosines. Give
a physical interpretation of this problem. .



Chapter 2

Fourier Series and Applications

THE NEED FOR FOURIER SERIES

In Problem 1.25, page 17, we saw that to obtain a solution to a particular boundary
value problem we should need to know how to expand a function into a trigonometric series.
In this chapter we shall investigate the theory of such series and shall use the theory to
solve many boundary value problems.

Since each term of the trigonometric series considered in Problem 1.25 is periodic, it
is clear that if we are to expand functions in such series, the functions should also be
periodic. We therefore turn now to the consideration of periodic functions.

PERIODIC FUNCTIONS

A function f(x) is said to have a period P or to be periodic with period P if for all z,
f(x + P) = f(z), where P is a positive constant. The least value of P > 0 is called the least
period or simply the period of f(x).

Example 1.

The function sin # has periods 2r,4x, 67, ..., since sin (z + 27), sin (# + 47), sin (x + 67), ... all equal
sinz. However, 2r is the least period or the period of sin x.

Example 2.
The period of sinnx or cos nx, where n is a positive integer, is 27/n.

Example 3.
The period of tan « is =.

Example 4.
A constant has any positive number as a period.

Other examples of periodic functions are shown in the graphs of Fig. 2-1.

1@) E‘ ok o 3
S s s N |

) (2] ()

Fig. 2-1
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PIECEWISE CONTINUOUS FUNCTIONS F(x)

A function f(z) is said to be piecewise con- ' |
tinuous in an interval if (i) the interval can be | |
divided into a finite number of subintervals in /’
each of which f(x) is continuous and (ii) the A x'_o)
limits of f(x) as # approaches the endpoints of i
each subinterval are finite. Another way of )
stating this is to say that a piecewise continu- fla +V
ous function is one that has at most a finite
number of finite discontinuities. An example
of a piecewise continuous function is shown in
Fig. 2-2. The functions of Fig. 2-1(a) and (c)
are piecewise continuous. The function of F1g
2-1(b) is continuous. Fig. 2-2

The limit of f(x) from the right or the right-hand limit of f(x) is often denoted by
ling flx +¢) = f(x+0), where «>0. Similarly, the limit of f(x) from the left or the left-
hand limit of f(x) is denoted by lim f(x —¢) = f(x—0), where ¢>0. The values f(x +0)

. e~0

and f(x—0) at the point z in Fig. 2-2 are as+indicated. The fact that ¢~ 0 and «>0
is sometimes indicated briefly by - 0+. Thus, for example, lim f(x+¢) = f(x+0),
Hm f(x—¢ = f(x—0). em o

€0+
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DEFINITION OF FOURIER SERIES

Let f(x) be defined in the interval (—L, L) and determined outside of this interval by
flw +2L) = f(x), i.e. assume that f(x) has the period 2L. The Fourier series or Fourier ex-
pansion corresponding to f(x) is defined to be

o < nrx (Zx
5 T nzl <a,. cos —5— + bn sin —L—> (1)

where the Fourier coefficients a, and b, are

L
[an = %f f(x) cos @Z—x dx
. Nl
11)71 = Lf f(x s1n——dx

Motivation for this definition is supplied in Problem 2.4.

If f(x) nas the period 2L, the coefficients a. and b, can be determined equivalently
from

n=0,12,... (?)

_ 1 c+2L Nrx
0 = Z‘f f(x) cosde

c+2L
b, = Lf sm——dx

where ¢ is any real number. In the special case ¢ = —L, (3) becomes (2). Note that the

"n=0,12,... 3

L
constant term in (1) is equal to G _ L f(x)dx, which is the mean of f(x) over a
- 2 2L ) _,
period.
If L= the series () and the coefﬁclents (2) or (3) are particularly simple. The
function in this case has the period 2x.

It should be emphasized that the series (1) is only the series which corresponds to f(x).
We do not know whether this series converges or even, if it does converge, whether it con-
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verges to f(x). This problem of convergence was examined by Dirichlet, who developed
conditions for convergence of Fourier series which we now consider.

DIRICHLET CONDITIONS
Theorem 2-1: Suppose that

(i)  f(x) is defined and single-valued except possibly at a finite number of
points in (=L, L)

(ii)  f(x) is periodic with period 2L
(iii) f(z) and f’(x) are piecewise continuous in (—L, L)
Then the series (1) with coefficients (2) or (3) converges to
(@) f(z) if z is a point of continuity

b) f(z+0) ;_ fz=0) if = is a point of discontinuity

For a proof see Problems 2.18-2.23.
According to this result we can write

wr

fley = %9 + i (an cosr,ﬂllflﬁ + basin 7—%——) 4)
n=1

at any point of continuity z. However, if z is a point of discontinuity, then the deft side is
replaced by %[f(xz + 0) + f(z — 0)], so that the series converges to the mean value of f(x + 0)
and f(x —0).

The conditions (i), (ii) and (iii) imposed on f(x) are sufficient but not necessary, i.e. if
the conditions are satisfied the convergence is guaranteed. However, if they are not satis-
fied the series may or may not converge. The conditions above are generally satisfied in
cases which arise in science or engineering.

There are at present no known necessary and sufficient conditions for convergence of
Fourier series. It is of interest that continuity of f(x) does not alone insure convergence
of a Fourier series.

ODD AND EVEN FUNCTIONS

A function f(x) is called odd if f(—z) = —f(x). Thus «% x°—3x®+2z, sinz, tan3z
are odd functions.

A function f(z) is called even if f(—x)=f(x). Thus z*% 22%—422+5, cosz, € +e~ 3
are even functions. '

The functions portrayed graphically in Fig. 2-1(a) and 2-1(b) are odd and even respec-
tively, but that of Fig. 2-1(c) is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present.
In the Fourier series corresponding to an even function, only cosine terms (and possibly a
constant, which we shall consider to be a cosine term) can be present.

HALF-RANGE FOURIER SINE OR COSINE SERIES

A half-range Fourier sine or cosine series is a series in which only sine terms or only
cosine terms are present, respectively. When a half-range series corresponding to a given
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function is desired, the function is generally defined in the interval (0,L) [which is half of
the interval (—L, L), thus accounting for the name half-range] and then the function is
specified as odd or even, so that it is clearly defined in the other half of the interval, namely
(—L,0). In such case, we have

L
an = 0, by = %j f(x) sin nLﬂdx for half-range sine series
0
(5)

. L
b = 0, an = %f f(x) cos @Z—xdx for half-range cosine series
0

PARSEVAL’S IDENTITY states that

2

1f veorae = F+ Sa@v ©

if a, and b, are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the
Dirichlet conditions.

UNIFORM CONVERGENCE
Suppose that we have an infinite series >, u.(z). We define the Rth partial sum of the
n=1 .

series to be the sum of the first R terms of the_z series, i.e.
‘ R
Su@) = X @) ™
Now by definition the infinite series is said to converge to f(z) in some interval if given
any positive number ¢, there exists for each z in the interval a positive number N such that

ISp(x) —f(x)] < ¢ whenever R>N (8)
The number N depends in general not only on ¢ but also on . We call f(x) the sum of

the series. ,
An important case occurs when N depends on ¢ but not on the value of z in the interval.
In such case we say that the series converges uniformly or is uniformly convergent to f(x).

Two very important properties of uniformly convergent series are summarized in the
following two theorems. "

Theorem 2-2: If each term of an infinite series is continuous in an interval (a, b) and the
series is uniformly convergent to the sum f(x) in this interval, then

1. f(x) is also continuous in the interval
2. the series can be integrated term by term, i.e.

fab{gl un(x)} de = 12:1 j;b Un(x) d (9)

Theorem 2-3: 1If each term of an infinite series has a derivative and the series of deriva-
tives is uniformly convergent, then the series can be differentiated term by
term, i.e.

ZZw@ = 3 ituw (10)

There are various ways of proving the uniform convergence of a series. The most
obvious way is to actually find the sum S, (z) in closed form and then apply the definition

directly. A second and most powerful way is to use a theorem called the Weierstrass M
test.
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Theorem 2-4 (Weierstrass M test): If there exists a set of constants M,, =»n= 1,2,.

such that for all z in an interval |ua(x)] = M., and if furthermore 3 M.

) n=1
converges, then Y, u.(x) converges uniformly in the interval. Incidently,
n=1
the series is also absolutely convergent, i.e. 2 |ua(2)| converges, under these
conditions.
Example 5. - sm s
The series E converges uniformly in the interval (—=, =) [or, in fact, in any interval], since a

set of constants M = 1/112 can be found such that

O

sinnz] . 1 1
._nz_] = and g 2 converges

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES
Integration and differentiation of Fourier series can be justified by using Theorems 2-2
and 2-3, which hold for series in general. It must be emphasized, however, that those
theorems provide sufficient conditions and are not necessary. The following theorem for
integration is especially useful.
Theorem 2-5: The Fourier series corresponding to f(x) may be integrated term b'y term
from a to z, and the resulting series will converge uniformly,to f f(u) du,

provided that f(x) is piecewise continuous in —L = =L and both a and «
are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES
Using Euler’s identities,

e® = cosd + isind, e"® = cosfd — isind (11)
where ¢ is the imaginary unit such that > = —1, the Fourier series for f(x) can be written
in complex form as

f(x) — ﬁ e, /L (12)
| . nL— L
where ¢n = 37T J‘_L f(x)e—inm=/L gy (13)

In writing the equality (12), we are supp’osing that the Dirichlet conditions are satisfied
and further that f(x) is continuous at x. If f(x) is discontinuous at z, the left side of (12)
f(x+0) + f(x—0)

should be replaced by 5

DOUBLE FOURIER SERIES

The idea of a Fourier series expansion for a function of a single variable z can be ex-
tended to the case of functions of two variables « and 7, i.e. f(z,y). For example, we can
expand f(x, y) into a double Fourier sine series

flz,y) = 2 2 B sm——sany (1,4)

— nry
where Bnn = I.L, j; j; fx,v) sm———sm L, dx dy (15)
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Similar results can be obtained for cosine series or for series having both sines and cosines.
These ideas can be generalized to triple Fourier series, ete.

APPLICATIONS OF FOURIER SERIES

There are numerous applications of Fourier series to solutions of boundary value prob-
lems. For example:

1. Heat flow. See Problems 2.25-2.29.
2. Laplace’s equation. See Problems 2.30, 2.31.
3. Vibrating systems. See Problems 2.32, 2.33.

Solved Problems

FOURIER SERIES
2.1. Graph each of the\ following functions.

8 0<x<b
= Period = 10
(@) f(x) {_3 CE<z<0 eriod
f(x)
\

~— Period —

13
3

T T | T S T T T x
—25 —20 —~15 -10 -5 o] 3 5 10 15 20 25
- —— —_——— m— _——— ———— ———
Fig.2-3

Since the period is 10, that portion of the graph in —6 < #'< 5 (indicated heavy in Fig.
2-3 above) is extended periodically outside this range (indicated dashed). Note that f(x) is not
defined at z = 0,5, —5,10,—10,15, —15,etc. These values are the discontinuities of f(x).

sine 0=zx=nr
(b) f®) = Period = 2=
0 << 2%
f(=)
e Period ———»
N rd -7 \\ AN
\\_ // \L % /,, \\_ __1//
3 T - 0 . 2 [P 7
Fig. 2-4

Refer to Fig. 2-4 above. Note that f(x) is defined for all ¥ and is continuous everywhere,
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0=xr<2
(¢) flx) = 41 2=x<4 Period=6
4=2<6
) f() )
[+—— Period —
- _——— -—= —_— - -
1
=T r'i — | E— - T T x
-12 -16 -8 -8 -4 -2 0o 2 4 6 8 10 12 14
Fig. 2-5

Refer to Fig. 2-5 above. Note that f(x) is defined for all 2 and is discontinuous at
€ = 2,4, +8 +10,*14, ...,

L L ‘
22.  Prove f sin 7% gy = f cosf‘Z—xdx =0 if k=123....
—-L —L

L
L L
. krx _ L krx _ _ L L _ _
f_L sin de = o ST LT T Co8 kr + - cos (—kw) 0
L L
krx _ L . kmx _ L., L., _
f_L cos Tdac = ;s B sin k= T sin(—kr) = 0
L L 0 %
mnx nrx . Mrx . BTk [ m>=un
23. Prove (a f €08 —— €08 ——dx = f sin — sin —dx =
(@) _L L L -L L L 1 L m=mn
L
. mwx nnx
b f sin —dx =0
(b) . i I

where m and » can assume any of the values 1,2,3, ...

(@) From trigonometry:
cos A cos B = 1{cos (A — B) + cos (4 + B)}, sind sinB = }{cos (A —B) — cos (4 + B)}
Then, if m #* n, we have by Problem 2.2,

L
merx nrx . (m — n)row n)nx (m + n)rx _
J‘_L €0s —— cos —~ de = 2f { + cos ———— de = 0
Similarly, if m # =,
L L
mrx nrx _ 1 (m— )z (m 4+ n)ra _
J;L sin 7 sm—L de = 2£L {cos — cos ———— de = 0.
If m ==, we have .
L L
marc nry _ 1 2nrx _
I_Lcos L_COSL de = 2f_1, <1+cos T >dm = L
L L
mwx nre - 1 _ 2nrx _
f_L sin 7 sin 7 de = Zf—L <1 cos = >dac = L

Note that if m = n = 0 these integrals are equal to 2L and 0 respectively.
(b) We have sinA cosB = 4{sin (A—B) + sin(4 +B)}. Then by Problem 2.2, if m + n,

L
f_L smT cosn—;‘?—d = 2f { (m — n)ﬂ: + sin————-(m +Ln)7rm}dx = 0
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24.

2.5.

If m=n L 2
? mmr nrx — in mrx nTw G = o
‘[_ i sin ———L cos *——L 2 f

The results of parts (z) and (b) remain valid when the limits of integration —L, L are replaced
by ¢, ¢ + 2L respectively.

If the series A + i <an cos % L 2 + basin Lx> converges uniformly to f(z) in (~L, L),
n=1

show that for » =1,2,3, ..., p

(@ oan = %j‘i f(x) cos Zz}i—xdoc, (b) ba = %5‘—1‘ f(x) sin ﬁgﬁdm, () A= %.

< nwe
(@) Multiplying flmy = A+ 2 (an cos 22 L + b, sin %_ (1)
n=1
by cos 1n£x and integrating from —L to L, using Problem 2.3, we have

I

L
A f cos Mo dx

w L
+ 3 {anf cos-—L—mcosM dx + b, f cos———sm%ﬂ—dx}
n=1 —L
= apL if m#0 (2)

L
f F(e) cos 7L dx
. L

L
Thus am = %f ) cosmzx dz if m=1,23,...
—L

(b) Multiplying (7) by sin 7% and integrating from —L to L, using Problem 2.3, we have

L
L m L mazx
f(x) sin = A f sin —— dx
NGRS s’
< L N’ nrx
+ 3 anf sm———cos—dx + b, f 7L sin 272 dy
n=1 ~L L L
= bTIlL
_ 1 L . Mwx . _
Thus b, = i f(x) sin dx if m=123,...
L L
(¢) Integration of (7) from —L to L, using Problem 2.2, gives
L ' . L
f fa)de = 24L  or A = = f f(a) da
L 2L
- —-L
1 (* @y
Putting m =0 in the result of part (a), we find a3 = E,f f(x)de and so 4 = Ok
—-L

The above results also hold when the integration limits —L, L are replaced by ¢, ¢+ 2L.

Note that in all parts above, interchange of summation and integration is valid because the
series is assumed to converge uniformly to f(x) in (—L,L). Even when this assumption is not
warranted, the coefficients a,, and b,, as obtained above are called Fourier coefficients corresponding
to f(x), and the corresponding series with these values of a, and b,, is called the Fourier series
corresponding to f(x). An important problem in this case is to investigate conditions under which
this series actually converges to f(x). Sufficient conditions for this convergence are the Dirichlet
conditions established below in Problems 2.18-2.23.

(@) Find the Fourier coefficients corresponding to the function

f(e) 0 -5<x<0 Period 10
&* = 1 =
3 o<z<p ~o0°
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(b) Write the corresponding Fourier series.
(¢) How should f(z) be defined at « = —5, =0 and « =5 in order that the Fourier
series will converge to f(z) for -5 =x =57
The graph of f(x) is shown in Fig. 2-6 below.
f (9'5)|

—=—  Period -

) y - ——— _x— -—— -

3

t x
L - T L o U

—-15 -10 -5 5

Fig. 2-6

(@) Period =2L =10 and L =5. Choose the interval ¢ to ¢+ 2L as —5 to 5, so that ¢ = —b5.
Then

¢+ 2L 5
o = LT s = L ) cos™E
R -
1 0 nrx fs nre _ 3 rs nre
= g{f—s 0) cos —= dx + D 3) cos = dx» = 3J, cos —= dx

0 if n#0

_ 38 omm)]
—5’n7rs 5

[

Orx 3 (7 _
If n=0, a, = 0—5 os——dx—godx—&

1 ctil . N 1 fs . nax
b, = I J; f(x) sin A dx = 5J f(=) sin 5 dx
0 3 f 5 nrX
51‘; )sm L dx + f 3) sm 5 dw} 5J, sin == dz
3 5 nrx \|° _ 3(1 — cosnx)
= | —— cos— = =
5 nr 5 0 nr

(b) The corresponding Fourier series is

% < d X . 3_ < 3(1 — cos nr) g

5 + n§1 <an cos “—L + b, sm i > = 5 1;21 — sin 5
_ 3 6/ . mx 1 . 372 1 brx .
T2 7r<SIn5+3 nTg tEsing >

(¢) Since f(x) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all
fle+0) + flx —0)
2

points of continuity and to at points of discontinuity. At = -5, 0 and 5,

which are points of discontinuity, the series converges to (3+ 0)/2 = 3/2, as seen from the
graph. The series will converge to f(z) for —5 = x =5 if we redefine f(x) as follows:

. 3/2 x = =5
0 ~5<x <0
fle) = 3/2 x=0 Period = 10
3 0<x<5h
3/2 x=25

2.6. Expand f(x) =22 0<x < 2r, in a Fourier series if the period is 2x.
The graph of f(x) with period 2« is shown in Fig. 2-7.
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fl=)
/ / / /
/ / / / //
/
/ S / 47’ / 4
Vs Vs / | s/ P /

_ P _ Ve - s + - e _ x
| I 7) 1 | |
—6r —47 ~2r 2 47 67
Fig. 2-7

Period = 2L = 27 and L=n Choosing ¢ = 0, we have
¢+2L 27
a, = %f f(zx) cosn}rl—x de = 7—17_f x2 cos nx dx
c 0
_ 1 (@?) sin ng — (22) cosmc N s sinna \ | [*” _ 4 nt 0
T n n3 0 n2’
_1 (7. _ 87
If n=0, ay = x2de = .

1 (e . ME 1 J‘ZW 5 s

_ 1 L gy = L d

b, LJ; f(x) sin 7 dx N 22 sin ny dx
2 _

— l{(aﬂ) <_cos mo) (2 )< sin mc> + (2)<cos nx>} — ) 47

T n 0 n

2
Then f(z) = 22 = 4” + 2 <2cosnx—in—smnx> for 0 < x < 27.

. 1 1 1 2
2.7.  Using the results of Problem 2.6, prove that w+or+tg+ - = %
At x = 0 the Fourier series of Problem 2.6 reduces to T + 2 1;12
n=1

But by the Dirichlet conditions, the series converges at « = 0 to }(0+ 472) = 2%

Hence the desired result.

ODD AND EVEN FUNCTIONS. HALF-RANGE FOURIER SERIES

28. Classify each of thé following functions according as they are even, odd, or neither
even nor odd.

@ () 2 0<ae <3 Period = 6
a X = erioa =
-2 -3<z<0
From Fig. 2-8 below it is seen that f(—=x) = —f(x), so that the function is odd.
f(x)
_____ 2 ——
x
T T 7 T
-6 -3 3 6
— — — _.2 —————
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cosr O0<z <~
() f(x) = {

Period = 2«
0 r<x <2

From Fig. 2-9 below it is seen that the function is neither even nor odd

flx)

~ 1
N

=~
\\
\\ \ . .
AN \ -
- N ™ 0 T 21 \\ 3
- - T
27 \\ T I \
oo

Fig. 2-9

(¢) f(x)=2(10—zx), 0<z<10, Period = 10.

From Fig. 2-10 below the function is seen to be even

f(x)

e
<

~N

Ve
Id

o —f———
~

Fig. 2-10
2.9.

Show that an even function can have no sine terms in its Fourier expansion
Method 1.

No sine terms appear if b,=0, n=1,2,3 To show this, let us write

S . nTE 1 0 nrx L . nre
ZLL fx) s1n—-L—dx = Zf_L f(x) sin de + =+ fo f(x) sin T dx

@

If we make the transformation x = —u in the first integral on the right of (1), we obtain
0

L L
%f»L f(x) sin’% dax %f f(—u) sin(—%‘) du = _%f f(—w) sin%’iﬂ du

= _—f flu) smmm = ——f fx) sm—dw @2

where we have used the fact that for an even function f(—u) = f(u) and in the last step that the
dummy variable of integration « can be replaced by any other symbol, in particular x.
(1), using (2), we have

L

Thus from
= —«f f(x) sm—d + Lf f(x) sm——-dx = 0
Method 2.
Assuming convergence ap I
_ % . T
flx) = 3 +§<ancosL + b, smL>
_ % < [ nrx .
Then fl(—x) = 5 n§1 <a,, cos—;—:— — b, sin 7%)
If f(x) is even, f(—x) = f(x). Hence ]
S nre AN = nrE nry
3 +ﬂ§1<a,,cos 7 + basin L> = -2—+n§1<ancos—L—— b,, sin 222
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< nre . _ % 5 nre
§ bysing— = 0, ie. flx) = 5 +n§1 ay cos—

This method is weaker than Method 1 since convergence is assumed.

and so

and no sine terms appear.
In a similar manner we can show that an odd function has no cosine terms (or constant term)

in its Fourier expansion.

4

(a) a, = —;—‘ff; f(x) cosn%xdx = f f(x) cos L gy + f f(x) cos—-—da:

Letting « = —u,
1¢° nwe 1k —nny 1t nad
L I_L Fita) cos 7= de = I fo f(—u) cos 7 du = —I—‘j; flu) cos = du

gince by definition of an even function f(—u) = f(u). Then
1 L nrY 1 nry _ 2 L nre
@ = 3 J{; fu) cos—p— du + Ej; f(x) cos—~ de = Z—ﬁ f(x) cos T dx

(b) This follows by Method 1 of Problem 2.9.

. : 2 ¢k Wl _
210. If f(x) is even, show that (a) an-:—if f(z) cos o dz,  (b) bu=0.
R /0

2.11. Expand f(x) =sinz, 0 < <, in a Fourier cosine series.
A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence
we extend the definition of f(x) so that it becomes even (dashed part of Fig. 2-11). With this
extension, f(x) is defined in an interval of length 2. Taking the period as 2=, we have 2L = 27,

so that L = 7.
f(=x)
-7~ -~ -~
N e N i \ e Sy 7
N o A4 \ / N
AV4 AV z
L I 1 T
—2r -7 G 2r
Fig. 2-11
By Problem 2.10, b, =0 and
I, T
a, = 2 I f(x) cos L gy = Zf sin x cos nx dx
LJ, L ]
T _— kg
= lf {sin (x +nx) + sin{x—nx)}de = 1} _costntlje + o8 n— D
TJy T n+1 n—1 0
_ 1 1—cos(n+1)1r+cos(n—1)7r—1 _ 1} 1+cosnr 1+ cosnr
T n+1 n—1 I n+1 n—1

~2(1 + cos nr) .
TamE—1) if n#1
2 sin2z|”

2 (7.
For n=1, a = = sinzcosxdx = =
TJo T 2 0
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Then flx) = 2.2 p (LM cos nx
; T T n=g N 1

_ 2 4/( cos2x cos 4x cos 6%
T 1r<22—1+42—1+62—-1+ >

2.12. Expand f(z) =x, 0 <z <2, in a half-range () sine series, (b) cosine series.

() Extend the definition of the given function to that of the odd function of period 4 shown in
Fig. 2-12 below. This is sometimes called the odd extension of f(x). Then 2L =4, L =2.

flx)
/ /
/ / 7 /
/ y /
/ 0 / C
T /! f 7/ T A |
-8 / —4 -2 / 2 / 4 6 /
/ / /7 /
/ / / 7/
Fig. 2-12
Thus @, =0 and
2 L . MTX _ 2 2 nrw
b, = L-fo f(x) sin == de = 2 Jo @ sin— dx
_ -2  mrz\ _ —4 . mrx\ |2 _ —4
= {(x)(n” cos ~2——> (1)<——n21r2 sin =5 >} . cos nr
Then fle) = 3 —4 cos nr sin 2L
n=1 nw 2
= A gpre L2 1 B
T 2 2 2 3 2

(b) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 2-13 below.
This is the even extension of f(x). Then 2L =4, L = 2.

f(x)
7\ 7\ \ N\
, 7 N\ / N\ \ / AN
N N\ \N 7/
AV 4 N X
| 1 { [7) T T T
-6 -4 -2 2 4 6
Fig.2-13
Thus b, =0, . \
e, = % fo f(x) cos% de = %j; x cosﬂgg dx

2

= {(x)(% sin %ﬁ) — (1) <n—_2—:2 cos g;r_x_)}

_4 .
= m(cosnn——l) if n#0

0

2
If n=0, a3 = f cdx = 2.
0
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« 4 nwrx
1+ n§1 m(cosmf - 1) cos =5

Then f(x)

_ 8( 7z 1 3w 1 x|
= 1—;5<cos—-2—+32c052 +52cos2 + >

It should be noted that although both series of (z) and (b) represent f(x) in the interval
0 < # < 2, the second series converges more rapidly.

PARSEVAL’S IDENTITY

2.13. Assuming that the Fourier series corresponding to f(x) converges uniformly to f(z)
in (—L, L), prove Parseval’s identity

1 r 2 a?) < 2 2
Zf (f@yde = 2+ 3 (@+5)
—L n=1
where the integral is assumed to exist.
If flx) = 229 + i <a,, cosz%ﬁ + b, sin%) , then multiplying by f(x) and integrating
n=1

term by term from —L to L (which is justified since the series is uniformly convergent), we obtain
L a L w L L
f {f(x)}2dz = hull f feyde + S {a, f f(x) cos nﬂx.dw + b, f f(z) sin nwre de
—L N 2.J. L n=1 -L L 5 __L

a? ®
= 5L+ L3 (aZ+b) @)
n=1
where we have used the results

L ‘ L L
L @) e0s™E s = Lay, f @) sin®E ds = Lb, f_ @z = Lay (@)

obtained from the Fourier coefficients.

The required result follows on dividing both sides of (Z) by L. Parseval’s identity is valid
under less restrictive conditions than imposed here. In Chapter 3 we shall discuss the significance
of Parseval’s identity in connection with generalizations of Fourier series known as orthonormal
series.

2.14. (a) Write Parseval’s identity corresponding to the Fourier series of Problem 2.12(b).
(b) Determine from (a) the sum S of the series —1}4—+ —21—4 + % + -+ % + .-
(¢) Here L =2; ay=2; a, =;L—24ﬂ—2(cosmr —1), n+#0; b,=0.
Then Parseval’s identity becomes

2 2 0
o vors = 3 e = By 320,y

2 1
or 3= é+%<1~14+§1;+a51—4+-«->, e, bttt =g—;.
(®) S = L+h+h+ = <—+—+—+ >+ <i+i+i+---)
14 24 34 147 3¢ B 24 ' 44 ' g4
< (Ergordor) +d(hrdede )

_ = S . _at
= 96+16’ from which S—%
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2.15. Prove that for all positive integers M,
2 . 1 L
(@2+b) = + fx))\2dx
2 Lf_,‘ (@)}

where a, and b, are the Fourier coefficients corresponding to f(x), and f(z) is assumed
piecewise continuous in (—L, L).

%o S . Nz .
Let Sulx) = 5 + ”gl <an cos ZZ L + b, sin —L—> 1)
- For M =1,2,8,... thisis the sequence of partial sums of the Fourier series corresponding to f(x).
L
We have f {f(x) — Spy(x)}2dx = O (2)
-L

since the integrand is non-negative. Expanding the integrand, we obtain

L
A {fanrds 9

IIA

L L
2 f_ . F(o) Spelee) dox — ﬁ . SE(x) dx

Multiplying both sides of (1) by 2f(x) and integrating from —L to L, using equations (2) of
Problem 2.13, gives

L ag M 2
2 foSu@dr = AT+ I @+ *
—IL n=1
Also, squaring (1) and integrating from —L to L, using Problem 2.3, we find
Lo, a@ M
f Sh@)der = L<5+ 3 (a2 +0b2) (5)
~L , 2 5=
Substitution of (4) and (5) into (3) and dividing by L yields the required result.
Taking the limit as M —> ©, we obtain Bessel's inequality

2 o L
32‘1+n§1 @+ = Lf | Ui@)eda )

If the equality holds, we have Parseval’s identity (Problem 2.13).

We can think of Sy(x) as representing an approximation to f(x), while the left hand side of
(2), divided by 2L, represents the mean square error of the approximation. Parseval’s identity
indicates that as M — « the mean square error approaches zero, while Bessel’s inequality indicates
the possibility that this mean square error does not approach zero.

The results are connected with the idea of completeness. If, for example, we were to leave
out one or more terms in a Fourier series (cos 4=x/L, say), we could never get the mean square error
to approach zero, no matter how many terms we took. We shall return to these ideas from a gen-
eralized viewpoint in Chapter 3.

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES
2.16. (a) Find a Fourier series for f(x) =122 0<2<2, by integrafcing the series of
Problem 2.12(a). (b) Use (a) to evaluate the series 2 (G i

Tz
(¢) From Problem 2.12(a), =t n
= 4 gn® _LgpZre 1 8me
x = 1l_< sin 2sm ) + 3 sin =5 > (1)
Integrating both sides from 0 to x (applying Theorem 2-5, page 24) and multiplying by 2,
we find
: 16 X 1 272 1 3rx
2 = — 10 v _ 2 CLC AT °rr L.

x C 77_2<cos 2 55 €08 + 32 €08 =5 > ()

where C = E—(l—.l_-{-l__..l._}. )
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(b) To determine C in another way, note that (2) represents the Fourier cosine series for 2 in
0 < 2 < 2. Then since L =2 in this case,

__ao__lL .__1_22 :i
c_?—zfof(w)dx—zj;xdx 3

Then from the value of C in (a), we have

2.17. Show that term by term differentiation of the series in Problem 2.12(a) is not valid.

Term by term differentiation yields 2 cos%x - cosgg—aE + cos%ﬁ e > Since the nth term

of this series does not approach 0, the series does not converge for any value of x.

CONVERGENCE OF FOURIER SERIES

in(M+%
2.18. Provethat (a) 1 +cost +cos2f + --- +cos Mt = sin (M + 4t

2 2 sin it
1 (7 sin (M + )t 1 1 sin(M+3)t 1
- T . 11 _— = - T e 14 dt = o
(b) wj; 2 gin 4t dt 2’ wi,, 2 sin 4t 2
(a) We have cosntsin it = L{sin (n+ })t — sin (n — 1)t}. Then summing from = =1 to M,
sin $t{cost+cos2t+ --- +cos Mt} = (sindt—sinlt) + (sin§t—sinde)
+ - + [sin(M+ %)t — sin (M — %)t]

= 3{sin (M + )t — sin 11}
On dividing by sin 4t and adding §, the required result follows.

(b) Integrate the result in (a) from 0 to = and —7 to 0 respectively. This gives the required
results, since the integrals of all the cosine terms are zero.

2.19. Prove that lim ( f(z) sinnzdx = lim " f(x) cosnxdx = 0 if f(x) is piecewise
continuous. "% nee

- -

2
a ]
This follows at once from Problem 2.15, since if the series ?0+ S (a2 +b2) is convergent,

lim a, = lim b, = 0. n=1
n=—+ 00 n=—> oo

The result is sometimes called Riemann’s theorem.

w

2.20. Prove that b}im f(x) sin(M +$)xdx = 0 if f(x) is piecewise continuous.
We have o

T - N m T
f f(x) sin(M + $)x de = f {f(x) sin =} cos Mx dx + f - {f(x) cos L} sin Mx dx
- -1 —T
Then the required result follows at once by using the result of Problem 2.19, with f(x) replaced by

f(x) sin {z and f(x) cos 4w, respectively, which are piecewise continuous if f(x) is.

The result can also be proved when the integration limits are a and b instead of — and =.

2.21. Assuming that L =, i.e. that the Fourier series corresponding to f(x) has period
2L = 27, show that
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Syl@) = % + i (@n cosnx + bosinnz) = f ft+w )sn;(éllln—;f) dt

Using the formulas for the Fourier coefficients with L = 7, we have
1 (" 1" .
a,cosnx + b, sinnx = <—f f(u) cos nu du) cos nx -+ <—7;f f(u) sin nu du )sin nx
T -7 -7

s
= —l-f f(u)(cos nu cos nx + sin nu sin nx) du
TJ—m
1 m
= 2 fa) cos n(u—x) du
TJ -

Gy lf" d
Also, 5 = ) f(u) du

a
Then Sylx) = —29 + E (@, cos nz + b, sinnx)

I

= L f f(u) du + = f f(u) cos n(u — x) du

= lf f(){ + 2cosn(u—x)}

1L sin (M + §)(u — )
_;f_ ) S T o) @)

2 sin {(u — «) "
using Problem 2.18. Letting « —« = ¢, we have
s 1" . sin(M+%)tdt
(@ = ;L,T_,ﬂ Dy sinde

Since the integrand has period 27, we can replace the interval —7 —«, 7 — 2 by any other
interval of length 27, in particular —=, 7. Thus we obtain the required result.

2.22. Prove that
sy0) — (120 +f(x—0)> _ 1 [t~ fle-

2 7 g 2 sin 4¢

O sin (M + )t dt

L (TG te) — f(+0)

3 i it sin (M + 3)tdt
From Problem 2.21,
M+ Lt M+ Lt
Sulz) = 1 f fie+ S"‘( %) at +1 f fe+ o) 5 %f) dt @)
Multiplying the integrals of Problem 2. 18(b) by f(x —0) and f(x + 0) respectively,
fet O+ flz—0 _ 1 . sm(M+l) 17 sin (M + )t
2 = f flx—0) — —"d t 4+ = .I; f(x+0)—m—‘dtv (2)

Subtracting (2) from (1) yields the required result.

2.23. If f(x) and f’(x) are piecewise continuous in (—=, r), prove that
f(x +0) + f(x—0)

S, (x
lim §,,(x) 5
The function (Li-—;lsm—l(:: 0, is piecewise continuous in 0 < ¢ =z because f(x) is piecewise
continuous.
Also,
- — 1t —
tip EED —fat0) L feth—jet0), 3 fett) = fz+0)

t=0+ 2 sin -%t t—0+ t Sin%t - tes04 t
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exists, since by hypothesis f'(x) is piecewise continuous, so that the right-hand derivative of f(x) at
each x exists.

ft+2z) — flx+0) . '

is piecewise continuous in 0 =t =
Thus 2 sin 4t 5P
Similarly, M—w is piecewise continuous in —7 =t = 0.
2 sin 4t

Then from Problems 2.20 and 2.22, we have

lim {SM(Z) _ fz+0) ~2F fle— O)} - 0 or lim Sy(x) = flz+0) 42- fla—0)
M=w Jim

DOUBLE FOURIER SERIES

2.24. Obtain formally the Fourier coefficients (15), page 24, for the double Fourier sine
series (14).

Suppose that fay = 3 3 B,,sin2sin%7Y )
m=1 n=1 L, "L,
We can write this as o e
f@y) = 2= Cpsing @
m=1 1
where Cn, = E By, sin2Z% L 2
2

Now we can consider (2) as a Fourier series in which y is kept constant so that the Fourier
coefficients C,, are given by
2 Ly M
Cpn = — x,y) sin dx A
A RCTE L *)

On noting that C,, is a function of y, we see that (3) can be considered as a Fourier series for
which the coefficients B,,, are given by

2 (2, . =n
Bon ), Cmsin LL:’ dy (5)
If we now use (4) in (5), we see that
_ 4 L1 L . mnrx
B, = L.L, j; j; f(2x,y) sin—— I, sm L Y e dy (6)

APPLICATIONS TO HEAT CONDUCTION
2.25. Find the temperature of the bar in Problem 1.23, page 15, if the initial temperature
is 25°C. .

This problem is identical with Problem 1.23, except that to satisfy the initial condition
u(x,0) = 25 it is necessary to superimpose an infinite number of solutions, i.e. we must replace
equation (1) of that problem by

(@, t) = 3 Bme—Zmzw’tls gin 7%
. m=1 3
which for ¢t =0 yields
25 = EBmsin’% 0<z<3
=1

This amounts to expanding 25 in a Fourier sine series. By the methods of this chapter we then

find
B, = Lf f(x)sm—dx = f 25 mm”x = 500 — cosmr)
mn
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2.26.

2.27,
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The result can be written

S < B60(1 — cos mar) - 2mPa?t/9 mrx

sin ——
m=1 mmw 3

-~ 100 Ie--»2n2t/9 sin™ + Lloortgine + -0
T L 3 3
which can be verified as the required solution.

This problem illustrates the importance of Fourier series in solving boundary value problems.

Solve the boundary value problem

w _ ,ou

at — T o

This is the same as Problem 1.23, page 15, except that the ends of the bar are at tempera-

tures 10°C and 40°C instead of 0°C. As far as the solution goes, this makes quite a difference
since we can no longer conclude that A =0 and A = mz/3 as in that problem.

u(0,t) = 10, u(3,t) = 40, u(z,0) = 25, |u(z,t)] < M

To solve the present problem assume that u(x,t) = v(x,t) + ¢(x) where y(x) is to be suitably
determined. In terms of v(x,?) the boundary value problem becomes

W _ g0
at — “ox2?

+ 2¢7(%), »(0,t) + w(0) = 10, v(3,t) + ¢(8) = 40, v(x,0) + y(x) = 25, |v(x,t)| <M
This can be simplified by choosing

v(x) = 0, (0) = 10, ¢(38) = 40
from which we find y¢(x) = 10x 4+ 10, so that the resulting boundary value problem is

w _ 0%

=205, w0,H) = 0, w38 =0, vxz0 = 15— 10z

As in Problem 1.23 we find from the first three of these,

0
vix,t) = 3 B,e Tt sin 2%
m=1
The last condition yields
15 — 10z = 3 B, sin 22~
- m=1 3
from which 3
2 .
B, = 3 [; (15 — 10x) sin m;—x de = 7::&_(; {cos mz — 1)
Since u(x, t) = v(x, f) + ¢(x), we have finally
: _ d 30 9y 2.2 . M7
w(w,t) = 102 + 10 + 3 =—(cos mr — 1)e~2m°"t/9 gjn
m=1 Mw

as the required solution.

The term 10« + 10 is the steady-state temperature, i.e. the temperature after a long time has
elapsed.

A bar of length L whose entire surface is insulated including its ends at =0 and
2 =1L has initial temperature f(x). Determine the subsequent temperature of the bar.

In this case, the boundary value problem is

w _ o
ot "ax? )]

Dl ) <M, w(0,8) =0, wuyL,t) = 0, ux,0 = f(z) )
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2.28.

Letting » = X7 in (Z) and separating the variables, we find

TI XII

‘ ‘ XTI : KX"T or ;71_ = —X'—

Setting each side equal to the constant —A2, we find
T'+ k2T = 0, X" +2X = 0
so that o X = acoshx+ bsin A, T = ce—i\t
‘A solution is thus given by

u(x, \t) = g—m\% (4 cos Ax + B sin Ax)

where A = ae, B = be.

From u,(0,t) =0 we have B =0 so that

wlw, t) = Ae—\t oz
Then from wu,(L,t) =0 we have
sin\L = 0 or AL = maz, m=20,1,2,8, ...
Thus ‘ w(x; £) = Aexm'rt/LE cog M m=0,1,2,...

4

To satisfy the last condition, u(x,0) = f(x), we use the superposition principle to obtain -

4

ulw,t) = + S A e—kmintL? oo MTL.
; 2 m=1 L
Then from u(zx,0) = f(x) we see that
) 4 .
flx) = il S S A, e—xmiait/L? cog 7T
2 m=1 L
Thus, from Fourier series we find
A, = %f fz) cos m dx
\1 L 2 < mv x
and u(x,t) = ——f Ffyde + 532 <e smPr?t/L? gog LTE f f(&) cos ML i
. ; LJ, L m=1 L :

A circular plate of unit radius, whose faces are
insulated, has half of its boundary kept at constant
temperature «: and the other half at constant tem-
perature u: (see Fig. 2-14). Find the steady-state
temperature of the plate.

In polar coordinates (p, ¢) the partial differential egua-
tion for steady-state heat flow is

1 02y

1 du _ ) :
P Tt T O @

Fig.2-14
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The boundary conditions are

Uq 0<¢<7
u(l,¢) =

2
Uy <P <2r @

|u(p, ¢)| < M, ie.u is bounded in the region (3)

Let u(p,¢) = P® where P is a function of p and & is a function of ¢. Then (1) becomes
17, 1 !, 1 7t —
P’d + =P + —2P<I> = 0
p p
Dividing by P®, multiplying by p? and rearranging terms,

p2P"! p_P _ _fb”
P P d

Setting each side equal to A2,
" + A2 = 0 2P + pP' — N2P = ¢ “4)
The first equation in (4) has general solution
‘ ¢ = A;cosi¢p + B;sinig

By letting P = pk in the second equation of (4), which is a Cauchy or Euler differential equation,
we find &k = =)\; so that p* and p—* are solutions. Thus we obtain the general solution

P = App* + Byp? (%)
Since u(p, ) must have period 27 in ¢, we must have A=m =10,1,2,8, ... .

Also, since « must be bounded at p = 0, we must have B, = 0. Thus
u = Pd = Ay, p™(A, cosmg + Bysinmg) = pm(A cosmg + B sin me)

By superposition, a solution is

Ao &
uey¢) = 5+ S om™(A,, cosms + B, sinmg)
m=1
. 4, =
from which ul,g) = 5 + S (A, cosme + B, sinmg)
m=1

Then from the theory of Fourier series,

2T
4, = —};fo u(l, $) cos mg dp

1J‘"’ do + 1% p Q f m>0
= = U1 COS M. i =
wJp Mesmeas vf,T Yz COSMY O ug+uy if m=0

1 2w
B, = ;f u(1, ¢) sin m¢ do
0

1 (" . 1% . Uy — U
= —;f uy sinme dg + —f u, sinmg d¢p = (——1—2)(1 — cos mr)
0 T . mmr

Then: ulp, ) =

Uy + g + i (u; — ug)(1 — cos mx)

m gin m.
2 m=1 mm e ¢

wytuy | 20uy—wy) .
= =5 t—————(osing + }p*sin8g + LpSsinbp + --)

uy Fug Uy — uy 2p sing
= —l e
2 + - tan 1= 52

on making use of Problem 2.54.
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2.29. A square plate with sides of unit length has its
faces insulated and its sides kept at 0°C. If the
initial temperature is specified, determine the sub-
sequent temperature at any point of the plate.

Choose a coordinate system as shown in-: Fig. 2-1b.
Then the equation for the temperature u(z, ¥, t)  at any
point (x, y) at time ¢ is

R x<§z%+‘;i;> &
- ‘The boﬁndary conditions are given by
lu(z;y, 0] < M
w09, = ul,y,t) = w0, = s 1, = 0

we,y,0) = fla,y)
where 0<x<1 o<y <1, t>0. TFig.2-15

To solve the boundary value problem let w=XY T where X Y T are functions of ‘x, y, t re-
spectively. Then (1) becomes

XYT = K(X”YT+XY”T)
Dividing by xXYT yields ’ '
| oo XY
«T = X Y

Since the left side is a function of ¢ alone, while the right side is a function of .« and y, we see
that each side must be a constant, say —A\% (which is needed for boundedness). . Thus

XI/ YII
L4 2T = 24Dl = =2 :
T 4 2T 0 X + 7 N (2)
The second equation can be written as :
X _ —‘Y—/f S
X Y

and since the left side depends only on z while the right side depends only on y each side must
be a constant, say -2  Thus

X4 EX =0 Y4 ee@y =0 @
Solutions to the two equations in (8) and the first equatior; in (2), are given by :
L X = ay cos ux by sinpx, Y = aycos Vi — @2y + b, sin my, T = a3e"'<>jzt
It follows that a solution to (1) £s given by
k u(ew,y,t) = (ay cos px + by sin px)(a, cos Va2 y & b, sin \/5\“:7&51'/)(&39““’*%) :

From the boundary condition u(0,%,t) = 0- we see that o, = 0. From u(q:, 0,8) =0 we see that
ay = 0. Thus the solution satisfying theqe two conditions is-

ulw, 2, £) = Bem O gin ux sin VA2 — g2y

where we have written B = b,b,04.

From' the boundary condition u(l,y,t} = 0 we see that p = mz, m = 1,2;8,.... From

u(x,1,8) = 0 we see that VA2 — 2 =nr, n=1,2,8,..., or A= Vm2+aqg

e

It follows that a solution satisfying all the conditions excepf; u(x, y,0) = f(x,y) is given by

PIE T T .
w(w,y, t) = Be xm 07t gin mae sin ngy

/
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Now, by the superposition theorem we. can arrive at the possible solution

o0 0 - . .
W@, %, t) = X D B M gin mra sin nary

m=1 n=1

Letting ¢ =0 and using the condition wu(x,y,0) = f(x y), we arrive at

Ms

f,y) =

w ,
3 B, sin mzw sin nry
n=1 :

m

As in Problem 2.24 we then find that

‘ 1 1 :
B,, = 4 j; J; f(x,y) sin mrx sin nry dx dy

”iﬁ

[CHAP. 2

)

®)

Thus. the formal solution to our problem is given by (4); where the B,,, are determined from (5).

LAPLACE’S EQUATION

2. 30 Suppose that the square plate of Problem 2.29 has v
three sides kept at temperature zero, while the
fourth side is kept at temperature ;. Determine

- the steady-state temperature everywhere in the

Choose the side having temperature u; to be the one
where y =1, as shown in Fig. 2-16. Since we wish the 0

steady-state temperature u, which does not depend on time ¢,
the equation is obtained from (1) of Problem 2.29 by setting
du/at = 0; i.e. Laplace’s equation in two dimensions:

(0,0) 0 1,0
92u Py ‘ :
52 T aE T 0 ; (1)
The boundary conditions are
w0,y) = w(l,y) = wlw,0) = 0, ulw,1) = u Fig.2-16
_and  Jju(x,y)| < M.
To solve this boundary value problem let # = XY in (I) to obtain
XII VYI’ .
L "o . —_—
| XY + XY 0 or % 7
Setting each side equal to,—A2 yields ’
X" +N2X =0 Y'—NY =0
from which '

X = aycosix + by sinix Y = ‘aycosh\y + by sinh)y

Then a possible solution is

u(x,y) = (a; cos\x + by sin Az){(ay cosh Ay + by sinh )

From u(O ¥) =0 we find .¢; =0. From u(z,0) =0 we find ay = 0. From u(l y) =0 we ﬁnd"

A = My, =1,2,8, . Thus a solutwn satisfying all these condltlons is

u(x,y) = B sinmzwx sinh mry

‘To satisfy the last condition, u(x, 1) = u;, we must first use the principle of superposition to obtain -

the solution

‘ul(@,y) = B,, sin mza sinh may

3
LM

Then from u(z, 1):= %; we must h_ave

0
Uy = 21 (B,, sinh mz) sin mra
me=

@



CHAP. 2] FOURIER SERIES AND APPLICATIONS ' ‘ 43

Thus‘, using the theory of Fourier series, . S
k 2u; (1 — cos mar)

C a1
inh = 2 u; sin mrx - =
B, sinhmr = , po

. ' B 2uy(1 — cos mir) )
from which ‘ B, = W
From (2) and (8) we obtain *
( I gﬁ ”_____1—cos7n7r inmmrxz sinh m
Wy = T S m sinhomr ST Y
Note that this is a Dirichlet problem since we are solving Laplace s equation V2u = 0 for u
inside ‘a region R when u is specified on the boundary of R.

231. If the square plate of Problem 2.29 has its sides
kept at constant temperatures wi, us, us, us, respec-
tively, show how to determine the steady-state tem-
perature.

The temperatures at which the sides are kept are indi-
cated in Fig. 2-17. The fact that most of these tempera-
tures are nonzero makes for the same type of difficulty
considered in Problem 2.26. To overcome this dlﬂiculty we
break the problem up into four problems of the type. of
Problem 2.30, where three of the four sides have tempera-
ture zero. We .can then show that the solution to the given
problem is the sum of solutions to the problems indicated
by Figs. 2-18 to 2-21 below. ‘

0 0

Fig. 2-18 ’ Fig. 2-19 Fig. 2-20 Fig. 2-21

The details are left to Problem 2.57 which provides a generalization to the case where the s1de
temperatures may vary.

APPLICATIONS TO VIBRATING STRINGS AND MEMBRANES

232 A string of length L is stretched between
points: (0,0) and (L,0) on the w-axis. At Y
time t=10 it has a shape given by f(z), ‘
0<2 <L, and it is released from rest.
Find -the displacement-of the string at any

later time. : : ylx, t) T ' L
‘ ; x
The equation of the vibrating string is S T
2y _ 0% \ 7 : _
0t2_a%2 0<90<L, t>0 : . . 5 ) !

where y(,t) = displacement from x-axis at time ¢ o
(Pig. 2-22). - ‘ Fig. 2-22
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Since the ends of the string are fixed at x =0 and = =1L,
y(0,8) = y(L,t) = 0 t>0
Since the initial shape of the string is given by f(x),
y(x,0) = f(x) 0<z<L
Since th;e initial velocity of the string is zero, ‘
ye(®,0) = 0 0<ax<L
To solve this boundary value problem, let ¥ = XT as usual.

Then o XT" = a2X"T or T"fa2T = X"/X

. Calling the separation constant —\2, we have

T" + 22a2T = 0 X"+ 2X =0
and T = A,;sinxat + By cosiat X = A,sinix + Bycosix
A solution is thus given by
ylw,t) = XT = (Aysinie + B, cos Mx)(A; sin Aat + B, cos Aat)
From y(0,t) =0, A =0. Then
y(w,t) = B, sinAx(4, sin Aat + B, cosAat) = sin Ax(A sin Aat + B cos hat) ‘

From y(L,t) =0, we have sinAL(A sinXat + B cos)at) = 0, so that sinAL = 0, \L. = mr or
A = mr/L, since the second factor must not be equal to zero. Now,

yi(x,t) = sinAz(A\e cos \at — Bha sin \at)
and yy(x, 0) = (sin Ax)(AAa) = 0, from which A = 0. Thus

mrx c varat
os —2%%
L L

y(z,t) = B sin

To satisfy the condition y(x,0) = f(z), it will be necessary to superpose solutions. This yields

]

_ . M mrat
ylx, ) = -3 B,, sin T .cos 7
Then ¥(,0) = f@x) = I B,sin—o-
m=1 L
and from the theory of Fourier series,
2 L . Mrx
B, = L J:) f(x) sin I dx

The final result is

) 2 L
y(x,t) = mgl <f J(; f(x) sin mI:m: dx> sin mZ_x cos—m%aﬁ

which can be verified as the solution.

The terms in this series represent the natural or normal modes of vibration. The frequency of

the mth normal mode f,, is obtained from the term involving cos mzat and is given f)y

— Mza —ma _m T
2rfm = 7 or f’”—2L—2Lu
Since all the frequencies are integer multiples of the lowest frequency f;, the vibrations of the
string will yield a musical tone, as in the case of a violin or piano string, The first three normal
modes are illustrated in Fig. 2-23. As time increases the shapes of these modes vary from curves
shown solid to curves shown dashed and then back again, the time for a complete cycle being the
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- 2.33.

- released, determine the subsequent motion. -

where a? = 7/p, the quantity r being the tension per unit
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L L 2L
7 - 3 -8

L = Z NL @ /‘ \/\'L x

O~ ’//’ (6] \\_///\/ . 4] \\-//U\\_,/,
@ o (®) | @

Fig. 2-23

period and the reciprocal of this period being the frequency. We call the mode (a) the fundamental
mode or first harmonic, while (b) and (c) are called the second and third harmonic (or first and

'second overtone), respectlvely

A square drumhead or merﬂbrane has edges which
are fixed and of unit length. If the drumhead is
given an initial transverse displacement and then

1,1 (1,1)

Assume a coordinate system as in Fig. 2-24 and sup-
pose that the transverse displacement from the equilibrium
position (i.e. the perpendicular distance from the xy-plane)
of any point (x,y) at time ¢ is given by z(z,y, ?).

Then the equation for the transverse motion is

82z - [ 0% 9%
T = 2 —— Rl .
at2 @ <ax2 o) (1)

length along any line drawn in the drumhead, and p is the
mass per unit area.

Fig. 2-24

Assuming the initial transverse dlsplacement to be f(ac y) and the initial velocity to be.zero,
we have the conditions

20,5,8) = 2Ly, 1) = 2,0, = &(z,1,9) = 0,

e(x,u, 1)) < M,
' 2(@,5,0) = 0

2(z,4,0) = flx,y),

where we have in addition expressed the condition, for boundedness and the conditions that the edges
do not move.

To solve the boundary value problem we let .z = XYT in (1), where X, Y T are functions of .
x, ¥, and t respectively. Then, proceedmg as in Problem 2.29, we find
24 7 144
LR 0 8
a?T X Y

S

and we are led exactly as in Problem 2.29 to the equation
ST+ N2T =0, X7+ @2X = 0, Y"+(7\2——/z2)Y =0
Solutions of these equations are k

X =

Y = achS\/)\2—,zz ¥+ bzsm\/)\z—y Y

az cos at + bs sin Aat

ay cos ux 4+ by sin ux,

T =

L

A solution .of (1) is thus given by

z(z, y, t) = (a;cospx + by sin px)(az cos V7\2 — p2y + by sin VA2 — u2 y)(a3 cos Aat + by sin Aat)
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From 2(0,7,t)=0 we find ¢y =0. From 2(x,0,t) =0 we find ay, = 0. From z(x,4,0) =0
we find by = 0. Thus the solution satisfying these conditions (and the boundedness condition) is

2(x,y,t) = B sinux sin VA2 — 2y cos hat

From z(1,y,t) =0 we see that g =ms, m=1,2,3,.... From =z(z,1,{) =0 we see that

Va—p2 =nz, n=1,2,8,..., ie. A= Vvme+n2g,
Thus a solution satisfying all conditions but z(x,%,0) = f(=,y) is given by
2(¢,y,t) = B sinmarx sinnary cos Vm?+ n?rat
By the superposition theorem we can arrive at the possible solution
o o0
2z, 4,t) = 3 X Bpnsinmre sinnry cos Vm® + n?rat (2)
m=1 n=1
Then, letting ¢ =0 and using 2(=,y, 0) = f(x,y), we arrive at

oo

B, sinmzrx sin nry
=1

faw = 3

n

from which we are led as in Problem 2.24 to

1 pl
B,, = 4 f f f(z, ¥) sin mzrx sin nry dx dy (3)
o Jo

Thus the formal solution to our problem is given by (2), where the coefficients B,,, are determined
from (3).

In this problem the natural modes have frequencies f,,, given by 2rf,,, = Vm?+n2za, ie.
1
fon = GVmET AR | T *)
The lowest mode, m =0, n =1 or wm =1, n =0, has frequency Vr/u. The next higher one
has m =1, » =1 with frequency 1V 2r/p, which is not an integer multiple of the lowest (i.e. fun-

damental) frequency. Similarly, higher modes do not in general have frequencies which are
integer multiples of the fundamental frequency. In such case we do not get music.

Supplementary Problems

FOURIER SERIES

2.34.

2.35.

2.36.

Graph each of the following funections and find its corresponding Fourier series, using properties
of even and odd functions wherever applicable. '

8 0<xe<2 Peri ~x ~4Z=2xz=0 .
(@) f(x) = 8 o<p<d eriod 4 by fx) = o 0<z=4 Period 8
2w 0=ua=
() flx) = 4x, 0 <2x <10, Period 10 d flxy = 0 3 < Period 6
- x

In each part of Problem 2.34, tell where the discontinuities of f(x) ure located and to what value
the series converges at these discontinuities.

22—z 0<ax<4

in a Fourier series of period 8.
x—6 4<x<8 P

Expand f(x) = {
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237. (a) Expand f(x) =cosx, 0 <z <=, in a Fourier sine series.

() How should f(x) be defined at # =0 and x =7 so that the series will converge to f(x) for

0= =7

2.38. (a) Expand in a Fourier series f(x) =cosx, 0 < % <, if the period is =; and (b) compare with
the result of Problem 2.37, explaining the similarities and differences if any.

239. Expand f(x) = in a series of (a) sines, (b) cosines.

x 0<ae<4
8—xr 4<2<8

2.40. Prove that for 0 =z = 7,

_ 72 [cos2x , cosdx | cos6bx
(@) x(r—x) = 6 <12 + > + 32 + >

_ 8{sin«x , sin8x , sinbx
b)) x2F—x) = ;< 18 + 3 + 53 +>

241. TUse Problem 2.40 to show that

S L._= S ot 2 R L id

(a/) — n2 - 67 (b) ‘ngl nz - 12) (C) "21 (2n_1)3 - 32'
1,1 1 1,1, 1 _ 3:3V/2
2.42. Show that ﬁ+§§——5§_ﬁ+§+ﬁ§— = 128 °

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES
2.43. (@) Show that for —7 <z < 7,

_ sine _ sin2x sin3x
x = 2< 1 D) + 3 >

(b) By integrating the result of (a), show that for —7r =2 = =,

2
P cosx _ cos2x cos3x
¥ 3 4< 12 2 3

(¢) By integrating the result of (b), show that for —v =2 = 7,

sinx sin 2x sin 3z .
18 28 3

r—x)w+2x) = 12< — +

(d) Show that the series on the right in parts (b) and (¢} converge uniformly to the functions on
the left.

244. (a) Show that for —7 <z <7,

= 1. 2 o, . 8 4 _
x cos % 5 sinw + 2<1.3sm2x 2.4sm3x+3.5sm4x >
(b) Use (a) to show that for —r =2 = 7,
. 1 cos 2x cos 3x cos dx .
o 1 P — —_ PR —
xsinxy = 2cosx 2<1.3 24 + 3.5 >

245. By differentiating the result of Problem 2.44(b), prove that for 0 < x = 7,

_g(cosx+cos3x +cos5x + >

r = =
2 7\ 12 32 52

"PARSEVAL’S IDENTITY
246. By using Problem 2.40 and Parseval’s identity, show that

w>l_77’_4 < 1 _ 8
@ 254 9 ® 2 %= 55
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2.48.

2.49.
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how th 1, 1 . 1 .. 2 — 8 [Hint. Use Problem 2.11.]
Show that et e. 5. = 16 * . A1,
$ _ 1 _ s 1 _ =
Show that @ 2 57w =950 @ 2 Gm—1p ~ 960"
1 1 1L _ 4o
Show that 12,22.32+22.32.42+32.42.52+ - 16

SOLUTIONS USING FOURIER SERIES

2.50.

2.51.

2.52.

2.53.

2.54.

2.55.

2.56.

257.

(a) Solve the boundary value problem

Ju 92u _ _ -
5t = 26—4&? u(0,t) = wu(4,t) = 0 u(x,0) = 2bx

where 0 <ax <4, t>0.

(b) Interpret physically the boundary value problem in (a).

(@) Show that the solution of the boundary value problem

du _ %

ot~ oz u(0,8) = uylr, ) = 0 u(x,0) = f(z)

where 0 < x <7, t> 0, is given by
_ 1" 2 Q i
u(x,t) = = fe)de + £ I e~ cosme f(x) cos mx dx
T Jy T m=1 (1}

(b) Interpret physically the boundary value problem in (a).

Find the steady-state temperature in a bar whose ends are located at « =0 and x = 10, if these
ends are kept at 150°C and 100°C respectively.

A circular plate of unit radius (see Fig. 2-14, page 39) whose faces are insulated has its boundary
kept at temperature 120 + 60 cos 2¢. Find the steady-state temperature of the plate.

’

Show that psing + 4p%sin8¢ + Lp¥sinbp + .- = } tan‘1<21pi¢p2¢>

and thus complete Problem 2.28.

A string 2 ft long is stretched between two fixed points = =0 and « = 2. If the displacement
of the string from the x-axis at t =0 is given by f(x) = 0.0832(2—x) and if the initial velocity
is zero, find the displacement at any later time.

A square plate of side ¢ has one side maintained at temperature f(x) and the others at zero, as
indicated in Fig. 2-25. Show that the steady-state temperature at any point of the plate is
given by

kry

a

u(x,y) = E m f flx) sm— dx] sin k—ZQE sinh

Work Problem 2.56 if the sides are maintained at temperatures f,(x), g,(%), folx), 7:(¥), respectlvely
[Hint. Use the principle of superposition and the result of Problem 2. 56.]



CHAP 2] ‘ FOURIER SERIES AND APPLICATIONS - 49

f(x)

Fig. 2-25 ‘ : . TFig.2-26

258. ' An infinitely long plate of width o (indicated by the shaded region of Fig., 2-26) has its two
parallel sides maintained at temperature 0 and its other side at constant temperature u,. (a) Show
that the steady-state temperature is given by :

4710 7L 1 ’ 37 1 Brx
= T -y ain T £ L1o-3u gin 270 4 gy gin 2T 4 ..
w(x, ¥) - <e ¥ sin ” + 3¢ sin " + 5¢ sin ==+
(b) Use Problem 2.54 to show that
' 2u, ' ! sin (ra/a)
= —q | S \me/ )
u(®, ) T tan sinh ¥

2.59. Solve Problem 1.26if the string has its ends fixed at z = 0 and X = L and if its mltlal dlsplace-
ment and velocity are given by f(x) and g(x) respectlvely

2.60. A square plate (Fig. 2-27) having sides of unit length has k Y
its edges fixed in the acy -plane and is set 1nto transverse

vibration. ) (0,1) 1,1

(¢) Show that the transver'se displacement z(x, y, t) of any -
point (x,y) at time ¢ is given by

62z — 8% + &
92 i ox? | oy?

where a2 is a constant.

(b) Show that if the plate is given an 1n1t1al shape f(x,y) 0 , - Lo
and released with velomty g(xz,y), then the dlsplacement ‘ S
is given by ‘ - Fig.2-27 -

Ao, y, &) = 2 2 [A i, €OS At + B,.n sin Ap,at] sin maw sin nry
m=1 n=1 ) .

7 1 1 ‘ ,

where C A, =4 f f f(x, y) sin mrx sin ngy dx dy
0o Jo
4 1 1 . . L
B,, = f - g(x, y) sin mre sin nzy da dy
(12 o Jo ' T

and Ay, = 7Vm2 +n2 - '
2.61. Work Problem 2.60 for a rectangular plate of sides b and e.

2.62. ' Prove that the result for wu(w, ¢) obtained in Problem 2.25 actually satisfies the partial differential
equation and the boundary conditions.

2.63. . Solve the boundary value problem

w2
at T ox

: u(0, ) = ui, W, t) = uy, w(x, 0) = 0
“ - where « and L are constants, and mterpret physically. ‘

~af . 0<w<L, t>0
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2.65.

2.66.

2.67.

2.68.

2.69.

2.70,

271

2.72.

FOURIER .SERIES AND APPLICATIONS » [CHAP. 2

‘Work Problem 2.63 if u(x,0) = f(w)

Solve and interpret physically the boundary value problem
' Y e

Qt2 ) am4.: 0

where y(0,8) = 0, y(L, 1) =0, y(z,0) = (@), y(x,0) =0, Y220, ) = 0, yo(L, ) = 0, [y(z, t)vl < M.

Work Problem 2.65 if y(x,0).= g(x).

A .plate is bounded by two concentric circles of radius
o and b, as shown in Fig. 2-28. The faces are insulated
and the boundaries are kept at temperatures f(4) and g(9)
respectively, Show that the steady-state temperature at
any point (r, 4) is given by '

N 0 ’ X Bn
wir,6) = Ay + Bylnr + n§1 Am +7.;[ cos ne

D\ .
+ Cn'r"'+ s sin ne

where A, and B, are determined from

2w

' 1 : P
AO + BO Ine = o o f(a) 40 A
1 27 . ' . .
Ay + Bolnb = —f‘ 9(6) do : Fig. 2-28
27 Jo ‘ . ’ -

An, B, are determmed from

21 ' ek -
A + Ba-m = 1 f f(6) cosmo do, ~ Apm + Bb—n = 717 f " g(6) cosne de
0

“and C,, D, are determined from

i

o ’ 2w
Coa* + Dya—n = 717 f f(6) sinms do,  C,bn + Dybn = L f g(6) sinne do
0 0

T

Investigate the limiting cases of Problem 2.67 as (a) ¢ =0, (b) b> o, and give physical inter-

" pretations.

(@) Solve the boundary value problem

ou
g% - Yz
at 6:r2 2+ B

wherg w0, =0, w(L, ) =0, u(x,‘O) = f(x), |ulz, t)| < M, and (b) give a physical interpretation.

‘Work Problem 2.69 if ,Be”ﬂ is replaced by uy sin ax, where %y and « are constants.

. o2 : .
Solve %TZ = q gy g where y(0,5) =0, y(L,#) =0, y(z0) = ) v 0) = 0, (e )] < M,

and give a physical interpretation.

Find the steady-state temperature in a solid cube of unit side- (Fig, 2-29) if the face in the xy-plarie
is kept at the prescribed temperature F(x,y), while all other faces are kept at temperature zero.
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273,

2.74.

2.75.

2.76.

How would you solve Problem 2.72 if temperatures were prescribed on the other faces also?

How would you solve Problem 2.72 if the initial terhperature inside the cube was given and you
wished to find the temperature inside the cube at any later time? . i

Generalize the result of Problem 2.72 to any rectangular parallelepiped.

A plate in the form of a sector of a circle of radins o has central angle 8, as shown in Fig. 2-30.
If the circular part is maintained at a temperature f(8), 0 < ¢ < 8, while the bounding radii are
maintained at temperature zero, find the steady-state temperature everywhere in the sector.

Fig. 2-29 :  Fig.2-30



Chapter 3

Orthogonal Functions

DEFINITIONS INVOLVING ORTHOGONAL FUNCTIONS.
ORTHONORMAL SETS

Many properties of Fourier series considered in ‘Chapter 2 depended on such results as

L L
.. Mnx . Nak mnx Nnrx
R — ——e— — = &
fo sin—=sin—p dx 0, j; COS—FCOS™T dx 0 (m #=n) #))

In this chapter we shall seek to generalize some ideas of Chapter 2. To do this we first
recall some elementary properties of vectors.

Two vectors A and B are called orthogonal (perpendicular) if A-B=0 or AB, +
AsBs+ AsB; =0, where A = Aji+ Asj+Ask and B = Bii+Baj+ Bsk. Although not geo-
metrically or physically obvious, these ideas can be generalized to include vectors with
more than three components. In particular we can think of a function, say A(x), as being a
vector with an infinity of components (i.e. an infinite-dimensional vector), the value of each
component being specified by substituting a particular value of taken from some interval

(a,b). It is natural in such case to define two functions, A(z) and B(x), as orthogonal in
(@, b) if

b
f A(®)B(x)dxe = 0 2)
The left side of (2) is often called the scalar product of A(x) and B(x).

A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e.

if AA=A2=1. Extending the concept, we say that the function A(x) is normal or
normalized in (a, b) if

J ampa = 1 | )

From the above it is clear that we can consider a set of functions {¢,(%)}, k=1,2,3,...,
having the properties

[ a@e@d = 0 men *
j;b {$n(®)}Pdx = 1 m=1,2,3,... | (5)

Each member of the set is orthogonal to every other member of the set and is also normal-
ized. We call such a set of functions an orthonormal set in (a, b).

The equations (4) and (5) can be summarized by writing

J e @i = s, Q)

where 8ma, called Kronecker’s symbol, is defined as 0 if m +#*n and 1 if m = n.

52
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Example 1.
The set of functions

omlx) = 1’;2—sinmx m=1,2,3,...

is an orthonormal set in the interval 0 =z = 7.

ORTHOGONALITY WITH RESPECT TO A WEIGHT FUNCTION
b
It J h@n@u@d = s, @

where w(x) =0, we often say that the set {y,(x)} is orthonormal with respect to the
density function or weight function w(x). In such case the set ¢,(x) = Vw(z)y,(2),
m=1,2,8,..., is an orthonormal set in (a, D).

EXPANSION OF FUNCTIONS IN ORTHONORMAL SERIES

Just as any vector r in 3 dimensions can be expanded in a set of mutually orthogonal
unit vectors i, j, k in the form r = ¢ + ¢2j + ¢sk, so we consider the posgibility of expanding
a function f(x) in a set of orthonormal functions, i.e.

flxy = X ¢ é,(x) a=r=b (8)
n=1
Such series, called orthonormal series, are generalizations of Fourier series and are of

great interest and utility both from theoretical and applied viewpoints.

Assuming that the series on the right of (8) converges to f(x), we can formally multiply
both sides by ¢,,(x) and integrate both sides from a to b to obtain

e = f 1040 da o)

which are called the generalized Fourier coefficients. As in the case of Fourier series, an
investigation should be made to determine whether the series on the right of (8) with co-
efficients (9) actually converges to f(x). In practice, if f(z) and f/(x) are piecewise continu-
ous in (a, b), then the series on the right of (8) with coefficients given by (9) converges to
$[f(x +0) + f(x — 0)] as in the case of Fourier series.

APPROXIMATIONS IN THE LEAST-SQUARES SENSE
Let f(x) and f’(x) be piecewise continuous in (a,b). Let ¢ (x), m =1,2,..., be ortho-
normal in (a, b). Suppose now that we consider the finite sum

Su@) = 3 es,@ (10)

as an approximation to f(x), where «, 2 =1,2,8,..., are constants presently unknown.
Then the mean square error of this approximation is given by

fa [f(@) — 8,y()]2 dae

Mean square error = = (11)

and the root mean square error Ems is given by the square root of (11), i.e.

Bems = \/ - 1_a f [f(@) — S, (2)] dw (12)
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We now seek to determine the constants o, which will produce the least root mean
square error. The result is supplied in the following theorem which is proved in Prob-
lem 3.5.

Theorem 3-1: The root mean square error (12) is least (i.e. a minimum) when the co-
efficients are equal to the generalized Fourier coefficients (9), i.e. when

a, = €, = j;b f(x) tj)n(.%‘) dx (13)

We often say that S, (x) with coefficients ¢, is an approximation to f(x) in the least-
squares sense or a least-squares approximation to f(x).

It is of interest to note that once we have worked out an approximation to f(xz) in the
least-squares sense by using the coefficients ¢,, we do not have to recompute these coeffi-
cients if we wish to have a better approximation. This is sometimes referred to as the
principle of finality.

PARSEVAL’S IDENTITY FOR ORTHONORMAL SERIES. COMPLETENESS
For the case where «, =c, we can show (see Problem 3.5) that the root mean square

error is given by
' 1 b M 1/2
Eeme = = [f [f(2)]2dx — n; cﬁ} (14)

It is seen that E.ns depends on M. As M - « we would expect that E.ns = 0, in which case

we would have . B
f vere = e (15)

Now, (15) could certainly not be true if, for example, we left out certain functions ¢ ()
in the series approximation, i.e. if the set of functions were incomplete. We are therefore
led to define a set of functions ¢ (x) to be complete if and only if Ewms—>0 as M, so
that (15) is valid. We refer to (15) as Parseval’s identity for orthonormal series of func-
tions. In (6) of Chapter 2, page 23, we have obtained Parseval’s identity for the special
case of Fourier series.

In the case where E.ns—~> 0 as M~ =, ie.
b

lim | [f(z) - S,(@)]2de = 0 (16)

M~ 0 a

we sometimes write _
Lim. S, (x) = f(x) (17)

M=o

This is read the limit in mean of S, () as M - « equals f(x) or S,,(x) converges in the mean to
f(x) as M > « and is equivalent to (16).

STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS
A boundary value problem having the form '

dz [p(x) dx] + [q@)+ar(x)ly = O Aa<z=0b

. (28)
ay(a) + o,y'(a) = 0, B,y(b) + B,y'(b) =
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where «,«, f,,8, are given constants; p(z), ¢(z), r(x) are given functions which we shall
assume to be differentiable and A is an unspecified parameter independent of z, is called a
Sturm-Liouville boundary value problem or Sturm-Liowville system. Such systems arise
in practice on using the separation of variables method in solution of partial differential
equations. In such case ) is the “separation constant.” See Problem 3.14.

A nontrivial solution of this system, i.e. one which is not identically zero, exists in
general only for a particular set of values of the parameter A. These values are called
the characteristic values, or more often eigenvalues, of the system. The corresponding solu-
tions are called characteristic functions or eigenfunctions of the system. In general to each
eigenvalue there is one eigenfunction, although exceptions can occur.

If p(x) and ¢(x) are real, then the eigenvalues are real. Also, the eigenfunctions form
an orthogonal set with respect to the weight function r(z), which is generally taken as non-
negative, i.e. 7(x) =0. It follows that by suitable normalization the set of functions can
be made an orthonormal set with respect to 7(z) in a =« =b. See Problems 3.8-3.11.

THE GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

Given a finite or infinite set of linearly independent functions ¢ (), ¢,(x), ¢,(x), ... de-
. fined in an interval (a, b) it is possible to generate from these functions a set of orthonormal
functions in (a,b). To do this we first consider a new set of functions obtained from the
¢, (¢) and given by

e ¥, (@), €y (®) F Coy (), Coy ¥ () + Cop t(®) + Cyp (), .. (29)

where the ¢’s are constants to be determined. We shall designate the functions in (19) by
6,(2), $,(2), $5(), - - - .

We now choose the constants c¢,,,¢c,, ¢y, ... so that the functions ¢ (), ¢,(x), $,(%), - - -
are mutually orthogonal and also normalized in (a,b). The process, known as the Gram-
Schmidt orthonormalization process, is illustrated in Problem 3.12,

An extension to the case where orthonormalization is with respect to a given weight
function is easily made.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS

In the course of solving boundary value problems using separation of variables we often
-arrive at Sturm-Liouville differential equations (see Problem 3.15, for example). The
parameter A in these equations is the separation constant, and the values of A which are
obtained represent the real eigenvalues. The solution of the boundary value problem is then
obtained in terms of the corresponding mutually orthogonal eigenfunctions.

For an illustration which does not involve Fourier series, see Problem 3.13. Other illus-
trations involving this general procedure will be given in later chapters. ’
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Solved Problems

ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES
3.1. (a) Show that the set of functions
1, sin—~, cos7-, sin ——, cos—5—, sin——, AL
form an orthogonal set in the interval (—L, L).

(b) Determine the corresponding normalizing constants for the set in (@) so that the
set is orthonormal in (—L, L).

(e) This follows at once from the results of Problems 2.2 and 2.3, page 26.
(b) By Problem 2.3,

L L
N mzd — 2mn-x —
j‘_L sin2 7 dx L, . JA—L cos? —- dx L
L 2 L - 2
1 . mrx N 1 mrx .

Then f_L (»\/Esm T ) dx = 1, f_L (»\chos T ) de = 1

L L 1 2 . ‘
Also, LL 1)2de = 2L or j‘_L <_\/—2—Z> dr = 1

Thus the required orthonormal set is given by

1 1 .. TL 1 T 1 . 27x 1 2rx
~—F=C0S &+ —F—=Co0s T s

—_— ——=sm -, , —=Ssm -y,
VL, VDL yELr ypo L VL

32. Let {4 (x)) be a set of functions which are mutually orthonormal in (a,b). Prove

that if i ¢, ¢,(x) converges uniformly to f(x) in (a,b), then
n=1

¢, = ~gbf(oc) ¢, () dx

Multiplying both sides of ®
fl@) = El Cn Pn(®) (1)
ne

by é,(x) and integrating from o to b, we have

b © b
J @@ s = 3 0 [ onle) oole) do @

where the interchange of integration and summation is justified by the fact that the series converges
uniformly to f(z). Now since the functions {¢,(x)} are mutually orthonormal in (a,b), -we have

b 0 m+#%Fn
fa (@) pal@) dz = {

1 m=n
so that (2) becomes

b
[ ) n@dn = en ®)
as required.

We call the coefficients ¢, given by (3) the generalized Fourier coefficients corresponding to
f(x) even though nothing may be known about the convergence of the series in (Z). As in the case

of Fourier series, convergence of , ¢, ¢,(x) is then investigated using the coefficients ($). The
n=1

conditions of convergence depend of course on the types of orthonormal functions used. In the

remainder of this book we shall be concerned with many examples of orthonormal functions and
series.
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LEAST-SQUARES APPROXIMATIONS. PARSEVAL’S IDENTITY
AND COMPLETENESS :

33. If S,( 2 _$.(x), where ¢ (z), n=1,2,..., is orthonormal in (a,b), prove
that

[t -sere = f ters - 23, + 30

b
where ¢, = f f(z) ¢, (x)dx are the generalized Fourier coefficients corresponding
to f(x).

We have M

flx) — SM(x) = f(x) - El an¢n(x)

By squaring we obtain

M M M
@) = Su@]? = [f@)]2 = 2 3 anf@ o) + 3 3 aman @) $a(2)

Integrating both sides from a to b using

b b 0 m+*n
L @ o) ds, | gn@) o) dn = {1

m=n

we obtain

b b M M
f [f(x) — Sy(®)]2dx = f [f(x))2dx — 2 21 tn Cn + n§1 a2

We have assumed that f(x) is such that all the above integrals exist.

34. Show that
b b M . M
f v -s,epd = [ f@rds + ¥ @) - 3ol
This follows from Problem 3.3 by noting that

b M M b M
f [f(x))2de — 2 §1 apc, + gl a2 = f [f(z)]2dz + gl (a2 — 2ay,¢,)

S

b
[f(x)]2 da + 21 [(an — €)% — 2]

b M M
f U@ + 3 an—c)? = 3 of

3.5. (@) Prove Theorem 3.1, page 54: The root mean square error is a minimum when
the coefficients «, equal the Fourier coefficients c,.

(b) What is the value of the root mean square error in this case?
(@) From Problem 3.4 we have
b b M M
[ o -suwra = [ @k + 3 -2 - 3 d

Now the root mean square error will be a minimum when the above is a minimum. However, it
M

is clear that the right-hand side is a minimum When S (apn—cy)? = 0, ie. when a, =c,
for all n. n=1 '
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3.6.

3.7.
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(b) From part (a) we see that the minimum value of the root mean square error is given by

b 1/2
Bs = |57 f (o) — Su(@)2 s |

1 b 5 & 1/2
= ___b_al:fa [f(®)]2de — El c2

Prove that if ¢, n=1,2,8,..., denote the generalized Fourier coeflicients corre-

sponding to f(x), then " b
nzl 2 = fa [f(x))? dx

From Problem 3.5 we see that, since the root mean square error must be nonnegative,
M b
S = | fepd 1
n=1 a.
Then, taking the limit as M - » and noting that the right side does not depend on M, it follows that
w b
Sk o= f [f(x)]2 dx (2)
n=1 a

This inequality is often called Bessel’s inequality.

As a consequence of (2) we see that if the right side of (2) exists, then the series on the left
must converge. In the special case where the equality holds in (2) we obtain Parseval’s identity.

b
Show that lim f(%) ¢, (x)dx = 0.

n=— a

b o
By definition we have ¢, = f f(x) p,(x) dx. But since X ¢2 converges by Problem 3.6, the
a n=1

nth term ¢2, and with it ¢,, must approach zero as n -> «, which is the required result. Note that
this result for the special case of Fourier series is Riemann’s theorem (see Problem 2.19, page 35).

STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS

38.

(@) Verify that the system y”+ay =0, y(0)=0, y(1)=0 is a Sturm-Liouville sys-
tem. (b) Find the eigenvalues and eigenfunctions of the system. (c) Prove that the
eigenfunctions are orthogonal in (0,1). (d) Find the corresponding set of normalized
eigenfunctions. (e¢) Expand f(x) =1 in a series of these orthonormal functions.

(@) The system is a special case of (18), page 54, with p(z) =1, q(x) =0, r(x) =1, a =0, b =1,
a; =1, ap =0, B =1, B, =0 and thus is a Sturm-Liouville system.

(b) The general solution of 3" +xy =0 is y = A cos Viz + B sin ﬁx From the boundary
condition %(0) =0 we have A =0, ie. y = Bsin Viz. From the boundary condition
y(1) =0 we have B sin\/i = 0; since B cannot be zero (otherwise the solution will be iden-
tically zero, i.e. trivial), we must have sinVx=0. Then A= mm, A=m2z2%, where
m=1,2.3,... are the required eigenvalues.

The eigenfunctions belonging to the eigenvalues N = m?z2 can be designated by B, sin m=x,
m=1,2,8,.... Note that we exclude the value m =0 or A =0 as an eigenvalue, since the
corresponding eigenfunction is zero.

(¢) The eigenfunctions are orthogonal since
1 1
f (B,, sin mrx)(B, sinnrx)dx = B,B, f sin mrx sin nze do
0 0

BB, (!
= 5 f [cos (m — n)re — cos (m + n)rx] da
0

1
= 0, m¥*n
0

BB, [ sin (m — n)ra _ sin(m + n)rx
2 (m — n)r (m + n)7
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3.10.

(d) The eigenfunctions will be orthonormal if

1
f (B, sinmrx)2de = 1
0

1 B2 1 B2 )
ie if B2 f sin?mrx doe = 7’" f (1 — cos Zmzx) dx = 7’”— =1, or B,= \fZ_, taking the
0 0

positive square root. Thus the set V2 sinmrx, m = 1,2, ..., is an orthonormal set.

(¢) We must find constants ¢;, ¢, ... such that

@ = 3 omdml

m=1
where f(x) =1, ¢p(x) = V2 sinmzx. By the methods of Fourier series,

Cp = folf(x)¢m(x)dx = \/’Z_J(‘)lsinmmdx - @_ﬁ}_:_ﬂ:&?ﬂrl

is, assuming 0 < 2 <1,

=

Then the required series [Fourier series

2(1 — cos mx)
1 ma

1 = sin mmrx

§nMs

Show that the eigenvalues of a Sturm-Liouville system are real.
We have F[ PR ]+ W@+ = o o

ary(a) + agy'(a) = 0, B1y(b) + Boy'(d) = 0 (2)

Then assuming p(x), ¢(x), 7(x), ay, @s, 81, B2 are real, while » and y may be complex, we have on
taking the complex conjugate (represented by using a bar, as in #, A):

[ p@FE ]+ ta@ +Xrs = o ®
(e} + agf’(@) = 0,  ByF(d) + Bo¥'(b) = 0 4)

Multiplying equation (Z) by #, (3) by ¥ and subtracting, we find after simplifying,
d L, - N
7 P@WY —9y)] = = Nr(@)yy

Then integrating from a to b, we have

b
p(x)(yg’—yy’)a =0 *)

b
=2 L r(o))y}2 do

on using the conditions (2) and (4). Since 7r(x) = 0 and is not identically zero in (e, b), the integral
on the left of (5) is positive and so A—X =0 or A =7, so that A is real.

Show that the eigenfunctions belonging to two different eigenvalues are orthogonal
with respect to r(z) in (a, b).

If y; and y, are eigenfunctions belonging to the eigenvalues A; and A, respectively,

d
2 [ ] + e+ 2@l = o &
a1 (@) + ayi(@) = 0, B1y1(d) + Boyi(d) = 0 @
d
2P0 ]+ e +rr@lue = 0 ®

aya(@) + agyz(a) = 0, Bi1ys(d) + Bays(d) = O 4)
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Then multiplying () by s, (8) by y, and subtracting, we find as in Problem 3.9,

'

L @i =] = =A@y

Integrating from a to b, we have on using (2) and (4),

b b
(M_)\z)_fl r@)ywade = p(@)(Yys — Y1) , =0

and since Ay # A\, we have the required result

b
J; r(x)yyede = 0

Given the Sturm-Liouville system y” +Ay =0, y(0) =0, y(L)+ By(L) =0, where 8
and L are given constants. Find (a) the eigenvalues and (b) the normalized eigen-
functions of the system. (¢) Expand f(x), 0 <2 <L, in a series of these normalized
eigenfunctions.

(a)

The general solution of ¥’ +Ay =0 is
y = A cosViz + B sinﬁx
Then from the condition »(0) =0 we find A =0, so that

¥y = BsinViz
The condition y'(L)+ By(L) = 0 gives

BﬁCOSﬁL+BBsinﬁL = 0 or tanVAL = _\;_-X @

which is the equation for determining the eigenvalues A\. This equation cannot be solved exactly;
however we can obtain approximate values graphically. To do this we let v = \/RL so that
the equation becomes »

tanv = — 3L (2)
The values of v, and from these the values of A, can be obtained from the intersection points
V3, Vg, Vg, - .. of the graphs of w =tanv and w = —v/gL, as indicated in Fig. 3-1. In con-
struction of these we have assumed that 8 and L are positive. We also note that we need only
find the positive roots of (2).

V1

———e e e e —— T

Vg

e — e e v, ————————

V3

Fig. 3-1
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(b) The eigenfunctions are given by

(@) = BpsinVin,z ‘ )
where A,, n =1,2,8,..., represent the eigenvalues obtained in part (a). To normalize these
we require L

f BZ sin2\/>\_n:x: de = 1

0

ie. f (1—cos2Vn,x)dx = 1
. Wi,
or B, = (4)

2yn, L — sin 2\/’)\_,,L

Thus a set of normalized eigenfunctions is given by

o) = 4‘/>\_" sin\/)\_nx n=12,... (5)
V 2Vn, L — sin 2V, L

© If 7@ = S ¢, 4,&), then
1

L
f f(x) pplx)da = \/ W f F(x) sin VA, = da (6)
0 2\/—L — sin 2\/_L

Thus the required expansion is that with coefficients given by (6). The expansion for f(x) can
equivalently be written as
a/x,

0 L -
flx) = ngl 2@1, — sin2\/-)\—nL{J:) f(x) sm\/;"x dx} sin \/ﬁx )

GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

3.12. Generate a set of polynomials orthonormal in the interval (—1,1) from the sequence
Lax,x%a8....

According to the Gram-Schmidt process we consider the functions
$1(®) = e, #a(®) = gyt oopax,  P3(x) = o3 + capw + egan?

Since ¢o(#) must be orthogonal to ¢,(x) in (—1,1), we have

1
fﬂ(cu)(cm+c22x) de = 0 ie.  ¢41(2¢5) = 0
from which ¢5; = 0, because c¢;; # 0. Thus we have

#1(®) = epy #a(®) = coox

In order that ¢,(x) and ¢,(x) be normalized in (—1,1) we must have

1 1
fl(_cn)2dx =1 f (copm)2dx = 1
- -1

3
ey = * 022215

from which

Since ¢3(x) must be orthogonal to ¢,(x) and ¢,(x) in (—1, 1), we have

1 1 :
f (e11Megy + €302 + cx) de = 0, f (0927)(egy + €302 + 3522 dx = 0
1 —1

from which
2031 + §033 =90 or Caz = —3631, C3o = 0

Thus ¢3(x) = e31(1— 322)
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In order that g4(x) be normalized in (—1,1) we must have

1 1 |5
f leg1(1—3x2))2dx = 1 whence ¢z = * 3\ 2
-1

The orthonormal functions thus far are given b_y

1 3 5/3x2—1
$i(x) = i\/;, - pa(a) = i\fgx, galx) = * §<_2—>

By continuing the process (see Problem 3.29) we find

7/ 53 — 3x 9/ 8bxt — 3022 + 3
palx) = * \’ 5(—2—> ,  gslx) = = §<_——8_— »

From these we obtain the Legendre polynomials

32— 1 523 — 3
Pofa) = 1, Py(a) = 3, Pyle) = Z5, Pyla) = 5
4 2
Py(x) = 35x 2090 +3’
The polynomials are such that P,(1) =1, n=0,1,2,8,.... We shall investigate Legendre poly-

nomials and applications in Chapter 7.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS

3.13. A thin conducting bar whose ends are at £ =0 and z =L has the end =0 at
temperature zero, while at the end « = L radiation takes place into a medium of
temperature zero. Assuming that the surface is insulated and that the initial tem-

perature is f(z); 0 <x < L, find the temperature at any point z of the bar at any
time t.

The heat conduction equation for the temperature in a bar whose surface is insulated is

ou . dum
% S @

Assuming Newton’s law of cooling applies at the end = = L, we obtain the condition
—Ku,(L,t) = h[u(L,t)— 0]
or ‘ ulL, ) = —puL,t) @)

where B8 = K/h, K being the thermal conductivity and h a constant of proportionality. The re-
maining boundary conditions are given by

u(0,t) = 0, u(x,0) = flx), |ulxt)] < M
To solve this boundary value problem we let « = XT in (Z) to obtain the solution
u = e ’t(4 cosix + 8 sinrx)

From u(0,t) =0 we find 4 =0, so that

u(x, t) = Be—x¥*t gin Az
The boundary condition (2) yields
tanA\L = —2 )
B
This equation is exactly the same as (I) on page 60 with A replaced by A2, Denoting the nth posi-
tive root of (3) by A,, »=1,2,8,..., we see that solutions are
u(x,t) = Bne‘“ﬁt sin A2

Using the principle of superposition we then arrive at a solution

O
(@, t) = 3 Bpe~*Mtsinaw
n=1
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THe last boundary condition, u(z,0) = f(x), now leads to

0

flz) = E B, sin :x
=1

n=

We can find B,, by multiplying both sides by sin A,x and then integrating, using the fact that

L
J‘ sin A\ sinn,zde = 0 m+*n
0

However the result is already available to us from (6) of Problem 3.11 if we replace A, by A2Z. Thus
the solution is

s ANe~ ¥Rt sin A L
ulw, t) 21 2x,L — sin 2\, L {j; Hz) smagz de

3.14. (@) Show that separation of variables in the boundary value problem

ou d ou '
—— = — e t
g(x) T P [K(x) 890] + h(z)u 0<z<L, t>0

w(0,t) = 0, w(lL,t) =0, w0 = f(x), [uxt)] <M

leads to a Sturm-Liouville system. (b) Give a physical interpretation of the equa-
tion in (a). (¢) How would you proceed to solve the boundary value problem in (a)?

(a)

(b

(c)

Letting «# = XT in the given equation, we find
d dX
g(@X)XT' = T%[K(x)% + h{x)XT

Then dividing by g(x)XT yields
T 1 [ dX
T T X d» I:K(“) az | T @)
Setting each side equal to —\, we find
T+ AT = 0 )

%{K(w)% + [hix) + Agla)lX = 0 (2)

Also, from the conditions u(0,t) =0 and wu(L,t) = 0 we are led to the conditions
X(©0) =0 X(L) = 0 %)

The required Sturm-Liouville system is given by (2) and (3). Note that the Sturm-Liouville
differential equation (2) corresponds to that of (18), page 54, if we choose ¥ = X, p(x) = K(z),
q(x) = k(x), r(x) = g(=).

By comparison with the derivation of the heat conduction equation on page 9 we see that
u(x,t) can be interpreted as the temperature at any point x at time t. In such case K(x) is
the (nonconstant) thermal conductivity and g(x) is the specific heat multiplied by the density.
The term h(x)u can represent the fact that a Newton’s law of cooling type radiation into a
medium of temperature zero is taking place at the surface of the bar, with a proportionality
factor that depends on position.

From equation (2) subject to boundary conditions (8) we can find eigenvalues A, and normalized

eigenfunctions X, (x), where n =1,2,3,.... Equation (1) gives T = ce~ ., Thus a solution
obtained by superposition is

u(x,t) = 21 e Mt X, ()
—

From the boundary condition u(x,0) = f(x) we have

flx) = glcnx
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which leads to

L
Cp = J; f(x) X (%) da

Thus we obtain the solution

S - —Agt
u(x,t) = n§1 {J; f(x) X, (2) dx} e Mt X (x)

Supplementary Problems

ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

3.21.

Given the functions ay, a; + ay%, a3 + a,x + as22 where a,, ..., 65 are constants, Determine the con-
stants so that these functions are mutually orthonormal in the interval (0,1).

Generalize Problem 3.15 to arbitrary finite intervals.

(a) Show that the functions 1, 1 —a, 2 — 4x + «2 are mutually orthogonal in (0, ») with respect to
the density funetion e—*. (b) Obtain a mutually orthonormal set.

Give a vector interpretation to functions which are orthonormal with respect to a density or
weight function.

(a) Show that the functions cos(ncos—'x), » =0,1,2,8,..., are mutually orthogonal in (—1,1)
with respect to the weight funetion (1 —«2)—1/2, (b) Obtain a mutually orthonormal set of these
functions.

Show how to expand f(z) into a series ¢, ¢n(%), where ¢,(x) are mutually orthonormal in (a, b)
n=1

with respect to the weight function w(x).

(a) Expand f(x) into a series having the form 3 ¢, ¢,(x), where ¢,(x) are the mutually ortho-
=0

e
normal functions of Problem 3.19. (b) Discuss the relationship of the series in (@) to Fourier series.

APPROXIMATIONS IN THE LEAST-SQUARES SENSE. PARSEVAL’S IDENTITY
AND COMPLETENESS

3.22.

3.23.

3.24.

Let r be any three-dimensional vector. Show that
(@) @2+ (x*j)2 = r2 B @i+ @2+ (r-k?2 = r2

where r2=r+r and discuss these with reference to Bessel’s inequality and Parseval’s identity.
Compare with Problem 3.6.

Suppose that one term in any orthonormal series (such as a Fourier series) is omitted. (a) Can
we expand an arbitrary function f(x) in the series? (b) Can Parseval’s identity be satisfied? (¢) Can
Bessel’s inequality be satisfied? Justify your answers.

T

(a) Find ey, ¢y, ¢5 such that f [# — (cy sinx + ¢y sin 22 + ¢4 sin 3x)]2dx is a minimum.
kg

.
(b) What is the mean square error and root mean square error in approximating z by ¢, sinx +
¢g 8in 2¢ + ¢ sin 3x, where ¢, ¢y, ¢3 are the values obtained in (a)?
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3.25.

3.26.

3.27.

3.28.

(¢) Suppose that it is desired to approximate 2 by «; sinz + ay 8in 2 + @4 sin 3z + a4 sin4x in the
least-squares sense in the interval (—=,7). Are the values aj, ay, a3 the same as ¢, ¢y, ¢3 of
part (a)? Explain and discuss the significance of this.

Verify that Bessel’s inequality holds in Problem 3.24.

Discuss the relationship of Problem 3.24 with the expansion of f(x) =« in a Fourier series in the
interval (—r, 7).

Prove that the set of orthonormal functions ¢.(x), n =1,2,8,..., cannot be complete in (a, b) if
there exists some function f(x) different from zero which is orthogonal to all members of the set, i.e. if

b
f flx) pp(x)dz = 0 n=123,...

Is the converse of Problem 3.27 true? Explain.

GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

3.29.

3.30.

3.31.

3.32.

Verify that a continuation of the process in Problem 8.12 produces the indicated results for g¢,(x)
and ¢5(%).

Given the set of functions 1,z,«2, %3, ..., obtain from these a set of functions which are mutually
orthonormal in (—1,1) with respect to the weight function 2.

Work Problem 3.30 if the interval is (0, ) and the weight function is e~%, The polynomials thus
obtained are Laguerre polynomials. ‘

Is it possible to use the Gram-Schmidt process to obtain from %, 1 —x, 3+ 22 a set of functions
orthonormal in (0,1)? Explain.

STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS

3.33.

3.34.

3.35.

3.36.

337,

(¢) Verify that the system %"+ iy =0, ¥'(0) =0, y(1) = 0 is a Sturm-Liouville system.
1b) Find the eigenvalues and eigenfunctions of the system.

(¢) Prove that the eigenfunctions are orthogonal and determine the corresponding orthonormal
functions.

Work Problem 38.33, if the boundary conditions are (a) y(0) =0, ¥’(1) = 0; (b) »'(0) =0, y'(1) = 0.

Show that in Problem 3.11 we have

2 2(n, + B2)

B, = v T7m s
Ln, + Lp2+ 8

Show that any equation having the form ey(x)y”’ + a;{x)y’ + [az(x) + Aag(x)]y = 0 can be written
in Sturm-Liouville form as

%[p(x)% + lg@) +rar(x)]y = 0
with p@ = JUOE ) = Py, i) = Dy
0 0

Discuss Problem 3.18 if the boundary conditions are replaced by u,(0,t) = hu(0,t), u,(L,t) =
hou(L, t).
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3.38. (a) Show that separation of variables in the boundary value prdblem'

2y _ 3 9y
y(x)ﬁt_z = aw['r(f'v)m + h(x)y

leads to a Sturm-Liouville system. (b) Give a physical interpretation of the equations in (a).

(¢) How would you solve the boundary value problem?

339. Discuss Problem 3.88 if the boundary conditions »(0,t) =0, y(L,t) =0 are replaced by y,(0,t) =
hw(0,t), y.(L,t) = hoy(L,t), respectively.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS
340. (a) Solve the boundary value problerﬁ

u _ u
at * ox?

uw(0,t) = 0, uy(L,t) =0, w0 = f(x), |ul@t)] <M
and (b) interpret physically.

0<xz<L, t>0

341. (a) Solve the boundary value problem
LR ')
a2 32

?/(0, t) = 0’ y:c(L: t) = 0) y(x) 0) = f(x); yt(x) O) = 0’ Iy(x) t)l < M
and (b) interpret physically.

342. (a) Solve the boundary value problem

Y | e
T Vo

¥(0,8) =0, ,0,t) =0, yL,t) =0, yLt) =0 (0 =fx), [yt <M
and (b) interpret physically.

=0 0<x<L t>0

343. Show that the solution of the boundary value problem

o _
rriie Kaxz 0<z<l t>0
uz(0,8) = hu(0,?), wuy(l,t) = —hu(l,t), u(x,0 = f(x)

where «, b and ! are constants, is

© Apcoshx + hsinh,xz (U .
w(z,t) = n§1 e KNxt ()\%_;_' T 2h id J; f(x)(\, cos A,z + h sin A,z) da

where A, are solutions of the equation tan il = % Give a physical interpretation.



Chapter 4

Gamma, Beta and
Other Special Functions

SPECIAL FUNCTIONS

In the process of obtaining solutions to boundary value problems we often arrive at
special functions. In this chapter we shall survey some special functions that will be em-
ployed in later chapters. If desired, the student may skip this chapter, returning to it
should the need arise.

THE GAMMA FUNCTION
The gamma function, denoted by T'(n), is defined by

T'(n) = J‘ " le *dx )
0
which is convergent for n > 0.
A recurrence formula for the gamma function is
T(n+1) = nr(n) 3]

where T'(1) =1 (see Problem 4.1). From (2), I'(n) can be determined for all n >0 when
the values for 1 =7 <2 (or any other interval of unit length) are known (see table on page
68). In particular if » is a positive integer, then

Tn+1) =n! =»n=1,238,... (3)
For this reason T'(n) is sometimes called the factorial function.

Examples. @) = 1! =1, T1(6) = 5! = 120 Te) _ 4l _ 12
) ’ ) I8 !

S

l

no

It can be shown (Problem 4.4) that
I} = vr (4)

The recurrence relation (2) is a difference equation which has (1) as a solution. By
taking (7) as the definition of I'(n) for % > 0, we can generalize the gamma function to
n <0 by use of (2) in the form

I(n 1:— 1) (5)

See Problem 4.7, for example. The process is called analytic continuation.

I(n)

67
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TABLE OF VALUES AND GRAPH OF THE GAMMA FUNCTION

n T'(n) 5 rin)

1.00  1.0000 1] .0

110 0.9514 , U .

1.20 0.9182 -V,

1.30  0.8975 J A -

1.40 0.8873 Fig. 4-1 —3 _4> : S n

1.50 0.8862 [t s T R SR TR Y TR Y
1.60 0.8935 : b e o]
1.70 0.9086
1.80 0.9314
1.90 0.9618
2.00 1.0000

ASYMPTOTIC FORMULA FOR 1(n)

~ If n is large, the computational difficulties inherent in a direct calculation of I'(rn) are
apparent. A useful result in such case is supplied by the relation

r(n+1) = V2rnnre mel12+D 0<o<1 6)

For most practical purposes the last factor, which is very close to 1 for large =, can be
omitted. If n is an integer, we can write

n! ~ V2mnnte " ¥4)]

where ~ means “is approximately equal to for large n”. This is sometimes called Stirling’s
factorial approximation (or asymptotic formula) for n!.

MISCELLANEOUS RESULTS INVOLVING THE GAMMA FUNCTION

iy

1. Nx)rl—=z) = = )
In particular if z =14, T(}) = V= asin (4).
2. 22-17(z) T(x +4) = V7 T(22)

This is called the duplication formula for the gamma function.

1 2 -1
3. r(x) 11<x + 171) r(x - /;n—> . .I‘(x + %_> = m(l/2)*—m:c (277_)(m-1)/2 F(mx)
The duplication formula is a special case of this with m = 2.
1 1 139
4. ~ z o= — - .
T(x+1) 2rxx%e {1 + 157 + 2887 51.8402° + }

This is called Stirling’s asymptotic series for the gamma function. The series in
braces is an asymptotic series as defined on page 70.

5. ™1 = J; elnxder = -y
where y is Euler’s constant and is defined as

. 1,1 1
_1‘1{1_120<1+§+§+---+M—1nM> = 0.5772156. ..
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r'(p+1)
T(p+1)

1 1 1 1

THE BETA FUNCTION
The beta function, denoted by B(m, n), is defined by

B(m,n) = J;lx'"‘l(l—x)"‘ldx (8

which is convergent for m >0, n > 0.
The beta function is connected with the gamma function according to the relation
T(m) I(n)
B(m, ) (m +n)
See Problem 4.12. Using (4) we can define B(m,n) for m <0, n <0.

Many integrals can be evaluated in terms of beta or gamma functions. Two useful
results are

)

2, T'(m) T(n)
m— n—1 - —_—
j; sin?™~1g cos>~1 ¢ dfd = 4B(m,n) 3T(m + 1) (20)
valid for m >0 and n >0 (see Problems 4.11 and 4.14) and
T e = 1 = = 0 1
J; 157 z = T(prl-p) = prepr <p< (11)

See Problem 4.18.

OTHER SPECIAL FUNCTIONS

Many other special functions are of importance in science and engineering. Some of
these are given in the following list. Others will be considered in later chapters.

. 2 z 2 2 * 2
1. Error function. erf(x) = —f evduy = 1 - —f e d
(=) =5} =3 u
2. Complementary erfc(z) = —z-f evdu = 1 — erf(x)
error function. . Ve '
3. Exponential integral. Ei(x) = fw %—udu
o . _ Z ginu _ m _ (”sinu
4. Sineintegral. Si(x) = j; 0 du = 5 j; o du
5. Cosine integral. Ci(x) = fw couﬂd
I 2 (C°.. 2 r=.
6. Fresnel sine integral. S(x) = \/: f sinw?du = 1 — \/j f sinu?du
™ T J .

7. Fresnel cosine integral. C(x)

[
\/—gf cosuldu = 1 — \/-—zifwcosuzdu
ko 0 T Jz
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ASYMPTOTIC SERIES OR EXPANSIONS

Consider the series

- _al - ——-—-—az . . ——an o« ..
S(x) = ao + =+ 5+ + ot
a a an
and suppose that Su(x) = a0 + 5’ + Ec% +o

are the partial sums of the series.
If R.(x) = f(x) — Sa(x), where f(x) is given, is such that for every =»

lim 2"|Ru(x)] = O

[CHAP. 4

(12)

(13)

(14)

then S(z) is called an asymptotic series or expansion of f(x) and we denote this by writing

f(x) ~ S(x).

In practice the series (12) diverges. However, by taking the sum of successive terms
of the series, stopping just before the terms begin to increase, we may obtain a useful
approximation for f(z). The approximation becomes better the larger the value of x.

Various operations with asymptotic series are permissible. For example, asymptotic
series may be multiplied together or integrated term by term to yield another asymptotic

series.

Solved Problems

THE GAMMA FUNCTION
4.1. Prove: (a) T(n+1)=nr(n), n>0;, (b) ((rn+1)=n!, n=1,2,3,....

M

(@) P(n+1) = f xte rdxr = lim xhe T dx
0 M=+w 0

M M
o J; (—e‘x)(nx"—l)dx}

M
= lim {-—M"e‘““ + n'f gn—le—x dx} = nT(n) if n>0
0

= lim {(x")(—e—f)
M

-0

0 M
(b) T(1) = f e rdx = lim e~ Tdxr = lim (1—e M) =1
0 Mwx vV M=o
Put »=1,2,3,... in T(n+1) =nT(n). Then

r@2) = 1r@d) =1, 1@ = 212 = 21 = 2!, @) = 31(3) = 3-2!

In general, '(n+1) =n! if nisa poéitive integer.

I(6) r(3 T(3) 1(2.5 -~ 6T(3
2 Bl @ g O ) © e @S-
6 _ B! _ 5e4:3+.2 _
@ svE T 33t T gea = %0
@ SB _Er@) g-4rd) 3
rg @ TR Y
I'(8) r(2.5) 21(1.5)(0.5) I'(0.5) 18

(© r(5.5)  (4.5)(3.5)(2.5)(1.5)(0.5) ['0.5) _ 315

3!
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43.

4.4.

4.5.

6T(8 6333 _ 4
5T

B)
@ Frp T s 8

Evaluate (a) f x3e~*dx, (b) ﬁ x8e2* du.
0
T “rdx = T@) = 3! =6
(a) fo xde fd T(4)

(b) Let 2x =y. Then the integral becomes

0 8 o ]
E —gll. — .lf 6 o— = M = g.. = .4_5_
J;<2>ey2 27 yoomr dy 27 27 8

Prove that T(}) = V=.

We have T(}) = f x~V2e—2dy = 2f e~ du, on letting x = u2 It follows that
0 0

{r(gne = {2 fwe“uzdu}{Z fwe—vzdv} = 4J‘ f e— W +vD dy do
0 0 o Jo

Changing to polar coordinates (p, ¢), where u = p cos ¢, v = p sin ¢, the last integral becomes
/2 /2

4 f f e=Ppdpds = 4 — de7?
¢=0 p=0 =0
V.

p=0

and so T'(}) =

w . © 2 1 dx
Evaluate (a) fo Vye v dy, (b) J; 37" dz, (c) j; V—=Inz "

(a) Letting y3 = x, the integral becomes

" .
f ValBe—ze fu—28dy = = Vr
0

fwx“lme—fdx = ir@d) = 5
0

=

(b) f 37 dz = J‘ (e1"3)(_422)dz = f e UmDP g, Tet (41n3)22 = x and the integral
0 0 0

becomes

% x1/2 o 1 °° () V7
f e—*d = = f x"12e"2dy = ——— =
0 V4In3 2y41In3 Jo 2V41In3 4/In3

(¢ Let —Inx=wu. Then x=e¢ % When =1, «=0; when ¢ =0, u = «. The integral

becomes » e %
—du = f u~12¢-udy = T =
S = 0 @ = V=

4.6. Evaluate f xm e " dx, where m,n,a are positive constants.
0

4.7.

Letting ax" =y, the integral becomes
% y /ny m v 1/n 1 © 1 +1
.- - < B —— (m+1)/n—1 g~ = m
j; {<a> } € yd{<a> } na(mﬂ)/nj; ymiv/inlemvdy = na(m+1)/nr< " )

Evaluate (a) D(=1/2), (b) T(=5/2).

We use the generalization to negative values defined by I'(n) = It 1) .
n



72

4.8.

4.9.

4.10.

GAMMA, BETA AND OTHER SPECIAL FUNCTIONS [CHAP. 4

(@) Letting n=—}, 1(—1/2) =202 — o

1/2
(b) Letting n = —3/2, 1(—8/2) = I( 31/;2) = __23\//2;— \3{_, using (a).
Then r(-5/2) =22 - & \o
! (=1)rn! . e 1
Prove that z*{lnx)"dx = CESVGEAL where n is a positive integer and m > —1.
0

Letting « = 2~v, the integral becomes (—1)» f yre"mtDudy, If (m+ 1)y =u, this last
integral becomes 0

o n —u du (—1)n ® N _ (—1)» _ (=Dran!
(_1)nf0 (mqil)"e m+1 (m+1)"+1 j; ute du = ————(m+1)"+11‘(n+1) - ('m+1)"+1

Prove that f e~ cos Brdr = _;.‘ lﬂe—p’/m .
0 44

Let I = I(a,p) = f e~%cos @r d\.  Then
0

% = f (—re—2X") gin B dA
0
_e_w‘g. « B w_hz _ _B
= 5 sm,B)\O 22, e~ Meogs BAdN = 2mI
19l _ B8 9 - _B 1
Thus 138 = 2a or ﬂ InI % (1)
Integration with respect to 8 yields .
= B
InlI = o + ¢
or I = I(,pB) = Ce B @

But C = I(a,0) = f%e"""zdh = —fm x V22 dy = rd) =1 Z, on letting « = aA2.
o 2vaJo 2vVa 2 Va

Thus, as required,

A particle is attracted toward a fixed point O with a force inversely proportional to
its instantaneous distance from O. If the particle is released from rest, find the tlme
for it to reach O.

At time t = 0 let the particle be located on the z-axis at x =a >0 and let O be the origin.
Then by Newton’s law

d2x k
"I T s @
where m is the mass of the particle and % > 0 is a constant of proportionality.
dr _ . . d?x _dv _dv de _ dv
Let i) the velocity of the particle. Then @t —dear- "dm and (1) .
becomes v k o
myos = p or 5 = ~klnx + ¢ @)

upon integrating. Since v =0 at « =a, we find ¢ =k Ina. Then

mv2 a dx 2k a
MY — k& =2 = 4 ’ 4 a
2 In o or v 9t In = (3)
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where the negative sign is chosen since x is decreasing as t increases. We thus find that the time
T taken for the particle to go from =z =« to = = 0 is given by

T = 1}—”3 o 4
2k>£ Vina/x W

Letting Ina/x =u or x = ae~*, this becomes

- m (7 e = "ﬁ 1y = Tm
T = a ZkL u e~ du a 2kr(2) a ok

THE BETA FUNCTION o
4.11. Prove that (a) B(m,n) = B(n,m), (b) B(m,n)= 2f sin?™~1¢ cos®~! § d4.
0

- (@) Using the transformation x =1—y, we have

1 1
B(m,n) = J;x'"‘l(l—x)"“"dx = fo (A —ym-tyn—ldy

fl

1

f y» 11l —ym-tdy = B(n,m)
0

(b) Using the transformation x = sin2¢, we have

1 /2
B(m,n) = f am—1(1—gx)r—1de = I (sin2 g)m—1(cos2 9)"~1 2 sin ¢ cos 4 do
0 Jo

/2
2 f sin2m—1¢ cos2n~1¢ dg
0

4.12. Provethat B(m,n) = %((%(nn)) m,n > 0,

Letting 2z = 22, wehave T(m) = f zm—1le—2zdz = 2f x2m—1 =2 dyp.
0 0

Similarly, I(n) = 2f Y219 dy. Then
0

4(f xem—1 g—2° dm>(fwy2n—l e—¥? dy>
0 0

© o
4 f f x2m—1y2n—1¢= @+ g qy
0o Jo

Transforming to polar coordinates, 2z = pcos¢, ¥y = psing,

T{(m) T'(n)

1l

w2 4
I'(m)T(n) = 4f f p2im+mI—1 g—p® aog 2m—1 ¢ sin2n—1¢4 dp dy
) =0 Jp=0

@ T/2
= 4 f 20m+n)—1 g—p% ¢ f 2m—1 y gin2n—1
< o P D oo cos ¢ sin ¢ do

T/2
= 21‘(m+'rL)J0 cos?m—lg gin?r—1g dg = TI'(m+ n) B(n, m)

= TI'(m+n)B(m,n)
using the results of Problem 4.11. Hence the required result follows.

The above argument can be made rigorous by using a limiting procedure.
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4.13.

4.14.

4.15.

4.16.

GAMMA, BETA AND OTHER SPECIAL FUNCTIONS [CHAP. 4

1 2 24
Evaluate (a) J; (1 —2x)*dx, (D) j; oy = (0 f yva?—y? dy.
! 4) _ 413! 1
(@) fo oMl —z)3de = B(,4) = %-) =48l _ L

(b) Letting =« = 2v, the integral becomes

! 4/21(8) r(1/2 64v2
WE [ e = B f] - v vrar = wEBey = OO
0 .

(¢) Letting %2 = a2z or y = aVz, the integral becomes

at (! _ gb _ aST(5/2)T(8/2) _ wab
5 fo #21—a)\2ds = FB(/2,3/2) = ——gr ) = 5
/2 T(m) I(n)
Iin2m—1 2n—1 N N
Show that J; sin 6 cos 6dé 2 T(m + 1) m,n > 0.

This follows at once from Problems 4.11 and 4.12.

w2 T2 T
Evaluate (a) j; sin® 9 dg, (b) fo sin® 4 cos®4 dg, (c) J; cos*d dg.

(@) Let 2m—1 =286, 2n—1 =0, ie. m = 7/2, n = 1/2, in Problem 4.14.

T(7/2)T(1/2) _ 57

Then the required integral has the value 2T() = 33-

: 1 — g ' . . I(5/2)1(3) _ 8
(b) Letting 2m—1 =4, 2n —1 =5, the required integral has the value ST1/2) TA1/2) - 315"
/2

(¢) f costods = 2 f cost9 dg.  Thus, letting Z2m—1=0, 2n—1= 4 in Problem 4.14, the

21(1/2)T(5/2) _ 3r

value is i 27(3) =3

. .

/2 T/2 " 1
Prove f sin? g d§ = f cos? 9 dé = (a)
0 0

tive integer, (b) 2 ‘11 g 5 (p; D i p is an odd positive integer.
4

3-5- Z if p is an even posi
24-6 p 24P ven posi-

From Problem 4.14 with 2m —1 =p, 2n—1 = 0, we have

e _ T+ 1T
£ sinfg do = m

(a) If p =2r, the integral equals
rr+Hr _ —Per—$§)---3r@) 1}

2T(r+1) 2r(r—1)---1
@r—~1)@r—38)---17 _ 1:3+5---(2r—1)
2r(2r—2)---2 2 ~ 204¢6---2r 2
(8) If p=2r+1, the integral equals
r{r+1)T(3) — _rr=1)--1Vz  _  2:446---2¢r
2T(r + 3) 20+ Pr—3)---3Vr  1°3:5-(2r+1)

w/2 /2
In both cases fo sinfo do = J; cos? 6 de, as seen by letting ¢ = % - ¢,
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/2 /2 21
4.17. Evaluate (a) J‘O costddg, (b) j; sin36 cos? 6 dd, (c) J; sin® 6 dé.

(a) From Problem 4.16 the integral equals 1 :i:gg— = %Z [compare Problem 4.15(a)].

[N

(b) The integral equals
w/2 w2 . /2
2 244 2
in3 — sin2 = ind — in5 = — S
L sin3 (1 — sin? ¢) dg L sind ¢ dg J; sin® ¢ dg 1:3 1-3:5 15

The method of Problem 4.15(b) can also be used.

T/2
1<3*5+7x 357
. . 8 — —_— = = —
(¢) The given integral equals 4]; sin®¢ do = 4(2-4'6-82> 61

©

xP ! T T
4.18. Gi dr = — hat T'(p)T(1—p) = = here 0 1.
18. Given 172 spn’ show that T(p) (1 —p) sinp, Vhere <p<
Letting £ = Yy or x = —Y the given integral becomes
1+« : 1—y’
1
Jva-vra = Be1-p = r@ra-p
and the result follows.
*d
4.19. Evaluate f _y4
o 1+ Y
© .—8/4
Let y*=2x. Then the integral becomes %f dex = Tﬁ; = zﬁ by Problem
4.18 with p = 1. o T st :
The result can also be obtained by letting 2 = tan 6.
? g : 16x
4.20. Show that f xy8—atder = .
0 93
Letting 3 =8y or == 2y1/3, the integral becomes
1 1
oy YR - gy ay = 3| vma-yea = $g.p
0 0
r(3) r(§)
= BIWI® 8 gy - 8= _ 16r
3 12 9 3 9 sin#/3 93

4.21. Prove the duplication formula: 22-'T(p)T(p+14) = V= T(2p).
Let ! f‘rr/z ) p 7 /2
= in2r = in2pr
e A sin?? x dex, L sin?? 2z dx.

_ Tle+iV=
T 2r(p+1)

1 T T/2
J = 3 f sin?y du = f sinfrydu = I
()} 0

/2 /2
But J = f (2 sinz cosw)2rdx = 22 f sin?? & cos?? x dx
0 0
2= 1{I(p + P}
220—1B(p + 4, = o 2
®+4rtd Tep+ 1)

Il
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Then since I =J,
Tlp+PVr 222~ YT(p + §)}?

2p T'(p) - 2p I'(2p)
and the required result follows.
® cosx T
cosx . _ , 0<p<l
4.22. Prove that j; por dx ZT(p) cos B7/2) 14

We have 1. —l—f ur—1leg—xu dy, Then
T Jo

2P
mCOSx = i ” ® p—1 p—2xu du d. e _wau_pdu 1
j; o dx I‘(p)J; jl; w e cos x du dx T 1+ (1)
where we have reversed the order of integration and used the fact that
* %
_ - 2
J;ex”cosxdx i @)

Letting #2 = v in the last integral in (1), we have by Problem 4.18

v 1/2 1)/2 - _ - )
f 1-i-u2 - 2f T+ v T 2sin(p+1)2/2 ~ 2 cospr/2
Substitution of (3) in (7) yields the required result.

STIRLING’S FORMULA

4.23. Show that for large n, n! = \/2mmn"e ™ approximately.

‘We have o o
r(n+1) = f xme~r dx = f e"InT — T dy (1)
0 0

The function #nInx — x has a relative maximum for x = n, as is easily shown by elementary
calculus. This leads us to the substitution x =n+y. Then (1) becomes

o« o
e—"n f 8nln(n+y) -y dy = en f eninn + nin(l+y/n) —y dy (2)
—n

—n

T'(n+1)

0
n"e‘"f enln(l+y/n) -—ydy
-n

Up to now the analysis is rigorous. The formal procedures which follow can be made rigorous
by suitable limiting processes, but the proofs become involved and we shall omit them.

In (2) use the result

2 3
In1 — e,
n(1l+ x) x 2 + 3 3
with @ = y/n. Then on letting y = Vnv, we find
T+1) = »,Lne—nf D R i AR R —— nfw =2+ vRsVR — - g )
. —n —-Vva

When = is large a close approximation is
T(n+1) = nr e—"\/;f e 2 dy = Vormumen 4)

It is of interest that from (4) we can obtain the entire asymptotic series for the gamma func-
tion (result 4. on page 68). See Problem 4.36.
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SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS
4.24. (a) Prove that if >0, p > 0, then

o0 e_u
I, = j; TH’_du = Su(x) + Ra(x)
where
L f1 p_, pptl) PP+ (p+n
Six) = e {F_ ZP 1 + zrrz + (-1) p(p ;ph,(p )
. -] e_u
Re) = (Croip+1) ) | S du
o e_.u .
(b) Prove that 11_1:10 x" j; o~ Si(@)| = 7161_{2 x"|Ra(x)] = 0.
(c¢) Explain the significance of the results in (b).
(a) Integrating by parts, we have
® e—u e—< © o—u e—<
Similarly I,,, = a:;p_f—l—(p+1)1,,+2 so that
L, = 25 - p{;p—1—<p+1)1,,+2} = - B 4 o+ Dl

By continuing in this manner the required result follows.

1A

®) Byl = pp+D) - ) [ pE+D) ot [

< pptl)--(p+tn)
= xPtnFl
since f e *du = fwe—“du = 1. Thus
x 0

plp+1)--(p+mn)
ZP+1

lim 2*R,(x)] = lim
Tt 0 T~ 0

(¢) Because of the results in (b), we can say that
e u . J1 P pip+1)
fx = ex{x_v_x_vﬁJ“_va_”' @

i.e. the series on the right is the asymptotic expansion of the function on the left.

4.25. Show that

e > /1 1 1-3 1-3-5
erf(z) ~ 1‘\/;(5‘273 o T )
We have ' erf(x) = \/l;ﬁxe“”’dv = —\/1—;};1 u~—V2eg~u dy
= 1—\%; x:u—lfze—“du

Now from the result (1) of Problem 4.24 we have, on letting p = 1/2 and replacing « by 22,

" 172 g=u ~ g2#(1_ 1 .13 1-8-5
Lz u e~ dy e (av 2x3+ 235 287 +

which gives the required result.
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Supplementary Problems

THE GAMMA FUNCTION
I'(7) T'(3) T(3/2)

ST 1) ) T2 (e) T(1/2)T(3/2)T(5/2).

4.26. Evaluate (a)
4.27.  Evaluate () f xte~xdx, (b) f x6 e=3xdx, (c) f 2 e—22° dx.
0 0 0

428. Find (@) f'e*x:‘dx, (b) VreVeds, (o) f yBe—2" dy.
<0 4] 0

1ot oSt T

429.  Show that I dt = 4%, s>0.
Jo t
1 1\»1!
4.30. Provethat (a) T(n) = f (ln ;c> de, m>90
0 .
1 q
1 _ I+l _
(b) l[; xP (ln —.’);> de = W’ p>—1, ¢ >—1

1 1 1
4.31. Evaluate (a) f (In x)*dx, (b) f (x Inx)3de, (c) f \3/ln (1/x) da.
JO 0 0
432. Evaluate (@) 1(=7/2), (b) T(~1/3).
4.33. Prove that lim |T(x)] = « where m =0,1,2,8,....
T=+—m

—1)m2m
4.34.  Prove that if m is a positive integer, T(—m+ 1) = s ?() .?. - ~(27\r<;— m

4.35. Prove that 1'(1) = f e *lnx de is a negative number. (It is equal to —y, where y = 0.577215...
0

is called Euler’s constant.)

4.36.  Obtain the miscellaneous result 4. on page 68 from the result (4) of Problem 4.23.

[Hint: Expand BV =y g power series and replace the lower limit of the integral by —w.]

THE BETA FUNCTION
437. Evaluate (a) B(3,5), (b) B(3/2,2), (c¢) B(1/3,2/3).

1 a1 2
438. Find (a) f 22(1 —x)3 dx, (b) J VA —x)/x dx, (c) f (4-- x2)3/2 dy.
} 0 0 Jo

v 23
dx
4.39. Evaluate (a) [ u3/2(4 —u)5/2 du, (b) —_—
Vo 0 V3x—a2

J'a dy _ a2
0 Vat—yt 4a\/§ '

440. Prove that

27/2 2m
441. Evaluate (a) I sint 6 costo do, (b) f cos® ¢ de.
Jo 0

T T/2
442. Evaluate (a) f sin®¢ dg, (b) f cos’ ¢ sin2 ¢ dg.
0 0
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/2 /2
443. Prove that (a) f Vtan ¢de = V2, () f tanr g d¢ = % sec%l , 0<p<1l,
0 0

o0 0 2
444. Prove that (@) f wds _ 7w (b)f iy—:dy— =
0 0

T
1+ x6 3V/3’ yt 2\/5'

0 2 2
4.45. Prove that f e = T where a,b > 0.

— g = ——,
e 0e%® + b x 3V/3 a2/3b1/3

[Hint: Differentiate with respect to b in Problem 4.45.]

® 2
446. Prove that f -me—x—zdx = ﬁ
' - (e + 1) gﬁ

SPECIAL FUNCTIONS AND ASYMPTOTIC EXPANSIONS

3 x5 27
ER TR T T T >

2
447. Show that erf(x) = —<( «
V7r<

- 1 1 !
448. Obtain the asymptotic expansion FEi(x) ~ fm—x<1 _u + 2l _ §i+ .- )

449. Show that (a) Si(—2) = —Si(x), (b) Si(=) = z/2.

450. Obtain the asymptotic expansions

Six) ~ T — sinm(L_§L+§!__ > - m(l_?i+él_ )

2 z \z % b x 22 zd
Ciz) ~ °°Z”<%—%+%— ) —S’l;—”i<1—%+%—m>
451.  Show that fo ) SINZ gy = ST s 0 <P <L
452. Show that fmsin 22dx = jmcos 22 de = 1 z.
0 0 2Yy2

453. Prove that lim ——

n=r 0 W

o



Chapter 5

Fourier Integrals and Applications

THE NEED FOR FOURIER INTEGRALS

In Chapter 2 we considered the theory and applications involving the expansion of a
function f(x) of period 2L into a Fourier series. One question which arises quite naturally
is: what happens in the case where L > »? We shall find that in such case the Fourier
series becomes a Fourier integral. We shall discuss Fourier integrals and their applications
in this chapter.

THE FOURIER INTEGRAL
" Let us assume the following conditions on f(x):

1. f(x) and f’(x) are piecewise continuous in every finite interval.
2. f_ |f(x)] d converges, i.e. f(x) is absolutely integrable in (—, =).

Then Fourier’s integral theorem states that

flxy = ‘f:b {A(a) cos ax + B(e) 8in ez} de (2)
| A@ = 1 | fa) cosa da

where : (2
Ble) = %f_ f(®) sin az do

The result (1) holds if # is a point of continuity of f(x). If 2 is a point of discontinuity,

f (x+0); fz—0) as in the case of Fourier series. Note that

we must replace f(z) by
the above conditions are sufficient but not necessary.

The similarity of (Z) and (2) with corresponding results for Fourier series is apparent.
The right-hand side of (1) is sometimes called a Fourier integral expansion of f(x).

EQUIVALENT FORMS OF FOURIER’S INTEGRAL THEOREM
Fourier’s integral theorem can also be written in the forms

fz) = .11; f :0 f :, F(w) cos a(e — u) du de (3)

fl) = El; f_: j_: f(u) e du de

f@) = m=f eorda f fyeerdu *)

80



CHAP. 5] FOURIER INTEGRALS AND -APPLICATIONS 81

where it is understood that if f(x) is not continuous at x the left side must be replaced
by 1@+ +/=0),

These results can be simplified somewhat if f(z) is either an odd or an even function,
and we have -

fley = 2 j;w sin o de j;w f(w) sin au du if f(x) is odd %)

w

fl) = 2 j;w cos aZ da j;w f(u) cos eu du if f(x) is even (6)

™

FOURIER TRANSFORMS
From (4) it follows that if

Flo) = j: f(u) e~ dy ‘ (7

then f@) = %;f_i F(a) € da ®)

The function F(a) is called the Fourier transform of f(x) and is sometimes written
F(a) = F{f(®)}. The function f(x) is the inverse Fourier transform of F(«) and is written

f(@) = F{F (@)}

Note: The constants 1 and 1/2r preceding the integral signs in (7) and (8) could be
replaced by any two constants whose product is 1/2=. In this book, however, we shall keep
to the above choice. ’

FOURIER SINE AND COSINE TRANSFORMS
If f(x) is an odd function, then Fourier’s integral theorem reduces to (5). If we let
Fy@ = fo " f(u) sin au du | ©)
then it follows from (5) that | '
| f@) = %_‘f:FS (a) sin oz de (10)

We call F () the Fourier sine transform of f(x), while f(x) is the inverse Fourier sine trans-
form of Fy(a).

Similalfly, if f(x) is an even function, Fourier’s integral theorem reduces to (6). Thus
if we let '

Fya) = fo F(w) cos au du (11)
then it follows from (6) that
fley = :2T j; F(a) cos ax da - (12)

We call F () the Fourier cosine transform of f(x), while f(x) is the inverse Fourier cosine
transform of F (a). ' :
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PARSEVAL’S IDENTITIES FOR FOURIER INTEGRALS

In Chapter 2, page 23, we arrived at Parseval’s identity for Fourier series. An anal-
ogy exists for Fourier integrals.

If F(«) and G(e) are Fourier transforms of f(z) and g(x) respectively we can show that
0 1 -] -
{ iwowdn = o { F)G@ da (19)
—x T —w

where the bar signifies the complex conjugate obtained on replacing ¢ by —i. In particular,
if f(x) = g(x) and hence F(a) = G(a), then we have

§ i@pd = £ F)da | (14)

We can refer to (14), or to the more general (13), as Parseval’s identity for Fourier in-
tegrals.

Corresponding results can be written involving sine and cosine transforms. If F(a)
and G¢(«) are the Fourier sine transforms of f(x) and g(x), respectively, then

fo f@o@de = 2 fo F () Gy(a) da (15)
Similarly, if F.(a) and G_(a) are the Fourier cosine transforms of f(x) and g(x), respec-
tively, then . " "
fo f@ o) de = 2 fo F(a) Gola) da (16)
In the special case where f(x) = g(x), (15) and (16) become respectively
STv@ra = 2§ F @)y de o
S v@ra = 2 (F @) (19)

THE CONVOLUTION THEOREM FOR FOURIER TRANSFORMS
The convolution of the functions f(x) and g(z) is defined by

f*g = £2f(u)g(x—u)du (19)

An important theorem, often referred to as the convolution theorem, states that the Fourier
transform of the convolution of f(x) and g(x) is equal to the product of the Fourier trans-
forms of f(z) and g(x). In symbols, :

Fir*gy = FiNF{9) ' (20)

The convolution has other important properties. For example, we have for functions
I, g,and h:

f*g =g*f, f*(g*h) = (f*9)*h, f*(g+h) = f*g+f*h (21)

i.e., the convolution obeys the commutative, associative and distributive laws of algebra.

APPLICATIONS OF FOURIER INTEGRALS AND TRANSFORMS

Fourier 'integrals and transforms can be used in solving a variety of boundary value
problems arising in science and engineering. See Problems 5.20-5.22.
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Solved Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

5.1.

5.2

5.3.

Show that (1) and (3), page 80, are equivalent forms of Fourier’s integral theorem.

Let us start with the form

1 o0 -
flo) = = f f F(u) cos alx —u) duda (1)
T Ja=0Ju=-w
which is proved later (see Problems 5.10—-5.14). The result (Z) can be written as
fle) = -]l f fw f(u)[cos ax cos au + sin ax sin au] du da
TVg=0Vu=—-w
or f@) = f {A(a) cosax + Bl(a) sin ax} de @)
. a=0
where we let
A@ = L f f(u) cos au du
TV —w
L e @)
B(a) = ;f f(u) sin au du
Conversely, by substituting (3) into (2) we obtain (7). Thus the two forms are equivalent.
Show that (3) and (4), page 80, are equivalent.
We have from (3), page 80, and the fact that cos a(x — u) is an even function of a:
fley = -21—77_-“‘ j fw) cos a(x — u) du da $))
Then, using the fact that sin a(x — «) is an odd function of «, we have
0 = él; f f ) sin a(x — u) du da @

Multiplying (2) by 1 and adding to (1) we then have

flz) = -217Lw Lw f(w)[cos alx —~ u) + 1 sin {2 —u)] du da

= -zl;-f f flw)eiatz—w) dy dg

Similarly we can deduce that (3), page 80, follows from (4).

Find the Fourier t N
(a) Find the Fourier transform of f(z) = 0 jz|>a
(b) Graph f(x) and its Fourier transform for ¢ = 3.

(a) The Fourier transform of f(x) is

% a —d a
Fla) = f fwe iendu = f (e—toudy = <
—w -a “a |-q
iaa — g—iaa i
- g__._(_a___ = gSinaa ) a0 "
3 o

For a =0, we obtain F(a) = 2a.
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(b) The graphs of f(x) and F(a) for @ =3 are shown in Figs. 5-1 and’ 5-2 respectively.

f@) F(a)
8
6
2_
4
1
T
1 O— 2 /\ a
0o (] < N
T I T T I - ) T
—Is -2 -1 1 2 3 - —21/M1r/3 er/S T
Fig.5-1 Fig. 5-2

5.4. (a) Use the result of Problem 5.3 to evaluate f SN ad €08 9% fa.

44

(b) Deduce the value of f s12u du.
. 0

(a) From Fourier’s integral theorem, if
F(a) = f flu)e—iou dy then fl®) = -;;f F(a)eior dg

Then from Problem 5.3,

1 x| < a
if 28R jiezgy, = J1/2 |a|=a (1)
27 J a

] || > a

The left side of (1) is equal to

1 (® sinaa cosax i ” sinac sin ax
| HhoedcSe¥y, 4 L SReaSner g, @)
7J 7w

[ a

The integrand in the second integral of (2) is odd and so the integral is zero. Then from
(1) and (2), we have

LT ]x[ <a
J‘ sinea cosax ,  _ 2 |x|=a (€)]
—e ., a
0 ] > a

(0) If x=10 and a =1 in the result of (a), we have

® sine _ “ sin & _ T
' f_w Tda - 7 or J; « da = 2
since the integrand is even.
55. (a) Find the Fourier cosine transform of f(zx)=e ™, m > 0.
(b) Use the result in (a) to show that
S (Tcospy o w
fo gl = ghe (»>0,>0)
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5.6.

(a) The Fourier cosine transform of f(x) = e~mz is by definition

o0
f e~ mu cos at du
0

e~ ™mu(—m cosau + a sinau) |*

F¢(a)

il

m2 + a2 0
= _m
T om2+ a2
(b) From _(12), page 81, we have
2 00
fly = = f F(a) cos ax da
T Jy
or PR 2 mcosmcd

7T Jy m2 + a2

o0
. COS aX T
ie. da = S—e™m=
£1ﬁ+ﬂ 2m

Replacing « by v, # by p, and m by B, we have

J, e = e p>08>0
0

Solve the integral equation

® . d _ l—a 0=a=1
j; f(x) sinaxdxr = 0 o1
If we write
® . _ [1—a 0sa=1
Fgla) = j; flx) sinax de = { 0 Vo1

then, by (10), page 81,

fle) = g‘f Fg(a) sinax da
TJo
9 1

= —f (1—a) sinax da
TJo

2(x — sin %)
T2

THE CONVOLUTION THEOREM

5.7.

Prove the convolution theorem on page 82.

We have by definition of the Fourier transform

Fla) = fj fuye—ievdy, Ga) = J‘_w g(v)e—iav dy %))

Then Fa) Gla) = J;w f_” flw) g(v)e—iatu+v) dud'vr (2)

Let u+v=2 in the double integral (2) which we wish to transform from the variables (u, v) to
the variables (u,z). From advanced calculus we know that

a(u, v)

dudv = N, z) du dx €))
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where the Jacobian of the transformation is given by

o
M ou ox _ ‘1 0‘ -
3(u, z) v v 1
ou oz
Thus (2) becomes w w
F6w = | [ jwote—we e duds

= f:c e—ioz [f_z f(u) g(z — u) du:l dx
= 7 {f:, flw) g(x — %) du}

= F{f*g}
where f*g = f f(u) g(x —u) du is the convolution of f and g.

From this we have equivalently

f*9 = FHF(a)Gla)}

= L f €92 F(a) Gla) der
27 ) -0

58. Show that f*g=g*f.

Let z—u=wv. Then

f*g = f_wf(u)g(x—u)du = f_wf(x—'v)!](v)d’"

= [T owia-va = g%

5.9. Solve the integral equation
y@) = o@) + | yorz—u)du

where g(x) and r(z) are given.

Suppose that the Fourier transforms of y(x), g(x) and r(x) exist, and denote them by Y(a),
G(a) and R(a) respectively. Then, taking the Fourier transform of both sides of the given integral
equation, we have by the convolution theorem

Y@ = Gl + Y@ R or Y = 18(;’(00
- o - f{l_f%} - A {—1 f(;g(a.)} o da

assuming this integral exists.

5.10. Solve for y(x) the integral equation
[ CLTSE TP

o (@ —u)? + a? x® + b2



CHAP. 5] FOURIER INTEGRALS AND APPLICATIONS 87

We have

1 _ *©  giax _ * cos ax _ T,
?{x2+b2} - f_wx2+b2d” = 2f0 22 T 52 5 "

on making use of Problem 5.5(b). Then, taking the Fourier transform of both sides of the integral

equation, we find
1 _ 1
Fuy {m} =7 {m}

ie. Y(a)—ﬂ;e—ad = .Zr_e~ba or Y(a) — _";e_(b_a)a
a b b
1 (* a (7 (b — a)a
= = 2 —(b—a) - _
Thus ylo) = 27 f—w cer¥ie) da = br »I:) ¢ 9% cos aw da brfx2 -+ (b — a)?

PROOF OF THE FOURIER INTEGRAL THEOREM

5.11. Present a heuristic demonstration of Fourier’s integral theorem by use of a limiting
form of Fourier series.

g < N . R
Let flx)y = 5 T ngl <an cos—z— + b, sin ——L—> (1)

L L
_ 1 nru _ 1 . MTU
where a, = Ef—z, f(u) cos 7 du and b, = Lf—L f(u) sin T du.
Then by substitution of these coefficients into (1) we find

L © L
fle) = 2% f_Lf(u) du + -IE ngl fMLf(u) cos ZLI—?(u —x) du 2)

If we assume that f

|F(w)| du converges, the first term on the right of (2) approaches zero as
L - », while the remaining part appears to approach
13 * nr .
lim = f u) cos — (u— x) du
L_rg:angl _wf() s ( ) )
This last step is not rigorous and makes the demonstration heuristic.

Calling Ao = #/L, (3) can be written

flx) = Alim0 21 Aa F(n Ag) » 4)
where we have written
Fa) = -} f f(u) cos a(u — x) du (5)

But the limit (4) is equal to

’ flx) = f Fa)da = lf da f f(u) cos a{u — x) du (6)
0 T/ )
which is Fourier’s integral formula.

This demonstration merely provides a possible result. To be rigorous, we start with the double
integral in (6) and examine the convergence. This method is considered in Problems 5.12-5.15.

L sin av

512. Provethat: (q) lim v =2, (®) lm MV 4y = I,
Q=0 0 2 Q—+o0 —L v 2
L sin av L sin ® si
(@) Let av =y. Then lim Td'U = lim f ydy = f Slﬂdy = Z  as
a-roc VO a=ro vV Y 0 Y 2

can be shown by using Problem 5.40.
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o . ' al .
(b) Let av = —y. Then  lim §";}—‘de = lim‘fo %—-y—dy =

a—+wv —L ]

z
3

5.13. Riemann’s theorem states that if F(z) is piecewise continuous in (a, b), then
b

lim F(z)sinaxrde = 0
with a similar result for the cosine (see Problem 5.41). Use this to prove that
@ lim [ et T = T +o)
(®) lim f fe+0)B%aw = If@—0)

where f(z) and f’(z) are assumed piecewise continuous [see condition 1. on page 80}].

(¢) Using Problem 5.12(a), it is seen that a proof of the given result amounts to proving that
L .
lim § {fz+o) = fe+ 0y Fde = 0

O =

This follows at once from Riemann’s theorem, because F(v) = flotv) = p f(z+0)
continuous in (0, L) since lugl+ F(v) exists and f(x) is piecewise continuous.
V-

is piecewise

(b) A proof of this is analogous to that in part (a) if we make use of Problem 5.12(b).

5.14. If f(x) satisfies the additional condition that f ()] dx converges, prove that

(@ lim § T )s“‘"‘” dv = 3@ +0), hmf f(z+v )sm"‘” v = Zf(@0).
(@) We have
j; flot+o) Sy = J;Lf(x%v)sm#‘”dv + J;wf(x+v)ii—!-:—)ﬂdv )
£wf(x+0)§%iﬁ2dv = LLf(x+0)—mv;wdv + fwa(x+0)‘°'i‘;—"”dv @)
Subtracting,
[ttt o) ooy B2 gy ®

- sin av ° sin av o .
j; {f(x+”)—f(w+0)}Tdv + j; f(x+v)_v_"‘dv _ j; flz +0) su:}avdv

Denoting the integrals in (8) by I,1;, I, and I respectively, we have I =1, +I,+ I; so that
Il = I} + |I| + |I3]
S,

\f(@ + 0)| UL S—i“vﬂdvl

- o« 03
Since J; |f(x)|dx and fo sn}v;wdv both converge, we can choose L so large that |I;| = ¢/3,

3| = /3. Also, we can choose « so large that |I;] = ¢/3. Then from (4) we have |I| = ¢ for a
and L sufficiently large, so that the required result follows.

(4)
Now |I5]

A

f(x+ )sm at

= 1f latold

Also | 5|

IIA
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(b) This result follows by reasoning‘ exactly analogous to that in part (a).

5.15. Prove Fourier’s integral formula if f(x) satisfies the conditions stated on page 80.

+0) + f(x—0
We must prove that hm ~ f f f(u) cos alx —u) duda = fz+0) ) fz=0) .
Lo =90
Since f f(u) cosa{z —u)du| = f |[f(w)| du, which converges, it follows by the Weier-
strass M test for integrals that f(u) cos a{e — u) du converges absolutely and uniformly for all a.

—o0

We can show from this that the order of integration can be reversed to obtain

L 0 o L
'};L=O da j;=_w f) cosa(x —u)du = -};L=_w flu) du LZOCOSa(x-—u) du

- lf smL(u 2 au
u—x

= -l-f f(x+'v)Mdv
TJp=—w v
0 . 0 .
= 1 ot Inlyg, lf o+ v) SBLY g,
T J—x v T.Jg v

where we have let u = x+v.

Letting L — «, we see by Problem 5.14 that the given integral converges to
as required.

flx+0) + f(x —0)
2

SOLUTIONS USING FOURIER INTEGRALS

5.16. A semi-infinite thin bar (# = 0) whose surface is insulated has an initial temperature
equal to f(x). A temperature of zero is suddenly applied to the end z =0 and
maintained. (a) Set up the boundary value problem for the temperature u(zx, t) at any
point z at time ¢. (b) Show that

10”7 . .
w(x,t)y = = 5; fo f(v)e~ sin Av sin Ax dA dv
w
(@) The boundary value problem is -
ou - 0%
% = ki3 x>0, t>0 (1)
wx,0) = flx), u(0,t) = 0, |lut)<M (2)

where the last condition is used since the temperature must be bounded for physical reasons.

{b) A solution of (1) obtained by separation of variables is
u(x, t) = e~\t(A cosAx + B sin\x)
From the second of boundary conditions (2) we find 4 =0 so that
uz,t) = Be— sinz )

Now since there is no restriction on A we can replace B in (8) by a function B()\) and still have
a solution. Furthermore we can integrate over A from 0 to « and still have a solution. This
is the analog of the superposition theorem for discrete values of A used in connection with
Fourier series. We thus arrive at the possible solution

u(w,t) = J; B(\)e— <\t gin ax da 4)
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From the first of boundary conditions (2) we find
flx) = f B(A) sin Az dA
(1

which is an integral equation for the determination of B(A). From page 81, we see that since
f(x) must be an odd function, we have

B() = % fo * f@) sinne dw = -72; fo “ tw) sin v do

Using this in (4) we find )
k u(x, t) = _Z_J‘ f F()e= Nt gin zv sin A dA dv
TJo 0

5.17. Show that the result of Problem 5.16 can be written

w(xz,t) = —I—[Jm eV f2wy/xt + x) dw — j;:m e—wzf(Zw\/:fx) dw:l

Vb —z2Vt
Since sinAvsinix = JlcosA(v —x) —cosA(v+x)], the result of Problem 5.16 can be
written

u(x, t) %j;w j;w F(v)e— 1%t [cos AMv — ) — cos Mv + x)] dA dv

lf flv) I:f e~ cos Nv—a) AN — f e~ Nt cos A(v + ) d)\:l dv
T Jo 0 0

From the integral
f e~ cos BA AN = i1 ’ T g—814x
0 2 a

(see Problem 4.9, page 72) we find

1 o0 o«
u(x,t) = > ”t[J; flwye—@w—a/4xt dy — J; f(v)e—(w+x)?/at dv]

Letting (v—x)/2\/:c—i w in the first integral and (v+w)/2\/:c_t = w in the second integral,
we find that .

u(x,t) = %[‘[—1/2\/; e’ f(Zu)\/EH-x) dw — f e~ f(ZW\/E—x) dw]

I

x/2Vkt

. 5.18. In case the initial temperature f(x) in Problem 5.16 is the constant w,, show that

Quo (T2t

Vo
where erf (2/2V/«t) is the error function (see page 69).

u(x,t) = e~"dw = wuoerf (x/2\/xt)

If f(x,t) = uy we obtain from Problem 5.17

L)

U %
u(z, t) = i‘:f e~ dw — f e~ dw:]
Vel Jowpva z/2Vkt

Ug z/2Vkt . 2»“,0 z/2Vkt
= \/—_ - e~ dw = Tk e~ dw = uyerf (@/2V«t)
T —X Ki T

We can show that this actually is a solution of the corresponding boundary value problem (see
Problem 5.48).
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7

5.19. Find a bounded solutlon to Laplaces equation Vzv = 0 for the half plane y>0
(F1g 5-3) if v takes on the value f(x) on the x-axis.

'

The boundary value problem for the determina-
tion of v(x, y) is given by

2o P
" dx? oy2

v(x,0) = flx), |v@,y)] < M

= 0

To solve this, let v = XY in the partial differential
equation, where X dépends only on x and Y depends

only on y. Then, on separating the variables, we have , o(x, 0) = f(x)
XI/ Y// ) .
e Fig.5-3

Setting each side equal to <22 we find
. XII + >\2X = 0’ YN _ }\2Y - 0

so that X = agcosdw + bysindw, Y = el + bye~Mv

Then the solution is . ‘
v{e,y) = (ay cos A& +.by sin Ax)(aged? + bye—Av) -

If A >0 the term in ¢V is unbounded as Y — «; so that to keep v(x, y) bounded we must have
ay = 0. This leads to the solution

v{%, y) = e M[A cos\z + B sin Az

Since there is no restriction on A, we can replace A by A(\), B by B(>\) and mtegrate over ) to
obtain

v(x,y) = fow e M[A(N) cos M + B(A) sin Aw] dn ; 1)
The boundary condition w(x,0) = f(x) yields
J;w [A(\) cos Ax -+ B(A) sin Agldh = f()
’Thus, from Fourier’s integral tﬁeorem we find \
AW = 27 jo cosrwan,  Boy = o Z Fu) sin N du
" Putting these in (1) we have finally: ' ’

vy = %IA;OL:W, ¢~ Mf(u) cos Mu ~ =) du d\ o @

5.20. Show that the solutiou to \Pro'bkl'em 5.19 can be written in the form

vy = 1fm V2 -ﬁ/(fuu) )2 au

Write the result (2) of Problem 5 19 as

v(, y) : % _ f(u)[f e~ ’Ucosx(u——w)d)\]du : 1)

Then by elementary mtegratxon we have

® e eos Ak Yy e Y ' ‘
AL‘ e~ M cos A(u x)dn = Erw—ap (?)
| - - LT i | |
50 thet (1) becomee ) ‘— f_w oMy du. B G
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SOLUTIONS BY USE OF FOURIER TRANSFORMS
5.21. By taking the Fourier transform with respect to the variable x, show that

@ F(Z) = iwre, O F(Gs) = —ro, @ #(%) = Fro

ox

(¢) By definition we have on using integration by parts:
v = N _a_’li —iax (.
F <—67> - f_w 0x ¢ x

k) el
+ ia f ve— oz dx
- —o0

-]

0
= iaf ve ~iex gy
-0

= daF(v)

where we suppose that v > 0 as x > %=,

— e—iaxy

(b) Let v = dw/da in part (a) then

2w . ow - i0)2

Then if we formally replace w by v we have

%v o o
T(ﬁ) = ()2 Flv) = —a?F)
provided that v and g—z -0 as x > *owo,
In general we can show that
FZ2) = () F)
dxm
Pl n—1
if v, 5%:—, vy (‘;’xn—_ﬁ—»o as x ™ *oo,

(¢) By definition
v _ * - - 5 " e = 2
T(E) = f_m Fr ar gy = 6tf_wve fax gy = at?‘(v)

5.22. (a) Use Fourier transforms to solve the boundary value problem
ou *u
) = K(_9—.'17—2, u(x,O) = f(x), ]u(x,t)l < M

where —o <x <, £>0. (b) Give a physical interpretation.

(a) Taking the Fourier transform with respect to x of both sides of the given partial differential
equation and using results (b) and (¢) of Problem 5.21, we have

Lrw = —o2F@) o)

where we have written the total derivative since #(«) depends only on ¢ and not on #. Solving
the ordinary differential equation () for F(u), we obtain

Flu) = Comxa't (2)
or more explicitly l
Flule, )} = Ce—rxe’t (€]
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5.23.

Putting ¢ =10 in (3) we see that
Flulz, 0)}

I

Fifl®)} = C *

so that (2) becomes

I

Flu} = F{fre—re’t (5)

We can now apply the convolution theorem. By Problem 4.9, page 72,

1 2
et — ’ —(2?/4xt) [
e Ka = 7:{ ypmey } (6)
1 2 ® 1 2
= i 1’ —(2takt) = 1’ —[(x—w)?/4xt]
Hence u(x,t) flx) * ol z/4K wa(w) ymwrdd T 1) /4xt) g (7)

If we now change variables from w to 2 according to the transformation (x — w)2/4xt = 22 or
(x —w)/2Vxt = 2z, (7) becomes

u(z, ) = %fﬁc e~ flx — 22/xt) dz (8
7V —w .

(b) The problem is that of determining the temperature in a thin infinite bar whose surface is
insulated and whose initial temperature is f(x).

An infinite string is given an initial displacement y(z,0)= f(z) and then released.
Determine its displacement at any later time &.

The boundary value problem is

2 52
522/— = aza—;; @)
y(x,0) = f(x), w(x,0) = 0, |yt < M (2)

where —x <x < «, t>0,

Letting y = X7 in () we find in the usual manner that a solution satisfying the second bound-
ary condition in (2) is given by

y(x,t) = (A coshx + B sin Ax) cos Aat

By assuming that 4 and B are functions of A and integrating from A =0 to « we then arrive
at the possible solution

y(x, t) = ‘L‘w [A(\) cosax + B(A) sin Ax] cos rat dA (3)
Putting ¢t =0 in (3), we see from the first boundary condition in (2) that we must have
flxy = J: [A(A) cos Az + B()) sin Ax] dr
Then it follows from (I) and (2), page 80, that

1 o0 =0
Ay = ;f fw) cos Av dv, B() = 1 f f(v) sin Av dv &)
Py TJ
where we have changed the dummy variable from x to v.

Substitution of (4) into (3) yields

1 0 0 : )
ylx,t) = ;j; f f(w)[eos A& cos Av + sin Ax sin Av] cos Aat dv dn
= —};f f f(v) cos M — v) cos Nat dv d\
[1) -

= -z—l;j; f_ f(v)[cos Mz + at —v) + cos Mz — at — v)] dv dA
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where in the last step we have used the trigonometric identity

cosd cosB = %[cos(A + B) + cos (A — B)]

with A = A(x —v) and B = Aat.

By interchanging the order of integration, the result can be written
y(x,t) = 51—- f f f(v) cos Mz + at — v) dv dX
7T Jo —_—
+ L f f f(v) cos Mz — at — v) dv dX (%)
277' 0 — o0
But we know from Fourier’s integral theorem [equation (3), page 80] that
flx) = %j; f f(w) cos Mz — v) dv d
Then, replacing x by # + at and x — at respectively, we see that (5) can be written

Yo t) = lf@+an) + fw—at) ®

which is the required solution.

Supplementary Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

5.24.

5.25.

5.26.

5.217.

5.28.

1/2¢ |zl <1
(a) Find the Fourier transform of f(x) = .
0 le| > 1

(b) Determine the limit of this transform as ¢ - 0+ and discuss the result.

1 — a2 |x] <1
(a) Find the Fourier transform of f(x) = 0 ] >1°
® [x cosx — sinx x
(b) Evaluate J; < poc > cos—z—dx.
1 0=2x<1
If flx) = 0 =1 find (a) the Fourier sine transform, (b) the Fourier cosine trans-
x =

form of f(x). In each case obtain the graphs of f(x) and its transform.

(¢) Find the Fourier sine transform of e=%, « = 0.

(b) Show that f rSNMT gy — Ze-m, m >0 by using the result in (a).
0

22+ 1 2

(¢) Explain from the viewpoint of Fourier’s integral theorem why the result in (b) does not hold
for m=0.

Solve for y(x) the integral equation

1 0=t<1
Wk
f y(x) sinztde = 2 1=t<2
° 0 t=

and verify the solution by direct substitution.
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529. If F(a) is the Fourier transform of f(x) show that it is possible to find a constant ¢ so that
F(x) = f(x) = ce—*".

PARSEVAL’S IDENTITY

g 0 2
530. Evaluate (a) J; (xszan’ ) fo (T’;% by use of Parseval’s identity.

A
[Hint. Use the Fourier sine and cosine transforms of e~%, x > 0.]

© _ 2 0 s g
531. Use Problem 5.25 to show that (a) f <Lﬂ> dr = I, (b) f sm_zxdx = I
0 x 2 0o X 4

x — sin x)2 ds = T

“ (x cos
5.32. Show that J(; p 5
5.33. Prove the results given by (a) equation (13), page 82; (b) equation (14), page 82.

5.34. Establish the results of equations (15), (16), (17) and (18) on page 82.

CONVOLUTION THEOREM

1 Jz{ <1
535. Verify the convolution theorem for the functions f(x) = g(x) = {O o >1°

5.36.- Verify the convolution theorem for the functions f(x) = g(x) = e—*".
537.  Solve the integral equation f ywWylx—u)du = e

538. Provethat f*(g+h) = f*g+f*h.

539. Provethat f*(g*h) = (f*g)*h.

PROOF OF FOURIER INTEGRAL THEOREM

540. By interchanging the order of integration in f . f e % siny dx dy, prove that
y= =0

fwsinydy — T
o ¥ 2

and thus complete the proof in Problem 5.12.

541. Let » be any real number. Is Fourier’s integral theorem valid for fla) = e—="7 Explain.

SOLUTIONS USING FOURIER INTEGRALS
5.42. An infinite thin bar (—» < 2 < «) whose surface is insulated has an initial temperature given by

uy x| <a
@ = 1y wza
Show that the temperature at any point x at any time ¢ is

Uy rT—a

ulx,t) = ~2—[erf <Z—+—'\/§> — erf (?\/_—';t_>]
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5.43.

5.44.

5.45.

5.46.

547.

5.48.

5.49.

550,

551,

5.52.

(x = 0) is insulated show that the temperature at any point x at any time ¢ is

FOURIER INTEGRALS AND APPLICATIONS [CHAP. 5

A semi-infinite solid (x> 0) has an initial temperature given by f(x) = uoe“bx2. If the pliane face

Uy

~ V14 4xbt

w(x, t) = e-bxz/(1+4kb§)

Solve and physically interpret the following boundary value problem:

92u 2u X
i é)—yE =:.0 ?/>,0
’ : =1 <0 I ( <M
0 = - u(zx,
=0 1 #>0 v
(0 x<0
Show that if wu(x,0) = “in Problem 5.44, then
, w >0
L ’ wa,y) = — + —tan—1Z
) : 2 7
k 0 . |
Work Problem 5.44 if w(x,0) = {41 “l<az<1.
) ; .

x>1

The region bounded by > 0,. ¥y > 0 has one edge =20 kept’ at potential zero and the ’other
edge vy = 0 kept at potential f(x). (a) Show that the potential at any point (x, y) is given by )

%fow vf®) [:(v—x;2+ v

_..195

ey = W+ o2+ yz:] @

@)HﬂM—lﬂmmmvmm_zmn

o

Verify that the result obtained in Problem 5. 18 1s actually a solution of the correspondlng boundary
value problem.

The lines y =0 and y = ¢ in the xy-plane (see Fig.
5-4) are kept at potentials 0 and f(x) ‘respectively.
Show that the po’centlal at points (x, ) between. these
lines is given by

Y

v(w, ¥)
smh sinh Ay

s Sinh e S AMu ~— x) du d)\

Fig. 5-4

- An infinite string comc1d1ng with the z-axis is given an initial shape f(x) and an initial velocity g(x).

Assuming that gravity is neglected, show that the displacement of any point x of the string at

time ¢ is given by )
i x+at .
ylx, t) - = 3 [f(x + at) + f(m — at) f ‘g(u) du

‘Work Problem 5.50 if gravity‘is\taken into account.

:

A semi-infinite cantilever beam (x> 0) clamped at @ = 0_is given an initial shape f(x) and released.

Find the resulting dlsplacement at any later time ¢.



Chapter 6

Bessel Functions and Applications

) BESSEL’S DIFFERENTIAL EQUATION

Bessel functions arise as solutions of the differential equation
2y + ey +(@2—nP)y = 0 nz0 (1)
which is called Bessel's differential equation. The general solution of (1) is given by
' ¥ = eda(2) + c2Ya() (2)

The solution J.(x), which has a finite limit as « approaches zero, is called a Bessel function
of the first kind of order n. The solution Y.(x), which has no finite limit (i.e. is unbounded)
as « approaches zero, is called a Bessel function of the second kind of order n or a Neumann
function.

If the independent variable z in (1) is changed to Az, where A is a constant, the resulting
equation is
22y + ey + A0y = 0 {3)
with general solution
¥y = cdn(Ax) + c2Yn(Ax) (4)

The differential equation (1) or (3) is obtained, for example, from Laplace’s equation
V2u =0 expressed in cylindrical coordinates (p, ¢,2). See Problem 6.1.

THE METHOD OF FROBENIUS

An important method for obtaining solutions of differential equations such as Bessel’s
equation is known as the method of Frobenius. In this method we assume a solution of the
form

y = 2 erakth (5) -
k=—o
where ¢ =0 for k<0, so that (5) actually begins with the term involving ¢o which is
assumed different from zero.

By substituting (5) into a given differential equation we can obtain an equation for the
constant B (called an indicial equation), as well as equations which can be used to determine
the constants cx. The process is illustrated in Problem 6.3.

BESSEL FUNCTIONS OF THE FIRST KIND
We define the Bessel function of the first kind of order » as

_ " r2 xt
Iu(x) = m{l T 2@n+2) T 2 A@nt2@n+d) } )

97
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B |G |
or In(@) = ,g(,r!I‘(n+r+1) @)
where I'(n + 1) is the gamma function (Chapter 4). If % is a positive integer, T'(n +1) = n!,
r(1)=1. For n=0, (6) becomes
x? xt x®

Jol@) = 1 -+ op ~ ppeEt (8)
The series (6) or (7) converges for all . Graphs of
Jo(x) and Ji(x) are shown in Fig. 6-1. ¥

If » is half an odd integer, Jx(x) can be ex-
pressed in terms of sines and cosines. See Prob-
lems 6.6 and 6.9,

A function J-.(x), n >0, can be defined by re-
placing n by —=n in (6) or (?). If n is an integer,
then we can show that (see Problem 6.5) 1

J-n(z) = (~1)"a(®) ) " Fig.6-1

If » is not an integer, J.(x) and J-.(x) are linearly independent, and for this case the
general solution of (1) is

Yy = AJ.(x) + BJ () n+0,1,2,8, ... (10)

BESSEL FUNCTIONS OF THE SECOND KIND

We shall define the Bessel function of the second kind of order # as

Jo(x) cosnn — J_n()

- n-=0,123
sinn P Ty
. JIp(x) cospr — Jp(x _
1‘1_12 sin pr n=0,1,2,3,...
For the case where n=10,1,2,3,... we obtain the following series expansion for Ya(z):
2 n— l(n k 1) 1 (w/2)2k n
Ya(@) = —{In(@/2) +y}Ja(x) — k1
TE=0 (12)
1 © N (x/2)2k+n
where y = 0.5772156... is Euler’s constant (page 68) and
1 1 1
(19) - |
. Yo(x)
Graphs of the functions Yo(z) and Yi(z) are Y, (@
shown in Fig. 6-2. Note that these functions, as 0 6 71

well as all the functions Y, (z) where = > 0, are un- ' ?

bounded at 2 = 0.

If » is half an odd integer Y.(zx) can be ex-
pressed in terms of trigonometric functions. Fig.6-2
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GENERATING FUNCTION FOR J.(x)

The function

eg(tﬂ%) = 5 o (2)t (14)

is called the generating function for Bessel functions of the first kind of integral order.
It is very useful in obtaining properties of these functions for integer values of n—proper-
ties which can then often be proved for all values of n.

RECURRENCE FORMULAS
The following results are valid for all values of n.

1. Ton(@) = 2270(2) = Faca (2)
2. T = gla-i(@) — Jan(@)]
3. ad i (@) = NIn(x) — 2Tns1()
4. aJn(x) = xJn—1(x) — nJu(x)
5. dix[x"Jn(w)] = " a-1()

6. %[x—m(x)] =~z (@)

If n is an integer these can be proved by using the generating function. Note that results
3. and 4. are respectively equivalent to 5. and 6.

The functions Y, () satisfy exactly the same formulas, where Y.(x) replaces J«(x).

FUNCTIONS RELATED TO BESSEL FUNCTIONS
1. Hankel functions of the first and second kinds are defined respectively by

H'(@) = Ja(@) +i¥a(x), Ho(x) = Ju(x) — i¥a(2) (15)

2. Modified Bessel functions. The modified Bessel function of the first kind of order n
is defined as

In(z) = i J.(ix) = e 2], (ix) (16)
If » is an integer,
I-(x) = I.(x) a7
but if » is not an integer, I.(x) and I-.(x) are linearly independent.

The modified Bessel function of the second kind of order n is defined as

I-n(2) — In(x) ’
K (x) = 2[ sinnx _ :’ n +# 0, 1,2, 3» e (18)
lim S L@ =B w012,

These functions satisfy the differential equation

xzyu + xy’ — (x2 +n2)y =0 ) ’ ' (1 9)
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and the general solution of this equation is
Yy = cila(x) + c2Kn(x) (20)

if #0,1,2,3,...,
on 1 ' y = Al.(z) + Bl-.(2) (21)

Graphs of the functions Io(x), I1(x), Ko(x), K1(x) are shown in Figs. 6-3 and 6-4.

Y Yy
6 1 3
5_
4 I(x) 24
° Ii(x)
3 K1(x)
2 1
1+ K(x)
0 i } 5 re ° I S
Fig. 6-3 Fig. 6-4

3. Ber, Bei, Ker, Kei functions. The functions Ber, (x) and Bein (x) are respectively the
real and imaginary parts of J.(i%%x), where %2 = &>7/4 = (1/2/2)(—1 + 1), i.e.

Jn(t*?x) = Bern(x) + ¢ Bein () (22)

The functions Ker, (x) and Kei, () are respectively the real and imaginary parts of
e ""2K, (112x), where (V2 = e/t = (1/2/2)(1 +1), i.e.
e "MK, (1V2x) = Kera(w) + iKein () (2%

The functions are useful in connection with the equation

2y + xy — (2*+n?)y = 0 (24)
which arises in electrical engineering and other fields. The general solution of this
equation is . .

¥y = cedn(32x) + c2Ka(1V%x) (25)

If n =0 we often denote Berx (x), Bein (x), Kern (z), Kein (z) by Ber (), Bei (z), Ker (z),
Kei (x), respectively. The graphs of these functions are shown in Figs. 6-5 and 6-6.

y . ' Y
2] Bei (v)
i ei (x 051
2 _Ber (z) o Ker (x)
14 -044
o= : -
-4 1 2 02 Kei (x)
— o .01 /—K
- 3 0 — x
5 P I I W S S 5

—.02-]
=03
— 04
—.05+

Fig. 6-5 Fig. 6-6
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EQUATIONS TRANSFORMABLE INTO BESSEL’S EQUATION

The equation .
22y’ + 2k + Dy + (P2 +8%y = 0 (26)

where %, «, 7, 8 are constants, has the general solution
y = z7*¥eden(ax/r) + c2Yisr(ak'/1)] (27

where « = Vk*— g2 If a=0 the equation is an Euler or Cauchy equation (see Problem
6.79) and has solution

¥y = a7 F(eax + cax ) (28)

ASYMPTOTIC FORMULAS FOR BESSEL FUNCTIONS
For large values of x we have the following asymptotic formulas:

In(x) ~ J%cos(x—%—n—;) Yo(x) ~ \/%sin< —%—%) (29)

ZEROS OF BESSEL FUNCTIONS

We can show that if n is any real number, J.(x) =0 has an infinite number of roots
which are all real. The difference between successive roots approaches = as the roots
increase in value. This can be seen from (29). We can also show that the roots of J.(x) =0
[the zeros of J.(x)] lie between those of Jn.—1(x) =0 and J.+:(x) =0. Similar remarks
can be made for Y.(x). For a table giving zeros of Bessel functions see Appendix E,
page 177.

ORTHOGONALITY OF BESSEL FUNCTIONS OF THE FIRST KIND -
If A and p are two different constants, we can show (see Problem 6.23) that

fo aJn(AT) Jn(pz) dz = & *) (fz) — () (3) (80)
while (see Problem 6.24) '
. )
2 _ 17 R AY
From (80) we can see that if A and n are any two different roots of the equation
RJa(z) + SzJa(z) = 0 (32)

where R and S are constants, then

. ar0a) L ds = o (33)

which states that the functions \/z J.(Ax) and V& J.(uz) are orthogonal in (0,1). Note that
as special cases of (32) A and p can be any two different roots of J.(z) =0 or of Ji(z)=0.

We can also say that the functions Jn(Az), J»(ux) are orthogonal with respect to the density
or weight function x.
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SERIES OF BESSEL FUNCTIONS OF THE FIRST KIND

As in the case of Fourier series, we can show that if f(x) and f’(x) are piecewise con-
tinuous then at every point of continuity of f(x) in the interval of 0 < a <1 there will exist
a Bessel series expansion having the form

fl) = Ada(z) + AsJu(Aex) + - = 21 A (Apir) (34)
where Ay, Az, A3, . .. are the positive roots of (32) with R/S=0, S0 and
272 fl
= T (A d 35
Ap T T RISy Jo W) f(@) de (55)

At any point of discontinuity the series on the right in (34) converges to 4[f(x + 0) + f(x — 0)],
which can be used in place of the left side of (34).

In case S =0, so that Ay, Ao, ... are the roots of Ia(x) =0,
. 2 1
A, = -———’——fon)\xfxdx 36
= g o B 1@ (36)
If R=0 and n =0, then the series (84) starts out with the constant term
. .
A = 2 f z f(x) du (37)
0

In this case the positive roots are those of J,f(x) = 0.

ORTHOGONALITY AND SERIES OF BESSEL FUNCTIONS
OF THE SECOND KIND

The above results for Bessel functions of the first kind can be extended to Bessel func-
tions of the second kind. See Problems 6.32 and 6.33.

SOLUTIONS TO BOUNDARY VALUE PROBLEMS USING BESSEL FUNCTIONS

The expansion of functions into Bessel series enables us to solve various boundary value
problems arising in science and engineering. See Problems 6.28, 6.29, 6.31, 6.34, 6.35.

Sqlved Problems

BESSEL’S DIFFERENTIAL EQUATION

6.1. Show how Bessel’s differential equation (3), page 97, is obtained from Laplace’s
equation V2w = 0 expressed in cylindrical coordinates (p» ¢, 2).

Laplace’s equation in cylindrical coordinates is given by

Pu 1ow .1 0% | Pu

T o T e o T 0 )

If we assume a solution of the form u = P®%Z, where P is a function of p, ® is a function of ¢ and
Z is a function of z, then (1) becomes

Pz + 1pez + Lpevz + Pezr = o @
e 0?
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6.2.

where the primes denote derivatives with respect to the particular independent variable involved.
Dividing (2) by P®Z yields

PII 1 Pl 1 éll Z/I _
FrLP TR Tz 50 ®)
Equation (3) can be written as
p” 1P 1 e z"
TP tee T Tz @

Since the right side depends only on z while the left side depends only on p and ¢, it follows that
each side must be a constant, say —A2. Thus we have

17 ’ e
Pl 1P 1

P P Py A (®)
and Z'—N\Z =0 (6)
If we now multiply both sides of (5) by p2 it becomes
pz%’, + p% + % = A%t @)
which can be written as
S )

Since the right side depends only on ¢, while the left side depends only on p, it follows that each
side must be a constant, say 2. Thus we have

P/I Pl
P tep T A = 2 ®)

and 7+ 20 = 0 (10)
The equation (9) can be written as
p2P" + pP' + (\p2 — )P = 0 (11)

which is Bessel’s differential equation (8) on page 97 with P instead of Y, p instead of = and 4
instead of n.

Show that if we let Ap =2 in equation (71) of Problem 6.1, then it becomes
oy’ +xy + (@ —py = 0

We have aP dPdr _  dP B dy
dp ~ dwdp ~ dz T Mg

where y(x), or briefly y, represents that function of » which P(p) becomes when p = x/A.

Similarly
P afdP\ _ dfa\ez _ afd), _ .9
dp? dp\ dp de\"dx /dp ~— dz\ dx - da?
Then equation (11) of Problem 6.1 which can be written
azP dpP
PP T oeg, T WP—AP = 0
2
x d2y 2\ d
becomes <X> )\ZW + (;)Ad—z + @2—uy = 0
or w?y” + xy + (@—uy = 0

as required.
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6.3.

BESSEL FUNCTIONS AND APPLICATIONS [CHAP. 6

Use the method of Frobenius to find series solutions of Bessel’s differential equation
z2y” +ay’ + (22 —n?)y = 0.

Assuming a solution of the form y = 3 ¢ak*# where k goes from —= to = and ¢, = 0 for
k < 0, we have

(2—n2yy = Dok tht2 — IJp2eakts = Mo _akth — I n2eakts
oy’ = 3 (k+ B)ogakts
a2y = 3 (k+ )kt B — 1okt

Then by addition,
Sk+pk+p—1e, + (k+pe, + cxg — nZe]ektB = 0
and since the coefficients of the x*k*# must be zero, we find
[(k+B)2—n?e, + s = 0 (1)
Letting k£ = 0 in (1) we obtain, since ¢_, = 0, the indicial equation (82— n2)¢; = 0; or assuming

¢y >0, B2=mn2 Then there are two cases, given by 8= —n and B =n. We shall consider
first the case 8 = n and obtain the second case by replacing n by —n.

Case 1: B =mn.

In this case (Z) becomes '
k@n+k)e, + ¢,y = 0 (2)

Putting £ =1,2,3,4,... successively in (2), we have
—cg —Cy Co
¢ =0, ¢ = 45575, ¢ =0, ¢ =

22n + 2y 42n+4) 2°42n+2)2n T 4)’
Thus the required series is

Yy =  cgr™ + coxnt2 4 cuantd 4

it

nl 1 @? ot
oo [ T2t D T aEn @ T d) ] @

Case 2: B =-—n.

On replacing » by —n in Case 1, we find

22 xd
= -n —_ — e
g o [1 2@ —2n) T 2-4@ —2n){d —2n) :] “)
Now if n = 0, both of these series are identical, If =n = 1,2,... the second series fails to exist.
However, if n+0,1,2,... the two series can be shown to be linearly independent, and so for this
case the general solution is
‘ x2 at
— n| 1 - % —_
Y Co [1 2@n+2) T T AEn T D)@ T ) ]
_ x? Tt
+ D "[1“2(2—2n)+2-4(2—2n)(4—2n)_"'] ®)
The cases where n =10,1,2,8,... are treated later (see Problems 6.17 and 6.18).

The first series in (5), with suitable choice of multiplicative constant, provides the definition of
J,(x) given by (6), page 97.

BESSEL FUNCTIONS OF THE FIRST KIND

6.4.

Using the definition (6) of Jn(x) given on page 97, show that if n=<0,1,2,..., then
the general solution of Bessel’s equation is y = AJw(x) + BJ —n ().
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6.5.

6.6.

6.7.

Note that the definition of J, () on page 97 agrees with the series of Case 1 in Problem 6.3,
apart from a constant factor depending only on n. It follows that the result (5) can be written
y = AJ,(x)+ BJ_,(x) for the cases n+0,1,2,....

(a) Prove that J-n.(x) = (—1)"Ja(x) for n=1,2,3,....

(b) Use (a) to explain why AJ.(x)+ BJ-.(x) is not the general solution of Bessel's
equation for integer values of «.

(a) Replacing = by —n in (6) or the equivalent (?) on page 98, we have

S (—1)r(x/2)—nt2r

In(@) 2 T+ D)
_ n—1 (—1)7(w/2)~n+2r 4 g (—1)7(x/2)—n +2r
TS rir(-n+r+1) = ril(-n+r+1)
Now since I'(—7@=+r + 1) is infinite for » = 0,1,...,n—1, the first sum on the right is zero.

Letting » = n+ k in the second sum, it becomes

o (—1)ntk(g/2n+2k _ - (—1)k(x/2)n+2k _

2 R rn — OV 2 e TRtk (1) (=)

() From (a) it follows that for integer values of n, J_,(x) and J,(x) are linearly dependent and
so AJ,(x) + BJ_,(x) cannot be a general solution of Bessel’s equation. If » is not an integer,
then we can show that J_, (x) and J,(x) are linearly independent, so that AJ, (x) + BJ_, (%) is
a general solution (see Problem 6.12).

Prove (a) Jiz(x) = 1’%sinw, b)) J-12(x) = 1/%cosx.

N sl (_l)r(x/2)1/2+2r _ (.’17/2)1/2 | (%/2)5/2 (x/2)9/2
(a) Tip@) = ,§0 rIT(r + 3/2) @R T 1I16G/R) arr(7/2) ~
_ (x/2)1/2 _ (x/2)5/2 B (x/2)7/2 _
Q/2v7 113127 21 (5/2)(3/2)(1/2W7
‘ _@mnf 2 e ) | @esne _ [z
(/27 |” 8! B! T oaewE ¢ NP
S C@@mirer  (@/2)-vr (@2 (w/2)1e
(®) I-12(%) Tgo rI0(r + 1/2) V) 1113/2) * 2irs/z)

_ @ e [z
= V= —oit T = —cos

Prove that for all «:

d
(@) %{ann(x)} = 2% n-1(), (b) %{x—»an(x)} = —2" i1 ().

(—~1)rx2n+2r _ hisd (—1)rg2n+2r—1
et +r+1) rg'o 2n+2r =1y P(n + 7)

d d &
@ e = L3

" i (—1)rap(n—1 +2r
= =0 20~V +2rp I Pl(m— 1) +r+ 1]

xnJ (%)
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d d 2 (——1)"002'
(5) T @@ = 3 e T D

n % (—1)rgn+2r—1
T T A eI Tt r+ 1)

hd (=1)k+ign+2k+1
= o 2 TR TR TR D)

- nJ’n +1 (x)

6.8. Prove that for all n:
@ i@ = 3@ =@ 0) Sea@) + (@) = 2.

From Problem 6.7(a), zJ,(x)+ nxn—1J, (x) = znJ,_ (%)

or wd o (x) + ndy(x) = xd,.q(x) (2)
From Problem 6.7(8), z~nJ,(x) —ne—"~J,(x) = —z—nJ,,(x)
or x"?’l (.’ﬂ) - an(x) - x']n 4 ](ZU) . (2)

(a) Adding (Z) and (2) and dividing by 2x gives

Ti@) = 5 Uner@ = ey @)

() Subtracting (2) from (1) and dividing by z gives

2
Ip1(@) + Jpiq(x) = ?n']n(x)

69. Showthat (a) Jsp(a) = %(w_—;g%
() J-sp(z) = — %(ﬁﬂ’ﬂ%tﬂﬂ)

(@) From Problems 6.8(b) and 6.6 we have on letting » = 1/2,

J3p(®) = %Jl/z () — J_y)(x) = £<S——12 L cos x> = i(___*____sin * "% cos x>

gt Te x

’

J_gpl@ = - ’_ﬂ%(x sin xx+ cos x)

(b) From Problems 6.8(b) and 6.6 we have on letting = = —3

6.10. Evaluate the integrals  (a) f e Fus(x) dz, (b j!;l_(x) du.

From Problem 6.7,

(@) %{x”']n(m)} = anJ,_((x). Then fx"]n,l(x) de = and, (x) + c.

®) L (a=nJ,@) = —=nJy, (). Then f Lot gy = pong @) + .
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6.11. Evaluate (a) fx“Jl(x) dx, (b) fx3Ja(x) dz.
(a) Method 1. Integration by parts gives
f 2t (@) de = f (@?)[22], (2) da]
w222, ()] — f[x2J2(x)][2x dar]

= xtJy(x) — 2fx3J2(x) dx
= atJy(x) — 2x3J3(x) + ¢
Method 2. We have, using J{(x) = —J () [Problem 6.7(b)],

f ) (@)yde = — f g (wyde = — {xuo (%) — f 4a3J o () dx}

f 23]y (x) de = f x2fady(x) de] = «2[xdy(x)] — f [ (x)][22 dax]

f 2Jy(x)yde = -— f w2lg(x)de = — {szO (x) — f 20J () dx}
=  —a2Jy(x) + 2xJ;(x)

Then f 2ty (x)de = —atdy(x) + 4[x3T(x) — 2{—a?J (%) + 2xJ1(2)}] + ¢
= (BaxZ—axt)Jy(x) + (423 — 16x)J, (x)

(b) fx3J3(:c) de = fx5[x_2J3(x) dx]

= aS[~x—2y(x)] — f [~x—2Jy(x)]) 5t dx
= —adly(x) + 5fx'2,l2(x) dx

fszz(x)dx = fx"[x_lJz(x)] dx

= wle @) - f [ E)tde
= —a2],(x) + 3f xJ; (x) dx

f 2 (x)de = -— foo’ () da - [xJo (x) — fJo(x) dx:l

= —xJy(z) + fJO(x)dx

Il

Then foc3J3(oc) de = —x3J,(x) + 5 {—szl(x) + 3[—90J0(x) + fJo(x) da::]}
= —a¥Jy(x) — Bx2J(x) — 15xJy(x) + 15 IJo(x) dx

The integral f.lo(x) dz cannot be obtained in closed form. In general, f xPJ (x) da
can be obtained in closed form if p+¢=Z 0 and p-+gq is odd, - where p and g are integers.

_If, however, p + ¢ is even, the result can be obtained in terms of fJo(x) dx.
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2 gin nr
L
(b) Discuss the significance of the result of (a) with regard to the linear dependence
of J.(x) and J-n(x).
(a) Since J,(x) and J_, (%), abbreviated J,, J_, respectively, satisfy Bessel’s equation, we have
22 + wd, + (@2 —n2)J, = 0, wJ! + el + (@2—n2)J_, = 0

6.12. (a) Prove that Ja(2)J-n(2) — JLn (@) Ju(x) =

Multiply the first equation by J_,, the second by J, and subtract. Then
w2 [ I T _, — .iﬁ,,J,,] + w[dpd_p,— I, d)] = 0
which can be written
x;—x[.],’,.l_n Tl T T~ Jl ] = 0
or %{x[J;J_n —JL Q) = 0
Integrating, we find Jod_y — I 0, = clx )

To determine ¢ use the series expansions for J, and J__, to obtain

_ —n
J, = 2_nr_(ﬂiz‘+_1)_ I = %_ O A m_
—n—1
JL, = é‘fm -
and then substitute in (7). We find
_ 1 1 _ 2 . 2sinnrx
T Tmrd—w» ~ Tethim ~ Tmri-=n 7

using the result 1, page 68. This gives the required result.

(b) The expression J,J_, —J ndn in (@) is the Wronskian of J, and J_,. If = is an integer, we

see from (a) that the Wronskian is zero, so that J, and J_n are linearly dependent, as is also
clear from Problem 6.5(a). On the other hand, 1f n is not an integer, they are linearly inde-
pendent, since in such case the Wronskian differs from zero.

GENERATING FUNCTION AND MISCELLANEOUS RESULTS

z¢, T x
613. Provethat ¢X'" 9 = 3 J.(a)t~

n=—co
We have
(t—-) _ _ (xt/2)T (—z/2t)k x/zt)k S G (—1)k(a/2)rHRgr—k
= ext/2e—xz/%U — = RN ZA ] ie
§ kg() rg() kgo rik!
Let r—k ==n so that n varies from —» to «. Then the sum becomes
it had (—1)k(/2)n+2kgn _ b 2 (—1)k(x/2)n+2k _ kel
22 R = 292 TRt = N2 Tn@t

6.14. Prove (a) cos (z sin#)

I

Jo(x) + 2Ja2(x) cos 260 + 2J4(x) cos49 + - --
(b) sin(xsing) = 2Ji(z)sind + 2J3(x) sin30 + 2J5(x) sin56 + - - -
Let t=¢i® in Problem 6.13. Then

eéxww—e‘w)

eiwsind  — N J (x)eint = FJ, («)[cos 6 + i sin ng)

{Jo@) + [J_q1(x) + Jy(x)] cosg + [J2(x) + Jo(2)] cos 20 + ---}
+ H{[Jy(@)— T4 (x)] sine + [Jo(x) =T _o(x)] sin20 + ---}
= {Jo(x) + 2J5(x) cos 26 + ---} + {2J(x) sin 6 + 2J5(x) sin3¢ + --+}

where we have used Problem 6.5(a). Equating real and imaginary parts gives the required results.
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6.15. Prove J.(x) = %J; cos (nd — x sin §) do n=0,1,2,....

6.16.

Multiply the first and second results of Problem 6.14 by cosué and sin ng respectively and
integrate from 0 to = using

T 0 m+n T 0 ms*n
. = sinmg sinne do =
j(; cos mé cos e do 7/2 mv,": n ’ Af()‘ 7r/2 m=n+#0

Then if n is even or zero, we have .

kg xid
Jp(x) = 1 f cos (x sin 6) cos ne de, 0 = 1 f sin (x sin 6) sin no de
T 0 K 0
or on adding,
1" 1" .
Jpx) = = f [cos (x sin 6) cosmg + sin(x sine) sinné]ds = o f cos (ng — x sin 6) dé
. T Jo 0 .
Similarly, if » is odd,
1 (" 1 ("
Jlxy = = f sin (x sin 6) sin né ds, 0 = - f cos (x sin 9) cos ne do
T 0 T 0
and by adding, 107
Jolx)y = = f cos (ng — « sin 8) do
T Jo

Thus we have the required result whether = is even or odd, i.e. n=0,1,2,....

Prove the result of Problem 6.8(b) for integer values of n by using the generating
function.

Differentiating both sides of the generating function with respect to ¢, we have, omitting the
limits —e« to « for =,

(=) %(1 + tl—z> = I, ()1

or §<1 + tlz> ST @tn = 3, (@)t
ie. 2§<1 + é>Jn(x)t" = 3, (@)1
This can be written as

S %Jn(w)t" + Ean(x)t"—z = 3 nd,(x)tr1
or S + 300Gt = S+ D @)
ie. p} [an(x) + g"n+2(x)] tn = X (n+ 1), (@)t

Since coefficients of ¢* must be equal, we have
x x ) )

from which the required result is obtained on replacing » by n— 1.

BESSEL FUNCTIONS OF THE SECOND KIND

6.17.

(@) Show that if n is not an integer, the general solution of Bessel’s equation is

Jn ™ -n
vy = El@ + F[ (=) cosr — J (“)]

where E and F are arbitrary constants.
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(b) Explain how to use part (a) to obtain the general solution of Bessel’s equation in
case 7 is an integer.

(@) Since J_, and J, are linearly independent, the general solution of Bessel’s equation can be

written
Yy = clJn(x) + c2J_,,(x)
and the required result follows on replacing the arbitrary constants ¢y, ¢, by E, F', where
F 7 -
Cq = E + M, Cy = Py F
sin n7 sin nr

Note that we define the Bessel function of the second kind if » is not an ineger by
Jo(x) cosnr — J_,(x)
sin nwr

Y, (@) =

(b) The expression
I (%) cosnr — J_, (x)

sin nr

becomes an “indeterminate” of the form 0/0 for the case when » is an integer. This is because
for an integer n we have cosnz = (—1)* and J_,(x) = (—1)»J,(x) [see Problem 6.5]. This
“indeterminate form” can be evaluated by using L’Hospital’s rule, i.e.

;—[Jp(x) cospr — J_p(®)]

lim
pP—n

tm Jp () cos pr — J_p(m)]

pon sin pr 3 .
ap [sin pr]

This motivates the definition (11) on page 98.

6.18. Use Problem 6.17 to obtain the general solution of Bessel’s equation for n = 0.

In this case we must evaluate

i Jp(®) cos pr — J_p(ac)] @

p—+0 sin p7r
Using L’Hospital’s rule (differentiating the numerator and denominator with respect to j)), we find
for the limit in (7)
(8J,/3p) cos pr — (3J_,/0p) aJ éJ
lim ] ]
ap p=0

p=—0 7 COS Prr

where the notation indicates that we are to take the partial derivatives of Jp(x) and J_p(x) with
respect to p and then put p = 0. Since 8J_,/d(—p) = —aJ_,/dp, the requ1red limit is also equal to

2 07,
™ ap

p=0
To obtain 3J,/dp we differentiate the series

§ (=1)r(x/2)p+2r
s Yl (p+r+1)

LI e Vi M7 a .
op 2l op |Tp+r+1) @

Now it we let TP 6 pon w6 = (0 +2r) In (@/2) — InT(p +7+1 hat diff
Mp+r+1) — = n (x nT(p+r+1) so that differ-

entiation with respect to p gives

Iplx) =

with respect to p and obtain

196G _ _TIMp+r+1
Gap = In (2/2) Tprr¥l)
Then for p =0, we have .
G o _(x/2)?r [ Mr+1
0P lp=o I(r+1) In (2/2) — Tr+1) @)
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Using (2) and (3), we have

200y _ (CL@/2P I'r+1)
7 7P Ip=o ﬂ,orv1r+1)[( )~ T+

i

2 2 x8
;{ln(w/2)+v}Jo(x)+;[ 2242(1+ )+m(1+%+%)—.--]
where the last series is obtained on using the result 6. on page 69. This last series is the series

for Yo(x). We can in a similar manner obtain the series (12), page 98, for Y, (x) where n is an
integer. The general solution if n is an integer is then given by ¥ = ¢1J, (%) + ¢oY, ().

FUNCTIONS RELATED TO BESSEL FUNCTIONS
6.19. Prove that the recufrence formula for the modified Bessel function of the first kind

I(zx) is
In-l-l(x) = In—l(x) - -2—;51"(1')
From Problem 6.8(b) we have
Teer@ = 0@ = J@ ()
Replace z by ix to obtain %in
Tnsalim) = =ZLJ () = Jpsia) @)

Now by definition I,(x) = {—»J,(ix) or J,(ix) = i, (x), so that (2) becomes
L @) = —mT”an (@) — in1I,(x)

Dividing by ¢#*! then gives the required result.

6.20. If n is not an integer, show that

2

W J—n(x) — 7", () @, \ _ e (x) —J ()
(@) Ha(z) = 1 sin nx (b) Hn'(z) = isinnx

(a) By definition of H,(,l)(x) and Y, (x) (see pages 99 and 98 respectively) we have

H;l)(x) — Jn(x) 4 1Yn(x) - J"(x) + ’l:[Jn(x) cosnr — J_n(x)]

sin nr
Ip(x) sinnr + 4J,(x) cosnr — iJ_,(x)
sin nr

_ i[J"(x) (cos nr — 1 sin nw) — J_n(x)]

sin nwr
_ [J @)= = J_ (@) J_ale) — 6, (@)
- sin nr ] - i sinng
(b) Since Hf,z)(x) = J,(x) —iY,(x), we find on replacing i by —i in the result of part (a),
J_ — eginmJ inm — V
HP () n(i)‘ e n(@ _en Jnﬁx)' J_n(2)
isinnr 1 sin nr

xt a8
6.21. Showthat (a) Ber(z) = 1 — 9247 + 524267Q2

. _ —x—2 _ xs xlo
(b) Bei (x) - 922 224262 224262821 ()2 -
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We have 7 (isr2 B (137252 (i3/2x)  (i%/2x)8 (13/22)8
o(i¥20) = T o2 2242 92472 92256282
_ i3x2 N 604 196 11248
- T o2 2242 924242 22426282
_ ix2 xt ix® x8
= 1t o T g T npg T wees
_ xt xB [ x2 28
= <1‘2—24’2'+m—“'> + ’<§‘m+“‘>
and the required result follows on noting that J,(i3/2z) = Ber (x) + ¢ Bei (x) and equating real and

imaginary parts.

EQUATIONS TRANSFORMABLE INTO BESSEL’S EQUATION
6.22. Find the general solution of the equation zy” +¥ +ay = 0.

Note that the subscript zero has been omitted from Ber, (x) and Beij (x).

The equation can be written as x2y” + ay’ +axy =0 and is a special case of equation (26),

page 101, where k=0, «a =Vea, r=1/2, g=0.

Y = e Jo(2Vax) + e,Yo(2Vax)

ORTHOGONALITY OF BESSEL FUNCTIONS

1
6.23. Prove that f 2Jn (M) Jn(px) do
0

pIn () Ja () = Mn() Jn ()
)\2 — /-"2

if Ao p.

Then the solution as given by (27), page 101, is

From (3) and (4), page 97, we see that y; =J,(Ax) and y, = J,(ux) are solutions of the

equations
x2yy + zyi + (W22 —n2)y,

= 0,

Multiplying the first equation by ¥, the second by y, and subtracting, we find

22y — vz ] +
which on division by x can be written as

wlysy; — s = (22— 2)ayy,

d
v o a1~ yiys] + [voyi—wiwa) = (W@ —Nzyw,

d ‘
or d—x{x[yzyi—ylyé]} = (42— N)zy s

Then by integrating and omitting the constant of integration,

R S —

or, using y; = J,(\x), yy = J,(ux) and dividing by #2—2A250,

f xd, (\&) I, (ux) dx =

e[\ (u) Ip (A) — (A2 T ()]

a2 — A2
1 Mo () I () — () T ()
Thus j; J () I (uw) dz = - (#2 — -
which is equivalent to the required result.
T 1 2 n2\ ;2
624. Prove that f alia)de = 3[720) + <1 - §> 7 ],
)

Let x—> A in the result of Problem 6.23.

1
f xJ2(nx) dae

0 A

x2yy + wys + (W2 —ny, = 0

Then, using L’Hospital’s rule, we find

m A () Tn () = Tu () Jne) — adn(A) I ()

2u

A2 — JoA) Tah) — A0 (V)

2\
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But since AZJ,(\) + M, (A) + (A2—n2) J,(A) = 0, we find on solving for J,(\) and substituting,

1
j; w2y dx = -12-[,1;20\) + <1—;‘—:>Jﬁ(x)]

6.25. Prove that if A and . are any two different roots of the equation RJ.(x) -+ SaJ(x) =0,
where R and S are constants, then

fo T ) a(ue) de = O
ie. VaJo(rx) and Vo Ja(px) are orthogonal in (0, 1).
Since A and p are roots of RJ,(x)+ Sx.],', (x) = 0, we have
RJ,(\) + SML() = 0,  RJ, () + SuJi(w) = 0 (1)
Then since B and S are not both zero we find from (1),
wla) Jal) — M) Jn() = 0

and so from Problem 6.23 we have the required result

f L, 0 I uz) de = 0
0

SERIES OF BESSEL FUNCTIONS OF THE FIRST KIND

6.26. If f(x) = > ApJn(Mpx), 0<z <1, wherer, p=1,2,3,..., arethe positive roots
=1
of Ja() =0, show that

2 1
A4, = —-—fo Apx) f(2) dx
i TE1(Ap) Jo () 1(2)
Multiply the series for f(x) by xJ,(\cx) and integrate term by term from 0 to 1. Then

1 = 1
J; xd, (\ex) flx) dx = pgl A, j; xd, (\e) I, (M) dae

= A4 f lifL(Akx) dx
= 14 Jo% )
- 2 kY n \\k
where we have used Problems 6.24 and 6.25 together with the fact that J,(A;) = 0. It follows that
A = —22— fli (\e®) f(x) da
Jn (kk) 0 nik

To obtain the required result from this, we note that from the recurrence formula 3, page 99,
which is equivalent to the formula 6 on that page, we have

Mefn M) = T () — M1 ()

or since J,(A;) =0, Jolv) = =T 00)

6.27. Expand f(z) =1 in a series of the form

> Apdo (Ap)
p=1

for 0<x <1, if A, p=1,2,8,..., are the positive roots of Jo(x) = 0.
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From Problem 6.26 we have

2 - (1 ) 2 Ap :
A = f xdg(\2) de = —m—— f vdy(v) dv
? JR0) Jo O RJT,) Jo L
2 Ao 2
= ——aJ =
2ron 1| N7 1 (hp)

‘where we have made the substltutlon v = xpw in the integral and used the result of Problem
6.10(a) with = = 1.

-Thus we have the required series ; ,
. S 29
' ) = 1 .= DT
f( ) 7 - pgl )\le (Ap) 07( P )
which can be written ' ' '
Joz) 1 Jo(he) L
MI() 0 Ad () ‘

- DO b

SOLUTIONS USING BESSEL FUNCTIONS OF THE FIRST KIND ,

6.28. A circular plate of unit radius (see Fig. 6-7) has its plane faces insulated. If the
initial temperature is F(p) and if the rim is kept at temperature zero, find the temper-
-ature of the plate at any time. . ~

Since the temperature is independent of #; the boundary value problem for determining
7’!’(!’: t) is ‘ : - - - :
ow - 2y 1du :
R <r i ap) ~ | @

Cudt) =0, u(p,0) = Flo), |ule, )] < M
| ,
Let u = P() T(¢) = PT in equatior} (7).  Then

P = K<P~T + %P’T)

or dividing by «PT,

r-_ B 1P .,
T = P t,p T N
from which '
T+ 2T = 0, P —1—%P’ + NP = 0

These have general solutions

T = ¢, P = AJy(\) + B,Y,(Ap) Fig. 67
Since u = PT is bounded at p = 0, Bl = 0. Then '
' ulp, t) = Ae_")‘ £ o(>\p)
‘where A = Asey.
From the first boundary condition,'
u(l;t) = Ae~xN'tJ, »N =
from which Jo() =0 and A=A, are the positive roots. ‘ S

Thus a solution is :
B R 2
u(o,t) = Ae mtJi(hpe) 0 m=1,23,...

By superposition, a solution is

upt) = 3 A e~ mt o (Aup)
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6.29.

From the second boundary condition,

B

u(p,0) = Flp) =.m2=1AmJo(>\m»0)

The;n from Problem 6.26 with n = 0. we have
. , .
Ay = —o— f F(0) Jo(Amp) 4,
m 'JZ()\m) [ (P) 0( mP)

d | ~ - R ,
e ) = 3 {[Jl s o) 1y dp]e O8To (v m} @

which can be established as the required solution.

Note that this solution also gives the temperature of an infinitely long solid cylinder. whose
convex surface is kept at temperature zero and whose initial temperature is Fi(p).

A solid conducting cylinder of unit height
and radius and with diffusivity « is ini-
tially at temperature f(p, 2) (see Fig. 6-8).
The entire surface is suddenly lowered to
temperature zero and kept at this tem-
perature. Find the temperature at any
point of the cylinder at any subsequent
time.

Since there is no ¢—dependence,\as is evident _
from symmetry, the heat conduction equation is

. Bl lou | %u

ot o K<—(97)5 +3 0 Bp + 922 > )
where # = u(p, 2,t). - The boundary conditions /
are given by ) : Fig. 6-8

u(P’z, 0) = f(P:z)x ’LL(p,O, t) = 01 ”M,(p‘,l,t) = 0, ’ ’I/L(l, ?, t) = 0; {u(P)z; t)[ < M . (2) ‘

where 0 =p<1, 0<2z<1, t>0.

To solve this boundary value problem let U = PZT = P(p)Z(z) T(t) in (1) to obtain

PZT = x(P”ZT +Lpigr 4 PZ”T>
o
Then dividing by xPZT we have’ ‘ )
' r _ P 1P Z"
T - P TLP Tz

Since -the left side depends only on t while the rlght side .depends only on p and z, each side must
be a constant, say —>\2 Thus o '
T + eN2T = ¢

P 1 P -z . R .
— = = i = —)\2 .
P Ptz -\ . | » 3
The last -equation can be written as
) pr 1P Z/)
b N A
PP M=z g
from which we see that each side must be a constant say —u2, From this we obtaln the two !
equations : .
pP"+P'+[tpP =‘o 4)
Z"—Z = ¢ i ®)
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where we have written
v2 = p2— A2 6)

The solutions of (3), (4) and (5) are given by
T = ce™®, P = cJolup) + c3Yo(up), Z = 4% + cze™%
Thus a solution to (Z) is given by the product of these, i.e.
ulp, 2, 8) = [e167 ¥ [cado(up) + €3¥ o (up)][c467* + c5e—77]

Now from the boundedness condition at p = 0 we must have ¢; = 0. Thus the solution becomes

ulp,2, 1) = e~*NtJo(up)[Ae** + Be ] @)

From the second boundary condition in (2) we see that
u(p,0,8) = e~*NtJ(up)(A+B) = 0
so that we must have A +B =0 or B =—A. Then (?) becomes
w(p, 2, t) = Ae™¥tJ, (up)[evr — e ¥7]
From the third condition we have
ulp,1,8) = AeNtJy(up)[er —e~¥] = 0
which can be satisfied only if e#—e~? =10 or
e = 1 = g2kmi k=0,1,2,...
It follows that we must have 2» = 2kxi or
v = kni k=0,1,2,... (8)

Using this in (7), it becomes
ulp, z,t) = Ce“""tho (up) sin krz

where C is a new constant.
From the fourth condition in (2) we obtain
u(l,2,t) = Ce *NtJ(n) sin krz =0
which can be satisfied only if Jy(s) =0 so that
&= Ty T, ... 9)

where 7, (m =1,2,...) is the mth positive root of J4(x) = 0. Now from (6), (8) and (9) it follows
that '

A2 = u?— 2 = 2 + k2p2

so that a solution satisfying all conditions in (2) but the first is given by

wlp, 2,t) = CeKm kTt J (p o) sin krz - (10)
where £=1,2,3,..., m=1,2,8,.... Replacing C by Cy,, and summing over k and m we obtain
by the superposition principle the solution -

ulp,2,t) = kE 21 Crme™ (KTt T (1,p) sin oz : (117)
=1 m=

The first condition in (2) now leads to

f(P9 z) =

=
TY.E

S Crmdo("mp) sin knz
e

1 1

This can be written as

floyz) = I { Ckao(rmp)} sinkrz = 3 by sinknz
k=1 |m=1 k=1
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where o
be = 3 Cumdomo) (12)
m=1

It follows from this that b, are the Fourier coefficients obtained when f(p, 2) is expanded into a
Fourier sine series in z [we think of p as kept constant in this case]. Thus by the methods of
Chapter 2 we have

1
b, = % f flp, 2) sin krz dz (13)
0

We now must find Cy,, from the expansion (12). Since b, is a function of p, this is simply the
expansion of b, into a Bessel series as in Problem 6.26, and we find

2 f !
= 55— ) d 14
Cem Py Jo PO o(Tme) dp (24)
This becomes on using (13)
1 1
. 4 '
Cem = Jf(:m) j; L pf(p, 2) Jo(rmp) sinkrz dp dz (15)

The required solution is thus given by (11) with the coefficients 15).

6.30. Work Problem 6.29 if f(p,2) = uo, a constant.
In this case we find from (15) of Problem 6.29

4u0 1 1 .
Cim = Jf('rm) . ) p Jo(7mp) sin kzz dp dz

. 4u, 1 1
= JITT(;) {L e Jo(rme) dp}{J; sin krz dz} ,
- duy JJ1(rm)) [1 — cos ker
TJ 2om) | 7w ker

4ug(1 — cos kx)
krry (1)

on using the same procedure as in Problem 6.27. The required solution is thus

duy 2.3 1 — coskr
, 2, t — — : —_ -—K(vfn-chﬂ'z)t 3
u(p, 2, t) - k:ZI 2 T ) € Jo (Tp) sin krz

6.31. A drum consists of a stretched circular membrane of unit radius whose rim, repre-
sented by the circle of Fig. 6-7, is fixed. If the membrane is struck so that its initial
displacement is F(p, ¢) and is then released, find the displacement at any time.

The boundary value problem for the displacement z(p, ¢, t) from the equilibrium or rest position
(the xy-plane) is
Pz (P2 1oz 1 %
at? % " pdp o2 og2
2(1, b, t) = O: Z(p, b, 0) = O, zt(P; b, 0) = 0: Z(P} -5 O) = F(P; ¢)
Let z = P(p)®(¢) T(t) = PdT. 'Then

PeT’ = a2<P”d>T + %P’be + 1—2P<1>"T>
0

Dividing by dZP‘PT, T P 1P 1 &”
= — = — = —_ = —2\2
b R A

2T ~— P
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and so T" 4+ A2a2T = 0 1)
P 1P 16" s
PrT,ptee = N @)

Multiplying (2) by p2, the variables can be separated to yield

) ®
o P 2,2 = e = 2
p- T T P #
so that ¢ + u2e = 0 3)
PP + pP' + (N2 =P = 0 “

General solutions of (1), (3) and (4) are

T = Ajcosiat + B, siniat %)
& = A,cosup + By sinug (6)
P = AyJ,00) + ByY,(0) %)

A solution z(p, ¢, t) is given by the product of these.

. Since z must have period 2« in the variable ¢, we must have x =m where m =0,1,2,3,...
from (6).

Also, since z is bounded at p = 0 we must take B; = 0.
Furthermore, to satisfy z;(p,9,0) =0 we must choose B; = 0.
Then a solution is
ulp,¢,t) = Jp(Ap) cosrat (4 cosmg + B sin me)
Since 2(1,¢,t) =0, J,,(\) =0 sothat A =X,,, k=1,2,3,..., are the positive roots.

By superposition (summing over both m and k),

20 kzl I (Akp) €08 Ak @8)(A i cos me + By sin me)
Mo K=

Z(p, @, t)

Il

2 {[ E Akam()\mkP):l COS M
m=0 k=1

+ [:k§1 Bkam()\mkp)] sin m;b} COS Ayat (8)
Putting ¢ =0, we ha\}e
#p:$0) = Flo,9) = 3 {Cpcosms + Dy sinme} @
where Cn = kgl A e Anrcp)
,, (10)
D, = kgl B (Amicp)
But (9) is simply a Fourier series and we can determine Cy, and D,, by the usual methods.
We find )
1 27
- . F(p, ¢) cosme do m=1,2,8,...
Cm = 1 2w
E A F(P1¢)d¢ m=0
1 2T
D, = p X F(p, ¢) sinmg de m=0,128,...
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From (10), using the results of Bessel series expansions, we have

1
2
T+ 1 )2 j(; pdm Aep)Cry dp

2
T[T+ 1 (i) 12

Amk

1 2T .
[ R0 9 I Ome) cosmo dpds it m=1,23, ...
0 0

Il

1 fl >’«Zﬂ' .
—— F(o, ¢) Jo (A do d fm=90
0 Jo Jo * (0, ¢) Jo(A\gp) dp do i

2

1
——— I Amrp) Dy d,
[Jm+1()\-mk)]2 J(; o m( mkP) m %P

1 27
: S, ' itm =
= @ —_— Fo, ¢) I (A, me dp d if m=0,1,2,...
T O E Jo Jo * (0 ) I (\pkp) sin mg dp do

Using these values of A and B, in (8) yields the required solution.

Note that the various modes of vibration of the drum are obtained by specifying particular
values of m and k. The frequencies of vibration are then given by
>‘mk
fukw = S-a

Because these are not integer multiples of the lowest frequency, we would expect noise rather than
a musical tone,

SERIES USING BESSEL FUNCTIONS OF THE SECOND KIND

6.32. Let uo(Amp) = Yo(Ama) Jo(Amp) — Jo(Am@) Yo(Amp) where Am, m=1,2,8,..., are the
positive roots of Yo(Aa) Jo(Ab) — Jo(ra) Yo(AD) = 0. Show that

b
§ uormpyuohap)dp = 0 mAm

The functions P,, = uy(hnp) and P, = uy(\,p) satisfy the equations
oPp + P, 4+ 2pP, = 0 2
. oPll + P} + 2%P, = 0 @
Multiplying (1) by P,, (2) by P,, and subtracting, we find
p(PoPy — PuPy) + P,Pl — PpPy = (3 —3)P,P,
which can be written

d

P%(Pnprln—PmP;;) + PyPy — PuPp = (\,—\)ePyP,

d
or ;1; [o(Pp P — PmP;L)] = (Xﬁ — )\?n)mePn
Then by integrating both sides from a to b we have
b b
03=22) [ oPnPody = o(P,Pl—P, P
a a

b
p[Amto(\np) ug(Amp) — Agttg(App) g (Anp)] .
= 0 ¢
(;ln using the facts wug(A,a) = 0, ug(An@) = 0, wug(Ayd) =0, ug(Ab) = 0. Then since Ap A, We
ave

b b
L pPuP,dp = j; pug(Appo) ug(App) dp = 0
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6.33.

6.34.

~where 4 is a constant.

BESSEL FUNCTIONS AND APPLICATIONS - ' [CHAP. 6
§

Show hoW to expand a function F(p) into a series of the form z Amuo )\mp) Where \
the functions wuo(Amp) are given in Problem 6.32. ‘ : ,

Suppose that . . ‘
Flp) = é Ao Nup) , . )

Then on multlplymg‘ both sides by puo(knp) and mtegratmg from a to b we find

2 A f puo(xmp)uo< o) dp

I

fa oF (o) ttg(hap) dp

\

4, fa plutg(up)]2 dp
on making use of Problem 6.32. :

b .
f pF(p) uo(Anp) dp

Thus ‘ 4, = 1 @
‘ f .p[ug(Mnp)2 dp ‘

Although these coefficients have been obtained formally, we can kshow that when these coef-
ficients are used -in. the right side of (1) it does converge to. F{p) at points of continuity,
assuming that F(p) and F'(p) are piecewise continuous, while at pomts of discontinuity it eonverges

to $[F(p+0) + Flp—0)].

5

A very long hollow cylinder of inner radius ¢ and

outer radius b (whose cross section is indicated in.
Fig. 6-9) is made of conducting material of dif-

fusivity «. If the inner and outer surfaces are kept

at temperature zero while the initial temperature

is a given function f(p), where p is the distance -
from the axis, find the temperature at any pomt

at any later time ¢.

Since symmetry shows that there is no ¢- or z- -depen-
dence, the boundary value problem which we must solve for
u = u(p, 1) is

ou - 2u . 1au)
rr K<'5p_2,+ ;3—p> . (1) ’ .
u(a, 1) = 0, u(d,0) = 0, u(p,0) = f(o), Julp, ) <M (2 Fig. 6-9.

By separétion of variables'we havé as in Problem 6.28 : o
| | wp ) = eV efagJoO) + 0 Yo @
From u(a,t) =0 and u(b,t) =0 we find ‘ ‘
ady(\a) +5,Yo(a) = 0,  aJy(b) + b Yo (\b) = 0 O
These equations lead to the equation : : k ;
' ¥o(ha) Jy(hb) — Jo(ha) Yo () = -0 o S ()
for detferm;'ning A. - The equation (5) has 1nﬁn1tely many- positive roots A Ns; ... . i

From the first equation in (}) we find ‘ T

b . aidy(ha)
T Yo(na)
so that (8) can be written ‘ o ; : R
alp,t) = ANV (a) Ty () — Jo0ha) YoOp)] S ®
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6.35.

Using the fact that for A = \,, (6) is a solution, together with the principle of superposition,
we obtain the solution

wort) = B ApeT M tg(me) @)

where Ulmp) = Yo(hm®) Jo(mp) — Jo () Yo (Amp) %)

From the condition u(p,0) = f(p) we now obtain from (7)

fle) = m2:1 Apmg(Mnp) (9)
b
f pf(p) ug(\mp) dp
Then A, ¢ = (10)
f pluo(Anp)]2 dp

Substitution of these coefficients into (7) gives the required solution.

A simple pendulum initially has a length of
lo and makes an angle 6, with the vertical. It
is then released from this position. If the
length [ of the pendulum increases with time ¢
according to I =1Ilo+ ¢ where ¢ is a constant,
find the position of the pendulum at any time
assuming the oscillations to be small. mg sin o /\

Let m be the mass of the bob and # the angle
which the pendulum makes with the vertical at any
time . The weight mg can be resolved into two com-
ponents, one tangential to the path and given by
mg sin ¢ and the other perpendicular to it and given
by mg cos ¢, as shown in Fig. 6-10. From mechanics

mg cos 8

we know that Fig. 6-10
Torque about 0 = dit (Angular momentum about 0)
. d .
or (—mg sing)l = —&—t(mlzo) (1)

where § = dg/dt. This equation can be written as
15+ 216 + gsineg = 0

or since ! =1l ¢,
(lg+et)o + 26 + g8 = 0

Letting « = [+ ¢t in this equation it becomes

d2e de g _

Multiplying by « and comparing with equations (26) and (27?), page 101, we find that the solution is

1
- \/m [AJ1<E—\€/—E\/ ly+ et> + BY1<2——\€/EV ly+ et)] ) €3]

Since ¢ = 6, at ¢t =0 we have

8y = 7%,}4.11(

) o)
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To satisfy 6 =0 at t=0 we must first obtain ¢ = ds/dt. We find

8l o) i)
I + t[AJ1<2\/_‘/l°_> + BY‘<2\/_‘/ZT>]

Now since § =0 for t =0 we find

0 = 213 5 [AJ1< m> Yl<2‘/j—l">]
o FLan() < ()]

or using (4) _ Jor
-~ ’ ZV gl0> ’ <2 yl0> 600
AJ + BY = — 5

1( € 1 € 2Vg . )

Solving for A and B from (4) and (5) we find

Vi Y1 — (/2V9)Y,

A = 7 7 00
J1Yy = Yy Jy
, (6)
B = (/2Vg)J; — Vi J 0
LY, - Yy

where the argument 2V/gly/e in Jy, J{, Y;, Y{ has been omitted.

Now from Problem 6.58 with n =1 we know that

K@ Y@ - Y@@ = =

B 2o -

so that
9ly
Thus (6) becomes
_ W\/Eloﬂo ’ 2\/gl0 77’\/7;00 2Vyl0
A = 7Y | ——) — Y,
€ € 2 €
(”)
B = e % ; <2V!ﬂo> Vg L8, Jr<2\/9—lo>
= \W—/ = 1
2 € € €

Now from formula 3, page 99, with » =1 and the corresponding formula involving ¥, for n =1,

we have from (7)
TV lo 8o 2 V ylo
4 = - 3 Y,
€

(8)

77'\/%00 2\/ glo
2 Iz €

Using these in (3) we thus find

o S () - () ()]
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Supplementary Problems

BESSEL FUNCTIONS OF THE FIRST KIND

3 5 7
X x X
+____

~9oa T 2475~ 22476%8 4+ +++ and verify that the interval of conver-

636. (¢) Show that J;(x) = %
gence is —o <z < *,

() Show that Jo(x) = —Jy().
(&) Show that = [oy ()] = wy(a).

6.37. Evaluate (a) Js(®) and (b) J_j,2(x) in terms of sines and cosines.

6.38. Find J;(x) in terms of Jy(x) and Jy (x).

639. Provethat (a) J'(@) = —[Ju_a(®) — 2Jy(@) + Jpy2(®)]

1
4
) J@ = glams@ = 3ums (@) + i1 (@) — Juro(a)]

and generalize these results.

1
6.40. Evaluate (a) fx3J2(ac) de, (b) fo 23Jy(x) dz,  (¢) fx2J0(x) dx.

I (x) dx

641. Evaluate (a) le(%)dx, (b) f

z2
642. Evaluate f Jo(x) sin x da.

643. Verify directly the result J.(2)J_.(2) — J. ,(2) Jo(®) = 2—5%@5
ki

ro|co

for {(a) n=%— and (b) n=

GENERATING FUNCTION AND MISCELLANEOUS RESULTS

644. Use the generating function to prove that J,(z) = A[Jp—1(®) + Jp11(x)] for the case where x is an
integer.

6.45. Use the generating function to work Problem 6.39 for the case where n is an integer.

6.46. Show that (a) 1 = Jo(x) + 2J,5(x) + 2J,(x) + « -~
(b) Jylx) — Ja() + Jg(x) — J7(x) + -+ = Zsinw

647. Show that %Jl(x) = Jylw) — 274() + 3Jg(x) — - -

92 w/2
6.48. Show that Jy(x) = —;f cos (x sin #) de.
0

/2

649. Show that (a) Ji(x cos6)ds = —1——_—:—08—05
0

w2 ;
®) Jo(x sin 6) cos 8 sino do = 1(2) )
0

x
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x 0
6.50. Show that f Jo(t) dt = 2 kE() J2k+ l(x).
0 =
) —axJ,(bx)dx = _
6.51. Show that (a) J; e o(bx)dx = \/m

®© Va2+ b2 —a)n
(b) f e—9zJ, (bx) dx Wart 88— ot o bza)
Jo Vv

6.52. Show that J‘ Jo(x)de = 1.
0

I

, n>—1

653. Prove that |J,(x)| =1 for all integers n. Is the result true if » is not an integer?

BESSEL FUNCTIONS OF THE SECOND KIND

654. Show that (a) Y,. (x) = %Yn(x) ~Yuoi(@), (B) Y.@) = %[Yn—l(x) =Y, 1 (@)].

655. Explain why the recurrence formulas for J,(x) on page 99 hold if J,(x) is replaced by Y,(x).
656. Prove that Y (x) = —Y,().

657. Evaluate (a) Yijs(a), (b)) Y_10(®), (0) Yy(a), (d) Yo_gp(a)

658. Provethat J,(2)Y.(2) — Ji(x) Yo(x) = ;2;

Y
09, Bualate @ [onwd, O f @ ©f 40w

3
6.60. Prove the result (11), page 98.

FUNCTIONS RELATED TO BESSEL FUNCTIONS

26
CARNIE ARV

6.61. Show that Iyx) = 1+ 2242 224762

2
662. Showthat (a) Ip(@) = MI_1(®) + Liy(@)}, (0) =lyx) = al,_q(2) — nl(x).

z 1 fd ’
6.63. Show that eZ(Ht) = 3 IL(z)t» is the generating function for I,(x).

/2
6.64. Show that I4(x) = %f cosh (x sin ¢) de.
0

6.65. Show that (a) sinhax = 2[I(x) + Ig{x) + -]
(b) cosha = Iy(x) + 2[Ip(x) + Iy(x) + - - *].

6.66. Show that (a) Iy,(x) = 1,r—290<coshx—il;h—ﬁ>, (b) T_g(x) = ‘{ %(sinhx_coihx)
d T

6.67. (a) Show that K,,,(x) = K,_(x) +— K,(x). (b) Explain why the functions K,(x) satisfy the
same recurrence formulas as I,(x). .
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6.68.

6.69.

6.70.

Give asymptotic formulas for (o) H (x), (b) H ().

_ow (/2% 3n + 2k
Show that (a) Ber,(x) = 2 Tkt cos< 1 >rr.
. I (x/2)%k+n . [3n+ 2k
(b) Bei,(x) = BT I ETD sm< n >n-.
Show that ] /2 (/25
Ker(®) = —~{In@2)+y}Ber(@) + TBeiw) +1 - Zq+p + LB +3+3+p -

EQUATIONS TRANSFORMABLE INTO BESSEL’S EQUATION

6.71.

6.72.

6.73.

6.74.

6.75.

6.76.

6.77.

6.78.

6.79.

Prove that (27), page 101, is a solution of (26).

Solve day” + 4y’ +y = 0.

Solve (a) a«y”’" + 2y +2y =0, (b) oy + a2y = 0.
Solve y"” + €2y = 0. [Hint. Let e = .

(¢) Show by direct substitution that y = J3(2Vx) is a solution of xy” +y 4+y=0 and (b) write
the general solution.

(@) Show by direct substitution that y = Vi J;/3(3#3/?) is a solution of y''+zy =0 and (b) write
the general solution.

(a) Show that Bessel's equation 22y’' + 2y’ + (22— n2)y = 0 can be transformed into

au <1_n2——21/4>u ~ 0
X .

da?

where y = u/Vx. (b) Discuss the case where n = *1/2.

(b) Discuss the case where x is large and explain the connection with the asymptotic formulas
on page 101.

Solve «2y’"" — xy’ + 22y = 0.

Show that the equation (26) on page 101 has the solution (28) if « = 0. [Hint. Let y=2? and
choose p appropriately, or make the transformation x = et i

ORTHOGONAL SERIES OF BESSEL FUNCTIONS

6.80.

6.81.

6.82.

6.83.

6.84.

Is the result of Problem 6.27, page 113, valid for —1 = x = 1? Justify your answer.
2
Show that f xJﬁ(kx) de = %[Jﬁ(m) -+ Jﬁﬂ()\x)] - %Jn(m) Jor1(Ax) + ¢

Prove the results (34) and (35), page 102.

[ — o2 = Ty
Show that = T —-1<x<1
8 p=1 }\::,J 1 ()\p) x
where A, are the positive roots of Jy(A) = 0.
2 Ji(A)
Show that e = 23 22 ~“1<a<1
2 M2 (ng) 7S

where A, are the positive roots of J;(A) =0,
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6.85.

6.86.

6.87.

6.88.

6.89.

6.90.

BESSEL FUNCTIONS AND APPLICATIONS [CHAP. 6

© (8 — A2) J;(\,%)
Show that ¥ = g 2 e g<e<t

p=1 )\ZJ{ )

where )\, are the positive roots of J;(\) = 0.

2 202 —4) Jo(\%)
Show that 2 = 3 -23—0——1)— —1<z<1
p=1 )\le ()\Il)

where A, are the positive roots of Jy(x) = 0.

Jo(ax) 2 AJo(n)
_— = ——e— -1<z<1
Show that YA pgl 0 —ad) 7,00

where ), are the positive roots of. Jo(A) = 0.
If flx) = 2 o(0px) where Jo(r,) =0, p=1,2,3,..., show that
) ! < 4242
jo‘ z[f(x)2de = pgl ALdT(Ap)
Compare with Parseval’s identity for Fourier series.

Use Problems 6.84 and 6.88 to show that

Ms

S|
I

N

1

b4

where )\, are the positive roots of Jo(A) = 0.

Derive the results (@) (35) on page 102, (b) (36) on page 102, and (c¢) (87) on page 102.

SOLUTIONS USING BESSEL FUNCTIONS

691

6.92.

6.93.

6.94.

The temperature of a long solid eircular cylinder of unit radius is initially zero. At ¢=0 the
surface is given a constant temperature u, which is then maintained. Show that the temperature

of the cylinder is given by . 7
u(p,t) = wup<sl — 23 __M e— K\t
n=1 }‘nJl (>\n)

where \,, »=1,2,3,..., are the positive roots of J,(\) = 0 and « is the diffusivity.

Show that if F(p) = uy(1 —p?), then the temperature of the plate of Problem 6.28 is given by

o) = ey 3 2020

K)\it
=1 A2JZ(\,)

A cylinder 0<p<a, 0<z<! has the end 2z =0 at temperature f(p) while the other surfaces
are kept at temperature zero. Show that the steady-state temperature at any point is given by

Jo(Anp) sinh A (I —
J2(\,0) sinh Ayl

2’ 0
wp2) = 53
P

where Jo(\,2) =0, n=1,2,8,....

i fo " of(6) Jo (hup)

A circular membrane of unit radius lies in the xy-plane with its center at the origin. Its edge
p =1 is fixed in the xy-plane and it is set into vibration by dlsplacmg it an amount f(p) and then
releasing it. Show that the displacement is given by

% Jo(Anp) cos At

) =
=) =T 200

where A, are the roots of Jy(A) = 0.

1
J; of(p) Jg (Anp) dp
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6.95.

6.97.

6.98.

6.99.

6.100.

6.101.

6.102.

6.103.

(a) Solve the boundary value problem

Pu _ Puw  louw 1 Pu
a2 82 pdp  p? 92

where 0 < p <1, 0<¢<2r t>0, uis bounded, and
u(1, ¢, ) =0, u(p, $,0) = p cos3g, ut(P: #0) = 0

(b) Give a physical interpretation to the solution.

Solve and interpret the boundary value problem
af ) _ oy
dx\ " dx T a2

given that y(x, 0) = f(x), yx,0) =0, y(1,¢) = 0 and y(z,¢) is bounded for 0=z=1, t>0.

(a) Work Problem 6.93 if the end 2z = 0 is kept at temperature f(p, ¢). (b) Determine the temper-
ature in the special case where f{p, ¢) = p? cos ¢.

(@) Work Problem 6.93 if there is radiation obeying Newton’s law of cooling at the end z = 0.

A chain of constant mass per unit length is suspended vertically 0o
from one end O as indicated in Fig. 6-11. If the chain is displaced y
slightly at time ¢ = 0 so that its shape is given by f(x), 0< « < L,
and then released, show that the displacement of any point x at
time ¢ is given by

yle,ty = 3 AnJ0<2>\n1 , L- x> cos A, t
n=1 g

y(=z, 1)
where A, are the roots of Jo(2aVL/g) =0 and L
9 1
A = ——-f vdy(A,v) F(IL — 1g0v2) do Fig. 6-11
n 2o Jo o(A0) (L — {gvY) ig

Determine the frequencies of the normal modes for the vibrating chain of Problem 6.99 and indicate
whether you would expect music or noise from the vibrations.

A solid circular cylinder 0 <p<a, 0<z<L has its bases kept at temperature zero and the

convex surface at constant temperature u,. Show that the steady-state temperature at any point
of the cylinder is

Iy[(2n — 1)mp/L] sin [(2n — 1)zz/L]
(2n — D20 — V)ra/L)

where I is the modified Bessel function of order zero.

duy =
u(P} z) = - E
. . T p=1

Suppose that the chain in Problem 6.99, which is initially at rest, is given an initial velocity dis-
tribution defined by h(x), 0 < x < L. Show that the displacement of any point « of the string at

any time t is given by .
o0 L —
Yy, ty = 3 BnJ0<2>\n1' %) sin At
n=1 g

where ), are the roots of Jo(2A\VL/g) =0 and

2 !
= e J I — 2
B, T2 00 J; vJp (Anv) B(L — }gv?) dv

Work Problem 6.99 if the chain is given both an initial shape f(x) and initial velocity distribution h(x).
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6.104.

6.105.

BESSEL FUNCTIONS AND APPLICATIONS [CHAP. 6

The surface p =1 of an infinite cylinder is kept at temperature f(z). Show that the steady-state
temperature everywhere in the cylinder is given by

1 » f(v) cos A(v — 2)Io(np)
ulp,2) = ;J;ZO J; . o) dn dv

A string stretched between x =0 and x =L has a variable density given by ¢ = oy + ex where
oy and ¢ are constants. The string is given an initial shape f(x) and then released.

(a) Show that if the tension r is constant the boundary value problem is given by

2y

ey 2y
otz

T3a2 (o + ex)

O0<a<L, t>0

y(0,8) = 0, (1) 0, (0 = f@), w0 =0, |yt <M

(b) Show that the frequencies of the normal modes of vibration are given by f, = «,/2r where
the w, (n =1,2,3,...) are the positive roots of the equation.

Jyslaw) I _y,3(B0) = Jyi/3(Bw) I _1/3(aw)

. . 200 [og 2(0g + L) og + eL
in which a = - - B = 3e -

MISCELLANEOUS PROBLEMS

6.106.

6.107.

6.108.

6.109.

6.110.

6.111.

6.112.

A particle moves along the positive xz-axis with a force of repulsion per unit mass equal to a
constant «? times the instantaneous distance from the origin. If the mass m increases with time
according to m = m(+.et, where m; and ¢ are constants, and if initially the particle is located at
the origin and traveling with speed vo,.show that the position « at any time ¢t > 0 is given by

Ma?, m, m,
. = oo{Ko(u>Io<u+at> _ I(ﬂ>x(1+t>}
€ € € € €

Show that if m > n

T ) Ty (0 , )
f <—x;& da = —1;2—% {Jm (>\x) Jn()‘x) - Jm (}\x) Jn()\x)} + ¢

JZ (\x)
Deduce the integral f mx dx by using a limiting procedure in the result of Problem 6.107.
Show th ® Jy(x) 1
ow that J; si-1de = T =1T(n) n>0

Explain how the Sturm-Liouville theory of Chapter 3 can be used to arrive at various results
involving Bessel functions obtained in this chapter.

A cylinder of unit height and radius (see Fig. 6-8, page 115) has its top surface kept at tem-
perature u, and the other surfaces at temperature zero. Show that the steady-state temperature at
any point is given by

& (sinh A .2)Jy(App)

e P W S S WA W)

where A, are the positive roots of J,(A) = 0.

Work Problem 6.29 if the base z =1 is insulated.
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6113.

6.114.

6.115.
6.116.

6.117.

6.118.

6.119.

6.120.

Work Problem 6.29 if the eonvex surface is insulated.

Work Problem 6.29 if the bases 2z = O and z =1 are kept at constant temperatures ul and Ug
respectively. [Hint. Let u(p,2,t) = v(p,2,t) + w(po,2) and choose w(p, z) appropnately, notmg that
physically it represents the steady-state solution.]

Show how Problem 6.29 can be sblved if the radius of the cylinder is @ while the height is h.
Work Problem 6.29 if the initial temperature is f(p, ¢, 2).

A membrane has the form of the region 'boundéd by
two concentric circles of radii ¢ and b as shown in
Fig. 6-12.

(a) - Show that the frequencies of the varmus modes
of v1brat10n are given by

fmn = 2_77_‘ P

where 7 is the tension per unit length, uis the mass
per unit area, and A,,, are roots of the equatlon

J,m (}\ma) Ym O\b) S Jm (}\b) Ym (}\a) =

(b) Pind the displacement at any time of any point ' Fig\ 6-12
of the membrane if the membrane is given an : )
initial shape and then released.

A metal conducting pipe of diffusivity 3 has inner radius «, outer radius'b and height k. A co-
ordinate system is chosen so that one -of the bases lies in the xy-plane and the axis of the pipe
is chosen to be the z-axis. If the initial temperature of .the pipe is f(p,2), a <p<b, 0<z<h,

-~ while the surface is kept at temperature zero, find the temperature at any point at any time.

Work Problem 6,118 if the initial temperature is f(p, ¢, 2).

Work Problem 6.118 if (a) the bases are insulated,' (b) the convex surfaces are insulated, (¢) the
entire surface is insulated.

-



Chapter 7

Legendre Functions and Applications

LEGENDRE’S DIFFERENTIAL EQUATION

Legendre functions arise as solutions of the differential equation
(1—a%y” —2xy’ +n(n+1l)y = 0 ()

which is called Legendre’s differential equation. The general solution of (Z) in the case
where #=0,1,2,8,... is given by

Y = c1Pn(x) + c2Qn(x) | 2

where P,(x) are polynomials called Legendre polynomials and Q.(x) are called Legendre
functions of the second kind. The Qu(x) are unbounded at x = =1.

The differential equation (1) is obtained, for example, from Laplace’s equation vz =0
expressed in spherical coordinates (r,6,4), when it is assumed that « is independent of ¢.
See Problem 7.1.

LEGENDRE POLYNOMIALS
The Legendre polynomials are defined by

_ @en—-1)@n-8)---1] nn-1) ., «we-—1)n-—-2)®~-3) .,
P.(x) = T {x =1 T 2 4@n-1)2n—3) * }(3)

Note that P.(x) is a polynomial of degree n. The first few Legendre polynomials are as
follows:

Po(z) = 1 Py(x) = 5(52°37)
Pi@) = x Pi(x) = (3523022 +3)
Py(x) = %(3%2—1) Py(x) = %(63x5~70x3+15x)

In all cases P,(1) =1, Pn.(—1)=(-1)~

The Legendre polynomials can also be expressed by Rodrigue’s formula:

1 adr

Pu(x) = oy g @—1)" (4)

130
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GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS

The function

1 -]
—— = P. n 5
1—2xt + 2 "2=° ()t @

is called the generating function for Legendre polynomials and is useful in obtaining their
properties.

RECURRENCE FORMULAS

2
1. Pn+1(x) = ;‘jllen(x) — ﬁi—lp"‘l(x)
2. Prii(x) — Pioi(x) = (2n+2)Pn(z)

LEGENDRE FUNCTIONS OF THE SECOND KIND

If |2] <1, the Legendre functions of the second kind are given by the following, ac-
cording as n is even or odd respectively:

—1)*220[(n/2) 112 -1 2
Qe = AT, e
. + (n—l)(n—3%(‘:'0+2)(n+4) 25— . } (6)
| (=1)@mrnegnifm — 1)/2] 1) nn+1) ,
Qu(x) = 1-35--+n {1_ 21 7
MU RSN UES, Jop } @)

For n > 1, the leading coefficients are taken so that the recurrence formulas for P.(x) above
apply also Qa(x).

.ORTHOGONALITY OF LEGENDRE POLYNOMIALS
The following results are fundamental:
1
f Pu@Pa(@)dz = 0  if m=n 8)
-1
’ 1

j [Pa(2)?dx = Eh%—“i 9

The first shows that any two different Legendre polynomials are orthogonal in the interval
-1 <a<l.

SERIES OF LEGENDRE POLYNOMIALS

If f(x) and f’(x) are piecewise continuous then at every point of continuity of f(x) in
the interval —1 <z <1 there will exist a Legendre series expansion having the form

f(@) = AoPo(x) + APi(x) + APs(x) + --- = gﬂAkPk(x) (10)
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where 4 = ZF lf_lf(x)Pk(x) dz | (11)

At any point of discontinuity the series on the right in (10) converges to 4[f(x + 0) + f(x — 0)],
which can be used to replace the left side of (10).

ASSOCIATED LEGENDRE FUNCTIONS
The differential equation

2
-2ty — 200 + [n(n+1) — 7o)y = 0 (12)

is called Legendre’s associated differential equation. If m = 0 this reduces to Legendre’s
equation (). Solutions to (12) are called associated Legendre functions. We consider the
case where m and » are non-negative integers. In this case the general solution of (12) is
given by )
¥ = oaPr(x) + c:Qn(x) 23)

where P;'(z) and Q'(x) are called associated Legendre functions of the first and second kinds
respectively. They are given in terms of the ordinary Legendre functions by

Pi@ = (1—aym 2 Pu(o) | @
Q@) = (- L Qe (15)

Note that if m >=n, P,(x) =0. The functions Q' (x) are unbounded for z = = 1.

The differential equation (12) is obtained from Laplace’s equation V2 =0 expressed
in spherical coordinates (7, 9, $). See Problem 7.21.

ORTHOGONALITY OF ASSOCIATED LEGENDRE FUNCTIONS

As in the case ot‘ Legendre polynomials, the Legendre functions P’ () are orthogonal
in ~-1<2<1,

ﬁ 11 PM2)Pl@)dy = 0  nrk (16)
We also have
- 2 !
LI[P"(x)]zdx = 2n+1((71:j77§))! 17

Using these, we can expand a function f(x) in a series of the form

fl@) = 3 AP (18)

SOLUTIONS TO BOUNDARY VALUE PROBLEMS
USING LEGENDRE FUNCTIONS

Various boundary value problems can be solved by use of Legendre functlons. See
Problems 7.18-7.20 and 7.28-7.80.
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Solved Problems

LEGENDRE’S DIFFERENTIAL EQUATION

7.1. By letting % = Ro, where R depends only on r and ® depends only on 6§, in Laplace’s '
equation V32 = 0 expressed in spherical coordinates, show that R and @ satisfy the

equations
d*R dR d d®> .
2R = ——{8inf 5+ — A%(sinf)e = 0
Wdrz+27"d + AR 0 75\ Sin 0 42 ( )
Laplace’s equation in spherical coordinates is given by
19/ ,6u 19 du 1 %
72 £<7-2_5;> + 72 sin 6 80<sm0 ao> + r2 sin26 942 0 @
See (4), page 5. If u is independent of ¢, then the equation can be written
19/ ,0u 1 8f . du _
r2 5(7 317> t Fene ao(smo 80> =0 . @)
Letting « = RO in this équation, where it is supposed that R depends only on r while & depends
only on ¢, we have
e d dR R d de
2_ = . pumg
r2 dr<r dr> + 72 sin ¢ d0<sma d0> 0
Multiplying by 72, dividing by Be and rearranging, we find
1 d dR 1 d do
= 222 —
R dr<r dr> T osing de <sm 8 d0>

Since one side depends only on r while the other depends only on 4, it follows that each side must
be a constant, say —A2. Then we have

1d dR
B dr(;,-Z 7i7> = —)2 . 3
1 d de _
and sns d0<sm 6 ?13> = A2 4)
which can be rewritten respectively as
d2R dR
Tz'ﬁ + 2r— ar + NM2R = 0 5)
d de .
and P <sm 0‘d—0> — A2(sing)® = 0 (6)

as required.

7.2.  Show that the solution for the R-equation in Problem 7.1 can be written as
R = Arm + r—,ﬁ—l
where A= —n(n+1).

The R-equation of Problem 7.1 is

dR dR
d,rz + 21’%‘ + )\2R = 0
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7.3.

74.
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This is an Euler or Cauchy equation and can be solved by letting R = »? and determining p.
Alternatively, comparison with (26) and (28), page 101, for the case where * =r, y =R, k= 4,
a =0, 8 =\ shows that the general solution is

R = T—I/Z{ATVIM—)\’_{_ B,,.—V1/4—>\2]
or R = Ar—1/2+ \/1/4‘—>\2 + Br—1/2— Vi/a—»? (1)

This solution can be simplified if we write

1 ’1 2
—3 -+ _ 1 A = n @
__l _ l_ 2 = o
2 ‘}4 A " 1 (€))

In such case (7) becomes B
R = Am + prEs (4)

so that

Multiplying equations (2) and (3) together leads to
A= —nm+1) %)

Show that the @-equation (6) of Problem 7.1 becomes Legendre’s differential equation
(1), page 130, on making the transformation ¢ = cosé.

Using the value A2 = —n(n+ 1) from (5) of Problem 7.2 in the .@-equation (6) of Problem 7.1,
it becomes < o

sin ¢ 71‘0'> + n(n+1)sing)® = 0 1)

de

We now let ¢ = cos# in this equation. Then

do _ dedt _ __ do
ds T drde TSmO
do do do
ng—=— = —gin2gr = 2 1) 22
Thus sin ¢ a6 sin2 ¢ dat (£2—-1) at
since sin2¢ = 1 —cos2¢ = 1 — 2. It follows that
df. ~d8\ _ d [ o 4,48
d—0<sm0 da) = | ®-D dz
d de |ds d de | . :
= Sl | _ o — 229
Using this in (Z) and canceling the factor sin 8, we obtain
d de
d_g[(l—gz)ﬁg_] + nn+1)0 = 0 %)

Replacing © by y and ¢ by », and carrying out the indicated differentiation, yields the required
Legendre equation

I—a?y” — 22y’ + nnt+ly = 0 )

Use the method of Frobenius to find series solutions of Legendré’s differential equa-
tion (1-a2)y” — 2xy’ + n(n+1)y = o.

Assuming a solution of the form ¥ = 2 ¢xk+8  where the summation index %k goes from
—= to » and ¢, =0 for k <0, we have
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7.5.

nn+1y = 3 nn+ lexkts
22y’ = 3—2(k+ B)eakth
1—a2y” = Z(k+pk+p—eakts=2 — T (k+ )k + g — 1)c ak+5

= Z(k+B+2)(k+ B+ Desoxkt8 — 3 (k+ p)(k+ 8 — 1)eyak+B
Then by addition,
SE+B+2Kk+B+Dogry — (k+B)k+B—1e, — 2(k+ B)e;, + n(n+ )¢ Jak+8 = 0
and since the coefficient of x**8 must be zero, we find »
(k+p+2)k+B8+1eip + [n(n+1)— (k+8)Ek+8+1]e, = 0 @)
Letting k= —2 we obtain, since c¢_, =0, the indicial equation B(8—1)c, =0 or, assuming

0, =0 orl.

Case 1: B8 =0,
In this case (1) becomes

(k+2)(k+ Dogyg + [nn+1) — k(k+1)]e, = 0 (2)

Putting k¥ = —1,0,1,2,38,... in succession, we find that ¢, is arbitrary while
_ wnt1) _1:2—nmr+1) _[2-8 —a(n+1)]
Co = —T—CO’ » 3 - *3!——-017 ¢y = 41 Ca,
and so we obtain
y = 00[1 _ 11(11,2-3-1)9(;2 + n(n—2)(n4—j— 1)(n + 3) ot — :l
bafs - OO, | aoNesYbNetd o]

Since we have a solution with two arbitrary constants, we need not consider Case 2: g =1.

For an even integer n = 0, the first of the above series terminates and gives a polynomial
solution. For an odd integer = > 0, the second series terminates and gives a polynomial solution.
Thus for any integer n = 0 the equation has polynomial solutions. If 2 =0,1,2,3, for example,
we obtain from (3) the polynomials

— Byl
Cos ¢, co(1 — 322), ¢y (-332—590)

which are, apart from a multiplicative constant, the Legendre polynomials P, (x). This multipli-
cative constant is chosen so that P,(1) = 1.

The series solution in () which does not terminate can be shown to diverge for « = 1. This
second solution, which is unbounded for 2« = *1 or equivalently for ¢ = 0,7, is called a Legendre
function of the second kind and is denoted by Q.(x). It follows that the general solution of
Legendre’s differential equation can be written as

Y = o Pp(a) + 63Q,(w)

In case n is not an integer both series solutions are unbounded for x = *1,

Show that a solution of Laplace’s equation V2 =0 which is independent of ¢ is
given by
B
u = (A + 24 [APo(®) + Bou(s)

where ¢ = cosé.
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This result follows at once from Problems 7.1 through 7.4 since # = R® where

R = Al"' + "+1

and the general solution of the @-equation (Legendre’s equation) is written in terms of two linearly
independent solutions P, (¢) and Q,(¢) as

0 = A2Pn(£) + B2Qn(£)

The functions P,(¢) and @, (¢t) are the Legendre functions of the first and second kinds respectively.

LEGENDRE POLYNOMIALS
7.6. Derive formula (3), page 130, for the Legendre polynomials.

From (2) of Problem 7.4 we see that if k' =n then ¢,;, =0 and thus ¢,,, =0, C,.g=

0,.... Thenletting ¥ = n—2,n—4, ... we find from (2) of Problem 7.4,
' _ _nn—1) __ (n—2)(n—3) _ Mn—Dn—=2)n—3)
‘-2 T Togp—pnw Cn—s T 12n—3) =2 T 2 i@n—1)2n—23)

This leads to the polynomial solutions

_ n_ nr—1) n— n(n—1)(n—2)(n — 3) .
L ‘“'"[x 2en—n* 0t 3% 4(2n—1)(2n—3) :]

The Legendre polynomials P, (x) are defined by choosing
2n—1)2n—38)---3

€n

n!
This choice is made in order that P,(1) = 1.
. N 1 dr
7.7. Derive Rodrigue’s formula P,(x) = Sl A (x2= 1)

By Problem 7.6 the Legendre polynomials are given by

_ @2n—1)@n—3)--3+1 n n{in—1) an— n{n — 1)(n — 2)(n — 3) an—4 — ...
Pn(e) = oy {” 2en -1 ¥ aa@n—Dan-9 ° }

Now integrating this » times from 0 to x, we obtain

<2n—1><2(;1;'3)---3-1{x2n L. = e }

which can be written
C2n—1)2n—38)---3-1

EnEn—D@n—9 2.1 @ " or sa@=1n
which proves that 1 gr
P, (x) pro i el ol Vi
GENERATING FUNCTION
1
78. Provethat — — _ Po(x)tr,
V1—2zt + 2 nz (@)
Using the binomial theorem
A+vP = 1 + pv + p(’g Doz o p(”“?,(” )
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we have
1 . - [1 = t(2x—¢)]~1/2
V1—2xt+ t2
1 13 1-3+5
- e — =%
= 1+2t(2x ty + 2.4t(2:1c t)2 + 2746 t(2x t)3 +
and the coefficient of £" in this expansion is
1+3+5---(2n—1) _1:3:5--2n—8) (n—1) )
516 2n O T g @y 11 29"
1:3:5---2n—=5 (m—2)n—8) , . ,
t 9Ti62n—4 21 (22)
which can be written as
1:3:5---2n—1) n(n — )x 2_*_n(n—l)('n 2)(n — 3) .
n! T e —1) 2+4@n—1)(2n—3) ~

i.e. P,(x). The required result thus follows.

RECURRENCE FORMULAS FOR LEGENDRE POLYNOMIALS

2n +1

79. Provethat Prii1(x) = 1

2Pn(x) — P, (x).

n+1

From the generating function of Problem 7.8 we have

1 £
Vieezite = 2, @t | o
Differentiating with respect to ¢, "
et  _ -1
A= zetFapn = 2 "Pa@tr
Multiplying by 1 — 2xt + 2,
x—t © .
et e = ngo (1 — 2zt + 2P, (x)tn—1 2)
Now the left side of (2) can be written in terms of (1) and we have
20 @ —tP,(x)tr = I (1-2ut+ )P, (x)tr—1
n= n=0
ie.
S aP,(@)tr — I Pa)tntl = 3 P, (@)tr~1 — I 2ngP,(x)tr + = P, (x)tntl
n=0 n=0 n=0 n=0 n=0

Equating the coefficients of ¢* on each side, we find
zP,(x}) — Pp_y(@) = (m+ 1P, . (x) — 2nxP,(x) + (n—1)P,_,(x)

which yields the required resuilt.

7.10. Giventhat Po(x) =1, Pi(x) = «, find (a) P:(x) and (b) Ps(x).

Using the recurrence formula of Problem 7.9, we have on letting = =1,

3 1 3 1 1
Py(x) = HaPy(x) — 3P = 2% - 3 = 3 (842 —1)
Similarly letting n = 2,
5 2 2
Pyx) = 3 xPy(x) — §P1 (x) = gx (&v_2_1> ‘—;:t = %(5003 — 3x)
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LEGENDRE FUNCTIONS OF THE SECOND KIND

7.11.

7.12.

Obtain the results (6) and (7), page 131, for the Legendre functions of the second kind
in the case where n is a non-negative integer.
The Legendre functions of the second kind are the series solutions of Legendre’s equation which

do not terminate. From (3) of Problem 7.4 we see that if n is even the series which does not termi-
nate is

. (n—lg(!n+2_)x3 N (n——l)(n—3;('n+2)(n+4) 5

while if n is odd the series which does not terminate is

1 —

n(n; 1), 4 = 2)(n4J'r Hn+3) , _

These series solutions, apart from multiplicative constants, provide definitions for Legendre func-
tions of the second kind and are given by (6) and (7) on page 131. The multiplicative constants
are chosen so that the Legendre functions of the second kind will satisfy the same recurrence for-
mulas (page 131) as the Legendre polynomials.

Obtain the Legendre functions of the second kind (a) Qo(z), (b) Qi(x), and (¢) Q).

(a) From (6), page 131, we have if n =0,

2 1-32+4 1¢3¢5+2+4+6
Qo) = =« + &+ 51 x5 + a1 7 +
x3 x5 x7 1 14+«

where we have used the expansion In(1+u) = u— u2/2 +u3/3 —ut/d+ --- .

(b) From (?), page 131, we have if = =1,

0@ = — {1 _ (12)(!2)902 N (1)(—1)!(2)(4)964 _ (1)(—1)(—63;)(2)(4')(6) 25 + }
_ 28 x5 _ 1+
= x{?c-f-—:—;-"f-?—i-"'}—l = Eln<1—_—i)—1
(c) The recurrence formulas for @, (x) are identical with those of P,(x). Then from Problem 7.9,
2
Qui1(2) 1o, — 2 Q@)

Putting » =1, we have on using parts (a) and (b),

ORTHOGONALITY OF LEGENDRE POLYNOMIALS

7.13.

1
Prove that f Pu(x)Po(x)yde = 0 if m=*mn.
—1

Since P,,(x), P, (x) satisfy Legendre’s equation,
0
0

I

(1 —%?)P), — 2xP) + m(m+1)P,,

il

(1—a#)P, — 22P] + n(n+1)P,
Then multiplying the first equation by P,, the second equation by P,, and subtracting, we find
(1—a)[P,P,, — P, P/ — 22[P,P) — P,P;] = [an+1)~— mm+ nP,P,
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which can be written

11— a2 c‘li—x [P, Pl — PPl — 2¢[P,Py — PPl = [n(n+1) — m(m+1)]P,P,

or Q=[P Py~ PuPi} = [n(n+1) = mn+ PP,

Thus by integrating we have

1
[r(n +1) — m(m + 1)] f Po@ Po@)de = (1—22)[PPh—P,PY]| = 0
-1 . .
Then since m # =, .
{ Pu@P@a = o
—1
' 2
7.14. Prove that j_l [Pa(2)2dx = i
From the generating function
. 1 w
T T P, (x)tr
V1—2tx + t2 ngo

we have on squaring both sides,

1

—_—— — +
1 — 2tx + ¢2 mE=0 ngo Py {z) Py(x)tm*n

Then by integrating from —1 to 1 we have

1 . © 0 1
dx
—_— = P d m+tn .
f_l 1= 2tz + & o 2 {f_lp’"(”) n(®@) ”}t

Using the result of Problem 7.13 on the right side and performing the integration on the left side,

11 = néo {.[;11 [Pn(x)]z dx} t2n

or thn Gi—:) - §0 { f P, @) dx} f2n
- 21,

I P 2
o7 In (1 — 2tz + 1)

Equating coefficients of 2, it follows that

fl [P (o))2de = ——2—
-1 " - 2n + 1
SERIES OF LEGENDRE POLYNOMIALS
715. If f(x) = 3 AxPi(x), ~1 <2 <1, show that
k=0
1
A = 2H1 f_lpk(x)f(x) dx

Multiplying the given series by P,,(x) and integrating from —1 to 1, we have on using Prob-
lems 7.13 and 7.14,
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1
IRECICE

Then as required,
Ay,

1
7.16. Expand the function f(x) 2{

By Problem 7.15

0 -1<x<0

0 1 '
3 4, f_lpm(x) P, (%) dx
1 24,,
Ay f_l[l"m(av)]2 de = o

amtl _11 P.() f(z) da

0<x<1

11
32

k

[CHAP. 7

in a series of the form 2 Ar P (x).

0

1 : k 0 2k +1 (!
4 = EH A powa = E A peode + P
2 -1 2 —1 2 0
2k +1 (1
= 5 £ Py (x) dx
1 (!t 1 (! 1
Then A, = Zj(; Py(x)dxe = 2 1de = 2
3 1 1
A, = EJ:, Pi(x)dx = 5 Oxdx = 3
_ 5 (" _ 5 ('8a2—1
4, = 2£ Py(x)de = 2J, ) de = 0
7 ‘P g = 1 15x3—3xd _ 7
Ay = _2'J; s(x)dz = EJ; 2 r = 16
9! 9 ("'35xt — 3022+ 3 _
A, = 2£P4(x)dx = 2f0 = dz = 0
1 1 5 3
4, = llf Py(w)do = HJ’ 63z T0x3 + 152 de =
etec. Thus
1 3 11
@) = FPo@ + 3Pi() — 1=Pala) + 33 Ps(e) — -

The general term for the coefficients in this series can be obtained by using the recurrence for-
mula 2 on page 131 and the results of Problem 7.34. We find

1 1
4, = B @ = L PLa@ - P@)a = 1P ,0 = Py

For n even A, = 0, while for n odd we can use Problem 7.34(c).

7.17. Expand f(x) = «? in a series of the form Y, APy ().
k=0

Method 1.

We must find 4y, k=0,1,2,3,..., such that

#2 = AgPy(x) + A Py(x) + A2P2(x) + AgPy(x) + -

2

3x2 — 3 — .
Agl) + Ay@) + A, (L 5 1) + A3<——5” 3”) + e
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Since the left side is a polynomial of degree 2 we must have A3 =10, A, =0, A;=0, .... Thus

Ay
x2 = Ao —— -+ Alx + Azxz '

from which . A0—72 =0, A1 = 0, —2—A2 =1
o 1 2
Then ) 4 =3, A4 =0, 4, =3
\ | 1, .2
ie. : ) x2 = -3—P0(x) + ng(x)

Method 2.
Usmg the method of Problem 7.15 we see that if

a2 = 2 Ay Py ()
k=0
+1 (!
then A = f ; 22P; () dee
Puttirig k=0,1,2,..., we find as before 4, = 1, 4,=0,A,=%, 43=0,4,=0, ... so that
' 1. 8
%2 = ‘3‘Po(w) + §P2(90)

In general when we expand a polynomial .in a series of Legendre polynomlals, the series, which
terminates, can most easﬂy be found by using Method 1.

SOLUTIONS USING LEGEN DRE FUNCTIONS

- T18. Find the potential v (a) interior to and (b) exterior to a hollow sphere of unit

radius if half of its surface is charged to potentlal vo and the othér half to potential
Zero,

Choose the sphere in the position shown in Fig. 7-1.
Then v is independent of ¢ and we can use the results
of Problem 7.5. A solution is

¢ B N -
o(r,0) = <A1T + n+1>[A Py (e +32Qn(£)]

where ¢ = cos 6.  Since v must be bounded at 6.=0
and =, i.e. §= *1, we must choose B, = 0. Then

v(r,6) = (Arn+T—f},—l>Pn(s)' ; .

The boundary conditions are

C v 0<6<I je O<g<1 °
(1, 9)- { ’ . 2 :
0 if—2‘<0<7r ie. —1<g<0
and v is bounded. ' ’ : ' Fig.7-1

(a) Iﬁterior Potentia}, 0=r<1. :
Since v is bounded at r=20, bhooéé B =10 in (1). Then é solution is-

‘ AmP, () ‘ = AP, (cos 6)

By superposition, = ‘

w0 = 3 APalcoss) = 3 ApnPy()
& ; 2

.
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7.19. - A uniform hemispﬁeré (see Fig. 7-2) has-

LEGENDRE FUNCTIONS AND APPLICATIONS ‘ , [CITIAP.',7

‘When r=1, ; L ‘

‘ o(l,0) = 2 P ()

Then as in Problem 7.15, ; o

‘ 1 20 + 1 1
4, = __27&; 1f v(1,0P, () &g = < = >”0f6 P, () ds
-—1 B ‘
from which , BRI : ' o
1 ' 3 ‘ 1 _ _u
AO = —2-7)0’ Al = Z’UO’ AZ =0, A3 - _1—6"00’ ‘A4 =0, A5 - 32’0
' 3 ‘ 7 gt o '
Thus v(r,8) = -5 214 + ’I'PI(COS 0) - "§‘7'3P3(COS 6) + 1—6"1'5P5(cos 6) + e 2)
(b) Exterior Potential, 1 <#r < =, » ]
Since v is bounded as 7= =, choose 4 =0 in (). - Then a solution is
B : B ]
;mpn(ﬁ) = m—an\cos 6)
By superposition, .. & B,
: ’U(?", 6’)” = ngl) /,.n+]Pn($)
When » =1, I
o0 = 3 BuPy@®
Then B,=A, of part (a) and so
v(r,e) = 1 + P (cos 6) — 7 P (cos 6) —F’ f—l«i—P (cos 6) + ] 3
> 2,,. 1 8 1657 3 E

its convex surface kept at temperature wo
while its base is kept at temperature zero.
Find the steady-state temperature inside.

Thé boundéry value problem in this:case is

Vi = ¢
where
% = uy on the convex surface

% 0  on the base

The selution can be obtained from the results of
Problem 7.18. To see this we note that the present
problem is equivalent to the problem of solving . .
Laplace’s equation inside a sphere of which - : Fig.7-2 . - :
the top half surface is kept at temperature ug and the bottom half surface is kept at temperature
—ug. By symmetry, the plane of separation will then automatically be at temperature zero as
requlred in thls problem. :

T e

We can then obtain the required solution by first subtractmg 1;0/2 from the solution in Problem
7.18 and then replacing v¢/2 by u,.  The result is

u(r,b) = uy [2 rP (cos 0) - %7‘3P3 (cos 0) -I— %—é—r5P5 (cos @) + - ]

The problem can a;lso{ of courSe, be solved directly without use of the results in Problem 7.18.

¢+
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7.20. (a) Find the grav1tat10nal potential at
any point-on the axis of a thin uniform
ring of radius a. (b) Find the potential
of the ring in part (a) at any point in_
space. ' ‘ ;

l (a) Choose the ring to be in-the xy-plane so
that the axis is the z-axis as indicated in
Fig. 7-3. Then the potential at any point P
on the z-axis is seen to be the mass of the
ring divided by the distance Va2 + 22 from
any point @ on the ring to the point P.
Letting o denote the mass per unit length
of the ring it follows that the potential at
Pis ; ; ,
vp — 2rao (1)

\¢q,2+22

(b) In this case we must solve Lahlace’s equa-
tion - V2y = 0 where v reduces to vp for

Flg. 7-3

points P on the z-axis. Now. we know that because of the manner in which the rmg has been
Tocated that v is independent of ¢. We thus have as a solution to Laplace’s equation

B
v = <Alr+ >[AP(£)+Ban(5)]

where ¢ = cosg. Since.v must be bounded at 6 =0 and =, ie gz *1, we must choose
By, = 0. Then :

v = (Aw+%>Pn<s> | : @)

There are two cases to be considered, corresponding to the regions 0 =7 < @ and r > a.

Casel: : 0=r<a.

In this: case we must choose B =0 in (2) since otherwise the solution is unbounded at”
r=0. Then v=Ar"P, (t)." By superpos1t10n we are led to consider the solution

v = n§0 AnT"P n(&) ¢ 3 (3)

Now when 6 =0, ie. =1, /this must reduce to the pbtential on the z-axis, in. which case
"r=2. Then we must have ' o '
: ’ ’ 2mao

L TEE 7 R W

In order to obtain 4, we must expand the left side as a power series in. 2. We use fhz_e
binomial theorem to obtaln

2rao ' z2 —i/2
T =  27c 1+

Va2 + 22,

L 1/2\* | 1-8/2\*  1:3-5/2\° N
,, 2?’"[1 - 2<a,> T 2—4<a> T Zoaela) T ] R

Comparfson of (4) and (5)-leads to -

|

2ra g ] ’ " 27013

AO = 2”'0’, A1: kO, - A2‘:‘ "2_a’2“, A3 = O, A4 = (1,4’“2’4 5 Teine
Using these in (3) we then find k;' ’
— , 1/7\? ‘ 1+3/r\*; D o
vo= 2”‘,7 [PO(CPS 0) B -2-<;/> Py(cos 6) +‘§-_Z 2/ Palcose) — -- :{ ‘ (6)

where 0 = r < q.
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- Case2: r>a.

In this case we must choose A =0 in (2) since otherwise the solution becomes unbounded
as r > ©, Then v = BP,(¢)/rm*1 and by superposition we are led to consider the solution

0

v o= 2 P )

As in Case 1, this must reduce to the potential on the z-axis for ¢ =0 and r =z, ie.

2rao — . B,
Vata | now ®

Thus, to find B, we must expand the left side in inverse powers of z. Again we use the bino-
mial theorem to obtain :

2rao _ 277a0<1 a2\ ~1/2
= +__
Va2 + 22 z z*
2rac 1/a\? | 1:3/a\*  1-3:5/a\® ]
= 2727 — (& a4 — 4 9
z |:1 2<z> + 2'4<z> 2-4°6<z> + @
Comparison of (8) and (9) leads to
1 13
By = 2vas, By =0, B, = —2rae(ya?), By =0, By = Zras(5yat),
Using these in (?) we then find
_ 2mac 1/a\? 1-3/a\* .
v = p [Po(cos 8) — —2-<;> Py(cos9) + _2-4<'r> Py(cos g) ] (10)

where 7 > a.

ASSOCIATED LEGENDRE FUNCTIONS
7.21. Show how Legendre’s associated differential equation (12), page 132, is obtained from

Laplace’s equation Y2u = 0 expressed in spherical coordinates (r, 0, 4).

In this case we must modify the results obtained in Problem 7.1 by including the ¢-dependence.
Then letting « = Ro® in (1) of Problem 7.1 we obtain

8¢ df ,dR BRe df . de Re d% _
= dr<’ dr> t Fsine da<s‘”da> T oEsmtede 0 @)
Multiplying by 72, dividing by Re® and rearranging, we find '
+
l—d—ﬂ@ = -1 —‘isirw@ - L a
R dr\" ar 6 sin g de de  sin2g dg?

Since one side depends only on 7, while the other depends only on ¢ and ¢, it follows that each side
must be a constant, say —\2. Then we have

1 d dR
2 2,88 = 2
R dr<r dr> A @)
1 d . de 1 d2®
2 oo A 2
and 8 sin g de <sm ¢ da) + ® sin2 ¢ dg? A 3)

The equation (2) is identical with (2) in Problem 7.1, so that we have as solution according to
Problem 7.2 :
B,
R = Ay + ey (4)

where we use A2 = —n(n + 1).
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7.22.

If now we multiply equation (3) by sin? ¢ and rearrange, it can be written as

1d2 sing df . ~dey\ ‘o
EdTﬁ = 7 :i—a<sm0da> n(n + 1) sin2¢ .

Since one side depends only on ¢ while the other side depends only on 6 each side must be a con-
stant, say —m2. Then we have

adf de e mlle = o ;
smoda(mnodo) + [n(n+1) sin2e — m?] (5)
d2e 9
—_— = 6
&z T 0 (6)

If we now make the transformation ¢ = cos¢ in equation (5) we find as in Problem 7.3 that it can
be written as

a-of[a-0%] + ot na-g-me = o

Dividing by 1 —¢2 the equation becomes

d2e de ) m2 ]
—2)&2 _ 9. 07 __m = 7
(1 s)d£2 2£d£ + [n(n+1) g |° 0 a)
which is Legendre’s associated differential equation (12) on page 132 if we replace ® by y and
£ by =.

The general solution of (7) is shown in Problem 7.22 to be

0 = A;PT) + B ®)
where ¢ = cosé and
m - — 2ym, ﬂ
PoE) = (1—gym2 am P, (9)
QO = -t e.0 (10)

We call P(¢) and Q'(¢) associated Legendre functions of the first and second kinds respectively.
The general solution of (6) is

® = Agcosmg + Bjsinmg (11)

If the function wu(r, 8, ¢) is to be periodic of period 27 in ¢, we must have m equal to an integer,
which we take as positive. For the case m =0 the solution u(r, 8, ¢) is independent of ¢ and
reduces to that given in Problem 7.5.

(@) Show that if m is a positive integer and u, is any solution of Legendre’s differen-
tial equation, then d™u./dx™ is a solution of Legendre’s associated differential
equation.

(b) Obtain the general solution of Legendre’s associated equation.
(@) If Legendre’s differential equation has the solution u, then we must have
(1 —aDuy — 20w, + n(n+1u, = 0

By differentiating this equation m times and letting v}’ = dmu,/de™ we obtain

) d2ym dym ’
(1 —x2) T 2(m + 1) d; + [nn+1) —mm+ DT = o

In this equation we now let v™ = (1 — x2)Py.  Then it becomes
(1—a%2y” — [2(m+ Da(l — x2) + 4dpx(l — x2))y’
1
+ {4(m + 1)px? + (4p2 — 2p)a2 — 2p + [pn+1) —mim+)A— 22}y = 0
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If we now choose p = —m/2, this equation becomes after dividing by 1 — «2
m2
1 —a2y" — 22y + [n(n+1) T2 Y = 0 .

[CHAP, 7

1)

which is Legendre’s associated differential equafion. Since v' = (1 — x2)~m/2y, it follows that

v = (o or = (1—g2)m/2 dmuy,
y = (M-« T

is a solution of (1).

(2)

(b) Since the general solution of Legendre’s equation is ¢;P,(x) + ¢,Q,(x), we can show that the

general solution of Legendre’s associated differential equation is

¥y = Prx) + cQn(x) (3
m amp, m danQ,,
where Pim) = (—ane_t Q@) = (L—amr—— %)
7.23. Obtain the associated Legendre functions (a) Py(2), (b) P;(x), (¢) Py(2), (d) @y(w).
(@ Pyx) = (1*902)”2(%&(%) = (1—002)”2%(39022_ 1) = 3x(l— x2)/2
(b) Pi(z) = (1—x2)2/2(%P3(x) = (l—xz)(%<@2?~33> = 15z — 1543
(¢) Pg(x) = (1 —x2)3/2(%P2 (x) = 0. Note that in general P, (x) =0 if m > n.

(d) Using Problem 7.12(c) we find

4 1—=

Qo) = a-erlew = (1—x2)1/2‘%{3”2— 1, <1 + W> _ 8]

3z 142 3x2 — 2
= — g1z 2%
(1 —x2) [21n<1_x> + 1—x2:|

2]

7.24. Verify that P;?(x) is a solution of Legendre’s associated equation (12), page 132, for

m=2, n=3.

By Problem 7.23, Pg (x) = 15x — 15x43.  Substituting this in the equation

] 4
(1_x2)y// — 2xy/+ 3.4_..1—“:2 Yy — 0
we find after simplifying,

(1 —22)(—90x) — 2x(15 — 4522) + {:12 - l—fﬁ] (150 — 1528 = 0

and so Pg(x) is a solution.

7.25. Verify the result (16), page 132, for the functions P:(x) and Ps(z).

We have from Problem 7.23(a), Pé(x) = 3x(l — x22)1/2,  Also,

2

3 _ 2
Pix) = (1—a2p32 %Pa (@) = (1—ax2)32 %(M) = % (1 — x2)3/2

1 1 3
Then f Pi@)Pi(x) dz = 45T” A—a22de = 0
—1 -1
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7.26. Verify the result (17), page 132, for the function Pé(ac).

Since P; (%) = 3x(1 — x2)172,

! ! 3 5
.f‘I[Pé(x)]de = gf_ 221 — 22 dx = 9[%_?5_

1

36 _ 12
-1 15 T b

Now according to (17), page 132, the required result should be
2 2+1)! 2 _3_' 12

22)+1@2-1! — 5 1! 5

so that the verification is achieved.

7.27. Expand vo(1—27) in a series of the form 2 APy (x) where vo is a constant and
m= 2 k=0

We must find 4, £=0,1,2,...., so that

vo(l — 22) = (x) + A4, P (x) + AP 2(95) 4 e (1)
Method 1.
Since Pix) = (1—902)—Pk(90)
we have

Pj@) =0, Pi@) =0, Pi@) = (1—x2)dx2<3x22— 1> = 3(1—a?),

Piw) = (1—o?) -2 (—«5”3 — 8

= — 2
e 3 > 152(1 — «2),

Then (I) becomes
vo(l—22) = 38A,(1—22) 4 15A5x(1 —=x2) + ---

By comparing coefficients on each side we see that this can be satisfied if 34, = vy, 15643 =0 and
A =0 for k>8. Thus we have

vl —o?) = LPYx) ®

so that the required expansion consists of only one term.

Method 2.

)

If fx) = EOAkPkm(x), then on multiplying by Pn(x) and integrating from —1 to 1 we obtain
K

- 1 0 1
[ @@ = 3 4 f Pr@PrEd
-1 k=0 -1

Using (16) and (17), page 132, we see that the right side reduces to the single term

2 (n+m)!
2n+ 1 (n—m)!

_ Cn+Dn—m)! m
so that 4, = T ml f f(x) P, (x) d

If f(x) =vo(1 —22) and m = 2, then

2n+ 1)(n—2)!

An 2(n + 2)!

v0(1 —a2) P2(x) da

Using this we can show that Az = vy/3, A; =0, A; =0, ... and so we obtain the result (2) as in
Method 1.
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7.28. Show that a solution to Laplace’s equation W2v = 0 in spherical coordinates is given

by
B .
v = <Alr" + r"—’:1> [A2Pr(cos ) + B2Qn'(cos 0)][As cos me + Bs sinmg)
This follows at once from Problems 7.21 and 7.22 since u = Rod where
_ B,

R = Alr" + ;_m

© = A,P,(cos8) + ByQy (coss)

& = Ajcosme + Bj sin mg

7.29. Suppose that the surface of the sphere of Problem 7.18 is kept at potential
vo 8in? § cos 2¢. Determine the potential (a) inside and (b) outside the surface.

(a) Interior Potential, 0 = r < 1.

Since v is bounded at » = 0 we must choose B; = 0 in the solution as given in Problem
7.28. Also since v is bounded at ¢ =0 and =, we must choose B, = 0. Then a bounded
solution is given by

v(r, 8,¢) = r"Ph(cos8)(A cosmg + B sin me)

Since m and n can be any non-negative integers we can replace A by A,;l,,, B by B, and then,
using the superposition principle, sum over m and n to obtain the solution

v(r,8,¢) = S 3 T"P::l(cos 6)(A,,, cosme + B, sin me) (1)
m=0 n=0
Now the boundary potential is given by
v(1,6,4) = wgsin?é cos2¢ (2)

By comparison of (2) with

v(1,6,¢) =

YL

3 Pyl(cos 6)(A,,, cos me + B, sinmg) 3)
0 n=0

obtained from (Z) with » =1 it is seen that we must have B,, =0 for all m and A4,,=0
for m = 2. Hence, (3) becomes

v(l,8,¢) = 3 A, P2(coss) cos2gp
n=0
Comparison with (2) then shows that we must have

o0
vosin2e = X A,,P2(cos )
n=0
or using cos g = ¢

vo(1 — £2)

Il

g() AZnP‘:zL(g)

= AnPi® + AyPi©) + ApPi®) + - “)
We have already obtained this expansion in Problem 7.27, from which we see that A,, = vy/3,
while all other coefficients are zero. It thus follows from (7) that .

v
vir,0,¢) = —§9r2P§(cos 6) cos 2¢ = wvyr? sin? g cos 2¢ 5)

(b) Exterior Potential, » > 1.

Since v must be bounded as 7 —> < in this case and is also bounded at ¢ = 0 and =, we
choose A; =0, B, = 0 in the solution of Problem 7.28. Thus a solution is

P::l(cos 8)

por} (A cos mg + B sin mg)

(7, 8, ¢)
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or by superposition
) 2 2 PMcos 6)
v(r, 6,¢) = 2 g 7-n+1 (A,,, cosme -+ B,,, sin mg) (6)

Using the fact that »(1,8,¢) = v, sin26¢ cos2¢ we again find m = 2, B,, = 0 which leads to
equation (4) of part (a). As before we then find A., = v¢/3, while all other coefficients are
zero, leading to the required solution

Vo
v(r,6,6) = g.5Pi(coss)cos2p

Yo, 2
= -gsin 8 cos 2¢ (7

It is easy to check that the above are the required solutions by direct substitution.

7.30. Solve Problem 7.18 if the surface potential is f(6, ¢).

As in Problem 7.29 we are led to the following solutions inside and outside the sphere:
Inside the sphere, 0 = » <1

vir6,6) = B 3 rPr(cos 8)(Au, cosmg + B, sinmg) )

m=0 n=0

Outside the sphere, » > 1

o0 0 Pm
p(r, 0’ ¢) = g § M

prrE (A, cosme + B, sin me) 2)

For the case r =1 both of these lead to

flo, ) = méo é) PYcos 6) (A, cosme + B,,, sin me)
This is equivalent to the expansion
F&#) = 3 3 PO, cosms + By sinme) @
where ¢ = cos 9. Let us write this as
Fge) = éo CoPR(®) )
where c, = Eo (A py cOS Mg + B, sin me) ®)
m=

As in Method 2 of Problem 7.27 we find from (4)

Hin—m)! m
0y = BBl Few i@ v

We also see from (5) that 4,, and B,,, are simply the Fourier coefficients obtained by expansion
of C, (which is a function of ¢) in a Fourier series. Using the methods of Fourier series it follows

that .

1

AOn = Zr 0‘ Cndg
1 2

Ay = = C, cos me dop m=1,2,3,...
7 Jo
1 -

B,, = —f C, sinmg¢ d¢ m=1,23,...
7 Jo

Combining these results we see that

@+ Dn—m)! fl 2w -
Aon - dr(n + m)! . F(, ¢) Pn (5) dﬁ de
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while for m = 1,2,3, ...

—m)! (! 2

Apy = D@L (T () PTG cosme de do
—)t (! 2w L

By = SO (7 f PG PR sinms dg dp

Using these results in (I) and (2) we obtain the required solutions.

Supplementary Problems

LEGENDRE POLYNOMIALS
731. Use Rodrigue’s formula (4), page 130, to verify the formulas for Py(x), Pi(x), ..., P5(x), on page 130.

7.32. Obtain the formulas for P,(x) and P5(x) using a recurrence formula.

1 1 1
7.33. Evaluate (a) J; xPy(x) dz, (b) fl [Pa(2x)]2de, (c) f_le(x)P4(x) dx.

734. Showthat (o) P,(1) =1 (€) Pyp_y(0) = 0
(d) Po(=1) = (—1)» (d) Py (0) = (—1yn 2
for n =1,2,3,....

(2n -1
- (2n)

7.35.  Use the generating function to prove that P, () — P,_,(x) = (2n+ 1) P, (x).

736. Prove that (a) P (®) — aPp(x) = (n+1)P,(x), (b) xPL(x) — P,_,(x) = nP,(x).

' 737. - Showthat 3 P,(coss) = lcsci.
= 25¢3

N . 1
7.38. Show that (a) P,(coss) = 1 (143 cos26), (b) Pslcoss) = %(3 cos ¢ + 5 cos 39).

739. Show that P;(x) = -~ (429907 — 6935 + 31523 — 35x).
740. Show from the geherating function that (a) P,(1) =1, (b) P,(—1) = (=1)n

® gkP,._ ., (x
741.  Show that 3 —-’fk‘—() = —12-1n<U-ﬁ>, 1<z<l1,
k=1

LEGENDRE FUNCTIONS OF THE SECOND KIND °
742.  Prove that the series (6) and (?) on page 181 Whlch are nonterminating are convergent for —1<2x<1
but divergent for » = *1, .

743. Find Q3(x).

744.  Write the general solution of (1— z2)y” — 2xy’ + 2y = 0.
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SERIES OF LEGENDRE POLYNOMIALS ;
745. Expand z¢— 322+ x in a series of the form kgo AP, (x).

7.46.

747.

©

22 4+1 0<x=1 L . .
Expand f(z) = 0 1<a<0 in a series of the form 3 AP, (x), writing the first four
-1= k=0

nonzero terms.

If fx) = X A.P.(x), obtain Parseval’s identity
k=0 ) P
k

f—l f@)]?ds = 2 5577

and illustrate by using the function of Problem 7.45.

SOLUTIONS USING LEGENDRE FUNCTIONS

748.

7.49.

7.50.

751,

7.52.

7.53.

7.54.

755.

Find the potential v (@) interior and (b) exterior to a hollow sphere of unit radius with center at
the origin if the surface is charged to potential vy(1 + 3 cos 6) where v, is constant.

Solve Problem 7.48 if the surface potential is v, sin2 .

Find the steady-state temperature within the region bounded by two concentric spheres of radii
a and 2¢ if the temperatures of the outer and inner spheres are u, and 0 respectively.

Find the gravitational potential at any point outside a solid uniform sphere of radius a of mass m.
Is there a solution to Problem 7.51, if the point is inside the sphere? Explain.
Interpret Problem 7.48 as a temperature problem.

Show that the potential due to a uniform spherical shell of inner radius ¢ and outer radius b is
given by

27a(b2 — a?) r<a
v o= 270(302r —2a8 —13)/3r a<r<b
47o(b2 — a2)/8r r>b

A solid uniform circular disc of radius ¢ and mass M is located in the zy-plane with center at the
origin. Show that the gravitational potential at any point of the plane is given by

_ 2M r 1/7\?2 1 /r\*
v = 7[1 aPl(coso)+§<;> Pz(cosa)—2.4<; Py(cos o)
1.8 [r\®
+ m@ Pofeoss) = -+ |
if r<a and
v = M1 1(8Vp cose) + L13(2) b cos sy — 1235(a\*p 4 oo
- i\ 2(cos6) + 7o 4(cos 8) 168\, s (cos 6) .
if r>a. ' i

ASSOCIATED LEGENDRE FUNCTIONS

7.56.

757,

Find (o) P3(), (b) Pi(x), (c) P3(x).

Find (0) Qi(z), (b) Q%(x).
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7.58.

7.59.

7.60.

7.61.

7.62.

7.63.

LEGENDRE FUNCTIONS AND APPLICATIONS [CHAP. T

Verify that the expressions for P;(x) and Q;(x) are solutions of the corresponding differential
equation and thus write the general solution.

Verify formulas (16) and (17), page 132, for the case where (¢) m=1, n=1, =2, (b)) m=1,
n=11=1.

Obtain a generating function for Pj (x).

Use the generating function to obtain results (16) and (17) on page 132.

Show how to expand f(x) in a series of the form 3 A, Py (x) and illustrate by using the cases
k=0

(@) f(x) =22, m=2 and (b) f(x) =2(l—=x), m =1. Verify the corresponding Parseval’s iden-
tity in each case.

Work Problem 7.18 if the potential on the surface is v, sin3 § cos ¢ cos 3¢.

MISCELLANEOUS PROBLEMS

7.64.

7.65.

7.66.

7.67.

7.68.

7.69.

_ 1B (—k(@n —2k)! _
Show that Pol@) = & k§0 -k =21 2

where [n/2] is the largest integer = n/2.

Show that

w
P, (x) = %j; (x + V22 —1 cosu)" du

Use the result to find P, (x) and Pg(x).

Show that . 0 m#n
f a-op@P@eaE = 4,0
-1 S m=n
2n + 1
Show that fl P In (1 p —2/n(n+1) n+#0
L@ imAmads = e ) w=o

1
(@) Show that f xmPp(x)de = 0 if m<n orif m—=n is an odd positive integer.
—1 :

(b) Show that
(n+2p)!IT(p+3)
2n2p)! T(p+n+§)

1
Ll xnt22 P, (x) d

for any non-negative integers » and P

Show that a solution of the wave equation

1 92V
vy = ==2Y
c2 92
depending on 7,4, and ¢, but not on ¢, is given by

V. = [AyJyrapler/e) + ByJ_p_y5(wr/c)][AsP, (cos 6) + ByQ,(cos 6)][A 3 cos wt + By sin wt]
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7.70.

.71

J1.92.

7.33.

Work Problem 7.69 if there is also ¢-dependence.

A heat-conducting region is bounded by two concentric spheres of radii ¢ and b (a < b) which
have their surfaces maintained at constant temperatures u; and u, respectively. Find the steady-

state temperature at any point of the region.
Interpret Problem 7.18 as a temperature problem.

Obtain a solution similar to that given in Problem 7.69 for the heat conduction equation

u

ou 2
9t «V2u

where % depends on 7,4, and t but not on ¢.



Chapter 8

Hermite, Laguerre
and Other Orthogonal Polynomials

HERMITE’S DIFFERENTIAL EQUATION. HERMITE POLYNOMIALS

An important equation which arises in problems of physics is called Hermite’s differen-
tial equation; it is given by
Y —2xy +2ny = 0 (1)
where n=0,1,2,3, ....
The equation () has polynomial solutions called Hermite polynomials given by Rodrigue’s
formula

2 dn —x2
Hix) = (-L)e7—(e7) (2)
The first few Hermite polynomials are
Hy(z) = 1, Hix) = 2z, H(x) = 42?2, Hsx) = 82°—12x 3

Note that H,(x) is a polynomial of degree n.

GENERATING FUNCTION FOR HERMITE POLYNOMIALS
The generating function for Hermite polynomials is given by
' g = Ha(x)
ettt — z —n!_tn (4)

n=0

This result is useful in obtaining many properties of Ha{(x).

RECURRENCE FORMULAS FOR HERMITE POLYNOMIALS

We can show (see Problems 8.2 and 8.20) that the Hermite polynomials satisfy the re-
currence formulas
Hpii(x) = 2xHq(x) — 2nHn-1(x) €3]

H.(z) = 2nHn-1() - (6)
Starting with Ho(x) =1, Hi(x) = 2x, we can use (5) to obtain higher-degree Hermite poly-

nomials.

ORTHOGONALITY OF HERMITE POLYNOMIALS
We can show (see Problem 8.4) that

f_w e “Hy(x) Hy(x)de = 0 m=n ()

154
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so that the Hermite polynomials are mutually orthogonal with respect to the weight or
density function e~*,

In the case where m = n we can show (see Problem 8.4) that the left side of (?) becomes
[ e @ = 2mive (8)

From this we can normalize the Hermite polynomials so as to obtain an orthonormal set.

SERIES OF HERMITE POLYNOMIALS

Using the orthogonality of the Hermite polynomials it is possible to expand a function
in a series having the form

f@) = AHo(o) + AHi@) + AsHolz) + -+ )

1
2"l /=

where An

f e =f(x) Ho(x) do (10)
See Problem 8.6.

In general such series expansions are possible when f(x) and f’(x) are piecewise con-
tinuous.

- LAGUERRE’S DIFFERENTIAL EQUATION. LAGUERRE POLYNOMIALS

Another differential equation of importance in physics is Laguerre’s differential equation
given by
2y’ +(1—2z)y +ny = 0 (22)
where n=0,1,2,3,.... :

This equation has polynomial solutions called Laguerre polynomials given by

n

L) = -2 (ame) (@2

dar
which is also referred to as Rodrigue’s formula for the Laguerre polynomials.

The first few Laguerre polynomials are

Loz) =1, Li(x) = 1—w, Lyz) = 22— 42 +2, Ls(x) = 6 — 18x + 922 — 22 1%
Note that L.(z) is a polynomial of degree =.

SOME IMPORTANT PROPERTIES OF LAGUERRE POLYNOMIALS
In the following we list some properties of the Laguerre polyhomials.

1. Generating function.

e—xt/(1—t) i Ln(x) .
1-—t¢ = &~ n! t (24)
2. Recurrence formulas.
Lyii(x) = (2n + 1 —2)La(x) — %2Ln-1(x) (15)
Lo(®) — nLn—1(%) + nLay(z) = 0 (16)

ZLn(2) = NLn(x) — 12La—1(x) z7)
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3. Orthogonality.
f 0~ Lon() Ln(@) dz = {0 if m 7 n
0

n2 if m=n

4. Series expansions.
If fix) = AoLo(x) + AiLi(z) + AsLa(x) + ---
1

then A = G j; “e=*f(2) Ln(z) da

[CHAP. 8

(18)

(19)

(20)

MISCELLANEOUS ORTHOGONAL POLYNOMIALS AND THEIR PROPERTIES
There are many other examples of orthogonal polynomials. Some of the more important

ones, together with their properties, are given in the following list.

1. Associated Laguerre polynomials Lz ().
These are polynomials defined by

(21)

(22)

(23)

(24)

m dm
Ln (x) = dzm Ln(x)
and satisfying the equation
. zy” + (m+1—-2)y + m—m)y = 0
If m >n then Ly(x)=
We have ©
f e~ L@ M) dx = 0  peEn
0
2 am (nl)®
m z 2 — _
j:) xme *{Ln (2))? dx n—m)]
2. Chebyshev polynomials 7.(x).
These are polynomials defined by
Tou(x) = cos(ncos™'z) = 2z — <z>x"‘2(1 —x%) + (Z)x"“‘(l - 552)2 - -

and satisfying the differential equation

A—a)y” —~zy +n’y = 0
where #=0,1,2, ... .

A recurrence formula for T, (x) is given by
Tn+1(x) = 2xTn(x) - Tﬂ—l(x)

and the generating function is

1—tx - n
T—szrE - = D@
We also have
YT x) Tn(x)
= 0 m+<n
1-— x2

flm(x)v e o [ om=0
~1y/1— 22 v= /2 n=12,...

(25)

(26)
(27)
(28)

(29)

(30)
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Solved Problems
HERMITE POLYNOMIALS

157

x), (b) Hi(x),

8.1. Use the generating function for the Hermite polynomials to find (a) Ho(x)
(¢) Ha(z), (d) Hs(x).
‘We have "
© n tn H
ee—t® = 3§ (f) = Hy@) + Hy@x)t + 2D H’*(,x)ts + .-

ney 7! 2! 3!

Now 2 = 1 4 (m—t) + (2tx2—! ol il (2tx3—!t2)3 T
= 14 @)t + @2-Dp + <4”3T_6’”>t3 T

Comparing the two series, we have

Hyx) = 1, Hyx) = 2x, Hyx) = 422—2, Hyx) = 83 — 12¢

8.2. Provethat Hi(z) = 2nH. ().

> Hy(x)
Differentiating M=t = ) ;:' tr with respect to z,
n=0 .
2te2et = E "(x) tn
I
o 2Hy@) | _ 3 i),
n=0 n! n=0

Equating coefficients of " on both sides,

2H,_(x) H,(2) ,
(n"__ or :' or H,(x) = 2nH,_(x)
dn
83. Provethat Hai(zx) = (—1)"612W(e"”).
We have e2t:c~t2 612—(t—x)2 _ i Hn(x)tn
n=o n!
Then | (Y L= @
gn 2
But —— (e2tx—t — exz 2 e—(t—x)z
3t (@ ) o [ ] -
. o an (t—1)? . _ . dn -
e Frmmm [e 2| . = (=1)nex y (e—=?%)
84. ©Prove that f e "Hu(x) Hy(x) dx = 0 mn
—= 2n!Vr m=n
‘We have ezt"‘f_tz i (x)t" e.‘zs:t—s2 — i Mﬂ
n=0 m=0 m!
Multiplying these,
e2tx—t2+2s:c—sz § § Hm(x)Hn(x)smtn
m=0 n=

o m!n!
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8.5.

8.6.

HERMITE, LAGUERRE AND OTHER ORTHOGONAL POLYNOMIALS

Multiplying by e¢—*% and integrating from —= to «,

w0 2 bl
f g [(x+st)*—2st] go 2
— m=

Now the left side is equal to

0 n=

o0 0
e2stf e—(xtstD? gy = g2st f e du
—w —o

By equating coefficients the required result follows.

The result
f e~ 2*H_(x) H,(x) dx

e~ **H  (x) H,(x) dx

2mgmi{m
m!

-]
— e2st \/; = \/; 20
m=

0 mFEn

[CHAP. 8

can also be proved by using a method similar to that of Problem 7.13, page 138 (see Problem 8.24).

Show that the Hermite polynomials satisfy the differential equation

" —2xy +2ny =

0

From (5) and (6), page 154, we have on eliminating H, _(x):

Hypy(®) = 22H,(x) —

Differentiating both sides we have

Hyyy(x) = 2sH(z) + 2H,(x) — H, (x)

H,(2)

But from (6), page 154, we have on replacing n by n+ 1:
Hyiy(x) = 2(n+1)Hy(x)

Using (3) in (2) we then find on simplifying:

H(x) — 2xH,(x) + 2nH,(x) = 0

which is the required result.

We can also proceed as in Problem 8.25.

(a) If f 2 Aka x) show that A

s Lt

(b) Expand 2® in a series of Hermite polynomials.

@)

(@

8)

(@) If fx) = kgo A, H,(x) then on multiplying both sides by e~ #*H,(x) and integrating term

by term from —« to » (assuming this to be possible) we arrive at

[ e HEa =
_But from Problem 8.4
f e~ 2*H, (x) H, (=) dx

Thus (Z) becomes

©
p
k=0

Lw e~ 2*f(x) H,(x) dx

A f e~ **H,(x) H,{(x) dx

0 k+#mn
2umlvVr k=mn

= Ag2m!Vr

_ 1 ©
or 4, = 2l Ve Lwe‘ﬁf(x)H,,(x) dx
which yields the required result on replacing n by k ’

(2)

(@)
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(b) We must find coefficients 4,, ¥ =1,2,3,..., such that.
3 = 3 AHy) 3
k=0
Method 1.
The expansion (8) can be written

28 = A Hy(x) + AH () + ApHy(x) + AgHg(x) + -+ (4)
or x3 = Ay1) + A{(2x) + Ay(4a2 —2) + Ay(80% —122) + -+ (5)
Since Hk(oc) is a polynomial of degree k we see that we must have A, =0, A5 =0, Ag=0, ...;

otherwise the left side of (5) is a polynomial of degree 3 while the right side would be a poly-
nomial of degree greater than 3. Thus we have from (5)

x3 = (A,—24,) + (24, —124)x + 44,22 + 8Ag3
Then equating coefficients of like powers of « on both sides we find
BA, = 1, 44, = 0, 24,— 124, = 0, A,—24, = 0
from which 3 : 1
4, = 0, A1=—4—, A4, = 0, A3:§
Thus (2) becomes

3 1
B = TH@) + g Hyla)

which is the required expansion.

Check.

3 1 3 1
ZHl(x) + 'S“Hs(‘-”) = Z(Zx) + §(8x3—12x) 23

Method 2.

The coefficients 4, in (1) are given by

1 0
A = — f e~ 2%e3H  (x) dx
K = J . k()
as obtained in part (a) with f(x) = 3.

Putting £ =0,1,2,8,4,... and integrating we then find
_ _ 3 _ _1 _ _
AO - 0: Al - Z! AZ - 0) A3 - —8—) A4 - 0) AS - 0)

and we are led to the same result as in Method 1.

In general, for expansion of polynomials the first of the above methods will be easier and
faster.

8.7. (a) Write Parseval’s identity corresponding to the series expansion f(z) = 3, AxHx(x).
(b) Verify the result of part (a) for the case where f(x)= 2. =

(a) We can obtain Parseval’s identity formally by first squaring both sides of fley = 3 A H,(x)
to obtain o w : k=0
{fx)}2 = kEO 20 AyA H,y () Hy(x)
=0 p=

Then multiplying by e—*? and integrating from —« to » we find

femtopa = 3, 3 44, oo, B, 0) do
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Making use of the results of Problem 8.4 this can be written as

<

f - {f@)2de = Vi S 26k!AL
— k=0
which is Parseval’s identity for thé Hermite polynomials.

() From Problem 8.6 it follows that if f(x) = 3 then A4,=0, A; =%, A, = 0, Ay = 3 Ays=0,
As=10, .... Thus Parseval’s identity becomes

f ” e-{x%)2dx = V7 [201D(3)? + 2531)(})Y

©

Now the right side reduces to 15v/#/8. The left side is

o0 oG o«
f xbe~2idxy = 2 f xbe—2tdx = f u5/2¢— 4 du
— o0 0 0

= rd = @OPVF

15
8

T

where we have made the transformation = = Vu. Thus Parseval’s identity is verified.

LAGUERRE POLYNOMIALS
88. Determine the Laguerre polynoniials (@) Lo(x), (b) Li(x), (¢) L2(x), (d) Ls(x).

n

We have L) = == (xne=7). Then

dgn
(@) Lg®) = 1
() Lyx) = ex%(xe_r) = 1—-=
42
(¢) Le(x) = 5= (x2e%) = 2 — 4x + x?

da?
3

(d) Lgx) = e’”%(ﬁe—x) = 6 — 18x + 922 — a3

8.9. Prove that the Laguerre polynomials L.(x) are orthogonal in (0, ») with respect to
the weight function e~=.

From Laguerre’s differential equation we have for any two Laguerre polynomials L, (x) and
Ln(x)’ )
«L,, + 1—a)L,, + mL, = 0

zL, + 1—x)L, + 2L, = 0

Multiplying these equations by L, and L,, respectively and subtracting, we find

w[LyLy, — LyLy] + 1 — )L, Ly, — L,Ly] = (m—m)L,L,
or L (Lol = L) + 222 (Lol = LLy) = (o= Ll ’Z)L’"L"
Multiplying by the integrating factor
. ef(l——:c)/.rdx =7 = oz
this can be written as : -
A gLl ~ LuL,]} = (n—me~sL,L,

dx
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8.10.

8.11.

so that by integrating from 0 to «,

o0

(n—m) f e~ 2L, (x)L,(x) de = xe—x[LnL,'n — LmLI,,] (o = 0
0

Thus if m #* n, oo
f e *L,(x)L,(x)dx = 0
0

which proves the required result.

Prove that Lg+1(x) = (2n +1— &) La(x) — 0% La—1(2).
The generating function for the Laguerre polynomials is
e—xt/(1—t) b Ln(x)

1—-1 = n§0 n!

)

Differentiating both sides with respect to t yields
e—at/(1—1) xe—T/A=D) i nL,,(ac)
a-ov> Q-9 = 5 n!
Multiplying both sides by (1 — t)2 and using (I) on the left side we find

p- 300 = 3 a-ptn?

n—1 @)

tnt+l

If we now equate coefficients of " on both sides of this equation we find

Ln(x) Ln—l(x) an(x) _ (n + 1)Ln+ l(x) ann(x) (n - 1)Ln—1(x)
n! (=11 " al - n+1)! Y (n—1)! .

Multiplying by n! and simplifying we then obtain, as required,
Ly 1®) = (2n+1—x) L,(x) — n2L,_,(x)

Expand 23 + 22 — 32 + 2 in a series of Laguerre polynomials, i.e. E AxLi(x)
k=0

We shall use a method similar to Method 1 of Problem 8.6(b). Since we must expand a poly-
nomial of degree 3 we need only take terms up to Lg(x). Thus

23+ 22 — 32 + 2 = AgLy(x) + ALy(®) + ApLy(x) + AsLy(x)
Using the results of Problem 8.8 this can be written
B+ a2—38r+2 = (Ag+A4;+24,+6A4;) — (A, +44,+1845)x + (A, + 94,)x2 — Agxd
Then, equating like powers of x on both sides we have
Ag+ A, +24,+64; = 2, A, +44,+ 184, = 38, A, + 94, =1, —A; =1

Solving these we find
Ao = 7, Al = _19, A2 = 10, A3 = —1

Then the required expansion is
@3+ 22 — 8x + 2 = TLy(x) — 19Ly(x) + 10L,(x) — Ly(x)

We can also work the problem by using (19) and (20), page 156.
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MISCELLANEOﬁS ORTHOGONAL POLYNOMIALS
8.12. Obtain the associated Laguerre polynomials (a) La(z), (b) Lzz(x), (¢) Li(x), (d) Li().

d d
(a) L;(:c) = Ea—:Lz(x) = a(z—4x+x2) = 2 — 4
d2 d2 _
0 Li@) = 75Ls0) = g5@—4e+a?) = 2
d2 d2 _
() Lix) = —5Ly@) = 56— 18z +9x2—4ad) = 18 — 6z
4 d4 m - .
(d) Lix) = wLa(x) = 0. In general L, (zx) =0 if m > n.

8.13. Verify the result (24), page 156, for m =1, n=2, .

We must show that o (213
f aee‘“’{[é(:::)'}2 de = -1—' =8
o !

Now since Lé(x) = 2x —4 by Problem 8.12(a) we have

f xe 2z —4)2dx = 4f x3e—rdx — 16f x2e~*dx + IGI xe *dx
0 (i 0 0

4T(4) — 16T(8) + 16T(2)
431) — 16(21) + 16(11)
= 8

so that the result is verified.

8.14. Verify the result (23), page 156, with m =2, n =2, p =38,

We must show that w
f x2e~=Lix) Lix)dx = 0
0

Since Li(x) =2, Lg(x) =18—6x by Problem 8.12(a) and (b) respectively the integral is
f x2e—*(2)(18 —6x)dx = 36 j(; x2e~*dx — 12}; x3e~%dx
0

36T(3) — 12T1(4)

i

362 — 12(3Y) = 0
as required.

8.15. Verify that Lg(x) satisfies the differential equation (22), page 156, in the special case
m=2, n=3.

From Problem 8.12(c) we have Lg(x) = 18— 6x. The differential equation (22), page 156, with
m=2 n=3 is
2y’ +@B—22)y+y =0
Substituting y = 18 — 6x in this equation we have
2(0) + (83—x)(—6) +18—6x = 0

which is an identity. Thus L%(x) satisfies the differential equation.
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8.16. Show that the Chebyshev polynomial T.(x) is given by

T.@) = o — (’2‘>xn-2(1—x2) + <Z>¢»—4(1 —ay — (g’)xn—s(l_xz)s N

We have by definition
T,(x) = cos{ncos~1x)

Let u =cos— !z so that x = cosu. Then T,(x) = cosnu. Now by De Moivre’s theorem

(cosu + isinu)r = cosnu + isinnu

Thus cos nu is the real part of (cosu + i sinu)*. But this expansion is, by the binomial theorem,
n 13 3 n » . n . .
(cos u)r + (1> (cosu)r~ (4 sinu) + <2> (cos u)"—2(1 sin u)2 + <3> (cosu)yn—3(i sinu)® + ---
and the real part of this is given by
n n
cos®u — 2 cos" 2y sin2u + 4 cos" 4y sintu — -

Then since cosu = « and sin2« = 1 — 22, this becomes
n n
Zn — (2)xn—2(1 — %2 + <4>xn—4(1 —x22 — ...

817. Find (a) T:(x) and (b) Ta(x).

Using Problem 8.16 we find for » =2 and n = 8 respectively:

2 2 0(1 — g2
x2 — 2:x:(—-oc)
s _ (3 11 — 22
x 2x( x2)

Since Ty(x) =cos0 =1, T (x) = cos(cos~tx) =« we have from the recurrence formula (27),
page 156, on putting 2 =1 and n = 2 respectively,

To(w) = 2xTy(x) — To(x) = 222 — 1
Tg(x) = 2xTy(x) — Ty(x) = 22222—1) — 2 = 4a3 — 3z

i
I

(@) Ty(x) 22 — (1—22) = 222 — 1

23 — 82(1—22) = 428 — 3x

(®) T3

Another method.

8.18. Verify that T.(x) = cos(n cos™'x) satisfies the differential equation
1—a¥)y” —axy +n’y = 0
for the case n =3.
From Problem 8.17(b), T3(x) = 423 — 32 and the differential equation for n = 3 is
A=y’ —axy' +9y = O
Then if y = 423 — 3z the left side becomes
(1 — «2)(24x) — 2(1222—3) + 9(422 —3x) = ©

so that the differential equation reduces to an identity.
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AN

Supplementary Problems

HERMITE POLYNOMIALS

8.19.

8.20.

8.21.

8.22.

8.23.

8.24.

8.25.

8.26.

8.27.

Use Rodrigue’s formula (2), page 154, to obtain the Hermite polynomials Ho(x), H;(x), Hy(x), Ha().

Use the generating function to obtain the recurrence formula (5) on page 154, and obtain
Hy(z), Hy(x) given that Hy(z) =1, Hy(x) = 2.

Show directly that (a) f e—2*Hy(x)Hg(x) de = 0, (b) f e~ [Hy(x)]2 dov = 8V7.

Evaluate f x2e~**H, (x) dx.

—1)n 1
Show that H,,(0) = (_1)’1(’—2n) .
Prove the result (7), page 154, by using a method similar to that in Problem 7.13, pages 138 and 139.

‘Work Problem 8.5, page 158, by using (a) Rodrigue’s formula, (b) the method of Frobenius.

(a) Expand f(x) = 3 — 322+ 22 in a series of the form > A H(x). (b) Verify Parseval’s identity
for the function in part (a). k=0

Find the general solution of Hermite’s differential equation for the cases (@) n =0 and (b)) n=1.

LAGUERRE POLYNOMIALS

8.28.

8.29.

8.30.

8.31.

8.32.

8.33.

8.34.

8.35.

8.36.

8.37.

Find L,(x) and show that it satisfies Laguerre’s equation (11), page 155, for n = 4.
Use the generating function to obtain the recurrence formula (16) on page 155.

Use formula (15) to determine Ly(x), Ly(x) and L4(x) if we define L,(x) =0 when n= -1 and
L,(x)=1 when n =0.

Show that nL,_;(&) = nL,_i(x) — Ly(x).
Prove that f e~ 2{Ly(z)}2dx = (nl)2
0

Prove the results (19) and (20), page 156.
Expand f(x) = 23 — 322 + 22 in a series of the form kgo ALy (x).
INlustrate Parseval’s identity for Problem 8.34.

Find the general solution of Laguerre’s differential equation for = = 0.

Obtain Laguerre’s differential equation (1), page 155, from the generating function (14), page 155.

MISCELLANEOUS ORTHOGONAL POLYNOMIALS

8.38.

8.39.

8.40.

Find (a) Li(x), (b) Li(x).
Verify the results (23) and (24), page 156, for m =2, n = 3.

Verify that Li(m) satisfies the differential equation (22), page 156, in the special case m = 2, n = 4.
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8.41.

8.42.

8.43.

8.44.

8.45.

8.46.

8.47.

8.48.

Evaluate ‘f x2e —ILi(x) dex.
0

Show that a generating function for the associated Laguerre polynomials is given by
(—tyme—at/(1—t) _ » LL"(x)

A - e k
=g o R

Solve Chebyshev’s differential equation (26), page 156, for the case where n = 0.
Find (a) T4(x) and (b) Ts(x).

Expand f(x) = 3+ x2—4x+2 in a series of Chebyshev polynomials kgo AT ().

(a) Write Parseval’s identity corresponding to the expansion of f(x) in a series of Chebyshev poly-
nomials and (b) verify the identity by using the function of Problem 8.45.

Prove the recurrence formula (27), page 156.

Prove the results (29) and (30) on page 156.

MISCELLANEOUS PROBLEMS

8.49.

8.50.

8.51.

8.52.

8.53.

8.54.

8.55.

8.56.

8.57.

(@) Find the general solution of Hermite’s differential equation. (b) Write the general solution for
the cases where n =1 and n=2. [Hint: Let y = vH,(x) and determine v so that Hermite'’s
equation is satisfied.]

In quantum mechanics the Schroedinger equation for a harmonic osecillator is given by

a2y 8x2m
dx? h2

(E—Lex2y = 0

where E, m, h, « are constants. Show that solutions of this equation are given by

"¢ = C.H,(x/a)e="/4a’
where n=10,1,2,3,... and

I B _ iJﬁ
& = A\ 16z2em E = 0+tdg\n

The differential equation is a Sturm-Liouville differential equation whose eigenvalues and eigenfunc-
tions are given by E and y respectively.

(a) Find the general solution of Laguerre’s differential equation. (b) Write the general solution
for the cases » =1 and n =2 . [Hint: Let y = vL,(x). See also Problem 8.49.]

Prove the results (18) on page 156 by using the generating function.

(a) Show that Laguerre’s associated differential equation (22), page 156, is obtained by differenti-
ating Laguerre’s equation (11) m times with respect to x, and thus (b) show that a solution is
dmL, /dxm,

Prove the results (23) and (24) on page 156.

{a) Find the general solution of Chebyshev’s differential equation. (b) Write the general solution for
the cases n =1 and = =2. [Hint: Let y = vT,(x).

Discuss the theory of (a) Hermite polynomials, (b) Laguerre polynomials, (c) associated Laguerre
polynomials, and (d) Chebyshev polynomials from the viewpoint of Sturm-Liouville theory.

Discuss the relationship between the expansion of a function in Fourier series and in Chebyshev
polynomials.






Appendix A

Uniqueness of Solutions

A proof establishing the uniqueness of solutions to boundary value problems can often
be accomplished by assuming the existence of two solutions and then arriving at a contra-
diction. We illustrate the procedure by an example involving heat conduction.

Consider a finite closed region ® having surface S. Suppose that the initial tempera-
ture inside R and the surface temperature are specified. Then the boundary value problem
for the temperature u(z,¥,%,t) at any point (x,y,#) at time ¢ is given by

ou

5 = «Vu inside R (2)
w(®,¥,2,0) = f(x,y,2)  at points (z,y,2) of R (2)
u(x,y,2,t) = g(x,y,2,t) atpoints (z,y,2) of S 3

We shall assume that all functions are at least differentiable at points of ® and S.

Assume the existence of two different solutions, say u: and us, of the above boundary

value problem. Then letting U =wu:;—u: we find that U satisfies the boundary value
problem U

5 = «V2U  inside R (4)
U(z,y,2,0) = 0 at points of R (%)
U(x,y,2,t) = 0 atpointsof S (6)
Let us now consider
W(t) = —Zl-fff [U(x,y,2,t))2dedydz ”
where the infegration is performed overq;he region R. Using (5) we see that
w@o) = 0 (8)

Also from (7) we have

%V = j;(ff U%l—gdxdydz = Kf{vazvdxdydz 9

where we have used (4).

We now make use of Green’s theorem to show that

S vovasas - [ oLas - SYFTELY o (2)' (22) o

(10)

167



168 UNIQUENESS OF SOLUTIONS

where n is a unit outward-drawn normal to S. Since U =0 on S the first integral on the
right of (10) is zero and we have ‘

f_{f UviUdxdydz = — f{fﬂ%ﬁc—])z + <%>2 + (%g)zjdx dy dz (11)

Thus we have from (9),
aw aU\? aU\ 2 oU\ 2
e fffR%) + <5§> + <“a§> ]dxdydz (12)
R

It follows from this that dW/dt = 0, i.e. W is a nonincreasing function of ¢, and, in view
of (8), that W(t) =0. But from (7) we see that W(¢) = 0. Thus it follows that W() =0
identically.

Now if U(x,y,2,t) is not zero at a point of R it follows by its continuity that there will
be a neighborhood of the point in which it is not zero. Then the integral in (7) would have
to be greater than zero, i.e. W(¢) > 0. This contradiction with W(t) =0 shows that
U(z, v, 2,t) must be identically zero, which shows that u: = u; and the solution is unique.
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Special Fourier Series
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SPECIAL FOURIER SERIES
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B-19 flx)y =ex, s <ax<nm

T 2# n=1 f/-2 -+ n?

2 sinh ur <1 n § (=1)*(u cos nx — » sin nx)>

B-20 f(x) = sinhux, —r<a<g7
2sinhpr [ sing  2sin22x  3sindx _ .
) . 12+“2 22+'u2 32+,u2

B-21 fx) = coshpx, —7<ax<g7

T 2.2 12442 242 324 g2

2usinh;m<1 _ cosx cos 2z cos 3x + >

B-22 fo) = Infsinda], — 7 <z <r

cos x cos 2z cos 3z
<ln 2 + 1 -+ ) + 3 + >

B-23 , f(») = Injcosdx|, —7<a<g

—(Ing — cos= cos2x _ cos 3z
<n T T T3 3 +

B-24 fx) = 72— dna + 422, 0=z =2r

cosx , cos2x , cos3x 4+ e

7 T oz T T3
B-25 fle) = L@ —n)x—27), 02 F2n
siilax + sir;32x 4 six;;a’x +
B-26 fx) = ot — gn2? + prad — &at, 0=0=2r
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Appendix C

Special Fourier Transforms

SPECIAL FOURIER TRANSFORM PAIRS
f(=) Fla)
cl 1o led<b 2 sin ba
0 |z|{>0b @
1 n-e—ba
c-2 x2 + b2 b
* o
C-3 m —lrb—e—ba
c4 £ (@) inanF(a)
. d°F
c-s xﬂf(x) v da®
c-6 f(ba)ette %F<"‘ = t)
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SPECIAL FOURIER COSINE TRANSFORMS
flx) Fela)
C.7 1 << b sin bd
0 x>b a
1 ”e‘ba
c8 o %
b
-9 om0 pop
-1 = T(n) cos (n tan—1 a/b)
c-10 gn=1e—bz (a2 + bEyn/2 -
C-11 o= ba? %\/%e—a’/4b
C-12 z—1/2 A ,_T"_
2a
- - wa ! sec (nr/2)
C-13 z—n 5T(n) , 0<n<1
xZ + b2 e—cx — e—ba
Cc-14 In <x2 - 62> —
. /2 a<b
c-15 ﬁi"—x’ﬁ N VR—
0 a>b
C-16 sin b2 1’ —szb <cosz—: — sin Z—:)
2
C-17 cos ba? 8_7;) <cos%5 + sin f:%)
Cc-18 - e
gech bx 25 sech 55
.19 cosh (V7 «/2) \/__71 cosh (V7 a/2)
cosh (V7 %) 2 cosh (V7 )
-bVz
c-20 o= \,g—a{cos @bVa) — sin 2bva)}

Ve
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SPECIAL FOURIER SINE TRANSFORMS
f(x) Fs(a)
c-21 L O<a<t 1= cosbe
0 x>b @
C-22 xz—1 T
2
x
C'23 m Ee"bd
a
c-24 o=t Py
. I'(n) sin (n tan—1 a/b)
C-25 gn—1ebz (2 + b2)n/2
C-26 we™ %" _4lb/-§—’7/'_2 ae—22/4b
C-27 x—1/2 A ,L
2a
- - wal~! ese (nr/2)
C-28 z—n 3T () 0<n<?2
c-29 sin bx 1 a+b
@ R
c-30 sin bx 7af/2 a<b
x2 7b/2 a> b
0 a<b
c-31 &beﬁ w4 a=2b
/2 a>b
c-32 tan—1 (x/b) o= e—ba
2a
C-33 7 Ta
csc b 5 tanh 5
i 1 T ra 1
C-34 o — 1 1 coth <E-> -5




Appendix D

Tables of Values for J,(x) and Ji(x)

Jo (x)

® 0 1 2 3 4 5 6 7 8 9

0. | 1.0000 .9975 .9900 9776 9604 .9385 .9120 .8812 .8463 .8075
1. 7652 7196 6711 .6201 .5669 5118 4554 .3980 .3400 .2818
2, ,2239 1666  .1104 .0555 0025 —.0484 —.0968 —.1424 —.1850 —.2243
3. | —2601 —.2021 —.3202 —.3443 —3643 —.3801 —.3918 —.3992 —.4026 —.4018
4.1 —3971 —.3887 —.3766 —.3610 -—.3423 —.3205 —.2961 —.2693 —.2404 —.2097
5. | —1776 —.1443 —1103 —.0758 —.0412 —.0068 0270 .0599 .0917 .1220
6. 1506 1773 .2017 .2238 .2433 .2601 .2740 .2851 2931 .2981
1. .3001 .2991 .2951 .2882 2786 2663 2516 .2346 2154 1944
8. 1717 1475 1222 .0960 0692 .0419 0146 —.0125 —.0392 —.0653
9. | —0903 —.1142 —.1367 1577 —.1768 —1939 —.2090 —.2218 —.2323 —.2403

J, (x )

x 0 1 2 3 4 5 6 7 8 9

0. .0000 .0499 .0995 .1483 .1960 .2423 .2867 .3290 .3688 .4059
1. 4401 4709 4983 .5220 5419 5579 5699 5778 .5815 5812
2, 5767 .5683 5560 5399 5202 4971 4708 .4416 .4097 .3754
3. .3391 .3009 2613 .2207 1792 1374 .0955 0538 0128  —.0272
4. | —0660 —1033 —1386 —.1719 —2028 —.2311 —.2566 —.2791 —.2985 —.3147
b. | —3276 —.3371 —.3432 —.3460 —.3453 —.3414 ~—.3348 —.3241 —3110 —.2951
6. | —2767 —.2569 —2329 —2081 —1816 —.1538 —.1260 —.0953 —.0652 —.0349
7. | —.0047 .0252 .0543 .0826 .1096 1352 1592 1813 .2014 .2192
8, 2346 2476 .2580 2657 .2708 .2731 2728 .2697 2641 2559
9, .2453 2324 2174 .2004 1816 1613 1395 .1166 .0928 .0684
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Appendix E

The following table lists the first few positive roots of J,(x) =0 and J,(x)=0.

Zeros of Bessel Functions

cases listed successive large roots differ approximately by = = 3.14159... .

Note that for all

n=90 n=1 n=2 n=3 n=4 n=>5 n=6
2.4048 3.8317 5.1356 6.3802 7.5883 8.7715 9.9361
5.6201 7.0156 8.4172 9.7610 11.0647 12.3386 13.5893
J.(@) =0 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002 17.0038
11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 20.3208
14.9309 16.4706 17.9598 19.4094 20.8269 22,2178 23.5861
18.0711 19.6159 21.1170 22.5827 24.0190 25.4303 26.8202
0.0000 1.8412 3.0542 4.2012 5.3176 6.4156 7.5018
3.8317 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349
Ji@) =0 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682
10.1735 11.7060 13.1704 14.5859 15.9641 17.3128 18.6374
13.3237 14.8636 16.3475 17.7888 19.1960 20.5755 21.9317
16.4706 18.0155 19.5129 20.9725 22.4010 23.8036 25.1839
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Answers to Supplementary Problems

CHAPTER 1
1-27' u(olt) = Tl’ u(Lx t) = T27 u(x: 0) = f(x)r Iu(x:t)l < M

' _ du _ _ du _ .
128 (@) u{0,8) = -7 =0, ufL,t) = dple=y = O w0 = f2), |u(zt)] < M
_ du - _ _ ou = -
(6)  uy(0,8) = xlz=0 B(u; —ug), uy(L,t) = 6m|z=L = Bluy —uy),
u(x, 0) = f(x), Jjulx,t) < M
where u; = w(0,t), uy, = u(L,t)
2 2 2hx/L 0=xz=L/2
. T = ¥ e = ,
at2 dx 2L —=%)/L LI2=x =1L
y(on t) = 0) y(L7 t) = 0; yt(x: 0) = 0: Iy(x’ t)l < M
1.32.  (a) linear, dep. var. u, ind. var. z, y, order 2 (d) linear, dep. var. y, ind. var. z, t, order 2
(b) linear, dep. var. T, ind. var. z, y, 2, order 4 (e} nonlinear, dep. var. z, ind. var. r, 8, order 1

(¢) nonlinear, dep. var. ¢, ind. var. z,y, order 3

1.33.  (¢) hyperbolic  (b) hyperbolic (¢ elliptic - (d) parabolic
(e) elliptic if 22+ y2 < 1, hyperbolic if 22+ y2 > 1, parabolicif «2+42=1
(f) elliptic if M < 1, hyperbolic if M > 1, parabolicif M =1

135. (b)) =(2x+y—2)2

92u 3% 2y
1.36. 3W_5axay _2W = 0
az 9z _ 32z 2z 3%
138. (@) xz = F(z) + G(y) () xz = 8 + 22 + 6y* — 68
139. (e) u = Fe+y) + Gx—1y) d 2 = FBx+y)+ Gly—=)
(b) u = e3=F(y — 24) (e) z = Flx+y) + zG(x+y)
(¢ u = F(x+iy) + Glx— iy)
' 22 x4
140. (a) v = F(y—22) + 5 () u = F(y) + «G(y) + «2H(y) + I(y — 2x) + 3
®) y = Fla—t) + Gz +t) — t4 @ = = F@+y)+ G@e+y) — Tsiny + Scosy
14, u = F(x-+iy) + G(x —iy) + «H(x + iy) + xd (x — iy) + (22 + y2)2/4
143. (a) u = 4eBv—21)/2 (6) u = 8e—2x—6t
() u = 3¢—5v-3y 4 2g—3z—2 (f) u = 10e—=—3t — gg—4z—s6t
(6) u = 236t gin 3 — 4e—100t gin By (9) u = 6e—7"t/t gin (r2/2) + 8¢~ 7t gin 7z
(d) u = 8e—97t/16 cos?’z—x — ge—817%t/16 cos%ﬁ
5 . . 3 . . 1 . .
144. (@) y = = sinzx sin2rt () y = -—sin2rxsindxt — = sin 5rx sin 107t
2 47 br
145, u = e~24(2e~ 7t gingx — e~ 167% giy dr)
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CHAPTER 2
16 Z (1 —cosnr) . Nw¥ 40 1 L
2734. (@ — n§1 n sin == () 20 — — nEI - 5
8 & (1—cosnn) nre 3 < | 6(cosnr —1) nrx _ 6 cosnm . nwy
& 2 w2 "gl n? 574 (d) 2 + g { n2r? €083 e o3
2.35. (@) = = 0,*2,%4,...;0 () = = 0,=x10,=20, ; 20
(b) no discontinuities o (d) x = #£3,%9,*15,...;3
16 TX 1 3 1 5rx
2.36. - {cosr + 37 cosT + TSECOST + }
231. (@) 8 3 nsinZum (B £0) = fx) =
T opn=1 47L2 1
2.38. Same answer as 2.37.
32 & 1 . nr . nax 16 & [2cosna/2 —cosnr — 1 nre
239. (a) sy ngl 5 8in - sin == (b) = n§1< — > cos —g—

242, w(x,t) = ylx) + I% 31 {fow [f(w) — ()] smwdu} —wn®wi/L? sinm

" L L
_ ¢—BL
where Yle) = Bl—e7f) E(l—e—vx)
«L K
®© —m?a’t/8
250. (a) u(x,t) = _ 200 S ¢ COSTT im 7%
T e m 4
2.52. 150 — bx
253.  ulp, ) = 120 + 60p2 cos2¢
_ 96 < 1 2n — 1z 2n — Vet
255.  ylx,t) = o 121 T sin 3 cos 3
-0 2 f ‘ in K% in K7 i Ky
257.  w(x,y) = kgl |:a sinh Gen) J, fi(x) sin = dx:| sin . sinh .

< 2 <@ . lrx I 4
+ lgl [m fo falx) sin- = dx:l sin =~ smh;(a Y)

o0

2 a )
+ 3 [ s J, 0@ s
nrx

s MY nwy Rr¥
+ 2 asmh e g f 9s(y) sin . dy:] sin 2% sinh a

mry dy:l sin m;-y sinh m___;rx .

o L
259. ywt) = 3 [ki g sin 2% gin £70L gy 4 f fw sin BT s £ du:l sin 7%
k=1 Litra Jo L L
1 1 x+at
or =[fle + at) + flx —at)] + - f g(w) du
M 2 2a x—at



2.61.

2.63.

2.64.

2.65.

2.66.

2.69.

2.70.

2.71.

2.72.

2.76.
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22,9,) = 3 3 [Apn €08 Apuat + By, sin Apaat] sin M7 sin 7Y
m=1 n=1 b ¢
where A, f f f(z, y) sin 7% gin 27Y y dx dy ,
— nry
B,, = abc)\,,m j\ f g(x,y) sin ——b sin— da dy ,
2 2
and Amn %2— r
2 3 —(a? + n%r? /Lt
u(x,t) = yplx) — L > e ¢(u) sm——du s1n—
n=1
here (&) (uye9Ll — uy)e 0% — (w0~ oL — y,)eax
wher: X =

el — g—oaL

0

ulx, t) = yla) + % 3 e (@ mimt /L [f (f () — ¢(w)) sin”

du:] sin 'n;x

(uleaL — uz)e—ax — (ule—aL — uz)eax
eal — g—aL

where vl =

. mrlk . NTX n2r2bt
\ f(x) sin = dx:l sin—7=cos 75

yot) = 23

2 2
{f flu) sm——— du} sm—gﬁ cos % Z2bt

'n2 2bt sin 77
+ {n2 %5 f g(u) sm—d } T:]

" L
u(e, t) = y(x) + 2 S f [f(u) —y¢(u)] sm—du e~ (kLD g, MTE
L =, 0 L

yla,t) = %g

B(1—e"L)g B _
where () TyamL e (1—e )
. Uo [ . K .
Same as 2.69 but with  y(x) = —2<sm ax — =+ sin aL>
Ka L
2 oo
yl, t) = ylx) + i 2 {f (f(w) — () sm—du} 51n—L7r—xcos mzzt where y(x) = %(x-L)
u(x,y,2) = 2—1 21 B,,, sin mzx sin nry sinh Vm?2 + n2 7z

(x, ) sin mzz sin nry dx dy

4 J‘l fl
= T f
where B sinhVm2+n27 Yo Yo

2 3 » [ ? 7 .
u(r,8) = 3 n§1 <£> {J; (o) sinZL’B—q5 d¢} smﬁﬁ—e
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CHAPTER 3
315. (@) ap=1, a;=—V3, ay=2V3, a;=V5, ay = —6V5, a5 =6V5
(B 1, V3@x—1), V5(6x2—6x+1)

317, (b)) 1, 1—=x, 1—2z+ La?

3.19. (b) \/Ecos(0cos—1x) =\/E, \"—%cos(ncos—lx) n=12...)
T T w

%

b
3.20. flx) = 21 cpdn(®) where ¢, = f w(zx) f(x) pn(x) da

@

—29 + 3 cutn(®)

/2
where = 4 f f (1 — «2)~1/2f(x) cos (n cos™1z) dx \/‘ f f(cos u) cos nu du
T/2

324, (a) 2,-1,% (b) V({183 —49)/18x7

2 _
330. V2, A f %x, A / % (300 3 1> , i.e. the normalized Legendre polynomials

331, 1—a, L2—4x+x2), L(6— 18z + 9a2 —13)

321 flz) =

3.33. (b) eigenvalues mr, eigenfunctions B,, sin mzz, where m =1,2, ...
(¢) ﬁsinmnx, m=12...

- 2m — 1); —
(2m2 )7 2m . 1)793’ \/ECOS @2m > r2 ,

(b) mr, B, sin mrx, \/Esin mre, m=1,2, ...

334. (a) , By, cos m=1,2,...

340. wu(x,t) = —2— Ex {j; Flw) cosizlélll)—”udu} cos(_”zfl)_’_@.e—nzn—n’w%/uﬁ
ne

(b) Heat conduction in an infinite strip of width L, with one side at 0°, the other side insuvlated,
and initial temperature distribution given by f(x).

o0 L _ _
341. (@) y(x,t) = }2: gl [j; f(u) sin ————(27;; b U du] sin (2n ZLI)M; cos (2n 2Ll)7rat

(b) Vibrating string with end x = 0 fixed, end x = L free, initial shape f(x), initial speed zero

CHAPTER 4
426. () 30, (b) 16/105, (c) §r%/2 431. (a) 1/105, (b) 4/15, (c) 2x/V/3
121, @ 24, 0) oF, © % 438.  (a) 1/60, (b) =/2, (c) 3r
3V T(4/5)
18 @ 4T, 6) 2¥E, @ s 439. (a) 127, (b) =
431. (o) 24, (b) —3/128, (c) $T(}) 441.  (a) 37/256, (b) 57/8

432. (a) (16V7)/105, (b) —3T(2/3) 442. (a) 16/15, (b) 8/105
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CHAPTER 5
524 (a) e ) 1 530. (@~ ()T
ae 4 4
1/4
5.25. (a) 4 (o cos a — sin a) (b) 3r 537. ylu) = 4 o2’
ad 16 T
1 —cosa sin a 2 X
5.26. (@) ———— (b)y — 5.44. u(x,y) = —tan 1;
o ’lto UO x
—_— — —_ _ -1
527. (a) T2 R 545. w(x,y) ) + - tan ”
5.98. y(@) = (2 + 2 cosx — 4 cos 2x)/mx 546,  w(w,y) = %[tan—l<1~1;—f> + tan‘1<1%>:|
CHAPTER 6

2 _

6.37. ( [(3 #?) sin z 3% cos x:\
TE

|:3x sinz + (3 — #2) cos x]
T

6.38. <8 = > Jy(@) — —Jo(x)

6.40. (o) x3J3(x) +e  (b) 2J5(1) —3J,(1)  (¢) w2Jy(x) + aty(x) — f Jo () dae

641. (0) 6VzJ,(Vz) — 3Va2J (V=) + ¢ (b) —Jgicx) -~ J‘;x) + % f To (@) ds

642. xJy(x) sine — zJ (%) cosx + ¢

6.57. (a) —wicosx (b) "—2—sinx (e) —‘,—2—<sinx + 9.9&) (d) 1;_2_(5111_90 — cosm>
) TX T T x TL x

659. (a) x3Ys(x) + ¢ (d) —Y,(x) — 2Y(x)/x + ¢
@ == Y1) — 7 Va(@) — 25 Vs(@) +—fYo(w>dx
6.68. (a) _m. eilx — /4 — nmw/2) (b) _x e Uz —m/4—nmw/2)

672. y = AJy(VZ) + BY, (V%)

673. (o) y = AmorBeosw ®) v = VE[ATy(e?) + BI_y4(3a?)]

6.74. y = AJy(e*) + BY y(e%)

6.75. (b)) vy

AJy(2Vw) + BY(2V%)

676. (b) y

AﬁJl/s (%xS/Z) + B\fa?J_l/3(§x3/2)

6.78. y = AxJ (x, + BzY,(x)
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6.95.

6.96.

6.97.

6.113.

6.117.

u(P, @, t) = 2

n=

<%

yx,t) = X

n=1

(a) u(P; b, Z)

where
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A J3(\pp) cos 3¢ cos A, t where A, are the positive roots of J4(A\) =0 and
1

2[(A% — 8)Jg(\) — 601 (A,) + 8]
AT (0N

A, =

JO(knﬁ)

1
= cos (A1) f f@) Jo(\Vx ) de where Jg(0,) =0, n=1,2,...
JT(A,) 0

Jn()\kp) sinh A (p — 2)
a*7 S5 kS0 J7 41 (\a) sinh Ao

(A, x sinng + B, ) cosng)
a 27
Ay = fo J; of(p, ) 0 (A\cp) sin ne dp dg

a 2T
Buw = | J o0, 1w O0p) cosms do
0 -0

and J,(\a) =0

(b) u(p, ¢, z)

where

9 % Ji(\p) sinh Ao — 2)

2

a® =) J2(A\p@) sinh Agp

By cos ¢

B, = %[(3—&)%(&@ -3 f Tolhue) do |

and J;(A\a@) =0

wp,2zt) = S S cgme TnKTI (r,0) sin krz

k=1 m=1 :

4 1 a1
where Cem = 5 f f 0J o (r0) flp, 2) sin kxz dp dz
Jo(rm) Jo Jo
and Jy(ry,) =0
|

%(p, ¢, t) E:o §Amouo(?\mop) €OS Aot

m

=] ©

+ X 3 (4, cosng + B, sin ng)u,(Apnp) €0S Ayt
1

m=1 n=

where unO‘mnP) = J'n ()\mnP) Yn ()\mna) - Jn (kmna) Yn (xmnp)y

1 b b
Amn - —__T‘ go S Pf(P» qb\un(}\mnm cos N d’P d¢ )
7 a
1 27 b
an = -5 f f Pf(Py ¢)un(>\mnp) sin ne dp d¢ R
vl J, o
b
L= | olunOummo))2dp
a

and ¢ = Vr/u
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CHAPTER 7
732 Pyx) = %(3 — 3022 + 35x%) 7.50. 2u0<1 - %)
1
Py(z) = §(15x — 0% + 63°) 751. m/r where 7 > a is the distance
from the center of the sphere
733. (@0 (B 2/5 () O 756. (a) 3(1—x2)

%) — 2(3 — 2422 — 21x%)

2
7.43. a3(x) = %(5x2_ 3) ln<1 + x> _ B + 2

1—=x 2 3 (¢) —105x(1 — x2)3/2
_ x 11—« 1=l 1 1+ x
T4, y = Ax +B[1+2ln(1+x>] 757, (@) —V1—w= [21“(1—00)““*—1—902]
(b) xt — a2+ 2
145, —2Py@) + Py@) — 2P, (x) + 2P, () 1—a?
5 7 35
7.63. Inside, v = wvyrt sind 6 cos 6 cos 3¢
7 5 7
(8 2 4 - v
746. Pole) + 4 Py x) + 8 P (@) 16 Py (@) + Outside, v = —2 sin3 ¢ cos 6 cos 3¢

o

buy, — au, ab(u; — uy)

748. (@) v = vy + 3vyrcoss 7.72. u = +
b—a (b—a)r
by v = 2‘-)-4—%coso
( =5 TR

) 778, u = [Ady 41200 + By 1500)]
v
49. (@) v = —30 [1—72P;(cos )] * [AgP,(cos 8) + ByQ, (cos 0)]6_K)‘2t

_ 291 Pyleoso)
® v =5[]

CHAPTER 8

8.17. 1, 2x, 4x2—2, 8x3 —12¢ 830. Ly(x) = 2 — 4 + a2

Ly(x) = 6 — 18x + 92 — a3
8.20. 4x2—2, 8x3—12x

8.34. 2Ly(x) — 8Ly(x) + 6Ly(x) — Ly(x)
822. L7 if n=0, 2V7 if n=2,

i X
0 otherwise 836. (a) ¥y = ¢;+ ¢y f %dm

26. ~8H,(x) + THy(x) — 3Hy(x) + 4H :
B (@ TR TN T ¥ 4 ® v = al-a+a0-2 [ 5

8271. (@) ¥y = ¢;te fex” dx 838. Li(x) = 144 — 96x + 1242

gt Lix) = —1296 + 6002 — 602
¢;x + ¢yt f de

il

o v
841. 180

8.28. Ly(x) = 24 — 96z + 7222 — 1628 + x¢ 843. y = Asin~'x+ B
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844 (@) Ty(w) = 8% —8x% +1 851. (@) y = ALy(®) + BL,(®) f Z?:)
(b) Ts(x) = 16a5 — 2023 + 22
— dx
845.  1[T3(x) + 2Ty (x) — 18T (x) + 10Ty (%)) 855. (a) y = AT,(x) + BT,(v) f ——\/T:_w—z[Tn(x)P

849. (a) y = AH,(x) + BH, (%) f %(ii)ﬁ—



INDEX

Absolute convergence, 24, 89
Absolute temperature, 10
Acceleration due to gravity, 4, 17
vibrating string under, 17, 96
Analytic continuation of gamma function,
67, 71, 72
Angular momentum, 121
Approximations to functions, 34
in the least-squares sense, 53, 54, 57, 58, 64, 65
Arbitrary functions, 2, 12
Associated Laguerre polynomials, 156, 162, 165
Associated Legendre functions, 132, 144-150
differential equation for, 132, 144-146
expansion of functions in series of, 147
Legendre functions as special case of, 132
orthogonality of, 132
Parseval’s identity and, 152
potential problems involving, 148-150
series of, 132 ‘
solutions of Laplace’s equation using, 148
Associative law of algebra, 82, 86
Asymptotic formulas, for Bessel functions,
101, 125
for gamma function, 68, 76
Asymptotic series or expansions, 70, 76, 77, 79

Bar, heat flow in, 9, 10, 17
assuming Newton’s law of cooling, 17
infinite, 95, 96 ’
semi-infinite, 89, 90

Beam, vibrating, 3, 4
Ber and Bei functions, 100, 111, 112, 125

‘ graphs of, 100

Bessel functions, 97-129
asymptotic formula for, 101, 125
differential equation for, 97
of the first kind, 97, 98, 104-109, 123
functions related to, 99, 100, 111, 112, 124, 125
gamma function and, 98
generating function for, 99, 108, 109, 123, 124
graphs of, 98, 100
Hankel functions in terms of, 99, 111, 125
integral representation for, 109
integrals involving, 106, 107 -
linear independence of, 98, 104, 105, 108
modified [see Modified Bessel functions]
of order half an odd integer, 98, 105
orthogonality of, 101, 112, 113
recurrence formulas for, 99, 105, 106, 109, 111
of the second kind, 97, 109-111, 119-122
series of, 102, 118, 114
solutions using, 102, 114-122, 126-128
table of values for, 176
zeros of, 101, 177

Bessel’s differential equation, 97, 102-104, 108
equations transformable into, 101, 112, 125

187

Bessel’s differential equation (cont.)
general solution of, 97, 104, 105, 109, 110
Bessel’s inequality, 34, 58, 65
for Fourier series, 34
for orthonormal series, 58
for vectors, 64
Beta function, 69, 73-76
connection of with gamma function, 69, 73-75
definition of, 69
evaluation of integrals in terms of, 69, 73-76
Binomial theorem, 136
Boundary conditions, 2, 11, 15
for heat conduction, 10
for radiation, 10
for vibrating string, 6
Boundary value problems, 1-19
Bessel functions and, 102, 114-119
[see also Bessel functions)
definition of, 2
Fourier integrals and, 82, 89-91
[see also Fourier integrals]
Fourier series solutions for [see Fourier series]
involving heat conduection, 7-10
involving vibrating string, 6, 7
mathematical formulation of, 1, 6-10
methods of solving, 5
physical interpretation of, 1, 16, 17, 19, 48, 49
solution of, 1, 11, 19, 38
solved by separation of variables
[see Separation of variables]
Boundedness condition, 6

Cantilever beam, 96

Cauchy or Euler differential equation, 40,
101, 134

Celsius degrees, 10

Centigrade degrees, 10

Chain, vibrations of, 127

Characteristic functions, 55

Characteristic values, 55

Chebyshev polynomials, 156, 163, 165

Circular cylinder, heat flow in, 115-117, 126-128

Circular disc, potential of, 151

Circular membrane, 3, 45, 46, 117-119, 126-

Circular plate, temperature of, 39, 40, 48, 50,
114, 115

Classification of partial differential equations,
10, 11, 18

Commutative law of algebra, 82, 86

Complementary error function, 69

Completeness, 34, 54, 65

Complex notation for Fourier series, 24

Components of vectors, 52

Conducting medium, 7

Conduction of heat [see Heat conduction equation]

Conductivity, thermal, 3, 7, 62, 63
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Continuity, piecewise [see Piecewise
continuous functions]

" points of, 28, 80, 81
Continuous functions, 21, 25

piecewjse [sce Piecewise continuous functions]
Convergence, of Fourier series, 21-24, 27, 35-37

of orthonormal series, 53

of series of Bessel functions, 98

uniform {see Uniform convergence]
Convergence in mean, 54
Convolution theorem, 82, 95

proof of, 85, 86
Cosine and sine integrals, 69, 79

Fresnel [see Fresnel sine and cosine integrals]
Cosine and sine transforms, Fourier, 81
Cylinder, heat flow in, 115-117, 126-128
Cylindrical coordinates, 4

Density, 3, 7, 8, 63
Density function [see Weight function]
Dependent variables, 10, 11, 18
Derivative, partial, 2, 6
Differentiable function, 12
Differential equation, 1
Differentiation and integration, of Fourier
series, 24, 47

of series, 23, 24
Diffusivity, 3, 8, 9
Dirichlet conditions, 22-24, 27-29, 102, 120

and Bessel series, 102

and Fourier series, 22

and orthonormal series, 53

and Parseval’s identity, 23

[see also Parseval’s identity]
Dirichlet problem, 3, 43
Discontinuities, 21, 25, 26, 28, 46, 80, 81, 102
Distributive law of algebra, 82
Double Fourier series, 24, 25, 37, 45, 46
Drumhead, vibrations of [see Membrane]
Duplication formula for gamma function, 68,
75,76
proof of, 75, 76

Eigenfunctions, 54, 55, 58-61, 65
orthogonality of for Sturm-Liouville systems,
55, 58-61
Eigenvalues, 54, 55, 58-61, 65
reality of for Sturm-Liouville systems, 59
Elasticity, modules of, 3
Electric potential, 3 [see also Potential]
Elliptic partial differential equations, 2, 11 18
Equilibrium position, 3, 45
Error function, 69, 77, 90, 95
Error, mean square, 34, 53, 57, 58, 64
Euler or Cauchy differential equation, 40, 101, 134
Euler’s constant, 68, 78, 98
Even and odd extensions, 32
Even and odd functions, 22, 29-33
Existence of solutions, 1, 2, 167
theorems on, 2
Experiments, 1
Exponential integral, 69

INDEX

Factorial function [see Gamma function]
Finality, principle of, 54
First harmonic, 45
Fourier, 1
Fourier coefficients, 21, 27, 33, 34, 36, 117
calculation of, 27-29, 31-33
for double Fourier series, 24, 25, 37, 45, 46
generalized, 53, 56, 58
motivation for definition of, 27
Fourier expansion [see Fourier series]
Fourier integrals, 80-96 [see also Fourier’s
integral theorem)]
applications of, 82
conditions for validity, 80
definition of, 80
need for, 80
for odd and even functions, 81
Parseval’s identity for, 82
solutions to problems using, 89-91, 95
Fourier series, 1, 20-51
applications of, 20-51
Bessel’s inequality for, 34
complex notation for, 24
convergence of, 21-24, 27, 35-37
definition of, 21, 22, 27
half range, 22, 23, 29-33, 37
integration and differentiation of, 24, 27, 34, 35
need for, 17, 20
orthonormal series as generalizations of, 53
Parseval’s identity for, 23, 33, 34
solutions using, 48
special, 169-172
used in summing series, 33-35
Fourier sine and cosine transforms, 81
Fourier transforms, 81, 83-85
convolution theorem for, 82, 85, 86, 95
inverse, 81
solutions to problems by, 92-94
special, 173-175
Fourier’s integral theorem, 80 [see also
Fourier integrals)
condition for validity of, 80
equivalent forms of, 80, 81, 83
proof of, 87-89
Frequency of normal modes, for drumhead, 119
for string, 44
Fresnel sine and cosine integrals, 69, 79
Frobenius, method of, 97, 104, 134, 135
Fundamental frequency or first harmonic, 45, 46
Fundamental mode, 45

Gamma function, 67-79
analytic continuation of, 67, 71, 72
asymptotic formula for, 68, 76
Bessel functions and, 98
connection of with beta function, 69, 73-75
definition of, 67
duplication formula for, 68, 75, 76
evaluation of integrals using, 69, 71-73
‘graph of, 68
miscellaneous results involving, 68
recurrence formula for, 67, 70
Stirling’s asymptotic series for, 68, 76



Gamma function (cont.)
table of values of, 68
General solution of a partial differential
equation, 2, 5, 12, 13, 14, 18, 19
Generalized Fourier coefficients, 53, 56, 58
Generating functions, for Bessel functions, 99,
108, 109, 123, 124
for Chebyshev polynomials, 156
for Hermite polynomials, 154, 157
for Laguerre polynomials, 155
for Legendre polynomials, 131, 136, 137, 139
Gradient, 7
Gram-Schmidt orthonormalization process, 55,
61, 62, 65
Gravitational potential, 3, 18, 143, 144
[see also Potential]
Laplace’s equation and, 3
Gravity, finite string under, 17
infinite string under, 96
Green’s theorem, 167

Half plane, solution of Laplace’s equation in, 91
Half range Fourier sine or cosine series, 22,
23, 29-33, 37
Hankel functions, 99, 111, 125
Harmonice oscillator, 165
Harmonics, 45
Heat conduction equation, 3, 9, 10, 62
applications of, 1, 16, 25, 37-42, 89-94
derivation of, 7, 8
Laplace’s equation as, 3
one-dimensional, 10
for a thin bar, 9, 10, 62, 63
uniqueness of solution to, 167, 168
vector method for deriving, 9
Heat flux, 7
Hemisphere, heat flow in, 142
Hermite polynomials, 154, 155, 157-160, 164
differential equation for, 154, 158, 165
generating function for, 154, 157
orthogonality of, 154, 155
Parseval’s identity for, 159, 160
recurrence formulas for, 154, 157
Rodrigue’s formula for, 154, 157
series of, 155, 158, 159
Hollow sphere, potential of, 141, 142, 151 )
Homogeneous partial differential equations, 2
10, 18
Hyperbolic partial differential equations, 2, 11, 18

Independence [see Linear independence]
Independent variables, 10, 11, 18
Indicial equation, 97, 104, 135
Inertia, moment of, 4
Infinite-dimensional vector, 52
Infinite series, 23, 24

convergence of, 23
" uniform convergence of, 23, 24

[see also Uniform convergence]

Initial temperature, 10, 41
Insulated surface, 9, 16, 38, 39, 41, 62, 89

boundary condition for, 10
Integral equation, 85-87, 94, 95

INDEX
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Integration and differentiation, of Fourier
series, 24, 27, 34, 35
of series, 23, 24
Inverse Fourier transforms, 81

Jacobian, 86

Kelvin temperature, 10

Ker and Kei functions, 100, 125
graphs of, 100

Kronecker’s symbols, 562

Laguerre polynomials, 65, 155, 156, 164
associated, 156, 162, 165
differential equation for, 155
generating function for, 155
important properties of, 155, 156
orthogonality of, 156, 160, 161
recurrence formulas for, 155, 161
Rodrigue’s formula for, 155
series expansions involving, 156, 161
Laplace’s equation, 3, 9, 18, 42, 43, 97
associated Legendre functions and, 132
Bessel functions and, 97, 102, 103
in cylindrical coordinates, 4
Fourier integral solutions of, 91
Fourier series solutions of, 25, 42, 43
gravitational or electric potential and, 3, 18,
143, 144 [see also Potential]
Legendre functions and, 130, 133, 135, 136
in spherical coordinates, 4, 5
Laplacian, 3
in cylindrical coordinates, 4
in rectangular coordinates, 3
in spherical coordinates, 4, 5
Least-squares sense, approximations in, 53,
54, 57, 58, 64, 65
Left and right hand limits, 21
Legendre functions, 130-153 [see also Legendre
polynomials]
associated [see Associated Legendre functions]
differential equation for, 130, 133-136
of first kind, 130
linear independence of, 136
of second kind, 130, 131, 135, 138
series of, 131, 132, 139-141, 151
Legendre polynomials, 62, 130-132, 135, 136-144,
150, 151
derivation of, 136
generating function for, 131, 136, 137, 139
orthogonality of, 131, 138, 139
recurrence formulas for, 131, 137
Rodrigue’s formula for, 130, 136
series of, 131, 132
Legendre’s associated differential equation,
132, 144-146
general solution of, 132
Legendre’s differential equation, 130, 133-136
general solution of, 130
L’Hospital’s rule, 110
Limit in mean, 54
Limits, right and left hand, 21
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Linear independence, of Bessel functions, 98,
© 104, 105, 108
of Legendre functions, 136
Linear partial differential equations, 2, 5, 10,
11, 13, 14, 18
Longitudinal vibrations of a beam, 3, 4

Mass, 3, 8, 72
Mathematical formulation of physical problems,
1, 6-10

Mathematical models, 1

Mean of a function, 21

Mean, limit in, 54

Mean square error, 34, 53, 54, 57, 58, 64

Membrane, circular, 117-119, 126
equation for vibrations of, 3
square, 45, 46

Models, mathematical, 1

Modes of vibration, 44-46, 119

Modified Bessel functions, 99, 100, 124
differential equation for, 99
graphs of, 100

Modulus of elasticity, 3

Moment of inertia, 4

Momentum, angular, 121

Musie, 44, 46

Mutually orthogonal or orthonormal functions,

55, 56, 64

Natural or normal modes of vibration, 44-46, 119
Necessary conditions, 22
Neumann functions, 97
Newton’s law, 1, 6, 72
of cooling, 10, 17, 62, 63, 127
Noise, 119
Nonhomogeneous partial differential equations,
2,10, 18
Nontrivial and trivial solutions, 55, 58
Normal, 7
outward-drawn, 9, 168
unit, 9, 168
Normal or natural modes of vibration, 44-46,
119
Normalization, 55
Normalized function, 52, 55
Normalized vector, 52

0dd and even extensions, 32
0dd and even functions, 22, 29-33
Order, of Bessel functions, 97-99
of a partial differential equation, 2, 10, 11,
12, 18
Ordinary differential equations, 5, 14
used to solve partial differential equations, 13
Orthogonal functions, 52, [see also Orthogonality]
definitions involving, 52, 53
eigenfunctions as, 55 [see also Eigenfunctions]
Orthogonal sets, 56
vectors, 52
Orthogonality, 52, 53
of Bessel functions, 101, 112, 113
of eigenfunctions, 58

Orthogonality (cont.)
of Hermite polynomials, 154, 155
of Laguerre polynomials, 156, 160, 161
of Legendre polynomials, 131, 138, 139
with respect to weight function, 53
Orthonormal series, 33, 53, 56, 64
Bessel’s inequality for, 58
expansion of functions in, 53
Parseval’s identity for, 54
Orthonormal sets, 52, 53, 57
Overtones, 45

Parabolic partial differential equations, 2, 11, 18
Parseval’s identity, 23, 33, 34, 47, 48, 57, 58, 64,
65, 126, 152
for Fourier integrals, 82
for Fourier series, 23, 33, 34
for Hermite polynomials, 159, 160
for orthonormal series, 54
for vectors, 64
Partial derivatives, 2, 6
Partial differential equations, 1, 2
classification of, 10, 11, 18
definitions pertaining to, 2
elliptic, hyperbolic and parabolic, 2, 11, 18
existence and uniqueness theorems for, 1, 2,
167, 168
homogeneous and nonhomogeneous, 2, 10, 18
linear, 2, 5, 10, 11, 13, 14, 18
order of, 2, 10, 11, 12, 15
solved as ordinary differential equations,
5,13
some important, 3, 4
Partial sum, 23, 34
Particular solutions of partial differential
equations, 2, 5, 12, 13, 18
obtained by separation of variables, 5
as special cases of general solutions, 5, 12
Pendulum, vibrations of, 121, 122
Period, 20, 25, 26, 29-33, 35, 36
least, 20
of vibration, 45
Periodic functions, 20
Physical interpretation of boundary value
problems, 1, 16, 17, 19, 48, 49
Physical laws, 1
Piano string, 44
Piecewise continuous functions, 21, 34, 35, 36, 88
Polar coordinates, 39, 73
Potential, of circular disc, 151
of hollow sphere, 141, 142, 151
of ring, 143, 144
of sphere, 148-150
Potential equation, 3, 96 [see also Laplace’s
equation]

Quantum mechanics, 165

Radiation, heat conduction with, 62

heat flux of, 10

Stefan’s law of, 10
Rectangular coordinates, Laplacian in, 3
Rectangular plate, 49



Recurrence formulas, for Bessel functions, 99,
105, 106, 109, 111 -
for Chebyshev polynomials, 156
for gamma function, 67, 70
for Hermite polynomials, 154, 157
for Laguerre polynomials, 155, 161
for Legendre functions, 131, 137
Riemann’s theorem, 35, 88
Right and left hand limits, 21
Ring, potential of, 143, 144
Rodrigue’s formula, for Hermite polynomials,
154, 157
for Laguerre polynomials, 155
for Legendre polynomials, 130, 136
Root mean square error, 53, 54, 57, 58, 64
least or minimum, 54, 57, 58

Scalar product, 52
Schroedinger equation, 165
Separation constant, 55
leading to Sturm-Liouville systems, 55, 62-64
Series, of Bessel functions, 119-122, 125
of Hermite polynomials, 155, 158, 159
of Laguerre polynomials, 156, 161
of Legendre functions, 131, 132, 189-141, 151
Sine and cosine integrals, 69, 79
Fresnel, 69, 79
Sine and cosine transforms Fourier, 81
Singular solution, 2
Slab, heat flow in, 10
Solutions of partial differential equations, 2, 5
13, 14, 18
existence and uniqueness of, 1, 2, 167, 168
methods of finding, 13, 14, 18, 19
Special functions, 67-79
Specific heat, 3, 7, 8, 63
Sphere, potential of, 48-150
Spherical coordinates, 4, 5
Square plate, temperature in, 41, 43, 48, 49
transverse vibrations of, 49
Steady-state heat flow, 9
Steady-state temperature, 3, 38, 42, 48, 50, 51
Stefan’s radiation law, 10
Stirling’s approximation for n!, 68
proof of, 76
Stirling’s asymptotic series for gamma function,
) 68,76
Strain, 3
Stress, 3
String, vibrating, 3, 6, 17, 45, 48, 93, 94, 96
[see also Vibrating string equation]
under gravity, 17, 96
Sturm-Liouville systems, 54, 55, 58-61, 65, 66, 128
Sufficient conditions, 22

Sums of series, Fourier methods for finding,
33-35

Superposition principle, 5

>

Temperature, 3, 7, 9, 10, 16, 37-43
Tension of a string, 3, 6, 45
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Thermal conductivity, 3, 7, 62, 63
Torque, 121
Transformation equations, between rectangular
and cylindrical coordinates, 4
between rectangular and spherical
coordinates, 5
Transverse vibrations, 3
of a beam, 4
of a membrane, 45
of a plate, 49
of a string, 3
Trigonometric expansions, 17
Trivial and non-trivial solutions, 55, 58

Undetermined coefficients, method of, 14
Uniform convergence, 23, 24, 27, 33, 47, 89
of orthonormal series, 56
theorems on, 23, 24
Weierstrass M test for, 23, 24
Uniqueness of solutions, 1, 2
proof of, 167, 168
theorems on, 2
Unit normal, 9, 168
Unit vectors, 52

Variables, 2, 10, 11, 18
Vector method for deriving heat conductlon
equation, 9
Vectors, 52
Bessel’s inequality for, 64
components of, 52
expansion of, 53
functions as, 52
infinite-dimensional, 52
normalized, 52
Parseval’s identity for, 64
unit, 52
Vibrating beam, 3, 4
Vibrating chain, 127
Vibrating membrane, 43, 46
Vibrating string equation, 3, 6, 7, 43-46
derivation of, 6
generalized to higher dimensions, 3
with gravity term, 17
solution of by Fourler integrals, 93, 94
solution of by Fourier series, 43-45
with variable density and tension, 7, 128
Vibrating systems, 25 [see also Vlbratmg' beam
Vibrating string equation]
Vibration, modes of, 44- -46, 119
Violin string, 3, 44

>

Wave equation, 152
Weierstrass M test 23, 24, 89
Weight function, 53, 55, 64 101
for Bessel functlons, 101°
for Hermite polynomials, 154, 155, 157, 158

for Laguerre polynomials, 156 160 161
Wronskian, 108

Zeros of Bessel functions, 101, 177



