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PREFACE

This book is intended to accompany a text used in that first course in fluid mechanics
which is required in all mechanical engineering and civil engineering departments, as
well as several other departments. It provides a succinct presentation of the material so
that the students more easily understand those difficult parts. If an expanded
presentation is not a necessity, this book can be used as the primary text. We have
included all derivations and numerous applications, so it can be used with no
supplemental material. A solutions manual is available from the authors at
MerleCP@sbcglobal.net.

We have included a derivation of the Navier–Stokes equations with several solved
flows. It is not necessary, however, to include them if the elemental approach is selected.
Either method can be used to study laminar flow in pipes, channels, between rotating
cylinders, and in laminar boundary layer flow.

The basic principles upon which a study of fluid mechanics is based are illustrated
with numerous examples, solved problems, and supplemental problems which allow
students to develop their problem-solving skills. The answers to all supplemental
problems are included at the end of each chapter. All examples and problems are
presented using SI metric units. English units are indicated throughout and are included
in the Appendix.

The mathematics required is that of other engineering courses except that required
if the study of the Navier–Stokes equations is selected where partial differential
equations are encountered. Some vector relations are used, but not at a level beyond
most engineering curricula.

If you have comments, suggestions, or corrections or simply want to opine, please
e-mail me at: merlecp@sbcglobal.net. It is impossible to write an error-free book, but if
we are made aware of any errors, we can have them corrected in future printings.
Therefore, send an email when you find one.

MERLE C. POTTER

DAVID C. WIGGERT

v
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Chapter 1

Basic Information

1.1 INTRODUCTION

Fluid mechanics is encountered in almost every area of our physical lives. Blood flows through our veins
and arteries, a ship moves through water and water flows through rivers, airplanes fly in the air and air
flows around wind machines, air is compressed in a compressor and steam expands around turbine
blades, a dam holds back water, air is heated and cooled in our homes, and computers require air to cool
components. All engineering disciplines require some expertise in the area of fluid mechanics.

In this book we will present those elements of fluid mechanics that allow us to solve problems
involving relatively simple geometries such as flow through a pipe and a channel and flow around
spheres and cylinders. But first, we will begin by making calculations in fluids at rest, the subject of fluid
statics. The math requirement is primarily calculus but some differential equation theory will be used.
The more complicated flows that usually are the result of more complicated geometries will not be
presented in this book.

In this first chapter, the basic information needed in our study will be presented. Much of it has been
included in previous courses so it will be a review. But, some of it should be new to you. So, let us get
started.

1.2 DIMENSIONS, UNITS, AND PHYSICAL QUANTITIES

Fluid mechanics, as all other engineering areas, is involved with physical quantities. Such quantities
have dimensions and units. The nine basic dimensions are mass, length, time, temperature, amount of
a substance, electric current, luminous intensity, plane angle, and solid angle. All other quantities can
be expressed in terms of these basic dimensions, e.g., force can be expressed using Newton’s second
law as

F ¼ ma ð1:1Þ
In terms of dimensions we can write (note that F is used both as a variable and as a dimension)

F ¼ M
L

T2
ð1:2Þ

where F, M, L, and T are the dimensions of force, mass, length, and time. We see that force can be
written in terms of mass, length, and time. We could, of course, write

M ¼ F
T2

L
ð1:3Þ

1
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Units are introduced into the above relationships if we observe that it takes 1 N to accelerate 1 kg at
1 m=s2 (using English units it takes 1 lb to accelerate 1 slug at 1 ft=sec2), i.e.,

N ¼ kg·m=s2 lb ¼ slug-ft=sec2 ð1:4Þ
These relationships will be used often in our study of fluids. Note that we do not use ‘‘lbf’’ since the unit
‘‘lb’’ will always refer to a pound of force; the slug will be the unit of mass in the English system. In the
SI system the mass will always be kilograms and force will always be newtons. Since weight is a force, it
is measured in newtons, never kilograms. The relationship

W ¼ mg ð1:5Þ
is used to calculate the weight in newtons given the mass in kilograms, where g ¼ 9.81 m=s2 (using
English units g ¼ 32.2 ft=sec2). Gravity is essentially constant on the earth’s surface varying from 9.77 to
9.83 m=s2.

Five of the nine basic dimensions and their units are included in Table 1.1 and derived units of
interest in our study of fluid mechanics in Table 1.2. Prefixes are common in the SI system so they are
presented in Table 1.3. Note that the SI system is a special metric system; we will use the units presented

Table 1.1 Basic Dimensions and Their Units

Quantity Dimension SI Units English Units

Length l L meter m foot ft

Mass m M kilogram kg slug slug

Time t T second s second sec

Temperature T Y kelvin K Rankine –R
Plane angle radian rad radian rad

Table 1.2 Derived Dimensions and Their Units

Quantity Dimension SI units English units

Area A L2 m2 ft2

Volume �V L3 m3 or L (liter) ft3

Velocity V L=T m=s ft=sec

Acceleration a L=T2 m=s2 ft=sec2

Angular velocity O T21 s21 sec21

Force F ML=T2 kg·m=s2 or N (newton) slug-ft=sec2 or lb

Density r M=L3 kg=m3 slug=ft3

Specific weight g M=L2T2 N=m3 lb=ft3

Frequency f T21 s21 sec21

Pressure p M=LT2 N=m2 or Pa (pascal) lb=ft2

Stress t M=LT2 N=m2 or Pa (pascal) lb=ft2

Surface tension s M=T2 N=m lb=ft

Work W ML2=T2 N·m or J (joule) ft-lb

Energy E ML2=T2 N·m or J (joule) ft-lb

Heat rate _QQ ML2=T3 J=s Btu=sec

[CHAP. 12 BASIC INFORMATION



in these tables. We often use scientific notation, such as 3 · 105 N rather than 300 kN; either form is
acceptable.

We finish this section with comments on significant figures. In every calculation, well, almost every
one, a material property is involved. Material properties are seldom known to four significant figures
and often only to three. So, it is not appropriate to express answers to five or six significant figures. Our
calculations are only as accurate as the least accurate number in our equations. For example, we use
gravity as 9.81 m=s2, only three significant figures. It is usually acceptable to express answers using four
significant figures, but not five or six. The use of calculators may even provide eight. The engineer does
not, in general, work with five or six significant figures. Note that if the leading numeral in an answer is
1, it does not count as a significant figure, e.g., 1248 has three significant figures.

EXAMPLE 1.1 Calculate the force needed to provide an initial upward acceleration of 40 m=s2 to a 0.4-kg
rocket.

Solution: Forces are summed in the vertical y-direction:X
Fy ¼ may

F2mg ¼ ma

F20:4 · 9:81 ¼ 0:4 · 40

\ F ¼ 19:92N

Note that a calculator would provide 19.924 N, which contains four significant figures (the leading 1 does not
count). Since gravity contained three significant figures, the 4 was dropped.

Table 1.2 Continued

Quantity Dimension SI units English units

Torque T ML2=T2 N·m ft-lb

Power _WW ML2=T3 J=s or W (watt) ft-lb=sec

Mass flux _mm M=T kg=s slug=sec

Flow rate Q L3=T m3=s ft3=sec

Specific heat c L2=T2Y J=kg·K Btu=slug-–R
Viscosity m M=LT N·s=m2 lb-sec=ft2

Kinematic viscosity n L2=T m2=s ft2=sec

Table 1.3 SI Prefixes

Multiplication factor Prefix Symbol

1012 tera T

109 giga G

106 mega M

103 kilo k

1022 centi c

1023 milli m

1026 micro m

1029 nano n

10212 pico p
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1.3 GASES AND LIQUIDS

The substance of interest in our study of fluid mechanics is a gas or a liquid. We restrict ourselves to
those liquids that move under the action of a shear stress, no matter how small that shearing stress may
be. All gases move under the action of a shearing stress but there are certain substances, like ketchup,
that do not move until the shear becomes sufficiently large; such substances are included in the subject of
rheology and are not presented in this book.

A force acting on an area is displayed in Fig. 1.1. A stress vector is the force vector divided by
the area upon which it acts. The normal stress acts normal to the area and the shear stress acts tangent
to the area. It is this shear stress that results in fluid motions. Our experience of a small force parallel
to the water on a rather large boat confirms that any small shear causes motion. This shear stress is
calculated with

t ¼ lim
DA!0

DFt

DA
ð1:6Þ

n

t

A

F Fn

Ft

A

Figure 1.1 Normal and tangential components of a force.

Each fluid considered in our study is continuously distributed throughout a region of interest, that
is, each fluid is a continuum. A liquid is obviously a continuum but each gas we consider is also assumed
to be a continuum; the molecules are sufficiently close to one another so as to constitute a continuum. To
determine whether the molecules are sufficiently close, we use the mean free path, the average distance a
molecule travels before it collides with a neighboring molecule. If the mean free path is small compared
to a characteristic dimension of a device (e.g., the diameter of a rocket), the continuum assumption is
reasonable. In atmospheric air at sea level, the mean free path is approximately 6 · 1026 cm and at an
elevation of 100 km, it is about 10 cm. So, at high elevations, the continuum assumption is not
reasonable and the theory of rarified gas dynamics is needed.

If a fluid is a continuum, the density can be defined as

r ¼ lim
D�V!0

Dm
D�V ð1:7Þ

where Dm is the infinitesimal mass contained in the infinitesimal volume D�V. Actually, the infinitesimal
volume cannot be allowed to shrink to zero since near zero there would be few molecules in the small
volume; a small volume E would be needed as the limit in Eq. (1.7) for the definition to be acceptable.
This is not a problem for most engineering applications since there are 2:7 · 1016 molecules in a cubic
millimeter of air at standard conditions.

So, with the continuum assumption, the quantities of interest are assumed to be defined at all points
in a specified region. For example, the density is a continuous function of x, y, z, and t, i.e., r ¼
rðx,y,z,tÞ.

[CHAP. 14 BASIC INFORMATION



1.4 PRESSURE AND TEMPERATURE

In our study of fluid mechanics, we often encounter pressure. It results from compressive forces acting on
an area. In Fig. 1.2 the infinitesimal force DFn acting on the infinitesimal area DA gives rise to the
pressure, defined by

p ¼ lim
DA!0

DFn

DA
ð1:8Þ

The units on pressure result from force divided by area, that is, N=m2, the pascal, Pa. A pressure of 1 Pa
is a very small pressure, so pressure is typically expressed as kilopascals or kPa. Using English units,
pressure is expressed as lb=ft2 (psf) or lb=in2 (psi). Atmospheric pressure at sea level is 101.3 kPa, or most
often simply 100 kPa (14.7 lb=in2). It should be noted that pressure is sometimes expressed as millimeters
of mercury, as is common with meteorologists, or meters of water; we can use p ¼ rgh to convert the
units, where r is the density of the fluid with height h.

Fn

A

Surface

Figure 1.2 The normal force that results in pressure.

Pressure measured relative to atmospheric pressure is called gage pressure; it is what a gage
measures if the gage reads zero before being used to measure the pressure. Absolute pressure is zero in
a volume that is void of molecules, an ideal vacuum. Absolute pressure is related to gage pressure by
the equation

pabsolute ¼ pgage þ patmosphere ð1:9Þ
where patmosphere is the atmospheric pressure at the location where the pressure measurement is made;
this atmospheric pressure varies considerably with elevation and is given in Table C.3 in App. C. For
example, at the top of Pikes Peak in Colorado, it is about 60 kPa. If neither the atmospheric pressure
nor elevation are given, we will assume standard conditions and use patmosphere ¼ 100 kPa. Figure 1.3
presents a graphic description of the relationship between absolute and gage pressure. Several
common representations of the standard atmosphere (at 40– latitude at sea level) are included in
that figure.

We often refer to a negative pressure, as at B in Fig. 1.3, as a vacuum; it is either a negative
pressure or a vacuum. A pressure is always assumed to be a gage pressure unless otherwise stated
(in thermodynamics the pressure is assumed to be absolute). A pressure of 230 kPa could be stated
as 70 kPa absolute or a vacuum of 30 kPa, assuming atmospheric pressure to be 100 kPa (note
that the difference between 101.3 and 100 kPa is only 1.3 kPa, a 1.3% error, within engineering
acceptability).

We do not define temperature (it requires molecular theory for a definition) but simply state that we
use two scales: the Celsius scale and the Fahrenheit scale. The absolute scale when using temperature in
degrees Celsius is the kelvin (K) scale and the absolute scale when using temperature in degrees
Fahrenheit is the Rankine scale. We use the following conversions:

K ¼ –Cþ 273:15
–R ¼ –Fþ 459:67

ð1:10Þ
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A

B

Atmospheric
pressure

pgage = 0

Zero absolute
pressure pabsolute = 0

(pA)absolute

(pA)gage

(pB)gage

(pB)absolute

Standard atmosphere

101.3 kPa
14.7 psi
30 in Hg
760 mm Hg
1.013 bar
34 ft water

Figure 1.3 Absolute and gage pressure.

In engineering problems we use the numbers 273 and 460, which allows for acceptable accuracy. Note
that we do not use the degree symbol when expressing the temperature in degrees kelvin nor do we
capitalize the word ‘‘kelvin.’’ We read ‘‘100 K’’ as 100 kelvins in the SI system (remember, the SI system
is a special metric system).

EXAMPLE 1.2 A pressure is measured to be a vacuum of 23 kPa at a location in Wyoming where the elevation
is 3000 m. What is the absolute pressure?

Solution: Use Appendix C to find the atmospheric pressure at 3000 m. We use a linear interpolation to
find patmosphere ¼ 70.6 kPa. Then,

pabs ¼ patm þ p ¼ 70:6223 ¼ 47:6 kPa

The vacuum of 23 kPa was expressed as 223 kPa in the equation.

1.5 PROPERTIES OF FLUIDS

A number of fluid properties must be used in our study of fluid mechanics. Mass per unit volume,
density, was introduced in Eq. (1.7). We often use weight per unit volume, the specific weight g, related to
density by

g ¼ rg ð1:11Þ

where g is the local gravity. For water, g is taken as 9810 N=m3 (62.4 lb=ft3) unless otherwise stated.
Specific weight for gases is seldom used.

Specific gravity S is the ratio of the density of a substance to the density of water and is often
specified for a liquid. It may be used to determine either the density or the specific weight:

r ¼ Srwater g ¼ Sgwater ð1:12Þ
As an example, the specific gravity of mercury is 13.6, which means that it is 13.6 times heavier than
water. So, rmercury ¼ 13:6 · 1000 ¼ 13 600 kg=m3, where we used the density of water to be 1000 kg=m3,
the value used for water if not specified.

Viscosity can be considered to be the internal stickiness of a fluid. It results in shear stresses in a flow
and accounts for losses in a pipe or the drag on a rocket. It can be related in a one-dimensional flow to
the velocity through a shear stress t by

t ¼ m
du

dr
ð1:13Þ

[CHAP. 16 BASIC INFORMATION



where we call du=dr a velocity gradient, where r is measured normal to a surface and u is tangential to that
surface, as in Fig. 1.4. Consider the units on the quantities in Eq. (1.13): the stress (force divided by an
area) has units of N=m2 (lb=ft2) so that the viscosity has the units N·s=m2 (lb-sec=ft2).

To measure the viscosity, consider a long cylinder rotating inside a second cylinder, as shown in Fig.
1.4. In order to rotate the inner cylinder with the rotational speed O, a torque T must be applied. The
velocity of the inner cylinder is RO and the velocity of the outer cylinder is zero. The velocity distribution
in the gap h between the cylinders is essentially a linear distribution as shown, so that

t ¼ m
du

dr
¼ m

RO
h

ð1:14Þ

T

u

R

r

h

Figure 1.4 Fluid being sheared between two long cylinders.

We can relate the shear to the applied torque as follows:

T ¼ stress · area ·moment arm

¼ t · 2pRL · R

¼ m
RO
h

· 2pRL · R ¼ 2p
R3OLm

h
ð1:15Þ

where the shear acting on the ends of the long cylinder has been neglected. A device used to measure the
viscosity is a viscometer.

In this introductory book, we focus our attention on Newtonian fluids, those that exhibit a linear
relationship between the shear stress and the velocity gradient, as in Eqs. (1.13) and (1.14), as displayed
in Fig. 1.5. Many common fluids, such as air, water, and oil are Newtonian fluids. Non-Newtonian fluids
are classified as dilatants, pseudoplastics, and ideal plastics and are also displayed.

du/dy

Newtonian
fluid

Ideal
plastic

Dilatant

Pseudoplastic

Figure 1.5 Newtonian and Non-Newtonian fluids.
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A very important effect of viscosity is to cause the fluid to stick to a surface, the no-slip condition. If a
surface is moving extremely fast, as a satellite entering the atmosphere, this no-slip condition results in
very large shear stresses on the surface; this results in extreme heat which can burn up entering satellites.
The no-slip condition also gives rise to wall shear in pipes resulting in pressure drops that require pumps
spaced appropriately over the length of a pipe line transporting oil or gas.

Viscosity is very dependent on temperature. Note that in Fig. C.1 in App. C, the viscosity of a liquid
decreases with increased temperature but the viscosity of a gas increases with increased temperature. In a
liquid the viscosity is due to cohesive forces but in a gas it is due to collisions of molecules; both of these
phenomena are insensitive to pressure so we note that viscosity depends on temperature only in both a
liquid and a gas, i.e., m ¼ m(T ).

The viscosity is often divided by density in equations, so we have defined the kinematic viscosity to be

n ¼ m
r

ð1:16Þ

It has units of m2=s (ft2=sec). In a gas we note that kinematic viscosity does depend on pressure since
density depends on both temperature and pressure.

The volume of a gas is known to depend on pressure and temperature. In a liquid, the volume also
depends slightly on pressure. If that small volume change (or density change) is important, we use the
bulk modulus B:

B ¼ �V Dp
D�V

����
T
¼ r

Dp
Dr

����
T

ð1:17Þ

The bulk modulus has the same units as pressure. It is included in Table C.1 in App. C. For water at
20–C, it is about 2100 MPa. To cause a 1% change in the volume of water, a pressure of 21 000 kPa is
needed. So, it is obvious why we consider water to be incompressible. The bulk modulus is also used to
determine the speed of sound in water. It is given by

c ¼ ffiffiffiffiffi
B=r

p ð1:18Þ
This yields about c ¼ 1450 m=s for water at 20–C.

Another property of occasional interest in our study is surface tension s; it results from the attractive
forces between molecules, and is included in Table C.1. It allows steel to float, droplets to form, and
small droplets and bubbles to be spherical. Consider the free-body diagram of a spherical droplet and a
bubble, as shown in Fig. 1.6. The pressure force inside the droplet balances the force due to surface
tension around the circumference:

ppr2 ¼ 2prs

\ p ¼ 2s
r

ð1:19Þ

(a) (b)

p

2 2 ×r 2 r

r2 p r2

Figure 1.6 Free-body diagrams of (a) a droplet and (b) a bubble.
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Note that in a bubble there are two surfaces so that the force balance provides

p ¼ 4s
r

ð1:20Þ
So, if the internal pressure is desired, it is important to know if it is a droplet or a bubble.

A second application where surface tension causes an interesting result is in the rise of a liquid in a
capillary tube. The free-body diagram of the water in the tube is shown in Fig. 1.7. Summing forces on
the column of liquid gives

spD cos b ¼ rg
pD2

4
h ð1:21Þ

where the right-hand side is the weight W. This provides the height the liquid will climb in the tube:

h ¼ 4s cos b
gD

ð1:22Þ

h

D

W

D

Air
Liquid

Figure 1.7 The rise of a liquid in a small tube.

The final property to be introduced in this section is vapor pressure. Molecules escape and reenter a
liquid that is in contact with a gas, such as water in contact with air. The vapor pressure is that pressure
at which there is equilibrium between the escaping and reentering molecules. If the pressure is below the
vapor pressure, the molecules will escape the liquid; it is called boiling when water is heated to the
temperature at which the vapor pressure equals the atmospheric pressure. If the local pressure is
decreased to the vapor pressure, vaporization also occurs. This can happen when liquid flows through
valves, elbows, or turbine blades, should the pressure become sufficiently low; it is then called cavitation.
The vapor pressure is found in Table C.1 in App. C.

EXAMPLE 1.3 A 0:5m · 2m flat plate is towed at 5 m=s on a 2-mm-thick layer of SAE-30 oil at 38–C that
separates it from a flat surface. The velocity distribution between the plate and the surface is assumed to be
linear. What force is required if the plate and surface are horizontal?

Solution: The velocity gradient is calculated to be

du

dy
¼ Du

Dy
¼ 520

0:002
¼ 2500m=ðs·mÞ

The force is the stress multiplied by the area:

F ¼ t · A ¼ m
du

dy
· A ¼ 0:1 · 2500 · 0:5 · 2 ¼ 250N

Check the units to make sure the units of the force are newtons. The viscosity of the oil was found in Fig. C.1.
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EXAMPLE 1.4 A machine creates small 0.5-mm-diameter bubbles of 20–C water. Estimate the pressure that
exists inside the bubbles.

Solution: Bubbles have two surfaces leading to the following estimate of the pressure:

p ¼ 4s
r
¼ 4 · 0:0736

0:0005
¼ 589 Pa

where the surface tension was taken from Table C.1.

1.6 THERMODYNAMIC PROPERTIES AND RELATIONSHIPS

A course in thermodynamics and=or physics usually precedes a fluid mechanics course. Those properties
and relationships that are presented in those courses that are used in our study of fluids are included
in this section. They are of particular use when compressible flows are studied, but they also find
application to liquid flows.

The ideal gas law takes the two forms

p�V ¼ mRT or p ¼ rRT ð1:23Þ
where the pressure p and the temperature T must be absolute quantities. The gas constant R is found in
Table C.4 in App. C.

Enthalpy is defined as

H ¼ m ~uuþ p�V or h ¼ ~uuþ pv ð1:24Þ
where ~uu is the specific internal energy. In an ideal gas we can use

Dh ¼
Z
cp dT and D ~uu ¼

Z
cv dT ð1:25Þ

where cp and cv are the specific heats also found in Table C.4. The specific heats are related to the gas
constant by

cp ¼ cv þ R ð1:26Þ
The ratio of specific heats is

k ¼ cp
cv

ð1:27Þ

For liquids and solids, and for most gases over relatively small temperature differences, the specific heats
are essentially constant and we can use

Dh ¼ cpDT and D ~uu ¼ cvDT ð1:28Þ
For adiabatic (no heat transfer) quasi-equilibrium (properties are constant throughout the volume at

an instant) processes, the following relationships can be used for an ideal gas assuming constant specific
heats:

T2

T1

¼ p2
p1

� �ðk21Þ=k p2
p1

¼ r2
r1

� �k
ð1:29Þ

The adiabatic, quasi-equilibrium process is also called an isentropic process.
A small pressure wave with a relatively low frequency travels through a gas with a wave speed of

c ¼ ffiffiffiffiffiffi
kRT

p ð1:30Þ
Finally, the first law of thermodynamics will be of use in our study; it states that when a system,

a fixed set of fluid particles, undergoes a change of state from state 1 to state 2, its energy changes from
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E1 to E2 as it exchanges energy with the surroundings in the form of work W1---2 and heat transfer Q1---2.
This is expressed as

Q1---22W1---2 ¼ E22E1 ð1:31Þ
To calculate the heat transfer from given temperatures and areas, a course on heat transfer is required, so
it is typically a given quantity in thermodynamics and fluid mechanics. The work, however, is a quantity
that can often be calculated; it is a force times a distance and is often due to the pressure resulting in

W1---2 ¼
Zl2

l1

F dl

¼
Zl2

l1

pA dl ¼
Z�V2

�V1

p d�V
ð1:32Þ

The energy E considered in a fluids course consists of kinetic energy, potential energy, and internal
energy:

E ¼ m
V 2

2
þ gzþ ~uu

{ !
ð1:33Þ

where the quantity in the parentheses is the specific energy e. (We use ~uu to represent specific internal
energy since u is used for a velocity component.) If the properties are constant at an exit and an entrance
to a flow, and there is no heat transferred and no losses, the above equation can be put in the form

V 2
2

2g
þ p2

g2
þ z2 ¼ V 2

1

2g
þ p1

g1
þ z1 ð1:34Þ

This equation does not follow directly from Eq. (1.31); it takes some effort to derive Eq. (1.34). An
appropriate text could be consulted, but we will derive it later in this book. It is presented here as part of
our review of thermodynamics.

Solved Problems

1.1 Show that the units on viscosity given in Table 1.1 are correct using (a) SI units and (b) English
units.

Viscosity is related to stress by

m ¼ t
dy

du

In terms of units this is

½m	 ¼ N

m2

m

m=s
¼ N·s

m2
½m	 ¼ lb

ft2
ft

ft=sec
¼ lb-sec

ft2

1.2 If force, length, and time are selected as the three fundamental dimensions, what are the
dimensions on mass?

We use Newton’s second law, which states that

F ¼ ma

In terms of dimensions this is written as

F ¼ M
L

T 2
\ M ¼ FT2

L
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1.3 The mean free path of a gas is l ¼ 0:225m=ðrd2Þ, where d is the molecule’s diameter, m is its mass,
and r the density of the gas. Calculate the mean free path of air at 10 000 m elevation, the
elevation where many commercial airplanes fly. For an air molecule d ¼ 3:7 · 10210 m and m ¼
4:8 · 10226 kg.

Using the formula given, the mean free path at 10 000 m is

l ¼ 0:225 ·
4:8 · 10226

0:4136ð3:7 · 10210Þ2 ¼ 8:48 · 1027 m or 0:848 mm

where the density was found in Table C.3.

1.4 A vacuum of 25 kPa is measured at a location where the elevation is 3000 m. What is the absolute
pressure in millimeters of mercury?

The atmospheric pressure at the given elevation is found in Table C.3. It is interpolated to be

patm ¼ 79:842
1

2
ð79:84261:64Þ ¼ 70:7 kPa

The absolute pressure is then

p ¼ pgage þ patm ¼225þ 70:7 ¼ 45:7 kPa

In millimeters of mercury this is

h ¼ p

rHgg
¼ 45 700

ð13:6 · 1000Þ9:81 ¼ 0:343m or 343mm

1.5 A flat 30-cm-diameter disk is rotated at 800 rpm at a distance of 2 mm from a flat, stationary
surface. If SAE-30 oil at 20–C fills the gap between the disk and the surface, estimate the torque
needed to rotate the disk.

Since the gap is small, a linear velocity distribution will be assumed. The shear stress acting on the disk

will be

t ¼ m
Du
Dy

¼ m
ro
h

¼ 0:38 ·
rð800 · 2p=60Þ

0:002
¼ 15 900r

where the viscosity is found from Fig. C.1 in App. C. The shear stress is integrated to provide the
torque:

T ¼
Z
A
r dF ¼

Z
A
rt2pr dr ¼ 2p

Z0:15

0
15 900r3 dr ¼ 105 ·

0:154

4
¼ 12:7N·m

Note: The answer is not given to more significant digits since the viscosity is known to only two
significant digits. More digits in the answer would be misleading.

1.6 Water is usually assumed to be incompressible. Determine the percentage volume change in 10 m3

of water at 15–C if it is subjected to a pressure of 12 MPa from atmospheric pressure.

The volume change of a liquid is found using the bulk modulus of elasticity (see Eq. (1.17)):

D�V ¼2�VDp
B

¼210 ·
12 000 000

214 · 107
¼20:0561m3

The percentage change is

% change ¼ �V22�V1

�V1

· 100 ¼20:0561

10
· 100 ¼20:561%

This small percentage change can usually be ignored with no significant influence on results, so water is
essentially incompressible.
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1.7 Water at 30–C is able to climb up a clean glass of 0.2-mm-diameter tube due to surface tension.
The water-glass angle is 0– with the vertical (b ¼ 0 in Fig. 1.7). How far up the tube does the
water climb?

The height that the water climbs is given by Eq. (1.22). It provides

h ¼ 4s cosb
gD

¼ 4 · 0:0718 · 1:0

ð996 · 9:81Þ0:0002 ¼ 0:147m or 14:7 cm

where the properties of water come from Table C.1 in App. C.

1.8 Explain why it takes longer to cook potatoes by boiling them in an open pan on the stove in a
cabin in the mountains where the elevation is 3200 m.

Water boils when the temperature reaches the vapor pressure of the water; it vaporizes. The
temperature remains constant until all the water is boiled away. The pressure at the given elevation is
interpolated in Table C.3 to be 69 kPa. Table C.1 provides the temperature of slightly less than 90–C
for a vapor pressure of 69 kPa, i.e., the temperature at which the water boils. Since it is less than the
100–C at sea level, the cooking process is slower. A pressure cooker could be used since it allows a
higher temperature by providing a higher pressure inside the cooker.

1.9 A car tire is pressurized in Ohio to 250 kPa when the temperature is 215–C. The car is driven to
Arizona where the temperature of the tire on the asphalt reaches 65–C. Estimate the pressure in
the tire in Arizona assuming no air has leaked out and that the volume remains constant.

Assuming the volume does not change, the ideal gas law requires

p2
p1

¼ mR�V1T2

mR�V2T1

¼ T2

T1

\ p2 ¼ p1
T2

T1

¼ ð250þ 100Þ · 423

258
¼ 574 kPa abs or 474 kPa gage

since the mass also remains constant. (This corresponds to 37 lb=in2 in Ohio and 70 lb=in2 in Arizona.)

1.10 A farmer applies nitrogen to a crop from a tank pressurized to 1000 kPa absolute at a
temperature of 25–C. What minimum temperature can be expected in the nitrogen if it is released
to the atmosphere?

The minimum exiting temperature occurs for an isentropic process (see Eq. (1.29)), which is

T2 ¼ T1

p2
p1

� �ðk21Þ=k
¼ 298 ·

100

1000

� �0:4=1:4
¼ 154K or 2119–C

Such a low temperature can cause serious injury should a line break and nitrogen impact the farmer.

Supplementary Problems

1.11 There are three basic laws in our study of fluid mechanics: the conservation of mass, Newton’s second law,
and the first law of thermodynamics. (a) State an integral quantity for each of the laws and (b) state a
quantity defined at a point for each of the laws.
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Dimensions, Units, and Physical Quantities

1.12 Verify the SI units presented in Table 1.2 for the following:

(a) Force (b) Specific weight (c) Surface tension
(d) Torque (e) Viscosity ( f ) Work

1.13 Verify the dimensions presented in Table 1.2 for the following:

(a) Force (b) Specific weight (c) Surface tension
(d) Torque (e) Viscosity ( f ) Work

1.14 Select the F–L–T system of dimensions and state the dimensions on the following:

(a) Force (b) Specific weight (c) Surface tension

(d) Torque (e) Viscosity ( f ) Work

1.15 An equation that provides the flow rate in an open channel is given by

Q ¼ kAR
2
3S

1
2

where k is a constant, A is the area of the channel, R is a radius, and S is a slope.

Determine both the dimensions and the SI units on k.

1.16 Express the following using powers rather than prefixes:

(a) 200 cm2 (b) 500 mm3 (c) 10 mm
(d) 32 MPa (e) 400 kN ( f ) 5 nN

1.17 Express the following using prefixes rather than powers:

(a) 2 · 1028 m (b) 5 · 108 m (c) 2 · 1025 Pa
(d) 32 · 108 Pa (e) 4 · 1026 N ( f ) 8 · 1011 N

1.18 Quantities are often given in units that are unacceptable when using the SI system of units. Convert each of
the following to acceptable SI units:

(a) 60 mi=h (b) 35 lb=in2 (c) 2 g=cm3

(d) 22 slug=h (e) 20 ft3=min ( f ) 50 kW·h

1.19 What force is needed to accelerate a 1500-kg car at 3 m=s2:

(a) on the horizontal? (b) on a 20– incline?

1.20 An astronaut weighs 850N on earth. Calculate the weight of the astronaut on themoon, where g ¼ 5.4 ft=sec2.

1.21 Estimate the mean free path of air molecules, using information from Solved Problem 1.3, at an elevation of

(a) 750 m (b) 40 000 m (c) 80 000 m

Pressure and Temperature

1.22 A pressure of 28 kPa is measured at an elevation of 2000 m. What is the absolute pressure in

(a) kPa (b) lb=in2 (c) mm of Hg (d) ft of water
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1.23 A gage reads a vacuum of 24 kPa. What is the absolute pressure at

(a) sea level (b) 4000 m (c) 8000 m

1.24 The equation pðzÞ ¼ p0e
2gz=RT0 is a good approximation to the pressure in the atmosphere. Estimate the

pressure at z ¼ 6000 m using this equation and calculate the percent error using the more accurate value
found in Table C.3. Assume p0 ¼ 100 kPa and T0 ¼ 15–C.

1.25 A pressure of 20 kPa and a shear stress of 80 Pa act on a 0.8-m2-flat surface. Calculate the normal force Fn,
the tangential shear force Ft, and the total force F acting on the surface. Also, calculate the angle the total

force makes with respect to a normal coordinate.

1.26 A temperature of 20–C is measured at a certain location. What is the temperature in

(a) kelvins (b) degrees Fahrenheit (c) degrees Rankine

Properties of Fluids

1.27 A fluid mass occupies 2 m3. Calculate the density, specific weight, and specific gravity if the fluid mass is

(a) 4 kg (b) 8 kg (c) 15 kg

1.28 A formula that provides a good estimate of the density in kg=m3 of water is

rwater ¼ 10002
T24ð Þ2
180

where the temperature T is in degrees Celsius. Use this formula and find the density of water at 80–C.
What is the error?

1.29 The specific weight of a fluid is 11 200 N=m3. Calculate the mass contained in 2 m3

(a) Using the standard gravity.
(b) Using the maximum gravity on the earth’s surface.
(c) Using the minimum gravity on the earth’s surface.

1.30 The specific gravity of mercury is given by the formula

SHg ¼ 13:620:0024T

where the temperature is in degrees Celsius. What is the specific weight of mercury at 45–C? Calculate the
error if SHg ¼ 13.6 were used at 45–C.

1.31 A viscometer, used to measure the viscosity of a liquid, is composed of two 12-cm-long concentric cylinders
with radii 4 and 3.8 cm. The outer cylinder is stationary and the inner one rotates. If a torque of 0.046 N·m
is measured at a rotational speed of 120 rpm, estimate the viscosity of the liquid. Neglect the contribution to
the torque from the cylinder ends and assume a linear velocity profile.

1.32 Water at 20–C flows in a 0.8-cm-diameter pipe with a velocity distribution of uðrÞ ¼ 5ð12 r2=16 · 1026Þm=s.

Calculate the shear stress on (a) the pipe wall, (b) at a radius where r ¼ 0.2 cm, and (c) at the centerline of
the pipe.
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1.33 SAE-30 oil at 30–C fills the gap between a 40-cm-diameter flat disk rotating 0.16 cm above a flat surface.

Estimate the torque needed to rotate the disk at

(a) 200 rpm (b) 600 rpm (c) 1200 rpm

1.34 A 2-m-long, 4-cm-diameter shaft rotates inside an equally long 4.02-cm-diameter cylinder. If SAE-10W oil at
25–C fills the gap between the concentric cylinders, determine the torque and horsepower needed to rotate

the shaft at 1200 rpm.

1.35 A 0.1-m3 volume of water is observed to be 0.0982 m3 after a pressure is applied. What is that pressure?

1.36 How long would it take a small wave to travel under 22–C water a distance of 800 m?

1.37 The coefficient of thermal expansion aT allows the expansion of a liquid to be determined using the equation

D�V ¼ aT�VDT. Calculate the decrease in 2 m3 of 40–C water if the temperature is lowered by 10–C. What
pressure would be needed to cause the same decrease in volume?

1.38 Estimate the pressure inside a droplet of 20–C water and a bubble of 20–C water if their diameters are

(a) 40 mm (b) 20 mm (c) 4 mm

1.39 How high would 20–C water climb in a 24-mm-diameter vertical capillary tube if it makes an angle of 20–
with the wall of the tube?

1.40 Mercury makes an angle of 130– with respect to the vertical when in contact with clean glass. How far will
mercury depress in a clean, 10-mm-diameter glass tube if sHg ¼ 0.467 N=m.

1.41 A steel needle of length L and radius r will float in water if carefully placed. Write an equation that relates
the various variables for a floating needle assuming a vertical surface tension force.

1.42 Using the equation developed in Supplementary Problem 1.41, determine if a 10-cm-long, 1-mm-diameter
steel needle will float in 20–C water. rsteel ¼ 7850 kg=m3.

1.43 Derive an equation that relates the vertical force T needed to just lift a thin wire loop from a liquid assuming
a vertical surface tension force. The wire radius is r and the loop diameter is D. Assume Dq r.

Thermodynamic Properties and Relationships

1.44 Two kilograms of 40–C air is contained in a 4-m3 volume. Calculate the pressure, density, specific volume,
and specific weight.

1.45 The temperature outside a house is –20–C and inside it is 20–C. What is the ratio of the density of the
outside air to the density of the inside air? Would infiltration, which results from cracks around the windows,

doors, and siding, etc., occur even with no wind causing a pressure difference?

1.46 A car with tires pressurized to 240 kPa (35 lb=in2) leaves Phoenix with the tire temperature at 50–C. Estimate
the tire pressure (in kPa and lb=in2) when the car arrives in Alaska with a tire temperature of 230–C.
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1.47 Estimate the mass and weight of the air contained in a classroom where Thermodynamics is taught. Assume

the dimensions to be 3.2 m · 8 m · 20 m.

1.48 Calculate the weight of the column of air contained above a 1-m2 area of atmospheric air from sea level to
the top of the atmosphere.

1.49 A 100 kg body falls from rest from a height of 100 m above the ground. Calculate its maximum velocity

when it hits the ground. (a) Use the maximum value for gravity, (b) use the minimum value for gravity, and
(c) use the standard value for gravity. (The minimum value is at the top of Mt Everest and the maximum
value is at bottom of the lowest trench in the ocean.)

1.50 Air expands from a tank maintained at 18–C and 250 kPa to the atmosphere. Estimate its minimum

temperature as it exits.

1.51 Air at 22–C is received from the atmosphere into a 200 cm3 cylinder. Estimate the pressure and temperature
if it is compressed isentropically to 10 cm3.

1.52 Two cars, each with a mass of 6000 kg, hit head on each traveling at 80 km=h. Estimate the increase in

internal energy absorbed by the materials in each car.

1.53 A 6500-kg car is traveling at 90 km=h and suddenly brakes to a stop. If the four brake disks absorb all the
energy, estimate the maximum increase in temperature of those disks, assuming the disks absorb the energy
equally. The 0.7-cm-thick, 30-cm-diameter disks are made of steel. Use rsteel ¼ 7850 kg=m3 and

ðcpÞsteel ¼ 0:5 kJ=kg·–C.

1.54 Calculate the speed of sound in: (a) air at 0–C, (b) nitrogen at 20–C, (c) hydrogen at 10–C, (d) air at 100–C,
and (e) oxygen at 50–C.

1.55 Lightning is observed and thunder is heard 1.5 s later. About how far away did the lightning occur?

Answers to Supplementary Problems

1.11 (a) The mass flux into a jet engine; the force of air on a window; the heat transfer through a wall. (b) The
velocity V; the pressure p; the temperature T.

1.12 (a) F ¼ ma. N ¼ kg·m=s2, etc.

1.13 (a) F ¼ ma. F ¼ ML=T2, etc.

1.14 (b) g ¼ weight=volume ¼ F=L3, etc.

1.15 L1=3=T, m1=3=s

1.16 (a) 2 · 1022 m2 (b) 5 · 1027 m3 (c) 1025 m (d) 32 · 106 Pa (e) 4 · 105 N
ð f Þ 5 · 1029 N

1.17 (a) 20 nm (b) 500 Mm (c) 20 mm (d) 320 MPa (e) 4 mN ( f ) 800 GN

1.18 (a) 96.56 m=s (b) 241 kPa (c) 2000 kg=m3 (d) 0.0892 kg=s

(e) 1:573 · 1024 m3=s ( f ) 80 MJ

1.19 (a) 4500 N (b) 9533 N
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1.20 468 N

1.21 (a) 0.000308 mm (b) 0.0877 mm (c) 17.5 mm

1.22 (a) 107.5 (b) 15.6 (c) 806 (d) 36

1.23 (a) 77.3 kPa (b) 37.6 kPa (c) 11.65 kPa

1.24 49.1 kPa, 4.03%

1.25 16 kN, 64 N, 0:229–

1.26 293 K, 68–F, 528–R

1.27 (a) 2 kg=m3, 19.62 N=m3, 0.002 (b) 4 kg=m3, 39.24 N=m3, 0.004
(c) 7.5 kg=m3, 73.6 N=m3, 0.0075

1.28 968 kg=m3, 20.4%

1.29 (a) 2283 kg (b) 2279 kg (c) 2293 kg

1.30 13.49, 20.8%

1.31 0.1628 N·s=m2

1.32 (a) 2.5 N=m2 (b) 1.25 N=m2 (c) 0 N=m2

1.33 (a) 7.2 N·m, 0.2 hp (b) 21 N·m, 1.81 hp (c) 43 N·m, 7.2 hp

1.34 0.88 N·m, 0.15 hp

1.35 37.8 MPa

1.36 0.539 s

1.37 20.0076 m3, 7.98 MPa

1.38 (a) 3680 Pa, 7360 Pa (b) 36.8 Pa, 73.6 Pa (c) 7.36 Pa, 14.72 Pa

1.39 1.175 m

1.40 20.900 m

1.41 2s > rpr2

1.42 Yes

1.43 pDð2sþ gwirepr
2Þ

1.44 45 kPa, 0.5 kg=m3, 2 m3=kg, 4.905 N=m3

1.45 1.158, yes

1.46 156 kPa, 22.7 lb=in2
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1.47 609 kg, 5970 N

1.48 100 kN

1.49 44.34 m=s, 44.20 m=s, 44.29 m=s

1.50 269.6–C

1.51 6630 kPa, 705–C

1.52 1.48 MJ

1.53 261–C

1.54 (a) 331 m=s (b) 349 m=s (c) 1278 m=s (d) 387 m=s (e) 342 m=s

1.55 515 m
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Chapter 2

Fluid Statics

2.1 INTRODUCTION

In fluid statics, there is no relative motion between fluid particles, so there are no shear stresses present (a
shear results from a velocity gradient). This does not mean that the fluid particles are not moving, but only
that they are not moving relative to one another; if they are moving, as in a can of water rotating about its
axis, they move as a solid body. The only stress involved in fluid statics is the normal stress, the pressure. It
is the pressure acting over an area that gives rise to the forces in problems involving fluid statics. The three
types of problems that are presented in this chapter are: (1) fluids at rest, as in the design of a dam;
(2) fluids undergoing linear acceleration, as in a rocket; and (3) fluids that are rotating about an axis.

2.2 PRESSURE VARIATION

Pressure is a quantity that acts at a point. But, does it have the same magnitude in all directions at the
point? To answer this question, consider Fig. 2.1. A pressure p is assumed to act on the hypotenuse and
different pressures px and py on the other two sides of the infinitesimal element that has a uniform depth
dz into the paper. The fluid particle occupying the fluid element could be accelerating, so we use
Newton’s second law in both the x- and y-directions:P

Fx ¼ max : px dy dz2p ds dz sin b ¼ r
dx dy dz

2
axP

Fy ¼ may : py dx dz2p ds dz cos b2rg
dx dy dz

2
¼ r

dx dy dz

2
ay

ð2:1Þ

x

y

dy

dx

gdV

ds
px dyd

pdsdx

py dxd

Figure 2.1 Pressure acting on an infinitesimal element.

20

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



recognizing that d�V ¼ dx dy dz

2
. From Fig. 2.1, we have

dy ¼ ds sin b dx ¼ ds cos b ð2:2Þ
Substituting these into Eq. (2.1), we obtain

px2p ¼ r
dx

2
ax

py2p ¼ r
dy

2
ðay þ gÞ

ð2:3Þ

Here we see that the quantities on the right-hand sides are infinitesimal, i.e., extremely small, and can be
neglected* so that

px ¼ py ¼ p ð2:4Þ
Since the angle b is arbitrary, this holds for all angles. We could have selected dimensions dx and dz and
arrived at px ¼ pz ¼ p. So, the pressure is a scalar function that acts equally in all directions at a point in
our applications to fluid statics.

In the preceding discussion, pressure only at a point was considered. The pressure variation from
point to point will now be investigated. The fluid element of depth dy in Fig. 2.2 can be accelerating as in
a rotating container. Newton’s second law provides

p dy dz2 pþ @p

@x
dx

� �
dy dz ¼ rg dx dy dz ax

p dx dy2 pþ @p

@z
dz

� �
dx dy ¼2rg dx dy dzþ rg dx dy dz az

ð2:5Þ

If the element was shown in the y-direction also, the y-component equation would be

p dx dz2 pþ @p

@y
dy

� �
dx dz ¼ rg dx dy dz ay ð2:6Þ

Equations (2.5) and (2.6) reduce to

@p

@x
¼2rax

@p

@y
¼2ray

@p

@z
¼2rðaz þ gÞ ð2:7Þ

p dyd

pdxdy

d

dx

gdxdyd

p+ d

x

(vertical)

a
p+ dx dyd

x

dxdy

Figure 2.2 Forces acting on an element of fluid.

* Mathematically, we could use an element with sides Dx and Dy and let Dx ! 0 and Dy ! 0:
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Finally, the pressure differential can be written as

dp ¼ @p

@x
dxþ @p

@y
dyþ @p

@z
dz

¼2rax dx2ray dy2rðaz þ gÞdz ð2:8Þ
This can be integrated to give the desired difference in pressure between specified points in a fluid.

In a fluid at rest, there is no acceleration so that the pressure variation from Eq. (2.8) is

dp ¼2rg dz or dp ¼2g dz ð2:9Þ
This implies that as the elevation z increases, the pressure decreases, a fact that we are aware of in nature;
the pressure increases with depth in the ocean and decreases with height in the atmosphere.

Consider the pressure variation in a liquid in which g is constant. Equation (2.9) allows us to write

Dp ¼2gDz ð2:10Þ
where Dp is the pressure change over the elevation change Dz. If we desire an expression for the pressure
at a distance h below a free surface where the pressure is zero, it would be

p ¼ gh ð2:11Þ
where h ¼2Dz. Equation (2.11) is used to convert pressure to an equivalent height of a liquid;
atmospheric pressure is often expressed as millimeters of mercury (the pressure at the bottom of a 30-in
column of mercury is the same as the pressure at the earth’s surface due to the entire atmosphere).

If the pressure variation in the atmosphere is desired, then Eq. (2.9) would be used with the ideal gas
law p ¼ rRT to give

dp ¼2
p

RT
g dz or

Zp

p0

dp

p
¼2

g

R

Zz

0

dz

T
ð2:12Þ

where p0 is the pressure at z ¼ 0. If the temperature could be assumed constant over the elevation
change, then the above equation could be integrated to obtain

p ¼ p0e
2gz=RT ð2:13Þ

In the troposphere (between the earth’s surface and to a height of about 10 km) where the temperature
(in kelvins) is T ¼ 28820:0065z, Eq. (2.12) can be integrated to give the pressure variation.

EXAMPLE 2.1 Convert 230 kPa to millimeters of mercury, inches of mercury, and feet of water.

Solution: Equation (2.11) is applied using the specific weight of mercury, which is 13:6gwater,

p ¼ gh 230 000 ¼ ð13:6 · 9800Þh
\ h ¼ 1:726m or 1726 mm of mercury

This is equivalent to 1:726m · 3:281
ft

m
· 12

in

ft
¼ 68:0 in ofmercury. Returning to Eq. (2.11) first convert kPa to

lb=ft2:

230 kPa · 20:89
lb=ft2

kPa
¼ 4805 psf 4805 ¼ 62:4h

\ h ¼ 77:0 ft of water

We could have converted meters of mercury to feet of mercury and then multiplied by 13.6 to obtain feet of water.

2.3 MANOMETERS

A manometer is an instrument that uses a column of liquid to measure pressure, rather than using a
pressure gage. Let us analyze a typical U-tube manometer attached to a pipe, as shown in Fig. 2.3, to
illustrate how to interpret a manometer; this one uses water and mercury. There are several ways to
analyze a manometer; this is one way. Identify two points that have the same pressure, i.e., that are at the
same elevation in the same liquid, such as points 2 and 3. Then we can write
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p2 ¼ p3

p1 þ gwaterh ¼ p4 þ gHgH
ð2:14Þ

Since point 4 is shown to be open to the atmosphere, the pressure there is zero gage pressure: p4 ¼ 0.
Thus, the manometer would measure the pressure p1 in the pipe to be

p1 ¼ gHgH2 gwaterh ð2:15Þ
Note that a point is positioned at all interfaces. Some manometers will have several fluids with several
interfaces. Each interface should be located with a point when analyzing the manometer.

1

2

4

3

h

H

water

Pipe

mercury

Figure 2.3 A U-tube manometer using water and mercury.

EXAMPLE 2.2 A manometer connects an oil pipeline and a water pipeline as shown in Fig. 2.4. Determine
the difference in pressure between the two pipelines using the readings on the manometer. Use Soil ¼ 0:86 and
SHg ¼ 13:6:

1

2

4

3

Water

Mercury Oil

5

6

8 cm

4 cm

6 cm

Air

Figure 2.4

Solution: The points of interest have been positioned on the manometer in Fig. 2.4. The pressure at point 2
is equal to the pressure at point 3:

p2 ¼ p3

pwater þ gwater · 0:04 ¼ p4 þ gHg · 0:08

Note that the heights must be in meters. The pressure at point 4 is essentially the same as that at point 5, since
the specific weight of air is negligible compared with that of the oil. So,

p4 ¼ p5

¼ poil2 goil · 0:06

Finally,

pwater2poil ¼2gwater · 0:04þ gHg · 0:082 goil · 0:06

¼29800 · 0:04þ ð13:6 · 9800Þ0:082 ð0:86 · 9800Þ0:06 ¼ 10 780 Pa
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2.4 FORCES ON PLANE AND CURVED SURFACES

In engineering designs where a liquid is contained by surfaces, such as a dam, the side of a ship, a water
tank, or a levee, it is necessary to calculate the forces and their locations due to the liquid on the various
surfaces. The liquid is most often water, but it could also be oil or some other liquid. We will develop
equations for forces on plane surfaces, but forces on curved surfaces can be determined using the same
equations. Examples will illustrate.

Consider the general surface shown in Fig. 2.5. The liquid acts on the plane area shown as a section
of the wall; a top view gives additional detail of the geometry. The force on the plane surface is due to the
pressure p ¼ gh acting over the area, i.e.,

F ¼
Z
A
p dA ¼ g

Z
A
h dA

¼ g sin a
Z
A
y dA ¼ g yA sin a ð2:16Þ

where y is the distance* to the centroid of the plane area; the centroid is identified as the point C.
Equation (2.16) can also be expressed as

F ¼ ghA ð2:17Þ
where h is the vertical distance to the centroid. Since gh is the pressure at the centroid, we see that the
magnitude of the force is the area multiplied by the pressure that acts at the centroid of the area. It does
not depend on the angle a of inclination. But, the force does not, in general, act at the centroid.

dy

hdA

dA

C
c.p.

y

y

yp

Inclined
plane area

Inclined
plane area
(top view)

h

F

Free surface p = 0

x

O

O

Figure 2.5 The force on an inclined plane area.

Let us assume that the force acts at some point called the center of pressure, located by the point
ðxp, ypÞ. To determine where the force acts, we must recognize that the sum of the moments of all the
infinitesimal forces must equal the moment of the resultant force, i.e.,

ypF ¼ g
Z
A
yh dA

¼ g sin a
Z
A
y2 dA ¼ gIx sin a ð2:18Þ

* Recall that yA ¼ R
A y dA.
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where Ix is the second moment* of the area about the x-axis. The parallel-axis transfer theorem states that

Ix ¼ I þ Ay2 ð2:19Þ
where I is the moment of the area about its centroidal axis. So, substitution of Eq. (2.19) into Eq. (2.18)
and using the expression for F from Eq. (2.16) results in

yp ¼ yþ I

A y
ð2:20Þ

This helps us to locate where the force acts. For a horizontal surface, the pressure is uniform over the
area so that the pressure force acts at the centroid of the area. In general, yp is greater than y. The
centroids and second moments of various areas are presented in books on Statics or Strength of
Materials. They will be given in the problems in this book.

If the top of the inclined area in Fig. 2.5 was at the free surface, the pressure distribution on that area
would be triangular and the force F due to that pressure would act through the centroid of that
triangular distribution, i.e., two-thirds the distance from the top of the inclined area.

To locate the x-coordinate xp of the center of pressure, we use

xpF ¼ g sin a
Z
A
xy dA

¼ gIxy sin a ð2:21Þ
where Ixy is the product of inertia of the area. Using the transfer theorem for the product of inertia, the
x-location of the center of pressure is

xp ¼ xþI xy

Ay
ð2:22Þ

The above equations also allow us to calculate the forces acting on curved surfaces. Consider the
curved gate shown in Fig. 2.6(a). The objective of this problem would be to find the force P of the gate on
the vertical wall and the forces on the hinge. From the free-body diagrams in Fig. 2.6(b) and 2.6(c), the
desired forces can be calculated provided the force FW, which acts through the center of gravity of
the area, can be found. The forces F1 and F2 can be found using Eq. (2.17). The forces FH and FV are the
horizontal and vertical components of the force of the water acting on the gate. If a free-body diagram of
only the water above the gate was identified, then we would see that

Fx

F2

F1

Fy

P

FW

(b)

P

Fy

Fx

FV

FH

(c )

Hinge

Curved
surface

Water

(a)

Figure 2.6 Forces on a curved surface: (a) the gate, (b) the water and the gate, and (c) the gate only.

* Recall the second moment of a rectangle about its centroidal axis is bh3=12.

CHAP. 2] FLUID STATICS 25



FH ¼ F1 and FV ¼ F2 þ FW ð2:23Þ
Often, the gate is composed of a quarter circle. In that case, the problem can be greatly simplified

by recognizing that the forces FH and FV, when added together as a vector, must act through the
center of the quarter circle, since all the infinitesimal forces due to the water pressure on the gate that
makes up FH and FV act through the center. So, for a gate that has the form of a part of a circle, the
force components FH and FV can be located at the center of the circular arc. An example will
illustrate.

A final application of forces on surfaces involves buoyancy, i.e., forces on floating bodies.
Archimedes’ principle states that there is a buoyancy force on a floating object equal to the weight of the
displaced liquid, written as

FB ¼ g�Vdisplaced liquid ð2:24Þ

Since there are only two forces acting on a floating body, they must be equal and opposite and act
through the center of gravity of the body (the body could have density variations) and the centroid of the
liquid volume. The body would position itself so that the center of gravity and centroid would be on a
vertical line. Questions of stability arise (does the body tend to tip?), but are not considered here.

EXAMPLE 2.3 A 60-cm square gate has its top edge 12 m below the water surface. It is on a 45– angle and its
bottom edge is hinged as shown in Fig. 2.7(a). What force P is needed to just open the gate?

(a) (b)

Water

Hinge
45°

P

P

F
yp

Fx

Fy

d

y

Figure 2.7

Solution: The first step is to sketch a free-body diagram of the gate so the forces and distances are clearly
identified. It is done in Fig. 2.7(b). The force F is calculated to be

F ¼ ghA

¼ 9810 · ð12þ 0:3 sin 45–Þð0:6 · 0:6Þ ¼ 43 130N

We will take moments about the hinge so that it will not be necessary to calculate the forces Fx and Fy. Let us
find the distance d where the force F acts from the hinge:

y ¼ h

sin 45– ¼ 12þ 0:3 sin 45–
sin 45– ¼ 17:27m

yp ¼ yþ I

Ay
¼ 17:27þ 0:6 · 0:63=12

ð0:6 · 0:6Þ17:27 ¼ 17:272m

\ d ¼ yþ 0:32yp > 0:3m
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Note: The distance yp2y is very small and can be neglected because of the relatively large 12 m height compared

with the 0.6 m dimension. So, the force P can be calculated:

P ¼ 0:3F

0:6
¼ 21 940N

Note again that all dimensions are converted to meters.

EXAMPLE 2.4 Consider the gate in Fig. 2.8 to be a quarter circle of radius 80 cm with the hinge 8 m below the

water surface. If the gate is 1 m wide, what force P is needed to hold the gate in the position shown?

Solution: Let us move the forces FH and FV of Fig. 2.6(c) to the center of the circular arc, as shown in
Fig. 2.8. This is allowed since all the force components that make up the resultant vector force FH þ FV pass

through the center of the arc. The free-body diagram of the gate would appear as in Fig. 2.8. If moments are
taken about the hinge, Fx,Fy, and FV produce no moments. So,

FV

FH

Fy

Fx

P

Hinge

Water

Figure 2.8

P ¼ FH

a rather simple result compared with the situation if we used

Fig. 2.6(c). The force P is

P ¼ ghA ¼ 9810 · ð820:4Þð0:8 · 1Þ
¼ 93 200N

where FH ¼ F1 and F1 is the force on the vertical area shown in
Fig. 2.6(b).

2.5 ACCELERATING CONTAINERS

The pressure in a container accelerating with components ax and az is found by integrating Eq. (2.8)
between selected points 1 and 2 to obtain

p22p1 ¼2raxðx22x1Þ2rðaz þ gÞðz22 z1Þ ð2:25Þ
If points 1 and 2 lie on a constant-pressure line (e.g., a free surface) such that p2 ¼ p1, as in Fig. 2.9, and
az ¼ 0, Eq. (2.25) allows an expression for the angle a:

0 ¼2raxðx22x1Þ2rgðz22 z1Þ
tan a ¼ z12 z2

x22x1
¼ ax

g

ð2:26Þ

If az is not zero, then it is simply included. The above equations allow us to make calculations involving
linearly accelerating containers. The liquid is assumed to be not sloshing; it is moving as a rigid body. An
example will illustrate.

ax

1

2

Figure 2.9 A linearly accelerating container.
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To determine the pressure in a rotating container, Eq. (2.8) cannot be used, and so it is necessary to
derive the expression for the differential pressure. Refer to the infinitesimal element of Fig. 2.10. A top
view of the element is shown. Newton’s second law applied in the radial r-direction provides,
remembering that ar ¼ rO2,

pr dy dz2 pþ @p

@r
dr

� �
ðrþ drÞdy dzþ p dr dz sin

dy
2
þ p dr dz sin

dy
2

¼ rr dy dr dz rO2 ð2:27Þ

Expand the second term carefully, use sin dy=2 ¼ dy=2, neglect higher-order terms, and simplify
Eq. (2.27) to

@p

@r
¼ rrO2 ð2:28Þ

r
dr

d

prd d pdrd

pdrd

d /2

Volume = r d drd
sin d = d

x

y

r

d /2

p+ dr (r+dr)d d
r

Figure 2.10 The rotating container and the top view of the infinitesimal element.

This provides the pressure variation in the radial direction and our usual dp ¼2rg dz provides the
pressure variation in the z-direction. Holding z fixed, the pressure difference from r1 to r2 is found by
integrating Eq. (2.28):

p22p1 ¼ rO2

2
ðr 2

2 2 r 2
1 Þ ð2:29Þ

If point 1 is at the center of rotation so that r1 ¼ 0, then p2 ¼ rO2r 2
2 =2. If the distance from point 2

to the free surface is h as shown in Fig. 2.11, so that p2 ¼ rgh, we see that

h ¼ O2r 2
2

2g
ð2:30Þ

which is a parabola. The free surface is a paraboloid of revolution. An example illustrates the use of the
above equations.

r2

1

2

h

Figure 2.11 The free surface in a rotating container.
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EXAMPLE 2.5 A 120-cm-long tank contains 80 cm of water and 20 cm of air maintained at 60 kPa above the
water. The 60-cm-wide tank is accelerated at 10 m=s2. After equilibrium is established, find the force acting on

the bottom of the tank.

Solution: First, sketch the tank using the information given in the problem statement. It appears as in
Fig. 2.12. The distance x can be related to y by using Eq. (2.26):

tan a ¼ ax
g
¼ 10

9:81
¼ y

x
\ y ¼ 1:019x

ax

x

y

120 cm

80 cm
40

20 cm

Air
Water

A B

Figure 2.12

Equate the area of the air before and after to find either x or y:

120 · 20 ¼ 1

2
xy ¼ 1:019

2
x2 \ x ¼ 68:63 cm and y ¼ 69:94 cm

The pressure will remain unchanged in the air above the water since the air volume does not change. The
pressures at A and B are then (use Eq. (2.25))

pA ¼ 60 000þ 1000 · 10 · ð1:2020:6863Þ þ 9810 · 1:0m ¼ 74 900 Pa

pB ¼ 60 000þ 9810 · ð1:0020:6994Þ ¼ 62 900 Pa

The average pressure on the bottom is ðpA þ pBÞ=2. Multiply the average pressure by the area to find the force

acting on the bottom:

F ¼ pA þ pB
2

A ¼ 74 900þ 62 900

2
ð1:2 · 0:6Þ ¼ 49 610N

20 cm

2 cm

16 cm
O

A

16 cm

Air

Water

h

Figure 2.13

EXAMPLE 2.6 The cylinder in Fig. 2.13 is rotated
about the center axis as shown. What rotational speed

is required so that the water just touches point A.
Also, find the force on the bottom of the cylinder.

Solution: The volume of the air before and after must be the same. Recognizing that the volume of a

paraboloid of revolution is half of the volume of a circular cylinder of the same radius and height, the height
of the paraboloid of revolution is found:

p · 0:162 · 0:02 ¼ 1

2
p · 0:162h \ h ¼ 0:04m
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Use Eq. (2.30) to find O:

0:04 ¼ O2 · 0:162

2 · 9:81
O ¼ 5:54 rad=s

The pressure on the bottom as a function of the radius r is p(r), given by

p2p0 ¼ rO2

2
ðr22 r 2

1 Þ

where p0 ¼ 9810 · ð0:2020:04Þ ¼ 1570Pa. So,

p ¼ 1000 · 5:542

2
r2 þ 1570 ¼ 15 346r2 þ 1570

The pressure is integrated over the area to find the force to beZ0:16

0
ð15 346r2 þ 1570Þ2pr dr ¼ 142:1N

Solved Problems

2.1 Derive an expression for the density variation in a liquid assuming a constant bulk modulus and a
constant temperature.

The density varies in a liquid according to Eq. (1.13), B ¼ rDp=DrjT. Over a small pressure difference,
this can be written as, using Eq. (2.9),

dp ¼ B

r
dr ¼ rg dh or

dr
r2

¼ g

B
dh

Assuming a constant value for B, set up an integration:Zr

r0

dr
r2

¼ g

B

Zh

0
dh

Integrating gives the increase in density as

2
1

r
þ 1

r0
¼ gh

B
or r ¼ r0

12gr0h=B

This could be used with dp ¼ rg dh to provide the pressure variation in the ocean.

2.2 A U-tube manometer measures the pressure in an air pipe to be 10 cm of water. Calculate the
pressure in the pipe.

Refer to Fig. 2.3. Equation (2.15) provides the answer:

p1 ¼ gwaterH2 gairh ¼ 9810 · 0:1 ¼ 981Pa

We have neglected the term gairh since gair is small compared with gwater.

2.3 Find the force P needed to hold the 2-m-wide gate in Fig. 2.14 in the position shown if h ¼ 1.2 m.
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65°

P

80 cm

Waterh

Hinge

Figure 2.14

The force of the water on the gate is given by Eq. (2.17), using h ¼ 0:6m, to be

F ¼ ghA ¼ 9810 · 0:6 ·
1:2

sin 65– · 2

� �
¼ 15 590N

The force F acts normal to the gate. Moments about the hinge gives

Fd1 ¼ Pd2 15 590
0:6

sin 65– ¼ P
1:2

sin 65– þ 0:8

� �
\ P ¼ 4860N

We have used d1 as the distance to F and d2 as the distance to P.

2.4 Find the force P needed to hold the 3-m-wide gate in the position shown in Fig. 2.15(a) if
r ¼ 2 m.

(a) (b) (c)

FW
F1FH

FV

FH

FV

Fy

Fx

d1

d2

P
P

Water

Quarter circle
radius = r

60 cm

Hinge

Figure 2.15

There are horizontal and vertical force components acting on the gate. The pressure distribution on the

gate would be the same if water was above and to the right of the gate. So, only a free-body diagram of
the water is shown in Fig. 2.15(b). The free-body diagram of the gate is shown in Fig. 2.15(c). The forces
F1 ¼ FH and FW ¼ FV are

FH ¼ F1 ¼ ghA FV ¼ FW ¼ g�V
¼ 9810 · 1 · ð2 · 3Þ ¼ 58 860N ¼ 9810 ·

1

4
p · 22 · 3 ¼ 92 580N

The distances d1 and d2 (FW acts through the centroid of the quarter circle) are

d1 ¼ 1

3
· 2 ¼ 0:667m d2 ¼ 4r

3p
¼ 4 · 2

3 · p
¼ 0:8488m

(The force F1 is due to a triangular pressure distribution on the vertical rectangular area, so it must act
through the centroid of that distribution: two-thirds the distance from the surface, or one-third the
distance up from the hinge.) Moments about the hinge give

2:6P ¼ d1FH þ d2FV ¼ 0:667 · 58 860þ 0:8488 · 92 580 \ P ¼ 45 300N
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We could have simplified the calculations if we had moved the forces FH and FV to the center of the

circular arc (review Example 2.4). Then, the moments about the hinge would have provided

2:6P ¼ 2FH \ P ¼ 45 300N

2.5 The tank of Example 2.5 is filled with water but has a small hole at the top of the very left. Now
find the force acting on the bottom of the tank. All other quantities remain as stated in the
example.

The constant-pressure line of zero gage pressure passes through the top left corner and extends below B
at a distance z (make a sketch that has a triangle with the left side (100þ z) cm high and the base 120 cm

long), where z is found from

tan a ¼ 10

9:81
¼ 100þ z

120
\ z ¼ 22:3 cm

Point B is 22.3 cm above the zero-pressure line so that the pressure at B is

pB ¼2gz ¼29810 · 0:223 ¼22190 Pa

The pressure at A and the average pressure on the bottom area are

pA ¼ 9810 · 1:0 ¼ 9810Pa and pavg ¼ pA þ pB
2

¼ 981022190

2
¼ 3810 Pa

The force on the bottom is then

F ¼ pavgA ¼ 3810ð0:6 · 1:2Þ ¼ 2740N

2.6 A test tube is placed in a rotating device that gradually positions the tube to a horizontal position
when it is rotating at a high enough rate. If that rate is 1000 rpm, estimate the pressure at the
bottom of the relatively small-diameter test tube if the tube contains water and it is 12 cm long.
The top of the tube is at a radius of 4 cm from the axis or rotation.

The paraboloid of revolution is a constant-pressure surface. The one that passes through the top of the

rotating test tube is a surface of zero pressure. If we position point ‘‘1’’ on the axis of rotation and ‘‘2’’
on the bottom of the test tube, then Eq. (2.29) takes the form

p22p1 ¼ rO2

2
ðr22 r1Þ or p2 ¼ 1000ð1000 · 2p=60Þ2

2
0:12 ¼ 65 800Pa

Supplementary Problems

Pressure Variation

2.7 Convert the following as indicated:

(a) 2 m of water to cm of mercury
(b) 20 kPa to mm of mercury
(c) 34 ft of water to kPa

(d ) 760 mm of mercury to ft of water
(e) 250 kPa to psi
(f ) 32 psi to kPa

2.8 Calculate the pressure difference from the top of a house to the ground if the distance is 10 m. Make the

appropriate assumptions.
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2.9 A weather person states that the barometric pressure is 29 in of mercury. Convert this pressure to (a) kPa,

(b) psi, (c) ft of water, and (d ) bars.

2.10 Determine the depth of a liquid needed to create a pressure difference of 225 kPa if the liquid is (a) water,
(b) air at standard conditions, (c) mercury, and (d ) oil with S ¼ 0.86.

2.11 The specific gravity of a liquid is 0.75. What height of that liquid is needed to provide a pressure difference of

200 kPa?

2.12 Assume a pressure of 100 kPa absolute at ground level. What is the pressure at the top of a 3-m-high wall on
the outside where the temperature is –20–C and on the inside of a house where the temperature is 22–C?
(This difference results in infiltration even if no wind is present.)

2.13 Find an expression for the pressure variation in the ocean assuming r0 ¼ 1030 kg=m3 for salt water using the
bulk modulus to be 2100 MPa (see the solution to Solved Problem 2.1). Estimate the pressure at 2000 m
using (a) the expression developed and (b) a constant density of 1030 kg=m3. (c) Calculate the percent error

in (b) assuming (a) is the accurate value.

2.14 From about 12 to 20 km, the temperature in the stratosphere is constant at 217 K. Assuming the pressure
at 12 km to be 19.4 kPa, use Eq. (2.13) to approximate the pressure at 20 km. Calculate the error using
Table C.3 in App. C to obtain the more accurate value.

2.15 Assume a temperature distribution of T ¼ 28820:0065z K and integrate to find the pressure at 10 km in the

atmosphere assuming p ¼ 101.3 kPa at z ¼ 0. Calculate the error.

Manometers

2.16 In Fig. 2.3, calculate the pressure in the water pipe if:

(a) h ¼ 10 cm and H ¼ 20 cm (b) h ¼ 15 cm and H ¼ 25 cm
(c) h ¼ 20 cm and H ¼ 30 cm (d ) h ¼ 17 cm and H ¼ 32 cm

2.17 The pressure at the nose of a small airplane is given by p ¼ 1

2
rV2, where r is the density of air. A U-tube

manometer measures 10 cm of water. Determine the airplane’s speed if it is flying at an altitude of:

(a) 10 m (b) 4000 m (c) 6000 m

2.18 Calculate the pressure difference between the air pipe and the water pipe in Fig. 2.16 if H is:

(a) 5 cm (b) 8 cm (c) 10 cm

1

2

4

3

Air

Mercury Water

5

63 cm

5 cm

Air

H

Figure 2.16
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2.19 Replace the air between points 4 and 5 in Fig. 2.16 with oil having Soil ¼ 0.86 and let z4–z5 ¼ 6 cm.

Calculate the pressure difference between the air pipe and water pipe if H is:

(a) 5 cm (b) 8 cm (c) 10 cm

2.20 If the manometer top in Fig. 2.17 is open, then the mercury level is 10 cm below the pressureless air pipe. The
manometer top is sealed and the air pipe is pressurized. Estimate the reading for H for a pressure of 200 kPa
in the air pipe. Assume an isothermal process for the air above the mercury.

H Mercury

Air

Manometer
top

15 cm

Figure 2.17

Forces on Plane and Curved Surfaces

2.21 A submersible has a viewing window that is 60 cm in diameter. Determine the pressure force of the water

on the window if the center of the window is 30 m below the surface and the window is (a) horizontal,
(b) vertical, and (c) on a 45– angle.

2.22 A concrete septic tank measures 2 m · 80 cm · 120 cm and has sides that are 8 cm thick. It is buried flush
with the ground. If it is empty, how high would water saturating the soil have to rise on the outside of the

tank to cause it to rise out of the ground? Assume Sconcrete ¼ 2.4.

2.23 In Solved Problem 2.3, calculate the force P if h is:

(a) 80 cm (b) 2 m (c) 2.4 m

2.24 The top of a 2-m-diamter vertical gate is 4 m below the water surface. It is hinged on the very bottom. What
force, acting at the top of the gate, is needed to hold the gate closed?

2.25 Use Eq. (2.20) and show that the force on a plane rectangular surface at an angle b with the horizontal acts

one-third up from the base provided the top of the rectangle is at the water’s surface.

Stop

Hinge
h

H

80 cm

Water

Figure 2.18

2.26 At what height H will the gate in Fig. 2.18 open

if h is:

(a) 1.0 m
(b) 1.2 m

(c) 1.4 m

(d ) 1.6 m
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Hinge

Water

H

b

Figure 2.19

2.27 The gate shown in Fig. 2.19 will open automatically when the
water level reaches a certain height above the hinge. Determine

that height if b is:

(a) 1.2 m (b) 1.6 m (c) 2.0 m

H

h

4 m

p = H

2 m

10 m

p = h

Figure 2.20

2.28 A pressure distribution exists under a concrete
(S ¼ 2.4) dam, as sketched in Fig. 2.20. Will the
dam tend to topple (sum moments about the

lower right-hand corner) if:

(a) H ¼ 30 m, h ¼ 4 m

(b) H ¼ 40 m, h ¼ 6 m

(c) H ¼ 50 m, h ¼ 8 m

2.29 In Solved Problem 2.4, calculate the force P if r is:

(a) 1.6 m (b) 2.4 m (c) 3 m

2.30 Consider the gate in Fig. 2.21 to be a quarter circle of radius
80 cm. Find the force P needed to just open the 1-m-wide gate if
the hinge is:

(a) 2 m below the surface.
(b) 3 m below the surface.

(c) 4 m below the surface.

2.31 Calculate the force acting on the hinge of (a) Prob. 2.30a, (b) Prob. 2.30b, and (c) Prob. 2.30c.

P

Hinge

Water

x

y

y = 2x2

2 m

Figure 2.22

2.32 Determine the force P needed to just open the
2-m-wide parabolic gate in Fig. 2.22 if the hinge

is at the following y-position in the xy-plane:

(a) 2 m

(b) 8 m

P

Hinge

Water

Figure 2.21
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2.33 A body weighs 200 N in air and 125 N when submerged in water. Calculate its specific weight.

2.34 An object with a volume of 1200 cm3 weighs 20 N. What will it weigh when submerged in water?

2.35 A body lighter than water requires a force of 20 N to hold it under water. If it weighs 75 N in air, what is its

density and specific gravity?

Water H

R

2 m

12 cm

Figure 2.23

2.36 The cylinder shown in Fig. 2.23 pulls out the plug when the
water depth reaches a certain height H. The circular plug and
2-m-long cylinder weigh 2000 N. Determine H if R is:

(a) 20 cm (b) 40 cm (c) 60 cm

Accelerating Containers

Water
ax

a

h

3h

A B

Open

Figure 2.24

2.37 The tank displayed in Fig. 2.24 is filled with water and

accelerated with the two components shown. Calculate
the pressures at A and B if:

(a) ax ¼ 6 m=s2, az ¼ 0, and h ¼ 1.4 m

(b) ax ¼ 0, az ¼ 6 m=s2, and h ¼ 2.4 m

(c) ax ¼ 6 m=s2, az ¼ 6 m=s2, and h ¼ 2 m

(d ) ax ¼ 6 m=s2, az ¼ 2 m=s2, and h ¼ 1.4 m

2.38 Find the force acting on the bottom of the 2-m-wide tank of (a) Prob. 2.37a, (b) Prob. 2.37b, (c) Prob. 2.37c,

and (d ) Prob. 2.37d.

2.39 Find the force acting on the left end of the 2-m-wide tank of (a) Prob. 2.37a, (b) Prob. 2.37b, (c) Prob. 2.37c,

and (d ) Prob. 2.37d.

2.40 The tank of Prob. 2.37a is accelerated to the left, rather than to the right. Calculate the pressure at A and the
force on the bottom of the 2-m-wide tank.

x
L

L

A

B

Open

L

Figure 2.25

2.41 Determine the pressures at points A and B in the water in
the U-tube of Fig. 2.25 if:

(a) L ¼ 40 cm and ax ¼ 6 m=s2

(b) L ¼ 60 cm and ax ¼ 210 m=s2

(c) L ¼ 50 cm and ax ¼ 4 m=s2

2.42 The U-tube of Prob. 2.41 is rotated about the right leg at 100 rpm. Calculate the pressures at A and B in the
water if L is:

(a) 40 cm (b) 50 cm (c) 60 cm
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2.43 The U-tube of Prob. 2.41 is rotated about the left leg at 100 rpm. Calculate the pressures at A and B in the

water if L is:

(a) 40 cm (b) 50 cm (c) 60 cm

2.44 The U-tube of Prob. 2.41 is rotated about the center of the horizontal part at 100 rpm. Calculate the
pressures at A and B in the water if L is:

(a) 40 cm (b) 50 cm (c) 60 cm

Water

Air

R

1.5R

0.4R

A

Figure 2.26

2.45 Find the pressure at point A in the cylinder of Fig. 2.26 if
O ¼ 100 rpm and R is:

(a) 40 cm (b) 60 cm (c) 80 cm

2.46 Determine the force on the bottom of the cylinder of (a) Prob. 2.45a, (b) Prob. 2.45b, and (c) Prob. 2.45c.

Answers to Supplementary Problems

2.7 (a) 4.7 cm (b) 150 mm (c) 101.7 kPa (d ) 33.9 ft (e) 36.25 psi
( f ) 221 kPa

2.8 120 Pa

2.9 (a) 15.23 kPa (b) 2.21 psi (c) 5.09 ft (d ) 0.1523 bars

2.10 (a) 22.9 m (b) 18 650 m (c) 1.686 m (d ) 26.7 m

2.11 27.2 m

2.12 99 959 Pa, 99 965 Pa

2.13 (a) 20.3 MPa (b) 20.21 MPa (c) 2 0.44%

2.14 5.50 kPa, 20.51%

2.15 26.3 kPa, 20.75%

2.16 (a) 25.7 kPa (b) 31.9 kPa (c) 38.1 kPa (d ) 41.0 kPa

2.17 (a) 40.1 m=s (b) 49.1 m=s (c) 54.5 m=s

2.18 (a) 6.18 kPa (b) 10.2 kPa (c) 12.8 kPa

2.19 (a) 5.67 kPa (b) 9.68 kPa (c) 12.34 kPa
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2.20 30.7 cm

2.21 (a) 83.2 kN (b) 83.2 kN (c) 83.2 kN

2.22 54.2 cm

2.23 (a) 1212 N (b) 10.6 kN (c) 15.96 kN

2.24 24.4 kN

2.25 Answer is given in problem.

2.26 (a) 1.8 m (b) 0.667 m (c) 0.244 m (d ) 0 m

2.27 (a) 2.08 m (b) 2.77 m (c) 3.46 m

2.28 (a) It will tip (b) It will tip (c) It will not tip

2.29 (a) 17.1 kN (b) 28.2 kN (c) 36.8 kN

2.30 (a) 6500 N (b) 7290 N (c) 8070 N

2.31 (a) 4710 N (b) 5490 N (c) 6280 N

2.32 (a) 31.9 kN (b) 91.4 kN

2.33 2.67, 0.00764 m3

2.34 8.23 N

2.35 789 kg/m3, 0.789

2.36 (a) 2.39 m (b) 2.19 m

2.37 (a) 13.73 kPa, 211.47 kPa (b) 37.9 kPa, 37.9 kPa (c) 31.6 kPa, 24.38 kPa

(d ) 16.53 kPa, 28.67 kPa

2.38 (a) 9.49 kN (b) 546 kN (c) 327 kN (d ) 66 kN

2.39 (a) 19.22 kN (b) 53.1 kN (c) 44.3 kN (d ) 23.1 kN

2.40 13.73 kPa, 221 kN

2.41 (a) 2.40 kPa, 3.92 kPa (b) 6.00 kPa, 3.92 kPa (c) 2.00 kPa, 3.92 kPa

2.42 (a) 8.77 kPa, 3.92 kPa (b) 13.7 kPa, 4.90 kPa (c) 19.73 kPa, 5.89 kPa

2.43 (a) 28.77 kPa, 3.92 kPa (b) 213.7 kPa, 4.90 kPa (c) 219.73 kPa, 5.89 kPa

2.44 (a) 0 kPa, 3.92 kPa (b) 0 kPa, 4.90 kPa (c) 0 kPa, 5.89 kPa

2.45 (a) 10.98 kPa (b) 21.3 kPa (c) 39.5 kPa

2.46 (a) 3.31 kN (b) 12.9 kN (c) 44.1 kN
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Chapter 3

Fluids in Motion

3.1 INTRODUCTION

This chapter introduces the general subject of the motion of fluid flows. Such motions are quite complex
and require rather advanced mathematics to describe them if all details are to be included. With
experience we can make simplifying assumptions to reduce the mathematics required, but even then the
problems can get rather involved mathematically. To describe the motion of air around an airfoil, water
around a ship, a tornado, a hurricane, the agitated motion in a washing machine, or even water passing
through a valve, the mathematics becomes quite sophisticated and is beyond the scope of an
introductory course. We will, however, derive the equations needed to describe such motions but will
make simplifying assumptions that will allow a number of problems of interest to be solved. These
problems will include flow in a pipe, through a channel, around rotating cylinders, and in a boundary
layer near a flat wall. They will also include compressible flows involving simple geometries.

The assumptions that we will make include the nature of the geometry: pipes and channels are straight
and possibly smooth, and walls are perfectly flat. Fluids are all viscous (viscosity causes fluid to stick to a
boundary) but often we can ignore the viscous effects; however, if viscous effects are to be included we can
demand that they behave in a linear fashion, a good assumption for water and air. Compressibility effects
can also be ignored for low velocities such as those encountered inwindmotions (including hurricanes) and
flows around airfoils at speeds below about 100 m=s (220 mi=h) when flying near the ground.

In Sec. 3.2, we will describe fluid motion in general, the classification of different types of fluid
motions will follow this, and then we will introduce the famous Bernoulli equation along with its
numerous assumptions that make it applicable in only limited situations.

3.2 FLUID MOTION

3.2.1 Lagrangian and Eulerian Descriptions

The motion of a group of particles can be thought of in two basic ways: focus can be on an individual
particle, such as following a particular car on a freeway jammed with cars (a police patrol car may do
this while moving with traffic), or it can be at a particular location as the cars move by (a patrol car
sitting along the freeway does this). When analyzed correctly, the solution to a problem would be the
same using either approach (if you are speeding, you will get a ticket from either patrol car).

When solving a problem involving a single object, such as in a dynamics course, focus is always on
the particular object. If there were several objects, we could establish the position r(x0, y0, z0, t), velocity
V(x0, y0, z0, t), and acceleration a(x0, y0, z0, t) of the object that occupied the position (x0, y0, z0) at the
starting time. The position (x0, y0, z0) is the ‘‘name’’ of the object upon which attention is focused. This is
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the Lagrangian description of motion. It is quite difficult to use this description in a fluid flow where there
are so many particles. Let us consider the second way to describe a fluid motion.

Let us now focus on a general point (x, y, z) in the flow with the fluid moving by the point having
a velocity V(x, y, z, t). The rate of change of the velocity of the fluid as it passes the point is
@V=@x; @V=@y; @V=@z; and it may also change with time at the point: @V=@t: We use partial derivatives
here since the velocity is a function of all four variables. This is the Eulerian description of motion, the
preferred description in our study of fluids. We have used rectangular coordinates here but other
coordinate systems, such as cylindrical coordinates, can also be used. The region of interest is referred
to as a flow field and the velocity in that flow field is often referred to as the velocity field. The flow
field could be the inside of a pipe, the region around a turbine blade, or the water in a washing
machine.

If the quantities of interest using a Eulerian description were not dependent on time t, we
would have a steady flow; the flow variables would depend only on the space coordinates. For such a
flow

@V

@t
¼ 0

@p

@t
¼ 0

@r
@t

¼ 0 ð3:1Þ

to list a few. In the above partial derivatives, it is assumed that the space coordinates remain fixed; we
are observing the flow at a fixed point. If we followed a particular particle, as in a Lagrangian approach,
the velocity of that particle would, in general, vary with time as it progressed through a flow field. Using
the Eulerian description, as in Eq. (3.1), time would not appear in the expressions for quantities in a
steady flow.

3.2.2 Pathlines, Streaklines, and Streamlines

There are three different lines in our description of a fluid flow. The locus of points traversed by a
particular fluid particle is a pathline; it provides the history of the particle. A time exposure of an
illuminated particle would show a pathline. A streakline is the line formed by all particles passing a
given point in the flow; it would be a snapshot of illuminated particles passing a given point. A
streamline is a line in a flow to which all velocity vectors are tangent at a given instant; we cannot
actually photograph a streamline. The fact that the velocity is tangent to a streamline allows us to
write

V · dr ¼ 0 ð3:2Þ

since V and dr are in the same direction, as shown in Fig. 3.1; recall that two vectors in the same
direction have a cross product of 0.

In a steady flow, all three lines are coincident. So, if the flow is steady, we can photograph a pathline
or a streakline and refer to such a line as a streamline. It is the streamline in which we have primary
interest in our study of fluids.

A streamtube is the tube whose walls are streamlines. A pipe is a streamtube as is a channel. We
often sketch a streamtube in the interior of a flow for derivation purposes.

dr
V

V
V

x

y

r

Figure 3.1 A streamline.
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3.2.3 Acceleration

To make calculations for a fluid flow, such as pressures and forces, it is necessary to describe the motion
in detail; the expression for the acceleration is needed assuming the velocity field is known. Consider a
fluid particle having a velocity V(t) at an instant t, as shown in Fig. 3.2. At the next instant tþ Dt the
particle will have velocity Vðtþ DtÞ, as shown. The acceleration of the particle is

a ¼ dV

dt
ð3:3Þ

where dV is shown in the figure. From the chain rule of calculus, we know that

dV ¼ @V

@x
dxþ @V

@y
dyþ @V

@z
dzþ @V

@t
dt ð3:4Þ

since V¼Vðx; y; z; tÞ: This gives the acceleration as

a ¼ dV

dt
¼ @V

@x

dx

dt
þ @V

@y

dy

dt
þ @V

@z

dz

dt
þ @V

@t
ð3:5Þ

dV
V(t) V(t + dt)

x

y

Fluid particle
at time t

V(t)
Fluid particle
at time t + dt Velocity triangle

V(t + dt)

Figure 3.2 The velocity of a fluid particle.

Now, since V is the velocity of a particle at (x, y, z), we let

V ¼ uiþ vjþ wk ð3:6Þ
where ðu; v;wÞ are the velocity components of the particle in the x-, y-, and z-directions, respectively, and
i, j, and k are the unit vectors. For the particle at the point of interest, we have

dx

dt
¼ u

dy

dt
¼ v

dz

dt
¼ w ð3:7Þ

so that the acceleration can be expressed as

a ¼ u
@V

@x
þ v

@V

@y
þ w

@V

@z
þ @V

@t
ð3:8Þ

The time derivative of velocity represents the local acceleration and the other three terms
represent the convective acceleration. In a pipe, local acceleration results if the velocity changes with
time whereas convective acceleration results if velocity changes with position (as occurs at a bend or
valve).

It is important to note that the expressions for the acceleration have assumed an inertial reference
frame, i.e., the reference frame is not accelerating. It is assumed that a reference frame attached to the
earth has negligible acceleration for problems of interest in this book. If a reference frame is attached to,
say, a dishwasher spray arm, additional acceleration components enter the expressions for the
acceleration vector.

CHAP. 3] FLUIDS IN MOTION 41



The vector equation (3.8) can be written as the three scalar equations

ax ¼ u
@u

@x
þ v

@u

@y
þ w

@u

@z
þ @u

@t

ay ¼ u
@v

@x
þ v

@v

@y
þ w

@v

@z
þ @v

@t
ð3:9Þ

az ¼ u
@w

@x
þ v

@w

@y
þ w

@w

@z
þ @w

@t

We usually write Eq. (3.3) (and Eq. (3.8)) as

a ¼ DV

Dt
ð3:10Þ

where D=Dt is called the material, or substantial, derivative since we have followed a material particle, or
the substance, at an instant. In rectangular coordinates, the material derivative is

D

Dt
¼ u

@

@x
þ v

@

@y
þ w

@

@z
þ @

@t
ð3:11Þ

It can be used with other quantities of interest, such as the pressure: Dp=Dt would represent the rate of
change of pressure of a fluid particle at some point (x, y, z).

The material derivative and acceleration components are presented for cylindrical and spherical
coordinates in Table 3.1 at the end of this section.

3.2.4 Angular Velocity and Vorticity

Visualize a fluid flow as the motion of a collection of fluid particles that deform and rotate as they travel
along. At some instant in time, we could think of all the particles that make up the flow as being little
cubes. If the cubes simply deform and do not rotate, we refer to the flow, or a region of the flow, as an
irrotational flow. Such flows are of particular interest in our study of fluids; they exist in tornados away
from the ‘‘eye’’ and in the flow away from the surfaces of airfoils and automobiles. If the cubes do rotate,
they possess vorticity. Let us derive the equations that allow us to determine if a flow is irrotational or if
it possesses vorticity.

Consider the rectangular face of an infinitesimal volume shown in Fig. 3.3. The angular velocity Oz

about the z-axis is the average of the angular velocity of segments AB and AC, counterclockwise taken as
positive:

Oz ¼ OAB þ OAC

2
¼ 1

2

vB2vA
dx

þ2ðuC2uAÞ
dy

� �

¼ 1

2

@v

@x
dx

dx
2

@u

@y
dy

dy

2664
3775 ¼ 1

2

@v

@x
2
@u

@y

� �
ð3:12Þ

If we select the other faces, we would find

Ox ¼ 1

2

@w

@y
2
@v

@z

� �
Oy ¼ 1

2

@u

@z
2
@w

@x

� �
ð3:13Þ

These three components of the angular velocity components represent the rate at which a fluid particle
rotates about each of the coordinate axes. The expression for Oz would predict the rate at which a cork
would rotate in the xy-surface of the flow of water in a channel.
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dx

dx

dy

v + dy

x

y

dx

dy

u

v

A
B

C

u +

v +

u + u

v
y

v
x

y

u
x

Figure 3.3 The rectangular face of a fluid element.

The vorticity vector v is defined as twice the angular velocity vector: v ¼ 2OOOOO: The vorticity
components are

ox ¼ @w

@y
2
@v

@z
oy ¼ @u

@z
2
@w

@x
oz ¼ @v

@x
2
@u

@y
ð3:14Þ

The vorticity components in cylindrical coordinates are listed in Table 3.1. The vorticity and angular
velocity components are 0 for an irrotational flow; the fluid particles do not rotate, they only
deform.

Table 3.1 The Material Derivative, Acceleration, and Vorticity in Rectangular, Cylindrical, and Spherical

Coordinates

Material derivative

Rectangular

D

Dt
¼ u

@

@x
þ v

@

@y
þ w

@

@z
þ @

@t

Cylindrical

D

Dt
¼ vr

@

@r
þ vy

r

@

@y
þ vz

@

@z
þ @

@t

Spherical

D

Dt
¼ vr

@

@r
þ vy

r

@

@y
þ vf

r sin y
@

@f
þ @

@t

Acceleration

Rectangular

ax ¼ u
@u

@x
þ v

@u

@y
þ w

@u

@z
þ @u

@t
ay ¼ u

@v

@x
þ v

@v

@y
þ w

@v

@z
þ @v

@t
az ¼ u

@w

@x
þ v

@w

@y
þ w

@w

@z
þ @w

@t

Cylindrical

ar ¼ vr
@vr
@r

þ vy
r

@vr
@y

þ vz
@vr
@z

2
v 2
y

r
þ @vr

@t
ay ¼ vr

@vy
@r

þ vy
r

@vy
@y

þ vz
@vy
@z

þ vrvy
r

þ @vy
@t

az ¼ vr
@vz
@r

þ vy
r

@vz
@y

þ vz
@vz
@z

þ @vz
@t
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Table 3.1 Continued

Spherical

ar ¼ vr
@vr
@r

þ vy
r

@vr
@y

þ vf
r sin y

@vr
@f

2
v 2
y þ v 2

f

r
þ @vr

@t
ay ¼ vr

@vy
@r

þ vy
r

@vy
@y

þ vf
r sin y

@vy
@f

þ vrvy2v 2
f cot y

r
þ @vy

@t

af ¼ vr
@vf
@r

þ vy
r

@vf
@y

þ vf
r sin y

@vf
@f

þ vrvf þ vyvf cot y
r

þ @vf
@t

Vorticity

Rectangular

ox ¼ @w

@y
2
@v

@z
oy ¼ @u

@z
2
@w

@x
oz ¼ @v

@x
2
@u

@y

Cylindrical

or ¼ 1

r

@vz
@y

2
@vy
@z

oy ¼ @vr
@z

2
@vz
@r

oz ¼ 1

r

@ðrvyÞ
@r

2
1

r

@vr
@y

It is the deformation of fluid particles that leads to the internal stresses in a flow. The study of the
deformation of fluid particles leads to the rate-of-strain components and, with the use of constitutive
equations that introduce the viscosity, to expressions for the normal and shear stresses. If Newton’s
second law is then applied to a particle, the famous Navier–Stokes equations result (see Chap. 5). We
present these equations, along with the continuity equation (to be derived later), in Table 3.2 for
completeness and consider their applications in later chapters.

Table 3.2 The Constitutive Equations, Continuity Equation, and Navier–Stokes Equations for an Incompressible

Flow Using Rectangular Coordinates

Constitutive equations

sxx ¼2pþ 2m
@u

@x
txy ¼ tyx ¼ m

@u

@y
þ @v

@x

� �
txz ¼ tzx ¼ m

@u

@z
þ @w

@x

� �

syy ¼2pþ 2m
@v

@y
tyz ¼ tzy ¼ m

@v

@z
þ @w

@y

� �
szz ¼2pþ 2m

@w

@z

Continuity equation

@u

@x
þ @v

@y
þ @w

@z
¼ 0

Navier–Stokes equations

r
Du

Dt
¼2

@p

@x
þ rgx þ mH2u where

D

Dt
¼ @

@t
þ u

@

@x
þ v

@

@y
þ w

@

@z

r
Dv

Dt
¼2

@p

@y
þ rgy þ mH2v where H2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2

r
Dw

Dt
¼2

@p

@z
þ rgz þ mH2w
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EXAMPLE 3.1 A velocity field in a plane flow is given by V ¼ 2ytiþ xj. Find the equation of the streamline
passing through (4, 2) at t ¼ 2.

Solution: Equation (3.2) can be written in the form

ð2ytiþ xjÞ · ðdxiþ dyjÞ ¼ ð2yt dy2x dxÞk ¼ 0

This leads to the equation, at t ¼ 2

4y dy ¼ x dx

Integrate to obtain

2y22
x2

2
¼ C

The constant is evaluated at the point (4, 2) to be C ¼ 0. So, the equation of the streamline is

x2 ¼ 4y2

Distance is usually measured in meters and time in seconds so then velocity would have units of m=s.

EXAMPLE 3.2 For the velocity field V ¼ 2xyiþ 4tz2j2yzk, find the acceleration, the angular velocity about
the z-axis, and the vorticity vector at the point (2,21, 1) at t ¼ 2.

Solution: The acceleration is found as follows:

a ¼ u
@V

@x
þ v

@V

@y
þ w

@V

@z
þ @V

@t

¼ 2xyð2yiÞ þ 4tz2ð2xi2 zkÞ2yzð8tzj2ykÞ þ 4z2j

At the point (2,21, 1) and t ¼ 2 there results

a ¼ 2ð2Þð21Þð22iÞ þ 4ð2Þð12Þð4i2kÞ2 ð21Þð1Þð16jþ kÞ þ 4ð12Þj
¼ 8iþ 32i28kþ 16jþ kþ 4j

¼ 40iþ 20j27k

The angular velocity component Oz is

Oz ¼ 1

2

@v

@x
2
@u

@y

� �
¼ 1

2
022xð Þ ¼ x

At the point (2,21, 1) and t ¼ 2 it is Oz ¼ 2:
The vorticity vector is

ooooo ¼ @w

@y
2
@v

@z

� �
iþ @u

@z
2
@w

@x

� �
jþ @v

@x
2
@u

@y

� �
k

¼ ð2z28tzÞiþ ð020Þjþ ð022xÞk
At the point (2,21, 1) and t ¼ 2 it is

ooooo ¼ ð21216Þi24k

¼217i24k

Distance is usually measured in meters and time in seconds. Thus, angular velocity and vorticity would have

units of m=(s·m) or rad=s.

3.3 CLASSIFICATION OF FLUID FLOWS

Fluid mechanics is a subject in which many rather complicated phenomena are encountered, so it is
important that we understand some of the descriptions and simplifications of several special fluid flows.
Such special flows will be studied in detail in later chapters. Here we will attempt to classify them in as
much detail as possible.
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3.3.1 Uniform, One-, Two-, and Three-Dimensional Flows

A dependent variable in our study of fluids depends, in general, on the three space coordinates and time,
e.g., V(x, y, z, t). The flow that depends on three space coordinates is a three-dimensional flow; it could be
a steady flow if time is not involved, such as would be the case in the flow near the intersection of a wing
and the fuselage of an aircraft flying at a constant speed. The flow in a washing machine would be an
unsteady, three-dimensional flow.

Certain flows can be approximated as two-dimensional flows; flows over a wide weir, in the entrance
region of a pipe, and around a sphere are examples that are of special interest. In such two-dimensional
flows the dependent variables depend on only two space variables, i.e., p(r, y) or V(x, y, t). If the space
coordinates are x and y, we refer to the flow as a plane flow.

One-dimensional flows are flows in which the velocity depends on only one space variable. They are
of special interest in our introductory study since they include the flows in pipes and channels, the two
most studied flows in an introductory course. For flow in a long pipe, the velocity depends on the radius
r, and in a wide channel (parallel plates) it depends on y, as shown in Fig. 3.4.

u(r)
x

r u(y)
x

y

Figure 3.4 One-dimensional flow. (a) Flow in a pipe; (b) flow in a wide channel.

The flows shown in Fig. 3.4 are also referred to as developed flows; the velocity profiles do not change
with respect to the downstream coordinate. This demands that the pipe flow shown is many diameters
downstream of any change in geometry, such as an entrance, a valve, an elbow, or a contraction or
expansion. If the flow has not developed, the velocity field depends on more than one space coordinate,
as is the case near a geometry change. The developed flow may be unsteady, i.e., it may depend on time,
such as when a valve is being opened or closed.

Vx
r

Figure 3.5 A uniform flow in a pipe.

Finally, there is the uniform flow, as sketched in Fig. 3.5; the velocity profile, and other properties
such as pressure, is uniform across the section of pipe. This profile is often assumed in pipe and channel
flow problems since it approximates the more common turbulent flow so well. We will make this
assumption in many of the problems of future chapters.

3.3.2 Viscous and Inviscid Flows

In an inviscid flow the effects of viscosity can be completely neglected with no significant effects on the
solution to a problem involving the flow. All fluids have viscosity and if the viscous effects cannot be
neglected, it is a viscous flow. Viscous effects are very important in pipe flows and many other kinds of
flows inside conduits; they lead to losses and require pumps in long pipe lines. But, are there flows in
which we can neglect the influence of viscosity? Certainly, we would not even consider inviscid flows if no
such flows could be found in our engineering problems.

Consider an external flow, flow external to a body, such as the flow around an airfoil or a hydrofoil,
as shown in Fig. 3.6. If the airfoil is moving relatively fast (faster than about 1 m=s), the flow away from
a thin layer near the boundary, a boundary layer, can be assumed to have zero viscosity with no
significant effect on the solution to the flow field (the velocity, pressure, temperature fields). All the
viscous effects are concentrated inside the boundary layer and cause the velocity to be zero at the surface
of the airfoil, the no-slip condition. Since inviscid flows are easier to solve than viscous flows, the
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recognition that the viscosity can be ignored in the flow away from the surface in many flows leads to
much simpler solutions. This will be demonstrated in Chap. 8.

Inviscid flow
Chord, c

Boundary layer

Figure 3.6 Flow around an airfoil.

3.3.3 Laminar and Turbulent Flows

A viscous flow is either a laminar flow or a turbulent flow. In a turbulent flow there is mixing of fluid
particles so that the motion of a given particle is random and highly irregular; statistical averages are used
to specify the velocity, the pressure, and other quantities of interest. Such an average may be ‘‘steady’’ in
that it is independent of time, or it may be unsteady and depend on time. Figure 3.7 shows steady and
unsteady turbulent flows. Notice the noisy turbulent flow from a faucet when you get a drink of water.

In a laminar flow there is negligible mixing of fluid particles; the motion is smooth and noiseless, like
the slow water flow from a faucet. If a dye is injected into a laminar flow, it remains distinct for a
relatively long period of time. The dye would be immediately diffused if the flow were turbulent. Figure
3.8 shows a steady and an unsteady laminar flow. A laminar flow could be made to appear turbulent
by randomly controlling a valve in the flow of honey in a pipe so as to make the velocity appear as in
Fig. 3.7. Yet, it would be a laminar flow since there would be no mixing of fluid particles. So, a simple

V(t)

t t

V(t)

Figure 3.7 Steady and unsteady turbulent flows.

V(t)V(t)

tt

Figure 3.8 Steady and unsteady laminar flows.

display of V(t) is not sufficient to decide if a particular flow is laminar or turbulent. To be turbulent, the
motion has to be random, as in Fig. 3.7, but it also has to have mixing of fluid particles.

As a flow begins, as in a pipe, the flow starts out laminar, but as the average velocity increases, the
laminar flow becomes unstable and turbulent flow ensues. In some cases, as in the flow between rotating
cylinders, the unstable laminar flow develops into a secondary laminar flow of vortices, and then a third
laminar flow, and finally a turbulent flow at higher speeds.
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There is a quantity, called the Reynolds number, that is used to determine if a flow is laminar or
turbulent. It is

Re ¼ VL

n
ð3:15Þ

where V is a characteristic velocity (the average velocity in a pipe or the speed of an airfoil), L is a
characteristic length (the diameter of a pipe or the distance from the leading edge of a flat plate), and n is
the kinematic viscosity. If the Reynolds number is larger than a critical Reynolds number, the flow is
turbulent; if it is lower than the critical Reynolds number, the flow is laminar. For flow in a pipe,
assuming the usually rough pipe wall, the critical Reynolds number is usually taken to be 2000; if the wall
is smooth and free of vibrations, and the entering flow is free of disturbances, the critical Reynolds
number can be as high as 40 000. The critical Reynolds number is different for each geometry. For flow
between parallel plates, it is taken as 1500 using the average velocity and the distance between the plates.
For a boundary layer on a flat plate with a zero pressure gradient, it is between 3 · 105 and 106, using the
distance from the leading edge.

We do not refer to an inviscid flow as laminar or turbulent. In an external flow, the inviscid flow is
called a free-stream flow. A free stream has disturbances but the disturbances are not accompanied by
shear stresses, another requirement of both laminar and turbulent flows; this will be discussed in a later
chapter. The free stream can also be irrotational or it can possess vorticity.

A boundary layer is a thin layer of fluid that develops on a body due to the viscosity causing the fluid
to stick to the boundary; it causes the velocity to be zero at the wall. The viscous effects in such a layer
can actually burn up a satellite on reentry. Figure 3.9 shows the typical boundary layer on a flat plate. It
is laminar near the leading edge and undergoes transition to a turbulent flow with sufficient length. For a
smooth rigid plate with low free-stream fluctuation level, a laminar layer can exist up to Re ¼ 106, where
Re ¼ VL/n, L being the length along the plate; for a rough plate, or a vibrating plate, or high free-stream
fluctuations, a laminar flow exists up to about Re ¼ 3 · 105.

Laminar
flow

Turbulent
flow

Transition

V

Inviscid flow

Figure 3.9 Boundary layer flow on a flat plate.

3.3.4 Incompressible and Compressible Flows

Liquid flows are assumed to be incompressible in most situations (water hammer is an exception).
In such incompressible flows the density of a fluid particle as it moves along is assumed to be
constant, i.e.,

Dr
Dt

¼ 0 ð3:16Þ

This does not demand that the density of all the fluid particles be the same. For example, salt could be
added to a water flow at some point in a pipe so that downstream of the point the density would be
greater than at some upstream point. Atmospheric air at low speeds is incompressible but the density
decreases with increased elevation, i.e., r ¼ r(z), where z is vertical. We usually assume a fluid to have
constant density when we make the assumption of incompressibility, which is

@r
@t

¼ 0
@r
@x

¼ 0
@r
@y

¼ 0
@r
@z

¼ 0 ð3:17Þ
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The flow of air can be assumed to be incompressible if the velocity is sufficiently low. Air flow in
conduits, around automobiles and small aircraft, and the takeoff and landing of commercial aircraft are
all examples of incompressible airflows. The Mach number M where

M ¼ V

c
ð3:18Þ

is used to determine if a flow is compressible; V is the characteristic velocity and c ¼ ffiffiffiffiffiffi
kRT

p
is the speed of

sound. If M, 0.3, we assume the flow to be incompressible. For air near sea level this is about 100 m=s
(300 ft=sec) so many air flows can be assumed to be incompressible. Compressibility effects are
considered in some detail in Chap. 9.

EXAMPLE 3.3 A river flowing through campus appears quite placid. A leaf floats by and we estimate the
average velocity to be about 0.2 m=s. The depth is only 0.6 m. Is the flow laminar or turbulent?

Solution: We estimate the Reynolds number to be, assuming T ¼ 20–C (see Table C.1),

Re ¼ Vh

n
¼ 0:2 · 0:6

1026
¼ 120 000

This flow is highly turbulent at this Reynolds number, contrary to our observation of the placid flow. Most
internal flows are turbulent, as observed when we drink from a drinking fountain. Laminar flows are of minimal
importance to engineers when compared with turbulent flows; a lubrication problem is one exception.

3.4 BERNOULLI’S EQUATION

Bernoulli’s equation may be the most often used equation in fluid mechanics but it is also the most often
misused equation in fluid mechanics. In this section, that famous equation will be derived and the
restrictions required for its derivation will be highlighted so that its misuse can be minimized. Before the
equation is derived let us state the five assumptions required: negligible viscous effects, constant density,
steady flow, the flow is along a streamline, and in an inertial reference frame. Now, let us derive the
equation.

gdsdA

dh = ds

V

ds

dA

pdA

p + ds

R (radius of curvature)

streamline

y

x

n

s

s

s
h

dA

Figure 3.10 A particle moving along a streamline.

We apply Newton’s second law to a cylindrical particle that is moving on a streamline, as shown in
Fig. 3.10. A summation of infinitesimal forces acting on the particle is

p dA2 pþ @p

@s
ds

� �
dA2rg ds dA cos y ¼ r ds dA as ð3:19Þ
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where as is the s-component of the acceleration vector. It is given by Eq. (3.9a) where we think of the
x-direction being in the s-direction so that u ¼ V

as ¼ V
@V

@s
þ @V

@t
ð3:20Þ

where @V=@t ¼ 0 assuming a steady flow. (This leads to the same acceleration expression as presented in
physics or dynamics where ax ¼ VdV=dx providing an inertial reference frame is used in which no
Coriolis or other acceleration components are present.) Next, we observe that

dh ¼ ds cos y ¼ @h

@s
ds ð3:21Þ

resulting in

cos y ¼ @h

@s
ð3:22Þ

Now, divide Eq. (3.19) by ds dA and use the above expressions for as and cos y and rearrange. There
results

2
@p

@s
2rg

@h

@s
¼ rV

@V

@s
ð3:23Þ

If we assume that the density r is constant (this is more restrictive than incompressibility as we shall see
later) so it can be moved after the partial derivative, and we recognize that V@V=@s ¼ @ðV2=2Þ=@s, we can
write our equation as

@

@s

V2

2g
þ p

rg
þ h

{ !
¼ 0 ð3:24Þ

This means that along a streamline the quantity in parentheses is constant, i.e.,

V2

2g
þ p

rg
þ h ¼ const ð3:25Þ

where the constant may change from one streamline to the next; along a given streamline the sum of the
three terms is constant. This is often written referring to two points on the same streamline as

V 2
1

2g
þ p1

rg
þ h1 ¼ V 2

2

2g
þ p2

rg
þ h2 ð3:26Þ

or

V 2
1

2
þ p1

r
þ gh1 ¼ V 2

2

2
þ p2

r
þ gh2 ð3:27Þ

Either of the two forms above is the famous Bernoulli Equation used in many applications. Let us
highlight the assumptions once more since the equation is often misused:

• Inviscid flow (no shear stresses)
• Constant density
• Steady flow
• Along a streamline
• Applied in an inertial reference frame

The first three of these are the primary ones that are usually considered, but there are special applications
where the last two must be taken into account; those special applications will not be presented in this
book. Also, we often refer to a constant-density flow as an incompressible flow even though constant
density is more restrictive (refer to the comments after Eq. (3.16)); this is because we do not typically
make application to incompressible flows in which the density changes from one streamline to the next,
such as in atmospheric flows.
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Note that the units on all the terms in Eq. (3.26) are meters (feet when using English units).
Consequently, V2=2g is called the velocity head, p=rg is the pressure head, and h is simply the head. The
sum of the three terms is often referred to as the total head. The pressure p is the static pressure and
the sum pþ rV2=2 is the total pressure or stagnation pressure since it is the pressure at a stagnation point,
a point where the fluid is brought to rest along a given streamline.

The difference in the pressures can be observed by considering the measuring probes sketched in
Fig. 3.11. The probe in Fig. 3.11(a) is a piezometer; it measures the static pressure, or simply, the pressure
at point 1. The pitot tube in Fig. 3.11(b) measures the total pressure, the pressure at a point where the
velocity is 0, as at point 2. And, the pitot-static tube, which has a small opening in the side of the probe as
shown in Fig. 3.11(c), is used to measure the difference between the total pressure and the static pressure,
i.e., rV2=2; this is used to measure the velocity. The expression for velocity is

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r
ð p22p1Þ

s
ð3:28Þ

where point 2 must be a stagnation point with V2 ¼ 0. So, if only the velocity is desired, we simply use
the pitot-static probe sketched in Fig. 3.11(c).

V

p1(static pressure) p2(total pressure) p2 – p1

1 2

static pressure
opening

(a) (b) (c)

Figure 3.11 Pressure probes: (a) the piezometer, (b) a pitot tube, and (c) a pitot-static tube.

Bernoulli’s equation is used in numerous fluid flows. It can be used in an internal flow in short
reaches if the viscous effects can be neglected; such is the case in the well-rounded entrance to a pipe (see
Fig. 3.12) or in a rather sudden contraction of a pipe. The velocity for such an entrance is approximated
by Bernoulli’s equation to be

V2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r
ðp12p2Þ

s
ð3:29Þ

Reservoir

V2V2

V1 = 0

p2

h1 = h2

p1

Figure 3.12 Flow from a reservoir through a pipe.
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Another common application of the Bernoulli equation is from the free stream to the front area of a
round object such as a sphere or a cylinder or an airfoil. A sketch is helpful as shown in Fig. 3.13. For
many flow situations the flow separates from the surface, resulting in a separated flow, as sketched. If the
flow approaching the object is uniform, the constant in Eq. (3.25) will be the same for all the streamlines
and Bernoulli’s equation can be applied from the free stream to the stagnation point at the front of the
object and to points along the surface of the object up to the separation region.

V Separated
region

Separation
points

Inviscid
flow

Figure 3.13 Flow around a sphere or a long cylinder.

We often solve problems involving a pipe exiting to the atmosphere. For such a situation the
pressure just inside the pipe exit is the same as the atmospheric pressure just outside the pipe exit since
the streamlines exiting the pipe are straight near the exit (see Fig. 3.12). This is quite different from the
entrance flow of Fig. 3.12 where the streamlines near the entrance are extremely curved.

To approximate the pressure variation normal to curved streamlines, consider the particle of
Fig. 3.10 to be a parallelepiped with thickness normal to the streamline of dn with area dAs of the side
with length ds. Use

P
Fn ¼ man:

p dAs2 pþ @p

@n
dn

� �
dAs2rg dn dAs ¼ r dn dAs

V2

R
ð3:30Þ

where we have used the acceleration to be V2=R, R being the radius of curvature in the assumed plane
flow. If we assume that the effect of gravity is small when compared with the acceleration term, this
equation simplifies to

2
@p

@n
¼ r

V2

R
ð3:31Þ

Since we will use this equation to make estimations of pressure changes normal to a streamline, we
approximate @p=@n ¼ Dp=Dn and arrive at the relationship

2
Dp
Dn

¼ r
V2

R
ð3:32Þ

Hence, we see that the pressure decreases as we move toward the center of the curved streamlines; this is
experienced in a tornado where the pressure can be extremely low in the tornado’s ‘‘eye.’’ This reduced
pressure is also used to measure the intensity of a hurricane; that is, the lower the pressure in the
hurricane’s center, the larger the velocity at its outer edges.

EXAMPLE 3.4 The wind in a hurricane reaches 200 km=h. Estimate the force of the wind on a window facing
the wind in a high-rise building if the window measures 1 m· 2 m. Use the density of the air to be 1.2 kg=m3.

Solution: Use Bernoulli’s equation to estimate the pressure on the window

p ¼ r
V2

2
¼ 1:2 ·

ð200 · 1000=3600Þ2
2

¼ 1852N=m2

where the velocity must have units of m=s. To check on the units, use kg ¼ ðN·s2Þ=m:
Assume the pressure to be essentially constant over the window so that the force is then

F ¼ pA ¼ 1852 · 1 · 2 ¼ 3704N or 833 lb

This force is large enough to break many windows, especially if they are not properly designed.
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EXAMPLE 3.5 A piezometer is used to measure the pressure in a pipe to be 20 cm of water. A pitot tube
measures the total pressure to be 33 cm of water at the same general location. Estimate the velocity of the water

in the pipe.

Solution: The velocity using Eq. (3.27) is found to be

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

r
ðp22p1Þ

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gðh22h1Þ
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 · 9:81 · ð0:3320:20Þp ¼ 1:60m=s

where we used the pressure relationship p ¼ rgh:

Solved Problems

3.1 A velocity field in a plane flow is given by V ¼ 2ytiþ xj m=s, as in Example 3.1. Find the
acceleration, the angular velocity, and the vorticity vector at the point (4 m, 2 m) at t ¼ 3 s.
(Note: the constants have units so that the velocity has units of m=s.)

The acceleration is given by

a ¼ @V

@t
þ u

@V

@x
þ v

@V

@y
þ w

@V

@z
¼ 2yiþ 2ytðjÞ þ xð2tiÞ ¼ 2ðxtþ yÞiþ 2ytj

At the point (4, 2) and t ¼ 3 s the acceleration is

a ¼ 2ð4 · 3þ 2Þiþ 2 · 2 · 3tj ¼ 28iþ 12jm=s2

The angular velocity is

O ¼ 1

2

@w

@y
� @v

@z

� �
iþ 1

2

@u

@z
2
@w

@x

� �
jþ 1

2

@v

@x
2
@u

@y

� �
k ¼ 1

2
122tð Þk

At t ¼ 3 s, it is

Oz ¼ 1

2
ð122 · 3Þ ¼2

5

2
rad=s

The vorticity vector is twice the angular velocity vector so

ooooo ¼ �5k rad=s

3.2 Find the rate-of-change of the density in a stratified flow where r ¼ 1000(120.2z) and the
velocity is V ¼ 10ðz2 z2Þi:

The velocity is in the x-direction only and the density varies with z (usually the vertical direction). The

material derivative provides the answer

Dr
Dt

¼ u
@r
@x

þ v
@r
@y

þ 6w @r
@z

þ @r
@t

¼ 0

So, there is no density variation of a particular particle as that particle moves through the field of flow.

3.3 A velocity field is given in cylindrical coordinates as

vr ¼ 22
8

r2

� �
cos y m=s vy ¼2 2þ 8

r2

� �
sin y m=s vz ¼ 0

What is the acceleration at the point (3 m, 90–)?
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Table 3.1 provides the equations for the acceleration components. We have

ar ¼ vr
@vr
@r

þ vy
r

@vr
@y

þ vz
@vr
@z

2
v 2
y

r
þ @vr

@t

¼ 22
8

r2

� �
cos y

16

r3

� �
cos y þ 2

r
þ 8

r3

� �
sin y 22

8

r2

� �
sin y2

1

r
2þ 8

r2

� �2
sin2 y

¼ 0þ 2

3
þ 8

27

� �
22

8

9

� �
2
1

3
2þ 8

9

� �2
¼21:712m=s2

ay ¼ vr
@vy
@r

þ vy
r

@vy
@y

þ vz
@vy
@z

þ vrvy
r

þ @vy
@t

¼ 22
8

r2

� �
cos y

16

r3

� �
sin yþ 1

r
2þ 8

r2

� �2
sin y cos y 2

2

r
2

8

r2

� �
cos y 2þ 8

r2

� �
sin y

¼ 0

az ¼ 0

Note that cos 90–¼ 0 and sin 90–¼ 1:

3.4 A laminar flow of 20–C water in an 8-mm diameter pipe is desired. A 2-L container, used to catch
the water, is filled in 82 s. Is the flow laminar?

To make the determination, the Reynolds number must be calculated. First, determine the average

velocity. It is

V ¼ Q

A
¼ 2 · 1023=82

p · 0:0042
¼ 0:485

Using the kinematic viscosity of water to be about 1026 m2=s (see Table C.1), the Reynolds number is

Re ¼ Vh

n
¼ 0:485 · 0:008 · 0:5

1026
¼ 3880

This is greater than 2000 so if the pipe is not smooth or the entrance is not well-rounded, the flow would
be turbulent. It could, however, be laminar if care is taken to avoid building vibrations and water
fluctuations with a smooth pipe.

V Water

240 kPa112 kPa

Figure 3.14

3.5 The pitot and piezometer probes read the
total and static pressures as shown in
Fig. 3.14. Calculate the velocity V.

Bernoulli’s equation provides

V 2
2

2
þ p2

r
þ gh2 ¼ V 2

1

2
þ p1

r
þ gh1

where point 2 is just inside the pitot tube. Using the information given, there results

240 000

1000
¼ V 2

1

2
þ 112 000

1000
\V1 ¼ 16m=s

Check the units on the first term of the above equation:
N=m2

kg=m3
¼ ðkg·m=s2Þ=m2

kg=m3
¼ m2

s2
:

3.6 A nozzle on a hose accelerates water from 4-cm diameter to 1-cm diameter. If the pressure is
400 kPa upstream of the nozzle, what is the maximum velocity exiting the nozzle?
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The continuity equation relates the velocities

A1V1 ¼ A2V2 p · 22 · V1 ¼ p · 0:52 · V2 \V2 ¼ 16V1

The Bernoulli equation provides

V 2
1

2
þ 400 000

1000
þ gh1 ¼ 256V 2

1

2
þ 100 000

1000
þ gh2

\V1 ¼ 1:534m=s and V2 ¼ 24:5m=s

This represents the maximum since we have assumed no losses due to viscous effects and have assumed

uniform velocity profiles.

3.7 Water flows through a long-sweep elbow on a 2-cm diameter pipe at an average velocity of 20 m=s.
Estimate the increase in pressure from the inside of the pipe to the outside of the pipe midway
through the elbow if the radius of curvature of the elbow averages 4 cm at the midway section.

Equation (3.32) provides the relationship between the pressure increase and the radius of curvature

2
Dp
Dn

¼ r
V2

R
2

Dp
0:02

¼ 1000 ·
202

0:04
\Dp ¼ 200 000Pa or 200 kPa

This surprisingly high pressure difference can move the slow-moving water near the pipe wall (the water

sticks to the wall due to viscosity) from the outside to the inside of the corner thereby creating a
secondary flow as the water leaves the elbow. This secondary flow is eventually dissipated and accounts
for a relatively large loss due to the elbow.

Supplementary Problems

Fluid Motion

3.8 The traffic in a large city is to be studied. Explain how it would be done using (a) the Lagrangian approach

and (b) the Eulerian approach.

3.9 A light bulb and battery are attached to a large number of bars of soap that float. Explain how pathlines and
streaklines would be photographed in a stream.

3.10 The light from a single car is photographed from a high vantage point with a time exposure. What is the line

that is observed in the photograph? A long time passes as a large number of car lights are photographed
instantaneously on the same road from the same high vantage point. What is the relation between the two
photographs? Explain similarities and differences.

3.11 The parabolic velocity distribution in a channel flow is given by uðyÞ ¼ 0:2ð12y2Þm=s with y measured in
centimeters. What is the acceleration of a fluid particle on the centerline where y ¼ 0? At a location where
y ¼ 0.5 cm?

3.12 Calculate the speed and acceleration of a fluid particle at the point (2, 1,23) when t ¼ 2 s if the velocity field

is given by (distances are in meters and the constants have the necessary units):

(a) V ¼ 2xyiþ y2tjþ yzk m=s

(b) V ¼ 2ðxy2 z2Þiþ xytjþ xztk m=s

3.13 Find the unit vector normal to the streamline at the point (2,21) when t ¼ 2 s if the velocity field is given by:

(a) V ¼ 2xyiþ y2tj m=s
(b) V ¼ 2yðx2yÞiþ xytj m=s
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3.14 What is the equation of the streamline that passes through the point (2,21) when t ¼ 2 s if the velocity field

is given by:

(a) V ¼ 2xyiþ y2tj m=s

(b) V ¼ 2y2iþ xytj m=s

3.15 Determine the acceleration (vector and magnitude) of the fluid particle occupying the point (22, 1, 1) m
when t ¼ 2 s if the velocity field is given by:

(a) V ¼ 2xyiþ xzjþ yzk m=s
(b) V ¼ 2y2iþ ðx22tÞjþ z2k m=s
(c) V ¼ 2yziþ ðx222y2Þjþ z2tk m=s

3.16 Find the angular velocity and vorticity vectors at the point (1, 2, 3) when t ¼ 3 s for the velocity field of:

(a) Prob. 3.13a
(b) Prob. 3.13b

(c) Prob. 3.14a
(d) Prob. 3.14b

3.17 The velocity field in a fluid flow is given by V ¼ 2yiþ xjþ tk: Determine the magnitudes of the acceleration,

the angular velocity, and the vorticity at the point (2, 1,21) at t ¼ 4 s.

3.18 The temperature field of a flow in which V ¼ 2yiþ xjþ tk is given by Tðx; y; zÞ ¼ 20xy –C:
Determine the rate of change of the temperature of a fluid particle in the flow at the point (2, 1,22)
at t ¼ 2 s.

3.19 A velocity field is given in cylindrical coordinates as

vr ¼ 42
1

r2

� �
sin y m=s vy ¼2 4þ 1

r2

� �
cos y m=s vz ¼ 0

(a) What is the acceleration at the point (0.6 m, 90–)?
(b) What is the vorticity at the point (0.6 m, 90–)?

3.20 A velocity field is given in spherical coordinates as

vr ¼ 82
1

r3

� �
cos y m=s vy ¼2 8þ 1

r3

� �
sin y m=s vf ¼ 0

What is the acceleration at the point (0.6 m, 90–)?

Classification of Fluid Flows

3.21 Select the word: uniform, one-dimensional, two-dimensional, or three-dimensional, that best describes each
of the following flows:

(a) Developed flow in a pipe
(b) Flow of water over a long weir

(c) Flow in a long, straight canal
(d) The flow of exhaust gases exiting a rocket
(e) Flow of blood in an artery

(f) Flow of air around a bullet
(g) Flow of blood in a vein
(h) Flow of air in a tornado

3.22 Select the flow in Prob. 3.21 that could be modeled as a plane flow.
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3.23 Select the flow in Prob. 3.21 that would be modeled as an unsteady flow.

3.24 Select the flow in Prob. 3.21 that would have a stagnation point.

3.25 Which flows in Prob. 3.21 could be modeled as inviscid flows?

3.26 Which flow in Prob. 3.21 would be an external flow?

3.27 Which flows in Prob. 3.21 would be compressible flows?

3.28 Which flow in Prob. 3.21 would have a boundary layer?

3.29 Which flows in Prob. 3.21 would definitely be modeled as turbulent flows?

3.30 Water exits a 1-cm-diameter outlet of a faucet. Estimate the maximum speed that would result in a laminar
flow if the water temperature is (a) 20–C, (b) 50–C, and (c) 100–C. Assume Re ¼ 2000.

3.31 Air flows over and parallel to a flat plate at 2 m=s. How long is the laminar portion of the boundary layer if
the air temperature is (a) 30–C, (b) 70–C, and (c) 200–C. Assume a high-fluctuation level on a smooth rigid

plate.

3.32 Decide if each of the following can be modeled as an incompressible flow or a compressible flow:

(a) the take-off and landing of commercial airplanes
(b) the airflow around an automobile
(c) the flow of air in a hurricane

(d) the airflow around a baseball thrown at 100 mi/h

3.33 Write all the non-zero terms of Dr/Dt for a stratified flow in which:

(a) r ¼ r(z) and V ¼ z(2–z)i

(b) r ¼ r(z) and V ¼ f(x, z)iþ g(x, z)j

Bernoulli’s equation

3.34 A pitot-static tube measures the total pressure pT and the local pressure p in a uniform flow in a 4-cm-

diameter water pipe. Calculate the flow rate if:

(a) pT ¼ 1500 mm of mercury and p ¼ 150 kPa

(b) pT ¼ 250 kPa and p ¼ 800 mm of mercury
(c) pT ¼ 900 mm of mercury and p ¼ 110 kPa
(d) pT ¼ 10 in. of water and p ¼ 30 lb=ft2

3.35 Find an expression for the pressure distribution along the horizontal negative x-axis given the velocity field in

Solved Problem 3.3 if pð21, 180–Þ ¼ p1: Viscous effects are assumed to be negligible.

h

V

Figure 3.15

3.36 Determine v the velocity V in the pipe if the fluid

in the pipe of Fig. 3.15 is:

(a) Atmospheric air and h ¼ 10 cmofwater

(b) Water and h ¼ 10 cm of mercury

(c) Kerosene and h ¼ 20 cm of mercury

(d) Gasoline and h ¼ 40 cm of water
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3.37

h

V 4V

Figure 3.16

Determine the velocity V in the pipe if the fluid

in the pipe of Fig. 3.16 is:

(a) Atmospheric air and h ¼ 40 cm of water

(b) Water and h ¼ 20 cm of mercury

(c) Kerosene and h ¼ 30 cm of mercury

(d) Gasoline and h ¼ 80 cm of water

Answers to Supplementary Problems

3.8 Ride in cars. Stand on corners.

3.9 A time exposure. An instantaneous picture.

3.10 A pathline. A streakline.

3.11 0, 0

3.12 (a) 5.385 m=s, 10iþ 9j23km=s2 (b) 12.81 m=s, �156i210jþ 30km=s2

3.13 (a) ði22jÞ= ffiffi
5

p
(b) ð22iþ 3jÞ= ffiffiffi

13
p

3.14 (a) x ¼ 22y (b) x22y2 ¼ 3

3.15 (a)22i23j (b) 224iþ 2k (c) 24i28jþ 9k

3.16 (a) 6i2k, 12i2 2k (b) 23i=22 6k, 23i2 12k (c) 6i2k, 12i2 2k (d) 23i=22 4k, 23i2 8k

3.17 4.583 m=s22 0.5 rad=s2 1.0 rad=s

3.18 120–C=s

3.19 (a) ar ¼ 11:31m=s2, ay ¼ 0 (b) 0

3.20 336.8 m=s2

3.21 (a) 1-D (b) 2-D (c) 2-D (d) 3-D (e) 1-D (f) 2-D (g) 1-D (h) 3-D

3.22 (b)

3.23 (e)

3.24 (f)

3.25 (b) (h)

3.26 (f)

3.27 (d) (f)

3.28 (f)
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3.29 (c) (d)

3.30 (a) 0.201 m=s (b) 0.111 m=s (c) 0.0592 m=s

3.31 (a) 5.58 m (b) 6.15 m (c) 7.71 m

3.32 (a) incompressible (b) incompressible (c) incompressible (d) incompressible

3.33 (a) none (b) none

3.34 (a) 10.01 m=s (b) 16.93 m=s (c) 4.49 m=s (d) 1.451 m=s

3.35 2r 1þ 8

x2
2
16

x4

� �
3.36 (a) 39.9 m=s (b) 4.97 m=s (c) 7.88 m=s (d) 1.925 m=s

3.37 (a) 79.8 m=s (b) 7.03 m=s (c) 9.65 m=s (d) 2.72 m=s
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Chapter 4

The Integral
Equations

4.1 INTRODUCTION

Fluid mechanics is encountered in almost every area of our physical lives. Many, if not most, of the
quantities of interest are integral quantities; they are found by integrating some property of interest over
an area or a volume. Many times the property is essentially constant so the integration is easily
performed but other times, the property varies over the area or volume and the required integration may
be quite difficult.

What are some of the integral quantities of interest? The rate of flow through a pipe, the force on the
vertical surface of a dam, the kinetic energy in the wind approaching a wind machine, the power
generated by the blade of a turbine, the force on the blade of a snowplow, and the drag on an airfoil, to
mention a few. There are quantities that are not integral in nature, such as the minimum pressure on a
body or the point of separation on an airfoil; quantities such as these will be considered in Chap. 5.

To perform an integration over an area or a volume, it is necessary that the integrand be known. The
integrand must either be given or information must be available so that it can be approximated with an
acceptable degree of accuracy. There are numerous integrands where acceptable approximations cannot
be made requiring the solutions of differential equations to provide the required relationships; external
flow calculations, such as the lift and drag on an airfoil, often fall into this category. Some relatively
simple integrals requiring solutions to the differential equations will be included in Chap. 5. In this
chapter, only those problems that involve integral quantities with integrands that are given or that can be
approximated will be considered.

4.2 SYSTEM-TO-CONTROL-VOLUME TRANSFORMATION

The three basic laws that are of interest in fluid mechanics are often referred to as the conservation of
mass, energy, and momentum. The last two are more specifically called the first law of thermodynamics
and Newton’s second law. Each of these laws is expressed using a Lagrangian description of motion;
they apply to a specified mass of the fluid. They are stated as follows:

Mass: The mass of a system remains constant.
Energy: The rate of heat transfer to a system minus the work rate done by a system equals the rate of
change of the energy E of the system.
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Momentum: The resultant force acting on a system equals the rate of momentum change of the
system.

Each of these laws will now be stated mathematically recognizing that the rate of change applies to a
collection of fluid particles and the fact that the density, specific energy, and velocity can vary from point to
point in the volume of interest. This requires the material derivative and integration over the volume

0 ¼ D

Dt

Z
sys

r d�V ðmassÞ ð4:1Þ

_QQ2 _WW ¼ D

Dt

Z
sys

er d�V ðenergyÞ ð4:2Þ

X
F ¼ D

Dt

Z
sys

Vr d�V ðmomentumÞ ð4:3Þ

where the dot over Q and W signifies a time rate and e is the specific energy included in the parentheses
of Eq. (1.29). It is very difficult to apply Eqs. (4.1) to (4.3) directly to a collection of fluid particles as
the fluid moves along in either a simple pipe flow or the more complicated flow through a turbine.
So, let us convert these integrals that are expressed using a Lagrangian description to integrals
expressed using an Eulerian description (see Sec. 3.2.1). This is a rather tedious derivation but an
important one.

In this derivation, it is necessary to differentiate between two volumes: a control volume that is a
fixed volume in space and a system that is a specified collection of fluid particles. Figure 4.1 illustrates
the difference between these two volumes. It represents a general fixed volume in space through which
a fluid is flowing; the volumes are shown at time t and at a slightly later time tþ Dt. Let us select the
energy E ¼ R

sys er d�V with which to demonstrate the material derivative; lowercase e denotes the
specific energy. We then write, assuming Dt to be a small quantity

DEsys

Dt
>

Esysðtþ DtÞ2EsysðtÞ
Dt

¼ E3ðtþ DtÞ þ E2ðtþ DtÞ2E1ðtÞ2E2ðtÞ
Dt

¼ E2ðtþ DtÞ þ E1ðtþ DtÞ2E2ðtÞ2E1ðtÞ
Dt

þ E3ðtþ DtÞ2E1ðtþ DtÞ
Dt

ð4:4Þ

Fixed control
volume

System
at time t

System at
time t + t

1

2

3

dV1

dV3

Fixed control
volume occupies 1 and

System at time t
occupies and

System at time t + t
occupies and

2

2

2

1

3

Figure 4.1 The system and the fixed control volume.
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where we have simply added and subtracted E1ðtþ DtÞ in the last line. Note that the first ratio in the last
line above refers to the control volume so that

E2ðtþ DtÞ þ E1ðtþ DtÞ2E2ðtÞ2E1ðtÞ
Dt

>
dEcv

dt
ð4:5Þ

where an ordinary derivative is used since we are no longer following a specified fluid mass. Also, we
have used ‘‘cv’’ to denote the control volume. The last ratio in Eq. (4.4) results from fluid flowing into
volume 3 and out of volume 1. Consider the differential volumes shown in Fig. 4.1 and displayed
with more detail in Fig. 4.2. Note that the area A1þ A3 completely surrounds the control volume so that

E3ðtþ DtÞ2E1ðtþ DtÞ ¼
Z
A3

ern̂·VDt dA3 þ
Z
A1

ern̂·VDt dA1

¼
Z
cs
ern̂·VDt dA ð4:6Þ

where ‘‘cs’’ is the control surface that surrounds the control volume. Substituting Eqs. (4.5) and (4.6)
into Eq. (4.4) results in the Reynolds transfer theorem, a system-to-control-volume transformation,

DEsys

Dt
¼ d

dt

Z
cv
er d�Vþ

Z
cs
ern̂·V dA ð4:7Þ

where, in general, e would represent the specific property of E. Note that we could have taken the limit as
Dt ! 0 to make the derivation more mathematically rigorous.

V t VdA1 dA3

dV1 =–n·V tdA1 dV3 =

n

n·V tdA3

t

n

Figure 4.2 Differential volume elements from Fig. 4.1.

If we return to the energy equation of Eq. (4.2), we can now write it as

_QQ2 _WW ¼ d

dt

Z
cv
er d�Vþ

Z
cs
ern̂·V dA ð4:8Þ

If we let e ¼ 1 in Eq. (4.7) [see Eq. (4.1)], then the conservation of mass results. It is

0 ¼ d

dt

Z
cv
r d�Vþ

Z
cs
rn̂·V dA ð4:9Þ

And finally, if we replace e in Eq. (4.7) with the vector V [see Eq. (4.3)], Newton’s second law results:X
F ¼ d

dt

Z
cv
rV d�Vþ

Z
cs
Vrn̂·V dA ð4:10Þ

These three equations can be written in a slightly different form by recognizing that a fixed control
volume has been assumed. That means that the limits of the first integral on the right-hand side of each
equation are independent of time. Hence, the time derivative can be moved inside the integral if desired;
note that it would be written as a partial derivative should it be moved inside the integral since the
integrand depends on x, y, z, and t, in general. The momentum equation would take the formX

F ¼
Z
cv

@

@t
ðrVÞd�Vþ

Z
cs
Vrn̂·V dA ð4:11Þ

The following three sections will apply these integral forms of the basic laws to problems in which
the integrands are given or in which they can be assumed.
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4.3 CONSERVATION OF MASS

The most general relationship for the conservation of mass using the Eulerian description that focuses on
a fixed volume was developed in Sec. 4.2 and is

0 ¼ d

dt

Z
cv
r d�Vþ

Z
cs
rn̂·V dA ð4:12Þ

Since the limits on the volume integral do not depend on time, this can be written as

0 ¼
Z
cv

@r
@t

d�Vþ
Z
cs
rn̂·V dA ð4:13Þ

If the flow of interest can be assumed to be a steady flow so that time does not enter Eq. (4.13), the
equation simplifies to

0 ¼
Z
cs
rn̂·V dA ð4:14Þ

Those flows in which the density r is uniform over an area are of particular interest in our study of fluids.
Also, most applications have one entrance and one exit. For such a problem, Eq. (4.14) can then be
written as

r2A2V 2 ¼ r1A1V 1 ð4:15Þ
where an overbar denotes an average over an area, i.e.,VA ¼ R

VdA. Note also that at an entrance, we
use n̂·V1 ¼2V1 since the unit vector points out of the volume and the velocity is into the volume, but at
an exit n̂·V2 ¼ V2 since the two vectors are in the same direction.

For incompressible flows in which the density does not change* between the entrance and the exit
and the velocity is uniform over each area, the conservation of mass takes the simplified form:

A2V2 ¼ A1V1 ð4:16Þ
We refer to each of the above equations as the continuity equation. The one in Eq. (4.16) will be used
quite often. These equations are used most often to relate the velocities between sections.

The quantity rVA is the mass flux and has units of kg=s (slugs per second). The quantity VA is the
flow rate (or discharge) and has units of m3=s (ft3=sec or cfs). The mass flux is usually used in a gas flow
and the discharge in a liquid flow. They are defined by

_mm ¼ rAV

Q ¼ AV
ð4:17Þ

where V is the average velocity at a section of the flow.

EXAMPLE 4.1 Water flows in a 6-cm-diameter pipe with a flow rate of 0.06 m3=s. The pipe is reduced in
diameter to 2.8 cm. Calculate the maximum velocity in the pipe. Also calculate the mass flux. Assume uniform

velocity profiles.

Solution: The maximum velocity in the pipe will be where the diameter is the smallest. In the 2.8-cm-
diameter section we have

Q ¼ AV

0:02 ¼ p · 0:0142V2 \ V2 ¼ 32:5m=s

The mass flux is

_mm ¼ rQ ¼ 1000 · 0:02 ¼ 20 kg=s

* Not all incompressible flows have constant density. Atmospheric and oceanic flows are examples as is salt water

flowing in a canal where fresh water is also flowing.
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EXAMPLE 4.2 Water flows into a volume that contains a sponge with a flow rate of 0.02 m3=s. It exits the
volume through two tubes, one 2 cm in diameter and the other with a mass flux of 10 kg=s. If the velocity out the

2-cm-diameter tube is 15 m=s, determine the rate at which the mass is changing inside the volume.

Solution: The continuity equation (4.12) is used. It is written in the form

0 ¼ dmvol

dt
þ _mm2 þ rA3V32rQ1

where mvol ¼
R
r d�V and the two exits and entrance account for the other three terms. Expressing the derivative

term as _mmvol, the continuity equation becomes

_mmvol ¼ rQ12 _mm22rA3V3

¼ 1000 · 0:0221021000 · p · 0:012 · 15 ¼ 5:29 kg=s

The sponge is soaking up water at the rate of 5.29 kg=s.

4.4 THE ENERGY EQUATION

The first law of thermodynamics, or simply, the energy equation, is of use whenever heat transfer or
work is desired. If there is essentially no heat transfer and no external work from a pump or some other
device, the energy equation allows us to relate the pressure, the velocity, and the elevation. Let us see
how this develops. We begin with the energy equation (4.8) in its general form

_QQ2 _WW ¼ d

dt

Z
cv
er d�Vþ

Z
cs
ern̂·V dA ð4:18Þ

Most applications allow us to simplify this equation by assuming a steady, uniform flow with one
entrance and one exit. The energy equation simplifies to

_QQ2 _WW ¼ e2r2V2A22 e1r1V1A1 ð4:19Þ
where we have used n̂·V ¼2V1 at the entrance. Using the continuity equation (4.15), this is written as

_QQ2 _WW ¼ _mmðe22 e1Þ ð4:20Þ
The work rate term results from a force moving with a velocity: _WW ¼ F·V. The force can be a

pressure or a shear multiplied by an area. If the flow is in a conduit, e.g., a pipe or a channel, the walls do
not move so there is no work done by the walls. If there is a moving belt, there could be an input of work
due to the shear between the belt and the fluid. The most common work rate terms result from the
pressure forces at the entrance and the exit (pressure is assumed to be uniform over each area) and from
any device between the entrance and the exit. The work rate term is expressed as

_WW ¼ p2A2V22p1A1V1 þ _WWS ð4:21Þ
where power output is considered positive and _WWS is the shaft power output from the control volume (a
pump would be a negative power and a turbine would provide a positive power output). Using the
expression for e given in Eq. (1.29), Eq. (4.20) takes the form

_QQ2p2A2V2 þ p1A1V12 _WWS ¼ _mm
V 2

2

2
þ gz2 þ ~uu22

V 2
1

2
2gz12 ~uu1

{ !
ð4:22Þ

The heat-transfer term and the internal energy terms form the losses in the flow (viscous effects result in
heat transfer and/or an increase in internal energy). Divide Eq. (4.22) by _mmg and simplify*

2
_WWS

_mmg
¼ V 2

2

2g
þ p2

g2
þ z22

p1
g1

2
V 2

1

2g
2 z1 þ hL ð4:23Þ

* We used _mm ¼ r2A2V2 ¼ r1A1V1.
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where we have included the loss term as hL, called the head loss; it is hL ¼ ð ~uu22 ~uu1Þ=gþ _QQ= _mmg. An
incompressible flow occurs in many applications so that g1 ¼ g2. Recall that g for water is 9810 N/m3

(62.4 lb/ft3).
The head loss term is often expressed in terms of a loss coefficient K

hL ¼ K
V 2

2g
ð4:24Þ

where V is some characteristic velocity in the flow; if it is not obvious it will be specified. Some loss
coefficients are listed in Table 7.2; in this chapter they will be given.

The term hL is called the head loss because it has the dimension of length. We also refer to V 2/2g
as the velocity head, p/g as the pressure head, and z as the head. The sum of these three terms is the
total head.

The shaft-work term in Eq. (4.23) is usually due to either a pump or a turbine. If it is a pump, we can
define the pump head HP as

HP ¼2 _WWS

_mmg
¼ ZP _WWP

_mmg
ð4:25Þ

where _WWP is the power input to the pump and ZP is the pump efficiency. For a turbine the turbine head
HT is

HT ¼
_WWS

_mmg
¼

_WWT

_mmg ZT
ð4:26Þ

where _WWT is the power output of the turbine and ZT is the turbine efficiency. Power has units of watts
[(ft-lb)=sec] or horsepower.

If the flow is not uniform over the entrance and the exit, an integration must be performed to
obtain the kinetic energy. The rate at which the kinetic energy crosses an area is [see Eqs. (4.18)
and (1.29)]

Kinetic energy rate ¼
ZV 2

2
rVdA ¼ 1

2

Z
rV 3 dA ð4:27Þ

If the velocity distribution is known, the integration can be performed. A kinetic-energy correction factor
a is defined as

a ¼
R
V 3 dA

V
3
A

ð4:28Þ

The kinetic energy term can then be written as

1

2
r
Z
V 3 dA ¼ 1

2
raV 3

A ð4:29Þ

so that, for non-uniform flows, the energy equation takes the form

2
_WWS

_mmg
¼ a2

V
2
2

2g
þ z2 þ p2

g2
2a1

V
2
1

2g
2 z12

p1
g1

þ hL ð4:30Þ

where V 1 and V 2 are the average velocities at sections 1 and 2, respectively. Equation (4.30) is used if
the a’s are known; for parabolic profiles, a ¼ 2 in a pipe and a ¼ 1.5 between parallel plates. For
turbulent flows (most flows in engineering applications), a> 1.

EXAMPLE 4.3 Water flows from a reservoir with elevation 30 m out of a 5-cm-diameter pipe that has a 2-cm-
diameter nozzle attached to the end, as shown in Fig. 4.3. The loss coefficient for the entire pipe is given as

K ¼ 1.2. Estimate the flow rate of water through the pipe. Also, predict the pressure just upstream of the nozzle
(the losses can be neglected through the nozzle). The nozzle is at an elevation of 10 m.
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5-cm-dia.
2cm

el. 30m

Water

p

Figure 4.3

Solution: The energy equation is written in the form

_WWS

_mmg
¼ V 2

2

2g
þ z2 þ

_PP2

g2
2
V 2

1

2g
2 z12

p1
g1

þ K
V2

2g

where the pressure is 0 at surface 1 and at the exit 2, the velocity is 0 at the surface, and there is no shaft work
(there is no pump or turbine). The loss coefficient would be based on the characteristic velocity V in the pipe and

not on the exit velocity V2. Use the continuity equation to relate the velocities:

V ¼ A2

A
V2 ¼ d 2

2

d 2
V2 ¼ 4

25
V2

The energy equation provides

0 ¼ V 2
2

2g
þ 10230þ 1:2

4

25

� �2V 2
2

2g
\ V2 ¼ 19:5m=s

The pressure just before the nozzle is found by applying the energy equation across the nozzle assuming no losses
(Bernoulli’s equation could also be used). It takes the form

2
_WWS

mg
¼ V 2

2

2g
þ P2

g
þ =z22

V2

2g
2
p

g
2=z

where area 2 is at the exit and p and V are upstream of the nozzle. The energy equation gives

0 ¼ 19:52

2 · 9:81
þ P2

g
þ =z22

4

25

� �2 19:52
2 · 9:8

2
p

9810
2=z \ p ¼ 185 300 Pa or 185:3 kPa

EXAMPLE 4.4 An energy conscious couple decides to dam up the creek flowing next to their cabin and

estimates that a head of 4 m can be established above the exit to a turbine they bought on eBay. The creek is
estimated to have a flow rate of 0.8 m3=s. What is the maximum power output of the turbine assuming no losses
and a velocity at the turbine’s exit of 3.6 m=s?

Solution: The energy equation is applied as follows:

2
_WWT

_mmg
¼ V 2

2

2g
þ P2

g
þ =z22

V 2
1

2g
2
P1

g
2 z1 þ hL

It is only the head of the water above the turbine that provides the power; the exiting velocity subtracts from the
power. There results, using _mm ¼ rQ ¼ 1000 · 0:8 ¼ 800 kg=s,

_WWT ¼ _mmgz12 _mm
V 2

2

2

¼ 800 · 9:81 · 42800 ·
3:62

2
¼ 26 200 J=s or 26:2 kW

Let us demonstrate that the units on _mmgz1 are J=s. The units on _mmgz1 are
kg

s
·
m

s2
·m ¼ kg·m

s2
·
m

s
¼ N·m

s
¼ J=s

where, from F ¼ ma, we see that N ¼ kg·m=s2. If the proper units are included on the items in our equations, the
units will come out as expected, i.e., the units on _WWT must be J=s.
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4.5 THE MOMENTUM EQUATION

When a force in involved in a calculation, it is often necessary to apply Newton’s second law, or simply,
the momentum equation, to the problem of interest. For some general volume, using the Eulerian
description of motion, the momentum equation was presented in Eq. (4.10) in its most general form for a
fixed control volume as X

F ¼ d

dt

Z
cv
rV d�Vþ

Z
cs
Vrn̂·V dA ð4:31Þ

When applying this equation to a control volume, we must be careful to include all forces acting on the
control volume, so it is very important to sketch the control volume and place the forces on the sketched
control volume. (The control volume takes the place of the free-body diagram utilized in courses in
statics, dynamics, and solids.)

Most often, steady, uniform flows with one entrance and one outlet are encountered. For such flows,
Eq. (4.31) reduces to X

F ¼ r2A2V2V22r1A1V1V1 ð4:32Þ
Using continuity _mm ¼ r2A2V2 ¼ r1A1V1, the momentum equation takes the simplified formX

F ¼ _mmðV22V1Þ ð4:33Þ
This is the form most often used when a force is involved in a calculation. It is a vector equation that
contains the three scalar equations in a rectangular coordinate systemX

Fx ¼ _mmðV2x2V1xÞX
Fy ¼ _mmðV2y2V1yÞX
Fz ¼ _mmðV2z2V1zÞ

ð4:34Þ

If the profiles at the entrance and exit are not uniform, Eq. (4.31) must be used and the integration
performed or, if the momentum-correction factor b is known, it can be used. It is found fromZ

A
V2 dA ¼ bV 2

A ð4:35Þ

The momentum equation for a steady flow with one entrance and one outlet then takes the formX
F ¼ _mmðb2V22b1V1Þ ð4:36Þ

where V1 and V2 represent the average velocity vectors over the two areas.
For parabolic profiles, b ¼ 1.33 for a pipe and b ¼ 1.2 for parallel plates. For turbulent flows (most

flows in engineering applications), b> 1.
An important application of the momentum equation is to the deflectors (or vanes) of pumps,

turbines, or compressors. The applications involve both stationary defectors and moving deflectors. The
following assumptions are made for both:

. The frictional force between the fluid and the deflector is negligible.

. The pressure is assumed to be constant as the fluid moves over the deflector.

. The body force is assumed to be negligible.

. The effect of the lateral spreading of the fluid stream is neglected.

A sketch is made of a stationary deflector in Fig. 4.4. Bernoulli’s equation predicts that the fluid velocity
will not change (V2 ¼ V1) as the fluid moves over the deflector since the pressure does not change, there
is no friction, it is a steady flow, and the body forces are neglected. The component momentum
equations appear as follows:

2Rx ¼ _mmðV2 cos a2V1Þ ¼ _mmV1ðcos a21Þ
Ry ¼ _mmV2 sin a ¼ _mmV1 sin a

ð4:37Þ
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Given the necessary information, the force components can be calculated.

V2

V1

Rx

Ry

Liquid
jet Deflector

x

y

Control
volume

Figure 4.4 A stationary deflector.

The analysis of a moving deflector is more complicated. Is it a single deflector (a water scoop to slow
a high-speed train) or is it a series of deflectors as in a turbine? First, let us consider a single deflector
moving with speed VB, as sketched in Fig. 4.5. The reference frame is attached to the deflector so the flow
is steady from such a reference frame*. The deflector sees the velocity of the approaching fluid as the
relative velocity Vr1 and it is this relative velocity that Bernoulli’s equation predicts will remain constant
over the deflector, i.e., Vr2 ¼ Vr1. The velocity of the fluid exiting the fixed nozzle is V1. The momentum
equation then provides

2Rx ¼ _mmrðV12VBÞðcos a21Þ
Ry ¼ _mmrðV12VBÞsin a

ð4:38Þ

V1

Rx

Ry

This fluid does not
change momentum

x

y

VB

VB Vr1

Vr1 = V1–VB

Vr2 = V1–VB

Vr2

VB

V2

Exiting velocity
polygon

Fixed jet

t

Figure 4.5 A single moving deflector.

where _mmr is that part of the exiting fluid that has its momentum changed. As the deflector moves away
from the nozzle, the fluid represented by the length VB Dt does not experience a change in momentum.
The mass flux of fluid that experiences a momentum change is

_mmr ¼ rAðV12VBÞ ð4:39Þ
so it is that mass flux used in the expressions for the force components.

For a series of vanes, the nozzles are typically oriented such that the fluid enters the vanes from
the side at an angle b1 and leaves the vanes at an angle b2, as shown in Fig. 4.6. The vanes are

* If the deflector is observed from the fixed jet, the deflector moves away from the jet and the flow is not a steady

flow. It is steady if the flow is observed from the deflector.
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designed so that the relative inlet velocity Vr1 enters the vanes tangent to a vane (the relative velocity
always leaves tangent to the vane) as shown in Fig. 4.7. It is the relative speed that remains constant
in magnitude as the fluid moves over the vane, i.e., Vr2 ¼ Vr1: We also note that all of the fluid
exiting the fixed jet has its momentum changed. So, the expression to determine the x-component of
the force is

2Rx ¼ _mmðV2x2V1xÞ ð4:40Þ

It is this x-component of the force that allows the power to be calculated; the y-component does no work
and hence does not contribute to the power. The power is found from

_WW ¼ NRxVB ð4:41Þ
where N is the number of jets in the device and we have observed that the force Rx moves with
velocity VB.

2

Fixed jet

V1

V2

Time-average
position of
exiting jet

VB

1

2

1

Figure 4.6 A series of vanes.

V1

V2

V2

VB

VB

Vr2

Vr1 V1

Ry

Rx

(a) (b) (c)

1

2

1

1

2

2

Figure 4.7 (a) Average position of the jet, (b) the entrance velocity polygon, and (c) the exit velocity polygon.

CHAP. 4] THE INTEGRAL EQUATIONS 69



EXAMPLE 4.5 A 10-cm-diameter hose maintained at a pressure of 1600 kPa provides water from a tanker to a
fire. There is a nozzle at the end of the hose that reduces the diameter to 2.5 cm. Estimate the force that the water

exerts on the nozzle. The losses can be neglected in a short nozzle.

Solution: A sketch of the water contained in the nozzle is important so that the control volume is carefully
identified. It is shown in Fig. 4.8. Note that p2 ¼ 0 and we expect that the force FN of the nozzle on the water

acts to the left. The velocities are needed upstream and at the exit of the nozzle. Continuity provides

A2V2 ¼ A1V1 \ V2 ¼ 102

2:52
V1 ¼ 16V1

p1A1

V2V1 FN

Figure 4.8

The energy equation requires

V 2
2

2
þ p2

r
þ gz2 ¼ V 2

1

2
þ p1

r
þ gz1 þ hL 162

V 2
1

2
¼ V 2

1

2
þ 1 600 000

1000

\ V1 ¼ 3:54m=s and V2 ¼ 56:68m=s

The momentum equation then gives

p1A12FN ¼ _mmðV22V1Þ ¼ rA1V1ðV22V1Þ ¼ 15rA1V
2
1

1 600 000 · p · 0:0522FN ¼ 15 · 1000 · p · 0:052 · 3:542 \ FN ¼ 12 400N

The force of the water on the nozzle would be equal and opposite to FN.

EXAMPLE 4.6 A steam turbine contains eight 4-cm-diameter nozzles each exiting steam at 200 m=s as shown
in Fig. 4.9. The turbine blades are moving at 80 m=s and the density of the steam is 2.2 kg/m3. Calculate the
maximum power output assuming no losses.

Fixed jet

V1 = 200 m/s

VB

1 = 30

= 30

1

2

Figure 4.9

Solution: The angle a1 is determined from the velocity polygon of Fig. 4.7(b). For the x- and y-
components, using V1 ¼ 200 m=s and VB ¼ 80 m=s, we have

200 sin 30– ¼ Vr1 sin a1
200 cos 30– ¼ 80þ Vr1 cos a1
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There are two unknowns in the above two equations: Vr1 and a1. A simultaneous solution provides

Vr1 ¼ 136:7m=s and a1 ¼ 47:0–

Neglecting losses allows Vr2 ¼ Vr1 ¼ 136:7m=s so the velocity polygon at the exit [Fig. 4.7(c)] provides

V2 sin b2 ¼ 136:7 sin 30–

V2 cos b2 ¼ 802136:7 cos 30–

These two equations are solved to give

V2 ¼ 78:39m=s and b2 ¼ 119:3–

Observe that the exiting velocity polygon appears as in Fig. 4.10.
VB

V2

Vr2

2 2

Figure 4.10

The force acting on the blades due to one nozzle is

2F ¼ _mmðV2x2V1xÞ
¼ 2:2 · p · 0:022 · 200ð278:39 cos 60:7–2200 cos 30–Þ \ F ¼ 11:7N

The power output is then

_WW ¼ N · F · VB ¼ 8 · 11:7 · 80 ¼ 7488W or 10:04 hp

EXAMPLE 4.7 The relatively rapid flow of water in a horizontal rectangular channel can suddenly ‘‘jump’’ to

a higher level (an obstruction downstream may be the cause). This is called a hydraulic jump. For the situation
shown in Fig. 4.11, calculate the higher depth downstream. Assume uniform flow.

y1 = 40 cm

y2

4 m/s
V2

Water

Figure 4.11

Solution: For a short section of water, the frictional force on the walls can be neglected. The forces acting
on the water are F1 acting to the right and F2 acting to the left; they are (assume a width w)

F1 ¼ gh1A1 ¼ 9810 · 0:20 · 0:40w ¼ 785w and F2 ¼ gh2A2 ¼ g
y2
2
· y2w

Applying the momentum equation gives X
Fx ¼ _mmðV22V1Þ ¼ rA1V1ðV22V1Þ

785w24905 · wy 2
2 ¼ 1000 · 0:4w · 4ðV224Þ

The width w divides out of this equation but there are two unknowns, y2 and V2. The continuity equation relates

these two variables

A2V2 ¼ A1V1

wy2V2 ¼ w · 0:4 · 4 \ V2 ¼ 1:6

y2
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Substitute this into the momentum equation and obtain

78524905y 2
2 ¼ 1600

1:6

y2
24

� �
This equation is a cubic but with a little ingenuity it is a quadratic. Let us factor:

72ð4210y2Þð4þ 10y2Þ ¼ 1600

y2
ð1:624y2Þ ¼ 1600

2:5y2
ð4210y2Þ

The factor (42 10y2) divides out and a quadratic equation results

y 2
2 þ 0:4y221:306 ¼ 0

It has two roots. The one of interest is

y2 ¼ 2:12m

This rather interesting effect is analogous to the shock wave that occurs in a supersonic gas flow. It is nature’s
way of moving from something traveling quite fast to something moving much slower while maintaining

continuity and momentum. A significant amount of energy is lost when making this sudden change through the
hydraulic jump; it can be found by using the energy equation.

Solved Problems

4.1 A balloon is being filled with water at an instant when the diameter is 50 cm. If the flow rate into
the balloon is 200 gal/min, what is the rate of increase in the diameter?

The rate of increase in the volume of the balloon is

d�V
dt

¼ d

dt

4

3
pR3

� �
¼ 4pR2 dR

dt
¼ p

2
D2 dD

dt

Convert gallons per minute to m3=s

200
gallons

minute
· 0:003785

m3

gallon
·

1

60

minute

seconds
¼ 0:01262m3=s

The above two expressions must be equal if mass is conserved (in this case, volume is conserved because
water is incompressible). This gives

p
2
· 0:502 ·

dD

dt
¼ 0:01262 \

dD

dt
¼ 0:0321m=s

4.2 Air at 40–C and 250 kPa is flowing in a 32-cm-diameter pipe at 10 m=s. The pipe changes
diameter to 20 cm and the density of the air changes to 3.5 kg/m3. Calculate the velocity in the
smaller diameter pipe.

The continuity equation (4.15) is used

r1A1V1 ¼ r2A2V2 \
p1
RT1

p
d 2
1

4
V1 ¼ r2p

d 2
2

4
V2 \ V2 ¼ d 2

1 p1
r2d 2

2 RT1

V1

Substitute the given information into the equation and

V2 ¼ d 2
1 p1

r2d 2
2 RT1

V1 ¼ 0:322 · 350

3:5 · 0:202 · 0:287 · 313
· 10 ¼ 28:5m=s

Note: The pressure is assumed to be gauge pressure when given in a problem statement, so 100 kPa

is added to convert it to absolute pressure. The pressure is used as kPa since the gas constant has units
of kJ/(kg·K).
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4.3 A liquid flows as a uniform flow in a 2 cm · 4 cm rectangular conduit. It flows out a 2-cm-
diameter pipe with a parabolic profile. If the maximum velocity in the pipe is 4 m=s, what is the
velocity in the rectangular conduit?

The equation of the parabola for u(r) must allow the velocity to be 4 m=s where r ¼ 0 and 0 m=s where
r ¼ 0.01 m. The velocity profile that accomplishes this is

uðrÞ ¼ 40 000ð0:0122r2Þ
The continuity equation of the incompressible flow (it is a liquid) takes the form

A1V1 ¼
Z
A2

uðrÞ2prdr ¼
Z0:01

0
40 000ð0:0122r2Þ2pr dr

where 2pr dr in the integral is the differential area through which the fluid flows. The above equation
provides

V1 ¼ 40 000 · 2p
0:02 · 0:04

0:012 ·
0:012

2
2
0:014

4

{ !
¼ 0:785m=s

4.4 A turbine is designed to extract energy from a water source flowing through a 10-cm-diameter
pipe at a pressure of 800 kPa with an average velocity of 10 m=s. If the turbine is 90 percent
efficient, how much energy can be produced if the water is emitted to the atmosphere through a
20-cm-diameter pipe?

The flow rate and velocity at the exit are

Q ¼ A1V1 ¼ p · 0:052 · 10 ¼ 0:0854m3=s V2 ¼ V1

d 2
1

d 2
2

¼ 10 ·
102

202
¼ 2:5m=s

The pressure at the outlet is assumed to be atmospheric, i.e., p2 ¼ 0. The energy equation is applied
between the inlet and the exit of the turbine

2
_WWS

_mmg
¼ V 2

2

2g
þ p2

g2
þ z22

p1
g1

2
V 2

1

2g
2 z1 þ hL

where the head loss term is omitted and included as an efficiency of the turbine. Substituting the
appropriate information gives

2
_WWS

1000 · 0:0854
¼ 2:522102

2
2
800 000

1000
\ _WWS ¼ 72 300W

This is the power extracted from the water. The power produced would be less than this due to the
losses through the turbine measured by the efficiency, i.e.

_WWT ¼ ZT _WWS ¼ 0:9 · 72:3 ¼ 65:1 kW

Check the units on the above equations to make sure they are consistent.

4.5 The flow rate in a pipe is determined by use of the Venturi meter shown in Fig. 4.12. Using the
information given in the figure and h ¼ 4 cm, calculate the flow rate assuming uniform flow and
no losses (these assumptions are reasonable for highly turbulent flows).

h

10 cm

6 cm

Mercury

Water

Figure 4.12
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The manometer allows the pressures (measured at the centerline of the pipe) to be related by

p1 þ 9810 · zþ 0:04 · 9810 ¼ p2 þ 9810 · zþ 0:04 · 13:6 · 9810 \ p12p2 ¼ 4944Pa

where z is measured from the top of the mercury to the centerline. The continuity equation relates V1

to V2

V2 ¼ V1

d 2
1

d 2
2

¼ 102

62
V1 ¼ 2:778V1

The energy equation is then used to obtain

V 2
2

2g
þ p2

g
þ z2 ¼ p1

g
þ V 2

1

2g
þ z1 þ hL or

2:7782V 2
1 2V 2

1

2 · 9:81
¼ 4944

9810
\ V1¼1:213m=s

The flow rate is

Q ¼ A1V1 ¼ p · 0:052 · 1:213 ¼ 0:00953m3=s

4.6 A dam is proposed on a remote stream that measures approximately 25-cm deep by 350-cm wide
with an average velocity of 2.2 m=s. If the dam can be constructed so that the free surface above a
turbine is 10 m, estimate the maximum power output of an 88 percent efficient turbine.

The flow rate of the water passing through the turbine is

Q ¼ A1V1 ¼ 0:25 · 3:5 · 2:2 ¼ 1:925m3=s

The energy equation is applied between the surface of the reservoir behind the dam, where p1 ¼ 0,
V1 ¼ 0, and z1 ¼ 10 m and the outlet of the turbine where we assume, for maximum power output,

that V2> 0, p2> 0, and z2 ¼ 0

_WWS

_mmg
¼ V 2

2

2g
þ p2

g2
þ z22

p1
g1

2
V 1

2

2g
2 z1 þ hL

or

_WWS ¼ _mmgz1 ¼ ð1000 · 1:925Þ · 9:81 · 10 ¼ 189 000W

The turbine losses are included by the use of the efficiency. The maximum turbine output is

_WWT ¼ ZT _WWS ¼ 0:88 · 189 ¼ 166 kW

4.7 A pump is used to pump water from a reservoir to a water tank as shown in Fig. 4.13. Most pumps
have a pump curve that relates the pump power requirement to the flow rate, like the one provided
in the figure. Estimate the flow rate provided by the pump. The overall loss coefficient K ¼ 4.

Q (m3/s)

HP (m)
25
20

0.05 0.1 0.15 0.250.2

Water

el. 20 m

el.5 m

Pump
10-cm-dia.

15
10

Figure 4.13

The loss coefficient would be based on the average velocity in the pipe. The energy equation applied

between the two surfaces takes the form

_WWP

_mmg
¼ V 2

2

2g
þ p2

g
þ z22

p1
g
2
V 2

1

2g
2 z1 þ hL ¼ z22 z1 þ K

V2

2g
¼ 15þ 4

Q2

p · 0:052 · 2g
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The energy equation is then [see Eq. (4.25)]

HP ¼ 15þ 26Q2

This energy equation and the equation represented by the pump curve in the figure are solved
simultaneously as follows:

TryQ ¼ 0:1 : ðHPÞcurve ¼ 24m and ðHPÞenergy ¼ 15:3m

TryQ ¼ 0:2 : ðHPÞcurve ¼ 17m and ðHPÞenergy ¼ 16m

The estimate is then Q ¼ 0.21 m3=s.

4.8 Integrate the appropriate velocity profile and calculate the kinetic energy transported by a flow of
water that has a parabolic profile in a 4-cm-diameter pipe if the flow rate is 0.005 m3=s.

The parabolic profile that has u ¼ 0 at the wall where r ¼ 0.02 m and u ¼ umax at the centerline is
uðrÞ ¼ umaxð12r2=0:022Þ. The flow rate is

Q ¼
Z
A
uðrÞdA

0:005 ¼ umax

Z0:02

0

12 r2

0:022

{ !
2pr dr ¼ 2pumax

0:022

2
2
0:022

4

{ !
\ umax > 8m=s

The rate of differential kinetic energy that passes through the differential area 2pr dr is
1

2
_mmv2 ¼ 1

2
ðr2pr dr · vÞv2. This is integrated to yield

KE ¼
Z
A

1

2
ðr2pr dr · vÞv2 ¼ 1000p

Z0:02

0
83

12 r2

0:022

{ !3

r dr

¼2
0:022

2
· 83 · 1000p

ð12r2=0:022Þ4
4

�����
0:02

0

¼ 80 J=s

This can be checked using a ¼ 2, as noted after Eq. (4.30)

1

2
a _mmV

2 ¼ 1

2
· 2ð0:005 · 1000Þ · 42 ¼ 80 J=s

where we have used the average velocity as half of the maximum velocity for a parabolic profile in a
pipe.

4.9 A nozzle is attached to a 6-cm-diameter hose but the horizontal nozzle turns the water through an
angle of 90–. The nozzle exit is 3 cm in diameter and the flow rate is 500 L/min. Determine the
force components of the water on the nozzle and the magnitude of the resultant force. The
pressure in the hose is 400 kPa and the water exits to the atmosphere.

p1A1

V1

V2

Fx

Fy

Figure 4.14
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First, the control volume should be sketched since it is not given in the problem statement. It appears as

shown in Fig. 4.14. The control volume shows the water with the force components of the nozzle on the
water. The velocities are calculated to be

V1 ¼ Q

A1

¼ 0:50=60

p · 0:032
¼ 2:95m=s V2 ¼ 4 · V1 ¼ 11:79m=s

The pressure p1 is found using the energy equation. The losses are neglected in the accelerated flow:

V 2
2

2
þ p2

r
þ gz2 ¼ V 2

1

2
þ p1

r
þ gz1 p1 ¼ 1000

11:79222:952

2

{ !
¼ 65 150 Pa

The momentum equation provides the force components [see Eqs. (4.34)]

p1A12Fx ¼ _mmðV2x2V1xÞ
65 150 · p · 0:0322Fx ¼2ð0:50=60Þ · 1000 · 2:95 \ Fx ¼ 209N

Fy2p2A2y ¼ _mmðV2y2V2yÞ
Fy ¼ ð0:50=60Þ · 1000 · 11:79 ¼ 98:2N

The magnitude of the resultant force is

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
F 2
x þ F 2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2092 þ 98:22

p
¼ 231N

The force of the water on the nozzle would be equal and opposite to Fx and Fy.

4.10 A fluid flows through a sudden expansion as shown in Fig. 4.15. The pressures before and after
the expansion are p1 and p2, respectively. Find an expression for the head loss due to the
expansion if uniform velocity profiles are assumed. Note: This problem requires the use of
momentum, energy, and continuity.

V1

V2

p1
p2

p1A2 p2A2
Control volume

Figure 4.15

The control volume is shown from the expansion to the area downstream where the flow fills the area
and the velocity is again uniform over the entire area A2. Note that the pressure is p1 over the area
immediately after the expansion since the flow separates with parallel streamlines and then expands to
fill the area. (The head loss is due to the energy needed to sustain the flow in the separated region.) The

momentum equation providesX
Fx ¼ _mmðV2x2V1xÞ p1A22p2A2 ¼ rA2V2ðV22V1Þ \

p12p2
r

¼ V2ðV22V1Þ

The energy equation that introduces the head loss hL, applied between sections 1 and 2, is

V 2
1

2g
þ p1

g
þ gz1 ¼ V 2

2

2g
þ p2

g
þ gz2 þ hL \ hL ¼ p22p1

g
2
V 2

2 2V 2
1

2g

Substituting the pressure difference from the momentum equation gives

hL ¼ 2V2ðV22V1Þ
2g

2
V 2

2 2V 2
1

2g
¼ ðV12V2Þ2

2g

The continuity equation requires V2 ¼ V1A1=A2. Substitute this into the above equation and obtain the
expression for the head loss
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hL ¼ 12
A1

A2

� �2V 2
1

2g

The loss coefficient of Eq. (4.24) is K ¼ ð12A1=A2Þ2 based on the inlet velocity V1.

4.11 The blade on a snowplow turns the wet snow through an angle of 120–but off to one side at 30–.
If the snow has a density of 500 kg/m3, what power is needed to move the blade at 40 mi/h if it
scoops snow that is 15-cm deep and 3-m wide?

The momentum equation (4.37) is written to account for the component due to the side angle (the blade
is stationary and the snow moves toward the blade)

Rx ¼2 _mmðV2 cos a1 cos y2V1Þ ¼ rAV 2
1 ðcos a1 cos y21Þ

¼2500ð0:15 · 3Þð40 · 0:447Þ2ðcos 120– cos 30–21Þ ¼ 31 150N

where 0.447 converts mi=h to m=s. We have neglected the friction generated by the snow moving over
the blade, which would be small compared to the above force, so that the speed of the snow relative to

the blade remains constant, i.e., V2>V1. The power is then

31 150ð40 · 0:447Þ ¼ 557 000W or 746 hp

Supplementary Problems

4.12 What assumptions are needed on a flow to allow Eq. (4.3) to be simplified to
P

F ¼ ma.

4.13 Sketch the three volumes �V1, �V2, and �V3, shown generally in Fig. 4.1, assuming a short time-increment Dt for
the fixed control volume of

(a) A nozzle on the end of a hose.

(b) A balloon into which air is entering (the fixed volume is the balloon at time t).

(c) A balloon from which air is exiting (the fixed volume is the balloon at time t).

(d ) A Tee in a pipe line.

4.14 Sketch the velocity vector V and the normal unit vector n̂n on each area.

(a) The free surface area of a water tank that is being drained.

(b) The inlet area of a turbine.

(c) The wall of a pipe.

(d ) The bottom of a canal.

(e) The inlet area to a cylindrical screen around a drain.

4.15 A rectangle surrounds a two-dimensional, stationary airfoil. It is at a distance from the airfoil on all sides.
Sketch the box containing the airfoil along with the velocity vector V and the normal unit vector n̂n on all
four sides of the rectangle.

4.16 We used

d

dt

Z
cv

re d�V ¼
Z
cv

@

@t
ðreÞ d�V

in the derivation of the system-to-control-volume transformation. What constraint allows this equivalence?
Why is it an ordinary derivative on the left but a partial derivative on the right?
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Conservation of Mass

4.17 Apply Eq. (4.14) to a flow in a pipe that divides into two exiting areas with different densities at each area
assuming uniform flows over all three areas.

4.18 Water flows in a 4-cm-diameter pipe at 20 m=s. The pipe enlarges to a diameter of 6 cm. Calculate the flow
rate, the mass flux, and the velocity in the larger diameter section of pipe.

4.19 Water flows at a depth of 40 cm in a 100-cm-diameter storm sewer. Calculate the flow rate and the mass flux
if the average velocity is 3 m=s.

4.20 Air at 25–C and 240 kPa flows in a 10-cm-diameter pipe at 40 m=s. What are the flow rate and the mass flux
in the pipe? (Recall that pressures are always gauge pressures unless stated otherwise.)

4.21 Air flows in a 20-cm-diameter duct at 120–C and 120 kPa with a mass flux of 5 kg=s. The circular duct
converts to a 20-cm square duct in which the temperature and pressure are 140–C and 140 kPa, respectively.

Determine the velocities in both sections of the duct.

4.22 Air is exiting a 100-cm-diameter balloon out a 1-cm-diameter nozzle. If the pressure and temperature at the

exit are 110 kPa and 22–C, respectively, and the exit velocity is 30 m=s, calculate the flow rate, the mass flux,
and the rate at which the diameter is changing.

4.23 Water flows in a 4-cm-diameter pipe at 20 m=s. The pipe divides into two pipes, one 2 cm in diameter and

the other 3 cm in diameter. If 10 kg=s flows from the 2-cm-diameter pipe, calculate the flow rate from the
3-cm-diameter pipe.

4.24 Water flows in a 2-cm-diameter pipe at 10 m=s vertically upward to the center of two horizontal circular
disks separated by 8 mm. It flows out between the disks at a radius of 25 cm. Sketch the pipe/disk
arrangement. Calculate average velocity of the water leaving the disks. Also, calculate the average velocity of

the water between the disks at a position where the radius of the disks is 10 cm.

4.25 High-velocity air at 20–C and 100 kPa absolute flows in a conduit at 600 m=s. It undergoes a sudden change
(a shock wave) to 263 m=s and 438–C with no change in conduit dimensions. Determine the mass flux and

the downstream pressure if the conduit cross-sectional area is 500 cm2.

4.26 Water flows in a 12-cm-diameter pipe with the velocity profiles shown in Fig. 4.16. The maximum velocity

for each profile is 20 m=s. Calculate the mass flux, the flow rate, and the average velocity.

(a) (b) (c)

Parabola

3 cm

3 cm

Figure 4.16

4.27 Water flows in a rectangular conduit 12-cm high and 60-cm wide having a maximum velocity of 20 m=s with
the profiles shown in Fig. 4.16. Assume the profile exists across the entire cross section with negligible end
effects. Calculate the mass flux, the flow rate, and the average velocity.

4.28 A sponge is contained in a volume that has one 4-cm-diameter inlet A1 into which water flows and two
outlets, A2 and A3. Determine dm=dt of the sponge if

(a) V1 ¼ 5 m=s, Q2 ¼ 0.002 m3=s, and _mm3 ¼ 2:5 kg=s.
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(b) V1 ¼ 10 m=s, _mm2 ¼ 1:5 kg=s, and Q3 ¼ 0.003 m3=s.

(c) _mm3 ¼ 9:5 kg=s; Q2 ¼ 0.003 m3=s, and V1 ¼ 12 m=s.

4.29 A sponge is contained in a volume that has one 4-cm-diameter inlet A1 into which water flows and two 2-cm-
diameter outlets, A2 and A3. The sponge is to have dm/dt ¼ 0.

(a) Find V1 if Q2 ¼ 0.002 m3=s and _mm3 ¼ 2:5 kg=s:

(b) Find _mm2 if V1 ¼ 10 m=s and Q3 ¼ 0.003 m3=s.

(c) Find Q2 if _mm1 ¼ 4:5 kg=s and V3 ¼ 4 m=s.

4.30 Atmospheric air flows over a flat plate as shown in Fig. 4.17. Viscosity makes the air stick to the surface
creating a thin boundary layer. Estimate the mass flux _mm of the air across the surface that is 10 cm above the
120-cm wide plate if uðyÞ ¼ 800y.

40 m/s
40 m/sm

.

y

u (y)

Figure 4.17

4.31 If a streamline is 5 cm above the flat plate of Fig. 4.17 at the leading edge, how far is it above the plate at the

location where uðyÞ ¼ 800y?

The Energy Equation

4.32 Water enters a horizontal nozzle with diameters d1 and d2 at 10 m=s and exits to the atmosphere. Estimate
the pressure upstream of the nozzle if

(a) d1 ¼ 8 cm and d2 ¼ 6 cm

(b) d1 ¼ 8 cm and d2 ¼ 4 cm

(c) d1 ¼ 10 cm and d2 ¼ 6 cm

(d ) d1 ¼ 12 cm and d2 ¼ 5 cm

4.33 Water is contained in a large tower that supplies a city. If the top of the water is 30 m above an outlet at the
base of the tower, what maximum velocity can be expected at the outlet (to the atmosphere)? How does this

maximum velocity compare with that of a rock dropped from the same height?

4.34 A high-speed jet is used to cut solid materials. Estimate the maximum pressure developed on the material if

the velocity issuing from the water jet is (a) 100 m=s, (b) 120 m=s, and (c) 120 m=s.

4.35 Rework Solved Problem 4.5 with (a) h ¼ 5 cm, (b) h ¼ 6 cm, and (c) h ¼ 8 cm.

4.36 Integrate the appropriate velocity profile and calculate the rate of kinetic energy transported by a flow of

water that has a parabolic profile in a channel that measures 2 cm· 15 cm if the flow rate is 0.012 m3=s.
Check your calculation using Eq. (4.30) with a ¼ 1.5.

4.37 The loss coefficient in Example 4.3 is increased to (a) 2.0, (b) 3.2, and (c) 6.0. Rework the problem. (The loss
coefficient depends primarily on the pipe material, such as plastic, copper, wrought iron, so it can vary
markedly.)
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4.38 Water is transported from one reservoir with surface elevation of 135 m to a lower reservoir with surface

elevation of 25 m through a 24-cm-diameter pipe. Estimate the flow rate and the mass flux through the pipe
if the loss coefficient between the two surfaces is (a) 20, (b) 30, and (c) 40.

4.39 Assume uniform flow in the pipe of Fig. 4.18 and calculate the velocity in the larger pipe if the manometer
reading h is (a) 30 cm, (b) 25 cm, and (c) 20 cm.

h
Mercury

Water

10 cm dia
6 cm dia

Figure 4.18

4.40 An 85 percent-efficient pump is used to increase the pressure of water in a 10-cm-diameter pipe from 120 to
800 kPa. What is the required horsepower of the pump for a flow rate of (a) 0.015 m3=s, (b) 20 L=s, and

(c) 4000 gal/h?

4.41 A 90 percent-efficient turbine accepts water at 400 kPa in a 16-cm-diameter pipe. What is the maximum
power output if the flow rate is (a) 0.08 m3=s, (b) 0.06 m3=s, and (c) 0.04 m3=s? The water is emitted to the
atmosphere.

4.42 Air enters a compressor at 25–C and 10 kPa with negligible velocity. It exits through a 2-cm-diameter pipe at
400 kPa and 160–C with a velocity of 200 m=s. Determine the heat transfer if the power required is 18 kW.

4.43 Rework Solved Problem 4.7 if the overall loss coefficient K is (a) 2, (b) 8, and (c) 12.

The Momentum Equation

4.44 A strong wind at 30 m=s blows directly against a 120 cm · 300 cm window in a large building. Estimate the
force of the wind on the window.

4.45 A 10-cm-diameter hose delivers 0.04 m3=s of water through a 4-cm-diameter nozzle. What is the force of the
water on the nozzle?

4.46 A 90–-nozzle with exit diameter d is attached to a hose of diameter 3d with pressure p. The nozzle changes the
direction of the water flow from the hose through an angle of 90–. Calculate the magnitude of the force of the
water on the nozzle if

(a) p ¼ 200 kPa, d ¼ 1 cm

(b) p ¼ 400 kPa, d ¼ 6 mm

(c) p ¼ 300 kPa, d ¼ 1.2 cm

(d ) p ¼ 500 kPa, d ¼ 2.2 cm

4.47 A hydraulic jump, sketched in Fig. 4.19, can occur in a channel with no apparent cause, such as when a fast

flowing stream flows from the mountains to the plains. (It is analogous to a shock wave that exists in a gas
flow.) The momentum equation allows the height downstream to be calculated if the upstream height and
velocity are known. Neglect any frictional force on the bottom and sidewalls and determine y2 in the

rectangular channel if

(a) V1 ¼ 10 m=s and y1 ¼ 50 cm

(b) V1 ¼ 8 m=s and y1 ¼ 60 cm
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(c) V1 ¼ 12 m=s and y1 ¼ 40 cm

(d ) V1 ¼ 16 m=s and y1 ¼ 40 cm

y1 y2
V1

V2

Water

Figure 4.19

4.48 Determine the power lost in the hydraulic jump if the channel is 8-m wide in

(a) Prob. 4.47(b)

(b) Prob. 4.47(d)

4.49 It is desired to create a hydraulic jump, as in Fig. 4.19, in a 6-m wide, rectangular channel so that V2 ¼ 1

4
V1.

Calculate V1 and the power lost if

(a) y1 ¼ 60 cm

(b) y1 ¼ 40 cm

4.50 A pipe transporting water undergoes a sudden expansion (Fig. 4.15). If the upstream pressure is 200 kPa and

the mass flux is 40 kg=s, find the pressure downstream, where a uniform flow can be assumed, and the head
lost due to the expansion. Use the following dimensions:

(a) d1 ¼ 4 cm and d2 ¼ 10 cm

(b) d1 ¼ 4 cm and d2 ¼ 8 cm

(c) d1 ¼ 6 cm and d2 ¼ 12 cm

4.51 A 6-cm-diameter horizontal stationary water jet having a velocity of 40 m=s strikes a vertical plate.

Determine the force needed to hold the plate if

(a) it is stationary

(b) it moves away from the jet at 20 m=s

(c) it moves into the jet at 20 m=s

4.52 A 4-cm-diameter horizontal stationary water jet having a velocity of 50 m=s strikes a cone having an

included angle at the apex of 60–. The water leaves the cone symmetrically. Determine the force needed to
hold the cone if

(a) it is stationary

(b) it moves away from the jet at 20 m=s

(c) it moves into the jet at 20 m=s

4.53 A jet boat traveling at 12 m=s takes in 0.08 m3=s of water and discharges it at 24 m=s faster than the boat’s

speed. Estimate the thrust produced and power required.

4.54 The deflector of Fig. 4.4 changes the direction of a 60 mm · 24 cm sheet of water with V1 ¼ 30 m=s such
that a ¼ 60o. Calculate the force components of the water on the deflector if

(a) it is stationary

(b) it moves away from the jet at 20 m=s

(c) it moves into the jet at 20 m=s

4.55 The blades of Fig. 4.6 deflect 10, 2-cm-diameter jets of water each having V1 ¼ 40 m=s. Determine the blade
angle a1 and the power output assuming no losses if

(a) b1 ¼ 30–, a2 ¼ 45–, and VB ¼ 20 m=s

(b) b1 ¼ 20–, a2 ¼ 50–, and VB ¼ 15 m=s
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(c) b1 ¼ 20–, a2 ¼ 40–, and VB ¼ 20 m=s

(d ) b1 ¼ 40–, a2 ¼ 35–, and VB ¼ 20 m=s

4.56 A rectangular jet strikes a stationary plate as shown in Fig. 4.20. Calculate the force F and the two mass
fluxes if the velocity V1 exiting the jet is (a) 20 m=s, (b) 40 m=s, and (c) 60 m=s. Neglect all frictional forces
and any spreading of the stream.

V1

m2

m3
.

F

45°

2 cm × 24 cm

Figure 4.20

4.57 Estimate the drag force on the plate of Prob. 4.30 up to the position where the velocity profile is shown.

Answers to Supplementary Problems

4.12 r ¼ const, V ¼ V(t), inertial ref frame

4.16 Fixed cv

4.17 r1A1V1 ¼ r2A2V2 þ r3A3V3

4.18 0.0251 m3=s, 25.1 kg=s, 8.89 m=s

4.19 1.182 m3=s, 1182 kg=s

4.20 0.314 m3=s, 1.25 kg=s

4.21 81.6 m=s, 61.7 m=s

4.22 0.236 m3=s, 0.585 kg=s, 0.075 m=s

4.23 0.01513 m3=s

4.24 0.25 m=s, 0.625 m=s

4.25 35.7 kg=s, 554 kPa

4.26 (a) 0.0754 m3=s, 75.4 kg=s, 6.67 m=s (b) 0.1369 m3=s, 1369 kg=s, 12.1 m=s
(c) 0.1131 m3=s, 1131 kg=s, 10 m=s

4.27 (a) 180 kg=s, 0.018 m3=s, 10 m=s (b) 1080 kg=s, 1.08 m3=s, 11.25 m=s
(c) 960 kg=s, 0.096 m3=s, 10 m=s

4.28 (a) 2.33 kg=s (b) 8.07 kg=s (c) 2.58 kg=s

4.29 (a) 3.58 m=s (b) 9.57 kg=s (c) 3.24 m3=s

4.30 2.20 kg=s

4.31 52.5 mm
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4.32 (a) 17.78 m=s, 108 kPa (b) 40 m=s, 750 kPa (c) 27.8 m=s, 336 kPa

(d) 57.6 m=s, 1609 kPa

4.33 24.3 m=s, same

4.34 (a) 5000 kPa (b) 7200 kPa (c) 11 250 kPa

4.35 (a) 0.01065 m3=s (b) 0.01167 m3=s (c) 0.01348 m3=s

4.36 144 J=s

4.37 (a) 181.9 kPa (b) 176.6 kPa (c) 165.7 kPa

4.38 (a) 0.470 m3=s, 470 kg=s (b) 0.384 m3=s, 384 kg=s (c) 0.332 m3=s, 332 kg=s

4.39 (a) 8.58 m=s (b) 7.83 m=s (c) 7.00 m=s

4.40 (a) 16.1 hp (b) 21.4 hp (c) 4.51 hp

4.41 (a) 28.8 kW (b) 21.6 kW (c) 14.4 kW

4.42 2 3140 J=s

4.43 (a) 0.22 m3=s (b) 0.20 m3=s (c) 0.19 m3=s

4.44 1980 N

4.45 2780 N

4.46 (a) 148 N (b) 106.7 N (c) 320 N (d) 1795 N

4.47 (a) 2.95 m (b) 2.51 m (c) 3.23 m (d) 4.37

4.48 (a) 439 kW (b) 1230 kW

4.49 (a) 7.67 m=s, 272 kW (b) 6.26 m=s, 99.5 kW

4.50 (a) 336 kPa, 36.4 m (b) 390 kPa, 29.2 m (c) 238 kPa, 5.73 m

4.51 (a) 4524 N (b) 1131 N (c) 10 180 N

4.52 (a) 421 N (b) 151.5 N (c) 825 N

4.53 30.9 hp

4.54 (a) 6480 N, 11 220 N (b) 720 N, 1247 N (c) 18 000 N, 31 200 N

4.55 (a) 53.79–, 108 hp (b) 31.2–, 100 hp (c) 37.87–, 17 hp
(d) 67.5–, 113 hp

4.56 (a) 1358 N, 81.9 kg=s, 11.5 kg=s (b) 5430 N, 163.9 kg=s, 22.9 kg=s
(c) 12 220 N, 246 kg=s, 34.4 kg=s

4.57 9.9 N
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Chapter 5

Differential
Equations

5.1 INTRODUCTION

The differential equations introduced in this chapter are often omitted in an introductory course. The
derivations in subsequent chapters will either not require these differential equations or there will be two
methods to derive the equations: one using the differential equations and one utilizing differential
elements. So, this chapter can be emitted with no loss of continuity.

In Chap. 4, problems were solved using integrals for which the integrands were known or could be
approximated. Partial differential equations are needed in order to solve for those quantities in the
integrands that are not known, such as the velocity distribution in a pipe or the pressure distribution on
an airfoil. The partial differential equations may also contain information of interest, such as a point of
separation of a fluid from a surface.

To solve a partial differential equation for the dependent variable, certain conditions are required,
i.e., the dependent variable must be specified at certain values of the independent variables. If the
independent variables are space coordinates (such as the velocity at the wall of a pipe), the conditions are
called boundary conditions. If the independent variable is time, the conditions are called initial conditions.
The general problem is usually referred to as a boundary-value problem.

The boundary conditions typically result from one or more of the following:

. The no-slip condition in a viscous flow. Viscosity causes any fluid, be it a gas or a liquid, to stick to
the boundary so that the velocity of the fluid at a boundary takes on the velocity of the boundary.
Most often the boundary is not moving.

. The normal component of the velocity in an inviscid flow. In an inviscid flow where the viscosity is
neglected, the velocity vector is tangent to the boundary at the boundary, provided the boundary is
not porous.

. The pressure at a free surface. For problems involving a free surface, a pressure condition is known
at the free surface. This also applies to separated flows, where cavitation is present, and in wave
motions.

For an unsteady flow, initial conditions are required, e.g., the initial velocity must be specified at
some time, usually at t ¼ 0. It would be a very difficult task to specify the three velocity components at
t ¼ 0 for most unsteady flows of interest. So, the problems requiring the solution of the partial
differential equations derived in this chapter are those requiring boundary conditions.
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The differential equations in this chapter will be derived using rectangular coordinates. It is often
easier to solve problems using cylindrical or spherical coordinates; the differential equations using those
two-coordinate systems are presented in Table 5.1.

The differential energy equation will not be derived in this book. It would be needed if there are
temperature differences on the boundaries or if viscous effects are so large that temperature gradients are
developed in the flow. A course in heat transfer would include such effects.

5.2 THE DIFFERENTIAL CONTINUITY EQUATION

To derive the differential continuity equation, the infinitesimal element of Fig. 5.1 is utilized. It is a small
control volume into and from which the fluid flows. It is shown in the xy-plane with depth dz. Let us
assume that the flow is only in the xy-plane so that no fluid flows in the z-direction. Since mass could be
changing inside the element, the mass that flows into the element minus that which flows out must equal
the change in mass inside the element. This is expressed as

ru dy dz2 ruþ @ðruÞ
@x

dx

� �
dy dzþ rv dx dz2 rvþ @ðrvÞ

@y
dy

� �
dx dz ¼ @

@t
ðr dx dy dzÞ ð5:1Þ

where the density r is allowed to change* across the element. Simplifying the above, recognizing that the
elemental control volume is fixed, results in

@ðruÞ
@x

þ @ðrvÞ
@y

¼2
@r
@t

ð5:2Þ

dy

dx

udyd u + dx dy d

v + dy dxd

vdxd

x

y
y

( v)

x
( u)

Figure 5.1 Infinitesimal control volume.

Differentiate the products and include the variation in the z-direction. Then the differential
continuity equation can be put in the form

@r
@t

þ u
@r
@x

þ v
@r
@y

þ w
@r
@z

þ r
@u

@x
þ @v

@y
þ @w

@z

� �
¼ 0 ð5:3Þ

* The product ru could have been included as rþ @r
@x

dx

� �
uþ @u

@x
dx

� �
on the right-hand side of the element, but the

above is equivalent.
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The first four terms form the material derivative [see Eq. (3.11)] so Eq. (5.3) becomes

Dr
Dt

þ r
@u

@x
þ @v

@y
þ @w

@z

� �
¼ 0 ð5:4Þ

providing the most general form of the differential continuity equation expressed using rectangular
coordinates.

The differential continuity equation is often written using the vector operator

HHHHH ¼ @

@x
iþ @

@y
jþ @

@z
k ð5:5Þ

so that Eq. (5.4) takes the form

Dr
Dt

þ rHHHHH·V ¼ 0 ð5:6Þ
where the velocity vector is V ¼ uiþ vjþ wk. The scalar HHHHH·V is called the divergence of the velocity
vector.

For an incompressible flow, the density of a fluid particle remains constant, i.e.,

Dr
Dt

¼ @r
@t

þ u
@r
@x

þ v
@r
@y

þ w
@r
@z

¼ 0 ð5:7Þ

so it is not necessary that the density be constant. If the density is constant, as it often is, then each term
in Eq. (5.7) is 0. For an incompressible flow, Eqs. (5.4) and (5.6) also demand that

@u

@x
þ @v

@y
þ @w

@z
¼ 0 or HHHHH·V ¼ 0 ð5:8Þ

The differential continuity equation for an incompressible flow is presented in cylindrical and
spherical coordinates in Table 5.1.

EXAMPLE 5.1 Air flows with a uniform velocity in a pipe with the velocities measured along the centerline at

40-cm increments as shown in Fig. 5.2. If the density at point 2 is 1.2 kg=m3, estimate the density gradient at
point 2.

64 m/s 60 m/s 52 m/s

1 2 3

Figure 5.2

Solution: The continuity equation (5.3) is used since the density is changing. It is simplified as follows:

@r
@t

þ u
@r
@x

þ v
@r
@y

þ w
@r
@z

þ r
@u

@x
þ @r

@y
þ @w

@z

� �
¼ 0 \ u

@r
@x

¼2r
@u

@x

Central differences* are used to approximate the velocity gradient @u@x at point 2 since information at three
points is given as follows:

@u

@x
>

Du
Dx

¼ 52264

0:80
¼215m=ðs·mÞ

The best estimate of the density gradient, using the information given, is then

@r
@x

¼2
r
u

@u

@x
¼2

1:2

60
ð215Þ ¼ 0:3 kg=ðm4Þ

* A forward difference would give @u=@x> ð52260Þ=0:40 ¼220: A backward difference would provide

@u=@x> ð60264Þ=0:40 ¼210: The central difference is the best approximation.
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5.3 THE DIFFERENTIAL MOMENTUM EQUATION

The differential continuity equation derived in Sec. 5.2 contains the three velocity components as the
dependent variables for an incompressible flow. If there is a flow of interest in which the velocity field
and pressure field are not known, such as the flow around a turbine blade or over a weir, the differential
momentum equation provides three additional equations since it is a vector equation containing three
component equations. The four unknowns are then u, v, w, and p when using a rectangular coordinate
system. The four equations provide us with the necessary equations and then the initial and boundary
conditions allow a tractable problem. The problems of the turbine blade and the weir are quite difficult
to solve, and their solutions will not be attempted in this book, but there are problems with simple
geometries that will be solved.

So, let us go about deriving the differential momentum equations, a rather challenging task. First,
stresses exist on the faces of an infinitesimal, rectangular fluid element, as shown in Fig. 5.3 for the
xy-plane. Similar stress components act in the z-direction. The normal stresses are designated with s and
the shear stresses with t. There are nine stress components: sxx, syy, szz, txy, tyx, txz, tzx, tyz, and tzy.
If moments are taken about the x-axis, the y-axis, and the z-axis, respectively, they would show that

tyx ¼ txy tzx ¼ txz tzy ¼ tyz ð5:9Þ
So, there are six stress components that must be related to the pressure and velocity components. Such
relationships are called constitutive equations; they are equations that are not derived but are found
using observations in the laboratory.

y

x

dx

dx

dx

dy

dy

dy

+

xx

yy

yx

yx

xy

yy

y

xx

x

yx

y

xy

x

yy

+xx

+

xy +

Figure 5.3 Rectangular stress components on a fluid element.

Next, apply Newton’s second law to the element of Fig. 5.3, assuming that no shear stresses act in
the z-direction (we will simply add those in later) and that gravity acts in the z-direction only:

sxx þ @sxx
@x

dx

� �
dy dz2sxx dy dzþ txy þ

@txy
@y

dy

� �
dx dz2txy dx dz ¼ r dx dy dz

Du

Dt

syy þ
@syy
@y

dy

� �
dx dz2syy dx dzþ txy þ

@txy
@x

dx

� �
dy dz2txy dy dz ¼ r dx dy dz

Dv

Dt

ð5:10Þ

These are simplified to
@sxx
@x

þ @txy
@y

¼ r
Du

Dt
@syy
@y

þ @txy
@x

¼ r
Dv

Dt

ð5:11Þ
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If the z-direction components are included, the differential equations become

@sxx
@x

þ @txy
@y

þ @txz
@z

¼ r
Du

Dt

@syy
@y

þ @txy
@x

þ @tyz
@z

¼ r
Dv

Dt

@szz
@z

þ @txz
@x

þ @tyz
@y

2rg ¼ r
Dw

Dt

ð5:12Þ

assuming that the gravity term, rg dx dy dz; acts in the negative z-direction.
In many flows, the viscous effects that lead to the shear stresses can be neglected and the normal

stresses are the negative of the pressure. For such inviscid flows, Eqs. (5.12) take the form

r
Du

Dt
¼2

@p

@x

r
Dv

Dt
¼2

@p

@y

r
Dw

Dt
¼2

@p

@z
2rg

ð5:13Þ

In the vector form [see Eq. (5.5)], they become the famous Euler’s equation

r
DV

Dt
¼2HHHHHp2rgk̂k ð5:14Þ

which is applicable to inviscid flows. For a constant-density, steady flow, Eq. (5.14) can be integrated
along a streamline to provide Bernoulli’s equation [Eq. (3.25)].

If viscosity significantly affects the flow, Eqs. (5.12) must be used. Constitutive equations* relate the
stresses to the velocity and pressure fields; they are not derived but are written by making observations in
the laboratory. For a Newtonian,† isotropic{ fluid, they have been observed to be

sxx ¼2pþ 2m
@u

@x
þ lHHHHH·V txy ¼ m

@u

@y
þ @v

@x

� �
syy ¼2pþ 2m

@v

@y
þ lHHHHH·V txz ¼ m

@u

@z
þ @w

@x

� �
szz ¼2pþ 2m

@w

@z
þ lHHHHH·V tyz ¼ m

@v

@z
þ @w

@y

� � ð5:15Þ

For most gases, Stokes hypothesis can be used so that l ¼22m=3: If the above normal stresses are added,
there results

p ¼2
1

3
ðsxx þ syy þ szzÞ ð5:16Þ

showing that the pressure is the negative average of the three normal stresses in most gases, including air,
and in all liquids in which HHHHH·V ¼ 0:

* The constitutive equations for cylindrical and spherical coordinates are displayed in Table 5.1.
† A Newtonian fluid has a linear stress–strain rate relationship.
{ An isotropic fluid has properties that are independent of direction at a point.
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Table 5.1 The Differential Continuity, Momentum Equations, and Stresses for Incompressible Flows in Cylindrical

and Spherical Coordinates

Continuity Stresses

Cylindrical Cylindrical

1

r

@

@r
ðrvrÞ þ 1

r

@vy
@y

þ @vz
@z

¼ 0

Spherical

1

r2
@

@r
r2vr


 �
þ 1

r sin y
@

@y
ðvy sin yÞ þ 1

r sin y
@vf
@f

¼ 0

srr ¼2pþ 2m
@vr
@y

try ¼ m r
@ðvy=rÞ
@r

þ 1

r

@vz
@y

� �
syy ¼2pþ 2m

1

r

@vy
@y

þ vr
r

� �
tyz ¼ m

@vy
@z

þ 1

r

@vr
@y

� �
szz ¼2pþ 2m

@vz
@z

trz ¼ m
@vr
@z

þ @vz
@r

� �
Momentum

Cylindrical Spherical

r
Dvr
Dt

2
v 2
y

r
¼2

@p

@r
þ rgr þ m H2vr2

vr
r2
2

2

r2
@vy
@y

� �

r
Dvy
Dt

þ vyvr
r

¼2
1

r

@p

@y
þ rgy þ m H2vy2

vy
r2

þ 2

r2
@vr
@y

� �

r
Dvz
Dt

¼2
@p

@z
þ rgz þ mH2vz

D

Dt
¼ vr

@

@r
þ vy

r

@

@y
þ vz

@

@z
þ @

@t

H2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2
þ @2

@z2

srr ¼2pþ 2m
@vr
@r

syy ¼2pþ 2m
1

r sin y
@vy
@y

þ vr
r

� �
sff ¼2pþ 2m

1

r sin y
@vf
@f

þ vr
r
þ vf cot y

r

� �
try ¼ m r

@

@r

vy
r

� �
þ 1

r

@vr
@y

� �
tyf ¼ m

sin y
r

@

@y
vf
sin y

� �
þ 1

r sin y
@vy
@f

� �
trf ¼ m

1

rsiny
@vr
@f

þ r
@

@r

vf
r

� �� �
Spherical

r
Dvr
Dt

2r
v 2
y þ v 2

f

r
¼2

@p

@r
þ rgr

þ m H2vr2
2vr
r2

2
2

r2
@vy
@y

2
2vy cot y

r2
2

2

r2 sin y
@vf
@f

� �

r
Dvy
Dt

þ r
vrvy þ v 2

f cot y

r
¼2

1

r

@p

@y
þ rgy

þm H2vy þ 2

r2
@vr
@y

2
vy

r2 sin y
2

2 cos y
r2 sin2 y

@vf
@f

� �

r
Dvf
Dt

2r
vrvf þ vyvf cot y

r
¼2

1

r sin y
@p

@f
þ rgf

þ m H2vf2
vf

r2 sin2 y
þ 2

r2 sin2 y
@vr
@f

þ 2 cos y
r2 sin2 y

@vy
@f

� �
D

Dt
¼ vr

@

@r
þ vy

r

@

@y
þ vf

r sin y
@

@f
þ @

@t

H2 ¼ 1

r2
@

@r
r2

@

@r

� �
þ 1

r2 sin y
@

@y
sin y

@

@y

� �
þ 1

r2 sin y
@2

@f2
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If Eqs. (5.15) are substituted into Eqs. (5.12) using l ¼22m=3, there results

r
Du

Dt
¼2

@p

@x
þ m

@2u

@x2
þ @2u

@y2
þ @2u

@z2

{ !
þ m

3

@

@x

@u

@x
þ @v

@y
þ @w

@z

� �

r
Dv

Dt
¼2

@p

@y
þ m

@2v

@x2
þ @2v

@y2
þ @2v

@z2

{ !
þ m

3

@

@y

@u

@x
þ @v

@y
þ @w

@z

� �

r
Dw

Dt
¼2

@p

@z
þ m

@2w

@x2
þ @2w

@y2
þ @2w

@z2

!
þ m

3

@

@z

@u

@x
þ @v

@y
þ @w

@z

� �
2rg

{ ð5:17Þ

where gravity acts in the negative z-direction and a homogeneous* fluid has been assumed so that, for
example, @m=@x ¼ 0:

Finally, if an incompressible flow is assumed so that HHHHH·V ¼ 0; the Navier–Stokes equations result

r
Du

Dt
¼2

@p

@x
þ m

@2u

@x2
þ @2u

@y2
þ @2u

@z2

{ !

r
Dv

Dt
¼2

@p

@y
þ m

@2v

@x2
þ @2v

@y2
þ @2v

@z2

{ !

r
Dw

Dt
¼2

@p

@z
þ m

@2w

@x2
þ @2w

@y2
þ @2w

@z2

{ !
2rg

ð5:18Þ

where the z-direction is vertical.
If we introduce the scalar operator called the Laplacian, defined by

H2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
ð5:19Þ

and review the steps leading from Eq. (5.13) to Eq. (5.14), the Navier–Stokes equations can be written in
vector form as

r
DV

Dt
¼2HHHHHpþ mH2Vþ rg ð5:20Þ

The Navier–Stokes equations expressed in cylindrical and spherical coordinates are presented in
Table 5.1.

The three scalar Navier–Stokes equations and the continuity equation constitute the four equations
that can be used to find the four variables u, v, w, and p, provided there are appropriate initial and
boundary conditions. The equations are nonlinear due to the acceleration terms, such as u@v=@y on the
left-hand side; consequently, the solution to these equations may not be unique, i.e., the solution that is
determined from the above equations may not be the one observed in the laboratory. For example, the
flow between two rotating cylinders can be solved using the Navier–Stokes equations to be a relatively
simple flow with circular streamlines; it could also be a flow with streamlines that are like a spring wound
around the cylinders as a torus, and there are even more complex flows that are also solutions to the
Navier–Stokes equations, all satisfying the identical boundary conditions.

The differential momentum equations (the Navier–Stokes equations) can be solved with relative
ease for some simple geometries. But the equations cannot be solved for a turbulent flow even for the
simplest of examples; a turbulent flow is highly unsteady and three-dimensional and thus requires that
the three velocity components be specified at all points in a region of interest at some initial time, say
t ¼ 0. Such information would be nearly impossible to obtain, even for the simplest geometry.
Consequently, the solutions of turbulent flows are left to the experimentalist and are not attempted by
solving the equations.

* A homogeneous fluid has properties that are independent of position.
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EXAMPLE 5.2 Water flows from a reservoir in between two closely aligned parallel plates, as shown in Fig.
5.4. Write the simplified equations needed to find the steady-state velocity and pressure distributions between the

two plates. Neglect any z variation of the distributions and any gravity effects. Do not neglect v(x, y).

y

x

Figure 5.4

Solution: The continuity equation is simplified, for the incompressible water flow, to

@u

@x
þ @v

@y
þ @w

@z
¼ 0

The differential momentum equations recognizing that

D

Dt
¼ u

@

@x
þ v

@

@y
þ w

@

@z
þ @

@t

are simplified as follows:

r u
@u

@x
þ v

@u

@y

� �
¼2

@p

@x
þ m

@2u

@x2
þ @2u

@y2
þ @2u

@z2

{ !

r u
@v

@x
þ v

@v

@y

� �
¼2

@p

@y
þ m

@2v

@x2
þ @2v

@y2
þ @2v

@z2

{ !
neglecting pressure variation in the y-direction since the plates are assumed to be a relatively small distance
apart. So, the three equations that contain the three variables u, v, and p are

@u

@x
þ @v

@y
¼ 0

r u
@u

@x
þ v

@u

@y

� �
¼2

@p

@x
þ m

@2u

@x2
þ @2u

@y2

{ !

r u
@v

@x
þ v

@v

@y

� �
¼ m

@2v

@x2
þ @2v

@y2

{ !
To find a solution to these equations for the three variables, it would be necessary to use the no-slip conditions
on the two plates and assumed boundary conditions at the entrance, which would include u(0, y) and v(0, y).
Even for this rather simple geometry, the solution to this entrance flow problem appears, and is, quite difficult. A
numerical solution could be attempted.

EXAMPLE 5.3 Integrate Euler’s equation (5.14) along a streamline as shown in Fig. 5.5 for a steady, constant-
density flow and show that Bernoulli’s equation (3.25) results.

Solution: First, sketch a general streamline and show the selected coordinates normal to and along the
streamline so that the velocity vector can be written as Vŝs; as we did in Fig. 3.10. First, let us express DV=Dt in
these coordinates.

DV

Dt
¼ @V

@t
þ V

@ðVŝsÞ
@s

þ Vn

@V

@n
¼ Vŝs

@V

@s
þ V2 @ŝs

@s

where @ŝs=@s is nonzero since ŝs can change direction from point to point on the streamline; it is a vector quantity
in the n̂n direction. Applying Euler’s equation along a streamline (in the s-direction) allows us to write

rV
@V

@s
¼2

@p

@s
2rg

@z

@s
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Streamline

V = Vs

s

n

d
ds

d
ds

= sin

(k)s = sin

k

g

Figure 5.5

where we have referred to Fig. 5.5 to write ðk̂kÞs ¼ @z=@s: Partial derivatives are necessary because quantities can
vary in the normal direction. The above equation is then written as

@

@s
r
V2

2
þ pþ rgz

{ !
¼ 0

provided the density r is constant. This means that along a streamline,

V2

2
þ p

r
þ gz ¼ const

This is Bernoulli’s equation requiring the same conditions as it did when it was derived in Chap. 3.

5.4 THE DIFFERENTIAL ENERGY EQUATION

Most problems in an introductory fluid mechanics course involve isothermal fluid flows in which
temperature gradients do not exist. So, the differential energy equation is not of interest. The study of
flows in which there are temperature gradients are included in a course on heat transfer. For
completeness, the differential energy equation is presented here without derivation. In general, it is

r
Dh

Dt
¼ KH2TþDp

Dt
ð5:21Þ

where K is the thermal conductivity. For an incompressible ideal gas flow, it becomes

rcp
DT

Dt
¼ KH2T ð5:22Þ

and for a liquid flow it takes the form

DT

Dt
¼ aH2T ð5:23Þ

where a is the thermal diffusivity defined by a ¼ K=rcp:

Solved Problems

5.1 The x-component of the velocity in a certain plane flow depends only on y by the relationship
u(y) ¼ Ay. Determine the y-component vðx; yÞ of the velocity if vðx; 0Þ ¼ 0.

The continuity equation for this plane flow (in a plane flow there are only two velocity components that
depend on two space variables) demands that

@u

@x
¼2

@v

@y
\

@v

@y
¼2

@u

@x
¼2

@ðAyÞ
@x

¼ 0
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The solution to @v=@y ¼ 0 is vðx; yÞ ¼ fðxÞ: But vðx; 0Þ ¼ 0; as given, so that fðxÞ ¼ 0 and vðx; yÞ ¼ 0

The only way for vðx; yÞ to be nonzero would be for vðx; 0Þ to be nonzero.

5.2 Does the velocity field

vr ¼ 4 12
1

r2

� �
cosy vy ¼24 1þ 1

r2

� �
sin y vz ¼ 0

represent a possible incompressible flow?

The (r, y, z) coordinates are cylindrical coordinates. So, Table 5.1 provides the continuity equation to be
used:

1

r

@

@r
ðrvrÞ þ 1

r

@vy
@y

þ @vz
@z

¼ 0:

Substitute the velocity components into this equation and find

4 cos y
r

@

@r
r2

1

r

� �
þ24

r
1þ 1

r2

� �
@

@y
ðsin yÞ þ @vz

@z
¼? 0

Differentiate and find

4 cos y
r

1þ 1

r2

� �
2
4

r
1þ 1

r2

� �
cos y ¼ 0

Continuity is satisfied, so the velocity field is a possible incompressible flow.

5.3 Use the differential momentum equations for an incompressible uniform flow that moves toward
a flat plate, e.g., the wind hitting a vertical wall, and find an expression for the gradient of the
pressure. Assume a plane flow in which only the x- and y-components are nonzero and viscous
and gravity effects are negligible.

The Eqs. (5.18) are simplified as follows:

r
@u

@t
þ u

@u

@x
þ v

@u

@y
þ w

@u

@z

� �
¼2

@p

@x
þ m

@2u

@x2
þ @2u

@y2
þ @2u

@z2

{ !
þ rgx

r
@v

@t
þ u

@v

@x
þ v

@v

@y
þ w

@v

@z

� �
¼2

@p

@y
þ m

@2v

@x2
þ @2v

@y2
þ @2v

@z2

{ !
þ rgy

This provides the pressure gradient to be related to the velocity field by

HHHHHp ¼ @p

@x
iþ @p

@y
j ¼2 u

@u

@x
þ v

@u

@y

� �
i2 u

@v

@x
þ v

@v

@y

� �
j

5.4 Show that Du=Dt can be written as V·HHHHHu for a steady flow. Then write an expression for DV=Dt.

Expand Du=Dt for a steady flow as

Du

Dt
¼ @u

@t
þ u

@u

@x
þ v

@u

@y
þ w

@u

@z
¼ u

@

@x
þ v

@

@y
þ w

@

@z

� �
u ¼ V·HHHHHu

where we have used

V·HHHHH ¼ ðuiþ vjþ wkÞ· @

@x
iþ @

@y
jþ @

@z
k

� �
¼ u

@

@x
þ v

@

@y
þ w

@

@z

Finally, we observe that

DV

Dt
¼ Du

Dt
iþDv

Dt
jþDw

Dt
k ¼ V·HHHHHuiþ V·HHHHHvjþ V·HHHHHwk

¼ V·HHHHHðuiþ vjþ wkÞ
¼ ðV·HHHHHÞV
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Supplementary Problems

The Differential Continuity Equation

5.5 Refer to the first footnote and include rþ @r
@x

dx

� �
uþ @u

@x
dx

� �
from the right-hand side of the element and

rþ @r
@y

dy

� �
vþ @v

@y
dy

� �
from the top area of the element and show that Eq. (5.2) results.

5.6 The divergence theorem, also called Gauss’ theorem, is written in vector form asZ
A

B·n̂n dA ¼
Z
�V
HHHHH·B d�V

where B represents any vector and the surface area A surrounds the volume �V: Apply this theorem to the
integral continuity equation of Eq. (4.13) for a steady flow and derive Eq. (5.6).

5.7 A compressible flow of a gas occurs in a pipeline. Assume uniform flow with the x-direction along the pipe
axis and state the simplified continuity equation.

5.8 An incompressible steady flow of a fluid, such as a stratified flow of salt water (as in the isthmus between a
fresh body of water and a body of salt water), flows in a channel with a sudden change in the height of the
channel bottom (this allows for nonzero u and v). Assume no variation in the z-direction and write the two

equations that result from the continuity equation. (Experiments show that a stagnant region of fluid exists in
front of a sudden increase in the height of the bottom of a channel in a stratified flow. This phenomenon
causes the buildup of smog in Los Angeles when air flows toward the city, but substantial smog does not
appear in the more densely populated New York City. There are mountains east of Los Angeles but not west

of New York.)

5.9 An isothermal flow occurs in a conduit. Show that the continuity equation can be written as Dp ¼2pHHHHH·V for
an ideal gas.

5.10 An incompressible fluid flows radially (no y- or f-component) into a small circular drain. How must the

radial component of velocity vary with radius as demanded by continuity?

5.11 If the x-component of the velocity vector is constant in a plane flow, what is true of the y-component of the
velocity vector?

5.12 Calculate the density gradient in Example 5.1 if (a) forward differences were used and (b) if backward

differences were used. What is the percent error for each, assuming the answer in Example 5.1 is correct.

5.13 The x-component of the velocity vector is measured at three locations 8 mm apart on the centerline of a
symmetrical contraction. At pointsA,B, andC, the measurements produce 8.2, 9.4, and 11.1m=s, respectively.

Estimate the y-component of the velocity 2 mm above point B in this steady, plane, incompressible flow.

5.14 If, in a plane flow, the two velocity components are given by

uðx; yÞ ¼ 8ðx2 þ y2Þ vðx; yÞ ¼ 8xy

What is Dr=Dt at (1, 2) m if at that point r ¼ 2 kg=m3?

5.15 The velocity field for a particular plane flow (w ¼ 0) of air is given by

uðx; yÞ ¼ 4y

x2 þ y2
vðx; yÞ ¼2

4x

x2 þ y2

Show that this is an incompressible flow.
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5.16 If u(x, y) ¼ 4þ 2x=(x2þ y2) in a plane incompressible flow, what is v(x, y) if v(x, 0) ¼ 0?

5.17 If v(x, y) ¼ 8þ 4y=(x2 þ y2) in a plane incompressible flow, what is u(x, y) if u(0, y) ¼ 0?

5.18 The velocity component vy ¼ 2(25þ 1=r2)cos y in a plane incompressible flow. Find vrðr; yÞ if vrðr; 0Þ ¼ 0:

5.19 The velocity component vy ¼ 225(1þ 1=r2)sin y þ 50=r2 in a plane incompressible flow. Find vr (r, y) if
vr (r, 908) ¼ 0.

The Differential Momentum Equation

5.20 Draw a rectangular element similar to the one in Fig. 5.3 in the xz-plane. Assume that no shear stresses act in

the y-direction and that gravity acts in the z-direction. Apply Newton’s second law to the element in the
z-direction and write an equation similar to those of Eqs. (5.11).

5.21 If a steady flow of fluid occurs around a long cylinder, what three equations would be needed to find the
velocity and pressure fields if viscous effects are significant but gravity effects are not significant? What

boundary conditions would exist on the cylinder? Express the equations in cylindrical coordinates. Refer to
Table 5.1.

5.22 If a steady flow of fluid occurs around a sphere, what three equations would be needed to find the velocity
and pressure fields if viscous effects are significant but gravity effects are not significant? What boundary

conditions would exist on the sphere? Express the equations in spherical coordinates. Refer to Table 5.1.

5.23 Verify that
DV

Dt
¼ ðV·HHHHHÞV using rectangular coordinates assuming a steady flow.

5.24 Find the pressure gradient HHHHHp for the incompressible flow of Prob. 5.15, assuming an inviscid flow with
negligible gravity effects.

5.25 Find the pressure gradient HHHHHp for the incompressible flow of Solved Problem 5.2, assuming an inviscid flow
with negligible gravity effects.

5.26 Simplify the appropriate Navier–Stokes equation for the flow between parallel plates assuming u ¼ u(y) and
gravity in the z-direction. The streamlines are assumed to be parallel to the plates so that v ¼ w ¼ 0.

5.27 Simplify the Navier–Stokes equation for flow in a pipe assuming vz ¼ vzðrÞ and gravity in the z-direction.
The streamlines are assumed to be parallel to the pipe wall so that vy ¼ vr ¼ 0:

5.28 The inner cylinder of two concentric cylinders rotates resulting such that vy ¼ vyðrÞ and vr ¼ 0: What
equations are needed to find the velocity profile assuming vertical cylinders?

5.29 Substitute the constitutive equations (5.15) into the momentum equations (5.12) and show that the Navier–

Stokes equations (5.18) result, assuming a homogeneous incompressible fluid.

5.30 Assume that a flow is not homogeneous, e.g., there is a temperature gradient in the flow such that the
viscosity is not constant, and write the x-component differential momentum equations for an incompressible

flow using the constitutive equations (5.15).

5.31 Let the negative average of the three normal stresses be denoted by p in a gas flow in which Stokes hypothesis
is not applicable. Find an expression for ð p2pÞ:
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Answers to Supplementary Problems

5.5 See problem statement

5.6 See problem statement

5.7 u
@r
@x

þ r
@u

@x
¼ 0

5.8 u
@r
@x

¼2v
@r
@y

@u

@x
¼2

@v

@y

5.9 See problem statement

5.10 vr ¼ C

5.11 v ¼ fðxÞ

5.12 0:4 kg=m4; 33.3%

5.13 0.36 m=s

5.14 232 kg=ðm3·sÞ

5.15
@u

@x
þ @v

@y
¼ 0

5.16 22y=ðx2 þ y2Þ

5.17 24y=ðx2 þ y2Þ

5.18 2ð25212Þ sin y

5.19 ð25212Þ cos y

5.20
@sxx
@x

þ @txz
@z

¼ r
Du

Dt
and

@szz
@z

þ @tzx
@x

2 g ¼ r
Dw

Dt

5.23 See problem statement

5.24
16

rðx2 þ y2Þ2 ðxiþ yjÞ

5.26
@p

@x
¼ m

@2u

@y2

5.27 \
@p

@z
¼ rgz þ m

@2vz
@r2

þ 1

r

@vz
@r

5.28 \
1

r

@p

@y
¼ m

@ 2vy
@r2

þ 1

r

@vy
@r

2
vy
r2

{ !
5.31 2ðlþ 2m=3ÞHHHHH·V
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Chapter 6

Dimensional Analysis
and Similitude

6.1 INTRODUCTION

Many problems of interest in fluid mechanics cannot be solved using the integral and=or differential
equations. Wind motions around a football stadium, the flow of water through a large hydroturbine, the
airflow around the deflector on a semitruck, the wave motion around a pier or a ship, and airflow around
aircraft are all examples of problems that are studied in the laboratory with the use ofmodels. A laboratory
study with the use of models is very expensive, however, and to minimize the cost, dimensionless
parameters are used. In fact, such parameters are also used in numerical studies for the same reason.

Dimensionless parameters are obtained using a method called dimensional analysis, to be presented in
Sec. 6.2. It is based on the idea of dimensional homogeneity: all terms in an equation must have the same
dimensions. Simplyusing this idea,we canminimize the number of parameters needed in an experimental or
analytical analysis, as will be shown. Any equation can be expressed in terms of dimensionless parameters
simply by dividing each term by one of the other terms. For example, consider Bernoulli’s equation

V 2
2

2
þ p2

r
þ gz2 ¼ V 2

1

2
þ p1

r
þ gz1 ð6:1Þ

Now, divide both sides by gz2. The equation can then be written as

V 2
2

2gz2
þ p2

gz2
þ 1 ¼ V 2

1

2gz1
þ p1

gz1
þ 1

{ !
z1
z2

ð6:2Þ

Note the dimensionless parameters, V 2=gz and p=gz:
Once an analysis is performed on amodel in the laboratory and all quantities of interest are measured,

it is necessary to predict those same quantities on the prototype, such as the power generated by a large
wind machine from the measurements on a much smaller model. Similitude is the study that allows us to
predict the quantities to be expected on a prototype from the measurements on a model. This will be done
after our study of dimensional analysis that guides the model study.

6.2 DIMENSIONAL ANALYSIS

An example will be used to demonstrate the usefulness of dimensional analysis. Suppose the drag force
FD is desired on an object with a spherical front that is shaped as shown in Fig. 6.1. A study could be
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performed, the drag force measured for a particular radius R and length L in a fluid with velocity V,
viscosity m, and density r. Gravity is expected to not influence the force. This dependence of the drag
force on the other variables would be written as

FD ¼ fðR;L;V;m; rÞ ð6:3Þ
To present the results of an experimental study, the drag force could be plotted as a function of V for
various values of the radius R holding all other variables fixed. Then a second plot could show the drag
force for various values of L holding all other variables fixed, and so forth. The plots may resemble those
of Fig. 6.2. To vary the viscosity holding the density fixed and then the density holding the viscosity fixed
would require a variety of fluids leading to a very complicated study, possibly an impossible study.

FD FD

V V

R1
R2

R3

L3
L2

L1

Figure 6.2 Drag force versus velocity. (a) L, m, r fixed and (b) R, m, r fixed.

The actual relationship that would relate the drag force to the other variables could be expressed as a
set of dimensionless parameters, much like those of Eq. (6.2), as

FD

rV 2R2
¼ f

rVR
m

;
R

L

� �
ð6:4Þ

(The procedure to do this will be presented next). The results of a study using the above relationship
would be much more organized than the study suggested by the curves of Fig. 6.2. An experimental
study would require only several different models, each with different R=L ratios, and only one fluid,
either air or water. Varying the velocity of the fluid approaching the model, a rather simple task, could
vary the other two dimensionless parameters. A plot of FD=ðrV 2R2Þ versus rVR=m for the several values
of R=L would then provide the results of the study.

Before we present the details of forming the dimensionless parameters of Eq. (6.4), let us review the
dimensions on quantities of interest in fluid mechanics. Many quantities have obvious dimensions, but
for some the dimensions are not so obvious. There are only three basic dimensions since Newton’s
second law can be used to relate the basic dimensions. Using F, M, L, and T as the dimensions on force,
mass, length, and time, we see that F ¼ ma demands that the dimensions are related by

F ¼ M
L

T 2
ð6:5Þ

FD

R

L

V

Figure 6.1 Flow around an object.
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We choose to select the M2L2T system* and use Eq. (6.5) to relate F to M, L, and T. If temperature is
needed, as with the flow of a compressible gas, an equation of state, such as

p ¼ rRT ð6:6Þ
could be expressed dimensionally as

½RT	 ¼ ½p=r	 ¼ F

L2

L3

M
¼ ML=T 2

L2

L3

M
¼ L2

T 2
ð6:7Þ

where the brackets mean ‘‘the dimensions of.’’ The product RT does not introduce additional
dimensions.

Table 6.1 has been included to aid in selecting the proper dimensions for the quantities of interest. It
will simplify the creation of the dimensionless parameters. The dimensions are displayed for the
M2L2T system only, since that will be what is used in the solution to the problems in this chapter. The
same results would be obtained using the F2L2T system, should that system be selected.

The Buckingham p-theorem is used to create the dimensionless parameters, given a functional
relationship such as that of Eq. (6.3). Write the primary variable of interest as a general function, such as

x1 ¼ f ðx2; x3; x4; . . . ; xnÞ ð6:8Þ

Table 6.1 Symbols and Dimensions of Quantities of Interest Using the M–L–T System

Quantity Symbol Dimensions

Length l L

Mass m M

Time t T

Velocity V L=T

Acceleration a L=T 2

Angular velocity O T21

Force F F

Gravity g L=T 2

Flow rate Q L3=T

Mass flux _mm M=T

Pressure p M=LT 2

Stress t M=LT 2

Density r M=L3

Specific weight g M=L2T 2

Work W ML2=T 2

Viscosity m M=LT

Kinematic viscosity n L2=T

Power _WW ML2=T3

Heat flux _QQ ML2=T3

Surface tension s M=T 2

Bulk modulus B M=LT 2

* The F–L–T system could have been used. It is simply our choice to use the M–L–T system.
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where n is the total number of variables. Ifm is the number of basic dimensions, usually 3, the Buckingham
p-theorem demands that ðn2mÞ dimensionless groups of variables, the p-terms, are related by

p1 ¼ f1ðp2; p3; . . . ; pn2mÞ ð6:9Þ
where p1 is selected to contain the dependent variable [it would be FD of Eq. (6.3)] and the remaining
p-terms contain the independent variables. It should be noted that a functional relationship cannot
contain a particular dimension in only one variable; for example, in the relationship v ¼ fðd; t; rÞ; the
density r cannot occur since it is the only variable that contains the dimension M, so M would not have
the possibility of canceling out to form a dimensionless p-term.

The steps that are followed when applying the Buckingham p-theorem are:

1. Write the dependent variable as a function of the ðn21Þ independent variables. This step
requires knowledge of the phenomenon being studied. All variables that influence the dependent
variable must be included and all variables that do not influence the dependent variable should
not be included. In most problems, this relationship will be given.

2. Identify m variables, the repeating variables that are combined with the remaining variables to
form the p-terms. The m variables must include all the basic dimensions present in the n
variables of the functional relationship, but they must not form a dimensionless p-term by
themselves. Note that an angle is dimensionless, so it is not a candidate to be a repeating
variable.

3. Combine each of the ðn2mÞ variables with the repeating variables to form the p-terms.
4. Write the p-term containing the dependent variable as a function of the remaining p-terms.

Step 3 is carried out by either inspection or an algebraic procedure. The method of inspection will be
used in an example. To demonstrate the algebraic procedure, let us form a p-term of the variables V, R,
r, and m: This is written as

p ¼ V aRbrcmd ð6:10Þ
In terms of dimensions, this is

M 0L0T 0 ¼ L

T

� �a
Lb M

L3

� �c M

LT

� �d
ð6:11Þ

Equating exponents on each of the basic dimensions provides the system of equations

M : 0 ¼ cþ d
L : 0 ¼ aþ b23c2d
T : 0 ¼2a2d

ð6:12Þ

The solution is

c ¼2d a ¼2d b ¼2d ð6:13Þ
The p-term is then written as

p ¼ m
VRr

� �d
ð6:14Þ

This p-term is dimensionless regardless of the value of d. If we desire V to be in the denominator, select
d ¼ 1; if we desire V to be in the numerator, select d ¼ 21. Select d ¼ 21 so that

p ¼ VRr
m

ð6:15Þ

Suppose that only one p-term results from an analysis. That p-term would be equal to a constant
which could be determined by an experiment.

Finally, consider a very general functional relationship between a pressure change Dp, length l,
velocity V, gravity g, viscosity m, density r, speed of sound c, surface tension s, and an angular velocity O.
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All of these variables may not influence a particular problem, but it is interesting to observe the final
relationship of dimensionless terms. Dimensional analysis using V, l, and r as the repeating variables
provides the relationship

Dp
rV 2

¼ f
V 2

lg
;
rVl
m

;
V

c
;
rlV 2

s
;
Ol
V

{ !
ð6:16Þ

Each term that appears in this relationship is an important parameter in certain flow situations. The
dimensionless term with its common name is listed as follows:

Dp
rV 2

¼ Eu Euler number

Vffiffiffi
lg

p ¼ Fr Froude number

rVl
m

¼ Re Reynolds number

V

c
¼ M Mach number

rlV 2

s
¼ We Weber number

Ol
V

¼ St Strouhal number

ð6:17Þ

Not all of the above numbers would be of interest in a particular flow; it is highly unlikely that both
compressibility effects and surface tension would influence the same flow. These are, however, the
primary dimensionless parameters in our study of fluid mechanics. The Euler number is of interest in
most flows, the Froude number in flows with free surfaces in which gravity is significant (e.g., wave
motion), the Reynolds number in flows in which viscous effects are important, the Mach number in
compressible flows, the Weber number in flows affected by surface tension (e.g., sprays with droplets),
and the Strouhal number in flows in which rotation or a periodic motion plays a role. Each of these
numbers, with the exception of the Weber number (surface tension effects are of little engineering
importance), will appear in flows studied in subsequent chapters. Note: The Froude number is often
defined as V 2=lg; this would not influence the solution to problems.

EXAMPLE 6.1 The pressure drop Dp over a length L of pipe is assumed to depend on the average velocity V,
the pipe’s diameter D, the average height e of the roughness elements of the pipe wall, the fluid density r, and the

fluid viscosity m. Write a relationship between the pressure drop and the other variables.

Solution: First, select the repeating variables. Do not select Dp since that is the dependent variable. Select
only one D, L, and e since they all have the dimensions of length. Select the variables that are thought* to most

influence the pressure drop: V, D, and r: Now, list the dimensions on each variable (Table 6.1):

½Dp	 ¼ M

LT 2
½L	 ¼ L ½V	 ¼ L

T
½D	 ¼ L ½e	 ¼ L ½r	 ¼ M

L3
½m	 ¼ M

LT

First, combine Dp, V, D, and m into a p-term. Since only Dp and r have M as a dimension, they must occur as a
ratio Dp=r: That places T in the denominator so that V must be in the numerator so the T ’s cancel out. Finally,

check out the L’s: there is L in the numerator, so D must be in the denominator providing

p1 ¼ Dp
rV 2D2

* This is often debatable. Either D or L could be selected, whichever is considered to be most influential.
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The second p-term is found by combining L with the three repeating variables V, D, and r. Since both L and D

have the dimension of length, the second p-term is

p2 ¼ L

D

The third p-term results from combining e with the repeating variables. It has the dimension of length so the
third p-term is

p3 ¼ e

D

The last p-term is found by combining m with V, D, and r. Both m and r contain the dimension M demanding
that they form the ratio r=m. This puts T in the numerator demanding that V goes in the numerator. This puts L

in the denominator so that D must appear in the numerator. The last p-term is then

p4 ¼ rVD
m

The final expression relates the p-terms as

p1 ¼ fðp2; p3; p4Þ
or using the variables

Dp
rV 2D2

¼ f
L

D
;
e

D
;
rVD
m

� �
If L had been chosen as a repeating variable, it would simply change places with D since it has the same
dimension.

6.3 SIMILITUDE

After the dimensionless parameters have been identified and a study on a model has been accomplished
in a laboratory, similitude allows us to predict the behavior of a prototype from the measurements made
on the model. The measurements on the model of a ship in a towing basin or on the model of an aircraft
in a wind tunnel are used to predict the performance of the ship or the aircraft.

The application of similitude is based on three types of similarity. First, a model must look like the
prototype, i.e., the length ratio must be constant between corresponding points on the model and
prototype. For example, if the ratio of the lengths of the model and prototype is l, then every other length
ratio is also l. Hence, the area ratio would be l2 and the volume ratio l3. This is geometric similarity.

The second is dynamic similarity: all force ratios acting on corresponding mass elements in the model
flow and the prototype flow are the same. This results by equating the appropriate dimensionless numbers
of Eqs. (6.17). If viscous effects are important, the Reynolds numbers are equated; if compressibility is
significant, Mach numbers are equated; if gravity influences the flows, Froude numbers are equated; if an
angular velocity influences the flow, the Strouhal numbers are equated, and if surface tension affects the
flow, theWeber numbers are equated. All of these numbers can be shown to be ratios of forces, so equating
the numbers in a particular flow is equivalent to equating the force ratios in that flow.

The third type of similarity is kinematic similarity: the velocity ratio is the same between
corresponding points in the flow around the model and the prototype. This can be shown by considering
the ratio of inertial forces, using the inertial force as

FI ¼ mV
dV

ds
<m

V 2

l
< rl3

V 2

l
¼ rl 2V 2 ð6:18Þ

where the acceleration* a ¼ VdV=ds has been used. The ratio of forces between model and prototype is
then

ðFIÞm
ðFIÞp ¼ V 2

m l
2
m

V 2
p l

2
p

¼ const ð6:19Þ

* Recall a=dV=dt and V=ds/dt so that a=VdV=ds.
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showing that the velocity ratio is a constant between corresponding points if the length ratio is a
constant, i.e., if geometric similarity exists (we assume the density ratio rm=rp to be constant between
corresponding points in the two flows).

Assuming complete similarity between model and prototype, quantities of interest can now be
predicted. For example, if a drag force is measured on flow around a model in which viscous effects play
an important role, the ratio of the forces [see Eq. (6.18)] would be

ðFDÞm
ðFDÞp ¼ rmV

2
m l

2
m

rpV 2
p l

2
p

ð6:20Þ

The velocity ratio would be found by equating the Reynolds numbers.

Rem ¼ Rep
rmVmlm

mm
¼ rpVplp

mp
ð6:21Þ

If the length ratio, the scale, is given and the same fluid is used in model and prototype, the force acting
on the prototype can be found. It would be

ðFDÞp ¼ ðFDÞm
Vp

Vm

� �2 lp

lm

� �2
¼ ðFDÞm lm

lp

{ !2{
lp

lm

!2

¼ ðFDÞm ð6:22Þ

showing that, if the Reynolds number governs the model study and the same fluid is used in the model
and prototype, the force on the model is the same as the force of the prototype. Note that the velocity in
the model study is the velocity in the prototype multiplied by the length ratio so that the model velocity
could be quite large.

If the Froude number governed the study, we would have

Frm ¼ Frp
V 2

m

lmgm
¼ V 2

p

lpgp
ð6:23Þ

The drag force on the prototype, with gm ¼ gp, would then be

ðFDÞp ¼ ðFDÞm
Vp

Vm

� �2 lp

lm

� �2
¼ ðFDÞm

lp

lm

� �
lp

lm

� �2
¼ ðFDÞm

lp

lm

� �3
ð6:24Þ

This is the situation for the model study of a ship. The Reynolds number is not used even though the
viscous drag force acting on the ship cannot be neglected. We cannot satisfy both the Reynolds number
and the Froude number in a study if the same fluid is used for the model study as that exists in the
prototype flow; the model study of a ship always uses water as the fluid. To account for the viscous drag,
the results of the model study based on the Froude number are adapted using industrial modifiers not
included in this book.

EXAMPLE 6.2 A clever design of the front of a ship is to be tested in a water basin. A drag of 12.2 N is
measured on the 1:20 scale model when towed at a speed of 3.6 m/s. Determine the corresponding speed of the

prototype ship and the drag to be expected.

Solution: The Froude number guides the model study of a ship since gravity effects (wave motions) are
more significant than the viscous effects. Consequently,

Frp ¼ Frm or
Vpffiffiffiffiffi
lpgp

p ¼ Vmffiffiffiffiffiffi
lmgm

p
Since gravity does not vary significantly on the earth, there results

Vp ¼ Vm

ffiffiffi
lp

lm

s
¼ 3:6 ·

ffiffiffi
20

p ¼ 16:1m=s
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To find the drag on the prototype, the drag ratio is equated to the gravity force ratio (the inertial force ratio

could be used but not the viscous force ratio since viscous forces have been ignored).

ðFDÞp
ðFDÞm ¼ rpV

2
p l

2
p

rmV 2
m l

2
m

\ ðFDÞp ¼ ðFDÞm
V 2

p l
2
p

V 2
m l

2
m

¼ 12:2 ·
16:12

3:62
· 202 ¼ 41 000N

where we used rp > rm since salt water and fresh water have nearly the same density. The above results would be
modified based on the established factors to account for the viscous drag on the ship.

EXAMPLE 6.3 A large pump delivering 1.2 m3/s of water with a pressure rise of 400 kPa is needed for a
particular hydroelectric power plant. A proposed design change is tested on a smaller 1:4 scale pump. Estimate

the flow rate and pressure rise which would be expected in the model study. If the power needed to operate the
model pump is measured to be 8000 kW, what power would be expected to operate the prototype pump?

Solution: For this internal flow problem, Reynolds number would be equated

Rep ¼ Rem or
Vpdp
np

¼ Vmdm
nm

or
Vp

Vm

¼ dm
dp

assuming np > nm for the water in the model and prototype. The ratio of flow rates is

Qp

Qm

¼ ApVp

AmVm

¼ l 2
p Vp

l 2
mVm

¼ 42 ·
1

4
¼ 4 \ Qm ¼ Qp

4
¼ 1:2

4
¼ 0:3m3=s

The power ratio is found using power as force times velocity; this provides

_WWp

_WWm

¼ rpV
2
p l

2
p

rmV 2
m l

2
m

Vp

Vm

\ _WWp ¼ _WWm

dm
dp

{ !2{
dp
dm

!2
dm
dp

¼ 8000

4
¼ 500 kW

This is an unexpected result. When using the Reynolds number to guide a model study, the power measured on
the model exceeds the power needed to operate the prototype since the pressures are so much larger on the

model. Note that in this example the Euler number would be used to provide the model pressure rise as

Dpp
Dpm

¼ rpV
2
p

rmV 2
m

\ Dpm ¼ Dpp
dp
dm

� �2
¼ 400 · 42 ¼ 6400 kPa

For this reason and the observation that the velocity is much larger on the model, model studies are not common

for situations (e.g., flow around an automobile) in which the Reynolds number is the guiding parameter.

EXAMPLE 6.4 The pressure rise from free stream to a certain location on the surface of the model of a rocket
is measured to be 22 kPa at an air speed of 1200 km/h. The wind tunnel is maintained at 90 kPa absolute and
15–C. What would be the speed and pressure rise on a rocket prototype at an elevation of 15 km?

Solution: The Mach number governs the model study. Thus,

Mm ¼ Mp

Vm

cm
¼ Vp

cp

Vmffiffiffiffiffiffiffiffi
kRTm

p ¼ Vpffiffiffiffiffiffiffi
kRTp

p
Using the temperature from Table B.3, the velocity is

Vp ¼ Vm

ffiffiffiffi
Tp

Tm

s
¼ 1200

ffiffiffiffiffiffiffi
216:7

288

s
¼ 1041 km=h

A pressure force is DpA< Dpl2 so that the ratio to the inertial force of Eq. (6.18) is the Euler number, Dp=rV 2:
Equating the Euler numbers gives the pressure rise as

Dpp ¼ Dpm
rpV

2
p

rmV 2
m

¼ 22 ·
ppTmV

2
p

pmTpV
2
m

¼ 22 ·
12:3 · 288 · 10412

90 · 216:7 · 12002
¼ 3:01 kPa
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Solved Problems

6.1 Write the dimensions of the kinetic energy term 1
2mV 2 using the F2L2T system of units.

The dimensions on mV 2 are

½mV 2	 ¼ M
L2

T 2
¼ F

T 2

L

L2

T 2
¼ FL

where M ¼ FT 2=L comes from Newton’s second law written as m ¼ F/a. The units on FL would be
N·m in the SI system, as expected. Using the M2L2T system the units would be (kg·m2)/s2, which are

equivalent to N·m.

6.2 The speed V of a weight when it hits the floor is assumed to depend on gravity g, the height h from
which it was dropped, and the density r of the weight. Use dimensional analysis and write a
relationship between the variables.

The dimensions of each variable are listed as

½V	 ¼ L

T
½g	 ¼ L

T 2
½h	 ¼ L ½r	 ¼ M

L3

Since M occurs in only one variable, that variable r cannot be included in the relationship. The

remaining three terms are combined to form a single p-term; it is formed by observing that T occurs in
only two of the variables, thus V2 is in the numerator and g is in the denominator. The length
dimension is then canceled by placing h in the denominator. The single p-term is

p1 ¼ V 2

gh

Since this p-term depends on all other p-terms and there are none, it must be at most a constant. Hence,
we conclude that

V ¼ C
ffiffiffi
gh

p
A simple experiment would show that C ¼ ffiffi

2
p

: We see that dimensional analysis rules out the

possibility that the speed of free fall, neglecting viscous effects (e.g., drag), depends on the density of the
material (or the weight).

6.3 A new design is proposed for an automobile. It is suggested that a 1:5 scale model study be done
to access the proposed design for a speed of 90 km=h. What speed should be selected for the
model study and what drag force would be expected on the prototype if a force of 80 N were
measured on the model?

The Reynolds number would be the controlling parameter. It requires

Vmlm
nm

¼ Vplp

np
: \ Vm ¼ Vp

lp

lm
¼ 90 · 5 ¼ 450 km=h

This high speed would introduce compressibility effects. Hence, either a larger model would have to be
selected or a lower prototype speed would be required.
For the speed calculated above, the drag force would be found using Eq. (6.22)

ðFDÞp ¼ ðFDÞm
Vp

Vm

� �2 lp
lm

� �2
¼ ðFDÞm lm

lp

{ !2{
lp
lm

!2

¼ ðFDÞm ¼ 80N

It should be noted that for high Reynolds number flows, the flow around blunt objects often becomes
independent of Reynolds number, as observed in Fig. 8.2 for flow around a sphere for Re > 4 · 105:
This would probably be the case for flow around an automobile. As long as ðReÞm > 5 · 105 any
velocity could be selected for the model study. If the model were 40 cm wide, then a velocity of
100 km=h could be selected; at that velocity the Reynolds number, based on the width, would be
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Re ¼ Vmlm=nm ¼ ð100 000=3600Þ · 0:4=1:6 · 1025 ¼ 7 · 105: This would undoubtedly be an acceptable

velocity. It is obvious that knowledge and experience is required for such studies.

Supplementary Problems

6.4 Divide Eq. (6.1) by V 2
1 thereby expressing Bernoulli’s equation (6.1) as a group of dimensionless terms.

Identify the dimensionless parameters introduced.

6.5 If the F–L–T system is used, select the dimensions on each of the following: (a) mass flux, (b) pressure,
(c) density, (d) viscosity, and (e) power.

Dimensional Analysis

6.6 Combine each of the following groups of variables into a single dimensionless group, a p-term.

(a) Velocity V, length l, gravity g, and density r
(b) Velocity V, diameter D, density r, and viscosity m
(c) Velocity V, density r, diameter D, and kinematic viscosity n
(d) Angular velocity O, gravity g, diameter d, and viscosity m
(e) Angular velocity O, viscosity m, distance b, and density r
(f) Power _WW; diameter d, velocity V, and pressure rise Dp

6.7 What variable could not influence the velocity if it is proposed that the velocity depends on a diameter, a
length, gravity, rotational speed, and viscosity?

6.8 An object falls freely in a viscous fluid. Relate the terminal velocity V to its width w, its length l, gravity g,

and the fluid density r and viscosity m. Relate the terminal velocity to the other variables. Select (a) w, g, and
r as the repeating variables and (b) l, g, and r as the repeating variables. Show that the relationship for (a) is
equivalent to that of (b).

6.9 It is proposed that the velocity V issuing from a hole in the side of an open tank depends on the density r of

the fluid, the distance H from the surface, and gravity g. What expression relates the variables?

6.10 Include the viscosity m in the list of variables in Prob. 6.9. Find the expression that relates the variables.

6.11 Include the diameter d of the hole and the viscosity m in the list of variables in Prob. 6.9. Find an expression
that relates the variables.

6.12 The pressure drop Dp over a horizontal section of pipe of diameter d depends on the average velocity, the
viscosity, the fluid density, the average height of the surface roughness elements, and the length of the pipe
section. Write an expression that relates the pressure drop to the other variables.

6.13 Assume a vertical pipe and include gravity in the list of variables in Prob. 6.12 and find an expression for the

pressure drop.

6.14 The drag force on a sphere depends on the sphere’s diameter and velocity, the fluid’s viscosity and density,
and gravity. Find an expression for the drag force.
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6.15 The drag force on a cylinder is studied in a wind tunnel. If wall effects are negligible, relate the drag force to

the wind’s speed, density and kinematic viscosity, and the cylinder’s diameter and length.

6.16 The distance of the flight of a golf ball is assumed to depend on the initial velocity of the ball, the angle of the
ball from the club, the viscosity and density of the air, the number of dimples on the ball and its diameter,
and gravity. Write an expression for the flight distance. How would the temperature of the air influence the

flight distance?

6.17 The flow rate Q of water in an open channel is assumed to depend on the height h of the water and width w
and slope S of the channel, the wall roughness height e, and gravity g. Relate the flow rate to the other

variables.

6.18 The lift FL on an airfoil is related to its velocity V, its length L, its chord length c, its angle of attack a, and
the density r of the air. Viscous effects are assumed negligible. Relate the lift to the other variables.

6.19 The drag FD on an airfoil is related to its velocity V, its length L, its chord length c, its angle of attack a, and
the density r and viscosity m of the air. Relate the drag to the other variables.

6.20 Find an expression for the torque required to rotate a disk of diameter d, a distance t from a flat plate at a
rotational speed O, a liquid fills the space between the disk and the plate.

6.21 The power _WWP required for a pump depends on the impeller rotational speed O, the impeller diameter d, the
number N of impeller blades, the fluid viscosity and density, and the pressure difference Dp:What expression

relates the power to the other variables?

6.22 Write an expression for the torque required to rotate the cylinder surrounded by a fluid as shown in Fig. 6.3.
(a) Neglect the effects of h. (b) Include the effects of h.

Fluid

t

h

R

T

H

Figure 6.3 Similitude.

6.23 After a model study has been performed, quantities of interest are often predicted for the prototype. Using

an average velocity V, a characteristic dimension l, and the fluid density r, write the ratio of prototype to
model of (a) drag force FD, (b) flow rate Q, (c) pressure drop Dp; and (d) torque T.

6.24 A model of a golf ball is to be studied to determine the effects of the dimples. A sphere 10 times larger than
an actual golf ball is used in the wind tunnel study. What speed should be selected for the model to simulate a

prototype speed of 50 m=s?

6.25 A proposed pier design is studied in a water channel to simulate forces due to hurricanes. Using a 1:10 scale
model, what velocity should be selected in the model study to simulate a water speed of 12 m=s?

6.26 A proposed model study of a low-speed aircraft is to be performed using a 1:10 scale model. If the prototype

is to travel at 25 m=s, what speed should be selected for a wind tunnel model? Is such a test advisable? Would
it be better to test a 40:1 scale model in a water channel?
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6.27 A towing force of 15 N is measured on a 1:40 scale model of a ship in a water channel. What velocity should

be used to simulate a prototype speed of 10 m=s? What would be the predicted force on the ship at that speed?

6.28 A 1:20 scale model of an aircraft is studied in a 20–C supersonic wind tunnel at sea level. If a lift of 20 N at a
speed of 250 m=s is measured in the wind tunnel, what velocity and lift does that simulate for the prototype?
Assume the prototype is at (a) sea level, (b) 3000 m, and (c) 10 000 m.

6.29 The force on a weir is to be predicted by studying the flow of water over a 1:10 scale model. If 1.8 m3=s is
expected over the weir, what flow rate should be used in the model study? What force should be expected on
the weir if 20 N is measured on the model?

Answers to Supplementary Problems

6.4
gz

V 2
and

p

rV 2

6.5 (a) FT=L (b) F=L2 (c) FT 2=L4 (d ) FT=L2 (e) LF=T

6.6 (a) V 2=lg (b) VrD=m (c) VD=n (d ) O2d=g (e) Orb2=m ( f ) _WW=DpV 2d

6.7 Viscosity

6.8 (a)
V 2

gw
¼ f

w

l
;
r

ffiffi
g

p
w3=2

m

{ !
(b)

V 2

gl
¼ f

l

w
;
r

ffiffi
g

p
l3

=2

m

{ !
6.9 V ¼ C

ffiffiffiffi
gH

p

6.10
Vffiffiffiffi
gH

p ¼ f
r

ffiffiffiffiffiffi
gH3

p
m

{ !

6.11
Vffiffiffiffi
gH

p ¼ f
H

d
;
r

ffiffiffiffiffiffi
gH3

p
m

{ !

6.12
Dp
rV 2

¼ f
e

d
;
L

d
;
rVd
m

� �

6.13
Dp
rV 2

¼ f
e

d
;
L

d
;
rVd
m

;
V 2

dg

{ !

6.14
FD

rV 2d2
¼ f

rVd
m

;
V 2

dg

{ !

6.15
FD

rV 2d 2
¼ f

Vd

n
;
d

l

� �

6.16
L

d
¼ f a;

rVd
m

;N;
V 2

dg

{ !

6.17
Qffiffiffiffiffi
gh5

p ¼ f
h

w
;S;

h

e

� �

6.18
FL

rV 2c2
¼ f

c

L
; a

� �
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6.19
FD

rV 2c2
¼ f

c

L
; a;

rVc
m

� �

6.20
T

rO2d 5
¼ f

d

t
;
rOd2

m

{ !

6.21
_WWP

rO3d 5
¼ f

rOd 2

m
;N;

Dp

rO2d 2

{ !

6.22
T

rO2d 5
¼ f

R

t
;
R

H
;
R

h
;
rOd 2

m

{ !

6.23 (a)
FD;p

FD;m

¼ rpl
2
p V

2
p

rml 2
mV

2
m

(b)
Qp

Qm

¼ Vpl
2
p

Vml
2
m

(c)
Dpp
Dpm

¼ rpV
2
p

rmV 2
m

(d)
Tp

Tm

¼ rpV
2
p l

3
p

rmV 2
m l

3
m

6.24 5 m=s

6.25 3.79 m=s

6.26 500 m=s, 133 m=s. No model study feasible

6.27 1.58 m=s, 60 kN

6.28 (a) 250 m=s, 8000 N (b) 258 m=s, 6350 N (c) 283 m=s, 3460 N

6.29 56.9 m3=s, 20 kN
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Chapter 7

Internal Flows

7.1 INTRODUCTION

The material in this chapter is focused on the influence of viscosity on the flows internal to boundaries,
such as flow in a pipe or between rotating cylinders. Chapter 8 will focus on flows that are external to a
boundary, such as an airfoil. The parameter that is of primary interest in an internal flow is the Reynolds
number:

Re ¼ rVL
m

ð7:1Þ

where L is the primary characteristic length (e.g., the diameter of a pipe) in the problem of interest and V
is usually the average velocity in a flow.

If viscous effects dominate the flow (this requires a relatively large wall area), as in a long length of
pipe, the Reynolds number is important; if inertial effects dominate, as in a sudden bend or a pipe
entrance, then the viscous effects can often be ignored since they do not have a sufficiently large area
upon which to act thereby making the Reynolds number less influential.

We will consider internal flows in pipes, between parallel plates and rotating cylinders, and in open
channels in some detail. If the Reynolds number is relatively low, the flow is laminar (see Sec. 3.3.3); if it is
relatively high, then the flow is turbulent. For pipe flows, the flow is assumed to be laminar if R, 2000; for
flow between wide parallel plates, it is laminar if Re, 1500; for flow between rotating concentric cylinders,
it is laminar and flows in a circular motion below Re, 1700; and in the open channels of interest, it is
assumed to be turbulent. The characteristic lengths and velocities will be defined later.

7.2 ENTRANCE FLOW

The comments andReynolds numbersmentioned above refer to developed flows, flows inwhich the velocity
profiles do not change in the stream-wise direction. In the region near a geometry change, such as an elbow
or a valve or near an entrance, the velocity profile changes in the flow direction. Let us consider the changes
in the entrance region for a laminar flow in a pipe or between parallel plates. The entrance length LE is
sketched in Fig. 7.1. The velocity profile very near the entrance is essentially uniform, the viscous wall layer
grows until it permeates the entire cross section over the inviscid core length Li; the profile continues to
develop into a developed flow at the end of the profile development region.

For a laminar flow in a pipe with a uniform velocity profile at the entrance,

LE

D
¼ 0:065Re Re ¼ VD

n
ð7:2Þ
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LE (entrance length)

Li profile development length

u(x,y) u(y)

Inviscid core

Viscous wall layer

Figure 7.1 The laminar-flow entrance region in a pipe or between parallel plates.

where V is the average velocity and D is the diameter. The inviscid core is about half of the entrance
length. It should be mentioned that laminar flows in pipes have been observed at Reynolds numbers as
high as 40 000 in extremely controlled flows in smooth pipes in a building free of vibrations; for a
conventional pipe with a rough wall, we use 2000 as the limit for a laminar flow.

For flow between wide parallel plates with a uniform profile at the entrance,

LE

h
¼ 0:04Re Re ¼ Vh

n
ð7:3Þ

where h is the distance between the plates and V is the average velocity. A laminar flow cannot exist for
Re. 7700; a value of 1500 is used as the limit for a conventional flow.

The entrance region for a developed turbulent flow is displayed in Fig. 7.2. The velocity profile is
developed at the length Ld, but the characteristics of the turbulence in the flow require the additional
length. For large Reynolds numbers exceeding 105 in a pipe, we use

Li

D
> 10

Ld

D
> 40

LE

D
> 120 ð7:4Þ

u(y) = umax (y/r0)1/n 10 > n > 5

LE (entrance length)

Li
Profile development length

u(x,y)

Inviscid core

Wall layer

Ld

Developed
turbulent flow

Figure 7.2 The turbulent-flow entrance region in a pipe.

Transition near Ld
(for Re about 10 000)

Transition near Li

Transition near the origin
(for Re > 300 000)

Laminar flow

p

x

Figure 7.3 Pressure variation in a pipe for both laminar and turbulent flows.
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For a flow with Re ¼ 4000, the development lengths are possibly five times those listed in Eq. (7.4) due
to the initial laminar development followed by the development of turbulence. (Research has not been
reported for flows in which Re, 105).

The pressure variation is sketched in Fig. 7.3. The initial transition to turbulence from the wall of the
pipe is noted in the figure. The pressure variation for the laminar flow is higher in the entrance region
than in the fully developed region due to the larger wall shear and the increasing momentum flux.

7.3 LAMINAR FLOW IN A PIPE

Steady, developed laminar flow in a pipe will be derived applying Newton’s second law to the element of
Fig. 7.4 in Sec. 7.3.1 or using the appropriate Navier–Stokes equation of Chap. 5 in Sec. 7.3.2. Either
derivation can be used since we arrive at the same equation using both approaches.

7.3.1 The Elemental Approach

The element of fluid shown in Fig. 7.4 can be considered a control volume into and from which the fluid
flows or it can be considered a mass of fluid at a particular moment. Considering it to be an
instantaneous mass of fluid that is not accelerating in this steady, developed flow, Newton’s second law
takes the form X

Fx ¼ 0 or ppr2 2 ðpþ dpÞpr2 2 t2pr dxþ gpr2 dx sin y ¼ 0 ð7:5Þ
where t is the shear on the wall of the element and g is the specific weight of the fluid. The above equation
simplifies to

t ¼ 2
r

2

d

dx
ðpþ ghÞ ð7:6Þ

using dh ¼2sin y dx with h measured in the vertical direction. Note that this equation can be applied to
either a laminar or a turbulent flow. For a laminar flow, the shear stress t is related to the velocity
gradient* by Eq. (1.9):

x

dx

(p + dp)

2

r2p r2

r2dx
rdx

u(r)

hD dx
–dh

r
ro

Figure 7.4 Steady, developed flow in a pipe.

2m
du

dr
¼ 2

r

2

d

dx
ðpþ ghÞ ð7:7Þ

Because we assume a developed flow (no change of the velocity profile in the flow direction), the left-
hand side is a function of r only and so dðpþ ghÞ=dx must be at most a constant (it cannot depend on r
since there is no radial acceleration and since we assume the pipe is relatively small, there is no variation
of pressure with r); hence, we can write Z

du ¼
Z r

2m
d

dx
ðpþ ghÞdr ð7:8Þ

* The minus sign is required since the stress is a positive quantity and du=dr is negative near the lower wall.
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This is integrated to provide the velocity profile

uðrÞ ¼ r2

4m
d

dx
ðpþ ghÞ þ C ð7:9Þ

where the constant of integration C can be evaluated using uðr0Þ ¼ 0 so that

uðrÞ ¼ ðr2 2 r 2
0 Þ

4m
d

dx
ðpþ ghÞ ð7:10Þ

For a horizontal pipe for which dh=dx ¼ 0, the velocity profile becomes

uðrÞ ¼ 1

4m
dp

dx
ðr2 2 r 2

0 Þ ð7:11Þ

The above velocity profile is a parabolic profile; the flow is sometimes referred to as a Poiseuille flow.
The same result can be obtained by solving the appropriate Navier–Stokes equation; if that is not of

interest, go directly to Sec. 7.3.3.

7.3.2 Applying the Navier–Stokes Equations

The z-component differential momentum equation using cylindrical coordinates from Table 5.1 is applied
to a steady, developed flow in a circular pipe. For the present situation, we wish to refer to the coordinate in
the flow direction as x and the velocity component in the x-direction as u(x); so, let us replace the z with x
and the vz with u. Then, the differential equation takes the form

r vr
@u

@r
þ vy

r

@u

@y
þ u

@u

@x
þ @u

@t

� �
¼ 2

@p

@x
þ rgx þ m

@2u

@r2
þ 1

r

@u

@r
þ 1

r2
@2u

@y2
þ @2u

@x2

{ !
ð7:12Þ

Observe that the left-hand side is zero, i.e., the fluid particles are not accelerating. Using rgx ¼ g sin y ¼
2gdh=dx; the above equation simplifies to

1

m
@

@x
ðpþ ghÞ ¼ 1

r

@

@r
r
@u

@r

� �
ð7:13Þ

where the first two terms in the parentheses on the right-hand side of Eq. (7.12) have been combined, i.e.,

@2u

@r2
þ 1

r

@u

@r
¼ 1

r

@

@r
r
@u

@r

� �
Now, we see that the left-hand side of Eq. (7.13) is at most a function of x and the right-hand side is a
function of r. This means that each side is at most a constant, say l, since x and r can be varied
independently of each other. So, we replace the partial derivatives with ordinary derivatives and write
Eq. (7.13) as

l ¼ 1

r

d

dr
r
du

dr

� �
or d r

du

dr

� �
¼ lr dr ð7:14Þ

This is integrated to provide

r
du

dr
¼ l

r2

2
þ A ð7:15Þ

Multiply by dr=r and integrate again. We have

uðrÞ ¼ l
r2

4
þ A ln rþ B ð7:16Þ

developed

flow

no radial

velocity

no

swirl

steady

flow

developed

flow

symmetric

flow
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Refer to Fig. 7.4: the two boundary conditions are u is finite at r ¼ 0 and u ¼ 0 at r ¼ r0. Thus, A ¼ 0
and B ¼ 2lr 2

0 =4: Since l is the left-hand side of Eq. (7.13), we can write Eq. (7.16) as

uðrÞ ¼ 1

4m
d

dx
ðpþ ghÞðr22 r 2

0 Þ ð7:17Þ

This is the parabolic velocity distribution of a developed laminar flow in a pipe, sometimes called a
Poiseuille flow. For a horizontal pipe, dh=dx ¼ 0 and

uðrÞ ¼ 1

4m
dp

dx
ðr22 r 2

0 Þ ð7:18Þ

7.3.3 Quantities of Interest

The first quantity of interest in the flow in a pipe is the average velocity V. If we express the constant
pressure gradient as dp=dx ¼ 2Dp=L, where Dp is the pressure drop (a positive number) over the length
of pipe L, there results

V ¼ 1

A

Z
uðrÞ2pr dr

¼ 2
2p
pr 2

0

Dp
4mL

Zr0

0
ðr22 r 2

0 Þr dr ¼ r 2
0 Dp
8mL

ð7:19Þ

The maximum velocity occurs at r ¼ 0 and is

umax ¼ r 2
0 Dp
4mL

¼ 2V ð7:20Þ

The pressure drop, rewriting Eq. (7.19), is

Dp ¼ 8mLV
r 2
0

ð7:21Þ

The shear stress at the wall can be found by considering a control volume of length L in the pipe. For a
horizontal pipe, the pressure force balances the shear force so that the control volume yields

pr 2
0 Dp ¼ 2pr0Lt0 \ t0 ¼ r0 Dp

2L
ð7:22Þ

Sometimes a dimensionless wall shear, called the friction factor f, is used. It is defined to be

f ¼ t0
1
8rV

2
ð7:23Þ

We also refer to a head loss hL defined as Dp=g. By combining the above equations, it can be expressed as

hL ¼ Dp
g

¼ f
L

D

V 2

2g
ð7:24Þ

This is sometimes referred to as the Darcy–Weisbach equation; it is valid for both a laminar and a
turbulent flow in a pipe. In terms of the Reynolds number, the friction factor for a laminar flow is
(combine Eqs. (7.21) and (7.24))

f ¼ 64

Re
ð7:25Þ

where Re ¼ VD=n. If this is substituted into Eq. (7.24), we see that the head loss is directly proportional
to the average velocity in a laminar flow, a fact that is also applied to a laminar flow in a conduit of any
cross section.
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EXAMPLE 7.1 The pressure drop over a 30-m length of 1-cm-diameter horizontal pipe transporting water
at 20–C is measured to be 2 kPa. A laminar flow is assumed. Determine (a) the maximum velocity in the pipe,

(b) the Reynolds number, (c) the wall shear stress, and (d ) the friction factor.

Solution: (a) The maximum velocity is found to be

umax ¼ r 2
0 Dp
4mL

¼ 0:0052 · 2000

4 · 1023 · 30
¼ 0:4167m=s

Note: The pressure must be in pascals in order for the units to check. It is wise to make sure the units check when
equations are used for the first time. The above units are checked as follows:

m2 ·N=m2

ðN·s=m2Þ ·m
¼ m=s

(b) The Reynolds number, a dimensionless quantity, is

Re ¼ VD

n
¼ ð0:4167=2Þ0:01

1026
¼ 4167

This exceeds 2000 but a laminar flow can exist at higher Reynolds numbers if a smooth pipe is used and care is

taken to provide a flow free of disturbances. But, note how low the velocity is in this relatively small pipe.
Laminar flows are rare in most engineering applications unless the fluid is extremely viscous or the dimensions
are quite small.

(c) The wall shear stress due to the viscous effects is found to be

t0 ¼ r0 Dp
2L

¼ 0:005 · 2000

2 · 30
¼ 0:1667Pa

If we had used the pressure in kPa, the stress would have had units of kPa.

(d) Finally, the friction factor, a dimensionless quantity, is

f ¼ t0
1
2rV

2
¼ 0:1667

0:5 · 1000 · ½0:4167=2	2 ¼ 0:0077

7.4 LAMINAR FLOW BETWEEN PARALLEL PLATES

Steady, developed laminar flow between parallel plates (one plate is moving with velocity U) will be
derived in Sec. 7.4.1 applying Newton’s second law to the element of Fig. 7.5 or using the appropriate
Navier–Stokes equation of Chap. 5 in Sec. 7.4.2. Either derivation can be used since we arrive at the
same equation using both approaches.

7.4.1 The Elemental Approach

The element of fluid shown in Fig. 7.5 can be considered a control volume into and from which the fluid
flows or it can be considered a mass of fluid at a particular moment. Considering it to be an instantaneous
mass of fluid that is not accelerating in this steady, developed flow, Newton’s second law takes the formX

Fx ¼ 0 or p dy 2 ðpþ dpÞdyþ tdx 2 ðtþ dtÞdxþ g dx dy sin y ¼ 0 ð7:26Þ

u(y)

x

h
b

dx
–dh

pdy

(p + dp)dy

U dxdy

dx

( + d )dx

y

Figure 7.5 Steady, developed flow between parallel plates.
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where t is the shear on the wall of the element and g is the specific weight of the fluid. We have assumed a
unit length into the paper (in the z-direction). To simplify, divide by dx dy and use dh ¼2sin y dx with h
measured in the vertical direction:

dt
dy

¼ d

dx
ðpþ ghÞ ð7:27Þ

For this laminar flow, the shear stress is related to the velocity gradient by t ¼ m du=dy so that Eq. (7.27)
becomes

m
d2u

dy2
¼ d

dx
ðpþ ghÞ ð7:28Þ

The left-hand side is a function of y only for this developed flow (we assume a wide channel with an
aspect ratio in excess of 8) and the right-hand side is a function of x only. So, we can integrate twice on y
to obtain

uðyÞ ¼ 1

2m
dðpþ ghÞ

dx
y2 þ Ayþ B ð7:29Þ

Using the boundary conditions uð0Þ ¼ 0 and uðbÞ ¼ U, the constants of integration are evaluated and a
parabolic profile results:

uðyÞ ¼ 1

2m
dðpþ ghÞ

dx
ðy2 2 byÞ þU

b
y ð7:30Þ

If the plates are horizontal and U ¼ 0, the velocity profile simplifies to

uðyÞ ¼ Dp
2mL

ðby 2 y2Þ ð7:31Þ

where we have let dðpþ ghÞ=dx ¼ 2Dp=L for the horizontal plates where Dp is the pressure drop, a
positive quantity.

If the flow is due only to the top plate moving, with zero pressure gradient, it is a Couette flow so
that uðyÞ ¼ Uy=b. If both plates are stationary and the flow is due only to a pressure gradient, it is a Poiseuille
flow.

The same result can be obtained by solving the appropriate Navier–Stokes equation; if that is not of
interest, go directly to Sec. 7.4.3.

7.4.2 Applying the Navier–Stokes Equations

The x-component differential momentum equation in rectangular coordinates (see Eq. (5.18)) is selected
for this steady, developed flow with streamlines parallel to the walls in a wide channel (at least an 8:1
aspect ratio):

r
@u

@t
þ u

@u

@x
þ v

@u

@y
þ w

@u

@z

� �
¼ 2

@p

@x
þ g sin yþ m

@2u

@x2
þ @2u

@y2
þ @2u

@z2

{ !
ð7:32Þ

where the channel makes an angle of y with the horizontal. Using dh ¼ 2dx sin y, the above partial
differential equation simplifies to

d2u

dy2
¼ 1

m
d

dx
ðpþ ghÞ ð7:33Þ

where the partial derivatives have been replaced by ordinary derivatives since u depends on y only and p
is a function of x only.

wide channeldevelopeddeveloped streamlines

parallel to wall

steady
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Because the left-hand side is a function of y and the right-hand side is a function of x, both of which
can be varied independent of each other, the two sides can be at most a constant, say l, so that

d2u

dy2
¼ l ð7:34Þ

Integrating twice provides

uðyÞ ¼ 1

2
ly2 þ Ayþ B ð7:35Þ

Refer to Fig. 7.5: the boundary conditions are u(0) ¼ 0 and u(b) ¼ U provided

A ¼ U

b
2 l

b

2
B ¼ 0 ð7:36Þ

The velocity profile is thus

uðyÞ ¼ dðpþ ghÞ=dx
2m

ðy22byÞ þU

b
y ð7:37Þ

where l has been used as the right-hand side of Eq. (7.33).
In a horizontal channel, we can write dðpþ ghÞ=dx ¼ 2Dp=L. If U ¼ 0, the velocity profile is

uðyÞ ¼ Dp
2mL

ðby 2 y2Þ ð7:38Þ

This is the Poiseuille flow. If the pressure gradient is zero and the motion of the top plate causes the flow,
it is a Couette flow with uðyÞ ¼ Uy=b.

7.4.3 Quantities of Interest

Let us consider several quantities of interest for the case of two fixed plates with U ¼ 0. The first quantity
of interest in the flow is the average velocity V. The average velocity is, assuming unit width of the plates,

V ¼ 1

b · 1

Z
uðyÞdy

¼ Dp
2bmL

Zb

0
ðby 2 y2Þdr ¼ Dp

2bmL
b
b2

2
2

b3

3

" #
¼ b2 Dp

12mL

ð7:39Þ

The maximum velocity occurs at y ¼ b=2 and is

umax ¼ Dp
2mL

b2

2
2

b2

4

{ !
¼ b2 Dp

8mL
¼ 2

3
V ð7:40Þ

The pressure drop, rewriting Eq. (7.39), is for this horizontal* channel,

Dp ¼ 12mLV
b2

ð7:41Þ
The shear stress at either wall can be found by considering a free body of length L in the channel.

For a horizontal channel, the pressure force balances the shear force:

ðb · 1ÞDp ¼ 2ðL · 1Þt0 \ t0 ¼ bDp
2L

ð7:42Þ
In terms of the friction factor f, defined by

f ¼ t0
1
8 rV

2
ð7:43Þ

* For a sloped channel simply replace p with (pþ gh).
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the head loss for the horizontal channel is

hL ¼ Dp
g

¼ f
L

2b

V 2

2g
ð7:44Þ

Several of the above equations can be combined to find

f ¼ 48

Re
ð7:45Þ

where Re ¼ bV=n. If this is substituted into Eq. (7.44), we see that the head loss is directly proportional
to the average velocity in a laminar flow.

The above equations were derived for a channel with aspect ratio . 8. For lower aspect-ratio
channels, the sides would require additional terms since the shear acting on the side walls would
influence the central part of the flow.

If interest is in a horizontal channel flow where the top plate is moving and there is no pressure
gradient, then the velocity profile would be the linear profile

uðyÞ ¼ U

b
y ð7:46Þ

EXAMPLE 7.2 The thin layer of rain at 20–C flows down a parking lot at a relatively constant depth of 4 mm.
The area is 40 m wide with a slope of 8 cm over 60 m of length. Estimate (a) the flow rate, (b) shear at the
surface, (c) the Reynolds number, and the velocity at the surface.

Solution: (a) The velocity profile can be assumed to be one-half of the profile shown in Fig. 7.5, assuming
a laminar flow. The average velocity would remain as given by Eq. (7.39), i.e.,

V ¼ b2gh
12mL

where Dp has been replaced with gh. The flow rate is

Q ¼ AV ¼ bw
b2gh
12mL

¼ 0:004 · 40
0:0042 · 9810 · 0:08

12 · 1023 · 60
¼ 2:80 · 1023 m3=s

(b) The shear stress acts only at the solid wall, so Eq. (7.42) would provide

t0 ¼ bgh
L

¼ 0:004 · 9810 · 0:08

60
¼ 0:0523 Pa

(c) The Reynolds number is

Re ¼ bV

n
¼ 0:004

1026
·
0:0042 · 9810 · 0:08

12 · 1023 · 60
¼ 697

The Reynolds number is below 1500, so the assumption of laminar flow is acceptable.

7.5 LAMINAR FLOW BETWEEN ROTATING CYLINDERS

Steady flow between concentric cylinders, as sketched in Fig. 7.6, is another relatively simple example of
a laminar flow that we can solve analytically. Such a flow exists below a Reynolds number* of 1700.
Above 1700, the flow might be a different laminar flow or a turbulent flow. This flow has application in
lubrication in which the outer shaft is stationary. We will again solve this problem using a fluid element
in Sec. 7.5.1 and using the appropriate Navier–Stokes equation in Sec. 7.5.2; either method may be used.

7.5.1 The Elemental Approach

The two rotating concentric cylinders are displayed in Fig. 7.6. We will assume vertical cylinders, so body
forces will act normal to the circular flow in the y-direction with the only nonzero velocity component vy.

* The Reynolds number is defined as Re ¼ o1r1d=n; where d ¼ r2 2 r1.
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The element of fluid selected, shown in Fig. 7.6, has no angular acceleration in this steady-flow condition.
Consequently, the summation of torques acting on the element is zero:

t · 2prL · r 2 ðtþ dtÞ · 2pðrþ drÞL · ðrþ drÞ ¼ 0 ð7:47Þ
where tðrÞ is the shear stress and L is the length of the cylinders, which must be large when compared
with the gap width d ¼ r22 r1. Equation (7.47) simplifies to

t2r drþ r2 dtþ 2r dt drþ dtðdrÞ2 ¼ 0 ð7:48Þ

2 rL

( + d )2 (r + dr)L

r

dr

v
yr

r2

r1

Fluid element from
between the cylinders

Fluid between
the cylinders

2

1

Figure 7.6 Flow between concentric cylinders.

The last two terms of Eq. (7.47) are higher-order terms that are negligible when compared with the first
two terms, so that the simplified equation is

r
dt
dr

þ 2t ¼ 0 ð7:49Þ
Now we must recognize that the t of Eq. (7.49) is* 2try of Table 5.1 with entry under ‘‘Stresses.’’ For this
simplified application, the shear stress is related to the velocity gradient by

try ¼ mr
@ðvy=rÞ
@r

ð7:50Þ
This allows Eq. (7.49) to be written, writing the partial derivatives as ordinary derivatives since vy
depends on r only, as

rm
d

dr
r
dðvy=rÞ
dr

þ 2mr
dðvy=rÞ
dr

¼ 0 ð7:51Þ
Multiply by dr, divide by mr, and integrate:

r
dðvy=rÞ
dr

þ 2
vy
r
¼ A ð7:52Þ

or, since rdðvy=rÞ=dr ¼ dvy=dr 2 vy=r, this can be written as

dvy
dr

þ vy
r
¼ A or

1

r

dðrvyÞ
dr

¼ A ð7:53Þ
Now integrate again and obtain

vyðrÞ ¼ A

2
rþ B

r
ð7:54Þ

* The minus sign results from the shear stress in Fig. 7.6 being on a negative face in the positive direction, the sign

convention for a stress component.
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Using the boundary conditions vy ¼ r1o1 at r ¼ r1 and vy ¼ r2o2 at r ¼ r2, the constants are found to be

A ¼ 2
o2r

2
2 2 o1r

2
1

r 2
2 2 r 2

1

B ¼ r 2
1 r

2
2 ðo1 2 o2Þ
r 2
2 2 r 2

1

ð7:55Þ

The same result can be obtained by solving the appropriate Navier–Stokes equation; if that is not of
interest, go directly to Sec. 7.5.3.

7.5.2 Applying the Navier–Stokes Equations

The y-component differential momentum equation of Table 5.1 is selected for this circular motion with
vr ¼ 0 and vz ¼ 0:

@vy
@t

þ vr
@vy
@r

þ vy
r

@vy
@y

þ vz
@vy
@z

þ vyvr
r

¼ 2
1

rr
@p

@y
þ gy

þ v
@2vy
@r2

þ 1

r

@vy
@r

þ 1

r2
@2vy
@y2

þ @2vy
@z2

2
vy
r2

þ 2

r2
@vr
@y

{ ! ð7:56Þ

Replace the ordinary derivatives with partial derivatives since vy depends on y only and the equation
becomes

0 ¼ d2vy
dr2

þ 1

r

dvy
dr

2
vy
r2

ð7:57Þ
which can be written in the form

d

dr

dvy
dr

¼ 2
dðvy=rÞ
dr

ð7:58Þ
Multiply by dr and integrate:

dvy
dr

¼ 2
vy
r
þ A or

1

r

dðrvyÞ
dr

¼ A ð7:59Þ
Integrate once again:

vyðrÞ ¼ A

2
rþ B

r
ð7:60Þ

The boundary conditions vyðr1Þ ¼ ro1 and vyðr2Þ ¼ ro2 allow

A ¼ 2
o2r

2
2 2 o1r

2
1

r 2
2 2 r 2

1

B ¼ r 2
1 r

2
2 ðo1 2 o2Þ
r 2
2 2 r 2

1

ð7:61Þ

7.5.3 Quantities of Interest

Many applications of rotating cylinders involve the outer cylinder being fixed, that is, o2 ¼ 0. The
velocity distribution, found in the preceding two sections, with A and B simplified, becomes

vyðrÞ ¼ o1r
2
1

r 2
2 2 r 2

1

r 2
2

r
2 r

{ !
ð7:62Þ

The shear stress t1 (2try from Table 5.1) acts on the inner cylinder. It is

t1 ¼ 2 mr
dðvy=rÞ
dr

� �
r¼r1

¼ 2mr 2
2 o1

r 2
2 2 r 2

1

ð7:63Þ

symmetricsteady

away from

end walls

symmetric
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The torque T needed to rotate the inner cylinder is

T ¼ t1Ar1 ¼ 2mr 2
2 o1

r 2
2 2 r 2

1

2pr1L · r1 ¼ 4pmr 2
1 r

2
2 Lo1

r 2
2 2 r 2

1

ð7:64Þ

The power _WW required to rotate the inner cylinder with rotational speed o1 is then

_WW ¼ To1 ¼ 4pmr 2
1 r

2
2 Lo

2
1

r 2
2 2 r 2

1

ð7:65Þ

This power, required because of the viscous effects in between the two cylinders, heats up the fluid in
bearings and often demands cooling to control the temperature.

For a small gap d between the cylinders, as occurs in lubrication problems, it is acceptable to
approximate the velocity distribution as a linear profile, a Couette flow. Using the variable y of Fig. 7.6
the velocity distribution is

vyðrÞ ¼ r1o1

d
y ð7:66Þ

where y is measured from the outer cylinder in towards the center.

EXAMPLE 7.3 The viscosity is to be determined by rotating a long 6-cm-diameter, 30-cm-long cylinder inside
a 6.2-cm-diameter cylinder. The torque is measured to be 0.22 N·m and the rotational speed is measured to be

3000 rpm. Use Eqs. (7.62) and (7.66) to estimate the viscosity. Assume that S ¼ 0.86.

Solution: The torque is found from Eq. (7.64) based on the velocity distribution of Eq. (7.62):

T ¼ 4pmr 2
1 r

2
2 Lo1

r 2
2 2 r 2

1

¼ 4pm · 0:032 · 0:0312 · 0:3 · ð3000 · 2p=60Þ
0:0312 2 0:032

¼ 0:22

\ m ¼ 0:0131 ðN·s=m2Þ
Using Eq. (7.66), the torque is found to be

T ¼ t1Ar1 ¼ m r1o1

d 2pr1L · r1

0:22 ¼ m
0:03ð3000 · 2p=60Þ

0:031 2 0:03
2p · 0:032 · 0:3 \ m ¼ 0:0138 ðN·s=m2Þ

The error assuming the linear profile is 5.3 percent.
The Reynolds number is, using n ¼ m=r,

Re ¼ o1r1d
n

¼ ð3000 · 2p=60Þ · 0:03 · 0:001

0:0131=ð1000 · 0:86Þ ¼ 619

The laminar flow assumption is acceptable since Re, 1700.

7.6 TURBULENT FLOW IN A PIPE

The Reynolds numbers for most flows of interest in conduits exceed those at which laminar flows cease
to exist. If a flow starts from rest, it rather quickly undergoes transition to a turbulent flow. The objective
of this section is to express the velocity distribution in a turbulent flow in a pipe and to determine
quantities associated with such a flow.

A turbulent flow is a flow in which all three velocity components are nonzero and exhibit random
behavior. In addition, there must be a correlation between the randomness of at least two of the
velocity components; if there is no correlation, it is simply a fluctuating flow. For example, a
turbulent boundary layer usually exists near the surface of an airfoil but the flow outside the
boundary layer is not referred to as ‘‘turbulent’’ even though there are fluctuations in the flow; it is
the free stream.
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Let us present one way of describing a turbulent flow. The three velocity components at some point
are written as

u ¼ uþ u0 v ¼ vþ v0 w ¼ wþ w0 ð7:67Þ
where u denotes a time-average part of the x-component velocity and u0 denotes the fluctuating random
part. The time average of u is

u ¼ 1

T

ZT
0

uðtÞdt ð7:68Þ

where T is sufficiently large when compared with the fluctuation time. For a developed turbulent pipe
flow, the three velocity components would appear as in Fig. 7.7. The only time-average component
would be u in the flow direction. Yet there must exist a correlation between at least two of the random
velocity fluctuations, e.g., u0v0 6¼ 0; such velocity correlations result in turbulent shear.

-component

x-component

u

u

u /

r-component

v w

T

Figure 7.7 The three velocity components in a turbulent flow at a point where the flow is in the x-direction so that
v ¼ w ¼ 0 and u 6¼ 0.

We can derive an equation that relates u0v0 and the time-average velocity component u in the flow
direction of a turbulent flow, but we cannot solve the equation even for the simplest case of steady* flow
in a pipe. So, we will present experimental data for the velocity profile and define some quantities of
interest for a turbulent flow in a pipe.

First, let us describe what we mean by a ‘‘smooth’’ wall. Sketched in Fig. 7.8 is a ‘‘smooth’’ wall and a
‘‘rough’’ wall. The viscous wall layer is a thin layer near the pipe wall in which the viscous effects are
significant. If this viscous layer covers the wall roughness elements, the wall is ‘‘smooth,’’ as in Fig. 7.8(a);
if the roughness elements protrude out from the viscous layer, the wall is ‘‘rough,’’ as in Fig. 7.8(b).

(a) a smooth wall (b) a rough wall

e e

viscous
wall layer viscous

wall layer
n

n

Figure 7.8 A smooth wall and a rough wall.

There are two methods commonly used to describe the turbulent velocity profile in a pipe. These are
presented in the following sections.

* Steady turbulent flow means the time-average quantities are independent of time.
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7.6.1 The Semi-Log Profile

The time-average velocity profile in a pipe is presented for a smooth pipe as a semi-log plot in Fig. 7.9
with empirical relationships near the wall and centerline that allow uð0Þ ¼ 0 and du=dy ¼ 0 at y ¼ r0. In
the wall region, the characteristic velocity is the shear velocity* ut ¼

ffiffiffiffiffiffi
t0=r

p
and the characteristic length is

the viscous length n=ut; the profiles are

u

ut
¼ uty

n
0#

uty

n
# 5 ðthe viscous wall layerÞ ð7:69Þ

u

ut
¼ 2:44 ln

uty

n
þ 4:9 305

uty

n
;
y

r0
50:15 ðthe turbulent regionÞ ð7:70Þ

The interval 55 uty=n5 30 is a buffer zone in which the experimental data do not fit either of the
curves. The outer edge of the wall region may be as low as uty=n ¼ 3000 for a low-Reynolds-number
flow.

The viscous wall layer plays no role for a rough pipe. The characteristic length is the average
roughness height e and the wall region is represented by

u

ut
¼ 2:44 ln

y

e
þ 8:5

y

r0
50:15 ðthe wall region; rough pipeÞ ð7:71Þ

The outer region is independent of the wall effects and thus is normalized for both smooth and rough
walls using the radius as the characteristic length and is given by

umax 2 u

ut
¼ 22:44 ln

y

r0
þ 0:8

y

r0
# 0:15 ðthe outer regionÞ ð7:72Þ

An additional empirical relationship hðy=r0Þ is needed to complete the profile for y. 0.15r0. Most
relationships that satisfy du=dy ¼ 0 at y ¼ r0 will do.

The wall region of Fig. 7.9(a) and the outer region of Fig. 7.9(b) overlap as displayed in Fig. 7.9(a).
For smooth and rough pipes respectively

umax

ut
¼ 2:44 ln

utr0
n

þ 5:7 ðsmooth pipesÞ ð7:73Þ
umax

ut
¼ 2:44 ln

r0
e
þ 9:3 ðrough pipesÞ ð7:74Þ

We do not often desire the velocity at a particular location, but if we do, before umax can be found ut
must be known. To find ut we must know t0. To find t0 we can use (see Eq. (7.6))

t0 ¼ r0 Dp
2L

or t0 ¼ 1

8
rV 2f ð7:75Þ

The friction factor f can be estimated using the power-law profile that follows if the pressure drop is not
known.

7.6.2 The Power-Law Profile

Another approach, although not quite as accurate, involves using the power-law profile given by

u

umax

¼ y

r0

� �1=n
ð7:76Þ

* The shear velocity is a fictitious velocity that allows experimental data to be presented in dimensionless form that is

valid for all turbulent pipe flows. The viscous length is also a fictitious length.
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Figure 7.9 Experimental data for a smooth wall in a developed pipe flow.

where n is between 5 and 10, usually an integer. This can be integrated to yield the average velocity

V ¼ 1

pr 2
0

Zr0

0
uðrÞ2pr dr ¼ 2n2

ðnþ 1Þð2nþ 1Þ umax ð7:77Þ

The value of n in Eq. (7.76) is related empirically to f by

n ¼ f 21=2 ð7:78Þ
For smooth pipes, n is related to the Reynolds number as shown in Table 7.1.

Table 7.1 Exponent n for Smooth Pipes

Re ¼ VD=v 4 · 103 105 106 .2 · 106

n 6 7 9 10

The power-law profile cannot be used to estimate the wall shear since it has an infinite slope at the
wall for all values of n. It also does not have a zero slope at the pipe centerline, so it is not valid near the
centerline. It is used to estimate the energy flux and momentum flux of pipe flows.

Finally, it should be noted that the kinetic-energy correction factor is 1.03 for n ¼ 7; hence, it is
often taken as unity for turbulent flows.
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EXAMPLE 7.4 Water at 20–C flows in a 4-cm-diameter pipe with a flow rate of 0.002 m3=s. Estimate (a) the
wall shear stress, (b) the maximum velocity, (c) the pressure drop over 20 m, (d) the viscous layer thickness, and

(e) determine if the wall is smooth or rough assuming the roughness elements to have a height of 0.0015 mm. Use
the power-law profile.

Solution: First, the average velocity and Reynolds number are

V ¼ Q

A
¼ 0:002

p0:022
¼ 1:464m=s; Re ¼ VD

n
¼ 1:464 · 0:04

1026
¼ 5:85 · 104

(a) To find the wall shear stress, first let us find the friction factor. From Table 7.1, the value n ¼ 6.8 is selected
and from Eq. (7.78)

f ¼ 1

n2
¼ 1

6:82
¼ 0:0216

The wall shear stress is, see Eq. (7.75),

t0 ¼ 1

2
rV 2f ¼ 1

2
· 1000 · 1:4642 · 0:0216 ¼ 23:2Pa

(b) The maximum velocity is found using Eq. (7.77):

umax ¼ ðnþ 1Þð2nþ 1Þ
2n2

V ¼ 7:8 · 14:6

2 · 6:82
1:464 ¼ 1:80m=s

(c) The pressure drop is

Dp ¼ 2Lt0
r0

¼ 2 · 20 · 23:2

0:02
¼ 46 400 Pa or 46:4 kPa

(d) The friction velocity is

ut ¼
ffiffiffi
t0
r

r
¼

ffiffiffiffiffiffi
23:2

1000

s
¼ 0:152m=s

and the viscous layer thickness is

dn ¼ 5n
ut

¼ 5 · 1026

0:152
¼ 3:29 · 1025 m or 0:0329mm

(e) The height of the roughness elements is given as 0.0015 mm (drawn tubing), which is less than the viscous

layer thickness. Hence, the wall is smooth. Note: If the height of the wall elements was 0.046 mm (wrought iron),
the wall would be rough.

7.6.3 Losses in Pipe Flow

The head loss is of considerable interest in pipe flows. It was presented in Eqs. (7.24) and (4.23) and is

hL ¼ f
L

D

V 2

2g
or hL ¼ Dp

g
þ z2 2 z1 ð7:79Þ

So, once the friction factor is known, the head loss and pressure drop can be determined. The friction
factor depends on a number of properties of the fluid and the pipe:

f ¼ fðr; m; V; D; eÞ ð7:80Þ
where the roughness height e accounts for the turbulence generated by the roughness elements. A
dimensional analysis allows Eq. (7.80) to be written as

f ¼ f
e

D
;
VDr
m

� �
ð7:81Þ

where e=D is termed the relative roughness.
Experimental data has been collected and presented in the form of the Moody diagram, displayed in

Fig. 7.10 for developed flow in a conventional pipe. The roughness heights are also included in the
diagram. There are several features of this diagram that should be emphasized. They follow:
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. A laminar flow exists up to Re> 2000 after which there is a critical zone in which the flow is
undergoing transition to a turbulent flow. This may involve transitory flow that alternates between
laminar and turbulent flows.

. The friction factor in the transition zone, which begins at about Re ¼ 4000 and decreases with
increasing Reynolds numbers, becomes constant at the end of the zone as signified by the dashed
line in Fig. 7.10.

. The friction factor in the completely turbulent zone is constant and depends on the relative
roughness e=D. Viscous effects, and thus the Reynolds number, do not affect the friction factor.

. The height e of the roughness elements in the Moody diagram is for new pipes. Pipes become
fouled with age changing both e and the diameter D resulting in an increased friction factor.
Designs of piping systems should include such aging effects.

An alternate to using the Moody diagram is to use formulas developed by Swamee and Jain for pipe
flow; the particular formula selected depends on the information given. The formulas to determine
quantities in long reaches of developed pipe flow (these formulas are not used in short lengths or in pipes
with numerous fittings and geometry changes) are as follows:

hL ¼ 1:07
Q2L

gD5
ln

e

3:7D
þ 4:62

nD
Q

� �0:9" #( )22
10265

e

D
51022

30005Re53 · 108
ð7:82Þ

Q ¼ 20:965

ffiffiffiffiffiffiffiffiffi
gD5hL

L

s
ln

e

3:7D
þ 3:17n2L

gD3hL

{ !0:5" #
20005Re ð7:83Þ
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Figure 7.10 The Moody diagram.*

* Note: If e=D ¼ 0.01 and Re ¼ 104, the dot locates f ¼ 0.043.

Source: From L.F. Moody, Trans. ASME, v. 66, 1944.
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D ¼ 0:66 e1:25
LQ2

ghL

{ !4:75

þnQ9:4 L

ghL

� �5:2" #0:04
10265

e

D
51022

50005Re53 · 108
ð7:84Þ

Either SI or English units can be used in the above equations. Note also that the Moody diagram and the
above equations are accurate to within about 5 percent, sufficiently accurate for most engineering
applications.

EXAMPLE 7.5 A pressure drop of 500 kPa is measured over 200 m of a horizontal length of 8-cm-diameter cast

iron pipe transporting water at 20–C. Estimate the flow rate using (a) the Moody diagram and (b) an alternate
equation.

Solution: (a) The relative roughness (find e in Fig. 7.10) is

e

D
¼ 0:26

80
¼ 0:00325

Assuming a completely turbulent flow, the friction factor from Fig. 7.10 is f ¼ 0.026. The head loss is

hL ¼ Dp
g

¼ 500 000

9800
¼ 51m

The average velocity, from Eq. (7.79), is

V ¼
ffiffiffiffiffiffiffiffiffi
2gDhL
fL

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · 9:8 · 0:08 · 51

0:026 · 200

s
¼ 3:92m=s

We must check the Reynolds number to make sure the flow is completely turbulent, and it is

Re ¼ VD

n
¼ 3:92 · 0:08

1026
¼ 3:14 · 105

This is just acceptable and requires no iteration to improve the friction factor. So, the flow rate is

Q ¼ AV ¼ p · 0:042 · 3:92 ¼ 0:0197m3=s

(b) Use the alternate equation that relates Q to the other quantities, i.e., Eq. (7.83). We use the head loss from
part (a):

Q ¼ 20:965

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:8 · 0:085 · 51

200

s
ln

0:26

3:7 · 80
þ 3:17 · 10212 · 200

9:8 · 0:083 · 51

{ !0:5" #
¼ 0:0193m3=s

This equation was easier to use and gave an acceptable result.

7.6.4 Losses in Noncircular Conduits

To determine the head loss in a relatively ‘‘open’’ noncircular conduit, we use the hydraulic radius R,
defined as

R ¼ A

P
ð7:85Þ

where A is the cross-sectional area and P is the wetted perimeter, the perimeter of the conduit that is in
contact with the fluid. The Reynolds number, relative roughness, and head loss are respectively

Re ¼ 4VR

n
relative

roughness
¼ e

4R
hL ¼ f

L

4R

V 2

2g
ð7:86Þ

A rectangular area should have an aspect ratio , 4. This method should not be used with shapes like an
annulus.

7.6.5 Minor Losses

The preceding losses were for the developed flow in long conduits. Most piping systems, however,
include sudden changes such as elbows, valves, inlets, etc., that add additional losses to the system.
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Table 7.2 Minor Loss Coefficients K for Selected Devices*

Type of fitting Screwed Flanged

Diameter 2.5 cm 5 cm 10 cm 5 cm 10 cm 20 cm

Globe value (fully open) 8.2 6.9 5.7 8.5 6.0 5.8

(half open) 20 17 14 21 15 14

(one-quarter open) 57 48 40 60 42 41

Angle valve (fully open) 4.7 2.0 1.0 2.4 2.0 2.0

Swing check valve (fully open) 2.9 2.1 2.0 2.0 2.0 2.0

Gate valve (fully open) 0.24 0.16 0.11 0.35 0.16 0.07

Return bend 1.5 0.95 0.64 0.35 0.30 0.25

Tee (branch) 1.8 1.4 1.1 0.80 0.64 0.58

Tee (line) 0.9 0.9 0.9 0.19 0.14 0.10

Standard elbow 1.5 0.95 0.64 0.39 0.30 0.26

Long sweep elbow 0.72 0.41 0.23 0.30 0.19 0.15

45– elbow 0.32 0.30 0.29

Square-edged entrance 0.5

Reentrant entrance 0.8

Well-rounded entrance 0.03

Pipe exit 1.0

Area ratio

Sudden contraction† 2:1 0.25

5:1 0.41

10:1 0.46

Area ratio A=A0

Orifice plate 1.5:1 0.85

2:1 3.4

4:1 29

$6:1 2.78
A

A0

2 0:6

� �2
Sudden enlargement{ 1 2

A1

A2

� �2
90– miter bend (without vanes) 1.1

(with vanes) 0.2

General contraction (30– included anlge) 0.02

(70– included angle) 0.07

* Values for other geometries can be found in Technical Paper 410. The Crane Company, 1957.
† Based on exit velocity V2.
{ Based on entrance velocity V1.
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These losses are called minor losses that may, in fact, add up to exceed the head loss found in the
preceding sections. These minor losses are expressed in terms of a loss coefficient K, defined for most
devices by

hL ¼ K
V 2

2g
ð7:87Þ

A number of loss coefficients are included in Table 7.2. Note that relatively low loss coefficients are
associated with gradual contractions, whereas relatively large coefficients with enlargements. This is due
to the separated flows in enlargements. Separated and secondary flows also occur in elbows resulting in
relatively large loss coefficients. Vanes that eliminate such separated or secondary flows can substantially
reduce the losses, as noted in the table.

We often equate the losses in a device to an equivalent length of pipe, i.e.,

hL ¼ K
V 2

2g
¼ f

Le

D

V 2

2g
ð7:88Þ

This provides the relationship

Le ¼ K
D

f
ð7:89Þ

A last comment relating to minor losses is in order: if the pipe is quite long, .1000 diameters, the
minor losses are usually neglected. For lengths as short as 100 diameters, the minor losses usually exceed
the frictional losses. For intermediate lengths, the minor losses should be included.

EXAMPLE 7.6 A 1.5-cm-diameter, 20-m-long plastic pipe transports water from a pressurized 400-kPa tank
out a free open end located 3 m above the water surface in the tank. There are three elbows in the water line and

a square-edged inlet from the tank. Estimate the flow rate.

Solution: The energy equation is applied between the tank and the faucet exit:

0 ¼ V 2
2 2 V 2

1

2g
þ p2 2 p1

g
þ z2 2 z1 þ hL

where

hL ¼ f
L

D
þ 3Kelbow þ Kentrance

� �
V 2

2g

Assume that the pipe has e=D ¼ 0 and that Re> 2 · 105 so that the Moody diagram yields f ¼ 0.016. The
energy equation yields

0 ¼ V 2
2

2 · 9:8
2

400 000

9800
þ 3þ 0:016 ·

20

0:015
þ 3 · 1:6þ 0:5

� �
V 2

2 · 9:8
\ V ¼ 5:18m=s

The Reynolds number is then Re ¼ 5:18 · 0:15=1026 ¼ 7:8 · 104. Try f ¼ 0.018. Then

0 ¼ V 2
2

2 · 9:8
2

400 000

9800
þ 3þ 0:018 ·

20

0:015
þ 3 · 1:6þ 0:5

� �
V 2

2 · 9:8
\ V ¼ 4:95m=s

Thus Re ¼ 4:95 · 0:15=1026 ¼ 7:4 · 104. This is close enough so use V ¼ 5.0 m=s. The flow rate is

Q ¼ AV ¼ p · 0:00752 · 5 ¼ 8:8 · 1024 m3=s

7.6.6 Hydraulic and Energy Grade Lines

The energy equation is most often written so that each term has dimensions of length, i.e.,

2
_WWS

_mmg
¼ V 2

2 2 V 2
1

2g
þ p2 2 p1

g
þ z2 2 z1 þ hL ð7:90Þ

In piping systems, it is often conventional to refer to the hydraulic grade line (HGL) and the energy grade
line (EGL). The HGL, the dashed line in Fig. 7.11, is the locus of points located a distance p=g above the
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centerline of a pipe. The EGL, the solid line in Fig. 7.11, is the locus of points located a distance V2=2
above the HGL. The following observations relate to the HGL and the EGL.

. The EGL approaches the HGL as the velocity goes to zero. They are identical on the surface of a
reservoir.

. Both the EGL and the HGL slope downward in the direction of the flow due to the losses in the
pipe. The greater the losses, the greater the slope.

. A sudden drop occurs in the EGL and the HGL equal to the loss due to a sudden geometry
change, such as an entrance, an enlargement, or a valve.

. A jump occurs in the EGL and the HGL due to a pump and a drop due to a turbine.

. If the HGL is below the pipe, there is a vacuum in the pipe, a condition that is most often avoided
in the design of piping systems because of possible contamination.

Turbine

Reservoir

Reservoir

HT = WT/mg

(hL)entrance

(hL)exit

(hL)valve

(hL)expansion

p/

V

V2/2g

z

Datum

. .

EGL

HGL

Figure 7.11 The hydraulic grade line (HGL) and the energy grade line (EGL) for a piping system.

7.7 OPEN CHANNEL FLOW

Consider the developed turbulent flow in an open channel, sketched in Fig. 7.12. The water flows at a
depth of y and the channel is on a slope S, which is assumed to be small so that sin y ¼ S. The cross
section could be trapezoidal, as shown, or it could be circular, rectangular, or triangular. Let us apply
the energy equation between the two sections:

0 ¼ V 2
2 2 V 2

1

2g
þ p2 2 p1

g
þ z2 2 z1 þ hL ð7:91Þ

The head loss is the elevation change, i.e.,

hL ¼ z1 2 z2

¼ L sin y ¼ LS
ð7:92Þ

where L is the distance between the two selected sections. Using the head loss expressed by Eq. (7.86),
we have

hL ¼ f
L

4R

V 2

2g
¼ LS or V 2 ¼ 8g

f
RS ð7:93Þ
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y

1

2Slope S

y
m

1

b

Figure 7.12 Flow in an open channel.

The Reynolds number of the flow in an open channel is invariably large and the channel is rough so that
the friction factor is a constant independent of the velocity (see the Moody diagram of Fig. 7.10) for a
particular channel. Consequently, the velocity is related to the slope and hydraulic radius by

V ¼ C
ffiffiffiffi
RS

p ð7:94Þ
where C is a dimensional constant called the Chezy coefficient; it has been related experimentally to the
channel roughness and the hydraulic radius by

C ¼ 1

n
R1=6 ð7:95Þ

The dimensionless constant n is a measure of the wall roughness and is called theManning n. Values for a
variety of wall materials are listed in Table 7.3.

The flow rate in an open channel follows from Q ¼ AV and is

Q ¼ 1

n
AR2=3S1=2 ð7:96Þ

This is referred to as the Chezy–Manning equation. It can be applied using English units by replacing the
‘‘1’’ in the numerator with ‘‘1.49.’’

Table 7.3 Values* of the Manning n

Wall material Manning n

Brick 0.016

Cast or wrought iron 0.015

Concrete pipe 0.015

Corrugated metal 0.025

Earth 0.022

Earth with stones and weeds 2.035

Finished concrete 0.012

Mountain streams 0.05

Planed wood 0.012

Sewer pipe 0.013

Riveted steel 0.017

Rubble 0.03

Unfinished concrete 0.014

Rough wood 0.013

* The values in this table result in flow rates too large for R. 3 m. The Manning n should be increased by 10 to 15

percent for the larger channels.
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If the channel surface is smooth, e.g., glass or plastic, Eq. (7.96) should not be used since it assumes a
rough surface. For channels with smooth surfaces, the Darcy–Weisbach equation, Eq. (7.86), along with
the Moody diagram should be used.

EXAMPLE 7.7 Water at 20–C is flowing in a 2-m-wide rectangular, brick channel at a depth of 120 cm. The
slope is 0.0012. Estimate the flow rate using (a) the Chezy–Manning equation and (b) the Darcy–Weisbach

equation.

Solution: First, calculate the hydraulic radius

R ¼ A

P
¼ by

bþ 2y
¼ 2 · 1:2

2þ 2 · 1:2
¼ 0:545m

(a) The Chezy–Manning equation provides

Q ¼ 1

n
AR2=3S1=2

¼ 1

0:016
· ð2 · 1:2Þ · 0:5452

=3 · 0:00121
=2 ¼ 3:47m3=s

(b) To use the Darcy–Weisbach equation, we must find the friction factor f. The Moody diagram requires a
value for e. Use a relatively large value such as that for rougher concrete, i.e., e ¼ 1 mm. Since the hydraulic
radius R ¼ D/4 for a circle, we use

e

D
¼ e

4R
¼ 0:001

4 · 0:545
¼ 0:00046

The Moody diagram yields f> 0:0165: The Darcy–Weisbach equation takes the form of Eq. (7.93):

V ¼
ffiffiffiffiffiffiffiffi
8g

f
RS

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 · 9:8

0:0165
· 0:545 · 0:0012

s
¼ 1:76m=s

The flow rate is then

Q ¼ AV ¼ 2 · 1:2 · 1:76 ¼ 4:23m3=s

Check the Reynolds number

Re ¼ 4VR

n
¼ 4 · 1:76 · 0:545

1026
¼ 3:8 · 106

This is sufficiently large so that f is acceptable. Note that the Q of part (a) is about 18 percent lower than that of
part (b), and that of part (b) is considered more accurate.

Solved Problems

7.1 A 4-mm-diameter horizontal, 40-m-long pipe is attached to a reservoir containing 20–C water.
The surface of the water in the reservoir is 4 m above the pipe outlet. Assume a laminar flow and
estimate the average velocity in the pipe. Also, calculate the length of the entrance region.

Using Eq. (7.21), the average velocity in the pipe is

V ¼ r 2
0 Dp
8mL

¼ 0:0022 · ð9800 · 4Þ
8 · 1023 · 40

¼ 0:49m=s

where the pressure at the pipe inlet is p ¼ gh ¼ 9800 · 4N=m2, neglecting the velocity head V 2=2g at the

entrance. Check the Reynolds number; it is

Re ¼ Vd

n
¼ 0:49 · 0:004

1026
¼ 1960

This is acceptable for a laminar flow to exist. We have assumed the velocity head at the entrance to be
small; it is
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V 2

2g
¼ 0:492

2 · 9:81
¼ 0:102m

This is quite small compared with the pressure head of 4 m. So, the calculations are acceptable
provided the entrance region is not very long.

We have neglected the effects of the entrance region’s non-parabolic velocity profile (see Fig. 7.1). The
entrance region’s length is

LE ¼ 0:065 ·Re ·D ¼ 0:065 · 1960 · 0:004 ¼ 0:51m

so the effect of the entrance region is negligible.

7.2 A developed, steady laminar flow exists between horizontal concentric pipes. The flow is in the
direction of the axis of the pipes. Derive the differential equations and solve for the velocity
profile.

The element selected, upon which the forces would be placed, would be a hollow cylindrical shell (a

sketch may be helpful for visualization purposes), that would appear as a ring from an end view, with
length dx. The ring would have an inner radius r and an outer radius rþ dr. The net pressure force
acting on the two ends would be

p2p rþ dr

2

� �
dr 2 ðpþ dpÞ2p rþ dr

2

� �
dr ¼ 22pr dr dp

The shear stress forces on the inner and the outer cylinder sum as follows (the shear stress is assumed to
oppose the flow):

2t2pr dxþ ðtþ dtÞ2pðrþ drÞdx ¼ 2pt dr dxþ 2pr dt dx

For a steady flow, the pressure and shear stress forces must balance. This provides

22pr dr dp ¼ 2pt dr dxþ 2pr dt dx \
dp

dx
¼ 2

t
r
2

dt
dr

Substitute the constitutive equation t ¼ 2m du=dr (see footnote associated with Eq. (7.7) assuming the

element is near the outer pipe) and obtain

dp

dx
¼ m

1

r

du

dr
þ d2u

dr2

{ !
¼ m

r

d

dr
r
du

dr

� �
This can now be integrated to yield

r2

2m
dp

dx
¼ r

du

dr
þ A or

r

2m
dp

dx
¼ du

dr
þ A

r

Integrate once more to find the velocity profile to be

uðrÞ ¼ r2

4m
dp

dx
2 A ln rþ B

The constants A and B can be evaluated by using uðr1Þ ¼ 0 and uðr2Þ ¼ 0.

7.3 What pressure gradient would provide a zero shear stress on the stationary lower plate in Fig. 7.5
assuming horizontal plates with the top plate moving to the right with velocity U.

The shear stress is t ¼ 2m du=dy so that the boundary conditions are du=dy (0) ¼ 0, u(0) ¼ 0, and
u(b) ¼ U. These are applied to Eq. (7.29) to provide the following:

du

dy
ð0Þ ¼ 1

m
dp

dx
0þ A ¼ 0 \ A ¼ 0

uð0Þ ¼ 1

2m
dp

dx
0þ B ¼ 0 \ B ¼ 0 and uðyÞ ¼ 1

2m
dp

dx
y2
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Now, u(b) ¼ U, resulting in

u ¼ 1

2m
dp

dx
b2 or

dp

dx
¼ 2mu

b2

This is a positive pressure gradient, so the pressure increases in the direction of U.

7.4 Show that the velocity distribution given by Eq. (7.62) approximates a straight line when the gap
between the two cylinders is small relative to the radii of the cylinders.

Since the gap is small relative to the two radii, we can letR> r1 > r2. Also, let d ¼ r2 2 r1 and y ¼ r2 2 r

(refer to Fig. 7.6) in the velocity distribution of Eq. (7.62). The velocity distribution takes the form

vyðrÞ ¼ o1r
2
1

r 2
2 2 r 2

1

r 2
2

r
2 r

{ !
¼ o1r

2
1

ðr2 2 r1Þðr2 þ r1Þ
ðr2 2 rÞðr2 þ rÞ

r

>
o1R

2

2Rd
·
yð2R 2 yÞ
R 2 y

>
o1R

d
y

where we have used the approximation

2R 2 y

R 2 y
> 2

since y is small compared with R and 2R. The above velocity distribution is a straight-line distribution

with slope o1R=d.

7.5 Water at 15–C is transported in a 6-cm-diameter wrought iron pipe at a flow rate of 0.004 m3=s.
Estimate the pressure drop over 300 m of horizontal pipe using (a) the Moody diagram and (b) an
alternate equation.

The average velocity and Reynolds number are

V ¼ Q

A
¼ 0:004

p · 0:032
¼ 1:415m=s Re ¼ VD

n
¼ 1:415 · 0:06

1:14 · 1026
¼ 7:44 · 104

(a) The value of e is found on the Moody diagram so that

e

D
¼ 0:046

60
¼ 0:00077

The friction factor is found from the Moody diagram to be

f ¼ 0:0225

The pressure drop is then

Dp ¼ ghL ¼ rf
L

D

V 2

2
¼ 1000 · 0:0225

300

0:06

1:4152

2
¼ 113 000Pa or 113 kPa

(b) Using Eq. (7.82), the pressure drop is

Dp ¼ ghL ¼ 1:07 · 1000
0:0042 · 300

0:065
ln

0:00077

3:7
þ 4:62

1:14 · 1026 · 0:06

0:004

{ !0:9" #( )22

¼ 111 000 Pa or 111 kPa

These two results are within 2 percent and are essentially the same.

7.6 A pressure drop of 200 kPa is measured over a 400-m length of 8-cm-diameter horizontal cast
iron pipe that transports 20–C water. Determine the flow rate using (a) the Moody diagram and
(b) an alternate equation.

The relative roughness is

e

D
¼ 0:26

80
¼ 0:00325
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and the head loss is

hL ¼ Dp
g

¼ 200 000

9800
¼ 20:41m

(a) Assuming a completely turbulent flow, Moody’s diagram yields

f ¼ 0:026

The average velocity in the pipe is found, using Eq. (7.79), to be

V ¼
ffiffiffiffiffiffiffiffiffi
2hLDg

fL

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · 20:41 · 0:08 · 9:81

0:026 · 400

s
¼ 1:76m=s

resulting in a Reynolds number of

Re ¼ VD

n
¼ 1:76 · 0:08

1026
¼ 1:4 · 105

At this Reynolds number and e=D ¼ 0.0325, Moody’s diagram provides f > 0.026, so the friction
factor does not have to be adjusted. The flow rate is then expected to be

Q ¼ AV ¼ p · 0:042 · 1:76 ¼ 0:0088m3=s

(b) Since the head loss was calculated using the pressure drop, Eq. (7.83) can be used to find the flow rate:

Q ¼ 20:965

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:81 · 0:085 · 20:41

400

s
ln

0:00325

3:7
þ 3:17 · 10212 · 400

9:81 · 0:083 · 20:41

{ !0:5" #
¼ 0:00855m3=s

These two results are within 3 percent and either is acceptable.

7.7 A farmer needs to provide a volume of 500 L every minute of 20–C water from a lake through a
wrought iron pipe a distance of 800 m to a field 4 m below the surface of the lake. Determine the
diameter of pipe that should be selected. Use (a) theMoody diagram and (b) an alternate equation.

(a) The average velocity is related to the unknown diameter D by

V ¼ Q

A
¼ 0:5=60

pD2=4
¼ 0:0106

D2

The head loss is 4 m (the energy equation from the lake surface to the pipe exit provides this. We
assume that V 2=2g is negligible at the pipe exit), so

hL ¼ f
L

D

V 2

2g
4 ¼ f

800

D
·
0:01062=D4

2g
\ D5 ¼ 0:00114f

The Reynolds number and relative roughness are

Re ¼ VD

n
¼ 0:0106D

D2 · 1026
¼ 10 600

D

e

D
¼ 0:046

D

This requires a trial-and-error solution. We can select a value for f and check to see if the equations and
the Moody diagram agree with that selection. Select f ¼ 0.02. Then, the above equations yield

D ¼ ð0:00114 · 0:02Þ0:2 ¼ 0:118m; Re ¼ 10 600

0:118
¼ 90 000;

e

D
¼ 0:046

118
¼ 0:00039

The above match very well on the Moody diagram. Usually, another selection for f and a recalculation
of the diameter, Reynolds number, and relative roughness are required.

(b) Since the diameter is unknown, Eq. (7.84) is used which provides

D ¼ 0:66 0:0000461:25
800ð0:5=60Þ2
9:81 · 4

{ !4:75

þ1026 0:5

60

� �9:4 800

9:81 · 4

� �5:2" #0:04

¼ 0:12m

The two results are within 2 percent, so are essentially the same.

CHAP. 7] INTERNAL FLOWS 135



7.8 A smooth rectangular duct that measures 10 · 20 cm transports 0.4 m3=s of air at standard
conditions horizontal distance of 200 m. Estimate the pressure drop in the duct.

The hydraulic radius is

R ¼ A

P
¼ 0:1 · 0:2

2ð0:1þ 0:2Þ ¼ 0:0333m

The average velocity and Reynolds number in the duct are

V ¼ Q

A
¼ 0:4

0:1 · 0:2
¼ 20m=s Re ¼ 4VR

n
¼ 4 · 20 · 0:0333

1:5 · 1025
¼ 1:8 · 105

The Moody diagram provides f ¼ 0.016. The pressure drop is then

Dp ¼ ghL ¼ gf
L

4R

V 2

2g
¼ 1:23 · 9:81 · 0:016

200

4 · 0:0333
·

202

2 · 9:81
¼ 5900 Pa

7.9 Sketch the hydraulic grade line for the piping system of Example 7.6 if the three elbows are spaced
equally between the pressurized tank and the exit of the pipe.

The hydraulic grade line is a distance p=g above the surface of the water in the tank at the beginning of
the pipe. The hydraulic grade line is sketched in Fig. 7.13.

V2

Water

(hL)entrance

p/

2(hL)elbow + (hL)section

HGL

(hL)elbow + (hL)section

Figure 7.13

7.10 An 80-cm-diameter sewer pipe (finished concrete) is selected to transport water at a flow rate of
0.24 m3=s at a slope of 0.0012. Estimate the depth at which the water will flow.

Assume the water flows with the pipe half full. The flow rate would be

Q ¼ 1

n
AR2=3S1=2 ¼ 1

0:013

p · 0:42

2

0:08p
0:4p

� �2=3
· 0:00121=2 ¼ 0:229m3=s

Consequently, the pipe is over half full. A sketch of the area is shown in Fig. 7.14.

For this pipe we have

0:24 ¼ 1

0:013
AR2=3 0:00121

=2 \ AR2=3 ¼ 0:09
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with

A ¼ 0:8p
180 2 a
180

þ ðy 2 0:4Þ0:4 sin a R ¼ A

0:8p
180 2 a
180

0.4 m

y

Figure 7.14

Trial and error is needed for a solution.

Try y ¼ 0:46m : Then A ¼ 0:299 R ¼ 0:217 AR2=3 ¼ 0:108

Try y ¼ 0:44m : Then A ¼ 0:283 R ¼ 0:211 AR2=3 ¼ 0:100

Hence, y ¼ 0.42 m is an acceptable result.

Supplementary Problems

Laminar or Turbulent Flow

7.11 Calculate the maximum average velocity in a 2-cm-diameter pipe for a laminar flow using a critical Reynolds

number of 2000 if the fluid is (a) water at 20–C, (b) water at 80–C, (c) SAE-30 oil at 80–C, and (d)
atmospheric air at 20–C.

7.12 The Red Cedar River flows placidly through MSU’s campus at a depth of 80 cm. A leaf is observed to travel
about 1 m in 4 s. Decide if the flow is laminar or turbulent. Make any assumptions needed.

7.13 A drinking fountain has an opening of 4 mm in diameter. The water rises a distance of about 20 cm in the
air. Is the flow laminar or turbulent as it leaves the opening? Make any assumptions needed.

7.14 SAE-30 oil at 80–C occupies the space between two cylinders, 2 and 2.2 cm in diameter. The outer cylinder is
stationary and the inner cylinder rotates at 100 rpm. Is the oil in a laminar or turbulent state if

Recrit ¼ 1700? Use Re ¼ or1d=n, where d ¼ r2 2 r1.

Entrance Flow

7.15 Water is flowing in a 2-cm-diameter pipe with a flow rate of 0.0002 m3=s. For an entrance that provides a
uniform velocity profile, estimate inviscid core length and the entrance length if the water temperature is (a)
20, (b) 40, (c) 60, and (d) 80–C.
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7.16 A parabolic velocity profile is desired at the end of a 10-m-long, 8-mm-diameter tube attached to a tank filled

with 20–C water. An experiment is run during which 60 L is collected in 90 min. Is the laminar flow
assumption reasonable? If so, would the tube be sufficiently long?

7.17 A parabolic profile is desired in 20–C air as it passes between two parallel plates that are 80 mm apart in a
university laboratory. If the Reynolds number Vh=n ¼ 1500, how long would the channel need to be to
observe a fully developed flow, i.e., a parabolic velocity profile? What would be the average velocity?

7.18 The flow of 20–C water in a 2-cm-diameter pipe oscillates between being laminar and turbulent as it flows
through the pipe from a reservoir. Estimate the inviscid core and the entrance lengths (a) if the flow is laminar

and the average velocity is 0.15 m=s, and (b) if the flow is turbulent and the average velocity is 0.6 m=s (use
the results of Eq. (7.4)).

7.19 Argue that the pressure gradient Dp=Dx in the entrance region is greater than the pressure gradient in the
developed flow region of a pipe. Use a fluid increment of length Dx and cross-sectional area pr 2

0 in the
entrance region and in the developed-flow region.

7.20 Explain why the pressure distribution in the entrance region of a pipe for the relatively low-Reynolds-number
turbulent flow (Re < 10 000) is below the extended straight-line distribution of developed flow. Refer to

Fig. 7.3.

Laminar Flow in a Pipe

7.21 Show that the right-hand side of Eq. (7.19) does indeed follow from the integration.

7.22 Show that f ¼ 64/Re for a laminar flow in a pipe.

7.23 Show that the head loss in a laminar flow in a pipe is directly proportional to the average velocity in the pipe.

7.24 The pressure drop over a 15-m length of 8-mm-diameter horizontal pipe transporting water at 40–C is
measured to be 1200 Pa. A laminar flow is assumed. Determine (a) the maximum velocity in the pipe, (b) the

Reynolds number, (c) the wall shear stress, and (d) the friction factor.

7.25 A liquid flows through a 2-cm-diameter pipe at a rate of 20 L every minute. Assume a laminar flow and

estimate the pressure drop over 20 m of length in the horizontal pipe for (a) water at 40–C, (b) SAE-10 oil at
20–C, and (c) glycerin at 40–C. Decide if a laminar flow is a reasonable assumption.

7.26 Water at 20–C flows through a 12-mm-diameter pipe on a downward slope so that Re ¼ 2000. What angle
would result in a zero pressure drop?

7.27 Water at 40–C flows in a vertical 8-mm-diameter pipe at 2 L/min. Assuming a laminar flow, calculate the
pressure drop over a length of 20 m if the flow is (a) upwards and (b) downwards.

7.28 Atmospheric air at 25–C flows in a 2-cm-diameter horizontal pipe at Re ¼ 1600. Calculate the wall shear
stress, the friction factor, the head loss, and the pressure drop over 20 m of pipe.

7.29 A liquid flows in a 4-cm-diameter pipe. At what radius does the velocity equal the average velocity assuming
a laminar flow? At what radius is the shear stress equal to one-half the wall shear stress?

7.30 Find an expression for the angle y that a pipeline would require such that the pressure is constant assuming a
laminar flow. Then, find the angle of a 10-mm-diameter pipe transporting 20–C water at Re ¼ 2000 so that a

constant pressure occurs.

7.31 Solve for the constantsA andB in SolvedProblem7.2 using cylinder radii of r1 ¼ 4 cmand r2 ¼ 5 cmassuming

that 20–Cwater has a pressure drop of 40 Pa over a 10-m length. Also find the flow rate. Assume laminar flow.

7.32 SAE-10 oil at 20–C flows between two concentric cylinders parallel to the axes of the horizontal cylinders

having radii of 2 and 4 cm. The pressure drop is 60 Pa over a length of 20 m. Assume laminar flow. What is
the shear stress on the inner cylinder?
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Laminar Flow Between Parallel Plates

7.33 What pressure gradient would provide a zero shear stress on the stationary lower plate in Fig. 7.5 for
horizontal plates with the top plate moving to the right with velocity U. Assume a laminar flow.

7.34 What pressure gradient is needed so that the flow rate is zero for laminar flow between horizontal parallel
plates if the lower plate is stationary and the top plate moves with velocity U. See Fig. 7.5.

7.35 Fluid flows in a horizontal channel that measures 1· 40 cm. If Re ¼ 1500, calculate the flow rate and the
pressure drop over a length of 10 m if the fluid is (a) water at 20–C, (b) air at 25–C, and (c) SAE-10 oil at

40–C. Assume laminar flow.

7.36 Water at 20–C flows down an 80-m-wide parking lot at a constant depth of 5 mm. The slope of the parking

lot is 0.0002. Estimate the flow rate and the maximum shear stress. Is a laminar flow assumption reasonable?

7.37 Water at 20–C flows between two parallel horizontal plates separated by a distance of 8 mm. The lower plate

is stationary and the upper plate moves at 4 m=s to the right (see Fig. 7.5). Assuming a laminar flow, what
pressure gradient is needed such that:

(a) The shear stress at the upper plate is zero
(b) The shear stress at the lower plate is zero
(c) The flow rate is zero

(d) The velocity at y ¼ 4 mm is 4 m=s

7.38 Atmospheric air at 40–C flows between two parallel horizontal plates separated by a distance of 6 mm. The
lower plate is stationary and the pressure gradient is –3 Pa=m. Assuming a laminar flow, what velocity of the
upper plate (see Fig. 7.5) is needed such that:

(a) The shear stress at the upper plate is zero
(b) The shear stress at the lower plate is zero

(c) The flow rate is zero
(d) The velocity at y ¼ 4 mm is 2 m=s

7.39 SAE-30 oil at 40–C fills the gap between the stationary plate and the 20-cm-diameter rotating plate shown in

Fig. 7.15. Estimate the torque needed assuming a linear velocity profile if O ¼ 100 rad=s.

T

2 mm

Figure 7.15

7.40 SAE-10 oil at 20–C fills the gap between the moving 120-cm-long cylinder and the fixed outer surface.
Assuming a zero pressure gradient, estimate the force needed to move the cylinder at 10 m=s. Assume a

laminar flow.

F
6 cm 0.4 mm

V

Figure 7.16
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Laminar Flow Between Rotating Cylinders

7.41 Assuming a Couette flow between a stationary and a rotating cylinder, determine the expression for the
power needed to rotate the inner rotating cylinder. Refer to Fig. 7.6.

7.42 SAE-10 oil at 20–C fills the gap between the rotating cylinder and the fixed outer cylinder shown in Fig. 7.17.
Estimate the torque needed to rotate the 20-cm-long cylinder at 40 rad=s (a) using the profile of Eq. (7.62)

and (b) assuming a Couette flow.

6 cm

0.4 mm

Figure 7.17

7.43 A 3-cm-diameter cylinder rotates inside a fixed 4-cm-diameter cylinder with 40–C SAE-30 oil filling the
space between the 30-cm-long concentric cylinders. Write the velocity profile and calculate the torque and
the power required to rotate the inner cylinder at 2000 rpm assuming a laminar flow.

7.44 Determine the expressions for the torque and the power required to rotate the outer cylinder if the inner
cylinder of Fig. 7.6 is fixed. Assume a laminar flow.

Turbulent Flow in a Pipe

7.45 Time average the differential continuity equation for an incompressible flow and prove that two continuity
equations result:

@u0

@x
þ @v0

@y
þ @w0

@z
¼ 0 and

@u

@x
þ @v

@y
þ @w

@z
¼ 0

7.46 A 12-cm-diameter pipe transports water at 25–C in a pipe with roughness elements averaging 0.26 mm in

height. Decide if the pipe is smooth or rough if the flow rate is (a) 0.0004, (b) 0.004, and (c) 0.04 m3=s.

7.47 Estimate the maximum velocity in the pipe of (a) Prob. 7.46a, (b) Prob. 7.46b, and (c) Prob. 7.46c.

7.48 Draw a cylindrical control volume of length L and radius r in a horizontal section of pipe and show that the
shear stress varies linearly with r, that is, t ¼ rDp=ð2LÞ. The wall shear is then given by t0 ¼ r0 Dp=ð2LÞ (see
Eq. (7.75)).

7.49 Estimate the velocity gradient at the wall, the pressure drop, and the head loss over 20 m of length for the

water flow of (a) Prob. 7.46a, (b) Prob. 7.46b, and (c) Prob. 7.46c. Note: Since turbulence must be zero at the
wall, the wall shear stress is given by m @u=@y

��
y¼0.

7.50 Water at 20–C flows in a 10-cm-diameter smooth horizontal pipe at the rate of 0.004 m3=s. Estimate the
maximum velocity in the pipe and the head loss over 40 m of length. Use the power-law velocity distribution.

7.51 SAE-30 oil at 20–C is transported in a smooth 40-cm-diameter pipe with an average velocity of 10 m=s.
Using the power-law velocity profile, estimate (a) the friction factor, (b) the pressure drop over 100 m of
pipe, (c) the maximum velocity, and (d) the viscous wall layer thickness.

7.52 Rework Prob. 7.51 using the semi-log velocity profile.

7.53 If the pipe of Prob. 7.51 is a cast iron pipe, rework the problem using the semi-log velocity profile.
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Losses in Pipe Flow

7.54 Water at 20–C flows at 0.02 m3=s in an 8-cm-diameter galvanized iron pipe. Calculate the head loss over
40 m of horizontal pipe using (a) the Moody diagram and (b) the alternate equation.

7.55 Rework Prob. 7.54 using (a) SAE-10 oil at 80–C, (b) glycerin at 70–C, and (c) SAE-30 oil at 40–C.
7.56 Water at 30–C flows down a 30– incline in a smooth 6-cm-diameter pipe at a flow rate of 0.006 m3=s. Find

the pressure drop and the head loss over an 80-m length of pipe.

7.57 If the pressure drop in a 100-m section of horizontal 10-cm-diameter galvanized iron pipe is 200 kPa,
estimate the flow rate if the liquid flowing is (a) water at 20–C, (b) SAE-10 oil at 80–C, (c) glycerin at 70–C,
and (d) SAE-30 oil at 20–C. Because the Moody diagram requires a trial-and-error solution, one of the

alternate equations is recommended.

7.58 Air at 40–C and 200 kPa enters a 300-m section of 10-cm-diameter galvanized iron pipe. If a pressure drop

of 200 Pa is measured over the section, estimate the mass flux and the flow rate. Because the Moody diagram
requires a trial-and-error solution, one of the alternate equations is recommended. Assume the air to be
incompressible.

7.59 A pressure drop of 100 kPa is desired in 80 m of smooth pipe transporting 20–C water at a flow rate of
0.0016 m3=s. What diameter pipe should be used? Because the Moody diagram requires a trial-and-error

solution, one of the alternate equations is recommended.

7.60 Rework Prob. 7.59 using (a) SAE-10 oil at 80–C, (b) glycerin at 70–C, and (c) SAE-30 oil at 20–C.
7.61 A farmer wishes to siphon 20–C water from a lake, the surface of which is 4 m above the plastic tube exit. If

the total distance is 400 m and 300 L of water is desired per minute, what size tubing should be selected?
Because the Moody diagram requires a trial-and-error solution, one of the alternate equations is
recommended.

7.62 Air at 35–C and 120 kPa enters a 20 · 50 cm sheet metal conduit at a rate of 6 m3=s. What pressure drop is
to be expected over a length of 120 m?

7.63 A pressure drop of 6000 Pa is measured over a 20 m length as water at 30–C flows through the 2 · 6 cm
smooth conduit. Estimate the flow rate.

Minor Losses

7.64 The loss coefficient of the standard elbow listed in Table 7.2 appears quite large compared with several of the
other loss coefficients. Explain why the elbow has such a relatively large loss coefficient by inferring a

secondary flow after the bend. Refer to Eq. (3.31).

7.65 Water at 20–C flows from a reservoir out a 100-m-long, 4-cm-diameter galvanized iron pipe to the

atmosphere. The outlet is 20 m below the surface of the reservoir. What is the exit velocity (a) assuming no
losses in the pipe and (b) including the losses? There is a square-edged entrance. Sketch the EGL and the
HGL for both (a) and (b).

7.66 Add a nozzle with a 2-cm-diameter outlet to the pipe of Prob. 7.65. Calculate the exit velocity.

7.67 The horizontal pipe of Prob. 7.65 is fitted with three standard screwed elbows equally spaced. Calculate the
flow including all losses. Sketch the HGL.

7.68 A 4-cm-diameter cast iron pipe connects two reservoirs with the surface of one reservoir 10 m below the
surface of the other. There are two standard screwed elbows and one wide-open angle valve in the 50-m-long
pipe. Assuming a square-edged entrance, estimate the flow rate between the reservoirs. Assume a

temperature of 20–C.
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7.69 An 88% efficient pump is used to transport 30–C water from a lower reservoir through an 8-cm-diameter

galvanized iron pipe to a higher reservoir whose surface is 40 m above the surface of the lower one. The pipe
has a total length of 200 m. Estimate the power required for a flow rate of 0.04 m3=s. What is the maximum
distance from the lower reservoir that the pump can be located if the horizontal pipe is 10 m below the

surface of the lower reservoir?

7.70 A 90% efficient turbine operates between two reservoirs connected by a 200-m length of 40-cm-diameter cast

iron pipe that transports 0.8 m3=s of 20–C water. Estimate the power output of the turbine if the elevation
difference between the surfaces of the reservoirs is 40 m.

7.71 The pump characteristic curves, shown in Fig. 7.18, relate the efficiency and the pump head (see Eq. (4.25))
for the pump of this problem to the flow rate. If the pump is used to move 20–C water from a lower reservoir
at elevation 20 m to a higher reservoir at elevation 60 m through 200 m of 16-cm-diameter cast iron pipe,

estimate the flow rate and the power required.

25

50

75

50

25

100 100

75
HP (m)

0.1 0.30.2

Q (m3/s)

HP

P

P

Figure 7.18

Open Channel Flow

7.72 Water flows at a depth of 80 cm in an open channel on a slope of 0.0012. Find the average shear stress acting

on the channel walls if the channel cross section is (a) a 140-cm-wide rectangle and (b) a 3.2-m-diameter
circle. (Draw a control volume and sum forces.)

7.73 Water flows in a 2-m-wide rectangular finished concrete channel with a slope of 0.001 at a depth of 80 cm.
Estimate the flow rate using (a) the Chezy–Manning equation and (b) the Moody diagram.

7.74 Water is not to exceed a depth of 120 cm in a 2-m-wide finished rectangular concrete channel on a slope of
0.001. What would the flow rate be at that depth? (a) Use the Chezy–Manning equation and (b) the Moody
diagram.

7.75 Estimate the flow rate in the channel shown in Fig. 7.19 if the slope is 0.0014. The sides are on a slope of 45o.
(a) Use the Chezy–Manning equation and (b) the Darcy–Weisbach equation. (c) Also, calculate the average

shear stress on the walls.

60 cm

140 cm

Water

Finished
concrete

Figure 7.19
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7.76 Water flows in a 2-m-diameter sewer (finished concrete) with S ¼ 0.0016. Estimate the flow rate if the depth

is (a) 50, (b) 100, (c) 150, and (d) 199 cm.

7.77 Water flows in a 120-cm-diameter sewer (finished concrete) with S ¼ 0.001 at a flow rate of 0.4 m3=s. What is

the expected depth of flow?

Answers to Supplementary Problems

7.11 (a) 0.1007 m=s (b) 0.0367 m=s (c) 1.8 m=s (d) 1.51 m=s

7.12 Highly turbulent

7.13 Turbulent

7.14 Laminar

7.15 (a) 16.4 m, 8.2 m (b) 25.1 m, 12.5 m (c) 34.7 m, 17.4 m (d) 45.1 m, 22.6 m

7.16 Yes, yes

7.17 4.8 m, 0.283 m=s

7.18 (a) 1.94 m, 3.87 m (b) 0.2 m, 2.4 m

7.19 See problem statement

7.20 See problem statement

7.21 See problem statement

7.22 See problem statement

7.23 See problem statement

7.24 (a) 0.448 m=s (b) 2950 (c) 0.16 Pa (d) 0.0217

7.25 (a) 1114 Pa, not laminar (b) 153 kPa, laminar (c) 594 kPa, laminar

7.26 0:219– downward

7.27 (a) 200.6 kPa (b) –191.8 kPa

7.28 0.0091 Pa, 0.04, 3.13 m, 36.4 Pa

7.29 1.414 cm, 1 cm

7.30 sin21ð8mV=gr 2
0 Þ, 0:376–

7.31 4.1, 14.8, 0.0117 m3=s

7.32 0.035 N/m2

7.33 2U=b2

7.34 6mU=b2

7.35 (a) 0.0006 m3=s, 180 Pa (b) 0.0093 m3=s, 51.5 Pa (c) 0.0024 m3=s, 264 kPa

7.36 0.000653 m3=s, 0.00098 N/m2

7.37 (a) 2125 Pa/m (b) 125 Pa/m (c) 375 Pa/m (d) 20.25 Pa/m

7.38 (a) 2.83 m=s (b) 22.83 m=s (c) 20.942 m=s (d) 1.37 m=s

7.39 12.6 N·m

7.40 565 N
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7.41 2pmr 3
1 o

2L=d

7.42 (a) 0.346 N·m (b) 0.339 N·m

7.43 539ð0:0016=r 2 rÞ, 0.325 N·m, 136 W

7.44 T ¼ 4pmr 2
1 r

2
2 Lo2= r 2

2 2 r 2
1

� �
7.45 See problem statement

7.46 (a) smooth (b) rough (c) rough

7.47 (a) 0.047 m=s (b) 0.474 m=s (c) 4.6 m=s

7.48 See problem statement

7.49 (a) 7.3 s21, 4.4 Pa, 0.00045 m (b) 490 s21, 290 Pa, 0.03 m (c) 45,200 s21, 27 kPa, 2.7 m

7.50 0.63 m=s, 0.125 m

7.51 (a) 0.024 (b) 275 kPa (c) 12.4 m=s (d) 1.82 mm

7.52 (a) 0.0255 (b) 292 kPa (c) 11.9 m=s (d) 1.77 mm

7.53 (a) 0.0275 (b) 315 kPa (c) 12.5 m=s (d) 1.71 mm

7.54 (a) 9.7 m (b) 9.55 m

7.55 (a) 11.3 m, 11.1 m (b) 15.1 m, 15.2 m (c) 16.1 m, 16.5 m

7.56 2 343 kPa, 4.98 m

7.57 (a) 0.033 m3=s (b) 0.032 m3=s (c) 0.022 m3=s (d) 0.022 m3=s

7.58 0.0093 m3=s, 0.031 kg/s

7.59 5.6 cm

7.60 (a) 3.5 cm (b) 3.9 cm (c) 3.9 cm

7.61 8.4 cm

7.62 18.8 kPa

7.63 0.00063 m3=s

7.64 See problem statement

7.65 (a) 19.8 m=s (b) 2.01 m=s

7.66 0.995 m=s

7.67 1.56 m=s

7.68 1.125 m=s

7.69 138 hp, 6.7 m

7.70 173 hp

7.71 0.3 m3=s, 290 hp

7.72 (a) 4.39 Pa (b) 4.92 Pa

7.73 (a) 2.45 m3=s (b) 2.57 m3=s

7.74 (a) 0.422 m3=s (b) 0.435 m3=s

7.75 (a) 1.99 m3=s (b) 2.09 m3=s (c) 5.32 Pa

7.76 (a) 0.747 m3=s (b) 3.30 m3=s (c) 6.27 m3=s (d) 6.59 m3=s

7.77 0.45 m
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Chapter 8

External Flows

8.1 INTRODUCTION

The subject of external flows involves both low- and high-Reynolds number flows. Low-Reynolds
number flows are not of interest in most engineering applications and will not be considered in this
book; flow around spray droplets, river sediment, filaments, and red blood cells would be examples that
are left to the specialists. High-Reynolds number flows are of interest to many engineers and include flow
around airfoils, vehicles, buildings, bridge cables, stadiums, turbine blades, and signs, to name a few.

It is quite difficult to solve for the flow field external to a body, even the simplest of bodies like a long
cylinder or a sphere. We can, however, develop equations that allow us to estimate the growth of the
thin viscous layer, the boundary layer, which grows on a flat plate or the rounded nose of a vehicle. Also,
coefficients have been determined experimentally that allow the drag and the lift to be objects of interest.
We will begin this chapter by presenting such coefficients. But first, some definitions are needed.

The flow around a blunt body involves a separated region, a region in which the flow separates
from the body and forms a recirculating region downstream, as sketched in Fig. 8.1. A wake, a region
influenced by viscosity, is also formed; it is a diffusive region that continues to grow (some distance
downstream the velocity is less than the free-stream velocity V). A laminar boundary layer exists near
the front of the body followed by a turbulent boundary layer as shown in Fig. 8.1. An inviscid flow,
often referred to as the free stream, exists on the front of the body and outside the boundary layer,
separated region, and wake. The flow around a streamlined body has all the same components as that
of Fig. 8.1 except that it does not have a significant separated region and the wake is much smaller.

V

V

Wake

Separated
region

Inviscid
Flow

Laminar bl

Turbulent bl

Stagnation
point

Separation
point

V

V

Figure 8.1 The details of a flow around a blunt body.
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The free-stream inviscid flow is usually irrotational although it could be a rotational flow with
vorticity, e.g., the flow of air near the ground around a tree trunk or water near the ground around a
post in a river; the water digs a depression in the sand in front of the post and the air digs a similar
depression in snow in front of the tree, a rather interesting observation. The vorticity in the approaching
air or water accounts for the observed phenomenon.

It should be noted that the boundary of the separated region is shown at an average location. It is,
however, highly unsteady and is able to slowly exchange mass with the free stream even though the time-
average streamlines remain outside the separated region. Also, the separated region is always located
inside the wake.

Interest in the flow around a blunt object is focused on the drag, the force the flow exerts on the body
in the direction of the flow*. Lift is the force exerted normal to the flow direction and is of interest on
airfoils and streamlined bodies. The drag FD and lift FL are specified in terms of the drag coefficient CD

and lift coefficient CL, respectively, by

FD ¼ 1

2
rAV 2CD and FL ¼ 1

2
rAV 2CL ð8:1Þ

where, for a blunt body, the area A is the area projected on a plane normal to the flow direction,
and for an airfoil the area A is the chord (the distance from the nose to the trailing edge) times the
length.

The force due to the lower pressure in the separated region dominates the drag force on a blunt
body, the subject of Sec. 8.2. The viscous stress that acts on and parallel to each boundary element is
negligible and thus little, if any, attention is paid to the boundary layer on the surface of a blunt body.
The opposite is true for an airfoil, the subject of Sec. 8.3; the drag force is due primarily to the viscous
stresses that act on the boundary elements. Consequently, there is considerable interest in the boundary
layer that develops on a streamlined body. It is this interest that has motivated much study of boundary
layers. The basics of boundary-layer theory will be presented in Sec. 8.5. But first, the inviscid flow
outside the boundary layer (Fig. 8.1) must be known. Therefore, inviscid flow theory will be presented
in Sec. 8.4. The boundary layer is so thin that it can be ignored when solving for the inviscid flow.
The inviscid flow solution provides the lift, which is not significantly influenced by the viscous boundary
layer, and the pressure distribution on the body’s surface as well as the velocity on that surface (since the
inviscid solution ignores the effects of viscosity, the fluid does not stick to the boundary but slips by the
boundary). The pressure and the velocity at the surface are needed in the boundary-layer solution.

8.2 FLOW AROUND BLUNT BODIES

8.2.1 Drag Coefficients

The primary flow parameter that influences the drag around a blunt body is the Reynolds number. If
there is no free surface, the drag coefficients for both smooth and rough long cylinders and spheres are
presented in Fig. 8.2; the values for streamlined cylinders and spheres are also included.

Separation always occurs in the flow of a fluid around a blunt body if the Reynolds number is
sufficiently high. However, at low Reynolds numbers (it is called a Stokes flow if Re , 5), there is no
separation and the drag coefficient, for a sphere, is given by

CD ¼ 24

Re
Re5 1 ð8:2Þ

Separation occurs for Re$10 beginning over a small area on the rear of the sphere until the separated
region reaches a maximum at Re> 1000. The drag coefficient is then relatively constant until a sudden

* Actually, the body moves through the stationary fluid. To create a steady flow, the fluid is moved past the
stationary body, as in a laboratory; the pressures and force remains the same. To obtain the actual velocity, the flow

velocity is subtracted from the velocity at each point.
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drop occurs in the vicinity of Re ¼ 2 · 105. This sudden drop is due to the transition of the boundary
layer just before separation undergoing transition from a laminar flow to a turbulent flow. A turbulent
boundary layer contains substantially more momentum and is able to move the separation region further
to the rear; see the comparison in Fig. 8.3. The sudden decrease in drag could be as much as 80 percent.
The surface of an object can be roughened to cause the boundary layer to undergo transition
prematurely; the dimples on a golf ball accomplish this and increase the flight by up to 100 percent when
compared with the flight of a smooth ball.

2.0

1.0
0.8
0.6
0.4

0.2CD

0.1

0.06
0.04

0.02

2 4 6 8102 2 4 6 8103 2 4 6 8104 4 6 8105 4 6 81062

Re = VD/v

2 4 6 81072

Smooth circular cylinder

Rough cylinder
Smooth sphere

Rough
sphere

streamlined
cylinder

streamlined
sphere

Figure 8.2 Drag coefficients for flow around spheres and long cylinders.

Turbulent

Laminar

V

u(y)

Boundary
layer edge

Figure 8.3 Laminar and turbulent velocity profiles for the same boundary-layer thickness.

After the sudden drop, the drag coefficient again increases with increased Reynolds number.
Experimental data do not provide the drag coefficients for either the sphere or the cylinder for high
Reynolds numbers. The values of 0.2 for smooth spheres and 0.4 for long smooth cylinders for Reynolds
numbers exceeding 106 are often used.

Streamlining can substantially reduce the drag coefficients of blunt bodies. The drag coefficients for
streamlined cylinders and spheres are shown in Fig. 8.2. The included angle at the trailing edge should
not exceed about 20– if the separated region is to be minimized. The drag due to the shear stress acting
on the enlarged surface will certainly increase for a streamlined body, but the drag due to the low
pressure will be reduced much more so that the total drag will be less. Also, streamlining eliminates the
vibrations that often occur when vortices are shed from a blunt body.

For cylinders of finite length with free ends, the drag coefficient must be reduced using the data of
Table 8.1. If a finite-length cylinder has one end fixed to a solid surface, the length of the cylinder is
doubled. Note that the L=D of a cylinder with free ends has to be quite large before the end effects are
not significant.
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Table 8.1 Drag Coefficients for Finite-Length Circular Cylinders* with Free Ends†

L=D CD=CD1
1 1

40 0.82

20 0.76

10 0.68

5 0.62

3 0.62

2 0.57

1 0.53

Drag coefficients for a number of common shapes that are insensitive to high Reynolds numbers are
presented in Table 8.2.

Table 8.2 Drag Coefficients for Various Blunt Objects

Object Re CD

Square cylinder of width w L=w ¼ 1 > 104 2:0
1 > 104 1:1

�

Rectangular plates L=w ¼
1 > 103 2:0
20 > 103 1:5
5 > 103 1:2
1 > 103 1:1

8>><>>:
Circular disc .103 1.1

Parachute >107 1.4

Modern automobile >105 0.29

Van >105 0.42

Bicycle
upright rider 1:1
bent over rider 0:9
drafting rider 0:5

8<:
Semitruck

standard 0:96
with streamlined deflector 0:76
with deflector and gap seal 0:70

8<:

* CD1 is the drag coefficient from Fig. 8.2.
† If one end is fixed to a solid surface, double the length of the cylinder.

[CHAP. 8148 EXTERNAL FLOWS



EXAMPLE 8.1 A 5-cm-diameter, 6-m-high pole fixed in concrete supports a flat, circular 4-m-diameter sign.
Estimate the maximum moment that must be resisted by the concrete for a wind speed of 30 m=s.

Solution: To obtain the maximum moment, the wind is assumed normal to the sign. From Table 8.2, the
drag coefficient for a disk is 1.1. The moment due to the drag force, which acts at the center of the sign, is

M1 ¼ FD1 · L1 ¼ 1

2
rA1V

2CD1 · L1 ¼ 1

2
· 1:22 · p · 22 · 302 · 1:1 · 8 ¼ 60 700N·m

where the density at an elevation above sea level of 0 is used since the elevation is not given. The moment due to
the pole is

M2 ¼ FD2 · L2 ¼ 1

2
rA2V

2CD2 · L2 ¼ 1

2
· 1:22 · 0:05 · 6 · 302 · 0:7 · 3 ¼ 346N·m

using a Reynolds number of Re ¼ 30 · 0:05=1:5 · 10�5 ¼ 10�5 and assuming high-intensity fluctuations in the air

flow, i.e., a rough cylinder. The factor from Table 8.1 was not used since neither end was free.
The moment that must be resisted by the concrete base is

M ¼ M1 þM2 ¼ 60 700þ 346 ¼ 61 000N·m

8.2.2 Vortex Shedding

Long cylindrical bodies exposed to a fluid flow can exhibit the phenomenon of vortex shedding at
relatively low Reynolds numbers. Vortices are shed from electrical wires, bridges, towers, and
underwater communication wires, and can actually cause significant damage. We will consider the
vortices shed from a long circular cylinder. The shedding occurs alternately from each side of the
cylinder, as sketched in Fig. 8.4. The shedding frequency f, Hz, is given by the Strouhal number,

St ¼ fD

V
ð8:3Þ

If this shedding frequency is the same or a multiple of a structure’s frequency, then there is the possibility
that damage may occur due to resonance.

Shed vortices

Vortex
being shed

Shed vortices

V

Free
stream

Figure 8.4 Vortices shed from a cylinder.

The Strouhal number cannot be calculated from equations; it is determined experimentally and
shown in Fig. 8.5. Note that vortex shedding initiates at Re< 40 and for Re$ 300 the Strouhal number
is essentially independent of Reynolds number and is equal to about 0.21. The vortex shedding
phenomenon disappears for Re . 104.

EXAMPLE 8.2 A 6-cm-diameter cylinder is used to measure the velocity of a slow-moving air stream. Two

pressure taps are used to determine that the vortices are shed with a frequency of 4 Hz. Determine the velocity of
the air stream.

Solution: Assume the Strouhal number to be in the range 300 , Re , 10 000. Then
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fD

V
¼ 0:21 so that V ¼ 4 · 0:06

0:21
¼ 1:14m=s

It is quite difficult to measure the velocity of an air stream this low. The measurement of the shed vortices
is one method of doing so.

100 1000 10 000400

0.14

0.16

0.18

0.20

Data
spread

St

Re = VD/v

Figure 8.5 Strouhal number for vortex shedding from a cylinder.

8.2.3 Cavitation

When a liquid flows from a region of relatively high pressure into a region of low pressure, cavitation
may occur, that is, the pressure may be sufficiently low so that the liquid vaporizes. This can occur in
pipe flows in which a contraction and expansion exists, in the vanes of a centrifugal pump, near the tips
of propellers, on hydrofoils, and torpedoes. It can actually damage the propellers and the steel shafts
(due to vibrations) on ships and cause a pump to cease to function properly. It can, however, also be
useful in the destruction of kidney stones, in ultrasonic cleaning devices, and in improving the
performance of torpedoes.

Cavitation occurs whenever the cavitation number s, defined by

s ¼ p12pv
1
2 rV

2
ð8:4Þ

is less than the critical cavitation number scrit, which depends on the geometry and the Reynolds
number. In Eq. (8.4) p1 is the absolute pressure in the free stream and pv the vapor pressure of the
liquid.

The drag coefficient of a body that experiences cavitation is given by

CDðsÞ ¼ CDð0Þð1þ sÞ ð8:5Þ
where CDð0Þ is given in Table 8.3 for several bodies for Re> 105.

The hydrofoil, an airfoil-type shape that is used to lift a vessel above the water surface, invariably
cannot operate without cavitation. The area and Reynolds number are based on the chord length. The
drag and lift coefficients along with the critical cavitation numbers are presented in Table 8.4.
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Table 8.3 Drag Coefficients for Zero Cavitation Numbers at Re> 105

Geometry Angle CD(0)

Sphere 0.30

Disk (circular) 0.8

Circular cylinder 0.50

Flat plate (rectangular) 0.88

Two-dimensional Wedge

8>><>>:
120
90
60
30

0:74
0:64
0:49
0:28

Cone ðaxisymmetricÞ

8>><>>:
120
90
60
30

0:64
0:52
0:38
0:20

Table 8.4 Drag and Lift Coefficients and Critical Cavitation Numbers for Hydrofoils for 105 , Re , 106

Angle (–) Lift
coefficient

Drag
coefficient

Critical cavitation
number

22 0.2 0.014 0.5

0 0.4 0.014 0.6

2 0.6 0.015 0.7

4 0.8 0.018 0.8

6 0.95 0.022 1.2

8 1.10 0.03 1.8

10 1.22 0.04 2.5

EXAMPLE 8.3 A 2-m-long hydrofoil with chord length 40 cm operates 30 cm below the water’s surface with
an angle of attack of 68. For a speed of 16 m=s determine the drag and lift and decide if cavitation exists on the
hydrofoil.

Solution: The pressure p1 must be absolute. It is

p1 ¼ ghþ patm ¼ 9800 · 0:3þ 100 000 ¼ 102 900 Pa abs

Assuming that the water temperature is about 15–C, the vapor pressure is 1600 Pa (Table C.1) and the
cavitation number is

s ¼ p12pv
1
2 rV

2
¼ 102 90021705

0:5 · 1000 · 162
¼ 0:79

This is less than the critical cavitation number of 1.2 given in Table 8.4 and hence cavitation is present. Note

that we could have used pv ¼ 0, as is often done, with sufficient accuracy.
The drag and lift are

FD ¼ 1

2
rV 2ACD ¼ 1

2
· 1000 · 162 · 2 · 0:4 · 0:022 ¼ 2250N

FL ¼ 1

2
rV 2ACL ¼ 1

2
· 1000 · 162 · 2 · 0:4 · 0:95 ¼ 97 300N
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8.2.4 Added Mass

When a body is accelerated in a fluid, some of the surrounding fluid is also accelerated. This requires a
larger force than that required to accelerate only the body. To account for the increased mass that must
be accelerated, an added mass ma is simply added to the body to calculate the force. For motion in the
horizontal plane, the force needed to accelerate a body is given by

F � FD ¼ ðmþmaÞ dV
dt

ð8:6Þ
where FD is the drag force. If the body is accelerating from rest, the drag force would be 0.

The added mass is related to the mass of fluid mf displaced by the body. The relationship

ma ¼ kmf ð8:7Þ
provides the added mass if the factor k is known. For a sphere, k ¼ 0.5; for an ellipsoid with major axis
twice the minor axis and moving in the direction of the major axis, k ¼ 0.2; and for a long cylinder
moving normal to its axis, k ¼ 1.0. These values are for inviscid flows so they are used when starting
from rest or at very low speeds.

For dense bodies accelerating in air the added mass can be ignored, but for bodies accelerating in a
liquid, the added mass must be included.

EXAMPLE 8.4 A sphere with a specific gravity of 3 is released from rest in a body of water. Determine its
initial acceleration.

Solution: Apply Newton’s second law including the buoyant force:

W � FB ¼ ðmþmaÞ dVdt
ðSgwater2 gwaterÞ�Vsphere ¼ ðSrwater þ 0:5rwaterÞ�Vsphere

dV

dt

\
dV

dt
¼ ð3 � 1Þg

3þ 0:5
¼ 5:6m=s2

where we have used g ¼ rg.

8.3 FLOW AROUND AIRFOILS

Airfoils are streamlined so that separation does not occur. Airfoils designed to operate at subsonic speeds are
rounded at the leading edgewhereas those designed for supersonic speedsmay have sharp leading edges. The
drag on an airfoil is due primarily to the shear stress that acts on the surface; there is some drag due to the
pressure distribution. The boundary layer, in which all the shear stresses are confined, that develops on an
airfoil is very thin (see the sketch inFig. 8.6) and canbe ignoredwhen solving for the inviscidflow surrounding
the airfoil. The pressure distribution that is determined from the inviscid flow solution is influenced very little
by the presence of the boundary layer. Consequently, the lift is estimated on an airfoil by ignoring the
boundary layer and integrating the pressure distribution of the inviscid flow. The inviscid flow solution also
provides the velocity at the outer edge of the thin boundary layer, a boundary condition neededwhen solving
the boundary-layer equations; the solution of the boundary-layer equations will be presented in Sec. 8.5.

Inviscid flow

Boundary layer

chord, c

Figure 8.6 Flow around an airfoil at an angle of attack a.
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The lift and drag on airfoils will not be calculated from the flow conditions but from graphical
values of the lift and drag coefficients. These are displayed in Fig. 8.7 for a conventional airfoil with
Re ¼ 9 · 106. The lift and drag coefficients are defined as

CL ¼ FL
1
2 rcLV

2
CD ¼ FD

1
2 rcLV

2
ð8:8Þ

Conventional airfoils are not symmetric and are designed to have positive lift at zero angle of attack, as
shown in Fig. 8.7. The lift is directly proportional to the angle of attack until just before stall is
encountered. The drag coefficient is also directly proportional to the angle of attack up to about 5–. The
cruise condition is at an angle of attack of about 5–where the drag is a minimum at CL ¼ 0.3 as noted.
Mainly the wings supply the lift on an aircraft but an effective length is the tip-to-tip distance, the
wingspan, since the fuselage also supplies some lift.

The drag coefficient is essentially constant up to a Mach number of about 0.75. It then increases by
over a factor of 10 until a Mach number of 1 is reached at which point it begins to slowly decrease. So,
cruise Mach numbers between 0.75 and 1.5 are avoided to stay away from the high drag coefficients.
Swept-back airfoils are used since it is the normal component of velocity that is used when calculating
the Mach number, which allows a higher plane velocity before the larger drag coefficients are
encountered.

Slotted flaps are also used to provide larger lift coefficients during takeoff and landing. Air flows
from the high-pressure region on the bottom of the airfoil through a slot to energize the slow-moving air
in the boundary layer on the top side of the airfoil thereby reducing the tendency to separate and stall.
The lift coefficient can reach 2.5 with a single-slotted flap and 3.2 with two slots.

0.4

0.8

1.2

1.6

0.004 0.008 0.012 0.016

CL

CD

CL

CD
= 47.6

CL = 0.3

4
a

0 8 12 16 20

0.4

0.8

1.2

1.6

CL

Stall

Figure 8.7 Lift and drag coefficients for a conventional airfoil at Re ¼ 9 · 106.

EXAMPLE 8.5 Determine the takeoff speed for an aircraft that weighs 15 000 N including its cargo if its
wingspan is 15 m with a 2-m chord. Assume an angle of 8– at takeoff.

Solution: Assume a conventional airfoil and use the lift coefficient of Fig. 8.7 of about 0.95. The velocity is
found from the equation for the lift coefficient

CL ¼ FL
1
2rcLV

2
0:95 ¼ 15 000

1
2 · 1:2 · 2 · 15 · V 2

: \ V ¼ 30m=s

The answer is rounded off to two significant digits since the lift coefficient of 0.95 is read from the figure.
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8.4 POTENTIAL FLOW

8.4.1 Basics

When a body is moving in an otherwise stationary fluid, there is no vorticity present in the undisturbed
fluid. To create a steady flow, a uniform flow with the body’s velocity is superimposed on the flow field
so that the vorticity-free flow moves by the stationary body, as in a wind tunnel. The only way vorticity is
introduced into the flow is through the effects of viscosity. For high-Reynolds number flows, the viscous
effects are concentrated in the boundary layer and the wake (the wake includes the separated region).
For a streamlined body and over the front part of a blunt body, the flow outside the boundary layer is
free of viscous effects and thus vorticity so it is an inviscid flow. The solution of the inviscid flow problem
provides the velocity field and the pressure field in the vicinity of the body. The pressure is not
significantly influenced by the boundary layer so it will provide the lift when integrated over the body’s
surface. The velocity at the boundary of the body* from the inviscid flow solution will be the velocity at
the outer edge of the thin boundary layer, needed in the boundary-layer solution (to be presented in Sec.
8.5). So, before the boundary layer can be analyzed on a body, the inviscid flow must be known.

A potential flow (or irrotational flow) is one in which the velocity field can be expressed as the
gradient of a scalar function, that is,

V ¼ HHHHHf ð8:9Þ
where f is the velocity potential. For a potential flow, the vorticity is 0

ooooo ¼ HHHHH · V ¼ 0 ð8:10Þ
This can be shown to be true by expanding in rectangular coordinates and using Eq. (8.9).

To understand why an irrotational flow cannot generate vorticity consider the three types of forces
that act on a cubic fluid element: the pressure and body forces act through the center of element and
consequently cannot impart a rotary motion to the element. It is only the viscous shear forces that are
able to give rotary motion to fluid particles. Hence, if the viscous effects are non-existent, vorticity
cannot be introduced into an otherwise potential flow. Also, this can be observed to be the case by taking
the curl of the Navier–Stokes equation (5.20).

If the velocity is given by Eq. (8.9), the continuity equation (5.8) for an incompressible flow provides

HHHHH·HHHHHf ¼ H2f ¼ 0 ð8:11Þ
which is the famous Laplace equation. In rectangular coordinates it is written as

@2f
@x2

þ @2f
@y2

þ @2f
@z2

¼ 0 ð8:12Þ

With the required boundary conditions, this equation could be solved. But, rather than attempting to solve
the resulting boundary-value problem directly, we will restrict our interest to plane flows, such as airfoils and
cylindrical bodies, identify several simple flows that satisfy Laplace’s equation, and then superimpose those
simple flows to formmore complex flows of interest. Since Laplace’s equation is linear, the superposed flows
will also satisfy Laplace’s equation.

First, however, let us define another scalar function that will be quite useful in our study. For the
plane flows of interest, the stream function c, is defined by

u ¼ @c
@y

and v ¼ � @c
@x

ð8:13Þ

so that the continuity equation (5.8) with @w=@z ¼ 0 (for a plane flow) is satisfied for all plane flows. The
vorticity, Eqs. (8.10) and (3.14), then provides

* If there are insignificant viscous effects, the fluid does not stick to a boundary but is allowed to slip.
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oz ¼ @v

@x
2
@u

@y
¼2

@2c
@x2

2
@2c
@y2

¼ 0 ð8:14Þ

so that

@2c
@x2

þ @2c
@y2

¼ 0 ð8:15Þ

The stream function also satisfies the Laplace equation. So, from the above equations we have

u ¼ @f
@x

¼ @c
@y

and v ¼ @f
@y

¼2
@c
@x

ð8:16Þ

The equations between f and c in Eq. (8.16) form the Cauchy–Riemann equations and f and c are
referred to as harmonic functions. The function fþ ic is the complex velocity potential. The powerful
mathematical theory of complex variables is thus applicable to this subset of fluid flows: steady,
incompressible plane flows.

Three items of interest contained in the above equations are:

. The stream function is constant along a streamline.

. The streamlines and lines of constant potential lines intersect at right angles.

. The difference of the stream functions between two streamlines is the flow rate q per unit depth
between the two streamlines, i.e., q ¼ c2 � c1.

These items will be shown to be true in the examples and solved problems.

EXAMPLE 8.6 Show that c is constant along a streamline.

Solution: A streamline is a line to which the velocity vector is tangent. This is expressed in vector form as
V · dr ¼ 0; which, for a plane flow (no z variation), using dr ¼ dx iþdy j takes the form u dy � v dx ¼ 0: Using

Eq. (8.13), this becomes

@c
@y

dyþ @c
@x

dx ¼ 0

This is the definition of dc from calculus, thus dc ¼ 0 along a streamline, or, in other words, c is constant along
a streamline.

8.4.2 Several Simple Flows

Several of the simple flows to be presented are much easier understood using polar (cylindrical)
coordinates. The Laplace equation, the continuity equation, and the expressions for the velocity
components for a plane flow (Table 5.1) are

H2c ¼ 1

r

@

@r
r
@c
@r

� �
þ 1

r2
@2c
@y2

¼ 0 ð8:17Þ

1

r

@

@r
rvr
� �þ 1

r

@vy
@y

¼ 0 ð8:18Þ

vr ¼ @f
@r

¼ 1

r

@c
@y

and vy ¼ 1

r

@f
@y

¼ � @c
@r

ð8:19Þ
where the expressions relating the velocity components to the stream function are selected so that the
continuity equation is always satisfied. We now define four simple flows that satisfy the Laplace equation.

Uniform flow : c ¼ U1y f ¼ U1x ð8:20Þ

Line source : c ¼ q

2p
y f ¼ q

2p
ln r ð8:21Þ
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Vortex : c ¼ G
2p

ln r f ¼ G
2p

y ð8:22Þ

Doublet : c ¼2
m sin y

r
f ¼2

m cos y
r

ð8:23Þ
These simple plane flows are sketched in Fig. 8.8. If a y-component is desired for the uniform flow, an
appropriate term is added. The source strength q in the line source is the flow rate per unit depth; adding
a minus sign creates a sink. The vortex strength G is the circulation about the origin, defined as

G ¼
I
L

V·ds ð8:24Þ

where L is a closed curve, usually a circle, about the origin with clockwise being positive. The heavy
arrow in the negative x-direction represents the doublet strength m in Fig. 8.8(d). (A doublet can be
thought of as a source and a sink of equal strengths separated by a very small distance.)

The velocity components are used quite often for the simple flows presented. They follow for both
polar and rectangular coordinates:

u ¼ U1 v ¼ 0

vr ¼ U1 cos y vy ¼2U1 sin y

vr ¼ q

2pr
vy ¼ 0

u ¼ q

2p
x

x2 þ y2
v ¼ q

2p
y

x2 þ y2

vr ¼ 0 vy ¼2
G
2pr

u ¼2
G
2p

y

x2 þ y2
v ¼ G

2p
x

x2 þ y2

x

y

x

y

= 0= A

= 2A

(a) Uniform flow in the x-direction

(b) Line source

= const

= const
= const

x

y

r

v

(c) Vortex
(d) Doublet

y

x

= const

= const= const
= const

Figure 8.8 Four simple plane potential flows.

Uniform flow : (8.25)

Line source : (8.26)

Vortex : (8.27)
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Doublet :

vr ¼2
m cos y
r2

vy ¼2
m sin y
r2

u ¼2m
x2 � y2

ðx2 þ y2Þ2 v ¼2m
2xy

ðx2 þ y2Þ2
ð8:28Þ

These four simple flows can be superimposed to create more complicated flows of interest. This will be
done in the following section.

EXAMPLE 8.7 If the stream function of a flow is given as c ¼ Ay, determine the potential function f.

Solution: We use Eq. (8.19) to relate the stream function to the potential function assuming polar
coordinates because of the presence of y :

@f
@r

¼ 1

r

@c
@y

¼ A

r
: \ fðr; yÞ ¼ A ln rþ fðyÞ

Now, use the second equation of Eq. 8.19:

1

r

@f
@y

¼ 1

r

df

dy
¼ � @c

@r
¼ 0 implying that

df

dy
¼ 0 so that f ¼ Const

Since we are only interested in the derivatives of the potential functions to provide the velocity and pressure
fields, we simply let the constant be 0 and thus

fðr; yÞ ¼ A ln r

So, we see that the potential function can be found if the stream function is known. Also, the stream function can
be found if the potential function is known.

8.4.3 Superimposed flows

Combining the simple flows introduced in Sec. 8.4.2 can create the most complicated plane flows. Divide
a surface, such as an airfoil, into a large number of segments and place sources or sinks or doublets at the
center of each segment; in addition, add a uniform flow and a vortex. Then, adjust the various strengths
so that the normal velocity component at each segment is 0 and the rear stagnation point is located at
the trailing edge. Obviously, a computer program must be used to create flow around an airfoil.
We will not attempt it in this book but will demonstrate how flow around a circular cylinder can be
created.

Superimpose the stream functions of a uniform flow and a doublet

cðr; yÞ ¼ U1y2
m sin y

r
ð8:29Þ

The velocity component vr is (let y ¼ r sin yÞ

vr ¼ 1

r

@c
@y

¼ U1 cos y2
m
r2
cos y ð8:30Þ

A circular cylinder exists if there is a circle on which there is no radial velocity component, i.e.,
vr ¼ 0 at r ¼ rc. Set vr ¼ 0 in Eq. (8.30) and find

U1 cos y � m
r 2
c

cos y ¼ 0 so that rc ¼
ffiffiffiffiffi
m
U1

r
ð8:31Þ

At this radius vr ¼ 0 for all y and thus r ¼ rc is a streamline and the result is flow around a cylinder. The
stagnation points occur where the velocity is 0; if r ¼ rc this means where vy ¼ 0; that is,

vy ¼2
@c
@r

����
r�rc

¼2U1 sin y2
m sin y
r 2
c

¼ 0: \ 22U1 sin y ¼ 0 ð8:32Þ

Thus, two stagnation points occur at y ¼ 0– and 180–. The streamline pattern would appear as in the
sketch of Fig. 8.9. The circular streamline represents the cylinder, which is typically a solid, and hence
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our interest is in the flow outside the circle. For a real flow, there would be a separated region on the rear
of the cylinder but the flow over the front part (perhaps over the whole front half, depending on the
Reynolds number) could be approximated by the potential flow shown in the sketch. The velocity that
exists outside the thin boundary layer that would be present on a real cylinder would be approximated as
the velocity on the cylinder of the potential flow, i.e., it would be given by

vy ¼22U1 sin y ð8:33Þ
The pressure that would exist on the cylinder’s surface would be found by applying Bernoulli’s equation
between the stagnation point where the pressure is p0 and V ¼ 0 and some general point at rc and y:

pc ¼ p02r
v 2
y

2
ð8:34Þ

y

x

r

rc

u

Figure 8.9 Potential flow around a circular cylinder. (The dashed lines are lines of constant f.)

This pressure would approximate the actual pressure for high-Reynolds number flows up to separation.
For low-Reynolds number flows, say below Re< 50, viscous effects are not confined to a thin boundary
layer so potential flow does not approximate the real flow.

To create flow around a rotating cylinder, as in Fig. 8.10, add a vortex to the stream function of
Eq. (8.29) (use the cylinder’s radius of Eq. (8.31)):

cðr; yÞ ¼ U1y2 r 2
c U1

sin y
r

þ G
2p

ln r ð8:35Þ
recognizing that the cylinder’s radius remains unchanged since a vortex does not effect vr. The
stagnation points change, however, and are located by letting vy ¼ 0 on r ¼ rc:

vy ¼ �@c
@r

����
r¼rc

¼ �U1 sin y2 r 2
c U1

sin y
r2c

2
G

2prc
¼ 0 ð8:36Þ

This locates the stagnation points at

y ¼ sin21
2G

4prcU1
ð8:37Þ

If G > 4prcU1, Eq. (8.37) is not valid (this would give sin yj j41) so the stagnation point exists off the
cylinder as sketched in Fig. 8.10(b). The angle y ¼ 270o and the radius are found by setting the velocity
components equal to 0. Problems will illustrate.
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(a) < 4 U rc (b) > 4 U rc

x

y

rcx

y

rc

Figure 8.10 Flow around a rotating cylinder.

The pressure on the surface of the rotating cylinder using Bernoulli’s equation is found to be

pc ¼ p02r
v 2
c

2
¼ p02r

U 21
2

2 sin yþ G
2prcU1

� �2
ð8:38Þ

If this is integrated around the surface of the cylinder, the component in the flow direction, the drag,
would be 0 and the component normal to the flow direction, the lift, would be

FL ¼
Z2p
0

pc sin yrc dy ¼ rU1G ð8:39Þ

It turns out that this expression for the lift is applicable for all cylinders including the airfoil. It is known
as the Kutta–Joukowski theorem; it is exact for potential flows and is an approximation for real flows.

EXAMPLE 8.8 A 20-cm-diameter cylinder rotates clockwise at 200 rpm in an atmospheric air stream flowing
at 10 m=s. Locate any stagnation points and find the minimum pressure.

Solution: First, let us find the circulation. It is G ¼ H
L V·ds, the velocity rcOmultiplied by 2prc; recognizing

that V is in the direction of ds on the cylinder’s surface:

G ¼ 2pr 2
c O ¼ 2p · 0:12 · ð200 · 2p=60Þ ¼ 1:318m2=s

This is less than 4prcU1 ¼ 12:57m2=s so the two stagnation points are on the cylinder at

y ¼ sin21
2G

4prcU1
¼ sin21

21:318

4p · 0:1 · 10
¼26– and 186–

The minimum pressure exists at the very top of the cylinder (Fig. 8.10 and Eq. (8.38)), so let us apply Bernoulli’s

equation between the free stream and the point on the top where y ¼ 90–:

pc ¼ =p1 þ r
U 21
2

2r
U 21
2

2 sin yþ G
2prcU1

� �2
¼ 0þ 1:2 ·

102

2
12 2 sin 90– þ 1:318

2p · 0:1 · 10

� �2" #
¼2233 Pa

using r ¼ 1.2 kg=m3 for atmospheric air. (If the temperature is not given, assume standard conditions.)

8.5 BOUNDARY-LAYER FLOW

8.5.1 General Information

Undoubtedly, the identification of a boundary layer resulted from interest in the airfoil. The observation
that for a high-Reynolds number flow all the viscous effects can be confined to a thin layer of fluid near
the surface gave rise to boundary-layer theory. Outside the boundary layer the fluid acts as an inviscid
fluid since viscous effects are negligible. So, the potential flow theory of the previous section provides the
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velocity just outside the boundary layer and the pressure at the surface. In this section, we will provide
both the integral and the differential equations needed to solve for the velocity distribution. But, since
those equations are difficult to solve for curved surfaces, we will restrict our study to flow on a flat plate
with zero pressure gradient.

The outer edge of a boundary layer cannot be observed so we arbitrarily assign its thickness dðxÞ; as
shown in Fig. 8.11, to be the locus of points where the velocity is 99 percent of the free-stream velocity
U(x) (the velocity at the surface from the inviscid flow solution). Recall also that the pressure at the
surface is not influenced by the presence of the thin boundary layer so it is the pressure on the surface
from the inviscid flow. Note that the xy-coordinate system is oriented so that the x-coordinate is along
the surface; this is done for the boundary-layer equations and is possible because the boundary layer is so
thin that curvature terms do not appear in the describing equations.

Edge of
boundary layer

(x)

y

x
x

y

u(x)

Inviscid flow
velocity distribution

Boundary layer
velocity distribution

y

Figure 8.11 A boundary layer.

A boundary layer is laminar near the leading edge or near a stagnation point. It undergoes transition
at xT to a turbulent flow if there is sufficient length, as shown in Fig. 8.12. This transition occurs when
the critical Reynolds number U1xT=n ¼ 5 · 105 on smooth rigid flat plates in a zero pressure-gradient
flow with low free-stream fluctuation intensity* and U1xT=n ¼ 3 · 105 for flow on rough flat plates or
with high free-stream fluctuation intensity (intensity of at least 0.1). The transition region from laminar
to turbulent flow is relatively short and is typically ignored so a turbulent flow is assumed to exist at the
location of the first burst.

Laminar
flow

First burst
appears

Burst rate
is const

Turbulent
flow

Viscous wall
layer thickness

xT

u

(x)

(x)n

Figure 8.12 A boundary layer undergoing transition.

The turbulent boundary layer thickens more rapidly than a laminar boundary layer and contains
significantly more momentum (if it has the same thickness), as observed from a sketch of the velocity
profiles in Fig. 8.13. It also has a much greater slope at the wall resulting in a much larger wall shear
stress. The instantaneous turbulent boundary layer varies randomly with time and position and can be
20 percent thicker or 60 percent thinner at any position at an instant in time or at any time at a given
position. So, we usually sketch a time-average boundary-layer thickness. The viscous wall layer with
thickness dn in which the viscous effects are thought to be concentrated in a turbulent boundary layer,
is quite thin when compared with the boundary-layer thickness, as sketched.

It should be kept in mind that a turbulent boundary layer is very thin for most applications. On a
flat plate with U1 ¼ 5m=s the boundary layer would be about 7 cm thick after 4 m. If this were drawn to

* Fluctuation intensity is
ffiffiffiffi

uu02

p
=U1 [see Eq. (7.67)].
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Figure 8.13 Laminar and turbulent boundary-layer profiles.

scale, the fact that the boundary layer is very thin would be quite apparent. Because the boundary layer
is so thin and the velocity varies from 0 at the wall to U(x) at the edge of the boundary layer, it is possible
to approximate the velocity profile in the boundary layer by assuming a parabolic or cubic profile for a
laminar layer and a power-law profile for a turbulent layer. With the velocity profile assumed, the
integral equations, which follow, give the quantities of interest.

8.5.2 The Integral Equations

An infinitesimal control volume of thickness dx is shown in Fig. 8.14 with mass fluxes in (b) and
momentum fluxes in (d ). The continuity equation provides the mass flux _mmtop that crosses into the
control volume through the top; it is

_mmtop ¼ _mmout2 _mmin ¼ @

@x

Zd
0

ru dy

0B@
1CAdx ð8:40Þ

The x-component momentum equation (Newton’s second law) is written asX
Fx ¼ m _oomout2m _oomin2m _oomtop ð8:41Þ

which becomes

2t0 dx2d dp ¼ @

@x

Zd
0

ru2 dy

0B@
1CAdx2UðxÞ @

@x

Zd
0

ru dy

0B@
1CAdx ð8:42Þ

dx

+ d

U(x)

(a) Control volume

(c) Forces

( + d /2)d

0dx

(b) Mass flux

(d) Momentum flux

m =
0

.
in

mtop
.

m =
0

.
out +

0

mom =in
.

0

momtop
.

mom = +
0

.
out

0

udy

u2dy

u2dy u2dydx

udy

( + d )( + d )

udy dx
x

xp p p

p p

Figure 8.14 The infinitesimal control volume for a boundary layer.
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where we have neglected* p dd and dp dd since they are of smaller order than the remaining terms; we also
used m _oomtop ¼ UðxÞ _mmtop: Divide by (2dx) and obtain the von Karman integral equation:

t0 þ d
dp

dx
¼ rUðxÞ d

dx

Zd
0

u dy2r
d

dx

Zd
0

u2 dy ð8:43Þ

Ordinary derivatives have been used since after the integration only a function of x remains (d is a
function of x). Also, the density r is assumed constant over the boundary layer.

For flow on a flat plate with zero pressure gradient, i.e., UðxÞ ¼ U1 and @p=@x ¼ 0; Eq. (8.43) can be
put in the simplified form

t0 ¼ r
d

dx

Zd
0

uðU12uÞdy ð8:44Þ

If a velocity profile u(x, y) is assumed for a particular flow, Eq. (8.44) along with t0 ¼ m@u=@yjy¼0 allows
both d(x) and t0(x) to be determined.

Two additional lengths are used in the study of boundary layers. They are the displacement thickness
dd and the momentum thickness y defined by

dd ¼ 1

U

Zd
0

ðU2uÞdy ð8:45Þ

y ¼ 1

U2

Zd
0

uðU2uÞdy ð8:47Þ

The displacement thickness is the distance the streamline outside the boundary layer is displaced because
of the slower moving fluid inside the boundary layer. The momentum thickness is the thickness of a fluid
layer with velocity U that possesses the momentum lost due to viscous effects; it is often used as the
characteristic length for turbulent boundary-layer studies. Note that Eq. (8.44) can be written as

t0 ¼ rU 2
1
dy
dx

ð8:48Þ

8.5.3 Laminar and Turbulent Boundary Layers

The boundary conditions that must be met for the velocity profile in a boundary layer on a flat plate with
a zero pressure gradient are

u ¼ 0 at y ¼ 0
u ¼ U1 at y ¼ d

@u

@y
¼ 0 at y ¼ d

ð8:49Þ

Laminar boundary layers
For a laminar boundary layer, we can either solve the x-component Navier–Stokes equation or we can
assume a profile such as a parabola. Since the boundary layer is so thin, an assumed profile gives rather
good results. Let us assume the parabolic profile

u

U1
¼ Aþ Byþ Cy2 ð8:50Þ

* p dd is small since we assume d to be small and dd is then an order smaller.
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The above three boundary conditions require

0 ¼ A

1 ¼ Aþ Bdþ Cd2

0 ¼ Bþ 2Cd

ð8:51Þ

the solution of which is

A ¼ 0 B ¼ 2

d
C ¼ � 1

d2
ð8:52Þ

resulting in the laminar-flow velocity profile

u

U1
¼ 2

y

d
� y2

d2
ð8:53Þ

Substitute this profile into the integral equation (8.44) and integrate:

t0 ¼ d

dx

Zd
0

rU 2
1

2y

d
2
y2

d2

{ !
12

2y

d
þ y2

d2

{ !
dy ¼ 2

15
rU 2

1
dd
dx

ð8:54Þ

The wall shear stress is also given by

t0 ¼ m
@u

@y

����
y¼0

¼ mU1
2

d
ð8:55Þ

Equate the two expressions for t0 above to obtain

d dd ¼ 15n
U1

dx ð8:56Þ

Integrate the above with d ¼ 0 at x ¼ 0 and find the expression for dðxÞ

dðxÞ ¼ 5:48

ffiffiffiffiffi
nx
U1

r
ð8:57Þ

This is about 10 percent higher than the more accurate solution of 5
ffiffiffiffiffiffiffiffiffi
nx=U1

p
found by solving the

Navier–Stokes equation in the next Sec. 8.5.4.
The wall shear stress is found by substituting Eq. (8.57) into Eq. (8.55) and is

t0ðxÞ ¼ 0:365rU 2
1

ffiffiffiffiffiffi
n

xU1

r
ð8:58Þ

The local skin friction coefficient cf is often of interest and is

cfðxÞ ¼ t0
1
2 rU

21
¼ 0:730

ffiffiffiffiffiffi
n

xU1

r
ð8:59Þ

The skin friction coefficient Cf is a dimensionless drag force and is

Cf ¼ FD
1
2 rU

21L
¼

RL
0

t0 dx

1
2 rU

21L
¼ 1:46

ffiffiffiffiffiffiffi
n

U1L

r
ð8:60Þ

The more accurate coefficients for t0, cf, and Cf are 0.332, 0.664, and 1.33, respectively, so the
assumption of a parabolic velocity profile for laminar boundary-layer flow has an error of about
10 percent.
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Turbulent boundary layers
For a turbulent boundary layer we often assume a power-law velocity profile* as we did for flow in a
pipe. It is

u

U1
¼ y

d

� �1=n
n ¼

7 Rex < 107

8 107 < Rex < 108

9 108 < Rex < 109

8<: ð8:61Þ

where Rex ¼ U1x=n: Substitute this velocity profile with n ¼ 7 into Eq. (8.44) and integrate to obtain

t0 ¼ 7

72
rU 2

1
dd
dx

ð8:62Þ

The power-law velocity profile yields t0 ¼ m @ 
uu=@y ¼ 1 at y ¼ 0 so it cannot be used at the wall. A
second expression for t0 is needed; we select the Blasius formula, given by

cf ¼ 0:046
n

U1d

� �1=4
giving t0 ¼ 0:023rU 2

1
n

U1d

� �1=4
ð8:63Þ

Combine Eqs. (8.62) and (8.63) and find

d1=4 dd ¼ 0:237
n
U1

� �1=4
dx ð8:64Þ

Assume a turbulent flow from the leading edge (the laminar portion is often quite short) and integrate
from 0 to x:

d ¼ 0:38x
n

U1x

� �1=5
Rex < 107 ð8:65Þ

Substitute this into the Blasius formula and find the local skin friction coefficient to be

cf ¼ 0:059
n

U1x

� �1=5
Rex < 107 ð8:66Þ

The skin friction coefficient becomes

Cf ¼ 0:073
n

U1L

� �1=5
Rex < 107 ð8:67Þ

The above formulae can actually be used up to Re ¼ 108 without substantial error.
If there is a significant laminar part of the boundary layer, it should be included. If transition occurs

at Recrit ¼ 5 · 105, then the skin friction coefficient should be modified as

Cf ¼ 0:073
n

U1L

� �1=5
21700

n
U1L

Rex < 107 ð8:68Þ

For a rough plate, Recrit ¼ 3 · 105 and the constant of 1700 should be replaced with 1060.
The displacement and momentum thicknesses can be evaluated using the power-law velocity profile

to be

dd ¼ 0:048x
n

U1x

� �1=5
y ¼ 0:037x

n
U1x

� �1=5 Re < 107 ð8:69Þ

* There are other more detailed and complicated methods for considering the turbulent boundary layer. They are all

empirical since there are no analytical solutions of the turbulent boundary layer.
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There are additional quantities often used in the study of turbulent boundary layers. We will
introduce two such quantities here. One is the shear velocity ut defined to be

ut ¼
ffiffiffi
t0
r

r
ð8:70Þ

It is a fictitious velocity and often appears in turbulent boundary-layer relationships. The other is the
thickness dn of the highly fluctuating viscous wall layer, displayed in Figs. 8.12 and 8.13. It is in this very
thin layer that the turbulent bursts are thought to originate. It has been related to the shear velocity
through experimental observations by

dn ¼ 5n
ut

ð8:71Þ

EXAMPLE 8.9 Atmospheric air at 20–C flows at 10 m=s over a smooth, rigid 2-m-wide, 4-m-long flat plate
aligned with the flow. How long is the laminar portion of the boundary layer? Predict the drag force on the
laminar portion on one side of the plate.

Solution: Assuming the air to free of high-intensity disturbances, use the critical Reynolds number to be
5 · 105; i.e.,

U1xT
n

¼ 5 · 105

so that

xT ¼ 5 · 105 · 1:51 · 10�5=10 ¼ 0:755m

The drag force, using Eq. (8.60) and a coefficient of 1.33 rather than the 1.46 (the coefficient of 1.33 is more

accurate as stated), is

FD ¼ 1:33

2
rU 2

1Lw
ffiffiffiffiffiffiffi
n

U1L

r

¼ 0:665 · 1:2 · 102 · 0:755 · 2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:51 · 10�5

10 · 0:755

s
¼ 0:017N

a rather small force.

EXAMPLE 8.10 Water at 20–C flows over a 2-m-long, 3-m-wide flat plate at 12 m=s. Estimate the shear
velocity, the viscous wall layer thickness, and the boundary-layer thickness at the end of the plate (assume a
turbulent layer from the leading edge). Also, predict the drag force on one side of the plate.

Solution: The Reynolds number is Re ¼ U1x=n ¼ 12 · 2=10�6 ¼ 2:4 · 107. So, with n ¼ 7 Eq. (8.66)
provides

t0 ¼ 0:059

2
rU 2

1
n

U1x

� �1=5
¼ 0:0295 · 1000 · 122 ·

10�6

12 · 2

{ !0:2

¼ 142Pa

The shear velocity is then

ut ¼
ffiffiffi
t0
r

r
¼

ffiffiffiffiffiffi
142

1000

s
¼ 0:377m=s

The viscous wall layer thickness is

dn ¼ 5n
ut

¼ 5 · 10�6

0:377
¼ 1:33 · 10�5 m

The boundary-layer thickness is, assuming a turbulent layer from the leading edge

d ¼ 0:38x
n

U1x

� �1=5
¼ 0:38 · 2 ·

10�6

12 · 2

{ !0:2

¼ 0:0254m
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The drag force on one side of the plate is

FD ¼ 0:073

2
rU 2

1Lw
n

U1L

� �1=5
¼ 0:0365 · 1000 · 122 · 2 · 3 ·

10�6

12 · 2

{ !0:2

¼ 1050N

8.5.4 Laminar Boundary-Layer Differential Equation

The laminar flow solution given in Sec. 8.5.3 was an approximate solution. In this section, we will
present a more accurate solution using the x-component Navier–Stokes equation. It is, for horizontal
plane flow (no z-variation)

u
@u

@x
þ v

@u

@y
¼2

1

r
@p

@x
þ n

@2u

@x2
þ @2u

@y2

{ !
ð8:72Þ

We can simplify this equation and actually obtain a solution. First, recall that the boundary layer is very
thin so that there is no pressure variation normal to the boundary layer, i.e., the pressure depends on x
only and it is the pressure at the wall from the potential flow solution. Since the pressure is considered
known, the unknowns in Eq. (8.72) are u and v. The continuity equation

@u

@x
þ @v

@y
¼ 0 ð8:73Þ

also relates u and v. So, we have two equations and two unknowns. Consider Figs. 8.12 and 8.13; u
changes from 0 to U1 over the very small distance d resulting in very large gradients in the y-direction,
whereas u changes quite slowly in the x-direction (holding y fixed). Consequently, we conclude that

@2u

@y2
>>

@2u

@x2
ð8:74Þ

The differential equation (8.72) can then be written as

u
@u

@x
þ v

@u

@y
¼2

1

r
dp

dx
þ n

@2u

@y2
ð8:75Þ

The two acceleration terms on the left are retained since v may be quite small but the gradient @u=@y is
quite large and hence the product is retained. Equation (8.75) is the Prandtl boundary-layer equation.

For flow on a flat plate with dp=dx ¼ 0; and in terms of the stream function c (recall that u ¼ @c=@y
and v ¼ �@c=@x), Eq. (8.75) takes the form

@c
@y

@2c
@x@y

2
@c
@x

@2c
@y2

¼ n
@3c
@y3

ð8:76Þ

If we let (trial-and-error and experience was used to find this transformation)

x ¼ x and Z ¼ y

ffiffiffiffiffi
U1
nx

r
ð8:77Þ

Eq. (8.76) becomes*

� 1

2x
@c
@Z

� �2
þ @c

@Z
@2c
@x @Z

2
@c
@x

@2c
@Z2

¼ n
@3c
@Z3

ffiffiffiffiffi
U1
nx

s
ð8:78Þ

This equation appears more formidable than Eq. (8.76), but if we let

cðx; ZÞ ¼ ffiffiffiffiffiffiffiffi
U1nx

p
FðZÞ ð8:79Þ

* Note that
@c
@y

¼ @c
@Z

@Z
@y

þ @c
@x

@x
@y

¼ @c
@Z

ffiffiffiffiffi
U1
nx

r
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and substitute this into Eq. (8.78), there results

F
d2F

dZ2
þ 2

d3F

dZ3
¼ 0 ð8:80Þ

This ordinary differential equation can be solved numerically with the appropriate boundary conditions.
They are

F ¼ F0 ¼ 0 at Z ¼ 0 and F0 ¼ 1 at large Z ð8:81Þ
which result from the velocity components

u ¼ @c
@y

¼ U1F
0ðZÞ

v ¼ � @c
@x

¼ 1

2

ffiffiffiffiffiffi
nU1
x

r
ðZF0 � FÞ

ð8:82Þ

The numerical solution to the boundary-value problem is presented in Table 8.5. The last two columns
allow the calculation of v and t0, respectively.We defined the boundary-layer thickness to be that thickness
where u ¼ 0:99U1 and we observe that this occurs at Z ¼ 5, so, from this numerical solution

d ¼ 5

ffiffiffiffiffi
nx
U1

r
ð8:83Þ

Also

@u

@y
¼ @u

@Z
@Z
@y

¼ U1F
00

ffiffiffiffiffi
U1
nx

r
ð8:84Þ

so that the wall shear stress for this boundary layer with dp=dx ¼ 0 is

t0 ¼ m
@u

@y

����
y¼0

¼ 0:332rU1

ffiffiffiffiffiffi
nU1
x

r
ð8:85Þ

The friction coefficients are

cf ¼ 0:664

ffiffiffiffiffiffi
n

U1x

r
Cf ¼ 1:33

ffiffiffiffiffiffiffi
n

U1L

r
ð8:86Þ

and the displacement and momentum thicknesses are (these require numerical integration)

dd ¼ 1:72

ffiffiffiffiffi
nx
U1

r
y ¼ 0:644

ffiffiffiffiffi
nx
U1

r
ð8:87Þ

Table 8.5 The Laminar Boundary-Layer Solution with dp/dx ¼ 0

Z ¼ y
ffiffiffiffiffiffiffiffiffi
U1=nx

p
F F0 ¼ u=U1 1

2 ðZF0 � FÞ F 00

0 0 0 0 0.3321

1 0.1656 0.3298 0.0821 0.3230

2 0.6500 0.6298 0.3005 0.2668

3 1.397 0.8461 0.5708 0.1614

4 2.306 0.9555 0.7581 0.0642

5 3.283 0.9916 0.8379 0.0159

6 4.280 0.9990 0.8572 0.0024

7 5.279 0.9999 0.8604 0.0002

8 6.279 1.000 0.8605 0.0000

CHAP. 8] EXTERNAL FLOWS 167



EXAMPLE 8.11 Air at 30–C flows over a 2-m-wide, 4-m-long flat plate with a velocity of 2 m=s and dp=dx ¼ 0:
At the end of the plate, estimate (a) the wall shear stress, (b) the maximum value of v in the boundary layer, and

(c) the flow rate through the boundary layer. Assume laminar flow over the entire length.

Solution: The Reynolds number is Re ¼ U1L=n ¼ 2 · 4=1:6 · 10�5 ¼ 5 · 105 so laminar flow is
reasonable.

(a) The wall shear stress (this requires F00at the wall) at x ¼ 4 m is

t0 ¼ 0:332rU1

ffiffiffiffiffiffi
nU1
x

r
¼ 0:332 · 1:164 · 2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6 · 10�5 · 2

4

s
¼ 0:00219Pa

(b) The maximum value of v requires the use of ðZF0 � FÞ: Its maximum value occurs at the outer edge of the
boundary layer and is 0.860. The maximum value of v is

v ¼ 1

2

ffiffiffiffiffiffi
nU1
x

r
ðZF0 � FÞ ¼ 1

2
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6 · 10�5 · 2

4

s
· 0:860 ¼ 0:0012m=s

Note the small value of v compared to U1¼ 2m=s:
(c) To find the flow rate through the boundary layer, integrate the u(y) at x ¼ 4 m

Q ¼
Zd
0

u · 2dy ¼
Z5
0

U1
dF

dZ
· 2 ·

ffiffiffiffiffi
nx
U1

r
dZ

¼ 2 · 2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6 · 10�5 · 4

2

s Z3:283
0

dF ¼ 0:0743m3=s

Solved Problems

8.1 A 20-cm-diameter sphere with specific gravity S ¼ 1.06 is dropped in 20–C water. Estimate the
terminal velocity if it is (a) smooth and (b) rough.

At terminal velocity the sphere will not be accelerating so the forces, including the buoyant force
[Eq. (2.24)], will sum as follows

W ¼FD þ FB

gsphere · volume ¼ CD ·
1

2
rAV 2 þ gwater · volume

Using gsphere ¼ Sspheregwater there results

CD ·
gwater
2g

· pR2 · V 2 ¼ ðS21Þgwater · 4

3
pR3

Substituting in the known values gives

V ¼ 8RðS � 1Þg
3CD

� �1=2
¼ 8 · 0:1 · ð1:0621Þ · 9:81

3CD

� �1=2
¼ 0:396ffiffiffiffi

CD

p

(a) For a smooth sphere, Fig. 8.2 suggests we assume for 2 · 104 , Re , 2 · 105 that CD ¼ 0:6: Then

V ¼ 0:396ffiffiffiffi
0:6

p ¼ 0:511m=s and Re ¼ VD

n
¼ 0:511 · 0:2

1026
¼ 1:02 · 105

Hence, the terminal velocity of 0.511 m=s is to be expected.

(b) For a rough sphere, Fig. 8.2 suggests that for Re> 105 we assume CD > 0.3.
Then

V ¼ 0:396ffiffiffiffi
0:3

p ¼ 0:723m=s and Re ¼ VD

n
¼ 0:723 · 0:2

1026
¼ 1:4 · 105
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This is quite close to CD ¼ 0.3 so it is an approximate value for the velocity, almost 50 percent greater

than the velocity of a smooth sphere. A golf ball is roughened for this very reason: a higher velocity over
much of its trajectory results in a greater flight distance.

8.2 Calculate the power required to move a 10-m-long, 10-cm-diameter smooth circular cylinder that
protrudes vertically from the deck of a ship at a speed of 30 kn (15.4 m=s). Then streamline the
cylinder and recalculate the power.

First, find the Reynolds number. It is

Re ¼ VD

n
¼ 15:4 · 0:1

1:6 · 10�5
¼ 9:6 · 104

The drag coefficient found using Fig. 8.2 and Table 8.1 to be

CD > 1:2 · 0:85 ¼ 1:02

The power is then

_WW ¼ FD · V ¼ 1

2
CDrV

3Aprojected

¼ 1

2
· 1:02 · 1:2 · 15:43 · p · 0:1 · 10 ¼ 7020W

For the streamlined cylinder, the drag coefficient reduces to

CD > 0:06 · 0:85 ¼ 0:051

and the power to

_WW ¼ FD · V ¼ 1

2
CDrV

3Aprojected

¼ 1

2
· 0:051 · 1:2 · 15:43 · p · 0:1 · 10 ¼ 350W

The effect of streamlining is to significantly reduce the drag coefficient.

8.3 Estimate the power required for the conventional airfoil of Example 8.2 to fly at a speed of 150
knots.

Converted to m=s, the speed is V ¼ 150 · 1:688=3:281 ¼ 77:2m=s: The power is the drag force times the
velocity. The drag coefficient from Fig. 8.7 is CD ¼ 0:3=47:6 ¼ 0:0063: The power is then

_WW ¼ FD · V ¼ 1

2
rcLV 2CD · V

¼ 1

2
· 1:2 · 2 · 15 · 77:23 · 0:0063 ¼ 52 000W or 70 hp

8.4 Show that streamlines and potential lines of an inviscid flow intersect at right angles.

If the streamlines and potential lines intersect at right angles, calculus says that the slope of a streamline

will be the negative reciprocal of the potential line. We know that a velocity vector V is tangent to a
streamline so that the slope of the streamline would be given by (Fig. 8.15)

v

u
¼ dy

dx

The slope of a potential line is found from

df ¼ @f
@x

dxþ @f
@y

dy ¼ 0

so that for the potential line

dy

dx
¼2

@f=@x
@f=@y

¼ � u

v

V

u

= const

Figure 8.15
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Therefore, we see that the slope of the potential line is negative the reciprocal of the slope of the

streamline. Hence, the potential line intersects the streamline at a right angle.

8.5 A tornado is approximated as an irrotational vortex (except near its ‘‘eye’’ where it rotates as
a rigid body). Estimate the force tending to lift the flat 5 m · 10 m roof off a building (the
pressure inside the building is assumed to be atmospheric, i.e., 0) if the pressure on the roof is
approximated by the pressure at r ¼ 4 m. The velocity at a distance of 60 m from the center
of the building is observed to be 8 m=s.

The circulation is found from Eq. (8.27) to be

G ¼22prvy ¼22p · 60 · 8 ¼23320m2=s

The velocity at r ¼ 4 m is then

vy ¼2
G
2pr

¼2ð23320Þ
2p · 4

¼ 132m=s

The pressure using Bernoulli’s equation is found to be, assuming

V1 ¼ 0 and p1 ¼ 0;

pþ V 2

2
¼ =p1 þ =V 21

2
r ¼ 0: \ p ¼ � 1322

2
· 1:2 ¼ �10 500Pa

The lifting force is then

F ¼ pA ¼ 10 500 · 5 · 10 ¼ 520 000N

8.6 A 40-cm-diameter cylinder rotates clockwise at 800 rpm in an atmospheric air stream flowing at 8
m=s. Locate any stagnation points and find the minimum pressure.

The circulation G ¼ H
L V·ds is the velocity rcO multiplied by 2prc since the constant velocity V is

tangent to the cylinder’s surface. The circulation is calculated to be

G ¼ 2pr 2
c O ¼ 2p · 0:22 · ð800 · 2p=60Þ ¼ 21:1m2=s

This is slightly greater than 4prcU1 ¼ 20:1m2=s so a single stagnation point is off the cylinder at

y ¼ �90– [Fig. 8.10(b)].
The minimum pressure exists at the very top of the cylinder (Fig. 8.10), so let us apply Bernoulli’s
equation (Eq. (8.38)) between the free stream where p ¼ 0 and the point on the top where y ¼ 90–:

pc ¼ =p1 þ r
U21
2

� r
U21
2

2 sin yþ G
2prcU1

� �2
¼ 0þ 1:2 ·

82

2
12 2 sin 90– þ 21:1

2p · 0:2 · 8

� �2" #
¼ �607Pa

using r ¼ 1.2 kg=m3 assuming atmospheric air.

8.7 Move the U(x) under the integral symbol and rewrite the von Karman integral equation (8.43).

We differentiate a product: ðfgÞ0 ¼ fg0 þ gf 0: For the present equation, we let gðxÞ ¼ RdðxÞ
0 ru dy (the y

dependency integrates out) so that

d

dx
UðxÞ

Zd
0

ru dy ¼ UðxÞ d

dx

Zd
0

ru dyþ
Zd
0

ru dy

264
375 dUðxÞ

dx

We can move U(x) under the integral since it is a function of x and the integration is on y so that Eq.
(8.43) takes the form
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t0ðxÞ ¼2d
dp

dx
þ d

dx
UðxÞ

Zd
0

ru dy2
Zd
0

ru dy

264
375 dUðxÞ

dx
2

d

dx

Zd
0

ru2 dy

¼2d
dp

dx
þ r

d

dx

Zd
0

uðU2uÞdy2r
dU

dx

Zd
0

u dy

This is an equivalent form of the von Karman integral equation. The density r is assumed constant in
the thin boundary layer.

8.8 Estimate the drag force on one side of the flat plate of Example 8.9: (a) Assuming turbulent flow
from the leading edge. (b) Including the laminar portion of the boundary layer.

(a) Assuming a turbulent flow from the leading edge, the boundary-layer thickness after 4 m is given by
Eq. (8.65) and is

d ¼ 0:38x
n

U1x

� �1=5
¼ 0:38 · 4 ·

1:51 · 10�5

10 · 4

{ !0:2

¼ 0:0789m

The drag force on one side is then

1

2
CfrU

2
1Lw ¼ 0:073

2

1:51 · 10�5

10 · 4

{ !1=5

· 1:2 · 102 · 4 · 2 ¼ 1:82N

Check the Reynolds number: Re ¼ 10 · 4=1:51 · 10�5 ¼ 2:65 · 106: \ OK:

(b) First, the boundary layers are sketched with the appropriate distances in Fig. 8.16. The laminar

boundary-layer length is found using Recrit ¼ 5 · 105:

xL ¼ Re · n
U1

¼ 5 · 105 · 1:51 · 10�5

10
¼ 0:755m

x

xL

xT

Laminar bl Turbulent bl

Figure 8.16

The laminar boundary-layer thickness at xL is, Eq. (8.57),

d ¼ 5

ffiffiffiffiffi
xn
U1

r
¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:755 · 1:51 · 1025

10

s
¼ 0:00534m

The location of the fictitious origin of the turbulent boundary layer is found by calculating x0 in
Fig. 8.16. It is found using Eq. (8.65) to be

x04=5 ¼ d
0:38

U1
n

� �1=5
¼ 0:00534

0:38

10

1:51 · 1025

� �1=5
: \ x0 ¼ 0:205m

The distance xT is then xT ¼ L2xL þ x0 ¼ 420:755þ 0:205 ¼ 3:45m: The boundary-layer thickness
at the end of the plate is

d ¼ 0:38x
n

U1x

� �1=5
¼ 0:38 · 3:45 ·

1:51 · 1025

10 · 3:45

{ !0:2

¼ 0:070m
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The drag force using Eq. (8.68) is found to be

1

2
CfrU

2
1Lw ¼ 1

2
0:073

n
U1L

� �1=5
21700

n
U1L

" #
rU 2

1Lw

¼ 0:073

2

1:51 · 1025

10 · 4

{ !0:2

2
1700

2

1:51 · 1025

10 · 4

" #
· 1:2 · 102 · 4 · 2 ¼ 1:51N

The drag force in (a) is about 20 percent too high. The laminar portion with its smaller shear stress

reduces the overall drag force for short distances.

8.9 Verify that the velocity components are in fact given by Eq. (8.82) when solving the x-component
Navier–Stokes equation for a laminar boundary-layer flow.

The x-component of the velocity is given by (use Eqs. (8.77) and (8.79))

u ¼ @c
@y

¼ @c
@x

@x
@y

þ @c
@Z

@Z
@y

¼ ffiffiffiffiffiffiffiffi
U1nx

p
F0ðZÞ ·

ffiffiffiffiffi
U1
nx

s
¼ U1F

0ðZÞ

The y-component of the velocity is (use Eqs. (8.77) and (8.79))

v ¼2
@c
@x

¼2
@c
@x

@x
@x

2
@c
@Z

@Z
@x

¼2
1

2

ffiffiffiffiffiffi
nU1
x

r
FðZÞ2 ffiffiffiffiffiffiffiffi

U1nx
p

F0ðZÞ 2
1

2
x23

=2y

ffiffiffiffiffi
U1
n

r{ !

¼2
1

2

ffiffiffiffiffiffi
nU1
x

r
FðZÞ þ 1

2

ffiffiffiffiffiffiffiffi
U1nx

p
y�1

ffiffiffiffiffi
U1
nx

r
F0ðZÞ ¼ 1

2

ffiffiffiffiffiffi
nU1
x

r
ðZF02FÞ

where we have used x and j interchangeably since they are equal, as defined.

8.10 Using the x-component Navier–Stokes equation (8.72), determine an additional boundary
condition for laminar flow over a flat plate with zero pressure gradient.

At the wall u ¼ v ¼ 0 so that the left-hand side of Eq. (8.72) is 0 for y ¼ 0. Also, on the wall since
u ¼ 0, then @u=@x ¼ 0 and @2u=@x2 ¼ 0: So, on the wall where y ¼ 0, Eq. (8.72) provides

u
@u

@x
þ v

@u

@y
¼ � 1

r
@r
@x

þ v
@2u

@x2
þ @2u

@y2

{ !
or 0 ¼ @2u

@y2

Therefore, in addition to the conditions of Eq. (8.49), we have the above condition at the wall. This

condition could not be met with the parabolic profile of Sec. 8.5.3, but if a cubic profile were assumed,
this condition would be required. If a straight-line profile were assumed, a rather poor assumption, only
the first two conditions of Eq. (8.49) would be used.

Supplementary Problems

Flow Around Blunt Bodies

8.11 Wind is blowing parallel to the long side of a large building with a flat roof. Sketch the expected flow looking

down on the building from the top and looking at the building from the side. Show the expected regions of
separation and reattachment points.

8.12 One semitruck has a wind deflector on top of the tractor and another one does not. Sketch a side view of the
airflow for both semitrucks showing expected regions of separation, boundary layers, points of

reattachment, and wakes.

8.13 Sketch the expected flow around a sphere if (a) Re ¼ 4, (b) Re ¼ 4000, and (c) 40 000. Identify the separated
region, the wake, any laminar or turbulent boundary layers, and the free stream.
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8.14 Describe the flow to be expected around each of the following and estimate the drag coefficient.

(a) Air at 10–C flowing around a 4.1-cm-diameter golf ball traveling at 35 m=s.
(b) A 2-mm-diameter hailstone traveling through air at 210–C at a speed of 5 m=s.

(c) A 1-mm-diameter grain of sand falling in stagnant 20–C water at 1 m=s.
(d) Air at 20–C flowing over an 8-cm-diamter sphere at a speed of 1 m=s.
(e) Air at 0–C moving past a 10-cm-diameter, 4-m-high pole at 2 m=s.

8.15 A 2-cm-diameter sphere moves at Re ¼ 10 (separation is just occurring). What is its speed if it is submerged

in (a) water at 10–C, (b) air at 40–C and 400 kPa, and (c) water at 90–C.

8.16 Water at 10–C flows by a 2-mm-diameter wire with a speed of 2 m=s. Sketch the expected flow showing the
separated region, the wake, the boundary layer, and the free stream, should any of these exist.

8.17 A fluid flows by a flat circular disk with velocity V normal to the disk at Re . 103. Estimate the drag

coefficient if (a) the pressure is assumed constant over the face of the disk and (b) if a parabolic pressure
profile exists on the front of the disk. Assume the pressure is 0 on the backside. Explain the results in light of
the drag coefficient of Table 8.1.

8.18 Atmospheric air at 20–C is flowing at 10 m=s. Calculate the drag force on (a) a 10-cm-diameter smooth
sphere, (b) a 10-cm-diameter, 80-cm-long smooth cylinder with free ends, (c) a 10-cm-diameter disk, and (d) a
10-cm-wide, 20-cm-long rectangular plate. The velocity vector is normal to all objects.

8.19 A 220-cm-square sign is impacted straight on by a 50 m=s 10–C wind. Estimate the force on the sign. If the

sign is held by a single 3-m-high post imbedded in concrete, what moment would exist at the base of the post?

8.20 A 20-cm-diameter smooth sphere is rigged with a strain gauge calibrated to measure the force on the sphere.
Estimate the wind speed in 20–C air if the gauge measures (a) 4 N and (b) 0.5 N.

8.21 An automobile travels on a horizontal section of highway at sea level where the temperature is 20–C.
Estimate the horsepower needed for a speed of 100 km/h. Make any needed assumptions.

8.22 Estimate the fuel savings for one year on a semitruck that travels 300 000 mi if fuel costs $2.50/gal if the
truck installs both a deflector and a gap seal. Without the deflector and seal the truck averages 4 mi/gal. If an
owner desires a three-year payback, how much could an owner pay for the deflector and seal?

8.23 A bike rider expends a certain amount of energy to travel 12 m=s while in the upright position. How fast will
the rider travel with the same amount of energy expenditure if the bent over position is elected? Assume the
rider’s projected area is reduced 25 percent in the bent-over position.

8.24 Estimate the speed of fall of a 6-ft man with arms and legs outstretched. Make reasonable assumptions. Now

give the man a 6-m-diameter parachute and calculate his speed of descent, again making reasonable
assumptions.

8.25 A blue spruce pine tree has the shape of a triangle which is 15 cm off the ground. The triangle has a
maximum diameter of 6 m and is 10 m tall. Estimate the drag on the tree if it is exposed to a 25 m=s wind.

Use CD ¼ 0.4 in your calculations.

Vortex Shedding, Cavitation, and Added Mass

8.26 Vortices are observed downstream of a 2-cm-diameter cylinder in 20–C atmospheric air. How far are the

shed vortices apart downstream of the cylinder for an air speed of 5 m=s?
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8.27 A sensor is positioned downstream a short distance from a 4-cm-diameter cylinder in a 20–C atmospheric

airflow. It senses vortex shedding at a frequency of 0.16 Hz. Estimate the airspeed.

8.28 A 10–C wind blows over 6-mm-diameter high-tension wires. Determine the range of velocities over which
vortex shedding occurs. Could the shedding frequency be heard? Humans with good hearing can hear
frequencies between 20 and 20 000 Hz. (Such vortex shedding when ice coats the wires can cause ‘‘galloping’’

where the wires actually oscillate from the usual catenaries to inverted catenaries resulting in wire failure.)

8.29 What drag force acts on a 76-cm-diameter sphere towed 2 m below the surface of water at 20 m=s?

8.30 A 2.2-m-long hydrofoil with chord length 50 cm operates 40 cm below the water’s surface with an angle of
attack of 4–. For a speed of 15 m=s determine the drag and lift and decide if cavitation exists on the

hydrofoil.

8.31 A 40-cm-diameter sphere is released from rest under water. If it weighs 380 N in air, what is its initial
acceleration under water if the added mass is neglected? If the added mass is included?

8.32 A 20-cm-diameter 4-m-long horizontal cylinder is released from rest under water. If it weighs 1500 N in air,

what is its initial acceleration under water if the added mass is neglected? If the added mass is included?

Lift and Drag on Airfoils

8.33 Sketch the flow field around an airfoil that has stalled. Show the boundary layers, the separated region, and

the wake.

8.34 Estimate the takeoff speed for an aircraft with conventional airfoils if the aircraft with payload weighs
120 000 N and the effective wing area is 20 m2 assuming a temperature of (a) 30–C, (b) 10–C, and (c) 220–C.
An angle of attack at takeoff of 8o is desired.

8.35 Rework Prob. 8.34 but assume a temperature of 20–C at a pressure of (a) 100 kPa, (b) 80 kPa, and (c) 60 kPa.

8.36 A 2000-kg airplane is designed to carry a 4000-N payload when cruising near sea level. For conventional
airfoils with an effective wing area of 25 m2, estimate the takeoff speed for an angle of attack of 10–, the stall
speed, and the power required (the airfoils account for approximately 40 percent of the drag) for a cruising
speed of 80 m=s at an elevation of 2000 m.

8.37 If the aircraft of Prob. 8.36 were to fly at 10 km, what power would be required?

8.38 The aircraft of Prob. 8.36 is to land with the airfoils at an angle of attack near stall. Estimate the minimum
landing speed for no slotted flaps, flaps with one slot, and flaps with two slots. Assume the effective wing

area is the same for all three situations.

Potential Flow

8.39 Show that the difference of the stream functions between two streamlines is the flow rate q per unit depth
between the two streamlines, i.e., q ¼ c2 � c1.

8.40 Show that each of the following represents an incompressible plane flow and find the associated stream

function or potential function.
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(a) f ¼ 10y

(b) c ¼ 20xy
(c) f ¼ 10y (cylindrical coordinates)
(d) c ¼ ð20=rÞsin y (cylindrical coordinates)

8.41 Does the velocity field V ¼ ðxiþ yjÞ=ðx2 þ y2Þ represent an incompressible flow? If so, find the velocity
potential f and stream function c.

8.42 Show that the flow represented by c ¼ 10 lnðx2 þ y2Þ m2=s is an incompressible flow. Also,

(a) Find the velocity potential f.
(b) Find the pressure along the negative x-axis if atmospheric air is flowing and p ¼ 0 at x ¼ �1.
(c) Find the x-component of the acceleration at (24, 0).

8.43 Show that the flow represented by f ¼ 20 ln rm2=s is an incompressible flow. Also,

(a) Find the stream function c.
(b) Find the pressure along the negative x-axis if water is flowing and p ¼ 40 kPa at x ¼ �1.
(c) Find the acceleration at rectangular coordinates (22, 0).

8.44 Show that the flow represented by f ¼ 10r cos yþ 40 ln rm2=s is an incompressible flow. Also,

(a) Find the stream function c.
(b) Find the pressure along the negative x-axis if water is flowing and p ¼ 100 kPa at x ¼ �1.
(c) Find the acceleration at rectangular coordinates (22, 0).

(d) Locate any stagnation points.

8.45 Superimpose a uniform flow parallel to the x-axis of 10 m=s and a source at the origin of strength
q ¼ 10p m2/s.

(a) Write the velocity potential f and stream function c.
(b) Locate any stagnation points.

(c) Sketch the body formed by the streamline that separates the source flow from the uniform flow.
(d) Locate the positive y-intercept of the body of (c).
(e) Determine the thickness of the body of (c) at x ¼ �1.

8.46 A uniform flow V ¼ 20im=s is superimposed on a source of strength 20p m2/s and a sink of equal strength

located at (22 m, 0) and (2 m, 0), respectively. The resulting body formed by the appropriate streamline is a
Rankine oval. Determine the length and thickness of the oval. Find the velocity at (0, 0).

8.47 A source near a wall is created by the method of images: superimpose two equal strength sources of strength

4p m2=s at (2 m, 0) and (22 m, 0), respectively. Sketch the flow showing the wall and find the velocity
distribution along the wall.

8.48 Superimpose a velocity of V ¼ 20im=s on the flow of Prob. 8.47. Locate any stagnation points.

8.49 A uniform flow V ¼ 10im=s is superimposed on a doublet with strength 40 m3=s. Find:

(a) The radius of the cylinder that is formed.
(b) The velocity distribution vyðyÞ on the cylinder.

(c) The locations of the stagnation points.
(d) The minimum pressure on the cylinder if the pressure at the stagnation point is 200 kPa. Water is

flowing.

8.50 Superimpose a uniform flow V ¼ 10im=s, a doublet m ¼ 40 m3/s, and a vortex. Locate any stagnation points

and find the minimum pressure on the cylinder if the pressure of the standard atmospheric air is zero at a
large distance from the cylinder. The strength of the vortex is (a) G ¼ 40p m2=s, (b) G ¼ 80p m2/s, and
(c) G ¼ 120p m2/s.
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8.51 Assume an actual flow can be modeled with the flow of Prob. 8.49 on the front half of the cylinder and that

the pressure on the back half is equal to the minimum pressure on the cylinder (the flow is assumed to
separate from the cylinder on the back half). Calculate the resulting drag coefficient.

Boundary Layers

8.52 A turbulent boundary layer is studied in a zero pressure-gradient flow on a flat plate in a laboratory.

Atmospheric air at 20–C flows over the plate at 10 m=s. How far from the leading edge can turbulence be
expected (a) if the free-stream fluctuation intensity is low? (b) If the free-stream fluctuation intensity is high?

8.53 Respond to Prob. 8.52 if 20–C water is the fluid.

8.54 A laminar boundary layer is to be studied in the laboratory. To obtain a sufficiently thick layer, a 2-m-long

laminar portion is desired. What speed should be used if (a) a water channel is selected? (b) If a wind tunnel is
selected? It is assumed that the fluctuation intensity can be controlled at a sufficiently low level.

8.55 If a differential equation for the boundary layer is to be solved on the front part of a cylinder, the velocity U
at the outer edge of the boundary layer is needed as is the pressure p in the boundary layer. State U and p for

the circular cylinder of Prob. 8.49.

8.56 In Fig. 8.13 laminar and turbulent velocity profiles are sketched for the same boundary-layer thickness.
Calculate the percentage increase of the momentum flux for a turbulent layer assuming the power-law profile
u=U1 ¼ y=d

� �1=7 compared to a laminar layer assuming the parabolic profile u=U1 ¼ 2y=d � ðy=dÞ2.

8.57 Show that Eq. (8.43) follows from Eq. (8.41).

8.58 Show that the von Karman integral equation of Solved Problem 8.7 can be written in terms of the
momentum and displacement thicknesses as

t0 ¼ r
d

dx
ðyU2Þ þ rddU

dU

dx

where we have differentiated Bernoulli’s equation to obtain

dp

dx
¼ �rUdU

dx
¼ � r

d
dU

dx

Zd
0

Udy

8.59 Assume a linear velocity profile in a laminar boundary layer on a flat plate with a zero pressure gradient.

Find:

(a) d(x). Compare with the more exact solution and compute the percentage error.

(b) t0ðxÞ.
(c) v at y ¼ d and x ¼ 2 m.
(d) The drag force if the plate is 2-m wide and 4-m long.

8.60 Assume a sinusoidal velocity profile in a laminar boundary layer on a flat plate with a zero pressure gradient

using 20–C water with U1 ¼ 1 m=s: Find:

(a) d(x). Compare with the more exact solution and compute the percentage error.

(b) t0ðxÞ.
(c) The drag force if the plate is 2-m wide and 4-m long.
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8.61 Assume a cubic velocity profile in a laminar boundary layer on a flat plate with a zero pressure gradient. Use

@2u=@y2
���
y¼ 0

¼ 0 as an additional boundary condition (Eq. (8.75)). Find:

(a) d(x). Compare with the more exact solution and compute the percentage error.

(b) t0ðxÞ.
(c) The drag force if the plate is 2-m wide and 4-m long.

8.62 Sketch to scale a relatively thick laminar boundary layer over a 10-m length for the flow of 20–C water on a
flat plate with zero pressure gradient for U1 ¼ 1 m=s. Let about 15 cm represent the 10-m length of the plate.

Assume a laminar layer over the entire 10-m length.

8.63 If the walls in a wind tunnel are parallel, the flow will accelerate due to the boundary layers on each of the
walls. If a wind tunnel is square, how should one of the walls be displaced outward for a zero pressure

gradient to exist?

8.64 A streamline in 20–C water is 2 mm from a flat plate at the leading edge. Using the parabolic velocity profile
of Sec. 8.5.3 with U1 ¼ 1 m=s, predict how far from the plate the streamline is when x ¼ 1 m.

8.65 Show that the power-law form for the velocity profile in a turbulent flow is not a good approximation at the

wall or at the outer edge of the boundary layer.

8.66 Show that Eq. (8.62) follows from Eq. (8.44).

8.67 Air at 20–C flows over a 3-m long and 2-m wide flat plate at 16 m=s. Assume a turbulent flow from the
leading edge (a trip wire at the leading edge can be used to cause the turbulence) and calculate:

(a) d at x ¼ 3 m.
(b) t0 at x ¼ 3 m.

(c) The drag force on one side of the plate.
(d) The displacement and momentum thicknesses at x ¼ 3 m.
(e) The shear velocity and the viscous wall-layer thickness.

8.68 Water at 20–C flows over a 3-m long and 2-m wide flat plate at 3 m=s. Assume a turbulent flow from the

leading edge (a trip wire at the leading edge can be used to cause the turbulence) and calculate:

(a) d at x ¼ 3 m.

(b) t0 at x ¼ 3 m.
(c) The drag force on one side of the plate.
(d) The displacement and momentum thicknesses at x ¼ 3 m.

(e) The shear velocity and the viscous wall-layer thickness.

8.69 Air at 20–C flows over a 2-m-long and 3-m-wide flat plate at 16 m=s. Include the laminar portion near the
leading edge (Fig. 8.16) assuming low fluctuations and a smooth plate and calculate:

(a) d at x ¼ 3 m.
(b) The drag force on one side of the plate.

8.70 Water at 20–C flows over a 2-m-long and 3-m-wide flat plate at 3 m=s. Include the laminar portion near the

leading edge (Fig. 8.16) assuming low fluctuations and a smooth plate and calculate:

(a) d at x ¼ 3 m.

(b) The drag force on one side of the plate.

8.71 Atmospheric air blows in toward the shore at a beach in Florida. It is assumed that a boundary layer begins
to develop about 12 km from shore. If the wind speed averages 18 m=s, estimate the thickness of the

boundary layer and the shear stress on the surface of the water near the shore.
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8.72 A long cigar-shaped dirigible is proposed to take rich people on cruises. It is proposed to be 1000 m long and

150 m in diameter. How much horsepower is needed to move the dirigible through sea-level air at 12 m=s if
the drag on the front and rear is neglected.

8.73 Show that Eq. (8.80) follows from Eq. (8.78).

8.74 Solve Eq. (8.80) with boundary conditions given by Eq. (8.81) using an available software program such as

MATLAB.

8.75 A laminar boundary layer of 20–C atmospheric air moving at 2 m=s exists on one side of a 2-m-wide,
3-m-long flat plate. At x ¼ 3 m find:

(a) The boundary-layer thickness.
(b) The wall shear stress.

(c) The maximum y-component of velocity.
(d) The drag force.
(e) The displacement and momentum thicknesses.

(f) The flow rate through the boundary layer.

8.76 A laminar boundary layer of 20–C water moving at 0.8 m=s exists on one side of a 2-m-wide, 3-m-long flat
plate. At x ¼ 3 m find:

(a) The boundary-layer thickness.
(b) The wall shear stress.
(c) The maximum y-component of velocity.

(d) The drag force.
(e) The displacement and momentum thicknesses.
(f) The flow rate through the boundary layer.

Answers to Supplementary Problems

8.11 See problem

8.12 See problem

8.13 See problem

8.14 (a) 0.25 (b) 0.55 (c) 0.46 (d) 0.4 (e) 1.14

8.15 (a) 0.000654 m=s (b) 0.00214 m=s (c) 0.000164 m=s

8.16 Re ¼ 3060

8.17 (a) 1.0 (b) 0.5

8.18 (a) 0.26 N (b) 4.0 N (c) 0.52 N (d) 1.32 N

8.19 8300 N, 34 000 N·m

8.20 (a) 32.6 m=s (b) 6.9 m=s

8.21 11.3 hp

8.22 $152,700
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8.23 14.1 m=s

8.24 73 m=s, 5.8 m=s

8.25 4500 N

8.26 4.25 cm

8.27 0.04 m=s

8.28 0.012 m=s to 29.3 m=s. Yes, for V . 0.57 m=s

8.29 43.5 kN

8.30 99 kN, 2.23 kN, No

8.31 1.32 m=s2, 0.883 m=s2

8.32 1.74 m=s2, 0.870 m=s2

8.33 See problem

8.34 (a) 102 m=s (b) 98 m=s (c) 93 m=s

8.35 (a) 100 m=s (b) 112 m=s (c) 130 m=s

8.36 36.2 m=s, 33.3 m=s, 129 hp

8.37 53 hp

8.38 33.3 m=s, 25.1 m=s, 22.2 m=s

8.39 See problem

8.40 (a) 210x (b) 10ðx2 þ y2Þ (c) �10 ln r (d) 20r cos y

8.41 ln
ffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; tan�1 x=y

8.42 (a) �20 tan�1 y=x (b)�240=x2 (c) �6:25m=s2

8.43 (a) c ¼ y (b) 40 � 200=x2 kPa (c) 250 m=s2

8.44 (a) 10r sin yþ 40y (b) 100 1þ 1

x
2

8

x2

� �
kPa (c) 200 m=s2 (d) (24, 0)

8.45 (a) 10r cos yþ 5 ln r and 10r sin yþ 5y (b) (20.5, 0) (d) p=4 m (e) p m

8.46 4.9 m by 2.1 m

8.47 4y=ðy2 þ 4Þ m=s

8.48 1.902 m, 22.102 m

8.49 (a) 2 m (b) 20 sin y m=s (c) ð2 m; 0–Þ; ð2 m; 180–Þ (d) 200 1 � sin2y
� �

kPa
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8.50 (a) (2, 230–), (2, 150–), 2488 Pa (b) (2, 290–), 2 915 Pa (c) (2, 270–), 21464 Pa

8.51 2.67

8.52 (a) 90.5 cm (b) 54.3 cm

8.53 (a) 5 cm (b) 3 cm

8.54 (a) 0.25 m=s (b) 4.52 m=s

8.55 2U1 sin y and p02rU21 sin2 y

8.56 45.8%

8.57 See problem

8.58 See problem

8.59 (a) 3:46
ffiffiffiffiffiffiffiffiffi
nx=U1

p
, 231% (b) 0:289rU21Re�1=2x (c) 0:0256d2

ffiffiffiffiffiffiffi
U31=n

p
(d) 2:31rU1

ffiffiffiffiffiffi
U1n

p

8.60 (a) 0:00479
ffiffi
x

p
, 24.2% (b) 0:328x�1=2 (c) 2.62 N

8.61 (a) 4:65
ffiffiffiffiffiffiffiffiffi
nx=U1

p
, 27% (b) 0:323rU21

ffiffiffiffiffiffiffiffiffi
n=U1x

p
(c) 1:29rU21

ffiffiffiffiffiffiffiffi
n=U1

p
8.62 See problem

8.63 4dd

8.64 2.8 mm

8.65 See problem

8.66 See problem

8.67 (a) 5.92 cm (b) 0.47 Pa (c) 3.49 N (d) 7.47 mm, 5.76 mm (e) 0.626 m=s, 0.145 mm

8.68 (a) 4.64 cm (b) 10.8 Pa (c) 80.1 N (d) 5.85 mm, 4.51 mm (e) 0.104 m=s, 0.048 mm

8.69 (a) 5.28 cm (b) 2.90 N

8.70 (a) 4.45 cm (b) 75 N

8.71 53 m

8.72 800 hp

8.73 See problem

8.74 See problem

8.75 (a) 2.61 cm (b) 0.000277 Pa (c) 0.003 m=s (d) 0.0333 Pa (e) 3.36 mm (f) 0.068 m3=s

8.76 (a) 9.7 mm (b) 0.0137 Pa (c) 0.00044 m=s (d) 1.65 N (e) 1.25 mm (f) 0.0102 m3=s
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Chapter 9

Compressible Flow

9.1 INTRODUCTION

Compressible flows occur when the density changes are significant between two points on a streamline.
Not all gas flows are compressible flows, only those that have significant density changes. Flow around
automobiles, in hurricanes, around aircraft during landing and takeoff, and around buildings and
communication towers are a few examples of incompressible flows in which the density of the air does
not change more than 3 percent between points of interest and are consequently treated as
incompressible flows. There are, however, many examples of gas flows in which the density does
change more than 3 percent; they include airflow around aircraft that fly faster than a Mach number [see
Eq. (3.18)] of 0.3 (about 100 m=s), through compressors, jet engines, and tornados, to name a few. There
are also compressible effects in liquid flows that give rise to water hammer and underwater compression
waves from blasts; they will not be considered here.

Only compressible flow problems that can be solved using the integral equations will be considered
in this chapter. The simplest of these is uniform flow in a conduit. Recall that the continuity equation,
the momentum equation, and the energy equation are, respectively

_mm ¼ r1A1V1 ¼ r2A2V2 ð9:1ÞX
F ¼ _mmðV22V1Þ ð9:2Þ

_QQ2 _WWS

_mm
¼ V 2

2 2V 2
1

2
þ h22h1 ð9:3Þ

where the enthalpy h ¼ ~uuþ p=r is used [see Eqs. (1.20) and (4.23)]. If the gas can be approximated as
an ideal gas, then the energy equation takes either of the following two forms:

_QQ2 _WWS

_mm
¼ V 2

2 2V 2
1

2
þ cpðT22T1Þ ð9:4Þ

_QQ2 _WWS

_mm
¼ V 2

2 2V 2
1

2
þ k

k21

p2
r2

2
p1
r1

� �
ð9:5Þ

where we have used the thermodynamic relations

Dh ¼ cp DT cp ¼ cv þ R k ¼ cp

cv
ð9:6Þ

The ideal gas law will also be used; the form most used is

p ¼ rRT ð9:7Þ
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We may also determine the entropy change or assume an isentropic process (Ds ¼ 0). Then, one of the
following equations may be used:

Ds ¼ cp ln
T2

T1

2R ln
p2
p1

ð9:8Þ

T2

T1

¼ p2
p1

� �ðk21Þ=k p2
p1

¼ r2
r1

� �k T2

T1

¼ p2
p1

� �ðk21Þ
ð9:9Þ

Recall that the temperatures and pressures must always be absolute quantities when using several of the
above relations, therefore, it is always safe to use absolute temperature and pressure when solving
problems involving a compressible flow.

9.2 SPEED OF SOUND

A pressure wave with small amplitude is called a sound wave and it travels through a gas with the speed of
sound, denoted by c. Consider the small-amplitude wave shown in Fig. 9.1 traveling through a conduit.
In Fig. 9.1(a) it is moving so that a stationary observer sees an unsteady motion, in Fig. 9.1(b) the
observer moves with the wave so that the wave is stationary and a steady flow is observed, and in Fig.
9.1(c) shows the control volume surrounding the wave. The wave is assumed to create a small differential
change in the pressure p, temperature T, density r, and velocity V in the gas. The continuity equation
applied to the control volume provides

rAc ¼ ðrþ drÞAðcþ dVÞ ð9:10Þ
which simplifies to, neglecting the higher-order term dr dV,

r dV ¼2c dr ð9:11Þ

p+dp

T

p

T+dT

+d

dV
V = 0

(a)

c

Moving
wave

p

T

p+dp

T+dT

+d

cc+dV

(b)

Stationary
wave

pA(p+dp)A

cc+dV

(c)

Figure 9.1 (a) A sound wave moving through a gas, (b) the gas moving through the wave, and (c) the control
volume enclosing the wave of (b).

The momentum equation in the streamwise direction is written as

pA2 ðpþ dpÞA ¼ rAcðcþ dV2 cÞ ð9:12Þ
which simplifies to

dp ¼2rc dV ð9:13Þ
Combining the continuity and momentum equations results in

c ¼
ffiffiffiffi
dp

dr

s
ð9:14Þ

for the small-amplitude sound waves.
The lower-frequency (less than 18 000 Hz) sound waves travel isentropically so that p=rk ¼ const

which, when differentiated, gives
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dp

dr
¼ k

p

r
ð9:15Þ

The speed of sound for such waves is then

c ¼
ffiffiffiffi
kp

r

s
¼

ffiffiffiffiffiffi
kRT

p
ð9:16Þ

High-frequency waves travel isothermally resulting in a speed of sound of

c ¼ ffiffiffiffiffi
RT

p ð9:17Þ
For small-amplitude waves traveling through a liquid or a solid, the bulk modulus is used [see

Eq. (1.13)]; it is equal to r dp=dr and has a value of 2100 MPa for water at 20–C. This gives a value of
about 1450 m=s for a small-amplitude wave moving through water.

The Mach number, introduced in Chap. 3, is used for disturbances moving in a gas. It is

M ¼ V

c
ð9:18Þ

If M, 1 the flow is subsonic and if M. 1 the flow is supersonic. Consider the stationary source of
disturbances displayed in Fig. 9.2(a); the sound waves are shown after three time increments. In
Fig. 9.2(b) the source is moving at a subsonic speed, which is less than the speed of sound, so the source

Source

Mach cone

3c t

2c t c t
2

(c)

V t V t V t

V t

V t
V t

3c t

2c t

c t

Source

(b)

c t3c t

2c t

(a)

Figure 9.2 The propagation of sound waves from a source: (a) a stationary source, (b) a moving source with M, 1,
and (c) a moving source with M. 1.

‘‘announces’’ its approach to an observer to the right. In Fig. 9.2(c) the source moves at a supersonic
speed, which is faster than the speed of the source, so an observer is unaware of the source’s approach if
the observer is in the zone of silence, which is outside the Mach cone shown. From the figure, the Mach
cone has a Mach angle given by

a ¼ sin21
c

V
¼ sin21

1

M
ð9:19Þ

The small-amplitude waves discussed above are referred to as Mach waves. They result from sources of
sound and needle-nosed projectiles and the sharp leading edge of supersonic airfoils. Large-amplitude
waves, called shock waves, which emanate from the leading edge of blunt-nosed airfoils, also form zones
of silence but the angles are larger than those created by the Mach waves. Shock waves will be studied in
Secs. 9.4 and 9.5.
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EXAMPLE 9.1 An electronic device is situated on the top of a hill and hears a supersonic projectile that
produces Mach waves after the projectile is 500 m past the device’s position. If it is known that the projectile flies

at 850 m=s, estimate how high it is above the device.

Solution: The Mach number is

M ¼ V

c
¼ 850ffiffiffiffiffiffi

kRT
p ¼ 850ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:4 · 287 · 288
p ¼ 2:5

where a standard temperature of 288 K has been assumed since the temperature was not given. The Mach angle
relationship allows us to write

sin a ¼ 1

M
¼ hffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ 5002
p ¼ 1

2:5

where h is the height above the device [refer to Fig. 9.2(c)]. This equation can be solved for h to give h ¼ 218m:

9.3 ISENTROPIC NOZZLE FLOW

There are numerous applications where a steady, uniform, isentropic flow is a good approximation to
the flow in conduits. These include the flow through a jet engine, through the nozzle of a rocket, from a
broken gas line, and past the blades of a turbine. To model such situations, consider the control volume
in the changing area of the conduit of Fig. 9.3. The continuity equation between two sections an
infinitesimal distance dx apart is

rAV ¼ ðrþ drÞðAþ dAÞðVþ dVÞ ð9:20Þ
If only the first-order terms in a differential quantity are retained, continuity takes the form

dV

V
þ dA

A
þ dr

r
¼ 0 ð9:21Þ

The energy equation (9.5) with _QQ ¼ _WWS ¼ 0 is

V2

2
þ k

k21

p

r
¼ ðVþ dVÞ2

2
þ k

k21

pþ dp

rþ dr
ð9:22Þ

This simplifies to, neglecting higher-order terms

VdVþ k

k21

r dp2p dr
r2

¼ 0 ð9:23Þ
Assuming an isentropic flow, Eq. (9.15) allows the energy equation to take the form

VdVþ k
p

r2
dr ¼ 0 ð9:24Þ

dx

V V + dV
h

T
p

h + dh

T + dT

p + dp

+ d

Figure 9.3 Steady, uniform, isentropic flow through a conduit.
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Substitute from the continuity equation (9.21) to obtain

dV

V

rV2

kp
21

{ !
¼ dA

A
ð9:25Þ

or, in terms of the Mach number
dV

V
ðM221Þ ¼ dA

A
ð9:26Þ

This equation applies to a steady, uniform, isentropic flow.
There are several observations that can be made from an analysis of Eq. (9.26). They are as follows:

. For a subsonic flow in an expanding conduit (M, 1 and dA. 0), the flow is decelerating (dV, 0).

. For a subsonic flow in an converging conduit (M, 1 and dA, 0), the flow is accelerating (dV. 0).

. For a supersonic flow in an expanding conduit (M. 1 and dA. 0), the flow is accelerating
(dV. 0).

. For a supersonic flow in an converging conduit (M. 1 and dA, 0), the flow is decelerating
(dV, 0).

. At a throat where dA ¼ 0, either M ¼ 1 or dV ¼ 0 (the flow could be accelerating through M ¼ 1
or it may reach a velocity such that dV ¼ 0).

Observe that a nozzle for a supersonic flow must increase in area in the flow direction and a diffuser must
decrease in area, opposite to a nozzle and diffuser for a subsonic flow. So, for a supersonic flow to
develop from a reservoir where the velocity is 0, the subsonic flow must first accelerate through a
converging area to a throat followed by continued acceleration through an enlarging area. The nozzles
on a rocket designed to place satellites in orbit are constructed using such converging–diverging
geometry, as shown in Fig. 9.4.

The energy and continuity equations can take on particularly helpful forms for the steady, uniform,
isentropic flow through the nozzle of Fig. 9.4. Apply the energy equation (9.4) with _QQ ¼ _WWS ¼ 0 between
the reservoir and some location in the nozzle to obtain

cpT0 ¼ V2

2
þ cpT ð9:27Þ

Reservoir

T0

p0

V0 = 0
Throat

Supersonic
flow

Vexit

Converging
section

Diverging
section

dA < 0
dV > 0 dV > 0

dA > 0

M < 1

M > 1

M=1

Figure 9.4 A supersonic nozzle.

Any quantity with a 0 subscript refers to a stagnation point where the velocity is 0, such as in the
reservoir. Using several thermodynamic relations, Eqs. (9.6), (9.9), (9.16), and (9.18), Eq. (9.27) can be
put in the forms

T0

T
¼ 1þ k21

2
M2 p0

p
¼ 1þ k21

2
M2

� �k=ðk21Þ r0
r

¼ 1þ k21

2
M2

� �1=ðk21Þ
ð9:28Þ
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If the above equations are applied at the throat where M ¼ 1, the critical area signified by an asterisk (*)
superscript, the energy equation takes the forms

T�

T0

¼ 2

kþ 1

p�

p0
¼ 2

kþ 1

� �k= ðk21Þ r�

r0
¼ 2

kþ 1

� �1= ðk21Þ
ð9:29Þ

The critical area is often referenced even though a throat does not exist, as in Table D.1. For air with
k ¼ 1.4, Eqs. (9.29) provide

T� ¼ 0:8333T0 p� ¼ 0:5283p0 r� ¼ 0:6340r0 ð9:30Þ
The mass flux through the nozzle is of interest and is given by

_mm ¼ rAV ¼ p

RT
· AM

ffiffiffiffiffiffi
kRT

p
¼ p

ffiffiffiffiffi
k

RT

s
AM ð9:31Þ

With the use of Eqs. (9.28), the mass flux, after some algebra, can be expressed as

_mm ¼ p0MA

ffiffiffiffiffiffi
k

RT0

s
1þ k21

2
M2

� �ðkþ1Þ=2ð12kÞ
ð9:32Þ

If the critical area is selected where M ¼ 1, this takes the form

_mm ¼ p0A
�

ffiffiffiffiffiffi
k

RT0

s
1þ k21

2

� �ðkþ1Þ=2ð12kÞ
ð9:33Þ

which, when combined with Eq. (9.32), provides

A

A� ¼ 1

M

2þ ðk21ÞM2

kþ 1

" #ðkþ1Þ=2ð12kÞ
ð9:34Þ

This ratio is included in the isentropic flow (Table D.1) for air. The table can be used in the place of the
above equations.

Now we will discuss some features of the above equations. Consider a converging nozzle connecting
a reservoir with a receiver, as shown in Fig. 9.5. If the reservoir pressure is held constant and the receiver
pressure reduced, the Mach number at the exit of the nozzle will increase until Me ¼ 1 is reached,
indicated by the left curve in the figure. After Me ¼ 1 is reached at the nozzle exit for pr ¼ 0:5283p0; the
condition of choked flow occurs and the velocity throughout the nozzle cannot change with further
decreases in pr. This is due to the fact that pressure changes downstream of the exit cannot travel
upstream to cause changes in the flow conditions.

The right curve of Fig. 9.5(b) represents the case when the reservoir pressure in increased and the
receiver pressure is held constant. When Me ¼ 1 the condition of choked flow also occurs but Eq. (9.33)
indicates that the mass flux will continue to increase as p0 is increased. This is the case when a gas line
ruptures.

It is interesting that the exit pressure pe is able to be greater than the receiver pressure pr. Nature
allows this by providing the streamlines of a gas the ability to make a sudden change of direction at the
exit and expand to a much greater area resulting in a reduction of the pressure from pe to pr.

The case of a converging–diverging nozzle allows a supersonic flow to occur providing the
receiver pressure is sufficiently low. This is shown in Fig. 9.6 assuming a constant reservoir pressure
with a decreasing receiver pressure. If the receiver pressure is equal to the reservoir pressure, no flow
occurs, represented by curve A. If pr is slightly less than p0, the flow is subsonic throughout with a
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minimum pressure at the throat, represented by curve B. As the pressure is reduced still further, a
pressure is reached that results in M ¼ 1 at the throat with subsonic flow throughout the remainder
of the nozzle.

Me< 1

Choked
flow

Me= 1

Choked
flow

Me= 1

pe< pr

pr< pe
Decreasing pr
with p0 const

Increasing p0
with pr const

0.5283 1.8931.0
pr /p0 p0 /pr

pr

Vepe

T0
p0

V0= 0

0

(a)

(b)

m
.

Figure 9.5 (a) A converging nozzle and (b) the pressure variation in the nozzle.

pr

Ve
pe

T0

p0

0

x

p/p0

Throat

1.0
A

B

C

D

1.0

pr /p0

Figure 9.6 A converging–diverging nozzle with reservoir pressure fixed.

There is another receiver pressure substantially below that of curve C that also results in isentropic
flow throughout the nozzle, represented by curve D; after the throat the flow is supersonic. Pressures in
the receiver in between those of curves C and D result in non-isentropic flow (a shock wave occurs in the
flow) and will be considered in Sec. 9.4. If pr is below that of curve D, the exit pressure pe is greater than
pr. Once again, for receiver pressures below that of curve C, the mass flux remains constant since the
conditions at the throat remain unchanged.

It may appear that the supersonic flow will tend to separate from the nozzle, but just the opposite is
true. A supersonic flow can turn very sharp angles, as will be observed in Sec. 9.6, since nature provides
expansion fans that do not exist in subsonic flows. To avoid separation in subsonic nozzles, the
expansion angle should not exceed 10–. For larger angles, vanes are used so that the angle between the
vanes does not exceed 10–.
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EXAMPLE 9.2 Air flows from a reservoir maintained at 300 kPa absolute and 20–C into a receiver maintained
at 200 kPa absolute by passing through a converging nozzle with an exit diameter of 4 cm. Calculate the mass

flux through the nozzle. Use (a) the equations and (b) the isentropic flow table.

Solution: (a) The receiver pressure that would give M ¼ 1 at the nozzle exit is

pr ¼ 0:5283 kPa p0 ¼ 0:5283 · 300 ¼ 158:5 kPa absolute

The receiver pressure is greater than this, so Me, 1. The second equation of Eqs. (9.28) can be put in the form

k21

2
M2 ¼ p0

p

� �ðk21Þ=k
21 or 0:2M2 ¼ 300

200

� �0:4=1:4
21

This gives M ¼ 0.784. The mass flux is found from Eq. (9.32) to be

_mm ¼ p0MA

ffiffiffiffiffiffi
k

RT0

s
1þ k21

2
M2

� �ðkþ1Þ=2ð12kÞ

¼ 300 000 · 0:784 · p · 0:022

ffiffiffiffiffiffiffiffiffiffiffiffi
1:4

287 · 293

s
1þ 0:4

2
· 0:7842

� �22:4=0:8
¼ 0:852 kg=s

For the units to be consistent, the pressure must be in Pa and R in J=(kg·K).

(b) Now use Table D.1. For a pressure ratio of p=p0 ¼ 200=300 ¼ 0.6667, the Mach number is found by
interpolation to be

Me ¼ 0:682120:6667

0:682120:6560
ð0:820:76Þ þ 0:76 ¼ 0:784

To find the mass flux, the velocity must be known which requires the temperature since V ¼ M
ffiffiffiffiffiffi
kRT

p
. The

temperature is interpolated (similar to the interpolation for the Mach number) from Table D.1 to be Te ¼
0:8906 · 293 ¼ 261K: The velocity and density are then

V ¼ M
ffiffiffiffiffiffi
kRT

p
¼ 0:784

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 261

p ¼ 254m=s

r ¼ p

RT
¼ 200

0:287 · 261
¼ 2:67 kg=m3

The mass flux is found to be

_mm ¼ rAV ¼ 2:67 · p · 0:022 · 254 ¼ 0:852 kg=s

9.4 NORMAL SHOCK WAVES

Shock waves are large-amplitude waves that exist in a gas. They emanate from the wings of a supersonic
aircraft, from a large explosion, from a jet engine, and ahead of the projectile in a gun barrel. They can
be oblique waves or normal waves. First, we will consider the normal shock wave, as shown in Fig. 9.7.
In this figure, it is stationary so that a steady flow exists. If V1 were superimposed to the left, the shock
would be traveling in stagnant air with velocity V1 and the induced velocity behind the shock wave would
be (V12V2). The shock wave is very thin, on the order of ,1024 mm, and in that short distance large
pressure changes occur causing enormous energy dissipation. The continuity equation with A1 ¼ A2 is

r1V1 ¼ r2V2 ð9:35Þ
The energy equation with _QQ ¼ _WWS ¼ 0 takes the form

V 2
2 2V 2

1

2
þ k

k21

p2
r2

2
p1
r1

� �
¼ 0 ð9:36Þ

The only forces in the momentum equation are pressure forces, so

p12p2 ¼ r1V1ðV22V1Þ ð9:37Þ
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where the areas have divided out since A1 ¼ A2. Assuming that the three quantities r1, p1, and V1 before
the shock waves are known, the above three equations allow us to solve for three unknowns r2, p2, and
V2 since, for a given gas, k is known.

V1 V2

p2p1

Control volume

1
2

Figure 9.7 A stationary shock wave.

Rather than solve Eqs. (9.35) to (9.37) simultaneously, we write them in terms of the Mach numbers
M1 and M2 and put them in more convenient forms. First, the momentum equation (9.37), using
Eq. (9.35) and V2 ¼ M2pk=r; can be written as

p2
p1

¼ 1þ kM 2
1

1þ kM 2
2

ð9:38Þ

In like manner, the energy equation (9.36), with p ¼ rRT and V2 ¼ M2kRT, can be written as

T2

T1

¼
1þ k21

2
M 2

1

1þ k21

2
M 2

2

ð9:39Þ

The continuity equation (9.35) with r ¼ p=RT and V ¼ M
ffiffiffiffiffiffi
kRT

p
becomes

p2
p1

M2

M1

ffiffiffiffi
T1

T2

s
¼ 1 ð9:40Þ

If the pressure and temperature ratios from Eqs. (9.38) and (9.39) are substituted into Eq. (9.40), the
downstream Mach number is related to the upstream Mach number by (the algebra to show this is not
shown here)

M 2
2 ¼

M 2
1 þ 2

k21
2k

k21
M 2

1 21

ð9:41Þ

This allows the momentum equation (9.38) to be written as

p2
p1

¼ 2k

kþ 1
M 2

1 2
k21

kþ 1
ð9:42Þ

and the energy equation (9.39) as

T2

T1

¼
1þ k21

2
M 2

1

� �
2k

k21
M 2

1 21

� �
ðkþ 1Þ2
2ðk21ÞM

2
1

ð9:43Þ

For air, the preceding equations simplify to

M 2
2 ¼ M 2

1 þ 5

7M 2
1 21

p2
p1

¼ 7M 2
1 21

6

T2

T1

¼ M 2
1 þ 5

� �
7M 2

1 21
� �

36M 2
1

ð9:44Þ
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Several observations can be made from these three equations:

. If M1 ¼ 1, then M2 ¼ 1 and no shock wave exists.

. If M1. 1, then M2, 1. A supersonic flow is always converted to a subsonic flow when it passes
through a normal shock wave.

. If M1, 1, then M2. 1 and a subsonic flow appears to be converted to a supersonic flow. This is
impossible since it results in a positive production of entropy, a violation of the second law of
thermodynamics; this violation will not be proven here.

pr

Ve
pe

T0

p0

0

x

p/p0

Throat

1.0

D

pr / p0

Shock wave position
for pr /p0 = a

e

a

f

b
c
d

a

b

c

d

e

f

Figure 9.8 Flow with shock waves in a nozzle.

Several normal shock flow relations for air have been presented in Table D.2. The use of that table
allows one to avoid using Eqs. (9.44). In addition, the ratio p02=p01 of the stagnation point pressures in
front of and behind the shock wave is listed.

Return to the converging–diverging nozzle and focus attention on the flow below curve C of Fig. 9.6.
If the receiver pressure decreases to pr=p0 ¼ a in Fig. 9.8, a normal shock wave would be positioned
somewhere inside the nozzle as shown. If the receiver pressure decreased still further, there would be
some ratio pr=p0 ¼ b that would position the shock wave at the exit plane of the nozzle. Pressure ratios c
and d would result in oblique shock wave patterns similar to those shown. Pressure ratio e is associated
with isentropic flow throughout, and pressure ratio f would provide an exit pressure greater than the
receiver pressure resulting in a billowing out, as shown, of the exiting flow, as seen on the rockets that
propel satellites into space.

EXAMPLE 9.3 A normal shock wave travels at 600 m=s through stagnant 20–C air. Estimate the velocity induced
behind the shock wave. (a) Use the equations and (b) use the normal shock flow (Table D.2). Refer to Fig. 9.7.

Solution: Superimpose a velocity of 600 m=s so that the shock wave is stationary and V1 ¼ 600 m=s, as
displayed in Fig. 9.7. The upstream Mach number is

M1 ¼ V1ffiffiffiffiffiffi
kRT

p ¼ 600ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 293

p ¼ 1:75

(a) Using the equations, the downstream Mach number and temperature are, respectively

M2 ¼ M 2
1 þ 5

7M 2
1 21

{ !1=2

¼ 1:752 þ 5

7 · 1:75221

{ !1=2

¼ 0:628

T2 ¼ T1 M 2
1 þ 5

� �
7M 2

1 21
� �

36M 2
1

¼ 293ð1:752 þ 5Þð7 · 1:75221Þ
36 · 1:752

¼ 438K
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The velocity behind the shock wave is then

V2 ¼ M2

ffiffiffiffiffiffiffi
kRT2

p ¼ 0:628
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 438

p ¼ 263m=s

If V1 is superimposed to the left in Fig. 9.7, the induced velocity is

Vinduced ¼ V12V2 ¼ 6002263 ¼ 337m=s

which would act to the left, in the direction of the moving shock wave.
(b) Table D.2 is interpolated at M1 ¼ 1.75 to find

M2 ¼ 1:7521:72

1:7621:72
ð0:625720:6355Þ þ 0:6355 ¼ 0:6282

T2

T1

¼ 1:7521:72

1:7621:72
ð1:50221:473Þ þ 1:473 ¼ 1:495: \ T2 ¼ 438K

The velocity V2 is then

V2 ¼ M2

ffiffiffiffiffiffiffi
kRT2

p ¼ 0:628
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 438

p ¼ 263m=s

and the induced velocity due to the shock wave is

Vinduced ¼ V12V2 ¼ 6002263 ¼ 337m=s

EXAMPLE 9.4 Air flows from a reservoir maintained at 20–C and 200 kPa absolute through a converging–
diverging nozzle with a throat diameter of 6 cm and an exit diameter of 12 cm to a receiver. What receiver
pressure is needed to locate a shock wave at a position where the diameter is 10 cm? Refer to Fig. 9.8.

Solution: Let us use the isentropic flow (Table D.1) and the normal shock (Table D.2) Tables. At the
throat for this supersonic flow Mt ¼ 1. The Mach number just before the shock wave is interpolated from
Table D.1 where A1=A

� ¼ 102=62 ¼ 2:778 to be

M1 ¼ 2:556

From Table D.2

M2 ¼ 0:5078
p02
p01

¼ 0:4778

so that

p02 ¼ 0:4778 · 200 ¼ 95:55 kPa

since the stagnation pressure does not change in the isentropic flow before the shock wave so that p01 ¼ 200 kPa.

From just after the shock wave to the exit, isentropic flow again exists so that from Table D.1 at M2 ¼ 0.5078

A2

A� ¼ 1:327

We have introduced an imaginary throat between the shock wave and the exit of the nozzle. The exit area Ae is
introduced by

Ae

A� ¼ A2

A� ·
Ae

A2

¼ 1:327 ·
122

102
¼ 1:911

Using Table D.1 at this area ratio (make sure the subsonic part of the table is used), we find

Me ¼ 0:3223 and
pe
p0e

¼ 0:9305

so that

pe ¼ 0:9305 · 95:55 ¼ 88:9 kPa

using p0e ¼ p02 for the isentropic flow after the shock wave. The exit pressure is equal to the receiver pressure for

this isentropic subsonic flow.
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9.5 OBLIQUE SHOCK WAVES

Oblique shock waves form on the leading edge of a supersonic sharp-edged airfoil or in a corner, as
shown in Fig. 9.9. A steady, uniform plane flow exists before and after the shock wave. The oblique
shock waves also form on axisymmetric projectiles.

V1

V2

V2

Oblique
shock

Oblique
shock V2

V1

(a) (b)

Figure 9.9 Oblique shock waves (a) flow over a wedge and (b) flow in a corner.

The oblique shock wave turns the flow so that V2 is parallel to the plane surface. Another variable,
the angle through which the flows turns, is introduced but the additional tangential momentum
equation allows a solution. Consider the control volume of Fig. 9.10 surrounding the oblique shock
wave. The velocity vector V1 is assumed to be in the x-direction and the oblique shock wave turns the
flow through the wedge angle or deflection angle y so that V2 is parallel to the wall. The oblique shock
wave makes an angle of b with V1. The components of the velocity vectors are shown normal and
tangential to the oblique shock. The tangential components of the velocity vectors do not cause fluid to
flow into or out of the control volume, so continuity provides

r1V1n ¼ r2V2n ð9:45Þ

Oblique
shock

V2

V1

V1nV1t V2n

V2t

Control
volume

Figure 9.10 Oblique shock wave control volume.

The pressure forces act normal to the control volume and produce no net force tangential to the oblique
shock. This allows the tangential momentum equation to take the form

_mm1V1t ¼ _mm2V2t ð9:46Þ
Continuity requires _mm1 ¼ _mm2 so that

V1t ¼ V2t ð9:47Þ
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The momentum equation normal to the oblique shock is

p12p2 ¼ r2V
2
2n2r1V

2
1n ð9:48Þ

The energy equation, using V 2 ¼ V 2
n þ V 2

t , can be written in the form

V 2
1n

2
þ k21

k

p1
r1

¼ V 2
2n

2
þ k21

k

p2
r2

ð9:49Þ

since the tangential velocity terms cancel.
Observe that the tangential velocity components do not enter Eqs. (9.45), (9.48), and (9.49). They are

the same three equations used to solve the normal shock wave problem. Therefore, the components V1n

and V2n can be replaced with V1 and V2, respectively, of the normal shock wave problem and a solution
obtained. Table D.2 may also be used. We also replace M1n and M2n with M1 and M2 in the equations
and table.

To often simplify a solution, we relate the oblique shock angle b to the deflection angle y. This is
done using Eq. (9.45) to obtain

r2
r1

¼ V1n

V2n

¼ V1t tan b
V2t tanðb2yÞ ¼

tan b
tanðb2yÞ ð9:50Þ

Using Eqs. (9.42) and (9.43), this density ratio can be written as

r2
r1

¼ p2T1

p1T2

¼ ðkþ 1ÞM 2
1n

ðk21ÞM 2
1n þ 2

ð9:51Þ

Using this density ratio in Eq. (9.50) allows us to write

tanðb2yÞ ¼ tan b
kþ 1

k21þ 2

M 2
1 sin2b

{ !
ð9:52Þ

With this relationship, the oblique shock angle b can be found for a given incoming Mach number and
wedge angle y. A plot of Eq. (9.52) is useful to avoid a trial-and-error solution. It is included as Fig. 9.11.
Three observations can be made by studying the figure.

. For a given Mach number M1 and wedge angle y there are two possible oblique shock angles b. The
larger one is the ‘‘strong’’ oblique shock wave and the smaller one is the ‘‘weak’’ oblique shock
wave.

. For a given wedge angle y, there is a minimum Mach number for which there is only one oblique
shock angle b.

. If the Mach number is less than the minimum for a particular y, but greater than one, the shock
wave is detached as shown in Fig. 9.12. Also, for a given M1, there is a sufficiently large y that will
result in a detached shock wave.

The required pressure rise determines if a weak shock or a strong shock exists. The pressure rise is
determined by flow conditions.

For a detached shock wave around a blunt body or a wedge, a normal shock wave exists on the
stagnation streamline; the normal shock is followed by a strong oblique shock, then a weak oblique
shock, and finally a Mach wave, as shown in Fig. 9.12. The shock wave is always detached on a blunt
object.
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Figure 9.11 Oblique shock wave angle b related to wedge angle y and Mach number M1 for air.

M2< 1M2< 1

V1 V1

M2> 1 M2> 1

Strong
shock

Strong
shock

Weak
shock

Weak
shock

(a) (b)

Figure 9.12 Detached shock waves around (a) a plane, blunt object and (b) a wedge.

EXAMPLE 9.5 Air at 30–C flows around a wedge with an included angle of 60– [Fig. 9.9(a)]. An oblique
shock emanates from the wedge at an angle of 50–. Determine the approach velocity of the air. Also find M2

and T2.

Solution: From Fig. 9.11 the Mach number, at y ¼ 30– and b ¼ 50–, is
M1 ¼ 3:1

The velocity is then

V1 ¼ M1

ffiffiffiffiffiffi
kRT

p
¼ 3:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 87 · 303

p ¼ 1082m=s

If Eq. (9.52) were used for greater accuracy, we have

tanð50o230oÞ ¼ tan 50o

1:4þ 1
1:421þ 2

M2
1 sin

250o

{ !
: \ M1 ¼ 3:20

The velocity would be V1 ¼ 1117 m=s.

To find M2, the approaching normal velocity and Mach number are

V1n ¼ V1 sinb ¼ 1117 sin 50o ¼ 856m=s: \ M1n ¼ 856ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 303

p ¼ 2:453
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From Table D.2 interpolation provides M2n ¼ 0.5176 so that

M2 ¼ M2n

sinð50o230oÞ ¼
0:5176

sin 20o
¼ 1:513

The temperature behind the oblique shock is interpolated to be

T2 ¼ T1 · 2:092 ¼ 303 · 2:092 ¼ 634K

9.6 EXPANSION WAVES

Supersonic flow exits a nozzle, as for the pressure ratio f in Fig. 9.8, and billows out into a large exhaust
plume. Also, supersonic flow does not separate from the wall of a nozzle that expands quite rapidly, as in
the sketch of Fig. 9.8. How is this accomplished? Consider the possibility that a single finite wave, such
as an oblique shock, is able to turn the flow around the convex corner, as shown in Fig. 9.12(a). From
the tangential momentum equation, the tangential component of velocity must remain the same on both
sides of the finite wave. For this to be true, V2.V1 as is obvious from the simple sketch. As before, this
increase in velocity as the fluid flows through a finite wave requires an increase in entropy, a violation of
the second law of thermodynamics, making a finite wave an impossibility.

A second possibility is to allow an infinite fan of Mach waves, called an expansion fan, emanating
from the corner, as shown in Fig. 9.13(b). This is an ideal isentropic process so the second law is not
violated; such a process may be approached in a real application. Let us consider the single infinitesimal
Mach wave displayed in Fig. 9.14, apply our fundamental laws, and then integrate around the corner.
Since the tangential velocity components are equal, the velocity triangles yield

Vt ¼ V cos m ¼ ðVþ dVÞ cosðmþ dyÞ ð9:53Þ
This can be written as,* neglecting higher-order terms, Eq. (9.53) becomes

Vdy sin m ¼ cos m dV ð9:54Þ

(a) A single finite wave (b) An infinite number
of Mach waves

V2

V1

V2

M2

M1

Finite
wave

V2n

Expansion
fanV1t

V1

Figure 9.13 Supersonic flow around a convex corner. (a) A single finite wave. (b) An infinite number of Mach waves.

Control
volume

d

+dV

Vt
Vn

Vt
Vn+dVn

Mach wave

V+dV

Figure 9.14 A Mach wave in an expansion fan.

Substitute sin m ¼ 1=M [see Eq. (9.19)] and cos m ¼
ffiffiffiffiffiffiffiffiffiffi
M221

p
=M, to obtain

dy ¼
ffiffiffiffiffiffiffiffiffiffi
M221

p dV

V
ð9:55Þ

* Recall that cosðmþ dyÞ ¼ cosm cos dy2 sin m sin dy ¼ cosm2dy sinm, since cos d y< 1 and sin d y< d y.
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Differentiate the equation V ¼ M
ffiffiffiffiffiffi
kRT

p
and put in the form

dV

V
¼ dM

M
þ 1

2

dT

T
ð9:56Þ

The energy equation V 2=2þ kRT=ðk21Þ ¼ const can also be differentiated to yield

dV

V
þ 1

ðk21ÞM2

dT

T
¼ 0 ð9:57Þ

Combine Eqs. (9.56) and (9.57) to obtain

dV

V
¼ 2

2þ ðk21ÞM2

dM

M
ð9:58Þ

Substitute this into Eq. (9.55) to obtain a relationship between y and M

dy ¼ 2
ffiffiffiffiffiffiffiffiffiffi
M221

p

2þ ðk21ÞM2

dM

M
ð9:59Þ

This is integrated from y ¼ 0 and M ¼ 1 to a general angle y called the Prandtl–Meyer function, and
Mach number M [this would be M2 in Fig. 9.12(b)] to find that

y ¼ kþ 1

k21

� �1=2
tan21

k21

kþ 1
ðM221Þ

� �1=2
2tan21ðM221Þ1=2 ð9:60Þ

The solution to this relationship is presented for air in Table D.3 to avoid a trial-and-error solution
for M given the angle y. If the pressure or temperature is desired, the isentropic flow table can be
used. The Mach waves that allow the gas to turn the corner are sometimes referred to as expansion
waves.

Observe from Table D.3 that the expansion fan that turns the gas through the angle y results in
M ¼ 1 before the fan to a supersonic flow after the fan. The gas speeds up as it turns the corner and
it does not separate. A slower moving subsonic flow would separate from the corner and would slow
down. If M ¼ 1 is substituted into Eq. (9.60), y ¼ 130:5–; which is the maximum angle through
which the flow could turn. This shows that turning angles greater than 90– are possible, a rather
surprising result.

EXAMPLE 9.6 Air at 150 kPa and 140–C flows at M ¼ 2 and turns a convex corner of 30–. Estimate the
Mach number, pressure, temperature, and velocity after the corner.

V2

M2

M1=2
M=1

26.4°
30°

Figure 9.15

Solution: Table D.3 assumes the air is initially at M ¼ 1. So, assume the flow originates from M ¼ 1 and

turns a corner to M1 ¼ 2 and then a second corner to M2, as shown in Fig. 9.15. From Table D.3, an angle of
26.4– is required to accelerate the flow fromM ¼ 1 to M ¼ 2. Add another 30 to 26.4– and at y ¼ 56.4– we find
that

M2 ¼ 3:37

Using the isentropic flow table (Table D.1), the entries from the reservoir to state 1 and also to state 2 can be
used to find

[CHAP. 9196 COMPRESSIBLE FLOW



p2 ¼ p1
p0
p1

p2
p0

¼ 150 ·
1

0:1278
· 0:01580 ¼ 18:54 kPa

T2 ¼ T1

T0

T1

T2

T0

¼ 413 ·
1

0:5556
· 0:3058 ¼ 227K or 246 –C

The velocity after the corner is then

V2 ¼ M2

ffiffiffiffiffiffiffi
kRT2

p ¼ 3:37
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 227

p ¼ 1018m=s

Solved Problems

9.1 Two boys decide to estimate how far it is across a lake. One bangs two rocks together underwater
on one side and the other estimates that it takes 0.4 s for the sound to reach the other side. What
is the distance across the lake?

Using the bulk modulus as 2110 · 106 Pa, the speed of sound in water is

c ¼
ffiffiffiffi
dp

dr

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
1

r
r
dp

dr

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000
· 2110 · 106

s
¼ 1453m=s

At this speed, the distance is

d ¼ cDt ¼ 1453 · 0:4 ¼ 581m

9.2 Show that Eq. (9.26) follows from Eq. (9.22).
The right-hand side of Eq. (9.22) is expanded so that

V2

2
þ k

k21

p

r
¼ V2 þ 2VdVþ ðdVÞ2

2
þ k

k21

pþ dp

rþ dr

�
V2

2
¼

�
V2

2
þ
2VdVþ

.
ðdVÞ2

2
þ k

k21

pþ dp

rþ dr
2

p

r

� �

0 ¼ 2VdV

2
þ k

k21

prþ rdp2pr2pdr
rðrþ ndrÞ

� �
¼ VdVþ k

k21

kp dr2p dr
r2

� �
using r dp ¼ kp dr for an isentropic process [see Eq. (9.15)]. This is then

0 ¼ VdVþ k
p dr
r2

� �
¼ VdVþ k

p

r
2
dV

V
2
dA

A

� �
when dr=r is substituted from Eq. (9.21). This can be written as

dA

A
¼ V2r

kp
21

{ !
dV

V

Using c2 ¼ kp=r and M ¼ V=c, this is put in the form

dA

A
¼ ðM221Þ dV

V

9.3 A converging nozzle with an exit diameter of 6 cm is attached to a reservoir maintained at 30–C
and 150 kPa absolute. Determine the mass flux of air flowing through the nozzle if the receiver
exits to the atmosphere. (a) Use equations and (b) use the appropriate table.

Is the flow choked?

0:5283 · 150 ¼ 79:2 kPa: \ pr > 0:5283p0

and the flow is not choked and Me, 1. (The receiver pressure, the atmosphere, is assumed to be at

100 kPa.)
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a) Using the equations, we have energy and the isentropic relation providing.
V 2

0

2
þ 1000 · 303 ¼ V 2

e

2
þ 1:4

0:4

100 000

re

100

150
¼ re

1:725

� �1:4
where

r0 ¼ 150

0:287 · 303
¼ 1:725 \ re ¼ 1:291 kg=m3 and Ve ¼ 253m=s

The mass flux follows:

\ _mm ¼ reAeVe ¼ 1:291 · p · 0:032 · 253 ¼ 0:925 kg=s

b) Use Table D.1 and find

pe
p0

¼ 100

150
¼ 0:6667

Interpolation gives Me ¼ 0:784 and Te ¼ 0:8906 · 303 ¼ 270K: Then

re ¼ 100

0:287 · 270
¼ 1:290 kg=m3 and Ve ¼ 0:784

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 270

p ¼ 258m=s

\ _mm ¼ reAeVe ¼ 1:290 · p · 0:032 · 258 ¼ 0:941 kg=s

9.4 Air flows through a converging–diverging nozzle, with a throat diameter of 10 cm and an exit
diameter of 20 cm, from a reservoir maintained at 20–C and 300 kPa absolute. Estimate the two
receiver pressures that provide an isentropic flow throughout (curves C and D of Fig. 9.6). Also,
determine the associated exit Mach numbers.

Let us use Table D.1 rather than the equations. The area ratio is A=A* ¼ 4. There are two pressure

ratios in Table D.1 corresponding to this area ratio. They are interpolated to be

p

p0

� �
C
¼ 4:023:6727

4:864323:6727
ð0:982320:990Þ þ 0:990 ¼ 0:988

p

p0

� �
D
¼ 4:023:924

4:07623:924
ð0:0289120:03071Þ þ 0:03071 ¼ 0:0298

The two pressures are

pr ¼ 0:988 · 300 ¼ 296:4 kPa and pr ¼ 0:0298 · 300 ¼ 8:94 kPa

The two Mach numbers are interpolated in Table D.1 to be

Me ¼ 0:149 and 2:94

9.5 Gas flows can be considered to be incompressible if the Mach number is less than 0.3. Estimate
the error in the stagnation pressure in air if M ¼ 0.3.

The stagnation pressure is found by applying the energy equation between the free stream and the
stagnation point where V0 ¼ 0. Assuming incompressible flow, Eq. (9.3) with _QQ ¼ _WWS ¼ 0 and ~uu2 ¼
~uu1 ðno lossesÞ provides

p0 ¼ pþ r
V2

2

For isentropic flow with k ¼ 1.4, the energy equation (9.28) can be put in the form

p0 ¼ pð1þ 0:2M2Þ3:5

This can be expanded using the binomial theorem ð1þ xÞn ¼ 1þ nxþ nðn21Þx2=2þ . . . by letting

x ¼ 0.2M2. We then have

p0 ¼ pð1þ 0:7M2 þ 0:175M4 þ . . .Þ or p02p ¼ pM2ð0:7þ 0:175M2 þ . . .Þ
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Using Eqs. (9.16) and (9.18), this takes the form

p02p ¼ r
V 2

2
ð1þ 0:25M2 þ . . .Þ

Let M ¼ 0.3 so that

p02p ¼ r
V2

2
ð1þ 0:0225þ . . .Þ

Compare this to the incompressible flow equation above and we see that the error is about 2.25 percent.
So, if M, 0.3 (about 100 m=s for air at standard conditions), the flow of a gas is considered to be
incompressible.

9.6 A pitot probe (Fig. 3.11) is used to measure the stagnation pressure in a supersonic flow. The
stagnation pressure is measured to be 360 kPa absolute in an airflow where the pressure is 90 kPa
absolute and the temperature is 15–C. Find the free-stream velocity V1. (A shock wave will be
positioned in front of the probe. Let state 2 be located just after the shock and p3 be the
stagnation pressure at the probe opening.)

The pressure ratio across the shock is given by Eq. (9.42)

p2
p1

¼ 2k

kþ 1
M 2

1 2
k21

kþ 1

The Mach numbers are related by Eq. (9.41)

M 2
2 ¼ ðk21ÞM 2

1 þ 2

2kM 2
1 2kþ 1

The isentropic flow from behind the shock to the stagnation point provides the pressure ratio as [see

Eq. (9.28)]
p3
p2

¼ 1þ k21

2
M 2

2

� �k=ðk21Þ
The above three equations can be combined to eliminate p2 and M2 to yield the Raleigh pitot-tube
formula for a supersonic flow, namely

p3
p1

¼
kþ 1

2
M 2

1

� �k=ðk21Þ
2k

kþ 1
M 2

1 2
k21

kþ 1

� �1=ðk21Þ
Using k ¼ 1.4, p1 ¼ 90 kPa, and p3 ¼ 350 kPa, the above equation becomes

360

90
¼ ð1:2M 2

1 Þ3:5
ð1:167M 2

1 20:1667Þ2:5
A trial-and-error solution results in

M1 ¼ 1:65

The free-stream velocity is then

V1 ¼ M1

ffiffiffiffiffiffiffi
kRT1

p ¼ 1:65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 · 287 · 288

p ¼ 561

9.7 Air flows with M1 ¼ 2 such that a weak oblique shock wave at b1 ¼ 40– reflects from a plane
wall, as shown in Fig. 9.16. Estimate M3 and b3. (Note V3 must be parallel to the wall.)

V1

V2 V3

1 2
3

1

2

Figure 9.16
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The various angles are shown in Fig. 9.16. From Fig. 9.11 with b ¼ 40– and M ¼ 2, we see that

y ¼ 11–. The normal shock wave is of magnitude

M1n ¼ 2 sin 40– ¼ 1:28

From the shock (Table D.2), we find M2n and then M2 to be

M2n ¼ 0:7963 ¼ M2 sinð40–211–Þ: \ M2 ¼ 1:64

The reflected wave must then turn the flow through 11– to be parallel to the wall so that y2 is also 11–.
Using Fig. 9.11 again at M2 ¼ 1.64, we find b2 > 50–. So, M2n relative to the reflected shock is

M2n ¼ 1:64 sin 50– ¼ 1:26

From the shock table, we find M3n and then M3 to be

M3n ¼ 0:807 ¼ M3 sinð50–211–Þ: \ M3 ¼ 1:28

Since b3 þ 11– ¼ 50–, we see that b3 ¼ 39–.

Supplementary Problems

9.8 Show that cv ¼ R=ðk21Þ:

9.9 Using English units, cp ¼ 0.24 Btu=(lbm-–R). Show that this is equivalent to 1.0 kJ= (kg·K).

9.10 Show that Eq. (9.8) implies Eq. (9.9) providing Ds ¼ 0:

9.11 Show that the energy equation (9.5) follows from Eq. (9.3).

9.12 Differentiate p=rk ¼ const and show that Eq. (9.15) results.

Speed of a Small Disturbance

9.13 Show that the energy equation relates the temperature rise to the velocity change for a small adiabatic
disturbance traveling in a gas by cp DT ¼2cDV:

9.14 Show that a small disturbance travels in water at about 1450 m=s and in air at standard conditions at about
340 m=s.

9.15 Two rocks are slammed together by a friend on one side of a lake. A listening device picks up the wave
generated 0.75 s later. How far is it across the lake?

9.16 An underwater animal generates a signal that travels through water until it hits an object and then echoes
back to the animal 0.46 s later. How far is the animal from the object?

9.17 Estimate the Mach number for a projectile flying at:
(a) 1000 m at 100 m=s
(b) 10 000 m at 200 m=s

(c) 30 000 m at 300 m=s
(d) 10 000 m at 250 m=s
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9.18 A bolt of lightning lights up the sky and 1.5 s later you hear the thunder. How far did the lightning strike

from your position?

9.19 A supersonic aircraft passes 200 m overhead on a day when the temperature is 26–C.
Estimate how long it will be before you hear its sound after it passes directly overhead and how far the

aircraft is from you if its Mach number is

(a) 1.68
(b) 2.02
(c) 3.49

9.20 A small-amplitude wave travels through the atmosphere creating a pressure rise of 5 Pa. Estimate the
temperature rise across the wave and the induced velocity behind the wave.

Isentropic Nozzle Flow

9.21 Show that
(a) Eq. (9.21) follows from Eq. (9.20)

(b) Eq. (9.24) follows from Eq. (9.22)
(c) Eq. (9.26) follows from Eq. (9.24)
(d) Eq. (9.33) follows from Eq. (9.31)

(e) Eq. (9.34) follows from Eq. (9.33)

9.22 A pitot probe is used to measure the speed of a ground vehicle on the Salt Lake flats. It measures 3400 Pa in
28–C air. Estimate its speed assuming:

(a) An isentropic process

(b) The air to be incompressible

9.23 Rework Example 9.2 but assume the receiver pressure to be 100 kPa absolute. Use
(a) The equations

(b) Table D.1

9.24 A converging nozzle with an exit area of 10 cm2 is attached to a reservoir maintained at 250 kPa absolute
and 20–C. Using equations only, calculate the mass flux if the receiver pressure is maintained at:

(a) 150 kPa absolute

(b) 100 kPa absolute
(c) 50 kPa absolute

9.25 Solve Prob. 9.24b using Table D.1.

9.26 A converging nozzle with an exit area of 10 cm2 is attached to a reservoir maintained at 350 kPa absolute

and 20–C. Determine the receiver pressure that would just provide Me ¼ 1 and the mass flux from the nozzle
for that receiver pressure. Use (a) the equations and (b) Table D.1.

9.27 A converging nozzle with an exit area of 5 cm2 is attached to a reservoir maintained at 20–C and exhausts
directly to the atmosphere. What reservoir pressure would just result in Me ¼ 1? Calculate the mass flux for

that pressure. Use (a) the equations and (b) Table D.1.

9.28 Double the reservoir pressure of Prob. 9.27 and calculate the increased mass flux. Use the equations or
Table D.1.

9.29 A large 25–C airline pressurized to 600 kPa absolute suddenly bursts. A hole with area 20 cm2 is measured
from which the air escaped. Assuming the airline pressure remained constant, estimate the cubic meters of air

that was lost to the atmosphere in the first 30 s. (The same analysis can be used for a gas line that bursts.)
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9.30 If hydrogen was contained in the reservoir of Prob. 9.27, calculate the mass flux for the condition of that

problem. The equations must be used.

9.31 A Venturi tube, shown in Fig. 9.17, is used to measure the mass flux of air through the pipe by measuring the
pressures before the reduced section and at the minimum area. If the temperature before the reduced section
is 30–C, determine the mass flux.

12 cm dia

4 cm dia

V

200 kPa 120 kPa

Figure 9.17

9.32 Air flows through a converging–diverging nozzle attached from a reservoir maintained at 400 kPa absolute
and 20–C to a receiver. If the throat and exit diameters are 10 and 24 cm, respectively, what two receiver
pressures will result in isentropic flow throughout such that M ¼ 1 at the throat? Use (a) equations only and

(b) Table D.1.

9.33 Air flows from a converging–diverging nozzle from a reservoir maintained at 400 kPa absolute and 20–C
through a 12-cm-diameter throat. At what diameter in the diverging section will M ¼ 2? Use the equations
or the tables.

9.34 Calculate the exit velocity and mass flux for both pressures of Prob. 9.32.

9.35 Air enters a diffuser at 50 kPa absolute and 120–C with a M ¼ 2.4 and a mass flux of 8.5 kg=s. Sketch the
general shape of the diffuser and then determine the throat diameter and the exit pressure assuming
isentropic flow throughout. Neglect the exiting kinetic energy.

Normal Shock Wave

9.36 The temperature, pressure, and velocity before a normal shock wave are 20–C, 100 kPa absolute, and

600 m=s, respectively. Determine the temperature, pressure, velocity, and Mach number after the shock
wave. Assume air and use (a) the basic equations (9.35)–(9.37), (b) the specialized equations, and (c) the
normal shock table.

9.37 Air flows through a shock wave. Given the quantities in the first parentheses before the shock and the
quantities in the second parentheses after the shock, find the unknown quantities. (Pressures are absolute.)

(a) (20–C, 400 kPa, 480 m=s, M1) (T2, p2, M2, V2)
(b) (20–C, 400 kPa, V1, M1) (T2, p2, 0.5, V2)

(c) (20–C, 400 kPa, V1, M1) (T2, 125 kPa, M2, V2)

9.38 A large explosion occurs on the earth’s surface producing a shock wave that travels radially outward. At a
particular location, the Mach number of the wave is 2.0. Determine the induced velocity behind the shock

wave. Assume standard conditions.
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9.39 A pitot probe is used to measure the pressure in a supersonic pipe flow (review Solved Problem 9.6). If the

pressure in the pipe is 120 kPa absolute, the temperature is 30–C, and the Mach number is 2.0, what pressure
is measured by the pitot probe?

9.40 Air flows from a reservoir maintained at 400 kPa absolute and 20–C out a nozzle with a 10-cm-diameter
throat and a 20-cm-diameter exit into a receiver. Estimate the receiver pressure needed to locate a shock
wave at a diameter of 16 cm. Also, find the mass flux and the velocity just before the shock.

9.41 Air flows from a reservoir through a nozzle into a receiver. The reservoir is maintained at 400 kPa absolute
and 20–C. The nozzle has a 10-cm-diameter throat and a 20-cm-diameter exit. Determine the receiver
pressure needed to locate a shock wave at the exit. For that pressure, calculate the mass flux and the velocity

just before the shock.

Oblique Shock Wave

9.42 A supersonic airflow changes direction 20– due to a sudden corner [Fig. 9.9(b)]. If T1 ¼ 40–C, p1 ¼ 60 kPa
absolute, and V1 ¼ 900 m=s, calculate M2, p2, and V2 assuming (a) a weak shock and (b) a strong shock.

9.43 An airflow at 25–C and 50 kPa absolute with a velocity of 900 m=s is turned by an abrupt 25– corner with a
weak oblique shock. Estimate the pressure, velocity, and Mach number after the corner.

9.44 A weak oblique shock reflects from a plane wall (Fig. 9.15). If M1 ¼ 3 and b1 ¼ 35–, find the angle of the

reflected oblique shock and M3.

9.45 If T1 ¼ 10–C, find V3 for the reflected oblique shock of Prob. 9.44.

9.46 A strong oblique wave is reflected from a corner. If the upstream Mach number is 2.5 and the flow turns
through an angle of 25–, find the obtuse angle the wave makes with the wall and the downstream Mach

number.

9.47 If T1 ¼ 10–C in Prob. 9.46, calculate the downstream velocity.

Expansion Waves

9.48 An airflow with a Mach number of 2.4 turns a convex corner of 40–. If the temperature and pressure are 5–C
and 60 kPa absolute, respectively, determine the Mach number, pressure, and velocity after the corner.

9.49 An airflow with M ¼ 3.6 is desired by turning a 20–C supersonic flow with a Mach number of 1.8 around a
convex corner. If the upstream pressure is 40 kPa absolute, what angle should the corner possess? What is
the velocity after the corner?

9.50 A flat plate, designed to fly at an angle of 6–, is used as an airfoil in a supersonic flow. Sketch the flow

pattern to be expected on the airfoil.

9.51 The airfoil of Prob. 9.50 is to fly at M ¼ 2.4 at 16 000 m elevation. Find (a) the pressures on the upper and
lower surfaces of the plate, (b) the Mach numbers (on the upper and lower parts) after the plate assuming the
flow to be parallel to the original direction, and (c) the lift coefficient, defined by

CL ¼ lift

�
1

2
r1V

2
1 A

� �
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Answers to Supplementary Problems

9.8 See problem.

9.9 See problem.

9.10 See problem.

9.11 See problem.

9.12 See problem.

9.13 See problem.

9.14 See problem.

9.15 1087 m

9.16 333 m

9.17 (a) 0.297 (b) 0.668 (c) 0.996 (d) 0.835

9.18 510 m

9.19 (a) 336 m, 0.463 s (b) 404 m, 0.501 s (c) 672 m, 0.552 s

9.20 0.00406–C, 1.19· 1025 m=s

9.21 See problem.

9.22 (a) 75.6 m=s (b) 76.2 m=s

9.23 (a) 0.890 kg=s (b) 0.890 kg=s

9.24 (a) 0.584 kg=s (b) 0.590 kg=s (c) 0.590 kg=s

9.25 0.590 kg=s

9.26 (a) 0.826 kg=s (b) 0.826 kg=s

9.27 (a) 0.226 kg=s (b) 0.226 kg=s

9.28 0.452 kg=s

9.29 44.5 m3

9.30 0.00187 kg=s

9.31 0.792 kg=s

9.32 (a) 388 and 6.69 kPa (b) 397 and 6.79 kPa

9.33 15.59 cm
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9.34 34.8 m=s and 7.41 kg=s, 632 m=s and 7.42 kg=s

9.35 9.23 cm, 731 kPa absolute

9.36 (a) 145–C, 340 kPa, 264 m=s, 0.629

9.37 (a) 1.4, 95–C, 848 kPa, 0.628, 264 m=s (b) 906 m=s, 2.64, 395–C, 319 kPa, 259 m=s
(c) 583 m=s, 1.7, 154–C, 0.640, 265 m=s

9.38 425 m=s

9.39 677 kPa

9.40 192 kPa, 7.41 kg=s, 569 m=s

9.41 118.2 kPa, 7.41 kg=s, 611 m=s

9.42 (a) 1.71, 192 kPa, 733 m=s (b) 0.585, 431 kPa, 304 m=s

9.43 124 kPa absolute, 602 m=s, 1.51

9.44 47–, 1.39

9.45 667 m=s

9.46 104–, 0.67

9.47 324 m=s

9.48 4.98, 1.697 kPa, 998 m=s

9.49 39.4–, 835 m=s

9.51 (a) 6.915 kPa, 14.52 kPa (b) 2.33, 2.46 (c) 0.182
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Chapter 10

Flows in Pipes
and Pumps

10.1 INTRODUCTION

Flows in pipes and ducts occur throughout the world. They are used to convey potable water,
wastewater, crude oil, gasoline, chemicals, and many other liquids. They vary in size from large piping—
e.g., the Alaska pipeline—to medium-sized ducts found in heating and air-conditioning systems to very
small tubing found in cardiovascular and pulmonary systems. In this chapter we begin with analysis of
the hydraulics associated with a single pipe, followed with a brief introduction to pumps, since they often
are an integral part of pipelines. Then we focus on the analysis of steady flows in more complex systems
that are best solved with an iterative technique called the Hardy Cross method. We conclude with a brief
introduction to unsteady flows in pipelines.

10.2 SIMPLE PIPE SYSTEMS

10.2.1 Losses

In Secs. 7.6.3 to 7.6.5 we represent piping losses with the Darcy–Weisbach relation, Eq. (7.78) to account
for friction and Eq. (7.86) to handle minor losses. They are repeated here for convenience:

hL ¼ f
L

D

V2

2g
ð7:78Þ

hL ¼ K
V2

2g
ð7:86Þ

Since use will be made of those concepts, the reader should review those sections in their entirety before
proceeding. Figure 7.10 may be utilized to determine the friction factor. In addition to the Darcy–
Weisbach formulation, the Hazen–Williams formula has found wide use among practitioners. It is

hL ¼ K1L

C1:85D4:87
Q1:85 ð10:1Þ

where Q ¼ discharge
L ¼ length of the pipe element
C ¼ coefficient dependent on the pipe roughness
K1 ¼ 10.59 (for SI units) and 4.72 (for English units); note that K1 depends on the system of units
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Values of C are provided in Table 10.1. The Hazen–Williams loss formula is empirically based, and
is less accurate than the Darcy–Weisbach relation; hence Eq. (7.78) is preferred.

Table 10.1 Values of the Hazen–Williams Coefficient

Type of pipe C

Extremely smooth; fibrous cement 140

New or smooth cast iron; concrete 130

Newly welded steel 120

Average cast iron; newly riveted steel; vitrified clay 110

Cast iron or riveted steel after some years of use 95–100

Deteriorated old pipes 60–80

EXAMPLE 10.1 A cast iron pipe (L ¼ 400 m, D ¼ 150 mm) is carrying 0.05 m3=s of water at 15–C. Compare
the loss due to friction using the Darcy–Weisbach and the Hazen–Williams formulas.

Solution: First determine the friction factor and find the Hazen–Williams coefficient:

V ¼ Q

A
¼ 0:05

p · 0:152=4
¼ 2:83m=s n ¼ 1:141 · 1026 m2=s Re ¼ VD

n
¼ 3:72 · 105

e

d
¼ 0:26

150
¼ 0:00173, and from Fig. 7.10: f ¼ 0.024, and from Table 10.1: C ¼ 100.

Using the Darcy–Weisbach relation, Eq. (7.78):

hL ¼ 0:024 ·
400

0:15
·

2:832

2 · 9:81
¼ 26:2m

With the Hazen–Williams formula, Eq. (10.1):

hL ¼ 10:59 · 400

1001:85 · 0:154:87
· 0:051:85 ¼ 34:1m

The Darcy–Weisbach relation provides the more accurate result.

10.2.2 Hydraulics of Simple Pipe Systems

Flows in single-pipe reaches are examined in Secs. 7.6.3 to 7.6.5. The reader should pay particular
attention to the use of the Moody diagram (Fig. 7.10) and to the three categories of pipe problems given
by Eqs. (7.81) to (7.83). Examples 7.6 and 7.7 illustrate how the analysis proceeds. In this section, we
study flows in three relatively simple pipe systems: series, parallel, and branching. Solution techniques
are simplified due to the exclusion of pumps and lack of complexity of the piping; they are suitable for
use with calculators, spreadsheet algorithms, and computational software. The fundamental principle in
this so-called ad hoc approach is to identify the unknowns and write an equivalent number of
independent equations to be solved. Subsequent simplification by eliminating as many variables as
possible results in a series of single-pipe problems to be solved simultaneously; these may be solved by
trial and error or by use of an equation system solver.

The energy and continuity equations are employed to analyze pipe systems. Normally, the predicted
parameters are discharge Q and piezometric head H ¼ p=gþ z. Throughout this chapter we assume that
the kinetic energy term is negligible compared to the magnitude of the hydraulic grade line, that is,
V2=2gp p=gþ z. Referring to Fig. 10.1(a), the energy equation for a single reach of pipe is

HA2HB ¼
X

hf ¼ f
L

D

1

2gA2
þ SK

2gA2

� �
Q2 ð10:2Þ
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(a) Single element

(b) Three elements in series

(c) Two parallel elements

(d) Three branch elements

Q

HB

HA

A

BL, f, D, K

Datum

Q2

A

C

B

Q1

Q3

1
2

3

D
(junction)

Q1

Q2

1

2

A

B

Q

A

B1
2

3

Figure 10.1 Simple pipe systems.

Here the Darcy–Weisbach equation is used to represent friction losses and SK is the sum of the minor
loss coefficients in the reach. More simply, if we let the friction and minor loss terms be represented by a
resistant, or loss, coefficient R, defined as

R ¼ 1

2gA2
f
L

D
þ

X
K

� �
ð10:3Þ

Then Eq. (10.2) becomes

HA2HB ¼ RQ2 ð10:4Þ
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This simplified relation contains all of the information necessary to solve a simple pipe problem that
employs the Darcy–Weisbach relation for pipe friction. We make use of that relationship exclusively
throughout the developments in this chapter.

EXAMPLE 10.2 Compute the discharge using the pipe data of Example 10.1 if the difference in piezometric

head is 20 m. Assume the minor loss coefficients amount to SK ¼ 2:5 and f ¼ 0.025.

Solution: First compute the resistance coefficient with Eq. (10.3):

R ¼ 1

2gA2
f
L

D
þ SK

� �
¼ 1

2 · 9:81ðp · 0:152=4Þ2 0:025 ·
400

0:15
þ 2:5

� �
¼ 1:13 · 104 s2=m5

Then find the discharge using Eq. (10.4):

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
20

1:13 · 104

s
¼ 0:042m3=s

Figure 10.1(b) shows a series pipe system consisting of three reaches, each with a specified loss
coefficient. Since the same discharge Q exists in each reach, the energy equation from location A to
location B is

HA2HB ¼ R1Q
2 þ R2Q

2 þ R3Q
2 ¼ ðR1 þ R2 þ R3ÞQ2 ð10:5Þ

Obviously, this relation can be expanded to any number of piping elements. To evaluate the loss
coefficients, one can substitute Eq. (10.3), and employ Fig. 7.10 for the friction factor f along with Table
7.2 for the minor loss coefficient K. Note that a trial-and-error solution results, since f is dependent on Q.
In many situations, the friction factor can be assumed constant; hence R can be evaluated with Eq. (10.3)
prior to determining either the discharge or the change in piezometric head. We proceed with that
assumption throughout this chapter.

EXAMPLE 10.3 For the three pipes in series shown in Fig. 10.1(b), determine the discharge if the difference in

piezometric head is HA2HB ¼ 10 m. Use L1 ¼ 2000 m, D1 ¼ 450 mm, L2 ¼ 650 m, D2 ¼ 150 mm, K2 ¼ 2.0,
L3 ¼ 1650 m, D3 ¼ 300 mm, and f1 ¼ f2 ¼ f3 ¼ 0.03.

Solution: First compute the resistance coefficients using Eq. (10.3):

R1 ¼ 1

2 · 9:81ðp · 0:452=4Þ2 0:03 ·
2000

0:45

� �
¼ 269 s2=m5

R2 ¼ 1

2 · 9:81ðp · 0:152=4Þ2 0:03 ·
650

0:15
þ 2:0

� �
¼ 21 �5550 s2=m5

R3 ¼ 1

2 · 9:81ðp · 0:302=4Þ2 0:03 ·
1650

0:30

� �
¼ 1684 s2=m5

Calculate the discharge with Eq. (10.4):

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R1 þ R2 þ R3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10

269þ 21 550þ 1684

s
¼ 0:0206m3=s

Parallel piping is illustrated in Fig. 10.1(c); even though only two pipes are shown, any number of
pipes can be placed in parallel. The pipes are joined at locations A and B, and each pipe has its own
unique geometry and minor loss term. The continuity balance at either junction A or B requires that

Q ¼ Q1 þQ2 ð10:6Þ
For the two pipe elements, the required energy equations from location A to B are

HA2HB ¼ R1Q
2
1

HA2HB ¼ R2Q
2
2

ð10:7Þ
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Assuming that Q is known, the unknowns in the above equations are Q1, Q2, and DH ¼ HA2HB. They
are solved simultaneously in the manner shown in the following example.

EXAMPLE 10.4 Find the flow distribution and change in hydraulic grade line for the parallel piping shown in
Fig. 10.1(c) using the following data: L1 ¼ 50 m, D1 ¼ 100 mm, K1 ¼ 2, L2 ¼ 75 m, D2 ¼ 150 mm, K2 ¼ 10.
The total discharge in the two pipes is Q ¼ 0.04 m3=s.

Solution: Combine Eqs. (10.6) and (10.7) in the manner

Q ¼ Q1 þQ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R1

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R2

s
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

HA2HB

p 1ffiffiffiffi
R1

p þ 1ffiffiffiffi
R2

p
� �

Note that HA2HB is also an unknown, and we first solve for that value:

R1 ¼ 1

2 · 9:81ðp · 0:102=4Þ2 0:025 ·
50

0:10
þ 2

� �
¼ 11 980 s2=m5

R2 ¼ 1

2 · 9:81ðp · 0:152=4Þ2 0:030 ·
75

0:15
þ 10

� �
¼ 4082 s2=m5

HA2HB ¼ Q2

1ffiffiffiffi
R1

p þ 1ffiffiffiffi
R2

p
� �2 ¼ 0:042

1ffiffiffiffiffiffiffiffiffi
11 980

p þ 1ffiffiffiffiffiffi
4082

p
� �2 ¼ 2:604m

Lastly, the flows in the two parallel pipes are computed using Eq. (10.7):

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R1

s
¼

ffiffiffiffiffiffiffiffiffi
2:604

11 980

s
¼ 0:0147m3=s

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R2

s
¼

ffiffiffiffiffiffiffi
2:604

4082

s
¼ 0:0253m3=s

An example of branch piping is illustrated in Fig. 10.1(d); it is made up of three elements connected
to a single junction. Typically, the piezometric heads at locations A to C are considered to be known, and
the unknowns are the discharges Q1, Q2, and Q3 in each line and the piezometric head at location D.
Analysis proceeds by assuming the direction of flow and writing the energy balance in each element:

HA2HD ¼ R1Q
2
1 ð10:8Þ

HD2HB ¼ R2Q
2
2 ð10:9Þ

HD2HC ¼ R3Q
2
3 ð10:10Þ

The continuity balance at location D is

Q12Q22Q3 ¼ 0 ð10:11Þ
Note that a flow direction was assumed in each pipe. One method of solution is as follows:

1. Assume HD at the junction.
2. Compute Q1, Q2, and Q3 in the three branches using Eqs. (10.8) to (10.10).
3. Substitute Q1, Q2, and Q3 into Eq. (10.11) to check for continuity balance. Generally, the flow

imbalance DQ ¼ Q12Q22Q3 will be nonzero at the junction.
4. Adjust the head HD and repeat steps 2 and 3 until DQ is within desired limits. It may be necessary

to correct the sign in one or more of the equations if during the iterations HD moves from above
or below one of the reservoirs or vice versa.

An alternative method of solution is to combine the equations and eliminate all of the variables
except one (commonly HD) and employ a numerical solving technique. Example 10.5 represents a level
of complexity that represents a limit using a calculator-based solution. For more complex systems that
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might include pumps, additional reservoirs, or pipe elements, the network analysis described in Sec. 10.4
is recommended.

EXAMPLE 10.5 Determine the flow rates and the piezometric head at the junction for the branch system of

Fig. 10.1(d). Assume constant friction factors. HA ¼ 12 m, HB ¼ 15 m, HC ¼ 5 m, f1 ¼ f2 ¼ f3 ¼ 0.02,
L1 ¼ 200 m, D1 ¼ 100 mm, L2 ¼ 150 m, D2 ¼ 100 mm, L3 ¼ 750 m, D3 ¼ 150 mm.

Solution: Use the four-step procedure outlined above. First compute the resistance coefficients using

Eq. (10.3); the result is R1 ¼ 33 890 s2=m5, R2 ¼ 27 280 s2=m5, and R3 ¼ 16 570 s2=m5. We assume that HD is
lower than HA and HB, but higher than HC. Consequently, the resulting flow directions are Q1 from A to D, Q2

from B to D, and Q3 from D to C. An iterative solution is shown in the accompanying table. Iteration ceases

when jDQj50:001 units.

10.3 PUMPS IN PIPE SYSTEMS

Until now, we have considered systems that have not involved a pump. If a pump is included in the pipe
system and the flow rate is specified, the solution is straightforward using the methods we have already
developed. On the other hand, if the discharge is not known, which is commonly the case, a trial-and-
error solution is required. The reason for this is that the pump head HP depends upon the discharge, as
shown by the pump characteristic curve, the solid curve in Fig. 10.2. Pump manufacturers provide the
characteristic curves. Figure 10.3 shows a complete set of curves for a manufactured centrifugal pump;
included are sets of head versus discharge curves for various impeller sizes, as well as efficiency and
power curves. The power requirement for a pump is given by the expression (see Eq. (4.25))

_WWP ¼ gQHP

Z
ð10:12Þ

Determining the discharge in a pumped line requires an additional relation, namely the demand
curve, which is generated by writing the energy balance across the system for varying discharges.
Referring to the pump–pipe system in Fig. 10.2, the energy equation (see Eq. (10.4)) for the pipe
including the pump is a quadratic in Q:

HP ¼ HB2HA

� �þ RQ2 ð10:13Þ

P

Q

R

A

B

QD

Q

H

HD

HP

HB –HA HB –HA + RQ2

Figure 10.2 Pump and system demand curves.

Iteration HD

(assumed)
Q1

(Eq. (10.8))
Q2

(Eq. (10.10))
Q3

(Eq. (10.9))
Q1 þQ22Q3

(Eq. (10.11))

1 12 0 0.01049 0.02055 2 0.01006

2 11 0.00543 0.01211 0.01903 2 0.00149

3 10 0.00768 0.01354 0.01737 þ 0.00385

4 10.74 0.00610 0.01250 0.01861 2 0.00002

Hence the resulting solution is HD ¼ 10.7 m, Q1 ¼ 0.0061 m3=s, Q2 ¼ 0.0125 m3=s, and Q3 ¼ 0.0186 m3=s.
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Figure 10.3 Centrifugal pump and performance curves for four different impellers. Water at 20–C is the pumped
liquid. (Courtesy Sulzer Pumps Ltd).

The demand curve is illustrated in Fig. 10.2 by the dashed line (see Eq. (10.13)). The first term on the
right-hand side of Eq. (10.13) is the static head and the second term accounts for the system losses. The
steepness of the demand curve depends on the losses in the piping; as the losses increase, the required
pumping head increases and vice versa. Piping may experience short-term alterations in the demand
curve such as throttling of valves, and over the long term, aging of pipes may permanently increase the
demand. The intersection of the pump characteristic curve and the demand curve will provide the design
head HD and discharge QD in Fig. 10.2. It is desirable to have the solution occur at or close to the point
of best efficiency of the pump.

Instead of an actual pump curve, an approximate pump head–discharge representation is sometimes
used:

HPðQÞ ¼ a0 þ a1Qþ a2Q
2 ð10:14Þ

where the coefficients a0, a1, and a2 are assumed to be known; they may be found by substituting three
known data points from a specified pump curve into Eq. (10.14) and solving the three resulting equations
simultaneously.
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EXAMPLE 10.6 Estimate the discharge in the pipe system shown in Fig. 10.2, and in addition find the required
pump power. For the pipe, L ¼ 700 m, D ¼ 300 mm, f ¼ 0.02, and HB2HA ¼ 30 m. Use the 240-mm curve in

Fig. 10.3 for the pump head–discharge relation.

Solution: First determine R from Eq. (10.3):

R ¼ 1

2 · 9:81ðp · 0:302=4Þ2 0:02 ·
700

0:30

� �
¼ 476 s2=m5

A trial solution is utilized to determine the pump head and discharge. The procedure is as follows: (1) guess a
discharge; (2) compute HP with Eq. (10.13); and (3) compare that value with the one from the 240-mm pump

curve of Fig. 10.3. Continue estimating values of Q until the two pump heads agree. The solution is shown in the
table.

Hence, the approximate solution isQ ¼ 200 m3=h andHP ¼ 72 m. FromFig. 10.3, the efficiency is approximately

75%, so that the required power is

_WWP ¼ gQHp

Z
¼ 9800 · 0:056 · 72

0:75
¼ 52 700W or 706 hp

In some instances, pumping installations may require a wide range of heads or discharges, so that one pump

cannot meet the required demand range. In such situations, the pumps may be staged in series or in parallel to
provide operation at greater efficiency. When a large variation in flow demand occurs, two or more pumps may
be placed in parallel, as in Fig. 10.4(a). The combined characteristic curve is determined by recognizing that the

head HP across each pump is identical, and the total discharge through the system SQ is the sum of the
discharges through each pump for a given head. For demands that require high heads, placing the pumps in
series will provide a head greater than the pumps individually (Fig. 10.4(b)). Since the discharge through each

pump in series is the same, the combined characteristic curve is found by summing the heads SHP across the
pumps for a given discharge.

Head

HD

Pump A Pump B

Pumps A and B combined

System demand

Discharge

A

B

(a) Parallel pumping

QA QB QD = Q

Figure 10.4 Continued

Q, m3=h Q, m3=s HP, m (Eq. (10.13)) HP, m (Fig. 10.3)

150 0.042 70.8 74

250 0.069 72.3 67

200 0.056 71.5 72
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Head

HD = HP

Pump A

Pump B

System demand

Discharge

Pumps A and B combined

(b) Series pumping

QB QD

A B

Figure 10.4 Multiple pump operation.

EXAMPLE 10.7 Water is pumped between two reservoirs in a single pipe with the value of R ¼ 85 s2=m5. For
the pump characteristic curve, use HP ¼ 22:9þ 10:7Q2111Q2. Compute the discharge Q and pump head HP

for:

(a) HB2HA ¼ 15 m with one pump placed in operation
(b) HB2HA ¼ 15 m with two identical pumps operating in parallel
(c) HB2HA ¼ 25 m with two pumps operating in series

Solution: Since the pump curve is provided in quadratic form, Eqs. (10.13) and (10.14) can be combined to

eliminate HP and solve for Q. The solutions are as follows:

(a) Equate the system demand curve to the pump characteristic curve and solve the resulting quadratic equation:

15þ 85Q2 ¼ 22:9þ 10:7Q2111Q2

195Q2210:7Q27:9 ¼ 0

Q ¼ 1

2 · 195
10:7þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:72 þ 4 · 195 · 7:9

p
 �
¼ 0:23m3=s

HP ¼ 15þ 85 · 0:232 ¼ 19:5m

(b) For two pumps in parallel, the characteristic curve is

HP ¼ 22:9þ 10:7
Q

2

� �
2111

Q

2

� �2
¼ 22:9þ 5:35Q227:75Q2

The system demand curve is equated to this result and solved for Q:

15þ 85Q2 ¼ 22:9þ 5:35Q227:75Q2

112:8Q225:35Q27:9 ¼ 0

Q ¼ 1

2 · 112:8
5:35þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:352 þ 4 · 112:8 · 7:9

p
 �
¼ 0:29m3=s

HP ¼ 15þ 85 · 0:292 ¼ 22:2m
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(c) With two pumps in series, the characteristic curve becomes

HP ¼ 2ð22:9þ 5:35Q2111Q2Þ ¼ 45:8þ 21:4Q2222Q2

Equate this to the system demand curve and solve for Q:

25þ 85Q2 ¼ 45:8þ 21:4Q2222Q2

307Q2221:4Q220:8 ¼ 0

Q ¼ 1

2 · 307
21:4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:42 þ 4 · 307 · 20:8

p
 �
¼ 0:30m3=s

HP ¼ 25þ 85 · 0:302 ¼ 32:5m

10.4 PIPE NETWORKS

10.4.1 Network Equations

Simple pipe system solution techniques, as outlined above, are limited to the size and complexity of a
piping system that can be analyzed. Indeed, it is advantageous to seek a more generalized method that
can handle a system, or so-called network, consisting of a number of pipe elements, one or more pumps
and perhaps several reservoirs. Quite often the objective of the analysis would be to predict the
discharges in the network. There are a number of pipe network solutions available, and nearly all of
them make use of a trial-and-error method. The one technique that we utilize herein is called the Hardy
Cross method; it can easily be adapted to a computer-based algorithm; however, we make use of
spreadsheet software as an alternate.

Consider piping as shown in Fig. 10.5(a); it is more complex than those analyzed in Secs. 10.2 and
10.3, hence it would be difficult to solve in an ad hoc method. Any of the piping systems we have
previously studied in this chapter can be solved using the Hardy Cross technique, but first we need to
state the problem in a consistent and systematic manner.

Piping networks such as those shown in Fig. 10.5(a) can be viewed to be made up of interior nodes,
interior loops, and paths that connect two fixed-grade nodes (sometimes these paths are called
pseudoloops). An interior node is a location where two or more pipes connect and the head is unknown,
and fixed-grade nodes are reservoirs and locations of constant pressure. Figure 10.5(b) shows the
nodes and loops for the piping system of Fig. 10.5(a). Nodes A and E are fixed-grade nodes, and nodes
B, C, and D are interior nodes. Loop I is an interior loop and loop II is a pseudoloop. For this or any
other pipe system, the generalized network equations are as follows.

. Energy balance in a clockwise positive manner around an interior loop or along a unique path or
pseudoloop which connects fixed-grade nodes:X

ð6Þi½RiQ
2
i 2 ðHPÞi	 þ DH ¼ 0 ð10:15Þ

where i ¼ pipe elements that make up the loop or path
(HP)i ¼ head across a pump that may exist in pipe i
DH ¼ difference in magnitude of the two fixed-grade nodes in the path ordered in a clockwise

fashion across an imaginary pipe (the dashed line in Fig. 10.5(b))
For an interior loop, DH ¼ 0, and if no pump is located in the loop or path, (HP)i ¼ 0. The plus or
minus sign pertains to the assumed flow direction in each pipe relative to clockwise positive.

. Continuity at an interior node: X
ð6ÞjQj2Qe ¼ 0 ð10:16Þ

where the subscript j refers to all pipes connected to node j and Qe is the external demand. The plus
or minus sign pertains to the assumed flow direction (positive for flow into the node and negative
for flow out).
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(a) Physical system

A

B

D

C

E

12

3

45

Qe

(b) Loops and nodes

A

B

D

C

E

Qe

Q5

Q3

Q4

Q2

Q1

I

II

Figure 10.5 Representative pipe network.

To determine if the network is properly defined, one can use the following rule. Let F be the number of
fixed-grade nodes, P the number of pipe elements, J the number of interior nodes, and L the number of
interior loops. Then, if the network is properly defined the following relation will hold:

P ¼ Jþ Lþ F21 ð10:17Þ
In Fig. 10.4, J ¼ 3, F ¼ 2, and P ¼ 5, so that L ¼ 1.

10.4.2 Hardy Cross Method

The Hardy Cross solution is a trial-and-error technique and it requires that the network equations be
linear. Equation (10.15) is a general relation that can be applied to any path or closed loop in a network;
as stated earlier, if there is no pump (HP)i ¼ 0, and for an interior loop DH ¼ 0. Let the variable
discharge ~QQ be determined from a previous estimate, and Q be the new estimate. Then the nonlinear
terms in Eq. (10.15) are linearized in the following manner:

RQ2 ¼ R ~QQ
2 þ dðRQ2Þ

dQ
ðQ2 ~QQÞ þ · · ·

< R ~QQ
2 þ 2R ~QQðQ2 ~QQÞ

ð10:18Þ

HPðQÞ ¼ HPð ~QQÞ þ dHPðQÞ
dQ

ðQ2 ~QQÞ þ · · ·

< a0 þ a1 ~QQþ a2 ~QQ
2 þ ða1 þ 2a2 ~QQÞðQ2 ~QQÞ

ð10:19Þ
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In expanding Eq. (10.19), we have made use of Eq. (10.14). The loop or path energy relation (Eq. (10.15))
now becomes X

ð6Þi½Ri
~QQ

2
i 2 ða0 þ a1 ~QQi þ a2 ~QQ

2
i Þ	

þ
X

½2Ri
~QQi2 ða1 þ 2a2 ~QQiÞ	ðQi2 ~QQiÞ þ DH ¼ 0

ð10:20Þ

Note that the second term does not contain the plus or minus sign. Defining a flow adjustment
for a given loop or path to be DQ ¼ Q2 ~QQ, substituting it into Eq. (10.20) and solving for DQ, we
obtain

DQ ¼2
P ð6Þi½Ri

~QQ
2
i 2 ða0 þ a1 ~QQi þ a2 ~QQ

2
i Þ	2DHP ½2Ri

~QQi2 ða1 þ 2a2 ~QQiÞ	
ð10:21Þ

In the Hardy Cross method, it is assumed that the flow adjustment DQ is applied independently to all
pipes in a given loop. It is required that the algebraic sign of Q be positive in the direction of normal
pump operation; otherwise, the pump curve will not be represented properly and Eq. (10.21) will not be
valid. In addition, it is important that the discharge through the pump remains within the limits of the
data employed to generate the pump curve. For a closed loop in which no pumps or fixed-grade nodes
exist, Eq. (10.21) reduces to the simpler form

DQ ¼2
P ð6ÞiRi

~QQ
2
iP

2Ri
~QQi

ð10:22Þ

In the Hardy Cross iterative solution, continuity (Eq. (10.16)) is satisfied initially with assumed flows
that are assigned and remains satisfied throughout the solution process. The method is summarized in
the following steps:

1. Assume an initial flow distribution in the network that satisfies Eq. (10.16). The closer the initial
estimates are to the true values, fewer iterations will be necessary for convergence. One rule to
follow is to recognize that as R increases for a pipe element, Q will decrease.

2. Determine DQ in each path or loop using either Eq. (10.21) or (10.22) as appropriate. The
numerators will approach zero as the paths or loops become balanced.

3. Adjust the flows in each pipe element in all loops and paths using the relation

Qi ¼ ~QQi þ
X

DQ ð10:23Þ

Here the term
P

DQ is employed as a correction because a given pipe may be part of more than
one loop or path. As a result, the correction will be the sum of corrections from all loops for which
the pipe element is common.

4. Repeat steps 2 and 3 until a desired accuracy is reached. One convergence criterion isP jQi2 ~QQijP jQij # e ð10:24Þ

where e is an arbitrarily small number, say 0.001, e,0.005. Another criterion is to continue
iteration until each of the loop DQ’s reach an arbitrarily small value.
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EXAMPLE 10.8 Determine the flow distribution and piezometric heads at the junctions using the Hardy Cross
method for the network shown in Fig. 10.5(a). HA ¼ 45 m, HE ¼ 0, Qe ¼ 0.025 m3=s.

Solution: There are three junctions (J ¼ 3), five pipes (P ¼ 5), and two fixed-grade nodes (F ¼ 2), hence
L ¼ 52 32 2þ 1 ¼ 1 interior loop. In addition, there is one pseudoloop. The two loops and assumed flow
directions (clockwise positive) are shown in Fig. 10.5(b). Equation (10.22) is applied to loop I and Eq. (10.21) to

loop II:

DQI ¼2ðR2
~QQ2j ~QQ2j þ R3

~QQ3j ~QQ3j6 R4
~QQ4j ~QQ4jÞ

2ðR1j ~QQ1j þ R2j ~QQ2j þ R3j ~QQ3jÞ

DQII ¼2ðR1
~QQ1j ~QQ1j þ R3

~QQ3j ~QQ3j þ R4
~QQ4j ~QQ4j þ R5

~QQ5j ~QQ5jÞ2 ðHA2HEÞ
2ðR1j ~QQ1j þ R3j ~QQ3j þ R4j ~QQ4j þ R5j ~QQ5jÞ

Note that the terms 6R ~QQ
2
and R ~QQ have been replaced by R ~QQj ~QQj and Rj ~QQj in the equations which allow for the

correct sign to be automatically attributed. The values of Q take on a positive or negative sign depending on the
assumed flow direction relative to the assigned positive clockwise direction for each loop. A spreadsheet solution
is illustrated in the two tables, which show respectively the spreadsheet formulas and the numerical solution.
Values of R are calculated with the given data using Eq. (10.3) and are entered in column B. Initial estimates ofQ

are provided in column C, and updated values are shown for four iterations in columns F, I, L, and O. The
convergence criterion used here is to cease iterations when the absolute value of DQ falls below 0.001. Note that
Q3 changes direction by the final iteration. The discharges after the fourth iteration are shown in Fig. 10.6. The

piezometric heads at junctions B, C, and D are

HB ¼ HA2R5Q
2
5 ¼ 45224 · 0:07252 ¼ 44:9m

HC ¼ HB2R4Q
2
4 ¼ 44:921741 · 0:0502 ¼ 40:5m

HD ¼ HE þ R1Q
2
1 ¼ 0þ 17 350 · 0:04752 ¼ 39:2m

Spreadsheet Formulas

12390 –0.035 =B6*C6*ABS(C6)
=B7*C7*ABS(C7)
=B8*C8*ABS(C8)

=SUM(D6:D8)

45
=B15*C15*ABS(C15)=2*B15*ABS(C15)
=B15*C15*ABS(C16)=2*B16*ABS(C16)
=B17*C17*ABS(C17)=2*B17 ABS(C17)
=B18*C18*ABS(C18)=2*B18 ABS(C18)

=SUM(D14:D18)
=B16*C15*ABS(C16)

–0.02

–0.015

–0.01
–0.045

0.015

0.01

17350
2611
1741
24

2611
1741

Loop1
Pipe 2
Pipe 3
Pipe 4

Loop 2
HA–HE
Pipe 1
Pipe 3
Pipe 4
Pipe 5

QII= =–D20/E20

=SUM(E15:E18)

=C15+E22
=C16+E22–E12
=C17+E22–E12
=C18+E22

QI= =–D10/E10

=SUM(E6:E8)

=2*B8*ABS(C8)
=2*B7*ABS(C7)
=2*B6*ABS(C6) =C6+E12

=C7+E12–E22
=C8+E12–E22

Iteration 1

R Q QRQQ 2RQ1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F

Pipe L, m D, mm f
P

K

1 100 100 0.02 1

2 75 100 0.02 0

3 120 150 0.02 0

4 80 150 0.02 0

5 20 300 0.02 1
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Spreadsheet Solution

R Q RQQ 2RQ 2RQ 2RQ RQQ 2RQ 2RQRQQQ QQ Q

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Loop 1
Pipe 2

Pipe 3
Pipe 4

12390

2611
1741 0.01

–0.015

–0.035 –15.178 867.300 –0.0191 –4.519 473.248 –0.0303 –11.355 750.165 –0.0235

–0.858

QI= 9.68Ε−04

886.928

174.089
130.533
582.306 –0.0225

–0.0250

–0.0500

1.631

4.352

0.0250
0.0500

103.368
155.975

1009.508

6.77E–03

1.023
3.493

–6.838

–6.838
QI=QI= 1.12E–02

0.0198
0.0448

–0.0501 –43.493 1737.349 –0.0485 –40.804 1682.804 –0.0475
–0.0250
–0.0500
–0.0725

130.533

174.089
3.528

–1.631
–4.352

–0.130

–0.0250
–0.0500
–0.0735

103.368
155.975

3.603

–1.023
–3.493
–0.135

–0.0198
–0.0448

–0.0751

252.643

255.511

981.402

6.111
9.375

10.967

0.0484
0.0734

78.330

34.820

980.450–15.591

–0.587

–0.174

45.000 45.00045.00045.000
Loop 2

HA–HE

Pipe 1 17350 –0.02 –6.940 –0.0675
–0.0484
–0.0734
–0.0925

–79.000 2341.502
252.643

255.511
4.439

–6.111

–9.375
–0.205

–49.692 2854.094 –3.144 2000.295 –1.917 1990.954

694.000
78.330
34.820
2.160

809.310

–0.174
–0.049

–4.75E–02

0.587–0.015

–0.01
–0.045

2611
1741

24

Pipe 3
Pipe 4
Pipe 5

38.425

QII = 1.74E–02QII = 1.57E–03QII= 9.63E–04QII=

1
2
3
4
5
6
7
8
9
10
11

12

13

14

15
16
17
18
19
20
21

22

23

A B C D E F G H I J K L M N O

1.59E–02 QI=

0.0725
0.025

0.0475

0.025

0.05

0.0225

Figure 10.6 Flow after four iterations.

10.4.3 Computer Analysis of Network Systems

The Hardy Cross analysis is a modified version of the method of successive approximations used to solve
a set of linear equations. Since it does not require the inversion of a matrix, the Hardy Cross method can
be used to solve relatively small networks using a calculator or spreadsheet software. However, for larger
networks that contain multiple loops and branches, spreadsheet programming becomes time-consuming
as well as cumbersome. Generalized pipe network solution software is now available that has robust
solutions and provides convenient input and output schemes. For example, the source code and users
manual for the cost-free network analysis program EPANET can be obtained from the website of the
United States Environmental Protection Agency (www.epa.gov). EPANET is a comprehensive program
that simulates both flow and water quality in pressurized pipe networks. For the hydraulic analysis, it
incorporates a hybrid node–loop algorithm termed the gradient method. In addition to piping, systems
can include pumps, valves, reservoirs, and storage water tanks. Pipe friction losses are represented with
the Darcy–Weisbach, Hazen–Williams, or Chezy–Manning formulations.

10.5 UNSTEADY FLOW

While many transient, or unsteady, flows have in the past focused on problems dealing with hydropower
systems, and water and oil pipelines, more recently applications have expanded to include control system
operation, and nuclear and thermal power plant piping. The excitation that generates the transient can
be one of a number of causes, but typically it is rapid valve closing or opening, pipe rupture or break,
pump or turbine operation, or cavitation phenomenon. In this section we focus on a single horizontal
pipe and examine two fundamental types of flow: (1) incompressible and inelastic unsteady flow, called
surging, and (2) slightly compressible and elastic unsteady flow, termed water hammer.

CHAP. 10] FLOWS IN PIPES AND PUMPS 219

www.epa.gov


10.5.1 Incompressible Flow

We consider a horizontal length L of pipe with constant diameter D, shown in Fig. 10.6. The upstream
end of the pipe is connected to a reservoir with head H1, and at the downstream end there is a valve
exiting to a reservoir with head H3. Both H1 and H3 are time invariant. Initially, in the pipe, there is a
steady velocity V0 and the valve is partially open. Then the valve is opened to a new position, resulting
ultimately in a new and increased steady-state velocity. For situations where the valve is closed, either
partially or completely, one must consider the possible occurrence of water hammer (see Sec. 10.5.2).

In Fig. 10.7, location 2 is upstream of the valve and location 1 is just inside the pipe. Applying the
linear momentum equation to the water between the two locations, we have

Aðp12p2Þ2 t0pDL ¼ rAL
dV

dt
ð10:25Þ

where A ¼ pipe cross section
V ¼ time-variable velocity
t0 ¼ wall shear stress

H1

H3

L

V

4 2 31

Figure 10.7 Unsteady flow in a horizontal pipe.

It is reasonable to assume quasi-steady flow conditions across the valve so that

p2 ¼ p3 þ K
V2

2g
ð10:26Þ

where K is the valve loss coefficient. We additionally assume that the Darcy–Weisbach friction factor f
based on steady-state flow can be employed without serious error, and that it is furthermore constant.
The shear stress is (see Eq. (7.74)):

t0 ¼ rfV2

8
ð10:27Þ

Substituting Eqs. (10.26) and (10.27) into Eq. (10.25), dividing by the liquid column mass rAL, and
recognizing that p12p3 ¼ rgðH12H3Þ, we have, after rearranging,

dV

dt
þ f

D
þ K

L

� �
V2

2
2g

H12H3

L
¼ 0 ð10:28Þ

This relation for unsteady incompressible flow has the initial condition V ¼ V0 at time t ¼ 0. After the
valve is opened further by altering the coefficient K, the velocity accelerates to a final steady-state
velocity Vss. Since at steady-state conditions, dV=dt ¼ 0, we can determine Vss by setting the derivative in
Eq. (10.28) to zero and solving for V ¼ Vss:

Vss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðH12H3Þ
fL=Dþ K

s
ð10:29Þ
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Substituting Eq. (10.29) into Eq. (10.28), we can separate variables and express the result in integral
form: Zt

0
dt ¼ V 2

ssL

gðH12H3Þ
ZV

V0

dV

V 2
ss2V2

ð10:30Þ

After integrating, the result provides a relation between the velocity and the time subsequent to the valve
excitation:

t ¼ VssL

2gðH12H3Þ ln
ðVss þ VÞðVss2V0Þ
ðVss2VÞðVss þ V0Þ ð10:31Þ

According to the result, infinite time is required for steady-state velocity Vss to be reached. In reality, it
will be attained somewhat sooner since losses have not been completely accounted for. However, we can
state for engineering purposes that the time when a percentage of Vss has been reached is adequate using
the equation. Note that V0 may be equal to zero, i.e., initially the fluid is at rest. Remember that Eq.
(10.31) is based on assuming that the liquid is incompressible and the pipe is inelastic; Sec. 10.5.2
addresses the situation in which those assumptions are not valid.

EXAMPLE 10.9 A horizontal pipe (L ¼ 500 m, D ¼ 250 mm, V0 ¼ 0.35 m=s) is suddenly subjected to a new

head differential H12H3 ¼ 15 m when a valve at the downstream end is suddenly opened wider and its
coefficient changes to K ¼ 0.2. If the friction factor is f ¼ 0.02, determine the final steady-state velocity and the
time when the actual velocity is 99% of that final value.

Solution: The final steady-state velocity is determined by substituting the given data into Eq. (10.29):

Vss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 · 9:81 · 15

0:02 · 500=0:250þ 0:2

s
¼ 2:705m=s

Ninety-nine percent of Vss is V99 ¼ 0:99Vss ¼ 0:99 · 2:705 ¼ 2:68m=s. The time corresponding to that velocity is

found using Eq. (10.31):

t99 ¼ 2:705 · 500

2 · 9:81 · 15
ln
ð2:705þ 2:68Þð2:70520:35Þ
ð2:70522:68Þð2:705þ 0:35Þ ¼ 23:5 s

The final steady-state velocity is 2.70 m=s and the time when the velocity is 99% of that value is approximately
23.5 s.

10.5.2 Compressible Flow of Liquids

There are a number of situations in which a liquid-filled pipe, when subjected to an excitation, may not
react in an incompressible, rigid manner. Indeed, both liquid compressibility and pipe elasticity play a
significant role in the nature of the response. This action is traditionally caller water hammer, but it can
occur in piping that contains any type of liquid. Herein, we focus our attention to a simple situation in
which a valve at the downstream end of a pipe closes rapidly to initiate water hammer.

There are two fundamental equations to develop that will enable us to understand the nature in
which pressure waves travel in the pipe due to water hammer. Again, consider the horizontal pipe
shown in Fig. 10.7. In contrast to the development in Sec. 10.5.1, we now assume that the valve closes
rapidly so that the fluid compressibility and pipe elasticity occur. The valve movement causes an
acoustic, or pressure, wave to propagate upstream with speed a. Figure 10.8(a) is a control volume of
liquid in the pipe upstream of the valve, showing the pressure wavefront located at a given instant.
Since unsteady flow is taking place inside the control volume, the velocity upstream of the front is V,
while at the exit to the control volume it is Vþ DV. The wavefront can be made to appear stationary
by superposing to the right the acoustic velocity a; the result is shown in Fig. 10.8(b), where the
entrance velocity is now Vþ a and the exit velocity is Vþ DVþ a. Due to the passage of the wave,
the pressure p, pipe area A, and liquid density r are altered to pþ Dp, Aþ DA, and rþ Dr,
respectively.
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Instantaneous position of wave

aV

V + a

V + V

V + V + a

(a)

(b)

(c)

pA
(p + p) A

(p + p)(A + A)

Figure 10.8 Pressure wave traveling in a pipe: (a) wave moving to the left at speed a; (b) wave appears stationary
using superposition principle; (c) pressure forces acting on control volume.

Apply the conversation of mass to the control volume of Fig. 10.8(b):

0 ¼ ðrþ DrÞðVþ DVþ aÞðAþ DAÞ2rðVþ aÞA ð10:32Þ
With reference to Fig. 10.8(c), we neglect frictional and gravitational forces so that only pressure forces
act on the control volume in the flow direction, and apply the conversation of momentum with the result

pAþ ðpþ DpÞA2 ðpþ DpÞðAþ DAÞ ¼ rAðVþ aÞ½Vþ DVþ a2 ðVþ aÞ	 ð10:33Þ
Expanding Eqs. (10.32) and (10.33) and deleting terms containing D2 and D3 since they are smaller than
the remaining ones, we have the results

rADVþ ðVþ aÞðADrþ rDAÞ ¼ 0 ð10:34Þ
2ADp ¼ rAðVþ aÞDV ð10:35Þ

In almost all industrial flow situations, Vp a, so that Eq. (10.35) reduces to

Dp ¼2rADV ð10:36Þ
Equation (10.36) is labeled the Joukowsky equation; it relates the pressure change to the identity, the

acoustic wave speed and the change in velocity. It is clear that a velocity reduction (negative DV) results
in a pressure rise (positive Dp) and a velocity increase results in a pressure drop. The wave, passing
through the control volume, yields the altered conditions pþ Dp, Vþ DV, Aþ DA, and rþ Dr. These
conditions will persist in the pipe until the moment when the wave reflects from the upstream boundary
and returns to the given position; this wave motion will be discussed later.

In order to determine magnitude of the acoustic wave speed, we combine Eqs. (10.34) and (10.35)
and eliminate DV, recognizing again that Vp a:

Dp
ra2

¼ Dr
r

þ DA
A

ð10:37Þ
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The relative change in density is related to the change in pressure by the relation Dr=r ¼ Dp=B, where B
is the bulk modulus of elasticity for the liquid. Also, the relative change in pipe area is related to the
change in pressure using DA=A ¼ DpðD=eEÞ. In this latter relation we have assumed instantaneous elastic
response of a thin-wall circular pipe to pressure changes, with E being the elastic modulus of the pipe
wall material and e the pipe thickness. Substituting these two relations into Eq. (10.37) and rearranging,
we have the expression for the pressure pulse wave speed:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B=r
1þ ðD=eÞðB=EÞ

s
ð10:38Þ

It can be seen that a depends upon the properties of the liquid contained in the pipe (r and B) and those
of the pipe wall (D, e, and E). If the pipe is very rigid, then the denominator approaches unity and Eq.
(10.38) becomes a ¼ ffiffiffiffiffi

B=r
p

, which is the speed of sound in an unbounded liquid. Note that the effect of
pipe elasticity is to reduce the magnitude of the pressure wave.

In addition to using Eqs. (10.36) and (10.38) to predict the pressure rise and pressure pulse wave
speed, it is necessary to understand the periodic nature of water hammer in a pipe of length L.
Consider the case in which a downstream valve is suddenly closed in a horizontal, frictionless pipe
with an open reservoir at the upstream end. One cycle of motion is illustrated in Fig. 10.9 and
described as follows:

. A steady-state velocity V0 exists throughout, the hydraulic grade line is horizontal, and the valve is
suddenly closed at time zero.

. The wave travels upstream at speed a, subsequent to valve closure, and behind the wave the
velocity is zero, the pressure rises by amount Dp, the liquid is compressed, and the pipe slightly
expanded.

. The wave reaches the reservoir at time L=a, and an unbalanced force acts at the pipe inlet. At
that location, the pipe pressure reduces to the reservoir pressure and the velocity reverses
direction.

. The wave propagates downstream to the valve.

. The wave reaches the valve at time 2L=a and the velocity has magnitude 2V0 throughout the pipe.

. The velocity reduces to zero and the pressure reduces by magnitude Dp, adjacent to the closed valve.
Behind the wave, the liquid is expanded and the pipe wall is contracted. (If the pressure behind the
wave reduces to vapor pressure, cavitation will occur causing the liquid to vaporize, a condition
termed column separation.)

. The pressure wave reaches the reservoir at time 3L=a, where an unbalanced condition again occurs,
and opposite in magnitude to that at time L=a.

. Forces equilibrate and a wave travels downstream with elevated pressure Dp and liquid
velocityþV0 behind the front.

. The wave reaches the valve at time 4L=a with initial steady-state conditions once again prevailing
throughout the pipe.

The process repeats itself every 4L=a seconds and for the ideal frictionless sequence described herein
the motion will be cyclic. The pressure waveform at the valve and midpoint of the pipe, and the
velocity at the pipe entrance are shown in Fig. 10.9. In a real pipe, the action of liquid friction, pipe
motion, and inelastic behavior of the pipe material will eventually cause the water hammer oscillation
to dissipate.

The pressure rise Dp predicted by Eq. (10.36) is based on the assumption that the valve closes
instantaneously, but it can also be used to predict the maximum pressure rise for valve closure in any
time less than 2L=a, the travel time for the pressure wave to travel from the valve to the reservoir and
back again. For valve closure times greater than 2L=a, and for more complicated piping systems that
may contain multiple piping elements, addition of friction, and more complicated boundary conditions
such as pumps and surge suppressors, computer-based analyses are required.
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Figure 10.9 Pressure waves at the valve (p2) and pipe midpoint (p4), and velocity at the pipe entrance (V1).

EXAMPLE 10.10 A steel pipe (E ¼ 220 · 106 kPa, L ¼ 2300 m, D ¼ 500 mm, e ¼ 10 mm) conveys water
with an initial velocity of V0 ¼ 0.75 m=s. A valve at the downstream end of the horizontal pipe is closed
suddenly so that the excitation is considered instantaneous, reducing the velocity to zero. Determine (a) the

pressure pulse wave speed in the pipe, (b) the speed of sound in an unbounded water medium, (c) the pressure
rise at the closed valve, (d) the time it takes for the wave to travel to the reservoir and return to the valve, and
(e) the period of water hammer oscillation.

Solution: Since the water temperature is not specified, assume that B ¼ 210· 107 Pa and r ¼ 1000 kg=m3.

(a) The wave speed is computed using Eq. (10.38):

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
210 · 107=1000

1þ 500

10
·
210 · 107

220 · 109

vuuuut ¼ 1190m=s

(b) The speed of sound in an unbounded medium is

a ¼
ffiffi
B

r

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
210 · 107

1000

s
¼ 1450m=s

Note that the speed of sound in the water medium is about 23% higher than the wave speed in the pipe.

(c) Equation (10.36) is employed to find the pressure rise, noting that the reduction in velocity is DV ¼2V0:

Dp ¼21000 · 1190 20:75ð Þ ¼ 8:92 · 105 Pa or 892 kPa

(d) The time of wave to travel two pipe lengths is 2L=a ¼ 2 · 2300=1190 ¼ 3:87 s

(e) The period of oscillation is 4L=a ¼ 4 · 2300=1190 ¼ 7:73 s.
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Solved Problems

10.1 Find the flow distribution in the three-parallel pipe system shown in Fig. 10.10. Qin ¼
2500 L=min.

AQin

1

2

3

B

Figure 10.10

The resistance coefficients are computed using Eq. (10.3); the results are R1 ¼ 40 060, R2 ¼ 34 280,
R3 ¼ 22 320. Then write Eqs. (10.6) and (10.7) for three elements, combine, and solve for HA2HB:

HA2HB ¼ Q 2
in

ðR21=2
1 þ R21=2

2 þ R21=2
3 Þ2 ¼

ð2:50=60Þ2
ð40 06021=2 þ 34 28021=2 þ 22 32021=2Þ2 ¼ 5:94m

The individual discharges are

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
HA2HB

R1

s
¼

ffiffiffiffiffiffiffiffiffi
5:94

40 060

s
¼ 0:0122m3=s or 731L=min

Q2 ¼
ffiffiffiffiffiffiffiffiffi
5:94

34 280

s
¼ 0:0132m3=s or 790L=min

Q3 ¼
ffiffiffiffiffiffiffiffiffi
5:94

22 320

s
¼ 0:0163m3=s or 979L=min

10.2 Find the water flow distribution and the piezometric head at the junction of Fig. 10.11. The
pump head–discharge curve is HP ¼ 20230Q2, where the head is in m and the discharge
is in m3=s. HA ¼ 10 m, HB ¼ 20 m, HC ¼ 18 m, R1 ¼ 112.1 s2=m5, R2 ¼ 232.4 s2=m5, R3 ¼
1773 s2=m5.

P

2

1 3

A

B

C

D

Figure 10.11

Let HD be the hydraulic grade line at the junction. Write the energy equations for each branch:

Pipe 1 : 10þHP ¼ R1Q
2
1 þHD or HD ¼ 10þ ð20230Q 2

1 Þ2112:1Q 2
1 ¼ 302142:1Q 2

1

Pipe 2 : HD ¼ R2Q
2
2 þ 20 or Q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHD220Þ
232:4

s

Pipe 3 : HD ¼ R3Q
2
3 þ 18 or Q3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHD218Þ

1773

s
Continuity at junction:

P
Q ¼ Q12Q22Q3 ¼ 0

Element L, m D, mm f
P

K

1 50 75 0.02 2

2 80 85 0.03 4

3 120 100 0.025 2
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Assume Q1, then solve for HD, Q2, and Q3 until j
P

Qj is acceptably low:

Q1, m
3=s HD, m Q2, m

3=s Q3, m
3=s

P
Q, m3=s

0.15 26.80 0.1711 0.0705 20.0916

0.20 24.32 0.1363 0.0597 þ0.004

0.1982 24.42 0.1379 0.0602 20.0001

Hence, the approximate solution is

Q1 ¼ 0:198 m3=s, Q2 ¼ 0:138 m3=s, Q3 ¼ 0:060 m3=s, and HD ¼ 24:4 m

10.3 Water is pumped through three pipes in series. Compute the discharge if the power delivered to
the pump is _WWP ¼ 1920 kW and the pump efficiency is Z ¼ 82%. The pipe resistance coefficients
are R1 ¼ 13.2 s2=m5, R2 ¼ 204.1 s2=m5, R3 ¼ 25.8 s2=m5, and the head difference between the
downstream and upstream reservoirs is 50 m.

Employ Eq. (10.12) for the pump head and write the energy equation from the lower to the upper
reservoir as a function of the unknown discharge Q:

FðQÞ ¼
_WWPZ
gQ

2 ½HB2HA þ ðR1 þ R2 þ R3ÞQ2	

Substituting the given data into the relations results in

FðQÞ ¼ 160:5

Q
2243:1Q2250

A root-solving algorithm, trial method, or exact solution can be used to find the result Q ¼ 0.792 m3=s.

10.4 Determine the flow of water in the system shown in Fig. 10.12 using the Hardy Cross method.
The pump curve is HP ¼ 3028.33Q2, with HP in m and Q in m3=s. Use R1 ¼ 30 s2=m5,
R2 ¼ 20 s2=m5, DH ¼ 20 m, and Qe ¼ 0.25 m3=s.

P

Q1

Qe

2

1

H

Figure 10.12

Consider the flow correction in a clockwise sense through the system:

DQ ¼2½R1Q1jQ1j2 ða02a2Q
2
1 Þ þ R2Q2jQ2j	2DH

2ðR1jQ1j2a2Q1 þ R2jQ2jÞ

¼2½30Q1jQ1j2 ð3028:33Q 2
1 Þ220Q2jQ2j	220

2ð30jQ1j þ 8:33Q1 þ 40jQ2jÞ

Assume Q1 ¼ 0.650 m3=s, Q2 ¼ 0.400 m3=s, and iterate until jDQj# 0:001m3=s.
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Q1, m
3=s Q2, m

3=s DQ, m3=s

0.640 0.390 20.030

0.610 0.360 20.011

0.599 0.349 20.004

0.595 0.345 20.001

Hence Q1 ¼ 0.595 m3=s and Q2 ¼ 0.345 m3=s.

10.5 Water (B ¼ 2.20 GPa) is flowing in a pipe (D ¼ 200 mm, L ¼ 800 m). The pipe is cast iron
(E ¼ 150 GPa, e ¼ 12 mm). A reservoir is situated at the upstream end of the pipe, and
downstream there is a valve. At steady-state conditions, the discharge is Q ¼ 50 L=s, and then a
valve is rapidly actuated.

(a) Determine the time it takes for the pressure wave to travel from the valve to the reservoir and
back to the valve.

(b) What is the change in pressure at the valve if the valve is partially opened and the original
discharge is doubled?

(c) What is the change in pressure at the valve if the valve is partially closed and the original
discharge is halved?

Compute the acoustic wave speed:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

r 1þDB

eE

� �vuuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

220 · 107

1000 1þ 200 · 2:20 · 109

12 · 150 · 109

{ !vuuuut ¼ 1330m=s

(a) t ¼ 2 ·
L

a
¼ 2 ·

800

1330
¼ 1:203 s

(b) First compute the change in velocity and then use Eq. (10.36) to compute the pressure change
(assume water hammer occurs):

DV ¼ Q

pD2=4
¼ 0:05

0:7854 · 0:22
¼ 1:592m=s

Dp ¼2raDV ¼21000 · 1330 · 1:592 ¼22:12 · 106 Pa or 22120 kPa

Note the large pressure reduction due to the water hammer effect. The original pressure at the valve
must be sufficiently large so that cavitation will not occur. Cavitation at the valve could be avoided
by opening the valve slowly.

(c) The change in velocity and the pressure rise are

DV ¼2
0:05=2

0:7854 · 0:22
¼20:796m=s

Dp ¼21000 · 1330ð20:796Þ ¼ 1:06 · 106 Pa

Hence the pressure rise will be 1060 kPa.
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Supplementary Problems

10.6 A pump is located between two reaches of horizontal piping. The conditions upstream of the
pump are D1 ¼ 75 mm and p1 ¼ 450 kPa, and downstream of the pump D2 ¼ 100 mm and
p2 ¼ 900 kPa. For a discharge of Q ¼ 100 L=min and a loss across the pump of hL ¼ 7 m, what is
the required input power of the pump if its efficiency is 78%?

10.7 Two pipes in series have the following properties: L1 ¼ 200 m, D1 ¼ 400 mm, K1 ¼ 2,
L2 ¼ 650 m, D2 ¼ 350 mm, K2 ¼ 3. The upstream piezometric head is HA ¼ 200 m and
downstream HB ¼ 57 m. For both pipes, the friction factor is f ¼ 0.025. Estimate the discharge
flowing in the two pipes.

10.8 Water flows in the system shown. The pump curve is approximated by HP ¼ 15025Q 2
1 , with HP

in m and Q in m3=s. Find (a) the flow distribution. (b) If the pump efficiency is 75%, what is the
required pump power? Use R1 ¼ 400 s2=m5, R2 ¼ 1000 s2=m5, R3 ¼ 1500 s2=m5, HA ¼ 10 m, and
HB ¼ 40 m.

A
p

1

3

2

B

10.9 An oil pipeline (S ¼ 0.86) has three segments as shown, with a booster pump for each segment
employed to overcome pipe friction. Reservoirs A and B are at the same elevation. Find the
discharge for the following conditions:

Pipe R, s2=m5 _WWP, kW Z, %

1 40 000 200 80

2 30 000 200 80

3 200 000 250 70

A B

PPP
1 2 3

10.10 Oil (S ¼ 0.92) is pumped from a storage tank and discharges into a reservoir through a pipe
whose length is L ¼ 550 m and diameter is D ¼ 350 mm. The pump efficiency is Z ¼ 80% and its
power output is _WWP ¼ 10 kW. Determine the dischargeQ if the elevation in the tank is zA ¼ 24 m,
the tank pressure is pA ¼ 110 kPa, and the lower reservoir elevation is zB ¼ 18 m. The sum of the
minor losses in the pipe is SK ¼ 4.5 and the friction factor is f ¼ 0.015.

10.11 Determine the total discharge and the individual flows in the four parallel pipes shown. The
hydraulic grade line difference between A and B is HA2HB ¼ 60 m. The following data apply:

A B

1

2

3

4

Pipe L, m D, mm f
P

K

1 650 850 0.02 1

2 1000 1000 0.025 3

3 500 750 0.015 0

4 750 1000 0.03 2
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10.12 What is the required head and discharge of water to be handled by the pump for the branching
system? The flow in pipe 3 is Q3 ¼ 40 L=s in the direction shown. Use HA ¼ 3 m, HB ¼ 11.5 m,
HC ¼ 12 m, HD ¼ 10 m, R1 ¼ 1400 s2=m5, R2 ¼ 2000 s2=m5, R3 ¼ 1500 s2=m5, and R4 ¼
1000 s2=m5.

A

P
1

2

B

3

C

D

4

10.13 An irrigation system lies in a horizontal plane, with a large diameter pipe delivering water
through a single line to three branches. The delivery pipe has an internal pressure p0 ¼ 200 kPa
and is sufficiently large that internal kinetic energy terms can be neglected. Find the flow
distribution in the four irrigation pipes if R1 ¼ 1.6 · 104, R2 ¼ 5.3 · 105, R3 ¼ 6.0 · 105,
R4 ¼ 8.1 · 105 (all in units of s2=m5).

1
2

3

4

10.14 It is common in pump design and manufacturing to make use of dimensionless coefficients that
relate to pump power _WWP, pressure rise Dp, and discharge Q. Additional variables include the
density r, diameter of the pump impeller D, and rotational speed of the impeller o. Using r, D,
and o as repeating variables, compute the three dimensionless coefficients related to power,
pressure rise, and discharge.

10.15 Find the flow distribution of water in the branching system using a trial method. Assume for all
pipes f ¼ 0.02. The pump curve is represented by the relation HP ¼ 12020.5Q2 (head in m,
discharge in m3=s), HA ¼ 20 m, HB ¼ 50 m, HC ¼ 100 m, and HD ¼ 40 m. Neglect minor losses.

A

1

2

B

J

C

3

4

D

P

10.16 Find the flow distribution using the Hardy Cross method. Given data are QB ¼ 30 L=s,
QC ¼ 30 L=s, R1 ¼ 30 s2=m5, R2 ¼ 50 s2=m5, and R3 ¼ 20 s2=m5.

A

B

1 QB

QC

2
3

C

Pipe L, m D, mm

1 250 500

2 700 300

3 2000 300

4 1500 350
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10.17 Find the discharge in the pumping system using the Hardy Cross method. The pump curve is
HP ¼ 100250Q2850Q2, with head in m and discharge in m3=s. Use R1 ¼ 5000 s2=m5,
R2 ¼ 300 s2=m5, HA ¼ 35 m, and HB ¼ 10 m.

A
1

2
B

P

10.18 Work Solved Problem 10.2 using the Hardy Cross method.

10.19 Add a pump to pipe 1 in Fig. 10.5(a) and solve using the Hardy Cross method. The head across
the pump is represented by HP ¼ 150230Q2, with head in m and discharge in m3=s. Use the pipe
and reservoir data provided in Example 10.8.

10.20 Determine the flow distribution in the water supply system shown using the Hardy Cross
method. The piezometric head at location A is HA ¼ 30 m, and the head at the reservoir is
HF ¼ 0 m. For all six pipes, f ¼ 0.03 and D ¼ 75 mm. The flow demands at C and D are
QC ¼ 5 L=s and QD ¼ 12 L=s. After determining the flows, compute the piezometric heads at
locations B through E.

A

1 3

5

4

6

2

B

D
E F

C

QC

QD

10.21 Select an appropriate pipe diameter and size of pump using Fig. 10.3 to deliver water at
Q ¼ 250 m3=h between two reservoirs. The maximum allowable pipe velocity is 3 m=s, the length
of the line is 1500 m, and the difference in elevation between the reservoirs is 30 m. Assume
f ¼ 0.02 and K ¼ 0.5.

10.22 Oil (S ¼ 0.86) is pumped through 5 km of 500-mm-diameter pipe (f ¼ 0.017). The rise in
elevation between the upstream and downstream sections is 165 m. If an available pump is the
260-mm-diameter pump shown in Fig. 10.3, find the discharge and the necessary number of
pumps to be placed in series. What is the power requirement? Neglect minor losses.

10.23 The 220-mm-diameter pump curve shown in Fig. 10.3 delivers water in a piping system whose
system demand is HP ¼ 50 þ 270Q2, with discharge in m3=s and head in m. Find the discharge
and required pump power for (a) one pump and (b) two pumps in parallel.

10.24 A horizontal water supply pipe has a length of 2000 m and a diameter of 150 mm. The pipe is
connected to an open tank at one end where the elevation of water is 4 m, and at the other end
there is a quick-opening valve. Determine the time it will take for the flow to reach 99% of the
final steady-state velocity if the valve is initially closed and then suddenly opened at t ¼ 0.
Assume incompressible water and inelastic piping. Let f ¼ 0.030 and K ¼ 0.2 once the valve is
opened.

Pipe L, m K

1 10 1

2 30 0

3 75 0

4 60 0

5 35 0

6 80 2
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10.25 Oil is flowing at a discharge of 0.50 m3=s in a 4-km, 50-mm-diameter steel pipe. The elastic
modulus of the pipe is 200 · 106 kPa and its thickness is 5 mm. The oil has a specific gravity of
0.86 and a bulk modulus of 1.50 · 106 kPa. A valve at the end of the pipe is partially closed in a
rapid fashion so that water hammer occurs and a pressure wave propagates upstream in the pipe.
The magnitude of the pressure wave is not to be greater than 600 kPa. Determine the percent
decrease of flow rate tolerable during the valve closure and the period of the water hammer
oscillation.

Answers to Supplementary Problems

10.6 1109 W

10.7 0.669 m3=s

10.8 (a) 0.413 m3=s, 0.227 m3=s, 0.185 m3=s (b) 1070 hp

10.9 0.0601 m3=s

10.10 0.365 m3=s

10.11 4.82 m3=s, 5.10 m3=s, 4.79 m3=s, 5.44 m3=s

10.12 0.144 m3=s, 40.4 m

10.13 0.0154 m3=s, 0.0056 m3=s, 0.00526 m3=s, 0.00453 m3=s

10.14 _WWP=ro
3D5, Dp=ro2D2, Q=oD3

10.15 1.063 m3=s, 0.433 m3=s, 0.170 m3=s, 0.459 m3=s

10.16 33.75 L=s into B, 26.25 L=s into C, 3.75 L=s into C

10.17 0.106 m3=s

10.18 0.198 m3=s out of A, 0.138 m3=s into B, 0.060 m3=s into C

10.19 0.0749 m3=s into D, 0.0249 m3=s into B, 0.050 m3=s into C, 0.0250 m3=s into B, 0.0499 m3=s into A

10.20 27.7 L=s, 17.0 L=s, 10.7 L=s, 5.0 L=s, 10.7 L=s, 20 m, 11 m, 10.9 m, 9.35 m

10.21 200 mm, 240 mm

10.22 270 m3=h with two pumps, 186 hp

10.23 (a) 250 m3=h, 63 hp (b) 450 m3=h, 120 hp

10.24 58.4 s

10.25 73%, 16 s
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Appendix A

Units and
Conversions

232

Table A.1 English Units, SI Units, and Their Conversion Factors

Quantity English units International systema

SI
Conversion

factor

Length inch millimeter 1 in ¼ 25.4 mm

foot meter 1 ft ¼ 0.3048 m

mile kilometer 1 mi ¼ 1.609 km

Area square inch square centimeter 1 in2 ¼ 6.452 cm2

square foot square meter 1 ft2 ¼ 0.09290 m2

Volume cubic inch cubic centimeter 1 in3 ¼ 16.39 cm3

cubic foot cubic meter 1 ft3 ¼ 0.02832 m3

gallon 1 gal ¼ 0.003789 m3

Mass pound mass kilogram 1 lb ¼ 0.4536 kg

slug 1 slug ¼ 14.59 kg

Density slug per cubic foot kilogram per cubic meter 1 slug=ft3 ¼ 515.4 kg=m3

Force pound force newton 1 lb ¼ 4.448 N

Work=torque foot pound newton meter 1 ft-lb ¼ 1.356 N·m

Pressure pound per square inch newton per square
meter (pascal)

1 lb=in2 ¼ 6895 Pa

pound per square foot 1 lb=ft2 ¼ 47.88 Pa

Temperature degree Fahrenheit degree Celsius –F ¼ 9=5–Cþ 32

degree Rankine kelvin –R ¼ 9=5 K

Energy British thermal unit joule 1 Btu ¼ 1055 J

calorie 1 cal ¼ 4.186 J

foot pound 1 ft-lb ¼ 1.356 J

Power horsepower watt 1 hp ¼ 745.7 W

foot pound per second 1 ft-lb=s ¼ 1.356 W

Velocity foot per second meter per second 1 ft=s ¼ 0.3048 m=s

Acceleration foot per second squared meter per second squared 1 ft=s2 ¼ 0.3048 m=s2

Frequency cycle per second hertz 1 c=s ¼ 1.000 Hz

Viscosity pound second per square
foot

newton second per
square meter

1 lb-s=ft2 ¼ 47.88 N·s=m2

a The reversed initials in this abbreviation come from the French form of the name: Système International.
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Work, energy,
and power

Pressure Volume Flow rate Viscosity

1 Btu ¼ 778.2 ft-lb 1 lb=in2 ¼ 2.036 in Hg 1 ft3 ¼ 28.32 L 1 ft3=min ¼ 4.719 · gal 10–4 m3=s 1 stoke ¼ 1024 m2=s

1 J ¼ 107 ergs 1 lb=in2 ¼ 27.7 in H2O 1 ft3 ¼ 7.481 gal (U.S.) 1 ft3=s ¼ 0.02832 m3=s 1 P ¼ 0.1 (N·s)=m2

1 J ¼ 0.7376 ft-lb 14.7 lb=in2 ¼ 22.92 in Hg 1 gal (U.S.) ¼ 231 in3 1 m3=s ¼ 35.31 ft3=s 1 (lb·s)=ft2 ¼ 47.88 (N·s)=m2

1 cal ¼ 3.088 ft-lb 14.7 lb=in2 ¼ 33.93 ft H2O 1 gal (Brit.) ¼ 1.2 gal (U.S.) 1 gal=min ¼ 0.002228 ft3=s 1 ft2=s ¼ 0.0929 m2=s

1 cal ¼ 0.003968 Btu 14.7 lb=in2 ¼ 1.0332 kg=cm2 1 m3 ¼ 1000 L 1 ft3=s ¼ 448.9 gal=min

1 kWh ¼ 3413 Btu 14.7 lb=in2 ¼ 1.0133 bar
1 kg=cm2 ¼ 14.22 lb=in2

1 ft3 ¼ 0.02832 m3

1 Btu ¼ 1.055 kJ 1 in Hg ¼ 0.4912 lb=in2 1 m3 ¼ 35.31 ft3

1 ft-lb ¼ 1.356 J 1 ft H2O ¼ 0.4331 lb=in2

1 hp ¼ 550 ft-lb=sec 1 lb=in2 ¼ 6895 Pa

1 hp ¼ 0.7067 Btu=s 1 lb=ft2 ¼ 47.88 Pa

1 hp ¼ 0.7455 kW 105 Pa ¼ 1 bar

1 W ¼ 1 J=s 1 kPa ¼ 0.145 lb=in2

1 W ¼ 1.0 · 107
(dyn·cm)=s

1 erg ¼ 1027 J

1 quad ¼ 1015 Btu

1 therm ¼ 105 Btu

Table A.2 Conversions of Units

Length Force Mass Velocity

1 cm ¼ 0.3937 in 1 lb ¼ 0.4536 kg 1 oz ¼ 28.35 g 1 mph ¼ 1.467 ft=s

1 m ¼ 3.281 ft 1 lb ¼ 0.4448 · 106 dyn 1 lb ¼ 0.4536 kg 1 mph ¼ 0.8684 kn

l km ¼ 0.6214 mi 1 lb ¼ 32.17 pdl 1 slug ¼ 32.17 lb 1 ft=s ¼ 0.3048 m=s

1 in ¼ 2.54 cm 1 kg ¼ 2.205 lb 1 slug ¼ 14.59 kg 1 m=s ¼ 3.281 ft=s

1 ft ¼ 0.3048 m 1 N ¼ 0.2248 lb 1 kg ¼ 2.205 lb 1 km=h ¼ 0.278 m=s

1 mi ¼ 1.609 km 1 dyn ¼ 2.248· 1026 lb 1 kg ¼ 0.06852 slug

1 mi ¼ 5280 ft 1 lb ¼ 4.448 N

1 mi ¼ 1760 yd
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Appendix B

Vector Relationships

A·B ¼ AxBx þ AyBy þ AzBz

A · B ¼ ðAyBz 2 AzByÞiþ ðAzBx 2 AxBzÞjþ ðAxBy 2 AyBxÞk

gradient operator : HHHHH ¼ @

@x
iþ @

@y
jþ @

@z
k

divergence of V ¼ HHHHH·V ¼ @u

@x
þ @v

@y
þ @w

@z

curl of V ¼ HHHHH · V ¼ @w

@y
2

@v

@z

� �
iþ @u

@z
2

@w

@x

� �
jþ @v

@x
2

@u

@y

� �
k

Laplace’s equation: H2f ¼ 0

Irrotational vector field: HHHHH · V¼ 0

234
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Appendix C

Fluid Properties

235

Table C.1 Properties of Water

Temperature,
T (–C)

Density,
r (kg/m3)

Viscosity,
m [(N·s)/m2]

Kinematic
viscosity,
n (m2/s)

Surface
tension,
s (N/m)

Vapor
pressure,
pv (kPa)

Bulk
modulus,
B (Pa)

0 999.9 1.792· 1023 1.792· 1026 0.0762 0.610 204· 107

5 1000.0 1.519 1.519 0.0754 0.872 206
10 999.7 1.308 1.308 0.0748 1.13 211
15 999.1 1.140 1.141 0.0741 1.60 214
20 998.2 1.005 1.007 0.0736 2.34 220
30 995.7 0.801 0.804 0.0718 4.24 223
40 992.2 0.656 0.661 0.0701 3.38 227
50 988.1 0.549 0.556 0.0682 12.3 230
60 983.2 0.469 0.477 0.0668 19.9 228
70 977.8 0.406 0.415 0.0650 31.2 225
80 971.8 0.357 0.367 0.0630 47.3 221
90 965.3 0.317 0.328 0.0612 70.1 216
100 958.4 0.284· 1023 0.296· 1026 0.0594 101.3 207 · 107

Table C.1E English Properties of Water

Temperature
(–F)

Density
(slug/ft3)

Viscosity
(lb·sec/ft2)

Kinematic
viscosity
(ft2/sec)

Surface
tension
(lb/ft)

Vapor
pressure
(lb/in2)

Bulk
modulus
(lb/in2)

32 1.94 3.75· 1025 1.93· 1025 0.518· 1022 0.089 293 000
40 1.94 3.23 1.66 0.514 0.122 294 000
50 1.94 2.74 1.41 0.509 0.178 305 000
60 1.94 2.36 1.22 0.504 0.256 311 000
70 1.94 2.05 1.06 0.500 0.340 320 000
80 1.93 1.80 0.93 0.492 0.507 322 000
90 1.93 1.60 0.83 0.486 0.698 323 000
100 1.93 1.42 0.74 0.480 0.949 327 000
120 1.92 1.17 0.61 0.465 1.69 333 000
140 1.91 0.98 0.51 0.454 2.89 330 000
160 1.90 0.84 0.44 0.441 4.74 326 000
180 1.88 0.73 0.39 0.426 7.51 318 000
200 1.87 0.64 0.34 0.412 11.53 308 000
212 1.86 0.59· 1025 0.32· 1025 0.404· 1022 14.7 300 000
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Table C.2 Properties of Air at Atmospheric Pressure

Temperature,
T (–C)

Density,
r (kg/m3)

Viscosity,
m (N·s/m2)

Kinematic
viscosity,
n (m2/s)

Velocity
of sound,
c (m/s)

2 50 1.582 1.46· l025 0.921· 1025 299

2 30 1.452 1.56 1.08 312
2 20 1.394 1.61 1.16 319
2 10 1.342 1.67 1.24 325

0 1.292 1.72 1.33 331
10 1.247 1.76 1.42 337
20 1.204 1.81 1.51 343
30 1.164 1.86 1.60 349
40 1.127 1.91 1.69 355
50 1.092 1.95 1.79 360
60 1.060 2.00 1.89 366
70 1.030 2.05 1.99 371
80 1.000 2.09 2.09 377
90 0.973 2.13 2.19 382

100 0.946 2.17 2.30 387
200 0.746 2.57 3.45 436
300 0.616 2.93· 1025 4.75· 1025 480

Table C.2E English Properties of Air at Atmospheric Pressure

Temperature
(–F)

Density
(slug/ft3)

Viscosity
[(lb·sec)/ft2]

Kinematic
viscosity (ft2/sec)

Velocity of
sound (ft/sec)

220 0.00280 3.34 · 1027 11.9· 1025 1028
0 0.00268 3.38 12.6 1051
20 0.00257 3.50 13.6 1074
40 0.00247 3.62 14.6 1096
60 0.00237 3.74 15.8 1117
68 0.00233 3.81 16.0 1125
80 0.00228 3.85 16.9 1138
100 0.00220 3.96 18.0 1159
120 0.00213 4.07 18.9 1180
160 0.00199 4.23 21.3 1220
200 0.00187 4.50 24.1 1258
300 0.00162 4.98 30.7 1348
400 0.00144 5.26 36.7 1431
1000 0.000844 7.87· 1027 93.2 · 1025 1839
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Table C.3 Properties of the Standard Atmosphere

Altitude
(m)

Temperature
(K)

Pressure
(kPa)

Density
(kg/m3)

Velocity
of sound (m/s)

0 288.2 101.3 1.225 340
500 284.9 95.43 1.167 338
1000 281.7 89.85 1.112 336
2000 275.2 79.48 1.007 333
4000 262.2 61.64 0.8194 325
6000 249.2 47.21 0.6602 316
8000 236.2 35.65 0.5258 308

10 000 223.3 26.49 0.4136 300
12 000 216.7 19.40 0.3119 295
14 000 216.7 14.17 0.2278 295
16 000 216.7 10.35 0.1665 295
18 000 216.7 7.563 0.1216 295
20 000 216.7 5.528 0.0889 295
30 000 226.5 1.196 0.0184 302
40 000 250.4 0.287 4.00· 1023 317
50 000 270.7 0.0798 1.03· 1023 330
60 000 255.8 0.0225 3.06· 1024 321
70 000 219.7 0.00551 8.75· 1025 297
80 000 180.7 0.00103 2.00· 1025 269

Table C.3E English Properties of the Atmosphere

Altitude
(ft)

Temperature
(–F)

Pressure
(lb/ft2)

Density
(slug/ft3)

Velocity
of sound (ft/sec)

0 59.0 2116 0.00237 1117
1000 55.4 2014 0.00231 1113
2000 51.9 1968 0.00224 1109
5000 41.2 1760 0.00205 1098

10 000 23.4 1455 0.00176 1078
15 000 5.54 1194 0.00150 1058
20 000 2 12.3 973 0.00127 1037
25 000 2 30.1 785 0.00107 1016
30 000 2 48.0 628 0.000890 995
35 000 2 65.8 498 0.000737 973
36 000 2 67.6 475 0.000709 971
40 000 2 67.6 392 0.000586 971
50 000 2 67.6 242 0.000362 971
100 000 2 51.4 23.2 3.31 · 1025 971
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Table C.4 Properties of Ideal Gases at 300 K (cv ¼ cp � k k ¼ cp=cv)

Gas Chemical
formula

Molar
mass

R cp k

ðft-lbÞ=
slug-–R

kJ=
ðkg·KÞ

ðft-lbÞ=
slug-–R

kJ=
ðkg·KÞ

Air 28.97 1716 0.287 6012 1.004 1.40
Argon Ar 39.94 1244 0.2081 3139 0.5203 1.667
Carbon
dioxide

CO2 44.01 1129 0.1889 5085 0.8418 1.287

Carbon
monoxide

CO 28.01 1775 0.2968 6238 1.041 1.40

Ethane C2H6 30.07 1653 0.2765 10 700 1.766 1.184
Helium He 4.003 12 420 2.077 31 310 5.193 1.667
Hydrogen H2 2.016 24 660 4.124 85 930 14.21 1.40
Methane CH4 16.04 3100 0.5184 13 330 2.254 1.30
Nitrogen N2 28.02 1774 0.2968 6213 1.042 1.40
Oxygen O2 32.00 1553 0.2598 5486 0.9216 1.394
Propane C3H8 44.10 1127 0.1886 10 200 1.679 1.12
Steam H2O 18.02 2759 0.4615 11 150 1.872 1.33
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Table C.5 Properties of Common Liquids at Atmospheric Pressure and Approximately 16 to 21–C (60 to 70–F)

Liquid Specific weight Density Surface tension Vapor pressure

lb/ft3 N/m3 slug/ft3 kg/m3 lb/ft N/m lb/in2 abs kPa abs

Ethyl alcohol 49.3 7744 1.53 789 0.0015 0.022 —

Benzene 56.2 8828 1.75 902 0.0020 0.029 1.50 10.3

Carbon
tetrachloride

99.5 15 629 3.09 1593 0.0018 0.026 12.50 86.2

Glycerin 78.6 12 346 2.44 1258 0.0043 0.063 2· 1026 1.4 · 1025

Kerosene 50.5 7933 1.57 809 0.0017 0.025 — —

Mercurya 845.5 132 800 26.29 13 550 0.032 0.467 2.31 · 1025 1.59· 1024

SAE 10 oil 57.4 9016 1.78 917 0.0025 0.036 — —

SAE 30 oil 57.4 9016 1.78 917 0.0024 0.035 — —

Water 62.4 9810 1.94 1000 0.0050 0.073 0.34 2.34

a In contact with air.
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Figure C.1 Viscosity as a function of temperature. (From R.W. Fox and T.A. McDonald, Introduction to Fluid

Mechanics, 2nd ed., John Wiley & Sons, Inc., New York, 1978.)
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Figure C.2 Kinematic viscosity as a function of temperature at atmospheric pressure. (From R.W. Fox and T.A.
McDonald, Introduction to Fluid Mechanics, 2nd ed., John Wiley & Sons, Inc., New York, 1978.)
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Appendix D

Compressible Flow
Table for Air

242

Table D.1 Isentropic Flow

M p/p0 T/T0 A/A*

0 1.0000 1.0000 0

0.04 0.9989 0.9997 14.4815

0.08 0.9955 0.9987 7.2616

0.12 0.9900 0.9971 4.8643

0.16 0.9823 0.9949 3.6727

0.20 0.9725 0.9921 2.9635

0.24 0.9607 0.9886 2.4956

0.28 0.9470 0.9846 2.1656

0.32 0.9315 0.9799 1.9219

0.36 0.9143 0.9747 1.7358

0.40 0.8956 0.9690 1.5901

0.44 0.8755 0.9627 1.4740

0.48 0.8541 0.9560 1.3801

0.52 0.8317 0.9487 1.3034

0.56 0.8082 0.9410 1.2403

0.60 0.7840 0.9328 1.1882

0.64 0.7591 0.9243 1.1452

0.68 0.7338 0.9153 1.1097

0.72 0.7080 0.9061 1.0806

0.76 0.6821 0.8964 1.0570

0.80 0.6560 0.8865 1.0382

0.84 0.6300 0.8763 1.0237

0.88 0.6041 0.8659 1.0129

0.92 0.5785 0.8552 1.0056

0.96 0.5532 0.8444 1.0014

1.00 0.5283 0.8333 1.000

1.04 0.5039 0.8222 1.001

1.08 0.4800 0.8108 1.005

1.12 0.4568 0.7994 1.011

1.16 0.4343 0.7879 1.020

1.20 0.4124 0.7764 1.030

1.24 0.3912 0.7648 1.043

1.28 0.3708 0.7532 1.058

1.32 0.3512 0.7416 1.075

1.36 0.3323 0.7300 1.094

1.40 0.3142 0.7184 1.115

1.44 0.2969 0.7069 1.138

1.48 0.2804 0.6954 1.163

1.52 0.2646 0.6840 1.190

1.56 0.2496 0.6726 1.219

1.60 0.2353 0.6614 1.250

1.64 0.2217 0.6502 1.284

1.68 0.2088 0.6392 1.319

1.72 0.1966 0.6283 1.357

M p/p0 T/T0 A/A*

1.76 0.1850 0.6175 1.397

1.80 0.1740 0.6068 1.439

1.84 0.1637 0.5963 1.484

1.88 0.1539 0.5859 1.531

1.90 0.1492 0.5807 1.555

1.92 0.1447 0.5756 1.580

1.96 0.1360 0.5655 1.633

2.00 0.1278 0.5556 1.688

2.04 0.1201 0.5458 1.745

2.08 0.1128 0.5361 1.806

2.12 0.1060 0.5266 1.869

2.16 0.9956 21 0.5173 1.935

2.20 0.9352 21 0.5081 2.005

2.24 0.8785 21 0.4991 2.078

2.28 0.8251 21 0.4903 2.154

2.32 0.7751 21 0.4816 2.233

2.36 0.7281 21 0.4731 2.316

2.40 0.6840 21 0.4647 2.403

2.44 0.6426 21 0.4565 2.494

2.48 0.6038 21 0.4484 2.588

2.52 0.5674 21 0.4405 2.686

2.56 0.5332 21 0.4328 2.789

2.60 0.5012 21 0.4252 2.896

2.64 0.4711 21 0.4177 3.007

2.68 0.4429 21 0.4104 3.123

2.72 0.4165 21 0.4033 3.244

2.76 0.3917 21 0.3963 3.370

2.80 0.3685 21 0.3894 3.500

2.84 0.3467 21 0.3827 3.636

2.88 0.3263 21 0.3761 3.777

2.92 0.3071 21 0.3696 3.924

2.96 0.2891 21 0.3633 4.076

3.00 0.2722 21 0.3571 4.235

3.04 0.2564 21 0.3511 4.399

3.08 0.2416 21 0.3452 4.570

3.12 0.2276 21 0.3393 4.747

3.16 0.2146 21 0.3337 4.930

3.20 0.2023 21 0.3281 5.121

3.24 0.1908 21 0.3226 5.319

3.28 0.1799 21 0.3173 5.523

3.32 0.1698 21 0.3121 5.736

3.36 0.1602 21 0.3069 5.956

3.40 0.1512 21 0.3019 6.184

3.44 0.1428 21 0.2970 6.420

M p/p0 T/T0 A/A*

3.48 0.1349 21 0.2922 6.664

3.52 0.1274 21 0.2875 6.917

3.56 0.1204 21 0.2829 7.179

3.60 0.1138 21 0.2784 7.450

3.64 0.1076 21 0.2740 7.730

3.68 0.1018 21 0.2697 8.020

3.72 0.9633 22 0.2654 8.320

3.76 0.9116 22 0.2613 8.630

3.80 0.8629 22 0.2572 8.951

3.84 0.8171 22 0.2532 9.282

3.88 0.7739 22 0.2493 9.624

3.92 0.7332 22 0.2455 9.977

3.96 0.6948 22 0.2418 10.34

4.00 0.6586 22 0.2381 10.72

4.04 0.6245 22 0.2345 11.11

4.08 0.5923 22 0.2310 11.51

4.12 0.5619 22 0.2275 11.92

4.16 0.5333 22 0.2242 12.35

4.20 0.5062 22 0.2208 12.79

4.24 0.4806 22 0.2176 13.25

4.28 0.4565 22 0.2144 13.72

4.32 0.4337 22 0.2113 14.20

4.36 0.4121 22 0.2083 14.70

4.40 0.3918 22 0.2053 15.21

4.44 0.3725 22 0.2023 15.74

4.48 0.3543 22 0.1994 16.28

4.52 0.3370 22 0.1966 16.84

4.54 0.3288 22 0.1952 17.13

4.58 0.3129 22 0.1925 17.72

4.62 0.2978 22 0.1898 18.32

4.66 0.2836 22 0.1872 18.94

4.70 0.2701 22 0.1846 19.58

4.74 0.2573 22 0.1820 20.24

4.78 0.2452 22 0.1795 20.92

4.82 0.2338 22 0.1771 21.61

4.86 0.2229 22 0.1747 22.33

4.90 0.2126 22 0.1724 23.07

4.94 0.2028 22 0.1700 23.82

4.98 0.1935 22 0.1678 24.60

6.00 0.0633 22 0.1219 53.19

8.00 0.0102 22 0.0725 109.11

10.00 0.0236 23 0.0476 535.94

1 0 0 1
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Table D.2 Normal Shock Flow

M1 M2 p2/p1 T2/T1 p02/p01

1.00 1.000 1.000 1.000 1.000
1.04 0.9620 1.095 1.026 0.9999
1.08 0.9277 1.194 1.052 0.9994
1.12 0.8966 1.297 1.078 0.9982
1.16 0.8682 1.403 1.103 0.9961
1.20 0.8422 1.513 1.128 0.9928
1.24 0.8183 1.627 1.153 0.9884
1.28 0.7963 1.745 1.178 0.9827
1.30 0.7860 1.805 1.191 0.9794
1.32 0.7760 1.866 1.204 0.9758
1.36 0.7572 1.991 1.229 0.9676
1.40 0.7397 2.120 1.255 0.9582
1.44 0.7235 2.253 1.281 0.9476
1.48 0.7083 2.389 1.307 0.9360
1.52 0.6941 2.529 1.334 0.9233
1.56 0.6809 2.673 1.361 0.9097
1.60 0.6684 2.820 1.388 0.8952
1.64 0.6568 2.971 1.416 0.8799
1.68 0.6458 3.126 1.444 0.8640
1.72 0.6355 3.285 1.473 0.8474
1.76 0.6257 3.447 1.502 0.8302
1.80 0.6165 3.613 1.532 0.8127
1.84 0.6078 3.783 1.562 0.7948
1.88 0.5996 3.957 1.592 0.7765
1.92 0.5918 4.134 1.624 0.7581
1.96 0.5844 4.315 1.655 0.7395
2.00 0.5774 4.500 1.688 0.7209
2.04 0.5707 4.689 1.720 0.7022
2.08 0.5643 4.881 1.754 0.6835
2.12 0.5583 5.077 1.787 0.6649
2.16 0.5525 5.277 1.822 0.6464
2.20 0.5471 5.480 1.857 0.6281
2.24 0.5418 5.687 1.892 0.6100
2.28 0.5368 5.898 1.929 0.5921
2.30 0.5344 6.005 1.947 0.5833
2.32 0.5321 6.113 1.965 0.5745
2.36 0.5275 6.331 2.002 0.5572
2.40 0.5231 6.553 2.040 0.5401
2.44 0.5189 6.779 2.079 0.5234
2.48 0.5149 7.009 2.118 0.5071
2.52 0.5111 7.242 2.157 0.4991
2.56 0.5074 7.479 2.198 0.4754
2.60 0.5039 7.720 2.238 0.4601
2.64 0.5005 7.965 2.280 0.4452
2.68 0.4972 8.213 2.322 0.4307
2.72 0.4941 8.465 2.364 0.4166
2.76 0.4911 8.721 2.407 0.4028
2.80 0.4882 8.980 2.451 0.3895
2.84 0.4854 9.243 2.496 0.3765
2.88 0.4827 9.510 2.540 0.3639
2.92 0.4801 9.781 2.586 0.3517
2.96 0.4776 10.06 2.632 0.3398
3.00 0.4752 10.33 2.679 0.3283
3.04 0.4729 10.62 2.726 0.3172
3.08 0.4706 10.90 2.774 0.3065

M1 M2 p2/p1 T2/T1 p02/p01

3.12 0.4685 11.19 2.823 0.2960
3.16 0.4664 11.48 2.872 0.2860
3.20 0.4643 11.78 2.922 0.2762
3.24 0.4624 12.08 2.972 0.2668
3.28 0.4605 12.38 3.023 0.2577
3.30 0.4596 12.54 3.049 0.2533
3.32 0.4587 12.69 3.075 0.2489
3.36 0.4569 13.00 3.127 0.2404
3.40 0.4552 13.32 3.180 0.2322
3.44 0.4535 13.64 3.234 0.2243
3.48 0.4519 13.96 3.288 0.2167
3.52 0.4504 14.29 3.343 0.2093
3.56 0.4489 14.62 3.398 0.2022
3.60 0.4474 14.95 3.454 0.1953
3.64 0.4460 15.29 3.510 0.1887
3.68 0.4446 15.63 3.568 0.1823
3.72 0.4433 15.98 3.625 0.1761
3.76 0.4420 16.33 3.684 0.1702
3.80 0.4407 16.68 3.743 0.1645
3.84 0.4395 17.04 3.802 0.1589
3.88 0.4383 17.40 3.863 0.1536
3.92 0.4372 17.76 3.923 0.1485
3.96 0.4360 18.13 3.985 0.1435
4.00 0.4350 18.50 4.047 0.1388
4.04 0.4339 18.88 4.110 0.1342
4.08 0.4329 19.25 4.173 0.1297
4.12 0.4319 19.64 4.237 0.1254
4.16 0.4309 20.02 4.301 0.1213
4.20 0.4299 20.41 4.367 0.1173
4.24 0.4290 20.81 4.432 0.1135
4.28 0.4281 21.20 4.499 0.1098
4.32 0.4272 21.61 4.566 0.1062
4.36 0.4264 22.01 4.633 0.1028
4.40 0.4255 22.42 4.702 0.994821

4.44 0.4247 22.83 4.771 0.962821

4.48 0.4239 23.25 4.840 0.93202l

4.52 0.4232 23.67 4.910 0.902221

4.56 0.4224 24.09 4.981 0.873521

4.60 0.4217 24.52 5.052 0.845921

4.64 0.4210 24.95 5.124 0.819221

4.68 0.4203 25.39 5.197 0.793421

4.72 0.4196 25.82 5.270 0.768521

4.76 0.4189 26.27 5.344 0.744521

4.80 0.4183 26.71 5.418 0.721421

4.84 0.4176 27.16 5.494 0.699121

4.88 0.4170 27.62 5.569 0.677521

4.92 0.4164 28.07 5.646 0.656721

4.96 0.4158 28.54 5.723 0.636621

5.00 0.4152 29.00 5.800 0.617221

6.00 0.4042 41.83 7.941 0.296521

7.00 0.3974 57.00 10.469 0.153521

8.00 0.3929 74.50 13.387 0.084921

9.00 0.3898 94.33 16.693 0.049621

10.00 0.3875 116.50 20.388 0.030421

1 0.3780 1 1 0
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Table D.3 Prandtl–Meyer Function

M y m
1.00 0 90.00
1.04 0.3510 74.06
1.08 0.9680 67.81
1.12 1.735 63.23
1.16 2.607 59.55
1.20 3.558 56.44
1.24 4.569 53.75
1.28 5.627 51.38
1.32 6.721 49.25
1.36 7.844 47.33
1.40 8.987 45.58
1.44 10.146 43.98
1.48 11.317 42.51
1.52 12.495 41.14
1.56 13.677 39.87
1.60 14.861 38.68
1.64 16.043 37.57
1.68 17.222 36.53
1.72 18.397 35.55
1.76 19.565 34.62
1.80 20.725 33.75
1.84 21.877 32.92
1.88 23.019 32.13
1.92 24.151 31.39
1.96 25.271 30.68
2.00 26.380 30.00
2.04 27.476 29.35
2.08 28.560 28.74
2.12 29.631 28.14
2.16 30.689 27.58
2.20 31.732 27.04
2.24 32.763 26.51
2.28 33.780 26.01
2.32 34.783 25.53
2.36 35.771 25.07
2.40 36.746 24.62
2.44 37.708 24.19
2.48 38.655 23.78
2.52 39.589 23.38
2.56 40.509 22.99
2.60 41.415 22.62
2.64 42.307 22.26
2.68 43.187 21.91
2.72 44.053 21.57
2.76 44.906 21.24
2.80 45.746 20.92
2.84 46.573 20.62
2.88 47.388 20.32
2.92 48.190 20.03
2.96 48.980 19.75
3.00 49.757 19.47

M y m
3.04 50.523 19.20
3.08 51.277 18.95
3.12 52.020 18.69
3.16 52.751 18.45
3.20 53.470 18.21
3.24 54.179 17.98
3.28 54.877 17.75
3.32 55.564 17.53
3.36 56.241 17.31
3.40 56.907 17.10
3.44 57.564 16.90
3.48 58.210 16.70
3.52 58.847 16.51
3.56 59.474 16.31
3.60 60.091 16.13
3.64 60.700 15.95
3.68 61.299 15.77
3.72 61.899 15.59
3.76 62.471 15.42
3.80 63.044 15.26
3.84 63.608 15.10
3.88 64.164 14.94
3.92 64.713 14.78
3.96 65.253 14.63
4.00 65.785 14.48
4.04 66.309 14.33
4.08 66.826 14.19
4.12 67.336 14.05
4.16 67.838 13.91
4.20 68.333 13.77
4.24 68.821 13.64
4.28 69.302 13.51
4.32 69.777 13.38
4.36 70.245 13.26
4.40 70.706 13.14
4.44 71.161 13.02
4.48 71.610 12.90
4.52 72.052 12.78
4.56 72.489 12.67
4.60 72.919 12.56
4.64 73.344 12.45
4.68 73.763 12.34
4.72 74.176 12.23
4.76 74.584 12.13
4.80 74.986 12.03
4.84 75.383 11.92
4.88 75.775 11.83
4.92 76.162 11.73
4.96 76.544 11.63
5.00 76.920 11.54
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INDEX

A

Absolute pressure, 5

Accelerating containers, 27
Acceleration, 2, 40
Added mass, 152
Adiabatic, 10

Airfoils, 152
Angular velocity, 2, 42
Archimedes principle, 26

Area, 2
Aspect ratio, 118
Atmospheric pressure, 5

B

Bernoulli’s equation, 50, 87

Blades, 66
Blasius formula, 164
Boiling, 9
Boundary conditions, 84

Boundary layer, 48, 159
Boundary-value problem, 84
Bubble, 8

Buckingham p-theorem, 99
Bulk modulus, 8
Buoyancy, 26

C

Capillary tube, 9
Cauchy–Riemann equations, 155

Cavitation, 9, 150
Cavitation number, 150
Celsius scale, 5

Center of pressure, 24
Centrifugal pump, 212
Centroid, 24

Channel flow, 115
Characteristic pump curve, 74, 142, 211
Characteristic dimension, 4, 47

Choked flow, 186
Chord, 146
Chezy–Manning coefficient, 131
Chezy–Manning equation, 131

Circulation, 156
Coefficient of thermal expansion, 16

Completely turbulent zone, 126
Complex velocity potential, 155

Compressible flow, 48, 181
Conservation:

of energy, 60, 62, 64
of mass, 60, 62, 63

of momentum, 61, 62, 67
Constitutive equations, 44, 63
Continuity equation, 44, 63

differential, 85
Continuum, 4
Control volume, 61

Convective acceleration, 41
Couette flow, 116, 117, 121
Critical area, 186

Critical Reynolds number, 48, 160

D

Darcy–Weisbach equation, 114

Deflection angle, 192
Deflectors, 67
Demand curve, 211

Density, 2, 4
Detached shock, 193
Developed flow, 456, 110

Differential continuity equation, 86
Diffuser, 185
Dilitant, 7
Dimensional analysis, 97

Dimensional homogeneity, 97
Dimensions, 1

table, 2

Discharge, 63
Displacement thickness, 162, 167
Divergence, 86

Divergence theorem, 94
Doublet, 156
Drag, 146

on airfoil, 153
Drag coefficient, 146

curves, 147
table, 148

Droplet, 8
Dynamic similarity, 102
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E

Efficiency, 65
Energy, 2

conservation of, 61

Energy equation, 11, 64, 92
Energy grade line, 129
Enthalpy, 10
Entrance flow, 110

turbulent, 111
Entrance length, 110
Equivalent length, 129

Eulerian description, 40
Euler number, 101
Euler’s equation, 88

Expansion fan, 195
Expansion waves, 196
External flow, 46, 145

F

Fahrenheit scale, 5

First law, 10
Flow field, 40
Flow rate, 2, 63

Force, 1,2
on a curved surface, 25
on a plane surface, 24

Free-stream flow, 48, 145, 160
Free-stream fluctuation intensity, 160
Frequency, 2
Friction factor, 114

Froude number, 101

G

Gage pressure, 5
Gas constant, 10

Gases, 4
Gauss’ theorem, 94
Geometric similarity, 102

H

Hardy Cross Method, 216

Harmonic functions, 155
Head, 51, 65

pump, 65

total, 51, 65
turbine, 65
velocity, 51, 65

Head loss, 65, 115

Heat rate, 2
Heat transfer, 11
Homogeneous fluid, 90

Hydraulic grade line, 129
Hydraulic jump, 71
Hydraulic radius, 127

Hydrofoil, 150

I

Ideal gas law, 10
Incompressible flow, 48, 86
Induced velocity, 188

Inertial reference frame, 41
Initial conditions, 84
Integral equations, 60
Interior nodes, 215

Interior loops, 215
Internal energy, 10
Internal flow, 110

Inviscid flow, 46, 145
Inviscid core length, 110
Irrotational flow, 42, 154

Isentropic, 10
nozzle flow, 184

Isotropic fluid, 88

J

Joukowsky equation, 221

K

Karman integral equation, 162
Kelvin scale, 6
Kinematic similarity, 102

Kinematic viscosity, 2, 8, 47
Kinetic-energy correction factor, 65
Kutta–Joukowski theorem, 159

L

Lagrangian description, 40
Laminar boundary layer, 162

Laminar flow, 47
in a channel, 116
in a pipe, 112

Laplace’s equation, 154

Laplacian, 90
Length, 1
Lift, 146

on an airfoil, 153
Line coefficient, 146
Line source, 155

Liquids, 4
Local acceleration, 41
Local skin friction coefficient, 163

Loss coeffiecient, 64, 129

M

Mach angle, 183

Mach cone, 183
Mach number, 49, 101, 183
Mach waves, 183

Manning n, 131
Manometer, 22
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Mass, 1

conservation of, 61, 63
Mass flux, 2, 63
Material derivative, 42

Mean free path, 4, 12
Method of images, 175
Minor losses, 129
Momentum, conservation of, 61

equation, 67
Momentum correction factor, 67
Momentum thickness, 162, 167

Moody diagram, 125

N

Navier–Stokes equations, 44, 90
Network analysis, 219
Newtonian fluid, 7, 88

Newton’s second law, 1, 67, 87
Noncircular conduits, 127
Normal pressure variation, 52

Normal shock waves, 188
Normal stress, 4, 44, 87
No-slip condition, 8, 46

Nozzle flow, 186

O

Oblique shock waves, 192
One-dimensional flow, 46
Open channel flow, 130

Outer region, 124

P

Pascal, 5
Pathline, 40

Piezometer, 51
Piezometric head, 207
Pipe flow, 112
Pipe networks, 215

Pipe systems, 208
Pitot-static probe, 51
Pitot tube, 51

Power, 2, 64
Power-law profile, 123
Plane flow, 46

Plastics, 7
Poiseuille flow, 113, 114
Potential flow, 154

around a cylinder, 158

Power-law profile, 164
Prandtl boundary layer equation, 166
Prandtl–Meyer function, 196

Pressure, 2, 3, 5, 20
absolute, 5
atmospheric, 5

gage, 5

static, 51

total, 51
vapor, 9

Pressure head, 51, 65

Pressure pulse, 223
Pressure waves, 224
Profile development region, 110
Pseudoloops, 215

Pseudoplastics, 7
Pump curve, 74, 142, 211
Pump efficiency, 65

Pump head, 65

Q

Quasi-equilibrium, 10

R

Raleigh pitot-tube formula, 199
Rankine oval, 175

Rankine scale, 6
Ratio of specific heats, 10
Relative roughness, 125

Repeating variables, 100
Reynolds number, 48, 101

critical, 48, 160

Reynolds transfer theorem, 62
Roughness, relative, 125
Rotating containers, 27
Rotating cylinders, 119

S

Scale, 103
Separated region, 52, 145
Shaft work, 64

Shear stress, 4, 87
Shear velocity, 123, 165
Shock waves, 183, 188

oblique, 192
strong, 193
weak, 193

Similitude, 97, 102

Sink, 159
Skin friction coefficient, 163
Sound wave, 182

Source strength, 156
Specific energy, 11
Specific gravity, 6

Specific heat, 2
Specific internal energy, 10
Specific weight, 2, 6
Speed of sound, 8, 49, 182

Stagnation point, 51
Stagnation pressure, 51
Standard atmosphere, 5

Static head, 210
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Static pressure, 51

Statics, 20
Steady flow, 40
Steady turbulent flow, 47

Stokes flow, 146
Stokes hypothesis, 88
Streakline, 40
Stream function, 154

Streamline, 40
Streamtube, 40
Stress, 2

Stress vector, 4
Strouhal number, 101, 149
Subsonic, 2, 8, 183

Substantial derivative, 42
Supersonic, 183
Surface tension, 2, 8

Superposition, 157
Surging, 219
Swamee and Jain formulas, 126
System, 10, 61

T

Temperature, 6
Thermal conductivity, 92

Thermal diffusivity, 92
Three-dimensional flow, 46
Time, 1

Time average, 122
Torque, 2, 7
Total head, 51, 65

Total pressure, 51
Transition zone, 126
Turbine efficiency, 65

Turbine head, 65
Turbulent boundary layer, 164
Turbulent flow, 47, 121
Turbulent zone, 122

Two-dimensional flow, 46

U

Uniform flow, 46, 155

Units, 1

table, 2
Unsteady flow, 46

V

Vacuum, 5
Vanes, 67, 69
Vapor pressure, 9

Velocity, 2
Velocity field, 40
Velocity gradient, 7

Velocity head, 51, 65
Velocity potential, 154
Velocity vector, 41
Venturi meter, 73

Venturi tuve, 202
Viscometer, 7
Viscosity, 2, 6

Viscous flow, 47
Viscous wall layer, 110, 122, 162
Volume, 2

Von Karman integral equation, 162
Vortex, 156
Vortex shedding, 149

Vortex strength, 156
Vorticity, 43

W

Wake, 145
Wall region, 123

Water hammer, 221
Waves, 224
Wave speed, 10

Weber number, 101
Wedge angle, 192
Wetted perimeter, 127
Wing span, 153

Work, 2, 10, 64
Work rate, 64

Z

Zone of silence, 183
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