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Preface

During my academic career the topic of finite element analysis has literally grown
from a mere concept into one of the most powerful methods of numerical analysis that
exist today. My first significant work with finite element modeling and computer coding
of those models was in the early 1970s, and I was not convinced then that the results that

. could be obtained were worth the effort that went into using the method. Isoparametric
finite elements, Galerkin methods, and the use of the more powerful numerical
integration techniques were new and emerging. At that time I was not yet aware of the
impact these ideas were having on the use and development of the finite element
method. As time passed, I became a serious student of the method and developed some
capability for successful application of the method.

The Outline is based upon notes that I developed, over a period of several years, for
a first course in finite element analysis. My own introduction to finite element methods
was somewhat naive, and I think that is often the case for someone with prior knowledge
of matrix analysis of structures. I must emphasize that the finite element analysis is not
an extension of either the stiffness method or matrix theory of structures. Note that the
method is not used to solve engineering problems but is used to solve differential
equations, a subtle but significant difference.

The Outline is written with emphasis on applied techniques rather than theoretical
justification of the techniques and methods. Each chapter of the Outline, especially
Chapters 2 through 6, serves a specific purpose. Chapter 1 contains a brief review of
specific mathematical topics. Chapter 2 begins with the Rayleigh-Ritz method and a
variational statement of a standard second-order, one-dimensional differential equation
that appears in numerous applications in applied physics. It is illustrated that the finite
element method is an organized application of the Rayleigh-Ritz method of numerical
analysis. Chapter 3 is an extension to two dimensions. The problems are formulated in
the standard cartesian coordinate system with emphasis on the formulation of the
element, area integration, and subsequent formulation of the global finite element model.
Chapters 2 and 3 are academic, but very necessary since they serve as an introduction to
the more powerful modern applications of the finite element method. Chapter 4 is
intended to show the connection between finite element analysis and matrix analysis of
structures and can be omitted by the reader who is not interested in beam and column
structures. Chapter 5 is important for the reader- who intends to use the finite element
method for solving problems that involve coupled partial differential equations. There is
an overview of the underlying mathematics that supports the use of the variational
functions that were introduced in Chapters 2 gnd 3. The very powerful Galerkin method
of numerical analysis is introduced in Chapter 5 and used to derive finite element models
of partial differential equations that govemn several different physical phenomena.
Chapter 6 is devoted to isoparametric finite elements and the coordinate transformations
and numerical integrations that pertain to that topic. Chapter 7 is a collection of several
applied topics. A computer code is included as an Appendix for readers desiring some
connection between theory and computer application. An index of solved problems is
included that will assist the reader who is searching for a particular application.

Several people should be acknowledged for their assistance with the preparation of
this book. Professor John Peddieson, Jr., Tennessee Technological University, for many
discussions, over the years, concerning applied mathematics; Jeffery Abston for the
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analytical solution given in Problem 7.23; Mean-Fun Cheng for the numerical results
given in Problem 7.11; and Satya P. Narimetla for the numerical solutions given in
Problem 7.18. I wish to thank Ms. Yvette Clark for her very gracious assistance with
computers, software, and printers. The draft copy was meticulously reviewed by
Abraham J. Rokach, Hypermedia Systems Inc., Chicago. I also wish to thank the staff of
editors of the Schaum’s Division of McGraw-Hill, John Aliano, David Beckwith, and
Arthur Biderman for their patience and encouragement.

GEORGE R. BUCHANAN
Cookeville, Tennessee
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Chapter

Mathematical Background

1.1. INTRODUCTION

The mathematics required for the study of finite element analysis can vary from elementary to
sophisticated. Fortunately, most concepts can be mastered with a reasonable knowledge of vector analysis,
matrix theory, and differential equations. Pertinent mathematical concepts will be reviewed in this chapter,
and the reader who needs more information may consult the references listed in the bibliography. The
review of vector analysis ranges from elementary definitions to more advanced integral theorems. The
matrix theory that is covered consists of elementary definitions, matrix manipulations, and the solution of
simultaneous equations. A brief treatment of differential equations is also included. Differential equations
are required for solving boundary-value problems that can be used as a check on numerical solutions
obtained using the finite element method. Finally, a discussion of tensor analysis is included but is limited
to cartesian tensor notation. The formulation of problems using cartesian tensor (subscript) notation occurs
in the literature of finite elements and usually streamlines the mathematical presentation.

1.2. VECTOR ANALYSIS

A vector is defined as a physical quantity that can be described by a single magnitude and a direction
that is related to a coordinate reference frame. A fundamental concept, which justifies the use of vector
analysis, is that physical quantities that are arbitrarily directed in space can be resolved into orthogonal
components corresponding to the reference frame. Once the components are found, they can be
manipulated using standard algebraic operations. Several specialized vector operations required throughout
this text will be reviewed in this chapter. Vectors, in this chapter, will be written using boldface lowercase
letters. The vector of Fig. 1-1 is

Fig. 1-1
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a=aitajtak (1.1)

where 1, j, and k are unit vectors directed along the x, y, and z axes, respectively.
The vector differential operator del V is defined as

3
V=——i+——j+=k (1.2)

This operator, by definition, has vector properties and is used to define three fundamental vector
operations, the gradient, the divergence, and the curl. These vector operations are useful when defining
integral vector theorems such as the divergence theorem and Green’s theorem, which is sometimes called
the Green-Gauss theorem.

1.3, MATRIX THEORY
Matrices

A rectangular array of numbers with a definite number of rows and columns is a matrix. Once an array
has been defined as a matrix, it has certain mathematical properties that can be classified within the context
of matrix theory. A comprehensive knowledge of matrix theory is not required for finite element analysis;
however, certain fundamental concepts are necessary for the study of finite element theory and for its
subsequent application.

The array of numbers can be written in the abstract as

ay 4y dyy 4y,
Ay Uy Ay as,

[A] dy; 43 dyg as, (1.3)
aml amZ am3 amn

The notation [A] will be used in this text to indicate a matrix. The terms within the matrix are called
elements, and when an element or a group of elements is referred to, subscript notation will be used, such
as a,;, where i indicates a row number and j indicates a column number. The matrix of Eq. (1.3) is called
an m by n matrix or simply an m X n matrix, and m X n is referred to as the order of the matrix. A row
matrix is defined as a 1 X m matrix and, similarly, a column matrix is defined as an m X 1 matrix, The
column matrix is often written {A}.

A matrix [A] and a matrix [B] can be added or subtracted, element by element, as long as both are
m X n matrices. Proper addition and subtraction are not defined for matrices of unequal order. Matrix
multiplication is the process of multiplying one matrix by a second matrix and is written [A][B]; in
general, [A][B] # [B][A]. In matrix multiplication [A][B], [B] is said to be premultiplied by [A] or [A] is
said to be postmultiplied by [B].

The division, element by element, of one matrix by a second matrix is not defined. However, the
inverse of a matrix, written as [A] ™', serves a similar purpose and will be discussed later.

The transpose of a matrix is obtained by interchanging its rows and columns. The transpose of [A] is
written [A]T, and in subscript notation the element interchange is

[a,]" = [a;] (1.4)
1t follows that
[[Al[B]]" = [B]"[A]" (1.5)

A symmetric matrix is defined as a square matrix with property a;, = a;; for i # j. A diagonal matrix has all
elements of a square matrix equal to zero except those on the principal diagonal, which is the diagonal
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from upper left to lower right. A unit matrix is a special case of a diagonal matrix; all diagonal elements
are equal to 1, and all off-diagonal elements are equal to O.

Determinants

An understanding of selected topics from the theory of determinants is necessary for successful
solution of the simultancous equations that result in finite element analysis. The determinant used
throughout this text is of course a square matrix and as a square matrix has certain mathematical properties
an ordinary m X n matrix does not have. The determinant is used in Prob. 1.4 to define the vector product.
Determinants of order 2 or 3 can generally be used to illustrate all the concepts required for understanding
the manipulation of determinants. A determinant is usually symbolized by enclosing the array of numbers
within vertical lines rather than brackets. For a matrix denoted [A], the notation for the determinant might
be |A|, det[A], or |det A| and indicates the determinant of the matrix [A].

Every determinant has a determinantal equation. For higher-order determinants it can be quite
formidable from a computational standpoint to obtain that equation. The determinantal equation of a
determinant of order 3 is obtained as follows:

Ay dyp a4
|det AI = |dy; dyy Ay
a3 dap dz;

=AUy T 01,0,,05 T aA1305,0,, — 44,05305, ~ 0yd 1,055 — A31d550 5 (1.6)

and can be described as the product of the principal diagonal terms minus the product of the secondary
diagonal terms. This elementary concept can be applied to determinants of order 2 or 3 but fails for
higher-order determinants.

The minor of a determinant is the determinant that remains after a row and a column are removed
from the original determinant. The minor can be referenced to a particular element of the determinant
using the notation a,,. The minor of |a,,| of Eq. (1.6) is

1 93

Mol = |
22 dz;  dag

a determinant of order 2. The cofactor of an element of a determinant is defined as C, = (=)' ]Mij ,
where |Ml.j| is the minor of the element a;. It is now possible to define a cofactor matrix as the square
matrix constructed by replacing each element of a square matrix by the cofactor of the determinant
corresponding to the original square matrix. The adjoint matrix is defined as the transpose of the cofactor
matrix. The adjoint matrix is used to compute the inverse of a matrix in Prob. 1.14.

Simultaneous Equations

Numerous methods have been proposed for the solution of a set of simultaneous equations, and two of
these procedures will be emphasized in this text. A set of simultaneous equations can be written in matrix
form as

[Alx} = {f} (1.7)

The matrix [A] represents the matrix of coefficients that are multiplied by the unknown quantitics {x}. The
column matrix on the right-hand side contains the known quantities f. Multiplying by the inverse of [A]
gives

[A]7'TAKx} = [{x} = {x} = [A] " {f} (1.8)

The use of the inverse for solving a set of simultaneous equations is inefficient for large sets of equations.
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A method that is sometimes called gaussian elimination is faster and hence more efficient than the
inverse method. Gaussian elimination is an organized method of substituting each equation into the
previous equation until the last equation contains only one unknown. The unknowns are determined
sequentially, starting with the last equation and proceeding upward. The method is sometimes referred to
as upper trianglization and is best illustrated by example, as in Prob. 1.16.

1.4. DIFFERENTIAL EQUATIONS

Finite element analysis is a method for the numerical solution of a differential equation. It follows that
without differential equations there would not be a finite element method. Many practicing engineers and
scientists learned the finite element method as an application of structural analysis for civil engineering or
aircraft structures. The state of the art of finite element analysis several decades ago was responsible for
that situation. The classical stiffness method of structural analysis, as discussed in Chap. 4, can be derived
without mention of the governing differential equations. That is, the fundamental relationships for deriving
the stiffness method are based upon solutions of differential equations, but the user can easily lose sight of
the origin of the analysis. Finite element analysis for beam and frame structures can be based upon energy
theorems without considering differential equations. Again, the fault is not with the engineer or scientist,
but historically the connection between energy methods in structural analysis and the governing differential
equation has not been emphasized.

Differential equations are emphasized in this text. Beginning in Chap. 2 the differential equation is
associated with the corresponding variational function (energy theorem). The finite element method can be
derived in a variety of ways, but regardless of the derivation, the method is the aumerical solution of a
differential equation. The differential equations in this text are for the most part elementary. A very basic
differential equation is considered in Chap. 2, where it is shown that the same equation governs numerous
physical theories. The most elementary equation will probably allow the reader to become acquainted with
the connection between finite element theory and differential equations, and for this reason Chap. 2 is a
very important chapter. From a practical viewpoint finite element analysis would not be used to solve a
one-dimensional second-order differential equation, however, Chap. 2 is an absolute necessity for
understanding the more complicated analysis problems.

The analytical solution of the differential equation is important as a check on the numerical solution
obtained using the finite element method. How else will the user know if the computer code that generates
a numerical solution is correct? The fundamental differential equations of Chap. 2 are of the form

d dex)
I a(x)A(x) . + C(x)AX)=0 (1.9)

where a(x) is a material parameter that can be a function of x, C(x) is an external source, and A(x) is the
cross-sectional area. If material parameters, external source terms, and area are functions of x, they are
allowed to change from element to element. In other words, the finite element is not expected to model a
variable area or material parameter within the element since they can be modeled from element to element.
The functional form is usually disregarded, and Eq. (1.9} is written in a more elementary form as

d*¢
a3 +C=0 (1.10)

The analytical solution is elementary. Nevertheless, such elementary solutions are invaluable for successful
application of the finite element method. The most general form of Eq. (/.10) is given as Eq. (2.19) and
appears as

d’dx)  de B
@ 5T~ By Wy +C=0 (1.11)
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Solutions for one-dimensional differential equations are given in Probs. 2.1, 2.3, 2.17, 2.18, and 2.28.
Problem 2,18 provides a solution for an equation of the general form of Eq. (1.11), and Prob. 2.28
represents a solution for a differential equation in one-dimensional cylindrical coordinates with a change in
material properties. The one-dimensional counterpart of Eq. (/.11) in cylindrical coordinates is

d d d
%E[r ‘f;”] —ﬂjj';é(r)-7¢(r)+c=0 (1.12)

The two-dimensional counterpart of Eq. (1.11) is a partial differential equation and is discussed in
Chap. 3 and modeled primarily in x, y coordinates. [See Egs. (3.1) and (3.2).] The analytical solutions
become more complicated and are obtained using the separation of variables technique. Steady-state
temperature distribution for a rectangular plate is discussed in Prob. 3.6 using both a classical approach and
finite element analysis. Additionally, the classical approach is discussed in Prob. 1.17. An analytical
solution for an equation similar to the mass transport, Eq. (3.2), is given by Prob. 3.36. Partial differential
equations occur when both spatial and time coordinates are included in the same problem. This type of
partial differential equation is introduced in Chap. 5 and discussed in some detail in Chap. 7.

The finite element method is quite powerful for solving coupled ordinary or partial differential
equations. Analytical solutions for coupled partial differential equations can become a challenge. The
equations of elasticity were one of the early topics to be studied using the finite element method and in two
or more dimensions are always a set of coupled equations. These equations are given in Chap. 3 for both
cartesian and cylindrical coordinates. Coupled partial differential equations are discussed in Chaps. 3 and
5-7.

Homogeneous differential equations occur in mathematical physics and offer a somewhat different
challenge for the analyst than the nonhomogeneous equation. The resulting analysis is referred to as an
eigenvalue problem. Methods for solving the differential equation eigenvalue problem and the algebraic
eigenvalue problem can be found in numerous textbooks. Several important problems are formulated in
Chap. 7, and elementary finite element solutions are given.

1.5. CARTESIAN TENSORS

Cartesian tensor notation is the simplified version of tensor notation that can be referenced to any
curvilinear coordinate system. Cartesian tensor notation is often referred to as indicial notation or subscript
tensor notation since only subscripts are required for proper representation of physical equations, but the
reader must keep in mind that the notation is valid only for the classical x, y,z coordinate system.
Cartesian tensor notation is used in this text for convenience when writing the governing equations for a
problem to be modeled using the finite element method. Also, once the analyst has become comfortable
with finite element modeling, it is possible to directly visualize a matrix finite element equation based upon
the tensor equation.

Visualize the standard x, v, z coordinate system. Rather than use x, y, z let the coordinates be called x,,
Xy, X3, Where x, = x, x, =y, and x; =z (the symbol = has the meaning ‘‘is the same as’’). Any vector
can be written as f=fi+f,j + £k in the x, y, z system. A similar vector equation in the x,, x,, x; system
would be written f=f,i+f,j + f;k. The essence of subscript notation is to write the vector equation

f=flithitrik=/ (1.13)

where i has the range 1,.2, 3. Cartesian tensor notation is a shorthand version of vector notation. A vector,
based upon its mathematical definition, can be classified as a first-order tensor. Higher-order tensors can be
defined, but there are no corresponding quantities in vector analysis; however, all vector operations are
defined for tensors of any order.

There are two basic types of subscripts, range and summation. The range subscript corresponds to the
coordinate direction as illustrated by Eq. (1.13), and a single unrepeated subscript implies three quantities,
one corresponding to each coordinate direction. A repeated subscript implies a summation and is illustrated
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in Prob. 1.18. Partial differentiation with respect to the space coordinates can be represented using a
comma following the variable that is to be differentiated and is illustrated in Prob. 1.19. Time
differentiation is indicated by placing a dot above the variable.

Coordinate transformation plays a significant role in the mathematical theory of tensor analysis. The

elementary definition of a vector is based upon the idea that any physical quantity that can be described
with a magnitude and a direction qualities as a vector. Besides the elementary definition, a vector quantity
must exist in all coordinate systems and there must be a valid transformation relationship between the
coordinate systems in order for it to quality as a vector. Coordinate transformations are discussed in Chap.
3 using a matrix to represent the transformation. The coordinate transformation matrix is not a tensor
because it does not have any properties that allow for the transformation between coordinate systems.
Additional discussion of this concept is given in Prob. 1.20.

1.1.

1.2,

Solved Problems

A position vector emanates from point P in space defined by coordinate locations (10, 15,5) and
terminates at point Q defined by (—2, 5, 3) as shown in Fig. 1-2. Use the concept of addition and
subtraction of vectors to determine the components of the position vector and compute the magnitude
of the position vector.

4y

P(10, 15, 5)

Fig. 1-2

Define position vectors r, =10i+ 15j+ 5k and r, = —2i+ 5j + 3k. Use Fig. 1-2 to write the vector
equation

I, =T, I, or Fop =Ty T, (@)

Substituting and adding components gives the required result:
rpo = —12i—10j — 2k b)

The magnitude, in this case, is the actual length of the position vector:

[0l = [(—12)" + (=10 + (=2)71"* = 15.7 ©

Define a unit vector and compute the components of a unit vector directed from point P to point Q of
Fig. 1-2.
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1.3.

A unit vector u is a vector with a magnitude of unity. The components of the unit vector must satisfy the
relation

Ll +ul+ul]'?=1 @

where u_, u,, and u, are the x, y, z components of the unit vector, respectively. The components of the unit vector

x3 Py
are computed using the position vector of Fig. 1-2. The position vector r,, is defined in terms of a local
coordinate system in Fig. 1-3 using the angles 6,, 6,, and 6,. The direction cosines are defined as follows withr,,

w9 Yy

as the magnitude of the vector:

X
Q
Fig. 1-3
=212 g6 = 0
cos 6 = oo =157 =0 Tpox = Fpg €08 0,
rPQy 1
cos (Qy = "o =157~ —0.635 Tpgy = Tpg COS 0), »)
_Tre: 72 _ _
cos 6, = =757 =—-0.127 Fpg: = Fpp €OS 6,
PO -
Write the vector in component form, as in Eq. (I.1), and substitute Eq. (b):
Top =Tpod T 7p0J T 700 K= Tpp(c0os 61+ cos 6, + cos GK) (©)
Recognize that Eq. (c) is
Tpo =7rpolitujtuk)=r,u @)
and the direction cosines are the components of the unit vector, then
u=—0.762i — 0.635j — 0.127k 3]

It is easily verified that Eq. (d) satisfies Eq. (a).

Define the scalar product of two vectors and use that definition to compute the component of the
vector f (f = —20i+ 5j + 12K) in Fig. 1-4(b) that passes through point B. Write the result in vector
format.
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®
Fig. 1-4

The scalar product or dof product is illustrated in Fig. 1-4(a) and by definition is a scalar quantity given by
a*b=abcosf)=b-a=blacosh) (@)

The component of f that passes through point B is computed as f-u,,, where u,, is the unit vector from A to B.
Refer to Prob. 1.2 for computation of the unit vector:

4i +3j — 6k
7.81
= [(=20)(&)i-i + (5)(3)jj + (12)(—6)k - K] + 7.81 = —17.5

fou,, = (—20i + 5§+ 12K) -

Note that i-i= (1)}(1)cos 0= 1; similarly, i-j= (1)(1)cos (w/2) =0; and so forth.

Define the vector product of two vectors and use that definition to compute the vector product a X b
of the vectors a=2i+ 3j+k and b= —i+2j —4k.

The vector product or cross product is illustrated in Fig. 1-5 and by definition is a vector result given by
aXb=qa(sinb) (@)
The resulting vector is directed perpendicular to the plane formed by a and b sin 6. The same numerical result is

obtained for b X a, but the resulting vector is opposite in sign. The vector product can be computed using the
determinant

i ik
axb=| 2 3 1|=(-12-2)i+(—1+8)j+(@4+Dk=—14i+7j+7k
-1 2 -4

It follows that i X i = (1)(1) sin 0 = 0; similarly, i X j = (1)(1) sin (@7/2) =k, a vector normal to the x, y plane of
unit magnitude. Also, jXi=—-ixXj=—k.
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__—4b

b sin 0
’ \ [ —"
/

Fig. 1-§

1.5. Compute the components of a unit vector directed normal to the line segment defined by x,, y, and
X,, ¥, as shown in Fig. 1-6.

X2, Y2

(b)
Fig. 1-6

Given the definition of the vector product, k X a is a vector perpendicular to the plane of k and a, where k is
the unit vector in the z-coordinate direction as shown in Fig. 1-6.

i i k
0 0 1
—x, Y,y 0

kxa= =y, my it (g, —x,)j

Xa

The unit vector parallel to k X a is

u= "(yz —y1)i+ (xz _xl)j
[y, —y) + @, —x)1"

The result can be interpreted as shown in Fig. 1-6(b).
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1.6.

1.7.

1.8.
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A plane triangular area is defined by three coordinate locations as shown in Fig. 1-7. Use vector
analysis to derive an expression for the area of the triangle in terms of the coordinate locations.

' 4 Xy X,

Y3~

Fig. 1.7

Define the vectors a and b and the angle 6 as shown in Fig. 1-7. The area of the triangle is b sin 6, and by
Eq. (a) of Prob. 1.4 the area can be written

i J k
1 1 1
AZEaXbZE X TX Y2 T 0 :E[(xz_xl)(ys__)ﬁ)‘(xs_x;)(yz_yl)]k (@)
X, —x, y;—y 0

The result shows that area has vector properties.

Define the gradient of a scalar function. Let ¢ and ¢ be two scalar functions and show that
V(py) = & Vip + ¢ V.

The gradient of a scalar function ¢ is defined as

Vo = (—~|+— k)¢>=—1 +%k (@
Similarly,
V) = o i+ o (D + 5 (B
—g(SLi+ S Sk ) oG i k) = e W v @)

The divergence of vector function is defined as V-a. Discuss this vector operation in terms of the
definition of a scalar product.

It follows from Egs. (I.1) and (1.2) that
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1.9.

J
V- a—(—1+— —k)-(axi+ayj+azk) (@)

da, 0a da,

Y

_8x+8y+62 ®)

It follows that V-a# a -V because the V operator should act (operate) on a.

The divergence theorem, sometimes called Gauss® divergence theorem, can be written in vector
notation (Spiegel, 1959) as

fV-adV=famdS (@)
14 S

where n is a unit outward normal vector acting on the surface (boundary) of the volume (region)
described by V. Equation (@) simply states that the change in the quantity a within the region is equal
to the quantity flowing into or out of the region through the boundary. Discuss the derivation of the
Green-Gauss theorem using the divergence theorem and the application to finite element concepts.

The Green-Gauss theorem is derived in numerous textbooks. The application that is of interest pertains to
Galerkin’s method for deriving finite element models (see Chap. 5). Assume a one-dimensional case and consider
the derivative of the following function, where k£ can be considered a constant:

d dqb d’¢ do dys
dx dj) k » YT kdx dx )

Integrate over an interval a to b:

jdx(dx )dx- f Zlflldx—’_kf:%%dx ©

Consider the term on the left-hand side a perfect differential:

bd rde b rde
kjad_x Elﬁ)dx:kﬁd(aw): . (d)
Substitute Eq. (d) into Eq. (¢) and rearrange terms:
do d
e SR vas| o] o[ @

In one dimension Eq. (¢) could be obtained using integration by parts. However, the development above could be
extended to two or three dimensions, and the divergence theorem is useful for that purpose.
Let a of Eq. (@) be the product of a scalar 8 and a vector b and substitute into Eq. (a):

fV'(Bb)d\/:f,Bb-ndS ()

Vv N

The vector identity V- (8b) = 8V-b + VB -b is substituted into Eq. (f) to obtain the desired result:
fBV-de=J’,8b-ndeJ’V,B-de (2
14 S v

Equation ( g) is the classical result using vector analysis but can be extended to additional situations other than a
scalar and vector. In finite element theory Eq. () is an extension of Eq. (g), where ¢ and ¢ represent matrices of
interpolation functions.
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1.10.

1.11.

1.12.
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Given the following matrices, where [A] is a 3 X 2 matrix and [B] is a 2 X 2 matrix, discuss the
process of performing matrix multiplication.

Matrix multiplication is defined for [A]{B] where the number of columns in [A] is equal to the number of
rows in [B]. The first row of [A] is multiplied, term by term, by the first column of [B] as shown below to give
element 1, 1 of the product matrix. The first row of [A] is then multiplied by the second column of [B], and that
becomes element 1,2 of the product matrix. The result is shown below, and it is sometimes convenient to write
the matrices with [A] to the left and below [B] so that a horizontal line through a row of [A] intersects a vertical
line through a column of [B] to locate the corresponding element in the product matrix. This procedure is helpful
when the multiplication is being done by hand.

[B]= [Z Z]
21 2
Ay G anby tana, anb,tasb,
[Al=] @ ap a, by, tayb,  ayb,tayb,,
a3 Qs ayb,, faub,,  ay b, tanh,,

The product of an m X n matrix and an » X p matrix is an m X p matrix. It should be obvious that [B][A] cannot
exist for the matrices above and remain within the definition of a proper matrix multiplication.

Given a scalar function ¢ defined as

3
¢:N1¢1+N2¢2+N3¢3:§1Ni¢i @

write ¢ in matrix format.

Define N,= [N]=[N, N, N,Jand ¢ =[d]=[¢, ¢, ¢,]. To obtain the result of Eq. (@) the matrix
equation should be constructed in one of the equivalent forms:

&,
¢ =[N{g}=[NI[¢]" =IN, N, NJWd=IN, N, Nlé ¢ &1
&,

The determinantal equation of a determinant can be obtained using the cofactors of the determinant.
Given the 3 X 3 determinant

a4y Qg

the determinantal equation can be written in terms of cofactors
ayilay| = apla,| +aslasl ®)

where la ij| are the cofactors and a,; are the corresponding elements of the determinant. Expand Eq. (b)
and show that it is equivalent to Eq. (1.6).

Equation (b} is expanded using the definition of the cofactor in terms of the minor, or

a,, a

a3l a32

Ay Gy 4 22
12 a3

31 93

=a,, (@055 — Oay055) — A 15(05,053 — A5,053) T 0,5(05,05, — a5,a,,)

and is equivalent to Eq. (1.6).
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1.13.

1.14.

Given a function y = ax®, where a is a constant. Then, dy/dx = 2ax. This mathematical operation
occurs in finite element theory, except that the function is represented as a matrix equation. Given that
[A] is a symmetric » X » matrix and {X} is an » X 1 matrix, a matrix equation that is equivalent to the
function y above is y = [X]" [AKX}. Show that dy/d{X} = 2[A}{X}.

Assume [A] is 2 X 2 and {X} is 2 X 1. Then,

21

_ ay Q%] _ 2 " i 2
y=[ x] a a o [T 4% A Xa Xy T 4y X Xy T dyXy
22 2
d

y
ox =2a,,x, ta,,x, ta,x,
1

ay
axz = al2x1 + alel + 2a22x2

Because [A] is symmetric, a,, = a,,. Then,
a a X
2[ 11 12:|{ I}ZZ[A]X
yp Ayt LXy X

a result that is valid for matrices of any order.

3 1 4
[Al=|—-1 4 2
-2 2 -2

Define and compute, where appropriate, (a) the minors of the matrix (determinant) [A], M,;, (b) the
cofactors of the matrix (determinant) [A], C;, (c) the adjoint of the matrix (determinant) [A], (d) the
value of the determinant |A| of the matrix [A], and (e) the inverse of the matrix [A].

Given a matrix

(@) The minor of the term a,, is the 2 X 2 matrix remaining after deleting row 1 and column 1:

4 2 .y -1 2 -1 4
M, = [2 —2] similarly M., = [—2 —2] M= [~2 2]
1 4 3 4 31
M, = [2 ] My, = [—2 —2] My = [—2 2

-2
1 4 3 4 3001
M, = [4 2] M, = [—1 2] My = [~1 4]

(b) The cofactor of the term a,, is obtained formally as (—1)"”/|M,,|, or
C,,=C-1)(-8-4)=~12 C,=(-1YQ2+4)=-6 Cy=(CD"-2+8)=6
C,,=(1Y2-8)=10 C,,=1D'"-6+8)=2 C,=(-1Y(6+2)=~-8
C,,=-1'Q-16)=—14 C,=(-D6+4H=-10 C,,=(-1Y(12+1)=13

The determinant of the cofactors is a 3 X 3 matrix.

(¢) The adjoint matrix is the transpose of the cofactor matrix, or

-12 10 -14
[C"=] -6 2 —10

6 -8 13
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(d) The determinant can be evaluated using the minors of part (¢) and the cofactors of part (b). For instance,
along the top row,

|det Al = (3)(—12) + (1)(—6) + (4)(6) = —18

(¢) The inverse of [A] can be computed as

e
[ar = |det A
-12 10 -14
or [A] ' = [ - 2 —10i| +(—18)
6 -8 13

The reader can prove the result [A]7'[A] =[], the unit matrix.

1.15. The inverse of a square matrix can be used in the computation for simultaneous equations. The

method of computing the inverse discussed in Prob. 1.14 is limited in application, and another method

is preferable for computer applications. The inverse is defined as the matrix [A]™" that can be
multiplied by [A] to give a unit matrix, or

[A]7'[A] =[] @
The inverse can be computed by writing the matrix [A] augmented by a unit matrix
(Al1] ®)

Row and column substitutions are applied to Eq. () that will convert [A] to a unit matrix, and the
same operations are applied to the unit matrix that will give the inverse matrix, or

[jA™"] ©)

Compute [A]™" for the matrix of Prob. 1.14 using the method described above.

Write the matrix in the form

-2 2 -2 0 0 1
Divide row 1 by 3, and the first diagonal term becomes 1:
1 0.3333 1.3333 - 0.3333 0 0
-1 4 2 0 )4 0
-2 2 -2 0 0 1
Multiply the new row 1 by —1 and subtract it from row 2, and the a,, term becomes 0:
1 0.3333 1.3333 - 0.3333 0 0
0 4.3333 3.3333 0.3333 1 0
-2 2 -2 0 0 1

Multiply row 1 by —2 and subtract it from row 3:
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I 03333 13333 - 03333 0 O
0 13333 33333 - 03333 1 O
0 26667 0.6667 - 06667 0 1

Operate on the second column using the second row. Reduce the diagonal term to 1 by dividing by 4.3333:

1 03333 13333 - 03333 O 0
0 1 0.7692 - 0.0769 0.2308 O
0 26667 0.6667 - 0.6667 0 1

Multiply the new row 2 by 0.3333 and subtract it from row 1. Also, multiply row 2 by 2.6667 and subtract it
from row 3:

1 0 1.0769 - 03077 —0.0769 0
0 i 0.7692 0.0769 0.2308 0
0 0 —1.3843 04616 —0.6155 1
Divide row 3 by —1.3843:
1 0 1.6769' 03077  —0.0769 0
0 1 0.7692 0.0769 0.2308 0
0 0 1 —0.3334 04446  —0.7224

Multiply the new row 3 by 1.0769 and subtract it from row 1. Also, multiply row 3 by 0.7692 and subtract it
from row 2:

1 0 0 - 06668 —0.5557 0.7780
0 1 0 - 03334 —0.1112 0.5557 (d)
0 0 1 - —03334 0.4446 —0.7224

The matrix of (d) is now in the form of that given by (¢). The inverse of [A] is

[A]7' = 0.3334 -0.1112 0.5557

—0.3334 0.4446 —0.7224

0.6668 —0.5557 0.7780
(&)

and can be verified by a comparison with the results of Prob. 1.14 or by formulating the matrix multiplication
[Al '[A]=(1].
1.16. Use the gaussian elimination method to solve the simultaneous equations
4x, +2x, —2x, — 8x, =4
X, + 20+ x, =2
0.5x, — x, +4x; +4x,=10
—4x, — 2x, - x,=0

The equations can be written as the matrix equation
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4 2 -2 =87(x, 4

1 > 1 olfxn| )2

05 -1 4 4[1x [~ Y10 @
—4 -2 0 1 X, 0

Divide row 1 by 4. Subtract the new row 1 from row 2. Multiply the new row 1 by 0.5 and subtract it from row
3. Multiply row 1 by —4 and subtract it from row 4. The result is

105 -05 —-27(x,

0 15 1.5 2] x, 1
0 —125 425  S|)x [ )9S
0 0 -2 -7 1L 4

Divide row 2 by 1.5. Multiply the new row 2 by —1.25 and subtract it from row 3. A zero already appears in row
4, and no modification is required. The result is

1 05 -05 -2 X, 1
0 1 1 13333 |fx, | ] 0.6667
0 0 55  6.6667 |Yx, [ )10.3333
o 0 -2 -7 x, 4

Divide row 3 by 5.5. Multiply the new row 3 by —2 and subtract it from row 4:

1 05 —05 -2 X, 1

0 1 1 13333 |} x, | _ ] 0.6667
0 0 1 12121 |Yx, [T ) 1.8788
0 0 0 -4.5758 | x, 7.7576

Divide row 4 by —4.5758 and solve for the unknowns by substitution:

x,=00794 x,=-10066 x,=39338  x,=—16954

1.17. Use the separation of variables technique to solve the problem of steady-state temperature distribution
defined by Prob. 3.6. The separation of variables method is defined in numerous textbooks on partial
differential equations; see for instance, Hildebrand (1962).

The problem is described in Fig. 3-6 and is defined by Laplace’s equation

s+-2=0 (@)

with T(0, y) = T(x, 0y = T(L, y) = 0 and T(x, W) =T,. Assume a solution that separates the dependent variables:

T(x, y) = Xx)Y(y) ®)
and substitute into Eq. (a):

d’X d’y

Y +X—=0

dx dy
Group the functions and equate to a constant:

X _1dv

X d® Y dy ©

This results in the two ordinary differential equations
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1.18.

a&x ay
~+kKX=0 and —5—-KY=0 ()
dx dy

Both equations can be solved as homogeneous linear equations with constant coefficients. Assume X = Ce™ for
the first equation. Substitute into the equation and solve for m. It follows that the characteristic equation is
m = *ki. The general solution for X is

X—EA . (nﬂ-x>+B (nmc) h A _hm ©
= WS T ncos (= where k, =7 e
The boundary conditions X(0) =0 and X(L) =0 give B, =0 and

0=A si (nﬂ'L)
=A,sin{ ——

A similar assumption, ¥ =Ce™, gives a solution for the second equation. The characteristic equation is

m’> — k> =0, and the general solution is
Y= C sinh (ﬂ) +D, cosh (ﬂ) )
" L " L
where &, was previously defined as na/L. The boundary condition ¥(0) =0 gives D, =0, and Eq. (b) becomes
- naTx n
T=2 E,sin (%) sinh (Tm) where £, = A C, (©
n=1

The last boundary condition T(x, W) =T is substituted into Eq. (g), and the orthogonality of the trigonometric
functions is employed to determine E,. Multiply both sides of the equation by sin (m#x/L) and integrate from O

to L.
fLT in ("7 4 —jLEE ion (27 sin (7Y sin ("7 ) a 0
, Tosin{—p = ., Si L sin { =~ Jsin\ — x (h)

n=1

It follows that

JL , (mmc) ) (”"")d _{ 0 form#n
o N )Y T2 form=n

The constant £, can be obtained from Eq. (h):

£ 'h(MTW)—EJ.LT . (n’irx)d )
., sin 7 =7 oSIn{ 7 Jdx @)

Evaluating E, and substituting into Eq. (g) gives the analytical result for Prob. 3.6.

Given a vector a and a vector b, use the scalar product to illustrate the summation subscript.

The scalar product is often called an inner product and if there is an inner product, there should be an outer
product, which there is but it is not used in vector analysis since it leads to defining a higher-order tensor. The
scalar product for the vectors a and b is formally written

arb=@i+ ayj +ak)-bi+bj+bky=ab +ab +ab, (@)
The equivalent tensor statement is written
3
ab, =, ab,=ab, +a,b,+a,b, ®)
i=1

Equations (@) and (b) are equivalent. The repeated subscript implies the summation even if the summation
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1.19.

1.20.
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symbol is omitted, which it usually is. The outer product of the two vectors would be written a,b

:b,» where i ranges
from 1 to 3 and j ranges from 1 to 3.

The divergence of a vector function is illustrated in Prob. 1.8. Write the same function using cartesian
tensor notation.

Differentiation is denoted using a comma. Partial differentiation of a scalar quantity A is written
V-A:—xi+—j+—k (@)

and has vector properties. The corresponding statement in subscript tensor notation is A,,, where 7 is a range
subscript and implies three separate quantities, one for each coordinate direction:

L A (94 04 oA ,
”':>ax,.:> ox,’ dx,’ 0x, ®)
The divergence of a vector is written V-a= ga,,,, where the repeated subscript implies the summation:
3
da, da da oa
T e ©
i=1

ox, odx, odx, Ox,

Equation (¢) can be compared with Eq. (b) of Prob. 1.8.

Coordinate transformation for a vector in two-dimensional space is defined in Chap. 3, Egs. (3.14)
and (3.15), and is defined and used again in Chap. 4. Refer to Fig. 3.2 and discuss the vector
transformation using subscript tensor notation.

Refer to Eq. (3.14) and Fig. 3-2 and extend the transformation to three dimensions by visualizing the
rotation of the coordinate system to be about the z axis. The z axis is common to both the x, y, z system and the
&, m,z system. It is common practice when using tensor notation to use primed (new system) and unprimed (old
system) coordinates. The vector transformation for a vector f from the old system (x,, x,, x;) to the new system
(X1, x5, x5) 1s

I cosd sinf O ]([f
foe=| —sinfé cosf O }<f, (@)
fa 0 0 1114

The corresponding subscript tensor statement of Eq. (a) is
fi=ayf; ®)

The transformation a;; as it is written in Eq. (a) can be thought of as a matrix since matrix multiplication is used
to compute £’ in terms of f. When tensor notation is used, the same transformation is merely referred to as the
transformation. The reason for this is that the transformation can be extended to higher-order tensors, but the
transformation for higher-order tensors cannot be computed using matrix multiplication. Refer to Eq. (b) and
compute the transformation as follows.

Let i =1 and expand the equation for f by summing over j:

3
fi= 2 af,i=a,fi ta,f,tasf
i=1

Let i =2 and expand the equation for £, by summing over j:

3
= E azjfj =a,f, tayh tayf

j=
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1.21.

1.22.

Let i =3 and expand the equation for f, by summing over j:

3
fi= E ay;f; = a5 fi tanf, tasf
j=1

The transformation for second- and higher-order tensors is computed in a similar way. The inverse transformation
that corresponds to transforming from the primed coordinate system to the original system is the reverse of Eq.

)
Le=auf) ©

and can be expanded and verified.

The governing equation for three-dimensional heat transfer can be written

k

X

62T+k 82T+k a°T 0 @
T, = a
x> Yy oz

and for the case k, =k, = k, = k can be written

Q
2 —_——
VT—-k )

(@) Write Eq. (a) using subscript tensor notation.
(b) Write Eq. (b) using subscript tensor notation.

(@) The material constant £ can be defined as a second-order tensor in a cartesian coordinate system as

k, 0 0
ky=1 0 ky O ky;=0 for k+#j (©
0 0 k
Equation (@) becomes
kT, =0 @

A double summation is implied by Eq. (d), and there is no range index, which means there is only one term.
In view of Eq. (c) the summation becomes

kT, F kTt ksl =0

1t

®) T,,=Q/kimplies T,,, +7,,, +T,,, = 0/k.

The Kronecker delta is defined as

5 = 1 if i=j
5= 0 i i) @
It follows that a first-order tensor can be written as

=2, ®)

and can be verified by expanding the equation. Show that the Kronecker delta is related to the
transformation a,; of Prob. 1.20 and defines the orthonormal conditions that a,; must satisfy.

Begin with Eq. (b) above and transform the left-hand side using Eq. (¢) of Prob. 1.20:
fi=aufi= 8;]3
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Transform f;, using Eq. (b) of Prob. 1.20, f, =a,.f,

;= 8yt

(@pay—8=0 o aua,=9, (©)

Any valid coordinate transformation must satisfy Eq. (c).

1.23. The vector product of Prob. 1.4 is written in cartesian tensor notation using the permutation symbol

defined as
0 if the values of i, j, k do not form a permutation of 1, 2, 3
€ = +1 if the values of i, j, £ form an even permutation of 1, 2, 3
-1 if the values of i, j, k form an odd permutation of 1, 2, 3

The vector product is written
¢, =¢€,ab, (@

1

Use Eq. (a) to write the curl of a vector in subscript notation.

The curl of a vector is written

i J
curlf=V X f= {d/ax d/dy d/oz ®)
A
The corresponding statement in subscript notation is
eijkf;dj = [(f392 *f253)9 (fp3 _f%i])’ (fzy} _flyz)] (C)

Equation (b) can be expanded to verify Eq. (c).

Supplementary Problems

1.24. Show that the area of the triangular area defined in Fig. 1-7 is given by

1.25. A triangular finite element is shown in Fig. 1-8. Compute the unit vector normal to side 2-3.
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; (1,7)/"

2
(5.4)
(2,3)

Fig. 1-8

A three-dimensional finite element can appear as a four-sided tetrahedron. Compute the components of a unit

1.26.
vector normal to the plane defined by points 1, 2, 4 for the three-dimensional element shown in Fig. 1-9.
[ 4
4
(3,8, 1)
(2,4,1)
3
2 (5,4,1)
x
a
z
1%74,3,4)

Fig. 1-9

1.27. Show that
[[A][B]]" = [B]"[A]"

1.28. Use the results of Prob. 1.11 to write the divergence of a vector A in matrix format.

1.29. A set of coupled partial differential equations is

11 ax2 12 axay
C,=0Cy
el o, g
21 ax ay 22 3—)}2
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1.30.

1.31.

1.32.

1.33.

1.34.

1.35.

1.36.

1.37.
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where u and v are defined as

u=[Ne, Wi} and v =[N, o}

or u=Nu, +Nu, +Nyu, and v=Nv, +Nu, +N,u,
It is desirable to define {1} and {v} in one array as

[Ul=1lu, 4, u; v, v, v3]T
Construct the matrix equation that represents Eq. (a).

Refer to Prob. 1.12 and show that a,,|a,,| — a,la,,| + a,;la,,] is equivalent to a,,|a,,| — a,,|a,,| + a,,a,,|. The
determinant can be expanded by any column or row.

Given a scalar function J(u) = k(Bu)z, where k, B, and u are defined as follows: [k] is an n X n matrix, [B] is an
n X m matrix, and {u] is an m X p matrix. Describe J(i) using a matrix equation.

Compute 8J(u)/3[u] for the matrix equation of Prob. 1.31.

One-dimensional differential equations describing various problems in physics are discussed in Chap. 2. An
equation that describes heat conduction is of the form

a’T

k
dx*

+0=0 (@
Assume as in Prob. 1.11 that T can be written in the form
T]
T=¢T, +¢,T,=1d, &l 7 (= [oKT} ®
2

where {T'} is a constant and [¢] is a function of x. Assume a second matrix function [¢] =[¢;  ¢,] that is also a
function of x. Substitute Eq. (b) into Eq. (@), then premultiply by [¢] and integrate with respect to x with limits of
a to b. Use Eq. (¢) of Prob. 1.9 and show that the Green-Gauss theorem can be applied to a matrix equation.

4 -2 -1
[A] = [ 1 1 —4]
-1 2 2

Define and compute, where appropriate, the (@) minors of the matrix (determinant) [A], M,;, (b) cofactors of the
matrix (determinant) [A], C,;, (¢) adjoint of the matrix (determinant) [A], (d) value of the determinant |A] of the
matrix [A], (¢) inverse of the matrix [Al.

Given a matrix

Use the method of Prob. 1.15 to compute the inverse of the matrix given in Prob. 1.34.

Use the gaussian elimination method to solve the simultaneous equations
2a+ b+2c—3d=0
2a—2b+ c—4d=5

a +2c—3d=-4
da+4b—4c+ d=—6

Write Egs. (f) and (g) of Prob. 1.9 using cartesian tensor notation.
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1.38.

1.39.

1.40.

1.41.

1.24.

1.25.

1.26,

1.27.

1.28.

1.29,

1.30.

The two-dimensional equationé of equilibrium are written in terms of stress in Chap. 3, Egs. (3.4) and (3.5). In
three dimensions there are nine components of stress, and the complete set can be written as a second-order
tensor that is referred to as the stress tensor. In cartesian coordinates the stresses are subscripted using x, y, z. In
cartesian tensor notation they are subscripted using 1, 2, 3, and the following analogy is used:

a-xx O-X 'y sz a-l 1 0-1 2 a-l 3
O Oy 0y |=o0;=| 02 02 0y (a)
g, 0, 0, Oy O3 Oy

The stress tensor is symmetric, and that is indicated as o, = 0, for i #j. Refer to Eqs. (3.4) and (3.5) and
deduce the three-dimensional equations of equilibrium and then write the equations using subscript tensor
notation.

The coordinate transformation for a second-order tensor is an extension of the vector transformation discussed in
Prob. 1.20 and is written
ol =a.a_o. (@)

s ri%siYy

Show that the stress transformation equations for two-dimensional elasticity that are derived in elementary
mechanics of materials are given by Eq. (a).

The gradient of a scalar function is defined in Prob. 1.7. Rewrite Eq. (b) of Prob. 1.7 using cartesian tensor
notation.

Write Egs. (f) and (g) and the vector identity V- {Bb)= BV-b+ VB -b of Prob. 1.11 using subscript tensor
notation.

Answers to Supplementary Problems

Expand the determinant and expand Eq. (a) of Prob. 1.6 to show that they are equivalent.
Refer to Prob. 1.5. u=0.6i + 0.8j.

Refer to Prob. 1.5 and Fig. 1-9. a X b =12i + 6j + 6k.

axb  (12i+6j+6k)
u= =
|a % b (216)'"?

Assume a matrix [A] and a matrix [B]. Expand the matrices to prove the result.

The divergence of a vector is V- A. Define [V]=[a/dx d/dy 9/9z] and [A]l=[A, A, A, and the
result is [V][A]".

Define the following matrices:

[Cn Cu [e/ax 0 [N N, N, 00 0 B .
[C1= C C (L= 0 afdy [N} = 0 0 0O N N, N {al=1Aa B]

21

Then, [LI[C][L]INKU} = {A}.

Expand the cofactors and compare terms.
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1.31.

1.32.

1.33.

1.34.

MATHEMATICAL BACKGROUND {CHAP. 1

Jay= [u]" [B]" [k] [B] {u}

pXm  mXn naxna nXm mXp

Use the results of Prob. 1.31 and note that [B]T[k][Bj is symmetric. Refer to Prob. 1.13 and

9Ja)

3] = 2[B]" [KI[BHu}

Assume k is a constant and Eq. (a) can be written
dZ
k e [¢fT}+0=0 (©
or define additional matrices k= [k] and d”/dx” = [d”/dx"] and Eq. (¢) can be written
d2
(k] [ ][¢]{T}+Q 0 )
Multiply Eq. (d) by [¢]":

o] sl (2o
{¢2}2X1[k]1><1 de 1><1[(ﬁl ¢2]]X2 T2 2><1+ ¢2 2><1Q 0 (e)

Note that the result given by Eq. (d) is a 1 X 1 matrix and that the result given by Eq. (¢) is a 2 X | matrix,
indicating that there are two equations. The two equations, after matrix multiplication, are

Wk ¢‘ T, + ¢k ¢2 T,+4,0=0
¢ ¢ o)
ik STk AT, + 4,0=0
Integrate both equations and use the Green-Gauss theorem [Eq. (e) of Prob. 1.9]:
Pdy,  do P, do d¢ ¢> bl
- dx‘kjn —fa dx'kdszder, ‘Tl +¢;l 2 T| hQar=0
bdy, dé, f” dg,  de, ¢1 ¢>2 ’ J” _
- dxkdx Tldx—a dxkd T,dx + i, +¢2 +al,/f2QdX—0
or the result can be written in matrix form as
d d d d d d
2 kﬁ _lll_lk b, bk b, b ¢2
»| dx  dx dx  dx T, dx T,1° b4,
| {T}dx= {T} +] {w}[Q]dx ®
“ |4 dd Ay, dd; | TF d,d%(,,d‘f’z e e
dx © dx de © dx 2k K

Equation (g) is the result after applying the Green-Gauss theorem to Eq. (e).

1 - 1 - 1 4

@) M, _[ 2 2] Mu_[—z 2] MB_[—1 2]
-2 - 4 - 4 2

M, ‘[ 2 2] M”_[—l 2] M23_[—1 2]

2 4 -1 4 -2

[ 1 MBZ‘[ 1 —4 M33_[ 1 1
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1.36.

1.37.

1.38.

®)

(¢) The adjoint matrix is the transpose of the cofactor matrix, or

10 2 9
[Cc1" =1\ 2 7 15
3 -6 6

(d) The determinant can be evaluated using the minors of part (¢) and the cofactors of part (b).
|det A} =33

(¢) The inverse of [A] can be computed as

10 2 9
or A1 =1 2 7 15]+33
6

The matrix is

LY
I
(N3

The upper triangular matrix is

0.5 1 -3 a

1 0.3333 0.3333 b —1.6667
0 1 —1.1429 || ¢ —4.1429
0 0 1 d 10.80

oo o~

Solving gives a =120, b= —8.0, c=—82, d=10.2.

fv (Bb),; dV= L Bbn, dS

fﬁbi,idv=f ﬁbinidS—J B.;b, dS
v S v

90, 99y 380, . 0
ax ay ay f=

do, da, ao,
24 ry P —
Tox —ay +—8y + fy 0 (a)

ao, ado,

Xz yz + 80’:2 + _0
Ax dy dy £=

In cartesian tensor notation Eq. (a) becomes
Uk]’l +f;< = 0 U-kl = O-Ik (b)

The first Bq. (b) is called the balance of linear momentum, and the second Eq. (b) is called the balance of
angular momentum. Note that Eq. (b), when expanded, becomes
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o-ll’l + 0-12’2 + 0-13’3 +ﬁ = 0
Tiasy T oy T Oogpy T, =0 {©)

Ty T O30y T 033, H5=0

1.39. The two-dimensional stress tensor can be written

Oe Oxy Oy Oy
=
Ty Oy, Ty Oy

and the transformation is

a,, ag cosfd sind
ay, G,y —sinf cos @ ®)
Expand Eq. (@) with r =5 =1 and note that / and j are summation indices and are summed from 1 to 2;
oy, =a,a,0,, ta,a,0,+ta.,a, 0, +a,a,0,
Expand Eq. (@) with =1 and s =2:
a,,=a,,a,,0,,Fa,,a,,0, ta,,0,,0,, +a,,0,,0,,
Expand Eq. (@) with r =2 and s = 1:
Oy = 0y,0,,07, F 0,50, + 0,0, + a,,a,,0,,
Expand Eq. (a) with r=s=2:
Ol =a,,a,,0,, 1 a,,0,,0, T a,,a,,0,, +a,,a,,0,,
Note that o}, = o},. Substitute the values of a,, from Eq. (b):
o), =0, cos’ 6+ a,,sin”  + 20, sin § cos §
o, = (0, — 0,,) sin 8 cos O + o, (cos” @ —sin” §) = o},
o4, =0, 8in° 0 + g,,cos’ @ — 20, sin 6 cos 6
1.40. V() = (i), = Pty + Yy,
1.41. Equation (f) of Prob. 1.11 is
fv (b)), dV = L Bb,n, dS @

The vector identity V- (B8b)=8V-b+ VB b is
(Bb),; = Bb,; + B, jb;

Equation (g) of Prob. 1.11 is

fv Bb,,, dV = L Bbn, dS — fv B b, dV ®)



Chapter 2

One-Dimensional Finite Elements

2.1. INTRODUCTION

In this chapter the fundamental methodology of finite element analysis will be introduced. Several
engineering problems will be defined in terms of governing equations written in one dimension. The
corresponding finite elements will be derived for one dimension and consequently will be valid for only
one dimension. However, many pertinent aspects of finite element analysis can be defined and illustrated in
an eclementary manner.

The finite element represents an approximate numerical solution of a boundary-value problem
described by a differential equation. In this chapter the differential equation is solved by solving the
corresponding variational statement of the differential equation. Variational statements of physical problems
usually include some statement concerning boundary conditions since boundary condition formulation is a
natural result of variational formulation. In this chapter boundary conditions are not included in the
variational functions in order to simplify the concepts. Modeling boundary conditions is introduced using
physical reasoning.

All the fundamental concepts required for the numerical solution of differential equations are
discussed in this chapter. Methods for solving physical problems defined by differential equations that do
not have a corresponding variational function will be introduced in a later chapter.

2.2. MATHEMATICAL EQUATIONS OF ENGINEERING

Equations governing engineering phenomena are usually derived from a balance equation and a
constitutive equation. In this section one-dimensional equations for several different physical problems will
be set forth, and the form of the equations is similar for every case. The notation conforms to that
commonly used in that field of engineering. The equations can be derived from a variational principle, and
that will be the basis for deriving the corresponding finite element model for the physical problem. Units
for the various quantities are given in terms of mass (M), force (F), length (L), time (t), temperature (T),
and energy (E).

Elasticity

A one-dimensional problem in elasticity is given by the balance of forces in an elastic rod in terms of
normal stress o, area A, and axial body force f. The force in the rod is o(x)A(x), and the change in the force
is balanced by the external body force:

dlox)AX)]

S T fWAW =0 2.1)

The constitutive equation, referred to as Hooke's law, relates stress to strain € using the material constant
E(x), Young’s modulus, and strain is related to axial displacement u:

du(x)
dx

a(x) = E(x)e(x) and e(x) = 2.2)

du(x)
dx

or o(x) = E(x) (2.3)
Combining Egs. (2.1) and (2.3) gives a second-order differential equation in terms of displacement:

27
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d d
I [E(X)A(x) ZS)] + /A =0 (2.4)

Boundary conditions are of two types, sometimes classified as natural and geometric or essential. In this
theory a boundary condition on.u is essential, and a boundary condition on ¢ is natural.

Units: o(x) in F/L?, A(x) in L?, f(x) in F/L?, € in L/L, E(x) in F/L?, u(x) in L.

Small deflection of a cable that is acted upon by an elastic foundation can be considered a problem in
elasticity since the balance of force is combined with a geometric constitutive equation that defines the
slope of the cable. The tension T in the cable is assumed to be constant for small deflection theory, and the
summation of forces gives the following equation (see Prob. 2.1):

dab(x)
= kv = —f) (2.5)
where @(x) is the slope of the cable, v(x) is the vertical deflection of the cable, k(x) is the modulus for the
elastic foundation, and f(x) is the vertical load acting on the cable. The geometric constitutive equation is
derived from the assumption of small deflection theory that # is small and can be approximated as

)&
=k 2.6)

It follows from Eq. (2.6) that the vertical component of the force in the cable is related to the tension in
the cable as

F—Tgy‘ 2.7
y dx ()

Combining Egs. (2.5) and (2.6) gives the governing equation

d*v ()
dx*

T — k(v (x) = —f(x) (2.8)
Boundary conditions on v(x) are essential, and a boundary on F, of Eq. (2.7) would be natural, however,

that would be equivalent to specifying the slope 6.
Units: T in F, 68(x) in L/L, v(x) in L, f(x) in F/L, k(x) in E/L”.

Heat Conduction

Equations that describe one-dimensional steady-state heat conduction are derived from the balance of
energy and a constitutive equation. The balance of energy states that the change in the heat flux ¢ is
balanced by an external heat source Q:

d A
AIDAI _ pac 29)

where A(x) is the area and a negative value of Q implies that heat is being removed from the system. The

constitutive equation is known as Fourier’s law and is stated as

dT(x)
g0 = —k(x) =, — (2.10)

where T is the temperature and £ is the thermal conductivity. Combining Egs. (2.9) and (2.10) gives the
governing second-order differential equation

d dr
= [k(x)A(x) dix)] + OEAX) =0 (2.11)
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Boundary conditions on T are essential, and natural boundary conditions can be specified for g(x).
Units: q(x) in E/tL?, A(x) in L%, O(x) in E/tL°, T(x) in T, k(x) in E/tLT.

Potential Flow

Potential flow is a special area of fluid mechanics that can be applied to problems in groundwater
movement. In this application the assumption of steady incompressible flow is applicable, and the problem
is completely described by the continuity equation or balance of mass. A potential function is postulated
and in one dimension, assuming constant area, is

+
d() = —K(h(x) = ~K<x>(z—,/—3) 2.12)
and u(x) = % (2.13)

where u is the fluid velocity, 4 is the piezometric head, z is an elevation head, 7 is the specific weight of
water for groundwater problems, p is the pressure, and K is the coefficient of permeability or hydraulic
conductivity. The constitutive equation is Darcy’s law given as

dh(x)
dx

ux) = —K (2.14)
and it follows that Darcy’s law is related to the definition of the potential of Eq. (2.12). The governing
equation is obtained by combining Eqs. (2.12)—(2.14), and for steady incompressible flow in one
dimension, du/dx = 0 and it follows that

=0 (2.15)

The solution of Eq. (2.15) is a linear function, and in one dimension the velocity will be a constant.
However, the two-dimensional counterpart of Eq. (2.15) offers more of a challence and will be studied in a
later chapter. The essential boundary condition would be on ¢, and the natural boundary condition would
be to specify the velocity.

Units: ¢(x) in L2/t, h(x) in L, K&x) in L/t, u(x) in L/t.

Mass Transport

Diffusion, within the most elementary steady-state assumptions, results in a governing equation similar
to Eq. (2.15) for potential flow. In this instance the balance of mass equation will be written for what is
termed a dilute mixture. The theory is applicable for a variety of physical problems. In particular, when
groundwater flow can be assumed to be defined as potential flow, a species within the mixture can be
assumed to flow with the groundwater and diffuse into its host medium at the same time. Hence the theory
of potential flow can be combined with the theory of mass diffusion, and a more complete description of a
physically significant problem will result. Assuming a constant area, the balance of mass for a dilute
mixture can be written as

dC(x) N dj(x)
W) "k dx

+K.C(x)=m (2.16)

where u(x) is the velocity of the mixture, C(x) is the concentration of dilute species, j(x) is the flux of the
species, K, is a reaction rate that accounts for a reaction between the dilute species and its surroundings,
such as a chemical reaction, and m is an external source of mass. The constitutive equation is known as
Fick’s law and is given as
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. dC(x)
J@) ==D&)— (2.17)

where D(x) is the diffusivity. Combining Eqs. (2.16) and (2.17) gives the governing equation

ACew  d
S

[ dC(x)
D(x) T] +KCx)=m (2.18)

The velocity u(x) is assumed to be known. Essential boundary conditions are on C(x), and a natural
boundary condition would specify the flux j(x).
Units: C(x) in M/L?, D(x) in L*/t, u(x) in L/t, K, in t~", j(x) in M/L’t.

Electricity

The equations governing electrostatics are similar to those for heat conduction. In this case the balance
of charge gives a relationship between the electric displacement D(x) and the charge density p(x) as

d[Ax)D ‘
—[%(L)] = p()A() (2.19)

where A(x) is the cross-sectional area perpendicular to the x axis. The electric field E(x) is related to the
electric potential ¢(x) as

E() = — % (2.20)
The constitutive equation is
DO = eEG) = —etr) 2o @21

where €(x) is the permittivity of the material. Combining Eqs. (2.19) and (2.21) gives the governing
equation

d d
- [e(x)A(x) %J + p()AG) =0 (2.22)

The essential boundary condition is on ¢, and the natural boundary would be to specify D.

Units: D(x) in Q/L?, A() in L?, p(x) in Q/L°, E(x) in V/L, ¢(x) in V, €(x) in C/L.

Equations (2.4), (2.11), (2.15), and (2.22) are similar. Equations (2.8) and (2.18) have an additional
term that contains the dependent variable. Equation (2.18) has the unknown variable, the first derivative,
and the second derivative.

2.3. VARIATIONAL FUNCTIONS

The calculus of variations is a part of mathematics that involves finding stationary values of
functionals. The functional is an integral that has a specific value for each function substituted into the
functional. The fundamental problem in the calculus of variations is to obtain a function f(x) such that
small variations in the function §f(x) will not change the original functional. The study of the calculus of
variations, as it is applied to finite element theory, can involve linear algebra, functional analysis, and
topics from topology. A minimal amount of theory of the calculus of variations will be presented in this
chapter. The intent is to show how the variational functional can be used to formulate the finite element
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model, The use of variational functions for the equations of Sec. 2.2 is analogous to the strain energy and
minimum potential energy methods used in elasticity and theory of structures.

The variational function that corresponds to the governing equations set forth in Sec. 2.2 [with the
‘exception of Eq. (2.18) since it contains a first-order derivative] can be written in a general form.
However, terms such as area and material constants will be assumed as constants since they will later be
assumed to be constant for an individual finite element. Let = f(x):

Jl(f)=fvé[a <%>2+Bf2-27f]dv (2.23)

Equations containing a first-order derivative, such as Eq. (2.18), may not have a corresponding
variational function. However, for the purpose of deriving a finite element model there may be a
pseudovariational function or a quasi-variational function that can be used to represent the governing
differential equation. A pseudovariational function corresponding to Eq. (2.18), in the notation of that
equation with C = C(x), is

1 dC\? dc ,
5@ =) 5| P\Gr) +Cugy +KCT—2mC |V (2.24)

It will be shown (see Prob. 2.2) that Eq. (2.23) is a proper variational function that when varied gives the
governing differential equations of this chapter. A similar analysis (see Prob. 2.15) using Eq. (2.24) will
not give Eq. (2.18) even though Eq. (2.24) can be used to derive a finite element model for Eq. (2.18).
That procedure is illustrated in Prob. 2.16.

In general, variational formulations include boundary conditions, and Eq. (2.23) is not complete in this
respect. However, as a variational function the function corresponds to the differential equations of this
chapter and will suffice for an introductory study of the finite element method. Additional discussion of
variational principles is given in Chap. S.

The classical method for obtaining a governing equation using the variational function is illustrated in
Prob. 2.2. In addition, the use of a variational function to obtain an approximate solution is illustrated in
Prob. 2.3. These two examples are based upon Eq. (2.23), and similar computations using Eq. (2.24) will
give incorrect results. Hence Eq. (2.24) has been called a pseudovariational function. An approximate
solution can be obtained for a differential equation using the Rayleigh-Ritz method whereby an
approximating function is substituted into the variational function. The method is illustrated in Prob. 2.3.
The approximating function must satisfy the boundary conditions for the problem being studied.

2.4. INTERPOLATION FUNCTION

The fundamental concept of the finite element method is that a continuous function can be
approximated using a discrete model. The discrete model is composed of one or more interpolation
polynomials, and the continuous function is divided into finite pieces called elements. Each element is
defined using an interpolation function to describe its behavior between its end points. The end points of
the finite element are called nodes.

2.5. SHAPE FUNCTIONS

The shape function is usually denoted by the letter N and is usually the coefficient that appears in the
interpolation polynomial. A shape function is written for each individual node of a finite element and has
the property that its magnitude is 1 at that node and O for all other nodes in that element. The terminology



32 ONE-DIMENSIONAL FINITE ELEMENTS [CHAP. 2

is often interchanged between interpolation polynomial and shape function. A clear distinction is made
between the two in Chap. 6.

2.6. STIFFNESS MATRIX

The term stiffness matrix originates from structural analysis. Early applications of the finite element
method were similar to matrix analysis of structures, and the term was used to describe the matrix relation
between force and displacement. The term is now used regardless of the application. The matrix relation
between temperature and heat flux is called the stiffness matrix.

Finite element terminology defines two stiffness matrices. The local stiffness matrix corresponds to an
individual element. The global stiffness matrix is the assembledge of all local stiffness matrices and
defines the stiffness of the entire system,

2. 7. CONNECTIVITY

Connectivity relates to the manner in which one element in a finite element model is connected with
an adjacent element. In this chapter the local finite element derivations pertain primarily to a one-
dimensional linear two-node element with one unknown at each node, and the nodes are numbered 1 for
the left-hand node and 2 for the right-hand node. Obviously, all nodes in a global finite element model
cannot be named 1 or 2. The global model is related to the local model using a connectivity array. The
connectivity array would have dimensions of N, XN_,., where N, is the number of elements for the
global model and N, ,, is the number of nodes per element. Assume a five-element model as illustrated in
Fig. 2-1 where the elements are identified with a Roman numeral. The local model is related to the global

model using a 5 X 2 connectivity array as shown in Table 2.1.

Elements
| II III v \%
(o O~ O~ O— —O- -0
1 2 3 4 5 6
Nodes

Global model

o— *
1 2

Local element

Fig. 2-1 Global and local finite elements.

Table 2.1 Connectivity Array for Fig. 2-1

Local element

Global element Node 1 Node 2
1 1 2
il 2 3
I 3 4
v 4 5
A% 5 6
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Connectivity is illustrated in Prob. 2.10 where it is shown graphically how the elements are connected in
the global sitffness matrix. Connectivity becomes more complicated with two- and three-dimensional
elements with more than one degree of freedom (unknown) per node.

2.8. BOUNDARY CONDITIONS

In Sec. 2.2 boundary conditions were classified as essential and natural. A second-order equation, such
as those introduced in this chapter, can be solved analytically, and two constants of integration will result.
There must be two boundary conditions in order to solve for the constants of integration, and usually they
are specified on the surface at each end of the one-dimensional domain of the problem. Boundary
conditions are classified mathematically according to the manner in which the unknown variabie is
specified. :

In mathematical terminology essential boundary conditions are called Dirichlet boundary conditions.
The Dirichlet problem for one-dimensional steady-state heat conduction for a rod of length L and constant
area is, using Eq. (2.11),

a’T
;- +02=0 (2.25)
dx

T0)=T, and TUL)=T, (2.26)

where both boundary conditions specify the temperature. An application of this type of boundary condition
is given in Probs. 2.10 and 2.12.

Neumann boundary conditions correspond to the problem where both boundary conditions specify
conditions for the first derivative, and the problem is termed a Neumann problem. In heat conduction this
would be conditions on the flux, such as Eq. (2.25) combined with [see Eq. (2.10)]

dr(0) dT{L)
dx 4o and k; d 4@

k, (2.27)

These boundary conditions present some difficulties for either an analytical or a numerical analysis. The
solution is complete only to within an unknown constant. Finite element analysis for boundary conditions,
as given by Eq. (2.27), will not be discussed.

The third type of boundary condition is called mixed. It corresponds to a combination of Eqgs. (2.26)
and (2.27) and is probably the most common type of boundary condition. There are actually two types of
mixed boundary conditions. The first occurs when an essential condition is specified on one boundary and
a natural condition is specified on the second boundary. Problem 2.13 is an example of this type of mixed
boundary condition. The second type of mixed boundary condition occurs, for example, in heat conduction
as

kg-%-hT—Too =0 2.28

where / is a convection coefficient and T~ is the temperature of the medium surrounding the boundary
surface. This boundary condition says that the boundary flux combined with the boundary temperature is
equal to a known temperature. The second boundary condition may be essential, natural, or of the same
type as Eq. (2.28). This boundary condition requires some special attention and is illustrated in Prob. 2.14.
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2.9. PROBLEMS IN CYLINDRICAL COORDINATES

Axisymmetric formulation of problems such as heat conduction and electrostatics results in a
one-dimensional differential equation that is similar to Eqs. (2.11) and (2.22). The counterpart of Eq.
(2.22) for the electric potential in axisymmetric cylindrical coordinates is

d’ d
‘f+§—¢+p=0 (2.29)

where the area is constant because it corresponds to the circumference of the cylindrical boundary of the
problem. Equation (2.29) can be written in a more concise form as

cd(dBy, g
rdr \/ dr p= (2.30)
The corresponding variational function is
r2 d¢ 2
J(P) :j [wre‘(?) - 27Trpq§:| dr (2.31)
rl

where dV has been replaced with 277 dr.

2.10. THE DIRECT METHOD

The term direct method is sometimes used to describe the development of a finite element using
concepts from matrix analysis of structures. The fundamental idea is to use solutions for rod or beam
problems that have been derived in mechanics of materials. For instance, in mechanics of materials axial
stress in a rod subject to a constant force P is computed as o = P/A. That definition combined with Eq.
(2.3) leads to the equation for the deformation of a rod subject to an axial force:

U=F (2.32)

where u is the total deformation for a rod of length L with uniform axial force P applied at its ends. The
stiffness matrix can be derived using Eq. (2.32). Derivations based upon Eq. (2.32) are usually included in
studies of trusses where each truss member is considered a finite element. The force P is normally an
external joint loading. See Prob. 2.21.

Solved Problems

2.1. Derive Eq. (2.8) for cable deflection and obtain the analytical solution for a cable with fixed ends,
external upward load f, foundation modulus %, and length L.

The cable is shown in Fig. 2-2 and is shown deflecting upward in the positive y direction. It follows that the
loading f(x) and the deflection v(x) are assumed positive. Small deflection theory implies that the cable tension T
is constant. Summing forces in the y direction gives
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v(0)=0 > x
- > v(L)=0
X Ax
- . vl
Fig. 2-2
—T sin @ + T sin(@ + A8) + f(x) Ax — k(x)v(x) Ax =0 (@)

Small deflection theory implies that sin @ =~ @ and sin(§ + Af) =~ ¢ + A6. Canceling terms and dividing by Ax in
Eq. (a) gives

L Keove =) ®)
For the first term in Eq. (b),
. do__d8
lim Ax—0 A)C - dx (C)

Using the same limiting process and Fig. 2-2 gives

_dv)
0=—1 @)
Substituting Eqs. (¢) and (d) into Eq. (b) gives the governing differential equation
d*v(x)
T — k@) = ~fx) (e)

dx”

The analytical solution for Eq. (e) is obtained by making k(x) a constant and f(x) a constant. The equation can be
classified as linear with constant coefficients and has a solution in terms of exponential functions. The
homogeneous solution is

ax

v(x), =C,e™ +c e”

or v(x), = A sinh(ax) + B cosh(ax) H
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where a” = k/T. The particular solution is

v(x), =£ (&)

Combining Eqs. (f) and (g) and using the boundary conditions v(0) =0 and v(L) =0 gives the final result

_ flcosh(aL) — 1] sinh(ax)  f f
= k sinh(aL)  Cosh(@) ®

v(x)

Equation (4) will be used in a subsequent problem to make a comparison with a numerical solution,

Use the variational function, Eq. (2.23), in the form of a heat conduction problem and show that the
variation of the function gives the governing differential equation for heat conduction when £ and @
are assumed to be constants.

Refer to Eq. (2.23) and make the following analogy: f=T, o=k, =0, and y=(. The variational
function for heat conduction becomes

J(T 4[ [lk(£>2— T]dV
( )_ v 2 dx Q (a)
The variation is written using an operator 8( ). The general form for the variation of Eq. (a) is
8T —flé[k<£ i 2T]dV b
Consider the first term inside the brackets:
() =l (G (@) = [(50) |+ (%) o(50)
ax/ dx/\de/ 1 dc/ 1 dx \dx dx

-2(5) o(%)

T \dx dx
It can be shown that the processes of differentiation and variation can be interchanged, or

() = aetom

Also, let the volume integral be written in terms of an intergral over the area and an iniegral over the length
(0, L). It follows that [, dA = A. The variation of Eq. (b) can be written as

( ) 0 dx dx (C)
Integrate the first term by parts:
( ) dx 0 a dx2 Q ( )

The functional is to be zero for small variations in 7. This is true only if 7(0) = T(L) = constant. Therefore it is
concluded that §T(0) = 86T(L) =0, or k dT(0)/dx =k dT(L)/dx = 0, or combinations are equal to zero that make
the first term zero. This implies the essential and natural boundary conditions for the problem. In the remaining
integral 8T is arbitrary (not necessarily zero), therefore, the remaining differential equation is set equal to zero
and the result is Eq. (2.11).

da’r
dx*

k +0=0 3]
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2.3.

Use the Rayleigh-Ritz method to obtain an approximate solution for the one-dimensional heat
conduction problem discussed in Prob. 2.2. Assume a rod of length L, constant area, and constant heat
source along the length of the rod. Assume boundary conditions of 7(0) =T(L) = 0. Compare the
approximate solution with the exact solution.

The exact solution is obtained by solving Eq. (¢) of Prob. 2.2:

a’T 0
dx’ Tk (@)
The equation can be integrated twice to give
ox’
T=- % +Cx+C, ®)

Substituting the boundary conditions and rearranging gives

_ Q=)

T 2k

(c)

' The Rayleigh-Ritz method was proposed independently by Lord Rayleigh (1842—1919) and Walter Ritz

(1878-1909). Stated simply, a function is assumed in terms of some unknown coefficients that would represent a
solution of Eq. (a). The function is substituted into Eq. (@) of Prob. 2.2, the resulting equation is integrated, and
the result is minimized with respect to the unknown coefficients. The result is a system of algebraic equations
that can be solved for the unknown coefficients. Assume

N
T= Z cl,)c"_1 2)]
i=1

where ¢, are the unknown coefficients and N is the number of terms in the series. Based upon the exact solution,
Eq. (c), assume a quadratic function

T=c, +cx+cax’ e

Substituting the boundary conditions, T(0) =0 gives ¢, =0, T(L) =0 gives ¢, = —c,L, and Eq. (¢) becomes

T=c,( L) f)
dr
=62 @

Substituting Egs. (f) and (g) into Eq. () of Prob. 2.2 and replacing [, dV with A [; dx gives
— Ll 2 2 2 2
J= . 2 Tkey(dx” —4Lx + L7) — 20c,(x" — Lx)]A fix
or, integrating and substituting limits,
AkSL®  Ac,QL’
J=—¢+t% )
The value of ¢, that makes J a minimum is obtained as follows:

Substituting Eq. () into Eq. (f) gives the final result
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L 2
o QLx =)
2k

The approximate solution is identical to the exact solution in this application.

Derive a one-dimensional linear interpolation formula for a function u = u(x) that is valid in the range
u, through u, as shown in Fig. 2-3.

u

t]_
9

X2
Fig. 2-3

The function u(x) is shown in Fig. 2-3. A linear equation that would approximate u(x) between u, and u, is
assumed as

u=A+Bx (a)

where A and B are constants. Substituting the boundary conditions u(x,) = 1, and u(x,) = u, gives two equations
that can be solved for A and B:

u, =A+Bx,
u,=A+Bx,

Solving for A and B and substituting into Eq. (a) gives the intérpolating polynomial:

U X, — UX, B_”z'—u1
X, T X Xy, =Xy
b
X, — X X —x, ®)
U=u, +u,
X, T X Xy T X,

Derive the shape functions for a one-dimensional linear finite element.

The results of Prob. 2.4 can be used to derive the shape function at the node located at x, in Fig. 2-3. The
shape function at node 1 is the coefficient of u, in (b) of Prob. 2.4, or N, = (x, — x)/(x, — x,). Similarly, the
shape function for node 2 is N, = (x —x,}/(x, —x,). Note that N, = 1 forx =x, and N, =0 for x = x,. N, is zero
at node 1 and 1 (unity) at node 2.

Derive a linear one-dimensional interpolation formula in terms of shape functions and nodal point
variables and write the result as a matrix equation.

The interpolation formula is derived in Prob. 2.4, and the corresponding shape functions are defined in Prob.
2.5. Using the notation of Fig. 2-3, the result can be written

u=Nu, +Nu, @)
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2.7.

Define [N]=[N, N,] and {u}=[x, u,]" and Eq. (a) can be written u = [N]{u}, where the notation {u}
indicates a column matrix and [ |7 is the transpose of [ |

Use the Rayleigh-Ritz method and two linear interpolation polynomials to solve the heat conduction
problem defined in Prob. 2.3.

The problem is shown in Fig. 2-4, and the interpolation formulas of Prob. 2.4 can be used to define the
approximate solution. The length is divided into two elements of length L/2 with nodes located at x, =0,
x,=L/2, and x, = L. Use Eq. (b) of Prob. 2.4 as a model and write the interpolation formula for each element.
For the element on the left side,

X, — X X — X

T=T, 7P +T, L2

Insert the boundary condition T, =0 and recognize that x, = 0:

T 2T x Dy = L
L =*=3 @
For the element on the right side,
T=T R +T SE
T L2 L2
Tnsert the boundary condition T, =0 and x; =L:
r=or,tr Lo b
- 2 2 =X= &)
The variational equation is written
JT ‘J'L [lk<£>z T]Ad
( )_ o 2 dx Q X (C)
Substituting Eqs. (@) and (b) into Eq. (c) gives
s —fm (kZTi 20T £>Ad +fL (kZTZ 20T Lx) d
()_0 L2 QZL X 1o L'_) Qz L Adx (d)

Integrating and collecting terms gives

2%T2 T.L

](T):(_ I T2

aJT) 4T, QL oL’
aTz‘L'z*O Y )

Substituting into Eqs. (@) and (b) gives the final result:

_QOLx L
= Tk O=x=7
_oe-n L

T= ik ZSXSL

Note that at x = L/2 the solution is exact; T(L/2) = QL*/8k. However, at x = L/4 the approximate solution is
T(L/4) = QL*/16k, and the exact solution is T(L/4) = 3QL%/32k.
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Exact p) Approximate

L/2 T L2
Fig. 2-4

Assume a rod of elastic material fixed at both ends with constant cross-sectional area and length of 3L
with uniform body force loading f. Use three linear elements of length I and formulate the
Rayleigh-Ritz solution using shape functions rather than interpolation formulas.

The solution process is similar to that for Prob. 2.7. Refer to Fig. 2-5 where the elements are defined using a
Roman numeral and the nodes are defined with an Arabic number. For element I, using Eq. (@) of Prob. 2.6,

u =N, u, +Npu, (@)
du;, dNy, dN,,
and e W + o W )

where N, is the linear shape function for node 1 of element I and N,, is the shape function for node 2 of element
I as illustrated in Fig. 2-5(b). Here u, and u, are the nodal point values of the displacement and are constants.
The shape functions in Eq. (¢) are functions of x, and the derivatives in Eq. (b) affect only the shape functions.
Use the results of Prob. 2.5 and let the length of all elements be L and

L—x dN,, -1
No =77 L
x dN, 1
Ne=T x L

Similarly, for elements I and III,
Uy = Nty + Nyt

Upyy = Niggsts + Nty

2L —x dNIIZ M‘—-}_

with Ny, = i3 o I
x—L dN,;, 1
Ny= L dJICI = T
3L—x dN,,, 1
) Tar L
_x—2L ANy 1
N1114 L dce L

The shape functions are shown in Fig. 2-5(b)—(d). Figure 2-5(¢) shows the final form of the solution after the
shape functions have been combined and the boundary conditions applied. A significant conclusion thus far is
that the first derivatives of linear shape functions are dependent only upon the length of the element. The
derivative of the shape function that defines the left-hand node for a single element is always —1/L, and the
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derivative of the shape function that defines the right-hand node of the same element is always 1/L for linear
shape functions. All the elements in an individual problem are not required to have the same length, but in this
example it simplifies the writing of the shape functions.

Substituting into Eq. (2.23) and using the boundary conditions u, = u, =0 gives

L 2 274 2 2

u U,x u, — 2Uu, tu
J =f (E z Z >Ad +f {(E 2 — 3)
) 0 2L° L S 2L°

i,(2L — x) usx—L)]} J3L< _uiﬁu3(3Lﬂx)>
_f[ Tt Ade+ | \ES5S-— Adx

Integrating, substituting integration limits, and collecting terms give

2
Uy — Uy, +

2 AL+ ) @©

Jw)=EA

Minimize the function of Eq. (¢) with respect to the unknown nodal point displacements:

A _pa BT g d
auz_ L f - ()
o —u, + 2u, _

e, 7 FAL =0 ()

Equations (d) and (¢) can be written in matrix form as

Tl )l ®

Solving Eq. (f) gives u, =fL*/E and u, =fL*/E. The final result is

_flx
W="7 O=x=L

r
Un="p L=x=2L

—fL3L —x) 2L=x=3L

U

The exact solution is obtained as in Prob. 2.3 for a length of 3L:

3Lx —x°
“SITaE

The approximate solution is exact for x =L and x = 2L. At the center of the rod, x =3L/2, the exact solution is
9(fL*/E), and the error is approximately 11 percent.



42

2.9.

ONE-DIMENSIONAL FINITE ELEMENTS [CHAP. 2

A1l 2 3 4p
3 I ¢ 11 [ 11 2
A L
. L .
L T L T L
=l J
x=1L 1
x=2L o
x=3L >
@ |

S
g
:g\
=+l

(c)
Exact
Approximate
P 1 =~
== u, I, =
u, =0 u,=0
(e)
Fig. 2-5

For a rod similar to the one described in Prob. 2.8 write the variational function in terms of linear
shape functions. Derive a general model or a local stiffness matrix for the rod using the variational
function.

The variational function can be written as follows for one element of length L:

1 (“du _ du J'L
ufA dx @

J(u)zz . E);EE;Adx—

0

Use the matrix definition of the linear shape function that was established in Prob. 2.6 and rewrite Eq. (a):

=5 : | 2| | & |ty s - a f W INTF e ®)

Rewrite Eq. (b) to illustrate the matrix multiplications:
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A [* dN, /dx ", ‘ N,
J(u)=5_’0[ul uz][dN/dx][E][dNI/dx sz/dx][u]dx—AJO[ul uz][N]fdx (©)

At this point the shape functions and their derivatives could be substituted into Eq. (), the various matrix
multiplications be carried out, the integration completed, and the result would be similar to the procedure
developed in Prob. 2.8. However, Eq. (¢) merely illustrates the matrix equation. The minimization will be carried
out using Eq. (b). Refer to Chap. 1 for concepts pertaining to the derivative of a matrix equation.

aaj{flu}) -4 f L [i—f]rm[g]{u} dr— A f [NTf dx =0 @

0

The matrices are evaluated using the results of Prob. 2.8:

fL ~1/L “l, —AfL C=0/)
A 0{ g (EIUL L pde=a | de=

Perform the indicated matrix multiplications:

“I EIL* —EIL*|[u, fL (L—x/L
AJ; [—E/L2 PS L 0N Rl R A
After integration the final result appears as
[ AE/L  —AE/L|f{u, | [AfL/2

—AE/L AR | \wf T \AfLI2 ©
Note that the area term is not factored out of the equation since area may vary from one finite element to the
next. The term on the right of the equal sign is interpreted to mean that one-half of the body force is distributed
to each node. Equation (e) is the local stiffness matrix (stiffness matrix for an individual element) for an axially

loaded rod. The stiffness matrix for any similar differential equation would be the same with different material
parameters. Finally, Eq. (e) is written in terms of matrices as

[K{u} = {f} or sometimes as [KHu} = {f} f)

where the superscript ¢ indicates the element stiffness matrix and element force matrix.

Formulate the elastic rod analysis of Prob. 2.8 using the local finite element developed in Prob. 2.9
and construct the global stiffness matrix.

There are three elements, each with the same length, area, and modulus of elasticity. The local stiffness
matrix is given by Eq. (¢) of Prob. 2.9. Elements I and II share a common node, and elements II and TII share a
node. This introduces the concept of connectivity. Elements 1 and Il are connected at node 2. All element
matrices will be identical and will be added or connected to form the global stiffness matrix as follows:

AE/L | —AE/L 0 0 u, AFL/2
—AE/L | AEJL AE/L | —AE/L 0 w, | _ |ALrz+ A2
—AE/L | AE/L AE/L | —AE/L U, AfL/2 + AfL/2

0 0 ~AE/L | AEJL u, AfL/2

The global stiffness matrix is a 4 X 4 matrix before substituting boundary conditions, and the rows and columns
are defined by the single lines. The three element (local) stiffness matrices are shown within the boxes. Note that
for row 2, column 2, there is a contribution from two elements. The same is true for row 3, column 3. All
remaining spaces in the global stiffness matrix have a contribution from only one element or they are zero. The
matrix to the right of the equal sign illustrates the distribution of the uniform body force loading. One-half of the
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force on each element is distributed to each node. The element stiffness matrix, Eq. (¢) of Prob. 2.9, has been
used three times and connected at the element nodes. The boundary conditions u, =, =0 can be incorporated
by merely striking out the first and fourth rows and columns. The final result is a 2 X 2 matrix equation identical
to Eq. (f) of Prob. 2.8 and can be solved to give the same results.

In finite element analysis, boundary conditions are not dealt with by eliminating rows and columns. In this
example that was done in order to make a comparison with Prob. 2.8. The standard procedure would be to set the
diagonal term equal to unity and all terms in the corresponding row and column to zero and modify the matrix on
the right-hand side accordingly. For the zero displacement boundary conditions of this problem, the result would
be

1 0 o0 0[x 0
EA |0 -1 o}l 1
Zlo -1 2 ol |TAL
0 0 1 u 0

The solution of this set of equations merely gives the zero displacement boundary conditions as part of the final
results. This method of analysis is preferred for computer computations. A discussion of nonzero essential
boundary conditions will be included in a solved problem later in this chapter.

Do the following for the problem of the small deflection of a cable subject to a uniform load and acted

upon by an elastic foundation.

(a) Write the variational function.

(b) Assume linear shape functions and derive the local stiffness matrix for an element of length L
following the method used in Prob. 2.9.

(@) Equation (2.8) is the governing differential equation and is derived in Prob. 2.1. The variational function is
obtained uvsing Eq. (2.23) with f(x) =v(x), a =T, B =k, and y=f:

J) = ﬁ , % {T[dl;f) ] g kv()]* - 2fv(x)} av @

(b) Equation (@) is written as a matrix equation in terms of shape functions for an element of length L with

constant area as
w2 o2

A L L
+5 f (v} IN)"[KIIN{v} dx — A f Y INV'F ax ®)

Minimize the function of Eq. (b) with respect to {v}:
aJ () ETdNTT dN
ot o L] m G Jwe

+ f [NT [KIN{v} dx — j [NI'f dx =0 ©)
[\ o

The area term has been divided out since a cable would not normally have a variable area. The final element
results for the first and third terms of Eq. (¢) are similar to Eq. (e) of Prob. 2.9 with AE replaced by T. The
second term involves the foundation modulus and the shape functions, and the matrices can be written as

IL L —x)/L v,
o { x/L }[k][(L‘x)/L x/L]{Uz} dx

ka (L—x*L* L —x)/L" (v, p
or / o lxe-nmwr 2t o
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2.12,

2.13.

Integrating and combining terms gives the local stiffness matrix
kL3 kL/6) (v,
kL/6  kL/3 | lv,
The complete local stiffness matrix for the small deflection of the cable is
T/L —T/L|[v, N KL/3  kL/6 | fu, | _ /2 4
-T/L  TIL|\v, k16 kL/3 | \v,) A2 @
Solve the cable problem using the local element of Prob. 2.11. Assume a five-element analysis and

compare the results with the exact solution given in Prob. 2.1. Assume the cable is fixed at both ends
(v, =v,=0) with T=6001b, L =120 1in, k =0.5 Ib/in’, and f =2 Ib/in.

Substitute into Eq. (d) of Prob. 2.11 to formulate the local element stiffness matrix

[ il S R | e o
" [ - @

The five elements are connected at their common nodes using Eq. (a) as the local stiffness matrix to give a 6X6
global stiffness matrix:

29 =23 0 0 0 0](v, 24
—23 58 23 0 0 01]v, 48
0 -23 58 -23 0 OlJous | _ )48

0 0 -23 58 —23 O v, [ )48

0 0 0 -23 58 —23 j{us 48

0 0 0 0 -23 29 1 v, 24

The boundary conditions are included by deleting the first and sixth rows and columns, or as in Prob. 2.10, the
first and sixth diagonal terms are set equal to 1 with all remaining terms in these rows and columns set equal to
zero. Similarly, the first and sixth terms in the right-hand column matrix are set to zero. The final system of
simultaneous equations is solved for the cable deflection at the node points. The exact solution for the cable
problem is given by Eq. (4) of Prob. 2.1 and is compared with the finite element solution in Table 2.2.

Table 2.2 Comparison of Finite Ele-
ment and Exact Solutions for

v(x) (im)

Node Finite element Exact
1 0.0 0.0
2 1.8548 1.8173
3 2.5903 2.5444
4 2.5903 2.5444
5 1.8548 1.8173
6 0.0 0.0

Assume a rod of length 0.2 m with the temperature at x = 0 maintained at 100°C. Assume a constant
heat source of Q =3(10 ®) W/m’ along the length of the rod, a boundary heat flux of ¢ =3(10%)
W/m’ along the length of the rod, a boundary heat flux of g = 1.8(10°) W/m” removing heat at
x=02m, and thermal conductivity of k =6000 W/(m'K). Assume the area of the rod is
0.4(107%) m”>. Use five linear elements of equal length and compute the temperature and flux
distribution at each element node.
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Three new concepts are introduced in this problem: (1) an essential boundary condition other than zero by
specifying the temperature as 100°C at x =0, (2) a natural boundary condition by specifying the flux at
x =02 m, and (3) the computation of the flux at each element node.

The local element can be obtained using Eq. (¢) of Prob. 2.9 as a model with AE/L replaced by Ak/L and f
replaced by Q. Then, each element length i1s 0.2 m/5=0.04 m and Ak/L = 0.4(107?)(6000)/0.04 = 60 W/K
and AQL = 0.400(10*)(3)(10°)(0.04) = 48 W. The local stiffness matrix is

ol Tt -efd) @

Il
S
o

N W=

The global stiffness matrix is

~ 60 —60 0 0 0 07 (T, 24
-60 120 —60 0 0 0|7, 48
0 —60 120 —60 0 ol)r, 48

0 0 —60 120 —60 o7, ( )48 ®)
0 0 0 -60 120 -60|]|T, 48
| o 0 0 0 -60 60 LT, 24

The flux boundary condition at node 6 is specified as ¢ = 1.8(10%) W/m?. This is characterized by a surface
boundary integral that can be written as ‘

L [N]'g dS ©

where the shape function must correspond to the element that defines the surface. In this one-dimensional
problem element 5 defines the node that contains the surface. In fact, node 6 is the location of the surface, and
node 5 corresponds to a location within the rod. For element 5, nodes 5 and 6, the shape function defining the
surface at node 6 is constant, N, = 0, and N, = 1. Refer to Fig. 2-5 where element III is a similar element. To
define the boundary surface at node 4 let N,;;; = 0 and Ny, = 1. The surface area defined in Eq. (¢) is constant,
and after integration Eq. (c) is

L [NI"g dS = qA{?} - ‘1.8<10"’><o.4><1o’3>{(1)} N {—728 @

The flux term is negative because heat is being removed from the system. Equation (d) is added to the right-hand
side of Eq. (b), and since the flux is applied at node 6, only that term is modified and appears as

[24 48 48 48 48 —696]" (e)

The matrix on the right-hand side of Eq. (b) is sometimes called the force matrix. This terminology is used in
matrix analysis of structures and has become standard in all finite element work. The matrix can be thought of as
the action matrix, and regardless of the application the matrix contains the terms that cause an action to occur. In
this case, the internal heat source and the external flux are the actions.

The nonzero temperature boundary condition at node 1 must be included in the formulation. Recall that in
Prob. 2.10 the essential boundary conditions were specified as zero at both ends of the rod problem, and
corresponding rows and columns were set equal to zero with a 1 placed on the diagonal of the stiffness matrix. The
action matrix was modified by substituting a zero for the first and last nodes. In this problem the temperature at
node 1 is specified as 100°C, and the stiffness matrix and force matrix must be modified such that when the set of
equations is solved, the result 7, = 100 will be computed.

The finite element statement of the problem given by Eq. (b) can be written in the general form
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[k, kL kg ko 1T (1)
kZ] k22 k23 k2N T2 f2
k31 k32 k33 k3N T3 \f;i
S N 0
IR S kywd \TyJ \ S/

If k,, is set equal to 1, the remaining first row and first column are set equal to zero, and f, is set equal to 100, the
result 7, =100 will be computed. However, the fact that T, is nonzero will affect the remaining unknown
temperature values. In order to incorporate this effect, visualize the matrices on the left-hand side of Eq. ( i3]
being multiplied together and the T, value substituted into the resulting equations. Let k,, equal 1 and all other &
values in the first row equal 0.

T,+ 0 + 0 +--+ 0 100

kT, + kT, + -+ kT =f, — 100k,

ko, T, + k., T, +- -+ k&, T, =f — 100k, ()
+ e+ =
+ et =
+ et =

knoTo +kys Ty + o ke Ty = fy — 100k,

Solving Egs. (g) will give the correct boundary temperature and will modify the right-hand-side force matrix to
include the effect of the boundary temperature. Note that the f; term has been set equal to 100, the specified
boundary temperature. If a flux boundary condition (natural boundary condition) is specified for node 1 in
addition to a temperature boundary condition (essential boundary condition), the boundary value problem will not
have proper boundary conditions because both boundary values cannot be included at the same node. The f, term
corresponding to a flux boundary condition has been replaced by the temperature boundary value.

Equation (f) can be written in the general form

™1 0 0 071 (T 4 100 Y
0 k22 k23 kZN T, f2 - 100/{21
0 ki ks ki T fs = 100k,
} } SR ) 1)
| 0 sz st kNN— \TN) \fN - 100k1v1)

Rewrite Eq. (b) incorporating the flux boundary condition given by Eq. (¢) and the temperature boundary
condition given by Eq. (h):

1 0o o o o0  o7(T, 100

0 120 -60 o0 o0 ollr,| |48+ 60)100)

0 -60 120 -60 0 0||T, 48 _
o o -60 120 -60 0o|\T.[" 48 @
0o o0 0 -60 120 —60|]|T, 48

o 0o o o0 -6 60T, 696

The solution of Eq. (i) will give the temperature distribution along the rod. The exact solution is given in Prob.
2.23 as

_ 3.0(10%

0 1.8(10%)x
s00 O

p— 2 pa—
2x — 0.5x7) 6000

+ 100 ()
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The flux distribution is computed using Eq. (2.10):

T
9= " x

The corresponding finite element formulation for one element, using element 1 as a model, is

T
q=—kl-1/L I/L]{Tl} ®

The computation must be carried out for each element after Eq. (i) has been solved. Note that the flux will be
constant for each element and that the element may be termed a constant-flux element. In other words, the
two-term interpolation formulas used thus far will always give constant results for the first derivative of the
unknown functions. The exact solution for the flux is (see Prob. 2.23)

ar 3(10° 1.8(10°
[ (10%) ( )] O

g= _kE = —6000 6000 02—-x-— 5000
The finite element and exact solutions are compared in Table 2.3. The approximate and exact solutions for
temperature are the same at each node point in this example. The exact solution for the flux has been computed at
each node point and at the center of each element. The finite element solution for flux is constant for each
element and agrees with the exact solution at the midpoint of each element. The finite element solution for flux
can be improved by using more elements.

Table 2.3 Comparison of Finite Element and Exact Solufions

Temperature (°C) Flux (10° W/m?)
Node Finite element Exact Finite element Exact
1 100 100 (Element 1) —1.20 at x =0.00
—1.26 —1.26 atx =10.02
2 91.6 91.6 (Element 2) —1.34 atx=0.04
—1.38 —1.38 at x =0.06
3 82.4 824 (Element 3) —1.44 at x =10.08
—-1.50 —1.50 at x =0.10
4 ) 72.4 72.4 (Element 4) —1.56atx=0.12
—1.62 —1.62atx=0.14
5 61.6 61.6 (Element 5) —1.68 atx =0.16
—1.74 —1.74 at x=0.18
6 50.0 50.0 —1.80atx=0.20

The solid material shown in Fig. 2-6 is subjected to a temperature differential that can be described
using mixed boundary conditions of the type described by Eq. (2.28). Use five linear finite elements
of equal length and compute the steady-state temperature distribution through the thickness of the
material. Assume, k =250 W/(m-K), W= 0.1 m, &, = 2000 W/(m"-K), h, = 5000 W/(m*K), T} =
100°C, and T, = 50°C.

Heat is flowing into the material at x =0 and can be described as

—k—de(O) +h -771=0
dx 1[T(O) 1 ] - (d)

Similarly, heat is flowing out of the material at x = 0.1 and can be described as

AT(0.1)

k dx

+ h,IT(0.1) - T3]1=0 ®)
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h, = 2000 k=250W/m-K | _ h,=5000W/m’ K

0.1m
Fig. 2-6

The local finite element matrix and final global matrix are constructed using the same procedure as in Prob. 2.13.
The area is constant and can be assumed as unity. Then, Ak/L =250/0.02 = 12,500, and the global matrix before

substituting boundary conditions is

-1 -1 0 0 0 07(T,

-1 2 -1 0 o ollm

o -1 2 -1 o0 ol]T,

125000 g 0 -1 2 -1 ofim,
o 0o o -1 2 -1}]T,

Lo 0o o o0 -1 1]l7,

Use Eq. (@) and write the boundary condition at x =0 (node 1) as

©

g =hT, —T)

or, for element 1 and a constant area assumed to be unity,

1 T —hT 20,000
NT dS: {}:{1 l l 1}:{ ’
L[]q 2, 0

Similarly, Eq. (b) is used to include the boundary condition at node 6 as
9s = hz(T: - Ts)

and for element 5 becomes

- ZOOOTI}
0

)

0l _ 0 ~ 0
91 =\, T= — h,TJ ~ 125,000 — 50007, (e)

Combine Egs. (c)—(e) with 10* factored out of the matrix to obtain

145 —125 0 0 0 0
—1.25 2.50 0 0 0 0
10° 0 —1.25 250 —1.25 0 0
0 0 —1.25 250 —1.25 0
0 0 0 —-1.25 250 —1.25
| 0 0 0 0 —1.25 1.75_]

T, 2(10%)
T, 0

T, 0

T, 0

T, 0

T, 2.5(10)
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The solution for the governing differential equation with boundary conditions given by Egs. (a) and (b) is

(x/k)y+(1/h))
(k) +(1/h) + L/

T =T, ~T;-T) H

The finite element solution and analytical solution agree to within three decimal places. The results at each node
are T, =77.273, T, =73.636, T, = 70.000, T, = 66.364, T; = 62.727, and T, = 59.091.

Discuss the pseudovariational function of Eq. (2.24) in terms of the Rayleigh-Ritz method of
numerical analysis.

Follow the procedure used in Prob. 2.2. The first term of Eq. (2.24) is similar to Eq. (@) of Prob. 2.2.
Consider the variation of the second term

f:%[ﬁac ca(d )]Adx

Integrate the second term by parts:

L

jLE < sc —5C)Adx+——c5c
o 2 Udx 2

0

and this term is zero. Similarly, assume homogeneous boundary conditions C(0) = C(L) =0 and an approximate
solution similar to that of Prob. 2.3,

dac
C=c,x*-Lx) and E=c3(2x—L)

Substituting into fOL 1uCdC /dx)A dx will also give zero. It follows that the function given by Eq. (2.24) is not
valid for a Rayleigh-Ritz analysis.

Use the pseudovariational function of Eq. (2.24) to formulate the local stiffness matrix corresponding
to mass transport as defined by Eq. (2.18). Assume linear shape functions and an element length of L.

The matrix method used in Probs. 2.9 and 2.11 must be used to formulate the local stiffness matrix because
the Rayleigh-Ritz method of solution will give erroneous results. Understanding the reasons why this method
fails to give proper Rayleigh-Ritz results requires some background in the mathematics of finite elements and
variational principles and the topic will be discussed in Chap. 5.

Equation (2.24) is rewritten as follows for ready reference:

JZ(C)=j—li ( +Cu-+KC —2mC:|dV (a)

The volume integral is rewritten in terms of an area assumed to be constant and the element length L. Equation
(@) is written as a matrix equation in terms of shape functions following the method used in Prob. 2.11:

10 =5 [ ey 4 | o] 4 Jiera
2 [ 4 Jiera 5 [ oy mrmamicras

—A f {CHMN]"m dx
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2,17,

Minimize J(C) with respect to {C}:

o - el e
+ f ol A Jicyas+ ) NI IR NG s f N =0

The first, third, and fourth terms have been dealt with in Probs. 2.9 and 2.11. Note that the sign of the fourth term
is opposite that of the corresponding term in Eq. (¢) of Prob. 2.11 because the signs are opposite in the governing
differential equations. There remains to be developed the local element for the second term as the transpose of
the shape function times the velocity matrix times the shape function derivative matrix:

IL C—0/L\, c, _Auf-1 T1]fc, )
AO{ AL }[u][ 1/L 1/L1{C2 =211 1 e (b)

Note that Eq. (b) is not symmetric, as were the previous local stiffness matrices that were derived. Combine Eq.
(b) with the stiffness matrices of the form of Eq. (d) of Prob. 2.11.

D/IL —-DJ/L —u/2  u/2 KL/3 KL/6 Y\ [mL/2
/. pi| | -un u/2]+[K,_L/6 K,,L/3]]A{C2 =AnLr2 ©

The term containing the velocity u is usually referred to a convection term. When u is large compared to D,
the analysis will become unstable. This is not a fault of the finite element formulation but occurs in numerical
analysis regardless of the method of analysis. The examples in this text are limited to problems such as
groundwater movement where the velocity term is small.

Use the results of Prob. 2.16 to obtain a three-element solution for the differential equation

dc dc
W

dx D dx?

=m

Assume boundary conditions of C(x=0)=C(x =3L)=0 and obtain an exact solution. Assume
u=D=L=A=1 and compare the two solutions.

The exact solution is

1—e"'” mx

C=-3Lm mu(l EPEROEN + o (a)

Substitute into Eq. (c) of Prob. 2.16 with K, =0, and the local element model becomes

D/IL  —DJL w2 w2 C 1] mLa
[[—D/L D/L]+[—u/2 u/Q]]A{CZ}_{l 2 ®)
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The global matrix is constructed using Eq. (b) and after substituting physical parameters becomes

05 -05 0 0 (C, mi2

-15 20 -05 o0 |]c, m
0 -15 20 -0s5[)c.[ 1 m
0 0o -15 15}lc, mi2

Substituting boundary conditions and solving for the unknowns give C,, = 0.769m and C,, = 1.077m. The exact
solution is obtained using Eq. () as C,, =0.730m and C,; = 0.996m.

A one-dimensional aquifer is modeled using a controlled laboratory experiment. The aquifer has
constant area and length 1 m and contaminated fluid moving through it. The elevation head at x =0 is
0.3 m, and at x=1 m is 0.15 m. A chemical contaminant is measured to have a concentration of zero
at x=0 and 10 mg/m’ at x=1m and also reacts with its surroundings with rate constant
K = 3.0(10™%) as it moves through the aquifer. It is known that the chemical substance will diffuse in
the medium with diffusion constant D = 1.0(10™%). The hydraulic conductivity of the material is
K =1.0(10"7). Compute the steady-state distribution of chemical contaminant in the aquifer using
five linear finite elements.

The solution of this problem is developed in two steps. The velocity of the fluid u is computed using the
theory of potential flow as outlined in Sec. 2.2. The velocity of the fluid is used in the computation for mass
transport. The analytical solution of Eq. (2.15) with the boundary conditions given above is elementary and
would result in a linear variation for the potential and a constant velocity. However, the finite element solution
will be formulated to illustrate the entire solution process. The local stiffness matrix of Prob. 2.9 will be used as a
model. The area is constant and can be factored out of the matrix equation. The constitutive parameter £ in Eqg.
(e) of Prob. 2.9 will be unity, or the hydraulic conductivity K can be used in place of E. The result will be the
same since the equation to be solved is homogeneous:

The length of an element is L = 1 m/5 = 0.2 m. The right-hand side of the local stiffness matrix is zero. The
final global stiffness matrix after substituting the nonzero essential boundary conditions following the method
used in Prob. 2.13 becomes

C10 0 0 0 o 0 kT [03 7]
0 100 -50 O 0 0 |{h 1.5
0 -50 100 -50 0 0 |[|& 0.0
0 0 -50 100 -350 0 |{A | |00
0 0 0 -50 100 0 |}k 0.75

0 0 0 0 o 1.0f{]lA] Lo15]

The solution gives the exact answer as #, = 0.3, h, =0.27, h, =0.24, h, = 0.21, h, = 0.18, and k= 0.15. The
velocity is constant and is computed using Eq. (2.14) following the method used in Prob. 2.13. Computations for
element 1 are

(10773%(0.27 — 0.30)
B 0.2

=1.5(107%) (@

u=
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Use Eq. (¢) of Prob. 2.15 to formulate the local stiffness matrix for mass transport for element 1 as
= 50 -50 10 =075 0.75 + 10 02 0.1 C,
( ) -5.0 5.0 ( ) -0.75 0.75 (107 0.1 02 C,
44510°%  —4.15(107% ][ c,
or g _g b)
—5.65(10 %) 5.95(107°) [ L C,

The global matrix is assembled using Eq. (b) and the boundary conditions C(x =0) =0 and C(x =1.) = 10. as

[C1.(107) 0 0 0 0 0 C, 0.0
0 1.040 —0415 0 0 0 c, 0.0
(10°") 0 —0.565  1.040 -0415 0 0 c 0.0
0 0 —0.565  1.040 —0415 0 C, 0.0
0 0 0 ~0.565 1040 O C, 0.415(107°)
) 0 0 0 0 110" L ¢, 10.0

The analytical solution for a length L and boundary conditions C(x=0)=0 and C(x=L)=C, is

C,e““ ™" sinh( Bx)
sinh( BL)

C=
U (s K)"
a=5n an B=\a D

The finite element and analytical solutions are tabulated in Table 2.4.

Table 2.4 Comparison of Finite Element and Ana-
Iytical Solutions for C

Node x Finite element Analytical
1 0.0 0.0 0.0
2 0.2 0.6392 0.6576
3 04 1.6019 1.6383
4 0.6 3.1442 3.1937
5 0.8 5.6985 5.7446
6 1.0 10.0 10.0

2.19. Obtain a finite element solution for the axisymmetric coaxial cable illustrated in Fig. 2-7. Compare
results using four linear elements (two equal-length elements in each segment of the cable) with six
linear elements, three equal-length elements in each segment of the cable. Assume the inside radius
r,=5 mm, the outside radius r, =25 mm, and the interface radius r, =10 mm. Assume for
illustration that the permittivity of the core is €, = 0.5, and for the outer layer €, =2.0. Assume a
charge density of p, = 100 for the core and p, = 0 for the outer layer. Assume boundary conditions of
¢._, =500 and ¢ __=0. Refer to Prob. 2.28 and compare your results with the exact solution.
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Axisymmetric radial element

Fig. 2-7 Coaxial cable.

The variational function given by Eq. (2.31) is written in terms of shape functions following the method
used in Prob. 2.9 and after minimizing with respect to ¢ appears as

frz 2l VR arir urd P — 2w TP U G o
B R U3 Ll PN B (. @

where the shape functions are

N, = and N,=—F—

and R =r, — r,, the length of a radial element. In this formulation the limits of integration should correspond to
the element being constructed. This is in contrast to Prob. 2.9 where the limits used were 0 to L, the length of an
element. As the radius increases, the volume of material defined by the integration increases. The matrix
multiplication indicated by Eq. () is completed, and the integration is in terms of r and #* and gives the local

stiffness matrix as
r,tr, 1 -1 b, 27p r2/6—r2rf/2+rf/3
U R TR s-ninan ®
-1 111, ry/3—rry/2-+r/6

Note that according to the right-hand side of Eq. (b) the charge density is not distributed equally between the two
nodes. The total stiffness matrix and force matrix for the four-element solution, using Eq. (b) as a model, is
computed as
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2.20.

1.0 0.0 0.0 0.0 0071 &, 500.000

0.0 18.850 —10.996 0.0 00 I o, 15707.962

0.0 —10.99% 34.034 —23.038 00 i ¢, | =] 7199.484 (©
0.0 0.0 —23.038 58.643 0.0 {| ¢, 0.0

0.0 0.0 0.0 0.0 1.0_]] o, 0.0

The exact solution is computed using part (c) of Prob. 2.28. Substituting parameters into the matrix equation
of part (¢) gives an equation that is solved for the constants of integration:

1.609 10 0.0 007 C, 1750.0
2302 10 -2302 -10l}c, 5000.0
0.0 00 —0.20 00 |{c, || 5000 @
0.0 00 3219 10]]|c, 0.0

The solution of Eq. (d) gives C, = 6009.762, C, = ~7919.703, C, = —997.560, C, = 3211.147. Substituting the
constants of integration into the solutions given in part (a) of Prob. 2.28 gives the analytical results of Table 2.5.
The six-element (seven-node) finite element solution is obtained in a manner similar to the four-element solution;
details will not be given. The final resuits are shown in Table 2.5.

Table 2.5 Comparison of Solutions for ¢ in a Coaxial

Cable
r Four elements Six elements Analytical

5.0 500.0 500.0 500.0

6.67 — 1246.54 1259.39

7.50 1347.35 — 1376.88

8.33 — 1333.28 1350.39
10.00 881.17 899.18 918.29
15.00 — 503.04 509.71
17.50 346.17 — 355.93
20.00 — 220.08 222,73
25.00 0.0 0.0 0.0

The results are not as accurate as those in some of the previous finite element examples. A solution for a
coaxial cable made of one material using six elements would be more accurate. The change in material properties
causes a loss of accuracy. However, with the addition of a few elements the accuracy will increase quite rapidly.
This example, with the analytical solution, can be utilized to test the accuracy of finite element solutions and
establish the optimum number of elements to be used.

Compare the formulation of one-dimensional finite element problems using two-node linear elements
versus three-node quadratic elements.

The two-node linear element was discussed in Prob. 2.8 and illustrated in Fig. 2-5. Each element is made up
of two shape functions with the property that the function defined at node 1, element 1, has a magnitude of 1 at
that node and is O at the remaining node. See, for instance, Fig. 2-5(b); the two shape functions combine to
describe the element.

A three-node quadratic element has similar properties. The quadratic function must span two spaces and
connect three nodes. The two spaces define the element. The two-node elements that have been discussed were
assigned a length of L because it was convenient for computation. A three-node element can have a length of L
or 2L or any convenient length. However, the limits of integration must correspond to the element length when
the local element is constructed.

Assume a one-dimensional space of arbitrary length a. Also, assume that two three-node elements will be
used to model the space. Four divisions are required as shown in Fig. 2-8, two for each element. The function is
defined over element I using the general statement
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fi=Nyfi +NLf, TN, /5 (@)
Similarly, for element I,
Ju = Ny fs + Nuwfo + Ny fs ®)

The shape functions are illustrated in Fig. 2-8 and can be compared with Fig, 2-5 for linear elements. It should be
obvious that for cubic interpolation formulas there are four nodes and the element will span three spaces.
Equations (a) and (b) can be written in matrix format as

fl T f3 f4 fs ~
¢ 3 5>

3 4

fa

=Y

- kot
Element I Element II

Fig. 2-8
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2.21.

fi 5
L=INy N, NolWrA and Ju=WNys N Nylgh
fs /s
or f=INKf} ©

The superposition of shape functions follows the same process for each element. Node connectivity occurs at
node 3 for this illustration. Once the shape function has been written in the form of Eq. (e), the procedure for
formulating the local stiffness matrix is identical with that in all of the preceding examples. The shape functions
are approximated using interpolation formulas such as

=A+Bx+Cx° =A+Bx+Cx° =A+Bx+Cx*
1 2 3

The method used in Prob. 2.4 can be used to derive a general shape function, however, the algebra becomes
much more cumbersome. Refer to Prob. 2.29,

Derive the local stiffness matrix for a rod subject to an axial force using the direct method.

-t
y
F— —
—u, | F,=uAE/L

(@)

&

/]
E | —— F,=u,AE/L
i

(b)
Fig. 2-9 Rod finite element.

Assume a rod of length L as shown in Fig. 2-9(g). Let the right end be constrained and a positive
displacement u, applied at the left end. The corresponding force, using Eq. (2.32), is

Fo=u, — (a)

For equilibrium the reaction at the right end is equal and opposite, or

AE
Fy=—wop

Let the rod be constrained as shown in Fig. 2-9(b) and a positive displacement u, applied at the right end. The
corresponding force on the right is positive and is given by
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2.24.

2.25.

2.26.

2.27.

2.28.
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AE

T (b)

F2=u2

Similarly, the reaction on the left is F, = —u,AE/L.

The rod is in force equilibrium, which means that the forces at either end of the rod element are equal and
opposite in direction. Imagine that the results in Figs. 2-9(a) and (b) can be added to give a general case
representing a tod that displaces u, at the left end and u, at the right end as the result of an external nodal force
of P. The result is

AE AE
L
c)
AE AE ¢
“wp e 7P

In matrix format the result is

Tl =t @

Equation (d) above can be compared with Eq. (¢) of Prob. 2.9. The force matrix above represents boundary
loadings, the axial force applied at either end of a bar in static equilibrium. The force matrix of Prob. 2.9
represents an internal distributed body force type of loading. The local stiffness matrix is the same using either
method of dertvation.

Supplementary Problems

Solve Eq. (2.11) assuming a rod of length L, a constant heat source {, and boundary conditions T(x = 0)=T,
and g(x = L) = —q, (removing heat).

Derive a linear interpolation polynomial for a function 7(#) in polar coordinates for a constant radial coordinate
and an arc length of @ =6, — 6,.

Assume T = C sin(arx/L), where C is a constant, and use the Rayleigh-Ritz method to solve Prob. 2.3.

Obtain a 10-element, 11-node solution for the cable deflection described in Prob. 2.12 and compare it with the
exact solution given in Prob. 2.1.

Obtain a 10-element, 11-node solution for the mass transport described in Prob. 2.18.
Show that the variational function given by Eq. (2.31) gives the governing differential equation, Eq. (2.29).

Refer to Fig. 2-7 and Eq. (2.30) and obtain a general solution for the coaxial cable.

(@) Establish and solve the governing differential equation for each section of the cable.
(b) Establish the boundary conditions and continuity conditions.

(c) Formulate the equations of part (b) as a matrix equation that can be solved for the constants of integration.
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2.29.  Derive the shape functions for a general three-node quadratic element in terms of x, x,, and x, as shown in Fig.
2-10.

Va% £ ' —
. - \J Bl
n——————*l )
xl
Xy I
x3

Fig. 2-10 Three-node element.

2.30. Refer to Prob. 2.29 and Fig. 2-10 and let x, = —L, x, = 0, and x, = L. Use the results of Prob. 2.29 and derive
the corresponding shape functions.

2.31. Refer to Prob. 2.30 and derive the local stiffness matrix for an element of length 2L with coordinates (—L, 0, L).
See Prob. 2.9.

2.32. Use the three-node element of length 2L defined in Prob. 2.30 and derive the corresponding force matrix that
defines the distribution of body force for each node. See Probs. 2.9 and 2.19.

Answers to Supplementary Problems
222, T(x)=QGL—x"[2)/k—q,x/k+T,.
223, T=(6,—0T,/a+@—0)T,/a

224, T=(4QL*/7’k)sin(mx/L); at x=L/2, T=0.1290L*/k compares with the exact answer of T = 0.1250L" /k.

2.25. Cable Deflection

Node X Finite element Exact
1 0 0.0 0.0
2 12 1.0913 1.0853
3 24 1.8264 1.8173
4 36 2.2953 2.2848
5 48 2.5555 2.5444
6 60 2.6389 2.6276




60 ONE-DIMENSIONAL FINITE ELEMENTS
2.26. Mass Transport
Node X Finite element Exact
1 0.0 0.0 0.0
2 0.1 0.2975 0.2997
3 02 0.6531 0.6576
4 0.3 1.0881 1.0948
5 04 1.6294 1.6383
6 0.5 2.3121 2.3229
7 0.6 3.1816 3.1937
8 0.7 4.2965 4.3090
9 0.8 5.7333 5.7446
10 0.9 7.5914 7.5990
11 1.0 10.0 10.0
e d [rdo
228. (@) 7‘[5( drl)]zfpl a=r=b
W __pr G
dr 2¢ r
pir’
¢1:—41€1 +C,Inr+C,
e
and (r)[dr dr =0 b=r=c
a6 _ G
dr r

¢, =C,Inr +C,

2
—pa
®) ¢ r=ay=¢, or ¢= ffl +C,Ina+C,
1

b,(r=c)=0 or 0=Cs;lnc+C,

The electric potential is continuous at » = b, or

_ple 3
e +C,Inb+C,=C,Inb+C,

The electric displacement is continuous at r = b, or

c —P1b+g :Ezcs
L 2 b b

lna 1 0 ol(c, @, + p,a’lde,-
© b 1 -lmb —1[|)C,\_) pb°/4e
/b 0 —e/b  0]|]|C, p,b12
0 0 Inc 14C, 0

[CHAP. 2
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(= x,)(x — x;)
2.29. Y ) — 1)
_ amxpl—xy)
27 (@, = x)0x, — Xy)
_ T )
AR S

230. N, =@ —xL)/2L*,N, =(L" = x*)/L*, N, = (x* + xL)/2L>.

2.31.
7 4 1
-2 LT (u
6 3 6 1
AEL . s _aly,
L 3 3 3 2
1 a4 7
3 3 3 Uy

2.32. Distribution to node 1= AfL/3, distribution to node 2 = 4AfL/3, distribution to node 3 = AfL/3. (Note that the
node distributions add to give 2AfL, the total body force on an element.)



Chapter 3

Two-Dimensional Finite Elements

3.1. INTRODUCTION

The one-dimensional concepts of Chap. 2 will be extended to two dimensions in this chapter. The
differential equations and boundary conditions that govern the various engineering theories will be written
in a general format in two dimensions. In addition, the equations governing planar problems in the theory
of elasticity will be introduced.

Two fundamental finite elements will be discussed. The four-node quadrilateral element and the
three-node triangular element are the most elementary two-dimensional elements used for computation.
However, with these two elements it is possible to model any two-dimensional physical problem. The
quadrilateral element of this chapter is rectangular and must conform to a cartesian global coordinate
system. The triangular element can be used to model a two-dimensional problem with a curved boundary
by approximating the curve with a series of straight lines. Both these elements can be extended to special
situations such as axisymmetric problems. The four-node element can be formulated in cylindrical
coordinates for nonaxisymmetric situations, but each element must conform to the cylindrical coordinate
system.

The variational functions of Chap. 2 have two-dimensional counterparts. Again, as in Chap. 2, the
variational statement of the problem will serve as the basis for developing two-dimensional finite elements.

A brief discussion of transformation matrices is included near the end of the chapter. Two types of
transformations will be discussed: One deals with two-dimensional boundary conditions for applications in
elasticity, and the other is a general transformation for renumbering or resequencing the nodes or degrees
of freedom for an element.

3.2. TWO-DIMENSIONAL BOUNDARY-VALUE PROBLEMS

The various physical problems described in Chap. 2 can be extended to two dimensions and, with the
exception of Eq. (2.18), can be written in the general form

9 I:ax dd(x, )’)] _]_i [ay Ap(x, y)

ox x ay 3y ] + Bolx, y) = flx, y) (3.1)

where a,, a,, and B are known parameters, such as material constants, and in general can be functions of x
and y. However, these parameters are assumed not to vary within an element, and any global variation can
be modeled as a change from element to element. The two-dimensional counterpart for cable deflection is
interpreted as the deflection of a flexible membrane, with &, = a,= T the membrane tension, 8 = —k the
elastic foundation modulus, and f of Eq. (3.1) taken as —f, the pressure normal to the membrane in the
direction of the deflection w.

The two-dimensional equation for mass transport is similar to Eq. (2.18) and is

, oy 00Ky _i[DX ICE, y)]__c?_[Dy ICe, y)

A Yoy ax ax dy 3y ]WLK,-C(x, n=m  (32)

where u_, u, D, and Dy are velocities and diffusivities in the x and y directions, respectively.

62
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3.3. CONNECTIVITY AND NODAL COORDINATES

Node numbering for three- and four-node elements is shown in Fig. 3-1. Node numbering for the
purpose of deriving a local stiffness matrix always employs consecutive numbers beginning with 1. It is
accepted practice in all finite element analyses to number the element nodes in a counterclockwise
direction. The rectangular local elements derived in this chapter should be numbered beginning with the
smallest coordinate value of x and y. The sequence of numbering for higher-order elements with midside
and interior nodes is not standardized; the corner nodes may be numbered first and the midside nodes given
higher numbers, or all nodes may be numbered in order. No matter what the sequence, the numbering
proceeds counterclockwise. A finite element model is a geometric picture of a prototype, and each node
must have an identifier (node number) and a. coordinate location corresponding to that identifier. Each
element of the model must have an identifier (element number) and a connectivity array. In a computer
code there are usually two arrays for describing the geometry of the model, nodal coordinates and
connectivity. In two-dimensional problems the nodal coordinate array has dimensions of N, _,. X 2, where
N, oq. 18 the number of nodes. The connectivity array is the same as discussed in the previous chapter,
N XN, 4. In application the connectivity array may contain additional information, such as a material
identifier. A prototype to be modeled may be made of one or more materials, such as in Prob. 2.19, and a
material identifier (material number) is required for each element.

y A

C 1

Fig. 3-1 Counterclockwise node numbering.

34. THEORY OF ELASTICITY

The finite element method has been used extensively for solution of the equations for two-dimensional
elasticity. The elasticity problem is formulated in terms of displacements, and all finite element nodes must
have two degrees of freedom to represent a displacement in each coordinate direction. The other problems
of Chap. 2 (temperature distribution, mass transport, and so on) are classified as scalar field problems and
have one unknown per finite element node in either one or two dimensions. The deflection of a cable in
one dimension and the deflection of a membrane in two dimensions are formulated in terms of
displacement. Displacement, in this context, is a vector quantity because it has magnitude and direction.
However, the vector of displacement has only one component, and its direction is known before the
problem is solved. It follows that formulation of the finite element is the same for a scalar and for a
single-component vector. The first derivative of the primary variable in a scalar field problem is
directional, and it follows that in two or three dimensions is a vector quantity. The first derivative is
directional in one dimension but requires no special consideration since the direction is known.

The first derivatives of the two-component vector displacement in two-dimensional elasticity
correspond to the various strains, and the strains can be related linearly to the stresses. Stress and strain are
second-order tensor quantities and as such have certain mathematical and geometric properties. This means
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that the finite element formulation for an elasticity problem will be more involved than the formulation of
scalar field problems. However, the formulation still follows the fundamental concepts established in Chap.
2.

The strain-displacement equations of the theory of elasticity in two dimensions relate the displace-
ments # and v in the x- and y-coordinate directions to the corresponding strains:

ou B Jv B du ov

XX dx eyy_a_y Exy_a_y_'_—g

(3.3)
The normal strains €, and €,, define deformation per unit length in the x and y directions, respectively.
Shear strain €, defines the relative angular deformation of an element of material. The definition given by
Egs. (3.3) is referred to as the engineering definition of strain. The equations of equilibrium define the
balance of forces on a differential element. While they will not be used directly in this chapter to formulate
the finite element, they must be satisfied when analytical solutions are attempted. These equations define a
relationship among normal stress, shear stress, and body force:

ao—xx aaX}' _ 0 .
sty ThE 34)
dao, ao.
Xy vy -
5w T ey ThH=0 , (3.5)

The constitutive relation is Hooke’s law and in general states that each stress component can be related to
each strain component. In this chapter the elastic material will be assumed to be homogeneous and
isotropic, and it follows that all components of stress and strain can be related using the engineering
constants, Young’s modulus E and Poisson’s ratio » Two-dimensional problems in cartesian coordinates
are usually assumed to involve cither plane stress or plane strain.

Plane stress occurs when the thickness dimension is small compared to the length and width
dimensions, and the simplifying assumption is that the stress in the normal direction (z axis) is zero. A thin
plate or disk of material loaded in its plane is an example of plane stress. The stress-strain relations are

E
g, = 7 (e, T ve,) (3.6)
E
g, = — (e, + ve,) 3.7)
E
o, = Ge

Xy Xy = 2(1 + V) Exy (38)

where G is the shear modulus and can be defined in terms of £ and »:

E

C=20+ 9

(3.9)

Plane strain can be assumed when the length dimension is large compared with the cross section of a
body such as a gun barrel. A proper assumption is that the displacement and 3/dz are zero in the z
direction. It follows that the stress-strain relations for plane strain are

E
o, = (1—+1;)(—1—_2—y) [(1 —v)e, + ve,] (3.10)

(e

oy Zm [(1— V)Eyy + ve ] 3.11)
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g, =wvo, + a'yy) (3.12)

and the relation between shear stress and shear strain is the same as in Eq. (3.8).

3.5. VARIATIONAL FUNCTIONS

Finite elements can be derived for two-dimensional problems using variational functions following the
methods of the previous chapter, However, a variational function must exist for the governing differential
equation. Variational functions for two-dimensional problems can be obtained as an extension of the
one-dimensional function in the same way that the governing differential equation is an extension of its
one-dimensional counterpart. In other words, if the variational function exists in one dimension, it also
exists in two or three dimensions.

The variational function corresponding to plane elasticity problems can be written in a general form
using cartesian tensor notation in terms of the stress tensor and strain tensor:

J @) =L (-;— 06 ~fkuk) dv — JS T,u,ds (3.13)

Equation (3.13) is analogous to the principle of minimum potential energy sometimes discussed in
mechanics of materials and theory of elasticity.

3.6. TRIANGULAR ELEMENTS AND AREA COORDINATES

Finite element concepts for two-dimensional problems are developed in detail in this chapter using
four-node rectangular elements. In analysis applications the three-node triangular element is probably the
more popular element, The obvious limitation of the four-node rectangular element is that it must conform
to an application that can be approximated using rectangles, whereas the three-node element can be used to
approximate any shape. Both elements can be inferior when compared with elements of higher order,
however, they are the obvious starting point from an instructional point of view. Area integration for
rectangular elements is elementary, and that is the fundamental reason for emphasizing these elements for
the derivation of local finite element stiffness matrices.

The reader, after studying Chap. 2, should be aware of the fact that derivatives of shape functions are a
significant feature of finite elements. Three-node triangular elements are linear in both x and y, while
four-node rectangular elements contain products of x and y. First derivatives for the three-node element are
constant, and the elements are often called constant-strain triangles (CSTs). A more appropriate name
would be constant-gradient triangles, but the terminology comes from early applications in the theory of
elasticity and has become standard. First derivatives of the shape functions for four-node elements are
functions of x or y.

Area integration for three-node triangular elements is deceptively simple because the first derivatives
are constant and area integration reduces to evaluating the area of the associated triangle. The stiffness
matrix for a triangular element is often derived using area coordinates, and area integration is carried out
using a specialized type of numerical integration; as such, derivation of the stiffness mairix can be
somewhat obscure. Triangular elements, area coordinates, and their numerical integration are discussed
after the fundamental variational functions are developed in matrix format and their use illustrated using
rectangular elements. Once the variational function is written in matrix format and minimized, it is
applicable for deriving any finite element since the shape functions actually define the process for deriving
the stiffness matrix.
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3.7. TRANSFORMATIONS

Matrix transformations are computer manipulations that modify a matrix based upon some type of
constraint or condition. The matrix that is modified is usuvally the stiffness matrix. However, under some
circumstances it may be efficient to modify the force matrix with machine computations. In this discussion
two types of matrix transformations will be addressed. The first is based upon the standard vector
transformation ilustrated in Fig. 3-2, and the second modifies the local stiffness matrix when the node
numbering sequence must be changed after the local element is formulated. This situation will occur
frequently in later chapters.

4

Fig. 3-2 Vector transformation.

The vector transformation defined by Fig. 3-2 can be used to express the vector components of F with
&, m coordinates in terms of components in the x, y coordinate system:

Fpl [ cosé sin0(F] F,
F | | —sind cosé||F, =T F, (3.14)

where [T] is the transformation matrix. The vector can define force, displacement, or any other vector
quantity. For many applications in finite element computations, the transformation is from the £, 7 system

to the local x, y system:
F, cosf —sinf|[F, o Fe
F,} [sin6 cos @ [|F,| (1] F, (3.15)

where [T]” is the transpose of [T].

3.8. CYLINDRICAL COORDINATES

The three-dimensional counterpart of Eq. (3.7) in cylindrical r, 8,z coordinates can be written in a
general form. The three-dimensional equations are given but will be used in various two-dimensional
forms in subsequent applied problems. The material constants will be assumed to be independent of the
coordinates, and again, any spatial dependence can be included in the finite element formulation:

2 2 2
. [a ¢>(r,20, 2)  13840.9, z>] e, _17 9 ¢(r,20, 2 " 9 ¢<r,29, 2 B 0.5 =f.8.5) GAE)
or v ar r 00 0z

¥

The three-dimensional strain-displacement equations of elasticity in cylindrical coordinates, where u,
v, and w are the displacements in the r, 6, and z directions, respectively, are
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du 1ov wu ow
&~ or “=T7 99 1 "oz
1dou dv v ow  du v 1 ow
“=790 o v "o Ta v atrag (3.17)

The shear strains of Eq. (3.17) are specifically the engineering definition of strain. The three-dimensional
definition can be reduced to two dimensions using r,z coordinates or r,# coordinates. The three-
dimensional stress-strain equations for isotropic elasticity are similar to the plane strain equations:

a,

T2 (Ve e )

Uy [(1 = v)gy + v(€, T €,)]

T+ (1 -2v)

(2

E
2z m [(1 - V)fzz + V(e(?@ + Err)]

g, =Ge€, 0., =Ge¢ g, = Ge,, (3.18)

Solved Problems

3.1. A rectangular finite element with dimensions @ X b is defined in an x, y coordinate system in Fig. 3-3.
Assume a function of the form
¢=A+Bx+Cy+Dxy (@)

and derive the shape functions for the rectangular element. Write the final result in the form

¢ =N ¢ + Ny, + Nyp, + N, ¢, ®)
The boundary conditions for the element shown in Fig. 3-3 are
#0,00=¢, @0)=¢, Plab)=¢, $0,b)=4¢, ©
Substituting Egs. (¢) into Eq. (@) gives four equations in terms of the unknown constants:

b, =A ¢,= A+ Ba
é,=A+ Ba+Cb+ Dab b, =A+Ch

It follows that

_ _ _ n iy
A=¢1 B:% C:_(éél_l;_ﬂ D=¢l ¢zab¢3 ¢ @

Substitute Egs. (d) into Eq. (a) and rearrange to obtain the form of Eq. (b). The shape functions can be written as

@0k -y _xb -y
N, = ab N ="
©
_9 _Ya—x)
Ny =" Ne="0
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The shape function for node 1 has a magnitude of 1 at node 1 and is O at the remaining nodes. All shape
functions have this property, as illustrated in Fig. 3-3.
T y

(0, b) (a, b)
4 3 )
1 2
by bt —
/ (0,0) @0)
4 3 _ a=x,—x,
4[
b=y.—y,
b
Y3
1 2
a Y,
A
X, =x,
X3 7] X, =X,
W=»
Yi=DYs

Fig. 3-3 Rectangular four-node finite element.

A three-node triangular element is defined in Fig. 3-4 in an x, y coordinate system with nodes 1, 2,
and 3 located at (x;,y,), (x,,¥,), and (x,, y,), respectively, in the global system. Derive shape
functions in terms of global coordinates.
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4y
PN
| 3
j\ i
2
N
Y3
— 1 Y2
Y1
\ Yy ,
X
xl
Fig. 3-4

Assume an interpolation function to represent the variation of the unknown quantity
¢=C +Cx+Cyy (@
Write the interpolation function as a matrix equation

Cl
=01 x KRG or in matrix format ¢ = [«){C} ®)
¢,
The boundary conditions are in terms of nodal point values of ¢:

P, y,) =, Py, ¥,) = b, Plxs, y,) = &, (©)

Substitute Eqs. (¢) into Eq. (a) to obtain three equations that can be solved for C,, C,, and C;:

¢ =C, +Cux, +Cyy, &, Uox oy C,
¢2 = Cl + szz + Csyz or ¢2 =|1 Xy Y2 C2 d)
¢3 =C, +Cxy +Ciy, &, L x5y, C,

Write Eq. () in matrix form as
{o} = [XKC} @
and solve for {C} as
{CY=1X1""{¢} )

Substitute Eq. (f) into Eq. (b):
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¢ =[alX] '{¢}= [NK{#} (2)
The shape functions are the product of the first two matrices on the right-hand side of Eq. (g).
INI=[][X] ' or [N, N, N]=[1 x ylIX]"' )
Solving Eq. (k) gives (see Prob. 3.30)

N1 = [(X2y3 ‘X3y2)+x(}’z _y3) +y(x3 _xz)]/zA
N, = [0y, —x,y5) +x(y; —y,) + 3, —x5)1/24 (@)

N3 = [(x1y2 _'XZyI)v_*—x(yl _yz) +y(x2 _xl)]/ZA

1 L0
where A= 2 det{ 1 x, y, )
Loxy oy,

A is the area of the triangular element.

A quadrilateral element is shown in an x, y coordinate system in Fig. 3-5. The nodes are located at the
coordinate points as illustrated, and a temperature distribution has been computed at each node as
T,=100°T,=60° T, =50 and T, = 90°. Use the shape function derived in Prob. 3.1 and compute
the temperature at x = 2.5 and y =2.5.

'S
(2,3) 3
4 (4,3)
b 0 (2.5,2.5)
] 1 2
(2,2) (4,2)
o 2 >

]

Fig. 3-5
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3.4.

Use Egs. (b) and (¢) of Prob. 3.1. Note that ¢ = 2.0 and b = 1.0 and that the location of point (2.5, 2.5) is
within the element at {(a/4, b/2). The shape functions are computed as

N = (@a—a/Hb-b/2)

b — b/2 4)(b/2 b2
1 Wb B b L @) L, @)

3
2 ab 3 ab 4 ab s

3
8

oo
oo

The temperature is computed as

7(2.5,2.5) = 2(100) + (60) + £(50) + 3(90) = 85°

Deduce the variational function that corresponds to two-dimensional heat transfer. Write the
variational function in terms of linear four-node shape functions and arrive at a general matrix
statement corresponding to the variational function.

Use Eq. (2.23) and extend the one-dimensional function to two dimensions:

_f ["_(2@ LT IAY ]
=] |5 (% +2(ay) — QT |t dx dy @

A constant thickness ¢ has been assumed, and the thermal conductivities &, and &, can have different values in the
x and y directions. The shape functions representing the temperature distribution within an element have the form
of Eq. () of Prob. 3.1, and in matrix form the temperature is expressed as

T

b

T=[N, N, N, NJ§., ¢=NKT} ®)

where only the shape functions are functions of x and y. Define operator matrices that represent the partial
derivatives occurring in Eq. (a):

a d
[L]= [a_x] and [L1= [a_y] (©)

Let [L.] operate on [N] or [L,]{N], and the result will be a 1 X 1 matrix times a 1 X 4 matrix, giving a 1 X4
matrix that defines the partial derivatives of the shape functions with respect to x. Similarly, [L J[N] is a 1 X4
matrix that defines the partial derivatives with respect to y. For the present let k, and k, each be represented as
1 X 1 matrices. Equation (¢) can now be written as a matrix equation

1 1
JI) = L (5 {T} INY[L 1" [k JIL,JINKT} + 5 {T} INT"[L,]" [k, 1L, JINKT} - {T}T[N]TQ>I dedy (d)

The final result after multiplying all the matrix terms is a 1 X | matrix and indicates a scalar quantity. The
function is in a form that can be minimized with respect to {T}. The first two terms would result in two 4 X 4
matrices that would be added. The last term would be a 4 X 1 matrix showing the distribution of @ to each of the
nodes. The form of Eq. (d) illustrates the process of formulating the finite element. However, a more compact
form is desirable for computation. Rather than define [L,] and [L,] separately, one operator matrix can be defined
as
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And one matrix can be used to define the partial derivatives as [L]} operating on [N]:

9/ ox ON,/ox oN,/ox ON,/dx 8N4/ax]

[L][N]:[a/ay]w’ N N N‘JZ[aNl/ay aN,/dy ON,/dy AN,/dy ©

The last term in Eq. (¢) is commonly referred to as the B matrix. The variational function can be written in a
more compact form by defining a thermal conductivity matrix

[k O
m-[o ]
1 T T T T T
and JTH= L (“Z—{T} (NT'[L]" [KI[LIN)T} = {T} [N] Q)l‘dxdy

1
or JT)= f (51178 IKBNT) — (T INT'Q )1 e dy )
Equation (f) is an equivalent matrix statement of the variational function.

Derive a local stiffness matrix for heat transfer using shape functions for a four-node quadrilateral
element.

The variational function is written in matrix format, as in Eq. (f) of Prob. 3.4, and will be minimized with
respect to the unknown variable that in this case is {T}. It follows that

L (BI"(KI[BYT}t dx dy = f [NT7Qt dx dy @

The first three matrices on the left-hand side of Eq. (a) are multiplied together to give a 4 X 4 local stiffness
matrix. The local stiffness matrix is defined as

[Kl= L [B]” [K][BIs dx dy 2
For illustration, the first term in the stiffness matrix appears as
K _J’“j” aleaNlJraleaNl 4
1 ° ° ax x ax ay ¥y 6}1 t Xdy (C)

The derivatives of the shape functions are required before an attempt is made to evaluate the integral and are
listed below for ready reference. Refer to Eq. (e) of Prob. 3.1.
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3.6.

N, _—tb-y 0N, _ —-n

ax ab dy ab

N, by N,

ax  ab dy  ab

(d)

oN, Y aN, I

ax  ab dy ab

N, -y N, _a—x

ax  ab ay  ab

The proper derivatives are substituted into Eq. (¢) to give, for example, the first term in the stiffness matrix:

a b t
K,, :J’ J —5 bk +@— 0k ])dxdy
o Jo a’h
Integrating and substituting limits gives

b’k +a’k )
K= 3ab

The remaining terms in the stiffness matrix are evaluated in a similar manner. The local stiffness mairix appears
as follows and the reader may verify the results as an exercise:

2%k, +24°k, —2b°k +a’k, —b'k —a’k, b’k —2a’k,
207k, +2a°k, b’k —2a'k, —Dbk —a’k,
" 6ab Symmetric 26%k, + 2a2ky —20°k, + azky
20%k, + 2a°k,

K] @

The Tocal stiffness matrix is symmetric, and some terms are repeated in the matrix. For instance, all diagonal
terms are the same. The term on the right-hand side of Eq. (@) represents the distribution of the heat-source term.

. @a—xb—y) ab/4
fo f L4 O toacay =14, 10 )
ya—x) ab/4

The heat source is distributed equally to the four nodes.

Compute the steady-state temperature distribution for the plate illustrated in Fig. 3-6. A constant
temperature of T, = 100 is maintained along the edge y =W, and all other edges have zero
temperature. For computation, assume the thermal conductivities are k, =k, = 1. Compare the
numerical result with the exact solution. Assume W =L = 1 and a thickness of r = 1 since the solution
is independent of 7.
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Ay
(T=T0
l /S
,- T=0
wl
T=0
X T=0 X
-— - >
(@)
y
} 7,=100
6T L
I
7=0"]
4—— 43 /W"l
I
1) 2

Fig. 3-6

The governing differential equation, with k, =k, is Laplace’s equation, and an analytical solution can be
obtained using separation of variables. In this case Laplace’s equation is

subject to T(0, y) =T(x,0) =T, y)=0 and T(x, W) =T, = 100. The solution is
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3.7.

2 S (DT sinh(rary/L) ,(narx)
=T, 77,1;_3‘5 n sinh(aw/L) *\ L @

Three terms (7 = 1,3, 5) in the series solution given by Eq. (a) give the following results: 7(0.5,0.5) =25.0,
T(0.5,0.25) = 9.54, and T(0.5,0.75) = 54.12. These results are compared with a two-clement solution and a
four-element solution. The plate, as shown in Fig. 3.6(b), illustrates the use of symmetry in a two-dimensional
problem. The center of the plate along nodes 2, 3, and 5 is an axis of symmetry; the two elements are equivalent
to a four-element formulation of the entire plate. All nodes except node 3 are boundary nodes, and the
two-element formulation has only one unknown. The solution at node 3 is T, = 37.50. This compares with the
analytical solution of 7(0.5, 0.5). '

The division of the half-plate into four elements is shown in Fig. 3-6(c), and again symmetry is used 0
advantage along the center of the plate. There are three unknowns in the formulation, and the solution process
follows the two-clement solution. The final results are computed as T, =27.81, T, =9.73, and T, = 69.74 and
can be compared with the analytical solution. The temperature at any coordinate location within the plate can be
computed using the method illustrated in Prob. 3.3. The solution for this steady-state problem, since there is no
heat-source term, is independent of the thermal conductivity. The thermal conductivity was assumed as 1.0 since
it must have a nonzero value in the maitrix formulation.

Construct the nodal coordinate and element connectivity arrays for the finite element models used in
Prob. 3.6. Construct the corresponding stiffness matrices.

The two-element model will be analyzed first. The nodal coordinate array and connectivity array (Fig. 3-6)
appear as shown in Tables 3.1 and 3.2, respectively.

Table 3.1
Node X Y
1 0.0 0.0
2 0.5 0.0
3 0.5 0.5
4 0.0 0.5
5 0.5 1.0
6 0.0 1.0
Table 3.2
Local element
Global
element Node 1 Node 2 Node 3 Node 4
I 1 2 3 4
I 4 3 5 6

The local elements for the two-element model are identical, with @ = b = 0.50. Substituting into Eq. (e) of
Prob. 3.5 gives the local stiffness matrix:

0.667 =-0.167 —0333 —0.167
—0.167 0667 —0.167 —0.333
—0.333  —0.167 0.667 —0.167
-0.167 —0.333 —0.167 0.667

[K]=

The two local stiffness matrices combine according to the connectivity array. The boundary conditions are all of
the essential type (specified values of T), and initially the force matrix is zero. The global stiffness matrix is
6 X 6, and the reader should verify that the two local stiffness matrices combine to give
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1

0.667
—0.167
—0.333
—0.167

0.000

0.000

(K] =

2

—0.167
0.667
—0.167
—0.333
0.000
0.000

—-0.3
-0.1
1.3

3

33
67
33

—0.333

—0.1
—-0.3

67
33

[CHAP. 3

4 5 6
—0.167 0.000 0.000
—0.333 0.000 0.000
—0.333 —-0.167 —0.333

1.333  —0.333 -0.167
—0.333 0.667 —0.167
—0.167 —0.167 0.667

The numbers across the top of the matrix correspond to the nodes of Fig. 3-6(b). Nodes 3 and 4 have

contributions from both elements, whereas the remaining nodes have contributions from only one element.
Substitution of nonzero boundary conditions into the matrix equation was illustrated in Prob. 2.13. The same

method is used to reduce the global stiffness matrix to the following matrix equation. Again, the reader should

verify the result.

[1.000 0.000
0.000  1.000
0.000  0.000
0.000  0.000
0.000  0.000

| 0.000 0.000

0.000
0.000
1.333
0.000
0.000
0.000

0.000
0.000
0.000
1.000
0.000
0.000

0.000

0.000

0.000
0.000
1.000
0.000

0.0007
0.000
0.000
0.000
0.000

1.000 |

B

The solution for these equations agrees with the result given in Prob. 3.6.

The division of the plate into four elements increases the number of nodes to 10. The node numbering
shown in Fig. 3-6 is not an optimum node numbering scheme, but it uses the same numbering as the two-element
model, and a more random numbering scheme would better illustrate connectivity. The nodal coordinate and
connectivity arrays are given in Tables 3.3 and 3.4, respectively. Again, all local stiffness matrices are the same.
With ¢ =0.50-and b = 0.25, they are computed as

N NN

T

7 [007
0.0
50
0.0
100
100

6. — =

)

w

&

)

Table 3.3
Node X Y
1 0.00 | 0.00
2 0.50 0.00
3 0.50 0.5(_)
4 0.00 0.50
5 0.50 1.00
6 0.00 1.00
7 0.50 0.25
8 0.00 0.25
9 0.50 0.75
10 0.00 0.75
Table 3.4
Global Local element
element Node 1 Node 2 Node 3 Node 4
1 1 2 7 8
I 8 7 3 4
I 4 3 9 10
v 10 9 5 6




CHAP. 3] TWO-DIMENSIONAL FINITE ELEMENTS 77

0.8333 0.1667 —04167 —0.5833
0.1667 0.8333 —-0.5833 —0.4167
—0.4167 —0.5833 0.8333 0.1667
—0.5833 —0.4167 0.1667 0.8333

(K] =

The global stiffness matrix will be 10 X 10. The connectivity array and Fig. 3-6(c) show that nodes 3, 4, and
7-10 will have contributions from two elements. The global stiffness matrix, before substituting boundary
conditions, is the symmetric matrix

1 2 3 4 5 6 7 8 9 10

[ 0.8333 0.1667 0.0000 0.0000 0.0000 0.0000 —0.4167 —0.5833 0.0000 0.0000™
0.8333 0.0000 0.0000 0.0000 0.0000 -—-05833 —04167 0.0000 0.0000
1.6667 0.3333 0.0000 0.0000 —0.5833 —0.4167 —0.5833 —0.4167
1.6667 0.0000 0.0000 —04167 —0.5833 -04167 —0.5833
0.8333 0.1667 0.0000 0.0000 —0.5833 —0.4167
0.8333 0.0000 0.0000 -0.4167 —0.5833
1.6667 0.3333 0.0000 0.0000
1.6667 0.0000 0.0000
1.6667 0.3333
- 1.6667 m

The numbers across the top of the matrix correspond to the node numbers. The substitution of boundary
conditions follows the method of previous solutions and will not be illustrated. The reader may verify that the
boundary conditions reduce the matrix to three unknowns and confirm the results for temperature given in Prob.
3.6.

N

h =10 ft Dam
Water
AVA
C =100 Water 4
e ‘(6, 6) (12, 6) ‘ h;th
NAEA F) 6 9 12] (18, 6)
11 / \%
6 ft 2 5 8 11
©-3) %3 V) (18,3)
1 111 v
, 1 4 A |7 10

/7?0,0)/ 7S K600 S /&(12’0)/ /777718, 0)
Porous material

Fig. 3-7 Confined flow.

3.8. Formulate and obtain a finite element solution for the confined-flow situation illustrated in Fig. 3-7.
Water, 10 ft deep upstream and 2 ft deep downstream, is confined using a dam that extends 3 ft into a
porous material. Assume the material is homogeneous with hydraulic conductivity K = 10(107%).
Also, a chemical species exists upstream in a concentration of 100 ppm. The species will diffuse
within the porous medium with diffusion constant D, = D, = 10( 10" %) and reacts chemically with
rate constant K, = 20(10~%). Compute the steady-state distribution of the chemical species consider-
ing (a) steady-state diffusion, (b) steady-state diffusion with convection. Then, assume the chemical
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species is measured downstream and has a concentration of 50 ppm. Compute the steady-state
distribution of the chemical species considering (¢) steady-state diffusion with convection and (d)
steady-state diffusion with convection and chemical reaction. The mass transport analysis illustrated
in this problem is satisfactory for the confined-flow type of formulation. The convection terms do not
dominate the analysis. The reader should be cautious when applying this analysis to a situation when
the convection terms dominate the analysis; the solution can become unstable. (Note that the material
parameters in this problem, such as the reaction rate term, are chosen to illustrate the analysis rather
than to represent a physical problem.)

The results derived in Probs. 3.5 and 3.33 will be used to construct the stiffness matrices. The coordinate
number and connectivity arrays are given later in the solution to Prob. 3.35.

(@) The steady-state solution for diffusion alone can be computed numerically using boundary conditions of
C =100 at nodes 3 and 6. The result will be 100 at all nodes and is independent of the diffusion constant.
The reader can verify this result as a check that the global stiffness matrix is formulated correctly.

(b) The velocity of the water as it moves through the soil medium is computed using the theory of potential
flow (see Chap. 2). A homogeneous material means that K, = K, = K, and the solution for the potential is
obtained from

3P I ’h 0h
7T 2 =0 or st T2 = 0 (@)
ax dy ax ay

and is independent of K. Equation (e) of Prob. 3.5 is used to formulate the local stiffness matrix. The
elements in this application are arranged in such a manner that all local stiffness matrices will be the same.
Obviously, all elements do not have to be the same. The piezometric head in this case is computed using
y =0 as a datum and on the upstream side is the elevation head plus the pressure head or 16 ft. On the
downstream side & = 8 ft. The boundary conditions are & = 16 at nodes 1, 2, 3, and 6, and % = 8 at nodes
9-12. The solution for ¢ at the remaining nodes is A, = 13.803, A5 = 14.379, h, = 10.197, and h, = 9.621.
The velocities are computed as

——K—d—lz d *—Kih* b
u,= e an u, = dy ()

Using Eq. (¢) of Prob. 3.4, the finite element equivalent for computing the velocity at the center of an
element is written

{u} = —[K][L][NKh}

or, following Egs. (4) of Prob. 3.5,

(©)

SOS oS
N

In this example the velocities are computed at the center of the element, and it follows that x =a/2 and
y=5b/2 in Eq. (¢). The matrix of # values corresponds to the connectivity table of Prob. 3.34. The results
for velocity are tabulated in Table 3.5. The concentration is computed using the local stiffness matrix for
the second-derivative terms, Eq. (¢) of Prob. 3.5, combined with the results given in Prob. 3.33 for the
transport terms. The boundary conditions remain the same as in part (a), C, = C, = 100. The final results
can be verified as 100 at each node.
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Table 3.5 Veloctties at the Center of
Each Element (107° ft/s)

Element u, u,
I 3.0260 —0.9456
1T 1.2766 —2.5532
il 7.2813 0.0
v 3.0260 0.9456
v 1.2766 2.5532

(¢) The formulation for part (c) is identical to that for part (b) except that additional boundary conditions are
required, C, = C, = 50. Final results are given in Table 3.6.

Table 3.6 Concentration with Convection

Node Concentration (ppm)

97.381
98.165
100.000
89.781
92.818
100.000
67.458
63.313
50.000
56.536
54.348
50.000

O RN RN —

O S
N = O

(d) The local stiffness matrix for the chemical reaction term is given in Prob. 3.33. Since all elements have the
same dimensions, the local stiffness will be the same for all elements, and that matrix is merely added to the
element derived in part (c). The boundary conditions remain the same. The final results for concentration
are given in Table 3.7.

Table 3.7 Concentration with Convection
and Chemical Reaction

Node Concentration (ppm)
1 69.338
2 78.348
3 100.000
4 60.110
5 67.122
6 100.000
7 42.118
8 41.448
9 50.000

10 36.331
11 40.247
12 50.000
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Use Eq. (3.13) and derive the variational function that corresponds to the axially loaded rod of Chap.
2.

Consider the terms within the volume integral first. In one dimension the siress tensor o,; and the strain
tensor €,; correspond to the axial stress ¢ and axial strain €. Similarly, f, and u, are vectors corresponding to
body force f and displacement u in one dimension. The constitutive law is Hooke’s law in one dimension, or

o = Ee. The volume integral is written
1
~oe—fu)dv
v \2

Let dV=dA dx and [, dA = A; then the integral can be written

LL (% E€’ -fu)A dx

and substituting Eq. (@) of Prob. 2.9 gives

Jy 5eCa) s

the desired result. The term [ T,u, dS represents an external surface load and can be interpreted using Fig. 3-8.
The term 7', is called a stress vector defining a surface traction acting on the area (surface) as shown in the
figure. Given the fundamental definition of axial stress o = P/A, where P is an applied external force, the surface
traction can be interpreted as P/A and the surface integral becomes [, (Pu/A) dA = Pu. In this case u is the

displacement at the free end of the rod, and the term Pu can be interpreted as external work.

i H

o |

ANN AN

T, =

Fig. 3-8 Rod with external load.

Use the variational function of Eq. (3.13) and write a corresponding function in matrix format that
can be used for plane elasticity.

Equation (3.73) is a general statement written in cartesian tensor notation. Problem 3.9 illustrates the
one-dimensional problem where each tensor term has been replaced with its one-dimensional counterpart. The
two-dimensional function requires a more general approach, but for the reader unfamiliar with tensor notation if
is possible to construct the function using matrices and merely use Eq. (3.13) as a model. In fact, using matrices
expedites the entire process since the final results are in a proper format for numerical computation. A word of
caution is in order. Tensor analysis and matrix theory are two different mathematical concepts that should not be
interchanged. Each concept has its own set of rules. Matrix theory is usually used to write equations in a form

suitable for computation.
Consider for now only the first term in the volume integral of Eq. (3.13). The analogous matrix statement is

1
f 5 lol'leldv (@)
v
Hooke’s law in cartesian tensor notation is
O = Cklij €;

and is completely general. The corresponding statement in matrix notation is

{o} = [Clie} ®)
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and each term in Eq. (b) has a form that depends upon the elasticity problem to be solved. The plane elasticity
problems of Sec. 3.4 are written as

Tx Cl 1 sz 0 xx
yy ( — C12 C22 0 Eyy (C)
7,y 0 0 Cys €,

and the [C] matrix corresponds to either plane stress or plane strain. Substituting Eq. (b) into Eq. (a) gives

1
fv 5 [l [Cllel @V @

where the strains can be written in terms of nodal point displacements using Eqs. (3.3). Introduce an operator
matrix, as in Prob. 3.4, that relates [e] to the derivatives of {u}, the nodal point displacements. The element
displacements must be defined in terms of shape functions and nodal point displacements, which requires some
organization since there are two unknown displacements at each node. Consider the four-node element of Fig.
3-9 where there are two degrees of freedom per node and a standard numbering scheme is shown. The
displacements are u and v, corresponding to the x and y directions, respectively. The matrix of nodal point
displacements can be written

fw}=1{u, v, u, v, uy, vy, u, vl @
The element displacements are defined in terms of {u} using shape functions such as
u, (e, y)=Nu, +Nu, + Nu, + N,u, v,(x, =N, +N,v, +N,v, + N, N

In general, the displacements at any x, y location within the element can be written in matrix form as

{5} - (8)

where the format of [N] is dependent upon the numbering sequence used to define nodal displacements on the
element. Now, return to Eq. (d) and the operator matrix that was mentioned previously.
Define the operator matrix, using Eqs. (3.3) as a model, to relate the strains to the displacements of Eq. (g):

Y
i 0, v,
U,
—

1a B

U, | v,

Ll 2
o — N
Uy U,
> X

Fig. 3-9
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e) [arox 07 )
= :Z - a/oay 3;31 {v:}:m{":} .

Substitute Eq. (g) into Eq. (h):
{e} = [LIINKu} ( (i )‘

and recognize that Eq. (i) gives the strains at any x, y location in terms of nodal point displacements. Also, Eq.
(i) is a general expression that is applicable for any element since the element is defined by the shape functions.
The matrix porduct [L}[N] is called the {B] matrix in finite element analysis terminology.” Substitute Eq. (i) int6
Eq. (d) to obtain the final form for the first term of the variational function:

1 . L s . . 1:-- . - P N
fv 5 {u}" INT" [L]" [CI[L]IN}{u} dV = J; 5 {u}" [BI"[CIBNu} @V ()

The second term of the volume integral of Eq. (3.13) represents the body force and is similar to the
heat-source term of Prob. 3.4. It becomes

fv {u} N7 v ®)

The surface integral of Eq. (3.13) represents a natural boundary condition and is called a surface traction, a
force boundary condition, or a distributed pressure boundary condition. A concentrated force boundary condition
applied at a single node in either the x or y direction can be incorporated in the same manner as in Chap. 2. A
pressure boundary condition must be distributed to the edge of an element that usually lies on the boundary of the
physical problem to be modeled. The surface integral gives information about how to distribute the traction or
pressure depending upon the shape function being used. The term 7, with one subscript, is a vector and as such
should have two components, {T} = [T, Ty]T. The surface integral, in matrix form, is as follows. (Additional
discussion will be given in a subsequent problem.)

[ o ayas 0

The final result is obtained by combining Eqs. (j)-({).

Use the variational statement of Prob. 3.10 to derive the stiffness matrix for a four-node rectangular
finite element for plane elasticity in cartesian coordinates.

The variational function of Prob. 3.10 is minimized with respect to the displacement vector.

aJ T T _ T, o T —
o JV [N]" L] [CHLIINKu} &V JV [NT fav L [N]'{T}dS=0 (@)

The node and displacement numbering scheme of Fig. 3-9 will be used. It follows that Eq. (e) of Prob. 3.10 is the
correct definition for {u}. The shape function matrix of Eq. (g) of Prob. 3.10 that corresponds to Fig. 3-9 is

N 0O N, O N, 0O N, 0
[N] = b)
0O N 0O N, 0 N, O N,

The operator matrix [L} is defined by Eq. () of Prob. 3.10, and the [B] matrix is the result [L][N], where a 3 X 2
[L] matrix is multiplied by a 2 X 8 [N] matrix to give a 3 X 8§ matrix:

aN, /ox 0 oN, /ox 0 N, /ox 0 aN, /ax 0
[Bl= 0 anN, /dy 0 oN,/dy 0 aN,/dy 0 aN,/dy (©)
oN,/dy ON,/ox ON,/dy ON,/ox ON,/dy ON;/ox 8N,/dy ON,/dx
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The volume integral is changed to an area integral by assuming a constant thickness in the z direction. The
stiffness matrix is computed as

[K]= JA [B]"[C][B]r dA (d)

Visualize the multiplication indicated by Eq. (d). The [C] matrix is given by Eg. (¢) of Prob 3.10, and the first

term of the stiffness matrix is
1 N, 9N, aN,
l 1 1 1 a X + ay C33 ay t dx dy

The derivatives of the shape functions were given in Prob. 3.5 and are substituted to give

X, ff [ l(b y) +C33<aa-bx> ]tdxdy

C,b Cia
or Ki=\73, "3

The stiffness matrix is a symmetric 8 X 8 matrix and follows as Eq. (e).
The second term of Eq. (@) is similar to the heat-source term of Eq. (f) of Prob. 3.5. The surface integral of

Eq. (@) will be discussed in a subsequent problem.

_C|1b+C33“ Cipt+Cy _ C|15+C33‘7 Cia—Cyy _Cub Gy —Cia—Cs; Cub  Csa —Cip*+Cy 7|
3a 3b 4 3a 6b 4 6a 6b 4 6a 3b 4
Cna n Cysb ~Cip+Cy Cpa _ Cysb —Cin—Cy3 _ Cra _ Cs3b Ciy—Cxp _ Cora + Cs3b
35 3a 4 6h 3a 4 6h 6a 4 3b 6a
Ciib Cyza —C;—Cy3 Cnb  Caza Ciy—Cxy _Cnb Cya CiptCy
3a 3b 4 6a 3b 4 6a 6b 4
Cna  Cyb —Cip+ Gy _Caa b Cip+ (s G Cash
3b 3a 4 3b 6a 4 6b 6a
(e)
Cpb Ciza CntCy b Caaa Cin—Cy
3a 3b 4 3a 6h 4
Svmmetric Cpaa  Cyb “CptCy Cpa Cyb
4 3 ' 3a 4 6h  3a
Cub  Cya —Ci2=C33
3a 3b 4
Cpa  Cyb
L. 3 3a

3.12. Assume the rectangular element of Fig. 3-3 has thickness ¢ and that a uniform pressure loading p,, in
force per unit area, is distributed along the edge connecting nodes 3 and 4. Use the variational
function of Probs. 3.10 and 3.11 and determine the distribution of the pressure to nodes 3 and 4.

The surface integral has been minimized as Eq. (a) of Prob. 3.11 and is

| reryas @

Substitute Eq. (b) of Prob. 3.11 into Eq. (a) above to obtain a general expression
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=N, 0™ (N, T,
0 N, N,T,
N, 0 N,T,
0 N, |(T. N,T,
Js N, © {Ty} a5 = f 9 N,T, > s ®)
0 N, N,T,
N, 0O N,T,
0 N, \N.T,/

The element edge connecting nodes 3 and 4 corresponds to the edge y =& for the local element coordinate
system. The shape functions of Eq. (b) above are given as Eqgs. (¢) of Prob. 3.1, and substituting y =& gives
N,=N,=0, N, =x/a, and N, = (a —x)/a. The surface tractions are replaced with T, =p =0 and T, =p,.
Finally, dS is replaced with ¢ dx, where ¢ is the thickness of the element and the integration is along the x axis.
Note that if the surface loading is specified in force per unit length, the 7 term is omitted. Substitute N, and N,
into equation Eq. (») and integrate with limits O to a, and the final load vector is

0 0 0 0 0 pa/2 0 pa/2lt ()

Equation (c) indicates that one-half of the pressure loading should be distributed to each node.

The plate of Fig. 3-10 is 6 X 10 in and 0.2 in thick and loaded with a tension of 10,000 psi as shown.
Compute the node displacements, strains, and stresses using a one-element analysis. Assume
E =10(10)° psi and solve the problem for » =0 and again for v =0.3.

_—~t=02in
- +
-—
- .
6in - 10,000 psi
-
-
-
le
o 10in
6000 Ib
4 3
u,=0
0(5.0,2.5)
1 2 6000 1b
—_—
u,=v,=0 v, =0
Fig. 3-10

The plate should be analyzed as plane stress. Boundary conditions should allow the plate to deform in both
coordinate directions but prevent rigid body translation and rotation. Node 1 is fixed in both directions, node 2 is
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3.14.

fixed in the y direction, and node 4 is fixed in the x direction, as shown in Fig. 3-10. For the eight possible node
displacements, u, = u, = v, = v, =0 are the boundary conditions.

The result obtained in Prob. 3.12 indicates that the pressure loading should be distributed to nodes 2 and 3 as
(10,000 psi}6 in)(0.2 in)/2 = 6000 Ib. The local stiffness matrix given by Eq. (e) of Prob. 3.11 becomes the
global stiffness matrix for this one-element model. The material constants are computed using the plane stress
constitutive equations, and for the case »=03, Egs. (3.6)-(38) give C, =C,,=E/(1—- p’)=
10.9890(10)° psi, C,, = vE/(1 —v*) = 3.2967(10)° psi, and C,, = E/2(1 + ») = 3.8462(10)° psi. The stiffness
matrix after substituting boundary conditions and load vector is, for » =0.3,

=i 0 0 0 0 0 0 0 T(ruY (0
0o 1 0 0 0 0 0 0 v, 0
0 0 4334555 0 -—1037850 —137363 0  1,785710 || u, 6000
0 0 0 1 0 0 0 0 v, 0
0 0 —1037,850 0 4334555 1785710 0 —137,363 { i, > =1 6000 {
0 0 —137363 0 1785710 6874240 0 2283270 || v, 0
0 0 0 0 0 0 1 0 i, 0
0 0 1785710 0  —137,363 2283270 0 6874240 \v,) 0 J

The displacements are given in Table 3.8.

Table 3.8 Node Displacements (in)

u, v, u, v, U, U,y u, v,
v=0 0.0 0.0 0.002 0.0 0.002 0.0 0.0 0.0
v=03 0.0 0.0 0.002 0.0 0.002 —0.00036 0.0 —0.00036

The solution for displacements is exact because the linear shape functions predict the linear solution for this
problem, Also, for » = 0 the problem is one-dimensional and reduces to the axially loaded member discussed in
Chap. 2.

The strains are computed using Eq. (f) of Prob. 3.10. Note that the matrix product [L][N] = [B] is given by
Eq. (c) of Prob. 3.11 and the derivatives of the shape functions are given by Egs. (d) of Prob. 3.5. Choose x and y
of Egs. (d) of Prob. 3.5 as x =a/2=5.0 and y = b/2 =3.0 to represent the center of the element and compute
{e}=[Bl{u}. For »=0.0, ¢, =0.0002 and ¢, =€, =0.0, and for »=0.3, ¢, = 0.0002, €, = —0.0006, and
€, =0.0. Again the solution is exact for this elementary problem.

The stresses are computed using Eq. (¢) of Prob. 3.10, and for both cases o, = 2000 psi and o, = 7,, =
0.0.

Derive a local stiffness matrix for heat transfer using the three-node triangular element defined in Fig.
3-4.

The local stiffness matrix is defined by Eq. (b) of Prob. 3.5:

K]= f [B1” [k1[Blz dx dy (@

The temperature is defined in terms of the unknown temperature at each node and is similar to Eq. (b) of
Prob. 3.4 except there are only three nodal values:

T=[N, N, NNT, T, T} =[NNT} ®)
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The shape functions are given by Egs. ({) of Prob. 3.2 and, for convenience, are usually written in the following
form

a, tbx+cy
! 2A
a, +bx+c,y

M= ©

a, +bx+cyy
N3: 3 3 3

2A
where a, =X,¥; —X;¥, b, =y,—y, C,=X; X,
Ay = XY, — X1 Y5 b, =y, =y Cp =X T X3
a; =X,¥, XY, by=y,—¥, C3 =Xy =X

Define the shape function matrix of Eq. (b), using Egs. (¢) as

INI=[1 x yI| by b, by|=24

The [B] matrix is formed as [L][N] where the operator matrix [L] is given by Eq. (¢) of Prob. 3.4 for the
heat-transfer problem or any physical problem governed by an equation of the form of Eq. (3.7) when 8 =0:

9/a 0o 1 o BB
'x .
[L][N]_[a/ay][N]:[O 0 1] bl bz b3 +2A
Cl CZ C3
b b b
or [B]=[ b 3]+2A
€y € G

The material matrix [k] of Eq. (@) is a 2 X 2 matrix and is the same as that in Prob. 3.4. The area integration is
[ dx dy = A, the area of the triangle, since all terms are constant. Substituting into Eq. (a) gives the symmetric
matrix

btk +cik,  bbyk, tcc,k,  bbik, ek,
r
K] = bik, +cik,  bybik to,cik, v @
bik, + ok,

Equation (d) can be used for numerical computation, however, for computer implementation it is probably more
practical to formulate the individual matrices and use a matrix multiplication routine to compute [K].

Compute the steady-state temperature distribution for the plate of Prob. 3.6: (a) using three triangular
elements as shown in Fig. 3-11(a) and (b) using four triangular elements as shown in Fig. 3-11(b).
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y
T T, =100
s //%/// \
I

I
1 -
_o/ 2 x
T=0 £
L=1
(a) Three-element model
T, T,
&Ll L {Ldly
AY
I | IV
I
3 4 0—0—+
II
1|1
I
1 2 — 9
il. £
I
{b) Four-element model ‘ (c) Alternate four-element model

Fig. 3-11

(@) Symmetry is used to model the plate as in Prob. 3.6. Element I, formed by nodes 1-3, is used to compute
the terms that are substituted into the local stiffness matrix, Eq. (d) of Prob. 3.14. The numbers along the
top and side of the local matrix correspond to the row, column location within the gloabl matrix. Note that

k,=k =10.
Element I:
1 2 3
b, =-05 c,= 00 A=0.125 0.5 -05 0.0 1
b,= 05 c,=—05 [K,]=]| =05 1.0 —05 2
b,= 0.0 c,= 05 0.0 0.5 0.5 3

The area A can be computed using the result given in Prob. 3.2. Similar computations for elements II
and HI give the following.

Element II:
1 3 5
b, =-05 c,=—05 A =025 05 05 0.0 1
b,= 10 c, 0.0 K, ]=| —05 1.0 05 3
b, 0.5 c;=—05 0.0 -05 0.5 5



88 TWO-DIMENSIONAL FINITE ELEMENTS [CHAP. 3

Element II1:

3 4 5
b= 00 ¢, =-05 A=0125 05 —05 007 3
b,= 05 ¢,= 05 K, )=|-05 10 -os| 4
b,=-05 c,= 00 00 —05 05] 5

The element stiffness matrices are assembled to form the global stiffness matrix.

1.0 -05 —05 0.0 0071 (T
—0.5 1.0 —-05 0.0 00 1]T
T
T

N

—05 —-05 20 —-05 -05
0.0 00 -05 1.0 —05
0.0 00 -05 -05 1.0\ T

5 ¢ =1{0}

»

wn

Substituting the boundary conditions T, =T, =0 and T, =T, = 100 reduces the system to one equation
with one unknown, and 7, = 50.0 can be computed.

(b) The stiffness matrix for the four-element model is constructed in the same manner; intermediate steps will
be omitted. The global matrix before substituting boundary conditions is

- 1.0 05 060 -05 0.0 0.07] (T,

—0.5 1.0 -05 0.0 0.0 00117,
0.0 —-05 20 10 =05 00|)T,

—0.5 00 -10 2.0 00 =057, =10
0.0 00 -—05 0.0 10 —-05||T,
0.0 0.0 60 -05 -05 1.0\ 7,

After substituting boundary conditions T, is the only unknown. It can be computed as T, = 25.0, which is
exact when compared with the results of Prob. 3.6. The question concerning the accuracy of this analysis
when compared with the four-element analysis of Prob. 3.6 deserves some comment. The arrangement of
the four triangles of this analysis fits the solution surface (the actual temperature distribution) more
accurately than the four rectangles of Prob. 3.6. It should not be inferred that three-node triangles are more
accurate than four-node rectangles. The interested reader should model the plate using rectangular elements
arranged as shown in Fig. 3-11(c¢) since that arrangement appears to better approximate the solution surface.

3.16. Show that area coordinates are related to shape functions for a three-node triangular finite element and
that area coordinates lead to a different, but equivalent, formulation for the shape function.

Consider the triangular element of Fig. 3-12 that is similar to that of Fig. 3-4. The interior point P is not a
node but merely an arbitrary reference point. Area coordinates are defined as

P)’

1 P(x, y)

Fig. 3-12
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_area(2-3-P) _ area(3-1-P) _area(1-2-P)

17 area(1-2-3) >~ Tarea(1-2-3) 3~ area(1-2-3) @

The parameters L,, L,, and L, are defined as area coordinates because each represents a fractional part of the total
triangular area and their sum is equal to the total triangular area (Fig. 3-12):

Area (2-3-P) + area(3-1-P) + area(1-2-P) = area(1-2-3)
and subStituting Egs. (a) gives
Lo+L,+L,=1

Such coordinates are sometimes called natural coordinates and can be visualized as illustrated. The coordinate L,
emanates from side 2-3 and corresponds to the area defined by side 2-3 and the point P. Note that if L is allowed
to increase and teach node point 1, its magnitude will be unity and L, =L, =0. It appears that L, behaves
similarly to N,, the shape function for node 1. In fact, the following relations can be deduced using Fig. 3-12:

I = {1 at node 1
! 0 at nodes 2 and 3

L = { i at node 2
2 0 at nodes 1 and 3

L :{I at node 3
3 0 at nodes 1 and 2

Figure 3-4 illustrates the coordinate location of each node. The ratio of area coordinate L, relative to the total
area is (x, y is the location of point P)

_area(]—z—P)_ld xl xl i 4
37 area(1-2-3) 2 et 2 "+ toral
Yoo Y2y
or Laz[(x1)72_x2y1)+x(y1_y2)+y(xz_x1)]/2A:onal ®)

Equation (b) is the same as the definition given by Eq. (i) of Prob. 3.2, and it is concluded that L, = N, for the
three-node triangular element. Similar computations give equivalent definitions for L, =N, and L, = N,.

Use area coordinates and numerical area integration to derive the stiffness matrix corresponding to a
three-node triangular element for the chemical reaction term in Eq. (3.2).

Area integration for a three-node triangle can be accomplished using area coordinates and the corresponding
integration formula:

. 131a1
apBry ga a!Bly!
LL*LZL3 A= igiiio @

The variational form of the stiffness matrix to be formulated is given in Prob. 3.32 (the third term in the function)
and after being minimized with respect to {C} appears as

L [N1"[K,JINHC}z dx dy ®

The function is transformed into a finite element model following the method of Prob. 3.4 by defining an operator
matrix that acts on [N]. In this case the operator merely defines shape functions and is written as a unit matrix:

[LIN]=[1IIN, N, N;J=[N, N, Nj] ©

The result is left in the form of Eq. (c) above rather than substituting Egs. (¢) of Prob. 3.14. The reader should
compare the various stiffness matrices that have been derived. In every case the [N] matrix defines the element
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being used, and an operator matrix can be used to define the manner in which the nodal terms appear in the
differential equation or variational function. Formally, Eq. (b) is constructed as follows:

Ni CI
f Ny KN, N, Naldedyy Cari @
* N3 C3

The matrix multiplications indicated by Eq. (d) result in terms of the type
K, :j N, KN, dx dy
A

The definitions of shape functions given by Eq. (c) of Prob. 3.14 would lead to algebraically complicated
mathematics. The shape functions can be replaced by their equivalent definitions using the results of Prob. 3.16
or considering only the first term and Eq. (@):

21010!
2+0+0+2)!

Kr
K2A=—224A

f N,K,N, dx dy =f LKL, dxdy =f LK, dA=
A A A 12

Note that the exponents 3 and y of Eq. (¢) are zero and are included in the computation as such. The area is
evaluated as in Prob. 3.15. The complete stiffness matrix for the chemical reaction term becomes

K At [2 1 1]
——f1 2 1 (e)
21y 1 2

Formulate the stiffness matrix in terms of shape functions for the convection terms of Eq. (3.2) using
three-node triangular elements and show how area coordinates and area integration can be used to
evaluate the final local stiffness matrix.

The convection terms in the variational function given in Prob. 3.32 appear as follows after the minimization
is completed.

| Ny e ay @

In this instance the operator matrix corresponds to first derivatives as illustrated in Prob. 3.14. The first term [N 1
corresponds to the shape function matrix of the previous problem but must be written to accommodate the
two-dimensional formulation. Visualize Eq. (¢) of Prob. 3.17 written as

1 N, N, N,
[L][N]=[1][N1 N, N3]=[N N N]

The stiffness matrix is constructed as follows:

N, N c
! "fu, O ToN,/ox oN,/dx AN,/ox k

Moo Nl aw ey anyiay  anyray |] 62 (194 ®
LN, N, Y : 2 3 C,

The first term of the stiffness matrix is computed as

K= [ (Mot 2wy 20 ) aa
1 4 1”){ ax luy ay (C)

The shape functions are replaced with their equivalent area coordinates, and numerical integration is used to
evaluate Eq. (¢). The partial derivatives are not functions of x or y and, using the results of Prob. 3.14, can be
evaluated before integrating Eq. (c). The term to be integrated, after replacing shape functions with area
coordinates, appears as
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3.19.

3.20.

(110101)2Au,b (110101)2Au,c, t (b, +uc)t
J Lu —+L1 )td + =
24 v 24 (1+0+O+2)'2A (1+0+0+2)124 6

The local stiffness matrix for convection is 3 X 3, and the remaining terms are computed in a similar manner.
(See Prob. 3.39.)

Derive the [B] matrix for plane stress analysis using a three-node triangular element.

The derivation follows that of Prob. 3.11. The product [L.]J[N] must be evaluated for a three-node element,
and the subsequent derivatives are substituted from Prob. 3.14. (See Prob. 3.40.)

a/ox 0 b 0 0 b, O
/ N O N, 0O N O ! 2 ’
[B]= 0 o/dy =0 ¢ 0 ¢, 0 c;]+24 (@
0O N O N, 0 N
da/dy 9/ox ¢, b, ¢, b, ¢y by

Given a uniformly varying pressure loading p, between nodes 1 and 2 of the triangular element of
Fig. 3-13, use the integration formulas to compute the distribution of the load to nodes 1 and 2.

4 Y 3
2 P,
~ Px
1 X
Local coordinate
system
Fig. 3-13

The equation of the pressure loading, assuming a local coordinate system located at node 1, is

=P, =P a
px ,\yl_ x b3 ()

In this application of numerical integration the integration occurs along a line rather than over an area. The
formula for integration along a line is analogous to Eq. (@) of Prob. 3.17, and the coordinates are referred to as
length coordinates:

o _ alB!
LLngdg_(a+B+l)!§ 2

One-dimensional finite elements can be formulated in terms of length coordinates, but there is usually no
advantage when compared with the more traditional cartesian coordinates. Follow the method of analysis used in
Eq. (b) of Prob. 3.12 and recall that {T, T},]T represents any general traction-type surface load. Along the line
connecting nodes 1 and 2 the area coordinate L, is zero or in terms of length coordinates only L, and L, exist and
terms corresponding to T, are zero:

N, 0 L, Py, —y/b,
0 N 0
N, 0 T, _J L, Py, —)/b,
L 0 N, {Ty} as = ; 0 tdy ©
N, O 0
0 N, 0
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In terms of area coordinates and the coordinates of the triangular element,
y=Ly +L,y, +L;y,

but L, = 0 between nodes 1 and 2. Substitute y into Eq. (c) and use Eq. (b) to integrate the first term in the
matrix:

Y2 t (l!O! 2100 N o« Pt
’ LIPx(yl_LlyliLzyz)(a)dy:Px 21 - 31 - 31 )b_a(yz_yl):?(yz_)ﬁ)

A similar computation for the third term in the matrix of Eq. (c) gives the distribution to node 2:
P
3 2=y

One-third of the distributed pressure should be assigned to node 1, and two-thirds of the pressure should be
assigned to node 2.

Physical equations of the form of Eq. (3.1) have been given several interpretations. In Eq. (f) of
Prob. 3.5 it was shown that a constant heat source applied to a body is distributed equally to all four
nodes of a rectangular element. In some cases the heat-source term can be considered a point source.
Then the distribution of heat generation or dissipation is dependent upon the coordinate location of the
source within the element. For the element of Fig. 3-14 assume a point heat source Q is located at the
point x, =4, y, =3, and compute the distribution of heat to each node.

Yt 1,4 (5,4)
4 I3
1
-------- ®——— x,=4
(xQ’ YQ) e
i Yo =
[}
1 1 2
(1,1) 5,1)
o x
Fig. 3-14

Formally, the integral on the right-hand side of Eq. (@) of Prob. 3.5 is to be evaluated for the point source
located at (x,, y,). The source term Q can be modeled as a unit impulse function

O, y) = 0xy, ¥) 6(x —x,5) 8(y — y,) @
The integral of a function multiplied by an impulse function can be interpreted as the function evaluated at the

coordinates defining the location of the function (Wylie, 1960, 340). The shape functions are given in Prob. 3.1
and, similar to Eq. (f) of Prob. 3.5, the distribution of Q(x,, y,) is

L IN1Qt dx dy = L

[*)

z 2z 2z =

o

Nl
NZ
0o, yo) 8x = Xg) 8(y —yo)tdxdy =\ \ 1Q0,, yo)t
3
N4

The shape functions are evaluated for a =4, b =3, x, =3, and y, = 2, and the final result is
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Q0cgs o)

Sl il e -

The total point source is distributed according to the areas defined in Fig. 3-14. For example, the distribution to
node 3 is proportional to the area defined between the point source and node 1.

3.22. Derive the shape functions for the nine-node rectangular element shown in Fig. 3-15.

ys
4 4 7 3
- >
b/2
8¢ 9 J’6
b/2
Y
>~ ° [
1 5 2 ¥,
X al2 al? -
> Y
X,
— T
) -
x
Fig. 3-15

The nine-node element has midside nodes located at the midpoint of each side of the element, and the ninth
node located at the center of the element. The node numbering shown is standard, with midside nodes numbered
5 through 8, but the nodes can be numbered in any sequence. In this case the dimensions of the element (the local
coordinate system) are assumed as a and b. Other dimensions, such as 2a X 2b could also be used. In later
chapters a local coordinate system similar to —a to +a and —b to +b will be introduced.

The shape function can be derived using the results of Prob. 2.31 and Fig. 2-10. The global x coordinates of
Fig. 2-10 are reproduced in Fig. 3-15 along with corresponding y coordinates. The results of Prob. 2.30 are
repeated for reference and given an extra subscript to indicate the x direction in the global system:

x

r—x,)x —x;) & —x)x—xy) e xe—x,)

&) —x)x, —x3) N = (, = X )y —x5) Now = (3 =205 — x,)

(@

In the local system let node 1 correspond to x, =0, x, = a/2, and x, = a. The shape function, in the x direction
only, along nodes 1, 5, and 2 is obtained by substituting into Eqs. (a):

 x=@lx—a) (x—a)x—a)
M om@io-a - & ®)

Similarly, N;_ for the nine-node element can be constructed using N, of Eqs. (a):

N = x—0)x—a) _xx—a) ©
T [@/2)-0l{@/2)—al  —(a*/4)

Visualize that the shape functions of Prob. 2.30 could have been derived along the y axis of the global
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system using y,, y,, and y, of Fig. 3-15 and the result would be Egs. (@) with all x values replaced by y values.
A shape function for node 1 of the nine-node element would be identical to Eq. (b) with x and a replaced by y
and b, respectively. The two-dimensional shape function for node 1 is the product of the two one-dimensional
shape functions for node 1:

_ 2x—a)x — a)(2y — bY(y — b)
1y a2b2

N, =N,N )

Substituting local coordinates corresponding to node I (x = 0, y = 0) into Eq. (d) will give N, =1, and the value
of N, at all other nodes will be zero.

The y contribution of the two-dimensional shape function for node 5 is constructed using the first Eq. (@)
and is the same as that used in Eq. (d) or, corresponding to Fig. 3-15, is written as

Oy )Y —y)  @Qy—b)Xy—h)
Ns - - 2
Y (¥s T Yo KYs T ¥e) b

(e)

Obviously, the nine-node rectangular element is made up of combinations fo quadratic shape functions. It follows
that

B —a2b -y - b)

N, =NSXN5y = e

H

A significant result is that two- or three-dimensional shape functions can be constructed from one-
dimensional shape functions. The remaining shape functions are obtained in a similar manner and, as an exercise,
the reader should verify the results:

_X2x—a)2y —b)y—b)

N, =

2 aZbZ
x(2x — a)y(2y — b)
N, = 2,2
ab
 (x—a)—a)y(Zy —b)
N4 - 272
ahb
_ 4np@x—a)(y —b)
Nyg=— 2,2
ab
A a2y —b)
N, =— 2,2
ahb
_ 4y(2x - a)x—a)(y — b)
NS - 2,2
ab
16xy(x —a)(y — b)
N, = 2,2
a’b

3.23, The rectangular element of Fig. 3-16 is supported at node 2 by a sloping surface such that
displacement parallel to the surface is zero, u,, = 0. Construct the transformation matrix and show the
form of the modified local stiffness matrix that accounts for this type of boundary condition.
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4 93

) @

u2§
77 \

Uy,

=Y

Fig. 3-16

The displacements in the &, i system are to be transformed to the x, y system. Therefore, Eq. (3.15) is the
proper transformation. The transformation for the local element is

1 0 O 0 0 0 0 07
0 1 0O 0 0 0 0 O
0 0 ¢ —-s 0 0 O O
r_| 0 0 =« c 0 0 0 O
=10 00 o1 0 0 o0 @
0 0 0 0O 0 1 0 O
0 0 0 0O 0 0 1 0
0 0 0 0 0 0 0 1d
where ¢ = cos 6 and 5 =sin . The matrix statement that defines the transformation, using Eq. (a), is
fu,}=11"{u,,} ®)

But keep in mind that the displacements are unknown at this point and that Eq. () is used to transform the
stiffness matrix to correspond to the boundary conditions imposed by u,, and v,,. Recall Eq. (j) of Prob. 3.10,
the matrix form of the variational function that describes an elasticity problem, in terms of displacements in the
X,y system.

1 T T
fv 7 {u, 1 [BI[ClIB}u,,} @V ©

Substitute Eq. (b) into Eq. (¢) and note that {uX),}T = {ugn}T [T]:

1 T s T
fv 7 {ug,} [TIBY [CIBIT] {u,,} 4V

The function is minimized with respect to the new displacement vector, but the definition for the stiffness matrix
remains unchanged, [K] = [, [BIT[CliB]t dA, as given by Eq. (d) of Prob. 3.11 since [T] is not a function of the
coordinates. The transformed stiffness matrix is

(K1, = [THKIT])" @)

where the subscript ¢ indicates the transformed stiffness matrix. The boundary condition u,, = 0 can be used in
the global formulation for the problem.

Assume that a local four-node stiffness matrix for the diffusion terms in a mass transport formulation
has been inadvertently numbered in the sequence I, 3, 4, 2 rather than the standard 1, 2, 3, 4
numbering scheme. Derive a transformation matrix that can be used to renumber the element
corresponding to the standard scheme. (This problem is somewhat hypothetical but serves to illustrate
the transformation using a stiffness matrix with a minimum number of terms.)



96

3.25.

TWO-DIMENSIONAL FINITE ELEMENTS [CHAP. 3

In this instance the matrix of nodal point unknowns {C, C, C, C,}" must be transformed to
i, ¢, ¢ ¢C .}'. A matrix that will accomplish this transformation is

1 0 0 o7(c, c,
0 0 0 1}fC, c,
o1 o oljc.[ )¢ or  [THC e = {Cluew @
o o 1 o]lc c,

The transformation has been defined as the old or previous numbering system being transformed into the new
system. The reverse transformation is defined as follows since [TY =[T1"" or [TIT) = [1}:

{Cloa =TT {C}pen ®)

The nonzero terms in the transformation matrix can be identified using the following rule. Let the row correspond
to the new number and the column correspond to the old number, or

Td

new?

J.)=1  allother TZ,J)=0 ©

The nonzero terms in Eq. (2) were obtained as 7(1,1) =1, 7(3,2)=1, 7(2,4)=1, and T(4,3) = 1.
The local stiffness matrix is transformed using the same concept presented in Eq. (d) of Prob. 3.23,

K], ew = [TIIK],4[T] T As an exercise, the reader can verify that the following matrix multiplications will yield
the desired transformation:

1 0 0 0 Kll K13 K14 KIZ 1 0 O O Kll Klz K13 K14

0 0 O 1 K31 K33 K34- K32 0 0 1 0 KZ] K22 K23 K24

o 1 0 ol|lk, k., k., K,|fo o o 1| |k, Kk, kK, K,

o 0 1 ollk, K, K. K,[lo 1 0 ol |k, k. Kk, K,

Deduce the variational function for two-dimensional axisymmetric heat conduction in r, z coordinates
and discuss formulation of the corresponding local finite element stiffness matrix.

The variational function is an extension of Eq. (2.31) to include the z coordinate. The govering differential
equation corresponds to Eq. (3.76) with partial derivatives with respect to # =0 and in this case § = 0. Recall
that dV for an axisymmetric problem is replaced by 277 dr dz. The variational function is

JIH= J:Z J’i [k,(g ’ + kz<%>2 - 2QT:| v dr dz (a)

Note that Eq. (a) above is similar to Eq. (@) of Prob. 3.4 and that Egs. (¢) and (f) of Prob. 3.4 are applicable with
x and y replaced by r and z, respectively. The variational function, in matrix form, is

1'2 22
soy= " [ ey I naB ) - 21 N Q1 dr e ®)
7’} Zl
Minimize the function with respect to {T}, and the final form of the stiffness matrix is
SR
[K] =J J [B]' [KI{B127r dr dz (©)
L zy
and the heat-source term is
I'2 ZZ
j f INT'Q2%r dr dz (d)
PN

The 27 term could have been eliminated from the function, but it is usually left in to avoid confusion when
specifying a flux boundary condition.

The shape functions can be obtained using the results from Probs. 3.1 and 3.28 and Fig. 3-17, where the
limits on z have been replaced by 0 to b in order to simplify the shape functions. Note that limits on z can be
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3.26.

changed to the local element system without changing the final results, but limits on r must be in the global
r,-to-r, system since the volume changes relative to » = 0:

_ (r—ry)z—>b) _ r—r)z—>5)
N = Rb Ny =- Rb
©
_ (r—r)z _ (r—ry)z
Na="%p Ne=~""%p

where R = r, — r,. The construction of the stiffness matrix follows the method outlined in Prob. 3.5. Formulation
of the local stiffness will be illustrated using the K, term of Eq. (¢):

ff( L +a_le aNl)z drd
ar’ﬁr dz ¢ oz araraz

Substituting the proper derivatives from Eq. (e) gives

o b N s 2,77.
K, = [r—b)k +rr—r )k, 5 5drdz
» Jo R°b

3

or K, =2 ﬂ(r —r )+ [3(r )—8r2(r;*r?)+6r§(r2—rf)]} -

The result could be reduced somewhat, but the algebra is cumbersome, and Eq. (f) is suitable for computer
implementation. In practice, numerical integration is usually used for axisymmetric problems. Deriving a stiffness
matrix using terms like Eq. (f) is of value from an instructional viewpoint, however, production computer codes
usually use more practical methods. In any case, the reader, as an exercise, can derive the remaining terms for the
stiffness matrix.

}Z

ry !

Fig. 3-17 Axisymmetric four-node element.

Discuss formulation of the local stiffness matrix for two-dimensional axisymmetric elasticity
problems in r, z coordinates using three-node triangular elements.

The derivation of an axisymmetric element for plane elasticity follows the concepts that have been
developed in previous problems. The variational statement of the problem is given by Eq. () of Prob. 3.10, and
it follows that all matrices in that equation must be modified to correspond to a three-node axisymmetric
formulation. The strain must be written in terms of an operator matrix [L], a shape function matrix [N], and the
displacement vector for a three-node element, or following Eq. (i) of Prob. 3.10, {€} = [L][N}{u}. There are four
strains obtained from Egs. (3.17) assuming that v = 9/40 = O:
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Uy
€, ou/ar a/ar 0 w, .
€4 uf/r 1/r 0 N 0O N 0 N O u,
e. [~ aw/az 10 9z [o N, 0O N, O Nj W, @
€, ow/or + du/az a/dz  afor Uy
w3

The shape functions are given by Egs. (¢) of Prob. 3.14, and u and w are the displacements at each node in the »
and z directions, respectively. The [B] matrix is obtained from Eq. (a) and evaluated using the definitions of Prob.
3.14 as follows:

AN, /or 0 N,/ or 0 N, /dr 0
N, Ir 0 N,/r 0 N,/r 0
[B] = +2A
0 oN,/dz 0 N, /dz 0 N,/ 0z
| ON,/oz  9N,/or aN,[dz aN,/or ON,/dz oN,/or
B b, 0 b, 0 b, 0
L S
or B] = r+b’+ - 0 r+b2+ " 0 r+b3+ . 0 24
0 c, 0 c, 0 C,
L ¢y b, Cy b, C3 b,

The local stiffness matrix is computed as in previous problems:

1= | e v

where dV is replaced by 277 dr dz. When compared with that in Prob. 3.25, the integration is somewhat
complicated. In practice, two methods are commonly used for integration. Each term in the stiffness matrix can
be integrated numerically, and that topic will be covered in a later chapter. A second, more elementary method is
to replace all » and z terms in the stiffness matrix with an average value and evaluate the remaining terms using
the @,, b, and ¢, values defined in Prob. 3.14. It follows that average values of r and z are simply

Pave = _r,+++g and Zoyg = E%& )
The local stiffness matrix can be written as
(K] =277,,,A[B]"[C][B] ©
The matrix of material constants is obtained from Eq. (3.18) as
1—-v v v 0
-G | . e 1t o @
0 0 0 (1-2v)/2

3.27. A plane elasticity problem can be formulated in polar coordinates when dependence upon the z
coordinate can be neglected. Assume a four-node element in 7, § coordinates, where @ is in radians,
and derive the shape functions and the corresponding [B] matrix.

Shape functions are identical to Egs. () of Prob. 3.25, where @ is in the local system of Fig. 3-18 and varies
from 0 to «a for all elements:

1 Ra 2 Ra
N:(r—r,)ﬁ N__(r—r2)0

3 Re 4 Ra

r—r)0—a N = (r—r)0—a

(@
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3.28.

Fig. 3-18

Formulation of the [B] matrix is similar to the method used in Prob. 3.11. In any finite element formulation the
[B] matrix can always be written as an operator matrix postmultiplied by the shape function matrix, or
[B] = [L][N]. The operator matrix is obtained from Eq. (3.17) assuming w = 0 and 9/3z = 0, where u and v are
the displacements in the » and ¢ directions, respectively. The shape function matrix of Eq. (b) of Prob. 3.11 is
valid for this formulation since it agrees with the node numbering of Fig. 3-18. The operator matrix is constructed
according to the strain-displacement equations {e} = [L][NHu} as outlined in Prob. 3.10:

€, afar 0

€ b = 1/r (1/7)a/38 I:
€ (1/rydfo0  alor—1)r

N O N, O N, 0O N, ©
N, {u} )

O N, 0 N, 0 N, 0

where {u} is similar to Eq. (¢) of Prob. 3.10. The final result is a 3 X 8 mairix obtained as [L}[N] of Eq. (b) or

[~ ON, N, aN, N, N
o 0 o 0 o 0 o 0
N, 1 aN, N, 1 oN, N, 1 oN, N, 1 9N,
T Y Tee - T+ a8 ©
10N, 9N, N, 18N, &N, N, 104N, N, N, 14N, 4N, N,
L+ 90 ar 76 o - Ta0 @ 1 18 o rd

Note that for this element dV becomes dV =r dé dr.

Supplementary Problems

Given the form

¢ :N1¢1 +N2¢2 +N3¢’3 +N4¢4

derive the shape functions N, for a rectangular element using general x,, y, coordinates as illustrated in Fig. 3-3.
Show that these shape functions will reduce to those derived in Prob. 3.1.
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3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3.38.

TWO-DIMENSIONAL FINITE ELEMENTS [CHAP. 3

Write Eq. (b) of Prob. 3.1 in matrix format.

Show that [X] ™' of Prob. 3.2 is given by

XyY3 T XYy XY, T XYy X Yo T XY,
Y27 Vs Y3 ™Yy Yi™ X2 24
X3 T X X, T X X, =X,

where A is the area of the triangle.

A triangular element has node points located at (x, =1, y, =1), (x, =6, y,=1), and (x,=3,y,=4).
A function has been computed to have nodal point values of ¢ =900, ¢,=600, and ¢, =1200.
Use the interpolation function for a three-node triangular element and compute the value of ¢ at (x =3,

y=4).

Develop the variational function for mass transport that corresponds to Eq. (3.2). Follow the general procedure
used in Prob. 3.4 and write the variational function in matrix format.

Derive the local stiffness matrix for mass transport including the chemical reaction term and the velocity terms
using shape functions for a four-node rectangular element.

Solve the one-dimensional mass transport problem of Prob. 2.18 using a strip of two-dimensional elements.
Construct the nodal coordinate and connectivity arrays for the dam problem illustrated in Fig. 3-7.

Solve the steady-state mass transport problem for the space illustrated in Fig. 3-19.

(ay Divide the space into two elements and use symmetry along the axis y =0.5 as shown in Fig. 3-19 and
solve for C at node 3.

(b) Divide the space into eight elements as shown and solve for C at all nodes.
() Assume the velocity term u, is zero and solve the problem of steady-state diffusion.
(d) Solve the equation using separation of variables and compare the finite element results with the analytical

solution. Assume D, =D, =D =1, u,=1,a=b=1, and u, =K, =0. The boundary conditions are
shown in Fig. 3-19. Assume C, = 100 along the edge x = a.

The rectangular element of Fig. 3-3 is loaded with a uniformly varying pressure load as illustrated in Fig. 3-20
and can be described as T, =p,y/b and T, =0 in the element coordinate system. Determine the distribution of
the pressure loading to nodes 2 and 3.

Solutions to problems in plane elasticity are often obtained by solving the partial differential equation formulated
in terms of a stress function ¢. The equation and the corresponding definition for the stresses are

8 EN a* ?* abz 3’
Vot 0 Pty 2l8 0 08
ax ax*ay”  dy dy P ax 7 dx dy
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3.39.

3.40.

341.
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7 - g sin (7wx/L)
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L
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Fig. 3-21

The stress function for the plate of Fig. 3-21 can be obtained using separation of variables as

g aysinh(aa) sinh(ay) — [sinh(aa) + aa cosh(aa)] cosh(ay)
o, y)=— o? wa + sinh(aa) cosh{aa)

; T
sin(ax) =7
Divide the sine loading into trapezoidal segments (rectangular and triangular) and use the results presented in
Probs. 3.10 and 3.37 to compute node loads. Use symmetry as shown in Fig. 3-21, assume a unit plate thickness,

and obtain an eight-element solution for displacements and stresses. Compare your results for ¢, with the
analytical solution. Assume L =16 in, a =4 in, ¢ = 100 Ib/in, E = 30( 10)° psi, and » =0.3.

Derive the local stiffness matrix for the convection terms in the two-dimensional mass transport equation using
three-node triangular finite elements.

Derive the local stiffness matrix for plane elasticity for a three-node triangular finite element.

A constant uniform pressure P, is distributed along the side of a triangular finite element between nodes 1 and 2
in the x-coordinate direction. Determine the distribution of force to each node.
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3.42.

343.

3.44.

345.

3.46.

347,

3.48.

3.49.

Assume a uniform body force is applied to a plane elasticity problem modeled using triangular elements. Given
that

: N,
f [N]deV=f N, ttdA
Vv A
N3
compute the distribution of body force to each node.

Divide the four-node element of Fig. 3-14 into two triangular elements defined by nodes 1, 2, and 3 and nodes 1,
3, and 4. Compute the distribution of a point source O located at x, =4, y, =3, to each node.

Rework Probs. 3.21 and 3.43 assuming that x, =4.0 and y, =3.25. Make a comparison of the results for
four-node elements versus three-node elements.

Assume the nine-node element of Fig. 3-15 has a constant flux g applied along the edge defined by nodes 1, 53,
and 2. Compute the distribution of flux to each node.

An eight-node rectangular element has node numbers in sequence with cormner nodes numbered 1, 3, 5, 7 and
midside nodes numbered 2, 4, 6, 8 with comer nodes appearing first in the solution vector. Derive the
transformation matrix that will renumber the element to conform with Prob. 3.22, Fig. 3-15, with corner nodes
still appearing first in the solution vector (neglecting the ninth node).

A three-node triangular element has been derived for an elasticity problem with all x components of displacement
appearing first in the solution vector such that {u}’ ={u, #, u, v, v, uv,}". Derive the transformation
matrix that will reorder the displacements to conform to the more conventional numbering scheme, {u}’ =
fu, v, w, v, u, v)}.

Evaluate the [B] matrix for element III of the axisymmetric finite element model shown in Fig. 3-22.

r A
3
v
| 1
111
1 2
1§
1
! I
<——.| oz
1
- 2
Fig. 3-22

Assume the shape functions of Prob. 3.27 and derive the form of the individual matrices that form the stiffness
matrix for mass transport. Write the stiffness matrix in integral form.
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Answers to Supplementary Problems

3.28.
_ b)) T x)O—ys)
PG xRy ) 2, x)(02 T Ys)
_ e mx )y ) _ o)y =y
ol x)(s ) o X (v )
3.29.
&
¢=IN, N, N, NJ Zj or  ¢=[Nl¢}
@,
3.30. Use the cofactor method to invert [X] (see Chap. 1).
X = G

where det [X]=2A and [C] is the cofactor.

Xy Loy
C1|=|:x3 yz:l‘_’xzy;%ﬁxﬁ’z Cl2:(_1)[1 yz:l:yZ_y3

The remaining terms are computed in a similar manner.

3.31. Use Egs. (g) and (i) of Prob. 3.2.
¢ =121 —(3)3) — B)}2)K900/15) + [-1 + (3)(3) — (DH)](600/15) + [5 + (5)(2)1(1200/15) = 920

3.32 C —fl D<£>2+D LS 2+c £+c £+Kc2—2 C ltdx d
32, J()—AZ A\ ox oy Uy oy uyay . mC |t dx dy

1 T T T 1 T T
JIC) = L (E{C} [N]*[L]" [DJILIINKC} + 5 {C} [N] [u][L]INKC}

1 T T
O N K INHC) — (Y INIm )1 ey

D 0 u, 0
where DI=] 4 D, =1, u, K, 1=1K]
[L] and [N] are defined in Prob. 3.4 for a four-node rectangular element.

3.33. The local stiffness matrix for the first term of the function given in Prob. 3.32 is the same as Eq. (e) of Prob. 3.5
with &, and &, replaced by D, and D, respectively. The stiffness matrix corresponding to the transport velocity
terms is

—(u,btua)l6 Qub—u,a)/12 (ub +uay/12 (—ub +2u,a)/12
—Qub +ua)/12 (ub —u,a)/6 (ub +2u,a)/12 (—ub +u,a)/i2
(b +ua)/12 (b —2u,a)/12 (ub+ua)l6 (—2ub +ua)/12
—wb+22um/12  wb—ua)/12  (Qub+ua)/l2 (—ub+ua)f6
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3.35.

3.36.

The stiffness matrix corresponding to the chemical reaction is computed using a matrix equation
N [N]T[K,A][N] dA. The matrix multiplications appear as

N

1

2

KN, N, N, N,

I

The resulting matrix multiplications and integration give

T T
9 18 36 18
R T
18 9 18 36
Kebf . +
36 18 ] 18
T T
18 36 18 9

The nodal coordinates and connectivities are given in Tables 3.9 and 3.10, respectively.

Table 3.9

Node X Y

1 0.0 0.0

2 0.0 3.0

3 0.0 6.0

4 6.0 0.0

5 6.0 30

6 6.0 6.0

7 12.0 0.0

8 12.0 3.0

9 12.0 6.0

10 18.0 0.0

11 18.0 3.0

12 18.0 6.0

Table 3.10
Global Local element
element Nodel | Node2 | Node3 | Node 4

I 1 4 s 3
I 2 5 6 3
I 4 7 g s
v 7 10 1 8
M 8 11 12 9

(@) Finite element, C, =37.5 for u, = 0.0, C, =28.125 for u_=1.0. See part (d) for the analytical solution.
(b and ¢) Results are given in Table 3.11 for interior nodes. (d) The separation of variables solution is as follows,
and the results are given in Table 3.11.

_4Ce™ & sinh(BY) o, _nw L
Cly) = 2 emb(ga) SR @=oh k=TT B=@ )

fodd

Note that for u,_ =0 this solution is similar to that given in Prob. 3.6,
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Table 3.11
Analytical Finite element
Node Velocity = 0.0 Velocity = 1.0 Velocity = 0.0 Velocity = 1.0
3 25.000 19.116 27.857 20.945
8 18.203 13.924 19.286 14.309
9 9.541 6.398 10.092 6.468
11 6.797 4.558 7.154 4.605
14 54.053 47231 58.479 50.935
15 43.203 37.779 50.703 . 44.197
3.37. Use Eq. (b) of Prob. 3.12. Let x =g and N, =N, =0, also T, = 0. The load vector becomes
f o 0o NT, O NI, O 0 0} dS
s
The two nonzero terms are evaluated as
Ph—y pb
LNzTX(JlSAjD 5 befd =75
b
A T
LN3TXdS—L 5 Pp tdy= 3
The total force load is p b/2, of which one-third is applied at node 2 and two-thirds is applied at node 3.
3.38. The analytical solution for o, is the same as the stress function multiplied by —a” since sin(ax) is the only
function of x in the equation. The computed node loading is shown in Fig. 3-21. Results for displacements and
stresses are given in Table 3.12.
Table 3.12
Finite element Analytical
Node | u,(X107°) | u,(x107%) | Element | x | y O, o, o, o,
1 6.490 0.0 1 1 1 —0.588 23.705 0.931 19.332
2 5.555 0.541 2 1 3 0.588 21.793 1.111 20.054
3 2.506 0.914 3 3 I =2.727 54.133 1.561 55.053
4 5.931 0.0 4 3 3 2.727 53.958 2.532 57.108
5 5.087 2.643 5 5 1 —5.142 79.574 1.222 82.393
6 2.180 5.153 6 5 3 5.142 80.544 1.736 85.469
7 4.573 0.0 7 7 1 —6.485 93.906 0.425 97.189
8 3.917 4.684 8 7 3 6.485 95.022 0.609 100.89
9 1.555 9.259
10 2.495 0.0
11 2.126 6.132
12 0.810 12.090
13 0.0 0.0
14 0.0 6.648
15 0.0 13.100
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3.39. The computations are similar to those for Prob. 3.18.
ub, tuce, wb,tuc, ubytuc,
ub, +tuc  ub,tuc, ub;tuc,|-—
ub +tuc  ub,tuc, wbituc,
3.40. Use Eq. (d) of Prob. 3.11 and [B] given in Prob. 3.19.
_bfcu +C?C33 bic\Cytbie,Cyy 0,5, +tc,6,Cy5 b, Cpythye,Cay b5,C +6,0,Cy
C|2C11 + bfcsa by \Cy +by0)Cyy €,6,Cp +5,b,Chy b3¢,Cp, +bi03Cyy
bicn + C§C33 bye,Cry +by6,C55  B,05C +¢,05C5,
Symmetric eiC,, +biC,, b,c,C,, +b,c,Cyy
b;CH + C§C33

3.41. Both nodes are loaded with one-half of the total pressure (P ¢/2)(y, —y,)-

3.42. Substitute area coordinates for shape functions and integrate the result numerically using area integration. The
local force matrix is (fAt/3){1 1 1}, or one-third of the body force is distributed to each node.

3.43. The point source lies within the element defined by nodes 1, 2, and 3, and consequently the element defined by
nodes 1, 3, and 4 will receive zero distribution. Use the shape functions defined in Prob. 3.14 and follow the
method of analysis given in Prob. 3.21. Note that x, =4 and y, = 3.

N 15—=3x, _ 3
! 12 12
14+ 3x, — 4y i
N,= e e_ °
12 12
N _tt4 8
V) 12
The distribution is according to the value of the shape functions.

3.44. The point (4.00,3.25) lies on the diagonal between nodes 1 and 2. It follows that each of the triangular elements
receives one-half of the point source. For the triangular element defined by nodes 1, 2, and 3 the shape functions
of Prob. 3.43 can be used to compute the distribution to each node N, = =,
functions for the element defined by nodes 1, 3, and 4 are

(1o 3
! 12 12
~3+3x, 9
Ny,=—7—==3
12 12
N = —1—=3x, +4y, _
* 12
Therefore, one-fourth of the source is applied at node 1, and three-fourths is applied at node 3 with zero
distributed to nodes 2 and 4.
Repeating the analysis given in Prob. 3.21 for x, =3.00 and y, =2.25 (in the local element coordinate
system) gives the ratio {6.75/12 2.25/12 0.75/12
shows that the rectangular element distributes the source to all nodes, whereas the triangular formulation omits
two of the nodes.
3.45. The shape functions are given in Prob. 3.22. The analysis is formulated as [; {N, N,

N

5

0O 0 0

0 0

0} g dx, and the integration is along the line defined by nodes 1, 5, and 2 with y=0.
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Substituting shape functions and integrating gives {ag/6 aq/6 0 0 2aq/3 0 0 0}, or one-sixth
of the flux is applied to each of the comer nodes and two-thirds of the fiux is applied to the midside node.

3.46.
~1 0 0 0 0 0 0 07 (C) (C )
0 0 0 0 1 0O O O C, C,
o 1 0 0 0 0 0 0O C. C,
O 0 0 0 0 1t 0 O C, >~ C4>
0O 0 1.0 0 O O O <C2 _< C;
o 0 o 0 0 0 1 O C, C,
o 0 o 1 0 O 0 O C, C,
| 0 0 0 0 0 0 0 1_J\C) \ CsJ
3.47.
1 0 0 0 0 O]fu, u,
0O 0 0 1 0 0]]u v,
0 1 0 0 0 O|)u, u,
0 0 0 0 1 01)v v,
0O 0 1t 0 0 01w, u,
0O 0 0 0 0 1 U, v,
3.48. FElement III is described using nodes 1, 2, and 3; a, =0,a,=—1,b,=-1,b,=1,b,=0, ¢, =0,
c,=-1c,=1,r,,=(1+2+2)/3=3, avg—(1+1+2)/ =% A=1.
1 1 1 0 0 0
1 1 1 1
[B]: 5 0 5 0 5 0 N
0 0 0 -1 0 112(3)
0 1 1 1 1 0
3.49.
- N N
1 2 3 4
d/or
[B]= (1/r)8/89:|[N‘ N, N, N, 1
[ onNlor aN,/dr oN, /ar aN, [ ar
T L/ aN, 30 (1/r)aN,[36  (1/r) dN,/30 (1/¥) 3N, /06

L ([B]"[DI[BHC} + [NT" [ul[BHC} + [N1" [k, IINKChtr dr df

where [D], [u], and [k,] have definitions similar to those in Prob. 3.32.



Chapter 4

Beam and Frame Finite Elements

4.1. INTRODUCTION

Beam finite elements are related directly to matrix analysis of structures. Additionally, the term
displacement method or stiffness method is used within the field of study known as theory of structures.
These methods of structural analysis are, historically, the forerunner of the finite element method. This
chapter will serve as an introduction to beam finite elements. The emphasis is on the connection between
the beam finite element and elementary beam theory as it is presented in any standard textbook on
mechanics of materials. The reader who is well versed in matrix analysis of structures can proceed to the
next chapter. However, the reader who is unfamiliar with beam analysis will find this chapter to be an
introduction to the study of beam finite elements,

The primary difference between the beam finite element and the finite elements of the previous
chapters is the order of the govemning differential equation. Beam theory is based upon a fourth-order
ordinary differential equation, whereas the differential equations of the previous chapters were second
order. An elementary comparison can be established: the second-order ordinary differential equations of
Chap. 2 require two boundary conditions to describe a physical situation, while the fourth-order equation
requires four boundary conditions. The situation is confusing because the use of the boundary conditions is
sometimes hidden within a theory that has primary application for statically indeterminate beams and
frames.

In textbooks that discuss the beam finite element it is customary to begin with the axially loaded bar
clement and develop a finite element theory that is applicable to truss analysis. In this chapter the
transversely loaded beam will be given major emphasis, and for truss analysis the reader is referred to
textbooks that cover the topic in depth. The bar element was derived in Chap. 2 and will be included in the
formulation for beams with axial loading later in this chapter. An introduction to free vibration of beams is
given in Chap. 7.

4.2. GOVERNING DIFFERENTIAL EQUATION

The governing differential equation for beam deflection in two dimensions is derived in textbooks on
mechanics of materials. The beam is shown in Fig. 4-1, and the governing equation is written in terms of
deflection of the beam v(x) as

d*v(x)
El 7 = w) 4.0
dx

The modulus of elasticity £ and second moment (or moment of inertia) of the cross-sectional area [ can be
functions of x, the axial coordinate, but in the finite element formulation EI is assumed to be constant
within any given element. The external loading w(x) applied to the beam is assumed to be positive when
directed upward in this formulation. In some derivations of Eq. (4.1) the y axis is assumed positive
downward, but for the purpose of this discussion it does not matter which direction is taken. Equation
(4.1) is sometimes referred to as describing a small deflection theory for beam analysis. The limitation of
the theory is based upon the slope of the beam rather than the deflection. Small deflection is somewhat of a
misnomer since the question of ‘‘small compared to what’” is not describable mathematically. The first
derivative of the deflection is called the slope @ and, as illustrated in Fig. 4-1, is small if tan § = sin § =
dv/dx. It follows that in elementary beam theory the assumption that the slope dv/dx = 6 is of primary
importance. The longitudinal axis of the beam before loading and deflection corresponds to the x axis of
the coordinate system. The deflected axis of the beam is called the elastic curve of the deflected beam. The

109
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slope can be further defined as the angle between the original undeflected axis of the beam and the
deflected elastic curve. The assumptions that constitute elementary beam theory lead to a linear theory for
beam analysis. The theory is quite accurate as long as the basic assumptions are not violated. Each
derivative of the deflection has a particular name, and the following relationships are important for the

analysis of beams.

v(x)

dv(x)
dx

d*v(x)
El —5— =M(x)
dx

=6(x)

dvx)  dM@)

d’x dx

dv) _dvew _

d*x dx

V)

w(x)

(deflection)

(slope)

(bending moment that is
to the curvature in beam

(transverse shear)

[load; see Eq. (4.1)]

related directly

theory) 42)

The differential equations of Eq. (4.2) are based upon a classical beam sign convention, and the beam
finite element is based upon the so-called joint sign convention. The beam sign convention is discussed in
Prob. 4.1 and is necessary for successfully developing the relationships for deriving the beam finite

element.

YA

&~

Ls

Elastic
curve

dx

Fig. 4-1 Transversely loaded beam.

4.3, THE DISPLACEMENT METHOD FOR BEAM ANALYSIS

> X

The displacement method is often referred to as the stiffness method and predates the use of computers
in structural analysis. The three-moment equation and the slope-deflection method were forerunners of the
displacement method. In fact, the computer successfully revived these methods of analysis because it
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Table 4-1 Equivalent Joint Loadings

P R,=P/2 - Ry=Pn2
VR SR by
T 12
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A4 l ¢ B ( ‘3
4 13
ol M, M,
a _r b
T M, = Pab’/L’
M, = Pba*/L*?
R,=(Pb/L*)(3a+b)
R, = (Pa*/L*)(a+ 3b)
R,=wLi2 Ry=wL/2
w

A Y ¥ v ( ‘)
fB
e — M, =wLY12 My =wL¥12

R, =3wL/20 R, =7wLI20
w
AME B l l
¥
e 7 - M, =wL%30 M, =wL20
w R, Ry
ATTEEEY 5 (L
T T
a b M, My
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R,=(wa2L)2L — a)
M, = (wa"12L7)(3a’ — 8aL + 6L7)
M, = (wa’/12L°)(4L — 3a)

) l l ﬂ R6= wL/4 R, =’5L/4

—
B
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A T
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_ R, =6Myab/L’
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M,=(Mb/L*)3a— L)
M,=Mua/L*(3b— L)
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became practical to solve large numbers of simultancous equations and the modern stiffness method
eventually evolved.

The stiffness method, for a two-dimensional beam structure, is used to solve for the displacements and
rotations (slopes) at each end of the beam. These are the first two quantities given by Egs. (4.2).
Displacements and rotations at the end of a beam are accompanied by force reactions and bending moment
reactions, respectively. The idea is to write an equation that can be solved to obtain the magnitude of the
force or moment reaction in terms of the end displacements and rotations. Since there are four unknown
end displacements and rotations and there can also be four end forces and bending moments, the result
will be four equations with four unknowns. First, assume that any beam to be analyzed is fixed at both
ends. This is called a fixed-fixed beam. The reactions for a fixed-fixed beam subject to an external applied
loading can be computed (see Prob. 4.3 and Table 4.1). A set of four equations can be written for each of
the individual beams that make up the total continuous structure. This procedure is illustrated in Prob. 4.4.
The application of the displacement method for the analysis of beam structures is somewhat more
involved than the preceding paragraph might indicate. The reader should study Probs. 4.4 and 4.5 to obtain
a better understanding of this technique. Usually, beam analysis is not complete until the shear and
moment diagrams have been constructed. The theory that supports the construction of shear and moment
diagrams can be found in texts on mechanics of materials and will not be discussed in this chapter.
However, several of the solved problems include shear and moment diagrams.

4.4. BEAM FINITE ELEMENTS

The analysis of two-dimensional beams using the finite element formulation is identical to matrix
analysis of structures. Derivation of the stiffness matrix is based upon defining shape functions that satisfy
the governing differential equation and fixed-fixed boundary conditions. A cubic displacement function can
be assumed in the form

() =a, +ax +ax" +ax (4.3)
0 1 2 3

and the @, computed to satisfy the boundary conditions. The shape functions can then be deduced from the
form of the cubic function. In addition, the stiffness matrix can be derived by satisfying the potential
energy function that corresponds to the transverse deflection of beams. A general variational function was
defined by Eq. (3.13) and can be used to define the proper potential energy function for deriving beam
finite elements.

Shape functions are cubic polynomials that must satisfy conditions on deflection as well as rotation at
each end of the beam. Hermite’s interpolation formula is a natural choice for deriving the shape function.
This formula for shape functions can be written (Scheid, 1988)

n n dv
N,=2 U, + 2 Wi 4.4)
i=0 i=0 X

where v, is the deflection at x; and dv,/dx is the rotation (slope) at x;. The polynomial is of degree 2n+1,
and for a cubic equation n = 1. U,(x) and W,(x) are polynomials with the properties

dL(x;) »
Ux) = [1 —2— —xi)][Li(x)] 4.5)
W) = (¢ = x)[L,00]° (4.6)

The function L,(x) and its derivative will be defined in Prob. 4.9. An analogy between beam finite elements
and matrix analysis of structures can then be established.

Two-dimensional beam finite elements that include only shear forces and bending moments cannot be
used effectively for frame-type problems without the addition of axial forces. The finite element model for
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axial force acting on a rod or beam was developed in Chap. 2. The basic beam finite element can be
modified to include axial force by merely adding two degrees of freedom—the axial deformation at either
end of the beam—and is derived in Prob. 4.11. Coordinate transformations as matrix transformations for
the combined action of shear forces and axial forces must be understood before applying beam finite
element analysis to frames.

4.5. MATRIX TRANSFORMATIONS

Matrix transformations that describe a boundary condition in plane elasticity problems were discussed
in Chap. 3. The vector transformations of Eqgs. (3.14) and (3.15) are used to transform beam finite
elements from a local &, 7 system to a global x, y system. The application given in Prob. 3.23 described the
representation of a displacement boundary condition that remained in the local &, 77 system. The application
for frame-type problems is somewhat the reverse situation. Problem 4.12 describes the coordinate
transformation for a beam element formulated in the local £ 7 system and transformed to the global x, y
system so that the boundary conditions can be specified in the x, y system.

Solved Problems

4.1. The beam shown in Fig. 4-2 (with a positive joint rotation applied at x =0) is important in the
derivation of the equations for the stiffness matrix for beam finite elements. It is also useful when
interpreting the results of the final beam analysis. Use the differential equation defined by Eq. (4.1) to
solve for shear and moment reactions for the fixed-fixed beam of Fig. 4-2.

In this case the differential equation is written using the shorthand notation
EnV=w=0 or 0"V=0 (@)

The beam of Fig. 4-2 is statically indeterminant. There are four unknown external reactions, and there are only
two equations available from statics. The fact that there are two additional unknown reactions requires two
boundary conditions to solve the differential equations. Integrating Eq. (@),

v''=C, ®)

A boundary condition at x =0 is that the shear is the unknown reaction R,. Using Eq. (4-2) it follows that
E™(0)=V=R,. Actually, in this application the shear V' is constant for 0 =<x < L. Substituting into Eq. (b)

gives
R
mo_ M1
v TE ©
Integrating again gives
x
UII =R1 E+C2 (d)

The boundary condition, using Fig. 4-2, is Efv''(0) = —M,. Substituting into Eq. (d) and solving for C, gives



114

BEAM AND FRAME FINITE ELEMENTS [CHAP. 4

(a) Applied rotation 6, at x =0

pvas

(b) Sign convention for shear and moment

Fig. 4-2
w_p XM
V=R e T E ©

A discussion of sign conventions is in order for the reader who is not familiar with beam theory. The beam sign
convention was probably originally developed for successful application of the last three equations given by Egs.
(4-2), that is, the relation among applied load w, transverse shear V, and bending moment M. The sign convention
for beam theory [the sign convention for solving Eq. (4.1)] is illustrated in Fig. 4-2(b). The bending moments
applied on either side of the beam element are assumed positive and act to cause compression at the top of the
beam. Positive shear is a force that is assumed to act downward on the positive side of the beam element.
Similarly, positive shear acts upward on the negative side of the beam element. This sign convention is foolproof
as long as the positive x axis is directed to the right. The y axis can be directed either up or down. The reader
must keep in mind that for the y axis directed upward an applied load directed downward would be negative
when using Eq. (4.1). Therefore, the moment M that is applied at x =0 in Fig. 4-2 is negative when used as a
boundary condition in Eq. (d).

The joint sign convention is used for the matrix analysis of structures and for beam finite elements. It is
assumed that moments that rotate a joint or support in a counterclockwise direction are positive and that positive
forces acting on the joint act upward in the positive y direction. In this and future beam problems it is desirable
to assume that forces and moments are positive according to the joint sign convention.

Integrating Eq. (e) twice gives an equation for the slope and an equation for the deflection:

R Myx
V'S m TR TS ()
_Rl)c3 M X
v= GEl 2E +Cx+C, (2)

The most convenient boundary conditions to use for computing C, and C, are those that occur at x =0,
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v'(0) = @,, the assumed joint rotation, and v(0) = 0. Substituting into Egs. (f) and (&) and solving for C, and C,
gives C, = 6, and C, = (. The conditions at the boundary x =L, v'(L)=0, and v(L) =0 can be used with Egs.
(f) and (g) to give two equations that can be solved for R, and M,. It follows that

6FI6,
S

4EI6,
and M, =—— )

There are two additional equations that can be used to solve for R, and M,. The reader who is faimiliar with

statics will recognize that 2F, = 0 and XM, = 0. Otherwise, one can merely substitute EIv™(L) =V =R, into Eq.

(¢) and Elv™(L) = M, into Eq. (¢) and compute

6EIf,
R,=— NN and M,

_2EI8,
T L

)]
For completeness the equations of statics are (see Fig. 4-2)
SF =R, +R,=0 and  SM,(0)=M,+M,+R,L=0
4.2. The beam shown in Fig. 4-3 with a positive joint displacement applied at x =0 is important in the
derivation of the equations for the stiffness matrix for beam finite elements. Use the differential

equation defined by Eq. (4.1) to solve for shear and moment reactions for the fixed-fixed beam of Fig.
4-3. Note that reaction R, is assumed downward.

r)’

1

—_—
x
- 1
L
R,
R,
Fig. 4-3 Applied displacement at x=0.
Beginning with Eq. (4.1) and integrating twice results in
v'V=0
I — Cl (a)
vi=Cx+C, ®)

I

The appropriate boundary conditions are EIlv™(0) =R, and ER"(0)y=-M ;- Substituting into Egs. (a) and (b)
and solving for the constants gives

vt =R . % ©)
YEI  EI
Integrating again gives
; R X Mx
v = - +C, )
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2
RXY Mx

T 6EI ~ 2EI

v +Cx+C, (e

The boundary conditions are p'(0)=0 and v(0)= v,, the assumed joint displacement. The constants are
computed as C; =0 and C, = v,. The remaining boundary conditions (L) =0 and v(L) =0 can be used with
Egs. (d) and (e) to obtain two equations that can be solved for R, and M. It follows that

12Elv, 6Ly,
R, = I and M, = R N
The equations of statics can be used to compute M, and R,:
12ElIv, 6k,
R,= IE and = ? (8

These results are summarized in Table 4.1.

4.3, The fixed-fixed beam shown in Fig. 4-4 has a continuous loading that can be described as

w(x) = —wx/L. Compute the shear and moment reactions.
y
w
MZ
M,/ 1 ]
- o
2 x
[} [ |
- 7 >
R, R,
(a) Reactions
R,=3wL/20 R, =7wL/20
4 —
1 } v
M, = wL¥30 M,=wL?*20
(b) Equivalent joint loading
Fig. 4-4
The fourth-order equation, Eq. (4.7), will be used as
Bl = -
Integrating the governing equation twice results in
1 sz
Elv" = oL +C, (@)
x3
Elv" = — oL TCx+C, ®)
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44.

Use the boundary conditions Elv'"(0) =R, and Ev"(0)= —M, to compute the constants of integration as

C, =R, and C, = —M,. Substitute into Egs. (a} and (b) and integrate twice more:

4 2
wx®  Rx

Elu‘:—24L+ S Mx+C, (©)
wx® RxX MX
Elv = — 120L+ 6 " +Cx+C, )

The boundary conditions v'(0) =0 and v(0) = 0 can be used to evaluate C, = C, = 0. In addition, the boundary
conditions v'(L) =0 and v(L) =0 can be used to construct two equations to compute R, and M :

wL® R,L* -0 q wL4+R1L3 ML
Toq Ty ML= and o tTe T2 T

Solving gives M, =wL?/30 and R, = 3wL/20. The equations of statics can be used to compute M, = wL?/20
and R, = 7TwL/20. The results shown in Fig. 4-4 are the reactions caused by the external load. When these results
are used in later applications in this chapter, the reactions will be reversed and considered equivalent joint
loadings to replace the external beam loading.

The beam and the notation of Fig. 4-5(a) can be used to identify the end displacements and rotations
for a beam subjected to the end forces and bending moments shown in Fig. 4-5(b). Construct a set of
four equations that relate each force or moment action of Fig. 4-5(b) to the displacements and
rotations of Fig. 4-5(a).

11)’

UI
A X

(a) Displacements and rotations

R,

(b) Forces and moments

Fig. 4-5

It is desirable, first, to write an equation that relates R, to each of the displacements and rotations of Fig.
4-5(a), or

R, =f,,0,,v,,6,) (@)

Assume, before assigning boundary conditions to the beam problem, that both supports are fixed. The function
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flw)) of Eq. (a) is evaluated in terms of a displacement applied at the left end of the beam. The analysis was
carried out in Prob. 4.2, and that result can be used. Similarly, R, is affected by a rotation f(§,) at the left end of
the beam, and that result is given by Prob. 4.1. The remaining functions are computed in Probs. 4.15 and 4.16.
The function of Eq. (a) is written as

12Flv, 6FEl8, 12Elv, ©EI6,
R, = + - +

1 L3 Lz L3 Lz ®)
Similarly,
M, =fv,.0,,v,6,)
and the functions are again evaluated using the results given by Probs. 4.1, 4.2, 4.15, and 4.16:
6EIv, 4EIS, 6FElv, 2FEI6,
M, = 2t - 2 (©)
L L L L
The reactions are evaluated at the right end of the beam in a similar manner:
12Elv, 6El8, 12Elv, 6FI6,
R,=- 3 >t 3 2 )
L L L L
6EIlv, 2EI8, 6EIv, A4EI,
M,= >t - 2 ()
L L L L
A more compact matrix statement of Eqs. (b)—(e) is
R, 12 6L —12 6L v,
M| EI| 6L 4L* —6L 207 |] 6,
R,[ 12| -12 -—6L 12 -6L v, )
M, 6L  2L* -6L 4L |8,
or {fy = [KKv} (&)

where [K] is the stiffness matrix, {f} is the force matrix of equivalent computed shear and moment end actions
(dependent upon the external beam loading), and {v} is the displacement matrix of the unknown displacements
and rotations of the beam ends.

Equation (g) could be used directly for the computation of beam reactions if all beam loadings were
specified as corresponding joint displacements and rotations. The analysis is carried out in two parts. First,
equivalent fixed-fixed end actions representing the beam loading are applied to the ends (joints) of the beam, and
that becomes the left-hand side of Eq. (f). Second, the actual reactions are computed as the sum of the equivalent
joint forces and moments plus the forces and moments caused by the joint displacements and rotations. Problem
4.5 illustrates this procedure for a simple beam.

The beam of Fig. 4-6 is statically determinate, and computations for the reactions R, and R, are
elementary using the equations of statics. However, the beam will serve the purpose of illustrating the
displacement method. Use the displacement method to compute the reactions for the beam of Fig. 4-6.
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YA
w
A B -
X
- ]
L
R, R,

Fig. 4-6

Assume the beam is fixed-fixed and compute equivalent joint loadings to represent the uniformly varying
load. Equivalent joint loadings are given by the results computed in Prob. 4.3 or can be obtained from Table 4.1.
Substitute into Eq. (f) of Prob. 4.4 to compute joint rotations.

—3wL/20 12 6L —12 6L (v,

—wL’/30 | EI| 6L 4L® —6L  2L7|] ¢

L0 (T 2| -12 —eL 12 6L v, @
wL?/20 6L 2L —6L 4L |4,

Equation (a) is an exact model of the fixed-fixed beam, and if solved for all joint displacements and rotations,
they will compute as zero. Apply the boundary conditions v(0) = v(L) = 0 to make the fixed-fixed beam appear
as the simple beam that is being analyzed. The given boundary conditions are deleted from Eq. (a) to give the

matrix equation
-wL?/30) _EI[4L® 2L”][6, )
wL?/20) 2 |2L* 4L’ |le,

Solving Eq. (b) gives the rotations at each joint:

TwL’® i o= wL’
36081 2= 45El ©

6, =

The final reactions are computed as the reactions caused by the joint rotations plus the applied joint loadings that
replaced the applied beam loading:

R, 12 6L —12 6L 0 3wL/20Y).
M | Er| eL 4L* —6L  2L® || —7wL’/36El wL”/30
R (T2 |-12 —eo 12 —6L 0 1 7wLs20 @
M, 6L  2L* —6L  4L? wL’ [45El ~wL*/20

The matrix equation is evaluated to give the final results:

wl wil

Ri="¢ Re=75

4.6. The two-span beam of Fig. 4-7(a) is fixed at both ends and supported between the ends with a simple
support that allows rotation. Compute the rotation at the simple support and reactions at all supports.
Construct the corresponding shear and moment diagrams.



120

O.llle{L

BEAM AND FRAME FINITE ELEMENTS

2L

wlL/2

j==t>wL2/1z

1 2

(a) Equivalent joint loading, beam 1-2

7
ﬁWL

A~ Swl

l Shear diagram

| 0.050wL>
/

0.0139wL’

\ _—— c

CO.0278wL2

B

(b) Moment diagram
Fig. 4-7

[CHAP. 4

Two local elements will be used for this structure and combined to form a global stiffness matrix. The
beams have a common rotation and displacement at support 2, and the connectivity of the two beam elements
will occur at that support. The local stiffness matrices will be constructed first using Eq. (f) of Prob. 4.4 as a
model. The equivalent joint loads for the uniform load of beam [-2 are obtained from Table 4.1.

Beam 1-2:

Beam 2-3:

o o o o

—wL/2 12 6L  —12 6L v,
-wL?/12( EI| 6L  4L® -—6L 2L’ ]] 9,
-wL/2 (T3] -12 -6L 12 —6L v,
wL?/12 6L 2L —6L 4L’ ||,

12 6(2L) —12 6(2L)
EI 6(2L) 42L)Y  —6(2L) 202LY
Ty | 12 —6(2L) 12 —6(2L)

6(2L) 202L)  —6(2L) 4(2L)*

<

2

R

<
w

2

®)

The two local stiffness matrices are combined through v, and 6, to give a 6 X 6 global matrix. Each local
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stiffness matrix is defined in the matrix of Eq. (c), and the connectivity is illustrated by the matrix elements
grouped inside the center box.

— 12 6L -12 6L 0 0 (v [ —wL/2 )
6L 4L’ —6L 212 0 0 6, ~wL?/12
gr| —12 —6L | 12+12/8 —6L+12L/8 | —12/8 12L/8 v,
L*| 6L 20? |—6L+120/8 4L>+16L%/8 | 120/8  8L%/8 6, >:< wL?/12 > ©
0 0 -12/8 —-12/8 12/8  —12/8 || v, 0
0 0 12L/8 8L’/8 —120/8 16L%/8_] \ 8, ) L. 0

The boundary conditions for the beam of Fig. 4-7 are v, =v, =v, =0, =0, = 0. The solution reduces to one
equation and one unknown 6,. Visualize that all rows and columns of Eq. (c) corresponding to the zero boundary
conditions are removed, and the result is

wL? wL’®

2z " %=

B,
5 (L 216, = @)

The results for each span must be computed individually using the local stiffness matrix for that span. The
reactions for span 1-2 are V,, V,, M,, and M,. The stiffness matrix is the same as Eq. (@), and the computation
appears as

v, 12 6L —12 6L 0 wL/2
M, _EIl 6L 4L —6L  2L° 0 N wL?/12
Voo [ 7| 12 -—6L 12 —6L 0 wlL/2 ©
M, 6L  2L> —6L  4L* |\ wL’/72El —wL?*/12
Multiplication gives
L N L _wL? M= wL*
A" T2 BT 12 29 5= 36

The notation V;, requires some additional explanation. The total reaction at support B is composed of the end
shear at point 2 of beam 1-2 plus the end shear at point 2 of beam 2-3. Then, R, =V,, +V,..
Similarly, the stiffness matrix of Eq. (b) is used to compute the shears and moments for beam 2-3.

V., 1.5 1L5L  —15 1.5L 0 0
My EI| 15L 2L —15L L* ||wL’/72El 0
v. ("2 -15 -15L 15 —1sL 0 0 )
M, 5L L*> —15L 2L? 0 0
wL wlL wL’? wL’
VMZK Vc:Rc:_Zg M, = 36 M. = 72 Ry =Vp, tVp,

Internal supports such as joint C should always have the same numerical value of bending moment but with
opposite signs, thus indicating equilibrium at the joint. The bending moments obtained from the stiffness analysis
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must be converted from the joint sign convention to the beam sign convention to construct shear and moment
diagrams. Review Fig. 4-2 for the beam sign convention and note that M, is counterclockwise using the joint sign
convention and is a negative moment using the beam sign convention. Similarly, M, is a negative moment and
M . is a positive moment using the beam sign convention. Shear and moment diagrams are shown in Fig. 4-7(b).

The two-span beam structure of Fig. 4-8(a) is free to rotate at supports A and B and is fixed at joint C.
Compute the rotations at supports A and B and the reactions at all supports. Construct shear and
moment diagrams.

EEEEN] —

1 32,2 3¥FC

L L L
L 2L

l Shear diagram

|
M 0.10125wL?

0.025wL?
\/’ /ﬂ
C 0.050wL?
Moment diagram
)
Fig. 4-8

The structure is identical to the one that was analyzed in Prob. 4.6 except that the support at A is free to
rotate. There are two unknowns, 6, and 6,. The stiffness matrices are identical to Eqgs. (@)—(c) of Prob. 4.6, and
the boundary conditions are v, = v, =v, = 6, = 0. Equation (c) of Prob. 4.6 reduces to two equations and two

unknowns:;
ELTaL? 2.6 [-wL?/12 @
Lo a*|\e, wL?/12 a

Solving Eq. (@) gives 0, = —wL>/30El and 0, =wL>/40EI. Joint 1 rotates clockwise, and joint 2 rotates
counterclockwise.

Use the stiffness matrix of Eq. (a) given in Prob. 4.6 to formulate the matrix equation that can be solved for
the reactions at the ends of beam 1-2:
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1A 12 6L —12 6L 0 wL /2
M| El| 6L  4L® —6L  2L* |} -wL’/30EI wL?/12
v,(T -2 - 12 -eL 0 " L2 ®)
M, 6L 2> —6L  4L* || wL’/40FI —wlL?/12
The reactions are computed as
9wl 11wl wL?
Vi=R,= 20 Vg, = 20 M,=0 M,=- 20

Similarly, the stiffness matrix of Eq. (b) of Prob. 4.6 is used to compute the reactions for beam 1-2:

Vs, 1.5 15L —15 1.5L 0 0
m,| EI| 1s5L 20 —15L L* || wL®/40EI 0
v.( r°| 15 -15L 15 —15L 0 0 ©
M, 1.5L L*  —-15L 2L? 0 0
3wl 3wl wL’® wlL?
VBZZW Ve = c= 7 gy M, = 20 M. = 40 Ry, =V, +V,

The shear and moment diagrams are shown in Fig. 4-8(b).

4.8. The beam structure of Fig. 4-9(a) is sometimes called a propped cantilever beam. Compute the

rotations ¢, and 6, and the deflection v,. Then compute the reactions at B and C. Construct the shear
and moment diagrams.

The beam structure is similar to that of Prob. 4.6 but has different boundary conditions. The span from A to

w
1 2 3
L B P #‘
) L ol 2L I
(a)
VT dwL |
|
Shear
M 2
A wlL4

—~——

& .-
wL"/2 Moment

()

Fig. 4-9
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B is free to rotate and deflect and can be analyzed by merely specifying the proper boundary conditions for the
global matrix formulation given in Eq. (¢) of Prob. 4.6. In the theory of matrix analysis of structures the
overhanging span, A to B, can be replaced by an equivalent shear force and moment acting at B. The method
illustrated here corresponds to the method used in computer applications; merely specify the proper boundary
conditions.

The matrix formulation of Eq. (¢) of Prob. 4.6 will be used with boundary conditions v, =v, =6, =0.
Delete the rows and columns that correspond to the zero boundary conditions and the result is the following three
equations.

12 6L 6L (v, —wL/2

El 2 2 2

— 6L aL* 2L 6, ¢ =14 —wL?/12 (@
6L 2L° 4.7 |6, wl?/12

Solving Eq. (a) gives 0, = 5wL>/12EI, 0, = wL>4EI, and v, = —3wl" /8L Both joints rotate counterclockwise,
and the deflection is downward. The final results for reactions are computed using the local stiffness matrices of
Prob. 4.6.

A 12 6L 12 6L —3wL*/8EI wL/2
M| _EI| 6L 4L —6L  2L7|) SwL®/12EI N wL?/12 ®)
Vol | -12 -6L 12 —6L 0 wil/2
M, 6L  2L7 —6L  4L® wi>/4El —wl?112
and
Vys L5 1L5L  —1.5 L.5L 0 0
M, | EI| 15L 2L —15L  L* |JwL’/4EI 0|
v.( 7| -15 -—15L 15 —15L 0 0 ©
M. 1.5L L*  —-15L 2L 0 0
Solving Eqgs. (b) and (c) results in
3wL 3wl wL®
VA:RA:O VBl:WL VBzzT VC:RC:_—g—_ MA=0 MB: 2
wiL® 11wL
M. = 4 Ry =V tV, = 2

Shear and moment diagrams are shown in Fig. 4-9(b).

Use Hermite’s interpolation formula to derive cubic shape functions for the transverse deflection of
beams.

Shape functions for beams must reflect the behavior of the possible boundary conditions on deflection and
rotation at each joint. It follows that just any one-dimensional cubic shape function may not be adequate.
Hermite’s interpolation formula allows the deflection and its first derivative to be satisfied at each joint. The
shape function N, is shown in Fig. 4-10(a) with boundary conditions v(0) =1 and v(L.) =v'(0) =v’(L) = 0. The
functions L, of Eqs. (4.5) and (4.6) are defined as follows for n = I:
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- = _z
o

L
(a) v(0)=1

() v'(0)=1

g}

L
(0) v(L)=1

T

L
(@) v'(L)=1
Fig. 4-10
X 7 Xy X~ Xy

L,x)=
Xo — X, X, T Xo

Lyx) = (@)

where x, =0 and x, = L. Substituting into Eq. (@) gives

~L x o dLw -1 dL 1

Lo(x):x——L L=7 L dc L ®)

The boundary conditions require that only one term of Eq. (4.4) must be evaluated. The shape function N, has
v(0) =1 as the only nonzero boundary condition, and that requires that only U/{x) =U,(x) of Eq. (45) be

evaluated:
- [1-2( [ 52
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Substituting into Eq. (4.4) with v(0) =1 and rearranging gives the shape function
2 3

X X
:1~3P+2—

N E

©

1

Shape function N, satisfies the slope condition at x =0, v'(0)=1, and the remaining conditions are
v(0)=v)=0v'(L) =0. It follows that only one term of W,(x) must be evaluated in Eq. (4.4):

— Ly
W) = (x)[E-L—Z—l]

and Eq. (4.4) gives
2
X x
N2=x(1 —224-?) @)

Shape function N, satisfies the deflection condition at x =L, v(L) =1, and the remaining conditions are
v(0)=v'(0)=v'(L)=0. It follows that only one term of U,(x) must be evaluated in Eq. (4.4):

U, ()= [1 - 2(%)()( —L)] (;-22)

Evaluating Eq. {(4.4) gives

:_ZL_ (6)

= L)’
WL(x) - Lz
_ (i i)
and N,=x IE )

The deflection at any location along the beam can now be written
vy =Nv, +N,6, + N;v, + N, b,
or v(x) = [NI{v} (g

where [NI=[N, N, N, NJ] and {v}=[v, 6 v, 6] 103

Use the potential cnergy function defined by Eq. (3.13) and the results of Prob. 4.9 to derive the
stiffness matrix for beam finite elements.

The variational function, Eq. (3.13), is written as a volume integral and a surface integral. The volume is the
volume of the beam that can be assumed to have a constant cross section within any finite element, and the
surface corresponds to any surface where an external loading is applied. In the case of a two-dimensional beam
the loading is the external applied loading and can be any load condition, some of which are illustrated in Table
4.1. The surface traction term T, of Eq. (3.13) is replaced by w(x), which represents the external transverse
loading. In the previous discussion concerning the stiffness method, the external transverse loading was applied
as an equivalent joint loading. The potential energy of the external loading will give a similar result. In addition,
the body force term of Eq. (3.13) will be neglected. Equation (3.13) can be written
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J(v)=jf %O'dedA—f wo dx (a)
A YO 4]

The first term of Eq. (a) is called the strain energy and is of interest because it is used to derive the stiffness
matrix. The second term is the potential of the external loading. The strain can be defined in terms of
displacement of the elastic curve of the beam. A more familiar approach is to. define the bending stress in terms
of bending moment. The stress caused by bending moment is derived in mechanics of materials as (see Fig, 4-1)

M
ot =12 ®)

and for elementary beam theory, Hooke’s law, Eq. (b), and the second of Egs. (4.2) can be combined to give

_o) My  duw

W="% ET T 2 ©
Equation (a) can be written
Ly (dw )\’ -
J)= S\——> ) EdAdyr— | wudx
alto 2 dx 0
Recall that [, y> dA =1, and a more compact form is
1 L L
Jo)=— f EIQW")* dx — f wu dx )
2 0 0

The second derivative in Eq. (d) is defined in terms of the shape functions and joint (nodal point) displacements
given by Eq. (g) of Prob. 4.9. It follows that

v" = [N"Kv}
and substituting into Eq. (d) gives the potential energy in matrix form:

1 “ T T - ‘ T T
0= [ T BN s - [ N s ©

Minimize J(V) with respect to {v} and set the result equal to zero to obtain the matrix equation that defines the
local beam finite element:

fo [N [EII[N"J{v} dx — J; [N]"wdx=0 H

Substituting Egs. (¢)—(f) of Prob. 4.9 and their second derivatives results in the matrix equation
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[~ 6 12x =7
FERE
_i_f_g vl
fl L 6 I2x 4 6 6 1 2 676
|6 o BNt T T T e(®
L L 6,
2. 6
. L 2
(X X))
1=375+425
x2 X3
. x—2f+?
:f{ . pwdr  (g)
3;—2?
3 2
X x
\ > L )

Performing the matrix multiplications and integrating will give the stiffness matrix, which can be compared with
Eq. (f) of Prob. 4.4. The matrix of equivalent joint loading corresponds to the uniformly loaded fixed-fixed beam
of Table 4.1:

12 6L —12 6L (v, wL/2

EI| 6L 4L> —-6L 2L |} 6, wL?/2

-2 o—er 12—k Nu [T w2 )
6L 2L —6L  4L® |4, —wL?/2

Note that the y axis is upward in the coordinate system being used and that the uniform load in this derivation
acts upward. Thus equivalent joint loading on the right-hand side of Eq. (g) is opposite in sign from the results
shown in Table 4.1.

Derive the local finite element stiffness matrix for a beam with combined transverse loading and axial
force.

The stiffness matrix for axial force acting on a rod or beam was derived as an example of elementary
elasticity in Prob. 2.9 using the variational function, and the derivation was repeated in Prob. 2.21 using a direct
approach. In this application the body force will be omitted and replaced by axial forces N, and N, acting at
joints (nodes) 1 and 2. The node loadings and corresponding displacements are shown in Fig. 4-11. The stiffness
matrix for axial forces from Prob. 2.9 is repeated here:

AE L =1]fu _ [N

L -1 1)lu) W, @
where u, and u, are the node displacements. The complete local stiffness matrix is obtained by combining Eq.
(a) above and Eq. (f) of Prob. 4.4

N, [ C, 0 0 —C, 0 0 T (u)
R, 0 12C,  6C,L 0 —12C, 6C,L v,
M, 0 6C,L 4C,L> 0  —6C,L 2C,L° 6,
N (| -¢c, o 0 c, 0 o N U, ; ®)
R, 0 -—12¢, -6C,L 0 12c, —6GCL |]uv,
M, 0 6C,L  20,L° 0 —6C,L 4C,L* |\ 6,
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where C,=AE/L  and C,=EI/L>. (©)

The axial and transverse deformations are uncoupled for beams when the local axis of the beam coincides

with the global axis.
6,
G e

v, v,

Fig. 4-11

4.12. Derive the transformation matrix and corresponding stiffness matrix for a beam oriented in a local &, 7
coordinate system and referenced to the global x, y coordinate system.

y

6,
/ x

U,

U,

Fig. 4-12 Positive axial displacement, transverse displacement, and rotation in the local &, 7 system.

The beam is shown in Fig. 4-12, and the vector transformations are given by Eqgs. (3.74) and (3.15) and
illustrated in Fig. 3-2. The transformations are given in matrix form as

(v}, = [THVE,, (@)
{v},, = TI"{v),, (b)
[ cosa sina

where [T]= [—sin a  cos a] ©

In this application the transformation is from the local &, n system to the global x, y system. The transpose of
{v},, is
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Ve, = 5m" @)

The first term of Eq. (e) of Prob. 4.10 can be used to derive the transformation. Assume that the matrices of Prob.
4.10 correspond to the local &, 77 system, and the energy term appears as

[ '
B} JO {v} &, [N, [ETI[N"],., v}, dx {e)

Substitute Egs. (@) and (d) into Eq. (e).

% f ’ (v} IT) N L [BININ",, [THv},, dx )
The local (&, n) stiffness matrix is
L
K], = f [N"]¢, [EININ"],, dx

and the expression inside the integral can be written

VY ITY K, [TV,
and it follows that the stiffness matrix in the x, y global system is

[K1,, = [T]"[K],, [T] (8

The transformation for the transverse load from the £, n system to the x, y system can be obtained in a similar
manner (see Prob. 4.26).

The reader can review the transformation for boundary conditions for plane elasticity discussed in Prob. 3.23
and will find that the transformation given by Eq. (d) of Prob. 3.23 is the reverse of Eq. (g) given above. Note
that the boundary conditions for the plane elasticity are specified in the local £ n system, while the boundary
conditions for beam finite elements are specified in the local x, y system. The complete transformation for node
displacement boundary conditions, Eq. (a) above, that transforms the & 7 node displacements to the x, y node
displacements, using the displacement vector defined by Eq. (b) of Prob. 4.11, is

Uy [ ¢ s O 0 0 07(xy
Vien -s ¢ 0 0 0 0f{]v,
0, 001 0 0 0lls
e, = Muf: oo 0o ¢ s 0f)u =[THv,,} )
Vsen 0 0 0 —s ¢ O v,
6.,) Lo oo o o 1]le

where ¢ = cos @ and s = sin a.
After substituting into Eq. (g) and using the stiffness matrix of Eq. (b) given in Prob. 4.11, the stiffness
matrix in the global system becomes (see Logan, 1986)
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6/ 6/
E 4] - -5 cC 2
[K]”:z L L
S : A 2+1_2£ 2 A_E g
ymmetric c IE s IE cs .S
121 6/
As*+—¢* -7 ¢
. 4]
@)

4.13. The frame of Fig. 4-13 is fixed at node 1 and free to translate in the x direction at node 3. Compute
the displacements and reactions at all nodes.

p

w = 10001b/ft
4 v ¥ ¥ ¥ 3
T 1 n I=100in*
® ¢ @ A=10in’
; E = 30(10%) psi
2 10 ft
v
13
* ©)
101ft
Frame
6,

6,
e — ?,,@T .

Element 1, x, y and £, n coincide.

Fig. 4-13
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I y
U,
l o
¥y b 6% \
—r—— —— W —_—
of = o =
ol, . ol
93 Uy Us X
 u, v,
l Global x, y system
3
Local &, n system
Element 2
N, =3742.2
M, =150935.5in1b M. =0 l
2
RN M=0
. — N0 o
N = V2 = 0
1
! f
V,=3742.21b
V,=6257.81b
Final node reactions
M,=0
| R
V,=0
N,=37422

Fig. 4-13 (Continued)

The analysis of this problem will illustrate the use of the matrix transformation derived in Eq. (i) of Prob.
4.12. There is considerable detail included in the analysis to illustrate how deformation boundary conditions
specified in the local system are transformed and then specified in the global system. Let / = 100 in*, A=10in?,

and E = 30(10)° psi for both structural members (elements). The stiffness matrix and corresponding displacement
matrix will be evaluated for both elements.
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Element 1 (nodes 1-2):

The element axis is assumed to be directed from node 1 to node 2 and coincides with the global x axis; by
inspection, e = 0°. Then,

c=cos0°=1 s=sin0°=0
Also, for both elements

121 12(100)

= (120 =0.083333
g_6(100)_5

L~ 120

E  30010)°

T =130 = 250,000

Substituting into Eq. (i) of Prob. 4.12 gives the stiffness matrix

10 0 0 -10 0 0 (u
0 0083333 5 0 —008333 5 [|v
0 5 40 0 -5 200 |) 6,
250,000 9 0 0 10 0 0 [\u @
0 —0083333 -5 0 008333 -5 |]|ov,
0 5 200 0 -5 100 | Lo,

Element 2 (nodes 2-3):
The element axis is assumed to be directed from node 2 to node 3; by inspection, the angle between the
local axis and the global x axis is a =270°. Then,

¢c=cos270°=0 s=s8in270°=—1

Again, substituting into Eq. (i) of Prob. 4.12 gives the stiffness matrix

0.08333 0 5 —0.08333 0 5 u,
0 10 0 0 -10 0 v,
0 400 -5 0 200 |) 6,
2500001 008333 0 -5 008333 0 -5 |\u ®)
0 —-10 0 0 10 0 Uy
5 0 200 -5 0 400§ 6,

The global stiffness matrix is obtained by combining Eqs. (@) and (b) through the connectivity at node 2.
[~ 10 0 0 —-10 0 0 0 0 0
0 0.083333 5 0 —0.083333 5 0 0 0
0 5 400 0 -5 200 0 0 0
—10 0 0 10.08333 0 5 —0.08333 0 5

250,000f O —0.083333 -5 0 10.083333 -5 0 -10 O
0 5 200 5 =5 800 =5 0 200
0 0 0 —0.083333 0 =5 0.083333 0 =5
0 0 0 0 —10 0 0 10 0
. 0 0 0 5 0 200 =5 0 400
() f O
v, —5000
9, —1(10)°
u, 0
><< v, >=< —5000 > (c)
6, 1(10)°
U, 0
v, 0
Y, \ 0 J
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The right-hand side of Eq. (¢) represents the applied joint loading that replaces the uniform load for beam
element 1-2, V, =V, = —wL/2 = —5,000, and M, = —wL?/2 = —100,000 = —M,. The boundary conditions are
u, =v, =0, =v,=0. The zero boundary condition at node 3 corresponds to zero displacement in the global y
direction described by v, even though the displacement is axial in the local £, 7 system. After coordinate
transformation all boundary conditions must be referenced to the x, y system, or displacements u and v always
correspond to x and y, respectively. Note that in two dimensions the rotation € is represented by a vector normal

to the plane of the structure and does not require transformation.

The final matrix equation to be solved is obtained by striking out the rows and columns that correspond to

the zero boundary conditions:

10.083333 0 5 —0.083333 5
0 10.083333 -5 0 0
250,000 5 -5 800 -5 200
—0.083333 0 -5 0.083333 -5
5 0 200 -5 400
Solving Eq. (d) gives the results for node displacements:
u, —2.91038(10) "
v, —1.49688(10) >
6, p=4¢ 9.8129310)~"
U, 0.117755
6, 9.81293(10) *

Substituting the displacements into Eq. (a@) gives the results for element 1:

10 0 0 -10 0 0
0 0.083333 5 0 -0.083333 5
0 5 400 O -5 200

250,000 —10 0 0 10 0 0
0 ~0.083333 -5 0 0.083333 -5
0 5 200 0 -5 400

The joint loading must be added to the results given by Eq. (f), or

0 0 0
12578 5000 6257.8
50.935.5 100,000 1509355 |
o (F 0 = 0
~125738 5000 3742.2
100,000 100,000 0

u, 0
v, —5000
6, y =4 1(10)° )
u, 0
0, 0
@
0
0
0
—2.91038(10) "' N
—1.49688(10)*
9.81293(10)*
Nl
Vi
M,
N, (8)
v,
M

2

The results are shown in Fig. 4-13. Substituting the displacements into Eq. (b) gives the results for element 2:

[~ 0.08333 0 5 —008333 0 57
0 10 0 0 -10 0
—008333 0 -5 008333 0 -5
0 -10 0 0 10 0

| 5 0 200 -5 0 400 |

—2.91038(10n "'
—1.49688(10)°
—4

9.81293(10) )

0.117755
0

9.81293(10)*

The joint loading is zero for element 2 since there is no external loading. The multiplication indicated by Eq. (k)

gives the final results in the global system and formally appears as
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0 0 0 N,
—3722| o ~37422 v,
0 0 0 M, .
o (TYof"Y o (7w ®
2| o 37422 a
0 0 0 M

3

The results, Eq. (i), should be transformed back to the local system for final interpretation. Equation (a) of Prob.
4.12 gives the proper vector transformation and can be written as {F},, = [THF},, where {F} represents the final
node reactions. The matrix form of the transformation is given by Eq. (#) of Prob. 4.12. The final results, in the
local system, are computed as

(N, [0 -1 0 0 0 0f 0 Y [ 37422

Vo, 1 0o o o 0 off-37422 0

M, o 0 1 0 o0 o0 0 % 0

) N |0 0o o0 0o -1 o0 Y o0 (7Y a2 ol
Vien o 0 0o 1t 0 0 37422 0

o) Lo 0 0 0 il o ) U )

The final results are shown in Fig. 4-13. The reader should note that the local axis for element 2 is directed from
node 2 to node 3 and that the results given by Eq. () indicate that the column is in tension.

4.14. The frame of Fig. 4-14 is supported at joints 1 and 3 with pin-type supports that are free to rotate but
not to translate. The length and structural properties are the same as in Prob. 4.13. Compute the
reactions at each support and internal actions at joint 2.

Element 1-2 (nodes 1-2):
The beam element is identical to element 1-2 of Prob. 4.13, and the stiffness matrix is the same as Eq. (a) of
Prob. 4.13.

Element 2 (nodes 2-3):
The element axis is assumed to be directed from node 2 to node 3 and, by inspection, the angle between the
local axis and the global x axis is « = 300°.
¢ =cos 300°=0.5 s = sin 300° = —0.86603

Substituting into Eq. (/) of Prob. 4.12 gives the symmetric stiffness matrix

25625 —4.2941 43301 —2.5625  4.2941 4.3301 u,

75208 2.5 42941  —7.5208 2.5 v,
400  —43301  -25 200 |},
250,000 25625 42941 43301 |Yu, (@)
75208 -25 |}o,
a0 e,

The element stiffness matrices are combined through the connectivity at node 2. Substituting the boundary
conditions u, = v, =u, =v, =0 gives the final global stiffness matrix to be solved for translations and rotations:

400 0 -5 200 0 8, —1(10)°
125625 —4.2941 43301 4.3301 || u, 0
250,000 7.6042 =25 2.5 v, ¥=4 —5000 ®)
Symmetric 800 200 6, 1(10Y°
400 0, 0
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10 ft
M, =0 M, =72670.8
- [ = 2 -
N, =3935.6 N, = 3935.6
V, =4394.4 V, =5605.6
V, =5605.6
> N, =3935.6
M, =72670.8

Fig. 4-14 Node reactions in the x, y system.

Solving Eq. (b) gives the results for node displacements:

8, —1.54936(10)
", —1.57457(10)
v, p =14 —4.06005(10)° ©
0, 9.97222(10)~*
0, —4.56194(10)"*

Substituting the displacements into Eq. (a) of Prob. 4.12 and adding the equivalent joint loading gives the results
for element 1:
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" 10 0 0 -10 0 07 0
0 0083333 5 0 —0083333 5 0
0 5 400 0 -5 200 | | —1.54936(10)2
250,0001 —19 0 0 10 0 0 1\ —1.57457(10)°
0 —0.083333 -5 0 0083333 —5 || —4.06005(10)°
| o 5 200 0 -5 400 | U 9.97222(10)°*
3935.6 0 3935.6 N,
—605.6 5000 4394.6 v,
~100,000 100,000 0 M,
= + ~ - @
—3935.6 0 ~3935.6 N,
605.6 5000 5605.6 v,
27,3292 ~100,000 ~72,670.8 M,

Similarly, computations using Eq. (@) above give the final reactions at nodes 2 and 3 of element 2 in the global
coordinate system:

[2.5625 —4.2941 43301 —2.5625 42941 43301 | —1.57457(10) )
7.5208 25 42941 —7.5208 2.5 —4.06005(10) >
250,000 400  —4.3301 -25 200 9.97222(10)* \
25625 —42941 —4.3301 0
Symmetric 7.5208 —2.5 0
| 400 | (—4.56194(10) *)
3935.6 0 3935.6 N,
—5605.6 0 —5605.6 v,
72,670.8 0 2670.8 M,
= ol = ©
—3935.6 0 —~3935.6 N,
5605.6 0 5605.6 v,
0 0 0 M

The node reactions can be converted to the local system using the transformation {F},, = [TI{F},,, where [T] is
given by Eq. (k) of Prob. 4.12.

Supplementary Problems

4.15. Use the differential equation defined by Eq. (4.1) to solve for shear and moment reactions for the fixed-fixed
beam of Fig. 4-15.
[ 184

6,

7
’L _

“C

)—
M, *

|
L v

Fig. 4-15 Applied rotation 6, at x = L.
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4.16.

4.17.

4.18.

4.19.

4.20.
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Use the differential equation defined by Eq. (4.7) to solve for shear and moment reactions for the fixed-fixed

beam of Fig. 4-16.

4y

L

R,

Fig. 4-16 Applied displacement at x = L.

Verify the fixed-fixed beam equivalent loadings given by Table 4.1.

Compute the reactions for the beam of Fig. 4-17.

A

Compute the reactions for the beam of Fig. 4-18.

EREERER
51 g2
e
- L ! 2L
Fig. 4-17
5000 1b 5000 1b
3’ Ee) B
’RA *RB 1RC

St l Sft | St | S5t |

E =29(10)° psi, I =1500in*
Fig. 4-18

Compute the reactions for the beam of Fig. 4-19.

ﬂ 3000 1b/ft

™

1

]
>

10 ft R 10 ft

-]

E =29(10)° psi, I=1500in*
Fig. 4-19

1=
]
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4.21. Compute the reactions for the beam of Fig. 4-20.

1200 1b/ft

Y ¥ ¥

— C
J

R~ 101t 10t

[
>4~

E =29(10)° psi, I =1500in*
Fig. 4-20

4.22. Compute the reactions for the beam of Fig. 4-21.

12001b/£t
¥ ¥ ¥ ¥y v v 3
»”
1

e _1r'$”’”

1 T
101t R, 10 ft

E =29(10)° psi, I = 1500 in*

Fig. 4-21
4.23. Show that the equivalent joint loadings computed in Prob. 4.3 and tabulated in Table 4.1 for a uniformly varying
external load can be obtained from the potential energy expression given by Eq. (f) of Prob. 4.10.
4.24, Derive the shape functions for a beam finite element of length L assuming a cubic polynomial in the form
V() = a, +a,x + a,x" + a x>
by satisfying the boundary conditions v(0) =0, v(L.) =0, v'(0) =0, and v'(L) = 0.
4.25.

The fixed-fixed beam of Fig. 4-22 has an axial force applied at 2L/3. Use the finite element derived in Prob. 4.11
to compute the axial reactions.

A P v
—_— /] | —y— ‘B —_—
N, Y N,
ole |
2L/3 L
Fig. 4-22

4.26. Derive the transformation from local & n coordinates to global x, y coordinates for transverse beam loading.

4.27. Repeat Prob. 4.13 assuming additional boundary conditions of u, = v, = 0.

4,28, Compute the reactions at supports A and D and joint rotations at B and C for the frame of Fig. 4-23. Assume

E =29(10)° psi, I = 1800 in*, and A =120 in” for all members.
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s¢ 120,0001b
>
B ¢ A
E =29(10)° psi, I = 1800in*, A =20in’
20 ft
A7 HrD—1—

- .

20 ft ik

Fig. 4-23

4.29. Compute the reactions at supports A, C, and D and rotations for joints A, B, C, and D along with the horizontal
displacements of supports C and D for the frame of Fig. 4-24. Assume E = 20(10)° psi, 1 =1800 in*, and
A =20 in” for all members.

1200 Ib/ft
A B S
C
151t

D i A

. AL |

TY N 20 ft 1

E =29(10)° psi, I =1800in*, A =20in’
Fig. 4-24

4.30. Compute reactions, joint rotations, and the horizontal displacement of joint A for the frame of Fig. 4-25. Assume
E =29(10)° psi, = 1800 in*, and A =20 in” for all members,

1200 1b/ft

10,000 1b

Sft | S5ft 14 ft 10 ft

E =29(10)° psi, I =18001in"*, A =20in’
Fig. 4-25
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4.15,

4.16.

4.18.

4.19.

4.20.

4.21,

4.22.

4.23.

4.24.

4.25.

Answers to Supplementary Problems

M, =2EIf,/L, M, = 4EI6,/L, R, = 6EI0,/L*, R, = 6EI0, /L.

M, =M, =6Elv,/L* R, =R, =12E,/L’.

I

M.=0, M, = —3wL?/72 (acting on member A-B), R, =33wL/72, R, =81wL/144, R, = —3wL/144,

MA
6, = —SwL’/144EI, 6, = wL’|36EI, 6. = —wL’[12EI, v, =v, =v. =0.

M, = 5360 ft-Ib, M, = —8040 (acting on member A-B), R, =22301b, R,=60701b, R.=17001b, 6, =0,
b,

= —1.48(10) ", 6. =5.91(10) "

M, = 2500 frIb, M, = —12,500 (acting on member A-B), M. = —22,500, R, = 1500 1b, R, = 15,000, R, =
13,500, 6, = —4.14(10) ",

R, = 6000 Ib, R, = 6000, M, =0, §, = —1.655(10) *, 6, = 0, = 1.655(10) *, v, = 0.1986 in.

M,=M.=0, M,=-15000 (acting on member A-B), R, =R.=45001b, R,=15000, 6, =—6.=
—8.28(10)7%, 6, =0.

Compute fi [N]"(—wx/L)dx, where [N} is given by Eq. (g) of Prob. 4.10.

Substitute boundary conditions:

v =v, =a,
vil)=v,=a,+a,L+a,l”>+a,l’
v'(0)=6, =a,

v'(L)=6,=a, +2a,L +3a,L’

Solving for the coefficients gives

3w, —v,) 20 +86, 20, —v,) 6,16,
a4y, =V, a, =0, a,=— IE - L a; = IE + 2

Rearranging and writing v(x) in matrix form v(x) = [N]{v} gives [N] identical to Prob. 4.9.

The axial and transverse deformations are uncoupled in this application of beam finite elements, and Eq. (@) of
Prob. 4.11 is sufficient to obtain a solution. The local elements are

IR [ P4 R B S B 14 S

The global finite element matrix becomes

i =2 0](u, 0
-2 2 B lQu,p=13-P
0 -3 3|l 0

with boundary conditions #, =u; = 0. The matrix equation reduces to one equation that can be solved for
u, = —2PL/9AE. Substituting u, into the local matrices gives the resulis N, = P/3 and N, = 2P/3, both acting to
the right.
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4.26.

4.27.

4.28.

4.29.

4.30.

BEAM AND FRAME FINITE ELEMENTS [CHAP. 4

Refer to Eq. (¢) of Prob. 4.10. The transverse load term is [; {v}' [N]"w dx. Substitute Eq. (¢) of Prob. 4.12,
JEVYITI NI w dx, and the final transformation is [T]" fy [N]"w dx.

The additional boundary conditions assume no axial deformation for the column and correspond to the standard
mechanics of materials analysis. The results are M, = 150,000 in‘1b, V, = 6250 1b, and V, = 3750 1Ib.

M, = —9990 fi-lb, M, = 27,340 (acting on member B-C), M. = —22,540 (acting on member B-C), M, = 14,780;
vertical reactions V, = 15,240 1b, V, =4760; horizontal reactions H, =H,=18701b; 6, =6,=0, 6, =
—4.787(10) %, g, =2.141(10) " *.

M,=M.=M, =0, M, =37520 ft-Ib (acting on member B-C); vertical reactions V, = —3750 Ib, V. = 10,120,
V, =17,630; 6, = 1.296(10) *, 8, = 6, = —3.906(10) *, 6. =7.812(10) *; horizontal displacement at D, u,, =
—0.0703 in, u. =0.

M, =M, =0, M,=—108,960 ftIb (acting on member B-C), M. =94,400 (acting on member B-C), V, =
17,370 b, V,=9450, 6, = —4.187(10)°, 6, =—2.246(10) >, 0.=2.438(10)"°, 6, =4.279(10)"°, u, =
—0.90 in.



Chapter 5

Variational Principles, Galerkin Approximation,
and Partial Differential Equations

5.1. INTRODUCTION

The fundamental numerical method of analysis utilizing finite elements has been developed in
previous chapters with elementary elements and formulations of problems and basic equations of
mathematical physics and engineering. In this chapter a more fundamental development of variational
principles will be presented. The reader who is familiar with the mathematical structure of variational
principles but unfamiliar with applications to finite element analysis will find detailed examples in terms of
applications. For the reader who is unfamiliar with the mathematics of functional analysis and vector
spaces, the examples are intended to translate mathematical concepts into more meaningful applied
situations. In either case several references are given in the bibliography that can be consulted for
additional reading.

The Galerkin method of numerical analysis is introduced and is emphasized in this chapter. Examples
illustrating the mathematical method will aid the reader in understanding fundamental concepts referred to
as weighted residual methods. Detailed examples are intended to illustrate application of the Galerkin
method for deriving local finite element models. The Galerkin method is a more powerful tool for finite
element analysis than the variational method because almost any physical problem described by one or
more differential equations can be modeled using this technique. Variational principles do not exist for all
physical problems, however, mathematical results proving that a variational formulation either does or
does not exist can tell the analyst more about the fundamental mathematical structure of a problem than the
Galerkin method. These issues are of an advanced nature and beyond the scope of this book.

The finite element method will be extended to coupled partial differential equations in this chapter.
The equations of elasticity of Chap. 3 are an example of a coupled problem since the finite elements were
derived for displacements in two independent directions. There are a variety of such problems in
mathematical physics. There should be sufficient examples in this chapter to enable the reader to derive a
finite element for any situation. Initial-value problems will be discussed here, but their numerical solution
will be addressed in Chap. 7. Subscript tensor notation will be used, and the reader unfamiliar with the
notation will find a brief outline in Chap. 1.

5.2. VARIATIONAL PRINCIPLES

The more abstract mathematical representation of a variational principle is given by
J@) = [u, Aulq —2[u, flqg 5.1)

where A is a self-adjoint positive definite operator, f is a vector of specified quantities within the region (),
and u is a vector of unknown quantities. The notation [ , ], denotes an inner product and can be
considered as having a property similar to the inner product or scalar product of vector analysis. The terms
within the brackets, when multiplied together, give a scalar result. Also, within the context of Eq. (5.1),
the notation can be interpreted as an integral taken over the volume of the domain ().

The operator A and vectors # and f define the boundary-value problem

Au=fon ) (5.2)

A fundamental concept of variational calculus is that the value of # that minimizes Eq. (5.17) is the solution
of Eq. (5.2). There are several conditions imposed upon these rather elementary ideas that are related to

143
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functional analysis and the theory of vector spaces. In this book the emphasis is placed upon an
interpretation of the abstract concepts and the construction of variational principles.

Equation (5.2) is not complete without a set of boundary conditions. The boundary conditions can be
written

Cu =g on 9Q) (5.3)

where C is an operator, u is again the vector of unknowns, and g is a set of given quantities (boundary
conditions). Equation (5.1) can be extended to

J@W) = [u, Aulg — 2[u, flg + [, Cul,q — 2[u, gl,q (5.4)

and includes the boundary conditions within the definition of the variational principle.

The fundamental representation given by Eq. (5.1) is said to be valid for homogeneous boundary
conditions, while Eq. (5.4) is valid for nonhomogeneous boundary conditions. The first term in brackets in
Eq. (5.1) is usually written in the more general form [u, Av], where u and v are defined within a space,
called a vector space, and the term is called a bilinear mapping and must satisfy certain mathematical
requirements (see Reddy, 1986). The operator A is said to be symmetric if

[u, Avlg = [v, Auly, = [Au, vlg (5.5)

A symmetric operator defined by Eq. (5.5) does not imply a symmetric matrix within the context of matrix
analysis. The adjoint of the operator A is denoted as A* and is defined within the following context. If

[u, Av], = [A*u, v], = [v, A*ulg (5.60)

for homogeneous boundary conditions or
lu, Av]g = v, A*ulg + D, @, u) (5.6b)

then A* is the adjoint of A, where u and v are defined within the same vector space and () indicates the
domain of the space. The term D, (u, v) represents possible boundary conditions. If A = A*, the operator
A is said to be self-adjoint.

Symmetry defined by Eq. (5.5) and applied to Eq. (5.1) implies the simple relation [u, Au] = [u, Au].
However, when u represents more than one field variable, the interpretation is

[, Ay ] = [, Al (no sum on repeated indices) (5.7)

The concept of self-adjoint operators is dependent upon the form of the bilinear mapping. The usual form
associated with an ordinary differential equation such as those of Chap. 2 is

(p.ql= L px)qx) dx (5.8)

Time-dependent problems may require a different definition of the bilinear mapping. Equation (5.8) can be
extended to include time ¢ as

[p,ql= JQ fo pix, Dqlx, t) dx dt (5.9)

and the spatial dimension can represent one, two, or three dimensions. Equations (5.5)-(5.7) are
dependent upon the definition of the bilinear mapping. Differential equations that have a first-order
derivative (or any other odd derivative) in time are not self-adjoint with respect to the bilinear form of Eq.
(5.9). Reddy (1975) and Oden and Reddy (1976) have shown that equations of the heat-conduction type
(initial-value problems with first-order derivatives in time) are self-adjoint with respect to the bilinear

mapping
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[gﬂ=LLp@mmJ—ﬂﬂm' (5.10)

Initial-value problems of the heat-conduction type are characterized by an operator [in the context of Eq.
(5.2)] with the time derivative on the diagonal of the operator, as well as by initial conditions.

A physical situation that can be classified as an initial-value preblem with first-order time derivatives
that cannot be placed on the diagonal of the operator or cannot be placed symmetrically within the operator
will not be self-adjoint with respect to the bilinear mapping of Eq. (5.10). An example is the equations that
describe time-dependent linear coupled thermoelasticity. A convolution type of bilinear mapping was first
used by Gurtin (1963) for the study of linear viscoelasticity, and the corresponding variational principle
has since been termed a Gurtin-type variational principle. The convolution has been used extensively for
situations other than viscoelasticity [see Oden and Reddy (1976) and references therein]. The convolution
bilinear mapping is defined using the Laplace transform as

Lpa1= ] | e mates = drdr=(p=a) (5.11)

where L™ {p’(s)} = p(x, 1) and L™ '{g'(s)} = g(x, 1).

The variational principle derived using Eq. (5.1) or (5.4) is a function of all the field variables. While
it is a proper variational function, it is not suitable for finite element analysis. Additional variational
principles can be derived from the basic or general function and are called extended variational principles.
The extended principle is obtained by assuming that one or more of the governing equations and boundary
conditions are identically satisfied (see Prob. 5.5).

5.3. GALERKIN APPROXIMATION

The Galerkin method of approximate analysis is classified as a method of weighted residuals. The
analysis is based upon assuming an approximate solution for a differential equation. Since the assumption
is an approximation, the differential equation will not be satisfied and there will be an error in the solution.
The error (residual) is then optimized with respect to some parameter, and the optimization procedure is
called a weighted residual method. Given a differential equation, such as the heat-conduction equation of
Chap. 2, a possible assumed solution 7', is

Te=a,+ax+ax +ax +:- (3.12)

where the a; are unknown constants. The assumed solution must satisfy the boundary conditions, and it
follows that Eq. (5.72) must have at least one more unknown constant than there are boundary conditions.
This requirement is easily satisfied with finite element analysis. The exact solution of the heat conduction
equation is defined as 7, and the approximate solution is T,. The error or residual R is the difference
between the two, or

R=T-T, (5.13)

The method of weighted residuals requires that the unknowns of Eq. (5.12) be computed using the
criterion

JQ w()R(x; a,)dV=0 (5.14)

where there is a one-to-one correspondence between each w,(x) and R(x; a;) and {} represents the domain
of the problem. The Galerkin method requires that each w, be the function multiplied by the corresponding
a; of Eq. (5.12). When using the Galerkin method in finite element analysis, the assumed functions in Eq.
(5.12) are the shape functions. It will be illustrated that the Galerkin method and the variational
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formulation lead to an identical finite element formulation. Obviously, the Galerkin method is quite
powerful since it can be applied to physical problems that do not have an alternative variational
formulation.

Once the reader has mastered the Galerkin technique for deriving finite element models of differential
equations, it will appear that the Galerkin method is superior to the variational method. This text will not
attemnpt to establish that either is superior, but when both methods are available to the numerical analyst,
they offer a check on each other. There are relative merits to be claimed for each method. For instance,
derivation of the transformation matrices of Chap. 3 (see Prob. 3.23) is more definitive when starting with
the variational function. On the other hand, problems with two or more degrees of freedom per finite
element node might be modeled using a different shape function for each degree of freedom (see Prob.
5.14), and that derivation is more definitive when the Galerkin method is used.

5.4. COUPLED PARTIAL DIFFERENTIAL EQUATIONS

The elasticity problems of Chap. 3 are examples of coupled partial differential equations. There are
two unknown displacements, and they are dependent upon each other. In the corresponding finite element
formulation there are two degrees of freedom per node that must be solved simultaneously. The majority of
topics in engineering and physics that must be studied numerically are of the coupled variety. A coupled
theory of mass diffusion is analyzed in Probs. 5.14-5.16. Steady-state thermoelasticity is discussed in
Probs. 5.17 and 5.18, where heat effects and mechanical displacements effects are uncoupled because of
the steady-state assumption. Displacements are dependent upon temperature, but temperature is in-
dependent of displacement or traction boundary loading. However, for simplicity the problem is
formulated as a coupled problem, and unknown temperatures and displacements are computed using a
single finite element formulation. The fully coupled thermoelasticity problem is time-dependent and is
discussed in Prob. 5.8. A theory that governs coupled electrical and deformation effects in materials is
called piezoelectricity. The theory is fully coupled and is discussed as Prob. 5.19.

5.5. INITIAL-VALUE PROBLEMS

There are two basic types of initial-value problems. Unsteady heat conduction is one example of a
problem that contains only first-order derivatives with respect to time in the formulation. Dynamic
problems with second-order time derivatives constitute the second type, and an example is the equations
governing dynamic elasticity. The theory of thermoelasticity, depending upon the formulation, can be
elastostatic but coupled to first-order time derivatives in the energy part of the formulation. Dynamic
thermoelasticity can govern problems of free vibration or wave propagation with heat-conduction effects.
The elementary case would be steady-state thermoelasticity with the heat-conduction effect uncoupled
from the elastic displacements. Steady-state thermoelasticity, of course, cannot be an initial-value problem.

Solved Problems

5.1. Assume an abstract set of equations
Ay + A, =

Ajuy +Apu, =,

and relate these equations to Egs. (5.7) and (5.2).
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S.2.

5.3.

The operator of Eq. (5.2) is

A A
A= [ 11 12]
Ay Ay

with u={u, u,} and f={f = £}". The inner product of Eq. (5.1) can be written as

A A | 1 1
J)={u, uz}[A” A”]{Z}—z{u, 2}f}

The third matrix in the first term on the right-hand side is premulfiplied by the second matrix and can be written

as
. . A”ul+A . . . f1 . . -
Jw) ={u, uz}I:A "y 4 A ]—2{u1 Uy} }

2171

The multiplication is completed similarly to matrix multiplication but written in the notation of Eq. (5.7) as

Jwy=1lu, A, u ]+ [u,A ] +uy, Ay, u, ]+ [u,, Au,] —2[u,, fi1— 2[u,, f,] @

Discuss symmetry in terms of the results obtained in Prob. 5.1.

Symmetry of the operator A, using Eq. (5.7) and Eq. (@) of Prob. 5.1, means that [u,, A ,u,] = [u,, A, u,].
Substituting into Eq. (@) of Prob. 5.1 leads to the elimination of A,,, or

J@)=[u,, A u ] +2[u,, A Lu,] + [u,, Asus,] — 2[uy, f11 — 2w, £5]

Similarly, {u,, A ,u4,] can be eliminated.

Derive a variational principle for one-dimensional steady heat conduction in the format of the abstract
funcion of Prob. 5.2.

The equations of one-dimensional steady-state heat conduction are given as Egs. (2.9) and (2.10) and can be
written as

dq dT

dx_Q and g+ T =0

The equations can be written in the format of Eq. (5.2) by defining

A= [*d(z’dx f/1d/)1(<] @

with u={T ¢} and f={Q 0}". The variational function is constructed following the procedure of Prob.

5.1:
Ja ={T q}[_;/dx i/ﬁ]{g}ﬁ{T q}{g}

and after multiplication gives

so-[1.9] [0 4T], [ o4, 10, o

Symmetry, as discussed in Prob. 5.2, implies

[T’ %:In - “I:q’%]u ©
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Assume homogeneous boundary conditions for now, and Eq. (c) relates to Eq. (5.6a) with 7= u(x), g =v(x), and
A =d/dx. Assume the function is bounded with the domain () replaced by the one-dimensional limits O to L. It

follows that
Eo=f gt e[ 1052
[T’dx 2= D =), TO g &

Integration by parts gives

], f oo :
* dx Qﬁq o qux - q’dX o ()

Homogeneous boundary conditions at 0 and L make the boundary term zero in Eq. (d). Equation (d) gives the
same result as Eq. (¢), and the problem is self-adjoint in the sense of the mapping defined by Eq. (5.8) or (5.9)
when there is no time dependence. Note that the operator A defined by Eq. (a) is self-adjoint. Equation (d) shows
that the first-order derivative by itself is not self-adjoint.

A more general concept employs the divergence theorem (the Green-Gauss theorem) and illustrates the
inclusion of boundary conditions on ¢g. The divergence theorem was discussed in Chap. 1, and in the notation
used here gives the following result when applied to the term [T, dg/dx]:

[124], [ 4.0] -
,dx Q_ dx’q a [’qn]agq (e)

where n is an outward normal to the surface defined by dQq (the surface where a boundary flux is applied).
Equation (b) can now be written in the form

Jw) = —Z[q, %] 0 [q,%]ﬂ —2[T,Q)y + T, gnl,g, )]

Show that the functional derived in Prob. 5.3 is the variational principle corresponding to steady heat
conduction.

The variables for the variational principle derived in Prob. 5.3 are u ={T  ¢}. It follows that 8/(u)/d(u) =
0 or, taken independently, 8/(x)/8T =0 and 8J(x)/6q = 0 should yield the governing equations. Equation (f) of
Prob. 5.3 can be written in the analogous integral form

I —f( PPLLR B )d +f Tan d
=] 90 " & Q ) dx L (@
‘ | 80 _[ (24 0) 54e-0 b
an o ~ Ja dx YA ®)
The term within the parentheses is equivalent to
dT
kE-i-q:O

The variation with respect to T of the functional given by Eq. (a) can be obtained directly from that equation or
the divergence theorem can be used to eliminate the dT'/dx term. Recall Eq. (e) of Prob. 5.3 and substitute into
Eg. (@) above to obtain

d 2
T = L <2T d—Z—%— ZTQ) dx ©
and ag(;) - L (2% - ZQ) ST dr =0 )

Again, the term within the parentheses is the governing equation
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5.5.

5.6.

dq
dku_O

Show that the variational function of Chap. 2, Eq. (2.23), that was used to derive the finite element
model can be obtained as an extended variational principle of the variational principle given by Eq.
(f) of Prob. 5.3.

The variational function of Chap. 2 is a special case of Eq. (f) of Prob. 5.3 and is often called an extended
variational principle. The unknown functions are temperature 7 and heat flux ¢, and it is desirable to eliminate g.
Assume the governing equation ¢ = —k(dT/dx) is identically satisfied and substitute into the first and second
terms on the right-hand side of Eq. (f):

J _Zk[£ g:l —k[gd—T] —2[T. + [T
(M)_ de’ dx la de’ dxe o [ sQ]sz [ ’qn]aﬂq
dr dr ’
or Ty =k| 5o | = AT Q1 + (T, gnlg, (@)

Equation (a) is equivalent to the integral form given by Eq. (2.23). The variation with respect to T will give the
governing differential equation. Also, construction of the variational principle using the methods of this chapter
gives information concerning the boundary conditions. Use of the divergence theorem introduces the boundary
condition on flux. Of course, there are boundary conditions on 7, and the inclusion of that type of boundary
condition will be discussed in a later problem.

Show that the equations of Chap. 2 that define mass transport with convection are not seif—adjoint
with respect to the bilinear mapping of Eq. (5.8).

Equations (2.716) and (2.17) are used to formulate an equation similar to Eq. (5.1):

_ VK tudlde  dfdx C S [m
Jw)={C J}[ —dJd ~1/D]{j}_2{c j}{o} (@)

It follows that

r=lexerug] e d] - 5] [05]
@)= C’K"C-’_de sz+ C, dx 1o P la LS D 52_2[C’m]9 *)

As in Eq. (e) of Prob. 5.3 it can be shown that symmetry is satisfied for the off-diagonal terms:

][,
Tdx Jo de*’ o 1€, jnlsa

The first term within brackets in Eq. (5) does not satisfy the fundamental criterion and can be written in two parts
as

dC
[C.KC], + C,ua 0 ©)

Then, the first term of Eq. (¢) satisfies Eq. (5.7). However, the second term can be integrated by parts, as in Eq.
(d) of Prob. 5.3, to show that the term is not self-adjoint for homogeneous boundary conditions:

lea ] mae | =] (o5 )ea=-[udc] = [cut] a
U o M Tl B ) ET T M e T i la @

dx
Equation (d) illustrates that the term Cu(dC/dx) in Eq. (2.24) will always result in zero if an attempt is made to
use the Rayleigh-Ritz method. Hence Eq. (2.24) was termed a pseudofunction. However, in view of the fact that
Eq. (2.24) was used to successfully derive a local finite element and because it will be shown (Prob. 5.13) that
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the local finite element was correct, it follows that Eq. (2.24) is self-adjoint with respect to some bilinear
mapping other than Eq. (5.8). (Review Probs. 2.15 and 2.16.)

The equations of static elasticity can be written in subscript tensor notation as

Gijs +f; =0 g, = 0 for i #J (@)
€, =5, +u,) )
0 = Cijklekl ©)

where g, €;, and u; are the stresses, strains, and displacements, respectively. Boundary conditions are

specified on displacement and surface traction as

u; = ii; on du and t;=o,n, = t; on ot )

Use Eq. (5.4) to derive a general variational principle that includes boundary conditions. Obtain an
extended variational principle in terms of displacement that is suitable for finite element analysis.
Define the vector u of Eq. (5.4) as

{M} = {Mm, 6,]3 O-U; u," t,} (e)
The f and g terms of Eq. (5.4) are written as one array
{f: 8} =1£,-0.0; 7, — iz} )

A semicolon separates the quantities defined within the region from those defined on the boundary. The
operator equation, corresponding to Eq. (5.4), is constructed as

0 0 —-L u,, £,
0 Cijklaikajl -1 €; 0
Jay={u}| L -1 0 o, ¢ —2duy 0 ()
0 1 u; ,
—1 0 t —i

where L = 1(8,, 8/dx, + 8,, 8/dx,). The variational principle is obtained by performing the matrix multiplica-
tions:

Jow) ={-u,, a,,1+[€,C;,e]— 1€, o] + 1o, 3, +u,)]

~ [0, €,1 = 2[u,, £, 1}q

+lunt),, — [, u,, — 20w, 11, + 200, 4,1, Q)
The first term is rewritten, using the Green-Gauss theorem, as

=, 0o o = s 15 Tl — 1,0 2,15, @
and combined with the fourth term of Eq. (%) and the first boundary term to give
L ={2lo,, L, + u, )+ (€, Cy.e] = 20, €] = 2[u,, 1o
—2[u, £, +[t,, 20, — u]l,, @)

The extended variational principle is obtained from Eq. (j) by assuming that Eq. (b), Eq. (¢), and the first
Eq. (d) are identically satisfied and can be eliminated from Eq. (j):
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5.8.

JB(ui) = [Eij’ CijkIEkl]Q o z[ui’ ﬁ]n B 2[”1" fi] o Ty, (9]

The last term can be omitted since u, is specified on the boundary du as a constant or zero and the variation with
respect to #, would be zero. Equation (k) can be compared with Eq. (3.13) and the formulation developed in
Chap. 3 for two-dimensional elasticity. Identical results can be obtained using Eq. (k).

The equations of thermoelasticity with time-dependent heat conduction are given below in a general
form using notation that is sometimes encountered in continuum mechanics (see Nickell and
Sackman, 1968). Derive the variational principle that corresponds to these equations.

Elasticity:

Oys; +£=0 g, = o, fori#j (a)
€ =3, Tup,) ®)
0= Cyuu€y — BYS, ©

Heat conduction:
o

g;»; +PTOEZF ()
g, = —k,0,, 0=T-T1, (e
pTon=ch — Be,8, H

With boundary conditions and initial conditions
u, =i, on du t,=oyn, =1, ondt (9
6= 6 on 06 Q=gn,=Q ondQ (k)
ut=0)=0 and or=0)=T, @)

where Eq. (i) specifies that the deformation process starts from rest and the initial temperature is T, and 6 is
defined in Eq. (¢). Entropy is denoted by 7, and all other terms have been defined previously.
Substitute Eq. (f) into Eq. (d):

90 0€;
“or T R%

+tg.,=r n

The governing equations can be written in the operator format given by Eq. (5.2), and it can be verified that the
symmetry required by Eq. (5.1) or (5.4) does not exist because of the time derivatives in Eq. (7). A variational
principle can be derived using the convolution bilinear mapping of Eq. (5.17). The time derivatives in Eq. (j) are
eliminated by taking the Laplace transform, substituting initial conditions, and inverting to give a modified form
of the equation:

cl0 —T,)— Bd,le, — €,(0)] —g*q,, = &*r ®)

where €,(0) =0 by the first Eq. (i) and g = g(*) = 1. The modified equation contains the initial condition on
temperature. The field variables are arranged as

{uy=1{u,. €, 0., q,, O, u;,1,, 6,0}
with {f: g} ={£.0,0,0, g*r +cTy; I,, — i, g*Q, —g*6}

The operator A is constructed using Eqgs. (a)—(c), the first (e), (g), (h), and (k):
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0 0 —L 0 0
0 Cijklaiksjl -1 0 _:3817
L -1 0 0 0
0 0 0 —g*,6, —g*dlix
A=]|0 —Bé; 0 g*d/ax, ¢
0 1 0 0
-1 0 0 0
0 0 0 g*
0 0 —g* 0_]

where L =3(8, 9/0x; + 8, 9/3x,). The variational principle is obtained as in previous problems and can be
written

Jw)y={~1u,*o

nmj.j

1+ [6,%C €] — L&;* ;] — [€,*B65;]
+ o, +u )] — [o,*e, ] — [8%q %k, q,1 — [g%¢,*6,]

— [BO8,;*¢;] + [g%0%q, 1 + [6%cO] — 2[u,*f,] — 20%[g*r + cT,1}q

¥, — 0¥ ud,, + [8%6%01, — [8%Q*0],,

= 2[u*1 ], + 200 i), — 2(8%0%0],, T 2(8*0* 81, O

5.9.  Obtain an extended variational principle for coupled thermoelasticity that is suitable for finite element
analysis.

Refer to Prob. 5.8 and assume that Eq. (b), Eq. (), the first Eq. (g), and the first Eq. (k) are identically
satisfied. The Green-Gauss theorem is used to modify terms containing o,,,,, and ¢,,, as

—lu,*0,,. 1o =, *0,,1q — 1,%,1,,
[8%0%q,.Jo = —18%07q, 1o + [8%0%C],p
Substitute into Eq. (/) of Prob. 2.8:
o, 0) ={[e*C,,,*€,1 + [g¥k,0%0] + [0%cO] — 2[e,*pO]

= 20w, f,] = 20g*6*r] — 200*cT, Ik, — 2[g*u*i1,, — 2[8%0* Q.0 (@)

5.10. The one-dimensional steady-state heat-conduction equation is

d&°T ©
P % (@)
Assume boundary conditions 7(0) = T(L) =0, and the exact solution is
_Q
T= K (x"—xL) )

obtained by integrating and substituting boundary conditions. Assume a three-term solution in the
form of Eq. (5.12) and obtain an approximate solution using the Galerkin method.

The Galerkin method of numerical analysis will be illustrated. Assuming an approximate solution in the
form of a second-order equation will give the exact solution since Eq. (b) above is second order. Assume

_ 2
T.=a,+ax+ax

Substituting boundary conditions gives
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T(O):O:LIO and T(L):O:a0+alL+a2L2

or a, =0 and @, = —a, /L, and the assumed solution is

Substitute into the governing equation as

a’T, _Q:R
a®  k
to obtain
a Q0
27 %R

153

(©

@)

Since there is only one unknown a,, there will be only one weighted residual equation. In the notation of Eq.

(5.14),

f w, MR a,) =f w, ()R a)dx =0
Q 0

: ()2 Do

Integrating, substituting limits, and solving for a, gives a, = —QL/2k. Substituting into Eq. (¢) gives the exact
solution, Eq. (b). The same result was obtained in Prob. 2.3 using the Rayleigh-Ritz method. As noted previously,
when a variational principle exists for a given problem, the Rayleigh-Ritz solution and the Gaterkin solution are

the same.

Use the Galerkin method and the trial solution

_ 2 4
Up=aqgtaxtax tax

to obtain an approximate solution for the cable that was analyzed in Probs. 2.1 and 2.12.

The governing differential equation is

=0 w0 =0vl)=0

The trial solution that satisfies the boundary conditions becomes
v, = a,(" —xL) + a,(* —xL>)
Substituting Eq. (b) into Eq. (a) gives the residual

f

k
2a, +12a,x° - (7>[a2(x2 —aL) + a6 = xL)] + 5 =R

There are two weighted equations corresponding to Eq. (5.14):

t 2 k 2 4 3 f 2
f {2a2+12a4x —(7)[512(,( —xL)y+a,(x" —xL )]+?}(x —xL)dx

f {2a2 + 12a,x° — (%)[dz(x2 —xL)+a,(* —xL)] +§}(x4 —xL>) dx

(@

(@

®

©

@
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After integration Egs. (¢) and (d) become
(_l+"L2>+ ( 3L’ 5kL4>_i
L\T3 7307/ TH\T 5 T84T/ 6T

( 6 5/<L2)+ ( 121° kL“)_i
“\" 70 gar /) % 7~ or/ 10T

Substitute L =120, T =600, f=2, and k =1 and solve for a, = ~7.1603(10"*) and a, = —1.5816(10 °). The
approximate solution is

v, = —7.1603(10"*)(x* — xL) — 1.5816(10 ")(x* — L)

Comparison with Prob. 2.12 gives

Node 2: v (x =24)=1.7148, v(x =24) = 1.8173.
Node 3: v (x =48) =2.5974, v(x = 48) = 2.5444.

Derive a four-node finite element for two-dimensional steady-state heat conduction using the Galerkin
method.

The element will be derived in detail to illustrate how shape functions are used as approximating functions
similar to the polynomials of Eq. (5.12). The governing differential equation for steady-state heat conduction is

3°T o 8°T 0=0 @
. —uU= a
xt oy’

k

X

The interpolation function is the same as that used in Prob. 3.4. Let T, be the approximate solution and
T, = N,(x, WT, + Ny(x, )T, + N, (x, WT, + N, (x, T, = [N{T} (b)

where the shape functions are defined in Eq. (e) of Prob. 3.1 and {T} are the unknown temperatures at each finite
element node and take the place of the unknown coefficients a, in Eq. (5.12). Note that only the shape functions
[N] are functions of x and y in Eq. (b) and that substituting Eq. (b) into Eq. (@) gives the residual as a function of
x, v, and {T}. Formally, the result can be wriiten as

2 2

T, 0T,
' ky 6)’2 —Q =R, y: ih ©)

k’(
Toox

As an aid in visualizing the process of forming the residual, Eq. (b) is substituted into Eq. (a) and the results
written in matrix format (see Prob. 3.4):

k. O0]fJo/ox

The final result is a 1 X 1 matrix. The weighted residual of Eq. (5.74) is formulated as a matrix equation with w,
replaced by [N] and the integral taken over the volume, or ¥ N1 [R(x, y: {T}] dV = 0. The first term of Eq. (d)
becomes

2 x 2 x 2 x

A N, a°N, a°N, 3°N, a°N, 3°N, d°N, 3°N,
NI k. +k k,— +k, k.~ +k, k~—+k,— [{T}dv=0 (e
v Ay ax dy ax dy ax 7 dy

X 7

The final result is a 4 X 4 matrix postmultiplied by {T}. The second term of Eq. (@) is f, [N]”Q dV. The first term
of Eq. (e), after matrix multiplication, appears as follows and can be transformed using the divergence theorem
(the Green-Gauss theorem) to give
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5.13.

J N N, j aleLNl>
v U = *6x+9y’0ydv
aN,
f(lexa—n + Nk, — ,)ds 2

The volume integral of Eq. (f) is the same as Eq. (¢) of Prob. 3.5, and it becomes obvious that the final result for
the local stiffness matrix will be the same as Eq. () of Prob. 3.5. The surface integrals of Eq. (f) correspond to
the flux boundary conditions. As stated previously and illustrated here, the Galerkin method always gives
information concerning natural boundary conditions. The heat source term is identical to Eq. (f) of Prob. 3.5.

In finite element literature a shorthand notation is often used that implies all of the above. Substituting Eq.
(b) into Eq. (¢) can be written as

2 0y, T =, e ®
or, in a more abbreviated form, as
"0 1y @ = Rex i1 ()
Using Eq. (h), Eq. (¢) can be written as
f ([N] g T - [N]TQ> dv=0 (@)

The matrix {N] in Egs. (k) and (i) cannot be the same as the matrix [N] defined in Eq. (d) and used in Eq. ().
The material constant matrix will remain 2 X 2 as defined in Eq. (d). Define the shape function matrix and an
operator maitrix as

_ [N N, Ny N, _ 3%/ ax’ 0 ]
[N]_I:N1 N, N, N4:| [L]_|: 0 62/8}12 02

The use of Egs. (j) in Eq. (k) will give the equivalent of Eq. (d). It follows from Eq. (f) that the final result is

JIN]” N
L( ax, {T}HN] Q> L (NI'Tk1 =5 = (T, dS ®)

The analyst must interpret the specific form of [N], x,, [k], and {T} that is to be used since théy must correspond
to the element and coordinate system being used. In subsequent developments the abbreviated form will be used
for deriving local finite elements.

Use the Galerkin method to derive a four-node local finite element for mass transport with convection
and chemical reactions. Compare the results with the model derived in Chaps. 2 and 3. This result will
establish that the formulation of Chaps. 2 and 3 using the pseudovariational function was correct.

The governing differential equation is given as Eq. (3.2), and the development of the finite element follows
from Prob. 5.12. Assume a trial solution as T, = [N{C}, where [N] is defined as in Eq. (d) of Prob. 5.12, and
substitute into the governing differential equation:

N (S B e RO T R 1
x ax ¥ E)y * axz 4

+ K INHC} —m =R(x, y:{C}H

Define the matrices
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w0 D. 0 K2 0
[“]:[0 u] [D]:[o D] [K,.]=[0 K/Z]

Following the process used in the previous problem, multiply by the matrix of shape functions (the weighting
functions), integrate over the volume, and set the result equal to zero:

3’IN : .
a[ 2] {C} + IN]" [K,JIN}{C} — [N] [m]> av=0 (@

i

J; ([N [U] {C} [N}"[D]

Note that [N] of Eq. (a) is defined in Eq. (j) of Prob. 5.12 and that [K,] above is defined as a 2 X 2 matrix using
K./2 since [N] is defined as a 2 X 4 matrix. Again, use the Green-Gauss theorem to reduce the order of the
second term in Eq. (a). The final result is

4[N ad
f ([N] ful — {C}+ [ ] (D] [ ]{C}+[N] [K,]INKC} - [N]T[m]>dV

f ([N] [D] {C}> ®)

Substitute shape functions or their derivatives into Eq. (b) and perform the indicated matrix multiplications. The
integration is for a plane area, and the final result will be the same as that for Prob. 3.32. The diffusion-type flux
boundary condition is obtained as a result of the Galerkin method.

A theory of coupled mass diffusion was discussed by Aifantis (1979) and can be applied to materials
with multiple diffusivities. The time-dependent equations are (using subscript notation)

aC, | 9y

o T M T —k,C, +k,C, (@)
oC A,

‘a—;+—a}2f:m2:klcl—kzcz )

H

where C, and C, are the concentrations, j,; and j,, are the corresponding flux terms, and m, +m, =0.
A general statement for the flux terms can be written as

) aC, ac,
Ju="Dy ax. +Dy, ax. (©)
) oC, ac,
Jor = T05 5 — Dy, ax. @)

with D,, = D,,. Use the Galerkin method to derive the corresponding finite element statement of this
theory.

Substitute Eqgs. {c¢) and (d) into Egs. (@) and (b), respectively, to obtain the governing equations. There are
two coupled second-order equations:

2

aC, a’C, a’c

2 :
at —D,, ax2 +D12?+klcl —k,C,=0 (©
aC, 3°C, o°C,
at —D,, a2 +D,, ax’ —k,C +kC,=0 €))

i

Assume approximate (trial) solutions as C,, = [N,§C,} and C,, = [N,}{C,}, where [N,] and [N,] are any
matrices defining shape functions. They may be identical assumptions, but for the purpose of derivation they will
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be identified separately. The matrices {C,} and {C,} are the corresponding unknown nodal point values.
Substitute into Egs. (¢) and (f):

3{C,} az

NI - {C} [Du} {C}+[k JIN,HC } = [K,1IN,){C, )} = R, (8
oHC,} 0*[N,]

[N,] =~ [D,] {Cr+ [D,z] {C} [k, 1IN, {C, } + [k, ][N, HC,} =R, )

Equations (g) and (%) are the residuals and are minimized by multiplying by the weight function. Equation (g) is
premultiplied by [N, ], and Eq. (k) is premultiplied by [N,]. Integrating over the volume and setting the result
equal to zero gives

rene 1 0C, r 3°IN,] r 2[ 21
f( JIN, {az}‘[Nr] D, 1= {C,}+[N,J'D,,] {C.}
\ axi

= N0, JIN HE, 3+ NN, HC,) ) v =0

r 3C,} , 3°[N,] - 3,[N,]
f oI NI = IN; 1Dy, ] > G INLIT D] 7 1C.}
v ax ax;
— IN,1"[k, JIN, HC } + [NZ]T{kzl[NZJ{Cz}) dav=0

The Green-Gauss theorem is used to reduce the second-order derivatives to first order and incorporate the flux
boundary conditions. The final result is

oo ¥C)  eIN Y a[N] AN, 1" [N,
NN+ D, {C}— ax, Pul= {C,}+ IN, [k, IIN, J{C }

T T a[Nl] .
—[N,] [kz][NZ]{C2}>dV:J; N,] [DH]T{C,}W,- ds, —f [N, [Dlz @

- a{C,} 9IN,1" a[N] AIN,I” JIN 1 -
fv ([Nz] N+ D] {Cz} ar D] —{C — INT I JINHC

+ N, 1" [k, 1IN, ){C, })dV j N,1" [Dzz f (N,] [Dlz]—‘{c tn.dS, (j)

The subscripts on the shape functions indicate the procedure for modeling C, and C, using different shape
functions. For instance, N, could correspond to an eight-node element, while N, could represent the same element
with only four nodes. This separation of shape functions is not so obvious when the variational formulation is
used. However, for this coupled problem both unknowns should be modeled with the same shape function.

The time derivatives remain in Egs. (i) and (j); they will be discussed in detail in Chap. 7. Note that the
time derivatives operate on the nodal point variables since the shape function is independent of time.

5.15. Assume steady-state conditions and a two-dimensional formulation in x and.y for the coupled
diffusion equations of Prob. 5.14. Discuss the formulation of the local stiffness matrix using four-node
rectangular finite elements, assuming N, =N, = N.

Delete the time derivative and write Egs. () and (j) of Prob. 5.14 in a compact form that defines each term
in the stiffness matrix
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I: Ky T Kyl [_KDIZ_KI(Z]]{{CI}}Z {{jll}}_ {{]12}} (@)
[—Kpoi — Ky [(Kpz, T Kl {Cz} {j22} {j2l}
Each term in Eq. () has a counterpart in Chap. 3. For instance,

Kol =] | (BI'D, 1081 dxdy ®
[

where [B]=[L][N] as in Probs. 3.4 and 3.5. The stiffness terms [K,,,], [K, ], and [K,, ] have similar
definitions with a different diffusivity matrix, and the subscripts correspond to the diffusivity matrix. Note that
[Kps1=1Kp,,1". Also,

IK“]:LL[N]T[k]][N]dxdy ©

with a similar definition for [K_,]. The local stiffness matrix given by Eq. (¢) is identical to the result given in
Prob. 3.34, with the chemical reaction coefficients K. replaced by the mass interaction coefficients &,. Note that
the matrices [k, ] and. [k,] should be defined as 2 X 2 matrices, as illustrated in Prob. 5.13, since [N] is defined as
a 2 X 4 matrix.

The local stiffness matrix, formed from Eq. (@), is not symmetric. The boundary condition terms on the
right-hand side of Eq. (@) correspond to applied boundary fluxes. Also, if the coupling defined by the stiffness
terms [K,,,,] and [K,,,,] is neglected, it will be necessary to omit {j,,} and {;,,} since [D,,] would be assumed
as Zero.

Reduce the equations of Prob. 5.15 to one dimension in x. Assume D, =0 and obtain an analytical
solution following Aifantis (1979) for the resulting equations. Obtain a three-element and a
five-clement solution using the four-node rectangular local elements discussed in Prob. 5.15. Arrange
the elements in a strip as shown in Fig. 5-1(a). For the analytical solution assume boundary conditions
as C,(0)=C,(0)=0, C(L)=C,,, and C,(L) = C,,. Compare the solutions assuming D,, =D,, =
0.005, k, = 0.04, k, =003, C,, =C,, =100, L =1, and D,, =0.

The governing equations in one dimension are

d*c, d*c,
D,, P —kC, +k,C,=0 D,, A2 +kC, —k,C,=0 (@)

with solution

. Bx Ax—D,.C,
C, =vysinh(ax) +— C,= D »)
a 22
Wh r A — DIICIL +D22C2L a2= D22k1 +Dllk2 B — kZA — ClL -—BL/az
e L D,,D,, D\,D,, 4 sinh(aL)

The matrix equation of Prob. 5.15 lends itself to a local node numbering system that groups the C, unknowns
first and then the C, unknowns. It follows that the local finite element will be as shown in Fig. 5-1(b). It is
standard practice in finite element computer programming to arrange the unknowns (degrees of freedom) in the
global system such that all unknowns at a node are grouped together. It is desirable to rearrange the rows and
columns in the local matrix to conform to the global system before assembling the global matrix. This



CHAP. 5} VARIATIONAL PRINCIPLES AND GALERKIN APPROXIMATION 159

rearrangement can be accomplished using a transformation matrix of the type discussed in Prob. 3.24. The
transformation, using the notation of Fig. 5-1(b), is written as {C} ., = [THC}, .

(CY P10 0 0 0 0 0 077C)

c,, o000 100 0]|]lc,

c, o100 0 0 0 o0|c,

Cyl_|o 00001 0 0f]lc, o
C, 00100 00 0ffc,

Co 000000 1 0f]c,

c, 00 0 1 0 0 0 0f|c,

\C,.J Lo o o o o o o 1d\cJ

where [K],.,, = [TI[K],,[T1".

The three-element solution is obtained using three identical finite elements with @ =1 and b = 1.0. The local
stiffness matrix is computed as follows before transformation.

| l I 1 a=1/3
1/3 1/3 1/3 b=10

2 4 6 8 10 12
I I 11 v \ 1.0
1 3 5 7 9 1 ,-00
- e >l e >l . b=10
o2 T 02 T 02 T 02 P02 I
(a)
CI[’ C?.l Clk’ CZk
I k
, l J
Cuv Czi Clj’ C2j
(b)

Fig. 5-1
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[~ 64815 —4.2593 —2.1297 3.2408 —1.1111 —-0.5555 —0.2777 —0.5555
—4.2593 6.4815 3.2408 —2.1297 —0.5555 —1.1111 —0.5555 02777
—2.1297 3.2408 6.4815 —4.2593 —02777 —0.5555 —1.1111 —0.5555
1073 3.2408 —2.1297 —4.2593 6.4815 —05555 —0.2777 —0.5555 —1.1111
—1.4815 —0.7407 —03704 —0.7407 6.1111  —4.4445 —2.2222 3.0556
—0.7407 —14815 —0.7407 —0.3704 —4.4445 6.1111 3.0556 —2.2222
—03704 —0.7407 —1.4815 —0.7407 —22222 3.0556 6.1111 —4.4445

L-—0.7407 —03704 —0.7407 —1.4815 3.0556 —2.2222 —4.4445 6.1111.

The three local stiffness matrices are assembled, and the results are tabulated in Table 5.1. The five-element
solution is obtained using five identical local elements with ¢ =0.2 and b =1.0. The three solutions are
compared in Table 5.1.

Table 5.1 Coupled Diffusion Problem

Three-element solution Five-element solution Exact solution

X C, C, C, C, C, C,
0.0 0.0 0.0 0.0 0.0 - 0.0 0.0
0.2 — — 17.664 22.335 17.699 22.301
0.333 29.475 37.191 — — 29.654 37.013
0.4 — — 35.651 44.349 35.734 44276
0.6 — — 54.480 65.520 54.593 65.407
0.667 60.848 72.486 — — 61.221 72.111
0.8 —_ — 75.195 84.805 75.318 84.682
1.0 100.0 100.0 100.0 100.0 100.0 100.0

5.17. Deduce the equations of steady-state thermoelasticity from Prob. 5.8. Use the Galerkin method to

formulate a two-dimensional four-node finite element for this theory.

This formulation illustrates the coupling between the displacement solution and the temperature solution.
The differential equation governing the temperature distribution is uncoupled from the differential equations
governing the displacement. However, it is convenient and efficient to formulate one element for both effects.
Refer to Prob. 5.8; the governing equations are obtained by substituting Eq. (¢) into Eq. (¢) and combining Egs.
(d) and (e) with 8/3t=10:

CijkIEkI’ J

—Bb,, =1, (@)
k6,=-r k;=0

¥ i fori #j ®)
It follows that the formulation of a finite element for Eq. (b) is the same as in Prob. 5.12, with Q replaced by —r.
The reader has probably guessed that the first term in Eq. (@) will reduce to a local stiffness matrix identical to
that given in Prob. 3.10. It is, however, important to illustrate how the Galerkin method leads to the same resuit.
It is quite elementary to translate the continuum mechanics statement for a physical problem directly into a
general finite element statement of the problem. For instance, Egs. (a) and (b) become

(K, {u} = [K,,Ho} = {f} +{© ©

(K, 0} = {1} +{Q} (@

The evaluation of each matrix is dependent upon the structure of the governing differential equations. The
components (K, ] and [K,,] will be derived in detail using the Galerkin method.

Equation (a) of Prob. 5.8 is called an equilibrium equation in the theory of elasticity; in two dimensions
there are two equations. The subscript tensor equation can be expanded to become Egs. (3.4) and (3.5), the
equilibrium equations of plane elasticity. Equation (¢) of Prob. 5.8 would correspond to the set (3.6)—(3.8) or
(3.10), (3.11), and (3.8), either plane stress or plane strain, with additional terms to relate stress and temperature.
In general the stress-strain-temperature relations can be written
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=C, e, +C€,— po e
C!ZGAA + C22Eyy BB (f)
O—er = C336xy (g)

Strain-displacement relations given by Eq. (b) of Prob. 5.8 are the mathematical definition. In the finite element
formulation the engineering definition given by Eq. (3.3) should be used.
Substituting Eqgs. (e)—(g) into Eqgs. (3.4) and (3.5) gives

de a6
Ch ax +C, 6 33 _x+fx=0 ()
c, Py o O +C Oy 9 =0 '
12 ay 22 a 33 9x 18 ay f; - (l)

The matrix equivalent of Egs. (3.4) and (3.5) can be written as

plox 0 s fn .
0  ad/ay d/ay (T”: A ()

The matrix equivalent of Egs. (¢)—(g) becomes

Oyx ¢, C, 0 €ix B
Oy (= C. €y 0 Sy~ B [0] %)
o) Lo o cdle] Lo

The strains are defined in Eq. (h) of Prob. 3.10 and are substituted into Eq. (k) and that result substituted into Eq.
(j). The resulting differential equations appear in Prob. 5.27. Nodal displacements are defined by Egs. (¢)—(g) of
Prob. 3.10. Strains are defined by Eq. (i) of Prob. 3.10, which can be written as

{e} = [LJIN,Nu}
where [N ] is defined by Eq. (b) of Prob. 3.11 for a four-node element. The displacements are assumed following
Eq. (g) of Prob. 3.10, and the temperature is assumed as in Eq. (b) of Prob. 5.12. Both trial solutions are assumed

in terms of shape functions for a four-node rectangular element, however, at this stage the matrices of the shape
functions appear differently and are written

u(‘
{0} =N and g -,i0) @

The weighted residuals of Egs. (@) and (b) are written using the shorthand notation introduced in Prob. 5.12. (See
Prob. 5.29 for additional details.)

8*[N 7 o1 9N r
J [N, I* [C] {u} INJ[Bl— —{0F +INI[f] | aV=0 (m)

,o 3ING] .
L ([Nel (k] e {6} +[N,] [r]>dV=0 (n)

Application of the Green-Gauss theorem to the terms containing derivatives gives the final result. The first term
in Eq. (m) is modified to change the function [N, ] to a first derivative, and the second derivative reduces to a first
derivative as shown in Eq. (o). In addition, a traction boundary condition on displacement is introduced. The
second term in Eq. (m) is modified using the Green-Gauss theorem [see the second term in Eq. (0)] and completes
the traction boundary condition to add a temperature term in the form of the heat flux. The constitutive equation,
Eq. (k), indicates that traction (stress) boundary conditions are a function of both displacement and temperature
[see Eq. (c) of Prob. 5.8].
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AN 1" 9N AN 1"
L( N} [C] ] {u} - [6;.] [B][Ng]{0}>dV=L[NM]T[ﬂdV

ax; ox,

(e B w-wre T e s o

3IN, a[N ] [ 0]
L( [ax,.] {9}> f [N,] [r]dV+f [N, 17 [K] - {0}n, dS (p)

Equations (o) and (p) correspond directly to Eqs. (¢) and (d). The stiffness matrix [K,,] was derived in Prob.
3.11; [K,,] corresponds to Prob. 5.12; and {f}, {i}, {r}, and {Q} are the body force, surface traction boundary
condition, heat source, and heat flux boundary condition matrices, respectively. The stiffiess matrix [K,,] is
sometimes called the coupling matrix and will be discussed in Probs. 5.18 and 5.30.

Formulate the two-dimensional local finite element for steady-state thermoelasticity defined in Prob.
5.17. Verify the accuracy of the element using a solution for the one-dimensional problem defined in
Fig. 5-2. Use a sirip of four elements as shown in the Fig. 5-2 and compute the displacement and
temperature at each node. For displacement assume #(0)=u(L)=0. For temperature assume
6(0) = 6, = 100 and 6(L)= 0. Material constants can be assumed as Young’s modulus £=1 and
Poisson’s ratio »=0; B,, =1, k,;, =1, and B,, =k,, can be assumed 0 in comparing the finite
element and exact solutions. Refer to Prob. 3.13; the elastic constants become C,, =C,, =C;; =1
and C,, =0.

2 4 6 8 10
I ]
I 11 I v 1.0
[ é
1 3 5 7 9
L L g
025 | 025 | 025 0.25
Fig. 5-2

The governing one-dimensional differential equations are

E du _df . e 0
dX B dx d)(2 - (a)
with solution
o— o L—x _ 30 i - ,
— Yo L u_:B o 2F], ( )

The local finite element is formulated following Egs. (0) and ( p) of Prob. 5.17, and the coupling matrix is
given in Prob. 5.30. All flux-type boundary conditions are zero. A transformation matrix is used to renumber the
local element, numbering it in sequence corresponding to Egs. (c) and (d) of Prob. 5.17. It is desirable to
renumber the element such that all degrees of freedom at a node are consecutive. The transformation matrix is
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(uY 1 0 0 0 0 0 0 0 0 0 0 07(x)
v, 0 1.0 0 00 000 0 0 0}]pv,
6, 0 0 00 00 00 1 0 0 0}]au
iy 0 0 1 000 000 0 0 0l]ov,
v, 0001 00 0000 0 0|]|u
6, 0000 000001 0 0}]o,
w, | =0 0 001 0 0 0 0 0 0 0]u
v, 0 0 00 01 00 O0O0 0 0f]o,
, 0 0 0000 0 0 O0 0 1 0ff6,
U, 0000 00 100 0 0 0f]é,
v, 000000 0 1 00 0 0f]oe,

6. Lo o oo o0 o0 0 o0 o0 o0 o 1J\loJ

where [K] .., = [TI[KI, [T} ”_ The final results are given in Table 5.2, and for this elementary problem the finite
element analysis agrees with the exact solution. The same problem can be solved using a strip of elements along
the y axis in order to verify the finite element formulation in the y direction.

Table 5.2 Thermoelasticity Problem

Finite element Exact
X u /) u g
0.0 0.0 100 0.0 100

0.25 9.375 75 9.375 75
0.50 12.500 50 12.500 50
0.75 9.375 25 9.375 25
1.00 0.0 0 0.0 0

5.19. The theory that governs coupled electrical and deformation effects in materials is called piezoelec-
tricity and is important for the study of microelectronic materials. The governing equations, with
subscript tensor notation, are

g, =0 o,=0, fori#j (@)
Sy =3, +up) ®)

0y = CouSut — €1/E ©
D,,=0 @)

E=—¢, (e)
D,=e,S, + €.k, )

where C,,, e, and €, are the elasticity, piezoelectric, and permittivity material constants,
respectively. The strain is defined using S;; to avoid confusion with the permittivity. The stress,
electric field, electric displacement, and potential are defined by Oy E,, D,, and ¢, respectively, and
the body force of Prob. 5.7 has been omitted. The boundary conditions are

u, = i, on du and t;=a;n; =1 on dt (g

¢ =¢ on d¢ and d=D,;n,=dondd )

Discuss the formulation of the corresponding finite element statement of the problem using the
Galerkin method.
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The finite element formulation will serve to illustrate the solution of a problem when the displacement
equations of elasticity (discussed in Chap. 3) are coupled with a theory that can be described using the Laplace
equation. In this theory the displacements and electric potential are fully coupled, whereas the steady-state
thermoelasticity described in Prob. 5.17 represents an uncoupled theory. Piezoelectricity can be studied using
finite elements in either two or three dimensions. However, when the problem is reduced to two dimensions,
some important effects are uncoupled. The following discussion will pertain to the eight-node linear element
shown in Fig. 5-3. Shape functions and local element matrices will not be developed since the amount of algebra
is prohibitive. Three-dimensional elements will be discussed in Chapter 7.

Fig. 5-3

Follow the procedure used in Prob. 5.17. Substitute Egs. (¢) and (e) into Eq. (a), keeping in mind that strain
is formally defined in terms of displacement by Eq. (b). Also, substitute Eq. (¢) into Eq. (f) and the result into
Eq. (d) to obtain the governing equations:

Cijkl'sk[’j + ekij¢’ij =0 @)

CiSui Eik¢’ik=0 0]

Strain is defined in terms of derivatives of displacement, and displacement and electric potential can be defined in
terms of shape functions and nodal point values of displacement {u} and potential {¢}. Replace Egs. (/) and (/)
with equivalent matrix equations:

92N 9*[N,]
01Dl ) 4 o S ) = R,
0x; ox;
8%[N,] @
SINJ A 3
[e] ax[z {u} [E] ax? {QS} - R¢>

The weighted residuals are formed as
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Z[N
j ([N V€l — 5= {u}+ N1 [€] {¢})

p OIND az[Nd,] ~
L([N¢] [e] o {u} —[N,1 [€ o )dVﬁ

The Green-Gauss theorem is applied to all terms containing second-order derivatives:
AN, 1" 8IN,] I[N, 1" a[N 1
fv ( ae[C1—g k4 = el ? {¢}>
j <[N] [Cl——— A { }+IN T [] {<15}) (m)
aN,I"  AIN,] AIN,1" . GIN,]
f( o] fuh - [l — {qs})dv

ox; ox, 0x; ox,;
f ([N e

The equivalent finite element equations are written in the abbreviated form

o

{u} N, ] [6] {d)}) as. (m

(K, Hu} + K, Nt =1t}

i ()
[Ku¢,]T{u} - [K¢¢]{¢} = {d}

where  [K,,]= J BICIB,JaV  [K,,]= f (B, [elB,1dV  [K,,]= fv[Bu]T[eJ[Bdev

and {t} and {d} are applied boundary conditions. The B matrices are defined, as in previous problems, as an
operator matrix times a shape function matrix. The element of Fig. 5-3 has eight shape functions, four degrees of
freedom (unknowns) per node, three displacements, and the electric potential. Therefore, define {u} and {¢} as
=M, v, w,  u, v, w, - u, vy wgl (24 terms)
()
{¢}= [, b P O, b b P ¢8]T

Equation (b) defines the [B,] matrix, but the engineering definition of strain should be used. Recall from previous
problems that [B,]=[L, ][N, I.

€, a/ox 0 0

€, 0 a/ay O |[N, O 0O N, 0 © N, 0 0

€. 0 0 a/9z|lO N O O N, O -+ O N, O

€. 0 9/0z 8/y|lo o N 0O 0 N, 0 0 N, (@
€, a/oz 0 a/0x (24 columns)

€, a/dy 9d/ax 0

The right-hand side of Eq. (g) is [L, ][N, ] for the eight-node brick element. Equation {¢) for the electric field
vector is used to define the [B o] matrix:

E, a/ax
E &=19d/dyJ[N, N, N, N, N, N, N, N ")
E, d/0z

The right-hand side of Eq. (r) is [L,][N,]. Note that the negative sign in Eq. (¢) was previously included in the
formulation. The material matrices are tabulated by Nye (1957) and can be specialized to correspond to any
crystal class.
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5.21.

5.22.

5.23.

5.24.
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[C,, Cp, € C Cs Cf e, e, e
Cp Oy G €y Cy €12 22 €32
[C] — C33 C34 C")i C36 [e] _ el% e23 633
Chi Cu Cy €14 €yy €3y
Symmetric C,s Cy €5 €5 Eas
L Coo | €16 €26 €36
€, 0 0
[e]l= 0 2 0

Supplementary Problems

Use the Galerkin method to solve the cable problem presented in Prob. 2.1 and compare the results with the exact
solution given in Prob. 2.12. Assume a trial solution v, = a, + a,x + a,x".

Repeat Prob. 5.20 assuming a trial solution v, = a, sin(wx/L), where L is the length of the cable.

Given the differential equation

ac DdZ_C =0 ith C(0)=CWL)=0
U o ms with C(0) =C{) =
assume a solution C, = a, +a,x + a,x* + a,x" and obtain an approximate solution using the Galerkin method.
Compare the results with the exact solution using the parameters given in Prob. 2.18, L=1m, D = 1.0(10°%),
u=1.5(10"%), and assume m = 1.0(10 ).

Repeat Prob. 5.22 assuming

Cp=ax+a,(1—¢)

Show that Egs. (d) and (#) of Prob. 5.12 are equivalent. Note that as discussed in the problem [N] is defined
differently in each equation. Explain the significance of redefining [N] while deriving a finite element model
using the Galerkin method.

A one-dimensional mathematical model for two-phase diffusion in composite materials was suggested by Gurtin
and Yatomi (1979). It defines a free-phase concentration that is assumed to diffuse through a rigid matrix
material. Mass balance for the free phase C, is given by

<, o

a ax M @)

and for the rigid matrix, C, is

aC,
€« _

ot 4 ®)

where j, is the flux of the free phase and m; is the rate at which free-phase material is being trapped. The

constitutive equations are assumed as Fick’s law for the free phase:

aC,

= b5y o @

and m,= BC.— aC, )



CHAP. 5] VARIATIONAL PRINCIPLES AND GALERKIN APPROXIMATION 167

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.20.

5.21.

for the rate term. Use the Galerkin method to formulate the corresponding finite element model for this theory of
diffusion.

Derive a one-dimensional steady-state linear local finite element for the coupled diffusion theory given in Prob.
5.14.

Show that Egs. (j) and (k) of Prob. 5.17 combine with Eq. (4) of Prob. 3.10 to give the governing differential
equations

< i (e, -2 e @ 99 4 p=0
Cuaxz Css 3x dy u, 2 3¢ 3y 3,2 v, Bax 5=

Crortre, D (e D et Yo —p 2 =0
12 ox y 33 8yz u, 22 8y2 33 dxay ) ¢ ay fy_

Formulate the matrix equation corresponding to the weighted residual of Eq. (@) of Prob. 5.17. Use shape
functions for four-node elements as defined in that problem.

Formulate the matrix equation that corresponds to the first term of Eq. (m) of Prob. 5.17. Compare and discuss
this matrix equation with the corresponding term given in the solution of Prob, 5.28,

Derive the coupling stiffness matrix defined as {K,,] in Prob. 5.17 for a four-node rectangular element.
Derive the shape functions for the eight-node brick element of Fig. 5-3.

Construct the operators A and C that correspond to Egs. (5.2) and (5.3) for the theory of piezoelectricity given in
Prob. 5.19.

Derive the general variational principle for the theory of piezoelectricity given in Prob. 5.19.

Assume that Eq. (b), Eq. (¢), the first Eq. (g), and the first Eq. (4) of Prob. 5.19 are identically satisfied and use
the results of Prob. 5.33 to derive an extended variational principle for piezoelectricity that is suitable for finite
element analysis.

Answers to Supplementary Problems

Satisfy the boundary conditions to obtain v, = a,(x* — xL). Formulate the weighted residual
- koo f] :
fo I:Za2 - Taz(x —xL)+ T (" —xL) dx
and a,(—1 — kL?/30T) = f/6T. Compare with Table 2.2, v(x = 24) = 1.7455, v(x = 48) = 2.6183.

Substitute the trial solution into Eq. (¢) of Prob. 2.1 to obtain the residual. Formulate the weighted residual

Eorax
s1n(T>R(x,a1) dx=0
0

[Fsn() (2 Jor () - (o sn(F) 4 =0

Integrate and solve for a,:
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5.23.

5.24.

5.25.

5.26.
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AL
a, =" 5 ..
Y om(m T + KL

Compare with Table 2.2, a, =2.7945, v(x =24) = 1.6425, v(x = 48) =2.6577.

The exact solution is

m L(1 — ™"
C=-— I:x - uL|D

u 1—e¢
The trial solution that satisfies the boundary conditions is
Cp = az(x2 —xL)+ a3(x3 —aL?)

The weighted residual equations after integration are
a,D ( ul’? )
+a +
3
L
5

(D uL

J=‘15 mls

and a, = —1204.8, a, = —2409.6. C, = (0.25L) = 790.65, C(0.25L) = 795.46; C,(0.50L) =

1194.53; C,(0.75L) =1016.5, C(0.75L) = 1016.84.
The trial solution that satisfies the boundary conditions is

L(1—¢"
CR—al[x—- ( i)]
1—e

The weighted residual equation after integration is

Da,L? <L_€_2L_l>+ mL* Lot +1 mLz_O
TGN I VAR

[CHAP. 5

1204.8, C(0.50L) =

Substitute parameters and a, = 1(10%); C,(0.25L) = 847.04, C,(0.50L) = 1224.95, C,(0.75L) = 999.32.

Perform the indicated multiplications and the equivalence is shown. Also, in actual application this redefinition of
[N1] is of no consequence since the finite element is derived using the first-order derivatives of the shape function.

However, the redefinition of [N] is necessary for a proper derivation.

Combine the governing equations to give

G
at

= aC, =0  —F—pC+aC,=0

Assume C, = [N]{Cf} and C, = [N){C,} and construct the weighted equations:

o{Ct 9Ny a[N]

[NI"[N] T {Cf}+[N] [BIINKC} — INI"[@][NKC,} =

0x
{C }
[N]"[N] —=— [N]"[BIINNC,} + [N] " [@][N}{C,} = 0

The governing equations are

[N}jn
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=D

1

=D

22

d*’c :
2
1 dx2 + DIZ dxz
d’c, d’c

2
X

+k,C, — k,C,=0

+D,2—dx22 —k,C, +k,C,=0
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Follow Eq. (e¢) of Prob. 2.9 and Eq. (d) of Prob. 2.11. Assume a two-node linear element with node numbering,

I, j:
— D11+k1L _D11+k1L _Dlz_kzL Dlz_kzL_
—&4-& &4_% D, kKL D, kL
A L 6 L 3 L 6 T 3
D12 kgL D12 k]L D22 + kzL D22 . kzL
L3 L6 L 3 L6
&_IQL D12?k1L 7D22+k2L 22_2+k2L
Take the integral over the volume of
-N, 0"
0 N,
N, 0 c . . »
0 N, a/ox 0 a/ox 11 12 /dx
3 0 3/dy  9/ox
0 N 0 Cs, /3y /
N, O
- (1Y
vl
u2
><N10N20N30N40<U2>
O N O N, 0 N 0 N, u,
U3
Uy
\v,/
=N, 0=
0 N,
N, O
0 N, I[B 0 a/dx
A [0 B, [a/ay][Nl N, Ny N,]
0 N,
N, O
_O N4_

S

(S}

20

Cli
c,
C2i
C,,

N,

0

N2

0

+ N,

0

N4

| o

Z o Zo
|

o2 o

2

Note that the shape function [N, ] used in Eq. (m) of Prob. 5.17 must be redefined as a 3 X 8 matrix in that
equation. See the discussion in Probs. 5.12, 5.25, and 5.29.

The shape function matrix and the operator matrix must be redefined. The proof of the equivalence of the two
matrix equations is obtained by performing the matrix multiplications and comparing the results.



170

5.30.

VARIATIONAL PRINCIPLES AND GALERKIN APPROXIMATION [CHAP. 5
=N, 0 N,
0 N, N,
N, 0 N
o N N A[CE G2 O7[@re* o 0
N 02 N2 Cn Cp 0 0 a*/oy” 0
> } 0 0 C 21952
0 N, N, 33 0 0 0”/ox
N, 0 N,
L0 N, N ()
N, O N, O N, O N, 0 Zz
x{o N O N, O N O N &,
3
N, N, N, N, N, N, N, N},
Uy
\ U,/

After matrix multiplication and application of the Green-Gauss theorem, the matrices can be written in the format
of Eq. (o) of Prob. 5.17.

The stiffness matrix is defined as the second term in Eq. (o) of Prob. 5.17, and the integral to be evaluated is

A
LT BN

The first term is Eq. (¢) of Prob. 3.11, and the third term is Eq. (e) of Prob. 3.4. The material matrix must connect
the 8 X 3 matrix with the 2 X 4 matrix. Formally, the matrices appear as the integral of

[~ ON,,, /dx 0 N, /9y™]
0 N, /oy ON, [ox
oN,,/ox 0 oN ,/dy
0 ON,, /0y ON,,/dx /?)X g I:NGI Ny, Ny, Ne4]
aNMS/a'x O aNu3/ay 0 Oy NHI 02 N03 N94
0 oN,,/dy N, /ox
oN,,/ox 0 oN,, /0y
o N, /dy 9N, /8x_]

The shape functions are subscripted u and # to indicate the difference in the weight functions in the formulation.
In this application they are the same and are given in Chap. 3, Probs. 3.1 and 3.5. Note that the first matrix could
have been written as an 8 X 2 and the [B] matrix written as a 2 X2 and the same result would have been
obtained. However, the formulation above makes the first matrix correspond to the first matrix in Eq. (o) of Prob.
5.17, and that is convenient for computer implementation. Substituting shape functions and integrating 0 — @ and
0 —b gives the final stiffness matrix:

— —3.b/6

—B,al6

Bb/6
—pB,all2
B.b/12
Ball2
—-B.b/12

| Bass

—B.b/6
—B,all12
B.b/6

—B,al6
B.b/12
B,al6

—-B.b/12
Ball12

—B.b/12
—Ball2
B.b/12
—B,al6
B.bI6
B,al6
—B.b/6
Ball2

—B.b/127
—B,al6
B.b/12
—B,al12
B.bI6
B,al12
—B.b/6
B,al6 |
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5.31. Derive the three-dimensional shape functions using three one-dimensional shape functions at each node. Let N, _
be the one-dimensional shape function between nodes 1 and 2. Then, N, , =(a —x,)/a. Similarly, N, ,
(b—x,)/band N, ;=( —x,)/c. Then, N, =N, ,N, N, ,, or

S}

N, = (@—x)b—x,)(c—x;) N o= X, (b —x,)(€ —x3)

abc 2 abc
X —x;) _la—xx(e —x;)
3T abc T abc
_l@a—x)b —xx, N Cx, (b= x)x,
5T abc o abc
XXX, o —xxpx,
7T abc 87 abc
5.32. W ={u,,S; 0D Es Py us by, &, d}
{f;g}=1{0,0,0,0,0,0; 7, —ii,.d, — ¢}
[0 0 —L 0 0 0 7]
0 Cijkllsikéjl -1 0 ekij(sik 0
L -1 0 0 0 0
0 0 0 0 1 8/dx,
0 eijk6ik 0 1 — €54 0
0 0 0 —d/ax, 0 0
0 1 0 0
-1 0 0 0
0 0 0 1
= 0 0 -1 0
L=3(8,08/dx, + §,0x,)
5.33. J W)= {7[um’ Lo-ij] + [Sij’ CiJkISkl] - [Sij’ a-ij] - [Sij’ ekijEk]
+1o,, Lu, 1~ lo,, S, ] + D, E]+ D, dd/dx,] — [E,, e,,S,]

+[E. D]~ [E, E]—[$,0D,/0x]},

(), — [0, + [b.dl,, — [d, 61,

—20u,, £, + 201, i1, — 2[¢. dl,, +2d, ],

5.34. J,(w) = {[Sij’ CijkISkl] —1E, ,E]— Z[Sij’ ekijEk]}(l —2[u, 1, —2[¢, ‘-i]ad



Chapter 6

Isoparametric Finite Elements

6.1. INTRODUCTION

The previous chapters have been concerned with the derivation of local finite elements for various
physical problems, and applications have centered about the rectangular finite element. The geometry of
the element and the relation between interpolation functions and shape functions will be emphasized in this
chapter. Several example problems will require computing the elements of the stiffness matrix. They will
enable analysts writing computer code to check their computations at various stages of code development.

The concept of an isoparametric finite element will be discussed in detail. The derivations and
applications will center about the four-node quadrilateral element, but other element configurations will
also be introduced. The isoparametric quadrilateral element is not required to conform to a cartesian
coordinate system. The power of the finite element method as a method of numerical analysis can be
emphasized since it will now be possible to model physical problems with more complicated boundary
conditions. The previous chapters have been somewhat academic from an applications viewpoint, but this
chapter will demonstrate that the finite element method can be applied to complex problems in science and
engineering.

Numerical integration plays a significant role in the formulation of an isoparametric finite element. On
the one hand, the numerical integration causes the development to appear more complicated, but on the
other hand, the entire process of developing a local element is streamlined since the area integrals need not
be evaluated analytically.

Axisymmetric field problems were introduced in Chap. 3 and will be studied in greater detail in this
chapter. Numerical integration and isoparametric finite elements are logical choices for solving this class of
important problems. Again, the four-node quadrilateral element will be used to illustrate these applications
of the finite element method.

6.2. NUMERICAL INTEGRATION

Numerical integration is used extensively in finite element analysis. Elementary integration formulas,
such as the trapezoidal rule, often assume equally spaced data and can become somewhat limited in
applicability ‘and accuraCy when used in finite element analysis. The Gauss quadrature has become the
accepted numerical integration scheme in the majority of finite element applications. The term quadrature
means numerical integration. In general, an integral is evaluated approximately as

n

I:f ) dx = 2w fx,) 6.1)

k=1

where the x, are the sampling points (Gauss points) and the w, are called the weights. Numerous Gauss
quadrature formulas can be used in conjunction with Eq. (6.1), however, the Gauss-Legendre quadrature is
the most popular for finite element analysis. The development of the weights and sampling points s based
upon the Legendre polynomial, and that derivation is given in most books on numerical analysis (see, for
instance, Scheid, 1988). Gauss-Legendre numerical integration requires that the integration limits be from
—1to +1, or

n

+1
1=f_1 fydr =2 wfir,) 6.2)

k=t

The integrals in most finite element applications are of the form of Eq. (6.2). Numerical integfation using
Gauss-Legendre quadratures is easily extended to two or three dimensions.

172
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Area integration for linear triangular finite elements was discussed in Chap. 3. Additional integration
formulas for linear and higher-order triangular elements will be given in this chapter. (See Prob. 6.22.)

6.3. INTERPOLATION FORMULAS AND SHAPE FUNCTION FORMULAS

Interpolation formulas and shape functions for higher-order finite elements are often derived by
inspection. In what follows, two families of shape functions that can be derived using a formula approach
will be discussed.

Lagrange Polynomial Formula

The Lagrange polynomial formula is an interpolation formula that is useful for generating shape
functions and is defined as
- X, F—x)x—x) O —x_x—x )&k —x)

= (6.3)

x
m=0 X X, (g —x)x —x ) (0 T 0 ) (g T X))

and represents the product of all terms. When x = x,, the product becomes unity. However, when x = x,,
with m # k, the product becomes zero. It follows that L, of Eq. (6.3) has properties similar to a shape
function N,. The Lagrange polynomial can be used to construct an interpolation formula or shape function
corresponding to any line element, and the line element is easily extended to higher dimensions. (See, for
instance, Probs. 6.3 and 6.23.)

Triangular Shape Function Formulas

Shape functions for triangular finite elements of any order can be derived using the area coordinates
introduced in Chap. 3. The three-node triangular element is shown in Fig. 3-12 with area coordinates
defined relative to the sides of the triangular element. Area coordinates are independent of the number of
nodes used to define the triangular element, however, the number of nodes and the placement of the nodes
for higher-order elements must satisfy certain requirements (see Prob. 6.18). The shape function can be
derived in terms of area coordinates using the formula

N=11 Ll Lo o) 6.4)
m=

Fm\L,,LZ,L3

where n is the order of the triangle and is equal to 1 less than the number of nodes along a side. The
function F,, is obtained from the equations of 7 lines that pass through all the nodes except the one of
interest. The denominator is the value of F, when evaluated at the coordinates of node k.

6.4. GENERALIZED COORDINATES

Area coordinates discussed in the preceding section were used in Chap. 3 to facilitate the area
integration required for deriving a three-node triangular finite element. Area coordinates are a type of
generalized coordinate that can be referred to as normalized coordinates. The four-node rectangular
elements of Chap. 3 were derived using a local coordinate system that was identical to the global system,
and all area integrations were elementary and were carried out in closed form. However, applications were
limited to geometries that could be described using connected rectangles. In this chapter the rectangular
element will be replaced with a four-node quadrilateral element that is not required to conform with the
global coordinate system. Applications using a four-sided element can now be extended to nonrectangular
areas. Area integration, even for a four-node element, would become extremely tedious if attempted
analytically using the global coordinate system. A generalized coordinate system that has been used
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extensively in finite element analysis simplifies the area integration. The local element, described in global
coordinates, is integrated numerically in a normalized element space that is always defined by boundaries
lying at =1 from the origin of the element space. Area integrations are accomplished numerically using the
normalized element having boundaries of —1 and +1, and it follows that the Gauss-Legendre quadrature
of Eq. (6.2) is an obvious choice for numerical integration. The element shape functions must be derived
in the normalized space. Also, the actual element geomerty is defined in the global coordinate system using
an interpolation function that transforms the normalized geometry of the element into the global space. The
coordinate system described above and the elements used are often referred to as serendipity coordinates
and serendipity elements, respectively.

6.5. ISOPARAMETRIC ELEMENTS
Isoparametric Quadrilateral Elements

Isoparametric is a name that implies certain propertics for an element that is integrated in a
normalized space such as that described in Sec. 6.4. An interpolation function is used to approximate the
physical parameter along the boundaries and interior of the element. When the same node locations are
used for both approximations, the element is said to be isoparametric. It follows that the orders of the two
approximations are not required to be the same. When fewer nodes are used to define the geometry than are
used to define the shape function, the element is termed subparametric. Also, when there are more
geometry nodes than shape function nodes, the element is called superparametric. Subparametric and
superparametric elements will not be discussed in detail.

The development of a local stiffness matrix for any meaningful problem requires that the derivatives
of the shape functions be evaluated. In the isoparametric formulation the local clement geometry is
transformed into the generalized space using an interpolation formula. The derivatives must also be
evaluated in the generalized space, and that requires a formal mathematical coordinate transformation
written in functional form that can later be evaluated numerically. The reader should be careful not to
confuse mathematical operations pertaining to coordinate transtormation with those pertaining to numerical
integration, such as evaluating the derivatives of the shape functions. This confusion arises because the
polynomial form of the shape function and the coordinate interpolation function are identical for an
isoparametric finite element, and the same notation is often used in both situations.

The element in the undistorted space, using &, 7 coordinates, is often referred to as the parent element.
The distorted element, the local finite element, is defined in &, 71 coordinates using a coordinate
transformation or interpolation function that has the same form as the shape function (see Prob. 6.5).
Derivatives of physical parameters are computed in the x, y system, but the element has been defined in the
£ 7 system. It is necessary to use the chain rule for partial derivatives to define derivatives in the &7
system and then relate these functions back to the x, y system. This transformation is accomplished using
the jacobian matrix (see Prob. 6.6). After these transformations are complete, the geometry is completely
defined in the £, 77 system, and the local stiffness matrix is evaluated using numerical integration for shape
functions and their derivatives that are defined in the & 7 system.

Isoparametric Triangular Elements

The discussion of quadrilateral elements is equally valid for triangular elements as far as the
fundamental concepts of coordinate transformations are concerned. However, there are some significant
differences if area coordinates are to be used to define the shape functions for triangular elements. In a
two-dimensional space there are three area coordinates for defining a triangle, but there are only two
coordinates, ¢ and 7, for the parent element described above. In this situation the construction of a
jacobian matrix for transformation would give a rectangular matrix with no inverse. This difficulty can be
circumvented by recognizing that the area coordinates are not independent and that one coordinate can be
written in terms of the remaining two. In addition, the integration limits in the undistorted space, £ and 7,
must be changed to correspond to triangular limits. Fortunately, numerical integration formulas have been
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derived that are quite accurate for evaluating the integrals. Triangular isoparametric elements are discussed
in Prob. 6.21.

6.6. AXISYMMETRIC FORMULATIONS

Isoparametric finite elements for axisymmetric problems are derived in the same manner as all other
two-dimensional formulations. A primary difference is that the volume integration must be replaced with
dV = 2qr dr dz.

The axisymmetric finite element formulation for physical problems governed by equations of the
heat-conduction type was outlined in Prob. 3.25 using the variational function to derive the basic finite
element equation. In this chapter the reader will find that the isoparametric finite element and numerical
integration can simplify the analysis of this type of axisymmetric problem.

The equations governing axisymmetric elasticity problems were discussed briefly in Chap. 3. The
strain-displacement equations to be modeled are obtained from Eqs. (3.17) assuming v =9/90 = 0:

_du U _ow _ow  du 65
& = ar €55 = r €. = 9z € T ar 7z (6.5)
The equations of equilibrium are independent of the tangential coordinate @ and are
90,, 90, 0, — Og _ 56
ar + dz * r =0 6.6)
99,. | 99 % _o 67
ar oz ro ©.7)

The matrix of material constants is given in Prob. 3.26. The formulation for an isoparametric
axisymmetric element in r,z coordinates is similar to the formulation of the corresponding element in
cartesian coordinates with the exception of the strain term €, that has the r coordinate in the denominator.
The formulation of the isoparametric element for axisymmetric elasticity is outlined in Probs. 6.12—6.14.

The Laplace operator in cylindrical coordinates (r, 8, z) is written as

1 8> &
00 e ©.8)

~ =

8’ )
2—.__ —_—
V_8r2+ ot

The dependence upon the 6 coordinate is deleted in the axisymmetric formulation. A finite element was
derived for this type of problem in Chap. 3, Prob. 3.25, using a variational formulation. Identical results
can be obtained using the Galerkin formulation. Axisymmetric problems involving heat conduction,
diffusion, electrostatics, and so on, are discussed in Prob. 6.17.

Solved Problems

6.1. Use Gauss-Legendre numerical integration to integrate the body force term for the one-dimensional
linear finite element derived in Prob. 2.9.

The matrix equation to be evaluated is written below for reference.

Al {0 b @
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Exact results can be obtained using a two-point integration formula or » =2 in Eq. (6.2). The sampling points
and weights for n =2 through n =5 arc given in Table 6.1; see Scheid (1988).

Table 6.1 Sampling Points and Weights for
Gauss-Legendre Integration

n X, W,
+0.577 350 269 1.000 000 000
3 0.774 596 669 0.555 555 555

0.000 0600 000 (0.888 838 888
—0.774 596 669 0.555 555 555
4 +0.861 136 312 0.347 854 845
+0.339981 043 0.652 145 155
5 *0.538 469 310 0.478 628 670

0.000 000 000 0.568 888 889
+0.906 179 845 0.236 726 885

The argument of the integral must be changed to represent integration limits —1 to +1, or x = ("L + L)/2 with
dx =L dr/2. The integral to be evaluated is

ALJ'H (1=nit, b
L) Ve+naf ¥ b)
Substituting the sampling point and weight values for n =2 into the first term gives (with five-digit accuracy)
AL AfL
4 {1 —(0.577735)])(1) + [1 — (—=0.577735) (1)} = BN

The integration is exact. Similarly, the second term gives the exact answer, AfL/2.

Use Gauss-Legendre quadratures with n =2 to numerically integrate

a b a2b2
xydxdy =
0 0 4

The integration arguments are modified using x = ¢ + Da/2, dx =adr/2, and y = (s + 1)b/2,dy =5 ds/2.
The equation to be integrated is ’

+1 +1 a b ab
Jﬂ fil 5(r+ l)§(s+ l)jdrds
or, in the form of Eq. (6.2),

a’h?
16

VN

2 (r, + Dw s, + Dw, @

1

i

Evaluate Eq. (a) with i = 1 while j equals 1 and 2, then with i =2 while j equals 1 and 2:

2;2

16

{(—0.577735 + 1w, [(=0.577735 + Dw, + (0.577735 + Lyw, ]}

+{(0.577735 + )w,[(—0.577735 + Lw, + (0.577735 + Dw,1}1  (b)

Evaluating Eq. (b) gives the exact result a’b” /4.
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6.3. Use the Lagrangian interpolation formula for deriving one-dimensional three-node shape functions for
the element illustrated in Fig. 6-1. Specialize the shape function for an element of length L with a
node at its center.

~
Ryl
_y

i I |

Xk
Fig. 6-1
Substitute into Eq. (6.3):
LN x—x)x—x,) LN - (x—x)x —x) o hmx)er— )
T —x)(x — X P& X)X, TR g )0 X))

Let x,=0, X, = L/2, and x, = L and let corresponding node numbers be 1, 2, and 3:

@ -L/2)x—L) x(x—L) _ x(x—L/2)

' (=L/2)(-L) 2 (L/2XL/2 L) STLIL—L/2)

6.4. Derive the interpolation functions for a four-node isoparametric quadrilateral element.

47

("1, 1) (1’1)

L1 2
(-1,-1) 1,-1)
Fig. 6-2

Use the Lagrange polynomial formula and Fig. 6-2. The interpolation function for node 1 is the product of
shape functions along the lines £ = —1 and n = —1. Note that the interpolation function is identical to the shape
function and that the notation for the shape function is used:

-1 p—-1 (A-&60-7n
—-1-1-1—-1" 4

Nl :ngLln =

The remaining functions are derived in a similar manner,
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_Etl -1 A+HA—n

No=lodoy =31 Z1 =1 = 4
g+lqgt+l (d+6d-m
Na=ladlay =907 751 4
-1 n+l (A—-&HA+7
Ne=bodo = 2727070 4 -

6.5. A four-element model of a plane area is shown in Fig. 6-3. Use the interpolation functions for a
four-node quadrilateral derived in Prob. 6.4 and for element II1 show that coordinate location (x = 7.0,
y=6.0) corresponds to point (1,1) in the generalized space. Also, for £ =0.5 and 5= —0.5,

. determine the corresponding point in the global system. e e

L]
~1,1 / 1,1
7 %
®
0.5, -0.5
1, -1

&, n space for element III

10,6

¥

0,0 4,0 8,0

x, y-coordinate space
Fig. 6-3

The interpolation functions can be written as follows using the notation of Prob. 6.4:

x=2Nx,  y=2Ny, @
or x =41 = E e, + LA+ =, + 10+ A+ e, + L1~ EXL+m)x, ®)
y=2(1= L =)y, + L1+ O —my, + 1L+ O+ )y, + 11— €1+ )y, ©

Substitute the global coordinate values for element III:
x=3(1=EH(1 =@ + ;1 + A = m)(5.5) + {1+ EHA+m)(T) + (1 = E(A + (4 )

y=3(1 =61 -m3) + 1+ (A~ G+ (1 + HA+7)(6) + 5 (1 — H)(1 +9)(6) ()

Substitute £ =1 and 5 = 1 into Egs. (d) and (¢) and compute the corresponding x and y. Note that all terms in Eq.
(d) are zero except the third term and that it corresponds to node 3. Similarly, all terms in Eq. (¢) are zero except
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the third that corresponds to node 3. It can be seen that the interpolation function is similar to the shape function.

For é=1and p=1,N,=1 with N, =N, =N, = 0.

Substituting € = 0.5 and = —0.5 into Eqs. (d) and (¢) gives x = 5.0313 and y = 3.75. It is easily verified
that these solutions represent a linear approximation for coordinate locations along the element boundaries and on

the interior of the element.

An isoparametric parent element is shown in Fig. 6-4(a), and a corresponding isoparametric distorted
element is shown in Fig. 6-4(b). Discuss the transformation that relates partial derivatives in the

original x, y coordinates to the generalized &, i coordinates.

2

1
X
(a) Parent element ‘ (b) Distorted element
Fig. 6-4

=¥

The shape functions, as ilustrated in Prob. 6.4, are functions of £ and 7, or
N, =N,(&m) (the N, are shape functions)
The x, y coordinates are defined in terms of &, n coordinates by Eq. (a) of Prob. 6.5, or
x=x@,)=x(&m) y=yWN,)=y(&n) (the N, are the interpolation functions)

The derivatives of the shape functions can be written as follows, using the chain rule:

N, 0N, ax N, dy
AE dx A€ dy of
N, AN, ax 9N, dy

on dx dn  dy dn

Equation (c) is written in matrix form as
ONJ3g)  [ax/ag  ay/a&|[ aN,/ox
aN.fom |~ | ax/an  ayloan |{ aN/dy

The first matrix on the right-hand side is defined as J and is referred to as the jacobian matrix:

oy

8¢ 8¢
J:

x

an  an

(@

®)

(0)

(d)

(e

Multiplying Eq. (d) by J ' gives the form of the equation that can be used to compute derivatives of the shape

functions in the x, y system:
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oN, aN, x| eN,
ax | ¥ 9&  a¢ Gl
-7 = 03]
an, a8 B TR I
dy m an a7 on
Substituting Egs. (a) of Prob. 6.5 into (f) gives the final form
oN, oN, oN, “I" aN,
R[22 23] 5%
ax EY; A& a&
= (8)
oN, D aN, 2 oN, N,
ay an i n Yi o

Note that the N, within the jacobian matrix are coordinate interpolation functions, whereas the N, within the
column matrices are shape functions. The formulation of Eq. (g) has been related to a four-node quadrilateral
finite element, and that dictates that both the interpolation function and the shape function be linear and that the
result be an isoparametric element. A subparametric finite element is formulated in exactly the same manner
except that the N, within the jacobian matrix can be linear (a four-node coordinate approximation) and the N, in
the column matrices can correspond to any higher node shape function approximation (such as the nine-node
element of Prob. 6.24).

In addition, for the purpose of performing area integration, an infinitesimal element is defined as
dx dy = |det J| d€ dn (h)

where |det J] is the determinant of the jacobian matrix and is often merely referred to as the jacobian.

Discuss the evaluation of the jacobian matrix for a four-node isoparametric finite element.

The interpolation functions are defined in Prob. 6.4, and the jacobian matrix is defined by Eq. (g) of Prob.
6.6. The jacobian matrix can be written as a product of two matrices:

oN./d
J{E( , f)][xi )]

2 (aN,/m)
xl yl
or ]:1[—(1—77) (I-=m (1+m -(1+n)] XY @
41-0-6 —1+8&8 (1A+9) A=A *x ¥
Yo Ya

This definition of J can be extended to any interpolation function. The matrix multiplication would be a
[2 X n][n X 2], where n is the number of nodes to be used for geometry transformation. Equation (a) can be used
to evaluate J at any &, 7 location for an element defined in the x, y system. In finite element analysis Eq. (a) is
used in conjunction with the numerical integration and the evaluation of the local stiffness matrix.

The fundamental theory for the development of a local stiffness matrix for heat transfer is given by
Probs. 3.4 and 3.5 as

K]= f [B]” [KI[BIt dx dy @)

where [B] = [L][N] [Eq. (¢) of Prob. 3.4]. The [B] matrix corresponds to the left-hand side of Eq. (g)
of Prob. 6.6. Discuss the formulation of the [B] matrix for a four-node quadrilateral isoparametric
element,

Expand Eq. (g) of Prob. 6.6 for i =4:
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6.9.

[aNllax dN,/3x AN,[/ox 8N4/6x]

I, T, 7[ON,J9E  ON,/aE  ON,/o& oN,[a&
aN,/dy N,/dy aN,/dy ON,/dy

Jor s oN [dg ON,/dn ON,/dn ON,/on

The components of the inverse of J are computed using Eq. (@) of Prob. 6.7. The derivatives of the shape
functions on the right-hand side of Eq. (b) above are a matrix that is identical to the matrix of Eq. (a) of Prob.
6.7. Note that these two matrices are always identical for a four-node isoparamerric element with one degree of
freedom per node, but that Eq. (b} above represents shape functions whereas Eq. (@) of Prob. 6.7 represents
interpolation functions for geometry transformation. Equation (b) is the formal representation of the [B] matrix.

A quadrilateral element is shown in Fig. 6-5. Evaluate the stiffness matrix for heat transfer using the
definition given by Eq. (a) of Prob. 6.8. Assume the thermal conductivity as k, =k =k =1 Btu/
(hr-in-°F). Assume a unit thickness for the element.

(4,6)
y } k]
(1,4) \
-1,1 1,1
- t = |
Yo
5o ! ~ @4
(,2) 0.57735
1) T % T ¢
’ 0.57735 1
- ‘ _
t
-1,-1 l._. 1, -1
0.57735(0.57735

Fig. 6-5

A 2 X2 gaussian quadrature will be used, and the parent element is shown in Fig. 6-5. The numerical
integration procedure is similar to that illustrated in Eq. (@) of Prob. 6.2. The [B] matrix, in the form given by Eq.
(b) of Prob. 6.8, must be evaluated for each Gauss point of Fig. 6-5. Each time the [B] matrix is computed, the
contribution to the stiffness matrix is computed as [B]” [k][B], and the final stiffness matrix is the sum of the four
contributions. In what follows, the computations will be shown in detail, and the reader should keep in mind that
they are being done using a computer code with a nested DO loop where I=1TO 2 asJ=1TO 2, where T and J
correspond to the 2 X 2 gaussian integration. In order to evaluate [B] at each Gauss point, the jacobian of the
transformation for that Gauss point must be computed. Equation (a) of Prob. 6.7 is used to compute the jacobian
in matrix format. The matrix that defines the element in the x, y coordinate system corresponds to the second
matrix of that equation and is evaluated using Fig. 6-5:

(@

— N
N N N

Gauss point 1:
The location of the Gauss point is obtained from Table 6.1 and is shown in Fig. 6-5. Let ¢,_, = —0.57735
and n,_, = —0.57735. Use Eq. (a) of Prob. 6.7 to evaluate the jacobian matrix:
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N

[ —mx, + (1 —mx, + (1 +mx, — (1 +7)x,]

‘[11
J [—(1+0.57735)(2) + (1 + 0.57735)(5) + (1 —0.57735)(4) — (1 — 0.57735)(1)]

1
a

1{-3.15470 + 7.88675 + 1.69060 — 0.42265] = 1.50

Similarly,

J, =31 +0.57735)(1) + (1 + 0.57735)(2) + (1 — 0.57735)(6) — (1 — 0.57735)(4)]

Il

+{—1.57735 4 3.15470 + 2.53590 — 1.69060] = 0.60566

~
|

5 =2 [—(1+0.57735)(2) — (1 — 0.57735)(5) + (1 — 0.57735)(4) + (1 + 0.57735)(1)]

1[—3.15470 — 2.11325 + 1.69060 + 1.57735} = 0.5

]2 2

+[—(1+0.57735)(1) — (1 — 0.57735)(2) + (1 — 0.57735)(6) + (1 + 0.57735)(4)]
=1[—1.57735 —0.84530 + 2.53590 + 6.3094] = 1.60566

_[=|: 1.5 0.60566
—0.5 1.60566

The inverse of J can be computed in an elementary way as (see Prob. 1.14)

l: J2s _le:l

—J J

]71 _ 21 11 b
detJ| ®

where |detd| =7, ,J,, — 1, [, ©

Substituting into Egs. (c) and (b) gives |det J| =2.71133 and

o= 0.59221 —0.22338]

“Lo.18441 0.55324 @)

Let dA = dx dy = |det J| d¢ dn = |det J|w,.:le=I =2.71133, and the weights have been included in this calcula-
tion. Note that the weight functions for 2 X 2 integration are equal to 1.0.

The {B] matrix of Eq. (b) of Prob. 6.8 is evaluated using the derivatives of the shape functions in the & 7
system. These numbers are the same as those used above to compute J (see Prob. 6.8).

[B] :[0.59221 ~0.22338]|:—1.57735 1.57735 0.42265 —0.42265 ©
! 0.18441 0.55324 1L —1.57735  —0.42265 0.42265 1.57735

(B] :[—0.14544 0.25713 0.03897 —0.15066]
! —0.29088 0.01426 0.07794 0.19868

The contribution to the stiffness matrix for Gauss point 1 can be written as
[K], = [B][[K][B], dA
where dA is defined above.
028676  —0.11265 —0.07684 —0.09728
K] = 0.17982 0.03018  —0.09735
(K], = Symmetric ~ 0.02059  0.02606 )
0.16857

The computation for the remaining Gauss points will be shown but with less detail.
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Gauss point 2:

Gauss point 3:

Gauss point 4:
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¢, = —057735 and 1,2, = 0.57735

J:[ 1.5 0.89434] J_1:[0.56227 70.31318]

-05  1.60566 0.17509  0.52527
|det J] = 2.85567

(B] :[ 0.06409 0.09250 0.18863  —0.34522
2 —0.22564  —0.03700 0.12455 0.13809

0.15711 0.04077 —0.04573 —0.15216
0.02834 0.03667 —0.10578

(K], = Symmetric  0.14591  —0.13685
0.39479

¢ _,=057735 and M,-, = —0.57735
; :[ 15 0.60566] -1 _[060246  —0.19262
~0.5 1.80434 0.15902  0.47705

ldet J] = 3.14434

(B] :[—0.21722 031353 —0.01230 --0.08401
3 —0.11311  —0.12541 0.20492 0.03360

0.18859  —0.16954 —0.06448 0.45428
0.35855 —0.09293 —0.09607
Symmetric 0.13251 0.02490

0.02574

(K}, =

£_,=057735  and  m,_,=0.57735

J:[ 1.5 0.89434 Jl = [0.57602 —0.27945
—0.5 1.89434 0.15204 0.45611

|det J| = 3.28868

[B] :[—0.03213 0.16810 0.11991 —0.25588]
4 —0.06426 —0.16380 0.23982 —0.01176

0.01697 0.01685 —0.06334 0.02952
0.18116 —0.06289 —0.13512
Symmetric 0.23642 —0.11018

0.21577

(K], =

The final stiffness matrix is the sum of Eqgs. (f)—():

0.64945  —022456 —0.25040 —0.17449
= 074787 —0.08897 —0.43433
(K] = Symmetric  0.53543  —0.19606

0.80488

183

(&

)

@

9))

Assume a four-node isoparametric finite element and compare the formulation of the [B] matrix for a
plane elasticity problem with the heat transfer formulation of Prob. 6.8.

Review Probs. 3.10 and 3.11. The [B] matrix for plane elasticity is formulated as [B] = [L][N], where [L] is
defined by Eq. (h) of Prob. 3.10 and [N] is defined by Eq. (b) of Prob. 3.11. The [B] matrix for a plane elasticity
problem corresponds to Eq. (¢) of Prob. 3.11 and is written as
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ON, /ox 0 dN, /ox 0 dN, /dx 0 oN,/ox 0
[B] = 0 aN, [dy 0 oN, /3y 0 aN,/dy 0 N,/ dy )
AN, /8y ON,[/dx ON,/dy oON,/ox ON,/dy ON,/ox ON,/dy ON,/ox
The elements of the [B] matrix are computed using Eq. (b) of Prob. 6.8. After matrix multiplication of that
equation, the proper terms must be assigned to the proper locations in the 3 X 8 matrix above.
6.11. Use the element of Fig. 6-5 and derive the stiffness matrix for the plane stress elasticity problem

assuming E = 1.0, » = 0.25 and unit thickness f = 1. Use the linear isoparametric formulation.

A 2 X 2 gaussian quadrature will be used, and it follows that the computations for the jacobian matrix and
the derivatives of the shape functions are identical to those of Prob. 6.9. The B matrix for the first Gauss
integration point will be evaluated to illustrate the procedure. Let §,_, = —0.57735 and n,_, = —0.57735 to
correspond with Gauss point 1 of Fig. 6-5, and the first contribution to the [B] matrix is formulated as follows
(note the similarity to the terms in [B], of Prob. 6.9):

—0.14544 0 0.25713 0 0.03897 0 —0.15066 0
[B], = 0 —0.29088 0 0.01426 0 0.07794 0 0.19368
—0.29088 —0.14544 0.01426 025713 0.07794 0.03897 0.19868  —0.15066

The elasticity matrix of material constants [C] is evaluated using Egs. (3.6)—(3.8):

¢, C, O E/(1—v")  wE/(1—vY) 0 1.0667 02667 0
[cl=| ¢, ¢, 0 |=|vE/t=v> E/I(1-v) 0 =102667 10667 0
0 0 C., 0 0 E/2(1 + v) 0 0 0.4

The first contribution to the stiffness matrix is [K], = [B]'{‘[C] [B],t dA, where dA =2.71133 is defined in Prob.
6.9. This contribution is given by the symmetric matrix

—0.15294 0.07647 —0.11266 —0.08262 -—0.04098 —0.02049 0.00069 0.02664™]
0.26765 —0.05633 —0.05256 —0.02049 —0.07172 0.00035 —0.14337
0.19144 0.00663 0.03019 0.01509 —0.10897 0.03461
K] = 0.07229 0.02214 0.01408 0.05385 —0.03382
! 0.01098 0.00549 -0.00019 —0.00714
0.01922  —0.00009 0.03842
0.10846 —0.05411
L 0.13877
The computations are repeated for the symmetric matrix [K], using Gauss point 2 with £ _, = —0.57735 and
N-p = 0.57735:
- 0.07066  —0.02753 0.02753  —0.02565 0.00472 -0.04254 —0.10298 0.095727]
0.15977  —0.01860 0.03220 -0.02329 -0.07179 0.06943  —0.12018
0.02763 —0.00652 0.04789 0.00080 —0.10311 0.02432
K], = 0.01394 0.00784 0.00589 0.02432  —0.05204
2 0.12611 0.04473  —-0.17872  —0.02928
0.08789 —0.00299 —0.02120
0.38481  —0.09076
- 0.19422
Similarly, for Gauss point 3, &,_, = 0.57735 and iy = —{0.57735, and that portion of the stiffness matrix is the

symmetric matrix
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[ 0.17435 0.05150 -0.21058 —0.02176
0.10226 0.00453  —0.03808

0.34948  —0.08242

0.17639

—0.02019
—0.05482
—0.04526
0.08210
0.05332

—0.03557
—0.07438
0.05581
—0.09105
—0.00528
0.14103

0.05642
—0.00121
—0.09364

0.02209

0.01213
—0.01496

0.02509

0.005837]
0.01020
0.02209
—0.04726
-0.02120
0.02440
-0.00592
0.01266

185

And, for Gauss point 4, &_, = 0.57735 and %,_, = 0.57735, and that portion of the (symmetric) stiffness matrix

18

(K], =

[~ 0.00905 0.00453  —-0.00510 —0.00959
0.01584  —0.00255 0.02982

0.13442  —0.06037

0.13128

—0.03379
—0.01689
0.01903
0.03581
0.12609

—0.01689
—0.05913
0.00952
—0.11128
0.06305
0.22066

0.02983
0.01492
—0.14836
0.03416
—0.11134
—0.05567
0.22986

The final (symmetric) stiffness matrix is the sum of the four component matrices, or

6.12.

[~ 0.40701 0.10497 —0.30074 —0.13962
054552 —0.07296 —0.02862

0.70296  —0.14268

0.39392

—0.09023
—0.11550
0.05185
0.14789
0.31650

—0.11550
—0.27701
0.08122
—0.18235
0.10798
0.46880

Discuss the derivation of the [B] matrix for axisymmetric elasticity.

—0.01603
0.08348
—0.45407
0.13441
—0.27812
—0.07371
0.74822

0.021967]
0.01347
0.05340
—0.04983
—0.08196
—-0.05025
0.00660

0.08661

0.150147]
—0.23988

0.13441
—0.18295
—0.14037
—0.00944
—0.14418

043227

The governing strain-displacement relationships are given by Eqs. (3.17) with v = 4/36 = 0. The matrix of
material constants {C] is given by Eq. (d) of Prob. 3.26. The [B] matrix is derived, as usual, as a shape function
matrix postmultiplied by an operator matrix. The form of the operator matrix is dictated, in the case of
axisymmetric elasticity, by the order of the stresses in the stress mairix or the order of the strains in the strain
matrix. In this case, use the same strain matrix given by Eq. (@) of Prob. 3.26. Then, as in Chap. 3,
{e} = [LJ[NKu}, where {u}, in this application, is a matrix of eight unknown displacements corresponding to a
four-node quadrilateral element:

€., afor 0

€0 1 o |[ny, O N, O N, O N, 0

e[| 0 9/ [0 N, O N, 0 N, 0 NJ{U} @

€, 8/dz  a/fdr

oN, [or 0 oN,/ar 0 oN, [or 0 N, /ar 0

N,/r 0 N,/r 0 N,/r 0 N, /¥ 0
[BI=ILIINT=] N, 3z 0 N,/ 9z 0 N,/ 3z 0 N, oz | @

ON,/3z ON,/dr ON,/oz dN,/or oN,/éz oN,/dr ON,/dz aN,/for

The terms containing partial derivatives are obtained from Eq. (b) of Prob. 6.8 and substituted into Eq. (b) above,
with r and z replacing x and y, respectively. The terms containing the shape function divided by r are computed
directly for each node (shape function). For instance, let the x coordinate correspond to the radial coordinate r;
Eq. (b) of Prob. 6.5 is used to compute the r in Eq. (b) above. The £ and % of Prob. 6.5 correspond to the
coordinates of the integration point in the &, 7 system. The shape functions are evaluated by substituting the
coordinates of the integration point (Gauss point) into the corresponding shape function equation (see Prob. 6.4
for a four-node quadrilateral).
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6.13. (a) Assume a five-element model as shown in Fig. 6-6 to solve the long cylinder problem described
in Probs. 6.29 and 6.30. The cylinder has an inside radius of 1 in and outside radius of 2 in.
Assume an axisymmetric internal pressure loading of 1000 psi. Show the results for the [B],
matrix and the local stiffness matrix for element I. Compare results for radial displacement with
the exact solution. Assume E = 1.0 psi and »=0.3.

(b) Compare the results for the S-element model with those for a 10-element model (see Fig. 6-6).

(@) The five-element model of Fig. 6-6 is constructed of square elements 0.2 X 0.2 in. In the derivation for the
axisymmetric finite element the differential area used was 277 dr dz, and that requires that the internal
pressure be distributed around the inside circumference of the cylinder. The pressure loading is converted to
nodal point loading as (1000 psi)(27)(1 in)(0.2 in) = 1265.64 1b, and one-half of that is applied to nodes 1

and 2.

628.321b 4 6 8 10 12

12

I 11 I v A% 0.2in

|1 3 5 7 9 11 .
628.321b
0o 2 .

= 14, 2.0in

Five-element model

Axisymmetric —
model i 1T
-“—N__
Tin
2in
314.161b 6 8 10 12 14 16 18 20 22
fI 4II 111

416 3 5 7 9 11 13 15 17 19 21

Ten-element model

Fig. 6-6

The [B}, matrix for element I is a 4 X 8 matrix corresponding to Eq. (b) of Prob. 6.12 and is computed

for Gauss point | using &_, = —0.57735 and 7,., = —0.57735:
—3.9434 0 3.9434 0 1.0566 0 —1.0566 0
(B], = 0.5968 0 0.1599 0 0.0428 0 0.1599 0
! 0 —3.9434 0 —1.0566 0 1.0566 0 3.9434

—39434 —3.9434 —1.0566 3.9434 1.0566 1.0566 3.9434 —1.0566
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Note that the complete stiffness matrix is made up of four parts as in Prob. 6.11. There is a separate B
matrix corresponding to each integration point, and the stiffness matrix for element I is the 8 X 8 symmetric

matrix

[ 3.74129 149024 —2.64114 0.32221 —1.98513 —1.61107 0.60193  —0.20136™]

3.84644 —0.34235 0.66457 —1.71177 —1.99370 020138 —2.51730

430205 —1.83260 0.76148 046318 —1.98514 1.71177

K], = 412838 —0.46318 —2.79924 1.61107  —-1.99370

! 430205 —1.83260 —2.64114 0.34235

412838 —0.32221 0.66457

3.74129  —1.49024
L. 3.84644 .

The exact solution is computed using the results of Prob. 6.30. Results for displacement are given in Table
6.2. Note that all displacements in the z direction are zero for this problem and were entered into the
computer solution as zero displacement boundary conditions.

The 10-clement solution is computed using square elements 0.1 X 0.1, and the nodal point loading is
computed as 314.16 1b at nodes 1 and 2. The results are given in Table 6.2. The results for displacement
tabulated in Table 6.2 are for illustration purposes, and the large values are a result of assuming the material
constant £ =1 psi.

®)

Table 6.2 Radial Displacements for a Thick-Walled Cylinder (in)

r Five elements Nodes Ten elements Nodes Exact
1.0 1894.35 1,2 1903.52 1,2 1906.67
1.1 1763.64 3.4 1766.42
1.2 1642.63 3,4 1649.94 5,6 1652.44
1.3 1556.37 7,8 1558.60
14 1472.46 5,6 1478.64 9,10 1480.76
[ 1413.57 11, 12 1415.55
1.6 1353.35 7,8 1358.79 13, 14 1360.67
1.7 1312.50 15, 16 1314.27
1.8 1268.72 9,10 1273.26 17, 18 1274.96
1.9 1239.98 19, 20 1241.61
2.0 1207.18 11, 12 1211.76 21,22 1213.33

6.14. Compute the stresses in the radial direction o,, and the tangential direction o, for the thick-walled
cylinder described in Prob. 6.13.

Strains are computed as {e} = [B{u} using the [B] matrix of Prob. 6.12, and stresses are computed as
{o} = [C){€} as discussed in Prob. 3.10, except that

(@

T
Oy O, o]

zz rz

{o} =10,

and corresponds to the ordering of the strains in Eq. (a) of Prob. 6.12. Note that in the finite element formulation
all four stresses are computed. The mairix of material constants is given in Prob. 3.26. Stresses are usually
computed at the Gauss points when isoparametric finite elements are used but can be computed at any location
within the element (£, 7 must have values corresponding to the x, y location within the element). The strains at
Gauss point 1 of element I for the five-element model are obtained by multiplying the [B], matrix of Prob. 6.13
by the corresponding displacement vector {u},. Note that the displacement vector corresponds to the node
numbering of element I:
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fufy =L, w, uy wy, u, w, u Wz]T
=[189435 0 1642.63 0 164263 0 189435 07 )
le. €, €. €] =[B],{u,=[—125860 176642 0 0" (c)
The results for strains and displacements are too large to be practical, but in this example the material constant £

was taken as 0.1 psi. A reasonable value for an actual material would be of the order 107 psi. The stresses (in
psi) are computed as

o, 134615 057693 057692 0 ~1258.60 —675.16
T 057692 134615 057692 0 1766.42 1651.75
o, (1057692 057692 134615 0 0 =1 29297
o 0 0 0 0.38462 0 0

rz

The location of Gauss point 1 within element I is computed using Eqgs. (b) and (c) of Prob. 6.5 with x and y
replaced by r and z, respectively. Also, referring to Fig. 6-5, £= —0.57735 and n = —0.57735.

r=

[(1.57735)(1.57735)(1.0) + (0.42265)(1.57735)(1.2) + (0.42265)(0.42265)(1.2)

1
4
+ (1.57735)(0.42265)(1.0)] = 1.04226 in

z =

[(1.57735)(1.57735)(0.0) + (0.42265)(1.57735)(0.2) + (0.42265)(0.42265)(0.2)

L
T

+(1.57735)(0.42265)(0.0)] = 0.04226 in

The same results would be found for Gauss point 2 of element I. The strains and stresses can be computed for
any coordinate location within or on the boundary of the element. However, the B matrix utilized for constructing
the stiffness matrix cannot be used here. A new B matrix must be developed using Eq. (b) of Prob. 6.12 with &7
coordinates corresponding to the proper r, z coordinates. For instance, the strains at node 3, element I, correspond
to £=+1 and n= +1.

The remaining stresses are given in Tables 6.3 and 6.4 and are computed at the Gauss point for each
element. The exact axial stress is computed using Eq. (3.12) as 0. = v(o,, + 0,,) and is constant, g,_ = 200.

Table 6.3 Stresses for a Thick-Walled Cylinder (psi) Five-Element Model

Finite element Exact
Gauss point,
Element 7 (in) ., Tye o, o, T,y
1 1.04226 —675.13 1651.86 293.02 —894.07 1560.73
1 1.15774 —849.19 1245.71 118.95 —661.43 1328.19
2 1.24226 —399.23 1250.15 255.28 —530.66 1197.33
2 1.35774 —-504.43 1004.68 150.07 —389.95 1056.62
3 1.44226 —222.76 1007.26 235.35 —307.66 974.32
3 1.55774 —291.15 847.70 166.96 —216.14 882.81
4 1.64226 —103.18 849.33 223.85 —161.40 827.71
4 1.75774 —150.11 739.83 176.92 —08.22 764.88
5 1.84226 —18.44 740.94 216.75 —59.53 726.19
5 1.95774 -52.03 662.56 183.16 —14.55 681.21
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6.15.

6.16.

Table 6.4 Stresses for a Thick-Walled Cylinder (psi) Ten-Element Model

Finite element Exact
Gauss point,
Element r (in) g, Opp o, G, Ty
1 1.02113 —824.22 1663.44 251.76 —945.38 1612.05
1 1.07887 —924.07 1430.47 151.92 —812.19 1478.85
2 1.12113 —635.44 1432.78 239.20 —727.44 1394.11
2 1.17887 —=711.41 1255.52 163.23 —626.08 1292.75
3 1.22113 —489.33 1257.28 230.38 —560.83 1227.49
3 1.27887 —548.47 1119.29 171.24 —481.91 1148.57
4 1.32113 —373.94 1120.65 | 224.01 —430.59 1097.25
4 1.37887 —420.88 1011.13 177.08 —367.95 1034.62
5 1.42113 —281.23 1012.21 219.29 —326.86 993.53
5 1.47887 —319.11 923.84 181.42 —276.31 94298
6 1.52113 —205.63 924.71 215.72 —242.91 909.58
6 1.57887 —236.63 852.37 184.72 —201.53 868.20
7 1.62113 —143.16 853.08 | 212.98 —174.01 840.68
7 1.67887 —168.86 793.13 187.28 —139.70 806.38
8 1.72113 —90.97 793.72 210.83 —116.77 783.44
8 1.77887 —112.50 743.47 189.29 —88.02 754.69
9 1.82113 —46.91 743.96 209.12 —68.70 735.36
9 1.87887 —65.13 701.43 190.89 —44.37 711.03
10 1.92113 -9.36 701.85 207.75 —27.93 694.60
10 1.97887 —24.93 665.54 192.18 =7.10 673.82

The displacements computed for the axisymmetric cylinder of Prob. 6.13 are quite accurate, even for
the five-element model. However, the stresses computed in Prob. 6.14 do not share that same degree
of accuracy and in fact appear to oscillate about the exact solution. Discuss the computation of
stresses for the thick-walled cylinder problem.

The lack of accuracy for the computed stresses does not indicate that the finite element method does not give
satisfactory results. The fault lies with the choice of clement. In some applications mesh refinement can improve
the results. That is, more elements can be used to attempt to improve the answer. In the limit the finite element
result should approach the exact solution. In this application of the finite element method, more elements will
improve the result but will not eliminate the oscillatory behavior of the radial stress o, . The computation for the
radial stress is o, = C,, du/dr + C ,u/r, where the first term is negative and the second term is positive. The
term du/dr is constant for a linear element at all locations within an element. The displacement # decreases as »
increases, and the result #/r tends to decrease. The final result for o, tends to increase as r increases within a
single element. However, the reader should refer to Prob. 6.31 and compare the results of stress computations at
the Gauss points with stress computations at the center of the element.

The finite element analysis can be improved significantly by using a higher-order element in the radial
direction since that will allow the term du/dr to vary within the element. Compare the four-node element
solutions with the eight-node element solution given in Prob. 6.32. Note that only two elements are used for that
analysis. Linear elements can give good results for problems such as temperature distribution, where the nodal
point results are of interest. In any application where the derivative is the significant result, the analyst should be
aware of the limitations of linear element formulations.

Assume the eight-node quadrilateral isoparametric element shown in Fig. 6-7 is loaded with a uniform
pressure loading, p, = 1.0, acting in the x direction along the side defined by nodes 1, 8, and 4.
Compute the distribution of the pressure loading to each node. Use a three-point gaussian quadrature.
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Fig. 6-7

The formulation is similar to Prob. 3.12. The surface loading is represented as

| mryas @

where {T} is the surface traction matrix and [N] is the shape function matrix and is similar to Eq. (#) of Prob.
3.12 except that there are 16 rows rather than 8. The uniform pressure loading along side 1-8-4 corresponds to the
isoparametric coordinate ¢ = —1, and all shape functions will compute as zero except at nodes 1, 8, and 4.
Formally, Eq. (a¢) can be written as

f“Nl00000N40000000N807pX:1.0
Lo N 0000 0 N 000 00O O N|p=0 T ®

The term [ fll N,p,dn is evaluated numerically with £ = —1 and 77 and the weight functions taken from Table
6.1. The shape functions are given in Prob. 6.25.

_A+nd-mpd-p-1) 7 -7
- 4 T2

N, (with £=—1)

+1
j N p. dn= {[(—0.774597)* + 0.774597)}(0.555555) + (0 — 0)(0.888888)
-1

+ [(0.774597)% — 0.774597)1(0.555555)} p, /2 = 0.333333p, (©

Similarly, the integral involving N, becomes 0.333333p_, and the integral representing the contribution to the
center node 8 becomes 0.666667p, . The total length of the side of the isoparametric element is 2, and the results
are interpreted to mean that each corner node is assigned one-sixth of the uniform load and the center node is
assigned two-thirds of the uniform load. Note that the result given by Eq. (c¢) could have been obtained by direct
integration.

While the preceding computations illustrate distributing the force to each node, the analyst should take
advantage of the isoparametric formulation to compute the node loading. Consider the plane element of Fig.
6-4(b). In the isoparametric formulation the term dS should be expressed in terms of the & # system using an
interpolation function. Assume a unit thickness (r= 1) or carry ¢ through the derivation and write dS =t dL,
where dL defines a curve corresponding to the boundary of the plane area. In the cartesian coordinate system,
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dL = [(dx)” + (@dy)’]'"” , @)
Refer to Eq. (b) of Prob. 6.6 and relate dx and dy to the & 7 system:

9y

dé + % dn (e)
& an

do=2 e+ 2 dy =
k=g de T, dn Ay =

The boundary of the element will always correspond to £ = *1 or = x1. Let £= —1, corresponding to the
element of Fig. 6-4, and it follows that 3/8¢ = 0. Use Eq. (a) of Prob. 6.5 and rewrite Eq. (e):

ar=2 g -EG—N" d i=1to8
—opdn=2 g mdn (=108 )
9y oN; .

dy—andn—zan y,dn  (=1to8) (g)

where the N, are interpolation functions corresponding to the eight-node isoparametric element. Assume that a
three-point integration is to be used along the curve &= —1 for the element of Fig. 6-4(a). For the first
integration point let § = —1 and n = —0.774597. Equations (f) and (g) are evaluated, then substituted into Eq.
(d) to obtain dL. Equation (a) is evaluated with £ = —1 and n = —0.774597. In the axisymmetric formulation dS
is 277 dL to simulate the pressure distributed around the entire circumference of the cylinder. The computations
are repeated for the remaining Gauss points, and the final result is the sum of the three computations.

For illustration, use the element of Fig. 6-7 in x, y coordinates. Let £ = —1 and n = —0.774597, then
substitute into Egs. (f) and (g) to obtain dx =0 and dy = 0.5 and by Eq. (d), dL = 0.5. The first contribution to
the pressure loading is computed as follows.

Node 1: (N, X p )dL)w,) = (0.687298)p (0.5)(0.555555) = 0.190916p,

Node 4: (N )(p)(dL)(w,) = (—0.087298)p (0.5)(0.555555) = —0.024249p

Node 8: (N, ) p )dL)w,) = (0.400)p (0.5)(0.555555) =0.111111p,
Similarly, let £ = —1 and 7 = 0.0, dx = 0.0 and dy = 0.5, and dL = 0.5. The second contribution to the pressure
loading is (note that w, = 0.888888) as follows.

Node 1: N, =0.0

Node 4: N, =0.0

Node 8: (1.0)p (0.5)(0.88888) = 0.44444p_
The third integration point corresponds to ¢ = —1 and 7 = +0.774597 with dx = 0.0, dy = 0.5, dL = 0.5, and
w, = 0.55555, and the contribution to the pressure loading is computed as follows.

Node 1: —0.024249p,

Node 4:  0.190916p,

Node 8: 0.111111p,

The total loading is the sum of the three contributions and is computed as 0.166667p, at nodes 1 and 4, and as
0.666666p,_ at node 8.

6.17. Discuss the formulation of an isoparametric finite element for axisymmetric electrostatics. Refer to
Probs. 2.19 and 6.37.

Axisymmetric elasticity was analyzed in previous problems before any discussion of the Laplace operator.
The finite element formulation for physical problems involving the Laplace operator can be misleading. Refer to
Eq. (6-8) and note that the governing equation has both shape functions and derivatives of shape functions as
well as division by the r coordinate. However, the formulation given in Probs. 3.25 and 6.37 indicates that the
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formulation of the [B] matrix and subsequent formulation of the stiffness matrix for the axisymmetric problem is
identical to the formulation in cartesian coordinates with the exception of the definition of dV. It is merely good
fortune that the formulations are similar, and the reader should not be mislead into thinking that there is no
difference between axisymmetric cylindrical coordinates and cartesian coordinates for problems involving the
Laplace operator.

Discuss node placement and area coordinates for linear and higher-order triangular isoparametric
elements.

Linear, quadratic, and cubic elements are shown in Fig. 6-8. The node numbering sequence is arbitrary, but

_very often the corner nodes are numbered 1, 2, and 3, with the intermediate nodes numbered in sequence starting

with 4 along the side between nodes 1 and 2. The area coordinates then correspond to Fig. 3-12 for triangular
elements of any order. For instance, area coordinate L, emanates from the side opposite node 2. The intermediate
nodes are placed equidistant from the end nodes, and for a cubic element the side nodes are placed at the
one-third points along the side.

3
2
1 .
(a) Linear 3
5
6
2
4
(b) Quadratic
1\
7
x/ \Y
PR s N
L7 N s N,
Xmm = == 3y = — — =)V
7 7
3/ \\2/ \\ 2/ ~ 3
Xmmm = Xy —= == WY ——= = — YV
/s s N 7N N

(d) Pascal triangle
Fig. 6-8
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6.19.

6.20.

The derivation for the linear three-node triangular finite element discussed in Prob. 3.2 began by assuming
an interpolation function that was linear in terms of the x, y coordinates, or

¢=C, +Cx+Cy (@)

It follows that a quadratic triangular finite element must contain all possible linear and quadratic coordinate
functions, or

¢=C,+Cx+C,y+Cx"+Cxy+C.y ®)

This complete polynomial representation for interpolation functions corresponds to the Pascal triangle shown in
Fig. 6-8(d). The cubic element should contain all linear, quadratic, and cubic coordinate terms, and it can be seen
from the Pascal triangle that there are 10 such terms. The cubic element, Fig. 6.8(c), must have 10 corresponding
nodes. Therefore, the tenth node is located at the centroid of the triangular element. The derivation of shape
functions using interpolation functions and x, y coordinates can become a tedious algebraic task. The use of area
coordinates and Eq. (6.4) simplifies the derivation and formulation of a stiffness matrix.

Discuss higher-order isoparametric elements in terms of number of nodes versus the complete
polynomial representation that satisfies the Pascal friangle requirement. In particular, compare the
six-node quadratic triangular element, the eight-node serendipity element, and the nine-node
Lagrangian element.

All these elements can be classified as quadratic elements because they have three nodes along each side.
The triangular element was discussed in Prob. 6.18, and the corresponding interpolation function contains all
possible quadratic terms [see Eq. () of Prob. 6.18] and none higher than quadratic.

A study of the shape functions for the eight-node serendipity element shows that all six constant, linear, and
quadratic terms are represented with the addition of two cubic terms. It follows that an eight-node element must
have eight terms in its corresponding interpolation function, and the cubic terms in this case are £°7 and §n2.
The nine-node Lagrangian element shape functions are given in Prob. 6.24, and a study of these shape functions
indicates that there are two additional third-order terms and one fourth-order term that can be shown to be &7,
§772’ and 527}2-

It can be concluded that quadrilateral elements do not satisfy the Pascal triangle requirement that the shape
function be represented by a complete polynomial. However, the idea is to satisfy the Pascal triangle
(completeness) requirement in the best possible way. In higher-order elements the excessive interior nodes in the
Lagrange family of elements can cause difficulty with convergence and should be avoided. For additional study
see Burnett (1987) or Zienkiewicz and Taylor (1989).

Use area coordinates to determine the shape function N, for both the quadratic and cubic triangular
finite elements of Fig. 6-8.

The quadratic element is shown in Fig. 6-9(a). The order of the triangle is # =3 — 1, and it follows that two
lines should be sufficient to pass through all nodes except node 4. These lines are shown in the figure as L, =0
passing through nodes 2, 5, and 3 and L, = O passing through nodes 1, 6, and 3. The location of node 4 is defined

using all three area coordinates as L, =%, L, =2, L, =0. There are two terms in Eq. (6.4):

L, —07[L,—0
N,=| 5 | =aLL,
2 2

where the numerator in each term is an equation of a line and the denominator is the equation of the line
evaluated using the coordinates of node 4.
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()
Fig. 69

The order of the cubic element is 3. The lines L, =0, L, =
nodes except node 4. The coordinate location of node 4 is (L,

gives
L -01IL,—-0 L -1 9
M=17= T > | =7 LLGL -1
3 3 3 3

Area coordinates and area integration formulas for three-node triangular elements were introduced in
Chap. 3, Probs. 3.16 and 3.17. The isoparametric formulation is advantageous for higher-order
triangular elements. Like the quadrilateral element, the distorted element in x, y coordinates can be
mapped into a parent element, and standard integration routines can be used to evaluate the stiffness
integrals. Discuss the coordinate transformations for isoparametric triangular elements using area
coordinates.

shown in Fig. 6.9(b), intersect all

t,and L, =0,
= =%, L, = 0). Substituting into Eq. (6.4)

2
§’L2

W

The method used by Zienkiewicz and Taylor (1989) may help to avoid some confusion in the derivation.
There are three area coordinates for a two-dimensional element, but the original coordinate is 2-space (x and y). It



CHAP. 6] ISOPARAMETRIC FINITE ELEMENTS 195

6.22,

follows that the parent element should be 2-space (€ and 7 for the quadrilateral). Recall from Prob. 3.16 that
there are only two independent area coordinates, or L, + L, + L, = 1. Identify

&=L, n=1L, then L,=1—¢—n (@)

and then Egs. (¢)-(f) and (%) of Prob. 6.6 are valid. The shape functions are written in terms of L , L,, and L,, or

N,=N(,,L,,L;) ®)

Hold ¢, defined in Eq. (@), independent of L, in Eq. (b) and write the partial derivative

ON, 9N, 8L, N, oL, N, oL,

9 9L, 9& ToL, o¢ | oL, of ©
The right-hand side of Eq. (c), in view of (), can be evaluated as
aL aL aL.
T 1 -2 _ 0 3 —1
9& o 23
and Eg. (c) becomes
dN; 9N, 0N, ’
a& oL, oL, @)
A similar analysis gives
aN, 8N, N,
oy oL, oL, ©
The jacobian can be written the same as Eq. (g) of Prob. 6.6:
aN, aN,
2 ‘a‘f_xi > Y Y
J=
W g %
a,’,] 'xi 877 yi

Equation (f) is evaluated using the definitions given by Eqs. (d) and (e).

A triangular clement is shown in Fig. 6-10(a). Use the isoparametric formulation to compute the terms
in the stiffness matrix corresponding to convection as discussed in Probs. 3.18 and 3.39. Integration
results for triangles are given in Fig. 6-10(b). [lustrate the use of both linear and quadratic integration
formulas.
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Fig. 6-10
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The function to be integrated is Eq. (b) of Prob. 3.18. Assume a unit value of ¢; for reference, the function is

N, N
f Nl Nl I:MX 0:|[6N,/6x aN, /dx 6N3/8x:| @
a
A Nz Nz 0 u, || oN, /oy ON,/ay ON,/dy

Recall from Chap. 3 or Prob. 6.42 that there is an equality between the linear shape functions and area
coordinates:

x=[NKx}=(L, L, L]x, x, x] =L +3L,+L,
y=L, + 3L, + 5L,

There are partial derivatives in Eq. (@), and that will require evaluating the inverse of the jacobian given by Eq.
(f) of Prob. 6.21. Refer to Eqgs. (d) and (e¢) of Prob. 6.21; it follows that

ON, aN, N,
of oL, oL,

N, N, N,

a& oL, oL, =0-0
Ny _ N, N,
o o, or, 071
®)
ON, ON, ON,
an _8L2_6L3_0 0
N, N, N,
an oL, 9L, =
N, N, N,
o1
ag oL, dL,
J =MD+ OB+ 1D =0 J,=UD+O)3)+(=1)5=—-4
L =O)D+ MG+ (D=2 =0} +(1AB) + (—1)5) = —2
[0 4 N e
and J= s o J = 1 |detJ] =8 =24 ©)

The jacobian for the coordinate transformation is complete, and now the right-hand matrix of Eq. (@) must be
evaluated. The computation is analogous to Eq. (g) of Prob. 6.6. Using Egs. (b) and (c) above,

oN [8x 48N,/dx ON,/dx . 1 0 -1 -+ 1 2
=7 = ()
oN, /8y 8N,/dy ON,/dy 0 1 -1 - 0 1
Combining Eq. (d) with Eq. (a) gives the final form of the equation that is to be integrated numerically:

L/, +u) Lu/2 &L/HCu, +u)
L /D@, +u) Lu/2 (L/4)3u, +u,) (e
(—Ly/ 8w, +u)y Ly 2 (Ly/HBu, +u)

Numerical integration for the stiffness matrix is accomplished using the formulas of Fig. 6-10(b)
corresponding to area coordinates. The limits of integration are written in terms of area coordinates, and the
weighted integral approximation follows as

1 1L, 71
fo fo FdL, dLZ:EEWiF,-(L.,-inLg,-) 2

i=1
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where w, are the weights and L, ,, L,,, and L,, are the sampling points. Keep in mind that the function of Eq. (@) is
defined in the x, y system, dA = dx dy, and in the new system, dA = |detJ| dL, dL,. Consider the first term of Eq.
(e) and a linear order integration formula. For each L, substitute % and note that w, = 1. Of course, only L,

3
appears in the first term, or

1

1 3 u tu
Ky==5Myw +u)®=-

X y

3

Similarly,

1 11
K, =§(1)5§ux(8)=

X

The remaining terms can be computed in the same manner and should be verified by the reader. The correctness
of the linear integration can be checked using the exact solution given in Prob. 3.39:

uxbl#-uycl
K, = 6 b=y, =y, =2 €, =x, —x, = =2

The linear integration gives an exact result for this term. Similarly,

ub, tuc,
K,,= 6 b,=y,—y, =4 ¢, =x, 7 x;=0
2u,
K,, = 3

Again, the exact result is found.
The quadratic integration formula will be illustrated for the K, | term. Referring to Fig. 6-10(b), L, takes the

values £, +, and 0, and w, = ;.
1 11 1 11 1 1 1
K”=3 - ZE(M'*-H‘y)E - ZE(MX"'M},)g - Z(O)(u",+uy)§
8
‘e @®)
K,=- 3

Again, the exact result is obtained. The remaining terms are computed in a similar manner and will not be
recorded. Note that linear integration was sufficient to give exact results for the linear triangular finite element.
However, the reader should study Prob. 6.43, where shape functions (no derivatives appear in that problem) are
integrated, and discover that linear integration is not sufficient to give exact results in that case.

Supplementary Problems

6.23.  Use the Lagrangian interpolation formula to derive shape functions for the six-node element shown in Fig. 6-11.
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Fig. 6-11

6.24. Use the Lagrangian interpolation formula to derive shape functions for a nine-node element using £ 7
coordinates and the node numbering sequence shown in Fig. 6-12.

A "
-1, +1 0,1 1,1
12 7 37

-1,0 0,0 1,0
L o> 2}
-1,—-1 0,—-1 1, -1
Fig. 6-12

6.25. Derive shape functions for an eight-node isoparametric element in &, 1 coordinates using the numbering sequence
of Fig. 6-7.

6.26. A rectangular element has sides that are parallel to the x and y axes of a cartesian coordinate system. Derive the
jacobian matrix and compute the value of the determinant of the jacobian.

6.27. Evaluate Eq. (#) of Prob. 6.7 for the rectangular element defined in Prob. 6.26.
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6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.
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Assume a four-node isoparametric formulation and derive the stiffness matrix for the plane elasticity case defined
by Prob. 3.13. Assume »=0.3 and give the result before and after substitution of displacement boundary
conditions.

The analysis of a thick-walled cylinder with axisymmetric pressure loading is an important problem in the theory
of elasticity. Because of the axisymmetric loading, it can be solved in one dimension. Conditions of plane strain,
€., =0, can be assumed if the ends of the cylinder are restrained. (@) Deduce the equation of equilibrium. (b)
Derive the stress-strain equations using the plane strain assumption. (¢) Substitute the results of part (b) into the
equation obtained in part (¢) and use Egs. (6.5) to obtain one governing equation in terms of radial displacement
u.

(@) Obtain the general solution for the differential equation derived in part (c) of Prob. 6.29. (b) Displacement
boundary conditions are not specified for the general problem, however, stress boundary conditions in the form of
compressive pressures o, (@) = —p, and o, (b) = —p, can be used to evaluate the constants of integration. Derive
the displacement solution. (c) Complete the analysis by deriving a solution for the stresses. Where r =a and r = b
are the inside and outside radius, respectively.

Refer to the thick-walled cylinder of Prob. 6.14 and compute the stresses at the center of each element using the
10-element model. Compare the result to the exact solution.

Solve the thick-walled cylinder problem described in Probs. 6.13 and 6.14 using two eight-node quadrilateral
elements as shown in Fig. 6-13.

261.80 3 8 10 1
-y . ° i
1047.20 4 I ¢7 11 $12 |0.25in
261.80 . . ,
Fig. 6-13

For the eight-node element of Prob. 6.16 and Fig. 6-7 assume a uniformly varying load on side 1-8-4 and find the
distribution of the load to each node. The load varies from zero at node 1 to p, at node 4.

Assume a uniform load distributed along the side of the nine-node element defined in Prob. 6.24 (Fig. 6-12) and
determine the distribution of force to each node.

Assume a surface loading along = =1 for an isoparametric element and derive the expression for ds.

Use the element defined in Fig. 6-5 with midside nodes defined at the center of the midsides and obtain the
distribution for a uniform pressure loading p, in the x direction along the side defined by nodes 1, 8, and 4. Use
the isoparametric formulation and the node numbering and shape functions defined in Prob. 6.25.

Use the Galerkin method to derive the finite element equations for axisymmetric heat conduction.

An axisymmetric element is defined in Fig. 6-14. Compute the distribution of a unit charge density (p, = 1) to
each node assuming both a four-node element and an eight-node element.
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6.39.

6.40.

6.41.

6.42.

6.43.

6.23.

4 3

8¢ e6
1 5 2

(1,1) 2.1

Fig. 6-14 Axisymmetric element.

Given an axisymmetric space defined by r,, = 1.0 and r_,, = 2.0. The one-dimensional electrostatics problem is
defined by Eq. (2.22) and can be written in polar coordinates by referring to Eq. (6.8) and neglecting the
dependence on 6 and z. (@) Assume constant charge density p, and boundary conditions ¢(r,.) = ¢(r ) =0 to
obtain the analytical solution. (b) Divide the axisymmetric space into six equally spaced four-node axisymmetric
finite elements and compare the results for the potential ¢ at each node with the exact solution. Assume € = 1.0
and p, = 1.0.

Repeat Prob. 6.39 using eight-node isoparametric elements and compare the results with the four-node element
solution. (@) Assume a one-element model. (b) Use three equally spaced elements.

Solve Prob. 2.19 using two eight-node axisymmetric isoparametric finite finite elements, one for each material.
Repeat the analysis using two equally spaced eight-node isoparametric elements for each material, a total of four
elements.

Derive shape functions for the linear, quadratic, and cubic triangular finite elements of Fig. 6-8. The node
numbering sequence is arbitrary, but in many applications the corner nodes are numbered 1, 2, and 3, and the side
nodes are then numbered sequentially starting with the side between nodes 1 and 2.

The stiffness matrix for the chemical reaction term appearing in Eq. (3.2) is derived in Prob. 3.17 for a linear
triangular finite element. Refer to Prob. 3.17 and repeat the analysis using a linear isoparametric triangular finite
element. Compare linear and quadratic numerical integration.

Answers to Supplementary Problems
Combine two- and three-node interpolation formulas using Eq. (6.3). N, =L, L, , N, =L, L, , and so on.
N :< (xvxz)(x_xﬂ )< Y=Y, )
! (X] _xz)(x17x3) Y17 Ys
. :( o= )= x,) )( )
z (xz_xl)(xz_x3) Y™V

o xmx)—xy) Y Y
m; _<(x3 =X ), AXz))()’l _yZ)
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N4_<(x3_x1)(x3_x2) (yz_yi>
_ O —x))& — x3) Y=
N5_<(x2_xl)(x2 _x3))<)72_y1>

B (x—xz)(x—x3)) Y=Y
N6_<(-x1_-x2)(-x1~x3) ()’2_)’1)
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The shape functions are constructed similarly to the six-node clement of Prob. 6.23. Three-point Lagrange
interpolation formulas are combined using the coordinates of Fig. 6-12.

N, =é(§-Dn—1/4
N,=én(é—Dn+1D/4
Ny=—&+ Dnp+D(np—1)/2
Ny=—8&é—D(n+Dn—1)/2

Ny =(1L—&(1 —m)(—¢&—n—1)/4
Ny=(1+ &1 +m)(é+n—1)/4
N,=(1 =& -m)/2

N,=(1—&H1+m/2

Substitute into Eq. (@) of Prob. 6.7:

1[x,—x,
J_4[ U

N, =&n(&+1)(n—1)/4

Ny =én(§+D(n+1)/4
Ny=—n(&+ 1)(§— D —1)/2

Ny =—=n(& +1)(§— )(n +1)/2
Ny=(£+ DD+ Dn—1)

N, =1+ HUA—méE—n—1)/4
N,=(1=5HA+m(=&+n—1D)/4
Ny=(1+ &t —n)/2

Ny=(1- &1 —1")/2

0 ] det ] ab
et] = —
-9 4

1oprt
j dxdy=f J |det 1| d& dn =ab
Ay -1 J-

The stiffness matrix before substitution of boundary conditions is the symmetric matrix

4334555 1785714  —1129426 —137362
6874238 137362 2283273
4334554 —1785714
6874237

—2167277 —1785714 —1037851
—1785714  —3437119 —137362

—1037851 —137362 —2167277

—137362 —5720391 1785714

4334554 1785714  —1129426
6874237 137362

4334554

See Prob. 3.13 for the stiffness matrix after substitution of boundary conditions,

137362
—5720391
1785714
—3437119
—137362
2283273
—1785714
6874238

(@) Because of the axisymmetric nature of the problem o, =0 and because of the plane strain assumption

d/dz = 0. The govemning equation becomes

do,

rr

dar

a. . — g,
rr 66
1 ]
r

(b) The stress-strain equations are obtained from Eqs. (3.18) with €, =0:
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a, :m [(1—r)e, + vey,]

1 —»)g,, + ve,]

~ E
To0 = (1T o1 —20) ¢

The third of Egs. (3.18) can be solved to give o,_ = ¥(o,, + ay,).

(c) Substitute the strains into the equation above and substitute the siresses into the equation of part (a). The

result is
du ldu_w_,
drz r dr 72 -
630. (@ u=C,;r+C,/r.
(b) Substitute into part (b) of Prob. 6.29:
0',,,,(61) =—P.= (1 + V)(l _ 2]/) 1 ( V) a2

R S PRy
()-”(b)ikph_(l—l—]))(l—zy) C'1 ‘(l_ I/) b2

Solving these equations gives

(1+ »)(1-2v) pa’ —p,b° 1+ v@-bab®
1= E b2 — 4 ¢, = E b — o’

(¢) Substitute into the stress-displacement equations:

C
0-”=C3_‘~?4 0'09=C3+h;
r
2 2 2,2
P2 —Pyb (p, —pyab
¢, = b — o and C, = b —

6.31.  The results are given in Table 6.5. Compare these results with those in Prob. 6.14 and the discussion given in
Prob. 6.15.

Table 6.5 Stresses for a Thick-Walled Cylinder (psi) Ten-Element Model

Finite element Exact
’
Element (in) a,, Tyg .. g,, Tgo
1 1.05 —875.52 1543.75 200.47 —876.04 1542.71
2 1.15 —674.39 134193 200.26 —674.86 1341.52
3 1.25 —519.58 1186.69 200.13 —520.00 1186.67
4 1.35 —397.91 1064.72 200.04 —398.26 1064.93
5 1.45 —300.55 963.14 199.98 —300.83 967.50
6 1.55 —221.42 887.87 199.93 —221.64 888.31
7 1.65 —156.24 822.58 199.90 —156.41 823.08
8 1.75 —101.91 768.18 199.18 —102.04 768.71
9 1.85 —56.16 72237 | 199.86 —56.25 72291
10 1.95 —17.26 683.43 199.85 —17.31 683.98
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These results for stress are surprisingly accurate when compared with the results given in Prob. 6.14. At the
center of the element the radial stress oscillation is misleadingly accurate when compared with the accuracy of
the total formulation.

The node numbering is shown in Fig. 6-13. The element dimension in the z direction is 0.25, and the total
pressure loading on the inside surface of the cylinder is (1000)(27)(0.25)(r = 1.0) = 1570.80. The load is
distributed to nodes 1, 2, and 3 according to the results of Prob. 6.16. Nodes 1 and 3 have 1570.80/6 = 261.80,
and node 2 has 1570.80(3) = 1047.20. The results are given in Tables 6.6 and 6.7.

Table 6.6 Radial Displacements for a Thick-Walled
Cylinder (in) Two-Element Model, Eight-
Node Elements

-~ r{in) Nodes Finite element Exact
1.00 1,2,3 1905.09 1906.67
1.25 4,5 1602.57 1603.33
1.50 6,7,8 1414.60 1415.55
1.75 9,10 1293.03 1293.81
2.00 11,12, 13 1212.55 1213.33

Table 6.7 Stresses for a Thick-Walted Cylinder (psi) Two-Element Model, Eight-Node

Elements
Finite element Exact
Element r (in) o, Oy o, o, Oy
1 1.0564 —800.58 1557.38 227.04 —861.43 1528.10
1 1.25 —580.92 1159.87 173.69 —520.00 1186.67
1 1.4436 —264.54 988.05 217.05 —306.47 973.13
2 . 1.5564 —202.40 890.19 206.34 —217.09 883.76
2 1.75 —-117.70 761.51 193.14 —102.04 768.71
2 1.9437 —8.43 690.17 204.52 —19.59 686.27

Zero at node 1, two-thirds of the total distributed load at node 8, and one-third of the total distributed load at
node 4.

The results are the same as for the eight-node element of Prob. 6.16.

aM 2 aNl 2711/2 .
dL :[(E g N d§> + <z TR df) ] (i =1 to the number of nodes)

Refer to Prob. 6.16. The length of the element side between nodes 1 and 4 is 3.16228, and the total uniform load
is 3.16228p . The isoparametric element computation gives 0.52704p, distributed to nodes 1 and 4, and
2.10819p, applied at node 8. The distribution is the same as in Prob. 6.16, one-sixth of the load at the corner
nodes and two-thirds of the load at the midside node. This problem illustrates that the isoparametric formulation
takes into account the shape of the boundary surface.

See Prob. 7.4.
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6.38.

6.39.

6.40.

6.41.

Eight-node element Four-node element
Node ¢ Node ¢
1 —0.87266 1 2.0944
2 —(.69813 2 2.6180
3 —0.69813 3 2.6130
4 —0.87266 4 2.0944
5 3.14159
6 3.49066
7 3.14159
8 2.79253

In both computations the total charge density acting on the element is 9.4248 and can also be computed as
271, Py =9.4248, where r,, = 1.5.

PR B )
¢(r)_46 (rin f 4e i Fout 111(1‘]2"/}’2

out)

The results for three eight-node elements are given in Table 6.8. Note that there is a slight increase in accuracy.
The one-element solution has a node at » = 1.5, and ¢ is computed as 0.125; this compares fairly well with the
exact solution.

Table 6.8 Axisymmetric Electrostatics Problem (V)

Node location, ¢, four-node ¢, eight-node
r finite element b, exact finite element
1.0 0.0 0.0 0.0
1.1667 0.07640 0.07648
1.3333 0.11668 0.11683
1.5 0.12622 0.12608 0.12620
1.6667 0.10829 0.10817 0.10828
1.8333 0.06552 0.06557
2.0 0.0 0.0 0.0

The results are given in Table 6.9. Compare with Table 2.19.

Table 6.9 Coaxial Cable Analysis (V)

r ¢, two elements ¢, four elements

5.00 500.0 500.0

6.25 1136.53

7.50 1364.61 1373.23

8.75 1283.52
10.00 910.76 914.10
13.75 596.59
17.50 357.80 355.92
21.25 162.26
25.00 0 0
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Linear: N,=L, N,=L, N,=L,

Quadratic: N, =L,2L,—1) N,=L,2L,—1) N,=L,2L,—1)
N,=4L/L, N, =4L,L, N,=4L L,

Cubic: N,=1iL,(3L,—1)3L,—2) N,=3L,(3L,— (L, —2)
N,=1L,3L,—1)(3L,—2) N,=2LL,3L —1)
N,=%L,L,(3L, — 1) Ny=2L,L,(3L, — 1)
N,=2L,L,3L,— 1) Ng=3L,L,(3L, — 1)
N,=2L,L,3L,— 1) N,,=27L,L,L,

The stiffness matrix is of the form [Eq. (b) of Prob. 3.17]:

K] = J [N]"[K, JNJ: dx dy

Since there are no derivatives, the inverse of the jacobian is not required; it can be shown, using coordinates x,,
Yi» X35 ¥, and x,, y,, that |[detJ| = 2A. Formulate the solution as in Eq. (d) of Prob. 3.17; it follows that the

function to be integrated is

1 Ll LT LILZ LILS
k20 Lo L, L =24k )| L.L, L* L,L

2 Lo 0 ki, L, L, |det J| = 2A(K,. )| L,L, 2 2 23
L, L, L,L, L., L

Linear integration gives

K[H}]é
"y 1 14°?

and is not exact when compared with Eq. (e) of Prob. 3.17. However, quadratic integration gives the exact result.



Chapter 7

Selected Topics in Finite Element Analysis

7.1, INTRODUCTION

Fundamental theory and applied problems have been discussed in previous chapters. The intent of
each chapter has been to outline and discuss a particular topic and to demonstrate that finite element theory
is merely an extension of numerical methods that have been available to the analyst for many years. The
computer brought about the possibility of solving large systems of equations and manipulating massive
amounts of data. As a result, the existing numerical methods became useful to scientists and engineers. It
has been illustrated in this book that finite element analysis is nothing more than a modern application of
the Rayleigh-Ritz method and/or the Galerkin method of numerical analysis.

Each year many new applications and concepts appear in the scientific literature, and a user or
researcher often finds a real challenge in trying to stay abreast of new developments. Most analysts work
within an arca of application corresponding to their area of scientific interest. Of course, research continues
to be applied toward a more thorough understanding of the fundamental mathematics of the finite element
method.

This chapter is an introduction to a variety of problems of practical interest to the user. The solution of
initial-value problems, some that could not even be attempted a few decades ago, is of interest in many
fields of study and research. Methods of analysis have been available for approximating time derivatives
for many years, but the difficulty in modeling boundary conditions has been a major limitation in analysis.
The finite element method of modeling coupled with time-dependent analysis has had an impact on the
analysis of time-dependent problems. Finite difference approximations for first-order time derivatives are
introduced in this chapter, and a variety of applications are illustrated.

The classical eigenvalue problem is discussed in this chapter, and several applications are illustrated.
The differential equations analyzed here correspond to a variety of applied problems that occur in
engineering. Methods of analysis for computing the eigenvalues for large systems of equations are not
discussed but can be found in numerous textbooks.

Several sections are included in this chapter that extend finite element concepts to three dimensions
and introduce the idea of higher-order elements. These topics can be found in more extensive treatments of
finite element theory, and the reader who has mastered this book should have little difficulty studying the
more exhaustive literature. Finally, this chapter ends with an introduction to plate finite elements. Plate
finite elements have been a topic of analysis since inception of the finite element method and continue to
be the subject of a major share of the current published literature. The element presented here is typical of
plate finite elements and at the same time applicable to both thin-plate theory and moderately thick-plate
theory.

7.2, INITIAL-VALUE PROBLEMS

Initial-value problems were mentioned briefly in Chap. 5, where the (Falerkin method was used to
formulate the finite element counterpart of the differential equation. Methods for the numerical analysis of
a time-dependent differential equation will be discussed in this chapter. It is possible to use a finite element
to approximate the time derivative. However, the standard finite difference approximation will be used here
since a finite element approximation in time does not offer any particular advantage. Recall that in Chap. 6
the computational power of the finite element was demonstrated using the isoparametric formulation where
complicated boundary conditions could be modeled. Initial-value problems usually begin with a time-
equal-zero condition, and that does not justify the finite element formulation.

There is an abundance of literature available to the reader concerning numerical analysis of

207
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initial-value problems. In this chapter the emphasis will be on the classical rransient problem, that is, an
equation of the form

aplx, d adx, t
i) 228D 0 [ giy PO g1 = 0.0 (7.0

where a(x), B(x), ¥(x), and 8(x, r) are functions that pertain to a particular application. The fact that they
may be functions of x offers no more obstacle than in previous chapters. They will be assumed constant
within an element but can vary from element to element. Also, since the time solution is obtained in an
incremental form, the material constants can be functions of time and allowed to vary in an incremental
manner.

Differential equations containing the second derivative in time are often referred to as dynamic
problems or wave propagation problems. That class of problems will not be discussed in detail, except that
in the next section it will be shown that the problem can be formulated, with certain assumptions, as an
eigenvalue problem. Solutions for that important class of problems will be illustrated.

Finite difference models for transient problems can be formulated in any manner that approximates a
first derivative. Classically, these are called forward difference, backward difference, and central difference
approximations. The # method (theta method) is quite general and contains the three previous methods as
special cases. The # method will be derived and used in this chapter (see Prob. 7.3).

The Galerkin method is employed in this chapter to derive finite element models for a variety of
initial-value problems. In particular, transient heat conduction is illustrated in Probs. 7.2, 7.19, and 7.20. A
similar problem for axisymmetric transient diffusion through the walls of a hollow cylinder is
demonstrated in Probs. 7.4, 7.22, and 7.23. A problem involving coupled two-phase diffusion is given by
Probs. 5.25, 7.5, and 7.21. In each case the finite element formulation, analytical solution, and finite
element solution are discussed and compared.

7.3. EIGENVALUE PROBLEMS

Eigenvalue problems are sometimes called characteristic-value problems and occur in the analysis of
homogeneous differential equations. In mathematical physics and engineering an important class of
eigenvalue problems is the vibration of continuous systems. Critical buckling loads for beam columns,
elastic plates, and shells constitute another class of significant eigenvalue problems. The finite element
formulation of an eigenvalue problem follows the concepts that have been developed; in fact, no new
concepts are needed. The solution for the eigenvalue problem, after formulation, offers a new challenge.
Methods of analysis for large systems of equations will not be discussed, but the reader can find numerous
textbooks that deal with this important topic. Also, excellent computer software is available for the analysis
of eigenvalue problems.

A continuous system can be illustrated by referring to the cable of Eq. (e) of Prob. 2.1. Neglecting the
foundation modulus k and external loading f, the dynamic problem is obtained by summing the forces in
the y direction, Eq. (@), and including the inertia force. Recall Newton’s law, 2 F, = pa,, where p is the
mass or density, depending upon the formulation, and a, is the acceleration in the y direction. The final
differential equation has the form

T & — _& (7 2)
ol '
Equation (7.2) is a hyperbolic differential equation and governs the dynamic motion of the cable. The
problem that tracks the motion of the cable as a function of x and ¢ is often called a wave propagation
problem and requires a solution in x and ¢. The eigenvalue problem occurs with the assumption that the
free transverse motion of the cable is oscillatory and periodic in nature and can be described using a
periodic function. The assumption is supported mathematically using the separation of variables solution

technique that will lead to a periodic solution. Several examples are illustrated in the solved problems.
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7.4. THREE-DIMENSIONAL FINITE ELEMENTS

Three-dimensional finite clements are an extension of the two-dimensional isoparametric elements of
Chap. 6. The theory of piezoelectricity that was discussed in Prob. 5.19 required three-dimensional
modeling, and the idea of an eight-node three-dimensional element was introduced. The Lagrange family
of shape functions includes three-dimensional elements as an extension of two-dimensional elements, and
the derivation is similar to Prob. 6.4. Numerical integration using the Gauss-Legendre quadrature to
evaluate volume elements follows directly from the area integrations of Chap. 6. The reader should review
the numerical integration procedure outlined in Prob. 6.9 where the integral is numerically evaluated as

1= f f f(&m) dé an RCAY

The three-dimensional counterpart of Eq. (7.3) is

1= f f j fEm, ) d€ dn dy (7.4)

where &, 7, ¢ are the coordinates of the three-dimensional parent element. The evaluation of the volume
integral requires a transformation between the parent element using interpolation functions and a
three-dimensional jacobian matrix to give the form of Eq. (7.4). The numerical integration is carried out
using three nested summations. The equivalent of Eq. (7.4) becomes

1=22 2 www, f(£. 1, §) (7.5)

i=1j=1k=1

where, usually, m =n =1

Derivation of shape functions for the rectangular brick element is discussed in Prob. 7.14, and several
additional elements are presented in the supplementary problems.

The three-dimensional counterpart of the isoparametric triangular element is called a tetrahedral
clement. The tetrahedral element is four-sided and can be classified as linear (4 nodes), quadratic (10
nodes), or cubic (20 nodes). A special set of integration quadrature is used to numerically evaluate the
volume integrals that are an extension of those used in Chap. 6 for two-dimensional triangular
isoparametric elements. The reader can refer to an advanced text on finite element analysis such as
Zienkiewicz and Taylor (1989) or Stasa (1985) for integration formulas and additional information on
three-dimensional isoparametric finite eiements.

7.5. HIGHER-ORDER FINITE ELEMENTS

Linear and quadratic isoparametric finite elements were discussed and used in Chap. 6. Eight- and
nine-node isoparametric elements are usually sufficient to model any two-dimensional problem. Three-
dimensional problems can be modeled quite nicely using the linear and quadratic elements of the previous
section. The lLagrange family of elements can be extended to include cubic elements but will have the
disadvantage that more internal nodes may be required than are desirable. For instance, even though
derivation of the two-dimensional Lagrange cubic element would be simple, the element would have 12
exterior nodes and 4 interior nodes. The cubic element without interior nodes (see Probs. 7.15 and 7.33)
would probably be a more efficient choice.

The order of integration using gaussian quadratures should be dependent upon the order of the finite
element. According to Zienkiewicz and Taylor (1989) a single integration point is satisfactory for linear
quadrilaterals and triangles. For parabolic quadrilaterals 2 X 2 Gauss point integration is adequate, and for
parabolic bricks 2 X 2 X 2 Gauss point integration will suffice. The author has used 2 X 2 and 3 X 3 Gauss
point integration for parabolic finite elements and has always obtained identical results.
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7.6. ELEMENT CONTINUITY

Continuity in finite element analysis refers to the continuity of the solution along element boundaries.
The very nature of the finite element method implies a piecewise solution of the problem. Application of
the finite element method to various physical problems in previous chapters has been accomplished
without studying or even suggesting that there may be problems with interelement continuity. The majority
of the elements that have been studied were linear. Visualize a one-dimensional space divided into two
elements. The node that connects the two elements acts as a connecting boundary point for the two
elements. Obviously, the function being modeled is single-valued at the connecting node. Continuity
questions arise concerning the derivatives of the function, i.e., continuity of the derivatives of the shape
functions being used to mode!l the physical problem.

Mathematical functions are often assigned to a class and are said to be of class C* within a certain
domain. A function that is of class C° is continuous. If the first derivative of the function is continuous, it
is classified as class C 1, and if the second derivative is also continuous, it is of class C 2 Tt follows that a
function specified within some domain is of class C” if the function and its first » derivatives are
continuous.

7.7. PLATE FINITE ELEMENTS

The analysis of problems that occur in the bending of flat plates was one of the earlier applications of
the finite element method. There are fundamental obstacles that cause the application of the finite element
method to plate-bending problems to be more difficult than the problems of the preceding chapters. The
governing equation for plate bending is a fourth-order differential equation and as such has a more
stringent continuity requirement. An element will be discussed in this chapter that gives good results
without satisfying all continuity requirements. The element was discussed by Hughs and Cohen (1978) and
Hughs (1987). The discussion here relies upon the book by Cook et al. (1989).

A brief development of the theory of plates will be given. The reader who is not acquainted with the
theory should refer to a more definitive treatment, for instance, Timoshenko and Woinowsky-Krieger
(1959).

Relation between Force and Moment to Stress

Internal stresses in a plate produce bending moments M and shears Q as illustrated in Fig. 7-1.
Moments and shears are defined as acting per unit length of plate. These internal actions are defined as
follows:

h/2 hl2 hi2
M. = o, zdz M = o, zdz M, = o zdz
—hj2 7o dope R g
h/2 hi2 (7.6)
Q.= f o dz Q,= f 0, dz
—h/2 —h/2
The predominant stresses are obtained by integration of Eq. (7.6) as
M.z Mz M,z
o, =5 o, =5 o, = 7.7
12 ¥R 12 Y12 7-7)

The remaining shear stresses are also obtained by integrating Eq. (7.6):

30, 4z° 30, 47°
%. =" 1—7 7=, 1—7 (7.8)

but are quite small and are maximum at the midplane of the plate, z=0.




CHAP. 7] SELECTED TOPICS IN FINITE ELEMENT ANALYSIS 211

Deformation Assumptions

Classically, thin-plate theory is somewhat similar to beam theory and is often referred to as the

Kirchhoff theory of plates. The basic assumption is that points on the midsurface of the plate, z = 0, can

" displace only in the z direction. A straight line normal to the midsurface before bending is normal to the

midsurface after bending and remains a straight line. Points on the midsurface cannot displace in the x or y

direction. However, at distances z from midsurface displacements, u and v, in the x and y directions,

respectively, can develop as the plate bends. These displacements are illustrated in Fig. 7-2 and are given
by

_ew o ow »
U= -z v=—z 3y (7.9)
The corresponding strains are
u a’w dv 3*w u ¥*w
e o S P exy—a—y-l-a——Zzw (7.10)

The strain-deformation relations defined by Eqs. (7.9) and (7.10) do not allow for transverse shear
deformation.
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z,w
h
e f y
2 | z
| o
O-i- - X, U
h
2
< dx
z4
TR B
‘ ax

aw
ax

Fig. 7-2 Differential element for Kirchhoff theory.

A more complete assumption follows the same idea, except that straight lines normal to the midsurface
before bending remain straight but not normal to the midsurface after bending. The deformation is shown
in Fig. 7-3. The angle between the z axis and a line originally normal to the midsurface (x axis) is defined
as 6. A similar definition holds for 6. The following deformation assumptions are referred to as the
Mindlin theory of plates.

u=—z0 v =—z6, (7.11)
The strains become
B a0, B a_éiy B 00, aay>
€T T gy Ey z dy € z dy dax
(7.12)
B ow B ow
€, ——y—ﬂy EXZ——x—HX

The theory accounts for transverse shear deformation and is applicable for moderately thick plates. Note
that thick-plate theory reduces to thin-plate theory with the assumptions 6, = dw/dx and 6, = dw/dy.
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0X
z 4r “ u=—z0,

ow
- —F —
ax

Fig. 7-3 Deformation for Mindlin theory, dw/ox — 6, # 0.

Stress-Strain and Moment-Curvature Relations

The stress-strain relations correspond to a linearly elastic material and following the matrix notation of
previous chapters may be written

{o} = [Ele} (7.13)

Homogeneous and isotropic material properties are assumed, and the strains [Eqs. (7.7) and (7.8)] are
related to the strains as

o, E/1—v") Ev/(1—v>) 0 0 0]fe,
o, |Ev(-v* E/(1-2) 0 0 0]]e,
O (= 0 0 G 0 0Ne, (7.14)
g, 0 0 0 G 0f{]e,
o, 0 0 0 0 G|le,

where G = E/2(1 + »), E is Young’s modulus, and v is Poisson’s ratio. Moment-curvature relations for the

Mindlin theory are obtained by combining Eqs. (7.7) and (7.8) with (7.12) and substituting into Eq.
(7.14).

M, D uvD 0 0 0 a6 /dx

M, vD D 0 0 0 a6,/dy

M, d=—| 0 0 D-n»nj/2 0 0 96, /dy + 96,/ dx (7.15)
o, 0 0 0 Gh O 6, — dw/dy

0. 0 0 0 0 Gh 6. — ow/ox

where D = Ef’ /[12(1 — )] is the flexural rigidity.
A general plate element will be derived in Prob. 7.17 using Eq. (7.15) as a fundamental relation
between moment or shear and curvature. For later reference the matrices of Eq. (7.15) will be defined as

M} =D, {«} (7.16)

where [D,,] is the material matrix and {«} is the curvature matrix.
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Solved Problems

Discuss forward difference, backward difference, and central difference finite difference approxi-
mations for the first derivative.

y s

Fig. 7-4 Finite difference representation of dy/dt.

In each case the approximation is linear. Consider the finite difference analysis for the elementary equation
w8 @
with y(0) = 2. The solution of Eq. (a) is
J e
y=-,(L+e ™) ®)

A curve that represents the analytical solution is sketched in Fig. 7-4. Assume that a numerical solution y,_, has
been computed up to point ¢,_,. The next value of y to be computed is y,. A forward difference model for Eq. (a)
is written in terms of the previously computed value of y:

DY =3
dr /)i VVior = O ()
where the finite difference approximation for the time derivative, using Fig. 7-4, is

dl) i T Y .
di/i At ar= i i @

Substituting Eq. (4) into Eq. (¢) gives a forward difference recurrence formula for y,:
y,':yif1+(5i—1_w.'—1)At (e)
A backward difference model is written in terms of the next value of y to be computed:

dy
5),+wi=5f N

i

. | dy) Yi " Vi _ »
with (dt =T Ar=t,—t,_, (&)
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Substituting Eq. (g) into Eq. (f) gives a backward difference recurrence formula for y,:
y(l+yAn=y,_ +8 At (h)

The central difference model can be constructed assuming that y can be evaluated at the midpoint between ¢,
and ¢, :

dy .
E)iil/2+’yyi71/2:5i~xl2 @)
. ﬂ)_’) Yi Vi _ .
with dr/ -2 At Ar=r =t ()
where y,_,,, is assumed as an average value:
Yty
Vep =T, k)

When Egs. (), (k), and (i) are combined, the central difference model becomes

Ar At
Y, l—i-y? =y,_, 1—'y—2— +6_,,, 4t (3}

A comparison of the four solutions, Egs. (b), (¢), (h), and (I), is given in Table 7.1. Let y=46=1 and
Az =0.1. All three numerical solutions appear to be quite accurate, with the central difference solution being the
most accurate for this application. However, any of the three solutions is acceptable. A smaller time increment
would give a more accurate analysis but would require more computation. A larger time increment would require
less computation and for the central and backward difference methods would approach the steady-state solution
of y =1, but it could be a poor representation of the transient behavior, which is of interest in these problems.
When the time step becomes too large, the forward difference method becomes unstable and its solution totally
diverges from the correct solution. A successful analysis is one that gives a good approximation for the solution
and at the same time requires a minimum of computation time.

Table 7.1 Comparison of Finite Difference Solutions

Forward Backward Central
Exact, difference, difference, difference,
Time Eq. (b) Eq. (e) Eq. (k) Eq. ()

0.0 2.0 2.0 2.0 2.0
0.1 1.90484 1.90000 1.90909 1.90476
0.2 1.81873 1.81000 1.82645 1.81859
0.3 1.74082 1.72900 1.75131 1.74063
0.4 1.67032 1.65610 1.68301 1.67010
0.5 1.60653 1.59049 1.62092 1.60628
0.6 1.54881 1.53144 1.56447 1.54854
0.7 1.49654 1.47830 1.51316 1.49630
0.8 1.44933 1.43047 1.46651 1.44903
0.9 1.40657 1.38742 1.42410 1.40627
1.0 1.36788 1.34868 1.38554 1.36757
1.5 1.22313 1.20589 1.23939 1.22285

Use the Galerkin method to formulate the finite element model for transient heat conduction.

The finite element formulation is similar for one-, two-, and three-dimensional problems. In this instance,
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use Eq. (7.1) with @ = pc, the density times the specific heat, B =k, the thermal conductivity, ¥y =0, 6 = —Q,
and ¢ = T. The assumed solution is of the form

Tplx, ) = INHTO)} (@)

The shape functions are functions of the coordinates only, and the nodal point variables {T} are functions of ¢
only. Following the methodology developed in Chap. 5 and substituting into the governing differential equation
gives

[pelN]—— {} [k] {T} Q =R(x; {ThH ®)

Multiply by [N], w, in the Galerkin formulation, integrate over the volume, and set the result to zero:

T {1} oo 0°IN] T

fv INF [pelIN} — = — INT" [k] =5 —[NI'Q ) dV=0 ©

Application of the Green-Gauss theorem gives the final result:

r [N d[N d
ﬁ / ([N] [pelIN] ﬁ,ﬁ + [ax] B (- ) f NIt 22 () ds @
Equation (d) can be written in the more compact form

[l AT }+ [KHT} = {F} ©
where [Cl= f N[ pelIN] aV "

The matrix [C] is sometimes called the capacitance matrix. All applied actions have been grouped together and
denoted {F}, and {K] is the standard stiffness matrix. It follows that the form of Eq. (¢) remains unchanged for
two- or three-dimensional formulations. The only new term is [C], and the finite difference in time is applied to a
matrix of unknowns rather than to a single variable as in the previous problem.

Derive a general recurrence formula for the # method and discuss its relation to the difference
methods of Prob. 7.1.

> !

Fig. 7-5 Definition of 8 for a time increment.
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Assume a finite element equation similar to Eq. (e) of Prob. 7.2 with variable {u} written with subscripts € as
defined in Fig. 7-5:

d{u},

S dt

+ [KHu}, = {F}, (@

Note that the partial derivative can be changed to a total derivative with no loss of generality. The time increment
is defined as before, Az =¢, —t,_,, and @ is defined as

S goga b
0="4, 0=0= &)

It follows that {u}, can be defined in terms of & as
ful =1 = 0)u},_, + 6{u}, ©
or {uly = 0({u}, —{uf,_ ) +{u}, )
Also, using Eqs. (b) and (d),
du}, dlu}, a6 dlup, 1 {u}, —{u}_,

a  d8 di d6 M M (€)
Similarly, {F}, is defined as
{F}y = (1 —0)F},_, +{F}, o))
Substitute Eqgs. (¢), (), and (f) into Eq. (¢) and rearrange:
[CKut, [C ]{ }, :
A{[l_l} + 0[K{u}, = — (1=K u}, , + (1 —0){F},_, +6{F}, (9

i z

When 6=0, Eq. (g) is the forward difference approximation. Similarly, when 6 =1, the backward
difference approximation can be recovered. The central difference approximation results when ¢ = 2. Equation
(g) is quite general and allows the analyst to experiment with various values of 9 to obtain the best numerical
solution for a given problem. '

The axisymmetric transient diffusion through the walls of a hollow cylinder is governed by equations
similar to those of Chaps. 3 and 6 that were written in cylindrical coordinates. In fact, the governing
equation is given here for reference:

iC_1d () 0 ()
at _roar \""ror Bz m @)

Formulate the finite element equivalent of the governing equation.

Let C be approximated by assuming C = [N]{C} and substitute into the governing equation. Multiply by the
weight function [N} and integrate over the volume:

[ E2 = [ |22 (0, 8401 ) + 2 (0, B iey ) o | av ®)

where dV = 27r dr dz. The right-hand side of Eq. (b) can be written

j [N} [ ( rD, —{C}> _z (rD LI} {C}) + mr] dr dz ©)

Note, because r is independent of z,
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and the first two terms of Eq. (b) have been written in a similar format. Application of the Green-Gauss theorem
to these two terms will give the final form of the local finite element that defines axisymmetric transient
diffusion.

s {CH o 8INTT d[N] d[NT” d[N] >
ZWL <[N] NI =5+ =%, D, 1O+ 5D~ {C} ) drdz

=2 T ( . AN - 8INI
=27 A[N] mrdrdz + 2 i [N]'rD, or n, + [N]" 1D, 9 - as (e

The last two terms represent the flux boundary conditions. The numerical evaluation of Eq. () is identical to the
numerical integration in cartesian coordinates with 277 included in the computations.

An analytical solution for the two-phase diffusion formulation of Prob. 5.25 is given by Prob. 7.21.
Obtain a finite element solution for time-dependent two-phase diffusion using a strip of 10
two-dimensional linear finite elements. Assume L = 1.0, I' = 30, and material parameters of D = 0.5,
a =10, and B =25, Note that the material parameters are illustrative for this analysis and do not
represent a physical material.

Boundary conditions are specified for C, in Prob. 7.21 and must be computed for C, to obtain a finite
element solution. Consider the second equation

dC (0, 1)

i BCLO, ) —aC (0,1) (@)
with C(0, ) =T. The equation at the boundary is
dc,
ar +aC, =pT ()]
with solution
¢-Bu-em ©

The matrix equation of Prob. 5.25 is used as the finite element model. Each finite element has two degrees
of freedom per node, and the formulation is similar to that discussed in Prob. 5.16 for coupled diffusion. The
diffusion term is modeled using Eq. (e) of Prob. 3.5, and all other terms are modeled using the results of Prob.
3.33 (the chemical reaction term) with K replaced by 1 for the time-dependent terms and « or S for the
interaction terms. Visualize the local finite element stiffness matrix as

INUIOIND | op o .
A+ [BI'DIBI+ NI [BIN] —INT"a](N] {cﬁ}

~[NT"[BI1IN] [N1'[1][N]
At

re

+ [N]"[@][N]

The results were computed using an isoparametric element and are given in Table 7.2. Note that the series
solution for C, of Prob. 7.21 has very slow convergence and will require many terms to converge to an answer.
The finite element (FE) solution was computed using time increments of 0.001 for 0.001 < ¢ < 0.01, then 0.01 for
0.01=r=0.1, and then 0.1 for 0.1 =¢=1.5. The steady-state solution is C, =30 and C, = 15.
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Table 7.2 Results for Two-phase Diffusion

Time x=0 x=0.1 x=02 x=03 x=04 x=05
0.005 FE C, 30 7.332 0.387 0.000 0.000 0.000
C. 0.732 0.137 0.003 0.000 0.000 0.000

Exact  C, 30 4.640 0.137 0.000 0.000 0.000

C, 0.732 0.078 0.020 0.000 0.000 0.000

0.01 FE C, 30 10.991 2.014 0.092 0.001 0.000
C, 1.427 0.365 0.035 0.003 0.000 0.000

Exact C, 30 9.282 1.316 0.078 0.002 0.000

C, 1.427 0.250 0.035 0.013 0.000 0.000

0.02 FE C, 30 14.176 4.839 1.214 0.264 0.106
C, 2.719 0.960 0.256 0.056 0.013 0.005

Exact  C, 30 13.840 4.443 0.945 0.130 0.022

C, 2719 0.793 0.171 0.034 0.013 0.009

0.04 FE C, 30 17.505 8.689 3.701 1473 0.877
C, 4.945 2.232 0.903 0.315 0.111 0.060

Exact C, 30 17.575 8.702 3.577 1.259 0.641

C, 4.945 2.105 0.762 0.237 0.068 0.031

0.1 FE C, 30 21.249 14.229 9.232 6.291 5.326
C, 9482 5.610 3.253 1.784 1.046 0.819

Exact  C, 30 21.273 14.257 9.238 6.263 5.282

C, 9.482 5.656 3.165 1.696 0.947 0.719

0.5 FE C, 30 27.226 24.782 22.881 21.682 21271
C, 14.899 12.702 11.209 9.998 9.271 9.020

Exact G, 30 27.603 25.412 23.779 22.706 22.338

C, 14.899 13.215 11.749 10.620 9.910 9.667

1.0 FE C, 30 29.244 28.565 28.028 27.683 27.565
C, 14.999 14.453 13.981 13.607 13.370 13.288

Exact  C, 30 29.442 28.938 28.539 28.283 28.194

C 14.999 14.606 14.252 13.972 13.792 13.730

The classical vibrating-string problem is described by Eq. (7.2). Assume free harmonic motion for the
transverse motion of the string and derive the homogeneous governing differential equation.

Assume a solution
v(x, 1) =VE)T®) (@

Substitute into Eq. (7.2) and separate the variables:

1 dZV: 1 d°T (%)2 ®

Voax® Edz‘z__

where o is the frequency of free vibration. The solution is governed by two ordinary differential equations
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A +(£)v=o0 4T L =0 ©
i = W= 14
ax® ¢ dr*
The solution for the second equation is of the form
T = A sin wt + B cos wt
and it follows that Eq. (@) can be replaced with the assumption
v(x, ) = V(x)e ™' (d)
Substituting into Eq. (7.2) gives the homogeneous form
d2V p 2. —iwt
[—dxz—TwVe =0 3
av p N :
or dx2+?w V=0 f)

Use the finite element method to study the free vibration of the string described by Eq. (7.2) and
Prob. 7.6. Assume boundary conditions V(0)=V(L)=0. Assume (a) a three-node model with
symmetry about the center of the string, (b) a three-element model without symmetry,

The local finite element equation is derived using Eq. (f) of Prob. 7.6. Assume V= [N]{V} and use the
Galerkin method to form the weighted residual equation. Substitute V' into Eq. (f), multiply by [N]T, and
simplify using Gauss’s theorem:

where A = po’ /T.

(a) The three-node model is shown in Fig. 7-6. Symmetry with respect to the centerline allows the use of one
finite element. Equation (a) corresponds to Eq. (d) of Prob. 2.11 and can be written as follows (note that the
length of the element 1s L/2): S ;

2 I —-1](v, AL

Ll-1 1||v,] 2
The boundary condition is v, =0 and when eliminated gives A=12/L% Then, = (AT/p)''*=
(3.464/L)(T/p)'’* and compares to the exact solution given by Prob. 7.24 of w = (w/L)T/p)'’*. The

analyst must exercise care when using symmetry to model a vibration problem since only symmetric modes
will be found. In other words, it is not good practice.

&= W=
[

(b) The three-element model is similar to Fig. 7-6. The same model can be used except that the length is L/3.
The global finite element equation is

1 -1 0 0] (v, s £ 0 0]{(v,

31 -1 2 -1 01]]v, Al 2 L 0]]v,

Il o =1 2 <1 luuf 3o 1 z (7Y
0 0 -1 1|, 0 0 I 1]lv,

The boundary conditions v, =v, = 0 reduce the equation to the 2 X 2 matrix
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— v,=0
[ 3* 3
it
L/2
—+ 9.
L/2
y 1
1 77)777‘ v, =0
Fig. 7-6
108 —4AL*  —(54—AL%) | [v,] 0
—(54— ALY 108 —4AL? ||v,
or (108 —4AL%)* — (54 — AL*)* =0
Solving the quadratic equation gives the results
32863 /T2 d 1o th _ 31416 /T2
w =T P) compared to the exact @ =" P
_ 1.3485 /TN'? d h _ 62823 /TN
0, =" P compared to the exact W, =""p -
7.8.  The rectangular vibrating membrane is the two-dimensional counterpart of the vibrating string and is
described by an equation of the form
°w 4T 9w 9w @
= a
ax’ 6y2 P ar’

where w is the deflection, T is the tension in the membrane, and p is the density. Formulate the finite
element model for the vibrating membrane and obtain a solution using the model illustrated in Fig.

7-1.
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al2

Assuming a solution of Eq. (@) in the form w(x, y, ) = W(x, y)e"i'”' will lead to an analysis of the equation

W W pw’
T+ tAW=90 A=—"F" ®)
ax dy T

Visualize that application of the Galerkin approximation for Eq. (b) will lead to the result

ONI" BIN]
o o, ~ANVINI= ©

The membrane of Fig. 7-7 is square and can be modeled using four square elements. However, since all boundary
nodes correspond to W = 0, the same result would be computed using symmetry with one square element. A more
complete analysis would result if more elements were used and the complete membrane were modeled. As noted
in Prob. 7.7, the use of symmetry in this application restricts the analysis to finding only symmeiric modes.
Equation (c) can be modeled using Eq. (¢) of Prob. 3.5 with k_ =k =1 and the last equation given in Prob. 3.34
with K, = A. The node numbering of Fig. 7-7 indicates W, =W, =W, = 0, and corresponding rows and columns
can be deleted to give

! [2£+20—2]—Aa—2l—0
6(a/2)’ 4 4 4 9

It follows that @’ = 24T/a’p or w = (4.899/a)(T/p)'’* compares (o the exact solution of @ = (4.443/a)(T/p)
(see Prob. 7.26). More detail concerning the finite element analysis of the vibrating membrane is given by
Bickford (1990).

1/2

The differential equation that describes the transverse motion of a beam structure is similar to Eq.
(4.1) and can be derived following Timoshenko (1955) as

£l 9*v 3%v @
f__ 2 »
axt Pk

where p is the mass density per unit length of beam. Assume free harmonic motion and derive the
corresponding local beam finite element.

The beam finite element that models the left-hand side of Eq. (a) was derived and analyzed in Chap. 4. It
remains to develop a model for the dynamic term on the right-hand side of the equation. The use of the Galerkin
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method to derive the finite element model can be of instructional value. Follow the methods of Chap. 5 and use
Egs. (g) and (k) of Prob. 4.9 as a trial solution:

v(x, 1) = [NGORv(O)} ®)

where [N =[N, N, N, N,Jand {v@)}=[v, 6, v, 6,]". Substitute the trial solution into the
governing equation:

3"IN] 9*{v
El ——~{v}+ pIN] =~ =R, t: {v}) ©
ax at
Multiply by the weight function and integrate over the length:
- 9*IN] - 8*{v}
f EINT" — = {v}dx +f pINI'IN]— 5= =0 )
0 ox 0 ar .

Integrate the first term by parts twice:

R P e SURISE ]

0 ax? ax? ar X [i) 0

The terms to the right of the equal sign represent the boundary conditions on the deflection and slope or moment
and shear of Chap. 4 that were treated as joint loadings caused by applied transverse loading. The free vibration
problem without transverse loading is governed by the differential equation within the volume integral. Assume a
solution of the form

v(x, 1) =V(x)e™

and substitute into the differential equation to obtain the corresponding eigenvalue problem:

L a’[NT" [N
f (EI a[xz] [ ]{V}—pwz[N]T[N]{V}) dx=0 (e)

0 ax®

The first term of Eq. (e) is the stiffness matrix that was derived in Chap. 4 in Egs. (f) and (g) of Prob. 4.4. The
second term of Eq. (e) defines the mass matrix:

[m] = f pIN]" [N} dx )]

0

Equations (¢)-(f) of Prob. 4.9 are used to evaluate the mass matrix. The matrices inside the integral are
multiplied together as follows:

2 —=3x°L+L°
P )L —2L +xL?
L’ —2x" +3x°L
XL —xL7

1
? 2~ 3xL+L> xL—23L7 XL -2 +3x°L XL —x"L*]

After integrating and substituting limits, the mass matrix becomes (Logan, 1986)

156  22L 54  —13L
[ ]__p_g 2L 4L ~13L  -3L7 (2)
M=90] s4 13 156 —22L g

—13L —3L* -—22L 4L
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In summary, the eigenvalue problem for harmonic motion of a beam can be written

KKV} — 0’ mKV}=0 )

Use one beam element to compute the natural frequency for free vibration of a beam that is simply
supported at both ends.

Combine Eq. (f) of Prob. 4.4 and the mass matrix, Eq. (g), derived in Prob. 7.9. The boundary conditions
are v(0) = v(L) = 0. Delete the first and third rows and columns from the finite element matrix:

El[ar 207 w'pL [ 41? —3L7 o
rlorr szl 420 |3z 42| @
Solving Eq. (a) gives

10.954(El /p)'* 50.120El/p)'"*
_20anlp) _ 20 20elp)

w, e and , 12
The exact solution can be computed as
i (Ellp)'"” 9.867(El/p)'"* 39.478(El /p)’
=TT or =T and W=7
L L L

The free vibration problem corresponding to a more general elasticity problem can be formulated
following the methods applied to the equations of elasticity in Chaps. 3, 5, and 6. A general
expression can be derived and then specialized to represent a specific application. Investigate the free
vibration of a finite cylinder in axisymmetric cylindrical coordinates using nine-node Lagrangian
finite elements. :

The equations of elasticity can be written in cartesian tensor notation:

Bzu,.
T =P ar? o, =0y, fori+#j (@)
0; = Ciu€y ®)
€, =2, + p,) ©

Assume u, = [N}{u} as a trial solution, and it follows from Eq. (c¢) that

{€} = [LI[NNu} = [BHu} @

Substitute Eq. (c) into Eq. (b) and then into Eq. (@). The trial solution is then assumed, and after multiplying by
the weight function and integrating, the result is
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a[NY _9IN o N
fv (—[ ! ]{u}+[N]Tp[N} aff})dvz f [N]T[C}%{u}ds @

ax; ax,

The formulation, Eq. (e), is quite general and can represent any elasticity problem. The axisymmetric elasticity
problem is defined by Eqs. (3.17) and (3.18) that were specialized in Sec. 6.7 to axisymmetric 7, z coordinates.
Equation (@) corresponds to Egs. (6.6) and (6.7) with dynamic terms included. Equation (¢) is a general
statement that corresponds to Eq. (6.5). Equation (b) corresponds to Eq. (d) of Prob. 3.26. Note that the reader
who is unfamiliar with subscript tensor notation must be aware that Egs. (¢)—(c) cannot be expanded into the
equations of elasticity in any system except the cartesian system. The intent is to arrive at Eq. (¢) and specialize
that equation to a specific application.

Equation (e) is the general form of the free vibration problem and can be written in the alternate form,
neglecting traction boundary conditions,

62
fv ([B]T[C][BJ{U}HN]TP[N] M)czv:o 2

ar

The second term of Eq. (f) is called the consistent mass matrix and is formulated using the shape functions
rather than proportionatety lumping the mass at the nodes of the element. The free vibration problem is defined
using Eq. (f), and an appropriate harmonic function is assumed to represent the acceleration term. The assumed
function must satisfy the displacement equations of the theory of elasticity. The governing equations, in terms of
displacement, are obtained by substituting the strain-displacement equations, Egs. (6.5), into the constitutive
equations, Eqgs. (3.18), and then substituting the result into the stress equilibrium equations, Eqs. (6.6) and (6.7).
Functions that will satisfy the displacement equilibrium equations are

u(l‘, z, t) = [](}"7 Z)e*iwr U(r, z, f) — V(r, Z)g*fwr (g)
where w is the circular frequency. The general form of Eq. (f) becomes
K~ »*M}{U} =0 "

The nine-node Lagrange element is defined in Prob. 6.24. The formulation of the [B] mairix follows Egs. () and
(b) of Prob. 6.12 (also see Prob. 3.26) using nine-node shape functions rather than four-node shape functions, and
the resulting [B] matrix is 4 X 18. The [C] matrix is identical to Eq. {d) of Prob. 3.26, a 4 X 4 matrix. The mass
matrix [M] is formulated using the nine-node lagrangian shape functions according to Eq. (/). Visualize the mass
matrix as

N, O
0 N,
N, 0
[Ml=j LA [p 0] [N1 0 N, O N, o] W o
v 0 plael0 N 0 N, 0 N, |,
N, ©
_0 N9_.18><2

where dV =277 dr dz. The [p] matrix has terms in both diagonal elements since there are two degrees of
freedom per node. The resulting local finite element is an 18 X 18 matrix.
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Finite cylinder A =7
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Finite element mesh
Fig. 7-8

The axisymmetric finite length cylinder of Fig. 7-8 was studied by Hutchinson (1967). The boundary
conditions are u(a, z, t) = 0, zero displacement in the r direction along the sides of the cylinder, w(a, z,1) =0,
w(r, =h, r) = 0, zero displacement in the z direction on all boundaries of the cylinder, and o, (a, *h, 1) =0, zero
shear stress on all external surfaces of the cylinder. In this application of the finite element method, symmetry can
be used; the cylinder was modeled using eight nine-node elements, resulting in 45 nodes and 90 degrees of
freedom. The model is shown in Fig. 7-8 with a = 1, A =2, and v = 0.3. Results for the first four frequencies are
compared in Table 7.3.

Table 7.3 Frequencies for Finite Length Cylinder

Method 1 2 3 4
Hutchinson 2.7466 4.4597 5.5546 5.8402
Finite element 2.7485 4.4742 5.6349 5.9339

Additional results for the axisymmetric cylinder, as well as an application for the piezoelectric cylinder that was
defined following the equations given by Prob. 5.19 have been given by Cheng (1988).

7.12. The differential equation that describes the buckling of a long column is similar to Eq. (4.7) and is
derived in elementary mechanics of materials as



CHAP. 7] SELECTED TOPICS IN FINITE ELEMENT ANALYSIS ; 227

7.13.

d*v d*v
El—+P—=0 (a)
dx* dx’
where P is a concentric axial force applied at the ends of the column. Derive the local finite element
that can be used to study the buckling behavior of a column with concentric axial loading.

The derivation follows that of Prob. 7.9 where the beam finite element that models the first term of Eq. (@)
was derived using the Galerkin method. This technique can be used to derive the finite element model for the
second term of Eq. (a). Assume the trial solution as in Prob. 7.9:

v(x, 1) = [INGORv()} ®)

where [NW]=[N, N, N, N, and {v@®)}=[v, 6 v, 6] . Substitute the irial solution into the
governing equation. Then, multiply by the weight function and integrate over the length:

dz[N

4 [N {v}dx+J PIN]" —— {v}dx=0 )

f EI[N]”

Integrate the first term by parts twice and the second term once. As in Prob. 7.9 there will be boundary conditions
for node (joint) loadings that represent shear, moment, and axial force. Neglect the possible joint loadings and
concentrate on the eigenvalue problem governing column buckling:

j (Eld [N1" d*[N] dINT" d[N] > @

vi+ P

0 dx®  dx* v dx
The first term of Eq. (d) is the stiffness matrix of Prob. 7.9. The second term must be evaluated using the
derivatives of the shape functions given in Egs. (¢)-(f) of Prob. 4.9. The matrices inside the integral are
multiplied together as follows:

6x° — 6xL
27 _ 2 3 1
% 3x L6 24’_‘56 ZL e [6x> —6xL 3x°L—4xL>+L° —6x+6xL 3x°L —2xL7)
—0Ox X
3x°L — 2xL7?

After integrating and substituting limits, the matrix that represents the effect of axial force on bending stiffness
becomes (Chajes, 1974)

36 3L -36 3L
_ 3L 4L  -3L L’
PI=500 | <36 —3i 36 3L (e)
3L L*  -3L 412

In summary, the eigenvalue problem for the critical buckling load for a column can be written
2 2 P
[K}{v = ATDIvi=0 A" =47 )

Use one finite element to compute the critical buckling load for a column pinned at both ends.

Combine Eq. (f) of Prob. 44 and Eq. (g) that was derived in Prob. 7.12. The boundary conditions are
v(0) = v(L) = 0. Delete the first and third rows and columns from the finite element matrix as follows:

EL[ar® o0 __P Ta® L7]_,
L lor? arc) " 30L |2 a2l @

Solving Eq. (a) gives P, =9.689EI/L*> and P,=74.311EI/L*. The exact solution can be computed as
P, =n’m’EI/L’, or P =9.867EI/L" and P, = 39.478EI/L".
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7.14. An eight-nodé isoparametric finite element is shown in Fig. 7-9 in & 7, ¢ coordinates. Use the
Lagrange polynomial formula to derive interpolation (shape) functions for the element.

47

(1,1,-1)

(-1,1,-1)

(-1,-1,-1)

Fig. 7-9

Refer to Prob. 6.4 and node 1 of Fig. 7-9 where the plane that contains nodes 1-4 corresponds to ¢y = —1. A
linear one-dimensional interpolation formula for node 1 along the ¢ axis is L, ,, =+ (¢ — 1)/(—1 — 1). The linear
one-dimensional interpolation formulas for the ¢ and % directions are given in Prob. 6.4 and can be combined
with L,,, to give

N =Lody g, = 1O DA

Similarly, the remaining functions are computed as

Ny=L, Ly, L, =1+ (1 —n)(1—¢)/8
N,=(1+8A+mpA-=y/8  N,=(1-E+md - /8
Ny=(1-6A-—mU+¥/8  No=(1+ L -1+ /8
N, =(1+&A+pd+¢)/8  Ny=(1+ WL +n)(1—)/8

7.15. A four-node one-dimensional isoparametric element is shown in Fig. 7-10. Derive the shape functions
using the Lagrange polynomial.
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1 2 3 4
-0~ - o » £
-1 -+ %y 1

Fig. 7-10
Refer to Fig. 7-10 and substitute into Eq. (6.3):

Li=—%E+E-E-D  Ly=—Z(E+HIDE+INE-D
L,=22(§+1E—-L)E—1) L,=2(E+D(E+DED

7.16. Discuss continuity for the two-node one-dimensional linear element and its application to one-
dimensional heat transfer.

Continuity for the two-node element is shown graphically in Figs. 2-4 and 2-5. The shape function is C°
continuous at the nodes, however, its first derivative is not continuous. Therefore it can be concluded that
two-node one-dimensional elements are of class C°. There can be one exception to this result. Given the
governing equation and boundary conditions

T
=0 TO)=0 TL)=T, O=x<L

the solution is T(x) =T, x/L and dT/dx =T, /L. The function is continuous, and its first derivative is continuous.
It follows that the function is at least of class C'. The shape function has the same property since a linear
function is the exact solution of the governing differential equation. Of course, the analysis of this problem is of
little interest from a finite element viewpoint.

7.17. Derive a local stiffness matrix for plate bending using the Mindlin theory and Eq. (7.16) as the basic
relationship that can be used to evaluate the strain energy that corresponds to plate bending. The use
of the strain energy to derive plate elements follows the concepts developed in Chap. 4 for deriving
beam finite elements.

The finite element that will be derived has been named the ‘‘heterosis’” element by Hughs (1987), and the
discussion here follows that of Cook et al. (1989). The development is general and applies to any element; it will
be specialized to correspond to the heterosis element. The element unknowns are the plate rotations and
transverse deflection and are defined in terms of nodal degrees of freedom for any element using a suitable shape
function. Assume the following relation between element unknowns and nodal unknowns:

N O 0 N, O 0 -+ repeat --- N 0 O
We for w
et=[0 N O O N, 0 - n -+ 0 N, 0|36 (@)
b, element 8
0O O N O O N, --- nodes --- 0 0 N,
or {u} = [N]5.05,4d} &)

where {u} are the element unknowns, [N] are the element shape functions, and {d} are the nodal unknowns:

{d}=[w, 6

x1

f

y1

w2 9)(2 0y2 T Wn exn gyn]T (C)

In general the strain energy of deformation for the plate can be written
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1 hi2
- E fA J—h/z {E}T [E]{e} dz dA @

where A is the area of the midsurface of the plate and {e} is defined in Eq. (7./4). The integration is through the
thickness of the plate, and the equations of Sec. 7.7 are used to convert the strain energy into matrices
corresponding to Eqs. (7.15) and (7.16) as follows:

1
0= | D, aa ©

There are three degrees of freedom at each node w, 6,, and 6, that are defined by Eq. (). The curvatures of Eq.
(7.15) are defined in terms of nodal unknowns using an operator matrix

{«} = [LIINNd} = [B}{d} (f)
where [L] is the following 5 X 3 matrix:

0 d/ox 0

0 0 a/ay
[L]= 0 a/dy d/ox (2)
—a/dy 0 1
—d/dx 1 0
The strain energy can be defined as
1 . 1
=3 f {d}" [N)" L] [D,, JILIINd} dA = f {d}"(B1"[D,,JBHd} dA Q)

Equation (A) leads to formulation of the stiffness matrix as

[Kl= L [B]"[D,,][B] dA ®

The derivation has been completely general, and Eq. (/) can be used to formulate a finite element using any
desired shape function. The stiffness matrix will now be specialized to the heterosis element.

x5 36 in N
|‘ 1
2 23 24 25
21 - - —I
69 o 18¢ O $ 20
17 19
11 v

11 e o —LlS 36in
= 1# 14

69 o] 8e o 10
7 9
1 I1
[ ® L - . # —_—
1 2 3 4 5 x

h =0.25in, E = 30(10)° psi, » = 0.3
Fig. 7-11

The heterosis element is shown in Fig. 7-11 as a nine-node quadrilateral isoparametric plate element and is
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7.18.

in fact a combination of the nine-node Lagrangian element (see Prob. 6.24) and the standard eight-node element
(see Prob. 6.25) discussed in Chap. 6. The corner and midside nodes have three degrees of freedom, 6, Hy, and w,
whereas the center node has only two degrees of freedom, 6, and 8,. The element has 26 total degrees of
freedom. The Lagrange shape function is used to model the rotations ¢, and 6,, and the standard eight-node
element is used to model the transverse plate deflection w. It follows that the element stiffness matrix, Eq. (i), is

split into two stiffness matrices, one to model bending and one to model transverse shear:

[K]=[K,] +[K,] ()
where [K,]= f [B,1'[D,][B,]dA (k)
K.]= L [(B,1"[D,][B,1dA O

Splitting the stiffness matrix is best visualized by examining the result [B] = [L][N] defined by Eq. (f). Let P
denote the nine-node Lagrange shape functions (rotations) and N represent the standard eight-node shape
functions (deflections). Note that it is not feasible to write a matrix equation similar to Eq. (g) to represent the
combined shape functions P and N. The heterosis [B] matrix is constructed as

0 9P [ox 0 0 oP,/ox 0 see oP,/dx 0

0 0 aP /3y 0 0 dP,/dy 0 aP,/dy

0 P /ay  OP,/ox 0 aP,/dy  oP,/ox - aPy/dy  OP,/dx (m)
—N, /9y 0 P, —aN,/ay 0 P, e 0 P,
—dN, /ox P, 0 —aN, /ox P, 0 Bk P, 0

The matrices of Egs. (k) and (/) can be identified as

0 oP /ox 0 0 oP,/dx 0 cee 9Py /ox 0
B,] =| 0 0 0P, fay O 0 oP,/dy - 0 dPy/dy (m
13%26] 0 oP/dy oP//dx O aP,/oy dP,/ox -+ dPy[dy OP,/dx
B 1= —aN /ey O P, —ON,Joy O P, --- 0 P,
[Exgil | -an,jex P, 0O —oNyjox P, O - P, 0 ©)
D vD 0
Gh 0
[D,] = [ D D 0 (D.1= [ 0 Gh] (#)
0 0 (1—-wv)D/2

The square plate of Fig. 7-11 is 36 X 36 in and 0.25 in thick. The plate is simply supported with a
1000-1b load applied at the center node, node 13, and is to be modeled using four heterosis elements.

(@) Assume material constants for steel and compute the deflection and rotations at each node.
E =30(10)° psi and » = 0.3.

() Assume material constants for aluminum and compute the deflection and rotations at each node.
E=9.5(10)° psi and » =0.29.

The stiffness matrix is formulated according to Eq. {j) of Prob. 7.17. The load vector has only one
nonzero term, and the applied load at node 13 corresponding to the first degree of freedom is 1000 1b. All
deflection boundary conditions are specified as zero along the edges of the plate, and the rotations tangent
to the edges of the plate are specified as zero. Results are given in Table 7.4 and can be compared with the
solution given by Timoshenko and Woinowsky-Krieger (1959). Because of symmetry, results are tabulated
only for nodes corresponding to element 1.

(@) Exact solution for deflection at node 13, w , = 0.35022 in.
() Exact solution for deflection at node 13, w , =1.11314 in. -
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7.25.
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Table 7.4 Finite Element Results for Simply Supported Plate

(a) Steel plate () Aluminum
Node w (in) 0, 0, w (in) 0. 0,
1 ‘ 0.00000 0.00177 0.00163 0.00000 0.00564 0.00523
2 0.00000 0.00600 0.01421 0.00000 0.01918 0.45381
3 0.00000 0.00001 0.03170 0.00000 0.00004 0.10119
6 0.00000 0.01416 0.00602 0.00000 0.04520 0.01925
7 * 0.01346 0.01345 * 0.04285 0.04282
8 0.24265 0.00000 0.02765 0.77350 0.00000 0.08813
11 0.00000 0.03178 —0.00003 0.00000 0.10148 —0.00008
12 0.24263 0.02765 0.00001 0.77349 0.08812 0.00003
13 0.35008 0.00000 0.00000 1.11533 —0.00001 —0.00002

* The center node of the heterosis element does not have a deflection value.

Supplementary Problems

Assume a one-dimensional space of length L filled with a homogeneous material. The space has an initial
temperature of 7,. The temperature of the surfaces of the space, defined by x =0 and x = L, are instantaneously
changed to T,. Obtain the analytical solution for this problem.

Assume the material defined in Prob. 7.19 is 12 in thick and initially has a constant temperature distribution of
50°F. Let p = 120 psf, ¢ =0.2 Btu/(Ib-°F), and k = 0.5 Btu/(h-ft-°F). Assume that the temperature is raised to
80°F at each surface, x =0 and x = 1 ft. Obtain a solution using 10 equal finite elements and compare the results
with the analytical solution. Use either two-node linear one-dimensional elements or a strip of four-node linear
two-dimensional elements and the backward difference formulation for the time derivative.

A set of coupled equations defining two-phase diffusion was given in Prob. 5.25. Assume that the material
defined by the equations occupies the space 0 =x =L and at the boundaries is suddenly subjected to a change in
C,. The boundary and initial conditions are

CA0,y=C(L,1)=T >0 (@

Cix, 0)=C,(x,0)=0 0=x=L ®)
Obtain an analytical solution for this problem.

Obtain an analytical solution for the problem of axisymmetric transient diffusion defined by Eq. (@) of Prob. 7.4.
Assume C is a function of r and ¢ and reduce the problem to one dimension. Assume boundary conditions
corresponding to a hollow cylinder with C(r =1,¢) =10 and dC(r =2,¢)/3r =0 and an initial condition of
Cir,0)=0.

Obtain a four-element finite element solution for the diffusion problem defined by Probs. 7.4 and 7.22. Assume
D=1

Obtain the analytical solution for the vibrating string problem defined by Eq. (7.2).

The free Jongitudinal vibration of a bar is governed by a differential equation similar to Eq. (2.4) and is written
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7.26.

7.27.

7.28.

7.29.

7.30.

7.31.

E—=p—
o P ol @

(@) Assume free-free boundary conditions, use two linear finite elements to compute a solution, and compare
the results with the exact solution.

(b) Assume fixed-free boundary conditions, use two linear finite elements to compute a solution, and compare
the results with the exact solution.

Obtain an analytical solution for the vibrating membrane defined in Prob. 7.8.

Use one beam element to compuie the natural frequency of free vibration for a beam that is fixed at one end and
free at the other end.

Obtain an analytical solution for the critical buckling load for columns with the following end conditions: (a)
pinned-pinned, (b) pinned-fixed, (¢) fixed-fixed, (d) fixed-free.

Use the finite element method to compute the critical buckling load for a column that is fixed at both ends.
Compare the results with the exact solution.

Use the finite element method to compute the critical buckling load for a column that i$ fixed-free. Compare the
results with the exact solution.

The quadratic three-dimensional Lagrange finite element is shown in Fig. 7-12. Use the method of Prob. 7.14 to
derive the corresponding shape functions.

y4

Fig. 7-12 27-node Lagrange element.
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The three-dimensional isoparametric finite element shown in Fig. 7-13 is quadratic with 20 edge nodes. The

element is similar to the quadratic element of Prob. 7.31 except that there are no interior nodes. Deduce the

corresponding shape functions.

13

A7

Fig. 7-13 20-node element.

7.33.
shape functions.

tr
-1,1 -5,1 51
’ 3e 3‘ 1’1
4 10 9 3]

-1,4 11¢ $8 1,3
-1,-1 12¢ $7 1,-4%
14 3 8 lz
_15—1 _%a_l %’_—1 19_1

Fig. 7-14 Cubic order element.

A 12-node two-dimensional cubic isoparametric finite element is shown in Fig. 7-14. Deduce the corresponding



CHAP. 7] SELECTED TOPICS IN FINITE ELEMENT ANALYSIS 235

7.19.

7.20.

7.21.

Answers to Supplementary Problems

In elementary heat conduction problems the governing differential equation is usually written as

T= o @

where a = pc/k [not to be confused with the o of Eq. (7.1)]. The initial condition, T(x,0) =T, =T, =T, the
change in temperature. The boundary conditions can be written in terms of the temperature change and are
homogeneous, T(0, 1) =T(L, ) = 0. Equation (a) is solved using the separation of variables technique. This
problem is actually elementary and can be found in most textbooks on heat conduction (Gebhart, 1961). When
the initial temperature distribution is constant, the result is given as

oo —Aat

4
T ) =T, — >

n=173

. nmx B b
sin—— ®)

where A = (}‘HT/L)Z.

The results were obtained using a strip of two-dimensional elements with element dimensions of 0.2 X 0.2 ft. The
material matrix is defined as part of the capacitance matrix defined as [N]T[pc][N} in Eq. (d) of Prob. 7.2 and
may be written as follows when the shape function matrix is defined as a 2 X 4 matrix:

e[ ]

A similar modification is not required for [k], the thermal conductivity matrix. Results are tabulated in Table 7.5.
A time increment of 0.2 h was used for 2 h and then changed to 0.5 h to complete the analysis. The results are
symmetric with respect to the center of the strip and are given for only one-half of the strip.

Table 7.5 Finite Element Results for Transient Heat Transfer

Time (h)
0.4 1 5 15
x (ft) FE Exact FE Exact FE Exact FE Exact
0.0 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00
0.1 12.97 13.16 18.56 18.73 25.68 25.77 29.40 29.46
02 3.96 3.64 9.73 9.82 21.79 21.97 28.86 28.97
0.3 0.98 0.61 441 4.27 18.70 18.95 28.43 28.57
04 0.23 0.05 1.89 1.60 16.72 17.01 28.15 28.34
05 0.09 0.01 1.18 0.86 16.04 16.34 28.06 28.25

The equations to be solved are

2
L
a1 ax’

aC
+pC,—aC,=0 a—tr—BCf+aC,_=0

The solution is obtained following Gurtin and Yatomi (1979):
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0

n(p, —q,) L

Cl )= F[l _% (p, —a—B)exp(—p,) —(q,—a— B)exp(—q,b) G @]

d

4 exp(—p,t) — g, exp(—q,t
C_(x,t)=ﬁ1‘ Ay P(—p.0) — g, exp( qn)sinnwx
’ a Tl a(p,—q,) L
d

nno:d
1 nm\:?
where ‘Z"} = E{a +B8+ A *(a+BA) +4B8117F A, =D<T)
This exact analysis can be used to verify the formulation of the corresponding coupled finite element analysis.

7.22. The governing equation is

¥°C D ic_aC

D o T o o >0, l=sr=2 (@
Separate the variables C(r, t) = T(t)R(r) to obtain
d2R+ R =0 £+DA2T~0 b
o2 ar N dr N ®)
with solution
—DA%t
C(r,t) =T(OR({F) = exp > [AJ,(Ar) + BY ,(Ar)] (©)

where J, and ¥, are Bessel functions of order zero and A and B constants that are to be determined by the initial
condition and boundary conditions. A general solution for Eq. (¢) was given by Kardomateas (1989), and it
follows that

_ 2

e At
Cr,=a+ 2, exp = J[A,Jo(A,7) + B,Yo(A,1)] )
n=1 2

where the A, are the real roots of
[8Y,2E)1,(£) — 161,26V, (£)=0 Q)

It follows from the boundary conditions that

a=10

[/\n‘,l(zA")]2
A, =107[Y(A)] T F(A)
2 )

FOO) = [AJ (A1 —[A,4,(2A,))

7.23.  The results, using the backward difference method, are given in Table 7.6. A time increment of 0.05 was used
until # reached 0.5, was increased to 0.1 until ¢ reached 1.0, and then was increased to 0.5 to complete the
analysis.
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7.24.

7.25.

7.26.

Table 7.6 Results for Axisymmetric Diffusion

Time
0.1 0.5 1.0 5.0
r FE Exact FE Exact FE Exact FE Exact
1.00 10.000 10.000 10.000 | 10.000 10.000 | 10.000 10.000 | 10.000
1.25 3.830 3.854 6.665 | 6.654 7.892 7.904 9.904 9.948
1.50 1.041 0.935 4314 | 4.286 6.390 6.411 9.836 9.912
1.75 0.239 0.136 2952 | 2.902 5.504 5.529 9.796 9.890
2.00 0.097 0.023 2.523 2.458 5.222 5.244 9.783 9.883

Complete the analysis started in Prob. 7.6. The solution for the first of Eq. (c) is

wx wx
V=C_ sin(—) +D cos(-)
¢ c

with v(0,)=v(,f) =0, and gives D =0. The solution is v(x,t) = (Asin wt + B cos wt) sin{fwx/c). The
nontrivial result is sin{wL/c) = 0. This result is satisfied by wL/c = 7. Substituting ¢ and generalizing to higher
modes of vibration gives -

nir T /2
a)=7|:;:| n=1,2,3... (a)

The exact solution follows Probs. 7.6 and 7.24 and is given by Timoshenko (1955). Assume u(x,?) =
U(x)(A sin wr + B cos wt) and substitute into Eq. (). It follows that U = C sin(wx/c) +D cos(wx/c) with
c=(E /p)l ”

(@) Free-free boundary conditions correspond to

u(0) dull)
ax  ox

0

and give o = (um/LYE/p)'">, n=1,2,3,. ... The finite element equation is similar to Eq. (a) of Prob. 7.7,
and the global matrix for a two-element model is

1 -1 0](u, L 0](x
211 2 4 A 2 -
U, 7| 3 & Uy ¢ =0 (@)
0 -1 1| Lu, 0 LI 1]lus

where A = pw”/E. Solving Eq. (@) gives @ =0 (a rigid-body mode caused by the free-free boundary
conditions), w, = (3.4641/L)(E/p)'"?, w, = (6.4142/L)E/p)""*.

(b) Fixed-free boundary conditions correspond to

ouL) _

ax 0

w(0) =
and give w = (nw/2L)YE/p)'"*, n=1,3,5,.... The global matrix is the same as Eq. (@) with u, = 0:
2 2 —1](u AL T2 U
- 5 r=0 ®)
L] -1 1{u, 2 | & Uy

Solving Eq. (b) gives w, = (1.6114/L)(E/p)'"*, @, = (5.6293/L)(E/p)'* that can be compared with the
exact solution.

[PIE-NE

The separation of variables method of analysis is used to solve Eq. (a) of Prob. 7.8. The complete solution is
given by Meirovich (1967) for a rectangular membrane with dimensions a X b as
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7.27.

7.28.

7.29,

7.30.

7.31.
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o= (5)G)IG)

The boundary conditions are v(0) = dv(0)/dx = 0. The one-clement beam matrix is modified by deleting the first
and second rows and columns:

g[ 12 —6L ]_ w’pL [ 156 —22L] o
L*L—6L  4L? 420 L-221 4L°
Solving this equation gives

3.534(E1/p)'"* 38.527(El/p)'"*
a)l = # and w, = —Lz"_

The exact solution can be computed following Timoshenko (1955) as

_ 3515Elp)' " _ 22.034(El/p)'

@, IE and w, IE
Solve Eq. (a) of Prob. 7.12. Refer to Chajes (1974).
@ P n’w’El ®) P a’El
a _— =
n L2 cr (O7L)2
© P 47 °El @ P 7w’ El
¢ = =
cr L2 er (2L)2

The fixed-fixed column will require a minimum of two finite elements with a length of L/2. Combine the two
local elements and delete the rows and columns of the global matrix corresponding to v(0) =v'(0) =v(L) =

v'(L)=0:
g[24 o]_i[n 0]:0
Lo 82l 30Llo 8L?

The lowest root of the eigenvalue problem is P, =40EI/L” compared to the exact value of P, =47 EI/L’ =
39.4784EI/L".

Use the results derived in Prob. 7.12 and delete the third and fourth rows and columns of the stiffness matrix
corresponding to v(L) =v'(L) =0:

Q[lz 6L]_L[36 3L]:0
r*Ler 4L*) 30L L3 417

The lowest root of the cigenvalue problem is P =2.4852EI/L® compared to the exact value of P =
2.4674EI/L*.

The plane that corresponds to = —1 contains the first nine nodes. Also, the node numbering is consecutive
around the element as opposed to the numbering used in the corresponding two-dimensional element of Fig. 6-12
where corner nodes are numbered 1-4 and midside nodes are numbered 5—8. The shape functions are as follows.

Corner nodes:

N, == =860 —md = yény/8 Ny =1+ - — p)ény/8
Ny =—(1+ A+ — y)ény/8 Ny ==&+ — )ény/8
Ny = (1 =60 =)+ y)ény/8 Ny = =0+ X =)L + Pénip/8
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Nyy =1+ A+ )1+ y)éni/8 Nys = —(L=EXA + )L+ Pénp/8

Midside nodes:

N, =(1= A =)L — Ymy/4 N, ==(1+ &1 =11 — hégl4
s = A=A+ —gmy/a Ny =1 —EA -1~ hép/4

. N

o = (1= &1 — )1 — ¢*)én/4 N, ==+ &0 =1 —¢*)énl4

1w = L+ EHA+mA = Hén/4 Ny === &1 +m)(1 = " )énl4

N
N ==L A+ gmpld Ny =1+ O — )1+ héwra

Ny = (1= E)A + (L + pmp/4 Nye=—(1 =1 —7")(1+ WEU/4

Face center nodes:

N, === -n)A=P/2 N,=—1—=Y1—m(1— ¢ m/2
Ny =1+ HU =)0 — ¢*)é/2 Nys=( =€)+ —¢*m/2
Nl7 N27

=—(1=6HUA-7)1 - ¢*)é/2 ==& =)A= Y2

Center node:
Ny == &)1 =) — o)’

7.32. The node numbering scheme of Fig. 7-13 shows the face that corresponds to ¢ = —1 having nodes numbered
1-8, with corner nodes numbered 1-4 and midside nodes 5-8.

Ny =(0-HU-mA—P(—€-n—¢=2)/8 N, =1+ -1 - /4
N, =(1+8A-mA—y}E—n—y¥—2)/8 Ny =1+ 81 —1°)(1 - /4
N, =(1+86A+ml—d(E+n—¢—2)/8 N, =(1 =N+l — /4
N, =(1-6U+mA=-P(=E+n—¢=2)/8 Ny =(1—EA=n")1 — /4
Ny =(1= &)1 - - ¢*)/4 Nyo=Q1+ 61 -1~ ¢*)/4
Ny =+ 61+ — g™ /4 N, =(1=6€1+m~y¢*)/4
No=(1=-80-m+PE-—n+¢y—2)/8 Ny=(1-)X1-n(+ /4
N,=(0+HA-mA+PE—n+¢—2)/8 Ny=(1+6A =71 + /4
Ns=0+6HA+mA+(E+n+¢—2)/8 Ny ==+ + /4
Ne=(1=HA+A+g—E+n+ ¥ —2)/8  Nyy=(1—EHA -1+ /4
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7.33.

z =

z z Z

=2

SELECTED TOPICS IN FINITE ELEMENT ANALYSIS

=L =HU—[-10+ %" +77)]
= LU+ HA—-10+ 9" +7°)
=L+ +[—10+9(£" +77)]
= L1 =HUA+I-10+9(£* + 7]
=2 (1= &)1 -m(1-38)
=2(1=&H(1 — )1 +3§)

N, =51+ 6HU —7)1 —3n)
Ny =51+ 61 —7")(1+37)
Ny =2(1— &)1+ (1 +3§)
No=50-£)1+m1-3§)
Ny =21 = &)1 =7")(1+3n)
N

=51 =61 -7")(1-3n)

I

Il

Il

[CHAP. 7



Appendix

Computer Code for Coupled Steady-State
Thermoelasticity

The finite element problem of coupled time-dependent thermoelasticity is derived in Chap. 5, Prob.
5.8. The steady-state two-dimensional counterpart is discussed in detail in Prob. 5.17. In this appendix the
finite element code will be developed for two-dimensional steady-state thermoelasticity. The time-
dependent problem is fully coupled, as can be determined from Prob. 5.8. When steady state is reached, the
temperature is no longer time-dependent, and the mechanical displacements are dependent upon the stress,
displacement boundary conditions, and steady-state temperature distribution within the body.

The governing differential equations are given in Prob. 5.17 and are repeated for ready reference:

Cin€sj — Bb,; = —f, (A.1)
k.6

Y T

-r  k;=0  fori#j (4.2)

where €, is the strain that can be defined in terms of displacement, 8 is the temperature change measured
from some base temperature, and f and r are the body force and external heat source, respectively.
Material constants are C,,,, 8, and k. The corresponding finite element equations are

(K, J{u} = [K,, {6} = {f} + {t} (A.3)
[Kea]{e} = {r} + {Q} (A4)

where {t} and {Q} are surface boundary conditions.

Main Program

Dimension statements for all dimensioned parameters are arranged as statement lines 100-200. Line
305 (GOSUB 10000) is a subroutine that defines the transformation matrices discussed in Prob. 5.18.

The geometry of the problem must be defined within a coordinate system, and in this application the
cartesian system and an isoparametric finite element will be used. Fundamental data such as the number of
nodal points, number of elements, number of degrees of freedom per node, number of different material
parameters, and number of boundary conditions must be read into the computer as initial data. See lines
320-420 of the computer code.

Define the following parameters:

NP = number of nodal points

NE = number of elements

NODE = number of nodes per element

NB = number of essential boundary conditions (see Chap. 2)

NDF = number of degrees of freedom per node

NMAT = number of different materials

NCON = number of material constants for each different material

The location of node points within the coordinate system and the relation between node points and
elements can be defined. These were defined in Chap. 3 as the nodal coordinate array and connectivity

array. Here they are defined as follows. The dimensions for the arrays are arbitrary and in this computer
code are large enough to accommodate an example problem.

241
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CORD(50,2) = nodal coordinate array (node point number, x and y locations)
NOD(20,8) = connectivity array (element number, node numbers for the element)

Geometry, material parameters, and essential boundary conditions are contained in lines 300-920 of
the computer code. Natural boundary conditions are entered in lines 1000—1150.

Material properties may vary from element to element and while NMAT is the number of different
materials and NCON is the number of material constants, two additional arrays are defined to store
material information.

MAT(20) = material number (each element must have a material number that indicates material for
that element)

CON(5,10) = material number and corresponding magnitude for each material property

Boundary conditions are of two types, essential and natural. The essential boundary conditions are
displacements u in the x direction and v in the y direction and ¢ the temperature change referenced to some
standard. The parameter NBC is the number of separate boundary conditions, and the following arrays are
required to store essential boundary condition data.

NBC(25) = node number where the boundary condition occurs
NDOF(25) = degree of freedom, | = u, 2=v, 3=6
DIS(25) = magnitude of the boundary condition

The natural boundary conditions are surface tractions and/or heat flux and are read into the program using an
IF statement to end the read process. The DATA appear as

Node number, x load, y load, heat flux normal to surface

The last node corresponding to NP must be entered as data, even if all natural boundary conditions are zero,
in order to stop the read in process.

The formulation of the stiffness matrix begins with line 1200, and line 1220 defines the size of the global
stiffness matrix. The isoparametric element requires numerical integration, and in this code a 2 X 2 gaussian
quadrature is defined in lines 1230—1290 (see Prob. 6.1). A FOR-NEXT computational loop that formulates
the global matrix begins at line 2070 and continues through line 2580. The subroutine that is called at line
2084 (GOSUB 4000) and returns at line 6620 (RETURN 2400) contains the computations for the local
stiffness matrix for steady-state thermoelasticity. The local stiffness matrix is formulated within the
subroutine, and the global stiffness matrix is assembled in lines 2410-2570.

Displacement and temperature boundary conditions are included in the global sitffness matrix in lines
2800-2990. Boundary conditions are included following the concept introduced in Prob. 2.13 of Chap. 2.

The matrix equation [K]{x} = {f} is solved using a gaussian elimination subroutine that is called at line
3000 (GOSUB 9010). The subroutine is contained in lines 9000-9390 and returns to line 3300. Gaussian
elimination is discussed in Chap. 1, and the method used in the computer code is illustrated in Prob. 1.16.

Displacement and temperature results for each node and each element are printed out in lines
3310-3450. Lines 3310-3330 give a quick printout of all results. Lines 3350-3450 allow for a printout at all
nodes of each element.

A subroutine for computing stresses and temperature flux (GOSUB 7000) is called at line 3470. Lines
70008240 contain the subroutine that computes stresses and temperature flux and prints the results.

Additional discussion is necessary for the subroutines that formulate the local stiffness matrix and
compute the final element results. The computer code can be adapted to any problem with any number of
degrees of freedom by modifying these two subroutines and the subroutine that defines the transformation of
the local stiffness matrix.

Local Stiffness Matrix

The local stiffness matrix is defined by Egs. (A.3) and (A.4) and is contained in lines 4000-6620. The
coordinates of the four-node element are defined in lines 4010—4040 using the coordinate array and the
connectivity array. Note that the subroutine is called inside a FOR-NEXT loop that includes all of the
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elements (line 2070). Lines 4050-4090 initialize the stiffness matrix to zero, which is necessary since the
same matrix S(LJ) is used for each local stiffness matrix. Lines 4200—4210 begin the FOR-NEXT loop
that will be used for numerical integration. The numerical integration and geometry transformation follow
the fundamental method detailed in Probs. 6.9, 6.10, and 6.11. Interpolation (shape) functions and their
derivatives are defined in the subroutine of lines 9800—-9930 and are derived in Prob. 6.4 for a four-node
element. The jacobian matrix of Probs. 6.6 and 6.7 is constructed in lines 4270-4390 where SJ(L.J) is the
jacobian and SJIN(LJ) is the inverse. A matrix of derivatives of shape functions identical to that of Eq. (b)
of Prob. 6.8 is defined in lines 4410-4530. Equation (#) of Prob. 6.6 is defined in line 4550.

The stiffness matrix is formulated as a 12 X 12 matrix and can be written as follows using the notation
of the computer code:

— — [B BA][P
[[KW] [Ku,,]} =[[BST][D][BS] [BST][BA][ ]] 4.5)

0 (Kl (0] [TSTIDK][TS]

Equation (A.5) follows directly from the derivation of the stiffness matrix given by Egs. (0) and (p) of
Prob. 5.17. The matrix [BS] is formulated as Eq. (a) of Prob. 6.10. The matrix [D] is the matrix [C] of
Prob. 6.10, and the formulation of [K ] is the same as that of Prob. 6.11. Matrices [BS], [D], and [BST]
are formulated in lines 4560-5020 of the computer code.

All matrix multiplications are accomplished using the subroutine of lines 9500-9630. The subroutine
will perform the computation [AM][BM] = [CM] (line 9590), and lines 50305260 are required to set the
parameters and call the subroutine twice to compute the contribution to [K,,]. The [K,,] part of the
stiffness matrix is added to the local stiffness matrix in lines 5270-5310 where it is also multiplied by DA,
Eq. (h) of Prob. 6.6. Note that the stiffness matrix returns from the subroutine as CM(LJ).

The [K,,] part of the stiffness maitrix is identical to that in Prob. 6.9; it is formulated in lines
5400-5730 and is added to the stiffness matrix in lines 5740-5780. The [K,,] part of the stiffness matrix
is discussed in detail in Prob. 5.30 and is formulated in lines 5900-6210. Note that in line 6030 the shape
functions are used as defined in the shape function subroutine (lines 9800-9930). The [K,,] matrix is
added to the stiffness mairix in lines 6220—6260. Lines 6270—6280 complete the numerical integration
loop. Lines 6400—-6610 contain the matrix multiplications that reorder the degrees of freedom according to
Prob. 5.18 (see matrix transformation in Chap. 3).

Material constants are defined in the array CON(I,J), where I is the material number and J is the
material constant. Each element has a material number that is entered as data at line 660. The material
number is identified at line 2080 in the stiffness routine. Material parameters for the thermoelasticity
problem are identified as follows:

CON(L1,1)=E

CON(L1,2) = v (see Prob. 6.11)
CON(L1,3) =k,

CON(L1,4) =k, (see Prob. 6.9)

CON(L1,5)= 8,

CON(LL,6) = B, (see Prob. 5.31)

Stress and Flux Computations

Element results are computed in the subroutine that is called at line 3470 and is contained in lines
7000-8240. Review Egs. (¢) and (h) of Prob. 3.10. For the thermoelasticity problem stress is computed
according to Eq. (k) of Prob. 5.17. Temperature flux is computed as {q} = —[k][B{#} or in the notation of
the computer code {FLX} = —[CON][TS{TEMP}. The temperature flux is computed in lines 7960-8090.
The stress is computed in two steps. The strain STA is computed in lines 7780—7860. Element stress is
computed in lines 7870-7950. The location of the integration point within the finite element is computed
in lines 8100-8150.
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Example Problem

Input data for Prob. 5.18 are included at the end of this appendix. Results for displacement and
temperature are given in the Table 5.2. The stresses and temperature flux can be compared with the
analytical solution obtained by continuing the analysis of Prob. 5.18.

The stress is computed using Eq. (e) of Prob. 5.17:

o,=C, €, +Cye, — Bo

11 xx
The one-dimensional case analyzed here becomes

du dr
0=Ea—,86 and q=—k—-

Substituting results from Prob. 5.18 gives

Data

Input data for a program written in BASIC can be entered as DATA statements at the end of the
program. Data for Prob. 5.18 would appear as follows. Assume a strip of material of unit length and unit
width.

DATA 10,4,4,13,3,1,6 (line 330)

DATA 1,1,0 (coordinate array)

DATA 2,0,1 (lines 460-540)

DATA 3,.25,0

DATA 4,.25,1

DATA 5,.5,0

DATA 6,.5,1

DATA 7,.75,0

DATA 8,.75,1

DATA 9,1,0

DATA 10,1,1

DATA 1,1,34,2,1 (connectivity array and material number)

DATA 2,3,5,6,4,1 (lines 560-690)

DATA 3,5,7,8,6,1

DATA 4,7,9,10,8,1

DATA 1,1,0,1,1,1,0 (material data, lines 730-810)

DATA 1,1,0 (boundary conditions)

DATA 2,1,0 (lines 840-920)

DATA 1,2,0

DATA 3,20

DATA 5,2,0

DATA 7,2,0

DATA 9,20

DATA 9,1,0
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DATA 10,1,0

DATA 1,3,100

DATA 2,3,100

DATA 9,3,0

DATA 10,3,0

DATA 10,0,0,0 (surface tractions and flux, lines 1010-1150)

10 REM STEADY STATE THERMOELASTICITY
20 REM STRESST.BAS __ ISOPARAMETRIC ELEMENT
30 REM FOUR NODE OR EIGHT NODE FORMULATION
100 DIM CORD(50,2),NOD(20,4),MAT (20),CON{5,10)
110 DIM NBC(25),NDOF (25),DIS(25)
120 DIM TEMP (4) ,UELE(8),STA(3),STR(3),FLX(2)
130 DIM SK( 50, 50),F1( 50)
140 DIM XG(3),WG(3),P(8),DEL(2,8),XJ(8),YJ(8)
150 DIM SJ(2,2),SJIN(2,2),8F(2,4),BS(3,8),BST(8,3)
160 DIMD(3,3),BA(3,2),DK(2,2),75(2,4),TST(4,2)
170 DIM S(12,12)
180 DIM F(50),X(50),ELDIS(50)
190 DIM AM(12,12),BM(12,12),CM(12,12)
200 DIM T(12,12),TT(12,12)
300 REM
305 GOSUB 10000
306 REM RETURN FROM GOSUB
310 REM
320 REM READ INITIAL DATA
330 READ NP, NE, NODE, NB, NDF, NMAT, NCON
340 PRINT " "
350 PRINT USING "####";NP,NE, NODE, NB, NDF, NMAT, NCON
360 PRINT "NP=", NP
370 PRINT "NE=",NE
380 PRINT "NODE=",NODE
390 PRINT "NB=",NB
400 PRINT "NDF=", NDF
' 410 PRINT "NMAT=", NMAT
420 PRINT "NCON=", NCON
430 REM
440 PRINT " "
450 REM READ COORDINATE ARRAY
460 PRINT" COORDINATE ARRAY"
470 FOR T=1 TO NP
480 READ N
490 FOR J=1 TO 2
500 READ CORD (N, J)
510 NEXT J
520 PRINT "NODE",N, CORD (N, 1), CORD (N, 2)
530 INPUT " RETURN TO CONTINUE CORD", GOS$
540 NEXT I
550 REM
560 REM READ CONNECTIVITY
570 PRINT " "
580 PRINT " CONNECTIVITY"

245
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590
600
610
620

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

FOR I=1 TO NE

READ N

PRINT" ELEMENT #",N
FOR J=1 TO NODE

630 READ NOD(N, J)

640 PRINT " ", NOD (N, J)

650 NEXT J

660 READ MAT (I)

670 PRINT"MATERIAL #",MAT (1)

680 INPUT " RETURN TO CONTINUE ELEMENTS", GO$
690 NEXT I

700 REM

710 REM READ MATERIAL DATA

720 PRINT " "

730 PRINT " MATERIAL DATA"

740 FOR I=1 TO NMAT

750 READ L

760 PRINT "MATERIAL #", L

770 FOR J=1 TO NCON

780 READ CON(L,J)

790 PRINT L, J, CON (L, J)

800 NEXT J

810 INPUT " RETURN TO CONTINUE MATERIALS",GOS
820 NEXT I

830 REM

840 REM READ ESSENTIAL BOUNDARY DATA

850 PRINT " "

860 PRINT " ESSENTIAL BOUNDARY CONDITIONS"
870 PRINT "NODE", "DEGREE OF FREEDOM", "VALUE"
880 FOR I=1 TO NB

890 READ NBC(I),NDOF(I),DIS(TI)

900 PRINT NBC(I),NDOF (I), " ",DIS(I)
910 NEXT I

920 INPUT" RETURN TO CONTINUE",GO$

1000 REM

1010 REM READ NATURAL BOUNDARY CONDITIONS
1020 REM STORE IN LOAD VECTOR

1030 PRINT "

1040 PRINT " NATURAL BOUNDARY CONDITIONS"
1050 READ NATNO

1060 PRINT "NODE =", NATNO

1070 FOR K=1 TO NDF

1080 READ FLUX

1090 PRINT "BOUNDARY CONDITION =", FLUX

1100 M= (NATNO-1) *NDF+K

1110 F1 (M) =F1 (M) +FLUX

1120 NEXT K

1130 INPUT " RETURN TO CONTINUE B. C.", GOS
1140 IF NATNO=NP THEN 1150 ELSE 1050

1150 REM NATURATL BOUNDARY CONDITION FINISHED
1200 REM

1210 REM BEGIN TO FORM STIFFNESS MATRIX

[APPEN.
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1220
1230
1260
1270
1280
1290
2000
2010
2020
2030
2040
2050
2060
2070
2075
2080
2082
2084
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2800
2810
2820
2830
2840
2850
2860
2870
2880
2896
2900
2910
2920
2930
2940

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

NSIZE=NP*NDF

REM DEFINE XG AND WG FOR 2X2 INTEGRATION
XG(1l)y=-.5773502609#
XG(2)=-XG (1)

WG (1)=1

WG(2)=1

REM

REM BEGIN TO FORM K MATRIX

FOR I=1 TO NSIZE

FOR J=1 TO NSIZE

SK(I,J)=0

NEXT J

NEXT I

FOR N=1 TO NE

PRINT "ELEMENT", N

L1=MAT {N)

REM CALL GOSUB FOR LOCAL STIFFNESS
GOSUB 4000

REM ASSEMBLE GLOBAL STIFENESS MATRIX
I=0

FOR JJ=1 TO NODE

NROW= (NOD (N, JJ) -1 ) *NDF

FOR J=1 TO NDF

NROW=NROW+1

I=I+1

=1

FOR KK=1 TO NODE

NCOL= (NOD (N, KK) -1 ) *NDF

FOR K=1 TO NDF

NCOL=NCOL+1

SK (NROW, NCOL) =SK (NROW, NCOL) +5 (I, L)
L=L+1

NEXT K

NEXT KK

NEXT J

NEXT JJ

NEXT N

REM ESSENTIAL BOUNDARY CONDITION
FOR N=1 TO NB

I=NBC (N)

NROW=(I-1) *NDF

IF NDOF (N)=1 THEN 2850 ELSE 2860
NROW=NROW+1

IF NDOF (N)=2 THEN 2870 ELSE 2880
NROW=NROW+2

IF NDOF (N) =3 THEN 2890 ELSE 2900
NROW=NROW+3

F1 (NROW)=DIS (N)

SK (NROW, NROW) =1

FOR J=1 TO.NSIZE

IF J=NROW THEN 2980 ELSE 2940
ADD=SK (J, NROW) *DIS (N)
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2950
2960
2970
2980
2990
3000
3300
3310
3320
3330
3340
3350
3360
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3485
3490
3500
3510

4000

4010
4020
4030
4040

4050.

4060
4070
4080
4090
4100
4200
4210
4220
4230
4240
4250
4260
4270
4280
4290 S

24300 s

4310 s
4320 8

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

F1(J)=F1(J)-ADD
SK (NROW, J) =0

SK (J, NROW) =0

NEXT J

NEXT N

GOSUB 9010

REM ****PRTNT NODE RESULTS****

FOR TI=1 TO NSIZE STEP 3

PRINT II,ELDIS(II),II+1,ELDIS(II+1),II+2,ELDIS(II+2)
NEXT II

INPUT "HIT RETURN TO CONTINUE", GOS

FOR N=1 TO NE

PRINT "RESULTS FOR ELEMENT", N

FOR T=1 TO NODE

M=NOD (N, I)

MK=M*NDF

PRINT " NODE "," g, " v"," TEMP"
PRINT M,ELDIS (MK-2),ELDIS (MK-1),ELDIS (MK)
NEXT I

INPUT "HIT RETURN TO CONTINUE", GOS
NEXT N

REM COMPUTE STRESSES

GOSUB 7000

PRINT STRESS AND FLUX

REM

STOP

REM END OF PROGRAM

REM

REM QUADRILATERAL ELEMENT

FOR I=1 TO NODE

XJ(I1)=CORD(NCD(N,I),1)

YJ (T)=CORD (NOD(N, I),2)

NEXT I

FOR T=1 TO NODE*NDF

FOR J=1 TO NODE*NDF

S(I,J)=0

NEXT J

NEXT T

NGAU=2

FOR I=1 TQ NGAU

FOR J=1 TO NGAU

G=XG (1)

H=XG (J)

GOSUB 9800

REM GOSUB DEFINES GEOMETRY FOR TRANSFORMATION
REM FORM 2X2 JACOBIAN MATRIX
SJ(1,1)=DEL(1,1)*XJ(L)+DEL(1,2)*XJ(2)

SJ(1,1)=SJ(1,1)+DEL(1,3)*XJ(3)+DEL(1,4)*XJ(4)
J(2,1)=DEL(2,1)*XJ(1)+DEL(2,2)*XJ(2)
J(2 1)=SJ(2 1)+DEL(2,3)*XJ(3)+DEL(2,4) *XJ (4)
J(1 ,2)=DEL(1 1)*YJ(L)+DEL(1,2)*YJ (2)
J(1,2)=5J(1,2)+DEL(1,3)*YJ(3)+DEL(1,4)*YJ(4)

[APPEN.
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4330
4340
4350
4360
4370
4380
4390
4400
4410
4420
4430
44490
4450
4460
4470
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
43870
4980
4990
5000
5010
5020

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

SJ(2,2)=DEL(2,1)*YJ(1)+DEL(2,2)*YJT(2)
S5J(2,2)=80J(2,2}+DEL(2,3)*YJ(3)+DEL(2,4) *YJ (4)
DETJ=SJ (1,1)*SJ(2,2)-SJ(2,1)*SJ(1,2)
SJIN(1,1)=8J(2,2) /DETJ
SJIN(1,2)=-8J(1,2) /DETJ
SJIN(2,1)=-5J(2,1) /DETJ
SJIN(2,2)=8J(1,1) /DETJ

REM COMPUTE SHAPE FUNCTIONS IN CART. COORD.
REM ZERO SHAPE FUNCTION MATRIX

FORM= 1 TO 2

FORMM =1 TO 4

SF (M, MM) =0

NEXT MM

NEXT M

FOR II=1 TO 2

FOR KK=1 TO NODE

FOR JJ=1 TO 2
SF(II,KK)=SF(II,KK)+DEL(JJ,KK)*SJIN(ITI,JJ)
NEXT JJ

NEXT KK

NEXT II

REM MULT. BY DETJ AND WEIGHT FUNCTIONS
DA=DETJ*WG (I) *WG (J)

REM B AND B TRANSPOSE MATRICES

FOR II=1 TO 3

FOR JJ=1 TO 8

BS(II,JJ)=0

NEXT JJ

NEXT II

JJ=1

FOR 1I=1 TO 8 STEP 2

BS(1,II)=SF(1,JJ)
BS(2,II+1)=SF(2,JJ)

BS(3,II)=SF (2,JJ)
BS(3,II+1)=SF(1,JJ)

JJ=JJ+1

NEXT II

FOR II=1 TO 3

FOR JJ=1 TO 8

BST (JJ,II)=BS(II,JJ)

NEXT JJ

NEXT IT

C2=1-(CON (L1, 2)*CON(L1,2))
D(1,1)=CON(LLl,1)/C2

D(2,2)=D(1,1)
D(1,2)=D(1,1)*CON(L1,2)
D(3,3)=CON(L1,1) /(2% (1+CON(L1,2)))

D(1,3)=0
D(2,3)=0
D(3,1)=0
D(3,2)=0

D(2,1)=D(1,2)
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COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

5030 FOR II=1 TO 3

5040 FOR JJ=1 TO 3

5050 AM{II,JJ)=D(II,JJ)

5060 NEXT JJ

5070 FOR KK=1 TO 8

5080 BM(II,KK)=BS (IT,KK)
5090 NEXT KK

5100 NEXT II

5110 LM=3

5120 NM=8

5130 MM=3

5140 GOSUB 9500

5150 FOR II=1 TO 3

5160 FOR JJ=1 TO 8

5170 BM(II,JJ)=CM(II,JJ)
5180 NEXT JJ

5190 FOR KK=1 TO 8

5200 AM (KK, II)=BST (KK, II)
5210 NEXT KK

5220 NEXT IT

5230 LM=8

5240 NM=8

5250 MM=3

5260 GOSUB 9500

5270 FOR II=1 TO 8

5280 FOR JJ=1 TO 8

5290 S(IL,JJ)=S(II,JJ)+CM(II,JJ)*DA
5300 NEXT JJ

5310 NEXT II

5400 FOR II=1 TO NODE

5410 TS(1,II)=SF(1,II)

5420 TS(2,II)=8F(2,1I1)

5430 TST(II,1)=TS(1,II)

5440 TST(II,2)=TS(2,II)

5450 NEXT IT

5460 DK(1,1)=CON(L1, 3)

5470 DK(2,2) =CON(L1,4)
5480 DK(1,2)=0
5490 DK(2,1)=0
5500 FOR II=1 TO 2
5510 FOR JJ=1 TO 2
5520 AM(II,JJ)=DK(II,JJ)
5530 NEXT JJ

5540 FOR KK=1 TO 4
5550 BM(II,KK)=TS(II,KK)
5560 NEXT KK

5570 NEXT II

5580 LM=2

5590 NM=4

5600 MM=2

5610 GOSUB 9500
5620 FOR II=1 TO 2

[APPEN.
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5630 FOR JJ=1 TO 4

5640 BM(ITI,JJ)=CM(II,Jd)
5650 NEXT JJ

5660 FOR KK=1 TO 4

5670 AM (KK, TT)=TST (KK, II)
5680 NEXT KK

5690 NEXT II

5700 LM=4

5710 NM=4

5720 MM=2

5730 GOSUB 9500

5740 FOR II=1 TO 4

5750 FOR JJ=1 TO 4

5760 S(II+8,JJ+8)=S(II+8,JJ+8)+CM(II,JJT)*DA
5770 NEXT JJ

5780 NEXT IT

5900 BA(1,1)=CON(L1,5)
5910 BA(2,2)=CON (L1, 6)
5920 BA(1,2)=0

53930 BA(2,1)=0

5940 BA(3,1)=0

5950 BA(3,2)=0

5960 FOR II=1 TO 3

5970 FOR JJ=1 TO 2

5980 AM(II,JJ)=BA(II,JJ)
5990 NEXT JJ

6000 NEXT IT

6010 FOR II=1 TQ 2

6020 FOR K¥X=1 TO 4

6030 BM(II,KK)=P(KK)
6040 NEXT KK

6050 NEXT IT

6060 LM=3

6070 NM=4

6080 MM=2

6090 GOSUB 9500

6100 FOR II=1 TO 3

6110 FOR JJ=1 TO 4

6120 BM(ITI,JJ)=CM(II,JJ)
6130 NEXT JJ

6140 FOR KK=1 TO 8

6150 AM(KK, I1)=BST (KK, II)
6160 NEXT KK

6170 NEXT IT

6180 LM=8

6190 NM=4

6200 MM=3

6210 GOSUB 9500

6220 FOR II=1 TO 8

6230 FOR JJ=1 TO 4

6240 S(II,3J4+8)=8(IT1,JT+8)+(CM(TITI,JJd) *DA)
6250 NEXT JJ



252

6260
6270
6280
6400
6410
6420
6430
6440
6450
6460
6470
6480
6490
6500
6510
6520
6530
6540
6550
6560
6570
6580
6590
6600
6610
6620
7000
7010
7020
7030
7040

7050 YJ

7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230 8
7240 S
7250 S

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

NEXT II

NEXT J

NEXT I

LM=12

MM=12

NM=12

FOR II=1 TO 12

FOR JJ=1 TO 12

AM(II,JJ)=T(II,JJ)

BM(II,JJ)=S(II,JJ)

NEXT JJ

NEXT IT

GOSUB 9500

FOR II=1 TO 12

FOR JJ=1 TO 12

AM(IT,JJ)=CM(II,JJ)

BM(II,JJ)=TT(II,JJ)

NEXT JJ

NEXT II

GOSUB 9500

FOR II=1 TO 12

FOR JJ=1 TO 12

S(II,JJ)=CM(II,JJ)

NEXT JJ

NEXT II

RETURN 2400

REM COMPUTE STRESSES

FOR N=1 TO NE

L1=MAT (N)

FOR I=1 TO NODE

XJ(I)=CORD (NOD{N,I),1)

(I)=CORD(NOD(N,I),2)

NEXT I

FOR I=1 TO NODE*NDF

FOR J=1 TO NODE*NDF

S(I,J)=0

NEXT J

NEXT I

NGAU=2 ,

FOR IN=1 TO NGAU

FOR JN=1 TO NGAU

G=XG (IN)

H=XG (JN)

GOSUB 29800

REM FORM 2X2 JACOBIAN MATRIX

SJ(1,1)=DEL(1,1)*XJ(1)+DEL{(1,2)*XJ(2

SJ(1,1)=8J(1,1)+DEL(1,3)*XJ(3)+DEL(1,4)*XJ(4)

sJ(2,1) DEL(Z 1) *XJ (1) +DEL(2,2) *XJ(2)

SJ(2,1)=SJ(2,1)+DEL(2,3)*XJ(3)+DEL (2, 4) *XJ (4)
J(1,2) DEL( 1)y *vJ(1 )+DEL(1 2) *YJ(2)
J(1,2)=8J(1 )+DEL( 3)*YJ(3)+DEL (1, 4)*YJ (4)
J(2,2)=DEL ( 1) *vJ(1 )+DEL(2 2)*YJ(2)

)
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7260
7270
7280
7290
7300
7310
7320
7330
7340
7350
7360
7370
7380
7390
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7700
7710
7720
7730
7740
7750
7760
7770

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

SJ(2,2)=SJ(2,2)+DEL(2,3) *YJ(3)+DEL(2,4)*YJ(4)
DETJ=S5J(1,1)*5J(2,2)~-8J(2,1)*8J(1,2)
SJIN(1,1)=8J(2,2) /DETJ

SJIN(1,2)=-8J(1,2) /DETJ

SJIN(2,1)=-58J(2,1) /DETJ
SJIN(2,2)=8J(1,1) /DETJ

REM COMPUTE SHAPE FUNCTIONS IN CART. COORD.
REM ZERO SHAPE FUNCTION MATRIX
FORM =1 TO 2

FOR MM = 1 TO 4

SF (M, MM) =0

NEXT MM

NEXT M

FOR II=1 TO 2

FOR KK=1 TO NODE

FOR JJ=1 TO 2
SF(II,KK)=SF(II,KK)+DEL(JJ,KK)*SJIN(II,JJ)
NEXT JJ

NEXT KK

NEXT II

REM B MATRIX TO COMPUTE STRESS
FOR II=1 TC 3

FOR JJ=1 TO 8

BS(IT,JJ)=0

NEXT JJ

NEXT IT

JJ=1

FOR II=1 TO 8 STEP 2
BS (1, II)=SF(1,JJ)
BS(2,II+1)=SF(2,JJ)
BS(3,I1)=SF(2,JJ)

BS(3,II+1)=8F(1,JJ)
JJ=JJ+1

NEXT II
C2=1-(CON(L1l,2)*CON(L1,2))
D(1,1)=CON(LL,1)/C2
D(2,2)=D(1,1)
D(1,2)=D(1,1)*CON(L1,2)
D(3,3)=CON(L1,1)/{(2* (1+CON(L1,2)})
D(2,1)=D(1,2)

D(1i,3)=0

D(2,3)=0

D(3,1)=0

D(3,2)=0

J=1

FOR I=1 TO NODE
M=NOD (N, I) *NDF

TEMP (I)=ELDIS (M)
UELE (J)=ELDIS (M-2)
UELE (J+1)=ELDIS (M~-1)
J=J+2

NEXT 1
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7780
7790
7800
7810
7820
7830
7840
7850
7860
7870
7880
7890
7800
7910
7920
7930
7940
7950
7960
7970
7980
7990
8000
8010
8020
8030
8040
8050
8060
8070
8080
8090
8100
8110
8120
8130
8140
8150
8160
8170
8172
8174
8176
8190
8191
8200
8210
8220
8230
8240
9000
9010

COMPUTER CODE FOR COUPLED STEADY-STATE THERMOELASTICITY

FOR I=1 TO 3

STA(I)=0

STR(I}=0

NEXT I

FOR I=1 TO 3

FOR J=1 TO 8
STA(I)=STA(I)+BS(I,J)*UELE (J)
NEXT J

NEXT I

FOR I=1 TO 3

FOR J=1 TO 3

STR (I)=STR(I)+D(I,J)*STA(J)
NEXT J

NEXT I

FOR I=1 TO NODE
STR(1)=STR (1) +CON(L1,5) *P (1) *TEMP (I)
STR(2)=STR(2) +CON (L1, 6) *P(I) *TEMP (I)
NEXT I

FOR II=1 TO NODE
TS(1,II)=8F(1,II)
TS(2,II)=SF(2,1II)

NEXT II

FOR J=1 TO NODE
TS(1,J)=TS (1, J)*CON (L1, 3)
TS(2,J)=TS(2,J)*CON(LL, 4)

NEXT J
FLX(1)=0
FLX (2)=0

FOR J=1 TO NODE

FLX (1)=FLX (1) -TS (1, J) *TEMP (J)
FLX (2) =FLX(2)-TS (2, J) *TEMP (J)
NEXT J

X=0

Y=0

FOR I=1 TO NODE

X=X+P (I) *XJ (1)

Y=Y+P (I) *YJ(I)

NEXT I

PRINT "ELEMENT", N

PRINT " X=",X," Y=",Y
PRINT " STRESS X=",STR(1)
PRINT " STRESS Y=",STR(2)
PRINT " STRESS XY=",STR(3)
PRINT " TEMP FLUX X=", FLX (1)
PRINT " TEMP FLUX Y=", FLX(2)
INPUT "RETURN TO CONTINUE ", GOS
NEXT JN

NEXT IN

NEXT N

RETURN

REM GAUSSIAN ELIMINATION
N=NSIZE

[APPEN.
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9020 FOR I=1 TO N
9030 ELDIS(I)=0
9040 NEXT I

9050 J=1

9060 AA=SK (J, J)
9070 FORI =J TON

9080 IF AA = 0 THEN 9090 ELSE 9110
9090 PRINT "ZERO ON DIAGONAL, ROW",J
9100 STOP

9110 REM

9120 SK(J,I) =SK(J,I) /AA

9130 NEXT I

8140 F1(J)=F1(J) /AA
9150 IF J=N THEN 9280 ELSE 9160
9160 K=J+1
9170 C=SK (K, J)
9180 IF C=0 THEN 9230 ELSE 9190
9190 FOR I=J TO N
9200 SK(K,I)=SK(K,I)-C*SK(J,I)
9210 NEXT I
9220 F1(K)=F1(K)-C*F1(J)
9230 K=K+1
9240 IF K> N THEN 9250 ELSE 9170
9250 REM , START ANOTHER LOOP
9260 J=J+1
9270 GOTO 9060
9280 REM COMPUTE ELDIS
9290 ELDIS (N)=F1 (N)
9300 J=1
9310 NN=N-J
9320 ELDIS (NN)=F1 (NN}
9330 FOR I=NN TO N-1
9340 ELDIS (NN)=ELDIS (NN)-SK (NN, I+1)*ELDIS (I+1)
9350 NEXT I
9360 J=J+1
9370 IF NN=1 THEN 9380 ELSE 9310
9380 REM SUBROUTINE FINISHED
9390 RETURN 3300
9500 REM MATRIX MULTIPLICATION
9510 FOR IM=1 TO LM
9520 FOR JM=1 TO NM
9530 CM(IM, JM)=0
9540 NEXT JM
9550 NEXT IM
9560 FOR IM=1 TO LM
9570 FOR JM=1 TO NM
9580 FOR KM=1 TO MM
9590 CM(IM, JM)=CM(IM,JM)+AM(IM, KM) *BM (KM, JM)
9600 NEXT KM
9610 NEXT JM
9620 NEXT IM
9630 RETURN
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9800 REM GOSUB FOR 4 NODE ELEMENT

9810 P{(1)=(1-G-H+G*H) / 4
9820 P(2)=(1+G-H-G*H) /4
9830 P(3)=(1+G+H+G*KH) / 4
9840 P(4)=(1-G+H-G*H)} / 4

9910 DEL(Z 3)=-DEL(2,2)
9920 DEL (2,4
9930 RETURN

9850 DEL (1,1)=(- 1+H) /4
9860 DEL(1,2)=-DEL(1,1)
9870 DEL(1,3)=(1+H) /4
9880 DEL(l 4)=-DEL (1, 3)
9890 DEL(2,1)=(-1+G) /4
9900 DEL(2,2)=(~1-G) /4

)

)

=-DEL(2,1)

10000 REM GOSUB FOR TRANSFORMATION

10010 FOR I=1 TO 12
10020 FOR J=1 TO 12
10030 T(1,J)=0
10040 NEXT J

10050 NEXT I

10060 T(1,1)=1
10070 T(2,2)=1
10080 T(3,9)=1
10090 T(4,3)=1
10100 T(5,4)=1
101106 T(6,10)=1
10120 T(7,5)=1
10130 T(8,6)=l
10140 T(9,11)
10150 T(lO,7)=
10160 T(11,8)=1
10170 T(12,12)=1
10180 FOR I=1 TO 12
10190 FOR J=1 TO 12
10200 TT(I,J)=T(J,I)
10210 NEXT J

10220 NEXT I

10230 RETURN 306

12000 DATA 10,4,4,13,3,1,6

12010 DATA 1,0,0,2,0,1,3,.25,0,4,.25,1
12020 DATA 5,.5,0,6,.5,1,7,.75,0
12030 DATA 8,.75,1,9,1,0,10,1,1

12040 DATA 1,1,3,4,2,1

12050 DATA 2,3,5,6,4,1

12060 DATA 3,5,7,8,6,1

12070 DATA 4,7,9,10,8,1

12080 DATA 1,1,0,1,1,1,0

12090 pATA 1,1,0,2,1,0,1,2,0

12100 DATA 9,1,0,10,1,0

12110 DATA 1,3,100,2,3,100,9,3,0,10,3,0
12120 DATA 3,2,0,5,2,0,7,2,0,9,2,0
12130 DATA 10,0,0,0

[APPEN.
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Solved-Problem Index of Applications

Note: The numbers following these entries refer to problem numbers.

Beam:
analytical solution, 4.1, 4.2, 4.3
numerical solution, 4.6, 4.7, 4.8

Cable deflection, 2.1, 2.11, 2.12, 2.25, 5.11
Column buckling, 7.12, 7.13

Convection (see mass transport)
Coordinate transformation, 3.23, 4.12

Diffusion (see mass transport)

Elasticity, 5.7

axisymmetric, 3.26, 6.12

rod, 2.8, 2.9, 2.10, 3.9

plane, 3.10, 3.11, 3.12, 3.13, 3.19, 3.38, 6.10, 6.11

triangular element, 3.40

plate (see plate bending)

polar coordinates, 3.27

thick-walled cylinder, 6.13, 6.14, 6.15
Electrostatics, 2.19, 2.28

axisymmetric, 6.17

Frame, 4.13, 4.14

Galerkin method:
in thermoelasticity, 5.17
solution of differential equation, 5.10, 5.11

Heat conduction:
axisymmetric, 3.25
in one dimension, 2.2, 2.3, 2.7, 2.13, 2.14, 2.22 2.24,
5.10
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Heat conduction (continued)
in two dimensiens, 3.4, 3.5, 3.6, 3.14, 3.15, 3.21,
5.12, 6.8, 6.9
transient, 7.2

Mass transport:
coupled, 5.14, 5.15, 5.16
in one dimension, 2.16, 2.17, 2.18, 2.26, 3.34
in two dimensions, 3.8, 3.17, 3.18, 3.32, 3.33, 3.36,
3.49, 5.13
triangular element, 3.39, 6.22
transient
axisymmetric, 7.4
two-phase, 7.5

Numerical integration, 6.1, 6.2

Piezoelectricity, 5.19
Plate bending, 7.17, 7.18
Potential flow, 2.18, 3.8

Rayleigh-Ritz method, 2.3, 2.7, 2.8, 2.15

Thermoelasticity, 5.8, 5.9, 5.17, 5.18

Variational functions, 2.2, 2.9, 2.11, 2.16, 2.27, 3.4,
3.9,3.10, 3.25, 3,32,5.3,5.5,5.7,5.8,5.9
Vibration:
axisymmetric finite cylinder, 7.11
beam, 7.9, 7.10
membrane, 7.8
string, 7.6, 7.7






Index

Acceleration, 208, 225 Completeness, 193
Area coordinates (see coordinates) Computer code, 241
Axisymmetric, 62, 172, 175, 217 (see also coordinates) Conductivity:

hydraulic, 29, 77
thermal, 28, 71, 73
Confined flow, 77-78
Connectivity, 32, 43, 76, 120-121, 133, 135
array, 32, 63, 75, 78
Convection, 51, 77, 79, 90, 195
coefficient, 33

Beams, 109 (see¢ also element)
axial force for, 112, 128
beam sign convention for, 110, 114
bending moment for, 110, 127
diagrams, 112, 120, 122, 123
bending stress for, 127

cantilever, 123 Coordinates:
deﬁection’of 110 area, 65, 88, 91, 173, 193-194, 196
, array, 78

displacements for, 112, 127
displacement matrix for, 118
elastic curve for, 109, 127
equivalent joint loading for, 111, 116—119, 128
fixed-fixed, 112, 115, 116, 119, 137
joint sign convention for, 110, 114
shear for, 110

diagrams, 112, 120, 122, 123
slope for, 109
small deflection of, 109
statically indeterminant, 113
stiffness matrix for, 118, 126, 128

cartesian, 62, 82, 172, 190, 192, 225

cylindrical, 5, 34, 66
axisymmetric, 34, 62, 192, 224
elasticity in, 66
nonaxisymmetric, 62

interpolation function for, 180

Laplace operator, 175

length, 91

natural, 89

nodal (see nodal coordinates)

normalized, 173

. . lar, 98
transf tri 12 1 polar,
ansformation matrix for, 129, 130, 139 transformation of, 6, 18, 20, 62, 95, 113, 129
two-span, 119, 122 .
Cylinder:

vibration of (see vibration)
Bilinear mapping, 144, 149
convolution, 145, 151
B matrix, 72, 82, 91, 99, 165, 180-183, 185
Boundary conditions, 28, 46, 75, 76, 79
Dirichlet, 33
homogeneous, 144
mixed, 33, 48
natural, 82
Neumann, 33
nonhomogeneous, 144
pressure, 82, 83
Boundary-value problem, 143

finite length, 226
thick-walled, 187-189, 200

Dam, 77
Darcy’s law, 29
Determinant, 3—4, 180
cofactor, 3, 13
equational of, 3, 12
minor of, 3, 12, 13
Differential equations, 4-5, 109
coupled, 5, 146
fourth-order, 109

Cable, 28, 34, 44, 63, 153, 166, 208 homogeneous, 5, 17, 208, 219
coaxial, 53 hyperbolic, 208
Calculus of Variations (see variational) partial, 143
Capacitance matrix, 216 solution of
Chemical: separation of variables, 16, 74, 208, 219
reaction, 77, 79, 89, 201, 218 Diffusion, 29, 77, 175, 217
rate constant for, 77 constant, 77
species, 77 mass, 146
Column: transient, 217
buckling of, 226-227, 233 two-phase, 218-219, 232
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262 INDEX

Diffusivity, 30, 62 Element (continued)
multiple, 156 three-node, 85, 97
Direct method, 34 Elevation head, 29, 78
Direction cosines, 7 Energy theorems (see variational)

Displacement method, 109-110
Displacements (see elasticity)

Divergence: (see also Green-Gauss theorem) Fick’s law, 29, 166
theorem, 2, 11, 148-149, 155 Finite difference, 207
Gauss’, 11 backward, 208, 214-215, 217
vector, 2 - central, 208, 214-215, 217

forward, 208, 214-215, 217
¢ method, 208, 216-217

Eigenvalue: Finite element (see element)
problem, 5, 207-208, 227 Flux:
Elasticity, 27, 63, 143, 146, 149, 151 heat, 28
angular deformation for, 64 mass, 29
axisymmetric, 97, 185 Force:
displacement for, 63-64, 66, 80-81, 95, 150, 162, body, 64, 80, 82
) 1§4 element, 43
isotropic, 67 matrix, 43, 46, 75

plane, 65, 8082, 84, 98, 160, 183, 184
strain, 63—-64, 66, 67, 97, 150, 160
shear, 67
engineering definition, 67, 165
mathematical definition, 161, 163
strain-displacement, 99
stress, 63, 67, 150, 163

Fourier’s law, 28

Frames, 109, 131, 135
connectivity for, 133, 135
coordinate transformation for, 132, 134
equivalent joint loading for, 136
global stiffness for, 133, 135

axial, 188
normal, 64 Galerkin method, 11, 143, 145, 152-156, 164, 200,
.sheflr, 64 o 207, 215, 220, 222, 227
vibration, (see vibration) : Gauss-Legendre quadrature, 172 (see also Numerical
Electricity, 30, 163 integration)
dlSplaCGfIlem, 163 Gauss point, 172, 181, 187
Electrostatics, 30, 175, 191, 200 Green-Gauss theorem, 2, 11, 148, 150, 157, 161, 165,
Element, 31 216, 220

axially loaded bar, 109
beam, 109, 126
continuity, 210, 229

Green’s theorem, 2
Groundwater, 29

frame, 109

higher-order (see isoparametric) Harmonic:

isoparametric (see isoparametric) function, 225

normalized, 173 motion, 219

parent (see isoparametric) Heat conduction, 19, 28, 36, 39, 71-72, 85, 145, 147,

plate (see plate) 151-152, 154, 183

quadrilateral, 62, 70, 72, 172 axisymmetric, 96, 175, 200
axisymmetric, 97 ‘ transient, 208, 215
eight-node, 189, 193, 199, 228 Heat transfer (see heat conduction)
nine-node, 93-94, 180, 193, 199, 224-225, 230 Hermite’s interpolation formula, 112, 124
shape function for, 67 Hooke’s law, 27, 64, 80, 127

rectangular, 67, 82
serendipity, 174, 193

subparametric, 174, 180 Incompressible flow, 29

superparametric, 174 Indicial notation (see tensor)

three-dimensional, 209 Initial-value problem, 143, 146, 207, 208

triangular, 62, 65 Inner product, 17, 143, 147 (see also vector: scalar
shape function for, 68 product)

six-node, 193 Integration formula, 173, 194-195



Interpolation function, 11, 31, 38, 40, 69, 112, 175,

179, 193
Isoparametric element, 172
brick, 209
for axisymmetric elasticity, 175
four-node, 228
higher-order, 209, 228, 233, 234
parent, 179, 195, 209
plate (see plate)
quadrilateral, 172, 174, 177, 184, 189
tetrahedral, 209
triangular, 174, 192, 194

Jacobian, 174, 179, 180, 195, 209
inverse of, 181-182, 197

Kirchhoff theory, 211
Kronecker delta, 19

Lagrange formula, 173, 177, 228
Laplace’s equation, 74, 164, 175
Laplace transform, 151

Mass: (see also diffusion)
diffusion, 29, 156
interaction coefficients, 158
matrix, 223
consistent, 225
transport, 29, 50, 52, 62, 78
Material constants, 98, 163, 165, 184
Matrix: (see also determinant)
adjoint, 3, 13
analysis of structures, 109
capacitance (see capacitance)
cofactor, 3, 12
column, 2
coupling, 162, 167
diagonal, 2
force (see force matrix)
inverse of, 2, 13, 14
Jacobian (see Jacobian)
mass (see mass matrix)
multiplication, 2, 12, 147
operator, 71, 81-82, 97
order of, 2
row, 2
stiffness (see stiffness matrix)
symmetric, 2, 73, 77
theory, 2—4
thermal conductivity, 72
transformation, 62, 66, 94, 113, 162
transpose of, 2, 66
unit, 2

INDEX

Membrane, 62—-63 (see also vibration)

Microelectronic materials (see piezoelectricity)

Mindlin theory, 212
Mixture, 29

Nodal coordinates, 63, 75
Nodes, 31
midside, 93
numbering, 63

Numerical integration, 65, 90, 97, 172, 180

Gauss-Legendre, 175, 176, 209

Operator, 143, 144 (see also matrix, vector)

adjoint of, 144
Laplace, 175
self-adjoint, 144
symmetric, 144

Pascal triangle, 192-193
Permeability:
coefficient of, 29
Permittivity, 30
Permutation symbol, 20
Piezoelectricity, 146, '163—-164, 209, 226
Piezometric head, 29, 78
Plane strain, 64, 81
Plane stress, 64, 81, 91
Plate:
finite element, 207, 210
heterosis, 229-231
strain energy of, 229
thick, 207, 212
Mindlin theory of, 213, 229
thin, 211, 212
Poisson’s ratio, 64, 213, 231
Porous material, 77
Potential:
electric, 30, 34, 163—-164
energy, 65, 112, 126
flow, 29, 52, 78
Pressure:

distributed, 82 (see also boundary condition)

head, 78
uniformly varying, 91

Quadratic element, 55
Quadrature (see numerical integration)
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Rayleigh-Ritz method, 31, 37, 39, 40, 50, 149, 153, 207

Self-adjoint, 143, 148—149 (see also operator)
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Shape function, 31, 38, 40, 42, 67-68, 81, 172, 179
cubic, 124
for triangular element, 69, 173
linear, 38
matrix for triangular element, 86
quadratic, 94
Shear modulus, 64
Simultaneous equations:
solution of, 3-4
gaussian elimination, 4, 15
inverse method, 3, 14
Stiffness matrix, 32, 66, 75
for beams (see beams)
element, 43
global, 32, 43, 76, 78, 88
local, 32, 42, 44, 65, 72, 73, 76, 85
transformed, 95
Stiffness method, 109, 110
Strain (see elasticity)
Stress (see elasticity)
Surface traction, 80
Symmetry, 147 (see also matrix)

Temperature, 5, 70, 162
steady-state, 16, 73, 86
Tensor:
cartesian, 5, 65, 80, 224-225
first-order, 5
second-order, 63
strain, 65, 80
stress, 63, 80
subscript notation, 5, 149, 160, 163
range, 5
summation, 5, 17
Thermoelasticity, 145-146, 151-152, 160, 162, 164,
241
Time-dependent (see initial-value problem)
Transformation:
coordinate (see coordinate transformation)
geometry, 180
matrix (see matrix transformation)

Unit impulse function, 92

INDEX

Units, 27-30

Variational:
function, 4, 27, 30, 36, 42, 44, 62, 65, 71-72, 80, 82,
90, 95-96, 112, 126
Gurtin-type, 145
pseudo-, 31, 50, 149, 155
quasi-, 31
principle, 143, 145, 147-153
extended, 145, 149-152
Vector:
addition, subtraction of, 6
analysis, 1-2
cross product, 8 (see also vector product)
direction cosines of, 7
dot product, 8 (see also scalar product)
operations
curl, 2, 20
del, 2
divergence, 2, 10, 18
gradient, 2, 10
position, 6
scalar product, 7, 17
space, 144
stress, 80
transformation, 66, 113, 129, 135
unit, 6, 9
vector product, 8, 20
Velocity, 62, 78, 79
Vibration, 109
elastic body, 224
frequency of, 219, 225
beam, 222, 224
bar, 232
membrane, 221, 222, 233
string, 219, 220, 232

Weighted residual, 143, 145, 161, 164
Weights 182, 196 (see also Gauss point)
Weight functions, 156, 157, 223
Young’s modulus, 64, 162, 213, 231
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