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Statistics is the science that deals with the collection, analysis, and interpretation of numerical information.
Having a basic understanding of this science is of importance not only to every research scientist, but also to
anyone in modern society who must deal with such information: the doctor evaluating conflicting medical
research reports, the lawyer trying to convince a jury of the validity of quantitative evidence, the manufacturer
working to improve quality-control procedures, the economist interpreting market trends, and so on.

The theoretical base of the science of statistics is a field within mathematics called mathematical statistics.
Here, statistics is presented as an abstract, tightly integrated structure of axioms, theorems, and rigorous proofs.
To make this theoretical structure available to the nonmathematician, an interpretative discipline has been
developed called general statistics in which the presentation is greatly simplified and often nonmathematical.
From this simplified version, each specialized field (e.g., agriculture, anthropology, biology, economics,
engineering, psychology, sociology) takes material that is appropriate for its own numerical data. Thus, for
example, there is a version of general statistics called biostatistics that is specifically tailored to the numerical
data of biology.

All introductory courses in general statistics or one of its specialized offshoots share the same core of
material: the elements of statistics. The authors of this book have learned these elements in courses, used them
in research projects, and taught them, for many years, in general statistics and biostatistics courses. This book,
developed from our experience, is a self-help guide to these elements that can be read on its own, used as a
supplement to a course textbook, or, as it is sufficiently complete, actually used as the course textbook.

The science of statistics can be divided into two areas: descriptive statistics and inferential statistics. In
descriptive statistics, techniques are provided for processing raw numerical data into usable forms. These
techniques include methods for collecting, organizing, summarizing, describing, and presenting numerical
information. If entire groups (populations) were always available for study, then descriptive statistics would be
all that is required. However, typically only a small segment of the group (a sample) is available, and thus
techniques are required for making generalizations and decisions about the entire population from limited and
uncertain sample information. This is the domain of inferential statistics.

All courses in introductory general statistics present both areas of statistics in a standard sequence. This
book follows this sequence, but separates these areas into two volumes. Volume I (Chapters 1-10) reviews the
mathematics required for understanding this book (aspects of high-school algebra), deals with the fundamentat
principles and techniques of descriptive statistics, and also presents the main theoretical base of inferential
statistics: probability theory. Volume II (Chapters 11-20), this volume, deals with the concepts and techniques of
inferential statistics. Each chapter of the book has the same format: first a section of fext with fully solved
problem-examples for every new concept and procedure; next a section of solved problems that both reviews the
same material and also makes you look at the material from a different perspective; and finally a section of
supplementary problems that tests your mastery of the material by providing answers without the step-by-step
solutions. Because this is a book on general statistics, an attempt has been made throughout to have a diverse
selection of problems representing many specialized fields. Also, we have tried in these problems to show how
decisions are made from numerical information in actual problem-solving situations.

To master statistics you must both read the text and do the problems. We suggest that you first read the text
and follow the examples, and then go back to re-read the text before going on to the solved and supplementary
problems. Also, the book is cross-referenced throughout, so that you can quickly review earlier material that is
required to understand later material.

If you go on to work with statistics, you will likely use a computer and one of the many available packages
of statistical programs. This book does not deal with how to use such computer programs, but instead gives you
the mastery required to understand which aspects of the programs to use and, as importantly, to interpret the
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output-results that the computer provides. A computer is not required for doing the problems in this book; all
problems are solvable with an electronic calculator.

We would like to thank the following people at the McGraw-Hill Companies who have contributed
significantly to the development of this book: Barbara Gilson, Elizabeth Zayatz, John Aliano, Fred Perkins,
Arthur Biderman, Mary Loebig Giles, and Meaghan McGovern. I am grateful to Roger E. Kirk for permission
to reprint Table D.10 from Elementary Statistics, 2nd Ed., and to all the other individuals and organizations that
gave us permission to use their published materials (specific credit is given where the material is presented). We
would also like to thank the anonymous reviewers of the chapters.
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Discrete Probability
Distributions

BISCRETE PROBABILITY DISTRIBUTIONS AND PROBABILITY MASS FUNCTIONS

bter 10 of Volume 1 we examined the general characteristics of discrete probability distribu-
dicated there (see Volume 1, Section 10.3) that such distributions are probability functions that
hilities to events in a sample space that have been defined by a discrete random variable. These
inctions have as their domain all values that the discrete random variable can assume (X = x),
frange, the probabilities assigned to these values [P(X = x) = f(x)]. The probability function
{8 probability distribution is called a probability mass function because probability is massed at
e of the random variable,

discrete probability distributions are defined by a unique and specific formula for a
fiss function, they each can be presented in four ways: as the function itself, or as a list, table,
i probabilities calculated with the function (see Volume 1, Table 10.1 and Fig. 10-1). While
Atician the terms “discrete probability distribution™ and “probability mass function™ are
%ve will distinguish between the defining function of a discrete probability distribution and a

ibution of probability values calculated with the function.

Banter we will examine the specific characteristics and uses of four of the most important
ility distributions: the binomial distribution, the multinomial distribution, the hypergeo-
, and the Poisson distribution. We will begin with the binomial distribution.

VOULLI EXPERIMENTS AND TRIALS

tand the binomial distribution, it is necessary to first understand two basic concepts: the
itient and Bernoulli trials; which are named after James Bernoulli (also known as Jakob

1703), the Swiss mathematician who first investigated their properties. [Among his other

0 probability theory, he developed Bernoulli's theorem (see Volume 1, Section 8.2).] The
fhent and Bernoulli trials have the following properties:

experiment has only two possible outcomes, which we refer to as “success” and
'he two outcomes are randomly determined and mutually exclusive.

frials are a fixed sequence of n identical repetitions of the same Bernoulli experiment.
rial, the probability of a success is p and the probability of a failure is g =1 —p.

1



2 DISCRETE PROBABILITY DISTRIBUTIONS [CHAP. 11

(4) The Bernoulli trials are independent (see Volume 1, Section 9.4). no outcome or sequence of
outcomes affects any subsequent outcome.

(5) The probability of success p is the same (remains constant) for every Bernoulli trial (which means
that the probability of failure, ¢, also remains constant).

EXAMPLE 11.1 You have a bowl of 20 marbles that are identical except for color: 10 are red and 10 are green.
Which of the following are Bernoulli trials: (a) you blindly pick 10 marbles out in succession, determine for each
pick whether the marble is red, and then replace the marble in the bowl after each pick, (b) the same experiment as in
(a) except you do not replace the marble after each pick?

Solution

(@) These are Bernoulli trials, where on each trial: success = red, failure = green, p = 10/20 = %,
g=1—4=1 and the trials are independent.

(b) These are not Bernoulli trials. Because the marble is not replaced after each pick, p does not remain
constant over trials and the trials are not independent (the outcome of one trial has an effect on the
outcomes of subsequent trials).

In the trials described in Example 11.1(5), suppose the bowl contained 150 red marbles and 150 green
marbles, rather than 10 red and 10 green, and again the experiment is to blindly pick 10 marbles in
succession, determining for each pick whether the marble is red, and not replacing the marble after the
pick. The trials seem the same as the ones described in Example 11.1(b), but to a statistician they are very
different because of the change in sample size. With 300 marbles, the ratio of sample size n to population
size N is 10/300 = 0.033, whereas with 20 marbles the ratio is 10/20 = 0.50. It is generally agreed
among statisticians that if in these sampling conditions the ratio of sample size to population size is no
more than 0.05 (i.e., the sample is no more than 5% of the population, or n < 0.05N), with less
conservative statisticians saying no more than 0.10 (n < 0.10N), then we can assume p is “essentially”
constant, the trials are “essentially” independent, and that these are Bernoulli trials if all other assumed
properties of the Bernoulli trials are met.

The problem we are dealing with here we have dealt with before and will deal with many times again:
the conflict between the requirements of the pure, abstract models of statistics and the demands of real-
world problem solving. Statistical techniques are based on theoretical, mathematical models of idealized
situations that rarely exist in the real world, and therefore it is often the case that the strict assumptions and
requirements of a statistical model cannot be exactly met. However, in many cases it has been determined,
as here, that if the assumptions and requirements are “essentially” met, then a given statistical technique
can give reasonably accurate results.

The assumptions of Bernoulli trials are only perfectly met under two conditions: (1) random sampling
with replacement (see Volume 1, Section 3.16) from a finite or infinite population, and (2) random
sampling without replacement from an infinite population. In the first condition, the population may be
small or large relative to the sample but with replacement of the sampled item each time, p remains
constant and the trials are independent. In the second case, the population is so large that for all practical
purposes it is unaffected by removal of a sample item. Here again, p remains constant and the trials are
independent.

11.3 BINOMIAL RANDOM VARIABLES, EXPERIMENTS, AND PROBABILITY
FUNCTIONS

If a discrete random variable X (see Volume 1, Section 10.2) is used to count the number of successes
(X = x) that occur in n Bernoulli trials, then this random variable is called a binomial random variable and
the sequence of n Bernoulli trials is considered to be a binomial experiment (bi, two; nomial, terms, or
outcomes). Finally, if a probability function is used to assign a probability value to every sample point in
the sample space defined by such a binomial random variable, then this function is called a binomial
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probability mass function, ot a binomial probability function, or a binomial probability distribution, or a
binomial distribution.

EXAMPLE 11.2 Using the definitions above and in Section 11.2, show that the discrete probability distribution for
number of heads in three flips of a coin (see Fig. 10-2 and Table 10.2 in Volume 1) is a binomial distribution.

Solution

To be a binomial distribution there must be these basic components: a Bernoulli experiment, Bernoulli
trials, a binomial random variable, a binomial experiment, and a probability function that assigns a probability
value to every sample point in the sample space defined by the binomial variable.

In this problem, the Bernoulli experiment is the flip of the coin. It has only two possible outcomes, head
or tail, which are randomly determined and mutually exclusive. Either of these outcomes could be classified
the success-outcome; this choice is determined by the probability question being investigated. Here we
classify observing a head as a success, with the goal of determining the probability distribution for the variable
number of heads. It should be noted that classifying one of the outcomes as a success does not mean it is the
preferred outcome; it only indicates it is the outcome being investigated. In any event, having classified a head
as success and thus a tail as failure, we can now complete the definition of a Bernoulli experiment by stating
that the probability of a success (a head) is p = }, and thus the probability of a failure (a tail) is g = 1 — =1

The fixed sequence of r repetitions of the Bernoulli experiment are the three flips of the coin. Each flip is
a Bernoulli trial. It is true for each trial in this sequence that: (1) only the same two mutually exclusive,
randomly determined outcomes are possible, success (head) or failure (tail), (2) the probability of success
remains constant over trials p = %, and (3) the trials are independent [assuming it is an idealized game (see
Volume 1, Section 8.1), no outcome of a coin affects the outcome of any subsequent flip].

The binomial random variable, the discrete random variable X that counts the number of successes
(X = x) that occur in the n = 3 Bemoulli trials, is the variable number of heads. This makes the sequence of
Bernoulli trials a binomial experiment. Finally, a probability function is used (see Volume 1, Example 10.5) to
assign probability values to every sample point in the sample space defined by the binomial random variable
S =1{0,1,2,3}, and thus the resulting probability distribution (see Volume 1, Table 10.2) is a binomial
distribution.

114 THE BINOMIAL COEFFICIENT

Three counting rules were introduced in Chapter 9 of Volume 1: multiplication principle (see Section
9.12), permutations (see Section 9.13), and combinations (see Section 9.14). The binomial coefficient, a
component of the binomial probability function (see Section 11.5 below), is another counting rule. It
determines the number of possible permutations that can be made of n objects when the » consists of only
two types of objects, x of one type and n — x of the other. It turns out this number of permutations is given
by the formula for the number of combinations of # different objects taken x at a time [equation (9.20),
Volume 1]

n!

Binomial coefficient = ,C, = (:) (11.1)

- xl(n — x)!
To understand what this means we will use four marbles, two reds R and two greens G, and ask: How
many ways can these n = 4 objects be arranged in order in a line? As we are concerned with order of the

objects, this is clearly a permutations problem, and if the four objects were all different then the answer
would be (see Problem 9.30, Volume 1)

P, =nl =41 =24

n

If the four objects were all different and we were not concerned about order; only about the number of
possible combinations of n objects taken four at a time, then the answer would be (see Problem 9.41,
Volume 1)

nCn=1

N
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Neither of these answers is correct when n = 4 and there are (x = 2) reds and (n — x = 2) greens, as can be
seen by actually putting the marbles in all of the unique four-marble lines that are possible

RRGG RGRG RGGR GGRR GRGR GRRG

There are only six possible permutations of (n = 4) objects where x = 2 are of one type and n — x = 2 are
of another, and we can see that the binomial coefficient gives this answer:

EXAMPLE 11.3 A bowl contains 20 marbles that are identical except for color: 12 are red and 8 are green. You
blindly pick 6 marbles from the bowl, returning each marble after its color has been observed. How many ways can
you pick 4 red marbles in 6 trials?

Solution
In this binomial experiment, n = 6 and x = 4. Using the binomial coefficient

n n! 6!
=" = 1
(x) x(n—x) 412! >

11.5 THE BINOMIAL PROBABILITY FUNCTION

The probability function used in Example 10.5 of Volume 1 to calculate the probability values for the
binomial distribution: number of heads in three flips of a coin, is based on both the generalization of the
special multiplication rule for k& independent events [equation (9.9), Volume 1] and the generalization of
the special addition rule for £ mutually exclusive events (Property 4, Section 8.6, Volume 1). Now we
present a formula, called the binomial probability function, that condenses these multlphcatlons and
additions into one calculation formula

fx) = (:)pf‘q”_x, forx=0,1,2,....n (11.2)

This stz}es that the probability of x successes in the n Bernoulli trials of a binomial experiment [ f(x)] is
equal to the product of the binomial coefficient [equation (11.1)] times the probability of success p raised
to the xth power (p*) (see Section 1.9, Volume 1) times the probability of failure ¢ raised to the (n — x)th

power (¢" ).

EXAMPLE 11.4 From the bowl containing 12 red marbles and 8 green marbles in Example 11.3, 6 marbles are
again picked, one after the other, and each is returned to the bowl after its color has been observed. What is the
probability of picking 4 red marbles in the 6 picks?

Solution
We know from Example 11.3 that the binomial coefficient (:) is 15; that there are 15 ways of picking 4

red marbles in the sample of 6. Thus, to find the probability of getting 4 red marbles [P(X = 4) = f(4)], we
need only to multiply this coefficient times the probabilitles of getting 4 red marbles and 2 green marbles. For
each trial, the probability of getting a red marble (p) i 1s = 0.6 and the probability of getting a green marble
(g9) is 1 — p = 0.4. The probability of picking a red marble on each of four trials is (0.6)(0.6)(0.6)(0.6), or
0.6%, and the probability of picking a green marble on each of two trials is (0.4)(0.4) = 0.4%. Using equation
(11.2), the probability of picking 4 red marbles in the sample of 6 is

1@ =)re

1) = (15)0.6)*(0.4)* = 0.311
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11.6 MEAN, VARIANCE, AND STANDARD DEVIATION OF THE BINOMIAL PROBABILITY
DISTRIBUTION

Every discrete probability distribution has a mean, a variance, and a standard deviation. The general
equation for the expected value (or mean) of the probability distribution of a discrete random variable is
given by equation (10.10), Volume 1,

B = p= Y5 ()

To get the equation for the mean of a binomial probability distribution, we simply substitute equation
(11.2) for f(x):
n —X
50 = u= A ()re] (11.3)
It can be proven mathematically that this equation simplifies to
EX)y=u=mnp (11.4)

The computational version of the general equation for the variance of a discrete probability
distribution is given by equation (10.22), Volume 1,

o> = Y Ff(x) — p*

Substituting equation (11.2) for f(x) and equation (11.4) for y, we get the equation for the variance of the
binomial probability distribution:

o = 22[(D)re] - oy (11.5)
x

It can be proven mathematically that this equation simplifies to

o’ =npq (11.6)
The standard deviation of a discrete probability distribution is

o =+o?
and so the standard \deviation of a biﬁomial probability distribution is

0 = /npq (11.7)

EXAMPLE 11.5 Find the mean, variance, and standard deviation of the binomial probability distribution: number
of heads in three flips of a coin.

Solution

For this experiment, p = probability of getting a head on a single flip of a coin = %, q = probability of
getting a tail = %, n = 3. Inserting the values of # and p into equation (11.4),

EXy=p=np= 3(—;—) =15
Inserting the values of n, p, and g into equation (11.6),

o =npg= (3)(%) G) =0.75

The standard deviation is calculated by taking the square root of the variance,

o = ./apqg = ~/0.75 = 0.87
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11.7 THE BINOMIAL EXPANSION AND THE BINOMIAL THEOREM

The binomial probability function and binomial distribution take their names from their relation to the
binomial expansion. A binomial algebraic expression has two (bi, two) terms (see Section 1.11, Volume
1). Whenever such an expression takes the form of (¢ + b) raised to the nth power and the product is
multiplied out to produce a sum of terms, then this sum of terms is called a binomial expansion. The
following are examples of binomial expansions:

(a+b)* = & +2ab + b? (@a+b) = a® + 3a%b + 3ab* + b°

The‘ binomial theorem is the following general formula for expanding (a + b)", in which a and b are
real numbers and » and x are positive integers

@+ =% ")arb (11.8)

x=0

It is the sum for x = 0 to x = » of the product of: (1) the binomial coefficient [equation (11.1)}, (2) a raised
to the (n — x)th power (a"), and (3) braised to the xth power (b). For example, the binomial expansion of
the binomial expression (a + b)° is

(a+b) = i (i) > b

x=0
_ 2\ 5 0,0 2\ oo 2\ 500
—(O)a b+(1)a b+2a b
2 21 21

* 2
o +T'T' T

=a +2ab\+b2

If we let a = g and b = p, where g and p are the probabilities of failure and success on a single
Bernoulli trial, # = number of Bernoulli trials, x == number of successes, then

(g+p) = Z (:)q""‘p”‘ | (11.9)

n—0_0 n—1_1 n )n—(n—l) n—1 (I’l) n—n_n
(0)qp+(1)qp+ (-1" AW

=qn+nqn—1p+_'_+nqpn—1 +pn

(Note that the order of p and g have been reversed, to conform with the order in which the two parameters
appear in the binomial theorem, where a”* precedes 5*.) From this expansion, you can see the relationship
between the binomial probability function and the binomial expansion (¢ + p)”: For each integer value of x
successes, the probability of x corresponds to a term in this binomial expansion.

EXAMPLE 11.6 Use the binomial theorem to find the probability distribution for the binomial variable: number of
Ss in five rolls of a die.
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Solution
Using equation (11.9) with n = 5,

(q+p) = é C)qs"‘p‘

x=0

5\, 5-0,0 o (5N 5=t 00 (3N 522 (3, 5-3,3 0 (2 544 (2),5-55
—(0)‘] P+<lq P+zq P+3q P+4q P+5q p

51 5 St . 8 ., 8o, 51, 51
=os? YTl Pt am TP Yy TP tam? tsgf

=¢q +5¢°p + 104°p* + 10¢°p* + 5qp* + p°

If you compare this expansion with the probability distribution for this variable in Table 11.1, you will
see that for each value of x successes, the probability of x corresponds to a term in the expansion.

’ Table 11.1

Number of 5s Probability

x OB (Z)p*q"—*

0 1(0) = (3)(1 76)°(5/6)°° = 0.40187
1 ()= (f)(l/6)1(5/6)5_1 = 0.40188
2 @)= (;)(1 /6)2(5/6)° 2 = 0.16076
3 f3) = G)(l /6)3(5/6)°3 = 0.03215

5 _

4 f@) = (4)(1 /64 (5/6)° 450.00322
5 f5) = (2)(1/6)5(5/6)5‘5 = 0.00013

> 1.00001

As success and failure are the only possible outcomes for each Bernoulli trial and the outcomes are
mutually exclusive

g+p=1
and therefore (g+py =3 (:) g p =1
x=0

This relationship between the binomial probability function and the binomial theorem confirms what is
demonstrated empirically in Table 11.1: that, as should be true for a discrete probability distribution (see

A7
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Property 7, Fig. 10-3 in Volume 1),

Cr@=2()re =1

X

11.8 PASCALS TRIANGLE AND THE BINOMIAL COEFFICIENT

Pascal’s triangle is an arrangement of the binomial coefficients for the expansion of (a + b)". The
triangle, extended to n = 5, is shown in Fig. 11-1. You can see that the first and last number in each row is
a 1 and that any number within a row can be calculated by taking the sum of the two numbers that are
immediately above it and to its left and right. Thus, for example, both 55 in row n = 5 are the sums of the
numbers 1 and 4 that are above them to their left and right. In row n = 5 are the coefficients for (a + by
[or (g +p)°): 1, 5, 10, 10, 5, 1. You can see these are the same as the coefficients we found for (g + p)’ in
Example 11.6.

0 1

1 1 1

2 1 2 1

3 1 3 3 i

4 1 4 6 4 1

5 1 5 10 10 3 1

Fig. 11-1
EXAMPLE 11.7 Use Pascal’s triangle to find the binomial coefficients for the expansion of (g + p).

Solution
Using the above calculation procedures, the coefficients are: 1, 6, 15, 20, 15, 6, 1.

11.9 THE FAMILY OF BINOMIAL DISTRIBUTIONS

There is only one binomial probability function [equation (11.2})]
n —X
r@=)re

but it defines an infinite number of specific binomial probability distributions, one for each unique
combination of numbers assigned to the constants # and p. It is not necessary to also specify g, since
g = 1 — p. Because specifying » and p completely determines which specific binomial distribution we are
considering, n and p are said to be the parameters of the binomial distribution. Note that this use of the
term parameter is different from the descriptive population parameters we introduced in Section 3.4 of
Volume 1: descriptive measures calculated from measurement populations. While a parameter of a
theoretical equation is a defining constant in the equation, the parameter of a measurement population is a
descriptive measure of that population.

When a theoretical equation can take many different forms as a function of which numbers are
assigned to its parameters, then it is said that there are a family of equations. Therefore, we can say that the
binomial probability function defines an infinitely large family of binomial probability distributions. Six
of these are shown in Fig. 11-2 to illustrate how changes in » and p affect the distribution. Thus, in
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(a) )
Sx) n=5p=025 &) n=10,p=025
p=12506=0968 p=2.50,0=1369
04 04—
z | 2 b
2 4
e o2 S 02f
o -
0 O T e e T |1||—:l—1—|l||¥x
0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10
Binomial variable X Binomial variable X
J&) n=5p=050 S) n=10, p=0.50
n=250,6=1.118 n=>5.00,0=1.581
04 04+
-y — z -
5 2
2 021 02
a -
| I ] { | 11 x x—O—lT | I | | | —I—I_l_| | x
0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10
Binomial variable X Binomial variable X
fx) n=>5p=075 Jx) n=10,p=0.75
p=3.75, 6= 0968 p="1750,6=1369
04 - 0.4
z F z
2 02 2 02
& a
R [ T I T I ‘ M I S B P x
0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10
Binomial variable X Binomial variable X

Fig. 11-2

Fig. 11-2(a), n is held constant at 5 as p is changed (top to bottom) from 0.25 to 0.50 to 0.75, and in
Fig. 11-2(b), n remains at 10 as p is changed (top to bottom) from 0.25 to 0.50 to 0.75. The distribution

values for Fig. 11-2(a) were calculated using the expansion of (g + p)5 (see Example 11.6) and the
distribution values for Fig. 11-2(b) were calculated using

(g +p)"° = ¢' + 10pg° + 45p%¢® + 120p°q” + 210p*¢® + 252p°¢° + 210p%¢*
+ 120p7q3 + 45p8q2 + 10p9q +p10

Several characteristics of the binomial distribution can be seen in Fig. 11-2. First, the distribution is
symmetrical at p = 0.50, and asymmetrical when p < 0.50 (positively skewed, see Problem 5.6, Volume 1)
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and when p > 0.50 (negatively skewed, see Problem 5.5, Volume 1). Second, if p is held constant and » is
increased, then both x and ¢ increase. Third, if  is held constant and p is increased, then Y increases with
p, but o first increases to p = 0.50 and then symmetrically decreases as p continues to increase.

11.10  THE CUMULATIVE BINOMIAL PROBABILITY TABLE

In solving practical problems, we often want to know the probability that a binomial variable Ge.,
number of successes in # trials) is less than or equal to some whole number, such as the probability of
getting at most two heads in seven flips of a coin. To compute such a probability, we use the cumulative
distribution function of a discrete random variable for any real number a [equation (10.3), Volume 1]

Fla)= 3. fx)

x<a

where F(a) is the probability that the random variable will take on a value less than or equal to @ and f(x) is
the probability that the random variable will take on the value x. The cumulative distributive function of a
binomial random variable is calculated by substituting equation (11.2) for f(x) in the above equation:

F(a) = Z[f(x = C)p‘q""‘] (11.10)

x<a

EXAMPLE 11.8 For the binomial variable: number of heads in seven flips of a coin, use the binomial distribution
in Table 11.2 and equation (11.10) to determine the probability of getting at most two heads.

Solution
This problem involves the cumulative distribution function, where

FQ)=PX =2)= Z;f(X)

Table 11.2
Number of heads Probability
x 1@ =)re=
0 £(0) = (g)(l /2%1/2)° = 0.00781
1 f()= C)(l /2N1/2)! = 0.05469
2 2= (;)(1 /2)%(1/2)"2 = 0.16406
3‘ 3 = G)(l /2Y°(1/2) 7% = 0.27344
4 4= (Z)(l /2)%(1/2)"* = 0.27344
5 7(5) = (Z)a /2°(1/2)"75 = 0.16406
6 £(6) = (Z)(l /2)8(1/2)"7° = 0.05469
7 (= (;)(1 /2)’(1/2)""" = 0.00781

> 1.00000
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Therefore, using the values from Table 11.2 (rounded to four decimal places),

FQ)=fO)+/)+/ )
= 0.0078 + 0.0547 + 0.1641 = 0.2266

Table A.3 in the Appendix (Cumulative Binomial Probabilities) gives cumulative probability values
F(a) calculated with equation (11.10) for binomial distributions that have these values of the parameters n
(left column) and p (top row): n=2,3,...,10; p =0.01,0.05, ..., 0.50.

EXAMPLE 11.9 For the binomial variable number of heads in seven flips of a coin, use Table A.3 in the Appendix
to determine the probability of getting at most 2 heads.

Solution

The part of the table that we need for this problem is reproduced in Table 11.3, which shows the
cumulative probabilities forn =7 and p = 0.01,0.05, ..., 0.50 fora =0, 1, ..., 7. From Example 11.8 we
know for this question that

F(2) = P(X < 2) =0.2266

Using Table 11.3, we can see from the intersection (right circled number) of row (¢ =2) and column
(p = 0.50) that again F(2) = 0.2266.

Table 11.3

p

=
Q

0.01 0.05 0.10 0.15 0.20 0.25 0.30 1/3 035 0.40 0.45 0.50

0.9321 | 0.6983 | 0.4783 | 0.3206 | 0.2097 | 0.1335 | 0.0824 | 0.0585 | 0.0490| 0.0280 | 0.0152 | 0.0078
0.9980 | 0.9556| 0.8503 | 0.7166 | 0.5767 | 0.4449 | 0.3294 | 0.2634 | 0.2338 | 0.1586 | 0.1024 | 0.0625
1.0000 1 0.9962 1 0.9743 { 0.9262 | 0.8520 | 0.7564 | 0.6471 | 0.5706 | 0.5323 | 0.4199 | 0.3164
1.0000 | 0.9998 | 0.9973 | 0.9879 | 0.9667 | 0.9294 0.8267 | 0.8002 | 0.7102 | 0.6083 | 0.5000
1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9953 | 0.9871 | 0.9712| 0.9547 | 0.9444 ] 0.9037 | 0.8471 | 0.7734
1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9987 | 0.9962 ] 0.9931 | 0.9910 | 0.9812 | 0.9643 | 0.9375
1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9995 | 0.9994 | 0.9984 | 0.9963 | 0.9922
1.0000 | 1.0000 | 1.0000 | 1.0000 } 1.0000 | 1.0000 | 1.0000{ 1.0000 | 1.0000{ 1.0000 | 1.0000 | 1.0000

~ N U R WN - O

To save space in a statistical table, it is often the case that only the essential values are given, from
which other needed values can be calculated. Thus, in Table A.3 there are no cumulative probabilities for
p > 0.50 because for the given »n values these probabilities can be calculated from the probabilities
provided. To find F(a) for p > 0.50: enter Table A.3 at the appropriate n, but then use n — (x + 1) for the a
value and 1 — p for the p value. The cumulative probability found at the intersection of row # — (x + 1)
and column 1 — p is then subtracted from 1.

EXAMPLE 11.10 Use the section of Table A.3 shown in Table 11.3 to find F(@ = 3) forn =7 and p = 0.7.

Solution

For this problem, the intersection (left circled number) of row [7—(3+1)=3] and column
(1 — 0.7 = 0.3) is 0.8740, and therefore

F(3)=1—0.8740 = 0.1260
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To check this use of Table A.3, we calculated F(3) directly using equation (11.10) for » =7 and p = 0.7.

F(3)=PX <3)=f(0)+f(1)+/(2) +f(3)
= (0.3 + 7(0.7)(0.3)° + 21(0.7)%(0.3)° + 35(0.7)*(0.3)*
= 0.00022 + 0.00357 + 0.02500 + 0.09724
= 0.12603, or, rounded to four decimals, 0.1260

11.11 LOT-ACCEPTANCE SAMPLING

Lot-acceptance sampling (or simply acceptance sampling) is a quality-control procedure used in
industry. It uses binomial-distribution techniques to develop statistical decision rules for the acceptance or
rejection of raw materials and manufactured products. A standard of quality is set, and if the materials or
products meet this standard, then they are accepted; if not, they are rejected.

Raw materials and products move through an industrial process in units called lofs. A lot is a large
number of the same items, such as 1,000 steel rods, 10,000 screws, or 5,000 electric drills. To ensure the
quality of the final product, it would be optimal to have all components of each lot tested for defects, but
this is rarely possible. The lots are typically so large that such testing would be prohibitively expensive and
time consuming, and often the testing of an item destroys it (e.g., test-firing bullets). Therefore, a much
smaller random sample is taken from each lot, and every item in the sample is tested for defects. In
advance of taking the sample, a sampling plan is devised that specifies a sample size (n) and an acceptance
number (a). If the sample has a or less defective items in it, then the entire lot it came from is accepted, but
if the sample has more than a defective items then its entire lot is rejected.

To determine which sampling plan is appropriate for a given stage of an industrial process, binomial-
distribution techniques are used to develop operating characteristic curves for a variety of sampling plans.
These curves show, for a given sampling plan with parameters » and a, the probability that a lot will be
accepted (P,) given different possible proportions of defective items in the lot (p). Four such operating
characteristic curves are shown in Fig. 11-3, with P, on the vertical axis and p on the horizontal axis, for
the following plans: n=10,a =0; n=10,a=1;n=50,a =0;and n =50, a = 1.

To understand these curves we will go through the reasoning and calculations for the sampling plan
where #n = 10 and a = 1, which means that a random sample of 10 will be taken from the lot and if the
sample contains one or fewer (0) defective items, then the lot will be accepted (more than one and the lot
will be rejected). We do not know the actual proportion of defective items in the lot (p), but if the sampling
plan meets the assumptions of Bernoulli trials (see Section 11.2), then we can use binomial-distribution
techniques to determine the probability of accepting the lot (P,) for any hypothetical p. While this type of
sampling is typically without replacement, whenever the sample size » is no more than 5% of the lot (the
population) (n < 0.05N, see Section 11.2), we can assume that p remains essentially constant over
independent trials and that therefore this is a binomial experiment. If so, then for any given hypothetical p
value

P,=PX<a)=F@) =Y [f(x)

x<a

] (i

Thus, for example, for n = 10, a = 1, and p = 0.01,

10!
0'(10 — 0)! 1'(10 D!
= (0.99)° + 10(0.01)(0.99)° = 0.9957

P, = (0.01)°(0.99)"° + (0.01)'(0.99)

If you now look at Fig. 11-3, you will see that this is the P, value plotted for sampling plan (» = 10,a = 1)
for p = 0.01. Also, you can verify this number by finding F(1) in Table A.3 for n = 10, p = 0.01.
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Probability of accepting a lot (P,)

10.00 0.02 0.04 0.06 0.08 0.10

Proportion defective in lot ()

Fig. 11-3

This same technique was used to find all the plotted values in Fig. 11-3. For another example, consider
the sampling plan (n = 50, a = 1) for p = 0.06:

50! 50!
~0!(50 — O)! 11(50 — 1)!
= (0.94)°° + 50(0.06)(0.94)*° = 0.1900

P, (0.06)°(0.94)° + (0.06)'(0.94)*

From the curves in Fig. 11-3 you can see two important general characteristics of lot-acceptance
sampling. First, the larger the acceptance number () for a given sample size (r), the higher the P, value for
a given p. For example, for p = 0.04 for sample size n = 50, P, increases from 0.1299 for a = 0 to 0.4005
for a = 1. The second important general characteristic is that the larger the sample size (#) for a given
acceptance number (a) the smaller the P, value for a given p. For example, for p = 0.04 for acceptance
number a = 1, P, decreases from 0.9418 for n = 10 to 0.4005 for n = 50.

11.12 CONSUMER’S RISK AND PRODUCER’S RISK

Quality-control engineers, in determining the appropriate sampling plan (see Section 11.11) for a
given stage of an industrial process, must take into account many factors: the cost, effort, and time required
to test each sample item; the maximum proportion of defectives in a lot that the company can tolerate; the
minimum proportion of defectives the supplier of the lot can economically and consistently achieve; and so
on. If we call the receiver of the lot the consumer, then consumer s risk is the probability of accepting a lot
that has a higher p than the consumer can tolerate. If we call the supplier of the lot the producer, then
producer s risk is the probability of a lot being rejected that is actually in conformity with the consumer’s
requirements.

To understand consumer’s risk, let us assume that a consumer will tolerate no more defective items in a
lot than p = 0.01. Then the probability of accepting a lot with a larger p value is the consumer’s risk. Thus,
for example, if the lot actually has 2% defective items, these are the consumer’s risks for the four sampling
plans illustrated in Fig. 11-3: for n = 10, a = 0, the consumet’s risk = P, = 0.8171; forn = 10, a = 1, the
consumer’s risk = P, = 0.9838; for n = 50, a = 0, the consumer’s risk = P, = 0.3642; and for n = 50,
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a = 1, the consumer’s risk = P, = 0.7358. You can see from the curves in Fig. 11-3 that the consumer’s
risk declines for each plan as p increases.

To understand producer’s risk, let us assume that the producer is actually meeting the p = 0.01
requirement. Then the producer’s risk is the probability that a lot that has 1% defectives will be rejected,
which is 1 minus (the probability that the lot will be accepted). Therefore, for the examples in Fig. 11-3 for
a lot with p = 0.01: for n = 10, @ = 0, the producer’s risk = 1 — P, = 1 — 0.9044 = 0.0956; for n = 10,
a =1, the producer’s risk=1—P,=1—0.9958 =0.0042; for n=150, a=0, the producers
risk=1—P, =1-0.6050 =0.3950; and for =50, a=1, the producer’s risk=1—P, =
1 —0.9106 = 0.0894. You can see from these examples that for a given p value required by a consumer,
the producer’s risk increases as » is increased or « is decreased.

EXAMPLE 11.11 You are a consumer who tolerates no more than p = 0.05 as the proportion of defectives in a lot.
If you use a sampling plan where n = 100 and a = 3, what is the consumer’ risk if the actual proportion in the lot is
p = 0.06?

Selution

The solution to this problem is the probability of accepting a lot (P,) that has 6% defectives, given
n =100 and a = 3.

= 2[00 = ]

x<3 x'(n
100! o, 100 o
= Giia0 g5 006 099" + {5575, 006 0.99)
100! 98 100! 3 97
_ 190 0.067(0.94) + ——__(0.06)*(0.94
+ 31100 = 21 06 (099" + 375535, 0067 0.94)
— 0.1430

11.13 MULTIVARIATE PROBABILITY DISTRIBUTIONS AND JOINT PROBABILITY
DISTRIBUTIONS

Statistical techniques can be classified by the number of variables being analyzed. When just one
variable is analyzed, the techniques are called univariate statistics; when relationships between two
variables are analyzed, the techniques are called bivariate statistics; and when relationships between more
than two variables are analyzed, the techniques are called multivariate statistics. These distinctions are
relevant here because, while to this point in our consideration of discrete probability distributions we have
dealt entirely with univariate techniques, now, with the next discrete probability distribution we will
consider—the multinomial distribution (see Sections 11.14 through 11.19)—we will deal with multivariate
techniques. ’

Discrete probability distributions are classified as univariate, bivariate, or multivariate depending on
the number of discrete random variables being considered. Thus, binomial probability distributions are
discrete univariate probability distributions because they give the probabilities for all possible values of a
single discrete random variable X (number of successes) [equation (11.2)]

f@=pPx =x=)pre™

Such a univariate probability distribution is appropriate when an experiment has only one outcome of
interest or there are several outcome categories and you want to consider each separately. Quite often,
however, you are interested in relationships between several outcomes from an experiment, and if it is
possible to measure each outcome with a separate discrete random variable, then discrete bivariate or
multivariate probability distributions can be calculated that give the probabilities of all possible mixtures
of outcomes on these variables. Thus, if two outcomes are being measured by discrete random variables X
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and Y that can take on specific values X = x and Y = y, then the discrete probability distribution of these
variables can be defined as -

S =PX =x,Y =y)

which has the properties

1) fly)=0
@ Y fey=1

SGy)>0
These properties indicate that all f(x, y) values are greater than or equal to zero, and that the sum of all
f(x,y) values that are greater than zero is 1.
Similarly if & different outcomes per trial are measured by the discrete random variables X}, X5, ..., X}
that can take on specific values X; = x;, X; = x,, ..., X} = x;, then the discrete multivariate probability
distribution for these variables can be defined as

f(xl,xz,...,xk) =P(Xl =x1,1Y2 =x2,...,Xk =xk)

which has the properties

D Sxs.x) 20
09 > Jeixg,.x)=1
S(xy,%0,...%)>0
These properties indicate that all f(x;, x5, .. ., x;) values are greater than or equal to zero, and that the sum
of all f(x;, x5, ...,X;) values that are greater than zero is 1.

In both the bivariate and multivariate cases, we are simultaneously considering the related or joint
outcomes of two or more random variables. Because of this, if a bivariate or multivariate probability
distribution is determined for these discrete random variables, then it is said that they are jointly distributed
discrete random variables, and that the distribution is a discrete joint probability distribution or a joint
probability mass function. If it is clear from the context of the discussion that we are dealing with discrete
random variables, then these distributions will be referred to simply as joint probability distributions or
Jjoint probability functions.

To understand these concepts, let us consider a specific example. There are 10 marbles in a bowl,
identical except for color: 4 are red R, 3 are green G, and 3 are blue B. The experiment is to blindly pick 5
marbles from the bowl, identifying the color and replacing the marble after each pick. Now, if we only
consider the discrete random variable X = number of reds, that can take on the specific values
x=0,1,...,5, we can calculate the discrete univariate binomial probability distribution. If instead we
consider the three discrete random variables X; = number of reds, X, = number of greens, and
X; =number of blues, which on each trial can take on the specific values x, =0,1,...,5,
x»=0,1,...,5 and x; =0,1,...,5, then we can determine the multivariate probability distribution

S, xp,x3) = PXy = x, X, = x5, X3 = x3)

If, say, we are interested in the probability of the joint outcomes—two Rs, two Gs, and one B—we would
determine

f(2,2,)=PX,=2,X,=2,X%=1)
This distribution/function is called a joint probability distribution or joint probability function, and the

specific joint probability function for this marble problem, which is the multinomial probability function
will be given in Section 11.16.

w\
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11.14 THE MULTINOMIAL EXPERIMENT

As the binomial probability distribution is based on the binomial experiment (see Section 11.3), so
also is our next discrete probability distribution, the multinomial distribution, based on an experiment: the

- multinomial experiment. This experiment has these properties:

(1) It consists of n identical trials.

(2) For each trial, there are k possible mutually exclusive and exhaustive events 4,,4,, ..., 4;.

(3) For each trial, the probability of 4; is p; (where i = 1,2, ..., k) and p; remains constant over trials.
(4) For each trial

Lpi=pi+prttp=1

(5) The trials are independent; no event or sequence of events affects any subsequent event.

(6) The discrete random variables X;, X, ..., X, are used to count the number of times 4, 4,,..., 4,
occur in the # trials, with the actual count values denoted by X; = x;, X, =x,,...,X; =x;. The
variables are called multinomial random variables.

If you now compare these multinomial properties with the properties of a binomial experiment (see
Sections 11.2 and 11.3), you will see why it is said that the multinomial experiment is a generalization of
the binomial experiment. Another way to state the relationship between the two kinds of experiments is:
The binomial experiment is a special case of the multinomial experiment where k = 2. For this special
binomial case, the multinomial properties read:

(1) The experiment consists of n identical trials.

(2) For each trial, there are k£ = 2 possible mutually exclusive and exhaustive events 4; = {success} and
A, = {failure}.

(3) For each trial, the probability of 4; is p; (p; = p = probability of success; p, = ¢ = probability of
failure) and p; remains constant over trials.

(4) For each trial

2
Y p=p+g=1

(5) The trials are independent.

(6) The single discrete random variable X is used to count the number of times 4; = {success} occurs in
the n trials, with the actual count values denoted by X = x.

11.15 THE MULTINOMIAL COEFFICIENT

As the multinomial experiment is a generalization of the binomial experiment (see Section 11.14), so
also is the multinomial coefficient a generalization of the binomial coefficient [equation (11.1)]. The
multinomial coefficient counts the number of possible permutations of » objects where the n consists of k
different types of objects, x; of type 1,x, of type 2, ..., x; of type k. If x; is a nonnegative integer and
x; +x, 4+ --- 4+ x;, = n, then the multinomial coefficient can be defined as
n!

Multinomial coefficient = ( (11.12)

’ )
X10 Xy o ou s X Xyl oxg!

EXAMPLE 11.12 For the bowl of 10 marbles in Section 11.13 (four R, three G, three B), how many ways can the
10 marbles be picked, in sequence, from the bowl (i.e., how many ways can the three kinds of 10 marbles be arranged
in order in a line)?
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Solution

The question is, how many permutations can be made from four R, three G, and three B marbles? If we
define X] = number of Rs = x; =4, X, = number of Gs = x, = 3, and X; = number of Bs = x; = 3, then
the number of permutations is given by the multinomial coefficient

n n!
Xi, Xy, X3 _xl!xllx3!

( 10 ) 10! 3,628,800

= = = 4,200
4,3,3 413131 864

11.16 THE MULTINOMIAL PROBABILITY FUNCTION

As the multinomial experiment is a generalization of the binomial experiment (see Section 11.14) and
the multinornial coefficient is a generalization of the binomial coefficient (see Section 11.15), it is also true
that the multinomial probability function is a generalization of the binomial probability function [equation
(11.2)]. While the binomial probability function

f(x)=(:)p"q"_", forx=0,1,2,...,n

gives the probability of x successes in the # trials of a binomial experiment, the multinomial probability
function gives the probability in the # trials of a multinomial experiment of observing x; occurrences of
event 4, x, of 4,, ..., x; of 4;. This joint probability function (see Section 11.13) is

n n!

X15Xy, oo, X)) = Y pt e T A% N 11.13
S x, 9 (xl’xz’m’xk)pxpz PE = e PIPY P (11.13)

where x; is the number of times event 4; occurred in the » trials, p; is the probability of 4; on each trial,
Xp+X 4ty =nadp +py+---+p, =1

EXAMPLE 11.13 For the bowl of 10 marbles in Example 11.12 (four R, three G, three B), the experiment is to pick
5 marbles from the bowl, identifying the color and replacing the marble after each pick. This experiment satisfies the .
multinomial properties: (1) it has n = 5 identical trials; (2) for each trial, there are three possible, mutually exclusive,
and exhaustive events: 4; = {R}, 4, = {G}, 45 = {B}; (3) for each trial, P(4,) = p, = 4/10, P(4,) = p, = 3/10, and
P(43) = p; = 3/10; (4) for each trial, > p, =4/10+3/10+3/10 = 1; (5) the trials are independent; and (6)
discrete random variables X; = number of Rs, X, = number of Gs, and X; = number of Bs are used to count the
number of times 4, 4,, and 4; occur in the 7 trials. For the five picks, what is the probability of getting X; = x; = 2,
X; =x; =2, and X3 = x3 = 17 Calculate this probability by using: (a) the rules of probability, and (b) the
multinomial probability function [equation (11.13)].

Solution

(a) One sequence of five events that would give this is RRGGB. Knowing p; for each trial and that the trials
are independent, we can say from the generalization of the special multiplication rule [equation (9.9),
Volume 1] that

P(RNRNGNGNB) = P(R)P(RYP(GYP(G)P(B)
4 4 3 3 3
= () () () () () =002
which we can write in the multinomial form as

4\’ (3\*/3
P(A; N A, N4, N4, NA;) = pipipl = (E) (ﬁ) (ﬁ) = 0.00432
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But this is just one of the many possible sequences of five events that would yield X; =2, X; =2,
X; = 1. The actual number is given by the multinomial coefficient [equation (11.12)]. Thus

n n! 5!
XX, %3) | xbobe! T 22110

Combining these results, we can see that

Pg

P(X, =2,X, =2,X; = 1) = (30)(0.00432) = 0.12960
(&) Using equation (11.13) directly, we get the same result:

n! X3 X3

n X3 X
Sl %) = (xl,xz,xs>pf]p;p33 e A

e =(,50)6e) () () -z () (5) ()

= (30)(0.00432) = 0.12960

11.17 THE FAMILY OF MULTINOMIAL PROBABILITY DISTRIBUTIONS

Recall from Section 11.9, that n and p are parameters, defining constants, in the binomial probability
function [equation (11.2)], and that each unique combination of n and p values defines one member of an
infinitely large family of binomial distributions. Similarly, we now say that », p;, p,, . . ., p; are parameters
in the multinomial probability function [equation (11.13)], and that each unique set of n, py, Py, ..., P
values defines one member of an infinitely large family of multinomial distributions. Each such
multinomial distribution can be presented as the defining function with the parameters specified, or as a
complete list or table of probabilities.

Table 11.4
Number of Probability
Rs, Gs, Bs
X140 %2, X3 Sy, x5, x3) = (xl,xz,x3)P}lp2 P3
1,1,0 7(1,1,0)= (1 f 0) (0.4)'(0.3)'(0.3)° = (2)(0.4)(0.3)(1) = 0.24
1,0,1 7(1,0,1) (1 (2) 1)(o 4)'(0.3)°(0.3)"! = (2)(0.4)(1)(0.3) = 0.24
0,1,1 £(0,1,1) (0 ? 1)(o 4)°(0.3)1(0.3)! = (2)(1)(0.3)(0.3) = 0.18
2,0,0 £(2,0,0) = (2 g 0)(0 4)%(0.3)%(0.3)° = (1)(0.16)(1)(1) = 0.16
0,2,0 £(0,2,0) = ( 0 i 0)(o 4)°(0.3)%(0.3)° = (1)(1)(0.09)(1) = 0.09
0,0,2 £(0,0,2) = (0 ﬁ 2)(o 4)°(0.3)°(0.3)* = (1)(1)(1)(0.09) = 0.09

Y50 : 1.00
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EXAMPLE 11.14  For the bowl of 10 marbles in Example 11.13 (four R, three G, three B), the experiment is now to
pick two marbles from the bowl, identifying the color and replacing the marble after each pick. Thus, n = 2;
4, = {R}, 4, = {G}, and 4; = {B); X| = number of Rs = x;, X, = number of Gs = x,, and X; = number of Bs = x;;
1 =0.4,p, = 0.3, and p; = 0.3. Present, in a table of probabilities, the multinomial distribution for this experiment.

Solution
The requested multinomial distribution is shown in Table 11.4.

11.18 THE MEANS OF THE MULTINOMIAL PROBABILITY DISTRIBUTION

The multinomial probability distribution has a mean (expected value) for each of its discrete random
variables, which is the expected number of times that each random variable will occur in » trials. When the
random variables of the distribution are X, X;, ..., X;, then the means of the multinomial probability
distribution are

EXy) = =npy, EX)=p =npy,..., EX) = =np, (11.14)

EXAMPLE 11.15  For the multinomial distribution in Table 11.4, what are the means of X, X,, and X;?

Solution
The means are

EQX) =p, =np, =2(04) =08
E(X,) = jt, = np, = 2(0.3) = 0.6
EQG) =yt = nps = 2(0.3) = 0.6

11.19 THE MULTINOMIAL EXPANSION AND THE MULTINOMIAL THEOREM

The multinomial probability distribution is related to the multinomial expansion and the multinomial
theorem, just as the binomial probability distribution is related to the binomial expansion and the binomial
theorem (see Section 11.7).

If a multinomial algebraic expression (see Section 1.11, Volume 1) of the form a; +a, +-- - + a4 is
raised to the nth power, and if this product is multiplied out to produce a sum of terms, then this sum of
terms is called a multinomial expansion. Furthermore, if a;, a,, . . ., a; are real numbers and » is a positive
integer, then the following is a general formula for expanding (a; + a, + - -- + @;)" that is called the
multinomial theorem,

(@+a+ - +a) = ) " ayay - dif (11.15)
- X120+ xp=n x17 x27 L] xk

where the symbol 3 means take the sum over all possible combinations of nonnegative integers
xy+xp+--Ha=n

that add up to n.

EXAMPLE 11.16 For the multinomial distribution in Table 11.4, use n =2, a; = p;, a, = p,, and a; = p;, to
demonstrate the relationship between the multinomial probability distribution and the multinomial expansion and
theorem.

Solution
Using these parameters in equation (11.15), the multinomial expansion for all possible sets of
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nonnegative integers x;, x,, and x; that satisfy x; +-x, +x3 =2 is

X1

. >

P
x1+x§x3=2 (xl » X2, X3 !
— 2 1,10 2 101 2 011 2 2.0.0
- (1’ 1,0)p1P2p3+(1,0,1 p1p2p3+ 0, 1,1 p1p2p3+ ’0,0 plp2p3

2 0.2 0 2 0.0 2
+ (0’ 2, 0>p1pzp3 + (0, 0,2 D\PaD3
= 2p\p; + 2p\p; + 2paps + pl + P + P

From this you can see that for every probability value in the multinomial distribution in Table 11.4 there
is a corresponding term in the multinomial expansion. Indeed, it is this relationship to the expansion that gives
the multinomial probability distribution its name.

X, X3
PP

il

@ +p; +ps)

11.20 THE HYPERGEOMETRIC EXPERIMENT

As with the previous discrete probability distributions in this chapter (see Sections 11.3 and 11.14), the
next distribution we will consider, the hypergeometric probability distribution, is also based on an
experiment: the Aypergeometric experiment. This experiment resembles the binomial experiment except
that the hypergeometric experiment involves sampling from a finite population without replacement, and
so the trials are not independent and the probability of “success” changes as the sample is removed from
the population. The characteristics of the hypergeometric experiments are:

(1) A random sample of n objects is taken one at a time (» trials) from a finite population of N objects
by sampling without replacement.

(2) Of the Ny objects in the population, Ng are of one type, called “successes,” and Ny are of another
type, called “failures” (Ng + Np = Nr).

(3) The discrete random variable X, here called a hypergeometric random variable, is used to count the
number of successes (X = x) in the sample.

11.21 THE HYPERGEOMETRIC PROBABILITY FUNCTION

The hypergeometric probability function determines the probability of x successes in the » trials of a
hypergeometric experiment. It is different from the binomial probability function [equation (11.2)]
because, in sampling without replacement, the probability of success changes after each trial. The
hypergeometric probability function, therefore, utilizes a different calculation method based on three
aspects of probability: the classical probability ratio [equation (8.1), Volume 1], the counting rule:
multiplication principle (see Section 9.12, Volume 1), and the counting rule:combinations (see Section
9.14, Volume 1). ‘

In the classical interpretation of probability (see Section 8.1, Volume 1), the probability of an event 4
[denoted by P(A4)] is the ratio of the number of possible outcomes favorable to 4 (denoted by N,) to the
total number of possible outcomes for the experiment (denoted by N), with the assumption that all
outcomes are equally likely. Thus

N,
P4) = I

This ratio is the basic structure of the hypergeometric probability function, with N, representing the
total number of ways x successes can occur in the n trials of a hypergeometric experiment, and N
representing the total number of n-trial outcomes that can occur in the experiment. To determine N, and N
we use the two counting rules.

To understand how this works, consider again the experiment in Example 11.4: picking 6 marbles
from the bowl of 20 (12R, 8G), and determining the probability of picking 4 Rs in the six picks. In
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Example 11.4, the sampling was with replacement, the probability remained constant over trials, and so the
binomial probability function was used to determine that f(4) = 0.311. Now, let us consider the
probability of picking 4 Rs in the six picks, if the sampling is without replacement. These are the
conditions of the hypergeometric experiment (see Section 11.20), where: n = number of picks = 6,
Ny = total number of marbles = 20, Ny = number of Rs = 12, N = number of Gs = 8, x = number of
successes = 4. From this we will calculate the ratio

Ny
N
where N, is the total number of ways 4 Rs can be picked in the six picks and N is the total number of
possible six-pick outcomes for the experiment. To determine N, we use both types of counting rules. First,

we use the counting rule:combinations to determine the number of ways in six picks that 4 Rs can be
picked from the 12 Rs,

P(picking 4 Rs) = P(X = 4) =

Ng! 12! 11,880

= - — 49
AN —x)!  4(12-4) 24 >

NSCx =1pCy =

and the number of ways in six picks that 2 Gs can be picked from the 8 Gs,

C - Ng! _ 8 56
Neomx =82 = )N —(n—x)]! 2(8—=2)! 2

=28
Now we use the counting rule:multiplication principle to determine N,:
Ny = 5,C, x . C,_, =495 x 28 = 13,860

To determine N, the number of possible six-pick outcomes, we again use the counting rule:combinations.
Thus,

Nyt 20! 27,907,200
N — = C = = = = N O
v Cn = 2Cs n!(Ny —n)! 6120 — 6)! 720 38,76
13,860
Theref: , PX =4)=—"2—"—0.
erefore, ( ) 38,760 0.3576

To generalize from this example, if the conditions of a hypergeometric experiment are met and a
probability function is used to assign probability values to every sample point in the sample space defined
by a hypergeometric variable, then this function is called a hypergeometric probability distribution, or a
hypergeometric distribution, or a hypergeometric probability mass function, or simply a hypergeometric
probability function. 1t is defined as follows:

()6
f() =PX =x) =NSC":2,’FC"-" =% (N’;)‘x (11.16)
n

and, substituting equation (9.20) of Volume 1, we get

e,
F() = P(X = x) = s =) (”’]}x,)!(NF*”“x))’, forx=0,1,2,...,n  (11.17)
T.
[”!(NT—”)!]

where: x < Ny (number of successes in sample must be less than or equal to number of successes in
population); n — x < Ny (number of failures in sample must be Iess than or equal to number of failures in
population); and Ny, n, and Ny are positive integers such that Ny < Ny and n < Ny.
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EXAMPLE 11.17 A manager must select a committee of three from his staff of six men M and four women . He
writes their names on separate identical pieces of paper, puts the papers in a bowl, and then blindly picks a sequence
of three papers from the bowl. Find the probability that he picks two women by using: (a) the conditional-probability
techniques from Chapter 9 of Volume 1, and (&) the hypergeometric probability function.

Solution

(@) There are three sequences of picks that include two women: WNWNM, WNMNW, and
M N W N W. Using equation (9.5), Volume 1,

4 3 6
POV AW NM) = 5% 5 x g = 0.10
4 6 3
NMAW)=—x-x==
P(W )=15%5 %5 =010
6 4 3
PMOWNW)=15x5x2=0.10

Then, using the generaliztion of the special addition rule [Property 4, Section 8.6, Volume 1]

PR women) = P[(WNWNM)UWNMOWYUMNWNW))
=PWNWnM+PWNNMNW)+PMNWNW)
=0.104+0.104+0.10=0.30

(b) These are the conditions of a hypergeometric experiment and so we can use equation (11.16). For

this,
N Ca = 10G = 3—,(—1(1)0'—3), 120
AN/ 6
e, Coe =2 G %6 €1 = (53 (757) = 00 = 36
Therefore,

P(selecting 2 Ws) = 326 =0.30

11.22 THE FAMILY OF HYPERGEOMETRIC PROBABILITY DISTRIBUTIONS

As is true for the binomial (see Section 11.9) and multinomial (see Section 11.17) distributions, the
hypergeometric distribution is also a family of probability distributions. It has the parameters Ny, Ny, and
n.

EXAMPLE 11.18 For the experiment ini Example 11.17, determine the entire hypergeometric probability
distribution by placing the values given for the parameters in equation (11.17).

Solution
The requested hypergeometric distribution is shown in Table 11.5.
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Table 11.5
Probability
() )
Number fo) =LY
of Ws (NT)
X n
(0)G)
_\o/\3) (o)
Y f0) = (10 ="020) =0.16667
3
(0)G)
) @as)
1 f)==45 —(120)_0.50000
3
()6)
2J\1] (6)6) _
2 f@= (10) —(120)_0.30000
3

(4) (6)
3/\0/ _ (1) _
3

y 1.00000

3 3=

11.23 THE MEAN, VARIANCE, AND STANDARD DEVIATION OF THE
HYPERGEOMETRIC PROBABILITY DISTRIBUTION

Without deriving them, we will state that for a hypergeometric distribution the mean (expected value)
is
N,
EX)=p="25 (11.18)
Nr
the variance is

2 _ nNgNp(Ny — n)

11.19
NIV, — 1) (11.19)
and the standard deviation is
Vo= [MWNsNeWNr —n) 11.20
o o NI, = 1) (11.20)

EXAMPLE 11.19 Find the mean and variance of the hypergeometric distribution shown in Table 11.5.

Solution
Using equation (11.18),
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Using equation (11.19),
Jz_”NsNF(NT—”)_?’ x4 x6x(10-—13)

NEN;—1) 10210 —1) =0.56

11.24 THE GENERALIZATION OF THE HYPERGEOMETRIC PROBABILITY
DISTRIBUTION

As the multinomial probability function is a generalization of the binomial probability function (see
Section 11.16), there is also a joint probability function (see Section 11.13) that is a generalization of the
hypergeometric probability function. This function is appropriate for hypergeometric experiments with the
following properties:

(1) A random sampie of n objects is taken from a finite population of Ny objects by sampling without
replacement.

(2) Ofthe Ny objects in the population, N, are of type one, N, are of type two, ..., N, are of type k, and
N1+N2+"'+Nk=NT.

(3) The discrete random variable X;,X,, ..., X are used to count the number of times types one,
two, ...,k appear in the sample, with the actual count values denoted by X; =x,X, =
X250 ’Xk = X;.

The joint probability function that gives the probability of obtaining x, of type one, x, of type
2,...,x; of type k, also simply called the hypergeometric probability function, is

fGx, o x)=PX, =x,X, =%,..., X, =x)
()G ()
_\*%1/\*" Xk
= A (11.21)
()

EXAMPLE 11.20 You randomly draw 10 cards from a deck of 52 playing cards without replacing the card between
draws. What is the probability that you draw 2 clubs, 2 hearts, 2 diamonds, and 4 spades?

where x; +x, + - +x, = n.

Solution

In this problem we are dealing with a hypergeometric experiment where: X; = clubs in sample = x; = 2,
X; = hearts in sample =x, =2, X; = diamonds in sample = x; = 2, X; = spades in sample = x, = 4,
Ny =52, N, =N, =N; = Ny =number of cards in each suit = 13, and n = 10. Using these values in
equation (11.21), we get

(13) (13) (13) (13)
_\2)\2/)\2)\4/] (@8)(78)(78)715)
f@2.2,2.4)= (52) T (15,820,024,220) 0.0214

i0

11.25 THE BINOMIAL AND MULTINOMIAL APPROXIMATIONS TO THE
HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution is the appropriate discrete probability distribution to use for
probability questions involving sampling without replacement from finite populations, either two-outcome
questions or multiple-outcome questions. However, in large populations there is essentially no difference
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between sampling with replacement and sampling without replacement. Thus, if n» < 0.05N, then the .
binomial distribution can be used to solve two-outcome sampling-without-replacement problems and the
multinomial distribution can be used to solve multiple-outcome sampling-without-replacement problems.
In the binomial case this approximation is called the binomial approximation to the hypergeometric
distribution and in the multinomial case it is called the multinomial approximation to the hypergeometric
distribution.

11.26 POISSON PROCESSES, RANDOM VARIABLES, AND EXPERIMENTS

In the three previous discrete probability distributions in this chapter, we determined the probability of
random events occurring in a fixed number of trials, n. Now, with the fourth and last probability
distribution to be discussed in the chapter, the Poisson probability distribution, we will determine
probabilities for random events occurring in continuous fixed units (see Section 2.6, Volume 1) of time
and space. The Poisson is similar to the binomial in that it deals with the number of occurrences of one of
two possible outcomes (again called the “success™ outcome), but while the number for the binomial is a
finite number of trials when success occurs, the number for the Poisson can be an infinitely large number of
occurrences in a continuous unit of time or space. Some examples of discrete random variables in the real
world whose outcome-probabilities might appropriately be calculated with Poisson techniques are: number
of phone calls arriving at a switchboard during the interval 10 AM to 11:30 AM, number of emitted particles
recorded during a ten-second interval by a Geiger counter placed near a radioactive substance, number of
defects in four meters of electrical cable, number of white blood cells in one cubic centimeter of
blood, number of defects in the surface of a new car, and number of bacterial colonies growing on an agar
plate.

To use Poisson techniques to determine outcome-probabilities for such random variables, it is
necessary that the process generating the random outcomes be a Poisson process. This is true if the
following assumptions are met:

(1) For a given continuous unit of time or space, there is a known, empirically determined positive
constant, denoted by A (Greek lowercase lambda), that is the average rate of occurrence of successes
in the given unit. This rate A characterizes the success-generating process being observed and is the
same for all similarly defined units.

(2) For any size of subunit of the given unit, the number of successes occurring in the subunit is
independent of the number of successes in any other nonoverlapping subunit.

(3) If the specified unit is divided into very small subunits denoted by 4, then the probability of exactly
one success occurring in an 4 is very small and it is the same (is constant) for all 4s in the unit no
matter when (or where) they appear. This very small probability of one success in % gets closer and
closer to the value Ak as % is made smaller and smaller.

(4) The probability of more than one success occurring in any very small subunit 4 is essentially zero. As
h is made smaller and smaller, this probability gets closer and closer to zero.

If the process that generates random events in a given unit of time or space is a Poisson process, then if
a discrete random variable X is used to count the number of successes (X = x) occurring in the given unit
(or in one of its subunits), this variable is called a Poisson random variable, and the experiment of counting
the number of successes is a Poisson experiment. These concepts and the Poisson probability function (see
Section 11.27) are named after their discoverer, the French mathematician Siméon D. Poisson (1781-
1840).

To understand these concepts, consider this Poisson experiment. A manufacturer of electrical cable,
knowing that defects appear “randomly” in the cable as it is produced, wants to use Poisson techniques to
determine the probabilities for different numbers of defects (successes) in a fixed length (unit) of cable. He
decides to use 4 meters as the fixed unit and, after counting defects in many 4-meter lengths, he finds that
the average (arithmetic mean) of these counts is 4.0 defects per 4 meters. This satisfies assumption (1): for
the 4-meter unit, there is an empirically determined positive constant (4 = 4.0 defects per 4 meters) that is
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the average rate of random occurrences of the defects (successes) in the unit, and it is reasonable to believe
that A will be the same for all 4-meter lengths. If we now consider a 10 ¢cm Section (subunit) from the 4
meters, then assumption (2) is met if the number of defects occurring in this subunit is independent of the
number occurring in any other nonoverlapping subunit. If we now consider a very small subunit 4 of the 4
meters, then assumption (3) is met if there is a very small but constant probability that exactly one defect
will occur in any 4 [P(X = 1) & Ah = (4.0)/] regardless of where the 4 is located in the 4-meter unit.
Finally, assumption (4) is met if the probability of more than one defect in any subunit # is essentially zero
[P(X > 1) = 0].

EXAMPLE 11.21 At the end of each week, the receptionist at a big-city clinic counts the number of new cases that
have come to the clinic that week with the same highly contagious disease. These counts, increasing over the past
three weeks, were 2, 10, and 30. Explain why this is probably not a Poisson experiment.

Solution

For this experiment to be a Poisson experiment, the process that generates the successes (new cases at the
clinic) in the given unit of time (one week) must be a Poisson process. For this to be true, none of the four
Poisson assumptions can be seriously violated, and in this example it would appear that at least three of them
may be badly violated.

The essence of assumption (1) is that for the given unit (one week) there is a characteristic empirically
determined average rate of occurrence of successes (new cases), 4, that is the same for all similarly defined
units. Clearly this is not the case here, as it is apparent that the generating process is not stable but is instead a
rapidly changing epidemic. Under these conditions, a A calculated from these three weeks (1 =42/3 = 14
cases per week) cannot be assumed to be valid for subsequent weeks.

The essence of assumption (2) is that the number of new cases appearing in any subunit of the week (say,
on a Friday) will be independent of the number occurring in any other nonoverlapping subunit (say, on a
Monday). But, under epidemic conditions in a crowded city neighborhood it is very likely that this assumption
will be violated. As patients early in the week become infected and learn of the disease at the clinic, they will
return to the neighborhood, infecting and informing their neighbors, sending new cases to the clinic later in
the week.

The essence of assumption (3) is that there is a small but constant probability of the occurrence of exactly
one success in all equal, very small subunits (i.e., seconds) within the unit (week), but under these epidemic
conditions it is not reasonable to expect this moment-by-moment probability to remain constant.

Finally, for assumption (4), the case numbers are as yet small enough that the probability of more than
one new case in a very small subunit would be close to zero, but if the numbers greatly increase this could also
be violated. g

11.27 THE POISSON PROBABILITY FUNCTION

In Section 11.26, we indicated that one assumption of a Poisson process is that for any given unit of
time or space there is a known, empirically determined average rate of occurrence of successes 4 that is the
same for all similarly defined units. It follows from this and the other three assumptions, though we will not
attempt to prove it, that the average (expected) rate of occurrence of successes in any multiple of the
defining unit, denoted by ¢, is Az. Thus, for the cable-defect experiment in Section 11.26, where 4 = 4.0
defects per 4 meters, the average rate of occurrence of defects in 24 meters (f = 6 units) would be

A, = (4.0 defects per 4 meters) x (6 units)
= 24.0 defects per 24 meters

and for 1 meter (t = % unit)

At = (4.0 defects per 4 meters) x (% unit)

= 1.0 defect per meter
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The Poisson probability function utilizes this constant ¢ to determine the probability of occurrence of
(X = x) successes in some multiple ¢ of the defining unit for a Poisson experiment. Without attempting to
derive the function, it is

(At)e ™
x

() =P(X =x) = forx=0,1,2,... (11.22)

where e is the base of the natural logarithm and is equal to 2.71828. .. [see Problem 1.23(b), Volume 1],
and x = 0, 1, 2, ... means that the domain of this function (see Section 1.17, Volume 1) consists of all the
nonnegative integers.

EXAMPLE 11.22 Assuming that the cable-defect experiment described in Section 11.26 is a Poisson experiment,
what is the probability of two defects occurring in one meter of a cable?

Solution
Using equation (11.22) to determine the probability of two defects in one meter of cable (¥ = i— units)

pp ez GO PEE_pet
f@Q=PX=2)= N _We et

If your calculator has an ¢* key, you can get the solution directly:

£(2) = 0.1839

If your calculator does not have an ¢ key, then knowing that e = 2.71828... and that e™ = 1/¢* [see
Example 1.16(a), Volume 1], you can use the following solution:

o 1

e
@ 2 2e  2(2.71828) 0.1839

11.28 THE FAMILY OF POISSON PROBABILITY DISTRIBUTIONS

As was true for the previous distributions in this chapter, the Poisson distribution is also a family of
probability distributions. It has the single parameter Ar.

EXAMPLE 11.23 Use equation (11.22) to determine the Poisson probability distribution for the cable-defect
experiment in Section 11.26, where 4 = 4.0 defects per 4 meters, ¢ = % units, and thus At = 1.0 defect per meter.

Solution

Because the domain of equation (11.22) consists of all nonnegative integers, a countably infinite number
of values (see Section 10.2, Volume 1), it is never possible to determine an entire Poisson probability
distribution. What we do present in Table 11.6 are the distribution values for x =0, 1, ..., 6 to show how
rapidly P(X = x) goes toward zero as (X = x) increases, and thus how much of the total probability of 1.0 in
the distribution is taken by x=0,1,...,6

i £(x) = 0.99992
x=0
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Table 11.6

Number of Pmbz(lsgit:nm

)(Ciefects fx) = i

0 J0)= U_.O)z)()!_e‘_‘f =0.36788
1 = QO);!e—_m =0.36788
2 f(2)= @;d =0.18394
3 3= (—1;0)33'9—_1'0 = 0.06131
4 fd) = (1'0):,6_1 " 001533
5 f(5) = %ﬂ =0.00307
6 f(6)= %;e_ll?— = 0.00051
> » 0.99992

11.29 THE MEAN, VARIANCE, AND STANDARD DEVIATION OF THE POISSON
PROBABILITY DISTRIBUTION

For a Poisson distribution where 4 is the average rate of occurrence of successes in the given defining
unit and At is the average rate of occurrence of successes in an interval of ¢ units, then, without deriving
them, we will state that

Mean of distribution = expected number of successes in an interval of ¢ units

p=EX) =it (11.23)
Variance of distribution = ¢? = u = At (11.24)
Standard deviation of distribution = ¢ = v/o2 = vz (11.25)

As indicated in Section 11.28, the Poisson distribution has a single parameter Az, which we now see is
both the mean and the variance of the distribution. Because of this, equation (11.22) is often written

pre
f@ =0 forx=012. (11.26)

EXAMPLE 11.24 For the Poisson distribution shown in Table 11.6, what are its mean, variance, standard
deviation, and parameter?

Solution
For this Poisson distribution, in which 4 is equal to 4.0 and ¢ is equal to %, the mean is

1
=M =4 -=1.0
p=Axr ()><4
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the variance is
cl=pu=Ait=10

the standard deviation is

c=va2=+/10=10
and the parameter is
it=1.0

11.30 THE CUMULATIVE POISSON PROBABILITY TABLE

In Section 11.10, we introduced Table A.3 in the Appendix (Cumulative Binomial Probabilities) that
gives cumulative probability values calculated with equation (11.10)

F@=Y[re=)re™]

x<a

for selected binomial distributions. Sinﬁlarly, Table A.4 in the Appendix (Cumulative Poisson Probabil-
ities) gives cumulative Poisson probability values calculated with this equation

F@=Y [f(x) ¥ e_"] (11.27)

x<a x!

for u=0.001,...,1.00; and u=1.1,...,8.0. To find the required F(a) in Table A.4, go to the
intersection of the appropriate p column and a row.

EXAMPLE 11.25 A physicist places a Geiger counter near a radioactive substance and then notes the number of
emitted particles recorded by the counter every 10 seconds for a 2-hour period. From this set of data, he calculates the
average rate of recording particles (successes) in a 10-second interval (unit) to be A = 5.5 particles per 10 seconds.
Assuming this is a Poisson experiment, find the probability of recording more than three emitted particles in a 10-
second interval. First, calculate the probability by cumulating the probabilities, and then find it by using Table A.4 in
the Appendix.

Solution

The first step is to find the Poisson probability distribution for x = 0, 1,2, 3 particles in a 10-second
interval. Using equation (11.26),

we*
x!

S =

with the values u = At =55x1=5.5,

5‘503—5.5 e—5.5

f(0) = T 0.00409
1,-55 —-5.5

)= 5'51e, =33 xle = 0.02248
2 ~55 -5.5

f@)= 5'5; =302 ; ¢ 006181

. 3,-55 166.375 -5.5
f(3)=55;, - 166 S =0.11332
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The calculation of the probability by cumulation is

PX>3)=1-PX <3)=1-F(3)

where F3)=Y [ fw = ;'”]

x<3
F@)=fO0)+r()+1()+/B)
= 0.00409 + 0.02248 + 0.06181 + 0.11332
= 0.20170

And thus P(X >3)=1-0.20170 = 0.79830, ot 0.798

Now, finding the same probability by using Table A4 of the Appendix, we need to find F(3), which is the
intersection of column (1 = 5.5) and row (@ = 3). The value at this intersection is 0.202. This solution is the
same as the one above, '

P(X >3)=1-0.202 =0.798

11.31 THE POISSON DISTRIBUTION AS AN APPROXIMATION TO THE BINOMIAL
DISTRIBUTION

The Poisson probability distribution can be used to approximate the binomial probability distribution
under the following conditions: the random occurrence of success in the binomial experiment is a rare
event, where n is “large” and p is “small.” Without attempting to show this relationship between the two
distributions, we simply state that the following is true:

A binomial distribution f(x) = (Z)p‘q”"‘ has two parameters, n and p, and a mean

u = np. If np remains fixed while r is increased and p is decreased, then as n approaches
infinity and p approaches zero, the binomial distribution approaches the Poisson
pe™*

x!

distribution f(x) = with a mean of u = np.

There is no unanimous agreement among statisticians about what is “large” and “small” in this
context, but one common rule of thumb is that Poisson approximations are good if n > 20 and p < 0.05
and very good if n > 100 and p < 0.01.

EXAMPLE 11.26 A large factory has accepted 100 new people into a training program. The manager of the -
program knows from thousands of previous trainees that 4% of the trainees will not finish the program. Use both
binomial and Poisson techniques to calculate the probability that exactly six will not finish.

Solution

If we accept that p is constant over independent trials, then this is a binomial experiment where:
success = trainee not finishing, n =100, p =0.04, and ¢ = 1 — 0.04 = 0.96. Thus, using the binomial
probability function [equation (11.2)]

f&x) = (:)p‘q""‘

100
6) =
0= ('S
= (1,192,052,400)(0.0000000041)(0.021552)

= (.1053

)(0.04)6(0.96)94

As n > 100 and p < 0.05, we can use the Poisson approximation to the binomial. Thus, using equation
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(11.26) with gt = n x p = 100 x 0.04 =4
ﬂ‘e”‘

46

fx)=

e“4 (4,096)(0.018316)
720

f(6) ~ =0.1042

Solved Problems

THE BINOMIAL PROBABILITY DISTRIBUTION

11.1

Which of the following are binomial experiments?

_ (@) From many previous studies it has been established that drug 4 successfully cures a specific

skin condition 64% of the time. You are a dermatologist, and you give this drug to the first 10
patients who come to you with this condition, counting how many of them it cures.

. _(b) Out of the population of 150,000 families, you call a random sample of 150 and ask the
- "\\

11.2

113

person who answers what the family income is.

Solution

(a) For this to be a binomial experiment, the following must be true: (1) the cure rate of 64% must remain
constant over the 10 patients, (2) the drug treatments are independent, (3) the population N with this
condition must be large. If we can assume these to be true, then this is a binomial experiment, where:
success = cure, p = 0.64, ¢ = 1 — 0.64 = 0.36, the binomial trials are the 10 patients, and the binomial
variable is the number cured.

(b) This is not a binomial experiment because you do not have outcomes that can be classified as success or
failure.

Which of the following are binomial experiments?

(@) Your factory has a machine that produces a part for an electric drill. You test the machine by
taking 30 parts consecutively produced by the machine and counting how many of them are
defective.

(b) You survey 100 randomly selected people out of the 50,000 reglstered to vote in an electlon
counting how many of them prefer candidate 4 over candidate B.

Solution

(@) This is not a binomial experiment because the trials are not independent. If the machine begins to
produce defective parts, then in all likelihood each subsequent part will be defective.

(b) Here n < 0.05N [n = (100/50,000)N = 0.002N], so we accept that p is constant over independent
trials. Therefore, this is a binomial experiment, where: success = prefer 4, p = unknown % of 50,000
who prefer 4, ¢ = 1 — p, the Bernoulli trials are the 100 voters surveyed, and the binomial variable is the
number who favored A.

Which of the following are binomial experiments?
(a) From past experience, a tire dealer expects a 2% defective rate for each 1,000-tire shipment of

one type of tire. He takes a random 20-tire sample from such a shipment and counts the
number of defective tires in the sample.
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(b) For the same 1,000-tire shipment in (a), instead of taking a 20-tire sample and counting the number of
defectives, the dealer randomly removes tires from the shipment, counting how many he must remove
until he finds the first defective tire.

Solution
(a) Asn < 0.05N, we can assume p is constant over independent trials, and that therefore this is a binomial
experiment.

(b) Not a binomial experiment because there is not a fixed number of trials ».

The tire dealer in Problem 11.3 receives a 1,000-tire shipment with the 2% defective rate. This time
he takes a random sample of 5 and counts the number of defective tires in the sample. Using
equation (11.2), find the probability distribution for the binomial variable: number of defectives.
What is the mean, variance, and standard deviation of this variable?

Solution

The requested distribution is shown in Table 11.7, and the calculations of the mean, variance, and
standard deviation are shown below the distribution.

Table 11.7
Number of Probability
gefectlves f0) = (:) o
0 £(0) = ((5)) (0.02)°(0.98)° 0 = 0.9039208
1 HOE G)(o.oz)‘(o.%)s-‘ = 0.0922368
2 1) = G) (0.02)*(0.98)°~% = 0.0037648
3 1) = G) (0.02)°(0.98)>* = 0.0000768
4 74 = (2) (0.02)*(0.98)°~* = 0.0000008
5 f5) = (2)(0.02)5(0.98)5‘5 = 0.0000000
y 1.0000000

1= np = (5)(0.02) = 0.10
6* = npq = (5)(0.02)(0.98) = 0.098
6 =062 =+0098 =0313

In Example 10.5 in Volume 1, for the binomial experiment of flipping a coin three times with the
random variable number of heads, it was found that the probability of getting two heads in the three
flips is
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11.6

11.7

11.8

Redo this calculation using the binomial probability function [equation (11.2)], and then show why
the two results are the same.

Solution
Using equation (11.2) with: success = getting a head, failure = getting a tail, p = Lg=%4andn=3

&= )ra

- Q) () s ) () -so-e

To see why the binomial probability function gives the same result as the original calculation, we will
convert the original to the binomial form. Thus

f(2) = P(H, N H, N T3) + P(H, N T, N Hy) + P(T) N H, N H3)
=(pxpxq)+@xgxp)+(@xpxp)
which can be rearranged to be

1@ = (9 + (9 + P*q) = 3(¢%9)

Here we see the two components of the binomial probability function; the 3 is the binomial coefficient, and the
P?q is the p*¢"™* component.

Use equations (11.4), (11.6), and (11.7) to find the mean, variance, and standard deviation of the
binomial distribution in Table 11.2.

Solution
1
U=np= (7)(5) =35

o’ =npq = (7) (%) (%) =175

o =02 = +/1.75 = 1.3229, or 1.32

For the binomial distribution in Table 11.1, usé equations (11.4), (11.6), and (11.7) to find the
mean, variance, and standard deviation. '

Solution
1
p=np= (5)(3) =0.8333,0r 0.83

1\ /5
0> =npg = (5)(-é> (g) = 0.69444, or 0.694

o = /npq = +/0.69444 = 0.83333, or 0.833

Use Pascal’s triangle to find the binomial coefficients for the expansion of (g -+ p) and (g + .

Solution

These coefficients are found by first adding the row for n = 6 (Example 11.7) to the triangle in Fig. 11-1,
and then using the calculation procedures from Section 11.8. The coefficients forn = 6,n =7, and n = 8 are
shown in Fig. 11-4.
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6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1
Fig. 11-4

11.9 For the binomial variable: number of heads in seven flips of a coin, use the binomial distribution in
Table 11.2 to determine the probability of getting: (@) at most 5 heads, (b) more than 2 heads
but at most 5 heads, (c) 2, 3, 4, or 5 heads. .

Solution
(@ FO)=PX <5)=fO)+fV)+fQ2)+fB)+f(4)+1(5)
= 0.0078 + 0.0547 + 0.1641 4+ 0.2734 + 0.2734 + 0.1641 = 0.9375 .
(b) For a discrete random variable, equation (10.4) in Volume 1 states that
Pla < X <b)=F(b)—F(a)
We know from Example 11.8 that F(2) = 0.2266, and from part (@) that F(5) = 0.9375. Therefore,
P2 <X <5)y=F(5) - F(2)=0.9375 —0.2266 = 0.7109
(¢) For a discrete random variable, equation (10.5) in Volume 1 states that
Pla <X <b)=F(b) - F(a) +f(a)
Therefore,

P2 <X <5)=F(5) — F(2) + f(2) = 0.9375 — 0.2266 + 0.1641 = 0.8750

11.10 For the binomial variable: number of heads in seven flips of a coin, use the results from Problem
11.9 and the binomial distribution in Table 11.2 to determine the probability of getting: (a) more
than 2 heads but fewer than 5 heads, () at least 2 heads but fewer than 5 heads.

Solution
(a) For a discrete random variable, equation (10.6) in Volume 1 states that
Pla<X <b)=F(b)—F(a)—f(b)
Therefore,
P2 < X < 5)=F(5) — F(2) — f(5) = 0.9375 — 0.2266 — 0.1641 = 0.5468
() For a discrete random variable, equation (10.7) in Volume 1 states that
Pla <X <b)=F(b)—F(a)+f(a)—f(b)

Therefore,

PR <X < 5)=F(5)— FQ2) +f(2) — f(5) = 0.9375 — 0.2266 + 0.1641 — 0.1641 = 0.7109

11.11 For the binomial variable: number of heads in seven flips of a coin, use the cumulative binomial
probabilities in Table A.3 of the Appendix to determine the probability of getting: (a) at most 2
heads, (b) at most 3 heads, (c¢) 3 heads.
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11.12

11.13

Solution
(@) From the intersection in Table A.3 of row (n =7, a = 2) and column (p = 0.50),
F(2) = P(X <2) =0.2266
This agrees with the result in Example 11.8.
(b) From the intersection in Table A.3 of row (n =7, a = 3) and column (p = 0.50)
F(3) = P(X <3)=0.5000
(o fB)=P2<X<3)
Using equation (10.4) of Volume 1,
PR<X<3)=F3)—FQ2)
Therefore, using the values from parts (a) and (),
£(3) = 0.5000 — 0.2266 = 0.2734 )

This result is the same as the f(3) value given in Table 11.2 (rounded to four decimals).

For the binomial variable: number of heads in seven flips of a coin, use Table A.3 in the Appendix
and results from Problem 11.11 to determine the probability of getting: (a) at least 3 heads, (b)
more than 3 heads, (c) more than 2 heads but fewer than 5 heads.

Solution

(@) PX>3)=1-PX <2)=1-F(2)
From Problem 11.11(a), we know that F(2) = 0.2266, so

PX =3)=1-0.2266=0.7734

(b)) PX>3)=1~-PX<3)=1-F(Q3)
From Problem 11.11(5), we know that F(3) = 0.5000, so

P(X >3)=1-0.5000 = 0.5000
(¢} Equation (10.6) in Volume 1 states that
Pla <X <b)=F(b)—F(a) —f(b)
Therefore, here we want to determine
PR <X <5 =F©5)-F2)—f(5)

We know from Problem 11.11(a) that F(2) = 0.2266. From Table A.3 we find that the intersection of
row (n = 7, a = 4) and column (p = 0.50) is F(4) = 0.7734, and the intersection of row (n =7, a = 5)
with column (p = 0.50) is F(5) = 0.9375. Therefore,

£(5) = F(5) — F(4) = 0.9375 — 0.7734 = 0.1641

and thus, P2 <X < 5)=0.9375 - 0.2266 — 0.1641 = 0.5468
This agrees with the result in Problem 11.10(a).

Everyone applying for a laboratory job at a large drug company is given an eight-question multiple-
choice exam in basic chemistry. Each question has four choices. If the applicants have no
knowledge of chemistry and are answering randomly, then: (a) On the average how many

~ questions do they answer correctly? (b) What is the probability that an applicant randomly

answering will get correct at most one more than the average number in (a)?
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" Solution

(a) If the applicant is answering randomly, then this is a binomial experiment where: success = correct
answer, n = 8, and p = 0.25. Therefore, using equation (11.4), the average number correct is

w=np=(8)(0.25)=2.0
(b) From Table A.3 in the Appendix, for n = 8, a = 3, and p = 0.25
' P(X <3)=F(3) = 0.8862

Using Table A.3 in the Appendix, determine for the multiple-choice exam in Problem 11.13: ()
If applicants are required to get six or more correct to be considered for employment, what is the
probability that a randomly answering applicant will be so considered? () What is the probability
that a randomly answering applicant will get two, three, or four correct?

Solution

(@) P(X =z6)=1—F(5)
From Table A3 for n =8, a =5, and p = 0.25,

F(5) = 0.9958
Therefore,
PX >6)=1-0.9958 =0.0042
(b) Using equation (10.5) of Volume 1, we must determine
PR=X=4)=FA-FQ)+/Q)
From Table A3 for(n=8,a=1,p=025),(n=8,a=2,p=025),and (n=8,a=4,p= 0.25),
F(1) =0.3671, F(2) = 0.6785, F(4) = 0.9727
Thus,
f(2)=F(2)— (1) =0.6785 — 0.3671 =0.3114
And therefore,
P2 <X <4)—-0.9727 - 0.6785 + 0.3114 = 0.6056

THE MULTINOMIAL PROBABILITY DISTRIBUTION
11.15 Of the registered voters in a city, 40% are Democrats, 35% are Republicans, and the other 25% are

not affiliated with either party. If you take a random survey of 10 registered voters, what is the
probability that all 10 are Republicans?

Solution

The 10 voters are only a small fraction of the city’s registered voters (n < 0.05N), so the survey is a
multinomial experiment where: »n = 10, 4; = {Democrat}, 4, = {Republican}, 4; = {not with either},
X; = number of Democrats = x;, X, = number of Republicans = x,, X; = number not with either = x,,
p) = 040, p, = 0.35, p; = 0.25. Using equation (11.13),

n!
f(xlsx2ax3) 'x 'p1p2p3

£(0, 10, 0) = ———— (0.40)°(0. 35)"’(0 25)° == (1)(1)(0.0000276)(1) = 0.000028

0'10'0‘
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11.16 For the random survey of 10 registered voters in Problem 11.15, use equation (11.13) to determine

11.17

11.18

the probability that: (a) two are Democrats, two are Republicans, and six are not affiliated with
cither party, (b) five are Democrats and five are Republicans.

Solution

10!
21216!

62
(0.40)%(0.35)%(0.25)° = (9—%) (0.16)(0.1225)(0.0002441) = 0.006028

b £G5,5,0) =5_'15%(0.40)5(0.35)5(0.25)° = (3 ’628’800)(0.01024)(0.005252)(1)

14,400
= 0.013553

(@ f2,2,6)=

After cross-breeding two types of plants, a geneticist predicts from Mendelian theory that the
resulting offspring-population will have a 9:3:3:1 ratio of (tall purple-fiowered plants 7P) to (short
purple-flowered plants SP) to (tall white-flowered plants TW) to (short white-flowered plants SW).
Assuming she is correct, if 16 seeds from the offspring-population are randomly selected and
planted, then what is the probability of exactly 4 plants of each type?

Solution

If it can be assumed that the 16 seeds are only a small fraction of the present and future offspring-
population (# < 0.05N), then this is a multinomial experiment where: n =16, 4; = {TP}, 4, = {SP},
Ay = (TW), A;={SW}, X, =number of TPs=x,, X,=number of SPs=ux,, X;=number of
TWs = x;, X, = number of SWs=x,, p; =9/16, p, =3/16, p; =3/16, p, = 1/16. Using equation
(11.13),

n! X X X X,
X11 X2, X3, X4) = ———— D' P’ P304
S0, %3, %3, %4) x1!x2'.x3!x4!p1 Py P3Py

160 79\ 3\ 3\ 1!
S4.4.4.9 = (R) (ﬁ) (Té) (R)
= (63,063,000)(0.100113), (0.001236)(0.001236)(0.000015)
= 0.000145

For the 16 seeds planted in Problem 11.17:  (a) What is the probability of 9 TPs, 3 SPs, 3 TWs,
and 1 SW? (b) What are the expected values and parameters of this distribution?

Solution

{a) Using equation (11.13),

160 79\ /3\ /3 V!
D=e— (=)} (=) (=) (=
f0.3,3,1) 9!3!3!1!(16) (16) (16) (16)
= (1,601,600)(0.005638)(0.006592)(0.006592)(0.0625)
= 0.02452



38 DISCRETE PROBABILITY DISTRIBUTIONS [CHAP. 11

(b) Using equation (11.14), the expected values are

9 3
Q) = 1y = npy = 16(5) =9 B =p == 16(3

3 1
E(X3) = p3 =np; = 16(1_6) =3  EX)=p=nps= 16(‘—

=3

16 !

The parameters are (see Section 11.17)

9 3 3 1
n =16, p=1e P =1c =1 Pa=1z

THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

11.19 For the committee-selection experiment in Example 11.17, determine the probability that the
manager picked three men.

Solution

For this experiment: X is a hypergeometric random variable that counts the Ms in the three picks
(x=0,1,2,3), Ny = staff members =10, n = sample size =3, Ny =Ms on staff =6, Nr = Ws on
staff = 4, x = Ms in sample, and » — x = Ws in sample. Placing these values in equation (11.17),

o]
fO)=PX =x) = XI(Ng — 0L [ (1 = )WV = (n — 1)

ANy = n)!]
[ 6! ] [ 41 ]
73y = BIE=) (13;)'— )4 - 0)! =%= 01667
[3!(10 - 3)!]

11.20 A bowl contains 20 marbles that are identical except for color: 10 are red R and 10 are green G. You
blindly pick 10 marbles, without returning the marbles after they have been picked. Find the
probability of picking 4 red marbles in the 10 picks.

Solution

As this is sampling without replacement, the trials are not Bernoulli trials, and thus this problem must be
solved using hypergeometric techniques. For this experiment: X is a hypergeometric random variable that
counts the Rs in the 10 picks (x =0, 1,2, ..., 9, 10), Ny = 20, n = 10, Ng = 10, Ny = 10, x = Rs in sample,
(n — x) = Gs in sample. Therefore, using equation (11.16),

()62)
S@ = ")Ig:“"
(%)
(10)(10)
f@= 4JA\6) _ QIOCLO) _; )3g9

20\ (184,756)
(1)
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11.21

11.22

11.23

A factory receives electrical fuses in lots of 40. The receiving department randomly tests four fuses
from each lot, and if any are defective it rejects the remainder of the lot. If 10% of a lot is actually
defective, then what is the probability that one of the four tested fuses is defective?

Solution

This is a hypergeometric experiment where: X = number of defectives, Ny =40, n =4, Ny =4,
Np =36, x =1, n — x = 3. Therefore, using equation (11.16),

()

6)E)
1J\3) (4)(7.140)
(40) ~(91,390) = 03125

fx) =

)=
4

For the four-fuse test in Problem 11.21, what is the probability that the lot will be accepted?

Solution

In Section 11.11, binomial techniques were used to solve lot-acceptance-sampling problems. If, however,
as here, binomial techniques are inappropriate [sampling without replacement and (z/N = 0.10) > 0.05], then
hypergeometric techniques can be used to find the probability of accepting the lot P, for a given acceptance
number a. Therefore, using equation (11.16) for a = 0,

(0)(%)
P, = P(X = 0) = 0 ( 404 = (1();1583’38)5 ) — 0.6445
‘)

Thus, there is a 64% probability of accepting the lot even though 10% of the lot is defective.

The factory in Problems 11.21 and 11.22 now receives its fuses in lots of 50. A decision is made to
randomly test six fuses from each lot, and to reject the lot if more than one is defective. If 12% of
the lot is actually defective, then what is P,?

Solution

This is a hypergeometric experiment where: X = number of defectives, Ny =50, n =6, Ny =6,
Np =44, x=0o0r 1, n—x =6 or 5. The problem can be solved by placing equation (11.16) in equation
(10.2) of Volume 1 to get

)62
P,=P(X <a)=F(@) = 3| f() =L "1/

x<a N T
n
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For this problem

0)(%) OE)
P =P(X <1)= F(1) = "3/ L AUAS
() (%)

_(1)(7,059,052) . (6)(1,086,008)

= ~(15.890,700) ' (15,890,700)

=0.442 + 04101 = 0.8543

Thus, there is an 85% probability of accepting the lot even though 12% of the lot is defective.

"~ 11.24 What are the mean, variance, and parameters of the hypergeometric distribution from the fuse-
testing experiment in Problem 11.23?

Solution
Using equations (11.18) and (11.19),
nNs 6x6 62__nNSNF(NT—n)_6x6x44(50—6)

= 2, = =
N, 50 =07 NZ(Np — 1) 502(50 — 1)

=0.569

and the parameters are (see Section 11.22) Ny = 50, Ny = 6, and n = 6.

11.25 A group of painters has painted 38 houses. Of these paint jobs: 14 of the homeowners are very
satisfied V, 16 are moderately satisfied M, and 8 are dissatisfied D. The owner of the painting
company decides to take a random survey of 12 of these homowners. What is the probability the
survey will include 4¥s, 2 M, and 6 Ds?

Solution

This is a hypergeometric experiment for which the generalized version of the hypergeometric probability
function [equation (11.21)] is appropriate. In this experiment: X; = Vs in sample =x; =4, X, = Ms in
sample =x, =2, X; = Ds in sample =x; =6, Ny =38, Ny, =Vs in population =14, N, =Ms in
population = 16, N; = Ds in population = 8, n = 12. Therefore,

GIE)E)
f(xl X2, X ) = (NT)
n
2)) _
f(4,2,6) = ( )(2 (1,001)(120)(28) — 0.00124

(38) ~ (2,707,475, 148)
12

THE POISSON DISTRIBUTION

11.26 For the Geiger-counter Poisson experiment in Example 11.25, the average rate of recording
particles was calculated to be 4 = 5.5 particles per 10 seconds. Use Table A.4 in the Appendix and
the rules from Section 10.7 in Volume 1 to determine the probability in a 10-second interval of
recording 6 particles.
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11.27

11.28

11.29

Solution
Using equation (10.4) of Volume 1,

P(5 <X < 6)=F(6) — F(5) =1(6)
and from Table A4 for p = 5.5, F(5) = 0.529 and F(6) = 0.686. Therefore,
f(6) = 0.686 — 0.529 = 0.157

For the Geiger-counter Poisson experiment in Problem 11.26, use the results from Problem 11.26

. and the rules from Section 10.7 of Volume 1 to determine the probability in a 10-second interval of

recording: (a) at least 6 particles, (b) 6, 7, or 8 particles.

Solution

(@ PX>6)=1—-PX <5 =1~F(5)
From Problem 11.26, we know that F(5) = 0.529. Therefore,

PXX >6)=1-0.529=0.471
(b) Using equation (10.5) of Volume 1,
P(6 <X <8 =F(8)—F(6) +/(6)

From Problem 11.26, we know that F(6) = 0.686 and f(6) = 0.157, and from Table A4 for u =35.5,
F(8) = 0.894. Therefore,

P6 <X <8)=0.894 —0.686 4+ 0.157 = 0.365

Poisson techniques are commonly used in business in inventory control systems. Thus, in this
problem the manager of a seafood restaurant wants to use such techniques to determine how many
live lobsters he should have available each day, given that on the average seven lobsters are ordered
by customers each day. Assuming this is a Poisson experiment, then: (@) If on a given day he has
nine lobsters on hand, what is the probability that more than nine will be ordered? (b)) If on a
given day he wants to be more than 95% certain of having enough lobsters, how many does he
need?

Solution
(a) The question is: Given that y = At =7 x 1 =7, what is P(X > 9)? We know that
PX>9)=1-PX<9H=1-F(09)

and from Table A.4 for u = 7, F(9) = 0.830. Therefore, the probability of not having enough lobsters on
hand is

PX >9)=1-0.830=0.170
(b) The question is: Given that 4 = 7, what is ¢ in the following?
P(X <a)=F(a) > 0.950

As from Table A4 for p =7, F(11) = 0.947 and F(12) = 0.973, if he wants to be more than 95%
certain he should have 12.

A large factory has accepted 100 people into a training program. The manager of the program
knows from thousands of previous trainees that 4% of the trainees will not finish the program.
Determine the probability of 5 or more of the n = 100 trainees not finishing the program.
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Solution

This problem can not be solved with Table A.3 because, as is true with most binomial tables, it does not
include values for large n. We can, however, solve the problem with Table A4, as n appears only in
p=nxp=100 x 0.04 = 4. To do this we must solve this equation

PX>5=1-PX <4)=1-F(4)
and from Table A4 for u = 4, F(4) = 0.629. Thus,

P(X > 5)~1—0.629 = 0.371

A vaccine has been effective in immunizing against a disease 98.4% of the many times it has been
tried. Use Table A.4 in the Appendix and the rules from Section 10.7 in Volume 1 to answer the
following. Of the next 125 people vaccinated, what is the probability that the vaccine will not be
cffective for: (a) three of them, and (b) more than three of them?

Soluation

(a) If we accept that this is a binomial experiment, then it can be approximated with Poisson techniques
[(n=125) > 100; (p = 0.016) < 0.05]. Thus, using equation (10.4) of Volume 1,

PR<X<3)=F3)—-F2)=f()
and from Table A4 for u =n x p =125 x 0.016 = 2, F(3) = 0.857 and F(2) = 0.677. Therefore,

f(3) ~ 0.857 — 0.677 = 0.180

b PX>3)=1-PX<3)=1-F@3)~1-0.857 =0.143

The restaurant in Problem 11.28 has an average of 280 customers each day. If the manager decides
to do his inventory control for numbers of customers rather than units of time, for the next 200
customers rather than for daily demand, then what is the probability that x = 8, 9, 10, 11 of the next
200 customers will order lobster?

Solution

If we accept that this is a binomial experiment, then it can be approximated with Poisson techniques
[(n = 200) > 100; (p = 7/280 = 0.025) < 0.05].. Therefore, using equation (11.26) with u=nx p=
200 x 0.025 =5,

rey=E

f@®~ 58882_ i = (390’613), (;) ;())06738) =0.06528
9) ~ 59;_5 _ (1,933 ’;225’);08‘80673 ¥ — 003627
e lfg!—s = (9’765;’6622%;)(?673 8 _ 001813
fan ~ 5'e~>  (48,828,125)(0.006738) — 0.00824

- 39,916,800
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Supplementary Problems

THE BINOMIAL PROBABILITY DISTRIBUTION

11.32

11.33

11.34

11.35

11.36

Which of the following are binomial experiments?

(@) You randomly pick 10 cards in succession from a deck of 52 playing cards, following this same
procedure after each pick: determining whether the card is a red card, replacing the card in the deck, and
shuffling the deck. You count the number of red cards in the 10 picks.

(b) The same experiment as in (a) except that you do not replace the card after each pick.

Ans. (a) binomial experiment, (b) not a binomial experiment

The following is a binomial experiment: rolling a die five times and counting the number of 4s that occur in
the five rolls. For this binomial experiment, what are: success, failure, p, g, and the binomial random variable?

Ans. Success = observing a 4 on a roll, failure = observing any other outcome (1, 2, 3, 5, or 6), p = 1/6,
g=1-1/6=5/6, the binomial random variable is the number of 4s on the five rolls

A professional basketball player has shot thousands of free throws and has been successful 80% of the time. In
a series of nine attempts, what is the probability of his making: (a) at least five, (b} at most five, and (c)
fewer than five?

Ans. (a) 09804, (b)0.0856, (c)0.0196

Fifty salespeople for a magazine are each required to make 10 telephone calls each evening to people
randomly selected from names in directories. The salesperson’s task with each call is to sell a subscription to
the magazine. From thousands of such calls, the magazine knows that only 15% are successful; i.e., result in a
new subscription. For every 10 calls: (a) What is the mean and standard deviation of the number of
subscriptions the company expects? (b) What is the probability of two or fewer subscriptions?

Ans. (a) u=1.50, 0 =1.129; (b) 0.8202
For the 50 salespeople in Problem 11.35, what is the probability, every 10 calls, of getting more than one new
subscription?

Ans. 04557

THE MULTINOMIAL PROBABILITY DISTRIBUTION

11.37

11.38

11.39

The multinomial experiment is to pick 6 cards from a standard 52-card deck of playing cards, replacing the
card and reshuffling the deck after each pick. If for each trial the mutually exclusive and exhaustive possible
events are 4, = {ace, 2, 3,4, 5}, 4, = {6,7, 8}, 4; = (9, 10}, 4, = {jack, queen, king}, then what are: (a)
f00,0,0,6), (b)f(2,1,3,0)?

Ans. () 0.000151, (b) 0.007458

For the probability distribution for the card-picking experiment in Problem 11.37, whatare:  (a) the expected
values, (b) the parameters?
Ans. (2) E(X;)) =231, E(X,) = 1.38, E(X;) = 0.92, E(X,) =138, (B)n=6,p, =3, p, = %, D3 = %,
3
Py =13

The administrators of a college want to send 8 students to a national meeting. The college consists of 350
freshmen, 250 sophomores, 200 juniors, and 200 seniors. Their names are placed in a barrel and thoroughly
mixed. The dean draws, without looking, 8 names. As the eight are only a small fraction of the student
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population (n < 0.05N), this is a multinomial experiment. What is the probability that two students from each
class have been selected?

Ans. 0.0309

A wildlife biologist traps and releases (i.e., samples with replacement) a sequence of 15 mice from a small
island community that consists of 25 mice of species 4, 20 mice of species B, and 15 mice of species C.
Assuming that the mice enter the trap at random with regard to species, what is the probability that the sample
of 15 will include 5 mice from each species?

Ans. 0.0382

THE HYPERGEOMETRIC PROBABILITY DISTRIBUTION

11.41

11.42

11.43

11.44

The administrators of a college want to send eight upperclassmen to a national meeting. Twelve juniors and
eight seniors volunteer. Their names are placed in a hat and thoroughly mixed. The dean draws, without
looking, eight names. What is the probability that four juniors were selected?

Ans. 0.275

A wildlife biologist traps 10 mice, one after the other, from a population of 60 mice (36 males and 24
females). He does not return the trapped mice to the population, but instead takes them to his laboratory for
behavioral studies. Assumming that the mice enter the trap at random with regard to gender, what is the
probability that there are 5 males in the sample of 10?7

Ans. 0.213

An algebra class consists of 16 men and 14 women. Assuming that all students attend class and that they enter
the class at random with regard to gender, what is the probability that the first 5 students to enter will be
females?

Ans. 0.0140

An acre of forest contains 100 mature pine trees that show no signs of a fungal infection. However, previous
studies have shown that 30% of such trees are in the very early stages of the infection, and that this can only be
detected by examining inner tissues. Assuming the 30% figure is true, if a forester cuts 10 trees and examines
these tissues, what is the probability that he will find 5 infected trees?

Ans. 0.0996

THE POISSON PROBABILITY DISTRIBUTION

1145

11.46

For the Geiger-counter Poisson experiment in Problem 11.26, use Table A.4 in the Appendix and the rules
from Section 10.7 in Volume 1 to determine the probability in a 10-second interval of recording: (@) more
than 2 particles but fewer than 6, (b) more than 6 particles but at most 9?7

Ans. (a) 0441, (b)0.260

For the vaccine in Problem 11.30, which has been effective in immunizing against a disease 98.4% of the
many times it has been tried, use Table A.4 in the Appendix and the rules from Section 10.7 in Volume 1 to
answer the following. Of the next 125 people vaccinated, what is the probability that the vaccine will not be
effective for: (a) more than zero of them but less than three, and (b) zero, one, two, or three of them?

Ans. If we accept that this is a binomial experiment, then it can be approximated with Poisson
techniques. (@) &~ 0.542, (b) ~ 0.857
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11.47

11.48

11:49

1150

On a difficult rock climb, 10 climbers fall each week during the summer months, If these falls are distributed
according to a Poisson distribution, what is the probability that there will be 12 falls during a particular two-
week period in July?

Ans. 0.0176

An ornithologist studying the nests of juncos walks along a fence line, in junco habitat, and counts the number
of nests that he can see from the fence. He counts 30 nests within a one-kilometer (1,000 meters) segment of
the fence. What is the probability that he finds two nests within a particular 200-meter segment of the fence?

Ans. 0.0446

Thirty cars pass a crosswalk every hour. What is the probability that, for a particular 5-minute period, no cars
will pass the crosswalk?

Ans. 0.0821

For the cars described in Problem 11.49, what is the probability that, for a particular 5-minute period, the
number of cars that pass the crosswalk is 4 or less?

Ans, 0.891



The Normal
Distribution and
Other Continuous
Probability
Distributions

OUS PROBABILITY DISTRIBUTIONS

r 11 we examined the specific characteristics and uses of four discrete probability

he binomial distribution, the multinomial distrbution, the hypergeometric distribution,
distribution. Now in this chapter we examine three continuous probability distributions:
ihution, the uniform disiribution, and the exponential disiribution. Before we discuss these
aowever, we will first review, in Example 12.1, the general properties of continnous
it were presented in Chapter 10 of Volume 1.

 For the continuous probability distribution shown im Fig. 12-1, what are: {(a) f(a),
Fla), (d) PlasX=b), (el Pla<X <b), (f) Pl-oo<X <), (g) Plb<X <o),
T

pontinuous curve shown in Fig. 12-1 represents a probability density function (also called a
Atinuous probability distribution), denoted by f(x), that is based on a continuous random variable X’
an take on an infinite and not countable number of specific values x (see Section 10.4, Volume 1), If
a is substituted into f(x), the resulting value is f{a).
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Density

a b

Continuous random variable (X)

Fig. 12-1

From Property (4) in Fig. 10-3(b) of Volume 1, we know that P(X = x) = 0. This means that the
probability of X assuming any specific value a is zero: P(X =a) = 0.

From Section 10.8 of Volume 1, we know that for X = a the cumulative distribution function of a
continuous random variable is [equation (10.8), Volume 1}

Fl@) = P(X < a) = f 10 d

This means that the probability that X will assume a value that is less than or equal to « is the area under
the curve in Fig. 12-1 that is to the left of the vertical line above a.

From Property (6) in Fig. 10-3(b) of Volume 1, we know that

b
P(asXsb)=Jf(x)dx

This means that the probability that X will assume a value in the interval from a to b is the area under the
curve in Fig. 12-1 that is bounded by the curve, the X axis, and the vertical lines above a and b. From
equation (10.9) of Volume 1, we also know that

Pla <X <b)=F(b) - F(a)

From equation (10.9) of Volume 1, we know that

Pa<X<b)=Pla<X<b)=Pla<X<by=Pla<X <b)=F(b)— F(a)

From Property (7) in Fig. 10-3(b) of Volume 1, we know for continuous probability distributions that

{o¢]

P(—00 < X < 0) =J fx) dx =P(S)=1.00

This means that as the probability distribution contains the probabilities for ail possible outcomes of the
continuous random variable X, the total area under the curve is 1.00.

From parts (¢) and (f),
Pb<X<o0)=1-F()

From Section 10.10 of Volume 1, we know that the mean or expected value of a continuous random
variable X [also the continuous probability distribution f(x)] is equation (10.14):

00

B0 === f@ds

—00
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(i) From Section 10.13 of Volume 1, we know that the variance of a continuous random variable X [also
continuous probability distribution f(x)] is equation (10.24):

Vat) = o = = B - ') = |- de

and the standard deviation is

o =+o?

12.2 THE NORMAL PROBABILITY DISTRIBUTION AND THE NORMAL PROBABILITY
DENSITY FUNCTION

The normal probability distribution (or normal distribution) is the most important theoretical
continuous distribution used in statistics because: (1) it has played a central role in the development of
inferential statistics, (2) many real-world random variables exhibit frequency (or relative frequency)
distributions that closely resemble normal distributions, and (3) it can conveniently be used to approximate
many other probability distributions, such as the binomial and the Poisson (see Sections 12.12 and 12.13).
The normal distribution has already appeared in several contexts in Volume 1 and will appear regularly
throughout the remainder of this volume.

As was true for discrete probability distributions (see Chapter 11), all continuous probability
distributions are defined by a specific and unique probability function. The normal probability distribution
is defined by this function called the normal probability density function (or normal probability function)
(see Section 10.4, Volume 1), which for the continuous random variable X can take on specific values
X=x

1

o/ 21

e G020 for —o0o <x < o0 (12.1)

fx) =

where e = 2.71828. . .[see Problem 1.23(b), Volume 41]
7 = 3.14159. .. (see Section 1.12, Volume 1)
p = E(X) = mean of the normal distribution

¢? = E[(X — p)*] = variance of the normal distribution
o = Vo2 = standard deviation of the normal distribution

—00 < x < oo means this function is defined for all real numbers

The graph of a typical normal distribution is shown in Fig. 12-2. The horizontal axis represents
specific x values of the continuous random variable X and the vertical axis represents specific values of the
normal probability density function f(x). The smooth curve, called the normal curve, was constructed by
calculating f(x) values (ordinates, see Section 1.20, Volume 1) for a sufficient number of X = x values
(abscissas, see Section 1.20, Volume 1). You can see that the resulting curve has a bell-like shape that is
completely symmetrical about the vertical line above the mean . Thus, 50% of the area under the curve is
to the left of this vertical line, and 50% is to its right. It cannot be shown in a graph, but the curve extends
continuously outward to both minus and plus infinity, getting closer and closer to the horizontal axis in
both directions but never reaching it. As with any continuous probability distribution, the total area under
the curve is 1.0, and the graph also shows the percentage of the area lying above the intervals u+ o
(68.3%), 1 % 20 (95.4%), and u + 30 (99.7%). We gave these percentages in Section 7.16 in Volume 1 as
the empirical rule, and we will show that they are correct for normal distributions in Problem. 12.5.

The equation for the normal distribution was first published in 1733 by the French mathematician
Abraham de Moivre (1667-1754), who used it to approximate the binomial distribution. While the French
mathematician-astronomer Pierre Simon de Laplace (1749-1827) extended de Moivre’s work, it is the
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p-3c u-20 p—o 1 pt+o p+26 p+3c
Continuous random variable (X)

Fig. 12-2

German mathematician-astronomer-physicist Karl Friedrich Gauss (1777-1855) who is credited with
being the first to really explore its properties and uses. Because of this, the normal distribution is also
called the Gaussian distribution.

If the frequency (or relative frequency) distribution of a set of data can be reasonably fit by a normal
curve, then the data is said to be normally distributed. As we indicated earlier (see Section 7.16, Volume 1),
this statement is often made even when the empirical distribution only approximates a normal distribution
by being unimodal, roughly mound-shaped, and essentially symmetrical. Many real-world continuous
random variables generate such distributions: the heights in a population of men, the aptitude test scores of
job applicants, the weights in a population of melons, the diastolic blood pressures in a population of
women, and so on. While the normal curve is common for real-world variables, it is not called “normal”
because anything other than this curve is “abnormal.” The term normal was used early in the historic
development of this distribution because it resembles another curve called the normal curve of errors.

12.3 THE FAMILY OF NORMAL PROBABILITY DISTRIBUTIONS

As was true for the discrete probability distributions in Chapter 11, continuous probability distribu-
tions are also families of distributions, with the specific distribution being considered determined by its
parameters (or parameter). For the normal distribution you can see from equation (12.1) that there are two
parameters: the mean u and the variance o2 (some statistical books say y and o).

EXAMPLE 12.2 Use equation (12.1) to calculate f(x) for X = 1 for a normal distribution with the parameters
p=0and o® = 1.

Solution
Inserting 4 = 0 and 6% = 1 into equation (12.1),

1 3 n 2
— —(x—p)* /20
X) = e
S o/ 21
e—(1—0)2/2x1

1
=77

= —1—e_1/2 = ——1—e-1/2 = 0.39894¢1/2

/2 x 3.14159 T 2.50663
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Then, using the techniques for calculating ™ from Example 11.22,

£(1) = (0.39894)(0.60653) = 0.24197

12.4 THE NORMAL DISTRIBUTION: RELATIONSHIP BETWEEN THE MEAN (u), THE
MEDIAN (i1), AND THE MODE

As was indicated in Section 10.6 of Volume 1, continuous probability distributions serve as
mathematical models for population relative frequency distributions of continuous random variables.
For this reason, the probability distribution and the population distribution must be describable by
comparable statistical measures: both have means, medians, and modes. In the case of the normal
distribution, both distributions are unimodal and symmetrical, and therefore we know from Problem
6.29(a) of Volume 1 that, for both of them, mean (1) =median (i) = mode.

EXAMPLE 12.3 For the two normal distributions (4 and B) shown in Fig. 12-3, which has the larger: (@) 4,
®) s, () d??

J®)

Density

Continuous random variable (X)
Fig. 12-3

Solution

(a) Because in any normal distribution the mean y indicates the location on the horizontal axis (continuous
random variable) of the median of the distribution, we know that a vertical line erected above u to f(x)
will divide the distribution into two mirror-image halves (see Fig. 12-2). From this you can see in Fig.
12-3 that the mean of B (uz) is to the right of the mean of 4 (u,). Therefore, as it is true for any
rectangular Cartesian coordinate system that the numbers along the horizontal axis are positive and
increasing to the right of the origin (see Section 1.20, Volume 1), we know that y1, < pp.

(b) From Section 7.9 of Volume 1 we know that the standard deviation is a measure of the dispersion (or
spread) of the values around the mean. We also know from the empirical rule (see Section 12.2) that
68.3% of the arca in a normal distribution will always lie within one standard deviation from the mean
(u = o). Therefore, the smaller the standard deviation the more values will be packed close to the mean,
and consequently the distribution will have a more distinct peak, or greater peakedness. From this we can
see in Fig. 12-3 that 65 < 0.

(¢) Therefore, 6% < g?.

12.5 KURTOSIS

Not all unimodal, symmetrical distributions are normal distributions. They may differ from a normal in
terms of kurtosis, which is the degree of peakedness [see Example 12.3(b)]. Three distributions that differ
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m kurtosis are shown in Fig. 12-4. The middle distribution is a normal distribution, which is called
mesokurtic (meso, middle). The distribution on the left, which is flatter and less peaked than the normal
with a relatively even distribution of values and with shorter tails, is called platykurtic (platy, flat). The
distribution on the right, which is more peaked than the normal with values concentrated in the middle and

with long tails, is called leptokurtic (lepto, slender).

J&) S Sx)

Platykurtic Mesokurtic Leptokurtic

Density

/—\ i i .

Continuous random variable (X)

Fig. 124

12.6 THE STANDARD NORMAL DISTRIBUTION

The standard normal distribution (or standard normal probability distribution, or standardized
normal distribution, or unit normal distribution) is a normal distribution with the specific parameters:
u =0 and ¢ = 1. Placing these parameters in equation (12.1) produces the standard normal probability

density function (or standard normal density function):

1 2 10 1\2 1
—(x—0)"/2(1) —x2/2
X)) =——— = ——¢€ 12.2
f( ) 1‘\/ 2n v 2n ( )

The graph of the standard normal distribution is shown in Fig. 12-5. As with any other normal
distribution, the smooth curve, here called the standard normal curve, was constructed by calculating
density values [f(x)] for a sufficient number of X = x values. Note that because u=0and 6> =0 =1,
this distribution is always symmetrical about the vertical (density) axis, and the scale along the horizontal

J&

Continuous random variable (X)

Fig. 12-5
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axis is always shown for the range —3 to 3. This is done because 99.7% of thef(x) values are known to lie
between u — 30 and u + 30 (see Section 12.2), and thus for the standard normal distribution this range is
0+3.

In Example 12.2 we calculated that f(1) = 0.24197 for a normal distribution with y =0 and
¢’ = o = 1, which we now know is the standard normal distribution. This value is shown as the circled
dot on the standard normal curve in Fig. 12-5.

2

127 RELATIONSHIP BETWEEN THE STANDARD NORMAL DISTRIBUTION AND THE
STANDARD NORMAL VARIABLE

In Section 7.19 in Volume 1 we introduced the standard score (or normal deviate, or z score) [equation
(7.46)]:

and said that when, for any variable X, each measurement x in a sample or population is transformed into a
z value, the process is known as standardizing (or normalizing) the variable. The resulting variable Z is
called a standardized variable. We then showed in Problem 7.37 in Volume 1 that, for any sample or
population from a standardized variable, it is always true that the mean is zero (z = 0, or y, = 0) and the
standard deviation (and thus the variance) is one (s = s, = 1, or 62 = g, = 1).

These concepts can be applied to continuous random variables and their probability distributions.
Thus, if a continuous random variable X has a normal distribution with mean p and variance ¢2, and every
X = x value is transformed into a standard score (or in this context a standard normal deviate), then the
transformation generates a new continuous random variable Z. This variable, called a standard normal
variable, 1s

(12.3)

which can take on any specific value

z == , (12.4)

in the range —00 < z < 0.

By the same reasoning that was used in Problem 7.37 in Volume 1, we could show that the mean of the
standard normal variable will always be zero (# = 0) and its variance and standard deviation will always be
one (6> = ¢ = 1). Thus, the probability distribution for the standard normal variable is the standard
normal distribution as defined by this version of equation (12.2):

e_zl/z’ for —o0 <z <0 (12.5)

1
f(Z):\/——Z_;

What this means is that any normal distribution can be converted to the standard normal distribution
simply by applying the Z transformation to its continuous random variable X. This is true for any of the
infinitely large family of theoretical normal distributions, and also for empirical distributions that can be
fitted by a normal curve. In the case of an empirical distribution, the Z transformation converts the original
measurement units (e.g., grams) into standard units. These are multiples of the standard deviation of the
distribution; they indicate how far a given x value deviates from the mean of its distribution in terms of
standard deviations.

The Z transformation of X produces a standard normal distribution only when X is normally
distributed to begin with. It does not convert a nonnormal distribution (e.g., a skewed distribution) into a
standard normal distribution.
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12.8 TABLE OF AREAS IN THE STANDARD NORMAL DISTRIBUTION

We know from the general properties of continuous probability distributions (see Example 12.1) that:
(1) the total area in the distribution is 1.0, (2) the probability that the continuous random variable X will
assume a value in the interval a to b is the area in the distribution bounded by the curve, the X axis, and the
vertical lines above a and b, and (3) such areas can be determined by applying the techniques of integral
calculus to the specific probability function being considered.

While integral calculus could thus be used to solve area/probability problems for any of the infinitely
large family of normal distributions, this is fortunately not necessary. Because any normal distribution can
be transformed into a standard normal distribution, all normal distribution area/probability problems can
be solved by applying integral calculus to equation (12.5), the density function for this one distribution.

Table A.5 in the Appendix (4Areas of the Standard Normal Distribution) prov:des a summary of this
integration of equation (12.5):

P0<Z<z)= H f2) = Jizrﬁe—*/2] dz (12.6)

for positive z values ranging from 0.00 to 3.99. The results of this integration are areas bounded by the
standard normal curve, the Z axis, the vertical axis at z = 0, and a vertical line erected above the z value of
interest.

EXAMPLE 12.4 Use Table A.5 to answer these questions: (@) What area of the standard normal distribution lies
under the curve over 0 <z < 0.45? (b) What proportion of the standard normal distribution lies under the curve
over 0 <z <0.45? (c) What is the probability that the standard normal variable Z will take on some value in the
interval 0 <z < 0.45?

Solution

(a) The area under the curve above 0 < z < 0.45 is the shaded area in the standard normal distribution
shown in Fig. 12-6. It is bounded by the curve, the Z axis, the vertical density axis at z = 0, and a vertical
line above z = 0.45. This area can be found in Table A.5 by first locating z to one decimal place in the
left column (0.4) and then finding z’s second decimal place in the column headings (0.05). The part of
Table A.5 needed to find this area is shown in Table 12.1, where you can see that at the intersection of
row z = 0.4 and column 0.0S5, the area (circled) is 0.1736.

@)

Standard normal variable (Z)

Fig. 12-6
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Table 12.1

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0
0.1
0.2
0.3
04

0.0000 0.0040 0.0080 0.0120 0.0160 | 0.0199 0.0239 0.0279 0.0319  0.0359
0.0398  0.0438  0.0478  0.0517 0.0557 | 0.0596 0.0636 0.0675 00714 0.0754
0.0793  0.0832 0.0871 0.0910 0.0948 | 0.0987 0.1026 0.1064 0.1103  0.1141
0.1179  0.1217 0.1255 0.1293  0.1331 | 0.1368  0.1406  0.1443  0.1480  0.1517
0.1554  0.1591 0.1628 0.1664  0.1700 0.1772  0.1808  0.1844  0.1879

(&) Because the total area in the standard normal distribution is 1.0, Table A.5 gives areas as a proportion of
1.0. Thus, the proportion of the standard normal distribution that lies under the curve above 0 < z < 0.45
is also 0.1736. 2

{c) Because area = probability in a continuous probability distribution,

PO < Z < 0.45) = J:AS [ f@) = %eﬂzﬂ] dz = 0.1736

EXAMPLE 12.5 Use Table A.5 to find the area of the standard normal distribution that lies under the curve above
—-1.69 <z <0

Solution

The density axis [ f(2)] at z = 0 (see Fig. 12-6) divides the standard normal distribution into mirror-image
halves. This means that if +a and —a are points on the Z axis that are to the right and left of z =0,
respectively, and equidistant from z = 0, then the areas under the curve above 0 <z < gand —a <z < 0 are
equal and mirror-images of each other. Because of this, the area given in Table A.5 for 0 < z < a is also the
area for —a < z < 0. Thus, for this problem as Table A.5 gives 0.4545 as the area under the curve above
0 <z < 1.69, this then is also the area above —1.69 < z < 0. This area between —1.69 and 0 is the shaded
area in the standard normal distribution shown in Fig. 12-7.

EXAMPLE 12.6 From what was determined in Examples 12.4 and 12.5, what is P(—1.69 < Z < 0.45)?

Solution

P(—1.69 < Z < 0.45) is the shaded area under the curve above —1.69 < z < 0.45 in the standard normal

f&

Standard normal variable (Z)

Fig. 12-7
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Standard normal variable (Z)

Fig. 12-8

distribution shown in Fig. 12-8. It is the sum of the areas found in Examples 12.4 and 12.5:
P(—1.69 < Z < 0.45) =0.454540.1736 = 0.6281

12.9 FINDING PROBABILITIES WITHIN ANY NORMAL DISTRIBUTION BY APPLYING
THE Z TRANSFORMATION

It can be proven mathematically that

- b—
P(a5X5b)=P(“a“ s

<Z< T) =Pz, <Z <z) (12.7)

This states that for any normal distribution with mean y and standard deviation o, the probability
that its random variable X will take on a value in the interval a < x < b is the same as the probability
in the standard normal distribution tha’\c Z will take on some value in the interval

- bh—
( “5zs—}ﬁ)=(za5z§zb)

g

EXAMPLE 12.7 A physiologist wants to know the effect of winter hibernation on the weight of ground squirrels.
He designs an experiment in which 1,000 adult male ground squirrels are weighed in late summer and in early spring.
For the late-summer measurements, he finds that the weights are normally distributed with an average of 400 grams
and a standard deviation of 100 grams. What is the probability that a particular ground squirrel will weigh between
350 grams and 450 grams in late summer?

Solution

To answer this question, we need to transform P(350 g < X < 450 g) into P(z, < Z < z,). First, 350 g
and 450 g are transformed into z scores using equation (12.4):

350g—400 ¢ 450 g — 400 g
Za=—-=—0.5 ==
100 g 100 g
Next, the z scores are substituted into equation (12.7)
Pla<X<b)y=Piz,<Z <z)

0.5

P(350 g <X <450 g) = P(—0.5 < Z < 0.5)
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From Table A.5 in the Appendix, we find that P(0 < Z < 0.5) = 0.1915. Because of the symmetry of the
normal curve (see Example 12.5), P(—0.5 < Z <0) = P(0 < Z <(0.5), and so

P(—0.5 < Z <0.5) =2(0.1915) = 0.3830
The probability that a ground squirrel will weigh between 350 grams and 450 grams is 0.3830.

Note that in Example 12.7 we treated a sample of 1,000 squirrels as if it were a population, using
formulas that include the population parameters u and ¢. We did this because the standard-normal
techniques in this chapter require population-level information, either directly from the population itself or
from samples that are sufficiently large, as in Example 12.7, to give accurate information on the shape,
mean, and standard deviation of the population’s distribution.

12.10 ONE-TAILED PROBABILITIES

Many statistical procedures deal with one-tailed probabilities, in which only the area in the upper tail
(right tail) or the lower tail (left tail) of a probability distribution is of interest. If we denote the area in the
upper tail by « (the lowercase Greek letter alpha), then for the variable X the specific value x, is the
number such that

PX >x)=ua (12.8)

In words, this states that the area (probability) under the distribution curve to the right of x, is a. If X' is a
continuous normally distributed variable, then it can be proven mathematically that

P(X > x,) = P(Z > xj:—") —P(Z>z)=u (12.9)

This probability is the shaded area in the standard normal distribution shown in Fig. 12-9.

1)

-3

Standard normal variable (2)

Fig. 12-9

Similarly, if we now denote the area in the lower tail by o, then for the variable X the specific value
X_, 18 a number such that

PX <xi_,) =« (12.10)
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In words, this states that the area (probability) under the distribution curve to the left of x;_, is «. (The
subscript 1 — « indicates that the area to the right of x;_, is 1 —a.) If X is a continuous normally
distributed variable, then it can be mathematically proven that

P(X <x_,) = P(Z < ’”—*(ILE) =P(Z<—-z)=ua (12.11)
This probability is the shaded area in the standard normal distribution shown in Fig. 12-10.

1)

-3 0 3

Standard normal variable (Z)

Fig. 12-10

EXAMPLE 12.8 If the normally distributed variable X has the parameters = 14.5 and ¢ = 2.1, then for
o = 0.05, what are: (@) z, and x,, (b) —z, and x;_,?
Solution
(a) From equation (12.9), we know that
P(Z > z,)=a=0.05

Thus, to find z, we must find the z value associated with the area in Table A.5 in the Appendix that is
closest to 0.5 — 0.05 = 0.45

P(0 <Z <z,)=045

We find that instead of just one “closest area,” there are two areas that are exactly 0.0005 different from
0.45:0.4495 with z = 1.64 and 0.4505 with z = 1.65. Therefore, we use the average of these z values

as z,
1.64 + 1.65
2, = 7g0s = 2100 ) 45
2
Now, to find x, = x5 We rearrange the terms in equation (12.4) to form
X, =H+z;0 (12.12)

Substituting x, and z, for x; and z;,
X, =pu+tz,0
Xp.05 = K+ Zp.050
= 14.5 + (1.645 x 2.1) = 14.5 + 3.4545 = 17.9545, or 18.0
(p) From equation (12.11) we know that

P(Z < —z,) = o = 0.05
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and thus, because of the symmetry of the standard normal distribution, we know from (a) that
—Zy = TZyo5 = —1,645
To find x,_, we substitute x,_, and —z, for x; and z; in equation (12.12):
X_g =4+ (_Zao-)

X1—g05 = t+ (—2g50)
= 14.5 + (—1.645 x 2.1) = 14.5 — 3.4545 = 11.0455, orll.0

12.11 TWO-TAILED PROBABILITIES

With two-tailed probabilities, the probability of interest, «, is divided equally between the two tails of a
probability distribution rather than having all of « in one tail as it is for one-tailed probabilities. If we
denote these equal areas, one in each tail, by «/2, then for the variable X the specific values x,, ) and x;_, 7
are numbers such that

PX > x,p) = 0/2 (12.13)
PX < x1_4p2) = /2 (12.14)
Py X Sxyp)=1-u (12.15)

In words, these formulas state that the area under the curve to the right of x,, /2 is o/2, that to the left of
X1-q/2 18 also a/2, and therefore, the area between x|_, and x5 is 1 —a/2 —a/2=1—-a. If X is a
continuous normally distributed variable, then it is also true that

PX>x,,)=P(2>22" 8 _p@z>z,)=an (12.16)
/. g o/2
Xjeqsp —
PO <x1_yp) = P(Z < %") =P(Z < —z2,) =2 (12.17)
POi_opy X Sxyp) =P(—24p SZ<z,p) =10 (12.18)

These areas are shown for the standard normal distribution in Fig. 12-11.

1)

1—o

Zyp 3
Standard normal variable (Z)

3 —Zw2 0

Fig. 12-11
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EXAMPLE 12.9 For a normally distributed variable X that has y = 14.5 and ¢ = 2.1, if = 0.05, then what are
Zaj2s " Zuj2s Xay2s and xl—m/l?

Solution
From equation (12.16), we know that

P(Z > 2,5) = 0/2 = 0.05/2 = 0.025

Therefore, to find z,/, = Zy 5/, we must find the z value associated with the area in Table A.5 in the Appendix
that is closest to 0.5 — 0.025 = 0.475

P(0 < Z < z,,) = 0475

s

This “closest area” is exactly 0.4750 and thus z,, = 55/, = 1.96. Because of the symmetry of the standard
normal distribution, we know that —z,, = —z g5/ = —1.96. Next, to find x,, we substitute x,/, and z,, in
equation (12.12),

Xy = U+ 2400

X052 = Bt 200520
= 14.54+(1.96 x 2.1) = 14.5+ 4.116 = 18.616, or 18.6

and then to find x,_,, we substitute x;_,/, and —z, in equation (12.12),

Xy g2 = B+ (—24/20)
X1_g.0s/2 = K+ (—Z0,05/20)
=1454(-1.96 x2.1) = 14.5 — 4.116 = 10.384, or 104

12.12 THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

To determine a probability for a binomial distribution, one must sum the relevant terms for the
binomial expansion (g + p)” (see Section 11.7), a tedious process that may require a computer when 7 is
large. In Section 11.31, however, we saw that under certain conditions (i.e., when » > 20 and p < 0.05),
approximate binomial probabilities can be found using the Poisson distribution. Similarly, the normal
distribution gives a good approximation to the binomial distribution under certain conditions, and so it also
can be used to calculate the probabilities of a binomial experiment. Since these probabilities only
approximate the true binomial probability values, this use of the normal distribution is called the normal
approximation to the binomial distribution.

This normal-approximation method is appropriate only when the given binomial distribution
resembles (i.e., approximates) a normal distribution in being both symmetrical and bell-shaped, and this
will be true under two conditions:

(1) The binomial distribution becomes increasingly symmetrical the closer p (the probability of success)
is to 0.5 (see Fig. 11-2).

(2) For any value p, however far it is from 0.5, if # (the number of trials, or the sample size) is increased
as p is held constant, then the resultintg binomial distributions with y = np and 02 = npq become

more and more similar in shape to a normal distribution with u = np and o = npq.

Because of condition (2), when # is “sufficiently large” we can treat the binomial distribution as if it
were a normal distribution with y = np and ¢ = npq, and then use standard-normal techniques to
approximate the true binomial probability values.

There is no absolute rule for when p is “close enough” to 0.5 or for when # is “sufficiently large,” but
there are many rules of thumb for when it is appropriate to use the normal approximation. One such rule,
found in many statistics books, is that

The normal approximation to the binomial distribution can be used when both np and ng
are greater than or equal to-5 (np > 5 and ng > 5).
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A more stringent version of this rule specifies that both np and ng be greater than 5 (np > 5 and
ng > 5).

EXAMPLE 12.10 For the binomial variable, number of heads in 14 flips of a coin, determine the probability of
getitng 8, 9, or 10 heads in the 14 flips by using: (a) binomial-distribution techniques, (b) normal-approximation
techniques.

Solution

(a) To solve this problem using binomial-distribution techniques, one must determine the binomial
probability distribution for the variable. First, the binomial theorem is used to find the terms of the
binomial expansion (p + q)14 (see Section 11.7)

(q +p)l4 — q14 + 14q13p + 91q12p2 + 364q11p3 + 1001(110174 + 2002q9p5

+3003¢%p° + 3432¢"p7 + 30034°p® + 20024°p° + 10014%p"°
+ 364q3p11 + 91q2p12 + 14q1713 +p14

Then, the probability of getting a head (p = 1) and of getting a tail (7 = 1) are inserted into the expansion
to give the distribution shown in the histogram in Fig. 12-12. In this histogram, the discrete binomial
variable is treated “as if it were continuous” (see Problem 5.9 in Volume 1), with probability values for
each number-of-heads represented by both the height and area (height x 1.0) of the bar above the
number. Thus, for example, the probability of 8 heads is both the height of the bar above it (0.1833) and
the area of the bar (0.1833 x 1.0 = 0.1833). As this is a probability distribution, the total area
represented by the histogram is 1.0, and for this binomial probability distribution the mean is
p=np=(14)3) =7, the variance is o> = npg = (14)Q)}) = 3.5, and the standard deviation is -
o = /npg = +/3.5 = 1.8708.

From Property 4 in Section 8.6 of Volume 1, we know that

PA VAU Udy) = PA) + P(4) + - + P(4;)

S

0.20 |-
2

g 0.15
©
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2

'_-.; 0.10 -
L
g
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7.5 10.5
Number of heads (X)

Fig. 12-12
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Therefore, because the binomial is a discrete variable, the requested probability for this problem is
PB=<X<10)=PIX=)UX =UX =10)]=PX =8)+PX =9+PX =10
From the binomial expansion (g + p)14 we know that
P(X = 8) = 3003¢°® = 3003)°Q)® = 0.1833
P(X = 9) = 2002¢°p° = 2002()° )’ = 0.1222
P(X = 10) = 1001¢°p'® = 1001()* )" = 0.0611
Therefore,
P8 <X <10)=0.1833 +0.1222 4+ 0.0611 = 0.3666 )

This probability is the shaded area in the histogram in Fig. 12-12.

(b) Asnp = ng =7, itis appropriate by either version of the rule of thumb to use the normal approximation.
To show this, a normal distribution with parameters u=np =7 and ¢? =npg = 3.5 has been
superimposed (as a dashed line) on the binomial distribution in Fig. 12-12.

It would seem that the normal approximation to the binomial value P(8 < X < 10) = 0.3666 would
be the area under this normal curve over the interval 8 < x < 10, but this would be ignoring the fact that
the area for this probability in the binomial histogram actually extends over the interval 7.5 < x < 10.5
(see Fig. 12-12). In order to use this continuous distribution to approximate the discrete distribution,
each discrete value must be treated as an interval—as if the discrete value is the midpoint of the implied
range of a measurement category (see Section 2.10, Volume 1), which extends 0.5 above and below the
value. Then, in this problem, we are finding the area under the normal curve that is above the interval
7.5 <x < 10.5, which extends from the implied lower boundary of measurement category 8 to the
implied upper boundary of measurement category 10. This addition and subtraction of 0.5 from the
discrete values is called the continuity correction (or correction for continuity, or half-unit correction for
continuity).

To find P(7.5 <X <10.5) in a normal distribution where u=np =7 and o= ,/Apq=
+/3.5 = 1.8708, we use equation (12.7) to convert normal probability values into standard-normal

values.
P(a sXsb)=P(a;”sZsb—;—”) =Pz, <Z<z)
7.5—np 10.5 —np
POS5S<X < 10.5)=P( 525—-———-)
~1Pq ~/10q

7.5-17 10.5-7
_ PN /A qpen—
(1.8708 - 7 1.8708

Now, we know from Table A.5 in the Appendix that
P(0<Z<0.27)=10.1064 PO <Z <1.87)=0.4693

) =P027<Z<1.87)

Therefore
P(0.27 <Z < 1.87) = 0.4693 — 0.1064 = 0.3629

Comparing the true binomial result in (@) with the normal approximation, we can see that they are
identical through the second decimal place:

P(8 <X < 10) = 0.3666 ~ P(0.27 < Z < 1.87) = 0.3629

12.13 THE NORMAL APPROXIMATION TO THE POISSON DISTRIBUTION

The normal distribution can be used to approximate the Poisson distribution. Recall that the parameter
of the Poisson distribution is u = Af (see Section 11.28). It turns out that as u = At increases, the Poisson
distribution approaches a normal distribution with 4 = ¢? = At. Thus, whenever Af is “large enough” we
can treat the Poisson distribution as if it were a normal distribution with g = ¢2 = At, and 0 = fﬂ We
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can then use standard-normal techniques to find the area (probability) values. Because these values only
approximate the true Poisson probability values, this use of the normal distribution is called the normal
approximation to the Poisson distribution.

There is no absolute rule for when Ar is “large enough” but there are, again, as with the binomial
distribution, many rules of thumb for when it is appropriate to use the normal approximation. One such
rule, found in many statistics books, is that

The normal approximation to the Poisson distribution can be used when /¢ is greater than
or equal to 5(At = 5).

A more stringent version of the rule specifies that A7 must be greater than or equal to 10(Ar > 10).

EXAMPLE 12.11 The cable manufacturer in Section 11.26 has determined that for a 4-meter unit of cable there are
A = 4.0 defects per 4 meters. Determine the probability of getting 6, 7, or 8 defects in ¢ = 1.5 units of cable,
using: (a) Poisson-distribution techniques, () normal-approximation techniques.

Solution

(a) Assuming this is a Poisson experiment (see Section 11.26), then what is requested is P(6 <X < 8)ina
Poisson distribution where p = 6% = At = (4.0 defects per 4 meters) x (1.5 units) = 6.0 defects per 6
meters. We will determine this probability using equation (10.5) of Volume 1:

Pla<X <by=F(b) - F(a)+/f(a)

P(6 < X < 8)=F(8) — F(6) +f(6)
and equation (10.4):

P <X <6)=F(6)—F(5)=f(6)
From Table A.4 in the Appendix, we find for u = 6.0: F(5) = 0.446, F(6) = 0.606, and F(8) = 0.847.
Thus: f(6) = 0.606 — 0.446 = 0.160, and P(6 < X < 8) = 0.847 — 0.606 + 0.160 = 0.401.

() Because we are using a continuous distribution to approximate a discrete distribution, we must correct
for continuity {see Example 12.10(b)]. Thus, to find P(6 < X < 8) we must find P(5.5 <X <8.5)ina
normal distribution where u = 6> = it = 6.0 and 0 = +/6.0 = 2.4495:

5— 51
P(5.5§X58.5)=P(55 4 8.5 ’)

<Z<
NN T

55-6.0 85— 6.0
=P ( 24495 =% ="34a05 )

= P(=0.20 < Z < 1.02)

IA

We know from Table A.5 in the Appendix that
P(0 <Z <0.20) = P(—0.20 < Z < 0) = 0.0793
P(0 < Z < 1.02) =0.3461
Therefore,
P(—0.20 < Z < 1.02) = 0.0793 + 0.3461 = 0.4254
Comparing the true Poisson result with the normal approximation, we can see that they differ by 0.024:
P(6 <X < 8)=0.401 ~ P(—0.20 < Z < 1.02) = 0.425

12.14 THE DISCRETE UNIFORM PROBABILITY DISTRIBUTION

A uniform probability distribution is characterized by an equal probability for all the values of its
random variable X. While this chapter is devoted to continuous distributions, we describe here the discrete
version of a uniform probability distribution as an introduction to the continuous version.
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In a discrete uniform probability distribution (or discrete uniform distribution, or discrete rectangular
distribution), the random variable X can assume any integer value from 1 to &, and all & values have the
same probability. The probability function that assigns this same probability value to each of the k possible
outcomes, the probability function that defines the distribution, is this function, called the discrete uniform
probability function

f(x)=l, forx=0,1,...,k% (12.19)

As this is a discrete probability distribution, it must be true that: f(x) > 0 for any x and E f(x) = 1.00 [see
Fig. 10-3(a) in Volume 1]. The mean of the discrete uniform distribution is

k41
_tt7 (12.20)
2
the variance is
k2 —1
2 _ 21
) B (12.21)
and the standard deviation is
-1
= 12.22
6=+ o? 1 5 ( )

The discrete uniform probability distribution is, again, a family of distributions, with the single parameter,
k.

EXAMPLE 12.12 For the experiment of rollmg a die once, the probability distribution for the random variable,
number of dots on the final upward face, is a discrete uniform probablhty dlstnbutmn For this distribution,
determine: (@) the probability function f(x), () the mean yu, (c) the variance 0%, (d) the standard deviation
6, (e)the parameter, (f) P3 <X <3).

Solution
(@) f()-—l—l forx=1,2 6
X _k_65 R It IR |
k+1 6+1
®) ”“7—7‘3'5
-1 6-1 35
2 _ — 27 _
© == o 12 22
d o=+062=4+292=171
(e) k=6

() PB<X<5)=PX=3)+PX=4=f(3)+f4) =4%+4+=%=0.3333. This probability is the
shaded area in the probability histogram for this distribution shown in Fig. 12-13.

fx

1Vk=1/6

Probability

5 6

Number of dots
Fig. 12-13
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12.15 THE CONTINUOUS UNIFORM PROBABILITY DISTRIBUTION

If a continuous random variable X can assume any value in the interval @ < x < b and only these
values, and if its probability density function f(x) is constant (uniform) over that interval and equal to zero
elsewhere, then X is said to be uniformly distributed, and its distribution is called a continuous uniform
probability distribution (or continuous uniform distribution, or continuous rectangular distribution). The
probability density function that defines this distribution, called the uniform probability density function, is
the following

flx)= ﬁ, fora<x<b, and f(x)=0 -elsewhere (12.23)

As this function defines a continuous probability distribution, it must be true that /(x) > 0 for any x and
00 .
J Sf(x) dx = 1.00 [see Fig. 10-3(b), Volume 1]. The mean of the continuous uniform distribution is

—o00
=5 “ZL 2 (12.24)
the variance is
o’ = @1;;)—2 (12.25)
and the standard deviation is
o=+o? = g’—-;zi)z (12.26)

The continuous uniform probability distribution is a family of distributions with the parameters a
and b.

EXAMPLE 12.13 A continuous random variable X can assume values only in the interval 1 <x<6.If X has a
continuous uniform probability distribution, then for this distribution determine: () the probability density function
f(®), (b)the mean i, (c) the variance 62, (d) the standard deviation o, (e) the parameters, (f) P3 <X <5).

Solution
1 1 1
@ fO)=——=—"=-=02,forl <x <6, and f(x) = 0 elsewhere
b—a 6-1 5
b+a 6+1
®) p=—g=="5=35
2 2
, (b—ay (-1 25
= = =—=2,
© 12 %

d o=+02=4+2.08=1.44
(e) a=1landb=6
(f) The graph of a continuous probability distribution that only has values in the interval a <x < b is a
1
continuous horizontal line above that interval at the height f(x) = P Because this is a probability
distribution, the total area under the line over @ <x < b is 1. The graph for the distribution in this

problem is shown in Fig. 12-14, with the shaded area representing P(3 < X < 5).

As always with continuous distributions, probability is calculated for an interval; it is the area under
the curve over the designated interval. For the continuous uniform distribution, as you can see in Fig.
12-14, the area is a rectangle with its base the length of the designated interval (5 — 3 = 2) and its height
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6
b
Continuous random variable (X)

Fig. 12-14

the density function [f(x) = 0.2]. In general then, if ¢ <x < d is an interval equal to or within the
defining interval @ < x < b, then

P(c < X < d) = (base)(height) = (d—c)(f(x) = b;) -

As this is a continuous variable it does not matter whether the endpoints of an interval are included.
Therefore,

Pe<X<d)y=Plc=<X<d)

and thus

d—c¢c 5-3 z
5

12.16 THE EXPONENTIAL PROBABILITY DISTRIBUTION
A continuous random variable X is said to be exponentially distributed if, for any A > 0, its probability
density function is given by the exponential probability density function
S =A™  forx>0, and f(x)=0 forx<0 (12.27)

where e = 2.71828. .. [see Problem 1.23(b) in Volume 1]. The exponential probability distribution (or
exponential distribution) is a family of distributions with the single parameter A. Versions of the
exponential distributions for 4 = % and A = 2 are shown in Fig. 12-15. For such exponential distributions,

p=s (12.28)
, 1

o= (12.29)
1

o=~ (12.30)

Without deriving it, we simply state that the cumulative distribution function F(x) = P(X <x)ofan
exponential random variable X is

Fx)=1 —e, forx>0, ad F(x)=0 forx<0 (12.31)
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Fig. 12-15

EXAMPLE 12.14 For both exponential distributions shown in Fig. 12-15, determine the mean, variance, standard
deviation, parameter, and cumulative distribution function.

Solution
For the distribution with 4 = 1,

1 1
HEITIRT?

1 1
0’2=—=-—=4
2y
1 1
U=I=T/-2-—2

The parameter is A = %, and the cumulative distribution function is
Fxy=1—e?=1-¢ /2

For the distribution with 1 = 2,

_1_1
=972
1 1 1
c=a=m=y
_1_1
=772

The parameter is A = 2, and the cumulative distribution function is

F)=1—e?=1-¢%
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12.17 RELATIONSﬁIP BETWEEN THE EXPONENTIAL DISTRIBUTION AND THE
POISSON DISTRIBUTION

You have probably noted that the positive constant A (the lower-case Greek letter lambda) appears in
both the exponential probability density function [equation (12.27)] and the Poisson probability function
[equation (11.22)]. Both functions have the same parameter, 4, because the two distributions have the
following relationship:

If a certain event (success) is being generated randomly over a given unit of time (or
space) by a Poisson process (see Section 11.26), then the continuous random variable—
amount of time (or space) between successive occurrences of the event—is exponentially
distributed. Furthermore, if A is the average rate of occurrence of the event in the given
. . 1. . . .
unit, then the reciprocal of 4, or 7 is the average time (or distance) between successive

events.

EXAMPLE 12.15 It is known that on Sundays between 6 PM and 10 PM an average of 5 emergency cases arrive per
hour at the emergency room of a hospital. If the discrete random variable, number of arrivals, has a Poisson
distribution, then during this time period what is: (a) the expected time between arrivals, (b) the probability that
the next arrival will be within 15 minutes of the previous arrival, (c) the standard deivation of the exponential
distribution for the continuous variable time between arrivals?

Solution

(@) We know that the number of arrivals has a Poisson distribution with 4 = 5 arrivals per hour. Thus, the
continuous random variable, time between arrivals, has an exponential distribution with p=1/4 =
1/5 = 0.2 hours. This is the expected time between arrivals.

(b) The exponential probability density function [equation (12.27)] for the continuous random variable, time
between arrivals, with A =5 is

f&) = Se™™, forx > 0, and f(x)=0 forx <0

This exponential distribution is presented in Fig. 12-16, with the requested probability shown as the
shaded area under the curve above the interval 0 < x < (15 minutes or 0.25 hours). The value of this
probability can be determined by using equation (12.31):

FO)=PX <x)=1-¢*, forx>0, ad Fx) =0 forx <0

Jx)

Density

1 }
0.00 0.25 0.50 0.75 1.00 1.25

Time between arrivals (hours)

Fig. 12-16
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Therefore, for A = 5 and x = 0.25 hours,
F(025)=P(X <025) =1 — ¢ Cx0B) =] _ 125
Using the techniques for finding e™* from Example 11.22,
‘ F(0.25) =1-0.2865 = 0.7135

Therefore, the probability is 0.7135 that the next arrival will occur within 15 minutes of the previous
arrival.

(c) Using equation (12.30),

6 =1/4=1/5=0.2 hours

Solved Problems

THE NORMAL DISTRIBUTION
12.1 Calculate f(x) for X = 1 for a normal distribution with parameters u = 0 and o2 = 4.

Solution

Using equation (12.1),
1

f6) = —me /2
/27
1 2
D=~ (1-0)/2x4
f) = e
— __1__ e V8
(2)(2.50663)

= (0.19947)(0.88250) = 0.17603

THE STANDARD NORMAL DISTRIBUTION

12.2 Use Table A.5 to find the area of the standard normal distribution that lies under the curve above
—1.21 <z < -1.05.

Solution

The area above —1.21 < z < 0is 0.3869, the area above —1.05 < z < 0 is 0.3531, and therefore, the area
above —1.21 <z < —1.05 is 0.3869 — 0.3531 = 0.0338.

12.3 Use Table A.5 to find the area of the standard normal distribution that lies under the curve above
0.32 <z<1.85.

Solution

The area above 0 <z < 0.32 is 0.1255, the area above 0 < z‘ < 1.85 is 0.4678, and therefore, the area
above 0.32 <z < 1.85 is 0.4678 — 0.1255 = (.3423.
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124

125

12.6

In Example 12.6, we found that for the standard normal distribution, P(—1.69 < Z < 0.45) =
0.6281. What is P(—1.69 < Z < 0.45)?

Solution
Equation (10.1) of Volume 1 states for a continuous probability distribution that

Pa<X<b=Pa<X<b=Pa<X<by=Pa<X<b)
Therefore,

P(~1.69 < Z < 0.45) = P(~1.69 < Z < 0.45) = 0.6281

In Section 7.16 of Volume 1 we said that the empirical rule can be stated for populations roughly as
follows:

For a population that is approximately normally distributed, 22 68% of the data lies in the
interval p & 0, & 95% of the data lies in the interval u + 20, and ~ 100% of the data
lies in the interval p + 30.

Then, in Section 12.2 we indicated that the exact percentages for the empirical rule are 68.3%,
95.4%, and 99.7%. Use Table A.5 to show that these values are correct.

Solution

The mean of the standard normal distribution is ¢t = 0 and its standard deviation is ¢ = 1. Therefore, the
area under the curve above —1 <z < 1 is the proportion (or percentage) of the distribution lying between
pt — o and pi + o. This area, the shaded area in the standard normal distribution shown in Fig. 12-17(a), is the
sum of the equal areas over the intervals —1 <z <0and 0 <z < 1. From Table A.5 the areaabove 0 <z < 1
is 0.3413, and therefore the proportion (or percentage) of the distribution within u £ ¢ is

2(0.3413) = 0.6826, or 68.3%

By the same reasoning, the area above —2 < z < 2 [shaded area in Fig. 12-17(b)] is the proportion (ot
percentage) of the distribution lying within g & 26. From Table A.5 the area above 0 <z < 2 is 0.4772, and
therefore the proportion (or percentage) of the distribution within x & 26 is

2(0.4772) = 0.9544, or 95.4%

Finally, the area above —3 < z < 3 [shaded area in Fig. 12-17(c)] is the proportion (or percentage) of the
distribution lying within p =+ 3¢. From Table A.5, the area above 0 <z <3 is 0.4987, and therefore the
proportion (or percentage) of the distribution within y = 30 is

2(0.4987) = 0.9974,  0r99.7%

As the intervals —1 <z <1, —2 <z < 2, and —3 < z < 3 in the standard normal distribution represent,
respectively, 4 = o, u = 20, and p + 3¢ in any normal distribution, it is clear that the empirical rule holds true
for all theoretical and empirical normal distributions.

For the continuous variable X that is normally distributed with u = 4.0 sec and o = 0.4 sec,
transform the following X = x values into Z = z values: (a) x =4.0 sec, (b) x = 3.6 sec.

Solution

4.0 sec —4.0sec

0.00
0.4 sec

(@) Using equation (12.4), z =

3.6 sec — 4.0 sec
- = -1.00
® = 0.4 sec
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12.7

12.8

12.9

For the continuous random variable'X in Problem 12.6, transform the following Z = z values back
into X = x values: (a)z=-232, (b)z=1.97.

Solution

(@) Using equation (12.12), x = 4.0 sec + (—2.32 x 0.4 sec) = 4.0 sec — 0.928 sec = 3.1 sec
(b) x=4.0sec+(1.97 x 0.4 sec) = 4.0 sec + 0.788 sec = 4.8 sec

A geneticist working for a seed company develops a new carrot for growing in heavy clay soil.
After measuring 5,000 of these carrots, it can be said that carrot length, X, is normally distributed
with g = 11.5 cm and ¢ = 1.15 cm. What is the probability that X will take on a value in the
interval 10.0 cm < x < 13.0 cm?

Solution
Using equation (12.7),

10.0cm—11.5cm 13.0cm—11.5cm
. . = zZ <
P(10.0cm < X < 13.0 cm) P( 115 om <Z< 15 om )
=P(-130<Z < 1.30)
From Table A.5 the area above 0 < z < 1.30 is 0.4032, and this is also the area above —1.30 <z <0.
Therefore

P(10.0 cm < X < 13.0 cm) = P(—1.30 < Z < 1.30) = 2(0.4032) = 0.8064

The seed company in Problem 12.8 wants to state in its catalog that these new carrots “grow to
between 10 cm and 13 cm.” To do this, however, the company requires that at least 80% of the
carrots are between 10 cm and 13 ¢m and that at least 90% of the carrots are 10 cm or more. Can the
company use this phrase?

Solution
We know from Problem 12.8 that
P(10.0 cm < X < 13.0 cm) = 0.8064

and, therefore, that the first requirement is met: 80.6% of the carrots are in the interval 10.0 cm < x < 13.0 cm,
To determine whether the second requirement is met, we must find

10. —11.
0 cm 15cm)=P(Zz—1.30)

- 1.15cm

This probability is represented by the shaded area in Fig. 12-18.
We know that

P(Z>—130)=P(~130 < Z < 00) = P(=1.30 < Z < 0)+ P(0 < Z < 00)

P(X = 10.0 cm) = P(Z >

and that
PO<Z<o0)=05
From Problem 12.8 we know that
' P(—1.30 < Z < 0) = 0.4032
and so
P(—1.30 < Z < 00) = 0.4032 + 0.5 = 0.9032
Therefore,
P(X > 10.0 cm) = P(Z = —1.30) = 0.9032

and the second requirement is met: 90.3% of the carrots are 10 cm or longer.



72

NORMAL DISTRIBUTION AND CONTINUOUS PROBABILITY DISTRIBUTIONS [CHAP 12 7

1@

Standard normal variable (Z)

Fig. 12-18

12.10 Of the 5,000 carrots measured in Problem 128, how many are: (¢) between 10cm and

12.11

13cm, (b) 10cm or longer, (c) 13 cm or shorter?

Solution
(a) From Problem 12.8 we know that
P(10 cm < X < 13.0 cm) = 0.8064
Therefore, the number of carrots that are between 10 and 13cm is

0.8064 x 5,000 = 4,032

(b) From Problem 12.9 we know that
P(X = 10.0 cm) = 0.9032
Therefore, the number of carrots that are 10 cm or longer is

0.9032 x 5,000 = 4,516

(¢) Because of the symmetry of the normal distribution, the number of carrots that are 13 cm or shorter is
also 4,516.

For the carrots in Problems 12.8 to 12.10, what length is greater than or equal to 96% of the other
lengths?

Solution
We know that
P(X <x,) = P(Z <2z) =096

To solve for x, we first need to use Table A.5 to find z, and then transform this value back to x,. To find z, we
use these known relationships
P(Z <2) =0.96 = P(—c0 < Z < z)
=P(—o00<Z=20)+PO0<Z<z)
=054+P0<Z<z)
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12.12

12.13

12.14

Therefore,
PO<Z<2z)=096—-05=046

The area in Table A.5 that is closest to 0.46 is 0.4599, with a z value of 1.75. Therefore, using equation
(12.12)

X, =115 cm+ (1.75 x 1.15 cm) = 11.5 cm + 2.0125 cm = 13.5 cm
Thus, a length of 13.5cm is greater than or equal to 96% of the other lengths.

For the carrots in Problems 12.8 to 12.11, if two new carrots are harvested, what is the probability
that both of them will be longer than 13.5cm?

Solution
First, we know from Problem 12.11 that

P(X <13.5¢cm) =0.96
Therefore,
P(X > 13.5 cm) = 1 — 0.96 = 0.04

There is a 0.04 probability that a harvested carrot will be longer than 13.5 cm. Therefore, as carrot harvests are
presumably independent events, we know from the special multiplication rule (sce Section 9.5 in Volume 1)
that

P(ANB) = P(A)P(B)
and so here, if we let X; and X, denote the lengths of the first and the second carrot, then
P{(X; > 13.5 ecm) N (X, > 13.5 cm)] = (0.04) x (0.04) = 0.0016

A sociologist has been studying the criminal justice system in a large city. Among other things, she
has found that over the last 5 years the length of time an arrested person must wait between their
arrest and their trial is a normally distributed variable X with g = 210 days and o = 20 days. What
percent of these people had their trial between 160 days and 190 days after their arrest?

Solution
Using equation (12.7),

— 210 1 -
P(160 days < X < 190 days) = P(160 days days <7< 90 days — 210 days)

20 days 20 days
=P(-250<Z < -1.00)
As
P(-250<Z<—1.00)=P(-250<Z<0)—P(-1.00<Z <0)
and, from Table A.5,
P(—2.50 < Z < 0) — P(—1.00 < Z < 0) = 0.4938 — 0.3413 = 0.1525
Therefore, 15.25% came fo trial between 160 days and 190 days after they were arrested.

For a given large population (e.g., all 12-year-old children in the United States), intelligence
quotient scores (IQ scores) that are acquired by using the Stanford—Binet Intelligence Scale tend to
be normally distributed with 4 = 100.0 and ¢ = 16.0. For such an IQ distribution, what IQ score
(X = x) is the 67th percentile?
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Solution

Normal-distribution techniques are routinely used to solve such IQ-distribution problems even though
modern /Q scores are always integers and thus the /Q variable X is always a discrete variable. It is an example
of treating a discrete measurement variable “as if it were continuous” because it is assumed that there is an
underlying hypothetical variable (i.e., intelligence) that is continuous (see Problem 5.9 in Volume 1).

To use the normal distribution to find the 67th percentile (Qg7/100 = Ps7), we must determine the x, value
below which are 67% of the data (see Section 6.13 in Volume 1). We find this value by using the techniques
from Problem 12.11 to solve this equation for x,

— 100.
where
P(Z<2)=06T=P(—00<Z=<2)=05+P0=<Z<z)
Thus,

PO<Z<z)=067~0.5=0.17

The area in Table A.5 that is closest to 0.17 is exactly 0.1700, and therefore z, = 0.44.
Next, we know that

x, — 100.0
Zy = 044 = T
Solving for x,
Xy = (16.0 x 0.44) + 100.0 = 7.04 + 100.0 = 107.04, or 107.0

Thus, the 67th percentile for this JQ distribution is 107.0.

For the /Q distribution in Problem 12.14, what IQ score is: (a) the 33rd percentile, (b) the 2nd
decile?
Solution

(@) The 33rd percentile (Q33/199 = P33) is the x value below which are 33% of the data. Therefore, we must
solve this equation for x,:

PX <x)=PX <x)= P<Z < x,_—i6_1<;o_0) = P(Z < z,) = 0.33
where
P(Z <2)=033=0.5—P(z, < Z < 0)
Thus,

Pz, <Z<0)=05-0.33=0.17
Therefore, z, is the negative version of the value in Problem 12.14.
z, = —0.44
and thus

x, — 100.0

7 =044 ="

and
X = [16.0 x (—0.44)] + 100.0 = —7.04 + 100.0 == 92.96, or93.0
Thus, the 33rd percentile for this /Q distribution is 93.0.
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The 2nd decile (Q,,9 = D,) is the x value below which is 20% of the data. Therefore, we must solve this
equation for x,:

— 100.
where
PZ<2z)=020=050—-Pz<Z=<0)
Thus,

P(z, <Z <0)=0.5—0.20=0.30

* The area in Table A.5 that is closest to 0.30 is 0.2996, and so z, = —0.84. Therefore,

x, — 100.0
7= —0.84 ==

and
Xy =[16.0 x (—0.84)] + 100.0 = —13.44 4 100.0 = 86.56, or 86.6
Thus, the 2nd decile for this JQ distribution is 86.6.

12.16 For the IQ distribution in Problems 12.14 and 12.15, what is the probability that a randomly
selected person from the population will have an IQ score: (a) of 140, (b) exactly at the 67th
percentile (107.0 from Problem 12.14)?

Solution

If we are treating this discrete /Q distribution “as if it were continuous” (see Problem 12.14), then we

know for all continuous probability distributions [sec Example 12.1(5)] that

P(X =x)=0

and therefore that

P(X = 140) = P(X = 107.0) =0

However, if it is here assumed that each of these exact values is actually the midpoint of an implied range of a
measurement category (see Seciton 2.10, Volume 1), then it is possible to calculate for P(X = 140):
P(139.5 < X < 140.5), and for P(X = 107.0): P(106.95 < X < 107.05).

(@)

®)

Using equation (12.7),

139.5 — 100.0 140.5 — 100.0
P(139.5 < Z < 140.5) = P( e SIS

) =PQR.47 <Z <2.53)
We know from Table A.5 that the area above 0 < z < 2.47 is 0.4932 and the area above 0 <z < 2.53 is
0.4943. Thus,
P(139.5 < X < 140.5) = P(2.47 < Z < 2.53) = 0.4943 — 0.4932 = 0.0011
106.95 — 100.0 107.05 — 100.0

P(106.95 < X < 107.05) = P( 60 <Z< 6.0 ) = P(0.43 <Z <0.44)

We know from Table A.5 that the area above 0 < z < 0.43 is 0.1664 and the area above 0 <z < 0.44 is
0.1700. Thus,

P(106.95 < Z < 107.05) = P(0.43 < Z < 0.44) = 0.1700 — 0.1664 = 0.0036
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ONE-TAILED AND TWO-TAILED PROBABILITIES

12.17

12.18

12.19

If the normally distributed variable X has y = 14.5 and ¢ = 2.1, then What are z, and x, if
o =0.01?

Solution
We know from equation (12.9) that
P(Z > z,) = o0 = 0.01

Therefore, to find z, we must find the z value associated with the area in Table A.5 that is closest to
0.5 —-0.01 =0.49:

PO <Z<z)=049

Here it is clear that z, = 2.33.
_Using equation (12.12),

=14.54+(2.33 x 2.1) = 14.5 + 4.893 = 19.393, or 194

For the normally distributed variable in Problem 12.17, with u = 14.5 and ¢ = 2.1, what are —z,
and x,_, when a = 0.02?

Solution
We know from equation (12.11) that
PZ <—z)=0=0.02

Therefore, to find —z, we must find the z value associated with the arca in Table A.5 that is closest to
0.5 —-0.02 =0.48:

P(—z, <Z<0)=048
This area is 0.4798 and so —z, = —2.05. Substituting this value in equation (12,12),
=145+ (—2.05 x 2.1) = 14.5 — 4305 = 10.195, or 10.2

If X is a normally d1stnbuted variable with y = 1.83 and ¢ = 0.15, then if « = 0.01 what are z, /25
TZy/2s K25 and x;_ —aj2?

Solution
We know from equation (12.16) that
P(Z > z,p) = a/2 = 0.01/2 = 0.005

Therefore, to find z,,, we must find the z value associated with the arca in Table A.5 that is closest to
0.5 — 0.005 = 0.495:

P(O <Z =< 2z,,)=0.495
There are two equally close areas: 0.4949 with z = 2.57 and 0.4951 with z = 2.58. Therefore,

2.57+2.58
- Zapp = + =2.575

Because of the symmetry of the standard normal distribution, we know that

—Z(X/Z = —-2.575
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Using equation (12.12),

Xy = 1.83 +(2.575 x 0.15) = 1.83 4+ 0.38625 = 2.21625,  or2.22
g = 1.83 4+ (=2.575 x 0.15) = 1.83 — 0.38625 = 1.44375,  or 1.4

THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

12.20 In Example 12.10(a) it was determined for the binomial variable, number of heads in 14 flips of a
coin, that the probability of 9 flips is P(X = 9) = 0.1222. Determine P(X = 9) for this variable
using the normal approximation to the binomial.

Solution

Treating the value 9 as a measurement category with the implied range of 8.5 to 9.5, we want to find the
area under the normal curve in Fig. 12-12 (u=np =7, 0 = . /apg = /3.5 = 1.8708) that is above the
interval 8.5 < x < 9.5, Using the version of equation (12.7) from Example 12.10(b),

P85 <X <95 = P(8‘5 il P b "1’)

Nz NG
8.5 7 9517
“P(1.8708 =Z= 1.8708)

=P0.80<Z <1349
From Table A.S,
P <Z <0.80) = 0.2881 P(0 <Z <1.34) = 0.4099
Therefore,
P(0.80 < Z < 1.34) = 0.4099 — 0.2881 = 0.1218

Comparing the true binomial result with the normal approximation, we can see that they are identical through
the second decimal place:

P(X =9)=0.1222 ~ P(0.80 < Z < 1.34) = 0.1218

12.21 For the binomial variable, number of heads in 14 flips of a coin, use both the binomial and normal-
approximation techniques (see Example 12.10) to determine the probability of getting at most 6
heads.

Solution
To determine the true binomial probability P(X < 6) we use the relevant terms from the binomial
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expansion in Example 12.10(a):
P(X =0) =g = () = 0.000061
P(X = 1) = 14¢"p = 14()* () = 0.000854
P(X =2) =91¢"%p? = 91()2()* = 0.005554
P(X =3) =364¢"p* =364()"' 3’ = 0.022217
P(X = 4) =1001¢"p* = 1001()"°})* = 0.061096
P(X = 5) = 2002¢°p° = 2002(’°Q)° = 0.122192
P(X = 6) = 3003¢°p° = 3003 })° = 0.183289
Therefore,

P(X < 6)=0.000061 + 0.000854 + 0.005554 + 0.022217 + 0.061096
+0.122192 + 0.183289 ’
= 0.395263, or 0.3953

The normal-approximation solution for this problem can be determined by finding the area under the
normal curve above either of these two intervals: —0.5 <x < 6.5 or —00 < x < 6.5. The first interval,
—0.5 < x < 6.5, represents the exact interval in the binomial distribution (0 to 6) corrected for continuity at
both ends. The second interval, —0co < x < 6.5, the one that would be used most typically, extends downward
from the continuity-corrected upper boundary 6.5 to the lower limit of the normal distribution, —oo.

To solve for —0.5 <x < 6.5, we use the standard-normal techniques from Section 12.12 with
p=np=71,0=/mpg =~/35 = 1.8708

—0.5—-np 6.5—np

P(-0.5<X <65)= P( <Z< )
NCZi /g
—0.5-7 6.5 7
P( 18708 2= 1.8708)

=P(—4.01 < Z <0.27)
From Table A.5
P(—4.01 < Z <0)=0.5000 P(—0.27 < Z <0) = 0.1064

Therefore,

P(—4.01 < Z < —0.27) = 0.5000 — 0.1064 = 0.3936

To solve for —oo < x < 6.5, we know from the above result that
P(—o00 < X £6.5)=P(—o0 < Z <0.27)

and that

P(—00 < Z < —0.27) = 0.5000 — 0.1064 = 0.3936

It will almost always be true, as it is here, that the results for the two intervals are identical. Therefore, as
it is easier to calculate the solution to the extremes of the normal distribution (—oo or 00), this is the solution
that is typically used.

Comparing the true binomial result with the normal approximation, we can see that they are again
identical through the second decimal place:

P(X < 6) = 0.3953 ~ P(—00 < Z < —0.27) = 0.3936
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12.22

12.23

In a city where 48% of the registered voters are Republicans, a random sample of 200 registered
voters are telephoned and each one is asked whether they are in favor of a new airport. Using
normal-approximation techniques, what is the probability that fewer than 100 of the voters that are
called will be Republicans?

Solution

Assuming this is a binomial experiment, then what is requested is P(X < 100) in the binomial
distribution where p = np = 200 x 0.48 = 96, 0? = npq = 200 x 0.48 x 0.52 =49.92, and 0 = ,/Apg =
+/49.92 = 7.0654. As both np and nq are greater than 5 (np = 96, nq = 104), the normal approximation
solution is appropriate (see Section 12.12).

Al values of the binomial variable are integers, and so

P(X < 100) = P(X < 99)

Correcting for continuity [see Example 12.10(b)], the normal approximation is the area under the normal
curve (i = 96, 6% = 49.92, ¢ = 7.0654) above the interval —oo < x < 99.5:

99.5 — np)
/hPq

99.5 - 96
7.0654

P(—00 <X <£99.5) = P(—oo <Z<

:P(—oo<Z§

= P(—o0 < Z < 0.50)
From Table A.S,
PO <Z <0.50)=0.1915
Thus, |
P(—o0 < Z < 0.50) = 0.5000 + 0.1915 = 0.6915
Therefore,

P(X < 100) = 0.6915

A manufacturer receives electrical fuses in lots of 100,000. He has a sampling plan (see Section
11.11) that specifies that a random sample of 800 fuses should be tested from each lot, and that the
lot should be accepted if the sample ‘contains 10 or fewer defective fuses. Use normal-approxima-
tion techniques to determine the probability of accepting the lot (P,) for a hypothetical proportion
of defective fuses in the lot of p = 0.01.

Solution

Assuming this is a binomial experiment, then what is requested is P, = P(X < 10) in the binomial
distribution where ©=np =800 x 0.01 =8, o = npg = 800 x 0.01 x 0.99=7.92, and ¢ = Pq =
+/7.92 = 2.8142. As both np and ng are greater than 5 (np =8, ng = 792), the normal-approximation
solution is appropriate (see Section 12.12).

Correcting for continuity [see Example 12.10()], the normal approximation is the area under the normal
curve (u = 8, 0% = 7.92, o = 2.8142) above the interval —o0 < x < 10.5:

10.5 —np
P(—oc0 < X <10.5 =P(—oo <Z§———)
( ) a

10.5—-8
—P('°° <25m)

= P(—00 < Z < 0.89)



80 NORMAL DISTRIBUTION AND CONTINUOUS PROBABILITY DISTRIBUTIONS [CHAP. 12

From Table A.5,
P(0 <Z<0.89)=0.3133
and so
P(—00 < Z <0.89) = 0.5000 + 0.3133 = 0.8133
Therefore,

P, =P(X < 10) ~ 0.8133

THE NORMAL APPROXIMATION TO THE POISSON DISTRIBUTION

12.24 The cable manufacturer in Example 12.11 has determined that for the 4-meter unit of cable there are
4 = 4.0 defects per 4 meters. Use both the Poisson and the normal-approximate techniques to
determine the probability of getting 17, 18, or 19 defects in # = 4.5 units of cable.

Solution
To determine the true Poisson probability P(17 < X < 19) we use equation (11.26),

foy =5

x!

—H

to find £(17), f(18), and f(19) in the Poisson distribution where u = ¢? = Ar = (4.0)(4.5) = 18, and
0 = /2t = /18 = 4.2426:

(1)t
£ == — = 0.0936
18)18¢18
: f(18)=%§—=0.0936
1 19 18
709y =T — 0.0887

From Example 12.10(a) we know that for a discrete variable such as this one,
Pl7<X <199=PX =17+PX =18)+P(X =19)
=17 +f18)+(19)
= 0.0936 + 0.0936 + 0.0887 = 0.2759

As At > 10, we can use the normal-approximation technique from Section 12.13 with the continuity
correction [see Example 12.10(b)] to find P(16.5 <X <19.5) in the normal distribution where
p=0c2 =it =18 and o = /18 = 4.2426:

IA

16.5 — it 19.5 — )¢
P(16.5 <X <195 =P 7z <
(16.5 =X < 19.5) (m < m)

165 18 19.5— 18
=P ( 42426 =% ="47426 )

= P(—0.35 < Z < 0.35)

IA

We know from Table A.5
P(—035<Z <0)=P0 <Z=<0.35)=0.1368
and therefore

P(~0.35 < Z < 0.35) = 2(0.1368) = 0.2736
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12.25

Comparing the true Poisson result with the normal approximation, we see that they are identical through
the second decimal place:

P(17 <X <19)=0.2759 = P(—0.35 < Z < 0.35) = 0.2736

The normal -approximation is closer to the true Poisson value in this problem than it was in Example
12.11 because At in this problem is three times larger (18 vs. 6). Recall from Section 12.13 that the larger the
At, the closer the normal approximation.

For the Geiger counter experiment in Example 11.25, the physicist determined that for the 10-
second unit there are 4 = 5.5 particles per 10 seconds. Use normal-approximation techniques to
determine the probability of recording more than 73 particles in a 2-minute interval.

Solution
Because all values of the Poisson variable are integers,
PX>7)=PX=>=74)=P(74 <X)
Thus, correcting for continuity, the normal approximation is the area under the normal curve
(u =02 =At=5.5 x 12 = 66, ¢ = +/At = 8.1240) above the interval 73.5 < x < 00:
735 - Mt
P(73.5 <X <00)=05000-Pl0<Z € —n—
( > ( )
73.5 — 66
8.1240

= 0.5000 — P(0 < Z < 0.92)

= 0.5000 — P(O <Zcx

From Table A.5
P(73.5 < X < 00) = 0.5000 — 0.3212 = 0.1788
Therefore,

P(X > 73) ~ 0.1788

UNIFORM PROBABILITY DISTRIBUTIONS

12.26 For the experiment of rolling a die once, use uniform-probability techniques [see Example

12.12(/)] to find P(X < 4).

Solution
Using equation (12.19) with £ = 6,

1 1
and

PX <4)=PX =1)+PX =2)+ P(X =3)

=f)+f2+f(3)
1 1 1 3

12.27 For the continuous random variable X in Example 12.13 that can assume values only in the interval

1 <x < 6, if X has a continuous uniform probability distribution, then determine P(X < 4).
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Solution
As f(x) =0 everywhere except in the interval 1 <x <6, and as this is a continuous probability

distribution,
PX <d)=PX<4)=P1l<X<4

Therefore, using the equation from Example 12.13(f),

d—c
PlesX <d)=7—

withd=4,c=1,b=6,anda=1:
d—c 4-1 3

In a study of bird navigation, the investigator places young birds in the center of a large circular
cage and then determines their direction of flight from the center under different experimental
conditions. The circumference of the cage is calibrated in degrees clockwise from due north, with
0° and 360° at due north. For each flight, the investigator determines the degrees clockwise from
due north for the flight direction. In one experiment, the investigator provides no navigation clues
and assumes therefore that the flight directions will be randomly determined. If she is correct, then
the continuous random variable—degrees from due north—will be uniformly distributed over the
interval 0 < x < 360. Assuming she is correct, graph this distribution showing its density function
f(x) and u + o, and determine the probability that a flight will be between 10° and 50° from due
north.

Solution
From Section 12.15 we know that

1
S&) = P fora<x<b, andf(x)=0  elsewhere

b+a
I,[:

! 1 { 1 i 1 1 1
0 60 120 180 240 300 3

p-c B s
Degrees clockwise from due north

!
i
'
'
i
g
6

0

Fig. 12-19
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For this problem,
1

1
= = — < x < —
fx) 360 =0 360,forO_)c_36O, and  f(x) = 0 elsewhere
u=3602+0=180

360 — 0)°
¢ = LT())zw/w,so = 103.92

These values are shown on the graph of this distribution presented in Fig. 12-19.
From Example 12.13(f) we know that the probability that X will assume a value in the interval c < x < d

within the defining interval a <x < b is d : c' Therefore, with a =0, b = 360, ¢ = 10, and d = 50,
50-10
<< << = = 11
P10 <X <50) 360 —0 0

12.29 You arrive at the 10th floor elevator of a building exactly 5 minutes before the start of a meeting on
the 11th floor. It has been determined that the time spent waiting for an elevator on any floor of the
building varies from 0 to 10 minutes, and that this continuous random variable (waiting time) is
uniformly distributed over the interval 0 < x < 10. If it takes the elevator 10 seconds to go from
floor to floor and it will then take you 20 seconds to cross the 11th floor from the elevator to the
meeting, what is the probability that you will be on time for the meeting?

Solution

With 30 seconds added to the interval for travel time, we have a new variable (time to meeting) that is
uniformly distributed over the interval 0.5 <x < 10.5. For this variable we want to determine
P(0.5 < X < 5). From Example 12.13(f) we know that the probability that X will assume a value in the
interval 0.5 < x < 5 within the defining interval 0.5 <x < 10.5 is

c 5-05 45

d_
P(0.5 SXSS)_—_b_a—_-lOS_OS:-i—O—ZOAS

12.30 An industrial psychologist has determined that it takes a worker between 9 and 15 minutes to
complete a task on an automobile assembly line. If the continuous random variable—time to
complete the task—is uniformly distributed over the interval 9 < x < 15, then determine for this
distribution: (a) f(x), u, o, and the parameters, (b) P(X <13), (c) P@4 <X < 7).

Solution
(a) Using equations (12.23), (12.24), and (12.26),
1 1 1
_—— = s = — <x<1 y -
fx) P —a-15-9-8 for9<x<15 and f(x)=0 elsewhere
) b+a 1549
p=—g =g 12
o (b-a (15—9)2_\/3_173
T 12 12 - T

The parameters are a = 9 and b = 15.
(b) Using the equation from Example 12.13(f),

—¢ 13-9
P(X<13)=P(9§X§13):Z <. B9 e

b—a 15-9
(¢) P(4 <X <7)=0 because f(x) = 0 everywhere except in the interval 9 <x <15
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THE EXPONENTIAL DISTRIBUTION

12.31

12.32

At the hospital in Example 12.15 on Sundays between 6 PM and 10 PM, an average of 5§ emergency
cases arrive per hour at the emergency room. For the exponential distribution of the random
variable, time between arrivals, shown in Fig. 12-16, what is the probability that the time between
one arrival and the next will be longer than 10 minutes?

Solution

As is true for any continuous probability distribution, the total area (probability) under the exponential
curve (from 0 to 00) is 1.0 {see Example 12.1(f)].Thus,

PX >x)=1—-PX <x)
We know from equation (12.31) that .
PX<x)=F(x)=1-¢e*
Therefore,
PX>x)=1-(1—e®)=e*
Thus, for x = (10 minutes, or 0.1667 hours) and A = 5,
P(X > 0.1667) = ¢~ 601667 — ,=08335 _ ( 4345

Therefore, the probability is 0.4345 that the time between successive arrivals will be longer than 10 minutes.

For the emergency room in Problem 12.31, if the discrete random variable, number of arrivals, has a
Poisson distribution, then what is the probability that the time to the next arrival from any arbitrary
zero-point in the 6 PM to 10 PM period will be between 15 and 25 minutes?

Solution

This problem resembles the ones in Example 12.15(b) and Problem 12.31, except that now we are
concerned with the time to the next arrival from any given instant in time rather than the time between
consecutive arrivals. It is said that an exponentially distributed random variable is memoryless, which means
that the probability of future events is independent of such factors as how long the Poisson process has been
generating events or how recently an event has occurred. Thus, for this problem, the probability for time to
next arrival is the same whether the zero-point is a previous arrival or an arbitrary instant in time.

Density

1
%.00 . 0.50 0.75 1.00 1.25

Time to next arrival (hours)

Fig. 12-20
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12.33

12.34

12.35

Therefore, the exponential probability distribution for the continuous random variable time to next arrival
with 4 =5 is again [see Example 12.15(5)]

fx) =57, for x>0, and f(x)=0 forx<0

This exponential distribution is presented in Fig. 12-20 with the requested probability shown as the shaded
area under the curve over the interval (15 minutes, or 0.25 hours) < x < (25 minutes, or 0.4167 hours). The
value of this probability can be determined by using equations (10.9) of Volume 1 and (12.31). Thus,

P(0.25 < X < 0.4167) = F(0.4167) — F(0.25)
= [ — e~ X0UEN] _[] _ (X029
— [1 _ e——2.0835] _ [1 _ e-l.25]
= (1 - 0.1245) — (1 — 0.2865) = 0.1620

Therefore, the probability is 0.1620 that the time to the next arrival from any instant during the 6 PM to 10PM
interval will be between 15 and 25 minutes.

In normal use, it takes an average of 7.3 years before a type of television tube fails. If time to failure
is exponentially distributed, what is the probability that such a tube will fail within 4 years from the
start of use?

Solution

The exponential distribution is often used to model the time to failure (or length of life, or lifetime) of a
system. This usage requires the assumption that the system has the memoryless property of the exponential
distribution (see Problem 12.32). Here, it requires the assumption that the future lifetime of the system is
independent of how long the system has been operating. While this is rarely true for equipment in the real
world, the exponential distribution is a reasonable model if the average time to failure, as in this problem, is
very long.

Assuming, then, that time to failure of the television tube is exponentially distributed, we know that

u=1/4A =173 years
and thus that

A=1/73=0.1370 )
Therefore, using equation (12.31),

F@)=P(X <4)=1—¢ OB =] . o~0340 _ 1 _ 05781 = 0.4219
Thus, the probability is 0.4219 that such a tube will fail within 4 years of the start of use.

For the television tubes in Problem 12.33, what is the probability that four of them, in four
independently operating television sets, will each fail within 4 years from the start of their use?

Solution

As we can assume that each failure is an independent event, we can solve this problem with the
generalization of the special multiplication rule [equation (9.9), Volume 1]. Thus, as we know from Problem
12.33 that

PX <4)=0.4219
and if we denote the four times to failure as Xj, X,, X3, and X}, then
P, <N <HNXK <N X, <4)]=(0.4219)" = 0.0317

Therefore, the probability is 0.0317 that four such tubes will independently fail within 4 years of the start of
their use.

For the television tubes in Problems 12.33 and 12.34, it is known that the probability that a tube will
fail in h years or less is 0.8. What is h?
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Solution
From Problem 12.33 we know that

F(h) = P(X < h) =1 — 1701370k
Therefore,
C 1= O30k _ g

and

e—0.1370h =0.2

We know from Section 1.10 in Volume 1 that
if log, n=rx, then n=¢
Therefore, here [see Problem 1.23(b), Volume 1]

log, 0.2 = —0.1370%
~1.6094 = —0.1370h

and so

_ —1.6094
~ 0.1370

= 11.7474 years

Supplementary Problems

THE NORMAL AND STANDARD NORMAL DISTRIBUTIONS

12.36

12.37

12.38

12.39

12.40

Using equation (12.1), calculate f(x) for X = 1 for a normal distribution with the parameters = 2 and
=1

Amns. 0.24197

For the continuous random variable X that is normally distributed with u = 4.0 sec and ¢ = 0.4 sec, transform
the following X = x values into Z = z values: (a) x =5.3sec, (b)x=3.3sec.

Ans. (a) 3.25, (b) —~1.75

For the continuous random variable X in Problem 12.37, transform the following Z = z values back into
X =xvalues: (a)z=-0.92, (b)z=2.93.

Ans. (a)3.6sec, (b)5.2 sec

With regard to the criminal-justice study in Problem 12.13, how many of the next 100 arrested people would
you expect to be tried in less than 200 days?

Ans. 30.85, or 31

From the results of the criminal-justice study in Problems 12.13 and 12.39, what are the odds against (see
Problem 8.24 in Volume 1) the next arrested person being tried in less than 200 days?

P
Ans. P(A) = probability that the arrested person will be tried in less than 200 days. ) _

_ PA)
! 0.;)(’)38(;85 = 823;2 "y :Z;; the odds against the trial taking place in less than 200 days are approximately 7

to 3.
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12.41

12.42

The QUICK-TUNE Company advertises a complete tune-up of your car for $34.98. Furthermore, it
guarantees that the tune-up will be free of charge if it is not completed in 30 minutes or less. The company
knows that the time required for a tune-up is a normally distributed variable X with = 23.2min and
¢ = 4.17min. If each tune-up actually costs QUICK-TUNE an average of $24.00 (for parts, labor,
advertising, etc.), then how much profit can the company expect to make on the next 200 tune-ups?

Ans. P(X > 30 min= 0.5 — 0.4484 = 0.0516; the number of free tune-ups = 0.0516 x 200 = 10.32, or
10; the cost of the free tune-ups = 10 x $24 = $240; the profit from tune-ups that are not
free = 190 x (334.98 — $24.00) = $2,086.20; and the overall profit = $2,086.20 — $240.00 = $1,846.20.

Each of the 380 students in a university psychology course can earn a total of 500 points in the course. This
total-point score X is normally distributed and the professor is “grading on the curve.” To him this means the
following relationships between total scores and grades: 4 if the total is in the interval x > (4 + ¢), B if in the
interval y < x < (u+ o), C if in the interval (u — 0) <x < g, D if in the interval (u — 20) <x < (g —0),
and F if in the interval x < (u — 20). If it turns out that the lowest possible scores for 4 and C are 448 and
352, respectively, then: (@) What are ¢ and p? (b) How many students got Bs?

Ans. Treating this distribution “as if it were continuous™: (a) o =48 and p =400, () 129.69, or 130

ONE-TAILED AND TWO-TAILED PROBABILITIES

12.43

12.44

12.45

For the ground squirrels in Example 12.7, the variable body weight of males is normally distributed with a
mean of 400 g and a standard deviation of 100 g. If & = 0.01, then what are z, and x,?

Ans. z,=233,x,=633¢g

For the weights of male ground squirrels in Problem 12.43, if o = 0.02, then what are —z, and x, _,?

Ans. —z,=-2.05,%_,=195¢g

For the weights of male ground squirrels in Problem 12.43, if « = 0.05, then what are z, 5, —z, 3, X,7, and
X1 —a/Z?

Ans. z,, =196, —z,, = —1.96, x,; = 5968, x_4/, =204¢g

THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

12.46

12.47

12.48

For the binomial variable number of heads in 800 ﬂips of a coin, use normal-approximation techniques to
determine the probability of getting more than 415 heads.

Ans. =~0.1357

You are a dermatologist who treats a specific skin condition with drug A4 that is known to cure the condition
64% of the time. Use normal approximation techniques to determine the probability that if drug 4 is used on
the next 250 patients with this condition, it will cure more than 150 of them but fewer than 175.

Ans. ~0.8663

A medical school receives 1,000 applications for the 130 places in its next first-year class. It must admit more
than 130 students because typically only 60% of those admitted will actually join the class. If the school
admits 200 applicants, then what is the probability that too many applicants—131 or more—will agree to join
the class? Solve this problem with normal-approximation techniques.

Ans. =~0.0643
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THE NORMAL APPROXIMATION TO THE POISSON DISTRIBUTION

12.49

12.50

For the Geiger-counter experiment in Example 11.25 and Problem 12.25, the physicist calculates the average
rate of recording particles in a 10-second interval to be A = 5.5 particles. Using normal-approximation
techniques, determine the probability of recording 66 particles in a 2-minute interval.

Ans. ~=0.0478
Thirty cars pass a crosswalk every hour. What is the probability that, for a particular 5-minute period, more
than 6 cars will pass the crosswalk?

Ans. =0.0057

UNIFORM PROBABILITY DISTRIBUTIONS

12.51

12.52

12.53

12.54

For the experiment of rolling a die once, use uniform-probability techniques to find P(5 < X < 9).

Ans. 0.3333

A continuous random variable X can assume values only in the interval 1 <x < 6. If X has a continuous
uniform probability distribution, then what is P(5§ < X < 9)?

Ans. 0.2000

In the bird-navigation study in Problem 12.28, the investigator assumes that flight directions will be randomly
determined and the continuous random variable—degrees from due north—will be uniformly distributed over
the interval 0 < x < 360. Assuming she is correct, determine the probability that a flight will be between 300°
and 340° from due north.

Ans. 0.1111
The industrial psychologist in Problem 12.30 has determined that it takes a worker between 9 and 15 minutes
to complete a task on an automobile assembly line. If the continuous random variable—time to complete the

task—is uniformly distributed over the interval 9 <x < 15, then determine for this distribution: (a)
P(12 < X < 14), (b) P(X = 10).

Ans. () 03333, (b) 0.8333

THE EXPONENTIAL DISTRIBUTION

12.55

12.56

12.57

12.58

For the cable-defect experiment in Section 11.26, where the discrete random variable, number of defects, has a
Poisson distribution with A = 4.0 defects per 4 meters, what is the probability that two defects will be
separated by more than 50 cm?

Ans. €% =0.6065

For the car-passing study in Problem 12.50, where 30 cars pass a crosswalk every hour, if the discrete random
variable, number of cars passing, has a Poisson distribution, then what is the probability that the time between
one passing and the next will be longer than 5 minutes?

Ans. 0.0822

An ornithologist walks along a fenceline in junco habitat, and counts the number of junco nests that he can see
from the fence. He counts 30 nests within a one-kilometer (1,000 meters) segment of the fence. If the discrete
random variable, number of nests, has a Poisson distribution, then what is the probability that the distance
between two nests will be 20 meters or less?

Ans. 0.4512
For the density of junco nests described in Problem 12.57, what is the probability that the distance from any
particular point along the fenceline to the next nest will be between 10 and 30 meters?

Ans. 0.3342



Sampling
Distributions

IMPLE RANDOM SAMPLING REVISITED

fhverview of statistics in Chapter 3 of Volume 1, we indicated that this science has two divisions:
statistics (collecting, organizing, describing, and presenting data) and inferential statistics
grences about entire populations from sample information). We further indicated that inferential
g four theoretical components: probability theory, sampling theory, estimation theory, and
gsting theory. Of these elements of statistics, we have at this point completed introductions to
ive statistics (see Volume 1, Chapters 2 through 7) and probability theory (see Volume 1,
ough 10, and Chapters 11 and 12 of this volume). We now go on to the remaining three
pf inferential statistics: sampling theory (this chapter), estimation theory (starting with
and hypothesis-testing theory (starting with Chapter 16).
i discussed aspects of sampling theory in Chapter 3 of Volume 1, with particular emphasis on
mpling, called sampling designs (see Section 3.15), that are required for inferential statistics.
hat there are inferential techniques, called random sampling or probability sampling,
a0y version of the sampling designs (see Section 3.17), but that one of these versions, simple
pling (see Section 3.18), is by far the most important—that indeed most methods in
ferential statistics are based on the assumption that the samples were taken with simple

DENT RANDOM VARIABLES

14 of Volume 1 we discussed the differences between mathematical statistics and general
inatical statistics is an integrated, mathematical system of axioms and theorems. General
firast, i3 a nonmathematical interpretation of this mathematical systemn developed for
] use by nonmathematicians. Thus, as would be expected, there is a fundamental,
altietinition of simple random sampling, and various simplified nonmathematical interpreta-
glinition (see Section 13.3).

mpartant component of the theoretical, mathematical definition of simple random sampling is the

e endent random variables. We saw in probability theory (see Section 9.4, Volume 1) that
[#nd B are independent when the occurrence of one does not affect the probability of whether

B9
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or not the second will occur. Similarly, two random variables X and Y are independent if when X assumes
a specific value x, this does not affect the probability of the specific value y that ¥ will assume.

For discrete random variables X, Y, and Z, if events X = x, Y = y, and Z = z are independent for all x,
¥, and z, then these variables are independent, and from the generalization of the special multiplication rule
[equation (9.9), Volume 1]

PX=xY=y,Z=2)=PX =x)P(Y =y)P(Z =2)

For continuous random variables X, Y, and Z, if the events X < x, Y <y, and Z < z are independent of all
x,y, and z, then

PX =x,Y<y,Z<z)=PX <x)P(Y <y)P(Z <2)

13.3 MATHEMATICAL AND NONMATHEMATICAL DEFINITIONS OF SIMPLE RANDOM
SAMPLING

The theoretical, mathematical definition of simple random sampling from a population is stated in the
language of random variables and probability distributions. Recall from Sections 10.5 and 10.6 of volume
1 that probability distributions are the mathematical models for population relative frequency distributions.
Thus, if a population of measurements is generated by a random variable X, then the probability
distribution for that variable is the mathematical model for that population distribution.

If we view the taking of a sample of size n from a population to be a statistical experiment with » trials,
then the outcome of each trial is an observation on the population random variable X. Because each of the
n observations is randomly determined (see Section 10.1 of Volume 1), the n observations correspond to a
set of n random variables X, X,, ..., X,. These n random variables are said to form a simple random
sample when two conditions are met: (1) the # random variables are independent (see Section 13.2), and
(2) the n random variables all have the same probability distribution as the population random variable X.
If these two conditions are met, then the set of n variables X7, X,, .. ., X,, is called a simple random sample,
having specific values X; =x;, X, = x,,..., X, = x,.

Another way in which the two conditions of the mathematical definition are stated is: (1) the n
successive trials of the experiment are independent, and (2) the probability distribution of X remains
constant over trials.

In Section 3.18 of Volume 1 we gave a common intuitive-level, nonmathematical definition of szmple
random sampling from a population:

Simple random sampling is a method of sampling in which at every selection from the
population all remaining elements (sampling units) in the population have the same
probability of being included in the sample.

Two similar nonmathematical definitions found in general statistics books are:

A sample of n elements from a population is a simple random sample if it is true that all
possible samples of n elements from the populatlon had the same probability of being
selected.

A sample of n elements from a popoulation is a simple random sample if it is true that all
elements in the population had equal and independent probabilities of being selected.

These nonmathematical definitions are attempts to interpret the same fundamental mathematical
definition. If the conditions specified in these nonmathematical definitions are satisfied, then, within limits
that we will discuss in the following sections of this chapter, it can be accepted that the sampling is simple
random sampling.
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EXAMPLE 13.1 The first nine letters of the alphabet (4 through I) are printed separately on otherwise identical
cards, and these cards are placed in a bowl. If three cards are drawn blindly one at a time from the bowl, then this is
sampling without replacement from a finite population (see Volume 1, Section 3.16). (a) By a nonmathematical
definition, is this a simple random sample? (&) How many different three-letter samples could be drawn in this way
from the nine letters? (c) What is the probability of each of these three-letter samples?

Solution

(a) If the three letters (cards) are drawn in such a way that on each selection all remaining letters have an
equal probability of being selected (i.e., applying the first version of the nonmathematical definition
given above), then such a sample is a simple random sample.

(b) As the order of selection does not matter, each such sample is one of the possible combinations of N =9
distinct objects (letters) taken # = 3 at a time. Therefore, using equation (9.20) of Volume I, there are
these many possible three-letter simple random samples (combinations) from the nine letters:

C = AN N! _ 9! _9x8x7_84
Ma=\n)  nWN—nt 3190-31 3x2x1

(¢) For each of the 84 possible simple random samples, the specific letters can be drawn in any order. The
probability of the first letter (L) will be

3
9
The probability of the second letter (L,) given that L; has been taken is

P(L) =

2
P (L2|L1) = g
And finally, the probability of the third letter (L,) given that both L, and L, have been taken is
1
P(L31Ly N Ly) = 7

To find the probability of getting this sample (L; N L, N L;) we use equation (9.5) of Volume 1:

P(L; N Ly N Ly) = PL)PLy L )PLs1Ly N Ly) = g x % x % = 0.011905

EXAMPLE 13.2 In Example 13.1 if, instead of taking the three-letter sample one letter at a time, each of the 84
possible samples had been printed separately on 84 otherwise identical cards and one card had been blindly selected,
then: (a) By a nonmathematical definition, is this a simple random sample? (b) What is the probability of each of
the 84 possible samples being the one selected?

Solution

(a) By the second version of a nonmathematical definition of a simple random sample given above, as all
possible cards had an equal probability of being taken, this is a simple random sample.

(b) The probability of selecting each of the 84 possible three-letter samples is

! ! =L=0.011905

TN\~ [9) 84
n 3
This is the same probability that we got for taking the three letters one at a time. It illustrates the general
rule for sampling from a finite population without replacement:

Simple random samples can be taken either one at a time if all remaining population elements have
the same probability of selection, or as an entire sample at once if all such samples have the same
probability of selection.
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13.4 ASSUMPTIONS OF THE SAMPLING TECHNIQUE

In order to make valid probability decisions using inferential techniques, certain assumptions must be
satisfied (see Volume 1, Section 3.13). One assumption of the sampling technique that underlies all
inferential techniques is the assumption of independence: the selection of one element from a population
for a sample does not affect the probability of the selection of any other element. A second assumption
important to inferential statistics is the assumption of random sampling: a simple random sample was taken
from the population. These two assumptions are not the same. While independence of observations within
the sample is required for all inferential techniques, there are inferential techniques available for forms of
probability sampling other than simple random sampling (see Volume 1, Section 3.17).

When a simple random sample has been taken, it would seem that both assumptions have
automatically been satisfied. Independence is required for a theoretical simple random sample (see Section
13.3) and this same condition of independence is stated in at least one common nonmathematical definition
(the third version given in Section 13.3). While indeed the assumption of independence of observations is
satisfied when taking a simple random sample either from an infinite population or from a finite population
with replacement, this assumption is not satisfied when taking a simple random sample from a finite
population without replacement (see Examples 13.1 and 13.2).

Simple random sampling from an infinitely large population is the ideal sampling situation, as it
satisfies all the assumptions of the sampling technique. One can assume that: (1) the distribution of the
population remains constant over sampling whether this sampling is with or without replacement, (2) on
every selection from this constant population each remaining element of the population has an equal
probability of being selected, (3) all possible combinations of elements in the population have an equal
probability of being selected, and (4) all elements in the population have an equal and independent
probability of being selected.

Simple random sampling from a finite population with replacement is treated as if it were simple
random sampling from an infinite population. Because elements are replaced between selections, the
distribution of the population remains constant and it can be assumed that all conditions given above for
sampling from an infinite population are satisfied.

Simple random sampling from a finite population without replacement violates the independence
assumption because the removal of one element changes the probability of all remaining elements.
Inferential techniques, however, are robust (see Volume 1, Problem 3.14) with regard to this violation: if
the finite population has a size N that is large compared to the sample size 7, then the violation is not a
problem. Some statistics books specify that sampling without replacement is not a problem unless n is
more than 5% of N (n > 0.05N).

In subsequent problems in this and later chapters, when the term random sample or sample is used it
will mean simple random sample. Whether the sampling was defined mathematically or nonmathemati-
cally, whether it was from a finite or an infinite population, and whether it was taken with or without
replacement, will be apparent from the context. '

13.5 THE RANDOM VARIABLE X

Both a population and a sample taken from it have an arithmetic mean. The population mean is a
parameter defined by equation (3.2) of Volume 1:

N
b
— =
H="N
and the sample mean is a statistic defined by equation (3.1) of Volame 1:
n
2%
i = i=1

n
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EXAMPLE 13.3 The following is a five-element population of numbers (N = 5): 0,1,2,3,4. (a) Using Table
A.l in the Appendix of Volume 1 and the technique from Example 3.5 of Volume 1 but with sampling with
replacement, take five different two-number (n = 2) random samples from this population. (b) Determine the
arithmetic mean of this population and of each of the five samples taken from it. (c) From the five sample means,
determine the overall mean.

Solution

(@) We first determine a starting place in Table A.1 of Volume 1: the intersection of column 37 and row 17,
the number 51. We then go down the left side of column 37 from this starting place, taking with
replacement (i.e., accepting repeated numbers) five different pairs (samples) from this population as they
appear: (2,2), (4,2), (0, 1), (3,2), (2, 1).

(b) Using equation (3.2) of Volume 1, the arithmetic mean of the population is

ﬂ_0+1+2+3+4

z =2.0
Using equation (3.1) of Volume 1, the arithmetic means of the samples are:
. 242 _ 442 _ 0+t _ 342 _ 241
X1=—2‘"—=2.0, X2=—‘2_=3.0, x3 =‘T‘:O.5, .X4:“2_:2.5, x5:“‘2_=1.5

(¢) We indicated in Section 6.10 of Volume 1 that if a population has been sampled several times and
arithmetic means have been calculated for each sample, then the best estimate of the population mean
from these samples is the overall mean calculated with equation (6.19) of Volume 1:

S

2 n;

i=1

Overall mean =
n;
=1
_@2x20+2x3.0)+2x05)+2x25)+2x 1.5 _
- 242424242 -
This example illustrates that, whereas a population of numbers has only one arithmetic mean y, which
is a constant, a series of random samples each of size n taken from this population has an arithmetic mean X
for each sample, and the means vary over the series of samples. If we consider each sample mean as the
randomly determined quantitative outcome of a statistical experiment, then X is a random variable (see
Volume 1, Section 10.1). As with other random variables, we must distinguish between the random
variable X and the real-number values X that it can assume. Thus, for the sampling problem in Example
13.3, X can assume 25 values (see Example 13.4) among which are: ¥, = 2.0, X, =3.0, X3 =0.5,
¥y =25, and x5 = 1.5.

1.9

13.6 THEORETICAL AND EMPIRICAL SAMPLING DISTRIBUTIONS OF THE MEAN

If a population from which a random sample is taken was generated by a discrete random variable X,
then X (see Section 13.5) is also a discrete random variable. As with other such variables, X has a discrete
probability distribution defined by a probability mass function [f(¥)] with a domain consisting of all
possible values that X can assume (X = X) and a range consisting of the probabilities of occurrence
assigned to these values [P(X = X)] (see Volume 1, Section 10.3). )

If the sampled population was generated by a continuous random variable X, then X is also a
continuous random variable. As with other such variables, X has a continuous probability distribution
defined by a probability density function [f(¥)] with a domain consisting of all the infinite and uncountable
values that X can assume (X = ¥) and a range consisting of the probability densities assigned to these
values (see Volume 1, Section 10.4).

A theoretical sampling distribution of the mean is a probability distribution (discrete or continuous)
consisting of the f(X) values (probabilities or densities) assigned to all the values that X can assume. It is
called a sampling distribution of the mean because it represents the means of repeated samples of a
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constant size n taken from the population. It is called a theoretical sampling distribution because it includes
all possible means, and typically this inclusion requires mathematical derivation from a theoretical model.

An empirical sampling distribution of the mean, by contrast, is developed by actually taking repeated
random samples of a constant size n from a population, calculating an arithmetic mean X = % for each
sample, and then constructing a relative frequency distribution of these means. Recall from Sections 10.5
and 10.6 in Volume 1 that probability distributions are used as mathematical models for population relative
frequency distributions and that, as the sample size increases, the sample relative frequency distribution
becomes more and more similar to the probability distribution. In sampling theory, probability distribu-
tions are used as mathematical models for empirical population sampling distributions, and as the number
of empirically taken samples of size » increases toward the often impossible goal of “all possible samples”
that could be taken from the population, the empirical sampling distribution of the mean approaches the
theoretical sampling distribution of the mean.

Theoretical sampling distributions are available for most of the descriptive statistics presented in
Chapters 6 and 7 in Volume 1, and they can be approximated by appropriate empirical sampling
distributions. Thus, for example, the sample variance s? (see Volume 1, Section 7.7) of a random
sample of constant size n from a population of size N is actually a random variable S? that can take on
specific values s2($2 = s?), and there is a theoretical sampling distribution of the variance that can be
approximated by an empirical sampling distribution of the variance. In this chapter we concentrate on the
sampling distribution of the mean, but we will also consider the sampling distribution of the sample sum
(see Section 13.19), the number of successes (see Section 13.22), and the proportion (see Section 13.23).
Other important sampling distributions, introduced in later chapters, include the ¢ distribution (Chapter 14),
the chi-square distribution (Chapter 15), the F distribution (Chapter 17), and the sampling distribution of
the difference between two means (Chapter 17). ‘

A typical statistical analysis involves a population parameter with an unknown value, and only one
sample available for making inferences about the value of the parameter [i.c., an estimation problem or a
hypothesis-testing problem (see Volume 1, Section 3.6)]. A value of a sample statistic is easily calculated to
estimate the value of the parameter, but how good is this estimate—how close is it to the real value of the
parameter? Is this sample a “typical” random sample or is it an extreme version? Do the values of the
sample statistic vary widely with repeated sampling? These and other such questions are answered in
inferential statistics by means of theoretical sampling distributions. Indeed, theoretical sampling distribu-
tions are the foundations of virtually all forms of statistical inference.

EXAMPLE 13.4 Use sampling with replacement to develop the discrete theoretical sampling distribution of the

mean for random samples of size n = 2 from the population of numbers in Example 13.3: 0, 1, 2, 3, 4. Develop the

distribution by completing the following steps: (a) list all such possible samples that can be taken from the

population, along with the arithmetic mean of each, (b) summarize these arithmetic means in frequency and relative

frequency distributions, (c) calculate the probability of selection for each mean and present the resulting sampling

distribution in both a probability table and a probability histogram (see Volume 1, Section 10.3). :
Solution

(a) From the counting rule: multiplication principle (see Volume 1, Section 9.12), we know that there are
(n; x ny =5 x 5 = 25) possible random samples of size n = 2 from this population if sampling is done
with replacement. These samples and their means [(sample) X} are

[(0,0)0.0] [(1,0)0.5] [(2,0)1.0] [(3.0)1.5] [(4,0)2.0]
[0,1)05] [.1)10] [2 115 [3,1)20] [(41)25]
[0,2)1.0] [(1,2)1.5] [(2,2)2.00 [(3.2)25] [(4,2)3.0]
[0,3)1.5] [(1,3)20] [2,3)25] [(3.3)3.0] [43)3.5]
[0,4)2.0] [(1,425] [2,43.0 [(3.4)35] [44)4.0]

(b) The requested frequency and relative frequency distributions are given in Table 13.1, where N; denotes
the number of possible x values.
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Table 13.1

Relative
Sample mean Frequency frequency
x; fi Si/ N
0.0 1 0.04
0.5 2 0.08
1.0 3 0.12
1.5 4 0.16
2.0 5 0.20
2.5 4 0.16
3.0 3 0.12
35 2 0.08
40 1 0.04
3 25 1.00

Because in random sampling all possible samples have the same probability of being selected (see
Section 13.3), each of the 25 possible samples has this probability of being selected: 1/25 = 0.04. As
these samples are mutually exclusive events, we know from Property (4) of the set theory interpretation
of probability (see Volume 1, Section 8.6) that the probability of selecting any of the k& samples
(81,55, . ..,S;) that have the same mean is

P(S,USU---US) =P(S))+P(S5)+ -+ P(Sp)

Therefore, to get the probability of a given mean, we add the probabilities of all samples that have that
mean. Thus, :

P(X = 0.0) = 0.04
P(X =0.5) = 0.04 + 0.04 = 0.08
P(X =1.0) = 0.04 +0.04 + 0.04 = 0.12

and so on. The probabilities so-calculated for each mean are presented as a theoretical sampling
distribution in Table 13.2 and as a histogram in Fig. 13-1. Note that the relative frequency distribution

Table 13.2

Sample

mean Probability
X S
0.0 0.04
0.5 0.08
1.0 0.12
15 0.16
2.0 0.20
2.5 0.16
3.0 0.12
3.5 0.08
4.0 0.04

> 1.00
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(see Table 13.1) and the theoretical sampling distribution (see Table 13.2 and Fig. 13-1) are the

same.

EXAMPLE 13.5 Use sampling without replacement to develop the discrete theoretical sampling distribution of the
mean for random samples of size n = 2 from the population of numbers in Example 13.3: 0, 1, 2, 3, 4. Develop the
distribution by completing the following steps: (a) list all such possible samples that can be taken from the
population along with the arithmetic mean of each, (b) summarize these arithmetic means in frequency and relative
frequency distributions, (c) calculate the probability of selection for each mean and present the resulting sampling
distribution in both a probability table and a probability histogram.

Solution

(@) When random sampling without replacement from a finite population, the order of values is not
considered. For example, in this problem the sample (0, 4) is considered to be identical to (4, 0). Thus,
the total number of possible random samples of constant size n from a finite population of size N taken
without replacement is determined by the counting rule: combinations [equation (9.20), Volume 1].

Nq=cg:

Solving for N = 5 and n = 2, the total number of possible samples is

Nt

(N —n)!

_Sx4

c— (%) _ 5t B
STET2) T2 -2 2x 1

These samples and their means [(sample) X] are

[(0, 1) 0.5]
[(0,2) 1.0]
[(0,3) 1.5]
[(0, 4) 2.0]
[(1,2) 1.5)

[(1,3) 2.0]
[(1,4) 2.5]
[2,3) 2.5]
[(2,4)3.0]
(3, 4) 3.5]
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(b) The requested frequency and relative frequency distributions are given in Table 13.3, where N is again
the number of possible values of x.

Table 13.3

Relative
Sample mean Frequency frequency
x; fi fil N
0.5 i 0.1
1.0 1 0.1
1.5 2 0.2
2.0 2 0.2
25 2 0.2
3.0 1 0.1
3.5 1 0.1
3 10 1.0

(¢) The logic of the probability calculations is the same as in Example 13.4(c). Now the probability of each
possible sample and, therefore, its mean is 1/10 = 0.1, and thus

P(X =0.5)=0.1
P(X =1.0) = 0.1
PX =15)=014+0.1=02

and so on. The probabilities so-calculated for each mean are presented as a theoretical sampling
distribution of the mean in Table 13.4 and the probability histogram in Fig. 13-2. Again note, as in
Example 13.4, that the relative frequency distribution (see Table 13.3) and theoretical sampling
distribution (see Table 13.4 and Fig. 13-2) are the same.

J®)

021

Probability

] 1 1 1 1 | 1
0.0 1.0 2.0 3.0

=

Sample mean

Fig. 13-2
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Table 134 ‘

Sample

mean Probability
x J&

0.5 0.1

1.0 0.1

1.5 0.2

2.0 0.2

25 0.2

3.0 0.1

3.5 0.1

3 1.0

13.7 THE MEAN OF THE SAMPLING DISTRIBUTION OF THE MEAN

A theoretical sampling distribution of the mean is a probability distribution (discrete or continuous)
consisting of the f(¥) values (probabilities or densities) assigned to all the values that X can assume (see
Section 13.6). For any such theoretical sampling distribution of the mean, whether discrete or continuous,
it can be proven mathematically that the mean y; [or expected value E(X)] of the theoretical sampling
distribution is always equal to the mean p of the population from which the samples were taken. Thus,

E(X)=p; = p (13.1)

EXAMPLE 13.6 Using the definition of E(X) from Section 10.9, Volume 1, show that #; = p for the theoretical
sampling distribution in: (@) Table 13.2, () Table 13.4.

Solution

(@) In Section 10.9 of Volume 1 we said

If X is a discrete random variable that can take on values Xy, x,,...,x, with the respective
probabilities £ (x;), f(x,), . . ., f(x;), then the expected value of X, denoted by E(X), is [Volume 1,
equation (10.10)]

BUO = =3 5f @) = S o)
Modifying the equation to solve for E(X), we get
B = i = Y 5/6) = THE (132)
Using this equation for the distribution in Table 13.2,

E(X) = #z = (0.0 x 0.04) + (0.5 x 0.08) + (1.0 x 0.12) + (1.5 x 0.16) + (2.0 x 0.20) + (2.5 x0.16)
+ (3.0 x 0.12) + (3.5 x 0.08) + (4.0 x 0.04)
=2.0

This value is the same as the population mean y = 2.0 [see Example 13.3(b)].
®) EX)=p; =(0.5x0.1)+ (1.0 x 0.1)+ (1.5 x 0.2) + (2.0 x 02)+(2.5%x0.2)+ (3.0 x0.1)

+(3.5%0.1)
=20
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13.8 THE ACCURACY OF AN ESTIMATOR

Any sample statistic that gives an estimate of a population parameter is called an estimator. The typical
symbols used to denote the parameter and its estimator are: 0 (the Greek letter theta) for the parameter and
f (read “theta-hat™) for its estimator. Of the various symbols used to denote a specific estimate or value of
0, we will use 6%,

In Section 2.14 of Volume 1 we said that in statistics the accuracy of a measurement is its closeness to
the true measurement, and that this property is determined primarily by the presence or absence of
systematic_errors, or measurement bias (see Volume 1, Section 2.13). Similarly, the accuracy of an
estimator. 0 is determined by the closeness of the mean of its theoretical sampling distribution [expected
value E()] to the population parameter 0 that it is estimating. Thus, the accuracy of an estimator is
measured by |E(0) — 0|, which is the absolute value of the distance between E(6) and 0.

The term E(0) — 0 is called the bias of the estimator 0, and, as with measurement bias, this bias
is considered to be a consequence of systematic errors. When E(0) = 0 or E(6) — @ = 0, the estimator is
said to be unbiased, or to have the property of unbiasedness. Thus, 0 is a petfectly accurate estimator of 0
when it is unbiased. _ o

In Example 13.6 we demonstrated, by showing that E(X) = g, that the estimator # = X is a perfectly
accurate (unbiased) estimator of the parameter 6 = .

13.9 THE VARIANCE OF THE SAMPLING DISTRIBUTION OF THE MEAN: INFINITE
POPULATION OR SAMPLING WITH REPLACEMENT

When sampling is from an infinite population or from a finite population with replacement, it can be
proven mathematically that the variance of the sampling distribution of the mean for these samples is

0.2

E[(X — )1 =at = — (13.3)

for all possible random samples of size n from a population of size N that has a mean u and a variance o2.

EXAMPLE 13.7 Using the definition of E[(X — w)?] from Section 10.11 of Volume 1, show for the theoretical
2

sampling distribution of the mean in Table 13.2 that 62 = .
n

Solution
In Section 10.11 of Volume 1 we said that

If X is a discrete random variable that can take on the value xj,x,,...,x; with respective
probabilities £(x,), £(x¥), .- ..f(x;), then the variance of X is

E(X - =d* =3 (x — ' f )

X

Modifying this equation to solve for E| (X — ,u,—c)z], we get
BiX — i)' = 0} = TG — 1)/ ®) (13.4)

Using this equation for the distribution in Table 13.2 with p; = 2.0 [see Example 13.6(a)],
EI(X — 1)2] = [(0.0 — 2.0)20.04] + [(0.5 — 2.0)70.08] + [(1.0 — 2.0)’0.12]
+[(1.5 — 2.0)20.16] + [(2.0 — 2.0)%0.20] + [(2.5 — 2.0)°0.16}

+[(3.0 = 2.0)°0.12] + [(3.5 — 2.0)%0.08] + [(4.0 — 2.0)*0.04]
=1.00
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To show that this value is equal to o%/n, we first calculate o® for the population: 0, 1,2, 3, 4, using
equation (7.12) of Volume 1 with i = 2.0 [see Example 13.3(5)]:

N

Z(xi - ﬂ)z
0_2 = i=1
N
_(0=2.00" + (1 ~ 2.0 + (2 — 2.0/ + (3 — 2.0)> + (4 — 2.0)? 2,00
= . =2
Therefore, as n = 2,
2
o2=Z =200

n 2

13.10 THE VARIANCE OF THE SAMPLING DISTRIBUTION OF THE MEAN: FINITE
POPULATION SAMPLED WITHOUT REPLACEMENT

If sampling is done without replacement from a finite population, then it can be proven mathematically
that the variance of the sampling distribution of the mean for these samples is

N—n
N-—-1

for all possible samples of size » from a population of size N that has a mean y and a variance ¢2. In this

E[(X — p)*] = o2 =5; X (13.5)

N —
equation, the factor v

n. . ., .
1 is called the square of the finite population correction factor.

EXAMPLE 13.8 Using equation (13.4), show for the theoretical sampling distribution of the mean in Table 13.4
N—n
N-T

2

[
that o2 = — x

n

Solution
Equation (13.4) states that

BI(X — )] = 0f = X — w)’f (%)
Therefore, for the distribution in Table 13.4 in which u; = 2.0 [see Example 13.6(5)],

of = [(0.5 — 2.0)°0.1] + [(1.0 — 2.0)%0.1] + [(1.5 — 2.0)%0.2] + [(2.0 — 2.0)°0.2] + [(2.5 — 2.0)%0.2]
+[(3.0 ~ 2.0%0.1] + [(3.5 — 2.0)%0.1]
=0.75

. 2
. ] 0 N-—n . .
To show that this value is the same as — x ———, we use n =2, N = 5, and the population variance
n

62 =2.00 from Example 13.7 N -1

6> N-n 200 5-2
S NNo1T 2 X501 0P

When sampling from a finite population without replacement, the variance of the sampling distribution
of the mean can be calculated without the square of the finite population correction factor if the population
size N is large compared to the sample size . This is true because if 7 is held constant as N is increased,

then

n .. . .. .
N1 approaches 1.0 as a limit. For this reason, many statistics books state as a rule of thumb that it
is not necessary to use the square of the correction factor when 7 is less or equal to 5% of N (n < 0.05N).
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13.11 THE STANDARD ERROR OF THE MEAN

If a random sample is taken from a population and the specific valye 0* of an estimator 0 (see Section
13.8) is calculated from this sample, then the difference between 0* and the parameter 0 that it is
estimating, 0* — 0, is called the sampling error. If the estimator is unbiased, then sampling error is also
called random error because it is due to random fluctuations of the estimate from sample to sample. Thus,
for such a random sample, if a value of the sample mean (X = ¥) is calculated to estimate the population
parameter p, then the difference between this estimate and u (or, X — p) is called sampling error or random
error (X is an unbiased estimator of y).

Recall from Section 7.9 of Volume 1 that the positive square root of the population variance
(«/Ef = ¢) is called the standard deviation because it is a measure of the standard, or typical, deviation
of any measurement from its population mean (x; — 1, see Volume 1, Section 6.4). Similarly, the positive
square root of the variance of the sampling distribution of the mean

JEIE — )1 = 0 = | Jo? (13.6)

is called the standard error of the mean because it is a measure of the standard, or typical, sampling error—
the amount that a sample mean estimate can be expected to vary, from sample to sample, about the
population mean.

When sampling from an infinite population or a finite population with replacement, we know that
[equation (13.3)]

Therefore, for these sampling conditions the standard error of the mean is
s /2
o= Joi ==Yl =2 (13.7)
n o Jr  \/n

EXAMPLE 13.9 For the theoretical sampling distribution of the mean in Table 13.2, determine the standard error
of the mean both by taking the square root of the variance of the sampling distribution, 62, and by using equation
(13.7).

Solution
In Example 13.7, we found that o}c = 1.00. Therefore, the standard error of the mean is

oz = ‘/0'% =4/1.00 =1.00

Calculating ¢; using equation (13.7) with ¢ = 4/2.00 (see Example 13.7),

5 = o _VZ.OO_IOO
TRTTA
For sampling without replacement from a finite population, we know that [equation (13.5)]
o= 22_ g N-—n
*Tp TN-1

and so, under these sampling conditions, the standard error of the mean is
s asz—n_‘/;5 N—n_ax N —n
GEVETN XN T VaVN =1 Jn VYN -1
N —n

1 is known as the finite population correction factor.

(13.8)

where
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EXAMPLE 13.10 For the theoretical sampling distribution of the mean in Table 13.4, determine the standard error
of the mean both by taking the square root of the variance of the sampling distribution, 2, and by using equation
(13.8).

Solution
In Example 13.8 we found that 62 = 0.75. Therefore, the standard error of the mean is

0 = a)% = +/0.75 = 0.8660

Calculating o; using equation (13.8) and again with 6 = +/2.00 (see Example 13.7),

o N —n \/200 5 2

n —

g; =

All descriptive statistics have been developed as estimators of population parameters. Theoretical
sampling distributions (for all possible same-size random samples) exist for most of these statistics.
Because these statistics have been developed to be unbiased estimators of their parameters (see Section
13.8), the means of their theoretical sampling distributions are equal to the parameters that they estimate.
The difference between any given calculation of a statistic and the parameter it is estimating is sampling
error. Therefore, the standard deviation of a theoretical sampling distribution for any given statistic is
called the standard error of that statistic—the amount that the statistic can be expected to vary about its
parameter from sample to sample. As new theoretical sampling distributions are introduced in this and later
chapters, the standard error of the given statistic with its unique calculation formula will be presented.

13.12 THE PRECISION OF AN ESTIMATOR

In Section 2.14 in Volume 1 we introduced two fundamental statistical properties of measurement:
accuracy (the closeness of the measurement to the true measurement) and precision (the closeness of
repeated measurements of the same thing). Similarly, two fundamental properties of an estimator 0 are its
accuracy [measured by |E(0) 0| (see Section 13.8)] and its precision.

If random samples of size » are taken repeatedly from a population of size N and values
6* of the estimator 0 are calculated for each sample in order to estimate the population
parameter 0, then the precision of the estimator is determined by the variability or spread
of the repeated estimates. The less variable (the closer together) the estimates, the more
precise the estimator.

. From this definition it can be seen that the standard error of the sampling distribution for an estimator
0 (see Section 13.11) is a measure of the precision of that estimator; the smaller the standard error, the
more precise the estimator. Thus, the standard error of the mean o5 is a measure of the precision of X as
an estimator of y; the smaller the o3, the more precisely X estimates w If 0 is an unbiased estimator
(see Section 13.8), as X is an unblased estimator of y, then it is said that a standard error measures
random error—chance variation in a series of estimates that results from random sampling. If there are
two unbiased estimators 0, and @,, then 6, is a more precise estimator if it has the smaller standard
erTor. |

The precision of X as an estimator of y is measured by the standard error of the mean, and it can be
seen for both versions of the a; formula [equations (13.7) and (13.8)), that if n were to be increased as ¢
was held constant, then ¢; would decrease and thus X would become a more precise estimator of . The
reverse effect is true for o. If n were to be held constant as ¢ was increased, then ¢; would increase and thus
X would become less precise.
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EXAMPLE 13.11 _Taking random samples of size n from an infinite population that has a standard deviation
o = 2.0, show that X would be a more precise estimator of y if sample size were increased from n = 4 to n = 16.

Solution
The precision of X as an estimator of y is measured by the standard error of the mean ;. For sampling

from an infinite population, 6; = %. Therefore, for c =2.0 and n =4,

20 _20_

oz = i 2 1.0
Increasing »n from 4 to 16,
20 20
0z = —JI—_G =5 =0

Thus, with a four-fold increase in sample size and a constant g, o5 decreases by 50%.

13.13 DETERMINING PROBABILITIES WITH A DISCRETE SAMPLING DISTRIBUTION
OF THE MEAN

In Section 10.7 of Volume 1 we saw how the cumulative distribution function of a discrete random
variable X can be used to find the probability that X will take on a value that is less than or equal to x.
Similarly, the cumulative distribution function of the discrete random variable X gives the probability that
X will take on a value that is less than or equal to ¥. This function, denoted by F(x), is defined for all real
numbers (—o0 < X < 00) by

F(x)=PX <X) (13.9)
and for any real number a, P(X < a) can be calculated with the formula
Fa) = Y1 @) (13.10)

x<a

where the symbol Y f(¥) means take the sum of the values of f (x) for all values of x that are less than or
equal to a. ¥<a

EXAMPLE 13.12 Given the population of numbers in Example 13.3: 0,1,2,3,4, and the discrete sampling
distribution of the mean in Table 13.2, determine the probability that the mean (X = ) of a random sample of size
(n = 2) selected with replacement from this population will be at most 2.0.

Solution
We know from Equation (13.10) that

F(2.0) = _gof(ic)
Substituting the required values of f(x) from Table 13.2,
F(2.0) = £(0.0) + £(0.5) + £(1.0) + f(1.5) + f(2.0)

=0.04+0.08 +0.12 4+ 0.16 + 0.20
= 0.60

13.14 DETERMINING PROBABILITIES WITH A NORMALLY DISTRIBUTED SAMPLING
DISTRIBUTION OF THE MEAN

In theory, a population is said to be infinitely large and normally distributed if its continuous random
variable X has a normal probability distribution (see Section 12.2). In applied problems, a population of
any size is said to be normally distributed when its empirical frequency (or relative frequency) distribution
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can reasonably be fit by a normal curve. From the theoretical definition (and therefore it holds true for the
applied definition), it can be proven mathematically that

If all possible random samples of the same size n are drawn from an infinitely large,
normally distributed population (mean u, variance ¢?, standard deviation ¢) and a value X.

of the continuous random variable X is calculated for each sample, then X will have a
2
normally distributed sampling distribution with mean y; = y, variance 62 = %, and

~ standard deviation o5 = 7 This result will be exactly true for all samples of size n.

N

Such a normally distributed, continuous random variable X can be standardized with this version of
the Z transformation [equation (12.3)],

Z =

= (13.11)
0%

which converts the normal distribution of X into the standard normal distribution (u, =0 and

6 =0, =1), defined by equation (12.5). Because sampling is from an infinitely large population,

u; = p and gz = a/./n for the distribution of X (see Sections 13.7 and 13.9), and therefore the above

version of the Z transformation is also presented in textbooks in the forms

z=X"# (13.12)
O%
and
X—p
=S (13.13)

EXAMPLE 13.13 A random sample (n = 100) is taken from a normally distributed population (u = 20.0,
o =10). (a) What arc the characteristics (i.e., the shape and parameters) of the distribution of the continuous
random variable X? (b) What is the probability that X will take on a value X in the interval 20.0 < x < 20.2?

Solution

- o 1.0
a) X is normally distributed with y; = 20.0 and 6; = — = ——= = 0.10.
@ y Iz NVt

(») If X is standardized with equation (13.12), we know that the resulting continuous Z variable has the
standard normal distribution. Therefore, equation (12.7) can be modified to read
P(asf(ib):P(uisZsu-‘-) =Pz, <Z<z) (13.14)

O% 0%

Using Table A.5 in the Appendix and equation (13.14),

P(20.0 <X <20.2) = P(%OZO—'O <Z< @%9)
= P(0.00 < Z < 2.00)

=0.4772

13.15 THE CENTRAL LIMIT THEOREM: SAMPLING FROM A FINITE POPULATION
WITH REPLACEMENT

As we indicated in Section 13.6, theoretical sampling distributions are the foundations of virtually all
forms of statistical inference. These tools, however, can only be used if their characteristics (shape,
parameters) are known.
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Section 13.14 clearly states the characteristics of a theoretical sampling distribution of the mean X
given that the population being sampled is normally distributed. There we said that it can be
mathematically proven that if all possible samples of size n are taken from a normally distributed
population and X = x is calculated for each sample, then the resulting continuous theoretical sampling
distribution of the mean will be normally distributed. Further, we said that this will be exactly true for all
samples of size n.

But what if, in the real world of applied statistics, the shape of the population distribution is unknown,
or it it known to be skewed or multimodal, or if it is finite with a discrete random variable? Remarkably, for
almost all such population distributions that will be encountered in the applied context, theoretical
sampling distributions developed for such populations can be considered to be approximately normally
distributed if the sample sizes n are “sufficiently large.” (For what “sufficiently large” means in this
context, see Section 13.18.) This is the essence of one of the most important theorems in inferential
statistics, the central limit theorem. This theorem, first discovered by Pierre Simon de Laplace (see Section
12.2), states for sampling from finite populations with replacement that:

It can be proven mathematically that if all possible random samples of size n are drawn
with replacement from a finite population of size N that has finite parameters (i, 67, 0)
and if X = ¥ is calculated for each sample, then if # is sufficiently large, the resulting
theoretical sampling distributionzof the mean will be approximately normally distributed
o \

7

Thus, no matter what the distribution-characteristics of the finite population being sampled, if the
sample size 7 is sufficiently large, the resulting sampling distribution of the mean will be approximately
normal, and this approximation gets better and better as n increases. This version of the theorem applies to
any finite population that is sampled with replacement.

a
3 — 2 —
with parameters y; = f, 05 = . and g; =

EXAMPLE 13.14 The experiment consists of the random selection of one number from the three-element
population (N = 3): 3,4, 5. The probability distribution for the random variable “number selected” is the discrete
uniform probability distribution (see Section 12.14) shown in Fig. 13-3. Using techniques from Example 13.4,
develop the discrete theoretical sampling distribution of the mean for: () randomly selecting two numbers, with
replacement between each selection, (b) randomly selecting four numbers, with replacement between each selection.
Then (c) for each distribution, determine y; and o;.

Sx)

13 -

Probability

/[ 1 I | L l X
o/ 7/ 2 3 4 5 6
Number selected

Fig. 13-3

Solution

(@) There are (3 x 3 =9) possible samples of size n =2, yielding five possible sample means. The
theoretical sampling distribution of the mean for this problem is presented in Table 13.5 and in the
histogram in Fig. 13-4.
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Table 13.5
Sample
mean Probability
x S
3.0 0.111111
3.5 0.222222
4.0 0.333333
45 0.222222
5.0 0.111111
3 0.999999
f®)
03
2 o2}
£
2
2
=™
0.1
/ 1 ] I I ] 1 1l x
0.57// 3.0 4.0 50

Sample mean

Fig. 13-4

(b) There are (3 x 3 x 3 x 3 = 81) possible samples of size n = 4, yielding nine possible sample means.
The theoretical sampling distribution of the mean for this problem is presented in Table 13.6 and in the
histogram in Fig. 13-5.

(¢) For the population,

N
_,-=le" 34445 _, 0
H="N 3

and

_ \/(3 — 4.0) + (4 — 4.0 + (5 — 4.0)?

3 =0.816497, or0.82

N
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Table 13.6
Sample
mean Probability
x f&)
3.00 0.012346
3.25 0.049383
3.50 0.123457
3.75 0.197531
4.00 0.234568
425 0.197531
4.50 0.123457
4.75 0.049383
5.00 0.012346
> 1.000002
J®)
02
2
2 »
E
[-%
0.1
0.0 _/ /[ T ] 1 o T 5
0.0/ / 3.0 40 5.0

Sample mean

Fig, 13-5

Therefore, using equations (13.1) and (13.7) for the distribution in (a),
He=H= 4.0
oo O 0.816497  0.816497
*TUmT 2 T 1414214
and for the distribution in (b),

=0.577350, or0.58

be=p=40
o 0.816497 0.816497

Tﬁ 7 5 = 0.408249, or 0.41

0')':-_—



108 SAMPLING DISTRIBUTIONS [CHAP. 13

This example illustrates the truth of the central limit theorem. Here, sampling was done with
replacement from a finite population (N = 3) that has a discrete uniform probability distribution (see
Fig. 13-3). Even starting with such a distribution, as sample size increases from n =2 to n = 4, the
sampling distribution of the mean becomes increasingly similar to a normal distribution (unimodal,
symmetric, bell-shaped; see Figs. 13-4 and 13-5). Note also that as » increases, o; decreases (from 0.58 to
0.41), which indicates, as would be expected for a normal distribution, that the probabilities become more
concentrated near the mean.

13.16 THE CENTRAL LIMIT THEOREM: SAMPLING FROM AN INFINITE POPULATION

In Section 13.15 we described how the central limit theorem applies to samples from a finite
population with replacement. In the following version, the theorem also applies to sampling from any form
of infinitely large population:

It can be proven mathematically that if all possible random samples of size n are drawn

from an infinite population (with or without replacement) that has finite parameters

(u, 0%, 0) and if X = x is calculated for each sample, then if n is sufficiently large, the

resulting theoretical sampling distribution %f the mean will be approximately normally
g

v
Note here that even though the population is infinitely large, the degree to which a normal distribution fits
the sampling distribution of the mean is still determined by sample size n rather than by population size N.

. . o
distributed with parameters y; = g, 62 = —, and o3 =
n

13.17 THE CENTRAL LIMIT THEOREM: SAMPLING FROM A FINITE POPULATION
WITHOUT REPLACEMENT

A third version of the central limit theoreni applies to sampling without replacement from any form of
finite population. In this version, as you would expect from Sections 13.10 and 13.11, the relation of N to n
is specified. Thus, it states that:

It can be proven mathematically that if all possible random samples of size n are drawn

without replacement from a finite population of size N that has finite parameters

(#,0%,0) and if X =X is calculated for each sample, and if N is at least twice as

large as n (N > 2n), then if n is sufficiently large, the resulting theoretical sampling

distribution of the mean will be approximately normally distributed with parameters
, ¢ N-—n G N —n

Uz = U, 0% =7x—,ando';=—x

N-1 Jn VN =T

Recall from Section 13.10 that it is not necessary to use the finite population correction factor if
n < 0.05N.

13.18 HOW LARGE IS “SUFFICIENTLY LARGE?”‘

In all three versions of the central limit theorem given above, it was stated that if n is “sufficiently
large” then the theoretical sampling distribution of the mean will be approximately normally distributed.
The term “sufficiently large” is used in defining the central limit theorem because there is no absolute rule:
the sample size # that is required for applying the central limit theorem varies as a function of the shape of
the population distribution. The closer the population distribution is to normal (unimodal, symmetric, bell-
shaped), the smaller the sample size that is needed. For such “normal” populations, some statistics books
state that samples as small as n = 25 or n = 20 are sufficiently large. The more skewed the population, the
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larger the sample that is required for sufficiency. A generally accepted rule of thumb for any type of
population distribution is

If n > 30, then the sample size is sufficiently large to apply the central limit theorem with
reasonable accuracy.

Because of this generally accepted rule and the importance of the central limit theorem to inferential
statistics, the number 30 is usually accepted as the boundary between two theoretical areas: large-sample
statistics and small-sample statistics. If n > 30, then large-sample methods that require applications of the
central limit theorem can be used. If n < 30, then small-sample methods are used, which are introduced in
Chapters 14 and 16.

EXAMPLE 13.15 At a large university, the distribution of GPAs (overall grade point averages, see Problem 6.43 in
Volume 1) for the 7,300 members of the senior class has parameters 4 = 3.19 and ¢ = 0.24. If a random sample of 36
seniors is taken without replacement, what is the probability that the sample mean GPA will be within 0.4¢; of u?

Solution
Because n > 30 and N > 2n, the version of the central limit theorem for sampling from a finite
population without replacement (see Section 13.17) can be applied here. As n < 0.05N, it is not necessary to
use the finite population correction factor. Therefore, we can say that the distribution of X is approximately
c 024
NCRVET

approximate solution to this problem, which can be restated as

normal with parameters y; = p = 3.19 and o; = = 0.04. Using this information we can get the

P(t—0.40; <X < pu+0.40;) = P[3.19 — (0.4 x 0.04) < X <3.194 (0.4 x 0.04)]
= P(3.174 < X < 3.206)

Using an approximate version of equation (13.14),

P(as)?sb)zp(“_—”iszslﬂ)=P(zaszgzb) (13.15)

O3 0%

we must solve

- 3.174 - 3.19 3.206 - 3.19
P(3.174 . ~ Pl ——— -} = P(—0. .
(3.174 < X < 3.206) P( 004 <Zx 004 ) P(—0.40 < Z < 0.40)

Using the value from Table A.5 for z = 0.40,
P(3.174 < X < 3.206) ~ 2(0.1554) = 0.3108

13.19 THE SAMPLING DISTRIBUTION OF THE SAMPLE SUM

All possible random samples of size n (X}, X, ..., X)) are drawn from an infinitely large, normally
distributed population (u, 62, ¢), and the sum of values (sample sum, denoted by Y) is calculated for each
‘sample with the formula

Y =% (13.16)

which can have values

y=73x (13.17)
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For these sampling conditions, it can be proven mathematically that th