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Preface

The second edition of Schaum’s Qutline of Electromagnetics offers three new
chapters—in transmission lines, waveguides, and antennas. These have been
included to make the book a more powerful tool for students and practitioners of
electromagnetic field theory. I take pleasure here in thanking my colleagues
M. L. Kult and K. F. Lee for their contribution of this valuable material.

The basic approach of the first edition has been retained: “As in other
Schaum’s Outlines the emphasis is on how to solve problems. Each chapter
consists of an ample set of problems with detailed solutions, and a further set of
problems with answers, preceded by a simplified outline of the principles and
facts needed to understand the problems and their solutions. Throughout the
book the mathematics has been kept as simple as possible, and an abstract
approach has been avoided. Concrete examples are liberally used and numerous
graphs and sketches are given. 1 have found in many years of teaching that the
solution of most problems begins with a carefully drawn sketch.”

Once again it is to my students—my former students—that I wish to dedicate
this book.
JoserpH A. EDMINISTER

i



Contents

VECTOR ANALYSIS . . .
1.1 Introduction 1.2 Vector Notation 1.3 Vector Algebra 1.4 Coordinate
Systems 1.5 Differential Volume, Surface, and Line Elements

COULOMB FORCES AND ELECTRIC FIELD INTENSITY ............
2.1 Coulomb’'s Law 2.2 Electric Field Intensity 2.3 Charge Distributions
2.4 Standard Charge Configurations

ELECTRIC FLUX AND GAUSS’ LAW ..... . .

3.1 Net Charge in a Region 3.2 Electric Flux and Flux Density 3.3 Gauss
Law 3.4 Relation Between Flux Density and Electric Field Intensity
3.5 Special Gaussian Surfaces

DIVERGENCE AND THE DIVERGENCE THEOREM ......ccovaetm0000
4.1 Divergence 4.2 Divergence in Cartesian Coordinates 4.3 Divergence of D
4.4 The Del Operator 4.5 The Divergence Theorem

47

THE ELECTROSTATIC FIELD: WORK, ENERGY, AND
POTENTIAL ..... .
5.1 Work Done in Moving a Pomt Charge 5.2 Conscrvatwc Property of the
Electrostatic Field 5.3 Electric Potential Between Two Points 5.4 Potential of a
Point Charge 5.5 Potential of a Charge Distribution 5.6 Gradient 5.7 Rela-
tionship Between E end V' 5.8 Energy in Static Electric Fields

Chapter

CURRENT, CURRENT DENSITY, AND CONDUCTORS ......ccceeeeee
6.1 Introduction 6.2 Charges in Motion 6.3 Convention Current Density J
6.4 Conduction Current Density J 6.5 Conductivity ¢ 6.6 Current /[
6.7 Resistance R 6.8 Current Sheet Density K 6.9 Continuity of Current
6.10 Conductor-Dielectric Boundary Conditions

CAPACITANCE AND DIELECTRIC MATERIALS ...........cccccenreveee
7.1 Polarization P and Relative Permittivity €, 7.2 Capacitance 7.3 Multiple-
Dielectric Capacitors 7.4 Energy Stored in a Capacitor 7.5 Fixed-Voltage D
and E 7.6 Fixed-Charge D and E 7.7 Boundary Conditions at the Interface of
Two Dielectrics

Chapter

LAPLACE’S EQUATION .... .

8.1 Introduction 8.2 Poisson’s Equation and Laplaoes Equation 8.3 Explicit
Forms of Laplace’s Equation 8.4 Uniqueness Theorem 8.5 Mean Value
and Maximum Value Theorems 8.6 Cartesian Solution in One Variable
8.7 Cartesian Product Solution 8.8 Cylindrical Product Solution 8.9 Spherical
Product Solution

114




CONTENTS

AMPERE’S LAW AND THE MAGNETIC FIELD .......cccceversssessseses
9.1 Introduction 9.2 Biot—Savart Law 9.3 Ampere’s Law 9.4 Curl 9.5 Rela-
tionship of J and H 9.6 Magnetic Flux Density B 9.7 Vector Magnetic Poten-
tial A 9.8 Stokes’ Theorem

Chapter 10

FORCES AND TORQUES IN MAGNETIC FIELDS ..
10.1 Magnetic Force on Particles 10.2 Electric and Magnetic Fields Com-
bined 10.3 Magnetic Force on a Current Element 10.4 Work and Power
10.5 Torque 10.6 Magnetic Moment of a Planar Coil

Chapter 11

INDUCTANCE AND MAGNETIC CIRCUITS . svanse
11.1 Inductance 11.2 Standard Conductor Configurations 11.3 Faraday’s Law
and Self-Inductance 11.4 Internal Inductance 11.5 Mutual Inductance 11.6 Mag-
netic Circuits 11.7 The B-H Curve 11.8 Ampere’s Law for Magnetic Circuits
11.9 Cores with Air Gaps 11.10 Multiple Coils 11.11 Parallel Magnetic Circuits

169

DISPLACEMENT CURRENT AND INDUCED EMF .....ccoivnceeerserens
12.1 Displacement Current 12.2 Ratio of J, to Jp 12.3 Faraday’s Law and
Lenz’s Law 12.4 Conductors in Motion Through Time-Independent Fields
12.5 Conductors in Motion Through Time-Dependent Fields

Chapter 13

MAXWELL’S EQUATIONS AND BOUNDARY CONDITIONS .......

13.1 Introduction 13.2 Boundary Relations for Magnetic Fields 13.3 Current
Sheet at the Boundary 13.4 Summary of Boundary Conditions 13.5 Maxwell’s

Equations

Chapter 14

ELECTROMAGNETIC WAVES . ssanne
14.1 Introduction 14.2 Wave Equations 14.3 Solutlons in Cartesmn Coord-
inates 14.4 Solutions for Partially Conducting Media 14.5 Solutions for Perfect
Dielectrics 14.6 Solutions for Good Conductors; Skin Depth 14.7 Interface
Conditions at Normal Incidence 14.8 Oblique Incidence and Snell’s Laws
14.9 Perpendicular Polarization 14.10 Parallel Polarization 14.11 Standing Waves
14.12 Power and the Poynting Vector

216

TRANSMISSION LINES .. . .

15.1 Introduction 15.2 Distributed Parameters 15.3 Incremental Model; Vol-
tages and Currents 15.4 Sinusoidal Steady-State Excitation 15.5 The Smith
Chart 15.6 Impedance Matching 15.7 Single-Stub Matching 15.8 Double-
Stub Matching 15.9 Impedance Measurement 15.10 Transients in Lossless
Lines

Chapter 16

WAVEGUIDES . . o ceesee
16.1 Introduction 16.2 Transverse and Axial Fields 16.3 TE and TM Modes;
Wave Impedances 16.4 Determination of the Axial Fields 16.5 Mode Cutoff
Frequencies 16.6 Dominant Mode 16.7 Power Transmitted in a Lossless
Waveguide 16.8 Power Dissipation in a Lossy Waveguide

274




CONTENTS vii

Chapter I7 ANTENNAS . . sssnsacesssansenane . 293
17.1 Introduction 17.2 Current Source and the E and H Fields 17.3 Electric
(Hertzian) Dipole Antenna 17.4 Antenna Parameters 17.5 Small Circular-
Loop Antenna 17.6 Finite-Length Dipole 17.7 Monopole Antenna 17.8 Self-
and Mutual Impedances 17.9 The Receiving Antenna 17.10 Linear Arrays
17.11 Reflectors

ApmndixA....C...................O..........“'......0.‘..........'.. 3'5

Appendix B ... .ttt iiiiiiiiiiiiieicicaisacsietessnasaaaas 317

INDEX [ R RN RN RN N NN RN RN RN NN N NI I 333




Chapter 1

Vector Analysis

1.1 INTRODUCTION

Vectors are introduced in physics and mathematics courses, primarily in the cartesian coordinate
system. Although cylindrical coordinates may be found in calculus texts, the spherical coordinate
system is seldom presented. All three coordinate systems must be used in electromagnetics. As
the notation, both for the vectors and the coordinate systems, differs from one text to another, a
thorough understanding of the notation employed herein is essential for setting up the problems and

obtaining solutions.

L2 VECTOR NOTATION

In order to distinguish vectors (quantities having magnitude and direction) from scalars
(quantities having magnitude only) the vectors are denoted by boldface symbols. A unit vector, one
of absolute value (or magnitude or length) 1, will in this book always be indicated by a boldface,
lowercase 2. The unit vector in the direction of a vector A is determined by dividing A by its
absolute value:

A A

8y =—

A > a
By use of the unit vectors a,, a,, a, along the x, y, and z axes of a cartesian coordinate system,
an arbitrary vector can be written in component form:
A=A t+tAa +Aa,
In terms of components, the absolute value of a vector is defined by
|Al=A=VAZ+ A+ A’

1.3 VECTOR ALGEBRA
1. Vectors may be added and subtracted.
AtB=(Aa, +An +A.9)t(Ba +Ba, +B.a,)
=(A;xB,)a, +(A,+B))a, +(A,@B,)a,
2. The associative, distributive, and commutative laws apply.
A+(B+C)=(A+B)+C
k(A+B)=kA +kB (ki +k)A=kA+kA
A+B=B+A
3. The dot product of two vectors is, by definition,
A*B=ABcos 6 (read “A dot B™)
where 6 is the smaller angle between A and B. In Example 1 it is shown that
A-B=A,B.+AB, +A,B,
which gives, in particular, |A|=VA-A.

1



2 VECTOR ANALYSIS (CHAP. 1

EXAMPLE 1. The dot product obeys the distributive and scalar multiplication laws
A-(B+C)=A-B+A-C A kB=k(A'B)
This being the case,
A-B=(Aa, +Aa,+Aa) (Ba +8B3 +Ba,)
=A,B.(a,~%,)+A,B/(a,~8,)+ A,B,(3,-3)
+ABJ(a.-a)+ - -+ADB(a,-a)
However, a,*a,=a,*8,=a,*a,=1 because the cos @ in the dot product is unity when the angle is
zero. And when 6 =90°, cos 8 is zero; hence all other dot products of the unit vectors are zero. Thus
A-B=AB +AB,+AB,
4. The cross product of two vectors is, by definition,
AXB=(ABsin 0)a, (read “A cross B”)

where 6 is the smaller angle between A and B, and a, is a unit vector normal to the plane
determined by A and B when they are drawn from a common point. There are two normals
to the plane, so further specification is needed. The normal selected is the one in the
direction of advance of a right-hand screw when A is turned toward B (Fig. 1-1). Because of
this direction requirement, the commutative law does not apply to the cross product;
instead,

AXB=-BXxA

Fig. 1-1

Expanding the cross product in component form,
AXB=(Aa, +Aa +A.,)X(Ba, +Ba +B.a,)
=(A,B.—A.,B))a, +(A.B, - A,B,)a, +(A.B,— AB)a,
which is conveniently expressed as a determinant:
2, a 2
AXB=|A, A
B, B,

<
= I

z
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EXAMPLE 2. Given A=2a,+4a,—3a, and B=a,—a, find A-Band AXB.
A-B=(2)1)+(@A-1D+(-3)0)=-2

a8 8 8
AXB=]2 4 -3|=-3a —3a —6a,
1 -1 0

1.4 COORDINATE SYSTEMS

A problem which has cylindrical or spherical symmetry could be expressed and solved in the
familiar cartesian coordinate system. However, the solution would fail to show the symmetry and
in most cases would be needlessly complex. Therefore, throughout this book, in addition to the
cartesian coordinate system, the circular cylindrical and the spherical coordinate systems will be
used. All three will be examined together in order to illustrate the similarities and the differences.

A point P is described by three coordinates, in cartesian (x, y, z), in circular cylindrical (r, ¢, 2),
and in spherical (r, 8, ¢), as shown in Fig. 1-2. The order of specifying the coordinates is
important and should be carefully followed. The angle ¢ is the same angle in both the cylindrical
and spherical systems. But, in the order of the coordinates, ¢ appears in the second position in
cylindrical, (r, ¢, z), and the third position in spherical, (7, 8, ¢). The same symbol, 7, is used in
both cylindrical and spherical for two quite different things. In cylindrical coordinates r measures
the distance from the z axis in a plane normal to the z axis, while in the spherical system r measures
the distance from the origin to the point. It should be clear from the context of the problem which
r is intended.

{») Cylindrical (¢) Spherical
Fig. 1-2

A point is also defined by the intersection of three orthogonal surfaces, as shown in Fig. 1-3. In
cartesian coordinates the surfaces are the infinite planes x =const., y=const.,, and z=
const. In cylindrical coordinates, z =const. is the same infinite plane as in cartesian; ¢ =
const. is a half plane with its edge along the z axis; r =const. is a right circular cylinder. These
three surfaces are orthogonal and their intersection locates point P. In spherical coordinates, ¢ =
const. is the same half plane as in cylindrical; r=const. is a sphere with its center at the
origin; 6 =const. is a right circular cone whose axis is the z axis and whose vertex is at the
origin. Note that @ is limited to the range 0=68=n.

Figure 1-4 shows the three unit vectors at point P. In the cartesian system the unit vectors have
fixed directions, independent of the location of P. This is not true for the other two systems (except
in the case of a,). Each unit vector is normal to its coordinate surface and is in the direction in
which the coordinate increases. Notice that all these systems are right-handed:

a Xa =8, 2, Xa,=8, 2 X =18,
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r = const. 6 = const.

¢ = const.

(a) Cartesian (b) Cylindrical (c) Spherical

Fig. 1-3

The component forms of a vector in the three systems are
A=Aa +A8 +A.a, (cartesian)
A=Az3 +A,8,+A,a (cylindrical)
A=Aa +Aze,+A,a, (spherical)

It should be noted that the components A,, A,, A,, etc., are not generally constants but more often
are functions of the coordinates in that particular system.

z)

(@) Cartesian (b) Cylindrical (c) Spherical

Fig. 14

1.5 DIFFERENTIAL YVOLUME, SURFACE, AND LINE ELEMENTS

There are relatively few problems in electromagnetics that can be solved without some sort of
integration—along a curve, over a surface, or throughout a volume. Hence the corresponding
differential elements must be clearly understood.

When the coordinates of point P are expanded to (x +dx, y +dy, z +dz) or (r+dr, ¢ +
do, z +dz) or (r+dr, 8 +d6, ¢ + d¢), a differential volume dv is formed. To the first order in
infinitesimal quantities the differential volume is, in all three coordinate systems, a rectangular
box. The value of dv in each system is given in Fig. 1-5.
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ST
dyrT T

L]
’ dxq “‘:.l

L/

x x
dv=dxdyd:z dv=rdrdpdz dv = r? sin8 dr d6 d¢
(a) Cartesian {b) Cylindrical {(c) Spherical
Fig. 1-§

From Fig. 1-5 may also be read the areas of the surface elements that bound the differential
volume. For instance, in spherical coordinates, the differential surface element perpendicular to a,
is

dS = (r d6)(r sin 8 d¢) = r*sin 640 d¢
The differential line element, d¢ is the diagonal through P. Thus
df* = dx* + dy* + dz* (cartesian)
de=dr* + r* d¢? + dz? (cylindrical)
dé*=dr* + r* d6* + r*sin® 0 d¢* (spherical)

Solved Problems

1.1. Show that the vector directed from M(x,, y;, z;) to N(x,, y,, z;) in Fig. 1-6 is given by
(x2—x1)a, +(y2— y)a, +(z2— z))a,

N{Iz;}'z,?.:)

M(xy, y1.21)

Fig. 1-6

The coordinates of M and N are used to write the two position vectors A and B in Fig. 1-6.
A=xa +ya +za,
B=x,a +y.a + 2,8,
Then B-A=(x;—x)8, +(y;—y)a, +(z2— z)a,
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1.2. Find the vector A directed from (2, —4, 1) to (0, ~2, 0) in ‘cartesian coordinates and find the
unit vector along A.

Ly )
E A=0-2)a, +[-2-(-4)a,+(0-1)a,=—-2a, +2a —a,
AP =(-2)"+ (@) +(-1)’=9
A2 .2z, 1
7 VIR B S A T

1.3. Find the distance between (5, 37/2, 0) and (5, /2, 10) in cylindrical coordinates.
= First, obtain the cartesian position vectors A and B (see Fig. 1-7).
& A= —-s.y B= 5., + 10a,

zZy

(5,7/2,10)

Fig. 1-7
Then B-A=10a,+10a, and the required distance between the points is
IB—A|=10V2

The cylindrical coordinates of the points cannot be used to obtain a vector between the points in the
same manner as was employed in Problem 1.1 in cartesian coordinates.

14. Showthat A=4a,—2a,—a, and B=a, +4a,—4a, are perpendicular.
Since the dot product contains cos 8, a dot product of zero from any two nonzero vectors implies
that 6 =90°.

A-B=@)D+(-2)@)+(-1)(-4)=0

15. Given A=2a,+4a, and B=6a,—4a,, find the smaller angle between them using (a)
,.,i the cross product, (b) the dot product.
(@) AXB= = —16a, + Ba, + 12a,

onNP®
o ap
=}

-4
1A= V2" + ()7 + (0 = 4.47
IB) = VO) + ()" + (=4’ =7.21
JA X B| = V(—16)" + (8)’ + (12)’ = 21.54
Then, since |A X B] =|A| |B|sin 6,

21.54
(4.47)(7.21)

sin 0 = =0.668 or 0=41.%
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(b) A =B = (2)(0) + (4)(6) + (0)(—4) =24

A-B 24

= = =(.745 or 6=419°
IAIBI ~ @41(72)

cos @

1.6. Given F=(y—1)a,+2xa, find the vector at (2,2,1) and its projection on B,

<+ Wwhere B=5a, —a, +2a,.
a F(2,2,1)=(2—1)a, + (2)(2)a,

As indicated in Fig. 1-8, the projection of one vector on a second vector is obtained by expressing the
unit vector in the direction of the second vector and taking the dot product.

A-B
Pl‘Oi.AonB=A‘.g= |n,
A I
I
(] i
---h-——‘-
ay
———
Proj. AonB
Fig. 18
Thus, at (2,2, 1),
. F-B (1)5)+@)(-1)+(©0)2) 1
Pl' -F Bz = =
o on = V30 V30
1.7. Given A=a,+a, B=a +2a, and C=2a +a, find (AXB)XC and compare it
with A X (B X C).
a8 a A
AxB=[1 1 0[=2e,-2a-n,
1 0 2
A, a a
Then (AXB)XC=|2 -2 -1 =—2l,+4l,
0 2 1

A similar calculation gives AX(BXC)=2a, —2a +3a,. Thus the parentheses that indicate
which cross product is to be taken first are essential in the vector triple product.

1.8. Using the vectors A, B, and C of Problem 1.7, find A-BXC and compare it with A X
B-C.
From Problem 1.7, BXC=—4a, —a, +2a,. Then
A-BXC=(1)(—9)+(1)(-1)+(0)2)=-5
Also from Problem 1.7, AXB=2a,—2a, —-a, Then
AXB-C=(2)0)+(—-2)(2) + (—1)1)=-5

Parentheses are not needed in the scalar triple product since it has meaning only when the cross
product is taken first. In general, it can be shown that

= >
I

¥ A!
A-BXC= B

x

L]

¥y

G

o
n
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As long as the vectors appear in the same cyclic order the result is the same. The scalar triple products
not in this cyclic order have a change in sign.

L9. Express the unit vector which points from z =~/ on the 2z axis toward (r, ¢, 0) in cylindrical
coordinates. See Fig. 1-9.

r,¢,0)

Fig. 19

The vector R is the difference of two vectors:
R=ra, —ha,
_ R _ra,~ha,
TR VR
rﬁeoﬁdoﬁmtappearexpnciﬂyinmescexpmsﬁm. Nevertheless, both R and a, vary with ¢
0 a,.

L10. Express the unit vector which is directed toward the origin from an arbitrary point on the
plane z= -5, asshown in Fig. 1-10.

Fig. 1-10

Since the problem is in cartesian coordinates, the two-point formula of Problem 1.1 applies.
R=—xa, —ya, +5a,

'n=-xa,—yl,+50,
Vil+y?+25

1.11. Use the spherical coordinate system to find the area of the strip a=<6=p on the spherical
1o Shell of radius a (Fig. 1-11). What results when a=0 and B=x?

The differential surface element is [see Fig. 1-5(c)]
dS =r*sin8d0d¢
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Z
T~/
Fig. 1-11
2 B
Then A=L Ia’sinﬂdﬁd¢

= 2na*(cos a — cos f)
When a=0 and P=n, A=4na’ the surface area of the entire sphere.

1.12. Obtain the expression for the volume of a sphere of radius a from the differential volume.
:'fi From Fig. 1-5(¢), dv=r*sin 8drdfd¢. Then

v=J; J:J:ﬁsin Bdrd8d¢=§:m3

1.13. Use the cylindrical coordinate system to find the area of the curved surface of a right circular
.. Cylinder where r=2m, h=5m, and 30°<¢=120° (sce Fig. 1-12).

v

23
Figo 1-12

The differential surface element is dS =rd¢ dz. Then

5 i3
A=£ 2d¢ dz
£

=Sgm?

1L.14. Transform

2

A=ya +xa, +———a,
ﬂ,- Vit y?

from cartesian to cylindrical coordinates.
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Referring to Fig. 1-2(b),

Hence

x=rcos¢ y =rsin ¢ r=Vxl+y?
A =rsin ¢a, +rcos ¢a, + r cos® pa,

Now the projections of the cartesian unit vectors on 8,, a,, and a, are obtained:
8, -8, =cos¢ A -8, =-sing a-a=0
aca=sing¢ a,-a,=cos¢ a-a=0
a,ca=0 a-0,=0 aca=1

Therefore

and

a, =cos 98, —sin ¢a,
a, =sin ¢a, +cos $a,
2,=a,

A =2r sin ¢ cos ¢a, + (r cos’ ¢ — rsin® p)a, + r cos” Pa,

[CHAP. 1

1.15. A vector of magnitude 10 points from (5, 5x/4, 0) in cylindrical coordinates toward the origin

i (Fig. 1-13).

L.16.

L.17.
L18.

1.1’.

Express the vector in cartesian coordinates.

Zz

Fig. 1-13

In cylindrical coordinates, the vector may be expressed as 10a,, where ¢ =nx/4. Hence

so that

10 10
A, =10c0s > =— A, =10sinZ=—

4 V2 4 V2

10 10
V2

Notice that the value of the radial coordinate, 5. is immaterial.

Supplementary Problems

A, =0

Given A=4a,+10a, and B=2a +3a, find the projection of A on B.

the

A, Ans. 1.50(a, +a,)

Ans.

12/V13

Given A-(lﬂl\ﬁ)(l +8,) and B=3(a +a,), express the projection of B on A as a vector in
direction of

Find the angle between A =10a,+2s, and B=—da, +0.5a, using both the dot product and the

cross product.

Ans. 161.5°

Find the angle between A =58a +1.55a, and B=—-6.93a, +4.0a, using both the dot product
and the cross product.  Ans. 135°
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1.20.

1.21.

L22.

l.ﬁ.

l‘u'

1.25.

1.26.

127,

1.29.

1.30.

1.31.

1.32,

1.33.

L34

1.35.

Given the plane 4x +3y +2z =12, find the unit vector normal to the surface in the direction away
from the origin.  Ans. (4a, +3a, +22,)/V29

Find the relationship which the cartesian components of A and B must satisfy if the vector fields are
everywhere parallel.

Express the unit vector directed toward the origin from an arbitrary point on the line described
by x=0, y=3.

Ans. a= T3, —za,

V§+z!
Express the unit vector directed toward the point (x,, y1, z) from an arbitrary point in the
plane y=-5.
=(~xl —x)a, +(y+ 58, +(z, - 2)a,
Vix, =x)* + (3, +5) + (2, - 2
Express the unit vector directed toward the point (0,0, /) from an arbitrary point in the plane z = -2.
_—xa,—ya, +(h+2)a,
Vil 4y + (h +2)

Given A=5a, and B=4a,+ B,a, find B, such that the angle between A and B is 45°. If B also
has a term B,a,, what relationship must exist between B, and B,? Ans. B, = t4, VB,I+ Bi=4

Ans. a

Ans. a

Show that the absolute value of A +B X C is the volume of the parallelepiped with edges A, B, and C.
(Hint: First show that the base has area |B X C|.)

Given A=2s,—a,, B=3a +a, and C=-2a +6a, —4a, showthatCis 1L toboth A and B.

Given A=a, -8, B=2a, and C=-a +3a, find A-BXC. Examine other variations of
this scalar triple product. Ans. -4, +4

Using the vectors of Problem 1.28 find (A X B) X C. Ans. —8a,

Find the unit vector directed from (2, —5, —2) toward (14, -5, 3).
12 5
Ans. a= ﬁ A+ e a,

Find the vector directed from (10, 3x/4, n/6) to (5, n/4, xr), where the endpoints are given in spherical
coordinates. Ans. -—9.66a, —3.54a, + 10.61a,

Find the distance between (2, x/6,0) and (1, =, 2), where the points are given in cylindrical
coordinates, Ans. 3.53

Find the distance between (1,x/4,0) and (1,3n/4, ), where the points are given in spherical
coordinates. Ans, 20

Use spherical coordinates and integrate to find the area of the region 0=¢ =<a on the spherical shell
of radius @&. What is the result when a=2x? Ans. 2aad’, A=4na’

Use cylindrical coordinates to find the area of the curved surface of a right circular cylinder of radius a
and height h, Ans. 2Znah
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L.36.

1.37.

1.38.

1.39.
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Use cylindrical coordinates and integrate to obtain the volume of the right circular cylinder of Problem
1.35. Ans. ma*h

Use spherical coordinates to write the differential surface areas 4S5, and 4§, and then integrate to obtain
the areas of the surfaces marked 1 and 2in Fig. 1-14. Ans. /4, x/6

e

Fig. 1-14

Use spherical coordinates to find the volume of a hemispherical shell of inner radius 2.00m and outer
radius 2.02m.  Ans. 0.162rm’

Using spherical coordinates to express the differential volume, integrate to obtain the volume defined

by 1=r=2m, 0=0=n/2, and O=¢=n/2 Ans. %tmj



Chapter 2

Coulomb Forces and Electric Field Intensity

2.1 COULOMB’S LAW

There is a force between two charges which is directly proportional to the charge magnitudes
and inversely proportional to the square of the separation distance. This is Coulomb’s law, which
was developed from work with small charged bodies and a delicate torsion balance. In vector form,
it is stated thus,

_ 0,
F= dmed®

Rationalized SI units will be used throughout this book. The force is in newtons (N), the distance is
in meters (m), and the (derived ) unit of charge is the coulomb (C). The system is rationalized by
the factor 47, introduced in Coulomb’s law in order that it not appear later in Maxwell's equations.
€ is the permittivity of the medium, with the units C?/N - m? or, equivalently, farads per meter
(F/m). For free space or vacuum,

-12 107°
€E=€;=8.854x107"“F/m= on

F/m

For media other than free space, € =¢€y€,, where €, is the relative permittivity or dielectric
constant. Free space is to be assumed in all problems and examples, as well as the approximate
value for €, , unless there is a statement to the contrary.

For point charges of like sign the Coulomb force is one of repulsion, while for unlike charges the
force is attractive. To incorporate this information rewrite Coulomb’s law as follows:

po @0 _ 0.0

1= a8z =
4ne R2, 4meyR3,

where F, is the force on charge @, due to a second charge Q, , a;, is the unit vector directed from Q,
to Q,, and R; = R;a;, is the displacement vector from Q, to Q, .

R

EXAMPLE 1. Find the force on charge 0, , 20 uC, due to charge 0, , =300 uC, where Q, is at (0, 1,2) m and
Q,at (2,0,0)m.

Because 1C is a rather large unit, charges are often given in microcoulombs (uC), nanocoulombs (nC), or
picocoulombs (pC). (See Appendix for the SI prefix system.) Referring to Fig. 2-1,

R2l=-2.1+.y+2. R2|=U(_2)2+1 +22=3

Z |
Fy
Q
(0,1,2)
Ry
e -
2,
(2,0,0)
X
Fig. 2-1

13
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1
and .:I-S(_z.x'l'.r"'z.:)

_@ox 107%)(—300 % 107%) (—-2., +a,+ h.)
4x(107°/36x)(3) 3

=6(2"_ 3 _z.')N

Then F.

The force magnitude is 6 N and the direction is such that Q, is attracted to Q; (unlike charges attract).

This force relationship is bilinear in the charges. Consequently, superposition applies, and the

force on a charge Q, due to n — 1 other charges Q», Qs, . . ., O, is the vector sum of the individual
forces:
OO 0.0 O - O
b= ek, 2 Y ane R ™ Y T ne 2R, ™

This superposition extends in a natural way to the case where charge is continuously distributed
through some spatial region: one simply replaces the above vector sum by a vector integral (see
Section 2.3).

The force field in the region of an isolated charge Q is spherically symmetric. This is made
evident by locating Q at the origin of a spherical coordinate system, so that the position vector R,
from Q to a small test charge Q,<«Q, is simply ra,. Then

_ Q0
4neyr® &

showing that on the spherical surface r=constant, |F,| is constant, and F, is radial.

F,

2.2 ELECTRIC FIELD INTENSITY

that the above-considered test charge Q, is sufficiently small so as not to disturb
significantly the field of the fixed point charge Q. Then the electric field intensity, E, due to Q is
defined to be the force per unit charge on Q,: E=F,/Q,.
For Q at the origin of a spherical coordinate system [see Fig. 2-2(a)], the electric field intensity
at an arbitrary point P is, from Section 2.1,

_ @
E= 4re,r? *
E z E
P(r, 6, ¢) P(xz, y2. 73)

R=(x; =x;)a, + (¥, =3 )a, +(z; —z,)a,

Q(xl? Y Z[)

(a) Spherical (&) Cartesian

Fig. 2-2
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In an arbitrary cartesian coordinate system [see Fig. 2-2(b)],

__Q

= a
Are,R2 "

The units of E are newtons per coulomb (N/C) or the equivalent, volts per meter (V/m).
EXAMPLE 2. Find E at (0, 3, 4) m in cartesian coordinates due to a point charge @ =0.5uC at the origin.
In this case
R=3a, +4da, R=5 a, =0.6a, +0.8a,

0.5%10°°
47(10-T36m)(5) -0 + 0-84.)

Thus |E|=180V/m in the direction a,=0.6a, +0.8a,.

E=

2.3 CHARGE DISTRIBUTIONS

Volume Charge

When charge is distributed throughout a specified volume, each charge element contributes to
the electric field at an external point. A summation or integration is then required to obtain the
total electric field. Even though electric charge in its smallest division is found to be an electron or
proton, it is useful to consider continuous (in fact, differentiable) charge distributions and to define a
charge density by

_40 3
p=7, (C/m)
Note the units in parentheses, which is meant to signify that p will be in C/m® provided that the
variables are expressed in proper SI units (C for Q and m® for v). This convention will be used
throughout this book.

With reference to volume v in Fig. 2-3, each differential charge dQ produces a differential

electric field

dQ

=———ag
4me,R?

dE
F /
)

Fig. 2-3

at the observation point P. Assuming that the only charge in the region is contained within the
volume, the total electric field at P is obtained by integration over the volume:

E=j—pa-R—2dv
wdmegR
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Sheet Charge
Charge may also be distributed over a surface or a sheet. Then each differential charge dQ on
the sheet results in a differential electric field

__do

" ane,R2R

at point P (see Fig. 2-4). If the surface charge density is p, (C/m?) and if no other charge is present
in the region, then the total electric field at P is

Ps8gr
s4me R?

P aE
L

ds

Line Charge
If charge is distributed over a (curved) line, each differential charge dQ along the line produces a
differential electric field

dQ

= 4e,R? Ar

at P (see Fig. 2-5). And if the line charge density is p, (C/m), and no other charge is in the region,
then the total electric field at P is

= | _PeBr_
L 4me,R?

~
e o
P\

ﬁ

L

d¢

Fig. 2-5

It should be emphasized that in all three of the above charge distributions and corresponding
integrals for E, the unit vector ag is variable, depending on the coordinates of the charge element
dQ. Thus ag cannot be removed from the integrand. It should also be noticed that whenever the
appropriate integral converges, it defines E at an internal point of the charge distribution.
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2.4 STANDARD CHARGE CONFIGURATIONS

In three special cases the integration discussed in Section 2.3 is either unnecessary or easily
carried out. In regard to these standard configurations (and to others which will be covered in this
chapter) it should be noted that the charge is not “on a conductor.” When a problem states that
charge is distributed in the form of a disk, for example, it does not mean a disk-shaped conductor
with charge on the surface. (In Chapter 6, conductors with surface charge will be
examined.) Although it may now require a stretch of the imagination, these charges should be
thought of as somehow suspended in space, fixed in the specified configuration.

Point Charge
As previously determined, the field of a single point charge Q is given by

E= 4320 Lt (spherical coordinates)

See Fig. 2-2(a). This is a spherically symmetric field that follows an inverse-square law (like
gravitation).

Infinite Line Charge
If charge is distributed with uniform density p, (C/m) along an infinite, straight line—which will
be chosen as the z axis—then the field is given by

__Pe P >
E Iner a, (cylindrical coordinates)

See Fig. 2-6. 'This field has cylindrical symmetry and is inversely proportional to the first power of
the distance from the line charge. For a derivation of E, see Problem 2.9.

-

;
~a
B

Fig. 2-6

EXAMPLE 3. A uniform line charge, infinite in extent, with p, =20 nC/m, lies along the z axis. Find E at
(6,8,3)m.
In cylindrical coordinates r=V6*+8>=10m. The field is constant with z. Thus
__ 20x107
27(10°°/367)(10)

E a,=36a V/m
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Infinite Plane Charge
If charge is distributed with uniform density p, (C/m?) over an infinite plane, then the field is
given by

E=&-a,,

See Fig. 2-7. This field is of constant magnitude and has mirror symmetry about the plane
charge. For a derivation of this expression, see Problem 2.12.

Fig. 2.7

EXAMPLE 4. Charge is distributed uniformly over the plane z=10cm with a density p, =

(1/3x)nC/m>. Find E. (1/3m)10°
N UL L
)= e ~2010-/36m) ~ 0 Y/

Above the sheet (z>10cm), E=6a, V/m; andfor z<10ecm, E=—6a, V/m.

Solved Problems

2.1. Two point charges, Q,=50uC and Q,=10uC, are located at (—=1,1,-3)m and
ﬂi (3, 1, 0) m, respectively (Fig. 2-8). Find the force on Q,.

R:. = _4.1 - 3’2
_ —4a, -3,
8y =— 5
_ 0,
Fl _Meoag,l .Zl
_(s0x 10°°)(10°%) (-4l, - 33,)
an(10 “36m)(5\ 5
= (0.18)(—0.8a, — 0.6a,) N
4
x
&
(3,1,0)
Ry
¥ Q -1,1,-3)

Fig. 2-8
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The force has a magnitude of 0.18 N and a direction given by the unit vector —0.8a, —0.6a,. In
component form,

F,=0.144a, — 0.1082, N

2.2. Refer to Fig. 2-9. Find the force on a 100 uC charge at (0,0, 3) m if four like charges of
u-;i 20 uC are located on the x and y axes at +4 m.

Fig. 2-9

Consider the force due to the charge at y =4,
(109(20 x 109 (Ster3m)
4a(107°/36m)(5)* 5

The y component will be canceled by the charge at y =-4. Similarly, the x components due to the
other two charges will cancel. Hence

SR

2.3. Refer to Fig. 2-10. Point charge Q,=300uC, located at (1, —1, -3) m, experiences a
force

F1=8.x"8.,.+4lzN

due to point charge O, at (3, —3, —2) m. Determine Q,.

Ry=-2a,+22 -a,
Note that, because
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the given force is along R;, (see Problem 1.21), as it must be.

0.0;
F,= ane R R
(300x107°)Q, /—2a, +2a, —a,
8a, — Ba, + 48, = 10 °f36n)(3)=( 3 )

Sol\!ing, Qg = —40 #C.

2.4. Find the force on a point charge of 50 uC at (0, 0, 5) m due to a charge of 500z uC that is
<i+ uniformly distributed over the circular disk r=5m, z=0m (see Fig. 2-11).
)
1,09
R
¥
dQ = p, rdrdg
Fig. 2-11
The charge density is
Q_ 500z x 10 _ et
Ps A ——Jt(ﬁ)’ 0.2x107“Cf/m
In cylindrical coordinates,
= —ra, + 52,

Then each differential charge results in a differential force
(50 x 10~°)(p,r dr d¢) (—r-, + 50,)
4x(107°/36m)(r* +25) \ \/r? +25
Before integrating, note that the radial components will cancel and that a, is constant. Hence
2 15(50 X 10°9)(0.2 X 10" %)5r dr do
F= - ) o Wy
47(107°/367)(r* + 25)
S rdr

Frosy = 0n [W]'

dF =

=90r 16.56a, N
2.5. Repeat Problem 2.4 for a disk of radius 2 m.
i Reducing the radius has two effects: the charge density is increased by a factor

2_ )

P

while the integral over r becomes

2 rdr . 5 rdr
m =0.0143 instead of W

The resulting force is

= 0.0586

F=(6. 25)(3 3;;:)(16.560, N) =25.27s, N
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2.6.

2.7.

2-8'

Find the expression for the electric field at P due to a point charge Q at (x,, y;, z,). Repeat
with the charge placed at the origin.
As shown in Fig. 2-12,
R=(x—x))a. +(y —y)a, +(z - z)a.

P(x,y,2)

(xy,¥1.21)

Fig. 2-12

Q

E =4:re.,R’."

- Q (x=x)a+(y—y)u, +(z—2z)a,
ane€, [(x —x,)* + (y =) + (z — 2)'F”

When the charge is at the origin,

- Q xa, +ya +2za,
e, (x> + y* + 22)?

but this expression fails to show the symmetry of the field. In spherical coordinates with Q at the
origin,

E=
dne,r’ *

and now the symmetry is apparent.
Find E at the origin due to a point charge of 64.4nC located at (—4,3,2) m in cartesian

coordinates.
The electric field intensity due to a point charge Q at the origin in spherical coordinates is
__2
4me,r’
In this problem the distance is V29 m and the vector from the charge to the origin, where E is to be
evaluated, is R=4a,—3a,—2a,.

= 4::(?:1'1;(3;::_):29) (4.’ _3;—;_ 2Il”) = (0. 0)(40, _@— 2") Vim

a,

Find E at (0,0,5)m due to Q,=035uC at (0,4,0)m and Q,=-055uC at
(3,0,0) m (see Fig. 2-13).
Rl = —4.’, + 5!,
R;= —3a, + 51,
__ 035x10°° (—4:, + 50,)
T 4n(10°/36m)(41) \ Va1
= —48.0a, +60.0a, V/m
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Fig. 2-13

E,- —-0.55x10°° (-3., +5a,)
4n(107°/36m)(34)\ /32

=74.9a, — 12492, V/m
and E=E,+E;=749a, —48.0a, - 6492, V/m

29. Charge is distributed uniformly along an infinite straight line with constant density
pe- Develop the expression for E at the general point P.

Cylindrical coordinates will be used, with the line charge as the z axis (see Fig. 2-14). At P,

dQ (ra, —za,
T 4ne,R? (m)

e

z /ﬂ‘

Since for every d( at z there is another charge dQ at —z, the z components cancel. Then

__ Perdz
E= f dnelr+ 2" "
- P [ ]
4-“'50 P+ 2 2-"'50’

2.10. On the line described by x=2m, y=—4m there is a uniform charge distribution of
density p,=20nC/m. Determine the electric field E at (—2, —1,4) m.

With some modification for cartesian coordinates the expression obtained in Problem 2.9 can be
used with this uniform line charge. Since the line is parallel to a,, the field has no z
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component. Referring to Fig. 2-15,

R=—4a, +3a,
20 x 107° ( —4a, + 3a,
aﬂd = ( L] )—_- —_— . .
TATOL 57.6a, +43.2a, V/m
]
P‘/pt z
H_zl _||4)
R
-y

(2,-4,2) /
x

Fig. 2-15

2.11. As shown in Fig. 2-16, two uniform line charges of density p,=4nC/m lie in the
..-;! x=0 planeat y=x4m. FindE at (4,0, 10) m.

1”"

Fig. 2-16

The line charges are both parallel to a,; their fields are radial and parallel to the xy plane. For
either line charge the magnitude of the field at P would be

Pe 18
E=——=—V/m
2negr 2 /
The field due to both line charges is, by superposition,

1
E= 2(‘785 cos 45‘)-. =18a, V/m

2.12. Develop an expression for E due to charge uniformly distributed over an infinite plane with

i 'i density Ps-
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The cylindrical coordinate system will be used, with the charge in the z=0 plane as shown in

Fig. 2-17.
p,rdr d¢ (—u, + za,)
4Jreo(rz +2)\ Vi
z
dE
M0, ¢,.2)

Fig. 2-17

Symmetry about the z axis results in cancellation of the radial components.

E= f’ p,rzdrdg
dneP+ )

t

2€n [Vr! + 2 o T2 "

This result is for points above the xy plane. Below the xy plane the unit vector changes to —a,. The
generalized form may be written using a,, , the unit normal vector:

E'EE;."

The electric field is everywhere normal to the plane of the charge and its magnitude is independent of
the distance from the plane.

2,13, As shown in Fig. 2-18, the plane y=3m contains a uniform charge distribution of
density p, =(10"%/6xr) C/m*. Determine E at all points.

(x,3,2)

Fig. 2-18
Fory>3m,
=P
E 2‘50.“
= 30a, V/m
andfor y<3m,
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2.14. Two infinite uniform sheets of charge, each with density p, , are located at x=+1 (Fig.
2-19). Determine E in all regions.

Only parts of the two sheets of charge are shown in Fig. 2-19. Both sheets result in E fields that
are directed along x, independent of the distance. Then

—(p./€o)n, x<-1
E,+E;= 0 ~-1<x<1

(pa, eﬂ)‘! x>1

2.15. Repeat Problem 2.14 with p,on x=-1 and —p,on x=1.

0 x<-1
E, +E; =1 (p./€0)a, -1<x<1
0 x>1

2.16. A uniform sheet charge with p, = (1/37)nC/m* islocated at z=5m and a uniform line
charge with p,=(-25/9)nC/m at z=-3m, y=3m. Find E at (x, -1, 0)m.

The two charge configurations are parallel to the x axis. Hence the view in Fig. 2-20 is taken looking
at the yz plane from positive x. Due to the sheet charge,

=-p—2—
E, 2™

4
b 4
Fig. 2-20
AtFP, a,=-a, and
E,=—6a, V/m
Due to the line charge,
E, =-t¢
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and at P
E,=8a —6a, V/m
The total electric field is the sum, E=E,+E,=8a —12a, V/m.

2.17. Determine E at (2,0, 2) m due to three standard charge distributions as follows: a uniform
sheet at x=0m with p,; =(1/37)nC/m?, a uniform sheet at x=4m with p,=
(—=1/37) nC/m?, and a uniform lineat x=6m, y=0m with p,=—-2nC/m.

Since the three charge configurations are parallel with a, , there will be no z component of the

field. Point (2, 0, 2) will have the same field as any point (2,0, z). In Fig. 2-21, P is located between
the two sheet charges, where the fields add due to the difference in sign.

p)l P pt
E= 2¢, 26,V 2¢, 2€o Zneor

=6a, + 6a, + 9%,
=2la, V/m

a,

Pn Ps2
s | i

ot

(=]

L -
[Pe0.a| A% =

x=0 x=4

Fig. 2-21

2.18. As shown in Fig. 2-22, charge is distributed along the z axis between z=15m with a
.uniform density p,=20nC/m. Determine E at (2,0,0) m in cartesian coordinates. Also
express the answer in cylindrical coordinates.

20x 10~°dz (Za, —za,
4x(10°°/367)(4 + )\ V3 ¢ 22

dE = ) (V/m)

dE

Fig. 2-22
Symmetry with respect to the z =0 plane eliminates any z component in the result.
E= moj @rz z)mi, =167a, V/m

In cylindrical coordinates, E=167a, V/m.
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2.19. Charge is distributed along the z axis from z=5m toxandfrom z=-5m to — (see
Fig. 2-23) with the same density as in Problem 2.18, 20nC/m. Find E at (2,0, 0) m.

_ 20x107°dz 28—z,
aE = (10/36m)4 + 7)) ( Vi ) vm
fﬂ
N
dQ = p, dz
-
R
(2,0,0) Y
x
b
-sk
8, A
-
Fig. 2-23

Again the z component vanishes.

2dz -5 2dz
E= 180[.': (4+z’)”+ . (4429 B
=13a,_V/m

In cylindrical coordinates, E = 13a, V/m.
When the charge configurations of Problems 2.18 and 2.19 are superimposed, the result is a uniform
line charge.

Pe

E= 2me,r

a, = 180a, V/m

2.20. Find the electric field intensity E at (0, ¢, k) in cylindrical coordinates due to the uniformly
charged disk r=<a, z=0 (see Fig. 2-24).

Fig. 2-24

If the constant charge density is p,,

dE= p.rdrdg (-n, + hl,)
dner* + )\ PP+ i?
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The radial components cancel. Therefore
E= p:h L L" rdrde
4re, (r* + h)™ e

p,h( -1 )
2¢ va’-a-h’ h

Note that as a— =, E—(p,/2€,)a,, the field due to a uniform plane sheet.

2.21. Charge lies on the circular disk r=<a, z=0 with density p,= p,sin?¢. Determine E

cis  at (0, ¢, h).
.ﬁ. g = Polsin* O)rdr d¢(~r-.+h-.)
dnedr+h) \ ViR

The charge distribution, though not uniform, still is symmetrical such that all radial components cancel.

J:' L‘(sm @)rdrdg ( -1 )
4::e., T S PR W s~ A
2.22. Charge lies on the circular disk r=4m, z=0 with density p,=(10"%r) (C/m?.

wii Determine Eat r=0, z=3m.

_ (10~*/r)r dr d¢ (—ra, + 3m,
4e(r* +9) VZ+ 9

As in Problems 2.20 and 2.21 the radial component vanishes by symmetry.

) vim)

2n
E=(2.7x lOﬁ)[’ J:( d:-i?" 2,=151x10°, V/im or 1.51a, MV/m

2.23. Charge lies in the z=-3m plane in the form of a square sheet defined by -2=x<
2m, —2<y=<2m with charge density p,=2(x*+y*+9)y”?nC/m?’. Find E at the

origin.
From Fig. 2-25,
R=—xa, —ya +3a, (m)
dQ=p, dcdy =2(x*+y*+9y*x10%dxdy (C)
Ly
dE
(-2:- —21 -3) \ . }l'
: (=2, 2,~3)
sl

(2,-2,-3) 2.2.-3

Fig. 2-25
and so

2(x*+y +9)""2)<10 9d.tdy(-xa, ya, +3a

= 4neo(x’ +y* +9) Vi+y? 49 ) (Vim)
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Due to symmetry, only the z component of E exists.

9
E= ,rf 6% 10" d.tdy.z=864.xvfm
2 4ne,

2.24. A charge of uniform density p,=0.3nC/m?> covers the plane 2x—3y+z=6m. Find E
i on the side of the plane containing the origin.
Since this charge configuration is a uniform sheet, E=p,/2¢, and E=(17.0)a,V/m. The
unit normal vectors for a plane Ax+ By +Cz=D are

-3 As, + Ba, + Ca,
VA’+ B + C*
Therefore, the unit normal vectors for this plane are
4 23, - 3a, +u,
V14

/=

From Fig. 2-26 it is evident that the unit vector on the side of the plane containing the origin is produced
by the negative sign. The electric field at the origin is

E= (17.0)(%:@') V/m

Supplementary Problems

2.25. Two point charges, Q,=250uC and Q.= -300uC, are located at (5,0,0)m and (0,0, —5)m,
respectively. Find the forceon @,  Ans. F,= (13.5)(" * ") N

V2

2.26. Two point charges, Q,=30pC and Q,=-100uC, are located at (2,0,5)m and (—1,0, —2) m,
respectively. Find the force on Q,. Ans. F,=(0. 465)(_3.‘ — '?l,) N

Vs8

In Problem 2.26 find the force on Q,. Ans. —F,

B &

Four point charges, each 20 uC, are on the x and y axes at +4m. Find the force on a 100-uC point
charge at (0,0, 3) m. Ans. 1.73a,N
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Ten identical charges of 500 4C each are spaced equally around a circle of radius 2m. Find the force
on a charge of —20 uC located on the axis, 2 m from the plane of the circle. Ans. (79.5)(~a,)N

Determine the force on a point charge of 50 4C at (0,0, 5) m due to a point charge of 5005 uC at the
origin. Compare the answer with Problems 2.4 and 2.5, where this same total charge is distributed over
a circular disk. Ans. 283a,N

Find the force on a point charge of 30 uC at (0,0,5)m due to a 4m square in the z=0 plane
between x=12m and y=x2m with a total charge of 500 uC, distributed uniformly.
Ans. 4.66a, N

Two identical point charges of Q(C) each are separated by a distance d(m). Express the electric field E
for points along the line joining the two charges.
Ans. Ifthe chargesareat x=0 and x=d, then, for 0<x<d,

Qri1 1

E=oeale @ -x)’]" (V/m)

Identical charges of Q(C) are located at the eight corners of a cube with a side £(m). Show that the
coulomb force on each charge has magnitude (3.290%/4me,6*) N.

Show that the electric field E outside a spherical shell of uniform charge density p, is the same as E due
to the total charge on the shell located at the center.

Develop the expression in cartesian coordinates for E due to an infinitely long, straight charge
. . , _ Ps xa . tya,

configuration of uniform density p,. Ans. E Ine, Xy

Two uniform line charges of p,=4nC/m each are parallel to the z axis at x=0, y=+14m.

Determine the electric field E at (£4,0, z) m. Ans. *18a, V/m

Two uniform line charges of p,=5nC/m each are parallel to the x axis, oneat z=0, y=-2m
and the otherat z=0, y=4m. Find E at(4,1,3)m. Ans. 30a, V/im

Determine E at the origin due to a uniform line charge distribution with p,=3.30nC/m located
at x=3m, y=4m. Ans. —7.13a, —9.50a, V/m

Referring to Problem 2.38, at what other points will the value of E be the same? Ans. (0,0, 2)

Two meters from the z axis, |[E| due to a uniform line charge along the z axis is known to be
1.80x 10* V/m. Find the uniform charge density p,.  Ans. 2.0uC/m

The plane —x+3y —6z=6m contains a uniform charge distribution p, =0.53nC/m?. Find E on

the side containing the origin.  Ans. 30('—*-’—33&191) V/m

Va6

Two infinite sheets of uniform charge density p, =(10 °/6a)C/m* are located at z=
-=5m and y=-5m. Determine the uniform line charge density p, necessary to produce the same
value of E at (4, 2, 2) m, if the line charge is locatedat z=0, y=0. Ans. 0.667nC/m

Two uniform charge distributions are as follows: a sheet of uniform charge density p,=
—50nC/m* at y=2m and a uniform line of p,=02puC/m at z=2m, y=-1m. At what
points in the region will E be zero?  Ans. (x, —2.273,2.0)m

A uniform sheet of charge with p, =(—1/32)nC/m’ is located at z=5m and a uniform line of
charge with p,=(—25/9)nC/m is located at z=-3m, y=3m. Find the electric field E at
(0,-1,0)m.  Ans. 8a V/m
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2.45.

248,

A uniform line charge of p,=(V2Xx107/6)C/m lies along the x axis and a uniform sheet of charge
is located at y=5m. Along the line y=3m, z=3m the electric field E has only a z
component. What is p, for the sheet?  Ans. 125 pC/m’

A uniform line charge of p,=3.30nC/m islocatedat x=3m, y=4m. A pointcharge Qis2m
from the origin. Find the charge QO and its location such that the electric field is zero at the
origin.  Ans. 5.28nCat (—1.2, -1.6,0)m

A circular ring of charge with radius 2m lies in the z=0 plane, with center at the origin. If the
uniform charge density is p,=10nC/m, find the point charge Q at the origin which would produce
the same electric field E at (0,0, 5) m. Ans. 100.5nC

The circular disk r<2m in the z=0 plane has a charge density p,=10"%/r (C/m?).

1.13 x 10°
Determine the electric field E for the point (0, ¢, /). Ans. ————a, (V/m
point (0. ¢. k) e V™

Examine the result in Problem 2.48 as h becomes much greater than 2 m and compare it to the field at h
which results when the total charge on the disk is concentrated at the origin.

A finite sheet of charge, of density p,=2x(x?+ y*+4)*?>(C/m?), lies in the z=0 plane for
0=x=2m and O0=y=2m. Determine E at (0,0, 2) m.

Ans. (18 10")(—%., ~4a, +sa,) Vim = 13(— 1;., ~da,+ s.,) GV/m

Determine the electric field E at (8,0,0) m due to a charge of 10 nC distributed uniformly along the x
axis between x=-5m and x=5m. Repeat for the same total charge distributed between
x==Im and x=1m. Ans. 231a,V/m, 1.43a, V/m

The circular disk r=<1m, z=0 has a charge density p,=2(r*+25)*?¢ ' (C/m?). Find E at
0,0,5)m.  Ans. 5.66a, GV/m

Show that the electric field is zero everywhere inside a uniformly charged spherical shell.

Charge is distributed with constant density p throughout a spherical volume of radius a. By using the
results of Problems 2.34 and 2.53, show that

—a r<a
3¢,
E={"
ap
3€“r’.' r=a

where 7 is the distance from the center of the sphere.



Chapter 3

Electric Flux and Gauss’ Law

3.1 NET CHARGE IN A REGION

With charge density defined as in Section 2.3, it is possible to obtain the net charge contained in
a specified volume by integration. From

dQ=pdv (C)
it follows that

e=[pav (©
In general, p will not be constant throughout the volume v.

EXAMPLE 1. Find the charge in the volume defined by 1=<r=2m in spherical coordinates, if
5cos’ ¢

pP=""xa

(C/m%)

By integration,

A
r

Q=F[ f (5cos2¢)r’sin 8drdéd¢ =5nC

3.2 ELECTRIC FLUX AND FLUX DENSITY

Electric flux W, a scalar field, and its density D, a vector field, are useful quantities in solving
certain problems, as will be seen in this and subsequent chapters. Unlike E, these fields are not
directly measurable; their existence was inferred from nineteenth-century experiments in
electrostatics.

J

éﬁmm 2. Referring to Fig. 3-1, a charge +Q is first fixed in place and a spherical, concentric, conducting
shell is then closed around it. Initially the shell has no net charge on its surface. Now if a conducting path to
ground is momentarily completed by closing a switch, a charge —(, equal in magnitude but of opposite sign, is
discovered on the shell. This charge —Q might be accounted for by a transient flow of negative charge from
the ground, through the switch, and onto the shell. But what could provoke such a flow? The early
experimenters suggested that a flux from the +Q to the conductor surface induced, or displaced, the charge —Q
onto the surface. Consequently, it has also been called displacement flux, and the use of the symbol D is a
reminder of this early concept.

By definition, electrix flux W originates on positive charge and terminates on negative
charge. In the absence of negative charge, the flux W terminates at infinity. Also by definition,
one coulomb of electric charge gives rise to one coulomb of electric flux. Hence

¥=0 (O

In Fig. 3-2(a) the flux lines leave +Q and terminate on —Q. This assumes that the two charges are
of equal magnitude. The case of positive charge with no negative charge in the region is iliustrated
in Fig. 3-2(b). Here the flux lines are equally spaced throughout the solid angle, and reach out
toward infinity.

32
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33

If in the neighborhood of point P the lines of flux have the direction of the unit vector a (see Fig.
3-3) and if an amount of flux dW¥ crosses the differential area dS, which is a normal to a, then the

electric flux density at P is

d¥
D= =° (C/m?)

—_— T "
‘":—'__“P ds '3————-_.__.___
-4—’_'-__’__'__.—_- \

Fig. 3-3

A volume charge distribution of density p (C/m?) is shown enclosed by surface S in Fig.
3-4. Since each coulomb of charge Q has, by definition, one coulomb of flux ¥, it follows that the
net flux crossing the closed surface S is an exact measure of the net charge enclosed. However, the
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density D may vary in magnitude and direction from point to point of §; in general, D will not be
along the normal to §. If, at the surface element dS, D makes an angle 8 with the normal, then the
differential flux crossing dS is given by

d¥=DdS cos 6 =D-dSa, =D-dS

where dS is the vector surface element, of magnitude dS and direction a,. The unit vector a,, is
always taken to point out of S, so that d'¥ is the amount of flux passing from the interior of S to the

exterior of § through dS.
An
/ D

3.3 GAUSS LAW

Gauss’ law states that The total flux out of a closed surface is equal to the net charge within the
surface. 'This can be written in integral form as

%D-dswm

A great deal of valuable information can be obtained from Gauss’ law through clever choice of the
surface of integration; see Section 3.5.

34 RELATION BETWEEN FLUX DENSITY AND ELECTRIC FIELD INTENSITY

Consider a point charge Q (assumed positive, for simplicity) at the origin (Fig. 3-5). If this is
enclosed by a spherical surface of radius r, then, by symmetry, D due to Q is of constant magnitude
over the surface and is everywhere normal to the surface. Gauss’ law then gives

Q=§D-ds=oj£ds=0(4m2)
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from which D = Q/4nr>. Therefore
Q Qo

D= 2™ ™
But, from Section 2.2, the electric field intensity due to Q is

Q

E= 4mer?

a,

It follows that D = ¢,E.
More generally, for any electric field in an isotropic medium of permittivity €,

D=¢cE

Thus, D and E fields will have exactly the same form, since they differ only by a factor which is a
constant of the medium. While the electric field E due to a charge configuration is a function of the
permittivity €, the electric fiux density D is not. In problems involving multiple dielectrics a distinct
advantage will be found in first obtaining D, then converting to E within each dielectric.

3.5 SPECIAL GAUSSIAN SURFACES

The surface over which Gauss’ law is applied must be closed, but it can be made up of several
surface elements. If these surface elements can be selected so that D is either normal or tangential,
and if |D| is constant over any element to which D is normal, then the integration becomes very
simple. Thus the defining conditions of a special gaussian surface are

1. The surface is closed.
2. At each point of the surface D is either normal or tangential to the surface.
3. D is sectionally constant over that part of the surface where D is normal.

EXAMPLE 3 Use a special gaussian surface to find D due to a uniform line change p, (C/m).
Take the line charge as the z axis of cylindrical coordinates (Fig. 3-6). By cylindrical symmetry, D can

l.—p «m

—=/\.

dQs

Fig. 36
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only have an r component, and this component can only depend on r. Thus, the special gaussian surface for
this problem is a closed right circular cylinder whose axis is the z axis (Fig. 3-7). Applying Gauss® law,

Q=In-d3+fn-ds+fn-ds
1 2 3

Fig. 3-7

Over surfaces 1 and 3, D and 48 are orthogonal, and so the integrals vanish. Over 2, D and dS are parallel
(or antiparallel, if p, is negative). and D is constant because r is constant. Thus,

Q=D J dS =D(2nrL)
z

where L is the length of the cylinder. But the enclosed charge is Q =p,L. Hence,

D=2

Pe
= D=5
2nr

2

and

r

Observe the simplicity of the above derivation as compared to Problem 2.9.

The one serious limitation of the method of special gaussian surfaces is that it can be utilized
only for highly symmetrical charge configurations. However, for other configurations, the method
can still provide quick approximations to the field at locations very close to or very far from the
charges. See Problem 3.36.

Solved Problems

3.1. Find the charge in the volume defined by O0=x=1m, 0=y=Im, and 0=z=1m
if p=30% (uC/m®). What change occurs for the limits —1<y=0m?

Since 40 =pdy,

) ] 1
Q =f L L 30x’y dx dy dz =5 pC
(L]
For the change in limits on y,

e 1
Q=I I 30x%y dx dy dz = =5 uC
(1] =1
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3.2.

&

¢3|

£

34.

3’5.

Three point charges, Q,=30nC, @,=150nC, and Q,=-70nC, are enclosed by
surface S. What net flux crosses §7

Since electric flux was defined as originating on positive charge and terminating on negative charge,
part of the flux from the positive charges terminates on the negative charge.

What net flux crosses the closed surface § shown in Fig. 3-8, which contains a charge
distribution in the form of a plane disk of radius 4m with a density p,=

(sin® ¢)/2r (C/m®)?

up=Q=f"£(3";¢)rdrd¢=znc

A circular disk of radius 4m with a charge density p, =12sin¢ uC/m? is enclosed by
surface S. What net flux crosses $?

‘!‘=Q=Lu[(12$in Pydrdgp =0uC

Since the disk contains equal amounts of positive and negative charge [sin (¢ + &) = —sin ¢], no net
flux crosses §.

Charge in the form of a plane sheet with density p,=40uC/m?® is located at z =
—0.5m. A uniform line charge of p,=—6 uC/m lies along the y axis. What net flux
crosses the surface of a cube 2m on an edge, centered at the origin, as shown in Fig. 3-97

V=0,
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The charge enclosed from the plane is

Q = (4 m*)(40 uC/m?) = 160 uC
and from the line

Q = (2 m)(—6 uC/m) = —12 uC
Thus, Q..=W=160-12= 148 uC.

A point charge Q is at the origin of a spherical coordinate system. Find the flux which
crosses the portion of a spherical shell described by a<=68=<p (Fig. 3-10). What is the
result if a=0 and p=m/2?

-/

Fig. 3-10

The total flux W= crosses a complete spherical shell of area 4nr°. The area of the strip is
given by

2x pf
A =I I r’sin 8d0d¢
) o
=2nr*(cos a — cos )
Then the flux through the strip is
A

™ 4t

=§(cosaf—cosﬁ)

For a=0, B=m/2 (ahemisphere), this becomes W .= (Q/2

A uniform line charge with p,=50 uC/m lies along the x axis. What flux per unit length,
W/L, crosses the portion of the z=-3m plane bounded by y=+2m?

The flux is uniformly distributed around the line charge. Thus the amount crossing the strip is
obtained from the angle subtended compared to 27, In Fig. 3-11,

@ = 2 arctan (g) =1.176 rad

v /1176
Then . su(——) =9.36 uC/m
L 2m
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Fig. 3-11

38. A point charge, Q=30nC, is located at the origin in cartesian coordinates. Find the
electric flux density D at (1, 3, —4) m.

Referring to Fig. 3-12,

D= R
=30x 10"(.,,+3.,—4a,)
475(26) V26
a, +3a,—4a,
V26

= ©.18x 107 ) Ca

or, more conveniently, D =91.8pC/m’

(1,3,-4)

D
Fig. 3-12

3.9. Two identical uniform line charges lie along the x and y axes with charge densities p,=
20 uC/m. Obtain D at (3,3,3)m.

The distance from the observation point to either line charge is 3V2m. Considering first the line
charge on the x axis,

Pe 20uC/m _(a, +a,
D= 1 = — —
"2 2:!(3\/2m)( V2 )
and now the y axis line charge,

P _ 20uC/m (a, +a,
D=2 2.1:{3\.5m)( ) )
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The total flux density is the vector sum,

D =2::(:z:\16) (.‘ - ?Fz+ 2.') - (225)(“97;2-‘) uC/m’

3.10. Given that D=10xa, (C/m?), determine the flux crossing a 1-m? area that is normal to
the x axisat x=3m.

Since D is constant over the area and perpendicular to it,
¥ =DA=(30C/m*)(1m*)=30C

3.11. Determine the flux crossing a 1 mm by 1mm area on the surface of a cylindrical shell
,,,i at r=10m, z=2m, ¢=532° if

D=2ra, +2(1—y)a, +4za, (C/m?
At point P (see Fig. 3-13),

x=10c0s53.2°=6
y=10sin53.2°=8

z

n

NAN

___:mo. 53.2°,2)
\ Rl y
53.2° ds

Fig. 3-13

Then, at P,
D =12a, —14a, + 82, C/m’
Now, on a cylinder of radius 10m, a 1-mm? patch is essentially planar, with directed area
dS =10"%0.6a, +0.8a,) m’
Then d¥ =D+ dS = (12a, - 14a, + 8a,) » 10" °(0.6a, + 0.82,) = —4.0 uC
The negative sign indicates that flux crosses this differential surface in a direction toward the z axis
rather than outward in the direction of dS.

3.12. A uniform lhine charge of p,=3uC/m lies along the z axis, and a concentric circular
cylinder of radius 2m has p, =(-1.5/4x) uC/m?. Both distributions are infinite in extent
with z. Use Gauss’ law to find D in all regions.

Using the special gaussian surface A in Fig. 3-14 and processing as in Example 3,

D=2—ain, O0<r<2
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Fig. 3-14
Using the special gaussian surface B,
Quc=§D-ds
(pe+ 4mp,)L = D(2nrL)
from which
D=P¢’+4“P:.r f>2
2nr
For the numerical data,
@l, (uC/m? 0<r<2m
D=
wn. (nC/m®) r>2m

3.13. Use Gauss’ law to show that D and E are zero at all points in the plane of a uniformly
charged circular ring that are inside the ring.

Consider, instead of one ring, the charge configuration shown in Fig. 3-15, where the uniformly
charged cylinder is infinite in extent, made up of many rings. For gaussian surface 1,

Q“=0=Dfds
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Hence D=0 for r<R. Since ¥ is completely in the radial direction, a slice dz can be taken from
the cylinder of charge and the result found above will still apply to this ring. For all points within the
ring, in the plane of the ring, D and E are zero.

A charge configuration in cylindrical coordinates is given by p=>5re™> (C/m®). Use
Gauss’ law to find D.

Since p is not a function of ¢ or z, the flux ¥ is completely radial. It is also true that, for
constant, the flux density D must be of constant magnitude. Then a proper special gaussian surface is a
closed right circular cylinder. The integrals over the plane ends vanish, so that Gauss' law becomes

Qu=[ D-as
5 i
L f' J: Sre¥r drd¢ dz = D(2nrL)
SxL{e *(—r-r-4})+§]=D(2nrL)
Hence D*?[i—e"’(r’+ r+i)a (C/m?

The volume in cylindrical coordinates between r=2m and r=4m contains a uniform
charge density p (C/m®). Use Gauss’ law to find D in all regions.

From Fig. 3-16, for 0<r<2m,
Qenc = D(25rL)
D=0

Fig. 316

For 2=<r=4m,
mpL(r’ - 4)= D(2arL)
=P
D=2 -9, (C/u')
For r>4m,
12apl = D(2xrL)

D=6Tpn.- (C/m?
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3.16. The volume in spherical coordinates described by r=<a contains a uniform charge density
p. Use Gauss’ law to determine D and compare your results with those for the
corresponding E field, found in Problem 2.5¢. What point charge at the origin will result in
the same D field for r>a?

For a gaussian surface such as X in Fig. 3-17,
Qe =$D-ds
% nr'p = D(4mr?)

and D=%rl, r<a

For points outside the charge distribution,

4 pa’
imp=D(4:rr’) whence D=?., r>a

If a point charge Q=3%ma’p is placed at the origin, the D field for r>a will be the
same. This point charge is the same as the total charge contained in the volume.

3.17. A parallel-plate capacitor has a surface charge on the lower side of the upper plate of +p,
12 (C/m?). The upper surface of the lower plate contains —p, (C/m?). Neglect fringing and
use Gauss’ law to find D and E in the region between the plates.

All flux leaving the positive charge on the upper plate terminates on the equal negative charge on
the lower plate. The statement neglect fringing insures that all flux is normal to the plates. For the
special gaussian surface shown in Fig. 3-18,

Qm=LpD-dS+ D-dS+L“D-dS

bowom
=0+L D-dS+0
or p,A=DIdS=DA
where A is the area. Consequently,
D=pa. (C/m?) and E=2a (V/m)
0

Both are directed from the positive to the negative plate.
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3.25.

ELECTRIC FLUX AND GAUSS' LAW [CHAP. 3

+p,

Supplementary Problems

Find the net charge enclosed in a cube 2 m on an edge, parallel to the axes and centered at the origin, if
the charge density is

p = 5027 cos (;-' y) (uC/m?)
Ans. 84.9 uC

Find the charge enclosed in the volume 1=<r=3m, 0<¢=n/3, 0<z=<2m given the charge
density p=2zsin*¢ (C/m’). Ans. 491C

Given a charge density in spherical coordinates

Cinpe e

find the amounts of charge in the spherical volumes enclosed by r=7r, r=5r, and r=o,
Ans. 3.97por, 6.24per, 6.28p0r)

p=

A closed surface S contains a finite line charge distribution, 0<€=<smm, with charge density
K 4
Pe=—posiny (C/m)
What net flux crosses the surface §?7  Ans. ~2p, (C)
Charge is distributed in the spherical region r=<2m with density
_—200 3

What net flux crosses the surfaces r=1m, r=4m, and r=500m?
Ans. —800x uC, —16007z uC, —1600x uC

A point charge Q is at the origin of spherical coordinates and a spherical shell charge distribution
at r=a has a total charge of Q' — (, uniformly distributed. What flux crosses the surfaces r=
k for k<a and k>a? Ans. (O, Q'

A uniform line charge with p,=3 uC/m lies along the x axis. What flux crosses a spherical surface
centered at the origin with r=3m?  Anms. 18uC

If a point charge Q is at the origin, find an expression for the flux which crosses the portion of a sphere,

centered at the origin, describedby a=¢ =<§. Arns. -5—2-:;9 0
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3.26.
w -
3.28.

3.29.

331
3.32.

3.

3.35.

3.36.

3.37.

"

A point charge of Q (C) is at the center of a spherical coordinate system. Find the flux ¥ which crosses
an area of 47 m? on a concentric spherical shell of radius 3m.  Ans. Q/9 (O)

An area of 40.2m’ on the surface of a spherical shell of radius 4 m is crossed by 10 uC of flux in an
inward direction. What point charge at the origin is indicated?  Ans. —50uC

A uniform line charge p, lies along the x axis. What percent of the flux from the line crosses the strip
ofthe y=6 plane having —1=z=<1? Ans. 526%

A point charge, @ =3nC, is located at the origin of a cartesian coordinate system. What flux ¥
crosses the portion of the z=2m plane for which —4=x=4m and —-4=<y=<4m?
Ans. 0.5nC

A uniform line charge with p,=5uC/m lies along the x axis. Find D at (3,2, 1) m.

Ans. (0.356)(2%) uC/m?

A point charge of +Q is at the origin of a spherical coordinate system, surrounded by a concentric
uniform distribution of charge on a spherical shell at r=a for which the total charge is —Q. Find
the flux W crossing spherical surfaces at r<a and r>a. Obtain D in all regions.

+Q r<a
= 2r —
Ans. W=4nr'D [0 r>a

Given that D =500 °"a, (uC/m?), find the flux ¥ crossing surfaces of area 1 m* normal to the x
axis and located at x=1m, x=5m, and x=10m. Ans. 452 uC, 303 uC, 184 uC

Given that D =5x%a, +10za, (C/m?), find the net outward flux crossing the surface of a cube 2 m
on an edge centered at the origin. The edges of the cube are parallel to the axes.  Ans. 80C

Given that
D=30¢ "a, ~2 E a, (C/m%)

in cylindrical coordinates, find the outward flux crossing the right circular cylinder described
by r=2b, z=0, and z=5b(m). Ans. 1295*(C)

Given that
sin ¢
D=2r -
cos g, ——
in cylindrical coordinates, find the flux crossing the portion of the z=0 plane defined by r=a,
0=¢=n/2. Repeatfor 3n/2=¢=<2m Assume flux positive in the a, direction.
aa
Ans. =33
In cyclindrical coordinates, the disk r<a, z=0 carries charge with nonuniform density
p.(r, ). Use appropriate special gaussian surfaces to find approximate values of D on the z axis (a)
very close to the disk (0 <z <a), (b) very far from the disk (z > a).
0, 2n
ans. @ 20 ) L where  0=["[ ot owardy

4nz?

A point charge, Q=2000pC, is at the origin of spherical coordinates. A concentric spherical
distribution of charge at r=1m has a charge density p,=40xpC/m’. What surface charge
density on a concentric shell at »r=2m would resultin D=0 for r>2m?

Ans. -71.2pCfm’
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Given a charge distribution with density p=5r (C/m’) in spherical coordinates, use Gauss’ law to
find D. Ans. (5r%/4)a, (C/m?)

A uniform charge density of 2C/m” exists in the volume 2<x=4m (cartesian coordinates). Use
Gauss’ law to find D in all regions.  Ans. —2a, C/m?, 2(x — 3)a, (C/m?), 2a, C/m?

Use Gauss’ law to find D and E in the region between the concentric conductors of a cylindrical
capacitor. The inner cylinder is of radius a. Neglect fringing. Ans. plalr), p..(al€or)

A conductor of substantial thickness has a surface charge of density p,. Assuming that W =0 within
the conductor, show that D= 1p, just outside the conductor, by constructing a small special
gaussian surface.



Chapter 4

Divergence and the Divergence Theorem

4.1 DIVERGENCE

There are two main indicators of the manner in which a vector field changes from point to point
throughout space. The first of these is divergence, which will be examined here. It is a scalar and
bears a similarity to the derivative of a function. The second is curl, a vector which will be
examined when magnetic fields are discussed in Chapter 9.

When the divergence of a vector field is nonzero, that region is said to contain sources or sinks,
sources when the divergence is positive, sinks when negative. In static ¢lectric fields there is a
correspondence between positive divergence, sources, and positive electric charge Q. Electric flux
W by definition originates on positive charge. Thus, a region which contains positive charges
contains the sources of W. The divergence of the electric flux density D will be positive in this
region. A similar correspondence exists between negative divergence, sinks, and negative electric
charge.

rl%)iv..rt=:1'g¢=,ncu°. of the vector field A at the point P is defined by

A-dS

divA= lim——
a::-o Av

Here the integration is over the surface of an infinitesimal volume Av that shrinks to point P.

4.2 DIVERGENCE IN CARTESIAN COORDINATES

The divergence can be expressed for any vector field in any coordinate system. For the
development in cartesian coordinates a cube is selected with edges Ax, Ay, and Az parallel to the x,
y, and z axes, as shown in Fig. 4-1. Then the vector field A is defined at P, the corner of the cube
with the lowest values of the coordinates x, y, and z.

A=A,a +Aa +A,8,

Az
Pl 1

Ay

X

Fig. 41

In order to express $A - dS for the cube, all six faces must be covered. On each face, the direction
of dS is outward. Since the faces are normal to the three axes, only one component of A will cross
any two parallel faces.

47
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In Fig. 4-2 the cube is turned such that face 1 is in full view; the x components of A over the
faces to the left and right of 1 are indicated. Since the faces are small,

L A+dS=—A(x)Ay Az
face

I A-dS=A,(x + Ax) Ay Az
right face

0A,
= [A,(x) + F. ] Ay Az

A (x) A, (x + Ax)
P . ot |
il ——— E———
ds

ds

Ax

Fig. 42

so that the total for these two faces is

% Ax Ay Az
The same procedure is applied to the remaining two pairs of faces and the results combined.
fA@Sa(Z’i’w a;,+ aa:,) Ax Ay Az
Dividing by Ax Ay Az=Av and letting Av—0, one obtains
A, 34, 0A,
ox dJdy o9z
The same approach may be used in cylindrical (Problem 4.1) and in spherical coordinates.
104, OJA,

12
VA =-— ~Ze T indri
divA o (rA,) + '3 + " (cylindrical)

divA =

(cartesian)

1 8, 1 84, .
rsingae eSO+ o g5y  (spherical

- — l a 2
UWA—r*Br(r A,)+

EXAMPLE 1. Given the vector field A =5x’(sin %t)l,, fnddivAat x=1.

Z o 10x ﬁnE=§m’m£+lﬁxsin£

ae o) 50
de—ax(stm 5x*| cos > > =3 > >

2 2
and divAl,.,=10.
EXAMPLE 2. In cylindrical coordinates a vector field is given by A =7 sin ¢a, + r* cos ¢a, + 2re *a,. Find
div A at (4, 7/2, 0).
138
ro¢
1

i . LT 1 7
m dIV Al(lﬂ.uﬂ.{)} =28m5 - ism 5__ I%E)eﬂn _5

Al 3 et 250 rsin 107
de—rar(r’smqb)+ (r’oos¢)+az(2re }=2sin ¢ —rsin ¢ — 10re
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EXAMPLE 3. In spherical coordinates a vector field is given by A =(5/r")sin 6a, +r cot a, +
rsin 6 cos ¢a,. Find div A.

ae(rsmaoot }+ (rsmﬂcosm =1—sing¢

.13 1 1
divA = (5sin 6) + —— o3¢

4.3 DIVERGENCE OF D
From Gauss’ law (Section 3.3),

D-dS
§ = Qenc
Av Av

In the limit,

D-dS
Ocec

J:To Av _de_nlnI:To&v =P

This important result is one of Maxwell’s equations for static fields:
divD=p and divE=§

if € is constant throughout the region under examination (if not, div €E=p). Thus both E and D
fields will have divergence of zero in any isotropic charge-free region.

EXAMPLE 4, In spherical coordinates the region r=<a contains a uniform charge density p, while
for r>a the charge density is zero. From Problem 2.54, E=EFE,a,, where E,=(pr/3¢,) for r=a
and E,=(pa’/3€,;?) for r>a. Then, for r=<a,

divE= :2;('13e,)=':5(3'23‘:0)_£

and, for r>a,

divE=%3£( 360:2) -

44 THE DEL OPERATOR

Vector analysis has its own shorthand, which the reader must note with care. At this point a
vector operator, symbolized V, is defined in cartesian coordinates by

o), L), )
ox %+ dy & oz
In the calculus a differential operator D is sometimes used to represent d/dx. The symbols vV and
[ are also operators; standing alone, without any indication of what they are to operate on, they

look strange. And so V, standing alone, simply suggests the taking of certain partial derivatives,
each followed by a unit vector. However, when V is dotted with a vector A, the result is the

divergence of A.

OA, BA OA,
= ivA
) ‘(Aa, +An, +Aa)= x ay 2+ > = div

d d ad
V'A—(aﬂ,+afy‘l,+az

Hereafter, the divergence of a vector field will be written V- A.
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Warning! The del operator is defined only in cartesian coordinates. When V - A is written for the
divergence of A in other coordinate systems, it does not mean that a del operator can be
defined for these systems. For example, the divergence in cylindrical coordinates will be
written as

_18 194, aA
V- A-— (rA,)+ a‘p

(see Section 4.2). This does not imply that

12, 50 1000, 30)
v=r8r(r o, + rao et o

in cylindrical coordinates. In fact, the expression would give false results when used in
VV (the gradient, Chapter 5) or VX A (the curl, Chapter 9).

4.5 THE DIVERGENCE THEOREM

Gauss’ law states that the closed surface integral of D+ dS is equal to the charge enclosed. If
the charge density function p is known throughout the volume, then the charge enclosed may be
obtained from an integration of p throughout the volume. Thus,

§D-ds=1pdu=gm
But p=V-D, andso
§D-dS=I(V-D)dv

This is the divergence theorem, also known as Gauss’ divergence theorem. It is a three-dimensional
analog of Green’s theorem for the plane. While it was arrived at from known relationships among
D, Q, and p, the theorem is applicable to any sufficiently regular vector field.

divergence theorem 5£A-ds=j(v-A)dv
5 v
Of course, the volume v is that which is enclosed by the surface S.

EXAMPLE 5. The region r<a in spherical coordinates has an electric field intensity

_Pr
E 35.'
Examine both sides of the divergence theorem for this vector field. For §, choose the spherical surface r=

b=a.

$r-as Jo-B@
If(%n,)-(b’sinﬂdﬂd.pa,) v- E-%a—a;(r ) c
=f" "&’mgdgaq, then fL fgrzsinﬂdrdﬂdtp
_ 4npb’ _4npb?
3e 3e

The divergence theorem applies to time-varying as well as static fields in any coordinate
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system. The theorem is used most often in derivations where it becomes necessary to change from
a closed surface integration to a volume integration. But it may also be used to convert the volume

integral of a function that can be expressed as the divergence of a vector field into a closed surface
integral.

Solved Problems

4.1. Develop the expression for divergence in cylindrical coordinates.

A delta-volume is shown in Fig. 4-3 with edges Ar, r A¢, and Az. The vector field A is defined at
P, the corner with the lowest values of the coordinates 7, ¢, and z, as

A=An +A,a, +A.9,

z)

ra¢

By definition,

A-dS

divA=1li
iv im Av n

To express ¢ A - dS all six faces of the volume must be covered. For the radial component of A refer
to Fig. 4-4.

ds
-/
as =40+ 4

4,0

Fig. 44
Over the left face,

fA«dsm-A,rMAz

and over the right face,

IA dS~A/r + Ar)(r + Ar) Ap Az

oA,
ar

~(A.+S2ar)r+ ar) A Az

A,
ar

wA,rb¢&z+(A,+r )ArA¢Az
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where the term in (Ar)” has been neglected. The net contribution of this pair of faces is then
a4, _2 _18
(A, + r-a—r—) Ar 8¢ Az == (rA) Ar Ap Az == (A.) Av @

since Av=rArA¢ Az
Similarly, the faces normal to a, yield

AgArAz  and (A, + % Adr) Ar Az

for a net contribution of

194,
s 5q Av 3

and the faces normal to a, yield

ArArA¢  and (A, +%Az): ArAd

for a net contribution of

JA,
oz

Av (4)

When (2), (3) and (4) are combined to give § A +dS, (1) yields

_1364) 104, 34,
= o e oz

divA

4.2. Show that V- E is zero for the field of a uniform line charge.

i For a line charge, in cylindrical coordinates,
cad

Pe
2neyr

Then v-E=1£(rL)=o
ror\ 2mweyr

The divergence of E for this charge configuration is zero everywhere except at r=0, where the
expression is indeterminate.

4.3. Show that the D field due to a point charge has a divergence of zero.
For a point charge, in spherical coordinates,

Then, for r>0,

v-n=%§;(ﬂ—g)=ﬂ

r

44. Given A=e¢”(cosxa, —sinxa,), find V-A.

vm%(e-rmsx)+§(-e"sinx)=e"(-sinx)+e“'(sinx)=0
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4.5. Given

4.6. Given
s
=

4.7. Given

4.8. Given

49. Given

4.10. Given

a

and
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A=x% + yza, +xya,, findV-A.

9

v-n-%(xz)auay

A=(x*+y?) ", findV-A at(2,2,0).

VeA=-—

107 +y)?(2x) and VW

(yz)+§z-(xy}=2x+z

- Altz'zm = -8.84 x 10-2

A =rsin ¢a, + 2r cos pa, +2z%a,, find V- A.

v

3
a¢
=2sin¢ —2sin ¢ +4z =4z

10 . 1
'A—;a(rzﬂnt#)-F;

(2r cos ¢) + .6%' (2z%)

A = 10sin® ¢a, + ra, + [(z%/r) cos® ¢la,, find V+ A at (2, ¢, 5).

VA

_ 10sin® ¢ +2z cos’ ¢
r

and

v. Altz.o.i} =5

A = (5/r")a, + (10/sin 68)a, — r’¢ sin Ba,, find V- A,

1
V'A—'—zg‘(S)-I-

A = 5sin 6ag + 5sin ¢a,,

V-A=——(5sin’ 6) +

4.11. Given that D= p,za,

(ﬂoz , IZ I)’t

For —-1=z=],

and for

z<—-1 or z>1,

8 1 1

i(ll:l)+

rsin 03¢

i(55in¢)=lli)—+5

2 (~rPgsin6) = ~r

r sin 6 00 rsin 8 3¢

find V- A at (0.5, /4, 7/4).

cos @ cos ¢

r rsin 6

V. AI(O.S.nM.nm) =24.14

in the region —1=z=1

elsewhere, find the charge density.

V-D=p

3
P—az(PoZ}—Pn

d
P—EE(:FPD)—O

The charge distribution is shown in Fig. 4-5.

in cartesian coordinates and D=
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4.12. Given that D =(10r*/4)a, (C/m?) in the region 0<r=3m in cylindrical coordinates

4.13.

4.14.

4.15 -

4.16.

and D =(810/4r)a, (C/m?) elsewhere, find the charge density.

For 0<r=3m,

1910/ s
rar( 4 )—l[h' (C/m)
and for r>3m,
13
p-—;a(slﬂﬂ)—ﬂ
Given that

D=—93(1—oos3r)a,
nr

in spherical coordinates, find the charge density.

18

1912 . _ 32,
p-—rzar[r’ﬂr:(l oos3r)]-—mzsm3r

In the region 0<r=1im, D=(-2x10"%/r)a, (C/m?) and for r>1m, D=(-4Xx
107%/r*)a, (C/m?), in spherical coordinates. Find the charge density in both regions.

For 0<r<1m,

19 ey —2X107* s
p-',ar(—leo r)= = (C/m’)
and for r>1m,
12 e
p—;a—’(—")(lo })=0

In the region r=2, D=(5*/4)a, and for r>2, D=(20/r")a, in spherical
coordinates. Find the charge density.

For r=<2,
_19
P =73, (57°14) =5r
and for r>2,
=lﬂ(zo)=0
P e

Given that D= (10x/3)a, (C/m?), evaluate both sides of the divergence theorem for the
volume of a cube, 2m on an edge, centered at the origin and with edges parallel to the axes.

§D-ds=L(v-D)av

Since D has only an x component, D + dS is zero on all but the facesat x=1m and x=-—1m (see

Fig. 4-6).
5£D.ds=£fl@.,-dydz.,+f‘fl m(;l)a,-dydz(—a.)

4,90_%
37373

C
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D

%

ds

N3

774

Fig. 4-6

N

Now for the right side of the divergence theorem. Since V- D = 10<7,
L(v D) dv = jJ L(wx*)dxdydz LL[lo— dydz-—C

4.17. Given that A =30e¢™"a, —2za, in cylindrical coordinates, evaluate both sides of the
,-:i divergence theorem for the volume enclosedby r=2, z=0, and z=5 (Fig. 4-7).

fa-ds=f(v-A)dv

4,

Fig. 47

Itisnoted that A,=0 for z=0 and hence A-dS is zero over that part of the surface.

§A-ds=ff30e-=.,azd¢dz.,+ff—2(5).,-rdrd¢-,
= 60e~(2m)(S) — 10(2)(2) = 129.4
For the right side of the divergence theorem:
V- A=12 (30re) o (~22) =~ 306 ~2
and [(v-A)du=fff(”:-’-w-'-z)rdrdqbdzauu

4.18 Given that D =(10r’/4)a, (C/m?) in cylindrical coordinates, evaluate both sides of the
divergence theorem for the volume enclosed by r=1m, r=2m, z=0 and z=10m
(see Fig. 4-8).

§D-JS=I(V-D)dv
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D
Dﬁ: ds
“as
P ¥
X
m.“

Since D has no z component, D - d8 is zero for the top and bottom. On the inner cylindrical surface 48
is in the direction —a,.

$p-as= L f' (W () dpdz(-a,)

+ L f'?(z)’a» () dgdza,

= '24[]"'" +16 2040"-150xc

From the right side of the divergence theorem:

12/1
‘"“":5(%"“"

and I(v-n)dufff(wr’)rdrdwz-?soﬁc

4.19. Given that D =(5-*/4)a, (C/m? in spherical coordinates, evaluate both sides of the
-rli divergence theorem for the volume enclosedby r=4m and 6=xa/4 (see Fig. 4-9).

fn-ds-j(v-n)dv

Since D has only a radial component, D+ 4§ has a nonzero value only on the surface r=4m.

fn-ds-ff“s(—%—)z.,«@)’smoaed¢.,=ssg.1c
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For the right side of the divergence theorem:

13 /5
D=5 () =5

and J{v.n)dv=f“f"£(5r):’sin 0drd6d¢ =589.1C

Supplementary Problems

4.20. Develop the divergence in spherical coordinates. Use the delta-volume with edges Ar, r Af, and
rsin @ A¢.

4.21. Show that V. E is zero for the field of a uniform sheet charge.

4.22. ‘The field of an electric dipole with the charges at +d/2 on the z axis is

Qd
4reyr

5 (2 cos Oa, +sin Oa,)

Show that the divergence of this field is zero.
423. Given A=¢>3 +2cosya, +2sinza,, findV+A at the origin.  Ans. 7.0
424. Given A=(3x+y’a +(x—ya,, findV-A.  Ans. 3-2
4.25. Given A=2xys +za3, +yz’a,, findV-Aat(2,-1,3). Ans. —-8.0
4.26. Given A =4xys, —xy’a, +5sinza,, findV+A at (2,2,0). Ans. 50
4.27. Given A =2rcos’¢a, +3r’sinza, +4zsin¢pa,, findV-A.  Ans. 4.0
428. Given A=(10/r")s, +5¢%a,, findV-Aat(2,¢,1). Ans. —2.60
4.29. Given A=5cosra, +(3ze ¥/r)a,, findV-Aat(n, ¢,2). Ans. —-1.59
430. Given A=10a,+5sinfa,, findV-A.  Ans. (2+ cos 6)(10/r)
431. Given A=ra,—r’cotfa,, findV-A. Ans. 3—r
4.32. Given A=[(10sin?0)/r]s, (N/m), find V-A at 2m, n/4rad,n/2rad).  Anms. 1.25N/m?.

433. Given A=r’sinfs, +13¢a, +2ra,, findV-A.  Ans. 4rsin8+(%p)cot9

4.34. Show that the divergence of E is zero if E = (100/r)a, +40a,.

4.35. Inthe region a<r<»>b (cylindrical coordinates),

D=5




4.37.

4.38.

4.39.

4.40.

441
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and for r>b,

2_ 2
D=p bzra )a,

For r<a, D=0. Find p in all three regions. Ans. 0, p,, 0

In the region 0<r=2 (cylindrical coordinates), D= (4r "' +2¢™ "% +4r '¢e**)a,, and for r>
2, D=(2.057/r)s,. Find pinboth regions.  Ans. —e™*¥,0

In the region r=<2 (cylindrical coordinates), D=[10r + (r*/3)]a,, and for r>2, D=
[3/(128r)]a,. Find p in both regions, Ans. 20+r,0

in 0
Given D= 10sin 68, +2cos 68,, find the charge density.  Ans. %(unzom‘o)

Given
3r
D=———
r+1
in spherical coordinates, find the charge density.  Ans. 3(r*+ 3)/(r* + 1)
Given
10 ~2¢ 2
D=?[l —e (14 2r +2r)a,

in spherical coordinates, find the charge density. Ans. 40e™%

In the region r=<1 (spherical coordinates),

o (-2

and for r>1, D=[5/(63r")]a,. Find the charge density in both regions.  Ans. 4-r%0

The region r=2m (spherical coordinates) has a field E=(5r X 107%/¢o)a, (V/m). Find the net
charge enclosed by the shell r=2m. Ans. 5.03x107°C

Given that D= (5r’f4)a, in spherical coordinates, evaluate both sides of the divergence theorem for
the volume enclosed between r=1 and r=2. Ans. T5x

Given that D =(10r’/4)a, in cylindrical coordinates, evaluate both sides of the divergence theorem
for the volume enclosed by r=2, z=0, and z=10. Ans. 800n

Given that D= 10sin 83, + 2cos 83, , evaluate both sides of the divergence theorem for the volume
enclosed by the shell r=2.  Ans. 40n®



Chapter 5

The Electrostatic Field: Work, Energy, and
Potential

5.1 WORK DONE IN MOVING A POINT CHARGE

A charge Q experiences a force F in an electric field E. In order to maintain the charge in
equilibrium a force F, must be applied in opposition (Fig. 5-1):

F=QE F,=-QE

F,~— ¢ ——»F

Fig. 5-1

Work is defined as a force acting over a distance. Therefore, a differential amount of work dW
is done when the applied force F, produces a differential displacement dl of the charge; i.e. moves
the charge through the distance d¢=|dl|. Quantitatively,

dW =F,-dl= —QE- dl

Note that when Q is positive and dl is in the direction of E, dW = —-QEd¢ <0, indicating that
work was done by the electric field. [Analogously, the gravitational field of the earth performs work
on a (positive) mass M as it is moved from a higher elevation to a lower one.] On the other hand, a
positive dW indicates work done against the electric field (cf. lifting the mass M).

Component forms of the differential displacement vector are as follows:

dl = dxa, + dya, + dza, (cartesian)

dl=dra, +rd¢a, + dza, (cylindrical)

dl=dra, + rdBag + rsin 6 d¢a, (spherical)
The corresponding expressions for d¢ were displayed in Section 1.5.

EXAMPLE 1. An electrostatic field is given by E=(x/2+2y)a, +2xa, (V/m). Find the work done in
moving a point charge Q= -20uC (a) from the origin to (4,0, 0)m, and (b) from (4,0,0) m to (4,2,0) m.

(@) The first path is along the x axis, so that dl=dx a,.

dW = —QE-~dl= (20 x 10“°)(§+2y)dr

W= (20 x lO“)f (§+2y) dx =80u)
(b) The second path is in the a, direction, so that dl = dya,.

2
W = (20 10—611 2x dy =320

59
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5.2 CONSERVATIVE PROPERTY OF THE ELECTROSTATIC FIELD

The work done in moving a point charge from one location, B, to another, A, in a static electric
field is independent of the path taken. Thus, in terms of Fig. 5-2,

LE-dI=— E-dl or i@E-dl=0

where the last integral is over the closed contour formed by () described positively and (2) described
negatively. Conversely, if a vector field F has the property that $F-dl=0 over every closed
contour, then the value of any line integral of F is determined solely by the endpoints of the
path. Such a field F is called conservative; it can be shown that a criterion for the conservative
property is that the curl of F vanish identically (sece Section 9.4).

oA

@
0,

Fig. 5-2

EXAMPLE 2. For the E field of Example 1, find the work done in moving the same charge from (4, 2, 0) back
to (0, 0, 0) along a straight-line path.

0.0,0)

W=(20x107% [(§+2y)n,+2xn,] ‘(dxa, +dya)

4.2,0)

00,00 X
—(20x 1079 (§+2y)dx+2xdy
(4,2.0)

The equation of the path is y =x/2; therefore, dy=}dx and
W= (20 x l(}")réxdx= =400 pJ
4

From Example 1, 80+ 320=400uJ of work was spent against the field along the outgoing, right-angled
path. Exactly this much work was returned by the field along the incoming, straight-line path, for a round-trip
total of zero (conservative field).

§.3 ELECTRIC POTENTIAL BETWEEN TWO POINTS

The potential of point A with respect to point B is defined as the work done in moving a unit
positive charge, Q,, from B to A.

w A
VAB=E= -J; E-dl (J/CorV)

It should be observed that the initial, or reference, point is the lower limit of the line
integral. Then, too, the minus sign must not be omitted. This sign came into the expression by
way of the force F,=~—QE, which had to be applied to put the charge in equilibrium.

Because E is a conservative field,

Vis=Vac— Vac
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whence V,; may be considered as the potential difference between points A and B. When V,; is
positive, work must be done to move the unit positive charge from B to A, and point A is said to be
at a higher potential than point B.

5.4 POTENTIAL OF A POINT CHARGE

Since the electric field due to a point charge () is completely in the radial direction,

Vag = —LAE~d|= —E E dr=—-2 I"£=£(l_l)

4.71'5(; Pz 4.?1'€(. ry rg

fa

For a positive charge (, point A is at a higher potential than point B when r, is smaller than rg.
If the reference point B is now allowed to move out to infinity,

1 1
i ()
dme, \ry, =
Y
O =
r dme,r

Considerable use will be made of this equation in the materials that follow. The greatest danger
lies in forgetting where the reference is and attempting to apply the equation to charge distributions
which themselves extend to infinity.

5.5 POTENTIAL OF A CHARGE DISTRIBUTION

If charge is distributed throughout some finite volume with a known charge density p (C/m?%),
then the potential at some external point can be determined. To do so, a differential charge at a
general point within the volume is identified, as shown in Fig. 5-3. Then at P,

__4aQ
B 4J[€UR

Integration over the volume gives the total potential at P:

pduv

vol 4” GUR

where dQ is replaced by pdv. Now R must not be confused with r of the spherical coordinate
system. And R is not a vector but the distance from 4 to the fixed point P. Finally, R almost
always varies from place to place throughout the volume and so cannot be removed from the
integrand.

av
- p

Fig. 5-3

If charge is distributed over a surface or a line, the above expression for V holds, provided that
the integration is over the surface or the line and that p, or p, is used in place of p. It must be
emphasized that all these expressions for the potential at an external point are based upon a zero
reference at infinity.
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EXAMPLE 3. A total charge of ¥ nC is uniformly distributed in the form of a circular disk of radius
2m. Find the potential due to this charge at a point on the axis, 2m from the disk. Compare this potential
with that which results if all of the charge is at the center of the disk.

Using Fig. 5-4,

_Q_ 107" 2 ey
P =g C/m R=V4+r* (m)
I 2
and v=3—°j JM=49.?V
mly Jo Va4
With the total charge at the center of the disk, the expression for the potential of a point charge applies:
Qo _ ¥x10°

V=tre: an(10 pemz OV

o |

(0. 0. 2)

Fig. 54

5.6 GRADIENT

At this point another operation of vector analysis is introduced. Figure 5-5(a) shows two
neighboring points, M and N, of the region in which a scalar function V is defined. The vector
separation of the two points is

dr =dxa, +dya, +dza,

Mx.y,2)
z Nix +dx,y +dy,z +dz) Z] QV&.}'.:F €y
v
L r+dr L,
Vix,y.2)=¢
Y y
x
X
(a) &)

Fig. 55
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From the calculus, the change in V from M to N is given by
v av v
V=—ro — —
d axdx+aydy+azdz

Now, the del operator, introduced in Section 4.4, operating on V gives

oV v v
w=""a +a +>-
i ad oz

ox 3y 2

It follows that
dv =NV -dr

The vector field VV (also written grad V) is called the gradient of the scalar function V. It is
seen that, for fixed |dr|, the change in V in a given direction dr is proportional to the projection of
VV in that direction. Thus VV lies in the direction of maximum increase of the function V.

Another view of the gradient is obtained by allowing the points M and N to lie on the same
equipotential (iff V is a potential) surface, V(x,y, z)=c¢, [see Fig. 5-5(b)]. Then dV =
0, which implies that VV is perpendicular to dr. But dr is tangent to the equipotential surface;
indeed, for a suitable location of N, it represents any tangent through M. Therefore, VV must be
along the surfacc normal at M. Since VV is in the direction of increasing V, it points
from V(x,y,z)=c¢, to V(x,y,z)=c,, where c,>c,. The gradient of a potential function is
a vector field that is everywhere normal to the equipotential surfaces.

The gradient in the cylindrical and spherical coordinate systems follows directly from that in the
cartesian system. [t is noted that each term contains the partial derivative of V with respect to
distance in the direction of that particular unit vector.

av av av .
VV=Et—a, +-a?a,+5a, (cartesian)
av oV av

VW=—a +— — indri
a¥t 3 ? a, + ™ (cylindrical)
av av 1%

VW=— i
ar ™ + ra0™" * rsin 6 9¢ i (spherical)

While VV is written for grad V in any coordinate system, it must be remembered that the del
operator is defined only in cartesian coordinates.

5.7 RELATIONSHIP BETWEEN E AND V

From the integral expression for the potential of A with respect to B, the differential of V may
be written

dv =~E-dl
On the other hand,
dV=VV «dr
Since dl=dr is an arbitrary small displacement, it follows that
E=-VV

The electric field intensity E may be obtained when the potential function V is known by simply
taking the negative of the gradient of V. The gradient was found to be a vector normal to the
equipotential surfaces, directed to a positive change in V. With the negative sign here, the E field is
found to be directed from higher to lower levels of potential V.
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EXAMPLE 4. In spherical coordinates and relative to infinity, the potential in the region r>0 surrounding
a point charge Q is V =Q/f4ne,r. Hence,

E=-VV=-6%( e )a A

= ’
drne,r) T dmer?

in agreement with Coulomb’s law. (V is obtained in principle by integrating E; so it is not surprising that
differentiation of V gives back E.)

5.8 ENERGY IN STATIC ELECTRIC FIELDS

Consider the work required to assemble, charge by charge, a distribution of n=3 point
charges. The region is assumed initially to be charge-free and with E =0 throughout.

Referring to Fig. 5-6, the work required to place the first charge, Q,, into position 1 is
zero. Then, when Q, is moved toward the region, work equal to the product of this charge and the
potential due to Q, is required. The total work to position the three charges is

We=Wi+ W, + W,
=0+(0,V,,) + (Q3Vs, + Q:Va))

The potential V;, must be read ““the potential at point 2 due to charge Q, at position 1.””  (This

rather unusual notation will not appear again in this book.) The work W is the energy stored in

the electric field of the charge distribition. (See Problem 5.17 for a comment on this identification.)
Now if the three charges were brought into place in reverse order, the total work would be

We=W,+ W, + W,
=0+(0Q,V23) + (CiVis + Qi Vi2)
When the two expressions above are added, the result is twice the stored energy:
We=01(Vi2+ Via) + Qu(Va + Vo) + Os(Va + Vi)

The term Q,(V; 2+ V, ;) was the work done against the fields of Q, and Q;, the only other charges
in the region. Hence, V,,+V;;=V,, the potential at position 1. Then

W =0V, + O,V + O3V,
1 n
and We=3 2 OnVa
m=1

for a region containing n point charges. For a region with a charge density p (C/m’) the summation
becomes an integration,

1
Other forms (see Problem 5.12) of the expression for stored energy are
1 1( ., 1(D?
W£-2J’D-Edv WE—-ZIGE dv WE_Z e_a'v

@

Fig. 56
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In an electric circuit, the energy stored in the field of a capacitor is given by

We =30V =3Cv?
where C is the capacitance (in farads), V is the voltage difference between the two conductors
making up the capacitor, and Q is the magnitude of the total charge on one of the conductors.

EXAMPLE 5. A parallel-plate capacitor, for which C=e€A/d, has a constant voltage V applied across the
plates (Fig. 5-7). Find the stored energy in the electric field.

Fig. 57

With fringing neglected, the fieldis E={(V/d)a, between the platesand E=0 -elsewhere.

1
E=§I£Ezdv

As an alternate approach, the total charge on one conductor may be found from D at the surface via Gauss’ law
(Section 3.3).

Solved Problems

5.1. Given the electric field E =2xa, —4ya, (V/m), find the work done in moving a point
charge +2C (a) from (2,0,0)m to (0,0,0) and then from (0,0,0) to (0,2,0); (b) from
i'li (2,0,0) to (0, 2, 0) along the straight-line path joining the two points. (See Fig. 5-8.)

(a) Along the x axis, y=dy=dz=0, and
dW = —2(2xa,)* (dxa,) = —4x dx
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}
(0, 2.0} ¢

(h)
{a)

=

— » il
. 0.Mm () (2.0

Fig, 5-8

Along the y axis, x =dx=dz=0, and
dW = —2(—4ya,) + (dya,) =8By dy
0 2
Thus W=—41xdx+8jydy=24]
2 (1]
(b) The straight-line path has the parametric equations

x=2-2r y=2t z=0

where O0=t=1. Hence,

dW = —2[2(2 - 2t)a, — 4(20)a,] - [(~2 df)a, + (2 df)a,]
=16(1 + 1) dr

1
and W=1ﬁj (1+)dt=24]

(]

§.2. Find the work done in moving a point charge Q=5 uC from the origin to (2 m, n/4, 7/2),
. spherical coordinates, in the field

Mathcad E=>5¢"a, +

rsinge (V/m)

In spherical coordinates,

dl=dra, +rdfa, + rsin 6 dpa,
Choose the path shown in Fig. 5-9. Along segment I, df#=d¢=0, and
dW = —QFE - dl = (-5 x 10 “)(5¢ """ dr)
Along segment If, dr=d6 =0, and

dW = —QE - dl=(-5x 1010 d¢)

(2,n/4,n/2)

I

ir

Fig. 5-9
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5.3.

54.

5.5.

5.6.

Along segment III, dr=d¢ =0, and
dW=—-QE-di=0
Therefore,

Z 2
W =(-25x10"%) L e dr + (=50 +10°%) L d¢=—117.9 uJ

In this case, the field does 117.9 uJ of work on the moving charge.

Given the field E=(k/r)a, in cylindrical coordinates, show that the work needed to move
a point charge Q from any radial distance r to a point at twice that radial distance is
independent of r.

Since the field has only a radial component,

dW=—QE‘dl=—QE,dr=%er
For the limits of integration use r; and 2r,.

2n,
W=—kQI d?r=-kQIn2
n

independent of r,.

For a line charge p,=(10"°/2) C/m on the z axis, find V, 5, where A is (2m, /2, 0) and
Bis (4m, x, Sm).

Pe
2mwear
Since the field due to the line charge is completely in the radial direction, the dot product with dl results
in E, dr.

A
VAB=_I E-dl where E= a
-]

A ]0-9
s 2(2€,r)

Vig=— dr=—-9nr];=6.24V

In the field of Problem 5.4, find Vg, where rs =4m and ro=10m. Then find V- and
compare with the sum of V, 5 and Vpc.
Vec=~9Inrl2=-%In4-1n10)=8.25V
Vic=-9Inr]2=-9(In2-In10)=14.49 V
VAB + VBC= 6.24 V4825 V=1449V= VAC

Given the field E=(—16/r*)a, (V/m) in spherical coordinates, find the potential of point
(2 m, =, 7/2) with respect to (4 m, 0, x).

The equipotential surfaces are concentric spherical shells. Let r=2m be A and r=4m,
B. Then
Vs = _r(_lﬂ)dr=—4v
4 r

A line charge p,=400pC/m lies along the x axis and the surface of zero potential passes
through the point (0, 5, 12) m in cartesian coordinates (see Fig. 5-10). Find the potential at
(2,3, —4)m.
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Fig. 5-10

With the line charge along the x axis, the x coordinates of the two points may be ignored.
r=V9+16=5m re=V25+144=13m
Then

[P g Pe | Ta_
Vg = J:. 2.m&_“r.dr 2ﬂewlnm 6.88V

Find the potential at r,=5m with respect to rs=15m due to a point charge Q=
500 pC at the origin and zero reference at infinity.

Due to a point charge,

To find the potential difference, the zero reference is not needed.

Vo = 500 x 10~ "% (1 1
4857 an(107°/36m) \5 15

The zero reference at infinity may be used to find V; and V5.

)=0-60V

_9 (1)_ _i(i =
V"'_4ms“ 5 =090V V's-d.ne., 15) 0.30v

Then Vie=Ve— V=060V

Forty nanocoulombs of charge is uniformly distributed around a circular ring of radius
2m. Find the potential at a point on the axis 5 m from the plane of the ring. Compare with
the result where all the charge is at the origin in the form of a point charge.

With the charge in a line,
= pede
v 4dneoR
40x10™° 10°°
@) - m om

and (see Fig. 5-11) R=V29m, dé=(2m)d¢.

Here Pe=

ve [ (07°m@2)de _
4n(107°/367)\/29

66.9V
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dQ=p,rd¢

Fig. 5-11

If the charge is concentrated at the origin,
_40x107°

= =720V
anes) 20

5.10. Five equal point charges, Q =20nC, are located at x=2,3,4,5, 6m. Find the poten-
tial at the origin.

L |
% 1 &0, 20x10°/1 1. 1 1 1
P (— + +) 261V

4.11'5,, 4me,

2+3456

5.11. Charge is distributed uniformly along a straight line of finite length 2L (Fig. 5-12). Show
that for two external points near the midpoint, such that r, and r, are small compared to the
length, the potential V;, is the same as for an infinite line charge.

ry—

e—L

Fig. 5-12
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5.12.
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The potential at point 1 with zero reference at infinity is
1.
V,=2 I %
v 4ney(z + )"
2P

0 RIS
e, [In(z +V2*+ )],

= P i (L VT ) ~inn)
0

2ne

Similarly, the potential at point 2 is
. e
Vo=—[In(L+VL +ri)—In
2 ZJIE(.I ( r:) ?'z]
Nowif L®rn and L®=r,

V.=

P
In2L —1
Zﬂf(.( n nr)

V. I ..(InZL Inr)
Pe r

T}] V,,:V-..V_,ﬁ_ -
en 1=V=V, 2'6,.lnn

which agrees with the expression found in Problem 5.7 for the infinite line.

[CHAP. §

Charge distributed throughout a volume v with density p gives rise to an electric field with

energy content
Wﬁ' = 1 J pV duv
2),
Show that an equivalent expression for the stored energy is

1
Wf:' :5 I szdU

Figure 5-13 shows the charge-containing volume v enclosed within a large sphere of radius

R. Since p vanishes outside v,

1 1 1
m”‘ B i I-pdv - i J!-l"hl:nud dev _EIMMIW'“ (V. D)Vdv

vaslume varlune

Volumev

Fig. 5-13
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5.13.

5.14.

The vector identity V-VA=A-VV +V(V-A), applied to the integrand, gives
wlef (v-vn)du-lf (D-VV)dv

2 ) spherical 2 J spherical
volume volume

This expression holds for an arbitrarily large radius R; the plan is to let R-—»x.
The first integral on the right equals, by the divergence theorem,

1§ VD -dS
2 J spherical
surface

Now, as the enclosing sphere becomes very large, the enclosed volume charge looks like a point
charge. Thus, at the surface, D appears as k,/R* and V appears as k,/R. So the integrand is
decreasing as 1/R*.  Since the surface area increases only as R?, it follows that

lim VD-dS=0
R+ } spherical
surface
The remaining integral gives, in the limit,
1 1
WE-EI(n.vV)du-Ef(D-E)du
Andsince D =¢€E, the stored energy is also given by

2z
WE=%J.GEzdv or W5=lj%dv

Given the potential function V =2x+4y (V) in free space, find the stored energy in a
1-m® volume centered at the origin. Examine other 1-m* volumes.

av av av
E=-VV= '('é;'x +§a, +8_z") =—2a,—4a, (V/m)

This field is constant in magnitude (E=V20V/m) and direction over all space, and so the total
stored energy is infinite. (The field could be that within an infinite parallel-plate capacitor. It would
take an infinite amount of work to charge such a capacitor.)

Nevertheless, it is possible to speak of an energy density for this and other fields. The expression

We=1t J' €E* dy
2
suggests that each tiny volume dv be assigned the energy content w dv, where

w=1€E?

For the present field, the energy density is constant:

1 10
w 35 60(20) = me3

36m
and so every 1-m’ volume contains (107%/36x) J of energy.

Two thin conducting half planes, at ¢ =0 and ¢ =x/6, are insulated from each other
along the z axis. Given that the potential function for O<¢=n/6 is V=
(-60¢/7)V, find the energy stored between the half planes for 0.1=<r=<0.6m
and O0=z=1m. Assume free space.

To find the energy, Wy, stored in a limited region of space, one must integrate the energy density
(sec Problem 5.13) through the region. Between the half planes,

138 60
E"""“?%(T)’“;" (V/m)
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5.16.

5.17.

5.18.
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-JTi0
L J: rdrdq,dz—m‘“lno-lsnm

The electric field between two concentric cylindrical conductors at r=0.0lm and r=
0.05m is given by E=(10°/r)a, (V/m), fringing neglected. Find the energy stored in
a 0.5-m length. Assume free space.

ZJ.G"E:d ’ LJ: yls rdrdqba‘z 0.224)

Find the stored energy in a system of four identical point charges, Q =4nC, at the corners
of a square 1 m on a side. What is the stored energy in the system when only two charges at
opposite corners are in place?

W= Vi + LV + O+ QW V=40V,
where the last equality follows from the symmetry of the system.

Q. 0, 0, 4Xw ( 1 l)
4nenR,, + 4negR s + 4x€oR1. 4ne, \1 1 1 +\/ 975V

Then We =20, V, =2(4 x 107*)97.5) = 780 n)
For only two charges in place,
4 %10
We=0,V,=(4x10"° (-—-—.— =102 nJ
£ v ) 4ﬂ€o‘\f2

What energy is stored in the system of two point charges, Q,=3nC and Q,=
—3nC, separated by a distance of d=0.2m?

We=QVirO:ba= Q‘(m{i: d) * Q‘(afe:. 2)

—h2
whence we= 2@ OXI0)___yp

dre,d  4n(10 °/36a)0.2)

It may seem paradoxical that the stored energy turns out to be negative here, whereas 3€E? and
hence

1
W5=—I €E*dv
2 al space

is necessarily positive. The reason for the discrepancy is that in equating the work done in assembling a
system of point charges to the energy stored in the field, one neglects the infinite energy already in the
field when the charges were at infinity. (It took an infinite amount of work to create the separate
charges at infinity.} Thus, the above result, Wg=—405n), may be taken to mean that the energy is
405 nJ below the (infinite) reference level at infinity. Since only energy differences have physical
significance, the reference level may properly be disregarded.

A spherical conducting shell of radius a, centered at the origin, has a potential field

_[% r<a
Voalr r>a

with the zero reference at infinity. Find an expression for the stored energy that this
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5.19.

5.20.

5.21.

5.22.

5.4.

5-25’

potential represents

0 r<a
(Voairt)a, r>a

2
W ;fsoEzdv 0+— L Lr V"'a r’sin 6drdOd¢ =2ne,Via

=—W={

Note that the total charge on the shell is, from Gauss’ law,
€, Vor

Q=DA= ( )(4:«;’) areoVoa

while the potential at the shell is V =V,. Thus, Wg =10V, the familiar result for the energy
stored in a capacitor (in this case, a spherical capacitor with the other plate of infinite radius).

Supplementary Problems

Find the work done in moving a point charge Q = -20uC from the origin to (4, 2, 0) m in the field
E=2(x +4y)a, +8xa, (V/m)
along the path x’=8y.  Ans. 1.60mJ

Repeat Problem 5.2 using the direct radial path.
Ans. =39.35u) (the nature of the singularity along the z axis makes the field nonconservative)

Repeat Problem 5.2 using the path shown in Fig. 5-14.  Ans. -117.9puJ

AZ

(2,%/4,%/2)

Fig. 5-14

Find the work done in moving a point charge Q=3uC from (4m,n, 0) to (2m,n/2, 2m),
cylindrical coordinates, in the field E=(10°/r)a, + 10°za, (V/m). Ans. —0.392]

Find the difference in the amounts of work required to bring a point charge @ =2nC from infinity
to r=2m and from infinity to r=4m, in the field E=(10°/r)a, (V/m).
Ans. 1.39x107*J

A uniform line charge of density p,=1nC/m is arranged in the form of a square 6 m on a side, as
shown in Fig. 5-15. Find the potential at (0, 0, 5) m. Ans. 356V

Develop an expression for the potential at a point 4 meters radially outward from the midpoint of a
finite line charge L meters long and of uniform density p, (C/m). Apply this result to Problem 5.24 as
a check.

pe . LI2+VE+ L4
e In p )

Ans.
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5.26.

5.27.

5.28.

5.29,

5.31.

§.32.

5.33.

5.M.

S.35.

5.36.

5.37.
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1

4(0,0,5)

Fig. 515

Show that the potential at the origin due to a uniform surface charge density p, over the
ring z=0, R=r=R+1 isindependent of R.

A total charge of 160 nC is first separated into four equal point charges spaced at 90° intervals around a
circle of 3m radius. Find the potential at a point on the axis, 5m from the plane of the
circle. Separate the total charge into eight equal parts and repeat with the charges at 45°
intervals. What would be the answer in the limit p,= (160/6s) nC/m? Ans. 247V

In spherical coordinates, point A is at a radius 2m while B is at 4m. Given the field E=
(-16/r)a, (V/m), find the potential of point A, zero reference at infinity. Repeat for point
B. Now express the potential difference V, — V; and compare the result with Problem 5.6.

Ans. V,=2V,=-8V

If the zero potential reference is at »=10m and a point charge Q@ =0.5nC is at the origin, find
the potentials at r=5m and r=15m. At what radius is the potential the same in magnitude as
thatat r=5m but opposite insign?  Ans. 045V, —0.15V, =

A point charge @ =0.4nC is located at (2,3,3)m in cartesian coordinates. Find the potential
difference V, 5, where point A is (2,2,3) m and B is (—2,3,3) m. Ans. 2,70V

Find the potential in spherical coordinates due to two equal but opposite point charges on the y axis
at y==xd/2. Assume r®>d.  Ans. (Qdsin 8)/(4ne,r?)

Repeat Problem 5.31 with the charges on the z axis.  Ans.  (Qd cos 0)/(4rer?)

Find the charge densities on the conductors in Problem 5.14.

i%f‘"(‘ifm’) on ¢ =0, —

60¢, 2 _z
Ans p (Clm)0n¢-6

A uniform line charge p,=2nC/m liesinthe z=0 plane parallel to the x axisat y=3m. Find
the potential difference V,, for the points A(2m, 0, 4 m) and B(0, 0, 0) Ans. -184V

A uniform sheet of charge, p,=(1/67)nC/m?, is at x=0 and a second sheet, p,=
(-1/6a)nC/m?, is at x=10m. Find V.s, Ve, and V. for A(10m,0,0), B(4m,0,0), and
C(0, 0, 0). Ans. 36V, -24V, 60V

Given the cylindrical coordinate electric fields E=(5/r)a, (V/m) for 0<r<2m and E=
2.5a,V/m for r>2m, find the potential difference V,, for A(1m,0,0) and B(4m, 0, 0).
Ans. B41V

A parallel-plate capacitor 0.5 m by 1.0m, has a separation distance of 2cm and a voltage difference of
10V. Find the stored energy, assuming that €= ¢,. Ans. 11.1nJ
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5.38.

5.39.

5.41.

542.

543.

The capacitor described in Problem 5.37 has an applied voltage of 200 V.
(a) Find the stored energy.

(b) Hold d, (Fig. 5-16) at 2cm and the voltage difference at 200V, while increasing d, to
2.2cm. Find the final stored energy. [Hinr: AW, = J(AC)V7]

Ans. (a) 4.4pul; (b) 4.2

dy
4

|_.. —0.5 m—— a—]

Fig. 5-16

Find the energy stored in a system of three equal point charges, @ =2nC, arranged in a line with
0.5 m separation between them. Ans. 180nJ

Repeat Problem 5.39 if the charge in the center is —2nC. Ans. —108n]

Four equal point charges, Q =2nC, are to be placed at the corners of a square 3 m on a side, one at
a time. Find the energy in the system after each charge is positioned.

Ans. 0, 108nJ, 292 nJ, 585n]

Given the electric field E = —5¢ "“a, in cylindrical coordinates, find the energy stored in the volume
described by r=<2a and 0<z=5a.  Ans. 7.89x107"g"

Given a potential V =3x+4y* (V), find the energy stored in the volume described by 0=x=
Im, 0<=y=<1m, and 0=<z=<1m. Ans. 147p)



Chapter 6

Current, Current Density, and Conductors

6.1 INTRODUCTION

Electric current is the rate of transport of electric charge past a specified point or across a
specified surface. The symbol I is generally used for constant currents and i for time-variable
currents. The unit of current is the ampere (1 A=1C/s; in the SI, the ampere is the basic unit
and the coulomb is the derived unit).

Ohm’s law relates current to voltage and resistance. For simple dc circuits, /=
V/R. However, when charges are suspended in a liquid or a gas, or where both positive and
negative charge carriers are present with different characteristics, the simple form of Ohm’s law is
insufficient. Consequently, the current density J (A/m’) receives more attention in electromag-
netics than does current /.

6.2 CHARGES IN MOTION

Consider the force on a positively charged particle in an electric field in vacuum, as shown in
Fig. 6-1(a). This force, F=+QE, is unopposed and results in constant acceleration. Thus the
charge moves in the direction of E with a velocity U that increases as long as the particle is in the E
field. When the charge is in a liquid or gas, as shown in Fig. 6-1(b), it collides repeatedly with
particles in the medium, resulting in random changes in direction. But, for constant E and a
homogeneous medium, the random velocity components cancel out, leaving a constant average
velocity, known as the drift velocity U, along the direction of E. Conduction in metals takes place
by movement of the electrons in the outermost shells of the atoms making up the crystalline
structure. According to the electron-gas theory, these electrons reach an average drift velocity in
much the same way as a charged particle moving through a liquid or gas. The drift velocity is
directly proportional to the electric field intensity,

U=yuE

where p, the mobility, has the units m?/V -s. Each cubic meter of a conductor contains on the
order of 10*® atoms. Good conductors have one or two electrons from each atom free to move
upon application of the field. The mobility u varies with temperature and the crystalline structure
of the solid. The particles in the solid have a vibratory motion which increases with
temperature. This makes it more difficult for the charges to move. Thus, at higher temperatures
the mobility u is reduced, resulting in a smaller drift velocity (or current) for a given E. In circuit
analysis this phenomenon is accounted for by stating a resistivity for each material and specifying an
increase in this resistivity with increasing temperature.

+Q g

(@) Vacuum




CHAP. 6] CURRENT, CURRENT DENSITY, AND CONDUCTORS T

6.3 CONVECTION CURRENT DENSITY J

A set of charged particles giving rise to a charge density p in a volume v is shown in Fig. 6-2 to
have a velocity U to the right. The particles are assumed to maintain their relative positions within

the volume. As this charge configuration passes a surface § it constitutes a convection current, with
density

J=pU (A/m?

Of course, if the cross section of v varies or if the density p is not constant throughout v, then J will
not be constant with time. Further, J will be zero when the last portion of the volume crosses
S. Nevertheless, the concept of a current density caused by a cloud of charged particles in motion is
at times useful in the study of electromagnetic field theory.

Fig. 6-2

6.4 CONDUCTION CURRENT DENSITY J

Of more interest is the conduction current that occurs in the presence of an electric field within a
conductor of fixed cross section. The current density Is again given by

J=pU (A/m?
which, in view of the relation U= puE, can be written
J=0E

where o=pu is the conductivity of the material, in siemens per meter (S/m). In metallic
conductors the charge carriers are electrons, which drift in a direction opposite to that of the electric
field (Fig. 6-3). Hence, for electrons, both p and g are negative, which results in a positive
conductivity o, just as in the case of positive charge carriers. It follows that J and E have the same
direction regardless of the sign of the charge carriers. It is conventional to treat electrons moving to
the left as positive charges moving to the right, and always to report p and u as positive.

The relation J= oE is often referred to as the point form of Ohm’s law. The factor o takes
into account the density of the electrons free to move (p) and the relative ease with which they move
through the crystalline structure (u). As might be expected, o is a function of temperature,

9@ or=)
-— O
—pe- |
‘\ J=0E

Fig. 6-3
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EXAMPLE 1. What electric field intensity and current density correspond to a drift velocity of 6.0 < 10™* m/s
in a silver conductor?
Forsilver o=61.7MS/m and u=56x10*m*/V-s.

% 104
=g=%=l.ﬂ?x 10 'V/m

J=0E =6.61 x 10®* A/m?

6.5 CONDUCTIVITY o

In a liquid or gas there are generally present both positive and negative ions, some singly
charged and others doubly charged, and possibly of different masses. A conductivity expression
would include all such factors. However, if it is assumed that all the negative ions are alike and so
too the positive ions, then the conductivity contains two terms as shown in Fig. 6-4(a). In a metallic
conductor, only the valence electrons are free to move. In Fig. 6-4(b) they are shown in motion to
the left. The conductivity then contains only one term, the product of the charge density of the
electrons free to move, p, , and their mobility, u,.

-0 O -0 0O
— &= 0,10 50
- O ez ~O-0)

E .

b
7

g=p p_+tp.p, 0= p.H, O =Pele + PyHy
(a) Liquid or gas (b) Conductor (c) Semiconductor
Fig. 64

A somewhat more complex conduction occurs in semiconductors such as germanium and
silicon. In the crystal structure each atom has four covalent bonds with adjacent atoms. However,
at room temperature, and upon influx of energy from some external source such as light,
electrons can move out of the position called for by the covalent bonding. This creates an
electron-hole pair available for conduction. Such materials are called intrinsic semiconductors.
Electron-hole pairs have a short lifetime, disappearing by recombination, However, others are
constantly being formed and at all times some are available for conduction. As shown in Fig.
6-4(c), the conductivity o consists of two terms, one for the electrons and another for the holes. In
practice, impurities, in the form of valence-three or valence-five elements, are added to create
p-type and n-type semiconductor materials. The intrinsic behavior just described continues, but is
far overshadowed by the presence of extra electrons in n-type, or holes in p-type. materials. Then,
in the conductivity o, one of the densities, p, or p, , will far exceed the other.

EXAMPLE 2. Determine the conductivity of intrinsic germanium at room temperature.

At 300K there are 2.5x 10" electron-hole pairs per cubic meter. The electron mobility is u, =
0.38m*/V-s and the hole mobility is u, =0.18m*/V -s. Since the material is not doped, the numbers of
electrons and holes are equal.

o=N,e(p, + pa) = (2.5 X 10"°)(1.6 x 107 "*)(0.38 + 0.18) = 2.24 S/m
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6.6 CURRENT I

Where current density J crosses a surface 5, as in Fig. 6-5, the current I is obtained by
integrating the dot product of J and d8.

dl=3-dS I=IJ-dS
s

Of course, J need not be uniform over § and § need not be a plane surface.

Fig. 6-5

EXAMPLE 3. Find the current in the circular wire shown in Fig. 6-6 if the current density is J=
15(1 = e "™ )a, (A/m?). The radius of the wire is 2 mm.

A cross section of the wire is chosen for . Then

di=J+dS
=15(1 — e '")q, - rdrdoa,
2% D02
and :-_-J;f 15(1 — ¢ ") drd¢

=133x10*A=0.133mA

Any surface S which has a perimeter that meets the outer surface of the conductor all the way around will
have the same total current, [=0.133mA, crossing it.
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6.7 RESISTANCE K

If a conductor of uniform cross-sectional area A and length ¢, as shown in Fig. 6-7, has a voltage
difference V between its ends, then

1 % aV
E=— d =—
7 an J 7
assuming that the current is uniformly distributed over the area A. The total current is then
gAV
=JA =——
1=J 7
Since Ohm’s law states that V = IR, the resistance is
14
=— (Q
oA &

(Note that 1S™'=1€; the siemens was formerly known as the mho.) This expression for
resistance is generally applied to all conductors where the cross section remains constant over the
length £. However, if the current density is greater along the surface area of the conductor than in
the center, then the expression is not valid. For such nonuniform current distributions the
resistance is given by

v | %
[J-dS JandS

R

If E is known rather than the voltage difference between the two faces, the resistance is given by

The numerator gives the voltage drop across the sample, while the denominator gives the total
current I

o
aﬂ EXAMPLE 4. Find the resistance between the inner and outer curved surfaces of the block shown in Fig. 6-8,
where the material is silver for which o =6.17 X 107 S/m.
If the same current [ crosses both the inner and outer curved surfaces,

J=Ea, and E=£l,
r or
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Then (5°=0.0873 rad),

3.0 k
[, or-on

R=—% o873
;t.-rd¢dza.

In15

== 50 =
o(0.05)(0.0873) ~ 101X 107 R=10.1u0

6.8 CURRENT SHEET DENSITY K

At times current is confined to the surface of a conductor, such as the inside walls of a
waveguide. For such a current sheet it is helpful to define the density vector K (in A/m), which
gives the rate of charge transport per unit transverse length. (Some books use the notation
J..) Figure 6-9 shows a total current of /, in the form of a cylindrical sheet of radius r, flowing in
the positive z direction. In this case,

at each point of the sheet. For other sheets, K might vary from point to point.

f”xﬂf

<D
Fig. 69

In general, the current flowing through a contour C within a current sheet is obtained by
integrating the normal component of K along the contour.

1=[K,,d£’
C

EXAMPLE 5. A thin conducting sheet lies in the z=0 plane for 0<x <0.05m. An a, directed current
of 25 A is sinusoidally distributed across the sheet, with linear density zero for x =0 and x=0.05m and
maximum at x =0.025m (see Fig. 6-10). Obtain an expression for K.
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Fig. 6-10

The data give K = (k sin20zx)a, (A/m), for an unknown constant k. Then
J05
f=25=IK,dx=k[' sin 207x d

or 25=k/10n or k=250x A/m.

69 CONTINUITY OF CURRENT

Current I crossing a general surface § has been examined where J at the surface was
known. Now, if the surface is closed, in order for net current to come out there must be a decrease
of positive charge within:

where the unit normal in dS is the outward-directed normal. Dividing by Av,

él-ds a-’pdv

Av ar Av

As Av—0, the left side by definition approaches V- J, the divergence of the current density,
while the right side approaches —3p/dr. Thus

ap
V-J=—-—
ot

This is the equation of continuity for current. In it p stands for the net charge density, not just
the density of mobile charge. As will be shown below, dp/3dt can be nonzero within a conductor
only transiently. Then the conmtinuity equation, V-J=0, becomes the ficld equivalent of
Kirchhoff’s current law, which states that the net current leaving a junction of several conductors is
zero.

In the process of conduction, valence electrons are free to move upon the application of an
electric field. So, to the extent that these electrons are in motion, static conditions no longer
exist. However, these electrons should not be confused with net charge, for each conduction
electron is balanced by a proton in the nu~leus such that there is zero net charge in every Av of the
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material. Suppose, however, that through a temporary imbalance a region within a solid conductor
has a net charge density p, at time ¢=0. Then,since J=0E=(o/€)D,

Now, the divergence operation consists of partial derivatives with respect to the spatial
coordinates. If o and € are constants, as they would be in a homogeneous sample, then they may
be removed from the partial derivatives.

‘w-my=-
9,=_9°
£ ot

or % + Ep =0
The solution to this equation is
P = poe” "

Thus p decays exponentially, with a ftime constant 1=¢€/o, also known as the relaxation
time. At =1, p has decayed to 36.8% of its initial value. For a conductor 7 is extremely
small, on the order of 107". This confirms that free charge cannot remain within a conductor and
instead is distributed evenly over the conductor surface.

EXAMPLE 6. Determine the relaxation time for silver, given that 0=6.17 x 10’ $/m. If charge of density
Po is placed within a silver block, find p after one, and also after five, time constants.

Since € = €,,
€ 107%36x -
t—;—m—l.43x10 s
Therefore

at t=1: p=pee ' =0.368p,
at =51 p=pe "=674x10 ‘p,

6.10 CONDUCTOR-DIELECTRIC BOUNDARY CONDITIONS

Under static conditions all net charge will be on the outer surfaces of a conductor and both E
and D are therefore zero within the conductor. Because the electric field is a conservative field, the
line integral of E - dl is zero for any closed path. A rectangular path with corners 1, 2, 3, 4 is
shown in Fig. 6-11.

2 3 4§ ]
JE-dI+I E-dl+I E-a'|+[ E-di=0
1 2 3 4

If the path lengths 2 to 3 and 4 to I are now permitted to approach zero, keeping the interface
between them, then the second and fourth integrals are zero. The path from 3 to 4 is within the

! 2
Dielectric
.ﬁ‘é R '|P
- Conductor
4 3

Fig. 6-11
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conductor where E must be zero. This leaves
2 2
I E-dI=I E.dé=0
) 1

where E, is the tangential component of E at the surface of the dielectric. Since the interval 1 to 2
can be chosen arbitrarily,

E=D,=0

at each point of the surface.
To discover the conditions on the normal components, a small, closed, right circular cylinder is
placed across the interface as shown in Fig. 6-12. Gauss’ law applied to this surface gives

$p-das-0..

or [ DodS+I D-dS+I D-ds=[p,ds
top bottom side A

The third integral is zero since, as just determined, D,=0 on either side of the interface. The
second integral is also zero, since the bottom of the cylinder is within the conductor, where D and E
are zero. Then,

f D-dS=I D,,ds=§ p, dS
top op A

which can hold only if

Dielectric

Conductor

EXAMPLE 7. The electric field intensity at a point on the surface of a conductor is given by E=
0.2a, —0.3a,—0.2a, (V/m). Find the surface charge density at the point.
Supposing the conductor to be surrounded by free space,
Dn = EUEIQ = ﬂs
E, = +|E|= £0.412 V/m

107®
P = (36::)(10'4]2) = 13.64 pC/m*

The ambiguity in sign arises from that in the direction of the outer normal to the surface at the given point.

In short, under static conditions the field just outside a conductor is zero (both tangential and
normal components) unless there exists a surface charge distribution. A surface charge does not
imply a net charge in the conductor, however. To illustrate this, consider a positive charge at the
origin of spherical coordinates. Now if this point charge is enclosed by an uncharged conducting
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spherical shell of finite thickness, as shown in Fig. 6-13(a), then the field is still given by
+0

4er?

a,

except within the conductor itself, where E must be zero. The coulomb forces caused by +Q
attract the conduction electrons to the inner surface, where they create a p,, of negative sign. Then
the deficiency of electrons on the outer surface constitutes a positive surface charge density
Ps2- The electric flux lines W, leaving the point charge +(, terminate at the electrons on the inner
surface of the conductor, as shown in Fig. 6-13(f). Then electric flux lines ¥ originate once again
on the positive charges on the outer surface of the conductor. It should be noted that the flux does
not pass through the conductor and the ner charge on the conductor remains zero.

(b)

Fig. 6-13

Solved Problems

6.1. An AWG #12 copper conductor has an 80.8 mil diameter. A 50-foot length carries a
r1+  current of 20 A. Find the electric field intensity E, drift velocity U, the voltage drop, and the
resistance for the 50 foot length.

Since a mil is 1o inch, the cross-sectional area is

[(0.0808 in)(2.54 x10°m
A==

2
)] =3.31x10-*m?

2 lin
1 20
m“ [ 2
J A=33I%10° 6.04 X 10° A/m
For copper, c=58x10°S/m. Then
J_ 6.04x10° ,
E=S= o = 104%10 ' V/m
V= E€=(1.04 x 10-)(50)(12)(0.0254) = 1.59 V
V 159
R=e—-—=—=17. =2
=0 7.95%x107°Q

The electron mobility in copper is u=0.0032m?/V-s, and since o=ppu, the charge density
is
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From J=pl the drift velocity is now found as

J  6.05x10°
U—;—m =334 x 10 *m/s

With this drift velocity an electron takes approximately 30 seconds to move a distance of 1 centimeter in
the #12 copper conductor.

What current density and electric field intensity correspond to a drift velocity of 5.3 x
10~*m/s in aluminum?

For aluminum, the conductivity is o =3.82x 10’ S/m and the mobility is pu =0.0014 m*/V -s_

o 31.83x 107
J: U=— = — N =
e "U 0.0014 (5.3x107%)=1.45x 10" A/m?
E=!-g-379x10 'Vim
o

A long copper conductor has a circular cross section of diameter 3.0 mm and carries a current
of 10 A. Each second, what percent of the conduction electrons must leave (to be replaced
by others) a 100 mm length?

Avogadro’s number is N = 6.02 X 10* atoms/kmol. The specific gravity of copper is 8.96 and the
atomic weight is 63.54. Assuming one conduction electron per atom, the number of electrons per unit
volume is

m = (o010 ) G sreg) (e 0 ) o)

= 8.49 x 10?* electrons/m’
The number of electrons in a 100 mm length is

M2
3 xzw ) (0.100)(8.49 x 10°*) = 6.00 X 107

N=x(

A 10-A current requires that

C 1 electrony "
(10 )(l 6x10"° C )H6.25><10 electrons/s

pass a fixed point. Then the percent leaving the 100 mm length per second is

6.25 % 10"
6.00 x 10*

(100) = 0.104% per s

What current would result if all the conduction electrons in a 1-centimeter cube of aluminum
passed a specified point in 2.0s? Assume one conduction electron per atom.

The density of aluminum is 2.70 X 10® kg/m" and the atomic weight is 26.98 kg/kmol. Then
= (6.02 X 10"’)( )(2 70 % 10*) = 6.02 X 10*® electrons/m®

and = AQ _ (6.02 % 10* electrons/m*)(10 * m)*(1.6 x 10" C/electron)
At 2s

=4.82kA

What is the density of free electrons in a metal for a mobility of 0.0046 m?/V -s and a
conductivity of 29.1 MS/m?
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Since o=up,
29.1 x 10°
0.0046

=T6'§i::-——61-_9; = 3.96 % 10™ electrons/m*

=6.33 x 10°C/m?

and Ne

6.6. Find the conductivity of n-type germanium (Ge) at 300 K, assuming one donor atom in each
10° atoms. ‘The density of Ge is 5.32 x 10’ kg/m* and the atomic weight is 72.6 kg/kmol.

The carriers in an n-type semiconductor material are electrons. Since 1kmol of a substance
contains 6.02 X 107 atoms, the carrier density is given by

_ atoms) / 1 kmol 3 E) ( electmns)
N.= (6‘02 10 el )(?2.6 kg) (5‘32 05 N ieP atoms

= 4,41 X 10® electrons/m*

The intrinsic concentration n, for Ge at 300K is 2.5x 10" m™>. The mass-action law, N.N,=

n?, then gives the density of holes:

_(2.5x 10y
4.41 x 10™

Because N,>» N, conductivity will be controlled by the donated electrons, whose mobility
at 300K is

N, = 1.42 x 10" holes/m*

o~ N,ep, = (4.41 x 10?°)(1.6 X 10~ '°)(0.38) = 26.8 S/m

6.7. A conductor of uniform cross section and 150 m long has a voltage drop of 1.3V and a
current density of 4.65x 10° A/m?>. What is the conductivity of the material in the
conductor?

Since E=V/¢ and J=0E,

4.65x10°= o(g

= 7
150) or 0=537Tx10°S/m

6.8. A table of resistivities gives 10,4 ohm - circular mils per foot for annealed copper. What is
the corresponding conductivity in siemens per meter?

A circular mil is the area of a circle with a diameter of one mil (10™%in).
10%in
2

m 2
1 cir mil = :r[( )(0.0254$)] —5.07 X 10"

The conductivity is the reciprocal‘ of the resistivity.

1 ft in m 1 cir mil .
o (10.49 e mil)(12 ﬁ)(o'm in)(sm X101 m’) 3-78 X 10°S/m

6.9. An AWG #20 aluminum wire has a resistance of 16.7chms per 1000 feet. What
conductivity does this imply for aluminum?

From wire tables, a #20 wire has a diameter of 32 mils.

2x10"
2

£ = (1000 £t)(12 in/ft)(0.0254 m/in) = 3.05 X 10 m

2
A=n[ (0'0254)] =5.19%x 107" m?
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Then from R = €/0A, 3.05 % 10°

= {6G.19x 107 22 MS/m

6.10. In a cylindrical conductor of radius 2 mm, the current density varies with the distance from
the axis according to

=i
E . J=10%"*" (A/m?)

Find the total current 1.

.'wIJ-dS-IJ’dS L fm “y dr dp

—2::(10‘)[( 400),( —400r — 1)]0 =7.51mA

6.11. Find the current crossing the portion of the y=0 plane defined by —-0.1=x=<
0.lm and —-0.002=z=<0002m if

J=10°|x|a, (A/m?)

I=J-J-dS= 10? |x] a, - dx dza, =4 mA

=002 L =0 1

6.12. Find the current crossing the portion of the x=0 plane defined by —-x/d=sy=<
nfdm and -0.01=2=<0.0lm if

J=100cos 2ya, (A/m?)

Xl
;=jJ-ds=rf 100 cos 2ya, - dy dza, = 2.0 A
-0l - g

6.13. Given J=10’sin8a, A/m’ in spherical coordinates, find the current crossing the spheri-
cal shell r=0.02m.

Since J and
ds = r?sin 0 d0 doa,

are radial,

1= [ i f 10°(0.02)*sin* § d6 dgp = 3.95 A

6.14. Show that the resistance of any conductor of constant cross-sectional area A and length € is
givenby R ={/0A, assuming uniform current distribution.

A constant cross section along the length € results in constant E, and the voltage drop is
v=[E-a=ke
If the current is uniformly distributed over the area A,
I=I.l-dS=JA=oEA
where o is the conductivity. Then, since R =V/I,
4

R=—
oA
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6.15. Determine the resistance of the insulation in a length ¢ of coaxial cable, as shown in Fig. 6-14.

1”_,

e f ———

Fig. 6-14

Assume a total current | from the inner conductor to the outer conductor. Then, at a radial

distance r,
I 1
7= A 2nre
I
E=—
and s0 2roré

The voltage difference between the conductors is then
/] I b
Voo = -J:Zaror{’dr _ZJw{’ln;
and the resistance is
vV 1 b

R=—=—+—

I 2nof n a

6.16. A current sheet of width 4 m lies in the z =0 plane and contains a total current of 10 A in
a direction from the origin to (1, 3,0) m. Find an expression for K.

At each point of the sheet, the direction of K is the unit vector

2, +3a,
V10

and the magnitude of K is ¥ A/m. Thus
K= I_IO(LS"’) A/m
4\ Vio

6.17. As shown in Fig. 6-15, a current I follows a filament down the z axis and enters a thin
conducting sheet at z=0. Express K for this sheet.
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Consider a circle inthe z=0 plane. The current /- on the sheet spreads out uniformly over the
circumference 2nr. The direction of K is a,. Then

K=—L
2:#.'

6.18. For the current sheet of Problem 6.17 find the current in a 30° section of the plane (Fig. 6-16).
- [T Ll
:-]x..df-L S rdg =1

e
A _30;_
Fig. 6-16

However, integration is not necessary, since for uniformly distributed current a 30° segment will contain
30°/360° or 1/12 of the total.

6.19. A current I(A) enters a thin right circular cylinder at the top, as shown in Fig.
6-17. Express K if the radius of the cylinder is 2 cm.

v

(=15

Fig. 6-17
On the top, the current is uniformly distributed over any circumference 2nr, so that

!
K=>—a (A/m)

Down the side, the current is uniformly distributed over the circumference 22{0.02 m), so that

I
K=m(—-,) (A/m)

6.20. A cylindrical conductor of radius 0.05 m with its axis along the z axis has a surface charge
density p,=po/z (C/m?). Write an expression for E at the surface.

Since D,=p, E.=ple,. At (0.05, ¢, z),

E=Ea = E% a, (V/m)

6.21. A conductor occupying the region x=5 has a surface charge density

o - Po__
RV

Write expressions for E and D just outside the conductor.
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6.22.

i+

Mathcad

6.23.

6.24.

6.25.

The outer normal is —a,. Then, just outside the conductor,

Po

D= DPI( —a.)= P‘(‘ﬂ.r) = = = (_‘n(]
¥ +z-
and E-—P ()
eNVy +2°

Two  concentric  cylindrical conductors, r,=0.01m and r,=0.08m, have charge
densities p,, =40 pC/m’ and p,,, such that D and E fields exist between the two cylinders
but are zero elsewhere. See Fig. 6-18. Find p,, and write expressions for D and E between
the cylinders.

Fig. 6-18

By symmelry, the field between the cylinders must be radial and a function of r only. Then,
for r,<r<mn,

V-D=1£(rD,)=O or rD, =c¢
rdr

To evaluate the constant ¢, use the factthat D, =D,=p, at r=r +0.
c=(0.01)40x 10 ")=4x10 “C/m

and so
4x10 " D 4.52x107°
D=———a, (C/m’) and E=—=-—""—"—a (V/m)
r €, r
The density p,, is now found from
4x10 " ,
Pip = Dn|r=r,, 0= _Drlr—r;,—u= - W =-5 pCfm'

Supplementary Problems

Find the mobility of the conduction clectrons in aluminum, given a conductivity 38.2 MS/m and
conduction electron density 1.70 x 10¥ m *. Ans. 140 x 107*mYV s

Repeat Problem 6.23 (a) for copper, where o=58.0MS/m and N =1.13x10"m 3 (b) for
silver, where 0=61.7MS/m and N, =7.44%x10%m *.
Ans. (@) 3.21 X107 m*/V-s; () 5.18 x 10 *m*/V s

Find the concentration of holes, N, in p-type germanium, where o= 10°S/m and the hole mobility
is p,=018m’/V-s.  Ans. 3.47x10%m’



6.26.

‘C ”’

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

CURRENT, CURRENT DENSITY, AND CONDUCTORS [CHAP. 6

Using the data of Problem 6.25, find the concentration of electrons, N,, if the intrinsic concentration is
n=2.5%x10"m>, Ans. 1.80x10"m™*

Find the electron and hole concentrations in n-type silicon for which o0=10.08/m, pu, =
0.13m*V's, and n,=15%x10"m™>*  Ams. 481 x10"m> 4.68x10"m™*

Determine the number of conduction electrons in a 1-meter cube of tungsten, of which the density is
18.8x 10°kg/m*> and the atomic weight is 184.0. Assume two conduction electrons per
atom.  Ans. 1.23x107

Find the number of conduction electrons in a l-meter cube of copper if 0=58MS/m and p=
3.2x 10*m?/V -s. On the average, how many electrons is this per atom? The atomic weight is 63.54
and the density is 8.96 x 10°kg/m®.  Ans. 1.13x10%, 1.33

A copper bar of rectangular cross section 0.02 by 0.08 m and length 2.0 m has a voltage drop of 50 mV.
Find the resistance, current, current density, electric field intensity, and conduction electron drift
velocity.  Ans. 21.6pQ, 2.32kA, 1.45MA/m?, 25mV/m, 0.08 mm/s

An aluminum bus bar 0.01 by 0.07 m in cross section and of length 3 m carries a current of 300 A. Find
the electric field intensity, current density, and conduction electron drift velocity.
Ans. L12xX1077V/m, 4.28 % 10° A/m?, 1.57 % 10 * m/s

A wire table gives for AWG #20 copper wire at 20°C the resistance 33.31 Q/km. What conductivity
(in S/m) does this imply for copper? The diameter of AWG #20 is 32 mils. Ans. 5.8x10°S/m

A wire table gives for AWG #18 platinum wire the resistance 1.21 X 107° Q/cm. What conductivity (in
S/m) does this imply for platinum? The diameter of AWG #18 is 40 mils. Ans. 1.00x 10" $/m

What is the conductivity of AWG #32 tungsten wire with a resistance of 0.0172Q/cm? The diameter
of AWG #32is 8.0mils. Ans. 17.9MS/m

Determine the resistance per meter of a hollow cylindrical aluminum conductor with an outer diameter
of 32 mm and wall thickness 6 mm. Ans. 53.4 uQ/m

Find the resistance of an aluminum foil 1.0 mil thick and 5.0 cm square (g) between opposite edges on a
square face, (b) between the two square faces.  Ans. (@) 1.03mQ; (b) 266 pR

Find the resistance of 100 ft of AWG #4/0 conductor in both copper and aluminum. An AWG #4/0
has a diameter of 460 mils. Ans. 4.91 mS2, 7.46 mQ

Determine the resistance of a copper conductor 2 m long with a circular cross section and a radius of
1 mm at one end increasing linearly to a radius of 5 mm at the other. Ans. 2.20mQ

Determine the resistance of a copper conductor 1 m long with a square cross section and a side 1 mm at
one end increasing linearly to 3 mm at the other. Ans. 5.75mQ

Develop an expression for the resistance of a conductor of length € if the cross section retains the same

€ (Ink
shape and the area increases linearly from A to kA over €. Ans. -G—A-( k“— l)

Find the current density in an AWG #12 conductor when it is carrying its rated current of 30 A. A #12
wire has a diameter of 81 mils.  Ans. 9.09 X 10° A/m’

Find the total current in a circular conductor of radius 2 mm if the current density varies with  according
to J=10*/r (A/m’). Ans. 4mA
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6.43.

6.4S.

6.46.

=
head
Ans

In cylindrical coordinates, J¥=10e ' a, (A/m?) for the region 0.01=r=<0.02m, 0<z=
1m. Find the total current crossing the intersection of this region with the plane ¢ = const.
Ans. 233x1077A

Given a current density

i= (gms e).., (A/m?)
in spherical coordinates, find the current crossing the conical strip 6 =x/4, 0.001=<r=<0.080 m.
Ans. 1.38x10°A

Find the total current outward directed from a 1-meter cube with one corner at the origin and edges
parallel to the coordinate axes if J=2x"a, + 2xy’n, + 2xya, (A/m’). Ans. 3.0A

As shown in Fig. 6-19, a current of 50 A passes down the z axis, enters a thin spherical shell of radius
0.03m, and at 6 =sm/2 enters a plane sheet. Write expressions for the current sheet densities K in
the spherical shell and in the plane.

265 7.96

g% (Am), a (A/m)

I
~— -
.
;o
Fig. 6-19

A filamentary current of /(A) passes down the z axis to z=5X10"?m where it enters the
portion 0<g¢=<n/4 of aspherical shell of radius $x 10°m. Find K for this current sheet.

(A/m)

Ans msin @ i
A current sheet of density K=20a, A/m lies in the plane x=0 and a current density J=
10a, A/m® also exists throughout space. (a) Find the current crossing the area enclosed by a circle of

radius 0.5m centered at the origin in the z=0 plane. (b) Find the current crossing the
square [x|=0.25m, |y|=025m, z=0. Ans. {(@)27.9A;(b)12.5A

A hollow, thin-walled, rectangular conductor 0.01 by 0.02m carries a current of 10 A in the positive x
direction. Express K. Ans. 167a, A/m

A solid conductor has a surface described by x+y=3m and extends toward the origin. At the
surface the electric field intensity is 0.35 V/m. Express E and D at the surface and find p, .
Ans. 10.247(a, +a,) V/m, 12.19%107%(a, +a,) C/m’, +3.10%107"C/m*

A conductor that extends into the region z <0 has one face in the plane z =0, over which there is
a surface charge density

P, =5%10"%%""sin* ¢ (C/m?)
in cylindrical coordinates. Find the electric field intensity at (0.15 m, n/3, 0). Ans. 9.45a, V/m
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v';i li 6.53.

6.54.
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A spherical conductor centered at the origin and of radius 3 has a surface charge density p, =
Pocos’ 6. Find E at the surface.
Ans. P2cos? 6a,

€o

The electric field intensity at a point on a conductor surface is given by E=0.2a —03a, —
0.2a, V/m. What is the surface charge density at the point?  Ans. +3.65 pC/m’

A spherical conductor centered at the origin has an electric field intensity at its surface E=
0.53(sin”’ ¢)a, V/m in spherical coordinates. What is the charge density where the sphere meets the
y axis?  Ans. 4.69pC/m?



Chapter 7

Capacitance and Dielectric Materials

7.1 POLARIZATION P AND RELATIVE PERMITTIVITY ¢,

Dielectric materials become polarized in an electric field, with the result that the electric flux
density D is greater than it would be under free-space conditions with the same ficld intensity. A
simplified but satisfactory theory of polarization can be obtained by treating an atom of the dielectric
as two superimposed positive and negative charge regions, as shown in Fig. 7-1(a). Upon
application of an E field the positive charge region moves in the direction of the applied field and the
negative charge region moves in the opposite direction. This displacement can be represented by
an electric dipole moment, p=Qd, as shown in Fig. 7-1(c).

Lo G)—d*-@(?

E

E

(@) ®) ()
“‘- 7'].

For most materials, the charge regions will return to their original superimposed positions when
the applied field is removed. As with a spring obeying Hooke's law, the work done in the distortion
is recoverable when the system is permitted to go back to its original state. Energy storage takes
place in this distortion in the same manner as with the spring.

A region Av of a polarized dielectric will contain N dipole moments p. Polarization P is
defined as the dipole moment per unit volume:

_ . Np
P=fim 3y (©Im)

This suggests a smooth and continuous distribution of electric dipole moments throughout the
volume, which, of course, is not the case. In the macroscopic view, however, polarization P can
account for the increase in the electric flux density, the equation being

D=¢cE+P

This equation permits E and P to have different directions, as they do in certain crystalline
dielectrics. In an isotropic, linear material E and P are parallel at each point, which is expressed by

P=yx.€;E (isotropic material)
where the electric susceptibility x, is a dimensionless constant. Then,
D = €¢(1 + x.)E = €p€,E (isotropic material)
where €,=1+y, isalso a pure number. Since D=¢€E (Section 3.4),

El‘ _——
€p

whence ¢, is called the relative permittivity. (Compare Section 2.1.)
95
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EXAMPLE 1. Find the magnitudes of D and P for a dielectric material in which E=0.15MV/m and
x. =4.25.
Since €, =x +1=5.25,

-9

D =¢€.E= ! (5.25)(0.15 x 10°) = 6.96 uC/m’

36n

-9

P=yo€of =0 (4.25)(0.15 X 10°) = 5.64 uC/m?

36n

7.2 CAPACITANCE

Any two conducting bodies separated by free space or a dielectric material have a capacitance
between them. A voltage difference applied results in a charge +Q on one conductor and —Q on
the other. The ratio of the absolute value of the charge to the absolute value of the voltage
difference is defined as the capacitance of the system:

Q
=7 ®
where 1 farad(F)=1C/V.

The capacitance depends only on the geometry of the system and the properties of the
dielectric(s) involved. In Fig. 7-2, charge +Q placed on conductor 1 and —Q on conductor 2
creates a flux field as shown. The D and E fields are therefore also established. To double the
charges would simply double D and E, and therefore double the voltage difference. Hence the
ratio Q/V would remain fixed.

EXAMPLE 2. Find the capacitance of the parallel plates in Fig. 7-3, neglecting fringing.

Assume a total charge +( on the upper plate and —Q on the lower plate. This charge would normally be
distributed over the plates with a higher density at the edges. By neglecting fringing, the problem is simplified
and uniform densities p,=+0Q/A may be assumed on the plates. Between the plates D is uniform,
directed from +p, to —p,.

0
o)

The potential of the upper plate with respect to the lower plate is obtained as in Section 5.3.
Ve[ L ca ey -2

€,6,A €,€.A

_Q . _
D=*(-s) and E=

Then C=Q/V =¢€,6,Ald. Notice that the result does not depend upon the shape of the plates but rather
the area, the separation distance, and the dielectric material between the plates.
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Fig. 7-3

7.3 MULTIPLE-DIELECTRIC CAPACITORS

When two dielectrics are present in a capacitor with the interface parallel to E and D, as shown
in Fig. 7-4(a), the equivalent capacitance can be obtained by treating the arrangement as two
capacitors in parallel [Fig. 7-4(b)].

_ €o€nd, _ €o€2Az
C=" ="y

€
Ceq=C+C= f (€0 A, + €,A))

Ay /J/ A d f@:
Vv CI’I\—G Vv
(b}

€€y € I
{a)

Fig. 74

When two dielectrics are present such that the interface is normal to D and E, as shown in Fig.
7-5(a), the equivalent capacitance can be obtained by treating the arrangement as two capacitors in
series [Fig. 7-5(b)].

€o€n A €o€ A
C,=—— Co=—"—
1 d, 2 4,

1 1 1 Be,.;dl +€,d,

a - a E; €€ €A
The result can be extended to any number of dielectrics such that the interfaces are all normal to D
and E: the reciprocal of the equivalent capacitance is the sum of the reciprocals of the individual
capacitances.
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A C,
dy L% vV :|: - v
- -
dx €0t,3 | & .( ]
{(a) (b)
Fig. 7-§

EXAMPLE 3. A parallel-plate capacitor with area 0.30 m* and separation 5.5 mm contains three dielectrics
with interfaces normal to E and D, as follows: ¢,=30, d,=1.0mm; €,=40, d,=20mm; €,=
6.0, dy;=25mm. Find the capacitance.

Each dielectric is treated as making up one capacitor in a set of three capacitors in series.

_Eo€nd _ €4(3.0)(0.30)
d, 10°
Similarly, C,=5.31nF and C,=6.37nF; whence

1 1 1 1
Co. 796%107° 531x10°  637Tx10°

C] ;?.%DF

or C,=212nF

7.4 ENERGY STORED IN A CAPACITOR
By Section 5.8, the energy stored in the electric field of a capacitor is given by
W= % I D-Edv

where the integration may be taken over the space between the conductors with fringing
neglected. If this space is occupied by a dielectric of relative permittivity €,, then D=
€€, E, giving

We = % I €o€, E* dv

It is seen that, for the same E field as in free space, the presence of a dielectric results in an increase
in stored energy by the factor €,>1. In terms of the capacitance C and the voltage V this stored
energy is given by

WE = éCVz
and the energy increase relative to free space is reflected in C, which is directly proportional to ¢,.

7.5 FIXED-VOLTAGE D AND E

A parallel-plate capacitor with free space between the plates and a constant applied voltage V,
as shown in Fig. 7-6, has a constant electric field intensity E. With fringing neglected,

Vv &V
=™ Dy = €cEp = d ™
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€0 :
Fig. 7-6

Now, when a dielectric with relative permittivity €, fills the space between the plates,
E= E‘l" D= ErD(J

because the voltage remains fixed, whereas the permittivity increases by the factor e,.

EXAMPLE 4. A parallel-plate capacitor with free space between the plates is connected to a constant source
of voltage. Determine how We, C, O, and p, change as a dielectric of €, =2 is inserted between the plates.

Relationship Explanation
We =2We, Section 7.4
C=2C, C=2W/v?
Ps=2pso P, =D,

0 =20, O=pA

Insertion of the dielectric causes additional charge in the amount Q, to be pulled from the constant-voltage
source.

7.6 FIXED-CHARGE D AND E

The parallel-plate capacitor in Fig. 7-7 has a charge +Q on the upper plate and —Q on the lower
plate. This charge could have resulted from the connection of a voltage source V which was
subsequently removed. With free space between the plates and fringing neglected,

_0 1 Q
DU_Aan Eu—eoDn—eoAan
In this arrangement there is no way for the charge to increase or decrease, since there is no
conducting path to the plates. Thus, when a dielectric material is inserted between the plates,

1
D=D, E=_E,

Fig. 7-7

EXAMPLE 5. A charged parallel-plate capacitor in free space is kept electrically insulated as a dielectric of
relative permittivity 2 is inserted between the plates. Determine the changes in W, C, and V.

Relationship Explanation
We = W D-E=3D;-E,
V=iV, V =Ed
C=2C, C=0/v

(See Problem 7.20.)
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7.7 BOUNDARY CONDITIONS AT THE INTERFACE OF TWO DIELECTRICS

If the conductor in Figs. 6-11 and 6-12 is replaced by a second, different, dielectric, then the
same argument as was made in Section 6.10 establishes the following two boundary conditions:

(1) The tangential component of E is continuous across a dielectric interface. In symbols,

D, _Dy

E,=E,; and
€, €4

(2) The normal component of D has a discontinuity of magnitude |p,| across a dielectric
interface. 1If the unit normal vector is chosen to point into dielectric 2, then this condition

can be written
D,y — D,,=—p; and €.E, —€xE, ;= ——

Generally the interface will have no free charges (p, =0), so that

D,,=D,, and €qE.n=€rE,
4

)Q;d EXAMPLE 6. Given that E,=2a, —3a +5a, V/m at the charge-free dielectric interface of Fig. 7-8 find
D, and the angles 8, and 6,.

Fig. 7-8

The interface isa z =const. plane. The x and y components are tangential and the z components are
normal. By continuity of the tangential component of E and the normal component of D:

E = 2a,— 3a,+ Sa,
E,= 2a,— 3a,+ E_a,
D, = €,6,,E, = d€.a, — 6€a, + 10€.a,
D,= D,,a, + D,,a, + 10€,a,

The unknown components are now found from the relation D, = €,€,,E,.
D,.a, + Da, + 10€,8, =2€.€,,8, — 3€4€,.a, + €.€,,E -0,
from which

10
D, =2¢4€,, = 10, D,, = —3e€,€,,= —15¢, E,= —€—= 2
r2

The angles made with the plane of the interface are easiest found from
E -a, =|E/|cos(%°—6,) E;-a, = |E)cos(90°— 6;)
5=V38sin 0, 2=V17sin 6,
9[ = 54-20 62 = 29.0‘"
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A useful relation can be obtained from

tan 0, = Ell _ D:l!‘l)er‘l
= =
VEL +E, VEL+E,
tan e: = Ez? _ Dzsznfrz

VEL+E, VEL+ES,

In view of the continuity relations, division of these two equations gives

1.1'

7.2.

7.3.

tan 6, €,

tan 8, €,

Solved Problems

Find the polarization P in a dielectric material wtih €, =2.8 if D=3.0x10""aC/m*.
Assuming the material to be homogeneous and isotropic,
P=yekKE
Since D=¢,c,E and y.=¢ -1,

P= (ee_ l)n =1.93 x 10-"a C/m?

Determine the value of E in a material for which the electric susceptibility is 3.5
and P=23x10"aC/m%.

Assuming that P and E are in the same direction,

E=—-l—l'=7.42 x 10%a V/m
Xe€o

Two point charges in a dielectric medium where €,=5.2 interact with a force of
8.6 x10°N. What force could be expected if the charges were in free space?

Coulomb’s law, F =Q,0,/(4n€,€,d”), shows that the force is inversely proportional to €,. In
free space the force will have its maximum value.

E. =5T'2(s,6 X 107°) = 4.47 x 102N

Region 1, defined by x <0, is free space, while region 2, x>0, is a dielectric material
for which €,=2.4. See Fig. 7-9. Given

D|=3'x—4ﬂy+6ﬁ, Cfmz
find E, and the angles 8, and 6,.

The x components are normal to the interface: D, and E, are continuous.

D, =32, - 4a+ . E=—a——a,+—a,

' v o ' Gn. Go.y €oa
4 6

DI=3‘x+Dy2.y+Dﬂsx E2=Ex2’x__ay+_‘:
€ €9
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7.5.

7.6.
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Fig. 7-9

Then D,= €c.E, gives
3ax + Dﬂay + Dz : = €En€p Lpo8y — 4Er?._v + 6€r2'z

3 _ 1.25
€y€pp €o

To find the angles:

whence Eon= D,» = —4€,,=-9.6 D.,=6¢€,,=14.4

D,-a, =D cos (90° - &)
3=V6lsin 6,
0,=22.6"
Similarly, €6,=9.83"

In the free-space region x<0 the electric field intensity is E,=3a, +5a, —3a,
V/m. The region x>0 is a dielectric for which €,,=3.6. Find the angle 6, that the
field in the dielectric makes with the x =0 plane.

The angle made by E, is found from
E -a, = |E|cos(90°— 8,)
3=V43sin 8,
6, =272
Then, by the formula developed in Example 6,

1
tan 8, = —tan 8, =0.1428

€

and 8,=813°

A dielectric free-space interface has the equation 3x +2y +z=12m. The origin side of
the interface has ¢,,=3.0 and E,=2a,+5, V/m. Find E,.

The interface is indicated in Fig. 7-10 by its intersections with the axes. The unit nonmal vector on
the free-space side is

_3a,+2a +a4,
V14

The projection of E, on a, is the normal component of E at the interface.

a,
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Then
E, -La,.—236a + 1.57a, +0.79a
' Via ) ’ ‘
E,.=E,—E,;=-0.36a, —1.57a, +4.21a, = E,
D, = €¢€,.E,, = €4(7.08a, +4.71a, + 2.372,)=D,,
E,, =el D,;=7.08a, +4.71a, + 2.37a,
0
and finally

E;=E+E;=6.72a, +3.14a, +6.58a, V/m

7.7. Figure 7-11 shows a planar dielectric slab with free space on either side. Assuming a
constant field E, within the slab, show that E;=E,.

/e
4
/e

By continuity of E, across the two interfaces,

Er:! = Ell

Figq 7‘11

By continuity of D,, across the two interfaces (no surface charges),
Da=D,, and so E, = E,
Consequently, E;=E,.

7.8. (a) Show that the capacitor of Fig. 7-4(a) has capacitance

!
€€ A €ERA
&d Ceq= 0‘; l+ 0; 2=C|+C2
(b) Show that the capacitor of Fig. 7-5(a) has reciprocal capacitance
1 1 1 1 1

Ceq N fneﬂAfdl ¥ EDEIQAIdZ - El * E2
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(a) Because the voltage difference V is common to the two dielectrics,

| %4 D D 14
E,=E,_=Ea,, and t=—"=—a,
€€, €o€> d

where a, is the downward normal to the upper plate. Since D, =p,, the charge densities on
the two sections of the upper plate are
Pa= E €€,y P2= E €o€2

and the total charge is

€0€ A, fufrzAz)
+
d d

Thus, the capacitance of the system, C,., = Q/V, has the asserted form.
(b) Let +Q be the charge on the upper plate. Then

0 = pud, + poad; = V(

D=Za,.

everywhere between the plates, so that

Q
E.=
a, 2 €0E,2 A a,

€,€,A
The voltage differences across the two dielectrics are then

0Od, V,= Ed, = 0Od,

Vi=Ed,=
I o €,€,A €0€,2A

1 1
and V=V, +V,= ( + )
I =0 €€qAld,  €,€,Aldy) -

From this it is seen that 1/C.,=V/Q has the asserted form.

7.9. Find the capacitance of a coaxial capacitor of length L, where the inner conductor has radius
u-ii a and the outer has radius b. See Fig. 7-12.

Mathcad

Fig. 7-12

With fringing neglected, Gauss’ law requires that D« 1/r between the conductors (see Problem
6.22). At r=a, D=p, where p, is the (assumed positive) surface charge density on the inner
conductor. Therefore,

.
D=p,£a, E=—p—n
r [T

r

and the voltage difference between the conductors is

lf:“‘_= —r(p_ﬂar).dr*=—p£lné
{3

€€, T €y€, a
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The total charge on the inner conductor is Q = p,(2mal), and so
_Q 2mege, L

"V In(bla)

7.10. In the capacitor shown in Fig. 7-13, the region between the plates is filled with a dielectric
having €, =4.5. Find the capacitance.

Az

Fig. 7-13

With fringing neglected, the D field between the plates should, in cylindrical coordinates, be of the
form D=D,a,, where D, depends only on r. Then, if the voltage of the plate ¢ =a with
respect to the plate ¢ =0 isV,

= == [ (22s,) _Der (7 Dere
Vo= I E-d= Jo (euf,n"' (rdpne) == ), 4= e,
Thus, D, = —¢€,€,Vo/ra, and the charge density on the plate ¢ =a is
€o€, Vo
+ = Dﬂ = —D B e—
£ *  ra

The total charge on the plate is then given by

2
Q=Ip,d5=£J Eo& Vo s
n o

_ €, Voh in

Hence C===-"""1n 2

When the numerical values are substituted (with « converted to radians), one obtains C =7.76 pF.

7.11. Referring to Problem 7.10, find the separation d which results in the same capacitance when
the plates are brought into parallel arrangement, with the same dielectric in between.

With the plates parallel

€,€.A
C=—"
d
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so that
_6&A_ echln-n) a(rn-n)
C (e hla)In(r/m)]  In(r/n)
Notice that the numerator on the right is the difference of the arc lengths at the two ends of the

capacitor, while the denominator is the logarithm of the ratio of these arc lengths. For the data of
Problem 7.10, ar, =0.087 mm, a7,=2.62mm, and d=0.74mm.

d

7.12. Find the capacitance of an isolated spherical shell of radius a.
The potential of such a conductor with a zero reference at infinity is (see Problem 2.34)

Qo

V=
2meqa

=

Then C===A4ne,a

7.13. Find the capacitance between two spherical shells of radius a separated by a distance d=>a.

As an approximation, the result of Problem 7.12 for the capacitance of a single spherical shell,
4m€pa, may be used. From Fig. 7-14 two such identical capacitors appear to be in series.

GG

!
C ¢ G
C
C1+C;g

= Zﬂfoﬂ

Fig. 7-14

7.14. Find the capacitance of a parallel-plate capacitor containing two dielectrics, €, =
c1x 1.5 and €,=3.5, each comprising one-half the volume, as shown in Fig. 7-15.
Here, A=2m? and d=10""m.
Mathcad
_ €€,A,  (8.854 % 107'%)(1.5)1

€= = =13.3nF

Similarly, C;=31.0nF. Then
C=C+C,=443nF

.

A d

+
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7.15. Repeat Problem 7.14 if the two dielectrics each occupy one-half of the space between the
1+ Plates but the interface is parallel to the plates.

€06, A €,6,4 (B.B54x10 )(1.5)
Math: = = = = .
cad C, a /2 0772 53.1nF

Similarly, C,=124nF. Then

=+

=37.2nF

7.16. In the cylindrical capacitor shown in Fig. 7-16 each dielectric occupies one-half the
volume. Find the capacitance.

Fig. 7-16

The dielectric interface is parallel to D and E, so the configuration may be treated as two capacitors
in parallel. Since each capacitor carries half as much charge as a full cylinder would carry, the result of
Problem 7.9 gives

nee, L + neE L 2meqE, L
In(b/a) In(bla) In(b/a)

where €, ,,,=3(c,+€,). The two dielectrics act like a single dielectric having the average relative
permittivity.

C=C+C,=

7.17. Find the voltage across each dielectric in the capacitor shown in Fig. 7-17 when the applied
i+ voltage is 200 V.

hcad €5(1)
C, = 0 - 5000€,
1000¢
C2 = 3 0
and __ GG 312.5¢,=2.77x 10~ °F

TG+ G,

i
- |

Fig. 7-17
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7.18.

7.19.
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The D field within the capacitor is now found from
Q@ CV_ (2.77 x 10”°)(200)

D,,=p,=z—-g—— ] =5.54x107"C/m?
Then,
E, = b =1.25x10*V/m Ez=£=6.25x 10° V/m
€o€, €g
from which
Vi=Ed =125V V,=E,d,=187.5V

Find the voltage drop across each dielectric in Fig. 7-18. where €,,=20 and e€,=
5.0. The inner conductor is at r,=2cm and the outer at r,=2.5cm, with the di-
electric interface halfway between.

The voltage division is the same as it would be for full right circular cylinders. The segment
shown, with angle &, will have a capacitance ov/2x times that of the complete coaxial capacitor. From
Problem 7.9,

_ ﬁ 2mene, L - 1t
C‘_(zn) In@2s/20) " AL1SX105) (F)

»=al(4.2x 107" (F)
Since O=C,V,=C,V, and V,+V,=V, it follows that

C, 4.2
= = = A%
i C, +C2V l.5+4.2(100) 74
C 1.5

V=i eV T is 12 (100 =26V

A free-space parallel-plate capacitor is charged by momentary connection to a voltage source
V, which is then removed. Determine how Wi, D, E, C, and V change as the plates are
moved apart to a separation distance d,=2d, without disturbing the charge.

Relationship Explanation

D,=D, D=0/A

E,=E, E=DJe,

W, = 2We, We =1 [ €,E” dv. and the volume is doubled
C,=;C, C=¢€.ld

V=2V, V=0/C
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7.20.

7.21.

Iy

Mathcad

7.22.

aiv

Mathead

Explain physically the energy changes found in (a) Problem 7.19, (b) Example 5.

(a) External work (in the amount W) is done on the system in forcing apart the oppositely charged
plates. This work shows up as an increase in internal energy (stored in the E field).
(b) The charged plates draw the dielectric slab into the gap. Thus the system performs work (in the

amount 3Wg,) on the surroundings—specifically, on whatever is guiding the slab into
position. The internal energy suffers a corresponding decrease.

A parallel-plate capacitor with a separation d=1.0cm has 29 kV applied when free space
is the only dielectric. Assume that air has a dielectric strength of 30kV/em. Show why the
air breaks down when a thin piece of glass (€, = 6.5) with a dielectric strength of 290 kV/cm
and thicknesses d,=0.20cm is inserted as shown in Fig. 7-19.

Air, y
o ' 10em
Glass, ¢, 78
Fig. 7-19
The problem becomes one of two capacitors in series,
CI_BX]O ,—12S£r.A
€4€,.A
C=3 ):' T 3250€,A
Then, as in Problem 7.18,
3250
=  ——_ = . v
Vi 1254_3250(29) 27.93k
so that
27.93kV
= =349k
E, 0.80om 34.9kV/cm

which exceeds the dielectric strength of air.

Find the capacitance per unit length between a cylindrical conductor of radius a=2.5cm
and a ground plane parallel to the conductor axis and a distance h=6.0m from it.

A useful technique in problems of this kind is the method of images. Take the mirror image of the
conductor in the ground plane, and let this image conductor carry the negative of the charge distribution
on the actual conductor. Now suppose the ground plane is removed. It is clear that the electric field
of the two conductors obeys the right boundary condition at the actual conductor, and, by symmetry,
has an equipotential surface (Section 5.6) where the ground plane was. Thus, this field is the field in
the region between the actual conductor and the ground plane.

Approximating the actual and image charge distributions by line charges +p, and —p,,
respectively, at the conductor centers, one has (see Fig. 7-20):

. N +
Potential at radius @ due +p, = —( pr) Ina
L]
—Pr
2”6"

Potential at point P due to —p, = — ( ) In (2h —a)
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71.23.

7.24.

7.25.
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a
+o,
P |
A
o o
Lo /

-
—____
—

t*x__\_p{
Fig. 7-20

The potential due to —p, is not constant over r=a, the surface of the actual conductor. But it is
very nearly so if a<€h. To this approximation, then, the total potential of the actual conductor is

Pe _Pe_ Pe Pe Pe_| 2h
_Fe | 2h—a)y=~ — + 2h = =
2me, Ina+ 2ne n( a) 2me, Ina 2re, In ere.;. a

V.=

Similarly, the potential of the image conductor is —V,. Thus, the potential difference between the
conductors is 2V,, so that the potential difference between the actual conductor and the ground plane
is 3(2V,)=V,. The desired capacitance per unit length is then

C_QIL p.__2ne
L=V, v, n@ia)

For the given values of a and b, C/L=9.0pF/m.
The above expression for C/L is not exact, but provides a good approximation when a<€h (the
practical case). An exact solution gives

(D.M (k _'_VE::_a )

Observe that C/L for the source-image system (more generally, for any pair of parallel cylindrical
conductors with center-to-center separation 24) is one-half the value found above (same charge, twice
the voltage). That is, with d=2h,

E‘ _ mEg __ T
L (d + Vd*— 4a’) In (d/a)

Supplementary Problems

Find the magnitudes of D, P, and €, for a dielectric material in which E=0.15MV/m and x. =
4.25. Ans. 6.97 uC/m?, 5.64 uC/m?, 5.25

In a dielectric material with €, =3.6, D =285nC/m’. Find the magnitudes of E, P, and ..
Ans. 8.94kV/m, 206 nC/m’, 2.6

Given E=-3a +4a,~23, V/m in the region z<:0 where €=20, find E in the
region z>0, forwhich € =6.5. Ans. —3a, +4a,——a, V/m



CHAP. 7] CAPACITANCE AND DIELECTRIC MATERIALS 111

7.26.

7.27.

7.28.
7029‘

7.30.
7.31.

7.32.

7.33.
T.34.
[
=
7.38.

7.36.
1.37.

7.38.

Given that D=2a, —4a, +1.5a, C/m’ in the region x>0, which is free space, find P in the
region x <0, which is a dielectric with €, =5.0. Ans. 1.6a,—16a, +6a, C/m?

Region 1, z<0m, is free space where D =5a,+7a, C/m’. Region2, 0<z=<1m, has ¢ =
25 Andregion3, z>1m, has ¢,=3.0. FindE,,P,, and 6,.

Ans. fi(sa,+zlsa,) (V/m), 7.58, +4.2a, C/m?, 25.02°
- )

The plane interface between two dielectrics is given by 3x +z=35. On the side including the
origin, D,=(4.5a,+3.2a,)1077 and ¢, =4.3, while on the other side, ¢,=1.80. Find E,,
E,.D;,and 8,. Ans. 1.45x10% 3.37x10% 5.37x 1077, 83.06°

A dielectric interface is described by 4y +3z=12m. The side including the origin is free space
where D,=a, +3a,+2a, pC/m’ On the other side, €,=3.6. Find D, and 6,.
Ans. 5.14 uC/m?, 44.4°

Find the capacitance of a parallel-plate capacitor with a dielectric of € =3.0, area 0.92m? and
separation 4.5 mm. Ans. 543nF

A parallel-plate capacitor of 8.0 nF has an area 1.51 m” and separation 10 mm. What separation would
be required to obtain the same capacitance with free space between the plates? Ans.  1.67 mm

Find the capacitance between the inner and outer curved conductor surfaces shown in Fig.
7-21. Neglect fringing.  Ans. 6.86 pF

N
_ e'l!S.S
307, T

)

| -
o2 g o

e
F470

Fig. 7-21

Find the capacitance per unit length between a cylindrical conductor 2.75 inches in diameter and a
parallel plane 28 ft from the conductor axis. Ans. 8.99 pF/m (note units)

Double the conductor diameter in Problem 7.33 and find the capacitance per unit length.
Ans. 10.1pF/m

Find the capacitance per unit length between two parallel cylindrical conductors in air, of radius 1.5 cm
and with a center-to-center separation of 85 cm. Ans. 6.92pF/m

A parallel-plate capacitor with area 0.30m’ and separation 5.5mm contains three dielectrics with
interfaces normal to E and D, as follows: €,=30, d,=1.0mm; €,=40, d,=2.0mm;
€:=6.0, dy=2.5mm. Find the capacitance. Ans. 2.12nF

With a potential of 1000 V applied to the capacitor of Problem 7.36, find the potential difference and
potential gradient (electric field intensity) in each dielectric.
Ans. 267V,267kV/m; 400V, 200kV/m; 333V, 133kV/m

Find the capacitance per unit length of a coaxial conductor with outer radius 4 mm and inner radius
0.5 mm if the dielectric has €, =5.2. Ans. 139 pF/m
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7.39.

7.40.

T.41.

7.42.

7.4.

7.45.

7.46.

7.47,
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Find the capacitance per unit length of a cable with an inside conductor of radius 0.75cm and a
cylindrical shield of radius 2.25 cm if the dielectric has €, = 2.70. Aps. 137 pF/m

The coaxial cable in Fig. 7-22 has an inner conductor radius of 0.5 mm and an outer conductor radius of
5mm. Find the capacitance per unit length with spacers as shown. Ans. 459 pF/m

€ =55 fn

00—
»—l |-¢ -10 mm
B 50 mm -

Fig. 7-22

A parallel-plate capacitor with free space between the plates is charged by momentarily connecting it to
a constant 200-V source. After removal from the source a dielectric of € =2.0 is inserted,
completely filling the space. Compare the values of W, D, E, p,, V, and C after insertion of the
dielectric to the values before. Fartial Ans. V,=1V,

A parallel-plate capacitor has its dielectric changed from €, =2.0 to ¢€,=6.0. Itis noted that the
stored energy remains fixed: W,=W,. Examine the changes, if any, in V, C, D, E, Q, and p, .
Partial Ans. p,=V3p,

A parallel-plate capacitor with free space between the plates remains connected to a constant voltage
source while the plates are moved closer together, from separation  to 3d. Examine the changes in Q,
p.,C D, E, and We. Partial Ans. D,=12D,

A parallel-plate capacitor with free space between the plates remains connected to a constant voltage
source while the plates are moved farther apart, from separation d to 2d. Express the changes in D,
E, Q, p,, C, and Wg. Partial Ans. D,=1D,

A parallel-plate capacitor has free space as the dielectric and a separation d. Without disturbing the
charge Q, the plates are moved closer together, to d/2, with a dielectric of €, =3 completely filling
the space between the plates. Express the changes in D, E, V, C, and Wg. Partial Ans. V,=1V,

A parallel-plate capacitor has free space between the plates. Compare the voltage gradient in this free
space to that in the free space when a sheet of mica, €,=5.4, fills 20% of the distance between the
plates. Assume the same applied voltage in each case.  Ans. (.84

A shielded power cable operates at a voltage of 12.5kV on the inner conductor with respect to the
cylindrical shield. There are two insulations; the first has €, =6.0 and is from the inner conductor
at r=08cm to r=10cm, while the second has €,=3.0 and is from r=1.0cm to r=
3.0cm, the inside surface of the shield. Find the maximum voltage gradient in each insulation.

Ans. 0.645MV/m. 1.03MV/m

Fig. 7-23
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7.48.
=
7.49.

7.50.

7.51.

A shielded power cable has a polyethylene insulation for which €, =2.26 and the dielectric strength is
18.1 MV/m. What is the upper limit of voltage on the inner conductor with respect to the shield when
the inner conductor has a radius 1cm and the inner side of the concentric shield is at radius of
8ecm?  Ans. 0376 MV

For the coaxial capacitor of Fig. 7-16, a=3cm, b=12cm, ¢€,=250, €¢,=40. Find E,, E,,
D, , and D, if the voltage difference is 50 V. Fartial Ans. E,= 1(36.1/r)a, (V/m)

In Fig 7-23, the center conductor, rn,=1mm, is at 100V with respect to the outer conductor
at rn=100mm. The region 1<r<S50mm is free space, while 50<r<100mm is a dielectric
with €, =2.0. Find the voltage across each region. Ans. 918V, 82V

Find the stored energy per unit length in the two regions of Problem 7.50.
Ans. 59.9n)/m, 5.30nJ/m



Chapter 8

Laplace’s Equation

8.1 INTRODUCTION

Electric field intensity E was determined in Chapter 2 by summation or integration of point
charges, line charges, and other charge configurations. In Chapter 3, Gauss’ law was used to obtain
D, which then gave E. While these two approaches are of value to an understanding of
electromagnetic field theory, they both tend to be impractical because charge distributions are not
usually known. The method of Chapter 5, where E was found to be the negative of the gradient of
V, requires that the potential function throughout the region be known. But it is generally not
known. Instead, conducting materials in the form of planes, curved surfaces, or lines are usually
specified and the voltage on one is known with respect to some reference, often one of the other
conductors. Laplace’s equation then provides a method whereby the potential function V can be
obtained subject to the conditions on the bounding conductors.

8.2 POISSON'S EQUATION AND LAPLACE'S EQUATION

In Section 4.3 one of Maxwell’s equations, V-D=p, was developed. substituting €E=
D and -VV=E,

V.e(=VV)=p

If throughout the region of interest the medium is homogeneous, then € may be removed from the
partial derivatives involved in the divergence, giving

©

vww=-2 o wy--£

m

which is Poisson’s equation.

When the region of interest contains charges in a known distribution p, Poisson’s equation can
be used to determine the potential function. Very often the region is charge-free (as well as being
of uniform permittivity). Poisson’s equation then becomes

ViV =0
which is Laplace’s equation.

83 EXPLICIT FORMS OF LAPLACE’S EQUATION

Since the left side of Laplace’s equation is the divergence of the gradient of V, these two
operations can be used to arrive at the form of the equation in a particular coordinate system.

Cartesian Coordinates.
VV=§E3,,+§Z|;,+§K
oz

ox dy

a,

and, for a general vector field A,

_9A, 84, 24,

VA= S T

114
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Hence, Laplace’s equation is

3V FV FV
2 =——f —— =
vV 3x2+3y2+azz 0

Cylindrical Coordinates.

vv-—-ﬂ}a +1..a_!f +3_Va
T rapte T 5

12 184, 0JA
A= —— il . Wndaliel
and V-A rar(rAr)+r 2% + P

so that Laplace’s equation is

18/ 3V 18V &V
2% o — — —_—— =
vv rar(rar +r26‘¢2+622 0
Spherical Coordinates.
w2V, Jlov. 1 oV
a0  rsneos
19 1 3 1 B4
d V-A==—(rPA) - = (Ap sin 0) + —— 22¢
an A= e A e e s O F o s
so that Laplace’s equation is
18(,8 1 2 3 1 &V
2y .= 9 (297 “Asinp—u) 4 ——un = _
vv r2ar(' ar +rzsin089(sm966 * et 65g? ©

8.4 UNIQUENESS THEOREM

Any solution to Laplace’s equation or Poisson’s equation which also satisfies the boundary
conditions must be the only solution that exists; it is unigue. At times there is some confusion on
this point due to incomplete boundaries. As an example, consider the conducting plane
at z=0, asshown in Fig. 8-1, with a voltage of 100 V. It is clear that both

Vi=5z +100
and V=100

satisfy Laplace’s equations and the requirement that V =100 when Z=0. The answer is that a
single conducting surface with a voltage specified and no reference given does not form the complete
boundary of a properly defined region. Even two finite parallel conducting planes do not form a
complete boundary, since the fringing of the field around the edges cannot be

:
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determined. However, when parallel planes are specified and it is also stated to neglect fringing,
then the region between the planes has proper boundaries.

8.5 MEAN VALUE AND MAXIMUM VALUE THEOREMS
Two important properties of the potential in a charge-free region can be obtained from Laplace’s
equation:
(1) At the center of an included circle or sphere, the potential V is equal to the average of the
values it assumes on the circle or sphere. (See Problems 8.1 and 8.2.)
(2) The potential V cannot have a maximum (or a minimum}) within the region. (See Problem
8.3)
It follows from (2) that any maximum of V must occur on the boundary of the region. Now,
since V obeys Laplace’s equation,
gv gv &v_
ax? 3y a8z
so do 8V /ox, 3V /30y, and 8V /3z. Thus, the cartesian components of the electric field intensity take
their maximum values on the boundary.

0

8.6 CARTESIAN SOLUTION IN ONE VARIABLE

Consider the parallel conductors of Fig. 8-2, where V=0 at z=0 and V=100V
at z=d. Assuming the region between the plates is charge-free,

CAS A A
ax?  ay*  3z?

Vv =

0

¥F=100V

V=0

Fig. 82

With fringing neglected, the potential can vary only with z. Then
d*v
P
Integrating,
V=Az+B

The boundary condition V=0 at z=0 requires that B=0. And V=100 at z=
d gives A=100/d. Thus

V= 100(‘—‘:,) V)
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The electric field intensity E can now be obtained from

oV Vv oV ]
E——VV——(§8,+5%+§82) (

Then =-— ELE a, (C/m?)

z 100
= lw—)a, =-Pa, (Vim)

d d

At the conductors,
100
po=D,=t"_= (C/m’)

where the plus sign applies at z=d and the minusat z=0.

8.7 CARTESIAN PRODUCT SOLUTION

When the potential in cartesian coordinates varies in more that one direction, Laplace’s equation
will contain more than one term. Suppose that V is a function of both x and y, and has the special
form V=X(x)Y(y). This will make possible the separation of the variables.

F(XY)  F(XY)_
x? + Jy? =0

becomes

EX Y 14X 14Y_

de? T dy? Xd* Ydyr

Since the first term is independent of y, and the second of x, each may be set equal to a constant.

However the constant for one must be the negative of that for the other. Let the constant be a°.
142X, 1d%Y
——-5=a S—S=-a
X dx Y dy

The general solution for X (for a given a) is

X=A,e”*+Ae ™

Y 0

2

or, equivalently,
X = Ajzcoshax + A, sinh ax
and the general solution for Y (for a given a) is
Y = B, e + B,e ™™
or, equivalently,
Y = Bacosay + B, sinay
Therefore, the potential function in the variables x and y can be written

V= (Ae™ + A,e”)(B,e” + Bye ')
or
V = (A; cosh ax + A, sinh ax)(B; cos ay + B, sin ay)

Because Laplace’s equation is a linear, homogeneous equation, a sum of products of the above
form—each product corresponding to a different value of a—is also a solution. The most general
solution can be generated in this fashion.
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Three-dimensional solutions, V = X(x)Y(y)Z(z), of similar form can be obtained, but now
there are two separation constants.

8.8 CYLINDRICAL PRODUCT SOLUTION
If a solution of the form V = R(r)®(¢)Z(z) is assumed, Laplace’s equation becomes
2

Dividing by R®Z and expanding the r-derivative,

1d°R 1dR 1 d*® 1d*Z

Rar "Rear P0arT  Zd?
The r and ¢ terms contain no z and the z term contains neither r nor ¢. They may be set equal to a
constant, —b?, as above. Then

2
This equation was encountered in the cartesian product solution. The solution is
Z = C, cosh bz + C, sinh bz

Now the equation in r and ¢ may be further separated as follows:

'_I‘F_R+£ﬁ+b2,2__ldz_¢_az
Rdr* " Rdr T ®d®
The resulting equation in ¢,
1d%0
———==—a
® d¢”

has solution
®=C;cosag +C,sinagp
The equation in 7,
d’R 1dR
PP

is a form of Bessel’s differential equation. lts solutions are in the form of power series called Bessel
functions.

2
(bz—“—z)R=0
r

R = CsJ,(br) + CsN,(br)

i (=)™ (br/2)y*+*"

meom!T@a+m+1)

(cos am)l, (br) —J_,(br)
sin an

where J(br)=

and N,(br) =

The series J,(br) is known as a Bessel function of the first kind, order a; if a=n, an integer, the
gamma function in the power series may be replaced by (n +m)!. N,(br) is a Bessel function of
the second kind, order a;if a=n, an integer, N,(br) is defined as the limit of the above quotient
as a—n.

The function N,(br) behaves like Inr near r=0 (see Fig. 8-3). Therefore, it is not involved
in the solution (C, = 0) whenever the potential is known to be finite at r=0.
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[

No(x)
J] (x) N] (x]

I! 4 6 7
1 L
"y - _

(a)

Fig. 83
For integral order n and Iarge argument x, the Bessel functions behave like damped sine waves:

Ju(x) = cos x—f—ﬁ) N,,(x)==\/7%sin( —g—%’z)

See Fig. 8-3.

8.9 SPHERICAL PRODUCT SOLUTION

Of particular interest in spherical coordinates are those problems in which V may vary with r and
6 but not with ¢. For product solution V = R(r)©(6), Laplace’s equation becomes

(fc_fj+_z_r£) (ld“9+ 1 de)
Rdr* R dr © de* ©Otan 6 db

The separation constant is chosen as n(n + 1), where n is an integer, for reasons which will become
apparent. The two separated equations are

,d°R dR
dr2+2r -n(n+1)R=0
d'e 1 d6
and Eaz‘-i-m'&-g-!-n(n-l-l)e-ﬂ

This equation in r has the solution
R=C\r"+ Cyr**V

The equation in 6 possesses (unlike Bessel’s equation) a polynomial solution of degree » in the
variable & =cos 6, given by

PAO) =g @17 =012

The polynomial P,(&) is the Legendre polynomial of order n. There is a second, independent
solution, Q,(§), which is logarithmically infinite at &= +1 (i.e., 6=0, x).

Solved Problems

8.1. Asshown in Fig. 8-4(a), the potential has the value V; on 1/n of the circle, and the value 0 on
the rest of the circle. Find the potential at the center of the circle. The entire region is
charge-free.
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V=¥,

@ ®)
Fig. 84

Call the potential at the center V.. Laplace’s equation allows superposition of solutions. If n
problems of the type of Fig. 8-4(a) are superposed, the result is the problem shown in Fig.
8-4(b). Because of the rotational symmetry, each subproblem in Fig. 8-4(b) gives the same potential,
V., at the center of the circle. The total potential at the center is therefore nV,.. But, clearly, the
unique solution for Fig. 8-4(b) is V=V, everywhere inside the circle, in particular at the
center. Hence,

nV.=V, or V.=—

Show how the mean value theorem follows from the result of Problem 8.1.

Consider first the special case shown in Fig. 8-5, where the potential assumes » different values on n
equal segments of a circle. A superposition of the solutions found in Problem 8.1 gives for the
potential at the center

VY, Y Wthtoo4V,
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8.3.

8.5.

which is the mean value theorem in this special case. With A¢ =2n/n,
1
V=g (ViAg+ViAg +---+V, Ag)

Now, letting n— s,

l Ix
Vi=o—| Vig)de

which is the general mean value theorem for a circle.
Exactly the same reasoning, but with solid angles in place of plane angles, establishes the mean
value theorem for a sphere.

Prove that within a charge-free region the potential cannot attain a maximum value

Suppose that a maximum were attained at an interior point P. Then a very small sphere could be
centered on P, such that the potential V, at P exceeded the potential at each point on the sphere. Then
V. would also exceed the average value of the potential over the sphere. But that would contradict the
mean value theorem.

Find the potential function for the region between the parallel circular disks of Fig.
8-6. Neglect fringing
Since V is not a function of r or ¢, Laplace’s equation reduces to
d’V
dz’

=0

and the solutionis V =Az+ B.
The parallel circular disks have a potential function identical to that for any pair of parallel planes.
For another choice of axes, the linear potential function might be Ay +B or Ax+ B.

z

Fig. 8-6

Two parallel conducting planes in free space are at y =0 and y=0.02m, and the zero
voltage reference is at y =0.01m. If D=253a, nC/m* between the conductors, deter-
mine the conductor voltages.

From Problem 8.4, V=Ay + B. Then

D
E=—=-VV=—Aa,
€q
253x10°
B854 x10- 2 T
whence A= -2.86x10"V/m. Then,
0=(-2.86 x 10°(0.01) + B or B=28x10"V
and V=-286x10%+286x 10" (V)

Then, for y=0, V=286V andfor y=002, V=-286V.
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8.6. The parallel conducting disks in Fig. 8-7 are separated by 5 mm and contain a dielectric for
which €, =2.2. Determine the charge densities on the disks.

ok

Mathcad z
I V=250V

A TS

Since V=Az+B,

E=-VV=-3x10%,V/m
D=c¢c,e, E= -584 %1072, C/m*

and

Since D is constant between the disks, and D, =p, at a conductor surface,
p, = £5.84 x 107 C/m?

+ on the upper plate, and — on the lower plate.

8.7. Find the potential function and the electric field intensity for the region between two
concentric right circular cylinders, where V=0 at r=1mm and V=150V at r=

20 mm. Neglect fringing. See Fig. 8-8.
' Zz

Fig. 88

The potential is constant with ¢ and z. Then Laplace’s equation reduces to
1df d
T g) =0

rﬂ/=/t

dr

Integrating once,

and again, V=Alnr+ B. Applying the boundary conditions,
0=AIn0.001+B 150=AIn0.020+ B
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8.8.

8.9.

which give A=50.1, B=3459. thus
V=50.1Inr+345.9 (V)

and E-22 () (vim)

123

In cylindrical coordinates two ¢ = const. planes are insulated along the z axis, as shown in
Fig. 8-9. Neglect fringing and find the expression for E between the planes, assuming a

potential of 100V for ¢ =« and a zero reference at ¢ =0.

V=100V

—

Fig. 8-9

This problem has already been solved in Problem 7.10; here Laplace’s equation will be used to

obtain the same result.
Since the potential is constant with r and z, Laplace’s equation is

1d*V
rdg "
Integrating, V =A¢ + B. Applying the boundary conditions,
0=A(0)+B 100= A(a)+ B
whence A=_}_UB B=0
o
Thus V=1002v
o
- Vy=-14d i’) -0
and E=-VV= rd"(moa., —a, (V/m)

In spherical coordinates, V=0 for r=0.10m and V=100V for r=20m.

ing free space between these concentric spherical shells, find E and D.
Since V is not a function of 6 or ¢, Laplace’s equation reduces to

12

Integrating gives r %’—V= A

Assum-
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and a second integration gives

v="4,8
r
The boundary conditions give
-A -A
0-—&"‘8 and lm—m-l-ﬂ'
whence A=1053V-m, B=1053V. Then
V=_l?'53+105.3 v)
dv 10.53
E-——VV—---‘};*I,—-—;;-"I, (V/m)
-932x10°"

D=€0E=—-rz—l, (C[l’l‘lz)

8.10. In spherical coordinates, V=-25V on a conductor at r=2cm and V=150V
zi3 at r=35cm. The space between the conductors is a dielectric for which & =3.12.
Find the surface charge densities on the conductors.

From Problem 8.9,

v="4,8
r
The constants are determined from the boundary conditions
—-A —-A
-25= l_)ﬁ +B 150 = 6'3-5 +B
giving v="2"1 160,61 )

r

d (=371 37
=-w=-2 (T* 160.61):, =—a (V/m)

D=¢,;c,E= —0'::03:, (nC/m?)

On a conductor surface, D,=p,.
—-0.103

= s = = = 2
at r=0.02m: P 0.027 256 nC/m
. _10.103 _ 2
at r=0.35m: P, 03y - +0.837nC/m

8.11. Solve Laplace’s equation for the region between coaxial cones, as shown in Fig. 8-10. A
rig potential V, is assumed at 6,, and V=0 at 6,. The cone vertices are insulated
é at r=0.

The potential is constant with r and ¢. Laplace’s equation reduces to

1 4 d
L o) g
r’smﬂdﬂ(sm de

Integrating sin @ (E =A
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Fig. 8-10

and V=Aln(tan§)+B

The constants are found from

V,=Aln(lan%)+3 0=Aln(tan§2-3)+B

o (10 ) -1 (an %)
In (tan %) =In (tan %’)

In Problem 8.11, let 6,=10°, 6,=30°, and V,=100V. Find the voltage at 6 =20".
At what angle 6 is the voltage 50 V7

Hence V=¥

Substituting the values in the general potential expression gives

(]
tan—
V =—89.34| In (tan g) —1In 0.268] = —89.341In 0268
tan 10°
Then, at 6 =20°, V=—89.341 ( )=37.40v
€1, a n 0.2/68
tan 6/2
v=sov, 0= -30 (20012)
For 5 89.341n 0.268

Solving gives 8 = 17.41°,

With reference to Problems 8.11 and 8.12 and Fig. 8-11, find the charge distribution on the
conducting plane at 8, =90".

The potential is obtained by substituting é,=90°, 6,=10°, and V,=100V in the expres-
sion of Problem 8.11. Thus

0
in 1an 2)
_ n al'l2

~ ln(tan5°)

14V —100 41.05
Then E= 0™ = sinO)In(tan59) ™ “rsin 6™
3.63x10°"
D=€0E=63—la,, (C)'m’)

rsin 6
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0, = 10°

ply
|

Fig. 8-11

On the plane §=90°, sin@=1 the direction of D requires that the surface charge on the plane be
negative in sign. Hence,

3.63% 107"
po=——""— (C/m’)

r

8.14. Find the capacitance between the two cones of Fig. 8-12. Assume free space.

oy |

Mathcad

]m’_l
oy e

~L

Fig. 8-12

If fringing is neglected, the potential function is given by the expression of Problem 8.11
with 6,=75°, 6,=105. Thus

in (tan g) —In(tan 52.5%)
~ "'In (tan 37.5°) — In (tan 52.5°)

= (—1.89%)) In (tan g) + const.

from which

1dv | 1.89,V,
“E=cl = 76%) " Tsno

The charge density on the upper plate is then

o L8%V
Ps " rsin75°



CHAP. §] LAPLACE'S EQUATION 127

8.16.

so that the total charge on the upper plate is

] 75
Q=Ip,d$=f f- lr'—:,-qs:}’-;érsin'??drdcp=12.28£.,lﬁ

and the capacitance is C=Q/V,=12.28¢,.

The region between two concentric right circular cylinders contains a uniform charge density
p. Use Poisson’s equation to find V.

Neglecting fringing, Poisson’s equation reduces to

lf.(,‘f_.")--f
rdr\ dr €

i( an__pr
dr\ dr €
: av_ pr
Integrating, T 2e +A
av__pr A
dr 2¢ r
V=P’ Alnr+B
4e

Note that static problems involving charge distributions in space are theoretical exercises, since no
means exist to hold the charges in position against the coulomb forces.

The region

2 zz 2
has a charge density p=10""cos(z/z) (C/m’). Elsewhere the charge density is
zero. Find V and E from Poisson’s equation, and compare with the results given by Gauss’
law.

Since V is not a function of x or y, Poisson’s equation is
&V p 10 *cos(z/z)
dz? € €

- 107*23 cos (2/z,)

Integrating twice, | 4 +Az+B (V)

(10_4:’22‘;“_(5!'1-2_ A)

and E=-VvV= s, (V/m)

But, by the symmetry of the charge distribution, the field must vanish on the plane z=
0. Therefore A=0 and

E

= _________10‘“:,32:1 (/) a, (V/m)

A special gaussian surface centered about z =0 is shown in Fig. 8-13. D cuts only the top and
bottom surfaces, each of area A. Furthermore, since the charge distribution is symmetrical about z =
0, D must be antisymmetrical about z=0, sothat D, ,=Da,, Dyuen=D(—n.).

DLds+DJ;mds-£”w-=oos(z;zo)¢rdydz

2DA =22,A10 " sin (2/2;)
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8.17.

8.18.

a
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or D=2z10"sin(z/z) for 0<z<nz/2
Then, for —mz /2 <z <nz/2,

D = z107"sin (z/z)a, (C/m?)
and E=D/e agrees with the result from Poisson’s equation.

A potential in cylindrical coordinates is a function of r and ¢ but not z. Obtain the
separated differential equations for R and ®, where V = R(r)®(¢), and solve them. The
region is charge-free.
Laplace’s equation becomes
&R ®dR RI®
dr*  rdr rd¢?
rdR 1dR__1d9
Rd? Rdr ®d¢?
The left side is a function of r only, while the right side is a function of ¢ only; therefore, both sides are
equal to a constant, a’.

=0

ar

idz_._R.pid_R: 2
Rdrr Rdr
or _1!:5_'_1:!}? a‘R
dar* rdr P
with solution R=C,r*+ C,r'° Also,

with solution @ =C,cosa¢ + C,sinag.

Given the potential function V = Vj(sinh ax)(sinaz) (see Section 8.7), determine the shape
and location of the surfaces on which V=0 and V=V, Assume that a>0.

Since the potential is not a function of y, the equipotential surfaces extend to +o in the y
direction. Because sinaz=0 for z=nx/a, where n=0,1,2,..., the planes z=0 and
z=un/a are at zero potential. Because sinhax=0 for x=0, the plane x=0 is also at zero
potential. The V =0 equipotential is shown as a heavy broken line in Fig. 8-14.

The V=1V, equipotential has the equation

Vo = Vy(sinh ax )(sin az) or sin ax Esinaz

When values of z between zero and nz/a are substituted, the corresponding x coordinates are readily
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8.19.

5y

Y. .
[-J ] =
hluLj

Fig. 8-14
obtained. For example:

1.57 | LO2 |} 0.67 | 0.49 | 0.28 | 0.10

@ | 157 | 212 | 247 | 265 | 2.86 | 3.04

ax 0.88 | 1.0 1.25 | 1.50 | 2.00 | 3.00

The equipotential, which is symmetrical about z=s/2a, is shown as a heavy curve in Fig.
8-14. Because v is periodic in z, and because V(—x, —z)=V(x, z), the whole xz plane can be filled
with replicas of the strip shown in Fig. 8-14.

Find the potential function for the region inside the rectangular trough shown in Fig. 8-15.

" V=V,

|
N

Fig. 8-15

The potential is a function of x and 2, of the form (see Section 8,7)
V =(C, cosh az + C; sinh az)(C; cos ax + C, sin ax)

The conditions V=0 at x=0 and z=0 require the constants C, and C, to be zero. Then
since V=0 at x=¢, a=nn/c, where n is an integer. Replacing C,C, by C, the expression
becomes
V = Csinh 22 5in 22
(o c
or more generally, by superposition,
v=3c, sinhﬂsin'-’;m——

=l C

The final boundary condition requires that

Vo= (c,, sinh%d) sin% 0<x<c)
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Thus the constants b, = C, sinh (nxd/c) are determined as the coefficients in the Fourier sine series
for f(x)=V, inthe range 0<x<c The well-known formula for the Fourier coefficients,

b,.-:%j:f(x)sinﬂf—‘dx n=123,...

ZV., mtx
gives b,=—

The potential function is then

{ n even
4Vo/nr n odd

3 4Vosinh (nz/c) . nmx

V= woda N7 sinh (nad/c)

for 0<x<¢, D<z<d.

8.20. Identify the spherical product solution

Cz _Czcosﬁ
V=?Pl( cos 8) = )

(Section 8.9, with C,=0, n=1) with a point dipole at the origin.

Figure 8-16 shows a finite dipole along the z axis, consisting of a point charge +Q at z=
+d/2 and a point charge —Q at z=-—d4/2. The quantity p=0d is the dipole moment (Section
7.1). The potential at point P is

Ve o © =P (rl-'l)
4”€0’| 4#‘0"2 4n€nd nr

A point dipole at the origin is obtained in the limit as d—0. For small d,
n—-n=dcos@,=dcos @ and ’lrz""z

Therefore, in the limit,
__Pp cos 8
v 4me, r*
which is the spherical product solution with C, = p/4xe€,.
Similarly, the higher-order Legendre polynomials correspond to point quadrupoles, octupoles, etc.

zJ

Fig. 8-16

Supplementary Problems

8.21. In cartesian coordinates a potential is a function of x only. At x=-20cm, V=250V and E=
1.5 %X 10°(—a,) V/m throughout the region. Find Vat x=30cm. Ans. 100V
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8.22.

8.23.

8.24.

8.27.

8.29.

8.30.

8.31.

In cartesian coordinates a plane at z =3.0cm is the voltage reference. Find the voltage and the
charge density on the conductor z=0 if E=6.67x10°a, V/m for z>0 and the region con-
tains a dielectric for which €, =4.5. Ans. 200V, 266 nC/m?

In cylindrical coordinates, V=750V at r=5mm and V=0 at r=60mm. Find the
voltage at r=130mm if the potential depends only on r. Ans. —23.34V

Concentric, right circular, conducting cylinders in free space at r=5Smm and r=25mm have
voltages of zero and V;, respectively. 1f E=-8.28x10%a, V/m at r=15mm, find V, and the
charge density on the outer conductor. Ans. 200V, +44 nC/m*

For concentric conducting cylinders, V=75V at r=1mm and V=0 at r=20mm. Find D
in the region between the cylinders, where €, = 3.6. Ans. (798/r)a, (pC/m?)

Conducting planes at ¢ =10° and ¢ =0° in cylindrical coordinates have voltages of 75 V and zero,
respectively. Obtain D in the region between the planes, which contains a material for which
€ =165 Ans. (—6.28/r)a, (nC/m°)

Two square conducting planes 50 cm on a side are separated by 2.0 cm along one side and 2.5 cm along
the other (Fig. 8-17). Assume a voltage difference and compare the charge density at the center of one

plane to that on an identical pair with a uniform separation of 2.0 cm. Ans. 0.89
50 cm
20cm

Fig. 8-17

The voltage reference is at r=15mm in spherical coordinates and the voltage is V, at r=
200mm. Given E=-334.7a, V/m at r=110mm, find V,. The potential is a function of r
only. Ans. 250V

In spherical coordinates, V=865V at r=50cm and E=7482a V/m at r=85cm. Deter-
mine the location of the voltage reference if the potential depends only on r. Ans. r=250cm

With a zero reference at infinity and V' =45.0V at »=0.22m in spherical coordinates, a dielectric
of € =172 occupies the region 0.22<r<1.00m and free space occupies r >1.00m. Deter-
mine Dat r=1.00x0m. Ans. 8.55V/m, 14.7V/m

In Fig. 8-18 the cone at 0 =45° has a voltage V with respect to the reference at 8=30°. At r=

Fig. 8-18
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0.25m and 6=30°, E=-230x10", V/m. Determine the voltage difference V.
Ans. 1255V

8.32. In Problem 8.31 determine the surface charge densities on the conducting cones at 30° and 45°, if

-12.5 8.84

€,=2.45 between the cones.  Ans. (nC/m?), — (nC/m?)

r

0.288V,

8.33. Find E in the region between the two cones shown in Fig. 8-19.  Ans 6
r

(V/m)

Fig. 819

8.34. In cylindrical coordinates, p=111/r (pC/m’). Given that V=0 at r=10m and V=
50V at r=3.0m due to this charge configuration, find the expression for E.

Ans. (115—5‘%3)a, (Vim)

8.35. Determine E in spherical coordinates from Poisson’s equation, assuming a uniform charge density p.
Ans. (E_r - -‘1)
" \3e A/

8.36. Specialize the solution found in Problem 8.35 to the case of a uniformly charged sphere.
Ans. See Problem 2.54.

8.37. Assume that a potential in cylindrical coordinates is a function of r and z but not ¢, V=
R(r)Z(z). Write Laplace’s equation and obtain the separated differential equations in r and z. Show
that the solutions to the equation in r are Bessel functions and that the solutions in z are exponentials or
hyperbolic functions.

8.38. Verify that the first five Legendre polynomials are

Pycos 6) =1

Py(cos 8)=cos @

Py(cos 8) = }(3 cos? 6 ~ 1)

Py(cos 8) = 4(5 cos® 6 — 3 cos 6)

Py(cos 8) = 4(35 cos* 6 — 30cos® 6 +3)
and graph them against {=cos 8.  Ans. See Fig. 8-20.
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Fig. 820

8.39. Obtain E for Problem 8.18 and plot several values on Fig. 8-14. Note the orthogonality of E and the
equipotential surfaces.  Ans. E = —V,a[(cosh ax)(sin az)a, + (sinh ax)(cos az)a,]

8.40. Given V = Vy(coshax)(sinay), where a>0, determine the shape and location of the surfaces on
which V=0 and V=V, Make asketch similar to Fig. 8-14. Ans. See Fig. 8-21.

P

]

1

Bl RW Blha

e
T

| |
3 _2 1 0 1 2 3 x
a a a a a

¢=0
Fig. 8-22
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From the potential function of Problem 8.40, obtain E and plot several values on the sketch of the
equipotential surfaces, Fig. 8-21.  Ans. E = —V,a|(sinh ax)(sin ay)a, + (cosh ax)(cos ay)a,]
Use a superposition of the product solutions found in Problem 8.17 to obtain the potential function for

- - . _x er—(@iry .
the semicircular strip shown in Fig. 8-22.  Ans. V= “a o b= @by =" ne



Chapter 9

Ampére’s Law and the Magnetic Field

9.1 INTRODUCTION

A static magnetic field can originate from either a constant current or a permanent
magnet. This chapter will treat the magnetic fields of constant currents. Time-variable magnetic
fields, which coexist with time-variable electric fields, will be examined in Chapters 12 and 13.

9.2 BIOT-SAVART LAW

A differential magnetic field strength, dH, results from a differential current element /dl. The
field varies inversely with the distance squared, is independent of the surrounding medium, and has a
direction given by the cross product of /dl and a; . This relationship is known as the Bior—Savart
law:

_ 1dlx g
4nR?

The direction of R must be from the current element to the point at which dH is to be determined,
as shown in Fig. 9-1.

dH (A/m)

Current elements have no separate existence. All elements making up the complete current
filament contribute to H and must be included. The summation leads to the integral form of the
Biot-Savart law:

fdl)('g

H=¢ 2K
4nR?

A closed line integral is required to ensure that all current elements are included (the contour may
close at »).

EXAMPLE 1. An infinitely long, straight, filamentary current [ along the z axis in cylindrical coordinates is
135
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shown in Fig. 9-2. A pointin the z =0 plane is selected with no loss in generality. In differential form,
Idza,X(ra,—za,)
Aa(r’ +27)*?
_ ldzra,
T An(r + 23"

dH =

The variable of integration is z.  Since a,, does not change with z, it may be removed from the integrand before
integrating.

H= [J’ Irdz ] I
dn(r*+ %" BT 2ar

tz

-

R
ra}

Fig. 9-2

This important result shows that H is inversely proportional to the radial distancc. The direction is seen to
be in agreement with the “‘right-hand rule” whereby the fingers of the right hand point in the direction of the
field when the conductor is grasped such that the right thumb points in the direction of the current.

EXAMPLE 2. An infinite current sheet liesin the z =0 plane with K= Ka,, asshown in Fig. 9-3. Find H.

A G T B
Fig. 9-3

The Biot—Savart law and considerations of symmetry show that H has only an x component, and is not a
function of x or y. Applying Ampére’s law to the square contour 12341, and using the fact that H must be
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antisymmetric in z,

2
Thus, forall z>0, H=(K/2)a,. More generally, for an arbitrary orientation of the current sheet,
H=}KXa,

Observe that H is independent of the distance from the sheet. Further, the directions of H above and below
the sheet can be found by applying the right-hand rule to a few of the current elements in the sheet.

3§n-d|=(m(2a)+o+(H)(2a)+o=(x)(2a) or H=X

9.3 AMPERE’S LAW

The line integral of the tangential component of the magnetic field strength around a closed path is
equal to the current enclosed by the path:

$u- =1,

At first glance one would think that the law is used to determine the current [/ by an
integration. Instead, the current is usually known and the law provides a method of finding
H. This is quite similar to the use of Gauss’ law to find D given the charge distribution.

In order to utilize Ampere’s law to determine H there must be a considerable degree of
symmetry in the problem. Two conditions must be met:

1. At each point of the closed path H is either tangential or normal to the path.

2. H has the same value at all points of the path where H is tangential.

The Biot-Savart law can be used to aid in selecting a path which meets the above conditions. In
most cases a proper path will be evident.

EXAMPLE 3. Use Ampere’s law to obtain H due to an infinitely long, straight filament of current .
The Biot-Savart law shows that at each point of the circle in Fig. 9-2 H is tangential and of the same
magnitude. Then

§Hod|=u(2m)=f

so that

9.4 CURL

The curl of a vector field A is another vector field. Point P in Fig. 9-4 lies in a plane area AS
bounded by a closed curve C. In the integration that defines the curl, C is traversed such that the
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enclosed area is on the left. The unit normal a,, determined by a right-hand rule, is as shown in
the figure. Then the component of the curl of A in the direction a, is defined as

A-dl

(curl A)-a,= lim

as—o AS

In the coordinate systems, curl A is completely specified by its components along the three unit
vectors. For example, the x component in cartesian coordinates is defined by taking as the contour
C a square in the x=const. plane through P, as shown in Fig. 9-5.

A-dl

(curlA):a, = ﬁyllﬁl':l_.o Ay Az

Fig. 9-5

If A=A,a +Aa, +A.a, atthe corner of AS closest to the origin (point 1), then
2 3 4 1
§=[+f+f+]
1 2 3 4
<A, Ay + (A, + %ﬂ Ay) Az + (A,, + %! Az)(—Ay) +A(~Az)

dy oz
8A, BA
d NPl Sidale 4
an (curlA) - a, 3 oz

The y and z components can be determined in a similar fashion. Combining the three components,

_ i?_dj_aA) (aA,_aA,) (_S‘ﬁ_aA,) )
curl A= ( ay  az a, + Fyar-wy + = oy a, (cartesian)

A third-order determinant can be written, the expansion of which gives the cartesian curl of A.

a, a, a
8 8 3
dx dy 9dz
A, A A,

the elements of the second row are the components of the del operator. This suggests (see Section
1.3) that VX A can be written for curl A. As with other expressions from vector analysis, this

curl A=



CHAP. 9] AMPERE’S LAW AND THE MAGNETIC FIELD 139

convenient notation is used for curl A in other coordinate systems, even though V is defined only in
cartesian coordinates.

Expressions for curl A in cylindrical and spherical coordinates can be derived in the same
manner as above, though with more difficulty.

19A, 9A, 3A, 3A,\  1[d(rA,) 3A, .
0A, 9A;\ | 1[3(rAs) 0A,
curl A= (r a¢ dJz ) +( 9z or )m,. + r[ or ¢ ]a, (cylindrical)
1 [AAesin®) 3As) 1[ 1 3A, 3(rAs)]. . 1[3(As) A,
curl A= 9[ a6 ap ¥ *7 [sm 6ap or ] Yl e ]"’ (spherical)

Frequently useful are two properties of the curl operator:
(1) The divergence of a curl is the zero scalar; that is,
V-(VXA)=0
for any vector field A.
(2) The curl of a gradient is the zero vector; that is,
Vx(Vf)=0
for any scalar function of position f (see Problem 9.20).
Under static conditions, =-VV, and so, from (2),
VXE=0

9.5 RELATIONSHIP OF J AND H

In view of Ampere’s law, the defining equation for (curl H), (see Section 9.4) may be rewritten
as

I
(curlH) -a, = yhr:l—uﬂ Ay Az =J,

where J, =dI,/dS is the area density of x-directed current. Thus the x components of curl H and
the current denisty J are equal at any point. Similarly for the y and z components, so that

VxH=J

This is one of Maxwell's equations for static fields. If H is known throughout a region, then VX H
will produce J for that region.

EXAMPLE 4. A long, straight conductor cross section with radius @ has a magnetic field strength H=
(Ir/2na*)a, within the conductor (r<a) and H=(I/2ar)a, for r>a. Find J in both regions.
Within the conductor,

Ir 1
I= vx“'_— ) rar(zxa*)' T

which corresponds to a current of magnitude / in the +z direction which is distributed uniformly over the
cross-sectional area sta’.
Qutside the conductor,

3= VxH-——(u) ( ),=o
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9.6 MAGNETIC FLUX DENSITY B
Like D, the magnetic field strength H depends only on (moving) charges and is independent of
the medium. The force field associated with H is the magnetic flux density B, which is given by
B=pH
where u = pou, is the permeability of the medium. The unit of B is the tesla,

N
lT—lm

The free-space permeability p, has a numerical value of 4 X 1077 and has the units henries per
meter, H/m; u, , the relative permeability of the medium, is a pure number very near to unity, except
for a small group of ferromagnetic materials which will be treated in Chapter 11.

Magnetic flux, ®, through a surface is defined as

d>=IB-dS
5

The sign on ¢ may be positive or negative depending upon the choice of the surface normal in
dS. The unit of magnetic flux is the weber, Wb. The various magnetic units are related by

1T=1Wb/m® 1H=1Wb/A

EXAMPLE 5. Find the flux crossing the portion of the plane ¢ =a/4 defined by 00l<r<
0.05m and 0<z<2m (see Fig. 9-6). A current filament of 2.50 A along the z axis is in the a, direction.

i
B=pol-l=%|,
dS = dr dza,
2 s
on[ [Fnsen
_ 2| 0.05
2z 0.01
=161x10°Wb or 1.61 uWb

It should be observed that the lines of magnetic flux ¢ are closed curves, with no starting point
or termination point. This is in contrast with electric flux W, which originates on positive charge

Fig. 96
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and terminates on negative charge. In Fig. 9-7 all of the magnetic flux @ that enters the closed
surface must leave the surface. Thus B fields have no sources or sinks, which is mathematically
expressed by

V-B=0
(see Section 4.1).

Fig. 9-7

9.7 VECTOR MAGNETIC POTENTIAL A

Electric field intensity E was first obtained from known charge configurations. Later, electric
potential V was developed and it was found that E could be obtained as the negative gradient of V,
i.e., E=-VV. Laplace’s equation provided a method of obtaining V from known potentials on
the boundary conductors. Similarly, a vector magnetic potential, A, defined such that

VXA=B

serves as an intermediate quantity, from which B, and hence H, can be calculated. Note that the
definition of A is consistent with the requirement that V-B=0. The units of A are Wb/m or
T-m.
If the additional condition
V-A=0

is imposed, then vector magnetic potential A can be determined from the known currents in the
region of interest. For the three standard current configurations the expressions are as follows.

ul dl

t filament: A= § P

current fila anR
KdS
sheet current: A= it

s 4nR

d
volume current: A= L ‘:r Rv

Here, R is the distance from the current element to the point at which the vector magnetic potential
is being calculated. Like the analogous integral for the electric potential (see Section 5.5), the
above expressions for A presuppose a zero level at infinity; they cannot be applied if the current
distribution itself extends to infinity.

EXAMPLE 6. Investigate the vector magnetic potential for the infinite, straight, current filament [ in free

space.
In Fig. 9-8 the current filament is along the z axis and the observation point is (x, y, z). The particular
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current element
I1dl=]dfa,

at €=0 is shown, where £is the running variable along the z axis. It is clear that the integral

pol d€
A J:. azR -

does not exist, since, when £ is large, R=¢ This is a case of a current distribution that extends to infinity.
It is possible, however, to consider the differential vector potential

pol de
dA= anR
and to obtain from it the differential B. Thus, for the particular current element at £=0,
pol d€
dA An(x*+y*+ 23" 8-
_ _ pold![ —y x ]
a_nd dn V x dA 4" (xz + yz + zj)m 'a + (xz +y2 + 22)33'2 -Y

This result agrees with that for dH=(1/u,)dB given by the Biot—Savart law.
For a way of defining A for the infinite current filament, see Problem 9.17.

9.8 STOKES’ THEOREM

Consider an open surface S whose boundary is a closed curve C.  Stokes’ theorem states that the
integral of the tangential component of a vector field F around C is equal to the integral of the
normal component of curl F over §:

éF-dI=L(VXF) .dS
If F is chosen to be the vector magnetic potential A, Stokes’ theorem gives

§A-m=Ln-ds=¢

Solved Problems

9.1. Find H at the center of a square current loop of side L.
Choose a cartesian coordinate system such that the loop is located as shown in Fig. 9-9. By
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9.2

>

L2

-L/2 Lj2

—-L[2 !

Fig. 9.9

symmetry, each half-side contributes the same amount to H at the center. For the half-side 0=x=
L{2, y=-L/2, the Biot-Savart law gives for the field at the origin
(Idxa,)X[-xa, +(L{2)a,]

4nfx* + (L12)*)"
__ Idx(L/2)a,

an[x*+ (L12)°]"
Therefore, the total field at the origin is
H=8 f" Ldx(L/2)a,
4nlx*+ (L/2)"P*
V21 2V2 1

=g =

nL L "
where a,, is the unit normal to the plane of the loop as given by the usual right-hand rule.

dH =

A current filament of 5.0 A in the a, direction is parallel to the y axis at x=2m, z=
—2m (Fig. 9-10). Find H at the origin.

Fig. 9-10

The expression for H due to a straight current filament applies,
I

H=—
Zma’

where r=2V2 and (use the right-hand rule)

_ata,

V2
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9.3.

94.

AMPERE'S LAW AND THE MAGNETIC FIELD [CHAP. 9

) - (0.231)(‘1\/%5‘-) Alm

5.0 (n, +a,

Thus Herave\ va

A current sheet, K=10a, A/m, lies in the x=5m plane and a second sheet, K=
—10a, A/m, isat x=-5m. Find H at all points.

In Fig. 9-11 it is apparent that at any point between the sheets, KXa,=—Ka, for each
sheet. Then, for —5<x<5, H=10(—a,) A/m. Elsewhere H=0.

aﬂ
Y
| )"_'a [fl "j_.—X
K=-10a,
{
—_—a /
Fig. 9-11

A thin cylindrical conductor of radius &, infinite in length, carries a current I.  Find H at all
points using Ampére’s law.

The Biot—Savart law shows that H has only a ¢ component. Furthermore, H, is a function of r
only. Proper paths for Ampere’s law are concentric circles. For path 1 shown in Fig. 9-12.

él-l'dl=2mH¢=Im=0
and for path 2,
§H°d|=2.rrrH¢=I

Thus, for points within the cylindrical conducting shell, H=0, and for external points, H=
(I/2nr)a,, the same field as that of a current filament [ along the axis.

Fig. 9-12
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9.5, Determine H for a solid cylindrical conductor of radius a, where the current [ is uniformly
distributed over the cross section.

Applying Ampére’s law to contour 1 in Fig. 9-13,

fl-l-(:fl=l“,,c

2

o =1(2)

ir
2na*

H= a,

For external points, H=({/2nr)a, .

Fig. 9-13

9.6. Inthe region 0<r<0.5m, in cylindrical coordinates, the current density is
J=45¢e""a, (A/m?
and J=0 elsewhere. Use Ampere’s law to find H.

Because the current density is symmetrical about the origin, a circular path may be used in
Ampere’s law, with the enclosed current given by $ J+dS. Thus, for r<0.5m,

H, (2nr) = F J: 4.5e rdrd

]l=—1;:_—2—5(1—e'2'—2re_2')s, (A/m)

Forany r=0.5m the enclosed current is the same, 0.594n A. Then

H,(2nrr)=0.594x or H= %97@, (A/m)

9.7. Find H on the axis of a circular current loop of radius a. Specialize the result to the center of

-l the loop.
.ﬁ, For the point shown in Fig. 9-14,

R=—ana +ha,
gr=adea,) X (~as, +ha,) (ladg)(as, +ha,)
4n(a*+ h)*? T 4n(@®+ WP

Inspection shows that diametrically opposite current elements produce r components which



146 AMPERE’S LAW AND THE MAGNETIC FIELD [CHAP. 9

cancel. Then,

> a’d 1a*
““L A+ hY T AT Ry
At h=0, H=(l/2a)u,.

98. A current sheet, K=6.08, A/m, lies in the z=0

located at y =0, 2z=4m, asshown in Fig. 9-15.
at (0,0, 1.5) m.

plane and a current filament is
Determine 7 and its directionif H=0

K=6.0a,

Fig. 9-15

Due to the current sheet,

1 6.0
H—-Z-K)(I,, =—2-(-II,) A/m

For the field to vanish at (0,0, 1.5) m, |H| due to the filament must be 3.0 A/m.

i{
IHI=E

I
3'0‘2::(2.5)
I=47.1A

To cancel the H from the sheet, this current must be in the a, direction, as shown in Fig. 9-15.

99. Given A= (ycosax)a,+(y+e")a,, find VXA at the origin.

a, 8, =a
d

3 3
VXA=| — = — [=a-¢a-
A 2 a, —€a,—Cosara,

ycosax 0 y+e"
At (0,0,0), VXA=a,—a,—a,.
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9.10. Calculate the curl of H in cartesian coordinates due to a current filament along the z axis with
current I in the a, direction.

From Example 1,
Hoslg, L (22tre)
2nr 27\ x’+y?
and so
a, a, n,
e & 3
VxH= ax dy 9z

o X af -y ]
VxH [ax(xz+y’) 8y(12+y’).'
=0

except at x =y =0. This is consistent with VXH=1J.

9.11. Given the general vector field A =S5rsin¢a, in cylindrical coordinates, find curl A at
(2, m, 0).

Since A has only a z component, only two partials in the curl expression are nonzero.

VxA= --E(Srmn o), --E(Srsinsin ¢)a, = 5cos ¢, — Ssin ¢a,

Then VX A‘ ~5a,

(2.7.0)

9.12. Given the general vector field A =5e™" cos ¢a, — 5 cos ¢a, in cylindrical coordinates, find

w12 curl A at (2,3x/2, 0)
.ﬁ, VA=) o (~Scos gla,+ [ (Se ™ co1 4) — 3 (~Seon ) |a, 12 (5e " cos o),

(one e

Then VXA

= ~2.50m, — 0.34a,

(2,3x02,0)

9.13. Given the general vector field A =10sin f#a; in spherical coordinates, find VX A at
2, #/2,0).

10 sin 6
r

~rsin 6 T 3¢ (lO sin 9)]-, +-— (lﬂr sin O)a,, =

Then VXA =5a,

@.x2,0)

9.14. A circular conductor of radius r,=1cm has an internal field

ol
10
& H= - (a_ sinar -Ecosar)u (A/m)

where a=/2r,. Find the total current in the conductor.
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There are two methods: (1) to calculate J=VXH and then integrate; (2) to use Ampere's
law. The second is simpler here.

_ [T R 25 R
rm-f_mn dl-L"m(x,smz ncmz)rﬂd(b

_8x 10‘r§=§ A
n n

9.15. A radial field
=l 2.39 x 10°
Y H-22X1 g Al

exists in free space. Find the magnetic flux @ crossing the surface defined by —-n/d=<¢ =<
n/4, 0=<z=<1m. See Fig. 9-16.

3.00
B=puH=""cos¢n, (T)
d= lrn (& ) d dz
—L LW\ cosla, - rdpdza,

=4.24Wb

Since B is inversely proportional to r (as required by V.B=0), it makes no difference what
radial distance is chosen, the total flux will be the same.

e ——

Fig. 9-16

9.16. In cylindrical coordinates, B =(2.0/r)a, (T). Determine the magnetic flux ® crossing the
plane surface defined by 0.5<r<25m and 0=<z=<20m. See Fig. 9-17.

¢=jn-ds

2.0 (2.5 20
=L L —a,+drdza,
s T

2.5

= 4.0([11 {—].3) =6.44 Wb

9.17. Obtain the vector magnetic potential A in the region surrounding an infinitely long, straight,
filamentary current /.
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9.18.

Fig. 9-17

As shown in Example 6, the direct expression for A as an integral cannot be used. However, the
relation

ol
VXA=B=—
Zur-"

may be treated as a vector differential equation for A. Since B possesses only a ¢ component, only the
¢ component of the cylindrical curl is needed.

It is evident that A cannot be a function of z, since the filament is uniform with z. Then

_d4. _ ud

= _ B
& 2 or A, = lenr+C

The constant of integration permits the location of a zero reference. With A, =0 at r=r, the
expression becomes

A=l e

Obtain the vector magnetic potential A for the current sheet of Example 2.
For z>0,

Vx4=s=%.,
9A, 9A,_uK
3y 8z 2

whence
As A must be independent of x and y,
_4A,_ noK = WK
- 2 or A= 2 (z—z)
Thus, for z>0,
A=—%K(z—zo)n,=—%°(z-zo)l€

For z<O0, change the sign of the above expression.
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9.19.

9.20.

9.21.

9.22.

AMPERE'S LAW AND THE MAGNETIC FIELD [CHAP. 9
Using the vector magnetic potential found in Problem 9.18, find the magnetic flux crossing the
rectangular area shown in Fig. 9-18.

Ly

(0,0,2) 0, 2,2)
(0,0, I)W(O, 2,1

L2 J

Fig. 9-18

Let the zero reference be at z,=2, so that

A=—%a—mx

In the line integral
®= f A-d
A is perpendicular to the contour on two sides and vanishes on the third (z=2). Thus,
y=2 #Cl
o= A-dl=-—-—(l—2)EKdy=poK
y=0 2

Note how the choice of zero reference simplified the computation. By Stokes' theorem itis VX A,
and not A itself, that determines ®; hence the zero reference may be chosen at pleasure.

Show that the curl of a gradient is zero.
From the definition of curl A given in Section 9.4, it is seen that curl A is zero in a region if
fA +dl=0
for every closed path in the region. Butif A =Vf, where fis a single-valued function,
§A-¢ﬂ= §Vj-dl=§df =0

(see Section 5.6).

Supplementary Problems
Show that the magnetic field due to the finite current element shown in Fig. 9-19 is given by

i . .
H=Er(sm a, - sin a,)a,

Obtain JH at a general point (r, 8, ¢) in spherical coordinates, due to a differential current element / dl
i1désin 6

at the ongin in the positive z direction. Ans. rp
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9.23.

9.24.

9.25.

9.26.
9.27.

9.28.

9.29.

9.30.

AR R P

2

Fig. 9-19

Currents in the inner and outer conductors of Fig. 9-20 are uniformly distributed. Use Ampére’s law to
show that for b=<r=c,

=

TaA? {

Fig. 9-20

Two identical circular current loops of radius r=3m and 7/=20A are in parallel planes,
separated on their common axis by 10m. Find H at a point midway between the two

loops. Ans. 0.908a, A/m

A current filament of 10 A in the +y direction lies along the y axis, and a current sheet, K=
2.0a, A/m, islocatedat z=4m. Determine H at the point (2, 2, 2) m.

Ans. 03983, +1.0a, - 03983, A/m

Show that the curl of (xa, +ya, + za,)/(x* + y* + z°)** iszero. (Hint: VXE=0.)

Given the general vector A =(—cosx)(cosy)a,, find the curl of A at the origin. Ans. 0

Given the general vector A = (cosx)(sin y)a, + (sinx){(cos y)a,, find the curl of A everywhere.
Ans. 0

Given the general vector A =(sin2¢)a, in cylindrical coordinates, find the curl of A at (2, n/4, 0).
Ans. 0.5a,

Given the general vector A =e *(sini¢)a, in cylindrical coordinates, find the curl of A at
(0.800, =/3, 0.500). Ans. 0.368a, + 0.230a,
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9.31.

9.32.

9.33.

9.34.

9.35.

9.36.

9.37.

9.38.

9.39.

AMPERE’'S LAW AND THE MAGNETIC FIELD [CHAP. 9

Given the general vector A =(sin ¢)a, + (sin 8)a, in spherical coordinates, find the curl of A at the
point (2, 7/2,0).  Ans. O

Given the general vector A =2.50m, +5.00a, in spherical coordinates, find the curl of A at
(2.0,7/6,0).  Ans. 4.33a, —2.50a, + 1.25a,

Given the general vector

show that the curl of A is everywhere zero.

A cylindrical conductor of radius 10 m has an internal magnetic field

r 2

r
H=(4.77% 10‘)(2 W)q, (A/m)
What is the total current in the conductor?  Ans. S5.0A

In cylindrical coordinates, J = 10°(cos’2r)a, in a certain region. Obtain H from this current density
. r sindr cosdr 1
and then take the curl of H and compare with J. Ans. H 105(4+T+'3?_3?r)"

In cartesian coordinates a constant current density, J=Ja,, exists in the region —a=<z=<a See
Fig. 9-21. Use Ampere’s law to find H in all regions. Obtain the curl of H and compare with J.

Joan, z>a

Ans. H= Jozm, —a=z=a
—Joam, z<—a
curflH=J

Fig. 9-21

Compute the total magnetic flux & crossing the z=0 plane in cylindrical coordinates for r=
$x107%m if

B =" sin ¢)a, (T)
Ans. 3.14x 1072 Wb
Given that
B =2.50(sin %)e-%, (M
find the total magnetic flux crossing the strip 2=0, y=0, 0=x=2m. Ans. 1.59Whb

A coaxial conductor with an inner conductor of radius a and an outer conductor of inner and outer radii
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9.40.

9.41.

9.42.

9.43.

9.44.

b and c, respectively, carries current [ in the inner conductor. Find the magnetic flux per unit length
pol b

crossing a plane ¢ =const. between the conductors.  Ans. -2_;]“;

One uniform current sheet, K=K, , is at z=b>2 and another, K=K{—a), isat z=
—b. Find the magnetic flux crossing the area defined by x=const.,, —-2=x=<2, 0O0=y=<IL,
Assume free space. Ans. 4pK,L

Use the vector magnetic potential from Problem 9.17 to obtain the flux crossing the rectangle ¢ =
HolL 1o
——In—

const., n<r<r,, O=z<L, dueto acurrent filament I on the z axis. Ans. >
N

Given that the vector magnetic potential within a cylindrical conductor of radius a is

polr? -
dmat ™

A=-
find the corresponding H. Ans. pMH=curl A

One uniform current sheet, K=K—a,), is located at x=0 and another, K=K, , is
at x=a. Find the vector magnetic potential between the sheets. Ans.  (poKox + C)a,

Between the current sheets of Problem 9.43 a portion of a z =const. plane is defined by O0=x=<b
and O0<y=<a Find the flux @ crossing this portion, both from [B-dS and from
$A-dl.  Ans. abu.K,



Chapter 10

Forces and Torques in Magnetic Fields

10.1 MAGNETIC FORCE ON PARTICLES

A charged particle in motion in a magnetic field experiences a force at right angles to its velocity,
with a magnitude proportional to the charge, the velocity, and the magnetic flux density. The
complete expression is given by the cross product

F=QUXB

Therefore, the direction of a particle in motion can be changed by a magnetic field. The magnitude
of the velocity, U, and consequently the kinetic energy, will remain the same. This is in contrast to
an electric field, where the force F=QE does work on the particle and therefore changes its
kinetic energy.

If the field B is uniform throughout a region and the particle has an initial velocity normal to the
field, the path of the particle is a circle of a certain radius r. The force of the field is of
magnitude F=|Q|UB and is directed toward the center of the circle. The centripetal accelera-
tion is of magnitude w?r = U?/r. Then, by Newton’s second law,

? mU
IQIUB—m—r- or r=|QIB

Observe that r is a measure of the particle’s linear momentum, mU.

EXAMPLE 1. Find the force on a particle of mass 1.70 X 10" kg and charge 1.60 X 10~"°C if it enters a
field B =5SmT with an initial speed of 83.5 km/s.

Unless directions are known for B and U,, the particle’s initial velocity, the force cannot be
calculated. Assuming that U, and B are perpendicular, as shown in Fig. 10-1,

F=|Q|UB
= (1.60 % 107 ")(83.5 x 1¢°)(5 x 107?)
=668 x 1077 N

X X X X

X X LX_ X

X X X

X X X X
(B into page)

Fig. 10-1

EXAMPLE 2. For the particle of Example 1, find the radius of the circular path and the time required for one
revolution.
mU _ (1.70 x 10"7")(83.5 x 10°) _
r 1QI B (1.60 x 107 )5 x 107%) =0.177m

r=%’5=13.3 us

154
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10.2 ELECTRIC AND MAGNETIC FIELDS COMBINED
When both fields are present in a region at the same time, the force on a particle is given by
F=Q(E+UXB)
This Lorentz force, together with the initial conditions, determines the path of the particle.
EXAMPLE 3. In a certain region surrounding the origin of coordinates, B=5.0x10""a, T and E=
5.0s, V/m. A proton (Q,=1.602%x10"°C, m,=1673% 1077 kg) enters the fields at the origin with an
initial velocity W, =2.5%10%a, m/s. Describe the proton’s motion and give its position after three complete

revolutions.
The initial force on the particle is

Fo=Q(E+ U, XB) = Q,(Ea, - UpBa,)

The z component (electric component) of the force is constant, and produces a constant acceleration in the z
direction. Thus the equation of motion in the z direction is

z = }af? -=% (-%-)r'

The other (magnetic) component, which changes into —(,U/Ba, , produces circular motion perpendicular to the
z axis, with period

T =2 _2nm,
U QB

The resultant motion is helical, as shown in Fig. 10-2.

After three revolutions, x=y =0 and

1/0 _ 187°Em
z=§(—$(3ﬁ——é:§,—£=37.0m

10.3 MAGNETIC FORCE ON A CURRENT ELEMENT

A frequently encountered situation is that of a current-carrying conductor in an external
magnetic field. Since I=dQ/d:, the differential force equation may be written

dF = dQ(U X B) = (1 df)(U X B) = I(d] X B)

where dl=Ud:t is the elementary length in the direction of the conventional current I. If the
conductor is straight and the field is constant along it, the differential force may be integrated to give

F=ILBsin 6

The magnetic force is actually exerted on the electrons that make up the current I. However,
since the electrons are confined to the conductor, the force is effectively transferred to the heavy



156 FORCES AND TORQUES IN MAGNETIC FIELDS [CHAP. 10

lattice; this transferred force can do work on the conductor as a whole. While this fact provides a
reasonable introduction to the behavior of current-carrying conductors in electric machines, certain
essential considerations have been omitted. No mention was made, nor will be made in Section
10.4, of the current source and the energy that would be required to maintain a constant current
I. Faraday’s law of induction (Section 12.3) was not applied. In electric machine theory the resuit
will be modified by these considerations. Conductors in motion in magnetic fields are treated again
in Chapter 12; see particularly Problems 12.10 and 12.13.

EXAMPLE 4. Find the force on a straight conductor of length 0.30 m carrying a current of 5.0 A in the —a,
direction, where the field is B=3.50x10"(a, -a)T.

F=I(LXB)
= (5.0)[(0.30)(—a,) X 3.50 x 10 *(a, —a,)}
—a, —8a

=7.42 %107 ’(—————J) N
V2

The force, of magnitude 7.42mN, is at right angles to both the field B and the current direction, as shown in
Fig. 10-3.

F

»:’-l'
e
Fig. 103

X

10.4 WORK AND POWER

The magnetic forces on the charged particles and current-carrying conductors examined above
result from the field. To counter these forces and establish equilibrium, equal and opposite forces,
F,, would have to be applied. If motion occurs, the work done on the system by the outside agent

applying the force is given by the integral
nal
W= F,-dl
initial |

A positive result from the integration indicates that work was done by the agent on the system to
move the particles or conductor from the initial location to the final, against the ficld. Because the
magnetic force, and hence F,, is generally nonconservative, the entire path of integration joining
the initial and final locations of the conductor must be specified.

EXAMPLE 5. Find the work and power required to move the conductor shown in Fig. 10-4 one full revolution
in the direction shown in 0.02s, if B=250x 10"a, T and the current is 45.0 A.

F=II1XB)=1.13x 10"-, N
andso F,=-113x10%a,N,

W=IF,°dI
13
=L (-1L13x10 %, * rdpa,

=-2.13x10"2]
and P=W/t=~0.10TW.
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X r=0.03 m
Fig. 10-4

The negative sign means that work is done by the magnetic field in moving the conductor in the direction
shown. For motion in the opposite direction, the reversed limits will provide the change of sign, and no
attempt to place a sign on r d¢a, should be made.

10.5 TORQUE

The moment of a force or torque about a specified point is the cross product of the lever arm
about that point and the force. The lever arm, r, is directed from the point about which the torque
is to be obtained to the point of application of the force. In Fig. 10-5 the force at P has a torque
about O given by

T=rXF

where T has the units N-m. (The units N-m/rad have been suggested, in order to distinguish
torque from energy.)

In Fig. 10-5, T lies along an axis (in the xy plane) through O. If P were joined to O by a rigid
rod freely pivoted at O, then the applied force would tend to rotate P about that axis. The torque
T would then be said to be about the axis, rather than about point O.

EXAMPLE 6. A conductor located at x=0.4m, y=0 and 0<z<2.0m carries a current of 5.0 A in
the a, direction. Along the length of the conductor B =2.5a, T. Find the torque about the z axis.

F=I(LXB)=5.0(2.0a, x2.5a,) =25.0a, N
T=rxF=04a,X250a,=10.0a, N-m

10.6 MAGNETIC MOMENT OF A PLANAR COIL

Consider the single-turn coil in the z=0 plane shown in Fig. 10-6, of width w in the x
direction and length € along y. The field B is uniform and in the +x direction. Only the
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s
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Fig. 10-6

+y-directed currents give rise to forces. For the side on the left,
F=I(fa, X Ba,)= —Blfa,
and for the side on the right,
F = Blfa,

The torque about the y axis from the left current element requires a lever arm r=

—(w/2)a,; the sign will change for the lever arm to the right current element. The torque from
both elements is

T= (-%)-, x (—BI€)a, + (;)-, x Bléa, = Blfw(—2,) = BIA(-a,)

where A is the area of the coil. It can be shown that this expression for the torque holds for a flat
coil of arbitrary shape (and for any axis parallel to the y axis).

The magnetic moment m of a planar current loop is defined as /Aa, , where the unit normal a,, is
determined by the right-hand rule. (The right thumb gives the direction of a, when the fingers
point in the direction of the current.) It is seen that the torque on a planar coil is related to the
applied field by

T=mXB
This concept of magnetic moment is essential to an understanding of the behavior of orbiting
charged particles. For example, a positive charge 0 moving in a circular orbit at a velocity U, or an

angular velocity @, is equivalent to a current I=(w/27)Q, and so gives rise to a magnetic
moment

w
III-—'—Z;QAI,.

as shown in Fig. 10-7. More important to the present discussion is the fact that in the presence of a
magnetic field B there will be a torque T=mXB which tends to turn the current loop until m
and B are in the same direction, in which orientation the torque will be zero.

m

Q
i/

Fig. 10-7
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Solved Problems

10.1. A conductor 4 m long lies along the y axis with a current of 10.0 A in the a, direction. Find
the force on the conductor if the field in the regions is B = 0.05a, T.

F=ILXB=10.0(4a, X 0.058,) = —~2.0a, N

10.2. A conductor of length 2.5m located at z=0, x=4m carries a current of 12.0 A in the
—a, direction. Find the uniform B in the region if the force on the conductor is
1.20 X 1072 N in the direction (—a, +a,)/V2.

From F=ILXB,

-, +a & & b
(1.20 % 10-2)(%) =10 —(12.0025 0 |=-30B.a,+30B.a,
2 B, B, B,
4x10*
whence B =B, = T
V2

the y component of B may have any value.

10.3. A current strip 2 cm wide carries a current of 15.0 A in the a, direction, as shown in Fig.
10-8. Find the force on the strip per unit length if the uniform field is B =0.20a, T.

In the expression for dF, I dl may be replaced by K dS.
dF =(KdS)x B

- (52) dx ay(0.200,

LOL L
Fsr j; 150.0 dx dya,
-0.01

F
L= 3.0a, N/m

10.4. Find the forces per unit length on two long, straight, parallel conductors if each carries a
ﬂi current of 10.0 A in the same direction and the separation distance is 0.20 m.

Consider the arrangement in cartesian coordinates shown in Fig. 10-9. The conductor on the left
creates a field whose magnitude at the right-hand conductor is

= bl _ (45 X 107)(10.0) _
27 272(0.20)

10°°T
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B
-0.@ | 90-,13—’- *
Fig. 10-9

and whose direction is —a, . Then the force on the right conductor is
F=ILa, X B(-a,) = ILB(-a,)

and £= 10 %(-a,)N/m

An equal but opposite force acts on the left-hand conductor. The force is seen to be one of

attraction. Two parallel conductors carrying current in the same direction will have forces tending to
pull them together.

10.5. A conductor carries current [ parallel to a current strip of density K, and width w, as shown

in Fig. 10-10. Find an expression for the force per unit length on the conductor. What is
the result when the width w approaches infinity?

From Problem 10.4, the filament K, dx shown in Fig. 10-10 exerts an attractive force

dF_ Ko dx)
L-’B.'-I 2nr e

on the conductor. Adding to this the force due to the similar filament at —x, the components in the x
direction cancel, giving a resultant

dF _  polKo dv) (2 ?) (-a)= BalKeh_dx

L 2 W (%)
Integrating over the half-width of the strip,
F IKoh ~2 dx IK w
L~ F‘ﬂn ==) h2+x2=(mﬂ oarctanz—h)(—-a,)

The force is one of attraction, as expected.
As the strip width approaches infinity, F/L— (p0ofKo/2)(—~a,).

10.6. Find the torque about the y axis for the two conductors of length ¢, separated by a fixed
distance w, in the uniform field B shown in Fig. 10-11.
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10.7.

3

10.8.

Fig. 10-11
The conductor on the left experiences the force
F,= 1€fa, X Ba, = BIf(—a,)

the torque of which is
Ti=3 (~8) X BIé(-a,) = BI¢Z (-8,)

The force on the conductor on the right results in the same torque. The sum is therefore
T= Blétw(—a,)

A D’Arsonval meter movement has a uniform radial field of B=0.10T and a restoring
spring with a torque 7 =5.87x107°0(N-m), where the angle of rotation is in
radians. The coil contains 35 turns and measures 23 mm by 17mm. What angle of
rotation results from a coil current of 15mA?

The shaped pole pieces shown in Fig. 10-12 result in a uniform radial field over a limited range of
deflection. Assuming that the entire coil length is in the field, the torque produced is

T = nBIéw = 35(0.10)(15 x 107*)(23 x 107*)(17 x 1073)
=2.05x10"°N-m
This coil turns until this torque equals the spring torque.
2.05%107°=5.87x107°8
0=0.3499rad or 20°

Fig. 10-12

The rectangular coil in Fig. 10-13 is in a field
a,+a
B=0.05—22T
V2

Find the torque about the z axis when the coil is in the position shown and carries a current
of S.0A.

m=JlAa,=1.60%10"%a,

8 ta,

T=mXB=1.60x 10", X0.05
V2

=566x10""a,N-m
If the coil turns through 45°, the direction of m will be (a, +8,)/V?2 and the torque will be zero.
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Fig. 10-13

10.9. Find the maximum torque on an 85-turn, rectangular coil, 0.2 m by 0.3 m, carrying a current
of20Ainafield B=6S5ST.

Tooua = nBI6w = 85(6.5)(2.0)(0.2)(0.3) = 66.3 N - m

10.10. Find the maximum torque on an orbiting charged particle if the charge is 1.602 x 10~ C,
the circular path has a radius of 0.5x 107'°m, the angular velocity is 4.0 x 10'® rad/s,
and B=0.4%x107T.

The orbiting charge has a magnetic moment

4 x 10"
2n

Then the maximum torque results when a,, is normal to B.
Toex=mB=320%x10¥N-m

m= zﬂ:; QAs, = (1.602 x 10" *)7(0.5 X 107')%a, = 8.01 X 10" *a, A-m’

10.11. A conductor of length 4 m, with current held at 10 A in the a, direction, lies along the y axis
between y=x2m. If the field is B=0.05a, T, find the work done in moving the
conductor parallel to itself at constant speedto x=z=2m.

For the entire motion,
F=ILXB=-2.0a,

The applied force is equal and opposite,
F,=2.0a,

Because this force is constant, and therefore conservative, the conductor may be moved first along z,
then in the x direction, as shown in Fig. 10-14. Since F, is completely in the z direction, no work is
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done in moving along x. Then,
2
W =L (2.08,)- dza, = 4.0]

A conductor lies along the z axisat —1.5=<z=<1.5m and carries a fixed current of 10.0 A
in the —a, direction. See Fig. 10-15. For a field

B=3.0%x10"%"%%a, (T)

bz

41
Lo B 4> 7

2.0 M-1s

Fig. 10-15

find the work and power required to move the conductor at constant speed to x =
20m, y=0 in5x107%s. Assume parallel motion along the x axis.

F=ILXB=9.0x%10 % %a,
Then F,=-9.0x10% "*a_ and

w =J:(—9.0 x 107% " *a,) - dxu,

=-1.48x1072J
The field moves the conductor, and therefore the work is negative. The power is given by
W —148x1072

Find the work and power required to move the conductor shown in Fig. 10-16 one full turn
in the positive direction at a rotational frequency of N revolutions per minute, if B=
Boa, (B, a positive constant).
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10.14.

a

10.15.
a

10.16.
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The force on the conductor is
F=ILXB=1ILa, XBoa, = BolLa,
so that the applied force is
F. = BoL(—8,)
The conductor is to be turned in the a, direction. Therefore, the work required for one fuil
revolution is

W= f ByIL(~3,) - r dm, = —2nrBolL

Since N revolutions per minute is N/60 per second, the power is

_ 2nrBolLN
60

The negative signs on work and power indicate that the field does the work. The fact that work
is done around a closed path shows that the force is nonconservative in this case.

P=

In the configuration shown in Fig. 10-16 the conductor is 100 mm long and carries a constant
5.0 A in the a, direction. If the field is

B=-3.5sin¢a, mT

and r=25mm, find the work done in moving the conductor at constant speed
from ¢=0 to ¢ =z in the direction shown. If the current direction is reversed
for w<¢ <2z, whatis the total work required for one full revolution?
F=ILXB=-175x10"sin¢a, N
F,=175x10 ?sin ¢pa, N

Then W=L 1.75 x 10" sin ¢a, * r dpa, = 87.5 uJ

If the current direction changes when the conductor is between s and 2z, the work will be the
same. The total work is 175 uJ.

Compute the centripetal force necessary to hold an electron (m, =9.107 X 10> kg) in a
circular orbit of radius 0.35 X 107" m with an angular velocity of 2 x 10'® rad/s.

F =m0 = (9.107 X 107')(2 X 10'%)%(0.35 X 10™%) = 1.27 X 10~*N

A uniform magnetic field B =285.3a, uT exists in the region x=0. If an electron
enters this field at the origin with a velocity U,=450a, km/s, find the position where it
exits. Where would a proton with the same initial velocity exit?

_m.Up
I0rB

The electron experiences an initial force in the a, direction and it exits the field at x=z=0, y=
6cm.

A proton would turn the other way, and part of the circular path is shown at P in Fig.
10-17. With m, = 1840m,,

=3.00x102m

.

r,=%r,=55m

and the proton exitsat x=z=0, y=-110m.
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10.17. If a proton is fixed in position and an electron revolves about it in a circular path of radius
..-Ii 0.35 X 107" m, what is the magnetic field at the proton?
t!

The proton and electron are attracted by the coulomb force,
Qz

dme,r’

which furnishes the centripetal force for the circular motion. Thus
o’ 2 o

= 2 —_——
47e MWy or © e m,r’
Now, the electron is equivalent to a current loop [I=(w/2x)Q. The field at the center of such a
loop is, from Problem 9.7,

Substituting the value of w found above,
B (o/47)Q* (1077)(1.6 x 107°)?

= =35T
r*Vanegmar  (0.35 x 107°P2V(E x 10°)(9.1 x 10~ °1)(0.35 x 10~ )

Supplementary Problems

10.18. A current element 2 m in length lies along the y axis centered at the origin. The current is 5.0 A in the
a, direction. If it experiences a force 1.50(a, + a,)/V2 N due to a uniform field B, determine B.
Ans. 0.106(—a, +a,) T

10.19. A magnetic field, B=3.5x10"’a, T, exerts a force on a 0.30-m conductor along the x axis. If the
conductor current is 5.0 A in the —a, direction, what force must be applied to hold the conductor in
position?  Ans. —5.25x107%a, N

10.20. A current sheet, K=30.0a, A/m, liesinthe plane z=—5m and a filamentary conductor is on the
y axis with a current of 50A in the a direction. Find the force per unit
length. Ans. 942 uN/m (attraction)

10.21. A conductor with current I pierces a plane current sheet K orthogonally, as shown in Fig. 10-18. Find
the force per unit length on the conductor above and below the sheet. Ans. Tu.KIf2

10.22. Find the force on a 2-m conductor on the z axis with a current of 5.0 A in the a, direction, if
B=20a, +60a, T
Ans. —60a,+20a, N
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10.23.

10.24.

10.25.

10.26.

10.27.

10.28.

10.29.
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Fig. 10-18

Two infinite current sheets, each of constant density K, , are parallel and have their currents oppositely
directed. Find the force per unit area on the sheets. Is the force one of repulsion or attraction?
Ans.  poKif2 (repulsion)

The circular current loop shown in Fig. 10-19 is in the plane z =h, parallel to a uniform current
sheet, K=K, at z=0. Express the force on a differential length of the loop. Integrate and
show that the total force is zero.  Ans. dF = ilap,K,cos ¢ dp(—a,)

K
Fig. 10-19

Two conductors of length € normal to B are shown in Fig. 10-20; they have a fixed separation w. Show
that the torque about any axis parallel to the conductors is given by BI¢éw cos 6.

B —
. 2 o
. T

Fig. 10-20

A circular current loop of radius r and current [ lies in the z=0 plane. Find the torque which
results if the current is in the a, direction and there is a uniform field B = By(a, +a,)/V2
Ans. (#72801 / \5).,.

A current loop of radius r=0.35m is centered about the x axis in the plane x=0 and at
(0, 0, 0.35) m the current is in the ~a, direction at a magnitude of 5.0 A, Find the torque if the uniform
fieldis B=88.4(a, +8,)uT. Anms. 1.70x107*(-a)N-m

A current of 2.5 A is directed generally in the a, direction about a square conducting loop centered at
the origin in the z =0 plane with 0.60 m sides parallel to the x and y axes. Find the forces and the
torque on the loop if B =158, mT. Would the torque be different if the loop were rotated through
45°inthe z=0 plane? Ans. 1.35x10%-a)N-m; T=mXB

A 200-turn, rectangular coil, 0.30 m by 0.15m with a current of 5.0 A, is in a uniform field B=
0.2T. Find the magnetic moment m and the maximum torque.  Ans. 45.0A-m? 9.0N-m
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10.30.

10.31.

10.32.

10.33.

Two conductors of length 4.0m are on a cylindrical shell of radius 2.0 m centered on the z axis, as
shown in Fig. 10-21. Currents of 10.0 A are directed as shown and there is an external field B=
050, T at ¢=0 and B=-05aT at ¢=m Find the sum of the forces and the torque about
the axis.  Ans. —40a,N, 0

A right circular cylinder contains 550 conductors on the curved surface and each has a current of
constant magnitude 7.5 A. The magnetic field is B =38sin¢a, mT. The current direction is a,
for 0<¢<m and -a, for 7<¢ <27 (Fig. 10-22). Find the mechanical power required if the
cylinder turns at 1600 revolutions per minute in the —a, direction. Ans. 60.2W

yrem

Fig. 10-22

Obtain an expression for the power required to turn a cylindrical set of # conductors (see Fig. 10-22)
against the field at N revolutions per minute, if B=B,sin2¢a, and the currents change direction in
Bonl€érN W

o W

each quadrant where the sign of B changes. Ans

A conductor of length £ lies along the x axis with current f in the a, direction. Find the work done in
turning it at constant speed, as shown in Fig. 10-23, if the uniform field is B=B.a, .
Ans. nB,Fl/4
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10.34. A rectangular current loop, of length £ along the y axis, is in a uniform field B=B.,, asshown in
Fig. 10-24. Show that the work done in moving the loop along the x axis at constant speed is zero.

H B
!
Xt
jZa
.Lw-——-:/ x
Fig. 10-24

10.35. For the configuration shown in Fig. 10-24, the magnetic field is
B=By(sin > )a,
w

Find the work done in moving the coil a distance w along the x axis at constant speed, starting from the
location shown.  Ans. —4Byléw/n

10.36. A conductor of length 0.25m lies along the y axis and carries a current of 25.0 A in the a,
direction. Find the power needed for parallel translation of the conductor to x=35.0m at constant
speed in 3.0s if the uniform fieldis B = 0.06a, T. Ans. -0.625W

10.37. Find the tangential velocity of a proton in a field B =30uT if the circular path has a diameter of
1em. Ans. 14.4m/s

10.38. An alpha particle and a proton (Q,=2Q,) enter a magnetic field B=1uT with an initial
speed U,=8.5m/s. Given the masses 6.68 X 107" kg and 1.673 x 10~" kg for the alpha particle and
the proton, respectively, find the radii of the circular paths. Ans. 177 mm, 88.8 mm

10.39. If a proton in a magnetic field completes one circular orbit in 2.35 us, what is the magnitude of B?
Ans. 2.79x107°T

10.40. An electron in a field B =4.0x107>T has a circular path 0.35 X 107" m in radius and a maximum
torque of 7.85 x 10 *N-m. Determine the angular velocity ~ Ans. 2.0 X 10" rad/s

10.41. A region contains uniform B and E fields in the same direction, with B =650 uT. An electron
follows a helical path, where the circle has a radius of 35mm. If the electron had zero initial velocity in
the axial direction and advanced 431 mm along the axis in the time required for one full circle, find the
magnitude of E.  Ans. 1.62kV/m



Chapter 11

Inductance and Magnetic Circuits

11.1 INDUCTANCE

The inductance L of a conductor system may be defined as the ratio of the linking magnetic flux
to the current producing the flux. For static (or, at most, low-frequency) current I and a coil
containing N turns, as shown in Fig. 11-1,

L=—-
1

The units on L are henries, where 1H=1Wb/A. Inductance is also given by L =A4/l, where
A, the flux linkage, is N® for coils with N turns or simply & for other conductor arrangements.

Fig. 11-1
It should be noted that L will always be the product of the permeability u of the medium (units
on u are H/m) and a geometrical factor having the units of length. Compare the expressions for
resistance R (Chapter 6) and capacitance C (Chapter 7).

EXAMPLE 1. Find the inductance per unit length of a coaxial conductor such as that shown in Fig.

¢ = const.

Fig. 112
169
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11-2. Between the conductors,

The currents in the two conductors are linked by the flux across the surface ¢ =const. For a length ¢,

. 2 2
L p b
and f_mea (F/m)

EXAMPLE 2. Find the inductance of an ideal solenoid with 300 turns, €=0.50m, and a circular cross
section of radius 0.02 m.
The turns per unit length is » =300/0.50 =600, so that the axial field is

B = poH = 6001 (Wb/m?)

Then
% = %’;= (?)A = 300(600u.) (4 X 107%)
=568 uH/m
or L=284uH.

In Section 5.8 an imagined bringing-in of point charges from infinity was used to derive the
energy content of an electric field:

W£=%LD-Edv

There is no equivalent in a magnetic field to the point charge, and consequently no parallel
development for its stored energy. However, a more sophisticated approach yields the completely
analogous expression
1
Wy=2 I B-Hdv
2 Jiar

Comparing this with the formula Wy, =31L/I? from circuit analysis yields

L=LB;2Hdv

EXAMPLE 3. Checking Example 1,

L=L!I;2£ldv=%fiuf (m—l-:-—rz)rdrdnwdz =-:L:Ins

11.2 STANDARD CONDUCTOR CONFIGURATIONS

Figures 11-3 through 11-7 give exact or approximate inductances of some common noncoaxial
arrangements.
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N turns

Fig. 11-3. Toroid, square cross section

— pnNzS
L= T (H)
2, R
(assuming average
v/ flux density at

average radius r)

Fig. 11-4. Toroid, general cross section $

L _Ho 14
7= “cosh 32 (H/m)
radius Ford >>a,
# L

~ ) In d (Hfm)
g a

il

v|E 9|F

cosh™! 2—‘:} (H/m)

[

m4 Hm
a

Fig. 11-7. Long solenoid of small cross-sectional area §

11.3 FARADAY’S LAW AND SELF-INDUCTANCE

Consider an open surface S bounded by a closed contour C. If the magnetic flux ¢ linking S
varies with time, then a voltage v around C exists; by Faraday’s law,

v=—-——

dt
As was shown in Chapter 5, the electrostatic potential or voltage, V, is well-defined in space and is
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associated with a conservative electric field. By contrast, the induced voltage v given by Faraday's
law is a multivalued function of position and is associated with a nonconservative field
(electromotive force). More about this in Chapter 12.

Faraday’s law holds in particular when the flux through a circuit element is changing because the
current in that same element is changing:

In circuit theory, L is called the self-inductance of the element and v is called the voltage of
self -inductance or the back-voltage in the inductor.

114 INTERNAL INDUCTANCE

Magnetic flux occurs within a conductor cross section as well as external to the conductor. This
internal flux gives rise to an internal inductance, which is often small compared to the external
inductance and frequently ignored. In Fig. 11-8(a) a conductor of circular cross section is shown,
with a current I assumed to be uniformly distributed over the area. (This assumption is valid only
at low frequencies, since skin effect at higher frequencies forces the current to be concentrated at the
outer surface.) Within the conductor of radius a, Ampeére’s law gives

ir olr

=_—>a, and B=ﬁa¢,

)
Fig. 11-8

The straight piece of conductor shown in Fig. 11-8(a) must be imagined as a short section of an
infinite torus, as suggested in Fig. 11-8(b). The current filaments become circles of infinite
radius. The lines of flux d® through the strip €dr encircle only those filaments whose distance
from the conductor axis is smaller than r. Thus, an open surface bounded by one of those filaments
is cut once (or an odd number of times) by the lines of d®; whereas, for a filament such as I or 2,
the surface is cut zero times (or an even number of times). It follows that d&® links only with the
fraction tr’/7a” of the total current, so that the total flux linkage is given by the weighted “sum™

' @1t polr pol€
= (s (29 o
na’ d® o \ma*/ 2na* tdr 8n

E_)‘_H_Plo_l -7
and i 6’“83:_2)(10 H/m
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This result is independent of the conductor radius. The total inductance is the sum of the
external and internal inductances. [f the external inductance is of the order of 4 x 1077 H/m, the
internal inductance should not be ignored.

11.5 MUTUAL INDUCTANCE

In Fig. 11-9 a part ¢, of the magnetic flux produced by the current i, through coil 1 links the N,
turns of coil 2. The voltage of mutual induction in coil 2 is given by

(negative sign omitted)

V2

N2
Fis. ll‘g
In terms of the mutual inductance My, = N,¢ /1,
dpndi, . di,
=N,——==M,, —
VaE N T T gy

This mutual inductance will be a product of the permeability u of the region between the coils
and a geometrical length, just like inductance L. If the roles of coils 1 and 2 are reversed,
di,
v =M, dt

The following reciprocity relation can be established: My, =M,, .

EXAMPLE 4. A solenoid with N, =1000, r,=10cm, and ¢ =50cm is concentric within a second coil
of N;=2000, r,=20cm, and &=50cm. Find the mutual inductance assuming free-space conditions.

For long coils of small cross section, H may be assumed constant inside the coil and zero for points just
outside the coil. With the first coil carrying a current I ,

H= (%)I, (A/m) (in the axial direction)

B = 20001, (Wb/m?®)
& = BA = (1920001,)(x x 107%) (Wb)
Since H and B are zero outside the coils, this is the only flux linking the second coil.

M= M(%) = (2000)(47 X 10°7)(2000)(xx X 10~*) = 1.58 mH

11.6 MAGNETIC CIRCUITS

In Chapter 9, magnetic field intensity H, flux ®, and magnetic flux density B were examined and
various problems were solved where the medium was free space. For example, when Amp2re’s law
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is applied to the closed path C through the long, air-core coil shown in Fig. 11-10, the result is
fu-a=nr

But since the flux lines are widely spread outside of the coil, B is small there. The flux is effectively
restricted to the inside of the coil, where
NI
H 4
Ferromagnetic materials have relative permeabilities u, in the order of
thousands. Consequently, the flux density B = pou,H is, for a given H, much greater than
would result in free space. In Fig. 11-11, the coil is not distributed over the iron core. Even so,
the NI of the coil causes a flux ® which follows the core. It might be said that the flux prefers the
core to the surrounding space by a ratio of several thousand to one. This is so different from the
free-space magnetics of Chapter 9 that an entire subject area, known as iron-core magnetics or
magnetic circuits, has developed. This brief introduction to the subject assumes that all of the flux
is within the core. It is further assumed that the flux is uniformly distributed over the cross section
of the core. Core lengths required for calculation of N/ drops are mean lengths.

Fig. 11-10 Fig. 11-11

11.7 THE B-H CURVE

A sample of ferromagnetic material could be tested by applying increasing values of H and
measuring the corresponding values of flux density B. Magnetization curves, or simply B-H curves,
for some common ferromagnetic materials are given in Figs. 11-12 and 11-13. The relative
permeability can be computed from the B-H curve by use of u, = BfuoH. Figure 11-14 shows the
extreme nonlinearity of u, versus H for silicon steel. This nonlinearity requires that problems be
solved graphically.

11.8 AMPERE’S LAW FOR MAGNETIC CIRCUITS

A coil of N turns and current / around a ferromagnetic core produces a magnetomotive force
(mmf) given by NI. The symbol F is sometimes used for this mmf; the units are amperes or ampere
turns. Ampere’s law, applied around the path in the center of the core shown in Fig. 11-15(a),
gives

F=NI=§H-dl

-[ma+[n-a+[n.a

= H]ﬁ + ngz + H,f},
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Fig. 11-15

Comparison with Kirchhoff’s law around a single closed loop with three resistors and an emf V,
V= V| + Vz + V3

suggests that F can be viewed as an NI rise and the H¢ terms considered NI drops, in analogy to the
voltage rise V and voltage drops V,, V, and V;. The analogy is developed in Fig. 11-15(b) and
(¢). Flux @ in Fig. 11-15(b) is analogous to current I, and reluctance # is analogous to resistance
R. An expression for reluctance can be developed as follows.

¢
NI drop = Hé = BA(—) =dR
p A

¢
hence R=— (H™
A (
If the reluctances are known, then the equation

can be written for the magnetic circuit of Fig. 11-15(b). However, p, must be known for each
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material before its reluctance can be calculated. And only after B or H is known will the value of
i, be known. This is in contrast to the relation
4

R=E

(Section 6.7), in which the conductivity o is independent of the current.

11.9 CORES WITH AIR GAPS

Magnetic circuits with small air gaps are very common. The gaps are generally kept as small as
possible, since the NI drop of the air gap is often much greater than the drop in the core. The flux
fringes outward at the gap, so that the area at the gap exceeds the area of the adjacent
core. Provided that the gap length ¢, is less than 7 the smaller dimension of the core, an apparent
area, S, , of the air gap can be calculated. For a rectangular core of dimensions a and b,

S=(@+ )b+ <)
If the total flux in the air gap is known, H, and H,€, can be computed directly.

nn§) s

For a uniform iron core of length ¢ with a single air gap, Ampere’s law reads

NI =H¢, + H,{, = H{, +ﬂ
HoS,
If the flux @ is known, it is not difficult to compute the NI drop across the air gap, obtain B, , take H;
from the appropriate B-H curve and compute the NI drop in the core, H;f;. The sum is the NI
required to establish the flux ®. However, with NI given, it is a matter of trial and error to obtain
B; and ®, as will be seen in the problems. Graphical methods of solution are also available.

11,10 MULTIPLE COILS

Two or more coils on a core could be wound such that their mmfs either aid one another or
oppose. Consequently, a method of indicating polarity is given in Fig. 11-16. An assumed
direction for the resulting flux @ could be incorrect, just as an assumed current in a dc circuit with
two or more voltage sources may be incorrect. A negative result simply means that the flux is in the
opposite direction.

(ay )
Fig. 11-16



178 INDUCTANCE AND MAGNETIC CIRCUITS [CHAP. 11

11.11 PARALLEL MAGNETIC CIRCUITS

The method of solving a parallel magnetic circuit is suggested by the two-loop equivalent circuit
shown in Fig. 11-17(b). The leg on the left contains an NI rise and an NI drop. The NI drop
between the junctions a and b can be written for each leg as follows:

F — H\{, = H.6, = Hyf,
and the fluxes satisfy
¢| = q)z + ¢3

Different materials for the core parts will necessitate working with several B-H curves. An air gap
in one of the legs would lead to H,f; + H,£, for the mmf between the junctions for that leg.

Fig. 11-17

The equivalent magnetic circuit should be drawn for parallel magnetic circuit problems. It is
good practice to mark the material types, cross-sectional areas, and mean lengths directly on the
diagram. In more complex problems a scheme like Table 11-1 can be helpful. The data are
inserted directly into the table, and the remaining quantities are then calculated or taken from the
appropriate B-H curve.

Table 11-1

Part Material | Area ¢ | | B | H | HE

Solved Problems

11.1. Find the inductance per unit length of the coaxial cable in Fig. 112 if a=
v-; ri lmm and b=3mm. Assume u,=1 andomit internal inductance.

L_u b_4nx10”

—_———

¢ 2"a

In3=0.22 uH/m
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11.6.
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Find the inductance per unit length of the parallel cylindrical conductors shown in Fig. 11-5,
where d=25ft, a=0.803in.

L - ~1 25(12)
B . 1 = A 237
7 cosh (4x10 ") cosh™" 2(0.803) 2.37 uH/m
The approximate formula gives
-—{ﬁl—[ ln£=2.37 pH/m

When d/a=10, the approximate formula may be used with an error of less than 0.5%.

A circular conductor with the same radius as in Problem 11.2 is 12.5 ft from an infinite
conducting plane. Find the inductance.
L_to, d 1 25012)
¢ 2::'“ =(2x10 ]lnoam
This result is 3 that of Problem 11.2. A conducting plane may be inserted midway between the two
conductors of Fig. 11-5. The inductance between each conductor and the plane is 1.18 uH/m. Since
they are in series, the total inductance is the sum, 2.37 uH/m.

=1.18 gH/m

Assume that the air-core toroid shown in Fig. 11-4 has a circular cross section of radius
4mm. Find the inductance if there are 2500 turns and the mean radius is » =20 mm.

_BN'S _ (47 X 1077)(2500)7(0.004)*

277 22(0.020) =3.14mH

Assume that the air-core toroid in Fig. 11-3 has 700 turns, an inner radius of 1cm, an outer
radius of 2cm, and height a=15cm. Find L using (a) the formula for square
cross-section toroids; (b) the approximate formula for a general toroid, which assumes a
uniform H at a mean radius.

[ tN'a n_ (4n X 107)(700)'(0.015)

(a) ey n iy In2=1.02mH
NS _ (47 X 107)(700)*(0.01)(0.015) _
) L= o 27(0.015) =0.98 mH

With a radius that is larger compared to the cross section, the two formulas yield the same
result. See Problem 11.26.

Use the energy integral to find the internal inductance per unit length of a cylindrical
conductor of radius a.

At a distance r=a from the conductor axis,

whence

The inductance corresponding to energy storage within a length € of the conductor is then

®-Hdv_ _Hot
L=I = =4ﬂzn4J:r22:crt’dr ™

or L/€=pe/8n. This agrees with the result of Section 11.4.
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11.7. The cast iron core shown in Fig. 11-18 has an inner radius of 7 cm and an outer radius of
9cm. Find the flux @ if the coil mmf is 500 A.

¢ =27(0.08) = 0.503 m

From the B-H curve for cast iron in Fig. 11-13, B=0.40T.
& = BS = (0.40)(0.02) = 0.16 mWb

' 4

Fig. 11-18

11.8. The magnetic circuit shown in Fig. 11-19 has a C-shaped cast steel part, 1, and a cast iron
il part, 2. Find the current required in the 150-turn coil if the flux density in the cast iron
ﬁ is B,=045T. ot

athcad N 2cm

NI

f‘ 12 CMm =t - | B M

Fig. 11-19

The calculated areas are §,=4x 107*m? and $,=3.6x 10 *m’. The mean lengths are
£=011+0.11+0.12=0.34m
€ =012+ 0.009 + 0.009 =0.138 m
From the B-H curve for cast iron in Fig. 11-13, H,=1270 A/m.

@ = B,S, = (0.45)(3.6 x 10 %) = 1.62 x 10 Wb
@

B,=—=04

(=g =0T

Then, from the cast steel curve in Fig. 11-12, H, =233 A/m.
The equivalent circuit, Fig. 11-20, suggests the equation

F=NI= H|€| +H2f2
1507 = 233(0.34) + 1270(0.138)
I=1.70A

Hy 4

o
‘*l

NI C) T A §'Iﬂz 6

Fig. 11-20
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11.9. The magnetic circuit shown in Fig. 11-21 is cast iron with a mean length ¢, =0.44m and
-1 square cross section 0.02 X 0.02m. The air-gap lengthis ¢,=2mm and the coil contains
& 400 turns. Find the current I required to establish an air-gap flux of 0.141 mWhb.

N = 400 1 .
~ 4
T
Fig. 1121
The flux @ in the air gap is also the flux in the core.
¢ 0141x10°°
B‘=§;=W—O.35T

From Fig. 11-13, H;=850A/m. Then
H,¢, = 850(0.44) = 374 A
For the air gap, S, = (0.02+0.002)*=4.84 x 10™*m*, and so

_® 0.141 X 10°* a
He=1s5 %= (47 x 1077)(4.84 x 107*) (@x107)=d64A

Therefore, F=H{ + H,£,=838A and

F 8
!—E—ESZ.WA

11.10. Determine the reluctance of an air gap in a dc machine where the apparent area
is §,=426x107?m’ and the gap length £, =5.6 mm.

¢ 5.6 10°?

= = = -1
R s, G x 10 )@ zex 109 "X 1O°H

11.11. The cast iron magnetic core shown in Fig. 11-22 has an area §;=4cm® and a mean length
0.438m. The 2-mm air gap has an apparent area S, =4.84cm?. Determine the air-gap
flux .

The core is quite long compared to the length of the air gap, and cast iron is not a particularly
good magnetic material. As a first estimate, therefore, assume that 600 of the total ampere turns are
dropped at the air gap, i.e., H,£, =600 A.

@
H6,=—
a ”osﬂ

o= 600(47 x 107 7)(4.84 x 107*) _
2%x107?

¢

1.82x 107* Wb
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Then B,=®/5=046T, and from Fig. 11-13, H;=1340 A/m. The core drop is then
H,¢, = 1340(0.438) = 587 A
so that
Het + H,6, = 1187 A

This sum exceeds the 1000 A mmf of the coil. Consequently, values of B; lower than 0.46T
should be tried until the sum of H,f; and H,{, is 1000 A. The values B,=0.41T and &=
1.64 X 107* Wb  will result in a sum very close to 1000 A,

Solve Problem 11.11 using reluctances and the equivalent magnetic circuit, Fig. 11-23.

Fig. 11-23

From the values of B, and H, obtained in Problem 11.11,

B,
fold, = —ﬁ'= 383x10*H/m

Then, for the core,
6 0.438 .
= S BB I09@x 109~ 286X 10°H
and for the air gap,
& 2x107? _ o
A= S @R I0 Yas <0 X I0H
The circuit equation,
F=0(@ +®,)
_ 1000 .
gives q“=2.8t'>:‘<10"+3.293-<10"_uﬂxl0 Wb

The corresponding flux density in the iron is 0.41T, in agreement with the results of Problem
11.11. While the air-gap reluctance can be calculated from the dimensions and u,, the same is not
true for the reluctance of the iron. The reason is that u, for the iron depends on the values of B, and
H;.

Solve Problem 11.11 graphically with a plot of ® versus F.

Values of H; from 700 through 1100 A/m are listed in the first column of Table 11-2; the
corresponding values of B, are found from the cast iron curve, Fig. 11-13. The values of & and H,¢(,
are computed, and H,f, is obtained from ®€,/u,S,. Then F is given as the sum of H,/, and
H,€,. Since the air gap is linear, only two points are required. The flux @ for F=1000A is seen
from Fig. 11-24 to be approximately 1.65 x 107*Wb.

‘This method is simply a plot of the trial and error data used in Problem 11.11. However, it is
helpful if several different coils or coil currents are to be examined.
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Table 112
H,(A/m) | Bi(T)  (Wb) He(A) | HA(A) | F(A)
700 0.295 | 1.18x107* 307 388 695
800 0335 | 1.34x10™* 350 441 91
900 0365 | 1.46x10™* 395 480 874
1000 0.400 | 1.60x107™* 438 526 964
1100 0420 | 1.68x10™* 482 552 1034

b (Wb x 107%)

F(A)
Fig. 11-24

ll.l;l. Determine the fluxes & in the core of Problem 11.11 for coil mmfs of 800 and 1200 A. Use

11.15.

a graphical approach and the negative air-gap line.

The © versus H¢, data for the cast iron core, developed in Problem 11.13, are plotted in Fig.
11-25. The air-gap ® versus F is linear. One end of the negative air-gap line for the coil mmf of
8 Aisat =0, F=800A. The other end assumes H,f, =800A, from which

- HoS(H.L,)
® z

which locates thisend at ®=2.43x10"*Wb, F=0.

The intersection of the F=800A negative air-gap line with the nonlinear ® versus F curve for
the cast iron core gives @®=1.34x10™*Wb. Other negative air-gap lines have the same negative
slope. For a coil mmf of 1000A, ®=163x10"*Wb and for 1200 A, @ =1.85x 10"*Wb.

=243x107*Wb

Solve Problem 11.11 for a coil mmf of 1000 A using the B-H curve for cast iron.

This method avoids the construction of an additional curve such as the & versus F curves of
Problems 11.13 and 11.14. Now, in order to plot the air-gap line on the B-H curve of iron,
adjustments must be made for the different areas and the different lengths. Table 11-3 suggests the

necessary calculations.

F 1000
4=m§-—2283A!m
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fr — = e = =

Negative
Air-Gap Line

02 :—-—H,-(‘—r-rq—h',(,
0 1 1 L1 L1
a 200 400 600 800 1000 1200
F(A)
Fig. 11-25
Table 11-3
2 F &
B | Ham | B(F) @ | H(F) @wm | Z-8(3) @m
S, ¢ ¢ ¢
0.10 0.80 % 10° 0.12 363 1920
0.30 2.39x 10° 0.36 1091 1192
0.50 3.98 x 10° 0.61 1817 466

The data from the third and fifth columns may be plotted directly on the cast iron B-H curve, as
shown in Fig. 11-26. The air gap is linear and only two points are needed. The answer is seen to
be B,=0.41T. The method can be used with two nonlinear core parts, as well (see Problem 11.16).

B (T)

.80

0.70

060
0.50
Cast Iron

Air-Gap Line,
Adjusted

od0f ——————————-—-

0.30

0.20

0.10
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11.16. The magnetic circuit shown in Fig. 11-27 consists of nickel-iron alloy in part 1,
ot where #=10cm and §,=2.25cm’, and cast steel for part 2, where &=
8cm and S,=3cm’ Find the flux densities B, and B, .

Mathcad
1
F=40 ARN |
2
=
Fig. 11-27

The data for part 2 of cast steel will be converted and plotted on the B-H curve for part I of
nickel-iron alloy (F/# =400 A/m). Table 11-4 suggests the necessary calculations,

Table 11-4
B,(T) | Hy(A/m) B;(%) M | & —‘;:) (A/m) g- H,(}?) (A/m)
0.33 200 0.4 160 240

0.44 250 0.59 200 200

0.55 300 0.73 240 160

0.65 350 0.87 280 120

0.73 400 0.97 320 80

0.78 450 1.04 360 40

0.83 500 1.11 400 0

From the graph, Fig. 11-28, B,=1.01T. Then, since B,S,= B.S,,

2.25x107*

B.=1.01
2 (3><10‘

)=076T
These values can be checked by obtaining the corresponding H, and H, from the appropriate B-H
curves and substituting in

F=H/¥+H,

11.17. The cast steel parallel magnetic circuit in Fig. 11-29(a) has a coil with 500 turns. The mean
;-é lengths are & =§6=10cm, ¢ =4cm. Find the coil current if ©,=0.173 mWb.

Mathcad ¢]=q)'z+q)3

Since the cross-sectional area of the center leg is twice that of the two side legs, the flux density is the
same throughout the core, i.e.,

0.173x 10 *
B] = 82—83— W= 1.15T

Corresponding to B=1.15T, Fig. 11-13 gives H =1030A/m. The NI drop between points a
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1.20

Nickel-Iron Alloy

1.00

0.80

B, (M

10.60|

Cast Steel,
Adjusted

LIEYi] o

0.20

H] (Mm)
Fig. 11-28

b
H"\
—l.‘ll
LhdA's

Fig. 1129

and b is now used to write the following equation [see Fig. 11-29(b)]:
F-Hfi=H&&=H6 or F=H(L+ 6)=1030(0.14) = 144.2 A
_F 1442

Then I_E*W=O'ZQA

The same cast steel core as in Problem 11.17 has identical 500-turn coils on the outer legs,
with the winding sense as shown in Fig. 11-30(a). [If again $,=0.173mWb, find the coil
currents.

The flux densities are the same throughout the core and consequently H is the same. The
equivalent circuit in Fig. 11-30(b) suggests that the problem can be solved on a per pole basis.

B=%=L15T and H=1030A/m (from Fig. 11-13)

E=H(6+ £)=1030(0.14) = 144.2 A I=029A
Each coil must have a current of 0.29 A.
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®)
mo 11-30

11.19. The parallel magnetic circuit shown in Fig. 11-31(a) is silicon steel with the same
cross-sectional area throughout, $=130cm®’. The mean lengths are £ =46=
25cm, &=5cm. The coils have S50 turns each. Given that ®,=9uWb and &,=
120 Wb, find the coil currents.

q)z: ¢3 "¢| =0.30x 10_‘Wb

90 x 107°
Bi=130x10+= 09T
i i U N, a
F r——¢|".—'_"?‘¢l“__‘\ | Py ~—d,
] ]

Fig. 11-31

From Fig. 11-12, H,=87A/m. Then, H, £, =218A. Similarly, B,=0.23T, H,=49A/m,
H,6,=25A; and B;=092T, H,=140A/m, H;f=35.0A. The equivalent circuit in Fig.
11-31(b) suggests the following equations for the NI drop between points a and b:

HI(I_E=H26=E_HJ€!
21.8-FKR=25=FK-350
from which FF=193A and E=375A. Thecurrentsare [,=0.39A and 5L =075A.

11.20. Obtain the equivalent magnetic circuit for Problem 11.19 using reluctances for three legs,
and calculate the flux in the core using F;=193A and FK=375A.

4
s
From the values of B and H found in Problem 11.19,
Molt,, =7.93x 107 H/m Holt,, = 4.69 x 10> H/m Mol = 6.57 X 107 H/m
Now the reluctances are calculated:

R, = b =2.43x 10°H™"
Holér S
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11.22.

11.24.

11.25.

11.26.

11.27.

11.28.
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®,=820x 10°'H', R=293x10°H". From Fig. 11-32,

=03+ ®,R, (n

E=0,R — O, R, (2)
O +D,=d, 3

-"—bl -‘—03
! l'% oy
EE-‘*:
E, =19.3Al ) 1F,=37.5A
Fig. 1132

Substituting ®, from (3) into (1) and (2) results in the following set of simultaneous equations in
@, and P,

F= O(R+%R)- DR, or 193= @,(3.25 x 10°) — ®,(0.82 x 10°)
E=-®,%®, +O( R+ Ry) 37.5 = —&,(0.82 x 10°) + ®,(3.75 % 10°)

Solving, ©®,=89.7uWb, @®,=303uWb, o,=120uWb.

Although the simultaneous equations above and the similarity to a two-mesh circuit problem may
be interesting, it should be noted that the flux densities B,, B,, and B, had to be known before the
relative permeabilities and reluctances could be computed. But if B is known, why not find the flux
directly from & = BS? Reluctance is simply not of much help in solving problems of this type.

Supplementary Problems

Find the inductance per unit length of a coaxial conductor with an inner radius ¢=2mm and an
outer conductor at b=9mm. Assume u,=1. Ans. 0.301 uH/m

Find the inductance per unit length of two parallel cylindrical conductors, where the conductor radius is
1 mm and the center-to-center separation is 12 mm. Ans. 0.992 uH/m

Two parallel cylindrical conductors separated by 1m have an inductance per unit length of
2.12uH/m. What is the conductor radius?  Ans. 5mm

An air-core solenoid with 2500 evenly spaced turns has a length of 1.5m and radius 2x 10 m. Find
the inductance L. Ans. 6.58mH

A square-cross-section, air-core toroid such as that in Fig. 11-3 has inner radius 5 cm, outer radius 7 cm
and height 1.5cm. If the inductance is 495 guH, how many turns are there in the toroid? Examine the
approximate formula and compare the result. Ans. 700, 704

A square-cross-section toroid such as that in Fig. 11-3 has »,=80cm, r,=82cm, a=15cm, and
700 turns. Find L using both formulas and compare the results, (See Problem 11.5.)
Ans. 36.3 uH (both formulas)

A coil with 5000 turns, r,=1.25cm, and £ =1.0m has a core with u,=50. A second coil of
500 turns, r,=2.0cm, and #=10.0cm is concentric with the first coil, and in the space between
the coils p=~p,. Find the mutual inductance. Ans. 7.71mH

Determine the relative permeabilities of cast iron, cast steel, silicon steel, and nickel-iron alloy at a flux
density of 0.4 T. Use Figs. 11-12 and 11-13. Ans. 318, 1384, 5305, 42,440
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11.29. An air gap of length £, =2mm has a flux density of 0.4 T. Determine the length of a magnetic core
with the same NI drop if the core is of (@) cast iron, (b) cast steel, (¢) silicon steel.
Ans. (@) 0.64cm; (b) 2.77m; (c) 10.6 m

11.30. A magnetic circuit consists of two parts of the same ferromagnetic material (u, =4000). Part 1
has &=50mm, S, =104mm’; part 2 has &=30mm, S,=120mm’. The material is at a part
of the curve where the relative permeability is proportional to the flux density. Find the flux @ if the
mmf is 4.0A.  Ans. 263 uWb

11.31. A toroid with a circular cross section of radius 20 mm has a mean length 280 mm and a flux ¢ =
1.50mWb. Find the required mmf if the core is silicon steel. Ans. 83.2A

11.32. Both parts of the magnetic circuit in Fig. 11-33 are cast steel. Part I has £ =34cm and S, =
6cm? part 2has £=16cm and S,=4cm®’ Determine the coil current I, , if 5,=05A, N,=
200 turns, N, =100 turns, and & =120 uWb. Ans. 0.65A

-~
] ol
i
Flf 1
! f
F H
} =
1
Fig. 11-33

11.33. The silicon steel core shown in Fig. 11-34 has a rectangular cross section 10 mm by 8 mm and a mean
length 150mm. The air-gap length is 0.8mm and the air-gap flux is 80 uWb. Find the
mmf. Ans. 561.2A

Fig. 11-34

11.34, Solve Problem 11.33 in reverse: the coil mmf is known to be 561.2 A and the air-gap flux is to be
determined. Use the trial and error method, starting with the assumption that 9% of the NI drop is
across the air gap.

11.35. The silicon steel magnetic circuit of Problem 11.33 has an mmf of 600 A. Determine the air-gap
flux. Ans. 85.2uWb

11.36. For the silicon steel magnetic circuit of Problem 11.33, calculate the reluctance of the iron, &, and the

reluctance of the air gap, ®,. Assume the flux ®=80uWb and solve for F. See Fig. 11-
35.  Ans. R=0313uH"', R,=6.70uH™, F=561A

x;

)

Fig. 11-35
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11.40.

11.41.

11.42.

11.43.

11.44.

11.45.

11.46.
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A silicon steel core such as shown in Fig. 11-34 has a rectangular cross section of area §;=
80mm’ and an air gap of length £ =0.8mm with area §,=95mm’. The mean length of the
core is 150mm and the mmf is 600 A. Solve graphically for the flux by plotting ¢ versus F in the
manner of Problem 11.13. Ans. 85uWb

Solve Problem 11.37 graphically using the negative air-gap line for an mmf of 600 A.  Ans. 85uWb

Solve Problem 11.37 graphically in the manner of Problem 11.15, obtaining the flux density in the
core. Ans. 1.06T

A rectangular ferromagnetic core 40 x 60 mm has a flux ® =1.44mWb. An air gap in the core is of
length £, =2.5mm. Find the NI drop across the air gap. Ans. 1079A

A toroid with cross section of radius 2 cm has a silicon steel core of mean length 28 cm and an air gap of
length 1 mm. Assume the air-gap area, §,, is 10% greater than the adjacent core and find the mmf
required to establish an air-gap flux of 1.5mWb.  Ans. 952 A

The magnetic circuit shown in Fig. 11-36 has an mmf of 500 A. Part 1 is cast steel with £ =
340mm and S,=400mm?; part 2is cast iron with &=138mm and S, =360mm?. Determine
the flux . Ans, 229 uWb

Fig. 11-36

Solve Problem 11.42 graphically in the manner of Problem 11.16.  Ans. 229 uWb

A toroid of square cross section, with r,=2cm, r=3cm, and height a=1cm, has a two-part
core. Part 1 is silicon steel of mean length 7.9cm; part 2 is nickel-iron alloy of mean length
7.9cm. Find the flux that results from an mmf of 17.38 A.  Ans. 107*Wb

Solve Problem 11.44 by the graphical method of Problem 11.15. Why is it that the plotting of the
second reverse B-H curve on the first is not as difficult as might be expected?
Ans. 107*Wb. The mean lengths and cross-sectional areas are the same

The cast steel parallel magnetic circuit in Fig. 11-37 has a 500-turn coil in the center leg, where the
cross-sectional area is twice that of the remainder of the core. The dimensions are £, =1mm, S§,=
5=150mm? S§,=300mm’, 4=40mm, &=110mm, and &=109mm. Find the coil current
required to produce an air-gap flux of 125 uWb. Assume that S, exceeds S; by 17%. Ans. 1.MA
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11.47. The cast iron parallel circuit core in Fig. 11-38 has a 500-turn coil and a uniform cross section of 1.5 cm?
throughout. The mean lengths are £ =#¢=10cm and £ =4cm. Determine the coil current
necessary to result in a flux density of 0.25Tinleg 3.  Ans. 1.05A

= !| "‘—’_—(3" =

1 | ll
E $) !

L ! !

N — ’
mo 11-38

11.48. Two identical 500-turn coils have eqgual currents and are wound as indicated in Fig. 11-39. The cast
steel core has a flux in leg 3 of 120uWb. Determine the coil currents and the flux in leg I.

Ans. 0.41A,0Wb

1 — oot m
001
08 l: @ oo | ¢ @
D\ o) ===
001 001}  oa] ’
e olam———]
Fig. 11-39

11.49. Two identical coils are wound as indicated in Fig. 11-40. The silicon steel core has a cross section of
6 cm’ throughout. The mean lengths are £ =¢=14cm and &=4cm. Find the coil mmfs if the
fluxin leg 1is 0.7mWb.  Ans. 385A

] 3 a
183 ot

Fig. 11-40




Chapter 12

Displacement Current and Induced EMF

12.1 DISPLACEMENT CURRENT

In static fields the curl of H was found to be pointwise equal to the current density J.. This is
conduction current density; the subscript ¢ has been added to emphasize that moving charges—
electrons, photons, or ions—compose the current. If VXH=IJ_ were valid where the fields and
charges are variable with time, then the continuity equation would be V-J . =V+(VXH)=0,
instead of the correct

Hence, James Clerk Maxwell postulated that

VXH=).+Jp where JDE%

With the inclusion of the displacement current density J;, the continuity equation is satisfied:

The displacement current i, through a specified surface is obtained by integration of the normal
component of J;, over the surface (just as i is obtained from J.).

3D d
in=| 3 -ds=J—-—-ds=-J D-
‘o Is P s ot dr Jg ds
Here, the last expression assumes that the surface § is fixed in space.

EXAMPLE 1. Use Stokes’ theorem (Section 9.8) to show that i =i, in the circuit of Fig. 12-1.
Since the two surfaces §; and §; have the common contour C,

iH-dl=L(VXH)-dS=L(VXH)-dS

=L (L.+%?)-ds=L(l,+%)-dS
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Assuming the flux is confined to the dielectric between the conducting plates, D=0 over §,. And since no
free charges are in motion within the dielectric, J, =0 over ;. Therefore,

aD
J,-dS=I—-dS or i=i
J;, 5, Ot v

It should be noted that 3D/t is nonzero only over that part of S, that lies within the dielectric.

EXAMPLE 2. Repeat Example 1, this time using circuit analysis.
Refer to Fig. 12-1. The capacitance of the capacitor is

€A
C=—
d
where A is the plate area and d is the separation. The conduction current is then
. dv eAdv
ECYT
On the other hand, the electric field in the dielectric is, neglecting fringing, E =wv/d. Hence
€ aD edv
D=eE=yv  FTaa

and the displacement current is (D is normal to the plates)

. aDn edv eAdv |
‘“_L at °ds-.[.‘dd:ds_7dr —

12.2 RATIO of J. TO J,

Some materials are neither good conductors nor perfect dielectrics, so that both conduction
current and displacement current exist. A model for the poor conductor or lossy dielectric is shown
in Fig. 12-2. Assuming the time dependence ¢/ for E. the total current density is

3
3, =) +J,=0E +5f(EE)=oE + jweE

from which

J_ o

Jp we

As expected, the displacement current becomes increasingly important as the frequency increases.

Fig. 122

EXAMPLE 3. A circular-cross-section conductor of radius 1.5mm carries a current ¢ =5.5sin(4x
10'%) (uA). What is the amplitude of the displacement current density, if ¢=35MS/m and €, =1?

Jo_ o _ 3.50 x 107

Iy we (4% 10™)(10 °/36m)

(5.5x 10 )/[n(1.5 x 107%)’]
9.90 x 107

=9.90 x 10’

Then Ip=

=7.86 x 107 uA/m’
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12.3 FARADAY’S LAW AND LENZ’S LAW

The minus sign in Faraday’s law (Section 11.3) implicitly gives the polarity of the induced
voltage v. To make this explicit, consider the case of a plane area S, bounded by a closed curve C,
where § is cut perpendicularly by a time-variable flux density b (Fig. 12-3). Faraday’s law here takes
the integral form

fE-dI=—£J’B-dS
c dt Jg

in which the positive sense around C and the direction of the normal, dS, are corrected by the usual
right-hand rule [Fig. 12-3(a)]. Now if B is increasing with time, the time derivative will be positive
and, thus, the right side of the above equation will be negative. In order for the left integral to be
negative, the direction of E must be opposite to that of the contour, Fig. 12-3(b). A conducting
filament in place of the contour would carry a current i, also in the direction of E. As shown in
Fig. 12-3(c), such a current loop generates a flux ¢’ which opposes the increase in B. Lenz’s law
summarizes this discussion: the voltage induced by a changing flux has a polarity such that the current
established in a closed path gives rise to a flux which opposes the change in flux.

@ ®) (©
Fig. 12-3

In the special case of a conductor moving through a time-independent magnetic field, the
polarity predicted by Lenz’s law is yielded by two other methods. (1) The polarity is such that the
conductor experiences magnetic forces which oppose its motion. (2) As indicated in Fig. 12-4, a
moving conductor appears to distort the flux, pushing the flux lines in front of it as it moves. This
same distortion is suggested by the counterclockwise flux lines shown around the conductor. By the
right-hand rule the current which would result if a closed path were provided would have the
direction shown, and the polarity of the induced voltage is + at the end of the conductor where the
current would leave. Figure 12-5 confirms this by comparing the moving conductor and its resulting
current to a voltage source connected to a similar external circuit.
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+ /.; /!

(a) )
Fig. 12-§

124 CONDUCTORS IN MOTION THROUGH TIME-INDEPENDENT FIELDS

The force F on a charge Q in a magnetic field B, where the charge is moving with velocity U,
was examined in Chapter 10.

F=0Q(UXB)
A motional electric field intensity, E,,, can be defined as the force per unit charge:
F
E,= 6 =UXB

When a conductor with a great number of free charges moves through a field B, the impressed E,,,
creates a voltage difference between the two ends of the conductor, the magnitude of which depends
on how E,, is oriented with respect to the conductor. With conductor ends @ and b, the voltage of a

with respect to b is
va,,=rE,,.-dl=r(UxB)'dl
b b

If the velocity U and the field B are at right angles, and the conductor is normal to both, then a
conductor of length ¢ will have a voltage
v=B¢€U

For a closed loop the line integral must be taken around the entire loop:
v =§ (UXB)-dl

Of course, if only part of the complete loop is in motion, it is necessary only that the integral cover
this part, since E,, will be zero elsewhere.

EXAMPLE 4. In Fig. 12-6, two conducting bars move outward with velocities U,=12.5(-a,))
m/s and U,=8.0a,m/s inthe field B=035a, T. Find the voltage of b with respect to c.
At the two conductors,

E..=U, X B=438(~a,) V/m
E.,=U, X B =2.80a, V/m
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and so
.50 . 50
v...=f 4.38(—=a,) * dxa, = -2.19V v,,,=r 2.80m, - dxa. =140V
(1]

Vpe = Upe + V0 + VU, =2194+0+1.40=359V

Since b is positive with respect to ¢, current through the meter will be in the a, direction. This clockwise
current in the circuit gives rise to flux in the —a, direction, which, in accordance with Lenz’s law, counters the
increase in the flux in the +a, direction due to the expansion of the circuit. Moreover, the forces that B exerts
on the moving conductors are directed opposite to their velocities.

12.5 CONDUCTORS IN MOTION THROUGH TIME-DEPENDENT FIELDS

When a closed conducting loop is in motion (this includes changes in shape) and also the field B
is a function of time (as well as of position), then the total induced voltage is made up of a
contribution from each of the two sources of flux change. Faraday’s law becomes

d oB
v=-—EJ;B-dS—- sa—‘ds+§(UxB)-dl

The first term on the right is the voltage due to the change in B, with the loop held fixed; the second
term is the voltage arising from the motion of the loop, with B held fixed. The polarity of each
term is found from the appropriate form of Lenz’'s law, and the two terms are then added with
regard to those polarities.

EXAMPLE 5. As shown in Fig. 12-7(a), a planar conducting loop rotates with angular velocity w about the x
axis; at t=0 it is in the xy plane. A time-varying magnetic field, B=B(f)a,, is present. Find the
voltage induced in the loop by using the two-term form of Faraday’s law.

(a) ®)

Fig. 12-7
Let the area of the loop be A. The contribution to v due to the variation of B is
= [ B _[9B - 98
v, = La‘ ds = . a, - dSa, = dJAcosmr

since ®&,*8, =COS Wl
To calculate the second, motional contribution to v, the velocity U of a point on the loop is needed. From
Fig. 12-7(b) it is seen that

U==mo,,=mﬁan,

so that

UXB=—>
COos

wa, X Ba, = Y wBhB sin wi(—a,)
wt cos ot
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since ®, Xa, = sin wi(—a,). Consequently,

@B sin wt
v;=§(UXB)-dI=—W§ya,-dl

Stokes’ theorem (Section 9.8) can be used to evaluate the last integral. Since VXya, =-—a,,

éya,'dI=J;(VXy.t)-dS=‘[(—a,)-dSa,,=—Acoswt

wB sin wf

Therefore v, = ——————(—~Acos wt) = BAw sin wt

12.1.

12.2.

a

cos wi

Solved Problems

In a material for which 0=5.0S/m and € =1 the electric field intensity is E =
250sin 10'% (V/m). Find the conduction and displacement current densities, and the
frequency at which they have equal magnitudes.

J.=0E =1250sin 10" (A/m?)
On the assumption that the field direction does not vary with time,

o =§£ = g(eﬂe,zso sin 10"°f) = 22.1c0s 10 (A/m?)

For J‘ =Jp,

_ 5.0
8.854x 107"

which is equivalent to a frequency f =8.99 x 10"°Hz = 89.9 GHz.

o=we or @ =5.65 x 10" rad/s

A coaxial capacitor with inner radius 5 mm, outer radius 6 mm and length 500 mm has a
dielectric for which €, =6.7 and an applied voltage 250sin 377t (V). Determine the
displacement current i, and compare with the conduction current ..

Assume the inner conductortobe at v=0. Then, from Problem 8.7, the potential at 0.005 <
r=0.006m is

r
0.005

250
v= [m sm377r](ln ) V)
From this,
E= Vo= —w sin377ta, (V/m)

3% 1078
D=¢¢€E=- E-E;—"-]-— sin377ra, (C/m?)

-5
Jp= @= - Mcos 377ta, (A/m?)
ot r
in=Jp(27rL) =9.63x 103 cos 377t (A)
The circuit analysis method for i, requires the capacitance,

2meqe, L

=T ®

=1.02nF
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Then i, = c%= (1.02 x 10 °)(250)(377)(cos 377) =9.63 X 10 Scos 377t (A)

Itis seen that i =ip,.

Moist soil has a conductivity of 107*S/m and €, =2.5. Find J, and J, where
E=6.0x10"%sin9.0x 10°t (V/m)

First, J.=0E=6.0%10"5in9.0x 10°% (A/m?. Then, since D = €y¢€,E,

Iy = %)= ene,%E= 1.20 X 107%c0s 9.0 x 10°t (A/m?)

Find the induced voltage in the conductor of Fig. 12-8 where B=0.04a, T and
U=2.5sin10%a, (m/s)
E,.=UxXxB=0.10sin10’(-a,) (V/m)

20
v-f 0.10sin 10°(—a,) - dxa,
= —0.02sin 10’1 (V)

[CHAP. 12

The conductor first moves in the a, direction. The x =0.20 end is negative with respect to the end

at the z axis for this half cycle.

Fig. 12-8
Rework Problem 12.4 if the magnetic field is changed to B = 0.04a, (T).

Because the conductor cuts no field lines, the induced voltage must be zero. This may be verified

analytically by use of Problem 1.8.
v=fwxn)-dl=fu-(nxdl)=o

since B and dl are always parallel.

An area of 0.65m* in the z =0 plane is enclosed by a filamentary conductor.
induced voltage, given that

B- 0050 04(%2%) (0

See Fig. 12-9.
B
U= -J‘s; . dSI,

= [ 50sin 10°%( 222 . dsa,
f s 10%(*2%)

=23.0sin10° (V)

Find the
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Fig. 129

The field is decreasing in the first half cycle of the cosine function. The direction of i in a closed
circuit must be such as to oppose this decrease. Thus the conventional current must have the
direction shown in Fig. 12-9.

12.7. The circular loop conductor shown in Fig. 12-10 lies in the z =0 plane, has a radius of
0.10 m and a resistance of 5.0Q. Given B=0.20sin 10°a, (T), determine the current.

i
ﬁ ¢=B-S=2x10"nsin10"t (Wb)

_-de__
v=-—r= 2r cos10°t (V)

f=§- ~0.47cos 10t (A)

At t=0+ the flux is increasing. In order to oppose this increase, current in the loop must have an
instantaneous direction —a, where the loop crosses the positive x axis.

Fig. 12-10

12.8. The rectangular loop shown in Fig. 12-11 moves toward the origin at a velocity U=
—250a, m/s in a field

gl
&. B=0.80e **a, (T)

Find the current at the instant the coil sides are at y =0.50m and 0.60m, if R=2.5Q.
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12.10.
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Only the 1.0-m sides have induced voltages. Let the sideat y=0.50m be I.
v, = B,€U = 0.80e **(1)(250) = 155.8 V v,= B,fU=148.2V
The voltages are of the polarity shown. The instantaneous current is

;_155.8-1482

25 =304 A

A conductor 1cm in length is parallel to the z axis and rotates at a radius of 25cm at
1200 rev/min (See Fig. 12-12). Find the induced voltage if the radial field is given
by B=0.5aT.

The angular velocity is
revy/ 1 min rad rad
(120020 ) (G5 (2 g ) = 40= 75
Hence U=rw=(0.251(40x) m/s
E, = 10na, X0.58, = 5.0n(—a,) V/m

o1
v= f 5.0n(—a,)-dza, = -50x10"*x V

The negative sign indicates that the lower end of the conductor is positive with respect to the upper
end.

A conducting cylinder of radius 7cm and height 15 cm rotates at 600 rev/min in a radial

field B=0.20a, T. Sliding contacts at the top and bottom connect to a voltmeter as shown
in Fig. 12-13. Find the induced voltage.

w = (600)(%)(27) = 20x rad/s
U = (207)(0.07)a, m/s
E,=UXB=0.88(—a,)V/m

Each vertical element of the curved surface cuts the same flux and has the same induced
voltage. These elements are effectively in a parallel connection and the induced voltage of any
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element is the same as the total.

.15
v= J; 0.88(—a,)~dza, =—-0.13V (+ at the bottom)

12.11. In Fig. 12-14 a rectangular conducting loop with resistance R =0.20Q turns at
! 500 rev/min. The vertical conductor at r,=0.03m isina field B,=0.25a, T, and the

conductor at ,=0.05m isina field B,=0.80a, T. Find the current in the loop.

U, = (500)()(2)(0.03)a, = 0.507a, m/s

Mathead

50
U, =r (0.50sra, x (.25a,)~dza, = —0.20 V
(1]

Similarly, U,=0.837a,m/s and v,=-1.04V. Then

,_104-020
T 020

=420 A

in the direction shown on the diagram.

Fig. 12-14

12.12. The circular disk shown in Fig. 12-15 rotates at o (rad/s) in a uniform flux density B=
Ba,. Sliding contacts connect a voltmeter to the disk. What voltage is indicated on the
meter from this Faraday homopolar generator?

Fig. 12-15

One radial element is examined. A general point on this radial element has velocity U=
wra,, so that

E, =UXB= wrBa,
wa’B

and v= r wrBa, - dra, =
0

where a is the radius of the disk. The positive result indicates that the outer point is positive with
respect to the center for the directions of B and @ shown.

12.13. A square coil, 0.60m on a side, rotates about the x axis at w=60nrrad/s in a
) field B=0.80a, T, asshown in Fig. 12-16(a). Find the induced voltage.
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@ )
Fig. 12-16

Assuming that the coil is initially in the xy plane,
@ = ot = 60xr (rad)
The projected area on the xy plane becomes [see Fig. 12-16(b)]:
A =(0.6)(0.6 cos 60n1) (m?)
Then ¢ =BA=0.288cos60xt (Wb) and
d¢

‘U:—E

=54.3sin60m (V)
Lenz's law shows that this is the voltage of a with respect to b.
Alternate Method
Each side parallel to the x axis has a y component of velocity whose magnitude is
|U)| = lrw sin a| = |18B.07 sin 605t|  (m/s)
The voltages B€ |U,| for the two sides add, giving
lv|=2(B€|U,|)=|54.3sin60nt| (V)
Lenz’s law again determines the proper sign.

Check Example 5 by means of the original, differential form of Faraday’s law.

From Fig. 12-7(b) the projected loop area normal to the field is A cos wf, whence
¢ = B(t) (A cos wt)

do dB
and v= P il

(It is almost always simpler to use the differential form.)

Acoswt + BAwsinwt = v, + v,

[CHAP. 12

Find the electric power generated in the loop of Problem 12.11. Check the result by

calculating the rate at which mechanical work is done on the loop.
The electric power is the power loss in the resistor:
F.=i'R = (4.20)°(0.20) =3.53 W
The forces exerted by the field on the two vertical conductors are
F, = i(}; X B,) = (4.20)(0.50)(0.25)(n, X 8,) =0.525a, N
F,=i(l, X B;) = (4.20)(0.50)(0.80)(—a, X a,) = —1.68a, N
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12.17.

12.18.

12.19.

12.21.

12.22.

12.23.

To turn the loop, forces —F, and —F, must be applied; these do work at the rate
P=(—F))* U, + (—F;)*» U, = (—0.525)(0.507) + (1.68)(0.83n) =3.55 W
To within rounding errors, P=PF,.

Supplementary Problems

Given the conduction current density in a lossy dielectric as J. =0.02sin 10°% (A/m?), find the
displacement current density if 0=10S/m and € =6.5. Ans. 1.15%x10°cos 10% (A/m?)

A circular-cross-section conductor of radius 1.5 mm carries a current i, = 5.5sin4 x 10'%r (uA). What
is the amplitude of the displacement current density, if o=35MS/m and ¢ =1?

Ans. 7.87x 107 pA/m’

Find the frequency at which conduction current density and displacement current density are equal in
(a) distilled water, where 0=2.0x10"*S/m and ¢, =81; (b) seawater, where ¢=4.0S/m
and € =1  Ans. (a)4.44x10°Hz; (b) 7.19 x 10" Hz

Concentric spherical conducting shells at »,=0.5mm and r,=1mm are separated by a dielectric
for which ¢, =85. Find the capacitance and calculate i, given an applied voltage v=
150sin5000r (V). Obtain the displacement current i, and compare it with i, .

Ans. i, =ip=7.09%x10""cos 5000t (A)

Two parallel conducting plates of area 0.05m* are separated by 2mm of a lossy dielectric for
which €, =83 and 0=8.0x10"*S/m. Given an applied voltage v=10sin10"t (V), find the
total rms current. Ans. 0.192A

A parallel-plate capacitor of separation 0.6 mm and with a dielectric of €,=15.3 has an applied rms
voltage of 25V at a frequency of 15GHz. Find the rms displacement current density. Neglect
fringing. Ans. 5.32x10° A/m’

A conductor on the x axis between x=0 and x=0.2m has a velocity U=6.0a, m/s in a
field B=0.04a, T. Find the induced voltage by using (@) the motional electric field intensity, (b)
dep/dt, and (c) B€U. Determine the polarity and discuss Lenz's law if the conductor was connected to
a closed loop. Ans. 0.048V (x=0 end is positive)

Repeat Problem 12.22 for B=0.04sinkza, (T). Discuss Lenz’s law as the conductor moves from
flux in one direction to the reverse direction. Ans. 0.048sinkz (V)

The bar conductor parallel to the y axis shown in Fig. 12-17 completes a loop by sliding contact with the
conductors at y=0 and y=0.05m. (e) Find the induced voltage when the bar is stationary
at x=005m and B=0.30sin10'm, (T). (b) Repeat for a velocity of the bar U=
150a, m/s. Discuss the polarity.

Ans. (a)-7.5cos10% (V); (b) —7.5c0s10% —2.25sin10% (V)

At
EaV.Si

Fig. 12-17
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12.26.

12.27.

12,28.

12.29,

12.30.

12.31.
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The rectangular coil in Fig. 12-18 moves to the right at speed U=2.5m/s. The left side cuts flux at
right angles, where B, =0.30T, while the right side cuts equal flux in the opposite direction. Find
the instantaneous current in the coil and discuss its direction by use of Lenz’s law.

Ans.  15mA (counterclockwise)

Fig. 1218

A rectangular conducting loop in the z=0 plane with sides parallel to the axes has y dimension 1 cm
and x dimension 2cm. Its resistance is 5.08. At a time when the coil sides are at x=
20cm and x=22cm it is moving toward the origin at a velocity of 2.5 m/s along the x axis. Find
the current if B=350¢ "a, (T). Repeat for the «coil sides at x=5cm and x=
7em., Ans. (.613mA, 2.75 mA

The 2.0-m conductor shown in Fig. 12-19 rotates at 1200 rev/min in the radial field B=
0.10sin ¢pa, (T). Find the current in the closed loop with a resistance of 100 Q. Discuss the polarity
and the current direction. Ans. 5.03x107"sind0m (A)

I
|
1
\
\
5

| S ——

\

|
!
I
|
|
1
4

Fig. 1219

In a radial field B =10.50a, (T), two conductorsat r=0.23m and r=0.25m are parallel to the
z axis and are 0.01 m in length. If both conductors are in the plane ¢ =40xr, what voltage is
available 1o circulate a current when the two conductors are connected by radial
conductors? Ans. 12.6mV

In Fig. 12-20 a radial conductor, 3=r=6cm, is shown embedded in a rotating glass disk. Two
11.2, mQ resistors complete two circuits. The disk turns at 12rev/min. If the field at the disk
is B=0.30a,(T), calculate the electric power generated. What is the effect of this on the

rotation? Discuss Lenz’s law as it applies to this problem. Ans.  46.3 uW
3 an
R
S R
Fig. 12-20

What voltage is developed by a Faraday disk generator (Problem 12.12) with the meter connections
at n=1mm and r=10mm when the disk turns at 500rev/min in a flux density of
0.80T? Ans. 0209V

A coil such as that shown in Fig. 12-16(a) is 7S mm wide (y dimension) and 100 mm long (x
dimension). What is the speed of rotation if an rms voltage of 0.25 V is developed in the uniform field
B=045a,(T)? Ans. 1000 rev/min



Chapter 13

Maxwell’s Equations and Boundary Conditions

13.1 INTRODUCTION

The behavior of the electric field intensity E and the electric flux density D across the interface
of two different materials was examined in Chapter 7, where the fields were static. A similar
treatment will now be given for the magnetic field strength H and the magnetic flux density B, again
with static fields. This will complete the study of the boundary conditions on the four principal
vector fields.

In Chapter 12, where time-variable fields were treated, displacement current density J,, was
introduced and Faraday’s law was examined. In this chapter these same equations and others
developed earlier are grouped together to form the set known as Maxwell’s equations. These
equations underlie all of electromagnetic field theory; they should be memorized.

13.2 BOUNDARY RELATIONS FOR MAGNETIC FIELDS

When H and B are examined at the interface between two different materials, abrupt changes
can be expected, similar to those noted in E and D at the interface between two different dielectrics
(see Section 7.7).

In Fig. 13-1 an interface is shown separating material 1, with properties o, and g, , from 2, with
o, and p,,. The behavior of B can be determined by use of a small right circular cylinder
positioned across the interface as shown. Since magnetic flux lines are continuous,

ff.;B-dS= B,-dS,+I B-ds+[ B,-dS,=0
cyl cnd 2

end |1

Now if the two planes are allowed to approach one another, keeping the interface between them, the
area of the curved surface will approach zero, giving

B,4d81+f B,-dS,=0

end 1 end 2
or _B,.l dS] + an ds: =0
cnd 1 cnd 2
from which
Bnl = Bn2

Fig. 13-1
205
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In words, the normal component of B is continuous across an interface. Note that either normal to
the interface may be used in calculating B,, and B,,, .

The variation in H across an interface is obtained by the application of Ampere’s law around a
closed rectangular path, as shown in Fig. 13-2. Assuming no current at the interface, and letting
the rectangle shrink to zero in the usual way,

0= § H-dl— H([&f. -HnpAG

whence H,y=H,

Thus tangential H has the same projection along the two sides of the rectangle. Since the rectangle
can be rotated 90° and the argument repeated, it follows that

H,=H,
In words, the tangential component of H is continuous across a current-free interface.
The relation

mo._M

tan 6, pu,

between the angles made by H, and H, with a current-free interface (see Fig. 13-2) is obtained by
analogy with Example 6, Section 7.7.

13.3 CURRENT SHEET AT THE BOUNDARY

If one material at the interface has a nonzero conductivity, a current may be present. This
could be a current throughout the material; however, of more interest is the case of a current sheet
at the interface.

Figure 13-3 shows a uniform current sheet. In the indicated coordinate system the current sheet
has density K=Kya, and it is located at the interface x=0 between regions I and 2. The
magnetic field H' produced by this current sheet is given by Example 2, Section 9.2,

H; =31KXa,, =1Kea, H; = 1K X a,, =4K((-1,)

Thus H' has a tangential discontinuity of magnitude |K,| at the interface. If a second magnetic
field, H", arising from some other source, is present, its tangential component will be continuous at
the interface. The resultant magnetic field,

H=H+H
will then have a discontinuity of magnitude | K| in its tangential component. This is expressed by

the vector formula
(H, - H;) Xa,,=K
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where a,;; is the unit normal from region I to region 2. The vector relation, which is independent
of the choice of coordinate system, also holds for a nonuniform current sheet, where K is the value
of the current density at the considered point of the interface.

13.4 SUMMARY OF BOUNDARY CONDITIONS

For reference purposes, the relationships for E and D across the interface of two dielectrics are
shown below along with the relationships for H and B.

Magnetic Fields Electric Fields

{ D,y = D,, (charge-free)
(D,—Dy)+a,,,=—p, (with surface charge)

Bu‘l = Dp2

H,=H,; (current-free)

{(Hl -H;) xa,,=K (with current sheet) E.=E,
tan el = [ tan 6[ _ _6_'.2.
wne, g, currentiree) @n6, ., (charge-free)

These relationships were obtained assuming static conditions. However, in Chapter 14 they will
be found to apply equally well to time-variable fields.

13.5 MAXWELL’S EQUATIONS

A static E field can exist in the absence of a magnetic field H; a capacitor with a static charge QO
furnishes an example. Likewise, a conductor with a constant current / has a magnetic field H
without an E field. When fields are time-variable, however, H cannot exist without an E field nor
can E exist without a corresponding H field. While much valuable information can be derived from
static field theory, only with time-variable fields can the full value of electromagnetic field theory be
demonstrated. The experiments of Faraday and Hertz and the theoretical analyses of Maxwell all
involved time-variable fields.

The equations grouped below, called Maxwell’s equations, were separately developed and
examined in earlier chapters. In Table 13-1, the most general form is presented, where charges and
conduction current may be present in the region. Note that the point and integral forms of the first
two equations are equivalent under Stokes’ theorem, while the point and integral forms of the last
two equations are equivalent under the divergence theorem.



208 MAXWELL'S EQUATIONS AND BOUNDARY EQUATIONS [CHAP. 13

Table 13-1. Maxwell’'s Equations, General Set

Point Form Integral Form

aD oD .
VxH—J,-b-é-'- }H-dl—L(J,-rEr-)-dS (Ampere’s law)

oB B ,
VXE= - §E°"'=L(‘BT)"’S (Faraday’s law; S fixed)

V-D=p jﬁn-ds=fpdu (Gauss law)
5 (1]

V-B=0 §B-dS=0 (nonexistence of monopole)
5

For free space, where there are no charges (p=0) and no conduction currents (J.=0),
Maxwell’s equations take the form shown in Table 13-2.

Table 13-2. Maxwell’s Equations, Free-Space
Set

Point Form Integral Form
vxﬂ=% 3§n-d|=js(%)‘ds
Vxl-‘.=—% §E-dl=J;(—-%%)-dS
V.-D=0 in-ds=o
V-B=0 in-as=o

The first and second point-form equations in the free-space set can be used to show that
time-variable E and H fields cannot exist independently. For example, if E is a function of time,
then D=¢E will also be a function of time, so that dD/dt will be nonzero. Conse-
quently, VXH is nonzero, and so a nonzero H must exist. In a similar way, the second
equation can be used to show that if H is a function of time, then there must be an E field present.

The point form of Maxwell’s equations is used most frequently in the problems. However, the
integral form is important in that it better displays the underlying physical laws.

Solved Problems

13.1. In region 1 of Fig. 13-4, B,=1.2a, +0.8a,+0.4a, (T). Find H; (i.e., Hat 2z = +0) and
_.;-;i the angles between the field vectors and a tangent to the interface

Write H, directly below B, . Then write those components of H, and B, which follow directly from
the two rules B normal is continuous and H tangential is continuous across a current-free interface.
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B,=12a, + 0.8a,+04 a, (T)

H,= pl(s.nn, +5330,42.67 2,)10 (A/m)
0

H,= ;:— (8.0a, + 5.33a, + 10%u,H,,2,)10™2 (A/m)
i]

B,= B,.a+ B,a+04 a, (T)
Now the remaining terms follow directly:

B, 0.4
B.>= ot H,, =8.0X 107*(T) B,,=5.33x107*(T) H,=—"=——(A/m)
Holrz2 Mo
Angle 6, is 90° — a, , where a, is the angle between B, and the normal, a, .
B| -8
cos a@; = <=0.27
STy

whence a,=74.5° and 6,=15.5° Similarly, 8, =76.5°.
Check: (tan 0,)/(tan 8,;) = p,./ ..

13.2. Region 1, for which u,, =3, isdefinedby x<0 andregion2, x>0, has pu,=>35.

Given
H,=4.0a, +3.0a, —6.0a, (A/m)

show that 6,=19.7° and that H,=7.12A/m.

Proceed as in Problem 13.1.

H,= 4.0a+ 3.0a,— 60a, (A/m)
B, = u(12.0a, + 9.0a,—18.08,) (T)
B, = o(12.0a, + 15.0a, — 30.08,) (T)
H,= 2.40s,+ 3.0a,— 6.0a, (A/m)

Now H,=V(2.40)" + (3.0)* + (-6.0* = 7.12 A/m

The angle o, between H, and the normal is given by
H,

cosa2=—}f=0.34 or @, =70.3°

Then 6,=90°— a,=19.7°.

13.3. Region I, where pu,, =4, is the side of the plane y+2=1 containing the origin (see
«-li Fig. 13-5). Inregion 2, p,=6. B,=2.0a,+1.0a, (T), find B, and H,.
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Choosing the unit normal &, = (a, + 8,)/V2,
(208, +1.08)- (8, +2,) 1
V2 V2

B, = (é)a =0.58, +0.50, = B,,

B.l = Bl - Bnl = 2.0.. + 0.5., - 0.5.;

Bnl

1
H, = (0.5, +0.1258, ~ 0.125a,) = H,
i}

B, = uop,.H,; = 3.0a, +0.75a, — 0.75a,
Now the normal and tangential parts of B, are combined.
B,=3.0n, +1.25a, - 0.25a, (T)

H,=pl (0.50a, + 0.21a, — 0.04a,) (A/m)
0

In region I, definedby 2z<0, p,=3 and
H, = i (0.2, +0.53, + 1.0a,) (A/m)

Find H; if it is known that 6, =45°.

Hl A
COS @, = =(.88 or o, =28.3°
T N '
Then, 6,=61.7" and
tan61.7° u.
tands 3 O M 557

From the continuity of normal B, pu, H,,=p,H,,, andso

l prl l
=—1{0.2a, + 0.5a, + — 1.0a, ) = — (0.2a, + 0.5a, + 0.54a, A
M= ( sa, +£21.00,) = , +0.54a,) (A/m)

[CHAP. 13

A current sheet, K=6.5a, A/m, at x=0 separates region I, x<0, where H,=

10a, A/m and region 2, x>0. Find H,at x=+0.

Nothing is said about the permeabilities of the two regions; however, since H, is entirely tangential,
a change in permeability would have no effect. Since B,,=0, B,;=0 and therefore H,=0.
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(H, —H;)Xa,,=K
(108, — H,,8,) X 2, = 6.5a,
(10— H,;)(—n,) = 6.5a,
H,,=16.5 (A/m)
Thus, H,=16.5a, (A/m).

13.6. A current sheet, K=9.0a, A/m, is located at z=0, the interface between region
-1 1, z<0, with p,=4, and region 2, z>0, u,=3. Given that H,=14.5a, +
é‘ 8.0a, (A/m), find H, .

The current sheet shown in Fig. 13-6 is first examined alone.
H| =1(9.0)a, X (—a,) =4.5(—a,)
H;=1(9.0)a, Xa, =4.5a,

From region I to region 2, H, will increase by 9.0 A/m due to the current sheet.
Now the complete H and B fields are examined.

H,=14.5a, +8.0a, (A/m)
B, = po(43.50, +24.00,) (T)

B, = po(22.0a, +24.0a,) (T)
H,=5.5a, +6.0a, (A/m)

Note that H,, must be 9.0 A/m less than H,, because of the current sheet. B, is obtained as pou. H., .
An alternate method is to apply (H, —H,)Xa,,=K:

(How, + Hya, + Haa,) X8, = K+ (14.5, + 8.02,) X,
_H,ﬁy + Hylﬂx = "5-5',

from which H,=55A/m and H, =0. This method deals exclusively with tangential H; any
normal component must be determined by the previous methods.

13.7. Region 1, z<0, has p,=1.5 whileregion2, z>0, has pu,=35. Near (0,0,0),
B, =240a, +10.0a, (T) B, =25.75a, — 17.7a, + 10.0a, (T)
If the interface carries a sheet current, what is its density at the origin?
Near the origin,
1 1
H, =mn. - (1.60a, + 6.67a,) (A/m)

n,=i(s.1s., —3.54a, +2.0a,) (A/m)
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Then the local value of K is given by
5.0

1 a2 +a
K=H,-H)Xa,,= ;0(—3.558, +3.54a, +4.67a,) X0, = ;0" (W) {(A/m)

[CHAP. 13

Given E=E,_ sin(wt— fz)a, infreespace,find D, Band H. SketchEand Hat ¢=0.

D = €K = €,F,, sin (wt — fz)a,
The Maxwell equation VXE=-3B/3t gives

8, 2, a,
8 8 o|__8
ox dy 3z at
0 E,sin(wt—fBz) 0
or — 2~ BE,, cos (wt — fo)m,
Integrating,
BE.,

B= —Tsin (wt — pz)a,

where the “constant” of integration, which is a static field, has been neglected. Then,

H= -g%’:sin (wt ~ f2)m,

Note that E and H are mutually perpendicular. At r=0, sin(wt— fz)= —sin fz.

shows the two fields along the z axis, on the assumption that E,, and § are positive.

Figure 13-7

13.9. Show that the E and H fields of Problem 13.8 constitute a wave traveling in the 2
;;i direction. Verify that the wave speed and E/H depend only on the properties of free space.

E and H together vary as sin (et — B2). A given state of E and H is then characterized by

w
wt — Bz = const. = wi, or z=B(l—lo)

But this is the equation of a plane moving with speed

w

c=—
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in the direction of its normal, a,. (It is assumed that §, as well as w, is positive; for § negative, the
direction of motion would be —a,.) Thus, the entire pattern of Fig. 13-7 moves down the z axis with

speed c.
The Maxwell equation VX H=3D/3t gives

8, 2 =8
ad d o a ;
é; _6‘; _5'; =§eoE,,.S|n(wt-ﬂz)n,
_ﬂEm .
e sin(wt—fz) 0 0
PE,,
mcos(m! — Bz)a, = .E. w cos (wt — Bz)a,
1 e
€ 2
Consequently, oo B
c=J 1 ﬂs'J 1 =3 x 10* (m/s)
€ollo (10°/36s)(4n x 10°7)
Moreover,

E  wpo \/—l;-o
S_%_ [0 = Q
H- B e =120n (V/A) = 120

13.10. Given H=H,¢/“*Fa_ in free space, find E.

VXxH=—

CIE

9 (wrepnrg . O
oz H.e o= ot

jBH " P 0a, =%

H,, .
D= —ﬁw e/t hg

and E=D/e,.

13.11. Given
E = 307¢/"+Fg,  (V/m) H=H,e "9 (A/m)
in free space, find H,, and B (§ >0).

This is a plane wave, essentially the same as that in Problems 13.8 and 13.9 (except that, there, E
was in the y direction and H in the x direction). The results of Problem 13.9 hold for any such wave in

free space:

B Verr 3% 10°(m/s) i p 120x Q

Thus, for the given wave,

_ 10t 1 _ . 30x 1
B =330 — 3 (rad/m) H, =t = £2(A/m)

To fix the sign of H,, apply VXE=—-JB/on
JjB30me/ g = _i10%u,H, e/ Py,

which shows that H,, must be negative,
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13.12. In a homogeneous nonconducting region where p, =1, find €, and w if

Y

13013.

13.14.

BCls.

13.16.

13.17.

13.19.

E =304, (V/im)  H=10""¢Pg  (A/m)
Here, by analogy to Problem 13.9,

(_u=%____3xm‘ (m/s) £=£=120:r B (@

ﬂ VE Vf,#, H r
Thus, since u, =1,
w 3x10°
7= 307 = 120
1TV, " Ve,

which yield € =16, © =10°rad/s. In this medium the speed of light is c/4.

Supplementary Problems

Region I, where y,, =5, is on the side of the plane 6x +4y + 3z =12 that includes the origin. In
region 2, pu.=3. Given

1
H,= (3.0, -05a) (A/m)
1]
findB,and 8,.  Ans. 12.15a, +0.60m, + 1.58a, (T), 56.6°

The interface between two different regions is normal to one of the three cartesian axes. If
B, = uy(43.5a, +24.0a,) B, = py(22.0a, +24.0a,)
what is the ratio (tan 8,)/(tan 8,)? Ans. 0.506

Inside a right circular cylinder, u,,=1000. The exterior is free space. If B,=2.5a, (T) inside
the cylinder, determine B, just outside. Ans. 2.5a, (mT)

In spherical coordinates, region 1is r<a, regionZis a<r<b andregion3is r>b. Regions I
and 3 are free space, while p,,=500. Given B,=0.20a, (T), find H in each region.

, 4x10°* 0.20
020 asm), am), 22 am)
Ho Ho

Ans.

0

A current sheet, K=(8.0/u)m, (A/m), at x=0 separates region I, x<0 and u,=3, from
region 2, x>0 and p,=1 Given H,=(10.0/p,)(n, +2,}(A/m), find H;.

Ans. f(lo.m,,n.o:,) (A/m)
0

The x=0 plane contains a current sheet of density K which separates region I, x<0 and p,=
2, fromregion 2, x<0 and p,=7. Given

B, =6.0a, + 4.0a, + 10.0a, (T) B, =6.0a, — 50.96a, + 8.96a, (T)

find K. Ans -:—(3.72:,-9.28.,) (A/m)
0

In free space, D =D, sin(wr+ Bz)a,. Using Maxwell’s equations, show that

B=%‘{°D’”sin(m +B2)m,
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Sketch the ficlds at ¢=0 along the z axis, assuming that D, >0, p>0. Ans. See Fig. 13-8

13.20. In free space,

B= Bmei{w-rﬁz}"

Show that

== _%e"d“ﬂli.l

13.21. In a homogencous region where pu,=1 and € =50,
E=207e' %, (V/m)  B=pH.e™ g (T)
Find @ and H,, if the wavelength is 1.78m.  Ans. 1.5x 10*rad/s, 1.18 A/m



Chapter 14

Electromagnetic Waves

14.1 INTRODUCTION

Some wave solutions to Maxwell’s equations have already been encountered in the Solved
Problems of Chapter 13. The present chapter will extend the treatment of electromagnetic
waves. Since most regions of interest are free of charge, it will be assumed that charge
density p=0. Moreover, linear isotropic materials will be assumed, with D=¢E, B=
uH, and J=o0E.

14.2 WAVE EQUATIONS

With the above assumptions and with time dependence ¢’ for both E and H, Maxwell's
equations (Table 13-1) become

VX H=(0+jwe)E (1
VXE= —jouH 2)
V-E=0 (3)
V-H=0 (4)

Taking the curl of (1) and (2),

V X (VXH) = (0 + joe)(VXE)
VX (VXE) = —jou(V X H)

Now, in cartesian coordinates only, the Laplacian of a vector
V2A =(V?A,)a, + (VA ))a, + (VPA,)e,

satisfies the identity
VX(VXA)=V(V:-A)- VA

Substitution for the “curl curls” and use of (3) and (4) yields the vector wave equations

V’H = jou(o + jue)H = y"H
V2E = jwu(o + joe)E = y’E

The propagation constant y is that square root of y* whose real and imaginary parts are positive:

y=ea+jp
with a=w\/%( +(Z) 1) ©)
p=oy5 (V1+(52) +1) @

216
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14.3 SOLUTIONS IN CARTESIAN COORDINATES
The familiar scalar wave equation in one dimension,
FF_13F
8z u?or

has solutions of the form F=f(z—ut) and F=g(z+ut), where f and g are arbitrary
functions. These represent waves traveling with speed u in the +2z and —z directions, respectively.
In Fig. 14-1 the first solution is shown at t=0 and t=t,; the wave has advanced in the +z
direction a distance of uf, in the time interval ¢,. For the particular choices

f(x)=Ce™™  and  g(x)= De*/™™

-~
/ ~
f(z) fi — wn)

Zp ’ Zl
| oz

- uty =

Fig. 14-1

harmonic waves of angular frequency w are obtained:
F=Ce'™ P  and  F = De'e+F?)

in which p=w/u. Of course, the real and imaginary parts are also solutions to the wave
equation. One of these solutions, F=Csin(wt—pz), is shown in Fig. 142 at ¢=
0 and t=n/2w. In this interval the wave has advanced in the positive z direction a
distance d =u(n/2w)=m/2B. At any fixed ¢, the waveform repeats itself when x changes by
2r/B; the distance
2n
A=—
P

is called the wavelength. The wavelength and the frequency f = w/2m enjoy the relation
AM=u o A=Tu

where T=1/f=2a/w is the period of the harmonic wave.
The vector wave equations of Section 14.2 have solutions similar to those just
discussed. Because the unit vectors a,, 8,, and a, in cartesian coordinates have fixed directions, the

F
k =

cr——= -
i

\

N
h
~

1

”

1
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wave equation for H can be rewritten in the form

82H FH FH
ay2+az_"]’zﬂ

Of particular interest are solutions (plane waves) that depend on only one spatial coordinate, say
z. Then the equation becomes
d’H

=y’H

which, for an assumed time dependence ¢/”, is the vector analog of the one-dimensional scalar wave
equation. Solutions are as above, in terms of the propagation constant y.

H(z, ) = Hye*"e'ay,
The corresponding solutions for the electric field are
E(z, t) = Ege*"e™ag

The fixed unit vectors a, and a; are orthogonal and neither field has a component in the direction of
propagation. This being the case, one can rotate the axes to put one of the fields, say E, along the
x axis. Then from Maxwell’s equation (2) it follows that H will ke along the ty axis for
propagation in the *z direction.

EXAMPLE 1. Given the field E=E.e ™a; (time dependence suppressed), show that E can have no
component in the propagation direction, +a, .
The cartesian components of ag are found by projection:

E=Eee "[(ag )8, +(@:-8,)a + (g 2,)a,]
From V- E=0,
a o - —
"3; Eoe (.E .z) =0

which can hold only if a-a, =0. Consequently, E has no component in a, .

The plane wave solutions obtained above depend on the properties u, €, and o of the medium,
because these properties are involved in the propagation constant y.

144 SOLUTIONS FOR PARTIALLY CONDUCTING MEDIA

For a region in which there is some conductivity but not much (e.g., moist earth, seawater), the
solution to the wave equation in E is taken to be

E=Eje s,

o+ jwe _
H= v2
\ } jou Eqe™"a,

The ratio E/H is characteristic of the medium (it is also frequency-dependent). More
specifically for waves E=E,a,, H=Hya, which propagate in the +z direction, the intrinsic
impedance, 1, of the medium is defined by

Then, from (2) of Section 14.2,
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where the correct square root may be written in polar form, || /6, with

Vule

In|=—F—— tan26=i and < B <45°

o 2 we
1+(2)

we
(If the wave propagates in the —z direction, E,/H,=—n. In effect, y is replaced by —y and the

other square rcot used.)
Inserting the time factor /¥ and writing y=a +j§ results in the following equations for the

fields in a partially conducting region:

E(z, t) = Ege ™/ Prig,
E,
Hz, ¢) =ﬁe““e"”’""“’n,,

The factor e™** attenuates the magnitudes of both E and H as they propagate in the +:z

direction. The expression for «, (5) of Section 14.2, shows that there will be some attenuation

unless the conductivity o is zero, which would be the case only for perfect dielectrics or free

space. Likewise, the phase difference 6 between E(z, t) and H(z, t) vanishes only when o is zero.
The velocity of propagation and the wavelength are given by

(V1) )
w 2 1+(we +1

If the propagation velocity is known, Af =u may be used to determine the wavelength A. The
term (o/we)? has the effect of reducing both the velocity and the wavelength from what they would
be in either free space or perfect dielectrics, where o=0. Observe that the medium is dispersive:
waves with different frequencies w have different velocities u.

14.5 SOLUTIONS FOR PERFECT DIELECTRICS
For a perfect dielectric, o¢=0, andso

a=0 B = oVue n=\/%!£°

Since a =0, there is no attenuation of the E and H waves. The zero angle on 7 results in H
being in time phase with E at each fixed location. Assuming E in a, and propagation in 1, , the
field equations may be obtained as limits of those in Section 14.4:

E(z, t) = Epe/*F)g,
H(z, )= %e““"""n,
The velocity and the wavelength are

2n 2n

1
=VE j_=—ﬁ—=m

U=

=8
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Solutions in Free Space.
Free space is nothing more than the perfect dielectric for which

-9

= po=4n % 10""H/m e=eo=8.854><10"2FImﬁ=l?[;”-—F/m

For free space, n=1,~1207Q and u=c~=3x10°m/s.

14.6 SOLUTIONS FOR GOOD CONDUCTORS; SKIN DEPTH

Materials are ordinarily classified as good conductors if o> we in the range of practical
frequencies. Therefore, the propagation constant and the intrinsic impedance are

y=a+jp a=ﬁ=\}%‘—a=\/fm n=\/%&°

It is seen that for all conductors the E and H waves are attenuated. Numerical examples will show
that this is a very rapid attenuation. « will always be equal to . At each fixed location H is out of
time phase with E by 45° or w/4rad. Once again assuming E in 8, and propagation in a, , the field
equations are, from Section 14.4,

E(z, t)= Ege~*el@—Bg H(z, )= %‘lae‘-azej(m—ﬂz-—uﬂt).y
w 2w 27 27
Moreover, "=—=1L—=m6 a=T_ =26
B Vupo B Vrfuo

The velocity and wavelength in a conducting medium are written here in terms of the skin depth
or depth of penetration,

6= Vrfuo

EXAMPLE 2. Assume a field E=1.0e %™ g (V/m), with f=w/2n=100MHz, at the surface of
a copper conductor, o=58MS/m, located at z >0, asshown in Fig. 14-3. Examine the attenuation as
the wave propagates into the conductor.

Fig. 14-3

At depth 2 the magnitude of the field is
|IE}j=1.0e “*=1.0e""°

=6.61 um
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Thus, after just 6.61 micrometers the field is attenvated to e '=36.8% of its initial value. At 56 or 33
micrometers, the magnitude is 0.67% of its initial value—practically zero.

14.7 INTERFACE CONDITIONS AT NORMAL INCIDENCE

When a traveling wave reaches an interface between two different regions, it is partly reflected
and partly transmitted, with the magnitudes of the two parts determined by the constants of the two
regions. In Fig. 14-4, a traveling E wave approaches the interface z=0 from region 1, z<
0. E'andE areat z=-0, while E'isat z=+0 (inregion 2). Here, i signifies “incident,”
r “reflected” and ¢ “‘transmitted.” Normal incidence is assumed. The equations for E and H can
be written

E'(z, t) = Eje " e''a,
E'(z, 1) = Ege" e,
E'(z, t) = Ele  "el'a,
H'(z, 1) = Hpe " el a,
H'(z, £) = Hpe" e/,
H'(z, t) = Hye "e'""a,

One of the six constants—it is almost always Ey—may be taken as real. Under the interface
conditions about to be derived, one or more of the remaining five may turn out to be complex.

rx
@

45, O3, H2.€3

@

Oy, My, €

z

Fig. 144

With nominal incidence, E and H are entirely tangential to the interface, and thus are
continuous across it. At z=0 this implies
o+ Eo=Eg o+ Hg=Hp
Furthermore, the intrinsic impedance in either region is equal to +E,/H, (see Section 14.4).
E_ E5_ o_
H- ™ H ™ Hy~ n2
The five equations above can be combined to produce the following ratios in terms of the intrinsic
impedances:
_Ejzﬂz“'h !‘ﬁl=ﬂl_ﬂ2
Ec m+n Hy m+mn
Eq 29, Hf;_ 2n,
Es m+n2  Hy n+m,
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The intrinsic impedances for various materials have been examined earlier. They are repeated
here for reference.

i i i _Jop _
rtiall duct dium:
partially conducting medium n=\ T e
conducting medium: = 3 [ LK ES_"
perfect dielectric: n= \/;
: - fﬂo
free space: M=\~ 1207Q
o

EXAMPLE 3. Traveling E and H waves in free space (region 1) are normally incident on the interface with a
perfect dielectric (region 2) for which €,=3.0. Compare the magnitudes of the incident, reflected, and
transmitted E and H waves at the interface.

N =7=120n Q N2= J§= l20:r=217_79

Ve,
§=ﬂ2-ql=—0268 H’ 'il qz
E:] "]"'"2 H‘ 7]1"'"2
Ey 2n, Hy 21,
—_—=—=0.732 —=——=1.268
E, m+m Hy mi+m,

14.8 OBLIQUE INCIDENCE AND SNELL’S LAWS

An incident wave that approaches a plane interface between two different media generally will
result in a transmitted wave in the second medium and a reflected wave in the first. The plane of
incidence is the plane containing the incident wave normal and the local normal to the interface; in
Fig. 14-5 this is the xz plane. The normals to the reflected and transmitted waves also lie in the
plane of incidence. The angle of incidence 0;, the angle of reflection 6,, and the angle of
transmission 6,—all defined as in Fig. 14-5—aobey Snell's law of reflection,

6,=86,
and Snell’s law of refraction,
sinf;, [uy€;
sin 6, Uy €y

€
2

Reflected

Transmiued

\<
L]

Incident
wave
normal

Fig. 14-5
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=l
EEXAMPLE 4. A wave is incident at an angle of 30° from air to teflon, €, =2.1. Caiculate the angle of
transmission, and repeat with an interchange of the regions,
Since =,

Sinﬁ; Sil'l30° f,g_
Sn6.- sn®, e,,_m or 6,=2018

From teflon to air,

sin3°_ 1 o 6=4643

sinf, 2.1

Supposing both media of the same permeability, propagation from the optically denser medium
(€,>€,) results in  6,>6,. As 6 increases, an angle of incidence will be reached that results
in 6,=90°. At this critical angle of incidence, instead of a wave being transmitted into the second
medium there will be a wave that propagates along the surface. The critical angle is given by

. €
6. =sin™! \f—
'Erl

=l
&EMPLE 5. The critical angle for a wave propagating from teflon into free space is

6. =sin™" WITa 43.64°

14.9 PERPENDICULAR POLARIZATION

The orientation of the electric field E with respect to the plane of incidence determines the
polarization of a wave at the interface between two different regions. In perpendicular polarization
E is perpendicular to the plane of incidence (the xz plane in Fig. 14-6) and is thus parallel to the
(planar) interface. At the interface,
§= 12 c0s 6; — n, cos 6,

E, mnycos 6, + n,cos 6,
E{._ 21, cos 6,
E}  nycos 6, + 1, cos 6,

and

Note that for normal incidence 6,=6,=0° and the expressions reduce to those found in Section
14.8.

x

7 OKO

Et

Fig. 14-6
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It is not difficult to show that, if pu,=pu,,
1,cos B, —n, cos B, #0 for any 6,
Hence, a perpendicularly polarized incident wave suffers either partial or total reflection.

14.10 PARALLEL POLARIZATION

For parallel polarization the electric field vector E lies entirely within the plane of incidence, the
xz plane as shown in Fig. 14-7. (Thus E assumes the role played by H in perpendicular
polarization.) At the interface,
£5='?2‘-'05 6, — n, cos 6;

Ey  mycos 6;+ n;cos 6,
_E_E _ 2'?3 cos 8,‘
Ey  1nycos 6, —n,cos 6,

Fig. 14-7

In contrast to perpendicular polarizations, if u,=u, there will be a particular angle of
incidence for which there is no reflected wave. This Brewster angle is given by

€
O =tan"' /2
iy €
EEXAWLE 6. The Brewster angle for a parallel-polarized wave traveling from air into glass for which €, =

50 is
6y =tan"" V5.0 =65.91°

of ]

&ld.ll STANDING WAVES

When waves traveling in a perfect dielectric (0, = a, = 0) are normally incident on the interface
with a perfect conductor (0, =, 5, =0), the reflected wave in combination with the incident wave
produces a standing wave. In such a wave, which is readily demonstrated on a clamped taut string,
the oscillations at all points of a half-wavelength interval are in time phase. The combination of
incident and reflected waves may be written

E(z: ‘) = [EJ(‘]tKM—ﬂz) + E{)Cﬂm"'ﬂz]].x = e""‘(E:]e—iﬁZ + E('mez)l,
Since 1n,=0, Ej/Ep=—1 and
E(z, t) = e (Eie ' — EieP*)a = —2jF} sin Pzea,
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or, taking the real part,
E(z, )= 2Ej sin fiz sin wta,

The standing wave is shown in Fig. 14-8 at time intervals of 7/8, where T =2n/w is the
period. At r=0, E=0 everywhere; at 1=1(T/8), the endpoints of the E vectors lic on
sine curve I; at :=2(T/R), they lie on sine curve 2; and so forth. Sine curves 2 and 6 form an
envelope for the oscillations; the amplitude of this envelope is twice the amplitude of the incident
wave. Note that adjacent half-wavelength segments are 180° out of phase with each other.

Fig. 14-8

14.12 POWER AND THE POYNTING VECTOR

Maxwell’s first equation for a region with conductivity o is written and then E is dotted with each
term.

V)(H=0E+fﬂ5

ot
, JE
E'(V)(H)=O'E'+ E’EE

where, as usual, E’=E+E. The vector identity V-(AXB)=B:(VXA)—A-(VXB) is
employed to change the left side of the equation.

2 oE
H:(VXE)-V-(EXH)=o0oFE +E~e—§‘-

By Maxwell’s second equation,

SH\  uoH?

J((VXE)= -(— —)_.—_——.._

H-(VXE)=H-\-u7 2 a0
OE €dE®
Similarly, g. OE_€9E
Ay ‘a2 a

Substituting, and rearranging terms,
2 2
0E2=—£-B—E——E—a£~-v-(l5xll)

2o 20
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Integration of this equation throughout an arbitrary volume v gives

OE* uaH?
oE*d =—f (f———+———)dv-§ ExH)- dS
L AR p (EXH)

where the last term has been converted to an integral over the surface of v by use of the divergence
theorem.

The integral on the left has the units of watts and is the usual ohmic term representing energy
dissipated per unit time in heat. This dissipated energy has its source in the integrals on the
right. Because €E?/2 and pH?/2 are the densities of energy stored in the electric and magnetic
fields, respectively, the volume integral (including the minus sign) gives the decrease in this stored
energy. Consequently, the surface integral (including the minus sign) must be the rate of energy
entering the volume from outside. A change of sign then produces the instantaneous rate of energy
leaving the volume:

P(r)=£(Exl{)-sS=£9‘-dS

where P=EXH is the Poynting vector, the instantaneous rate of energy flow per unit area at a
point.

In the cross product that defines the Poynting vector, the ficlds are supposed to be in real form.
If, instead, E and H are expressed in complex form and have the common time-dependence ¢/,
then the time-average of @ is given by

P.s = Re (E X H*)

where H* is the complex conjugate of H. This follows the complex power of circuit analysis, 8=
IVI*, of which the power is the real part, P =1Re VI*.

For plane waves, the direction of energy flow is the direction of propagation. Thus the
Poynting vector offers a useful, coordinate-free way of specifying the direction of propagation, or of
determining the directions of the fields if the direction of propagation is known. This can be
particularly valuable where incident, transmitted, and reflected waves are being examined.

Solved Problems

14.1. A traveling wave is described by y =10sin(fz — wt). Sketch the wave at t=0 and
1. at t=t;, when it has advanced A/8, if the velocity is 3X10°m/s and the angular
frequency @ =10°rad/s. Repeat for @ =2x10°rad/s and the same ¢, .

The wave advances A in one period, 7T =2nfw. Hence

y=IaX

8 4o
A e =Bx109—" =23
g ™ a0~ 0™

The wave isshownat #=0 and r=1¢, inFig. 149(a). At twice the frequency, the wavelength 4 is
one-half, and the phase shift constant £ is twice, the former value. See Fig. 14-9(b). At t, the wave
has also advanced 236 m, but this distance is now /4.
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0} -— - r=n w = 108

(a) (b)
Fig. 149
14.2. In free space, E(z,¢)= 10° sin (wt — Bz)a, (V/m). Obtain H(z, ¢).
Examination of the phase, wf — fz, shows that the direction of propagation is +z. Since EXH
must also be in the +z direction, H must have the direction —a,. Consequently,

=y = = —— -
., o 12072 or H, 120 sin (wt ﬂz) (Afm)

3

and H(z, t)=— l;‘(]):r

sin{wt — fz)a, (A/m)
14.3, For the wave of Problem 14.2 determine the propagation constant y, given that the frequency
is f=95.5MHz.
In general, y = Vjou(o + jwe). In free space, o=0, so that

. . . 2n(95.5 % 10%) 1
Y—!wvﬂofo—!(c =T 3 =j(2.0) m

Note that this result shows that the attenuation factor is a=0 and the phase-shift constant
is f=20rad/m.
14.4. Examine the field
i E(z, t) = 10sin (wt + Bz)a, + 10 cos (wt + Bz)a,
inthe z=0 plane, for wt=0, x/4, n/2, 37/4 and .
The computations are presented in Table 14-1.

Table 14-1

wt | E, =10sinwt | E,=coswt E=FE.aa +Ea,
0 0 10 10a,

n 1_0 10 a+ta,

3 V2 N 1of V2 )

n

2 10 0 10a,
w | 10 S0 (e
4 V2 V2 V2

n 0 -10 10(—a,)
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As shown in Fig. 14-10, E(x, ¢) is circularly polarized. In addition, the wave travels in the —a,
direction.

Fig. 14-10

14.5. An H field travels in the —a, direction in free space with a phaseshift constant of 30.0 rad/m

14.6.

14.7.

and an amplitude of (1/3x)A/m. If the field has the direction —a, when (=0
and z=0, write suitable expressions for E and H. Determine the frequency and
wavelength.

In a medium of conductivity o, the intrinsic impedance 5, which relates E and H, would be
complex, and so the phase of E and H would have to be written in complex form. In free space this
restriction is unnecessary. Using cosines, then

H(z, t)= —%:cos (wt + Bz)a,

For propagation in —z,
f_;: —me=-1200Q  or E, = +40cos (wt + fz) (V/m)

Thus E(z, 1) =40cos{wt + fiz)a, (V/m)
Since B =30rad/m,

Determine the propagation constant y for a material having p,=1, =8, and o=
0.25pS/m, if the wave frequency is 1.6 MHz.

In this case,

o 0.25x 10"

—_— = -9
we  Zn(L6 % 109@)(10-7367) - 10 0

a~0  B=wVie =20~ =948 10 rad/m

and y=a+j8~j9.48x10m'. The material behaves like a perfect dielectric at the given
frequency. Conductivity of the order of 1 pS/m indicates that the material is more like an insulator
than a conductor.

Determine the conversion factor between the neper and the decibel.
Consider a plane wave traveling in the +z direction whose amplitude decays according to
E=F 08_‘"
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From Section 14.12, the power carried by the wave is proportional to E?, so that
P = % e—lcu
Then, by definition of the decibel, the power drop over the distance z is 10 log,, (Fo/P)dB. But

B_ 10 R_ 20
P ~2.3026 " P ~2.3006 (*7) = 8.686(az)

Thus, az nepers is equivalent to 8.686(az) decibels; i.e.,
1 Np=8.686dB

10 logm

14.8. At what frequencies may earth be considered a perfect dielectric, if o=5x
. 107°S/m, p,=1, and € =87 Can a be assumed zero at these frequencies?

Assume arbitrarily that

marks the cutoff. Then

w 1000
f—-z—uam—l.l3(}ﬂz

For small o/we,

= He LAY
a=w 2( 1+(wf) 1)
T 1(3.)’]1&-9\{5 _
“N2 [2 we/ ] 2 Ve 2 E'(lmﬂ)-0.333Np[m

Thus, no matter how high the frequency, & will be about 0.333 Np/m, or almost 3 db/m (see Problem
14.7); o cannot be assumed zero.

14.9. Find the skin depth & at a frequency of 1.6MHz in aluminum, where o=
38.2MS/m and u,=1. Also find y and the wave velocity u.

ﬁ
athcad 1 _
&= =6.44x 10 °m=64.4 um
Vafuo #

Because a=8=46"",
y=1.55% 10" + j1.55 X 10* = 2.20 x 10* /45° (m ")

and u=%’= w8 =647 (m/s)

14.10. A perpendicularly polarized wave propagates from region 1 (¢,,=8.5, u,=1, 0,=0) to
region 2, free space, with an angle of incidence of 15°. Given E{=1.0uV/m, find: Ef,
E}, Hp, Hp, and Hp,

The intrinsic impedances are
o 120
h=——=—=1290Q and N,=1= 1201 Q
] \/E: r——8‘ S 2 nﬂ
and the angle of transmission is given by
sin 15° €

48.99°

=

sin 6, 8.5¢, or 6,
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Then
%_rjzcos 6, —n,cos 6,
E.  5,c0s 6, + 3, cos 6,
E:J 21, cos 6,
ET, 72 €0s 6; + 1, cos 6,

Finally, H{=Ey/n,=7.75nA/m, H;=4.83nA/m, and H;=4.31nA/m.

=0623 or E;=0.623 uV/m

=1623 or E;g=1623uV/m

14.11. Calculate the intrinsic impedance 1), the propagation constant y, and the wave velocity u for a
conducting medium in which o=58MS/m, g, =1, ata frequency f=100MHz.

wpo [45°=2.14 X 10° /45°m™!
’J‘\/ [45°=3.69x 1077 /45°Q

a=p=151x10° 8=—=6.61 um u=wd=415x10"m/s

1
o

14.12. A plane wave traveling in the +z direction in free space (z<0) is normally incident
at z=0 on a conductor (z>0) for which o=61.7MS/m, u,=1. The free-space E
wave has a frequency f=1.5MHz and an amplitude of 1.0 V/m; at the interface it is given
by

E(0, r) = 1.0sin 2afra, (V/m)
Find H(z, ¢) for z>0.
For z>0, andin complex form,
E(z, 1) = 1.0e =& fg  (V/m)
where the imaginary part will ultimately be taken. In the conductor,
=B =Vnfuo=Vr(1.5 X 10°)(dx x 10 ")(61.7 X 10°) = 1.91 x 10*

’w# 5: | 38 0 4_jmi4
z o L - l
Then. sincc E)-!( jix) =T,

H(z, 1) = —2.28 X 100~ 2%/ F=- =g (A/m)

or, taking the imaginary part,
H(z, f) = —2.28 X 10~ sin (27t — Bz — n/4)a, (A/m)
where f, a, and B are as given above.

14.13. In free space E(z,t) =50cos(wt—fz)a, (V/m). Find the average power crossing a
circular area of radius 2.5 m in the plane 2z =const.

In complex form,
E =50 #)g, (V/m)
and since 7 =120xQ and propagation is in +z,

5
== M, (A/m)

Then P ,=iRe(EXH*)= 2(50)(125-—3)& Wi/m?
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The flow is normal to the area, and so

Py = g(so)(%) Q.52 =65.1W

14.14 A voltage source, v, is connected to a pure resistor R by a length of coaxial cable, as shown in
Fig. 14-11(a). Show that use of the Poynting vector @ in the diclectric leads to the same
instantaneous power in the resistor as methods of circuit analysis.

{a)

®)
Fig. 14-11

From Problem 7.9 and Ampgre’s law,

v
E= nGia™

where a and b are the radii of the inner and outer conductors, as shown in Fig. 14-11(b). Then

i
and H—Eﬂ,

¥
27 In (bla) -

This is the instantaneous power density. The total instantaneous power over the cross section of the
dielectric is

F=EXH=

P(I‘}-L I‘ #@M.‘ -rdrdga, =vi

which is also the circuit-theory result for the instantaneous power loss in the resistor.

14.15. Determine the amplitudes of the reflected and transmitted E and H at the interface shown in
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Fig. 14-12, if E;=15%10"V/m in region 1, in which ¢,=8.5 u,=1, and o,=
0. Region 2is free space. Assume normal incidence.

m= [Bobis _ 1290 7, =107 Q=377Q
€0€,

E=2" Mg 735%10*V/m
n+n,

2n,
M+,

Ey= E;=2.24x10 *V/m
H3=E‘= 116 X 107° A/m

T

MmN -
Hy= Hi=-569x10"°A
¢ m+n: ¢ /m

2
Hy=——"" Hi=591%10 ®A/m
m+n,

€11 Z €g.tig

Ejoh Eﬁ
:’i—.- —l _.y‘
:}07*‘-_

Ey
Fig. 1412

14.16. The amplitude of E' in free space (region 1) at the interface with region 2 is
1.0V/m. If Hj=-141%x10"*A/m, €,=18.5 and 0,=0, find p,.

From
0 E; n,-377
=120 Q=-377Q =L
Ho 120 and Ey 377+,
E;__ 10 -377377+3) _
H, —141x10°  15,-377 or 1= 1234Q
-— Eolérz -
Then 1234 = €,(18.5) or Ho=198.4

14.17. A normally incident E field has amplitude E;=1.0V/m in free space just outside of
seawater in which € =80, u, =1, and 0=25S/m. For a frequency of 30 MHz, at

i what depth will the amplitude of E be 1.0mV/m?
Let the free space be region I and the seawater be region 2.
n=377Q 1=9.73[43.5°Q
Then the amplitude of E just inside the seawater is Ey .
Ey_ 2m2

or E{=5.07x10"2V/m
E, 7,41, ¢ /
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From y=Vjou(o +jwe)=24.36 /46.53m "
« = 24.36 cos 46.53° = 16.76 Np/m
Then, from
LO=10 *=(5.07 x 10 %)e~"*™
z=0.234m.

14.18. A traveling E field in free space, of amplitude 100 V/m, strikes a sheet of silver of thickness
~js dum, as shown in Fig. 14-13. Assuming 0=61.7MS/m and a frequency f=
aﬂ 200 MHz, find the amplitudes |E,|, |E;|, and |E,]}.

—4
€0~ Mo €0s¥Hp

s
aais. 13

1] - i
Y
. —P-l 5 pm 1’..7
Fig. 14-13
For the silver at 200 MHz, 7 =5.06x 107" /45°Q.
E 2(5.06 % 10 /45°)
= [ whence |Eo| = 2.68 X 10 V/m

E, 377+506x10 */45°
Within the conductor,
«=p=Vnfuo=221x10°

Thus, in addition to attenuation there is phase shift as the wave travels through the conductor. Since
|E| and |E,| represent maximum values of the sinusoidally varying wave, this phase shift is not involved.
|Es| = \Ejle ™ = (2.68 % 1“-3)8-12.2|xm-">t5xm-": =888 10°* V/m

E, 2(377)
E, 377x5.06% 107> /45°

and whence |E.| =178 % 107* V/m

Supplementary Problems

14.19. Given
E(z, 1) =10sin (6 X 10 — Bz)a, (V/m)

in free space, sketch the wave at (=0 and at time ¢, when it has traveled A/4 along the z axis. Find
t, B. and A Ans. t,=2.62ns, fB=2rad/m, A=nam. See Fig. 14-14.
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14.20. In free space,

H(z, 1) = 1.0e/03%*P9%9, (A/m)
Obtain an expression for E(z, ) and determine the propagation direction.

Ans. Ey=377V/m, -a,

14.21. In free space,

H(z, 1) = 1.33 X 10~ cos (4 X 10°r) — fz)a, (A/m)
Ans. Eo=50V/m, (%)rad/m, 15xm

Obtain an expression for E(z, f). Find § and 4.

14.22. A traveling wave has a velocity of 10° m/s and is described by

14.23.

14.24.

14.25.

14.26.

y = 10cos (2.5z + wr)

Sketch the wave as a function of zat ¢=0 and r=r=0.838us. What fraction of a wavelength is

traveled between these two times?  Ans. ). See Fig. 14.15.
t=1, - 10
\I/, \
/
L 1 7 1 \ R
A / —M2 3\ M4 W2 z
/ \
/, = A
- £=0 \ﬁ-
le e o
U YEI A=251m !
Fig. 14-15

Find the magnitude and direction of
E(z, t) = 10sin (wt — Bz)a, — 15sin (wt ~ fz)m, (V/m)
Ans. 18.03V/m, 0.555a, —0.832a,

at =0, z=3A/4

Determine y at 500 kHz for a medium in which u, =1,
electromagnetic wave travel in this medium?

€,=15, o=0. At what velocity will an
Ans. j4.06%1072m™', 7.74 x 10" m/s

An electromagnetic wave in free space has a wavelength of 0.20m. When this same wave enters a
perfect dielectric, the wavelength changes to 0.09m. Assuming that u, =1, determine €, and the
wave velocity in the dielectric.  Ans. 4.94,1.35x 10° m/s

An electromagnetic wave in free space has a phase shift constant of 0.524 rad/m. The same wave has a
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14.27.

14.28.

14.29.

14.30.

14.31.

14.32.

1‘033 -

14.34.

14.35.

14.36.

14.37.

14.38.

14.39.

phase shift constant of 1.81 rad/m upon entering a perfect dielectric. Assuming that u, =1, find €,
and the velocity of propagation.  Ams. 11.9, 8.69 x 10" m/s

Find the propagation constant at 400 MHz for a medium in which €, =16, p, =45, and o=
0.6S/m. Find the ratio of the velocity v to the free-space velocity c.
Ans. 99.58 /60.34°m™', 0.097

In a partially conducting medium, €, =18.5, u, =80, and o=1S/m. Find e, B, 1, and the
velocity u, for a frequency of 10°Hz. Determine H(z, ), given
E(z, t) =50.0e* cos (wt — Bz)a, (V/m)
Ans. 1130Np/m, 2790 rad/m, 2100 [22.1"9, 2.25 % 10°m/s,
2.38 x 107 % ~** cos (wt — 0.386 — Bz)(—a,) (A/m)

For silver, o=3.0MS/m. At what frequency will the depth of penetration 6 be 1 mm?
Ans. 84.4kHz

At a certain frequency in copper (o=58.0MS/m) the phase shift constant is 3.71 x
10°rad/m. Determine the frequency.  Ans. 601 MHz

The amplitude of E just inside a liquid is 10.0 V/m and the constants are gy, =1, €,=20, and o=
0.50S/m. Determine the amplitude of E at a distance of 10 cm inside the medium for frequencies of
{a) 5MHz, (b) 50 MHz, and (c) 500 MHz. Ans. (a)7.32V/m; (b) 3.91V/m; (c) 1.42V/m

In free space, E(z,t)=1.0sin(wr— fz)a, (V/m). Show that the average power crossing a circular
disk of radius 15.5m ina z=const. planeis 1 W.

In spherical coordinates, the spherical wave
0.265

E=%‘-°sinsms(m-ﬁrm (V/m)  H=——Tsin @ cos(wi~Prja, (A/m)
represents the electromagnetic field at large distances r from a certain dipole antenna in free
space. Find the average power crossing the hemispherical shell r=1km, 0=8=<
nf2. Ans. 555W

In free space, E(z, r) = 150 sin (ot — Bz)a, (V/m). Find the total power passing through a rectangu-
lar area, of sides 30 mm and 15mm, in the z=0 plane. Ans. 13.4mW

A free space—silver interface has Ey=100V/m on the free-space side. The frequency is 15 MHz
and the silver constants are €, =yu,=1, 0=61.7MS/m. Determine E;, and E; at the
interface. ~ Ans. —100V/m, 7.35x 107 /45°V/m

A free space-conductor interface has H=10A/m on the free-space side. The frequency is
31.8 MHz and the conductor constants are €, =u, =1, o=126MS/m. Determine Hf and H; and
the depth of penetration of H'. Ans. 1.0A/m, 2.0A/m, 80 um

A traveling H field in free space, of amplitude 1.0 A/m and frequency 200 MHz, strikes a sheet of silver
of thickness 5 um with 0 =61.7MS/m, as shown in Fig. 14-16. Find Hj just beyond the sheet.
Ans. 1.78x107° A/m

A traveling E field in free space, of amplitude 100 V/m, strikes a perfect dielectric, as shown in Fig.
14-17. Determine Eg. Ans. 59.7V/m

A traveling E field in free space strikes a partially conducting medium, as shown in Fig. 14-18. Given a
frequency of 500MHz and E;=100V/m, determine Ej, and Hj.
Ans. 19.0V/m, 0.0504 A/m
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€o-Fo 1, T €0- Ho
€. Mgy Teos o
Hf H e e
= "y
e I 1€, =20 E’
Ed :0=0
= |
1 i Ao I-A--d1r—-—.
Fig. 14-16 Fig. 14-17

€9, Ko

i

Fig. 14-18

14.40. A wave propagates from a dielectric medium to the interface with free space. If the angle of incidence
is the critical angle of 20°, find the relative permittivity. Ans. 8.55

14.41. Compute the ratios E}/E; and Ey/Ej for normal incidence and for oblique incidence at 8, =10°. For
region I, €,=8.5, u,=1, and o0,=0, region Zis free space.
Ans. For normal incidence, EL/E;=0.490 and EL/E,=1.490. At 10°, E,/E.=0.539 and
E./E' =1.539.

14.42. A parallel-polarized wave propagates from air into a dielectric at Brewster angle of 75°. Find
E,. Ans. 1393



Chapter 15

Transmission Lines

(by Milton L. Kult)

15.1 INTRODUCTION

Unguided propagation of electromagnetic energy was investigated in Chapter 14. In this
chapter the transmission of energy will be studied when the waves are guided by two conductors in a
dielectric medium. Exact analysis of this two-conductor fransmission line requires field
theory. However, the performance of the system can be predicted by modeling the transmission
line with distributed parameters and using voltages and currents associated with the electric and
magnetic fields.

Only uniform transmission lines will be considered; that is, the incremental distributed
parameters shall be assumed constant along the line.

15.2 DISTRIBUTED PARAMETERS

The incremental distributed parameters per unit length of line are inductance and capacitance as
determined in Chapters 7 and 11, the resistance of the conductors, and the conductance of the
dielectric medium. It was seen that the parameters depend on the geometry of the configuration,
the characteristics of the materials, and in some cases the frequency. In the following summary list
the dependence on geometry is represented by a geometrical factor Gr.

Capacitance.
C=ne crc) (F/m)  [e€, = permittivity of dielectric]

G =€£ gs (S/m) [0 = conductivity of dielectric]
d

Inductance (external).
= -’:f (cFL) (H/m)  [ma=permeability of dielectric = ]
DC Resistance (useful for operation up to 10 kHz).
R,= é (crry) (Q/m) [o. = conductivity of conductors]

Ac Resistance (for frequencies above 10 kHz).

1 2 .
7700 (cFr.) (2/m) [6 = Voo, = skin depth]

R,=

Inductance (internal).

_ {R,lZ.nf (H/m) for f>10kHz
“lpo/an (H/m)  for f<10kHz

237
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Inductance (total).
L=L+L~L,
For three common line configurations the geometrical factors are as follows:
Coaxial Line (inner radius a, outer radius b, outer thickness ¢).

2
FC=n (b/a) OFL = Gre
——l-+ Gl —1+-l- for > 6
OFRa=27 B +1) Ra=2"%
Parallel Wires (radius a, separation d).
GFC=-1— 4:.1=|.=cc»zh“£==lr|'r—f for d>a
GFL 2a a
2 e 22
FRe= 2 PR =2
Paraliel Plates (width w, thickness ¢, separation d).
GFC—lv" GFL-—!—
" nd "~ GFC
Gm=2—£ GFR, = — for t>» 48
wt

15.3 INCREMENTAL MODEL; VOLTAGES AND CURRENTS

[CHAP. 15

The model in Fig. 15-1, where R, L, G, and C are as given in Section 15.2, permits analysis of
the line using voltages and currents. For within a cell of length Ax the voltages across the line at

points a and b differ by
Av(x, 1) = (R Ax)i(x, 1) + (L Ax) @
In the limit as Ax—0, this becomes
au(x, 1) _ . Bi(x, t)
__3I = Ri(x, ')+L_al (1)
Rax LAx a RAx LAx b o Rax
- — AT o——ANNN—TT000—— — NN —
Gax —J:I.c.u GAx T:I_ CAx
- ' |
| Arx ]

Fig. 15-1
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Likewise, the current at point ¢ differs from that at b by

dv(x, t)

Aix, 1)=(G Ax)u(x, 1) +(C Ax)—

from which

di(x, 1) du(x, t)
ox ot

The first-order PDEs (1) and (2) imply a single second-order PDE,

f(x, 1) &f(x, 1)
S tLC3 3

for either v(x, t) or i(x, t). Now, (3) is an equation of hyperbolic type, very similar to the wave
equation. Indeed, for a lossless line (R = G =0), (3) is precisely the one-dimensional scalar wave
equation studied in Chapter 14. Thus it is known in advance that transmission lines support voltage-
and current-waves which can be reflected and/or transmitted at discontinuities (sites of abrupt
parameter changes) in the line.

=Gu(x, )+ C (2)

i’.faixx__;_‘l = RGf(x, ) + (RC + LG)

154 SINUSOIDAL STEADY-STATE EXCITATION

When the transmission line of Fig. 15-1 is driven for a long time by a sunusoidal source (angular
frequency ), the voltage and current also become sinusoidal, with the same frequency:

v(x, t) = Re [V (x)e'™] i(x, t) = Re [[(x)e"]

Here, the phasors V(x) and f(x) are generally complex-valued; often they are indicated in polar
form (with the x-dependence suppressed) as

V=19[v I=\N/¢:

where ¢ denotes the angle between the complex vector and the real axis. Steady-state analysis of
the transmission line is much simplified when all voltages and currents are replaced by their phasor
representations.

Figure 15-2 models in the phasor domain a uniform line of length € that is terminated in a
(complex) load Zy at the receiving end and is driven at the sending end by a generator with internal

impedance Z, and voltage V, =V,,, /8. The per-unit-length series impedance and shunt admittance
of the line are given by

Z=R+jolL Y=G +joC

Distance from the receiving end is measured by the variable x; from the sending end, by d.

Sending End Receiving End (Load)

i;-—l— [ ——=

Z,

v, Ve zZ.y Ve Zx
- 5
x=1 +y - y =1
d=0 —= + d=1

Fig. 15-2
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Equations (1), (2), and (3) of Section 15.3 become ODE:s for the phasors V(x) and f(x).

%’3‘) = Zi(x) (1 bis)
dﬁ:) =YV(x) (2 bis)
F

T8 k) (3bis

with y=VZY=a+jf, the square root being chosen to make o and f nonnegative. Equation
(3 bis) is identical in form to the equation of plane waves (Section 14.3); it has the traveling-wave
solutions

Vx)=V*e™ + Ve ™=V, (x) + V.a(x)
f(x)=Fe™ + e " = [, (x) + I,.a(x)

The coefficients V*, etc., are phasors independent of x that are interrelated by the characteristic
impedance Z, and the boundary refiection coefficient T, defined as

It is easy to express Iy in terms of the characteristic and load impedance:
_ ZR - zo

Zr+Z,
Then, if a pointwise reflection coefficient is defined by

Ce

it follows that

Zr—Z,
= =2yx "0 ,=2vx
I(x)=Tgre Zo ¥ Z, e

Similarly, if Z(x)=V(x)/f(x) is the pointwise impedance looking back to the receiving end
(x =0), then

1+I(x)
1-T(x)

The conditions at the sending end [rerotate ['(¢), etc., as [y, etc.] are

Z(x)=Z,

Average power received at the load and average power supplied to the sending end are
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calculated as
Pr =3 Re (VrlR) =3 lx|* Re (Zz)
= Pa(x =0) = Pr(x =0)
Ps=14Re (Vsl3) =4 |fs* Re (Z5)

Simplifications for High-Frequency or Lossless Lines.
For frequencies such that R<wL and G <oC (e.g., above 1 MHz),

/R +jolL \/Z
= = —=R
Zo=\G+joc Nc~

y=V(R + joL)(G + joC) = (2% +T) +joVLC=a+jB
0

1
U=—— and A=—=
R/ ¥e B fVLC

where, as always, u, and A denote phase velocity and wavelength.
For the ideal lossless line with R=0 and G =0, the reflection coefficient is of constant

magnitude.

Zr =Ry

—_— -2

ZR + RO M

where ¢y is the polar angle of I'r. The voltage is given by
V(x)=V*(1+Tr/=2B)

[(x) =T pe 2 =

which implies
19 lmax = [P *(1 + |T]) IV |ania = 1V *1(1 = |T])

Adjacent maxima and minima are separated by fx =90°, or one-quarter wavelength. For the
resulting wave the voltage standing-wave ratio, VSWR, is defined as

[V [max 1+ Tl
VSWR = =
Plmia  1— [Tkl

For the small-dissipation line the VSWR can still be used if a correction is made for the attenuation
(see Problems 15.2, 15.9, 15.41).

15.S THE SMITH CHART

The Smith Chart (Fig. 15-3) is a graphical aid in solving high-frequency transmission line
problems. The chart is essentially a polar plot of the reflection coefficient in terms of the
normalized impedance r + jy.

Z(x) Z(x) _ - _ 1+ l"(x)
Rq z(x)=r(x) +jx(x) = o)
F(x) =g /—2Bx = :::f)r l| [¢n—2x=T,+jI,  (for a=0)

where r,=r(0) and x,=x(0). In the complex I' plane the curves of constant r are circles, Fig.
15-4(b), as are of course the curves of constant |I'|, Fig. 15-4(a). The curves of constant y are arcs
of circles, Fig. 15-4(c). Some important correspondences are listed in Table 15-1.
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. 1+

-1-j -9 b= -l=j b=y =y 1-j
D |I{ = const. O+ = const. D x = const.
fa) (b) ()
Fig. 154
Table 15-1

Condition r r X
Open-circuit 140 o (arbitrary) arbitrary (e)
Short-circuit 1/180° 0 0
Pure reactance 1/£90° 0 +1
Matched line 0 1 0

The complete Smith Chart of Fig. 15-3 is obtained by superposing Figs. 15-4(b) and (¢). The
circles of constant |I'| are not included; instead the value of |I'| corresponding to a point (r, x) is read
off the left-hand external scale. The value of the VSWR is read from the right-hand scale. The
two circumferential distance scales are in fractions of a wavelength. From r=0, x=0, the outer
scale goes clockwise toward the generator (i.e., measures x/1), and the inner one counterclockwise
toward the load (i.e. measures d/A). Once around the chart is one-half wavelength. The third
circumferential scale gives ¢ = ¢ — 2fx.

The chart can be used for normalized admittances,

= y(a) =500 + )
where r-circles are used for g, x-arcs are used for b, the angle of I' for a given y is 180° + ¢, and
the point y =0+ ;0 is an open-circuit.

15.6 IMPEDANCE MATCHING

At high frequencies it is essential to operate at minimum VSWR (ideally, at VSWR =
1). Several methods are used to match a load Z to the line, or to match cascaded lines with
different characteristic impedances. Matching networks can be placed at the load (x = 0) or at some
position x =x, along the line, as in Fig. 15-5. The two sets of normalized conditions are as
follows:

(a) Before match: 2(0) =2z =1y +jxo; y(0)=go+jby; VSWR>1
After match: z(0)=1+,0; y(©0)=1+j0; VSWR=1
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VSWR = | VSWR =1 VSWR > |
O ]
MATCH. ! .
Ry NET. Zg Ru “::,.H Ru ZH
1o —o0 o
-'_-'-l'=“ '-'—Ix:x' |y =)
() h)
Fig. 15.5

(b) Atload: z(0)=ro+jxo; Y(0)=go+jbs; VSWR(0)> 1
Before match:  z(x,) =n +jx;; y(x,) =g, +jb;; VSWR=VSWR(0)
After match: z(x,)=1+j0; y(x;)=1+j0; VSWR=1

The matching networks at lower (radio) frequencies can be made with lumped low-loss reactive
components; one lumped L-C network is shown in Fig. 15-6. If Zg has a reactive component, a
reactance of opposite sign is added in series so that Zp=R+j0. Then, for a match,

A 1 1
Yi'n= +—-=—
I oL, " R,
1
or Li=—VRR,—-R) and C,=—
w RRU

If R>R,, the capacitor should be connected to the other end of the inductor.
To minimize dissipation losses at higher frequencies a length of open- or short-circuited line is
used for matching, in either a single-stub or double-stub configuration.

/][]
Ly
¥, —— - X=-Xu
tt‘: R
=Ry
Ly=R+ }'XR
» -
Fig. 15-6

15.7 SINGLE-STUB MATCHING

The configuration shown in Fig. 15-7 uses one shorted stub, of length €, placed at a distance x,
from the load. To accomplish matching:

(1) Determine x, such that y(x,) =1+ b, .
(2) Determine ¢, such that y(£)=0—jb,.

After matching, y(x,)=1+j0 and VSWR=1 fromx,to €.

EXAMPLE 1. The above two steps may be accomplished on the Smith Chart (Fig. 15-8).

(i) Plot yg and trace the |yl [or VSWR(0)] circle.
(i) Mark the intersections of the |I'g| circle and the circle g=1.

(i) From y, move roward the generator to the first intersection, read y, =1+jb;,, and note the
distance x, as a fraction of A (or read off angle 2fx,).
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crosssection 0=¢=2n and O=<v=x{,, the sin®and cos’both integrate to m; therefore,
2 i 2
Py =2 Bl [ iy 2] o @

2'kr'l'El i (1]

There is a general rule for evaluating an integral like the one in (2): Go back to the ordinary
differential equation arising from the separation of variables. In this case that equation is (see Section

&%) el (1-2)=o &)
Thus, using integration by parts, (3), and the end conditions J,(0)=J(x;,)=0, we have:
I [T+ /Y vde = f [J. ] vdv— J' d()
[ e B 5) -
=3l + 1Y)\ - J: .vz[.!.' +g]
X (Jf+;1’1:—t%h) dv —Ji(x},)
= —xi) - f "o +5)(~J.) dv
= —1ixi) +L v (3 L ulidv
= ~iGci) + W= “"’ L)

Substituting this result in (2), and replacing kg, and k.g,, by their respective expressions
in x{,=(2na/uy)frr,, . oOne finds after some algebra:

Par=201p0, (L) 1 - (o) TS L @

in which A,=ma’ is the cross-sectional area.

Compare the rectangular and cylindrical waveguides as power transmitters when each
operates in its dominant mode.

The two power formulas, (19) of Section 16.7 and (4) of Problem 16.15, show identical
dependence on H-amplitude, cross-sectional area, and normalized frequency. The only difference lies
in a geometrical factor, which has the value 1.0 for the rectangular guide and the value

(1.841)> - 1

(L84 (0.5814)* = 0.239

for the cylindrical guide.

(a) Define the notion of cutoff wavelength. (b) Is the cutoff wavelength an upper limit on
the guide wavelength, just as the cutoff frequency is a lower limit on the guide frequency?

(a) The cutoff wavelength A, is the wavelength of an unguided plane wave whose frequency is the
cutoff frequency; i.e., A f.=uy,.

(b) No; in fact, the formula

A = N
Vf* f
shows that an (m, n) mode can propagate with any guide wavelength greater than A.
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16.18. A lossless air-dielectric waveguide for an S-band radar has inside dimensions a=

Y

16.19.

Py

16.20.

16.21.

&

7.214cm and b=3.404cm. For the TM,, mode propagating at an operating frequency
that is 1.1 times the cutoff frequency of the mode, calculate (a) critical wave number, (b)
cutoff frequency, (c) operating frequency, (d) propagation constant, (¢) cutoff wavelength,
(f) operating wavelength, (g) guide wavelength, (#) phase velocity, (i) wave impedance.
(a) By (10), k.= V(x/0.07214) + (2/0.03404)* = 102.05 rad/m.

(b) By (13), fu,=[(3 X 10%/22)](102.05) = 4.87 GHz.

(¢) f=11f,=5.36GHz.

(d) By (11bis),

. 2n . _
Yu=jky EIW V(5.36)° - (4.87)%(10°) = j46.8 m™'

(&) Aun=uolfon=03%10%/(4.87 x 10°) = 6.16 cm.

() Ao=uolf =(3 x 10%)/(5.36 X 10°) = 5.60 cm.

(g) A,=2a/k,,=2n/46.8=13.4cm.

(k) By (15), u,,=(0.134)(5.36 X 10°)=7.18 x 10° m/s.
(i) Forair, n,=120nQ and (14) gives

2
S = 12071 /1 - (—11—1) —157.5Q

A lossless, air-dielectric cylindrical waveguide, of inside diameter 3cm, is operated at
14 GHz. For the TM,, mode propagating in the +z direction, find the cutoff frequency,
guide wavelength, and wave impedance.

By (2) of Problem 16.10, along with Table 16-1,

froy =0y, = 3%
cT™11 2.1!'0 1 u(3x10-2)

Then, by (11 bis) and (14),

(3.832) =12.2 GHz

A= U _ Ix10®
V= V(187 - (12.2) (10%)

Novn = 'Iovl - (f%)z= lZOn\fl - (112'72)2= 185Q

Find the inside diameter of a lossless air-dielectric cylindrical waveguide so that a TE,, mode
propagates at a frequency of 10 GHz, with the cutoff wavelength of the mode being 1.3 times
the operating wavelength.

The condition is 4., =1.34;,, or

=4,36cm

Up _ ol .
fm" 1.3 f or .’;TE" 1.3 7.692 GHz
But, by Problem 16.11,
.03
firen = 2%.1:" =—(1.841) (GHz)

Equating the two expressions yields d =2.28 cm.

Represent the E field of Problem 16.14 in the time domain, using as $pace
variables p=r/a, ¢, and §{=kqg, 2.
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In terms of the lumped constants
wpH,, wpH,,
K, = K, 6 =——
P Kirgna * k.aen

which are presumed real, we have (x;, = 1.841):
E,(p. ¢, L. 1)=Re[E, & 9= — %J.(l.ﬁdlp) sin ¢ sin (wf — )

Ey(p. ¢. . () =Re [E, 1" "] = —K,Ji(1.841p) cos ¢ sin (et — §)

For the E field obtained in Problem 16.21, calculate and plot the field lines. Also plot
(without calculation) the lines of the transverse H field.

The lines of any vector field are a family of space curves such that, at each point of space, the
vector is tangent to the curve through that point. Thus the differential equation of the lines of E in a
cross-sectional plane is dy/dx =E,/E, , in cartesian coordaintes (x, y), or

1dp _E,

1
pdd E, @)
in polar coordinates (p, ¢). Substitution in (1) of the components of E from Problem 16.21 gives
dp Ji(1.841p)

ap~ X' st
It is seen that the TE,, mode of a cylindrical waveguide has the special property that the field pattern
does not change with time or with distance ¢ along the guide.
Normally, the field lines are found by a numerical integration of the differential equation; but in
this case an analytic solution is simply obtained:

Ji(1.841p)
Ji(1.841p,)

This is a one-parameter family of curves, where the parameter p, gives the radius at which a curve cuts
the horizontal axis sin¢ =0. Note that the right side of (3) does not change when ¢ is replaced by
—¢ or by ¢ + x; hence the field pattern is symmetric about both the horizontal and vertical axes, and
only the quadrant 0=¢ =<n/2 need be considered. As one moves along a field line through
increasingly positive ¢-values, the right side of (3) increases through positive values. Consequently
[see Fig. 8-3(a)], p/po increases through values greater than 1. This, together with the constraint that
the field line hit the boundary p =1 orthogonally, shows that the field line must bend away from
the origin, as shown in Fig. 16-5. The line p,=1 degenerates into a single point.

tan ¢ (2)

=K:In|sec¢pl  (K:>0) 3

pn =0
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The lines of H are plotted as the orthogonal trajectories of the E lines; see Problem 16.8. By
Problem 16.14 both H, and H, vanish at the points p=1, ¢ =0, n; hence the direction of H is
indeterminate there.

A lossless air-dielectric waveguide for an S-band radar system has the dimensions a =
7.214cm and b=3.404cm. The dominant mode propagates in the +z direction at
3GHz. Find the average power transmitted if the excitation level of the E field is 10 kV/m.

The cutoff frequency for TE,, is

and (19 bis) yields

_(10'%(7.214)(3.409107 [ 2.08\F

In a lossless air-dielectric cylindrical waveguide with a 1 cm radius the transmitted power in
the dominant mode at 15 GHz is 2W. Find the level of excitation for the magnetic field.
The cutoff frequency for TE,, is (see Table 16-2):
U , _ 3x10° -
.ﬁ"l'Ell mx" _Z.u'(_l x 10 2) (1.841) 8.79 GHz

so that (4) of Problem 16.15 becomes (see also Problem 16.16):
2= ? |H,\P(107)(15/8.79)° V1 — (8.79/15)’ [0.239]

Solving, |H,,|=0.11 A/cm.

A section of X-band waveguiude with dimensions ¢=2.286cm and b =1.016cm has
perfectly conducting walls and is filled with a lossy dielectric (o,=367.5uS/m, €, =
2.1, p,=1). Find the attenuation factor, in dB/m, for the dominant mode of propagation
at a frequency of 9 GHz.

The cutoff frequency of TE,, is

Jero= Yo Gx10)/vz1 IOG)IVSZ.—I =4.53 GHz

2a  2(0.02286)
and (22) gives (second form):

(377/7/2.1)(367.5 x 10°%) < 8.69 — 0.48
2V1- (4.53/9) ) ’

The reader should verify that the underlying approximation, wp,0,<p% , holds for the data.

a,(dB/m)=~

An X-band air-dielectric rectangular waveguide has brass walls (u,=py,, o,=
16 MS/m) with a=2.286cm and b =1.016cm. Find the dB/m of attenuation due to

wall loss when the dominant mode is propagating at 9.6 GHz.
At the cutoff frequency of the dominant mode,
_uo__ 3X 10°
Jo= 2= 5mx 107

the surface resistance of the brass is

7(6.56 X 10°)(dx x 10 1)
Rio= \{ = 40.24 mQ
10 16 x 10° m

=6.56 GHz
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and, by (26), 0.04024 ¢ [9.6) 0.02286 +2(0.01016)(6.56/9.6)*
( E'Eé) X 8.69=0.214

o(dB/m) =377 (0.02286)(0.01016)V1 — (6.56/9.6)’
16.27 An air-dielectric cylindrical waveguide (a=5mm) operates in the TM,, mode at

frequency f =1.3frmm - Find the dB/m of attenuation due to wall loss in a short section
of copper (o, =58 MS/m).

First derive an expression for P..(0), following Section 16.8. By (I) of Problem
16.10, E.o(7, ¢) = EoJo(Xur/a). Then (3) of Problem 16.5 gives the tangential magnetic field at
the wall as  [Jo(v) = —-L(v)]}:

Hym(a, ¢)=

fmoImEmJt(xm)=onJ1(xm) ( S )
kZ a3 Mo cT™OI
and, since H,q, is constant, (24) gives

Peui0) = iR,['E"";Jg(x'")( L) |@na) (1)

<Tw01

Next find P,yuo by the method of Problem 16.15. By Problem 16.15,

e ) L) (- BT )

Hyon = fEm(f;.:cnm) J, (? )

while H,, = E  =0. Thus the time-average Poynting vector is

_ |Eo)” (f {fermon)*V1 ~ (fermon /) ﬁ(x_m_')

S=i£-mH;m 2” a
o

Integrating over a cross section,
2 m
[J; Jf(%'—‘-r)rdrtfq: =%‘ Fi(v)vdv = A (x0)
o1
Combining these results,

a, = P'f"(o) = R—’
" 2P Mo V1—- (fnnmlf)z

2

For the data,
_ g 3x10°
Jenaa = 200 T 225 x 10
= (1.3)(22.99) = 29.89 GHz

-7
R = \/:q‘y.,= \fn(29.89x 1) x107) _ o asi 0
o, S8 x 10°

(2.405) = 22.99 GHz

~ 0.0451
T (3775 x 103V — (1/1.3)

a. =0.0374 Np/m = 0.325 dB/m

Supplementary Problems

16.28. Determine the condition(s) under which a magnetic field with
H,(x, ¥, z, 1) = K cos 87.3x cos 92.4y cos (2nft — 109.1z)
can exist in free space. Ans. f=80GHz
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16.29.

16.30.

16.31.

16.32.

16.33.

16.34.

16.35.

16.36.

16.38.

16. 39.

16.40.

16.41.

Obtain the critical wave number for a 4-GHz wave propagating in a2 medium with g, =1 and ¢ =
2.2, if the phase shift constant (wave number) is 54° per cm. Ans. Bl.1rad/m

If H,(x, y, z, t) in Problem 16.28 represents the axial field of a TE,, wave in a rectangular waveguide,
find (@) the guide size, (b) the critical wave number, (c) the guide wavelength.
Ans. (a) 7.2cmby3.4cm; (b) 127.1rad/m; (c) 5.76 cm

The S-band waveguide of Problem 16.18 is used in the X-band at 9 GHz. Identify the modes that could

propagate in the guide.
Ans. TEg , TEn, TEw, TE,, , TEy, TE; , TEsw, TE;,, TEsxw; TMy , TMy, , TM,,

In Problem 16.19, what other modes could propagate at the given frequency?
Ans. TE,,, TE,,, TE, , TEs; TMy

A C-band waveguide for use between 3.95 and 5.85 GHz measures 4.755cm by 2.215em. For air
dielectric, calculate the dominant mode cutoff frequency and the guide wavelength when the operating
frequency is 4.2 GHz.  Ams. 3.155GHz, 10.82cm

The WC-50 cylindrical waveguide with air dielectric is used in the frequency range 15.9-21.8 GHz for
dominant-mode propagation. Calculate the cutoff frequency for an inside diameter of 1.270cm.  Also
obtain the cutoff frequency for the TM,, mode. Ans. 13.84 GHz, 18.08 GHz

An air-dielectric L-band rectangular waveguide has a/b=2 and a dominant-mode cutoff frequency
of 0.908 GHz. If the measured guide wavelength is 40cm, find the operating frequency, the guide
dimensions, and the wave number, Ans. 1.18Ghz, 16.52 cm by 8.26 cm, 15.7 rad/m

For the waveguide in Problem 16.35 find the lowest frequency at which a TE,, mode would
propagate. Ans. f>2.569GHz

A V-band waveguide for use between 26.5 and 40 GHz has inside dimensions 0.711cm by
0.356cm, (a) Calculate the dominant-mode critical wave number for air dielectric. (b) If the
measured guide wavelength is 1.41 cm, what is the operating frequency?

Ans. (a) 441.86rad/m; (b) 29.98 GHz

The WC-19 air-dielectric cylindrical waveguide is used for dominant-mode operation in the 42.4—
58.10GHz range. Find the inside diameter for the specified cutoff frequency of
36776 GHz.  Ans. 0.478cm

A Ku-band air-dielectric guide with a/b=2 is used in the 12.4-18.8 GHz range for dominant-mode
operation with a cutoff frequency of 9.49 GHz. What are the inside dimensions?
Ans. 1.58cm by 0.79cm

Find the radius and guide wavelength in an air-dielectric cylindrical waveguide for the dominant mode
at f=30GHz=1.5f1s, . Will the TM,; mode propagate under these conditions?
Ans. 0.44cm, 1.34cm; No

Solve Problem 16.40 for the guide with a lossless dielectric of €, =2.2.
Ans. 0.296cm, 0.903 cm; No

A K-band rectangular waveguide with dimensions 1.067 cm and 0.432cm operates in the dominant
mode at 18 GHz. Find the cutoff frequency, guide wavelength, phase velocity, and wave impedance, if
the dielectric is air. Ans. 14.06 GHz, 2.67 cm, 4.81 x 10° m/s, 604.2 Q

Solve Problem 16.42 if the guide is filled with a lossless dielectric of ¢, =2.0.
Ans. 9.93GHz, 1.44cm, 2.54 x 10° m/s, 319.6 Q
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16.45.

16.47.

16.48.

16.49.

16.50.
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Calculate the radius and guide wavelength for a TM,, mode at f=30GHz=1.5f{1y, in an
air-dielectric cylindrical waveguide. [Compare Problem 16.40.]  Ans. 0.915cm, 1.342cm
For an (m, n) mode operated below its cutoff frequency, the cutoff attenuation factor is defined
as O, = —jkn.- Calculate a.rgy,, in dBfcm when a lossless air-dielectric guide, 2.286cm by
1.016 cm is operated at 9.4 GHz. Ans. 239

In a certain cross section of a rectangular waveguide the instantaneous components of E are

Y T P I

Sketch this E field and identify the mode of operation. Ans. See Fig. 16-6; TE,,

B
=l

X

Fig. 16-6

The air-dielectric waveguide of Problem 16.23 transports 200 W of average power at 2.6 GHz. Find the
excitation level of the field. Ans. 143 V/cm

If a lossless dielectric having €, =1.8 is inserted in the waveguide of Problem 16.47, calculate the
excitation level for the transport of 200W.  Ans. 106.8 V/cm

The air-dielectric waveguide of Problem 16.24 is filled with a lossless dielectric having €, =2.1. Find
the power transported in the dominant mode, if the excitation level and frequency are
unchanged.  Ans. 0.09 A/cm

Show that result (2) of Problem 16.27 can be rewritten as a, =

P I where &, is the
(frequency dependent) skin depth. 0.8 O, Nrmon



Chapter 17

Antennas
(by Kai-Fong Lee)

17.1 INTRODUCTION

Maxwell’s equations as examined in Chapter 14 predict propagating plane waves in an
unbounded source-free region. In this chapter the propagating waves produced by current sources
or antennas are examined; in general these waves have spherical wavefronts and direction-dependent
amplitudes. Because free-space conditions are exclusively assumed throughout the chapter, the
notation for the permittivity, permeability, propagation speed, and characteristic impedance of the
medium can omit the subscript 0; likewise the wave number (phase shift constant) of the radiation
will be written B= wVue=w/u.

17.2 CURRENT SOURCE AND THE E AND H FIELDS

The vector magnetic potential A defined in Section 9.7 gives the phasor fields in the region
outside of the current source as

H=lvxa=%vxa
u n

1 1 u e
E=—VXH=——VXVXA==—VXVXA
jwe jope iB
inwhich u=3x10°m/s and 7=120x Q.
The phasor A is itself given by

— i
A=J ﬂ@f_.__r_)dv (2)

vot 47

In (2), r is the distance between the observation point and the source current element J, dv. The
significance of the factor e /#" becomes clear when A is transformed to the time domain:

A =j pud; cos w(t — rlu)dv
ot dnr

Thus A at the observation point properly reflects conditions at the source at earlier times—the lag
for any given source element being precisely the time r/u needed for the condition to propagate to
the observation point.

17.3 ELECTRIC (HERTZIAN) DIPOLE ANTENNA
The vector potential set up by the infinitesimal current element of Fig. 17-1 is, by (2),

—ipr
A(P)= ”:T (IdO)a,

In spherical coordinates, a, =cos 6a, —sin Oag; relations (1) yield
_1de s, —mr[i 1 ]
H,= rym B sin Ge ﬁr+ﬁ2r2
293
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»
-

[ Sy " ——

Fig. 171

21d¢ [ﬁ!lrz'""é:?]

E,=n—,— P cos 67"

_lde —fﬂr[-l _L_-L]
Eg=n an f”sin Be Iﬁr"'ﬁzrz Jﬂsra

All other components are zero. Attention will be restricted to the far field, in which terms in 1/r*
or 1/r* are neglected.
i1 dé
far il H, =22 o g
4nr
i

deg .
4, Sin e P = nH,

(3)

Eg=1

It is clear that (3) represents a diverging spherical wave which at any point is traveling in the +a,
direction with an amplitude that falls off as 1/r.

The power radiated by of the Hertzian dipole is obtained by integrating the time-averaged
Poynting vector,

P..=31Re(EXH")
(Section 14.12), of the far field over the surface of a (large) sphere.

2x
P,,,,:L ...~ rPsin 040 dpa,

- r“ f (4 Re (EoH}))r’ sin 6d60 d¢

-2

(4)

174 ANTENNA PARAMETERS

The radiation resistance R, is defined as the value of a hypothetical resistor that would dissipate
a power equal to the power radiated by the antenna when fed by the same current, thus, F,,=
R Ot R q=2P,../1I; where I, is the peak value of the feed point current. For the Hertzian

dipole, from (4),
S ) @

The pattern function F(6, ¢) gives the variation of the far-zone electric or magnetic field
magnitude with direction. For the Hertizian dipole this reduces to F(8)=sin 8, since |E| and
|H| are independent of ¢.
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The radiation intensity U(6, ¢) is another measure of antenna performance; it is defined as the
time-averaged radiated power per unit solid angle. From Fig. 17-2,

dP, P45’
u(e, ¢)E"?§=1}'¥‘IF= | Pl

Fig. 17-2

Because U is independent of r (by energy conservation), the far field may be used in its
evaluation. For the Hertzian dipole,

OB (%‘f)2 sin? 0 5

Polar plots of the pattern function and radiation intensity distribution for the Hertzian dipole are
given in Fig. 17-3.

z 24 Half
wer
o po’
45°
l U C l
{a) O F(8) (6) U(8)
Fig. 17-3

In Fig. 17-3(b), the half-power points are at 6=45° and 6 =135 and the half-power
beam width is therefore 90°. In general, the smaller the beam width (about the direction of U,,,),
the more directive the antenna.

Directive gain D(6, ¢) of an antenna is defined as the ratio of the radiation intensity U(8, ¢) to
that of a hypothetical isotropic radiator that radiates the same total power U,. For the isotropic
radiator,

_ P
to= 4n
u(e, ¢) 4nuU(6, ¢)
Then D(6, ¢)= =
(6, ¢) 7 P
The directivity of an antenna is the maximum value of its directive gain:
D,. = 47U pax

Frea
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For the Hertzian dipole, (4) and (5) give

2
(4:!)2 (% sin’ @
9, = =1, in® = 1.
D(6, ¢) (ﬂ)( ﬂ)z 1.5sin8 and D,,=1.5 (6)
3 A
The radiation efficiency of an antenna is €,,4= P.4/P,, where P, is the time-averaged power

that the antenna accepts from the feed. The (power) gain G(6, ¢) is defined as the efficiency times
the directive gain:

4nU(6, $) _4U(6, 9)
Py, B Froa+ Py

where P; is the ohmic loss of the antenna. A lossless isotropic radiator has a power gain Gy=1.
At times the power gain of an antenna is expressed in decibles, where

G(6, ¢) = €,,4D(6, ¢) =

Gap=10 Iog.o—(% =10log,e G

17.5 SMALL CIRCULAR-LOOP ANTENNA

Also known as the magnetic dipole, a small loop in the z =0 plane, carrying a phasor current
Ia, , produces radiating E and H fields with characteristics similar to those of the Hertzian dipole,
but with the directions of E and H interchanged. In the far zone,

(B ma®)le "

Hg = — sin 6
4nr
Ey=—nH,
’)
A
s |
/ I
'l [
™ |
L
o Swi t >y
~ i
p— “--.,‘ |
1 ~d

Fig. 174

The radiation resistance of the small loop antenna is found as part of Problem 17.6: R..=
(20 Q)(Bna®)>
!

)

17.6 FINITE-LENGTH DIPOLE

The expression (4) for the radiated power of the Hertzian dipole contains the term (d€¢/A)
which suggests that the length should be comparable to the wavelength. The open-circuited
two-wire transmission line shown in Fig. 17-5(a) has currents in the conductors that are out of phase,
so that the far field nearly cancels out. An efficient antenna results when the line is opened out as



CHAP. 17) ANTENNAS 297

L2 -
‘ ™ L2
il - L(z") \‘ “
< — 2 !
N - '
@ "‘- T~ [ @ |
J— “‘.h_'___---m—'_._,Jr ;
- ' L
f— n2 —= bz )1 B /
{a) h

Fig. 17-5

shown in Fig. 17-5(b), producing current phasors

I(z") =1, sin ﬁ(%‘ - z’) (0<z'<L[2)

and L(z')y=1,sin ﬁ(%«l-z‘) (—L/2<z'<0)

The two currents are exactly in phase at mirror-image points in the y axis, and they vanish at
the endpoints z'=+L/2. The two legs form a single dipole antenna of finite length L. Note that
BL

the current at the feed point (2'=0) is related to the maximum current by L =1, sin?.

The far field is calculated by means of (2) and (1), under the assumption r>L and r> A

__fl,,,e_f"
2

H, F(6) Ey = nH,

where the pattern function is given by

cos (B3 030) —con (85)

F(6)= sin 6

The antenna can also be assigned an effective length [write I(2')= 1, sin B(L/2— |2’|)]:

sin 8 (L7 o 21,
0)= 1y ,iBz" cos & r_Zom
h(6)==1= | | Hae <0zt =R F(6)

which has the units of length and contains all the pattern information.

For L up to about 1.2A the antenna patterns resemble the figure eight, becoming sharper as L
approaches 1.2A. In the other limit, as L <A, the pattern is that of the Hertzian dipole shown in
Fig. 17-3(a). As L becomes greater than 1.24, the patterns become multilobed. See Fig. 17-6.

The radiation resistance of a finite dipole of length (2rn—1)A/2 (n=1,2,3,...) can be
shown to be R,.s = (30Q) Cin [(4n — 2)x], where

1—cosy
d
y y

is a tabulated function. For n=1 (half-wave dipole), R,,=30(2.438)=73Q and D,,=
1.64 (see Problem 17.8).

Cin(x)= f
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7NN

|
© e <5 }

@)=L =a2 (=i =2

17.7 MONOPOLE ANTENNA

A conductor of length L/2 normal to an infinite conducting plane [Fig. 17-7(a)] forms a
monopole antenna. When fed at the base the resulting E and H fields are identical to the
dipole’s. This is evident when the image of the monopole is positioned below the conducting plane
as shown in Fig. 17-7(b).

B
A Y
| \
\
1 \
L2 D ‘\
!
‘.'
= ’ (I
’ 1 : }
{a) lmaige/: ;’
current [
l/,
(P
Fig. 17-7

As the monopole radiates power only in the region above the conducting plane, the total radiated
power is one-half that of the corresponding dipole. From R, ,q=2P./I2 it follows that the
radiation resistance is one-half the value for the dipole. Thus, for L/2=A/4 (quarter-wave
monopole), Rq=36.5Q.

17.8 SELF- AND MUTUAL IMPEDANCES

With respect to its feed, an antenna is equivalent to a load impedance Z,=R,+jX,,
where R,=R,.4+ R, , and R, is ohmic resistance. The reactance X, is not easily calculated; it is a
function of the radius p of the conductors for dipoles and monopoles. Figure 17-8 illustrates
the variation of both R, and X, for monopoles of length L/2; the figure also applies to dipoles of
length L if vertical scale values are doubled. Thus the half-wave dipole has R, =73Q and,
roughly independent of p, X,=40%Q. (It can be shown that as p—0, X,—42.5Q.)

When a second antenna is placed adjacent to a first antenna, a current in one will induce a
voltage in the other. Consequently, a mutual impedance Z,, = V,,/I, = R, +jX,, exists in the
system. For two side-by-side half-wave dipoles with very small conductor size, R,, and X, vary
with the separation d as shown in Fig. 17-9.
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Fig. 17-8. (Source: Edward C. Jordan/Keith G. Balmain, Electromagnetic Waves and Radiating Systems,
2ad ed., © 1968, p. 548. Reprinted by permission of Prentice-Hall, Inc., Englewood Cliffs, N.J.)

B —

Ra or Xy, )

==

Fig. 179. (Source: Weeks (1968), Antenna Engineering. Reproduced by permission of McGraw-Hill, Inc.)

17-9 THE RECEIVING ANTENNA

An antenna in the far field of a transmitter extracts energy from what is essentially a plane wave
and delivers it to a load impedance Z,. In Fig. 17-10(a) the dipole antenna lies along the z axis and
the incident wave has a Poynting vector 9. The open-circuit voltage is equal to the product of the
effective length h,(6) and the magnitude E of the projection of E onto the plane of incidence. [For
the coordinate system of Fig. 17-10(a), E=VE,+ E;.]

Voc = h.(6)E



300 ANTENNAS [CHAP. 17
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Fig. 17-10

The pattern for the receiving antenna is identical to that of a similar transmitting antenna. The
available power P, is the maximum power which the receiving antenna can deliver to a load, which
occurs when Z,=Z}). From the equivalent circuit of Fig. 17-10(b),

_h(6)E?

Fa= 8R,

The effective area A.(6) for an antenna is a hypothetical area such that when multiplied by the power
density of the incident wave, E?/27, it results in the available power.

h.(6)’E?

8R,

It can be shown that the effective area is related to the directive gain by

AL, 9) A
D@6, ¢) 4x
When both a transmitting and a receiving antenna are considered, the power F,,, radiated by

antenna 1 and the available power F,, at the receiving atenna 2, are related by the Friss
transmission formula,

A6)=h(6F(5%)

EZ
A,(e)(z—ﬂ) -p- o

Fa _ Dy(6,, $1)A(62: ¢2)

| 4nr?

Here, r is the separation of the two antennas. Angles 6, and ¢, specify the direction of the
receiving antenna as seen from the coordinate system of antenna 1. Similarly 6, and ¢, specify the
direction of the transmitting antenna as viewed from the coordinate system of antenna 2.

<4
gl?.lll LINEAR ARRAYS

A far-field pattern with a narrow beam width and high gain can be achieved by forming an array
of identical antenna elements, each with the same orientation as shown in Fig. 17-11. The pattern
function of the array is equal to the pattern function of an individual element multiplied by an array
factor f(x). In Problem 17.15 it is shown that, for a uniformly spaced array of N elements where d is
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Fig. 17-11

the spacing
N—-1
)= 3 Les

n=0
The angle x is the angle between the array axis and the line OP; by geometry, cosy=
sin 6 cos ¢. If the elements are progressively phased so that I, =a,e™* (n=0,1,...,N—1),

N=1

JO)= T agentersicon
n=0
or, defining u=a + fd cos ¥,

N=-1

fw)= 2 a,e™ ()
The overall pattern function will be a maximum when |fy(«)| is a maximum, which occurs
for u=0. If a=0 (the individual antennas are all in phase), then u=0 implies yx=
+90° i.e., peak radiation occurs at right angles to the line of antennas. This is called a broadside
array. On the other hand, if the phasing a = —pd isimposed, u=0 implies x=0° thisis

an endfire array.
A uniform array has all antenna currents equal in magnitude. For agy=a,=---=ay_, =

1, (7) becomes

sin (Nu/2) . n_
sin (u/2) e/ ®)

Thus, the main peak or lobe of the radiation pattern, centered on =0, has “height” |{(0)|=
N. The two first nulls of the pattern [zeros of |fi(u)|], occur at u = +2x/N. The separation of
the two first nulls can be used to define the beamwidth. Concentrating on the plane 8 =90°, one
finds:

fiw)=

2 2A
- - = [ l =
broadside uniform A¢ =2sin ﬁ_N 4= Nd

84
endfire unif Ap=4sin~'y/ -2~ \[ 22
re uniform ¢ =4sin BNd Nd

where the approximations are for the case Nd>> A.
The sidelobes occur approximately midway between the nulls. The ratio of the main lobe to the
first sidelobe is N sin (37/2N) which approaches the value 37/2 for large N.
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17.11 REFLECTORS

The gain of an antenna element can be enhanced by means of a reflector. Gains of from 6 to
12 dB can be obtained by using a half-wave dipole and a corner reflector such as that shown in Fig.
17-12(a). (A flat sheet reflector results when 1y = 180°.)

v Conducung sheer A

Irmage *

Comer reflector

\/’
-
-

Half-wave
dipole

by

Fig. 17-12

The effect of a reflector with ¥ =180°/N (N=1,2,3,...) can be calculated by the method
of images. The actual reflector is replaced by 2N — 1 image dipoles, which together with the actual
driven dipole, constitute an evenly spaced circular array, alternating in polarity [Fig.
17-12(b)]. Superposition of the far fields yields

I

.. COS | —cos ﬁ)

jrdoe ™ (2 £ 5 sin 8 -

E= — 1Y !5 sin 8 cos (ny—~ ) 9
2nr sin 6 :.2=n 1) Ao (%)

For high gain applications, the parabolic reflector driven by a source located at its focus, as
shown in Fig. 17-13, is widely used. The directivity of the parabolic reflector is proportional to the
aperture radius a and the aperture efficiency &:

2na\?
D= ()
The aperture efficiency depends on a variety of design factors; a reasonable value is 55%. The
half-power beam width can be estimated from the formula HPBW = 117°(1/2a).

o A

&\

FEED AT
FI US

Fig. 17-13
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17.1 -

17.3.

Solved Problems

A center-fed dipole antenna with a z-directed current has electrical length L/A<¢
%. (a) Show that the current distribution may be assumed to be triangular in form.
(p) Find the components of the vector magnetic potential A.

(a) Since

L L L 1
Bz -11) P37

I(z')=1,sin ﬂ(£ - Iz'l)

mﬁ(-—lz 1) E(-——Iz |) where I, =1,

L T G W7 (é_ ) -_!‘_’5’(.": —ife,
(®) A’M[m“’ )"( , ) anly ), \z V) e =0 2)‘ 8

from which

ﬁL

= z"_rﬂ(i‘) —ibr —- -._.'_'d_"" ._) —iBr ot
A=A, cos0 amr \2 )¢ cos @ Ag=—A,sinf 4r(2€ sin 6

and A,=0.

(a) Find the current required to radiate a power of 100 W at 100 MHz from a 0.01-m
Hertzian dipole. (b) Find the magnitudes of E and H at (100 m, 90°, 0°).

3Ix10° :12% 3
@ (@ A==g—=3m Rm=79o(f) =878X10°Q

2P.ns _ w0
Roaa="p~ I=Vszaxws - P1A

(This extremely high current illustrates that an antenna with a length much less than a wavelength
is not an efficient radiator.)

nﬁl

(®) [E|= sin90°=095V/m  |H|=2.52x10""A/m

Two z-directed Hertzian dipoles are in phase and a distance d apart, as shown in Fig.
17-14. Obtain the radiation intensity in the direction (6, ¢).

Since cos & =sin Osin ¢,

d d d
r.mr—ioosa'=r—§sinﬂsin¢ and r,=r+§sin85inqb

The far electric field is then E = E,a,, with

I1d€
4xr,

E,= e "*2(jBn sin 8) + —f e""‘(;ﬁq sin )

gfﬂﬂ(;rde) e~ sin (e-m(.mwnouno 4 /P e Bsin %)

}ﬁ'r(x‘df] e sin @ cos (ﬁ— sin 6 sin tp)
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Fig. 17-14 =

Consequently, 2
U=r’( ) ﬂ(ﬁfdf) —————sin’ B cos (ﬁdsm @ sin ¢)
27 2
For d<€A the cosine term is nearly 1 and
2
U= M sin® 6
8n

17.4. The far electric field of two Hertzian dipoles at right angles to each other (Fig. 17-15), fed by
equal-amplitude currents with a 90° phase difference, is

E —_-%ﬂe‘“”[(sin 6 — j cos 6 cos Pp)ag + (j sin p)a,)

Find the far-zone magnetic field, the radiation intensity, the power radiated, the directive
gain, and the directivity.
E,_jpUde)

H, =
¢ n 4nr

€ #(sin 6 — j cos @ cos ¢)

= ———= _’B' i
H, N am sin ¢

_'T‘E'_ﬂ(ﬁfﬂ'f): P R
U= o aw (1+ sin’ ¢ sin® 8)

. g 2
R.¢=FL vsinaded¢="(f—:€)

D(6, ¢) = 4LU—4(1+sm ¢ sin’ 6)
M

Dmu = D(90°’ 900) =

z]
Idl

Fig. 11-
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17.5.

17.6.

o |
=

17.7.

A Hertzian dipole of length L =2m operates at 1 MHz. Find the radiation efficiency if
the copper conductor has o, =57MS/m, u,=1, andradius a=1mm.

As defined in Section 17.4,

€ Pﬂﬂ ‘Pl‘ad Rnd
™= p TP +P. R.+R,

where R,, is the radiation resistance and R, is the ohmic resistance. The radius a is much greater
than the skin depth

1 1
6= =—mm
Vafuo, 15
so that the current may be assumed to be confined to a cylindrical shell of thickness 8.
L _oome

R = @nays
Rows = (790 cz)(%)2 = (1% Q}(%)2=0.035 Q

€ma =0 119

Find the radiation efficiency of a circular-loop antenna, of radius a=x"'m, operating at
1MHz. The loop is made of AWG 20 wire, with parameters a, =0.406mm, o=
57MS/m, and p,=1.

At 1MHz the skin depth is &=0.667 um. Assuming the current is in a surface layer of
thickness &, the ohmic resistance is

) 0.206Q

AL

l( 2ma
2ma,6
Taking the far-zone magnetic field from Section 17.5,

Paa= L Lmﬁ.,l sin 0d0d¢ = "‘ﬂz z)z'ﬂ = (10 Q)(F*ra
from which
Res =222 = 20 Q)(Bma) = 039 42
and e = = 1,89 X 10°4%
Ro+R.

Find the radiation resistance of dipole antennas of lengths (a) L=4/2 and (b) L=
A
(2::-1)5, n=12...

L - Lyy
(a) M-ZL J; 2, r’sin 0d0 d¢ = 3012, Lx{m(ﬂgmsszl)e cm(ﬁz)} do

ap_ctit, -1 (B3 e000) e (3)]
n I £ sin 8

Rnd dG
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ko

For the half-wavelength dipole L=A/2 and 1, = —i- L
sin (65
cos? (fcos 6)
R —‘"’f —ae 10
Let x =cos 6

Rps =60

el
(RTINS

Since the two terms within the brackets are equal

' /14 cos nx
red —1 1+x
letting y = (1 + x)
R._,—mj; 1 my)dy=30Cin(?.n)

R..=30(2.48)=73Q
A
(b) For L=(2n- 1)5 , a similar approach yields

R...=30Cin[(4n - 2)x] Q

17.8. Find the directivity D,,,, of a half-wave dipole.
From Section 17.6, for BL/2=n/2,
, |s=(Gew) ,
o =0
Hol = 2mr |~ Sine whence  1Holm =202
the maximum being attained at 6 =90°. It follows that

'Ilo

Uney =73 ol =312

From Problem 17.7,
Py = _F., Cin (2x)

AnUman 4
Thus Dy = P Cn@n)_ 1.64

17.9. A 1.5-A dipole radiates a time-averaged power of 200 W in free space at a frequency of
500 MHz. Find the electric and magnetic field magnitudes at r=100m, 6 =90"

From Problem 17.7, R,..=(30Q)Cin(6x)=105.3Q, andso

_ [P O
k= R,.a 1053 1954

For a 1.5A dipole, |l| = 1.l
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From Section 17.6,

A 1.95

H(100m, 90} =5=|  IF(0) =m{1) =3.1mA/m

|Eq(100 m, 90°)| = (1207)(3.1 X 10~%) = 1.17 V/m

17.10. Obtain the image currents for a dipole above a perfectly conducting plane, for normal and

ACTUAL
MFOLE —_—

parallel orientations.

The basic principle of imaging in a perfect conductor is that a positive charge is mirrored by a
negative charge, and vice versa. By convention, electric currents are attributed to the motion of
positive charges. Hence, for the two orientations, the image dipoles are constructed as in Fig. 17-16.

It

ACTUAL
: DIPOLE
é) I I b @ J

T 7777777777777 IITTTT7 777777777777 77777777777

: él
| Vo

i | _ e L
H IMAGE

DIPOLE

: o—

DIPOLE

1
e b ————

(a} Normal (b} Parallel
Fig. 17-16

17.11. Calculate the input impedances for two side-by-side, half-wave dipoles with a

17012.

separation d=A/2. Assume equal-magnitude, opposite-phase feed-point currents.
The two feed-point voltages are given by
Vi=hZ,+L2Z, WV=hLZ,+ LZ,;
where Z,,=Z,; consequently,

V, L
Z, =!_:‘—' Z,+ (’—:)Zu

v, I
Zz E}_: = Zn + (}i)zu
For half-wave dipoles Fig. 17-8 gives Z,, =Z,,=73+j42.5 Q and Fig. 179 gives Z,,=-12.5~
j28 Q. Then, with I,=-1I,

Z,=Z,=73+j42.5—(~12.5—j28) = 85.5+j70.5 Q

Three identical dipole antennas with their axes perpendicular to the horizontal plane, spaced
A/4 apart, form a linear array. The feed currents are each 5 A in magnitude with a phase
lag of =/2 radians between adjacent elements. Given Z,,=70Q, Z,,=-(10+
j20)Q, and Z,;=(5+j10)Q, calculate the power radiated by each antenna and the
total radiated power.
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From V,=LZ,+LZ,+5LZ,,

Z, =%=Z.. + (?)Zu-i- (?)Z.,=?0+e"""2(—10—1“20)+e""'(5 +j10)=45Q
i i 1

Similarly, Z,=70Q and Z,=(85-;20)Q. It follows that
Pooar = 3 |L)? Re (Z,) = 5(25)(45) = 562.5 W Po:=8I5W P.on=10652W
for a total of 2500 W.

17.13. Two half-wave dipoles are arranged as shown in Fig. 17-17, with #1 transmitting 300 W at
by 300MHz. Find the open-circuit voltage induced at the terminals of the receiving #2
antenna and its effective area.

Fig. 17-17

For a half-wave dipole (f,=1..,), Section 17.6 gives

I
h(8)= %i&,—f}

and, at 300 MHz, B=2n For #1,

_ [P [20300) _
L'lﬂJer:- 7 =287A

and the far ficld at angle 6, is of magnitude

n
oy 180 (e;:"'mm(i‘“e')
' dr Y 2mr sin 8,
Consequently,
f: P
ot (59000 05 (Feos 0,
_ _ N
[Vocal = he(8,) [E(8,)] B Sn0.5n 6,

Substituting the numerical values gives |Voca| =0.449V.

The effective area of antenna #2 A_(90°) = &RL |h.(90°)1> = 0.131 m’.
rad

17.14. For the antenna arrangement of Problem 17.13 find the available power at antenna #2.

oy
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From Section 17.9,

_hd6:)' |E())” _ Voaal® _ (0.449) _

Fig. 17-18
The far electric field of the nth dipole (n=0,1,..., N—1) is, by Section 17.6,
jnk,e " jnle om0
F = F(f
E.= 2, (6)2, =~ 2n(r — nd cos x) (6)a,

~ Jne_ Prd cos x
[ 2nr F("?)”'ﬂjll"eJ
By superposition, the field at P is
E(P)= 2 E,= [F(G)f(x)ha
where the array factor
N-1
f()= 23 LeP~*
n=0
acts as the modulation envelope of the individual pattern functions F(#8).
17.16. Suppose that Fig. 17-11 depicts a uniform array of N =10 half-wave dipoles with d=

A/2 and a=-—n/4. In the xy plane let ¢, be the angle measured from the x axis to the
primary maximum of the pattern and ¢, the angle to the first secondary maximum. Find

—¢,.
For 6=n/2, x=¢ andthecondition u=0 for the primary maximum yields

0= --:—r-l-.ﬂ:eosqb. or ¢, =75.52°

The first two nulls occur at u=2a/N and wu=4x/N. The first secondary maximum is approxi-



310

17.17.

17.18.
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mately midway between, at u =3n/N; hence,
JT
—=——+mCcos ¢, or ¢, =56.63°

Then ¢| - ¢2 = 18.89°.

A z-directed half-wave dipole with feed-point current I, is placed at a distance s from a
perfectly conducting yz plane, as shown in Fig. 17-19. Obtain the far-zone electric field for
points in the xy plane.

(toP)

Fig. 17-19

The effect of the reflector can be simulated by an image dipole with feed-point current —1/;.
We then have a linear array of N =2 dipoles, to which Problem 17.15 applies. Making the
substitutions

N—2 d—2s
x—¢ Iy— -1
r—or+scos¢ L—

we obtain (to the same order of approximation)

jm-m"htmo}
E(P)=8————" | - 2jloe™ = * sin (s cos ¢)
N et v 4
F(90°) fC2)
-ir
= 2 gin (B cos @

For the antenna and reflector of Problem 17.17 the radiated power is 1W and s=
0.14. (a) Neglecting ohmic losses, compare the feed-point currents with and without the
reflector. (b) Compare the electric field strengths in the direction (0 =9%0°, ¢ =0°) with
and without the reflector.

(a) With the reflector in place, the input impedance at the feed point is

Z,=Z,, - le=(73+i42'5) "Zu
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17.19.

17.20.

17.21.

But Fig. 179 gives, for d=2s=0.24, Z,,=(51—j21)Q. Thus Z,=(22+/63.5)Q and

SO
[P PO
Towicn = Ry 22—0.302!\

With the reflector removed, Z, =(73+j42.5)Q and

(b) At P(r, 90°, 0°), one has, from Problem 17.17,

_ Mowin .7
|Ewinl = r 5'“5

and, from Section 17.6

= 1" Owithout 'Jlowmu
ool =~

Hence  |Euiml/|Ewinoul = 2(0.302/0.166) sin 36° =2.14.

A half-wave dipole is placed at a distance S=A4/2 from the apex of a 90° corner
reflector. Find the radiation intensity in the direction (6 =90, ¢ =0°), given a feed-
point current of 1.0 A.

For v=90° and BS=um, (9) of Scction 17.11 yields

i ; -1
Eo90°, 0) =1 — (11— 14 (-1 - 11 = LD vy
P (90, O)F_ 21
Then U0, 0°) = m == =76.4 W/sr

A parabolic reflector antenna is designed to have a directivity of 30dB at
300MHz. (a) Assuming an aperture efficiency of 55%, find the diameter and estimate the
half-power beam width. (b) Find the directivity and HPBW if the reflector is used at
150 MHz.

(a) A directivity of 30dB corresponds to D,,,,=1000, and A=1m at 300 MHz.

_ 2 A ’Dm
Dm,—(lj,lm) 1 or 2a - % 13.58 m

and HPBW = (117°)(A/2a) = 8.62".
(b) Halving the frequency doubles the wavelength; hence, from (a),

Dy, =2=250~24dB and HPBW ~2(8.62°) = 17.24°

Supplementary Problems

The vector magnetic potential A(r, ) due to an arbitrary time-varying current density distribution J(r’, 1)
throughout a volume V' may be written as

o= [,
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where u=3x10°m/s. Obtain A(r,) for a Hertzian dipole at the origin carrying current I(r) =

—HT, “(&' df) -li leliu i,
Le " a, (z>0). Ans anlr a,

For the Hertzian dipole of Problem 17.21, determine H(r, 6, ¢) under the assumption |r| 2 urt.

Ans. - il d6) sin Ge ¢ Vg,

4rut r|

Consider a Hertzian dipole at the origin with angular frequency @. Find the phases of E, and E,
relative to the phase of H, at points corresponding to (a) Br=1, (b) Pr=10. Assume 0 <8 <N’
Ans. (a) E,lags H, by 90°, E, lags H, by 45%; (b) E, lags H, by 9°, E, and H,, are almost in phase

A z-directed Hertzian dipole I, 4¢€ and a second that is x-directed have the same angular frequency
w. If I, leads I, by 90°, show that on the y axis in the far zone the field is right-hand, circularly

polarized.

Find the radiated power of the two Hertzian dipoles of Problem 17.3, if d<€A,
4nn (J dt’)2
Ans. 3 3

A short dipole antenna of length 10cm and radius 400 yum operates at 30 MHz. Assume a uniform
current distribution. Find (a) the radiation efficiency, wusing o=5TMS/m and pu=4nXx
1007"H/m; (b) the maximum power gain; (c) the angle 6 at which the directive gain is
1.0. Ans. (a) 42%; (b) 0.63; (¢) 54.71°

Consider the combination of a z-directed Hertzian dipole of length A€ and a circular loop in the xy
plane of radius a, shown in Fig. 17-20. (a) If I, and [, are in phase obtain a relationship among 7, , I,
and a such that the polarization is circular in all directions. (b} Is linear polarization poss1ble" If so,
what is the phase relationship?
I, AA¢
Ans. (a) L 2m
(b) Yes. The currents must be out of phase by 90°

F“c lT‘M

A l-cm-radius circular-loop antenna has N turns and operates at 100 MHz. Find N for a radiation
resistance of 10.0Q.  Ans. 515

A half-wave dipole operates at 200MHz. The copper conductor is 406 um in radius. Find the
radiation efficiency and maximum power gain, if o=57MS/m and u=4x x10""H/m.
Ans. 99.26%, 1.63

Obtain the ratio of the maximum current to the feed-point current for dipoles of length (a) 34/4, (b)
34/2. Ans. (a) 1.414; (b) -1

A short monopole antenna of length 10cm and conductor radius 400 um is placed above a perfectly
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conducting plane and operates at 30 MHz. Assuming a uniform current distribution, find the radiation
efficiency. Use o=57TMS/m and pu=4xx10 "H/m.  Ans. 73.36%

17.32. Two half-wave dipoles are placed side-by-side with separation 0.4A. If /, =2/, and #1 is connected
to a 75-Q transmission line, find the standing-wave ratio on the line. [Recall that the reflection
coefficient [ is (Z, — Z,)/(Z, + Z,;) and the standing-wave ratio is (1 + |U])/(1 — IT]).] Ans. 1.63

17.33. A driven dipole antenna has two identical dipoles as parasitic elements; both spacings are 0.154. Given
that Z,,=(64+j0)Q and Z,;=(33-/33)Q, find the driving-point impedance at the active
dipole.  Ans. (29.36+65.93) Q

17.34. In Fig. 17-21(a) a half-wave dipole operates as a receiving antenna and the incoming field
is E=4.0¢"*a, (mV/m). Let the available power be F,,. In Fig. 17-21(b) a 31/2 dipole lies in
the xy plane at an angle of 45° with the y axis. The same incoming field is assumed, and the availabie
power is P, . Find the ratio P,,/F.,.  Ans. 0.748

‘r

&3
A2 45

dipole fE 'E
| b /oo L
dipole

(h)

(a)
Fig. 17-21

17.35. Find the effective area and the directive gain of a 34/2 dipole that is used to receive an incoming wave of
300 MHZ arriving at an angle of 45° with respect to the antenna axis. Ans. 0.173m?, 2.18

17.36. Consider a uniform array of ten z-directed half-wave dipoles with spacing d=21/2 and with o=
0°. With the array axis along x, find the ratio of the magnitudes of the E fields at F,(100 m, 90°, 0°) and
P(100m, 90°,30°).  Anms. 11.36

17.37. Eleven z-directed half-wave dipoles lie along the x axis, at x =0, +4/2, +A, £3A/2, +2A, +54/2. Let
the feed-point current of the nth element be I, =Le™". A half-wave dipole receiving antenna is
placed with its center at (100 m, 90°, 30°). (a) Determine o and the orientation of the receiving dipole
such that the received signal is a maximum. (&) Find the open-circuit voltage at the terminals of the
receiving antenna when L =10A. Ans. (a) a=-0.866m; (b)2.1V

17.38. A half-wave dipole is placed at a distance §=A/2 from the apex of a 60° corner reflector; the feed
current is 1.0 A. Find the radiation intensity in the direction (8 =90°, ¢ = 0°). Ans. 76.4 W/sr

17.39. Two parabolic reflector antennas, operating at 100 MHz and 200 MHz, have the same directivity,
30dB. Assuming that the aperture efficiency is 55% for both reflectors, find the ratios of the diameters
and the half-power beamwidths.  Ans. 1.414, 0.707
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Appendix A

Factor Prefix Symbeol Factor Prefix Symbol
10" exa E 10" deci d
10" peta P 1072 centi c
10" tera T 10°? milli m
10° giga G 10°° micro u
10° mega M 107 nano n
10° kilo k 10~ pico p
107 hecto h 10" femto f
10 deka da 10" atto a

Divergence, Curl, Gradient, and Laplacian

Cartesian Coordinates.
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A

UXA-= (BA 3,4)

dy 2z s
v v

VWW=——g 4+—a +—
Ty T

VY = §V+ FﬁV ?V

ayz
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Spherical Coordinates
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Appendix B

SAMPLE Screens From
The Companion Interactive Outline

As described on the back cover, this book has a companion Interactive Schaum’s QOutline using
Mathcadg which is designed to help you learn the subject matter more quickly and effectively. The
Interactive Outline uses the LIVE-MATH environment of Mathcad technical calculation software to give you
on-screen access to approximately 100 representative solved problems from this book, along with summaries
of key theoretical points and electronic cross-referencing and hyperlinking. The following pages reproduce a
representative sample of screens from the Interactive Outline and will help you understand the powerful
capabilities of this electronic learning tool. Compare these screens with the associated solved problems from
this book (the corresponding page numbers are listed at the start of each problem) to see how one

complements the other.

In the Interactive Schaum’s Outline, you’ll find all related text, diagrams, and equations for a particular
solved problem together on your computer screen. As you can see on the following pages, all the math
appears in familiar notation, including units. The format differences you may notice between the printed
Schaum’s Ouiline and the Interactive Outline are designed to encourage your interaction with the material or
show you alternate ways to solve challenging problems.

As you view the following pages, keep in mind that every number, formula, and graph shown is
completely interactive when viewed on the computer screen. You can change the starting parameters of a
problem and watch as new output graphs are calculated before your eyes; you can change any equation and
immediately see the effect of the numerical calculations on the solution. Every equation, graph, and number
you see is available for experimentation. Each adapted solved problem becomes a worksheet you can modify
to solve dozens of related problems. The companion Interactive Outline thus will help you to learn and retain
the material taught in this book more effectively and can also serve as a working problem-solving tool.

The Mathcad icon shown on the right is printed throughout this Schaum’s Outline, indicating 'a
which problems are included in the Interactive Outline. o

For more information about system requirements and the availability of titles in Schaum's Interactive
Outline Series, please see the back cover.

Mathcad is a registered trademark of MathSoft, Inc.
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Electric Field Due to a Charge Distribution Over an Infinite Plane
(Schaum’s Electromagnetics Solved Problems 2.12 and 2.24, pp. 23 and 29)

Statement

Parameters

Solution

A charge of uniform density p covers a plane in Cartesian space.
Find E on the side of the plane containing the origin.

A=2 B =-3 C =1 R =6
The equation of the plane is A-x+ By+ C-z=R
0
nC =10"-coul py=03.1C a, =0
2
m 1
12 farad

Permittivity of free space: € =8.854-10
m

The electric field for a uniform, infinite sheet of charge is given by
the expression

2-n o0
pgri
E(r,z) = Eu;i'(:!d)-:az

4-me (r2 + 12)2

0 0

which you can derive using a cylindrical coordinate system, finding
the distance vector from any point in the plane (use z = 0 plane for
convenience) to any point above or below the plane.

Load the Symbolic Processor from the Symbolic menu, select the
expression above, and choose Simplify. The symbolic processor
reduces this expression to

P
|z| Ay or E‘n-.ag':—S
(z-g 0) 2*80

1
r’ p—— -
E(r,z) 5 Pg
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The z-dependence cancels, but the sign of z determines the
direction. If the field is taken above the plane, the sign is positive;
below, it is negative. (Notice that this isn't true if the charge
distribution has an r or ¢ dependence.) For the given parameters,

It
E 1mag = 16.94° X
m

All that remains to solve this problem is to find the unit normal
vector to our given plane. The unit normal vectors for a plane are
plus or minus the following expression:

A 0.5

vector = |B ant=T~—-——r— an= 0.8
vect

C o 03

To determine which side of the plane contains the origin, draw the plane.

The intercepts on the three axes are given by:

] 0 E
0 R A
Pl = P2 =|— P3 =
R B 0
C 0 0
10 T .
perspective
scale factor
sk — s=4
opF —
o ]
-5 0 5

If you change the equation of the plane, you may need to adjust the
scale factor to get a better view of the plane. The equations which
generate this picture may be found to the right of this screen.
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It is evident from this sketch that the unit vector on the side of the
plane containing the origin is produced by a negative sign. The
electric field anywhere on this side of the plane is

9.1
volt
E mag'(-2n) =| 13.6 —
4.5
-2
E =| 3|yt 17

"ﬂag'('a") » m&

Editor's Note: The equations which generate the live picture of the plane are not shown here, for simplicity.
They would. of course, be accessible in the Electronic Book companion.
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Flux Density
(Schaum's Electromagnetics Solved Problem 3.11, p. 40)

Statement Determine the flux crossing a 1 mm by 1 mm area on the surface of
a cylindrical shell at a point P given a flux density D.

2x
ﬁ:’:““‘ D(x,y,z) 8| 2:(1 - y) |- This is the given flux
ameters 4z m density in cartesian
coordinates.
At point P, which is given
in cylindrical coordinates:
53.2-deg = 0.929°rad
10
P =10.929
>y 2
area =(1-mm )2
pC =105-coul
Solution First convert the point P on the shell to Cartesian coordinates.
Po-oos(l’l) 6
P = PO'Sil‘l(PI) P=(8
P, 2
Then, at P,
12
1
Dp =D(P PP ={-14 2%
P ( oF 2) Dp 14 5
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If the radius r of the cylinder is large, the 1 mm? area is essentially
planar, with a directed area vector normal to its surface (no z

component) beginning at P.
Py 0.6
S=|P, 2s =% dS :=area-a g ds =| 0.8 |*mm?
0 0

The flux is given by the dot product of the flux density and the area
vector:

d¥ =D pdS d¥ =—4.1+pC

The negative sign indicates that flux crosses this differential surface
in a direction toward the z axis, rather than outward in the direction
of dS.

This is a good example of the type of simplifying assumptions used
by engineers. Given the capabilities of Mathcad, the problem could
have been solved exactly, rather than assuming the small surface to
be planar. If you'd like to see this sort of problem solved exactly,

examine Chapter 3.

Editor's Note: The boldface, underlined text in the paragraph above indicates a hyperlinked piece of text. If you
were working on a computer, double-clicking on the bold text with the mouse would take you to the file indicated
by the text. Also, the slight difference between the answer here and on page 40 is due to the difference in
numerical accuracy used in the two calculations.
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Method of Images
(Schaum'’s Electromagnetics Solved Problem 7.22 and Supplementary Problem 7.34, pp.
109 and 111)

Statement (2) Find the capacitance per unit length between a cylindrical conductor
of radius a and a ground plane parallel to the conductor axis, at a
distance h from it. The conductor carries a charge distribution p.
(b) Double the conductor diameter to see the effect on the capacitance.

System a '=2,5-cm h =6.0-m p =100
Parameters m
pF = 10 % farad
Permittivity of free space: €, - 8.854-10 ‘212
m
Solution A useful technique in problems of this kind is the method of images. Take
(a) the mirror image of the conductor in the ground plane, and let this image

conductor carry the negative of the charge distribution on the actual
conductor. Now suppose the ground plane is removed. It is clear that the
electric field of the two conductors obeys the correct boundary condition at
the actual conductor, and by symmetry, has an equipotential surface where
the ground plane was. Thus, the field found in this way is the field in the
region between the actual conductor and the ground plane. See the figure
below for clarification.

.p"‘-—

‘-—‘J

-

e

— s

q__-_
+

Approximating the actual and image charge distributions by line charges at

their centers,
Potential at radius a due v Pl (See Chapter 5 for
to the actual conductor: real 5 e o \cm/ the potential from a

line charge.)
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To find the potential due to the image conductor, find the distance from
the imaginary line charge to any point on the circumference of the real

conductor.
ro= h+aJh2~ a’
Potential at point P due -p ]
to the image conductor: v image *° .m(_)
2-n-e 0 cm
Va =Vt V image V,=L11-10° -volt

Similarly, the potential of the image conductor is -V,. Thus, the potential
difference between the two conductors is 2V, and the potential difference
at the ground plane is 2V /2= V,.

The capacitance per unit length is then given by C = Q/(LV):

c-" C=901-PF
Va m

Observe that the capacitance per unit length for the whole source-image
system (and more generally, for any pair of parallel cylindrical
conductors with center-to-center separation 2h) is one-half the value
found above, since it contains the same charge, but twice the voltage

drop.
(b) If the radius is doubled in the original problem,
a.-2-a

the resulting capacitance, C,,, is

-1
2 2
Coy - '.ln('”‘“"a) c2x=1o.15-ﬁ

2 2-11:'80 a m

Recall that C=9.01 PF for comparison.
m

Editor's Note: As in the previous example, differences in numerical accuracy will affect how closely these
answers match those on pages 110and 111.
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.

Magnetic Potential
(Schaum's Electromagnetics Solved Problem 9.12, p. 147)

Statement Given the general vector field A, in cylindrical coordinates, find the curl
of A at point P.
System 5-¢ "-cos(¢) Coordinates for P:
Parameters —
Ane) = 0 (=2 ¢=mrad  z =0
-5-cos(9) 2
1 0 0
a =0 a¢'= 1 a, =0
0 0 1
Solution The cur of A is given by:

|1 ]d d

curl . —{:-(‘EA{LMZ) - d—zA(r,¢)|l‘ar
_(d d

curl¢ ‘(aA(l',“o- $Mf.¢)2)'ﬂ¢

curl , .= l'[i‘("‘“{fﬂﬂl) - g—i’ﬂ("'@o]‘a z

r

-2.5
curl Bcurl .+ curl s curl z curl ={ O
-0.34

Try creating different functional dependencies for A to see the effect on
the curl of the vector field. Remember when changing the variables in the
vector to also change the variables in the left-hand side of the definition.

If A were a magnetic field, does the resulting current density agree with
what you'd expect to find?
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Magnetic Work and Power
(Schaum'’s Electromagnetics Solved Problems 10.13 and 10.14, pp. 163 and 164)

Statement Find the work and power required to move the conductor shown in the
figure one full tum in the positive direction at a rotational frequency of N
revolutions per minute, if B is a radial field. Find the work to move the
conductor over some portion of the cylinder at a constant speed. If the
current direction is reversed over half the cylinder, what is the total work

required for one revolution?
System - -3 _ 1 _
Bg =-3.510 -tesl =— N =35
Parameters 0 2 m = pm
§= r.=25mm
'Pq.
ffi L = 100-mm
= ¢ ,:O'rad
: 1
----.'2
- ¥ ¢ 2 s n-rw
W = 10 %joule
0 1 sin(¢)
1 ={0 |-amp B, =B |0 B (¢) =Bgy| ©
5 0 0
Solution The force on the conductor is
0 (1]
F =1-Lx Br F =1-0.002 |*newton a¢ =11
0 ]

The applied force to move the conductor is equal in magnitude and
opposite in direction, and so it is in the positive ¢ direction. The work
required to move the conductor through one full revolution is given by the
line integral over the force.
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2n
w J Fa,rdp W=-2.749-10 ' -joule
0

Multiply by N revolutions per minute to arrive at the total power.
P:=N.W P=-1.60410 * ewatt
P=-2*nrB o IL-N

To find the work done for only part of a revolution, and for a magnetic
field that varies with angle, find the applied force over part of a rotation.

$2
Wis- (le B ,(¢))-a el W =87.5+
¢

If the current direction changes on the side of the conductor between
= and 2x, the work will be the same, because the sign of the integral

changes.
2‘¢2
W=- [L»(-I)XB l(¢)]-a¢-rd¢ W =875
¢2
The total work for a single revolution is 2-W =175'W
and the power is N-2W =1.02110 ¢ -want
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Underconstrained Magnetic Circuits
(Schaum's Electromagnetics Solved Problem 11.16, p. 185)

Statement

System
Parameters

Solution

The magnetic circuit shown below consists of nickel-iron alloy in
part 1 and cast steel for part 2. In part 1, the mean length is d, and

the area S,. In part 2, the mean length is d, and area is S,. Find
the flux densities B4 and B,,.

dy =10cm
d2 =8-cm
F -40-amp S -2.25-cm” Sy =3.cm’

Given the information, it is possible to tell what the sum of the
magnetomotive forces (mmfs) are in the structure, but not the individual
magnetic fields. Since there isn't an explicit function to solve
simultaneously for the nonlinear flux density, this problem will require
an iterative solution. The following expressions must hold true:

NI=F=H ld] T H2d2

_ . _Hynys _Hypwpsy
@ =pH S By=—— - Hyss]e =
Sy H2So

Making a guess that the greater percentage of the mmf drops in
the material of lower permeability (not a bad guess given the
results of the analysis in Chapter 11) let's suppose:

F The variable percent is
H - percent (—) percent = 0.2 defined globally below
dp with the final result.
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Read in the data points: data ‘= READPRN( bhlow)
vl - Ispline(data®” , daa"*)
NiFe(H) ointerp(v1, data™®> , data*> ,H) tesla
Now use the function NIFe to find the flux density.
B =NiFe(H ) B | =1.079"tsla

From the flux density, find the magnetic field in part 2:

329

B85 data2 = READPRN(bhhigh)

Bz,=

S)

v2 = Ispline(daliﬁﬂ) .dﬂazm))

steel(B) - interp(v2, data2®> , data2*” B)- 2P
m
High field data
- amp used - always
H, =steel(B H, =464.958-——
2 (B2) 2 m  check what
range is in effect!
Percentage drop in part 1: percent=20-%
Hy-dy + H-d | =45.197~amp F =40*amp
B 1 = 1.079*tesla B 2 =0.809tesla

Adjust the value of percent untit the mmfs around the circuit and from

the coil match (they aren't matched now!)
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It is also possible to let Mathcad do the iterating for you automatically.
The until instruction causes values of the percentage to be calculated in
a vector until the mmf matching condition is met.

First element in the vector: perc, "= 100-% n.=0..1000
<t seel| L. [nipe| P2 || [0 F)|-F 1%
P © §_2 d, 2+(pemnF) - 5 perc, = -

Number of iterations required: m = last( perc) m =853
Correct percentage: percent Bperc | percent = 14.8-%

Flux densities at this percentage:

B, =1.028tesla

e
d,

S.B
5B,
B, -

B 5 =0.771tesla
S
2

Editor's Note: The two data files used in this example, bhhigh and bhlow, are supplied with the Electronic Book
companion. The data are taken from the graphs shown on page 175 of this Schaum's Outline. Differences in
interpolation and numerical accuracy will affect how closely this answer matches that in the original solved
problem on page 185.
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Traveling Waves

(Schaum's Electromagnetics Solved Problem 14.1, p. 226)

Statement

Parameters

Solution

A traveling wave is described by the function y(z, t, o, B). Skeich the
wave att =0, and at t = t,, when it has advanced one eighth of a

wavelength in free space. Repeat for a wave with twice the frequency and
the same t,.

Hz = ®:=10"Hz yo =10
sec

Y(Za('m;p) = }' 0‘Sin( B'Z - (l)'t)

1z_famd

Permittivity of free space: £ =8.854-10
m

Permeability of free space: pg @4-n- 10'7-""—“"”
m

First calculate the necessary wave parameters for both plotted
frequencies.

B] =W HgEQ |3| =3.336'10_3 'l
m
The wave number is
twice as large for
Bz‘:z.w o€ B2=6-6?l.10_3 .l twumﬂﬁ’eqwmy.
m
2,
Ayi=== Aq=18810" 'm
B
The wavelength is
2.1 half its former value.
Agi=== Ay =94210° *m
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The waves will be plotted at times

Ay
"-_-O'S.CC [l = p’o.eo.?

Plot the wave cver a single cycle of B,.

z =0-m,005— 2"

By By

*y

e NP

1] 500 1000 1500 2000
z
Ay
eazesy) /N A\
- 0 = — :
sl I NS R %
0 s 1000 1500 2000

Attime t,, the first wave has advanced

n =235.46"m —4— =235.46"m

The second wave has advanced by the same distance, but this
distance is now a quarter of a wavelength.

Editor's Note: The ellipsis used to define the variable z indicates that it is a Mathcad range variable. The

variable z assumes all the values in the given range, in steps of 0.5%/f,, so that the traveling wave can be

plotted over this range. As in previous examples, differences in numerical accuracy used will affect how
closely this answer matches that in the original solved problem on page 226.



AC resistance, of transmission lines, 237
Air-gap line. negative, 183, 184
Air gaps, cores with, 177
Ampere (unit), 76, 174
Ampere turns (unit), 174
Ampere’s law, 135-153, 137
for magnetic circuits, 174, 176-177
Antenna parameters, 2904-296
Antennas, 293-313
available power of, 300
directivity of, 295-296
effective area for, 300
effective length of, 297
electric dipole, 293-294
linear arrays of, 300-301
monopole, 298
ohmic loss of, 296
power gain of, 296
radiation efficiency of, 296
recciving, 299-300
self-impedance of, 298-299
small circular-loop, 296
Array factor, 300
Arrays:
endfire, 301
linear, of antennas, 300-301
uniform, 301
Associative law, 1
Attenuation, per-meter, 255
Attenuation factor, 280-281
total, 281
Available power of antennas, 300
Avogadro’s number, 86
Axial components, transverse components from, 275
Abxial fields, 274-275
determination of, 276-277

B (see Magnetic flux density)

B-H curve, 174, 175

Back-voltage in inductor, 172

Beam width, half-power, 295

Biot—Savart law, 135-137

Boundary, current sheet at, 106017

Boundary conditions:
across interface of two dielectrics, 207
at interface of two dielectrics, 100-101
conductor-dielectric, 83-85

Boundary reflection cocfficient, 240

Boundary relations, for magnetic fields, 205-206

Capacitance, 95-113
definition of, 96-97
equivalent, 97
of transmission lines, 237
Capacitors:
energy stored in, 98
multiple-dielectric, 97-98
parallel-plate, fringing of, 43-44
Cartesian coordinate system, 3-4
curl in, 138-139

INDEX
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Cartesian coordinate system (Cont.):
del operator in, 49-50
differential displacement vector in, 59
divergence, curl, gradient, and Laplacian in, 314
divergence in, 47-49
electric flux density in, 39
field vector in, 274
gradient in, 63
Laplace’s equation in 114-115
in one variable, 116-117
product solution of, 117-118
Laplacian of vector in, 216
Maxwell's equations in, 217-218
position vectors in, 6
Characteristic impedance, 240
good, Maxwell's equation solutions for, 220-221
in motion: through time-dependent fields, 196-197
through time-independent fields, 195-196
parallel, inductance of, 171
perfecl, imaging in, 307
Conservative fields, 60
Conservative property of electrostatic field, 60
Constant currents, 76
Continuity of current, 82-83
cquation of, 82
Contour, closed, 60
Convection current, 77
Convection current density (J), 77
Coordinate system, divergence, curl, gradient, and
Laplacian in, 314

Coordinate systems, 3-4, (See also Cartesian coordinate

system; Circular cylindrical coordinate system;
Spherical coordinate system)
Coordinates, 3
Core lengths, 174
Cores, with air gaps, 177
Coulomb (unit), 13
Coulomb forces, 13-31
Coulomb’s law, 13-14, 101
Critical wave number, 282
Cross product of two vectors, 2
Curl, 47
in coordinate systems, 314
divergence of, as zero scalar, 139
of gradient as zero vector, 139
of vector field, 137-139
Current(s) (I), 79
conslant, 76
continuity of (see Continuity of current)
displacement (see Displacement current)
time-variable, 76
Current density, 76
conduction, 192

displacement, 192

magnetic ficld strength and, 139

total, 193
Current elements, magnetic force on, 155-156
Current filament, vector magnetic potential for, 141
Current law, Kirchhoff's, 82
Current sheet, 81

at boundary, 106-107
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Current sheet density, 81-82

Current source, phasor fields outside, 293

Cutoff frequency, 277-278

Cutoff wavelength, 286

Cylindrical conductors, inductance of, 171

Cylindrical coordinate system (see Circular cylindrical
coordinate system)

Cylindrical guides, 284

D (see Electric flux density)
D' Arsonval meter movement, 161
DC resistance, of transmission lines, 237
Decibel (unit), 229
Del operator, 49-50
Delay time, 248
Density:
charge (see Charge density)
current (see Current density)
energy, 71
flux (see Flux density)
Depth of penetration, 220
Determinants, 2
Dielectric—conductor boundary conditions, 83-85
Dielectric constant, 13
Dielectric free-space interface, 102-103
Dielectric losses, 280-281
Dielectrics:
boundary conditions across interface of two, 207
boundary conditions at interface of two 100-101
perfect, Maxwell’s equation solutions for, 219-220
polarization of (see Polarization of dielectric materials)
two, in multiple-dielectric capacitors, 97
Differential line element, 5
Differential surface element, 5
Differential volume, 4-5
Diffusion, 278
Dipole:
finite-length, 296-298
magnetic, 296
Dipole antennas, electric, 293-294
Dipole moment, electric, 95
Directivity, of antennas, 295-296
Dispersive medium, 219
i nt current, 192-204
definition of, 192-193
Displacement current density, 192
Displacement flux, 32
Displacement vectors, 13
Distributive law, 1
Divergence, 47-58
in cartesian coordinates, 47-49
in coordinate systems, 314
of curl as zero scalar, 139
definition of, 47
of electric flux density, 49
of gradient of potential function, 114-115
negative, 47
of zero, 52
Divergence theorem, 50-51
Dominant mode of waveguides, 278-279
Dot product of two vectors, 1-2
Double-stub matching, 245-247
Drift velocity, 76

E (see Electric field intensity)
Effective area for antennas, 300
Effective length of antennas, 297
Electric component of force, 155

INDEX

Electric current (see Current entries)
Electric dipole antennas, 293-294
Electric dipole moment, 95
Electric field intensity (E), 13-31, 114
definition of, 14-15
due to point charges, 21
fixed-charge, Wm
fixed-voltage, 98-99
flux density and, 34-35
motional, 195
potential function and, 63-64
tangential component of, 100
units of, 15
Electric fields:
magnetic fields combined with, 155
point charges causing, 21

definition of, 32-33
Electric flux density (D), 33-34

antisymmetrical, 127-128

i of, 49

electric field intensity and, 34-35

fixed-charge, 99

fixed-voltage, 98-99

normal component of, 100
Electric potential:

of charge distributions, 61-62

definition of, 60

of point charges, 61

between two points, 60-61
Electric susceptibility, 95
Electromagnetic waves, 216-236
Electromotive force, 172
Electron-gas theory, 76
Electron-hole pairs, 78
Electron mobility, 85
Electrostatic field, 59-75

conservative property of, 60
Endfire arrays, 301
Energy:

instantancous rate of, leaving volume, 226

in static electric fields, 64-65

stored in capacitors, 98
Energy density, 71
Energy differences, 72
Equation of continuity for current, 82
Equipotential surfaces, 63
Equivalent capacitance, 97

Farad (unit), 96
Faraday homopolar generator, 201
Faraday's law, 171-172
integral form of, 194
two-term form of, 196
Ferromagnetic materials, 174
Field lines, 288-289
Field vector, 274
Fields:
axial (see Axial fields)
conservative, 60
electric (see Electric fields)
electrostatic, 59-75
magnetic (see Magnetic fields)
radial, 148
time-dependent, conductors in motion through,
196-197



Fields (Cont. ):
time-independent, conductors in motion through,
195-196
transverse, 274-275
vector (see Vector fields)
Finite-length dipole, 296-298
First nulls, 301
Fixed-charge electric field intensity and electric flux
density, 99
Fixed-voltage electric field intensity and electric flux
density, 98-99
Flux;
displacement, 32
electric (see Electric flux)
magnetic, 140
Flux density:
electric (see Electric flux density)
magnetic (see Magnetic flux density)
Flux lines, 32-33
Flux linkage, 169
Forces:
Coulomb, 13-31
electromotive, 172
in magnetic fields, 154-168
magnetomotive, 174
moment of, 157
Fourier sine series, 130
Free charge, 83
Free space, Maxwell’s equation solutions in, 220
Frec-space interface, dielectric, 102-103
Free-space permeability, 140
Frequency of harmonic wave, 217
Fringing of parallel-plate capacitors, 43-44
Friss transmission formula, 300

Gauss’ divergence theorem, 50
Gauss' law, 34
Gaussian surfaces, special, 35-36
Generator, Faraday homopolar, 201
Geometrical factor, 237
Gradient, 62-63
in coordinate systems, 314
curl of, as zero vector, 139
divergence of, of potential function, 114-115
Guide wavelength, 277

H (see Magnetic field strength)
Half-power beam width, 295
Half-power points, 295

Helical motion, 155

Henry (unit), 140, 169

Hertzian dipole antennas, 293-294
High-frequency lines, 241
Homopolar generator, Faraday, 201

I (see Current)
Imaging in perfect conductor, 307
Impedance;
characteristic, 240
intrinsic, 218, 222
mutual, of antennas, 298-299
self-impedance, of antennas, 298-299
wave, 276
Impedance matching, 243-244
Impendance measurement, transmission line, 247-248
Incidence:
angle of, 222

normal, interface conditions at, 221-222
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Incidence (Cont.):

oblique, 222

plane of, 222
Induced voltage, 172
Inductance, 169-191

definition of, 169-170

internal, 172-173

mutual, 173

self-inductance, 172

of transmission lines, 237, 238
Inductor, back-voltage in, 172
Infinite line charge, 17
Infinite plane charge, 18
Infinity, zero reference at, 61
Instantaneous power, 231
Interface conditions at normal incidence, 221-222
Internal inductance, 172-173
Intrinsic concentration, 87
Intrinsic impedance, 218, 222
Intrinsic semiconductors, 78
Inverse-square law of point charge, 17
Iron-core magnetics, 174
Isotropic radiator, 295

J (see Conduction current density; Convection current
density)

Kirchhoff's law, 82, 176

Laplace’s equation, 114-134
in cartesian coordinate system (see Cartesian
coordinate system, Laplace’s equation in)
definition of, 114
explicit forms of, 114-115
Laplacian, in coordinate systems, 314
Legendre polynomial: .
higher-order, 130
of order n, 119
Lenz's law, 194
Lever arm, 157
Line charge, 16
infinite, 17
Line charge density, 16
Line element, differential, 5
Linear arrays of antennas, 300-301
Lorentz force, 153
Lossless lines, 241
transients in, 248-250
Lossless waveguide, power transmitted in, 279-280
Lossy waveguide, power dissipation in, 280-281

Magnetic circuits, 173-174
Ampere’s law for, 174, 176-177
parallel, 178

Magnetic component of force, 155

Magnetic dipole, 296

Magnetic field strength (H), 135, 206
current density and, 139
tangential component of, 206

Magnetic fields:
boundary relations for, 205-206
electric fields combined with, 155
forces and torques in, 154168
statie, 135
time-variable, 192

Magnetic flux, 140

Magnetic flux density (B), 140, 206
normal component of, 206
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Magnetic force:
on current elements, 155-156
on particles, 154
Magnetic moment:
of planar coil, 157-158
of planar current loop, 158
Magnetic potential, vector, 141-142
Magnetization curves, 174
Magnetomotive force. 174
Mass-action law, 87
Matching:
double-stub, 245-247
impedance, 243-244
single-stub, 244-245
Maximum value theorem, 116
Maxwell's equations, 114, 205-215
free-space set, 208
general set, 208

interface conditions at normal incidence, 221-222

solutions for good conductors, 220-221

solutions for partially conducting media, 218-219

solutions for perfect dielectrics, 219-220
solutions in free space, 220
Mean value theorem, 116
in special case, 120-121
Method of images, 109-110
Mho (unit), 80
Mil, circular, 87
Mobility, 76
electron, 85
Mode cutoff frequencies, 277-278
Moment:
electric dipole, 95
of force, 157
magnetic (see Magnetic moment)
Monopole, quarter-wave, 298
Monopole antennas, 298
Motion:
charges in, 76
conductors in (see Conductors in motion)
helical, 155
Motional electric field intensity, 195
Multiple coils, 177
Multiple-dielectric capacitors, 97-98
Mutual impedance, of antennas, 298-299
Mutual inductance, 173

n-type semiconductor materials, 78
Negative air-gap line, 183, 184
Neper (unit), 229
Net charge. 82
in region, 32
Net charge density, 82-83
Newton (unit), 13
NI risc and NI drop, 176
Nulls, first, 301

Oblique incidence, 222
Ohmic loss of antennas, 296
Ohm'’s law, 76

point form of, 77
Operating wavelength, 277
Orthogonal surfaces, 3-4

p-type semiconductor materials, 78
Parallcl conductors, inductance of, 171
Parallel magnetic circuits, 178

INDEX

Parallel-plate capacitors, fringing of, 43-44
Parallel plate geometrical factors, 238
Parallel polarization, 224
Parallel wire geometrical factors, 238
Particles, magnetic force on, 154
Pattern function, 294
Penetration, depth of, 220
Per-meter attenuation, 255
Period of harmonic wave, 217
Permeability, 140
free-space, 140
relative, 140
Permittivity, 13
relative, 13, 95-96
Perpendicular polarization, 223-224
Phasor fields, 293
Phasors, 239
Planar coil, magnetic moment of, 157-158
Plane, of incidence, 222
Plane charge, infinite, 18
Plane waves, 218
Point charges:
causing electric fields, 21
electric field intensity due to, 21
electric potential of, 61
inverse-square law of, 17
in spherical coordinate system, 38
work done in moving, 59
Point form of Ohm’s law, 77
Points, 3
electric potential between two, 60-61
Poisson’s equation, 114, 127
Polar form, 239
Polarity, 194
Polarization of diclectric materials, 95-96
parallel, 224
perpendicular, 223-224
Position vectors, 5
Potential:
electric (see Electric potential)
vector magnetic, 141-142
Potential difference, 61
Potential function (V):
divergence of gradient of, 114-115
electric field intensity and, 6364
Power:
available, of antennas, 300
complex, 226
dissipated in lossy waveguide, 280-281
instantaneous, 231
Poynting vector and, 225-226
iransmitted in lossless waveguide, 279-280
work and, 156-157
Power gain of antennas, 296
Poynting vector, 226
power and, 225-226
Propagation constant, 216

Quarter-wave monopole, 298
Quarter-wave transformer, 260

R (see Resistance)

Radial fields, 148

Radiation efficiency of antennas, 296
Radiation intensity, 295

Radiation resistance, 294

Radiator, isotropic, 295

Receiving antennas, 299-300



Rectangular-guide formulas, 284
Reflection:

angle of, 222

Snell’s law of, 222
Reflectors, 302
Refraction, Snell's law of, 222
Relative permeability, 140
Relative permittivity, 13, 95-96
Relaxation time, 83
Reluctance, 176
Resistance (R), 80

radiation, 294

surface, 281
Resistivity, 76

conductivity as reciprocal of, 87
Right-hand rule, 136

Scalar function, gradient of, 62-63
Scalar triple product, 7-8
Scalars, 1
zero, divergence of curl as, 139
Self-impedance, of antennas, 298-299
Self-inductance, 172
Semiconductors, 78
Sheet charge, 16
Sheet current, vector magnetic potential for, 141
SI unit prefixes, 314
SI units, rationalized, 13
Sidelobes, 301
Siemens (unit), 77, 80
Single-stub matching, 244-245
Sinks, 47
Sinusoidal steady-state transmission-line excitation,
239-241
Skin depth, 220
Skin effect, 172-173
Slotted lines, 247
Small circular-loop antennas, 296
Smith Chart, 241-243
Snell's law:
of reflection, 222
of refraction, 222
Solenoids, inductance of, 171
Sources, 47
Space, free (see Free space)
Spherical coordinate system, 3-4
curl in, 139
differential displacement vector in, 59
divergence, curl, gradient, and Laplacian in, 314
divergence in, 48
gradient in, 63
Laplace’s equation in, 115
product solution of, 119
point charge in, 38
potential in, 64
Spherical shells, concentric, 67
Standing-wave ratio, voltage, 241
Standing waves, 224-225
Static electric fields, energy in, 64-65
Static magnetic field, 135
Stokes’ theorem, 142
Surface charge density, 16
Surface element, differential, 5
Surface resistance, 281
Surfaces:
equipotential, 63
orthogonal, 3-4
Susceptibility, electric, 95
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TE (transverse electric) waves, 276
Time constant, 83
Time-dependent fields, conductors in motion through,
196-197
Time-distance plots, 248-250
Time-independent fields, conductors in motion through,
195-196
Time-variable currents, 76
Time-variable magnetic field, 192
TM (transverse magnetic) waves, 276
Toroids, inductance of, 171
Torque:
definition of, 157
in magnetic fields, 154-168
Transformer, quarter-wave, 260
Transients in lossless lines, 248-250
Transmission, angle of, 222
Transmission formula, Friss, 300
Transmission lines, 237-273
distributed parameters, 237-238
double-stub matching, 245-247
impedance mathcing, 243-244
impedance measurement, 247-248
incremental model, 239-240
per-meter attenuation, 255
single-stub matching, 244-245
sinusoidal steady-state excitation, 239-241
slotted, 247
uniform, 237
Transverse components from axial components, 275
Transverse electric (TE) waves, 276
Transverse fields, 274-275
Transverse length, unit, charge transport per, 81
Transverse magnetic (TM) waves, 276
Traveling waves, 226-227
Triple product:
scalar, 7-8
vector, 7
Tuner circle, 245

Uniform arrays, 301

Uniform transmission lines, 237
Uniqueness theorem, 115-116
Unit vectors, 1,3

V (see Potential function)
Vector(s), 1
absolute value of, 1
component form of, 1
cross product of two, 2
displacement, 13
dot product of two, 1-2
position, 5
Poynting (see Poynting vector)
projection of one, on second, 7
unit, 1, 3
2ero, cutl of gradient as, 139
Vector algebra, 1-3
Vector analysis, 1-12
VYector ficlds, 47
curl of, 137-139
Vector integral, 14
Vector magnetic potential, 141-142
Vector notation, |
Vector sum, 14
Vector triple product, 7
Vector wave equations, 216
Velocity, drift, 76
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Voltage:
around closed contour, 171
induced, 172
of self-inductance, 172
Voltage drop, 80
Voltage standing-wave ratio, 241
Volume:
differential, 4-5
instantancous rate of energy leaving, 226
Volume charge, 15
Volume current, vector magnetic potential for, 141

Wall losses, 280, 281
Wave equations, 216
Wave impedance, 276
Wave number, 275
critical, 282
of radiation, 293
Waveguides, 274-292
dominant mode of, 278-279
lossless, power transmitted in, 279-280
lossy, power dissipation in, 280-281
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Wavelength:
cutoff, 286
guide, 277
of harmonic wave, 217
operating, 277
Waves:
electromagnetic (see Electromagnetic waves)

Weber (unit), 140

Work:
definition of, 59
done against clectric field, 59
done by electric field, 59
done in moving point charges, 59
power and, 156-157

Zero, divergence of, 52

Zero reference at infinity, 61

Zero scalar, divergence of curl as, 139
Zero vector, curl of gradient as, 139



