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PREFACE

This book is written as a supplement to standard senior-level texts on electric
power systems. However, certain topics, including growth rates, energy sources
(Chapter 1), and underground cables (Chapter 5), that are not commonly found
in most texts, are also discussed. Due to the nature of the book, detailed
descriptive material and the derivations of most equations have been omitted.
End results are given in analytic form and are illustrated with detailed numerical
examples.

As prerequisites, the reader is expected to be familiar with ac circuits and
electric machinery, especially transformers and synchronous machines.

The editorial help of Ed Millman is gratefully acknowledged.

Syed A. Nasar
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Chapter 1

Fundamentals of Electric Power Systems

The study of electric power systems is concerned with the generation, transmission, distribution,
~and utilization of electric power (Fig. 1-1). The first of these—the generation of electric
power—involves the conversion of energy from a nonelectrical form (such as thermal, hydraulic, or
solar energy) to electric energy. Thus, it is appropriate to begin this text with a discussion of energy.

Transmission line

Elecgr'ostatic Turbine generator
precipitators

Scrubbers
Coal

Distribution line

Substation \

Transformer
Transformers

Water Transformer

Fig. 1-1.

Condenser

1.1 ENERGY AND POWER

Let a force F be applied to a mass so as to move the mass through a linear displacement / in the
direction of F. Then the work U done by the force is defined as the product FI; that is,

U=Fl (L.1)

If the displacement is not in the direction of F, then the work done is the product of the
displacement and the component of the force along the displacement; that is,

U= Flcosa (1.2)

where o is the angle that F makes with /. Work is measured in joules (J). From (1.1), one joule is
the work done by a force of one newton in moving a body through a distance of one meter in the
direction of the force: 1J = 1 N - m.

The energy of a body is its capacity to do work. Energy has the same unit as work, although
several other units are used for different forms of energy. For electric energy, the fundamental unit
is the watt-second (W - s), where

I1W-s=1J (1.3)
More commonly, however, electric energy is measured in kilowatthours (kWh). From (1.3) we have
1kWh = 3.6 x 10°] (1.4)

The two most important forms of mechanical energy are kinetic energy and potential energy. A
body possesses kinetic energy (KE) by virtue of its motion, such that an object of mass M (in
kilograms), moving with a velocity « (in meters per second), has the kinetic energy

KE = $Mu? (in joules) (1.5)

A body possesses. potential energy (PE) by virtue of its position. Gravitational potential energy,
-for instance, results from an object’s position in a gravitational field. A body of mass M (in

1



2 FUNDAMENTALS OF ELECTRIC POWER SYSTEMS [CHAP. 1

kilograms) at a height A (in meters) above the earth’s surface has a gravitational PE given by
PE = Mgh (in joules) (1.6)

where g is the acceleration due to gravity, in meters per second per second.

Thermal energy is usually measured in calories (cal). By definition, one calorie is the amount of
heat required to raise the temperature of one gram of water at 15°C through one Celsius degree. A
more common unit is the kilocalorie (kcal). Experimentallly, it has been found that

lcal = 4.186] (1.7)

Yet another unit of thermal energy is the British thermal unit (Btu), which is related to the joule and
the calorie as follows:

1Btu = 1.055 x 10°J = 0.252 x 10°cal (1.8)

Because the joule and the calorie are relatively small units, thermal energy and electric energy are
generally expressed in terms of the British thermal unit and kilowatthour (or even megawatthour),
respectively. A still larger unit of energy is the quad, which stands for “quadrillion British thermal
units.” The mutual relationships among these various units are

1 quad = 10" Btu = 1.055 x 10 ] (1.9)

(Some authors define 1 quad as 10'® Btu.)

Power is defined as the time rate at which work is done. Alternatively, power is the time rate of

change of energy. Thus the instantaneous power p may be computed as
au  dw

== (1.10)

p

where U represents work and w represents energy. The SI unit of power is the watt (W); one watt is
equivalent to one joule per second:

1W=11J/s (1.11)

Multiples of the watt commonly used in power engineering are the kilowatt and the megawatt. The
power ratings (or outputs) of electric motors are expressed in horsepower (hp), where

1hp = 745.7W (1.12)

1.2 GROWTH RATES

In planning to accommodate future electric energy needs, it is necessary that we have an
estimate of the rate at which those needs will grow; Fig. 1-2 shows a typical energy-requirement
projection for the United States.

Suppose a certain quantity M grows at a rate that is proportional to the amount of M that is
present. Mathematically, we have

M _

— = gM .
ik (1.13)

where a is the constant of proportionality, known as the per-unit growth rate. The solution to (1.13)
may be written as

M = Me” (1.14)

where M, is the value of M at r = 0. At any two values of time, ¢, and ¢,, the inverse ratio of the
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corresponding quantities M,; and M, is
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From (1.15) we may obtain the doubling time t, such that M, = 2M, and t, — t; = t,. Itis

_In2 _ 0.693
B a B a

ta

(1.16)

Power system planners also need to know how much power will be demanded. The peak power
demand for the United States over several years is shown by the solid curve in Fig. 1-3. We can

Peak power demand, GW

Peak demand

500
400 \
N
300l P = Pe® where
P, =380GW
ol b = 0.0338 year™"
100

| ] | | | | | | I | | I ] I ] J
197778 79 80 81 82 83 84 85 8 87 8% 89 90 91 92 93
Year

Fig. 1-3.
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approximate this curve with the curve whose equation is
P = Pye™ (1.17)

(dashed in Fig. 1-3), where P, is the peak power at time ¢ = 0, and b is the per-unit growth rate for
peak power. The area under this curve over a given period is a measure of the energy (O consumed
during that period.

From (1.16) and (1.17) it follows that if the per-unit growth rate has not changed, then the
energy consumed in one doubling period equals the energy consumed for the entire time prior to
that doubling period. In particular, we obtain

P
0, =0, = ;"e"‘l (1.18)

where (Q, is the energy consumed up to a certain time #,, O, is the energy consumed during the
doubling time f,, and b is the per-unit power growth rate.

1.3 MAJOR ENERGY SOURCES

Fossil fuels—coal, petroleum, and natural gas—are major sources of energy for the generation
of electric power. Another major source of energy on the earth is solar radiation, which may be
obtained either directly as intercepted solar radiation or indirectly as wind and hydropower. Other
significant forms of energy are tidal energy, geothermal energy, and nuclear energy.

Turbine-type wind-energy generators transform the kinetic energy of the wind into rotary-shaft
motion and, in turn, to electrical energy. The power that can be extracted from wind is given
approximately by )

P =2.46 x 107°D** (in watts) (1.19)
where D is the blade diameter in feet, and u is the wind velocity in miles per hour.

In hydropower conversion, the potential energy of a mass of water at a hydraulic head is
converted into the kinetic energy of a hydraulic turbine that drives an electric generator. By (1.6),
the potential energy of 1000 kg of water at a head of 100 m is 9.8 x 10’ J. Alternatively, a flow rate
of 1m?/s with a head of 100m provides 9.8 X 10° x head = 9.8 x 10° x 100 = 9.8 x 10°W of
hydraulic power.

Tidal energy is obtained by closing off a bay with a dam, allowing it to fill during periods of high
tide, and recovering the energy as it empties during periods of low tide. For a maximum tidal head H
(in meters), the average tidal power obtained per unit area of tidal bay is given approximately by

P,, = 0.219H* (in megawatts per square kilometer) (1.20)

Solved Problems

1.1  The net energy requirement for the United States in 1986 was approximately 2.82 X
10° GWh. What is the equivalent of this energy in British thermal units?

Since
1GWh = 10° Wh = 10°kWh
we have
2.82 x 10° GWh = 2.82 x 102 kWh
Then, from (1.4),

2.82 x 102 kWh = 3.6 x 10° x 2.82 x 10" J = 10.152 x 10"*J
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1.2

13

14

1.5

From (1.8) and (1.9) we finally obtain

10152

5Btu = 9.623 x 10° B
1055 x 10 u = 9.623 tu

10.152 x 107
= 9.623 quad

Coal has an average energy content of 940 W - years/ton, and natural gas has an. energy
content of 0.036 W - year/ft®. If 80 percent of the net energy requirement of Problem 1.1 were
to be met with coal and 20 percent with gas, what amounts of coal and gas would be required?

From Problem 1.1,

2.82 x 10
2.82 X 10° GWh = —?_;865x—24W - years = 3.22 X 10'' W - years

Hence, we have

Energy to be supplied by coal = 0.8 x 3.22 x 10" = 2.576 x 10" W - years
Energy to be supplied by gas = 0.2 x 3.22 x 10" = 6.44 x 10" W - years

which lead to

2.567 x 10"

Amount of coal required = T = 2.74 x 10® tons
6.44 x 10%
Amount of gas required = o0 - 1.79 x 10" ft*

A certain amount of fuel can be converted into 3 X 107> quads of energy in a power station.
If the average load on the station over a 24-h period is 50 MW, determine how long (in days)
the fuel will last. Assume a 20 percent overall efficiency for the power station.

From (1.9) and (1.11), the energy available from the fuel is

3x 107 quad =3 x 107 x 1.055 X 10" W s

3 x107° x 1.055 x 10'®
60 x 60 x 10°

MWh = 8.79 x 10° MWh

In 241, the station produces 50 X 24 = 1200 MWh of energy. At 20 percent efficiency, this requires a
daily energy input (from the fuel) of 1200/0.2 = 6000 MWh. Hence, the fuel will be consumed in
8.79 x 10°/6000 = 146.5 days.

In 1981, the U. S. consumption of energy (in quads) from various sources was as follows:
coal, 16.1; oil 32.1; natural gas, 20.2; hydro, 2.9; and nuclear, 2.9. Calculate in gigawatthours
the total electric energy that could be produced from these sources, assuming an average
power-plant conversion efficiency of 0.1.

The total amount of energy consumed in 1981 was

16.1 + 32,1 + 20.2 + 2.9 + 2.9 = 74.2 quad

_ 74.2 x 1.055 x 10
B 3.6 X 10°

= 21.75 x 10° GWh

kWh

At an efficiency of 0.1, this produced 2.175 X 10° GWh of electric energy.

The average heat content of natural gas is 1.05Btu/ft>, and that of bituminous coal is
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14,000 Btu/1b. Using the data of Problem 1.4, determine the amounts of natural gas and coal
consumed in the United States in 1981.

Since 20.2 quads were derived from natural gas, we have

20.2 quads = 20.2 x 10" Btu

20.2
22 % 10" = 19.238 x 10° ¢
and 1.05

Similarly, for the coal we have

16.1 quads = 16.1 x 10" Btu

16.1 x 10%
and 674’()? = 1.15 x 10*1b or 5.75 X 10® tons

1.6  Suppose that the consumption of energy in a certain country has a growth rate of 4 percent
per year. In how many years will the energy consumption be tripled?

From (1.15) with Q,/Q, = 3,

3 = 00 or In3 = 0.04¢

In3
and t = 001" 27.47 years

1.7 In a certain country the energy consumption is expected to double in 10 years. Calculate the
growth rate. 2

From (1.17),

0.693
a=—0 - 6.93 percent

1.8  Derive (1.18).

Evaluating the energy (%, consumed up to time ¢, and the energy O, consumed during the doubling
time t; = ¢, — t;, we obtain, from (1.17),

131 P
0, = f Pye® dt = feb'l

—o

153 P
and Qz = f P e’ dt = Fo(ebfd - 1)eb11
4
From (1.16), t, = (In2)/b, so Q, becomes
P, P,
0, =2~ et =3lem =0,

1.9  Sketch a curve showing doubling time (in years) as a function of growth rate (in percent per
year). From the graph, obtain the doubling time for a growth rate of 5 percent.

The graph, shown in Fig. 1-4, is plotted by use of (1.16). It shows that ¢, = 14 years. Applying
(1.16) directly yields ¢, = 0.693/0.05 = 13.86 years.

1.10 The present estimate of solid coal reserves in the United States is about 1.5 x 10° tons, with
an energy content of 940 W - years/ton. If the power consumption growth rate is 3.38 percent
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per year, approximately how long will the coal reserves last? Assume that all the energy will

be supplied by coal and that the present peak power demand is 425 GW.

Let T be the time at which total consumption will equal the reserves and Q the total energy

reserve. Then with £ = 0 at the present time, we have

T P,
Or = f Pye*dt = Eo(ebr ~1
o

which we may write as

bQr
o7 _ =T
e PO
1. (bQr
that T=-1 (—+1)
SO tna bn )

From the given numerical values we have

Qr = 1.5 X 10° x 940 = 1.41 x 10> W - years

1 (0.0338 X 1.41 x 10*

d T =
an 0.0338 " 425 x 10°

+ 1) = 3.144 years

Express (1.19) in SI units.
Since 3.28ft = 1m and 1 m/s = 2.237 mi/h, (1.19) becomes

P = 2.46 x 10~3(3.28D)X(2.23Tuy’
= 0.29626D°U* (in watts)

where D is in meters and U is in meters per second.

(D

A small wind generator is designed to generate 50 kW of power at a wind velocity of 25 mi/h.



1.13

1.14

1.15

1.16

1.17
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What is the approximate blade diameter?
From (1.19),

50 x 10° = 2.46 x 107°D?*(25)°

50 X 10°
50 246 x 100 x (5~ 8

The wind velocity operating the generator of Problem 1.12 actually varies between 20 and
50 km/h. Determine the range of available power.

At 20 km/h (or 12.4 mi/h),
Py = 2.46 X 107(36)*(12.4)° = 6.08 kW
At 50 km/h (or 31 mi/h),
Py, = 2.46 x 107%(36)*(31)° = 94.98 kW
Hence, approximately, 6 < P < 95kW.

One million cubic meters of water is stored in a reservoir feeding a water turbine. If the
center of mass of the water is 50 m above the turbine and losses are negligible, how much
energy (in megawatthours) will that volume of water produce? The density of water is
993 kg/m".

The weight of the water is 993 X 10°kg. By (1.6), its potential energy is

PE =993 X 10° X 9.81 X S0W -5

993 x 10° x 9.81 x 50
a 3600 x 10°

= 1353 MWh

Coal reserves in the eastern United States are estimated to contain 2250 quads of energy. If
the energy content of this coal is 11,500 Btu/lb, determine the approximate weight of the coal
reserve.

2250 x 10"
Approximate weight = 11,500 % 2000 = 9.78 x 10" tons

A power plant consumes 3600 tons of coal per day. If the coal has an average energy content
of 10,000 Btu/lb, what is the plant’s power output? Assume an overall efficiency of 15
percent.

~ The power available from the coal is

3600 x 2000 x 10,000
24

=3 x 10°Btu/h

In megawatts, this is

3 x 10° x 1.055 x 10°
60 x 60 x 10°

= 8§79 MW

At 15 percent efficiency,
Power output = 0.15 X 879 = 132 MW

Present natural gas reserves in the United States are estimated to contain 452 quads of
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1.18

1.19

1.20

1.21

1.22

1.23

energy. The present peak electric power demand is 450 GW. If the power consumption
growth rate is 6.5 percent per year, and 22 percent of the total energy consumption is to be
supplied by natural gas, approximately how long will these natural gas reserves last?

In the nomenclature of Problem 1.10, we have
0, = 42 1.055 x 10
T 7365 x 24 x 3600
b = 0.065
P, =450 X 0.22 X 10° =9.9 x 10"°W
bQr 0.065 X 1.512 x 10"

= 1.512 x 10® W - years

= = 9.92
and ) 9.9 x 10 8
1. /b
Then T = Eln <TQ0T + 1) 0. 06 In (9.928 + 1) = 36.8 years

Estimate the average power output of a wind turbine having a blade diameter of 35 ft if the
wind velocity ranges from 10 to 30 mi/h.

From (1.19),
P = 2.46 X 1077 x 35 x 10> = 2.46 X 35 W
and Pooe =246 X 107 X 35 X 30° =246 X 35 X 2T W
Then P, = 123 x 35> x 28 = 42.2kW

The maximum tidal head available for a proposed tidal-power station is 6 m. What must be
the area of the tidal bay to generate an average of 1000 MW of power?

From (1.20), we have

1000 = 0.219 x 36 X area

1000
A = —— = 126.8m>
SO rea 0219 % 3 6.8 m

Supplementary Problems

A certain amount of fuel contains 15 X 1010 Btu of energy. What is the corresponding energy in
kilocalories?

Ans. 3.78 x 10'°kcal

The fuel of Problem 1.20 is converted into electric energy in a power station having a 12 percent overall
efficiency. The average demand on the station over a 24-h period is 5 MW. In how many days will the
fuel be totally consumed?

Ans. 44 days.
A certain amount of fuel can produce 10 quads of energy. In how many days will the fuel be totally

consumed if it is used to satisfy a demand of 10" Btu/day at a power plant with an overall efficiency of
20 percent?

Ans. 200 days

Calculate the total energy (in kilocalories) available from the fuel of Problem 1.22.

Ans. 2.52 x 10" kcal
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1.24

1.25

1.26

1.27

1.28

1.29
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1.32

1.33

1.34

FUNDAMENTALS OF ELECTRIC POWER SYSTEMS [CHAP. 1

A 90 percent efficient electric motor operating an elevator lifts a 10-ton load through a height of 60 ft.
Calculate the energy required by the motor to do so.

Ans. 1.81MJ

The load of Problem 1.22 is to be lifted through the entire height of 60 ft within 40 s. Determine the
minimum horsepower rating of the motor.

Ans. 55 hp (approximately)

Calculate the energy required for a geared dc motor to lift a 1-ton load through 50 ft in 10s. The
motor/gear overall efficiency is 0.51.

Ans. 0.083kWh

An electric hoist makes 10 round trips per hour. For each trip, a load of 6 tons is raised in a hoist cage to
a height of 200 ft in 15 min, and then the cage returns empty in 15 min. The cage weighs 0.5 ton and has
a balance weight of 3 tons. The efficiency of the hoist is 80 percent, and that of the driving motor is 88
percent. Calculate the electric energy required per round trip.

Ans. 1.44kWh

A belt-driven generator supplies 875 kW at 95 percent efficiency. If the loss in the drive belt is 2.5
percent, calculate the horsepower of the engine needed to drive the generator.

Ans. 1267 hp

In a power station, 4 X 10° GWh of energy is to be produced in 1 year, half from coal and half from
natural gas. The energy content of coal is 900 W - years/ton, and that of natural gas is 0.03 W - year/ft°.
How much coal and how much natural gas will be required?

Ans. 2.537 %X 10°tons; 76.1 x 10° ft>

Rework Problem 1.24 assuming all the energy is to be supplied by (@) coal and (b) natural gas.
Ans. {a) 5.0735 x 10°tons; (b) 152.2 x 10° ft*

During a 1-year period, a certain power system consumed energy (in quads) from various sources as
follows: coal, 6; oil, 2; gas, 1; and hydro, 0.5. If the overall efficiency of the system is 0.12, how much
electric energy (in gigawatthours) could be produced by the system from these sources?

Ans. 3.2 X 10°GWh

In a certain region the growth rate of energy consumption is 6 percent. In how many years will the
energy consumption be quadrupled?

Ans. 23.1 years

Natural gas reserves in a certain country are estimated at 100 X 10°ft’, with an energy content of
0.025 W - year/ft’. If the present peak power demand is 0.5 GW, the power demand growth rate is 5

percent, and all the energy is to be supplied by natural gas, approximately how long will the reserve
last?

Ans.  4.46 years

Calculate the velocity with which a 200-kg mass must move so that its kinetic energy equals the energy
dissipated in a 0.2-Q resistor through which a 100-A current flows for 2 h.

Ans. 379.5m/s
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A wind generator with an efficiency of 0.85 has a blade diameter of 20m. If the wind velocity is
30 km/h, how much power is obtainable from the generator?

Ans. 58.3kW

Hydroelectric power is generated at a dam that produces a head of 180ft and a reservoir containing
3 X 10° gal of water. How much energy can be generated from this reservoir by a turbine-generator
system whose overall efficiency is 20 percent?

Ans. 1225.3M)

The reservoir of a hydroelectric generating station measures 217.8 ft by 200 ft at the surface. Its head
decreases by 1ft while the station generates 100 hp at 70 percent efficiency. Find the original head in
feet.

Ans. 104 ft

A hydroelectric generating station is supplied from a reservoir of capacity 2 x 10°ft’ at a head of 500 ft.
What is the total available electric energy in kilowatthours if the hydraulic efficiency is 0.8 and the
electrical efficiency is 0.97

Ans. 1690 MWh
In a certain country the equivalent fuel reserve for power generation is 3 X 10° MW - years. The present

peak power demand is 200 GW, and the expected power consumption growth rate is 2.1 percent. How
long will the fuel reserve last?

Ans. 13 years



Chapter 2

Power System Representation

The basic components of a power system are generators, transformers, transmission lines, and
loads. The interconnections among these components in the power system may be shown in a
so-called one-line diagram. For analysis, the equivalent circuits of the components are shown in a
reactance diagram or an impedance diagram.

2.1 ONE-LINE DIAGRAMS

Figure 2-1 shows the symbols used to represent the typical components of a power system.
Figure 2-2 is a one-line diagram for a power system consisting of two generating stations connected
by a transmission line; note the use of the symbols of Fig. 2-1. The advantage of such a one-line
representation is its simplicity: One phase represents all three phases of the balanced system; the
equivalent circuits of the components are replaced by their standard symbols; and the completion of
the circuit through the neutral is omitted.

Motor or generator ‘_O
Two-winding transformer % %—

Transmission line

Liquid (oil) circuit breaker ——D—

Air circuit breaker —
Delta connection A

Wye connection. ungrounded Y
Wye connection, grounded %

Fig. 2-1.

oy ()
SEOas RETN
=T (O 2y

Load A <—D— Station B

Station A

Fig. 2.2
12
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2.2 IMPEDANCE AND REACTANCE DIAGRAMS

The one-line diagram may serve as the basis for a circuit representation that includes the
equivalent circuits of the components of the power system. Such a representation is called an
impedance diagram, or a reactance diagram if resistances are neglected. The impedance and
reactance diagrams corresponding to Fig. 2-2 are shown in Fig. 2-3(a) and (b), respectively. Note
that only a single phase is shown.

Gs
S v I ~— v s /
. Generators Load A Transformer B Transmission line Jransformer T, Load B Generators
Y Y
Station A (a) . Station B
SR S11A Y
Transformer Transformer
T] TZ
v —J\ s N ~— J
Station A Transmission line Station B

(b)
Fig. 2-3.

The following assumptions have been incorporated into Fig. 2-3(a):

1. A generator can be represented by a voltage source in series with an inductive reactance. The
internal resistance of the generator is negligible compared to the reactance.

2. The loads are inductive.
3. The transformer core is ideal, and the transformer may be represented by a reactance.

4, The transmission line is a medium-length line and can be denoted by a T circuit. An alternative
representation, such as a & circuit, is equally applicable.

5. The delta-wye-connected transformer T; may be replaced by an equivalent wye-wye-connected

transformer (via a delta-to-wye transformation) so that the impedance diagram may be drawn on
a per-phase basis.

(The exact nature and values of the impedances or reactances are determined by methods discussed
in later chapters.)

The reactance diagram, Fig. 2-3(b), is drawn by neglecting all resistances, the static loads, and
the capacitance of the transmission line.
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2.3 PER-UNIT REPRESENTATION

Computations for a power system having two or more voltage levels become very cumbersome
when it is necessary to convert currents to a different voltage level wherever they flow through a
transformer (the change in current being inversely proportional to the transformer turns ratio). In an
alternative and simpler system, a set of base values, or base quantities, is assumed for each voltage
class, and each parameter is expressed as a decimal fraction of its respective base. For instance,
suppose a base voltage of 345 kV has been chosen, and under certain operating conditions the actual
system voltage is 334 kV; then the ratio of actual to base voltage is 0.97. The actual voltage may then
be expressed as 0.97 per-unit. In an equally common practice, per-unit quantities are multiplied by
100 to obtain percent quantities; our example voltage would then be expressed as 97 percent.

Per-unit and percent quantities and their bases exhibit the same relationships and obey the same
laws (such as Ohm’s law and Kirchhoff’s laws) as do quantities in other systems of units.

A minimum of four base quantities is required to completely define a per-unit system; these are
voltage, current, power, and impedance (or admittance). If two of them are set arbitrarily, then the
other two become fixed. The following relationships hold on a per-phase basis:

base voltamperes

Base current = (in amperes) 2.1

base voltage

b 1t
Base impedance = 245 VOTage (in ohms) (2.2)

base current

P it volt actual voltage (per unit, or pu) (2.3)

r-unit voltage = ————— I unit, .
¢ & base voltage p P

actual current

It

Per-unit current (per unit, or pu) (2.4)

base current

actual i dance .
Per-unit impedance = ba:e iz;peZance (per unit, or pu) (2.5)

In a three-phase system, the base kVA may be chosen as the three-phase kVA, and the base voltage
as the line-to-line voltage; or, the base values may be taken as the phase quantities. In either case,
the per-unit three-phase kVA and voltage on the three-phase kVA base and the per-unit per-phase
kVA and voltage on the kVA-per-phase base remain the same.

2.4 CHANGE OF BASE

The per-unit (pu) impedance of a generator or transformer, as supplied by the manufacturer, is
generally based on the rating of the generator or transformer itself. However, such a per-unit
impedance can be referred to a new voltampere base with the equation

el (VA)new base(kv)gld base
Per-unit impedance), ..., pase =
( P ° (VA) old base(kv)iew base

If the old base voltage and new base voltage are the same, then (2.6) simplifies to

[ (VA)new base
(Per-unit impedance)ew pase = o
° (VA)old base

The impedances of transmission lines are expressed in chms, but can be easily converted to pu
values on a given voltampere base using (2.1) to (2.5).

(per-unit impedance) g pase (2.6)

(per-unit impedance)qq pase (2.7)
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2.5 SUMMARY OF THREE-PHASE CIRCUIT RELATIONSHIPS

A three-phase circuit may be connected either in wye or in delta. In a balanced three-phase
circuit the phase and the line values of the current, power, and voltage are related as follows (the
subscripts p and [ refer to phase and line values, respectively):

Wye connection:
L=1
v, = Vi/V3
P =\3V,cos 6,
Delta connection.:
L, =1/V3
=V
P = \/—3_V]I, cos 8,

<

The delta and wye impedances are related by
Lyye = 3Zgeita
For both types of connections, the apparent and reactive powers are, respectively,
VA = V3V,
and Q = V3V sin 6,

From the above, it is clear that the phrase angle may be obtained as

Q

tan 6, = —ﬁ

Solved Problems

2.1 The base impedance and base voltage for a given power system are 10€2 and 400V,
respectively. Calculate the base kVA and the base current.

From Ohm’s law,

Base current = il%(—) =40 A

40 x 400
B kKVA = ———— =
ase 1000 16 kVA

2.2  The base current and base voltage of a 345-kV system are chosen to be 3000 A and 300kV,
respectively. Determine the per-unit voltage and the base impedance for the system.
From (2.2),
300 x 10°
i == — =10
Base impedance 3000 0 Q
From (2.3),

345
Per-unit voltage = — = 1.15
er-unit voltage = 2o pu
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If the rating of the system of Problem 2.2 is 1380 MV A, calculate the per-unit current referred
to the base of Problem 2.2.

We need the actual current in the system:

X 6
Actual current = % = 4000 A

Then, from (2.4),

Per-unit current ——400 1.33
-unit cu = =1.
3000 pt

Express a 100-Q impedance, a 60-A current, and a 220-V voltage as per-unit quantities
referred to the base values of Problem 2.1.

From (2.5),
Per-unit impedance = 1—100—0 = 10pu
From (2.4),
Per-unit current = 60 = 1.5pu
40
From (2.3),

) 220
Per-unit voltage = 200 0.55 pu

A single-phase, 10-kVA, 200-V generator has an internal impedance Z, of 2 Q. Using the
ratings of the generator as base values, determine the generated per-unit voltage that is
required to produce full-load current under short-circuit conditions.

In per-unit terms, we have

Base voltage = 200V = 1pu
Base kVA = 10kVA = 1pu
Then, by (2.1),

10,000
200

Base current = =50A =1pu

The generated voltage required to produce the rated current under short circuit is [Z, = 50 X 2 =
100 V; or, in per-unit terms, 100/200 = 0.5 pu.

Let a 5-kVA, 400/200-V transformer be approximately represented by a 2-Q reactance
referred to the low-voltage side. Considering the rated values as base quantities, express the
transformer reactance as a per-unit quantity.

We have
Base voltamperes = 5000 VA and base voltage = 200V
so that, by (2.1) and (2.2),
5000

B t=——=25A
ase curren 200

’ 200
Base impedance = 55 = 8Q
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Then the per-unit reactance referred to the low-voltage side is

2
Per-unit reactance = i 0.25 pu

2.7 Repeat Problem 2.6, expressing all quantities in terms of the high-voltage side.
Here we have

Base voltamperes = 5000 VA and base voltage = 400 V

H Ba ecurrent—ﬂog- 125 A
ence, S = 200 .
400

Base i d =-—=32Q
and ase impedance 75
The transformer reactance referred to the high-voltage side is

400\?
High-sid t = 2(——) =8Q
igh-side reactance 200

and the per-unit high-side reactance is 8/32 = 0.25 pu.

2.8  Express the per-unit impedance Z,, and per-unit admittance Y, of a power system in terms
of the base voltage V... and the base voltamperes (VA)pase-

From (2.2), the base impedance is

base voltage Voase Vi
base current  (VA)puse/ Voase  (VA)base

Z base —

Then, from (2.5), the per-unit impedance is

7 - actual impedance  Z = Z(VA)pae
pu

: - - 2
base impedance Zpase Viase

The per-unit admittance is

vl Whe
M (VA T

2.9 A 345-kV transmission line has a series impedance of (4 + j60) € and a shunt admittance of
j2 X 107*S. Using 100MVA and the line voltage as base values, calculate the per-unit
impedance and per-unit admittance of the line.

From the results of Problem 2.8, we have
100 x 10°
(345 x 10%)?

(345 x 1%
100 x 100~ /238pu

Z,. = (4 + j60) = (3.36 + j50.4) x 107 pu

Yoo = (j2 X 107)

2.10 A three-phase, wye-connected system is rated at S0 MVA and 120 kV. Express 40,000 kVA of
three-phase apparent power as a per-unit value referred to (a) the three-phase system kVA as
base and (b) the per-phase system kVA as base.

(a) For the three-phase base,
Base kVA = 50,000kVA = 1pu
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and Base kV = 120kV (line to line) = 1 pu
40,000
Per-uni =_—— =,
so er-unit kKVA 50,000 0.8pu

(b) For the per-phase base,
Base kVA = § X 50,000 = 16,667 = 1 pu

12
and Base kV = Tg = 69.28kV = 1pu
1 40,000
S0 Per-unit kVA = - x ——— = (.
er-uni 3 % 16.667 0.8 pu

A three-phase, wye-connected, 6.25-kVA, 220-V synchronous generator has a reactance of
8.4 Q per phase. Using the rated kVA and voltage as base values, determine the per-unit
reactance. Then refer this per-unit value to a 230-V, 7.5-kVA base.

For the first base, we have

Base voltamperes = 6250 = 1 pu and base voltage = 220 = 1pu

6250
Then Base current = m =164 =1pu
220
t =— =134 =
and Base reactance 64 13 1pu
. 8.4
so that Per-unit reactance = B4~ 0.627 pu
For the 230-V, 7.5-kVA base we obtain, from (2.6),
220\ 7500
-uni = 0.627(—> — = 0.
Per-unit reactance 230/ 6250 0.688 pu

A three-phase, 13-kV transmission line delivers 8 MV A of load. The per-phase impedance of
the line is (0.01 + j0.05) pu, referred to a 13-kV, 8-MVA base. What is the voltage drop
across the line?

The given base quantities yield
Base kVA = 8000 = 1 pu

and Base kV = 13 = 1 pu
Then the other base quantities are
8000
B t=——>==3553=1
ase curren B3 pu
13,000
Base imped =_——=366=1
and ase impedance 3553 6 pu

From these, we find the actual values as

Impedance = 36.6(0.01 + j0.05) = (0.366 + j1.83) Q
and Voltage drop = 355.3(0.366 + j1.83) = 130 + j650 = 663.1V

A portion of a power system consists of two generators in parallel, connected to a step-up
transformer that links them with a 230-kV transmission line. The ratings of these components
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are
Generator G;: 10 MVA, 12 percent reactance
Generator G,: SMVA, 8 percent reactance
Transformer: 15 MVA, 6 percent reactance
Transmission line: (4 + j60) Q, 230kV
where the percent reactances are computed on the basis of the individual component ratings.

Express the reactances and the impedance in percent with 15 MVA as the base value.

Equation (2.7) gives, for generator G,,

15
Percent reactance = 12<E> = 18 percent

For generator G,,

15
Percent reactance = 8(—5—) = 24 percent
For the transformer,

15
Percent reactance = 6(1—5) = 6 percent

And for the transmission line, from (2.2) and (2.7),

15 x 10°

Percent impedance = (4 + j60) W

X 100 = (0.113 + j1.7) percent

2.14 Draw an impedance diagram for the system shown in Fig. 2-4(a), expressing all values as
per-unit values.

10kVA
2500V @_‘
Z=j0.2pu

T, Transmission T,
e line 3
3 €Z = (50 + j200) ng_“@
40kVA 80kVA  25kVA
20kVA 2500/8000 V 10,000/5000V 4000 V
2500V @——— Z=0.1pu Z=0.09pu
Z=j03pu

(a)

0.039 + j0.156) pu
( ! P kVA =0.5pu

(b)

Fig. 24,
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We arbitrarily choose 50 kVA to be the base kVA. Then, from (2.6), for generator Gy,

. (2500)*(50) |
=j0.2 ——>—=j1.0
Zou = 102 5500210y IHOPY
For generator G,
-, (2500)%(50) _ .
Z,, =j03— 55— =j0.75
e =0 2500220y T 0P
For transformer T,,
. (2500)%(50)
Zy = j0.1———" = j0.12
po =01 S s00yi(ag) = /125 pu

For the transmission line,
50,000
8000>

Z,, = (50 + j200) = 0.039 + j0.156 pu

For transformer T,

. (10,000%(50) .
Z,, =j0.09———= = j0.088

e = 10097 Go00y2s0) /0088 U
And finally for motor M,

25
KVA,, =5 =05pu

These values produce the reactance diagram in Fig. 2-4(b).

2.15 Draw an impedance diagram for the system shown in Fig. 2-5(a), expressing all values as
percent values.

10MVA

ot @——* 1SMVA
60/‘;: (4 + j40) Q
= 66 kV
SMVA <: >

(a)

Let us arbitrarily choose 10 MVA to be the base MVA. Then, for generator G,

1
Percent impedance = 10<1—8> = 10 percent
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2.16

For generator G,,

10
Percent impedance = 8(?) = 16 percent

For the transformer,

10
Percent impedance = 6(E> = 4 percent

And for the transmission line,

10 x 10°

Percent impedance = (4 + j 40)m

x 100 = (0.918 + j9.18) percent

These values produce Fig. 2-5(b).

Draw a per-unit reactance diagram for the system shown in Fig. 2-6(a).

We arbitrarily choose 20 MVA and 66 kV as base values. The per-unit reactance diagram is that
shown as Fig. 2-6(b), where, for G, X,, = j0.15 pu because its percent reactance is 15 percent with the
same kVA base. Also for G, and G,

20
X, = —j0.1=j02pu

, 10
For T, and T,,
20
X, = —Jj0.15 = j0.1pu
10MVA
10%
T 60 T
20MVA G Y= J 3
15% ! S c S & 10MVA
30MVA 30MVA 10%
11/66kV 66/11kV ’
15% 15% T3
(@) % ‘:r> To load
2.5MVA
11/6.6kV
8%
= ]02 pu
u u -
pe P P T; (= j0.64 pu
To load

(b)

Fig. 2-6.
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For Tj,
20
X, = —j0.08 = jO.
pu 2.5]0 08 = j0.64 pu
and for the line,

base kVA 20,000

X 180 oy (1000)

Pu = e (ase KV)?1000

= j0.276 pu

Supplementary Problems

A system operates at 220kVA and 11 kV. Using these quantities as base values, find the base current
and base impedance for the system.

Ans. 20A;550Q

Using 220 kVA and 11 kV as base values, express 138 kV, 2MVA, 60 A, and 660 Q as per-unit values.
Ans. 12.54 pu; 9.09 pu; 3pu; 1.2 pu

If 25 Q and 125 A are the base impedance and base current, respectively, for a system, find the base
kVA and base voltage.

Ans. 390.625kVA; 3125V

The percent values of the voltage, current, impedance, and voltamperes for a given power system are
90, 30, 80, and 150 percent, respectively. The base current and base impedance are 60 A and 40 Q,
respectively. Calculate the actual values of the voltage, current, impedance, and voltamperes.

Ans. 2160V; 18 A; 24 Q; 5832kVA

A single-phase transmission line supplies a reactive load at a lagging power factor. The load draws
1.2 pu current at 0.6 pu voltage while drawing 0.5 pu (true) power. If the base voltage is 20kV and the
base current is 160 A, calculate the power factor and the ohmic value of the resistance of the load.

Ans. 0.694; 43.375 Q

The per-unit impedance of a system is 0.7 pu. The base kVA is 300 kVA, and the base voltage is 11 kV.
(2) What is the ohmic value of the impedance? (b) Will this ohmic value change if 400 kVA and 38kV
are chosen as base values? (¢) What is the per-unit impedance referred to the 400-kVA and 38-kV base
values?

Ans. (a) 282.33Q; (b) no; (c) 0.0782 pu
The one-line diagram for a two-generator system is shown in Fig. 2-7(a). Redraw the diagram to show
all values as per-unit values referred to a 7000-kVA base.

Ans. Fig. 2-7(b)

Redraw Fig. 2-7(a) to show all impedance values in ohms.

Ans. Fig. 2-8

A 100-kVA, 20/5-kV transformer has an equivalent impedance of 10 percent. Calculate the impedance
of the transformer referred to () the 20-kV side and (b) the 5-kV side.

Ans. (a) 400 Q; (b)25Q
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7=
3 (10+,20Q o —@
11kV 3E 35—

Z=j0.1 2MVA
P oMvA 3MVA 11KV
11/33kV 3311kV Z=0.05pu
Z=j0.15pu Z=j0.1pu
0.5MVA
11kV
Z=j0.15pu (a)
j0.7pu e (0.064 +0.129) pu 3
] 3 € 3 70175 pu
@— 70.058 pu j0.026 pu
2.1pu
(b)
Fig. 2-7.
210 (10 + 201
—3 £ S E BO%0
79.0750 /3630 I
referredto 11kV referredto33kV
or or
73639 j8L.675Q j4.03Q
referred to 33kV referredto 11kV
Fig. 2-8.
30MVA
30kV ( : )——T
20%
100MVA
@ BKV
20MVA 50 O 12%
3€ J 3
30KV @ SE Line SE
15% T, T, SOMVA
—@ 3kV
10%
S0MVA
30KV @-—
20%

Fig. 2-9.

23
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226  Three-phase generators G, and G, supply motor loads M,, M,, and M,, as shown in Fig. 2-9.
Transformers T; and T, are rated at 100 MV A and 33/110 kV, and each has a reactance of 0.08 per unit.
Assuming 100 MVA and 33 kV are used as base values, obtain all the reactances as per-unit values.

Ans. Transformers, 0.08 pu; line, 0.496 pu; motors, 0.551, 0.620, and 0.331 pu

2.27  Use the results of Problem 2.26 to draw a reactance diagram for the system shown in Fig. 2-9.

Ans. Fig. 2-10

j0.08 pu 70.496 pu 70.08 pu
411 11k

j0.551 pu

Fig. 2-10.

228 Three impedances, Z; = 6/20°Q, Z, = 8/40°Q, and Z; = 10/0°Q, are connected in wye and are
supplied by a 480-V, three-phase source. Find the line currents. Draw phasor diagrams showing all
voltages and currents.

Ans. 1, = 46.19/-50° A; I, = 34.64/—190° A; I. = 27.71/90° A

2.29 A three-phase balanced load has a 10-Q resistance in each of its phases. The load is supplied by a 220-V,
three-phase source. Calculate the power absorbed by the load if it is connected (@) in wye and (b) in
delta.

Ans. (a) 14.52kW; (b) 14.52kW

2.30 A three-phase, three-wire, 500-V, 60-Hz source supplies a three-phase induction motor, a wye-
connected capacitor bank that draws 2 kvar per phase, and a balanced three-phase heater that draws a
total of 10 k€W. The induction motor is operating at its rated 75 hp and has an efficiency and power factor
of 90.5 and 89.5 percent, tespectively. Draw a one-line diagram for the system, and determine (a) the
system kW, (b) the system kvar, and (c) the system kVA.

Ans.  (a) 71.82kW; (b) 24.81 kvar; (¢) 75.98 kVA
231 A 440-V, three-phase source supplies a wye-connected 10-kVA load at 0.8 lagging power factor and a

delta-connected, 10-kVA, unity-power-factor load. Calculate the total apparent power input to the two
loads.

Ans. 18.97/18.43°kVA

2.32  What is the overall power factor of the two loads of Problem 2.31? Verify that the same power factor is
obtained from true power calculations.

Ans.  0.95
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2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

Calculate the line current to each of the loads of Problem 2.31.

Ans. 13.12A

Determine the line current drawn by each load of the system of Problem 2.30.

Ans. 79.76 A; 6.93 A; 11.55A

A balanced delta-connected load whose impedance is 45/70° Q per branch, a three-phase motor that
draws a total of 10 kVA at 0.65 power factor lagging, and a wye-connected load whose impedance is
10 Q (resistance) per branch are supplied from a three-phase, three-wire, 208-V, 60-Hz source. Sketch
the circuit, and determine the line current to each three-phase load.

Ans. 8A;27.76 A; 12 A

Determine the currents I, and I, for the circuit in Fig. 2-11, given that Z, = 20/0°Q, Z, = 14/45°Q,
Z; = 14/—45°Q, and the three-phase applied voltage is 208 V.

Ans. 15.78/—65.46° A; 28.70/90° A

Find the wattmeter readings in the circuit of Fig. 2-11.

Ans. 1363.21W, 5169.83 W

Calculate I, for the circuit of Fig. 2-11. Determine the phasor sum of the three currents in the three
phases. Explain the significance of your result.

Ans.  15.78/—114.54° A; 18.09/0° A, which is not equal to zero
Verify that the sum of the line currents in a delta-connected load is always zero,

Use the result of Problem 2.39 to find I, in Fig. 2-11, and verify that the result is the same as that
obtained in Problem 2.38.



Chapter 3

Transmission-Line Parameters

As noted earlier, the transmission line is one of the major components of a power system. As
such, it may be represented quantitatively by a combination of three characteristics, or parameters:
its resistance, inductance, and capacitance. ‘

3.1 RESISTANCE

The most significant effect of the resistance of transmission-line conductors is the generation of
PR loss in the line. The resistance also produces an IR-type voltage drop, affecting the voltage
regulation of the line.

The dc resistance R of a conductor of length / and cross-sectional area A is

l
R = ,oZ (in ohms) 3.1

where p is the resistivity of the material of the conductor in ohm-meters. The dc resistance of a
conductor is affected only by the operating temperature, and it increases linearly with the
temperature. However, when a conductor is transmitting alternating current, the current-density
distribution across the conductor cross section is nonuniform and is a function of the ac frequency.
This phenomenon, known as the skin effect, causes the ac resistance to be greater than the dc
resistance. At 60 Hz, the ac resistance of a transmission-line conductor may be 5 to 10 percent higher
than its dc resistance.
The temperature dependence of resistance is quantified by the relation

Ry =Ryl + (T, — Ty)] (3.2)

where R, and R, are the resistances at temperatures 7; and T, respectively, and « is called the
temperature coefficient of resistance. The resistivities and temperature coefficients of several metals
are given in Table 3-1.

TABLE 3-1 Resistivities and Temperature Coefficients of Resistance

Resistivity p at 20°C Temperature coefficient
Material U - cm « at 20°C, °C™!
Aluminum 2.83 0.0039
Brass 6.4-8.4 0.0020
Copper
Hard-drawn 1.77 0.00382
Annealed 1.72 0.00393
Iron 10.0 0.0050
Silver 1.59 0.0038
Steel 12-88 0.001-0.005

Long transmission lines may involve shunt resistances (or conductances) in addition to series
resistances.

26
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3.2 INDUCTANCE

Two-Wire, Single-Phase Line

The inductance per conductor of a two-wire, single-phase transmission line is given by

_ o

L
Y8

D
<1 +4In ——) (in henrys per meter) (3.3)
r
where uo = 4w X 1077 H/m (the permeability of free space), D is the distance between the centers
of the conductors, and r is the radius of the conductors. The total, or loop, inductance is then

D
L=2L1=@(1 +4ln——)
47 ¥

D
- <1 +4In —) x 1077 H/m (3.4)
r
Since In e = 1/4, this last equation may also be written as
LD
L=4x10 ln;,— H/m (3.5)

where ' = re” " is known as the geometric mean radius (GMR) of the conductor.

Of the two terms in (3.3), the first represents the internal inductance of the solid conductor, and
the second term is due to fluxes external to the conductor. In (3.5), the conductor is replaced by an
equivalent thin-walled, hollow conductor of radius r’ having no internal flux linkage and hence no
internal inductance.

Three-Wire, Three-Phase Line

The per-phase (or line-to-neutral) inductance of a three-phase transmission line with equi-
laterally spaced conductors is

L= ﬂ(l + 4ln2>
8x r

1 D _
- 2(1 + ln—r—> x 107 H/m (3.6)
where r is the conductor radius and D is the spacing between conductors. In practice, the three
conductors of a three-phase line are seldom equilaterally spaced. The usual nonsymmetrical spacing
produces unequal inductances in the three phases, leading to unequal voltage drops and an
imbalance in the line. To offset this imbalance, the positions of the conductors are interchanged at
regular intervals along the line. This practice is known as transposition and is illustrated in Fig. 3-1,
which also shows the unequal spacings between conductors. The average per-phase inductance for a
transposed line is still given by (3.6), except that the spacing D in the equation is replaced by the

a c b
b a c
c b a

Fig. 3-1.



28 TRANSMISSION-LINE PARAMETERS [CHAP. 3

equivalent spacing D, obtained from
De = (DabDbcha)l/3 (3 7)

where the distances D,,, D,., and D_, are as shown in Fig. 3-1.

Composite Conductors

These expressions for the line inductance must be modified for application to a transmission line
that consists of composite conductors. In particular, let a single-phase line consist of two composite
conductors, as shown in Fig. 3-2. Conductor X is composed of n identical and parallel filaments,
each of which carries the current //n. Conductor Y, which is the return circuit for the current in
conductor X, is composed of m identical and paraliel filaments, each of which carries the current
—I/m. Distances between pairs of elements are designated by D with appropriate subscripts. The
inductance Ly of conductor X then may be shown to be

mV(Daa’Dab'Dac' tte Dam)(Dba’Dbb'Dbc’ T Dbm) Tt (Dna’Dnb’Dnc' e Dnm)
n\/(DaaDabDac e Dan)(DbanbDbc e Dbn) T (DnaDanm: ot Dnm)
(in henrys per meter) (3.8)

Lx =2 X 10_7 ln

where Dy, = r, = re” " is the geometric mean radius (GMR) of the kth conductor. [The GMR is
defined just below (3.5).] Notice that the numerator in (3.8) involves the mnth root of the product
of mn terms; each of those terms is the distance from one of the # filaments of conductor X to one of
the m filaments of conductor Y, and there are a total of mn distances. The mnth root of the product
of mn distances is called a geometric mean distance. For two conductors X and Y, as in Fig. 3-2, it is
called the mutual geometric mean distance between them and abbreviated D,, or GMD,

bO )
<O b’o O ¢
H@) U arO mO
(S
Conductor X Conductor Y

Fig. 3-2.

The #® root of the product of n® distances occurring in the denominator of (3.8) is abbreviated
D, and called the self GMD of conductor X. In like manner, ' for a separate filament or wire is
often called its self GMD. The self GMD is also sometimes loosely termed the geometric mean
radius and abbreviated GMR.

In terms of D,, and D;, (3.8) becomes

D,
Ly =2X 1077 1[13‘ H/m (3.9)
We determine the inductance Ly of conductor Y in a similar manner, and the total line inductance

becomes

Double-Circuit, Three-Phase Line

The per-phase inductance of a double-circuit, three-phase, transposed transmission line (Fig.
3-3) is given by
GMD

L=2x10""}
" GMR

H/m (3.11)
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In terms of the symbols of Fig. 3-3, which shows a transposed three-phase line, (3.11) may be

written as
6 3
2VDVG
L=2x10" ln—\[—— (3.12)

Vi

where r' is the GMR of the conductor.

O« Ov O» Qa

Oa Oa/ Oc Oc

Op O« Oa oL
Fig. 3-3.

3.3 CAPACITANCE
The shunt capacitance per unit length of a single-phase, two-wire transmission line is given by

TE

C= m (in farads per meter) (3.13)

where ¢, is the permittivity of free space and the other symbols are as defined for (3.3). For a
three-phase line with equilaterally spaced conductors, the per-phase (or line-to-neutral) capacitance
is

27e

€= In (D/r)

F/m (3.14)

To account for the actual unequal spacings between conductors and the transposition of the line, D
in (3.14) is replaced with D, of (3.7), as is done in computing the inductance of a transposed line.
For the double-circuit transmission line of Fig. 3-3, the per-phase capacitance is given by

4me
C=—s3 F/ 3.15
n(V2(DINGIFY (3:19)

The capacitance of an overhead transmission line is affected by the ground, which distorts its
electric field. The effect of the earth is simulated by assuming the existence of mirror-image
conductors, as far below ground level as the transmission line is above it (Fig. 3-4). The image
conductors carry charges with polarities opposite those of the real conductors, as shown. Now the
capacitance to neutral is given by

C = 27€q
" \n(D./r) — In(VH,, Hy,H,./VH,H,H,)

F/m (3.16)

where D, is given by (3.7), the H’s are defined in Fig. 3-4, and r is the conductor radius.
Using the concept of the GMD, we may write the capacitance to neutral of a nonsymmetrical
three-phase double-circuit line as

C = 2me, _ 27mey
” " In(GMD/GMR) In(D,,/D,)

F/m (3.17)
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Fig. 3-4.

Substituting the numerical value for €, in (3.17) yields

31

3.2

1077

n = m F/m (3.18)

Solved Problems

Determine the resistance of a 10-km-long solid cylindrical aluminum conductor with a
diameter of 250 mils, at (a) 20°C and (b) 120°C.

To find the cross-sectional area of the conductor, we note that

250 mils = 0.25in = 0.635cm
50 A= f{ (0.635) = 0.317 cm?

Also, from Table 3-1, p = 2.83 uQ - cm and a = 0.0039°C™! at 20°C.
(a) At 20°C, (3.1) yields

! 10 x 10°
Ry=p—=28x10°x — =" __g
n=py=2 0317 x 10 oBE

(b) At 120°C, (3.2) yields
R = Ryl + (120 — 20)] = 8.93(1 + 0.0039 x 100) = 12.41 Q

A transmission-line cable consists of 19 strands of identical copper conductors, each 1.5 mm in
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33

34

35

diameter. The length of the cable is 2 km but, because of the twist of the strands, the actual
length of each conductor is increased by 5 percent. What is the resistance of the cable? Take
the resistivity of copper to be 1.72 x 107 Q - m.

Allowing for twist, we find that / = (1.05)(2000) = 2100 m. The cross-sectional area of all 19
strands is 19(st/4)(1.5 X 107°)* = 33.576 x 10~° m®. Then, from (3.1),

pl 172 X 107® x 2100
A 33.576 x 107¢

= 1.076 Q

The variation of resistance with temperature is expressed by the temperature coefficient of
resistance «. Explicitly, the resistance Ry at a temperature 7°C is related to the resistance R,
at 0°C by Ry = Ry(1 + ayT), where ay is the temperature coefficient at 0°C. This relation is
depicted for copper in Fig. 3-5, which also shows the inferred absolute zero for copper. Using
Fig. 3-5, find the resistance of a copper wire at —20°C if its resistance at 0°C is 20 2.

s
/ ~” Inferred for
copper

\/
=273°C {—234. 5°C 0°C
e >

Fig. 3-5.
From Fig. 3-5, we have o, = 1/234.5. From the given data,

) =20

A sample of copper wire has a resistance of 50 Q at 10°C. What must be the maximum
operating temperature of the wire if its resistance is to increase by at most 10 percent? Take
the temperature coefficient at 10°C to be a = 0.00409°C™*

Here we have R, = 50 Q2 and R, = 50 + 0.1 x 50 = 55 Q. Also, T, = 10°C, and we require T.
From (3.2) we obtain

55 = 50[1 + 0.00409(T; — 10)] or T, = 34.45°C

The per-phase line loss in a 40-km-long transmission line is not to exceed 60 kW while it is
delivering 100 A per phase. If the resistivity of the conductor material is 1.72 X 1078Q - m,
determine the required conductor diameter.

The line loss is to be, at most,

PR = (100°R = 60 x 10°
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from which we find R = 6. Substituting that value into (3.1), solving the result for A, and substituting
A = gD?*4 yield

T (1.72 x 107%)(40 x 10%)
4 6

from which D = 1.208 cm.

A coaxial cable has an inner conductor of radius r, and a hollow outer conductor of radius r,
(Fig. 3-6). The outer conductor is of negligible thickness. Determine the inductance per unit
length of the cable by finding the energy stored in the magnetic field of the cable and equating
it to the energy stored in the cable inductance. Assume a uniform current-density distribution
over the conductor cross section.

Fig. 3-6.

From Ampere’s law, the magnetic field intensities inside and outside the inner conductor are
respectively,

3

Ir
H¢,,~=§]—T‘r—2 f0r0<r<r1 (1)
! 2
e =5 forn<r<mn 2)

Also, W,, =3 [ B-Hdv;since B = uoH, this becomes, for a unit length,

71 ]
W, %uo(f Hi2mrdr + J’ HZ 27r dr) 3)
(1] n

Substituting (1) and (2) in (3) yields
But W,, = 3LI°, so that
2n\a” "y,

A single-phase, two-wire transmission line, 15 km long, is made up of round conductors, each
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3.8

39

310

0.8 cm in diameter, separated from each other by 40 cm. Calculate the equivalent diameter of
a fictitious hollow, thin-walled conductor having the same inductance as the original line.
What is the value of this inductance?

The fictitious conductor is one whose radius is 7' and whose diameter is therefore
20 = re ¥ = 0.8 x 0.7788 = 0.623 cm
Using (3.5), we find that the inductance of 15 km of such a conductor is

40
= 3% 4 x 1077 In————— = 29.13mH
L=15x%10 X 107 In g0 m

A single-circuit, three-phase, 60-Hz transmission line consists of three conductors arranged as
shown in Fig. 3-7. If the conductors are the same as that in Problem 3.1, find the inductive .
reactance of the line per kilometer per phase.

Fig. 3-7.

From (3.7),
D, =(5%X5x8)"=5848m

From Problem 3.1, r = 3 x 0.635 X 107> m, so that

D, 5848 x 2 x 10* _ 18419
ro 0.635 B :

and In (D./r) = 7.52. Hence, from (3.6) we have, for each kilometer of length,
L =20 +1752) x 1077 x 10° = 1.554 mH/km
The inductive reactance per kilometer is then

X, = wL =377 x 1.554 x 107° = 0.5858 Q

Calculate the capacitance and capacitive reactance (at 60 Hz) of the transmission line of
Problem 3.7.

For air, €, = 107°/36z F/m. Thus, from (3.13),
L m(107/36x)
in (40/0.4)

1 1
T wC  377(0.0904 x 1079

C =15 x 10 = 0.0904 uF

and Xc

= 29.34kQ

What is the capacitive reactance per kilometer of the three-phase transmission line of
Problem 3.87

From (3.14) with €, = 107°/36x F/m,

_ 27 X 107°/367

X 10° = 7.387 x 10" F/k
~ 5 387 /km
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Hence the capacitive reactance per kilometer is

1 10°

Xe = 0c == 7387

= 0.36 X 10°Q/km

3.11 Find the inductance per unit length of the single-phase line shown in Fig. 3-8. Conductors a,
b, and c are of 0.2 cm radius, and conductors d and e are of 0.4 cm radius,

6m |
T
T—Qa Od
4m
A
T ob Oe
4m
ﬁOc
H—J k_ﬂ(.__J
Side X Side Y
Fig. 3-8.

Because the line is not symmetrical, we use (3.8) or (3.9). The GMD between sides X and Y is
Dm = f/DadDaeDbdDbeDcd ce

where D,=D,=6m
D,.=Dpy=D.,.=V#+6"=72lm

and D, = V6> + & = 10m

Hence D,=V6x721x721 x6x10x 721 =7.16m

The GMR for side X is, with Dy, = re™ " = 0.7788r,,
DSX = \Q/DaaDabDacDbanbDbchachDcc
= \9/(0.20 X102 x 07788’ X 4 X 8 X 4 X 4 x § X 4 = (.34l m

and that for side Y is

D,y = V(0.4 x 0.7788 x 10 7° x 4 = 0.112m
Now, from (3.9),

7.16
Ly =2%X10"7In—— = 6.09 x 107"H/m

0.341

and Ly =2x%x10"In 7.16 = 8.31 x 107"H/m
0.112

Then L=Lgx+ Ly=144 x 100"H/m

3.12  Verify the result of Problem 3.8 by applying the concept of the GMR and GMD.
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3.13

3.4

3.15

3.16

317

From Problem 3.1, the diameter of the conductor is 0.635 cm. Hence,

0.7788 x 0.635

GMR = Dg = —— "= = 0.002473
s 2 % 100 002473 m
and GMD =D, = V5 X 8 X5 =5848m
Thus, the inductance per kilometer is, from (3.9),
5.848
=2 x 1077 In——— x 1000 = 1.554 mH/k
L 10.002473 mH/km

which agrees with the result of Problem 3.8.

Calculate the capacitance per kilometer per phase of the single-circuit, two-bundle conductor
line shown in Fig. 3-9. The diameter of each conductor is 5 cm.

30 cm
-~
a | Cba’ bO | Ob’ CO !Oc'
i | |
L 5m i‘ 5m E
Fig. 3-9.

We have

D, = V(0.7788 x 0.025)%(0.30)> = 0.07643 m
D,=%V5x10 x5 =63m
Hence, from (3.18),

107% x 1000

C =
" 181n(6.3/0.07643)

= 0.0126 uF/km

Supplementary Problems

A single-phase transmission line, 50 km long, is made up of a hard-drawn copper conductor 500 mils in
diameter. Using data from Table 3-1, find the loop resistance at 20°C.

Ans. 0.1394 Q

Determine the resistance of the line of Problem 3.14 at 80°C.

Ans. 01714 Q

A transmission-line conductor has a resistance of 7 Q at 0°C. Calculate the temperature coefficient of the
conductor metal at 20°C if its resistance increases to 7.8 Q at 20°C.

Ans.  0.00513°C™"

The resistance of a transmission line is 25 Q at 15°C and increases by 10 percent when the operating
temperature increases to 50°C. At what temperature is its resistance 30 Q, if the temperature coefficient
is assumed to remain constant.

Ans. 65°C
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3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26
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The conductors of a three-phase transmission line are arranged in the form of an equilateral triangle
with sides of 6 m each. If the conductors are 500 mils in diameter and the line is 25 km long, what is its
inductance per phase?

Ans. 35.5mH

Let Dy, = ¢, Dy = a, and D, = b in the three-phase transposed transmission line shown in Fig. 3-1.
Obtain an expression for the inductance of phase a for a 1-m-long line. The conductor radius is .

Vb
Ans. (% + 2~ 4 j\/glng) x 1077H
r

A single-phase, 10-km transmission line has 16.65mH total inductance. If the distance between the
conductors is 1.0 m, what is the conductor diameter?

Ans. 2.0cm

Determine the geometric mean radius of the conductors of Problem 3.20.

Ans. 1.558 cm

A double-circuit, single-phase transmission line is shown in Fig. 3-10. Obtain an expression for the
inductance per meter of each conductor.

.o
o

|3

Fig. 3-10.

2kD
Ans. (% + 2In7 V1 + kz) X 1077 H/m

Calculate the per-phase capacitance of the transmission line described in Problem 3.18.
Ans. 0.203 uF
A single-phase transmission line is 4 meters above the ground and consists of conductors of radius 7

meters separated from each other by a distance of d meters. Obtain an expression for the capacitance
per meter between conductors, including the effect of the ground.

Ans. me,/In[d/rV1 + (d/2h)*] F/m

Find the GMR of a bundle of two conductors separated by a distance d, each having a GMR of D,.
Ans. VD.d

Rework Problem 3.25 for a bundle of four conductors located at the four corners of a square of side d.
The GMR of each conductor is D..

Ans.  1.09 (D, d*)"
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3.27 Calculate the inductance per kilometer per phase of the line shown in Fig. 3-9.

Ans. 0.882 mH/km

328 A double-circuit, three-phase, transposed transmission line is shown in Fig. 3-11. The radius of each
conductor is 1.25 cm. Calculate the inductance per kilometer per phase.

7.5m L
aé) é} ‘T
4 m
| 9.0m o
5 S
4m

O O«

Fig. 3-11.

Ans. 0.607 mH/km

3.29 Find the capacitance to neutral of the line of Problem 3.28.
Ans. 0.019 uF/km



Chapter 4

Transmission-Line Calculations

Transmission lines physically integrate the output of generating plants and the requirements of
customers by providing pathways for the flow of energy among the various circuits in an electric
power system. For our purposes here, we consider a transmission line to have a sending end and a
receiving end, and to have a series resistance and inductance and a shunt capacitance and
conductance as primary parameters. In addition, we classify transmission lines as short, medium, and
long. In a short line, the shunt effects (conductance and capacitance) are neglected; this
approximation is considered valid for lines up to 80km long. In a medium line, the shunt
capacitances are lumped at a few predetermined locations along the line; medium lines generally
range from 80 to 240 km in length. Lines longer than 240 km are considered to be long lines and to
have uniformly distributed parameters.

In Chapter 3 we discussed the three most important parameters of transmission lines. In this
chapter we discuss the effect of those parameters on the operation and performance of transmission
lines. In particular, we evaluate the losses, efficiency, and voltage regulation of transmission lines
and then determine the consequences of such performance characteristics on the operation of a
power system.

4.1 TRANSMISSION-LINE REPRESENTATION

To facilitate performance calculations relating to a transmission line, the line is approximated as
a series—parallel interconnection of the relevant parameters. A short transmission line, for which the
shunt effects may be neglected, is represented by a lumped resistance in series with a lumped
inductance. A medium-length line is represented by lumped shunt capacitors located at predeter-
mined points along an RL series circuit. (In practice, the entire capacitive effect in a medium-length
line may be represented by only one or two lumped capacitors.) Finally, a long transmission line is
represented by uniformly distributed parameters. Furthermore, the shunt branch of a long line
consists of both capacitances and conductances distributed uniformly along the line.

4.2 SHORT TRANSMISSION LINE

The short transmission line is represented by the lumped parameters R and L, as shown in Fig.
4-1. Notice that R is the resistance (per phase) and L is the inductance (per phase) of the entire line
(even though we computed transmission-line parameters per unit length of line in Chapter 3). The
line is shown to have two ends: the sending end (designated by the subscript ) at the generator, and
the receiving end (designated R) at the load. Quantities of significance here are the voltage
regulation and efficiency of transmission. These quantities are defined as follows for lines of all
lengths:

|VR(noload)| _ IVR(load)I x 100 (41)

Percent voltage regulations =
|VR(load)l

power at receiving end Py

Efficiency of transmission = (4.2)

power at sending end P

where V is the receiving-end voltage.
38
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V4
Is = - \ I
AN A1
Generator: T R L +  Load:
Sending Vs Ve Receiving
end - — end

Neutral return

Fig. 4-1.

4.3 MEDIUM-LENGTH TRANSMISSION LINE

In a medium-length transmission line the shunt effect due to the line capacitance is not negligible.
Two representations for such a line are shown in Figs. 4-2 and 4-3; they are known as the nominal-11
circuit and the nominal-T circuit cf the transmission line, respectively. The figures also show the
phasor diagrams for lagging power-factor conditions. These diagrams are of help in understanding
the mutual relationships between currents and voltages along the line.

Z Ve
—
I I
?—MTLJ: Ies der
Ics R L Ier X;
Vs ::gorX QQI—X;: Vg
B 22 22 T , I’A y
~ R
T fos
I Ier
Fig. 4-2.
z Z
2 2
f-_)\_‘—ﬂ I'e Y
I I Vs
I
T RR2 L2 t, R2 et |
Ve 2LX;
Vs Ve==CorY Vr Ve
1
- - - I j 2R
1 1
I 2RR 7IRX;
I
Fig. 4-3.

4.4 LONG TRANSMISSION LINE

The parameters of a long line are considered to be distributed over the entire length of the line.
One phase (with return through neutral) of a long line, of length %, is shown in Fig. 4-4. The voltage
V at any point along this line is given by

av
dx?

YV (4.3)

where y = Vyz, y is the shunt admittance per unit length of the line, z is the series impedance per
unit length, and vy is known as the propagation constant. A solution to (4.3) is

V = Ve(e™ + &™) + 3 Z.(e¥ — ™) (4.4)
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where Z, = Vz/y is called the characteristic impedance of the line. The current I at any point along
the line is given by

1V
I= (eY" — e ) + dlg(e™ + e (4.5)
2 Z,
Incremental length
of transmission line
A —
I T+ar _zdx I jA
e B | . e
+ + +
Vs V+dv vdx v Vi
g :
| dx ! X
e | ]
x=% x=0
Fig. 4-4.

Equations (4.4) and (4.5) may be expressed in terms of hyperbolic functions as

V = Vg cosh yx + IxZ_sinh yx (4.6)

+ I cosh yx 4.7)

c

Since V = Vsand [ = [gat x = £, (4.6) and (4.7) become, at the sending end,
Vs = Vrcosh y¥ + I.Z,sinh y.& (48

¥
+ I cosh y&¥ (49

The following relationships are often useful in numerical Computations involving (4.6) to (4.9):
v=a+jB
cosh y& = cosh (a¥ + jBZ) = cosh a¥ cos BZL + j sinh a¥ sin BF
sinh y# = sinh (a¥ + jBY) = sinh «¥ cos BF + jcosh a¥ sin B¥

2 4 4.10

Coshyﬁg:l_!_(_’;%_)_*_(y‘lﬂ_‘_...xl_{_%yz ( )
£ ¥y

sinh y¥ = v¥ + (é') (YS') =~ Vyz (1 + ¢yz)

4.5 THE TRANSMISSION LINE AS A TWO-PORT NETWORK

In preceding sections we found that, when a transmission line is represented by its equivalent
circuit, we can express the sending-end voltage and current in terms of the receiving-end voltage and
current and the line parameters. In general, a transmission line may be viewed as a four-terminal
network, as shown in Fig. 4-5, such that the terminal voltages and currents are related by

Vs = AVg + Bl (4.11)
IS = CVR + DIR (4. 12)

where the constants A, B, C, and D are called the generalized circuit constants or ABCD constants
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and are, in general, complex. By reciprocity, they are related to each other as follows:

AD — BC =1

(4.13)

A transmission line of any length can be represented by the four-terminal network of Fig. 4-5 with

ABCD constants as given in Table 4-1.

Is I
—_————————— A —
+ +
Vi A B C D Vi

Fig. 4-5.

TABLE 4-1 ABCD Constants for Transmission Lines (per Phase)

Line length  Equivalent circuit A B C D
Short Series impedance, 1 V4 0 1
Fig. 4-1
Medium Nominal II, Fig. 4-2 1+ 3YZ zZ Y(1 + 3iYZ) 1+3YZ
Nominal T, Fig. 4-3 1+4YZ  Z(1 +iYZ) Y 1+ 1vz
Long Distributed parameters, cosh y¥ Z, sinh y¥ (sinh y¥)/Z,  coshy¥
Fig. 4-4

4.6 POWER FLOW ON TRANSMISSION LINES

The power flow at any point on a transmission line can conveniently be calculated in terms of the

ABCD constants. Since these constants are generally complex, we let
= |Al [« and B =|B|/B
Choosing Vj as the reference phasor, we assume that
Ve = V&l /0° and Vs =1Vs| /O
Then, from (4.11) we obtain
_ Vsl |A] Vel

— — " o ﬁ
"= 1) gy =F
The complex power ViI% at the receiving end is thus given by
Vel Vsl |A] | Vl®

P +jOr = — 77— 1B /B - 5_T{ﬁ—0{

so that

VellVal o o
B8] cos (f — O)

Vel Vsl |A] [Val?
Qu=""p sin(h =)~ |B|

1AL VeI

P, = B] ————cos (f — @)

———sin(f — «)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
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4.7 TRAVELING WAVES ON TRANSMISSION LINES

On a long transmission line such as that in Fig. 4-4, the voltage V and current I everywhere
along the line satisfy a relation called the wave equation. For a lossless transmission line, such that z
and y in Fig. 4-4 are purely reactive, the wave equation may be written as

1 8%V &V
LCax? ~ ar (+20)
&1 oo |

or 2 Y (4.21)

Solutions to (4.20) and (4.21) take the forms
Vix, t) = V+(z - g) + V‘(t + g) (4.22)

X _ x

and I(x,t) = 1+(t - ;) +1 (t + ;) (4.23)

1
where u= ViC (4.24)

and the superscripts + and — denote, respectively, waves traveling in the +x and —x directions
along the transmission line. That the solutions (4.22) and (4.23) do indeed represent traveling waves
is indicated by the arguments, in which u has the dimension meters per second. A wave such as
V*(¢t — x/u) that is traveling in the positive x direction is called a forward-traveling wave, and one
that is moving in the negative x direction is a backward-traveling wave.

It may be verified from (4.20) through (4.24) that

v+ L
=z , (4.25)
V- L

and —F = — E (4.26)

The ratio VL/C has the dimension ohms and is called the characteristic impedance Z_ of the line.
Recall from Section 4.4 that Z. = Vz/y for a lossy line, whereas here the line is lossless and the
characteristic impedance is purely resistive. We may thus call it the characteristic resistance R, and

write
L
Z = \/: =R, 42
Z (4.27)

for a lossless line. In terms of R., (4.23) becomes

I, £) = I%Cw(z - g) - Ri v-(: + g) (4.28)

C

Figure 4-6 shows a transmission line of total length & that terminates in a resistance R, and is
driven by a pulse voltage source having an open-circuit voltage waveform Vy(¢) as shown and an
internal resistance Rs. To determine the terminal voltages V (0, ) and V (%, t) and terminal currents
1(0, ¢) and I(Z, t) as functions of time we consider the portion of the line at the load (Fig. 4-7). At
x = %, we must have

V(£ 1) = R, 1) (4.29

Equation (4.29) requires the existence of forward- and backward-traveling waves at x = &, If only
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forward-traveling waves exist at the load, then

A A
V+(t - —) = RCI+(t - ~—) (4.30)
u u
and if only backward-traveling waves exist at the load, then
< A
V‘(t - ——) = —RJ‘(t - —) (4.3D)
u u

Neither (4.30) nor (4.31) satisfies (4.29), but a combination of the two can satisfy it. However,
(4.29) is also satisfied by (4.30) if R; = R; in that case there is no backward-traveling wave and the
line is said to be matched at the load. But the discontinuity in the line produced by the load resistor
then results in a wave being reflected in the form of a backward-traveling wave.

Rs 1(0,1) I'(t = xlu) ——  —— I (t+ x/u) )

+ +

V(t—~xlu)—~  -—V (t+x/u)

cs U
Vs(f)A
M ______
“r
Fig. 4-6.
Vo (t 41 Vi(t-%lu
—I(t +%lu) = (1 +<4u) I (¢t —Q/u)z———)
- c — I
¥ + +
s ‘ =R
-~V (1 +%/u) Vit —Zlu)y—>  V(Z.1)
— Rc,u - _
>
Fig. 4-7.

Reflection Coefficients

We may now define a voltage reflection coefficient at the load as the ratio of the amplitudes of the
backward- and forward-traveling voltage waves at x = ¥; that is,
Ve + Zlu)

Tov = V2~ (4.32)
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In terms of ', and R,, (4.22) and (4.28) give us, at the load,

V(L 1) = V+(t - %)(1 +T,)

I(Z, 1) = f(’—;gﬂu -T,)

C

Hence, a current reflection coefficient at the load may be defined as
_IT+ 2w _
U - Llu) T

The current reflection coefficient is thus the negative of the voltage reflection coefficient
(4.29) to (4.32) for R; and I'; we obtain

_FL

1+T1,
RL = Rc
1 - FL
@ —
+
V(gv t) RL
' .
x=<% X
A
(b) Vie-xw)
: LA V(t+xu)
. i
: —~— //\<
I i -
x=%
)] A+TA
V&, 1) |
LA
!\\
T A\\_’
4___./1‘\\\\\\\
| \ ~=-
x=%
(d) [
V(Sj, t) : ,/’“\\\
\ '/,/l \_}
¢ A\
| \
= \
x=%
(e) |
| AN
| 4 N
| e \\
4_/\ | ,// \
b \
1 A
x=

(4.33)

(4.34)

(4.35)

. Solving

(4.36)
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RL_RC

and ry,=——
R, + R,

(4.37)
This reflection of waves is illustrated in Fig. 4-8. The reflection mechanism can be viewed as a mirror
that produces, as the reflected wave V'~ (shown dashed), a replica of V' that is “flipped around”
and such that all points on the V'~ waveform are the corresponding points of the V* waveform
multiplied by I',. Parts (b) through (e) of the figure show the waves at succeeding instants. At any
time ¢, the total voltage at the load, V(%, 1), is the sum of the individual waves present at the load at
that time. This is illustrated in Fig. 4-8(b) and (c) for a forward-traveling wave of amplitude A.

Now let us consider the portion of the line at the source, x = 0, shown in Fig. 4-9(a). When the
source is initially connected to the line, a forward-traveling wave is propagated down the line. A
backward-traveling wave does not appear in the line until this initial forward-traveling wave has
reached the load, which requires a time T = £/u, since the load is presumed to have no source
within it to produce a backward-traveling wave. That portion of the incident wave which is reflected
at the load will require an additional time T to move from the load back to the source at x = 0.
Therefore, during the interval 0 < ¢ < 2¥/u, no backward-traveling wave will appear at x = 0, and
the total voltage and current at x = O will be those due only to the forward-traveling waves V™ and
I'"; therefore,

0

V(0,1 = V+<t - ;) 5 (4.38)
N ford =< —;"

10, 1) = M};—Q/—LQ (4.39)

Since the ratio of the total voltage to the total current on the line is R, for 0 = ¢ < 2% /u, the line
appears to have an input resistance of R, over this time interval, as shown in the circuit of Fig.
4-9(b). Thus, during this interval, the forward-traveling wave that is initially launched is related to

Vs(¢) by

R, 2Z
V0, 1) = m V(1) 0=1< 7 (4.40)
c S

Vs(2) A

M

V(0. 1) = Vi(t) t<2%M

R,
R+ R
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The initially launched wave is of the same shape as Vi(f), but its points are reduced in magnitude
from the corresponding points of V() by the voltage-divider relationship R./(R. + R;), as shown
in the curve of Fig. 4-9(b). If M is the maximum amplitude of Vi(¢), then A = R.M/(R, + Ry) is the
maximum of V (0, ).

This initially launched wave travels toward the load, requiring a time T = ¥/u for its leading
edge to reach the load. When the leading edge does reach the load, a reflected wave is initiated, as
shown in Fig. 4-8. This reflected wave requires a time 7 = £/u for its leading edge to reach the
source. At the source, as at the load, this wave is reflected, and in parallel with (4.37) we can define
a source voltage reflection coefficient

RS—RL‘

[ =———=
* " Ry + R.

(4.41)
as the ratio of the amplitude of the incoming wave (which was actually reflected at the load) to that
of the reflected portion of this wave (which is sent back toward the load). A forward-traveling wave
is therefore initiated at the source in the same fashion as a backward-traveling wave was initiated at
the load. This forward-traveling wave has the same shape as the incoming backward-traveling wave,
but with corresponding points reduced by I's. This process of repeated reflection continues as
re-reflection at the source and the load. At any time, the total voltage (or current) at any point on
the line is the sum of the values for all the individual voltage waves (or current waves) existing on
the line at that point and time.

Lattice Diagram

A convenient way of keeping track of these reflections is with a latfice diagram (Fig. 4-10). In the
lattice diagram, the horizontal axis is labeled as distance down the line, and the vertical axis is
labeled as time in increments of the total time required to transit the line in one direction: ¥/u.
Suppose the pulse shown in Fig. 4-10(d) is initially launched at time ¢ = 0. Let us examine a point on
this pulse having magnitude K at time ¢'. The point travels toward the load and is reflected, resulting
in a corresponding point on the reflected waveform of magnitude KI';. It is re-reflected at the
source, then at the load, and so on. The lattice diagram shows this process in a convenient manner
and allows us to obtain the value of the total line voltage V(x, ¢) at any point on the line and any
time. For example, at t = ¢’ + £/u, the total voltage at x = ¥ is K + KT, = K(1 + T,). At
x = ¥/2, a point midway down the line, at # = ¢' + 3%/u the total line voltage is KT,

By following the movement of various points on the initially launched waveform [which differs
from Vg(t) only by R./(R. + Rs)], we can sketch the total voltage at any point on the line. This can
be done for the line current also, but then the initially launched wave is

I*(r - %) = Ecl/i(t—;is (4.42)

and we must replace I's and I'; in the lattice diagram with the current reflection coefficients —I's and
—I',. However, the simplest method of sketching the line voltage and current is to visualize and
sketch the individual forward- and backward-traveling waves and to combine all those present at an
instant to produce the total line voltage and current distributions at that instant.

Solved Problems

4.1 Draw a phasor diagram showing the voltage-current relationships for a short transmission line
represented by Fig. 4-1.
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rs . rl_
/x=0 x=%"n x=<
t=t i K X
t=t'+%u § t'+ & fu
! KT, ,
— ! e, —t +2 /
t=t'+2%/u ! KT, T %lu
t=t'+3%lut- i t'+3%/u
KT I'sI'y
=t i ! —t'+4 %
t=t'+42M | KTyTsIuTs
t=t'+5%ut i t'+5%u
, ! . Kl Tl , ;
t=t'+6%/u ! KT,Ts —Ht'+6%/u
t=t'+7% - i t'+7¢ lu
i
i
§
1
t\f Vt
(a)

(b)
Fig. 4-10.

Choosing Vi as the reference phasor and arbitrarily choosing a power factor of 0.9, we draw the
current / lagging V; as shown in Fig. 4-11. For a short line, I = I; = I as shown. Also,

Vs = Ve + I(R + jX) where X = oL (1)
Vs
X
IR
cos 10.9 Vg
I= Ig = [R
Fig. 4-11.

4.2 A 60-Hz short transmission line, having R = 0.62 ohms per phase and L = 93.24 millihenrys
per phase, supplies a three-phase, wye-connected 100 MW load of 0.9 lagging power factor at
215kV line-to-line voltage. Calculate the sending-end voltage per phase.

The line current I (=I5 = I) is

100 x 10°

I = =
V3 x 215 x 10° x 0.9~ 283TA
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and the per-phase voltage at the receiving end is

215 x 10°
Ve = T

The phasor diagram illustrating the operating conditions is that of Fig. 4-11, with R = 0.62 Q and
X = oL =377 x 93.24 x 107> = 35.15 Q. Hence,

= 124.13kV

Vs = Vi + I(R + jX)
= 124.13 x 10°/0° + (298.37/—25.8°)(0.62 + j35.15)

~ 124.13 x 10°/0° + (298.37/—25.8°)(35.15/90°)
= (128.69 + j9.44) KV =~ 129.04/4.2°kV

4.3 Determine the voltage regulation and efficiency of transmission of the transmission line of
Problem 4.2.

Since Vrmotoaty = Vs here (4.1) gives us

[Vs] — |Vg| 129.04 — 124.13
—— X 100 = ————— X
{VRi 124.13 100

= 3.955 percent

Percent voltage regulation =

To calculate the efficiency, we first determine the loss in the line, which is
Line loss = 3I°R = 3 X 298.37% x 0.62 = 0.166 MW

The power received at the load is given to be 100 MW, so the power sent is 100 + 0,166 = 100.166 MW,
Then, by (4.2),

Efficiency =

1
= 99. t
100.166 99.83 percen

44 A 10-km-long, single-phase short transmission line has 0. 5@ Q/km impedance. The line
supphes a 316.8-kW load at 0.8 power factor lagging. What is the voltage regulation if the
receiving-end voltage is 3.3kV?

To find the voltage regulation, we must determine Vs = Vroioasy, for which we use (1) of
Problem 4.1:

0s~' 0.8 = 36.87°

and Z = (0.5/60°)(10) = 5/60° Q
316.8 x 10°
F N —— o __ OA
Then I = 1o x 0gl=36.87 = 120/ ~36.87
and 1Z = (5/60°)(120/—36.87%) = (S51.77 + j235.69) V
Now Vs = (3300 + j0) + (551.77 + j235.69) = (3851.77 + j235.69) V
50 [Vil = 3858.97V

Hence, by (4.1),

3858.97 — 3300

P t volt lation =
ercent voltage regulation 3300

X 100 = 16.94 percent

4.5  Calculate the sending-end power for the line of Problem 4.4 using (a) a loss calculation and
(b) the sending-end voltage and power factor.
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4.6

(a) The real part of Z is the resistance. Thus, since

Z =5[60° = (2.5 + j4.33) Q
we have Line loss = I’R = 120> X 2.5 = 36 kW
and Sending-end power = 316.8 + 36 = 352.8 kW

(b) From Problem 4.4, Vs = 3858.97/3.5° V. As is shown in Fig. 4-11, the angle between V; and I is the
sum of this angle and the angle between Vi and I, or 3.5° + 36.87° = 40.37°. Then
3858.97 x 120 cos 40.37°

Sending-end power = 1000 = 352.8kW

The per-phase impedance of a short transmission line is (0.3 + j0.4) Q. The sending-end
line-to-line voltage is 3300 V. and the load at the receiving end is 300 kilowatts per phase at
0.8 power factor lagging. Calculate (a) the receiving-end voltage and (b) the line current.

(a) On a per-phase basis,

3300
Vs = 2= = 1905.25 V 1
=5 &
300 X 100 3.75 x 10°
= = _‘A 2
and (0.8) Vi Vi 2)

From Fig. 4-11, redrawn with [ as reference phasor in Fig. 4-12, we determine that
Vi = (Vrcos ¢pr + RI)* + (Vgsin ¢r + XIY (3)
Substituting (1), (2), and other known values into (3) yields

0.3 x 3.75 X 10°\? 0.4 x 3.75 x 10°\?
1905.25% = <O.8VR + ———> + (0.6VR + ———)
VR VR
from which we find that V; = 1805 V.
(b) From (2), we have
3.75 x 10°
= TOS—-— =207.7S A

Vi cos og

Fig. 4-12.
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For the line of Problem 4.6, (a) calculate the sending-end power factor; (b) calculate the
power loss per phase by determining the sending-end power; and (¢) verify your result in part
(b) by calculating the power loss directly.

{a) From Fig. 4-12 and Problem 4.6,
Vi cos ¢r + RI = (1805)(0.8) + (0.3)(207.75) = 1506.33 V

and V5 = 1905.26 V. Hence

1506.33
= 2020 _ 579
€0S 95 = 1505 25

and the sending end has 0.79 power factor lagging.
(b) The sending-end power is

Ps = Vil cos ¢ps = 1905.25 x 207.75 x 0.79 = 312.94kW

The power loss per phase is then
-~ Pr = 312.94 — 300 = 12.94kW
(c¢) By direct calculation, the per-phase power loss in the line is
PR = (207.75)%(0.3) = 12.948 kW
For a given short transmission line of impedance (R + jX) ohms per phase, the sending-end

and receiving-end voltages, Vg and Vi respectively, are fixed. Find the maximum power that
can be transmitted over the line.

From (3) of Problem 4.6, we have
Vi = Vi + 2IVi(R cos ¢ + Xsin ¢z) + IH(R* + XP) €))
Now, since
P = ViIcos ¢r and Q = ViIsin ¢

we may rewrite (1) as
1
-V5+ Vi +2PR + 20X + W(P2 + QR+ X)) =0 )
R

In (2) only P and Q vary. Thus, at maximum power we will have dP/dQ = 0. Differentiating (2) and
rearranging yield

dP _ 2X +20K N R* + X?
d0 2R +2PK V2

from which we find that, for dP/dQ = 0,

ViX
s —— 3
Q RZ + XZ ( )
Substituting (3) into (2) yields, after some algebraic simplification,
Vi (ZVS )
Prax = Z\ v, R (4

where Z = VR?* + X~

What is the maximum power that can be transmitted over a three-phase short transmission
line having a per-phase impedance of (0.3 + j0.4) Q if the receiving-end voltage is 6351 volts
per phase and the voltage regulation is not to exceed 5 percent?
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4.10

4.11

4.12

On a per-phase basis,

Ve = 6351V
Vs = (1 + 0.05)(6351) = 6668.6 V
Z=V(03Y7 + (0.4 =0.5Q

Then, from (4) of Problem 4.8,

P - (6351)2(0.5 X 6668.6

- 0.3] =36.3M
05 351 0 3) 36 W /phase

and the maximum total power that can be transmitted is 3 X 36.3 = 108.9 MW.

Calculate (a) the receiving-end power factor and (b) the total line loss for the transmission
line of Problem 4.9 while it is supplying maximum power.

(a) From (3) of Problem 4.8, the reactive power received per phase is

6351% x 0.4
Q= ST o T —64.53 Mvar
64.53
Thus, t =" =1,
us an ¢g 363 1.78

and cos ¢r = 0.49. Hence the receiving-end power factor is 0.49 lagging.
(b) From Problem 4.9, at maximum power

36.3 x 10°
=22 2 11,664 A
6351 x 0.49 /phase
and Total line loss = 3I°R = 3(11,664)%(0.3) = 122.46 MW

The per-phase parameters for a 60-Hz, 200-km-long transmission line are R = 2.07 Q,
L = 310.8mH, and C = 1.4774 uF. The line supplies a 100-MW, wye-connected load at
215kV (line-to-line) and 0.9 power factor lagging. Calculate the sending-end voltage, using
the nominal-II circuit representation.

To use the nominal-II circuit, we first express Vi and Iz per phase as follows:

215 x 10°
Ve = T

100 x 10°
= = 208.37/-25.8° A
I V3 x 215 X 10° x 0.9 [£B5F

= 124.13kV

Using the nomenclature of Fig. 4-2, we have

oo Ve _ 124.13 x 10°/0°
T Xen 1/(377 x 0.5 x 1.4774 x 107°)/90°

I=1Iy + Icp = 298.37/—25.8° + 34.57/90° = 285/-29.5° A
R + jX, = 2.07 + j377 x 0.3108 = 117.19/88.98° Q

= 34.57/90° A

I(R + jX,) = 285/—19.5° X 117.19/88.98° = 33.4/69.48° kV
Hence Vs = Ve + I(R + jX,) = 124.13/0° + 33.4/69.48°

Il

139.39/12.97° kV/phase

Repeat Problem 4.11, using the nominal-T circuit representation for the transmission line.
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Using the nomenclature of Fig. 4-3, we have, with V; and I; as computed in Problem 4.11,

1073
Ve = Vi + (R + jX,) = 124.13/0° + 7% 298.37/—25.8° X 117.19/88.98°
= 132.92/6.74° = (132 + j15.6) KV
V. 132.92 x 10°/6.74°
Then I === L

Xo ~ 1/[(377 x 1.4774 x 107%)/90°] 7456747 A
Is = Ip + I = 298.37/=25.8° + 74/96.74° = 226.0/—12.2° A

-3

, o, 10 o o
Vo= Ve + Ho(R + jX,) = 132.92/6.74° + —— x 266.0/~12.2° x 117.19/88.98

= 139.0/12.78° kV/phase

4.13 The per-unit-length parameters of a 215-kV, 400-km, 60-Hz, three-phase long transmission
line are y = j3.2 X 107°S/km and z = (0.1 + j0.5) Q/km. The line supplies a 150-MW load
at unity power factor. Determine (a) the voltage regulation, (b) the sending-end power, and
(c) the efficiency of transmission.

We will need Vs and I;. Because this is a long line, with parameters assumed to be distributed along
the line, we find the sending-end voltage and current as follows: we have

z =01+ j0.5 = 0.51/78.7°

and =j3.2 X 107° = 3.2 x 107%/90°
so y¥ = $Vzy = 400V0.51 X 3.2 X 1079/1(90 + 78.7)° = 0.51/84.35°

= 0.05 + jO.5 = aZ + jBL rad

In addition,

z 051
= N5 = N [U(T8.7 = 90)° = 399.2/-5.65°Q
Ze \/; 32 % 10 278 )

215 x 10°
Vi = = = 124.13/0°kV
V3
150 x 10°

and I = 402.8/0° A

- V3 % 215 x 10°
Now, from (4.10), we have

cosh y¥ = cosh 0.05 cos 0.5 + jsinh 0.05sin 0.5 = 0.877 + j0.024

0.877/1.57°
sinh y£ = sinh 0.05 cos 0.5 + j cosh 0.05 sin 0.5 = 0.044 + j0.479

= 0.48/84.75°

Finally, from (4.8) and (4.9) respectively, we obtain

It

Vs = (124.13/0° x 0.877/1.57° + 402.8 x 107°/0° X 399.2/—5.65° x 0.48/84.75°) kV

= 146.4/32.55°kV
d I (———124'13 X101 48/84.75° + 402.8/ /
= X 0. 75° 8/0° . 57°
an s =359 2565 + 402.8/0° x 0.877/1.57 )A

= 386.52/24.28° A
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(a) To use (4.1), we need the receiving-end voitage at no load, which we obtain from (4.8) with I, = 0:

Vel 146.4 ,
|4 = = = 166.93 kV
Reeoload) ™ 100sh y#| ~ 0.877

166.93 — 124.13
124.13

Then Percent voltage regulation = % 100 = 34.48 percent

(b) The sending-end power is
Power sent = 3Vl cos ¢
=3 X 146.4 X 10° X 386.5 cos (32.55° — 24.28°)
= 167.98 MW
(¢) From (4.2), the efficiency of the transmission is

. .. power received 150
Effi ft = ——— X 100 = ———= = 89.3 t
ciency of transmission bower sent 167.98 percen

4.14 Figure 4-13(a) is the phasor diagram corresponding to (4-17). By shifting the origin from O’
to O, we turn Fig. 4-13(a) into a power diagram, as shown in detail in Fig. 4-13(b). For a
given fixed value of [Vg| and a set of values for |Vs|, draw the loci of the point A.

Imaginary
. Vars
A Priol
] \Vil|Ik|
| A —
| [ Vriilg| sin 0g A
3 0 6———— —:,f\VRHIRQCOSeR
AL Vil . - y
i > it
B Vel Vsl AllVR] atts
Bl Bl VeIVl
B
B-9 B-a
ﬁ —a B -3 \‘\
L -
0 > Real 0
(@) (b)
Fig. 4-13.

Because O’'A = |Vg]| |Vs| / |B| for a given load and a given value of | V|, the loci of point A will be a
set of circles (of radii O'A), one for each of the set of values of |V;|. Portions of two such circles are
given in Fig. 4-14; the circles are sometimes called receiving-end circles.

4.15 From the result of Problem 4.14 (Fig. 4-14), for a given load with a lagging power-factor angle
0y, determine the amount of reactive power that must be supplied at the receiving end to

maintain a constant receiving-end voltage, if the sending-end voltage decreases from |Vi|
to |Vl

Line OA in Fig. 4-14 is the load line whose intersection with the power circle determines the
operating point. Thus, for a load having a lagging power-factor angle 8z, A and C are, respectively, the
operating points for sending-end voltages |Vs,] and |Vs,|. These operating points determine the real and
reactive power received for the two sending-end voltages.

The reactive power that must be supplied at the receiving end in order to maintain constant |Vgj
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Vars Given:

Vs and V2 (|Vgy| < |[Vir])
A Vg = constant
[
A
— yd
Load line —| I B
g
0 > Watts
Vsl Vsl
Fig. 4-14.

when the sending-end voltage decreases from |Vs,| to |V,,| is given by the length AB, which is parallel to
the reactive-power axis. (It may be supplied via capacitors in parallel with the load.)

4.16 Determine the ABCD constants for the nominal-T circuit of a transmission line for which
R =10Q, X =202, and Y = 400 uS for each phase.

From Table 4-1,

4 x10™*
A=D=(1+14Y2) =1+j———(10 +20) = 0.996/0.115°

B=Z(1 + 1YZ) = (10 + j20)[1 + 4(j4 x 10"*)(10 + j20)]
= 22.25/63.45° Q
C=Y=j4x10*=4x10790° S

4.17 Determine the ABCD constants for the line of Problem 4.11. Then rework the problem,
treating the line as a two-port network.

From Problem 4.11,
Z = 117.19/88.98° Q

and Y =5.57 x 107°/90°S

Then, from Table 4-1,
A=D=1+3YZ =1+ 3(117.19/88.98°)(5.57 x 107*/90°) = 0.967/0.034°
B =7 =117.19/99.09° Q
C=Y(1+3:YZ) =557 x 107%/90°[1 + i(5.57 X 107*/90°)(117.19/88.98°)]

= 5.54 x 107*/—89.96° S
Finally, from (4.11) and Problem 4.11, the sending-end voltage is
Vs = AVi + Bl = (0.967/0.034°)(124.13/0°) + 107>(117.19/88.98°)(298.37/—25.8°)

= 120.03/0.034° + 34.96/63.18° = 139.32 kV/phase

4.18 At time ¢t = 0, a 30-V battery with zero source resistance is connected to the transmission line
shown in Fig. 4-15(a). Sketch the distribution of voltage along the line for several instants of
time.
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r=6.5ps

The load and source voltage reflection coefficients are

R, — R,
r,= - = %
RL + Rc
Rs — R,

T s Tl

"R, + R

-1
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and the time required to transit the line in one direction is £/u = 2 us. Att = 0, a 30-V pulse is sent
down the line; at points along the transmission line, the voltage is zero prior to the arrival of the pulse
and 30V after the pulse has passed. Figure 4-15(b) shows the voltage at + = 1 us. At, t = 2.5 us, the
pulse has already arrived at the load, and a backward-traveling pulse of magnitude 30I', = 10V has
been sent back toward the source. Figure 4-15(¢) shows the situation at that time.

When this 10-V reflected pulse arrives at the source, at t = 4pus, a pulse of magnitude
T's x 10V = —10V is sent back toward the load. Figure 4-15(d) shows the situation 0.5 us later, at
t = 4.5 us.

100V

P —
‘ 6 us t
(b)
V0,1,V
+25 +25
-
|
| +18.75
!
I +12.5
| et T
| | +9.375—-{
| |
| e
+3.125
|' : +6.25 = -+1.563
{ f I | H Lo | i ! | | o sl -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 t, us
325 -5 1
I Ml o BN
~12.5 -9.375 —4.69
Sl ]
j —12.5
| ~18.75
|
: _95 i Total voltage
| I -—— | ——— Incident and reflected pulses
-37.5

Fig. 4-16.
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4.19

4.20

The —10-V pulse travels to the load, reaching it at r = 6 us, at which time a reflected pulse of
magnitude I';, X =10 =T, X I's x I'; X 30 = —3.33 V is sent back toward the source. Figure 4-15(¢)
shows the situation 6.5 us later. At each point on the line, at any time, the total line voltage is the sum
of the voltage waves present at that point and at that time.

The 400-m length of cable in Fig. 4-16(a) terminates in a short circuit (R, = 0) and is driven
by a pulse source having an internal resistance of 150 Q (that is, Ry = 150 Q). The source
produces a pulse of magnitude 100 V and duration 6 us, as shown in Fig. 4-16(b). Sketch the
voltage V(0, t) at the input to the line for the first 18 us. The cable parameters are
C = 100pF/m and L = 0.25 uH/m.

The characteristic resistance is

L [0235x10
= D=y =50
Re \[c 100 x 1077

and the velocity of propagation is

1
u = ﬁ = 200 X 106111/5 = 200m/us
Consequently, the time required for the pulse to move from one end of the cable to the other is 2 ps.
The voltage reflection coefficient at the load is

R, — R,
r=——=-1
YR, +R.
and that at the source is
Rs—R. 1
F = ——— = —
TR +R. 2

The source initially sees an input resistance to the line of R, = 50 Q. Thus, the initially launched voltage
wave is a pulse that has a 6-us duration and a magnitude of

R,
&+&%_%V

This pulse reaches the load in 2 us, at which time and place a pulse with magnitude I', X 25 = =25V is
reflected; this reflected pulse is re-reflected 2 us later at the source, producing a pulse of magnitude
[y X =25 = —12.5V traveling back toward the load; and so forth. The dashed lines in Fig. 4.16(c)
show the contributions of the various pulses to V(0, t) as a function of time. The arrows indicate
direction: — denotes a forward-traveling pulse, and < a backward-traveling pulse. The total voltage at
the source end, plotted as a solid line, is the sum of all the voltages present at x = 0 at any time.

For the transmission line and source voltage of Problem 4.18, sketch the voltage V(Z, 1) at
the load and the input current /(0, r) as a function of time for the first 16 us. Figure 4-17(a)
shows the circuit and source voltage waveform.

Att = 0, a30-V pulse is sent out by the source. The leading edge of this pulse arrives at the load at
t = 2 us. At this time, a pulse of magnitude I';, X 30 = 10V is sent back toward the source. This 10-V
pulse arrives at the source at ¢t = 4 us, at which time a pulse of magnitude I'sT', X 30 = =10V is
reflected back to the load. This pulse arrives at the load at t = 6 us, at which time a pulse of magnitude
[, x 30 = —3.33V is sent back toward the source. The contributions of these waves at x = ¥ are
shown in Fig. 4-17(b) by dashed lines, and the total voltage there is shown by the solid line. Note that
the load voltage oscillates about 30 V but asymptotically approaches 30 V.

To sketch the input current I(0, f), we sketch the forward- and backward-traveling waves directly
and add them to obtain the total input current, as is done in Fig. 4-17(c). It would be absurd to sketch
the input voltage V' (0, t) and then divide this by R, to get I(0, t), since the ratio of total voltage to total
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Fig. 4-17.

current on the line is not R, except for ¢t < 2¥/u. However, we could sketch I(0, f) from a sketch of
V (0, t) by realizing that
Vs(t) — V(0,0

100, 1) = R
S

Thus, we could subtract V (0, ¢) from V;(z) point by point, and divide the result by Ry to obtain 1(0, ¢).
But R; = 0 in this example, so we have no recourse other than to sketch I(0, t) as in Fig. 4-17(c). Note
there that I(0, ¢) oscillates about the steady-state value of 30 V/R, = 0.3 A.



CHAP. 4] TRANSMISSION-LINE CALCULATIONS 59

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.29

4.30

4.31

Supplementary Problems

A 138-kV, three-phase short transmission line has a per-phase impedance of (2 + j4) Q. If the line
supplies a 25-MW load at 0.8 power factor lagging, calculate (a) the efficiency of transmission and (b)
the sending-end voltage and power factor.

Ans. (a) 98.78 percent; (b) 139.5kV, 0.99

A three-phase short transmission line having a per-phase impedance of (2 + j4) Q has equal line-to-line
receiving-end and sending-end voltages of 115kV while supplying a load at 0.8 power factor leading.
Calculate the power supplied by the line.

Ans. 8392MW
A three-phase, wye-connected, 20-MW load of power factor 0.866 lagging is to be supplied by a

transmission line at 138 kV. It is desired that the line losses not exceed 5 percent of the load. If the
per-phase resistance of the line is 0.7 €2, what is the maximum length of the line?

Ans. 51km
The per-phase constants of a 345-kV, three-phase, 150-km-long transmission line are resistance =

0.1 Q/km, inductance = 1.1 mH/km, and capacitance = 0.02 ¢F/km. The line supplies a 180-MW load
at 0.9 power factor lagging. Using the nominal-II circuit, determine the sending-end voltage.

Ans. 350.8kV

Repeat Problem 4.24 using the nominal-T circuit.
Ans. 3593kV
The per-phase parameters of a 345-kV, 500-km, 60-Hz, three-phase transmission line are y = j4 X

107°S/km and z = (0.08 + j0.6) Q/km. If the line supplies a 200-MW load at 0.866 power factor
lagging, calculate the sending-end voltage and power.

Ans. 372kV;240.8 MW

Determine the ABCD constants of the line of Problem 4.24.

Ans. A =D =0965/0.5% B = 64/76.4°Q; C = 0.982/0.25° S

List the ABCD constants and determine the sending-end voltage for the transmission line of Problem
4.26, considering the line as a two-port network.

Ans. A =0.7147/0°, B = 270.88/90°, C = 1.8 x 107%/90°, D = 0.7147/0°; Vs = 372kV

The sending- and receiving-end voltages of a three-phase short transmission line are V5 = 33kV and

Ve = 31.2kV, respectively. The per-phase line parameters are R = 10 Q and X, = 20 Q. Calculate the
maximum power that can be transmitted by the line.

Ans. 26.5TMW
For a three-phase long transmission line, Z, = 406.4{ —5.48°Q, Vi = 215/0°kV and I = 335.7/0° A,
all per phase. Calculate the sending-end line voltage.

Ans. 238.8kV

How much power is transmitted over the line of Problem 4.30?

Ans. 137.5MW
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4.32 Evaluate the ABCD constants of the transmission line of Probiem 4.30, and verify that AD — BC = 1.
Ans. A =D =0.89/1.34°, B = 186.8/79.46°, C = 0.00113/90.42°
4.33 A lossless transmission line has a 30-Q characteristic resistance and terminates in a 90-Q2 resistance. A

120-V dc source is applied at t = 0. Plot Vi versus time for this line, from ¢t = 0 to ¢ = 5T, where T is
the time required for the voltage wave to travel the length of the line.

Ans. Fig. 4-18
Ve A 180V
L e T T e
LAY
! ! ! | ——
T 2T 3T 4T 5T 6T t
Fig. 4-18.
4.34 Rework Problem 4.33 by drawing a lattice diagram.
Ans. Fig. 4-19
Voltage
x=0 — x=%
Ts=—1 r, = %
— 120V
T —

= 60V

2T
| -60V

3TH
~ =30V

4T
w 30V

ST: 15V

6T

-15V
t\{ Y:
Fig. 4-19.

4.35 Draw the lattice diagram for the line of Problem 4.33, assuming the line now terminates in a 10-Q
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4.36

4.37

4.38

4.39

resistance and the dc source has an internal resistance of 60 Q. Use it to plot V(£/3, t) versus ¢ from
t = 0 through ¢t = 4T.

Ans. Fig. 4-20
x =43 —_—X
1 T 1
Ts=3 | Tr=-3
| 1203V
.
{ ~120/6 V
o7 ! -
|
! ~12018 V
|
3T :1
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B 0V
B 20V
n 16.56 V
B I 13.33V —
L N S N SR U B I R S
3 5773 7173 T3 4T ¢

Fig. 4-20.

A 400-m-long lossless transmission line has a 100-& characteristic resistance and terminates in a 60-Q
resistance. A 400-V dc source having an internal resistance of 300 Q is connected to the line at ¢t = 0.
Calculate the sending-end and receiving-end voltage reflection coefficients of the line.

Ans.

N—
=

b

If the parameters of the line of Problem 4.36 are such that the velocity of wave propagation along the
line is 400 m/us, sketch V(1) for 0 = ¢ = 10 us.

Ans. Fig. 4-21
Determine the sending-end and receiving-end current reflection coefficients of the line of Problem 4.36,
and calculate the initial ling current from the data of Problem 4.37.

Ans. -5 L 1A

From the data of Problems 4.36 and 4.37, sketch Vi(t) for 0 < ¢ = 10 us.
Ans. Fig. 422
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4.40

4.41

4.42
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Calculate the steady-state current and voltage at the receiving end of the line of Problems 4.36 and 4.37.
Verify that the results are consistent with the sketch obtained in Problem 4.39.

Ans. 1.11 A; 66.666 V

Suppose the line of Problems 4.36 and 4.37 is short-circuited at the receiving end. Calculate the voltage
and current reflection coefficients and the steady-state receiving-end voltage and current.

Ans. Voltage reflection coefficients = 3, —1; current reflection coefficients = —1, 1; steady-state
Vz = 0; steady-state I = 1.333 A

Suppose the line of Problems 4.36 and 4.37 is open-circuited at the receiving end. Determine the voltage
reflection coefficients and the steady-state receiving-end voltage and current.

Ans. Voltage reflection coefficients = 3, 1; steady-state V; = 400 V; steady-state I, = 0



Chapter 5

Underground Cables

Unlike overhead transmission lines, underground cables must have adequate electrical insulation
to protect the conductor from contacting the ground or the cable’s external shield. Furthermore,
protection from mechanical, chemical, and other hazardous effects must be provided, to ensure
satisfactory and reliable operation. The basic components of an underground cable are (1) the
conductor, which is made of stranded copper or aluminum; (2) the insulation around the conductor,
which may be some form of rubber such as vulcanized or butyl rubber, or a special-purpose synthetic
such as polyvinyl chloride (PVC), or oil-impregnated paper; and (3) the external protective covering,
which is often a lead alloy sheath applied over the insulated cable.

A three-phase underground cable has three conductors within the sheath. Because the
conductors of a three-conductor cable are much closer to each other than those of an overhead line,
and because the conductors are immersed in dielectrics, the capacitive reactance of a cable is smaller
than that of a comparable transmission line. Thus, the use of a T or I circuit representation for a
cable of even short length may be necessary for analysis.

5.1 ELECTRIC STRESS IN A SINGLE-CORE CABLE

The insulating material in a cable constitutes a dielectric and has a certain dielectric strength. If
this dielectric strength is exceeded during the operation of the cable, the insulation will break down.
Hence the cable must be designed so that the electric field strength, or maximum electric stress, at
the surface of the conductor does not exceed that required to break down the insulation. However, if
the cable is designed wiih a relatively low line-to-ground voltage gradient, the overall size of the
cable becomes too large; on the other hand, if the voltage gradient is made large so as to allow
reduction of the cable diameter, then the dielectric loss may become too large and may lead to
excessive heating of the cable.

It has been found that the optimal ratio of the radius of the cable to the radius of the conductor is
given by
R, 2.718 5.1
R, e=2. (5.0
where R and R, are defined in Fig. 5-1. Smaller ratios will result in unstable cable operation, in that
the dielectric will tend to break down. Any ratio exceeding 2.718 will result in satisfactory cable
operation. For economic reasons, however, it is best to maintain R,/R, close to 2.718.

5.2 GRADING OF CABLES

The cable in Fig. 5-1 is filled with a single layer of a single dielectric, but many cables contain
several layers of dielectric. The dielectric materials in such a cable are chosen and distributed so as
to minimize the difference between the maximum and minimum electric field strengths in the cable.
This process is known as grading, and two types are commonly used—capacitance grading and
intersheath grading.

In capacitance grading, two or more layers of different dielectrics are used to insulate a cable.
I'wo such layers are shown in Fig. 5-2, for the sake of illustration. The permittivities of these layers
are so chosen that the maximum field strength is the same in both regions. The corresponding
variation of the electric field E with radius r is shown in Fig. 5-3. For equal maximum field
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strengths, we must have (see Problem 5.4)

€1R2 = €2R3 (52)
In that case, if E., is the maximum allowable electric field, the operating voltage V of the cable is
R, R,
V=Emax(Rl——+Rl—) .
31n R, 2in R, (5.3)

In intersheath grading, the cable contains several layers of a single dielectric material, separated
by coaxial metallic sheaths that are inserted into the dielectric and maintained at predetermined
voltages. A cable with one such intersheath is shown in cross section in Fig. 5-4. Let the radii R;, R,,
and R; be such that

Ry R,
RZ—R3—a (5.4)

Fig. 5-4.

If the intersheath is kept at voltage V;, then at the surface of the conductor we have

V_V1 _V_‘/l

Esmax = R (RJR) ~ Rilna (5-5)
At the surface of the intersheath, the maximum electric field is
V V;
E2max = - = - (5 6)
R,In(R,/R;,) R,Ina
For the maximum electric fields to be the same at these two surfaces, we must have
a
o () .
! 1+a (5.7)
Now (5.5) and (5.7) yield
Fa =¥ (1) 58
max T R.lna\l +a (5:8)
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Without the intersheath, from Problem 5.1 and (5.4) we have
| % |4 v 14

max R3 In (Rl/R:;) aR2 R3 In (l2 2R3 Ina ( )
R;In ( )
R,/a
Comparing (5.8) and (5.9), we find that
Esx (with intersheath) 2 (5.10)

E . (without intersheath) " 1+4a

5.3 CABLE CAPACITANCE
The capacitance per unit length of a single-conductor cable such as that in Fig. 5-1 is given by

ng 2me

v = m (in farads per meter) (5.11)

In a three-conductor cable, the capacitances between pairs of conductors and between the
conductors and the sheath are as shown in Fig. 5-5, where we assume the conductors are
equilaterally spaced. To find the capacitance per phase, we change the delta-connected capacitances
C, to their equivalent wye form as shown in Fig. 5-6(a), obtaining the capacitance combinations
shown in Fig. 5-6(b) and (c). Figure 5-6(c) shows that the net capacitance per phase is
C,=C, +3C,.

Fig. 5-5.

5.4 CABLE INDUCTANCE

The inductance per unit length of a single-conductor cable such as that in Fig. 5-1 is given by

R
L= ;—;ln R—; (in henrys per meter) (5.12)

Analytical expressions leading to the per-phase inductance of a three-conductor cable are extremely
cumbersome and are not considered here.

5.5 DIELECTRIC LOSS AND HEATING

In an underground cable, heat is generated through I°R losses in the conductor and sheath, and
dielectric loss in the insulation. The dielectric loss in the insulation of the cable occurs due to leakage
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(a) ! (b)

C,, = Cl +3C3

n
G =C+3G C,=C +3G
c/\ ~p
(c)

Fig. 5-6.

currents. In other words, the capacitance of the cable may be considered to be lossy, having a
resistance R; as shown in Fig. 5-7(a). The loss in R; is

V2
P=— 5.13
| 7 (5.13)
In terms of the loss angle 6 shown in Fig. 5-7(b), we have
IRi V/Rl
tan s = X - X 5.14
e =TT wov (5.14)
Equations (5.13) and (5.14) now yield
' P = wCV?tan 6 =~ wCV?$ (5.15)
if d is small.
I
PO
Iri I
v %R,— a:C

(a) (b
Fig. 5-7.
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Solved Problems
5.1 Find the maximum and minimum electric field strengths in the cable shown in Fig. 5-1.

Let p, be the surface charge density at the conductor surface. Then, for a unit length of the cable,
within the dielectric and at a distance r (Fig. 5-8) from the center, we obtain from Gauss’ law

2aR,p, = D2ar = 2neEr (H

where D is the electric flux density, E is the electric field strength and € is the permittivity of the
dielectric. We may rewrite (1) as

2nR2ps Q
E I= r—— T ——
2mer  2mer 2
where O = 27R,p, is the total charge per unit length at the conductor surface. From (2) we have, for
the voltage V between the conductor and the sheath,

R Rl QO dr 0 R,
V=- Edr = —— =—In—
R ’ r, 27E T 2x€e nR2 )

Consequently, from (2) and (3) the electric field (which is entirely radial) is
|4

E=—r—7r—
rln (Ry/R,) (4)
The maximum and minimum values of E are then

14
Emax = 5
R, In (RJ/R,) )

1%
and Ew=——"—"—"""7"— 6
Ry in (R/R,) ©)

Fig. 5-8.

5.2 Derive (5.1).

To find the optimal ratio R,/R,, we fix R, and minimize E,,,, as given by (5) of Problem 5.1, as a

function of R,. For (5) to be a minimum, its denominator must be a maximum. For that, we must have
d R 1) R, 1 R,

—(R,in=}) =In—! - R,—— =3 = 1

dRz( 2R TR, T RIR B2 (1)
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5.3

5.4

5.5

5.6

From (1) it follows that In (R,/R,) = 1 and that

R
R—l =e' =2718 (2)

2

A 13.2-kV single-conductor cable has an outside diameter of 10.0cm. Determine the
conductor radius and the electric field strength that must be withstood by the insulating
material in the most economical (optimal-ratio) configuration.

From (5.1) or (2) of Problem 5.2, we obtain

R, _10/2
Sl == 2718
R, R,

from which R; = 1.84 cm. Then, from (5) of Problem 5.1, we have

13.2 x 1000

Emax = 180 % 102 1n (5/1.89)

= 717.62kV/m

For the cable shown in Fig. 5-2, obtain the condition under which the maximum values of the
electric fields in the two regions are equal.

The electric fields in the two dielectrics are

1= Q R2 <r < Rl
2mer
_ 0
and E, = R;<r <R,
2me,r

The maximum values of these electric fields are at r = R, for E, and at r = R; for E,. For the maximum
values of the electric fields in the two regions to be same, we must have

Q Q

- 2n€eR, - 2me;R;

Emax

or €R; = 6R; (D

Also, since R; << R,, (1) implies that €, > €,; that is, the dielectric closest to the conductor must have
the highest permittivity.

Sketch the electric field distribution in the cable of Fig. 5-2 if (1) of Problem 5.4 is
implemented.

The distribution is that of Fig. 5-3.

For the cable shown in Fig. 5-2, let R, = 2.5cm, R; = 0.92cm, and R, = 1.75 cm. Find the
maximum electric field for an operating voltage of 13.2kV, (a) with capacitance grading and
(b) without capacitance grading.

(a) From (5.3) we obtain

1.75 25
132%10° = E (0. 2l 4+ 1.751 w—) % 1072
mer 0-9210 5755 175

Hence, E,,., = 1085.8kV/m.
(b) Without capacitance grading, from (5) of Problem 5.1 we obtain (with R, replaced by
R; = 0.92cm)

13.2 x 1000

Epu = -
™* = 0.921n (2.5/0.92) X 102

= 1435.3kV/m
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A cable has intersheath grading that satisfies (5.4). The cable radii (see Fig. 5-4) are
R; = 0.92cm and R; = 2.5 cm. Determine the location of the intersheath, and calculate the
ratio of maximum electric field strengths with and without intersheath.

The location of the intersheath (radius R, in Fig. 5-4) is given by (5.4), rewritten as
R = R,R; = (2.5)(0.92)

from which R, = 1.516 cm.
From the known data, we have

R, 25
=Tto 20 648
=R T 1516

and, from (5.10),

E3ma (with intersheath) 2 _ 2 — 0.755
E o (Without intersheath) 1 +a 1 + 1.648

If the cable of Problem 5.7 is designed to operate nominally at 13.2kV without any grading,
determine the maximum voltage at which the cable may be operated with appropriate
intersheath grading.

From Problem 5.7, a = 1.648, R, = 1.516cm, and R; = 0.92 ¢cm. Then, from (5.8), the maximum
electric field with the intersheath grading is

. Vv I 13.2 1
™ T Rinal+a 0.92In1.6481 + 1.648
= 16.09kV/cm

The maximum operating voltage is then given by (5.3), which is also valid in this case:

R R
1% E3m3x<R3 In= + R2ln——) = EsmaRs + R,) Ina

1
R, R,
16.09(0.92 + 1.516)In 1.648 = 19.58 kV

Radially flowing leakage currents (dashed arrows in Fig. 5-9) are often present in
underground cables. The leakage current is essentially limited by the insulation resistance of

P Leakage current

Fig. 5-9.
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5.10

511

512

513

the cable. Derive an expression for the insulation resistance of a cable of length [ meters and
having a dielectric resistivity of p, ohm-meters.

For an annular cylinder of thickness dr, as shown in Fig. 5-9, the elemental insulation resistance dR;
to leakage currents is
_ P dr

dR; =
" 2arl

where [ is the length of cable and p; is the resistivity of the insulating material. The total insulation

resistance is then
R
14 tdr p:, R
Ri = j — = In— 1
2nlJg, ¥ 2ml R (1)

In a test of a three-conductor cable, the three conductors are first bunched together, and the
capacitance between the bunched conductors and sheath is found to be C,. Then two of the
conductors are bunched with the sheath, and the capacitance between these and the third
conductor is found to be Cp. Determine C; and C, of Fig. 5-5.

From the first test we obtain the equation
C. = 3C,
The second test yields the equation
Cy = C, +2C,
Solving the two simultaneously yields
Cy=3C,
C, = 3(Cs — 5C,)

The capacitances per kilometer of a three-wire cable are 0.90 uF between the three bunched
conductors and the sheath, and 0.40 uF between one conductor and the other two connected
to the sheath. Determine the line-to-ground capacitance of a 20-km length of this cable.
We have, in the terminology of Problem 5.10, C, = 0.90 uF/km and C, = 0.40 uF/km. Then
C, =1C, = 0.3 uF/km
and C, = §(0.4 — 0.3) = 0.05 uF/km

Now, from Fig. 5-6(c),

C,=C,+3C,=03+3x0.05 = 0.45 uF/km
=20 %X 0.45 = 9.0 uF for 20 km

A single-core cable, consisting of a 1-cm-diameter cable inside a 2.5-cm-diameter sheath, is
10 km long and operates at 13.2kV and 60 Hz. The relative permittivity of the dielectric is 5,
and the open-circuit power factor of the cable is 0.08. Calculate the capacitance of the cable
and the charging current through the capacitance.

From (5.11) with € = €4€,, we have
_ 2meqe,  2m(107°/36m)5
In (Ry/R3) In (2.5/1)
Charging current = oCV = (377)(3.03 x 107%)(13.2 x 10°) = 15.08 A

10 X 10° = 3.03 uF

For the cable of Problem 5.12, determine the insulation resistance and the dielectric loss.
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5.19

5.20
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From Fig. 5-7(b) and the given data, ¢ = cos™'0.08 = 85.4°. Now, since tan ¢ = wCR, we have

. tan 85.4°
T 377 X 3.03 x 1076
vV 13.22 x 10°

d Dielectric loss = — = ———
an ielectric loss = — = 1=

= 10.88 kQ

= 16.01 kW

Supplementary Problems

A single-core underground cable has a copper conductor of diameter 1.2 cm and resistivity 1.72 X
107°Q - m; a sheath of internal diameter 2.0cm; and a dielectric (insulating) material of resistivity
5.8 X 10 Q - m and relative permittivity 4. Calculate (a) the conductor resistance and (b) the insulation
resistance of a 5-km length of this cable.

Ans. (a) 0.76 Q; (b) 94.3MQ

Determine the capacitance between the core and the sheath of the cable of Problem 5.14 if the
permittivity of the dielectric is 27 x 107 F/m.

Ans. 0.332 uF

A single-core cable is to operate at 33 kV. If the maximum allowable potential gradient is 4000 kV/m,
determine the radius of the conductor and the inner radius of the sheath of an optimally designed cable.

Ans. 1.17cm; 3.17cm

For the cable shown in Fig. 5-1, R, = 6cm, R, = 2cm, and relative permittivity e, = 5. If the cable
operates at 33 kV, determine the maximum and minimum values of the electric field strength within the
cable.

Ans. 1504.9kV/m; 500.6 kV/m

For the cable shown in Fig. 5-2, R, = 6cm, R; = 2cm, and €, = 5 and €,, = 4 are the relative
permittivities of the two dielectric layers. Calculate the thickness of each dielectric layer if they are both
to sustain the same electric field strength.

Ans. 2.8cm; 1.2cm

In a certain test on a three-conductor cable, a capacitance C; is measured between two conductors, with
the third conductor connected to the sheath. Determine C, of Fig. 5-6(c).

Ans. C, = 2C,

The capacitance between any two conductors of a three-conductor cable, with the third conductor
grounded, is 0.6 uF/km. Calculate the line-to-ground capacitance of a 25-km length of the cable.

Ans. 30 uF

A single-core cable of conductor radius R, has two intersheaths at radii R, and R, such that the electrical
stress varies between the same maximum and minimum in each of the three layers of dielectric. The
radius of the sheath is R;. Obtain a relationship among the four radii.

Ans. R/Ry= R,/R, = Rs/R,
The cable of Problem 5.21 operates at 66kV in a three-phase system and has R, = lcm and
R; = 2.565 cm. Determine the maximum and minimum electrical stresses in the cable.

Ans. 39.1kV/cm; 28.3kV/cm
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5.23

5.24

5.25

5.26

5.27

Calculate the rms voltage between the two sheaths of the cable of Problem 5.22.
Ans. 174kV

The capacitance between any two conductors of a three-phase, three-conductor cable is 2 uF. The cable
operates at 11kV line voltage and 50 Hz. What is the charging current through the cable capacitance?

Ans. 798 A

A three-phase, three-conductor cable, operating at 10kV line voltage and 25 Hz, has 3 uF capacitance
between any two of its conductors. The cable supplies an inductive load taking 30 A of current at a
power factor of 0.9 lagging. Determine the sending-end current and power factor.

Ans. 28.1 A; 0.96 lagging

What is the conductor diameter of an optimally designed single-core cable operating at 85 kV with a
permissible dielectric stress of 6000 kV/m?

Ans. 2.83cm

For a cable of the type shown in Fig. 5-2, R; = 0.5cm, R, = 2.5cm, €; = 2.5¢,, and €, = 4¢,. The

electrical stresses in the inner and outer dielectrics are not to exceed 60kV/cm and 50kV/cm,
respectively. What is the maximum permissible operating voltage for the cable?

Ans. 65kV



Chapter 6

Fault Calculations

The operation of a power system departs from normal after the occurrence of a fault. Faults give
tise to abnormal operating conditions—usually excessive currents and voltages at certain points on
the system—which are guarded against with various types of protective equipment.

6.1 TYPES OF FAULTS

Various types of short-circuit faults that can occur on a transmission line are depicted in Fig. 6-1;
the frequency of occurrence decreases from part (a) to part (f). Although the balanced three-phase
short circuit in Fig. 6-1(d) is relatively uncommon, it is the most severe fault and therefore
determines the rating of the line-protecting circuit breaker. A fault study includes the following:

1. Determination of the maximum and minimum three-phase short-circuit currents

2. Determination of unsymmetrical fault currents, as in single line-to-ground, double line-to-
ground, line-to-line, and open-circuit faults

3. Determination of the ratings of required circuit breakers
4. Investigation of schemes of protective relaying
5. Determination of voltage levels at strategic points during a fault

The short-circuit faults depicted in Fig. 6-1 are called shunt faults; open circuits, which may be
caused by broken conductors, for instance, are categorized as series faults.

—
|

—
=
—

(b (©

A
o
)
—_
o
)
—
=1

Fig. 6-1.

6.2 SYMMETRICAL FAULTS

A balanced three-phase short circuit [Fig. 6-1(d)] is an example of a symmetrical fault. Balanced
three-phase fault calculations can be carried out on a pei-phase basis, so that only single-phase
equivalent circuits need be used in the analysis. Invariably, the circuit constants are expressed in
per-unit terms, and all calculations are made on a per-unit basis. In short-circuit calculations, we
often evaluate the short-circuit MVA (megavolt-amperes), which is equal to V§W1f, where V, is the
nominal line voltage in kilovolts, and I is the fault current in kiloamperes.

74



CHAP. 6] FAULT CALCULATIONS 75

An example of a three-phase symmetrical fault is a sudden short at the terminals of a
synchronous generator. The symmetrical trace of a short-circuited stator-current wave is shown in
Fig. 6-2. The wave, whose envelope is shown in Fig. 6-3, may be divided into three periods or time
regimes: the subtransient period, lasting only for the first few cycles, during which the current
decrement is very rapid; the transient period, covering a relatively longer time during which the
current decrement is more moderate; and finally the steady-state period. The difference Ai’ (in Fig.
6-3) between the transient envelope and the steady-state amplitude is plotted on a logarithmic scale
as a function of time in Fig. 6-4, along with the difference Ai” between the subtransient envelope and
an extrapolation of the transient envelope. Both plots closely approximate straight lines, illustrating
the essentially exponential nature of the decrement.

Short-circuit current

A

Subtransient Steady-state
period Transient period | period
ch=e o R c s
: |
\n
bin

- T/ i}

i - Extrépolated Actual
/' steady-state envelope
, value

( Extrapolated
transient envelope

Fig. 6-2.
Current
A
| Extrapolated
\ transient envelope
\
\ Current envelope

Steady-state
current
amplitude

>
7
<
L

Fig. 6-3.

The currents during these three regimes are limited primarily by various reactances of the
synchronous machine (we neglect the armature resistance, which is relatively small). These currents
and reactances are defined by the following equations, provided the alternator was operating at no
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Current difference
(logarithmic scale)

Time (linear scale)
Fig. 6-4.
load before the occurrence of a three-phase fault at its terminals:
Oa |E,|
| = = = —£ 6.1
V2T x, @D
= O _IEd 62)
V2 X, ‘
a _ Oc _ |E,|
i = =% 6.3
V2 X (63)

where |E,| is the no-load voltage of the generator, the currents are rms currents, and O, a, b, and ¢
are shown in Fig. 6-2. The machine reactances X,, X/, and X’ are known as the direct-axis
synchronous reactance, direct-axis transient reactance, and direct-axis subtransient reactance,
respectively. The currents 7, i’, and ;" are known as the steady-state, transient, and subtransient
currents. From (6.1) through (6.3) it follows that the fault currents in a synchronous generator can
be calculated when the machine reactances are known.

Suppose now that a generator is loaded when a fault occurs. Figure 6-5(a) shows the
corresponding equivalent circuit with the fault to occur at point P. The current flowing before the
fault occurs is I, the voltage at the fault is V;, and the terminal voltage of the generator is V,. When
a three-phase fault occurs at P, the circuit shown in Fig. 6-5(b) becomes the appropriate equivaient
circuit (with switch S closed). Here a voltage Ej in series with X’ supplies the steady-state current I,
when switch S is open, and supplies the current to the short circuit through X% and Z.,, when switch
S is closed. If we can determine Ej, we can find this current through X7, which will be {". With
switch S open, we have

E, =V, + X} (6.4)
ZEXI P ZCX! P
realiliaey & waililen mue:
)(5 i IL i IL
100w vi [z v Vil [z
E, ; : >

(a) (b)
Fig. 6-5.
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which defines Ej, the subtransient internal voltage. Similarly, for the transient internal voltage we
have

E, =V, + X, (6.5)

Clearly E} and E are dependent on the value of the load before the fault occurs.

6.3 UNSYMMETRICAL FAULTS AND SYMMETRICAL COMPONENTS

Unsymmetrical faults such as line-to-line and line-to-ground faults (which occur more frequently
than three-phase short circuits) can be analyzed on a per-phase basis. For such faults the method of
symmetrical components is used. This method 1s based on the fact that a set of three-phase
unbalanced phasors can be resolved into three sets of symmetrical components, which are termed
the positive-sequence, negative-sequence, and zero-sequence components. The phasors of the set of
positive-sequence components have a counterclockwise phase rotation (or phase sequence) abc; the
negative-sequence components have the reverse phase sequence acb; and the zero-sequence
components are all in phase with each other. These sequence components are represented
geometrically in Fig. 6-6. The positive-sequence components are designated with the subscript 1, and
the subscripts 2 and 0 are used for negative- and zero-sequence components, respectively.

vc} Vz

Va(i

‘/b[)
V,, Voo

Fig. 6-7.
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Thus, the unbalanced system of Fig. 6-7 can be resolved into symmetrical components as shown
in Fig. 6-6. In particular, we have

Vo=Vaot Voy + Vo (6.6)
Vi = Voo + Viy + Vi (6.7)
Ve=Vot+ Va+V, (6.8)

We now introduce an operator a that causes a counterclockwise rotation of 120° (just as the j
operator produces a 90° rotation), such that

a =1/120° =1 x & = —0.5 + j0.866
a’ = 1/240° = —0.5 — j0.866 = a*
a® = 1/360° = 1/0°

l+a+a*=0

Using these properties, we may write the components of a given sequence in terms of any chosen
component. From Fig. 6-6, we have

Vor = @V
Voo = aVy
Voo = aVyp
Vo = a*V,
Vao = Vo = Voo
Consequently, (6.6) to (6.8) become, in terms of components of phase q,
Vo=Vt Vau + Ve (6.9)
V= Voo + V1 +aV,, (6.10)
V.= Vo + aV,, + a*V,, (6.11)
Solving for the sequence components from (6.9) through (6.11) yields
Vio=3(Va + Vo + V) (6.12)
Vi =3V, + aV, + a*V) (6.13)
V=3V, + a®V, + aV) (6.14)

Equations similar to (6.9) to (6.14) hold for currents as well.
A quantity (current, voltage, impedance, power) that is given in terms of symmetrical
components is sometimes called the sequence quantity, as in “‘sequence current.”

6.4 SEQUENCE POWER

To obtain the power in a three-phase system in terms of symmetrical components, we rewrite
(6.9) through (6.14) in matrix notation as follows:

V=AV (6.15)
Va Vo 1
where V=1V V=1V, A=|1 a a
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Similarly, for the currents we have

I=AI (6.16)
Ia IaO
where I=11 and I =] 1,
Ic Ia2

The average complex power S may now be written as
S =VI* (6.17)

where V is the transpose of V, and I* is the complex conjugate of I. From (6.15) and (6.16), we
have

V' =VA (6.18)
and I' = A*T'* (6.19)
Consequently, (6.17) through (6.19) yield
S = V'AA*T'* (6.20)
Now, since
1 1 1 1 1 1 3 00
AA* = 2 g |l1 a &2|=|0 3 0 (6.21)
a a* 1 a* a 0 0 3
(6.20) becomes
S = VI* + VoIt + V.I* = 3(VoI% + VoI + Vo) (6.22)

Thus, the sequence power is one-third the power in terms of phase quantities.

6.5 SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

Corresponding to sequence currents, we may define sequence impedances. An impedance
through which only positive-sequence currents flow is called the positive-sequence impedance.
Similarly, when only negative-sequence currents flow, the impedance is known as the negative-
sequence impedance; and when zero-sequence currents alone are present, the impedance is called the
zero-sequence impedance.

Unsymmetrical (or unbalanced) fault calculations are facilitated by the use of the concepts of
sequence voltages, currents, and impedances. Because a voltage of a specific sequence produces a
current of the same sequence only, the various sequence networks representing an unbalanced
condition have no mutual coupling. This feature of sequence networks simplifies the calculations
considerably.

Solved Problems

6.1 Figure 6-8 shows the one-line diagram for a single phase of a system in which a generator
supplies a load through a step-up transformer, a transmission line, and a step-down
transformer. Calculate the per-unit current. The transformers are ideal.
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1:2 , 10:1
c (1+/3)0 Se
= 3&
480V .
20kVA 2+50
Fig. 6-8.

[CHAP. 6

Because the voltage (and current) levels change across the transformers, different base voltages are

involved at different parts of the system. At the generator,
Vissegen = 480V = 1pu

kVAuuepen = 20kVA = 1pu

20,000

Ibase,gen = W =41.67TA = 1pu
480
Zz =——=1152Q =1
base,gen 41.67 pu
Along the transmission line,
480
Vbasc.line = '(')—g =060V =1 pu
kVAbase,line =20 kVA =1 pu
20,000
Ibase.line = %" = 20-83 = 1 pu
960
Zyose tine = 3083 = 46.08Q = 1pu
1+ 3
Line = = (0.022 + j0.065
e = 508 J0.065) pu
At the load,
960

Vbase,load = —ia =96V = 1pu

kVAbase,load =20kVA =1 pu

20,000
Ibase,load = _—9—6—- = 2083 =1 pu
9
Zbase,load = 20—863 =04608Q2 =1 pu
245
oad = = (4.34 + j10.85
twea = (2608 ~ (434 + 71089 pu

The total impedance is then

Zeow = Ziine + Zioaa = (0.022 + j0.065) + (4.34 + j10.85)
= 4.362 + j10.915 = 11.75/68° pu

1y
that I= = L= _ 0.085/-68°
50 tha Zo  11.75/68° (=68 pu

6.2 An interconnected generator-reactor system is shown in Fig. 6-9(a). The base values for the
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10 MVA, 20MVA, 20 MVA,
10% 15% 15% Neutral Neutral

0.5 j0.2344

X1 X-v_,_
1A 11k
F%

I0MVA, §MVA,
5% 4%

(a) . (b) {c)
Fig. 6-9.

given percent reactances are the ratings of the individual pieces of equipment. A three-phase

short-circuit occurs at point F. Determine the fault current and the fault kVA if the busbar
line-to-line voltage is 11kV.

First we arbitrarily choose 50 MVA as the base MVA, and find per-unit values for the system
reactances, referred to this base. We obtain
50

Xgi = 1—60.10 = (0.5pu

50
XG, = 2—60.15 = 0.375pu

50
Xgs = -2-60.15 = 0.375pu

50
X, = EO'S =0.25pu

50
X, =304 =025pu

These reactances produce the per-phase reactance diagram of Fig. 6-9(b), which is simplified to Fig.
6-9(c). The total reactance from the neutral to the fault at F is, from that diagram,

. . 0.5(0.2344 + 0.25)
Per-unit reactance =

I + (0.234 + 0.25) 10246
50 x 10°
Th Fault MVA = ———— = 203.25
en au 0246 0 MVA
203.25 x 10°
and Fault current = m = 10,668 A

6.3 A three-phase short-circuit fault occurs at point F in the system shown in Fig. 6-10(a).
Calculate the fault current.

Let the base MVA be 30 MVA, and let 33 kV be the base voltage. Then referred to these values,
we have the following reactances and impedance:

30
==—0.15 = 0.225
Xoi 200 pu

30
X = EO.lO = 0.3pu
30
Xirans = 360.005 = 0.5pu
. 30
Zyoe = (3 +j15) 332

= (0.0826 + j0.4132) pu
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@
20 MVA, 15%

( ) 30 MVA, 5%

34150 F
omva, 0% |3 O
1:3

33kv

AM—— T
0.0826  j0.4132

(c) FMU‘ Y S11A
0.1286 0.0826

J 0.4632
Fig. 6-10.

These per-unit values are shown in Fig. 6-10(b), which can be reduced to Fig. 6-10(c). From that
diagram we find that the total impedance from the generator neutral to the fault is

Per-unit Z,,,,, = 0.0826 + j0.5918 = 0. 5975/82° pu

30 x 10°
Th Short-circuit KVA = ———— = 50.21 M
en ort-circui 05975 VA
and Short-circuit current = M = 878.5A
V3 x33x 100 O
The phase currents in a wye-connected, unbalanced load are I, = (44 — j33), I, = —(32 +

j24), and I. = (=40 + j25) A. Determine the sequence currents.
From (6.12) through (6.14), adapted for currents, we obtain

Lo = L[(44 — j33) — (32 + j24) + (=40 + j25)]
= -9.33 — j10.67 = 14.17/—131.2°A
Ly = 3[(44 — j33) — (=0.5 + j0.866)(32 + j24) — (0.5 — j0.866)(—40 + j25)]
40.81 — j8.77 = 41.74/—12.1° A
L, = [(44 — j33) + (0.5 — j0.866)(32 + j24) + (0.5 + j0.866)(—40 + j25)]
= 12.52 - j13.48 = 18.37/~4T° A

A three-phase, wye-connected load is connected across a three-phase, balanced supply
system. Obtain a set of equations relating the symmetrical components of the line and phase
voltages.

The symmetrical system, the assumed directions of voltages, and the nomenclature are shown in
Fig. 6-11, from which we have

Vo=V, =V, Vie=V, = V. Va=V. -V,
Because V,, + V,. + V., = 0, we get
Vabo = Vch = Veao = 0
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6.6

Fig. 6-11.

We choose V,, as the reference phasor. For the positive-sequence component, we have

Vs = 3(Vip + Ve + @*V.0)
= %[(‘/a - Vi) +a(V, — Vo) + az(Vc -Vl
=3[V, + aV, + a’V.) = (@°V, + V}, + aV)]
= [(V, + aVp + @’V,) — a*(V, + aV, + a*V)]
1

=41 - a®)(V, + aV, + a®V))] = (1 — a)V,,
V3V, (D

Similarly, for the negative-sequence component, we obtain

Vier = 3(Vap + @V + aVe,)
= 3{(V. = Vo) + (Vs — Vo) + a(V, — V)]
=3V, + &V, + aV) — (aV, + V, + a’V))]
= [V, + &*V, + aV)) — a(V, + a’V, + aV.)]
=il -a)V,+aV, +aV) = (1 - a)V,
V3V,e (2)

I

In (1) and (2), V,, and V,, are, respectively, the positive- and negative-sequence components of the
phase voltage V.

Proceeding as in the derivation of (I) and (2), but now choosing V,, as the reference phasor, we can
show that

Voer = _j\/—jvan 3
Vier = jV3V,0 (4)

The line voltages across a three-phase, wye-connected load, consisting of a 10-Q resistance in
each phase, are unbalanced such that V,, = 220/131.7°V, V,, = 252/0°V, and V,, = 195
[—122.6° V. Determine the sequence phase voltages. Then find the voltages across the 10-Q2
resistances, and calculate the line currents.

Since the line voltages are given, we first determine the sequence components of the line voltages.
Using (6.13) and (6.14) for line voltages yields

Voer = 3(Vie + aVi, + a°V,,) = 3(252/0° + 1/120° x 195/—-122.6° + 1/—120° x 220/131.7°)
=221 + j12V

Voer = (Ve + @*V,, + aV,,) = 3(252/0° + 1/—120° x 195/—122.6° + 1/120° x 220/131.7°)

31 - j11.9
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From (6.12) we have
Vico = 3(Vie + Voo + Vo) = 3(252/0° + 195/-122.6° + 220/131.7°)
=0V
The sequence components of the phase voltages are then V,, = 0 and, from (3) and (4) of Problem 6.5,

Voer 221 + j12

V=2 =" 1% (169 +j127.5)V
Py ey S J121:9)
Viee 31 —j11.9 .
V=2 =217 (69— j17.9)V
*iV3 iv3 ( 117.9)

Hence, from (6.9) and (6.10), after simplification,

V.= —6.9 +j127.5 — 6.9 — j17.9 = (—=13.8 + j10.96) V
V, = a®V,, + aV,, = (132.8 — j54.8) V

The line currents I, and I, are given by

I, = R= 76(—13.8 + j109.6) = —1.38 + j10.96 = 11.05/97.2° A
Vi
and I, = Eb = 16(132.8 — j54.8) = 13.28 — j5.48 = 14.37/-2.4°A

Since I, + I, + I. = 0, we also obtain

L =—I,—1,=-138 + j10.96 + 13.28 — j5.48
= —11.9 - j5.48 = 13.1/—155.3° A

6.7 A three-phase synchronous generator, grounded through an impedance Z,, is shown in Fig.

Reference bus Reference bus . Reference bus
Vai % A Va2 Z Vao
Ia] + Ial + 1«90 +
a a —ed
(b) (c) (d)

Fig. 6-12.
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6.8

6.12(a). The generator is not supplying load, but because of a fault at the generator terminals,
currents I,, I, and I. flow through phases a, b, and c, respectively. Develop and draw the
sequence networks for the generator for this condition.

Let the generator-induced voltages in the three phases be E,, E,, and E.. The induced voltages in
the generator are balanced. Therefore, these voltages are of positive sequence only. For the
positive-sequence (phase) voltage, we have

Vi =E, — L Z, (1)

where I,,Z, is the positive-sequence voltage drop in the positive-sequence impedance Z; of the
generator. If Z, is the negative-sequence impedance of the generator, the negative-sequence voltage at
the terminal of phase a is simply

Voo = =12, (2)

since there is no negative-sequence generated voltage. The generator zero-sequence currents flow
through Z, as well as through Z,,, the generator zero-sequence impedance. The total zero-sequence
current through Z, is L + Lo + Lo = 31, but the current through Z; is I,,. Hence

‘/a(] = _IzzOZgO - 3IaOZr: = _IaO(ZgO + 3Zn) = _IaOZO (3)

where Z, = Z,, + 3Z,. Equations (1), (2), and (3) are respectively represented by Fig. 6-12(b), (),
and (d).

A line-to-ground fault occurs on phase a of the generator of Fig. 6-12(a), which was operating

without a load. Derive a sequence-network representation of this condition, and determine
the current in phase a.

The constraints corresponding to the fault are I, = I, = 0 (lines remain open-circuited) and V, = 0
(line-to-ground short-circuit). Consequently, the symmetrical components of the current in phase a are

Lo=3%( + 1+ L)=3l,

L= 3, + al, + a’L) = i,

L,=3(I, + a’L, + al.) = ii,
so that ILo=1L,=1,= 31,

W=

)i

Z(] = ZgO + 3Z.n ‘/;,,0

B L= 2 = Io
Z, Va
+

+

L

Fig. 6-13.
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Hence the sequence networks must be connected in series, as shown in Fig. 6-13. The sequence voltages
appear as marked in the figure.
To determine the current I,, we write, from Fig. 6-13,

Voo + Vo + Voo =E, — L.Z, — InZ, - .2,
But since
szv;zo"‘val‘f"’:a:o
E,

h Li=0——F——— =1 1
we have A (1)

3E
d [ =——
an Z, + Z, + Z,

A short circuit occurs between phases b and ¢ of a solidly grounded unloaded generator, as
shown in Fig. 6-14(a). Obtain a sequence network for this operating condition.

¥
L
(a) (b)
Fig. 6-14.
From Fig. 6-14(a), the current and voltage constraints are
IL,=0 (line open) (D
I, +1.=0 (line-to-line short circuit) (2)
V= V. (3)
Substituting (1) and (2) in (6.12) through (6.14) expressed as currents, we obtain
Lo=30+0)=0 (4)
Ly =30 + al, — a’L) = Y(a ~ a)1, (%)
L. =30 + a’l, — al,) = Y(a® — a)l, (6)
From (5) and (6) we observe that
L= ~I, (7)
whereas (4) shows that the zero-sequence current is absent.
Now, from (3) (6.10), and (6.11), we obtain
Vo + @V + aV, = Voo + aV, + @V,
Hence, Vii = Ve (&)

In terms of sequence impedances (8) may be written as

Ea - Ialzl = _IHZZZ (9)
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6.10

Combining (7) and (9) and solving for I, yield

E,

Ial=—————
Z, + Z,

(10)

Equations (7) through (10) may be represented by the sequence network in Fig. 6-14(b).

Develop the sequence network for an unloaded generator with a double line-to-ground fault
as shown in Fig. 6-15(a).

(a) (b)

Fig. 6-15.

For this case, the current and voltage constraints are
L =0 (D

Proceeding as in Problem 6.9, we use (6.12) to (6.14) to find, for the sequence components of the
voltages,

Voo =Voy = Vip = %Va 3
Consequently, the sequence network equations become
E, — InZy = —IpZo= =12, (4)

Solving for I, and I, from (4), we obtain

Ea - Ialzl Ea B Ia1Z1

Ioy= — —— d IL,=——7—— 5
0 Z an 2 Z, ( )

From (6.9), (1), and (5) we then obtain

Ea - Ia121 Ea - Ialzl
L= - —-—— 3, ——=0 6
Zy ! A (6)
from which
E
I, = = 7
1 Z, + ZoZs @
VU Zo+ 7,

The denominator of (7) shows that Z, and Z, are connected in parallel, and this parallel combination is
connected in series with Z;. Hence, the sequence network representing (7) is that shown in Fig. 6-15(b).
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6.11 The positive-, negative-, and zero-sequence reactances of a 20-MVA, 13.2-kV synchronous
generator are 0.3 pu, 0.2 pu, and 0.1 pu, respectively. The generator is solidly grounded and is
not loaded. A line-to-ground fault occurs on phase a. Neglecting all the resistances, determine
the fault current.

The sequence network corresponding to this fault is shown in Fig. 6-13. Let E, = 1/0° pu. Since the
total reactance is j0.3 + j0.2 + jO.1 = j0.6, from (1) of Problem 6.8 we have

1/0°
I, = j& = 1.67/=90° = —j1.67 pu
and I, =3L, =5/-90°pu
Choosing the rated values as base quantities, we have
20,000
Base current = m = 874.8A = 1pu

Fault current = I, = 5pu = 5 x 874.8 = 4374 A

6.12 A line-to-line fault occurs at the terminals of the unloaded generator of Problem 6.11.
Calculate the fault current. :

For this fault condition the sequence network is that shown in Fig. 6-14(b). Let E, = 1/0° pu. Then,
from (4), (7), and (10) of Problem 6.9 we obtain

Ia0=0

1/0°
Li=—L,=—"==2/-90°= —j2.0
! 2 =03+ 02 A== —j20pu

Hence, the fault current is given by
L =1+ 5L, +1L,=0+al, +al,
= (—0.5 — j0.866)(—j2.0) + (—0.5 + j0.866)(j2.0)
= (/1.0 = 1.732 — j1.0 — 1.732) = ~3.464/0° pu
As calculated in Problem 6.11, the base current is 874.8 A. Hence,
Fault current = I, = 874.8 X 3.464 = 3030 A

6.13 The generator of Problem 6.11 is initially unloaded. A double line-to-ground fault occurs at
the generator terminals. Calculate the fault current and the line voltages.

The sequence network for this case is shown in Fig. 6-15. We let E, = 1/0° pu. Then, from (7) of
Problem 6.10 we get

1/0°
I = e _ _273pu
e (Go.2)jo.ny 40P
j0.3 + L22UP )
jO.2 + 0.1

Also, from Fig, 6-15,
Va = E, = I, Z, = 1)0° — (=j2.73)(j0.3) = 0.181 pu
and, from (3) of Problem 6.10, V,, = V,, = 0.181 pu. Therefore,

V., —0.181
[,= — 2= = j0.905
2 z, joz pu

ILy= — 2 =—""=j18pu
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From Fig. 6-15(a), the fault current is I, + L. Expressing this sum in terms of sequence components of
I,, we have

L + 1 = (Lo + @I, + aly) + (Lo + al,, + a’l,5)
=21y + (a + a)L, + L)
=2 — (Lo + L) &)
Since I, = 0 from (1) of Problem 6.10, we may write
L=1lL,+0,+I1,=0
or Ly + L) = Lo 2)
Now (1) and (2) yield
Fault current = I, + I. = 31,, = 3(j1.81) = 5.43 pu
= 5.43 X 874.8 = 4750 A
To calculate the line voltages, we use (2) and (3) of Problem 6.10. They yield
V, =3V, =3x0.181 = 0.543 pu

and V,=V.=0
13.2
Hence, V,=V,=0543 x — = 414kV
V3
Vee = 0
V.=V, =0543 x 13—% = 4,14kV
V3

6.14 Calculate the line-to-line voltages for the generator of Problem 6.12 (which has a line-to-line
fault).

To determine the line voltages, we must first determine their sequence components. From Fig.
6-14(b) and Problem 6.12,

Voo = E, — I,Z, = 1/0° — (=j2)(j0.3) = 0.4/0° pu
Vio = —12Z, = (=j2)(j0.2) = 0.4/0° = V,,

Vo= Vi + Vi + Vi, = 2 X 0.4 = 0.8/0° pu
Vo = a*V,1 + aV,, = (—0.5 — j0.866)(0.4/0°) + (—0.5 + j0.866)(0.4/0°) = 0.4/0° pu
V, =V, = 0.4/0°

The line voltages are then

13.2
0.8 — (—0.4) =1.2pu = 1.2 X —= = 9.145kV

V3

Ve=V. -V,

i

V.=V, —V.=12pu = 9.145kV
Vbc=‘/b_‘/c 0pu=0v

6.15 Determine the voltages V,, V,, and V, for the generator of Problem 6.11.
From Fig. 6-13, we have the per-unit sequence voltages
V., =1 — (—j1.67)(j0.3) = 0.5pu
V, = —(—j1.67)(j0.2) = —0.333/0° pu
Vo = —(—j1.67)(j0.1) = —0.167/0° pu
Then V,=0.5-0.333 - 0.167 = Opu
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Since V, = 0, the line-to-line voltages are
V=V, =V, = -V, =-0.25 - j0.721 = 0.673/-109.12° pu
Vie =V — Vo = —j1.442 = 1.442/-90° pu
V= V. — Vo=V, =-025+ j0.721 = 0.673/109.12° pu
Since the base voltage is 13.2/V3, we finally have

13.2
V=V, = 0.673(—) = 513kV
V3
d Vie=1 442<£—> = 10.99 kV
an e = 1. N3 = 10.

To determine V, and V_, we determine their sequence components. Thus, we have
Vi = a’V,, = (0.5 — j0.866)0.5 = —0.25 — j0.433 pu
Vie = aV,, = (=0.5 + j0.866)(—0.333) = 0.167 — j(0.288) pu
Vio = Vo = —0.167 pu
Hence, V, = —0.167 — 0.25 — j0.433 + 0.167 — j0.288 = —0.25 — j0.721 pu
In similar fashion, we find
Vo = Vo= —0.167pu
Vi =aV,, = (—0.5 + j0.866)0.5 = —0.25 + j0.433 pu
Vo = a;V, = (—0.5 — j0.866)(—0.333) = 0.167 + j0.288 pu
and Vo= —=0.167 — 0.25 + j0.433 + 0.167 + j0.288 = —0.25 + j0.721 pu

i

[CHAP. 6

The system shown in Fig. 6-16(a) is initially on no load. Calculate the subtransient fault
current that results when a three-phase fault occurs at F, given that the transformer voltage

on the high-voltage side is 66 kV.

SOMVA
13.8kV
X,"=0.25pu

25 MVA Neutral
13.8kV

X;"=025pu

(a) (b)
Fig. 6-16.

Let the base voltage (on the high side) be 69 kV, and the base kVA be 75 MVA. Then, in per-unit

terms we have, for generator G,,

75,000
X = 0.25(=2200) = 0.37
a=0 25(50,000) 375pu
66
and E, = —==0.97pu

69
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For generator G,,

75,000
;=025 —"—] =0.
X;=0 5(25’000) 0.750 pu
66
and E, = - 0.957 pu

For the transformer, X = 0.10 pu.
Figure 6-16(b) shows the reactance diagram for the system before the fault occurs; the fault is
simulated by closing switch S. The two parallel subtransient reactances are equivalent to a reactance

0.375 x 0.75
Xaw = 03757075~ 0P Pu

Therefore, as a phasor with E,, as reference, the subtransient current in the short circuit is

0.957
= = 2735
YT 025 + 0.0 T I/

6.17 The per-unit reactances of a synchronous generator are X, = 1.0, X/, = 0.35, and X% = 0.25.
The generator supplies a 1.0 per-unit load at 0.8 power factor lagging. Calculate the voltages
behind the synchronous, transient, and subtransient reactances.

With V, = 1 + jO as base and using _
E, =V +jlI.X,
as well as (6.4) and (6.5), we obtain
E, = (1 + j0) + j1.0(0.8 — j0.6) = 1.79 pu
E; = (1 + j0) + j0.35(0.8 — j0.6) = 1.24 pu
E; = (1 + j0) + j0.25(0.8 — j0.6) = 1.17 pu

Supplementary Problems

6.18 A portion of a power system is shown in Fig. 6-17, which also shows the ratings of the generators and
the transformer and their respective percent reactances. A symmetrical short circuit appears on a feeder
at F. Find the value of the reactance X (in percent) such that the short-circuit MVA does not excee
300 MVA. '

15SMVA 10MVA i‘
20% 20% 3BMVA
T 10%
1

x
SO0
F i

Fig. 6-17.
Ans. 30 percent

6.19 Three generators, each rated at 10 MVA and having a reactance of 10 percent, are connected to a
common busbar and supply a load through two 15-kVA step-up transformers. Each transformer has a
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reactance of 7 percent. Determine the maximum fault MVA on (a) the high-voltage side and (b} the
low-voltage side.

Ans. (a) 68.18 MVA; (b) 100MVA

6.20 For the system shown in Fig. 6-18, calculate the short-circuit MVA at A and at B.

20kVA< : )
10% o 15KV
30kVA 5% Gr e I To load
10kVA a
7%

% £
< A | B
Ans. 0.218 MVA; 0.218 MV A (approximately)

Fig. 6-18.

6.21 The reactance diagram of a portion of a power system is shown in Fig. 6-19. The line-to-ground source
voltage is 1.0 pu, and a line-to-ground fault occurs at P. Determine the per-unit currents in the two
portions of transmission line B.

Lined 00
0.1 pu
— O }————————> Load current = 0
+
0.2pu 0.3 pu
Vs=1.0pu P P
0
- Line B Ip
L
Fig. 6-19

Ans.  3.077 pu; 0.769 pu

6.22 A three-phase short-circuit occurs at F in the system of Fig. 6-20. Calculate the fault MVA. The
reactances are all in percent.

10MVA 15MVA 1ISMVA IOMVA
10% 12% 12% 10%
SMVA 10MVA
5% 5%
+ I T
F

Fig. 6-20.

Ans. 176 MVA

6.23  Zero-sequence current is given by:
L=, +1,+1)

= 1[(300 + j400) + (200 + j200) + (400 — j200)]
33.3+/133.3 =137.4/76° A

I
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6.24

6.25

6.26

6.27

6.28

6.29

Positive-sequence current is given by?
I, =1, +al,+2’l)
= (300 + j400) + 1/120° (200 + j200) + 1/=120° (400 - j200)]
= 1(500/53.13 + 282.8/165° + 447.2/81.56°)
= '[300 + 400 + (=273.16 + j73.2) + (26.8 + j446.4)]
= 1(53.6 + j919.6) = 17.86 + j306.5 = 307/86.7° A
Negative-sequence current is given by:
I, = I, +dl, +al)
"= (300 + j400) + 1/-120° (282.8/45°) — 1/120° (4472 /26.6)]
= ![300 + j400 + 282.8/-75° — 447.2/146.6°]
= }[300 + f400 + 73.2 — j272.7 - (=373.3 + j246.7)]

= 1(746.4 - j119.4) + 248.8-j39.8 = 251.96/9° A

Ans. 276.0/25.6° A; 307/86.7° A; 137.4/76° A

The line currents in a delta-connected load are I, = 5/0°, I, = 7/200°, and I, = 5[9_0° A. Calculate the

positive-, negative-, -and zero-sequence components of the current for phase a. Also determine the
positive- and negative-sequence components of current I, and hence calculate [,,.

Ans. 5.57/=15° A; 7.94/224° A; 0; 3.21/15° A; 4.59/—166° A; 1.38 A

An unbalanced, wye-connected load consisting of the phase resistances R, = 60Q, R, = 40Q, and
R. = 80Q is connected to a 440-V, three-phase, balanced supply. Calculate the line currents by the

method of symmetrical components.

Ans.  4.473/100.67° A; 5.138/—34.71° A; 3.696/156.63° A

A three-phase, unbalanced delta load draws 100 A of line current from a balanced three-phase supply.
An open-circuit fault occurs on one of the lines. Determine the sequence components of the currents in
the unfaulted lines.

Ans. 0; 50 F j28.86

The positive-, negative-, and zerc-sequence reactances of a 15-MVA, 11-kV, three-phase, wye-
connected generator are 11 percent, 8 percent, and 3 percent, respectively. The neutral of the generator
is grounded, and the generator is excited to the rated voltage on open circuit. A line-to-ground fault
occurs on phase a of the generator. Calculate the phase voltages and currents.

Ans. 0V; 4.922/254.74°kV; 4.922/—74.74°kV; 10,746/ -18° A; 0 A; 0 A

A line-to-line fault occurs between phases b and c¢ of the generator of Problem 6.27 while phase a
remains open-circuited. Determine the phase voltages and currents.

Ans. 535kV;2.67kV;2.67kV; 0A; 7169.6 A; ~7169.6 A

B £ 70.000 1312 A
ase curment = ———m—— =
V3 X 13.2

X, =X, =j0.15 pu; X, = j0.05 pu; X,,,, = jO.1 pu
the seq. X up to the line fault = j0.15 + jO.1 = j0.25 pu
—ve—seq. X up to the fault = jO.15 + 0.1 = j0.25 pu

with the short circuit between phases b and ¢
(and phase a open), [, = 0; [, + [, = 0
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Iy = = e = 2
Z,+7, j25+j.25
1112 = _Inl :JZ’ Ino =0
I, =1,+al, +al,
=(d*-a)l, = —\V3(52) = 3.46/180° pu
=346-1312/180° = 4539 /180° A
1= -1, =4539/0° A
[The answer in the text corresponds to X, = X, = j0.15 for the line.]
Ans. Fig. 6-21; 0 A; 3788/180° A; 3788/0° A
70.15pu
= j0.15pu
0 00
j0.15 pu j0.15pu
Positive-sequence Negative-sequence
network network
Fig. 6-21.
6.30 A double line-to-ground fault occurs at F in the system shown in Fig. 6-22. Draw the sequence networks
for the system, and calculate the line current I,
Ans. Fig. 6-23; 4469/123.8° A
6.31 Determine the subtransient currents (in amperes) in the two generators of Problem 6.16.
Ans. 5720 A; 2860 A
6.32 A synchronous generator and a motor are rated at 30,000 kVA and 13.2kV, and both have subtransient
35SMVA
11kVv

X,=0.6pu

X;=0.4pu

Y=o <J¥1

—_ F .
Pl L Line
= (—=
ISMVA
. 11kV:110kV
X| = Xz = Xo =0.05 pu
Fig. 6-22.
FAdpu 70.2 pu
76.06 pu J0.06 pu

Negative-sequence
network

Positive-sequence
network

Fig. 6-23.

Zero-sequence
network
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6.33

6.34

6.35

6.36

6.37

reactances of 20 percent. The line connecting them has a reactance of 10 percent referred to the machine
ratings. The motor is drawing 20,000 kW at 0.8 power factor leading and a terminal voltage of 12.8kV
when a symmetrical three-phase fault occurs at the motor terminals. Find the subtransient current in the
generator. Draw an equivalent circuit to simulate this condition.

Ans. 3601(—-75.7“ A; Fig. 6-24

jo.1

j0.2 7.2

Before fault After fault
Fig. 6-24,

What is the magnitude of the subtransient fault current in Problem 6.32?

Ans. 10.6 kKA

For the system of Problem 6.32, choose 30 MV A and 13.2kV as base values. Calculate the per-unit fault
current by applying Thévenin's theorem.

Ans. —j8.08 pu
A three-phase short circuit occurs at F in the system of Fig. 6-25. The generator is loaded to 80 percent

of its capacity at the time of the fault, and the receiving-end power factor is unity. Determine the rms
per-unit current in one phase at F just after the occurrence of the fault.

Ans. 6.02pu

0.6pu
0.1pu
@élg e Ep IInfinite bus
X;=08pu ¥ 0-6pu L0pu
X; =03pu
"=0.23pu
Fig. 6-25.

The per-unit reactances of a synchronous generator are X, = 1.1, X; = 0.24, and X} = 0.15. The
generator is operating without load at 5 percent above rated voltage when a three-phase short circuit
occurs at its terminals. What is the per-unit subtransient fault current? If the generator is rated at
500 MVA and 20 kV, determine the subtransient current in kiloamperes.

Ans. 7Tpu; 101 kA

A synchronous generator having a subtransient reactance of 0.15 pu and operating at 5 percent above its
rated voltage supplies a synchronous motor having a 0.20 pu subtransient reactance. The motor is
connected to the generator by a transmission line and a transformer of total reactance 0.305pu. A
sudden three-phase short circuit occurs at the generator terminals. Determine the per-unit subtransient
fault current.

Ans.  —j9.079 pu



Chapter 7

General Methods for Network Calculations

In this chapter we develop general solution methods that are amenable to the computer solution
of power system network problems. We begin from the basic network theorems.

7.1 SOURCE TRANSFORMATIONS

The voltage source of Fig. 7-1(a) may be transformed to the current source of Fig. 7-1(b) and
vice versa, provided that

E

I ==£ 4

§ Zp (7 1)
and Z,=2, (7.2)

I
Z,
ISCT) Z, Z
(a) {b)
Fig. 7-1.

7.2 BUS ADMITTANCE MATRIX

The four-bus system that corresponds to the one-line diagram of Fig. 7-2(a) may be represented
by the network of Fig. 7-2(b). In terms of the node voltages V;, V,, V; and V, and the given
admittances, Kirchhoff’s current law yields

L=Viyo+ (Vi = Va)yn + (Vi — Va)ys
L=Vyo+ (V2= Vyn + (V2 = Va)yss + (V2 — Va)yas
L=Vsys+ (Vo= Vyis + (Vs = Vo)yzs + (Vs — Vi),
L= Viysw + (Vo — V)yas + (Vo — Va)ysa

Rearranging these equations and rewriting them in matrix form, we obtain

L Yio t Y12 + Y13 —Yi2 ~Y13 0 Vi

L _ —Yi2 Yoo+ Yiz2 t Yoz + You Y23 —Ya2a V,

I Y13 ¥ Yao + Yz + Yoz t+ yua ~Y Vi

1 0 —Yu Y3 Yao T Yau t+ yua Vi
(7.3)

96
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L.

T Vi

@

I
1, Y2 L
Y3
Y T
+
CVD l:lYm
- I3 @
+
Y30
(b)
Fig. 7-2.
Equation (7.3) may be written as
I Yo Y, Y3 Yu Vi
Bl _ (¥ ¥ Yu %l|w
L 50 Yoo Yoz Yo || V5
1 Yo Y Y Yu Vi
where Yiio =y + ye + yi3

Yo =y + Yo+ yu+ yu
Yis = y30 + Y13 + Yoz + yua
Yis = yao + Yoa + Yaa

Y, =

Y, =

Y12

= —Yi3
= Y =
= =Y

= ~Y24

~ Y34

97
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Each admittance Y, (i = 1, 2, 3, 4) is called the self -admittance (or driving-point admittance) of node
i and is equal to the algebraic sum of all the admittances terminating on the node. Each off-diagonal
term Yy (i, k = 1, 2, 3, 4) is called the mutual admittance (or transfer admittance) between nodes i
and k and is equal to the negative of the sum of all admittances connected directly between those
nodes. Further, ¥, = Y.

For a general network with N nodes, therefore, Kirchhoff’s current law in terms of node voltages
may be written as

=Y,V (7.5)
Yo Yo Yin

where Vo= | 1 T2 T 7.0
YNl YNZ YNN

is called the bus admittance matrix, and V and I are the N-element node voltage matrix and node
current matrix, respectively.

In (7.6), the first subscript on each Y indicates the node at which the current is being expressed,
and the second subscript indicates the node whose voltage is responsible for a particular component
of the current. Further, the admittances along the diagonal are the self-admittances, and the

off-diagonal admittances are the mutual admittances. It follows from (7.5) and (7.6) that the current
entering a node k is given by

Ik = z Yann (77)

For a large system, the matrices of (7.3) through (7.6) may be of correspondingly large order. In
such a case, matrix operations can be more conveniently carried out when the matrices have been
partitioned, or (loosely) subdivided. As an example, the matrix

a1 iz E a3
Ay G i dx
A= | (7.8)
------------- '- -_——————
a3y A4z | Az

may be partitioned along the dashed lines into four submatrices such that

S

where the submatrices are defined by

ayy  ap ais
D= |: E =
az 4x az

F=las a3 G =as

(7.10)

To demonstrate matrix multiplication in terms of submatrices, let us assume that A of (7.8) is to
be postmultiplied by a matrix

B = bzl = [ﬂ (7.11)
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bll

where H= [ ] J =b, (7.12)
b21

(Note the correspondence between the vertical partitioning of A and the horizontal partitioning of

B.) The product is then written o AB - [D E][H] (7.13)
- LR GlLs '

The submatrices are treated as matrix elements in the multiplication, so we obtain

_ [DH + EJ] (7.14)

FH + GJ

The product matrix C is finally obtained by performing the indicated multiplications and additions.
For example, the bottom row of C turns out to be

b
FH + GJ = [a3 a32][ 11] + as3by
bs
= Q31byy + axnby; + assbs (7.15)

which is exactly what is found by multiplying the original matrices A and B.

In solving (7.5), nodes at which no current enters or leaves may be eliminated. For this purpose,
the matrices I and V must be rearranged so that elements pertaining to nodes to be eliminated are in
the bottom rows of the matrices, and then partitioned accordingly. Then (7.5) can be rewritten as

)=l wllv] (7.16)

where Iy and Vy are the submatrices of currents and voltages, respectively, at the nodes to be
eliminated. The submatrix K consists of admittances relating to the nodes to be retained; the
submatrix M consists of admittances to the nodes to be eliminated; and the submatrix L and its
transpose L7 consist of mutual admittances relating to both types of nodes. Solving for I, from

(7.16), we obtain I, = [K - LM-'LT]V,,
= YpusVa (7.17)
where we now have the bus admittance matrix
Yo, = K- LM'L” (7.18)

The inversion of M in (7.18) may become cumbersome, especially if M is a large matrix. In such
a case, nodes may be eliminated one at a time, with the highest numbered node being eliminated
each time. The elimination of that node transforms an n» X r matrix into an (n — 1) X (n — 1)
matrix. In addition, the remaining elements Y3; of the original matrix must be modified to
Yin Y
ij(new) = ij(orig) - — (7 19)

Y,
when the nth node is eliminated. "

7.3 ELEMENTS OF Y,,, -

To find an element of (7.6), say Y,,, we write the second of the equations represented by (7.5) as

L=Y,Vi+ YoV, + YuVi+ oo + YoV (7.20)
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from which we obtain

I
Yzzz_2

7 (7.21)

Vi=Vi=- - -=Vy=0

Thus, the self-admittance of a given node is measured by shorting all other nodes and finding the
ratio of the current injected at the node to the resulting voltage at that node. Similarly, we would
find a mutual admittance, say Y,;, as

L
Yoo = = 7.22
27V lyeve om0 (7.22)
7.4 BUS IMPEDANCE MATRIX
The bus impedance matrix is defined by
Zbus = Yl;uls (723)
Then (7.5) may be written as '
V =17, (7.24)
le Zl2 ZlN
7z 7 oo Z
where Ly = 2 z w (7.25)
ZNl ZN2 ZNN

7.5 ELEMENTS OF Z,,,

The procedure for determining the elements of (7.25) is similar to that discussed in Section 7.4.
Thus, the second of the equations represented by (7.24) may be written as

‘/2 = 22111 + 22212 + 22313 + -+ ZZN[N (7.26)
from which we obtain
V.
Zy = 2 (7.27)
L ly—p= . =10
V;
and Zy =2 (7.28)
L p—p= —1y=0

Bus impedance and admittance matrices are used in power-flow studies (discussed in the next
chapter) and in computer-aided fault calculations.

7.6 MODIFYING Z,,

The addition of a branch having an impedance Z, to a system having an original bus impedance
matrix Zy,, may take one of the foliowing forms:

1. Inserting Z, from the reference bus r to a new bus p (Fig. 7-3)
2. Inserting Z, from an old bus k to a new bus p (Fig. 7-4)

3. [Inserting Z, from the reference bus r to an old bus k (Fig. 7-5)
4. Inserting Z, between two old buses k and m (Fig. 7-6)
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The new bus impedance matrices that result from the addition of Z, are, respectively,

1. For Fig. 7-3:
Zbus
Zbus(new) =
Lo 0 -
2. For Fig. 7-4:
Zbus
Zbus(new) =
LZix Zn
3. For Fig. 7-5:
Z3%
1 VATYAY
=7
Zbus(new) bus Z}(k + Zb ........
VAVYAY:
4. For Fig. 7-6:
V/ =7 !
bus(new) ™ bus Zb + Zkk + me _ Zka
(Zlk - Zlm)z (Zlk - Zlm)(ZZk - sz)
(sz - ZZm)(Zlk - Zlm) (sz - sz)2

(ZNk - ZNm)(Zlk - Zlm) (ZNk - ZNm)(ZZk - Z2m)

: 01
L0
L0
0! z,
! VAV
.: ZZk
R
ZNk i Zkk + Zb-'
L Zoy Z 1w Zni
Z%k ZZkZNk
ZNkZ2k levk

(Zlk - Zlm)(ZNk - ZNm)
(ZZk - ZZm)(ZNk - ZNm)

Solved Problems

7.1  The reactance diagram for a system is shown in Fig. 7-7(a). Use a source transformation to

obtain the admittance diagram for the system. (All values are per-unit values.)

The result of straightforward source transformation is shown in Fig. 7-7(b).

7.2 Obtain the bus admittance matrix for the network shown in Fig. 7-7(b).

[CHAP. 7

(7.29)

(7.30)

(7.31)

(7.32)



CHAP. 7]

7.3

7.4

GENERAL METHODS FOR NETWORK CALCULATIONS

2 0.2 () 5
~(E Y—ir— ~ I
\y _fb_zj_\_
' —j0.5 _
2 ]0.2'01 bl} g 10
_ J JU. =)
@+ DTN S S PR B S
e
0. -f0.5 .
) j0.4 QIZ J2.5 ;
] ;
(&Y —ard ~ LiE
\_j 2 j0.2 T
05
(@) ()
Fig. 7-7.

The various admittances are from the figure:

= —j0.5 — j5 — j10 — j2.5 = —j18.0

Hence the bus admittance matrix is

Ybus =

= —j0.5 — j5 - j5 = -j10.5
= —j0.5 — j2.5 - j5 = —j8.0
= —j5 - j10 — j5 = —j20.0
5= Y5 =50
=Yy =j5.0
=Y, =j2.5
=Y, =j50
=Y, =j10.0
—j10.5 0 j5.0 j5.0
0 —j8.0 j2.5 j5.0
j5.0  j2.5 —j18.0 j10.0
j5.0  j5.0  j10.0 —j20.0

Draw an impedance diagram for the network shown in Fig. 7-8(a).

The impedance diagram is shown in Fig. 7-8(b), where
E, = (2/0°)(—j1.0) = 2/-90°V
E, = (2/45°)(—j2.0) = 4/-45°V

and

Obtain the bus admittance matrix for the network of Fig. 7-8(a). (All values are per-unit

values.)

The elements of Yy, are, from the figure,

Y, =

5
i

—jl.0 — j2.0 = —j3.0
= —j2.0 — j2.0 = —j4.0
Y =20
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2 /0
1.0
v (B i1
_/ L \/
-j1.0
00
0 2/45° % -2.0 0 j0.5
D
~ )
il 9 o) b,
TR N 0.5 2
—j2.0
(a) (b)
Fig. 7-8.
Thus, the bus admittance matrix is
Y, = [—]'3.0 ].2.0]
j2.0 —=j4.0

7.5 By inverting® the bus admittance matrix for the network of Fig. 7-8(a), obtain the bus
voltages V; and V..

From (7.5) we have

[2&’] _ [—j3.0 jZ.O][VI]

2/45° 20 —ja0llv,

“ [V,] B [—j3.0 j2.0]‘1[ 2@} _ [jO.S j0.25][ 2@3]
vl L j20 —jaol lz/45°] ~ Ljo.2s jo.375112/45°

Then Vi = (j0.5)(2/0°) + (j0.25)(2/45°) = 1.848/67.5° pu

and Vo = (j0.25)(2/0°) + (j0.375)(2/45°) = 1.158/117.2°pu

7.6  Eliminate nodes 3 and 4 from the network of Fig. 7-7, using the procedure given by (7.16)
through (7.18) to find the new Y.

From Problem 7.2 and (7.16) we have

-j10.5 0  j50 5.0
O O R O R
LT Ml | j5.0 0 j25 1 —j18.0  j10.0
j5.0  j5.0 ! j10.0  —j20.0
from which
_l_v_i[——jZO -—le}__[j0.0769 j0.0385]
260 L—j10 —j18 j0.0385  j0.0692

Then LM"ILT—[jS'O j5.0][j0.0769 j0.0385][j5.0 j2.5]_[~j5.575 —-j4.135]

j2.5  j5.011j0.0385 j0.0692.Lj5.0 js.0 —j4.135 —j3.173 )

* The matrix inversion procedure can be found in any text on matrix methods.
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Hence, from (7.18),

Y _[—le.S 0] [—j5.575 —j4.135] [—j4.925 j4.135]
bus — - =

2
o —j80l Ll-ja13s —j3.173 j4135 —jaga7 Pt 2)

7.7  From the result of Problem 7.6, determine the per-unit impedance between buses (nodes) 1
and 2 of the circuit with nodes 3 and 4 eliminated. Also determine the admittance between
buses 1 and 2 and the reference bus.

From (1) of Problem 7.6, the admittance between buses 1 and 2 is —j4.135. Hence,

Per-unit impedance = = j0.2418 pu

1
—j4.135

From (7.4), the admittance between bus 1 and the reference bus is —j4.925 — (—j4.135) = —j0.79 pu.
Similarly, the admittance between bus 2 and the reference bus is —j4.827 — (~j4.135) = —j0.692 pu.

7.8 Draw an equivalent circuit, with voltage sources and with nodes 3 and 4 eliminated, for the
network of Problem 7.6.

The required circuit, with values obtained in Problem 7.7 but with current sources, is shown in Fig.
7-9(a). The equivalent circuit with voltage sources is shown in Fig. 7-9(b).

1 —ABs 71.266 j0.18 j145

~j0.79
h —0.692 L

(a) {b)
Fig. 7-9.

7.9 In Fig. 7-7(a), suppose that E, = 1.0/0°, E, = 1.2/-30°, and E. = 1.4/30° per unit. Find, in
complex form, the per-unit values of the current sources shown in Fig. 7-7(b).

The current sources are

1.0/0°
I =— U = 0.5/-90° = —j0.5pu
j2.0
1.2/-30°
L= 20 = 0.6/—120° = (—0.3 — j0.52) pu
1.4/30°
s = 2.0 = 0.7/—60° = (0.35 — j0.606) pu

710 If E, = 1.0/0° and E, = 1.2/—30° per unit in the circuit of Fig. 7-9, determine the complex
power into (or out of) nodes 1 and 2.

From Fig. 7-9(b), the series impedance Z is j(1.266 + 0.2418 + 1.445) = j2.9528 pu. Hence
[ = E, - E, 10/0°—1.2/-30°

z J2.9528
= 0.2036/0° pu
Then Power out of node 1 = (1.0/0°)(0.2036/0°) = (0.2032 + jO) pu

and Power into node 2 = (1.2/—30°)(0.2036/0°) = (0.2116 — j0.122) pu
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7.11 Determine the node voltages in the circuit of Fig. 7-9.
Using the current value determined in Problem 7.10, we have, at node 1,
Vi = E, — I(j1.266) = 1.0/0° — (0.2036/0°)j1.266
=10.32/-14.45°pu

Similarly, at node 2,

v

E, — 1(j1.266 + j0.2418) = 1.0/0° — (0.2036/0°)(j1.5078)
1.046/—17.06° pu

7.12 Eliminate nodes 3 and 4 of the network of Fig. 7-7, using (7.19) to find the new Y,,..

We begin with the bus admittance matrix of Problem 7.2:

—-j10.5 0 j5.0  js5.0
0 —j80 25 j50
j5.0  j25  —j18.0 10.0

j5.0  j5.0  j10.0 —j20.0

Ybus =

We must remove the highest numbered node (here node 4) in each elimination step. We do so by
modifying each of the remaining elements according to (7.19). With n = 4, for ¥;, we have

YiaYa ) (/5.0)(j5.0) .
YneWZYori - =_105“———— = —j0 25§
1(new) iterie) = Ty = ) ~i20 79-2
Similarly, ‘
5.0(j5.0)
YiZ(new) =0~ % =j1.25 = YZI(new)
. 5)(J10) .
Y13(new) = ]50 - (L——)](ZO—) = ]75 = Y31(new)
. 5)(j5 ,
Vastnew = —/8.0 — 97%%’—) = —j6.75
. 110.0)(j5.0 .
Y23(new) = J2‘5 - %‘1—0_) = ]50 = Y32(new)
. 110)(j10 .
Yasen = —j18.0 = J1OU10) j)z(()j )= _ji130

Hence, the first elimination results in

-j9.25 j1.25  j1.5
Youwmew = | 7125 —j6.75  j5.0
j7.5  j5.0  —jl13.0

The highest numbered node is now node 3; with n = 3, (7. 19) yields

e U118
Yiinew) = —J9.25 - —?]13—0 = —j4.923

And similarly for the remaining elements. Finally, with nodes 3 and 4 eliminated, we obtain

—j4.923 ja. 134]

You = |
° j4.134  —j4.826

Note that this result agrees with that of Problem 7.6.



CHAP. 7] GENERAL METHODS FOR NETWORK CALCULATIONS 107

7.13 Find the bus impedance matrix of the network of Fig. 7-7(a).

From (7.23) we have
—j10.5 0 75.0 j5.0
0 —j80 j25  j5.0
j5.0  j2.5 —j18.0 j10.0
js.0 j5.0  j10.0  —j20.0

j0.724  j0.620 j0.656 jO.644
j0.620  j0.738 j0.642  j0.660
j0.656 j0.642 j0.702  j0.676
i0.664 jO.660 j0.676 j0.719

Zbus = [Ybus]-_1 =

7.14 For the emf’s specified in Problem 7.9, find the voltage at node 4 in the network of Fig. 7-7.

With the current sources as computed in Problem 7.9, the node equation in matrix. form is,

from (7.5),
jo.5 —j10.5 0 j5.0 j5.0 Vi
-0.3-j0.52 | 0 —j80 j25 5.0 v,
—-0.35—j0.606 | | j5.0 j2.5 —j18.0 j10.0 Vi
0 j5.0 j5.0  j10.0  —j20.0 {LV,

Using the result of Problem 7.13, where we found Y;.,, we have

v, j0.724  j0.620 j0.656 jO.664 —j0.5
V.| | j0.620 j0.738 j0.642 jO.660 || —0.3 —j0.52
v, | |jo.6s6 jo.ea2 j0.702 j0.676 || —0.35 — j0.606
v, j0.664 j0.660 j0.676 jO.719 0

from which we find that
Vi = (j0.664)(—j0.5) + (j0.66)(—0.3 — j0.52) + (j0.676)(—0.35 — j0.606)
= 1.085 — j0.435 = 1.169/—-21.8° pu
7.15 A current of —0.5/60° pu is injected into node 4 of the network of Fig. 7-7. Find the resulting
voltage at node 4, given the emf’s specified in Problem 7.9,

We solve this problem by superposition. With the original emfs removed, and with Z,, as
determined in Problem 7.13, the voltage at node 4 due to the injected current is

Vi = LZu = (—0.5/60°)(0.719/90°)
= —0.2514 + j0.2570 pu
From Problem 7.14, the voltage at node 4 due to the emf’s is
Vai=1.085 — j0.435 pu
Hence, the required voltage is the sum
Vi=Vi+ V= —0.2514 + jO.2570 -+ 1.085 — j0.435
= 0.8336 — j0.178 = 0.851/—12.0°

7.16 A capacitor having a reactance of 4.0 pu is connected from node 4 of the system of Fig. 7-7 to
ground. With the numerical values specified in Fig. 7-7 and Problem 7.9, calculate the

per-unit current through the capacitor.



108 GENERAL METHODS FOR NETWORK CALCULATIONS [CHAP. 7

From Problem 7.14, the Thévenin voltage at node 4 is V, = 1.169/—21.8° pu. And from Problem
7.13, the Thévenin impedance is Z,, = j0.719. Hence, the current through the capacitor is

1.169/—21.8°
= Ut .356/68.2°
I =719 = jag — 0-3%6/8.2" pu

Supplementary Problems

7.17 Determine Z,,, for the network shown in Fig. 7-10.

j0.3

T
o2, pas |,
I 00—

L %1’1-2 % jLs L

Fig. 7-10.

jO.697 j0.658 j0.629
Ans. | j0.658 j0.755 j0.677
j0.629  j0.677 j0.714

7.18 Find Y, for the network of Problem 7.17.

-j9.15 j4.98  j3.33
Ans. | ja98 —jl16 j6.57 | =1Z:L
j3.33 j6.57  —j10.6

7.19 Let I, = 1.0/0°pu and L, = 1.2/30° pu in the network of Fig. 7-10, and obtain an equivalent network
- having voltage sources only.

Ans. Fig. 7-11
0.3
0
12 7035 1.5
o0 0 — O]y
+ 1 3 +
e 1.2/ 90°pu e 1.8 /120°pu
Fig. 7-11.

7.20  Find the complex power that enters (or leaves) node 1 of the network of Fig. 7-10.
Ans. (0.472 — j0.051) pu

7.21  Use a source transformation to obtain the impedance diagram for the network shown in Fig. 7-12.



CHAP. 7] GENERAL METHODS FOR NETWORK CALCULATIONS 109

1 -0 3 =20 ¢ —A0 4
40X 90 A1

2/30° —j10 A -8 -j20 15/ -60°

Fig. 7-12.

Ans. Fig. 7-13

=10 | =10 3 =20 4 —j10 5 —j20

T LTI e T
+ +
20 / —60° —j4 -8 30/ -150°

Fig. 7-13.

7.22 Obtain Y, for the network of Fig. 7-12.

—j20 0  —j10 0
0 —j30 0 —j10
—-j10 0 —j34 —j20
0 —j10 —j20 —j38

Ans.

7.23  Eliminate nodes 3 and 4 from the network of Fig. 7-12, using the procedure of (7.16) through (7.18) to
obtain the resulting Y.

4 [—j15.74 —j2.24]
—j2.24  —j26.19

7.24 Draw an equivalent circuit, with voltage sources, for the network of Fig. 7-12 with nodes 3 and 4

eliminated.
Ans. Fig. 7-14
70.074 70.045 70.042
N IR 0 — AN N
20/ =60°V 30 /150°V
Fig. 7-14.

7.25 Repeat Problem 7.23, using (7.19) to find the new Y.

7.26  Find the voltage at node 3 under the conditions of Problem 7.15.
Ans. 1.25/-23.84°pu

7271 If Z,, is an n X n matrix, what are the orders of Zyysuew) int (7.29) through (7.32)?

Ans. (n+ ) xm+1);m+1)X(m+1);nXn;nXn
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728 A two-b tem has 7. = [j0.11565 70.04580
. wo-bus system v = | T0.04580 1013893

between buses 1 and 2, what is the new Z,,.?

]pu. If an impedance Z, = j0.4 pu is connected

[j0.10698 j0.05735] .
j0.05735  j0.12352) P

7.29 Find Z,,, for the system shown in Fig. 7-15. All impedances are per-unit values.

@

E jl2 15
I jo.2 I jo.15 I

®| - 211" I@

I

j03
Fig. 7-15.
jlL2 jl2 jL2
Ans. | j1.2 j14 j1.2 |pu
1.2 j1.2 j1.5

7.30  If an impedance of j1.5 pu is connected between bus r and bus 3 of Fig. 7-15, what is the new Z,?
j0.72  j0.72  j0.60

Ans. | j0.72 j0.92 jO.60 |pu
j0.60  j0.60 j0.75

7.31 If an impedance of j0.15pu is added between bus 2 and bus 3 of Fig. 7-15, what is the new bus
impedance matrix?

jO.6968 j0.6581 j0.6290
Ans. | j0.6581 j0.7548 j0.6774 | pu
70.6290 j0.6774 j0.7137

7.32  Impedance Z,, is the impedance that is measured between bus 1 and bus r of the system of Fig. 7-15
when I, = I, = 0. Evaluate Z,;. Verify that your result is consistent with that of Problem 7.31.

Ans.  j0.6968 pu

7.33 A one-line diagram for a four-bus system is shown in Fig. 7-16. The line impedances are given in Table
7-1. Determine Yy,.

@_

Fig. 7-16.



CHAP. 7]

Ans

3 -9
-2 +j6
—1+j3

GENERAL METHODS FOR NETWORK CALCULATIONS

TABLE 7-1
Line (bus to bus) R, pu X, pu
1-2 0.05 0.15
1-3 0.10 0.30
2-3 0.15 0.45
2-4 0.10 0.30
3-4 0.05 0.15
-2+ j6 -14;3 0

3.666 — j11  —0.666 + j2 -1+ j3
—0.666 + j2  3.666 — j11 =2 + j6
—1+ 3 —2+j6  3-j9

111



Chapter 8

Power-Flow Studies

Power-flow studies, more commonly known as load-flow studies, are extremely important in
evaluating the operation of power systems, controlling them, and planning for future expansions. A
power-flow study yields mainly the real and reactive power and phasor voltage at each bus on the
system, although much additional information is available from the computer printouts of typical
power-flow studies.

The principles involved in power-flow studies are straightforward, but a study relating to a real
power system can be carried out only with a digital computer. Then the required numerical
computations are performed systematically by means of an iterative procedure; two of the more
commonly used iterative numerical procedures are the Gauss-Seidel method and the Newton-
Raphson method. Before considering these numerical methods, we illustrate the concept of power
flow by obtaining explicit expressions for the power flow in a lossless short transmission line.

8.1 POWER FLOW IN A SHORT TRANSMISSION LINE

We assume the short transmission line shown in Fig. 8-1(a) has negligible resistance and a series
reactance of jX ohms per phase. The per-phase sending-end and receiving-end voltages are Vy and
Vk, respectively. We wish to determine the real and reactive power at the sending end and at the
receiving end, given that V leads Vj by an angle 6.

(a) (b)
Fig. 8-1.

Complex power S, in voltamperes, is in general given by
$=P+jQ=VvI* VA (8.1)
where I* is the complex conjugate of I. Thus, on a per-phase basis, at the sending end we have
Ss = Ps + jOs = VsI® VA (8.2)
From Fig. 8-1(a), I is given by

1
I =].7((Vs - Vr)
) = L(V* - Vi) (8.3)
"']X S R .

112
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Substituting (8.3) in (8.2) yields

1%
Ss = j}(v; -Vy (8.4)

Now, from the phasor diagram of Fig. 8-1(b),
Ve = |VR[£ 50 Ve = Vi
and Vs = |Vsl/0
Hence (8.4) becomes
_ (Vs — Vil [Vsle?®
_ Vsl Vil

Ss

1
sin 6 + ]';((IVsl2 = |Vs| |Vg] cos 8)
(The latter equation requires some manipulation.) Finally, since Ss = Ps + jOg, we may write

Py = Vil Valsin®) W (8.5)

1
and Qs = }(IVSF ~ |Vs| | Vx| cos 6) var (8.6)

Similarly, at the receiving end we have
Sr = Pr + jOr = VRI*

Proceeding as above, we finally obtain

1
P = }—(([Vsl [Vr| sin 0) w (8.7)

. .
and Or = )—((lVSl |Vr|cos & — |Vr[%) var (8.8)

From this simple example, a number of significant conclusions may be derived. First, the transfer
of real power depends only on the angle 6, which is known as the power angle, and not on the
relative magnitudes of the sending-end and receiving-end voltages (unlike the case of a dc system).
Moreover, the transmitted power varies approximately as the square of the voltage level. The
maximum power transfer occurs when 8 = 90° and

Vsl [Vr
X

PR(max) = PS(max) = (89)

Finally, from (8.6) and (8.8), it is clear that reactive power will flow in the direction of the lower
voltage. If the system operates with 6 = 0, then the average reactive power flow over the line is
given by

1 1
Qu =35(Qs + Q) = 5 (Vs = Val)  var (8.10)

This equation shows the strong dependence of the reactive power flow on the voltage difference.
To this point we have neglected the I°R loss in the line. If we now assume that R is the resistance
of the line per phase, then the line loss is given by

Pline = IIlZR w (811)
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From (8.2), we have

P10
|%
P
and I= —_V*]Q
. P’ + Q?
Thus, I1* = !Il2 = W
and (8.11) becomes
(P* + OHR
line — |V{2 w (812)

indicating that both real and reactive power contribute to the line losses. Thus, it is important to
reduce reactive power flow to reduce line losses.

8.2 AN ITERATIVE PROCEDURE

We were able to obtain an analytical expression for the power flow in our idealized case;
however, in an actual power system, explicit analytical solutions are not forthcoming because of load
fluctuations on the buses and because the receiving-end voltage may not be known. Then, numerical
methods must be used to solve for unknown quantities—generally via an iterative procedure.

Figure 8-2 shows a two-bus system, with the real power represented by solid arrows and the
reactive power by dashed arrows. The governing equations for the system are (on a per-phase basis)

S, = WI*

V1 = Vg + Zg]
with the symbols as defined in Fig. 8-2. Solving for V, and eliminating 7 from these equations, we
obtain
Sz
183
To solve (8.13) iteratively, we would assume a value for V, and call it V. We would substitute this
in the right-hand side of (8.13) and solve for V;, calling the new value of V,, obtained in this first
iteration, V. We would then substitute (V{)* in the right-hand side of (8.13) and obtain a new

value V. This procedure would be repeated until convergence to the desired precision was
achieved. The iterative process we would use is thus given by the general equation, or algorithm,

Z,83
k) _ €92
VE = v, - eIy (8.14)
4 V2
—>P I — P
——=>0 — —Q,
z
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8.3 THE POWER-FLOW r.QUATIONS

As noted in the last chapter, the bus admittance matrix is useful in a systematic approach to the
solution of power-flow problems. Before discussing this approach, we need to define the following
special buses:

1. A load bus is a bus for which the active and reactive powers P and Q are known, and |V| and 6
are to be found.

2. A generator bus is a bus for which the magnitude of the generated voltage |V| and the
corresponding generated power P are known, and Q and é are to be obtained.

3. A swing bus (or slack bus) is a generator bus at which |V| and 8 are specified, and P and Q are
to be determined. For convenience, we choose V/d = 1/0° per unit.

From (7.5), we may write the kth (of N) nodal current as

N
L= 2 Y.V, (8.15)
n=1
which may also be written as
N
Ik = },kak + 2 Yann (816)
. . ek
Solving for V, yields
V—i——l—ﬁYV (8.17)
Y Yu ST '
- n+k
Now, since
Vil = P, ~ JOx (8-18)
po—i
we have I = k—*]Q—'f (8.19)
Vi
Finally, (8.17) and (8.19) give, for N nodes,
1 (P, —§ N
Vi = — <—k——;]g‘ - > Yk,,V,,) fork=1,2,...,N (8.20)
Yi Vi n=1
n*k

This set of N equations constitutes the power-flow equations.

8.4 THE GAUSS AND GAUSS-SEIDEL METHODS

The Gauss and Gauss—Seidel methods are iterative procedures for solving simultaneous
(nonlinear) equations. We illustrate the Gauss method with the following example.
EXAMPLE: Solve for x and y in the system

y—3x+19=0
y+x>-18=0

To solve with the Gauss method, we rewrite the given equations as

x = § +0.633 (1)

y=18~x 2
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We now make an initial guess of x, = 1 and y, = 1, update x with (1), and update y with (2). That is, we
compute

X = %’ +0.633 = 1 + 0.633 = 0.9663 3)
and y1=18-x;=18-1=08 (4

In succeeding iterations we compute, more generally,
_ Y
X =3+ 0.633 (5)
and Vo1 = 1.8 — x2 (6)

After several iterations, we obtain x = 0.938 and y = 0.917. A few more iterations would bring us very close to
the exact results: x = 0.93926 and y = 0.9178. However, it must be pointed out that an “uneducated guess” of
the initial values (such as x, = y, = 100) would have caused the solution to diverge.

If we were to use the Gauss-Seidel method in the above example, we would still use (5) to
compute x,,;, but we would then use the just-computed x,.; to find y, ;. Instead of (5) and (6),
the algorithm for the Gauss—Seidel method would be

Xpey = % +0.633

Yur1 = 1.8 — x5y

Extrapolating the above results, we find that the Gauss—Seidel algorithm for the power-flow
equations (8.20) is

yeen = L M—ﬁyvm fork = 2,3 N 8.21
—Ykk (VSZ’)* n=1 fn T OPE= &9 (8 )
n#k

Notice that V; in (8.21) is specified, so we begin the computations with bus 2.

8.5 THE NEWTON-RAPHSON METHOD
Consider two functions of two variables x; and x,, such that
flxy, x3) = C, (8.22)
flxy, x2) = G, (8.23)

where C; and C, are constants. Let x{®’ and x{” be initial estimates of solutions to (8.22) and (8.23),
and let Ax{® and Ax{” be the values by which the initial estimates differ from the correct solutions.
That is,

AP + Ax?, 0 + AP = C, (8.24)
HEP + AxP, 2 + AxD) = C, (8.25)
Expanding the left-hand side of each of these equations in a Taylor’s series, we obtain
o, o
©) ,.(0) 0 /1 + Ax@ 2L +...=C 826
A, x37) + Axy 3% Ly X3 3% g 1 ( )
3 3
Hx®, xP) + Ax@i + Axg))ﬁ +.-=C, (8.27)
X1 =0 8x2 X0
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Neglecting derivatives of order greater than one and writing the result in matrix form yields

o o
[Cl ~HGD, xg’))] R [Ax?’)]
C, — f(x{?, x¥ a 3 o AxQ (8.28)
axl aXZ x®, xgo)
where the derivatives are evaluated at x{” and x{. Equation (8.28) may be abbreviated as
ACY Ax(©®
— ¥ 1
[ACSO)] = [Axg‘”] (8.29)

where the matrix J© is called the jacobian (of the initial estimates), and AC{” and ACY” are the
differences specified on the left side of (8.28).
Solution of the matrix equation (8.29) gives Ax{® and Ax{. Then a better estimate of the

solutions is

2P = x® + Ax{ ) (8.30)
D = xP + Ax (8.31)

Repeating the process with these values gives a still better estimate, and the iterations are continued
until Ax; and Ax, become smaller than a predetermined value.
To apply the Newton—Raphson method to a power-flow problem, for the kth bus we let

Vk = ‘VkE@l_c Vn = an|& Ykn = ‘Yknl@

Then, from (8.15) and (8.19),

N
P — jOr = 2 ViV Yeol [Oin + 8, — Oi (8.32)
n=1
N
so that P = D ViV, Y, €08 (8in + 6, — 6) (8.33)
n=1
N
and Qk = 2 leVnYan Sin (ekn + 6n - 6k) (834)
n=1

Having P and Q specified for every bus (except a swing bus) corresponds to knowing C; and C;
in (8.28). We first estimate V and 6 for each bus except the swing bus, for which they are known.
We then substitute these estimated values, which correspond to the estimated values for x; and x5, in
(8.33) and (8.34) to calculate P’s and Q’s that correspond to fi(x{”, ) and £(x{?, x{”). Next we
compute

AP%O) = Pks — ng) (8.35)
AQY = Qs — QR (8.36)

where the subscripts s and ¢ mean, respectively, specified and calculated values. These correspond to
the values on the left side of (8.29).
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Corresponding to (8.28) and (8.29), the matrix equation for a three-bus system (with bus 1 as
the swing bus and hence omitted) is

EE N

98, 36, 2V, 3V

APYY oP, &8P, 8P, 4P, A65
APSI N _ 06, 06 3l B v Ao 8.37)
AQY 30, 80, 30, 80, AV
AQY 96, 9065 3V, 9|V AV
50, 305 30s  80s |, 0 s
R ] 2113 N

Equation (8.37) is solved by inverting the jacobian. The values determined for A6{” and AV{Y
are added to the previous estimates of V and & to obtain new estimates with which to start the next
iteration. The process is repeated until the values in either column matrix are as small as desired.

8.6 BUS VOLTAGE SPECIFICATION AND REGULATION

In Sections 8.2 and 8.3 we indicated that bus voltages are specified in some power-flow studies.
In certain cases the real power on each of the various buses is also specified. The corresponding
reactive power is then determined as needed to maintain each bus voltage. Stated otherwise, we
investigate the effect of a particular bus voltage on the reactive power supplied by a given generator
to the system. If we represent the system with its Thévenin equivalent and connect the system to a
generator as shown in Fig. 8-3, then the corresponding phasor diagram resembles those shown in
Fig. 8-4 for leading, lagging, and unity power factors. Notice, in the three diagrams of Fig. 8-4, that
for a constant power delivered by the generator, the component of 7 in phase with Ep, must be
constant. It follows from Fig. 8-4 that with constant power input to the bus, larger magnitudes of bus
voltage V, require larger |E,|, and the larger |E,| is obtained by increasing the excitation of the
generator. Increasing the bus voltage by increasing |E,| causes the current to become more lagging.
Thus, increasing the voltage specified at a generator bus means that the generator feeding the bus
will increase its output of reactive power to the bus. From the standpoint of the operation of the
system, we are controlling bus voltage and Q generation by adjusting the generator excitation.

/Yg XTh
00 AL
—_— +
+ I T +

Fig. 8-3.

Another method of controlling bus voltage is by installing shunt capacitor banks at the buses at
both the transmission and distribution voltage levels along transmission lines or at substations and
loads. Each capacitor bank supplies reactive power at the point at which it is placed. Hence it reduces
the line current necessary to supply reactive power to the load and reduces the voltage drop in the
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1 Eg

{ Vi JIX,

i Xy
I {[ Em

i1

Fig. 8-4.

line via power-factor improvement. Since the capacitor banks lower the reactive power required
from the generators, more real power output is available.

If a capacitor bank is installed at a particular node, the node (or bus) voltage can be determined
from the Thévenin equivalent of the system, shown in Fig. 8-5, and the corresponding phasor

diagram, shown in Fig. 8-6. The increase in V| due to the capacitor bank is approximately equal to
He| X if E1y, remains constant.

I

En, i X

ICRTh

Vi
Fig. 8-6.
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Solved Problems

8.1  For the system shown in Fig. 8-7,* it is desired that |V;| = |V,| = 1 pu. The loads, as shown,
are §; = 6 + j10pu and S, = 14 + j8pu. The line impedance is j0.05 pu. If the real power
input at each bus is 10 pu, calculate the power and the power factors at the two ends.

10+15 Y
i
V

445 —> 10+ 3

S S
> 6+ /10 14 + j§ ~—2—

Fig. 8-7.

Let V, = 1/0° and V; = 1/6. Then
Vil Vs . 1x1
P=pP= |—1|A-1—2|s1n6 or 10 = 0.05
from which 6 = 30° and V; = 1/30°. The reactive power is given by
AN _ 1 1 . B
0, = X X cos b = 0.05 " 0.05 cos30° = 2.68pu = -Q,
SO Qline = Ql - Qz = 2Q1 = 5.36 pu

Thus we have

sin

Load on bus 1 = (6 + j10) + (10 + j5.36) = 16 + j15.36 pu
Power factor at bus 1 = 0.72 lagging
Load on bus 2 = (14 + j8) — (10 — j5.36) = 24 + j13.36 pu
Power factor at bus 2 = 0.87 lagging
82 In Fig. 82, let V, = 1/0°% Z, = 0.05 + j0.02, and P, + jQ, = 1.0 + j0.6 (all per unit).
Determine V, and P, + jQ,.

Based on the given numerical values, we make the initial assumption V; = 1& and use (8.14)
iteratively to obtain the following values:

Iteration V., pu
0 1.0 + ;O
1 0.962 — j0.05
2 0.9630 — j0.054
3 0.9635 — j0.054
4 0.9635 — j0.054

(Note that convergence is achieved in just four iterations. Different data, such as a greater load, might
require more iterations for convergence to the solution. Or, convergence may not be achieved at all if a
solution does not exist or if the starting point of the iteration process is not appropriate.)

*In Figs. 8-7 to 8-12, complex numbers denote per-unit apparent power.
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Now, with V, = 0.9635 ~ j0.054 pu, we have

s 1.0 — j0.6
[=22 o =T T0  _q008/-27.75°
Vi 0.9635 + j0.054 [=27.75"pu

Then [* = 1.208/27.75° and since V; = 1/0°, we have

P, +jO, = S = ViI* = (1/0°)(1.208/27.75°)
= 1.069 + j0.5625 pu

8.3  For the system of Problem 8.2, it is desired to have | V| = |V,| = 1.0 pu by supplying reactive
power at bus 2. Determine the reactive power that must be supplied.

From (8.1) we obtain

L _S1+ 10
Vi
which, when substituted in (8.13), yields
_ Zf’ * ‘ syt
Vi = Vz‘*‘F(Sz +jQ3) (1)
2

Where Q) represents the added reactive power at bus 2. We now substitute in (1)
Wil=1 V,=1/0° Z, =005+ 0.02 Si=1-j06
and obtain, as the absolute value of the right-hand side,
1= |1+ (0.05 + jO.02)[1 + j(Q} — 0.06)]|
Hence, Q) =4.02pu

8.4 Two buses are interconnected by a transmission line of impedance (0.3 + j1.2) pu. The
voltage on one bus is 1/0°, and the load on the other bus is (1 + j0.4) pu. Determine the
per-unit voltage on this second bus. Also calculate the per-unit real and reactive power on
the first bus.

Equation (8.14) gives the following values for V,:

Iteration V.2, pu
0 1+ 0
1 0.922 — j0.108
2 0.903 — j0.106
3 0.9 — j0.108
4 0.9 — j0.108
Then V, = 0.9 — j0.108 pu and
S 1 - jo.4

F=22= 1 g 988/-28.6°
VE T 0.9 + j0.108 /~28.6"pu

so that I* = 1.188/28.6°. This gives us
S, = P+ jQ, = VI = (1/0)(1.188/28.6°)
= 1.188/28.6° = 1.043 + j0.569
Hence, P, = 1.043 pu and Q, = 0.569 pu.
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8.5

8.6

8.7

8.8
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The voltages on the two buses of Problem 8.4 are to be made equal in magnitude by supplying
reactive power at the second bus. How much reactive power must be supplied?

We have |V|| =1, V, = 1/0° (desired), Z, = 0.03 + j0.12, and S} = (1 — j0.4). Then (I) of
Problem 8.3 yields

1= |1+ (0.03 + j0.12)[1 + j(Q, — 0.4)]|
Hence, O, = 0.259 pu.

The per-unit impedance of a short transmission line is j0.06. The per-unit load on the line is

(1 + j0.6) pu at a receiving-end voltage of 1/0° pu. Calculate the average reactive power flow
over the line.

The sending-end voltage is
Vs = Ve +1Z = 1/0° + (1 + j0.6)(j0.06) = 0.9658/3.56° pu
Thus, from (8.10),

Q.

= 2(0.08) (0.9658% — 1*) = —56pu
Solve the following equation by the Gauss—Seidel method: x> — 6x + 2 = 0.
We solve the given equation for x, obtaining
x =’ +3=F()
and use the initial estimate x° = 1. Then, in succeeding iterations we obtain
Iteration1: xV = F(1) =+ 1 =0.5
Iteration 2: xP = F(0.5) = £(0.5)* + L = 0.375
Iteration 3: x® = F(0.375) = 1(0.375)* + { = 0.3568
Iteration 4: x = F(0.3568) = 1(0.3568)> + § = 0.3545

We may now stop since [x”*"| — |x*| < e = 0.0023; which seems to be sufficiently small. The
quadratic formula gives this root as x = 0.35425 to five places.

For the two-bus system of Fig. 8-8, with the data as shown and with Y;; = Y,, = 1.6/—80° pu
and Y, = Y, = 1.9/100° pu, determine the per-unit voltage at bus 2 by the Gauss—Seidel
method.

Vi=11/0° \Z!
P+ jQ Pt
_— 0.5+0.3
— 1.1+ 04

Fig. 8-8.

The power into the two buses is
S,
S,

P —1.1) +j(Q, — 0.4)pu
-0.5 — j0.3 pu

il
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From (8.21), we have the Gauss—Seidel algorithm

, 1R -jQ,
YD = [2— -Y V:l
A DL @
With the given numerical values, (1) becomes
_ 1 0.583/14%°
¢ = . = (1.9/100°)(1.1 O°]
Ve 1.6(—80°[ iy~ LI/

0.583/149°

= (0.625[80°)[—W —2.09/ 100"] #))
2

To begin the iterations, we let V{” = 1.0/—10°pu. Then (2) yields
VY = (0.625/80°)[(0.583/139°) — (2.09/100%)]

= 1.048/—-12.6° pu
The next iteration yields
0.583/149°
V& = (0.625/80° (— - 2.09 100°>
2 = (0.625/809 1.048/12.6° [100°
= 1.047/-8.6°pu

Further iteration is unnecessary.

8.9 Compute the power on the swing bus of the network of Fig. 8-8.

From Problem 8.8 we have the per-unit values V; = 1.1/0°, ¥, = 1.047/-8.6°, Y}, = 1.6/—80°, and
Y;, = 1.9/100°. Substituting these values in (8.32) with k = 1 yields the complex power for bus 1:

P —jO, = (1.1 X 1.1 X 1.6)/=80° + (1.1 x 1.047 X 1.9)/100° — 8.6°
= 0.3209 + j0.2816 pu

8.10 For the system shown in Fig. 8-9, the bus admittance matrix is

3-79 —2+/6 1+ 3 0

—2+j6 3.666—j11  —0.666 +j2 —1 43

~1+j3 —0.666 +j2 3.666—j11 -2+ j6 |P"
0 1+ 3 2+j6  3-j9

Ybus =

With the complex power on buses 2, 3, and 4 as shown in the figure determine the value for
V, that is produced by the first iteration of the Gauss—Seidel procedure.

Let V9 = v{ = v = 1.0/0° pu. Then, from (8.21),

1[R-jQ
Ve = o [~ s YV - b
1 [0.5 + j0.2 . . : ]
= — | ——— — L04(-2 + j6) — (-0.666 + j2) —~ (—1 + j3
o - L2 4 )~ € 2= (-1+3)
4.246 — j11.04
= ———— = 1.019 + j0.046
3.666 — j11 !
= 1.02/2.58° pu

8.11 Determine the value for V, of Problem 8.10 as produced by the second iteration of the
Gauss—Seidel procedure.
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O, ©)

Vi=104 /0° v
P+ j0 0.5-j0.2
~1405
ik 03-0.1
e
V3 V4
Fig. 8-9.
From (8.21),
11R—j0
Ve =4 [T@T — YuVi - YuVE - YMvP]

Substituting the given numerical values and V{" and V" (which may be determined in the same way as
V£’ in Problem 8.10), we obtain

1 [ 0.5 + j0.2

VO = — | 2 T
Y., L1.019 + j0.046

— 1.04(=2 + j6) — (=0.666 + j2.0)(1.028 — j0.087)
— (1 + j3)(1.025 — j0.0093)]

_ 4.0862 — j11.6119
T 3.666 — j11.0

= 1.0616/0.97° pu

= 1.061 + j0.0179

8.12 Solve the following equations by the Newton—Raphson method:
X7 —4x, —4=0
le — X — 2=0
Let x{” = 1 and x{” = —1 be the starting point for the first iteration. Then
FEO, s =1+4-4=1
APy =2+1-2=1

and the partial derivatives evaluated at x{? and x¥ are

o i
hog=2 Loy
8xl : axl
oh_ 4 ok _

ox, x5
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Now (8.28) yields the equations

I,
{0) (0) + A [OFNCES fl AX(O)
A, %27) %, ax, 0

A@, x®) + Ax© 22 of + A2 of =0
ox, Ox»

and substitution yields
1+ 2Ax, — 4Ax, =0

1+ 2Ax, — Ax, =0

Simultaneous solution gives us Ax{” = —0.5 and Ax{” = 0. Thus, better estimates of x, and x, are
P =xP+ Ay, =1-05=05
and P =xP + Ax,=-1+0=-10

Proceeding as above with these new estimates, we find that a second and third iteration yield
P =05357 and 1P = —0.9286
xP = 0.5359 and  x% = —0.9282

Clearly, such problems are solved most conveniently with a digital computer.

8.13 For the system shown in Fig. 8-10,

24.23/-75.95° 12.13/104.04°  12.13/104.04°
Y., = | 12.13/104.04° 24.23/-75.95° 12.13/104.04° |pu
12.13/104.04°  12.13/104.04°  24.23/=75.95°

Given the per-unit voltages and power as shown, determine V, by the Newton—Raphson
method.

Vi =1.04/0°pu

|V3| =1.04

Fig. 8-10.

Let V§” = 1/0°pu and 8% = (. Then from (8.33),
PY = [V V] [V cos (62 + 817 — 657) + VI | Y| cos b2
+ VOV Yol cos (825 + 657 — 657)
= (1)(1.04)(12.31) cos 104.04° + (1)(24.23) cos (—75.95°)
+ (1)(1.04)(12.31) cos 104.04°
= —0.33pu
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Similarly,
PP = VOV Yol cos (03 + 8 — 8) + [V [VE] | Vsl
X cos (83, + 65 — 6§0)) + |VOP | Yasl cos 6
= (1.04)(1.04)(12.31) cos 104.04° + (1.04)(12.31) cos 104.04°
+ (1.04)*(24.23) cos (—75.95°
= 0.026 pu

Also, from (8.34),
0

—IVEHVP| Yol sin (85 + 82 = 80) — [V |Vl sin 65,
= VLV sin (8 + 65 — 6(7)

—(1)(1.04)(12.31) sin 104.04° — (1)(24.23) sin (—75.95%)

— {(1)(1.04)(12.31) sin 104.04°

-1.33 pu

Now, from (8.35)
AP = 0.5 — (=0.33) = 0.83pu
AP = —1.5 - 0.026 = —1.526 pu
Similarly, from (8.36),
AQY =1 - (-1.33) = 2.33pu
For the given three-bus system (with V; known), (8.37) becomes

R
86, 9885 3|V,

APY ASP

ApP [=[ 25 2B OB ]I \so
\ 86, 35, 3|Vi| o

AQS A V3

30, 30, 30,
| 36, 36, 31Vl

Differentiating (8.33) and (8.34) and substituting the numerical values yields, from (1) above

[ 083 | [ 2447 -1223 564 As®
—1.526 | = | —1223 2495 -3.05 || As®
| 233 | | -611 3.05 2254 || AV
[ A T [ 2447 —1223  sea [ o83
Or ASY | =1 -1223 2495 —305 ~1.526
| A VO] | -611 3.05 22,54 | 2.33
[0.05179  0.02653 —0.00937 0.83
=[0.02666 0.05309  0.00051 || —1.526
| 0.01043  —-0.00001  0.04176 2.33

Solving for A |[V{”] in (2) gives

A VS| = (0.01043)(0.83) + (0.00001)(1.526) + (0.04176)(2.33) = 0.106 pu

Thus, [V =1+ 0.106 = 1.106 pu

This procedure is repeated until, upon convergence, we obtain V, = 1.081/-1.37° pu.

[CHAP. 8
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8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

Supplementary Problems

For a system of the type shown in Fig. 8-7, |[Vi} = 1.0 pu and |V;| = 1.1 pu. The complex power outputs
at the two buses are equal; that is, S, = S, = 3 + j4 pu, and the real power supplied by each generator
is 5.0 pu. If the line reactance is 0.08 pu, calculate the load on each bus.

Ans. 8+ j5.71pu

In the system of Fig. 82, V; =1/0°pu, Z, = (0.10 + j0.10) pu, and P, +jQ, = (0.1 +j0.1) pu.
Calculate V.

Ans.  0.9796/0° pu

Determine the real and reactive power on bus 1 in Problem 8.15.

Ans. P, = @, = 0.10208 pu

How much reactive power must be supplied at bus 2 in Problem 8.15 so that |V,| = 1.1 pu?

Ans. 10.93 pu

For the system shown in Fig. 82, Z, = (0.2 + j0.6) pu, V; = 1.1/0°pu, and P, + jO, = (1 + j0.4) pu.
Calculate V,.

Ans.  1.371/—19.46° pu

Determine the complex power on bus 1 in Problem 8.18.

Ans. (0.65 + jO.57) pu

A generator is connected to a system as shown by the equivalent circuit of Fig. 8-11. If V, = 0.97/0° pu,
calculate the complex power delivered by the generator. Also determine E,.

I ji0pu j0.2pu
= od' 11 —e0
(0.8-j0.2)pu +
+ +

® - ©

Fig. 8-11.

Ans.  (0.776 + j0.194) pu; 1.42/34.3° pu

Repeat Problem 8.20 if |V,| = 1.0 pu and the real power delivered by the generator remains unchanged.
Assume E, to remain constant.

Ans. (0.776 + j0.346) pu; 1.55/29.7° pu

Solve the following system of equations by the Gauss—Seidel method, starting with x(0) = y(0) = 0:

10x + S5y = 6
2x + 9y =3

Ans. x = 0.4875; y = 0.2250 after six iterations
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8.23

8.24

8.25

8.26

8.27

8.28

POWER-FLOW STUDIES [CHAP. 8

Evaluate x in the equation x + sinx = 2 by the Gauss—Seidel method. Start with x(0) = 0.

Ans. 1.106

Rework Problem 8.23 using the Newton—Raphson method, and compare the number of iterations
required to achieve convergence by the two methods.

Ans. Three iterations versus ten iterations.

Determine the values for V; and V, in the system of Fig. 8-9 and Problem 8.10, as produced by the first
iteration of the Gauss—Seidel procedure.

Ans. V0 = 1.028 — j0.087 pu; V¥ = 1.025 — j0.0093 pu

Given the following set of equations,

0.62701, + 0.1930L + 0.0100L, = 1.0
0.19301;, + 0.4840L + 0.1711L = 1.0
0.0100L, + 0.17114 + 0.6960L = 1.0

start with I = I = [{? = 1 and find I{°, I®, and I by the Gauss—Seidel method.
Ans. IV = 1.2711; I = 1.1847; I = 1.2125
In a five-bus system Y, =Yy=0, Y, =7 146/-84.6°pu, Y, = 2.490{95.1" pu, and Y, =

4.980/95.1°pu. Determine V§” by the Gauss-Seidel method if P, — JjQ: = =2 + j0.7. Begin with
VO =VI = VP = VO = VO = 1/0° pu.

Ans. 0.875/—15.7°pu

For the system shown in Fig. 8-12, with bus 3 as reference bus, the bus impedance matrix is

133 +j1.33 141

ZUS= - -
® [ 1+j1 1.5 +j1.5

] X 107 pu

Start with V{® = v = 1.05/0°, and solve for V; and V, by the Gauss—Seidel method.

©

Vi

-04+j02

—_—
1.05&’
s, S
123 Swing bus

-03+,03 ’

—— ]

Fig. 8-12.

Ans.  1.04736/—7.29° pu; 1.0480/—-7.81° pu
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8.29

8.30

Rework Problem 8.28 using the Newton—Raphson method.

For a three-bus system similar to that of Fig. 8-12,

1.6 —j8 —-08+j4 —08+j4
Yo=| —08+j4 16-j8 —08+j4 |pu
-08+j4 -0.8+j4 1.6 — j8

Also, V, = 1/0° and P, — jQ, = —0.8 + j0.6. Determine V5 in the Gauss—Seidel procedure.

Ans. 0.95/—-4.59°
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Chapter 9

Power System Operation and Control

Of the numerous aspects of power system operation and control, we shall consider only the
economical operation of power systems and the control of load frequency, generator voltage, and
the turbine governor.*

9.1 ECONOMIC DISTRIBUTION OF LOAD BETWEEN GENERATORS

Within a power plant, a number of ac generators generally operate in parallel. For the economic
operation of the plant, the total load must be appropriately shared by the generating units. Because
fuel cost is the major factor in determining economic operation, curves like that of Fig. 9-1 are
important to power-plant operation. Note in the figure that the inverse slope of the curve at any
point is the fuel efficiency of the generating unit operating at that point. Maximum fuel efficiency
occurs at the point at which the line from the origin is tangent to the curve. Point A in Fig. 9-1 is
such a point for a unit having the input—output characteristic of Fig. 9-1; there, an output of 250 MW
requires an input of approximately 2.1 X 10° Btu/h. Or, we may say that the fuel requirement is
8.4 x 10° Btu/MWh.

A
=
41—
£
2
=
e
3
(=N
R=
2k A
B :
i
I ;
| I ! L o3
106 200 300 400 500
Output power P, MW
Fig. 9-1.

To obtain the most economical load distribution between two units, we must determine the
incremental cost corresponding to a partial shift of load between the units. We first convert the fuel
requirement into a dollar cost per megawatthour. Then the incremental cost is determined from the
slopes of the input—output curves (Fig. 9-1) for the two units. From Fig. 9-1, for each unit,

dF
Incremental fuel cost = 7P (in dollars per megawatthour) 9.1)

* Discussions in this Chapter follow W. D. Stevenson, Jr., Elements of Power System Analysis, 4th ed., McGraw-Hill, 1982.
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where F = input in dollars per hour, and P = output in megawatts. At a given output, this
incremental fuel cost is the additional cost of increasing the output by 1 MW. (See Problems 9.2 and
9.3)

In a plant having two operating units, generally the incremental fuel cost of one unit will be
higher than that of the other. For the most economic operation, load should be transferred from the
unit with the higher incremental cost to the unit with the lower incremental cost, until the
incremental costs of the two become equal. In a plant with several units, the criterion for load
division is that all units must operate at the same incremental fuel cost. (This conclusion may be
derived mathematically, as is shown in Problem 9.5.) If a plot of dF/dP, versus P for each unit is
linear, then A may be plotted versus Py to determine the optimum value of A, where F, is the input to
unit k in dollars per hour, and A = dF,/dPF; is the incremental fuel cost for unit £ in dollars per
megawatthour. (4 is also known as the Lagrange multiplier; see Problem 9.6.)

9.2 EFFECT OF TRANSMISSION-LINE LOSS

To include the effect of transmission-line losses on economical system operation, we must
express these losses as a function of plant power output. Figure 9-2 shows two plants connected to a
three-phase load. The total transmission loss (for all three phases) is given by

Pioss = 3(LIP Ry + |L° Ry + |BI* R5) (9.2)
where the R’s are the per-phase resistances of the lines, and where
Ll = L + L] = L] + |4 (9.3)

if we assume that I, and L are in phase. These currents may be expressed in terms of P, and P, the
respective plant outputs, as

P
= Vi Vi cos o, G
P
and iIZl - m (95)

where cos ¢, and cos ¢, are the power factors at buses 1 and 2, respectively.

@ ® ©)

Plant 1 l I Plant 2
I L
G | Line 1 Line 2 I O
Vi I, V,
Line 3
Vs - Load
®
Fig. 9-2.

Equations (9.2) through (9.5) may be combined to yield

Ploss = P%Bll + 2P1P2B12 + P%BZZ (96)
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where By, By, and B, are called loss coefficients or B coefficients and are given by

By =———2-
" VP eos 6, @7

R,

B, =

2 = Vil 1Val cos 7 cos 6, (2.8)

and By =—=o—F—
== Vil cos® 6, (5.9)

For a system of n plants, (9.6) may be generalized to
Pow = 2. 2, PcPyBin (9.10)

k=1 m=1

where B, ; = By,.

9.3 LOAD DISTRIBUTION BETWEEN PLANTS

In this section we combine the method of Section 9.1 with the results of Section 9.2 to obtain an
economical allocation of load among a number of power plants. For a system of »n plants, the total
cost of fuel per hour is

Fow = >, F.  dollars/h (9.11)
k=1
and the total power output is
Pow = 2 P, MW (9.12)
k=1

With transmission losses, we must have
Ptotal = PR + })loss (9 13)

where Pg and P, are, respectively, the total power received by the load and lost in transmission.
For a given (constant), Pz, dPrx = 0. Thus, (9.12) and (9.13) yield

2> dP, — dP,, =0 (9.14)
k=1
In addition, when the load is allocated among the » plants for minimum fuel cost, dF,,.y = 0. Then
o« 9Fo
dFipa = 2, —=2dP = 0 (9.15)
k=1 P
< aPDSS
Also dPoss = >, —22gp, (9.16)
k=1 9P

Substituting dP,. from (9.16) into (9.14), multiplying the result by A, and subtracting that result
from the right-hand equality in (9.15) yield

- antal aPloss ) ]
+ 1 — AldP | = .
k§=:1 [( aPk aPk K 0 (9 17)
This equation holds if
aFOﬂ 8POS
LA 3 =0 forallk=1,2,...,n (9.18)

3P, 3P,
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Now, because

aF|to!al _ dEc

3P,  dP, (9.19)

condition (9.18) may be written as

dF,
‘—il—)iLk=A fork=1,2,...,n (9.20)

where L, called the penalty factor of the kth plant, is given by
1

Ly=———"7"—"—= (9.21)

1 — OPyoss/ OPs

Condition (9.20) implies that the system fuel cost is minimized when the incremental fuel cost for
each plant, multiplied by its penalty factor, is the same throughout the system, that is, when

dF dF, dF,
—_— = — = e s = n = A, .22
ap,"' ar, dPp, (8:22)
To determine the L, we have, from (9.10),
aPloss o < < < ) <
= P.P,Bin) =2 D, P.B,, 9.23
b, ap 2, 2, TelnBen) =2 2 BB ©.2)

The simultaneous equations represented by (9.20) can be solved if a value is assumed for A.

9.4 POWER SYSTEM CONTROL

A number of automatic controls are used in present-day power systems. These include devices
that control the generator voltage, the turbine governor, and the load frequency; there are also
computer controls to ensure economic power flow and to control reactive power, among other
power-system variables.

Generator voltage control is accomplished by controlling the exciter voltage. The block-diagram
representation of a closed-loop automatic voltage regulating system is shown in simplified form in
Fig. 9-3. (Numerous other forms of generator voltage control also exist.) In Fig. 9-3, the open-loop
transfer function G(s) is given by

k
(1 + Ts)(A + Ts)(A + Tps)

G(s) = (9.24)
where T, T,, and T; are, respectively, the time constants associated with the amplifier, the exciter,
and the generator field, and the open-loop gain k is

k = kok.k (9.25)

Sudden changes in the load cause the turbine speed and, consequently, the generator frequency to
change as well. The change in turbine speed occurs when the generator electromagnetic torque no
longer equals the turbine (or other prime mover) mechanical torque. Thus, the change Af in the
generator frequency may be used as a control signal for controlling the turbine mechanical output
power. The change in the turbine output power as a function of a change in the generator frequency
is given by
1

AP, = AP — R Af (9.26)
where AP, and AP, are, respectively, the changes in the turbine output power and the reference
power (as determined by the governor setting), and R is known as the regulation constant.
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AVt Ae k, AVr k. AV ke AV, _
f 1+ Ts Tl 1+ Tis 1+Ts .
N Amplifier Exciter Generator field
AV,
Fig. 9-3.

Figure 9-4 shows the block diagram for a turbine-governor control system; we assume the system
to be linear, and the governor and turbine-generator to be first-order devices.

APref + APm 1 1
1+ Ty 1+ Tos

Y

Fig. 9-4.

In the preceding, we have implied that the accelerations and decelerations of the generator rotor
are controlled by the turbine governor. However, the frequency deviation Af still remains if
AP = 0. This frequency deviation can be reduced to zero by a process called load-frequency
control (or LFC). The LFC process then also controls the power flow on the tie line. Thus, via LFC,
each interconnected area of a power system maintains the power flow out of that area at its
scheduled value, in effect absorbing its own load variations.

To establish the pertinent control strategy for LFC, we define the area control error (ACE) as

ACE = AP, + B; Af (9.27)

where AP, is the deviation of the tie-line power flow out of the area from the scheduled power flow,
Af is the frequency error, and B, is known as the frequency bias constant.

The change AP, in the reference power setting of the load-frequency-controlled turbine
governor is proportional to the integral of ACE. Thus,

AP = —K j ACE dr (9.28)

where K is a constant. The minus sign in (9.28) implies that if either the net power flow out of the
area or the frequency is low, then ACE is negative and the area should increase its generation.
If an area contains n generating units, we may write (9.26) as

n

n n 1
AProy = 24 AP = 3 AP = (2 R—) Af = APeestoray = B Af (9.29)

k=1Mg

where S is known as the area frequency-response characteristic and is given by

B = E =1 (9.30)

k=1 Ry
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Also,

AI:)ref(total) = 2 APrcfk (9 31)
k=1

and Af remains the same for each unit.

To summarize, (9.27) through (9.29) govern the LFC of the system. Problems 9.19 and 9.20

illustrate the procedure with numerical examples.

9.1

9.2

9.3

94

9.5

Solved Problems

Use Fig. 9-1 to find the fuel requirements for outputs of (a) 100 MW and (b) 400 MW. Thus
verify that point A is probably the maximum fuel-efficiency point.

(a) From Fig. 9-1, at 100 MW output, the fuel input is approximately 1 x 10° Btu/h. Hence,

1 x 10’

= 10 x 10° Btu/MWh
100

Fuel requirement =

(b) Similarly, at 400 MW output, the fuel input is approximately 3.6 X 10° Btu/h. Then

3.6 x 10°
Fuel requirement = —— -~ = 9.0 x 10°Btu/MWh

Clearly, both values are greater than that for point A.

A certain amount of coal costs $1.20 and produces 10° Btu of energy as fuel for a generating
unit. If the input—output characteristic of the unit is that shown in Fig. 9-1, determine the
incremental fuel cost at point A.

(2.2 — 2.0)10°
Si tA = ———— ="77Bt
ope at A = 1260 — 234)10° u/MWh
Thus, Incremental cost = 7.7 X 1.20 = $9.24/MWh

Convert the curve of Fig. 9-1 to a plot of incremental fuel cost versus output power, given a
fuel cost of $1.50 per 10° Btu.

We plot the incremental fuel cost by finding the slope of the input—output curve (Fig. 9-1) for
several values of output power and plotting slope X cost per Btu against output power. (See Problem
9.2.) Hence we obtain the curve shown in Fig. 9-5.

Approximate the curve obtained in Problem 9.3 with a straight line, and obtain an equation
for the straight line. Use it to determine the incremental cost at 250 MW.

The approximation is shown in Fig. 9-5. The line has an intercept of $6.25/MWh and a slope of
0.0226. Thus, the required equation is

dF 3
i 0.0226P + 6.25 ¢))]
Substituting P = 250 in (1) yields
dF
Incremental cost = 4P = (0.0226 x 250 + 6.25

= $11.9/MWh

Show that, for the most economic operation of a power plant having several generating units,
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=
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=
g
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Output power P, MW
Fig. 9-5.

the load must be divided among the units such that they all operate at the same incremental
cost A.

If there are # units in the plant, the total input fuel cost F,,, in dollars per hour, is given by

Eotal = kz E( (1)
=1

The total output power P, in megawatts, may be written as

Rotal = E Pk (2)
k=1

For a given P, F,,. is 2 minimum when dF,.. = 0, that is, when

-n

aF‘total
dF o = >, —22gp. = 3
' ,;l opP, X )

Since P, is constant, dP,.,, = 0. Then (2) yields
AP = 2, dP. = 0 4
k=1

Multiplying (4) by 4 and subtracting the result from (3) yield

s [(@L - x) de] =0 (5)

k=1 L\ OF;

The sum in (5) will be zero if each term in parentheses is zero. Moreover, for each unit,
OF o/ 9P, = dF,/dP,, because a change in a unit’s power output affects only that unit’s fuel cost. Hence

antal — ﬁ — /1
3P, dP,
and the required condition is
ﬁ = —d—};é = ... = @ = A
dP, dp, dP,
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9.6

Graphs of the incremental fuel costs (in dollars per megawatthour) for two generating units in
a power plant are shown in Fig. 9-6. These graphs are linear. The plant output ranges from
240 MW to 1000 MW over a 24-h period. During this period the load on each unit varies from
120MW to 600 MW. Plot a curve of incremental fuel cost A versus plant output for
minimum-fuel-cost operation.

15

, dollars/MWh

@
drP
=
Plant incremental fuel cost A, dollars/MWh

5S¢ | | | | ¥7
200 400 600 800 1000
Ptolah MW
Fig. 9-6.

From Fig. 9-6, we obtain

9 0.008P; + 8 1
ap, ! D
dF;

and d—Pz = 0.009P, + 6 (2)

At 120 MW, dFE/dP, = 8.96 and dFE/dP, = 7.08. Therefore, until dF/dP, has risen to 8.96, unit 2

should take all the additional load above 120 MW. Using (2), we find that dF,/dP; is equal to 8.96 when
P, = 328.9 MW, at which value

P,.=P + P, =120 + 328.9 = 4489 MW

These values give us the second row of Table 9-1. Similar computations give the remaining rows of the
table, whose values are plotted in Fig. 9-6 (dashed lines).

TABLE 9-1

A, dollars/MWh P, MW P, MW P, MW

7.17 120 130 250

8.96 120 328.9 448.9

9.6 200 400 600
10 250 444.4 694.4
10.4 300 488.9 788.9

11.2 400 571.77 9771.7
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9.7 For maximum demand from the plant of Problem 9.6, determine how the load should be
shared by the two generating units for minimum fuel cost.

The maximum load is
P = 1000 = P, + P, (D)
For minimum fuel cost, (1) and (2) of Problem 9.6 give
0.008P, + 8 = 0.009P, + 6 (2)
Solving (1) and (2) for P, and P, yields
P, = 411.76 MW and P, = 588.24 MW

9.8 Determine the incremental fuel cost for each unit for the conditions of Problem 9.7.

The incremental fuel cost A is the same for both units. With P, = 411.76 MW, (1) of Problem 9.6
gives

A =0.008 x 411.76 + 8 = $11.29/MWh
which agrees with the last row of Table 9-1 (Problem 9.6).

9.9  For the maximum power output of the plant of Problem 9.6, calculate the saving per hour in
fuel cost under economic (optimal) operation, as compared to operation with the load equally
divided between the two units.

For economic operation we have, from Problem 9.7, P, = 411.76 MW and P, = 588.24 MW. If
P = P, = 500 MW, the increase in cost per hour for operating unit 1 is
500
A = f (0.008P, + 8)dP, = $1027.73/h
411.76
For unit 2 we have a decrease in cost:

500
A, = f (0.009P, + 6) dP = —$961.56/h
588.24

The net increase in operating cost is therefore 1027.73 — 961.56 = $66.17/h

9.10 Find the loss coefficients for the system shown in Fig. 9-2 from the following data, in which all
numerical quantities are per-unit values: I, = 0.8/0°, L, = 0.9/0°, V; = 1Yo, Z, = Z, =
0.06 + j0.20, and Z; = 0.04 + 0.06.

From Fig. 9-2 and the given data,
Vi = 1.1 + (0.8/0°)(0.06 + j0.20) = 1.148 + j0.16
Vo= 1.1 + (0.9/0°(0.06 + j0.20) = 1.156 + j0.18
Hence, [V} cos ¢, = 1.148 and |V;| cos ¢, = 1.156. Now (9.7) through (9.9) yield
_0.06 + 0.04
1T (1.148)2

B - 0.04
27 (1.148)(1.156)

_0.06 + 0.04
27 .156)

= 0.0759 pu
= 0.0301 pu

= 0.0748 pu

9.11 Calculate the transmission loss for the system of Problem 9.10.
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9.12

9.13

9.14

We have
P = Re[(0.8/0°)(1.148 + j0.16)] = 0.9184 pu
P, = Re [(0.9/0°)(1.156 + j0.18)] = 1.0404 pu
Substituting these values and the B coefficients of Problem 9.10 in (9.6) gives
Poss = (0.8384)*(0.0910) + 2(0.8384)(0.904)(0.0360) + (0.9504)*(0.0897) = 0.2024 pu

In a two-plant system, the entire load is located at plant 2, which is connected to plant 1 by a
transmission line. Plant 1 supplies 100 MW of power with a corresponding transrnission loss of
5MW. Calculate the penalty factors for the two plants.

Since all the load is at plant 2, varying P, does not affect the transmission loss P Thus,

from (9.6, P.=5= P?B, = 10'B
loss ™ - 1211 = 11

so that B;; = 5 X 107*MW™'. Moreover, this expression for P, yields

aP loss

= 2P,B,, = 2(100)(5 X 10°%) = 0.1
3P,

Then, from (9.21),

Similarly, because 3P, /3P, = 0, we have L, = 1.

For the system of Problem 9.12, A = $15/MWh, and the incremental fuel costs for the two
plants are given by

dF, dF,
N 0.01P, + 10 ad £Z_o0mp+12
dP, 1 anc  4p, 2

in dollars per megawatthour. How much power should be generated at each plant for minimal
total fuel cost?

From (9.22) and Problem 9.12,

4F _
dp,
or (0.01P, + 10)1.111 = 15
from which P, = 350 MW. Similarly,
dE,
ap, L,= (0.02P, + 12)1 = 15

from which P, = 150 MW,

For the operating conditions obtained in Problem 9.13, determine the dollar savings that
would be realized by coordinating the transmission loss rather than neglecting its effect.

With the transmission not coordinated, we would have (based on Section 9.1) dF,/dP, = dFE/dP, for
economic operation. Hence we would have

0.01P, + 10 = 0.02P, + 12 (1)
From Problem 9.13, we know that the load requires
P+ P — P, =350 + 150 — PiBy,
= 500 — 61.25 = 438.75 MW
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9.15

9.16

9.17
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Then with the transmission loss not coordinated, we would have
P+ P, —5Xx 107*P? = 438.75 2)

Solving (1) and (2) simultaneously yields P, = 417 MW and P, = 108.5 MW.
Comparing these results with the results of Problem 9.13, we see that the load on plant 1 is
increased from 350 MW to 417 MW, hence its fuel cost increases by

417
J’ (0.01P, + 10) dP, = $926.945/h
350
The load on plant 2 is decreased from 150 MW to 108.5 MW; hence its fuel cost decreases by

108.5
- J (0.02P, + 12) dP, = $605.277/h
1

50

The saving with loss coordination is thus 926.945 — 605.277 = $321.67/h.

For the system shown in Fig. 9-3, what is the minimum open-loop gain such that the
steady-state error Ae,, does not exceed 1 percent? '

From Fig. 9-3,
Ae 1

AVe 1+ G(s) ()
Substituting (9.24) in (1) and setting s = 0 (for the steady state) yield
(A‘/ref)ss (A‘/ref)ss
=t 1+ = et
Ae,, T+ x or k Ac.. (2)

The condition of the problem implies that the right side of (2) is not less than 100. Hence,

1+ k=100
and k = 99.

Obtain the form of the dynamic response of the system of Fig. 9-3 to a step change in the
reference input voltage.

From Fig. 9-3,
GG)

AV() = 3’"[“—6@

AV | )
Where G(s) is given in (9.24). The response of the system will depend on the characteristic roots of the
equation

1+ G(s)=0 @)

If the roots 54, s,, and s; are real and distinct, then the response will include the transient components
Ae’Y, A,e'™, and Ase™. However, if (2) has a pair of complex conjugate roots s;, s, = 0 £ jo, then
the dynamic response will be of the form Ae”sin (wt + ¢).

Assume that there are no changes occurring in the reference power setting of a turbine-
governor system (that is, the system is operating in the steady state), and the frequency-power
relationship of the turbine governor is that represented graphically in Fig. 9-7. Determine the
regulation constant R.

In (9.26), we see that, with AP, = 0, R is the negative of the slope of the f versus P, curve,
plotted in per-unit values. Hence, from Fig. 9-7,

Af 0.01
A _ 0005 pu

R =
AP, 0.2
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9.18

9.19

fipup
1.04
1.03
1.02

1.01

1.00
0.99
0.98+
T | | i i
0.2 0.4 0.6 0.8
Py, pu
Fig. 9-7.

For a certain turbine-generator set, R = 0.04 pu, based on the generator rating of 100 MVA
and 60 HZ. The generator frequency decreases by 0.02Hz, and the system adjusts to
steady-state operation. By how much does the turbine output power increase?

The per-unit frequency change is

-0.02
Per-unit Af =ﬁ =0 - —3.33 X 10 “pu
Then (9.26) yields
1
Per-unit AP, = —m(—3.33 x 107% =833 x 10 pu

The actual increase in output power is then

AP, = (8.33 x 107%)(100) = 0.833 MW

An area includes two turbine-generator units, rated at 500 and 750 MVA and 60 Hz, for
which R; = 0.04pu and R, = 0.05 pu based on their respective ratings. Each unit carries a
300-MVA steady-state load. The load on the system suddenly increases by 250 MVA. (a)
Calculate 8 on a 1000-MVA base. (b) Determine Af on a 60-Hz base and in hertz.

(a) We can change the bases of the R values with the formula

Sbase
_ (new)
Rnew - Rold

Sbase(old)
1000
Th R = (0.04) —— = 0.
us 1newy = (0.04) 500 0.08 pu
1000
d R = (0.05) —— = 0.
an 2newy = (0.05) 750 0.067 pu
Now, from (9.30),
1 1 1 1
B==—+—=—+-——=275pu

R, 'R, 008 0.067
(b) The per-unit increase in the load is 250/1000 = 0.25pu. From (9.29), with AP, ¢y = 0 for
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9.20

9.21

9.22
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steady-state conditions,
-1 1 s
= — = —0. = —9. X
Af ; AP, 27.50 25 9.091 x 107 pu

Also, Af = —9.091 x 107 x 60 = —0.545 Hz

For areas 1 and 2 in a 60-Hz power system, §; = 400 MW/Hz and $, = 250 MW/Hz. The
total power generated in each of these areas is, respectively, 1000 MW, and 750 MW. While
each area is generating power at the steady state with AP, = AP, = 0, the load in area 1

suddenly increases by 50 MW. Determine the resulting Af, (a) without LFC and (b) with
LFC. Neglect all losses.

(a) From (9.29), since AP, oy = 0 without LFC,

50 = —(400 + 250) Af

from which Af = —~0.0769 Hz.
(b) With LFC, in the steady state, (9.27) implies that ACE, = ACE, = 0; otherwise, the LFC given by

(9.27) would be changing the reference power settings of the governors on LFC. Also, the sum of the
net tie-line flows, AP,., + AP,.., is zero (neglecting losses). So

ACE, + ACE, = 0 = (B, + B,) Af
and Af = 0, since B, + B, # 0.

Supplementary Problems

A graph of fuel input versus power output for a certain plant is given in Fig. 9-8. Determine the fuel
requirements at (a) 120 MW and (b) 560 MW output power.

A

8-

Fuel input, 10° Btw/h

| i -

!
200 400 600
Output power P, MW

Fig. 9-8.
Ans. (a) 16.67 x 10° Btu/MWh; (b) 10.71 X 10° Btu/MWh

(a) For the plant of Problem 9.21, determine the fuel requirement at the maximum-efficiency operating
point. (b) What is the power output at that point?

Ans. (a) 10 x 10° Btu/MWh; (b) 400 MW
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9.23  Assuming a fuel cost of $1.60 per million Btu for the plant of Problem 9.21, plot the incremental fuel

9.25

9.26

9.27

9.28

9.29

cost versus output power.

Ans. Fig. 9-9

15
s
g e
a 12.5
=
=)
k=i

55
=2 10
3
=
=1 N
g Actual curve
E 7.5
|

x ! |
0 200 400 600

Output power P, MW
Fig. 9-9.

From the result of Problem 9.23, calculate the incremental fuel cost at the point at which the plant
operates at maximum fuel efficiency.

Ans. $16/MWh

Approximate the curve obtained in Problem 9.23 with a straight line, and obtain an equation for this
line.

Ans. dF/dP = 0.0093P + 6.75

The incremental fuel costs, in dollars per megawatthour, for two units in a plant are given by

dF. dF,
2N 0.007P, + 7 d  =_ 0002 +6
4P, ' e up, 2

During a 24-h period the load on each unit varies between 100 MW and 500 MW, whereas the plant
output varies from 200 MW to 700 MW. (a) At what power level should unit 2 begin to take on all the
additional load for the most economic operation of the plant? () What is the power output of the plant
at this point? Neglect losses.

Ans. (a) 12222 MW; (b) 222.22 MW

Referring to the result of Problem 9-5, plot a curve of incremental fuel cost versus plant output for
minimum fuel cost for the plant of Problem 9.26.

When the plant of Problem 9.26 is delivering its maximum power output, how should this load be shared
between the two units for minimum fuel cost?

Ans. 331.25MW; 368.75 MW

At what total output should the units in Problem 9.26 share the load equally?
Ans. 1000 MW
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9.31

9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40
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Calculate the incremental fuel cost for the operating condition obtained in Problem 9.28.

Ans. $9.319/MWh

At the maximum power output of the plant of Problem 9.26, determine the saving per hour in fuel cost
for economic operation as compared to the situation in which unit 1 carries 400 MW.

Ans. $37.81/h

For the system shown in Fig. 9-2, let I, = 1.0/0°, L, = 0.8/0°, V; = 1.05/10°, and V, = 1.07/15°, all per

unit. The line impedances, again per unit, are Z, = 0.05 + j0.20, Z, = 0.06 + j0.30, and Z, =
0.06 + j0.40. Determine the system loss coefficients.

Ans. 0.1029, 0.0561, and 0.1123 pu

Calculate the transmission loss for the system of Problem 9.32 with the loss formula (9.6). Verify the
result by a direct calculation of the I’R loss.

Ans. 0.2828 pu

Express the result given by (9.10) in matrix form.

Ans., Po = f’BP, where P = P transposed

Calculate the penalty factors for the two plants operating as in Problem 9.32.

Ans. 1.35;1.32

For the system of Problem 9.32, the incremental fuel costs for the two plants are given by

dF, dE,
— = 0.01P, + 10 d — = 0.02P, +
ap, A an ap, 0.02P, + 10

The system operates at A = $11.6/MWh for minimum fuel cost. Determine the power generated at each
plant.

Ans. 160MW; 80 MW

Calculate the efficiency of the plant of Problem 9.32.
Ans. 71.72 percent

The incremental fuel costs for two units in a plant are

dF, dF,
— = (0.20P, + 4.0 d —= = (0.25P, + 3.
4P, 0.20P, an 4P, 0.25P, + 3.0

The minimum and maximum loads on each unit are 20 MW and 125 MW, whereas those on the plant are
40MW and 250 MW. At what plant output should the first unit begin to share the load for most
economic operation of the plant?

Ans. 40MW

Determine the incremental fuel cost for the given operation of the plant of Problem 9.38.

Ans. $8.0/MWh

For the system of Fig. 9-3, calculate the percent steady-state error at an open-loop gain of 90.

Ans. 1.1 percent
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92.41

9.42

9.43

9.4

9.45

A 500-MW, 60-Hz generator has a regulation constant of 0.05. Calculate the increase in the input power
resulting from a 0.2-Hz drop in the frequency, with no change in the reference input to the system.

Ans. 20MW
For the system of Problem 9.19, determine the per-unit increase in the input to each generator that
results from the load increase.

Ans. 0.18125 pu; 0.21642 pu

The operating costs for two units supplying power to a system are in dollars per hour,
F, = 10P, + 8000P; and F, = 8P, + 9000P;

where P, and P, are in kilowatts. For a total output of 800 MW, calculate the output from each unit such
that the total operating cost is minimal.

Ans. 365 MW,; 435 MW

Determine the minimum hourly operating cost for the system of Problem 9.43 with a 600-MW load on
the system.

Ans. $6900/h

Calculate the incremental operating cost that minimizes the total operating cost for the system of
Problem 9.43 when the total load on the system is 1300 MW,

Ans.  $20/MWh



Chapter 10

Power System Stability

By the stability of a power system we mean the ability of the system to remain in operating
equilibrium, or synchronism, while disturbances occur on the system. Three types of stability are of
concern: steady-state, dynamic, and transient stability.

Steady-state stability relates to the response of a synchronous machine to a gradually increasing
load.

Dynamic stability involves the response to small disturbances that occur on the system,
producing oscillations. If these oscillations are of successively smaller amplitudes, the system is
considered dynamically stable. If the oscillations grow in amplitude, the system is dynamically
unstable. The source of this type of instability is usually an interaction between control systems. The
system’s response to the disturbance may not become apparent for some 10 to 30ss.

Transient stability involves the response to large disturbances, which may cause rather large
changes in rotor speeds, power angles, and power transfers. The system’s response to such a
disturbance is usually evident within 1s.

10.1 INERTIA CONSTANT AND SWING EQUATION

The angular momentum and inertia constant play an important role in determining the stability
of a synchronous machine. The per-unit inertia constant H is defined as the kinetic energy stored in
the rotating parts of the machine at synchronous speed per unit megavoltampere (MVA) rating of
the machine. Thus, if G is the MV A rating of the machine, then

GH = Jw!? (10.1)
where J is the polar moment of inertia of all rotating parts in kilogram-(meters-squared), and o, is

the angular synchronous velocity in electrical radians per second. If M is the corresponding angular
momentum, then M= Jo, (10.2)

Since w, = 360f electrical degrees per second, (10.1) and (10.2) yield
GH = Mo, = $M(360)f

GH
or M= 1807 MIJ - s/electrical degree (10.3)

where f is the frequency of rotation.

Consider a synchronous generator developing an electromagnetic torque 7, (and a corresponding
electromagnetic power P,) while operating at the synchronous speed w,. If the input torque provided
by the prime mover at the generator shaft is 7;, then under steady-state conditions (with no

disturbance) we have T.=T
or Lo, = T,
and Tw, — T,wy=P, — P, =0 (10.4)

If a departure from steady state occurs, such as a change in load or a fault, the “power in” P, no
longer equals the “power out” P,,, and the left side of (10.4) is not zero. Instead, an accelerating
torque comes into play. If P, is the corresponding accelerating (or decelerating) power, then
d*6
P[,:P,-—PE=MW (105)

146
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where M has been defined in (10.3), P, is in megawatts, and 6 is the angular position of the rotor.
Further, in the steady state,

dé
o w
dt y
SO 0= wt+ d (10.6)

where the constant of integration 6 is called the power angle of the synchronous machine.
Substituting (10.6) in (10.5) yields
d*6
M— =P —-P =P, 10.7
dt2 ( )
which is known as the swing equation. If we combine (10.3) and (10.7) and divide by G, we obtain
the per-unit swing equation as
H & _
180f dr? '
The swing equation contains information regarding the machine dynamics and stability. However, it
is important to realize that we made two basic assumptions in deriving it: (1) In (10.2) we took M to
be constant, although, strictly speaking, this is not so; (2) the damping term proportional to do/dt
has been neglected.

— P, =P, per unit (10.8)

10.2 H CONSTANT ON A COMMON MVA BASE

An inertia constant H,., based on a machine’s own MVA rating may be converted to a value
H,y, relative to the system base Sy with the formula

Hsyst = I{machM (109)
Ssyst
A convenient system base value is 100 MVA.
The moment of inertia of a synchronous machine is given by WR?/32.2 slug-(feet-squared),
where W is the weight of the rotating part of the machine in pounds, and R is its radius of gyration in
feet. Machinery manufacturers generally supply the value of WR? for their machines.

10.3 EQUAL-AREA CRITERION

Consider 6 in the swing equation (10.7), which describes the motion, or swing, of the rotor. As
is shown in Fig. 10-1, in an unstable system, 6 increases indefinitely with time and the machine loses
synchronism. In a stable system, & undergoes oscillations which eventually die out. From the figure it
is clear that, for a system to be stable, it must be that dé/dt = 0 at some instant. This criterion (that
dd/dt be zero) can be obtained simply from (10.7). Furthermore, if we assume that H is constant
and that damping is negligible and we ignore the control system, then we have

aods _2p,dd
dt d* M dt

which, upon integration, gives

2 &
(7 22 (" 4y
dt)] — M,
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do 2 (°
that —=\—{ P, dé
so tha 7 My, Fe
where J, is the initial power angle before the rotor begins to swing because of a disturbance. The

stability criterion dé/dt = 0 (at some moment) implies that

5
P,dé =0 (10.10)

[

This condition requires that, for stability, the area under the graph of accelerating power P, versus &
(Fig. 10-2) must be zero for some value of §; that is, the positive (or accelerating) area under the
graph must be equal to the negative (or decelerating) area. This criterion is therefore known as the
equal-area criterion for stability.

8 A Unstable

6ma)( -

"t
Fig. 10-1.
PA
c
Pmax Pe=PmaX sin &
P A \
| A, !
af A
] -
o & % 3
Fig. 10-2.

The equal-area criterion requires that, for stability,

Area A; = area A,
51 &2

or (P, — P,x8in 8)dd

¢ -}t

(Po.x8ind — P)dd

or, after the integrations are performed,
P81 — 8g) + Prax(cos 6; — cos 8p) = Pi(6; — 85) + Prax(cos 8; — cos 8,) (10.11)
But because

I)i = I)maxSin 61
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(10.11) becomes
(6, — 8¢) sin 6, + cos &, — cos &, = 0 (10.12)

If we know &8, and 8,, we can solve (10.12) for §,.

10.4 CRITICAL CLEARING ANGLE

If a disturbance (or fault) occurs in a system, & begins to increase under the influence of positive
accelerating power, and the system will become unstable if § becomes very large. There is a critical
angle within which the fault must be cleared if the system is to remain stable and the equal-area
criterion is to be satisfied. This angle is known as the critical clearing angle 8.. As an example,
" consider a system that normally operates along curve A in Fig. 10-3. If a three-phase short circuit
occurs across the line, its curve of power versus power angle will correspond to the horizontal axis.
For stability, the critical clearing angle must be such that area A; = area A,.

PA

g
i

8 8 5 5

Fig. 10-3.

In Fig. 10-4 we show a power-angle curve A before a fault, B during the fault, and C after the
fault such that A = P, sin 8, B = kA, and C = k,A, with k; < k,. For stability, we must have
area A; = area A,. Based on Fig. 10-4, this condition yields

(8, — 80)P, = Bda + f Cdd (10.13)

Substituting for B and C in (10.13), with P, = P, sin 0, eventually yields

cos b, = K [(8,. — 8) sin 8y — kycos &y + k5 cos 8,,] (10.14)
- 1
From Fig. 10-4, we have
P. = P,sin 8, = k,P,, sin 8,, = k,P,, sin (& — §,,) (10.15)
Hence, from (10.15),
sin 8, = k,sin (7 — 6,,) (10.16)

With k,, k,, and 8, specified, the critical clearing angle may be obtained from (10.14) and (10.16).
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PA

&
o
£
oY

10.5 A TWO-MACHINE SYSTEM

The swing equation (10.7) may be written for two machines as
d*s,

M, a7 =~ Fi Pa (10.17)
d*é
My—3 =Py~ P, (10.18)

where the subscripts 1 and 2 correspond to machines 1 and 2, respectively. If we denote the relative
angle between the two rotor axes by 8, such that 6 = 6, — §,, then (10.17) and (10.18) may be
combined and simplified to

d?é .
E - P - P for two machines (10.19)
where
Mo MM MR M WP - ME,
M, + M, ! M, + M, ¢ M, + M,

10.6 STEP-BY-STEP SOLUTION

The swing equation may be solved iteratively with the step-by-step procedure shown in Fig. 10-5.
In the solution, it is assumed that the accelerating power P, and the relative rotor angular velocity w,
are constant within each of a succession of intervals (top and middle, Fig. 10-5); their values are used
to find the change in 6 during each interval,

To begin the iterations, we need P,(0+), which we evaluate as

P,(0+) = P, — P,(0+) (10.20)
Then the swing equation may be written
‘2—2[? = a(0+) = P—”%ﬁ (10.21)
and the change in w, is given (Fig. 10-5) by
Aw, = a(0+) At (10.22)
Then W, = W+ Aw, = 0wy + a(0+) At (10.23)

Similarly, the change in the power angle for the first interval is

AS, = Aw, At (10.24)
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Fig. 10-5.
and so O; = 6y + A8, = &y + a(0+)(Ar)? (10.25)

Evaluation of P,

If there is no discontinuity in the swing curve during an iteration interval, then P,(0+) is equal to
half of P, immediately after the fault. (A swing curve is a curve of power versus 8.) If there is a
discontinuity at the beginning of the ith interval, then

Poi-1y = 3(Pai-1)- + Pag—y+) (10.26)

where P,;_i- and P,,_;, are, respectively, the accelerating power immediately before and
immediately after the fault is cleared.



152 POWER SYSTEM STABILITY [CHAP. 10

If the discontinuity occurs at the middle of an interval, then for that interval
P, = P, — output during the fault (10.27)

For this case, at the beginning of the interval immediately following the clearing of the fault, P, is
given by

P, = P, — output after the fault is cleared (10.28)
Finally, if the discontinuity occurs neither at the beginning nor at the middle of an interval, P, may
still be evaluated from (10.26) through (10.28).
Algorithm for the Iterations

Returning now to (10.25), we see that &, gives us one point on the swing curve. The algorithm
for the iterative process is as follows:

Pa(n—l) = Pl - Pe(n—l) (1029)
b BV

e(n—i) = ————S8In (S(n—l) (10.30)

P,,_

Xy = (—Ml—’ (10.31)

AW,y = ap_1) At (10.32)

wr(n) = wr(n-vl) + a(n—l) At (10.3.3)

P, _
Ay = Adgu_yy + ——(M—“ (Ar)? (10.34)
Oy = O(u—1y + Ady, (10.35)

The use of this algorithm in conjunction with the equal-area criterion provides the critical clearing
angle and the corresponding critical clearing time.

Solved Problems

10.1 The inertia constant H for a 60-Hz, 100-MVA hydroelectric generator is 4.0 MJ/MVA. How
much kinetic energy is stored in the rotor at synchronous speed? If the input to the generator
is suddenly increased by 20 MV A, what acceleration is imparted to the rotor?

The energy stored in the rotor at synchronous speed is given by (10.1) and is
GH = 100 x 4 = 400 MJ

The rotor acceleration d°8/df” is given by (10.7) with P, = 20 MVA of accelerating power and with M
as determined from (10.3). Thus, (10.3) yields
_GH_ 40 1
180f 180 x 60 27
and (10.7) becomes
1 d%*8
=== =120
27 dr

so d°8/dt* = 20 x 27 = 540°/s>.

10.2 In Section 10.2 we noted that machinery manufacturers generally supply the value of WR2
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10.3

10.4

10.5

Derive a relationship between H and WR? for a machine whose rating is S,,.., MVA.
The Kkinetic energy of rotation of the rotor at synchronous speed is

_1WR?

KE =
2322

2 2z
(%) (in foot-pounds)

where n is the rotor speed in revolutions per minute. Since 550 ft - 1b/s = 746 W, 1ft-Ib = 746/5507.
Converting foot-pounds to megajoules and dividing the last equation by the machine rating in

megavoltamperes, we obtain
746 _6\(1WR? [27n\*
(5 ) G3) (&)
550 232.2/\ 60

Smach
_ 231 x 107°WR?

Sm ach

®)

A 1500-MVA, 1800-rev/min synchronous generator has WR? = 6 x 10°1lb - ft>. Find the
inertia constant H of the machine relative to a 100-MVA base.

From (1) of Problem 10.2,

- (2.31 X 107%)(6 x 10°)(1800)>
- 1500

= 2.994 MI/MVA

Relative to a 100-MVA base, then,

500
H =299 X llTO = 44,91 MJ/MVA

A 500-MVA synchronous machine has H; = 4.6 MI/MVA, and a 1500-MVA machine has
H, = 3.0MJ/MVA. The two machines operate in parallel in a power station. What is the
equivalent H constant for the two, relative to a 100-MVA base?

The total kinetic energy of the two machines is
KE = 4.6 x 600 + 3 x 1500 = 6800 MJ
Thus, the equivalent H relative to a 100-MVA base is

6800
H = ——=68MJ/MVA
100 8 MI/

For a certain lagging-power-factor load, the sending-end and receiving-end voltages of a short
transmission line of impedance R + jX are equal. Determine the ratio X/R so that maximum
power is transmitted over the line under steady-state conditions.

From the phasor diagram of Fig. 10-6, we may write
Vs = Vg + I(cos ¢ — jsin ¢)}(R + jX)
(Ve + IRcos ¢ + IX sin ¢p) + j(IX cos ¢ — IR sin ¢)
R(Vscos 8) = (Vg + IR cos ¢ + IX sin ¢)R
X(Vssin ) = (IX cos ¢ — IR sin ¢p)X

Combining these equations and letting Z*> = R* + X, we get
Vs(Rcos & + Xsin 8) = RVi + IZ*cos ¢
RV,

VAR

Vi
or Icos¢=Z—§(Rcosé+Xsin6)—
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Hence, we have

A% RV}
Py =Vilcos ¢ = EZS(R cos 6 + Xsin 8) — ZZR (1)
Now let tan B = X/R; then (1) becomes
Ve Vs RV
P = %ces (B - 8) - ZZR
For maximum power 8 = §, and so
p _ eV RV% 2
R(max) \/IW Rz + Xz ( )
dPR(max)
d R _ g
an X
Vs : 2 2y — 2
Thus — | (R°+ X*)=4R
Ve

and since V5 = Vi, we have X/R = \/§

10.6 The sending-end and receiving-end voltages of a transmission line at a 100-MW load are equal
at 115kV. The per-phase line impedance is (4 + j7) Q. Calculate the maximum steady-state
power that can be transmitted over the line.

Since Vi, = V; = 115,000/\@ = 66,400, we have, from (2) of Problem 10.5,
WY RV%
PR(max) - \/W - Rz + Xz
_ [ (66.4)* _ 4(66.4)*
T WesT £+ 7

= 826.5 MW total

}106 = 275.5 MW /phase

10.7 A synchronous generator, capable of developing 500 MW of power, operates at a power angle
of 8°. By how much can the input shaft power be increased suddenly without loss of stability?

Initially, at 8, = 8°, the electromagnetic power being developed is
P = Py sin 8q = 500sin 8° = 69.6 MW

Let 6, (Fig. 10-7) be the power angle to which the rotor can swing before losing synchronism. Then the
equal-area criterion requires that (10.12) be satisfied (with §,, replacing &,). From Fig. 10-7,
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10.8

8, = m — &y, so (10.12) yields
(m— 8, — 8p)sin 8; + cos(w — ;) — cos 6o =0
or (w — 8, — 8o)sin &, — cos 8, — cos &, = 0 (H
Substituting 8, = 8° = 0.13885 rad in (1) gives
(3-6)sind, —cosd, —099=0
This yields 8, = 50°, for which the corresponding after-the-fault electromagnetic power is
Py = P, sin 6; = 500sin 50° = 383.02 MW

The initial power developed by the machine was 69.6 MW. Hence, without loss of stability, the system
can accommodate a sudden increase of

P, — P, =383.02 ~ 69.6 = 313.42MW

PA

Py =Py t]

8o 3 O n 3
Fig. 10-7.
Determine the maximum additional load that could suddenly be taken on by the transmission
line of Problem 10.6 without losing stability.
If we neglect the resistance, then the initial (maximum) power F, is

ViV
P, = SXRsin 86 = Pr(max Sin 8¢

From (1) of Problem 10.7,

(w — 8, — 8y)sin b, — cos 6; — cos &, = 0 (D
We have
P, = 3(100) = 33.33 MW
1115°
and Primay = 377 10° = 629.76 MW
33.33
= <1 -1 = 3° = 0_ d
) 0 = sin 52976 3 052 ra

Then (1) becomes
(w — 8, — 0.052)sin 8; — cos 8, — cos3° = 0
which yields 8, = 47.8°. Hence the system will remain stable for an increase in load of up to
Prmax) SN 8; — P, = 629.765in47.8° — 33.33 = 433.2 MW/phase
= 1299.6 MW total
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10.9 A synchronous generator is operating at an infinite bus and supplying 0.45 pu of its maximum
power capacity. A fault occurs, and the reactance between the generator and the line
becomes four times its value before the fault. The maximum power that can be delivered after

the fault is cleared is 70 percent of the original maximum value. Determine the critical
clearing angle.

Let
v = P, .. during the fault
' P,..x before the fault
P,_ .. after the fault
X, =

" Py before the fault
d, = power angle at the time of the fault
8, = power angle when fault is cleared
6,, = maximum angle of swing

Then the equal-area criterion, A; = A, in Fig. 10-8, gives us

8,

X1 Pon sin 6d6 = f " X2 P8I0 6 dS — P(6,, — 3.)

¢

E@—M—f

0

1 By
Hence, cos 6, = [— (8,, — 8) + x,c088,, — x, cos 60] (1)
x2 - xl Pmax
PA
/Before fault
During fault
After fault
Ps | - i N — —_
A /i |
£ | |
/ !
| i }
| | |
3 5. O 5
Fig. 10-8.

Initially, the generator is supplying 0.45 pu of P,,,. Thus,
Ps = 0'45Pmax = Fmay sin 60
from which 8, = sin~'0.45 = 26.74°. Now P,.. = EV/X. When the fault occurs, X becomes 4X, so that

. EV . .
X, P sin 8, = xS O = §Pmax5in 8,
so that x, = 0.25. '
After the fault, with x, = 0.70, we have

P, = x,P,,.sin §,,

from which
P 0.45P,
61 = <in-1 s = -1 max
m =S 670p,

= 40°
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Then §,, = 90° + &, = 130° (see Fig. 10-8), and
' Om — 8 = 130° — 26.74° = 103.26° or 1.8019 rad
Hence, from (1),
1
6, = ——[0.45(1. . ° — 0. .74°] = 0.
cos 070 = 025 [0.45(1.8019) + 0.70 cos 130° — 0.25 cos 26.74°] = 0.3059
so that 8, = cos™'0.3059 = 72.2°.

10.10 A 100-MVA, two-pole, 60-Hz generator has a moment of inertia of 50 X 10° kg - m?. What is

the energy stored in the rotor at the rated speed? What is the corresponding angular
momentum? Determine the inertia constant H.

The stored energy is

2z % 3600

1 1
KE(stored) = Efwf,, = 5(50 X 103)( %0

2
) = 3553 M1

_ KE(stored) - 3553
T MVA 100
_ GH _ (100)(35.53)
T 180f  (180)(60)

Then H

= 35.53MJ/MVA

= (.329 MJ - rad/s

10.11 The input to the generator of Problem 10.10 is suddenly increased by 25 MW. Determine the
rotor acceleration.

From Problems 10.10 and 10.1,

0.3298 = 25
. 25
6 = —-—= o 2
Thus, 0325 76°/s

10.12 Assuming the acceleration calculated in Problem 10.11 remains constant for twelve cycles,
calculate the change in the power angle and the speed that occurs during those twelve cycles.

Twelve cycles are equivalent to 12/60 = 0.2 s. During that time, & changes by (471.25)(0.2)* =
9.425 electrical degrees. Now 471,95

360
so the rotor speed at the end of the twelve cycles is 3600 + 78.5 = 3678.5 rev/min.

b =60 x = 78.5rev/min/s

10.13 A 60-Hz generator, connected directly to an infinite bus operating at a voltage of 1/0° pu, has
a synchronous reactance of 1.35 pu. The generator no-load voltage is 1.1 pu, and its inertia
constant H is 4 MI/MVA. The generator is suddenly loaded to 60 percent of its maximum
power limit; determine the frequency of the resulting natural oscillations of the generator
rotor.

We find 8, using sin 6, = P,/P, = 0.6, which gives d, = 36.87°. Then

3P, 1L1x1
38 lses  1.35

cos 36.87 = 0.6518 pu/rad

Also, we have

_H_
Taf T X 60

pu s*/rad
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a3
Frequency of oscillation = "——(aPE/Mé)%m
X 60 x 0.6518
= \/n—; = 5.5rad/s = 0.882 Hz

10.14 Derive (10.19).
Since 6 = 6, — 6,
5=6,-34, (1)
From (1), (10.17), and (10.18), we have

" . 1 1 e
61_62=A71(R1—Pel)_ﬁ2(PiZ_PeZ)=6 (2)
Multiplying both sides of (2) by M;M,/(M, + M,) yields

MM, 1 [

M, + M,  M+M,
_ M2Pi1 _ M1Piz MZPel - Mlpez
M, + M, M, + M,

or Mé = P - P
which is the same as (10.19).

(M2Pi1 - MlPiz) - (M2Pel - M1Pez)]

10.15 The kinetic energy stored in the rotor of a 50-MVA, six-pole, 60-Hz synchronous machine is
200 MJ. The input to the machine is 25 MW at a developed power of 22.5 MW. Calculate the
accelerating power and the acceleration.

The accelerating power is
P,=P — P =25-225=25MW
Now, also,

_ KE(stored) _ 200 _
" machine rating in MVA 50

4

and, from (10.3),

_GH  50x4
O 180f 180 x 60
= 1.06 MJ - s/rad

= (.0185MJ - s/degree

Finally, from (10.7),

« 2.5
6=—==1235 2
106 6 rad/s

10.16 If the acceleration of the machine of Problem 10.15 remains constant for ten cycles, what is
the power angle at the end of the ten cycles?

From Problem 10-15, § = 2.356. Integration with respect to  yields
o = 2.356t + C,
Since d =0 at¢ = 0, C, = 0. A second integration now gives

8 =1178* + C,
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Att =0, let 8 = §, (the initial power angle). Then
6= 11782 + &,
At 60 Hz, the time required for ten cycles is t = 1s. For this value of ¢,
8 = L.178(3) + &, = (0.0327 + &,) rad
10.17 The generator of Problem 10.15 has an internal voltage of 1.2 pu and is connected to an
infinite bus operating at a voltage of 1.0 pu through a 0.3-pu reactance. A three-phase short

circuit occurs on the line. Subsequently, circuit breakers operate and the reactance between
the generator and the bus becomes 0.4 pu. Calculate the critical clearing angle.

Before the fault,

P = 1.2 x 1.0 — 4.0pu
0.3
During the fault,
Poge = 0
and k, = 0 for use in (10.14). After the fault is cleared,
P = 1.20>-<41.0 ~ 3.0pu

and k, = 3.0/4.0 = 0.75 for use in (10.14).
The initial power angle &, is given by 4sind, = 1.0, from which &y = 0.2527rad. Define
6,, = m — §,, (see Fig. 10-4). The angle §,, in (10.14) is obtained from

1

smdm=ﬁ and 6, =m — 6],

from which 6,, = 2.8 rad. Substituting k,, k,, d, and J,, in (10.14) yields
1
cos 5, = ﬁ[(Z.S — 0.2527)0.25 — 0 + 0.75 cos 2.8] = —0.093
from which 6, = 95.34°.

10.18 Using the step-by-step algorithm, plot the swing curve for the machine of Problem 10.17.

The per-unit value of the angular momentum, based on the machine rating, is

1.0x 4
M=————=37%x10"
Boxgo o <10 p
From (10.26), we have
1.0 - 0.0
PO0+) = ——F—=05
2
From (10.21),
0.5 R
CV(0+) = m = 1351°/s

From (10.22) with At = 0.05s,
Aw,q = 1351 X 0.05 = 67.55°/s
From (10.23),
w,qy = 0 + 67.55 = 67.55°/s
From (10.24),
Ady, = 67.55 x 0.05 = 3.3775°
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Finally, from (10.25), with 6y = 14.4775° as determined in Problem 10.17,
Oy = 14.4775 + 3.3775 = 17.855°
For the second interval, (10.29) and (10.31) to (10.33) give us
Py =10-00=10
3T1><'OI(—)Z = 2702°/s
Aw,u = 2702 x 0.05 = 135.1°
W,z = W,y + Aw,my = 67.55 + 135.1 = 202.65°/s
Adpy = W, At = 202.65 x 0.05 = 10.1325°
8ay = Oy + Adpy = 17.855 + 10.1325 = 27.9875°

Ty =

Since o and Aw, do not change during succeeding intervals, we have
W,y = W, + A,y = 337.75%/s
Adgy = w3 At = 337.75 X 0.05 = 16.8875°
O3 = Opy + Adg, = 44.875°

and so on. In this way we obtain the following table of values, from which Fig. 10-9 is plotted:

t, s d, degrees

0.0 14.48

0.05 17.85

0.10 27.99

0.15 44 88

0.20 68.52

0.25 98.92

/
_____ 0= 95.34° e

|
80°1- }
|
|
L4 [
60° - |
|
|
1

. £=0.245

40°F- /

207 ,/

|
!
|
|
I
!
|
|
|
|
|

| 1 | | | L
2 e

0 0.05 0.10 0.15 0.20 025 7,

7]

Fig. 10-9.

10.19 From the results of Problems 10.17 and 10.18, find the critical clearing time in cycles for an
appropriately set circuit breaker.



CHAP. 10] POWER SYSTEM STABILITY 161

10.20

10.21

10.22

10.23

10.24

10.25

10.26

10.27

10.28

From Problem 10.17, §. = 95.34°. For this critical clearing angle, Fig. 10-9 gives ¢ = 0.245s. Hence
the fault must be cleared within 60 X 0.245 = 14.7 cycles.

Supplementary Problems
The inertia constant H of a 150-MVA, six-pole, 60-Hz synchronous machine is 4.2 MJ/MVA.
Determine the value of WR? in 1b - ft°.

Ans. 1,893,9391b - ft*

The generator of Problem 10.20 is running at synchronous speed in the steady state. () What kinetic
energy is stored in the rotor? (b) If the accelerating power due to a transient change is 28 MW, calculate
the rotor acceleration.

Ans. (a) 630MJ; (b) 480°/s*

A 300-MVA, 1200-rpm synchronous machine has WR” = 3.6 x 10°1b - ft>. Calculate H for the machine
(a) on its own base and (b) on a 100-MVA base.

Ans. (a) 3.99MI/MVA; (b) 11.97 MI/MVA

A 100-MVA generator has H = 4.2MJ/MVA, and 250-MVA machine, operating in parallel with the
first, has H = 3.6 MI/MVA. Calculate the equivalent inertia constant H for the two machines on a
50-MVA base.

Ans. 26.4MI/MVA

The moment of inertia of a 50-MVA, six-pole, 60-Hz generator is 20 X 10° kg - m®. Determine H and M
for the machine.

Ans. 3.15MJ/MVA; 0.0146 MJ - s/degree

A synchronous motor develops 30 percent of its rated power for a certain load. The load on the motor is
suddenly increased by 150 percent of the original value. Neglecting all losses, calculate the maximum
power angle on the swing curve.

Ans. 40°

A 100-MVA synchronous generator supplies 62.5 MVA of power at 0.8 lagging power factor. The
reactance between the load and the generator is normally 1.0 pu, but it increases to 3.0 pu because of a
sudden three-phase short circuit. The fauit is subsequently cleared and the generator then supplies
4375 MVA at 0.8 lagging power factor. Determine the critical clearing angle.

Ans. 68.58°

A synchronous generator supplies its rated power to an infinite bus at a voltage of 1.0 pu. The reactance
between the generator and the line, normally 0.825 pu, increases to 0.95 pu because of a fault. Find the
critical clearing angle.

Ans. 58.73°

For the generator of Problem 10.15, determine the rotor speed in revolutions per minute at the end of
ten cycles.

Ans.  1203.75 rev/min
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10.29

10.30

10.31

10.32

10.33

10.34

10.35
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A motor delivers 0.25 pu of its rated power while operating from an infinite bus. If the load on the
motor is suddenly doubled, determine §,, based on the equal-area criterion. Neglect all losses.

Ans. 45°

The inertia constant M of a synchronous machine is 4.45 x 107*pu. The machine operates at a
steady-state power angle of 24.7°. Because of a fault, the power angle changes to a value given by the
swing equation & = 0.314pu. Using the step-by-step algorithm, plot the swing curve and use it to
determine the maximum value of the power angle.

Ans. 67°

The ABCD constants for the nominal-II circuit representation of a transmission line are A = D =
0.9/0.3°, B = 82.5/76°Q, and C = 0.0005/90°S. What is the maximum power that can be transmitted
over the line without making the system unstable if |V = [Vi| = 110kV?

Ans. 114.09 MW

Sketch the power-angle diagram for the line of Problem 10.31 when that line is represented by (a) an
approximate series circuit and (b) a series reactance only. Determine the maximum power transmitted
in each case.

Ans. (a) 111.18 MW, (b) 151.16 MW

The per-unit reactances for a given system are shown in Fig. 10-10. Unit power is being delivered to the
receiving-end bus of the system at unity power factor and unit voltage. A three-phase short circuit
occurs at F, the receiving end of one of the lines. Find the critical clearing angle.

j0.25
1.0V
£ S E—10MvaA
j0.2 70.25 j0.2 1.0 power factor
F
Fig. 10-10.

Ans. 59°

A 50-MVA, 33-kV, three-phase, four-pole, 60-Hz synchronous generator delivers 40 MW of power to
an infinite bus through a total reactance of 0.55 pu. Because of a sudden fault, the reactance of the
transmission line changes to 0.5 pu. The inertia constant of the machine 4.806 MJ/MVA. Sketch the
swing curve during the fault, assuming that the voltage at the infinite bus is 1.0 pu and that behind the
transient reactance is 1.05 pu. The transient reactance of the machine is 0.4 pu.

Ans. Fig. 10-11

In a plant, two synchronous machines swing together. The inertia constants of the machines are H, and
H,, their MVA ratings are S; and S,, the per-unit mechanical power inputs to the two units are P,,, and
P,., and P,, and P,, are respectively the electrical power developed by the machines. Obtain an
equivalent swing equation for the two-machine system in terms of inertia constants referred to a
common base, the per-unit synchronous frequency w, in radians per second, the per-unit electrical
frequency in radians per second, and the given values of per-unit power.

2 .
Ans. ;(H1 + Hy)w,,(t)0 = P, + P, — (P., + P.,)
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Fig. 10-11.

10.36 During a fault lasting 0.05 s, the swing equation for a 60-Hz maching was, for per-unit values,

. 5
a=?” 0=1¢=005s

The initial power angle was 0.418 rad. When the fault was cleared, the developed electrical power
became 2.46sin & per unit. Determine (¢) the maximum power angle and (b) whether or not the
machine remained stable.

Ans. (a) 156°; (b) remained stable

10.37 Calculate the critical clearing time in cycles for the machine of Problem 10.37.

Ans. 11.5 cycles

10.38 Rework Problems 10.36 and 10.37 using a numerical method.



Chapter 11

Power System Protection

We have seen in earlier chapters that a fault in a power system can lead to abnormal currents
and voltages. For example, during a three-phase short circuit, the currents may become excessively
large and the voltages may go to zero. The system must be protected against such occurrences, and
steps must be taken to remove a fault as quickly as possible. In this chapter we examine some of the
means for doing so.*

11.1 COMPONENTS OF A PROTECTION SYSTEM

Three types of components generally constitute a power system protection system: circuit
breakers, transducers, and relays. In essence, when a fault occurs on the system, a voltage or current -
signal is transmitted to a relay by a transducer. The relay, in turn, operates a circuit breaker, and
thereby the fault is cleared. The fault gives rise to abnormal voltages and currents, which may be in
the range of kilovolts and kiloamperes. The transducer reduces them to much lower levels before
transmitting the signal to the relay. The entire sequence of sensing and clearing the fault must be fast
and reliable.

Figure 11-1 shows a one-line diagram of a portion of a power system with the components of its
protection system in place.

@
CB

CB = Circuit breaker
T = Transducer
R = Relay

Fig. 11-1.

For reliability, the concept of zones of protection is implemented in protection systems. Figure
11-2 shows overlapping zones of protection, indicated by closed dashed lines, for a typical power
system. Each zone contains two circuit breakers and one or more components of the power system.
When a fault occurs within a zone, the protection system for that zone acts to isolate the zone from
the rest of the system. The overlapping of zones ensures that no portion of the power system is left
unprotected. However, the regions of overlap must be made as small as possible.

* Follows W. D. Stevenson, Ir., Elements of Power System Analysis, 4th ed., McGraw-Hill, 1982.
164
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11.2 TRANSDUCERS AND RELAYS

As was mentioned earlier, transducers are used to reduce abnormal current and voltage levels
and transmit input signals to the relays of a protection system. These transducers take the form of
current and voltage (or potential) transformers, also known as instrument transformers. In contrast
to power transformers, the power ratings of instrument transformers are rather low, perhaps 25 to
500 VA, depending on the load or burden on the transformer.

A current transformer (CT) is symbolically represented as in Fig. 11-3. The primary generally
consists of the transmission line (ab in Fig. 11-3); the secondary winding consists of a multturn coil.
The dots in the symbol imply that the secondary current leaving terminal @’ is ideally in phase with
the primary current entering terminal a. Nonideal instrument transformers have phase-angle and
ratio errors, as shown in Fig. 11-4. Standard CT transformation ratios range from 50:5 to 1200:5.

Phase angle

A
2 1.004 -
s
£ 25
g 1.000 |
= 50 100
&
g /
= 0,99

Fig. 11-4.

Voltage transformers (VTs) for application at or below 12 kV (primary voltage) generally have a
67-V secondary winding. For higher-voltage applications, a configuration of the type shown in Fig.
11-5 is used. In such a coupling-capacitor voltage transformer (CVT), with the appropriate L and C
values (tuned for resonance), the phase-angle error is eliminated. Also, C; and C, are chosen so that
only a few kilovolts appear across C, when A is at the (infinite) bus voltage, and the tapped voltage
is reduced to the relay operating voltage.
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Fig. 11-5.

11.3 RELAY TYPES

The majority of the relays used in protection systems are of the following five types: magnitude
relays, directional relays, ratio relays, differential relays, and pilot relays.

Magnitude relays, also known as overcurrent relays, respond to current inputs. They operate to
trip a circuit breaker when the fault current exceeds a predetermined value. The current (on the
secondary side of a CT) required to actuate the relay is known as the pickup current |I,|. If || is the
fault current referred to the secondary, then the relay operates according to the following
constraints:

Trip for  |Ig] > ||

Block for |Ig| < |1, (11.1)

These constraints are shown graphically in Fig. 11-6. There is, however, another constraint—the

relay operating time T, which is a function of I and I,. That is, the time required for the relay to
operate once |Iz| exceeds |1,| may be written as the function

T = g(ilsl — 1L,]) (11.2)

and represented by a circle such as T; or 7 in Fig. 11-6.

Im(I)

T : V T : L

{11!

@j 1 Re()

Fig. 11-6.
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The time characteristics of overcurrent relays are more generally represented in the form of
curves like those in Fig. 11-7. The pickup current is adjusted by choosing the proper primary tap
setting. (We demonstrate the utility of these curves in Problem 11.2.)

10
9 LYY
8
7
6
5
4 X
3
2
a1 \ X S e -
] 0.9 3 " H==310)
,E:, 0.8 -
g \ . 8
5 05 == 6
[ 9
C 04 i ab
s =, £
03 N §
3 =
‘ S 26 3
2 E
=
A i L
0.1 s 1
0.09
0.08 : H
006 : HE
0.05 TR =5
1 2 3 4 56 78910 20 30 40
Multiple of pickup setting
Ratio |I{/|1,|
Fig. 11-7.

A directional relay responds to faults either to the left or to the right of its location. Its operation
depends upon the direction (lead or lag) of the fault current with respect to a reference voltage. If
the reference voltage is V., faults producing lagging currents in the shaded region of the phasor
diagram of Fig. 11-8 will cause the relay to trip (and for all other faults it will block). The reference
voltage is known as the polarizing voltage. The constraints on the operation of a directional relay are
also given by

Trip for  Opin > Oop > Onax

11.3
Block for O < 0o < Opmax ( )

Block

emax

Vref

Fig. 11-8.
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where 6, is the phase angle of the operating quantity (/ in Fig. 11-8), relative to that of the
reference quantity (V¢ in the figure), and 6, and 6,,, define the boundaries of the operating
range.

gA ratio relay responds to faults only within a certain distance of its location. Suppose the
impedance of a length of transmission line equal to that distance is |Z,|, and denote the ratio of the
voltage to the current at the location of the relay by Z (see Fig. 11-9). A relay with the operating
constraints

Trip for |Z]| < |Z,]

11.4
Block for |Z| > |Z,| (11.4)

is called an impedance or distance relay and, in the complex impedance plane, has the operating
characteristic shown in Fig. 11-9(b). Note that this relay is bidirectional. On the other hand, by
offsetting the circle of Fig. 11-9(b) by Z’, we obtain the relay constraints

Trip for |Z — Z'| < |Z,|

11.5
Block for |Z — Z'| > |Z,| (11.5)

By selecting |Z'| to be equal to |Z,|, the relay characteristic can be made to pass through the origin,
as illustrated in Fig. 11-9(c). Such a relay is obviously directional and is called a mho relay.

X

AN \] ( : )
e |
| (o) D) SE)™
] I
] |
| |
‘\ i R ~
L . z
; Trip within zone |

|

Block

\__Ofprotection |

(a) (b) ©
Fig. 11-9.

The operation of a differential relay may be understood by referring to Fig. 11-10. Under normal
conditions we have I, — L, = 0. Under fault conditions, I, — L, = I, where Ir is the fault current
referred to the secondary of the CTs. If a current |I,| < |I| is chosen to cause relay operation, then
the relay’s operating constraints are

Trip for |, — L| > |1,
Block for |I, — L| < |L| (11.6)

Generator
I ! phase winding

Trip within zone |
of protection |
I

Fig. 11-10.
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Note that the zone of protection of a differential relay is small; that is, the boundary points of the
zone are closed to each other.

A pilot relay provides a means of transmitting fault signals from a remote zone boundary to
relays at the terminals of a long transmission line.

11.4 PROTECTION OF LINES, TRANSFORMERS, AND GENERATORS

A radial transmission line like that of Fig. 11-11 can be protected with time-overcurrent relays.
These relays can be set to provide primary protection for one line and remote backup protection for
a neighboring line. For instance, the relay at bus 1 will protect the line from bus 1 to bus 2 and act as
a backup for the line between buses 2 and 3. It must, however, be adjusted to provide an adequate
time delay, such that the relay at bus 2 operates first for a fault on line 2.

D 2 3 ®
|

.
O
Enmn i

Fig. 11-11.

To protect lines fed from both ends (Fig. 11-12) or loop systems (Fig. 11-13), directional relays
with coordinated time settings are used. (In the figures the arrows show the direction protected by
each relay.) The relays associated with circuit breakers 1, 3, and 5 must be coordinated, as must the
relays associated with breakers 2, 4, and 6. Overcurrent relays are used and are made directional by
adding a directional relay at each location, and then arranging the outputs of the directional relay
and the overcurrent relay so that their breakers will not operate unless both relays provide a trip

signal.
@ ©) ® ®

Fig. 11-13.
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Transmission lines belonging to a complex interconnected system are protected by impedance
relays, which respond to the impedance between their own location and the location of a fault.

Transformers and generators are protected against certain types of faults by differential relays.
Figures 11-14 and 11-10, respectively, show arrangements of differential relays to protect against
faults on a transformer and a generator.

I[ 1,2

Solved Problems

11.1 A three-phase, delta-wye-connected, 30-MVA, 33/11-kV transformer is protected by a
differential relay. Calculate the relay current setting for faults drawing up to 200 percent of
the rated current. The CT current ratio on the primary side is 500:5, and that on the
secondary side is 2000:5.

The primary line current is

30 x 10°
= —=———— = 524.88 A
L V3 x 33 x 10°
and the secondary line current is
I =3I, = 1574.64 A

The CT current on the primary side is
S
I, = 524. ——) = 5.24
;=52 88(500 5.249 A
and that on the secondary side is
5
L = 1574.64{ — = 6.
, 64(200())\/— 6.818 A

The relay current at 200 percent of the rated current is then

AL — 1) = 2(6.818 — 5.249) = 3.3138 A

11.2 A portion of a radial system is shown in Fig. 11-15. For faults at bus 3, the maximum and
minimum fault currents are 200 A and 165 A, respectively, and for fault at bus 2 the fault
currents range between 300 A and 238 A. Using overcurrent relays having the characteristics
shown in Fig. 11-7, with available tap settings at 3.0, 4.0, 5.0, 6.0, and 7.0 A, select the CT
ratios, relay tap settings, and relay time-dial settings for the protection of the subsystem of
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11.3

114

11.5

11.6

Fig. 11-15. The breaker at each bus opens all three phases when tripped by either of the two
associated relays.

® ® ®

Bl B2

R1 R2
Fig. 11-15.

Settings for relay R2: We elect to provide a safety factor of 3, so R2 must operate when the line
current is 1(165) = 55 A. Choosing the closest standard CT ratio, which is 50:5, we obtain a relay
current of 55(5/50) = 5.5 A. Thus, we choose a tap setting of 5.0 A. We choose a time-dial setting of
1/2 for the fastest possible operation.

Settings for relay R1: There must be a relay R3 (not shown in the figure) that provides backup for
R2. Relay R1 must then pick up reliably for the smallest current seen by R2. Consequently, we again
use a CT ratio of 50:5 and a tap setting of SA. As a first step in choosing a time-dial setting, we operate
at least 0.3 s later than R2. We note that the maximum fault current seen by R2 is 300 A. The relay
current for both R1 and R2 is then 300(5/50) = 30 A. For a relay tap setting of 5 A, the ratio of relay
current to tap setting for both relays is 30/5 = 6.0. In Fig. 11-7, we find that, for this ratio, the operating
time for R2 (which has a time-dial setting of 1/2) is 0.135s. Hence, if R2 fails, R1 must operate in
0.135 + 0.3 = 0.435s. Figure 11-7, shows that the required time-dial setting for R1 is 2.0.

A three-phase, delta-wye-connected, 15-MVA, 33/11-kV transformer is protected by CTs.
Determine the CT ratios for differential protection such that the circulating current (through
the transformer delta) does not exceed 5 A.

The line currents are

fT\V3x3 X100 T
oo B3x10° A
YU\BAx1x100 T

If the CTs on the high-voltage side are connected in wye, then the CT ratio on the high-voltage side is
787.30/5 = 157.46.
Similarly, the CT ratio on the low-voltage side is 262.44(5/V3) = 757.6.

Supplementary Problems

A three-phase, wye-delta-connected, 345/34.5-kV transformer has an emergency rating of 60 MVA.
Determine the CT ratios and CT connections required for the protection of the transformer.

Ans.  1000:5, connected in wye on the low-voltage side; 200:5, connected in delta on the high-voltage
side

What are the secondary currents in the CTs of Problem 11.4?

Ans. 5.0A;251A

For faults at buses 2 and 3 of the radial system shown in Fig. 11-16, determine the CT ratio and relay
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factor of 1.3.

[CHAP. 11
setting for protective relays having tap settings of 5.0, 6.0, 7.0, 8.0, 10.0, and 12.0 A, assuming a safety

® ®

@

®

Fig. 11-16.
Ans. 1200:5;12.0 A
11.7

The system shown in Fig. 11-17 is protected by relays having the characteristics shown in Fig. 11-7. The
maximum and minimum fault currents are as follows:

O e
T H

Yo

Yo

Fault at bus
1 2 3 4 5
Maximum fault current, A 3187.2 658.5 430.7 300.7 202.7
Minimum fault current, A 1380.0 4726 3286 2379 165.1
Proceeding as in Problem 11-2, with available relay tap settings of 3.0, 4.0, 5.0, 6.0, and 7.0, determine

the CT ratios, the relay tap settings, and the relay time-dial settings for the protection of the system.
j5.0Q

Lk

'Ii |&Q

®

500
Fig. 11-17.
Ans.
R1 R2 R3 R4
CT Ratio 100:5 100:5 50:5 50:5
Pickup setting, A 5 4 5 5
Time-dial setting 2.9 2.6 2.0 1/2




a-operator, 78

properties of 78
Accelerating power, 146, 150, 151
Accelerating torque, 146
Area control error (ACE), 134
Area frequency-response, 134

Base:
change of, 14
Base quantity, 14
Base value, 14
British thermal unit (BTU), 2
Burden, 165
Bus, generator, 115
load, 115
slack, 115
swing, 115
voltage regulation, 118
voltage specification, 118
Bus admittance matrix, 96, 98
Bus impedance matrix, 100

Calorie, 2

Characteristic resistance, 42
Circuit breaker, 164

Complex power, 79, 112
Critical clearing angle, 149, 152
Critical clearing time, 152

Delta connection, 15
Doubling time, 3
Driving-point admittance, 98

Electromagnetic torque, 146
Energy, 1

Energy sources, 4

Equal area criterion, 147

Fault calculations, 74-95
Faults, 74
balanced, 74
double line-to-ground, 87, 88
line-to-ground, 74, 85, 88
line-to-line, 86, 88, 89
series, 74
short circuit, 74
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shunt, 74

symmetrical, 74, 75

three phase, 74, 84

types of, 74

unsymmetrical, 74, 77

four-terminal network, 40
Frequency bias constant, 134
Frequency error, 134

Gauss method, 115
Gauss—Seidel method, 112, 115
Generalized circuit constants, 40
Generator bus, 115

Generator voltage control, 133

Geometric mean distance (GMD), 28

mutual, 28
self, 28

Geometric mean radius (GMR), 27, 28

Growth rates, 2, 6

H constant, 146, 147
Horsepower, 2
Hydropower, 4, 8
Hyperbolic functions, 40

Impedence diagram, 12, 13
Incremental fuel cost, 130
Inertia constant, 146, 147
Internal voltage, 76
subtransient, 77
transient, 77
Iterative procedures, 114, 115

Jacobian, 117
j-operator, 78
Joule, 1

Kinetic energy, 1
Kirchhoff’s current law, 96, 98

Lagrange multiplier, 131
Lattice diagram, 46
Load bus, 115
Load division:

criterion for, 131, 132
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Load frequency control (LFC) 134
Load flow, (See power flow)
Loss coefficient, 132

Maximum transmitted power, 153, 154

Matrix, bus admittance, 96, 98
bus impedance, 100
driving point, 98
mutual admittance, 98
node current, 98
node voltage, 98
transfer admittance, 98

Negative sequence components, 77
Network calculations, 96
Newton-Raphson method, 112, 116
Node current matrix, 98

Node elimination, 99

Node voltage, 96

Node voltage matrix, 98

One-line diagram, 12

Penalty factor, 133
Permittivity, 29
Per-unit representation, 14
Phase angle error, 165
Phase sequence, 77
Positive-sequence components, 77
Potential energy, 2
Power, 1, 2
Power angle, 113, 147
Power factor improvement, 119
Power flow, 112-129
Power flow equation, 115
Power system:
components, 12
control, 130, 133
economical load distribution, 130
economic operation, 130
fuel requirement, 130
operation, 130
protection, 164172
stability, 146-163
Protection systems, 164, 169
components, 164
zones, 164

Q generation, 118
Quad, 2

Ratio error, 165
Reactance diagram, 12, 13
Reflection coefficient, 43
current, 44
voltage, 43
Regulation constant, 133
Relay, 164, 165
differential, 166, 168
directional, 166, 167
impedance, 168, 170
magnitude, 166
mho, 168
operating time, 166
overcurrent, 166, 167
pickup current, 166
pilot, 166, 169
polarizing voltage, 167
ratio, 166, 168
time-overcurrent, 169
types, 166
Resistance, 26
Resistivity, 26

Self admittance, 98
Sequence impedance, 79
Sequence networks, 79, 84—87
Sequence power, 78
Short-circuit MVA, 74
Skin effect, 26
Slack bus, 115
Source transformations, 96
Stable system, 147
Stability, 146
criterion, 148
dynamic, 146
steady-state, 146
transient, 146
Subtransient reactance, 76
Swing bus, 115
Swing curve, 151
Swing equation, 146, 147, 162
step-by-step solution, 150
Symmetrical components, 77
Synchronous generator short circuit, 75
subtransient period, 75
transient period, 75
Synchronous reactance, 76

Taylor’s series, 116

Temperature coefficient of resistance, 26, 31
Three-phase circuit, 15

Tidal energy, 4

Tie line, 134

Transducers, 164, 165



Transformers, current (CT), 165
errors in, 165
instrument, 165
potential (PT), 165
voltage (VT), 165
Transient reactance, 76
Transmission-line loss, 131
Transmission lines, 26—-62
ABCD constants, 40, 41
as two-port, 40
capacitance, 29
characteristic impedance, 40, 42
composite conductors, 28
double-circuit, 28
efficiency, 38
equivalent spacing, 28, 29
ground, 29
inductance, 27
internal inductance, 27
lattice diagram, 46
long, 38, 39, 41, 42
lossless, 42
matched, 43
maximum power transfer, 50
medium, 38, 39, 41
nominal-$§ pi § circuit, 39, 41
nominal-T circuit, 39, 41
parameters, 26
phasor diagram, 39, 47, 49, 53
power flow on, 41
propagation constant, 39
receiving end, 38
receiving-end circles, 53
representation, 38
resistance, 26
sending end, 38
short, 38, 41, 46, 112
three wire, 27
transposition, 27
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traveling waves on, 42
two wire, 27
voltage regulation, 38
Traveling waves, 42
backward, 42
forward, 42
Two-machine system, 150, 162

Underground cables, 63-73
capacitance, 66
capacitance grading, 63
dielectric loss, 66
electric stress in, 63
grading of, 63
inductance, 66
insulation, 63
intersheath grading, 63, 65
loss angle, 67
lossy, 67
shield, 63
single-core, 63
testing, 71
dielectric resistivity, 71

Unstable system, 147

Watt, 2

Wave equation, 42
Wind energy, 4,7, 8
Work, 1

Wye connection, 15

Y bus, 99

Z bus, 100
Zero-sequence components, 77
Zones of protection, 164
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