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Chapter 1
NEWTONIAN

MECHANICS

IN TH1S CHAPTER:

v/ Scalars and Vectors

(74 Uniformly Accelerated Motion

v/ Newton’s Laws

(74 Equilibrium under the Action of
Concurrent Forces

(74 Equilibrium of a Rigid Body under
Coplanar Forces

V' Work, Energy, and Power

(74 Impulse and Momentum

(74 Angqular Motion in a Plane

(74 Rigid-Body Rotation

v/ Solved Problems

Scalars and Vectors

Definitions of Scalars and Vectors

A scalar 1s a quantity that possesses only magnitude. Examples of
scalar quantities are mass, length, time, distance, speed, and density.

1
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2 * COLLEGE PHYSICS

A vector is a quantity that possesses both magnitude and direction.
Examples of vector quantities are displacement, velocity, acceleration,
and force. A vector quantity can be represented by an arrow drawn to
scale. The length of the arrow is proportional to the magnitude of the
vector quantity. The direction of the arrow represents the direction of
the vector quantity.

The Components of a Vector

Before we define the components of a vector, we first must introduce the
elementary relationships between trigonometric tunctions. The trigono-
metric functions are defined in relation to a right angle. For the right tri-
angle shown in Figure 1-1, by definition

<in B= opposite B
hypotenuse C

cos B= adjacent _ A
hypotenuse C

tan B= opposite _ B

adjacent A

We often use these in the forms
B=CsmB:A=CcosB:B=Atan 6

hypotenuse

C opposite -7

i

0

adjacent—#
A

Figure 1-1

A component of a vector is its effective value in a given direction. For
example, the x-component of a displacement is the displacement paral-
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lel to the x-axis caused by the given displacement. A vector in three
dimensions may be considered as the resultant of its component vectors
resolved along any three mutually perpendicular directions. Similarly, a
vector in two dimensions may be resolved into two component vectors
acting along anygwo mutually perpendicular directiogs. Rgure 1-2
shows the vector and its x and y vector components, s , which
have magnitudes

‘R'x‘=|ll'| cos B and ‘R'F‘=|R'| sin B

or equivalently,

=Y

R =Rcos® and R =R sin 6
Figure 1-2

Unit Vectors

Unit vectors have a magnitude of one and are represented by a boldface
symbol topped with a caret. The special unit vectors i, j, and K are
assigned to the x-, y-, and z-axes, respectively. A vector 3 i represents a
three-unit vector in the +x directin& while -5 K represents a five-unit

vector in the -z direction. A vector  that has scalar x-, y-, and z-com-
ponents R , R},, and R , respectively, can be written as

R=Ri+Rj+ Rk
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When an object moves from one point in space to another, the
displacement is the vector from the initial location to the final location,

* Important Point!

Vector Addition

The resultant, or sum, of a number of vectors of a par-
ticular type (force vectors, for example) is that single
vector that would have the same effect as all the origi-
nal vectors taken together.

It 1s independent of the actual distance traveled.

Graphical Addition of Vectors (Polygon Method)

: . R .
This method for finding the resultant — of several vectors

A, B.,and C o L. . :
( ) consists 1n beginning at any convenient point and draw-
ing (to scale and in the proper directions) each vector arrow in turn.
They may be taken in any order of succession:

A+B+C=C+A+B=R
The tail end of each arrow is positioned at the tip end of the preceding
one, as shown in Figure 1-3.

End
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Figure 1-3
The resultant is represented by an arrow with its tail end at the starting

R
point and |tﬁ |ip end at the tip of the last vector added. If  1s the resul-

tant, R = 1s the size or magnitude of the resultant.

Parallelogram Method for Vector Addition

The resultant of two vectors acting at any angle may be represented by
the diagonal of a parallelogram. The two vectors are drawn as the sides
of the parallelogram and the resultant is its diagonal, as shown in
Figure 1-4. The direction of the resultant is away tfrom the origin of the

two vectors.

Figure 1-4

Component Method for Vector Addition

Each vector is resolved into its x-, y-, and z-components, with nega-
tively directed comppnents taken as negative. The scalar x-component,

R, of the resultant  is the algebraic sum of all the scalar components.

The scalar y- and z-components of the resultant are found in a similar
way. With the components known, the magnitude of the resultant is
given by

R={R*+R’+R’
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In two dimensions, the angle of the resultant with the x-axis can be
found from the relation

R

v

R

X

tan B=

Vector Subtraction
B A B
To subtract a vector  from.a vector _ .reverse tPe direction of and
A A-B=A+-B }

add individually to vector | that 1s

Uniformly Accelerated Motion

Speed 1s a scalar quantity. If an object
takes a time interval t to travel a distance

d, then 1 _ total distance traveled
Averagespeed =
time taken
or
v =—
'y t

Here the disgance is the total (along the path) length traveled.
Velocity is a vector quantity. If an object undergoes a vector dis-

Aleexapentlociin ainXeeHeEAISPlacApENt

time taken

v

v =3
t

The direction of the velocity vector is the same as that of the displace-
ment vector. The units of velocity (and speed) are those of distance
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divided by time, such as m/s or km/h.

Acceleration, also a vector quantity, measures the time rate-of-change

E%g?&gggg&elemﬁnn — change in velocity vector

time taken

<l
-

where 1s the initial velocity, , 1s the final velocity, and t i1s the
time interval over which the change occurred. The units of accelera-
tion are those of velocity divided by time. A typical example is (m/s)/s

(or m/s?).

Uniform Motion along a Straight Line

This represents ahamghp@rtant situation. In this case, the acceleration
vector is constant and lies along the line of the displacement vector, so
that the directions of can be specified with plus and minus
signs. If we represent the displacement by s (positive if in the positive
direction, and negative if in the negative direction), then the motion can
be described with the five equations for uniformly accelerated motion:

S= VvV

av
s.zw_t+latE

-2
vi=v 4+ 2as
[ i

V—V
q= ] i

t

vV +V

v o= [ i
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Direction is important, and a positive direction must be chosen when
analyzing motion along a line. Either direction may be chosen as
positive. If a displacement, velocity, or acceleration is in the opposite
direction, it must be taken as negative.

Instantaneous Velocity

As . At .
Instantaneous velocity is the average velocity evaluated for a time inter-

val that approaches zero. Thus, if an object undergoes a change in dis-

placement over a time interval  , then for that object the instan-
tanéotts velocity is
v=Iim as =S
At At
where the notation means that the ratio 1s to be evaluated for a time

interval At that approaches zero.

You Need to Know /

Graphical Interpretations

Graphical interpretations for motion along a straight line (the
x-axis) are as follows:

« The instantaneous velocity of an object at a certain time is
the slope of the displacement versus time graph at that
time. It can be positive, negative, or zero.

« The instantaneous acceleration of an object at a certain time
is the slope of the velocity versus time graph at that time.

« For constant-velocity motion, the x-versus-t graph is a
straight line. For constant-acceleration motion, the v-ver-
sus-t graph is a straight line.

* |n general (i.e., one- , two-, or three-dimensional motion),
the slope at any moment of the distance-versus-time graph
is the speed.
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Acceleration Due to Gravity (g)

The acceleration of a body moving only under the force of gravity is g,
the gravitational (or free-fall) acceleration, which is directed vertically
downward. On Earth, g = 9.8 m/s? (i.e., 32 ft/s?). On the Moon, the free-
fall acceleration is 1.6 m/s”.

Velocity Components 7

Suppose that an object moves with a velocity  at sopne angle O up
from the x-axis, as would initially be the case with a ball thrown into the

air. That velocity then has x and y vector components of  and . The
corresponding scalar components of the velocity are:

V_=V COos B and v, =V sin O

Projectile Problems

Projectile problems can be solved easily if air friction can be ignored.
One simply considers the motion to consist of two independent parts:
horizontal motion witha=0and v.= v, =v_ (i.e., constant speed), and

vertical motion with a = g = 9.8 m/s* downward.

Newton’s Laws

Mass

The mass of an object is a measure of the inertia of the object. Inertia
is the tendency of a body at rest to remain at rest, and of a body in
motion to continue moving with unchanged velocity.

Force
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Force, in general, 1s the agency of change. In mechanics, it is a push or
a pull that changes the velocity of an object. Force is a vector quantity,
having magnitude and direction. An external force is one whose source
lies outside of the system being considered. The net or resultant exter-
nal force acting on an object causes the object to accelerate in the direc-
tion of that force. The acceleration is proportional to the force and
inversely proportional to the mass of the object. The newton is the SI
unit of force. One newton (1 N) is that resultant force which will give a

I-kg mass an acceleration of 1 m/s%. The pound is 4.45 N.

Newton's Laws

Newton’s First Law: An object at rest will remain at rest; an object in
motion will continue in motion with constant velocity unless acted on by
an external force. Force 1s the changer of motion. i

Newton’s Second Law: [fghe resultant or net force  acting on an
object of mass m is not zero, the object accelﬁmres in the direction of

the force. Thﬁf acceleration  is proportional to the force and inversely

proportional to the mass of the object. With  in newtons, m in kilo-

grams, and  in m/s°, this can be written as

F

ia=— or F=ma

m F

=l

The acceleration  has [EE:: MiXe direction as the resultant force

The vector equation can be written in terms of components
as

LF =ma_ EF}r =ma, 2F =ma,

where the forces are the components of the external forces acting on the
object.

Newton’s Third Law: Matter interacts with matter—forces come in
pairs. For each force exerted on one body, there is an equal, but oppo-
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sitely directed, force on some other body interacting with it. This is
often called the Law of Action and Reaction.

The Law of Universal Gravitation

When two masses m and m~ gravitationally interact, they attract each
other with forces of equal magnitude. For point masses (or spherically
symmetric bodies), the attractive force F_ is given by

mm”
FG:G -
i

where r 1s the distance between mass centers, and where G = 6.67 x
10" N m?/kg? when F_ is in newtons, m and m” are in kilograms, and

I 1S 1n meters.

Weight

The weight of an object (F,,) is the gravita-

tional force acting downward on the object.
On the Earth, it is the gravitational force
exerted on the object by the planet. Its units
are newtons (in the Sl) and pounds (in the
British system). An object of mass m falling
freely toward the Earth is subject to only one
force—the pull of gravity, which we call the
weight F,, of the object. The object’s acceler-

ation due to F, is the free-fall acceleration g.

Therefore, F=ma provides us with the rela-
tion between F = F,,a=g,and m; itis F, =
mg. Because, on average, g = 9.8 m/s? on

Earth, a 1.0-kg object weighs 9.8 N at the
Earth’s surface.
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Specific Types of Forces
F

T

The tensile force () acting on a string, chain, or tendon is the applied
force tending to stretch it. The magnitude of the tensile force is the ten-
sion {FT].
FI"'-'
The normal force () on an object that is being supported by a sur-
face 1s the component of the supporting force that 1s perpendicular to the
surface.
F.

The friction force ( ) 1s a tangential force acting on an object that
opposes the sliding of that object on an adjacent surface with which it 1s
in contact. The friction force 1s parallel to the surface and opposite to the
direction of motion or of impending motion. Only when the applied force
exceeds the maximum static friction force will an object begin to slide.

The coefficient of kinetic friction (1), defined for the case in

which one surface 1s sliding across another at constant speed, 1s

. F
friction force f

normal force F
M

The coefficient of static friction (i1 ), defined for the case in which
one surface 1s just on the verge of sliding across another surface, is

. L. F (max |
maximum friction force ¢

normal force F
M

where the maximum friction force occurs when the object is just on the
verge of slipping but is nonetheless at rest.

Dimensional Analysis
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All mechanical quantities, such as acceleration and force, can be
expressed in terms of three fundamental dimensions: length L, mass M,
and time T. For example, acceleration is a length (a distance) divided by
(time)*; we say it has the dimensions L/T?, which we write as [LT].
The dimensions of volume are [L?], and those of velocity are
[LT"!]. Because force is mass multiplied by acceleration, its dimensions
are [MLT?]. Dimensions are helpful in checking equations, since each
term of an equation must have the same dimensions. For example,

s = vt + 1 a2
’ 2
[L]-[LTt][T] + [LT2][T2]

so each term has the dimensions of length. As examples, an equation can-
not have a volume [L?] added to an area [L?], or a force [MLT"?] subtract-

Remember, all terms in an equation
must have the same dimensions.

ed from a velocity [LT"']; these terms do not have the same dimensions.

Mathematical Operations with Units

In every mathematical operation, the units terms (for example, Ib, cm,

" . ¥ . .
ft*, mi/h, m/s*) must be carried along with the numbers and must under-
g0 the same mathematical operations as the numbers.

Quantities cannot be added or subtracted directly unless they
have the same units (as well as the same dimensions). For example,
if we are to add algebraically 5 m (length) and 8 cm (length), we
must first convert m to cm or cm to m. However, quantities of any
sort can be combined in multiplication or division, in which the
units as well as the numbers obey the algebraic laws of squaring,
cancellation, etc.
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Equilibrium under the Action
of Concurrent Forces

Concurrent Forces

Concurrent forces are forces whose lines of action all pass through a
common point. The forces acting on a point object are concurrent
because they all pass through the same point, the point object.

Equilibrium

An object is in equilibrium undmﬁe dﬁllDl‘l of concurrent forces pro-
vided it 1s not accelerating. A condition for equilibrium under concur-

rent forces 1s the requirement that or, in component form,
XF =%2F =XF =10
X ¥ z

That 1s, the resultant of all external forces acting on the object must be
ZEro.

Problem Solution Method (Concurrent Forces)

(1)Isolate the object for discussion.

(2) Show the forces acting on the 1solated object in a diagram (the free-
body diagram).

(3)Find the rectangular components of each force.

(4) Write the condition for equilibrium in equation form.

(5)Solve for the required quantities.

Equilibrium of a Rigid Body Under Coplanar Forces

The torque (or moment) about an axis, due to a force, is a measure of
the effectiveness of the force in producing rotation about that axis. It is
defined in the following way:
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Torque = T=rF sin 0 ;
where r is the radial distance from the axis to the point of application of

[Ee force, and © is the acute angle between the lines-of-action of  and

. as shown in Figure 1-5.
Figure 1-5

Often this definition 1s written in terms of the lever arm of the force.

which is the perpendicular distance from the axis to the line of the force,
as shown in Figure 1-6.
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Figure 1-6

Because the lever arm is simply r sin 0, the torque becomes
T = (F)(lever arm)

The units of torque are newton-meters (N * m). Plus and minus signs
can be assigned to torques; for example, a torque that tends to cause
counterclockwise rotation about the axis is positive, whereas one caus-
ing clockwise rotation is negative.

Conditions for Equilibrium

The two conditions for equilibrium of a rigid object under the action of
coplanar forces are:

(1) As listed above, the first condition tfor equilibrium is the force con-
dition.

The vector sum of all forces acting on the body must be zero:

2F, =0 and EF}, =)
where the plane of the coplanar forces is taken to be the xy-plane.

(2) The second condition for equilibrium is the forgue condition.

Take an axis perpendicular to the plane of the coplanar forces. Call
the torques that tend to cause clockwise rotation about the axis neg-
ative, and counterclockwise torques positive; then the sum of all
the torques acting on the object must be zero:

21=0

If the sum of the torques is zero about one axis for a body that
obeys the force condition, it i1s zero about all other axes parallel to
the first. We can choose the axis in such a way that the line of an
unknown force passes through the intersectton of ﬁqe axis and the

plane of the forces. The angle 6 between and  1s then zero;
hence, that particular unknown force exerts zero torque and there-
fore does not appear in the torque equation.
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Essential Point
Center of Gravity

The center of gravity of an object is the
point at which the entire weight of the object
may be concentrated; i.e., the line-of-action
of the weight passes through the center of
gravity. A single vertically upward directed
force, equal in magnitude to the weight of the
object and applied through its center of grav-
ity, will keep the object in equilibrium.

Work, Energy, and Power

Work

The work done by a force is defined as the product of that force times
the parallel distance over which it acts. Consider the simple case of
straight-line motion shown in Figure 1-7, where a force F acts on a
body that simultaneously undergoes a vector displacement s . The com-

ponent of F in the direction of § is F cos 0. The work W done by the
force F is defined to be the component of F in the direction of the dis-
placement, multiplied by the displacement:

Figure 1-7
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W = (F cos 0)(s) = Fs cos 6

Notice that 0 is the angle between the force and displacement vectors.
Work is a scalar quantity. The SI unit of work i1s the newton-meter,
called the joule (J). One joule is the work done by a force of 1 N when
it displaces an object 1 m in the direction of the force. Other units

sometimes used for work are the erg, where 1 erg = 1077 J, and the foot-
pound (ft-1b), where 1 ft-1b = 1.355 J.

If F and § are in the same direction, cos @ =cos 0°= 1 and W =

Fs. But, if F and § are in opposite directions, then cos 8 = cos 180° =
-1 and W = -Fs; the work 1s negative. Forces such as friction often slow
the motion of an object and are then opposite in direction to the dis-
placement. Such forces usually do negative work.

Work is the transfer of energy from one entity to another by way of
the action of a force applied over a distance. The point of application of
the force must move if work is to be done.

Energy

Energy is a measure of the change imparted to a system. It is given to
an object when a force does work on the object. The amount of energy
transferred to the object equals the work done. Further, when an object
does work, it loses an amount of energy equal to the work it does. Energy
and work have the same units, joules. Energy, like work, 1s a scalar quan-
tity. An object that i1s capable of doing work possesses energy.

Kinetic energy (KE) is the energy possessed by an object because it 1s
in motion. If an object of mass m 1s moving with a speed v, it has trans-
lational KE given by

KE=—my?
2

When m is in kg and v is in m/s, the units of KE are joules.

Gravitational potential energy (GPE) is the energy possessed by an
object because of the gravitational interaction. As mass falls through a ver-
tical distance h, a gravitational force can do work in the amount mgh. We
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define the GPE of an object relative to an arbitrary zero level, often the
Earth’s surface. If the object is at a height h above the zero (or reference)
level, its GPE 1is

GPE = mgh

where g 1s the acceleration due to gravity. Notice that mg is the weight

of the object. The units of GPE are joules when m is in kg, g is in m/s?,
and h is in m.

Work-Energy Theorem

When work i1s done on a point mass or a rigid
body, and there is no change in PE, the energy
imparted can only appear as KE. Insofar as a
body is not totally rigid, however, energy can be
transferred to its parts and the work done on it
will not precisely equal its change in KE.

Conservation of Energy

Energy can be neither created nor destroyed, but only transformed from
one kind to another.

Power

Power is the time rate of doing work:

Averagepower = work done by a force = force x speed

time taken to do this work

where the speed 1s measured in the direction of the force applied to the
object. More generally, power is the rate of transter of energy. In the SI,
the unit of power is the watt (W), and 1 W = 1 J/s. Another unit of power
often used is the horsepower: 1 hp = 746 W.
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Impulse and Momentum
Linear Momentum

The linear momentum () of a body 1s the product of its mass (m) and

¥
velocity ( ):

Linear momentum = (mass of body)(velocity of body)
p=my

Momentum is a vector quantity whose direction is that of the velocity.
The SI units of momentum are kg * m/s.

Impulse

. : . F _
An impulse is the product of a force () and the time interval (At) over
which the force acts:

Impulse = (force)(length of time the force acts)

Impulse 1s a vector quantity whose direction is that of the force. Its SI
units are N » s,

An impulse causes a change in momentum. The change of momentum
produced by an impulse i1s equal to the impulse in both magnitude and
direction. Thus, if a constant force F acting for a ime At on a body of
mass m changes its velocity from an initial value Vi to a final value ',
then

Impulse = change in momentum

F At =m v, — v'.L)
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Remember!
Conservation of Linear Momentum

If the net external force acting on a system of
objects is zero, the vector sum of the
momenta of the objects will remain constant.

F=2P
Newton's Second Law was actual]% venas At from which 1t fol-
At=Ap t=A {mv |
lows that . Moreover, . and 1if m 1s constant

FAt=m (v’r— V. )

Collisions and Explosions

In collisions and explosions, the vector sum of the momenta just before
the event equals the vector sum of the momenta just after the event. The
vector sum of the momenta of the objects involved does not change dur-

ing the collision or explosion. Thus, when two bodies of masses m, and

m, collide,
Total momentum before impact = total momentum after impact
m u +m,u,=myVv +m,yv,
u,and u, v, and v,
where are the velocities before impact, and are the

velocities after impact. In one dimension, in component form,

ITllLlJK + H]Euz:{ = I-nlvl:-; + mivh

and similarly for the y- and z-components. Remember that vector quan-
tities are always boldfaced and velocity 1s a vector. On the other hand,
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u,.u,,v, ,and v, are the scalar values of the velocities (they can be

positive or negative). A positive direction is initially selected and vec-
tors pointing opposite to this have negative numerical scalar values.

A perfectly elastic collision is one in which the sum of the translation-
al KEs of the objects is not changed during the collision. In the case of
two bodies,

1 1

) 1 1 )
—m,u;+—m,u
2 v

=—mVv,+—m,v;
2 2 °

= Ied

Coefficient of Restitution

For any collision between two bodies in which the bodies move only
along a single straight line (e.g., the x-axis), a coefficient of restitution,
e, 1s defined. It 1s a pure number given by

—u

2%

where u,_and u,, are values before impact, and v, _and v,_are values
atter impact. Notice that lu, -u, | is the relative speed of approach and
lv, - v, |is the relative speed of recession.

For a perfectly elastic collision, e = 1. For 1nelastic collisions, e <
|. It the bodies stick together atter collision, e = (.

Center of Mass

The center of mass of an object (of mass m) is the single point that
moves in the same way as a point mass (of mass m) would move when
subjected to the same external forces that act on the object. That 1s, if
theltesultant force acting on an object (or system of objects) of mass m

1s , the acceleration of the center of mass of the object (or system) 1s
given by
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L _F

om
m

If the object is considered to be composed of tiny masses m , m,, m,,

[ A
and so on, at coordinates (x,, y,, Z,), (X,, ¥,, Z,), and so on, then the

coordinates of the center of mass are given by

Zx.m, Zy.m, Zzm,

X = LY. = Lz =
a1 amn amn
° ¥m - Zm, © Zm,

L

where the sums extend over all masses composing the object. In a uni-
form gravitational field, the center of mass and the center of gravity
coincide.

Angular Motion in a Plane

Angular Displacement

Angular displacement (0) 1s usually expressed in radians, in degrees, or
in revolutions:

| rev = 360° = 21 rad or | rad = 57.3°

One radian is the angle subtended at the center of a circle by an arc
equal 1n length to the radius of the circle. Thus an angle 0 in radians 1s
given in terms of the arc length [ it subtends on a circle of radius r by:

g="

r

The radian measure of an angle is a dimensionless number. Radians,
like degrees, are not a physical unit—the radian i1s not expressible in
meters, kilograms, or seconds. Nonetheless, we will use the abbrevia-
tion rad to remind us that we are working with radians.

Angular Speed
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The angular speed () of an object whose axis of rotation is fixed is the
rate at which its angular coordinate, the angular displacement 6,
changes with time. If 6 changes from 6. to 6, in a time t, then the aver-

age angular speed 1s

0.—0.
o = i i

av

t

The units of m_ are exclusively rad/s. Since each complete turn or cycle
of a revolving system carries it through 27 rad,

w = 2rf

where f is the frequency in revolutions per second, rotations per sec-
ond, or cycleé®per second. Accordingly,  is also called the angular fre-
quency. We can associate a direction with  and thereby create a vec-

tor quantity @ . Thus, if the fingers of the right hand curve around in the
direction of rotation, the thumb points along the axis of rotation in the

direction of , the angular velocity vector.

Angular Acceleration

The angular acceleration (o) of an object whose axis of rotation 1s fixed
is the rate at which its angular speed changes with time. If @ changes
uniformly from ®, to @, in a time t, then the angular acceleration is con-

stant and

The units of o are typically rad/s®, rev/min®, and such.

Equations for Uniformly Accelerated Angular Motion

The equations for uniformly accelerated angular motion are exactly
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Linear Angular
1 1
v, = (v, +v,] o, =—(0+o,)
s=v_t{ B=wm t
A Y
V.=V, +at O, = + ot

v = v+ 2as

L.
s=v.t+—at

mf = mi2 + 200

Ei':n:s:r.ltJrin:u:t2
2

analogous to those for uniformly accelerated linear motion. In the usual
notation, we have:

Taken alone, the second of these equations 1s just the definition of aver-
age speed, so it 1s valid whether the acceleration 1s constant or not.

Relation Between Angular and Tangential Quantities

When a wheel of radius r rotates about an axis whose direction 1s fixed,
a point on the rim of the wheel is described in terms of the circumfer-
ential distance [ it has moved, its tangential speed v, and its tangential
acceleration, a . These quantities are related to the angular quantities 6,

, and o, which describe the rotation of the wheel, through the relations
[ =16 V = 1 a. = rol

provided radian measure is used for 6, @, and o. By simple reasoning,
[ can be shown to be the length of belt wound on the wheel or the dis-
tance the wheel would roll (without slipping) if free to do so. In such
cases, v and a, refer to the tangential speed and acceleration of a point

on the belt or of the center of the wheel.

Centripetal Acceleration

A point mass m moving with constant speed v around a circle of radius
r is undergoing acceleration. Although the magnitude of its linear veloc-
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ity is not changing, the direction of the velocity is continually changing,
This change in velocity gives rise to an acceleration a. of the mass,
directed toward the center of the circle. We call this acceleration the
centripetal acceleration; its magnitude is given by

(tangential speed [ V2

radius of circular path r
where v 1s the speed of the mass around the perimeter of the circle.

¥ . .
Because v = rem, we also have a. = re-, where @ must be 1n rad/s. Notice
that the word “acceleration™ 1s commonly used in physics as either a
scalar or a vector quantity. Fortunately, there is usually no ambiguity.

Centripetal Force F

The centripetal force ( ) is the force that must act on a mass m mov-

ing in a circular path of radius r to give it the centripetal acceleration
¥

v-/r. From F = ma, we have

mv- )
F.= =mrm-
S ¥
F.
where is directed toward the center of the circular path.

Rigid-Body Rotation

Moment of Inertia

The moment of inertia (I) of a body is a measure of the rotational iner-
tia of the body. If an object that is free to rotate about an axis is difficult
to set into rotation, its moment of inertia about that axis is large. An
object with small I has little rotational inertia.

It a body is considered to be made up of tiny masses m , m,, m,, .
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. ., at respective distances r, r,, I,
inertia about the axis 1s

}
[=mr+muo+mr+-=Ymr

The units of I are kg * m~.

.. ., from an axis, its moment of

It 1s convenient to define a radius of gyration (k) for an object

about an axis by the relation

[ = MKk’

where M is the total mass of the object. Hence k is the distance a point
mass M must be from the axis if the point mass is to have the same I as

the object.

Torque and Angular Acceleration

A torque T acting on a body of moment of inertia I produces in it an

angular acceleration o given by

T=lo

Here, Tisin N * m, I i1s in kg * m?, and o must be in rad/s”.

Kinetic Energy of Rotation

The Kinetic energy of rotation (KE ) of a mass whose moment of iner-

tia about an axis is I, and which is rotating about the axis with angular

velocity @, 1s

I_:i[mz
2

KE

where the energy is in joules and ® must be in rad/s.
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Combined Rotation and Translation

The KE of a rolling ball or other rolling object of mass M is the sum of
(1) its rotational KE about an axis through its center of mass and (2) the
translational KE of an equivalent point mass moving with the center of
mass. In symbols,

—l[m3+iMy3
2

total —

Note that I 1s the moment of inertia of the object about an axis through
its mass center.

Rotational Work

The work (W) done on a rotating body during an angular displacement
0 by a constant torque T 1s given by

W= 10

where W is in joules and 6 must be in radians.

Rotational Power

The power (P) transmitted to a body by a torque is given by
P= 1w

where T i1s the applied torque about the axis of rotation, and ® is the
angular speed about that same axis. Radian measure must be used for
.

Angular Impulse

Angular impulse has magnitude Tt, where t is the time during which
the constant torque T acts on the object. In analogy to the linear case, an
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Important Point!

Angular Momentum

Angular momentum is a vector quantity that has mag-
nitude | m and is directed along the axis of rotation. If the
net torque on a body is zero, its angular momentum will
remain unchanged in both magnitude and direction.

This is the Law of Conservation of Angular
Momentum.

angular impulse Tt on a body causes a change in angular momentum of
the body given by

rt:[mt.—[m.l

Parallel-Axis Theorem

The moment of inertia I of a body about an axis parallel to an axis
through the center of mass is

[=1_ +Mh?

where |

Il

moment of inertia about an axis through the center of
mass

M = total mass of the body

h = perpendicular distance between the two parallel axes

oo or hollow Uniform disk Linifanm LInitorm reclatgular Unilorm
evlinder or exlinder rod block sphere
f= Adrt 1= 1t = ML? I Laf(a® + &) =5t

The moments of inertia (about an axis through the center of mass) of
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several uniform objects, each of mass M, are shown in Figure 1-8.
_ Figure 1-8 B
Analogous Linear and Angular Quantities

Angular displacement, 0
Angular speed, ®
Angular acceleration, o

Linear displacement, s
Linear speed, v
Linear acceleration, a_
Moment of mertia, I
Torque, T

Angular momentum, l®
Angular impulse, Tt

Mass (1nertia), m
Force, F

Linear momentum, mv
Linear impulse, Ft

URORORORSORORO

If, in the equations for linear motion, we replace linear quantities by the
corresponding angular quantities, we get the corresponding equations
for angular motion. Thus, we have

Linear: F=ma; I{Ezémvz; W=FIs; P=Fv

Angular: T=I; I{El_zé[mz; W=10; P=1m

In these equations, 0, ®, and o must be expressed in radian measure.

Solved Problems

220N




CHAPTER 1: Newtonian Mechanics 31

Solved Problem 1.1 The five coplanar forces shown in Figure SPI1-1

act on an object. Find their resultant.

Force x-Component y-Component
19.0N 190N ON
150N (150N) cos 60.0°=750N  |[(15.0N)sin 60.0° =13.0N
16.0N -(16.0 N) cos 45.0°=-11.3 N [(16.0N)sin45.0°=113N
I1.ON -(1LLON) cos 30.0°=-9.53 N |-(11.0 N) sin 30.0" =-5.50
220N 0N N

Figure SP1-1

Solution. (1) First we find the x- and y-components of each force. These
components are as follows:
Note the + and - signs to indicate direction.

(2) The resultant R has components R_= ZF_and R}, = EF:.” where we
read XF_as “the sum of all the x-force components.” We then have

R =190+75-113-95+0=+57N
RF=U+ 130+ 11.3-55-220=-32N

(3) The magnitude of the resultant is

R=,/R2+R? =6.5N

uY

D e
N

—-3.2N

el
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(4) Finally, we sketch the resultant as shown in Figure SP1-2. And find
its angle. We see that

Figure SP1-2
3.2

tan h=——=10.56
¢ 5.7

from which ¢ = 29°. Then, 6 = 360" - 299 = 3319, The resultant is 6.5 N
at 331° (or - 299).

| -

Solved Problem 1.2 A rope extends between two poles. A 90 N
boy hangs from it as shown in Figure SP1-3. Find the tensions in the
two parts of the rope.

Figure SP1-3

|

F]"I
: ﬂ% ) . Fr 80 5.0°
Fr 8in 10 - 10 - 3_,.1'3 '

Fp cos 10° Fiq vos 5.0° x

TFH,=9EIII~I

Solution. We label the two tensions T, and T, and isolate the rope at the

boy’s hands as the object. The free-body diagram for the object 1s
shown in Figure SP1-4.
Figure SP1-4
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After resolving the forces into their components as shown, we can write
the first condition for equilibrium:
IF =0 becomes T, cos 59-T, cos 10°=0

XF =0 becomes T, sin 5%+ T, sin 10°- 90N =0
When we evaluate the sines and cosines, these equations become

0996 T,-0.985T, =0 and  0.087T,+0.174 T, -90=0

Solving the first for T, gives T, = 0.990 T,. Substituting this in the sec-
ond equation gives
0.086 T, +0.174T, -90=0

from which T, = 346 N. Then, because T,=0990T, we have T, =
343 N.

Solved Problem 1.3 A baseball is thrown with an initial velocity of 100

m/s at an angle of 30" above the horizontal, as shown in Figure SP1-5.
How far from the throwing point will the baseball attain its original level?

Figure SP1-5

Solution. We divide the problem into horizontal and vertical parts, for
which

V. _=V_COSs 30° = 86.6 m/s and vV =V, sin 30° = 50 m/s

where up 1s taken as positive.

In the vertical problem, y = 0 since the ball returns to its original
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height, Then

yzvuyH%a},tz or 0=(50 m/s 'J—I—%{—Q.S m/s> )t

=

and t = 10.2 s. X

In the horizontal problem, v__=v, = = 86.6 m/s. Therefore,

x=V t=(86.6 m/s }(10.2 s |=884 m

Solved Problem 1.4 A 600 N object is to be given an acceleration of
0.70 m/s*. How large an unbalanced force must act upon it?

Solution. Notice that the weight, not the mass, of the object is given.
Assuming the weight was measured on the earth, we use W = mg to find

m= w_ 500 N ~-=061 kg
g 98m/s

Now that we know the mass of the object (61 kg) and the desired accel-
eration (0.70 m/s?), we have

F=ma= (61 kg)(0.70 m/s*) = 43 N.

Solved Problem 1.5 A ladder leans against a smooth wall, as shown in
Figure SP1-6. (By a “smooth” wall, we mean that the wall exerts on the
ladder only a force that is perpendicular to the wall. There is no friction
force.) The ladder weighs 200 N and its center of gravity i1s 0.4L tfrom
the base, where L 1s the ladder’s length. (a) How large a friction force
must exist at the base of the ladder if it is not to slip? (b) What is the
necessary coefficient of static friction?
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Figure SP1-6

Solution. (a) We wish to find the friction force H. Notice that no fric-
tion force exists at the top of the ladder. Taking torques about point A
gives the torque equation

- (0.4L)(200 N)(sin 40°) + (L)(P)(sin 50°) =0

Solving gives P = 67.1 N. We can also write
YE=0 or H-P=0

YE =0 or V-200=0

and so H=67.1 N and V = 200 N.

(b)

0= t :H:ﬁ’a"‘l:].rl:’;4
" Vo 200
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Solved Problem 1.6 The graph of an object’s motion along a line is

')

15

=

L L L L

Distance {m)

3.0

Time (s}

shown in Figure SP1-7. Find the instantaneous velocity of the object at
points A and B. What is the object’s average velocity? Its acceleration?

Figure SP1-7

Solution. Because the velocity is given by the slope Ax/At of the tan-
gent line, we take a tangent to the curve at point A. The tangent line 1s
the curve itself in this case. For the triangle shown at A, we have

AX_4mM 650 m/s

At 8s

This 1s also the velocity at point B and atv@x:fﬂ‘fy:&l?é} IB(;fht on the

straight-line graph. It follows that a = 0 and
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Simple Harmonic Motion
and Springs
Period

The period (T) of a cyclic system, one that is vibrating or rotating in a
repetitive fashion, is the time required for the system to complete one
full cycle. In the case of vibration, it is the total time for the combined
back and forth motion of the system. The period is the number of sec-
onds per cycle.

37
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Frequency

The frequency (f) is the number of vibrations made per unit time or the
number of cycles per second. Because T is the time for one cycle, f =
I/T. The unit of frequency is the herrz, where one cycle/s is one hertz
(Hz).

The graph of a vibratory motion, shown in Figure 2-1, depicts up-
and-down oscillation of a mass at the end of a spring. One complete
cycle 1s from a to b, or from ¢ to d, or from e to t. The time taken for
one cycle is T, the period.

[¥splacement (¥

Liquilitrinm
pessilion

Time

Figure 2-1

Displacement

The displacement (x or y) is the distance of the vibrating object from
its equilibrium position (normal rest position), 1.e., from the center of its
vibration path. The maximum displacement is called the amplitude (see
Figure 2-1).

Restoring Force

A restoring force is one that opposes the displacement of the system; it
is necessary if vibration is to occur. In other words, a restoring force is
always directed so as to push or pull the system back to its equilibrium
(normal rest) position. For a mass at the end of a spring, the stretched
spring pulls the mass back toward the equilibrium position, while the
compressed spring pushes the mass back toward the equilibrium position.
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Simple Harmonic Motion

Simple harmonic motion (SHM) is the vibratory motion which a sys-
tem that obeys Hooke’s Law undergoes. The motion illustrated in
Figure 2-1 is SHM. Because of the resemblance of its graph to a sine or
cosine curve, SHM is frequently called sinusoidal motion. A central fea-
ture of SHM is that the system oscillates at a single constant frequency.
That’s what makes it “simple” harmonic.

Hooke's Law

A Hookean system (a spring, wire, rod, etc.) is one that returns to its
original configuration after being distorted and then released.
Moreover, when such a system is stretched a dis-
tance X (for compression, x 1s negative), the
restoring force exerted by the spring is given by
Hooke’s Law:

F = -kx

The minus sign indicates that the restoring force is
always opposite in direction to the displacement. The spring constant
k has units of N/m and is a measure of the stiffness of the spring. Most
springs obey Hooke’s Law for small distortions.

It is sometimes useful to express Hooke’s Law in terms of F__, the
external force needed to stretch the spring a given amount x. This force
is the negative of the restoring force, and so

F =kx

ext

Elastic Potential Energy

The elastic potential energy stored in a Hookean spring (EPE) that is dis-

. N B, : L .
torted a distance x is —kx”. If the amplitude of motion is x_ for a mass

at the end of a spring, then the energy of the vibrating system 1s —é—kxi at
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all imes. However, this energy is completely stored in the spring only
when x = +x, that is, when the mass has its maximum displacement.

Conservation of Energy

Energy interchange between kinetic and potential energy occurs con-
stantly in a vibrating system. When the system passes through its equi-
librium position, KE = maximum and EPE = 0. When the system has its
maximum displacement, then KE = 0 and EPE = maximum. From the
law of conservation of energy, in the absence of friction-type losses,

KE + EPE = constant

For a mass m at the end of a spring (whose own mass is negligible), this
becomes

Lmv2+lkf=ikxi

where x_ 1s the amplitude of the motion.

Motion in SHM

The speed in SHM is determined via the above energy equation as

Acceleration in SHM i1s determined via Hooke's Law, F = -kx, and F =
ma; once displaced and released, the restoring force drives the system.
Equating these two expressions for F gives

k
a=——X
m

The minus sign indicates that the direction of @ (and F) is always
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opposite to the direction of the displacement X . Keep in mind that

neither F nor a 1s constant,

Reference Circle

Suppose that a point P moves with constant speed v, around a circle, as
shown in Figure 2-2.

{Onee around
intime 7

-

| Displacement |

Il"x * / II
\EL ;f/

Figure 2-2

This circle is called the reference circle for SHM. Point A is the pro-
jection of point P on the x-axis, which coincides with the horizontal
diameter of the circle. The motion of point A back and forth about point
O as center 1s SHM. The amplitude of the motion is x_, the radius of the

circle. The time taken for P to go around the circle once is the period T

of the motion. The velocity, v, of point A has a scalar component of

v =-v sin 6
X (&}

When this quantity 1s positive, V_, points in the positive x-direction;

when it’s negative, ¥_ points in the negative x-direction.
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Period in SHM

The period T of a SHM is the time taken for point P to go once around
the reference circle in Figure 2-2. Therefore,

T I _ 2TX,
v v

LA LA

But v_is the maximum speed of point A in Figure 2-2, that is, v, is the

value of val in SHM when x = 0:

. . K . k
= J (x2-x*)— gives v =x 1‘ —
m m

This then gives the period of SHM to be

T=2n L
|| k

for a Hookean spring system. Eliminating the quantity k/m between the

v:l:

two equations a = -(k/m)x and T=2n 4 m/k , we find

Simple Pendulum

The simple pendulum very nearly undergoes SHM if its angle of swing
is not too large. The period of vibration for a pendulum of length L at a
location where the gravitational acceleration is g is given by

T=2n 1’£
g
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SHM can be expressed in analytic form by reference to Figure 2-2,
where we see that the horizontal displacement of point P is given by x

= X, cos 0. Since 6 = wt = 2xft, where the angular frequency o = 2nf

1s the angular velocity of the reference point on the circle, we have

X = X, COs 2rft = X, COs ot

Similarly, the vertical component of the motion of point P is given by
y = X, sin 2mft = x sin @t

0 0

Also, from the figure, v_= v, sin 2mft.

Density and Elasticity

Mass Density

The mass density (p) of a material is its mass per unit volume:

mass of body m

volume of body V
The SI unit for mass density is kg/m?, although g/cm? is also used: 1000

* Important Point!

Specific Gravity

The specific gravity (sp gr) of a substance is the ratio of the
density of the substance to the density of some standard sub-
stance. The standard is usually water (at 4°C) for liquids and
solids, while for gases, it is usually air.

sp gr=—F—

pﬂzmdard

Since sp gr is a dimensionless ratio, it has the same value for
all systems of units.
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kg/m* =1 g/cm”. The density of water is approximately 1000 kg/m".

Elasticity

Elasticity 1s the property by which a body returns to its original size and
shape when the forces that deformed it are removed.

The stress (o) experienced within a solid 1s the magnitude of the
torce acting (F), divided by the area (A) over which it acts:

Stress = force

area of surface on which force acts
_F
A

Its SI unit is the pascal (Pa), where 1 Pa= 1 N/m?. Thus, if a cane sup-
ports a load, the stress at any point within the cane is the load divided
by the cross-sectional area at that point; the narrowest regions experi-
ence the greatest stress.

Strain (£) is the fractional deformation resulting from a stress. It is mea-
sured as the ratio of the change in some dimension of a body to the orig-
inal dimension in which the change occurred.

: change in dimension
Strain =

original dimension

Thus, the normal strain under an axial load 1s the change in length (AL)
over the original length L

Strain has no units because it is a ratio of like quantities. The exact def-
inition of strain for various situations is given later.
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Remember

The elastic limit of a body is the smallest
stress that will produce a permanent distortion
in the body. When a stress in excess of this
limit is applied, the body will not return exact-
ly to its original state after the stress is
removed.

Young's Modulus

Young’s modulus (Y), or the modulus of elasticity, is defined as

siress

Modulus of elasticity = :
strain

The modulus has the same units as stress. A large modulus means that a
large stress is required to produce a given strain—the object 1s rigid.
Accordingly,

FL

yo FIA _ T

AL/L A AL

Its SI unit 1s Pa. Unlike the constant k in Hooke’s Law, the value of Y
depends only on the material of the wire or rod, and not on its dimen-
sions or configuration. Consequently, Young’s modulus is an important
basic measure of the mechanical behavior of materials.

The bulk modulus (B) describes the volume elasticity of a material.
Suppose that a uniformly distributed compressive force acts on the sur-
face of an object and is directed perpendicular to the surface at all
points. Then, if F is the force acting on and perpendicular to an area A,
we define
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Pressureon A = P = £
A

The SI unit for pressure is Pa.
Suppose that the pressure on an object of original volume V is

increased by an amount AP. The pressure increase causes a volume
change AV, where AV will be negative. We then define

Volume stress = AP Volume strain = — 2V
\%
Bulk modulus = Vvolume stress
volume strain
B=- AP _ _ vuﬂ‘P
AV/IV AV

The minus sign 1s used so as to cancel the negative numerical value of
AV and thereby make B a positive number. The bulk modulus has the
units of pressure. The reciprocal of the bulk modulus is called the com-
pressibility K of the substance.

The shear modulus (S) describes the shape elasticity of a material.
Suppose, as shown in Figure 2-3, that equal and opposite tangential
forces F act on a rectangular block. These shearing forces distort the
block as indicated, but its volume remains unchanged.

S F
— ym
P T T F
et ?’ SRR e
LTI L I, g Y '_ L '-5:-.""
AL . TEe 1
- -U II
= ] .lII
Lﬂ |— R ] .'::i, i & I'I
e e :
¥ s -“‘g:i;. f: -----
F i
i — e

By QF '.L

Figure 2-3
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We define

tangential force acting

Shearing stress =
area of surface being sheared

o=1
A

Shearing strain = distance sheared

distance between surfaces
¢ — AL
T L

LA

Then

Shear modulus = _Shear stress

shear strain

S: F/A — FLu

AL/L A AL

Since AL is usually very small, the ratio AL/L  is equal approximately
to the shear angle y in radians. In that case,

Fluids at Rest

The average pressure on a surface of area A is found as force divided
by area, where it 1s stipulated that the force must be perpendicular (nor-
mal) to the area:

force acting normal to an area

Average pressure =
area over which the force 1s distributed

p=t
A
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Recall that the SI unit for pressure is the pascal (Pa), and 1 Pa= 1 N/m?.

Standard atmospheric pressure is 1.01 x 10° Pa, and this is equivalent
to 14.7 Ib/in®. Other units used for pressure are:

| atmosphere (atm) = 1.013 x 10° Pa
| torr = 1 mm of mercury (mmHg) = 133.32 Pa
| Ib/in” = 6.895 kPa

The hydrostatic pressure due to a column of fluid of height h and mass
density p 1s

P= pgh

Pascal's Principle

When the pressure on any part of a
confined fluid (liquid or gas) is
changed, the pressure on every other
part of the fluid is also changed by the
same amount.

Archimedes’ Principle

A body wholly or partly immersed in a fluid i1s buoyed up by a force
equal to the weight of the fluid it displaces. The buoyant force can be

considered to act vertically upward through the center of gravity of the
displaced fluid.

Fy = buoyant force = weight of displaced fluid

The buoyant force on an object of volume V that is totally immersed in
a fluid of density p.is p, Vg, and the weight of the object is p, Vg, where
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P, 1s the density of the object. Therefore, the net upward force on the

submerged object is

Fn':t (upward) = Vg(pr— p{]]

Fluids in Motion
Fluid flow

Fluid flow or discharge (J): When a fluid that fills a pipe flows through
the pipe with an average speed v, the flow or discharge J is

J = Av

where A is the cross-sectional area of the pipe. The units of J are m’/s
in the SI and ft*/s in U.S. customary units. Sometimes, J is called the
rate of flow or the discharge rate.

Equation of Continuity

Suppose an incompressible (constant-density) fluid fills a pipe and
flows through it. Suppose further that the cross-sectional area of the
pipe is A at one point and A, at another. Since the flow through A, must

equal the flow through A, one has
J=A v, =A,v, = constant

where v, and v, are the average fluid speeds over A and A,, respec-

!
tively:.

Shear Rate

The shear rate of a fluid is the rate at which the shear strain within the
fluid is changing. Because strain has no units, the SI unit for shear rate
|
is 57!,
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Viscosity

The viscosity (1) of a fluid 1s a measure of how large a shear stress 1s
required to produce unit shear rate. Its unit is that of stress per unit shear

rate, or Pa » s in the SI. Another SI unit is the N » s/m” (or kg/m » s),
called the poiseuille (PI): 1 Pl =1 kg/m = s = 1 Pa = s. Other units used
are the poise (P), where 1 P = 0.1 PI, and the centipoise (cP), where 1

cP = 10~ Pl. A viscous fluid, such as tar, has large 1.

Poiseuille’'s Law

The fluid flow through a cylindrical pipe of length L and cross-section-
al radius R is given by

nR*(P,-P |
J=
8snL

where P. - P_ 1s the pressure difference between the two ends of the pipe

(input minus output).

Work Done by Pressure

The work done by a pressure P acting on a surface of area A as the sur-
face moves through a distance Ax normal to the surface (thereby dis-
placing a volume A Ax = AV) 1s

Work = PA Ax =P AV

Bernoulli's Equation

Bernoulli’s equation for the steady flow of a continuous stream of
fluid:

Consider two different points along the stream path. Let point 1 be
at a height h, and let v, p,, and P, be the fluid speed, density, and pres-

sure at that point. Similarly define h,, v,, p,, and P, for point 2. Then,
provided the fluid 1s incompressible and has negligible viscosity,
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P,—I—?pv;—l—h,pg:Pﬁ?pvi—l—thg
where p, = p, = p and g is the acceleration due to gravity.

Torricelli’'s Theorem

Suppose that a tank contains liquid and 1s open to the atmosphere at its
top. If an orifice (opening) exists in the tank at a distance h below the

top of the liquid, then the speed of outflow from the orifice is 4 2gh ,
provided the liquid obeys Bernoulli’s equation and the top of the liquid
may be regarded as motionless.

Reynolds Number

The Reynolds number (N) is a dimensionless number that applies to
a fluid of viscosity 1 and density p flowing with speed v through a pipe
(or past an obstacle) with diameter D:

For systems of the same geometry, flows will usually be similar provid-
ed their Reynolds numbers are close. Turbulent flow occurs if N, for

the flow exceeds about 2000 for pipes or about 10 for obstacles.

Solved Problems

Solved Problem 2.1 Atmospheric pressure is about 1.01 x 10° Pa. How

large a force does the atmosphere exert on a 2 cm? area on the top of
yvour head?
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Solution. Because p = F/A, where F is perpendicular to A, we have F =
pA. Assuming that 2 cm? of your head is flat (nearly correct) and that
the force due to the atmosphere is perpendicular to the surface (as it 1s),
we have

F=pA=(1.01 x 10° N/m?)(2x 10*m?) =20 N

Solved Problem 2.2 The U-tube device connected to the tank in Figure
SP2-1 is called a manometer. As you can see, the mercury in the tube
stands higher in one side than the other. What 1s the pressure in the tank
if atmospheric pressure 1s 76 cm of mercury? The density of mercury 1s
13.6 g/cm”.

\ a

Figure SP2-1

Solution. Pressure at A| = pressure at A,

(P in tank) + (P due to 5 cm mercury) = (P due to atmosphere)

P + (0.05 m)(13 600 kg/m™)(9.8 m/s?)
= (0.76 m)(13 600 kg/m*)(9.8 m/s?)

from which P = 95 kPa.

Or, more simply perhaps, we could note that the pressure in the
tank 1s 5 cm of mercury lower than atmospheric. So the pressure is 71
cm of mercury, which is 94.6 kPa.
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Thermal Expansion

Temperature

Temperature may be measured on the Celsius scale, on which the
freezing point of water 1s at 0°C, and the boiling point (under standard
conditions) 1s at 100°C. The Kelvin (or absolute) scale is displaced
273.15 Celsius-size degrees from the Celsius scale, so that the freezing
point of water 1s 273.15 K and the boiling point 1s 373.15 K. Absolute
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zero 1s at 0 K (-273.15 °C). The Fahrenheit scale 1s related to the Celsius
scale by

Fahrenheit temperature = (Celsius temperature |+ 32

w o

Linear Expansion of Solids

When a solid 1s subjected to a rise in temperature AT, its increase in
length AL is very nearly proportional to
its initial length L, multiplied by AT, or

AL= oL, AT

where the proportionality constant o 1s
called the coefficient of linear expansion.
The value of o depends on the nature of
the substance. From the above equation, o 1s the change in length per
unit length per degree change in temperature. For example, 1f a
1.000 000 ¢m length of brass becomes 1.000 019 cm long when the tem-

perature 1s raised 1.0°C, the linear expansion coefficient for brass is

o AL 0.000 019 cm —1.9% 1075 °C-!

TLAT (L.0em)(L0°C)

Area Expansion

If an area A, expands to A, + AA when subjected to a temperature rise
AT, then

AA= YA, AT

where v 1s the coefficient of area expansion. For 1sotropic solids (those
that expand the same way in all directions), ¥ = 2¢. approximately.
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Volume Expansion

If a volume V_ changes by an amount AV when subjected to a temper-
ature change of AT, then

AV = BV, AT

where P is the coefficient of volume expansion. This can be either an
increase or decrease in volume. For isotropic solids, B = 3o approxi-
mately.

|deal Gases

Ideal Gas

An ideal (or perfect) gas is one that obeys the Ideal Gas Law, given
below. At low to moderate pressures, and at temperatures not too low,
the following common gases can be considered ideal: air, nitrogen, oxy-
gen, helium, hydrogen, and neon. Almost any chemically stable gas
behaves ideally if it is far removed from conditions under which it will
liquefy or solidify. In other words, a real gas behaves like an ideal gas
when its atoms or molecules are so far apart that they do not apprecia-
bly interact with one another.

One mole of a substance is the amount of the substance that contains
as many particles as there are atoms in exactly 12 grams (0.012 kg) of
the 1sotope carbon-12. It follows that one kilomole (kmol) of a sub-
stance 1s the mass (in kg) that 1s numerically equal to the molecular (or
atomic) mass of the substance. For example, the molecular mass of
hydrogen gas, H,, is 2 kg/kmol; hence there are 2 kg in 1 kmol of H,.

Similarly, there are 32 kg in 1 kmol of O,, and 28 kg in 1 kmol of N,.

Ideal Gas Law

The absolute pressure P of n kilomoles of gas contained in a volume V
is related to the absolute temperature T by

PV =nRT
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where R = 8314 J/kmol = K is called the universal gas constant. If the
volume contains m kilograms of gas that has a molecular (or atomic)
mass M, then n = m/M.

Special cases of the Ideal Gas Law, obtained by holding all but two of
Its parameters constant, are

Boyle 's Law (n, T constant ): PV =constant

Charles ' Law (n, P constant ): V =constant

T
Gay — Lussac 's Law (n, V constant ): Ezcnnstam
T
Remember

Absolute zero

With n and P constant (Charles’ Law), the vol-
ume decreases linearly with T and (if the gas
remained ideal) would reach zero at T = 0 K.
Similarly, with n and V constant (Gay-
Lussac’'s Law), the pressure would decrease
to zero with the temperature. This unigue tem-
perature at which P and V would reach zero is
called absolute zero.

Standard Conditions or Standard
Temperature and Pressure

Standard conditions or standard temperature and pressure (S.T.P.) are
defined to be

T=273.15 K =0°C P=1.013x10°Pa=1 atm
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Under standard conditions, 1 kmol of ideal gas occupies a volume of
22.4 m’. Therefore, at S.T.P,, 2 kg of H, occupies the same volume as

32 kg of O, or 28 kg of N,. namely 22.4 m-.

Dalton's Law of Partial Pressures

Define the partial pressure of one component of a gas mixture to be the
pressure the component gas would exert if it alone occupied the entire
volume. Then, the total pressure of a mixture of ideal, nonreactive gases
1s the sum of the partial pressures of the component gases.

Gas Law Problems

Gas law problems involving a change of conditions from (P, V,, T)) to

(P,, V,, T,) are usually easily solved by writing the gas law as

PV

PV,
-

(at constant n |

Heat Quantities
Thermal Energy

Thermal energy is the random kinetic energy of the particles (usually
electrons, ions, atoms, and molecules) composing a system.

Heat

Heat 1s thermal energy in transit from a system (or aggregate of elec-
trons, 1ons, and atoms) at one temperature to a system that is in contact
with it, but 1s at a lower temperature. Its SI unit is the joule. Other units
used for heat are the calorie (1 cal =4.184 J) and the British thermal unit
(1 Btu = 1054 J). The “*Calorie” used by nutritionists is called the “large
calorie” and is actually a kilocalorie (1 Cal = | kcal = 107 cal).
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Specific Heat

The specific heat (or specific heat capacity, c) of a substance is the
quantity of heat required to change the temperature of unit mass of the
substance by one degree. If a quantity of heat AQ 1s required to produce
a temperature change AT in a mass m of substance, then the specific
heat is

c= AQ or AQ=cm AT

m AT

In the SI, ¢ has the unit J/kg = K, which 1s equivalent to J/kg = °C. Also
widely used 1s the unit cal/g = °C, where | cal/g = °C = 4184 J/kg » °C.

Each substance has a characteristic value of specific heat, which
varies slightly with temperature. For water, ¢ = 4180 J/kg » °C = 1.00
cal/g » °C.

Heat gained (or lost) by a body (whose
phase does not change) as it undergoes a
temperature change AT is given by

AQ =mc AT

The heat of fusion (L) of a crystalline solid is the quantity of heat
required to melt a unit mass of the solid at constant temperature. It is
also equal to the quantity of heat given off by a unit mass of the molten
solid as it crystallizes at this same temperature. The heat of fusion of
water at 0°C 1s about 335 kl/kg or 80 cal/g.

The heat of vaporization (L ) of a liquid is the quantity of heat required
to vaporize a unit mass of the liquid at constant temperature. For water
at 100°C, L_ is about 2.26 MJ/kg or 540 cal/g.

The heat of sublimation of a solid substance i1s the quantity of heat
required to convert a unit mass of the substance from the solid to the
gaseous state at constant temperature.
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Calorimetry Problems

Calorimetry problems involve the sharing of thermal energy among ini-
tially hot objects and cold objects. Since energy must be conserved, one
can write the following equation:

Sum of heat changes for all objects = 0

Here the heat flowing out of the high-temperature system (AQ_ < 0)

numerically equals the heat flowing into the low-temperature system
(AQ_ . > 0) and so the sum is zero. This, of course, assumes that no ther-

mal energy 1s otherwise lost from the system.

Transfer of Heat Energy

Energy can be transfered by conduction, convection, and radiation.
Remember that heat is the energy transterred from a system at a higher
temperature to a system at a lower temperature (with which 1t 1s in con-
tact) via the collisions of their constituent particles.

Conduction

Conduction occurs when thermal energy moves through a material as
a result of collisions between the free electrons, 1ons, atoms, and mole-
cules of the material. The hotter a substance, the higher the average KE
of its atoms. When a temperature difference exists between materials in
contact, the higher-energy atoms in the warmer substance transfer ener-
gy to the lower-energy atoms in the cooler substance when atomic col-
lisions occur between the two. Heat thus flows from hot to cold.
Consider the slab of material shown in Figure 3-1. Its thickness is
L and its cross-sectional area is A. The temperatures of its two faces are
T, and T,, so the temperature difference across the slab is AT=T -T,.

The quantity AT/L is called the temperature gradient. It 1s the rate-of-
change of temperature with distance.
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Figure 3-1

The quantity of heat AQ transmitted from face 1 to face 2 in time AT 1s
given by

AQ_, \AT
At L

where k; depends on the material of the slab and is called the thermal
conductivity of the material. In the SI, k; has the unit W/m « K, and

AQ/At 1s 1in J/s (Le., W). Other units sometimes used to express k. are
related to W/m = K as follows:

lcal/s*cm*"C=418.4 W/m * K and
| Btu* in/h * ft2 « °F = 0.144 W/m = K

Thermal Resistance

The thermal resistance (or R value) of a slab i1s defined by the heat-
flow equation in the form

AQ _ AAT
At R

where R = L
k
T

Its SI unit is m? « K/W. Its customary unit is ft*> « h » °F/Btu, where | »
ft> = h » °F/Btu = 0.176 m” » K/W.
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For several slabs of the same surface area in series. the combined
R value i1s

R=R, +R,+***+R

where R, *++, are the R values of the individual slabs.

* Important Point!

Convection

Convection of thermal energy occurs in a fluid when warm
material flows so as to displace cooler material. Typical exam-
ples are the flow of warm air from a register in a heating sys-
tem and the flow of warm water in the Gulf Stream.

Radiation

Radiation is the mode of transport of radiant electromagnetic energy
through vacuum and the empty space between atoms. Radiant energy 1s
distinct from heat, though both correspond to energy in transit. Heat 1s
heat; electromagnetic radiation is electromagnetic radiation—don’t
confuse the two.

A blackbody is a body that absorbs all the radiant energy falling on
it. At thermal equilibrium, a body emits as much energy as it absorbs.
Hence, a good absorber of radiation is also a good emitter of radia-
tion. Suppose a surface of area A has absolute temperature T and radi-
ates only a fraction € as much energy as would a blackbody surface.
Then € 1s called the emissivity of the surface, and the energy per sec-
ond (i.e., the power) radiated by the surface i1s given by the Stefan-
Boltzmann Law:

P=¢eAcT?
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where 0 = 5.67 x 10°® W/m? » K* is the Stefan-Boltzmann constant, and
T 1s the absolute temperature. The emissivity of a blackbody is unity.
All objects whose temperature 1s above absolute zero radiate ener-
gy. When an object at absolute temperature T 1s in an environment
where the temperature is T , the net energy radiated per second by the

object 1s

P=¢Ac (T*-T?

First Law of Thermodynamics
Heat

Heat (AQ) is the thermal energy that flows from one body or system to
another, which 1s in contact with it, because of their temperature differ-
ence. Heat always flows from hot to cold. For two objects in contact to
be in thermal equilibrium with each other (i.e., for no net heat transfer
from one to the other), their temperatures must be the same. It each of
two objects 1s in thermal equilibrium with a third body, then the two are
in thermal equilibrium with each other. (This fact 1s often referred to as
the Zeroth Law of Thermodynamics.)

Internal Energy

The internal energy (U) of a system is the total
energy content of the system. It is the sum of all
forms of energy possessed by the atoms and
molecules of the system.
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Work Done by a System

The work done by a system (AW) is positive if the system thereby
loses energy to its surroundings. When the surroundings do work on the
system so as to give it energy, AW is a negative quantity. In a small
expansion AV, a fluid at constant pressure P does work given by

AW =P AV

First Law of Thermodynamics

The First Law of Thermodynamics is a statement of the law of con-
servation of energy. It states that if an amount of heat (AQ) flows into a
system, then this energy must appear as increased internal energy AU
for the system and/or work AW done by the system on its surroundings.
As an equation, the First Law 1s

AQ = AU + AW

Thermodynamic Processes

An isobaric process is a process carried out at constant pressure.

An isovolumic process 1s a process carried out at constant volume.
When a gas undergoes such a process,

AW =PAV =10

and so the First Law of Thermodynamics becomes

AQ =AU

Any heat that flows into the system appears as increased internal ener-
gy of the system.

An isothermal process is a constant-temperature process. In the case of
an ideal gas where the constituent atoms or molecules do not interact
when separated, AU = 0 in an isothermal process. However, this is not
true for many other systems. For example, AU # 0 as ice melts to water

at 0°C, even though the process is isothermal.
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For an ideal gas, AU = 0 is an isothermal change, and so the First Law
becomes

AQ = AW (ideal gas)

For an ideal gas changing isothermally from (P, V) to (P,, V,), where
PV =PV,

v V
AQ=AW=P V In |_2|=230P V log |2
v V

Here, In and log are logarithms to the base e and base 10, respectively.

Adiabatic Process

An adiabatic process is one in which no heat is transferred to or from
the system. For such a process, AQ = 0. Hence, in an adiabatic process,
the first law becomes

0 =AU + AW

Any work done by the system is done at the expense of the internal
energy. Any work done on the system serves to increase the internal
energy.

For an ideal gas changing from conditions (P, V. T)) to (P,, V,,

T,) in an adiabatic process,

PV/=P,V! and T,V '=T,V!"

where ¥ = c, /c_1s discussed below.

Specific Heats of Gases

When a gas 1s heated ar constant volume, the heat supplied goes to
increase the internal energy of the gas molecules. But when a gas is
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heated ar constant pressure, the heat supplied not only increases the
internal energy of the molecules but also does mechanical work in
expanding the gas against the opposing constant pressure. Hence the
specific heat of a gas at constant pressure ¢, 1s greater than its specific

heat at constant volume, c . It can be

shown that, for an i1deal gas of molecular
mass M,

c —1:|=E (ideal gas )
M

where R i1s the universal gas constant. In
the SI, R = 8314 J/kmol K and M is in kg/kmol; then c, and ¢ must be

in J/’kg K = J/kg °C. Some people use R = 1.98 cal/mol » °C and M 1n
g/mol, in which case ¢ and C are in

p v
cal/g = °C.

Specific heat ratio (y= c, /c ). As discussed above, this ratio is greater

than unity for a gas. The kinetic theory of gases indicates that for
monatomic gases (such as He, Ne, Ar), v = 1.67. For diatomic gases
(such as O,, N,), Y= 1.40 at ordinary temperatures.

P-V Diagrams

Work 1s related to area in a P-V diagram. The work done by a fluid in
an expansion is equal to the area beneath the expansion curve on a P-V
diagram. In a cyclic process, the work output per cycle done by a fluid
1s equal to the area enclosed by the P-V diagram representing the cycle.

Efficiency of a Heat Engine

The efficiency of a heat engine i1s defined as

work output

efficiency = ‘
heat input



66 COLLEGE PHYSICS

The Carnot cycle is the most efficient cycle possible for a heat engine.
An engine that operates in accordance to this cycle between a hot reser-
voir (T, ) and a cold reservoir (T ) has efficiency

efficiency =1-—
(L H RS
T

Kelvin temperatures must be used in this equation.

Entropy and the Second Law

Second Law of Thermodynamics

The Second Law of Thermodynamics can be stated in three equivalent
ways:

(1) Heat flows spontaneously from a hotter to a colder object, but not
vice versa.

(2) No heat engine that cycles continuously can change all its heat-in
to useful work-out.

(3) If a system undergoes spontaneous change, it will change in such a
way that its entropy will increase or, at best, remain constant.

‘* Note!

The Second Law tells us the manner in which a sponta-
neous change will occur, while the First Law tells us
whether or not the change is possible. The First Law
deals with the conservation of energy; the Second Law
deals with the dispersal of energy.
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Entropy

Entropy (S) is a state variable for a system in equilibrium. By this 1s
meant that S is always the same for the system when it is in a given
equilibrium state. Like P, V, and U, the entropy is a characteristic of the
system at equilibrium.

When heat AQ enters a system at an absolute temperature T, the
resulting change in entropy of the system is

as=22
T

provided the system changes in a reversible way. The SI unit for entropy
is J/K.

A reversible change (or process) is one in which the values of P, V,
T, and U are well defined during the change. If the process is reversed,
then P, V, T, and U will take on their original values when the system is
returned to where it started. To be reversible, a process must usually be
slow, and the system must be close to equilibrium during the entire
change.

Another, fully equivalent, definition of entropy can be given from
a detailed molecular analysis of the system. If a system can achieve a
particular state (i.e., particular values of P, V, T, and U) in £ (omega)
different ways (different arrangements of the molecules, for example),
then the entropy of the state is

S=k,InQ

where In is the logarithm to base e, and k; is Boltzmann’s constant,
1.38 x 10% JJK.

Entropy Is a Measure of Disorder

A state that can occur in only one way (one arrangement of its mole-
cules, for example) is a state of high order. But a state that can occur in
many ways Is a more disordered state. One way to associate a number
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with disorder is to take the disorder of a state as being proportional to
(2, the number of ways the state can occur. Because S =k, In £, entropy

1s a measure of disorder.
Spontaneous processes In systems that contain many molecules
always occur in a direction from a

state that can exist ]_, { state that can exist

in only a few ways In many ways

Hence, when left to themselves, systems retain their original state of
order or else increase their disorder.

The most probable state of a system 1s the state with the largest
entropy. It is also the state with the most disorder and the state that can
occur in the largest number of ways.

Solved Problems

Solved Problem 3.1 A 20 g piece of aluminum (¢ = 0.21 cal/g °C) at
90 °C 1s dropped into a cavity in a large block of ice at 0 °C. How much
ice does the aluminum melt?

Solution.

(heat change of Al as it cools to 0 °C)
+ (heat change of mass m of ice melted) = 0

(mcAT),, + (Hm), =0

(20 £)(0.21 cal/g °C)(0 °C - 90 °C) + (80 cal/g) m = 0

from which m = 4.7 g is the quantity of ice melted.
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Solved Problem 3.2 What is the net work output per cycle for the ther-

6

P(10° Pa)

modynamic cycle in Figure SP3-17
Figure SP3-1

Solution. We know that the net work output per cycle i1s the area
enclosed by the P-V diagram. We estimate that in area ABCA there are
22 squares, each of area

(0.5 x 10° N'm?)(0.1 m?) =5 kJ
Theretore,

Area enclosed by cycle = (22)(5 kI) = 110 kJ



Chapter 4

WAVES

IN TH1S CHAPTER:

v/ Transverse Waves
v Wave Terminology
v Standing Waves
v/ Resonance

v Longitudinal Waves
v/ Sound Waves

v Doppler Effect

Transverse \Waves

Propagating Waves

A propagating wave 1s a self-sustaining disturbance of a medium that
travels from one point to another, carrying energy and momentum.
Mechanical waves are aggregate phenomena arising from the motion of
constituent particles. The wave advances, but the particles of the medi-
um only oscillate in place. A wave has been generated on the string in
Figure 4-1 by the sinusoidal vibration of the hand at its end. The wave
furnishes a record of earlier vibrations of the source. Energy is carried
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by the wave from the source to the right, along the string. This direc-
tion, the direction of energy transport, is called the direction (or line) of
propagation of the wave.
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Figure 4-1

Each particle of the string (such as the one at point C) vibrates up and
down, perpendicular to the line of propagation. Any wave in which the
vibration direction is perpendicular to the direction of propagation is
called a transverse wave. Typical transverse waves, besides those on a
string, are electromagnetic waves—Ilight and radio waves. By contrast,
in sound waves, the vibration direction is parallel to the direction of
propagation, as will be seen in a later section. Such a wave 1s called a
longitudinal (or compressional) wave.

Wave Terminology

The period (T) of a wave is the time 1t takes the wave to go through one
complete cycle. It 1s the time taken for a particle such as the one at A to
move through one complete vibration or cycle, down from point A and
then back to A. The period 1s the number of seconds per cycle. The fre-
quency (f) of a wave is the number of cycles per second. Thus,
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If T is in seconds, then f is in hertz (Hz), where 1 Hz = 1 s*!. The peri-
od and frequency of the wave are the same as the period and frequency
of the vibration

The top points on the wave, such as A and C, are called wave crests.
The bottom points, such as B and D, are called troughs. As time goes
on, the crests and troughs move to the right with speed v, the speed of
the wave. The amplitude of a wave is the maximum disturbance under-
gone during a vibration cycle, distance y, in Figure 4-1. The wave-

length (A) is the distance along the direction of propagation between
corresponding points on the wave, distance AC, for example. In a time
T, a crest moving with speed v will move a distance A to the right.
Therefore, s = vt gives

A=vlI =YX and v = fiA

This relation holds for all waves, not just for waves on a string.

In-phase vibrations exist at two points on a wave 1f those points under-
go vibrations that are in the same direction, in step. For example, the
particles of the string at points A and C in Figure 4-1 vibrate in-phase,
since they move up together and down together. Vibrations are in-phase
if the points are a whole number of wavelengths apart. The pieces of the
string at A and B vibrate opposite to each other; the vibrations there are

said to be 180°, or half a cycle, our-of-phase.

The speed of a transverse wave on a stretched string or wire 1s

,\[ tension in string
v= =

mass per unit length of string

Standing Waves

At certain vibrational frequencies, a system can undergo resonance.
That 1s to say, it can efficiently absorb energy from a driving source in
its environment which is oscillating at that frequency (see Figure 4-2).
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These and similar vibration patterns are called standing waves, as com-
pared to the propagating waves considered above. These might better
not be called waves at all since they do not transport energy and
momentum. The stationary points (such as B and D) are called nodes;
the points of greatest motion (such as A, C, and E) are called antinodes.

. . : .
The distance between adjacent nodes (or antinodes) is El :

We term the portion of the string between adjacent nodes a segment,

: 1
and the length of a segment 1s also ??'. .

—

Vibrator

() Third overtone (L = 4 - +4)

Figure 4-2

Resonance

A string will resonate only if the vibration wavelength has certain spe-
cial values: the wavelength must be such that a whole number of wave
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segments (each %}L long) exactly fit on the string. A proper fit occurs

when nodes and antinodes exist at positions demanded by the con-
straints on the string. In particular, the fixed ends of the string must be
nodes. Thus, as shown in Figure 4-2, the relation between the wave-

length A and the length L of the resonating string is L =n [é A ] where

n is any integer. Because A = vT = v/f, the shorter the wave segments at
resonance, the higher will be the resonance frequency. If we call the
fundamental resonance frequency f,, then Figure 4-2 shows that the

higher resonance trequencies are given by f = nf .
n 1

Longitudinal Waves

Longitudinal (compressional) waves occur as lengthwise vibrations of
air columns, solid bars, and the like. At resonance, nodes exist at fixed
points, such as the closed end of an air column in a tube, or the location
of a clamp on a bar. Diagrams such as Figure 4-2 are used to display the
resonance of longitudinal waves as well as transverse waves. However,
for longitudinal waves, the diagrams are mainly schematic and are used
simply to indicate the locations of nodes and antinodes. In analyzing
such diagrams, we use the fact that the distance between node and adja-

. |
cent antinode i1s — A,
4

Sound Waves

Sound waves are compression waves In
a material medium such as air, water, or
steel. When the compressions and rar-
efactions of the waves strike the
eardrum, they result in the sensation of
sound, provided the frequency of the
waves 1s between about 20 Hz and 20
000 Hz. Waves with frequencies above
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20 kHz are called ultrasonic waves. Those with frequencies below 20
Hz are called infrasonic waves.

Equations for Sound Speed

In an ideal gas of molecular mass M and absolute temperature T, the
speed of sound v is given by

V= YRT (1deal gas )

where R 1s the gas constant, and 7 1s the ratio of specific heats c, ﬁ:v. Y

i1s about 1.67 for monatomic gases (He, Ne, Ar), and about 1.40 for
diatomic gases (N,, O,, H,).

The speed of compression waves in other materials 1s given by

v ,\/ modulus
density

If the material is in the form of a bar, Young’s modulus Y is used. For
liquids, one must use the bulk modulus.

The speed of sound in air at 0°C 1s 331 m/s. The speed increases with

temperature by about 0.61 m/s for each 1°C rise. More precisely, sound
speeds v, and v, at absolute temperatures T, and T, are related by

The speed of sound 1s essentially independent of pressure, frequency,
and wavelength.
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Intensity

The intensity (I) of any wave 1s the energy per unit area, per unit time;
in practice, it 1s the average power carried by the wave through a unit
area erected perpendicular to the direction of propagation of the wave.
Suppose that in a time At an amount of energy AE is carried through an
area AA that is perpendicular to the propagation direction of the wave.
Then

- AE _ P,
AA At AA

[t may be shown that, for a sound wave with amplitude A and frequen-

cy 1, traveling with speed v in a material of density p,
[=2rnfpvAj

If fisin Hz, pisin kg/m?, v is in m/s, and A _ (the maximum displace-

ment of the atoms or molecules of the medium) 15 in m, then I 15 1n
W/m?.

L oudness

Loudness 1s a measure of the human perception of sound. Although a
sound wave of high intensity is perceived as louder than a wave of
lower intensity, the relation is far from linear. The sensation of sound 1s
roughly proportional to the logarithm of the sound intensity. But the
exact relation between loudness and intensity 1s complicated and not the
same for all individuals.

Intensity (or loudness) level (3) is defined by an arbitrary scale that
corresponds roughly to the sensation of loudness. The zero on this scale

is taken at the sound-wave intensity I, = 1.00 x 10712 W/m?2, which cor-

responds roughly to the weakest audible sound. The intensity level, in
decibels, is then defined by
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B=10 log {[i ]

LA

The decibel (dB) 1s a dimensionless unit. The normal ear can distinguish
between intensities that differ by an amount down to about 1 dB.

Remember!
Beats

The alternations of maximum and minimum
intesity produced by the superposition of two
waves of slightly different frequencies are
called beats. The number of beats per second
is equal to the difference between the fre-

quencies of the two waves that are combined.

Doppler Effect

Suppose that a moving sound source emits a sound of frequency f . Let

v be the speed of sound, and let the source approach the listener or
observer at speed v, measured relative to the medium conducting the

sound. Suppose further that the observer is moving toward the source at
speed v_, also measured relative to the medium. Then the observer will

hear a sound of frequency f given by

. . v+ 1|l.'ru
tu: ta‘
lv—=vVv

5
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If either the source or the observer is moving away from the other, the
sign on its speed in the equation must be changed.

When the source and the observer are approaching each other, more
wave crests strike the ear each second than when both are at rest. This
causes the ear to perceive a higher frequency than that emitted by the
source. When the two are receding, the opposite effect occurs; the fre-

quency appears to be lowered.
Because v + v_ is the speed of a wave crest relative to the observ-

er, and because v - v_1is the speed of a wave crest relative to the source,

an alternative form 1s

f =f (crest speed relative to observer ]

crest speed relative to source

Interference Effects

Two sound waves of the same frequency and amplitude may give rise
to easily observed interference effects at a point through which they
both pass. If the crests of one wave fall on the crests of the other, the
two waves are said to be in-phase. In that case, they reinforce each other
and give rise to a high intensity at that point.

However, if the crests of one wave fall on the troughs of the other,
the two waves will exactly cancel each other. No sound will then be
heard at the point. We say that the two waves are then 180° (or a half
wavelength) out-of-phase.

Intermediate effects are observed if the two waves are neither in-
phase nor 180 out-of-phase, but have a fixed phase relationship some-
where in between.
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Coulomb’s Law
and Electric Fields

Coulomb’s Law

Suppose that two point charges, g and q°, are a distance r apart in vac-
uum. If q and q~ have the same sign, the two charges repel each other;
if they have opposite signs, they attract each other. The force experi-
enced by either charge due to the other is called a Coulomb or electric
force, and it is given by Coulomb’s law,

Fﬁzkli (in vacuum |
r

As always in the SI, distances are measured in meters and forces in
newtons. The SI unit for charge q is the coulomb (C). The constant k in
Coulomb’s Law has the value

k = 8.988 x 10° N « m¥/C?

which we shall usually approximate as 9.0 x 10° N » m?/C*. Often, k is
replaced by 1/4me , where g, = 8.85 x 10""* C*/N » m” is called the per-
mittivity of free space. Then Coulomb’s Law becomes

F = (in vacuum )

When the surrounding medium is not a vacuum, forces caused by
induced charges in the material reduce the force between point charges.
If the material has a dielectric constant K., then g, in Coulomb’s Law

must be replaced by Kg, = &, where € is called the permittivity of the

material. Then,
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[

k
4ne r K

B

For vacuum, K = 1; for air, K = 1.0006.

Coulomb’s Law also applies to uniform spherical shells or spheres
of charge. In that case, r, the distance between the centers of the spheres,
must be larger than the sum of the radii of the spheres.

Charge Is Quantized

The magnitude of the smallest charge ever measured is denoted by e

(called the quantum of charge), where e = 1.602 18 x 10" C. All free
charges, ones that can be i1solated and measured, are integer multiples of

e. The electron has a charge of -e, while the proton’s charge is +e.

Conservation of Charge

The algebraic sum of the charges in the 1solated system is constant.
When a particle with charge +e is created, a particle with charge -e 1s
simultaneously created in the immediate vicinity. When a particle with
charge +e disappears, a particle with charge -e also disappears in the
immediate vicinity. Hence, the net charge of the isolated system
remains constant.

The Test-Charge Concept

A test-charge is a very small charge
that can be used in making measure-
ments on an electric system. It is
assumed that such a charge, which is
tiny both in magnitude and in physical
size, has a negligible effect on its
environment.
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Electric Field

An electric field 1s said to exist at any point in space when a test charge,
placed at that point, experiences an electrical force. The direction of the
electric field at a point 1s the same as the direction of the force experi-
enced by a positive test charge placed at the point.

Electric field lines can be used to sketch electric fields. The line
through a point has the same direction at that point as the electric field.
Where the field lines are closest together, the electric field 1s largest.
Field lines come out of positive charges (because a positive charge
repels a positive test charge) and come into negative charges (because
they attract the positive test charge).

The strength of the electric field (E ) at a point is equal to the force

experienced by a unit positive test charge placed at that point. Because
the electric field strength 1s a force per unit charge, it 1s a vector quan-

tity. The units of E are N/C or V/m (as will be shown later). If a charge

g 1s placed at a point where the electric field due to other charges is E

the charge will experience a force FE 1s given by

If q is negative, F , will be opposite in direction to E .

Electric Field Due to a Point Charge

To find E (the signed magnitude of E ) due to a point charge g, we make
use of Coulomb’s Law. If a point charge q” 1s placed at a distance r from
the charge q, it will experience a force
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But if a point charge q” i1s placed at a position where the electric field 1s
E, then the force on q” 1s

F.=q E

Comparing these two expressions for F., we see that

E=

e

L
4me
This is the electric field at a distance r from a point charge q. The same
relation applies at points outside a finite spherical charge q. For q posi-
tive, E is positive and E is directed radially outward from q; for q neg-

ative, E is negative and E is directed radially inward.

Superposition Principle

The force experienced by a charge due to other
charges is the vector sum of the Coulomb forces
acting on it due to these other charges.

Similarly, the electric intensity E at a point due
to several charges is the vector sum of the
intensities due to the individual charges.
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Potential and Capacitance

Potential Difference

The potential difference between point A and point B is the work done
against electrical forces in carrying a unit positive test-charge from A to
B. We represent the potential difference between A and B by V, -V, or

by V. Its units are those of work per charge (joules/coulomb) and are
called volts (V):

1 V=1J/C

Because work is a scalar quantity, so too is potential difference. Like
work, potential difference may be positive or negative. The work W
done In transporting a charge q from one point A to a second point B is

W=q(V,-V,) =qV

where the appropriate sign (+ or -) must be given to the charge. If both
(Vg - V) and q are positive (or negative), the work done 1s positive. If

(Vg - V,) and q have opposite signs, the work done 1s negative.

Absolute Potential

The absolute potential at a point is the work done against electric forces
In carrying a unit positive test-charge from infinity to that point. Hence
the absolute potential at a point B 1s the difference in potential from A
= oo to B.

Consider a point charge g in vacuum and a point P at a distance r
from the point charge. The absolute potential at P due to the charge q 1s

v=kJ
r

where k = 8.99 x 10° N * m%/C? is the Coulomb constant. The absolute
potential at infinity (at r = =) 1s zero.
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Because of the superposition principle and the scalar nature of
potential difference, the absolute potential at a point due to a number of
point charges is

V=ky—+
I

L

where the r. are the distances of the charges g, from the point in ques-

tion. Negative q’s contribute negative terms to the potential, while pos-
itive q’s contribute positive terms.

The absolute potential due to a uniformly charged sphere, at points
outside the sphere or on its surface, 1s

V=kJ
r

where q 1s the charge on the sphere. This potential is the same as that
due to a point charge g placed at the position of the sphere’s center.

Electrical Potential Energy

To carry a charge q from infinity to a point where the absolute potential
i1s V, work in the amount qV must be done on the charge. This work
appears as electrical potential energy (EPE) stored in the charge.

Similarly, when a charge q is carried through a potential difference
V, work in the amount gV must be done on the charge. This work results
in a change gV in the EPE of the charge. For a potential rise, V will be
positive and the EPE will increase if q is positive. But for a potential
drop, V will be negative and the EPE of the charge will decrease if q is
positive.

Suppose that in a certain region the electric field is uniform and is
in the x-direction. Call its magnitude E . Because E_is the force on a

unit positive test-charge, the work done in moving the test-charge
through a distance x is (from W =F _x)
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V=Ex
The field between two large, parallel, oppositely charged metal plates 1s

uniform. We can therefore use this equation to relate the electric field E
between the plates to the plate separation d and their potential difference

V:
V =Ed

The work done in carrying a charge +e (coulombs) through a potential
rise of exactly 1 volt is defined to be 1 electron volt (eV). Theretore,

eV =(1.602 107 C)1V)=1.602x10"7]

Equivalently,

work (in joules)

Work orenergy (ineV) =
e

Capacitors

A capacitor is a device that stores charge. Often, although certainly not
always, it consists of two conductors separated by an insulator or dielec-
tric. The capacitance (C) of a capacitor is defined as

C : magnitude of charge on either conductor
apacitance =

magnitude of potential difference between conductors

For g in coulombs and V in volts, C is in farads (F).
The capacitance of a parallel-plate capacitor whose opposing
plate faces, each of area A, are separated by a small distance d is given

by
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where K = EIE[} 1s the dimensionless dielectric constant of the noncon-

ducting material (the dielectric) between the plates, and
g =885x 102 C¥/Ne+m*= 885 x 10" F/m

For vacuum, K = 1, so that a dielectric-filled parallel-plate capacitor has
a capacitance K times larger than the same capacitor with vacuum
between its plates. This result holds for a capacitor of arbitrary shape.

As shown in Figure 5-1, capacitances add for capacitors in parallel,
whereas reciprocal capacitances add for capacitors in series.

g=g, 1t g: 1, §=d. = =d;
F=F=¥=F Fob t i E
(. -+ 0, + 0 1 1 1 |
N | 1 3 — = — | +
Uy O & G
{i) Capacitors in parallel (A Capecitors in series

Figure 5-1

Energy Stored in a Capacitor

The energy EPE stored in a capacitor of capacitance C that has a charge
g and a potential difference V is

1 1
E;P'lz_?::ﬂ.f_E
Current, Resistance,
and Ohm’s Law

Current

A current (I) of electricity exists in a region when a net electric charge



88 COLLEGE PHYSICS

is transported from one point to another in that region. Suppose the
charge 1s moving through a wire. If a charge q is transported through a
given cross section of the wire in a time t, then the current through the
wire 1s

[=1

£

Here q 1s in coulombs, t 1s in seconds, and I 1s in amperes (1 A= 1 C/s).
By custom, the direction of the current is taken to be in the direction of
flow of positive charge. Thus, a flow of electrons to the right corre-
sponds to a current to the left.

* Note!

Battery

A battery is a source of electrical energy. If no internal ener-
gy losses occur in the battery, then the potential difference
between its terminals is called the electromotive force (emf) of
the battery. Unless otherwise stated, it will be assumed that
the terminal potential difference of a battery is equal to its
emf. The unit for emf is the same as the unit for potential dif-
ference, the volt.

Resistance

The resistance (R) of a wire or other object 1s a measure of the poten-
tial difference (V) that must be impressed across the object to cause a
current of one ampere to flow through it:

R
|
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The unit of resistance is the ohm, for which the symbol £ (greek
omega) is used. 1 Q =1 V/A.

Ohm’s Law

Ohm’s Law originally contained two parts. Its first part was simply the
defining equation for resistance, V = IR. We often refer to this equation
as being Ohm’s Law. However, Ohm also stated that R is a constant
independent of V and I. This latter part of the Law is only approxi-
mately correct. The relation V = IR can be applied to any resistor, where
V 1s the potential difference (p.d.) between the two ends of the resistor,
I 15 the current through the resistor, and R 1s the resistance of the resis-
tor under those conditions.

Terminal Potential Difference

The terminal potential difference (or voltage) of a battery or genera-

tor when 1t delivers a current I 1s related to its electromotive force ¢ and
its internal resistance r as follows:

(1) When delivering current (on discharge):
Terminal voltage = (emf) - (voltage drop in internal resistance)
V=¢-1Ir
(2) When receiving current (on charge):

Terminal voltage = (emf) + (voltage drop in internal resis-
tance)

V=£+1
(3) When no current exists:

Terminal voltage = emf of battery or generator
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Resistivity

The resistance R of a
wire of length L and
cross-sectional area A 1s

L
R=p—
PA

where p 1s a constant called the resistivity. The resistivity 1s a charac-
teristic of the material from which the wire is made. For L in m, A in m?,
and R in €2, the units of p are 2 » m.

Resistance Varies With Temperature

[t a wire has a resistance R at a temperature T, then its resistance R at

a temperature T 1s
R=R +aR (T-T,|

where o 1s the rtemperature coefficient of resistance of the material of
the wire. Usually, o varies with temperature, and so this relation is
applicable only over a small temperature range. The units of o are K
or °CL.

A similar relation applies to the variation of resistivity with tem-
perature. If p, and p are the resistivities at T and T, respectively, then

p=p. +0p, [T—T")

Potential Changes

The potential difference across a resistor R through which a current I
flows 1s, by Ohm’s Law, IR. The end of the resistor at which the current
enters is the high-potential end of the resistor. Current always flows
“downhill,” from high to low potential, through a resistor. The positive
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terminal of a battery is always the high-potential terminal if the internal
resistance of the battery is negligible or small. This is true irrespective
of the direction of the current through the battery.

~lectrical Power
Electrical Work

The electrical work (in joules) required to transfer a charge g (in
coulombs) through a potential ditfference V (in volts) 1s given by

W =gV

When q and V are given their proper signs (i.e., voltage rises positive
and drops negative), the work will have its proper sign. Thus, to carry a
positive charge through a potential rise, a positive amount of work must
be done on the charge.

Electrical Power

The electrical power (in watts) delivered by an energy source as it car-
ries a charge q (in coulombs) through a potential rise V (in volts) in a
time t (in seconds) 1S

Power = Work
time
P= V9

t

Because g/t = I, this can be rewritten as
P=VI
where [ is in amperes.

The power loss in a resistor is found by replacing V in VI by IR, or by
replacing I in VI by V/R, to obtain
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P:VI:[ERzi
R

The thermal energy generated in a resistor per second is equal to the
power loss in the resistor:

P=VI=I'R

You Need to Know /
Convenient Conversions

1W=1J/s=0.239 cal/ls =0.738 ft - Ib/s

1 kW = 1.341 hp = 56.9 Btu/min

1 hp =746 W = 33 000 ft « Ib/min = 42.4 Btu/min
1kW+h=36x10J=3.6 MJ

Equivalent Resistance, Simple
Circuits, and Kirchhoff’'s Laws

Resistors in Series

When current can follow only one path as it flows through two or more
resistors connected in line, the resistors are in series. In other words,
when one and only one terminal of a resistor 1s connected directly to one
and only one terminal of another resistor, the two are in series and the
same current passes through both. A node 1s a point where three or more
current-carrying wires or branches meet. There are no nodes between
circuit elements (such as capacitors, resistors, and batteries) that are
connected In series. A typical case i1s shown in Figure 5-2(a).
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() Resistors in series {#r) Resistory in parallg]

Figure 5-2

For several resistors in series, their equivalent resistance ch Is given by
ch =R, +R,+ R, +*++ (series combination)

where R, R,, R,, . . ., are the resistances of the several resistors.

Observe that resistances in series combine like capacitances in parallel.
It 1s assumed that all connection wire is effectively resistanceless.

In a series combination, the current through each resistance is the
same as that through all the others. The potential drop (p.d.) across the
combination is equal to the sum of the individual potential drops. The
equivalent resistance in series is always greater than the largest of the
individual resistances.

Resistors in Parallel

Several resistors are connected in parallel between two nodes if one end
of each resistor is connected to one node and the other end of each 1s con-
nected to the other node. A typical case 1s shown in Figure 5-2(b), where
points a and b are nodes. Their equivalent resistance ch Is given by

L S S - (parallel combination )

The equivalent resistance in parallel is always less than the smallest of
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the individual resistances. Connecting additional resistances in parallel
decreases ch for the combination. Observe that resistances in parallel
combine like capacitances in series.

The potential drop V across each resistor in a parallel combination
1s the same as the potential drop across each of the others. The current
through the nth resistor is I = V/R_ and the total current entering the

combination is equal to the sum of the individual branch currents.

Kirchhoff's Laws

Kirchhoff’s node (or junction) rule

The sum of all the currents coming into a node (i.e., a junction where
three or more current-carrying leads attach) must equal the sum of all
the currents leaving that node.

Kirchhoff’s loop (or circuit) rule
As one traces out a closed circuit, the algebraic sum of the potential
changes encountered 1s zero. In this sum, a potential rise is positive and
a potential drop is negative. Current always flows from high to low
potential through a resistor. As one traces through a resistor in the direc-
tion of the current, the potential change 1s negative because it is a poten-
tial drop. The positive terminal of a pure emf source is always the high-
potential terminal, independent of the direction of the current through
the emt source.

The set of equations obtained by use of Kirchhoft’s loop rule will
be independent provided that each new loop equation contains a voltage

change not included in a previous equation.

Magnetic Fields

Magnetic Field

B)
A magnetic field exists in an otherwise empty region of space it a
charge moving through that region can experience a force due to its
motion (as shown in Figure 5-3). Frequently, a magnetic field is detect-
ed by its effect on a compass needle (a tiny bar magnet). The compass
needle lines up in the direction of the magnetic field.
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Magnetic field

e
q@?:ﬁaﬂq ;:ﬂi_q

F=0 Finto page | | F out of page F into page

Figure 5-3

Magnetic Field Lines

Magnetic field lines drawn in a region provide a means for showing the
direction in which a compass needle placed in the region will point. A
method for determining the field lines near a bar magnet is shown in
Figure 5-4. By tradition, we take the direction of the compass needle to
be the direction of the field.

Compass

Magnet

A magnet may have two or more poles, although it must have at least
one north pole and one south pole. Because a compass needle points
away from a north pole (N in Figure 5-4) and toward a south pole (S),
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magnetic field lines exit north poles and enter south poles.
Magnetic poles of the same type (north or south) repel each other,
while unlike poles attract each other.

Charge Moving through a Magnetic Field

A charge moving through a magnetic field experiences a force due to
the field, provided its velocity vector is not along a m:f%;netic field line.

In Figure 5-3, charges (q) are moving with velnci%y In a magnetic

field directed as shown. The direction of the force  on each charge 1s
indicated. Notice that the direction of the force on a negative charge 1s
opposite to that on a positive charge with the same velocity.

The direction of the force acting on a charge +q moving in a mag-

—-
— . .
F out of page
Magnetic .
field
2
ol
. v

netic field can be found from a right-hand rule (Figure 5-5):
Figure 5-5

Hold the right hand flat. Point its fingers in the direction of the
field. Orient the thumb along the direction of the velocity of
the positive charge. Then the palm of the hand pushes in the
direction of the force on the charge. The force direction on a
negative charge 1s opposite to that on a positive charge.

It 1s often helpful to note that the field line through the particle and the

velocity vector of the particle determine a plane (the plane of the page

in Figure 5-5). The force vector is always perpendicular to this plane.
The magnitude of the force (F) on a charge moving in a magnetic
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field depends upon the product of four factors:

(1) g, the charge (in C)

(2) v, the magnitude of the velocity of the charge (in m/s)

(3) B, the strength of the magnetic field

(4) sin B, where 0 is the angle between the field lines and the velocity

V.

—a

B
The magnetic field at a point is represented by a vector  that is var-
iously called the magnetic induction, the magnetic flux density, or sim-
ply the magnetic field. i

We define the magnitude of  and its units by way of the equation
F,,=qvB sin 0

where F,, is in newtons, q is in coulombs, v is in m/s, and B is the mag-

netic field in a unit called the tesla (T). A tesla can also be expressed as

a weber per square meter: 1 T =1 Wb/m?.
Still encountered is the cgs unit for B, the gauss (G), where

1G=10"T

The Earth’s magnetic field is a few tenths of a gauss. Also note that

1 T=1 Wh/m*=1 N -=] N
C (m/s| A m

Force on a Current in a Magnetic Field

Since current 1s simply a stream of positive charges, a current experi-
ences a force due to a magnetic field. The direction of the force 1s found
by the right-hand rule shown in Figure 5-5, with the direction of the cur-
rent used in place of the velocity vector.

The magnitude AF,, of the force on a small length AL of wire car-

rying current I is given by
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AF,, = I(AL)B sin 8
where 0 1s the angle between the direction of the current I and the direc-

tion of the field. For a straight wire of length L in a uniform magnetic
field, this becomes

F,=1LB sin O

Notice that the force is zero if the wire is in line with the field lines. The
force 1s maximum if the field lines are perpendicular to the wire. In
analogy to the case of a moving charge, the force is perpendicular to the
plane defined by the wire and the field lines.

Torque on a Flat Coll

The torque T on a coil of N loops, each carrying a current I, in an exter-
nal magnetic field B 1s

T=NIAB sin 0

where A 1s the area of the coil, and 0 is the angle between the field lines
and a perpendicular to the plane of the coil. For the direction of rotation
of the coil, we have the following right-hand rule:

Orient the right thumb perpendicular to the plane of the colil,
such that the fingers run in the direction of the current flow.
Then the torque acts to rotate the thumb into alignment with
the external field (at which orientation the torque will be zero).

Sources of Magnetic Fields

Magnetic fields are produced by moving charges, and of course that
includes electric currents. Figure 5-6 shows the nature of the magnetic
fields produced by several current configurations. Below each is given
the value of B at the indicated point P. The constant p, = 41 x 107

T = m/A 1s called the permeability of free space. It 1s assumed that the
surrounding material i1s vacuum or air.
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Figure 5-6

The direction of the magnetic field of a current-carrying wire can
be found by using a right-hand rule, as illustrated in Figure 5-6(a):

Grasp the wire in the right hand, with the thumb pointing in the
direction of the current. The fingers then circle the wire in the
same direction as the magnetic field does.

This same rule can be used to find the direction of the field for a current
loop such as that shown in Figure 5-6(b).

Ferromagnetic Materials

Ferromagnetic materials, primarily iron and the other transition ele-
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ments, greatly enhance magnetic fields. The ferromagnetic materials
contain domains, or regions of aligned atoms, that act as tiny bar mag-
nets. When the domains within an object are aligned with each other, the
object becomes a magnet. The alignment of domains In permanent
magnets 1s not easily disrupted.

Magnetic Moment

The magnetic moment of a flat current-carrying loop (current = I, area
= A) 1s IA. The magnetic moment 1s a vector quantity that points along
the field line perpendicular to the plane of the loop. In terms of the mag-
netic moment, the torque on a flat coil with N loops in a magnetic field
Bis

T = N(IA)B sin 0

where 0 is the angle between the field and the magnetic moment vector.

Magnetic Field of a Current Element

The current element of length AL shown in Figure 5-7 contributes AR

to the field at P. The magnitude of AB is given by the Biot—Savart Law:

wlAL
AB = — sin O
4mr

AB
where r and 0 are defined in the figure. The direction of IS perpen-
dicular to the plane determined by AL and r (the planexgit of the page).
In the case shown, the right-hand rule tells us that is out of the

page.
When r is in line with AL, then 6 = 0 and thus AB = 0. This means
that the field due to a straight wire at a point on the line of the wire 1s

LETO,
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Figure 5-7

Induced EMF and Magnetic Flux

Magnetic Effects of Matter

Most materials have only a very slight effect on a steady magnetic field,
and that effect 1s best described in terms of an experiment.

Suppose that a very long solenoid or a toroid is located in a vacu-
um. With a fixed current in the coil, the magnetic field at a certain point
inside the solenoid or toroid is B, where the subscript ‘0" stands for

vacuum. If now the solenoid or toroid core 1s filled with a material. the

field at that point will be changed to a new value B. We define:
B

Relative permeability of the material = k,, = B,

Permeability of the material = p =k, u_
Recall that |, is the permeability of free space, [, =4nx 107 T *» m/A.

Diamagnetic materials have values for k,, slightly below unity
(0.999 984 for solid lead, for example). They slightly decrease the value
of B in the solenoid or toroid.

Paramagnetic materials have values for k,, slightly larger than unity
(1.000 021 for solid aluminum, for example). They slightly increase the
value of B in the solenoid or toroid.
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Ferromagnetic materials, such as iron and its alloys, have k,, values

of about 50 or larger. They greatly increase the value of B in the toroid
or solenoid.

Magnetic Field Lines

A magnetic field may be represented pictorial-

ly by lines, to which B is everywhere tangen-
tial. These magnetic field lines are constructed
in such a way that the number of lines piercing
a unit area perpendicular to them is proportion-
al to the local value of B.

Magnetic Flux

The magnetic flux (®,,) through an area A is defined to be the product
of B, and A, where B, is the component of B perpendicular to the sur-
face of area A:

QIM:B[A:BAEQH{-]

where 0 is the angle between the direction of the magnetic field and the
perpendicular to the area. The flux is expressed in webers (Wh).

Induced EMF

An induced emf exists in a loop of wire whenever there 1s a change
in the magnetic flux through the area surrounded by the loop. The
induced emf exists only during the time that the flux through the area
1s changing.
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Faraday’s Law for Induced EMF

Suppose that a coil with N loops is subject to a changing magnetic flux
through the coil. If a change in flux A®,, occurs in a time At, then the

average emf induced between the two terminals of the coil is given by

M

& =—N

At

The emf ¢ 1s measured in volts it AD/At 1s in Wh/s. The minus sign
indicates that the induced emf opposes the change which produces it, as
stated generally in Lenz’s Law.

Lenz's Law

An induced emf always has such a direction as to oppose the change in
magnetic flux that produced it. For example, if the flux is increasing
through a coil, the current produced by the induced emf will generate a
flux that tends to cancel the increasing flux. Or, if the flux is decreasing
through the coil, that current will produce a flux that tends to restore the
decreasing flux. Lenz’s Law 1s a consequence of Conservation of
Energy. It this were not the case, the induced currents would enhance
the flux change that caused them to begin with and the process would

build endlessly.

Motional EMF

When a conductor moves through a magnetic field so as to cut field
lines, an induced emf will exist in it, in accordance with Faraday’s law.
In this case,

The symbol |# | means that we are concerned here only with the magni-
tude of the average induced emf; its direction will be considered below.
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The induced emf in a straight conductor of length L moving with

velocity ¥ perpendicular to a field B 1s given by

|& |=BLv

where B, v, and the wire must be mutually perpendicular.

In this case, Lenz’s Law still tells us that the induced emf opposes
the process. But now the opposition is produced by way of the force
exerted by the magnetic field on the induced current in the conductor.
The current direction must be such that the force opposes the motion of
the conductor. Knowing the current direction, we also know the direc-

tion of .

Electric Generators and Motors

Electric Generators

Electric generators are machines that convert mechanical energy into
electrical energy. A simple generator that produces an ac voltage 1s
shown in Figure 5-8.

Armalwre ::-:nl'llll

Toput

NN\ N

(&)

Figure 5-8
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An external energy source (such as a diesel motor or a steam turbine)

turns the armature coil in a magnetic field B . The wires of the coil cut
the field lines, and an emf

¢ =2nNABf cos 2mtt

1s induced between the terminals of the coil. In this relation, N i1s the
number of loops (each of area A) on the coil, and f 1s the frequency of
its rotation. Figure 5-8(b) shows the emf in graphical form.

As current 1s drawn from the generator, the wires of its coil experi-
ence a retarding force because of the interaction between current and
field. Thus, the work required to rotate the coil is the source of the elec-
trical energy supplied by the generator. For any generator,

(input mechanical energy) = (output electrical energy) +
(friction and heat losses)

Usually the losses are only a very small fraction of the input energy.

Electric Motors

Electric motors convert electrical energy into mechanical energy. A
simple dc motor (1.e., one that runs on a constant voltage) is shown in
Figure 5-9. The current through the armature coil interacts with the
magnetic field to cause a torque

T=NIAB sin 6

on the coil, which rotates the coil and shatt. Here, 0 is the angle between
the field lines and the perpendicular to the plane of the coil. The split-
ring commutator reverses I each time sin 6 changes sign, thereby ensur-
ing that the torque always rotates the coil in the same sense. For such a
motor,

Average torque = (constant) INIABI
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Amatgrr: coil

Output

Rotating split-ring
commutator

ST o — A 0 S At e e Lo

Figure 5-9

Because the rotating armature coil of the motor acts as a generator, a
back (or counter) emf 1s induced in the coil. The back emf opposes the

voltage source that drives the motor. Hence, the net potential difference
that causes current through the armature 1s

Net p.d. across armature = (line voltage |—(back emf )

Armature current = \line voltage )— (back emf |

armature resistance
The mechanical power P developed within the armature of a motor is
P = (armature current)(back emf)

The useful mechanical power delivered by the motor is slightly less, due
to friction, windage, and iron losses.

Inductance; R-C and
R-L Time Constants

Self-Inductance
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A coil can induce an emf in itself. If the current in a coil changes, the
flux through the coil due to the current also changes. As a result, the
changing current in a coil induces an emf in that same coil.

Because an induced emf ¢ 1s proportional to AD, /At and because

A®,  1s proportional to Ai, where 1 1s the current that causes the flux,

¢ =— | constant J—-%-l-
At

Here 1 is the current through the same coil in which ¢ 1s induced. (We
shall denote a time-varying current by 1 instead of I.) The minus sign

indicates that the self-induced emt ¢ is a back emf and opposes the
change in current.

The proportionality constant depends upon the geometry of the
coll. We represent it by L and call it the self-inductance of the coil. Then

At

For ¢ in units of V, 1 in units of A, and t in units of s, L 18 In henries (H).

Mutual Inductance

When the flux from one coil threads through another coil, an emf can be
induced in either one by the other. The coil that contains the power
source 1s called the primary coil. The other coil, in which an emf 1s
induced by the changing current in the primary, is called the secondary
coil. The induced secondary emf & is proportional to the time rate of

change of the primary current, ﬂ.ipfﬂt:

& =M—L
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where M 1s a constant called the murual inductance of the two-coil
system.

Energy Stored in an Inductor

Because of its self-induced back emf, work must be done to increase the
current through an inductor from zero to I. The energy turnished to the
coil in the process 1s stored in the coil and can be recovered as the coil’s
current 1s decreased once again to zero. If a current I 1s lowing in an
inductor of selt-inductance L, then the energy stored in the inductor is

-

Stored energy = LI

b | —

For L in units of H and I in units of A, the energy is in J.

R-C Time Constant

Consider the R-C circuit shown in Figure 5-10(a).

1 (A g {C)

1
= | in= &K
+

Swilch £

(a) (&)

Figure 5-10

The capacitor 1s initially uncharged. If the switch 1s now closed, the cur-
rent 1 in the circuit and the charge g on the capacitor vary as shown in
Figure 5-10(b). It we call the p.d. across the capacitor v_, writing the

loop rule for this circuit gives
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\R-v +&=0 or 1=

At the first instant after the switch is closed, v_. =0 and 1 = #/R. As time
goes on, v_ increases and 1 decreases. The time, 1n seconds, taken for the

current to drop to 1/2.718 or 0.368 of its initial value 1s RC, which 1s
called the time constant of the R-C circuit.

Also shown in Figure 5-10(b) is the variation of q, the charge on the
capacitor, with time. At t = RC, q has attained 0.632 of its final value.
When a charged capacitor C with initial charge q, is discharged through

a resistor R, its discharge current follows the same curve as for charging.
The charge q on the capacitor follows a curve similar to that for the dis-
charge current. At ime RC, 1 =0.3681, and q = 0.368q,, during discharge.

R-L Time Constant

Consider the circuit in Figure 5-11(a) with a resistor of resistance R
ohms and a coil of self-inductance L henries. When the switch in the cir-
cuit 1s first closed, the current in the circuit rises, as shown in Figure 5-
11(b). The current does not jump to its final value because the changing
flux through the coil induces a back emt in the coil, which opposes the
rising current. After L/R seconds, the current has risen to 0.632 of its
final value 1_. This time, t = L/R, is called the time constant of the R-L

circuit. After a long time, the current i1s changing so slowly that the back
emtf in the inductor, L(AI/At), 1s negligible. Then i1 =1_ = £/R.

Exponential functions are used as follows to describe the curves of
Figures 5-10 and 5-11:

1=1 g VRC capacitor charging and discharging
g=q (1—e YRS}  capacitor charging
g=q e"* capacitor discharging

i=i (l—e ¥ (YR}}] jpnductor current buildup

E==]

where e = 2.718 is the base of the natural logarithms.
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Figure 5-11

When t is equal to the time constant, the relations for a capacitor give 1
= 0.3681, and q = 0.632q_, for charging, and q = 0.368q_, for discharg-

ing. The equation for current in an inductor gives 1 = 0.632i_ when t

equals the time constant.

The equation for 1 in the capacitor circuit (as well as for q in the
capacitor discharge case) has the following property:

After n time constants have passed,
1=1_(0.368)" and q=q_(0.368)"

For example, after four time constants have passed,

i=i (0.368)" = 0.0183i,

Alternating Current

Alternating Current

The emf generated by a rotating coil in a magnetic field has a graph sim-
ilar to the one shown in Figure 5-12.
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Figure 5-12
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It is called an ac voltage because there is a reversal of polarity (i.e., the
voltage changes sign); ac voltages need not be sinusoidal. If the coil
rotates with a frequency of f revolutions per second, then the emt has a
frequency of f in hertz (cycles per second). The instantaneous voltage v
that 1s generated has the form

V=, sin Mt = v, sin 2wt

where v_is the amplitude (maximum value) of the voltage in volts, =

2rtf 1s the angular velocity in rad/s, and f is the frequency in hertz. The
frequency f of the voltage 1s related to its period T by

where T is in seconds.

Rotating coils are not the only source of ac voltages; electronic
devices for generating ac voltages are very common. Alternating volt-
ages produce alternating currents. An alternating current produced by a
typical generator has a graph much like that for the voltage shown in
Figure 5-12. Its mstantaneous value 1s 1, and its amplitude 1s 1,. Often

the current and voltage do not reach a maximum at the same time, even
though they both have the same frequency.

Meters for use in ac circuits read the effective, or root mean square
(rms), values of the current and voltage. These values are always posi-
tive and are related to the amplitudes of the instantaneous sinusoidal
values through
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It is customary to represent meter readings by capital letters (V, I), while
instantaneous values are represented by small letters (v, 1).

* Note!

Power Loss

The thermal energy generated or power lost by an rms
current | in a resistor R is given by I°R.

Forms of Ohm’s Law

Suppose that a sinusoidal current of frequency f with rms value I flows
through a pure resistor R, or a pure inductor L, or a pure capacitor C,
Then an ac voltmeter placed across the element in question will read an
rms voltage V as follows:

Pure resistor: V =1R
Pure inductor: V =1X,

where X, = 2nfL is called the inductive reactance.

[ts unit 1s ohms when L is in henries and t is in hertz.
Pure capacitor: V =[X_

where X = 1/2nfC is called the capacitive reactance.

Its unit 15 ohms when C 1s 1n farads.
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Phase

When an ac voltage is applied to a pure resistance, the voltage across
the resistance and the current through it attain their maximum values at
the same instant and their zero values at the same instant; the voltage
and current are said to be in-phase.

When an ac voltage is applied to a pure inductance, the voltage
across the inductance reaches its maximum value one-quarter cycle
ahead of the current, 1.e., when the current i1s zero. The back emf of the
inductance causes the current through the inductance to lag behind the
voltage by one-quarter cycle (or 90°), and the two are 90° out-of-phase.

When an ac voltage is applied to a pure capacitor, the voltage across
it lags 90° behind the current flowing through it. Current must flow
before the voltage across (and charge on) the capacitor can build up.

In more complicated situations involving combinations of R, L,
and C, the voltage and current are usually (but not always) out-of-
phase. The angle by which the voltage lags or leads the current i1s called
the phase angle.

Impedance

The impedance (Z) of a series circuit containing resistance, inductance,
and capacitance is given by

Z= | R%+ (X, - X, ]

with Z in ohms. If a voltage V is applied to such a series circuit, then a
form of Ohm’s Law relates V to the current [ through it:

V=124

The phase angle ¢ between V and I is given by

XL_XC R
tan =— Or cCcOs =
¢ R ¢ V4
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Phasors

A phasor 1s a quantity that behaves, in many regards, like a vector.
Phasors are used to describe series R-L-C circuits because the above
expression for the impedance can be associated with the Pythagorean the-
orem for a right triangle. As shown in Figure 5-13(a), Z is the hypotenuse
of the right triangle, while R and (X - X_) are its two legs. The angle

labeled ¢ 1s the phase angle between the current and the voltage.

_ Wiltage phase
-
£ ¥
X - X
g | 2
7 Currcnt. phiase 7
{a) b

Figure 5-13

A similar relation applies to the voltages across the elements in the
series circuit. As shown in Figure 5-13(b), it is

Vi=Vi+(V, - V. )2

Because of the phase differences, a measurement of the voltage across a
series circuit is not equal to the algebraic sum of the individual voltage
readings across its elements. Instead, the above relation must be used.

Resonance

Resonance occurs 1n a series R-L-C circuit when }{L = }{E‘ Under this

condition, Z = R 1s minimum, so that [ 1s maximum for a given value of
V. Equating X, to X, we find for the resonant (or natural) frequency of

the circuit

f = l

’ ZEJE
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Power Loss in the Impedance

Suppose that an ac voltage V i1s impressed across an impedance of any
type. It gives rise to a current I through the impedance, and the phase
angle between V and [ is ¢. The power loss in the impedance is given by

Power loss = VI cos ¢

The quantity cos ¢ 1s called the power factor. It 1s unity for a pure resis-
tor; but it 1s zero for a pure inductor or capacitor (no power loss occurs
in a pure inductor or capacitor).

Transformer

A transformer is a device to raise or lower the voltage in an ac circuit.
It consists of a primary and a secondary coil wound on the same iron
core. An alternating current in one coil creates a continuously changing
magnetic flux through the core. This change of flux induces an alternat-
ing emt in the other coil.

The efficiency of a transformer is usually very high. Thus, we may
neglect losses and write

Power in primary = power in secondary
Vili=V, 1

The voltage ratio is the ratio of the numbers of turns on the two coils;
the current ratio 1s the inverse ratio of the numbers of turns:

Solved Problems

Solved Problem 5.1 The charges shown in Figure SP5-1 are stationary.
Find the force on the 4 uC charge due to the other two.

Figure SP5-1



116 COLLEGE PHYSICS

+2.0 4C EE--

Solution. From Coulomb’s law, we have:

' o s 22| ) ~©C)
F=k % (g« 10°Nm2yc2) 22X 10 CNa X 107C)_ ¢

I (0.20 m [

ll - L 7 3 { -6 Hlll 6 H.:I
F=k¥ _ (9« 10N myc2) 2210 CN X 107C)_, 5y

-

I~ (0.20m )

The resultant force on the 4 uC charge has components:

E =F, cos 60° - F, cos 60° = (1.8 - 2.7)(0.5) N = - 0.45 N

F'F_ =F, sin 60° + F, sin 60° = (1.8 + 2.7)(0.866) N = 3.9 N

So,
F= F*+F? =4 (0.45 P+ (3.9 P N=3.9 N

The resultant makes an angle of arctan (0.45/3.9) = 7° with the positive
y-axis, that 1s 6 = 97°

Solved Problem 5.2 The charge shown in Figure SP5-2 is a proton (g
=+e, m = 1.67 x 10?" kg) with speed 5 x 10° m/s. It is passing through
a uniform magnetic field directed out of the page; B i1s 30G. Describe
the path followed by the proton.

Figure SP5-2
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B (out of page)

:/

Solution. Because the proton’s velocity 1s perpendicular to B, the force
on the proton is

gvBsin90°=qvB

The force 1s perpendicular to v and so it does no work on the proton. It
simply deflects the proton and causes it to follow the circular path
shown, as you can verify using the right-hand rule. The force q v B 1s
radially inward and supplies the centripetal force for the circular
motion:

r qB (1)

For the given data,

A 1L.67x 1077 kg )(5x10° m/s |

; — —=17.4 m
11.67x107" C 30107 T

Ir

Observe tfrom (1) that the momentum of the charged particle is directly
proportional to the radius of its circular orbit.
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Chapter 6
LIGHT AND

(GEOMETRICAL
OrTICS

IN TH1S CHAPTER:

v/ Reflection of Light

v/ Refraction of Light

v/ Thin Lenses

v Opfical Instruments

v/ Interference and Diffraction of Light
v/ Solved Problems

Reflection of Light

Light (along with all other forms of electromagnetic radiation) is a fun-
damental entity, and physics is still struggling to understand it. On an
observable level, light manifests two seemingly
contradictory behaviors, crudely pictured via
wave and particle models. Usually the amount of
energy present is so large that light behaves as 1f
1t were an 1deal continuous wave, a wave of inter-
dependent electric and magnetic fields. The inter-
action of light with lenses, mirrors, prisms, slits,
and so forth, can satistactorily be understood via

118
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the wave model. On the other hand, when light is emitted or absorbed
by the atoms of a system, these processes occur as if the radiant ener-
gy 1s in the form of minute, localized, well-directed blasts; that is, as if
light is a stream of particles. Fortunately, without worrying about the
very nature of light, we can predict its behavior in a wide range of prac-
tical situations.

Law of Reflection

A ray 1s a mathematical line drawn perpendicular to the wavetronts of a
lightwave. It shows the direction of propagation of electromagnetic
energy. In specular (or mirror) reflection, the angle of incidence equals
the angle of reflection, as shown in Figure 6-1. Furthermore, the inci-
dent ray, reflected ray, and normal to the surface all lie in the same
plane, called the plane-of-incidence.

Normal
T,

%
X
=
%,
)
/3

Figure 6-1

Plane Mirrors

Plane mirrors form images that are erect, of the same size as the
object, and as far behind the reflecting surface as the object is in front
of it. Such an image is virtual; 1.e., the image will not appear on a
screen located at the position on the image because the light does not
converge there.
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Spherical Mirrors

The principal focus of a spherical mirror, such as the ones shown in
Figure 6-2, 1s the point F where rays parallel to and very close to the
central or optical axis of the mirror are focused. This focus is real for a
concave mirror and virtual for a convex mirror. It 1s located on the opti-
cal axis and midway between the center of curvature C and the mirror.

Real focns I=:
C j%<} -

(q) Concave mirmor (&) Convex mirror

Figure 6-2

Concave mirrors form inverted real images of objects placed beyond
the principal focus. If the object 1s between the principal focus and the
mirror, the image is virtual, erect, and enlarged.

Convex mirrors produce only erect virtual images of objects placed
in front of them. The images are diminished (smaller than the object)
in size.

Mirror Equation

The mirror equation for both concave and convex spherical mirrors is

L1 1

2
+ = -
s. R f

[
ik L

where s _= object distance from the mirror
s, = Image distance from the mirror

R = radius of curvature of the mirror
f = focal length of the mirror = R/2
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In addition,

* s_1s positive when the object is in front of the mirror.
* s, 1s positive when the image is real, i.e., in front of the mirror.

* s Is negative when the image 1s virtual, 1.e., behind the mirror.

R and f are positive for a concave mirror and negative for a convex
MIITOT.

The size of the image formed by a spherical mirror is given by

— length of image

Linear magnification
length of object

_ 1mage distance from mirror _ |

object distance from mirror S

Refraction of Light
Speed of Light

The speed of light as ordinarily measured varies from material to mate-
rial. Light (treated macroscopically) travels fastest in vacuum, where its
speed is ¢ = 2.998 x 10® m/s. Its speed in air is ¢/1.000 3. In water, its
speed 1s ¢/1.33, and in ordinary glass it 1s about c¢/1.5. Nonetheless, on
a microscopic level, light 1s composed of photons and photons exist
only at the speed c. The apparent slowing down in material media aris-
es from the absorption and re-emission as the light passes from atom to
atom.

Index of Refraction

The absolute index of refraction of a material 1s defined as

speed of light in vacuum ¢

speed of light in the material v
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For any two materials, the relative index of refraction of material-1,
with respect to material-2, is

In

Relative index = —.
n

2

where n  and n, are the absolute refractive indices of the two materials.

Refraction

When a ray of light is transmitted obliquely through the boundary
between two materials of unlike index of refraction, the ray bends. This
phenomenon, called refraction, is shown in Figure 6-3.

Figure 6-3

If n, > n,, the ray refracts as shown in the figure; it bends toward the nor-
mal as it enters the second material. If n < n,, however, the ray refracts

away from the normal. This would be the situation in Figure 6-3 if the
direction of the ray were reversed. In either case, the incident and
refracted (or transmitted) rays and the normal all lie in the same plane.
The angles 0, and 0, in Figure 6-3 are called the angle of incidence and

angle of transmission (or refraction), respectively.
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Snell's Law

The way in which a ray refracts at an interface between materials with
indices of refraction n. and n_is given by Snell’s Law:

n, S1N Bi =n, sIn Eil

where 0, and O are as shown in Figure 6-3. Because this equation
applies to light moving in either direction along the ray, a ray of light
follows the same path when its direction is reversed.

Critical Angle for Total Internal Reflection

When light reflects off an interface where n, < n, the process is called
external reflection; when n, > n,, 1t 1s internal reflection. Suppose that a

ray of light passes from a material of higher index of refraction to one
of lower index, as shown in Figure 6-4.
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Figure 6-4

Part of the incident light is refracted and part 1s reflected at the interface.
Because 6, must be larger than 6, it is possible to make . large enough
so that 0, = 90° This value for 0, is called the critical angle 6_. For 6.
larger than this, no refracted ray can exist; all the light 1s reflected. The
condition for total internal reflection is that 0, exceed the critical angle
0_. where
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I-:II.

n. sin 8 =n sin 90° or sin B =—
n.

L

Because the sine of an angle can never be larger than unity, this relation
confirms that total internal reflection can occur only if n. > n.

Prism

A prism can be used to disperse light into its various colors, as shown
in Figure 6-5. Because the index of refraction of a material varies with
wavelength, different colors of light refract ditferently. In nearly all
materials, red is refracted least and blue 1s refracted most.

Red and blue

Figure 6-5

Thin Lenses

Types of Lenses

As indicated in Figure 6-6, converging, or positive, lenses are thicker at
the center than at the rim and will converge a beam of parallel light to
a real focus. Diverging, or negative, lenses are thinner at the center than
at the rim and will diverge a beam of parallel light from a virtual focus.
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Figure 6-6
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The principal focus (or focal point) of a thin lens with spherical surfaces
1s the point F where rays parallel to and near the central or optical axis
are brought to a focus; this focus is real for a converging lens and vir-
tual for a diverging lens. The focal length 1 1s the distance of the princi-
pal focus from the lens. Because each lens in Figure 6-6 can be reversed
without altering the rays, two symmetric focal points exist for each lens.

The object and 1image relation for converging and diverging lenses is

where s_ 1s the object distance from the lens, s, is the image distance

from the lens, and f is the focal length of the lens. The lens is assumed
to be thin, and the light rays paraxial (close to the principal axis). Then,

* s_ s positive for a real object, and negative for a virtual object.
* s, 1s positive for a real image, and negative for a virtual image.

* fis positive for a converging lens, and negative for a diverging lens.

Also,

Linear magnification = 3!%€ of image
size of object

_ 1mage distance from lens _ |

object distance from lens S
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You Need to Know /

Converging lenses form inverted real images of objects
located outside the principal focus. When the object is
between the principal focus and the lens, the image is virtual
(on the same side of the lens as the object), erect, and
enlarged.

Diverging lenses produce only virtual, erect, and smaller
images of real objects.

Lensmaker's Equation

l‘:{n—l ) 1L
t r, I,

where n 1s the refractive index of the lens material, and r, and r, are the

radii of curvature of the two lens surfaces. This equation holds for all
types of thin lenses. A radius of curvature, r, is positive when its center
of curvature lies to the right of the surface, and negative when its cen-
ter of curvatures lies to the left of the surface.

If a lens with refractive index n, 1s immersed in a material with index

n,, then n in the lensmaker’s equation is to be replaced by n, /n,.

Lens Power

Lens power in diopters (m'') is equal to 1/f, where f is the focal length
expressed in meters.

Lenses in Contact

When two thin lenses having focal lengths f, and f, are in close contact,

the focal length f of the combination is given by
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For lenses in close contact, the power of the combination 1s equal to the
sum of their individual powers.

Optical Instruments

Combination of Thin Lenses

To locate the image produced by two lenses acting in combination,

(1) Compute the position of the image produced by the first lens alone,
disregarding the second lens.

(2) Then consider this 1image as the object for the second lens, and
locate its image as produced by the second lens alone.

This latter image 1s the required image.
If the image formed by the first lens alone is computed to be behind the

second lens, then that image is a virtual object for the second lens, and
its distance from the second lens i1s considered negative.

* Important Point!

The Human Eye

The human eye uses a variable-focus lens to form an image
on the retina at the rear of the eye. The near point of the eye,
represented by d_, is the closest distance to the eye from

which an object can be viewed clearly. For the normal eye, d_

is about 25 cm. Farsighted persons can see distinctly only
objects that are far from the eye; nearsighted persons can
see distinctly only objects that are close to the eye.
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Magnifying Glass

A magnifying glass is a converging lens used so that it forms an erect,
enlarged, virtual image of an object placed inside its focal point. The
magnification due to a magnifier with focal length f 1s (d /f) + 1 if the
image it casts 1s at the near point. Alternatively, if the image is at infin-
ity, the magnification is d /t.

Microscope

A microscope that consists of two converging lenses, an objective lens
(focal length f ) and an eyepiece lens (1)), has

d
Magnification = |_"+1 °a—1
f f

= (W]

where q_ 1s the distance from the objective lens to the image it forms.

Usually, q_ 1s close to 18 cm.

Telescope

A telescope that has an objective lens (or mirror) with focal length f

and an eyepiece with focal length f gives a magnification M =f_ /f .

Interference and
Diffraction of Light

Coherent Waves

Coherent waves are waves that have the same form, the same frequen-
cy, and a fixed phase difference (i.e., the amount by which the peaks of
one wave lead or lag those of the other wave does not change with
time).

The relative phase of two coherent waves traveling along the same
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line together specifies their relative positions on the line. If the crests of
one wave fall on the crests of the other, the waves are in-phase. If the
crests of one fall on the troughs of the other, the waves are 180° (or one-
halt wavelength) out-of-phase.

Interference Effects

Interference effects occur when two or more coherent waves overlap.
If two coherent waves of the same amplitude are superposed, rotal
destructive interference (cancellation, darkness) occurs when the waves
are 180° out-of-phase. Total constructive interference (reinforcement,
brightness) occurs when they are in-phase.

Diffraction

Diffraction refers to the deviation of light from straight-line propaga-
tion. It usually corresponds to the bending or spreading of waves around
the edges of apertures and obstacles. Diffraction places a limit on the
size of details that can be observed optically.

Single-Slit Diffraction

When parallel rays of light of wavelength A are incident normally upon
a slit of width D, a diffraction pattern is observed beyond the slit.
Complete darkness 1s
observed at angles 6_. to

the straight-through
beam. where

mA=Dsin@_.

Here, m" =1, 2, 3, .. ., 1s the order number of the diffraction dark band.

Limit of Resolution

The limit of resolution of two objects due to diffraction:
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If two objects are viewed through an optical instrument, the dif-
fraction patterns caused by the aperture of the instrument limit our
ability to distinguish the objects from each other. For distinguishability,
the angle O subtended at the aperture by the objects must be larger than
a critical value 0_, given by

sin 0_=(1.22 )i
D

where D is the diameter of the circular aperture.

Diffraction Grating Equation

A diffraction grating is a repetitive array of apertures or obstacles that
alters the amplitude or phase of a wave. It usually consists of a large
number of equally spaced, parallel slits or ridges; the distance between
slits 1s the grating spacing a. When waves of wavelength A are incident
normally upon a grating with spacing a, maxima are observed beyond
the grating at angles 0_ to the normal, where

mA = a sin 0

Here, m =1, 2, 3, . . ., is the order number of the ditfracted image.

This same relation applies to the major maxima in the interference
patterns of even two and three slits. In these cases, however, the maxi-
ma are not nearly so sharply defined as for a grating consisting of hun-
dreds of slits. The pattern may become quite complex if the slits are
wide enough so that the single-slit diffraction pattern from each slit
shows several minima.

Diffraction of X-Rays

The diffraction of x-rays of wavelength A by reflection from a crystal
is described by the Bragg equation. Strong reflections are observed at
grazing angles ¢ _ (where ¢ 1s the angle between the face of the crystal

and the reflected beam) given by
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mA = 2d sin ¢_

where d i1s the distance between reflecting planes in the crystal, and
m=1, 2, 3, ...,1s the order of reflection.

Optical Path Length

In the same time that it takes a beam of light to travel a distance d in a
material of index of refraction n, the beam would travel a distance nd in
air or vacuum. For this reason, nd is defined as the optical path length
of the material.

Solved Problems

Solved Problem 6.1 What is the critical angle for light passing from
glass (n = 1.54) to water (n = 1.33)?

Solution.
n, sin® =n,sin 6, becomes n, sin6_ =n,sin 90"

from which

n, 1.33
1.54

sin B = =0.864 or 6 .=59.7°

I,

Solved Problem 6.2 A camera gives a clear image of a distant land-
scape when the lens 1s 8 cm from the film. What adjustment is required
to get a good photograph of a map placed 72 cm trom the lens?

Solution. When the camera is focused for distant objects (for parallel
rays), the distance between lens and film 1s the focal length of the lens,
8 cm. For an object 72 cm distant:



132 COLLEGE PHYSICS

L

1 or q=9cm
8 72

111
qg t p
The lens should be moved farther away from the film a distance of (9 -

8)cm =1 cm.



Index

Absolute zero, 56
Acceleration, 7
angular, 24-25
centripetal, 25-26
torque, 27
Adiabatic process, 64
Alternating current, 110-12
Amplitude, 72
Angular acceleration, 24-25
Angular displacement, 23
Angular impulse, 28-29
Angular speed, 23-24
Average pressure, 47-48

Battery, 88

Beats, 77

Bernoulli’s equation, 50-51
Blackbody, 61-62

Boyle's law, 56

Bulk modulus, 4546

Capacitors, 86—-87
Center of gravity, 17
Center of mass, 22-23
Centripetal acceleration, 25-26
Centripetal force, 26
Charles’ law, 56
Coethcients

kinetic friction, 12

restitution, 22

static friction, 12
Coherent waves, 128-29
Collisions, 21-22
Component method, 5-6
Concave mirrors, 120

Conduction, 59-60
Conservation of charge, 81
Conservation of energy, 19, 40
Continuity, 49

Convection, 61

Converging lens, 126

Convex murrors, 120
Coulomb’s law, 80-81

Critical angle, 123-24
Current, 88

Dalton’s law, 57
Density

mass, 43

specific gravity, 43
Diamagnetic materials, 101
Diffraction, 129-32
Diffraction grating equation, 130
Dimensional analysis, 11-13
Discharge, 49
Displacement, 38
Diverging lens, 126
Doppler effect, 77-78

Efficiency of heat engine, 65-66
Elasticity
Archimedes’ principle, 48-49
average pressure, 4748
bulk modulus, 45-46
compressibility, 46
fuds, 47-48
hydrostatic pressure, 48
limit, 45
Pascal’s principle, 48
shear modulus, 46-47
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Elasticity (continued)
standard atmospheric pressure,
48
strain, 44
stress, 44
Young’'s modulus, 45
Electric generators, 104-03
Electric motors, 10506
Electricity
absolute potential, 84-85
alternating current, 110-12
battery, 88
capacltors, 8687
conservation of charge, 81
Coulomb’s law, 80-81
current, 87-88
field, 82-83
impedance, 113
Kirchhoff’s law, 94
Ohm’s law, 89, 112
phase, 113
phasors, 114
potential charges, 90
potential difference, 84-86
potential energy, 85-86
power, 91
power loss in impedance, 115
resistance, 88—=89, 90, 92-94
resonance, 114
superposition principle, 83
terminal potential difference, 89
test charge, 81
work, 91
EMF
Farraday’s law, 103
induced, 102-03
Lenz’s law, 103
motional, 103-04
Energy
electrical potential, 85-86
conservation, 19, 40
gravitational potential, 18-19

internal, 12
kinetic, 18
kinetic of rotation, 27
Kirchhoft’s laws, 94
stored 1in inductor, 108
thermal, 57
transfer of heat, 59-62
work-energy theorem, 19
Entropy, 6668
Equations
Bernoulli's, 50-51
continuity, 49
diffraction grating, 130
lensmaker’s, 126
mirror, 120-121
sound speed, 75
Equilibrium, 14-16
Expansion
area, 534-55
linear, 54
volume, 35
Explosions, 21-22

Farraday’s law, 103
Ferromagnetic materals, 99-100
First law of thermodynamics, 62-66
Flow, 49
Fluids, 47-48
Bernoulli’s equation, 50-51
discharge, 49
equation of continuity, 49
flow, 49
incompressible, 49
Poiseuille’s law, 50
Reynold’s number, 51
shear rate, 49
Torrcell’s theorem, 51
viscosity, S0
work by pressure, 50
Force
centripetal, 26
concurrent, 14



coplanar, 14-16

friction, 12

normal, 12

restoring, 38

tensile, 12
Frequency, 38, 71-72
Friction force, 12
Fusion, 58

Gases
ideal, 55
ideal gas law, 35-56
Gay-Lussac’s law, 56
Graphical addition of vectors, 4-5
Gravity, 9
Gravitational potential energy,
15-19

Heat
adiabatic process, 64
calorimetry problems, 39
conduction, 59-60
convection, 61
efficiency of heat engine, 65-66
entropy, 66—68
first law of thermodynamics,
62-66
fusion, 58
1sobaric process, 63
1sothermal process, 63
radiation, 61-62
second law of
thermodynamics, 62—-68
specific, 5, 8
sublimation, 58
thermal resistance, 60-61
transfer, 59-62
vaporization, 38
Hooke’s law, 39
Hydrostatic pressure, 48
Human evye, 127
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Impedance, 113,115
Impulse, 20
Incompressible fluids, 49
Index of refraction, 121-22
Inductance
mutual, 107
R-C time constant, 108-09
R-L time constant, 10910
self, 107
stored energy, 108
Interia, 9
Instantaneous velocity, &
Interference effects, 78
Intensity, 76
Internal energy, 62
Isobaric process, 63

Kinetic energy, 18
Kinetic energy of rotation, 27
Kirchhoff’s laws, 94

Law of relection, 119

Laws
Boyle's, 56
Charles’, 56
Coulomb’s, 80-81
Dalton’s, 57
Farraday’s, 103
first of thermodynamics, 62-66
Gay-Lussac’s, 56
Hooke's, 39
1deal gas, 55-56
Lenz’'s, 103
Newton's, 9-11
Ohm’s, 89, 112
Poiseuille’s, 50
reflection, 119
second of thermodynamics,

62-66

Snell’s, 123
universal gravitation, 11
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Lens
converging, 126
diverging, 126
lensmaker’s equation, 126
power, 126
Lensmaker’s equation, 126
Lenz’s law, 103
Light
diffraction, 129
diffraction grating equation, 130
index of refraction, 121-22
inference, 128-30
law of relection, 118-19
refraction, 121-24
Snell’s law, 123
speed, 121
sphercal mirrors, 120
Limit of elasticity, 45
Limit of resolution, 129-30
Linear momentum, 20
Longitudinal waves, 74
Loudness, 7677

Magnetism
current element, 100-01
diamagnetic materials, 101
effects of matter, 101-12
Farraday’s law, 103
ferromagnetic materials, 99-100
field lines, 95, 102
force on a current, 97-98
flux, 102
induced EMF, 102-03
magnets, 95
moment, 100
motional, 103-04
paramagnetic materials, 101
poles, 96
sources, 9899

Magnifving glass, 128

Mass, 9, 22

Mass density, 43

Mathematical operations, 13
Microscope, 1258
Mirrors
concave, 120
equation, 120-21
plane, 119
spherical, 120
Modulus
bulk, 45-46
shear, 4647
Young's, 45
Moment of intertia, 26-27
Momentum, 20
Motion, 232-26, 39-43
Mutual inductance, 107

Newton's laws, 8§11
Newtonian mechanics, 1-36
Normal force, 12

Ohm’s law, 89, 112
Optical instruments
human eye, 127
magnifying glass, 128
microscope, 128
telescope, 128
thin lens combination, 127
Optical path length, 131
Optics, 124-31

Parallel-axis theorem, 29
Parallelogram method, 5
Paramagnetic materials, 101
Pendulum, 42-43
Period, 37, 42, 71-74
Phase, 113

Phasors, 114

Plane mirrors, 119
Poiseuille’s law, 50
Potential, 84—-86
Potential changes, 90
Power, 19, 28



Pressure
average, 4748
hydrostatic, 48
partial, 57
standard, 56-57
standard atmospheric, 48
Principles
Archimedes’, 4849
Pascal’s, 48
superposition, 83
Prism, 124
Propagating waves, 70-71
Projectile problems, 9
P-V diagrams, 65

Radiation, 61-62
R-C time constant, 108-09
Reflection, 118-19
Refraction, 122
critical angle, 123-24
index, 121-22
prism, 124
Snell’s law, 123
Resonance, 73-74, 114
Restitution, 22
Restoring force, 38
Reference circle, 41
Resistance, 88—89, 90
Resistors, 92-94
Reynold’s number, 51
Rigid-body rotation
kinetic energy, 27
moment of inertia, 26
torque and angular
acceleration, 27
translation, 28
E-L time constant, 109-10
Rotation, 26-30

Scalars, 1-2

Second law of thermodynamics,
62-68

Self-inductance, 107
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Shear modulus, 46-47
Shear rate of fluids, 49
Simple harmonic motion, 39
conservation of energy, 40
displacement, 38
Hooke's law, 39
motion, 40-41
period, 37, 42
simple pendulum, 42-43
springs, 3940
reference circle, 41
restoring force, 38
Single-shit diffraction, 129
Snell’s law, 123
Sound waves, 74-77
Specific gravity, 43
Specific, 58
Speed of hight, 121
Speed, 6, 23-24
Spherical mirrors, 120
Springs, 39-40

Standard atmospheric pressure, 48

Standing waves, 72-73
Straight line motion, 7-8
Strain, 44

Stress, 44

Sublimation, 58

Telescope, 128
Temperature, 53-54, 56-57
Tensile force, 12
Terminal potential differnce, 89
Test charge, 81
Theorems
parallel axis, 29
Torricellr’s, 51
work-energy, 19
Thermal expansion, 53-55
Thermal resistence, 60-61
Therodynamics
first law, 62-66
second law, 66-68
processes, 63—-04
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Thin lens, 124-27

Torque, 14-16, 95

Torricell’s theorem, 51
Transfer of heat energy, 59-62
Transformer, 115

Translation, 28

Transverse waves, 70-71

Unifromly accelerated motion, 6—
7
graphical interpretation, 18
gravity, 9
Instantaneous velocity, 8
projectile problems, 9
straight line, 7-8
velocity components, 9

Unit vectors, 3—4

Universal gravitation, 11

Vapornzation, 58
Vectors
component method, 5-6
components, 2-3
definition, 2
graphical addition, 4-5
parallelogram method, 15
unit, 3—4
vector substraction, 6
Velocity, 6, 8

Viscosity, 50

Wavelength, 72
Waves
amplitude, 72
beats, 77
Doppler effect, 77-78
interference effects, 78
intensity, 76
length, 72
longitudinal, 74
loudness, 76-77
period, 71-72
propagating, 70-71
resonance, 73-74
standing, 72-73
sound, 74-77
terminology, 71-72
transverse, 70-71
Weight, 11
Work
electrical. 91
fluid pressure, 50
P-V diagram, 65
rotational, 28
system, 63
work-energy theorem, 19
X-rays, 130-31
Young’'s modulus, 45
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