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Preface

Digital signal processing (DSP) is concerned with the representation of signals in digital form, and
with the processing of these signals and the information that they carry. Although DSP, as we know
it today, began to flourish in the 1960's, some of the important and powerful processing techniques
that are in use today may be traced back to numerical algorithms that were proposed and studied
centuries ago. Since the early 1970's, when the first DSP chips were introduced, the field of digital
signal processing has evolved dramatically. With a tremendously rapid increase in the speed of DSP
processors, along with a corresponding increase in their sophistication and computational power,
digital signal processing has become an integral part of many commercial products and applications,
and is becoming a commonplace term.

This book is concerned with the fundamentals of digital signal processing, and there are two ways
that the reader may use this book to learn about DSP. First, it may be used as a supplement to any
one of a number of excellent DSP textbooks by providing the reader with a rich source of worked
problems and examples. Alternatively, it may be used as a self-study guide to DSP, using the method
of learning by example. With either approach, this book has been written with the goal of providing
the reader with a broad range of problems having different levels of difficulty. In addition to
problems that may be considered dri//, the reader will find more challenging problems that require
some creativity in their solution, as well as problems that explore practical applications such as
computing the payments on a home mortgage. When possible, a problem is worked in several
different ways, or alternative methods of solution are suggested.

The nine chapters in this book cover what is typically considered to be the core material for an
introductory course in DSP. The first chapter introduces the basics of digital signal processing, and
lays the foundation for the material in the following chapters. The topics covered in this chapter
include the description and characterization of discrete-type signals and systems, convolution, and
linear constant coefficient difference equations. The second chapter considers the represention of
discrete-time signals in the frequency domain. Specifically, we introduce the discrete-time Fourier
transform (DTFT), develop a number of DTFT properties, and see how the DTFT may be used to
solve difference equations and perform convolutions. Chapter 3 covers the important issues
associated with sampling continuous-time signals. Of primary importance in this chapter is the
sampling theorem, and the notion of aliasing. In Chapter 4, the z-transform is developed, which is
the discrete-time equivalent of the Laplace transform for continuous-time signals. Then, in Chapter
5, we look at the system function, which is the z-transform of the unit sample response of a linear
shift-invariant system, and introduce a number of different types of systems, such as allpass, linear
phase, and minimum phase filters, and feedback systems.

The next two chapters are concerned with the Discrete Fourier Transform (DFT). In Chapter 6, we
introduce the DFT, and develop a number of DFT properties. The key idea in this chapter is that
multiplying the DFTs of two sequences corresponds to circular convolution in the time domain.
Then, in Chapter 7, we develop a number of efficient algorithms for computing the DFT of a finite-
length sequence. These algorithms are referred to, generically, as fast Fourier transforms (FFTs).
Finally, the last two chapters consider the design and implementation of discrete-time systems. In
Chapter 8 we look at different ways to implement a linear shift-invariant discrete-time system, and
look at the sensitivity of these implementations to filter coefficient quantization. In addition, we



analyze the propagation of round-off noise in fixed-point implementations of these systems. Then, in
Chapter 9 we look at techniques for designing FIR and IIR linear shiftinvariant filters. Although the
primary focus is on the design of low-pass filters, techniques for designing other frequency selective
filters, such as high-pass, bandpass, and bandstop filters are also considered.

It is hoped that this book will be a valuable tool in learning DSP. Feedback and comments are
welcomed through the web site for this book, which may be found at

http://www.ee.gatech.edu/users/mhayes/schaum

Also available at this site will be important information, such as corrections or amplifications to
problems in this book, additional reading and problems, and reader comments.
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Chapter 1

Signals and Systems

1.1 INTRODUCTION

In this chapter we begin our study of digital signal processing by developing the notion of a discrete-time signal
and a discrete-time system. We will concentrate on solving problems related to signal representations, signal
manipulations, properties of signals, system classification, and system properties. First, in Sec. 1.2 we define
precisely what is meant by a discrete-time signal and then develop some basic, yet important, operations that
may be performed on these signals. Then, in Sec. 1.3 we consider discrete-time systems. Of special importance
will be the notions of linearity, shift-invariance, causality, stability, and invertibility. It will be shown that for
systems that are linear and shift-invariant, the input and output are related by a convolution sum. Properties of
the convolution sum and methods for performing convolutions are then discussed in Sec. 1.4. Finally, in Sec. 1.5
we look at discrete-time systems that are described in terms of a difference equation.

1.2 DISCRETE-TIME SIGNALS

A discrete-time signal is an indexed sequence of real or complex numbers. Thus, a discrete-time signal is a
function of an integer-valued variable, n, that is denoted by x(n). Although the independent variable » need not
necessarily represent “time” (n may, for example, correspond to a spatial coordinate or distance), x(n) is generally
referred to as a function of time. A discrete-time signal is undefined for noninteger values of n. Therefore, a
real-valued signal x(n) will be represented graphically in the form of a lollipop plot as shown in Fig. 1-1. In

{ x(n)
\

n
-2 -1 1 l 3 5 6 l 8§ 9

Fig. 1-1. The graphical representation of a discrete-time signal x(n).

some problems and applications it is convenient to view x(n) as a vector. Thus, the sequence values x(0) to
x(N — 1) may often be considered to be the elements of a column vector as follows:

x = [x(0), x(1),...,x(N = DT

Discrete-time signals are often derived by sampling a continuous-time signal, such as speech, with an analog-
to-digital (A/D) converter.! For example, a continuous-time signal x,(¢) that is sampled at a rate of f; = 1/T;
samples per second produces the sampled signal x(n), which is related to x,(t) as follows:

x(n) = x4(nTy)

Not all discrete-time signals, however, are obtained in this manner. Some signals may be considered to be naturally
occurring discrete-time sequences because there is no physical analog-to-digital converter that is converting an

! Analog-to-digital conversion will be discussed in Chap. 3.
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analog signal into a discrete-time signal. Examples of signals that fall into this category include daily stock
market prices, population statistics, warehouse inventories, and the Wolfer sunspot numbers.?

12,1 Complex Sequences

In general, a discrete-time signal may be complex-valued. In fact, in a number of important applications such as
digital communications, complex signals arise naturally. A complex signal may be expressed either in terms of
its real and imaginary parts,

z(n) = a(n) + jb(n) = Re{z(n)} + jIm{z(n)}
or in polar form in terms of its magnitude and phase,
z(n) = |z(n) expl jarg{z(n)}]
The magnitude may be derived from the real and imaginary parts as follows:
lz(n)* = Re*(z(n)) + Im*{z(n))
whereas the phase may be found using

o Iy
arg{z(n)} = tan Re{z(n))

If z(n) is a complex sequence, the complex conjugate, denoted by z*(n), is formed by changing the sign on the
imaginary part of z(n):

z*(n) = Re{z(n)} — jim{z(n)} = |z(n)| exp[— jarg{z(n)}]

1.2.2 Some Fundamental Sequences

Although most information-bearing signals of practical interest are complicated functions of time, there are three
simple, yet important, discrete-time signals that are frequently used in the representation and description of more
complicated signals. These are the unit sample, the unit step, and the exponential. The unit sample, denoted by

8(n), is defined by
1 n=20
0 otherwise

8(n) = [

and plays the same role in discrete-time signal processing that the unit impulse plays in continuous-time signal
processing. The unit step, denoted by u(n), is defined by

(n) = 1 n>0
=10 otherwise

and is related to the unit sample by

u(ny =Y 8(k)

k=—o00

Similarly, a unit sample may be written as a difference of two steps:

8(n) = u(n) — u(n — 1)

2The Wolfer sunspot number R was introduced by Rudolf Wolf in 1848 as a measure of sunspot activity. Daily records are available back
to 1818 and estimates of monthly means have been made since 1749. There has been much interest in studying the correlation between
sunspot activity and terrestrial phenomena such as meteorological data and climatic variations.
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Finally, an exponential sequence is defined by
x(n)=a"

where a may be a real or complex number. Of particular interest is the exponential sequence that is formed when
a = e/, where wy is a real number. In this case, x(n) is a complex exponential

e/"® = cos(nwy) + J sin(nwy)

As we will see in the next chapter, complex exponentials are useful in the Fourier decomposition of signals.

1.2.3 Signal Duration

Discrete-time signals may be conveniently classified in terms of their duration or extent. For example, a discrete-
time sequence is said to be a finite-length sequence if it is equal to zero for all values of n outside a finite
interval [N, N;]. Signals that are not finite in length, such as the unit step and the complex exponential, are said
to be infinite-length sequences. Infinite-length sequences may further be classified as either being right-sided,
left-sided, or two-sided. A right-sided sequence is any infinite-length sequence that is equal to zero for all values
of n < ng for some integer ny. The unit step is an example of a right-sided sequence. Similarly, an infinite-length
sequence x(n) is said to be left-sided if, for some integer ng, x(n) = 0 forall n > ny. An example of a left-sided
sequence is

x(n) =u(ng — n) = ! =T

0 n > ng

which is a time-reversed and delayed unit step. An infinite-length signal that is neither right-sided nor left-sided,
such as the complex exponential, is referred to as a two-sided sequence.

1.2.4 Periodic and Aperiodic Sequences

A discrete-time signal may always be classified as either being periodic or aperiodic. A signal x(n) is said to be
periodic if, for some positive real integer N,

x(n) =x(n+ N) 1.1

for all n. This is equivalent to saying that the sequence repeats itself every N samples. If a signal is periodic with
period N, it is also periodic with period 2N, period 3N, and all other integer multiples of N. The fundamental
period, which we will denote by N, is the smallest positive integer for which Eq. (/./) is satisfied. If Eq. (1./)
is not satisfied for any integer N, x(n) is said to be an aperiodic signal.

EXAMPLE 1.2.1 The signals

n _Ja n>0
xi(n) =a"u(n) =1, n<0
and xa(n) = cos(n?)

are not periodic, whereas the signal
x3(n) = /™

is periodic and has a fundamental period of N = 16.

If x1(n) is a sequence that is periodic with a period N, and x»(n) is another sequence that is periodic with a
period N, the sum

x(n) = x1(n) + x2(n)
will always be periodic and the fundamental period is
NN,

= gcd(Ny, Na) 42
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where gcd(Ny, N,) means the greatest common divisor of Ny and N,. The same is true for the product; that is,
x(n) = xy(n)xz(n)

will be periodic with a period N given by Eq. (.2). However, the fundamental period may be smaller.
Given any sequence x(n), a periodic signal may always be formed by replicating x(n) as follows:

o0

y(my= )" x(n—kN)

k=—00

where N is a positive integer. In this case, y(n) will be periodic with period N.

1.2.5 Symmetric Sequences

A discrete-time signal will often possess some form of symmetry that may be exploited in solving problems.
Two symmetries of interest are as follows:

Definition: A real-valued signal is said to be even if, for all n,
x(n) = x(—n)
whereas a signal is said to be odd if, for all n,
x(n) = —x(—n)
Any signal x(») may be decomposed into a sum of its even part, x.(»), and its odd part, x,(n), as follows:
x(n) = x.(n) + x,(n) 1.3)
To find the even part of x(n) we form the sum
xe(n) = 3{x(n) + x(—n)}
whereas to find the odd part we take the difference
Xo(n) = 3{x(n) — x(—n)}
For complex sequences the symmetries of interest are slightly different.
Definition: A complex signal is said to be conjugate symmetric® if, for all n,
x(n) = x*(—n)
and a signal is said to be conjugate antisymmetric if, for all n,
x(n) = —x*(—n)

Any complex signal may always be decomposed into a sum of a conjugate symmetric signal and a conjugate
antisymmetric signal.

1.2.6 Signal Manipulations

In our study of discrete-time signals and systems we will be concerned with the manipulation of signals. These
manipulations are generally compositions of a few basic signal transformations. These transformations may be
classified either as those that are transformations of the independent variable n or those that are transformations
of the amplitude of x(n) (i.e., the dependent variable). In the following two subsections we will look briefly at
these two classes of transformations and list those that are most commonly found in applications.

3A sequence that is conjugate symmetric is sometimes said to be hermitian.
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Transformations of the Independent Variable

Sequences are often altered and manipulated by modifying the index n as follows:
y(n) = x(f(n))

where f(n) is some function of n. If, for some value of n, f(n) is not an integer, y(n) = x(f(n)) is undefined.
Determining the effect of modifying the index n may always be accomplished using a simple tabular approach
of listing, for each value of n, the value of f(n) and then setting y(n) = x(f(n)). However, for many index
transformations this is not necessary, and the sequence may be determined or plotted directly. The most common
transformations include shifting, reversal, and scaling, which are defined below.

Shifting This is the transformation defined by f(n) = n — ng. If y(n) = x(n — ng), x(n) is shifted to
the right by no samples if ng is positive (this is referred to as a delay), and it is shifted to the left by ng
samples if ng is negative (referred to as an advance).

Reversal This transformation is given by f(n)= — n and simply involves “flipping” the signal x(n)
with respect to the index n.

Time Scaling This transformation is defined by f(n)=Mn or f(n)=n/N where M and N are
positive integers. In the case of f(n) = Mn, the sequence x(Mn) is formed by taking every Mth sample
of x(n) (this operation is known as down-sampling). With f(n)=n/N the sequence y(n) =x(f(n)) is

defined as follows:
x(i) n=0,+N, 2N, -
yn) = N

0 otherwise

(this operation is known as up-sampling).
Examples of shifting, reversing, and time scaling a signal are illustrated in Fig. 1-2.

x(n)
3
2

1

-2 -1 1 2 3 4 5 6 7 8

(a) A discrete-time signal.

x(n—2) x(—n)

J
3
- N

4

b

’—o

m——]

———o
9 fl—e

r =

2 -1 1 2 3 4 5 6 8 -8 -7 -6 =5 —4 -3 -2 -1 2
(b) A delay by ng = 2. (¢) Time reversal.
x(2n) x(n/2)
3 3
2 2
1 1
n n
-2 -1 1 2 3 4 5 6 7 8 -2 -1 I 2 3 4 5 6 7 8 9 1011
(d) Down-sampling by a factor of 2. (e) Up-sampling by a factor of 2.

Fig. 1-2. Illustration of the operations of shifting, reversal, and scaling of the independent variable n.
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Shifting, reversal, and time-scaling operations are order-dependent. Therefore, one needs to be careful in
evaluating compositions of these operations. For example, Fig. 1-3 shows two systems, one that consists of a
delay followed by a reversal and one that is a reversal followed by a delay. As indicated, the outputs of these
two systems are not the same.

x(n) x(n — ng) x(=n — ng)
—_— Ty »- T, ——

(a) A delay T, followed by a time-reversal T,

x(n) x(—n) x(—n + ng)

—_— T, = Too >

(b) A time-reversal T, followed by a delay T5,.

Fig. 1-3. Example illustrating that the operations of delay and reversal do
not commute.

Addition, Multiplication, and Scaling

The most common types of amplitude transformations are addition, multiplication, and scaling. Performing these
operations is straightforward and involves only pointwise operations on the signal.

Addition The sum of two signals
y(n) = x1(n) + x2(n) —00 <n < oo
is formed by the pointwise addition of the signal values.
Multiplication The multiplication of two signals
y(n) = x;(n)xy(n) —00 <N <00
is formed by the pointwise product of the signal values.

Scaling Amplitude scaling of a signal x(n) by a constant ¢ is accomplished by multiplying every
signal value by c:
y(n) = cx(n) —00 <hn <00

This operation may also be considered to be the product of two signals, x(n) and f(n) = c.

1.2.7 Signal Decomposition

The unit sample may be used to decompose an arbitrary signal x(n) into a sum of weighted and shifted unit
samples as follows:

x(n)=---+x(=D8n + 1)+ x0)8(n) + x(1)é(n — 1) + x(2)6(n —2) + - - -
This decomposition may be written concisely as
x(n) = Z x(k)s(n — k) (14)
k=—00

where each term in the sum, x (k)8(n — k), is a signal that has an amplitude of x(k) at time n = k and a value of zero
for all other values of n. This decomposition is the discrete version of the sifting property for continuous-time
signals and is used in the derivation of the convolution sum.
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1.3 DISCRETE-TIME SYSTEMS

A discrete-time system is a mathematical operator or mapping that transforms one signal (the input) into another
signal (the output) by means of a fixed set of rules or operations. The notation T'[-] is used to represent a general
system as shown in Fig. 1-4, in which an input signal x(n) is transformed into an output signal y(n) through
the transformation T'[-]. The input-output properties of a system may be specified in any one of a number of
different ways. The relationship between the input and output, for example, may be expressed in terms of a
concise mathematical rule or function such as

y(n) = x*(n)

or y(n) =0.5y(n — 1) + x(n)

It is also possible, however, to describe a system in terms of an algorithm that provides a sequence of instructions
or operations that is to be applied to the input signal, such as

yi(n) = 0.5y,(n — 1)+ 0.25x(n)
ya(n) = 0.25y,(n — 1) + 0.5x(n)
y3(n) = 0.4y3(n — 1) + 0.5x(n)
y(n) = y1(n) + y2(n) + y3(n)

In some cases, a system may conveniently be specified in terms of a table that defines the set of all possible
input-output signal pairs of interest.

x(n) y(n) = T[x(n)]

_—] T[] AR

Fig. 1-4. The representation of a discrete-time system as a trans-
formation T'[-] that maps an input signal x(n) into an output
signal y(n).

Discrete-time systems may be classified in terms of the properties that they possess. The most common
properties of interest include linearity, shift-invariance, causality, stability, and invertibility. These properties,
along with a few others, are described in the following section.

1.3.1 System Properties
Memoryless System
The first property is concerned with whether or not a system has memory.

Definition: A system is said to be memoryless if the output at any time n = no depends only
on the input at time n = ny.

In other words, a system is memoryless if, for any ng, we are able to determine the value of y(ng) given only the
value of x(ng).

EXAMPLE 1.3.1 The system
y(n) = x*(n)
is memoryless because y(no) depends only on the value of x(n) at time no. The system
y(n)=x(n)+x(n -1

on the other hand, is not memoryless because the output at time n, depends on the value of the input both at time r( and at
time ngy — 1.
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Additivity

An additive system is one for which the response to a sum of inputs is equal to the sum of the inputs individually.
Thus,

Definition: A system is said to be additive if
Txi(n) + x2(n)] = T [x1(n)] + T [x2(n)]

for any signals x;(n) and x,(n).

Homogeneity

A system is said to be homogeneous if scaling the input by a constant results in a scaling of the output by the
same amount. Specifically,

Definition: A system is said to be homogeneous if
Tlcx(n)] = cT[x(n)]

for any complex constant ¢ and for any input sequence x(n).

EXAMPLE 1.3.2 The system defined by

_ xin)
y(n) = =D

is not additive because
(x1(n) + x2(n))?

xi(n =D+ x(n—1)

Tlxi(n) + x2(n)] =

which is not the same as 5 )
xi(n) x;(n)

xi(n—=1) x(n—=1)

Ty (m] + Tlxa(n)] =
This system is, however, homogeneous because, for an input cx(n) the output is

_ (ex(m)y® _ xm)
Tlex(m] = cx(n—=1) cx(n -1 Tlm]

On the other hand, the system defined by the equation

y(n)y=x(m)+x*(n—1)
is additive because
X1 () + ] + [ = D 4+ x201 — DI = [x1(0) + £ = D] + [6a(n) + x3(n — )]
However, this system is not homogeneous because the response to cx(n) is
Tlex(n)] = cx(n) + ¢*x*(n — 1)
which is not the same as

cT{x(n)] =cx(n) +cx*(n — 1)

Linear Systems
A system that is both additive and homogeneous is said to be linear. Thus,
Definition: A system is said to be linear if
Tlaixi(n) + azx2(n)] = a1 T [x1(n)] + a2 T [x2(n)]

for any two inputs x(n) and x,(n) and for any complex constants a; and a;.
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Linearity greatly simplifies the evaluation of the response of a system to a given input. For example, using the
decomposition for x(n) given in Eq. (.4), and using the additivity property, it follows that the output y(n) may
be written as

y(n) = Tlx(n)] = T[ D x(k)s(n — k)] = Y Tx(k)s(n— k]
k=—o00 k=—00

Because the coefficients x(k) are constants, we may use the homogeneity property to write

o0 o0

ymy= " Tlx(k)sn—bl= Y x(K)T[5(n — k)] (1.5)

k=—00 k=—00

If we define 4 (n) to be the response of the system to a unit sample at time n = k,
hi(n) = T[8(n — k)]
Eq. (1.5) becomes

o0

ymy= Y x(kh(n) (1.6)

k=—o00

which is known as the superposition summation.

Shift-Invariance
If a system has the property that a shift (delay) in the input by n¢ results in a shift in the output by ng, the system
is said to be shift-invariant. More formally,

Definition: Let y(n) be the response of a system to an arbitrary input x(r). The system is
said to be shift-invariant if, for any delay ng, the response to x(n — ng) is y(n — ng). A system
that is not shift-invariant is said to be shift-varying.*

In effect, a system will be shift-invariant if its properties or characteristics do not change with time. To test for
shift-invariance one needs to compare y(n — ng) to T [x(n — ng)]. If they are the same for any input x(n) and for
all shifts ng, the system is shift-invariant.

EXAMPLE 1.3.3 The system defined by
y(n) = x*(n)

is shift-invariant, which may be shown as follows. If y(n) = x?(n) is the response of the system to x(n), the response of the
system to
x'(n) = x(n — nyp)

is y'(n) = X' = x*(n — no)
Because y’'(n) = y(n — np), the system is shift-invariant. However, the system described by the equation
y(n) = x(n) + x(—n)
is shift-varying. To see this, note that the system’s response to the input x(n) = §(n) is
y(n) = 8(n) + 8(—n) = 28(n)
whereas the response to x(n — 1) = 8(n — 1) is
Yn)y=38n—-1D+8(-n-1)

Because this is not the same as y(n — 1) = 28(n — 1), the system is shift-varying.

4Some authors refer to this property as time-invariance. However, because n does not necessarily represent “time,” shift-invariance is a bit
more general.
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Linear Shift-Invariant Systems

A system that is both linear and shift-invariant is referred to as a linear shift-invariant (LSI) system. If h(n) is
the response of an LSI system to the unit sample §(n), its response to §(n — k) will be h(n — k). Therefore, in
the superposition sum given in Eq. (1.6),

hi(n) = h(n — k)

and it follows that

o0

yiny= " x(k)h(n — k) (1.7)

k=—00

Equation (/.7), which is known as the convolution sum, is written as
y(n) = x(n) x h(n)

where x indicates the convolution operator. The sequence h(n), referred to as the unit sample response, provides
a complete characterization of an LSI system. In other words, the response of the system to any input x(n) may
be found once A(n) is known.

Causality
A system property that is important for real-time applications is causality, which is defined as follows:

Definition: A system is said to be causal if, for any n(, the response of the system at time
no depends only on the input up to time n = ny.

For a causal system, changes in the output cannot precede changes in the input. Thus, if x)(n) = x,(n) for
n < ng, y)(n) must be equal to y,(n) for n < ny. Causal systems are therefore referred to as nonanticipatory.
An LSI system will be causal if and only if 4(n) is equal to zero for n < 0.

EXAMPLE 1.3.4 The system described by the equation y(n) = x(n)+x(n — 1) is causal because the value of the output at
any time n = ng depends only on the input x(n) at time nq and at time no — 1. The system described by y(n) = x(n) + x(n+1),
on the other hand, is noncausal because the output at time n = ny depends on the value of the input at time ny + 1.

Stability

In many applications, it is important for a system to have a response, y(n), that is bounded in amplitude whenever
the inputis bounded. A system with this property is said to be stable in the bounded input-bounded output (BIBO)
sense. Specifically,

Definition: A system is said to be stable in the bounded input-bounded output sense if, for
any input that is bounded, |x(n)] < A < oo, the output will be bounded,

ly(n)l < B < o0

For a linear shift-invariant system, stability is guaranteed if the unit sample response is absolutely summable:

> )| < o0 (1.8)

n=—00

EXAMPLE 1.3.5 An LSI system with unit sample response h(n) = a"u(n) will be stable whenever |a| < 1, because
oo (o] 1
[h(m)t = ) la|" = —— al < 1
2 = 2 ler =g

The system described by the equation y(n) = nx(n), on the other hand, is not stable because the response to a unit step,
x(n) = u(n), is y(n) = nu(n), which is unbounded.
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Invertibility

A system property that is important in applications such as channel equalization and deconvolution is invertibility.
A system is said to be invertible if the input to the system may be uniquely determined from the output. In order
for a system to be invertible, it is necessary for distinct inputs to produce distinct outputs. In other words, given
any two inputs x;(n) and x,(n) with x(n) # x,(n), it must be true that y,(n) # y,(n).

EXAMPLE 1.3.6 The system defined by
y(n) = x(n)g(n)
is invertible if and only if g(n) # O for all n. In particular, given y(n) with g(n) nonzero for all n, x(n) may be recovered
from y(n) as follows:
_

x) g(n)

1.4 CONVOLUTION
The relationship between the input to a linear shift-invariant system, x(r), and the output, y(n), is given by the

convolution sum
o0

x(n) x h(n) = Z x(k)h(n — k)

k=—00

Because convolution is fundamental to the analysis and description of LSI systems, in this section we look at the
mechanics of performing convolutions. We begin by listing some properties of convolution that may be used to
simplify the evaluation of the convolution sum.

1.4.1 Convolution Properties

Convolution is a linear operator and, therefore, has a number of important properties including the commutative,
associative, and distributive properties. The definitions and interpretations of these properties are summarized
below.

Commutative Property

The commutative property states that the order in which two sequences are convolved is not important. Mathe-
matically, the commutative property is

x(n) * h(n) = h(n) * x(n)

From a systems point of view, this property states that a system with a unit sample response A(n) and input x(n)
behaves in exactly the same way as a system with unit sample response x(#n) and an input 4(n). This is illustrated
in Fig. 1-5(a).

Associative Property

The convolution operator satisfies the associative property, which is
{x(n) * hi(n)} * hao(n) = x(n) * {hy(n) * ha(n)}

From a systems point of view, the associative property states that if two systems with unit sample responses
hi(n) and h,(n) are connected in cascade as shown in Fig. 1-5(b), an equivalent system is one that has a unit
sample response equal to the convolution of &;(n) and ha(n):

heq(n) = hy(n) * hy(n)
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x(n) y(n) h(n) y(n)
o ey h(n) ——— ——] x(n) ——

(a) The commutative property.

x(n) y(n) x(n) y(n)
—_— i) & ha(n)  |—— —p—a  hi(n) xhy(n) fe————

(b) The associative property.

Y

hy(n)

Y

x(n) + y(n) x(n) y(n)
— H—— —_—  hi(n) + ha(n) f———

Y
Y

ha(n)

(c) The distributive property.
Fig. 1-5. The interpretation of convolution properties from a systems point of view.

Distributive Property

The distributive property of the convolution operator states that
x(n) x {hi(n) + ha(n)} = x(n) * hi(n) + x(n) * ha(n)

From a systems point of view, this property asserts that if two systems with unit sample responses 4;(n) and
hy(n) are connected in parallel, as illustrated in Fig. 1-5(c), an equivalent system is one that has a unit sample
response equal to the sum of 4;(n) and hy(n):

heq(n) = hy(n) + ha(n)

1.4.2 Performing Convolutions

Having considered some of the properties of the convolution operator, we now look at the mechanics of performing
convolutions. There are several different approaches that may be used, and the one that is the easiest will depend
upon the form and type of sequences that are to be convolved.

Direct Evaluation

When the sequences that are being convolved may be described by simple closed-form mathematical expressions,
the convolution is often most easily performed by directly evaluating the sum given in Eq. (.7). In performing
convolutions directly, it is usually necessary to evaluate finite or infinite sums involving terms of the form «” or
na”. Listed in Table 1-1 are closed-form expressions for some of the more commonly encountered series.

EXAMPLE 1.4.1 Let us perform the convolution of the two signals

a”" >
x(n) =a"u(n) = {0 " Z 0

and

h(n) = u(n)
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Table 1-1 Closed-form Expressions for Some Commonly
Encountered Series

N-—1 N oC

. l—a ., 1
;a=]_a ;a=l 2 la] <1
N-1 N+1 N e

, (N—=Da — Na” +a n a

&na = a7 ;Ona —(1 poy la] < 1
N-1 N—I

n=iNWN -1 n*=¢N(N - DN - 1)
n=0 n=0

‘With the direct evaluation of the convolution sum we find
oC o<
y(n) = x(n) x h(n) = Z x(k)h(n — k) = Z a“ulkyu(n — k)
k=—00 k=—00

Because u(k) is equal to zero for k£ < 0 and u(n — k) is equal to zero for k > n, when n < 0, there are no nonzero terms in
the sum and y(n) = 0. On the other hand, if n > 0,

1 - an+l

yin)=Y a" =
é 1—a

an+l

u(n)
a

1—

Therefore, y(n) =

Graphical Approach

In addition to the direct method, convolutions may also be performed graphically. The steps involved in using
the graphical approach are as follows:

Plot both sequences, x(k) and A(k), as functions of k.
Choose one of the sequences, say h(k), and time-reverse it to form the sequence A(—k).

3. Shift the time-reversed sequence by n. [Note: If n > 0, this corresponds to a shift to the right (delay),
whereas if n < 0, this corresponds to a shift to the left (advance).]

4. Multiply the two sequences x(k) and h(n — k) and sum the product for all values of k. The resulting
value will be equal to y(n). This process is repeated for all possible shifts, 7.

EXAMPLE 1.4.2 Toillustrate the graphical approach to convolution, let us evaluate y(n) = x(n)*h(n) where x(n) and h(n)
are the sequences shown in Fig. 1-6 (@) and (b), respectively.To perform this convolution, we follow the steps listed above:

1. Because x(k) and h(k) are both plotted as a function of & in Fig. 1-6 (a) and (), we next choose one of the sequences
to reverse in time. In this example, we time-reverse A(k), which is shown in Fig. 1-6 (c).
Forming the product, x(k)h(—k), and summing over &, we find that y(0) = 1.

3. Shifting A(k) to the right by one results in the sequence (1l — k) shown in Fig. 1-6 (d). Forming the product,
x(k)h(1 — k), and summing over k, we find that y(1) = 3.

4. Shifting A(1 — k) to the right again gives the sequence 4(2 — k) shown in Fig. 1-6 (¢). Forming the product,
x(k)h(2 — k), and summing over &, we find that y(2) = 6.

5. Continuing in this manner, we find that y(3) = 5, y(4) = 3, and y(n) =0 forn > 4.
We next take h(—k) and shift it to the left by one as shown in Fig. 1-6 ( f). Because the product, x(k)h(—1 — k), is
equal to zero for all £, we find that y(—1) = 0. In fact, y(n) = 0 forall n < 0.

Figure 1-6 (g) shows the convolution for all n.
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x (k) h(k)
3 3
2 2
1
k l k
-2 -1 1 2 3 4 5 6 7 8 -2 -1 1 2 3 4 5 6 7 8

h( = k)
3
2
]
k
2 1 1 2 3 4 5 6 7 8
(d)
h2 — k) h(=1—k)
3 3
2 2
i |
k k
2 —1 I 2 3 4 5 6 7 8 —2 _1 1 2 3 4 5 6 7 8
(e) o
y(n)
6
®
4
T Vo 23 4 s 6 78

®)
Fig. 1-6. The graphical approach to convolution.

A useful fact to remember in performing the convolution of two finite-length sequences is that if x(n) is of
length L and A(n) is of length L,, y(n) = x(n) x h(n) will be of length

L=L+L,—1
Furthermore, if the nonzero values of x(#n) are contained in the interval [M, N, ] and the nonzero values of £(n) are
contained in the interval [M,,, N, ], the nonzero values of y(n) will be confined to the interval (M, +M,,, N+ N,].
EXAMPLE 1.4.3 Consider the convolution of the sequence

[1 10 < n <20
x(n) = .
otherwise

—-5<n<5

n
ith h(n) =
W () [O otherwise

Because x(n) is zero outside the interval [10, 20], and A(n) is zero outside the interval [—35, 5], the nonzero values of the
convolution, y(n) = x(n) * h(n), will be contained in the interval [5, 25].
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Slide Rule Method

Another method for performing convolutions, which we call the slide rule method, is particularly convenient
when both x(n) and A(n) are finite in length and short in duration. The steps involved in the slide rule method
are as follows:

1. Write the values of x(k) along the top of a piece of paper, and the values of #(—k) along the top of
another piece of paper as illustrated in Fig. 1-7.

2. Line up the two sequence values x(0) and #(0), multiply each pair of numbers, and add the products to
form the value of y(0).

3. Slide the paper with the time-reversed sequence 4 (k) to the right by one, multiply each pair of numbers,
sum the products to find the value y(1), and repeat for all shifts to the right by » > 0. Do the same,
shifting the time-reversed sequence to the left, to find the values of y(n) for n < 0.

see  x(=2) x(=D x(0) x(1) xX(2) e

eee  h(2) h(1) h(0) A(=1)  h(=2) o>

Fig. 1-7. The slide rule approach to convolution.

In Chap. 2 we will see that another way to perform convolutions is to use the Fourier transform.

1.5 DIFFERENCE EQUATIONS

The convolution sum expresses the output of a linear shift-invariant system in terms of a linear combination of
the input values x(72). For example, a system that has a unit sample response 4(n) = o"u(n) is described by the
equation

y(ny=Y_a*x(n—k) (1.9)
k=0

Although this equation allows one to compute the output y(n) for an arbitrary input x(n), from a computational
point of view this representation is not very efficient. In some cases it may be possible to more efficiently express
the output in terms of past values of the output in addition to the current and past values of the input. The previous
system, for example, may be described more concisely as follows:

y(n) =ay(n — 1)+ x(n) (1.10)

Equation ({./0) is a special case of what is known as a linear constant coefficient difference equation, or LCCDE.
The general form of a LCCDE is

q P
Yy =Y blkx(n— k)= a(k)y(n — k) (1.11)

k=0 k=1

where the coefficients a(k) and b(k) are constants that define the system. If the difference equation has one or
more terms a(k) that are nonzero, the difference equation is said to be recursive. On the other hand, if all of
the coefficients a(k) are equal to zero, the difference equation is said to be nonrecursive. Thus, Eq. (1.10) is
an example of a first-order recursive difference equation, whereas Eq. (/.9) is an infinite-order nonrecursive
difference equation.

Difference equations provide a method for computing the response of a system, y(n), to an arbitrary input
x(n). Before these equations may be solved, however, it is necessary to specify a set of initial conditions. For
example, with an input x(#) that begins at time n = 0, the solution to Eq. (/.//) at time n = 0 depends on the
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values of y(—1), ..., y(—p). Therefore, these initial conditions must be specifted before the solution for n > 0
may be found. When these initial conditions are zero, the system is said to be in initial rest.

For an LSI system that is described by a difference equation, the unit sample response, #(n), is found by
solving the difference equation for x(n) = §(n) assuming initial rest. For a nonrecursive system, a(k) = 0, the
difference equation becomes

q
y(n)y ="y blk)x(n — k) (1.12)
k=0

and the output is simply a weighted sum of the current and past input values. As a result, the unit sample response
is simply

q
h(n) = Z b(k)8(n — k)
k=0

Thus, A(n) is finite in length and the system is referred to as a finite-length impulse response (FIR) system.
However, if a(k) # 0, the unit sample response is, in general, infinite in length and the system is referred to as
an infinite-length impulse response (IIR) system. For example, if

y(n) =ay(n — 1)+ x(n)

the unit sample response is k(n) = a"u(n).

There are several different methods that one may use to solve LCCDEs for a general input x(n). The first
is to simply set up a table of input and output values and evaluate the difference equation for each value of ».
This approach would be appropriate if only a few output values needed to be determined. Another approach is
to use z-transforms. This approach will be discussed in Chap. 4. The third is the classical approach of finding
the homogeneous and particular solutions, which we now describe.

Given an LCCDE, the general solution is a sum of two parts,

y(n) = yp(n) + yp(n)

where y,(n) is known as the homogeneous solution and y,(n) is the particular solution. The homogeneous
solution is the response of the system to the initial conditions, assuming that the input x(r) = 0. The particular
solution is the response of the system to the input x(n), assuming zero initial conditions.

The homogeneous solution is found by solving the homogeneous difference equation

P
Y+ Y ak)y(n—k)=0 (1.13)
k=1
The solution to Eq. (/./3) may be found by assuming a solution of the form
yu(n) = z"

Substituting this solution into Eq. (/./3) we obtain the polynomial equation

P
"+ Za(k)z”‘k =0
k=1

or PP +a()z2” 4 a)z2P P4 4a(p—Dz4a(p)) =0

The polynomial in braces is called the characteristic polynomial. Because it is of degree p, it will have p roots,
which may be either real or complex. If the coefficients a(k) are real-valued, these roots will occur in complex-
conjugate pairs (i.e., for each complex root z; there will be another that is equal to z*). If the p roots z; are
distinct, z; s z; for k # i, the general solution to the homogeneous difference equation is

p
wm) =Y Az} (1.19)
k=1
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where the constants A, are chosen to satisfy the initial conditions. For repeated roots, the solution must be

modified as follows. If z; is a root of multiplicity m with the remaining p — m roots distinct, the homogeneous
solution becomes

p
a(n) = (A + Agn -+ Apn™ D24+ N Az (1.15)
k=m+1

For the particular solution, it is necessary to find the sequence y,(n) that satisfies the difference equation for

the given x(n). In general, this requires some creativity and insight. However, for many of the typical inputs that

we are interested in, the solution will have the same form as the input. Table 1-2 lists the particular solution for

some commonly encountered inputs. For example, if x(n) = a"u(n), the particular solution will be of the form

yp(n) = Ca"u(n)

provided a is not a root of the characteristic equation. The constant C is found by substituting the solution into
the difference equation. Note that for x(n) = C&(n) the particular solution is zero. Because x(n) = 0 forn > 0,
the unit sample only affects the initial condition of y(n).

Table 1-2 The Particular Solution to an LCCDE
for Several Different Inputs

Term in x(n) Particular Solution

C C

Cn Cin+0C,

Ca” Cia"

C cos(nay) C, cos(nay) + C, sin(nawy)

C sin(nwy) C cos(nap) + C; sin(nwo)

Ca" cos(nwyp) Ca" cos(nwyg) + Cra" sin(nawg)
Cé(n) None

EXAMPLE 1.5.1 Let us find the solution to the difference equation
y(n) — 0.25y(n — 2) = x(n) (1.16)

for x(n) = u(n) assuming initial conditions of y(—1) = 1 and y(—2) = 0.
We begin by finding the particular solution. From Table 1-2 we see that for x(n) = u(n)

yp(n) =C;

Substituting this solution into the difference equation we find

C,—-025C, =1
In order for this to hold, we must have | A
“=1"02573
To find the homogeneous solution, we set y,(n) = z”, which gives the characteristic polynomial
2 -025=0
or (z+05)(z—-05=0

Therefore, the homogeneous solution has the form
yr(n) = A;(0.5)" + A(—0.5)"

Thus, the total solution is
y(n) =%+ A(0.5 + Ay(—0.5" n=0 (1.17)
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The constants A; and A, must now be found so that the total solution satisfies the given initial conditions, y(—1) = 1 and
y(—2) = 0. Because the solution given in Eq. (/./7) only applies for n > 0, we must derive an equivalent set of initial
conditions for y(0) and y(1). Evaluating Eq. (/./6) atn = 0 and n = 1, we have

¥(1) = 0.25y(=1) = x(1) = 1
Substituting these derived initial conditions into Eq. (/.17) we have

YO =3+A+A,=1

y)=5+14 -4 =1

Solving for A| and A, we find

Thus, the solution is
y(n)=%—0.5"" +3(-05" n=0

Although we have focused thus far on linear difference equations with constant coefficients, not all systems
and not all difference equations of interest are linear, and not all have constant coefficients. A system that
computes a running average of a signal x(n) over the interval [0, ], for example, is defined by

l n
y(n) = e kzz(;x(k) n>0

This system may be represented by a difference equation that has time-varying coefficients:
n
n+1

Although more complicated and difficult to solve, nonlinear difference equations or difference equations with
time-varying coefficients are important and arise frequently in many applications.

y(n) = yin = 1)+ x(n) n>0

Solved Problems

Discrete-Time Signals
1.1  Determine whether or not the signals below are periodic and, for each signal that is periodic, determine
the fundamental period.
(@) x(n) = cos(0.1257n)
(b) x(n) = Re{e/™/1?} + Im{e/ /'8
(¢) x(n) =sin(r + 0.2n)
(d) x(n) =elt" cos(nm/17)

(@) Because 0.1257 = 7/8, and
cos(%n) = cos(%(n + 16))

(b) Here we have the sum of two periodic signals,

x(n) is periodic with period N = 16.

x(n) = cos(nm/12) + sin(nw /18)

with the period of the first signal being equal to N, = 24, and the period of the second, N, = 36. Therefore,
the period of the sum is

NN, (24)(36)  (24)(36) -7

T ged(Ny, Ny | god(24,36) 12
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1.2

1.3

(¢) In order for this sequence to be periodic, we must be able to find a value for N such that
sin(w + 0.2n) = sin(wr + 0.2(n 4+ N))

The sine function is periodic with a period of 2. Therefore, 0.2N must be an integer multiple of 2. However,
because m is an irrational number, no integer value of N exists that will make the equality true. Thus, this
sequence is aperiodic.

(d) Here we have the product of two periodic sequences with periods N| = 32 and N, = 34. Therefore, the funda-

mental period is
(32)(34)  (3)34) _

T ged(32,34) 2 544
Find the even and odd parts of the following signals:
(@) x(n)=u(n)
b) x(n) =a"un)
The even part of a signal x(n) is given by
xe(n) = 30x(n) + x(=n)]
With x(n) = u(n), we have
ey = um+uemy=1 =0
2 n#0

which may be written concisely as
Xe(n) = % + 5'8(71)
Therefore, the even part of the unit step is a sequence that has a constant value of % for all n except at n = 0, where
it has a value of 1.
The odd part of a signal x(n) is given by the difference
x,(n) = 3x(n) = x(=n)]

With x(n) = u(n), this becomes

% n>0
x,(n) =40 n=20
——% n<0
or x,(n) = §sgn(n)
where sgn(n) is the signum function.
With x(n) = a"u(n), the even part is
lan n>0
xe(n) = 3[a"u(n) + o "u(—n)] = { 1 n=0
1a7" n<0
or Xe(n) = %a"" + %B(n)

The odd part, on the other hand, is

xo(n) = 3" u(n) — a™"u(—n)] = 3o sgn(n)

If x;(n) is even and x,(n) is odd, what is y(n) = x;(n) - x2(n)?

If y(n) = x1(n) - xa(n),
y(=n) = xi(=n) - x2(—n)
Because x,(n) is even, x,(n) = x;(—n), and because x,(n) is odd, x,(n) = —xy(—n). Therefore,

y(=n) = —x,(n) - x2(n) = —y(n)

and it follows that y(n) is odd.
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If x(n) = 0 for n < 0, derive an expression for x(n) in terms of its even part, x.(n), and, using this
expression, find x(n) when x,(n) = (0.9)"'u(n). Determine whether or not it is possible to derive a
similar expression for x(n) in terms of its odd part.

Because
xe(n) = $[x(n) + x(—n)]

and xo(n) = 3[x(n) — x(=n)]

note that when x(n) =0 forn < 0,
x.(n) = 1x(n) n>0

and Xe(n) = x(n) n=0

Therefore, x(n) may be recovered from its even part as follows:

For example, with x,(n) = (0.9)"'u(n), we have
x(n) = 8(n) + 2(0.9Y"u(n — 1)

Unlike the case when only the even part of a sequence is known, if only the odd part is given, it is not possible to
recover x(n). The problem is in recovering the value of x(0). Because x,(0) is always equal to zero, there is no
information in the odd part of x(n) about the value of x(0). However, if we were given x(0) along with the odd part,
then, x(n) could be recovered for all n.

If x.(n) is the conjugate symmetric part of a sequence x(n), what symmetries do the real and imaginary
parts of x.(n) possess?

The conjugate symmetric part of x(n) is
xe(n) = 1[x(n) + x*(—n)]
Expressing x(n) in terms of its real and imaginary parts, we have

xe(n) = 3[x,(n) + jxi(n) + {x.(—n) + jxi(—n)}*]
= 3[x:(n) + jxi(n) + x,(—n) — jx;(—n)]
= 1% (1) + x.(=n)] + 3 j[xi(n) — x;(—n)]

Therefore, the real part of x.(n) is even, and the imaginary part is odd.

Find the conjugate symmetric part of the sequence
x(n) = je!"™'*
The conjugate symmetric part of x(n) is
Xe(n) = 3[x(n) + x*(=m)]) = 3[je""/* — jeI™ 1] = 0

Thus, this sequence is conjugate antisymmetric.

Given the sequence x(n) = (6 — n)[u(n) — u(n — 6)], make a sketch of

(@ yi(n)=x(@—n) (b)  y2n) =x(2n —3)
(c) y3(n) =x(8—3n) d) ysn)=x(*-2n+1)



CHAP. 1] SIGNALS AND SYSTEMS 21

(a) The sequence x(n), illustrated in Fig. 1-8(a), is a linearly decreasing sequence that begins at index » = 0 and
ends at index n = 5. The first sequence that is to be sketched, y;(n) = x(4 — n), is found by shifting x(n) by
four and time-reversing. Observe that at index n = 4, y,(n) is equal to x(0). Therefore, y,(n) has a value of 6
at n = 4 and decreases linearly to the left (decreasing values of n) until n = —1, beyond which y,(n) = 0. The
sequence y((n) is shown in Fig. 1-8(b).

x(n)
6
4
2
-2 -1 1 2 7

n
3 4 5 6 8 9
(a)
x(4—-n)
6
4
2
n
-2 -1 1 2 3 4 5 6 7 8 9
(b)
x(n=3) x(2n - 3)
6 6
4 4
2 2
T [Ty .o ‘
® O—o—>-
-2 -1 1 2 3 4 5 6 7 8 9 -2 -1 Il 2 3 4 5 6 7 8 9 10
(©) @
x(8—n) x(8 = 3n)
6 6
4 4
2 7 ] : 2
n
? —O—>-
-2 -1 1 2 3 4 5 6 7 8 9 10 -2 -1 I 2 3 4 5 6 7 8 9 10
(e) )]
xn?=2n+1

6
4
2
n
-2 -1 1 2 3 4 5 6 78 9 10
©®)

Fig. 1-8. Performing signal manipulations.

(b) The second sequence, y,(n) = x(2n — 3), is formed through the combination of time-shifting and down-
sampling. Therefore, y,(n) may be plotted by first shifting x(n) to the right by three (delay) as shown in
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Fig. 1-8(c). The sequence y,(n) is then formed by down-sampling by a factor of 2 (i.e., keeping only the even
index terms as indicated by the solid circles in Fig. 1-8(c)). A sketch of y,(n) is shown in Fig. 1-8(d).

(¢) The third sequence, y3(n) = x(8 — 3n), is formed through a combination of time-shifting, down-sampling, and
time-reversal. To sketch y;(n) we begin by plotting x(8 — n), which is formed by shifting x(n) to the left by
eight (advance) and reversing in time as shown in Fig. 1-8(¢). Then, y;(n) is found by extracting every third
sample of x(8 — n), as indicated by the solid circles, which is plotted in Fig. 1-8(f).

(d) Finally, ys(n) = x(n*> — 2n + 1) is formed by a nonlinear transformation of the time variable n. This sequence
may be easily sketched by listing how the index » is mapped. First, note that if n >4 or n <—2, then
n%* —2n + 1 > 9 and, therefore, ys(n) = 0. For —1 < n < 3 we have

Ya(—=1) = y4(3) = x(4) = 2 y4(0) = y4(2) = x(1) =5 ya(1) =x(0) =6
The sequence ys(n) is sketched in Fig. 1-8(g).
1.8 The notation x((n))n is used to define the sequence that is formed as follows:
x((n))y = x(n modulo N)

where (n modulo N) is the positive integer in the range [0, N — 1] that remains after dividing n by N.
For example, ((3))s = 3, ((12))s = 4, and ((—6))4 = 2. If x(n) = (%)" sin(nm/2)u(n), make a sketch of
(a) x((n))3 and (b) x((n — 2))3.

(a) We begin by noting that ((n));, for any value of n, is always an integer in the range [0, 2]. In fact, because
((n))3 = ((n + 3k)); for any k,

x((n))3 = x((n + 3k))3

Therefore, x((n)); is periodic with a period N = 3. It thus follows that x((n)), is formed by periodically repeating
the first three values of x(n) as illustrated in the figure below:

x((m))3

1/2

-3 -2 -1 1 2 3 4 5 6 7 8

(b) The sequence x((n — 2)); is also periodic with a period N = 3, except that the signal is shifted to the right by
ng = 2 compared to the periodic sequence in part (a). This sequence is shown in the figure below:

x((n —2))
12
n
-3 -2 -1 1 2 3 4 5 6 7 8

1.9  The power in a real-valued signal x(n) is defined as the sum of the squares of the sequence values:

P= i xX(n)

n=-—0oo

Suppose that a sequence x(n) has an even part x.(n) equal to

xe(n) = (3)"



SIGNALS AND SYSTEMS 23

CHAP. 1]

[f the power in x(n) is P =5, find the power in the odd part, x,(n), of x(n).
This problem requires finding the relationship between the power in x(#) and the power in the even and odd parts.

By definition, x(n) = x,(n) + x,(n). Therefore,

P= Y xXmy= ) [x(n)+x,n7P

n=-0o0 n=-—oo

= i x;(n) + i X + i 2x.(n)x,(n)

n=-00 n=-00
Note that x,(n)x,(n) is the product of an even sequence and an odd sequence and, therefore, the product is odd.

Because the sum for all n of an odd sequence is equal to zero,

Z 2x,(n)x,(n) = 0

n=—oc
Thus, the power in x(n) is
oo o0
P= Y xXm+ Y xAnm
n=-o0

n=—0o0
which says that the power in x(n) is equal to the sum of the powers in its even and odd parts. Evaluating the power

in the even part of x(n), we find

A NOUEEEEI WO

Therefore, with P = 5 we have
P,=5-P =1
1.10  Consider the sequence

n

x(n) = (32)"u(=n)

(a) Find the numerical value of
o
A= Z x(n)
(b) Compute the power in x(n),
[e¢]
P= Y xn

nH=—0Q

(¢) If x(n) is input to a time-varying system defined by y(n) = nx(n), find the power in the output

signal (i.e., evaluate the sum)

P = i yi(n)

n=—o0c
(a) This is a direct application of the geometric series
o0 0
A=Y () uem= 30 Q)
n=—oo n=—oc
With the substitution of —n for n we have
) )
=30 =20

n=0

Therefore, it follows from the geometric series that
|
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(b) To find the power in x(n) we must evaluate the sum
o 0 5
A 2n
P=3 <=3 (3)
Replacing »n by —» and using the geometric series, this sum becomes

EONONED NOMEFEEE,

n=_0 n=0

(¢) Finally, to find the power in y(n) = nx(n) we must evaluate the sum
P = Z [nx(m)? = Zn (%)" (1.18)
n=—-ou n=0
In Table 1-1 there is a closed-form expression for the sum

na' = s lal <) (1.19)

n=0

but not for ;- n°a". However, we may derive a closed-form expression for this sum as follows.> Differenti-
ating both sides of Eq. (/./9) with respect to a, we have

Z” "t _ a B | 4+a
da(l—a)z_(]—a)‘

n=0

Therefore, we have the sum

inza” _a(l+a)
- (I—a)

n=0

Using this expression to evaluate Eq. (/./8), we find

i - (5)(5) _ 468
T
1.11  Express the sequence
] n=20
2 n=1
x(n) = 3 n=2
0 else

as a sum of scaled and shifted unit steps.

In this problem, we would like to perform a signal decomposition, expressing x(n) as a sum of scaled and shifted
unit steps. There are several ways to derive this decomposition. One way is to express x(n) as a sum of weighted

and shifted unit samples,
x(n) =8(n)+28(n — 1)+ 33(n —2)

and use the fact that a unit sample may be written as the difference of two steps as follows:

8(ny =u(n) —u(n—1)

Therefore, x(n) =u(n)y —u(n — 1Y+ 2lu(n — 1) — u(n — 2)] + 3lu(n — 2) — u(n — 3)]
which gives the desired decomposition:

x(n)y=uny+uln — Dy +un —2) - 3u(n — 3)

SThis method is very useful and should be remembered.
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Another way to derive this decomposition more directly is as follows. First, we note that the decomposition should
begin with a unit step, which generates a value of | at index n = 0. Because x(n) increases to a valueof 2 atn = 1,
we must add a delayed unit step u(n — 1). Atn = 2, x(n) again increases in amplitude by 1, so we add the delayed
unit step u(n — 2). At this point, we have

1 n=0
u(ny+un—1)+un—-2)=132 n=1
3 n>2

Thus, all that remains is to bring the sequence back to zero for n > 3. This may be done by subtracting the delayed
unit step 3u(rn — 3), which produces the same decomposition as before.

Discrete-Time Systems

1.12

For each of the systems below, x(n) is the input and y(n) is the output. Determine which systems are
homogeneous, which systems are additive, and which are linear.

(@) y(n)=log(x(n))
by yn)y=6x(n+2)+4x(n+ 1)+ 2x(n)+1
() y(n)=6x(n)+ [x(n+ Dx(n = D]/x(n)
(d) y(n)=x(n)sin(nm/2)
(e) y(n) =Re{x(n)}
() y(n) = 50x(n) + x*(—n)]
(a) If the system is homogeneous,
y(n) = Tlex(n)] = cT[x(n)]

for any input x(n) and for all complex constants ¢. The system y(n) = log(x(n)) is not homogeneous because
the response of the system to x,(n) = cx(n) is

y1(n) = log(x;(n)) = log(cx(n)) = log ¢ + log(x(n))

which is not equal to ¢ log(x(n)). For the system to be additive, if y,(n) and y,(n) are the responses to the inputs
x1(n) and x,(n), respectively, the response to x(n) = x;(n) + x,(n) must be y(n) = y;(n) + y2(n). For this
system we have

T[xy(n) + x2(n)] = log[x1(n) + x2(n)] # log[xi(n)] + loglx2(n)]

Therefore, the system is not additive. Finally, because the system is neither additive nor homogeneous, the
system is nonlinear.

(b) Note that if y(n) is the response to x(n),
y(n)y=6x(n +2)+4x(n+ 1)+ 2x(n)+ 1
the response to x,(n) = cx(n) is

yi(n) = 6x;(n+2)+ 4xy(n + 1)+ 2x,(n) + 1
=c{bx(n +2)+4x(n + D+ 2x(n)} + 1

However, cy(n) = c{b6x(n +2)+ 4x(n + 1) + 2x(n) + 1}

which is not the same as y;(n). Therefore, this system is not homogeneous. Similarly, note that the response to
x(n) = x(n) + xa(n) is
y(n) = 6x(n+2)+4x(n+ 1)+ 2x(n) + 1
= 6{x)(n +2) + x2(n + 2)} + Hxi(n + 1) + x2(n + D} + 2{x1(n) + x2(m)} + 1
= yi(n) + y2(n) — 1

which is not equal to y,(n) + y2(n). Therefore, this system is not additive and, as a result, is nonlinear.
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(c) This system is homogeneous, because the response of the system to x;(n) = cx(n) is

xi(n+ Dxi(n — 1)
x(n)

x(n+ Dx(n—1)
x(n)

The system is clearly, however, not additive and therefore is nonlinear.

yi(n) = 6xy(n) +

= c[éx(n) + ] = cy(n)

(d) Let y\(n) and y,(n) be the responses of the system to the inputs x,(n) and x,(n), respectively. The response to
the input
x(n) = ax (n) + bxy(n)

is yn) = x(n)sm(ﬁzﬁ) = [axy(n) + bxp(n)] sin(%)

1.20
= axl(n)sin(%) +bx2(n)sin<’%) = ay,(n) + by,(n) ( )

Thus, it follows that this system is linear and, therefore, additive and homogeneous.

(e) Because the real part of the sum of two numbers is the sum of the real parts, if y;(n) is the response of the
system to x(n), and y,(n) is the response to x,(n), the response to y(n) = y;(n) + y2(n) is

y(n) = Re{xi(n) + x2(n)} = Refx;(m)} + Re{xz(n)} = yi(n) + y2(n)
Therefore the system is additive. It is not homogeneous, however, because
Re{cx(n)} # cRe{x(n)}

unless c is real. Thus, this system is nonlinear.

(f) For an input x(n), this system produces an output that is the conjugate symmetric part of x(n). If ¢ is a complex
constant, and if the input to the system is x;(n) = ¢x(n), the output is

yi(n) = 3[xi(n) + x7(=n)] = 3ex(n) + " x*(—n)] # cy(n)
Therefore, this system is not homogeneous. This system is, however, additive because
Txi(n) + x2(n)] = ${lx1(n) + x2(n)] + [x1(—n) + x2(—n)]*}

= 3{Ix1 (1) + X7 (=] + [x2(n) + x3(—n)]}
= Txi(m)] + Tx2(n)]

1.13 A linear system is one that is both homogeneous and additive.
(a) Give an example of a system that is homogeneous but not additive.
(b) Give an example of a system that is additive but not homogeneous.

There are many different systems that are either homogeneous or additive but not both. One example of a system
that is homogeneous but not additive is the following:

()_x(n— Dx(n)
YW=+ D

Specifically, note that if x(n) is multiplied by a complex constant ¢, the output will be

cx(n—Dex(n)  x(n— Dx(n)
cx(n+1) = x(n+1)

y(n) =

which is ¢ times the response to x(n). Therefore, the system is homogeneous. On the other hand, it should be clear
that the system is not additive because, in general,
{xin = D+ xo(n — DHx(m) + xa(n)} | xi(n = Dxy(n) | xa(n — Dxa(n)
xi(n+ 1) +x(n+ 1) xi(n+1) xo(n+1)
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An example of a system that is additive but not homogeneous is

y(n) = Im{x(n)}

Additivity follows from the fact that the imaginary part of a sum of complex numbers is equal to the sum of imaginary
parts. This system is not homogeneous, however, because

¥(n) = Im{jx(n)) # jIm{x(m)

Determine whether or not each of the following systems is shift-invariant:

(@)
(b)
()
(d)
(e)
2

(a)

(b)

(©)

yn)=x(n)+x(n—1)+x(n—2)

y(n) = x(n)u(n)

yn) =35 x(k)

y(n) = x(n?)

y(n) = x((n))n (ie., y(n) = x(n modulo N) as discussed in Prob. 1.8)
y(n) = x(—n)

Let y(n) be the response of the system to an arbitrary input x(n). To test for shift-invariance we want to compare
the shifted response y(n — ny) with the response of the system to the shifted input x(n — ny). With

vin)y=xn)+x(n—1)+x(n—-2)
we have, for the shifted response,
y(n —ng) =x(n —ng) +x(n —nyg— 1)+ x(n —ny — 2)
Now, the response of the system to x(n) = x(n — ny) is

nn)y =xi(n) +x(n = ) +x(n—=2)
= x(n — n0)+x(n — Ny — P+ x(n — ng —2)

Because y,(n) = y(n — ng), the system is shift-invariant.

This system is a special case of a more general system that has an input-output description given by

y(n) = x(n) f(n)

where f(n)isashift-varying gain. Systems of this form are always shift-varying provided f(») is not a constant.
To show this, assume that f(n) is not constant and let n, and n, be two indices for which f(n,) # f(n,). With
an input x;(n) = 8(n — n,), note that the output y,(n) is

yin) = f(n)d(n — ny)
[f, on the other hand, the input is x;(n) = 8(n — n,), the response is
y2(n) = f(n2)8(n — ny)
Although x,(n) and x,(n) differ only by a shift, the responses y,(n) and y,(n) differ by a shift and a change in

amplitude. Therefore, the system is shift-varying.
Let

ym =Y xk)
k=—20
be the response of the system to an arbitrary input x(n). The response of the system to the shifted input

xi(n) = x(n — ng) is
n n n—nq

ym =Y xky= > xtk—n)= Y xth)

k=—00 k=—oc k=—0o0

Because this is equal to y(n — np), the system is shift-invariant.
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This system is shift-varying, which may be shown with a simple counterexample. Note that if x(n) = 8(n), the
response will be y(n) = 8(n). However, if x(n) = 8(n—2), the response will be y,(n) = x,(n?) = §(n*—2) = 0,
which is not equal to y(n — 2). Therefore, the system is shift-varying.

With y(n) the response to x(n), note that for the input x,(n) = x(n — N), the output is
yi(n) = x((n — N))y = x((m)n

which is the same as the response to x(n). Because y;(n) # y(n—N), in general, this system is not shift-invariant.

This system may easily be shown to be shift-varying with a counterexample. However, suppose we use the
direct approach and let x(n) be an input and y(n) = x(—n) be the response. If we consider the shifted input,
xi1(n) = x(n — ngp), we find that the response is

yi(n) = x1(=n) = x(=n = ny)
However, note that if we shift y(n) by ny,

y(n — ng) = x(—(n — ng)) = x(—n + ny)

which is not equal to y,(n). Therefore, the system is shift-varying.

1.15 A linear discrete-time system is characterized by its response h;(n) to a delayed unit sample §(n — k).
For each linear system defined below, determine whether or not the system is shift-invariant.

@ hi(n) =(n—kun—k)
b) hi(n) =8Q2n —k)

© he(n) Sn—k—1) k even
c n)=
g 5u(n — k) k odd
(a) Note that h,(n) is a function of n — k. This suggests that the system is shift-invariant. To verify this, let y(n)

be the response of the system to x(n):

ym) = Y hu(m)x(k)

k=—00
= Y (n—kumn—kxk)= Y _ (n—kx(k) (.21
k=—00 k=—00

The response to a shifted input, x(n — nyp), is

nm = 3" xtk—noh(my =Y (n = kun — k)x(k - no)
k=—00 k=—00
= D (n—kxk ~ no)
k=—00

With the substitution / = k£ — ng this becomes

n—ngp

yimy= 3" (n—ng—Dx(l)
l=—00
From the expression for y(n) given in Eq. (/.21), we see that
n—nq
yn—no)= 3 (n—no—kx(k)

k=—00

which is the same as y(n). Therefore, this system is shift-invariant.
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For the second system, #,(n) is not a function of n — k. Therefore, we should expect this system to be shift-
varying. Lel us see if we can find an example that demonstrates that it is a shift-varying system. For the input
x(n) = é(n), the response is

| n=20

y(n) = ho(n) = 86(2n) = 0 else

If we delay x(n) by 1, the response to x,(n) = §(n — 1) is
nm)y=hnm=62n-1=0

Because v,(n) # y(n — 1), the system is shift-varying.

Finally, for the last system, we see that although /,(n) is a function of n — k for k even and a function of (n — k)
for k odd,
hi(n) # he_(n = 1)

In other words, the response of the system to §(n — k — 1) is not equal to the response of the system to 6(n — k)
delayed by 1. Therefore. this system is shift-varying.

Let T[-] be a linear system, not necessarily shift-invariant, that has a response 4, (n) to the input §(n — k).
Derive a test in terms of /1, (n) that allows one to determine whether or not the system is stable and whether
or not the system is causal.

(a) The response of a linear system to an input x(n) is

yimy =Y hi(mx(k) (1.22)

k=—00

Therefore. the output may be bounded as follows:

< Y )l k)l

k=—-oc

Z hi(n)x(k)

hk=—n0

ly(m)] =

If x(n) is bounded, |x(n)] < A < 00,

oC
Iyl < A > )

k=-00
As a result, if
o0
> lhn) < B < 00 all n (1.23)
k=-00
the output will be bounded, and the system is stable. Equation (/.23) is a necessary condition for stability.
To establish the sufficiency of this condition, we will show that if this summation is not finite, we can find a
bounded input that will produce an unbounded output. Let us assume that /s, (n) is bounded for all £ and n
[otherwise the system will be unstable, because the response to the bounded input §(n — k) will be unbounded].
With f; (1) bounded for all k and n, suppose that the sum in Eq. (/.23) is unbounded for some n, say n = nyg.
Let
x(n) = sgn{h,(no)}
that is,
| h,(ng) > 0
x(n) = 0 hy(np) =0
—1 h,,(n()) <0

For this mnput, the response at time n = n is
y(ng) = Z hi(ng)x(k) = Z hi(ng) sgn{hi(ng)} = Z |hi(no)l
kz=—oc k=—oc k=-00

which, by assumption, is unbounded. Therefore, the system is unstable and we have established the sufficiency
of the condition given in Eq. (/.23).
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Let us now consider causality. For an input x(n), the response is as given in Eq. (/.22). In order for a system
to be causal, the output y(n) at time n, cannot depend on the input x(n) for any n > nq. Therefore, Eq. (/.22)
must be of the form

y(m) =" hi(n)x(k)

k=—00

This, however, will be true for any x(n) if and only if
hi(n) =0 n <k

which is the desired test for causality.

1.17 Determine whether or not the systems defined in Prob. 1.15 are (a) stable and (b) causal.

1.18

(a)

(b)

(©)

For the first system, h;(n) = (n — k)u(n — k), note that h;(n) grows linearly with n. Therefore, this system
cannot be stable. For example, note that if x(n) = §(n), the output will be
y(n) = ho(n) = nu(n)

which is unbounded. Alternatively, we may use the test derived in Prob. 1.16 to check for stability. Because

Y il = 3 Ik =Ykl = o0
3 k=0

k=—00 k=—00
this system is unstable. On the other hand, because /,(n) = O for n < k, this system is causal.

For the second system, /,(n) = §(2n — k), note that s(n) has, at most, one nonzero value, and this nonzero
value is equal to 1. Therefore,

o0

>l <1

k=—o0
for all n, and the system is stable. However, the system is not causal. To show this, note that if x(n) = §(n —2),
the response is
y(n)=hyny=82n -2)=68(n—1)
Because the system produces a response before the input occurs, it is noncausal.
For the last system, note that

0 e 0 o0

Dol =Y I+ Y Iml < Y )]
k=—00 k=—00 k=—00 k=-00
& even kodd kodd
o0 n
= Z Su(n — k) = 5
o e

which is unbounded. Therefore, this system is unstable. Finally, because 4,(n) = O for n < k, the system is
causal.

Consider a linear system that has a response to a delayed unit step given by

sp(n) = kd(n — k)

That is, sz(n) is the response of the linear system to the input x(n) = u(n — k). Find the response of this

system to the input x(n) = 8(n — k), where & is an arbitrary integer, and determine whether or not this
system is shift-invariant, stable, or causal.

Because this system is linear, we may find the response, s;(n), to the input §(n — k) as follows. With 8(n — k) =
u(n — k) — u(n — k — 1), using linearity it follows that

hi(n) = si(n) — spp1(n) = k8(n — k) — (k + D8 — k — 1)

which is shown below:
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4 felm)

iy
, k+1 n
-4 -3 -2 - I 2 k-1 &k
+ —k+ 1)

From this plot, we see that the system is not shift-invariant, because the response of the system to a unit sample
changes in amplitude as the unit sample is advanced or delayed. However, because #,(n) = 0 for n < k, the system
is causal. Finally, because /4 (n) is unbounded as a function of , it follows that the system is unstable. In particular,
note that the test for stability of a linear system derived in Prob. 1.16 requires that

max Z |hy(n)l < B < 00
n l( —

=—0
For this system,

o0

3" 1hm)] = [2n]

k=—00
Note that in evaluating this sum, we are summing over k. This is most easily performed by plotting h,(n) versus n
as illustrated in the figure below.

)

n—1

—e—o—0—o ¢—o—0o—/ o
-1 1 2 n-—2 n

—n

Because this sum cannot be bounded by a finite number B, this system is unstable. Because this system is unstable,
we should be able to find a bounded input that produces an unbounded output. One such sequence is the following:

x(n)=)_8(n—2k)
k=0
The response is
y(n) = n(=1)"u(n)

which is clearly unbounded.

Consider a system whose output y(n) is related to the input x(n) by

00

ymy= Y x(k)x(n+k)

k=—00

Determine whether or not the system is (a) linear, (b) shift-invariant, (c) stable, (d) causal.
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(a)

(b)

(©)
)
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The first thing that we should observe about y(n) is that it is formed by summing products of x(n) with shifted

versions of itself. For example,
2]

YO = Y k)

k=-oc
We expect, therefore, this system to be nonlinear. Let us confirm this by example. Note that if x(n) = 8(n),
y(n) = &(n). However, if x(n) = 28(n), y(n) = 48(n). Therefore, the system is not homogeneous and,
consequently, is nonlinear.
For shift-invariance, we want to compare

X0

y(n —ny) = Z x(K)x(n — ny + k)

k=-ox

to the response of the system to x;(n) = x(n — ny), which is

yi(n) = Z X (k)xi(n + k)
k=—oc
= Z x(k — np)x(n +k — ny)
hk=—oc
= Z x(Kx(n + k")
k'=—-o00

where the last equality follows with the substitution k' = k — ny. Because y(n) # y(n — ng), this system is
not shift-invariant,

For stability, note that if x(#n) is a unit step, y(0) is unbounded. Therefore, this system is unstable.

Finally, for causality, note that the output depends on the values of x(#n) for all n. For example, y(0) is the sum
of the squares of x(k) for all k. Therefore, this system is not causal.

Given that x(n) is the system input and y(n) is the system output, which of the following systems are
causal?

(@)
(b)
(@)
(d)

(e)

)

(@)

(b)

(c)

(d)

y(n) = x*(n)u(n)
y(n) = x(|nl)
y(n) =x(n)+ x(n —3)+ x(n — 10)

y(n) =x(n)— x(n* = n)

A'V

y(n) = HX(n —k)
k=1

y(n) = ZX(n — k)
k=n

The system y(n) = x2(n)u(n) is memoryless (i.e., the response of the system at time » depends only on the
input at time »n and on no other values of the input). Therefore, this system is causal.

The system y(n) = x(|n]) is an example of a noncausal system. This may be seen by looking at the output when
n < 0. In particular, note that y(—1) = x(1). Therefore. the output of the system at time n = —1 depends on
the value of the input at a future time.

For this system, in order to compute the output y(») at time » all we need to know is the value of the input x (1)
at times n, n — 3, and n — 10. Therefore, this system must be causal.

This system is noncausal, which may be seen by evaluating v(n) for n < 0. For example,
Y= =x(=1)~x(2)

Because y(—1) depends on the value of x(2), which occurs after time # = — |, this system is noncausal.
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(e) The output of this system at time » is the product of the values of the input x(n) at timesn — 1,...,n — N.
Therefore, because the output depends only on past values of the input signal, the system is causal.

(f) This system is not causal, which may be seen easily if we rewrite the system definition as follows:

0

ym=Y xtn—k= Y x()
k=n

I=—00

Therefore, the input must be known for all n < 0 to determine the output at time n. For example, to find y(—5)
we must know x(0), x(—1), x(—2), . ... Thus, the system is noncausal.

Determine which of the following systems are stable:

(@ y(n) =x*n)
b) yn) =e™/x(n—1)
(¢) y(n) = cos(x(n))

n

@ ym= Y x(k

k=—00
(e) y(n) =1log(l+ |x(n)})
(f) y(n) = x(n)*cos(nm/8)

(@) Letx(n) be any bounded input with |x(n)| < M. Then it follows that the output, y(rn) = x2(n), may be bounded
by
ly(m)| = x(m)]* < M?

Therefore, this system is stable.

(b) This system is clearly not stable. For example, note that the response of the system to a unit sample x(n) = §(n)
is infinite for all values of n exceptn = 1.

(c) Because |cos(x)| < | for all x, this system is stable.

(d) This system corresponds to a digital integrator and is unstable. Consider, for example, the step response of the
system. With x(n) = u(n) we have, for n > 0,

n

ymy= Y utk)y=(n+1)

Although the input is bounded, {x(n)| < I, the response of the system is unbounded.
(e) This system may be shown to be stable by using the following inequality:
log(1+x) <x x>0
Specifically, if x(n) is bounded, |x(n)| < M,
ly(m)] = Hog(1 + |x(MPl < 1+ lx(m)] <1+ M

Therefore, the output is bounded, and the system is stable.

(f) This system is not stable. This may be seen by considering the bounded input x(n) = cos(nm/8). Specifically,
note that the output of the system at time n = 0 is

y(0) = Z x(kh(—k) = Z cos(%)cos(—%) = Z cosz(%)
k=-oc k=—00 k=—00

which is unbounded. Alternatively, because the input-output relation is one of convolution, this is a linear
shift-invariant system with a unit sample response

po = eos (75
(n) = cos 3
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Because a linear shift-invariant system will be stable only if

o0

Z |h(n)] < o0

n=-00

we see that this system is not stable.

1.22 Determine which of the following systems are invertible:

1.23

(a)
(b)
©)

(@)
(e)

y(n) = 2x(n)
y(n) = nx(n)
y(n) =x(n)—x(n—-1)

n

yiy= ) x(h)

k=—o00

y(n) = Re{x(n)}

To test for invertibility, we may show that a system is invertible by designing an inverse system that uniquely recovers
the input from the output, or we may show that a system is not invertible by finding two different inputs that produce
the same output. Each system defined above will be tested for invertibility using one of these two methods.

(a)
(b)

(©)

(@)

(e

This system is clearly invertible because, given the output y(n), we may recover the input using x(n) = 0.5y(n).
This system is not invertible, because the value of x(n) at n = 0 cannot be recovered from y(n). For example,
the response of the system to x(#) and to x,(n) = x(n) + aé(n) will be the same for any «.

Due to the differencing between two successive input values, this system will not be invertible. For example,
note that the inputs x(n) and x(n) 4+ ¢ will produce the same output for any value of ¢.

This system corresponds to an integrator and is an invertible system. To show that it is invertible, we may
construct the inverse system, which is

x(n)y=yn)—yn-1)
To show that this is the inverse system, note that

" n—1

Yy =yn—1y= > xtk)y—= Y x(k)=x(n)

k=-0c k=—oc

Invertibility must hold for complex as well as real-valued signals. Therefore, this system is noninvertible because
it discards the imaginary part of x(n). One could state, however, that this system is invertible over the set of
real-valued signals.

Consider the cascade of two systems. S| and S;.

(@)

(b)
(c)

(@)

x(n) w(n) y(n)
—_ Sl - 52 e

If both S; and S, are linear, shift-invariant, stable, and causal, will the cascade also be linear,
shift-invariant, stable, and causal?

If both S; and S, are nonlinear, will the cascade be nonlinear?

If both §) and S are shift-varying, will the cascade be shift-varying?

Linearity, shift-invariance, stability, and causality are easily shown to be preserved in a cascade. For example,
the response of S, to the input ax,(n) + bx,(n) will be aw, (n) + bw,(n) due to the linearity of S,. With this as
the input to S5, the response will be, again by linearity, ay;(n) 4+ by,(n). Therefore, if both S, and S, are linear,
the cascade will be linear.
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Similarly, for shift-invariance, if x(n — ng) is input to S, the response will be w(n — ny). In addition,
because S, is shift-invariant, the response to w(n — ng) will be y(n — ng). Therefore, the response of the cascade
to x(n — ngp) is y(n — nyp), and the cascade is shift-invariant.

To establish stability, note that with S, being stable, if x(n) is bounded, the output w(n) will be bounded.
With w(n) a bounded input to the stable system S;, the response y(n) will also be bounded. Therefore, the
cascade is stable.

Finally, causality of the cascade follows by noting that if S, is causal, y(n) at time n = n, depends only
on w(n) for n < ny. With §; being causal, w(»n) for » < ny will depend only on the input x(») for n < ny, and
it follows that the cascade is causal.

(b) If S) and S; are nonlinear, it is not necessarily true that the cascade will be nonlinear because the second system
may undo the nonlinearity of the first. For example, with

w(n) = §;{x(n)} = exp{x(n)}
y(n) = Sp{w(n)} = log{w(n)}

although both S and S, are nonlinear, the cascade is the identity system and, therefore, is linear.

(¢) Asin (b), if S, and S, are shift-varying, it is not necessarily true that the cascade will be shift-varying. For
example. if the first system is a modulator,

w(n) = x(n) - /"

and the second is a demodulator,
y(n) = w(n) e /"

the cascade is shift-invariant, even though a modulator and a demodulator are shift-varying. Another example
is when S, is an up-sampler
x(%)  n=042,44,...

win) = 0 else

and S, is a down-sampler
y(n) = w(2n)

In this case, the cascade is shift-invariant, and y(n) = x(n). However, if the order of the systems is reversed,
the cascade will no longer be shift-invariant. Also, if a linear shift-invariant system, such as a unit delay, is
inserted between the up-sampler and the down-sampler, the cascade of the three systems will, in general, be
shift-varying.

Convolution
1.24  The first nonzero value of a finite-length sequence x(n) occurs at index n = —6 and has a value x(—6) = 3,
and the last nonzero value occurs at index n = 24 and has a value x(24) = —4. What is the index of the

1.25

first nonzero value in the convolution
y(n) = x(n) * x(n)
and what is its value? What about the last nonzero value?

Because we are convolving two finite-length sequences, the index of the first nonzero value in the convolution is
equal to the sum of the indices of the first nonzero values of the two sequences that are being convolved. In this case,
the index is n = —12, and the value is

y(=12) = x*(~6) =9

Similarly, the index of the last nonzero value is at n = 48 and the value is

y(48) = x*(24) = 16

The convolution of two finite-length sequences will be finite in length. Is it true that the convolution of
a finite-length sequence with an infinite-length sequence will be infinite in length?
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It is not necessarily true that the convolution of an infinite-length sequence with a finite-length sequence will be
infinite in length. It may be either. Clearly, if x(n) = §(n) and h(n) = (0.5)"u(n), the convolution will be an
infinite-length sequence. However, it is possible for the finite-length sequence to remove the infinite-length tail of
an infinite-length sequence. For example, note that

(0.5)"u(n) — (0.5)"u(n — 1) = &(n)
Therefore, the convolution of x(n) = §(n) — %8(n — 1) with A(n) = (0.5)"u(n) will be finite in length:

[8(n) — 18(n — 1] % (0.5Y"u(n) = (0.5)"u(n) — 1(0.5)" " u(n — 1) = &(n)
1.26 Find the convolution of the two finite-length sequences:
x(n) = 0.5n[u(n) — u(n — 6)]

h(n) = 2 sin (%)[u(ﬂ +3) —u(n —4)]

Shown in the figure below are the sequences x (k) and A (k).

x(k)
3

2
1

—4 -3 -2 —1 1 2 3 4 5 6 7 8

Because h(n) is equal to zero outside the interval [—3, 3], and .x(n) is zero outside the interval [1, 5], the convolution
y(n) = x(n) * h(n) is zero outside the interval [—2, 8].

One way to perform the convolution is to use the slide rule approach. Listing x(k) and h(—k) across two pieces
of paper, aligning them at k = 0, we have the picture as shown below (the sequence h(—k) is in front).

0 0 0 0 0.5 1 1.5 2 2.5

Forming the sum of the products x(k)h(—k), we obtain the value of y(n) at time n = 0, which is y(0) = 2. Shifting
h(—k) to the left by one, multiplying and adding, we obtain the value of y(n) at n = —1, which is y(—1) = 2.
Shifting one more time to the left, forming the sum of products, we find y(—2) = 1, which is the last nonzero value
of y(n) for n < 0. Repeating the process by shifting h(—k) to the right, we obtain the values of y(n) for n > 0,
which are

yh=2 y@=3 y3=-2 yH=-3
y&=2 y6=2 yNhH=-4 y&=-5
Another way to perform the convolution is to use the fact that
x(n) * 8(n — ng) = x(n — ng)
Writing h(n) as
h(n) =28(n+3)—25(n+ 1)+ 28(n — 1) — 26(n — 3)
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1.27

1.28

we may evaluate y(n) as follows
y(n)=2x(n+3) =2x(n+ 1) +2x(n — 1) — 2x(n — 3)

Making a table of these shifted sequences,

n| =2 -1 0 ] 3 4 5 6 7 8
2x(n+3) 1 2 3 4 0 0 0 0 0 0
—2x(n+1) 0 o -1 -2 -3 -4 -5 0 0 0 0
2x(n —1) 0 0 0 0 1 2 3 4 5 0 0
—2x(n = 3) 0 0 -1 -2 -3 -4 -5
y(n) 1 2 2 2 3 -2 -3 2 2 -4 =5

and adding down the columns, we obtain the sequence y(n).

Derive a closed-form expression for the convolution of x(n) and /(n) where
n—>6
x(n)y = (3)""un)

— (L)
h(n) = (3)"utn = 3)
Because both sequences are infinite 1n length, it is easier to evaluate the convolution sum directly:

[0.9)

y(n) = Z x(k)h(n — k)

k=-20

Note that because x(n) = 0 for n < 0 and h(n) = 0 for n < 3, y(n) will be equal to zero for n < 3. Substituting
x(n) and h(n) into the convolution sum, we have

oo

y(n) = Z (%)k‘ﬁu(k)(ﬁ)"_ku(n —k=3)

k=-00

Due to the step u(k), the lower limit on the sum may be changed to & = 0, and because u(n — k — 3) is zero for
k > n — 3, the upper limit may be changed to & = n — 3. Thus, for n > 3 the convolution sum becomes

n—3 n-3

y =3 ()7 T =) () nzs

k=0 k=0

Using the geometric series to evaluate the sum, we have

e U (R DO P Ee

,V(n)=6°(§)" -1
2

A linear shift-invariant system has a unit sample response
h(ny =u(~n —1)

Find the output if the input is
x(n) = —n3"u(—n)

Shown below are the sequences x(n) and h(n).

h(n)

T

7 6 -5-4-3-2-1 1 | 2

>
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1.30
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Because x(n) is zero for n > —1, and h(n) is equal to zero for n > —1, the convolution will be equal to zero for
n > —2. Evaluating the convolution sum directly, we have

o0 00

y(n) = Z x(Kh(n — k) = Z —k3f u(=ku(—(n — k) — 1)

k=—00 k=-oc
Because u(—k) = 0 for k > 0 and u(—(n — k) — 1) = O for k < n + |, the convolution sum becomes

0

ymy= Y —k3  n<-2

k=n+1

With the change of variables m = —k, and using the series formulas given in Table |-1, we have

e = D) n(3) "+
o= Sy = sl
m=l _.‘_\

n

=3+22n-1)(3) n<-=2

Let us check this answer for a few values of n using graphical convolution. Time-reversing x(k), we see that h(k)
and x(—k) do not overlap for any £ and, thus, y(0) = 0. In fact, it is not until we shift x(—k) to the left by two
that there is any overlap. With x(—2 — k) and A(k) overlapping at one point, and the product being equal to %,
it follows that y(—2) = % Evaluating the expression above for y(n) above at index n = —2, we obtain the same
result. For n = —3, the sequences x(—3 — k) and h(k) overlap at two points, and the sum of the products gives
y(=3) = 1 4+ £ = 2, which, again, is the same as the expression above.

If the response of a linear shift-invariant system to a unit step (i.e., the step response) is
s(n) = n(%)"u(n)
find the unit sample response, A(n).

In this problem, we begin by noting that
8(n) = u(n) —un —1)

Therefore, the unit sample response, 4(n), is related to the step response, s(n), as follows:
h(n) =sn)—sn—1)
Thus, given s(n), we have
h(n) = s(n) —s(n — 1)
= n(3) utm — (1 = D) utn — 1)
= [n(3)" =200 = (L) Jutn = 1)
=2-mn)un-1

Prove the commutative property of convolution
x(n) x h(n) = h(n) * x(n)

Proving the commutative property is straightforward and only involves a simple manipulation of the convolution
sum. With the convolution of x(n) with h(n) given by

oC

x(n) * h(n) = Z x(k)h(n — k)
k=—00
with the substitution / = n — k, we have
x(n)xh(n) =Y x(n — Dh(l) = h(n) * x(n)
I=—00

and the commutative property is established.
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1.31 Prove the distributive property of convolution
h(n) * [x;(n) + x2(n)] = h(n) * x;(n) + h(n) * xo(n)

To prove the distributive property, we have

oC

hn) * [xi (1) + xa(m) = Y h(R)xi(n — k) + xa(n — k)]
k=—o00
Therefore, h(n) * [x,(n) + x2(n)] = Z h(k)xy(n — k) + Z h(k)xo(n — k)
k=—o00 k=-00
= h(n) x x{(n) + h(n) * xo(n) (1.24)

and the property is established.

1.32  Let
h(n) = 3(4)"u(n) — 2(4)" 'u(n)

be the unit sample response of a linear shift-invariant system. If the input to this system is a unit step,

1 n>0
x(n) = [O else
find lim,,_, o, y(n) where y(n) = h(n) x x(n).
With -
y(n) = h(n)x x(n) = Y h(k)x(n —k)
k=—00
if x(n) is a unit step,
vy =Y hkun—ky =Y k)
k=—-0c0 k=—-00
Therefore, lim y(n) = »_ hik)
n—oo P

Evaluating the sum, we have

. v > k - i~ 3 6
Jim v =332 (4) =23 ()7 = =5 - o =

k k=0

1.33 Convolve
x(n) = (0.9)"u(n)

with a ramp
h(n) = nu(n)
The convolution of x(n) with A(n) is
yin) = x(m)yx h(n) = Y x(k)h(n — k)
k=—00

= Y 109 u®]i(n — kun — k)]

k=—00
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Because u(k) is zero for k < 0, and u(n — k) is zero for k > n, this sum may be rewritten as follows:

Yy =Y (n =09 =0
k=0

n

or ymy=ny (0.9 =) k09 nz0

=0 k=0
Using the series given in Table 1-1, we have

= n 0.9 n(0.9Y'*2 = (n + 1)0.9y*! +0.9
YW =NTTT00 (1= 0.9y

10n[1 — (0.9Y"*'] — 100[n(0.9Y" — (n + 1)(0.9)"*" + 0.9} n>0

which may be simplified to
y(n) = [10n — 90 + 90(0.9)" u(n)

1.34  Perform the convolution
y(n) = x(n) * h(n)

when h(n) = (3)"u(n)

and x(n) = (3)"[u(n) — u(n — 101)]

With y(n) = x(n) xh(n) = Y x(k)htn = &)
k=—oc

we begin by substituting x(n) and 4(n) into the convolution sum

vy = 3 () k) — utk = 1001(4)" " utn — &)
k=—00
10 k n—k
or ym =3 (5)(3)" utn =k
k=0

To evaluate this sum, which depends on n, we consider three cases. First, forn < 0, the sum is equal to zero because
u(n — k) =0for0 < k < 100. Therefore,

y(n)y=0 n<0
Second, note that for 0 < n < 100, the step u(n — k) is only equal to 1 for k < n. Therefore,

n n

Yy = (

k=0 k=0

w—
~—
~
—_
N
~—
E
I
x~
—_—
=
~—
=
—_—
UITNY
~—
S
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1.35

Finally, for n > 100, note that u(n — k) is equal to 1 for all & in the range 0 < k < 100. Therefore,

100 100

o =Y ()T =) @)

k=0 k=0

In summary, we have

y(n) = 3G 1-3)"] os=n<i00
]

3G -®"

Let A(n) be a truncated exponential

" 0<n<10
h(n) = {0 else
and x(n) a discrete pulse of the form
() = [1 0<n<5s
0 else

Find the convolution y(n) = h(n) * x(n).

To find the convolution of these two finite-length sequences, we need to evaluate the sum

oo

y(n) = h(n) xx(n) = Y h(k)x(n — k)

k=-00

To evaluate this sum, it will be useful to make a plot of (k) and x(n — k) as a function of k as shown in the following
figure:

A h(k)

II_TTL?QQQQ--J‘

A x(n— k)

1
p

n—>5 n

Note that the amount of overlap between h(k) and x(n — k) depends on the value of n. For example, if n < 0, there
is no overlap, whereas for 0 < n < 5, the two sequences overlap for 0 < k < n. Therefore, in the following, we
consider five separate cases.

Casel n < 0. When n < 0, there is no overlap between h(k) and x(n — k). Therefore, the product
h(k)x(n — k) = 0 for all k, and y(n) = 0.

Case2 0 < n < 5. For this case, the product #(k)x(n — k) is nonzero only for & in the range 0 < k < n.
Therefore,
n+1

~ | —«
ymy=>) o = ———
kgo l—«
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Case3 6 <n <10. For6 < n < 10, all of the nonzero values of x(n — k) are within the limits of the
sum, and

n 5
_v(n) — Z ak _ Zak+(n—5)

k=n—5 k=0
5 6

| —«a
— an—s 2 :ak — an 5 l
k=0 -«

Cased 11 <n < 15. Whennisintherange I1 < n < 15, the sequences h(k) and x(n — k) overlap for
n —5 < k < 10. Therefore,

10 15—n
y(n) = Z o = gkt
k=n—5 k=0
15~n 16—n
| —«
41"_5 2 ak — an—S
l—«a

Case 5 n > 15. Finally, for n > 15, there is again no overlap between £(k) and x(n — k), and the product
h(k)x(n — k) is equal to zero for all k. Therefore, y(n) = 0 forn > 15.

In summary, for the convolution we have

0 n<0
o+l
'l“ 0<n<5
—
| — 6
y(n) = a"‘sﬁ 6<n<10
_ ylo—n
a"*SllL l<n<Is
—
0 n>15

The correlation of two sequences is an operation defined by the relation

x(n) * h(n) = Z x(k)h(n + k)

k=—00
Note that we use a star  to denote correlation and an asterisk * to denote convolution.

(a) Find the correlation between the sequence x(n) =u(n) — u(n — 6) and A(n) =u(n —2) — u(n — 5).

(b) Find the correlation of x(n) = a"u(n) with itself (i.e., #(n) = x(n)). This is known as the autocor-
relation of x(n). Assume that |a] < 1.

(a) If we compare the expression for the correlation of x(n) and A#(n) with the convolution

00

x(n) % h(n) = Z:x@mop-m

k=—00

we see that the only difference is that, in the case of convolution, 4(k) is time-reversed prior to shifting by n,
whereas for correlation #(k) is shifted without time-reversal. Therefore, with a graphical approach to compute
the correlation, we simply need to plot x(k) and A(k), shift h(k) by n (to the left if n > 0 and to the right if
n < 0), multiply the two sequences x(k) and A(n + k), and sum the products. Shown in the figure below is a
plot of x(k) and A(k).
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x(k)

-2 -1 12 3 4 5 6 7 8 -2 -1 2 3 4 5 6 7 8

Denoting the correlation by r,,(n), it is clear that for n =0 the correlation is equal to 3. In fact, this will be
the value of r,,(n) for —1 < n < 2. For n =3, x(k) and /(3 + k) only overlap at two points, and r,,(3) =2.
Similarly, because x(k) and 4(4 + k) only overlap at one point, r,,(4) = 1. Finally, r.,(n)=0 for n > 4.
Proceeding in a similar fashion for n < 0, we find that r,,(—2)=2, and r,(—3) = 1. The correlation is shown
in the figure below.

rep(n)

-4 =3 =2 -1 12 3 4 5 6 7 8

(b) Let r.(n) denote the autocorrelation of x(n), and note that the autocorrelation is the convolution of x(n) with

x(—n): -
re(n) = x(n) » x(n) = x(n) x x(=n) = Y x(k)x(n + k)
k=—-00
In addition observe that r.(»n) is an even function of n:
r=m= Y xtx(-n+ky= Y xtk'+nxk)=r.(n)
k=-00 K=—00

Therefore, it is only necessary to find the values of r,(n) for n > 0. For n > 0, we have

re(n) = E dfutk)a"HFuin + k)= o” E a = l————;a" n>0
—a
k=—20 k=0

Using the symmetry of r(n), we have, forn < 0,

rn) = ——a™" n=<0

| —a?
Combining these two results together, we finally have

In|

rv(n) =

| —a?

Difference Equations

1.37 Consider a system described by the difference equation
y(n)=yn—1)— y(n —2)+0.5x(n) + 0.5x(n — 1)
Find the response of this system to the input
x(n) = (0.5)"u(n)
with initial conditions y(—1) = 0.75 and y(—2) = 0.25.

The first step in solving this difference equation is to find the particular solution. With x(n) = (0.5)"u(n), we assume
a solution of the form

yp(n) =C(0.5)" n=0

Substituting this solution into the difference equation, we have

C1(0.5)" = C1(0.5)"" — C(0.5)"72 4+ 0.5(0.5)" + 0.5(0.5)""" n>0
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Dividing by (0.5)",
C,=2C,—4C,+05+1

which gives

The next step is to find the homogeneous solution. The characteristic equation is
Z2—z41=0
which has roots
=31 % jV3) ="
Therefore, the form of the homogeneous solution is
yu(n) = Al 4 Ay imn 3
and the total solution becomes
y(n) = (0.5 + A1/ + Aye™™? >0 (1.25)

The constants A; and A; must now be found so that the total solution satisfies the given initial conditions, y(—1) =
0.75 and y(—2) = 0.25. Because the solution given in Eq. (/.25) is only applicable for n > 0, we must derive an
equivalent set of initial conditions for y(0) and y(l). Evaluating the difference equation forn = 0 and n = 1, we
have

¥(0) = y(=1) = y(=2) + 0.5x(0) + 0.5x(—=1)=0.75-0.25+ 05 =1
and
y()=y0) —y(=1)+05x(1)+0.5x(0) =1 -0.754+0254+05=1
Now, substituting these derived initial conditions into Eq. (1.25), we have
¥y0)=05+A+A =1
y(1) =025+ Aje’™? + Are " = 1

Writing this pair of equations in the two unknowns A; and A; in matrix form,

1 1 Al _[os
™13 e=in3 | Ay | T | 0.75

[Al]_jﬁ e =3
Ay 3| —Leinn 42

Substituting into Eq. (/.25) and simplifying, we find, after a bit of algebra,

V3 nm 23 T
_ n+1 Y - eV G _ s
y(n) =(0.5)""" + 5 sm( 3) 5 sm((n 1)3)

and solving, we find

An important observation to make about this solution is that, because the difference equation has real coefficients,
the roots of the characteristic polynomial are in complex-conjugate pairs. This ensures that the unit sample response
is real. With a real-valued input x(n), the response must be real and, therefore, it follows that A, will be the complex
conjugate of A:

Ay = A}
A second-order recursive system is described by the LCCDE

y(n) = 3y(n — 1) — 1y(n —2) + x(n) — x(n — 1)

(a) Find the unit sample response 4(n) of this system.

(b) Find the system’s response to the input x(n) = u(n) — u(n — 10) with zero initial conditions.
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(c) Find the system’s response to the input x(n) = (%)"u(n) with zero initial conditions.

(@)

(b)

To find the unit sample response, we must solve the difference equation with x(n)=45(n) and initial rest
conditions. The characteristic equation is

Therefore, the homogeneous solution is
wm = a4 +A(L) nz0 (1.26)

Because the particular solution is zero when the system input is a unit sample, Eq. (/.26) represents the total
solution.

To find the constants A, and A,, we must derive the initial conditions at » = 0 and n = 1. With initial rest
conditions, y(—1) = v(—=2) = 0, it follows that

y(0) = 3y(=1) = 1y(=2) + x(0) = x(=1) = |
Y= 2y0) = Iy +x(D) —x(0) = — 1 = -

N

We may now write two equations in the two unknowns A, and A, by evaluating Eq. (/.26)atn = 0and n = 1
as follows:

=A+ A
1A+ 14,

Solving for A, and A,, we find

Thus,
ym=-2(3) +3()"  n=0
and the unit sample response is

hom = [~2(3)" +3(5)" Juem)

To find the response of the system to x(n) = u(n) — u(n — 10), we may proceed in one of two ways. First, we
may perform the convolution of 4 (n) with x(n):
o0 9
y(n) = x(n) * hn) = Z x(h(n — k) = Zh(n —k)
k=0

k=—00

Alternatively, noting that the input is a sum of two steps, we may find the step response of the system, s(n), and
then using linearity, write the response as

y(n) = s(n) —s(n — 10)

Using this approach, we see from part (a) that the step response for n > 0 is

H n ' '
stn)=hmyxumy =Y hky=Y [-2(3) +3(3)] n=0
k=0

k=0

Evaluating the sums using the geometric series, we find

1— (L n+1 1— (1 n+l . n
s(m) = [—2 ](_2), +3 1(—4)1 ]u(n)= [2()" = (5)"Juem
2 N 4

Thus, the desired solution is

) = s = st = 10) = [2(3)" = (5)Tum = [2(2)"" = (3)"Jutu — 10



46

1.39

SIGNALS AND SYSTEMS [CHAP. 1

(¢) With x{(n) = (%)"zt(n), note that x(») has the same form as one of the terms in the homogeneous solution.
Therefore, the particular solution will not be of the form y,(n) = C(%)" as indicated in Table 1-2. If we were
to substitute this particular solution into the difference equation, we would find that no value of C would work.
As is the case when a root of the characteristic equation is of second order, the particular solution has the form

yp(my=Cn(3)"

Substituting this into the difference equation, we have

cn(})" =3cm- D) —tcm -3+ (1) - ()"
Dividing through by (1)", we have
Cn=3Cn—-1—-3Cn—-2)—1
Solving for C, we find that C = —2. Thus, the total solution is
v ==2n(3)"+ 4 (1) + 4(3)" nz0 (1.27)

We now must solve for the constants A, and A,. As we did in part (), with zero initial conditions we find that
y(0) = 1 and y(1) = % Therefore, evaluating Eq. (/.27) at n = 0 and n = 1, we obtain the following two
equations in the two unknowns A, and A;:

= A+ A,
=23+ e i

PN

Solving for A, and A,, we find that A, = 4 and A, = 3. Thus, the total solution becomes

v = [=2n(3)" +4(3)" = 3(3) " Jutw)

A $100,000 mortgage is to be paid off in equal monthly payments of d dollars. Interest, compounded
monthly, is charged at the rate of 10 percent per annum on the unpaid balance [e.g., after the first month
the total debt equals ($100,000 + %MO0.000)]. Determine the amount of the payment, d, so that the
mortgage is paid off in 30 years, and find the total amount of payments that are made over the 30-year
period.

The total unpaid balance at the end of the nth month, in the absence of any additional loans or payments, is equal
to the unpaid balance in the previous month plus the interest charged on the unpaid balance for the previous month.
Therefore, with y(n) the balance at the end of the #nth month we have

y(n)y=yn -1+ Byn—1)

where 8 = % is the interest charged on the unpaid balance. In addition, the balance must be adjusted by the net
amount of money leaving the bank into your pocket, which is simply the amount borrowed in the nth month minus

the amount paid to the bank in the nth month. Thus
yn)y=y(n — 1+ By(n — 1) + xp(n) — xp(n)

where x;(n) is the amount borrowed in the nth month and x,(n) is the amount paid in the nth month. Combining
terms, we have
y(n) —vy(r — 1) = xp(n) — x,(n) = x(n)

wherev=1+8=1+ %, and x(n) is the net amount of money in the nth month that leaves the bank. Because
a principal of p dollars is borrowed during month zero, and payments of d dollars begin with month 1, the driving
Sfunction, x(n), is

x(n) = xp(n) — x,(n) = pd(n) — du(n — 1)

and the difference equation for y(n) becomes

y(n) —vy(n — 1) = pd(n) —du(n — 1)
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Because we are assuming zero initial conditions, y(—1) = 0, and because the input consists of a linear combination
of a scaled unit sample and a scaled delayed step, the solution to the difference equation is simply

y(n) = ph(n) +ds(n — 1)

where A(n) and s(n) are the unit sample and unit step response, respectively. To find the unit sample response, we
write the difference equation in the form

y(n) =vyn —1)+8(n)
The characteristic equation for this difference equation is
z-v=20

and the homogeneous solution is
y(n) = Av" n>0

Because the input x(n) = 8(n) is equal to zero for n > 0, the particular solution is zero (all that the unit sample does
is set the initial condition at » = 0). Evaluating the difference equation at n = 0, we have

yO) =vy(=DH+1=1
Therefore, it follows that A = 1 in the homogeneous solution, and that the unit sample response is
h(n) = v"u(n)

The step response may now be found by convolving A(n) with u(n):

n n 1 — n+1
s(n)=h(n)*u(n)=Zh(k):ka=—U n>0
k=0 =0 I—w
Thus, the total solution is
y(n) = ph(n)+ds(n — 1) = pv"u(n) ~ d I“ utn — 1)

—V

We now want to find the value of d so that after 360 equal monthly payments the mortgage is paid off. In other
words, we want to find d such that

| — 360

y(360) = pv*®* — ¢ |
—V

lTlV[p(l — o — (1 =¥ =0

Solving for d, we have
pQ — ”)vzm

d =

T — p360

With v = 121 and p = 100,000, we have
= 877.57

The total payment to the bank after 30 years is

C = (877.57)(360) = 315,925.20

Every second, each « particle within a reactor splits into eight 8 particles and each 8 particle splits into
an ¢ particle and two 8 particles. Schematically,

o —> 88 B— a+28
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Given that there is a single « particle in the reactor at time n = 0, find an expression for the total number
of particles within the reactor at time 7.

Let w(n) and B(n) be the number of « particles and 8 particles within the reactor at time n. The behavior within the
reactor may be described by the following pair of coupled difference equations:

aln+1) = Bn)
Bn+ 1) = Ba(n) + 2B(n)
Before we can solve these difference equations, we must uncouple them. Therefore, let us derive a single difference

equation for B(n). From the first equation we see that a(n) = B(n — 1). Substituting this relation into the second
difference equation, we have

B(n+1)=8B(n—1)+2B(n)
or, equivalently,
B(n) =2p(n — 1) +8B(n ~2)
The characteristic equation for this difference equation is
P —22-8=0z-Hz+2)=0
which gives the following homogeneous solution
B(n) = A(4)" + Ay(=2)

Similarly, because a(n) = B(n — 1), the solution for «(n) is

Ay Az
=4 2y
a(n) 7 5 (—=2)
With the initial conditions «(0) = | and B(0) = 0, we may solve for A, and A; as follows:
A A
0 = — - — = ]
0 =5~

BO)=A +A,=0

Therefore, A =1} Ay =—

BSIFSN

and the solutions for «(n) and B(n) are

any={@"+3(=2 n=0
Bny =34 —3(=2" n=0

Because we are interested in the total number of particles within the reactor at time n, with

y(n) = a(n) + B(n)

we have yim) = 354" + (=21 n=0

Supplementary Problems

Discrete-Time Signals

1.41

Find the period N of the sequence

v(n) = (fﬁ) 2nrr) . (mr) . (nm
x(n) = cos 2 COS(F + sin 5N sm(—zl—)
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1.42  The input to a linear shift-invariant system is periodic with period N.
(a) Show that the output of the system is also periodic with period N.
(b) If the system is linear but shift-varying, is the output guaranteed to be periodic?

(c) If the system is nonlinear but shift-invariant, is the output guaranteed to be periodic?
143 Ifx(n) =0 forn < 0, and the odd part is x,(n) = n(0.5)""!, find x(n) given that x(0) = 1.
1.44  Find the conjugate symmetric part of the sequence
x(n) = (% + j%)"u(n)
145  If x(n) is odd, what is y(n) = x%(n)?

146 If x(n) = 0 forn < O, P, is the power in the even part of x(n), and P, is the power in the odd part, which of the
following statements are true?

(@ P.zP,
o P,=P
(¢) P.=P,

(d) None of the above are true.

147 Express the sequence
—1)" -2<n<?2
x(n) = [( ) "

0 else

as a sum of scaled and shifted unit steps.

1.48  Synthesize the triangular pulse

x(n)

6

4

2

n
-2 -1 12 3 4 5 6 7 8
as a sum of scaled and shifted pulses,
) 1 0<n<3
n)=
P 0 else

Discrete-Time Systems

1.49  Listed below are several systems that relate the input x(n) to the output y(n). For each, determine whether the
system is linear or nonlinear, shift-invariant or shift-varying, stable or unstable, causal or noncausal, and invertible
or noninvertible.

(@) y(n) =x(n)+ x(—n)

B yn) =Y x(k)
k=0

n+ng

© ym= Y xk

k=n—ng
@) y(n) =log{x(n)}
(e) y(n) = median{x(n — 1), x(n), x(n + 1)}
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1.52
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Given below are the unit sample responses of several linear shift-invariant systems. For each system, determine the
conditions on the parameter a in order for the system to be stable.

(a) h(n) =a"u(—n)
(b) h(n) =a"{u(ny — u(n — 100)}
() h(n)=a"

[s it true that all memoryless systems are shift-invariant?

Consider the linear shift-invariant system described by the first-order linear constant coefficient difference equation

y(ny=ayn — 1)+ x(n)
Determine the conditions (if any) for which this system is stable.

Suppose that two systems, Sy and S,, are connected in parallel.

(a) If both S; and S; are linear, shift-invariant, stable. and causal, will the parallel connection always be linear,
shift-invariant, stable, and causal?

(b) If both S| and S, are nonlinear, will the parallel connection necessarily be nonlinear?

(¢) If both S, and S, are shift-varying, will the parallel connection necessarily be shift-varying?

Convolution

1.54

1.55

1.56

1.57

1.58

Find the convolution of the two sequences
x(n) = 8(n —2)—28(n —4)+ 38(n — 6)
h(n) = 28(n 4 3) + 8(n) 4 28(n — 2) 4+ 8(n — 3)
The unit sample response of a linear shift-invariant system is
h(n) =38(n —3)+0.58(n —4) + 0.26(n —5)+ 0.76(n — 6) — 0.85(n — 7)

Find the response of this system to the input x(n) = u(n — ).

A linear shift-invariant system has a unit sample response
hn) = u(—n)
Find the output if the input is
x(m) = (1) 'um

The step response of a system is defined as the response of the system to a unit step u(n).

(a) Lets(n)be the step response of a linear shift-invariant system. Express s(n) in terms of the unit sample response
h(n), and find s(n) when A(n) = u(n) — u(n — 6).

(b) Derive an expression for A(n) in terms of s(n) and find the unit sample response for a system whose step
response is

s(n) = (—=0.5)"u(n)

The unit sample response of a linear shift-invariant system is shown below.
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1.59

1.60

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

1.69

1.70

(a) Find the response of the system to the input u(n — 4).
(b) Repeat for x(n) = (—1)"u(n).

If x(n) = (%)”u(n — 2)and h(n) = 2"u(—n — 5), find the convolution y(n) = x(n) * h(n).

Given three sequences, a(n), g(n), and r(n), express g(n) in terms of r(n) if
gm)= Y hn+bh(S—k  rm= Y h(n—khk)
k=—o0 k=-00
Let i(n) = a"u(n) and x(n) = b"u(n). Find the convolution y(n) = x(n) * h(n) assuming that a # b.

If x(n) = a"u(n), find the convolution y(n) = x(n) * x(n).

The input to a linear shift-invariant system is the unit step, x(n) = u(n), and the response is y(n) = 8(n). Find the
unit sample response of this system.

If h(n) = Ad(n)+( % )"u(n) is the unit sample response of a linear shift-invariant system, and s(n) is the step response
(the response of the system to a unit step), find the value of the constant A so that lim,_. o s(n) = 0.

The unit sample response of a linear shift-invariant system is
h(n) = (%)" u(n)
Find the response of the system to the complex exponential x(n) = exp(jnm/4).
Evaluate the convolution of the sequence x(n) = n(%)"cos(nn) with the unit step, h(n) = u(n).

Let
n(0.5)" 0<n<5

x(n) = 1 (0.25)"

<0
n?

and h(n) = e/ T"u(—n). If y(n) = x(n) * h(n), what is the numerical value of y(—2)?
Given
0<n<5

6<n<10

n
3 n
x(n)=1{,_2
5
0

otherwise

and A(n) = 8(n — 2) + 8(n — 3) + 8(n — 4), at what value of n will the convolution y(n) = x(n) * h(n) attain its
maximum value, and what is this maximum value?

A linear system has a response A, (n) = §(2n — k) to the unit sample 8(n — k). Find the response of the system to
the input x(n) = u(n).

Consider the interconnection of three linear shift-invariant systems shown in the figure below.

£ ha(n)
Y
+
x(n) ——  hi(n) D——
+
A
2 h3(n)
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If hy(n) = u(n — 2), hy(n) = nu(n) and h3(n) = 8(n — 2), find the unit sample response of the overall system.

Difference Equations

1.71

1.72

1.73

1.74

1.75

1.76

1.77

141

1.42

143

Consider the linear shift-invariant system described by the LCCDE
y(n) = —1y(n — 1)+ 2x(n)
Find the response of this system to the input

2 n=20,2,4,6,...
x(n) = .
0 otherwise

Hint: Write x(n) as {1 + (—1)"} u(n) and use linearity.
Consider a system with input x(n) and output y(»n) that satisfies the difference equation
y(n) =ny(n — 1)+ x(n)

If x(n) = &(n), determine y(n) for all n.

A linear shift-invariant system is described by the LCCDE
y(n)—5y(n — 1)+ 6y(n —2)y=x(n-1)

Find the step response of the system (i.e., the response to the input x(n) = u(n)).

A system is characterized by the difference equation
y(n) —6y(n — 1) + 8y(n — 2) = 4x(n)

If the input is x(n) = 2u(n) — 3nu(n), find the response of the system assuming initial conditions of y(—1) = 2 and

Consider the system described by the difference equation
y(n) —y(n — 1)+ 025y(n — 2) = x(n) — 0.25x(n — 1)

(a) Find the unit sample response of the system.

(b) Find the response of the system to x(n) = (0.25)"u(n).

For a savings account that pays interest at the rate of | percent per month, if deposits are made on the first of each
month at the rate of $50 per month, how much money will there be in the account at the end of 1 year?

A savings account pays interest at the rate of 1 percent per month. With an initial deposit of $50, how much will
there be in the account after 10 years?

Answers to Supplementary Problems

N = 120.

(@) If x(n) = x(n + N), by shift-invariance, y(n) = y(n + N). Therefore, y(n) is periodic with period N.
(b) No. (¢) Yes.

x(n) = 8(n)+ 2n(0.5)"u(n — 1).
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x.(n) = %(%?)ln\ef’”’/“ + 38(n)

Even.

(a) is true.

x(n) = u(n 4+ 2) = 2u(n + 1)+ 2u(n) — 2u(n — 1)+ 2u(n — 2) — u(n — 3).

x(n)=2pn — 1)+ 2pn —2)+2pn — 3) —2p(n — 4).

(a) Linear, shift-varying, stable, noncausal, noninvertible. (b) Linear, shift-varying, unstable, noncausal,
invertible. (¢) Linear, shift-invariant, stable, noncausal, invertible. (d) Nonlinear, shift-invariant, stable, causal,
invertible. (¢) Nonlinear, shift-invariant, stable, noncausal, noninvertible.

(a) la] > 1. (b) Any finite a. (¢) la| < 1.

No. Consider the system y(n) = x(n)cos(nm/2).

la} < 1.

(a) Yes. (b) No. (¢) No.

The sequence values, beginning at index n = —1, are y(n) = {2,0, -4, 1,6,0, 1, —1, =2, 6, 3}.

y(n) =38(n —4) + 3.58(n — 5) +3.78(n — 6) +4.48(n — 7) + 3.6u(n — 8).

y00) = 2u(on = 1)+ (1) utn)

(a) s(n) = Z h(k). With h(n) = u(n) — u(n — 6) the step response is

k=—00

0 n<0
s(ny=g(n+1) 0<n<5
6 6<n

(b) h(n) =s(n) —s(n —1). If s(n) = (—0.5)"u(n), then h(n) = 8(n) + 3(—0.5)"u(n — 1).

(@) y(n) =38(n —2)+28(n —3)—28(n —5)—8(n —06).
by y(n)=8(n+2)—28n)+8n-—2).

vy = £ () P utn +2)+ @y ut—n - 3.

g(n)=r(n-+5).

n41 _an+l

y(n) = u(n).

y(n)y = (n+ 1)ya"u(n).
h(n) = 8(n) — 8(n —1).
A=-3.

— ] jnm/4
y(n) = 1—§e-/‘"/4e .
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y(n) = f5[¢4n +3)=3)" = 3]u(n).
=2 = -4

max{y(n)} = £, which occurs at index n = 8.

y(n) = un).

y(n) =u(n —4) + 3(n — 2)(n = Du(n —2).

ymy = [4=1) + % = 4(=1) " Jum).

y(n) = n! u(n).

vy =3+ (3)3) — 221 ]u(n).

y(n) = [214" — 11— 4n + 12Q2)" |u(n).

@ hmy=[$n+1](3)"un). &) yn) = (n + (1) un).
$690.46.

$165.02.

[CHAP. 1



Chapter 2

Fourier Analysis

2.1 INTRODUCTION

The Fourier representation of signals plays an extremely important role in both continuous-time and discrete-time
signal processing. It provides a method for mapping signals into another “domain” in which to manipulate them.
What makes the Fourier representation particularly useful is the property that the convolution operation is mapped
to multiplication. In addition, the Fourier transform provides a different way to interpret signals and systems.
In this chapter we will develop the discrete-time Fourier transform (i.e., a Fourier transform for discrete-time
signals). We will show how complex exponentials are eigenfunctions of linear shift-invariant (LSI) systems
and how this property leads to the notion of a frequency response representation of LSI systems. Finally, we
will explore how the discrete-time Fourier transform may be used to solve linear constant-coefficient difference
equations and perform convolutions.

2.2 FREQUENCY RESPONSE

Eigenfunctions of linear shift-invariant systems are sequences that, when input to the system, pass through with
only a change in (complex) amplitude. That is to say, if the input is x(n), the output is y(n) = Ax(n), where A,
the eigenvalue, generally depends on the input x(n).

x(n) y(n) = Ax(n)
_ h(n) ——
Signals of the form
x(n) = e/ —00 < n <00

where w is a constant, are eigenfunctions of LSI systems. This may be shown from the convolution sum:

o0

y(n) = h(n)x x(n) =Y h(k)x(n — k)

k=—00

= Y ke R = e N pkye =t

k=—00 k=—oo
— H(ejcu)ejnw
Thus, the eigenvalue, which we denote by H (e/®), is
H(e™)= " h(kje /** 2.0

k=—00

Note that H(e/®) is, in general, complex-valued and depends on the frequency w of the complex exponential.
Thus, it may be written in terms of its real and imaginary parts,

H(e!®)y = Hy(e!®) + jH;(e/*)
or in terms of its magnitude and phase,
H(e'”) = |H ()] #
55
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where [H(e/)> = H(e!*)H*(e/?) = H}(e/) + H}(e/®)
L Hi@?)
and ¢p(w) = tan —HR(e/"’)

Graphical representations of the frequency response are of great value in the analysis of LSI systems, and
plots of the magnitude and phase are commonly used. However, another useful graphical representation is a plot
of 20 log| H (e/®)| versus w. The units on the log magnitude scale are decibels (abbreviated dB). Thus, 0 dB corre-
sponds to a value of | H(e/®)| = 1,20 dB is equivalent to | H (¢/“)| = 10, —20 dB is equivalent to | H (¢/*)| = 0.1,
and so on. It is also useful to note that 6 dB corresponds approximately to | H (e/“)| = 2, and —6 dB is approxi-
mately |H (¢/)| = 0.5. One of the advantages of a log magnitude plot is that, because the logarithm expands the
scale for small values of | H (e/¢)[, it is useful in displaying the fine detail of the frequency response near zero.

A graphical representation that is often used instead of the phase is the group delay, which is defined as
follows:

dop(w)

Thw) = — do

In evaluating the group delay, the phase is taken to be a continuous and differentiable function of @ by adding
integer multiples of 7 to the principal value of the phase (this is referred to as unwrapping the phase).

The function H(e/“) is very useful and important in the characterization of LSI systems and is called
the frequency response. The frequency response defines how a complex exponential is changed in (complex)
amplitude when it is filtered by the system. The frequency response is particularly useful if we are able to

decompose an input signal into a sum of complex exponentials. For example, the response of an LSI system to
an input of the form

N .
x(n) = Zake’"“’"
=1

N
will be y() =Y oy H(e/*)elm
k=1

where H (e/“*) is the frequency response of the system evaluated at frequency wy.

EXAMPLE 2.2.1 Let x(n) = cos(nwy) be the input to a linear shift-invariant system with a real-valued unit sample
response A2(n). If x(n) is decomposed into a sum of two complex exponentials,

x(n) = %ej"wo + %e—jnwo
the response of the system may be written as
y(n) = FH(e0)e/"™ 4 L H(e™/0)e™ /"0
Because #(n) is real-valued, H(e/?) is conjugate symmetric:

H(e ™) = H*(e’?)

Therefore, y(n) = JH(e/*0)e!"™ + LH*(e/0)e /"

and it follows that
y(n) = Re{H(e/™)e/"} = |H (/)| cos(nwo + ¢ (wp))
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Periodicity

The frequency response is a complex-valued function of w and is periodic with a period 27. This is in sharp
contrast with the frequency response of a linear time-invariant continuous-time system, which has a frequency
response that is not periodic, in general. The reason for this periodicity stems from the fact that a discrete-time
complex exponential of frequency wy is the same as a complex exponential of frequency wg + 2 ; that is,

x(n) = e/nwn — pinlwot2m)

Therefore, if the input to a linear shift-invariant system is x(n) = e/ the response must be the same as the
response to the signal x(n) = e/"@+*2™)_ This, in turn, requires that

H(ej‘”“) =H (ej(wo+27r))

Symmetry

If h(n) is real-valued, the frequency response is a conjugate symmetric function of frequency:
H(e™®) = H*(e/?)

Conjugate symmetry of H(e/®) implies that the real part is an even function of w,
Hg(e’®) = Hg(e™®)

and that the imaginary part is odd, , ,
H(e!*) = —H(e™®)

Conjugate symmetry also implies that the magnitude is even,
|H (/) = |H(e /)|
and that the phase and group delay are odd,
On(w) = —p(—w) h(w) = —T(—w)
EXAMPLE 2.2.2 Consider the LSI system with unit sample response
h(n) = «"u(n)

where « is a real number with |a| < 1. The frequency response is

o0 =
H(e’?) = Z h(n)e /" = Za"e""“’
n=—00 n=0
& , ]
= Z(ae‘f‘”)" = —
= 1—ae/®

The squared magnitude of the frequency response is

1 1 1
@19 1—wei®  1+a?-2acosw

|H(e™)* = H(e'*)H" (/) = I

and the phase is

o Hie) | —asinw
tan

(@) = tan Hg(e/®) l —acosw

Finally, the group delay is found by differentiating the phase. The result is

a’? — acosw

(@) = T 1+a?—2acosw
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Inverting the Frequency Response

Given the frequency response of a linear shift-invariant system,
H(e™)y= Y h(me "™
n=—oc

the unit sample response may be recovered by integration:

h(n) = .2'; f H(e)e! " dw (2.2)

T

The integral may be taken over any period of length 2.
EXAMPLE 2.2.3 For a system with a frequency response given by

_ Il lw] < o,
H(e/?) =

0 w < |w <7

(this system is referred to as an ideal low-pass filter), the unit sample response is

1 [ . 1 ; ; sin
h(n) = —/ e"dw = —— /" — 7] = S
27 J_p, 2jmn n

Note that this system is noncausal (it is also unstable) and, therefore, unrealizable.

2.3 FILTERS

The term digital filter, or simply filter, is often used to refer to a discrete-time system. A digital filter is defined
by J. E. Kaiser! as a “. .. computational process or algorithm by which a sampled signal or sequence of numbers
(acting as the input) is transformed into a second sequence of numbers termed the output signal. The computa-
tional process may be that of lowpass filtering (smoothing), bandpass filtering, interpolation, the generation of
derivatives, etc.”

Filters may be characterized in terms of their system properties, such as linearity, shift-invariance, causality,
stability, etc., and they may be classified in terms of the form of their frequency response. Some of these
classifications are described below.

Linear Phase

A linear shift-invariant system is said to have linear phase if its frequency response is of the form
H(e’”) = A(e/*)e /™
where « is a real number and A(e’/®) is a real-valued function of w. Note that the phase of H (e/“) is

—aw when A(e/®) > 0
—aw+ 1 when A(e/®) < 0

On(w) =

Similarly, a filter is said to have generalized linear phase if the frequency response has the form
H(ej“’) - A(ejw)e-j(aw~ﬁ)

Thus, filters with linear phase or generalized linear phase have a constant group delay.

1System Analysis by Digital Computer, F. F. Kuo and J. F. Kaiser, Eds., John Wiley and Sons, New York, 1966.
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Allpass

A system is said to be allpass filter if the frequency response magnitude is constant:
|H(e) =¢
An example of an allpass filter is the system that has a frequency response

) Jjo _
Hel®) = e o

1 —qeJo
where « is any real number with [@| < [. The unit sample response of this allpass filter is

h(n) = —ad(n)+ (1 —a®a" 'un — 1)

Frequency Selective Filters

Many of the filters that are important in applications have piecewise constant frequency response magnitudes.
These include the low-pass, high-pass, bandpass, and bandstop filters that are illustrated in Fig. 2-1. The intervals
over which the frequency response magnitude is equal to 1 are called the passbands, and the intervals over which
it is equal to O are called the stopbands. The frequencies that mark the edges of the passbands and stopbands are
the cutoff frequencies.

A HE) |H (e/))
1 —_— 1
w w
- —we we b 4 - :JT —w, I W, 71 g
(a) Ideal low-pass filter. (b) Ideal high-pass filter.
|H (e/)] A 1HE®)
1 -1
1) 1)
jﬂ —-w -] I w) w) b i :T —w2  —wy ) w2 rr g
(c) Ideal bandpass filter. (d) 1deal bandstop filter.

Fig. 2-1. Ideal filters.

2.4 INTERCONNECTION OF SYSTEMS

Filters are often interconnected to create systems that have desirable properties. Two common types of connec-
tions are series (cascade) and parallel. A cascade of two linear shift-invariant systems is shown in the figure below.

x(n) y(n)
— hi(n) ha(n) -

A

A cascade is equivalent to a single linear shift-invariant system with a unit sample response

h(n) = hy(n) x ha(n)
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and a frequency response

H(e®) = Hi(e/*)Ha(e®)

[CHAP. 2

Note that the log magnitude of the cascade is the sum of the log magnitudes of the individual systems,

20log|H (e’®)| = 20log|H;(e’*)| + 20log| Ha(e’®)|

and the phase and group delay are additive,

H(w) = d1(w) + $2(w)

T(w) = 11(w) + 12(w)

A parallel connection of two linear shift-invariant systems is shown in the figure below.

hi(n)

x(n)

ha(n)

Y

+  y)

Y

A parallel network is equivalent to a single linear shift-invariant system with a unit sample response

h(n) = hi(n) + ha(n)

Therefore, the frequency response of the parallel network is

H(e’®) = Hi(e!®) + Hy(e')

EXAMPLE 2.4.1 The cascade of a low-pass filter with a high-pass filter may be used to implement a bandpass filter. For
example, the ideal bandpass filter shown in Fig. 2-1(c) may be realized by cascading a low-pass filter with a cutoff frequency w,
with a high-pass filter that has a cutoff frequency ;. Similarly, the bandstop filter shown in Fig. 2-1(d) may be realized with a
parallel connection of a low-pass filter with cutoff frequency w, and a high-pass filter with a cutoff frequency w,, withw, > w,.

Another interconnection of systems that is commonly found in control applications is the feedback network

shown in the figure below.

x(n) w(n)

A 4
D

This network may be analyzed as follows. With

w(n) = x(n) + g(n) * y(n)

and y(n) = f(n)* w(n)

f(n)

y(n)

8(n)

\ 4
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we may use the Fourier analysis techniques described in the following section to show that the frequency response
of this system, if it exists, is?

F(e/?)
| — F(e/®)G(el®)

H(e?) =

2.5 THE DISCRETE-TIME FOURIER TRANSFORM

The frequency response of a linear shift-invariant system is found by multiplying 4(n) by a complex exponential,
e~ and summing over n. The discrete-time Fourier transform (DTFT) of a sequence, x(»), is defined in the
same way,

o0

X(e/®) = Z x(n)e™ /" (2.3)

n=—0oo

Thus, the frequency response of a linear shift-invariant system, H (¢/®), is the DTFT of the unit sample response,
h(n). In order for the DTFT of a sequence to exist, the summation in Eq. (2.3) must converge. This, in turn,
requires that x(n) be absolutely summable:

> lxmi=S <o

n=—0o

EXAMPLE 2.5.1 The DTFT of the sequence

xi(n) = a"u(n) lo| <1
is X (e’?) = Za"e""“’ = Z(ae"“’)"
n=0 n=0
Using the geometric series, this sum is
: 1
X)) = ———
He’™) 1 —qe /@
provided |a| < 1. Similarly, for the sequence
x(n) = —a"u(—=n - 1) la) > 1
the DTFT is
. 0 . _l .
Xz(@"w) — Z xz(n)e—/na) - _ Z QeI
n=-0o n=-00

Changing the limits on the sum, we have

o] oo
Xz(ejw) - _ Za—nejnw - _ Z(a—lejw)n +1
n=| n=0
If || > 1, this sum is
. 1 1
Xy(*) = ————— + 1=

| —a-leiw | —ae—iv

Therefore, x,(n) = a"u(n) and x,(n) = —a"u(—n — 1) both have the same DTFT.

2It is possible that g(n) will make the system unstable, in which case the DTFT of h(n) will not exist. Feedback systems are typically
analyzed using z-transforms.
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Given X (e/?), the sequence x(n) may be recovered using the inverse DTFT,

x(n) = 1 f X (/e dw 2.4
27 J .

The inverse DTFT may be viewed as a decomposition of x(#) into a linear combination of all complex exponentials
that have frequencies in the range —7 < w < m. Table 2-1 contains a list of some useful DTFT pairs.

Table 2-1 Some Common DTFT Pairs

Sequence Discrete-Time Fourier Transform
8(n) |
&(n — ng) e Jnow
1 21 é(w)
el 218 (w — wy)

1
a‘u(n), lal <1

1 —ae-Je
a*u(—n—1), lal>1 !
’ | —qgeJe
1
(n+Da"un), lal <1 (I —ae oy
COS nwy wé(w + wy) + 18 (w — wo)

EXAMPLE 2.5.2 Suppose X(e/*) consists of an impulse at frequency @ = wy:
X (') = 8w — wp)
Using the inverse DTFT, we have
x(n) = L /" X((,jw)ejnwda) — Lejnwo
2n J_ 2n

n

Note that although x(n) is not absolutely summable, by allowing the DTFT to contain impulses, we may consider the DTFT
of sequences that contain complex exponentials. As another example, if

X (') = n8(w — wp) + mé(w + wy)

computing the inverse DTFT, we find A
x(n) = 3" 4 1e7" = cos(newy)

2.6 DTFT PROPERTIES

There are a number of properties of the DTFT that may be used to simplify the evaluation of the DTFT and its
inverse. Some of these properties are described below. A summary of the DTFT properties appears in Table 2-2.

Periodicity
The discrete-time Fourier transform is periodic in w with a period of 2r:
X(eja)) =X (ej(w+2ﬂ))
This property follows directly from the definition of the DTFT and the periodicity of the complex exponentials:

%0 00
X(el(a)+27l)) — Z x(n)e—jn(w+27r) — Z x(n)e‘j"‘”e‘fz”"
n=-—00 n=-00
00

= Z x(n)e " = X (e/?)

n=—0o0
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Table 2-2 Properties of the DTFT

Property Sequence Discrete-Time Fourier Transform
Linearity ax(n) + by(n) aX(e/*) + bY (e/)
Shift x(n — no) e~ inw X (eiw)
Time-reversal x(—n) X (e~ /w)
Modulation e x(n) X (e/(@=@0))
Convolution x(n) * y(n) X (e/9)Y (e/®)
Conjugation x*(n) X*(e 7?)
Derivative nx(n) X @)

pogn e
Multiplication x(n)y(n) 7 /” X (e/2)Y (e/@~Ndo

Note: Given the DTFTs X(e/“) and Y(e/®) of x(n) and y(n), this table lists the
DTFTs of sequences that are formed from x(n) and y(n).
Symmetry

The DTFT often has some symmetries that may be exploited to simplify the evaluation of the DTFT or the
inverse DTFT. These properties are listed in the table below.

x(n) X(e’)
Real and even Real and even
Real and odd Imaginary and odd
Imaginary and even Imaginary and even
Imaginary and odd Real and odd

Note that these properties may be combined. For example, if x(n) is conjugate symmetric, its real part is
even and its imaginary part is odd. Therefore, it follows that X (¢/*) is real-valued. Similarly, note that if x(n)
is real, the real part of X (e/“) is even and the imaginary part is odd. Thus, X (e/“) is conjugate symmetric.

Linearity

The discrete-time Fourier transform is a linear operator. That is to say, if X(e/%) is the DTFT of x;(n), and
X,(e/?) is the DTFT of xy(n),

axi(n) + bxa(n) €2 aX (/) + bX»(e7®)

Shifting Property

Shifting a sequence in time results in the multiplication of the DTFT by a complex exponential (linear phase
term):
DTFT

x(n — ng) &= 7™ X (/)
Time-Reversal

Time-reversing a sequence results in a frequency reversal of the DTFT:

x(=n) ZEL x(e7@)



64 FOURIER ANALYSIS [CHAP. 2

Modulation

Multiplying a sequence by a complex exponential results in a shift in frequency of the DTFT :
e/ x(n) E5 X (e/ =)
Thus, modulating a sequence by a cosine of frequency wy shifts the spectrum up and down in frequency by wy:
x(n) cos nawy 255 IX (e} + 1X (e/@Fem)
Convolution Theorem

Perhaps the most important result in linear systems theory is that convolution in the time domain is equivalent
to multiplication in the frequency domain. Specifically, this theorem says that the DTFT of a sequence that is
formed by convolving two sequences, x(n) and h(n), is the product of the DTFTs of x(n) and A(n):

h(n) % x(n) 2 H(e/*)X (/)

Multiplication (Periodic Convolution) Theorem

As with the time-shift and modulation properties, there is a dual to the convolution theorem that states that
multiplication in the time domain corresponds to (periodic) convolution in the frequency domain:

x(my(n) & % f XY (e/7")d6

Parseval’s Theorem
A corollary to the multiplication theorem is Parseval’s theorem, which is
oC l T )
Y kP =5 | IXE*)Pdo
n=—oc T J—n

Parseval’s theorem is referred to as the conservation of energy theorem, because it states that the DTFT operator
preserves energy when going from the time domain into the frequency domain.

2.7 APPLICATIONS

In this section, we present some applications of the DTFT in discrete-time signal analysis. These include finding
the frequency response of an LSI system that is described by a difference equation, performing convolutions,
solving difference equations that have zero initial conditions, and designing inverse systems.

2.7.1 LSI Systems and LCCDEs

An important subclass of LSI systems contains those whose input, x(n), and output, y(n), are related by a linear
constant coefficient difference equation (LCCDE):

k=1

P q
Yy ==Y alk)y(n — )+ Y _ bk)x(n — k) 2.5)
k=0

The linearity and shift properties of the DTFT may be used to express this difference equation in the frequency
domain as follows:

» q
Y(e'®) = =) alk)e™ Y () + Y blk)e X ()
P k=0
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p q
or Y(efw)[l + Za(k)e_ﬂ“"] =X(/*) Y bk)e™**
k=1 k=0

Therefore, the frequency response of this system is
q

> bkye ik

Y (e/®) k=0

X(ej®) 14 )
( 1+ Za(k)e_’k“’
k=1

H(e'?) = (2.6)

EXAMPLE 2.7.1 Consider the linear shift-invariant system characterized by the second-order linear constant coefficient
difference equation

y(n) = 1.3433y(n — 1) — 0.9025y(n — 2) + x(n) — 1.4142x(n — 1) + x(n — 2)

The frequency response may be found by inspection without solving the difference equation for 4(n) as follows:

1 — 1.4142¢7/% 4 e~

H(e/) = _ ,
(€)= 11 3433¢-7o 1 0.9025¢- 7%

Note that this problem may also be worked in the reverse direction. For example, given a frequency response function such as

14 e 20
—e /o 4 0.5¢"2

H(e/®) =
(e’®) 2
a difference equation may be easily found that will implement this system. First, dividing numerator and denominator by 2
and rewriting the frequency response as follows,

0.5+ 0.5¢"%
1 —0.5¢e7/® 4 0.25¢-2/®

H(el*) =
we see that a difference equation for this system is

y(n) =0.5y(n — 1) — 0.25y(n — 2) + 0.5x(n) + 0.5x(n — 2)

2.7.2 Performing Convolutions

Because the DTFT maps convolution in the time domain into multiplication in the frequency domain, the DTFT
provides an alternative to performing convolutions in the time domain. The following example illustrates the
procedure.

EXAMPLE 2.7.2 If the unit sample response of an LSI system is
h(n) = a"u(n)

let us find the response of the system to the input x(n) = B8"u(n), where la| < 1, |8] < 1, and « # B. Because the output of
the system is the convolution of x(n) with A(n),

y(n) = h(n) x x(n)

the DTFT of y(n) is
1 1
—ae /o | — BeJ

Y(e’?) = H(e'*)X () = 1
Therefore, all that is required is to find the inverse DTFT of ¥ (e/*). This may be done easily by expanding Y (¢/) as follows:

1 A B

joy — =
™) = (1 —ae o)1 — Be=i®) 1 —ae i@ + 1 — Be-Je
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where A and B are constants that are to be determined. Expressing the right-hand side of this expansion over a common
denominator,
1 _ (A+B)—(AB + Ba)e i
(1 —aemio)(1 - Be=/w) (1 —aeo)(1 — fe~i)

and equating coefficients, the constants A and B may be found by solving the pair of equations

A+ B =1
AB+Ba =0
The result is
o B
A= B =—
] ]
jor_ 0f@=B) B/~ B)
Therefore, Y (') = [—ae v 1—pein
and it follows that the inverse DTFT is
a n ﬂ n
y(n) = [a——ga P ,Bﬁ :Iu(n)

2.7.3 Solving Difference Equations

In Chap. 1 we looked at methods for solving difference equations in the “time domain.” The DTFT may be
used to solve difference equations in the “frequency domain” provided that the initial conditions are zero. The
procedure is simply to transform the difference equation into the frequency domain by taking the DTFT of each
term in the equation, solving for the desired term, and finding the inverse DTFT.

EXAMPLE 2.7.3 Let us solve the following LCCDE for y(n) assuming zero initial conditions,
y(n)y—0.25y(n — 1) = x(n) — x(n — 2)
for x(n) = 8(n). We begin by taking the DTFT of each term in the difference equation:
Y(e'?) — 0.25¢77°Y (e*) = X (/) — e7H X (/%)

Because the DTFT of x(n) is X(e/®) =1,

i 1 — e—ij 1 eA'ij
Y @ = " = N _—
) = 10257 = 1=025c%  1=025c 7
Using the DTFT pair
DTF 1
0.25)" _
02 = 025070

the inverse DTFT of ¥ (¢/“) may be easily found using the linearity and shift properties,

y(n) = (0.25)"u(n) — (0.25)" 2u(n — 2)

2.7.4 Inverse Systems

The inverse of a system with unit sample response 4(r) is a system that has a unit sample response g(r) such that

h(n) x g(n) = é(n)
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In terms of the frequency response, it is easy to see that, if the inverse of H (e/®) exists, it is equal to

1

G = Frermy

Care must be exercised, however, because not all systems are invertible or, if the inverse exists, it may be
noncausal. For example, the ideal low-pass filter in Example 2.2.3 does not have an inverse, and the inverse of
the system

H(e/®y=1~2e77?

: 1
is G = ——
@) 1 —2e-J@
which corresponds to a system that has a noncausal unit sample response

gn)y = —-2"u(—n-1)

EXAMPLE 2.7.4 If the frequency response of an LSI system is

" 1 < le—je
H(e™y= — 2
1+ je/e
the inverse system is
; 1 14 temiw
G(e’*) = = 2

H(e®) 1~ de-jo

which has a unit sample response
g(n) = (0.25)"u(n) + 0.5(0.25)"'u(n — 1)

Solved Problems

Frequency Response

21 Let h(n) be the unit sample response of an LSI system. Find the frequency response when
(@ h(n)=268(n)+68(n—1)+35(n—2)
®) hn) = (1) un - 2).

(a) This system has a unit sample response that is finite in length. Therefore, the frequency response is a polynomial
in e/, with the coefficients of the polynomial equal to the values of 4(n):

H(e/®) =1+ 6e7/% 4 3¢4

This may be shown more formally by writing

oc oC
H(el®) = Z h(n)e ™" = Z [8(n) + 68(n — 1) + 38(n — 2)]e =i
n=-—0c n=-—0o0
0 . ¥
Because Z 8(n — ng)e /" = g7/"0¥

then H(e’®) =14 6e7/9 + 372
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(b) For the second system, the frequency response is

H(ejw) — i h(n)e—jmu — i (%)nﬁ-ze‘jm‘)
n=2

n=-—00c

Changing the limits on the sum so that it begins with n = 0, we have

) = 32 (3) et = (3) e K (e

n=0

Using the geometric series, we find

HEe = (3) v

_,‘e—jw

2.2 An Lth-order moving average filter is a linear shift-invariant system that, for an input x(»), produces the
output

1| &L
y(n) = 1 ;x(n —k)

Find the frequency response of this system.

If the input to the moving average filter is x(n) = 8(n), the response, by definition, will be the unit sample response,
h(n). Therefore,

1 L
h(n) = 1 kga(n —k)

: 1 &
and H(e®)y = —— e—]kw
( L+14&
Using the geometric series, we have
1 ] — e~ /LADe

L+1 1—ee

H(e'?) =

Factoring out a term e ~/(“*9Y/2 from the numerator, and a term ¢ ~//2 from the denominator, we have

2 ej(L+l)w/2 _ e——j(L+l)m/2
2]

. 1 .
joy —JjL
He™) = L+1° ejwl2 — g=jel2

or He™) = 1 eijm/zsi“(L + Dw/2
L+1 sinw/2

2.3  The input to a linear shift-invariant system is

nw . (3nm 0w
x(n) = ZCOS(T) + 3sm(—4— + g)
Find the output if the unit sample response of the system is
sin[(n — 1) /2]

h(n) =2 Y

This problem may be solved using the eigenfunction property of LSI systems. Specifically, as we saw in Exam-
ple 2.2.1, if the input to an LSI system is x(n) = cos(nwy), the response will be

y(n) = |H(e"“°)| cos(nwy + @n(wo))
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Therefore, we need to find the frequency response of the system. In Example 2.2.3, it was shown that the unit sample
response of an ideal low-pass filter,

- ! lo| < o,
Hi(e’*) =
0 w. <\lwl <m
. sinnw,
1s hi(n) = .
n

Because A(n) = 2h,(n ~ 1) with w, = 7/2, an expression may be derived for H (¢/*) in terms of H,(e/*) as follows:

oC o
H(e™®y= Y h(me™™ = 3" 2h(n— e /™
=2 Z hy(n)e /rthe = gp=iw Z hy(n)e "¢ = 2e7IC H,(e/?)
b1
2e70* jw| < —
Therefore, H(e!®) = x 2
0 7 <|w|l<m

Because |H (¢'“)| = 0 at w = 37 /4, the sinusoid in x(n) is filtered out, and the output is simply

yn) = 2|H<ef'”/“>|cos(% +¢h(§))

= dcos( -+ 2 ) = dcos| (n — )
= 4 4 2 = 4cos|{n P

2.4  Find the magnitude, phase, and group delay of a system that has a unit sample response
h(n) = 6(n) —adn — 1)

where « is real.

The frequency response of this system is
HEey=1—-@e’ =1—acosw+ jasinw
Therefore, the magnitude squared is
[H(e/*)* = H(e/*)H"(e’?) = (1 —ae™ /) - (1 — @e’®) = 1 + o® — 2a cosw
The phase, on the other hand, is

_, Hi(e’®) B o sinw
1 _ |

= - = -
énl@) an Hg(e/®) an l —acosw

Finally, the group delay may be found by differentiating the phase (see Prob. 2.19). Alternatively, we may note that
because this system is the inverse of the one considered in Example 2.2.2, the phase and the group delay are simply
the negative of those found in the example. Therefore, we have

a? —acosw

T, -_——
w(@) I +a? —2acosw

2.5 A 90° phase shifter is a system with a frequency response

: —J O<w<nm
H(e'*) = :
J -T<w<0
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Note that the magnitude is constant for all , and the phase is —7/2 for 0 < w < 7 and 7 /2 for
—m < @ < (. Find the unit sample response of this system.

The unit sample response may be found by integration:

1 [ o 1 o 1 [
h(n) = I /:” H(e!)e!"dw = 7 /_” jel"dw — ﬂ,/(; je'"dw

0 n

! : 1
= [~ e~ —[e/" 1]

— g
0 2n 2mn

PIL

2nn

-

1 : 1
— (1= = —[1 - (=1)]
mn h

Therefore, we have

2
— n odd

h(n) = nmw
0 n even

which may also be expressed as

Filters

)
E sin“(nm/2) "0

himy=4{ = n
0 n=20

2.6  Let A(n) be the unit sample response of a low-pass filter with a cutoff frequency w..

(@)
)]

(@)

®

What type of filter has a unit sample response g(n) = (—1)"h(n)?
If a filter with a unit sample response £(n) is implemented with a difference equation of the form
P q
ym) =Y aly(n —k) + Y blk)x(n — k) 2.7
k=1 k=0

how should this difference equation be modified to implement the system that has a unit sample
response g(n) = (—1)"h(n)?

Given that g(n) = (—1)"h(n), the frequency response G (e’/®) is related to the frequency response of the low-pass
filter, H (¢/®), as follows:

G’ =

n

III Mg

gme™" = 3 " (=1)"h(nye ™"

h(n)e™ "o = g (ej(w—"))

g

n

—00

Therefore, G(e/) is formed by shifting H (¢/?) in frequency by 7. Thus, if the passband of the low-pass filter
is |w|] < ., the passband of G(e/“) will be 7 — w. < |w| < 7. As a result, it follows that g(n) is the unit
sample response of a high-pass filter.

If a filter with a unit sample response #(n) may be realized by the difference equation given in Eq. (2.7), the
frequency response of the filter is
q
bk)e= e
H(ej"’) = ——_k=0p
1 — Za(k)e’jk“’
k=1

Multiplying /(n) by (—1)" produces a system with a frequency response

9 .
Z b(k)e-Jk(a)—ﬂ)
k=0

[1
1~ Z a(k)e ike=m
k=1

G(e’) = H(e/™) =
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Because /4" = (—1)*,

q
Z(— DY b(k)e 1%
k=0

G(e'?) =

Jd
1— Z(—])"a(k)e‘f‘"“
k=1

and the difference equation becomes

P q
ym) =Y (= DFatyin — k) + Y (~DFbkox(n — k)

k=1 k=0

That is, the coefficients a(k) and b(k) for k odd are negated.
2.7 Let H(e’®) be the frequency response of an ideal low-pass filter with a cutoff frequency w, as shown in
the figure below.

4 [H@™)]

-7 —we W, b4

Assume that the phase is linear, ¢,(w) = —now. Determine whether or not it is possible to find an input
x(n) and a cutoff frequency w, < = that will produce the output

o[l n=01..20
Y =10 otherwise

If X (¢/“) is the DTFT of x(n), the output of the low-pass filter will have a DTFT
Y(e/) = H(e'*)X (e’®)
Therefore, Y (¢/) must be equal to zero for w. < |w| < 7. However, the DTFT of y(n) is
20 =2l jw
: I —e*Y
Y j{l) = *j"a) = -
(') ;e T

which is not zero for w, < |w| < m. Therefore, there is no value for w, < 7, and no input x(n) that will generate
the given output y(n).

2.8  Leth(n)betheunitsample response of an ideal low-pass filter with a cutoff frequency w,. = 7 /4. Shownin
the figure below is a linear shift-invariant system that is formed from a cascade of a low-pass filter and two
modulators. Find the frequency response of the overall system relating the input x(n) to the output y(n).

(= =1y

x(n) v(n) w(n) y(n)
h(n)

There are two ways that we may use to find the frequency response of this system. The first is to note that because
the input to the low-pass filter is (—1)"x(n), the output of the low-pass filter is

oo

w(n) = h(n) x [(—1)"x(n)] = Z A =1 x(n — k)

k=—o00
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Therefore. y)y = (=1"wm) = (1" > htk)=1)"Fx(n — k)
A=-n0

Bringing the term (—1)" inside the summation, and using the fact that (— 1'% = (= 1)*", we have

00

Y =Y A= D" (=D xin = k) = D (=D hKx(n = k) = [(=1)"h(m)] % x(n)

k=-—00 k=—o0c
Thus, the unit sample response of the overall system is (—1)"k(r), and the frequency response is

I T <ol <n
DTFT((—1)"h(n)} = H (/™) = 4

0 otherwise

Another way to determine the frequency response is to find the response of the system to a complex exponential,
x(n) = /™. Modulating by (—1)" = e~/"" produces the sequence

v(n) = (= 1y'eine = intw=—m
which is the input to the LSI system. Because v(n) is a complex exponential, the response of the system to v(n) is
w(n) = H(eﬂw—”))ejn((u—n)

Finally, with
y(n) = (—D)'w(n) = (—l)"H(ej(“’f”’)ej"‘“’f’” = H(ej“‘""))ej"“’

it follows that the frequency response of the overall system is H (e/“"‘”)) as we found before.

If A(n) is the unit sample response of an ideal low-pass filter with a cutoff frequency w, = 7/4, find the
frequency response of the filter that has a unit sample response g(n) = h(2n).

To find the frequency response of this system, we may work the problem in one of two ways. The first is to note that
because the unit sample response of an ideal low-pass filter with a cutoff frequency w, = 7 /4 is

sin(nm/4)
nm

h(n) =

sin(2nm /4) _ | sin(nm/2)
2nm T2 ni

then h(2n) =

which is the unit sample response of a low-pass filter with a magnitude of % and a cutoff frequency w = m/2. The
second way to work this problem is to find the frequency response of the .system that has a unit sample response
g(n) = h(2n), given that H (¢’*) is the frequency response of a system with a unit sample response #(n). Although
more difficult than the first approach. this will give a general expression for the frequency response G (¢/“) in terms
of H(e/*) that may be applied to any system. To find the frequency response, we must evaluate the sum

G(e!”) = Z h(2n)e i"®

Using the identity
a2 n even
I+ (=D —{0 n odd

we may write the frequency response as

[STEd

Z [1 + (_l)n]h(n)efjnm/Z

n=-—00

G(e®)

o0

0
=1 Z h(n)e—jrlw/2+% Z(_l)nh(n)e—jnw/Z

n=-—00 n=—0<
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In terms of H (¢/“), the first term may be written as

00
Y)Y h(mye ™ = LH(e™?)

n=-—00

whereas the second term is

(2] o0
13 (e = 4 Y h(n)e MR = LH (/M)

n=-—00 n=—00

Therefore, G(e/®) = %H(ej‘“/z) + %H(ej“"”’”/z)

With H (e/®) the frequency response of a low-pass filter with a cutoff frequency w, = 7 /4, this gives the same result
as before.

2.10 Consider the high-pass filter that has a cutoff frequency w. = 37 /4 as shown in the following figure:

H(e/®)

{a) Find the unit sample response, #(n).
(b) A new system is defined so that its unit sample response is %2;{(n) = h(2n). Sketch the frequency
response, H,(e/®), of this system.

(a) The unit sample response may be found two different ways. The first is to use the inverse DTFT formula and
perform the integration. The second approach is to use the modulation property and note that if

L4
) | for |w| < —
Hyy(e) = lo < 7
0 otherwise

H (e’“) may be written as '
H(e’”) = Hjp(e!“™)

Therefore, it follows from the modulation property that

h(n) = /" hyp(n) = (= 1) hyp(n)

With () = ST/
nmw
we have h(n) = (=1)" ___s1n(n7r/4)
nmw

(b) The frequency response of the system that has a unit sample response hy(n) = h(2n) may be found by evaluating
the discrete-time Fourier transform sum directly:

Hi(e’®) = Z hy(n)e™in = Z h(2n)e ™" = Z h(n)e™ /2

n=—00 n=-—00 n even
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However, an easier approach is to note that

sin(2nm/4)  sin(nm/2)

— —(_1\2n
hy(n) = h(2n) = (=1) Y o

which is a low-pass filter with a cutoff frequency of /2 and a gain of 1. A plot of H,(e’®) is shown in the
following figure:

J
4 HiE@®)

1/2

-1 —n/2 /2 b4

Interconnection of Systems
2.11 The ideal filters that have frequency responses as shown in the figure below are connected in cascade.

|H\(e7)] |Ha(e/)|

1 ———— 1

A 4

1
T I - 1

-7 —n/3 /3 n -  —3n/4 —n/4| /4  3m/4 b4
(a) b)

For an arbitrary input x(n), find the range of frequencies that can be present in the output y(n). Repeat
for the case in which the two systems are connected in parallel.

If these two filters are connected in cascade, the frequency response of the cascade is
H(e!") = Hy(e’*)Hy(e’*)

Therefore, any frequencies in the output, y(n), must be passed by both filters. Because the passband for H,(e/“) is
|w| > /3, and the passband for H,(e/®) is m/4 < |w| < 37 /4, the passband for the cascade (the frequencies for
which both |H|(e/*)| and |H,(e/*)| are equal to 1) is

b4 <ol < b4
3= =7y

With a paralle] connection, the overall frequency response is
H(e!”) = Hi(e’”) + Ha(e')

Therefore, the frequencies that are contained in the output are those that are passed by either filter, or

b4
o} > —

4

2.12  Consider the following interconnection of linear shift-invariant systems:

x(n) w(n) ) y(n)
— + Hy(e/?) |——m——

hy(n)
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213

m
1 lo| < =

where hi(n) =8(n—1) and Hy(e!”) = x 2
0 > <lwl<m

Find the frequency response and the unit sample response of this system.

To find the unit sample response, let x(n) = §(n). The output of the adder is then
w(n) =8(n)—6(n—1)

Because w(n) is input to an LSI system with a unit sample response h,(n),

y(n) = ha(n) — ha(n — 1)

1 [ o 1 2 : )
where ha(n) = _/ Hy(e/)e " de = _/ e = sin(nm /2)
2 ) 27 Joap nm

Therefore, the unit sample response of the overall system is

sin(nm/2) _ sinf(n — 1) /2]

hin) = nw (n—Dn

To find the frequency response, note that
W) =1—e*

. 4
1—e™® lo| < =
2

Therefore, ~ H(e/®) = W(e’*)Ha(e’”) = [1 — e /]Hy(e’*) = ,,
0} <ol <m

Consider the interconnection of LSI systems shown in the following figure:

ha(n) —-

A 4

x(n) y(n)
h](rl) P

o hi(n) o ha(n)

(a) Express the frequency response of the overall system in terms of H;(e/®), Ha(e/®), H3(e/), and
Hi(el®).
(b) Find the frequency response if

hy(n) =8(n)+25(n —2)+8(n—4)
ha(n) = h3(n) = (0.2)"u(n)
ha(n) = 8(n —2)
(a) Because h,(n)is in parallel with the cascade of #1(n) and h4(n), the frequency response of the parallel network is
G(e'”) = Hy(e*) + Hs(e'“)Hy(e')
With #(n) being in cascade with g(n), the overall frequency response becomes

H(e®) = Hy(e/*) [ Ha(e’®) + Hy(e/*)Ha(e™)]
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(b) The frequency responses of the systems in this interconnection are

Hi(e7®) = 1 4+ 2¢77% 4 ¢7 % = (] 4 ¢7/2)?

Hy(e'®) = H(e/?) = :

| —0.2e /e
Hy(e’®) = e /%
Therefore, H(e!®y = Hi(e/*)[Hy(e'”) + Hi(e!)Hy(e!)]
= H\(e/*)Hy(e’)[1 + Ha(e’*)]
(14 e /%)
T 1=02e

2.14 Suppose that the frequency response of a linear shift-invariant system is piecewise constant as shown in
the following figure:

Az

A
} it L
I ] T I o

- —an —w| o @ b4

Describe how this filter may be implemented as a parallel connection of low-pass filters.

This filter may be viewed as a summation of a low-pass filter, a bandpass filter, and a high-pass filter. Because
both a bandpass filter and a high-pass filter may be synthesized using a parallel connection of low-pass filters, we
may proceed as follows. First, we put an allpass filter H3(¢/*) = Aj; in parallel with a low-pass filter with a cutoff
frequency w, and a gain of A, — Aj;. This parallel network has a frequency response

Az lw] < w;

H(e'®) =
™) Aj w) <ol <nw

To produce the correct magnitude over the lower band, |o| < @, we add a third low-pass filter in parallel with the
other two. This filter has a cutoff frequency of w; and a gain of A; — Aj.

2.15 Two linear shift-invariant systems are connected in a feedback network as illustrated in the figure below.

x(n) w(n) y(n)
T /-D » f(n) - -
+

o

8(n) <

Assuming that the overall system is stable, so that H(e/®) exists, show that the frequency response of

this feedback network is ] )
Y(e'”) F(e'®)

T X))~ 1= F(eio)G(ei®)

To analyze this network, we begin by noting that

H(el®)

w(n) = x(n) + g(n) * y(n)
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which, in the frequency domain, becomes

W(e/?) = X(e’?) + G (/)Y (e'?)
Because Y(e/®) = F(e/*)W(e/®)

then Y(e?) = F(e/*)[X(e*) + G(e'*)Y (/)]

Solving for Y (¢/*) yields
F(ejw)

[ FemGem €

Y(e'?) =
Therefore, the frequency response is

Y (e/) _ F(e/®)

joy —
He™) = X(ei*y T 1 = F(ei®)G(ei®)

The Discrete-Time Fourier Transform

2.16 A linear shift-invariant system is described by the LCCDE
y(n) = 0.5y(n — 1) + bx(n)

Find the value of b so that |H(e/?)| is equal to | at @ = 0, and find the half-power point (i.e., the
frequency at which |H (e/*)|? is equal to one-half of its peak value, which occurs at w = 0).

The frequency response of the system described by this difference equation is

b

HE) = o

b? b?
(1 —0.5¢=5%)(1 — 0.5¢/%) _ 1.25 — cos

Because |H (/) =

|H(e/®)| will be equal to 1 at w = 0 if
b2
i
1.25 -1

This will be true when b = £0.5.
To find the half-power point, we want to find the frequency for which

. 0.25
HE")) = ————— =05
1H(e™)] 1.25 — cosw
This occurs when
cosw = 0.75

orw = 0.237.

2.17 Consider the system defined by the difference equation
v(n) =ay(n — 1)+ bx(n) + x(n — 1)

where g and b are real, and |a| < 1. Find the relationship between a and b that must exist if the frequency
response is to have a constant magnitude for all w, that is,

|H (/)| = 1
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Assuming that this relationship is satisfied, find the output of the system when a = % and
x(n) = (%)"u(n)
The frequency response of the LSI system described by this difference equation is

: b+eI?
HE')y= ———
€ I —aeJ®
The squared magnitude is

- (b + e /)b + e/?) 1 4+ 5>+ 2bcosw
[H(e!*)]" = . LA
(1 —ae 72)1 —aei®) |+a?—2acosw

Therefore, it follows that |H (e/*)|? = 1 if and only if b = —a.
Witha = 1 and b = —1, if x(n) = (3)"u(n), Y (e/*) is given by

1 —jw 1 —jo
;+e 1 _ ;te

Y (') = H(e'“)X (e/®) = — . :
I —femio 1 - fe-ie (1 _ %e—/w)l

Using the DTFT pair
" DTFT 1
(n+ Da"u(n) = m

given in Table 2-1, and using the linearity and delay properties of the DTFT, we have

¥y = =4n+ D(L) um) +n (L) un = 1)

What we observe from this example is that although | H (/)| = 1, the nonlinear phase has a significant effect on
the values of the input sequence.

Show that the group delay of a linear shift-invariant system with a frequency response H (¢/“) may be
expressed as

Hg(e/®)G g(e’®) + H;(e/®)G ;(e/®)
|H (e/®)[?

Thw) =

where Hg(e’?) and H,(e/®) are the real and imaginary parts of H (e/®), respectively, and G (e/®) and
G (e/®) are the real and imaginary parts of the DTFT of nh(n).

In terms of magnitude and phase, the frequency response is
H(e/®) = |H(e/®)|e
Note that if we take the logarithm of H (e/“), we have an explicit expression for the phase
InH(e!*) = In|H(e’*)| + j¢n(w)

Differentiating with respect to w, we have

d . d ) d )
— InH (/) = —H(e'”) = -—IHIH(e’“’)|+jd—¢h(w)
dw dw dw

H(e/?)dw

Equating the imaginary parts of both sides of this equation yields

iH(ef‘“)

d I
do @) = Im{ H(er™) dw }
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2.19

If we define
d jw ’ jw cpy! jw
d—wH(eJ )= Hg(e!*) + jH[(e'?)

where Hy(e/?) is the derivative of the real part of H(e/*) and H;(e/*) is the derivative of the imaginary part, the
group delay may be written as

Hy(e) + jH,’(e"")}

d
Th(w) = —%q»"h(w) = —Im{ He)

Multiplying the numerator and denominator by H*(e/®) = Hg(e/*) — jH,(e’®) yields

Hp(el*) + jH;(e)|[Hr(e’®) — jHi(e7)] ]

_ mll
e = _Im[ [Hei)P

_ Hi(e)Hp(e’”) — Hy(e/*)H; (/)
- |H (e/)|2

Finally, recall that if H(e/®) is the DTFT of 4(n), the DTFT of g(n) = nh(n) is
jow jw . jw : d jw ’ i eyt i
G(e'”) = Gr(e’) + jG (') = j%H(EI )= —H(e’*)+ jHy(e'*)

where G g(e/®) is the real part of the DTFT of n(n), and G ; (¢/*) is the imaginary part. Therefore, Hy(e/®) = G, (/%)
and H/(e’®) = —Gr(e’®). Expressed in terms of G g(e’“) and G (e/*), the group delay becomes

Th(w) = Hg(e/*)G g(e/®) + H;(e/*)G 1 (e?)
mE [H (e/2)|?

Note that this expression for the group delay is convenient for digital evaluation, because it only requires computing
the DTFT of A(n) and nh(n), and no derivatives.

Find the group delay for each of the following systems, where « is a real number:

(@ Hi(e/®)=1—ae/®
. 1
(b) Hye/?) = ————
l —ae/®
1
1 —2acosfe i@ 4 g2¢~ 20

(c) Hi(e/®) =
(a) For the first system, the frequency response is
H(e’)=1—acosw+ jasinw

Therefore, the phase is

.} oasinw
() =tan~! — L
l —acosw
Because —tan"'u = 1 du
dx T l+uldx
the group delay is
@) d @) 1 d ( o sinw )
T = —— = — -
e dw‘bl @ 1+(lf:i:0as)w)2 do \ 1 —acosw
1 (1 — a cos w)a cos w — (¢ sin w)?

Therefore, ==
erefore () 4 (esne )2 (1 — o cos w)?

—0Cos @
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which, after simplification, becomes

(1 — a cos w)a cos w — (« sin w)? a? —acosw

(1 — acosw)? + (a sinw)? - 1 +a? —2acosw

T(w) = —

Another way to solve this problem is to use the expression for the group delay derived in Prob. 2.18. With
Hi(e’*)=1—acosw+ jasinw

we see that
Hp(e’®) =1 —acosw H/(e’”) = asinw

Because the unit sample response is
h(n) = é(n) —ad(n — 1)

then g(n) =nh(n) = —ad(n — 1)
and G(e'*) = —ae ™ = —acosw + jasinw

Therefore, the group delay is

He(e/)G g(e/) + H (/)G 1(e’*)

nie = HE@)P
_ —a cosw(l — o cosw) + (o sin w)? _ o2 — acosw
(1 — a cosw)? + (a sin w)? T 1 +4a?—2acosw

which is the same as before.

Having found the group delay for H,(e/®) = 1 — ae™/?, we may easily derive the group delay for H,(e’®),
which is the inverse of H,(e/®):
1 1

joy — _
e 1l —ae /e Hi(e/®)
Specifically, because
; 1
Hy(e!®) =
2(e’?) o)

¢2(w) = —¢;(w) and, therefore,

a? —acosw
L(w) = — 7(w) =

"1+ 02— 2acosw

For the last system, H(e/“) may be factored as follows:

) 1 1 1
Hi(e!®) = - — = - ——
(™) 1 -~ 2acosfe=/® + q2e—/2 | —aelfeio | —qeffe—iv

The group delay of H;(e’) is thus the sum of the group delays of these two factors. Furthermore, the group
delay of each factor may be found straightforwardly by differentiating the phase. However, the group delay of
these terms may also be found from t;(w) in part (b) if we use the modulation property of the DTFT. Specifically,
recall that if X (e/?) is the DTFT of x(n), the DTFT of e/ x(n) is

ejné)x(n) <___£> X(ej(w 9)) = lX(C,}(w 9))|ej¢(a) 9)

Therefore, if the group delay of x(n) is T(w), the group delay of /" x(n) will be T(w — ). In part (b), we found
that the group delay of H(e/®) = 1/(1 —ae™/¢)is

a’ — o cosw

@) = “1+a?—2ecosw
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Thus, it follows from the modulation property that the group delay of H(e/*) = 1/(1 —ae /@) is
a? — acos(w — )

"1+ a? —2acos(w — 0)

(w) =

and that the group delay of H(e/®) = 1/(1 — ae™/“+9) js

a? — acos(w + 0)
1 +a? — 2a cos(w + 6)

T(w) =

Therefore, the group delay of H3(e/?) is the sum of these:

a? —acos(w — H) a? — acos(w + 6)

T+ a?—2acos(w—0) 1+ a2— 2acosw +6)

(w) =

2.20 Find the DTFT of each of the following sequences:

@ xi(n)=(3)"un+3)
(b) x3(n) = " sin(nwe) u(n)
(3)" n=024,..

(© xs(n) = 0 otherwise

(a) For the first sequence, the DTFT may be evaluated directly as follows:
o0

Xl(ejm) _ Z (%)ne,jnw — Z (%e—jw)n

n=-3 n=-3

R . 8edsw
= (z¢7) 2 (3e7) = —le

n=0

(b) The best wayto find the DTFT of x,(n) is to express the sinusoid as a sum of two complex exponentials as follows:
1 ) B
x2(n) = 57 [a"e/" — a"e " u(n)

The DTFT of the first term is
1 & [ 1 1

. . : n
—_ alle/eTine — ae—}(w—wn) - :
2j & 2j ”Z:;( ) 2j 1 —qemi@—en)

Similarly, for the second term we have

1 & : . 1 1
_2_j ;a"e—mwoeﬂnw — —ZW
Therefore,
X (e/®) = i[ 1 . B 1 . ] _ (a sina)o)ei’j“’ '
2j 1 —aeilo—m) | — geilwtwn) I — Qacoswple /v + a2e~2iw

(¢) Finally, for x3(n), we have

X}(ejw) — Z X3(ﬂ)€#j"w — Z (%)"e_jnw

n=-—00 n=0,2,4....

Therefore, X3(e’) = i (%)2"6*2]"‘" = Z (416'72"”)’l =
n=0
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Because the DTFT of the output of a linear shift-invariant filter with frequency response H (¢’®) is
Y(e!?) = X(e/*)H (/)

where X (e/“) is the DTFT of the input, it follows that an LSI system cannot produce frequencies in the
output that are not present in the input. Therefore, if a system introduces new frequencies, the system
must be nonlinear and/or shift-varying. For each of the following systems, find the frequencies that are
present in the output when x(n) = cos(nwy):

(@ y(n)=x%n)
(b) y(n) = x(n)cos(nm/4)
(¢) y(n)=x(2n)

(a) With x(n) = cos(nwy), the output of the square-law device is
¥(n) = cos®(nwo)
Using the trigonometric identity
cos’ A = 1 + 3 cos(24)
it follows that
y(n) = 3 + 1 cos(2nwp)

Therefore, although the only frequencies present in the input are w = wy, the frequencies in the output are
o =0, £2wy. Because this system is nonlinear, it creates frequencies in the output that are not in the input.

(b) For the modulator, the output is

yn) = x(”)008(¥’) = cos(nwy) cos(%r)

Using the trigonometric identity
2cos Acos B = cos(A + B)+ cos(A — B)

it follows that

| nmw ’ nmw
y(n) = 5 cos| nwg + 7 + 5 cos{ nwy — 1

Therefore, the frequencies in the output are w = wy £ 7 /4, which are different from those in the input. This is
because the modulator is a shift-varying system.

(¢) The last system, called a down-sampler, produces the output
y(n) = x(2n) = cos(2nawy)

thus creating frequencies in the output that are not present in the input. The down-sampler is a shift-varying
system.

For each of the following pairs of signals, x(n) and y(n), determine whether or not there is a linear
shift-invariant system that has the given response, y(n), to the given input, x(n). If such a system exists,
determine whether or not the system is unique, and find the frequency response of an LSI system with
the desired behavior. If no such LSI system exits, explain why.

@ x(m) = (3)"un), yon) = (5)"uim)
b)) x(n) = ej"”/4, y(n) = 0.5¢/mm/4
(¢) x(n)= sin(::/‘i)’ y(n) = sin(nr/2)

(d) x(n)=u(n), y(n)=24(n)
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For the first input-output pair, we have

1 ; 1
Lo—jw Y(ej"") = lp—jw
1—se 1—ze

X(e'*) =
Because X (¢/“) is nonzero for all w, the system that produces the response y(n) is unique and is given by

Y(e/) 1 —ge

X(e/®) 1 — te-ie

H('®) =

For the second system, note that the input is a complex exponential with a frequency w = 7 /4. Therefore, if
the system is LSI, the output must be a complex exponential of exactly the same frequency, that is,

y(n) = H(e/™ e/
Because the output is
y(n) = 0.5 /"4

any LSI system with
H(™* =05

will produce the given response. Thus, the system is not unique. One possible system is the low-pass filter

. 05 o<
H(e’*) = 2
0 otherwise

For the third system, recall that an ideal low-pass filter with a cutoff frequency w, has a unit sample response
given by (see Example 2.2.3)

hn) = sin nw,
n
Therefore, the DTFT of the input x(n) is
T
) 1 o] < —
X (') = 4
0 otherwise
and the DTFT of the output y(n) is
. 1 o<z
Y(e'*) = 2
0 otherwise

Because X (e/“) = O for |w| > 7 /4, if the system is to be linear and shift-invariant, Y (¢/“) must be equal to zero
for |w| > /4 (an LSI system cannot produce new frequencies). Because this is not the case, no LSI system
will produce the given input-output pair.

For the last system, we are given x(n) = u(n) and y(n) = 8(n). Therefore,
. 1 .
X)) = —— and Y(/)=1
I —eJ®

As in part (), there is a unique LSI system that produces this input-output pair, and the frequency response of
this system is

Y(e')
X(edw)

H(e'®) = e

Il —e

Find the DTFT of the two-sided sequence

x(n) — (41)'"'
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Note that we may write x(n) as the sum of a left-sided sequence and a right-sided sequence as follows:

x(my = (1) "ut) + (1) "u=n) - 3(n)

where the last term is included to remove the extra term that is introduced at n = 0 by the two exponential sequences.

The DTFT of the first term is

, DTFT ]
(1) um) &= ——0
1 - Ze Jw

and, using the time-reversal property, it follows that the DTFT of the second term is

(l)—"u(—n) pdiy :

4 1 — leio
erefore, X(el®) = S
| —tejo 1 lejw
15 15
— 16 — 16
(1- temio)(1 = leie) — H —4cosw

Use the orthogonality of the complex exponentials

L™ o 1 k=l
o Jjko ,—jlw _
2n/ o d‘”‘{o k#1

-

to show that x(n) may be recovered from X (el as follows:

1 " . )
x(n) = — f X (e!Ye!"dw
2r J_

v e
Given a sequence x(n), the DTFT is defined by

X(el*y = Z x(k)e ke

k=—00

To recover x(n) from X (e/®), it is necessary to “filter out” all of the terms in the sum except one (i.e., we must isolate
asingle term in the sum). This may be done by multiplying both sides of the equation by a complex exponential, e/™;

X(ejw)e/nw — Z x(k)egjkmejnm

k=—00
and integrating from —x to m,

/ X(e’“’)ef”“’dw — / |: Z x(k)ejkw]ejnwdw

m T L k=-00
Interchanging the order of the integral and the sum on the right gives
n . . 00 n . .
/ X(elw)ejnwdw — Z x(k)f e—]kwejmudw
- k=—00 -

Using the orthogonality of the complex exponentials, it follows that the integral is zero when & # n, and it is equal
to 2w when k = n. Therefore,

/ X(e')e™dw = 27 x(n)

m

Dividing both sides by 2 gives the desired result.
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2.25 Find the inverse DTFT of X(e/*) shown in the figure below:
X(e!?)

- —3n/4 —n/4 | /4 3mn/4 b4

A

Because X (e/®) is a piecewise constant function of w, finding the inverse DTFT may be easily accomplished by
integration. Using the inverse DTFT, we have

| ” . )
x(n) = —/ X(e')e!"dw
21 J_p

I 3/ 1 R
= — e/"’dw + — e"dw
27 /4 27 J 3ns4
3n/4 /4
— . ejmo . /e
2mjn aa 27jn e
— l [€j3nn/4 . ejrm/4] + 1 [e-—]rm/4 _ e*j}lm/ﬂl]
2njn 2 jn
Rearranging the terms, we have
x(n) — . [ej.'irm/zl _ e—;}nn/éll _ l [ejnr{/d _ e—jnn/4] — Sin(3ﬂ'n/4) _ sin(nn/4)
2 jn 2mjn Tn Th

which is the desired result.

It is interesting to note that x(n) is expressed as the difference of two sequences, with the first being an ideal
low-pass filter with a cutoff frequency of 37 /4, and the second an ideal low-pass filter with a cutoff frequency of
/4. This is a consequence of the fact that X (¢/*) may be expressed as

X(e') = X (/) — Xa(e’®)

i ol 3

where Xi(e!?) = @b = 4
0 otherwise

I el <2

. w| < —

and X,(e’?) = 4
0 otherwise

Another way to evaluate the inverse DTFT is to observe that X (¢/“) may be written as
X(ejw) — Xz(ejlw+i’[)) + Xz(ej(w—%))

where X ,(e/?) is the ideal low-pass filter defined above. Thus, X (¢/“) may be viewed as a modulated low-pass filter:

nm
x(n) = 2xz(n)cos(7)

With () = sin(n7r/4)
nm
x(n) may also be written as
sin(nm /4) cos(nm/2)
x(n)y=2
nm

This may be shown to be equivalent to the previous representation for x(n) by using the trigonometric identity

2sin Asin B =sin(A + B) + sin(A — B)
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Find the inverse DTFT of X (e/?) = cos? w.
Recall that the DTFT of a delayed unit sample is a complex exponential:

DTFT _;
8(n — ng) &= e /"®

Therefore, the inverse DTFT of X (e/“) = cos? w may be found easily if we expand it in terms of complex exponen-
tials:

. 2 . X
X'y = (%e’“’ + %e"“’) =143+ Lo

Thus, it follows that x(n) is
x(n) = 38(n) + 18(n +2) + $8(n — 2)

If h(n) is the unit sample response of a real and causal linear shift-invariant system, show that the system
is completely specified by the real part of its frequency response:

Hg(e’”) = Re{H (e/*))
In other words, show that H (¢/“) may be uniquely recovered from its real part.

Recall from the symmetry properties of the DTFT that if h(n) is real, H (¢/®) is conjugate symmetric. Therefore, if
H (e/®) is written in terms of its real and imaginary parts,

H(e’”) = Hg(e!*) + jH (/)
then the real part, Hg(e/*), is the DTFT of the even part of h(n):
he(n) = L[h(n) + h(—n)] &5 Hp(e’)

Therefore, given Hg(e/?), or h,(n), the question is how to recover h(n). Note that if A(n) is causal, h(n) = O for
n <0, and
%h(n) n>0

h.(n) = { h(0) n=0
1h(=n) n<0

As aresult, h(n) may be recovered from #.(n) as follows:

2h.(n) n>0
h{n) = { h.(0) n=20
0 n<0

If h(n) is real and causal, and if
Hg(e’®) = Re{H (¢/?)} = 1 + a cos 2w
find A(n).
Because the real part of H(e/®) is
He(e’”) = 1+ acos2w = | + Jae’™ + Lae™/>
the even part of h(n), which is the inverse DTFT of Hg(e/?), is
he(n) = 8(n) + 2ad(n +2) + jad(n — 2)
With h(n) a causal sequence, it follows from the results of Prob. 2.27 that

2h.(n) n>0
h(n) = { h.(0) n=>0
0 n<0

which gives
h(n) = 86(n) + ad(n —2)
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DTFT Properties

2.29

2.30

Show that if X (e/?) is real and even, x(n) is real and even.

For x(n) we have

J

1 T . ; 1 T .
x(n) = —f X(e’')e!"dw = —f X(e’*)cos(nw)dw — j —
_ 27 J_, 2w

f X (e’?) sin(nw)dw
2r J 4 —n

If X (e/“) is real and even, then X (e/“) sin(nw) is real and odd. Therefore, when integrated from — to 7, the integral
is zero. Thus, x(n) may be written as

x(n) = i/ X(e’?) cos(nw)dw
27 J_

n

and it follows that x(n) is real. Finally, because X (¢/“) cos(new) is real and even, x(n) is real and even, that is,

x(—n) = %/ X(e’?) cos(—nw)dw = %‘/ X(e/?) cos(nw)dew = x(n)

Prove the convolution theorem.
There are several ways to prove the convolution theorem. One way is by a straightforward manipulation of the DTFT
sum. Specifically, if y(n) = h(n) * x(n),

o0

ymy =Y hl)x(n —1I)

I=—00

and the DTFT of y(n) is

ren= 3 [i h(x(n — 1)] e = S ki) [ 3 xn- l)e"""”j|

n=—o00 | I=—00 1=—00 n=—00
Note that the expression in brackets is the DTFT of x(n — /). Using the delay property of the DTFT, this is equal to
X (e/)e™/' and the right side of this equation becomes

Y(e/®) = Z ()X (e/®)e™ i

{=—00

Factoring out X (¢/“) from the sum, which does not depend on /, we have

Y(e/®) = X(e?) D h(he™"™ = X(e/*)H (')
I=—00
which proves the theorem.

Another way to prove the convolution theorem is to consider the following cascade of two LSI systems, one
with a unit sample response of /(n) and the other with a unit sample response of x(n):

el H(e/®)X (eJ)ein
sl h(n) x(n) >

\d

If the input to this cascade is a complex exponential, e/", the output of the first system is H (e/“)e/". Because this
complex exponential is the input to the second system, the output is H (e/)X (e/“)e/"”. Therefore, H(e/*)X (e/®)
is the frequency response of the cascade, and because the unit sample response of the cascade is the convolution

h(n) x x(n), we have the DTFT pair

h(n) % x(n) 2L H (/)X (e7°)

which establishes the convolution theorem.
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2.31 Derive the up-sampling property of the DTFT, which states that if X (¢/*) is the DTFT of x(n), the DTFT of

x(f'—) n=0+L,+2L, ...
y(n) = L
0 otherwise
is Y(e/?) = X (/1)
From the definition of the DTFT, we have
Yy =) yme "

Because y(n) is equal to zero except when » is an integer multiple of L,

o0 o0

Y(E’jw)z Z y(nL)e—jnLan Z x(n)e—jnL(u

n=-—0C Nn=—00

or Y(e/”) = X (/™)

Thus, Y (e/*) is formed by scaling X (¢/*) in frequency.

2.32 Find the inverse DTFT of
1

Joy —
X(e™) = | — %e—jIOw

For this problem, the direct approach of performing the integration

1 " )
x(n) = —/ XY dw
21 J_

is not easy. However, a simple approach is to recall that the inverse DTFT of

|

Y(e/) = P
| — je—l‘”

is y(n) = (%)"u(n)

and to note that Y (¢/¢) is related to X (e/®) by scaling in frequency,
X(e“)y=Y(")

Therefore, it follows from the up-sampling property in Prob. 2.31 that

. (%)"“0 n=0,£10,£20,...
xn)=

0 otherwise

In other words, the sequence x(») is formed by inserting nine zeros between each value of y(n).

233 Let x(n) be a sequence with a DTFT X (e/¢). For each of the following sequences that are formed from
x(n), express the DTFT in terms of X (¢/®):

(@) x*(—n)
(b) x(n)*x*(—n)
) x@2n+1
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The DTFT of x*(—n) is
DTFT{x*(—n)} = Z X*(=meT " = Y x*(n)elm
n=-—00 n=—o0

Bringing the conjugate outside, we have

DTFT{x*(—n)} = [ Z x(n)e—f'"w] = X*(e/®)

n=—00

which leads to the DTFT pair
x*(—n) ZE x*(eiy

89

For y(n) = x(n) * x*(—n), note that because y(n) is the convolution of two sequences, the DTFT of y(n) is the
product of the DTFTs of x(n) and x*(—n). As shown in part (a), the DTFT of x*(—n) is X*(e/*). Therefore,

we have the DTFT pair
x(n) % x*(—n) ZE X (/) X* (/%) = | X (/)
For x(2n + 1) we have

oc

DTFT(xQn+ D} = Y xQn+ De™™ =Y x(n)e™"™
n odd

n=—00

To evaluate this sum, a “trick” is to use the identity

. n odd
I=(=D _IO n even
This allows us to write the DTFT as follows:
DTFT(x(2n + D)} = Y x(me ™ = £ 3" [1 — (=1)"]x(n)e™ "
n odd n=-—00
il . 20 N
=1 Z x(n)e /" — 1 Z (—=1)"x(n)e™’"
n=-—00 n=-=00

Because the first sum is simply X (e/“), and the second is the DTFT of the modulated signal

(=D)"x(n) = /" x(n)

then DTFT{x(2n + D)} = §[X(e/*) — X (e/™™)]

2.34 Let x(n) be the sequence

x(n) =68(n+1)—8(n)+28(n — 1)+ 38(n - 2)

which has a DTFT

X (/) = Xg(e’®) + jX (')

where X g(e/“) and X;(e/®) are the real part and the imaginary part of X (¢/*), respectively. Find the
sequence y(n) that has a DTFT given by

Y(e/) = X () + jXr(e!)e!

The key to solving this problem is to recall that if x(n) is real, and if X(e/*) is written in terms of its real and

imaginary parts, X g(e/“) is the DTFT of the even part of x(n), and X ;(e’*) is the DTFT of the odd part:

xe(n) = Hx(n) + x(=n)] EL X e(e)

xo(n) = 31x(m) — x(=m)] EE jx,(e7*)
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Therefore, the DTFT of — jx,(n) is X, (e/*),
—jxo(n) & X, (e7)

and the DTFT of jx.(n + 2) is

Jxe(n +2) prias J X r(e’)e’®

Thus, Jxe(n +2) = jx,(n) B ¥ (%) = X (') + jX e/*)e’

and it follows that
y(n) = jx(n+2) — jx,(n)

Finally, with x.(n) and x,(n) as tabulated below,

n|—2 -1 0 1 2

x,(n) 32 32 —1 32 3]
xon) | =3/2 =172 0 12 3]2

it follows that y(n), which is formed from these two sequences, is as shown below:

n | -4 -3 -2 -1 0 1 2
y(n)|3j/2 3j/2 j/2 25 32 —j/2 =3j/2

Let x(n) be the sequence
x(n)=25(n+2)—8(n+ 1)+38(n)—56(n—1)+28(n—2)

Evaluate the following quantities without explicitly finding X (¢/):
@ X(e'®)lw=0

(b) ¢x(w)

© [ X(e/*)dw

) X(€)lo=r

(&) 7, 1X(e/*)dw

(a) Because the DTFT of x(n) is

[o¢]
X(e/™) = Z x(n)e /"
n=—00
note that if we evaluate X (¢/¢) at w = 0, we have
X 00
X(e/ Voo = D x(n)

which is simply the sum of the values of x(n). Therefore, for the given sequence it follows that

X(€)w=0 =5

[CHAP. 2

(b) To evaluate the phase, note that because x(n) is real and even, X (e/*) is real and even and, therefore, the phase

is equal zero or 7 for all w.
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(c¢) From the inverse DTFT,
1 m .
x(n) = —/ X(e/®)e!"dw

m

note that when n = 0: { B
x(0) = —/ X(e’“)dw
27 ) »

Therefore, it follows that .
/ X(e'Ydw = 27 x(0) = 67

)4

(d) Evaluating the DTFT of x(n) at = 7, we have

X(€"Nomn = D x(me /" = Y~ (=1)"x(n)
n=—oc n=-—00
which, for the given values of x(n), evaluates to

X(eju))la):n =9

(¢) From Parseval’s theorem, we know that

= [ xerdo= Y wor

n=-—0oo

f 1X(e/*)2dw =27 Y |x(n)? = 387

Therefore,
n=-—00

2.36 The center of gravity of a sequence x(n) is defined by

o0

Z nx(n)

c n=—oc
- 00

Z x(n)

n=-—00

and is used as a measure of the time delay of a sequence. Find an expression for ¢ in terms of the DTFT
of x(n), and find the value of ¢ for the sequence x(n) that has a DTFT as shown in the figure below.

L Re{X (e/)) , Im{X (e/))

1 T]

I -~
N
SRR

T -7

[NER

+ -1

(@) (b)

To find the value of ¢ in terms of X (e’/*), first note that the denominator is simply the value of X (¢/®) evaluated at

w=0: .
Z x(n) = X(e'*)umo

n=-00

For the numerator, recall the DTFT pair

d .

nx(n) € jS-x (')
dw
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e}
d )
Therefore, ";w nx(n) = j d_wX e’?) »
and ¢ may be evaluated in terms of X (¢/?) as follows:
d .
_X(elw)
Ldw =0
C=J ey
X (e')Nw=0
For the DTFT that is given, we see that
X (€)oo = 1
d ; d . d ; 2
—_X()| = ——Re(X(e’*))ymo + j—IM{X ("m0 = —j =
and T X )w=0 JaRelX(€™)u=o + j - Im{X (€ )umo = —j
2
Therefore, c= =
b 4
2.37 For the sequence x(n) plotted in the figure below,
x(n)
3
2
1
I I :
*—o I — o—0—
4 -3 —2 -1 2 3 4 6 7
evaluate the integral
T d ) 2
/ —X(e'?)| dw
_x |ldw

This integral is easy to evaluate if we use Parseval’s theorem
1 " jwy(2 S 2
P f W) de = ";w ()]
and the derivative property
d .
nx(n) T j = x(e/v)
dw

Specifically, we have

2 [e] (o]
do=2r Y |—jnx(ml* =21 Y |Inx(n)® =75

n=—=00 n=-00

d )
Z x(e'®
dw ©

L,

Applications

2.38 A linear shift-invariant system has a frequency response

H(e/®y=¢lo— —
() =e 1.1 4+ cosw

Find an LCCDE that relates the input to the output.
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2.39

2.40

241

To convert H(e/®) into a difference equation, we must first express H(e/?) in terms of complex exponentials.
Expanding the cosine into a sum of two complex exponentials, we have

el®

H(e'®) = - ,
™) 1.1+ %e‘/“’ + %el“’

Multiplying numerator and denominator by 2¢~/¢ gives

Y(e) 2

H@w)= — 2 _ . ‘
€)= Xem = Ti22e o1 oo

Cross-multiplying, we have _
[1+22e77° + e VY (/) = 2X(e/*)

which leads to the following difference equation when we take the inverse DTFT of each term:

y(n) +22y(n — 1) + y(n — 2) = 2x(n)

Find the frequency response of a linear shift-invariant system whose input and output satisfy the difference
equation
y(n) —05y(n — 1) =x(n)+2x(n — 1)+ x(n — 2)

To find the frequency response, we begin by finding the DTFT of each term in the difference equation
(1~ 0.5e7/°)Y (e/°) = (1 4+ 2e71° + e™/2*)X (/)

Because H (e/®) = Y (e/?)/ X (/). we have

1 4 2e7/@ 4 ¢~2ie

Jjoy —
H(e™) = 1—0.5¢Jj«

Write a difference equation to implement a system with a frequency response

[ —0.5e77% + ¢73/w

H(el®) = : :
) =TT 05c7% 7 07502

Y(“) 1 -05e71"4 e
X(e/) ~ 1+ 0.5~ % 4 0.75¢~2w

With H(e®) =

after cross-multiplying, we have
[1+0.5¢77° +0.75¢"2“1Y (/) = [1 — 0.5/ + e™>*]X(e/*)
Taking the inverse DTFT of each term gives the desired difference equation

y(n) +0.5y(n — 1)+ 0.75y(n — 2) = x(n) = 0.5x(n — 1) + x(n — 3)

Find a difference equation to realize a linear shift-invariant system that has a frequency response
H(’®) = tanw
To find a difference equation for H (¢/®), we must first express tan w in terms of complex exponentials:

sinw 1 e/ —ei®
tanw = = = — -
cos w j el e e

With H (e/®) = Y (e/“)/ X (e/*) we have, after cross-multiplying,
JIeT? +eTNY (e10) = [¢/0 — €T 1V]X ()
Inverse transforming, we obtain the following difference equation:

Jyin+ D+ jyn -1 =x(n+1)—x(n—1)
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By introducing a delay and dividing by J, this difference equation may be written in the more standard form

y(n)=—y(n —2)— jx(n) + jx(n —2)

Find a difference equation to implement a filter that has a unit sample response
hin) = (4)"cos( - Ju(n)

To find a difference equation for this system, we must first find the frequency response H(e/“). Expressing h(n) in
terms of complex exponentials,

h(n) = % (%)"ej'm/}u(n) + %(%)"efjnnﬂu(n)
it follows that the frequency response is

o 1 1 1
Jw _ —
HE™ =31 TeinPgio | 21— le-migiv
11— 41ejﬂ/3(,—jw + 11— %e—jn/Be-jw

2 (1 = teimne=io) (1 = LeminPie=io)
1 2 — Jcos(m/3)e™ I

21— 1 cos(m/3)eIo + Le~2iw

Therefore, the difference equation for this system is

y(n) = %(cos %)y(n -1 - %y(n — )+ x(n) — %(cos %)x(n -1

A system with input x(n) and output y(n) is described by the following set of coupled linear constant
coefficient difference equations:

y(n) = 3y(n — 1)+ 2v(n) + v(n — 1)

v(n) = Jv(n — 1)+ wn — 1)

w(n) = 3x(n) + 2x(n — 1)
Find a single linear constant coefficient difference equation that describes this system, and find the
frequency response H (e’/%).
To find the frequency response for this system of difference equations, we first express each equation in the frequency
domain:

[1—je ]y =12+ eIV (™)

[1 - %e”“"]V(ej“’) = e IUW (e?)

W(e) = [§ +2¢7/°]x (/)

Using the last two equations to express V (¢/“) in terms of X (e/?), we have

e““’[% + 2e‘j‘“]

1,—j
— = Jw
1 38

V(e'*y = X(e/®)

Substituting this expression for V (¢/®) into the first equation and solving for ¥ (¢/*) gives

24e7i0 427

Jjoy .
)= 1—jeio | —1levie

e ivX (/)
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2.44

2.45

Therefore, the frequency response is
Y(e0) eI+ Bem2e 4 2730

X(e) 1= 2e vt lemiw

H(e!?) =

Cross-multiplying, we have
Y(ej"’)[l ~ e+ ée‘jz"’] = X(ej‘")[e"“’ + fe7e 4+ 2e“3j‘"]
and taking the inverse DTFT of each term gives the difference equation for the system:

yn) = 2y(n— D+ ty(n —2) =x(n — ) + 3x(n — 2) + 2x(n — 3)

A linear shift-invariant system with input x(n) and output v(n) is described by the difference equation
v(n) = x(n) +ax(n — 1)

This system is cascaded with another system with input v(») and output y(r) that is described by the
difference equation

y(r) = 3y(n — 1) + v(n)
What value of o will guarantee that y(n) = x(n)?

Substituting the first equation into the second, we obtain a single difference equation that describes the overall system,

that is,
y(n) = iy(n — 1)+ x(n) + ax(n — 1)

Taking the DTFT of both sides of the equation, we have
Y(e/®) = LeTY (/) + X (/) + ae X (e’*)
If y(n) = x(n), Y (e/) = X(e/*), and it is clear that this will be true if and only if & = —1.
Find the input x(n) that will produce a response, y(n) = §(n), for a system described by the LCCDE
y(n) — ‘%y(n -1 =x(n) - %x(n -2)
This problem is easily solved if we express this difference equation in the frequency domain. Specifically, we have
Y (/) — fe7 Y (/) = X (e/?) — Le TP X (/)
If we want the output to be y(n) = 8(n), Y (¢/®) = 1, and we have
1— 1™/ = X(e') — e X (/)

Solving for X (e’“) gives

o Ik
X = i
1 — §e J
To find the inverse DTFT of X (e/¢), recall that
1y DTF 1
(3) utn) ALy PRy T
Therefore, the inverse DTFT of ]
Joy —
W(e'®) = Fp—m ée“ﬂw

is the sequence
nj2
win) = () n=024....

otherwise
and x(n) is given by
o )" n=0,24,...
—HHT a=135,.
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Supplementary Problems

Frequency Response

2.46  Consider a linear shift-invariant system with a unit sample response
h(n) =8(n)+4é(n—1)

Find the output of the system when the input is

(n) l+500s(’m
x\n) = —
10

2.47  If the unit sample response of a linear shift-invariant system is
h(n) = a"u(n)

with |a| < 1, find the response of the system to the input x(n) = 1. Repeat for x(n) = (—1)".

2.48 Find the frequency response of the system that has a unit sample response

cos(nw) 0<n<N-—-1I
0 otherwise

h(n) = {

2.49  The input to a linear shift-invariant system is

(n) = (E+ 3nm
x{n) = cos 8 Ccos 2

Find the output when the unit sample response is

_ Sin(7n7/8)
(@) h(n)= s
) hiny = SAT/2) | jgaSinnm/4)

n

2.50  The input to alinear shift-invariant system is
x(n) = n(%)"u(n)
and the output is

y(n) = (%)n_zu(n —2)— %(%)"_JM(n -3

Find the frequency response H (¢/).

2,51 Find the frequency response of the system described by the LCCDE
y(n) = %y(n —10) + x(n) + }‘x(n — 10)

2.52  Find the group delay of the system that has a frequency response

) 1 — %e‘j‘”
H) = —F—
I+ 4—€_fw

Filters

2.53  What is the unit sample response of an ideal bandstop filter with a lower cutoff frequency of w, and an upper cutoff
frequency of w,?

2.54  If h(n) is the unit sample response of an ideal low-pass filter with a gain of one and a cutoff frequency w, = 7/8,
what is g(n) = cos(nm/2)h(n)?
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The Interconnection of Systems

2.55  What type of filter has a unit sample response

h(n) = 8(n) — ———Si"(::/ 3)

2.56  What is the magnitude of the frequency response of the cascade of the following two systems?

: e 1® —0.5 sin(nm /4)
H,(e'*) = ———— h =§(n) - —
) = 05w 2(n) = 8(n) py
The Discrete-Time Fourier Transform
2.57  Find the DTFT of the sequence
N +1—|n| In| <N
x(n) =
0 else

2.58  For each of the following systems, find the frequencies that are present in the output when the DTFT of the input
x(n) is

(@ y(n) =x*n)
() y(n) = x(n)cos(nn/2)
(©) y(n)=x(2n)
2.59  Letx(n) = e/"*u(n) and y(n) = 0.5¢/""/*u(n). Determine whether or not there is a linear shift-invariant system
that has the response, y(r), to the input x(»). If such a system exists, determine whether or not the system is unique,

and find the frequency response of an LSI system with the desired behavior. If no such LSI system exists, explain why.

2.60  Find the inverse DTFT of X (e/“) illustrated in the figure below.

A X(el®)
2
I
w
—x —3n/4 —n/4 x/4 /b ow
2.61  Find the inverse DTFT of X (¢/) illustrated in the figure below.
X(e/®)
P 2 F—
1
w

—'7r -3n/4 —m/4 | /4  3m/4 1
2.62  Find the inverse DTFT of X (e/“) = cos 2w + j sinw.

2.63  Find the inverse DTFT of

T ol b1

N - < < —

Xey=1{° 3 - =3
0 otherwise
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2.64 Find the DTFT of )
sin(nm/2) sin(nm/4)
x(n) =
nm nw
2.65 If x(n) is real and causal, and
Re(X (/) = ————
3 —cosw
find x(n).
DTFT Properties
2.66 Let x(n) be a sequence with a DTFT X (e/?). For each of the following sequences that are related to x(n), express
the DTFT in terms of X (e/¢):
(@ x*(n)
(b) x(n)—x(n—2)
(©) x(2m)
d) x(n)xx(n—1)
2.67  If the DTFT of x(n) = (§)"u(n + 2) is X(e/*), find the sequence that has a DTFT given by Y (¢/*) = X (¢/%*).
2.68 Let x(n) be the sequence
x(n)=28(n+3)—28(n+1)+8(n—1)+38(n—2)
If the DTFT of x(n) is expressed in terms of its real and imaginary parts as follows,
X&) = Xp(e’”) + jX1(e)
find the sequence y(n) that has a DTFT given by
X'y = Xp(e!) + jX,(e/)e /%
2,69 The DTFT of a sequence x(n) is
) 3
Xe)= ——————
€)= T 08y
Evaluate the sum
o0
S = Z x(n)
n=-00
2.70  The DTFT of a sequence x(n) is
X(e’?) = cos*(Bw)
Evaluate the sum
S= ) (=1)x(n)
271 Let) > _x(n)=Aand ) ;2 __ h(n) = B.If y(n) = h(n) * x(n), is it true that Y02 ___ y(n) = A - B?
2,72  Evaluate the following integral:
T ejw d
f_ﬂ 1— 03¢0
2.73  Using the center of gravity (see problem 2.36), find the time delay of the sequence

x(n) = a"u(n)
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Applications of the DTFT

2.74

2,75

2.76

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

A causal linear shift-invariant system is defined by the difference equation
2y(n) — y(n =2y =x(n — 1)+ 3x(n —2) + 2x(n — 3)
Find the frequency response, H (e/?).
The frequency response of a linear shift-invariant system is
joy . i@
HE™) =e 24 e e

Find an LCCDE that relates the input to the output.

Find the inverse of the system that has a unit sample response h(n) = n(——é)"u(n —3).

Answers to Supplementary Problems

y(n) =2+ 9.88cos[(n — 1)m/10].

1 1
- and y(n) = ——

y(n):l_a l+a

N _ ) in¥
H(e/®) = Lot w-on 202 (@ — wo) 4 Lemi o SN2 (w+ “"’)'
2 sin(w — wp) ~ ? sind(w + wp)

(@) y(n) = 3x(n). (b) y(n) = ym?e/m™/8,

s 2e700(1 — Je7 Iy
H(e" )= ——-—(] — |_e—ja))
3

" 1+ }em/i0e
H(e'?) = rE =T %e\jIOw'
1 —2cosw 1+ 4cosw
5—4cosw 17 +8cosw’

T(w) =

h(n) = h\(n) + ha(n) where h (n) = sin(nen) is an ideal low-pass filter with a cutoff frequency of w,, and
. nw
hy(n) = 6(n) — sin(ncn) is an ideal high-pass filter with a cutoff frequency of w;.
wy

A bandpass filter with a lower cutoff frequency of w, = 37/8, an upper cutoff frequency of w, = 57/8, and a gain
of one half.

A high-pass filter with a cutoff frequency w, = /3.

|H(e/?)| = 1 for |w| > % and | H (¢/*)| = O otherwise.

sin? ﬂ;—')w

)

X(el) = sin® £
2
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258 (a) |o| < 2?” ) % < o] < 5?”. ©) o] < 27”

2,59  Unique, h(n) = %a(n).

sinZ  sin32%
2,60 x(n)= .
nmw nmr
<0 3nm snn
sin=*  sin“t
2.61 x(n) =28(n)— - .
nmw

262 x(n)=38(n+2)+ 18(n+1) — 18(n — 1) + 38(n — 2).

s (n42)m
6

sin
2,63 2cositr .6
R T

T 3z
2,64 The DTFT is constant with an amplitude of % for || < T and it decreases linearly to zero at w = iT.

265  x(n) = 38(m) + E(1) un — 1.

266 (a) X*(e7’*). (b) (1 —e /)X (/). (c) %X(ej"’)+ %X(e““’*’“). d) e /*X2(el®).

267  y(n)= (é)"/2 n=-4,-202,...,
0 otherwise
2.68 Beginning with index n = —3, the sequence values are [1, %, % _%, -2, % g, % —1].
269 3.55
270 -1
271  Yes.
272 0.67.
273 - 2 —.

) 1+ 3e7Ie 4 272
wy _ 1l ,—jw
274 H(e!®) = ze™/ BTy %e—i .

275  y(n)=ix(n+1)—1y(n—2).

(1+ ge /)

276  —72ed0 6
(1+ Lemiv)



Chapter 3

Sampling

3.1 INTRODUCTION

Most discrete-time signals come from sampling a continuous-time signal, such as speech and audio signals, radar
and sonar data, and seismic and biological signals. The process of converting these signals into digital form
is called analog-to-digital (A/D) conversion. The reverse process of reconstructing an analog signal from its
samples is known as digital-to-analog (D/A) conversion. This chapter examines the issues related to A/D and
D/A conversion. Fundamental to this discussion is the sampling theorem, which gives precise conditions under
which an analog signal may be uniquely represented in terms of its samples.

3.2 ANALOG-TO-DIGITAL CONVERSION

An A/D converter transforms an analog signal into a digital sequence. The input to the A/D converter, x,(1),
is a real-valued function of a continuous variable, ¢. Thus, for each value of ¢, the function x,(z) may be any
real number. The output of the A/D is a bit stream that corresponds to a discrete-time sequence, x(#n), with an
amplitude that is quantized, for each value of n, to one of a finite number of possible values. The components of
an A/D converter are shown in Fig. 3-1. The first is the sampler, which is sometimes referred to as a continuous-
to-discrete (C/D) converter, or ideal A/D converter. The sampler converts the continuous-time signal x,(t) into
a discrete-time sequence x(n) by extracting the values of .x,(r) at integer multiples of the sampling period, Ty,

x(n) = xa(nTs)

Because the samples x,(nT;) have a continuous range of possible amplitudes, the second component of the A/D
converter is the quantizer, which maps the continuous amplitude into a discrete set of amplitudes. For a uniform
quantizer, the quantization process is defined by the number of bits and the quantization interval A. The last
component is the encoder, which takes the digital signal %(n) and produces a sequence of binary codewords.

T A

xq(0) x(n) X(n) c(n)

—_—] C/D —f— Quantizer - Encoder ——

Fig. 3-1. The components of an analog-to-digital converter.

3.2.1 Periodic Sampling
Typically, discrete-time signals are formed by periodically sampling a continuous-time signal
x(n) = xq(nTy) 3.0

The sample spacing 7 is the sampling period, and f; = 1/T; is the sampling frequency in samples per second.
A convenient way to view this sampling process is illustrated in Fig. 3-2(a). First, the continuous-time signal is
multiplied by a periodic sequence of impulses,

o0

sad)= ) 8t —nTy)

n=-—00

101
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to form the sampled signal
00

X5(0) = Xa(Dsa(t) = ) Xa(nT)S(t — nTy)

n=—oc

Then, the sampled signal is converted into a discrete-time signal by mapping the impulses that are spaced in time
by T into a sequence x(n) where the sample values are indexed by the integer variable n:

x(n) = xq(nTy)

This process is illustrated in Fig. 3-2(b).

. x(n) = x4(nTy)
Convert impulses

Into samples

(@)

2T, -T, O T, 2T, 3T, A4T, -2 -1 0 1 2 3 4
(b)
Fig. 3-2, Continuous-to-discrete conversion. (a) A model that consists of multiplying x,(¢) by a sequence
of impulses, followed by a system that converts impulses into samples. (b) An example that illustrates the
conversion process.

The effect of the C/D converter may be analyzed in the frequency domain as follows. Because the Fourier
transform of 8(+ — nT;) is e~ /"*Ts the Fourier transform of the sampled signal x;(¢) is

X(jQ) =Y xa(nTo)e " 3.2)

n=—0oc

Another expression for X(j<2) follows by noting that the Fourier transform of s,(¢) is

S.(jQ) = ZT_” > 8@ - kQ)

S k=—o0

where ; = 2 /T, is the sampling frequency in radians per second. Therefore,

1
Xs(jS2) = = Xa(j82) * S.(j€2)

| — . .
T D Xa(jQ— k)
s kTl
Finally, the discrete-time Fourier transform of x(#) is

Xy = " x(me " = " x,(nT,)e” " 33

H=—00 n=—-00

Comparing Eq. (3.3) with Eq. (3.2), it follows that

) —" 2k
X(@) = X,(/Dlaze/r, = = 3 Xa<j2 ~iZ ) (3.4)

T T, T,

§ k=—o0
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Thus, X(e/“) is a frequency-scaled version of X(j2), with the scaling defined by
w = QT

This scaling, which makes X (¢/“) periodic with a period of 27, is a consequence of the time-scaling that occurs
when x,(¢) is converted to x(n).

EXAMPLE 3.2.1 Suppose that x,(¢) is strictly bandlimited so that X,(j2) = O for |2| > Qg as shown in the figure below.
Xa(jS2)

1

—Q Q0

If x,(¢) is sampled with a sampling frequency 2, > 2, the Fourier transform of x,(¢) is formed by periodically replicating
X,(j2) as illustrated in the figure below.

X (D

T,
/\ /\ ;
L L .
L) r | Ll L) -
-, — Qo Q

However, if 2, < 2, the shifted spectra X, (j2 — jkS2,) overlap, and when these spectra are summed to form X, (jQ2), the
result is as shown in the figure below.

X:(J)

i 1 1 1 1
— _— T I T T

—Q -2,/2 /2 92

J

This overlapping of spectral components is called aliasing. When aliasing occurs, the frequency content of x,(¢) is corrupted,
and X,(j2) cannot be recovered from X, (j$2).

As illustrated in Example 3.2.1, if x,(¢) is strictly bandlimited so that the highest frequency in x,(¢) is €,
and if the sampling frequency is greater than 2€2y,

Q > 290

no aliasing occurs, and x,(7) may be uniquely recovered from its samples x,(nT;) with a low-pass filter. The
following is a statement of the famous Nyquist sampling theorem:

Sampling Theorem: If x,(¢) is strictly bandlimited,
Xa(jS=0 Q] >

then x,(#) may be uniquely recovered from its samples x,(nT;) if

Q= — >2Q

s

The frequency g is called the Nyquist frequency, and the minimum sampling frequency, 25 = 2, is called
the Nyquist rate.
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Because the signals that are found in physical systems will never be strictly bandlimited, an analog anti-
aliasing filter is typically used to filter the signal prior to sampling in order to minimize the amount of energy
above the Nyquist frequency and to reduce the amount of aliasing that occurs in the A/D converter.

3.2.2 Quantization and Encoding

A quantizer is a nonlinear and noninvertible system that transforms an input sequence x(#) that has a continuous
range of amplitudes into a sequence for which each value of x(n) assumes one of a finite number of possible
values. This operation is denoted by

x(n) = Qlx(n)]

The quantizer has L + | decision levels xy, x3, ..., x,+, that divide the amplitude range for x(n) into L intervals
L = Txp, x40 k=1,2,...,L

For an input x(n) that falls within interval /;, the quantizer assigns a value within this interval, %, to x(n). This
process is illustrated in Fig. 3-3.

decision level
g ;2 ;3 l——;“ 35 26 ;7 EB amplitude
T] = —00 T2 z3 T—:rq s g z7 s Tg = 00
quantizer output

Fig. 3-3. A quantizer with nine decision levels that divide the input amplitudes into eight
quantization intervals and eight possible quantizer outputs, %;.

Quantizers may have quantization levels that are either uniformly or nonuniformly spaced. When the quan-
tization intervals are uniformly spaced,

A =Xpp1 — X

A is called the quantization step size or the resolution of the quantizer, and the quantizer is said to be a uniform
or linear quantizer.! The number of levels in a quantizer is generally of the form

L =28

in order to make the most efficient use of a (B + 1)-bit binary code word. A 3-bit uniform quantizer in which the
quantizer output is rounded to the nearest quantization level is illustrated in Fig. 3-4. With L = 28+! quantization
levels and a step size A, the range of the quantizer is

R = 25+l - A
Therefore, if the quantizer input is bounded,

(M| < Xmax
the range of possible input values may be covered with a step size

Xmax

A= 2B

With rounding, the quantization error

e(n) = Qlx(n)] — x(n)

"In some applications, such as speech coding, the quantizer levels are adaptive (i e., they change with time).
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will be bounded by

5 < e(n) < 5

However, if |x(n)| exceeds X max, then x(r) will be clipped, and the quantization error could be very large.

§ z(n) = Qlz(n)]

3a 4
28
7 2(n)
a5 35 25 —a Y >
-A
-2A
-3A
~-4A

l"——_‘ 2xmax —’l

Fig. 3-4. A 3-bit uniform quantizer.

A useful model for the quantization process is given in Fig. 3-5. Here, the quantization error is assumed
to be an additive noise source. Because the quantization error is typically not known, the quantization error is
described statistically. It is generally assumed that e(n) is a sequence of random variables where
The statistics of e(n) do not change with time (the quantization noise is a stationary random process).
The quantization noise e(n) is a sequence of uncorrelated random variables.

The quantization noise e(n) is uncorrelated with the quantizer input x(n).

bl S

The probability density function of e(n) is uniformly distributed over the range of values of the quan-
tization error.

Although it is easy to find cases in which these assumptions do not hold (e.g., if x(n) is a constant), they are
generally valid for rapidly varying signals with fine quantization (A small).

z(n) z(n) = Q[z(n)]

———— Quantizer [——p——

z(n) 5(1) = z(n) + e(n)

e(n)

Fig. 3-5. A quantization noise model.

With rounding, the quantization noise is uniformly distributed over the interval [—A /2, A /2], and the
quantization noise power (the variance) is
2 A?
o, = —

12
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With a step size
Xmax
2B

and a signal power o2, the signal-to-quantization noise ratio, in decibels (dB), is

A=

2
SQNR = 10log =% = 6.02B + 10.81 — 20log
[0

e Ox

max

3.5)

Thus, the signal-to-quantization noise ratio increases approximately 6 dB for each bit.

The output of the quantizer is sent to an encoder, which assigns a unique binary number (codeword) to each
quantization level. Any assignment of codewords to levels may be used, and many coding schemes exist. Most
digital signal processing systems use the two’s-complement representation. In this system, with a (B + 1) bit
codeword,

¢ = [bo,b],...,bg]

the leftmost or most significant bit, by, is the sign bit, and the remaining bits are used to represent either binary
integers or fractions. Assuming binary fractions, the codeword byb b, - - - bg has the value

x=(=Dby+b2 " +52 24 ... +bg27 B

An example is given below for a 3-bit codeword.

Binary Symbol  Numeric Value
011 3
010 :
001 :
000 0
111 ~3
110 -3
101 ~3
100 -1

3.3 DIGITAL-TO-ANALOG CONVERSION

As stated in the sampling theorem, if x,(¢) is strictly bandlimited so that X,(j2) = O for |2|] > o, and if
T, < 7/ S, then x,(t) may be uniquely reconstructed from its samples x(n) = x,(nT;). The reconstruction pro-
cess involves two steps, as illustrated in Fig. 3-6. First, the samples x(n) are converted into a sequence of impulses,

00

x() =) x(mst - nT)

n=-—oo

and then x, (1) is filtered with a reconstruction filter, which is an ideal low-pass filter that has a frequency response
given by

T, Q< %

H,(j) = :
0 2] > —

T,

§

This system is called an ideal discrete-to-continuous (D/C) converter. Because the impulse response of the
reconstruction filter is
sin(mt/Ty)

helt) = =0T,
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Xa(t) x(n) Xalt)
—l— —— D/C F——

x(m) Convert to xi(t) Ideal low-pass

Impulses Filter

(@)

‘H,(jQi

—n/Ts n/Ts

(b)
Fig. 3-6. (a) A discrete-to-continuous converter with an ideal low-pass reconstruction filter. (b) The
frequency response of the ideal reconstruction filter.

the output of the filter is

_ S B _ ad sin(t — nTy)/T;
xal0)= ) xmhyt —nTo) = Y x(m— (3.6)

n=-0oo n=—0o0

This interpolation formula shows how x,(¢) is reconstructed from its samples x(n) = x,(nT;). In the frequency
domain, the interpolation formula becomes

o0
Xa(jQ) = ) x(mH,(jQye /"
N o . . ¥
= H,(jQ) ) x(me ™" = H.(jQ)X (/") 3.7)
n=-—00
which is equivalent to
o TxEm) i< =
X.(jR) = T (3.8)
0 otherwise

Thus, X (e/?) is frequency scaled (w = Q2T;), and then the low-pass filter removes all frequencies in the periodic
spectrum X (e/%¥7) above the cutoff frequency Q. = 7/ Tj.

Because it is not possible to implement an ideal low-pass filter, many D/A converters use a zero-order hold
for the reconstruction filter. The impulse response of a zero-order hold is

1 0<t =T,

0 otherwise

ho(t) = [

and the frequency response is
—~jQT,/2 5m(QTv/z_)
Q/2
After a sequence of samples x,(n7;) has been converted to impulses, the zero-order hold produces the staircase

approximation to x,(¢) shown in Fig. 3-7. With a zero-order hold, it is common to postprocess the output with a
reconstruction compensation filter that approximates the frequency response

QT /2 o972
sin(QT/2)

Ho(jQ) =e

12 <
0 2] >

Bl B T
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REEEE e

1 4 3 >
T u =

Y o

—2T, -T. o T, 2T, 3T, AdT, —27T, -T, O T, 27, 3T, AdT,

Fig. 3-7. The use of a zero-order hold to interpolate between the samples in x,(¢).

so that the cascade of Hy(e/®) with H.(e/®) approximates a low-pass filter with a gain of T over the passband.
Figure 3-8 shows the magnitude of the frequency response of the zero-order hold and the magnitude of the
frequency response of the ideal reconstruction compensation filter. Note that the cascade of H.(jS2) with the
zero-order hold is an ideal low-pass filter.

4
T,

Zero-order hold / \

N
\2:/
....’1__‘7:. —

/Ideal interpolating filter

\/‘Q
o >

ST z £

T, T, T,
(4)

L |He(5Q)
1
1
_2r . = 2x .

T, T T, T,

()

Fig. 3-8. (a) The magnitude of the frequency response of a zero-order
hold compared to the ideal reconstruction filter. () The ideal reconstruc-
tion compensation filter.

3.4 DISCRETE-TIME PROCESSING OF ANALOG SIGNALS

One of the important applications of A/D and D/A converters is the processing of analog signals with a discrete-
time system. In the ideal case, the overall system, shown in Fig. 3-9, consists of the cascade of a C/D converter,
a discrete-time system, and a D/C converter. Thus, we are assuming that the sampled signal is not quantized
and that an ideal low-pass filter is used for the reconstruction filter in the D/C converter. Because the input
x4(t) and the output y,(¢) are analog signals, the overall system corresponds to a continuous-time system. To
analyze this system, note that the C/D converter produces the discrete-time signal x(n), which has a DTFT
given by

o<

. 1 W 2k
X(e'?) = T Z Xa(jF —j—T—)

S k=—o00
If the discrete-time system is linear and shift-invariant with a frequency response H (¢/¢),
. . , & w 2k
joy — jo joy — joy L T Jnikdid
Y(el) = H(/")X (/") = H(e)= 3 Xa(] J )

T T,

S k=—00
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+ TS + Tx
Xa(1) x(n) y(n) Yall)
— C/D > H(e'®) > D/C —

Fig. 3-9. Processing an analog signal using a discrete-time system.

Finally, the D/C converter produces the continuous-time signal y,(¢) from the samples y(n) as follows:

_ s sinn(t — nTy)/ T,
Yat) =Y YO~ T

n=—o00

Either using Eq. (3.7 ) or by taking the DTFT directly, in the frequency domain this relationship becomes

Y,(jQ) = H,(jY (/") = H,(jQH (/)X (/")

; 1 & 2k
Q) — 7 QT e I
or Ya(j) = H.(JDH @) kZ X (19 i )
=—00
If x,(¢) is bandlimited with X,(jQ) = O for |Q2| > 7 /T, the low-pass filter H,(j2) eliminates all terms in the
sum except the first one, and

Q

H(EHX,(Q) 19 < —
Y.(jQ) =
0 12| > —

~Nis S

)

Therefore, the overall system behaves as a linear time-invariant continuous-time system with an effective fre-
quency response

. H(e®Ty Q| < =
H,(jRQ) = T, 3.9)
0 otherwise

Just as a continuous-time system may be implemented in terms of a discrete-time system, it is also possible
to implement a discrete-time system in terms of a continuous-time system as illustrated Fig. 3-10. The signal
x,(2) is related to the sequence values x(n) as follows:

_ ol sint(t — nTy)/Ts
0= Y KOS,

n=—0oC

k 2

x(n) Xa(l) Ya(t) y(n)
—_ D/C > H,(j) —p— C/D —

Fig. 3-10. Processing a discrete-time signal using a continuous-time system.

Because x,(t) is bandlimited, y,(¢) is also bandlimited and may be represented in terms of its samples as follows:

R sin(t — nTy)/Ts
Yalt) = Z (n) 2t — 1T/ T.

n=—00
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The relationship between the Fourier transform of x,(¢) and the DTFT of x(n) is

Xa(j2) = T

T.X(ei%T) Q| < =
otherwise

and the relationship between the Fourier transforms of x,(¢) and y,(¢) is

T
. H,(j)X(j2) Q] < —
v, (j) = {07 T,
0 otherwise
Therefore Y(e/?) = iY j—w lw| <7
’ T, ‘\ T,

and the frequency response of the equivalent discrete-time system is

. ja)
H(e'?) = Ha(—T—) ol < 3.10)

3.5 SAMPLE RATE CONVERSION

In many practical applications of digital signal processing, one is faced with the problem of changing the sampling
rate of a signal. The process of converting a signal from one rate to another is called sample rate conversion.
There are two ways that sample rate conversion may be done. First, the sampled signal may be converted back
into an analog signal and then resampled. Alternatively, the signal may be resampled in the digital domain. This
approach has the advantage of not introducing additional distortion in passing the signal through an additional
D/A and A/D converter. In this section, we describe how sample rate conversion may be performed digitally.

3.5.1 Sample Rate Reduction by an Integer Factor

Suppose that we would like to reduce the sampling rate by an integer factor, M. With a new sampling period
T, = MTs, the resampled signal is

xa(n) = x4(nT)) = x(nMT;) = x(nM)
Therefore, reducing the sampling rate by an integer factor M may be accomplished by taking every M th sample of

x(n). The system for performing this operation, called a down-sampler, is shown in Fig. 3-11(a). Down-sampling
generally results in aliasing. Specifically, recall that the DTFT of x(n) = x,(nTy) is

; 1 & w 2k
X(el®) = — X lj= - j==
(€’?) T. k;oo (JTx J T, )
Similarly, the DTFT of x4(n) = x(nM) = x,(nMT,) is

- J Q—" ® 27r
Xg(e!®) = — Xal J —J
@)= g ) (JMTS JMTS)

S r=—00

Note that the summation index r in the expression for X ;(e/“) may be expressed as

r=i+kM
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x(n) xa(n)
—_— l M >
(@)
x(n) Low-pass filter Xa(n) xa(n)
— Gain = | > 1 M ———
Cutoff = m/M

(b
Fig. 3-11. (@) Down-sampling by an integer factor M. (b) Decimation by
a factor of M, where H (¢/*) is a low-pass filter with a cutoff frequency
w.=n/M.

where —00 < k < 0oand 0 <i < M — 1. Therefore, X4(¢/) may be expressed as

X(ejw)_LAf iix . @ _,@_,27{1'
€)=y T “\“mr, T, "M,

i=0 S k=~o00

The term inside the square brackets is

X(ej(w-Zyri)/M) _

— (w—2mi) 27k
X\i=r— /71
00 S 5

1
Ts ,

Thus, the relationship between X (e/“) and X (¢/) is

X

|

Xy = =) X(e/2mbiM) (3.11)
M k

I
o

Therefore, in order to prevent aliasing, x(n) should be filtered prior to down-sampling with a low-pass filter
that has a cutoff frequency w. = m/M. The cascade of a low-pass filter with a down-sampler illustrated in
Fig. 3-11(b) is called a decimator.

3.5.2 Sample Rate Increase by an Integer Factor

Suppose that we would like to increase the sampling rate by an integer factor L. If x,(¢) is sampled with a
sampling frequency f; = 1/T, then
x(n) = xq(nTy)

To increase the sampling rate by an integer factor L, it is necessary to extract the samples

xi(n) = xa(’—’;>

from x(n). The samples of x;(n) for values of n that are integer multiples of L are easily extracted from x(n) as
follows:

xi(nL) = x(n)
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Shown in Fig. 3-12(a) is an up-sampler that produces the sequence

x(n/L) n=0,+L, 2L, ...
Xi(n) = .
0 otherwise

In other words, the up-sampler expands the time scale by a factor of L by inserting L — 1 zeros between each
sample of x(n). In the frequency domain, the up-sampler is described by

X'y = Z i(n)e " = Z x(n)e inke
or Xi(e’?) = X (/1) 3.12)

Therefore, X (e/*) is simply scaled in frequency. After up-sampling, it is necessary to remove the frequency
scaled images of X,(j<2), except those that are at integer multiples of 2z. This is accomplished by filtering %;(n)

x(n) Xi(n)
ST I R
(@)
x(n) Xi(n) Low-pass filter Ki(n)
_ T L e Gain=L —>—
Cutoff = /L

(b)
Fig. 3-12. (a) Up-sampling by an integer factor L. (b) Interpolation by
a factor of L.

with a low-pass filter that has a cutoff frequency of w/L and a gain of L. In the time domain, the low-pass filter
interpolates between the samples at integer multiples of L as shown in Fig. 3-13. The cascade of an up-sampler
with a low-pass filter shown in Fig. 3-12(b) is called an interpolator. The interpolation process in the frequency
domain is illustrated in Fig. 3-14.

IRl

Fig. 3-13. (a) The output of the up-sampler. (b) The interpolation
between the samples X;(n) that is performed by the low-pass filter.
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Xa(j$2)
Q
—Q ! Qo
(a)
X (el®)
1/ T
w
' | T >
-2 -7 T 2
(b)
w
! ‘ ) g
4 2 2 4,
S Por =2
©)
, H(e®)
L
w
-2 -1 % 2
)
Xi(e!?)
L/T;
w
4, 2 2 4
A ror =

(e)

Fig. 3-14. Frequency domain illustration of the process of interpolation. (a) The
continuous-time signal. (b) The DTFT of the sampled signal x(n) = x,(nTj).
(¢) The DTFT of the up-sampler output. (d) The ideal low-pass filter to perform the
interpolation. (e) The DTFT of the interpolated signal.

3.5.3 Sample Rate Conversion by a Rational Factor

The cascade of a decimator that reduces the sampling rate by a factor of M with an interpolator that increases
the sampling rate by vital factor of L results in a system that changes the sampling rate by a rational factor
of L /M. This cascade is illustrated in Fig. 3-15(a). Because the cascade of two low-pass filters with cutoff
frequencies /M and 7/L is equivalent to a single low-pass filter with a cutoff frequency

m, T
=min{—, —
@e ML

the sample rate converter may be simplified as illustrated in Fig. 3-15(b).
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x(n) Xi(n) Low-pass Filter xi(n) Low-pass Filter Ta(n) Xa(n)
—_——d T L - Gain =L > Gain = | > l M F——
Cutoff = /L Cutoff = /M
(a)

x(n) % 0m Low-pass Filter Ta(n) xa(n)

T . Gain = L
— ] > N > M ——
Cutoff =
min{r/L,7/M)
(h)

Fig. 3-15. (a) Cascade of an interpolator and a decimator for changing the sampling rate by a rational factor L /M.
(b) A simplified structure that results when the two low-pass filters are combined.

EXAMPLE 3.5.1  Suppose that a signal x,(r) has been sampled with a sampling frequency of 8 kHz and that we would
like to derive the discrete-time signal that would have been obtained if x,(r) had been sampled with a sampling frequency of
10 kHz. Thus, we would like to change the sampling rate by a factor of

L 10

5
M 8 4

This may be accomplished by up-sampling x(n) by a factor of 5, filtering the up-sampled signal with a low-pass filter that
has a cutoff frequency w, = 7/5 and a gain of 5, and then down-sampling the filtered signal by a factor of 4.

Solved Problems

A/D and D/A Conversion

3.1 Consider the discrete-time sequence

(n) = )s(’}—]E
x(n) = cc 3

Find two different continuous-time signals that would produce this sequence when sampled at a frequency
of f; = 10 Hz.

A continuous-time sinusoid
Xxq(t) = cos(R20t) = cos(2m fot)

that is sampled with a sampling frequency of f; results in the discrete-time sequence

x(n) = x,(nTs) = COS(2N{£H)

5

However, note that for any integer &,

cos(2n ?n) = Ccos (271 %n)

¥

Therefore, any sinusoid with a frequency
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3.2

will produce the same sequence when sampled with a sampling frequency f;. With x(n) = cos(nm/8), we want

Jo T
2n— = —
nﬁ 3
or f0=%f5=625Hz

Therefore, two signals that produce the given sequence are

Xx1(t) = cos(1250m¢)

and x2(t) = cos(21250m¢t)

If the Nyquist rate for x,(¢) is €2, what is the Nyquist rate for each of the following signals that are
derived from x,(t)?

dx,(1)
(a) I

(b) x,(2t)
(¢) xX(t)
(d) xq(t)cos(S2t)

(a) The Nyquist rate is equal to twice the highest frequency in x,(¢). If

_ dx(n)
Ya(t) = @
then Ya(jQ) = jQX.()

Thus, if X,(j2) = 0 for |2] > €, the same will be true for ¥, (j2). Therefore, the Nyquist frequency is not
changed by differentiation.

(b) The signal y,(t) = x,(2t) is formed from x,(¢) by compressing the time axis by a factor of 2. This results in an
expansion of the frequency axis by a factor of 2. Specifically, note that

o0 ) oo )
Ya(19)=f Ya(De™ ¥ dt =/ Xa(20)e ™% dt

o0 o0

[ et o ()

o0

Consequently, if the Nyquist frequency for x,(t) is €2, the Nyquist frequency for y,(t) will be 2€;.

(¢) When two signals are multiplied, their Fourier transforms are convolved. Therefore, if

ya(t) = x2(t)

1
then Y.(jQ) = E;Xa(JQ)*Xa(.}Q)
Thus, the highest frequency in y,(r) will be twice that of x,(t), and the Nyquist frequency will be 2€2;.

(d) Modulating a signal by cos(Q¢) shifts the spectrum of x,(¢) up and down by €2,. Therefore, the Nyquist
frequency for y,(t) = cos(Qot)x, (1) will be £2; + 2.
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Let h,(¢) be the impulse response of a causal continuous-time filter with a system function

s+a
Hy(s)= —————
© (s +a) +b?
Thus, H,(s) has a zero at s = —a and a pair of poles at s = —a + jb. By sampling 4,(¢) we form a

discrete-time filter with a unit sample response
h(n) = ha(nTy)

Find the frequency response H (e/“) of the discrete-time filter.

To find the frequency response H (¢/®), it is necessary to find the impulse response of the analog filter, h,(t), sample
the impulse response,
h("l) = ha(nTx)

and then find the discrete-time Fourier transform,
20

H(e™) =Y h(me "

To find the impulse response, we first perform a partial fraction expansion of H,(s) as follows:

A B
U= @i Tsr@—p @13

The constant A is

A=1(s+a+ jbH, )] srd '
= | a a S s=—q—jp = ————— = 3
/ T s ¥(a— jb) omuegp
Similarly, for B we have

s+a
B=[(s+a—jb)H,()sevrjp = ——————— =1
. IOHmarjn s+a+ jb) | —_ayjp 2

1 1

Therefore, H,(s) = 2 2

— + -
s+(a+ jb) s+ (a~— jb)
Another way to find the constants A and B would be to write Eq. (3./3) over a common denominator,

s+a A +a—jb)+B(s+a+ jb)
(s+a2+b (s +a)2 + b2

H,(s) =

and equate the polynomial coefficients in the numerators of H,(s):

A+B =1
Ala — jby+ B(a+ jb) =a

Solving these two equations for A and B gives the same result as before. From the partial fraction expansion of
H,(s), the impulse response may be found using the Laplace transform pair

e u(t) &

Ss+a

Specifically, we have
ha(t) = 3P u(e) + 3P u(r) = e~ cos(bt)u(t)
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Sampling 4,(r), we have
h(n) = h,(nT,) = " cos(bnT,)u(n)

Finally, for the frequency response we have

0

o0
He'*) = Y hme /" =" e=™" cos(bnT,)e "
n=0

h=-=0C

I
gk

0
%e(fufjb)n'l}e—jnw + § %ei—u-fjh)nT\e—jnw
n=0 n=0

o o
— 2 %(e—uf‘ )ne—-/n(wﬂﬂ\-) + E %(e—aT‘ )ne—jn(w—hm

n=0 n=0
Note that in order for these sums to converge, and for the frequency response to exist, it is necessary that
](’7”7‘ | < 1

or, because T, > 0, we must have ¢ > 0. In other words, the poles of H,(s) must lie in the left-half s-plane or,
equivalently, A, (t) must be a stable filter. With a > 0 we have

|
H ejn) — 2 + 2, i
( ) 1 — e(—rl—jb)'l} e~ 1 — e(—u+jh)7;e—ja>

which, after combining over a common denominator and simplifying, gives

| — e cos(hT,)e ™ /?

H(e') = _ ,
™) 1 —2¢=¢T cos(hTy)e i« 4 e~2aT o= 20

34 A continuous-time filter has a system function

1
s+ 1

Ha(s) =

If h,(t) is sampled to form a discrete-time system with a unit sample response
h(ll) = ha(nrv)
find the value for T so that H (e/“) at w = /2 is down 6 dB from its maximum value at @ = 0, that is,

[H(e )P

IOIOg W = -6

The impulse response of the continuous-time system is
ha(t) = e "u(t)
When sampled with a sampling period Ty, the resulting unit sample response is

h(n) = h,(nT,) = e " u(n)

and the frequency response is

jw = —nTy = jnw = —(Ts+jom 1
H('”) = E e "ve ZE e =

Tl —eTeJe
n=(0 n=0 1 e e
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, ]
With |H(e/))? =

(1 —eTs)?
Hel ™) =
and [HE™ D = o= =
it follows that we want
H (™) (1— ey
10log>——— = 10log———~ = —6
T HEO) B e
1-— —T5\2
or A=e ) _ 1906 = 02512
1+ e

Thus, we have
1—2¢70 e =0.2512[1 + 7]
or 0.7488¢ 725 — 2¢7 T +0.7488 = 0

which is a quadratic equation in e~". Solving for the roots of this quadratic equation, we find

1 1
T |24 /4 4(0.74887 | = ——[1 £ 0.6628] = 2.2206, 0.4503
¢ T 20.7488) [ ( ) ] 07488 ]

Taking the natural logarithm, and selecting the positive value for T;, we have

T, =0.7978

3.5 A continuous-time signal x,(¢) is bandlimited with X,(jQ) = 0 for |Q2| > Q. If x,(¢) is sampled with
a sampling frequency 2; > 22, how is the energy in x(n),

Eq= Y Ix(n)’

n=-—00

related to the energy in x,(¢),

E, = / |Xa(t)|2df

oC
and the sampling period T;?
Using Parseval’s theorem, the energy in the analog signal x,(r) may be expressed in the frequency domain as follows:

o0 ] o0
E, = / O d = —— f X, d
_ 27 J_oo

00

Because x,(t) is bandlimited with X (/) = O for |2] > Q,

1 (%
E, = —f IX.(jQ)IdQ
27T -Q

Sampling x,(¢) at or above the Nyquist rate results in a sequence x(n) with a discrete-time Fourier transform

1 jw
. — X, = < QoT;
X(e/®) = { T, (n ) lol < 2T,

0 QT < o] <7
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3.6

Therefore, the energy in x(n), using Parseval’s theorem, is

oo 1 m .
Eq = :Zw I = — f ) 1X (/) dw
1 QTs ; 2
= — — Xa(j—w) dw
27 Joqor, T? T
1 o} 5 1
= — X, Gl du = —E,
3T, ‘Qol (Ju)| du T.
and we have
1
Ed = Ea

As a check on this result, suppose that x,() is a bandlimited signal with a spectrum shown in the figure below.

4 Xa(jD)
A
Q
—Q Qo
The energy in x,(t) is

1 A2Q
E,=—A%.2Q, = —2

2n b4

When sampled with a sampling frequency 2, > 28, the DTFT of the sampled signal is as shown in the following
figure:

§ X

-2 —QoT; QT 27

Y

Therefore, the energy in x(n) is

1 /A\? A2Q, 1
=—(=) - 2QT, =——=—E,
Ed 27T(Tr> 2 0 ”Ts Tr

A complex bandpass analog signal x,(¢) has a Fourier transform that is nonzero over the frequency range
[Q), ©22] as shown in the figure below.

+ XS

Q) Q)

The signal is sampled to produce the sequence x(n) = x,(nT,).

(a) What is the smallest sampling frequency that can be used so that x,(f) may be recovered from its
samples x(n)?
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(b)
(@
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For this minimum sampling frequency, find the interpolation formula for x,() in terms of x(n).

Because the highest frequency in x,(¢) is €2,, the Nyquist rate is 2€2,. However, note that if x,(¢) is modulated
with a complex exponential of frequency (2, + £2/)/2,

Yalt) = xﬂ(t)e—j(92+91 32

then y,(¢) is a (complex) low-pass signal with a spectrum shown in the following figure:

4 YU

/ ¢

—Q Qo

where Q¢ = (22, — €2)/2. Thus, the Nyquist rate for y,(t) is 2 = Q, — Q;, which suggests that x,(¢) may
be uniquely reconstructed from its samples x,(nT;) provided that

w

I, < c——=
Q —Q

If x,(¢) is sampled with a sampling frequency £2;, the spectrum of the sampled signal is

, S
X(j =7 ) Xa(jQ— jkQ)

S k=-cc

as illustrated below.
1 X0

/1 /]

Q
Q-9 Q-9 Q Q0

In order for there to be no interference between the shifted spectra, it is necessary that

Q- Q; <

or Q> Q;, — Q)

If this condition is satisfied, x,(t) may be uniquely reconstructed from x(t) using a bandpass filter with a
frequency response as shown below.

1 H.(Q)

+ T

Q Q7

(b) With asampling frequency 2, = 2, — 2, the reconstruction filter is a complex bandpass filter with an impulse

response

ho(t) =T, Me—j(ﬂz+ﬂx)t/2
t
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Therefore, the output of the reconstruction filter, which produces the complex bandpass signal x,(¢), is

% 0 sin (1 = nT5)/2 o vapu-ntyy2
5= 3 xh =T =T, 3 xim T e

n=-—00 n=-—o0

Given a real-valued bandpass signal x,(¢) with X,(f) = O for |f| < f; and |f| > f», the Nyquist
sampling theorem says that the minimum sampling frequency is f; = 2 f,. However, in some cases, the
signal may be sampled at a lower rate.

(a)

(b)

(¢)
(@)

Suppose that f| = 8 kHz and f, = 10 kHz. Make a sketch of the discrete-time Fourier transform
of x(n) = x,(nT;) if f; = 1/T, = 4 kHz.
Define the bandwidth of the bandpass signal to be

B=/f,-f

and the center frequency to be

_L+h

fo= 15

Show that if f. > B/2 and f; is an integer multiple of the bandwidth B, no aliasing will occur if
x,(t) is sampled at a sampling frequency f; = 2B.

Repeat part (b) for the case in which f> is not an integer multiple of the bandwidth B.
Let x,(¢) have a spectrum as shown in the figure below.

Xalf)

D A

+
L Y t Y + I Y

-12 ~-10 -8 -6 -4 =2

The spectrum of the sampled signal

()= Y x(nT)S(t — nTy)
] o0
is X(H)= 7 D Xalf —Kf2)
S k=—00

which is formed by shifting X,(f) by integer multiples of the sampling frequency and summing. With f; =
4 kHz, we have the spectrum sketched below.

Note that X,(f) is not aliased. Therefore, with the appropriate processing of x,(t), the signal x,(t) may be
recovered from its samples. Finally, the DTFT of the discrete-time sequence x(n) = x,(nTy) is
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which is sketched below.

X (e*)

-2r - g 27

(b) If f; is an integer multiple of B, we may express f) and f, as follows:
hH=0U-1B fo=1B

With a sampling frequency of f; = 2B, the sampled signal has a spectrum

l o
Xdf)=0 3 Xulf —2kB)

5 k=00

Because X,(f) is nonzero only for (! — 1)B < |f| < IB, there is only one term in the sum that contributes to
X(f) in the frequency range O< f <B and only one term that contributes to the frequency range —B < f < 0
(draw a picture as in part (a) to see this clearly). Therefore, there is no aliasing, and x,(t) may be sampled
without aliasing if a sampling frequency f; = 2B.

(c) If f, is not an integer multiple of B, we may always increase B until this is the case. Specifically, let

(4]
B
where | -] is defined to be the “integer part.” Now, if we simply increase B to B’ where

fa

k=2
B/

we have the case described in part (b) where f, is an integer multiple of the bandwidth. Thus, x,(#) may be
sampled without aliasing a sampling frequency of

_ 2%
Lf2/B]

fi=28

3.8  Determine the minimum sampling frequency for each of the following bandpass signals:
(a) x4(t) is real with X,(f) nonzero only for 9 kHz < |f| < 12 kHz.
(b) x4(t) is real with X,(f) nonzero only for 18 kHz < | f| < 22 kHz.
(c) x4(t) is complex with X,(f) nonzero only for 30 kHz < f < 35 kHz.

(a) For this signal, the bandwidth is B = f>, — fi = 3 kHz, and f, = 12 = 4B is an integer multiple of B.
Therefore, the minimum sampling frequency is f; = 2B = 6 kHz.

(b) For this signal, B = 4 kHz and f, = 22, which is not an integer multiple of B. With | f,/B] = 5, if we let
B' = f,/5 = 4.4, f, is an integer multiple of B’, and x,(¢) may be sampled with a sampling frequency of
fs =2B' = 8.8 kHz.

(c) For a complex bandpass signal with a spectrum that is nonzero for fi < f < f,, the minimum sampling
frequency is f; = f> — fi. Thus, for this signal, f; = 5 kHz.

3.9 How many bits are needed in an A/D converter if we want a signal-to-quantization noise ratio of at least
90 dB? Assume that x,(¢) is gaussian with a variance o', and that the range of the quantizer extends from
—30, to 30y; that is, Xnax = 30, (with this value for X ., only about one out of every 1000 samples
will exceed the quantizer range).
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3.10

.11

For a (B + 1)-bit quantizer, the signal-to-quantization noise ratio is

Xmax
SQNR = 6.02B + 10.81 — 20log —

UX
With X nax = 30, this becomes

SQONR = 6.02B + 10.81 — 20log 3 = 6.02B + 10.81 — 9.54 = 6.02B + 1.27

If we want a signal-to-quantization noise ratio of 90 dB, we require

_90-127

= 14.74
6.02

or B + 1 = 16 bits.

An image is to be sampled with a signal-to-quantization noise ratio of at least 80 dB. Unlike many other
signals, the image samples are nonnegative. Assume that the sampling device is calibrated so that the
sampled image intensities fall within the range from 0 to 1. How many bits are needed to achieve the
desired signal-to-quantization noise ratio?

For a bipolar signal with amplitudes that fall within the range [~ X nax, Xmax |, the signal-to-quantization noise ratio
is

X
SQNR = 6.02B + 10.81 — 20log —™=*
[
For a nonnegative signal that is confined to the interval [0, 1], the signal-to-quantization noise ratio is equivalent to
the bipolar case if we set X, = 0.5. If we assume that the intensities of the image are uniformly distributed over

the interval [0, 1],

2
0, =1

o

12
Therefore, SQNR = 6.02B + 10.81 — 201log g = 6.02B + 6.03

and for a signal-to-quantization noise ratio of 80 dB, we require

80— 6.03

B = =12.2
6.02 2.29

or B + 1 = 14 bits.

Suppose that we have a set of unquantized samples, x(n), that are nonnegative for all n. A method for
quantizing x(n) that is often used in speech processing is as follows. First, we form the sequence

y(n) = log[x(n)]
Then y(n) is quantized with a (B + 1)-bit uniform quantizer,
$(n) = Qly(m)} = y(n) + e(n)
The quantized signal samples are then obtained by exponentiating y(n),
k(n) = exp{y(n)}

Show that if e(n) is small, the signal-to-quantization noise ratio is independent of the signal power.

With $(n) = Qly(m] = y(n) + e(n) = log[x(n)] + e(n)
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we have, for x(n),
%(n) = exp{log[x(n)] + e(n)} = x(n) - exp{e(n)}
If e(n) « 1, we may use the expansion
exp{e(n)} = 1 + e(n)
to write
k() = x(m1 + e(n)] = x(n) + f(n)

where f(n) = x(n)e(n) is a (signal-dependent) quantization noise. If we assume that the quantization noise e(n) is
statistically independent of x(n),
E{f*(m) = E{x*(n)} - E{e*(n)

and the signal-to-quantization noise ratio is

E{xX(n) _

SQNR = 10log Em) =

—101log E{e%(n))

which is independent of the signal power.

Discrete-Time Processing of Analog Signals

3.12 A continuous-time signal x,(t) is to be filtered to remove frequency components in therange SkHz < f <

3.13

10 kHz. The maximum frequency present in x,(¢) is 20 kHz. The filtering is to be done by sampling
x4(1), filtering the sampled signal, and reconstructing an analog signal using an ideal D/C converter. Find
the minimum sampling frequency that may be used to avoid aliasing, and for this minimum sampling
rate, find the frequency response of the ideal digital filter H (¢/“) that will remove the desired frequencies
from x,(2).

Because the highest frequency in x,(¢) is 20 kHz, the minimum sampling frequency to avoid aliasing is f; = 40 kHz.
The relationship between the continuous frequency variable €2 and the discrete frequency variable w is given by

w = QT

or w =27
5

Therefore, the frequency range 5 kHz < f < 10 kHz corresponds to a digital frequency range

Sw=

ENE
NS

and the desired digital filter is a bandstop filter that has a frequency response as illustrated in the figure below.

A [H()|
-1
w
J L -
L T Lol
pis n n T
- -7 71 T 2 T

A major problem in the recording of electrocardiograms (ECGs) is the appearance of unwanted
60-Hz interference in the output. The causes of this power line interference include magnetic induc-
tion, displacement currents in the leads on the body of the patient, and equipment interconnections.
Assume that the bandwidth of the signal of interest is 1 kHz, that is,

X.(f)=0  |f] > 1000 Hz
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3.14

The analog signal is converted into a discrete-time signal with an ideal A/D converter operating using
a sampling frequency f;. The resulting signal x(n) = x,(nTs) is then processed with a discrete-time
system that is described by the difference equation

y(n) = x(n) +ax(n — 1) + bx(n — 2)

The filtered signal, y(n), is then converted back into an analog signal using an ideal D/A converter. Design
a system for removing the 60-Hz interference by specifying values for f;, a, and b so that a 60-Hz signal
of the form

wy(t) = Asin(1207m¢)

will not appear in the output of the D/A converter.

The signal that is to have the 60-Hz noise removed is bandlimited to 1000 Hz. Therefore, in order to avoid aliasing
when the signal is sampled, we require a sampling frequency

fs = 2000
Using the minimum rate of 2000 Hz, note that a 60-Hz signal w,(t) = sin(1207¢) becomes

1207 n

w(n) = w,(nT;) = sin (W

) = sin(nwy)

where wg = ().06r. Recall that complex exponentials are eigenfunctions of linear shift-invariant systems. Therefore,
if the input to an LSI system is x(n) = e/"  the output is

y(n) = H(e/*0)e"

e/nen _ = nwn
Because w(n) = ——————
2j

w(n) will be removed from x(n) if we design a filter so that H (e/“) is equal to zero at = +w,. Because H (e/®) is
a second-order filter with a frequency response

H(e'*)=1+ae™* + be >

it may be factored as follows:
H(e’”) = (1 —ae™ )1 — pe™*)

Therefore, H(e/“) will be zero for w = Fwy if & = e/ and B = e /0. In this case, we have
H(e’®) = 1 — 2(cos wp)e /@ + e~/
Thus, our requirements are that
a = —2coswy = —2c0s(0.067) b=1

and f; = 2000.
The following system is used to process an analog signal with a discrete-time system.

+T. + n

xa(?) x(n) y(n) Ya(t)
£ = D/C el

Discrete-time|
System
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Suppose that x,(¢) is bandlimited with X ,(f) = O for | f| > 5 kHz as shown in the figure below,

Xal(f)
1

f kHz

=5 5
and that the discrete-time system is an ideal low-pass filter with a cutoff frequency of m /2.
(a) Find the Fourier transform of y,(¢) if the sampling frequencies are f| = f, = 10 kHz.
(b) Repeat for f; =20 kHz and f> = 10 kHz.
(¢) Repeat for f; = 10 kHz and f> = 20 kHz.

(@) When the sampling frequencies of the C/D and D/C converters are the same, and x,(¢) is bandlimited with
X,(j2) = 0 for |2} > /T, this system is equivalent to an analog filter with a frequency response

. n

H (e/$h Q| < —

e < [HETel<z
0 else

Therefore, if H(e/) is a low-pass filter with a cutoff frequency 7 /2, the cutoff frequency of H,(j2), denoted
by €2, is given by

m
QOTI = E
or 2nfo- T, = il
2
Thus, fo= % fi =2500 Hz

(b) When the sampling frequencies of the C/D and D/C are different, it is best to plot the spectrum of the signals as
they progress through the system. With X ,(f) as shown above, the discrete-time Fourier transform of x(n) is

X(e/?)
/Ty

w
-

"
T T

1 t T
-7 -/2 /2 b4
Because the cutoff frequency of the discrete-time low-pass filter is 7 /2, y(n) = x(n), and the output of the D/C
converter is as plotted below.

Ya(f)
T/T) =2

f kHz

T ¥ —>-

-2.5 2.5

(¢) With fi = 10 kHz, we are sampling x,(¢) at the Nyquist rate, and the spectrum of x(n) is
X (e/?)

1/T)

- —r/2 /2 n
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and the output of the low-pass filter is as shown below.

Y(e/®)
1/T,
w
+ | ! } 4 -
- —n/2 /2 14
Therefore, the spectrum of y,(¢) is as follows:
Ya(f)
/T
f kHz
s ' 5

3.15 Consider the system in Fig. 3-9 for implementing a continuous-time system in terms of a discrete-time
system. Assume that the input to the C/D converter is bandlimited to £29 = €2,/2 and that the unit sample
response of the discrete-time system is

h(n) =8(n) —0.96(n — 1)

Find the overall frequency response of this system.

Assuming bandlimited inputs with X,(j2) = 0 for [Q| > /2, the output ¥,(/<2) is related to the input X,(j )
as follows:
Y,(j) = H, (X (jQ)

H@e) |9 < X
where H,(jQ) = T;
0 otherwise

Because the tfrequency response of the discrete-time system is

H(e/?) =1 —0.9e

1-09079% |Q] < =
then H,(jQ) = T,
0 otherwise

3.16 Consider the system shown in Fig. 3-9 for implementing a continuous-time system in terms of a discrete-
time system. Assuming that the input signals x,(¢) are bandlimited so that X ,(f) = O for | f| > 10 kHz,
find the discrete-time system that produces the output

Y.(f) [f1Xa(f) 2000 < |f] < 8000
aeaT 0 otherwise
For bandlimited inputs, the system in Fig. 3-9 is a linear shift-invariant system with an effective frequency response
equal to

. n

H (e/9Ts) 1R < —

H,(j) = T;

0 otherwise

The system that we would like to realize has a frequency response

1€ 4000 < || < 16000m

0 otherwise

Ha(j) = l



128

3.17

3.18

SAMPLING [CHAP. 3

If we assume a sampling frequency f; = 20 kHz, the frequency response of the discrete-time system should be

w
v 21 027 <o <0.
H(e™) = |T| 7 < |ol < 0.87

0 otherwise

where T, = 1/20000.

Diagrammed in the figure below is a hybrid digital-analog network.

x(n) y(n) Yalt)
> C/D o H(el®) > D/C
Xa(1) Talt)
va(t)
> Hupt(f) >

The discrete-time system H (e/®) is a low-pass filter

. A w| < wy
He= {0
and the analog system Hyy( f) is a high-pass filter with a frequency response as shown below.
Hype(f)
] -
_f (kHz)
-2 I 2 i

The input x,(¢) is bandlimited to 4 kHz, and the sampling frequencies of the ideal C/D and D/C converters
are 10 kHz. Find the value for A and wy that will result in perfect reconstruction of x,(¢),

i'a(t‘) = -xa(t)

Because x,(¢) is bandlimited to 4 kHz, the upper branch of this hybrid system acts as an ideal analog low-pass filter
with a frequency response

wp
A [fl =
2ne Ty
Hpi(f) = wp
0
[fl> 2T,

Because the analog network is a high-pass filter with a cutoff frequency of 4 kHz, and
Xalf) = Ya(f) + Va(f)
X,(t) will be equal to x,(t) provided that A = 1 and

wo
mT T = 2000

or wy = 0.4.

A digital sequence x (n) is to be transmitted across a linear time-invariant bandlimited channel as illustrated
in the figure below.
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+ T, +rs
x(n) Xa(l) Yall) y(n)
C/D —_—

Y

—_—] D/C & Channel

Transmitter Receiver

The transmitter is a D/C converter, and the receiver simply samples the received waveform y,(¢):

y(n) = ya(nTs)

Assume that the channel may be modeled as an ideal low-pass filter with a cutoff frequency of 4 kHz:

(a)

(b)

(@)

(®)

1 || < 27(4000)

G.(jQ) =
“/ [0 || > 277(4000)

Assuming an ideal C/D and D/C, and perfect synchronization between the transmitter and receiver,
what values of T (if any) will guarantee that y(n) = x(n)?

Suppose that the D/C is nonideal. Specifically, suppose that x(n) is first converted to an impulse
train and then a zero-order hold is used to perform the “interpolation” between the sample values.
In other words, the impulse response of the interpolating filter is a pulse of duration T

|1 0<r=T;
ha(t) = {0 otherwise

Because the received sequence y(n) will no longer be equal to x(n), in order to improve the perfor-
mance of the receiver, the received samples are processed with a digital filter as shown below.

y(n) x(n)
—_—] H(e®) -

Find the frequency response of the filter that should be used to filter y(n).

The output of the D/C converter is a bandlimited signal x, () with a Fourier transform that is equal to zero for
|f] > fs/2. Because x,(t) is passed through a bandlimited channel that rejects all frequencies greater than
4 kHz, in order for there to be no distortion at the receiver, it is necessary that

—}:- < 4000

2
or fs < 8000

Thus, the C/D and D/C converters must operate at a rate less than 8 kHz.

In order to get the maximum amount of data through the channel per unit of time, we will let 7; be the minimum
sampling period,
-
Ts = %m
When the reconstruction filter in the D/C converter is a zero-order hold, the frequency response of the discrete-
time system that relates the input sequence x(n) to the reconstructed sequence y(n) is
. fw
H(e®) = Ha(’—) o] < 7
T,
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where

Therefore,
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-sar, 2 SIN@T:/2)
0
H(e/®) = T,e-on S0@/2)

w/2

1] <

T

T

otherwise

lw] <

T

[CHAP. 3

and the discrete-time filter for processing y(n) to remove the distortion introduced by the zero-order hold should

approximate the response

Ge'”) =

w/2 ool
sin(w/2)

lw| <7

3.19 Consider the following system for processing a continuous-time signal with a discrete-time system:

e

Xa(t)

fr

The frequency response of the discrete-time filter is

x(n) y(n) Ya(t)
C/D o H{el®) > D/C ——
) 2 .l_ - e_jw
H(ejw) — (3 | . )
1 - ge_jw

If f; =2 kHz and x,(¢) = sin(10007¢), find the output y,(¢).

Sampling x,(¢) = sin(10007r¢) with a sampling frequency f; = 2000 produces the discrete-time sequence

X(n) = xa(nTy) = sin(10007nT,) = sin(%)

This sequence is then filtered with the discrete-time filter

Because x(n) is a sinusoid, the response is

where A and ¢ are the magnitude and phase, respectively, of the frequency response at w = 7 /2. With

|H(e™)* =4

H(e!®) =

2(4 - )

1 -
— e~
1 36

y(n) = Asin(% +¢)

— 3 Co0sw

it follows that | H (e/)] = 2. We may evaluate the phase as follows:

H(e/*)y =2

10

9
0

9

2
3 COosS w

L _ e-jw 1_%ejw
%e“l‘*’ 1 — lejw
2 _ Lo _ p—jw 2_ 10 P8 g
3 ge e ~23 9 cosa)+j951nw
.2 -

2
_ lo-jw
1 ze™/
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3.20

8 .
5 Simnw
2 10 \
3 9 COS w

Therefore, On(w) = tan™!

which, when evaluated at w = 7 /2, gives

G1(@)lw=r/y = tan™" 52 = tan™" # = 0.29527

Thus, y(n) = ZSin(%[n + 0.5903])
Consider the following system consisting of an ideal D/C converter, a linear time-invariant filter, and an

ideal C/D converter.
* T t T2

x(n) Xa{t) Ya(t) y(n)
— D/C > ha(t) > Cc/D —>—

The continuous-time system /,(¢) is an ideal low-pass filter with a frequency response

1 |fl < 10kHz
0 otherwise

Ha(f) = l

(@ T, =T, =104, find an expression relating the output y(n) to the input x(n).
) T = (}7) x 10™*and T, = 1074, find y(n) when

oy — | S/ 2
=[]

(a) When T} = T,, this system behaves as a linear shift-invariant discrete-time system with a frequency response

H(e®) = H,,(B) lw| <
T

Because H,(j2) = 1 for |} < 27 - 104,

H'“) =1 lw| <7

and h(n)y = 6(n)

Therefore, y(n) = x(n).

Another way to analyze this system is to note that the output of the D/C converter, x,(t), is bandlimited to
f = SkHz. Because H,(f) is an ideal low-pass filter with a cutoff frequency 10 kHz, y,(¢) = x,(z). Therefore,
this system is equivalent to the one shown below.

L

x(n) Xa(r) y(n)
—_—— D/C P C/D [——

Because an ideal D/C converter followed by an ideal D/C converter is the identity system, y(n) = x(n).

(b) When T, # T, this system is, in general, no longer a linear shift-invariant system. However, we may analyze
this system in the frequency domain as follows. First, note that the DTFT of x(n) is as illustrated in the following
figure:
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X(e/?)
2

] » e
| 1
—2r - n

Thus, the output of the D/C converter is a bandlimited signal that has a Fourier transform as shown in the
following figure:

Xa(f)
2T,

f kHz

-20 ! 20
The analog low-pass filter removes all frequencies in x,(¢) above 10 kHz to produce a signal y,(¢) that has a
Fourier transform as shown below.

Yo(f)
2T,

f kHz

—20 —10 10 20

Because the highest frequency in y,(¢) is 10 kHz, the Nyquist rate is 20 kHz. However, the sampling frequency
of the C/D converter is 10 kHz, so y,(¢) will be aliased. The DTFT of y(r) is related to Y, (/) as follows:

, 1 & w 2mk
Yey==3 1Y, (j— - —)

Lk k:z—:oo Lk ! I
Summing the shifted and scaled transforms yields

Y(e/®) = % lw| <

Therefore, y(n) = 38(n)

Sample Rate Conversion

3.21 Suppose that a discrete-time sequence x(n) is bandlimited so that
Xe*y=0 037 <|w|<n
This sequence is then sampled to form the sequence
y(n) = x(nN)

where N is an integer. Find the largest value for N for which x(n) may be uniquely recovered from y(n).

The easiest way to view this problem is as illustrated below.

HE

x(n) Xa(t) y(n)
_ D/C - C/D ——

Converting x(n) into a continuous-time signal with an ideal D/C converter with a sampling frequency f; produces
a continuous-time signal x,(¢) that is bandlimited to f, = 0.3 - f;/2. Therefore, x,(t) may be sampled, without
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3.22

3.23

aliasing, if we use a sampling frequency f; > 2 f, = 0.3 f;, or

T;

= 3.333T,
03 33

’
T <

Therefore, if T = 3T,
y(n) = x,(3nTs) = x(3n)

and x(n) may be uniquely recovered from y(n). Thus, N = 3.

Consider the following system:

P

Xq(t) x(n) u(n)
——{ D |—» 'y

. y(n)
H(e®) |— VL ——o

Y

Assume that X ,(f) = O for | f| > 1/T; and that

e ols T
H(e'®) = .
0 — <ol
L

How is the output of the discrete-time system, y(n), related to the input signal x,(¢)?

Inthis system, the bandlimited signal x,(¢) is sampled, without aliasing, to produce the sampled signal x(n) = x,(nT).
Up-sampling x(n) by a factor of L, and filtering with an ideal low-pass filter with a cutoff frequency w, = n/L,

produces the signal
nT;
w(n) = X4 (—L—)

that is, a signal that is sampled with a sampling frequency L f;. However, because the low-pass filter has linear phase
with a group delay of one sample, the interpolated up-sampled signal is delayed by 1. Therefore, the output of the
low-pass filter is

T,
u(n) =wn — 1) = x, ([n - l]f)
Down-sampling by L then produces the output
T,
y(n) =u(Lny=wln—1)=x,{nT; — A
Thus, y(n) corresponds to samples of x, (¢ — 1y) where 1ty = T /L.

Consider the system shown in the figure below.

*T, *rz

Xq(?) x(n) y(n) Ya(t)
l M

—_— C/D o £ D/C r—»——

Assume that the input is bandlimited, X ,(j2) = O for || > 27 - 1000.
(@) What constraints must be placed on M, T}, and T, in order for y,(¢) to be equal to x,(¢)?
(b) If fi = f, =20kHz and M = 4, find an expression for y,(¢) in terms of x,(¢).
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(a) Suppose that x,(t) has a Fourier transform as shown in the figure below.

Xa(j$2)

N I N v

—2m - 1000 2m - 1000
Because y(n) = x(Mn) = x,(nMT)), in order to prevent x(n) from being aliased, it is necessary that
1
MT] < 3000

If this constraint is satisfied, the output of the down-sampler has a DTFT as shown below.

X (/)

—2:1 1000 MT, 2m - 1000 MT.

Going through the D/C converter produces the signal y, (), which has the Fourier transform shown below.

Yu(J)

T/MT,

Q

>
T T >

—2m - 1000M T,/ T, 2m - 1000M T\ /T,

Therefore, in order for y,(r) to be equal to x,(t), we require that

1. MT, <1/2000 in order to avoid aliasing.
2. T, = MT, to prevent frequency scaling.

(b) With T, = T, = 1/20000 and M = 4, note that

|
MTi = 555 < 2008

Therefore, there is no aliasing. Thus, as we see from the figure above,

i 2
om=in ()

or ya(t) = xu(4t)

3.24 Digital audio tape (DAT) drives have a sampling frequency of 48 kHz, whereas a compact disk (CD)
player operates at a rate of 44.1 kHz. In order to record directly from a CD onto a DAT, it is necessary to
convert the sampling rate from 44.1 to 48 kHz. Therefore, consider the following system for performing
this sample rate conversion:

| > H(el®) > G

xcp(n) u(n) w(n) XDAT(1)
f P
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Find the smallest possible values for L. and M and find the appropriate filter H(e/®) to perform this
conversion.

Given that 48000 = 27 - 3 - 5% and 44100 = 22 - 32. 52. 72, to change the sampling rate we require

L 27.3.5° 25.5 160

M- 2R3 147

Therefore, if we up-sample by L = 160 and then down-sample by M = 147, we achieve the desired sample rate
conversion. The low-pass filter that we require is one that has a cutoff frequency

. T T
w.=mn| —, — | = —-
(L M) 160

and the gain of the filter should be equal to L = 160.

3.25 Suppose that we would like to slow a segment of speech to one-half its normal speed. The speech signal
Sq(2) is assumed to have no energy outside of 5 kHz, and is sampled at a rate of 10 kHz, yielding the
sequence

s(n) = 54(nTy)

The following system is proposed to create the slowed-down speech signal.

& 7

Sa(t) s(n) v(n) y(n) Ya(t)
—_—— C/D > f 2 1 Filter > D/C >

Assume that S,(/€2) is as shown in the following figure:
Sa(jS2)
A

Y T —

—100007 100007

(a) Find the spectrum of v(n).
(b) Suppose that the discrete-time filter is described by the difference equation

y(n) = v(n) + 3[v(n — 1) + v(n + 1))

Find the frequency response of the filter and describe its effect on v(n).

(¢) Whatis Y,(j<2) in terms of X,(jQ2)? Does y,(¢) correspond to slowed-down speech?

(a) Since s,(t) is sampled at the Nyquist rate, the DTFT of the sampled speech signal, s(n), is as follows:
S(e/?)
A/T;

¥ | S —-
— n

Up-sampling by a factor of 2 scales the frequency axis of S(e/“) by a factor of two as shown below.



136 SAMPLING [CHAP. 3

V(el®)

A/T;

-7 —

)R
[
3

(b) The unit sample response of the discrete-time filter is
h(n) = 38(n + 1)+ 8(n) + 38(n — 1)

which has a frequency response
H?y=1+cosw

To see the effect of this filter on v(n), note that due to the up-sampling, v(n) = 0 for n odd. Therefore, with
y(n) = v(n) + fvtn — 1)+ fv(n + 1)

it follows that
v(n) n odd
y(n) =

%v(n—l)+%v(n+l) neven

Thus, the even-index values of v(n) are unchanged, and the odd-index values are the average of the two
neighboring values. As a result, #(n) performs a linear interpolation between the values of v(n).

(¢) The output of the DC converter, y,(¢), has a Fourier transform

) T,Y (e/97%) 12| < /T
Y. (jR) = .
0 otherwise

Since Y(e/?) = H(e/*)V (e/?) = (1 + cosw)V (e/?)
and V(e) = S(e’*)

T, (1 + cos QT,)S(e/297T) |2 < 100007
then Y, (jQ) =

0 otherwise

which is the product of (1 4 cos QT5) and T, S(e/>?T) as illustrated below.

Ya (i)

2A

Q

-10000xr —5000m 5000 100007

Thus, y,(t) does not correspond to slowed-down speech due to the images of s,(¢) that occur in the frequency
range 5000m < |Q2] < 100007 and the nonideal linear interpolator. Note that a better approximation would be
to use a DC converter with a sampling rate of 27} to eliminate the images.

3.26 Shown in the figure below are two different ways of cascading an up-sampler with a down-sampler.
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x{(n) wy(n) yi(n)
_ 1‘ L B * M >
(a)
x(n) wo(n) y2(n)
—— # M P ? L —

(h)

(@) If M = L, show that the two systems are not identical.

(b) Under what conditions will the two systems be identical?

(a)

(b)

In the first system, which consists of an up-sampler followed by a down-sampler, note that w,(n) is a sequence
that is formed by inserting L — | zeros between each value of x(#). The down-sampler then extracts every Lth
value of w,(n), thus producing the output

yi(n) = x(n)
In the second system, however, the down-sampler extracts every Lth sample of x(n) and discards the rest. The
up-sampler then inserts L — 1 zeros between each value of wy(n). Thus,
M
x("—) n=0,+L 2L, ...
ya(n) = L
0 else

Therefore, the two systems are not the same.

In order to analyze these systems when L # M, note that y,(n) in the second system has the form shown in the
following figure:

L 2L

On the other hand, the sequence w(n) in the first system is as shown below.

L 2L

Note that y,(n) is formed by extracting every Mth value of w,(n),

yi(n) = wi(nM)
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Clearly, yi(kL) = wy (kML) = x(kM)
SO Yi(kL) = y,(kL)
However, in order for y(n) to be equal to y(n), we require that

nm) =wrM)=0 n# kL

This will be true if and only if M and L are relatively prime.

Supplementary Problems

A/D and D/A Conversion

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

Find two different continuous-time signals that will produce the sequence
x(n) = cos(0.15nm)
when sampled with a sampling frequency of 8 kHz.
If the Nyquist rate for x,(t) is €2, find the Nyquist rate for (a) X221, (b) x(t/3), (¢) x(t) * x(1).

A continuous-time signal x,(¢) is known to be uniquely recoverable from its samples x,(nT;) when T; = 1 ms. What
is the highest frequency in X ,( f)?

Suppose that x,(¢) is bandlimited to 8 kHz (that is, X,(f) = O for | f| > 8000). (a) What is the Nyquist rate for
x4(1)? (b) What is the Nyquist rate for x,(r)cos(2m - 1000¢)?

Let x,(t) = cos(650m1) 4+ 2sin(7207¢). {a) What is the Nyquist rate for x,(t)? (b) If x,() is sampled at twice the
Nyquist rate, what are the frequencies of the sinusoids in the sampled sequence?

If a continuous-time filter with an impulse response 4,(¢) is sampled with a sampling frequency of f;, what happens
to the cutoff frequency w, of the discrete-time filter as f; is increased?

A complex bandpass signal x,(#) with X,(f) nonzero for 10 kHz < f < 12 kHz is sampled at a sampling rate of
2 kHz. The resulting sequence is

x(n) = 8(n)
What is x,(r)?

If the highest frequency in x,(¢) is f =8 kHz, find the minimum sampling frequency for the bandpass signal
Yalt) = xa(£) cos(Qot) if (@) Qp = 27 - 20 - 10* and (b) Qp = 27 - 24 - 10°.

The continuous-time signal x,(¢) = 7.25 cos(20005¢) is sampled at a sampling frequency of 8 kHz and quantized
with a resolution A = 0.02. How many bits are required in the A/D converter to avoid clipping x,(7)?

Suppose that we want to sample the signal x,(¢) with a 12-bit quantizer, where x,() is assumed to be gaussian with
a variance 0. What is the signal-to-quantization noise ratio if we want the range of the quantizer to extend from
—30, to 30,7

Suppose that an analog waveform is sampled with a sampling frequency of 10 kHz and that x,(¢) contains a
strong 60-Hz interference signal. If the only information in x,(#) of interest is in the frequency band above
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3.38

60 Hz, the interference may be eliminated with a discrete-time high-pass filter that has a frequency response of
the form

) |lw| < w,
H(ej(u) —
1 W SwsTw

What is the smallest cutoff frequency w,. that may be used and still eliminate the 60-Hz interference?

True or False: If x(n) has a discrete-time Fourier transform that is equal to zero for 7/4 < |w| < 7,

B i sin[m(n — 4k)/4]
x(m) = 3 x(4h) 7(n — ak)/4

k=—oc

Discrete-Time Processing of Analog Signals

3.39

3.40

3.41

The system shown in Fig. 3-9 may be used to process an analog signal with a discrete-time system. Assume that
X,4(t) is bandlimited with X,(f) = O for | f| > 10 kHz as shown in the figure below.

Xa(f)
1

=10 10

If the discrete-time system is an ideal low-pass filter with a cutoff frequency of 7 /4, find the Fourier transform of
ya(t) when (@) f; =20 kHz and f> = 10 kHz and (b) f, = 10 kHz and f, = 20 kHz.

For bandlimited input signals, the system shown in Fig. 3-10 is a linear time-invariant continuous-time system.
If

y(n) = fy(n— 1)+ x(n)
find the frequency response of the equivalent continuous-time system.

For bandlimited input signals, the system shown in Fig. 3-10 is a linear time-invariant continuous-time system. If
the overall system is to be a differentiator,

(f)—d "
Ya _dlxa

how should the frequency response of the discrete-time system be defined?

Sample Rate Conversion

3.42

3.43

3.44

The up-sampler and down-sampler are components that are found in interpolators and decimators, respectively. Are
these systems linear? Are they shift-invariant?

A sequence x(n) corresponds to samples of a bandlimited signal using a sampling frequency of 10 kHz. However,
the sequence should have been sampled using a sampling frequency f, =12 kHz. Design a system for digitally

changing the sampling rate.

A signal x,(¢) that is bandlimited to 10 kHz is processed by the following system:
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3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39
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* [ =20kHz {szOkHz
xq(F) ) y(n) Ya(t)
—1 D > 410 — H(e/®) [—» Y10 > DIC |——
e el < =
If H(el?) = 10
0 otherwise
express the output y,(¢) in terms of the input x,(r).
Answers to Supplementary Problems
x1(t) = cos(12007¢t) and x,(¢) = cos(17200m¢).
(a) 4€%. (b) Q4/3. (¢) Q.
500 Hz.
(a) 16 kHz. (b) 18 kHz.
(a) 720 kHz. (b) wy = 657/142 and w, = 7 /2.
w, decreases.
1 sin(2000m¢) .,
(D = J n(llOO())t.
WO =500 w1
(a) 56 kHz. (b) 32 kHz.
10 bits.
73.51 dB.
w, = 0.0127.
True.
Ya(f) Ya(f)
4
1/8 2
f f
~1250 I 1250 - 22500 —1250 1250 2500 .

(@

()
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- Q< —
340 HGo={1- Tl PI=7

0 otherwise
341 H(e'*) = jo/T; for|w| < 7.
342  Both are linear and shift-varying.
343  Up-sample by L = 6, filter with a low-pass filter that has a cutoff frequency of w. = /6 and a gain of 6, and

down-sample by M = 5.

344 y,(0) = x,(t — 4T /10) = x,(t — 2 107°),

141



Chapter 4

The z-Transform

4.1 INTRODUCTION

The z-transform is a useful tool in the analysis of discrete-time signals and systems and is the discrete-time
counterpart of the Laplace transform for continuous-time signals and systems. The z-transform may be used to
solve constant coefficient difference equations, evaluate the response of a linear time-invariant system to a given
input, and design linear filters. In this chapter, we will look at the z-transform and examine how it may be used
to solve a variety of different problems.

4.2 DEFINITION OF THE z-TRANSFORM
In Chap. 2, we saw that the discrete-time Fourier transform (DTFT) of a sequence .x(n) is equal to the sum

[e ]

X(e/?) = Z x(n)e /e

n=-—00

However. in order for this series to converge, it is necessary that the signal be absolutely summable. Unfortunately,
many of the signals that we would like to consider are not absolutely summable and, therefore, do not have a
DTFT. Some examples include

x(n) = u(n) x(n) = (0.5)"u(—n) x(n) = sinnwy

The z-transform is a generalization of the DTFT that allows one to deal with such sequences and is defined as
follows:

Definition: The z-transform of a discrete-time signal x(n) is defined by’

o0

X(z) = Z x(m)z ™" (4.1

H=—0<C

where z = re’/“ is a complex variable. The values of z for which the sum converges define a
region in the z-plane referred to as the region of convergence (ROC).

Notationally, if x(n) has a z-transform X (z), we write

x(n) << X(2)
The z-transform may be viewed as the DTFT of an exponentially weighted sequence. Specifically, note that
with z = re/,

0

X(z) = Z x(m)z™" = Z [F " x(n)]e— "

h=—00 n=-—oo

and we see that X (z) is the discrete-time Fourier transform of the sequence r =" x(n). Furthermore, the ROC is
determined by the range of values of  for which

Z lx(m)r™"| < oo

n=-—-0o

!"The reader should note that in many mathematics books, and in some engineering books, X (z) is defined in terms of a sum using positive
powers of z.

142
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Because the z-transform is a function of a complex variable, it is convenient to describe it using the complex
z-plane. With
z = Re(z) + jIm(z) = relv
the axes of the z-plane are the real and imaginary parts of z as illustrated in Fig. 4-1, and the contour corresponding
to |z| = 1 is a circle of unit radius referred to as the unit circle. The z-transform evaluated on the unit circle
corresponds to the DTFT,
X(e'”) = X(2)]zze (4.2)

More specifically, evaluating X (z) at points around the unit circle, beginning at z = 1(w = 0), through z = j
(w=m/2),t0 z = —1(w = 7), we obtain the values of X (¢/®) for 0 < w < m. Note that in order for the DTFT
of a signal to exist, the unit circle must be within the region of convergence of X (z).

Im(z)
A

2>

Unit circle

- Re(z)

Fig. 4-1. The unit circle in the complex z-plane.

Many of the signals of interest in digital signal processing have z-transforms that are rational functions of z:

q
b(k)z~*
B(z) =
A - or
@ alkyz=*
k=0

X(z)= 4.3)

Factoring the numerator and denominator polynomials, a rational z-transform may be expressed as follows:

q

(1= fz™)
X(z)=Co— (4.4)

[Jo =z

k=1

The roots of the numerator polynomial, B;, are referred to as the zeros of X(z), and the roots of the denominator
polynomial, «y, are referred to as the poles. The poles and zeros uniquely define the functional form of a
rational z-transform to within a constant. Therefore, they provide a concise representation for X (z) that is often
represented pictorially in terms of a pole-zero plot in the z-plane. With a pole-zero plot, the location of each pole is
indicated by an “x” and the location of each zero is indicated by an “o”, with the region of convergence indicated
by shading the appropriate region of the z-plane. The region of convergence is, in general, an annulus of the form

o <|z| < B

If « = 0, the ROC may also include the point z = 0, and if 8 = oo, the ROC may also include infinity. For a
rational X (z), the region of convergence will contain no poles. Listed below are three properties of the region
of convergence:
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1. A finite-length sequence has a z-transform with a region of convergence that includes the entire z-plane
except, possibly, z = 0 and z = oco. The point z = oo will be included if x(rn) = 0 for n < 0, and the
point z = 0 will be included if x(n) = 0 for n > 0.

2. A right-sided sequence has a z-transform with a region of convergence that is the exterior of a circle:
ROC: |z| > «

3. A left-sided sequence has a z-transform with a region of convergence that is the interior of a circle:
ROC: |z] < B

EXAMPLE 4.2.1 Let us find the z-transform of the sequence x(n) = a"u(n). Using the definition of the z-transform and
the geometric series given in Table 1-1, we have

o0

Z x(n):z™" = ia"z‘"
n=0

n=—o0
[oe]

1
DI
o 1 —oaz!

with the sum converging if |az~'| < 1. Therefore the region of convergence is the exterior of a circle defined by the set of
points |z| > |a|. Expressing X (z) in terms of positive powers of z,

X(2)

z

X)) =

Zz—a

we see that X(z) has a zero at z = 0 and a pole at z = «. A pole-zero diagram with the region of convergence is shown in
the figure below.

Im(z)

Re(z)

Note that if || < 1, the unit circle is included within the region of convergence, and the DTFT of x(n) exists.

Example 4.2.1 considered the z-transform of a right-sided sequence, which led to a region of convergence
that is the exterior of a circle. The following example considers the z-transform of a left-sided sequence.

EXAMPLE 4.2.2 Let us find the z-transform of the sequence x(n) = —a”"u(—n — 1). Proceeding as in the previous
example, we have

o0

X(Z) = Z X(H)Z*" = — _Zl a"zTh = —i(a_'z)"“
n=0

n=—o0 n=-—no

0 =1
_ - N oz 1
=—a z) (@7'2)'=— =

rd 1—a 'z 1 —az!
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with the sum converging if |«~'z| < 1 or |z| < |a|. A pole-zero diagram with the region of convergence indicated is given
in the figure below.

Im(z)

Re(z)

Note that if |@| < 1, the unit circle is not included within the region of convergence, and the DTFT of x(n) does not exist.

Comparing the z-transforms of the signals in Examples 4.2.1 and 4.2.2, we see that they are the same, differing
only in their regions of convergence. Thus, the z-transform of a sequence is not uniquely defined until its region
of convergence has been specified.

EXAMPLE 4.2.3 Find the z-transform of x(n) = (%)"u(n) — 2"u(—n — 1), and find another signal that has the same
z-transform but a different region of convergence.

Here we have a sum of two sequences. Therefore, we may find the z-transform of each sequence separately and add
them together. From Example 4.2.1, we know that the z-transform of x,(n) = (%)"u(n) is

1
Xi(z) = 1—_‘? lz| > %
2
and from Example 4.2.2 that the z-transform of x,(n) = —2"u(—n — 1) is
1
Xz(Z) = 1——224 |Z| <2
Therefore, the z-transform of x(n) = x,(n) + x2(n) is
1 1 2— 377!

X = + —
@ I—gz7t 1 =2270 (1=4z-) (1 =271

with a region of convergence '5 < |z| < 2, which is the set of all points that are in the ROC of both X,(z) and X,(z).
To find another sequence that has the same z-transform, note that because X(z) is a sum of two z-transforms,

X o,

1—1z71  1-2z71

each term corresponds to the z-transform of either a right-sided or a left-sided sequence, depending upon the region of
convergence. Therefore, choosing the right-sided sequences for both terms, it follows that

x'n) = (%)"u(n) + 2"u(n)
has the same z-transform as x(n), except that the region of convergence is |z| > 2.

Listed in Table 4-1 are a few common z-transform pairs. With these z-transform pairs and the z-transform
properties described in the following section, most z-transforms of interest may be easily evaluated.
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Table 4-1 Common z-Transform Pairs

Sequence z-Transform Region of Convergence
8(n) 1 all z
1
a"u(n) lz] > ||
l ~az!
1
—a"u(—n —1) — Iz] < e
I —oaz™!
"u(n) “: 21 > la
] n —_— Z| > |
na'u T a1
"u(—n — 1) o 2l < la|
- —n — —_— z| <
na"u(—n (1 —az 1y o
1 — (coswy)z™!
S z 1
cos{neo)u(n) 1 —2(coswy)z=! +z72 21>
. (sina)o)z"
sin(nwg)u(n) |z] > 1

1 — 2(coswg)z™! + z72

4.3 PROPERTIES

Just as with the DTFT, there are a number of important and useful z-transform properties. A few of these
properties are described below.

Linearity

As with the DTFT, the z-transform is a /inear operator. Therefore, if x(n) has a z-transform X(z) with a region
of convergence R, and if y(n) has a z-transform ¥ (z) with a region of convergence R,

w(n) = ax(n) + by(n) <—/—> W(z) =aX(z)+ bY(2)
and the ROC of w(n) will include the intersection of R, and R, that is,
R, contains R, N R,

However, the region of convergence of W (z) may be larger. For example, if x(n) = u(n) and y(n) = u(n —1), the
ROC of X(z) and Y(z) is |z| > 1. However, the z-transform of w(n) = x(n) — y(n) = é(n) is the entire z-plane.

Shifting Property

Shifting a sequence (delaying or advancing) multiplies the z-transform by a power of z. That is to say, if x(n)
has a z-transform X (z),

x(n — ng) PN z7"X(z)

Because shifting a sequence does not affect its absolute summability, shifting does not change the region of
convergence. Therefore, the z-transforms of x(n) and x(n — n¢) have the same region of convergence, with the
possible exception of adding or deleting the points z = 0 and z = oo.

Time Reversal

If x(n) has a z-transform X (z) with a region of convergence R, that is the annulus « < |z| < B, the z-transform
of the time-reversed sequence x(—n) is

x(—n) <—Z—> X(z_l)

and has a region of convergence 1/8 < |z| < |/a, which is denoted by 1/R,.
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Multiplication by an Exponential
If a sequence x(n) is multiplied by a complex exponential ",
n 4 -1
a"x(n) «— X '2)
This corresponds to a scaling of the z-plane. If the region of convergence of X(z) isr_ < |z| < ry, which will

be denoted by R,, the region of convergence of X (a~'z)is |a|r_ < |z| < |a|ry, which is denoted by |a|R,. As
a special case, note that if x(n) is multiplied by a complex exponential. /"

e/" N x(n) PN X(e™/*z)

which corresponds to a rotation of the z-plane.

Convolution Theorem

Perhaps the most important z-transform property is the convolution theorem, which states that convolution in
the time domain is mapped into multiplication in the frequency domain, that is,

z
y(n) = x(n) x h(n) «— Y(z) = X(2)H(2)
The region of convergence of Y (z) includes the intersection of R, and R,,
R,, contains R, N R,

However, the region of convergence of Y (z) may be larger, if there is a pole-zero cancellation in the product
X(2)H(z).

EXAMPLE 4.3.1 Consider the two sequences
x(n) = a"u(n) h(n) =8(n) —ad(n — 1)
The z-transform of x(n) is
X(Z)=-1# Iz > |l

and the z-transform of h(n) is
Hzy=1-az' 0<|g

However, the z-transform of the convolution of x(n) with h(n) is
1 -1
Y@O)=X@HZ)= —— - (1 —az7 ) =1
| — ezt
which, due to a pole-zero cancellation, has a region of convergence that is the entire z-plane.

Conjugation
If X(z) is the z-transform of x(n), the z-transform of the complex conjugate of x(n) is
* z * g%k
x*(n) «—— X*(z%)
As a corollary, note that if x(n) is real-valued, x(n) = x*(n), then

X(z) = X*(z%)
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Derivative

If X(z) is the z-transform of x(#), the z-transform of nx(n) is

z dX(z)

nx(n) «—— —z 7

Repeated application of this property allows for the evaluation of the z-transform of n*x(n) for any integer k.
These properties are summarized in Table 4-2. As illustrated in the following example, these properties are
useful in simplifying the evaluation of z-transforms.

Table 4-2 Properties of the z-Transform

Property Sequence z-Transform Region of Convergence
Linearity ax(n) + by(n) aX(z)+ bY(2) Contains R, N R,
Shift x(n — ngy) z7" X (z) R,
Time reversal x(—n) Xz 1/R,
Exponentiation o’ x(n) X(a~'z) la| R,
Convolution x(n)*x y(n) X(2)Y(z) Contains R, N R,
Conjugation x*(n) X*(z%) R,

dX(z
Derivative nx(n) —z d( ) R,

z

Note: Given the z-transforms X (z) and Y (z) of x(n) and y(n), with regions of convergence R, and
R, respectively, this table lists the z-transforms of sequences that are formed from x(n) and y(n).

EXAMPLE 4.3.2 Let us find the z-transform of x(n) = na"u(—n). To find X(z), we will use the time-reversal and
derivative properties. First, as we saw in Example 4.2.1,

z
a’u(n) «—>

1 —az™! Izl > a
l n 4 ]
Therefore, -} w(n) «— ——78— [z] > —
« l —alz7! o
and, using the time-reversal property,
z 1
a"u(—n) PN |z] <

l—a 'z
Finally, using the derivative property, it follows that the z-transform of na” u(—n) is

d 1 a”'z

_Zd_zl—ot“'zz_(l—oﬁlz)2 2} <«

A property that may be used to find the initial value of a causal sequence from its z-transform is the initial
value theorem.

Initial Value Theorem
If x(n) is equal to zero for n < 0, the initial value, x(0), may be found from X (z) as follows:
x(0) = lerol0 X(z)
This property is a consequence of the fact that if x(n) = 0 forn < 0,
X(@) =x(0)+x(Dz7" +x2)z7 + - -

Therefore, if we let z — o0, each term in X (z) goes to zero except the first.
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4.4 THE INVERSE z-TRANSFORM

The z-transform is a useful tool in linear systems analysis. However, just as important as techniques for finding
the z-transform of a sequence are methods that may be used to invert the z-transform and recover the sequence
x(n) from X (z). Three possible approaches are described below.

4.4.1 Partial Fraction Expansion

For z-transforms that are rational functions of z,

9 9
Y bzt [0 =Bz
X(Z) — k:O -C k=1

Za(k)sz ﬁ(l —az™h)
k=1

k=0

a simple and straightforward approach to find the inverse z-transform is to perform a partial fraction expansion
of X(z). Assuming that p > g, and that all of the roots in the denominator are simple, «; # o fori # k, X(z)
may be expanded as follows:

P Ak
X(z)= _ 4.
@) ;:1: e (.5)
for some constants A; for k = 1,2,..., p. The coefficients A; may be found by multiplying both sides of

Eq. 4.5)by (1 — oz~ ") and setting z = . The result is

A= - ozkz*')X(z)]z=m
If p < g, the partial fraction expansion must include a polynomial in z~! of order (p —¢). The coefficients of this
polynomial may be found by long division (i.e., by dividing the numerator polynomial by the denominator). For
multiple-order poles, the expansion must be modified. For example, if X (z) has a second-order pole at z = o,
the expansion will include two terms,

B B,
+
1 —apz7! (1 —agz71)?

where B, and B, are given by

By = ak[—d—(l - akz"‘)ZX(z)]
dz

=0

By = [(1 -z VX (@)],_,

EXAMPLE 4.4.1 Suppose that a sequence x(n) has a z-transform

-1 1,2 [ B T
z 172 4 T o ¥4

+
T (- (- )

with a region of convergence |z| > % Because p = g = 2, and the two poles are simple, the partial fraction expansion has
the form

A A,
+

| [ -

1_521 l—zZl

X(z)=C+
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The constant C is found by long division:

2
%2—2—§z"+1 %2_2—%2"'4—4
%2_2 — %z" +2
_l-l 40
Therefore, C = 2 and we may write X (z) as follows:
2 — 1zt
X(2) =2+ 2

and Ay = [(1 - JTZ;I)X(Z)]rlﬂ = R

Thus, the complete partial fraction expansion becomes

X(z)=2+ l—%z“ R

Finally, because the region of convergence is the exterior of the circle |z| > % x(n) is the right-sided sequence

x(n) = 28(n) +3(1) " utn) — (3)"un)

4.4.2 Power Series
The z-transform is a power series expansion,

X(2) = Z x)z "= (=) x(=Dz+xOO)+x(Dz  +x()z2 + -

n=—00

[CHAP. 4

where the sequence values x(n) are the coefficients of z7” in the expansion. Therefore, if we can find the power
series expansion for X (z), the sequence values x(n) may be found by simply picking off the coefficients of z7".

EXAMPLE 4.4.2 Consider the z-transform
X(z) = log(l +az™") |z] > |al
The power series expansion of this function is
Sl
1 1 z—l — —(—1 n+1 nz—n
og(l +az™) "2:; P (—D""a
Therefore, the sequence x(n) having this z-transform is

|
—(=1y*a” n>0
x(ny=4{n

0 n<0
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4.4.3 Contour Integration

Another approach that may be used to find the inverse z-transform of X (z) is to use contour integration. This
procedure relies on Cauchy’s integral theorem, which states that if C is a closed contour that encircles the origin
in a counterclockwise direction,
1 _ 1 k=1
z7%dz = [

2nj Jo 0 k#1

00

With X(z) = Z x(n)z™"

n=—00

Cauchy’s integral theorem may be used to show that the coefficients x(n) may be found from X(z) as follows:

x(n) = Lf X(z)z2" 'dz
2nj Je

where C is aclosed contour within the region of convergence of X (z) that encircles the origin in a counterclockwise
direction. Contour integrals of this form may often by evaluated with the help of Cauchy’s residue theorem,

1
x(n) = E]T__] £ X(2)z" 'dz = Z [residues of X(z)z"'at the poles inside C]

If X(z) is a rational function of z with a first-order pole at z = ¢,

Res[X(2)z" 'atz = o] = [(] —auz™ X (2)2"""]

=0

Contour integration is particularly useful if only a few values of x(n) are needed.

4.5 THE ONE-SIDED z-TRANSFORM

The z-transform defined in Sec. 4.2 is the two-sided, or bilateral, z-transform. The one-sided, or unilateral,

z-transform is defined by

X(z) = Zx(n)z‘" (4.6)

n=0
The primary use of the one-sided z-transform is to solve linear constant coefficient difference equations that have
initial conditions. Most of the properties of the one-sided z-transform are the same as those for the two-sided
z-transform. One that is different, however, is the shift property. Specifically, if x(n) has a one-sided z-transform
X1(z), the one-sided z-transform of x(n — 1) is

x(n—1) SN 7' X2+ x(=1)

It is this property that makes the one-sided z-transform useful for solving difference equations with initial
conditions.

EXAMPLE 4.5.1 Consider the linear constant coefficient difference equation
y(n) =0.25y(n — 2) + x(n)

Let us find the solution to this equation assuming that x(n) = 8(n — 1) with y(—1) = y(=2) = 1.
We begin by noting that if the one-sided z-transform of y(n) is Y (z), the one-sided z-transform of y(n — 2) is

Dy =227 = y(=2) 4 y(=DzT 4 Y y)z T =y (=) + y(=Dz 7 +27Y(E)
n=0 n=0
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Therefore, taking the z-transform of both sides of the difference equation, we have
Yi(2) = 0.25[y(=2) + y(—Dz™' + 272 11(D)] + X1 (2)

where X ,(z) = z~'. Substituting for y(—1) and y(—2), and solving for ¥,(z), we have

145z~
=17
Ni@) =3 1
To find y(n), note that Y,(z) may be expanded as follows:?
u 9
Yi(z) = 8 _ 8
) 1—%2‘l 14 4z
Therefore, y(n) = [%(%) - %( - %) ]u(n)

Solved Problems

Computing z-Transforms
4.1 The z-transform of a sequence x(n) is

7427724273

Xz)= —-r——
@ | =324 425

If the region of convergence includes the unit circle, find the DTFT of x(n) at w = .

If X (z) is the z-transform of x(#n), and the unit circle is within the region of convergence, the DTFT of x(n) may be
found by evaluating X(z) around the unit circle:

X(e®) = X(2)| __,
Therefore, the DTFT at w = 7 is
X (@ Nomr = X(@lpopr = XDz

and we have
z 422724273

-1+2-1
| —=3z-44z-5

=0
1-3-1

X(ej“’)’u:” =

7=/

4.2  Find the z-transform of each of the following sequences:
(@) x(n)=38(n)+8(n—2)+(n+2)
b) x(n)=uln)— uln — 10)
(a) Because this sequence is finite in length, the z-transform is a polynomial,
X(z)=3+42"2422

and the region of convergence is 0 < |z|] < oco. Note that because x(n) has nonzero values for n < 0, the
region of convergence does not include |z| = oo, and because x(n) has nonzero values for n > 0, the region of
convergence does not include the point z = 0.

2See the discussion in Sec. 4.4.1 on partial fraction expansions.
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(b) For this sequence,
-10

9
-z
_— -n
X(2) = ZZ T -z
n=0
which converges for all |z| > 0. Note that the roots of the numerator are solutions to the equation
le =1
These roots are
2=k =0,1,...,9

which are 10 equally spaced points around the unit circle. Thus, the pole at z = 1 in the denominator of X(z)
is canceled by the zero at z = 1 in the numerator, and the z-transform may also be expressed in the form

9

X@) =[] (1 -e*¥iz)

k=1

4.3  Find the z-transform of each of the following sequences:
(@) x(n)=2"(n)+ 3(%)"u(n)
(b) x(n) = cos(nwy)u(n).
(a) Because x(n) is a sum of two sequences of the form «"u(n), using the linearity property of the z-transform, and
the z-transform pair

a"u(n) PEIN |z] > |a|

l —az!

1 3 4- 327!
we have X)) = — + o = ; | |z] > 2
1~2z -1z (1-2z-1(1 - 4z71)

(b) For this sequence we write
x(n) = cos(nwo)u(n) = 1[e/™ + ™" Yu(n)
Therefore, the z-transform is

1 l

1
| —efonz=t = 2] — g=jwpz-!

X(z)=3
with a region of convergence |z| > 1. Combining the two terms together, we have

1 — (coswp)z™!

1
[~ cosag—T 422 A1>

X(Z) =

4.4  Find the z-transform of each of the following sequences. Whenever convenient, use the properties of the
z-transform to make the solution easier.

@ x(n)=(3)"u(=n)

) x(n)=(3)"u(r +2)+@)Vu(=n -1
©) x(n)= (%)" cos(nwo)u(n)

(d) x(n)=qa

(a) Using the definition of the z-transform we have

o0 0

X(z) = Z x(n)z™" = Z (%)nz_”

n=-00 ni=—0o0

1

="z=:03”=1—3.§
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where the sum converges for

13z < 1 or |z| <%

Alternatively, note that the time-reversed sequence y(n) = x(—n) = (%)"'u(n) has a z-transform given by

1
'O=15=

with a region of convergence given by |z| > 3. Therefore, using the time-reversal property, Y (z) = X(z~"), we
obtain the same result.

(b) Because x(n) is the sum of two sequences, we will find the z-transform of x(n) by finding the z-transforms of
each of these sequences and adding them together. The z-transform of the first sequence may be found easily
using the shift property. Specifically, note that because

1 "u(n+2):4 1 "+2u(n+2)
(3) (1)

the z-transform of (3)"u(n + 2) is 4z* times the z-transform of (3)"u(n), that is,
(%)nu(n +2) <—Z'>

which has a region of convergence |z| > %
The second term is a left-sided exponential and has a z-transform that we have seen before, that is,

1

z
3"u(—n —1 -
u(—n ) «— 3.

with a region of convergence |z| < 3.
Finally, for the z-transform of x(n), we have

472 |
X(z) =

Tl 13

with a region of convergence % < |z] < 3.

(c) As we saw in Problem 4.3(b), the z-transform of cos(nwg)u(n) is

| — (cos wp)z™!
1 — 2(cos wp)z™! + 272’

cos(nwy)u(n) PEIN lz] > 1
Therefore, using the exponentiation property,

" x(n) PN X 'z)

— 1(cos wy)z™!
1— Z(coswy)z~! + §z72

we have (;—)" cos(nag)u(n) <

with a region of convergence |z| > %

(d) Writing x(n) as
x(n) =a"u(n)+ o "u(—n) — 8(n)

we may use the linearity and time-reversal properties to write

K= !

+
—az"! l —az

1
—1 3 <zl <2

which may be simplified to

X(z) = 1 —a? i 2
D= A el —an <
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4.5  Without explicitly solving for X(z), find the region of convergence of the z-transform of each of the
following sequences:

@ ) =[(2) + ()" Jutn 10

1 —10<n <10
(b) x(n) = 0 otherwise

() x(n)=2"u(—n)
(a) Because the first sequence is right-sided, the region of convergence is the exterior of a circle. With a pole at

7= 5' coming from the term (;} )", and a pole at z = 41 coming from the term (%)", it follows that the region of
convergence must be |z| > 3.

(b) This sequence is finite in length. Therefore, the region of convergence is at least 0 < |z} < co. Because x(n)
has nonzero values for n < 0 and for #» > 0, z = 0 and z = o0 are not included within the ROC.

(c) Because this sequence is left-sided, the region of convergence is the interior of a circle. With a pole at z = 2, it
follows that the region of convergence is |z| < 2.

4.6 Find the z-transform of the sequence y(n) = Y ;___ x(k) in terms of the z-transform of x(n).

There are two ways to approach this problem. The first is to note that x(n) may be written in terms of y(n) as follows:
x(n) = y(n) —yn—-1)

Therefore, if we transform both sides of this equation, and use the shift property of the z-transform, we find
X(2)=Y@)-z"'Y(2)

Solving for Y (z), we find
Y(z)=

] -zt X

n

1
Thus, y(n) = Z x(k) JEIN l_———ZT]-X(Z)

k=-00

which is referred to as the summation property.
The second approach is to note that y(n) is the convolution of x(n) with a unit step,

y(n) = x(n) * u(n)
Therefore, using the convolution theorem, we have
Y(z) = X(2)U(2)

and, with U(z) = 1/(1 — z7"), we obtain the same result as before. For the region of convergence, note that because
the ROC of U(z) is |z| > 1, the ROC of Y (z) will be at least

Ry, =R, N{|z| > 1}

where R, is the ROC of X(z).

4.7  Find the z-transform of the sequence y(n) where

y(n) = Z alkl n>0

k=—n

and y(n) = 0 for n < 0. Assume that [a| < 1.



156

4.8

THE z-TRANSFORM [CHAP. 4

For this sequence, we may use a variation of the summation property derived in Prob. 4.6. Specifically, recall that if

n

Y =x(m)xutn) = Y x(k)

k=—00

X(z2)

then Y(z)=

|-z

Now consider the two-sided summation,

n

y(n) =Y x(k)

k=—-n

which may be written as
n 0 n n
Yoy =Y xth)+ Y x(k) = x(0) =D x(k) + Y_ x(=k) — x(0)
k=0 k=—n =0 k=0

Therefore, if we let

() = [x(n) n>0

0 n<0
3 )= x(—n) n>0
an Tl = 0 n<0
then Zx(k) = x,(n) % u(n) D" x(—k) = xa(n) % u(n)
k=0 k=0

Therefore, we have
Xi(2) + Xa(2)

Ye) = ] —z-!

x(0)

Finally, with x(n) = a!"l, it follows that x,(n) = x2(n) = &"u(n), and x(0) = |. Thus,

_ 22X 2

Ye) =15 ez i—1 |

1+ +a)z ' —az?
A—az7 (1 -2z

with a region of convergence |z| > 1.

Let x(n) be a finite-length sequence that is nonzero only for 0 < n < N — 1, and consider the one-sided
periodic sequence, y(n), that is formed by periodically extending x(n) as follows:

y(n)= x(n —kN)
k=0

Express the z-transform of y(n) in terms of X (z) and find the region of convergence of Y (z).

The one-sided periodic sequence y(n) may be written as the convolution of x(n) with the pulse train

puin) = 8(n - kN)
k=0
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In other words,
y(n) = x(r)% py(n) = Y _ x(n —kN)
k=0

Therefore, the z-transform of y(n) is the product of the z-transforms of x(n) and py(n). Because py(n) is a sum of
shifted unit samples, and because the z-transform of 8§(n — kN) is equal to z7*¥, the z-transform of py (n) is

1
—kN
z = — |z] > 1
| —z=V

e

Py(z) =
k

Il
o

Thus, the z-transform of the one-sided periodic sequence y(n) is

X(2)

Y(2) = X(2)Py(2) = =

Because x(n) is finite in length and zero for n < 0, the region of convergence for X(z) is |z] > 0. Therefore, the
region of convergence of Y (z) is |z| > 1.

4.9  Consider the sequence shown in the figure below.

x(n)

2

e o o
n

SR 0 R A A
—2—1‘[12345678

The sequence repeats periodically with a period N =4 for n > 0 and is zero for n < 0. Find the
z-transform of this sequence along with its region of convergence.

This is a problem that may be solved easily using the property derived in Prob. 4.8. Because
o0
x(n) = Z w(n — kN)
k=0

where N = 4 and
w(n) =8(n — 1)+ 28(n — 2) + 8(n — 3)

then W@ =z""14+2:"4277

and we have
27142271 4 272

X@ = 1—z

Because x(n) is right-sided and X (z) has four poles at |z| = 1, the region of convergence is |z| > 1.
Properties

4.10  Use the z-transform to perform the convolution of the following two sequences:

(3" O0=n=2

0 else

x(n)=8n)+8(n—1)+46(n—2)

h(n) =
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The convolution theorem for z-transforms states that if y(n) = h(n) * x(n), the z-transform of y(n) is Y(z) =
H(z)X(z). With

HEZ) =1+ %z”l + %2*2
X(@) = 1427 4477
it follows that
Y2)=H(@2)X(z) = (1 + %z" + 412—2)(1 bz 427
Multiplying these two polynomials, we have
Y@ =1+z"! + 422
+ 3527 + 5272 4227

+ 3z + iz 4

N

=1+ 327"+ 27724 3773 4 77

By inspection, we then have for the sequence y(n),

y(n) = 8(n) + 28(n — 1) + 28(n — 2) + 25(n — 3) + 8(n — 4)

4.11 Evaluate the convolution of the two sequences
h(n) =(0.5)"u(n) and x(n)=3"u(—n)

To evaluate this convolution, we will use the convolution property of the z-transform. The z-transform of A (n) is

1
H(Z)= -1-__—

1
T |z| > 3
32

and the z-transform of x(n) may be found from the time-reversal and shift properties, or directly as follows:

9] 0
X(z) = Z x(n)z™" = Z 37"
n=—0C n=-—0o0
e " 1 37!
=Z(;(§z) =l—%z=_1—z3z-' Iz <3
n=t R

Therefore, the z-transform of the convolution, y(n) = x(n) % h(n), is

377!

Y = — .
@) 1—3z7" 1=3z7"

The region of convergence is the intersection of the regions |z| > '5 and |z| < 3, which is % < |z| < 3. To find the
inverse z-transform, we perform a partial fraction expansion of Y (z),

A B
Y(z) = = ;—-z" + -
where A= [(l - %z—l)Y(z)]zz% = (g’
and B=((1-32"Y ()03 =-%

Therefore, it follows that

¥ = (§)(3)"utn) + (§)3"u(=n — 1)
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4.12

4.13

4.14

Let x(n) be an absolutely summable sequence,

Z |x(n)] < oo

with a rational z-transform. If X(z) has a pole at z = % and lim;|, o X(z) = 1, what can be said about
the extent of x(n) (i.e., finite-in-length, right-sided, etc.)?

Because x(n) is an absolutely summable sequence, the ROC of X (z) includes the unit circle, [z{ = 1. With a pole at
z= %, the region of convergence will either be an annulus of the form r_ < |z| < ry, or it will be the exterior of a
circle, r_ < |z|. However, because X (z) converges as |z| — 00, the region of convergence will be the exterior of a
circle, and it follows that x(») is right-sided (infinite in length) with x(n) = O forn < 0.

Find the z-transform of x(n) = |n|($)""".

Using the derivative property and the z-transform pair
n Z
(3)"utm) <=
it follows that the z-transform of w(n) = n(3)"u(n) is

d 1 1z
W(z) = —z - 5 = Z 3
5T )

Because x(n) may be written as

=
~—
Bl
=
-
|
=
~

x(n) = lnl(%)'"I = n(%)"u(n) - n(

using linearity and the time-reversal property, we have

1
X(z) = 2

which has a region of convergence :1; <zl < 2.
Let y(n) be a sequence that is generated from a sequence x(n) as follows:

ym =Y kx(k)

k=—00

(a) Show that y(n) satisfies the time-varying difference equation
y(n) = y(n — 1) = nx(n)

and show that

where X (z) and Y (z) are the z-transforms of x(n) and y(n), respectively.

(b) Use this property to find the z-transform of

y(n) = Zk(%)k n>0
k=0
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4.15

4.16

(@)

(®)

THE z-TRANSFORM

From the definition of y(n), we see that

n—1
yon—D= " kx(k)

k=—00

and it follows immediately that
y(n) — y(n — 1) = nx(n)

From this difference equation, we may take the z-transform of both sides. Because

z dX(z)
nx(n) «—— —z
dz
then Y() - 'Y () = —2 1)
dz

-z dX(z) _ —22 dX(z)
—z7' dz T z—1 dz

or Y(z)= ]

To find the z-transform of the given sequence, note that

y(n) = Z kx(k)

k=-0cC
where x(n) = (%)"u(n)
Because the z-transform of x(n) is
X(Z) = l—_—_—l—z—_—l' IZ' > %
3
[ i
—22 dX(2) _ -z =3z 327!

then Y(2) =

.
z—1 dz  z-—1 (l_%z—l)z - (1_%2—1)2(]_2—1)

[CHAP. 4

Because x(n) is right-sided, then the region of convergence is the exterior of a circle. Having poles at z = 1

and z = 5', it follows that the region of convergence is [z| > 1.

Find the value of x(0) for the sequence that has a z-transform

X(z) =

|z| > a

1 —az!

Find the value of x(0) for the sequence that has a z-transform

Z

(1=-3z79(1 = 3272)

X(z) =

1
|Zl>§

X(z)=

Taking the limit of X(z) as z — oo, we see that X(z) — 1. Because the limit exists, x(n) is causal, and x(0) = 1.

Because the region of convergence of X (z) is the exterior of a circle, x(n) is right-sided. However, if we write X (z)
in terms of positive powers of z,
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we see that X (z) — oo as |z| & o0o. Therefore, x(n) is not causal. However, because x(n) is right-sided, it may be
delayed so that it is causal. Specifically, if we delay x(n) by | to form the sequence y(n) = x(n — 1),

23
Y@ = ——

-DE-D

which approaches 1 as |z] — oco. Thus, y(n) is causal, and we conclude that y(0) = x(—1) = 1. Because
X)) =x(—Dz + Zx(n)z"’
n=0

X (z) — x(—1)z is the z-transform of a causal sequence, and it follows from the initial value theorem that

x(0) = Il‘im [X(z) — x(—1)z]
With

24
Xz)y—x(-Dz=X@)—z= —— —z
C-DE-D
By
(-5 -3)
we have

x(0) = |l\im [X(z) —x(=z] = }
4.17

Generalize the initial value theorem to find the value of a causal sequence x(n) at n = 1, and find x(1)
when

2+ 6271
X =
D= 102113

If x(n) is causal,

X(2)=x(0)+x(D)z7 " +x(z2 4 -+
Therefore, note that if we subtract x(0) from X (z),

X@) —x0) =x(Dz' +xz72+ -
Multiplying both sides of this equation by z, we have

2[X@) = x(O)] = x(D)+xz™ 4+ -

If we let z —> 00, we obtain the value for x(1),

x()y= I1]im {z[X(z) — x(O)])

For the given z-transform we see that

x(0) = lim X(z) =

2+ 627!
Therefore, X(z)— 3 + 0z

. 6z7 ' 4272 — 12—32‘3
T4-27y 30 1T

4 —2z724 13273
and

x(1) = lim {2(X(2) = x(O)]) = 3
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4.18 Let x(n) be a left-sided sequence that is equal to zero for n > 0. If

find x(0).

For a left-sided sequence that is zero for n > 0, the z-transform is
X(2) = x(0) + x(=Dz + x(=2)2* + - --

Therefore, it follows that
x(0) = Iin(l)X(z)

For the given z-transform, we see that

. . 3z 42772 ) 3z 42
X(O)=.!l—»n(1)x(z)_£ll%3—z*'+z*2—zT(l)3zz—z+l_

4.19 If x(n) is real and even with a rational z-transform, show that
X(z)=X@z™

and describe what constraints this places on the poles and zeros of X (z).

If x(n) is even,
x(n) = x(—n)

Therefore, it follows immediately from the time-reversal property that

X(z) =Xz
If X(z) has a zero at z = z;,
X(zp)=0
then X(Zal) =0

which implies that X (z) will also have a zero at z = 1/z,. The same holds true for poles. That is, if there is a pole
at z, there must also be a pole at z = 1/zg.

4.20 Use the derivative property to find the z-transform of the following sequences:
(@ x(n)=n(})"un-2)
(b) x(n)= %(—2)_“{(*" =D

(a) The derivative property states that if X (z) is the z-transform of x(n),
nx(n) <—Z—> —ziX(z)
dz
If we let x(n) = nw(n), where

wn) = (%)nu(n -2)= }‘(%)n_zu(n -2)

from the delay property and the z-transform pair

z
a’u(n) <— |z| > |e|

| —az!
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4.21

4.22

it follows that

1
W(z) = 4

™
\
[T

Therefore, using the derivative property, we have the z-transform of x(n),

7!

d o 1o
X(z) = —ZEW(Z) =3z ZW
(b) Evaluating the z-transform of this sequence directly is difficult due to the factor of n~'. However, if we define
a new sequence, y(n), as follows,
y(n) = nx(n) = (=2)"u(-n - 1)
the z-transform of y(n) is easily determined to be

Ye) = —
2=

P jz) < &
+ %z“ 2

Noting the relationship between x(n) and y(n), we can apply the derivative property to set up a differential
equation for X (z),

d -1
—z—X(z) = -
dz 1+§Z
or d X(z)
ZX(7) =
dz z+%

The solution to this differential equation is
X(z)=log(z + })

and the region of convergence is |z| < %

Up-sampling is an operation that stretches a sequence in time by inserting zeros between the sequence
values. For example, up-sampling a sequence x(n) by a factor of L results in the sequence

x(i) n=0,+L, +2L
y(n) = L ST
0 otherwise

Express the z-transform of y(#n) in terms of the z-transform of x(n).

Because y(n)isequal to zero forall n 5 kL, with y(n) equal tox(n/L) for n = kL, the z-transform of the up-sampled
signal is
o0 o0 20
Y@ =) ymz"= Y x(mz = Y x(nm)zt)" = X(h)
n=—00 n=—oo n=—oc

If X (z) converges for @ < |z| < B, Y(z) will converge for @ < |z]* < B, or

al/l. < lzl <ﬂI/L

Find the z-transform of the sequence

/10 n=0,10,20,...

xn) = 0 else

where || < 1.
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We recognize x(n) as an exponential sequence that has been up-sampled by a factor of 10 (see Prob. 4.21). Therefore,
because

1
l —az™!

z
a"u(n) «— |z] > @

the z-transform of x(n) is

— 1/10
X(Z)—mﬁ |Z|>(¥

Inverse z-Transforms

4.23 Find the inverse of each of the following z-transforms:

(@) X(z)=4+3G2+27%) 0<|z] < 00

L 3 |
() X(@) = — T 1T o Izl > 3
1
O XO=1i5mg 2
1
@ X0 = g FI> !

(a) Because X(z) is a finite-order polynomial, x(n) is a finite-length sequence. Therefore, x(n) is the coefficient
that multiplies z=” in X(z). Thus, x(0) = 4 and x(2) = x(-2) = 3.

(b) This z-transform is a sum of two first-order rational functions of z. Because the region of convergence of X (z) is
the exterior of a circle, x(n) is a right-sided sequence. Using the z-transform pair for a right-sided exponential,
we may invert X (z) easily as follows:

x(n) = (%)nu(n) + 3(%)"u(n)

(¢) Here we have a rational function of z with a denominator that is a quadratic in z. Before we can find the inverse
z-transform, we need to factor the denominator and perform a partial fraction expansion:

1 1

X = =
D= 322 - 0r22h0+20)
2 1
Tl 42270 14z

Because x(n) is right-sided, the inverse z-transform is
x(n) = 2(=2)"u(n) — (=1)"u(n)
(d) One way to invert this z-transform is to perform a partial fraction expansion. With

1 1
He= (I—z -z (I-zl+z")
A B, B,

T R e R T

the constants A, B;, and B, are as follows:

A= +2YX@ary = 1

_ i -1y2 _ z? 1
B = [dza 1) xle - [——(] H_l)z} -t

By =[(1 -z PX(@)cy =
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Inverse transforming each term, we have
x(n) = (=" + 1 +2(n + DYu(n)
Another way to invert this z-transform is to note that x(»n) is the convolution of the two sequences,
x(n) = xi(n) * xz(n)
where x;(n) = u(n) and x,(n) is a step function that is up-sampled by a factor of 2. Because
x(n)*x(n)y=1{1,1,2,2,3,3,4,4,...}

we have the same result as before.

4.24 Find the inverse z-transform of the second-order system

1+ 4z7!
7
(=3

Here we have a second-order pole at z = 5‘ The partial fraction expansion for X (z) is

X(z) = lz] > %

A A
X(z) = ——— + P
)
The constant A, is
d _1\2 -2
n={ G0 0] ===
=12

and the constant A, is

1 3
Therefore, X(z)=— ] L + ?
2

and x(n) = —(%)"Hu(n) +3(n + 1)(%)n+]u(n)

4.25 Find the inverse of each of the following z-transforms:
(@ X(z)=log(l—3z7") z} > 1
(b) X(z) = e'/?, with x(n) a right-sided sequence

(a) There are several ways to solve this problem. One is to look up or compute the power series expansion of the
log function. Another way is to differentiate X (z). Specifically, because

d 172
ZX(z) = —2
22O = 712

if we multiply both sides of this equation by (—z), we have

d
Y(Z)= '—ZEX(Z)= —T——lz—l—
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Note that the region of convergence for X (z) is |z| > % Because the region of convergence for Y (z) is the same
as it is for X(z), the inverse z-transform of Y (z) is

yy = —(1) utn =1

Now, from the derivative property, y(n) = nx(n), and it follows that

x(n) = —1(%)nu(n -1

n

(b) For this z-transform, we could determine the inverse by finding the power series expansion of X(z). However,
another approach is to do what we did in part (@) and take the derivative. Differentiating X (z), we find

9 x(2) = ~272X(
e 7y =~z z)

Multiplying both sides by (—z), we have
d
ﬂzEX(z) =z"'X(z)
and taking the inverse z-transform gives

nx(n)=x(n —1)

which is a recursion for x(n). To solve this recursion, we need an initial condition. Because x(n) is a right-sided
sequence, we may use the initial value theorem to find x(0). Specifically,

x(0) = lim X(2)=1

Thus, the recursion that we want to solve is
1
x(n)=—-x(n—-1) n>0
n

with x(0) = 1. The solution for n > 0is

1
x(n)= —
n!

and we have

x(n)=8(n)+ —l—u(n -1
n!

4.26 Find the inverse z-transform of X (z) = sinz.

To find the inverse z-transform of X(z) = sin z, we expand X (z) in a Taylor series about z = 0 as follows:

dX(z) 22 d*X(2) 2 d"X (2)
X =X — e
2 (Z)|Z=0 e o 2! dz? |, n! dz" |
23 25 oo 22n+l
—r_ 4t .= =
Tt "Z:(;‘ S G
Because X(z)= Z x(n)z™"

we may associate the coefficients in the Taylor series expansion with the sequence values x(n). Thus, we have

n ] —_— _ _
x(”)=(—l)(—2—m n=-1,-3 -5 ...
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4.27

4.28

Evaluate the following integral:

lf 42 =22
i Je =31 = 37

where the contour of integration C is the unit circle.

Recall that for a sequence x(#n) that has a z-transform X (z), the sequence may be recovered using contour integration
as follows:

1
x(n) = ——,fX(z)z"*‘dz 4.7)
2rj J.

Therefore, the integral that is to be evaluated corresponds to the value of the sequence x(n) at n = 4 that has a
z-transform

1427 —z72
(1=327)(1=327)
Thus, we may find x(n) using a partial fraction expansion of X (z) and then evaluate the sequence at n = 4. With
this approach, however, we are finding the values of x(n) for all n. Alternatively, we could perform long division
and divide the numerator of X(z) by the denominator. The coefficient multiplying z~* would then be the value of
x(n) at n = 4, and the value of the integral. However, because we are only interested in the value of the sequence at

n = 4, the easiest approach is to evaluate the integral directly using the Cauchy integral theorem. The value of the
integral is equal to the sum of the residues of the poles of X(z)z3 inside the unit circle. Because

X(z2) =

= L =2
has polesatz == 5 and z = 3,

242z -1
RCS[X(Z)ZB]ZZ% = l:zgz___i__zz—] l — _Iié
=3

14221
and Res[X(z)z3]z:% = [;32_—"Z__:| _ 1%
_2
=3

Therefore, we have

— P X(2)3dz = Y2 — 2 = 11952

Find the inverse z-transform of

1
X(z) = " lz| > e

—107-10

Note that the denominator of X (z) is a tenth-order polynomial. Although the roots may be found easily, performing
a partial fraction expansion would be time consuming. For this problem, it is much better to exploit the properties
of the z-transform. Note, for example, that

X(z) =Y(z'9 where Yiz)= —
] — 10z7!

10n

Because y(n) =a u(n)
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we may use the up-sampling property (Prob. 4.21) to obtain

y(i) n=0,+10,£20. ...
x(n) = 10
0 otherwise

Therefore, we have

o’ n=20,10720,...
x(n) =

0 otherwise

In many cases one is interested in computing the inverse z-transform of a rational function

q
Z b(k)z ™
X =20
Z a(k)z'k
k=0

Because a partial fraction expansion requires knowledge of the roots of A(z), if the order of the denom-
inator is large, finding the roots may be difficult. Although a partial fraction expansion would give a
closed-form solution for x(n) for all n, if one only wants to plot x(n) for a limited range of values for n,
a closed-form expression is not required. Given that x(n) = 0 for » < 0, find a recursion that generates
x(n) forn > 0.

If we consider x(n) to be the unit sample response of a linear shift-invariant system, we may straightforwardly
specify the filter in terms of a linear constant coefficient difference equation. This leads to a recursively computable
difference equation for x(n). Specifically, note that because

X(2)A(z) = B(2)
we may express this in the time domain as follows:
x(n) xa(n) = b(n)
Writing out this convolution explicitly, we have
P
> " atk)x(n — k) = b(n)
k=0

Bringing the first term out of the summation and dividing by a(0) gives

_ b(n) 2 a(k)
x(n) = m — kZ:I: mx(n — k)

Therefore, given that x(n) = 0 for n < 0, this recursion allows us to compute x(n) for all n > 0. For example,

_ b(0)
O =70

_ b _a))
x() = 2(0) a(O)X(O)

Note that h(n) = 0 for n > g. Thus, for n > ¢, the recursion simplifies to
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One-Sided z-Transforms

4.30

4.31

4.32

Find the one-sided z-transform of the following sequences:

@ x(n)=(%)"u(n+3)
(b) x(n) =8(n—15)+68(n)+ 2" 'u(—n)

169

In the following, let x, (n) denote the sequence that is formed from x(n) by setting x(n) equal to zero forn < 0, that is,

x(n) n>0

Xyn) =
+m) 0 n<0

(a) Because x,(n) = (%)"u(n), the one-sided z-transform of x(n) is

Izl > 3

Xi(2) = I

11
3Z

(b) For this sequence, because
x4 (n) = 8(n — 5)+ 8(n) +27'8(n)

then X,(z):z's—+-l~}-%=1.5—1—:_5

Let X (z) be the one-sided z-transform of x(n). Find the one-sided z-transform of y(n) = x(n + 1).

The one-sided z-transform of x(n) is
oC
Xi1@) = xO + x(Dz ' +x2z 2 4 =Y xmz
n=0
If x(n) is advanced in time by one, y(n) = x(n + 1), the one-sided z-transform of y(n) is

Vi(z) = iy(n)zf” = ix(n + 1)z7"
n=0

n=0

Therefore, Vi) =x(D+xQz7' +xB)z 2+ -

Comparing this to X ,(z), we see that
Yi(z) = z[X(2) — x(0)]

Consider the LCCDE
y)—jy(n=2)=8n) n=0

Find a set of initial conditions on y(n) for n < 0 so that y(n) = 0 for n > 0.

The one-sided z-transform of the LCCDE is
Y1(2) = Hz7Vi(@) + y(=Dz 7 + y(=2)] =)

Solving for Y(z), we have
L+ Hy(=2) 4+ y(=Dz7']

1,2
1 iZ

Yi(z) =

In order for y(n) to be equal to zero for n > 0, Y(z) must be equal to zero. This will be the case when

1+ iy(=2)=0
=1H=0

or y(=2)=—4 y(=1)=0
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4.33 Consider a system described by the difference equation
y(n)=yn—1)— y(n —2)+0.5x(n) + 0.5x(n — 1)
Find the response of this system to the input
x(n) = (0.5)"u(n)

with initial conditions y(—1) = 0.75 and y(—2) = 0.25.

This is the same problem as Prob. 1.37. Whereas this difference equation was solved in Chap. 1 by finding the
particular and homogeneous solutions, here we will use the one-sided z-transform.
First, we take the one-sided z-transform of each term in the difference equation

Y(zy=2""Y@) +y(—D) =27V @)+ 27 y(=D + y(=D] + 1X(@) + 127X (2)
Substituting the given values for the initial conditions, we have

Y@ =z"Y(@)+ 1 -2Y@ ~ 227 = 1+ 31X + 327 X(2)

Collecting all of the terms that contain Y (z) onto the left side of the equation gives
YOl —z7! +z’2] = Ii — 324' + %X(z)+ %Z*IX(Z)

Because x(n) = (1)"u(n),

which gives

3 [ P
-3z 5+ 52
Y(Z): 2 _]4 _2+ ' 2 2
-z +z (1=4z0 =z + 27

Expanding the second term using a partial fraction expansion, we have

—1 -1

[STES
ENNY

I
— iz 5 z
Y(z)= + ot
) l—z7' 4272 1—4z7t 1=zl 4272
i [
- - +_Z
or Y — 2 2 4
@ 1 — %z—' 1 —z7l4z72

Therefore, the solution is

sy = (1 atm + [% sin ('%) + L sin(n — 1)%]14(”)

4.34  Adigital filter that is implemented on a DSP chip is described by the linear constant coefficient difference
equation

y(n) = 3y(n — 1) — gy(n — 2) + x(n)

In evaluating the performance of the filter, the unit sample response is measured (i.e., the response y(n)
to the input x(n) = 8(n) is determined). The internal storage registers on the chip, however, are not set
to zero prior to applying the input. Therefore, the output of the filter contains the effect of the initial
conditions, which are

y(=1)= -1 and y—=2)=1
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Determine the response of the filter for all » > 0 and compare it with the zero state response (i.e., the
output with y(—1) = y(=2) = 0).

Here we want to solve a difference equation that has initial conditions. Using the one-sided z-transform, we have
Y(@) = Hz 'Y @) + y(=D) = Hz Y @) + y(= Dz + y(=2)) + X (2)
With X (z) = | and the given initial conditions, this becomes
Y@ =Y - ) = MY @) -2+ )+

Solving for Y (z), we find

-1 §
Y(Z)—-gl_%z,l_*_%z—z 8(1_%24)([—%2")

Performing a partial fraction expansion gives

Y(z)= "

Thus, with an inverse z-transform we have

vy =[=3(4)" + 2(2) Jum

The zero state response, on the other hand, is simply the unit sample response of the filter. With

H(z) = = ] -

it follows that

Applications

4.35

There are two kinds of particles inside a nuclear reactor. Every second, an ¢ particle will split into eight
B particles and a 8 particle will split into an « particle and two g particles. If there is a single « particle
in the reactor at time / = 0, how may particles are there altogether at time ¢+ = 100?

In this problem we need to begin by writing down, in mathematical terms, what is happening within the reactor. Let
a(n) be the number of « particles in the reactor at time n, and let 8(n) be the number of B particles. Because there
are eight B particles created from each « particle and two from each 8 particle, we have

Bn) =8an — 1) +2B(n - 1)
Also, because one « particle is created from each B particle,
a(n) =pn—-1
Substituting the second equation into the first, we have
B(n) =8B(n —2)+2p(n - 1)

which is an equation that defines how many g particles there are in the reactor at time n. Because there is one o
particle in the reactor at time n = 0, it follows that there are eight B particles at time n = 1. Therefore, the initial
condition associated with B(n) is B(1) = 8, and this may be incorporated into the equation as follows:

B(n) =8B(n—2)+2B(n—1)+85(n—1) n>1
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with B(n) = 0 for n < 1. Using z-transforms, we may solve this equation for S(n) as follows:

8z7! 43
B = e j——
D= g 14T 1120

widh

Taking the inverse z-transform, we have
B(n)y = £(4)"u(n) — $(=2)"u(n)

Finally, because the number of « particles at time # is equal to the number of B particles at time (n — 1), the total
number of particles at time n = 100 is

N = B(100) + B(99) = 5[(H'* = (=2)'® + @ — (=2)*] = $[54)* + (-2)*]

A $100,000 mortgage is to be paid off in 360 equal monthly payments of d dollars. Interest, compounded
monthly, is charged at the rate of 10 percent per annum on the unpaid balance (e.g., after the first month

the total debt equals $100,000 + %MO0,000). Find the payment d so that the mortgage is paid in full

after 30 years, leaving a net balance of zero.

This is the same problem that was solved in Prob. 1.39. Here, however, we will use the z-transform to find the solution.

The total unpaid balance at the end of the nth month, in the absence of any additional loans or payments, is
equal to the unpaid balance in the previous month plus the interest charged on the unpaid balance for the previous
month. Therefore, if y(n) is the balance at the end of the nth month,

y(n)=yn -1+ By(n—1)

where f is the interest charged on the unpaid balance. In addition, the balance must be adjusted by the amount of
money leaving the bank into your pocket, which is simply the amount borrowed in the nth month and the amount
paid to the bank in the nth month. Thus

y(ny = y(n — 1) + By(n — 1) + xp(n) — x,(n)

where x,(n) is the amount borrowed in the nth month, and x,(n) is the amount paid in the nth month. Combining
terms, we have
y(n) — vy — 1) = xp(n) — x,(n) = x(n)

wherev = 14+ 8 = 140.10/12, and x(n) is the net amount of money in the nth month that leaves the bank. Because a
principal of p dollars is borrowed during month zero, and payments of d dollars begin with month 1, the input x(n) is

x(n) = xp(n) — xp(n) = pd(n) — du(n — 1)
and the difference equation for y(n) becomes
y(n) —vy(n — 1) = pb(n) —du(n — 1)
Expressing this difference equation in terms of z-transforms, we have

Y@) - vz Y (@) = p—d——
| —z-!

Solving for Y (z), we find

Y(z) =

p=(p+dz"' 1 [p+d—pv d ]
—1

Q—vz 1=z 1T—-v| 1l—vz'  1-:

Taking the inverse z-transforms yields

1
y(n) = T_—‘;[(P +d — pvw" — dlu(n)
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We now want to find the value of d so that the mortgage is retired after 360 equal monthly payments, That is, we
want to find d so that

1
y(360) = —[(p +d - po* —d1 =0

— Vv

Solving for d, we have

pl —v) 5

d= 1 _ 360

With v = 121 and p = 100,000 we have

12
d =8717.57

which is the same as we had previously calculated.

A generalized Fibonacci sequence is a sequence of numbers, x(n), that satisfies the difference equation

x(n+2)=x(n)+x(n+1) for n>0

That is, x(n) is the sum of the two previous values. The classical Fibonacci sequence results when the
initial conditions are x(0) = 0 and x(1) = 1. The Fibonacci numbers occur in such unsuspecting places
as the number of ancestors in succeeding generations of the male bee, the input impedance of a resistor
ladder network, and the spacing of buds on the branch of a tree.

(a)
(2]

()

(a)

Find a closed-form expression for x(n).

Show that the ratio x(n)/x(n + 1) approaches the limit 2/(1 + V/5) as n — oo. This ratio is known
as the golden mean and was said by the ancient Greeks to be the ratio of the sides of the rectangle
that has the most pleasing proportions.

Show that the Fibonacci sequence has the following properties:
1. ) +x*(n+ 1) =xQ2n+1)
2. xXX(n+2)—x*n+1)=x(n)x(n+3)

Here we have a second-order linear constant coefficient difference equation that we want to solve. Let us begin
by rewriting it in a slightly different form. Specifically, consider the following

x(n)—x(n—=1—x(n=2)=8n-1)

where we assume that x(n) = 0 for n < 0 (i.e, initial rest). Written in this form with the delayed unit sample
on the right-hand side, we note that x(0) = 0 and x(1) = 1 as desired and x(n + 2) = x(n) + x(n + 1) for
n > 0. The solution to this difference equation may be found using z-transforms as follows:

X(z2) — :"X(z) — 27 X (@) =z""

Solving for X(z), we have
o1
X(z)= l

[

The poles of X(z) are located at z = (1 & +/5)/2, and the partial fraction expansion of X (z) is

S

1 1
1= e

Taking the inverse z-transform of X(z), we find

x(n) = S [(252)" = (:52) Jum)



174 THE z-TRANSFORM [CHAP. 4

(b) Starting with the difference equation that defines the Fibonacci sequence, divide both sides by x(n + 1):

x(n +2) _ x(n)
x(n+1) " x(n+1

If we define r(n) to be the ratio of two successive Fibonacci numbers

x(n+1)
r(n) = _——x(n)
{
we have rin+1)=——+1
r(n)
or r(n+ Dr(n) =1+r(n)
If we let n — o0. and define r(o0) = lim,,_, « ¥ (1), we have

r3(00) = 1 + r(00)

Solving this quadratic equation for r(00), we find

S

==
2

r(co) =
However, because »(n) > 0, it follows that r(c0) is the positive root, which is

1445
)

F(00)

Finally, because
x(n) _ |

x(n+1) " rn)

lim x(n) 2
1 =
n—oox(n+ 1) 144/5

then

(¢) For the first property, we may simply substitute the closed-form expression for the Fibonacci sequence into the
equation, and verify that it is true. For the second property, from the definition of the Fibonacci sequence we have

xHn+2)= .\'z(n) + xz(n + 1)+ 2x(n)x(n + 1)
which we may rewrite as
XX +2)—x2(n + 1) = x(n)lx(n) + 2x(n + D]

However, note that
x(n+3)=x(n+ D +x(n+2)=x(n)+2x(n+1)

Substituting this into the previous equation, we have the desired property.

4.38 A savings account pays interest at the rate of 5 percent per year with interest compounded monthly.

(@) If $50 is deposited into the account every month for 60 months, find the balance in the account at
the end of the 60 months. Assume that the money is deposited on the first day of the month so that,
at the end of the month, an entire month’s interest has been earned.

(b) 1If no deposits are made for the next 60 months, find the account balance at the end of the next 60-
month period.
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Instead of being compounded monthly, suppose that the bank offers to compound the interest daily.
Compute the account balance at the end of 60 months and 120 months and compare your balances
with those obtained when the interest is compounded monthly.

The savings account balance at the beginning of the nth month is equal to the balance in the previous month
plus the amount deposited in the nth month plus the interest earned on the balance from the previous month.
Therefore, if y(n) is the balance at the beginning of the nth month,

y(n)y=y(n — 1)+ By(n — 1) + x(n)

where 8 is the interest earned on the account, and x(n) is the amount deposited into the savings account in the
nth month. Taking z-transforms, and solving for Y (z), we have

X
Y= X3
l —vz!
where v = 1 + 8. With $50 deposits beginning with month number zero, x(n) = 50u(n), and

1
(1 —vz7 (1 —z71H

Y(z) =50

Performing a partial fraction expansion of Y (z), we have

Y(2) 50 1 v
)= -
I—v{l—2z71 1—vz!

Taking the inverse z-transform, we have

Yo = (= vty 4.8)

Withv =1+ 8,and 8 = % at the end of 60 months, after carning | month’s interest, but prior to making
the next deposit, the balance is

50
¥(60) = T (1 - V8] — 50 = 3,412.47

—V
With no deposits for the next 60 months, the balance at the end of the first 60 months simply grows as

y(n) = y(60) - v 5 > 60

Therefore, y(120) = 4,379.42

With the interest compounded daily, let us compute the effective monthly interest rate. Assuming a balance of
$1 at the beginning of the month, the difference equation that describes the daily balance, w(n), is

wn) = wn — 1)+ Bwn — 1) 4+ 8(n)
where 8 = % Using z-transforms as we did in part (a), the solution to this difference equation is
w(n) = v'u(n)
where v = | 4+ . Assuming that a month is 30 days long, for | month’s interest we have
w(30) = v** = 1.004175
Using v = 1.004175 in Eq. (4.8), we have

y(60) = 3,465.37
y(120) = 4,449.56
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The deterministic autocorrelation sequence corresponding to a sequence x(#n) is defined as

[0.8)

reny =Y x(k)x(n+k)

k=—o00
(a) Expressr,(n) as the convolution of two sequences, and find the z-transform of r,(n) in terms of the
z-transform of x(n).

(b) If x(n) = a"u(n), where |a| < 1, find the autocorrelation sequence, r,(n), and its z-transform.

(a) From the definition of the deterministic autocorrelation, we see that r.(n) is the convolution of x(n) with
x(—=n),
re(n) = x(n) * x(—n)

Therefore, using the time-reversal property of the z-transform, it follows that
R(2)=X(2)X(™")

If the region of convergence of X(z) is R,, the region of convergence of R.(z) will be the intersection
of the regions R, and 1/R,. Therefore, if this intersection is to be nonempty, R, must include the unit
circle.

(b) With x(n) = a”"u(n), the z-transform is

1
X(Z)=ﬁ Iz} > |al
—az
and the z-transform of the autocorrelation sequence is
R.(2) ! lal < Jz] < —
)= ———— ay <z < —
* (1 —az=")1 — az) la]

The autocorrelation sequence may be found by computing the inverse z-transform of R,(z). Performing a partial
fraction expansion of R.(z), we have

P
R.(2) = 1 a’'z 1 [ 1 3 1 ]

OI—az)(l-az) (U—azHl—aiz-) T—a|1=az! T—a'z7

Thus, because the region of convergence is |a| < z < 1/|a|, the inverse z-transform is

In|

la"u(n)+a "u(—n — 1)) = !

1 —a? —a”

re(n) =

In many disciplines, differential equations play a major role in characterizing the behavior of various phe-
nomena. Obtaining an approximate solution to a differential equation with the use of a digital computer
requires that the differential equation be put into a form that is suitable for digital computation. This prob-
lem presents a transformation procedure that will convert a differential equation into a difference equation,
which may then be solved by a digital computer. Consider a first-order differential equation of the form

d
Eya([) + a})a(t) = X,()

where y,(0)=yo. Because numerical techniques are to be used, we will restrict our attention to investi-
gating y,(t) at sampling instants nT where T is the sampling period. Evaluating the differential equation
att = nT, we have

d
Zya(nT) + ay,(nT) = x,(nT)
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From calculus we know that the derivative of a function y,(¢) att = nT is simply the slope of the function
at t = nT. This slope may be approximated by the relationship

d 1
ZY{I("T) ~ F[)’a("T) ~ yqo(nT — T)]

(a) Insert this approximation into the sampled differential equation above and find a difference equation
that relates y(n) = y,(nT) and x(n) = x,(nT), and specify the appropriate initial conditions.

(b) With x,(t) = u(t) and y,(07) = 1, numerically solve the differential equation using the difference
equation approximation obtained above.

(¢) Compare your approximation to the exact solution.

@ with j—tyam +aya) =x(0) (07 =0
using the approximation
%y,,(m ~ %[mnr) — y.(nT = T)]
we have %[ya(nT) = Ya(nT — T)]1 + ay,(nT) = x,(nT) ¥a(07) = yo
If we let y(n) = y,(nT) and x(n) = x,(nT),

1
7[)’(") —y(n—Dl+ay(n)y=x(n)  y0) =y

With a=

this becomes
y(n) —ay(n — 1) =aTx(n)  y(0)=y

(b) Using the one-sided z-transform to solve this difference equation, we have
Yi(2) —alz7'Yi(2) + y(~D] = aT X(2)

We must now derive the initial condition on y(n) at time n = —1 from the initial condition at n = 0. From the
difference equation, we have

¥(0) — ay(=1) = aTx(0)

With y(0) = 1 and x(0) = 1, the initial condition becomes

| —aT
y=n= :
a
With x,(2) = u(t) or x(n) = u(n),
X(2) :
2) =
1—z!
Therefore, using the given initial condition, we have
aT 1 —aT

M@ = g a =y T s
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Performing a partial fraction expansion gives
al
l-a _

hiio) = ] —z-! 1l —az!

2
T
< | —aT

|—u

l —a:z

and we may find y(n) by taking the inverse z-transform:

aT a’T
yn) = — ———a"+ (1 —aT)a" n=>0
| —a | —a
aT T 1 +aT 1
Because = . -
I —a | +aT aT o
this may be written as
=t (1-2 ( D
(n) = — - = n
Y o o 1 +aT -
(c) The solution to the differential equation is a sum of two terms. The first is the homogeneous solution, which is
yh(t) = Ae™™
where A is a constant that is selected in order to satisfy the initial condition y(0~) = 1. The second is the
particular solution, which is
yp({) = ;

Thus, the total solution is
|
Yoll) = — + Ae™™
o

Evaluating this at time 1 = 07,
1

a0 )=—-+A
o

we see that in order to match the initial conditions. we must have

Therefore,

If we compare this to the approximation in part (b), note that if T < 1,
e—mll:"T — (euT)~ll ~ (l + (XT)—"

1 1 1 !
= 12 ()

and
Supplementary Problems
z-Transforms
441 Find the z-transform of
(H" <10

x{n) =
0 else
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442  The z-transform of a sequence x(n) is
1 —4z7! 42772
X2)= ——————
@ =13 5050
If the region of convergence includes the unit circle, find the DTFT of x(n) at v = 7/2.
4.43  Find the z-transform of each of the following sequences:
(@) x(n)=(=1)'u(n)
(b) x(n)= %u(rz -1
(¢) x(n) = zcosh(an)u(n)
4.44  Find the z-transform of the sequence
(1 +k) n>0
y(n) = ;
0 n<0
4.45  Find the z-transform of the sequence
N N!
X(’l)z(n)=m OSHSN
4.46  How many different sequences have a z-transform given by
1 =227 432772
H(Z) = 1 1 b 1
(] -5+ ;z—z)(l + 52")
447  The sequence y(n) is formed from x(n) by
)=} kx(h)
k=0
where X(z) = sinz~'. Find Y (2).
4.48  If x(n) is an absolutely summable sequence with a rational z-transform that has poles at z = % and z = 2, what can
be said about the extent of x(n) (i.e., finite in length, right-sided, etc.)?
Properties
4.49 A right-sided sequence x(#) has a z-transform X (z) given by
2:° 8 4776 _2:73 44
X(z) = = ~ =
278 42775 — 4z
Find the values of x(»n) for all n < 0.
4.50  Use the z-transform to perform the convolution of the following two sequences:
x(n) = 8(n) —26(n —2)
h(n) = 28(n) —26(n — 1) +38(n —2) +6(n —3)
4.51  Evaluate the following summation:

S0re)

n=
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4.53
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Find the value of x(0) for the sequence that has a z-transform

X(z)=

1
|Z|>§

+34z7!
(1=

z'l)

PN Y

(i-

1,2
3272)
A right-sided sequence has a z-transform

27T 43274 =227 4 ]
32794+ 8277 —4z-2

X(z) =

Find the index and the value of the first nonzero value of x(n).

Inverse z-Transforms

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

Find the inverse z-transform of

|
(@) X(2)=(

[—o04z 1y =04

b) X(@:)= lz| > 0.2

1 —-0.2z2

Find the inverse z-transform of X (z) = cosz~'. Assume that the ROC includes the unit circle, |z| = 1.

Find the inverse z-transform of X(z) = ¢*. Assume that the ROC includes the unit circle, |z| = 1.

Find the inverse z-transform of

-3
X(z)= s |z| > 1
Find the inverse z-transform of
I+ 527! |
X@)= —= Iz} < 3
(1-4:)
If X(2) : |z] <2
)= —— Z| <
z—2
find the values of x(n) at n = —2 and n = —1 using contour integration.

Use the residue theorem to find the value of x(n) at n = 10 when

X(2) = -3 2] > 0.6
YT 00z hat06y T

Find the inverse z-transform of

X(z) = log(l — 2z) |z| < %

One-Sided z-Transforms

4.62

4.63

Find the one-sided z-transform of the sequences x(n) = (7).

Let X (z) be the one-sided z-transform of x(n).
(a) Find the one-sided z-transform of y(n) = x(n — 1).

(b) Find the one-sided z-transform of y(n) = x(n + 3).

[CHAP. 4
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4,64  Find the solution to the following linear constant coefficient difference equations:

(@) y(n) = 3y(n — 1)+ x(n) with x(n) = u(n) and y(=1) = ;.

(b) y(n)= y(n —1)— y(n —2) + 2u(n) with y(—=1) = 2 and y(-2) = 1.

(¢) yn)+ y(n —2) = 8(n) with y(—1) = | and y(-2) = 0.
4,65 The sequence y(n) is the solution to the LCCDE

ym) = 3yn—D+3yn = =x(n) n=0

with x(#) = 8(n). Find a set of initial conditions on y(n) for n < 0 so that y(n) = 1 forn > 0.

4.66  Consider the following difference equation:
y(n)+ y(n —2)=x(n)+x(n —1)

If x(n) = 10u(n) and y(—=2) = —10 and y(—1) = 0, find the output sequence y(n) forn > 0.
Applications
4.67 Determine the number of years that are required for an investment of money in a savings account to double if the

money is compounded monthly at an annual rate of (a) 5 percent and () 10 percent.
4.68  Suppose that x(n) has a z-transform

1 1
X(z) = -
2 I —az=' 1 —=phz!
with |a| < 1 and |b| < 1 and a region of convergence that includes the unit circle. (a) Find the deterministic autocor-
relation sequence r,(n). (b) Find another sequence that has the same autocorrelation.
Answers to Supplimentary Problems
1\ 10 10 B
w20 08 - () 0 - )
(- E)(- 1)

—1+4j

a4z Y
5+ 3
443 (a) : Jz] > 1
o a 1 T Z“I s, |Z2] > 1.
(b)) —log(l -z7Y, |z| > 1.
l l
(c) |z] > max(e®.e™).
1 —evz7! 1 —eaz7!
444 Y(2) !
X )= ———.
(I1—z=")
445  X(z)=(1+z"HV.
4.46  Three.
-1

aqr 2

z—1
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4.48

449

4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

4.58

4.59

4.60

4.61

4.62

4.63

4.64

4.65

4.66

4.67

4.68
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Two-sided.

x(—3) = —1 is the only nonzero value for n < 0.

x(n) * h(n) = 28(n) — 28(n — 1) — 8(n — 2) + 58(n — 3) — 68(n — 4) — 28(n — 5).

16 — 242
17-4v2

x(0) = 12,

i

(@) (n+ D(04)"u(n).

0.2)"?
R

o
Z m(-1)"5(;1 - 2k).
k=0 ‘

x(n) = —l—u(—n).

(—=n)!

x(n)=8(n+5 -2 Z 8(n — 5k).

k=0

—n(1)" u=n =)=+ DAY u=n =2 =80 + 1) = Bn + ()" u(=n - 2).

x(—=1)=—1 and x(=2) = —¢.

2(—0.6)°[(—0.6)* — 3] + 1(0.2)°((0.2)* — 3].

n~127"u(—n - 1).

Xi(z2) =

1—%2“

(@ z7'Xi(2)+ x(—=1.
B [X,(2) — x(0) — x(Dz™' — x(2)z72)23.

@ [2=§(5)" Jutn).
b [2+ % sin(n + D7 /3]u(n).
(c) [cos(nm/2) — sin(nm/2)]u(n).

y(=1) =1and y(-2) = 3.
y(n) = 10 + 1082 cos(nm /2 — 7 /4), n>0.

(a) 167 months. (b) 84 months.

] 1
(@) r(n)= sa" + l b — [(@" + b"yun) + (@™ 4+ b™u(—n — ).
1—a —ab

1 — b2 1
b) x'(n) =a"u(n) —b"u(—n —1).

[CHAP. 4



Chapter 5

Transform Analysis of Systems

5.1 INTRODUCTION
Given a linear shift-invariant system with a unit sample response /(n), the input and output are related by a
convolution sum

oC

y(n) = h(n) x x(n) = Z h(k)x(n — k)

k=—00

As discussed in Chap. 2, this relationship implies that ¥ (e/) = X(e/“)H (/) where H(¢/®), the frequency
response of the system, is the discrete-time Fourier transform of #(rn). This relationship between x(n) and y(n)
may also be expressed in the z-transform domain as

Y() = X(2)H(2)

where H(z), the z-transform of A(n), is the system function of the LSI system. The system function is very
useful in the description and analysis of LS] systems. In this chapter, we look at the characterization of a linear
shift-invariant system in terms of its system function and discuss special types of LSI systems such as linear
phase systems, allpass systems, minimum phase systems, and feedback networks.

5.2 SYSTEM FUNCTION

The frequency response of a linear shift-invariant system is the discrete-time Fourier transform of the unit sample
response, and the system function is the z-transform of the unit sample response:

(o]

H() = Z h(n)z™" (5.1)

n=—0o0
The frequency response may be derived from the system function by evaluating H (z) around the unit circle:

H(e!®) = H(z)|.

=elw

If the z-transform of the input to a linear shift-invariant system with a system function H(z) is X(z), the
z-transform of the output is
Y(z) = H(z)X(2)

For linear shift-invariant systems that are described by a linear constant coefficient difference equation,

4 q
Y+ aloyn —k) =Y blkix(n — k)
k=1 k=0

the system function is a rational function of z:

q q

blk)z™* H(l —Biz™hH
0

k=1

B =A ; (5.2)
L+ atz™* [Ja = ez
k=1 k=1
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k=

H(z) =
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Therefore, the system function is defined, to within a scale factor, by the location of its poles, «y, and zeros, S.
Note that each term in the numerator

z— B

4

1 — ﬂkZ-l =

contributes a zero to the system function at z = B and a pole to the system function at z = 0. Similarly, each
term in the denominator contributes a pole at z = o, and a zero at z = 0. Therefore, including the poles and
zeros that may lie at z = 0 or z = oo, the number of zeros in H (z) is equal to the number of poles.

If the unit sample response is real-valued, H (z) is a conjugate symmetric function of z,

H(z) = H*(z")

and the complex poles and zeros occur in conjugate symmetric pairs (i.e., if there is a complex pole (zero) at
z = zg, there is also a complex pole (zero) at z = z{).

5.2.1 Stability and Causality

Stability and causality impose some constraints on the system function of a linear shift-invariant system.

Stability
The unit sample response of a stable system must be absolutely summable:
o0
Y Ikl < o0
n=—00
Note that because this is equivalent to the condition that

Z |A(n)|z7" < 00

NnN=—00

for |z] = 1, the region of convergence of the system function must include the unit circle if the system is stable.

Causality

Because the unit sample response of a causal system is right-sided, #(n) = 0 for n < 0, the region of convergence
of H(z) will be the exterior of a circle, |z|] > «. Because no poles may lie within the region of convergence, all
of the poles of H(z) must lie on or inside the circle |z| < «.

Causality imposes some tight constraints on a linear shift-invariant system. The first of these is the Paley-
Wiener theorem.

Paley-Wiener Theorem: If 4(n) has finite energy and 4(n) = 0 for n < 0,
n .
/ |In|H (e/*)||dw < oo

One of the consequences of this theorem is that the frequency response of a stable and causal system cannot be
zero over any finite band of frequencies. Therefore, any stable ideal frequency selective filter will be noncausal.

Causality also places restrictions on the real and imaginary parts of the frequency response. For example,
if h(n) is real, A(n) may be decomposed into its even and odd parts as follows:

h(n) = he(n) + ho(n)

where he(n) = 31h(n) + h(—n)]
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and ho(n) = M[h(n) = h(=n)]
If 4(n) is causal, it is uniquely defined by its even part:
h(n) = 2h.(n)u(n) — h(n)d(n)

If h(n) is absolutely summable, the DTFT of A(n) exists, and H(e/®) may be written in terms of its real and
imaginary parts as follows:

H(e/*) = Hg(e’) + jH(e’*)
Therefore, because Hg(e/¢) is the DTFT of the even part of /(n), it follows that if #(n) is real, stable, and causal,

H (e’®) is uniquely defined by its real part. This implies a relationship between the real and imaginary parts of
H(e’*), which is given by

H,(ej“’)z—%r—/ HR(eje)cot<9%€)d9 (5.3

This integral is called a discrete Hilbert transform. Specifically, H;(e/®) is the discrete Hilbert transform of
Hg(e’®).

Realizable Systems

A realizable system is one that is both stable and causal. A realizable system will have a system function with a
region of convergence of the form |z| > « where 0 < o < 1. Therefore, any poles of H(z) must lie inside the
unit circle. For exarmnple, the first-order system

H(z) = 1—+~’ZJ((OT))2*_‘ lz| > la(D)]
will be realizable (stable and causal) if and only if
la(l)] <1
For the second-order system,
b(0)

H(z) =

1 +a(Dz7! 4+ a(2)z72

H (z) has two zeros at the origin and poles at

a(l) | [a()) - 4a(2)
e i A R

These roots satisfy the following two equations:
a(l) = —(a; + a)
a2) =o; oy
From these equations, it follows that the roots of H (z) will be inside the unit circle if and only if (see Prob. 8.29)
la(2) < 1
la()] < 1+ a(2)

These constraints define a stability triangle in the coefficient plane as shown in Fig. 5-1. Thus, a causal second-
order system will be stable if and only if the coefficients a(1) and a(2) lie inside this triangle. This result is
of special interest, because second-order systems are the basic building blocks for higher-order systems. If the
coefficients lie in the shaded region above the parabola defined by the equation

a’(1)—4a(2)=0

the roots are complex; otherwise they are real.
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Fig. 5-1. The stability triangle, which is defined by the lines |a(2)| < 1
and |a(1)| < 1+4a(2). The shaded region above the parabola a®(1) —
4a(2) = 0 contains the values of a(1) and a(2) that correspond to
complex roots.

5.2.2 Inverse Systems

For a linear shift-invariant system with a system function H(z), the inverse system is defined to be the system
that has a system function G(z) such that

H(z)-G(z) =1
In other words, the cascade of H(z) with G(z) produces the identity system. In terms of H(z), the inverse is
simply

1
G(z) = ——
(2) ")
For example, if H (z) is a rational function of z as given in Eq. (5.2). the inverse system is
P
[Jo -z

Thus, the poles of H(z) become the zeros of G(z), and the zeros of H(z) become the poles of G(z). The region
of convergence that is associated with the inverse system is determined by the requirement that H(z) and G(z)
have overlapping regions of convergence.!

EXAMPLE 5.2.1 If

H()_I—O.Sz’I 2l > 08
T 1 —0.8:7! a=r

the inverse system is
1—0.827"
G(iz)= ————

1 —0.5z~"
+»and the second is |z] < 3. Because |z| < 3 does

There are two possible regions of convergence for g(n). The firstis |z| > 3,
not overlap the region of convergence for H(z), the only possibility for the inverse system is |z| > —; In this case, the unit
sample response is

g(n) = (%)"u(n) — 0.8(%)/1’]u(n -1

11f this were not the case, H (z)G(z) would not be the identity system. because the region of convergence would be empty.



CHAP. 5] TRANSFORM ANALYSIS OF SYSTEMS 187

which is stable and causal. However, suppose that

05—z
Hz) = ——082— 2 > 0.8
In this case, the inverse system is
1 —0.8z7" 1-08z"
= = 2
6@ =G5 =2

where the region of convergence may be either |z| > 2 or |z| < 2. Because both regions of convergence overlap the region of
convergence of f(z), both are valid inverse systems. The first, which has a region of convergence |z[ > 2, has a unit sample
response

2(n) =22 u(n) — 1.6(2)" 'u(n - 1)

and is causal but unstable. The second, with a region of convergence |z| < 2, has a unit sample response
g(n) = =22)"u(=n — 1) + 1.6(2)""u(—n)

and is stable but noncausal.

5.2.3 Unit Sample Response for Rational System Functions

A linear shift-invariant system with a rational system function may be written in factored form as follows:

q
1—1 l - ,BkZ
H(z)= : 5.4
n l - akz

Assuming only first-order poles, with «, # B, for all k and /, if p > ¢, H(z) may be expanded using a partial
fraction expansion as follows:

He =3
zZ)= —_—
=1 —oyz!
If the system is causal, the unit sample response is
h(n) = Z Al u(n) (5.5)

When p < g, the partial fraction expansion has the form

q—p . P Ak
no =t a A
k=0 = LTz

and, if the system is causal, the unit sample response becomes

h(n) = Z By8(n — k) + Z Agelf u(n)

k=0

If p =0, H(z) has only zeros,
q
H(z)=Y_b(k)z™
k=0
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and A(n) is finite in length with

q
h(n) = }: b(k)s(n — k) (5.6)
k=0

These systems are called finite-length impulse response (FIR) filters. If p > 0, H(z) is infinite in length, and
these systems are called infinite-length impulse response (IIR) filters.

If h(n) is real, H(z) = H*(z*), and the complex poles and zeros of H (z) occur in complex-conjugate pairs.
For example, if a; = rye/* is a complex-valued pole, &} = rye /** will also be a pole. This symmetry implies
that the complex terms in Eq. (5.5) may be combined to form terms of the form

Ckl‘,:' cos(nwy + ¢p)

5.2.4 Frequency Response for Rational System Functions

The frequency response of a linear shift-invariant system may be found from the system function by evaluating
H(z) on the unit circle. For a rational function of z, the frequency response may be found geometrically from
the poles and zeros of H(z). With H(z) written in factored form as in Eq. (5.4), the frequency response is

q .
[ 10— Bee™)
k=1

H(e'*) = A= ——
n(l —aze”’?)
k=1

4.7)

Because the magnitude of the frequency response is

q
[111—Bee™

|H(e)] = |41
[T —ewe
k=1

|H(e/®)| is | A| times the product of the terms |1 — Bye~/*| divided by the product of the terms |1 — age™/?|.
Each term in the numerator

[1 = Bie™ /| = |/ — Bl

is the length of the vector from the zero at z = §; to the unit circle at z = e/® (labeled v, in Fig. 5-2). Similarly,
each term in the denominator

11— eye™| = |’ — ay

is the length of the vector from the pole at z = « to the unit circle at z = e/@ (labeled v, in Fig. 5-2). When a
pole is close to the unit circle, oy = rye/“* with r;, ~ 1, the magnitude of the frequency response becomes large
for w = wy because the length of the vector from the pole to the unit circle becomes small. Similarly, if there is
a zero close to the unit circle, By = rye/® with ry & 1, the magnitude of the frequency response becomes small
for w = wy, (if the zero is on the unit circle at z = ¢/, H(e/®*) = 0).

The analysis for the phase is similar. Assuming that A is a positive real number, the phase corresponding to
the frequency response H(e’®) given by Eq. (5.7) is

q P
(@) = Y arg(l — fre™/*) = ) " arg(l — e ™)
k=1 k=1

Thus, ¢, (w) is the sum of the phases associated with the terms (1 — Bye~/“), minus the sum of the phases of the
terms (1 — aye™/®). Because
1= Bre™/® =77 - Bp)
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r Im(z)

(o
Vi1

Re(z)

Fig. 5-2. Evaluating the frequency response geometrically from the
poles and zeros of the system function.

then arg(1 — Bre /) = arg(e’® — ) —w =6, —w

where 6, is the angle subtended by the vector from the zero at z = g to the unit circle at z = ¢/“ (see Fig. 5-2).
Similarly, for each term in the denominator

arg(l —oge /) =6, — w

where 6, is the angle of the vector from the pole at z = o to the unit circle at z = ¢/“. When a pole (zero)
is close to the unit circle, the phase decreases (increases) rapidly as we move past the pole (zero). Because the
group delay is the negative of the derivative of the phase, this implies that the group delay is large and positive
close to a pole and large and negative when close to a zero.

5.3 SYSTEMS WITH LINEAR PHASE

A linear shift-invariant system is said to have linear phase if the frequency response has the form
H(e'®) = |H(e/*)e™/*
where « is a real number. Thus, linear phase systems have a constant group delay,
hw) =«

In some applications, one is interested in designing systems that have what is referred to as generalized linear
phase. A system is said to have generalized linear phase if the frequency response has the form

H(ejw) — A(ejw)e—j(OM)—ﬂ) (5.8)

where A(e/) is a real-valued (possibly bipolar) function of w, and g is a constant. Often, the term /inear phase
is used to denote a system that has either linear or generalized linear phase.

EXAMPLE 5.3.1 Consider the FIR system with a unit sample response

1 n=0,1,....N
"(”):{0 else
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The frequency response is
sin(“41.0)

in(2)

Therefore, this system has generalized linear phase, witha = N/2 and 8 = 0.

H(ejm) — e—ij/Q

In order for a causal system with a rational system function to have linear phase, the unit sample response
must be finite in length. Therefore, IIR filters cannot have (generalized) linear phase. For an FIR filter with a
real-valued unit sample response of length N + 1, a sufficient condition for this filter to have generalized linear
phase is that the unit sample response be symmetric,

h(n) = (N — n)
In this case, « = N /2 and B = 0 or w. Another sufficient condition is that 4(n) be antisymmetric,
h(n) = —h(N — n)
which corresponds to the case in whicha = N/2 and 8 = = /2 or 37 /2.
Linear phase filters may be classified into four types, depending upon whether A(n) is symmetric or anti-
symmetric and whether N is even or odd. Each of these filters has specific constraints on the locations of the

zeros in H(z) which, in turn, place constraints on the frequency response magnitude. For each of these types,
which are described below, it is assumed that 4(n) is real-valued, and that 4(0) is the first nonzero value of 4(n).

Type I Linear Phase Filters

A type I linear phase filter has a symmetric unit sample response,
h(n) = h(N — n) 0<n=N

and N iseven. The center of symmetry is about the pointa = N /2, whichis an integer, as illustrated in Fig. 5-3(a).

4 hn) 4 hn)
,~¢— Center of symmetry
1

\~¢ Center of symmetry

—O——-
-2 -1 1 2 3 4 5 6 -2 -1 1 2 3 4 5 6
(a) Type I filter. (b) Type II filter.

h(n) h(n)

| < Center of symmetry 14— Cenfer of symmetry

3 4 5 n 1 2
*e—eo | ] ¢ ’
! -2 -1 l l 3 4 | 6
i
| 1
(c) Type I filter. (d) Type IV filter.

Fig. 5-3. Symmetries in the unit sample response for generalized linear phase systems.
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The frequency response of a type I linear phase filter may be expressed in the form

N/2
H(e/”) = e N>y~ a(k) cos(ke) (5.9)
k=0
N N
where a(k)=2h(?—k) k=l.2,...,5

a(0) = h(l—;—)

A type Il linear phase filter has a symmetric unit sample response, and N is odd. Therefore, the center of symmetry
of h(n) occurs at the half-integer value « = N /2, as illustrated in Fig. 5-3(b). The frequency response of a type
I1 linear phase filter may be written as

Type II Linear Phase Filters

‘ , (N+1)/2
H(e!) = e /N> " b(k)cos[(k — })o] (5.10)
k=
N +1 N +1
where b(k)=2h(——;———k) k=l,2,...,( ; )

Type III Linear Phase Filters
A type III linear phase filter has a unit sample response that is antisymmetric,
h(n) = —h(N — n)

and N is even. Therefore, h(n) is antisymmetric about « = N /2, which is an integer, as illustrated in Fig. 5-3(¢).
The frequency response of a type III linear phase filter may be written as

N/2
H(e/®) = je N/ " c(k) sin(kew) (.11
k=1
N N
=2h|— —k k=1,2,..., =
where c(k) h( 5 ) 1, >

Type 1V Linear Phase Filters

A type IV linear phase filter has a unit sample response that is antisymmetric, and N is odd. Therefore, h(n) is
antisymmetric about the half-integer value « = N /2, and the frequency response has the form

. . (N+1)/2
H(el®) = je /N2 3" d(k)sin[(k — §)w] (5.12)
k=1
N+1 N
where d(k)=2h<T+—k) k=125

The z-Transform of Linear Phase Systems

The symmetries in the unit sample response of a linear phase system impose constraints on the system function
H(z). For atype I or 1l filter, h(n) = h(N — n), which implies that

Hiz)=zVH(E™YH
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Similarly, for a type IIl or IV linear phase filter, 2(n) = —h(N — n), which implies that
H(iz)=—-z"VHE™"

In both cases, if H(z) is equal to zero at z = z¢, H (z) must also be zero at z = 1/z¢. Therefore, the zeros of H(z)
occur in reciprocal pairs. In addition, with 4(n) being real-valued, complex zeros occur in conjugate reciprocal
pairs. Thus, the constraints on the zeros of a linear phase filter are as follows. First, H(z) may have one or more
zeros at z = %1. Second, H (z) may have complex-conjugate zeros on the unit circle at z = ¢/ or reciprocal
zeros on the real axis at z = « and z = 1 /«. Finally, H(z) may have groups of four zeros in conjugate reciprocal
pairs at z = rge*/** and z = ;-¢*/**. These constraints are illustrated in Fig. 5-4.

. Im(z)

/O *
1 71z

Re(z)

1/21 21

1/20
O

Fig. 5-4. Constraints on the zeros of the system function of
an FIR system with generalized linear phase and a real unit
sample response. Types III and IV filters must have a zero
at z = 1, whereas types II and III filters must have a zero
atz = —1.

The cases of z = 1 and z = —1 deserve special attention. Evaluating the system function at z = —1 for a
type II filter, we have
H(=1)=(D"H(-1)
Because N is odd, this implies that
H(—=1)=—-H(-1)

which will be true only if H(—1) = 0. Therefore, a type II linear phase filter must have a zero at z = —1.
Similarly, evaluating H(z) at z = —1 for a type Il filter, we have

H(-1) = (=D H(-1)

which, because N is even, requires that there be a zero at z = —1. Because the system function evaluated at
z = —1 is equal to the frequency response at w = 7,
H(e’®)|p—r =0  Types Il and III filters (5.13)

For types III and 1V filters, evaluating the system function at z = [, we find
H(l)=-~H(l)

which will be true only if H(z) is zero at z = 1. Therefore, types III and TV linear phase filters must have a zero
at z = 1, which implies that

H(e!)|p—0 =0  Types Il and IV filters (5.19)
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5.4 ALLPASS FILTERS

An allpass filter has a frequency response with a constant magnitude,
|H (/)] =1

This unit magnitude constraint constrains the poles and zeros of a rational system function to occur in conjugate
reciprocal pairs:

N -1 _
HG) =[] -k (5.15)
k=1

l —ayz

Thus, if H(z) has a pole at z = a;, H(z) must have a zero at the conjugate reciprocal location z = 1/a;. If h(n)
is real-valued, the complex roots in Eq. (5.15) occur in conjugate pairs, and if these conjugate pairs are combined
to form second-order factors, the system function may be written as

N -1 N> -1 -2
Ho =]] z k k-ar tz

1 —ka_l k=1 1 - CkZ_l +de_2

k=1

where the coefficients by, ¢, and d; are real. If an allpass filter H(z) is stable and causal, the poles of H(z) lie
inside the unit circle, |a;| < 1. Figure 5-5 shows a typical pole-zero plot for an allpass filter. Allpass filters are
useful for group delay equalization to compensate for phase nonlinearities.

, Im(z) 1/

Re(z)

1/21 21

]./20
O

Fig. 5-5. Tllustration of the conjugate reciprocal symmetry
constraint that is placed on the poles and zeros of an allpass
system.

A stable allpass filter has a group delay that is nonnegative for all w. This follows from the fact that, for a
first-order allpass factor of the form

77— a*
H(z) =

- 1
I —az! ©-16)

where a = re’?, the group delay is
1 —r?
T(w) = m
Therefore, with 0 < r < 1, it follows that 7(w) > 0. Because a general allpass filter has a group delay that is a
sum of terms of this form, the group delay of a rational, stable, and causal allpass filter is nonnegative.
A filter may be cascaded with an allpass filter without changing the magnitude of the frequency response.

If the pole of the allpass filter cancels a zero, the zero is replaced with one at the conjugate reciprocal location.
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Thus, flipping one or more zeros of the system function about the unit circle does not change the magnitude of
the frequency response.

EXAMPLE 5.4.1 For a filter that has a system function

H() = 1—-02z""
PE T 05

the magnitude of the frequency response will not be changed if it is cascaded with the allpass filter

7V ~0.2
B2 = =557

This allpass filter flips the zero at z = 0.2 in H(z) to its reciprocal location, z = 5, and the new filter has a system function

G(2) 2= —0.2
)= ———
1—0.5z71

5.5 MINIMUM PHASE SYSTEMS

A stable and causal linear shift-invariant system with a rational system function of the form given in Eq. (5.2)
has all of its poles inside the unit circle, |a,] < 1. The zeros, however, may lie anywhere in the z-plane. In some
applications, it is necessary to constrain a system so that its inverse, G(z) = 1/H(z), is also stable and causal.
This requires that the zeros of H (z) lie inside the unit circle, |S¢| < 1. A stable and causal filter that has a stable
and causal inverse is said to have minimum phase. Equivalently, we have the following definition:

Definition: A rational system function with all of its poles and zeros inside the unit circle is
said to be have minimum phase.

A minimum phase system is uniquely defined by the magnitude of its Fourier transform, |H(e/®)|. The
procedure to find H(z) from |H (¢/?)| is as follows. Given |H (¢/®)|, we find |H (¢/*))?, which is a function of
cos(kw). Then, by replacing cos(kw) with 3(z* + z7*), we have

G(z) = H(z)H(z™")
Finally, the minimum phase system is then formed from the poles and zeros of G (z) that are inside the unit circle.
EXAMPLE 5.5.1 Let H(z) be a minimum phase system with a Fourier transform magnitude
[H(e’))* =11 —Lcosw
Expressing cos w in terms of complex exponentials,
|H ()P =11 — Lo _ Lg=io

16 4

~1 we have

and replacing e/ with z and e/ with z
G)=H@HE Y= -1z- 7 =(1-47")(1-{2)

Thus, the minimum phase system is
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A stable and causal system may always be factored into a product of a minimum phase system with an
allpass system:
H(z) = Hain(2) - Hap(z) (5.17)

The procedure for performing this factorization is as follows. First, all of the zeros of H(z) that are outside the
unit circle are reflected inside the unit circle to their conjugate reciprocal location. The resulting system function
is minimum phase, Hyin(z). Then, the allpass filter is selected so that it reflects the appropriate set of zeros of
Hin(2) back outside the unit circle.

EXAMPLE 5.5.2 For the system function

| —2z71

H =
&= T 020 =07

the minimum phase factor is
)
(1 =02z7")1 —=0.7z7")

H(z) =
Then, to reflect the zero at z = 0.5 back outside the unit circle to z = 2, we use the allpass factor

H,(z) = l_—_zi
“ z7l -2
Two properties of minimum phase systems are as follows. First, of all systems that have the same Fourier
transform magnitude, the minimum phase system has the minimum group delay. This follows from the factor-
ization given in Eq. (5.17). Specifically, let Hy,in(z) be a minimum phase system, and let H (z) be another system
with the same magnitude. The group delay for H(z) may be written as

(W) = Tyin(w) + Tap(w)

where 7,5(w) is the group delay of a stable and causal allpass system. Because 7,p(w) > 0, the group delay of H (z)
will be larger than the group delay of the minimum phase system H,;,(z). Furthermore, because the phase is the
negative of the integral of the group delay, the minimum phase system is also said to have the minimum phase-lag.

The second property of minimum phase systems is that they have the minimum energy delay. Specifically, if
hmin(n) is the unit sample response of a minimum phase system, and /(n) is the unit sample response of another
causal system that has the same magnitude response,

n

Y P < 3 k)
k=0

k=0

for any n > 0.

5.6 FEEDBACK SYSTEMS

Feedback systems are used in many applications such as stabilization of unstable systems, compensation of
nonideal elements, tracking systems, and inverse system design. The general configuration of a discrete-time
feedback system is shown in Fig. 5-6. The system H({z) is referred to as the system function of the forward path,
and G(z) is referred to as the system function of the feedback path. The system function relating the input x(n)
to the output y(n) is called the closed-loop system function and is denoted by Q(z). Because

Y(2) = HOIX(2) — G(2)Y (2)]
the closed-loop system function is

Y(z) _ H(z)
T X(z)  1+G@H(©)

(5.18)
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x(n)

y(n)

H(z) =

G(2)

r

Fig. 5-6. A feedback network.

If H(z) and G (z) are rational functions of z,

_NE o N
Di(2) Dq(2)

H(2)

the closed-loop system function may be written as

Ni(2)Dy(2)

0@ = 5 Dn) + NN )

Therefore, the poles of the closed-loop system (Q(z) are the roots of the equation

Dg(2)Dy(z) + No(2)Np(z) = 0

[CHAP. 5

(5.19)

With the appropriate order and coefficients for G(z), the poles may be placed anywhere in the z-plane.

EXAMPLE 5.6.1 Suppose that we have an unstable system with system function

H@) = —
e

Placed in a feedback network with
Giz)=K
the system function of the closed-loop system is

Y@ H@ ! N

Q(2)

1

which has a pole at z = 1.2/(1 + K). Therefore, this system will be stable for all K > 0.2.

Solved Problems

System Function
5.1 If the input to a linear shift-invariant system is
x(n) = (3)"u(n) +2"u(—n — 1)

the output is
y(n) = 6(3)"u(n) — 6(3)" u(n)

T Xz 1+KH@E@  (1-122"H4+K  (Q+K)-1.2z")

Find the system function, H(z), and determine whether or not the system is stable and/or causal.
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5.2

5.3

In order to find the system function, recall that H(z) = Y (z)/X(z). Because we are given both x(n) and y(n), all
that is necessary to find H(z) is to evaluate the z-transform of x(n) and y(n) and divide. With

1 1 =3z
X(2) = = 2 Lozl <2

1—4z7! -2 (1—%2")(1—22“) 2

and Y(z) = — =

5
\
IS

Y@ (1-227")
Then, H(Z) = }(7) = (]—___%_Z—l—)

For the region of convergence of H(z), we have two possibilities. Either |z]| > % or|z| < %. Because the region of

convergence of Y(z) is |z| > ;} and includes the intersection of the regions of convergence of X(z) and H(z), the

region of convergence of H(z) must be |z > 3.

Because the region of convergence of H(z) includes the unit circle, h(n) is stable, and because the region of
convergence is the exterior of a circle and includes z = 00, h(n) is causal.
When the input to a linear shift-invariant system is

x(n) = 2u(n)

the output is

y(m = [4(3)" = 3(=3)"Jutm)
Find the unit sample response of the system.
One approach that we may use to solve this problem is to evaluate H(z) = Y (z)/ X(z) and then compute the inverse
z-transform. Note, however, that we are given the response of the system to a step with an amplitude of 2, and we
are asked to find the unit sample response. Because

S(n)=u@n) —un-1)

if we let s(n) be the step response, it follows from linearity that

h(n) =s(n)—stn—1)

Therefore, from the response given above, we have
h(n) = 51y(n) — y(n — 1]
or hw = 4[4(3)"=3(=3)"Tum—4[4(3)" -3(=3)" Jutn = 1)

= bs -+ [2(3)" = 23 T - 1)

A causal linear shift-invariant system is characterized by the difference equation
y(n) = zy(n = D+ gy(n = 2) + x(n) = x(n = 1)

Find the system function, /(z), and the unit sample response, /().

To find the system function, we take the z-transform of the difference equation,

Y(2)=327'Y (@) + §277Y () + X(2) — 27 X(2)

1
3
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or YOI - 427 = 7?2 = x @)1 - 27"

Therefore, the system function is

H(z) Y(2) 11—z -z
Iy = —— = =
X(z) 1—qz7'—iz? (1—52*')(14-412")

8

Because the system is causal, the region of convergence is |z| > %
To find the unit sample response, we perform a partial fraction expansion of H(z),

Ho=—2 5
Z) =
l—%z“ 1+ 427!
1,-1 ]_Z_l 2
where A:(l—iz )H(z) = - =—2
2=l ]+ d_z ~1=2
_— -z 5
B=(1+1iz")H() = =3
-l=_4 2= —le_g
_2 3
Therefore, H(z) = S g -
]—'EZ_I l+32<]

and the unit sample response is
h(my = =3(8)"utm) + (=) uim
5.4 A causal linear shift-invariant system has a system function
H@ =1—1=
Find the z-transform of the input, x(n), that will produce the output
) = =3(3)"u(n) ~ 3@"u(=n ~ 1)

To find the input to a linear shift-invariant filter that will produce a given output y(n), we use the relationship
Y(z) = H(z)X(z) to solve for X(z):

Computing the z-transform of y(n), we have

-3 3 1+ 1z
Y(2) = T e 3
() 1 — %2*1 1 —2z-1 (] _ 412")(1 PN
1+ L7091 = L
Therefore, X(z) = ( 3t )( 32 ) _ Al N B c
(1=3z)a =204z 1—fz T=227 T4z
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5.5

5.6

| =izt 12
h A=(-1")x = =1
where ( it ) (Z)__]_4 (1=2z"H1+z27H| | °
N

i

(RTINS

(l - %z“)(l +z=1)

1!
=3

4
15

Because h(n) is causal, the region of convergence for H(z) is |z| > % With the region of convergence of Y (z) the
annulus § < |z| < 2, the region of convergence of X(z) is § < |z| < |. Therefore,

x(my= (1) utn) = 22'u(=n — 1) = L(=1Y'u(=n = 1)

Show that if 4(n) is real, and H(z) is rational,

q
(1=pz™")
Hzy=A%

»
H(l —oyzh
k=1

the poles and zeros of H(z) occur in conjugate pairs.

[t follows from the symmetry property of the z-transform that if 4(n) is real, H(z) = H*(z*). Therefore,

4q q
[Ta-seEH™ [Ta-8:=
He)=|AS———— | = A&

» >
[0 = ez [Ja=ez™h
k=1 k=1

*

and the result follows.

Without evaluating the inverse z-transform, determine which of the following z-transforms could be the
system function of a causal but not necessarily stable discrete-time linear shift-invariant system:

X(z)=

@O

13

) X@)= 1

(z—3)

— 1’

(c) X(z)z(z—%

(==3)

_ 14

d) X<z>=(z—3)

A causal sequence is one that is equal to zero for n < 0. Therefore, the z-transform of a causal sequence may be
written as a one-sided summation:

X(z)= Zx(n)z_"
n=0



200

5.7

5.8

TRANSFORM ANALYSIS OF SYSTEMS {CHAP. 5

What distinguishes the z-transform of a causal signal from one that is not is the fact that X (z) does not contain any
positive powers of z. Consequently, if we let |z| — 00, X(z) — x(0), which is a statement of the initial value
theorem. It follows, therefore, that if x(n) is causal, this limit must be finite. For noncausal signals, on the other
hand, this limit will tend to infinity, because the z-transform will contain positive powers of z. For example, the
sequence x(n) = u(n + 1) has a z-transform

X@=z+4) o= —

_
n=(0 ! e

and lim X(z) =

|z| =00
Thus, a z-transform may be the system function of a causal system only if
lim X(z) < 00
|2l— 0
Of the transforms listed, only (a) and (c) have a finite limit as |z| — oc and, therefore, are the only ones that could
be the z-transform of a causal signal.
The result of a particular computer-aided filter design is the following causal second-order filter:

1422714272
1 —2z71 4+ 1.3322

H(z) =

Show that this filter is unstable, and find a causal and stable filter that has the same magnitude response
as H(z).

This filter is clearly not stable, because the coefficient for 272 in the denominator, which is the product of the roots
of H(z), is greater than 1. Specifically, if the poles of H(z) are «r; and «», then &y - a; = 1.33, and this implies that
at least one of the roots is outside the unit circle. Because the discriminant of the polynomial is negative,

[(2) —4(1.33)] < 0
the roots are complex with o; = re/? and o, = re™7? where r = +/1.33 and 6 = cos™'(1/+/1.33).

Recall that if we form a new system function given by H'(z) = H(2)G,(z), where G ,(z) is an allpass filter of
the form

| +az™' + Bz72
Ol = a2 7
|H'(e/®)| = |H (e/®)|. Therefore, if
1 -2+ 133272
Gy(2) =

1.33 -2z 422

the effect of G,p(z) is to replace the pair of complex poles in H(z) that are outside the unit circle with a complex
pole pair inside the unit circle at the reciprocal locations while preserving the magnitude response. Thus, a stable
filter that has a frequency response with the same magnitude as H (¢/®) is the following:

1427 4272

H# )= ——M—MM—
(2) 1.33 =227V + 272

The system function of a discrete-time linear shift-invariant system is H (z). Assume that H (z) is a rational
function of z and that H(z) is causal and stable. Determine which of the following systems are stable
and which are causal:

(@) G(z)= H(z)H*(z")
(b) G(z)= H'(z) where H'(z) = ;1

z

[H(2)]
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() G)=HE")
(d) G(z)=H(-z)

With H(z) a rational function of z, if A(n) is stable and causal, the poles of H(z) (if any) are inside the unit circle,
and the region of convergence is the exterior of a circle and includes the unit circle.

(@) If H(z) is the z-transform of h(n), then H*(z*) is the z-transform ot A*(n), and the region of convergence is
the same as that for H(z). Because the region of convergence of G(z) = H(z)H*(z") includes the regions of
convergence of H(z) and H*(z*), the region of convergence of G(z) will be the exterior of a circle and include
the unit circle. Therefore, g(n) is stable and causal.

(b) Recall that if H(z) is the z-transform of /(n),
z .
nhn) «— —zH'(z)
Therefore, delaying the sequence nh(n) by | yields the following z-transform pair:
z '
(n—=Dhn—=1) «—— —H'(2)
and, clearly, (n — Dh(n — 1) will be causal if #(n) is causal. Finally, because H(z) is a rational function of z,

N(z)

H(z)= Do)

and we have
_ DEIN'(2) = N()D'(2)

H'(2) e

Therefore, if the poles of H(z) are inside the unit circle, the poles of G (z) are inside the unit circle, and g(n) is
stable.

() With G(z) = H(z™"), note that if H(z) has a pole at = = z;, G(z) will have a pole at z = 1/z,. Therefore,
all of the poles of G(z) will be outside the unit circle. and g(n) cannot be both stable and causal. Because the
replacement of z with z ™! corresponds to a time reversal,

h(=n) <> H(iE")

g(n) is noncausal. Furthermore, because time-reversing a sequence does not affect its absolute summability,

i th(n)) = i [A(=n)|

H=—00 n=—nc

the region of convergence for GG(z) will include the unit circle. Thus, g(n) is stable.

(d) With G(z) = H(—z2), note that replacing z with —z corresponds to modulating /4(n) by (— )":

o0 o0

G(z)= H{—z2) = }: h(n)(—2)" = Z (—D)'h(n)z™"

H=—00 n=-—oc

Therefore, if #{n) is causal and stable, so is g(n).

Find the inverse system of
1—2:7"

AO=T6

lz] > 0.6
The inverse system is
1 —0.6z7"

&) =455
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and there are two possible regions of convergence: |z| > 2 and |z| < 2. Because both of these overlap with the
region of convergence for H(z), both are valid inverse systems. For |z| > 2, the unit sample response is

g(n) =2"u(n) — 0.6(2)" 'u(n — 1)
which is a causal but unstable system. For |z| < 2, the unit sample response is
g(n) = =2"u(—n — 1)+ 0.6(2)" ' u(—n)

which is stable but noncausal. Note. however, that the system
Gi)=———— |2/ >05

is both stable and causal, and the magnitude of the frequency response is the same as that of the inverse system.
Therefore, this system is realizable, and the system that is the cascade of H (z) with G(z) has a frequency response
with a magnitude of 1.

Let H(z) be a stable and causal filter with a system function

(1 — ef@z=1)(1 — e~/ z—1y

Hizy=A - -
(1 —refeoz=1)(1 —re—Jjwz—1)

(a) Make a pole-zero plot of the system function, and use geometric arguments to show that if r ~ 1,
the system is a notch filter.

(h) At what frequency does |H (e/*)| reach its maximum value?

(a) This system has a pair of complex zeros on the unit circle at z = ¢/“ and a pair of complex poles just inside
the unit circle at z = re*/“, A pole-zero diagram for H(z) is shown in the figure below.

Im(z)

Re(z)

The first thing to note is that, due to the zeros that are on the unit circle, the frequency response goes to zero
at w = £ wy. The second thing to observe is that, as we move away from the unit circle zeros, the lengths of
the vectors from the poles to the unit circle approach the lengths of the vectors from the zeros to the unit circle.
Furthermore, the closer r is to |, the more rapidly the lengths of these vectors become the same. Therefore, if
r a1, H(e/®) is a notch filter, with a frequency response that is approximately constant except within a narrow
band of frequencies around & = % @y, where the frequency response goes to zero.

(h) The magnitude of the frequency response increases monotonically as we more away from the unit circle zeros.
Therefore, |H (¢/“)| will reach its maximum value either at w = 0 or @ = m. Because the frequency response
atw =01s

(1 — e/0)(1 — e~ i) 2 —2coswy
(1 — reioo)(1 —re=ie0) — " 1 +r2 — 2r coswy
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and the frequency response at w = 7 is

(1 +€jwo)(1 +e—/(00) _ 2+2COS(1)0
(1 +re/wn)(l +rg".iw0) - 1 +r2 +2rCOSCO0

|H (e/%)} will reach its maximum value at w = 0 if 7/2 < wy < 7, and it will reach its maximum value at
w=mif0) <wy < /2.

5.11 A signal y(n) contains a primary signal, x(n), plus two echos:
y(n) = x(n) + §x(n — ng) + {x(n = 2ny)
Find a realizable filter that will recover x(n) from y(n).
Because Y (z) is related to X (z) as follows:
Y(@) = (14327 + Lz7) X (2)

the inverse filter is
t

I 4 {z77a 4 1772

G(z) =

We must check. however, to see whether or not this filter is realizable. First, note that we may write G(z) as

G(z) = F(z")
1
where F(Z) e T
L4327 4 5272
The poles of F(z) are at
z=—1(1£,jV3)

which are inside the unit circle at a radius of r = 0.5. Therefore, the poles of G(z) are inside the unit circle, at a
radius of ' = (0.5)™"¢, and G(z) is realizable.

5.12 A causal system with a real-valued unit sample response has a frequency response with areal part given by
Hg(e’®) =1+ 0.2cos 2w

Find h(n) and H (e/®).

We are given Hy(e/®) and are asked to find
H(e’*) = Hg(e!®) + jH;(e')

Although we could find H;(e’/“) using the discrete Hilbert transform, an easier approach is as follows. Because /(n)
is causal, the even and odd parts of /1(n) are

in 0
homy = | 2 (ny n#
h(0) n=0
%h(n) n=>0
and h,(n) = 0 n=0

—1h(n) n<0
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Therefore, the relationship between 4,.(n) and k,(n) is as follows:

ho(n) = sgn(n) - h(n)

l n>0
where sgn(n) = 0 n=20
-1 n<0

The inverse DTFT of Hg(e/*), which is the even part of h(n), is

he(n) = 8(n)+0.16(n —2) +0.16(n + 2)

Thus, h,(n) = sgn(n)h,(n) = 0.16(n —2) — 0.18(n + 2)
and H,(e’®), the discrete-time Fourier transform of 4,(n), is

H,(ej‘“) = —0.2sin(2w)
Therefore, H(e’®) = Hg(e?®) + jH (') = 1 +0.2¢c0s 2w — jO.25in2w) = | +0.2¢72/¢

and h(n) = 8(n) + 0.28(n — 2)

5.13 A second-order system has two poles at z = 0.5 and a pair of complex zeros at z = ¢*/7/2, Geometrically
find the gain, A, of the filter so that { H(¢/¢)| is equal to unity at w = 0.

Because the length of the vectors from the two zeros at z = ¢*/™/2 to the point z = 1 on the unit circle is equal to
/2, and because the distance from the two poles at z = 0.5 to z = | is equal to 0.5, the magnitude of the frequency

response at w = 0 is
V2.2

0505 oA

[H (€)oo = A

Therefore, the desired gain is

0—

Systems with Linear Phase

5.14  Derive Eq. (5.9) for the frequency response of a type I linear phase filter.
A type I linear phase filter satisfies the symmetry condition
h(n) = h(N — n)
and N is even. The symmetry condition is equivalent to

N N N
h = —k)=hl=+k k=1..., =
G-9)=G) 2

Therefore, the frequency response may be written as follows:

N/2 N/2
H(e'") = Zh(n)e“f"“’ = h( ) TiNel2 4 Z (— - k)e IR g Z ( + k) ~it} +he

—JjNw/2

Factoring out a linear phase term, e , from each sum, and using the symmetry of 4(n), we have

N N/2
joy __ i - 'Nar/l —jiNw/2 jkw —jkw
H(e’)—h(2>el J Z ( k)[ej + e/
) N N/2 N
— —jNw/2 = 2w = — .
e ( 2 ) + kil ( 3 k) cos(kw) 5.20)
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Therefore, we may write the frequency response as follows:

N/2
H(el®) = ¢ iNw/2 Za(k)cos(kw)
k=0
N N
where a(k)=2h(?—k) k:1.2,...,7

N
a(0) = h(—z—)

Derive Eq. (5.10) for the frequency response of a type Il linear phase filter.

which is the desired result.

For a type II linear phase filter,

h(n) = h(N —n)
where N is odd. Therefore, 2(n) is symmetric about the half-integer, N /2, and the symmetry condition is equivalent to
N +1 N -1 N +1
hl —— —k)=h| — +k& k=1,..., ——
(% ) ( 2 " ) 2

Thus, the frequency response may be written as

‘ N ) (N+1)/2 N + 1 Nl (N+1)/2 N —1 Nt
H(el?) = Zh(,,)e—mw - Z h(_z._ _k)e—J(T~k>m + Z h(—z_ +k)e—1(—r+k)w
n=0 k=1 k=1

Factoring out a linear phase term ¢=/¥*/2 and using the symmetry of A(n). we have

‘ IPRCESI v . |
H(e'?) = e~ iNe/2 Z h(_2_ — k) [e,’(k—!)m + e_)(k“z"”]

k=1

N 2(N-H)/.’Z N+1
= ¢ N/ 2h| —— — % k—1 521
et S (B -k eosf (k- 1)) 21

_ _ (N+1)/2
Therefore, H(el®) = eIV Z bk)cos| (k ~ 1)w]

k=1
N +1 N +1

where b(k)=2h(T+-—k) k=l,2,...,—2+—

which is the desired result.

How would the derivations in the previous two problems be modified to find the form of the frequency
response for types III and I'V linear phase filters?

The only difference between a type I and a type III linear phase filter is that
h(n) = h(N — n)

for a type I filter, and
h(n) = —h(N = n)

for a type Ul filter. Therefore, h(N /2) = 0, and Eq. (5.20) is modified as follows:
N2y

H ‘,jw) — eijw/Z h(__ _ k) (,jka) _ e—jkm

( ; 5 k)i ]

N/2

) N ’
— o Nw/2 Z Zjh(? —k ) sin(kw)
k=1 /
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Thus, it follows that the frequency response may be written as

N/2
H(e) = jem My ek sintke)

k=1

h (k) = 2h N ok k=12 N
where c(k) = 5 =L2....5

The only modification required in Prob. 5.15 to find the form of the frequency response for a type IV linear phase
filter is to use the fact that 4(n) is odd to rewrite Eq. (5.27) as follows:
(N+1)/2

H(ejw) — e—ij/Z Z h(N;‘I —k)[ejlkfilw _ e—j(k—%)w]

k=1
(N+1)/2
: N +1
= e /N 2jh| —— —k}sin[(k -}
S (5 ) sinl& - $)o]
Therefore, the frequency response is
(N+1)/2

H(e/?) = je~INw/? Z d(k) sin[(k ~ %)w]

k=1

N+ 1
where d(k):2h(——2+——k) k=1,2,...,

N =

Show that a system with a complex unit sample response has generalized linear phase if
h(n) = £ h*(N — n)

[f H(e’®) is the DTFT of h(n), it follows from the delay property and the time-reversal property that the DTFT of
h(N —n)is

h(N —n) &L e=iNe (o)
Applying the conjugation property, we then have
RN — n)y ZEL o=iNe g+ (o
Now, let us consider the case in which h(n) is conjugate symmetric, h(n) = h*(N — n). Then
H(e™) = e N H* (/)
and, expressing H (e/”) and H*(e/*) in terms of their magnitude and phase, we have
H(e'") = |H(e!*)|e/"
and H*(e') = |H(e/*)e™ /"
Therefore, it follows that
PO _ pmiNw

e I (5.22)

or 2¢p(w) = —Nw + 2nk(w)
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where k(w) is an integer for each w. Solving for the phase, we have
Nw
dn(w) = “‘2— + mk(w)

Therefore, H(ejw) — ‘H(ejw)le—ijﬂejnk(w) — A(ejw)e~wa/2

where A(e’“) is a real-valued (in general bipolar) function of w. Thus, A(n) has linear phase.
For the case in which h(n) is conjugate antisymmetric,

h(n) = —h*(N — n)

Eq. (5.22) becomes

eI — _ = iNw p= b (@)
or e/ tr@) ejne*J'Nwe*J“thlw)
Therefore, 2¢(w) = —Nw + 7 + 2nk(w)

where again k(w) is an integer for each w. Solving for the phase, we have

(@) = No n L
hw)———2—+5+n(w)

Therefore, H(e’?) = [H(e/?)|e N2/ 2 pimhe) — p(l®)e=INI2 o712

where A(e/?) is a real-valued function of w, and h(n) has generalized linear phase.

The relationship between the input and the output of an FIR system is as follows:

N
y(my =Y bkx(n — k)
k=0

Find the coefficients b(k) of the smallest-order filter that satisfies the following conditions:

1. The filter has (generalized) linear phase.
2. It completely rejects a sinusoid of frequency wy = /3.

3. The magnitude of the frequency response isequalto |l atw = 0and w = 7.

To reject a sinusoid of frequency wy = m/3, the system function must have a pair of zeros on the unit circle at
z = ¢*/"/3 Therefore, H(z) must contain a (linear phase) factor of the form

Hiz) = (1 = /™77 )1 = e ™37y = 1 —2cos<%)z’l 4zt =1-z"4;72

Note that if
H(z) =Al—-z""+ %)
the magnitude of the frequency response at w = 0 is
H(e)p=o = A

and the magnitude of the frequency response at w = 1 is

H(e')y=r = 34
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Thus, no value for A will allow us to simultaneously satisfy both unit magnitude constraints, and it is necessary to
add another linear phase term to A (z). To minimize the order of the filter, we will pick a factor of the form

Hyz) =1+ Bz ' +2z72
In this case, the filter becomes
Hzo)=A(l—z"4+z2.(14+ Bz 4272
Now, with two free parameters, A and B, we should be able to satisfy the magnitude constraints. With

H(e'*)lw=0 = A2+ B) =1

and H(e'))wer =3AQ—B) =1

solving for A and B, we find
B=1

i

Therefore, the filter is

H(z) = _%(] —z7 427, (1 + '+ = %(l +z72 +z‘4)

Show that if 4(n) is real, and 2« is an integer, the constraint
hin) = h2a — n)

is sufficient, but not necessary, for 4(n) to be the unit sample response of a system with generalized linear
phase.

To show that this symmetry condition is sufficient for a system to have generalized linear phase, if we let H(e/?) be
the frequency response, the symmetry condition implies that

H(e/®) = H(e )™
Expressing H (¢/*) in polar form,

H(e™) = [H(e)|e/
this becomes

|H((,Jw)|€f¢h(w) — |H(e"j"’)lejd”’(_“’)e_"2‘""
Because the magnitude is an even function, |H (e/“)| = |H(e™’“)|, and the phase is odd, ¢,(w) = —@n(—w),
/@) _ o= itniw)—j2ew
Therefore, the terms in the exponentials must be equal to within an integer multiple of 27,
dn(w) = —pp(w) — 20w + 21k
where k is an integer. Solving for ¢ (w), we have
on(w) = —aw + Tk

and it follows that the system has generalized linear phase.
To show that this condition is not necessary, note that if

H(el?) = eI

then H (e/“) has linear phase. However, the unit sample response is

1 m . . 1 T
hin) = — e /el dw = — /g
27 J_, T J .
_ a 1 jotn—a) i _ sin m(n — &)
2 j{n —a) . n —a)

which is not symmetric about an integer index unless 2« = n is an integer.
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5.20 An FIR linear phase filter has a unit sample response that is real with 2(n) = 0O forn <QOandn > 7. If
h(0) = 1 and the system function has a zero at z = 0.4¢/"™/3 and a zero at z = 3, what is H(z)?
Because h(n) = 0 forn < Oand forn > 7, H(z) has seven zeros. With a complex zero at z = 0.4¢/™/3 because h(n)
is real, there must be another zero at the conjugate location, z = 0.4¢7/"/3. This conjugate pair of zeros produces
the second-order factor
Hi(z) = (1 — 046/ z7')(1 — 0.4e™/"32z7") =1 - 0.4z7" +0.16272
The linear phase constraint requires that there be a pair of zeros at the reciprocal locations. Therefore, H(z) must
also contain the factor
Hy(z) = 0.16 — 0.4z 4 272
The system function also contains a zero at z = 3. Again, the linear phase constraint requires that there also be a
zero at z = ;. Thus, H(z) also has the factor
Hiy(z) = (1 —=3z7)(1—1z7")
and we have
H(z) = A(1 = 0.4z7" +0.1627%) - (0.16 — 0.4z +z7%) - (1 = 3z7")(1 — 127")
Finally, i)ecause the coefficient of the zero-order term in this polynomial is 0.16A, A must be equal to
A=
in order to make A(0) = 1.
5.21 Let x(n) be a finite-length sequence that has a z-transform
N—1
X@)=A[]0 -z
k=1
with no conjugate reciprocal zeros, i.e., oy # 1/ for any & and /. Show that x(n) is uniquely defined
to within a constant by the phase of its discrete-time Fourier transform.
Let x,(n) be a finite-length sequence that has a z-transform with no conjugate reciprocal zeros and a DTFT with the
same phase as x(n). Then
X1(2) = G(2)X(2)
where G(z) is the system function of a filter that has zero phase. Thus, G(z) must have zeros in conjugate reciprocal
pairs
(I —opz "Wz = ay)
and/or poles in conjugate reciprocal pairs
1
(I =z Nzt — o)
However, conjugate reciprocal zeros in G(z) are not allowed, because this would imply that X,(z) has conjugate
reciprocal zeros. Similarly, because X (n) is finite in length, G(z) cannot have poles in conjugate reciprocal pairs
because this would imply that x,(#n) is infinite in length. Therefore, G(z) must be a constant, and the result follows.
Allpass Filters
5.22 Consider a linear shift-invariant system with system function

Z—l_a*
H(z) = T
l —az

where |a| < I.
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(a) Find a difference equation to implement this system.

(b) Show that this system is an allpass system (i.e., one for which the magnitude of the frequency
response is constant).

(¢) H({(z)is to be cascaded with a system G(z) so that the overall system function is unity. If G(z) is to
be a stable system, find the unit sample response, g(n).

Y@ 7l — g

(a) Because H(Z) = m = '1_71'

cross-multiplying, we have

YOl —az '1= X))z — a*)

Taking the inverse z-transform of both sides of the equation gives
y(n)y—ayn—1)=xn—1)—a“x(n)

or y(n) =ay(n — 1)+ x(n—1)—a"x(n)

which is the desired difference equation.

(b) To show that this system is an allpass filter, note that the frequency response is

) e~jw —a*
Jwy p— —_—
H) = H@lmow = 7=
Therefore, the squared magnitude is
e —a* el —a  1+]a)* —2Re(@*e)

H jwyi2 — H jw H* Jw — . _ = i —
1™ (e")H™(e™) 1 —ae i® | —a*e/® |+ |a|* — 2Re(a*el®)
and H(e/) is an allpass filter.

(¢) The inverse system is

l l —az™! 1 1 —qgz!
CO=he T e T e T—@a

which has a pole at z = 1/a* and a zero at z = a. Because |a| < |, the pole is outside the unit circle. Therefore,
if g(n) is to be stable, the region of convergence must be |z| < 1/]a|. Thus, g(n) is the left-sided sequence

g(n) = (@)™ 'u(=n - 1) —a@) " Vu(~n)

The system function of a causal FIR filter is
H(z)=(1-03z"" +09z72)(1 - 0.5z7})

Find three other causal FIR filters with #(0) > 1 that have a frequency response with the same magnitude.

This filter has a pair of complex zeros and one real zero. The magnitude of the frequency response of this filter will
not be changed if it is cascaded with an allpass filter that flips the zeros to their reciprocal location. Therefore, three
other FIR filters that have the same magnitude response are

Hi@z)=(0-=032""409z72)0.5-z7")
Hy(z) = (0.9 —0.3z7' +z27H(1 =057
Ha(z) = (09 —03z7' + 27305 -2z7hH

Note that each of these filters is causal with #(0) > 1. The causality constraint along with the condition that 2(0) > 1
prevents 4(n) from being shifted or scaled by (— 1), two operations that do not change the Fourier transform magnitude.
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5.24

525

Let x(n) be a finite-length sequence that is zero forn < O and n > N. If x(n) is allowed to be complex.
what is the maximum number of distinct finite-length sequences that have the same Fourier transform
magnitude as x(n)?

Let X (z) be the z-transform of x(n), which is of the form
N
X@=xOJa -8z
k=1

Each zero may be reflected about the unit circle by multiplying by an allpass filter

pr ==
1- ﬁk271

without changing the magnitude of X (e/?). Because there are two possible locations for each of the N zeros. the num-
ber of distinct finite-length sequences (ignoring delays and multiplication by a unit magnitude complex number) is 2.

Hi(z) =

Show that the group delay of an allpass filter is nonnegative for all w.

If o is real and || < 1, the group delay of a filter that has a system function

1

e =g

which has a single pole at z = «, is (see Prob. 2.19)

(@) @’ —acosw
nw=————»-———
I +a? —2acosw

Similarly, the group delay for a filter with the system function
Hoz)=1—az™!

which has a single zero at z = «, is
n(w) = —11(w)

Furthermore, if

Hiz)=z"'—a= —a[l — —lz”]
o

the group delay is
a?—a'cosw | —acosw

u(@) = 14+a 2 —2a"'cosw 1 4 a? — 2o cosw

Therefore, the group delay of a single allpass factor of the form

7~
Hy(z) = T
| —az
) @) @) + 1:(@) a? —acosw 1 —acosw
(W) = 11(w) + (W) = —
18 0 ! ! 1 +a? —2acosw 1 +a?—2acosw
_ 1 —o? o 1=a?
T l4a?—2acosw |1 —ae o)
which, because |e| < 1, is positive for all w.
For complex roots, the allpass factors have the form
ool gt
H(z) =
1—az™!
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Therefore, with @ = |a|e/”, the frequency response is

eI — Ial(,—/u
H(()/(U) —
I — |aleitero
— ‘,—f(11>—9) _ ,(Yl
- 1 — |a]e—ito=t
and the group delay is
| —a?

@) = tolw = 6) = e

which is nonnegative for all w.

Show that the phase of an allpass filter with h(n) real, if plotted as a continuous function of w, is non-
positive for all w.

The group delay is minus the derivative of the phase. Therefore, the phase is related to the group delay as follows:

on(w) = —/ 7,(0)dB + ¢,(0) O<w<rnm

0

Because the general form for the frequency response of an allpass filter is

Nl —uu

H(e') = ]—[ R
— Uk

N» B .
I—[ dk — e @ + e 2w
i I =ce o+ diem2i

Ny

1 — b‘ d‘ -+ 1
then H(e' )= = =1
[T ﬂ )

Thus, ¢,(0) = 0, and the positivity of 7),(«w) makes the phase nonpositive.

Minimum Phase

5.27

Suppose that H(z) and G (z) are rational and have minimum phase. Which of the following filters have
minimum phase?

(@) H()G(2)

() H(2)+G(2)

(a)y 1f H(z) and G(z) have minimum phase, neither H (z) nor G(z) have any poles or zeros outside the unit circle.
Because the poles and zeros of H(z)( (z) are the union of the poles and zeros of H(z) and G(z), H(z)G(z) will
not have any poles or zeros outside the unit circle and. therefore, has minimum phase.

(b)y 1f H(z) and G(z) have minimum phase, it is not necessarily true that H(z) + G(z) will have minimum phase.
We may show this by a simple counter example. If

A
Hz)= —2
&= o5

and Gy = B
an @)= T"075

both H(z) and G(z) have minimum phase. However, the sum

(A+ B) —(0.5B + 0.75A4)z~"

H z = -
O+ 66 = =50 —0.75:1)
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5.28

5.29

5.30

may have a zero anywhere in the z-plane by choosing the appropriate values for A and B. For example, because

H(z) 4+ G(z) has a zero at
_ 05B+0.75A
" A+8B
to place a zero at z = 2, we may set A = | and solve the following equation for B:
0584075
~ 1+B
which gives B = —%.

A nonminimum phase causal sequence x(n) has a z-transform

P U G (LR ) (LR C)
(I—z"2(1 = 1z71)

For what values of the constant o will the sequence y(n) = «”x(n) be minimum phase?

Multiplying a sequence by «" moves the poles and zeros radially by a factor of o:

Y X(Z) (1= 2az7")(1 + faz ') (1 + 3az7)
o a) (l—az*')z(l—;'az*’)
In order for Y (z) to be minimum phase, all of the poles and zeros must be inside the unit circle. Because the singularity

(pole or zero) of X(z) that is the furthest from the unit circle is the zero at z = —%, y{n) will be minimum phase if

3
| < %.

A causal linear shift-invariant system has a system function

(1 =2272)(1 4+04z7"

H(z) =
@) 1 —0.85z~!

Find a factorization for H (z) of the form
H(z) = Hyin(z)Hap(2)
where Hpin(z) has minimum phase, and H,p(2) is an allpass filter.

The system function #(z) has a nonminimum phase factor, (1 — 2z7?), which may be written as the product of a
minimum phase term and an allpass factor as follows:

1—2:72

1 -2 =(2-2)- —
-2 S

Therefore, H(z) may be written as the product of a minimum phase system with an allpass system as follows:

_ (1404z"H1z72=2) 1 =272
HE) === 2.2

A causal linear shift-invariant system has a system function

B+zH2-3z7hH

H =
(Z) l——%z_l

Find a factorization for H (z) of the form
H(z) = Hmin(Z)Hlp(z)

where Hpin(z) has minimum phase, and Hyp(z) is a linear phase system.
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This system is not minimum phase because the factor (2 — 3z~') corresponds to a zero outside the unit circle at
z = % However, we may express this factor as the product of a minimum phase term with a linear phase term as
follows. First, we reflect the zero about the unit circle and replace it with a pole:

|
2:71 -3

Then, we multiply this term with a linear phase factor that has a zero at z = % and a zero at z = %:

1

— (227" 32 =377
PR L
Thus, the factorization for H(z) is

3427
(1=4z)@z1=3)

H(z) = 27 =3)2 =371

Find a real-valued causal sequence with x(0) > 0 and
IX(e’)? = (1 +a°) —2acosw
We begin by expressing | X (¢/“)|? in terms of complex exponentials:
1X(e')? = (1 +a%) —ae’® —ae” '
Replacing e/ with z, and ¢~/ with z~', we have
G(z) = X(Z)X(:") =(l4+d)—az—az""'=( —az (1 — az)
Therefore, a real-valued causal sequence with the given magnitude with x(0) > 1 is

x(ny=48(ny—adn—1)

Find the minimum phase system that has a magnitude response given by

|H (/) =

<|3

|
ol

(8]

|
=

[
——

| I
~l— [t
ta

|
~
——

|

[N
Ce—

Use the initial value theorem to show that if /,;,(n) is a minimum phase sequence, and if 4(n) is a causal
sequence with the same Fourier transform magnitude, then

1R(O)] < [Amin(0)]
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5.34

The initial value theorem states that for a causal sequence, the initial value may be found from the z-transform as
follows:
h(0) = lim H(z)
100

Let Apin(n) be a minimum phase sequence, and let 4(n) be the nonminimum phase sequence that is formed by
reflecting a zero from inside the unit circle at z = a to its conjugate reciprocal location at z = 1/a*:

-1 *

4 a
H(Z) = Hmin(z) : — |a| <1
| —az

Because (z~' — a*)/(1 — az™") is an allpass filter, ~(n) and hpi(n) have the same Fourier transform magnitude.
Using the initial value theorem, we may compare the value of 4(0) to hy,in(0):

1 —az™!

= _ %
h(0) = lim [Hmm(z) : u] = —a" hyun(0)

Therefore, [h(O)] = la} - |Amin(0)]

and because |a| < 1, [#(0)] < |Amin(0)|. Because the magnitude of |/(0)| is reduced each time that a zero of Hy,;n(2)
is flipped outside the unit circle,

[(0)] < [Amin(O)]

for any sequence h(n) that has a Fourier transform with the same magnitude as that of /s (n).

Prove the minimum energy delay property for minimum phase sequences.
Let Aimin(n) be a minimum phase sequence, and let ¢, be a zero of Hy;n(z). Then Hyin(z) may be written as
Hmin(z)= (1 _akz_l)Gmin(z) (523)

where G i, (z) is another minimum phase sequence. Because Hy,,(z) is minimum phase, |o;| < 1. Let H(z) be the
causal nonminimum phase sequence that is formed by replacing the zero at z = o; witha zeroat z = 1 /o

H(2) = (7" — a)Gmin(2) (5.24)
7 —ap |
Because H(z) = ———— Hpnin(2)
I —oyz!
then [H(e’) = | Hunle’ )

Expressing Egs. (5.23) and (5.24) in the time domain, we have
hmin(n) = gmin(n) - akgmin(n -1
h(n) = gmin(n — 1) — a;gmin(n)
Now, let us evaluate the difference between the partial sums of |Amin(n)]? and |h(n)|?:
14 5 n n n . 2
S O = 3 1OF = fgmin() = tigminll = D =" |gmin(l = 1) = &} gmin(D)|
=0 =0 =0 =0

Expanding the square and canceling the common terms, this becomes
n

3 i =Y 1OF =300 = lal)gmin ) = D (1 = lex)gminl — DI’
=0 =0 1=0

=0
= (l - |ak!2)|gmm(n)|2

which is greater than zero because |o;| < 1. Therefore,

D i = > k(D
=0 1=0



216

TRANSFORM ANALYSIS OF SYSTEMS [CHAP. 5

Because g,i,(n7) is minimum phase, this procedure may be repeated for any remaining zeros in G ,,(z). Therefore,
it follows that any causal nonminimum phase sequence that has the same Fourier transform magnitude as H,;,(z)
will have a partial sum that is smaller than that for Ap,(n).

Feedback

5.35

5.36

Suppose that we have an unstable second-order system

1
—z7 '+ 144772

H(z) = 7

that we would like to stabilize with the feedback system shown below.

x(n) y(n)
H(z)

Y
¥

K

Find the system function of the closed-loop system, Q(z), and determine the values for the feedback gain
K that result in a stable system.

The system function of the feedback network is

__H® | _ 1+ K
1+KH(z) 14+K-—z!'+144z2 1 -y 1.44

Q(z2)

Therefore, this system will be stable if

1.44
<1
T
which implies that
K > 0.44
and if
1 L+ 1.44
< B
1+ K 1+K

which is automatically satisfied by the first condition, K > 0.44.

Let H(z) be an unstable system with

1
—1.5z71 — 322

H(z)= 5
(a) Using a feedback system of the form
Giz)=Kz"!
determine the values for the gain K, if any, that will stabilize this system.

(b) Repeat part (a) using a feedback system of the form

G(z)=Kz7?
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The system function of the feedback network is
H(z) 1 1
Q@) = o= 1 ) o= - -
1+ H(z) - Kz 1-15z"1'-3z9)4+ Kz 1 —(1.5~-K)z7! —3z2

Because the coefficient multiplying the term z=? is larger than 1, this system will be unstable for all K .

With G(z) = K z72, the closed-loop system function becomes

00 = — 2D :
DETFH@D K22 11521+ (K —3)z2

This system will not be stable unless

la@2)| = 1K 3] <1
which requires that
2<K <4
In addition, however, we must have
laiDl=15<1+a@)=1+(K-3)=K -2

which requires that K > 3.5. Therefore, in order for this system to be stable, we must have

35<K <4
Let H(z) be a plant with a system function
o = 1y
Find a feedback system G(z) of the form

that will place a second-order pole in the closed-loop system at z = 1.

The system function of the closed-loop system is

or

_ H(z) _ 1 402:"H(1 +dz7Y
T4+ G@HGE T A+ Lz YA +dz )+ (1 + 02271 + cz7Y)

Q@)

(140221 +dz7 "
24 (U3+c+d)z""+1.1d +0.2¢)z2

0@z) =

To place a second-order pole at z = 1, we want to find ¢ and 4 so that

13+ctd _ ,  Lld+02

2 2

The solutionis ¢ = —8.7 and d = 3.4.
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Supplementary Problems

The System Function

5.38  The input to a causal linear shift-invariant system is
x(m)y=u(—n -1+ (%)“u(n)

The z-transform of the output of this system is
-1

|
_EZ

Y(2) =
@ (1 =1z +zn

Find the system function H(z) of the filter.

5.39 A causal linear shift-invariant digital filter has a system function given by
1
(1— 2‘1)2(] — 3z 4 %z*z)

H(:) =
Determine whether or not the filter is stable.

5.40  The system function of a linear shift-invariant system is
Hizy=¢'"

If h(n) is a right-sided sequence, is this system stable?

5.41 Let x(n) be a real-valued, causal sequence with a discrete-time Fourier transform
X (') = Xp(e!) + jX,(e!)
If XR(ej“’)z I +acosw

find x(n).

5.42  The system function of a linear shift-invariant system is
H(z) =log(1 - 1z7") EE

[s this system causal?

5.43  Which of the following z-transforms could be the system function of a causal system?

) xo= U2
@ X0 = E ey

TS
® X = -0

5.44  The system function of a causal filter is
H(z) !
)y
P +az7' 403272

For what values of @ will this filter be stable?

5.45 A stable filter has a system function
(1—=327h(1 = Lz71)
1 —02z-140.4:z72

H(z)=
Find a stable and causal system G (e’“) such that

IG(e’™YH (e!“}) = |

5.46  If the frequency response of a stable linear shift-invariant system is real and even, will the inverse system be stable?
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Systems with Linear Phase

5.47  The system function of an FIR filter is
H(z)=(1402z""+0.8:7%)?
Find a linear phase system that has a frequency response with the same magnitude.

5.48  An FIR filter with generalized linear phase has the following properties:

I.  h(n)isreal, and h(n) = 0 forn < 0 and forn > 5.
2. Y (=1)h(m) =0.

3. H(z)isequal to zero at z = 0.7¢/™/*,

4. [T H(*)dw =4m.

Find H(z).
5.49  AnFIR filter with a real-valued unit sample response has a group delay
T(w) =2
If the system function has a zero at z = ;lj, and H(z)[,—, = 1, find A(n).
5.50  Let x(n) be a sequence that is equal to zero for n < 0 and n > 5. If the z-transform of x(n) is
X(z)=3(1-02:"")1+0.5z7" +0.827%)(1 +0.4z7' —0.5z7%)

how many other sequences are equal to zero for n < 0 and n > 5, have the same initial value as x(n), and have the
same phase?

Allpass Filters

5.51  The system function of an FIR filter is
H(z)=1402""-0.527+ 082" 4+ 0.4z

Find another causal FIR filter with h(n) = O for n > 4 that has the same frequency response magnitude.

5.52 A causal and stable allpass filter has a unit sample response that is real. The system function contains three poles,
one of which is at z = 0.8. If H(z) has a zero at z = 2¢/7/*, what is H(z)?

5.53 A linear shift-invariant system has a system function

Yor btz

H@ =17 S a(kz+

If H(z) is an allpass filter, what is the relationship between the numerator coefficients #(k) and the denominator
coefficients a(k)?

Minimum Phase

5.54  What can you say about the poles and zeros of a minimum phase system Hp,n(z) if there is an allpass system H,,(z)
such that
Hmm(Z)an(Z) = Hyp(2)

where H,(z) is a causal (generalized) linear phase system?
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5.55  Find the minimum phase system that has a magnitude response given by

: 4
He“pe — 1 1
\H (™) (1 +a?)—2acosw lal <

5.56  Suppose that H(z) and G(z) are rational and have minimum phase. Which of the following also have minimum
phase?
(@ H™'(2),
(b) H(2)/G(2),
(©) z7'H(z)?

5.57 A causal linear shift-invariant discrete-time system has a system function

1— 0.7z — j2z7')1 + j2z77)
(1 —0.8z7")1+0.8z7")

H(Z)z(

(a) Find a minimum phase system function Hpq(z) and an allpass system function H,p(z) such that
H(z) = Huin(z) Hap(2)

(b) Find a minimum phase system function Hpia(z) and a linear phase system function H,(z) such that
H(z) = Huin(2)Hip(2)

5.58  Let x(n) be a real-valued minimum phase sequence. Find another real-valued minimum phase sequence y(rn) such
that x(0) = y(0) and y(n) = |x(n)|.

5.59  Find two different real-valued sequences that satisfy the following constraints:
I. x(0)=0andx(1) > 0.
2. X)) =1 -

|
6 2 COos w.

Feedback

5.60  If a feedback system of the form G(z) = K is used to compensate the system

H =
O = 08 1 162

for what values of K will the closed-loop system be stable?

5.61  For the system
1

1+ 1.2z7" 4+ 1.5z72

H(z) =

find a feedback system of the form
G@)=1+gHz7" + g2z

that will move the poles of H(z)toz = 0.5and z = —0.5.

5.62  Find the closed-loop system function of a feedback network with

,=1
(@ HGz)= ﬁ andG(z) =3 — tz7".

2
-1

(b) Hz)=2- z*‘andG(z):l—Z——.

1
6
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Answers to Supplementary Problems

1—
538 H@z)= T
5.39  Unstable.

540  Yes.

541 x(n) =68(n)+ad(n — 1).
542  Yes.

5.43 (a) Yes. (b) No.

544 |a| < 1.3.

[=02:7 404272
G =3H(1-41)

545 G@)=

546  Yes.

547 G@)=(1+02z"+0827%)(0.84+0.2z"" +z72).

548 H(z) = 535(1 — 0.74/2z71 + 0.49:73)(0.49 — 0.7v2z7! + z73)(1 +z7").
549 h(n) = £[8(n)+ L8(n —2) +8(n — ).

556  None.

551 H(z)=04-+0.8z"'-05z"24+02z7% +z7%

108 zt- L2y .

N 2
1—08z71 |- L1 4 412*2'

2

552 H@)=

553 bk)y=a(p—-k)fork=0,1,...,p—1,and b(p) = 1.

5.54  H.(z) is FIR with each zero having even order (i.e., Hyin(z) = G*(z) where G(z) is a minimum phase system).

-1

2
555 H@)= =

—az
5.56  (a) and (b) have minimum phase but (c) does not.

(=07 Y.
5.57 (@) Hupin(z) = ( —0.82_1)(] +0.824l)(1 3J2 )(l + 3JZ )

(1 = j2z70(1 + j227")
(1= L)1+ i)

Hap(z) =

(1-0.7z7") 1
(1-0.8271)(1 +0.827") (1 — L jz7!) (1 + 4 jz7")

(b) Hmm(z) =

Hip(z) = (1 = 3270 (1 + Ljz71)(1 = 227000 + 2jz27Y).
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5.58

5.59

5.60

5.61

5.62
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y(n) = (=1)"x(n).
xi(n) = 8(n — 1) — 38(n — 2) and x(n) = }8(n ~ 1) — 8(n — 2).
K > 0.6.

g(1) =—12and g(2) = -2.

z
@ 0= s
2 _2,-1 4 1,2
b — 3 3 12
® 0= 5

[CHAP. 5



Chapter 6

The DFT

6.1 INTRODUCTION

In previous chapters, we have seen how to represent a sequence in terms of a linear combination of complex
exponentials using the discrete-time Fourier transform (DTFT) and how the sequence values may be used as the
coefficients in a power series expansion of a complex-valued function of z. For finite-length sequences there is
another representation, called the discrete Fourier transform (DFT). Unlike the DTFT, which is a continuous
function of a continuous variable, w, the DFT is a sequence that corresponds to samples of the DTFT. Such a
representation is very useful for digital computations and for digital hardware implementations. In this chapter,
we look at the DFT, explore its properties, and see how it may be used to perform such tasks as digital filtering
and evaluating the frequency response of a linear shift-invariant system.

6.2 DISCRETE FOURIER SERIES

Let X(n) be a periodic sequence with a period N:
X(n)y=X%(n+N)

Although, strictly speaking, ¥(n) does not have a Fourier transform because it is not absolutely summable, it can
be expressed in terms of a discrete Fourier series (DFS) as follows:

N—I
X(n) = % D X (kyelmkIN 6.1)
k=0

which is a decomposition of %(n) into a sum of N harmonically related complex exponentials. The values of
the discrete Fourier series coefficients, X (k), may be derived by multiplying both sides of this expansion by
e~/27n/N 'summing over one period, and using the fact that the complex exponentials are orthogonal:

N—1

Z pl2mnk=D/N _ N k=1
k=0 0 k 1# !
The result is

N—1
k) = Z F(n)e=IZmnkIN (6.2)

n=0

Note that the DFS coefficients are periodic with a period N:
X(k+ N)=X(k)
Equations (6.7) and (6.2) form a DFS pair, and we write

) & 2k

EXAMPLE 6.2.1 Let us find the discrete Fourier series representation for the sequence

o0

) = Z x(n ~ 10k)

k=—00

223
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1 0<n<5
where x(n) =
0 else
Note that ¥(n) is a periodic sequence with a period N = 10. Therefore, the DFS coefficients are

—jrk

9 4
X j i l—e
X(k) = Z}(n)e’fz”""/m — Ze—42nnk/|0 - (4

— p—Jjnk/5
n=0 n=0 1 €

which, for 0 < k < 9, may be simplified to

5 k=0
X (k 2 k odd
Xo=11"cmms  *O

0 k even

The DFS coefficients for all other values of k¥ may be found from the periodicity of X (k):
Xtk +N)=X(k)

A notational simplification that is often used for the DFS is to define

Wy = e /2/N

for the complex exponentials and write the DFS pair as follows:

N—1

1=l
%(n) = ¥ ZX(k)W,;""
k=0
N—I
Xy =) xmWwit

n=0

[CHAP. 6

The discrete Fourier series has a number of useful and interesting properties. A few of these properties are

described below.

Linearity

The DFS pair satisfies the property of linearity. Specifically, if ¥,(n) and ¥,(n) are periodic with period N, the

DFS coefficients of the sum are equal to the sum of the coefficients for ¥,(n) and ¥,(r) individually,

F1(n) + 72m) & X160 + X200

Shift

If a periodic sequence ¥ (n) is shifted, the DFS coefficients are multiplied by a complex exponential. In other

words, if X (k) are the DFS coefficients for ¥(n), the DFS coefficients for ¥(n) = X(n — ng) are

Y (k) = WYX (k)
Similarly, if #(n) is multiplied by a complex exponential,
F(n) = Wy (n)

the DFS coefficients of ¥(n) are shifted:
Y (k) =Xk + ko)
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Periodic Convolution

If A(n) and %(n) are periodic with a period N with DFS coefficients £ (k) and X (k), respectively, the sequence
with DFS coefficients

Y (k) = H()X (k)
is formed by periodically convolving h(n) with (n) as follows:
N-L
yny =Y h(k)E(n — k) 6.3)
k=0
Notationally, the periodic convolution of two sequences is written as
F(n) = h(n) ® %(n)

The only difference between periodic and linear convolution is that, with periodic convolution, the sum is only
evaluated over a single period, whereas with linear convolution the sum is taken over all values of %.

EXAMPLE 6.2.2 Let us periodically convolve the two sequences pictured below that have a period N = 6.

H(n)

2

H'ITLLHT

P11, .
e
7 8 9 10 1

-2 -1 4 5

The periodic convolution of two sequences may be performed graphically, analytically, or using the DFS. In this problem,
we will use the graphical approach. We begin by plotting ¥(n — k) versus k. This sequence, for n = 0, is illustrated below.

The value of ¥(0) is then found by summing the product h(k)#(—k) from k = Oto k = 5. The result is 7(0) = 1. Next,
F(—k) is shifted to the right by one and multiplied by A(k). Because the only two nonzero values of #(1 — k) are at k = 4, 5,
the product A(k) (1 — k) is equal to zero, and 7(1) = 0. This process is continued until we have one period of 7(n). The
result is illustrated below.

Yim)

2

-2 -1 1 2 3 4 5 9 10 11
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6.3 DISCRETE FOURIER TRANSFORM

The DFT is an important decomposition for sequences that are finite in length. Whereas the DTFT is a mapping
from a sequence to a function of a continuous variable, o,

x(n) €5 x(e/*)

the DFT is a mapping from a sequence, x(n), to another sequence, X (k),

x(n) &5 x k)

The DFT may be easily developed from the discrete Fourier series representation for periodic sequences. Let
x(n) be a finite-length sequence of length N that is equal to zero outside the interval [0, N — 1]. A periodic
sequence X(n) may be formed from x(n) as follows:

o0

#n) = Z x(n 4+ kN)

k=—00
This periodic extension may be expressed as follows:
X(n)y=x(nmod N) = x((n))y
where (n mod N) and ((n))n are taken to mean “n modulo N . That is to say, if # is written in the formn = kN +1/

where 0 </ < N,
(nmod N) = ((n))y =1

For example, ((13))s = 5 and ((—6))y = 2.
A periodic sequence may be expanded using the DFS as in Eq. (6.7). Because x(n) = X(n)forn =0, 1, ...,
N — 1, x(n) may similarly be expanded as follows:

| N—1 N .
x(n) = — ZX(k)e’z””"/N 0<n<N
N =

Because the DFS coefficients are periodic, if we let X (k) be one period of X (k) and replace X (k) in the sum with
X (k), then we have

1 N-1 )
x(n) = Z X(k)e!Z"™ /N 0<p<N (6.4)
k=0

The sequence X (k) is called the N-point DFT of x(n). These coefficients are related to x(n) as follows:

N—1
X(ky=> x(me ?™™/N  0<k<N 6.5)
n=0

Equations (6.4) and (6.5) form a DFT pair, and we write

x(n) & X (k)
This expansion is valid for complex-valued as well as real-valued sequences.

Comparing the definition of the DFT of x(#) to the DTFT, it follows that the DFT coefficients are samples
of the DTFT:

V-1 o0

X(k) =) x(mye N = N7 x(mye TN = X (/) wmanisn

n=0 n=—00
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Alternatively, the DFT coefficients correspond to N samples of X(z) that are taken at N equally spaced points
around the unit circle:

X (k) = X(Z)iz:exp[j.?n/(/Nl
6.4 DFT PROPERTIES

In this section, we list some of the properties of the DFT. Because each sequence is assumed to be finite in length,
some care must be exercised in manipulating DFTs.

Linearity

If x(n) and x;(n) have N-point DFTs X (k) and X,(k), respectively,

axy(n) + bxa(n) 5 a X, (k) + bXa(k)

In using this property, it is important to ensure that the DFTs are the same length. If x,(n) and x,(n) have
different lengths, the shorter sequence must be padded with zeros in order to make it the same length as the
longer sequence. For example, if x|(n) is of length N and x,(n) is of length N, with N, > Ny, x,(n) may be
considered to be a sequence of length N, with the last No — N values equal to zero, and DFTs of length N, may
be taken for both sequences.

Symmetry
If x(n) is real-valued, X (k) is conjugate symmetric,

X(k) = X*((—=k)) = X*(N = k))w
and if x(n) is imaginary, X (k) is conjugate antisymmetric,

X(k) = =X*((=k)) = —=X*((N — k)n

Circular Shift

The circular shift of a sequence x(n) is defined as follows:
x((n = no)ny Ry (n) = X(n — no)Ry(n)

where n is the amount of the shift and Ry (n) is a rectangular window:

] 0<n<N

Rnlm) = [0 else

A circular shift may be visualized as follows. Suppose that the values of a sequence x(n), fromn =0ton =
N — 1, are marked around a circle as illustrated in Fig. 6-1 or in an eight-point sequence. A circular shift to the
right by ng corresponds to a rotation of the circle ng positions in a clockwise direction. An example illustrating
the circular shift of a four-point sequence is shown in Fig. 6-2. Another way to circularly shift a sequence is to
form the periodic sequence ¥(n), perform a linear shift, #(n — ng), and then extract one period of ¥(n — ng) by
multiplying by a rectangular window.

If a sequence is circularly shifted, the DFT is multiplied by a complex exponential,

x((n — no))wRy(n) & Wik x (k) (6.6)

Similarly, with a circular shift of the DFT, X ((k — ko))~ the sequence is multiplied by a complex exponential,

Wik x(n) & X ((k + ko) (6.7)
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z(0) z(6)

z(7) z(1) z(5) z(7)
(6) 2(2) =(4) (0)
z(5) x(3) z(3) z(1)
z(4) z(2)

(a) An eight-point sequence. (b) Circular shift by two.

Fig. 6-1. Visualizing a circular shift by rotating a circle that has the sequence values written
around the circle.

z((n - 1))4R4(n)

3
2
1
I n
—0—& o —o—»
-2 -1 I 1 2 3 4 5
(a) A discrete-time signal of length N = 4. (b) Circular shift by one.
z((n - 2))aR4(n) z((n - 3))aRa(n)
3
2 2
1 1
| n n
—0—0— t ~0—& -0—0—8—>»
—92 -1 1 2 3 4 5 -2 -1 l 1 2 3 4 5
(c) Circular shift by two. (d) Circular shift by three.

Fig. 6-2. The circular shift of a four-point sequence.

Circular Convolution

Let A(n) and x(n) be finite-length sequences of length N with N-point DFTs H (k) and X (k), respectively. The
sequence that has a DFT equal to the product Y (k) = H (k)X (k) is

N—I N—1
y(n) = [ > Ak - k)}RNm) = [ > hin - k)x(k)] R () 6.8)

k=0 k=0
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where %(n) and i(n) are the periodic extensions of the sequences x(#n) and Ai(n), respectively. Because h(n) = h(n)
for 0 < n < N, the sum in Eq. (6.8) may also be written as

N—1
y(n) = [ > hk)E(n — k)}RN(nJ 6.9)
k=0

The sequence y(n) in Eq. (6.9) is the N-point circular convolution of h(n) with x(n), and it is written as
y(n) = h(n) @ x(n) = x(n) @ h(n)

The circular convolution of two finite-length sequences /() and x(n) is equivalent to one period of the periodic
convolution of the periodic sequences 2(n) and %(n),

y(n) = h(n) ® x(n) = [h(n) ® F(n)]Ry(n)

In general, circular convolution is not the same as linear convolution, and N -point circular convolution is diff-
erent, in general, from M -point circular convolution when M # N.

EXAMPLE 6.4.1 Let us perform the four-point circular convolution of the two sequences A(n) and x(n) shown below.

4 h(n) x(n)
4.3 3
42 2

The four-point circular convolution is

3
y(n) = [Zﬁ(n - k)i(k):| Raln)

k=0
which may be performed graphically, as follows. The value of y(n) atn =0 is
3
YO = Y h(=k)Fk)
k=0

Shown in the figure below is a plot of the sequence A(—k)R4(k).

A(—k)Ra(k)

Y=

To evaluate y(0), we multiply this sequence by x(k) and sum the product from k = 0 to k = 3. The result is y(0) = 1. Next,
to find the value of y(1), we evaluate the sum

3
y() ="kl = k) Ek)
k=0
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Shown in the figure below is a plot of (1 — K)YR4(n).
71— kYRa(k)
2

I
.1,
o—o ° *r—>
—2—|l1234

Multiplying by ¥ (k) and summing from k = 0 to k = 3, we find that y(1) = 4. Repeating for n = 2 and n = 3, we have

3
y2) = Zﬁ(z — ik =2

k=0

3
¥ =Y hG - kxk) =2

k=0

Therefore, y(n) = h(n) @ x(n) = 3(n) +46(n — 1)+ 28(n — 2) + 26(n — 3)
By comparison, the linear convolution of h(n) with x(n) is the following six-length sequence:

a(n) x x(n) =8(n)+8(n — 1)+ 28(n —2) + 28(n — 3) + 36(n —5)

Another way to perform circular convolution is to compute the DFTs of each sequence, multiply, and compute
the inverse DFT.

EXAMPLE 6.4.2 Let us perform the N -point circular convolution of x| (n) and x,(n) where

1 0<n<N-—1
x1(n) = xa(n) = 0 else

Because the N-point DFTs of x,(n) and x,(n) are

N-1

N k=0
X (k) = X,(k) = Wk =
1 (k) 2(k) "20 N 0 else
N2 k=0
then X (k) = X (k) X, (k) =
0 else

Therefore, the N -point circular convolution of x(n) with x,(n) is the inverse DFT of X (k), which is

wm [V 0snsN-
o else

Circular Versus Linear Convolution

In general, circular convolution is not the same as linear convolution. However, there is a simple relationship
between circular and linear convolution that illustrates what steps must be taken in order to ensure that they are
the same. Specifically, let x(n) and A(n) be finite-length sequences and let y(#) be the linear convolution

y(n) = x(n) * h(n)

The N -point circular convolution of x(#) with #(n) is related to y(r) as follows:

o0

h(n) @ x(n) = [ > yn +kN)}’RN(n) (6.10)

k=—00
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In other words, the circular convolution of two sequences is found by performing the linear convolution and
aliasing the result.
An important property that follows from Eq. (6.10) is that if y(n) is of length N or less, y(n — kN)
Ry(n) =0 fork # 0 and
h(n) @ x(n) = h(n) x x(n)

that is, circular convolution is equivalent to linear convolution. Thus, if #(n) and x(n) are finite-length sequences
oflength N and N, respectively, y(n) = h(n)xx(n)isof length N; + N> — 1, and the N -point circular convolution
is equivalent to linear convolution provided N > N, 4+ N, — 1.

EXAMPLE 6.4.3 Let us find the four-point circular convolution of the sequences A(n) and x(n) in Example 6.4.1. Because
the linear convolution is

y(n)y =46(n)+8(n—1)+28(n —2) 4+ 28(n — 3) + 38(n —5)

we may set up a table to evaluate the sum

h(n) @ x(n) = [ Z y(n + /\'N):|RN(”)

k=—0x

This is done by listing the values of the sequence y(n + kN in a table and summing these values for n = 0, 1, 2, 3. Note
that the only sequences that have nonzero values in the interval 0 < n < 3 are y(n) and y(n + 4), and these are the only
sequences that need be listed. Thus, we have

n 0o 1 2 3|a 5 6 7
y(n) 1 2 2o 3 0o o
yin+4) [0 3 0 of o 0 0
h(ny @ x(n) \ 1 4 2 2 |r_ -

Summing the columns for 0 < n < 3, we have
h(n) @ x(n) = 8(n)+48(n — 1)+ 286(n — 2) 4+ 38(n — 3)

which is the same as computed in Example 6.4.1.

6.5 SAMPLING THE DTFT

Let x(n) be a sequence with a DTFT X (¢/¢), and consider the finite-length sequence y(n) of length N whose
DFT coefficients are obtained by sampling X (¢/“) at wy = 27k/N:

Y(k) = X(e'wpmrmisy  k=0,1,...,N —1 6.11)

Because the DTFT is equal to the z-transform evaluated around the unit circle, these DFT coefficients may also
be obtained by sampling X (z) at N equally spaced points around the unit circle at z; = exp{/j27k/N}:

Y(k): X(Z)lz:exp[jzﬂk//\rl k:(), l,...,N -1

These sampling points are illustrated in Fig. 6-3 for N = 8. To express the sequence values y(n) in terms of x(n),
we begin by finding the inverse DFT of Y (k):

] N-1
! - Y k j2mnk/N 61
v = ;0 (k)e (6.12)

Because the DFT coefficients Y (k) are samples of the DTFT of x(n),

20

Y (k) = X umtmiyn = Y x(De /N

l=—00
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\— Unit circle

Fig. 6-3. Sampling the z-transform at eight equally
spaced points around the unit circle.

Substituting this expression for Y (k) into Eq. (6./2) gives

N—1 00 o

I S 1 & ,
y(n) = 7\7 Z x(/)eijnlA/N ]e_;zymk/N — N Z x(l){ Z e_/2n(nl)A/N}
k=0

k=0 | I=—00 [=—c0

The term in brackets is equal to N when/ = n + mN where m is an integer, and it is equal to zero otherwise.
Therefore,

yln) = [ Z x(n —mN)]RN(n) (6.13)

m=—0oQ

and it follows that y(n) is formed by aliasing x(n) in time.

6.6 LINEAR CONVOLUTION USING THE DFT

The DFT provides a convenient way to perform convolutions without having to evaluate the convolution sum.
Specifically, if 4(n) is N, points long and x(n) is N, points long, A#(n) may be linearly convolved with x(n) as
follows:

1. Pad the sequences s(n) and x(n) with zeros so that they are of length N > N| + N, — 1.
2. Find the N -point DFTs of A(n) and x(n).

3. Multiply the DFTs to form the product Y (k) = H (k)X (k).

4. Find the inverse DFT of Y (k).

It would appear that there is considerably more effort involved in performing convolutions using DFTs. However,
significant computational savings may be realized with this approach if the DFTs are computed efficiently. As
we will see in Chap. 7, the fast Fourier transform (FFT) provides such an algorithm.

In spite of its computational advantages, there are some difficulties with the DFT approach. For example,
if x(n) is very long, we must commit a significant amount of time computing very long DFTs and in the process
accept very long processing delays. In some cases, it may even be possible that x(#n) is roo long to compute the
DFT. The solution to these problems is to use block convolution, which involves segmenting the signal to be
filtered, x(n), into sections. Each section is then filtered with the FIR filter 4(n), and the filtered sections are
pieced together to form the sequence y(n). There are two block convolution techniques. The first is overlap-add,
and the second is overlap-save.
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Overlap-Add

Let x(n) be a sequence that is to be convolved with a causal FIR filter 4(n) of length L:

L-1
y(n) = h(n) * x(n) = Z h(k)x(n — k)
k=0
Assume that x(n) = 0 for n < 0 and that the length of x(#n) is much greater than L. In the overlap-add method,
x(n) is partitioned into nonoverlapping subsequences of length M as illustrated in Fig. 6-4. Thus, x(n) may be
written as a sum of shifted finite-length sequences of length M,

o.¢]

x(n) = Z.r,(n — Mi)

i=0

x(n + Mi) n=0,1,....M—1
where xi(n) =
0 else
Therefore, the linear convolution of x{(n) with h(n) is
y(n) = x(n)x h(n) =Y _xin — Miyxh(n) =Y yitn — Mi) (6.14)

i=0 i==0)

where y;(n) is the linear convolution of x;(n) with /(n),
yi(n) = x;(n) * h(n)

Because each sequence y;(n) is of length N = L + M — 1, it may be found by multiplying the N -point DFTs of
x;(n) and h(n). The reason for the name overlap-add is that, for each i, the sequences y;(n) and y;,(n) overlap
at (N — M) points and, in performing the sum in Eq. (6.14). these overlapping points are added.

«— M —>—— M —>—o N —>

z(m) [ [ 1 |

z1(n)

2:2(71)

z3(n)

nin) | Ny
L

STOBIN \ B\
i

e N S

Fig. 6-4. Partitioning a sequence into subsequences of length M for the
ovelap-add method of block convolution.
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Overlap-Save

The second way that the DFT may be used to perform linear convolution is to use the overlap-save method. This
method takes advantage of the fact that the aliasing that occurs in circular convolution only affects a portion of
the sequence. For example, if x(n) and h(n) are finite-length sequences of lengths L and N, respectively, the
linear convolution y(n) is a finite-length sequence of lengths N 4+ L — |. Therefore, assuming that N > L, if
we perform an N -point circular convolution of x(n) with A(#n),

h(n) ® x(n) = [ Z y(n+/<N)]R~(n)

F=—-00

Because y(n + N) is the only term that is aliased into the interval 0 < n < N — 1, and because y(n + N) only
overlaps the first L — | values of y(n), the remaining values in the circular convolution will not be aliased. In
other words, the first L — 1 values of the circular convolution are not equal to the linear convolution, whereas
the last M = N — L + 1 values are the same (see Fig. 6-5). Thus, with the appropriate partitioning of the input
sequence x(n), linear convolution may be performed by piecing together circular convolutions. The procedure
is as follows:

1. Let x;(n) be the sequence

O0<n<L~—1

MO =N+ ) L—l<n<N—1

2. Perform the N -point circular convolution of x| (n) with (n) by forming the product H (k)X (k) and then
finding the inverse DFT, vy, (7). The first L — | values of the circular convolution are aliased, and the last

“«— N ——>= M St M —
z(n) L | 1 ]

Zero Padding ) y
z2(n)

I3(n)

yi1(n) NN |
Discard __f

y2(n) NN
Discard —f

y3(n) NN ]
Discard —f

Fig. 6-5. TIllustration of the overlap-save method of block convolution.
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N — L + 1 values correspond to the linear convolution of x(n) with £(n). Due to the zero padding at
the start of x((n), these last N — L + | values are the first N — L + 1 values of y(n):

yin)y=yn+L -1 O0<n<N-L

3. Let xp(n) be the N-point sequence that is extracted from x(n) with the first L — 1 values overlapping
with those of x(n).

4. Perform an N-point circular convolution of .x,(n) with s(n) by forming the product H(k)X»(k) and
taking the inverse DFT. The first L. — | values of y,(n) are discarded and the final N — L 4 1 values are
saved and concatenated with the saved values of y(n):

yn+N—-L+1)=yn+L -1 0<n<N-L
5. Steps 3 and 4 are repeated until all of the values in the linear convolution have been evaluated.

The reason for the name overlap-save is that x(n) is partitioned into overlapping sequences of length N and,
after performing the N -point circular convolution, only the last N — L + 1 values are saved.

Solved Problems

Discrete Fourier Series

6.1  Find the DFS expansion of the sequence

N nm
X(n)y=A 005(7)

Because X(n) is periodic with a period N = 4, the DFS coefficients may be found by evaluating the sum
~ 3 . N
X(ky =y &(mpe /2

n=0

Alternatively, if we express X(n) in terms of complex exponentials,

A A
i(n) — Ee/’.lrrn/‘t + Ee——/brn/éi
and use the fact that \
B(n) =1y K(kyelmss (6.15)

n=0

we may pick off the DFS coefficients directly as follows. Using the periodicity of the complex exponentials,

2 2,
e—j -j’—ku - ej —4’1(4--/()17

we may express X(n) as
A w A
%(n) = Ee/%" + 561%3” (6.16)

Comparing Eqs. (6.15) and (6./6 ), we see that
X(1)=2A X3 =2

with X(0) = X (2) = 0.



236 THE DFT [CHAP. 6

6.2  If ¥(n) is a periodic sequence with a period N,
¥ny=x(n+ N)

X(n) is also periodic with period 2N; Let X (k) denote the DFS coefficients when %(n) is considered to
be periodic with a period N, and let X »(k) be the DFS coefficients when the period is assumed to be 2N .
Express the DFS coefficients X ,(k) in terms of X (k).

If we consider ¥(n) to be periodic with a period 2N, the DFS coefficients are

2N —1
Xotk)y =Y F(me/H
n=0

Because ¥(n) = X(n + N), this sum may be written as
~ = i2 o “ b2 :
Xok) = ke FM 4 eI HOHN] =N g(n)e T FUL 4 eI
=0 =0
Note that the term in brackets is equal to 2 when & is even, and it is equal to zero when & is odd. When & is even,

. N1 . Ik
Xok)=2 Zi(n)e_’%‘f"“‘m = 2x(§)
n=0

Therefore, the DFS coefficients X ,(k) are

Xa(k) =
0 k=1,3,...,2N — |

6.3 If ¥ (n) and X,(n) are periodic with periqd N wit~h DFS coefficients X (k) and X »(k), respectively, show
that the sequence with DFS coefficients X (k) = X (k) X»(k) is equal to the periodic convolution of X (n)
and X,(n):

=
L

X(n) = X1(k)Xao(n — k)

>~
Il
fel

Given that X (k) = X (k) X,(k), the sequence &(n) is
l N—1 B N
x(n) = D X R)X (ke 6.17)
x

=0

Because we would like to express ¥(n) in terms of ¥,(n) and %,(n), we begin by substituting
~ N_‘ -
Xitk) =Y ®i(he 2N
=0

for X | (k) into Eq. (6./7). With this substitution, we have

1 N=I B N=I ) )
)= — Y Xa(k) [Zf.(z)e—ﬂ"“m emmkIN
N k=0 1=0

Rearranging the sums and combining the exponentials yields

N-I No
¥(n) = fl(l)Z}?z(k)eJZn(n—l)k/N
k=0

1
N =
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6.4

Note that
1 N=t _
N sz(k)ejzmn-i)km = %(n = 1)
k=0
Therefore, we have

N—1
F(n) = Zi[(l).?z(n -

1=0

as was to be shown.
Let x,(¢) be a periodic continuous-time signal

Xq(t) = A cos(Q00mr) + B cos(500m¢)

that is sampled with a sampling frequency f; = 1 kHz. Find the DFS coefficients of the sampled signal
x(n) = x,(nTy).

With a sampling frequency f, = 1 kHz, the sampling period is T, = 1/f, = 10~*, and the sampled signal is
T b4
¥(n)=x,nT;) = A cos(En) + B cos(zn)

The first term is periodic with a period N, = 10, and the second is periodic with a period N, = 4. Therefore, the
sum is periodic with period N = 20, and we may write

2 2n
¥(n)y= Acos{ —2n ) + B cos| —5n
( 20 20
Expressing %(n) in terms of complex exponentials, we have
o _ A %o A —i%wm | B j¥sn B ,—j¥sn
X(n) = 5e + 57/ + Je + 3e
Using the periodicity of the complex exponentials, it follows that
e iF: — pi % 18n e s o p1 B 15
As a result, ¥(n) may be written as
cooN A B A8 B B | B ¥
X(n) =5/ D7 + S/ 4 S/ DM 4 S/

which is in the form of a DFS decomposition,

19
Bn) = & > Rikye!

k=0
Thus, by inspection, we see that
XQ=X18) =104 X5)=X(15=10B

with the other DFS coefficients from k = 0 to k = 19 equal to zero.

The Discrete Fourier Transform

6.5

Compute the N-point DFT of each of the following sequences:

(@) xi1(n) =8(n)
(b) x2(n) = 8(n — ng), where 0 < ng < N
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(¢) x3(n) =" 0<n<N

(d) x4(n) = u(n) — u(n — ng), where 0 < ny < N

(@) The DFT of the unit sample may be easily evaluated from the definition of the DFT:
N—I
Xithy=Y_ smWit =1 k=01,...,N -1
n=0)

Another approach, however, is to recall that the DFT corresponds to samples of the z-transform X ,(z) at N
equally spaced points around the unit circle. Because X,(z) = 1, it follows that X, (k) = 1.

{b) For the second sequence, we may again evaluate the DFT directly from the definition of the DFT. Let us
instead, however, sample the z-transform. We know that X,(z) = z~". Therefore, sampling X»(z) at the points
z=Wy fork=0.1,....,N — 1, we find

X,k =W k=0,1,....N—1

(¢) For x3(n), the DFT may be found directly as follows:

N-1

Nl
X5(k) = Zn(n)wg’,k = Za"W,'\',k

n=0 n=0

N—1 R 1 — (awk)N
— i _ ___—N_ B -
__":0 (aWN) - l——aW/\‘, k_O‘l ..... N 1

(d) The DFT of the pulse, x4(n) = u(n) — u(n — ny), may be evaluated directly as follows:

np—1 1 — Wlmo
Xy = 3 wgt = L
n=0 I— WN

Factoring out a complex exponential W,f,"”/z from the numerator and a complex exponential W,’f,/z from the
denominator, the DFT may be written as

—knp/2 i, 1
Xathy = wioa 02 W W g sintnak /N
N Wl;k/z _ W;/Z sin(rk/N)

Find the 10-point inverse DFT of

3 k=0

X =1, l<k<9

To find the inverse DFT, note that X (k) may be expressed as follows:
X (k) =1+ 28(k) 0<k=<9

Written in this way, the inverse DFT may be easily determined. Specifically, note that the inverse DFT of a constant
is a unit sample:

Xy =) &5 X, =1
Similarly, the DFT of a constant is a unit sample:
) = 1 2 x50 = N

Therefore, it follows that
x(n) = 1 +8(n)
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6.7

6.8

Find the N-point DFT of the sequence

x(n) = cos(nwy) 0<n=<N-—-1
Compare the values of the DFT coefficients X (k) when wy = 27ko/N to those when wg # 2mko/N.
Explain the difference.

To find the N-point DFT of this sequence, it is easier if we write the cosine in terms of complex exponentials:
x(n) = %eﬂlwﬂ + %e*/'"fm

Evaluating the DFT of each of these terms, we find

N—1 N-1 N—|
X(ky =) x(n)e /¥ = L) " eminhmon 4 L} " pmin(F hton) (6.18)
=0

n=0 n=()
At this point, note that if wg = 27kq/N,

N—1 N—1
i in 20
X(k)= ;_ e~ in Tk k0)+ % § e in % (k+ko)
=0

n n=0

Because the first term is a sum of a complex exponential of frequency wy = 27 (k — ko)/N . the sum will be equal to
zero unless & = ko, in which case the sum is equal to N. Similarly, the second sum is equal to zero unless A = N — &,
in which case the sum is equal to N. Therefore, if wy = 27ko/N . the DFT coefficients are

N

— k=koandk =N —k
Xty =12 o an 0

0 otherwise

In the general case, when wy # 2mko/N, we must use the geometric series to evaluate Eq. (6./8):

N—1 N—1
i 2T R {
X(k) % 2 e Jntsrk—wo) + % § ¢ IR ktax)
n=0 =0
| — o= IN(Fk-wo) 1| — =/ N(FF )

+

r—
i—

1| — e—iFk=an 1 — o= i5Fktan)

Factoring out a complex exponential from the numerator and one from the denominator, we have
. Nag . Nay
1 - m
X(k) = 18_,»(&2—_!)(27;/(_%)5"(”/‘ ) ) n le-,(&z—_l)(%kwms (”k+ 2 )
: sin("—"' - sin(Zk + m)
N 2 N 2

Note that, unless wy is an integer multiple of 277/N, X (k) is, in general, nonzero for each k. The reason for this
difference between these two cases comes from the fact that X (k) corresponds to samples of the DTFT of x(n),
which is

sin N(w — wp)/2

N=l
i - o N=ty

X(e/?) = E cos(nawg)e /" = LemiHTH e

sin(w — (0())/2

n=0
sin N(w + wp)/2

+le-](ﬂ{—l)(w+wo)
2 sin(w + wp)/2

When sampled at N equally spaced points over the interval [0, 27], the sample values will, in general, be nonzero.
However, if wy = 2mky/N, all of the samples except those at & = k; and ¥ = N — kg occur at the zeros of the sine
function.

Find the N-point DFT of the sequence

2
x(n)=4+cosz(%) n=01,....N—1
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The DFT of this sequence may be evaluated by expanding the cosine as a sum of complex exponentials:
x(n) =4+ %[ejZﬂn/N + e—j27m/N]2 — 4+ % + Z|e,'4m.//v + %e—jmm/N
Using the periodicity of the complex exponentials, we may write x(n) as follows:
x(n) =2+ %ej%’;nn) + %ej%(N—Q)rl
Therefore, the DFT coefficients are
k=0
k=2andk=N -2

else

Suppose that we are given a program to find the DFT of a complex-valued sequence x(n). How can this
program be used to find the inverse DFT of X (k)?
A program to find the DFT of a sequence x(n) evaluates the sum

N-1

Xty =) xmWy (6.19)

n=0
and produces the sequence of DFT coefficients X (k). What we would like to do is to use this program to find the
inverse DFT of X (k), which is

N—1
x(n) = L > Xtow™ (6.20)
N k=0

Note that the only difference between the forward and the inverse DFT is the factor of 1/N in the inverse DFT and
the sign of the complex exponentials. Therefore, if we conjugate both sides of Eq. (6.20) and multiply by N, we have

N-1

Nx*(n) = Z X* (kW
k=0

Comparing this to Eq. (6.79), we see that the sum on the right is the DFT of the sequence X*(k). Thus, if X*(k)
is used as the input in the DFT program, the output will be Nx*(n). Conjugating this output and dividing by N
produces the sequence x(n). Therefore, the procedure is as follows:

. Conjugate the DFT coefficients X (k) to produce the sequence X*(k).

2. Use the program to find the DFT of the sequence X*(k).

3. Conjugate the result obtained in step 2, and divide by N.

DFT Properties

6.10

Consider the finite-length sequence
x(n) = 8(n) + 26(n —5)
(a) Find the 10-point discrete Fourier transform of x(n).
(b) Find the sequence that has a discrete Fourier transform
Y (k) = /T X (k)
where X (k) is the 10-point DFT of x(n).
(¢) Find the 10-point sequence y(n) that has a discrete Fourier transform
Y(k) = X)W (k)
where X (k) is the 10-point DFT of x(n), and W (k) is the 10-point DFT of the sequence
1 0<n<6

w(n) = ]
0 otherwise
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(a) The DFT of x(n) is easily seen to be
X(ky=14+2W3H =1+2e 8% = | 4 2(~ 1)t

(b) Multiplying X (k) by a complex exponential of the form W,f,"" corresponds to a circular shift of x(n) by ng. In
this case, because no = —2, x(n) is circularly shifted to the left by 2, and we have

y(ny = x((n + 2))ip = 28(n — 3) + 8(n — 8)

(c) Multiplying X (k) by W (k) corresponds to the circular convolution of x(n) with w(n). To perform the circular
convolution, we may find the linear convolution and alias the result. The linear convolution of x(n) with w(n) is

z(n)y=x(n)*xwn)=(1,1,1,1,1,3,3,2,2,2,2,2]

and the circular convolution is

Rio(n)

yn) = [ Z 2(n — 10k)
k=—o00 .

Because z(n) and z(n + 10) are the only two sequences in the sum that have nonzero values for 0 < n < 10,

using a table to list the values of z(n) and z(n + 10), and summing forn =0, 1,2, ..., 9, we have
n 0O 1 2 3 4 5 6 7 8 91|10 11
z(n) | 1 1 1 I 3 3 2 2 2 2 2
zm+10) |2 2 0 0 O O O O 0 O 0 0
yeo [[3 3 1 1 1 3 3 2 2 2f - -

Thus, the 10-point circular convolution is

y(m)=13.3,1,1,1,3,3,2,2,2]

6.11 Consider the sequence
x(n) =48(n) + 36(n — 1)+ 26(n —2) + 6(n — 3)

Let X (k) be the six-point DFT of x(n).
(a) Find the finite-length sequence y(n) that has a six-point DFT

Y (k) = WX (k)

(b) Find the finite-length sequence w(n) that has a six-point DFT that is equal to the real part of X (k),
W (k) = Re{X (k)}

(¢) Find the finite-length sequence ¢(#n) that has a three-point DFT

Q)= X2k) k=0,1,2

(a) The sequence y(n) is formed by multiplying the DFT of x(n) by the complex exponential W, Because this
corresponds to a circular shift of x(n) by 4,

y(n) = x((n —4)

it follows that

y(n) =48(n —4) + 386(n —5) + 28(n) + 8(n — 1)
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(b) The real part of X (k) is
Re{X (k)} = 3[X (k) + X*(k)]

To find the inverse DFT of Re{X (k)}, we need to evaluate the inverse DFT of X*(k). Because

N1 ¥ ON-1
X*(k) = [Zx(n)w,';‘] = Zx*(n)w,;""

n=0 n=0

N1 N-1
=) mw T = ZX*((N —nInWi

n={} n=0
X*(k) is the DFT of x*((N — n))y. Therefore, the inverse DFT of Re{X (k)} is
w(n) = 3[x(n) + x*(N — )]

With N = 6, this becomes
w(n) = [4, 3,

(¢) The sequence g(n) is of length three with a DFT Q(k) = X (2k) fork = 0, 1, 2 where X (k) is the six-point DFT
of x(n). Because the coefficients X (k) are samples of X(z) at six equally spaced points around the unit circle,
X (2k) for k = 0, 1, 2 corresponds to three equally spaced samples of X(z) around the unit circle. Therefore,

q(n) = [ > xtn - 3r)}R3(n)

1901w
(ST
[S—)

With x(n) = 0 outside the interval 0 < n < 3, it follows that
q(0) = x(O+x(3)=S5
g(l)y=x(1)=3
q(2) = x(2)=2

and we have
q(n) =58(n)+38(n—1)+28(n—2)

6.12  Consider the sequence
x(ny=46(n)+28(n —2)+8n—-3)
(a) Find the four-point DFT of x(n).

(b) If y(n) is the four-point circular convolution of x(r) with itself, find y(n) and the four-point DFT
Y (k).
(¢) With h(n) = 8(n)+8(n — 1)+ 28(n — 3), find the four-point circular convolution of x(n) with h(n).

(a) The four-point DFT of x(n) is

3
XY= xmWit =1 +2WF + W

n=0
(b) With y(n) = x(n) @ x(n), it follows that Y (k) = X2(k):
Y (k)

(123 + W) (14 203+ W)
= 1+ 4W 42w AW+ awit 4w
Because whk = W =wt  wH=wx
the expression for Y (k) may be simplified to
Y(k)=5+4Wf + 5w 42w}

Therefore, y(n) =58(n) +45(n — 1) +58(n —2) +28(n — 3)
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6.13

6.14

(¢) With h(n) = 8(n) + 8(n — 1) + 28(n — 3), the four-point circular convolution of x(#n) with A(n) may be found
using the tabular method. Because, the linear convolution of x(n) with A(n) is

ymy=x)xhn)=1[1, 1, 2, 5, 1. 4. 2]
then n o 1 2 3[4 5 6 7 8
y(n) 1 1 2 5 1 4 2 0 0
ya+d |1 4 2 ollo o 0o 0 o0
wmy [2 05 4 s|- - - - -
or z(n) = 28(n) + 58(n — 1)+ 48(n —2) + 58(n — 3)

Let x(n) be the sequence
x(n) =28(n)+d8(n—1)+3dn—73)

The five-point DFT of x(n) is computed and the resulting sequence is squared:
Y (k) = X2(k)
A five-point inverse DFT is then computed to produce the sequence y(n). Find the sequence y(n).

The sequence y(n) has a five-point DFT that is equal to the product Y (k) = X (k)X (k). Therefore, y(n) is the five-
point circular convolution of x(n) with itself:

4
y(n) = [Z"'("‘“((" - k))s]Rs(l7)

k=0

A simple way to evaluate this circular convolution is to perform the linear convolution y’(n) = x(n) % x(n) and alias
the result:

y(n) = l: Z y'(n - 5k)j| ‘Rs(n)
k=--00
The linear convolution of x(n) with itself is easily seen to be
y'(n)=1[4.4.1.4,2,0, 1]

Using the tabular method for computing the circular convolution, we have

n 0O | 2 3 4 5 6 7
yay 4 4 1 4 200 1 0
Yiin+5) | 0 0O 0 oo 0 O
v ff4a s 14 2 - - -
Therefore, y(n) = 48(n)y +58(n — 1Y+ 8(n —2) + 45(n — 3) + 26(n — 4)

Consider the two sequences
x(n) =8(n)+38(n — 1)+ 38(n —2) +25(n — 3)
h(n) =8(n)+8(n —1)+8(n—2)+80n —3)
If we form the product
Y (k) = X (k)H (k)

where X (k) and H (k) are the five-point DFTs of x(n) and h(n), respectively, and take the inverse DFT
to form the sequence y(n), find the sequence y(n).



244

6.15

6.16

THE DFT [CHAP. 6

Because Y (k) is the product of two 5-point DFTs, H (k) and X (k), y(n) is the five-point circular convolution of
h(n) with x(n). We may find y(n) by performing the circular convolution analytically (or graphically) or by finding
the linear convolution and aliasing the result or by multiplying DFTs and finding the inverse DFT. In this problem,
because A(n) is a simple sequence, we will use the analytic approach.

The five-point circular convolution of x(n) with A(n) is

4
y(n) = x(m)@h(n) =Y hkx(n —K)s  n=0.1,2,34

k=0
Because i(n) = | forn =0, 1, 2, 3, and h(4) = 0, the five-point convolution is

3

y(n) =x(n)®hn) = Z,\‘((n — k))s n=20,123.4

k=0
Theretore, the circular convolution is equal to the sum of the values of the circularly shifted sequence x((n — k))s
from & = 0 to &k = 3. Because x(n) is

x(my=1[1, 3. 3, 2, 0]

(recall that x(n) is considered to be a sequence of length five), x((—n))s is formed by reading the sequence values
backward, beginning with n = ()

x((=n))s =1, 0, 2, 3, 3]

Thus, y(0) is the sum of the first four values of x((—n))s, which gives y(0) = 6. Circularly shifting this sequence to
the right by 1, we have

((l=n)s=1[3. 1, 0.2, 3]

and summing the first four values gives y(1) = 6. Continuing with this process, we find y(2) = 7, y(3) = 9, and
y(4) =8.

Let x(n) and h(n) be finite-length sequences that are six points long, and let X (k) and H (k) be the
eight-point DFTs of x(n) and h(n), respectively. If we form the product

Y (k) = X(k)H (k)

and take the inverse DFT to form the sequence y(n), find the values of n for which y(n) is equal to the
linear convolution

o0

2(n) = Z xUYh(n — k)

k=—00

If the linear convolution of two sequences is M points long, for an N-point circular convolution with N < M, the
first M — N points will be aliased. With x(n) and h(n) both of length six, z(n) = x(n) * h(n) will be 11 points long.
Therefore, with an eight-point circular convolution, the first three points will be aliased, and the last five will be
equal to the linear convolution.

If Y (k) = H (k)X (k) where H (k) and X (k) are the N -point DFTs of the finite-length sequences A(n) and
x(n), respectively, show that

k=0
The sequence that has an N-point DFT equal to Y (k) = H (k)X (k) is

N-1
yn) = [Z hiky %(n —k)} Ry (n)

N—1
_ —nk _
ym == HIOX W n=0.1,...,N-1

k=0
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6.17

Because we would like to express y(n) in terms of x(n) and A(n), let us substitute

N-1

Hk)y =Y hOW

1=0

into the expression for y(n) as follows:

1 N-] N-] ;
y(n):NZX(k)Zh(/)wg‘w,;"‘ n=0,1,...,N~1
k =0

=0

Interchanging the order of the summations gives
=« = —k(n—I)
y(n) = ;h(/)[ﬁ ;X(k)WN ] n=01,..N~1
However, note that the term in brackets is equal to x((n — /))y. Therefore, it follows that

N-1

Y=Y hhx((n =Dy  n=0,1,...,N—1

=0

which is equivalent to
Nl
y(n) = [Zh(k).?(rt - k)] Ru(n)
k=0

as was to be shown.

Let y(#) be the linear convolution of the two finite-length sequences, A(n) and x(n), of length N,
y(n) = h(n) * x(n)

and let yy(n) be the N -point circular convolution

N-1

yw(n) = hin) ® x(n) = [}: h(k) 5 (n — k)]RNm)

k=0

Derive the following relationship between y(n) and yy(n):

yw(n) = [ >y +kN>} Rn)

k=—o0

There are several ways to derive this relationship. One is to examine what happens when the DTFT of y(n) is sampled.
Alternatively, this result may be derived from a systems point of view as follows. First, note that yy (n) is equal to
one period of the /inear convolution of the finite-length sequence A(n) with the periodic sequence ¥ (n):

yn(n) = [h(n) * X(n)Ry(n)

If we let

puiny= Y 8(n—kN)

k=—oc
then the periodic sequence %(n) is formed by linearly convolving x(n) with py(n):
X(n) = x(n) x py(n)
Therefore, the N -point circular convolution may be written as

yn(n) = {h(n) x [x(n) * py (MR (n)
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which is illustrated in the figure below.

Rw(n)

&(n) pnn) X(n) y(n)
—_— pnin) = x(n) P hin) s Q<f > yn(n)

Because the first three systems are linear and shift-invariant, the order of these systems may be interchanged as
illustrated in the following figure:

R (n)

8(n) x(n) y(m F(n)
—_— x(n) P h{n) pn(n) yn(n)

However, note that the output of the second filter, y(n), is the linear convolution of A(n) with x(n). This sequence is
then convolved with py(n), which gives the periodic sequence

o0

F(n)y =y x py(my =Y y(n+kN)

k==

This sequence is then multiplied by the rectangular window Ry (n),

yln) = [ > ,v(n+kN)]RN<n)
hk=—x

which is the relationship that was to be established.

How may we compute the N -point DFT of two real-valued sequences, x;(n) and x»(n), using one N -point
DFT?

The DFTs of two real-valued sequences may be found from one N -point DFT as follows. First, we form the N -point
complex sequence

x(n) = xy(n) + jxa(n)

After finding the N-point DFT of x(n), we extract X (k) and X, (k) from X (k) by exploiting the symmetry properties
of the DFT. Specifically, recall that the DFT of a real-valued sequence is conjugate symmetric,

X(k)y = X*((N = K)n
and the DFT of an imaginary sequence is conjugate antisymmetric,
X(k)y=—X"((N — k)
Therefore, because
Xk = X, (k) + Xa(k)

with X (k) the DFT of a real-valued sequence, then
Xi(k) = 3[X (k) + X*((N — k))n ]

which is the conjugate symmetric part of X (k). Similarly, because X,(k) is the DFT of an imaginary sequence,
Xao(k) = X (k) — X* (N — k)]

which is the conjugate antisymmetric part of X (k).
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6.19

6.20

Let x|(n) and x,(n) be N-point sequences with N-point DFTs X (k) and X,(k), respectively. Find an
expression for the N -point DFT of the product x(n) = x;(n)x,(n) in terms of X (k) and X, (k).

Just as we have seen with the DTFT, there is a duality in the DFT properties. We have seen, for example, that multi-
plying a sequence by a complex exponential results in a circular shift of the DFT coefficients. Similarly, multiplying
the DFT coefficients by a complex exponential results in a circular shift of the sequence. Therefore, because
multiplying DFT coefficients corresponds to a circular convolution of the sequences, we expect that the multiplication
of two sequences would result in the circular convolution of their DFTs. To establish this property, we begin by
noting that

N1

Xy =" xi(mxa(mWpt 6.2

n=0

Because we would like to express X (k) in terms of X ;(k) and X,(k), we substitute the following expression for x,(n)
into Eq. (6.2/):

1 N1
X = D XaWy"

1=0

The result is

l « ’Nf] —In
Xt = D WS Xawy!

n=0 [=0

Interchanging the order of the summations, this becomes

l N—-1 N—1 e
X(k) = DXy ximwt"

=0 n=0

Recognizing that the second sum is X ((k — /))n, we have

1 N-1
X(K) = = D XaOXi(tk = Dy
N =0

Therefore, X (k) is 1 /N times the circular convolution of X, (k) with X,(k):

1
X(k) = qu(k)® Xa(k)

If x,(n) and x,(n) are N-point sequences with N -point DFTs X ;(k) and X»(k), respectively, show that

N~ 1 N-1
2N = o 3 X (X3 (6.22)
n=0 k=0

This result is easy to derive if we use the properties of the DFT that we already have, First, note that if X (k) is the
N -point DFT of x(n) = x,(n)x3(n), then

N -1 N -1
X)) =Y x(n)= Y xi(mx3(n)
n=0 n=0

Second, note that the DFT of x3(n) is X5((—=k))n,

) B X5 (= = XN —kyy k=0.1,....N—1

Finally, recall that if x(n) = x,(n)x3(n), the N-point DFT of x(n) is 1/N times the circular convolution of X, (k)
and X3((—k))n (see Prob. 6.19):

1!

N—I1
X(k) = Z X DXk + D)y
1=0

Z|
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Evaluating X (k) at & = 0, we have the desired result
N1 1 e
J(n) = — X (HXxd
Z‘;xl(n)xz(n) ~ Z—g (X3

Evaluate the sum

N—1
S = Z xi(n)x3(n)
n=0

2w nk 2mnk
when xl(ﬂ):COS( n[\’; l) xz(n)=cos( n[\t; 2)

The N-point DFT of x,(n) is zero, except for k = k) and k = N — k(, when it is equal to N/2. Similarly, the N -point
DFT of x,(n) is zero, except for k = k; and k = N — k,, when it is equal to N/2. Using the results of Prob. 6.20,

N-1 1 N—1
D nmxim = 3 X X30)
n=0 k=0
we see that if ky = k, (ork; = N — k),
= 1 [N2 N2 N
nZ=(;x[(n)x2(n) = ﬁ[T + T:I = 23

and the sum is equal to zero otherwise.

Let x(n) be an N -point sequence with an N -point DFT X (k). Derive Parseval’s theorem,

N—1 1 N—I
> P =3 IX®P
n=0 k=0

This property is an immediate consequence of the property derived in Prob. 6.20. Specifically, Parseval’s theorem
follows from Eq. (6.22) by setting x;(n) = x2(n) = x(n).

Let x(n) be a sequence that is zero outside the interval [0, N — 1] with a z-transform X (z). Listed below
are four sequences of length 2N that are derived from x(n). Find an expression for the DFT of each
sequence in terms of samples of X (z).

x(n) 0<n<N
0 N <n <2N

(b) yaln) = x(n) + x(n — N)

X ("1) n even
(© yi(n)= 2
0 n odd

(@) yi(n) = |

{a) The 2N-point sequence y,(n) is formed from x(n) by padding with zeros. Therefore, Y, (k) corresponds to 2N
equally spaced samples of X (z) around the unit circle:

Yi(k) = X (/)

(b) The sequence y,(n) is formed by adding x(n — N) to x(n) (i.e., a delayed version of x(n)). If X(z) is the
z-transform of x(n), the z-transform of x(n — N) is z=" X (z). Therefore,

Ya(z) = [1 +z7M1X(2)
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and Y,(k) is

.2n 2n
Vo) = [(1+ 27X @ eoxpijomiyony = [1 4+ €778 [x (e/28")

=1 +(_1)’<]X(‘,122—,7f,k)= {(2)X(e»"§§") :z\ézn

(¢) The third sequence is formed by up-sampling by a factor of 2 (i.e., by stretching x(») in time by a factor of 2
and inserting a zero between each sample). The z-transform of y;(n) is

AN -1 n N-1
Y3(z) = Z X(E)z"" = Zx(n)z_z" = X(z%)
n=0 n=0

n even

Therefore, the 2N -point DFT is
Y3(k) = Y3(2)|,cprmiw = X (e/™/N)  k=0.1,....2N — |

Thus, the DFT coefficients Y;(k) correspond to two periods of the coefficients X (k).

Sampling the DTFT

6.24

6.25

Let 2(n) be a finite-length sequence of length N with 2(n) = O forn < 0 and n > N. The discrete-time
Fourier transform of 4(n) is sampled at 3N equally spaced points:

. 2k
T 3N

Find the sequence g(n) that is the inverse DFT of the 3N samples H (k) = H (e/**).

Wy k=0,1,...,3N =1

Because /(n) is a finite-length sequence of length N, it may be recovered from its N -point DFT, which corresponds
to N equally spaced samples of H (e/“). A sequence of length N may also be considered to be a sequence of length
3N, with the last 2N samples having a value of zero. The inverse DFT of the 3N equally spaced samples of H (e/®)
corresponds to this 3N -point sequence. Thus,

) = h(n) n=01,....,.N—1
8 =10 else

Consider the finite-length sequence
x(ny=[1,1,1,1,1,1]

and let X(z) be its z-transform. If we sample X(z) at z; = exp(jZT”k) fork =0, 1,2, 3, we obtain a set
of DFT coefficients X (k). Find the sequence, y(n), that has a four-point DFT equal to these samples.

Sampling X (z) at four equally spaced points around the unit circle produces an aliased version of x(n):

yin) = [ Y xin- 4k)] Ra(n)
k=—00

Using the tabular method to evaluate this sum, noting that x(n) and x (n +4) are the only sequences that have nonzero
values for 0 < n < 3, we have

n 01 2 3[4 5 6 71
xmy [0t 1 it 0 0
xn+4 |t 1 0 0oflo 0 0 o0
yo |2 2 1t 1| - - - -

Therefore, y(n)y =26(n) +28(n — 1)+ 6(n —2) + 8(n — 3)
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6.27
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Consider a finite-length sequence x(n) that is zero outside the interval [0, N — 1]. Suppose that we form

a new sequence % (n) as follows:
o0

F(n) = Z x(n — kM)

k=—o00
where M < N. Find the M-point DFT of the sequence
(n) = X(n) 0O<n<M

Y= 10 otherwise

expressing the answer in terms of the DTFT of x(n).

This problem is most easily solved if we take advantage of what we know about the DFT. Recall that the M -point
DFT corresponds to M samples of the DTFT, X(e/®), atwy = 2wk/M fork = 0,1, ..., M — L. In addition, if these
samples are used for the DFT coefficients of a sequence y(n) of length M, y(n) is related to x(n) as follows:

ymy =1 > xtn— kM)}RN(n)
k=—00

which is the sequence defined above. Therefore, the M-point DFT of y(n) is

Y(k) = X(e’)w=2rr/m

The unit sample response of a single pole filter is
h(n) = ()" u(n)
The frequency response of this filter is sampled at w; = 2wk /16 for k = 0, 1,..., 15. The resulting
samples are
Gk = H(eNw=2niie k=0,1,2,...,15
Find g(n), the 16-point inverse DFT of G (k).
The straightforward but tedious way to solve this problem would be to find the DTFT of A(n),

1

H") = ————
1= lee

sample it at the given frequencies,

1

Gk) = H(?jw)lmzbrk/ls = m

k=0,1,..., 15

and then find the inverse DFT. Another approach is to use the frequency sampling theorem given in Eq. (6.13), which
states that if the DTFT of a sequence h(n) is sampled at N equally spaced frequencies between zero and 27, the
sequence g(n) that has these samples as its DFT coefficients is the time-aliased sequence

gn) = { Y hin —kN)}RNm

k=—o0c

Therefore, with h(n) = (3)"u(n), it follows that

g =1 3 (1) utn - &n)

k=—

Ry(n)

Because u(n — kN) is equal to zero for0 < n < N — 1 when k > 0, this sum may be simplified to

0
gm=1>" (5)""”]72»«(")

k=—00
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6.28

Evaluating the sum, we find

Therefore, g(n) = (%)" —I(—NRN(n)
|

The DFT of a sequence x(n) corresponds to N equally spaced samples of its z-transform, X (z), around
the unit circle starting at z = 1.

(a) If we want to sample the z-transform on a circle of radius r, how should x(n) be modified so that
the DFT will correspond to samples of X (z) at the desired radius?

(b) Suppose that we would like to shift the samples around the unit circle. In particular, consider the
N samples that are equally spaced around the unit circle with the first sample at z = exp{jn/N}.
How should the sequence x(n) be modified so that the DFT will correspond to samples of X (z) at
these points?

{a) The z-transform of x(n) is

00
X(z)= Z x(m)z™"
n=-—0o
If we sample X(z) at N equally spaced points around a circle of radius r, we have
P2 ad -2 ~n o0 -2,
X(re/ )= 3" xm(re/ ¥) "= Y x(oyr e ¥ k=0,1,...,N -1
n=—0oo n=—0os

which is the z-transform of » "x(n) sampled at N equally spaced points around the unit circle. Therefore. N
equally spaced samples of X (z) around a circle of radius r may be found by computing the N-point DFT of
r~"x(n).

(b) Here, we want to rotate the DFT samples by an amount equal to 7/N. In other words. we would like to find

oS

X
j%’-k#—j% — j%@'—t+j)’6 - — »-j{vn —j%—nk
e x(n)(e x(n)e e

n=-—00 n=—0o0

Therefore, to find N samples of X (z) that are equally spaced around the unit circle, with the first sample at
z = expljm/N}, we multiply x(n) by e=/™"/¥ and find the N-point DFT of the resulting sequence.

Linear Convolution Using the DFT

6.29

Two finite-length sequences, x(n) and x»(n), that are zero outside the interval [0, 99] are circularly
convolved to form a new sequence y(n),

y(n) = xi(n) @ x2(n)

where N = 100. If x;(n) is nonzero only for 10 < n < 39, determine the values of n for which y(n) is
guaranteed to be equal to the linear convolution of x;(n) and x,(n).

99

Because ) =3 x00xi(n = K)o

k=0
the values of » for which y(»n) is equal to the linear convolution of x|(n) with .x2(n) are those values of » in the
interval [0, 99| for which the circular shift x,((n — k))qo is equal to the linear shift x,(n — k). With x,(n) nonzero
only over the interval [10, 39] we see that x,((n — k))100 = x,(n — k) for n in the interval [39. 99]. Therefore, the
circular convolution and the linear convolution are equal for 39 < n <99,
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6.31
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We would like to linearly convolve a 3000-point sequence with a linear shift-invariant filter whose unit
sample response is 60 points long. To utilize the computational efficiency of the fast Fourier transform
algorithm, the filter is to be implemented using 128-point discrete Fourier transforms and inverse discrete
Fourier transforms. If the overlap-add method is used, how many DFTs are needed to complete the
filtering operation?

With overlap-add, x(n) is partitioned into nonoverlapping sequences of length M. If h(n) is of length L, x;(n) % h(n)
is of length L + M — 1. Therefore, we must use a DFT of length N > L + M — 1. Here, we have set N = 128, and
h(n) is of length L = 60. Therefore, x(n) must be partitioned into sequences of length

M=N-L+1=69

Because x(n) is 3000 points long, we will have 44 sequences (with the last sequence containing only 33 nonzero
values). Thus, to perform the convolution we need:

1.  One DFT to compute H (k)

2. 44 DFTs for X, (k)

3. 44 inverse DFTs for Y, (k) = H(k)X (k)

for a total of 45 DFTs and 44 inverse DFTs.

Suppose that we are given 10 s of speech that has been sampled at a rate of 8 kHz and that we would
like to filter it with an FIR filter #(n) of length L = 64. Using the overlap-save method with 1024-point
DFTs, how many DFTs and inverse DFTs are necessary to perform the convolution?

Sampling 10 s of speech with a sampling frequency of 8 kHz generates N = 10 - 8000 = 8 - 10* samples x(n). If we
segment the speech into records of length 1024 and perform the circular convolution of these segments with 4(n),
the first 63 values will be aliased, and the last 1024 — 63 = 961 values will be equivalent to the linear convolution.
Therefore, each circular convolution generates 961 valid data points. Because the filtered signal y(n) = x(n) * h(n)
is of length 8 - 10* 4+ 63 = 80,063, x(n) will be segmented into

or 84 overlapping sections. Therefore, to perform the convolution, we need 85 DFTs and 84 inverse DFTs.

If an 8-point sequence x(n) is convolved (linearly) with a 3-point sequence /4(n), the result is a 10-point
sequence y(n) = x(n) x h(n). Suppose that we would like to construct the entire output y(n) from two
6-point circular convolutions:

yi(n) = x1(n) ® g(n) y2(n) = x2(n) ® g(n)

h(n) n=0,1,2
where g(n) = 0 n_3as
x(n) n=0,1,23
M =1, n=4.5
B _fx(n+4) n=0,1,2,3
2(n) = 0 n=4,5

If the values of y|(n) and y,(n) are as tabulated below,

n 0 1 2 3 4 5
»(n) 1 -2 =3 2 1 3
) ||2 -3 -4 3 -2 =2

find the sequence y(n).
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In this problem, note that x(n) has been partitioned into two 4-point sequences, x;(n) and x,(n). Because h(n) is
of length three, the linear convolution of 4(n) with x;(n) and x,(n) are both of length six. Therefore, the six-point
circular convolutions are equal to the linear convolution, and y(n) = x(n) * h(n) is given by

y(n) = yi(n) + y(n — 4)

which is tabulated below.

n 0 | 2 3 4 6 7 8 9
yi(n) 1 -2 -3 1 0 0 0
wn-4 |- - - — 2 =3 -4 3 -2 =2
yo |1 -2 -3 2 3 0 -4 3 -2 -2
Applications
6.33 Considera linear shift-invariant system characterized by the linear constant coefficient difference equation

6.34

P 9
ymy =Y ak)y(n —k)+ > bk)x(n — k)
k=0

Describe a method that may be used to plot N samples of the frequency response H (e/“) using N-point
DFTs.

The unit sample response of the linear shift-invariant system that is described by this difference equation is infinite
in duration. Finding N samples of the frequency response can be accomplished by computing the N-point DFT of
the time-aliased signal

g(n) = [ Y hin —kN)]R~<n)
k=—00

However, an easier method is as follows. The system function is

Xq: b(k)z™

k=0
14

1— Za(k)z"‘
k=1

Therefore, samples of H(z) at N equally spaced points around the unit circle may be found as follows:

_ 8@ _
H) = 2 =

B(k

where A(k) and B(k) are the N-point DFTs of the denominator and numerator sequences, respectively, that is,

a(k)e /2N k=0,1,...,N -1

P
Ak)=1-

k=1

q
B(k) = b(k)e™ >Nk =0,1....,N -1
k=0

In many applications, it is necessary to multiply a sequence by a window w(n). Let x(n) be an N-point
sequence, and let w(n) be a Hamming window:

win) = 1+ beos[ = §)]

How would you find the DFT of the windowed sequence, x(n)w(n), from the DFT of the unwindowed
sequence?
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Let us express the Hamming window in terms of complex exponentials:

RN Y2V SR e - AP )

w(n) = 3 + ze + ;e
2 2.

1 1 ,—im i5n L =i %n

=5+ ;e e + ze'lle

= L _ 1% 1 ,-iFn

=3 3¢ 3¢

| Y | —j%n
Therefore, x(mw(n) = ix(n)— r e x(n) — e’V x(n)

Because the DFT of ¢/27"/¥x(n) is X((k — 1))n, and the DFT of e~ /""/N x(n) is X((k + 1))y,

x(myw(n) &5 1x k) = LX(tk — D)y — XKk + Dy

6.35 A signal x,(¢) that is bandlimited to [0 kHz is sampled with a sampling frequency of 20 kHz. The DFT
of N = 1000 samples of x(n) is then computed, that is,

N—1

X(k) =Y x(me ™ ¥

n=0
with N = 1000.
(a) To what analog frequency does the index k& = 150 correspond? What about & = 800?
(b) What is the spacing between the spectral samples?

(a) With a sampling frequency Q; =27/T, =27(20 - 10°), the discrete frequency w is related to the analog fre-

quency 2 by
w=QT,
Q
or “ = 20.000

With an N-point DFT, the DTFT is sampled at the N frequencies

2
o=k k=0,1,....N—I
N

Therefore, X (k) corresponds to an analog frequency of

2
Q, = 20.000 - wy = W”zo,oom

k
or fi = ZO’OOON

Thus, with N = 1000, the index & = 150 corresponds to f = 3 kHz.
For k = 800, we need to be careful. Because X (e/“) is periodic,

X(ejw) — X(ej(w+27n)
k = 800 corresponds to the frequency

2 2T 2T
=—k=—(G*—-—N)=-200—
Wk N N ( ) N

with N = 1000, this is w; = —0.47. In analog frequency, this corresponds to
Q; = —0.47 - 20,000 = —80007

or fir = —4000 Hz
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6.36

6.37

(b) The spacing between spectral samples is

20,000

Af =20Hz

An important operation in digital signal processing is correlation. Correlations are used in applications
such as target detection and frequency (spectrum) estimation. The correlation of two signals, x;(n) and
xa(n), is defined by

]

Faw(m) =Y xi(n)xjom +n)

n=—00

which is the convolution of x(m) with x3(—m),
Fry o (m) = x1(m) % x3(—-m)
Given two finite-length sequences x(n) and x,(n) of length N, the N-point circular correlation is

N-—1

Fram =13 (T (m + m)y { Ry (n)

n=0

where ¥(n) and 3(n) are the periodic extensions of the finite-length sequences x| (n) and x5 (n), respec-
tively. What is the DFT of the circular correlation r;  (m)?

The circular correlation of x(n) and x;(n) is one period of the periodic convolution of ¥, (n) with £5(—n). This, in
turn, is equal to one period of the periodic convolution of ¥(n) with ¥*(N — n), which is the same as the circular
convolution of .x,(n) with x;(N — n):

",:-..‘Z(m) =x,(m) @ x5(N — m)

Consequently, the DFT of r, . (m) is equal to the product of the DFTs of x;(m) and x3(N — m):

R, (k) = DFT [x;(m)] DFT [x3(N — m)]

Because the DFT of x3(N —m) is

N-1 N=l N-l1
Zx;(N -mWrt = Zx;(m)W,'VN'"”k = Z,\’;(m)W,;’"k = X5(k)
m=0 m=0 m=0

then r o m) &5 X, (X300

Consider the two sequences

_ 2mn . 2w
xj(n) = cos N Xo(n) == sin T)

(a) Find the N-point circular convolution of x,(n) with x,(n).
(b) Find the N-point circular correlation of x(n) with itself (this is referred to as the autocorrelation).

(¢) Find the N-point circular correlation of x,(n) with xa(n).

(a) We may perform the circular convolution of x,(n) with x,(n) in any one of several different ways. However,
because there are only two coefficients in the DFT of x;(n) and x,(n) that are nonzero, the easiest approach is
to find the inverse DFT of the product X (k)X (k). With

x(n) = %[e_/Zmz/N +e—12nn/N] — %[ejbm/N +ej27r(N—l)n/N]

and x(n) = 2Lj[ej?..'m/N _ej2.7lN—l)n/N]
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the N-point DFTs are

N
— k=landk =N —1
Xiky={ 2
0 else
N
2j
Xo(k) = _ﬁ_ L= N1
2)
0 else
N2
4j
Therefore, X (k)X,(k) = 2
erefore 1K) X (k) _i k=N —1
4
0 else

and the inverse DFT is a sinusoid with an amplitude of N/2:
L . f2mn
x(n) = x,(n) ® x2(n) = ;N sin N

(b) For the DFT of the circular autocorrelation of x,(n), we have

N2
R(k)=1X (P =1 4
0 else

2
re(n)=iN cos(—z—n)

(c) Finally, for the DFT of the circular correlation of x;(n) with x,(n), we have

and it follows that

R,rl.rz(k) = Xl(k)X;(k) = NZ

2
Therefore, Fan(n) = —3N sin(—Nﬁ>

6.38 It is known that y(n) is the output of a stable LSI system that has a system function

B

H =
@ | —az!

k=landk =N -1

[CHAP. 6

The input x(n) is completely unknown, and we would like to recover x(n) from y(n). The following

procedure is proposed for recovering part of x(#n) from y(#n).

1. Using N values of y(n) for0 < n < N, calculate the N-point DFT
Y (k) = DFT{y(n)}
2. Form the sequence

Vk) = %[1 —aWy]Y (k)
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6.39

3. Invert V (k) to obtain v(n)
v(n) = IDFT{V (k)}

For what values of nin therange n = 0, 1, ..., N — 1 is it true that x(n) = v(n)?

To recover x(n), ideally we would take y(n) and convolve it with the inverse system
G(2) : [1 !
Z)= — —az
B
Therefore, x(n) may be recovered exactly by convolving y(n) with the FIR filter
|
g(n) = E[S(n) —ad(n — D]

which is of length L = 2. Therefore, because multiplying the DFT of g(n) with the DFT of y(n) is equivalent to
performing the circular convolution,

v(n) = g(n) @ y(n)

v(n) will be equal to x(n)only for | <n < N — 1.

The N -point circular convolution of two sequences .x(n) and k(n) of length N may be written in matrix
form as follows:

y = Hx

where His an N x N circulant matrix, and x and y are vectors that contain the signal values x(0), x(1), ...,
x(N — 1) and y(0), y(1), ..., y(N — 1), respectively. Determine the form of the matrix H.

The circular convolution of x(n) with A(n) is

N-1
Y(n) @ h(n) = {Zx(k)h((n — k) |R~<n>

k=0

For example, y(0) is the sum of the products of x(k) with the circularly time-reversed sequence A((—k))n:

y(0) = A((O)nx(0) + A((=I)wx (D) + A(=2)Inx(2) + - - - + A(=N + D)yx(N = 1)
= h(0)x(0)+ AN — Dx(D) + (N =2)x(2)+ -+ h(D)x(N = 1)

Next, for y(1), we circularly shift 2((—k))y to the right by 1 and multiply by the sequence values x(k):
y() =" xO)+AO)x(1)+ AN — Hx2)+ -+ h2)x(N = 1)
This process continues until we get to the last value, y(N — 1), which is
YN =1D=hN—-DxO)+ AN —2)x(1)+h(N -3)x2)+---+ h(O)x(N = 1)

If we arrange these equations in matrix form, we have

y(0) h(0) h(N = 1) h(N —2) h(1) x(0)

y(1) h(1) h(0) AN -1 - k() x(1)

¥(2) — h(2) h(l) h(0) e h(3) x(2)
y(Nl— 1) AN —1)  h(N—=2)  A(N=3) - kO] Lxv -1

Note that the second row of H is formed by circularly shifting the first row to the right by 1. This shift corresponds
to a circular shift of the sequence 4(n). Similarly, the third row is formed by shifting the second row by 1, and so
on. Due to this circular property, H is said to be a circulant matrix.
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Supplementary Problems

Discrete Fourier Series

6.40  Find the DFS coefficients for the sequence

T1) = cos 2mn i 211n)
¥(n) = cos 0 sin 0

6.41  Find the DFS coefficients for the sequence of period N = 8 whose first four values are equal to 1 and the last four
are equal to 0.

6.42  If ¥(n) is a periodic sequence with a period N,
x(n)=x(n+ N)
X(n) is also periodic with period 3N. Let X (k) denote the DFS coefficient of #(n) when considered to be periodic
with a period N, and let X :(k) be the DFS coefficients of ¥(n) when considered to be periodic with a period 3N.

Express the DFS coefficients X ;(k) in terms of X (k).

6.43  If the DFS coefficients of a periodic sequence ¥(n) are real, Xk = )?*(k), what does this imply about ¥(n)?

The Discrete Fourier Transform

6.44  Find the 10-point DFT of each of the following sequences:
(a) x(n)=28(n)+8n—2>5)
(b) x(n)=u(n)—un —6)

6.45  Find the 10-point DFT of the sequence

_ k¥4 [ 4r
x(n) = cos ?n - sin ?n

6.46  Find the 10-point inverse DFT of

3 k=0
X(k)y= 12 k=37
1 else

6.47  Find the N-point DFT of the sequence
x(ny=(=D" 0<n<N-1
where N is an even number.

6.48  Find the 16-point inverse DFT of

2 2
X (k)= — i sin| —-35
(k) cos(163k)+3jsm<l6 k)

DFT Properties

6.49  If x(n) is a finite-length sequence of length four with a four-point DFT X (k), find the four-point DFT of each of the
following sequences in terms of X (k):

(a) x(n)+d8(n)
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b)) x(B—na
(©  3lx(n)+ x*((—=n))]

6.50 If X (k) is the 10-point DFT of the sequence
x(n)=86(n—-—1)+28n—4)—-86n-17)
what sequence, y(n), has a 10-point DFT

6k
Y (k) =2X(k)cos (T)

6.51  If the 10-point DFTs of x(n) = 8(n) — é(n — 1) and 4(n) = u(n) — u(n — 10) are X (k) and H (k), respectively, find
the sequence w(n) that corresponds to the 10-point inverse DFT of the product ff (k)X (k).

6.52  Let x(n) be a sequence that is zero outside the interval [0, N — 1] with a z-transform X(z). If
y(n) =x(n)+x(N —n)
find the 2N -point DFT of y(n), and express it in terms of X (z).

6.53  If x(n) is real and x(n) = x(N — n), what can you say about the N -point DFT of x(n)?

6.54 If x(n) = 8(n) + 28(n — 2) — &(n — 5) has a 10-point DFT X(k), find the inverse DFT of (a) Re[X (k)] and
(b) Im[X (k)].

6.55  If x(n) has an N-point DFT X (k), find the N-point DFT of y(n) = cosQRQmn/N)x(n).

6.56  Find the inverse DFT of Y (k) = | X (k)|> where X (k) is the 10-point DFT of the sequence x(n) = u(n) — u(n — 6).
6.57  If X(k) is the N-point DFT of x(n), what is the N-point DFT of the sequence y(n) = X(n)?

6.58  Evaluate the sum

15

S = le(n)x;(n)

n=0

when xi(n) = COS(MTM)
and X,(k)=3 O0<k<I5
Sampling the DTFT

6.59  The z-transform of the sequence
x(n) =un) —un—17T)

is sampled at five points around the unit circle,
Xy =X@)| _jpss k=0,1,2,3,4
Find the inverse DFT of X (k).

Linear Convolution Using the DFT

6.60 How many DFTs and inverse DFTs of length N = 128 are necessary to linearly convolve a sequence x(n) of length
1000 with a sequence /(n) of length 64 using the overlap-add method? Repeat for the overlap-save method.

6.61 A sequence x(n) of length N; = 100 is circularly convolved with a sequence /#(») of length N, = 64 using DFTs of
length N = (28. For what values of n will the circular convolution be equal to the linear convolution?
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Applications

6.62 A continuous-time signal x, () is sampled with a sampling frequency of f; = 2 kHz. If a 1000-point DFT of 1000
samples is computed, what is the spacing between the frequency samples X (k) in terms of the analog frequency?

6.63 Given X(k), the N-point DFT of x(n), how would you compute the N-point DFT of the windowed sequence
y(n) = w(n)x(n) where w(n) is a Blackman window,

2 4
T 0.08cos— " 0<n<N-—1

=0.42 - 0. 5
w(n) =0 05(:05N_l N1

Answers to Supplementary Problems

640 X(1)=5-5jandX(9) =5+ 5/, with X(k) =0fork=0andk =2....,8.
641 XO0)=4X*k) =2/(1 —e ™ fork =1.3,57,andX(k) =0fork =2,4.6.

[k
N 3X(—) k=03.....3N =3
642 X3k = 3

0 else

6.43  i(n) is conjugate symmetric, ¥(n) = X*(N — n).

2

l_e—jﬁbk

644  (a) X(k)=1+e /™ (b) X (k)=

645  X(1)=X(7) = 5; and X(3) = X(9) = —3}.
646  x(n) =8(n)+ { + { cos(3nn/5).

647 Xk =N§(k—%).

648  x(n) = 3[8(n — 3)+8(n —13)) + 3[-8(n — 5)+ 8(n — 11)).

649 (a) 1+ Xk). BWHFX (4 — k). () RelX(k)].

6.50  y(n) = —8(n)+28(n — 1)+ 28(n —7)+ 8(n — 8).

651 w(n) =0.

6.52 X (e/™MNy 4 (—1IX (/TN DINY,

6.53  X(k)= X(N — k.

6.54  (a) x(n) =8(n)+8(n—2)—8(n—>5)+8n —8). (b) x(n) =5(n—2)—8n—8).
6.55  Y(k)=I[X((k— D)y + X((k+ )] forO <k <N —1.

6.56 y(n)={(6, 5, 4.3, 2, 2,2, 3,4, 5]

657 Nx((N — n)n.
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658 3.

659 [2.1,1,1,1].

6.60 17 DFTs and 16 IDFTs for overlap-add and the same for overlap save.
6.61 35<n<127.

6.62 Af =2kHz.

6.63 Y(k) =0.42X(k) —0.25[X((k — DIy + X((k + 1)n] +0.04[X ((k — 2))y + X((k + 2))y].



Chapter 7

The Fast Fourier Transform

7.1 INTRODUCTION

In Chap. 6 we saw that the discrete Fourier transform (DFT) could be used to perform convolutions. In this
chapter we look at the computational requirements of the DFT and derive some fast algorithms for computing
the DFT. These algorithms are known, generically, as fast Fourier transforms (FFTs). We begin with the radix-2
decimation-in-time FFT, an algorithm published in 1965 by Cooley and Tukey. We then look at mixed-radix
FFT algorithms and the prime factor FFT.

7.2 RADIX-2 FFT ALGORITHMS
The N-point DFT of an N-point sequence x(n) is

N—1

Xy =Y x(mWw} (7.1)

n=0

Because x(n) may be either real or complex, evaluating X (k) requires on the order of N complex multiplications
and N complex additions for each value of k. Therefore, because there are N values of X (k), computing an
N-point DFT requires N? complex multiplications and additions.

The basic strategy that is used in the FFT algorithm is one of “divide and conquer,” which involves de-
composing an N-point DFT into successively smaller DFTs. To see how this works, suppose that the length of
x(n) is even (i.e., N is divisible by 2). If x(n) is decimated into two sequences of length N /2, computing the
N /2-point DFT of each of these sequences requires approximately (N /2)* multiplications and the same number
of additions. Thus, the two DFTs require 2(N /2)> = 1 N2 multiplies and adds. Therefore, if it is possible to find
the N-point DFT of x(n) from these two N /2-point DFTs in fewer than N'2/2 operations, a savings has been
realized.

7.2.1 Decimation-in-Time FFT

The decimation-in-time FFT algorithm is based on splitting (decimating) x(#) into smaller sequences and finding
X (k) from the DFTs of these decimated sequences. This section describes how this decimation leads to an efficient
algorithm when the sequence length is a power of 2,

Let x(n) be a sequence of length N = 2", and suppose that x(n) is split (decimated) into two subsequences,
each of length N /2. As illustrated in Fig. 7-1, the first sequence, g(n), is formed from the even-index terms,

g(n) = x(2n) n=20.1,.... E—I
and the second, 4(n), is formed from the odd-index terms,
N
h(ny=x2n+1) n=0,l....,—2——l

In terms of these sequences, the N -point DFT of x(n) is

N—-\
Xy =Y xmWit =" x(mWi + > x(mWpt

n=0 n even »n odd
F-1 2o

=Y gOWF + Y hnyw (7.2)
=0 =0

262
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z(n)
z(2) z(4) z(7)
z(0) z(3) z(5)
! T :
—;j 2 3 4 5 7 8 i
z(l )
Even-Index 7 Ydlndex Terms
h(n)

z(1)

Fig. 7-1. Decimating a sequence of length N = 8 by a factor of 2.

Because Wi* = WX ,, Eq. (7.2) may be written as

51 A

Xty= Y oW, + Wk Z hOW

1=0 =0
Note that the first term is the N /2-point DFT of g(»), and the second is the N /2-point DFT of h(n):
Xky=Gk)+WrHK)  k=0,1,....N—1 (7.3)

Although the N /2-point DFTs of g(n) and h(n) are sequences of length N /2, the periodicity of the complex

exponentials allows us to write
N N
G(k):G(k+-2—> H(k):H(k+5)

Therefore, X (k) may be computed from the N /2-point DFTs G (k) and H (k). Note that because
W.(+N/2 — Wk WN/2 _W/(

k+3
then Wy +3

Hk+5)=-WyHk)
and it is only necessary to form the products W,f,H(k) fork =0,1,...,N/2 — 1. The complex exponentials
multiplying H (k) in Eq. (7.3) are called rwiddle factors. A block diagram showing the computations that are
necessary for the first stage of an eight-point decimation-in-time FFT is shown in Fig. 7-2.

If N/2 is even, g(n) and A(n) may again be decimated. For example, G (k) may be evaluated as follows:

N N
L L

%*‘ 2
Ghy= D gmWit, = " emWik, + Y g(mWik,

n=0 n even n odd
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z(0) o__._‘ O X(0)
0
G(1) /;:

z(2) O———r . Q X(1)
4-Point \//‘,31
G(2) 8

z4)o—e—o  DFT Q ' X(2)
2
wi

O X(4)

z(1) O——

L

z(3) O—— ) X(5)
4-Point 5

z(5) 0—e—o PFT X(6)
6

z(7) O——A X(7)
H(3) wd

Fig. 7-2.  An eight-point decimation-in-time FFT algorithm after the first decimation.

As before, this leads to

N

G =" g@mWik, + Wk, Y e@n+ HWE,

n=0 n=0

N
L

where the first term is the N /4-point DFT of the even samples of g(n), and the second is the N /4-point DFT of
the odd samples. A block diagram illustrating this decomposition is shown in Fig. 7-3. If N is a power of 2, the
decimation may be continued until there are only two-point DFTs of the form shown in Fig. 7-4.

z(0) O—— —Q— G(0)
2-Point
w?
DFT
z(4) O—— G(1)

z(2) O——— G(2)

2-Point

DFT
G(3)

z(6) O———

Fig. 7-3. Decimation of the four-point DFT into two two-point
DFTs in the decimation-in-time FFT.

q(0) Q O Q(0) = q(0) +q(1)

q(1) O O Q(1) = q(0) — g(1)

Fig. 7-4. A two-point DFT.
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The basic computational unit of the FFT, shown in Fig. 7-5(a), is called a butterfly. This structure may be
simplified by factoring out a term W, from the lower branch as illustrated in Fig. 7-5(b). The factor that remains

is WC’/Z = —1. A complete eight-point radix-2 decimation-in-time FFT is shown in Fig. 7-6.
) —{ ) e O)
XWL ><
A Ao d A

WL+N/2 W‘:, —1

(@) ()
Fig. 7-5. (a) The butterfly, which is the basic computational element of the FFT algorithm:.
(b) A simplified butterfly, with only one complex multiplication.

:1:(0) O O ) O— ) ) X(O)
1(4)0 - —)- X(l)
><——<>/\* B -

z(2) O

X(3)

z(6) O

X(4)

z(1) O

X(5)

z(5) O

z(3) O

z(7) O

Fig. 7-6. A complete eight-point radix-2 decimation-in-time FFT.

Computing an N -point DFT using a radix-2 decimation-in-time FFT is much more efficient than calculating
the DFT directly. Forexample, if N =2", there are log, N = v stages of computation. Because each stage requires
N /2 complex multiplies by the twiddle factors Wy, and N complex additions, there are a total of IN log, N
complex multiplications' and N log, N complex additions. )

From the structure of the decimation-in-time FFT algorithm, note that once a butterfly operation has been
performed on a pair of complex numbers, there is no need to save the input pair. Therefore, the output pair
may be stored in the same registers as the input. Thus, only one array of size N is required, and it is said
that the computations may be performed in place. To perform the computations in place, however, the input
sequence x(n) must be stored (or accessed) in nonsequential order as seen in Fig. 7-6. The shuffling of the input
sequence that takes place is due to the successive decimations of .x(n). The ordering that results corresponds to a
bit-reversed indexing of the original sequence. In other words, if the index n is written in binary form, the order
in which in the input sequence must be accessed is found by reading the binary representation for n in reverse
order as illustrated in the table below for N = 8:

'"The number of multiplications is actually a bit less than this because some of the twiddle factors are equal to 1.
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Bit-Reversed
n | Binary Binary n’
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 |
5 101 101 5
6 110 011 3
7 11 111 7

Alternate forms of FFT algorithms may be derived from the decimation-in-time FFT by manipulating the
flowgraph and rearranging the order in which the results of each stage of the computation are stored. For example,
the nodes of the flowgraph may be rearranged so that the input sequence x(n) is in normal order. What is lost
with this reordering, however, is the ability to perform the computations in place.

7.2.2 Decimation-in-Frequency FFT

Another class of FFT algorithms may be derived by decimating the output sequence X (k) into smaller and smaller
subsequences. These algorithms are called decimation-in-frequency FFTs and may be derived as follows. Let
N be a power of 2, N = 2V, and consider separately evaluating the even-index and odd-index samples of X (k).
The even samples are

Nl

X2k =" x(mwt

n=0
Separating this sum into the first N /2 points and the last N /2 points, and using the fact that W™ = Wik, this
becomes

S, N-1
2

X2k =Y " x(mWik,+ Y x(mWik,
n=0 n=N/2

With a change in the indexing on the second sum we have

N

¥y g1

N (n+ )k
Xk =Y xmWik, + x(n + *) Wap'
Finally, because W,i,";f)k =W,

N
&y

N
X (2k) = Z [x(n) + x(n + ?)}W;\}’;Z
n=0
which is the N /2-point DFT of the sequence that is formed by adding the first N /2 points of x(n) to the last N /2.
Proceeding in the same way for the odd samples of X (k) leads to

¥
XQ2k+1)= Z(: wh [x(n) - x(n + Nz-)]w;;k/z (7.4)
n=0

A flowgraph illustrating this first stage of decimation is shown in Fig. 7-7. As with the decimation-in-time FFT,
the decimation may be continued until only two-point DFTs remain. A complete eight-point decimation-in-
frequency FFT is shown in Fig. 7-8. The complexity of the decimation-in-frequency FFT is the same as the
decimation-in-time, and the computations may be performed in place. Finally, note that although the input
sequence .x(n) is in normal order, the frequency samples X (k) are in bit-reversed order.
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————QO X(0)

. 0 X(2)
4-Point

DFT L O X(4)

———-20 X(6)

——O0 X(1)

. ——0X@3)
4-Point

DFT X(5)

F——0 X(7)

Fig. 7-7. Aneight-point decimation-in-frequency FFT algorithm af-
ter the first stage of decimation.

-0 X(2)

-0 X(6)

O X(1)

-0 X(5)

-0 X (3)

O X(7)

Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT.

7.3 FFT ALGORITHMS FOR COMPOSITE N

It is not always possible to work with sequences whose length is a power of 2. However, efficient computation
of the DFT is still possible if the sequence length may be written as a product of factors. For example, suppose
that N may be factored as follows:

N =N -N;

We then decompose x(n) into N, sequences of length N, and arrange these sequences in an array as follows:

x(0) Y(N,) X(N2Np = 1)

x(h XN+ 1) x(N(Np =D+ 1)
. . . (7.5)

X(Nzi— ]) X(2N2 — l) /\(NlNz — 1)



268 THE FAST FOURIER TRANSFORM [CHAP. 7

EXAMPLE 7.3.1 For a sequence of length N = 15, with N; = 3 and N, = 5, the sequence x(n) may be decimated into
five sequences of length three, and these sequences may then be arranged in a two-dimensional array as follows:

x(0) x(5) x(10)
X x(6) x(11)
Xx=|x(2) x(7) x(12)
x(3) x(@8) x(13)
x(4) x9) x(14)

Alternatively, if we let Ny = 5 and N, = 3, x(n) may be decimated into three sequences of length five and arranged in a
two-dimensional array of three rows and five columns,

X(0) x(3) x(6) x(9) x(12)
x=|x(1) x(@) x(7) x(10) x(13)
2 x(5) x(8) x(11) x(14)

By defining index maps for n and k as follows,

{OEI’!]SN]-]
n:Ng-n1+n2

0<n<Ny—1

k=k + N k

O0<k <N —1
0<hk <Ny,—1

the N-point DFT may be expressed as

Na—1 Ny —1
X(k)y = X (ki + Nikp) = D )" x(Nany + ny)WyHHktamtn (7.6)

ny=0 ny=0

Na—I1 N —1

} : E : Nk k Nikang vy NNk
— X(Nin +I12)WN2 1"|WN|"2WN1 2"~WN1 2K2My

ny=0 n;=0

Nok k Nik k NiNak
Because Wy """ = WN‘;’”’ Wy = WNZZ"Z, and Wy ' """ = 1, the DFT becomes

Ny—1 Ny -1
X(khy=Y" [[ > x(Nany + n2)w;;k']w§"'2 lw[y;z (7.7)

na=0 m =0

Note that the inner summation,

Ny—1
G(nz. k]) = Z X(N2n| +n2)W[I\1,]II(|

m=0

is the N;-point DFT of the sequence x(N,n| + n;), which is row n, of the two-dimensional array in Eq. (7.5).
Computing the N-point DFT of each row of the array produces another array,

G(0,0) GO, D - GO,N =1
G(1,0) G(l1. ) s GUL,Ny =1
G:
GIN = 1,00 GIN; =1L 1) - GN2—1L, N = 1)

consisting of the complex numbers G (n;, k). Note that because the data in row n, is not needed after the N-point
DFT of x(Nan; + ny) is computed, G(n,, k1) may be stored in the same row (i.e., the computations may be
performed in place).



CHAP. 7] THE FAST FOURIER TRANSFORM

The next step in the evaluation of X (k) in Eq. (7.7) is to multiply by the twiddle factors W,
G(na, ki) = W™ G(na, ki)
The final step is to compute the N,-point DFT of the columns of the array Gny, ky):

Ny—1t
X(ki + Niko) = Y Glng, k)W 2"

n>=0
The DFT coefficients are then read out row-wise from the two-dimensional array:
X(k) =Xk + Nika)

A pictorial representation of this decomposition is shown in Fig. 7-9 for N = 15.

iq
Wi

N\

kina,

269

pd

/ 10
rd ‘o
o}~ / =(0) e X(0) o
( / 12 0 T;(E')—o)r(s)
d | e
2 / z(2) A — X(6)
/ 8 4 g = e X(10)
3 /1/ z(3) & > - X(9 x4

9 - ——>—¢ X(13)
/ x(4) '_L/L’— > X(12)

Fig. 7-9. Computation of a 15-point DFT with Ny = 3 and N, = 5 using 3-point and 5-point DFTs,

EXAMPLE 7.3.2 Suppose that we want to compute the 12-point DFT of x(n). With N| = 3 and N, = 4, the first step is

to form a two-dimensional array consisting of Ny = 3 columns and N, = 4 rows,

n| 0 I 2
n
0 x(0) x4 x(8)
| x()  x(5)  x(9)
2 x(2) x(6) x(10)
3 x(3)  x(7) x(D

and compute the DFT of each row,

b0 1 2
0 | GO,0 GO 1) GO2)
I | G0 GU.1) G(.2)
2 | G200 G2, 1) G(2.2)
3 | G300 G@3.1) GB.2)

For example, the DFT of the first row is

G(0, k) = x(0) + x(HWF + xB)W k=012
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The next step is to multiply each term by the appropriate twiddle factor. The array of factors is

!
I W, Wi
LWy Wi
1 Wizz Wlbl
This produces the array G(nz, ky):
ky 0 1 2
nj
0 GO,00 GO, 1)y G,2)
| G.oy G, G(1.2)
2 GR.0) G.h G2
3 G3.0y G3,1H G@3.2)

The final step is to compute the DFT of each column:

ki ( I 2
kz')

0 X0 XM X(2)
| X3 X4 X(5)
2 X®6) XD X(8)
3 X9 X0 Xl

This results in the Hlowgraph shown in Fig. 7-10. Note that because N, can be factored, N, = 2 x 2, the four-point DFTs
of the columns of G(n,, k;) may be evaluated using two-point DFTs. For example, if the first column is arranged in a
two-dimensional array,

GW0.0) G2.0)
G(1.0) G(3,0)

after taking the two-point DFTs of the rows, the terms are multiplied by the twiddle factors

[:i]=EJJ

and then the two-point DFTs of the columns are computed.

Up to this point, we have only assumed that N could be factored as N = N, - N,. It is possible, however, that
either or both of these factors could be factored further. What is important for the FFT algorithm to be efficient
is that N be a highly composite number:

N=N;-Ny---N,

In this case, it is possible to define multidimensional index maps for # and k as follows,

n=~Nn +N,_in+---+n,
ki=ki+ Nika+---+ Nk,

and the development of the FFT algorithm proceeds as described above. If N = R", the corresponding FFT
algorithm is called a Radix-R algorithm. 1f the factors are not equal, the FFT is called a mixed-radix algorithm.
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z(0) O—— O- e ——0O X(0)
3-Point
z(4) O DFT 4-Point O X@)
z(8) DFT | . o x(6)
z(1) O—— ———0 X(9)
+(5) ngo’i;‘lt L . 0 X()
z(9) O— 4-Point —O X(4)
z(2) O—— DFT ——0 X(7)
2(6) O——7| 3;’;,‘? O X(10)
2(10) O L0 X2
2(3) O—— 4-Point — 0 X()
2(7) O 31;33'111‘“ ‘ DFT o X(8)
WG
z(11) O—— 2o o . 0 x(1)

Fig. 7-10. FFT algorithm for N = 12.

7.4 PRIME FACTOR FFT

For some values of N, with the appropriate index mapping, it is possible to completely eliminate the twiddle
factors. These mapping have the form

0 <n < N, —1

n = ((An; + Bny))
((Am 2N IOSmSN:—l

O0<k <N -1

k= (Ck, + Dk
((Ck, 2N [Oszsz—l

where A, B, C, and D are integers, and ((-))y denotes the evaluation of the index modulo N. If N = N, - N,,
and if Ny and N, are relatively prime (i.e., they have no common factors), the twiddle factors may be eliminated
with the appropriate values for A, B, C, and D. The requirements on these numbers are as follows:

1. All numbers between O and N — 1 for n and X must appear uniquely as n, and », are varied and as &,
and k, are varied.
2. The numbers A, B, C, and D are such that
(Amy +Bno)(Chy+Dks) ky gy ks
WN n n 1 20 W;\j: 'W/:Il;

The second condition requires that
(AC)y =N, ((BD))yv =N, {(AD)y =((BC)n =0

Finding a set of numbers that satisfies these two conditions falls in the domain of number theory, which will not
be considered here. However, one set of numbers that satisfies these conditions is

A=N; B = N,
C= NZ((NZ_I))N, D= }\/1((’\/171))/v2
where ((N,"))N2 denotes the multiplicative inverse of Ny modulo N,. For example, if N = 12 with Ny = 3

and Ny = 4, (47")); = | because ((4 - 1))3 = 1 and ((37'))s = 3 because ((3 - 3))3 = I.



272

EXAMPLE 7.4.1
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A 12-point prime factor algorithm with Ny = 3 and N, = 4 is as follows. With A = N, = 4 and

B =N, =3, andwithC = Nz((Nz“))N, =4and D = N]((N,"l))N2 = 9. Thus, the index mappings for n and k are

2

n = ((4n, +3n2)) lOS’H =2
. 0<n <3
0<k <2
k = ((4ki + 9%))12 {0 <k <3
and the two-dimensional array representation for the input is
NN 2 o o
0 x(0) x4 x(8) 0 X (0)
1 x(3)  x(7  x(1) 1 X(9)
2 o6) x(10)  x(2) 2 X(6)
3 x(9)  x(D x(5) 3 X(3)

The representation for X (k) is therefore

X(4)
X(1)
X(10)
X(7)

3 2
X((4k + 9% =Y [ [Z x((4n; + 3nz)>.zw;'*'] lw;”"

ny=0 ny =0

X(@®)
X(5)
X Q)
X(11)

Thus, the DFT is evaluated by first computing the three-point DFT of each row of the input array, followed by the four-point
DFT of each column. The following figure shows how the four-point DFTs are interconnected to the three-point DFTs.

z(0) O—— O O ——0 X(0)
3-Point
O ——0 X(9
=(4) DFT 4-Point ©
2(8) O—— DFT | ., & x()
2(3) O——] 0 Xx(3)
3-Point
X
2(7) O——rf 3Pon ——o0 X(4)
=(11) O | 4-Point o x(1)
2(6) O—— DFT 1 . o x(0)
3-Point
z(10) O—— DFT ——0O X(7)
z(2) O—— ——O0 X(8)
z(9) O—— 4-Poing | O X0
z(1) O 3-Point DFT | 0 X(2)
DFT
2(5) O——of o O ——0 X(11)
Because a 4-point DFT does not require any multiplications (see Prob. 7.11), and because each 3-point DFT requires only 4

complex multiplications, the 12-point prime factor algorithm requires 16 complex multiplies. For a mixed-radix FFT, there
are, in addition, six twiddle factors. The cost for eliminating these six multiplications is an increase in complexity in indexing
and in programming.
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Solved Problems

Radix-2 FFT Algorithms

7.1

7.2

Assume that a complex multiply takes 1 us and that the amount of time to compute a DFT is determined
by the amount of time it takes to perform all of the multiplications.

(a)
(b)
(©)

(a@)

(b)

(©)

How much time does it take to compute a 1024-point DFT directly?
How much time is required if an FFT is used?
Repeat parts (@) and (b) for a 4096-point DFT.

Including possible multiplications by 1, computing an N -point DFT directly requires N2 complex multipli-
cations. If it takes 1 us per complex multiply, the direct evaluation of a 1024-point DFT requires

torr = (1024)% - 107%s 22 1.05 s

With aradix-2 FFT, the number of complex multiplications is approximately (¥ /2) log, N which, for N = 1024,
is equal to 5120. Therefore, the amount of time to compute a 1024-point DFT using an FFT is

tepr = 5120 - 107 %ms = 5.12 ms

If the length of the DFT is increased by a factor of 4 to N = 4096, the number of multiplications necessary
to compute the DFT directly increases by a factor of 16. Therefore, the time required to evaluate the DFT

directly is
IpFT = 16.78 s

If, on the other hand, an FFT is used, the number of multiplications is
2,048 - log, 4,096 = 24,576
and the amount of time to evaluate the DFT is

tepr = 24.576 ms

A complex-valued sequence x(n) of length N = 8192 is to be convolved with a complex-valued sequence
h(n) of length L = 512.

(a) Find the number of (complex) multiplications required to perform this convolution directly.

(b) Repeat part (a) using the overlap-add method with 1024-point radix-2 decimation-in-time FFTs to

(@)

(b

evaluate the convolutions.
If x(n) is of length N = 8192, and h(n) of length L = 512, performing the convolution directly requires
512-8,192 = 4,194,304

complex multiplications.

Using the method of overlap-add with 1024-point FFTs, the number of multiplications is as follows. Because
h(n) is of length 512, we may segment x(n) into sequences x,(n) of length N = 512 so that the 1024-point
circular convolutions of 4(n) with x;(n) will be the same as linear convolutions (although we could use sections
of length 513, this does not result in any computational savings). With the length of x(n) being equal to 8192, this
means that we will have 16 sequences of length 512. Therefore, to perform the convolution, we must compute
17 DFTs and 16 inverse DFTs. In addition, we must form the products Y;(k) = H (k)X (k)fori =1,2,...,16.
Thus, the total number of complex multiplications is approximately

33.51210g,(1,024) + 16 - 1,024 = 185344

which is about 4.5 percent of the number of complex multiplies necessary to perform the convolution directly.
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7.4

7.5
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Speech that is sampled at a rate of 10 kHz is to be processed in real time. Part of the computations
required involve collecting blocks of 1024 speech values and computing a 1024-point DFT and a 1024-
point inverse DFT. If it takes 1 us for each real multiply. how much time remains for processing the data
after the DFT and the inverse DFT are computed?

With a 10-kHz sampling rate, a block of 1024 samples is collected every 102.4 ms. With a radix-2 FFT, the number
of complex multiplications for a 1024-point DFT is approximately 512 log, 1024 = 5120. With a complex multiply
consisting of four real multiplies. this means that we have to perform 5,120 - 4 = 20,480 real multiplies for the DFT
and the same number for the inverse DFT. With | us per multiply, this will take

t =2-20.48 = 40.96 ms

which leaves 61.44 ms for any additional processing.

Sampling a continuous-time signal x,(¢) for | s generates a sequence of 4096 samples.

(a) What is the highest frequency in x,(¢) it it was sampled without aliasing?

(b) TIf a 4096-point DFT of the sampled signal is computed, what is the frequency spacing in hertz
between the DFT coefficients?

(¢) Suppose that we are only interested in the DFT samples that correspond to frequencies in the range
200 < f < 300 Hz. How many complex multiplies are required to evaluate these values computing
the DFT directly, and how many are required if a decimation-in-time FFT is used?

(d) How many frequency samples would be needed in order for the FFT algorithm to be more efficient
than evaluating the DFT directly?

(a) Collecting 4096 samples in 1 s means that the sampling trequency is f; = 4096 Hz. If x,(¢) is to be sampled
without aliasing, the sampling frequency must be at least twice the highest frequency in x,(r). Therefore, x,(¢)
should have no frequencies above f, = 2048 Hz.

(h) With a 4096-point DFT. we are sampling X (¢/) at 4096 equally spaced frequencies between O and 27, which
corresponds to 4096 frequency samples over the range 0 < f < 4096 Hz. Therefore, the frequency spacing is
Af = | Hz.

(c) Over the frequency range from 200 to 300 Hz we have 101 DFT samples. Because it takes 4096 complex
multiplies to evaluate each DFT coefficient, the number of multiplies necessary to evaluate only these frequency
samples is

101 - 4.096 = 413,696

On the other hand, the number of multiplications required if an FFT is used is
2,048 log, 4,096 = 24,576

Therefore, even though the FFT generates all of the frequency samples in the range 0 < f < 4096 Hz, it is
more efficient than evaluating these 101 samples directly.

(d) An N-point FFT requires —éN log, N complex multiplies, and to evaluate M DFT coefficients directly requires
M - N complex multiplications. Therefore, the FFT will be more efticient in finding these M samples if

M-N > iNlog, N
or M = 1log, N
With N = 4096, the number of frequency samples is M = 6.
Because some of the %N log, N multiplications in the decimation-in-time and decimation-in-frequency

FFT algorithms are multiplications by %1, it is possible to more efficiently implement these algorithms
by writing programs that specifically excluded these multiplications.

(a) How many multiplications are there in an eight-point decimation-in-time FFT if we exclude the
multiplications by £1?
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7.6

(b) Repeat part (a) for a 16-point decimation-in-time FFT.
(¢) Generalize the results in parts (@) and (b) for N = 2",

(a) For an eight-point decimation-in-time FFT, we may count the number of complex multiplications in the flow-
graph given in Fig. 7-6. In the first stage of the FFT, there are no complex multiplications, whereas in the second
stage, there are two multiplications by W¢. Finally, in the third stage there are three multiplications by W, W2,
and W3. Thus, there are a total of five complex multiplies.

(b) A 16-point DFT is formed from two 8-point DFTs as follows:
X (k) = G(k) + W H (k) =0.1,.... 15
where G (k) and H (k) are eight-point DFTs. There are eight butterflies in the last stage that produces X (k)
from G (k) and H (k). Because the simplified butterfly in Fig. 7-5(b) only requires only one complex multiply,
and noting that one of these is by W = 1, we have a total of seven twiddle factors. In addition, we have

two 8-point FFTs, which require five complex multiplies each. Therefore, the total number of multiplies 15
2.5+7=17.

(c) Let L(v) be the number of complex multiplies required for a radix-2 FFT when N = 2". From parts (@) and (b)
we see that L(3) = 5 and L(4) = 17. Given that an FFT of length N = 2"~' requires L(v — 1) multiplies, for
an FFT of length N = 2", we have an additional 2"~! butterflies. Because each butterfly requires one multiply,
and because one of these multiplies is by W = 1, the number of multiplies required for an FFT of length
2" is

Lw)y=2-L(v—1+2""" -1

Solving this recursion for L(v), we have the following closed-form expression for L(v):

v 0’
tw=2[5-1+(3) |

The FFT requires the multiplication of complex numbers:
(a1 + jb) - (a2 + jb2)) = ¢ + jd,

(a) Write out this complex multiplication, and determine how many real multiplies and real adds are
required.

(b) Show that the complex multiplication may also be performed as follows:
cy=(a — b)) b+ (ay — b)) a
dy =(ay — b)) by +(ay+b2)- b
and determine the number of real multiplies and adds required with this method.
(a) The product of two complex number is
(@ + jb) - (@ + jby) = aja; — biby, + j(brax + a,by)

which requires four real multiplies and three real adds.

(b) Expanding the expressions for ¢,, we have
ca={a1—b) by+(a— b)) -ay =a1by — b\by + aza, — ba, = aya, — b\b,
as required. Similarly, for d, we have
dy = (ay— b)) -by+(ay + by)- by =a\b, — biby + ayby + baby = a,b; + asb,

also as required. This approach only requires three multiplies and four adds.



276

7.7

7.8
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The decimation-in-time and decimation-in-frequency FFT algorithms evaluate the DFT of a complex-
valued sequence. Show how an N -point FFT program may be used to evaluate the N-point DFT of two
real-valued sequences.

As we saw in Prob. 6.18. the DFTs of two real-valued sequences may be found from one N-point DFT as follows.
First, we form the N -point complex sequence

x(n) = xi(n) + jxa(n)

After finding the N-point DFT of x(n), we extract X (k) and X,(k) from X (k) by exploiting the symmetry of the
DFT. Specifically,

X (k) = SIX(K) + X*((N = k))n]
which is the conjugate symmetric part of X (k), and
Xa(k) = $IX (k) = X*((N = k))w]

which is the conjugate antisymmetric part of X (£).

Determine how a 2N -point DFT of a real-valued sequence may be computed using an N-point FFT
algorithm.

Let g(n) be a real-valued sequence of length 2N. From this sequence, we may form two real-valued sequences of
length N as follows:

(n) = g(2n) n=0.1,..., N —1
x(n)=22n+1) n=0,1,..., N —1

From these two sequences, we form the complex sequence
) = x1(n)+ jxa(n)

Computing the N-point DFT of .x(n), we may then extract the N-point DFTs of x,(n) and x,(n) as follows
(see Prob. 7.7):

Xi(k) = SIX) + XN — k)]
Xa(k) = 3[X (k) — X*((N — k)|

Now all that is left to do is to relate the 2N -point DFT of g(n) to the N-point DFTs X (k) and X,(k). Note that

2N -1 N-1 Nol
Gk = gmWi = Zg(2n)W22,'\‘,‘ + Zg(gn Wk
n=0 n=0 n=0
N-1 Nl
= Z-\‘l(H)W,’\',‘ + Wi, Z ()W
n=(0 n=0
Therefore. Gk = X\(k)+ Wiy Xok)  k=0,1,....2N = |

where the periodicity of X (k) and Xa(k) is used to evaluate G(k) for N < k < 2N, that is,
X1(k)y= X\(k+N) Xa(k) = Xatk + N)
Given an FFT program to find the N-point DFT of a sequence, how may this program be used to find

the inverse DFT?

As we saw in Prob. 6.9, we may find x(n) by first using the DFT program to evaluate the sum

N-1
gm =Y X" (mW}!
=0
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which is the DFT of X*(k). Then, x(n) may be found from x(»n) as follows:

x(n)y = ng*(n)

Alternatively, we may find the DFT of X (k),

N~—1

f =" Xmwit

n=0

and then extract x(»n) as follows:

I ! -« (N=—n)k ! = —nk
x(n) = NI(N —n)= N;:o X (k)W y = Nk:() X(kW,y,
7.10 Let x(n) be a sequence of length N with
(n) + N 0.1 N 1
x(n)=—x = =0.1,...,= -
n n 2 n 3

where N is an even integer.

(a) Show that the N -point DFT of x(n) has only odd harmonics, that is,
X(k)y=0 k even

(b) Show how to find the N-point DFT of x(n) by finding the N /2-point DFT of an appropriately
modified sequence.

(a) The N-point DFT of x(n) is

N—I 51 N-1
X(hy =Y xmWit =Y xmWi + > x(mWwp
n=0 n=0 n=N/2
51 - N
= Z x(mWr 4 Z x(n + 5>W,‘J'+N/2)k
n=(0 n=0

51 N
= Z |:x(n) + (—I)k,\'(n + E—)]Wﬁ,k

n=0
Because x(n) = —x(n + N/2), if k is even, each term in the sum is zero, and X (k) =0 fork =0, 2,4, ....
(b) In the first stage of a decimation-in-frequency FFT algorithm, we separately evaluate the even-index and odd-

index samples of X (k). If X (k) has only odd harmonics, the even samples are zero, and we need only evaluate
the odd samples. From Eq. (7.4) we see that the odd samples are given by

L
N
XQk+1)= wn [x(n) —x(n + —)]W”"
';) N 2 NJ2
With x(n) = —x(n + N /2) this becomes

N
T_|

XQk+ 1= [2wixm]wit,
n=0
which is the N /2-point DFT of the sequence y(n) = 2Wyx(n). Therefore, to find the N-point DFT of x(n),
we multiply the first N /2 points of x(n) by 2W},

N
y(ny=2Wyx(n) n=0,l,2,...,5
and then compute the N /2-point DFT of y(n). The N /2-point DFT of x(») is then given by
N =2
XQ2k+1)=Y(k) k:O,l,..,( 3 )
(N-2)

X2k)y=0 k=0,1,...

2
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When the number of points in the DFT is a power of 4, we can use a radix-2 FFT algorithm. However,
when N = 4", it is more efficient to use a radix-4 FFT algorithm,

(@) Derive the radix-4 decimation-in-time FFT algorithm when N = 4",

(b) Draw the structure for the butterfly in the radix-4 FFT, and compare the number of complex multiplies

(a)

and adds with a radix-4 FFT to a radix-2 FFT.

To derive a decimation-in-time radix-4 FFT, let Ny = N /4 and N, = 4. and define the index maps

N

0<n <——1
n=4-n1+n: 4
0<n, <4
N

O0<hk <=— -1
k=k|+-—k2 4
0<kr <3

We then express X (k) using the decomposition given in Eq. (7.7) with Ny = N /4 and N, = 4,
N 3 ¥
X(k) = X(k| + ZI&:) = Z |:Z .\'(4I1| + nz)W,Cvl/ﬁ):IW’[f,IHZ ] W:an
=0 Ln=0
The inner summation,

N
L.

G )= X ton 4 W

=

is the NV /4-point DFT of the sequence x(4n, + n»), and the outer summation is a 4-point DFT,

N a
X(kl + Zkg) =Y Gk )W,

ny=0

where G(I?z,/ﬂ) = W;“"IG(ng.kQ

Since W4 = —j, these 4-point transforms have the form

N N N - .
X(h + Zkz) =Gk, 0+ (—)MGU k) +(=DNGQR, k) + (G GB. k)

fork, =0,1,2,3,andn, =0, I,..., (N/4) — 1. If N, = N /4 is divisible by 4, then the process is repeated.

In this way, we generate v = log, N stages with N /4 butterflies in each stage.

(b) The 4-point butterflies in the radix-4 FFT perform operations of the form

3

Flhy k) =Y [Gm knWy W2 ky=0.1.2,3

ny=0
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With W2 = jk2 the butterflies have the structure shown in the figure below.

WO

N

G(0,k) O Q { Y O F(0,k)
Wy -3

G(1,k1) O O F(1,k)
Wik

G(2,kh) O OF(2,k1)
Wik

G(3,k) 0O O F(3,k1)

Since multiplications by % only requires interchanging real and imaginary parts and possibly changing a sign
bit, then each 4-point butterfly only requires 3 complex multiplications. With v = log, N stages, and N /4
butterflies per stage, the number of complex multiplies for a DFT of length N = 4" is

3N |
8
For a radix-2 decimation-in-time FFT, on the other hand, the number of multiplications is

N
3-Xlog4N = og, N
Nl N
—lo
5 82

Therefore, the number of multiplications in a radix-4 FFT is % times the number in a radix-2 FFT.

7.12  Suppose that we would like to find the N-point DFT of a sequence where N is a power of 3, N = 3",
(a) Develop a radix-3 decimation-in-time FFT algorithm, and draw the corresponding flowgraph for
N =9.
(b) How many multiplications are required for a radix-3 FFT?

(¢) Can the computations be performed in place?

(a) A radix-3 decimation-in-time FFT may be derived in exactly the same way as a radix-2 FFT. First, x(n) is
decimated by a factor of 3 to form three sequences of length V /3:

f(n) = x(3n) n=0,1,...,
gmy=xBn+1) n=0,1...,

h(n) =x(3n+2) n=0.1,...,
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Expressing the N-point DFT in terms of these sequences, we have

X(y= > xmWr+ Y xmWi+ Y xmwy

n=0,3.6,... n=1475,... n=2,57,...

N N

3 T
_ f(l)wlzul + Z g([)W[(VJIH)k + Z h(l)W,(VJHZ)k
1 =0 =0

4z

Il
>

Since Wi/* = W 5, then

N N
4 L

g1 3 3
XU =Y FOWEs+Wh D gOWis+ WY hOWY
=0 1=0 1=0

Note that the first term is the N /3-point DFT of f(n), the second is W} times the N /3-point DFT of g(n), and
the third is W2 times the N /3-point DFT of h(n),

X(k) = F(k) + WyG (k) + W H (k)

We may continue decimating by factors of 3 until we are left with only 3-point DFTs. The flowgraph for a
9-point decimation-in-time FFT is shown in Fig. 7-11. Only one of the 3-point butterflies is shown in the second
stage in order to allow for the labeling of the branches. The complete flowgraph is formed by replicating this
3-point butterfly up by one node, and down by one node, and changing the branch multiplies to their appropriate
values.

z(0) O O 0 X(0)
z(3)

wi
z(1) O
z(4)

w3
=(7) we o

w3

o) 0 X(8)

Fig. 7-11.  Flowgraph fora9-point decimation-in-time FFT (only one butterfly in the second
stage is shown).
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7.13

(b) If N = 3V, then there are v stages in the radix-3 FFT. The general form of each 3-point butterfly, shown in the
second stage of the flowgraph in Fig. 7-11, requires six multiplies (some require fewer if we do not consider
multiplications by £1). Since there are N /3 butterflies in each stage, then the total number of multiplications is

6N log, N

(¢) Yes, the computations may be performed in place.

Derive a radix-3 decimation-in-frequency FFT for N = 3", and draw the corresponding flowgraph for
N =09.

As with the radix-2 decimation-in-frequency FFT, with N =3", we separately evaluate the indices for which
(k)3 =0, ((k)); = 1, and ((k)); = 2. For ((k)); = 0 (i.e., k is a multiple of 3),

N-1
X3k =) x(mwy*

n=0

Separating this sum into the first N /3 points, the second N /3 points, and the last N /3 points, and using the fact that
Wit = Wik, this becomes

§-1 Py
X(3k) =) x(mWpt, + Z XMW + Z XMW

n=0 n—j- ”“T

With a change in the indexing in the second and third sums, we have

i b N\ o5 o o+ k
X(3k) = x(n)W?k x(n+ —) ER S x(n+ ) R
,.Z—; N/3 ; W ALTE "Z N/3

n+

Finally, because WN/q = W3, and WN/3 =Wy

%‘l N
EDEDY [x(n)+x(n + %) +x(n + %—)]w:fn

n=0

which is the N /3-point DFT of the sequence in brackets.
Proceeding in the same way for the samples X (3k + 1), we have

—1
XGk+1) =Y xmwy®"

n=0
Lo k =y k = 3
1 1
— Zx(n)wlc(fi +1) + Z x(n)W,'f,O + )+ Z x(n)W,'f,‘ k+1)
n=0 n=-'¥ nzg."!

L

n(3k+1) < N (n+N/3)(3k+1) i 2N (n42N /3)3k+1)
x(mWy +Zx( 3)WN +ZX("+T>WN

=0 n=0

-z

il
g

=]

n=

N
T 1

N 2N
= [x(n)W,c +,\'(n + ?>Wn+N/3 _+_x( + _j__)WZ+2N/3]‘/V;1</3
n=0

Finally, for the samples X (3k + 2) we have
¥

N\ o AINN . 20
X3k +2) = Z [X(n)wﬁn +x(n i ?)Wﬁ/ +2N/3 +x(n " T)W’%’ +4N/3]W,,‘;1;3
n=0
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The flowgraph for a nine-point decimation-in-frequency FFT is shown below.

z(0)O o Q X(0)
z(1) X(3)
wi
2(2)0 e W X(6)
wi
2(3)0 a XQ)
z(4) X@4)
wi
2(5)0 o wg X(7)
wi
z(6) O Q X(2)
=(7) X(5)
w;
=(8)0 o o Wi X(8)
wi

7.14  Suppose that we have a number of eight-point decimation-in-time FFT chips. How could these chips be
used to compute a 24-point DFT?

A 24-point DFT is defined by
23

Xtky="_ x(mW

n=0

Decimating x(n) by a factor of 3, we may decompose this DFT into three 8-point DFTs as follows:

7 7 7
Xy =Y xBmWit + Z.x(z.n + WS 4 Zx(3n + )Wtk
n=0 n=0 n=0
7 7
= xmWHE +WEY xGn+ DWE + WE D x(Bn+ 2w
=0

7
n=f n=0 n=0

Therefore, if we form the three sequences

f(n)=x3n) n=0.12,...,7
gn) =x@Bn+1) n=0,12....7
h(n) = x(3n +2) n=012..., 7

and use the 8-point FFT chips to find the DFTs F(k), G(k), and H (k), the 24-point DFT of x(n) may be found by
combining the outputs of the 8-point FFTs as follows:

X(ky = F(k) + W3, G (k) + W3 H(k)

Prime Factor FFT

7.15 Find the index maps for a 21-point prime factor FFT with N; = 7 and N, = 3. How many multiplications
are required compared to a 32-point radix-2 decimation-in-time FFT?
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For a 21-point prime factor FFT with Ny = 7and N, = 3, weset A = N, = 3and B = N; = 7. Then, with
C = No((N; "))n, = 15and D = Ni((N; ")), = 7, we have the following index mappings:

(Gny + Tn2)) D=0
1 =
! ny n2)In 0<m<2
k = ((15k; + Tk 0=ki=6
= ((15ky + Tka))n 0<k <2
Thus, the two-dimensional array representation for the input is
nl‘ 0 l 2 3 4 5 6
13
0 x(0) x(3) x(6) x(9)  x(12)  x(15) x(18)
| x(7) x(10)y  x(13)  «x(16) x(19) x(1) x(4)
2 x(14)  x(17)y x(20) x(2) x(5) x(8) (1)

and the two-dimensional array for the output is

5
P Iq' 0 1 2 3 4 6

0 X0 X5 X X3) X8 X(12)  X(6)
1 X X()  X(16) X0y X&)  X(19)  X(13)
2 X4y  X(®) X2 XU7 Xal o X(@$) o XQo0)

With the prime factor FFT, there are no twiddle factors. Therefore, the only multiplications necessary are those
required to compute the three 7-point DFTs, and the seven 3-point DFTs. Because each 3-point DFT requires 6 com-
plex multiplies, and each 7-point DFT requires 42, the number of multiplies for a 21-point prime factor FFT is
(7)(6) + (3)(42) = 168. For a 32-point radix-2 FFT, on the other hand, we require

16 log, 32 = 80

complex multiplies. Therefore. it would be more efficient to pad a 21-point sequence with zeros and compute a 32-
point DFT. The increased efficiency is a result of the fact that 32 = 27 is a much more composite number than 21 = 7-3.

7.16  Suppose that we would like to compute a 15-point DFT of a sequence x(n).

(a) Using a mixed-radix FFT with Ny = 5 and N, = 3, the DFT is decomposed into two stages, with
the first consisting of three 5-point DFTs, and the second stage consisting of five 3-point DFTs,
Make a sketch of the connections between the five- and three-point DFTSs, indicating any possible
twiddle factors, and the order of the inputs and outputs.

(b) Repeat part (a) for the prime factor algorithm with N, == 5 and N, = 3, and determine how many
complex multiplies are saved with the prime factor algorithm.

(a) Using a mixed-radix FFT with N, = 5 and N, = 3, the index mappings for n and k are as follows:

O<n <4

n=73n +n;
0<n, <2

0<k <4

k=k1+5A2
0<k, <2

Thus, the two-dimensional array representation for the input is

p ny 0 1 2 3 4

2
0 x(0) x3) x6) x9 x(12)
1 x(l)y x4 x(7) x(10) x(13)

2 x(2) x5 x(8) x(1) x(14)
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After the five-point DFT of each row in the data array is computed, the resulting complex array is multiplied
by the array of twiddle factors:

| I T R B
1 Wis Wi Wil wi
I Wis Wis Wis W

The last step then involves computing the three-point DFT of each column. This produces the output array

X (k), which is

ky 0 3 4
k|
0 X(0) X3) X
| X(5) X@8) X
2 X(10) X(13)  X(14)

The connections between the three- and five-point DFTs are shown in the following figure, along with the eight

twiddle factors:

2(0) O——I o— o o X(0)
2(3) O—— oL o X(5)
2(6) o—e—r] POu | & Xx(10)
z(9) O—— —-o X(1)
2(12) O——f Spome o X(6)
z(1) O—— 0 X(11)
2(4) O———oI W‘: o X(2)
2(7) o——r POt W‘: o o Spomt b—o x(1)
2(10) O——oI W'; 5 X(12)
(13) o—— Wi o X(3)
0 o i Lo xi
2(5) O—v—o Wl:’ L o X(13)
2(8) O—+—o 53’;3;’“ ::‘: L o X(4)
z(11) O——T | 185 33’;,’;‘“ L o X(9)
z(14) O—e—o I o ——o X(14)

(b) Using the prime factor algorithm with Ny =5 and N, =3, we set A=N,=3 and B =N, =5. Then, with
C= Nz((N{'))N1 =6and D = N,((N"‘))N2 = 10, we have the following index mappings for n and &:

n = ((3n) + 5n2));s {

k = ((6ky + 10k2))y5 {

0<n =4

0<n, <2

0<k <4
0<k <2
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The two-dimensional array representation for the input is

n|| 0 1 2 3 4
n3
0 x(0)  x(3)  x(6)  x(9 x(12)
1 x(5) x(8) x(1) x(14) x(2)
2 x(10)  x(13)  x(I) x(@)  x(D)
and for the output array we have
ky 0 1 2 3 4
ks
0 X(0) X® X(12) X3 X(9)
1 X(10) XD X7 X(13) X4
2 X% X(an  xX@ X® X(14)
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The interconnections between the five- and three-point DFTs are the same as in the mixed-radix algorithm,
However. there are no twiddle factors, and the ordering of the input and output arrays is different. The 15-point
prime factor algorithm is diagrammed in the figure below.

z(0) O—— ——0 o!

0 o sy
z(6) O—— 5-[1)>g'ilx‘1t —_

z(9) O— —]

z(12) O—r— 33)17‘0511‘lt
z(5) O——

z(8) O———

s B o— gt
z(14) O——

z(2) O—s——o

w0 o g
z(13) O—— —
o

w9 o] g
z(7) o—— o) o

X(0)
X(10)
X(5)
X(6)
X(1)
Xx(11)
X(12)
X(7)
X(2)
X(3)
X(13)
X(8)
X(9)
X(4)
X(14)

The savings with the prime factor algorithm over the mixed-radix FFT are the eight complex multiplies by the

twiddle factors.

Supplementary Problems

Radix-2 FFT Algorithms

7.17

Let x(n) be a sequence of length 1024 that is to be convolved with a sequence /(n) of length L. For what values of

L is it more efficient to perform the convolution directly than it is to perform the convolution by taking the inverse

DFT of the product X (k)H (k) and evaluating the DFTs using a radix-2 FFT algorithm?
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7.18
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Suppose that we have a 1025-point data sequence (1 more than N = 2'%). Instead of discarding the final value, we
zero pad the sequence to make it of length N = 2!' so that we can use a radix-2 FFT algorithm. (a) How many
multiplications and additions are required to compute the DFT using a radix-2 FFT algorithm? (b) How many
multiplications and additions would be required to compute a 1025-point DFT directly?

FFT Algorithms for Composite N

7.19  In aradix-3 decimation-in-time FFT, how is the input sequence indexed?

7.20  How many complex multiplications are necessary in a radix-3 decimation-in-frequency FFT?

7.21  Consider the FFT algorithm given in Example 7.3.2. (a) How many multiplications and additions are required to
compute a 12-point DFT? (b) How many multiplications and additions are necessary if the 12-point DFT is computed
directly?

Prime Factor FFT

7.22  Find the index maps for a 99-point prime factor FFT with Ny = 11 and N, = 9.

7.23  How many complex multiplications are required for a 12-point prime factor FFT with N\ = 4 and N; = 3 if we do
not count multiplications by 1 and £ ;?

7.24  How many twiddle factors are there in a 99-point prime factor FFT with N, = 11 and N, = 9?

7.25  How many complex multiplications are required for a 15-point prime factor FFT if we do not count multiplications
by 17

Answers to Supplementary Problems

717 L < 33,

718  (a) 11,264. (b) 1,050,625.

7.19  The index for x(n) is expressed in ternary form, and then the ternary digits are read in reverse order.

7.20 The same as a decimation-in-time FFT, which is 2N log; N.

7.21  (a)Each4-point DFT requires no multiplies and 12 adds, and each 3-point DFT requires 6 multiplies and 6 adds. With
6 twiddle factors, there are 6 + (4)(6) = 30 multiplies and (4)(6) + (3)(12) =60 adds. (b) 144 multiplies and 132 adds.

722  n=9n; + llny, and k = 45k, + 55k,.

7.23 24,

7.24  Norne.

7.25  90.



Chapter 8

Implementation of Discrete-Time Systems

8.1 INTRODUCTION

Given a linear shift-invariant system with a rational system function #/(z), the input and output are related by a
linear constant coefticient difference equation. For example, with a system function

HE) = b(0) + h(1)z™!
Y T Y a

the input x(#) and output y(#) are related by the linear constant coefficient difference equation
y(r)y = —a(l)y(n — 1)+ b0)x(n) + b(1)x(n — 1) 8.1

This difference equation defines a sequence of operations that are to be performed in order to implement this
system. However, note that this system may also be implemented with the following pair of coupled difference
equations:

w(n) = —a(Dwn — 1) + x(n)
y(n) = b0)w(n) + b(Hw(n — 1)

With this implementation, it is only necessary to provide one memory location to store w(n — 1), whereas
Eq. (8.7) requires two memory locations, one to store y(n — 1) and one to store x(n — 1). This simple example
illustrates that there is more than one way to implement a system and that the amount of computation and/or
memory required will depend on the implementation. In addition, the implementation may affect the sensitivity
of the filter to coefficient quantization. and the amount of round-off noise that appears at the output of the
filter.

In this chapter, we look at a number of different ways to implement a linear shift-invariant discrete-time
system and look at the effect of finite word lengths on these implementations.

8.2 DIGITAL NETWORKS

For a linear shift-invariant system with a rational system function, the input x(n) and the output y(n) are related
by a linear constant coefficient difference equation:

q r
y(n) =Y bkx(n —k) =Y alk)y(n — k)
k=0

=1

The basic computational elements required to find the output at time » are adders, multipliers, and delays. It is
often convenient to use a block diagram to illustrate how these adders. multipliers, and delays are interconnected
to implement a given system. The notation that is used for these elements is shown in Fig. 8-1. A network is
also often represented pictorially using a signal flowgraph, which is a network of directed branches that are
connected at nodes. Each branch has an input and an output, with the direction indicated by an arrowhead. The
nodes in a flowgraph correspond to either adders or branch points. Adders correspond to nodes with more
than one incoming branch, and branch points are nodes with more than one outgoing branch, as illustrated in
Fig. 8-2. With a linear flowgraph, the output of each branch is a linear transformation of the branch input, and the
linear operator is indicated next to the arrow. For linear shift-invariant discrete-time filters, these linear operators
consist of multiplies and delays. Finally, there are two special types of nodes:

287
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1. Source nodes. These are nodes that have no incoming branches and are used for sequences that are

input to the filter.
2. Sink nodes. These are nodes that have only entering branches and are used to represent output sequences.

x(n) x(n)+ wn)
w(n)
(a) Adder.
x(n) a a x(n) x(n) x(n—1)
—- —_ D ——
(b) Multiplier. (c) A unit delay.

Fig. 8-1. Notation used for an adder, multiplier, and delay in a

digital network.

Node j

Node &

Fig. 8-2. Signal flowgraph con-
sisting of nodes, branches, and
node variables. Node j repre-
sents an adder, and node k is a
branch point.

EXAMPLE 8.2.1 Consider the first-order discrete-time system described by the difference equation
y(n) = b0)x(n) + b(Dx(n — 1)+ a(Dy(n — 1)

Shown in the figure below is a block diagram for this system.

x(n) b(0) y(n)
() >

a(l) b(1)

<} o=

Using a signal flowgraph, this system is represented as follows:

x(n) h(0) y(n)
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8.3 STRUCTURES FOR FIR SYSTEMS

A causal FIR filter has a system function that is a polynomial in z':

N
H(z) = Z h(m)z™"
n=0

For an input x(n), the output is
N
y(my =Y h(k)x(n — k)
k=0

For each value of n, evaluating this sum requires (N + 1) multiplications and N additions. The following
subsections describe several different realizations of this system.

8.3.1 Direct Form

The most common way to implement an FIR filter is in direct form using a tapped delay line as shown in the
figure below.

x(n)

h(N)

O y(n)

This structure requires N + 1 multiplications, N additions, and N delays. However, if there are some symmetries
in the unit sample response, it may be possible to reduce the number of multiplications (see the section on linear
phase filters).

8.3.2 Cascade Form

For a causal FIR filter, the system function may be factored into a product of first-order factors,

N N
H(z) = Zh(n)z"’ =A 1—[(1 —az h
n=0 k=1

where o for k = 1, ..., N are the zeros of H(z). If h(n) is real, the complex roots of H (z) occur in complex
conjugate pairs, and these conjugate pairs may be combined to form second-order factors with real coefficients,

Ns
H@ = AL+ bz + 52127
k=1

Written in this form, H (z) may be implemented as a cascade of second-order FIR filters as illustrated in Fig. 8-3.

8.3.3 Linear Phase Filters

Linear phase filters have a unit sample response that is either symmetric,

h(n) = h(N — n)
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Fig. 8-3. An FIR filter implemented as a cascade of second-order systems.

or antisymmetric (see Sec. 5.3),

h(n) = —h(N —n)

This symmetry may be exploited to simplify the network structure. For example, if N is even and A(n) is
symmetric (type I filter),

N
L

N : N N
y(n) = kgoh(k)x(n —~ky= Z h()[x(n —k)y+x(n — N + )] + h(?)x(n - —)

k=0 2

Therefore, forming the sums [x(n — k) + x(n — N + k)] prior to multiplying by A(k) reduces the number of
multiplications. The resulting structure is shown in Fig. 8-4(a). If N is odd and /(n) is symmetric (type II filter),
the structure is as shown in Fig. 8-4(b). There are similar structures for the antisymmetric (types IIl and 1V)
linear phase filters.

WNJ2—1) h(N/2)

r

[ hl(N = 1)/2)

Fig. 8-4. Direct form implementations for linear phase filters. (a) Type . (b) Type 1L
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8.3.4 Frequency Sampling

The frequency sampling structure is an implementation that parameterizes a filter in terms of its DFT coefficients,
Specifically, let H (k) be the N-point DFT of an FIR filter with h(n) =0 forn < Oandn > N .! Because the
unit sample response of the filter is

1 Nl ‘
J - H(k J2nnk/N
1(n) N k§=0 (k)e

the system function may be written as

N~1 N—1 1 N—1 v
H(z) = Z h(n)z™" = Z [V Z H(k)eﬂnnk/N:IZ-n
n=0 n=0 k=0

| Nl Nl
— j2ank/N _—n
=5 E H (k) E e z
k=0 n=0
Evaluating the sum over n, this becomes

T H (k)
H() = _(1 —7 N)Z | — ei2znk/N ;=1

which corresponds to a cascade of an FIR filter ﬁ( 1 — z=N) with a parallel network of one-pole filters:

H (k)
@) = T
For a narrowband filter that has most of its DFT coefficients equal to zero, the frequency sampling structure
will be an efficient implementation. The frequency sampling structure is shown in Fig. 8-5. If h(n) is real,
H(k) = H*(N — k), and the structure may be simplified. For example, if N is even,

8.2)

1 v HO  HWp2) & A(k) — B(k)z™!
H@)= (-2 N)[ + + >

] —z1 1 +2z! —~ - 2cosmk/N)z=1 4 272

where A(k) = H(k)+ H(N — k)
B(k) = H (k) e /2N 4 H(N — k) o 2mkIN

A similar simplification results when N is odd.

8.4 STRUCTURES FOR IIR SYSTEMS

The input x(n) and output y(n) of a causal IIR filter with a rational system function

i blk)z~*

B(z) _ k=0

14
|+ Za(k)z’k
k=1

H(z) =

!'Note that here we are assuming that h(n) is of length N, instead of N + 1 as in the previous sections. This is consistent with the convention
that the frequency sampling filter is based on an N -point DFT of h(n).
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H ()

y(n)
L L ]
L] L]
L] L]
ejZN(N—I)/N
Fig. 8-5. Frequency sampling filter structure.
is described by the linear constant coefficient difference equation
q P
y(n) =Y " bk)x(n = k) =y ak)y(n — k) 8.3)
k=0 (=1

In the following sections, several different implementations of this system are presented, including the direct
form structures, the cascade and parallel forms, and the transposed filter structures.

8.4.1 Direct Form

There are two direct form filter structures, referred to as direct form [ and direct form 1. The direct form 1
structure is an implementation that results when Eq. (8.3) is written as a pair of difference equations as follows:

q
w(n) = Z blk)x(n — k)
k=0

=

y(n) =wkn)— ) alk)y(n —k)

k:l

The first equation corresponds to an FIR filter with input x(n) and output w(n), and the second equation
corresponds to an all-pole filter with input w(n) and output y(n). Therefore, this pair of equations represents a
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cascade of two systems,

1
Y(z) = —A(—Z)[B(Z)X(Z)]

as illustrated in Fig. 8-6. The computational requirements for a direct form [ structure are as follows:

Number of multiplications: p + g + 1 per output sample
Number of additions: p + ¢ per output sample

Number of delays: p + ¢

x(n) b(0) y(n)
O

Fig. 8-6. Direct form I realization of an IIR filter.

The direct form II structure is obtained by reversing the order of the cascade of B(z) and 1/A(z) as illustrated
in Fig. 8-7. With this implementation, x(n) is first filtered with the all-pole filter 1/A(z) and then with B(z):

1
Y(z) = B(Z)[MX(Z)]

x(n) w(n) h(0) y(n)

Fig. 8-7. Reversing the order of the cascade in the direct form I filter structure.
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If we denote the output of the all-pole filter 1/A(z) by w(n), this structure is described by the following pair of
coupled difference equations:

P
w(n) = x(n) — Za(k)w(n — k)

k=1

q
y(n) =" blkown — k)

k=0
This structure may be simplified by noting that the two sets of delays are delaying the same sequence. Therefore,

they may be combined as illustrated in Fig. 8-8 for the case in which p = ¢. The computational requirements
for a direct form I structure are as follows:

Number of multiplications: p + ¢ 4+ 1 per output sample
Number of additions: p + g per output sample

Number of delays: max(p, q)

The direct form I1 structure is said to be canonic because it uses the minimum number of delays for a given H (z).

x(n) h(0) y(n)
O

—a(p—1) hp—1

Fig. 8-8. Direct form Il realization of an IIR filter with p = q.

8.4.2 Cascade Structure

The cascade structure is derived by factoring the numerator and denominator polynomials of H(z):

q
—k
AZOb(k)Z max{p.q} | — ﬂkz—l
Hz)=————=A —
- k k=i L ouz
1 + Z alk)z™ =
k=1

This factorization corresponds to a cascade of first-order filters, each having one pole and one zero. In general,
the coefficients ax and B, will be complex. However, if 4(n) is real, the roots of H(z) will occur in complex
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conjugate pairs, and these complex conjugate factors may be combined to form second-order factors with real
coefficients:
L+ Buz' + Buz?

Hy(z) =
K@) | +Q|kZ—] +012,(Z_2

A sixth-order IIR filter implemented as a cascade of three second-order systems in direct form II is shown in
Fig. 8-9.

x(n)
O

Fig. 8-9. A sixth-order IIR filter implemented as a cascade of three direct form Il second-order systems.

There is considerable flexibility in how a system may be implemented in cascade form. For example, there
are different pairings of the poles and zeros and different ways in which the sections may be ordered.

8.4.3 Parallel Structure

An alternative to factoring H (z) is to expand the system function using a partial fraction expansion. For example,
with

if p > g and ¢; # oy (the roots of the denominator polynomial are distinct), H(z) may be expanded as a sum
of p first-order factors as follows:

where the coefficients A; and ¢y are, in general, complex. This expansion corresponds to a sum of p first-order
system functions and may be realized by connecting these systems in parallel. If #(n) is real, the poles of H(z)
will occur in complex conjugate pairs, and these complex roots in the partial fraction expansion may be combined
to form second-order systems with real coefficients:

Ny —1
Yot + Yikz
H(z) =
(=) ; Il +oapz " 4+ ayz2

Shown in Fig. 8-10 is a sixth-order filter implemented as a parallel connection of three second-order direct form II
systems. If p < g, the partial fraction expansion will also contain a term of the form

- -
otz -ty pz ta=p)

which is an FIR filter that is placed in parallel with the other terms in the expansion of H(z).
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x(n)

Fig. 8-10. A sixth-order IIR filter implemented as a parallel con-
nection of three second-order direct form II structures.

8.4.4 Transposed Structures

The transposition theorem states that the input-output properties of a network remain unchanged after the
following sequence of network operations:

1. Reverse the direction of all branches.
2. Change branch points into summing nodes and summing nodes into branch points.
3. Interchange the input and output.

Applying these manipulations to a network results in what is referred to as the transposed form. Shown in
Fig. 8-11 are second-order transposed direct form I and direct form II filter structures.

8.4.5 Allpass Filters

An allpass filter has a frequency response with a constant magnitude:
[Hype?) =1 allw
If the system function of an allpass filter is a rational function of z, it has the form

Lozl —af
Hpz) =[] —&
“ E | —ayz!
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x(n) h(0) v(n)

(a)

Fig. 8-11. Transposed direct form filter structures. (¢) Transposed direct
form 1. (b) Transposed direct form II.

If h(n) is real-valued, the complex roots occur in conjugate pairs, and these pairs may be combined to form
second-order factors with real coefficients:

N

oo+ Pz 27
Hu (Z) = 3
? }:[1 I+ Bez™ ' + oz

A direct form II implementation for one of these sections is shown in Fig. 8-12. Because each section only has
two distinct coefficients, o, and By, it is possible to implement these sections using as few as two multiplies.

x(n) wy y(n)

Fig. 8-12. A second-order section of an allpass filter imple-
mented in direct form Il
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8.5 LATTICE FILTERS

Lattice filters have a number of interesting and important properties that make them popular in a number of
different applications. These properties include modularity, low sensitivity to parameter quantization effects,
and a simple criterion for ensuring filter stability. In the following sections, we present the lattice filter structure
for FIR filters, all-pole filters, and filters that have both poles and zeros.

8.5.1 FIR Lattice Filters

An FIR lattice filter is a cascade of two-port networks as shown in Fig. 8-13. Each two-port network is defined
by the value of its reflection coefficient, T'y. The two inputs, f;_;(n) and gx_(n), are related to the outputs f;(n)
and g,(n) by a pair of coupled difference equations

Se(n) = fro(n) + Tigr—1(n — 1)

(8.4)
gr(n) = groi(n = 1)+ Ty fimr(n)
with the input to the first section being fo(n) = go(n) = x(n).
Jk—r(n) Ji(n)
Ty
Cx
8k—1(n) — 8k(n)
Zz
(a)
Jo(n) filn) fa(n) fp—1(n) fpn)
P > P . o ——0
x(n)
o Iy %) Tp
go(n) g1(n) g(n) gp—1(m) &p(n)

(h)
Fig. 8-13. A pth-order FIR lattice filter. (a) The two-port network for each lattice filter module. (b) A cascade
of p lattice filter modules.

With A,(z) the system function relating the input x(#) to the intermediate output f(n),
Fi(z) = Ar(2)X(2)
these difference equations may be solved by induction to yield the following recurrence formula for A;(z):
Ax(z) = A1 (@) + Tez * A 27 8.5

which is called the step-up recursion. The recursion is initialized by setting Ag(z) = 1. This recurrence formula
also defines a recurrence relation for the coefficients a; (i) of Az(z), which is

ak(i)=akﬁ|(i)+l“kak_1(k—i) i=12,....k—1
ai(k) = Ty
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A simple way to write this recursion is in terms of vectors as follows:

| 1 0
a(l) ag— (1) ag- (k= 1)
: = : + I :
agk = 1) a1k =1) ay (1)
ay(k) 0 ]

EXAMPLE 8.5.1 For a second-order FIR lattice filter with reflection coefficients ') = % and I, = % the system function
relating x(n) to fi(n)is
Ay = Aa) + Tz Az Y =14 42!

and the second-order sysiem function relating (1) to f>(n) is

Ax(2) = A(0) + Tz AzTh

The recurrence formula in Eq. (8.5) provides an algorithm to find the system function A,(z) from the
reflection coefficients Iy, k = 1,2..... p. To find the reflection coefficients 'y for a given system function
A,(2), we use the step-down recursion, which is given by

I
Ak—l(z)=]—‘lﬁ[Ak(z)_rkaAAk(zgl)] k=p,p—1....1 (8.6)
=%

In terms of the coefficients a; (i), this recursion is

1
ak_|(i)=lw*rz[ak(i)—rkaﬁ(k~i)] i=1.2,..., k=2
B

a1k — 1) =Ty,
The reflection coefficients are then found from the polynomials A;(z) by setting I'y = ax (k).
EXAMPLE 8.5.2 To find the reflection coefficients T'; and I'» corresponding to the second-order FIR filter A,(z) =

1 — 277, we begin by setting
r: = 01(2) = -

rol—

Next, we find A;(z) using the step-down recursion.

A) = gl - RV HEN)
= 31—+ 2 (1= 529)] =
Because ¢,(1) = 0. ", = 0. Therefore, the reflection coefficients are I’y = O and [, = ——;.

So far, we have only considered the system function relating the input x(n) to the output f,(n). A similar
set of equations relate the input x(rn) to the output g, (7). With

G/)(Z) = A;’,(Z)X(Z)
the relationship between the system function A ,(z) and A;,(z) is as follows:

Alz) = ZPANzT



300 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS [CHAP. 8

Thus, f,(n) and g,(n) are related by an allpass filter, £,(z) = H,,(2)G ,(z), where

27 PANz")

Hop(z) =~ e (8.7)

An important property of the lattice filter is that the roots of A,(z) will lie inside the unit circle if and only
if the reflection coefficients are bounded by 1 in magnitude:

[Tl < 1 k=1,2,....p

This property is the basis for the Schur-Cohn stability test for digital filters. Specifically, a causal filter with a
system function

will be stable if and only if the reflection coefficients associated with A(z) are bounded by 1 in magnitude.

8.5.2 All-Pole Lattice Filters

The structure for an all-pole lattice filter is shown in Fig. 8-14. As with the FIR lattice, a pth-order all-pole
filter is a cascade of p stages, with each stage being a two-port network that is parameterized by its reflection
coefficient I'y. The two inputs, f;(n) and g (n), are related to the two outputs fi_;(n) and gx(n) by a pair of
coupled difference equations:

Je—i(n) = filn) = Trgp1(n — 1)
gr(n) = gr1(n — 1)+ 'y fi(n)
The system function relating the input x(n) to the output y(n) is

1

H(z) =
(2) e

where A,(z) is the polynomial that is generated by the recursion given in Eq. (8.5). In addition, note that the
system function relating x(n) to w(n) is an allpass filter with a system function H,,(z) given in Eq. (8.7).

Je(n) Si—1(n)

8r(n) 8k—1(n)

(a)

x(n) = fp(n) fo—1(n) Sr—a(n) Si(n) fo(n) = y(n)
o—— > > cee > —> 0
rl’ rp—l I‘,
O—a—] - - cae - <
w(n) = gp(n) &p—1(n) 8gp—2(n) g1(n) go(n)

(h)
Fig. 8-14. A pth-order all-pole lattice filter. (@) The two-port network for the kth stage of the all-pole lattice
filter. (b) Cascade of p lattice stages.



CHAP. 8] IMPLEMENTATION OF DISCRETE-TIME SYSTEMS 301

8.5.3 IR Lattice Filters
If H(z) is an IIR filter with p poles and g zeros,

Xq:bq(k)z_k

Hz) = B,(z) _ k=0
Ap(z) P n
1+ > a,h)z

k=1

with ¢ < p, a lattice filter implementation of H(z) consists of two components. The first is an all-pole lattice
with reflection coefficients I'y, 'z, ..., ', that implements 1/A,(z). The second is a tapped delay line with
coefficients ¢, (k). The structure is illustrated in Fig. 8-15 for the case in which p = g. The relationship between
the lattice filter coefficients ¢, (k) and the direct form coefficients b, (k) is given by

E

by(ky=Y ce(j)aj(j—k)  k=0,1.....p 8.8)

J=k

Similarly, a recursion that generates the coefficients ¢, (k) from the coefficients b, (k) is
4
cy(k) = by (k) — Z cq(Paj(j —k) k=g—-1,g—-2,...,0 (8.9)

j=k+1

This recursion is initialized with ¢, (g) = by(g).

fpln) fp—l(") fpﬂz(n) Sfiom) fo(n)
x(n) O———p—— o L. s >

I I rp f

gpln) gp—1(n) gp—2(n) gi(n) go(n)
oo ——0
- v . : . \

¢p(p) cplp—1) cp(p—2) ep(l) ¢p(0)

> o > v > O QO y(n)

Fig. 8-15. An IIR lattice filter with p poles and p zeros.

EXAMPLE 8.5.3 A third-order low-pass elliptic filter with a cutoff frequency of w, = 0.5z has a system function

0.2759 4+ 0.5121z7' 4+ 0.5121z72 + 0.2759z "
1 —0.0010z"" 4+ 0.6546z72 — 0.0775z*

H(z) =
To implement this filter using a lattice filter structure, we first transform the denominator coefficients into reflection coeffi-
cients. Using the step-down recursion, we find
Iy =0.0302 I, =0.6584 I = -0.0775
with the second-order system function given by
Ay(z) = 140.0501z"" +0.6584z 7

and the first-order system function
A)(z) = 140.0302z""



302 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS [CHAP. 8

Next, the coefficients (k) are found using the recursion given in Eq. (8.9). Beginning with
a(3) = h3(3) = 0.2759
we then have

c3(1) = bi(1) = c3(Dax(1) — ¢3(3)az(2) = 0.3058
¢3(0) = b1(0) = ca(Da (1) — ¢3(2)ax(2) — ¢3(3)ax(3) = —0.0493

This leads to the lattice filter implementation illustrated below.

x(n)
oO—r—O0—»—0

O >

A

0.0775 —0.6584
—0.0775 0.6584
0.2759 0.5124

8.6 FINITE WORD-LENGTH EFFECTS

In implementing a discrete-time system in hardware or software, it is important to consider the finite word-length
effects. For example, if a filter is to be implemented on a fixed-point processor, the filter coefficients must be
quantized 1o a finite number of bits. This will change the frequency response characteristics of the filter. In this
section, we look at the finite precision effects in digital filter implementations.

8.6.1 Binary Representation of Numbers

There are two basic systems for representing numbers in a digital system: fixed point and floating point. There
is a trade-off in which type of representation to use. The dynamic range that is available in a floating-point
representation 1s much larger than with fixed-point numbers. However, fixed-point processors are typically faster
and less expensive. Below, we briefly describe these number representations.

Fixed Point

In the binary representation of a real number, x, using B + 1 bits, there are three commonly used formats: sign
magnitude, one’s complement, and two’s complement, with two’s complement being the most common. In these
systems, the only difference is in the way that negative numbers are represented.

V. Sign magnitude: With a sign-magnitude format, a number x is represented as
B
X = Xm(_l)b“ ’ Zbiz_‘
i=

where X, is an arbitrary scale factor and where each of the birs b; are either O or I. Thus, by is the sign
bit, and the remaining bits represent the magnitude of the fractional number. Bit b, is called the most
significant bit (MSB). and by is called the leust significant bit (LSB). For example, with X,, = 1,

x =0.8125=0.11010

and —x =—08125=1.11010
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2. One’s complement: In one’s complement form, a negative number is represented by complementing
all of the bits in the binary representation of the positive number. For example, with X,, = 1 and
x =0.8125 = 0.11010,
—x = —0.8125=0.11010 = 1.00101

3. Two's complement. With a two’s complement format, a real number x is represented as

B
x=Xn (—bo + Z b,z-")

i=l

Thus, negative numbers are formed by complementing the bits of the positive number and adding 1 to the
least significant bit. For example, with X,, = 1, the two’s cornplement representation of x = —0.8125
is

x =—0.8125=0.11010 4 0.00001 = 1.00110

Note that with B + 1 bits, the smallest difference between two quantized numbers, the resolution, is
A=X,28

and all quantized numbers lie on the range —X,, < x < X,,.

Floating Point

For a word length of B + 1 bits in a fixed-point number system, the resolution is constant over the entire range of
numbers, and the resolution decreases (A increases) in direct proportion to the dynamic range, 2X ,,. A floating-
point number system covers a farger range of numbers at the expense of an overall decrease in resolution, with
the resolution varying over the entire range of numbers. The representation used for floating-point numbers is
typically of the form

x =M 2F

where M, the mantissa, is a signed By -bit fractional binary number with % < |M| < l.and £, the exponent, is
a Bg-bit signed integer. Because M is a signed fraction, it may be represented using any of the representations
described above for fixed-point numbers.

Quantization Errors in Fixed-Point Number Systems

In performing computations within a fixed- or floating-point digital processor, it is necessary to quantize numbers
by either truncation or rounding from some level of precision to a lower level. For example, because multiplying
two 16-bit fixed-point numbers will produce a product with up to 31 bits of precision, the product will generally
need to be quantized back to 16 bits. Truncation and rounding introduce a quantization error

e =0[x]—x

where x is the number to be quantized and Q[.x] is the quantized number. The characteristics of the error depend
upon the number representation that is used. Truncating numbers that are represented in sign-magnitude form
result in a quantization error that is negative for positive numbers and positive for negative numbers. Thus, the
quantization error is symmetric about zero and falls in the range

—A<e<A

where A= X,,,Z‘B

On the other hand, for a two’s complement representation, the truncation error is always negative and falls in the
range
—A<ex<0
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With rounding, the quantization error is independent of the type of fixed-point representation and falls in the

range
A A
—_— S e S _
2 2

For floating-point numbers. the mantissa is either rounded or truncated, and the size of the error depends on the

value of the exponent.

8.6.2 Quantization of Filter Coefficients

In order to implement a filter on a digital processor, the filter coefficients must be converted into binary form.
This conversion leads to movements in the pole and zero locations and a change in the frequency response of
the filter. The accuracy with which the filter coefficients can be specified depends upon the word length of the
processor, and the sensitivity of the filter to coefficient quantization depends on the structure of the filter, as well
as on the locations of the poles and zeros.

For a second-order section with poles at z = re

+)6
AR = —re?z7 N0 —re P27y =1 —2rcosBz7" +r2z72
the filter coefficients in a direct form realization are
a(l) =2rcosf a(2) = —r2
If a(1) and a(2) are quantized to B + 1 bits, the real part of the pole location is restricted to 25+ possible values,

and the radius squared is restricted to 2% values. The set of allowable pole locations for a 4-bit processor is
shown in Fig. 8-16.

0.75

0.50

0.25 1

Re(z)

0.25 0.50 0.75 1.00

Fig. 8-16. The set of allowable pole locations in the first quadrant
of the z-plane for a second-order IR filter implemented in direct
form using a 4-bit processor.

A general sensitivity analysis of a pth-order polynomial

P P
Az) =1+ Za(k)z—" = l—[(l —az Y
k=1

k=1
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shows that the root locations are more sensitive to coefficient quantization errors when the roots are tightly
clustered. For example, if the coefficients a(k) are quantized,

14 r
A@) =1+ ) latk) + da))z™ = [T = (@ + Aa)z ']
k=1 k=1

then the sensitivity of the location of the ith pole to changes Aa(k) in the coefficients a(k) is approximately

da;
Ag; = Y 2 pagk)
k=1

da(k)
) 0A(z) o 0A(z)
With ( day )Z da(k) (aau())z:a,
A=) _ .  BAG) 1y,
where 8a(k)_z b = jl:[l(l oz )z
J#
3(1,‘ a,'p_k
then =
da(k) i
]—[(ai - aj)
j=I
i

Thus, if the poles are tightly clustered, |o; — «;| is small, and small changes in a(k) will result in large changes
in the pole locations.

The movement of the poles may be minimized by maximizing the distance between the poles, |o; — o ;|. This
may be accomplished by implementing a high-order filter as a combination of first- or second-order systems.
For example, with a cascade of second-order sections, each pair of complex conjugate poles and zeros may be
realized separately, thereby localizing the coefficient quantization errors to each section.

For an FIR filter,

N
H(z) = Zh(n)z*"
n=0

when the coefficients are quantized, the system function becomes
. N N
H(z)=)_h(mz™" =) lh(n) + Ah(n))z™" = H(z) + AH(2)
=0 n=0

Thus, the quantization errors may be modeled as H(z) in parallel with AH(z) as shown in Fig, 8-17. If we
assume that the coefficients 4 (n) are less than | in magnitude, and that the coefficients are rounded to B + 1 bits,

—27 B0« Ah(n) < 27B+D
Therefore, a loose bound on the error in the frequency response is

N
Z Ah(n) e/

n=0

|AH (e!”)] =

N
< D_1ARm| < (N + D27 EHD
n=0

As with IIR filters, if the zeros are tightly clustered, the zero locations will be sensitive to coefficient
quantization errors. However, FIR filters are commonly implemented in direct form for two reasons:

1. The zeros of FIR filters are not generally tightly clustered.
2. In direct form, linear phase is easily preserved.
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> H(z)

\

x(n) y{n)

AH() >

A\ 4

Fig. 8-17. Model for the coefficient quantization error in FIR
filters.

8.6.3 Round-Off Noise

Round-off noise is introduced into a digital filter when products or sums of products are quantized. For example,
if two (B + 1)-bit numbers are multiplied, the product is a (28 + 1)-bit number. If the product is to be saved in
a (B + 1)-bit register or used in a (B + 1)-bit adder, it must be quantized to (B + 1)-bits, which results in the
addition of round-off noise. This round-off noise propagates through the filter and appears at the output of the
filter as round-off noise. In this section, we illustrate the analysis of round-off noise effects by example.

Consider the second-order 1IR filter implemented in direct form 1 shown in Fig. 8-18(a). The difference
equation for this network is

”

o =3 bkxtn — k) =Y atk)y/n - k

k=0 k=1

If we assume that all numbers are represented by B + | fixed-point numbers and that the network uses (B + | )-bit
adders, each (2B + 1)-bit product must be quantized to B + | bits by either truncation or rounding. Fig. 8-18(h)
shows the quantizers explicitly. The difference equation corresponding to this system is the nonlinear equation

2 2
$im) =" QIbtkx(n — k)= D Qlatk)d(n — k)]

k=0 k=1

If the quantizers are replaced with noise sources that are equal to the quantization error, we have an alternative
representation shown in Fig. 8-18(c¢). This representation is particularly useful when it is assumed that the
quantization noise has the following properties:

1. Each quantization noise source is a wide-sense stationary white noise process.

2. The probability distribution function of each noise source is uniformly distributed over the quantization
interval.

3. Each noise source is uncorrelated with the input to the quantizer. all other noise sources, and the input
to the system.

With B + | bits, and a fractional representation for all numbers, the second property implies that the quantization
noise for rounding has a zero mean and a variance equal to
2 _ 1~-2B
O’(, = ﬁ2
To analyze the effect of the round-off noise sources at the output of the filter, it is necessary to know how
noise propagates through a filter. If the input to a linear shift-invariant filter with a unit sample response A(n) is
wide-sense stationary white noise, ¢(n). with a mean m, and a variance af. the filtered noise, f(n) = h(n) x e(n),
is a wide-sense stationary process with a mean

oC

my =m, Z h(n)

H=—0o<
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x(n) b(0) ¥n)
O 2> O B & o)
77! o

b(1)
21 =~
b(2)
(a)
x(n) b(0) Y(n)
Oo—r—O0—r— Q 0 > O >
by A A
b(1)
o—— Q >0 O0—<— Q
E | Iy 4
b(2)
»>- Q > -+ Q
(h)

x(n) b(0) Y(n)
o—o—o—>—T—o—o—>—¢i+—o—»—o
I y |
‘ eo(n) 4 4 2
b(1) —a(l)
¢ ) (H—I——d—«)

Y ei(n) 4 ) e3(n) Y
h(2) —a(2)
ex(n) esin)
©)

Fig. 8-18. Analysis of round-off noise. (a) A second-order direct form 1
filter. (b) Quantization of products in the filter. (c) An additive noise model
for the round-off noise. .
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and a variance

o I i g .
2=l hn))* =0’ — H(e!)* d
o} =0, Z;OI P =07 | ) do

The variance may also be evaluated using z-transforms as follows:

, 1
a; =a;__5£ H(z)H(z""z7"dz
2nj Je

EXAMPLE 8.6.1 Consider the first-order all-pole filter with a system function

Hiz)= —
@) | —az™!

If the input to this filter, e(n), is zero mean white noise with a variance o2, the variance of the output will be

1 — |af?

i Rkl ki ad ) 1
a? =" Z lh(n)|” = o Z laf* =02 —

n=—n n=0

Returning to the direct form I filter, note that the model in Fig. 8-18(¢) may be represented in the equivalent
form shown in Fig. 8-19 where

eqa(n) = ep(n) + e\(n) + ex(n) + e3(n) + eq(n)

x(n) b(0) (n) = y(n)+ f(n)
> O

O > O O > O > O >
- O > > O > O L

h(l) —a(l)

h(2)

Fig. 8-19. An additive noise model after combining noise sources.

Thus, the quantization noise is filtered only by the poles of the filter, and the output noise satisfies the difference
equation
2

fim)y=e,ny = atk)f(n—k)

k=1

If the noise sources are uncorrelated, as assumed by the third property above, the variance of e,(n) is the sum of
the variances of the five noise sources, or

2—23

a ¢ N 12
Assuming that the filter is stable, and that the poles of the filter are complex,

1 I

L+a(Dz=' +a)z2 " (I —reifz=1)(1 —re=ifz-1)
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the variance of the output noise is

, 27 1 .
aj-_S——_ VRV VST dz
12 21/ Jo A(@)AGz"Y)

_ 52’23 1 f zdz
TUO12 27 Jo (z —red®)z —re i1 —reifz)(1 —re—ifz)

Using Cauchy’s residue theorem to evaluate this integral, we find that

3 2728 /| 42 |
Of == 5 3 4 5
12 1 —r2/) r4+4+1—2r"cos28

Note that as the poles move closer to the unit circle, r — 1, the variance of the output noise increases.
The noise performance of digital filters may be improved by using (2B + 1)-bit adders to accumulate sums
of products prior to quantization. In this case, the difference equation for the direct form I network becomes

2 2
(n) = Q[Zh(k)xw —k) =Y _ak)$n — k)}
k=0

k=1

Thus, the sums are accumulated with an accuracy of 2B + 1 bits, and the sum is then quantized to B + 1 bits in
order to store y(n — 1) and y(n — 2) in (B + 1)-bit delay registers and to generate the (B + 1)-bit output $(n).
Because there is only one quantizer, which quantizes the sum of products, the variance of the noise source in

Fig. 8-19 is reduced from 507 to o2.

8.6.4 Pairing and Ordering

For a filter that is implemented in cascade or parallel form, there is considerable flexibility in terms of selecting
which poles are to be paired with which zeros and in selecting the order in which the sections are to be cascaded
for a cascade structure. Pairing and ordering may have a significant effect on the shape of the output noise power
and on the total output noise variance. The rules that are generally followed for pairing and ordering are as
follows:

1. The pole that is closest to the unit circle is paired with the zero that is closest to it in the z-plane, and
this pairing is continued until all poles and zeros have been paired.

2. The resulting second-order sections are then ordered in a cascade realization according to the closeness
of the poles to the unit circle. The ordering may be done either in terms of increasing closeness to the
unit circle or in terms of decreasing closeness to the unit circle. Which ordering is used depends on
the consideration of a number of factors, including the shape of the output noise and the output noise
variance.

8.6.5 Overflow

Another issue in fixed-point implementations of discrete-time systems is overflow. If each fixed-point number
is taken to be a fraction that is less than 1 in magnitude, each node variable in the network should be constrained
to be less than { in magnitude in order to avoid overflow. If we let 4, (n) denote the unit sample response of the
system relating the input x(#) to the kth node variable, wy(n),

o0

el = | > x(n—mhe(m)| < Xenax Y, he(m)]

m=—0o0 m=—00
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where X, is the maximum value of the input x(n). Therefore, a sufficient condition that |wi(n)| < 1 so that
no overflow occurs in the network is

1
X max S

o0

> Ih(m)]

m=—oc

for all nodes in the network. If this is not satisfied, x(n) may be scaled by a factor s so that

l
§Xmax £ —g——— (8.10)

oo

Y ltm))

m=-00

EXAMPLE 8.6.2 In the first-order direct form Il network shown below,

x(n) Node | Node 2 y(n)

> O > O > O

0.8 -0.9

< >
<4 =

there are two nodes that represent adders, which are labeled “Node 1” and *Node 2.” The unit sample response from the
input to the first node is
hy(n) = (0.8)"u(n)

x |
Therefore, m;oolh'(m)l =1z (0.8) =3

The unit sample response from the input to the second node is

ha(n) = (0.8)"u(n) — 0.90.8)" u(n — 1) = 8(n) — 0.1(0.8)" 'u(n — D

.
and S ol = 1+0.1)-5 = 15

"=—0C

Thus, with a fractional representation for x(n). a sufficient condition for no overflow to occur is that X ., < 0.2.

Solved Problems

Structures for FIR Systems

8.1 Find the frequency response of the system defined by the following network:

x(n) 7! -l 1

N

lo, > O > O, > 0 >
21 P Pl
< ) < ) < f)
-+ O < O < 4
-0.1 0.2 0.5 Y
-4 9, < e

y(n)
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We recognize this structure as a linear phase system with a unit sample response
h(n) = —0.1[8(n) + 8(n — 6)] + 0.2[8(n — 1) + 8(n — 5)] + 0.5[6(n — 2) + 8(n — )] + 8(n — 3)
Therefore, the frequency response is

H(e!)y = —0.1[1 + 7 /*] + 0.2[e™/* + 7] 4+ 0.5]e /2% 4 ¢7 /%] 4 ¢~/

= ¢ [l 4 cosw + 0.4 cos 2w — 0.2 cos 3w]

8.2 A linear shift-invariant system has a unit sample response given by

h(0) = —0.01
h(l)= 0.02
h(2) = -0.10
h(3)= 040
h(4) = -0.10
h(5) = 0.02
h(6) = —0.01

(a) Draw a signal flowgraph for this system that requires the minimum number of multiplications.

(b) If the input to this system is bounded with |x(n)| < | for all n, what is the maximum value that the
output. y(n), can attain?

(a) Because this system is a linear phase filter, it may be implemented with a network that has only four multiplies
and six delays as shown in the figure below.

-1 -1 -1

N
N

x(n) z

o—> O > 0O > - >
Z_I - -1 L1
<+ O— O <
—0.01 0.02 0.1 0.4
: NS : A
y(n)

(b) With an input x(n), the output is

6
yin) =Y hkx(n = k)
k=0

Therefore, the magnitude of y(n) is upper bounded by

6
Zh(k)x(n — k)

k=0

[y(n)| =

6
< Y 1RGO x(n — K|
k=0

With |x(n)| < 1 for all n,

6
ly(ml < ) (k)] = 0.66

k=0
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8.3  The unit sample response of an FIR filter is

hn) = o’ 0<n<6®6
=10 otherwise

(a) Draw the direct form implementation of this system.
(b) Show that the corresponding system function is

7,7

1—a'z”

MO =TT

|z] > 0

and use this to draw a flowgraph that is a cascade of an FIR system with an IIR system.
(¢) For both of these implementations, determine the number of multiplications and additions required
to compute each output value and the number of storage registers that are required.
(a) With a unit sample response
h(n) = a"[u(n) — u(n —7)]

the direct form implementation of this system is as shown below.

)
y

> O y(n)

[
A 4
[e
\

¢
\ 4

(b) The system function is

6 6 a1y
H(z) = Zh(n)z'” = Za"z"’ = M
n=0

— -1
n=0 1 az

which converges for |z| > 0. Thus, H (z) may be implemented as a cascade of an [IR system,

1
H\(z) = o

with an FIR system,
Hyz)=1—a"z7"

Therefore, an alternative implementation of this system is as shown below.

x(n) y(n)

o > O > O > O . 7o)

AR
i
=3

q

where the branch labeled with z~% represents a delay by 6.
(¢) The direct form structure requires six delays, which is the minimum number necessary for this system, six

multiplications, and six additions. The cascade, on the other hand, requires one additional delay but only two
multiplications and two additions.

84 A DSP chip used in real-time signal processing applications has an instruction cycle time of 100 ns. One
of the instructions in the instruction set, MACD, will fetch a value from data memory (input signal), fetch
another data value from program memory (filter coefficient), multiply the two numbers together, add the
product to the accumulator, and then move a number in data memory into the next memory location (this
corresponds to a shift or delay of the data sequence). Thus, for an FIR filter of order N, to find the value
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of the output at time n, we need one instruction to read the new input value, x(n), into the processor, we
need (N + 1) MACD instructions to evaluate the sum

N
ym) =Y h(k)x(n — k)
k=0

and we need one instruction to output the value of y(n). In addition, there are eight other instruction
cycles required for each #n in order to perform such functions as setting up memory pointers, zeroing the
accumulator, and so on.

(a) With these requirements in mind, determine the maximum bandwidth signal that may be filtered
with an FIR filter of order N = 255, in real time, using a single DSP chip.

(b) A speech waveform x,(¢) is sampled at 8 kHz. Determine the maximum length FIR filter that may
be used to filter the sampled speech signal in real time.

(a) For the given DSP chip, we need N 4 11 instruction cycles to compute a single output value for an FIR filter of
order N. Therefore, with N = 255, we need 266 cycles, or 266 x 1077 s to compute each output point. Thus,
the signal to be filtered cannot be sampled any faster than

£ Hz = 37.6 kHz

= 266 x 107

Therefore, the bandwidth of the input signal is limited to 18.8 kHz (i.e., X ,( f) must be zero for | f| > 18.8 kHz).

(by Sampling speech at 8 kHz produces 8000 samples per second. Therefore, we have 7, = 1/8000 = 0.125 ms
to compute each output. This allows for M = (0.125 x 107%)/1077 = 1250 instruction cycles. Thus, we may
implement an FIR filter of order N = 1250 — 11 = 1239.

8.5  Find the unit sample response, 4(n), of the network drawn below and find the 64-point DFT of h(n).

> O > O

=1
Y
2
o—r—0 £ o = O = o}
A 4 Yz Y
1/64 2cos(mw/32) —2cos(m/32) y(m
x(n) O—» O & O o -0 (e <t O O—>—0
—1 .
4 \E
2'64 —1 A
——3%
2

2cos(/16)
O——+——
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This is a frequency sampling structure for an FIR filter with a unit sample response of length N = 64. Because the

gain of the first-order section with a pole at z = | is equal to 1, H(0) = |. With second-order networks of the form
A(k) — B(k)z™!
Gi(2) = — =
1 —2cosrk/N)Yz"' +z
with A(k) = H(k)+ H(N — k)

B(k) = H(k)e /2™ /N - H(N — k) e/>™*/N

we see that H (1) and H(2) are nonzero, along with H (62) and H (63). We may therefore solve these equations for
H(1), H(2), H(62), and H(63) as follows. Because A(l) = 2,

H()+ H(63)=2
and because B(1) = 2 cos(rr/32),

H(lye ™™ 4 H(63)e!™3 = 2 cos ;—2

Thus, we have two equations in two unknowns, which may be written in matrix form as follows:

1 1 H | 2
eI eI 1 H(63) |~ | 2cos %
Solving these equations we find that H(1) = H(63) = 1. Similarly, with A(2) = 2 and B(2) = 2cos(7/32), we
find that H(2) = H(62) = 1. Therefore, the 64-point DFT of A(n) is
1 k=0,12,62,63
H (k) =

0 else

and the unit sample response is

! = j2mnk /64 nw nx
hn) = 6—4;H(k)e" 164 — é+$cos§+%cos%

Consider the FIR filter with unit sample response

2mn
€ _ -
h(n) = 64[1 cos 64] 0<n<63
otherwise

Draw the frequency sampling structure for this filter and compare the computational complexity of this
structure to a direct form realization.

The 64-point DFT of the unit sample response is

1 k=0
Hky=1{ -3 k=163
0 else

Therefore, for the frequency sampling structure, we write the system function in the following form,

o H (k)

| —64
H(z) = 6_4(1_2 )'k:z() | — eJ2mk/64 -1
1 1 1 1
_ b e _ 2 _ 2
or H(z) = 64(1 g )[] o | —egmeagl = ej2ﬂ63/642*1i|
_ L(] -6ty 1 | — cos(2m/64)z "
T 64 1=z ' 1—2cos(2m/64)z- + 22
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This leads to the frequency sampling structure shown below.

This implementation has 67 delays (4 more than the minimum), and it requires 3 multiplies and 6 adds to evaluate
each output y(n). A direct-form realization, on the other hand. has 63 delays and, because #(n) has linear phase,
requires 32 multiplies and 63 adds to compute each output value.

8.7  The frequency sampling structure for an FIR filter is based on expressing the system function in the form

= H(k
H(z) = —(l _Z_N)Z 12~(rA3N7 I

where H (k) are samples of the frequency response at w; = 27k /N. If h(n) is real, the symmetry of the
DFT may be used to simplify this structure so that all of the coefficients are real. For example, Eq. (8.2)
specifies a structure when N is even. Derive the corresponding structure when N is odd.

If N is odd, we may write H(z) as follows:

i H(k
H(z) = —(1 - 7N)Z e,zikzmq—l

1 | HO R H k) H(N = k)
= ﬁ(l —7) =T Lo | 1= ek RIS =7y
L HO NSV Hk)+ H(N — k) — H(k) e 2N 770 _ H(N — k) e/2mhiN =)
= —(1—-z
N 1—z! = 1 —2cos(2mk/N)z7' + 272
1 | oHO) N2 A(k) — B(k)z™!
, Hz) =—0=2z7"
or @ N( z) [ -z + = | —2cos(2rk/N)z7! + 277
where Ak) = HK+ H(N = k)

B(k) = H(k)e 77N 4 H(N — k)e/ ¥V

Note that, due to the conjugate symmetry of the DFT, H (k) = H*(N — k), the coetficients A(k) and B(k) are real.

8.8  As discussed in Chap. 3, sample rate reduction may be realized by cascading a low-pass filter with a
down-sampler as shown in the following figure:

x(n) w(n) y(n)
I P e P
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Because the down-sampler only retains one out of every M outputs from the low-pass filter H(z), if M
is large, most of the filter outputs will be discarded. Therefore, if H(z) is an FIR filter, it is not necessary
to evaluate the discarded values, and efficient implementations of the decimator are possible.

(a)

(b)

(©)

Assume that H(z) is an FIR filter with A(n) = O forn < O and n > N. If H(z) is implemented
in direct form, draw a flowgraph for the decimator, and determine how many multiplications and
additions are necessary to compute each output value y(n).

Exploit the fact that only one out of every M values of w(n) is saved by the down-sampler to derive a
more efficient implementation of this system, and determine how many multiplications and additions
are necessary to compute each value of y(n).

If H(z) is an IIR filter, are efficient implementations of the decimator still possible? If so, for which
structures, and by what factor are they more efficient?

(a) With a direct form implementation of the FIR filter H (z), the decimator is as shown below.

®)

x(n) h(0) w(n) y(n)
o » L O > IM |—>—0

h(l)

Because we need N multiplies and N — | adds to find each value of w(n), and because only one value of y(n) is
computed for every M values of w(n), M N multiplies and M (N — 1) adds are performed for each value of y(n).

Because the down-sampler only saves one out of every M values of w(n), the decimator may be implemented
more efficiently by only evaluating those values of w(n) that are passed through the down-sampler. This may
be accomplished by embedding the down-sampler within the FIR filter as illustrated below.

x(n) h(0) y(n)
M > O > O
h(1)
M
z—l
h(N = 2)
M
Z—l
AN — 1)
M
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Now, because only one out of every M input samples is multiplied by h(k), this implementation only requires
N multiplies and N — 1 adds to compute each value of y(#n). Thus, the number of multiplies and adds has been
reduced by a factor of M.

If H(z) is an IIR filter, it is not possible, in general, to commute the down-sampling operation with branch
operations as was done with the FIR filter. For example, if

1

@ = m

we have the system illustrated below.

x(n) w(n) y(n)
o > -0 > . > VM |——0

—a(l)

However, in order to evaluate a given value of w(n), the previous value, w(rn — 1), must be known. Therefore,
the down-sampler cannot be commuted with any branch operations within the filter, because this would discard
values of w(n) that are required to compute future values. On the other hand, consider the direct form II
implementation of

b0y + b(1)z™!
oy < PO h0
1 4+a()z™!
as illustrated below.
x(n) v(n) b(0) w(n) y(n)
o £ O o O- 3 O - M |[———0
o1
—a(l) h(1)
Because w(n) = b(O)v(n) + b(Nv(n — 1)
and y(ny = wnM) = bO)wnM)+ b(l)v(nM — 1)

the down-sampler may be commuted with the branch operations that form the multiplications by 5(0) and b(1)
as illustrated in the following figure:

x(n) b(0) y(n)
oO—

b(1)

M

To compute each value of y(n), this structure requires that we find M values of v(n), which requires M multi-
plies and M adds, and it requires two multiplies and one add to find y(n) from v(n). Thus, the total number of
computations is M + 2 multiplications and M + 1 additions. The direct form II structure is the only one that
allows for a savings in computation. For direct form I, transposed direct form 1, and transposed direct form 1I,
the down-sampler cannot be commuted with any branch operations.
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The previous problem examined the simplifications that are possible in implementing a decimator. Similar
savings are possible for the interpolator shown in the figure below.

x(n) w(n) y(n)
— TL > H(z) —

Because the up-sampler inserts L — |1 zeros between each sample of x(n), assume that H(z) is the system
function of an FIR filter, and use the fact that many of the values of w(n) are equal to zero to derive a
more efficient implementation of this system.

A direct implementation of the cascade of an up-sampler with an FIR filter using the transposed direct form is
illustrated in the figure below.

x(n) w(n) h(0) y(n)
oO—— 1L

N —2)

Note that the evaluation of each value of y(n) requires N multiplications and N — 1 additions. However, only one
out of every L values that are being multiplied by the coefficients k(n) is nonzero. Therefore, it is more efficient to
modify the structure so that the filtering is performed prior to the insertion of zeros. With the transposed direct form
structure, we may commute the up-sampler with the branch multiplies as illustrated in the following figure:

x(n) h(0) yn)
tL > O > O
21
h(l)
tL
—1
z
h(N —2)
tL
Pl
h(N = 1)

With this simplification, only N multiplies and N — 1 adds are required for every L output values.
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Structures for IIR Systems

8.10 Consider the causal linear shift-invariant filter with system function

[ +0.875z7!

H(z) =

Draw a signal flowgraph for this system using
(@) Direct form I
(b) Direct form I1

(1 +02z714092-2)(1 —0.7z71H

(¢) A cascade of first- and second-order systems realized in direct form II
(d) A cascade of first- and second-order systems realized in transposed direct form 11

(e) A parallel connection of first- and second-order systems realized in direct form 11

(a) Writing the system function as a ratio of polynomials in z~',

| +0.875z~"

H(z)= 7

~0.5z7" +0.76z72 ~ 0.63z?

it follows that the direct form I realization of H(z) is as follows:

x(n)

y(n)

(b) For a direct form II realization of H (z), we have

x(n)

A 4

y(n)
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(¢) Using a cascade of first- and second-order systems realized in direct form I1, we have a choice of either pairing
the zero with the first-order factor in the denominator or with the second-order factor. Although it does not
make a difference from a computational point of view, because the zero is closer to the pair of complex poles
than to the pole at z = 0.7, we will pair the zero with the second-order factor. With this pairing, the realization
of H(z) is as follows:

x(n) y(n)

(d) If we change the direct form II systems in part (c) to transposed direct form I, we have the realization shown
below.

x(n) y(n)

(e) For a parallel structure, H(z) must be expanded using a partial fraction expansion:

14+0.875z7! B A+ Bz N C
(14+02z7"+092-2)(1 —0.7z"") ~ 1402z-'4+09:72 1 —-0.7z"!

H(z) =

The constants A, B, and C may be found as follows. Recombining the two terms in the partial fraction expansion
as follows,

A+ Bz™! n C
14+02z7'4+0.9z2 1 -0.7z"
_(A+O)+(B+0.2C —0.7A)z7' +(0.9C —0.7B)z*
- (1402271 4+0.9272)(1 —0.7z7Y

HGz) =

and equating the coefficients in the numerator of this expression with the numerator of H(z), we have the
following three equations in the three unknowns A, B, and C:

A+C =1
B +0.2C -0.7A = 0.875
0.9C -0.7B =0

Solving for A, B, and C we find
= 0.2794 B =0.9265 C =0.7206

and, therefore, the partial fraction expansion is

Hz) = 0.2794 + 0.9265z"" N 0.7206
T 402:1 40922 1 —0.7z7!
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Thus, a parallel structure for H(z) is shown below.
0.7206

o=

O
2% %

0.7

8.11 Consider the filter structure shown in the figure below.

1 y(n)
- »- O - o]

Yo

Find the system function and the unit sample response of this system.

For the three nodes labeled in the flowgraph below,

we have the following node equations:

w(n) = x(n) +0.2w(n -- 1)
v(n) = x(n) + w(n)
y(n) = v(n) +2w(n — 1)

Using z-transforms, the first equation becomes

lX(z)

1
W)= ——
@)= 102

Taking the z-transform of the second equation, and substituting the expression above for W (z), we have

2—-0.2z""

1
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Finally, taking the z-transform of the last equation, we find

2-0.2:7" 1 2+ 1.8z7!
Y(zy=V W)= | ——— 4227 ——— X (&) = z
@) =VE+2 e [I—O.Zz"+ 1—0.2:—'] @ =T X®
Therefore, the system function is
2+ 1.8z7"
PO =700

and the unit sample response is

h(n) = 2(0.2)"u(n) + 1.8(0.2)"'u(n — 1)

Find a direct form II realization for the following network:

x(n)

[CHAP. 8

To solve this problem, we begin by writing the node equations for each of the adders in the network. If we label the

three nodes that are adders as in the figure below,

x(n)

(e > 0 - O 2
Y 5(0) b(1) Y h(2)
Node 1 N . o
ode > > o > O
T Nodez/l W = Node 3
L a(l) a(2) \

and denote the output of the first node by w,(n), and the output of the second by w,(n), we have the following three

equations for the three node variables,

wyi(n) = b(0)x(n) 4+ a(l)y(n)
wy(n)y = b()x(n) + wi(n — 1) +aR)y(n)
y(n) = b(2Q)x(n) + wa(n — 1)

Substituting the first equation into the second, we have
wa(n) = b(Dx(n) + [p(O)x(n — 1) +a(Dy(n — D} 4+ a@)y(n)
Then, substituting this equation into the third equation, we have

y(n) =b2)x(n) + [b(1)x(n — 1)+ bO)x(n — 2) + a(Dy(n —2)+ a)y(n — 1)]
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Thus, the direct form II structure for this system is as shown below.
x(n) b(2) y(n)

8.13 Find a transposed direct form II realization for the system described by the difference equation
ym) = y(n ~ 1) = 3y(n = 2) + x(n) = 3x(n = 1)
and write down the set of difference equations that corresponds to this realization.

The transposed direct form II realization for this system is as follows:

x(n) vi(n) y(n)
o o—>—0

o = o P &

21

va(n)

<

|y

Wl

With the node variables v,(n) and v.(n) as labeled in the network above, the difference equations that describe this

network are as follows:
vi(n) = x(n) +va(n — 1)

v(n) = —5x(n) + Fv1(n) — Fvi(n — 1)

y(n) = vi(n)

8.14  Find the system function and the unit sample response for the following network, and draw an equivalent
direct form 11 structure:

Yo

x(n) | y(n)

]
4
4
(o]
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This network is a parallel connection of two first-order systems, plus a feed-through connection with a gain of 2.
Therefore, the system function is the sum of three system functions:

1 +2z7) |

e L

H(iz)=2+

Thus, the unit sample response is

h(ny = 2500 + (= 1) u(m) + 2(=3)""un = 1 + (1) utm)
To find an equivalent direct form II realization, H (z) is first expressed as follows:

e 201+ (1 - L)+ A +22 (1 = fz7 )+ A+ 42T 44227 - 3
z) = —

(+ B3 R
Therefore, the direct form II structure is as shown in the following figure:

x(n) 4 y(n)
O

8.15 Find the system function for the following network, and determine the conditions on the coefficients a(1),
a(2), a(3), and a(4) that will ensure the stability of the system:

x(n) y(n)
O

\ 4

The first thing to observe is that this system corresponds to a feedback network of the form shown in the following
figure:

x(n) y(n)

G(z)
w(n) v(n)
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where G(z) is the second-order system shown below.

a4 a(2)
Therefore, Yz)= X))+ G)Y(2)
and H(z) :
7)) = —————
1 —G(2)

To find G(z), we begin by writing the node equations for this network:

ui(n) = a@Byv(n) + us(n — 1) + a(Hw(n)
uz(n) = a(4yv(n) + a(Z)w(n)
wn) = u(n—1)

Taking the z-transform of the first two equations, we have

Ui(z) = aB)V(2) + 27 Ux(z) + a(HW(2)
Ux(2) = ad)V{(z) + a(Q)W (2)

Substituting the second equation into the first gives
U\(2) = aB)WV(2) + 27 ' [a@)V (2) + a@Q)W (2)] + a(1)W (z)
Finally, from the last difference equation, we have

W) =z7'U\(z) = 27 {aB)V () + 27 [a@)V () + aR)W ()] + a(HW (2))

or Wl —a(Dz7' —a@)z7?] = [a3)z) +a(@)z 7%V (2)

W@ a7 +a@)?
Therefore, G = Vi)  1—a(lz) —a(2)z?

and for H(z) we have
1 1
1-G@) 1= @Bz " +a@®z /(0 —a()z™" —a@)z7?)
_ 1 —a()z™" —a2)z72
l —a(l)z7!' —aR)z72 —a(3)z7! — a(4)z72
_ 1 —a(z™! —a2)z7?
1 —[a(l)+a3)]z7! = [a(2) + a(4)]z2

H(z) =

325

For stability, it is necessary and sufficient that the coefficients {a(2) + a(4)] and {a(1) 4+ a(3)] lie within the stability

triangle (see Chap. 5), which requires that

la(2) + a(4)] < 1 and la(l) +a(3)| <1 —a2)—a4)
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8.16 Find the system function of the following network:

x(n) 2

12

This system is a feedback network that has the following form:

x(n) y(n)
G(z)
172
Therefore, the system function is
G(2)
H@) = —"—
L+ 1G(2)
2(1 427!
With Go= )
1+ .;Zfl
1 +z!
. HE) 21—|—%z" I +:z7!
e have O = 0+ T 106
T4+
2 1 + gZ_I

8.17 Find the system function of the following network:

x(n)

[CHAP. 8

The system function of this network may be found by writing down the difference equations corresponding to each
adder and solving these equations using z-transforms. A simpler approach, however, is to redraw the network as

follows,

x(n)
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which we recognize as a cascade of three second-order networks. Therefore, the system function is the product of

the system functions of each network in the cascade, and we have

(14227 422791 =z + 3278

H(z)

8.18
in transposed direct form II.

x(n)

T =052 —0252 (1 —0.1z"' —0.82-2)

Consider the network in the figure below. Redraw the flowgraph as a cascade of second-order sections

-0.2

-0.8

To implement this system as a cascade of second-order transformed direct form Il networks, we must first find the
system function corresponding to this network. Note that this network is of the form shown in the following figure:

- H|('_')
x(n) y(n)
o——0 O—>—— Hiz) [—+—o0
I H>(2) —
[ 4227 422 I
h H =1 H>(z}y = H:(z) =
where 12 A = T 0T 0.8 ) = T2 r 082
Therefore, H(z) =[H(2) + H:(2)|H;(z)
1 +227" 4272 1
or HGy =11
) [ T 02 1082 [ T402: 7082

2+ 1.827"+1.8272

T =02 1082 (1+02:-" +0.82-2)

Therefore, the desired network is as shown in the following figure:

x(n) 2
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8.19 A digital oscillator has a unit sample response

h(n) = sin[(n + Dwg] u(n)

The system function of this oscillator is

(a)

(b

(a)

(b)

sin(wg)
H(z) = = - |z] > 1
I —2cos(wp)z="' + z

Draw a direct form II network for this oscillator, and show how the sinusoid may be generated with
no input and the appropriate set of initial conditions.

In applications involving the modulation of sinusoidal carrier signals in phase quadrature, it is
necessary to generate the sinusoids

yr(n) = cos(nwo) u(n)

yi(n) = sin(nwo) u(n)
Beginning with a system that has a unit sample response A(n) = e/"“°u(n), separate the difference

equation for this system into its real and imaginary parts, and draw a network that will generate
these signals when initialized with the appropriate set of initial conditions.

A direct form II network for the oscillator is as follows:

sin wg
x(n) © >

O

2% > O y(n)

Y

2 cos wy

With the input x(n) = 8(n), the response is y(n) = sin[(n + 1)) for n > 0. Equivalently, if the storage
registers corresponding to the delays are initialized so that

y=D=0  y(=2)=—sinawy

the zero-input response will be a sinusoid of frequency wy.

A complex exponential sequence y(n) = /" u(n) is generated by the difference equation
ymy=eyimn—1  nz0

with the initial condition
y(—=1) = e Jwo

Writing this difference equation in terms of its real and imaginary parts, we have
Yr(n) + jyi(n) = (coswo + jsinawg)[y,(n — 1) + jyi(n — 1)]
= cos(wg)y,(n — 1) — sin(wp) y;(n — 1} + jlsin(wp)y,(n — 1) + cos(wp)y;(n — 1)]

This equation is equivalent to the following pair of coupled difference equations, which are formed from the
real part and the imaginary part of the equation:

yr(n) = cos(wp)y,(n — 1) — sin(wo)y;i(n — 1)
vi(n) = sin(wo)y,(n — 1) + cos(wg)y;(n — 1)
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8.20

A network that implements this pair of equations is shown below.

L1

COS wy yr(n) = cos nwy
raW

A

—sinwq

oS wy ’ yi(n) = sinnwg

-1

z

The initial condition required to generate the desired output is y(—1) = ¢~/“0, or

y(=) =coswy  y(=1)=—sinay
Implement the system
44277V 12
H(z) ‘: 1 ‘]‘ =
1 + 4—7 — gZ

as a parallel network of first-order direct form structures.

Factoring the denominator of the system function, we find

9 -1 _ 1,2
4+4z iz

(=) (1 +327)

To implement H(z) as a parallel network of first-order filters, we must express H(z) as a sum of first-order factors
using a partial fraction expansion. Because the order of the numerator is equal to the order of the denominator, this
expansion will contain a constant term,

H(z)=

A B
H(z)=C + T +

— 1,
I—ZZI l‘{"iZl

To find the value of C. we divide the numerator polynomial by the denominator as follows:

2
-3z iz | —pz 437 + 4
—itz2 43742
127142
Therefore, C = 2, and we may write H (z) as follows:
H(z) =2+ i +2
(=50 + 1)
Finally, with
%z‘l +2
G(z) =

we have, for the coefficients A and B,

— _ 1,1 — —
= [(] iz )G(Z)]z"=4 = 1x %24
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7,-1
) 2z +2
and B=[(1+1z )G(z)]z_,=_2 =i =-1
42 7= l==2
|
Thus, H(iz)y=2+ -
@ -1zt 14 %z"
and the parallel network for this system is as shown below.
2
x(n) 3 y(n)
o——s—r o O —0 & o)
o1
1/4 4

8.21 The system function of a discrete-time system is

1+

H(z) =

(1—z7'+ 2272 (1 + 227" + 2272)

Draw a signal flowgraph of this system using a cascade of second-order systems in direct form II, and
write down the set of difference equations that corresponds to this implementation.
Expressing H (z) as a product of two second-order systems, we have

14227 4272 1422704272
H(z) = TS R
l—Z]-f-gz2 1+22‘+222

which leads to the following cascade implementation for H(z):

x(n) vy (n) w(n) v2(n) y(n)

4

)
A 4

)
\
¢
\ 4
o

|
[ 8]
Yo

O
O




CHAP. 8]

IMPLEMENTATION OF DISCRETE-TIME SYSTEMS 331

With w(n), vi(n), and v,(n) as labeled in the figure above, the set of difference equations for this network is:

vi(n) = x(n) +vi(n = 1) = uni(n = 2)
w(n) = v(n) +2v(n = 1)+ v(n —2)
v(n) = wn) —2vy(n — 1) — Fuy(n —2)

y(n) = va(n) + 2va(n — 1) + van — 2)

8.22  Consider the fourth-order comb filter that has a system function

14z

Hz)=A ———
@ 14 a4z~

where 0 < a < 1.

(a)
b)
(©)

(@)

Draw a pole-zero diagram for H(z).
Find the value for A so that the peak gain of the filter is equal to 2.
Find a structure for this filter that requires only one multiplier.

The comb filter has four zeros on the unit circle at

B = o)kt Dm/4 k=0.1.2.3

and four poles at
a = ae!FTA p—=0,1,2.3

A pole-zero diagram for H(z) is shown in the following figure:

(b) Due to the zeros on the unit circle, the magnitude of the frequency response is zero at w,=(2k + 1)r/4 for

k = 0,1,2,3, and it increases monotonically until it reaches a maximum value at the frequencies that are
midway between the zeros at w, = ki /2. Therefore, in order for the peak gain to be equal to 2, we want

H(z)|_ =2
which implies that

1 +a*

orA=1+a"
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(c) With a system function

4274
H(z) = (1 H—"
@=(1+a )] g,

we may implement this system using two multiplies as shown in the figure below.
y imp M g p g

x(n) y(n)
O +>- O

A 4
D)
4

A 4

Note, however, that the multiplier may be shared as follows:

x(n) y(n)
o——0

A

>

The difference equations for this network are

w(n) = x(n) + a*[x(n) — win —4))
y(n) = w(n) + wn —4)

8.23 The system function of an allpass fiiter has the form

N,

H(z) = 1—[ o + Bz 272
B it VB! +apz2

The symmetry that exists between the numerator and denominator polynomials allows for special struc-
tures that are more efficient than direct form realizations in terms of the number of multiplies required to
compute each output value y(#n).

(@) Consider the first-order allpass filter,

z"+cx

H(z)= — =
(2) Taz

where o is real. Find an implementation for this system that requires two delays but only one
multiplication.

(b) For a second-order allpass filter with /(n) real, the system function has the form

BHoaz 4272

Hizy=21% T°
2 1 +az!' 4+ Bz2

where o and 8 are real. Derive a structure that implements this system using four delays but only
two multiplies.

(a) The direct form realization of a first-order allpass filter requires two multiplies and one delay as shown in the
figure below.
x(n) o y(n)




CHAP. 8] IMPLEMENTATION OF DISCRETE-TIME SYSTEMS 333

To see how the two multiplies may be combined, consider the difference equation for this system:

y(n) = —ay(n — )+ ax(n) +x(n — 1)
=alx(n)—yn—D]+x(n-1)

Therefore, only one multiplication is necessary if we form the difference x(n) — y(n — 1) prior to multiplying
by . Thus, we have the structure illustrated in the figure below that has two delays but only one mutltiplication.

x(n) y(n)

o=t
> O > ]—I—»——
o -1
-1

Because this structure requires an extra delay compared to direct form, this structure is not canonic.

(b) As with the first-order allpass filter. we may find a two-multiplier realization of a second-order allpass filter by
combining together terms in the difference equation for the allpass filter as follows:

y(ny = —ayn —1)— Byn —2)+ Bx(n) +ax(n — 1) +x(n —2)
=qafx(n — 1) — y(n — D]+ Ble(n) — y(n — 2)] + x(n = 2)

Thus, only two multiplications are required if we can form the differences x(n — 1)— y(n — 1) and x(n)— y(n —2)
prior to performing any multiplications. A structure that accomplishes this is given in the figure below.

x(n) 77! 2! y(n)

Y

Y

Note that with the additional delays, two multiplications are saved compared to a direct form implementation.

Lattice Filters

8.24  Sketch a lattice filter implementation of the FIR filter
H(z)=8+4z""'+2:72 477}

To implement this system using a lattice filter structure, we must find the reflection coefficients that generate the
polynomial H (z). First, however, it is necessary to normalize H (z) so that the first coefficient is unity:

H(z)=8[1 +0.527 +0.2527% 4+ 0.125: 7]

Now, with
Hi(z)=14052"40.25272 4+ 0.125z 7
we see that
Iy =0.125
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Next, we generate the second-order system H»(z) using the step-down recursion:

i 3 0
H:(z) = ——=|Hi(z) — '3z "Hal(z
2(2) . r.%l 3(2) 3 27

I )
= 140527 40.25277 4+ 0125271 = 0.12527(1 + 0.5z 4+ 0.252% + 0.125z%)]

T 1 =(0.125)?
=1 +0.4762z"" + 0.1905:72

Therefore, I'; = 0.1905. Finally, we have

]
[Hy(z) = Tz 2 Ha(z7")

H\(z) =

-T2
1
= W[l +0.4762z7" + 0.1905272 — 0.1905272(1 + 0.4762z + 0.190527)]
=1+ 0.42_l

and, therefore, I'; = 0.4. Thus, the lattice filter structure is as shown below.

y(n)

Y

x(n) 8 0.1905

0.1905

fm)

(a) Find the system function A(z) = F(z)/ X (z) relating the input x(n) to the output f(n). Does this
system have minimum phase?

(b) Repeat part (a) for the system function relating x(n) to g(n).

(a) To find the system function relating x(n) to f(n), we use the step-up recursion. Using the vector form of the
recursion, we have for the coefficients « (k)

[al:n] N [rl.] - {O.Is]

Then, with I’y = 0.4, for a»(k), we have

I | 0 |
a(l) =105+ j05 =107
a>(2) 0 1 0.4
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Finally, with T'; = 0.2, we have

1 | 0 1
a1 107 L oal |08
a2) | T |04 o7~ ] os4
@03 0 1 0.2

Thus. A(z)=140.782""40.54z7* + 0.2}

This system will have minimum phase if the zeros of A(z) are inside this unit circle. Although this could be
determined by factoring A(z), because the reflection coefficients used to generate A(z) are bounded by 1 in
magnitude, it follows that A(z) has minimum phase.

(b) The system function A’(z) = G(z)/ X (z) is related to X (z) as follows:
A)=zA:z""Y=024054" 40787 4 7*

Because the zeros of A’(z) are formed by flipping the zeros of A(z) about the unit circle, all of the zeros of A'(-)
will be outside the unit circle and thus will not have minimum phase.

8.26 Let A(z) be an FIR filter with lattice filter coefficients

r=1 r =

! ry=1

]
3
(a) Find the zeros of the system function A(z).

(b) Repeat for the case when ['; = —1.

(c) Can a general result be proved for lattice filters that have reflection coefficients I'; with

Tl <1 for j=12 ....p—1
Il =1

(a) To find the system function A(z) for a given set of reflection coefficients, we use the step-up recursion. For

a, (k) we have
[ I ]_ 171
a(h ][] L3

Then, with ['; = 1 we have

| 1 0 1
ax(l) | = IT + I, % =3
@ (2) 0 | !
Finally, with I'; = | we have
i 1 0 1
ax(D) AN
ax(2) ! 3 B :
ax(3) 0 | |
Thus, Aiz) =1 +%z‘l +%z‘2+z"}

The zeros of the system function may be found by factoring A(z). The roots are found to be

ﬂ] = —1 ﬁZ _ e/(l.4646n 62 _ ()f—/()AMGn

which are on the unit circle.
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(b) If 'y = —1, the system function may be found by modifying the last step of the step-up recursion in part (a) as
follows:
1 1 0 1
ax() . i !
2 LT e | T 1
ay(2) ! . -1
az(3) 0 1 —
Thus, Ay=1+1z"- %z“z -z

and the zeros of A(z) are
ﬁl = | ﬂZ — ejO,éX?S}r ﬂ1 — €——/[).68757r
which are again on the unit circle.
(¢) If A (2) is a pth-order FIR filter with reflection coefficients I'; where [[";| < | for j = 1,.... p—1,and
T, =1,
A,,(Z) = ApAI(Z) + :—pAp—I(Z_l)
and it follows that the polynomial A ,(z) is symmetric or antisymmetric, that is,

Ay =2z7A,:7Y

Therefore, A,(z) has (generalized) linear phase, which implies that all of the zeros of A,(z) lie on the unit
circle or in conjugate reciprocal pairs. However, if [I[';| < | for j = 1.2,..., p — 1, the zeros must lie on the
unit circle. The reason for this is as follows. The Schur-Cohn stability criterion states that none of the roots of
A,(z) may lie outside the unit circle if [I";| < 1 for j = 1.2, ..., p. Therefore, if A,(z) has generalized linear
phase with no zeros outside the unit circle, then all of the zeros must be on the unit circle.

Draw a lattice filter implementation for the all-pole filter

|

H(E) =
() | —0.2z7"+04z724+0.623

and determine the number of multiplications, additions, and delays required to implement the filter.
Compare this structure to a direct form realization of H(z) in terms of the number of multiplies, adds,
and delays.

To implement this filter using a lattice filter, we must first derive the reflection coefficients I'y. I";, and I'; corresponding
to the denominator polynomial. With

As(zy=1-02z"404z"24+0.6:°

it follows that [’ = 0.6. Next, using the step-down recursion to find A,(z), we have

1
Axz) = ——[As(2) = Taz P A3z )]
1 -3

|
= WI 1 -02z7' 4042724+ 0.627% —0.627%(1 — 0.2z + 0.42% + 0.62%)]

=1—0.6875z"" +0.8125z72

Thus, for ['; we have I', = (0.8125. Finally, for A,(z), we have

I
A(z) = ——[Ax(2) — Taz 2 Ax(z 7]

1 -T3
1 )
= l(()w[l —0.6875z7" +0.8125:72 — 0.812527%(1 — 0.6875z + 0.8125z%)]
=1-0.3793:""

and, therefore, I'y = —0.3793. Thus, the structure is as follows:
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8.28

8.29

.\’(IZ) y(n)

> > >
> i P

—0.8125 0.3793

—0.6
—-0.3793

—1 Pl Zfl

This filter structure has three delays and requires five multiplications and five additions to evaluate each value of the
output, y(n). A direct-form structure also requires three delays but only three multiplications and three additions.

Without factoring any polynomials, determine whether or not the following causal filter is stable:

_ 1 4+2:7" 42,72 4773
T 14 1.5827! + 1.638272 + 1.5562z3 + 0.4z~4

H(z)

We may easily check the stability of this filter using the Schur-Cohn stability test, which involves checking to
see whether or not the magnitudes of the reflection coefficients corresponding to the denominator polynomial are
bounded by 1 in magnitude. With

As(z) = | + 1.5827" + 1.63827% + 1.556z > + 0.4z~

it follows that |[T'4| = 0.4 < 1. Using the step-down recursion to find A;(z), we have

1
As(2) = 5[As(z) — Taz* Ag(z 7))
1-T?

= TW“ +1.5827" +1.63827% + 1.556z " + 0.4z7*

—0.4z7%(1 + 1.58z + 1.638z% + 1.5562° + 0.4z*)]
=14+ 114"+ 117272+ 11273

Therefore, |I'3] = .1 > 1, and it follows that the filter is unstable.

Use the Schur-Cohn stability test to derive the stability conditions
la(2)| < 1 la(D] < 1+a(2)

for a second-order filter
_ b(0)
Tl 4+a(Dz7' 4 a2)z?

H(z)

In order for H (z) to be stable, it is necessary and sufficient for the reflection coefficients I') and I'; to have a magnitude
that is less than 1. In terms of the first two reflection coefficients, the denominator of H(z) is

AZ) = 1+ (T + T Tz + Tz
Therefore, because a(2) = [',, the constraint that |[";| < 1 gives us the first condition,
la(2)] < 1

Next, with
a(l) =T +T' T =[1+a@)l"
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it follows that

_a(l)
T +a@)
Because we require that {T')| < 1,
a(l)
-1 < <
1 4+a2)
or a(l) < 1 +a(2)
a(l) > —1 —a(2)

These two equations are equivalent to
la(l)] < 1 4+a(2)

as was to be shown.

8.30 Implement the allpass filter

—0.51240.64z7' — 082724273

H, (z) =
) = T 08T 1 0.642-2 — 051223

using a lattice filter structure.

To find the lattice filter structure for this allpass filter, we use the step-down recursion to find the reflection coefficients
corresponding to the denominator polynomial,

Ay(z)=1-0.82""4+0.64z72 ~0.512z73

First, we note that I'y = —0.512, Then, we find A,(z) as follows:

| .
Ax(2) = 5[A3(z) — T3z A3(z7 )]
1 -T2

1
T 105122
1—0.6401z"" +0.312322

[1=0.82""4+0.64272 —0.512z 77 +0.512z73(1 — 0.8z + 0.64z> —~ 0.5122%)]

Thus, the second reflection coefficient is I'; = 0.3123. Finally, we have

1

Al(z) = ——[Ax(2) — Tz 2 Ax(z7")]
112
1
= —————[1-0.6401z"" +0.3123z72 — 0.3123z7%(1 — 0.6401z 4 0.31232*
(= 031237 2ol i FH031230]
=1-04878z""
and, therefore, I') = —0.4878. Thus, a lattice implementation of this allpass filter is as shown in the figure below.
x(n)
O > Q > O > < > O- > -O; 00—
0.4878
—0.4878
O < O——¢+———O0—<4—
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8.31 Find the system function for the lattice filter given in the figure below.

x(n)

This structure implements a third-order IIR filter with three poles and three zeros:

Bs(z)
Aj(z)

H(z) =

To find the system function, first we use the step-up recursion to find A3(z) from the reflection coefficients I'}, ',
and '3, With I'; = 0.2, we have
T I S B I
a) ( 1 ) - l", - 0.2

1 1 0 1

Next, for a,(k) we have

ah)|=]02]+r]02]=]032
a(2) 0 1 0.6
Finally, for a;(k) we have
1 1 0 1
ay() | _ {032 |06 | | 026
a2 | ~ | 0.6 310321 | 0.568
as(3) 0 1 —0.1

Therefore, the denominator polynomial is

A3(z) = 1 +0.2627" +0.568272 — 0.1z73
To find the numerator B;(z), we use Eq. (8.8),
q
ba(k) =Y cq(fa;(j — k)
=k

Thus, we have

b3(3) = ¢3(3) a3(0)y = 0.1

b3(2) = ¢3(2) a2(0) + ¢3(3) a3(1) = 0.5260

b3(1) = c3(1) ai(0) + c3(2) ar (1) + c3(3)a3(2) = 0.5168

b3(0) = ¢3(0)ap(0) + c3(1) ai(1) + ¢3(2) a2(2) + ¢3(3)ax(2) = 0.15

Therefore, the system function is

0.15+40.5168z7! 4+ 0.5260z7% + 0.1z 73
1 +0.26z"! +0.568z-% — 0.1z~

H(z) =
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8.32 Sketch a lattice filter structure for each of the following system functions:

2— 77|

H =
@ H@ = 157,771 049.2
1+ 1.3125z7! +0.75z 72
b) H(z)=
&) HE = 1087571 075:2
0.75 4+ 0.875z7 ' + 272
(¢) H(z)=

140875z 4+0.75z2

(a) To implement the filter
2—z7!
1 +0.7z7" 4+ 0.49z2

H(z) =

using a lattice filter structure, we must first find the reflection coefficients corresponding to the denominator
polynomial. Using the step-down recursion, we find

I = 0.4698 r, =049
Next, we find the coefficients ¢, (k) that produce the numerator polynomial
B(z)=2—-z""

Using the recursion
q

cqk) = by(k) = Y ¢ (paj(j =k

J=k+1
we have () =b(l)=—1
and ¢1(0) = b (0) — ¢;(Da(1) = 2.4698

(note that a (1) = I'}). Therefore. the lattice filter structure for this system is as shown in the figure below.

x{(n)

—0.49

(b) To find the lattice filter structure for

1+ 1.3125z71 +0.75z 2

H(z) =

14 0.875z=" 4+ 0.75z2
we first use the step-down recursion to find the reflection coefficients for the denominator, which are

Next, we use the recursion
q

Cq(k) = hq(k) - Z Cq(j)aj(j - k)

J=k+1
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to find the coefficients c3(k), which are

c2(2) = b(2) =0.75

cy(1) = by(1) — c2(2)ax(1) = 0.65625

c2(0) = b2(0) — c2(Day (1) — c2(2)ax(2) = 0.109375
Thus, the lattice filter structure for this system is as shown in the figure below.

x(n)

0.75 0.65625

(¢) Note that the system function

0.75+0.875z7! +z72

H =
(D = 10875 1 0.75:2

is an allpass filter. Because the denominator is the same as the system function in part (b), the reflection
coefficients are ') = 0.5 and I'> = 0.75, and the lattice filter is as shown in the figure below.

x(n)

Finite Word-Length Effects

8.33  Express the fractions % and —3—72 in sign-magnitude, one’s complement, and two’s complement notation

: . 32
using 6 bits.
With B + 1 = 6 bits, 1 bit will be a sign bit, and 5 will be the fractional bits. Because
7 _ 1, 1 L _ g - -
§—§+E+ﬁ-2 34244273
the 6-bit representation for x = % in all three binary forms is
x =0.00111
Forx = —575 we have, in sign-magnitude form,
7
—3; = 1.00111

and in one’s complement form,

x =0.00111 = 1.11000

and in two’s complement form
x =0.00111 4 0.00001 = 1.11001
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8.34  Consider the following implementation of a second-order filter:

u(n)
z(n) " l z7 ! rsinwg y(n)
> 0

] ] R

T COSwo T COSWo

—rSsinwp

(a) Find the system function corresponding to this network.

(b) If the coefficients (r cos wp) and (r sin wy) are quantized to 4 bits, draw the set of allowable pole
locations in the z-plane. For what types of filters would this filter structure be preferred over a direct
form structure?

(a) This filter structure is called the coupled form realization. The system function for this filter may be found as
follows. The difference equations relating x(n), v(n), and y(n) are

v(n) = x(n) —rsinfwy)y(n — 1)+ r cos(wy)v(n — 1)

y(n) = rsin(wy)vn — 1)+ r cos(wy)y(n — 1)
Taking the z-transform of the first equation, we have

V(z) = X(2) = rsin(wy)z 'Y (2) + r cos(wp)z ™'V (2)

Solving for V (z) yields
X (z) — rsin(w))z7'Y (z)

1 — r cos(wp)z™!

V(z) =

Substituting this into the z-transform of the second difference equation gives

X(2) — rsin(wy)z~ 'Y (2)

1 — rcos(wy)z™!

Y(z)y=r sin(w())z",: ] + 1 cos(wy)z"'Y (2)

Solving this equation for ¥ (z), we have

rsin(wy)z !
Y Z) = X 2
) I = 2rcos(wy)z" +riz72 (2)

Therefore, the system function is

rsin(wy)z ™!

H(z)=

I —2rcos(wy)z=" +r2z-2
(b) This filter has poles at
I =ref!"™ =rcoswy  jrsinwy

Thus, the coefficients in this structure are the real and imaginary parts of the pole locations. Therefore, if the
coefficients are quantized to B + 1 bits, the poles will lie at the intersections of 26%! evenly spaced horizontal
and vertical lines in the z-plane. These positions are illustrated in the figure below for the first quadrant when
B+1=4
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1.00
0.75
0.50
0.25
|
t } >
l 0.25 0.50 0.75 1.00
Note that, compared with the direct form structure, the allowable pole locations are uniformly distributed
within the unit circle. The cost for this uniform spacing is four multiplies and three additions per output value,
compared to only two multiplications and two additions for a direct form implementation. This extra cost may
be worthwhile, particularly for low-pass filters that have poles close to the unit circle in the vicinity of z = 1,
where the density of the allowable pole locations is sparse in the direct form implementation compared to the
coupled form implementation.
8.35 A white noise sequence e(n) with variance o2 is input to a filter with a system function

[4

H(z)

Find the variance of the output sequence.

The variance of the output sequence is

oC
2 2
o =0l Y ) =
n=-—-0oc

For the given filter, note that

L0421 +32 )1+
(1) + 4

“2m

azi/ |H (') dw

-

4+2z72 1437
H(z) = . . (I4+z7h
I+ 527‘ 1 4+ 327l
where the first two terms are allpass filters with
o2 2
1 +2e7/7) 1 43¢/} 9
L+ Jemiz| — L+ Lemie| =
,36 7 .
Therefore, o} = a;—nf (1+e’“Pdw

Using Parseval’s theorem,

D ol = o

n=-o00

L [ .
|H (') dw
” -
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| ;
we find —/ [1+e“Pdw=2
2m J_,

Thus, we have
0‘% =727

8.36 Consider the following cascade of two first-order all-pole filters:

x(n) y(n)

(a) Find the variance of the round-off noise at the output of the cascade for an 8-bit processor with
rounding.

(b) Repeat for the case in which the order of the cascade is reversed.

(a) A model for the round-off noise is shown in the following figure:

Y ei(n) Y e2(n)
x(n) y(n)

o = o >

Y
>
O
A\ 4
>
Y
o

Y B

The system function of the filter is

H(z) = . =
z

and the unit sample response is

h(n) = 2(%)nu(n) — (%)”u(n)

Note that because e,(n) is filtered by h(n), and e,(n) is only filtered by the second filter in the cascade, which
has a unit sample response

ha(n) = (4)"u(n)

the output noise, f(n), is
f(n) = e(n) * h(n) + ex(n) * ha(n)

Therefore, the variance of f(n) is

o'jz. =a}- Z |h(m)* + o - Z [ha(n)[?

n=—0o0 n=-00
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With P = [2(2)" = (3)'T =4(3)" + (1) - 4(3)"
o , 4 I
we have n;mm(nn =71 o ToyITS 1.8286
Next, we have
o e 2n |
> I = ;(g) i 1.0667

n=0

Therefore, the variance of the round-off noise at the output of the filter is
o} = 1.82860, + 1.06670; = 2.89530;

which, for an 8-bit processor (B = 7), is
2—28
of =2.8953 5 = 02413271 = 14726 - 107

(b) If the order of the cascade is reversed, we have the following network:

ex(n)
y(n)

Y

1/2

A

The variance of the round-off noise due to e,(n) is the same as in part (a), but because the unit sample response

of the second system in the cascade is now
ha(n) = (§)"u(n)

the variance of the noise due to e,(n) is
2 1 2
=0, — =1.3333¢;

Y =2 3 () =0
n=0 4

n=0

Thus, the variance of the round-off noise at the output of the filter is
o] = 1.82860, + 133330, = 3.16190;

which, for an 8-bit processor is
—28

2
o} = 3.1619—>- = 02635271 = 1.6082- 10~

With this structure, the round-off noise is slightly larger.

8.37 Consider a linear shift-invariant system with a system function
1—0.4z7"

HE@ = 06D —0s:n

Suppose that this system is implemented on a 16-bit fixed-point processor and that the sums of products
are accumulated prior to quantization. Let o2 be the variance of the round-off noise.
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(b)
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If the system is implemented in direct form 11, find the variance of the round-off noise at the output
of the filter.

Repeat part (a) if the system is implemented in parallel form.

The direct form II implementation of this system is shown in the figure below along with the two round-off
noise sources.

ex(n)

Y(n) = y(n)+ f(n)

Because the sum
x(n) + 1.4w(n — 1) — 0.48w(n — 2)

may be accumulated prior to quantization, the variance of the noise e,(n) is a}. Similarly, because the sum
y(n) = w(n) — 0.4wkn — 1)

may be accumulated prior to quantization, the variance of the noise e,(n) is also crf. With ¢,(n) being filtered
by the system and with e,(n) being noise that is simply added to the output, the quantization noise at the output
of the filter is

f(n) = h(n) x e,(n) + ex(n)

which has a variance equal to
oC
= 03 . Z |h(n))* + af
n=--00

To find the unit sample response of the filter, we expand H(z) in a partial fraction expansion as follows:

H() = 1 —04z7! _ -1 N 2
O = T 0601 =080 ~ 1=06~ " 1208
Therefore, h(n) = —(0.6)"u(n) + 2(0.8)"u(n)
and |h(0))? = [—(0.6)" + 2(0.8Y"Pu(n) = [(0.6)*" — 4(0.48)" + 4(0.8)*" Ju(n)

Evaluating the sum of the squares of /(n), we have

1 44
1-036 1-048  1-064

Y o = }:[(0 36)" — 4(0.48)" + 4(0.64)"] =

n=-—00 =0

Thus, the variance of the output noise is
2 o 6y
o} & 00,

Using the partial fraction expansion for H(z) given in part (a), the parallel form implementation of this filter is
shown in the following figure:
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8.38

8.39

er(n)
2

.1 Y

x(n) ) Yin)y=y(m)+ f(n
) 0.8 O—p——0

Y
Y

As indicated in the figure, there are two noise sources. The first. e,(n), is filtered with a first-order all-pole filter
that has a unit sample response

hy(n) = (0.8)"u(n)
and the second, e,(n), is filtered with a first-order all-pole filter that has a unit sample response
ho(n)y = (0.6)"u(n)

Because the output noise is
f(n) = e (n)y* hy(n)+ exn) * hy(n)

the variance of f(n) is

2 2 = 2 > 20 .2 I ! _ 2
o? —oel: D7 @i+ Y )] J _o,[l 08 T =00y = 4340

n=-0C n=-—00

A linear shift-invariant system with a system function of the form

N -1 -2
bi(0) + by (1)z7" + by (2):z
HE =[] L
i) Vraz @ (2)z—°
is to be implemented as a cascade of N second-order sections. where each section is realized in either
direct form [ or II or in their transposed forms. How many different cascaded realizations are possible.

Let us assume that each factor in H(z) is unique, so that there are N different second-order polynomials in the
numerator and the same number of polynomials in the denominator. In this case. there are N! different pairings
of factors in the numerator with factors in the denominator. In addition, for each of these pairings, there are N!
different orderings of these sections. Therefore, there are (N !)? different pairings and orderings. With four different
structures for each section (direct form I, direct form II, transposed direct form I, and transposed direct form II),
there are a total of 4¥ (N !)? different realizations. For a tenth-order system (N = 5), this corresponds to 14,745,600
different structures. This is why general pairing and ordering rules are important.

Let H(z) be a pth-order allpass filter with a gain of 1 that is implemented in direct form II using a
processor with B + 1 bits.

(a) If the product of two (B + 1)-bit numbers is rounded to B + | bits before any additions are per-
formed, find the variance of the round-off noise at the output of the filter.

(b) Repeat part (a) for the case in which sums of products are accumulated prior to quantization.
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(a) The system function for a pth-order allpass filter has the form

Hy= 4P Tap— Dz 4t zp
T +a(Dz=' +---+a(p)zr

With a direct form II implementation of this system, rounding each product to B + 1 bits prior to performing
any additions, we have the round-off noise model shown in the following figure:

x(n) a(p) y(n)
O—p—0

o > o > O———0 »
ep+|(") ¥
Zfl
—a(l) a(p—1)

¥e|(n) epi2(n) ¥

a(l)

exp—1(n) ¥

O
n%s

where the variance of each noise source is

Note, however, that this noise model may be simplified as illustrated in the following figure:

Y ea(n) ep(n)
x(n) a(p) y(n)
o > C & O > = o)
A 27!
—a(l) a(p—1)
' : - .
—a(p—1) a(l)
27|
—a(p)
where e,(n) = e(n) +ey(n)+ - +e,(n)

ep(n) = epp1(n) + epya(n) + - - - 4 e,(n)
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Assuming that each noise source is uncorrelated with the others, the variances of e,(n) and e, (n) are
2 2 2 2
O, = PO’e O, = paﬂ

Because the output noise is
f(n) = e,(n)* h(n) + ey(n)

where A(n) is the unit sample response of the allpass filter, the variance of f(n) is
el -
of =0l Y I +0;
n=-—0oc

Equivalently, we may write this using Parseval’s theorem as follows:

L [" :
o} = 0025; 3 |H(e!)*dw + o

Because H (e/) is an allpass filter with |H(e/*)| = 1, the variance of the output noise is
2 2 2 2
oy =0, +0, =2po;

(b) If the products are accumulated prior to quantization, the variances of e,(n) and e,(n) in the noise model given
in part (¢) will be reduced by a factor of p:

8.40 In the figure below are direct form II and transposed direct form II realizations of the first-order system

h(0) + b(1)z~!
Hin < PO+ b
1 —a(l)z—!
x(n) b(0) y(n)
o— o > > % 0
-
a(l) h(1)

< O -

(a) Direct form II.

x(n) b(0) y(n)

(b) Transposed direct form I1.

Assume that both systems are implemented using (B + 1)-bit fixed-point arithmetic and that all products
are rounded to B + 1 bits before any additions are performed.
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(a) Using a linear noise model for the round-off noise, find the variance of the round-off noise at the
output of the direct form II filter.

(b) Repeat part (a) for the transposed direct form II filter.

{c) How would the variance of the output noise change if the sums of products were accumulated prior
to quantization?

(a) The linear noise model for round-off noise in the direct form Il implementation is shown in the figure below.

eop(n) er(n)
x(n) b(0) y(n)
o . . N >

= > = > '}

]

a(l) b(1)

The variance of the noise e(r) is o2 and the variance of ¢,(n) is 202, where

2 _ 14-28
0(, = 52
Because the output noise is

f(n) = ei(n) + eo(n) * h(n)

where A(n) is the unit sample response of the filter, the variance of the output noise is

o0
o} =202+0a} Y |hm)]

n=—00

,=1
With H(z) = b0 + b(Hz""
1 —a(l)z~!

it follows that the unit sample response is

h(n) = bO)a"(Du(n) + b(Da" " (Dun — 1)

= b(0)5(n) + [b(O) + @]a"(l)u(n -1
a(l)

Therefore, Z [h(n))? = b*(0) + [b((}) + %]h Zaz”(l)

n=—00 n=|

12 b(]) : 2 > 2n
= bX0) + | b(0) + —= a(l)Za (1)
a(l) n=0

2
oL [p@a() + b(D)]
=+ I —a2(1)

_ b(0) + bE(1) + 2a(1)b(0)b(1)
a 1 —a(1)

and the output noise variance is

b2(0) + H2(1) + 2a(1)b(0)b(1)
a}:203+03 T— ()

(b) For the transposed direct form Il implementation, the noise model is as follows,
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8.41

b(1)

>

1 eq(n)

where the variance of ey(n) is 03, and the variance of ¢,(n) is 202. Note that because neither noise source is
filtered by the zeros of the system, an equivalent model for the generation of the filtered noise f(n) is as shown
in the figure below,

e(n) y(n)

where e(n) = eg(n) + e;(n — 1). Because e(n) and e, (n) are uncorrelated, the variance of e(n) is 30(,2, and the
variance of the output noise is
o0
2 2 2 2
oy o, E [a(])] o, ]

1
n=0 _az(l)

(c) If we accumulate the sums of products prior to quantization, for the direct form Il implementation, the variance
of the noise e;(n) would be o2 instead of 202, and everything else remains the same. For the transposed direct
form II structure, on the other hand, the variance of e(n) would be o instead of 202, which implies that the
variance of e(n) would be 207,

A sixth-order filter with a system function
H(z) =
(14275 +z7H*(1 —2cos(7/6)z™' +z72)
(1 —1.6cos(rw/4)z=! +0.64z72)(1 + 1.6 cos(/4)z~" + 0.64z72)(1 — 1.8 cos(r/6)z~! + 0.81272)

is to be implemented as a cascade of second-order sections. Considering only the effects of round-off
noise, determine what the best pole-zero pairing is, and the best ordering of the second-order sections.

Note that all six zeros of this system lie on the unit circle, with two at z = —1, a complex pairat z = %/, and a
complex pair at z = e*/7/%, The poles, on the other hand, are at z = 0.8¢/™/%, z = 0.8¢*/37/% and z = 0.9¢*/7/°,
A pole-zero diagram showing each of these poles and zeros is given below.

Im(z)

Re(z)
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The general strategy for pairing poles with zeros is to first find the two poles that are closest to the unit circle, in this
case those at z = 0.9¢%/7/°, and pair these with the two zeros that are closest to these poles, which are those on the
unit circle at z = e*/7/%, Thus, the first pole-zero pairing yields the second-order section

1 —2cos(m/6)z~! + 272
1 — 1.8cos(/6)z~! +0.81z72

H\(z) =
Of the remaining poles, we next find the pair that is closest to the unit circle, which are either those at z = 0.8¢%/7/4
or those at z = 0.8¢+/37/4_ Let us arbitrarily select the first of these. Paired with these poles would then be the zeros
at z = = j, which gives us the second-order section

Hy(z) = 1 4272
BT T 2 1.6cos(/6)z~! + 0.64z-2
Finally, for the last section we have
(I+z7Y
Hi(z) =

1 + 1.6cos(/6)z! +0.64z2

The cascade is then done in the reverse order, with the first second-order section being H3(z), followed by H,(z),
and then H,(z).

Supplementary Problems

Structures for FIR Systems

8.42

8.43

8.44

845

Find the unit sample response for the following network:

o ~ -1 o

)
y

x(n) > O— - >

0.2 0.4 0.1 0.5 0.3

y
4
4

y(n)

q
1

What is the frequency response of the following network?

x(n) 27! z! -1

O > O >
- > -

3]

Y

0.5 T 0.2 T 0.1 Y 0.1

What is the minimum number of multiplications and additions and delays required to implement a linear phase filter
with A(n) =0 forn < Oand n > 63?

 §

y(n)

How many multiplies, adds, and delays are required to implement the filter

L1+ Leos gﬂ)-ylcos 42 0<n<63
h(n) = { : 64 ) ¢ 64 o

0 otherwise

using (a) a direct form structure and (b) a frequency sampling structure?
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846 Draw a frequency sampling structure for the FIR high-pass filter of length N = 32 with
+ k=15,16,17
Hk) = 32
0 else

Structures for IIR Systems

8.47  Find the system function for the following network, where az~

x(n) y(n)
az™!
8.48  Find the unit sample response of the following network:
z(n) 2 y(n)
(o > O D -0 > O > o
i [
4 z-1 4
-1/12 1/12
> ), < d
——
4z Y
1/2
8.49  Find the constant A so that the second-order all-pole filter
H(z) = A
- 1+ C(]Z—] + 0122'—2
has unit gain at = 0, and find a structure that only requires two multiplications.
8.50  What is the system function corresponding to the following filter structure?
x(n) y(n)
—0.81
8.51  Find the transposed direct form II realization of the system described by the difference equation

y(n)=05y(n—1)—0.25y(n —2) + x(n) - 2x(n = 1) + x(n — 2)

Lattice Filters
8.52  What is the frequency response of the FIR filter that has reflection coefficients I'y = I'; =

rm:l?

353

! is a unit delay combined with a multiplication by a:

... =Ty = 0and
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8.53  Draw a lattice filter implementation for the allpass filter
0.25-0.5z7" + 272
H(z) = — -
1 -05z7"40.25z2
8.54  If the system function of a causal filter is
1
H(z) = — — = —
L+ 1127+ 09272 + 1.45:73 + 0.5z
is this filter stable?
8.55  If H(z)is an FIR filter with reflection coefficients I';, I'. .. ., I',, what is the system function of the filter G(z) with
reflection coefficients I'1. 0, [',, 0, M5, ..., 0,[,?
8.56  Suppose that the last reflection coefficient of an FIR lattice filter, not necessarily minimum phase, has unit magnitude
IT,| = 1. What general statements can be made about the system function H (z)?
8.57  Find the system function of the following lattice filter:
x(n)
-0.5
Y
0.5 - -
2 2Y
y(n)
& —O— = -0 >
Finite Word-Length Effects
8.58  (a) What fraction does the binary number x = 1.01101 represent in one’s complement notation? (b) What about
two’s complement notation?
8.59  White noise with a variance o2 is input to a linear shift-invariant filter with a system function
|+ 327!
H(z) = 6
(=5
Find the variance of the noise at the output of the filter.
8.60  Consider the following cascade of two first-order filters, where |a| > |b|:
o1 L
a b
Without explicitly evaluating the variance, determine whether the variance of the round-off noise at the output of
this filter will be larger or smaller if the order of the cascade is reversed.
8.61  Consider a linear shift-invariant system with a system function

1 +0.5z7!

HE) = =037

Assume that each product is rounded to 16 bits before any additions are performed, and let 6? be the variance of the
round-off noise.
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8.62

8.63

8.64

8.42

8.43

8.44

8.45

8.46

8.47

8.48

(a) If this system is implemented in direct form II, compute the variance of the round-off noise at the output of the
filter, a}, due to all noise sources.

(b) Repeat part (a) if the system is implemented in direct form 1.

Suppose that an FIR filter with a system function
H(z)=1+02z""404:7-025:""+0.1z""

is implemented on a 16-bit fixed-point processor. If sums of products are accumulated prior to rounding, find the
variance of the round-off noise at the output of the filter.

The second-order system
1

H =
@) = T 2728 7 08122

is implemented in direct form II using 16-bit fixed point arithmetic. Assuming that all sums of products are
accumulated prior to rounding, find the quantization noise power at the filter output.

To minimize the effects of round-off noise, what is the best pairing of poles and zeros into second-order sections for
the system
(1 +0.9273)(1 — 2.4cos(0.75m)z7" + 1.44z72)

(L —1.4¢08(0.257)z7" +0.49z-2)(1 — 1.8 cos(0.9m)z~! +0.81z72)

and what is the best ordering for the second-order sections?

H(z) =

Answers to Supplementary Problems

h(n) = 0.28(n) +0.48(n — 1)+ 0.18(n — 2) + 0.58(n — 3) + 0.38(n — 4).
H(e/®) = e=733[cos(3.5w) + 0.4 cos(2.5w) + 0.2 cos(1.5w) + 0.2 cos(0.5w)].
63 delays, 63 additions, and 32 multiplications.

(a) 33 multiplies, 63 adds, and 63 delays. (b) 9 multiplies, 10 adds, and 69 delays.

1/32 _1

=32

14+ az™!
| —az-V’

hin) = (—%)nu(n) + (%)nu(n).
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8.49 A =1+ «, + a;, and the structure is

x(n) y(n)

14272

8.51

x(n) y(n)

852 H(e/”)=1+e /0

8.53
x(n)
o——» 0 = O =
-0.25
0.25
(o <t o’ <t O <
y(n) 77!

8.54  No, the filter is unstable because I'; = 1.2.
855 G(z)= H(ZY.
8.56  The system function will have generalized linear phase, H(z) = £z 7H(z™").

24+ 1.75z7' 4 3.25272

857 H(z)= .
= 1303751 7 05:2

858 (@)% (L

859 o= 0’3[% + 18— ﬁ] = 1.2007.

15 11
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8.60

8.61

8.62

8.63

8.64

The variance of the output noise will be larger if the pole closest to the unit circle is the second filter in the cascade.
Thus, the output noise variance will be larger if the order of the cascade is reversed.

(@0} =270} (b)o} =220}
The variance of the output noise is simply the noise variance, 07 = 52728 = L2730,

0} = 0207702 where 67 = 527

1+0.9272 and Hy(2) = 1 — 2.4c0s(0.75m)z" + 1.44272

H = .
@) 1 — 1.4c0s(0.25m)z~" + 0.49z2 1 —1.8cos(0.97)z~! + 0.81z2



Chapter 9

Filter Design

9.1 INTRODUCTION

This chapter considers the problem of designing a digital filter. The design process begins with the filter specifi-
cations, which may include constraints on the magnitude and/or phase of the frequency response, constraints on
the unit sample response or step response of the filter, specification of the type of filter (e.g., FIR or IIR), and the
filter order. Once the specifications have been defined, the next step is to find a set of filter coefficients that pro-
duce an acceptable filter. After the filter has been designed, the last step is to implement the system in hardware
or software, quantizing the filter coefficients if necessary, and choosing an appropriate filter structure (Chap. 8).

9.2 FILTER SPECIFICATIONS

Before a filter can be designed, a set of filter specifications must be defined. For example, suppose that we would
like to design a low-pass filter with a cutoff frequency w,. The frequency response of an ideal low-pass filter
with linear phase and a cutoff frequency w, is

: e~ Jaw | < .
Hd(("/w) — | | = W
0 w <|wl <m
which has a unit sample response
sin(n — o)w,
hg(n) = —————

n(n — o)

Because this filter is unrealizable (noncausal and unstable), it is necessary to relax the ideal constraints on the
frequency response and allow some deviation from the ideal response. The specifications for a low-pass filter
will typically have the form

1-8, <|HE™) <1+5, 0<|ol<w,

|H (/)] < & wy <ol <7

as illustrated in Fig. 9-1. Thus, the specifications include the passband cutoff frequency, w,, the stopband cutoff
frequency, wy, the passband deviation, §,, and the stopband deviation, §,. The passband and stopband deviations

p 1)
145, Al

SR NN\ | |
| | |
1 i !
«—— Passband —>1' ,'(—— Stopband —>:
{ | 1
5 1 | Al

Transition l‘—
Band

Fig. 9-1. Filter specifications for a low-pass filter.

358
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are often given in decibels (dB) as follows:
ap, = —20log(l —8,)
and ay, = —201og(8,)

The interval ), w,] is called the transition band.
Once the filter specifications have been defined, the next step is to design a filter that meets these specifica-
tions.

9.3 FIR FILTER DESIGN

The frequency response of an N th-order causal FIR filter is

N
H(()ja)) — Z h(n)e—-jmu

n=0

and the design of an FIR filter involves finding the coefficients 4(n) that result in a frequency response that
satisfies a given set of filter specifications. FIR filters have two important advantages over IR filters. First, they
are guaranteed to be stable, even after the filter coefficients have been quantized. Second, they may be easily
constrained to have (generalized) linear phase. Because FIR filters are generally designed to have linear phase,
in the following we consider the design of linear phase FIR filters.

9.3.1 Linear Phase FIR Design Using Windows

Let h4(n) be the unit sample response of an ideal frequency selective filter with linear phase,
H(/(é"i")) — A(()jw)(,ﬁ/'(aw*ﬂ)

Because hy(n) will generally be infinite in length, it is necessary to find an FIR approximation to Hy(e/®). With
the window design method, the filter is designed by windowing the unit sample response,

h(n) = hy(nyw(n)

where w(n) is a finite-length window that is equal to zero outside the interval 0 < n < N and is symmetric about
its midpoint:
w(n) = w(N —n)

The effect of the window on the frequency response may be seen from the complex convolution theorem,

. 1 . . 1 T . .
H((’J(u) = — [/(eja)) * W(c’jw) = —/ Hd(ejﬁ)W(ej(w—H))dG
2 2r J_

2; x
Thus, the ideal frequency response is smoothed by the discrete-time Fourier transform of the window, W (/).

There are many different types of windows that may be used in the window design method, a few of which
are listed in Table 9-1.

How well the frequency response of a filter designed with the window design method approximates a desired
response, Hg(e/®). is determined by two factors (see Fig. 9-2):

1. The width of the main lobe of W (¢/).
2. The peak side-lobe amplitude of W (¢/).
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bW (eiv)|

Peak Sidelobe

-

Fig. 9-2. The DTFT of a typical window, which is characterized by the width of its main lobe, A,
and the peak amplitude of its side lobes, A, relative to the amplitude of W (e/®) at w = 0.

—| A

,<— Mainlobe

Width

|[CHAP. 9

Ideally, the main-lobe width should be narrow, and the side-lobe amplitude should be small. However, for a
fixed-length window, these cannot be minimized independently. Some general properties of windows are as

follows:

1. Asthelength N ofthe window increases, the width of the main lobe decreases, which results in a decrease
in the transition width between passbands and stopbands. This relationship is given approximately by

NAf =c¢

where Af is the transition width, and c¢ is a parameter that depends on the window.

9.1

2. The peak side-lobe amplitude of the window is determined by the shape of the window, and it is
essentially independent of the window length.

3. If the window shape is changed to decrease the side-lobe amplitude, the width of the main lobe will

generally increase.

Listed in Table 9.2 are the side-lobe amplitudes of several windows along with the approximate transition width
and stopband attenuation that results when the given window is used to design an N th-order low-pass filter.

Table 9-1 Some Common Windows

Rectangular

Hanning!

Hamming

Blackman

wn) =

w(n) =

w(n) =

2mn 4mrn
0.42-0.5 —_— 0. -
win) = cos( N ) + OScos( N )

1 0<nc<
0 else
0.5-0.5 cos(
0

0

0

n

2w
N

0.54 — 0.46 cos<ﬂ>
N

'In the literature, this window is also called a Hann window or a von Hann window.
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Table 9-2 The Peak Side-Lobe Amplitude of Some Common Windows and the Approximate
Transition Width and Stopband Attenuation of an Nth-Order Low-Pass Filter
Designed Using the Given Window.

Window Side-Lobe Amplitude (dB) Transition Width (Af) Stopband Attenuation (dB)
Rectangular -13 0.9/N —-21

Hanning -31 3.1/N —44

Hamming —41 33/N -53

Blackman -57 5.5/N -74

EXAMPLE 9.3.1 Suppose that we would like to design an FIR linear phase low-pass filter according to the following
specifications:

0.99 < |H(e'*)| < 1.01
|H(e/)] <0.01

0<|wl <0.197

021ln <|w| <7

For a stopband attenuation of 20 log(0.01) = —40 dB. we may use a Hanning window. Although we could also use a Hamming
or a Blackman window, these windows would overdesign the filter and produce a larger stopband attenuation at the expense
of an increase in the transition width. Because the specification calls for a transition width of Aw = w; — w, = 0.02m, or
Af =0.01, with

NAf =31

for a Hanning window (see Table 9.2), an estimate of the required filter order is

3.1
N =-= =310
Af

The last step is to find the unit sample response of the ideal low-pass filter that is to be windowed. With a cutoff frequency
of w, = (w; + wp,)/2 = 0.2m, and a delay of « = N /2 = 155, the unit sample response is

sin[0.27r(n — 155)]

ha(n) = — S5

In addition to the windows listed in Table 9-1, Kaiser developed a family of windows that are defined by

_ _ 24172
winy — JolBC [<1n(ﬂ)a)/a] L SPA
0

where « = N/2, and /y(:) is a zeroth-order modified Bessel function of the first kind, which may be easily
generated using the power series expansion

o0 2k 2
o) = 1 +Z[("£,) ]
k=1 .

The parameter 8 determines the shape of the window and thus controls the trade-off between main-lobe width
and side-lobe amplitude. A Kaiser window is nearly optimum in the sense of having the most energy in its main
lobe for a given side-lobe amplitude. Table 9-3 illustrates the effect of changing the parameter B.

There are two empirically derived relationships for the Kaiser window that facilitate the use of these windows
to design FIR filters. The first relates the stopband ripple of a low-pass filter, oy = —20 log(;), to the parameter 8,

0.1102(cx; — 8.7) oy > 50
B =1 0.5842(a; — 21)** 4 0.07886(cr; — 21) 21 <, <50
0.0 o, < 21
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Table 9-3 Characteristics of the Kaiser Window as a Function of 3

Parameter Side Lobe Transition Width Stopband Attenuation
B (dB) (NAS) (dB)
20 —-19 1.5 -29
3.0 —24 2.0 -37
4.0 -30 2.6 —45
5.0 -37 3.2 -54
6.0 —44 3.8 —63
7.0 —51 4.5 -72
8.0 -59 5.1 —-81
9.0 —67 5.7 -90

10.0 —74 6.4 -99

The second relates N to the transition width A f and the stopband attenuation o,

s —7.95
N=B 0P > 21 9.2
1436Af B ©.2)

Note that if ¢y < 21 dB, a rectangular window may be used (8 = 0), and N = 0.9/Af.

EXAMPLE 9.3.2 Suppose that we would like to design a low-pass filter with a cutoff frequency w, = 7 /4, a transition
width Aw = 0.027, and a stopband ripple §; = 0.01. Because o, = —2010g(0.01) = —40, the Kaiser window parameter is

B = 0.5842(40 — 21)°* 4+ 0.07886(40 — 21) = 3.4

With Af = Aw/2r = 0.01, we have

40 - 7.
= H0-T79
14.36 - (0.01)

Therefore, h(n) = ha(myw(n)

sin[(n — 112)m /4]

where hg(n) = " 112)m

is the unit sample response of the ideal low-pass filter.

Although it is simple to design a filter using the window design method, there are some limitations with
this method. First, it is necessary to find a closed-form expression for 4,4(n) (or it must be approximated using
a very long DFT). Second, for a frequency selective filter, the transition widths between frequency bands, and
the ripples within these bands, will be approximately the same. As a result, the window design method requires
that the filter be designed to the tightest tolerances in all of the bands by selecting the smallest transition width
and the smallest ripple. Finally, window design filters are not, in general, optimum in the sense that they do not
have the smallest possible ripple for a given filter order and a given set of cutoff frequencies.

9.3.2 Frequency Sampling Filter Design

Another method for FIR filter design is the frequency sampling approach. In this approach, the desired frequency
response, Hy(e/?), is first uniformly sampled at N equally spaced points between 0 and 27:

H(k) = Hy(e/™ /™) k=0,1,...,N -1
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These frequency samples constitute an N -point DFT, whose inverse is an FIR filter of order N — 1:

N-—-1
H (k)e/?7mk/N 0<n<N-1
k=0

1
h(n) = —

(n) N
The relationship between A(n) and h,(n) (see Chap. 3) is

o8]
hiny= " hyn+kN)  0<n<N-—|
k=—00

Although the frequency samples match the ideal frequency response exactly, there is no control on how the
samples are interpolated between the samples. Because filters designed with the frequency sampling method
are not generally very good, this method is often modified by introducing one or more transition samples as

illustrated in Fig. 9-3. These transition samples are optimized in an iterative manner to maximize the stopband
attenuation or minimize the passband ripple.

H(k)

A

—

—0—0—0—>

——

Transition
Band

Fig. 9-3. Introducing a transition sample with an amplitude of A, in the
frequency sampling method.

9.3.3 Equiripple Linear Phase Filters

The design of an FIR low-pass filter using the window design technique is simple and generally results in a filter
with relatively good performance. However, in two respects, these filters are not optimal:

1. First, the passband and stopband deviations, §,, and §;, are approximately equal. Although itis common
to require &, to be much smaller than §,, these parameters cannot be independently controlled in the
window design method. Therefore, with the window design method, it is necessary to overdesign the
filter in the passband in order to satisfy the stricter requiremeats in the stopband.

2. Second, for most windows, the ripple is not uniform in either the passband or the stopband and generally
decreases when moving away from the transition band. Allowing the ripple to be uniformly distributed
over the entire band would produce a smaller peak ripple.

An equiripple linear phase filter, on the other hand, is optimal in the sense that the magnitude of the ripple
is minimized in all bands of interest for a given filter order, N. In the following discussion, we consider the
design of a type I linear phase filter. The results may be easily modified to design other types of linear phase
filters.

The frequency response of an FIR linear phase filter may be written as

H(e/®) = A(e/?)e /o 9.3)
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where the amplitude, A(e/®), is a real-valued function of w. For a type I linear phase filter,
h(n) = h(N — n)

where N is an even integer. The symmetry of 4(n) allows the frequency response to be expressed as

L
Ale’?) = Za(k)cos(kw) 9.4)

k=0

(0)—h(N
R )

N
a(k):h(k-l——z—) k=1,2,...,

where L = N /2 and

N
2

The terms cos(kw) may be expressed as a sum of powers of cos w in the form
cos(kw) = Ty(cos w)

where T;(x) is a kth-order Chebyshev polynomial [see Eq. (9.9)]. Therefore, Eq. (9.4) may be written as

L

Ae’®) =) a(k)(cos w)*

k=0

Thus, A(e/®) is an Lth-order polynomial in cos w.
With A,(e’/®) a desired amplitude, and W (e’/®) a positive weighting function, let

E(e’®)y = W (/) Aa(e’®) — A(e’®)]

be a weighted approximation error. The equiripple filter design problem thus involves finding the coefficients
a(k) that minimize the maximum absolute value of E(e/“) over a set of frequencies, F,

min { max |E(e/®)|

ak)y | weF

For example, to design a low-pass filter, the set F will be the frequencies in the passband, [0, w,], and the
stopband, [w;, ], as illustrated in Fig. 9-4. The transition band, (w, w;), is a don’t care region, and it is not

, (H ()]

146, OO

NNNNNNNNNNAANANANN

& 1 ANNNNNNNANNANNNNANY
t > W

0 Wp Ws ™
Pl R

Don’t Care
Fig. 9-4. The set R in the equiripple filter design problem, consisting of the passband
[0, w,] and the stopband [w),. w,]. The transition band (w,, w,) is a don’t care region.
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considered in the minimization of the weighted error. The solution to this optimization problem is given in the
alternation theorem, which is as follows:

Alternation Theorem: Let F be a union of closed subsets over the interval [0, 7]. For a
positive weighting function W (¢/?), a necessary and sufficient condition for

L

A(e!?) = Za(k)cos(ka))

k=0

to be the unique function that minimizes the maximum value of the weighted error | E (e/“)|
over the set F is that the E(e’/“) have at least L + 2 alternations. That is to say, there must be
at least L + 2 extremal frequencies,

Wy < W) <0 < Wy
over the set F such that

E(ejw“)=—E(€ijl) k=0,1,....L

and |E(e/)| = max |E (/)] k=0.1,..., L+1
we

Thus, the alternation theorem states that the optimum filter is equiripple. Although the alternation theorem
specifies the minimum number of extremal frequencies (or ripples) that the optimum filter must have, it may
have more. For example, a low-pass filter may have either L + 2 or L + 3 extremal frequencies. A low-pass
filter with L 4 3 extrema is called an extraripple filter.

From the alternation theorem, it follows that

W(e/“) Aqg(e’™) — A(e’)] = (— )'e k=0,1,...,L+1
where € = +max |E(e’?)]
weF

is the maximum absolute weighted error. These equations may be written in matrix form in terms of the unknowns
a(0), ....a(L) and € as follows:

1 cos(wy) e cos(Lwg) 1/ W(e/*) a(0) Ay(ede0)
1 cos(wy) cee cos(Lwy) —1/Wi(e/*") a(l) Aglel®)
L : : . @
1 cos(w;) -+ cos(Lw) (=DE /W (e/or) a(L) Ad(f.jw' )
1 cos(wr41) -+ cos(Lagy)) (=DEH/W(elotn). € Ag(el®1)
Given the extremal frequencies, these equations may be solved for a(0), ..., a(L) and €. To find the extremal

frequencies, there is an efficient iterative procedure known as the Parks-McClellan algorithm, which involves
the following steps:

. Guess an initial set of extremal frequencies.
2. Find € by solving Eq. (9.5). The value of ¢ has been shown to be
L+]

Z b(k)D(e’™)
k=0

L4l

Y (= Dby W (e
k=0
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L+l 1

where b(k) =

ik cos(wy) — cos(w, )

3. Evaluate the weighted error function over the set F by interpolating between the extremal frequencies
using the Lagrange interpolation formula.

4. Select a new set of extremal frequencies by choosing the L + 2 frequencies for which the interpolated
error function is maximum.

5. [If the extremal frequencies have changed, repeat the iteration from step 2.

A design formula that may be used to estimate the equiripple filter order for a low-pass filter with a transition
width Af, passband ripple §,, and stopband ripple 8, is

_ —10log(8,48;) — 13

14.6Af ©-6)

EXAMPLE 9.3.3 Suppose that we would like to design an equiripple low-pass filter with a passband cutoff frequency
w, = 0.37, a stopband cutoff frequency w, = 0.357, a passband ripple of 8, = 0.01, and a stopband ripple of §, = 0.001.
Estimating the filter using Eq. (9.6), we find

_ —10log(s,8,) — 13
- 14.6Af

= 02

Because we want the ripple in the stopband to be 10 times smaller than the ripple in the passband, the error must be weighted
using the weighting function
! 0<|wl <037

Wie') =
10 0357 <|w| <n

Using the Parks-McClellan algorithm to design the filter, we obtain a filter with the frequency response magnitude shown
below.

20 log|H (e7¥))|

4

0_

.20 +
-40 -
-60 -
.80 4+
t } } + > W
n/4 /2 3m/4 m

9.4 IIR FILTER DESIGN

There are two general approaches used to design IIR digital filters. The most common is to design an analog 1IR
filter and then map it into an equivalent digital filter because the art of analog filter design is highly advanced.
Therefore, it is prudent to consider optimal ways for mapping these filters into the discrete-time domain. Fur-
thermore, because there are powerful design procedures that facilitate the design of analog filters, this approach
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to IIR filter design is relatively simple. The second approach to design IIR digital filters is to use an algorithmic
design procedure, which generally requires the use of a computer to solve a set of linear or nonlinear equations.
These methods may be used to design digital filters with arbitrary frequency response characteristics for which
no analog filter prototype exists or to design filters when other types of constraints are imposed on the design.

In this section, we consider the approach of mapping analog filters into digital filters. Initially, the focus
will be on the design of digital low-pass filters from analog low-pass filters. Techniques for transforming these
designs into more general frequency selective filters will then be discussed.

9.4.1 Analog Low-Pass Filter Prototypes

To design an IIR digital low-pass filter from an analog low-pass filter, we must first know how to design an
analog low-pass filter. Historically, most analog filter approximation methods were developed for the design of
passive systems having a gain less than or equal to 1. Therefore, a typical set of specifications for these filters is
as shown in Fig. 9-5(a), with the passband specifications having the form

I =38, = [H, () =1

A [HGO)) o Ha(G)

NN\ NN\
SR NN RAZEEEE NN\

1

|

|

|

!

|
5 1 T NN\ ya |

+ f >
Q  Q Qp

(a) Specifications in terms of Jp and ds. (b) Specifications in terms of ¢ and A.

Fig. 9-5. Two different conventions for specifying the passband and stopband deviations for an analog
low-pass filter.

Another convention that is commonly used is to describe the passband and stopband constraints in terms of the
parameters € and A as illustrated in Fig. 9-5(h). Two auxiliary parameters of interest are the discrimination

factor,
S [(1 — 5,2 - 1}‘/2 e

572~ 1 VATZT
and the selectivity factor
-
- Q
The three most commonly used analog low-pass filters are the Butterworth, Chebyshev, and elliptic filters.

These filters are described below.

Butterworth Filter
A low-pass Butterworth filter is an all-pole filter with a squared magnitude response given by
1

Ha('sz- v
G = T g o
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The parameter N is the order of the filter (number of poles in the system function), and 2. is the 3-dB cutoff
frequency. The magnitude of the frequency response may also be written as

|
I+ €2(j2/jS2p)N

Q N
h ==
wnere € (Q{)

The frequency response of the Butterworth filter decreases monotonically with increasing €2, and as the filter
order increases, the transition band becomes narrower. These properties are illustrated in Fig. 9-6, which shows
|H,(j2)| for Butterworth filters of orders N = 2,4, §, and 12. Because

|H,(j ) =

IH (G = Ho($)Ho(=5)|,_q

from the magnitude-squared function, we may write

1

s) = H(=8) = ————%
Gu(s) = Hy(s)H,(—s) 1+ (s/jQ2)2N

Increasing N

7 [f-—————--
>
Qe
Fig. 9-6. The magnitude of the frequency response for Butterworth filters of orders
N =2,4.8.

Therefore, the poles of G ,(s) are located at 2N equally spaced points around a circle of radius 2.,

N+ 142k
j(+—+——)£ k=01

s =(=D"V(Q) = Q, exp sy k=0

2N —1 (9.7

and are symmetrically located about the jQ2-axis. Figure 9-7 shows these pole positions for N = 6and N = 7.

The system function, H,(s), is then formed from the N roots of H,(s)H,(—s) that lie in the left-half s-plane.

For a normalized Butterworth filter with Q. = 1, the system function has the form
B |

An(s) sV +a sV 4+ +an_,s +ay

Hals) = 9.8)

Table 9-4 lists the coefficients of Ay(s)for 1 < N < 8. Given Q,, 2, 8,,, and 4, the steps involved in designing
a Butterworth filter are as follows:

I.  Find the values for the selectivity factor, &, and the discrimination factor, d. from the filter specifications.
2. Determine the order of the filter required to meet the specifications using the design formula

- logd
~ logk

N
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X odox” Sx.1.x”7

(u) Order N = 6. (h) Order N = 7.

Fig. 9-7. The poles of H,(a)H,(—s) for a Butterworth filter of order N = 6and N = 7.

Table 9-4 The Coefficients in the System Function of a Normalized Butterworth Filter (€2, = 1) for

Orders1 < N <8

N a a as ay as ag a; as

1 1.0000

2 1.4142 1.0000

3 2.0000 2.0000 1.0000

4 2.6131 34142 2.6131 1.0000

5 3.2361 5.2361 5.2361 3.2361 1.0000

6 3.8637 7.4641 9.1416 7.4641 3.8637 1.0000

7 4.4940 10.0978 14.5918 14.5918 10.0978 4.4940 1.0000

8 5.1258 13.1371 21.8462 25.6884 21.8462 13.1372 5.1258 1.0000

Set the 3-dB cutoff frequency, 2., to any value in the range
Qp[(l _ 6[))—2 _ ]]—-]/ZN S Q(, S Qv[b:z _ l]—I/ZN

Synthesize the system function of the Butterworth filter from the poles of

]

Ga(s) = Hy(s)Hy(—s) = ﬁm

that lie in the left-half s-plane. Thus,

Ha(s)= —
k=0 S — Sk
N+ 142
where sk=szcexp{j(—+2;—)”} k=0,1,...,N—1

EXAMPLE 9.4.1 Let us design a low-pass Butterworth filter to meet the following specifications:

fp =6kHz fs = 10kHz 8, =46, =0.1

369
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First, we compute the discrimination and selectivity factors:

1—-5,)2—-17" Q
d:[A( 672")1 ] = 0.0487 k=Q—”=f£:0.6

logd
Because N> 2% 592
log k

it follows that the minimum filter order is N = 6. With

frl(1 =8, = 117" = 6770

177 = 6819

and Llsr -1
the center frequency, f,, may be any value in the range
6770 < f,. <6819

The system function of the Butterworth filter may then be found using Eq. (9.8) by first constructing a sixth-order normalized
Butterworth filter from Table 9-4,

1

H,(s) =
) = 3863755 4 7464157 1 9.14165° + 7464157 1 3.8637s 1 1

and then replacing s with s/ . so that the cutoff frequency is 2. instead of unity (see Sec. 9.4.3).

Chebyshev Filters
Chebyshev filters are defined in terms of the Chebyshev polynomials:

cos(N cos™! x) x| <1

. 9.9
cosh(N cosh™' x) |x|] > 1

Tn(x) =

These polynomials may be generated recursively as follows,
Tiy1(x) = 2xTi(x) — Ty (x) k>1

with Ty(x) = 1 and T, (x) = x. The following properties of the Chebyshev polynomials follow from Eq. (9.9):
1. For |x| < 1 the polynomials are bounded by | in magnitude, |Ty(x)| < 1, and oscillate between £1.
For |x| > 1, the polynomials increase monotonically with x.
2. Ty(l)=1forall N.
3. Twn(0) = %1 for N even, and Ty (0) = 0 for N odd.
4. All of the roots of Ty (x) are in the interval —1 < x < 1,

There are two types of Chebyshev filters. A type I Chebyshev filter is all-pole with an equiripple passband
and a monotonically decreasing stopband. The magnitude of the frequency response is

|

H(jQ))? = ———5————
1+ 2T/ Rp)

where N is the order of the filter, 2, is the passband cutoff frequency, and € is a parameter that controls
the passband ripple amplitude. Because T,?,(Q/Qp) varies between 0 and 1 for || <, [H,(j2)|* oscillates
between | and 1/(1 +€2). As the order of the filter increases, the number of oscillations (ripples) in the passband
increases, and the transition width between the passband and stopband becomes narrower. Examples are given
in Fig. 9-8 for N = 5, 6.
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[Ha (51 |Ha(5)[?
A A

Y
o)
Y
o)

(4) Odd order (N = 5). (b) Even order (N = 6).
Fig. 9-8. Frequency response of Chebyshev type I filter for orders N = Sand N = 6.

The system function of a type I Chebyshev filter has the form

—S

N—-1
H,(s)= H,(O
(s) ()]D]s—sk

where H,(0) = (1 — €2~ /2 if N is even, and H,(0) = 1 if N is odd. Given the passband and stopband cutoff
frequencies, 2, and €2, and the passband and stopband ripples, , and ; (or the parameters € and A), the steps
involved in designing a type I Chebyshev filter are as follows:

1. Find the values for the selectivity factor, k, and the discrimination factor, d.

2. Determine the filter order using the formula

. cosh™!(1/d)
~ cosh™!(1/k)

3. Form the rational function
1

Gu(s) = Hy(s)Hy(—s) = mm

where € = [(1 — §,)"2 — 11'/2, and construct the system function H,(s) by taking the N poles of G ,(s)
that lie in the left-half s-plane.

EXAMPLE 9.4.2 If we were to design a low-pass type I Chebyshev filter to meet the specifications given in Example 9.4.1
where we found d = (0.0487 and £ = 0.6, the required filter order would be

- cosh™!(1/d) _

~ cosh'(1/k) 338

or N = 4. Therefore, with
€=[(1-38,)2~1]"?=0.4843

and Ta(x) = 453 — 4x

1
1 +3.7527(2/ 2,)2[(2/ 2 ,)? — 112

then |H,(jQ)* =

where Q, = 27(6000).
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A type II Chebyshev filter, unlike a type I filter, has a monotonic passband and an equiripple stopband, and
the system function has both poles and zeros. The magnitude of the frequency response is

H,(jQ))? =
Ha () 1+ €2[Tn(2s/ R2p)/ Tn(S2,/ Q)12

where N is the order of the filter, 2, is the passband cutoft frequency, €2 is the stopband cutoff frequency, and
€ is the parameter that controls the stopband ripple amplitude. Again, as the order N is increased, the number of
ripples increases and the transition width becomes narrower. Examples are given in Fig. 9-9 for N =5, 6.

|Ha ()2 [Ha (52

A A

(a) Odd order (N = 5). (h) Even order (N = 6).
Fig. 9-9. Frequency response of a Chebyshev type II filter for orders N = 5and N = 6.

The system function of a type II Chebyshev filter has the form

ag §
H(S)_l_[bAS—ak

The poles are located at

QZ
ay = =
Sk
where s, fork =0, 1,..., N — 1 are the poles of a type 1 Chebyshev filter. The zeros b lie on the j$2-axis at

the frequencies for which Ty (2,/$2) = 0. The procedure for designing a type Il Chebysheyv filter is the same as
for a type I filter, except that

€= (87— 1)~

Elliptic Filter

An elliptic filter has a system function with both poles and zeros. The magnitude of its frequency response is

1
| +€2UR(Q/Q,)

|Ho () =

where Uy (£2/2,) is a Jacobian elliptic function. The Jacobian elliptic function Uy (x) is a rational function of
order N with the following property:
1 1
Ul =) =
Q Un(£2)

Elliptic filters have an equiripple passband and an equiripple stopband. Because the ripples are distributed uni-
formly across both bands (unlike the Butterworth and Chebyshev filters, which have a monotonically decreasing
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passband and/or stopband), these filters are optimum in the sense of having the smallest transition width for
a given filter order, cutoff frequency 2,, and passband and stopband ripples. The frequency response for a
4th-order elliptic filter is shown in Fig. 9-10.

[Ha(59)?

Qp Q,
Fig. 9-10. The magnitude of the frequency response of a sixth-order elliptic filter.

The design of elliptic filters is more difficult than the Butterworth and Chebyshev filters, because their
design relies on the use of tables or series expansions. However, the filter order necessary to meet a given set of
specifications may be estimated using the formula

. log(16/d?)
log(1/¢)

where d is the discrimination factor, and

q = qo + 243 + 15¢7 + 150¢°

IL—(1—k%)'4

where qo = ST Ao T

with k being the selectivity factor.

9.4.2 Design of IIR Filters from Analog Filters

The design of a digital filter from an analog prototype requires that we transform A, () to h(n) or H,(s) to H(z).
A mapping from the s-plane to the z-plane may be written as

H(z) = Ha(s))

=m(z)

where s = m(z) is the mapping function. In order for this transformation to produce an acceptable digital filter,
the mapping m(z) should have the following properties:

1. The mapping from the j$2-axis to the unit circle, |z| = 1, should be one to one and onfo the unit circle
in order to preserve the frequency response characteristics of the analog filter.

2. Points in the left-half s-plane should map to points inside the unit circle to preserve the stability of the
analog filter.

3. The mapping m(z) should be a rational function of z so that a rational H,(s) is mapped to a rational
H(z).

Described below are two approaches that are commonly used to map analog filters into digital filters.



374 FILTER DESIGN [CHAP. 9

Impulse Invariance

With the impulse invariance method, a digital filter is designed by sampling the impulse response of an analog

filter:
h(") = hu(nr\)

From the sampling theorem, it follows that the frequency response of the digital filter, H (¢/¢), is related to the
frequency response H,(j2) of the analog filter as follows:

. 1 & w 2wk
H Jw e H” P ;
=7 2 (’T.\-“ T)

Y k=—¢

The mapping between the s-plane and the z-plane is illustrated in Fig. 9-11. Note that although the jQ-axis
maps onto the unit circle, the mapping is not one to one. In particular, each interval of length 2 /T, along the
JS2-axis is mapped onto the unit circle (i.e., the frequency response is aliased). In addition, each point in the
left-half s-plane is mapped to a point inside the unit circle. Specifically, strips of width 2w /T, map onto the
z-plane. If the frequency response of the analog filter, H,(j€2). is sufficiently bandlimited, then

More generally, this may be extended into the complex plane as follows:

1 & 2k
A (EE

S k=—00

H(z)

. | jw
H )j(u ~ —Hu(
(e~ AT )

Although the impulse invariance may produce a reasonable design in some cases, this technique is essentially
limited to bandlimited analog filters.

Im(z) FiY!

e NN -0
NN\ P

T,

—

Fig. 9-11. Properties of the s-plane to z-plane mapping in the impulse invariance method.

To see how poles and zeros of an analog filter are mapped using the impulse invariance method, consider
an analog filter that has a system function

P A/\‘
H(,(S) = Z ¢ S
S — S

k=1
The impulse response, h, (1), is

Il
ha(t) = Z A u(t)
k=1
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Therefore, the digital filter that is formed using the impulse invariance technique is

P p
h(n) = ha(nTy) = Ae"u(nTy) =Y Awe")'u(n)

k=1 k=1

and the system function is

r Ak
Hiz)=) ——— (9.10)

=1 —enliz~
Thus, a pole at s = s; in the analog filter is mapped to a pole at z = ¢*”: in the digital filter,

1 I

——t -
s — Sk | —euTiz-!

The zeros, however, do not get mapped in any obvious way.

The Bilinear Transformation
The bilinear transformation is a mapping from the s-plane to the z-plane defined by

21 —z""!

:f—lﬁ—z“' 9.11)

s

Given an analog filter with a system function H,(s), the digital filter is designed as follows:

21—z
H(Z)Z Ha(?\l—'.z')

The bilinear transformation is a rational function that maps the left-half s-plane inside the unit circle and maps
the jQ-axis in a one-to-one manner onto the unit circle. However, the relationship between the jQ-axis and the
unit circle is highly nonlinear and is given by the frequency warping function

QT
w = 2arctan(7) 9.12)

As aresult of this warping, the bilinear transformation will only preserve the magnitude response of analog filters
that have an ideal response that is piecewise constant. Therefore, the bilinear transformation is generally only
used in the design of frequency selective filters.

The parameter T, in the bilinear transformation is normally included for historical reasons. However, it does
not enter into the design process, because it only scales the j<2-axis in the frequency warping function, and this
scaling may be done in the specification of the analog filter. Therefore, T, may be set to any value to simplify the
design procedure. The steps involved in the design of a digital low-pass filter with a passband cutoft frequency
wp, stopband cutoff frequency w;, passband ripple §,, and stopband ripple &, are as follows:

1. Prewarp the passband and stopband cutoff frequencies of the digital filter, w, and w;, using the inverse
of Eq. (9./2) to determine the passband and cutoff frequencies of the analog low-pass filter. With

T, = 2, the prewarping function is
Q= tan(ci)>
2

2. Design an analog low-pass filter with the cutoft frequencies found in step | and a passband and stopband
ripple 8, and §,, respectively.

3. Apply the bilinear transformation to the filter designed in step 2.

EXAMPLE 9.4.3 et us design a first-order digital low-pass filter with a 3-dB cutoff frequency of w, = 0.257 by applying
the bilinear transformation to the analog Butterworth filter

H(l = T
© =177,
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Because the 3-dB cutoff frequency of the Butterworth filter is 2., for a cutoff frequency w. = 0.257 in the digital filter, we
must have

2 (0.25n 0.828
Q. = — tan =
T, 2 T,

Therefore, the system function of the analog filter is

|

H(I N —————
)= 7357, /0828

Applying the bilinear transformation to the analog filter gives

| 142!
Hiz = H“(s)l»v:% ST QO8N0 — /(] 0-29209— 0.4159z"!

Note that the parameter T, does not enter into the design.

9.4.3 Frequency Transformations

The preceding section considered the design of digital low-pass filters from analog low-pass filters. There are
two approaches that may be used to design other types of frequency selective filters, such as high-pass, bandpass,
or bandstop filters. The first is to design an analog low-pass filter and then apply a frequency transformation to
map the analog filter into the desired frequency selective prototype. This analog prototype is then mapped to
a digital filter using a suitable s-plane to z-plane mapping. Table 9-5 provides a list of some analog-to-analog
transformations.

Table 9-5 The Transformation of an Analog Low-pass Filter with a
3-dB Cutoff Frequency 2, to Other Frequency Selective Filters

Transformation Mapping New Cutoff Frequencies
. ' v
Low-pass s — oY s Q,
P
High o B 9
igh-pass $ = = p
2+ QQ,
Bandpass s— Q, R N 2, 2,
s(2, — )
S(Qu - Ql)
Bandsto s — B B — Q, Q,
P YT QQ, o

The second approach that may be used is to design an analog low-pass filter, map it into a digital filter
using a suitable s-plane to z-plane mapping, and then apply an appropriate frequency transformation in the
discrete-time domain to produce the desired frequency selective digital filter. Table 9-6 provides a list of some
digital-to-digital transformations. The two approaches do not always result in the same design. For example,
although the second approach could be used to design a high-pass filter using the impulse invariance technique,
with the first approach the design would be unacceptable due to the aliasing that would occur when sampling the
analog high-pass filter.

9.5 FILTER DESIGN BASED ON A LEAST SQUARES APPROACH

The design techniques described in the previous section are based on converting an analog filter into a digital
filter. It is also possible to perform the design directly in the time domain without any reference to an analog
filter. This section describes several methods for designing a digital filter directly.
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Table 9-6 The Transformation of a Digital Low-Pass Filter with a Cutoff Frequency w, to Other Frequency
Selective Filters

Filter Type Mapping Design Parameters
o 77—« sinf{@, — w)/2]
Low-pass 27— o= —————
l —az™! sin[(w. + @) /2]

w, = desired cutoff frequency

High-pass 7> — 2t a= _cosllw +w)/2]
grp I+az — cosl(e, — @))/2]
w, = desired cutoff frequency
Bandpass | ot — — 2 —LeB/E T Dl +1E - D/ + D) o = SOl + 0)/2]
[(B—1D/(B+ DIz72 = [2aB/(B+ DIz7' + 1 cos[(we2 — wi1)/2]
B = cotl(w. — w.)/2] tan(w, /2)

w., = desired lower cutoff frequency

. = desired upper cutoff frequency
Bandstop RN 272 = 20/(B 4+ DIz +1(1 = B)/(1 + B)] - — cosl{(w,1 + w2)/2]
(1 =B/ +Blz72 = 2a/(B+ D]z™" + 1 cos[(w1 — w2)/2]

B = tan[(w.2 — w,1)/2] tan(w,./2)

w.) = desired lower cutoff frequency
., = desired upper cutoff frequency

9.5.1 Padé Approximation

Let h,(n) be the unit sample response of an ideal filter that is to be approximated by a causal filter that has a unit
sample response, A(n), and a rational system function,

q
. > btz
H@y=Y hme" = L — 9.13)
n=0 1 + a(k)z™*

Because H(z) has p + g + | free parameters, it is generally possible to find values for the coefficients a(k) and
b(k) so that h(n) = hy(n)forn = 0,1, ..., p + g. The procedure that is used to find these coefficients is to
write H(z) = B(z}/A(z) as follows,

A(z)YH(z) = B(z)

and note that, in the time domain, the left-hand side corresponds to a convolution

P
a(n) * h(n) = h(n) + Za(k)h(n — k) = b(n)
k=1

(note that b(n) is a finite-length sequence that is equal to zero for n < O and n > ¢). Setting h(n) = hy(n) for
n=0,1,..., p+gqg resultsin aset of p + ¢ + 1 linear equations in p + ¢ + | unknowns,

L b(n) n=0.1,...,q
ha(n — k) = 14
hd<n>+ga<k> a(n = k) ’o neg gt p (9.14)
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that may be solved using a two-step approach. In the first step, the coefficients a(k) are found using the last p
equations in Eq. (9./4), which may be written in matrix form as

ha(q) ha(g — 1) o halg —p+ D | a(l) ha(g + 1)
ha(g + 1) ha(q) e hag—p+2) )| a@ ha(g +2)
ha(g+p—1) haylg+p—2) - ha(q) a(p) ha(q + p)

Assuming that these equations are linearly independent, the coefficients may be uniquely determined. In the
second step, the coefficients b(k) are found from the first g + 1 equations in Eq. (9./4) as follows:

P
b(n) = ha(n)+ Y atbdhgn —k)  n=0,1,....q
k=1

Although Padé’s method produces an exact match of h(n) to hy(n) forn = 0. 1...., p + g, because h(n) is
unconstrained for n > p + ¢q, the Padé method does not generally produce a good approximation to /,4(n) for
n>p-+gq.

9.5.2 Prony’s Method

With a least-squares approach to filter design, the problem is to find the coefficients a(k) and b(k) that minimize
the least-squares error

U
€= lhaln) = h(m)* 9.15)
n=0

where U is some preselected upper limit. Because £ is a nonlinear function of the coefficients a(k) and b(k),
solving this minimization problem is, in general, difficult. With Prony’s method, however, an approximate
least-squares solution may be found using a two-step procedure as follows. Ideally, because [see Eq. (9.14)]

p
ha(n) + Za(k)hd(n —k=0 n>qg+1
k=1

the first step is to find the coefficients a(k) that minimize

oC

£ = Z e*(n)

n=qg+I

14
where e(n) = hy(n) + Za(k)hd(n — k)
k=1

Once the coefficients a(k) have been determined, the coefficients b(k) are found using the Padé approach of
forcing h(n) = hy(n)forn =0,1, ..., q:

=

b(n) = Za(k)hd(n —k) O<n<g
k=1

The coefficients a(k) that minimize £ may be found by setting the partial derivatives of £ equal to zero,

9E
dalk) —

k=0.1....,p
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and solving for the unknowns a(k). Setting the derivatives equal to zero produces the following set of linear
equations:

rg(t. )y rg(1,2)  -- rg(1, p) a(l) rq(1,0)
ra. 1) rg(2,2) - a2, p) a(2) ra(2,0)
. ) . . = - . (9.16)
ralp, 1y ra(p.2) - ra(p.p) || a(p) ra(p, 0)
where ratk, Dy =" hq(n — Dhg(n k)
n=qg+I

is the correlation of h;(n).

9.5.3 FIR Least-Squares Inverse

The inverse of a linear shift-invariant system with unit sample response g(#) and system function G(z) is the
system that has a unit sample response, A(n), such that

h(n)x g(n) = &(n)

or H(z)G(z) =1

In most applications, the system function H(z) = 1/G(z) is not a viable solution. One of the reasons is that,
unless G(z) is minimum phase, 1/G (z) cannot be both causal and stable. Another consideration comes from the
fact that, in some applications, it may be necessary to constrain H (z) to be an FIR filter. Because 1/G(z) will be
infinite in length unless G (z) is an all-pole filter, constraining 4(n) to be FIR would only be an approximation to
the inverse filter.

In the FIR least-squares inverse filter design problem, the goal is to find the FIR filter /(n) of length N such
that

h(n) x g(n) = 8(n)

The filter that minimizes the squared error

£=Z]mm2
n=0

N-1
where e(n) = 8(n) — h(n) x g(n) = 8(n) = >_ h()g(n —1) 9.17)
=0
may be found by solving the linear equations
Nl
&) k=0
zymmu—n_ﬂo k=12 N—l 9.18)
o0
where relk) = Zg(n)g(n — k)

n=(

In many cases, constraining the least-squares inverse filter to minimize the difference between /(n) % g(n)
and 8(n) is overly restrictive. For example, if a delay may be tolerated, we may consider finding the filter h(n)
so that
h(n) x g(n) ~ 8(n — ny)
for some delay ng. In most cases, a nonzero delay will produce a better approximate inverse filter and, in many

cases, the improvement will be substantial. The least-squares inverse filter with delay is found by solving the
linear equations

N-] ,
—k k=0.1,...,
{g(ﬂo ) no ©9.19)

h(Dry(k —1)=
’Z:;’ & k=l10+1 ..... N
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Solved Problems

FIR Filter Design

9.1 Use the window design method to design a linear phase FIR filter of order N = 24 to approximate the
following ideal frequency response magnitude:
|lw| < 0.2

Hy(e’*)| =
Hate™I =1, 027 < |w| <7

The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency w, = 0.27. With
N = 24, the frequency response of the filter that is to be designed has the form

24
H(e’) =" h(me™"

n=0
Therefore, the delay of h(n) is « = N /2 = 12, and the ideal unit sample response that is to be windowed is

sin[0.2 (n — 12)]

) = = o

All that is left to do in the design is to select a window. With the length of the window fixed, there is a trade-off
between the width of the transition band and the amplitude of the passband and stopband ripple. With a rectangular
window, which provides the smallest (ransition band,

0.9
Aw =21 - — =0.075
w T o T

and the filter is

sin[0.2(n — 12)] 0<n<24
h(n) = (n—12)m
0 otherwise

However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of §; = 0.089. With a Hamming
window, on the other hand,

0<n<?24

2nn>] sin[0.27(n — 12)]
- 12)m =

h(n) =10.54 — 0.46 —_—
(n) [ cos( N

and the stopband attenuation is 53 dB, or §; = 0.0022. However, the width of the transition band increases to

33

Aw =27 - = 0.275
w 7t24 0 T

which, for most designs, would be too wide.

9.2 Use the window design method to design a minimum-order high-pass filter with a stopband cutoff
frequency w; = 0.227, a passband cutoff frequency w, = 0.287, and a stopband ripple §; = 0.003.

A stopband ripple of §, = 0.003 corresponds to a stopband attenuation of «;=—201log §; = 50.46. For the minimum-
order filter, we use a Kaiser window with

B =0.1102(x; — 8.7) = 4.6
Because the transition width is Aw = 0.067, or Af = 0.03, the required window length is

o, —7.95
N=—"""""_9867
14.36Af
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Rounding this up to N = 99 results in a type II linear phase filter, which will have a zero in its system function at
z = —1. Because this produces a null in the frequency response at w = m, this is not acceptable. Therefore, we
increase the order by | to obtain a type 1 linear phase filter with N = 100.

In order to have a transition band that extends from w, = 0.227 to w, = 0.287, we set the cutoff frequency of
the ideal high-pass filter equal to the midpoint:

The unit sample response of an ideal zero-phase high-pass filter with a cutoff frequency w. = 0.257 is

sin(0.25m n)

hyp(n) = 8(n) —
nm

where the second term is a low-pass filter with a cutoff frequency w. = 0.257. Delaying hp,(n) by N /2 = 50, we

have .
sin[0.257(n — 50))

ha(n) = 8(n — 50) — = 50)%

and the resulting FIR high-pass filter is
h(ny = hy(n) - win)

where w(n) is a Kaiser window with N = 100 and 8 = 4.6.

9.3 Given a desired frequency response H,(e/®), show that the rectangular window design minimizes the
least-squares error

1 T . .
Eus = 5= | |Ha(e’*) — H(e/)Pdw
27 J

For this problem, we use Parseval’s theorem to express the least-squares error £, 5 in the time domain:

Eis= ) lha(n) ~ h(m)]?

If we assume that A(n) is of order N, with A(n) =0 forn < Oandn > N,

N oC
Eis =Y lhatm) = hmI + Y IhamPP + > Tha(n)?

n=0 n=—0c n=N+1

Because the last two terms are constants that are not affected by the filter h(n), the least-squares error £, 5 is minimized
by minimizing the first term, which is done by setting h(n) = hy(n) forn = 0,1, ..., N (i.e., using a rectangular
window in the window design method).

9.4  If hy(n)is the unit sample response of an ideal filter, and h(n) is an N th-order FIR filter, the least-squares
error

| : o
ELs = —/ |Hy(e!”) — H(e!*)|"dw
27 ),

is minimized when h(n) is designed using the rectangular window design method. If £ is the squared
error using a rectangular window, find the excess squared error that results when a Hanning window is
used instead of a rectangular window: that is, find an expression for

gex =5H _ER

where £y is the squared error using a Hanning window.

Using Parseval’s theorem. it is more convenient to express the least-squares error in the time domain as follows:

Eis= Y lhatn) — h(m)?

n=-00
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Because e(n) = hy(n) — h(n) = hy(n) forn < Oandn > N,
N N
o =En —Er =Y lhatn) = wy(Wha(* =Y lha(n) = we(mha(n)?

n=0 n=()

where wy(n) and wg(n) are the Hanning and rectangular windows, respectively. However, the second sum is equal
to zero. Therefore, the excess squared error is simply

N N
o = 3 tha(n) = wu(mha(mP =Y 11— wy(m)Plha(n)]?

n=0 n=0

~i 0.5+ 0.5cos 2mn
= .5 . s\~

n=0

2
|ha(m)?

which is the desired relationship.

Consider the following specifications for a low-pass filter:

0.99 < |H(e’?) < 1.01  0<low| <037
|H(e/?) <001 0357 <|w| <7

Design a linear phase FIR filter to meet these specifications using the window design method.

Designing a low-pass filter with the window design method generally produces a filter with ripples of the same
amplitude in the passband and stopband. Therefore, because the passband and stopband ripples in the filter speci-
fications are the same, we only need to be concerned about the stopband ripple requirement. A stopband ripple of
8; = 0.01 corresponds to a stopband attenuation of —40 dB. Therefore. from Table 9-2 it follows that we may use
a Hanning window, which provides an attenuation of approximately 44 dB. The specification on the transition band
is that Aw = 0.057, or Af = 0.025. Therefore, the required filter order is

3.1
N=->_ =124
Af

and we have

2mh
=0.5-0. —_— 4
w(n) = 0.5 5cos(124) O0<n<I12

With an ideal low-pass filter that has a cutoff frequency of w. = 0.325 (the midpoint of the transition band), and a
delay of N /2 = 62 so that h4(n) is placed symmetrically within the interval [0, 124], we have

sin[0.3257 (n — 62))
w(n — 62)

hzl(n) =

Therefore, the filter is

0<n<124

27m):| . sin[0.3257(n — 62)]

h(n) = | 0.5 — 0.5 cos( 22
) [ Cos( 124 T(n — 62)

Note that if we were to use a Hamming or a Blackman window instead of a Hanning window, the stopband and
passband ripple requirements would have been exceeded, and the required filter order would have been larger. With
a Blackman window, for example, the filter order required to meet the transition band requirement is

5.5

N=—""0
0.025

=220

We would like to filter an analog signal x,(t) with an analog low-pass filter that has a cutoff frequency
fe = 2 kHz, a transition width Af = 500 Hz, and a stopband attenuation of 50 dB. This filter is to be
implemented digitally, as illustrated in the following figure:
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9.7

9.8

E -
za(t) ' z(n) y(n) Ya(t)
—— CD 2 H(elv) = D-C |——o

Design a digital filter to meet the analog filter specifications with a sampling frequency f; = 10 kHz.

With a sampling frequency of 10 kHz, the digital filter should have a cutoff frequency w, = 27 f,./f, = 0.4 and a
transition bandwidth Aw = 27 Af/f, = 0.1x. For a stopband attenuation of S0 dB, we may use a Kaiser window
with

B =0.1102(50 — 8.7) = 4.55
For the length of the window, we have

~201log(8)—7.95 50 —7.95
14.36 - Af T 14.36 - (0.05)

= 58.56

or N = 59. Finally, the unit sample response of the ideal filter that is to be windowed is a low-pass filter with a
cutoff frequency w, = 0.4 and a delay N /2 = 29.5. Therefore,

h(n) = w(n)hy(n)

where w(n) is a Kaiser window with N = 59 and 8 = 4.55, and

sin[0.4mr(n — 29.5)]

ha(m) = — 30 5m

Find the Kaiser window parameters, B and NV, to design a low-pass filter with a cutoff frequency w, = 7 /2,
a stopband ripple §, = 0.002, and a transition bandwidth no larger than 0.1x.

The parameter 8 for the Kaiser window depends only on the stopband ripple requirements. With §; = 0.002,
o, = —2010g(0.002) = 53.98

and we have
B =0.1102(a; — 8.7) = 4.99

The window length, &V, on the other hand, is determined by the stopband ripple, &;, and the transition width as

follows: 7 05
N=B T 64.1
14.36Af

Therefore, the required filter order is N = 65.

Consider the following specifications for a bandpass filter:
|H(e’®)| < 0.01 0<|w <02r

0.95 < |H(e’*)| <1.05 037 < || <0.7r1
|H(e’®) <0.02 087 <|w| <7

(a) Design a linear phase FIR filter to meet these specifications using a Blackman window.

(b) Repeat part (a) using a Kaiser window.
(a) For this filter, the width of each transition band is Aw = 0.1. The ripples in the lower stopband, passband,
and upper stopband are §, = 0.01. 8, = 0.05, and §; = 0.02, respectively, and are all different. Because the

ripples produced with the window design method will be approximately the same in all three bands, the filter
must be designed so that it has a maximum ripple of §, = 0.01 in all three bands. With

—20logd, = —40
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it follows that the Blackman window will satisfy this requirement. An estimate of the filter order necessary to
meet the transition bandwidth requirement of Af = 0.05 with a Blackman window is

N =22 <110
Af

Finally, for the unit sample response of the ideal filter that is to be windowed, we have

o
,1([(’7) = 5/ Hd(ejm)é"“““(la)

where H,(e’?) is the frequency response of an ideal bandpass filter. For the cutoff frequencies of Hy(e/®), we
choose the midpoints of the transition bands of H (e’®). Therefore,

) | 0.257 < |w| < 0.757
[Hy(e!)| =

0 otherwise

Thus, the unit sample response of the ideal bandpass filter with zero phase is

| 4 .
hy(n) = E[ Hy(e'”ye"dw

n

i —0.257 0.757
= — eMdw + — e"dw
21 J _.75n 21 Jo25n
—0.252 0.757
and /I([(Vl) — . ejna) + ~ ()jmu
2jnm 0750 SJNT 0.257
1 . A . .
— : [04]0.2577" . €~/U.7Snn +e](l.757m o e/O.ZSfrn]
2jnmw
sin(0.75zn)  sin(0.25mn)
nm nm

However, we want to delay this filter so that it is centered at N /2 = 55. Therefore, the unit sample response of
the filter that is to be windowed should be
sin[0.757(n — 55)]  sin[0.25m(n — 55)]

(n —55)m (n—55m

h{[(n) =

(b) For a Kaiser window design, the order of the filter that is required is

N = —2010g(0.01) — 7.95

= 44.64
14.36(0.05) 6

Therefore, we set N = 45. Next, for the Kaiser window parameter, with an attenuation of 40 dB, we have
B = 0.5842(40 — 21)" 4+ 0.07886(40 — 21) = 3.3953

Therefore, the filter is
' h(n) = w(n) - hy(n)

sin[0.757 (n — 22.5)] B sin[0.257 (n — 22.5)]

where hy(n) =
(n —22.5)m (n —22.5)m

9.9 Suppose that we would like to design a bandstop filter to meet the following specifications:

0.95 < |H(e/?)| < 1.05 0<|w| <027
|H(e!?)| < 0.005 0.227 < |w| < 0.757
0.95 < |H(e/?)| < 1.05 087 <|w| <m
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9.10

(a) Design a linear phase FIR filter to meet these filter specifications using the window design method.

(b) What is the approximate order of the equiripple filter that will meet these specifications?

(a) Recall that with the window design method, the ripples in the passbands and stopbands will be approximately
the same, along with the widths of the transition bands. Because the smallest ripple occurs in the stopband, we
must pick a window that provides a stopband attenuation of

a; = —2010g(0.005) = 46.02
Thus, we may use a Hamming window or a Kaiser window with
B = 0.5842(cr; — 21)™* 4 0.07886(a; — 21) = 4.09

The transition width between the lower stopband and the passband is Aw = 0.027 and between the upper
stopband and the passband it is Aw = 0.05. Therefore, we must design the filter to meet the lower transition
bandwidth requirement, Aw = 0.027, or Af = 0.01. Thus, for 1 Hamming window, the estimated filter order
is

3.3

N = — =330
0.01 3

For a Kaiser window, on the other hand. the filter order is

s — 1.95
N = ‘}17_9 = 265.1
14.36Af
or N = 266.

(b) For an equiripple filter, the filter order may be estimated as follows,

_ —10log(s,6;) — 13 —101og(0.05 - 0.005) — 13

N = = 157.67
14.6Af (14.6)(0.01) 157.6

or N = 158.

Use the window design method to design a type IT bandpass filter according to the following specifications:

|H (e’?)] < 0.0050 lw] < 0.1m
0.995 < |H(e’“)| < 1.0050 0.257 < |w| < 0.67
|H (e/*)| < 0.0025 0.87 < |w|

With the window design method, the amplitudes of the ripples in each band of a multiband filter will be approximately
equal, and the transition bands will have approximately the same width. Because the requirements on the peak ripple
in the three bands of this bandpass filter are not the same, it is necessary to design the filter so that it has the smallest
ripple in all three bands, which, in this case, requires that we set §; = 0.0025. In addition, because the transition
bands do not have the same width, it is necessary to set the desired transition width, Aw, equal to the smaller of the
two (Aw = 0.157).

With «; = —201log §; = 52 dB, it follows that we may use a Hamming window, and with

NAf =33

this gives an estimated filter order of
33

0.075
For a type Il filter, however, N must be odd, so we set N = 45.
Now we must find the unit sample response of the ideal bandpass filter that is to be windowed. Because the
width of both the upper and lower transition bands will be approximately Aw = 0.157, for the ideal filter we set the
lower cutoff frequency equal to

44

A
W) = 0.257 — T“’ =0.1757
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and the upper cutoff frequency equal to
Aw
wr = 0.6 + T = 067571'

Therefore, the magnitude of the frequency response of the ideal filter is

| 0.1757 < |w| < 0.6757

Hx j —
Hate™)| 0 otherwise

Repeating the steps in the derivaticn of the unit sample response of an ideal bandpass filter given in Prob. 9.8, using
the given cutoff frequencies and a delay of N /2 = 22.5, we have

sin[0.675m(n — 22.5)]  sinj0.1757(n — 22.5))
(n —22.5)m (n —22.5)r

haln) =

Use the window design method to design a multiband filter that meets the following specifications:

0.99 < |H(e/®)| < 1.01 0<w<03r
[H(e!)| <0.01 0.357 < w < 0.557
0.49 < |H(e’*)) < 0.51 06m <w<m

To design a multiband filter that meets these specifications using the window design method, we begin by finding
the ideal unit sample response. For the frequency response of the ideal filter, we set the cutoff frequencies equal to
the midpoint of the transition bands. Therefore, we have

l lw| <0.3257
|Hyte!)) =3 0 0.3257 < lw| <0.5757
0.5 0575 <|lw| <n

The unit sample response of this ideal filter may be found easily by noting that H,(e/”) may be written as an allpass
filter with a gain of 0.5 minus a low-pass filter with a gain of 0.5 and a cutoff frequency w; = 0.575m plus a low-pass
filter with a gain of | and a cutoff frequency of w» = 0.3257. Therefore, if we assume that H,(e/“) has linear phase
with a delay of n,

sin[0.575m(n — ny)]  sin[0.3257(n — ny))

h = (.55(n) — 0.5
atn) ) (n —ny)m (n —ng)m

Having found the ideal unit sample response. the next step is to choose an appropriate window. When h,(n) is
multiplied by a window w(n), the frequency response is the convolution of the transform of the window W (/) with
Hy(e’”). Assuming that the length of the filter is long compared to the inverse of the transition width, so that the
discontinuities between the bands may be treated independently. the ripples in the three bands will be approximately
the same as they would be for a low-pass filter, except that they will be scaled by the amplitude of the discontinuities
at the band edge. Therefore, if the ripple in the lower passband and the stopband are &, the ripple in the upper
passband will be 4, /2. Consequently. we must use a window that would produce a low-pass filter with a ripple no
larger than 0.01. Thus, we may use a Hanning window. Finally, to determine the filter order, note that because the
widths of both transition bands are the same, Aw = 0.057. an estimate of the filter order is

3.1

N=—=124

Af
Note that another way to design this filter would have been to design a network of three filters in parallel: a low-pass
filter, a bandpass filter, and a high-pass filter. This approach would give greater control over the ripple amplitudes
and the transition widths but would require a trial and error approach to establish the specifications for the three
filters.

Shown in the following figure is the magnitude of the frequency response of a type I high-pass filter that
was designed using the Parks-McClellan algorithm.
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A |H(e’)|

The stopband cutoff frequency is w; = 0.4, and the passband cutoff frequency is w, = 0.57. In
addition, the stopband ripple is 6, = 0.0574, and the passband ripple is §, = 0.1722.

(@) Determine the weighting function, W (¢/*), used to design this filter, and find the length of the unit

sample response.

(b) Describe approximately where the zeros of the system function of this filter lie in the z-plane.

(a) To determine the weighting function, we observe that

=<

L3
8
Therefore, the weighting function used to design the filter has a value in the stopband that is 3 times larger than

the value in the passband. This makes the errors in the stopband more costly and, therefore, smaller by a factor
of 3. So, a weighting function that could have been used to design this filter is as follows:

Jao 3 5
Wie™) = I 057 <w<m

To determine the length of the unit sample response, recall that a type I equiripple high-pass (or low-pass)
filter must either have L + 2 or L + 3 alternations where L = N /2. Therefore, the order of the filter may
be determined by counting the alternations. For this filter, we have nine alternations, which are labeled in the
figure below.

146,
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Thus, L = 7 or, in the case of an extraripple filter, L = 6. However, in order for h(n) to be an extraripple
filter, w = 0 and w = 7 must horh be extremal frequencies (see Prob. 9.15). Because w = 0 is not an extremal
frequency, this is not an extraripple filter. Therefore, L =7 and N = 14.

(by Because the order of this filter is N = 14, the system function has 14 zeros. For a linear phase filter, we know
that the zeros of the system function may lie on the unit circle, or they may occur in conjugate reciprocal pairs.
From the plot of the frequency response magnitude, we see that |H (¢/®)| = 0 at w, = 0.1757, w, =~ 0.37,
and wy = 0.397. Therefore, there are three zeros on the unit circle at these frequencies. Because there must
also be zeros at the conjugate positions, z = ¢~/ fori = 1, 2, 3, these unit circle zeros account for six of the
fourteen zeros. In addition to these, there must be a conjugate pair of zeros at z = re*/®* where wy ~ 0.77.
These zeros account for the dip in |[H(e/®)| at @ = 0.7m. Because the filter has linear phase, in addition to
this pair of complex zeros, there must be a pair at the reciprocal locations, z=! = re*/“+. For the same reason,

there will be zeros on the real axis at z = o, and z = 1/«,, as well as zeros on the real axis at z = —q, and
z = —1/ay, where «) and «, are positive real numbers that are less than 1. These four zeros account for the
minima in |H (e/“) at w = 0 and w = 7. A plot showing the actual positions of the 14 zeros of H(z) is given
below.
A Im(z)
o]

Unit circle

Re(z)

With the frequency sampling method, the frequency samples match the ideal frequency response exactly.
Derive an interpolation formula that shows how the frequency samples H (k) are interpolated.
The frequency response of an FIR filter of length N is

N-1

H(e') =Y h(me "

n=0
If h(n) is designed using the frequency sampling method.

N-—]
Hk) = Zh(n)e‘f’”"“” = Hy(e/¥™"Ny  k=0,1.....,N—1
n=0

Because these frequency samples correspond to the N -point DFT of A(n), the unit sample response may be expressed
in terms of these samples as follows:

e
h — H(k Li2mnk/N
(= ; (kye

Substituting this into the expression above for H(e/*), we have

N—1 N-1 N—1
: 1 — I
HE") =) {—N > Hkyer /™ ]e”"‘" = AZO:H(k)

n=0 k=0

N—1
2 e-/'n(w—an(/N)
n=0

Using the geometric series to evaluate this sum, we find
| — o Jlo—2mk/NIN sin %(w — mk -

. | v=l N -1 ) e
He'?) = — Hk)——mo = Hky——2 " N 7 —ji5 Ne— 55
(€ ) N kzﬁ; ( ) | — ¢ Jlo=21k/N) Z ( )N sin l((l) _ 2nk)€

k=0 2 N

which is the desired interpolation formula.
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Given a low-pass filter that has been designed and implemented, either in hardware or software, it may be
of interest to try to improve the frequency response characteristics by repetitive use of the filter. Suppose
that A(n) is the unit sample response of a zero phase FIR filter with a frequency response that satisfies

FILTER DESIGN

the following specifications:

| =8, < HE!) < 1 +6, 0<w<w,

—8 < H(e'?) < 8 w, <w<nm

(Note that H (e/“) having zero phase implies that H(e/®) is real-valued for all w).

(a)

(b)
(@)

)

Show that a type I equiripple low-pass filter of order N may have either L 4+ 2 or L 4 3 alternations where

If a new filter is formed by cascading /(n) with itself,
g(n) = h(n) * h(n)
G (e’?) satisfies a set of specifications of the form

A <Gy <B 0<ow<w,

C <GE'*)<D ws <w<Tm

Find A. B, C, and D in terms of §, and &, of the low-pass filter 4(n).
If 8, <« 1 and §; < 1, what are the approximate passband and stopband ripples of G (e/*)?

With a cascade, g(n) = h(n) * h(n), the frequency response is
G(e*) = H*(e!)
Therefore, in the passband we have
(1-8,7 <G <(1+8,) 0<w=w,

and in the stopband we have

0<G) <8 w<w<n
If we assume that §, < |,

(1=8,) =1-28,+6 ~1-25,
and (148, = 1428, +8 ~1+25,

Therefore, the passband specifications are approximately

1 -24, < G(e') < 1425, 0=w=w,

In other words, the passband ripple is approximately doubled. In the stopband, however, the ripple is much
smaller with the cascade. In fact, in decibels, the stopband attenuation is doubled. With other systems built
out of interconnections of /(n) it is possible to improve the filter characteristics in both the passband and the

stopband.

L =N

For a type [ linear phase filter of order N, the frequency response is

H(?jw) — A(ejm)efwa/Z

L

where A(e’?) = Za(k)cos kw

k=0
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with L = N /2. Because the desired response, A,(e/¢), and the weighting function, W (e/*), are piecewise constant,

dA(el?)
dw

dE(E’Im)
dw

d )
= —{(W(e/)NAs (') — A(e’)]) = —
dw

However, because A(e’*) is a trigonometric polynomial of degree N /2 in cos w,

L L
A(e’?) = Zu(k)coskw = Za(k)(cosw)‘

k=0 k=0

dA((’jw) L L—1
then = —sinwZl«:c(k)(coscu)"’I = — sian(k + Da(k + Dicos w)*

dw k=0 k=0

Therefore, the derivative of A(e/®) with respect to w is always equal to zero at @ = 0 and w = m. In addition,
however, the derivative is equal to zero at L — | other frequencies between 0 and r, which correspond to the roots of
the polynomial given by the sum. Therefore, A(¢/“) may have at most L + | local maxima and minima. In addition,
however, the band-edge frequencies, w, and w,, must also be extremal frequencies. Thus, the maximum number of
alternations is L + 3. Because the alternation theorem requires a minimum of L + 2, the optimum filter may have
either L + 2 or L + 3 alternations.

Suppose that we would like to design a type | equiripple bandstop filter of order N = 30.

(a) What is the minimum number of alternations that this filter must have?

(b) What is the maximum number?

(a) For a type I linear phase FIR filter of order N, the alternation theorem states that the minimum number of
alternations is L + 2, where L = N /2. Therefore, with N = 30, the minimum number of alternations is 17.

(b) As shown in Prob. 9.15, with
H(é"'w) — A(e/w)e—}wN/l

A(e’?), and thus E(e/®). will have, at most, L + | local maxima and minima in the interval [0, 7]. In addition,
however, there may be alternations at the band-edge frequencies. For a bandstop filter, there are four band
edges: the lower passband cutoff frequency, the lower stopband cutoff frequency, the upper stopband cutoff
frequency, and the upper passband cutoff frequency. Therefore, the maximum number of alternations is L + 5.

We would like to design a bandstop filter to satisfy the following specifications:
0.98 < [H(e/")| < 1.02 0<w=02r
|H(e’*)] < 0.001 0.227 < w <0.78x7

0.95 < |H(¢/?)| < 1.05 087 <w<mn

(a) Estimate the order of the equiripple filter required to meet these specifications.
(b) What weighting function W (¢/©) should be used to design this filter?

(¢) What is the minimum number of extremal frequencies that the optimal filter must have?

(a) The design formula used to estimate the order for a low-pass equiripple filter is

N = —101log(8,6,) — 13
- 14.6Af

With the smaller of the two passband ripples being equal to §, = 0.02, a stopband ripple of §; = 0.001, and a

transition width Aw = 0.027, an estimate of the filter order is

_ —10log(0.02-0.001) - 13

N = =232
14.6 - (0.01)

However, because this estimate is for a low-pass filter, the actual filter order required is closer to N = 242,
which may be confirmed by computer.
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9.18

9.19

(b) With a ripple of §; = 0.02 in the lower passband, 8, = 0.001 in the stopband, and 8; = 0.05 in the upper
passband, an appropriate weighting function would be

1 0<w=<02n
W(e'”) = { 20 0.227 < w < 0.787
04 087 <w<m
However, scaling these weights by any constant would not change the design.

(¢) Assuming a filter order of N = 232, which is a type I design, the amplitude response has the form
_ L
A(e??) = Z a(k)cos kw

k=0

where L = N /2 = 116. Therefore, the minimum number of extremal frequencies is L + 2 = 118.

We would like to design an equiripple high-pass filter of order N = 64. The stopband ripple is to be no
larger than 8, = 0.001, and the passband ripple no larger than 6, = 0.01. If we want a passband cutoff
frequency equal to w, = 0.727, what will the stopband cutoff frequency be approximately equal to?

For an equiripple low-pass filter, an approximate relation between the filter order N, the passband and stopband
ripples, 8, and 3y, respectively, and the transition width Af', is given by

N = —10log(3,8) — 13
B 14.6Af

Because a high-pass filter may be formed from a low-pass filter as follows,
N
hyp(n) = 3(” - 7) — hyp(n)

this formula is also applicable to high-pass filters. With N = 64, 8, = 0.01, and §; = 0.001, we find that

37

= (14.6)6d) = 0.0396

Af

Therefore, if the passband cutoff frequency is w, = 0.727. the stopband cutoff frequency will be approximately

w, =w, =2 Af = 0.64087

Suppose that we want to design a low-pass filter of order N = 63 with a cutoff frequency w, = 0.37
and a stopband cutoff frequency w; = 0.327.

(@) What is the approximate stopband attenuation that would obtained if this filter were designed using
the window design method with a Kaiser window.

(b) Repeat part (a) for a equiripple filter assuming that we want §, = ;.
(a) For a Kaiser window design. the relationship between the filter order N, the stopband attenuation o, =

—201log é,. and the transition width Af is
oy — 7.95

N==2_—7
1436Af

Solving this for the stopband attenuation, we have
a; = 14.36- NAf +7.95=16.99
which corresponds to a stopband (and passband) ripple of

8, = 10716920 — 0,141
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(b) For an equiripple filter, the filter order is approximately
. —10log(8,8,) — 13

N =
14.6Af
With §, = §;, this becomes
o= 13
T 14.6Af
where «; = —201log ;. Solving for «,, we have

o, =14.6- NAf + 13 =22.04

The corresponding stopband ripple is
8, = 10722920 = 0.079

9.20 The linear phase constraint on FIR filters places constraints on the unit sample response and the location
of the zeros of the system function. In the table below, indicate with a check which filter types could
successfully be used to approximate the given filter type.

W TypeLL Type l]i Type IIIiType IVJ

Low-pass filter
High-pass filter
Bandpass filter
Bandstop filter
Differentiator

1

A type I linear phase filter has no constraints on the locations of its zeros. Therefore, a type I filter may be used for
the design of any type of filter. The type II linear phase filter will always have a zero at w = m. Therefore, these
filters should only be used for low-pass and bandpass filters. The type IlI linear phase filter is constrained to have
zeros at w = 7 and w = 0. Therefore, type III filters should only be used for the design of bandpass filters. Finally,
because the type IV filters have a zero at w = 0, they should not be used in the design of low-pass or bandstop filters.
These results are summarized in the table below.

” Type I ’ Type Il 1 Type 111 1 Type IV '

Low-pass filter X X

High-pass filter X X
Bandpass filter X X X

Bandstop filter X

Differentiator X X

IIR Filter Design

9.21 For historical reasons, the design formulas for analog filters are given assuming a peak gain of | in the
passband. In terms of the parameters € and A, the filter specifications have the form

1
—— < |H, ()| <]
T < A

1
H,(jQ)| < —
[H,(j )I_A

Suppose that we would like to use the bilinear transformation to design a discrete-time IIR low-pass filter
that satisfies the following frequency response constraints:

l—cS,,le(ej‘“)lsl—f—S,, 0<w=<w,

|H (/)] < 8, o, <w<m
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Find the relationship between the parameters §, and §; for the discrete-time filter and between the
parameters € and A for the continuous-time filter.

For a digital low-pass filter with a frequency response magnitude
1 =8, < |H@E") < 1+38,

dividing by 1 + §, this becomes
1-346 .
—F < |HE) <1

[+,
Setti 1-4, 1
ettin =
£ 148, Jite
145,\°
we have 1+e= + %
s,
2 .
and €l = 1__*__8_” h_lz.isp
]—5,, (]_8/))2

With a stopband ripple of §;, the normalization of the peak passband gain to | produces a peak stopband ripple of

1+s,

Therefore A=81+86,)

9.22  As the order of an analog Butterworth filter is increased, the slope of |H,(j2)|? at the 3-dB cutoff
frequency, 2., increases. Derive an expression for the slope of | H,(j$2)|* at .. as a function of the filter
order, N.

The magnitude squared of the Butterworth filter’s frequency response is

1

H(jP = ————
= T Gariar
To evaluate the slope of |H,(j2)[* at 2 = ., we may set . = | and evaluate the derivative at Q = 1. Therefore,
with
(JR a=
HGDF =
d o, —2NQWH
we have ag! U=y
Evaluating this at 2 = 1, we have
d
— | H,(j)? =——
dsz' (I o 5

9.23  Show that the frequency response of an N th-order low-pass Butterworth filter is maximally flat at Q@ = 0
in the sense that the first 2N — | derivatives of lH,,(jQ)l2 are equal to zero at 2 = 0.

An Nth-order Butterworth filter has a magnitude squared frequency response given by

|
H(jQ = ——————
1Ha(SD) 14+ (jQ/jSe
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Without any loss in generality, we may assume that Q. = 1 and evaluate the derivative of the function

GO =

at Q = 0. Multiplying both sides of this equation by (1 + Q2¥), we have
GEON +M =1
Differentiating this equation with respect to Q yields
G + ]+ G@RNQ*N ' =0

Setting 2 = 0, we have
G|y, =0

Differentiating a second time gives
G+ QLM+ G/(DUNQN N+ GEQRNEN — H*N 21 =0
Again setting 2 = 0, we have
G"(Q)] o, =0
If we continue to differentiate k times, where k < 2N — I, we have an equation of the form
k—1 )
GPI + QM + ZG(”(Q)F,-(Q) + GQRNQAN —=1)---QN —k + DQ¥F1 =0

i=l1

where G¥)(Q) is the ith derivative of G(£2), and F() is a polynomial in Q. Given that G*/(Q) is equal to zero at
Q=0fori =1,...,k—1,it follows that
GP(R)lg=o =0

Differentiating 2N times, however, we have

2N-1
GOM@)IL+ QM + Y GUQF(R) + G(Q) - 2N)! =0

i=1

Therefore, GM(Q)| = -G )|y, - @N) = —2N)!

which is nonzero, and the maximally flat property is established.

Design a low-pass Butterworth filter that has a 3-dB cutoff frequency of 1.5 kHz and an attenuation of
40 dB at 3.0 kHz.

Given the 3-dB cutoff frequency of the Butterworth filter, all that is needed is to find the filter order, N, that will
give 40 dB of attenuation at 3 kHz, or 2; = 27 - 3000. At the stopband cutoff frequency €2;, the magnitude of the
frequency response squared is

2 1 1

Q=27.3000 010 2N = 2N
14+ (/2 G2 3000 1+2

|H. (i)

Therefore, if we want the magnitude of the frequency response to be down 40 dB at 2, = 27 - 3000, the magnitude
squared must be no larger than 10, or

-4
T+ 2 = 10

Thus, we want
_ log(10* — 1)

2N
log?2

=13.29
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or N = 7. For a seventh-order Butterworth filter, the 14 poles of

1

Hy(s)Ha(=5) = TT 6o

lie on a circle of radius Q. = 27 - 3000, at angles of

_(N+1+20r  (4+kr

6 k=0,1,...,13
¢ N 7
as illustrated in the following figure:
Im(s)
A
- x ' x -~
x T x
/ N
X Q / x
/ ¢ \
1 \
—x x —>» Re(s)
] 1
\ !
X b
\ ’
X X
Sx.d.x”

The poles of H,(s) are the seven poles of H,(s)H,(—s) that lie in the left-half s-plane, that is,

sk = —Q ek k=0,1,273

Except for the isolated pole at s = — €, the remaining six poles occur in complex conjugate pairs. The conjugate
pairs may be combined to form second-order factors with real coefficients to yield factors of the form

Hi(s) = : k=

1.2,3
52 —2Q. cos(kn /T)s + Q2

Thus, the system function of the seventh-order Butterworth filter is

N—-1

Hao =[] = = 2] Q!
e k=0 S T Sk s+ Qe i §2 =29, costkm /T)s + Q2

Let 2, and §2; be the desired passband and stopband cutoff frequencies of an analog low-pass filter, and
let 5, and & be the passband and stopband ripples. Show that the order of the Butterworth filter required
to meet these specifications is

N > logd
~ logk
with the 3-dB cutoff frequency $2. being any value within the range

Q1 = 8,)7 — 117V < Q. < @572 - 1]

The squared magnitude of the frequency response of the Butterworth filter is

1

HGOP = ————
D1 = T Garia ™
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Because |H,(jS2)| is monotonically decreasing, the maximum error in the passband and stopband occurs at the band
edges, 2, and €2, respectively. Therefore, we want

|Ha(j Q)1 = TrGR, a0 2 (1 =38,y
and G = ——— <&
L+ (/7 2)

From the first equation, we have

(&>2N <(1=8,)7—1 (9.20)

Q.
and from the second,
(%)m > 571 ©21)
Q) —°

Dividing these two equations, we have

and taking the logarithm gives

Dividing by
lo (Qp = logk
g Q. )~ g
we have N > logd
log k

(note that the inequality is reversed because logk < 0). Because the right side of this equation will not generally
be an integer, the order N is taken to be the smallest integer larger than (log d)/(log k). Finally, once the order N is
fixed, it follows from Egs. (9.20) and (9.21) that 2, may be any value in the range

Qp[(l —8,,)_2 _ 1]_]/2N <Q. < 95[8;2 _ I]—l/2N

Suppose that we would like to design an analog Chebyshev low-pass filter so that
=8, < |Ha(j)I =1 12| < &2p
[Ha(jE)I < & Q < 18]
Find an expression for the required filter order, N, as a function of 2, &, §,, and 4.

For a Chebyshev filter, the magnitude of the frequency response squared is

1

H(P?= ————
D = o)
-1 <
where Tu(x) = cos(N cos :r]) x] <1
cosh(N cosh™ x) x| > 1

is an Nth-order Chebyshev polynomial. Over the passband, || < Q,, the magnitude of the frequency response
oscillates between 1 and (1 + €2)~'/2. Therefore, the ripple amplitude, 8, is

S, =1—(1+€)'7?
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or e=01-5)7-1
At the stopband frequency €2, we have

1

Ha -Qr P = T 3724 o
[Ha(j$20) et )

which we want to be less than or equal to §2:

emaTa <0
1 +€2TN(Qs/Qp) ’

Therefore,

16(95)2(5?2") (2-1)

Q, 2 (U-06)2-1 &

P

Because (€2,/€2,) > 1, then Ty (€2;/$2),) = cosh(N cosh"(Q_V/Q,,)), and we have

Q, 1
cosh(N cosh™! —) >
Q,) = d

cosh™!(1/d) _ cosh™'(1/d)
~ cosh™ (Q,/9,)  cosh~'(1/k)

or

which is the desired expression.

397

If H,(s) is a third-order type I Chebyshev low-pass filter with a cutoff frequency 2, = | and ¢ = 0.1,

find H,(s)H,(—s).
The magnitude of the frequency response squared for an Nth-order type I Chebyshev filter is

1

H(Y = —— —————
Ha()N I +eTHQ/,)

where Ty (x) is an Nth-order Chebyshev polynomial that is defined recursively as follows,

Tii(x) = 20Ty (x) — Ty (%) k=1

with To(x) = 1 and T,(x) = x. Therefore, to find the third-order Chebyshev polynomial, we first find T,(x) as

follows,
To(x) = 2xTy(x) — To(x) = 2x% — |

and then we have
Ti(x) = 2xTH(x) — T)(x) = 43 —2x —x = x(4x* — 3)

Thus, the denominator polynomial in |H,(j$2)|? is

Q
1+ €2T2(—>
3 S—zp

1 +0.01{QMAQ? -}

[ +0.01Q%(16Q% — 24Q* 4+ 9)

and we have

I
H,(jQ)I =
AU = 75 090 — 0,24 1 0,16

Because [Ho(GI? = [Ha($)Ho(—5)],=,0

to find the rational function
Ga(s) = Hu(s)Ha(’_s)

we make the substitution Q = s/j in |H,(j2)|* as follows:

1 [
Gq(s) = =

I +0.09(s/j)? —0.24(s/j)* +0.16(s/j)° 1 —0.09s52 — 0.24s* — 0.16s°
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Show that the bilinear transformation maps the j$2-axis in the s-plane onto the unit circle, |z| = 1, and
maps the left-half s-plane, Re(s) < 0 inside the unit circle, |z| < 1.

To investigate the characteristics of the bilinear transformation, let z = re’” and s = o + jQ. The bilinear
transformation may then be written as
2:-—1 2 refe — 1
§ = — = =
o+ T, re/v +1

T
2 ri—1 . 2r sinw
T\l +r*+2rcosw 14+r242rcosw

_ 2 rr—1
Therefore, 0= o7 ——————
T. 1 +r2+2rcosw
2 2r sinw
and Q=

T T 142+ 2rcosw

Note that if » < I, then o < 0,and if r > |, then & > 0. Consequently, the left-half s-plane is mapped inside the
unit circle, and the right-half s-plane is mapped outside the unit circle. If » = 1, then o = 0, and

_ 2 2sinw
T T, 2+42cosw

Thus, the jQ-axis is mapped onto the unit circle. Using trigonometric identities, this may be written in the equivalent

form
2 ( w
Q = —tan| —
T, 2

( QT, )
or w = 2arctan >

Let H,(s) be an all-pole filter with no zeros in the finite s-plane,

14 1
H,(s)=A
11:[[ § — S8k

It H,(s) is mapped into a digital filter using the bilinear transformation, will H(z) be an all-pole filter?

With T, = 2, the bilinear transformation is

142!
and the system function of the digital filter is
L 1 £ (1+:z7"
Ho)=A|| ————=A
@ ﬂ |-z I[[]l—z*‘—sk(l+z*‘)
- s -
14z ‘
L 14z

i (D=5 = (1 +50)z7!
This may be written in the more conventional form as follows,

4 l+2_|

Hoy=A]] ——
=z

&

P l
where A=
H I — Sk
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9.30

| .
and oy = i‘—

1 — Sk
Therefore, H(z) has p poles (inside the unit circle if Re(s;) < 0) and p zeros at z = —1. Note that these zeros come
from the p zeros in H,(s) at s = co. which are mapped to z = —1 by the bilinear transformation. Thus, H (z) will

not be an all-pole filter.

Shown in the figure below is the magnitude of the frequency response of a low-pass filter that was designed
by mapping a type I analog Chebyshev filter into a discrete-time filter using the bilinear transformation.

|H (e7)]

Y
€

Find the filter order (i.e., the number of poles and zeros in H(z)).

The magnitude-squared response of a type | analog Chebyshev filter is

I

H(jQP = ————————
e e Y
cos(N cos™' x) lx] <1
where Ty(x) =
cosh(N cosh™' x) x| > 1

is an Nth-order Chebyshev polynomial. Over the passband, || < ., the magnitude of the frequency response
oscillates between 1 and (1 + €2)~'/2, As the frequency varies from Q2 = 010 Q = Q,,, 8 = N cos~'(Q/Q,) varies

from 8 = Nm/2 to 8 = 0. Therefore,
(R Q
T,Q(———) = cos|:N cos™! (A)]
QI’ S-ZI’

oscillates between zero and 1 N 4 1 times over the interval [0. $2,] [i.e., T:VE(Q/Q,,) reaches its maximum or
minimum value N + | times]. The bilinear transformation is a one-to-one mapping of the j-axis onto the unit
circle. Therefore, |H (e/*)|> will alternate N + | times between | and 1/(1 + €7) over the interval |0, w, ], where

Q
w, = [an(Tp)

Because there are six alternations of | H (¢/“)]? in the passband, N+ 1 = 6, and H,,(s) is a fifth-order type | Chebyshev
filter,

5

: 1
H.(s)= A
E S — Sk

where A is a constant. Applying the bilinear transformation to H,(s) results in a discrete-time filter with a system
function H (z) that has five poles inside the unit circle, and five zeros on the unit circle at - = —1 (as shown in Prob.
9.29, the five zeros come trom the five zeros in H,(s) at s = 00).
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Use the bilinear transformation to design a discrete-time Chebyshev high-pass filter with an equiripple
passband with '
0 < |H(e’”)) <0.1 0<w<O0lrx

and 09 <|H@E”) <10 O03n<w<m

To design a discrete-time high-pass filter, there are two approaches that we may use. We may design an analog type |
Chebyshev low-pass filter, map it into a Chebyshev low-pass filter using the bilinear transformation, and then perform
a low-pass-to-high-pass transformation in the z-domain. Alternatively, before applying the bilinear transformation,
we could perform a low-pass-to-high-pass transformation in the s-plane and then map the analog high-pass filter into
a discrete-time high-pass filter using the bilinear transformation. Because both methods result in the same design,
it does not matter which method we use. Therefore, we will use the second approach, because it is a little easier
algebraically.

Given that we want to design a high-pass filter with a stopband cutoff frequency w, = 0.1 and a passband
cutoff frequency w, = 0.3, we first transform the specifications of the digital filter into the continuous-time domain.
With T, = 2 and

®
Q = tan —
2
w?
we have Q, = tan 7 = tan(0.057) = 0.1584
Wp
and Q, = tan > = tan(0.157) = 0.5095

Using the transformation s — [ /s to map these high-pass filter cutoff frequencies to low-pass filter cutoff frequen-
cies, we have

1
Q, = ——— =1.9627
"7 0.5095
d Q=—— =6.
o 7 0.1584 6.3138

Therefore, the selectivity factor for the analog Chebyshev filter is

Q
k===10.3109
Q

With §, = §; = 0.1, the discrimination factor is

I—8,)2—17"
d:[(s_—z”)_l——] = 0.04867

Thus, the required filter order is
_cosh™'(l/d)
~cosh (/&)
Although we should round up to N = 3, with a second-order Chebyshev filter we should come close to meeting the

specifications. Therefore, we will use N = 2.
The next step is to design a second-order low-pass Chebyshev filter with

2.03

0.9 = [H, (jl = 1 0=Q=Q,
[Ho(j$2)] < 0.1 Q= Q

where Q, = 1.9627 and 2, = 6.3138. With

—1-3,
1 + €2
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it follows that

1
€= ——"— —1=02346
(1=3,7

For a second-order Chebyshev filter, we need to generate a second-order Chebyshev polynomial, which is
To(x) = 2xTy(x) — To(x) = 2x> — |

Squaring T,(x), we have
THx) = 4x* —4x? + 1

and, for the magnitude squared frequency response of the Chebyshev filter, we have

1 1

H,(jQ)? = =
D= Trarara)y = T+ i@,y — 4@/ a7 + 1]

Substituting for the given values of 2, and €, we have

1
1.2346 — 0.24362? + 0.0632Q*

Ho(jQ)) =

Next, we find H,(s)H,(—s) with the substitution Q2 = —js,

1
1.2346 + 0.2436 s2 + 0.0632 s*

Hoy(s)Ho(—=$) = |H,(jQlg_j, =

Factoring the denominator polynomial, we find that the two roots in the left-half s-plane are at
sy =—1.1163 + j1.7811 s =7 =-1.1163 — j1.7811

Thus, the second-order Chebyshev filter is

si8y 3.9778

I
Ha = =
O = =G G oo —s) 1223275 + 44185

Now we transform this low-pass filter into a high-pass filter with the low-pass-to-high-pass transformation s — 1/s.
This gives
3.9778s*

H,(s) =
() = 17223275 1 4418552

Finally, applying the bilinear transformation, we have

1—2z71\?2
3.9778
1+ z!
_ ! 1 — —1\ 2
pr22327( 122 ) faass( 122
1+ z-! 142z}

Multiplying numerator and denominator by (1 + z~')? gives

H(z) =

_ 3.9778(1 — z~')?

T Q42242232701+ 271 — z7Y) + 4.4185(1 — z-1)?
05201 - 2:71 427

T 1-0.894z71 +0.4164z2

H(z)

The magnitude of the frequency response is plotted in the following figure.
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|H (e7)]

Y
€

As a check on the design, we may compute the magnitude of the frequency response at w = 0.1, which is
|H(e/)]ym0.1x = 0.1044

which comes close to satisfying the stopband specifications. At the passband edge, we have
|H(e'*)|u=03x = 0.9044

which does satisfy the constraint.

We would like to design a digital low-pass filter that has a passband cutoff frequency w, = 0.3757 with
8, = 0.01 and a stopband cutoff frequency w; = 0.5 with §; = 0.01. The filter is to be designed using
the bilinear transformation. What order Butterworth, Chebyshev, and elliptic filters are necessary to meet
the design specifications?

To find the required filter order, we begin by finding the discrimination factor and the selectivity factor for the analog
low-pass filter prototype. With 8, = §, = 0.01, the discrimination factor is

d= [QLZ—‘]W _ [(0.99)*2 -1

1/2
= | =1425.10"°
821 (0.01)~2 — 1}

For the selectivity factor, we first find the cutoff frequencies for the analog prototype. With w, = 0.3757 and
w,; = 0.5, we prewarp the frequencies as follows (T, = 2),

0.375
Q, = tan( : ”) = 0.6682

Therefore, k=

For the Butterworth filter, the required filter order is

logd
N=28

= 16.25
log k

or N = 17. For the Chebyshev filter,
__cosh™'(1/d)

T coshTi(1/k)y

so the minimum order is N = 8. Finally, for the elliptic filter, we first evaluate
q = qo + 245 + 15q; + 150g;°

11— (1 — k2

where =
D= T kA
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With £ = 0.6682, we have
_11-Q- 0.66822)!/4

W= 3T - oeesy 03
and q = 0.0369
Therefore, for the filter order, we find og(16/d?
o
- Ti‘;?r;q—)) =481

or N =5.

9.33  With impulse invariance, a first-order pole in H,(s) at s = s; is mapped to a pole in H(z) at z = ¢%7T:

1 1
—2
s — S 1 —esTsz—!

Determine how a second-order pole is mapped with impulse invariance.

If the system function of a continuous-time filter is

) = or

the impulse response is
ha(t) = te™ u(t)

where u(r) is the unit step function. Sampling 4,(¢) with a sampling period T;, we have
h(n) = ho(nT,) = nTee*" ™ u(n)

Using the z-transform property

z dX(z)
nx(n) «— —z
dz
and the z-transform pair
z |
a'u(n) «—> ————
1—az!

it follows that the z-transform of h(n) is

d 1 T,e%Tez™!
H(z) = —T:ZZ [1 _ e:kaz—I] T (A=)

Therefore, for a second-order pole, we have the mapping

1 . T,estTsz~!
(s —s)? (1 — esTiz=1)2

9.34  Suppose that we would like to design and implement a low-pass filter with

0.99 < |H(e’®)| < 1.01 0 < w < 0407
|H(e’®)| < 0.001 0427 <w<m

(a) What order FIR equiripple filter is required to satisfy these specifications?
(b) Repeat part (a) for an elliptic filter.

(¢) Compare the complexity of the implementations for the equiripple and elliptic filters in terms of the
number of coefficients that must be stored, the number of delays that are required, and the number
of multiplications necessary to compute each output sample y(n).

(a) With a transition width of Aw = 0.027, an estimate of the required filter order for an FIR equiripple filter is

_ —10log(3,é,) - 13 —1010g(0.01 - 0.001) — 13 50-13

= = =253.4
N 14.6Af 14.6(0.027)/27 (14.6)(0.01) >

or N = 254.
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(b) For an elliptic filter, we have

1-8,)2—-11"
d=[(——7_2”)—1] =142-107*

Q, tan(w,/2)

d k= —F — =0.9367
an Q, tan(w,/2)
11— — k)4
With = =0.1282
t D= T r =k
and g = qo +2q; + 153 + 150" = 0.1283
log(16/d?
then 5 logll6/d’) _ o
log(1/g)
or N = 10.

(¢) For an FIR filter of order N = 254, the output y(n) is

254

y(ny =Y htk)x(n ~ k)

k=0

Therefore, implementing this filter requires N = 254 delays. Since this filter has linear phase, exploiting the
symmetry of the unit sample response,

h(n) = h(254 — n)

it follows that we must only provide storage for 128 filter coefficients, #(0), A(1), ..., h(127). In addition, we
may simplify the evaluation of y(#n) as follows,

254 126
y(n) = Zh(k)x(n — k)= Zh(k)[x(n —kY+ x(n =254 + k)] + h(127)x(n — 127)
k=0 k=0

Thus, 128 multiplications are required to compute each value of y(n). For a 10th-order elliptic filter,

10

10
yimy = atky(n = k) + ) blk)xtn — k)
k=1 k=0

Therefore, it follows that 21 memory locations are required to store the coefficients a(k) and b(k), and 10 delays
are required for a canonic implementation. In addition, we see that 21 multiplications are necessary to evaluate
each value of y(n). However, since the zeros of H(z) lie on the unit circle, the coefficients b(k) are symmetric,

b(k) = b(10 — k)

By exploiting this symmetry, we may eliminate five multiplications per output point and five memory locations.

The input x,(¢) and output y,(¢) of a continuous-time filter with a rational system function are related by
a linear constant coefficient differential equation of the form

o S
a(k)——ya(t) = ) blk)——x,(¢)
P dt* — de*
Suppose that we sample x,(¢) and y, (1),

x(n) = x,(nTs) y(n) = y,(nTy)

and approximate a first derivative with the first backward difference,

ix ) — Vxn) = l[x(n) —x(n—1)]
dr™ T
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Approximations to higher-order derivatives are then defined as follows,
dk

mxa(r) — V®Ox(n) = V[V x(n))

Applying these approximations to the differential equation gives the following approximation to the
differential equation:

p q
Y c)VPyn) = dv©Px(n)
k=0

k=0
The first backward difference defines a mapping from the s-plane to the z-plane that is given by

§= —
T,

Determine the characteristics of this mapping, and compare it to the bilinear transformation. Is this a

good mapping to use? Explain why or why not.

As with the bilinear transformation, the first backward difference will map a rational function of s into a rational
function of z. To see how points in the s-plane map to points in the z-plane, let us write the mapping as follows,

|
Z =
1 —sT,

Note that with s = o + j,
1
(1 = oT)? +(QT,)?
and it follows that points in the left-half s-plane (o < 0) are mapped to points inside the unit circle, |z| < 1. Thus,
stable analog filters are mapped to stable digital filters.
Now, let us look at how the j2-axis is mapped to the z-plane. With s = j2, we see that

1 I+ jQT,

ETT=jar T 1+ @Ly

|z|* =

which is an equation for a circle of radius r = § centered at z = 3. To see this, note that

1 l 1 1 l jsth
Z_E—_—._E—i.__ -
1 — jQT, 1 - jQT,
| + jQT,
| s
Thus, 2—5’_%- —l—jQTS =3

The properties of the mapping are illustrated in the following figure.

Im(z)

A
z-plane

Unit circle

Since the jQ2-axis does not map onto the unit circle, the frequency response of the digital filter produced with this
mapping will not, in general, be an accurate representation of the frequency response of the analog filter except when
w is close to zero. In other words, the frequency response of a continuous-time filter will be well preserved only for
low frequencies.
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Use the impulse invariance method to design a digital filter from an analog prototype that has a system

function

H() s+a
(8) = ——————
(s +a)? + b2

To design a filter using the impulse invariance technique, we first expand H,(s) in a partial fraction expansion as
follows,

Ho(s) s +a Ay n As

als) = = ; ;

(s+aYX+bt s+(@+jb) s+ (a—jb)
s+a

h A = DYH ()] seea jp = | ———— =1

wihere 1 [(S +a+] ) I(Y)]I a- ji |:S+a_jb:|:=_(,_jh 2
s+a

and Ay =[(s+a— jPYH,(Ns=—uqjp = | ————— =1

2= [( JOYH($)]s=—ut jb |:s+a+jb:|.c_4u+jb 3

Therefore, with
1 1
H.(s) = 2 + 2
(s s+a+jb s+a—jh

using the mapping given in Eq. (9./0), we have

1 1 —aTs 1
3 5 1 — ™% cos(bT;)z
H(z) = 2 + < = :
1 — e(*d*]h)T\ Z—l 1 — 6’(_”+Jh)T‘Z-] | — 2€70T‘ COS(bT_\-)Zfl + (’_2‘77‘?2—2
Note that the zero at s = —a is mapped to a zero at z = ¢~“"* cos(hT,). Thus, the location of the zero in the discrete-

time filter depends on the position of the poles as well as the zero in the analog filter.

With the impulse invariance method, the unit sample response of a digital filter is formed by sampling
the impulse response of the continuous-time filter,

h(n) = h,(nT,)
Another approach is to use the step invariance method in which the step response of the digital filter is
formed by sampling the step response of the continuous-time filter.

(a) Design a digital filter with the step invariance method using the continuous-time prototype

s+a

H,(s) = Gtal+p

(b) Determine whether or not the filter is the same as that which would be designed using the impulse
invariance method.

(a) If the impulse response of a continuous-time filter is /,(7), its step response 1s

S(I(’) = f ha(t)d‘f

-0

Therefore, because the Laplace transform of the step response is related to the system function H,(s) as follows,
1
Sa(s) = ;Hu(s)

| s+a

then Se(s) = - —————
¢ (5) s(s+a)l+h?
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To design a digital filter using step invariance, we first perform a partial fraction expansion of S, (s)

»

) e P R —
T s U s+a+4+jb 0 s+a—jb

s+a a
where Ap = [s84(5))s=0 = [mi]_r:o Tatm

. s+a —a+ jb
AL =1 +a+ jb)Su()imaesp = [ ° } /
s=—a-1b

s(s +a—jh) T 2@ + %)

and A‘g = [(S +a-— jb)Su(s)]‘\‘:—u-H'b = [

T 2a? + b?)

s+a _ —a—jb
sGs+a+b) i

1 —a+ jb —a — jb

a
Therefore, Sa = -t j i
erefore (s) A+ brs | 2aR+bA)s +a+t jb) + 2(a’ + b*)(s +a — jb)

Sampling s,(t),
s(n) = s5,(nT,)

and finding the z-transform of s(#n) corresponds to the substitution

| 1

—
s—o | —ealsz=l
Thus, the z-transform of the step response is
S() = a 1 —a+ jb 1 —a — jb 1
9= a2+ b2 T =zl 2+ b)) | — eIzl 2(g2 4 p2) | — glmatib)T g1
_a ] N I —a+{acos(hT,) + bsin(bT,)}e “Tsz7!
T @2+bh 1=z @24 b2 | —2cos(hT, ez 4 e~ T2
The system function of the digital filter is then
a (I —z7YY  ~a 4+ {acos(bT,) + bsin(bT,)}e 4\ z~!

H(z)=(1-z""S8(z) = : _
2) = (1 =279%) a? + b? " (a*+ b?) 1 —2cos(hT,)e= T z=F 4 ¢=2aTvz =2

(b) Using impulse invariance, we see from Prob. 9.36 that the system function is

1/2 1/2 | —es bT)z™!
H(z) = / —— + / - = - cos(bT,)z 5
| — el-u~iDTiz=1 1 — e(—(l+JI7)T\Z—l | — 2T COS(hT\')Z_I + 9_201\-2*2

Note that although H(z) has the same poles as the filter designed using step invariance, the system functions
are not the same. Therefore, the two designs are not equivalent.

9.38 Suppose that we would like to design a discrete-time low-pass filter by applying the impulse invariance

method to a continuous-time Butterworth filter that has a magnitude-squared function

1

) 2 _
D1 = T Gasianw
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The specifications for the discrete-time filter are
=8, <|H(/™)| <1 0<w<w,
|H@e*) <8, o swsw
Show that the design is not affected by the value of the sampling period that is used in the impulse
invariance technique.

In the absence of aliasing, the impulse invariance method is a linear mapping from H,(j Q) to H(e/®) for |w| < 7.
This mapping is
H(e'”) = H,(jQ)

w=0T, ‘(U' =7

Let us assume that there is no aliasing (this will be approximately true if the filter order is large enough). The required
filter order is then

N> logd
~ logk
where d, the discrimination factor, is
_ 172
d = (1 - ‘Sp) 2 | /
372 —1
and &, the selectivity factor, is
k= 2,
Q

Clearly, the discrimination factor does not depend on the sampling period T;. In addition, with w, = 2,7 and

w, = Q,T,, it follows that
_ L(),,/T\. _ wp,

T o/T, o,

which does not depend on the sampling period. Therefore, the required filter order is independent of T,. Next, if we
expand the system function of the Butterworth filter in a partial fraction expansion. we have

N Al\v
H(,(S) = Z P .
D T4

where the poles, s, are

AN + 1+ 2k)m
J 2N

With impulse invariance, the system function of the discrete-time filter becomes

N A,
H(z)= Z [ — pliz1

k=1

sk:Q(.exp{ } k=0.1,....N -1

and it follows that the poles of H(z) are at

= CXP{Sk T\} = CXP{Q: T.vek}

T
h 6, = (N + 1 4+ 2k)y—
where k exp{j( + 1+ )2N}

Because w, = .7, is the 3-dB cutoff frequency of the low-pass filter in the discrete-time domain, it is fixed by the
filter specifications. Therefore, the poles of H (z) will not be affected by the sampling period T;. For example, if we
try to decrease T, to reduce aliasing, this would require an increase in §2, to preserve the cutoff frequency. Thus, it
follows that the design is not affected by 7.

9.39  Use the impulse invariance method to design a low-pass digital Butterworth filter to meet the following
specifications:

0.9 < |H(e/)| < 1 lw| < 0.27

[H(e/?)| < 0.2 03r <w<m
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In the absence of aliasing, the impulse invariance method is a linear mapping from H,(j2) to H (e/?) for |w| < 7,
which is given by
w| <7

H(e!) = H,(j )|

w=QT;

Therefore, in order to simplify the design, we will assume that there is no aliasing and then, after the design is
completed, check to see that the filter satisfies the given specifications. Because the parameter 7, does not enter into
the design using the impulse invariance method (see Prob. 9.38), for convenience we will set T, = 1.

The first step, then, is to design an analog Butterworth filter according to the following specifications:

0.9 < [H,(j2)] <1 0<(Q] <0.27
|H,(j2)] < 0.2 037 < Q

To determine the filter order, we compute the discrimination factor,

1—5,)2-17"
d= [(—5J)~—l—] = 0.0989

¥

and the selectivity factor,
0.27

k= = 0.667
0.3n
Thus, we have
N =184 _ 5
log k

which, when rounded up, gives N = 6.
For the 3-dB cutoff frequency of the Butterworth filter, we will select €2, so that

|Ha(j )] = (0.9

2
Q=0.2n1 (

that is, so that the Butterworth filter satisfies the passband specifications exactly (this will provide for some allowance
for aliasing in the stopband). With

|

2
. _ v o
(H,(j )|Q:0.27r 1+ (0.27/Q)"2
0.27\"
we have 1 =081|1+|—
Q.
0.2\ "
Q.
which gives
0,81 1/12
0.19

Therefore, the magnitude of the frequency response squared is

1

. 2
HGSF = = (£2/0.7090)'2

and the 12 poles of
|
H,($)H,(—8) = ——————
(=) = T a0m
lie on a circle of radius 2, = 0.7090, at angles

_ 2k + D

= k=0,1,2,...,11
12
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as illustrated in the following figure:

Im(s)
A
4x—---x\
‘/ ~
X X
, .
/ A
X 0.7090 X
! ]
t —> Re(s)
\ 1
X X
\ ’/
\ /
X x
~. -
P

Thus, the poles of the Butterworth filter are the three complex conjugate pole pairs of H,(s)H,(—s) that are in the
left-half s-plane:

50 = 57 = 0.7090¢/7/12
$3 = s = 0.7090¢7°7/1

54 = 52 = 0.7090¢7"17/12

Therefore, with

5

Hy(s) = []-—

*=0 S — 8k

forming second-order polynomials from each conjugate pole pair, we have

(0.7090)°

H,(s) =
) (s2 + 0.3670s + 0.5027)(s% + 1.0027s + 0.5027)(s2 + 1.3697s + 0.5027)

The next steps, which are algebraically very tedious, are to perform a partial fraction expansion of H,(s),

6
Ay
Hi(5) = 3 g gppearm

k=t °

perform the transformation

s — S5 | — e%z™!
and then recombine the terms. The result is

0.0007z "' 4+ 0.0105z 72 + 0.0168z 73 + 0.0042z~4 4 0.0001z°
1 —3.3431z7! 4+ 5.0150z-%2 — 4.2153z73 + 2.0703z* — 0.5593z5 + 0.06462°

H(z) =

The magnitude of the frequency response in decibels is plotted in the following figure.
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9.40

20 log | H (e7¥)|

A
0 4

Il Il i
1 T

n/4 w/2 37rl/4

Y
€

\
™

As a final check on the design, evaluating H (e/“) at w = 0.2 and w = ().37, we find that

[H(e'")] =027 = 0.9219

and [H (e | mp3x = 0.2045

Therefore, the filter exceeds the passband specifications and comes close to meeting the stopband specifications. If
this filter is unacceptable, the design could be modified by decreasing €2, to improve the stopband performance.

Repeat Prob. 9.39 using the bilinear transformation.

Using the bilinear transformation to design a Butterworth filter according to the specifications given in Prob. 9.39,
we first use the transformation
2 1)
Q= —tan| —-
T, 2

to map the passband and stopband frequencies of the digital filter to the cutoff frequencies of the analog filter. With
T, = 2, we have

Q, = xan<‘i;£) = tan(0.17) = 0.3249

and Q, = tan(%) = tan(0.157) == 0.5095

As we found in Prob. 9.39, the required filter order 1s N = 6. For the 3-dB cutoft frequency of the analog Butterworth
filter, we may choose any frequency in the range

QI =82 = 117" < <5 —1) "™

or 0.3667 < Q. <0.3910

If we select €2, =0.3667, the passband specifications will be met exactly, and the stopband specifications will be
exceeded. Conversely, if we set 2, = 0.3910. the stopband specifications will be met exactly, and the passband
specifications exceeded. Picking a frequency between the two extremes will produce an improvement in both bands.
Because the stopband deviation is twice that of the deviation in the passband. we will set 2, = 0.3667 in order to
improve the stopband performance. From Table 9-4, we find the coefficients in the system function of a sixth-order
normalized (€2, = 1) Butterworth filter to be

1
§0 4+ 3.8637s% + 7.464 15 + 9.141653 -+ 7.464157 4+ 3.8637s + |

Hu(s) =

To obtain a Butterworth filter with a cutoff frequency €2, = 0.3666, we perform the low-pass-to-low-pass transfor-

mation
s

s —>
0.3667
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This gives
(0.3666)°
$% 4+ 1.4165s5° + 1.0033s* + 0.4505s5% + 0.1349s2 + 0.0256s + 0.0024

Finally, we apply the bilinear transformation

Ha(s) =

1 —z!

§= ——
1+ z7!

which yields the digital filter

0.0006 4 0.0036z 7! + 0.0090z~2 + 0.0120z % + 0.0090z~* + 0.0036z~> + 0.0006z ~°
1 —3.2942z7" 4 4.8985z2 — 4.0857z~% + 1.9932z* — 0.5353z5 + 0.0615z ¢

H(z) =

At the passband cutoff frequency, w, = 0.27, the magnitude of the frequency response is
[H (€'} =022 = 0.0905

and at the stopband cutoff frequency, @, = 0.37, the magnitude of the frequency response is
|H(e/“)weo3n = 0.1392

Therefore, this filter meets the given specifications.

9.41 Use the bilinear transformation to design a first-order low-pass Butterworth filter that has a 3-dB cutoff
frequency w, = 0.2m.

If a digital low-pass filter is to have a 3-dB cutoff frequency at w. = 0.27, the analog Butterworth filter should have
a 3-dB cutoff frequency

Q = tan(%) — tan(0.17) = 0.3249

For a first-order Butterworth filter,

i Qz Qc' Q('
Ha Ha - = . = : = .
(s) (—s) l+(S/_]Q()2 93—52 Q‘+ Qc—s

Therefore, the system function is

Q,
Ha(s) = s+ Q

With ., = 0.3249, applying the bilinear transformation

_ ] —z!

s =
14zt

0.3249 0.3249(1 +z7") _0.2452(1 +z7)

we have H) = 175 T (1 -z)403249(1 42z 1050957
1+z-1+0.3249 : ' ’ o

9.42 A second-order continuous-time filter has a system function

1

Ha(s)zv—a+s—b

where a < 0 and b < 0 are real.

(a) Determine the locations of the poles and zeros of H(z) if the filter is designed using the bilinear
transformation with 7; = 2.

(b) Repeat part (@) for the impulse invariance technique, again with T, = 2.
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(a) The bilinear transformation is defined by the mapping

| -z~
s =
142z}
Therefore, for the given filter, we have
1 | 142! 14zt
H(z) = T o = - -
|-z -z (l1-a)y—z=" (1l —-ph)y—z"!
—f _a —
1 +z-! 1+ z-!
which has poles at
| I
zZ| = and I = ——
| —a 1—bh

To find the zeros, it is necessary to combine the two terms in the system function over a common denominator.

Doing this, we have

(A= —z"[I+zH+ [ -—a)=z7"J1+27")

H(z) =

(I —a) =z "{(l = b) —z7"]

Q—-a—-b)—(a@a+h)z' =277

(1 —a)—27"[(1 =h) —z7")

Finding the roots of the numerator may be facilitated by noting that H,(s) has a zero at s = oo, which gets
mapped to z = — | with the bilinear transformation. Therefore, one of the factors of the numerator is (1 4+z7").
Dividing the numerator by this factor, we obtain the second factor, which is [(2 —a — b) — 2z7']. Thus, H(z)

has zeros at

2y =

—1 and Zy =

2
2—a—»b

(b) With the impulse invariance technique, for first-order poles, the mapping is

Therefore, with T, = 2 we have

1 1

H(Z):l

which has two poles at

s — 5 | —enTsz -l
i 2 — ezl — eyl
T T %1 24,1 2,1
— ez I —ez (1 —e2z7 )] — e?Pz7 1)
2
zp =e™ and 7y = e

and only one zero, which is located at

9.43 The system function of a digital filter is

(a) If this filter was designed using impulse invariance with T, = 2, find the system function, H,(s), of
an analog filter that could have been the analog filter prototype. Is your answer unique?

(b) Repeat part (a) assuming that the bilinear transformation was used with T, = 2.

(a) Because H(z) is expanded in a partial fraction expansion, the poles at z = ¢, in H(z) are mapped from poles

in H,(s) according to the mapping

Therefore, if T, = 2,

T
oy =eHh

Sy = % In oy
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and one possible analog filter prototype is

H,(s) = i L

1
=1 5 — 3 In oy
Because the mapping from the s-plane to the z-plane is not one to one, this answer is not unique. Specifically,

note that we may also write

ap = €~\A-T\+i2”

Therefore, with T, = 2, we may also have
se =3 Inoy + jm
and another possible analog filter prototype is

P Ak

Hy(s)=)_

= s - (;— Inoy — j)

With the bilinear transformation, because the mapping from the s-plane to the z-plane is a one-to-one mapping,
with T, = 2,

and the analog filter prototype that is mapped to H(z) is unique and given by

L Ay $ Al +5)
Ha(s)—kz;l ]—S_;(l—ak)+(]+ak)s
U1 - =
1+

9.44 A continuous-time system is called an integraror if the response of the system y,(t) to an input x,(t) is

I
Yo(t) = f xq(T)dT

oo

The system function for an integrator is

(a)

(b)

(a)

|
Hy(s) = ;

Design adiscrete-time “integrator” using the bilinear transformation, and find the difference equation
relating the input x(n) to the output y(n) of the discrete-time system.

Find the frequency response of the discrete-time integrator found in part (a), and determine whether
or not this system is a good approximation to the continuous-time system.

With a system function H,(s) = 1/s, the bilinear transformation produces a discrete-time filter with a system
function
) T, | +z7!
YT 2=

The unit sample response of this filter is
T
h(n) = 7[[‘('1) +u(n = 1)]
and the difference equation relating the output y(») to the input x(n) is

T,
y(n)=yn—1)+ 7'[X(n)+X(n - D)
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Because the frequency response of the continuous-time system, H,(j2) = 1/, is related to the discrete-time
filter through the mapping
2 w
Q= —tan| —
T, 2

the frequency response of the discrete-time system is

Jw ' T\' w
H(e )=H"(jQ)|Q=7zflun(g)=v27C0t 5

Note that because H (¢/“) goes to zero at w = 7, then H(e/®) will not be a good approximation to H,(j ) =
1/j €2 except for low frequencies. However, if w < 1, using the expansion

2

cosx & 1 —1x x < 1

and sinx & x x K1

we have

<(u) cos(w/2) | — Hw/2)?
cot = "‘

2) " Sinw/2) | w2

and we have, for the frequency response,

. T, cos(w/2) T; 12
joy = T8 ZRTE)  TA 2L
HE) = 35 e S o= i)

Therefore, for small w
H(e’) ~ T,Ha(jR)

9.45 Let H,(j2) be an Nth-order low-pass Butterworth filter with a 3-dB cutoff frequency Q..

(a)

(b)

(a)

Show that H,(s) may be transformed into an Nth-order high-pass Butterworth filter by adding N
zeros at s = 0 and scaling the gain.

What is the relationship between the corresponding digital low-pass and high-pass Butterworth
filters that are designed using the bilinear transformation?
For an Nth-order low-pass Butterworth with a system function /,(s),

1
L+ 57/ Q202

HG(S)H(I(_S) =

Adding N zeros to H,(s) at s = 0, we have

(_ I)NSZN

H,(s)H, (—s) = *HT/]W

Multiplying numerator and denominator by (jQ./s)?" yields
™
H($HH (=) = ————
() Hq(—5) TF G
which corresponds to a magnitude-squared frequency response

2N
Qt

. 2 _
IHAI(jQ)‘ - |+(Q(/Q)2N

Scaling H,(j2) by Q7" results in a filter that has a frequency response G ,(j2) with a squared magnitude

1 |

G (jQI = Ho(JQP =
| a(./ )l Q?_NI a(.’ )l ]+(Q(/Q)2N

which is a high-pass filter with a cutoff frequency .. Specifically, note that |G,(jQ)|? is equal to zero at
Q =0, and that |G,(jQ)|> — 1 as Q — o0,
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(b) Applying the bilinear transformation to a low-pass Butterworth filter, we have

H()H(z™") = Ho($)Ho (=) sz = Va1
I

| —z7!

l+z!
_ (1 + 2 VG
- (le')ZN(] 427N (] =z

L+ ()2

For the high-pass filter, on the other hand, we have

Il

GG = Gu()Ga(=$) sz Vs

1
I +z!
| FO 2N
+ () (l+:_,)
(1 _Z-—l)ZN

T U=z Q)N+ 2N

2N

Therefore, we see that the poles of the low-pass digital Butterworth filter are the same as those of the high-pass
digital Butterworth filter. The zeros, however, which are at z = —1 in the case of the low-pass filter, are at
z = 1 in the high-pass filter. Thus, except for a difference in the gain, the high-pass digital Butterworth filter
may be derived from the low-pass filter by flipping the N zeros in H(z)atz = —ltoz = I.

9.46 The impulse invariance method and the bilinear transformation are two filter design techniques that
preserve stability of the analog filter by mapping poles in the left-half s-plane to poles inside the unit
circle in the z-plane. An analog filter is minimum phase if all of its poles and zeros are in the left-half
s-plane.

(a) Determine whether or notaminimum phase analog filter is mapped to aminimum phase discrete-time
system using the impulse invariance method.

(b) Repeat part () for the bilinear transformation.

(a) With impulse invariance, an analog filter with a system function

His = Yy 2

will be mapped to a digital filter with a system function

HEo=Y — M
(2)= Z ] — enTiz—]

k=1

Rewriting this system function as a ratio of polynomials, it follows that the locations of the zeros of H (z) will
depend on the locations of poles as well as the zeros of H,(s), and there is no way 10 guarantee that the zeros
lie inside the unit circle. A simple example showing that a minimum phase continuous-time filter will not
necessarily be mapped to a minimum phase discrete-time filter is the following:

s+ 8 7 6

H,,(S) = = -
s+ (s +2) s+ 1 s+ 2
Using the impulse invariance method with 7, = |, we have
7 6 I+ (6™ —Te )z
Hz) = _ i _ + (6e e )z
| —etz-! | —e 227! (1 —e'z7")1 —e—2z71)

which has a zero at
z=—(6e"" —7e7%) ~ —1.256

Therefore, although H,(s) is minimum phase, H (z) is not.
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The mapping between the s-plane and the z-plane with the bilinear transformation is defined by
L 1+ (T;/2)s
I —(T,/2)s
Therefore, a pole or a zero at s = 53, becomes a pole or a zero at
L+ (T /D)8,
1= (T, /sy

If H,(s) is minimum phase, the poles and zeros of H,(s) are in the left-half s-plane. In other words, if H,(s)
has a pole or a zero at s = s, where s, = oy + j<,

Zk

(Ik<0

_ D Tysl QT sl Ty +ol+ 9
1= (/25

Therefore, ’
erefore 1z 12/ T) — i [2/Ts) — o2 + Q3

and it follows that a pole or a zero in the left-half s-plane will be mapped to a pole or a zero inside the unit
circle in the z-plane (i.e., H(z) is minimum phase).

The system function of a continuous-time filter H,(s) of order N > 2 may be expressed as a cascade of
two lower-order systems:

H,(s) = Hg(s)Hga(s)

Therefore, a digital filter may either be designed by applying a transformation directly to H,(s) or by
individually transforming H,(s) and H,»(s) into H,(z) and H»(z), respectively, and then realizing H(z)
as the cascade:

(a)

(b)
(@)

H(z) = H\(2)Hy(z)

If Hy(z) and Hy(z) are designed from H,,(s) and H,,(s) using the impulse invariance technique,
compare the cascade H (z) = H,(z)H,(z) with the filter that is designed by using the impulse invari-
ance technique directly on H,(s).

Repeat part (a) for the bilinear transformation.
Due to sampling, aliasing occurs when designing a digital filter using the impulse invariance method. Because
the operations of sampling and convolution do not commute, the filter designed by using impulse invariance on

H,(s) will not be the same as the filter designed by cascading the two filters that are designed using impulse
invariance on H, (s) and H,,(s). In other words, if

ha(’) = hal(’) * hul(')

then h(n) # hy(n) * hy(r)
where h(n) = h,(nT,), hi(n) = hy(nTy), and hy(n) = h,(nTs). As an example, consider the continuous-time
filter that has a system function
1 | 1
+Ds+2) s+l 542

Using the impulse invariance technique on H,(s) with T; = 1, we have

fla(s) =

e ] L (e —e
@)= l—e 'zl 1—e2z70 " (1l —e-'z7)1 —e2z7)

On the other hand, writing H,(s) as a cascade of two first-order systems,
1
s+1 s+2
and using the impulse invariance method on each of these systems with T, = 1, we have
| 1

[ RO

H,(s) =

H(z)= l

which is not the same as the previous filter.
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(b) With the bilinear transformation, (7, = 2)

| -z 1 -zt -zt
= H”(m) N ”"'( 4z )an(] +z"'> = IR

and the two designs are the same.

What are the properties of the s-plane-to-z-plane mapping defined by

] 427!
§ =

-z
and what might this mapping be used for?
This mapping is very similar to the bilinear transformation which. with 7, = 2, is

| + !

In fact, this mapping may be considered to be a cascade ot two mappings. The first is the bilinear transformation,
and the second is one that replaces - with —:z.,

This mapping reflects points in the z-plane about the origin and. for points on the unit circle, corresponds to a shift
of 180°: 7
H (o = H(=2), oo = H(=¢'") = H(e“’””’)

Therefore, this mapping has the same properties as the bilinear transformation, except that the j$2 axis is mapped
onto the unit circie by the mapping

QT,
w = 2 arclan — +

Because the unit circle is rotated by 180, this mapping may be used to map low-pass analog filters into high-pass
digital filters, and high-pass analog filters into low-pass digital filters.

Least-Squares Filter Design

9.49

Suppose that the desired unit sample response of a linear shift-invariant system is
hy(n) = 3(%)"u(n)
Use the Padé¢ approximation method to find the parameters of a filter with a system function

h(O) + b(1)z™!

H(z) =
(2) 1 +a(l):z"!
that approximates this unit sample response.

Using the Padé approximation method, with p = ¢ = |, we want to solve the following set of linear equations for
b(0), (1), and a(1):

h(0) 0 h(0)

ha(ly  hy(0) [ ‘ ]: bil)
a(l)

h(2)  hy(1) 0

Substituting the given values for h (1), we have

3 0 h(0)

I
3/2 3 [a(l)} = | A
3/4  3)2 0
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Using the last equation, we may easily solve for a(l),

or

3 3

Having found a(1), we may solve for b(0) and h(1) using the first two equations

or

30 | REQ
32 3|1 =172 | b(D)

h0y=3  b(l)=0

Therefore, we have

3

H(z)= ————
@) 1 -0.5z""

Notice that the unit sample response corresponding to this system exactly matches the given unit sample response. In
general, however, this will not be true. A perfect match depends on ,(n) being the inverse z-transform of a rational
function of z, and it depends upon an appropriate choice for the order of the Padé approximation (the number of
poles and zeros).

Let the first three values of the unit sample response of a desired causal filter be h4(0) = 3, hy(1) = %,

and h4(2) = .

(a) Using the Padé approximation method, find the coefficients of a second-order all-pole filter that has
a unit sample response 4(n), such that A(n) = hy(n) forn =0, 1, 2.

(b) Repeat part (a) for a filter that has one pole and one zero.

(¢) Repeat part (a) for an FIR filter that has two zeros.

(a)

For a second-order all-pole filter, the equations for the Padé approximation are

ha(0) 0 0 1 h(0)
ha(ly  hy(0) 0 al)y| =1 0
ha(2)  ha(l)  he(0) | | a(2) 0

which, with the given values for /,(n) become

3 0 O 1 b(0)
3 0||lan|=] 0
% 1 3] {e® 0

From the last two equations, we have

Solving for a(1) and a(2), we find
ah=—-3%  ad)=—3

Then, using the first equation, we have

Thus, the system function of the filter is
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(b) Using a first-order system to match the given values of s,(n),

b(O) + b(1)z™!

H@ = ==

the equations that we must solve are as follows,

ha(0) 0 | b(0)
ha(1)  ha(0) { il =| b(1)
a(l)

ha(2)  hy(l) 0

[ l ] b(0)
= | b(l)
a(l) 0

&+ a(hy=0

or, using the given values for s,(n),

|— &i— W
Bl—- WO

>

We may solve for a(1) using the last equation.

or Cl(l)z"4l

Next, we solve for h(0) and b(1) using the first two equations,

| B
EiR N RIS

[S8]

[N

which gives

Thus, the system function is

(¢) For an FIR filter, the solution is trivial.

H(z) = bO) + b(1z™" + h(2)z72
= ha(0) + ha(1)z™" + hy(2)z?
=3+ %z" + T'bz"z

9.51 Find the least-squares FIR inverse filter of length 3 for the system that has a unit sample response

2 n=20
glny={1 n=1
0 else

Also, find the least-squares error,

£ = f: e2(n)

n=0

for this least-squares inverse filter.

To find the least-squares inverse, we need to solve the linear equations

N-—1
g(0) k=0
h(l)r\.(k—l):{ -
IZO: ¢ 0 k=1.2,....N—1
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9.52

where ro(k) = Zg(n)g(n — k) =g(n) *x g(—n)

n=0

is the deterministic autocorrelation of g(n). With N = 3, these equations may be written in matrix form as follows,

re(0)  r (1) r(2) | | A(0) 8(0)
reD) 1@ (|| R | =] O
re@) () r(0) | | h(2) 0

For the given sequence g(n), we compute the autocorrelation sequence as follows,

@ =Y gin)=5

n=(}

) =Y glmgn — 1) =2

n=0

@) =Y gmgn—2)=0

n=0

Therefore, the linear equations become

5 2 0 h(0) 2
2 5 2 A | =10
0 2 5 h(2) 0
and the solution is
0.494 n=
hn) = —0.235 n=1
=1 0094 n=2
0 else
Performing the convolution of 4(n) with g(n), we have
0.988 n=20
(1) % h(n) 0.023 n=1
* f(n) =
st —0.047 n=2
0.094 n=3

From this sequence, we may evaluate the squared error,

&€= Z[g(n) * h(n) — 8(n))* = 0.0118

n=0

Find the FIR least-squares inverse filter of length N for the system having a unit sample response
gn)=46(n) —adn —1)

where « is an arbitrary real number.

Before we begin, note that if || > 1, G(z) has a zero that is outside the unit circle. In this case, G(z) is not minimum
phase, and the inverse filter 1/G(z) cannot be both causal and stable. However, if |¢f < 1,

Ty o ]
G = G(iz) 1—az!

and the inverse filter is
g () = a"u(n)
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We begin by finding the least-squares inverse of length N = 2. The autocorrelation sequence r,(k) is

|+’ k=0
ro(k) = —a k= =1
0 else

Therefore, the linear equations that we must solve are

1 4+ a2 — h(0) _ |
— | 4+ a? A | |o

The solution for #(0) and A(1) is easily seen to be

| +o?
h0) = ————
©=1 +a? 4 o
1) = ——
Tl +a? 4ot
The system function of this least-squares inverse filter is
E+o? o I +a? o
H(z) = + 27 = 1+ z7!
@) l+a?+a* | +o? 4o |+a2+a4( [+«
which has a zero at o
)= ———
0 | + o?
Note that because
I20] o 1 0
2ol = = <
v | +ao? o+ o

the zero of H(z) is inside the unit circle, and H(z) is minimum phase, regardless of whether the zero of G(z) is inside
or outside the unit circle.
Let us now look at the least-squares inverse, /2 (n), of length N. In this case, the linear equations have the form

| +a? —« 0 0 hn(0) 1
—a l+a? - - 0 hAn (D) 0
0 —a 1 +Q’2 0 11N(2) — 0 (922)
0 0 0 e M+ a? [ | k(N = 1) 0
Solving these equations for arbitrary @ and N may be accomplished as follows. For n=1,2,..., N — 2 these
equations may be represented by the homogeneous difference equation,
—ahy(n — D)+ (1 + az)hN(n) —ahy(n+1H=0
The general solution to this equation is of the form
hAy(ny =" + ca™ (9.23)
where ¢, and ¢, are constants that are determined by the boundary conditions at # = 0 and » = N — [ [the first and
last equations in Eq. (9.22)]:
(1+ aDhn(0) —ahy(l) = |
—ahy(N —2)+ (1 +a®)hy(N — 1) = 0 (9.24)

Substituting Eq. (9.23) into Eq. (9.24), we have
O+ D)+ —aleo + e =1

—afey a2 4 eV (1 +a)ea ! + a VP =0
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which, after canceling common terms, may be simplified to

o +atce =1

O’N+1C| + uf(N—l)

" b Sallal-L]

The solution for ¢, and ¢, is
¢ | a- N1
= T(N-1) _ o N+3 ]
ol @ al N

Cz:O

Therefore, hy(n) is

O,nﬂ'\/_aN—n

N vz OsasN-d
An(ny= ¢ @ " —a""™

0 else

Let us now look at what happens asymptotically as N — oo. If |o| < 1,

n—N
lith(n)=—,=ot nZO
N—oo a—/\
which is the inverse filter, that is,
Nlim hy(n) = «"u(n) = g~ "(n)
—o0

and lim Hy(z) = ————

N—oo | —az™!
However, if |a| > 1,

N—n
Nli_'moohN(n)z porE =q "2 n=>0
)

and lim Hy(z) = —————

N—00 | —o-tz7!

which is nor the inverse filter. Note that although ﬁ(n) = hy(n)* g(n) does not converge to 8(n) as N — 0o, taking
the limit of D y(z) as N — o0, we have

5 ; [ (1—az
lim DN(Z) = lim H N(Z)G(Z) = — (- @z )
Nooc N-ooo o o

which is an all-pass filter, that is,
A |
[Dn(e’) ==
[04

9.53  The first five samples of the unit sample response of a causal filter are
h(0) =3 h(l) = —1 h2)y=1 h(3)=2 h(d)=0

If it is known that the system function has two zeros and two poles, determine whether or not the filter is
stable.
The system function of this filter has the form

e b(O) + b(1)z™" + b(2)z™2
D= T a(D a@)?
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To determine whether or not this system is stable, it is necessary to find the denominator polynomial,
A@) =1+a)z™" +a@)z72

and check to see whether or not the roots of A(z) lie inside the unit circle. Given that H(z) has two poles and two
zeros, we may use the Padé approximation method to find the denominator coefficients:

h(©) O 0 b(0)
h(1)  h(©0) O I b(1)
h(2) k() hO) || a(l) | =] bQ2)
h3)  h2) k()| | a2) 0
h(4)  h(3) h(2) 0

Using the last two equations, we have

[m) h(2) h(l)] a(ll) _[0}
=lo
h4) h(3) h(2) a®)
which become _
h@ k(Y] [ay]  [#O)
h3) k@) || a@ | | @

Substituting the given values for h(n), we have

L ke ]--[)

a@2) =4

The solution is
a(l) = —%

and the denominator polynomial is
Aiz)=1- %z" + %z‘z

Because the roots of this polynomial are not inside the unit circle, the filter is unstable.

Supplementary Problems

FIR Filter Design

9.54  What type of window(s) may be used to design a low-pass filter with a passband cutoff frequency w, = 0.35m, a

transition width Aw = 0.0257, and a maximum stopband deviation of §, = 0.003?

9.55  Use the window design method to design a minimum-order low-pass filter with a passband cutoff frequency w, =
0.457, a stopband cutoff frequency w, = 0.57, and a maximum stopband deviation §, = 0.005.
9.56  We would like to design a bandstop filter to satisfy the following specifications:

0.95 < |H(e’*)| < 1.05
|H (e’?)] < 0.01
0.95 < |H(e’*)| < 1.05

0<w=<03m
0.3571 <w<0.8n

085r <w=<m

(a) What weighting function W (e/“) should be used to design this filter?
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(b) What are the minimum and maximum numbers of extremal frequencies that a type 1 filter of order N = 128
must have?

9.57  Suppose that we would like to design a low-pass filter of order N = 128 with a passband cutoff frequency w, = 0.487
and a stopband cutoff frequency of w; = 0.52x.

(a) Find the approximate passband and stopband ripple if we were to use a Kaiser window design.

(b) If an equiripple filter were designed so that it had a passband ripple equal to that of the Kaiser window design
found in part (@), how small would the stopband ripple be?

9.58 We would like to design an equiripple low-pass filter of order N = 30. For a type I filter of order N, what is the
minimum number of alternations that this filter may have, and what is the maximum number?

9.59 For a low-pass filter with 8, = §,, what is the difference in the stopband attenuation in decibels between a Kaiser
window design and an equiripple filter if both filters have the same transition width?

IIR Filter Design

9.60 Find the minimum order and the 3-dB cutoff frequency of a continuous-time Butterworth filter that will satisfy the
following frequency response constraints:

|H (j)] < 0.1 Q > 24,000

9.61  Use the bilinear transformation to design a first-order low-pass Butterworth filter that has a 3-dB cutoff frequency
w. = 0.57.

9.62  Use the bilinear transformation to design a second-order bandpass Butterworth filter that has 3-dB cutoff frequencies
w; = 0.47 and w, = 0.67.

9.63  If the specifications for an analog low-pass filter are to have a 1-dB cutoff frequency of 1 kHz and a maximum
stopband ripple 8; = 0.01 for | f| > 5 kHz, determine the required filter order for the following:

(@) Butterworth filter

(b) Type I Chebyshev filter
(c¢) Type Il Chebyshev filter
(d) Elliptic filter

9.64 Let H,(j2) be an analog filter with
Hy(j)la=0 =1

(a) If a discrete-time filter is designed using the impulse invariance method, is it necessarily true that
H(e")w=o = 1
(b) Repeat part (a) for the bilinear transformation.

9.65  Consider a causal and stable continuous-time filter that has a system function

s+1

H,(s) = ————
=51

If a discrete-time filter is designed using impulse invariance with T; = 1, find H(z).

9.66  The system function of a digital filter is

2 1

H(z) = -
@ = T05 1025
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9.67

9.68

9.69

9.70

9.71
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(a) Assuming that this filter was designed using impulse invariance with T, = 2, find the system function of two
different analog filters that could have been the analog filter prototype.

(b) If this filter was designed using the bilinear transformation with T; = 2, find the analog filter that was used as
the prototype.

Determine the characteristics of the s-plane-to-z-plane mapping

1—z72

Ty

The system function of an analog filter H,(s) may be expressed as a parallel connection of two lower-order systems
H,(s) = Hai(s) + Haa(s)
If H,(s), H,1(s), and Hy,(s) are mapped into digital filters using the impulse invariance technique, will it be true that
H(z) = Hi(2) + Ha(2)
What about with the bilinear transformation?

[f an analog filter has an equiripple passband, will the digital filter designed using the impulse invariance method
have an equiripple passband? Will it have an equiripple passband if the bilinear transformation is used?

Can an analog allpass filter be mapped to a digital allpass filter using the bilinear transformation?
An IIR low-pass digital filter is to be designed to meet the following specifications:

Passband cutoff frequency of 0.22 with a passband ripple less than 0.01

Stopband cutoff frequency of 0.247 with a stopband attenuation greater than 40 dB

(a) Determine the filter order required to meet these specifications if a digital Butterworth filter is designed using
the bilinear transformation.

(b) Repeat for a digital Chebyshev filter.

(c) Compare the number of multiplications required to compute each output value using these filters, and compare
them to an equiripple linear phase filter.

Least-Squares Filter Design

9.72

9.73

Suppose that the desired unit sample response of a linear shift-invariant system is
ha(n) = 8(n) +2(4) u(n — 1)
Use the Padé approximation method to find the parameters of a filter with a system function

b(O) + b(1)z"!
H@) = =

that approximates this unit sample response.

The first five samples of the unit sample response of a causal filter are

h(0) = 0.2000 h(1) = 0.7560 h(2) = 1.0737 h(3) = —0.8410 h(4) = —0.6739

If it is known that the system function has two zeros and two poles, determine whether or not the filter is stable.
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9.54

9.55

9.56

9.57

9.58

9.59

9.60

9.61

9.62

9.63

9.64

9.65

9.66

9.67

9.68

9.69

Answers to Supplementary Problems

A Hamming or a Blackman window or a Kaiser window with 8 = 4.6.

h(n) = w(n)h,(n), where w(n) is a Kaiser window with 8 = 4.09 and N = 107, and

sin[0.4757 (n — 53.5)]

han) = —— 3 5m

1 0<w<03rm
(@) WeE“)y=1{5 0357 < w <0.87
1 085t <w<m

(b) The minimum is 66 and the maximum is 69.
(a) 8, =~ §; 2 0.0058. (b) §; ~ 0.0016.

The minimum number is 17 and the maximum is 18§.
5dB.

N =9and Q. = 17,342,

H(z)=11+:z".

0.65(1 — z72)
HE = s 1352
@ N=4 (B)N=3.()N=3 ()N =3.
(a) No. (b) Yes.

1 — 27271
H(z) = —(1 — e———-——_zz_l)z.
(a) One possible filter has a system function

2 1
s —1In(0.5) 5 — 51In(0.25)

Hy(s) =

and another is
2 1

s— 105 + 75— 1In0.25 + jn

H,(s) =

Note, however, that the second filter has a complex-valued impulse response.
(b) This filter is unique and has a system function

H(s) = 41 +s) 41 +s)
T 1435 3+ 5s

This is a cascade of two mappings. The first is the bilinear transformation, and the second is the mapping z — z?,

which compresses the frequency axis by a factor of 2. Thus, a low-pass filter is mapped into a bandstop filter, and a
high-pass filter is mapped into a bandpass filter.

True for both methods.

The digital filter will have an equiripple passband with the bilinear transformation but not with the impulse
invariance method.
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9.70

9.71

9.72

9.73
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Yes.

(a) Butterworth filter order is N = 69.
(b) Chebyshev filter orderis N = 17.

(c) For an equiripple filter, we require N = 185, which requires 185 delays. In addition, 93 multiplications are
needed to evaluate each value of y(n). The Butterworth and Chebyshev filters require 69 and 17 delays,
respectively, and approximately twice this number of multiplications to evaluate each value of y(n).

Padé gives b(0) = 1, b(1) = 0.5, and a(1) = —0.5, or

Padé’s method with p = g = 2 gives

02+408z7" +1.4z2
Hiz) = +08z27' + 1.4z
14+022z7) +0.8272

Because the roots of the denominator lie inside the unit circle, this filter is stable.
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A-D converter, 101

Aliasing, 103

Allpass filter, 59, 193
|attice, 300
network, 296

Alternation, 364
theorem, 364

Analog low-pass filter, 367
Butterworth, 367
Chebyshev, 370
dliptic, 372

Analog-to-digital converter, 101

Anti-diasing filter, 104

Aperiodic, 3

Associative property, 11

Autocorréelation, 42

B

Bandpass filter, 59

Bandstop filter, 59

BIBO, 10

Bilinear transformation, 375

Bit-reversed ordering, 265

Blackman window, 360

Block convolution, 232

Branch, 287

Butterfly, 265

Butterworth analog low-pass filter, 367
normalized, 368

C
C-D, 101
Cascade, 59
network, 289, 294
Causality, 10
z-transform and, 184
Center of gravity, 91
Characteristic polynomial, 16
Chebyshev analog low-pass filter, 370
Chebyshev polynomials, 364, 370
Circulant matrix, 257
Circular convolution, 228
matrix formulation, 257
versus linear convolution, 230
Circular shift, 227
Comb filter, 331
Commutative property, 11
Compensation filter, 102
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Complex sequence, 2
Conjugate symmetry, 4
Continuous-to-discrete converter, 101
Conservation of energy theorem, 64
Contour integration, 151
Convolution, 10, 11
block, 232
circular, 228
DFT to perform, 232
direct method, 12
DTFT to perform, 65
graphical method, 13
periodic, 225
properties, 11
dide rule method, 15
Convolution theorem, 64, 147
periodic, 64
Corrdation, 42
Coupled form, 342
Cutoff frequency, 59, 358

D

D-A converter, 106

D-C converter, 106

Decibels, 56

Decimation, 14

Decimator, 111, 315

Decimation-in-frequency FFT, 266

Decimation-in-time FFT, 262

Derivative property, 148

DFT, 223

Direct form network, 289, 292

Discrimination factor, 367

DFS, 223

Difference equation, 15, 64

Discrete Fourier series, 223

Discrete Fourier transform, 236
performing linear convolution with, 232
properties, 227

Discrete-time Fourier transform, 61
properties, 62

Discrete-time signal, 1

Discrete-time system, 7
implementation, 287

Discrete-to-analog converter, 106

Discrete-to-continuous converter, 106

Distributive property, 11

Divide and conquer, 262

Down-sampling, 5, 110

DTFT, 61

E

Eigenfunction, 55

Elliptic analog low-pass filter, 372
Encoder, 106
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Equiripple filter design, 363
Even sequence, 4
Exponentia sequence, 3
Extraripple filter, 365
Extremal frequencies, 364

F
Feedback, 60, 195
FFT, 262
composite N, 267

decimation-in-frequency, 266

decimation-in-time, 262
mixed radix, 270
prime factor, 271
radix-2, 262
radix-3, 279
radix-4, 278
radix-R, 270
Filter, 58
allpass, 59
design, 358
finite word-length effects, 302
frequency selective, 59
linear phase, 58
networks (structures), 287
specifications, 358
Finite length impulse response, 16
Finite length sequence, 3
Finite word-length effects, 302
filter coefficient quantization, 304
overflow, 309
pairing and ordering, 309
round-off noise, 306
FIR, 16, 188
structures, 289
FIR filter design, 359
equiripple, 363
frequency sampling, 363
least squares inverse, 379
least squares methods, 376
Pade approximation, 377
Prony's method, 378
window design, 359
Fixed point numbers, 302
one's complement, 303
sign magnitude, 302
twao's complement, 303
Floating point numbers, 303
Flowgraph, 287
Frequency response, 55
periodicity, 57
inverse, 58
symmetry, 58
Frequency transformations, 376
Fourier analysis, 55
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Fundamental period, 3

G
Generalized linear phase, 58, 189
Geometric series, 13
Group delay, 56
computing, 78
equalization, 193

H

Hamming window, 360
Hanning window, 360
High-passfilter, 59
Hilbert transform, 185
Homogeneous solution, 16

I

IR, 16, 188
structures, 291

IIR filter design, 366
analog low-pass filter prototypes, 367
bilinear transformation, 375
frequency transformations, 376
impulse invariance, 374

Index maps, 268

Infinite length impulse response, 16

Initial rest, 16

Initial value theorem, 148
generalized, 161

In-place computation, 265

Interpolator, 112, 318

Inverse system, 66, 186

Inverse z-transform, 149
contour integration, 151
partial fraction expansion, 149
power series, 150

Invertibility, 11

K
Kaiser window, 361

L
Lattice filter, 298
all-pole, 300
FIR, 298
IR, 301
LCCDE, 15
Least-sguares filter design, 376
FIR least squares inverse, 379
Pade approximation, 377
Prony's method, 378
L eft-sided sequence, 3
Linear convolution using DFT, 232
Linear phase, 58, 189
generalized, 189
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Linear phase (continued)
network, 289
system function constraints, 191
types|-1V, 190

Linear system, 8

Lollipop, 1

Low-pass filter, 59

LS, 10

M

Memoryless, 7

Minimum energy delay, 195
Minimum phase, 194
Minimum phase lag, 195
Mixed radix FFT, 270
Modulator, 64

Modulo, 21, 226, 271
Mortgage, 46, 172
Multiplicative inverse, 271

N

Node, 287

Nyquist frequency, 103
Nyquist rate, 103

@)

Odd harmonics, 277

Odd sequence, 4
One-sided z-transform, 151
One's complement, 303
Oscillator, 328

Overflow, 309
Overlap-add, 233
Overlap-save, 234

P
Pade approximation, 377
Pairing and ordering, 309
Paley-Wiener theorem, 184
Parallel network, 60, 295
Parks-McClélan agorithm, 365
Parseval's theorem, 64
Partial fraction expansion, 149, 187
Particular solution, 16
Passband, 59
deviation, 358
Period, 3
Periodic convolution, 225
theorem, 64
Phase, 55
generalized linear, 58
linear, 58
shifter, 69
Poles, 143
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Power, 22

series, 150
Prime factor FFT, 271
Prony's method, 378

Q
Quantization, 303

filter coefficient, 304
Quantizer, 104

R

Radix-2 FFT, 262
Radix-R FFT, 270
Redlizable system, 185
Reconstruction filter, 106
Rectangular window, 360
Reflection coefficient, 298
Region of convergence, 142
Relatively prime, 271
Residue, 151

Right-sided sequence, 3
Round-off noise, 306

S

Sample rate conversion, 110

Sampling, 103
bandpass, 119, 120
DTFT, 231
frequency, 101
period, 101
theorem, 103

Schur-Cohn stahility test, 300

Selectivity factor, 367

Shifting property, 63

Shift-invariance, 9

Shuffling, 265

Sifting property, 6

Sign hit, 302

Sign magnitude, 302

Signdl, 1
aperiodic, 3
complex conjugate, 2
conjugate symmetry, 4
decomposition, 6
down-sampling, 5
duration, 3
exponential, 2
finite length, 3
infinite length, 3
left-sided, 3
manipulations, 4
periodic, 3
right-sided, 3
symmetric, 4
unit sample, 2
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Signal (continued)
unit step, 2
Signal-to-quantization noise ratio, 106
Signa manipulations, 4
Sink node, 288
Slide rule method, 15
Source node, 288
SONR, 106
Stability, 10
Schur-Cohn test, 300
triangle, 185
z-transform and, 184
Step-down recursion, 299
Step-up recursion, 298
Stopband, 59
deviation, 358
Summation property, 155
Superposition sum, 9
Symmetric sequence, 4
System, 7
additive., 8
causa, 10
function, 183
homogeneous, 8
invertible, 11
linear, 8
LS, 10
memoryless, 7
shift-invariant, 9
stable, 10
unit sample response, 10

T
Transition band, 359
Transposed network, 296
Transposition theorem, 296
Twiddle factor, 263

Twao's complement, 106, 303

U
Uniform quantizer, 104
Unit circle, 143
Unit sample, 2
Unit step, 2
Unit sample response, 10
for arational system function, 187
Up-sampling, 5, 112
property, 88, 163

W
Windows, 360
Warping, 375

Z
Z-transform, 142
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Z-transform (continued)
inverse, 149
one-sided, 151
properties, table of, 148
region of convergence, 142
useful pairs, table of, 146
Zeros, 16, 143
Zero-order hold, 107
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