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Preface

Digital signal processing (DSP) is concerned with the representation of signals in digital form, and 

with the processing of these signals and the information that they carry. Although DSP, as we know 

it today, began to flourish in the 1960's, some of the important and powerful processing techniques 

that are in use today may be traced back to numerical algorithms that were proposed and studied 

centuries ago. Since the early 1970's, when the first DSP chips were introduced, the field of digital 

signal processing has evolved dramatically. With a tremendously rapid increase in the speed of DSP 

processors, along with a corresponding increase in their sophistication and computational power, 

digital signal processing has become an integral part of many commercial products and applications, 

and is becoming a commonplace term. 

This book is concerned with the fundamentals of digital signal processing, and there are two ways 

that the reader may use this book to learn about DSP. First, it may be used as a supplement to any 

one of a number of excellent DSP textbooks by providing the reader with a rich source of worked 

problems and examples. Alternatively, it may be used as a self-study guide to DSP, using the method 

of learning by example. With either approach, this book has been written with the goal of providing 

the reader with a broad range of problems having different levels of difficulty. In addition to 

problems that may be considered drill, the reader will find more challenging problems that require 

some creativity in their solution, as well as problems that explore practical applications such as 

computing the payments on a home mortgage. When possible, a problem is worked in several 

different ways, or alternative methods of solution are suggested. 

The nine chapters in this book cover what is typically considered to be the core material for an 

introductory course in DSP. The first chapter introduces the basics of digital signal processing, and 

lays the foundation for the material in the following chapters. The topics covered in this chapter 

include the description and characterization of discrete-type signals and systems, convolution, and 

linear constant coefficient difference equations. The second chapter considers the represention of 

discrete-time signals in the frequency domain. Specifically, we introduce the discrete-time Fourier 

transform (DTFT), develop a number of DTFT properties, and see how the DTFT may be used to 

solve difference equations and perform convolutions. Chapter 3 covers the important issues 

associated with sampling continuous-time signals. Of primary importance in this chapter is the 

sampling theorem, and the notion of aliasing. In Chapter 4, the z-transform is developed, which is 

the discrete-time equivalent of the Laplace transform for continuous-time signals. Then, in Chapter 

5, we look at the system function, which is the z-transform of the unit sample response of a linear 

shift-invariant system, and introduce a number of different types of systems, such as allpass, linear 

phase, and minimum phase filters, and feedback systems. 

The next two chapters are concerned with the Discrete Fourier Transform (DFT). In Chapter 6, we 

introduce the DFT, and develop a number of DFT properties. The key idea in this chapter is that 

multiplying the DFTs of two sequences corresponds to circular convolution in the time domain. 

Then, in Chapter 7, we develop a number of efficient algorithms for computing the DFT of a finite-

length sequence. These algorithms are referred to, generically, as fast Fourier transforms (FFTs). 

Finally, the last two chapters consider the design and implementation of discrete-time systems. In 

Chapter 8 we look at different ways to implement a linear shift-invariant discrete-time system, and 

look at the sensitivity of these implementations to filter coefficient quantization. In addition, we 
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analyze the propagation of round-off noise in fixed-point implementations of these systems. Then, in 

Chapter 9 we look at techniques for designing FIR and IIR linear shiftinvariant filters. Although the 

primary focus is on the design of low-pass filters, techniques for designing other frequency selective 

filters, such as high-pass, bandpass, and bandstop filters are also considered. 

It is hoped that this book will be a valuable tool in learning DSP. Feedback and comments are 

welcomed through the web site for this book, which may be found at 

http://www.ee.gatech.edu/users/mhayes/schaum

Also available at this site will be important information, such as corrections or amplifications to 

problems in this book, additional reading and problems, and reader comments. 
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7.3 Speech that is sampled at a rate of I0 kHz is to be processed in real time. Part of the computations 
required involve collecting blocks of 1024 speech values m d  computing a 1024-point DFT and a 1024- 
point inverse DFT. If it takes Ips  for each real multiply. how much time remains for processing the data 
after the DFT and the inverse DFT are computed? 

With a 10-kHz sampling rate, a block of 1024 samples is collected every 102.4 ms. With a radix-2 FFT, the number 
of complex multiplications for a 1024-point DFT is approximately 5 12 log, 1024 = 5120. With a complex multiply 
consisting of four real multiphes. this means that we have to perform 5.120. 4 = 20,480 real multiplies for the DFT 
and the same number for the inverse DFT. With 1 ps per multiply, this will take 

which leaves 61.44 ms for any additional processing. 

7.4 Sampling a continuous-time signal x l , ( t )  for I s generates a sequence of 4096 samples. 

(a)  What is the highest frequency in .rl ,(t)  if it was sampled without aliasing? 

(b) If a 4096-point DFT of the sampled signal is computed, what is the frequency spacing in hertz 
between the DFT coefficients'? 

(c) Suppose that we are only interested in the DFT samples that correspond to frequencies in the range 
200 5 f 5 300 Hz. How many complex multiplies are required to evaluate these values computing 
the DFT directly, and how many are required if a decimation-in-time FFT is used? 

( d )  How many frequency samples would be needed in order for the FFT algorithm to be more efficient 
than evaluating the DFT directly? 

(a) Collecting 4096 samples in I s means that Ihe sampling frequency is ,ti = 4096 Hz. If . r , ( ~ )  is to be sampled 
without aliasing, the sampling frequency must be a1 least twice the highest frequency in .r,(1). Therefore, la( / )  

should have no frequencies above fi, = 2048 Hz. 

(h)  With a 4096-point DFT. we are sampling X ( e l " )  at 4096 equally spaced frequencies between 0 and 2 ~ r ,  which 
corresponds to 4096 frequency samples over the range 0 5 ,f 5 4096 Hz. Therefore, the frequency spacing is 
Af = IHz .  

(c) Over the frequency range from 200 to 300 Hz  we have 101 DFT samples. Because it takes 4096 complex 
multiplies to evaluate each DFT coefficient, the number of multiplies necessary toevaluate only these frequency 
samples is 

On the other hand, the number of multiplications required if an FFT is used is 

Therefore, even though the FFT generates all of the frequency samples in the range 0 5 ,f 5 4096 Hz, it is 
more efficient than evaluating these 101 samples directly. 

(d) An N-point FFT requires N log, N complex multiplies. and to evaluate M DFT coefficients directly requires 
M . N complex multiplica;ions. Therefore, the FFT will be more efticient in finding these M samples if 

With N = 4096, the number of frequency samples is M = 6 .  

7.5 Because some of the f N log, N multiplications in the decimation-in-time and decimation-in-frequency 
FFT algorithms are multiplications by f I .  it is possible to more efticiently implement these algorithms 
by writing programs that specitically excluded these multiplications. 

(a)  How many multiplications are there in an eight-point decimation-m-time FFT if we exclude the 
multiplications by f I ?  
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(b)  Repeat part (a)  for a 16-point decimation-in-time FFT. 

(c) Generalize the results in parts (a) and (b)  for N = 2". 

(a )  For an eight-point decimation-in-time FFT, we may count the number of complex multiplications in the flow- 
graph given in Fig. 7-6. In the first stage of the FFT, there are no complex multiplications, whereas in the second 
stage, there are two multiplications by W:. Finally, in the third stage there are three multiplications by W x ,  w;, 
and W:.  Thus, there are a total of five complex multiplies. 

(b )  A 16-point DFT is formed from two &point DFTs as follows: 

where G ( k )  and H(k) are eight-point DFTs. There are eight butterflies in the last stage that produces X ( k )  
from G ( k )  and H(k). Because the simplified butterfly in Fig. 7-5(b)  only requires only one complex multiply, 
and noting that one of these is by WP, = 1, we have a total of seven twiddle factors. In addition, we have 
two 8-point FFTs, which require five complex multiplies each. Therefore. the total number of multiplies IS 
2 - 5 + 7 =  17. 

( c )  Let L(v)  be the number of complex multiplies required for a radix-2 FFT when N = 2". From parts (a) and (h) 
we see that L(3) = 5 and L(4) = 17. Given that an FFT of length N = 2"-' requires L(v - I) mul~iplies. for 
an FFT of length N = 2", we have an additional 2"-I butterflies. Because each butterfly requires one multiply. 
and because one of these multiplies is by W: = 1, the number of multiplies required for an FFT of length 
2" is 

Solving this recursion for L(v) ,  we have the following closed-form expression for L ( v ) :  

7.6 The FFT requires the multiplication of complex numbers: 

(a) Write out this complex multiplication, and determine how many real multiplies and real adds are 
required. 

(b) Show that the complex multiplication may also be performed as follows: 

and determine the number of real multiplies and adds required with this method. 

(a) The product of two complex number is 

which requires four real multiplies and three real adds. 

(h)  Expanding the expressions for q. we have 

as required. Similarly, for dl we have 

also as required. This approach only requires three multiplies and four adds. 
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7.7 The decimation-in-time and decimation-in-frequency FFT algorithms evaluate the DFT of a complex- 
valued sequence. Show how an N-point FFT program may be used to evaluate the N-point DFT of two 
real-valued sequences. 

As we saw in Prob. 6.18. the DFTs of two real-valued sequences may be found from one N-point DFT as follows. 
First, we form the N-point complex sequence 

After finding the N-point DFT of . r (n ) .  we extract X I ( k )  and X z ( k )  from X ( k )  by exploiting the symmetry of the 
DFT. Specifically. 

which is the conjugate symmetric part of X ( k ) .  and 

X ? ( k )  = t l X ( k )  - X * ( ( N  - k ) ) ~ ]  

which is the conjugate antisymmetric part of X ( k ) .  

7.8 Determine how a 2N-point DFT of a real-valued sequence may be computed using an N-point FFT 
algorithm. 

Let g ( n )  be a real-valued sequence of length 2N. From this sequence. we may form two real-valued sequences of 
length N as follows: 

From these two sequences, we form the complex sequence 

Computing the N-point DFT of . r ( n ) .  we niay then extract the N-point DFTs of x , ( n )  and x 2 ( n )  as follows 
(see Prob. 7 . 7 ) :  

x ~ ( k )  = i [ ~ ( k )  + X * ( ( N  - k ) ) ~ ]  

x ~ k )  = ; [ x ( k )  - x * ( ( N  - k ) ) N  I 

Now all that is left to do is to relate the 2N-point DFT of g ( n )  to the N-point DFTs X l ( k )  and X , ( k ) .  Note that 

Therefore, G ( k )  = X l ( k ) +  w ; , ~ z ( k )  k  =0, 1 ,  .... 2N - 1 

where the periodicity of X l ( k )  and X 2 ( k )  is used to evaluate G ( k )  for N < k  < 2N, that is, 

X l ( k )  = X l ( k  + N )  X z ( k )  = X 2 ( k  + N) 

7.9 Given an FFT program to find the N-point DFT of a sequence, how may this program be used to find 
the inverse DFT? 

As we saw in Prob. 6.9, we may tind . r ( n )  by first using the DFT program to evaluate the sum 



CHAP. 71 THE FAST FOURIER TRANSFORM 

which is the DFT of X*(k). Then, x(n) may be found from x(n) as follows: 

Alternatively, we may find the DFT of X(k), 

and then extract x(n) as follows: 

7.10 Let x ( n )  be a sequence of length N with 

where N is an even integer. 

(a) Show that the N-point DFT of x ( n )  has only odd harmonics. that is. 

X ( k )  = 0 k even 

(b) Show how to find the N-point DFT of x ( n )  by finding the N/2-point DFT of an appropriately 
modified sequence. 

(a) The N-point DFT of x(n) is 

Because x(n)  = -x(n + N/2), if k is even, each term in the sum is zero, and X(k) = 0 fork = 0 , 2 , 4 ,  . . .. 

(b) In the first stage of a decimation-in-frequency FFT algorithm, we separately evaluate the even-index and odd- 
index san~ples of X(k). If X(k) has only odd harmonics, the even samples are zero, and we need only evaluate 
the odd samples. From Eq. (7.4) we see that the odd samples are given by 

With x ( n )  = -x(n + N/2) this becomes 

which is the N/2-point DFT of the sequence y(n) = 2WE;x(n). Therefore, to find the N-point DFT of x(n), 
we multiply the first N/2  points of x(n) by 2W;. 

and then compute the N/2-point DFT of y(nh The N/2-point DFT of x(n)  is then given by 
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FFT Algorithms for Composite N 

7.11 When the number of points in the DFT is a power of 4 ,  we  can use a radix-2 FFT algorithm. However, 
when N = 4", it is more efficient to use a radix-4 FFT algorithm. 

(a) Derive the r a d i x 4  decimation-in-time FFT algorithm when N = 4". 

(b) Draw the structure for the butterfly in the radix-4 FFT, and compare the number of complex multiplies 
and adds with a radix-4 F F T  to a radix-2 FFT. 

(a) To derive a decimation-in-time radix-4 FFT. let NI = N/4 and N2 = 4. and define the index maps 

We then express X ( k )  using the decomposition given in Eq. (7 .7)  with NI = N/4 and N2 = 4, 

The inner summation. 

is the N/4-point DFT of the sequence x(4nI + n2), and the outer summation is a 4-point DFT, 

Since W4 = - j, these 4-point transforms have the form 

for kl = 0. 1 ,  2 . 3 ,  and n2 = 0, I ,  . . . . (N/4) - 1. If N2 = N/4 is divisible by 4, then the process is repeated. 
In this way, we generate v = Iog, N stages with N/4 butterflies in each stage. 

(b) The 4-point butterflies in the radix-4 FFT perform operations of the form 
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With 

Since multiplications by i j only requires interchanging real and imaginary parts and possibly changing a sign 
bit, then each 4-point butterfly only requires 3 complex multiplications. With v = log, N stages, and N/4 
butterflies per stage, the number of complex multiplies for a DFT of length N = 4" is 

N 3 N 
3 . - log, N = - log, N 

4 8 
For a radix-:! decimation-in-time FFT, on the other hand, the number of multiplications is 

N 
- log, N 
2 

Therefore, the number of multiplications in a radix-4 FFT is & times the number in a radix-2 FFT. 

7.12 Suppose that we would like to find the N-point DFT of a sequence where N is a power of 3, N = 3". 

(a )  Develop a radix-3 decimation-in-time FFT algorithm, and draw the corresponding flowgraph for 
N = 9 .  

(h )  How many multiplications are required for a radix-3 FFT? 

(c) Can the computations be performed in place? 

(a) A radix-3 decimation-in-time FFT may be derived in exactly the same way as a radix-2 FFT. First, x ( n )  is 
decimated by a factor of 3 to form three sequences of length Nj3: 
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Expressing the N-point DFT in terms of these sequences, we have 

Since w$' = W k 3 ,  then 

Note that the first term is the N/3-point DFT o f f  (n), the second is W i  times the N/3-point DFT of g(n), and 
the third is w;' times the N 13-point DFT of h(n), 

We may continue decimating by factors of 3 until we are left with only 3-point DFTs. The flowgraph for a 
9-point decimation-in-time FFT is shown in Fig. 7- 1 I .  Only one of the 3-point butterflies is shown in the second 
stage in order to allow for the labeling of the branches. The complete flowgraph is formed by replicating this 
3-point butterfly up by one node, and down by one node, and changing the branch multiplies to their appropriate 
values. 

4 7 )  

4 5 )  

0 X(8) 
WJ" 

Fig. 7-11. Flowgraph for a9-point decimation-in-time FFT (only one butterfly in the second 
stage is shown). 
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(b) If N = 3". then there are v stages in the radix-3 FFT. The general form of each 3-point butterfly, shown in the 
second stage of the flowgraph in Fig. 7-1 1, requires six multiplies (some require fewer if we do not consider 
multiplications by f I). Since there are N / 3  butterflies in each stage, then the total number of multiplications is 

6N log, N 

( c )  Yes, the computations may be performed in place. 

7.13 Derive a radix-3 decimation-in-frequency FFT for N = 3" a.nd draw the corresponding flowgraph for 
N =9.  

As with the radix-2 decimation-in-frequency FFT, with N =3",  we separately evaluate the indices for which 
((k))3 = 0, ((k))3 = I ,  and ((k))3 = 2. For ((k))3 = 0 (i.e., k is a multiple of 3), 

Separating this sum into the first N / 3  points, the second N/3  points, and the last N / 3  points, and using the fact that 
.,, , this becomes WZk = wnk 

With a change in the indexing in the second and third sums, we have 

"+ $ n+ y 
Finally, because WNi, = W:/,, and WN13 = Wi13, 

which is the N/3-point DFT of the sequence in brackets. 
Proceeding in the same way for the samples X(3k + I ) ,  we have 

Finally, for the samples X(3k + 2) we have 
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The flowgraph for a nine-point decimation-in-frequency FFT is shown below. 

7.14 Suppose that we have a number of eight-poin~ decimation-in-time FFT chips. How could these chips be 
used to compute a 24-point DFT? 

A 24-point DFT is defined by 

Decimating x(n) by a factor of 3, we may decompose this DFT into three %point DFTs as follows: 

Therefore, if we form the three sequences 

and use the 8-point FFT chips to find the DFTs F(k),  G(k), and H(k),  the 24-point DFT of x ( n )  may be found by 
combining the outputs of the 8-point FFTs as follows: 

Prime Factor FFT 

7.15 Find the index maps for a 21 -point prime factor FFT with N I  = 7 and N 2  = 3. HOW many multiplications 
are required compared to a 32-point radix-2 decimation-in-time FFT? 
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For a 21-point prime factor FFT with NI  = 7 and N 2  = 3, we sel A = N2 = 3 and B = NI  = 7. Then, with 
C = N~((N;' ))N, = 15 and D = N ~ ( (  N = 7, we have the following index mappings: 

Thus, the two-dimensional array representation for the input is 

x(7) ~ ( 1 0 )  ~ ( 1 3 )  ~ ( 1 6 )  ~ ( 1 9 )  .x(l) 
2 x(14) ~ ( 1 7 )  ~ ( 2 0 )  s ( 2 )  s ( 5 )  ~ ( 8 )  . u ( l  I )  

and the two-dimensional array for the output is 

With the prime factor FFT, there are no twiddle factors. Therefore, the only multiplications necessary are those 
required to compute the three 7-point DFTs, and the seven 3-point DFTs. Because each 3-point DFT requires 6 com- 
plex multiplies, and each 7-point DFT requires 42, the number of multiplies for a 2 1-point prime factor FFT is 
(7)(6) + (3)(42) = 168. For a 32-point radix-2 FFT. on the other hand. we require 

complex multiplies. Therefore. it would be more efficient to pad a 21-point sequence with zeros and compute a 32- 
point DFT. The increasedefficiency is a result of the fact that 32 = 2' is a much more composite number than 2 1 = 7.3. 

7.16 Suppose that we would like to compute a 15-point DFT of a sequence x ( n ) .  

(a )  Using a mixed-radix FFT with N I  = 5 and N2 = 3, the DFT is decomposed into two stages, with 
the first consisting of three 5-point DFTs, and the second stage consisting of five 3-point DFTs. 
Make a sketch of the connections between the five- and three-point DFTs, indicating any possible 
twiddle factors, and the order of the inputs and outputs. 

(b) Repeat part (a )  for the prime factor algorithm with N I  == 5 and N 2  = 3, and determine how many 
complex multiplies are saved with the prime factor algorithm. 

(a) Using a mixed-radix FFT with NI  = 5 and N2 = 3, the index mappings for n and k are as follows: 

Thus, the two-dimensional array representation for the input is 
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After the five-point DFT of each row in the data array is computed. the resulting complex array is multiplied 
by the array of twiddle factors: 

The last step then involves computing the three-point DFT of each column. This produces the output array 
X ( k ) ,  which is 

The connections between the three- and five-point DFTs are shown in the following figure, along with the eight 
twiddle factors: 

(h)  Using the prime factor algorithm with N I  = 5 and N2 = 3, we set A = N2 = 3 and B = N ,  = 5. Then, with 
C = N ~ ( ( N , ' ) ) N ,  = 6 and D = N ~ ( ( N ; ' ) ) ~ ,  = 10, we have the following index mappings for n and k :  
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The two-dimensional array representation for the input is 

and for the output array we have 

1 2 3 4 

The interconnections between the five- and three-point DFTs are the same as in the mixed-radix algorithm. 
However, there are no twiddle factors, and the ordering of the input and output arrays is different. The 15-point 
prime fuctor algorithm is diagrammed in the figure below. 

The savings with the prime factor algorithm over the mixed-radix FFT are the eight complex multiplies by the 
twiddle factors. 

Supplementary Problems 

Radix-2 FFT Algorithms 

7.17 Let x ( n )  be a sequence of length 1024 that is to be convolved with a sequence h ( n )  of length L. For what values of 
L is i t  more efficient to perform the convolution directly than it is to perform the convolution by taking the inverse 
DFT of the product X (k)H ( k )  and evaluating the DFTs using a radix-2 FFT algorithm? 
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7.18 Suppose that we have a 1025-point data sequence (1 more than N = 2"). Instead of discarding the final value, we 
zero pad the sequence to make it of length N = 2" so that we can use a radix-2 FFT algorithm. (a) How many 
multiplications and additions are required to compute the DFT using a radix-2 FFT algorithm? (b) How many 
multiplications and additions would be required to compute a 1025-point DFT directly? 

FFT Algorithms for Composite N 

7.19 In a radix-3 decimation-in-time FFT, how is the input sequence indexed? 

7.20 How many complex multiplications are necessary in a radix-3 decimation-in-frequency FFT? 

7-21 Consider the FFT algorithm given in Example 7.3.2. ( a )  How many multiplications and additions are required to 
compute a 12-point DFT? (h) How many multiplications and additions are necessary if the 12-point DFT is computed 
directly? 

Prime Factor FFT 

7.22 Find the index maps for a 99-point prime factor FFT with N I  = I I and N2 = 9. 

7.23 How many complex multiplications are required for a 12-point prime factor FFT with N, = 4 and N3 = 3 if we do 
not count multiplications by + I  and + j? 

7.24 How many twiddle factors are there in a 99-point prime factor FFT with N  I = I 1 and N2 = 9? 

7.25 How many complex multiplications are required for a 15-point prime factor FFT if we do not count multiplications 
by & I ?  

Answers to Supplementary Problems 

7.18 (a) 1 1.264. (b) 1,050,625. 

7.19 The index for x(n) is expressed in ternary form, and then the ternary digits are read in reverse order. 

7.20 The same as a decimation-in-time FFT, which is 2N log, N .  

7.21 (a) Each 4-point DFT requires no multiplies and 12 adds, and each 3-point DFT requires 6 multiplies and 6 adds. With 
6 twiddle factors, there are 6 + (4)(6) = 30 multiplies and (4)(6) + (3)(12) = 60 adds. (b) 144 multiplies and 132 adds. 

7.22 n = 9 n I  + 1 In2, and k = 45kl + %k2. 

7.23 24. 

7.24 None. 

7.25 90. 



Chapter 8 

Implementation of Discrete-Time Systems 

8.1 INTRODUCTION 

Given a linear shift-invariant system with a rational system function H ( z ) ,  the input and output are related by a 
linear constant coefficient difference equation. For example, with a system function 

the input x(n)  and output y(n) are related by the linear constant coefficient difference equation 

This difference equation defines a sequence of operations that are to be performed in order to implement this 
system. However, note that this system may also be implemented with the following pair of coupled difference 
equations: 

With this implementation, it is only necessary to provide one memory location to store w(n - I ) ,  whereas 
Eq. (8.1) requires two memory locations, one to store y(n - I) and one to store x(n - 1). This simple example 
illustrates that there is more than one way to implement a system and that the amount of computation and/or 
memory required will depend on the implementation. In addition, the implementation may affect the sensitivity 
of the filter to coefficient quantization. and the amount of round-off noise that appears at the output of the 
filter. 

In this chapter, we look at a number of different ways to implement a linear shift-invariant discrete-time 
system and look at the effect of finite word lengths on these implementations. 

8.2 DIGITAL NETWORKS 

For a linear shift-invariant system with a rational system function, the input x ( n )  and the output y(n)  are related 
by a linear constant coefficient difference equation: 

The basic computalional elements required to find the output at time n are adders, multipliers, and delays. It is 
often convenient to use a block diagram to illustrate how these adders.. multipliers, and delays are interconnected 
to implement a given system. The notation that is used for these elements is shown in Fig. 8-1. A network is 
also often represented pictorially using a signalflowgraph, which is a network of directed branches that are 
connected at nodes. Each branch has an input and an output, with the direction indicated by an arrowhead. The 
nodes in a flowgraph correspond to either adders or branch points. Adders correspond to nodes with more 
than one incoming branch, and branch points are nodes with more lhan one outgoing branch, as illustrated in 
Fig. 8-2. With a linear flowgraph, the output of each branch is a linear transformation of the branch input, and the 
linear operator is indicated next to the arrow. For linear shift-invariant discrete-time filters, these linear operators 
consist of multiplies and delays. Finally, there are two special types of nodes: 



288 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS [CHAP. 8 

1. Source nodes. These are nodes that have no incoming branches and are used for sequences that are 
input to the filter. 

2. Sink nodes. These are nodes that have only entering branches and are used to represent output sequences. 

( a )  Adder. 

x ( n )  a a  x ( n )  x ( n  - I )  
x ( n ;  r-q ; - 

(b) Multiplier. (c) A unit delay. 

Fig. 8-1. Notation used for an adder, multiplier, and delay in a 
digital network. 

Fig. 8-2. Signal flowgraph con- 
sisting of nodes, branches, and 
node variables. Node j repre- 
sents an adder, and node k is a 
branch point. 

EXAMPLE 8.2.1 Consider the first-order discrete-time system described by the difference equation 

Shown in the figure below is a block diagram for this system. 

Using a signal flowgraph, this system is represented as follows: 
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8.3 STRUCTURES FOR FIR SYSTEMS 

A causal FIR filter has a system function that is a polynomial in zp': 

H (z) = h(n)zpn 
n=O 

For an input x(n), the output is 
N 

For each value of n, evaluating this sum requires (N + I )  multiplications and N additions. The following 
subsections describe several different realizations of this system. 

8.3.1 Direct Form 

The most common way to implement an FIR filter is in direct form using a tapped delay line as shown in the 
figure below. 

z- '  z - I  

h ( N  - I )  

y ( n )  

This structure requires N + I multiplications, N additions, and N delays. However, if there are some symmetries 
in the unit sample response, i t  may be possible to reduce the number of multiplications (see the section on linear 
phase filters). 

8.3.2 Cascade Form 

For a causal FIR filter, the system function may be factored into a product of first-order factors, 

where ak for k = 1 ,  . . . , N are the zeros of H (z). If h(n) is real, the complex roots of H(z) occur in complex 
conjugate pairs, and these conjugate pairs may be combined to form second-order factors with real coefficients, 

Written in this form, H (z) may be implemented as a cascade of second-order FIR filters as illustrated in Fig. 8-3. 

8.3.3 Linear Phase Filters 

Linear phase filters have a unit sample response that is either symmetric, 
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Fig. 8-3. An FIR tilter implemented as a cascade of second-order systems. 

or antisymmetric (see Sec. 5.3). 

h(n)  = -h(N - n) 

This symmetry may be exploited to simplify the network structure. For example, if N is even and h(n) is 
symmetric (type 1 filter), 

Therefore, forming the sums [x(n - k) + x(n - N + k)] prior to multiplying by h(k) reduces the number of 
multiplications. The resulting structure is shown in Fig. 8-4(a). If N is odd and h(n) is symmetric (type I1 filter), 
the structure is as shown in Fig. 8-4(h). There are similar structures for the antisymmetric (types 111 and IV) 
linear phase filters. 
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8.3.4 Frequency Sampling 

The frequency sampling structure is an implementation that parameterizes a filter in terms of its DFT coefficients. 
Specifically, let H ( k )  be the N-point DFT of an FIR filter with h ( n )  .= 0 for n < 0 and n 2 N.' Because the 
unit sample response of the filter is 

1 N - I  

h ( n )  = - x ~ ( k )  u J ~ ~ ~ ~ / ~  
k=O 

the system function may be written as 

N- l  N-I  N - 1  

H ( z )  = x h(n)z-" = x [i x ~ ( k ) ~ j ~ ~ ~ ~ / ~  z-f l  

n =O n=O k =O I 
Evaluating the sum over n ,  this becomes 

which corresponds to a cascade of an FIR filter k(1 - z - ~ )  with a parallel network of one-pole filters: 

For a narrowband filter that has most of its DFT coefficients equal to zero, the frequency sampling structure 
will be an efficient implementation. The frequency sampling structure is shown in Fig. 8-5. If h ( n )  is real, 
H ( k )  = H*(N - k ) ,  and the structure may be simplified. For example, if N is even, 

where A ( k )  = H ( k )  + H ( N  - k )  

B ( k )  = ~ ( k )  e - j 2 n k / N  + H ( N  - k )  eJZnklN 

A similar simplification results when N is odd. 

8.4 STRUCTURES FOR IIR SYSTEMS 

The input x ( n )  and output y ( n )  of a causal IIR filter with a rational system function 

'Note that here we are assuming that h(n)  is of length N, instead of N + I as in the previous sections. This is consistent with the convention 
that the frequency sampling filter is based on an N-point DFT of h(n).  



IMPLEMENTATION OF DISCRETE-TIME SYSTEMS [CHAP. 8 

Fig. 8-5. Frequency sampling filter structure. 

is described by the linear constant coefficient difference equation 

In the following sections, several different implementations of this system are presented, including the direct 
form structures, the cascade and parallel forms, and the transposed filter structures. 

8.4.1 Direct Form 

There are two direct form filter structures, referred to as direct form I and direct form 11. The direct form I 
structure is an implementation that results when Eq. (8.3) is written as a pair of difference equations as follows: 

The first equation corresponds to an FIR filter with input x ( n )  and output w ( n ) ,  and the second equation 
corresponds to an all-pole filter with input w ( n )  and output y(n) .  Therefore, this pair of equations represents a 
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cascade of two systems, 

as illustrated in Fig. 8-6. The computational requirements for a direct form I structure are as follows: 

Number of multiplications: p + q + 1 per output sample 

Number of additions: p + q per output sample 

Number of delays: p + q 

Fig. 8-6. Direct form I realization of an IIR filter. 

The directform IJ structure is obtained by reversing the order of the cascade of B(z) and 1 /A(z) as illustrated 
in Fig. 8-7. With this implementation, x ( n )  is first filtered with the all-pole filter l /A (z )  and then with B(z):  

Fig. 8-7. Reversing the order of the cascade in the direct form I filter structure. 
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If we denote the output of the all-pole filter 1 /A(z) by w(n), this structure is described by the following pair of 
coupled difference equations: 

This structure may be simplified by noting that the two sets of delays are delaying the same sequence. Therefore, 
they may be combined as illustrated in Fig. 8-8 for the case in which p = q. The computational requirements 
for a direct form I1 structure are as follows: 

Number of multiplications: p + q + I per output sample 

Number of additions: p + q per output sample 

Number of delays: max(p. q )  

The direct form I1 structure is said to be canonic because i t  uses the minimum number of delays for a given H(z). 

Fig. 8-8. Direct form 11 realization of an IIR filter with p = q.  

8.4.2 Cascade Structure 

The cascade structure is derived by factoring the numerator and denominator polynomials of H(z): 

This factorization corresponds to a cascade of first-order filters, each having one pole and one zero. In general. 
the coefficients nk and Bk will be complex. However, if h ( n )  is real. the roots of H(z) will occur in complex 
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conjugate pairs, and these complex conjugate factors may be combined to form second-order factors with real 
coefficients: 

A sixth-order 1IR filter implemented as a cascade of three second-order systems in direct form I1 is shown in 
Fig. 8-9. 

Fig. 8-9. A sixth-order 11R filter implemented as a cascade of three direct form 11 second-order systems. 

There is considerable flexibility in how a system may be implemented in cascade form. For example, there 
are different pairings of the poles and zeros and different ways in which the sections may be ordered. 

8.4.3 Parallel Structure 

An alternative to factoring H ( z )  is to expand the system function using a partial fraction expansion. For example, 
with 

if p > q and ai # c r k  (the roots of the denominator polynomial are distinct), H ( z )  may be expanded as a sum 
of p first-order factors as follows: 

where the coefficients At and a k  are, in general, complex. This expansion corresponds to a sum of p first-order 
system functions and may be realized by connecting these systems in parallel. If h ( n )  is real, the poles of H(z )  
will occur in complex conjugate pairs, and these complex roots in the partial fraction expansion may be combined 
to form second-order systems with real coefficients: 

Shown in Fig. 8-1 0 is a sixth-order filter implemented as a parallel connection of three second-order direct form I1 
systems. If p 5 q, the partial fraction expansion will also contain a term of the form 

which is an FIR filter that is placed in parallel with the other terms in the expansion of H(z).  
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Fig. 8-10. A sixth-order IIR filter implemented as a parallel con- 
nection of three second-order direct form 11 structures. 

8.4.4 Transposed Slruclures 

The transposition theorem states that the input-output properties of' a network remain unchanged after the 
following sequence of network operations: 

1. Reverse the direction of all branches. 
2. Change branch points into summing nodes and summing nodes into branch points. 
3. Interchange the input and output. 

Applying these manipulations to a network results in what is referred to as the transposed form. Shown in 
Fig. 8-1 1 are second-order transposed direct form I and direct form I1 filter structures. 

8.4.5 Allpass Filters 

An allpass filter has a frequency response with a constant magnitude: 

IH,,(&")J=~ allw 

If the system function of an allpass filter is a rational function of z,  i t  has the form 
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VJ) 
Fig. 8-11. Transposed direct form ti lter structures. [ u )  Transposed direct 

form I. (b) Transposed direct form 11. 

If h ( n )  is real-valued, the complex roots occur in conjugate pairs, and these pairs may be combined to form 
second-order factors with real coefficients: 

A direct form I1 implementation for one of these sections is shown in Fig. 8- 12. Because each section only has 
two distinct coefficients, ak and B k ,  it is possible to implement these sections using as few as two multiplies. 

Fig. 8-12. A second-order section of an allpass ti lter imple 
mented in direct form 11. 
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8.5 LATTICE FILTERS 

Lattice filters have a number of interesting and important properties that make them popular in a number of 
different applications. These properties include modularity, low sensitivity to parameter quantization effects, 
and a simple criterion for ensuring filter stability. In the following sections, we present the lattice filter structure 
for FIR ti lters, all-pole filters, and filters that have both poles and zeros. 

8.5.1 FIR Lattice Filters 

An FIR lattice filter is a cascade of two-port networks as shown in Fig. 8-13. Each two-port network is defined 
by the value of its reflection coeficient, rk .  The two inputs, fk-, ( n )  and g k - ~ ( n ) ,  are related to the outputs fk(n) 
and g k ( n )  by a pair of coupled difference equations 

with the input to the first section being fo(n)  = go@)  = x ( n ) .  

(h) 

Fig. 8-13. A pth-order FIR lattice filter. (a) The two-port network for each lattice filter module. (b) A cascade 
of p lattice filter modules. 

With A k ( z )  the system function relating the input x ( n )  to the intermediate output f k ( n ) ,  

these difference equations may be solved by induction to yield the following recurrence formula for Ak(z ) :  

which is called the step-up recucrion. The recursion is initialized by setting Ao(z )  = 1. This recurrence formula 
also defines a recurrence relation for the coefficients a k ( i )  of A k ( z ) ,  which is 
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A simple way to write this recursion is in terms of vectors as follows: 

EXAMPLE 8.5.1 For a second-order FIR lattice tiller with reflection coefficient< r I = t and r2 = i ,  the system function 
relating x(n)  to f l  (n) is 

A'(:) = An(:) + r l ; ' ~ , , ( :  I )  = 1 + i -  2 - ' 
and the second-order system function relating . r ( ~ r )  to fz(n) is 

The recurrence formula in Eq. (8.5) provides an algorithm to find the system function A,(z)  from the 
reflection coefficients r k ,  k  = 1,2. . . . . p. To find the reflection coefficients r r  for a given system function 
A  , (z) ,  we use the s t e p d o w n  recu~siotz, which is given by 

In terms of the coefficients a k ( i ) ,  this recursion is 

The reflection coefficients are then found from the polynomials Ak(z )  by setting TL  = uk (k ) .  

EXAMPLE 8.5.2 To find the reflection coefticients TI  and 1': corresponding to the second-order FIR filter Az(z )  = 
1 - f z - 2  , we begin by setting 

Tz = n2(2)  = -: 
Next, we find A 1 ( z )  us~ng the step-down recursion. 

Because cl,(l) = 0. r l  = 0. Therefore, the reflection coefficients are = 0 and I-2 = -l 2 ' 

So far, we have only considered the system function relating the input .u(n) to the output f , ,(n). A similar 
set of equations relate the input x ( n )  to the output R, , ( I I )  With 

the relationship between the system function A p ( z )  and A',,(z) is as follows: 
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Thus, f,(n) and gp(n)  are related by an allpass filter, F,(z) = Hu,f(z)G,(z), where 

An important property of the lattice filter is that the roots of A,(z) will lie inside the unit circle if and only 
if the reflection coefficients are bounded by I in magnitude: 

This property is the basis for the Schur-Cohn stability test for digital filters. Specifically, a causal filter with a 
system function 

will be stable if and only if the reflection coefficients associated with A(z)  are bounded by 1 in magnitude. 

8.5.2 All-Pole Lattice Filters 

The structure for an all-pole lattice filter is shown in Fig. 8-14. As with the FIR lattice, a pth-order all-pole 
filter is a cascade of p stages, with each stage being a two-port network that is parameterized by its reflection 
coefficient rk. The two inputs, f k (n )  and gk-1 (n ) ,  are related to the two outputs f L F I  ( n )  and gk(n)  by a pair of 
coupled difference equations: 

fk-l(n) = fh(n) - r k ~ k - l ( n  - 1) 

gk(n) = ~ k - l ( n  - 1 )  + rk fk (n )  

The system function relating the input x ( n )  to the output y ( n )  is 

where A,(z) is the polynomial that is generated by the recursion given in Eq. (8.5). In addition, note that the 
system function relating x ( n )  to w(n)  is an allpass filter with a system function Hap(z)  given in Eq. (8.7). 

Fig. 8-14. A pth-order all-pole lattice filter. (a) The two-port network for the kth stage of the all-pole lattice 
filter. (b) Cascade of p lattice stages. 
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8.5.3 IZR Lattice Filters 

If H ( z )  is an IIR filter with p poles and q zeros, 

with q 5 p, a lattice filter implementation of H ( z )  consists of two components. The first is an all-pole lattice 
with reflection coefficients r l ,  rz, . . . , F, that implements I / A p ( z ) .  The second is a tapped delay line with 
coefficients cq(k). The structure is illustrated in Fig. 8-15 for the case in which p = 4. The relationship between 
the lattice filter coefficients cq(k) and the direct form coefficients bq(k) is given by 

Similarly, a recursion that generates the coefficients cq(k) from the coefficients hq(k)  is 

This recursion is initialized with cq(q)  = bq(9). 

EXAMPLE 8.5.3 A third-order low-pass elliptic filter with a cutoff frequency of w,. = 0 . 5 ~  has a system function 

To implement this filter using a lattice filter structure, we first transform the denominator coefficients into reflection coeffi- 
cients. Using the step-down recursion, we find 

with the second-order system function given by 

and the first-order system function 
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Next, the coefficients q ( k )  are found using the recursion given in Eq. (8.9). Beginning with 

we then have 

This leads to the lattice filter implementation illustrated below. 

s ( n )  

8.6 FINITE WORD-LENGTH EFFECTS 

In implementing a discrete-time system in hardware or software, i t  is important to consider the finite word-length 
effects. For example, if  a tilter is Lo be implemented on a tixed-point processor, the filter coefficients must be 
quantized lo a finite number of bits. This will change the frequency response characteristics of the filter. In this 
section, we look at the finite precision effects in digital tilter implementations. 

8.6.1 Binary Representation of Numbers 

There are two basic systems for representing numbers in a digital system: fixed point and floating point. There 
is a trade-off in which type of representation to use. The dynamic range that is available in a floating-point 
representation IS much larger than with fixed-point numbers. However, fixed-point processors are typically faster 
and less expensive. Below, we briefly describe these number representations. 

Fixed Point 

In the binary representation of a real number, x, using B + I bits, there are three commonly used formats: sign 
magnitude, one's complement. and two's complement, with two's complement being the most common. In these 
systems, the only difference is in the way that negative numbers are represented. 

I .  Sign magnitude: With a sign-magni~ude format, a number x is represented as 

where X,, is an arbitrary scale factor and where each of the bits hi are either 0 or 1. Thus, ho is the sign 
bit, and the remaining bits represent the magnitude of the fractional number. Bit h l  is called the most 
sign$canr bit (MSB). and hB is called the leusr significant bit (LSB). For example, with X, = 1, 

and - ,y = -0.8125 = 1.1 1010 
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2. One's complement: In one's complement form, a negative number is represented by complementing 
all of the bits in the binary representation of the positive number. For example, with X,, = I and 
x = 0.8125 = 0.1 1010, 

-X = -0.8125 = 0.11010 = 1.00101 

3. Two's conzplement: With a two's complement format, a real number x is represented as 

Thus, negatlve numbers are formed by complementing the bits of the positive number and adding I to the 
least significant bit. For example, with X ,  = I, the two's complement representation of .r = -0.8125 
is 

x = -0.8125 =0.I1010+0.00001 = 1.00110 

Note that with B + I bits, the smallest difference between two quantized numbers, the resolution, is 

and all quantized numbers lie on the range -X,, 5 x < X,, 

Floating Point 

For a word length of B + I bits in a fixed-point number system, the resolution is constant over the entire range of 
numbers, and the resolution decreases ( A  increases) in direct proportion to the dynamic range, 2X,,. A floating- 
point number system covers a larger range of numbers at the expense of an overall decrease in resolution, with 
the resolution varying over the entire range of numbers. The representation used for floating-point numbers is 
typically of the form 

x = M , 2 E  

where M, the mantissa, is a signed BM-bit fractional binary number with 5 I M I < I .  and E ,  the exponent, is 
a BE-bit signed integer. Because M is a signed fraction, it may be represented using any of the representations 
described above for fixed-point numbers. 

Quantization Errors in Fixed-Point Number Systems 

In performing computations within a fixed- or floating-point digital processor, it  is necessary to quantize numbers 
by either truncation or rounding from some level of precision to a lower level. For example, because multiplying 
two 16-bit fixed-point numbers will produce a product with up to 3 1 bits of precision, the product will generally 
need to be quantized back to 16 bits. Truncation and rounding introduce a quantization error 

where x is the number to be quantized and Q[.Y] is the quantized number. The characteristics of the error depend 
upon the number representation that is used. Truncating numbers that are represented in sign-magnitude form 
result in a quantization error that is negative for positive numbers and positive for negative numbers. Thus, the 
quantization error is symmetric about zero and falls in the range 

where A = ~ , , 2 - ~  

On the other hand, for a two's complement representation, the truncation error is always negative and falls in the 
range 

- A ( e ( O  
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With rounding, the quantization error is independent of the type of fixed-point representation and falls in the 
range 

For floating-point numbers. the mantissa is either rounded or truncated, and the size of the error depends on the 
value of the exponent. 

8.6.2 Quantization of Filter Coefficients 

In order to implement a filter on a digital processor. the filter coefficients must be converted into binary form. 
This conversion leads to movements in the pole and zero locations and a change in the frequency response of 
the filter. The accuracy with which the filter coefficients can be specified depends upon the word length of the 
processor, and the sensitivity of the filter to coefficient quantization depends on the structure of the filter, as well 
as on the locations of the poles and zeros. 

For a second-order section with poles at z = r e f J e ,  

the filter coefficients in a direct form realization are 

If a(1) and a(2) are quantized to B + 1 bits, the real part of the pole location is restricted to 2B+' possible values, 
and the radius squared is restricted to 2B  values. The set of allowable pole locations for a bbit  processor is 
shown in Fig. 8- 16. 

Fig. 8-16. The set of allowable pole locations in the first quadrant 
of the z-plane for a second-order 11R filter implemented in direct 
form using a 4-bit processor. 

A general sensitivity analysis of a pth-order polynomial 
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shows that the root locations are more sensitive to coefficient quantization errors when the roots are tightly 
clustered. For example, if the coefficients a(k)  are quantized, 

then the sensitivity of the location of the ith pole to changes Aa(k) in the coefficients a(k)  is approximately 

"a,  
Aai * Aa(k) 

k = l  

With 

where 

then 

Thus, if the poles are tightly clustered, la; - njI is small, and small changes in a(k)  will result in large changes 
in the pole locations. 

The movement of the poles may be minimized by maximizing the distance between the poles, lai - a /  1 .  This 
may be accomplished by implementing a high-order filter as a combination of first- or second-order &stems. 
For example, with a cascade of second-order sections. each pair of complex conjugate poles and zeros may be 
realized separately, thereby localizing the coefficient quantization errors to each section. 

For an FIR filter, 

H (z) = h(n)zCn 

when the coefficients are quantized, the system function becomes 

Thus, the quantization errors may be modeled as H ( z )  in parallel with AH(z)  as shown in Fig. 8-17. If we 
assume that the coefficients h(n) are less than I in magnitude, and that the coefficients are rounded to B + 1 bits, 

Therefore, a loose bound on the error in the frequency response is 

As with IIR filters, if the zeros are tightly clustered, the zero locations will be sensitive to coefficient 
quantization errors. However, FIR filters are commonly implemented in direct fonn for two reasons: 

1. The zeros of FIR filters are not generally tightly clustered. 
2. In direct form, linear phase is easily preserved. 



IMPLEMENTATION OF DISCRETE-TI ME SYSTEMS [CHAP. 8 

Fig. 8-17. Model for the coefticient quunliza~ion error in FIR 
filters. 

8.6.3 Round-Off Noise 

Round-off noise is introduced into a digital filter when products or sums of products are quantized. For example, 
if two ( B  + I)-bit numbers are multiplied, the producl is a ( 2 8  + I)-bit number. I f  the product is to be saved in 
a (B + I)-bit register or used in a ( B  + I)-bit adder, it  must be quantized to ( B  + I)-bits, which results in the 
addition of round-qfnoiw. This round-off noise propagates lhrough the filter and appears at the output of the 
filter as round-off noise. I n  this section, we illustrate the analys~s of round-off noise effects by example. 

Consider the second-order IIR filter ~mplemented in direct form I shown in Fig. 8-lS(u). The difference 
equation For this network is 

If we assume that all numbers are represented by B + I fixed-point numbers and that the network uses ( B  + I)-bit 
adders, each (2R + I)-bit product must be quantized to B + I bits by either truncation or rounding. Fig. 8-18(h) 
shows the quantizers explicitly. The difference equation corresponding to this system is the nonlinear equation 

If the quantizers are replaced with noise sources that are equal to the quantization error, we have an alternative 
representation shown in Fig. 8-18(c). This representation is particularly useful when it is assumed that the 
quantization noise has the following properties: 

1.  Each quantization noise source is a wide - ,~ens~  stationary white n o i s ~  process. 
2. The probability distribution Function of each noise source is uniformly distributed over the quantization 

interval. 
3. Each noise source is uncorrelated with the input to the quantizer. all other noise sources, and the input 

to the system. 

With B + I bits, and a fractional representation for all numbers, the second property implies that the quantization 
noise for rounding has a zero mean and o variance equal to 

2 - 1 2-20 
(T. - - 

( I? 

To analyze the effect of the round-off noise sources at the output of the filter, it is necessary to know how 
noise propagates through a filter. If the input to a linear shift-invariant filter with a unit sample response h(n)  is 
wide-sense stationary white noise, e(n). with a mean nr, and a variance 4. the filtered noise, f (11) = h(n) * e(n), 
is a wide-sense stationary process with a mean 
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t 
e ? W  

t 
e d n )  

(c) 

Fig. 8-18. Analysis of round-off noise. (a) A second-order direct form 1 
filter. (b)  Quantization of products in the filter. (c )  An additive noise model 
for the round-off noise. . 
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The variance may also be evaluated using 2-transforms as follows: 

EXAMPLE 8.6.1 Consider the first-order all-pole tilter with a system function 

1 
H ( z )  = - 

1 - cuz-' 

If the input to this filter, e(n) ,  is zero mean white noise with a variance a,?, the variance of  the output will be 

IXi 
7 I 

h(n)12 = 4 lul2'' = a,:-- a; = a,, 
,,=-C€ =O 1 - laI2 

Returning to the direct form I filter, note that the model in Fig. 8-1 8(c) may be represented in the equivalent 
form shown in Fig. 8-19 where 

Fig. 8-19. An additive noise model after combining noise sources. 

Thus, the quantization noise is filtered only by the poles of the filter, and the output noise satisfies the difference 
equation 

If the noise sources are uncorrelated, as assumed by the third property above, the variance of e,(n) is the sum of 
the variances of the five noise sources, or 

Assuming that the filter is stable, and that the poles of the filter are complex, 
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the variance of the output noise is 

2 a,. = 5 - - 
1 

z- '  d z  

Using Cauchy's residue theorem to evaluate this integral, we find that 

Note that as the poles move closer to the unit circle, r + 1, the variance of the output noise increases. 
The noise performance of digital filters may be improved by using (2B + 1)-bit adders to accumulate sums 

of products prior to quantization. In this case, the difference equation for the direct form I network becomes 

Thus, the sums are accumulated with an accuracy of 2B + 1 bits, and the sum is then quantized to B + 1 bits in 
order to store j(n - I) and j (n  - 2) in ( B  + ])-bit delay registers and to generate the (B + I)-bit output j(n).  
Because there is only one quantizer, which quantizes the sum of products. the variance of the noise source in 
Fig. 8-19 is reduced from 50; to 0,:. 

8.6.4 Pairing and Ordering 

For a fiIter that is implemented in cascade or parallel form, there is considerable flexibility in terms of selecting 
which poles are to be paired with which zeros and in selecting the order in which the sections are to be cascaded 
for a cascade structure. Pairing and ordering may have a significant effect on the shape of the output noise power 
and on the total output noise variance. The rules that are generally followed for pairing and ordering are as 
follows: 

1. The pole that is closest to the unit circle is paired with the zero that is closest to it in the z-plane, and 
this pairing is continued until all poles and zeros have been paired. 

2. The resulting second-order sections are then ordered in a cascade realization according to the closeness 
of the poles to the unil circle. The ordering may be done either in terms of increasing closeness to the 
unit circle or in terms of decreasing closeness to the unit circle. Which ordering is used depends on 
the consideration of a number of factors, including the shape of the output noise and the output noise 
variance. 

Another issue in fixed-point implementations of discrete-time systems is overflow. If each fixed-point number 
is taken to be a fraction that is less than 1 in magnitude, each node variable in the network should be constrained 
to be less than I in magnitude in order to avoid overflow. If we let hk(n)  denote the unit sample response of the 
system relating the input x (n )  to the kth node variable, wk(n), 
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where X,,, is the maximum value of the input x ( n ) .  Therefore, a sufficient condition that Iwk(n)l < I so that 
no overflow occurs in the network is 

for all nodes in the network. If this is not satisfied, x ( n )  may be scaled by a factor s so that 

EXAMPLE 8.6.2 In the first-order direct form I1 network shown below. 

s ( n )  Node I Node 2 YO, )  

there are two nodes that represent adders, which are labeled "Node I "  and "Node 2." The unit sample response from the 
input to the first node is 

h (11) = (0.8)"u(n) 

Therefore. 

The unit sample response from the input to the second node is 

Thus, with a fractional representation for .r(n). a sufficient condition for no overflow to occur is that X,,, 5 0.2. 

Solved Problems 

Structures for FIR Systems 

8.1 Find the frequency response of the system defined by the following network: 
z - I  - I 2 - I  
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We recognize this structure as a linear phase system with a unit sample response 

h(n)  = -O.I[S(n) + 6(n - 6)1 + 0.2[6(n - I )  + 6(n - 5)]  .t 0.5[6(n - 2) + 6(n - 4)] + 6(n - 3 )  

8.2 A linear shift-invariant system has a unit sample response given by 

h(0) = -0.01 

/?(I) = 0.02 

h(2) = -0.10 

h(3) = 0.40 

h(4) = -0.10 

h(5) = 0.02 

h(6) = -0.01 

(a)  Draw a signal flowgraph for this system that requires the minimum number of multiplications. 

(b) If the input to this system is bounded with Ix(n)l 4 I for all n ,  what is the maximum value that the 
output. y(n ), can attain? 

(a) Because this system is a linear phase filter, it may be implemented with a network that has only four multiplies 
and six delays as shown in the figure below. 

(b )  With an input x in) ,  the output is 

Therefore, the magnitude of y(n)  is upper bounded by 

With Ix(n)l < 1 for all n,  
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8.3 The unit sample response of an FIR filter is 

h ( n )  = 
otherwise 

(a) Draw the direct form implementation of this system. 

(b) Show that the corresponding system function is 

and use this to draw a flowgraph that is a cascade of an FIR system with an IIR system 

(c) For both of these implementations, determine the number of multiplications and additions required 
to compute each output value and the number of storage registers that are required. 

(a) With a unit sample response 
h(n) = an[u(n) - u(n - 7)] 

the direct form implementation of this system is as shown below. 

(b) The system function is 

which converges for I z l  z 0. Thus, H ( z )  may be implemented as a cascade of an IIR system, 

with an FIR system, 
H2(z) = 1 - u7z-' 

Therefore, an alternative implementation of this system is as shown below. 

where the branch labeled with z-6 represents a delay by 6. 

(c) The direct form structure requires six delays, which is the minimum number necessary for this system, six 
multiplications, and six additions. The cascade, on the other hand, requires one additional delay but only two 
multiplications and two additions. 

8.4 A DSP chip used in real-time signal processing applications has an instruction cycle time of 100 ns. One 
of the instructions in the instruction set, MACD, will fetch a value from data memory (input signal), fetch 
another data value from program memory (filter coefficient), multiply the two numbers together, add the 
product to the accumulator, and then move a number in data memory into the next memory location (this 
corresponds to a shift or delay of the data sequence). Thus, for an FIR filter of order N, to find the value 
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of the output at time n ,  we need one instruction to read the new input value, x ( n ) ,  into the processor, we 
need (N + 1) MACD instructions to evaluate the sum 

and we need one instruction to output the value of y(n) .  In addition, there are eight other instruction 
cycles required for each n in order to perform such functions as setting up memory pointers, zeroing the 
accumulator, and so on. 

(a) With these requirements in mind, determine the maximum bandwidth signal that may be filtered 
with an FIR filter of order N = 255, in real time, using a single DSP chip. 

(b)  A speech waveform x, ( t )  is sampled at 8 kHz. Determine the maximum length FIR filter that may 
be used to filter the sampled speech signal in real time. 

(a) For the given DSP chip, we need N + 1 I instruction cycles to compute a single output value for an FIR filter of 
order N. Therefore, with N = 255, we need 266 cycles, or 266 x s to compute each output point. Thus, 
the signal to be filtered cannot be sampled any faster than 

I ' = 266 x 
Hz = 37.6 kHz 

Therefore. the bandwidth of the input signal is limited to 18.8 kHz (i.e., X,( f) must be zero for I f  I z 18.8 kHz). 

(b )  Sampling speech at 8 kHz produces 8000 samples per second. Therefore, we have T, = 1/8000 = 0.125 ms 
to compute each output. This allows for M = (0.125 x 10-"/10-' = 1250 instruction cycles. Thus, we may 
implement an FIR filter of order N = 1250 - I 1 = 1239. 

Find the unit sample response, h(n) ,  of the network drawn below and find the 64-point DFT of h(n) .  
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This is a frequency sampling structure for an FIR filter with a unit sample response of length N = 64. Because the 
gain of the first-order section with a pole at z = I is equal to 1, H(0) = I. With second-order networks of the form 

with A(k) = H (k) + H(N - k) 

B(k) = + H(N - k)eJ2nkJN 

we see that H(1) and H(2) are nonzero, along with H(62) and H(63). We may therefore solve these equations for 
H(1), H(2), H(62), and H(63) as follows. Because A(I) = 2, 

and because B(1) = 2cos(rc/32), 

Thus, we have two equations in two unknowns, which may be written in matrix form as follows: 

Solving these equations we find that H(1) = H(63) = 1. Similarly, with A(2) = 2 and B(2) = 2cos(n/32), we 
find that H(2) = H(62) = 1. Therefore, the 64-point DFT of h(n) is 

1 k = 0. I .  2, 62.63 
H(k) = 

0 else 

and the unit sample response is 

1 63 

h(') = - H(k) eJ2nt1"lh - nrr nrr 
- ,, + & cos - + & cos - 

64 ,=o 32 16 

8.6 Consider the FIR filter with unit sample response 

1 O otherwise 

Draw the frequency sampling structure for this filter and compare the computational complexity of this 
structure to a direct form realization. 

The 64-point DFT of the unit sample response is 

1 k = O  

H(k)=[; i  k = l , 6 3  
else 

Therefore, for the frequency sampling structure, we write the system function in the following form, 
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This leads to the frequency sampling structure shown below. 

This implementation has 67 delays (4 more than the minimum), and it requires 3 multiplies and 6 adds to evaluate 
each output y(n) .  A direct-form realization, on the other hand. has 63 delays and, because h ( n )  has linear phase, 
requires 32 niultiplies and 63 adds to compute each output value. 

8.7 The frequency sampling structure for an FIR filter is based on expressing the system function in the form 

where H ( k )  are samples of the frequency response at wk = 2 7 r k / N .  If h ( n )  is real, the symmetry of the 
DFT may be used to simplify this structure so that all of the coefficients are real. For example, Eq. (8.2) 
specifies a structure when N  is even. Derive the corresponding structure when N  is odd. 

If N is odd, we may write H(z) as follows: 

where 

Note that, due to the conjugate symmetry of the DFT, H(k) = H*(N - k) ,  the coefficients A(k) and B(k) are real. 

8.8 As discussed in Chap. 3, sample rate reduction may be realized by cascading a low-pass filter with a 
down-sampler as shown in the following figure: 
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Because the down-sampler only retains one out of every M outputs from the low-pass filter H ( z ) ,  if M 
is large, most of the filter outputs will be discarded. Therefore, if H ( z )  is an FIR filter, it is not necessary 
to evaluate the discarded values, and efficient implementations of the decimator are possible. 

(a) Assume that H ( z )  is an FIR filter with h ( n )  = 0 for n < 0 and n 2 N. If H ( z )  is implemented 
in direct form, draw a flowgraph for the decimator, and determine how many multiplications and 
additions are necessary to compute each output value y(n). 

(b) Exploit the fact that only one out of every M values of w ( n )  is saved by the down-sampler to derive a 
more efficient implementation of this system, and determine how many multiplications and additions 
are necessary to compute each value of y(n).  

(c) If H ( z )  is an IIR filter, are efficient implementations of the decimator still possible? If so, for which 
structures, and by what factor are they more efficient? 

(a) With a direct form implementation of the FIR filter H (2). the decimator is as shown below. 

Because we need N multiplies and N - 1 adds to find each value of w(n) ,  and because only one value of y(n)  is 
computed for every M values of w(n) ,  M N multiplies and M(N - 1) adds are performed for each value of y ( n ) .  

(b) Because the down-sampler only saves one out of every M values of w(n) ,  the decimator may be implemented 
more efficiently by only evaluating those values of w(n)  that are passed through the down-sampler. This may 
be accomplished by embedding the down-sampler within the FIR filter as illustrated below. 
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Now. because only one out of every M input samples is multiplied by h(k) ,  this implementation only requires 
N multiplies and N - 1 adds to compute each value of y (n ) .  Thus. the number of multiplies and adds has been 
reduced by a factor of M. 

(c) If H ( z )  is an IIR filter, it is not possible, in general, to commute the down-sampling operation with branch 
operations as was done with the FIR filter. For example, if 

we have the system illustrated below. 

However, in order to evaluate a given value of w(n) .  the previous value, w ( n  - I) ,  must be known. Therefore, 
the down-sampler cannot be commuted with any branch operations within the filter, because this would discard 
values of w ( n )  that are required to compute future values. On the other hand, consider the direct form I1 
implementation of 

as illustrated below. 

Because w ( n )  = b(O)v(n) + b( l )u(n  - 1 )  

the down-sampler may be commuted with the branch operations that form the multiplications by b(0)  and b(1) 
as illustrated in the following figure: 

To compute each value of y(n) ,  this structure requires that we find M values of v(n) ,  which requires M multi- 
plies and M adds, and it requires two multiplies and one add to find y (n )  from u(n). Thus, the total number of 
computations is M + 2 multiplications and M + I additions. The direct form 11 structure is the only one that 
allows for a savings in computation. For direct form I, transposed direct form 1, and transposed direct form 11. 
the down-sampler cannot be commuted with any branch operations. 
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8.9 The previous problem examined the simplifications that are possible in implementing a decimator. Similar 
savings are possible for the interpolator shown in the figure below. 

Because the up-sampler inserts L - I zeros between each sample of x(n),  assume that H ( z )  is the system 
function of an FIR filter, and use the fact that many of the values of w(n)  are equal to zero to derive a 
more efficient implementation of this system. 

A direct implementation of the cascade of an up-sampler with an FIR filter using the transposed direct form is 
illustrated in the figure below. 

Note that the evaluation of each value of y ( n )  requires N multiplications and N - I additions. However, only one 
out of every L values that are being multiplied by the coefficients h(n )  is nonzero. Therefore, it is more efficient to 
modify the structure so that the filtering is performed prior to the insertion of zeros. With the transposed direct form 
structure, we may commute the up-sampler with the branch multiplies as illustrated in the following figure: 

With this simplification, only N multiplies and N - 1 adds are required for every L output values. 
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Structures for IIR Systems 

8.10 Consider the causal linear shift-invariant filter with system function 

Draw a signal flowgraph for this system using 

(a) Direct form I 

(b) Direct form 11 

(c) A casczlde of first- and second-order systems realized in direct form I1 
(4 A cascade of first- and second-order systems realized in transposed direct form I1 

(e) A parallel connection of first- and second-order systems realized in direct form I1 

(a) Writing the system function as a ratio of polynomials in z - I  , 

I + 0.8752-' 
H (z) = 

I - 0.5~-I  + 0.76r2  - 0 . 6 3 2 ~ ~  

it follows that the direct form I realization of H(z) is as follows: 

For direct realization of H (z ) ,  we have 

x ( n )  ~ ( n )  
0 r " - 

l i  

0.5 
0 A - 

l i  

-0.76 
<) A c 

1, 

0.63 - 

- a " - " 0 

" 2-I 

0.875 

l i  

" z - I  

1 

" 2-I  

0 
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(c) Using a cascade of first- and second-order systems realized in direct form 11, we have a choice of either pairing 
the zero with the first-order factor in the denominator or with the second-order factor. Although it does not 
make a difference from a computational point of view, because the zero is closer to the pair of complex poles 
than to the pole at z = 0.7, we will pair the zero with the second-order factor. With this pairing, the realization 
of H ( z )  is as follows: 

(e) For a parallel structure, H ( z )  must be expanded using a partial fraction expansion: 

(d) If we change the direct form 11 systems in part ( r )  to transposed direct form 11, we have the realization shown 
below. 

x ( n )  y ( n )  
0 n - ,- - 

1 + 0.875zr1 - 
- 

A + Bz-I 
H ( z )  = 

C 
( 1  + 0.2zr1 + 0 .9 z r2 ) ( l  - 0 . 7 ~ - I )  1 + 0 . 2 ~  - I  + 0.9zr2 + 1 - 0 . 7 ~ - I  

- 

z-I 

The constants A, B ,  and C may be found as follows. Recombining the two terms in the partial fraction expansion 
as follows. 

and equating the coefficients in the numerator of this expression with the numerator of H ( z ) ,  we have the 
following three equations in the three unknowns A,  B ,  and C :  

" " 

,, 1 

0.7 
0 - 

Solving for A ,  B, and C we find 

,, 

and, therefore, the partial fraction expansion is 

- 
I 11 

z-I 

0 . 9  
A 0 - 

- 

" - 
,, 

0.875 

- 

2-I 

-0.2 
A 

1r 
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Thus. parallel structure for H(z) is shown below. 

0.7206 

Find the system function and the unit sample response of this system. 

8.11 Consider the filter structure shown in the figure below. - 

For the three nodes labeled in the flowgraph below. 

x (n )  

I 
L - 

Node 3 

w ( n )  

~ ( n )  

Node I /I I 

0 : L - I " ,. - " - 

4 i " z-I 

0.2 2 
A - P. - - 

we have the following node equations: 

Using z-transforms, the first equation becomes 

Taking the z-transform of the second equation, and substituting the expression above for W ( z ) ,  we have 
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Finally, taking the z-transform of the last equation, we find 

Therefore, the system function is 

2 + 1.82-' 
H ( z )  = 

I - 0.22-' 

and the unit sample response is 

h ( n )  = 2(0.2)"u(n) + 1.8(0.2)"-'u(n - I) 

8.12 Find a direct form I1 realization for the following network: 

To solve this problem, we begin by writing the node equations for each of the adders in the network. If we label the 
three nodes that are adders as in the figure below, 

and denote the output of the first node by wl(n), and the output of the second by wz(n) ,  we have the following three 
equations for the three node variables, 

x01) 

Substituting the first equation into the second, we have 

Then, substituting this equation into the third equation, we have 

" h(2) 

y(n) 
L - ' Node 3 

, 

0 n n " 

Node 1 

- a - 

" N O )  

z -  I 

" - 

" M I )  

- - I  - > - - 
Node 2 f 

d l )  a(2)  , 
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Thus, the direct form I1 structure for this system is as shown below. 

8.13 Find a transposed direct form I1 realization for the system described by the difference equation 
I y ( n ) =  2 4 Y( n  - I ) -  i y ( n  - 2 ) + x ( n ) -  J x ( n  - 1) 

and write down the set of difference equations that corresponds to this realization. 

The transposed direct form I1 realization for this system is as follows: 

With the node variables v l ( n )  and v,(n) as labeled in the network above, the difference equations that describe this 
network are as follows: 

vl ( n )  = x ( n )  + vdn  - I ) 

vz (n)  = - f x ( n )  + 5 v l ( n )  - :vl(n - I )  

v ( n )  = v ~ ( n )  

8.14 Find the system function and the unit sample response for the following network, and draw an equivalent 
direct form 11 structure: 
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This network is a parallel connection of two first-order systems, plus a feed-through connection with a gain of 2. 
Therefore, the system function is the sum of three system functions: 

Thus, the unit sample response is 

To find an equivalent direct form 11 realization, H(z) is first expressed as follows: 

Therefore, the direct form 11 structure is as shown in the following figure: 

4 

Find the system function for the following network, and determine the conditions on  the coefficients a ( ] ) ,  
a(2),  a(3),  and a(4)  that will ensure the stability of the system: 

The first thing to observe is that this system corresponds to a feedback network of the form shown in the following 
figure: 

x ( n )  
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where G(z) is the second-order system shown below. 

Therefore, Y(z) = X(z) + G(z)Y(z) 

and 
I 

H(z)=  - 
1 - G(z) 

To find G(z), we begin by writing the node equations for this network: 

Taking the z-transform of the first two equations, we have 

Substituting the second equation into the first gives 

Finally, from the last difference equation, we have 

Therefore. 

and for H(z) we have 

For stability, it is necessary and sufficient that the coefficients [a(2) +a(4)] and [a( l )  + a(3)] lie within the stability 
triangle (see Chap. 5) ,  which requires that 
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8.16 Find the system function of the following network: 

x ( n )  2 

This system is a feedback network that has the following form: 

x ( n )  
G(z) G - I f2  

Therefore, the system function is 

With 

we have 

8.17 Find the system function of the following network: 
x ( n )  

The system function of this network may be found by writing down the difference equations corresponding to each 
adder and solving these equations using z-transforms. A simpler approach, however, is to redraw the network as 
follows, 
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which we recognize as a cascade of three second-order networks. Therefore, the system function is the product of 
the system functions of each network in the cascade, and we have 

8.18 Consider the network in the figure below. Redraw the flowgraph as a cascade of second-order sections 
in transposed direct form 11. 

where 

To implement lhis system as a cascade of second-order transformed direct form 11 networks, we must first find the 
system function corresponding to this network. Note that this network is of the form shown in the following figure: 

Therefore, 

or 

L - H I ( : )  

- --  

- 
( l - 0.2:r1 + 0.8:r2)( 1 + 0 . 2 ~ ~ ~  + 0.82-I) 

Therefore, the desired network is as shown in the following figure: 

. ~ ( I I )  2 

- 
X O I )  

0 : - H s ( z )  
~ ( n )  

& - 
H z ( - )  L - 
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8.19 A digital oscillator has a unit sample response 

The system function of this oscillator is 

(a) Draw a direct form I1 network for this oscillator, and show how the sinusoid may be generated with 
no input and the appropriate set of initial conditions. 

(b) In applications involving the modulation of sinusoidal carrier signals in phase quadrature, it is 
necessary to generate the sinusoids 

Beginning with a system that has a unit sample response h ( n )  = eJnqu(n) ,  separate the difference 
equation for this system into its real and imaginary parts, and draw a network that will generate 
these signals when initialized with the appropriate set of initial conditions. 

(a) A direct form I1 network for the oscillator is as follows: 

sin wl 

With the input x ( n )  = &n). the response is y(n) = sin[(n + I)w] for n  2 0. Equivalently, if the storage 
registers corresponding to the delays are initialized so that 

the zero-input response will be a sinusoid of frequency wo. 

(h)  A complex exponential sequence y(n)  = e J n q  u(n) is generated by the difference equation 

with the initial condition 
y(- I ) = e - j q  

Writing this difference equation in terms of its real and imaginary parts, we have 

This equation is equivalent to the following pair of coupled difference equations, which are formed from the 
real part and the imaginary part of the equation: 
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A network that implements this pair of equations is shown below. 
z - I  

L 
V - 0 

COS Wg .yi(n) = sinnwo 

The initial condition required to generate the desired output is yc - I )  = e - J q ,  or 

8.20 Implement the system 

as a parallel network of first-order direct form structures. 

Factoring the denominator of the system function, we find 

To implement H ( z )  as a parallel network of first-order filters, we must express H ( z )  as a sum of first-order factors 
using a partial fraction expansion. Because the order of the numerator is equal to the order of the denominator, this 
expansion will contain a constant term, 

To find the value of C. we divide the numerator polynomial by the denominator as follows: 

Therefore, C = 2, and we may write H ( z )  as follows: 

Finally, with 

we have, for the coefficients A and B, 
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and 

Thus, 

and the parallel network for this system is as shown below. 

8.21 The system function of a discrete-time system is 

Draw a signal flowgraph of this system using a cascade of second-order systems in direct form 11, and 
write down the set of difference equations that corresponds to this implementation. 

Expressing H ( z )  as a product of two second-order systems, we have 

I + 22-I + z-= 1 + 2z-' + z - ~  
H  ( z )  = 1 - z-1 + 12-2 1 + 22-1 + 3 - 2  8 

which leads to the following cascade implementation for H(z):  
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With w(n), vl(n). and v2(n) as labeled in the figure above, the set of difference equations for this network is: 

8.22 Consider the fourth-order combfilter that has a system function 

(a) Draw a pole-zero diagram for H (z). 

(b) Find the value for A so that the peak gain of the filter is equal to 2. 

(c) Find a structure for this filter that requires only one multiplier. 

(a) The comb filter has four zeros on the unit circle at 

pk = e~(2k+l)n/4 k = O .  1.2.3 

and four poles at 

ark = k = 0,  1 ,2 ,3  

A pole-zero diagram for H(z) is shown in the following figure: 

(b) Due to the zeros on the unit circle, the magnitude of the frequency response is zero at wt=(2k + l )n/4 for 
k = 0, 1,2, 3, and it increases monotonically until it reaches a maximum value at the frequencies that are 
midway between the zeros at wk = k1r/2. Therefore, in order for the peak gain to be equal to 2, we want 

which implies that 
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(c) With a system function 

we may implement this system using two multiplies as shown in the figure below. 

Note, however, that the multiplier may be shared as follows: 

a(n) 

The difference equations for this network are 

8.23 The system function of an allpass filter has the form 

The symmetry that exists between the numerator and denominator polynomials allows for special struc- 
tures that are more efficient than direct form realizations in terms of the number of multiplies required to 
compute each output value y(n ). 

(a) Consider the first-order allpass filter, 

z-I + a 
H ( z )  = 

I + az - I  

where a! is real. Find an implementation for this system that requires two delays but only one 
multiplication. 

(h) For a second-order allpass filter with h ( n )  real, the system function has the form 

where a and B are real. Derive a structure that implements this system using four delays but only 
two multiplies. 

(a) The direct form realization of a first-order allpass filter requires two multiplies and one delay as shown in the 
figure below. 
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To see how the two multiplies may be combined, consider the difference equation for this system: 

Therefore, only one multiplication is necessary if we form the difference x ( n )  - y ( n  - I )  prior to multiplying 
by a. Thus, we have the structure illustrated in the figure below that has two delays but only one multiplication. 

Because this structure requires an extra delay compared to direct form, this structure is not canonic. 

( b )  As with the first-order allpass filter. we may find a two-multiplier realization ol'a second-order allpass filter by 
combining together terms in the difference equation for the allpass filter as follows: 

Thus, only two multiplications are required if we can form the differencess(n - 1 ) - y ( n  - 1 ) and . r ( n ) -  y ( n  -2) 
prior to performing any multiplications. A structure that accomplishes this is given in the figure below. 

Note that with the additional delays, two multiplications are saved compared to a direct form implementation. 

Lattice Filters 

8.24 Sketch a lattice filter implementation of the FIR filter 

To implement this system using a lattice filter structure, we must find the reflection coefficients that generate the 
polynomial H(z). First, however, it is necessary to normalize H ( z )  so that the first coefficient is unity: 

Now, with 

we see that 
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Next. we generate the second-order system Hr(z) using the step-down recursion: 

Therefore, r2 = 0.1905. Finally, we have 

and, therefore, I-1 = 0.4. Thus, the lattice filter structure is as shown below. 

8.25 Shown in the figure below is an FIR lattice filter. 

((1) Find the system function A(=)  = F ( z ) / X ( z )  relating the input x ( n )  to the output f ( n ) .  Does this 
system have minimum phase? 

(b) Repeat part (0) for the system function relating x ( n )  to ~ ( n ) .  

( a )  To find the system function relating .u(tz) to f ' ( t l ) ,  we use the step-up recursion. Using the vector form of the 
recursion, we have for the coefficients u l ( k )  

Then, with Tz = 0.4, for a?(/,), we have 



CHAP. 81 IMPLEMENTATION O F  DISCRETE-TIME SYSTEMS 

Finally, with r3 = 0.2. we have 

Thus. A(:)  = 1 + 0.78;-' + 0.54z-' + 0.2;-' 

This system will have minimum phase if the zeros of A(z) are inside this unit circle. Although this could be 
determined by factoring A(z), because the reflection coefficients used to generate A(:)  are bounded by I In 
magnitude. it follows that A(z)  has minimum phase. 

( b )  The system function A'(z) = G(- . ) /  X(z)  is related to X(z)  as follows: 

Because the zeros of A1(z) are formed by flipping the zeros of A(?)  about the unit c~rcle. all of the zeros of A'(:) 
will be o~ctside the unit circle and thus will not have minimum phase. 

8.26 Let A ( z )  be an FIR filter with lattice filter coefficients 

(a)  Find the zeros of the system function A(z) .  

(h )  Repeat for the case when r3 = - 1 .  

(c) Can a general result be proved for lattice filters that have reflection coefficients Ti with 

IT j l  < I for j =  1,2, ... . p -  1 

ITPI = 1 

( a )  To find the system function A(z)  for a given set of reflection coefficients, we use the step-up recursion. For 
a l ( k )  we have 

Then, with r2 = 4 we have 

Finally, with T3 = I we have 

Thus. A(z) = 1 + +z- '  + t ~ - ~  + z-3 

The zeros of the system function may be found by factoring A(z) .  The roots are found to be 

pI = - 1 p2 = e~1).4646n fi3 = C-~().JM6" 

which are on the unit circle. 
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(h) If r3 = - I .  the system function may be found by modifying the last step of the step-up recursion in pan (a) as 
follows: 

which are again on the uni t  circle. 

(c) If A,,(z) is a pth-order FIR filter with reflection coefficients r, where (r,I < I for j = 1..  . . . p - I ,  and 
lr,*l = 1 ,  

A,,(z) = A p - I ( ~ )  f z - " A ~ - ~ ( ~ - ' )  

and it follows that the polynomial A,(z) is symmetric or antisymmetric, that is. 

Therefore, A,&) has (generalized) linear phase, which implies that all of the zeros of A,@) lie on the unit 
circle or in conjugate reciprocal p a n  However, if Ir, 1 < I for j = 1.2, . . . . p - I, the zeros must lie on the 
unit circle. The reason for this is as follows. The Schur-Cohn stability criterion states that none of the roots of 
A,(z) may lie outside the unit circle if ITj\ 5 1 for j = 1.2, . . . , p. Therefore, if A&) has generalized linear 
phase with no zeros outside the unit circle. then all of the zeros must be on the unit circle. 

Draw a lattice filter implementation for the all-pole filter 

and determine the number of multiplications, additions, and delays required to implement the filter. 
Compare this structure to a direct form realization of H ( z )  in terms of the number of multiplies, adds, 
and delays. 

To implement this filter usinga lattice filter, we must first derive the reflectioncoefficients rI. r 2 ,  and r,3 corresponding 
to the denominator polynomial. With 

it follows that r3 = 0.6. Next, using the step-down recursion to find A2(z), we have 

I 
A2(z) = - 

I - r: [Adz) - r 3 ~ - ' ~ d - ' ) l  

- - 1 
1 l - 0 . 2 ~ '  + 0.4zT2 t 0.61-" - 0 . 6 ~ - ~ ( 1  - 0 . 2 ~  + 0.4z2 + 0.6z3)] 

1 - (0.6)2 

= I - 0 . 6 8 7 5 ~ ~ '  + 0.8 1 2 5 8  

Thus. for r2 we have r2 = 0.8 125. Finally, for A'(,-), we have 

and, therefore, r I  = -0.3793. Thus, the structure is as follows: 
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This filter structure has three delays and requires five multiplications and five additions to evaluate each value of the 
output, y(n). A direct-form structure also requires three delays but only three multiplications and three additions. 

8.28 Without factoring any polynomials, determine whether o r  not the following causal filter is stable: 

H ( z )  = 
1 + 21-' + 2 r 2  + 2 - 3  

1 + 1 . 5 8 ~ - '  + 1.638~-2 + 1.556~-" 0 4 - 4  

We may easily check the stability of this filter using the Schur-Cohn stability test, which involves checking to 
see whether or not the magnitudes of the reflection coefficients corresponding to the denominator polynomial are 
bounded by 1 in magnitude. With 

it follows that lr41 = 0.4 < 1. Using the step-down recursion to find A 3 ( z ) ,  we have 

Therefore, 1 r3 I = I .  I > 1, and it follows that the filter is unstable. 

8.29 Use the Schur-Cohn stability test to  derive the stability conditions 

for  a second-order filter 

H ( z )  = 
b(0) 

I + a (  1 ) ~ - I  + a ( 2 ) ~ - ~  

In order for H(z )  to be stable, it is necessary and sufficient for the reflection coefficients TI and Tz to have a magnitude 
that is less than 1. In t e n s  of the first two reflection coefficients, the denominator of H(z) is 

Therefore, because a(2)  = Tz,  the constraint that )r2( < 1 gives us the first condition, 

Next, with 

a(1)  = rl + rl  rz = I I + a(2) l r l  
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it follows that 

Because we require that 1 rl 1 < I, 

These two equations are equivalent to 

as was to be shown. 

8.30 Implement the allpass filter 

using a lattice filter structure. 

To find the lattice filter structure for this allpass filter, we use the step-down recursion to find the reflection coefficients 
corresponding to the denominator polynomial, 

A3(z) = I - 0.82-I + 0.64z-? - 0.512z-~ 

First, we note that r3 = -0.5 12. Then, we find Az(z) as follows: 

1 
Az(z) = - [A3(z) - T ~ Z - ~ A ~ ( Z - ' ) ]  

I - r: 
- - 1 

[ I  - 0.8z-~ + 0 . 6 4 ~ ~ '  - 0.512z--' + 0 .512~-~ (1  - 0.82 + 0.64z2 - 0.512z3)] 
1 - (0.512)? 

= 1 - 0.64Olz-' + O.3123z-~ 

Thus. the second reflection coefficient is r2 = 0.3123. Finally, we have 

I 
A,(z) = - [Az(z) - r 2 ~ - 2 ~ ~ ( ~ - ' ) 1  

1 - r; 
- - 1 

[I - 0.6401~-' + 0.3123~-' - 0.3123~-~(1  - 0.64012 + 0.3123z2)] 
1 - (0.3 1 23)2 

= 1 - 0.4878~-' 

and, therefore, r1 = -0.4878. Thus, a lattice implementation of this allpass filter is as shown in the figure below. 
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8.31 Find the system function for the lattice filter given in the figure below. 

x ( n )  

This structure implements a third-order IIR filter with three poles and three zeros: 

To find the system function, first we use the step-up recursion to find A3(z) from the reflection coefficients r,, r2, 
and r3. With rI = 0.2, we have 

Next, for a2(k) we have 

Finally, for a3(k) we have 

Therefore, the denominator polynomial is 

To find the numerator B3(2), we use Eq. (8.8), 

Thus, we have 

Therefore, the system function is 
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8.32 Sketch a lattice filter structure for  each of  the following system functions: 

(a) To implement the filter 

using a lattice filter structure, we must first find the reflection coefficients corresponding to the denominator 
polynomial. Using the step-down recursion, we find 

Next, we find the coefficients c l  (k) that produce the numerator polynomial 

Using the recursion 

we have c l ( l )  = b l ( l )  = - I  

and c,(0) = bl(0) -c l ( l )a1( l )  = 2.4698 

(note that a l ( l )  = r , ) .  Therefore. the lattice filter structure for this system is as shown in the figure below. 

(b) To find the lattice filter structure for 

we first use the step-down recursion to find the reflection coefficients for the denominator, which are 

Next, we use the recursion 
u 
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to find the coefficients c3(k).  which are 

Thus, the lattice filter structure for this system is as shown in the figure below. 

xfn) 

( c )  Note that the system function 

is an allpass filter. Because the denominator is the same as the system function in part (b), the reflection 
coefficients are rl = 0.5 and T2 = 0.75, and the lattice filter is as shown in the figure below. 

Finite Word-Length Effects 

8.33 Express the fractions and -& in sign-magnitude, one's complement, and two's complement notation 
using 6 bits. 

With B + 1 = 6 bits, I bit will be a sign bit, and 5 will be the fractional bits. Because 

the 6-bit representation for x = $ in all three binary forms is 

For x = - & we have, in sign-magnitude form, 

and in one's complement form. 
x = 0.001 11 = 1.1 1000 

and in two's complement form 
x = 0.001 1 1  + 0.00001 = 1.1 1001 
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8.34 Consider the following implementation of  a second-order filter: 

(a) Find the system function corresponding to this network. 

. . 
0 - - 

(b) If the coefficients ( r  cos wo) and ( I .  sinwo) are quantized to 4 bits, draw the set of allowable pole 
locations in the z-plane. For what types of filters would this filter structure be preferred over a direct 
form structure'? 

(a) This filter structure is called the coupled form realization. The system function for this filter may be found as 
follows. The difference equations relating .r(n), v ( n ) .  and v(n) are 

" - 
" I-' 

. r - r  

I 
1L 

- 

u(n) = x(n)  - r sin(q)y(n - 1 )  + r cos(wIJ)v(ri - I )  

y (n)  = r sin(wo)v(n - I ) + r cos(w,,)v(n - I ) 

-r  sinwo 

Taking the z-transform of the first equation. we have 

r cos wo r cos wo 

" 

r 
1 

Solving for V(z) yields 

" 

L 

0 

X(z) - r sin(wo)z-' Y (z) 
V(z)  = I - r cos(wo)z-~ 

Substituting this into the :-transform of the second difference equation gives 

Solving this equation for Y (z). we have 

Therefore, the system function is 

(b) This filter has poles at 
.. - r c * l l u l l  - - - - r cos q, * j r  sin q, 

Thus, the coefficients in this structure are the real and imaginary parts of the pole locations. Therefore, i f  the 
coefficients are quantized to B  + I bits. the poles will lie at the intersections of 2'+ ' evenly spaced horizontal 
and vertical lines in the i-plane. These positions are illustraled in the figure below for the first quadrant when 
B + 1 = 4 .  
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Note that, compared with the direct form structure, the allowable pole locations are uniformly distributed 
within the unil circle. The cost for this uniform spacing is four multiplies and three additions per output value, 
compared to only two multiplications and two additions for a direct form implementation. This extra cost may 
be worthwhile, particularly for low-pass filters that have poles close to the unit circle in the vicinity of z = 1, 
where the density of the allowable pole locations is sparse in the direcl form implementation compared to the 
coupled form implementation. 

8.35 A white noise sequence e ( n )  with variance 0; is input to a filter with a system function 

(1 + 2zr2)(1 + 3 z r I ) ( l  + z r ' )  
H (z) = 

(1 + iz-2)(1 + iz -1)  

Find the variance of the output sequence. 

The variance of the output sequence is 

For the given filter, note that 

where the firs1 two terms are allpass filters with 

Therefore, 

Using Parseval's theorem, 
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we find 

Thus. we have 
0: = 720,' 

8.36 Consider the following cascade of two first-order all-pole filters: 

(a) Find the variance of the round-off noise at the output of the cascade for an 8-bit processor with 
rounding. 

(h) Repeat for the case in which the order of the cascade is reversed. 

(a) A model for the round-off noise is shown in the following figure: 

where the variance of each noise source is equal to 

The system function of the filter is 

H ( z )  = 

and the unit sample response is 

Note that because e l ( n )  is filtered by h ( n ) ,  and e2(n) is only filtered by the second filter in the cascade, which 
has a unit sample response 

h d n )  = (:)nw 
the output noise, f (n) ,  is 

f ( n )  = * h ( n )  + e d n )  * h d n )  

Therefore, the variance of f (n) is 
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With 

we have 

Next, we have 

Therefore, the variance of the round-off noise at the output of the filter is 

which, for an 8-bit processor (B = 7), is 

2-28 
O: = 2.8953 - = 0.2413 . 2-l4 = I .4726 . 

12 

(b) If the order of the cascade is reversed. we have the following network: 

The variance of the round-off noise due to e l ( n )  is the same as in part (a), but because the unit sample response 
of the second system in the cascade is now 

h;?(n) = ( i ) n u ( n )  

the variance of the noise due to e z ( n )  is 

Thus, the variance of the round-off noise at the output of the filter is 

a: = 1.82860: + 1.33330: = 3.16190; 

which, for an 8-bit processor is 

With this structure, the round-off noise is slightly larger. 

8.37 Consider a linear shift-invariant system with a system function 

1 - 0 . 4 ~ ~ '  
H (z) = 

( 1  - 0.62-')(I - 0.8~-1) 

Suppose that this system is implemented on a 16-bit fixed-point processor and that the sums of products 
are accumulated prior to quantization. Let a: be the variance of the round-off noise. 
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(a) If the system is implemented in direct form 11, find the variance of the round-off noise at the output 
of the filter. 

(b) Repeat part (a) if the system is implemented in parallel form. 

(a )  The direct form I1 implementation of this system is shown in the figure below along with the two round-off 
noise sources. 

Because the sum 
x(n)  + 1.4w(n - 1 )  - 0.48w(n - 2)  

may be accumulated prior to quantization, the variance of the noise e l ( n )  is a:. Similarly, because the sum 

may be accumulated prior to quantization, the variance of the noise e2(n)  is also me2. With c l ( n )  being filtered 
by the system and with ez(n) being noise that is simply added to the output, the quantization noise at the output 
of the filter is 

f ( n )  = h(n) * el ( n )  + eAn) 

which has a variance equal to 

To find the unit sample response of the filter, we expand H ( z )  in a partial fraction expansion as follows: 

I - 0 . 4 ~ - I  - - 1 
H ( z )  = - 2 

( 1  - O.6zr1)(I - 0.82-I) 1 - 0.62-I + 1 - 0 . 8 ~ - I  

Therefore, h(n)  = -(0.6)"u(n) + 2(0.8)"u(n) 

and lh(n)12 = [-(0.6)" + 2(0.8)"]2u(n) = [(0.6)'" - 4(0.48)" + 4(0 .8 )~"]u(n)  

Evaluating the sum of the squares of h(n),  we have 

Thus, the variance of the output noise is 
0; = 6u: 

(b) Using the partial fraction expansion for H ( z )  given in part (a ) ,  the parallel form implementation of this filter is 
shown in the following figure: 
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As indicated in the figure, there are two noise sources. The first, cl (n),  is filtered with a first-order all-pole filter 
that has a unit sample response 

hl(n)  = (0.8)"1~(~) 

and the second, ez(n), is filtered with a first-order all-pole filter that has a unit sample response 

Because the output noise is 
f ( n )  = cJl(n) * I I I ( ~ )  + r 2 ( n )  * hz(n) 

the variance of f (n) is 

8.38 A linear shift-invariant system with a system function of the form 

is to be implemented as  a cascade of N second-order sections. where each section is realized in either 
direct form I o r  11 or in their transposed forms. How many different cascaded realizations are possible. 

Let us assume that each factor in H(z)  is unique, so that there arc N different second-order polynomials in the 
numerator and the same number of polynomials in the denominator. In this case. there are N! different pairings 
of factors in the numerator with factors in the denominator. In addition, for each of these pairings, there are N !  
different orderings of these sections. Therefore. there are (N !)' different pairings and orderings. With four different 
structures for each section (direct form I, direct form 11, transposed direct form I,  and transposed direct form 11), 
there are a total of 4N(N!)2 different realizations. For a tenth-order system (N = 5). this corresponds to 14,745,600 
different structures. This is why general pairing and ordering rules are important. 

8.39 Let H ( z )  be a pth-order allpass filter with a gain of 1 that is implemented in direct form I1 using a 
processor with B + 1 bits. 

( a )  If the product of two ( B  + 1)-bit numbers is rounded to B + I bits before any additions are per- 
formed, find the variance of the round-off noise at the output of the filter. 

(b) Repeat part (a)  for the case in which sums of products are accumulated prior to quantization. 
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(a) The system function for a pth-order allpass filter has the form 

a(p)  + a ( p  - l)z-I + . . . + z-" 
H (z) = 

1 + a(l)z-' + . . . + a(p)z-P 

With a direct form I1 implementation of this system, rounding each product to 5 + 1 bits prior to performing 
any additions, we have the round-off noise model shown in the following figure: 

where the variance of each noise source is 
2-28 

u2 = - 
12 

Note, however, that this noise model may be simplified as illustrated in the following figure: 

where 
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Assuming that each noise source is uncorrelated with the others, the variances of e , (n)  and eh(n)  are 

u,Z=,,u; ~ ; = ~ u ;  

Because the output noise is 
f (n) = e d n )  * h ( n )  + eh(n)  

where h ( n )  is the unit sample response of the allpass filter, the variance of f ( n )  is 

Equivalently, we may write this using Parseval's theorem as follows: 

Because H(e1") is an allpass filter with I H (elW)I = I, the variance of the output noise is 

a: = u,Z + 02 = 2pu,' 

(b) If the products are accumulated prior to quantization, the variances of e,(n)  and eh(n) in the noise model given 
in part (a) will be reduced by a factor of p: 

Therefore, the variance of the output noise becomes 

8.40 In the figure below are direct form I1 and transposed direct form I1 realizations of the first-order system 

(a) Direct form 11. 

(b )  Transposed direct form 11. 

Assume that both systems are implemented using ( B  + 1)-bit fixed-point arithmetic and that all products 
are rounded to B + 1 bits before any additions are performed. 
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(a) Using a linear noise model for the round-off noise, find the variance of the round-off noise at the 
output of the direct form I1 filter. 

(b) Repeat part (a)  for the transposed direct form I1 filter. 

(c) How would the variance of the output noise change if the sums of products were accumulated prior 
to  quantization? 

( a )  The linear noise model for round-off noise in the direct form I1 implementation is shown in the figure below. 

The variance of the noise eo(n) is a: and the variance of el  ( n )  is 2 4 ,  where 

Because the output noise is 

f ( n )  = + e d n )  * h ( n )  

where h ( n )  is the unit sample response of the filter, the variance of the output noise is 

With 

it follows that the unit sample response is 

Therefore, 

and the output noise variance is 

( b )  For the transposed direct form I1 implementation, the noise model is as follows, 
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where the variance of eo(n) is a:, and the variance of e l ( n )  is 2u:. Note that because neither noise source is 
filtered by the zeros of the system, an equivalent model for the generation of the filtered noise f ( n )  is as shown 
in the figure below, 

where e ( n )  = en@) + e l ( n  - I). Because e&) and e l  ( n )  are uncorrelated, the variance of e ( n )  is 30:. and the 
variance of the output noise is 

(c) If we accumulate the sums of products prior to quantization, for the direct form I1 implementation, the variance 
of the noise e l ( n )  would be a,' instead of 2u:, and everything else remains the same. For the transposed direct 
form I1 structure, on the other hand, the variance of el ( n )  would be 0; instead of 2u:, which implies that the 
variance of e ( n )  would be 2u:, 

8.41 A sixth-order filter with a system function 

H (z) = 
( 1  + zp2)(I + ~ - ' ) ~ ( 1  - 2cos(lr/6)z-' + zp2) 

(1 - 1.6 cos(lr/4)z-I + 0 . 6 4 ~ - ~ ) ( 1  + 1.6 cos(lr/4)z-I + 0.64zr2)(1 - 1.8 cos(rr/6)z-' + 0 . 8 1 r 2 )  

is to be implemented as a cascade of second-order sections. Considering only the effects of round-off 
noise, determine what the best pole-zero pairing is, and the best ordering of the second-order sections. 

Note that all six zeros of this system lie on the unit circle, with two at z = -1, a complex pair at z = f j, and a 
complex pair at z = eiJ"I6. The poles, on the other hand, are at z = 0.8e*J"I4, z = 0 . 8 e * ~ ~ ~ J ~ ,  and z = 0.9e*J"16. 
A pole-zero diagram showing each of these poles and zeros is given below. 
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The general strategy for pairing poles with zeros is to first find the two poles that are closest to the unit circle, in this 
case those at z  = 0.9e*jnI6, and pair these with the two zeros that are closest to these poles, which are those on the 
unit circle at z  = e*j"I6. Thus, the first pole-zero pairing yields the second-order section 

Of the remaining poles, we next find the pair that is closest to the unit circle, which are either those at z = 0.8ei'R/4 
or those at z  = 0 .8e f j3x /4 .  Let us arbitrarily select the first of these, Paired with these poles would then be the zeros 
at z = j, which gives us the second-order section 

Finally, for the last section we have 

The cascade is then done in the reverse order, with the first second-order section being H3(z),  followed by H&), 
and then Hl(z) .  

Supplementary Problems 

Structures for FIR Systems 

Find the unit sample response for the following network: 

z-I --I 2-I . - 1  

What is the frequency response of the following network? 
_-I z-I 

What is the minimum number of multiplications and additions and delays required to implement a linear phase filter 
with h(n)  = 0 for n < 0  and n r 63? 

How many multiplies, adds, and delays are required to implement the filter 

I 0  otherwise 

using ( a )  a direct form structure and (b) a frequency sampling structure? 
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8.46 Draw a frequency sampling structure for the FIR high-pass filter of length N = 32 with 

$ k = lS , l6 ,  17 
H ( k )  = 

0 else 

Structures for IIR Systems 

8.47 Find the system function for the following network, where az - '  is a unit delay combined with a multiplication by a :  

.x(n) ~ ( n )  

8.48 Find the unit sample response of the following network: 

8.49 Find the constant A so that the second-order all-pole filter 

A 
H ( z )  = - 

I + a , z - '  + a 2 z r 2  

has unit gain at w = 0, and find a structure that only requires two multiplications. 

8.50 What is the system function corresponding to the following filter structure? 

8.51 Find the transposed direct form 11 realization of the system described by the difference equation 

Lattice Filters 

8.52 What is the frequency response of the FIR filter that has reflection coefficients r l  = r2 = . . . = r9 = 0 and 
I-lo = I ?  
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8.53 Draw a lattice filter implementation for the allpass filter 

0.25 - 0.52-' + z-2 
H (z) = 

1 - 0.5~-I + 0 . 2 5 r 2  

8.54 If the system function of a causal filter is 

I 
H(z) = 

I + I. lz-I + 0 . 9 r 2  + 1 + 0 . 5 ~ - ~  

is this filter stable? 

8.55 If H(z) is an FIR filter with reflection coefficients T I ,  r2. . . . , r,,, what is the system function of the filterG(i) with 
reflection coefficients rI .  0. r2. 0, rl, . . . - 0 ,  r,,? 

8.56 Suppose that the last reflection coefficient of an FIR lattice filter. not necessarily minimum phase, has unit magnitude 
Ir,,l = I .  What general statements can be made about the system function H(z)? 

8.57 Find the system function of the following lattice filter: 

r ( n )  

Finite Word-Length Effects 

(a) Whal fraction does the binary number x = 1.01 101 represent in one's complemenr notation'? (b) What about 
two's complemenl notation? 

White noise with a variance < is input to a linear shifi-invariant filter with a system function 

Find the variance of the noise at the output of the filter. 

Consider the following cascade of two tirst-order filters, where la1 > Ibl: 

Without explicitly evaluating the variance, determine whether the variance of the round-off noise at the output of 
this filter will be larger or smaller if the order of the cascade is reversed. 

Consider a linear shift-invariant system with a system function 

Assume that each product is rounded to 16 bits before any additions are performed, and let a: be the variance of the 
round-off noise. 
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(a) If this system is implemented in direct form 11, compute the variance of the round-off noise at the output of the 
filter, a:, due to all noise sources. 

(h) Repeat part (a)  if the system is implemented in direct form I 

8.62 Suppose that an FIR filter with a system function 

is implemented on a 16-bit fixed-point processor. If sums of products are accumulated prior to rounding, find the 
variance of the round-off noise at the output of the filter. 

8.63 The second-order system 
1 

H (z) = 
1 - 1.2728~-' + O.XIZ--~ 

is implemented in direct form I1 using 16-bit fixed point arithmetic. Assuming that all sums of products are 
accumulated prior to rounding, find the quantization noise power at the filter output. 

8.64 To minimize the effects of round-off noise, what is the best pairing of poles and zeros into second-order sections for 
the system 

(1 + 0 . 9 ~ - ~ ) ( 1  - 2.4cos(0.75n)z-' + 1 . 4 4 ~ - ~ )  
H(z) = 

(1 - 1.4 cos(O.251r)z-' + 0.49r2)(1 - 1.8 cos(O.9lr)z' + 0.8 1 z rZ)  

and what is the best ordering for the second-order sections? 

Answers to Supplementary Problems 

8.44 63 delays, 63 additions, and 32 multiplications. 

8.45 (a) 33 multiplies, 63 adds, and 63 delays. (b)  9 multiplies, 10 adds, and 69 delays 
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8.49 A = I + a, + az, and the structure is 

.W) 

[CHAP. 8 

8.54 No, the filter is unstable because r3 = 1.2. 

8.55 G ( z )  = H (z2) .  

8.56 The system function will have generalized linear phase, H ( z )  = f z-PH(z-I) .  

8.58 (a) 6 .  (b)  $. 
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8.60 The variance of the output noise will be larger if the pole closest to the unit circle is the second filter in the cascade. 
Thus, the output noise variance will be larger if the order of the cascade is reversed. 

8.61 (a) a: = 2.70;. (b) o: = 2.20:. 

8.62 The variance of the output noise is simply the noise variance, a: = .h2-2B = 12-'O 12 ' 

8.63 = 0.20770; where 0: = h2-30. 

1 + O . ~ Z - ~  1 - 2.4 cos(0.75n)z-I + 1 . 4 4 ~ - ~  
8.64 Hl(z) = - and H2(z) = 

1 - 1.4 cos(0.25n)z-' + 0.49zr2 ' 1 - 1.8cos(0.9n)z-I + 0 . 8 1 ~ - ~  ' 



Chapter 9 

Filter Design 

9.1 INTRODUCTION 

This chapter considers the problem of designing a digital filter. The design process begins with the filter specifi- 
cations, which may include constraints on the magnitude and/or phase of the frequency response, constraints on 
the unit sample response or step response of the filter, specification of the type of filter (e.g., FIR or IIR), and the 
filter order. Once the specifications have been defined, the next step is to find a set of filter coefficients that pro- 
duce an acceptable filter. After the filter has been designed, the last step is to implement the system in hardware 
or software, quantizing the filter coefficients if necessary, and choosing an appropriate filter structure (Chap. 8). 

9.2 FILTER SPECIFICATIONS 

Before a filter can be designed, a set of filter specifications must be defined. For example, suppose that we would 
like to design a low-pass filter with a cutoff frequency w,.. The frequency response of an ideal low-pass filter 
with linear phase and a cutoff frequency w,. is 

which has a unit sample response 
sin(n - a)w, .  

hd(n)  = 
n(t7 - a )  

Because this filter is unrealizable (noncausal and unstable), i t  is necessary to relax the ideal constraints on the 
frequency response and allow some deviation from the ideal response. The specifications for a low-pass filter 
will typically have the form 

as illustrated in Fig. 9-1. Thus, the specifications include the passband cutoff frequency, w,, the stopband cutoff 
frequency, w,, the passband deviation, 6,. and the stopband deviation, 6,. The passband and stopband deviations 

I I I 

Passband 4 Stopband -i 
I I I 

Fig. 9-1. Filter specifications for a low-pass filter, 
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are often given in decibels (dB) as follows: 

and a,. = -2010g(6,~) 

The interval [w,, w,] is called the trunsitiotr hand. 
Once the filter specifications have been defined, the next step is to design a filter that meets these specifica- 

tlons. 

9.3 FIR FILTER DESIGN 

The frequency response of an N th-order causal FIR filter is 

and the design of an FIR filter involves finding the coefficients h(n)  that result in a frequency response that 
satisfies a given ser of filter specifications. FIR filters have two important advantages over 1IR filters. First, they 
are guaranteed to be stable, even after the filter coefficients have been quantized. Second, they may be easily 
constrained to have (generalized) linear phase. Because FIR filters are generally designed to have linear phase, 
in the following we consider the design of linear phase FIR filters. 

9.3.1 Linear Phase FIR Design Using Windows 

Let hd(n) be the unit sample response of an ideal frequency selective filter with linear phase, 

Because hd(n) will generally be infinite in length, it is necessary to find an FIR approximation to Hd(ejw). With 
the window design method, the filter is designed by windowing the unit sample response, 

where w(n) is a finite-length window that is equal to zero outside the interval 0 n 5 N and is symmetric about 
its midpoint: 

w(n) = w(N - n )  

The effect of the window on the frequency response may be seen from the complex convolution theorem, 

Thus, the ideal frequency response is snzoothed by the discrete-time Fourier transform of the window, W(ejW). 
There are many different types of windows that may be used in the window design method, a few of which 

are listed in Table 9- 1 .  
How well the frequency response of a filter designed with the window design method approximates a desired 

response, H~(&"). is determined by two factors (see Fig. 9-2): 

1. The width of the main lobe of W (el"). 

2. The peak side-lobe amplitude of W(ejU). 
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I 
Peak Sidelobe 

I W 

- ?r -4 A it Mainlobe 'IT 

Width 
Fig. 9-2. The DTFT of a typical window, which is characterized by the width of its main lobe. A. 

and the peak amplitude of its side lobes, A, relative to the amplitude of W ( d ' " )  at o = 0. 

Ideally, the main-lobe width should be narrow, and the side-lobe amplitude should be small. However, for a 
fixed-length window, these cannot be minimized independently. Some general properties of windows are as 
follows: 

1. As the length N of the window increases, the width of the main lobe decreases, which results in a decrease 
in the transition width between passbands and stopbands. This relationship is given approximately by 

where A f is the transition width, and c is a parameter that depends on the window. 

2. The peak side-lobe amplitude of the window is determined by the shape of the window, and it is 
essentially independent of the window length. 

3. If the window shape is changed to decrease the side-lobe amplitude, the width of the main lobe will 
generally increase. 

Listed in Table 9.2 are the side-lobe amplitudes of several windows along with the approximate transition width 
and stopband attenuation that results when the given window is used to design an N th-order low-pass filter. 

Table 9-1 Some Common Windows 

Rectangular 

Hanning' 

Hamming 

Blackman 

I O s n s N  
w ( n )  = 

0 else 

10 else 

I0  else 

I 0  else 

' In  the literature, this window is also called a Hann window or a von Hann window. 



CHAP. 91 FILTER DESIGN 

EXAMPLE 9.3.1 Suppose that we would like to design an FIR linear phase low-pass filter according to the following 
specifications: 

Table 9-2 The Peak Side-Lobe Amplitude of Some Common Windows and the Approximate 
Transition Width and Stopband Attenuation of an Nth-Order Low-Pass Filter 

Designed Using the Given Window. 

For a stopband attenuation of 20 log(0.O I ) = -40 dB. we may use a Hanning window. Although we could also use a Hamming 
or a Blackman window, these windows would overdesign the filter and produce a larger stopband attenuation at the expense 
of an increase in the transition width. Because the specification calls for a transition width of Aw = w, - w, = 0.02n, or 
Af = 0.01, with 

NAf = 3.1 

Window 

Rectangular 
Hanning 

Hamming 
Blackman 

for a Hanning window (see Table 9.2), an estimate of the required filter order is 

The last step is to find the unit sample response of the ideal low-pass filter that is to be windowed. With a cutoff frequency 
of w,. = (w, + w,)/2 := 0.2n, and a delay of cr = N/2 = 155, the unit sample response is 

Side-Lobe Amplitude (dB) 

- 13 

-31 
-41 

-57 

In addition to the windows listed in Table 9-1, Kaiser developed a family of windows that are defined by 

where a = N/2 ,  and lo(.) is a zeroth-order modified Bessel function of the first kind, which may be easily 
generated using the power series expansion 

Transition Width (.A f )  

0.9/N 
3.1IN 

3.3/N 

5 S / N  

The parameter determines the shape of  the window and thus controls the trade-off between main-lobe width 
and side-lobe amplitude. A Kaiser window is nearly optimum in the sense of having the most energy in its main 
lobe for  a given side-lobe amplitude. Table 9-3 illustrates the effect of changing the parameter /3. 

There are two empirically derived relationships for the Kaiser window that facilitate the use of these windows 
to design FIR filters. The first relates the stopband ripple of a low-pass filter, a, = -20 log(6,), to the parameter B,  

Stopband Attenuation (dB) 

-21 
-44 

-53 

- 74 
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Table 9-3 Characteristics of the Kaiser Window as a Function of 0 

[CHAP. 9 

Parameter 

B 
Side Lobe 

(dB) 

Transition Width 

( N  A f  

Stopband Attenuation 

(dB) 

The second relates N to the transition width A f and the stopband attenuation a,, 

Note that if a, < 21 dB, a rectangular window may be used ( B  = O ) ,  and N = O.9/A f. 

EXAMPLE 9.3.2 Suppose that we would like to design a low-pass filter with a cutoff frequency w, = n /4 ,  a transition 
width Aw = 0.02n, and a stopband ripple 6, = 0.01. Because a, = -20 log(O.01) = -40. the Kaiser window parameter is 

With A f = Aw/2n = 0.01, we have 

where 

is the unit sample response of the ideal low-pass filter. 

Although it is simple to design a filter using the window design method, there are some limitations with 
this method. First, it is necessary to find a closed-form expression for hd(n) (or it must be approximated using 
a very long DFT). Second, for a frequency selective filter, the transition widths between frequency bands, and 
the ripples within these bands, will be approximately the same. As a result, the window design method requires 
that the filter be designed to the tightest tolerances in all of the bands by selecting the smallest transition width 
and the smallest ripple. Finally, window design filters are not, in general, optimum in the sense that they do not 
have the smallest possible ripple for a given filter order and a given set of cutoff frequencies. 

9.3.2 Frequency Sampling Filter Design 

Another method for FIR filter design is the frequency sampling approach. In this approach, the desired frequency 
response, Hd(eJ"), is first uniformly sampled at N equally spaced points between 0 and 27r: 
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These frequency samples constitute an N -point DFT, whose inverse is an FIR filter of order N - 1: 

The relationship between h(n) and hd(n) (see Chap. 3) is 

Although the frequency samples match the ideal frequency response exactly, there is no control on how the 
samples are interpolated between the samples. Because filters designed with the frequency sampling method 
are not generally vely good, this method is often modified by introducing one or more transition samples as 
illustrated in Fig. 9-3. These transition samples are optimized in an iterative manner to maximize the stopband 
attenuation or minimize the passband ripple. 

Transition 
Band 

Fig. 9-3. Introducing a transition sample with an amplitude of  A ,  in the 
frequency sampling method. 

9.3.3 Equiripple Linear Phase Filters 

The design of an FIR low-pass filter using the window design technique is simple and generally results in a filter 
with relatively good performance. However, in two respects, these filters are not optimal: 

1. First, the passband and stopband deviations, 6, and 6,, are approximately equal. Although it is common 
to require S, to be much smaller than S,, these parameters cannot be independently controlled in the 
window design method. Therefore, with the window design method, it is necessary to overdesign the 
filter in the passband in order to satisfy the stricter requirements in the stopband. 

2. Second, for most windows, the ripple is not uniform in either the passband or the stopband and generally 
decreases when moving away from the transition band. Allowing the ripple to be uniformly distributed 
over the entire band would produce a smaller peak ripple. 

An equiripple linear phase filter, on the other hand, is optimal in the sense that the magnitude of the ripple 
is minimized in all bands of interest for a given filter order, N. In the following discussion, we consider the 
design of a type I linear phase filter. The results may be easily modified to design other types of linear phase 
filters. 

The frequency response of an FIR linear phase filter may be written as 
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where the amplitude. A(eJw), is a real-valued function of w. For a type I linear phase filter, 

h(n) = Iz(N - n) 

where N is an even integer. The symmetry of h(n) allows the frequency response to be expressed as 

where L = N / 2  and 

The terms cos(kw) may be expressed as a sum of powers of cos w in the form 

where T&) is a kth-order Chebyshev polynomial [see Eq. (9.9)]. Therefore, Eq. (9.4) may be written as 

Thus, A(ejw) is an Lth-order polynomial in coso. 
With Ad(ei") a desired amplitude, and W(eiw) a positive weighting function, let 

be a weighted approximation error. The equiripple filter design problem thus involves finding the coefficients 
a(k)  that minimize the maximum absolute value of E(ejU) over a set of frequencies, F, 

For example, to design a low-pass filter, the set F will be the frequencies in the passband. [O, w,,], and the 
stopband, n], as illustrated in Fig. 9-4. The transition band, (w,, o,), is a don't care region, and it is not 

3 W 

Don't Care 
Fig. 9-4. The set R in the equiripple filter design problem, consisting of the passband 

[0, w,] and the stopband [op. o , ] .  The transition band (o , ,  w,) is a don't care region. 
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considered in the minimization of the weighted error. The solution to this optimization problem is given in the 
alternation theorem. which is as follows: 

Alternation Theorem: Let 3 be a union of closed subsets over the interval [O. n]. For a 
positive weighting function w ( d W ) ,  a necessary and sufficient condition for 

to be the unique function that minimizes the maximum value of the weighted error I E(eJW)I 
over the set 3 is that the E(eJW) have at least L + 2 alternations. That is to say, there must be 
at least L + 2 extremalfiequencies. 

over the set 3 such that 

E(eJWk) = - ~ ( e J ~ ~ + l )  k = 0, I , .  . . . L 

and ~ ~ ( e j ~ ~ ) !  = m a x ~ ~ ( e j ~ ) l  k = 0, I ,  ... . L + 1 
W € F  

Thus, the alternation theorem states that the optimum filter is equiripple. Although the alternation theorem 
specifies the minimum number of extremal frequencies (or ripples) that the optimum filter must have, it may 
have more. For example, a low-pass filter may have either L + 2 or + 3 extremal frequencies. A low-pass 
filter with L + 3 extrema is called an extraripplefilter. 

From the alternation theorem, it follows that 

where E = f max I E ( ~ ; ~ ) J  
W € F  

is the maximum absolute weighted error. These equations may be written in matrix form in terms of the unknowns 
a(O), . . . . a(L)  and E as follows: 

Given the extremal frequencies, these equations may be solved for a(O), . . . , a ( L )  and c .  To find the extremal 
frequencies, there is an efficient iterative procedure known as the Parks-McClellan algorithm, which involves 
the following steps: 

1. Guess an initial set of extremal frequencies. 

2. Find r by solving Eq. (9.5). The value of c has been shown to be 



where 
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3. Evaluate the weighted error function over the set .F by interpolating between the extremal frequencies 
using the Lagrange interpolation formula. 

4. Select a new sel of extremal frequencies by choosing the L + 2 frequencies for which the interpolated 
error function is maximum. 

5 .  If the extremal frequencies have changed, repeat the iteration from step 2. 

A design formula that may be used to estimate the equiripple filter order for a low-pass filter with a transition 
width A f ,  passband ripple 6,. and stopband ripple 6 ,  is 

EXAMPLE 9.3.3 Suppose thal we would like to design an equiripple low-pass filter with a passband cutoff frequency 
w,, = 0 . 3 ~ .  a stopband cutoff frequency o, = 0 . 3 5 ~ ,  a passband ripple of 6, = 0.01, and a stopband ripple of 6, = 0.001. 
Estimating the filter using Eq. (9.h),  we find 

Because we want the ripple in Ihe stopband to be I0 times smaller than the ripple in the passband, the error must be weighted 
usmg the weighting function 

Using the Parks-McClellan algorilhm to design the filter. we obtain a filter with the frequency response magnitude shown 
below. 

9.4 IIR FILTER DESIGN 

There are two general approaches used to design IIR digital filters. The most common is to design an analog IIR 
filter and then map it into an equivalent digital filter because the art of analog filter design is highly advanced. 
Therefore, it is prudent to consider optimal ways for mapping these filters into the discrete-time domain. Fur- 
thermore, because there are powerful design procedures that facilitate the design of analog filters, this approach 



CHAP. 91 FILTER DESIGN 367 

to IIR filter design is relatively simple. The second approach to design IIR digital filters is to use an algorithmic 
design procedure, which generally requires the use of a computer to solve a set of linear or nonlinear equations. 
These methods may be used to design digital filters with arbitrary frequency response characteristics for which 
no analog filter prototype exists or to design filters when other types of constraints are imposed on the design. 

In this section, we consider the approach of mapping analog filters into digital filters. Initially, the focus 
will be on the design of digital low-pass filters from analog low-pass filters. Techniques for transforming these 
designs into more general frequency selective filters will then be discussed. 

9.4.1 Analog Low-Pass Filter Prototypes 

To design an IIR digital low-pass filter from an analog low-pass filter, we must first know how to design an 
analog low-pass filter. Historically, most analog filter approximation methods were developed for the design of 
passive systems having a gain less than or equal to 1 .  Therefore, a typical set of specifications for these filters is 
as shown in Fig. 9-5(a), with the passband specifications having the form 

( ( I )  Specifications in terms of and 6,. ( I ? )  Specifications in  terms of e and A. 

Fig. 9-5. Tivo different conventions for specifying the passband and stopband deviations for an analog 
low-pass filter. 

Another convention that is commonly used is to describe the passband and stopband constraints in terms of the 
parameters E and A as illustrated in Fig. 9-5(h). Two auxiliary parameters of interest are the dist.riminatior7 
factor, 

E ] =-- fin 
and the selectivity factor 

Q 
k =" 

Q.5 

The three most commonly used analog low-pass filters are the Butterworth, Chebyshev, and elliptic filters. 
These filters are described below. 

Butterworth Filter 

A low-pass Butterworth filter is an all-pole filter with a squared magnitude response given by 
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The parameter N is the order of the filter (number of poles in the system function), and Q,. is the 3-dB cutoff 
frequency. The magnitude of the frequency response may also be written as 

where 

The frequency response of the Butterworth filter decreases monotonically with increasing 0, and as the filter 
order increases, the transition band becomes narrower. These properties are illustrated in Fig. 9-6, which shows 
IH,(jQ)l for Butterworth filters of orders N = 2 , 4 , 8 ,  and 12. Because 

from the magnitude-squared function, we may write 

I 
Fig. 9-6. The magnitude of the frequency response for Butterworth filters of orders 

N = 2.4,  8. 

Therefore, the poles of G,(s) are located at 2N equally spaced points around a circle of radius Q,., 

3,: = ( - I ) ~ / ' ~ ( ~ R , )  = Q ,  expI j  k = 0 .  1 ,  . . . .  2 N - 1  
2 N ( N  + +2k)n I (9.7) 

and are symmetrically located about the jR-axis. Figure 9-7 shows these pole positions for N = 6 and N = 7. 
The system function, H,(s), is then formed from the N roots of H,(s)H,(-s) that lie in the left-half s-plane. 
For a iiormuli-.ed Butterworth filter with Q,. = 1 ,  the system function has the form 

I 
H,(s) = - - - 

I 

A N ( ~ )  sN + a l sN- '  + . . .  + aN-Is + a N  
(9.8) 

Table 9-4 lists the coefficients of AN (s) for I N 5 8. Given Qp,  Q,7, S,,, and S,, the steps involved in designing 
a Butterworth filter are as follows: 

I .  Find the values for the selectivity factor, k ,  and the discrimination factor, d. from the filter specifications. 

2. Determine the order of the filter required to meet the specifications using the design formula 

log d 
N Z -  

log k 
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(u) Order N = 6. (h)  Order N = 7. 

Fig. 9-7. The poles of H,(a)H,(-s) for a Butterworth filter of order N = 6 and N = 7. 

Table 9-4 The Coefficients in the System Function of a Normalized Butterworth Filter (a, = I) for 

3. Set the 3-dB cutoff frequency, Q,, to any value in the range 

n,[(i - J,)-~ - i ~ - ~ / ~ ~  5 Q, 5 c2,[q2 - 1 1 - l ' ~ ~  

4. Synthesize the system function of the Butterworth filter from the poles of 

Orders I 5 N 5 8 

1 
Ga(s) = Ha(s)Ha(-s) = 

I + ( S / ~ Q , ) ~ ~  

that lie in the left-half s-plane. Thus, 

a3 

1 .om 
2.6131 

5.2361 
9.1416 

14.59 18 
2 1.8462 

where 

EXAMPLE 9.4.1 Let us design a low-pass Butterworth filter to meet the following specifications: 

f ,  =6kHz f ,  = 10kHz 6, = 6 ,  =0. l  

ad 

1 .OOOO 

3.2361 
7.4641 

14.59 I8 

25.6884 

- 
as 

1 .OW0 

3.8637 

10.0978 
2 1.8462 
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First, we compute the discrimination and selectivity factors: 

Because 
log d 

N Z -  = 5.92 
log k 

it follows that the minimum filter order is N = 6. With 

fp[(l - s,,)-' - 11-'IZN = 6770 

and f, [6;' - I ] - . " ~ ~  = 68 19 

the center frequency, f,, may be any value in the range 

6770 f,. 5 6819 

The system function of the Butterworth filter may then be found using Eq. (9.8) by first constructing a sixth-order normalized 
Butterworth filter from Table 9-4, 

1 
Hu(s) = sb + 3.8637s5 + 7.4641s4 + 9.1416s' + 7.4641s2 + 3.8637s + I 

and then replacing s with s/ R, SO that the cutoff frequency is 52, instead of unity (see Sec. 9.4.3). 

Chebyshev Filters 

Chebyshev filters are defined in terms of the Chebyshev polynomials: 

These polynomials may be generated recursively as follows, 

with To(x) = 1 and Tl(x) = x. The following properties of the Chebyshev polynomials follow from Eq. (9.9): 

1 .  For 1x1 5 1 the polynomials are bounded by 1 in magnitude, ITN(x)l 5 1, and oscillate between f 1. 
For 1x1 > I ,  the polynomials increase monotonically with x. 

2. TN(l) = I for all N.  

3. TN (0) = f l for N even, and TN (0) = 0 for N odd. 

4. All of the roots of TN(x) are in the interval - 1 _< x I 1. 

There are two types of Chebyshev filters. A type I Chebyshev filter i s  all-pole with an equiripple passband 
and a monotonically decreasing stopband. The magnitude of the frequency response is 

where N is the order of the filter, Q, is the passband cutoff frequency, and 6 is a parameter that controls 
the passband ripple amplitude. Because T ~ ( Q / Q ~ )  varies between 0 and 1 for < Q,,, IH,(~R)I~ oscillates 
between I and 1/(1 + e2). As the order of the filter increases, the number of oscillations (ripples) in the passband 
increases, and the transition width between the passband and stopband becomes narrower. Examples are given 
in Fig. 9-8 for N = 5,6. 
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(a)  Odd order (N = 5). (6 )  Even order (N = 6). 

Fig. 9-8. Frequency response of Chebyshev type I filter for orders N = 5 and N = 6. 

The system function of a type I Chebyshev filter has the form 

where H,(O) = ( 1  - c2)-'I2 if N is even, and H,(O) = 1 if N is odd. Given the passband and stopband cutoff 
frequencies, Q,  and Q,, and the passband and stopband ripples, 8 ,  and 6, (or the parameters E and A), the steps 
involved in designing a type I Chebyshev filter are as follows: 

Find the values for the selectivity factor, k, and the discrimination factor, d. 

Determine the filter order using the formula 

Form the rational function 

where E = [(l - s , ) - ~  - 1 1 l / ~ ,  and construct the system function H,(s) by taking the N poles of G,(s)  
that lie in the left-half s-plane. 

EXAMPLE 9.4.2 If we were to design a low-pass type I Chebyshev filter to meet the specifications given in Example 9.4.1 
where we found d = 0.0487 and k = 0.6, the required filter order would be 

or N = 4. Therefore, with 

and 

then 

where 52, = 2n(6000). 
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A type I1 Chebyshev filter, unlike a type 1 filter, has a monotonic passband and an equiripple stopband, and 
the system function has both poles and zeros. The magnitude of the frequency response is 

where N is the order of the filter, 52, is the passband cutoff frequency, R, is the stopband cutoff frequency, and 
E is the parameter that controls the stopband ripple amplitude. Again, as the order N is increased. the number of 
ripples increases and the transition width becomes narrower. Examples are given in Fig. 9-9 for N = 5 , 6 .  

(a) Odd order (N = 5). (b )  Even order (N = 6). 

Fig. 9-9. Frequency response of a Chebyshev type I1 filter for orders N = 5 and N = 6. 

The system function of a type I1 Chebyshev filter has the form 

The poles are located at 

Q f ak = - 
Sk 

where sk for k = 0, I, . . . , N - 1 are the poles of a type 1 Chebyshev filter. The zeros bk lie on the j52-axis at 
the frequencies for which TN (Q,/ R)  = 0. The procedure for designing a type 11 Chebyshev filter is the same as 
for a type I filter, except that 

= ( 8 . ~ ~  - 1)-  ' I 2  

Elliptic Filter 

An elliptic filter has a system function with both poles and zeros. The magnitude of its frequency response is 

where UN(52/Qp) is a Jacobian elliptic function. The Jacobian elliptic function U N ( x )  is a rational function of 
order N with the following property: 

Elliptic filters have an equiripple passband and an equiripple stopband. Because the ripples are distributed uni- 
formly across both bands (unlike the Butterworth and Chebyshev filters, which have a monotonically decreasing 
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passband and/or stopband), these filters are optimum in the sense of having the smallest transition width for 
a given filter order, cutoff frequency Q,, and passband and stopband ripples. The frequency response for a 
4th-order elliptic filter is shown in Fig. 9- 10. 

Fig. 9-10. The magnitude of the frequency response of a sixth-order elliptic filter. 

The design of elliptic filters is more difficult than the Butterworth and Chebyshev filters, because their 
design relies on the use of tables or series expansions. However, the filter order necessary to meet a given set of 
specifications may be estimated using the formula 

where d is the discrimination factor, and 

where 

with k being the selectivity factor. 

9.4.2 Design of ZZR Filters from AnalogFilters 

The design of a digital filter from an analog prototype requires that we transform ha(t) to h(n) or Ha(s) to H(z). 
A mapping from the s-plane to the z-plane may be written as 

where s = m(z) is the mapping function. In order for this transformation to produce an acceptable digital filter, 
the mapping m(z) should have the following properties: 

I .  The mapping from the jS2-axis to the unit circle, Izl = 1, should be one to one and onto the unit circle 
in order to preserve the frequency response characteristics of the analog filter. 

2. Points in the left-half s-plane should map to points inside the unit circle to preserve the stability of the 
analog filter. 

3. The mapping m(z) should be a rational function of z so that a rational Ha(s) is mapped to a rational 
H(z). 

Described below are two approaches that are commonly used to map analog filters into digital filters. 
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Impulse Invariance 

With the inzpulse invariance method, a digital filter is designed by sampling the impulse response of an analog 
filter: 

h ( n )  = h,,(nT,) 

From the sampling theorem, i t  follows that the frequency response of the digital filter, H(eJW), is related to the 
frequency response H,(jR) of the analog filter as follows: 

More generally, this may be extended into the complex plane as follows: 

The mapping between the s-plane and the z-plane is illustrated in Fig. 9-1 I .  Note that although the jR-axis 
maps onto the unit circle, the mapping is not one to one. In particular, each interval of length 2 n / T ,  along the 
jR-axis is mapped onto the unit circle (i.e., the frequency response is aliased). In addition, each point in the 
left-half s-plane is mapped to a point inside the unit circle. Specifically, strips of width 2 n / T ,  map onto the 
z-plane. If the frequency response of the analog filter, H,,(jR). is sufficiently bandlimited, then 

Although the impulse invariance may produce a reasonable design in some cases, this technique is essentially 
limited to bandlimited analog filters. 

To see how poles and zeros of an analog filter are mapped using the impulse invariance method, consider 
an analog filter that has a system function 

The impulse response, hu(t ), is 
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Therefore, the digital filter that is formed using the impulse invariance technique is 

and the system function is 

Thus, a pole at s = sk in the analog filter is mapped to a pole at z = tJkTs in the digital filter. 

The zeros, however, do not get mapped in any obvious way. 

The Bilinear Transformation 

The bilinear transformation is a mapping from the s-plane to the z-plane defined by 

Given an analog filler with a system function H,(s), the digital filter is designed as follows: 

2 1 - 2 - '  
H (z) = Hu (- -) 

T, 1 + z-I 

The bilinear transformation is a rational function that maps the left-half s-plane inside the unit circle and maps 
the jC2-axis in a one-to-one manner onto the unit circle. However, the relationship between the jR-axis and the 
unit circle is highly nonlinear and is given by thefr-equency warpb~g,funcrion 

As a result of this warping, the bilinear transformation will only preserve the magnitude response of analog filters 
that have an ideal response that is piecewise constant. Therefore, the bilinear transformation is generally only 
used in the design of frequency selective filters. 

The parameter T, in the bilinear transformation is normally included for historical reasons. However, it does 
not enter into the design process, because i l  only scales the jR-axis in the frequency warping function, and this 
scaling may be done in the specification of the analog filter. Therefore, T, may be set to any value to simplify the 
design procedure. The steps involved in the design of a digital low-pass filter with a passband cutoff frequency 
w,, stopband cutoff frequency w.,, passband ripple 6 , ,  and stopband ripple 8, are as follows: 

Prewarp the passband and stopband cutoff frequencies of the digital filter, w, and o,, , using the inverse 
of Eq. (9.12) to determine the passband and cutoff frequencies of' the analog low-pass filter. With 
T, = 2,  the prewarping function is 

Design an analog low-pass filter with the cutoff frequencies found in step I and a passband and stopband 
ripple ap and a,, respectively. 

Apply the bilinear transformation to the filter designed in step 2. 

EXAMPLE 9.4.3 Let us design a first-order digital low-pass filter with a 3-dB cutoff frequency of w, = 0.2% by applying 
the bilinear transformation to the analog Butterworth filter 

I 
H,,(s) = - 

1 + s j  R,. 
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Because the 3-dB cutoff frequency of the Butterworth filter is R,., for a cutoff frequency w, = 0.2% in the digital filter, we 
must have 

Therefore, the system function of the analog ti lter is 

Applying the bilinear transformation to the analog filter gives 

Note that the parameter T, does not enter into the design. 

9.4.3 Frequency Transformations 

The preceding section considered the design of digital low-pass filters from analog low-pass filters. There are 
two approaches that may be used to design other types of frequency selective filters, such as high-pass, bandpass, 
or bandstop filters. The tirst is to design an analog low-pass filter and then apply a frequency transformation to 
map the analog filter into the desired frequency selective prototype. This analog prototype is then mapped to 
a digital filter using a suitable s-plane to z-plane mapping. Table 9-5 provides a list of some analog-to-analog 
transformations. 

Table 9-5 The 'kansformation of an Analog Low-pass Filter with a 
3-dR Cutoff Frequency L2, to Other F'req"ency selective Filters 

I Transformation I Mapping I New Cutoff Frequencies 

The second approach that may be used is to design an analog low-pass filter, map it into a digital filter 
using a suitable s-plane to z-plane mapping, and then apply an appropriate frequency transformation in the 
discrete-time domain to produce the desired frequency selective digital filter. Table 9-6 provides a list of some 
digital-to-digital transformations. The two approaches do not always result in the same design. For example, 
although the second approach could be used to design a high-pass filter using the impulse invariance technique, 
with the first approach the design would be unacceptable due to the aliasing that would occur when sampling the 
analog high-pass filter. 

9.5 FILTER DESIGN BASED ON A LEAST SQUARES APPROACH 

The design techniques described in the previous section are based on converting an analog filter into a digital 
filter. It is also possible to perform the design directly in the time domain without any reference to an analog 
filter. This section describes several methods for designing a digital filter directly. 
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Table 9-6 The Transformation of a Digital Low-Pass Filter with a Cutoff Frequency w, to Other Frequency 
Selective Filters 

Filter Type 

Low-pass 

High-pass 

Bandpass 

Bandstop 

Mapping 

2-' +a! 
z-I  +, -- 

1 + curl 

Design Parameters 

sin[(w,. - w:.)/2] 
ff = 

sinl(w,. + q ' . ) /2 ]  
w:. = desired cutoff frequency 

ff = - cos[(w,. + w:.)/21 
cos[(w, - w3/21 

w: = desired cutoff frequency 

wCl = desired lower cutoff frequency 

W ,  = desired upper cutoff frequency 

w,,~ = desired lower cutoff frequency 

w,2 = desired upper cutoff frequency 

9.5.1 Pad4 Approximation 

Let h d ( n )  be the unit sample response of an ideal filter that is to be approximated by a causal filter that has a unit 
sample response, h(n) ,  and a rational system function, 

Because H ( z )  has p + q  + 1 free parameters, i t  is generally possible to find values for the coefficients a ( k )  and 
h(k) so that h(n)  = h d ( n )  for n  = 0, 1 ,  . . . , p + q.  The procedure that is used to find these coefficients is to 
write H ( z )  = B ( z ) / A ( z )  as follows, 

and note that, in the time domain, the left-hand side corresponds to a convolution 

(note that b(n)  is a finite-length sequence that is equal to zero for n  .c 0 and n  z q). Setting h(n)  = hd(n)  for 
n  = 0. 1, . . . , p + q results in a set of p + q + 1 linear equations in p + q + 1 unknowns, 

{E(n)  
n  = 0. I . .  . . , q  

hd(n) + &o(k)hd(n - k )  = 
~ = I  n = q + l ,  . . . , q + p  
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that may be solved using a two-step approach. In the first step, the coefficients a ( k )  are found using the last p 
equations in Eq. (9.14), which may be written in matrix form as 

Assuming that these equations are linearly independent, the coefficients may be uniquely determined. In the 
second step, the coefficients b(k )  are found from the first 9 + 1 equations in Eq. (9.14) as follows: 

Although PadC's method produces an exact match of h(n)  to h d ( n )  for n  = 0. 1.  . . . , p + 9, because h(n)  is 
unconstrained for n  > p + q ,  the PadC method does not generally produce a good approximation to h d ( n )  for 
n >  p + q .  

9.5.2 Prony 's Method 

With a least-squares approach to filter design, the problem is to find the coefficients a ( k )  and b(k )  that minimize 
the least-squares error 

where U is some preselected upper limit. Because E is a nonlinear function of the coefficients a ( k )  and b(k) ,  
solving this minimization problem is, in general, difficult. With Prony's method, however, an approximate 
least-squares solution may be found using a two-step procedure as follows. Ideally, because [see Eq. (9.14)] 

the first step is to find the coefficients a ( k )  that minimize 

where 

Once the coefficients a ( k )  have been determined, the coefficients h ( k )  are found using the PadC approach of' 
forcing h ( n )  = h d ( n )  for n  = 0, 1. . . . , 9 :  

The coefficients a ( k )  that minimize E may be found by setting the partial derivatives of E equal to zero, 
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where 

is the correlation of hd(n).  

9.5.3 FIR Least-Squares Inverse 

The inverse of a linear shift-invariant system with unit sample response g(n) and system function G ( z )  is the 
system that has a unit sample response, h(n) ,  such that 

In most applications, the system function H(z )  = I /G(z) is not a v~able solution. One of the reasons is that, 
unless G ( z )  is minimum phase, I /G( z )  cannot be both causal and stable. Another consideration comes from the 
fact that, in some applications, it may be necessary to constrain H ( 2 )  to be an FIR filter. Because l / G ( z )  will be 
infinite in length unless G(z )  is an all-pole filter, constraining h(n)  to be FIR would only be an approximation to 
the inverse filter. 

In the FIR least-squares inverse filter design problem. the goal is to find the FIR filter h(n)  of length N such 
that 

h(n)  * ~ ( n )  S(n) 

The filter that minimizes the squared error 
0: 

where 

may be found by solving the linear equations 

where 

In many cases, constraining the least-squares inverse filter to minimize the difference between h (n )  * ~ ( n )  
and S(n) is overly restrictive. For example. if a delay may be tolerated, we may consider finding the filter h (n )  
so that 

h(n)  * ~ ( n )  6(n - no) 
for some delay no. In most cases, a nonzero delay will produce a better approximate inverse filter and, in many 
cases, the improvement will be substantial. The least-squares inverse filter with delay is found by solving the 
linear equations 
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Solved Problems 

FIR Filter Design 

9.1 Use the window design method to design a linear phase FIR filter of order N = 24 to approximate the 
following ideal frequency response magnitude: 

The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency w, = 0 . 2 ~ .  With 
N = 24, the frequency response of the filter that is to be designed has the form 

Therefore, the delay of h ( n )  is a = N / 2  = 12. and the ideal unit sample response that is to be windowed is 

All that is left to do in the design is to select a window. With the length of the window fixed, there is a trade-off 
between the width of the transition band and the amplitude of the passband and stopband ripple. With a rectangular 
window, which provides the smallest transition band, 

and the filter is 

I 0 otherwise 

However. the stopband attenuation is only 21 dB. which is equivalent to a ripple of 6, = 0.089. With a Hamming 
window, on the other hand, 

and the stopband attenuation is 53 dB, or 6 ,  = 0.0022. However, the width of the transition band increases to 

which, for most designs, would be too wide. 

9.2 Use the window design method to design a minimum-order high-pass filter with a stopband cutoff 
frequency w, = 0.22n, a passband cutoff frequency w,, = 0.28n, and a stopband ripple 6 ,  = 0.003. 

A stopband ripple of 6, = 0.003 corresponds to a stopband attenuation of a,= -20 log 6, = 50.46. For the minimum- 
order filter. we use a Kaiser window with 

Because the transition width is Aw = 0.06n, or A f = 0.03. the required window length is 
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Rounding this up to N = 99 results in a type I1 linear phase filter, which will have a zero in its system function at 
z = -1. Because this produces a null in the frequency response at w = n ,  this is not acceptable. Therefore, we 
increase the order by I to obtain a type 1 linear phase filter with N =: 100. 

In order to have a transition band that extends from o, = 0 . 2 2 ~  to w, = 0.28n, we set the cutoff frequency of 
the ideal high-pass filter equal to the midpoint: 

The unit sample response of an ideal zero-phase high-pass filter with a cutoff frequency w,. = 0 . 2 5 ~  is 

where the second term is a low-pass filter with a cutoff frequency w,. = 0.25n. Delaying hh,(n) by N/2  = 50, we 
have 

and the resulting FIR high-pass filter is 
h(n) = hd(n).  w(n) 

where w(n) is a Kaiser window with N = I00 and B = 4.6. 

9.3 Given a desired frequency response Hd(eJ"), show that the rectangular window design minimizes the 
least-squares error 

For this problem, we use Parseval's theorem to express the least-squares error ELs in the time domain: 

If we assume that h(n) is of order N ,  with h(n) = 0 for n < 0 and n z N,  

Because the last two terms are constants that are not affected by the filler h(n), the least-squares errorELs is minimized 
by minimizing the first term, which is done by setting h(n) = hd(n) for n = 0, I .  . . . . N (i.e., using a rectangular 
window in the window design method). 

9.4 If hd(n)  is the unit sample response of an ideal filter, and h (n )  is an N th-order FIR filter, the least-squares 
error 

fLS = I In \ H ~ ( P ~ ~ )  - H(e jW)( 'dw 
277 -= 

is minimized when h(n)  is designed using the rectangular window design method. If ER is the squared 
error using a rectangular window, find the excess squared emor that results when a Hanning window is 
used instead of a rectangular window; that is, find an expression for  

where EH is the squared error using a Hanning window. 

Using Parseval's theorem. it is more convenient to express the least-squares error in the time domain as follows: 
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Because e(n) = hd(n) - h(n) = hd(n) for n c 0 and n > N.  

where wH(n) and wx(n) are the Hanning and rectangular windows, respectively. However, the second sum is equal 
to zero. Therefore, the excess squared error is simply 

which is the desired relationship. 

9.5 Consider the following specifications for  a low-pass filter: 

Design a l inear phase FIR filter to meet these specifications using the window design method. 

Designing a low-pass filter with the window design method generally produces a filter with ripples of the same 
amplitude in the passband and stopband. Therefore, because the passband and stopband ripples in the filter speci- 
fications are the same, we only need to be concerned about the slopband ripple requirement. A stopband ripple of 
6 ,  = 0.01 corresponds to a stopband attenuation of -40 dB. Therefore. froin Table 9-2 i t  follows that we may use 
a Hanning window, which provides an attenuation of approximately 44 dB. The specification on the transition band 
is that Aw = 0.05rr, or A f = 0.025. Therefore, the required filter order is 

and we have 

With an ideal low-pass filter that has a cutoff frequency of w,. = 0.325 (the midpoint of the transition band), and a 
delay of N/2 = 62 so that hd(n) is placed symmetrically within the interval [O, 1241, we have 

Therefore, the filter is 

s in[0 .325~(n - 62)] 
0.5 - 0.5 cos - . ( 1  ~ ( n  - 62) 

O S n s  124 

Note that if we were to use a Hamming or a Blackman window instead of a Hanning window, the stopband and 
passband ripple requirements would have been exceeded, and the required filter order would have been larger. With 
a Blackman window, for example, the filter order required to meet the transition band requirement is 

9.6 W e  would like t o  filter an  analog signal x,(t) with an  analog low-pass filter that has  a cutoff frequency 
f,. = 2 kHz, a transition width A f = 500 Hz, and  a stopband attenuation o f  50 dB. This  filter is t o  be  
implemented digitally, a s  illustrated in the following figure: 
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Design a digital filter to meet the analog filter specifications with a sampling frequency f, = 10 kHz. 

I I 

With a sampling frequency of 10 kHz, the digital filter should have a cutoff frequency w, = 2 n  f,./ f, = 0.41~ and a 
transition bandwidth Aw = 2nAf/f,  = O.lrr. For a stopband attenuation of 50 dB, we may use a Kaiser window 
with 

B = 0. l l02(50 - 8.7) = 4.55 

4 1 )  - - 

For the length of the window, we have 

or N = 59. Finally, the unit sample response of the ideal filter that is to be windowed is a low-pass filter with a 
cutoff frequency w,. = 0 . 4 ~  and a delay N/2  = 29.5. Therefore, 

C-D 

where w(n)  is a Kaiser window with N = 59 and B = 4.55. and 

9.7 Find the Kaiser window parameters, B and N ,  to designa low-pass filter with acutofffrequency w, = n/2,  
a stopband ripple 6, = 0.002, and a transition bandwidth no 1a.rger than 0.117. 

The parameter B for the Kaiser window depends only on the stopband ripple requirements. With 6 ,  = 0.002, 

44 
. = 

and we have 
= 0.1 102(0r, - 8.7) = 4.99 

D-C 

The window length, N ,  on the other hand, is determined by the stopband ripple, 6,.  and the transition width as 

H ( e j w  ) 

yo ( t )  
- 

follows: 

y(n) - 

Therefore, the required filter order is N = 65 

9.8 Consider the following specifications for a bandpass filter: 

(a) Design a linear phase FIR filter to meet these specifications using a Blackman window 

(b) Repeat part (a) using a Kaiser window. 

(a) For this filter, the width of each transition band is Aw = 0 . 1 ~ .  The ripples in the lower stopband, passband, 
and upper stopband are 4 = 0.01. a2 = 0.05, and a3 = 0.02, respectively, and are all different. Because the 
ripples produced with the window design method will be approximately the same in all three bands, the filter 
must be designed so  that it has a maximum ripple of 8, = 0.01 in all three bands. With 
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i t  follows that the Blackman window will satisfy this requirement. An estimate of the filter order necessary to 
meet the transition bandwidth requirement of A f = 0.05 with a Blackman window is 

Finally, for the unit sample response of the ideal filter that is to be windowed, we have 

where Hd(eIW)  is the frequency response of an ideal bandpass filter. For the cutoff frequencies of ~, , ( e j" ) ,  we 
choose the midpoints of the transition bands of H ( e l ' " ) .  Therefore. 

Thus, the unit sample response of the ideal bandpass filter with zero phase is 

and 

However, we want to delay this filter so that i t  is centered at N / 2  = 55. Therefore, the unit sample response of 
the tilter that is to be windowed should be 

(b)  For a Kaiser window design, the order of the filter that is required i s  

Therefore, we set N = 45. Next, for the Kaiser window parameter, with an attenuation of 40 dB, we have 

Therefore, the filter is 
h ( n )  = w ( n )  . h d ( n )  

where 

9.9 Suppose that we would like to design a bandstop filter to meet the following specifications: 
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(a) Design a linear phase FIR filter to meet these filter specifications using the window design method. 

(b)  What is the approximate order of the equiripple filter that will meet these specifications? 

(a) Recall that with the window design method, the ripples in the passbands and stopbands will be approximately 
the same, along with the widths of the transition bands. Because the smallest ripple occurs in the stopband, we 
must pick a window that provides a stopband attenuation of 

Thus, we may use a Hamming window or a Kaiser window with 

B = 0.5842(aS - 2 I) ' .~ + 0.07886(a, - 2 1) = 4.09 

The transition width between the lower stopband and the passband is Aw = 0 . 0 2 ~  and between the upper 
stopband and the passband it is A o  = 0 . 0 5 ~ .  Therefore, we must design the filter to meet the lower transition 
bandwidth requirement, Aw = 0.02j7, or A f = 0.01. Thus, for ;i Hamming window, the estimated filter order 

For a Kaiser window, on the other hand. the filter order is 

(b)  For an equiripple filter, the filter order may be estimated as follows, 

9.10 Use the window design method to design a type I1 bandpass filter according to the following specifications: 

With the window design method, the amplitudes of the ripples in each band of a multiband filter will be approximately 
equal, and the transition bands will have approximately the same width. Because the requirements on the peak ripple 
in the three bands of this bandpass filter are not the same, it is necessary to design the filter so that it has the smallest 
ripple in all three bands, which, in this case, requires that we set 6, = 0.0025. In addition, because the transition 
bands do not have the same width, i t  is necessary to set the desired transition width, Aw, equal to the smaller of the 
two (Aw = 0 . 1 5 ~ ) .  

With a, = -20 log 6, = 52 dB. it follows that we may use a Hamming window, and with 

NAf = 3.3 

For a type I1 filter, however, N must be odd, so we set N = 45. 
Now we must find the unit sample response of the ideal bandpass filter that is to be windowed. Because the 

width of both the upper and lower transition bands will be approximately Aw = 0 . 1 5 ~ ,  for the ideal filter we set the 
lower cutoff frequency equal to 
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and the upper cutoff frequency equal to 

Therefore, the magnitude of the frequency response of the ideal filter is 

I 0 . 1 7 5 ~  5 Iwl 5 0 . 6 7 5 ~  
1 H,,(ul"')( = 

0 otherwise 

Repeating the steps in the derivaticn of the unit sample response of an ideal bandpass fi lter given in Prob. 9.8, using 
the given cutoff frequencies and a delay of N j 3  = 22.5. we have 

9.11 Use the window design method to design a multiband filter that meets the following specifications: 

To design a multiband filter that meets these specifications usmg the window design method, we begin by finding 
the ideal unit sample response. For the frequency response of the ideal filter. we set the cutoff frequencies equal to 
the midpoint of the transition bands. Therefore, we have 

The unit sample response of this ideal lilter may be found easily by noting that Hd(ei") may be written as an allpass 
filter with a gain of 0.5 minus a low-pass ti lter with a gain of 0.5 and a cutoff frequency w, = 0 . 5 7 5 ~  plus a low-pass 
filter with a gain of I and a cutoff frequency of w2 = 0.325n. Therefore. if we assume that H,,(eJW) has linear phase 
with a delay of n d ,  

Having found the ideal unit sample response. the next step is to choose an appropriate window. When h d ( n )  is 
multiplied by a window w(rr), the frequency response is the convolution of the transform of the window W(eJW) with 
Hd(el'"). Assuming that the length of the filter is long compared to the inverse of the transition width, so that the 
discontinuities between the bands may be treated independently. the ripples in the three bands will be approximately 
the same as they would be for a low-pass filter, except that they will be scaled by the amplitude of the discontinuities 
at the band edge. Therefore. if the ripple in the lower passband and the stopband are 4, the ripple in the upper 
passband will be 6 , , / 2 .  Consequently. we must use a window that would produce a low-pass filter with a ripple no 
larger than 0.01. Thus. we may use a Hanning window. Finally, to determine the filter order, note that because the 
widths of both transition bands are the same. Ao) = 0 . 0 5 ~ ~ .  an estimate of the filter order is 

Note that another way to design this tilter would have been to design a network of three filters in parallel: a low-pass 
filter, a bandpass filter, and a high-pass filter. This approach would give greater control over the ripple amplitudes 
and the transition widths but would require a trial and error approach to establish the specifications for the three 
filters. 

9.12 Shown in the following figure is the magnitude of the frequency response of a type I high-pass filter that 
was designed using the Parks-McClellan algorithm. 
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The stopband cutoff frequency is w, = 0.4n, and the passband cutoff frequency is o,, = 0 . 5 ~ ~ .  In 
addition, the stopband ripple is 8, = 0.0574, and the passband ripple is 6, = 0.1722. 

Determine the weighting function, W ( e J W ) ,  used to design this filter, and find the length of the unit 
sample response. 

Describe approximately where the zeros of the system function of this filter lie in the z-plane. 

To detennine the weighting function, we observe that 

Therefore, the weighting function used to design the filter has a value in the stopband that is 3 times larger than 
the value in the passband. This makes the errors in the stopband more costly and, therefore, smaller by a factor 
of 3. So, a weighting function that could have been used to design this filter is as follows: 

To determine the length of the unit sample response. recall that a type I equiripple high-pass (or low-pass) 
filter must either have L + 2 or L + 3 alternations where L = N / 2 .  Therefore, the order of the filter may 
be detennined by counting the alternations. For this filter, we have nine alternations, which are labeled in the 
figure below. 
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Thus, L = 7 or. in the case of an extraripple filter, L = 6. However, in order for h ( n )  to be an extraripple 
filter, w  = 0 and w = IT must both be extremal frequencies (see Prob. 9.15). Because w  = 0 is not an extremal 
frequency. this is no1 an extraripple filter. Therefore, L = 7 and N = 14. 

(b) Because the order of this filter is N = 14, the system function has 14 zeros. For a linear phase filter, we know 
that the zeros of the system function may lie on the unit circle, or they may occur in conjugate reciprocal pairs. 
From the plot of the frequency response magnitude, we see that IH(eJ '" ) (  = 0 at w l  w 0.175n, w2 w 0.3n, 
and w3 0 . 3 9 ~ .  Therefore, there are three zeros on the unit circle at these frequencies. Because there must 
also be zeros at the conjugate positions, z = e-'"'1 for i = 1,  2,3, these unit circle zeros account for six of the 
fourteen zeros. In addition to these. there must be a conjugate pair of zeros at z = re*'", where w4 0.71~. 
These zeros account for the dip in IH(e l" ) I  at w  = 0.71~. Because the filter has linear phase, in addition to 
this pair of complex zeros, there must be a pair at the reciprocal locations, z- '  = re*jW4. For the same reason, 
there will be zeros on the real axis at z = al and z = I/cul, as well as zeros on the real axis at z = -a2 and 
z = -I/a2, where a ,  and a2 are positive real numbers that are less than I. These four zeros account for the 
minima in I H ( e J w )  at w = 0 and w = n .  A plot showing the actual positions of the 14 zeros of H ( z )  is given 
below. 

9.13 With the frequency sampling method, the frequency samples match the ideal frequency response exactly. 
Derive an interpolation formula that shows how the frequency samples H (k )  are interpolated. 

The frequency response of an FIR filter of length N is 

If h ( n )  is designed using the frequency sampling method. 

N - I  

- H ( k )  = h(n)e-"n"klN - ~ , , ( e ~ ' " ~ / ~ )  k  = 0,  I .  . . . , N - I 
,r=o 

Because these frequency samples correspond to the N-point DFT of h ( n ) ,  the unit sample response may be expressed 
in terms of these samvles as follows: 

Substituting this into the expression above for H ( e J w ) ,  we have 

N - I  ) , = H ( k ) ( = e - i n ( . - 2 r * ' N ,  H ( ~ ) ~ J ~ ~ W N  e-Jrlw = 
n =D 

Using the geometric series to evaluate this sum, we find 

which is the desired interpolation formula. 
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9.14 Given a low-pass filter that has been designed and implemented, either in hardware or software, it may be 
of interest to try to improve the frequency response characteristics by repetitive use of the filter. Suppose 
that h ( n )  is the unit sample response of a zero phase FIR filter with a frequency response that satisfies 
the following specifications: 

(Note that H ( e J w )  having zero phase implies that H ( e J W )  is real-valued for all LO). 

(a)  If a new filter is formed by cascading h ( n )  with itself, 

G(eJ" )  satisfies a set of specifications of the form 

Find A .  B. C,  and D in terms of 6, and 6 ,  of the low-pass filter h ( n ) .  

(b) If 6, << 1 and 6, << 1,  what are the approximate passband and stopband ripples of G(ejw)?  

(a)  With a cascade, g(n)  = h (n )  * h(n) ,  the frequency response is 

Therefore, in the passband we have 

and in the stopband we have 
0 5  C(el"') < ~f COT 5 (0 5 77 

(bj If we assume that 6 ,  << I, 
(I - 6,)' = 1 - 26, + 26; = I - 26, 

and (1 + 6,)" I + 226, + 6% I + 26,, 

Therefore, the passband specifications are approximately 

In other words, the passband ripple is approximately doubled. In the stopband, however, the ripple is much 
smaller with the cascade. In fact, in decibels, the stopband attenuation is doubled. With other systems built 
out of interconnections of h(n)  it is possible to improve the filter characteristics in both the passband and the 
stopband. 

9.15 Show that a type I equiripple low-pass filter of order N  may have either L + 2  or L + 3 alternations where 
L = N / 2 .  

For a type I linear phase filter of order N ,  the frequency response is 

where A(.'.) = .(k) cos rw  
!,=I1 
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with L = N/2. Because the desired response, &(elW), and the weighting function, w (ejUJ), are piecewise constant, 

However, because ~ ( e j " )  is a trigonometric polynomial of degree N/2 in cos w, 

d A (ej") i. L - I  

then -- - -sin w x ka(k ) (cosw)" '  = - sin w x ( k  + I)c~(k + I)(cos 0))" 
dw k=O I=O 

Therefore, the derivative of A(ej"') with respecl to w is always equal to zero at w = 0 and w = n .  In addition. 
however, the derivative is equal to zero at L - I other frequencies between 0 and n, which correspond to the roots of 
the polynomial given by the sum. Therefore, A(d'") may have at most L + 1 local maxima and minima. In addition. 
however, the band-edge frequencies, w,, and w,, must also be extremal frequencies. Thus, the maximum number of 
alternations is L + 3. Because the alternation theorem requires a minimum of L + 2,  the optimum filter may have 
either L + 2 or L + 3 alternations. 

9.16 Suppose that we would like to design a type I equiripple bandstop filter of order N = 30. 

(a) What is the minimum number of alternations that this filter must have? 

(b) What is the maximum number? 

(a) For a type I linear phase FlR filter of order N ,  the alternation theorem states that the minimum number of 
alternations is L + 2, where L = N/2. Therefore. with N = 30, the minimum number of alternations is 17. 

(6)  As shown in Prob. 9.15, with 
~ ( ~ 1 0 ~ )  = A ( ~ W ) ~ - J W N I ~  

A(eJW), and thus ,E(rjw). will have, at most, L + I local maxima and minima in the interval 10, n ] .  In addition. 
however, there may be alternations at the band-edge frequencies. For a bandstop filter, there are four band 
edges: the lower passband cutoff frequency, the lower stopband cutoff frequency, the upper stopband cutoff 
frequency, and the upper passband cutoff frequency. Therefore. the maximum number of alternations is L + 5. 

9.17 We would like to design a bandstop filter to satisfy the following specifications: 

(a)  Estimate the order of the equiripple filter required to meet these specifications. 

(b) What weighting function ~ ( e i ' " )  should be used to design this filter? 

(c) What is the minimum number of extremal frequencies that the optimal tilter must have'? 

(a) The design formula used to estimate the order for a low-pass equiripple tilter is 

With the smaller of the two passband ripples being equal to 6, = 0.02, a stopband ripple of 6, = 0.001, and a 
transition width Aw = 0.02n, an estimate of the filter order is 

However, because this estimate is for a low-pass filter, the actual tilter order required is closer to N = 242. 
which may be confirmed by computer. 
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(b)  With a ripple of 6, = 0.02 in the lower passband, S2 = 0.001 in the stopband, and S3 = 0.05 in the upper 
passband, an appropriate weighting function would be 

However, scaling these weights by any constant would not change the design. 

( c )  Assuming a filter order of N = 232, which is a type I design, the amplitude response has the form 

L 

A(el") = a(k)  cos kw 

where L = N / 2  = 116. Therefore, the minimum number of extrcmal frequencies is L + 2 = 1 18. 

9.18 We would like to design an equiripple high-pass filter of order N = 64. The stopband ripple is to be no 
larger than 6, = 0.001, and the passband ripple no larger than 8 ,  = 0.01. If we want a passband cutoff 
frequency equal tow, = 0 . 7 2 ~ ,  what will the stopband cutoff trequency be approximately equal to? 

For an equiripple low-pass filter, an approximate relation between the filter order N ,  the passband and stopband 
ripples, 8, and &, respectively, and the transition width A f ,  is given by 

Because a high-pass filter may be formed from a low-pass filter as follows, 

this formula is also applicable to high-pass filters. With N  = 64, 6, = 0.0 I, and 8, = 0.001, we find that 

Therefore, if the passband cutoff frequency is w, = 0 . 7 2 ~ .  the stopband cutoff frequency will be approximately 

w,, = w, - 2~ A f = 0 . 6 4 0 8 ~  

9.19 Suppose that we want to design a low-pass filter of order N == 63 with a cutoff frequency w, = 0.31~ 
and a stopband cutoff frequency o, = 0 . 3 2 ~ .  

( a )  What is the approximate stopband attenuation that would obtained if this filter were designed using 
the window design method with a Kaiser window. 

(6) Repeat part ( a )  for a equiripple filter assuming that we want 8, = 6,. 

(a) For a Kaiser window design. the relationship between the filler order N ,  the stopband attenuation a, = 
-20 log 6,. and the transition w ~ d t h  A f is 

a, - 7.95 
N = -  

l4.36A f 

Solving this for the stopband attenuation, we have 

which corresponds to a stopband (and passband) ripple of 

6 - 10-16.99120 = 0.141 
S - 
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(b) For an equiripple filter, the filter order is approximately 

With 6, = 6, .  this becomes 

where a, = -20 log 6,. Solving for a,, we have 

The corresponding stopband ripple is 
6 - 10-22.0-W" 0 079 
S - 

9.20 The linear phase constraint on FIR filters places constraints on the unit sample response and the location 
of the zeros of the system function. In the table below, indicate with a check which filter types could 
successfully be used to approximate the given filter type. 

High-pass filter 11 
Band~ass filter 11 

Low-pass filter 

Bandstop filter 11 
Differentiator 11 

A type I linear phase filter has no constraints on the locations of its zeros. Therefore, a type I filter may be used for 

Type I 

the design of any type of filter. The type I1 linear phase filter will always have a zero at w = n. Therefore, these 
filters should only be used for low-pass and bandpass filters. The type 111 linear phase filter is constrained to have 
zeros at w = n and w = 0. Therefore, type 111 filters should only be used for the design of bandpass tilters. Finally, 

Type 11 

because the type IV filters have a zero at w = 0, they should not be used in the design of low-pass or bandstop filters. 
These results are summarized in the table below. 

Type 111 

11 Type I I Type 11 I Type I11 I Type IV I 

Type IV 

Low-pass filter 11  x 

I Differentiator 1 1  x x 

x 

Bandpass filter 11  x 

IIR Filter Design 

9.21 For historical reasons, the design formulas for analog filters are given assuming a peak gain of I in the 
passband. In terms of the parameters E and A, the filter specifications have the form 

High-pass filter (1 x I 

bands to^ filter 11 x 

x 

1 
I H A j W  5 ,  

Suppose that we would like to use the bilinear transformation to design a discrete-time IIR low-pass filter 
that satisfies the following frequency response constraints: 

1-6, 5 IH(eJW)I 5 1 +S, 0 5 w 5 w, 

l ~ ( e j 9 l  i 6, w , s w 5 n  

x 
x x 
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Find the relationship between the parameters 6, and 6, for the discrete-time filter and between the 
parameters c and A for the continuous-time filter. 

For a digital low-pass filter with a frequency response magnitude 

dividing by 1 $. 6, this becomes 

Setting 

we have 

and 

With a stopband ripple of &, the normalization of the peak passband gain to I produces a peak stopband ripple of 

Therefore A = s;'(I + 8,) 

9.22 As the order of an analog Butterworth filter is increased, the slope of J H , ( J Q ) ~ ~  at the 3-dB cutoff 
frequency, Q,., increases. Derive an expression for the slope of I H , ( J Q ) I ~  at R,. as a function of the filter 
order, N. 

The magnitude squared of the Butterworth filter's frequency response is 

To evaluate the slope of I H a (  jS t ) I2  at St = St,., we may set St, = 1 and evaluate the derivative at St = I. Therefore, 
with 

1 
l H a ( j ~ ) l ~  = I + 

we have 

Evaluating this at St = I ,  we have 

9.23 Show that the frequency response of an Nth-order low-pass Butterworth filter is maximallyflat at R  = 0 
in the sense that the first 2N - I derivatives of J H , ( J R ) I ~  are equal to zero at R  = 0. 

An Nth-order Butterworth filter has a magnitude squared frequency response given by 
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Without any loss in generality, we may assume that Q, = 1 and evaluate the derivative of the function 

I 
G(Q) = - 

I + RZN 

at Q = 0. Multiplying both sides of this equation by (1 + R2N), we have 

Differentiating this equation with respect to R yields 

Setting R = 0, we have 
~ ' ( f i ) ) ,=,  = 0 

Differentiating a second time gives 

Again setting R = 0, we have 
G"(Q)],=, = 0 

If we continue to differentiate k times, where k 5 2N - I, we have an equation of the form 

where G(')(R) is the ith derivative of G(R), and F(Q) is a polynomial in 52. Given that Gt')(Q) is equal to zero at 
Q = O f o r i  = I , .  . .  , k  - I ,  itfollowsthat 

G("(R)ln=a = 0 

Differentiating 2N times, however, we have 

Therefore, G ' ~ ~ ) ( Q ) ~ , ,  = -G(Q)[,, . (2N)! = -(2N)! 

which is nonzero, and the maximally flat property is established. 

9.24 Design a low-pass Butterworth filter that has a 3-dB cutoff frequency of 1.5 kHz and an attenuation of 
40 dB at 3.0 kHz. 

Given the 3-dB cutoff frequency of the Butterworth filter, all that is needed is to find the filter order, N, that will 
give 40 dB of attenuation at 3 kHz, or Q, = 2n  .3000. At the stopband cutoff frequency a,, the magnitude of the 
frequency response squared is 

Therefore, if we want the magnitude of the frequency response to be down 40 dB at R, = 2n .3000, the magnitude 
squared must be no larger than or 

Thus, we want 
log(lo4 - 1) 

2N = = 13.29 
log 2 
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or N = 7. For a seventh-order Butterworth filter, the 14 poles of 

I 
Ha(s)Ha(-s) = 

1 + 
lie on a circle of radius Q, = 2n  ,3000, at angles of 

Bk = 
( N  + I + 2k)n - (4 + k)n - 

N 7 
k = 0 , 1 ,  . . . ,  13 

as illustrated in the following figure: 

The poles of Ha@) are the seven poles of Ha(s)H,(-s) that lie in the left-half s-plane, that is, 

Except for the isolated pole at s = -Q,, the remaining six poles occur in complex conjugate pairs. The conjugate 
pairs may be combined to form second-order factors with real coefficients to yield factors of the form 

Thus, the system function of the seventh-order Butterworth filter is 

9.25 Let ap and 52, be the desired passband and stopband cutoff frequencies of an analog low-pass filter, and 
let 6, and 6, be the passband and stopband ripples. Show that the order of the Butterworth filter required 
to meet these s~ecifications is 

log d 
N Z -  

log k 

with the 3-dB cutoff frequency a, being any value within the range 

The squared magnitude of the frequency response of the Butterworth filter is 
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Because I H,(jQ)l is monotonically decreasing, the maximum error in the passband and stopband occurs at the band 
edges, Q, and a,,  respectively. Therefore, we want 

and 

From the first equation, we have 

and from the second. 

Dividing these two equations, we have 

and taking the logarithm gives 

Nlog(?) 5 log d 

Dividing by 

log 2 = log k ("n) 
we have 

log d 
N Z -  

log k 

(note that the inequality is reversed because log k < 0). Because the right side of this equation will not generally 
be an integer, the order N is taken to be the smallest integer larger than (logd)/(log k ) .  Finally, once the order N is 
fixed, it follows from Eqs. (9.20) and (9.21) that a,, may be any value in the range 

9.26 Suppose that we  would like to design an analog Chebyshev low-pass filter so  that 

1 - Jp 5 I H a ( j Q ) l  I 1 IQI 1 Qp 

I H a ( j Q ) l  5 J,T Qs I IQI 

Find an expression for the required filter order, N ,  as  a function of  a,, a,, tip, and 

For a Chebyshev filter, the magnitude of the frequency response squared is 

where 

is an Nth-order Chebyshev polynomial. Over the passband, In1 < Q,, the magnitude of the frequency response 
oscillates between 1 and ( l + c2)-'I2. Therefore, the ripple amplitude, 6,.  is 

6 ,  = 1 - (1 + c ~ ) - ' / ~  
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or 6' = (1 - a,)-' - I 

At the stopband frequency R ,  we have 

I 
I H ~ ( ~ Q . ~ ) I ~  = 

I + c~T,:(R~I 

which we want to be less than or equal to 8:: 

Therefore, 

Because (Q,/R,) > I, then TN(R,/i2,) = cosh(N ~ o s h - ~ ( ~ , / R , ) ) ,  and we have 

cosh-'(I Id )  cosh-'( l / d )  
or - - ' C O S ~ - I  (QJR,) C O S ~ - ~ ( I , X )  

which is the desired expression. 

9.27 If Ha(s) is a third-order type I Chebyshev low-pass filter with a cutoff frequency Q p  = I and 6 = 0. I ,  
find Ha(s)H,(-s). 

The magnitude of the frequency response squared for an Nth-order type 1 Chebyshev filter is 

where TN(x) is an Nth-order Chebyshev polynomial that is defined recursively as follows, 

with To(x) = 1 and Tl(x) = x. Therefore, to find the third-order Chebyshev polynomial, we first find T2(.u) as 
follows, 

T2(x) = 2xTl(x) - To(x) = 2x2 - I 

and then we have 
T3(x) = 2xT2(x) - Tl(x) = 4x3 - 2x - x = x(4x2 - 3) 

Thus, the denominator polynomial in I Hu(jR)12 is 

and we have 

we make the substitution R = s / j  in 1H,(jC2)l2 as follows: 
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9.28 Show that the bilinear transformation maps the jQ-axis in the s-plane onto the unit circle, lzl = 1, and 
maps the left-half s-plane. Re(s) < 0 insidc the unit circle, l z (  < 1. 

To investigate the characteristics of the bilinear transformation, let z = reJ"' and s = a + JR .  The bilinear 
transformation may then be written as 

r 2  - l 3r  sin w ='( 
T ,  I + r 2 + 2 r c o s w  + ' 1 + r 2 + 2 r c o s w  

Therefore, 

and 

2 r 2  - I 
0 = - 

T, I + rr' + 2r  cosw 

Note that if r < I, then o < 0, and if r 1, then 0 z 0. Consequently, the left-half s-plane is mapped inside the 
unit circle. and the right-half s-plane is mapped outside the unit circle. If 1, = I, then a = 0, and 

Thus, the JR-axis is mapped onto the unit circle. Using trigonometric identities, thismay be written in the equivalent 

9.29 Let H&) be an all-pole filter with no zeros in the finite s-plane, 

If H,,(s) is mapped into a digital filter using the bilinear transformation, will H ( z )  be an all-pole filter? 

With T, = 2, the bilinear transformation is 
I -:-I 

s = - 
I + z - '  

and the system function of the digital filter is 

This may be written in the more conventional form as follows, 

where 
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and 

Therefore, H ( z )  has p poles (inside the unit circle if Re(sd) < 0) and p zeros at z = - I .  Note that rhese zeros come 
from the p zeros in HJs) at s = m. which are mapped to z = - I  by the bilinear transformation. Thus. H ( : )  will 
nor be an all-pole filter. 

9.30 Shown in the figure below is the magnitude of the frequency response of a low-pass tilter that was designed 
by mapping a type I analog Chebyshev filter into a discrete-lime filter using the bilinear transformation. 

Find the filter order (i.e., the number of poles and zeros in H(::)).  

The magnitude-squared response of a type I analog Chebyshev filter is 

where 

is an Nth-order Chebyshev polynomial. Over the passband, i R,, the magnitude of the frequency response 
oscillates between I and ( 1  + c ' ) - ' / ~ .  AS the frequency varies from I2 = O to R = R,,, H = N cos- ' (R/R, , )  varies 
from 8 = N 7r/2 to 0 = 0. Therefore. 

oscillates between zero and 1 N $ 1 times over the interval [O, Q,] [i.e., T,~(R/Q,,)  reaches its maximum or 
minimum value N + I times]. The bilinear transformation is a one-to-one mapping of the jR-axis onto the unit 
circle. Therefore. I H ( ~ J ' " ) ~ ~  will alternate N + I times belween I and I/([ + 6') over the interval 10, w,),  where 

w, = tan 2 (: ) 
Because there are six alternations of I H (eJ'")12 in the passband, N + 1 = 6. and H, , ( s )  is a ti fth-order type I Chebyshev 
filter, 

5 .  

where A is a constant. Applying the bilinear transformation to HJs) results in a discrete-time filter with a system 
function H(z) that has five poles inside the unit circle, and five zeros on the unit circle at : = - I  (as shown in hob. 
9.29, the five zeros come from the five zeros in H,,(s) at s = m). 
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9.31 Use the bilinear transformation to design a discrete-time Chebyshev high-pass filter with an equiripple 
passband with 

0 ( e )  0 . 1  O s w  5 0 . 1 1 ~  

and 0.9 5 I H ( &  5 1.0 0.31~ 5 w 5 IT 

To design a discrete-time high-pass filter, there are two approaches that we may use. We may design an analog type I 
Chebyshev low-pass filter, map it into a Chebyshev low-pass filter using the bilinear transformation, and then perform 
a low-pass-to-high-pass transformation in the z-domain. Alternatively, before applying the bilinear transformation. 
we could perform a low-pass-to-high-pass transformation in the s-plane and then map the analog high-pass filter into 
a discrete-time high-pass filter using the bilinear transformation. Because both methods result in the same design, 
it does not matter which method we use. Therefore, we will use the second approach, because it is a little easier 
algebraically. 

Given that we want lo design a high-pass filter with a stopband cutoff frequency ws = 0.117 and a passband 
cutoff frequency w, = 0.317, we first transform the specifications of the digital filter into the continuous-time domain. 
With T, = 2 and 

W 
R = tan - 

2 

Using the transformation s -+ I 1s to map these high-pass filter cutoff frequencies to low-pass filter cutoff frequen- 
cies, we have 

and 

Therefore, the selectivity factor for the analog Chebyshev filter is 

With 6, = 6, = 0.1, the discrimination factor is 

Thus. the required filter order is 

Although we should round up to N = 3, with a second-order Chebyshev filter we should come close to meeting the 
specifications. Therefore, we will use N = 2. 

The next step is to design a second-order low-pass Chebyshev filter with 

where C!, = 1.9627 and R ,  = 6.3 138. With 
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it follows that 

For a second-order Chebyshev filter, we need to generate a second-order Chebyshev polynomial. which is 

Squaring T2(x), we have 

T;(X) = 4x4 - 4x2 + I 

and, for the magnitude squared frequency response of the Chebyshev filter, we have 

Substituting for the given values of Q, and c, we have 

Next, we find H4(s)H4(-s) with the substitution St = - js, 

Factoring the denominator polynomial, we find that the two roots in the left-half s-plane are at 

Thus, the second-order Chebyshev filter is 

Now we transform this low-pass filter into a high-pass filter with the low-pass-to-high-pass transformations + I /s. 
This gives 

Finally, applying the bilinear transformation, we have 

I - 2- '  
3.9778 (-) I + z-' 

H (z) = 

I + 2.2327(=) 1 + z - I  + 4 . 4 1 8 5 ( E ) 2  1 + z- '  

Multiplying numerator and denominator by (1 + 2-l) '  gives 

The magnitude of the frequency response is plotted in the following figure. 
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As a check on the design, we may compute the magnitude of the frequency response at w = 0. I n ,  which is 

I H ( ~ ~ ~ ) I ~ , = O , ~ ,  = 0.1044 

which comes close to satisfying the stopband specifications. At the passband edge, we have 

I ~ ( e j ~ ) l , , o . s ,  = 0.9044 

which does satisfy the constraint. 

9.32 We would like to design a digital low-pass filter that has a passband cutoff frequency w p  = 0 . 3 7 5 ~  with 
6, = 0.01 and a stopband cutoff frequency w, = 0.5x with 6, = 0.01. The filter is to be designed using 
the bilinear transformation. What order Butterworth, Chebyshev, and elliptic filters are necessary to meet 
the design specifications? 

To find the required filter order, we begin by finding the discrimination factor and the selectivity factor for the analog 
low-pass filter prototype. With 8 ,  = 6, = 0.01, the discrimination factor is 

For the selectivity factor, we first find the cutoff frequencies for the analog prototype. With wp = 0.375r and 
w, = O S r ,  we prewarp the frequencies as follows (T, = 2), 

0 375r  
Rp = tan (l) = 0.6682 

i-2. = tan (F) = 1 

R 
Therefore, k = 2- = 0.6682 

i-2.s 

For the Butterworth filter, the required filter order is 

log d 
N = - -  - 16.25 

log k 

or N = 17. For the Chebyshev filter, 

so the minimum order is N = 8. Finally, for the elliptic filter, we first evaluate 

where 
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With k = 0.6682, we have 

and 9 = 0.0369 

Therefore. for the filter order. we find 

9.33 With impulse invariance, a first-order pole in H,(s) at s = sk is mapped to a pole in H ( z )  at z = e s k T s :  

Determine how a second-order pole is mapped with impulse invariance. 

If the system function of a continuous-time filter is 

the impulse response is 
ha(t) = tesk'u(t) 

where u(t) is the unit step function. Sampling h,(t) with a sampling period T,, we have 

Using the z-transform property 
z dX(z) 

nx(n) t, -z - 
dz 

and the z-transform pair 
I 

cunu(n) c4-t - 
1 - az-'  

it follows that the z-transform of h(n) is 

Therefore, for a second-order pole, we have the mapping 

9.34 Suppose that we would like to design and implement a low-pass filter with 

( a )  What order FIR equiripple filter is required to satisfy these specifications? 

(b) Repeat part (a )  for an elliptic filter. 

(c)  Compare the complexity of the implementations for the equiripple and elliptic filters in terms of the 
number of coefficients that must be stored, the number of delays that are required, and the number 
of multiplications necessary to compute each output sample y ( n ) .  

(a) With a transition width of Aw = 0.027r. an estimate of the required filter order for an FIR equiripple filter is 



(b) For an elliptic filter, we have 

and 

With 

and 

then 

o r N  = 10. 

[CHAP. 9 

(c) For an FIR filter of order N = 254, the output y(n) is 

Therefore, implementing this filter requires N = 254 delays. Since this filter has linear phase, exploiting the 
symmetry of the unit sample response, 

h(n) = h(254 - n) 

it follows that we must only provide storage for 128 filter coefficients, h(O), h(l),  . . . , h(127). In addition, we 
may simplify the evaluation of y(n) as follows, 

254 126 

y(n) = ) h(k)x(n - k) = ) h(k)[x(n - k) + x(n - 254 + k)] + h(127)x(n - 127) 
k=O A LO 

Thus, 128 multiplications are required to compute each value of y(n). For a 10th-order elliptic filter, 

Therefore, it follows that 21 memory locations are required to store the coefficients a(k) and b(k), and 10 delays 
are required for a canonic implementation. In addition, we see that 21 multiplications are necessary to evaluate 
each value of y(n). However, since the zeros of H ( z )  lie on the unit circle, the coefficients b(k) are symmetric, 

By exploiting this symmetry, we may eliminate five multiplications per output point and five memory locations. 

9.35 The input xa( t )  and output ya(t)  of a continuous-time filter with a rational system function are related by 
a linear constant coefficient differential equation of the form 

Suppose that we sample x,(t) and ya(t), 

and approximate a first derivative with the first backward difference, 
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Approximations to higher-order derivatives are then defined as follows, 

Applying these approximations to the differential equation gives the following approximation to the 
differential equation: 

I) a 

The first backward difference def nes a mapping from the s-plane to the z-plane that is given by 

1 - z-' 
,y=- 

Ts 
Determine the characteristics of this mapping, and compare it to the bilinear transformation. Is this a 
good mapping to use? Explain why or why not. 

As with the bilinear transformation, the first backward difference will map a rational function of s into a rational 
function of z. To see how points in the s-plane map to points in the z-plane, let us write the mapping as follows, 

Note that with s = u + j R ,  

.and it follows that points in the left-half s-plane (a c 0) are mapped to points inside the unit circle, lzl < I .  Thus, 
stable analog filters are mapped to stable digital filters. 

Now, let us look at how the jR-axis is mapped to the z-plane. With s = j R ,  we see that 

which is an equation for a circle of radius r = f centered at z = i. To see this, note that 

Thus. 

The properties of the mapping are illustrated in the following figure. 

Since the jR-axis does not map onto the unit circle, the frequency response of the digital filter produced with this 
mapping will not, in general. be an accurate representation of the frequency response of the analog filter except when 
w is close to zero. In other words, the frequency response of a continuous-time filter will be well preserved only for 
low frequencies. 
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9.36 Use the impulse invariance method to design a digital filter from an analog prototype that has a system 
function 

s + a  
Ha(s) = 

( s  + + h2 

To design a filter using the impulse invariance technique, we first expand H,,(s) in a partial fraction expansion as 
follows, 

s + a  
HAS) = - - A I A2 

(S  + ~ 1 ) ~  + b2 s + (a + jh) + s + (a - jb) 

where 

and 

Therefore, with 
I I - 

Hu(s) = 2 

s + a + , j h + s + a -  jh 

using the mapping given in Eq. (9.10), we have 

Note that the zero at s = -a is mapped to a zero at z = PT7 cos(bT,). Thus, the location of the zero in the discrete- 
time filter depends on the position of the poles as well as the zero in the analog filter. 

9.37 With the impulse invariance method, the unit sample response of a digital filter is formed by sampling 
the impulse response of the continuous-time filter, 

Another approach is to use the step invariance method in which the step response of the digital filter is 
formed by sampling the step response of the continuous-time filter. 

(a )  Design a digital filter with the step invariance method using the continuous-time prototype 

(6) Determine whether or not the filter is the same as that which would be designed using the impulse 
invariance method. 

(a)  If the impulse response of a continuous-time filter is h,(r), its step response is 

Therefore, because the Laplace transform of the step response is related to the system function H,(s) as follows, 

then 
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To design a digital filter using step invariance, we first perform a partial fraction expansion of S,(s), 

where 

and 

a I -a + j h  -a - j h  
Therefore. S,, (s ) = --- - + + 

a2 + b2 s 2(a2 + h2)(s + u + j h )  2(a2 + b2)(s + a  - j h )  

Sampling s,,(t), 

s(n)  = s,(nT,) 

and finding the z-transform of s(n) corresponds to the substitution 

Thus, the z-transform of the step response is 

The system function of the digital filter is then 

(b)  Using impulse invariance, we see from Prob. 9.36 that the system function is 

Note that although H(z )  has the same poles as the filter designed using step invariance, the system functions 
are not the same. Therefore, the two designs are not equivalent. 

9.38 Suppose that we would like to design a discrete-time low-pass filter by applying the impulse invariance 
method to a continuous-time Butterworth tilter that has a magnitude-squared function 
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The specifications for  the discrete-time ti lter are 

Show that the design is not affected by the value of the sampling period that is used in the impulse 
invariance technique. 

In the absence of aliasing, the impulse invariance method is a linear mapping from H,,(jQ) to H(eJL" for Iwl 5 n. 
This mapping is 

H W " )  = H,,(;w ",=,,! IwI 5 n 

Let us assume that there is no aliasing (this will be approximately true if the filter order is large enough). The required 
filter order is then 

log d  
N Z -  

log k 

where d, the discrimination factor, is 
(I - 6,J2 - 1 

d = [  6;z-1 1 "' 
and k ,  the selectivity factor, is 

R k=' 
Q, 

Clearly, the discrimination factor does not depend on the sampling period T,. In addition, with w, = Q,T, and 
w, = Q,T,, it follows that 

w,,l T, - w,, k = -  - - 
to,, 1 T, W ,  

which does not depend on the sampling period. Therefore, the required filter order is independent of T,. Next, if we 
expand the system function of the Butterworth filter in a partial fraction expansion. we have 

where the poles, sk, are 

With impulse invariance, the system function of the discrete-time filter becomes 

and it follows that the poles of H(z) are at 

2 = exp(sl T,) = exp{Q, T,Or 1 

where 

Because w, = R, T, is the 3-dB cutoff frequency of the low-pass filter in the discrete-time domain, i t  is fixed by the 
tilter specifications. Therefore, the poles of H ( : )  will not be affected by the sampling period T,. For example, if we 
try to decrease T, to reduce aliasing, this would require an increase in Q, to preserve the cutoff frequency. Thus, 11 

follows that the design is not affected by T,.  

9.39 Use the impulse invariance method to design a low-pass digital Butterworth filter to  meet the following 
specifications: 
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In the absence of aliasing, the impulse invariance method is a linear mapping from H,(jR) to H(eJW) for Iwl 5 n, 
which is given by 

H(eJ") = ~ . ( . i R ) l ~ , ~ ~ ,  14 5 x 

Therefore, in order to simplify the design, we will assume that there is no aliasing and then, after the design is 
completed. check to see that the filter satisfies the given specification:;. Because the parameter T, does not enter into 
the design using the impulse invariance method (see Prob. 9.38), for convenience we will set T, = 1 .  

The first step, then, is to design an analog Butterworth filter according to the following specifications: 

To determine the filter order. we compute the discrimination factor, 

and the selectivity factor. 

Thus, we have 
log d N = -  = 5.71 
log k 

which, when rounded up, gives N = 6. 
For the 3-dB cutoff frequency of the Butterworth filter, we will select 52, so that 

that is, so that the Butterworth filter satisfies the passband specifications exactly (this will provide for some allowance 
for aliasing in the stopband). With 

we have 

which gives 

Therefore, the magnitude of the frequency response squared is 

I 
~HU(J')~' = I + c n / o , 7 0 9 ~  

and the 12 poles of 
I 

Ha(s)Ha(-s) = I + ( ~ / j S 2 ( . ) ' ~  

lie on a circle of radius R, = 0.7090, at angles 
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as illustrated in the following figure: 

Thus, the poles of the Butterworth filter are the three complex conjugate pole pairs of H,(s)H,(-s) that are in the 
left-half s-plane: 

Therefore, with 

forming second-order polynomials from each conjugate pole pair, we have 

The next steps, which are algebraically very tedious, are lo perform a partial fraction expansion of H,,(s), 

perform the transformation 

and then recombine the terms. The result is 

0.0007~ ' + 0.0105z~-' + 0.0168z-~ + 0 .0042~-~  + 0.0001z-~ 
H (z) = 

I - 3.3431~-I + 5 . 0 1 5 0 ~ - ~  - 4.21532-2 + 2 .0703~-~  - 0.5593zr5 + O.0646zr6 

The magnitude of the frequency response in decibels is plotted in the following figure. 
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As a final check on the design, evaluating H ( e J U )  at w = 0 . 2 ~  and w = 0 . 3 ~ ,  we find that 

Therefore, the filter exceeds the passband specifications and comes close to meeting the stopband specifications. If 
this filter is unacceptable, the design could be modified by decreasing Q, to improve the stopband performance. 

9.40 Repeat Prob. 9.39 using the bilinear transformation. 

Using the bilinear transformation to design a Butterworth filter according to the specifications given in Prob. 9.39, 
we first use the transformation 

to map the passband and stopband frequencies of the digital filter to the cutoff frequencies of the analog filter. With 
Ts = 2, we have 

= tan(0. I n )  == 0.3249 

and R,  = tan 2 = t an(0 .15~)  L- 0.5095 (11 
As we found in Prob. 9.39, the required filter order IS N = 6. For the 3-dB cutoff frequency of the analog Butterworth 
filter, we may choose any frequency in the range 

or 0.3667 5 R,. 5 0.39 10 

If we select Q,. =0.3667, the passband specifications will be met exactly, and the stopband specifications will be 
exceeded. Conversely. if we set R, = 0.3910. the stopband specifications will be met exactly, and the passband 
specifications exceeded. Picking a frequency between the two extremes will produce an improvement in both bands. 
Because the stopband deviation is twice that of the deviation in the passband. we will set 0,. = 0.3667 in order to 
improve the stopband performance. From Table 9-4, we find the coel'ticients in the system function of a sixth-order 
normalized (52, = I) Butterworth filter to be 

To obtain a Butterworth filter with a cutofl' frequency R, = 0.3666, we perform the low-pass-to-low-pass transfor- 
mation 

r 



FILTER DESIGN [CHAP. 9 

This gives 
(0.3666)' 

Hob) = 
s 6  + 1.4 165s5 + 1 .0033sJ + 0.4505s3 + 0. 1349s2 + 0.0256s + 0.0024 

Finally, we apply the bilinear transformation 
I - z-' 

s=- 
I + 2-' 

which yields the digital filter 

0.0006 + 0.0036z-' + 0 .0090~-~  + 0.0120~--' + 0 .0090~-~  + 0 .0036~-~  + 0.0006~-' 
H (z) = 

I - 3 . 2 9 4 2 ~ '  + 4.8985zr2 - 4.0857zr3 + 1 .9932~-~  - 0.5353~-~ + 0.0615~-~ 

At the passband cutoff frequency, o, = 0.217, the magnitude of the frequency response is 

and at the stopband cutoff frequency, o, = 0.317, the magnitude of the frequency response is 

Therefore, this filter meets the given specifications. 

9.41 Use the bilinear transformation to design a first-order low-pass Butterworth filter that has a 3-dB cutoff 
frequency w,. = 0 . 2 ~ .  

If a digital low-pass filter is to have a 3-dB cutoff frequency at w,. = 0.217, the analog Butterworth filter should have 
a 3-dB cutoff frequency 

Q. = tan($) = tan(0. I n )  = 0.3249 

For a first-order Butterworth filter. 

Therefore, the system function is 
Q, H0(s) = - 

s + Q,. 

With Q, = 0.3249, applying the bilinear transformation 

0.3249 
- - 

0.3249(1 + Z-I) 
we have H (z) = - - 

0.2452(1 + z-I) 
1 - z - '  + 0.3249 

(1  - 2-I) + O.3249(1 + z-I) 1 - 0.5095~-I 
1 + z-' 

9.42 A second-order continuous-time filter has a system function 

1 I 
H,(s) = - + - 

s - a  s - b  

where a < 0 and b i 0 are real. 

( a )  Determine the locations of the poles and zeros of H ( z )  if the filter is designed using the bilinear 
transformation with T, = 2. 

(b) Repeat part (a) for the impulse invariance technique, again with T, = 2. 
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(a) The bilinear transformation is defined by the mapping 

Therefore, for the given filter, we have 

which has poles at 
I I 

z l  = - and z2 = - 
I - a  I - h  

To find the zeros, it is necessary to combine the two terms in the system function over a common denominator. 
Doing this. we have 

Finding the roots of the numerator may be facilitated by noting that H,(s) has a zero at s = co, which gets 
mapped to z = - 1 with the bilinear transformation. Therefore. one of the factors of the numerator is ( 1  + z-I ) .  
Dividing the numerator by this factor, we obtain the second factor, which is [ (2  - a - b) - 2z-'1.  Thus, H ( ; )  
has zeros at 

(b) With the impulse invariance technique, for first-order poles, the mapping is 

Therefore, with T, = 2  we have 

which has two poles at 
z 1 = e L 1  and z : ! = e 2 h  

and only one zero. which is located at 
z,, = i(e2" + eZb ) 

9.43 The system function of a digital fi lter is 

(a) If this filter was designed using impulse invariance with T, = 2, find the system function, H&), of 
an analog filter that could have been the analog filter prototype. Is your answer unique? 

(b) Repeat part (a) assuming that the bilinear transformation was used with T, = 2. 

(a) Because H ( z )  is expanded in a partial fraction expansion, the poles at z = a k  in H ( z )  are mapped from poles 
in Ha(s)  according to the mapping 

(yk = esl 

Therefore, if T, = 2, 
sk = hak 
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and one possible analog filter prototype is 

Because the mapping from the s-plane to the z-plane is not one to one, this answer is not unique. Specifically, 
note that we may also write 

ak = @rT,+iZn 

Therefore, with T, = 2, we may also have 

and another possible analog Rlter prototype is 

(6)  With the bilinear transformation, because the mapping from the s-plane to the z-plane is a one-to-one mapping, 
with T, = 2, 

I + s  
z = -  

I - S  

and the analog filter prototype that is mapped to H(z )  is unique and given by 

9.44 A continuous-time system is called an inlegrator. if the response of the system y,(r) to an input x u ( [ )  is 

The system function for an integrator is 

( a )  Design a discrete-time "integrator" using the bilinear transformation, and find the difference equation 
relating the input x ( n )  to the output y ( n )  of the discrete-time system. 

(b) Find the frequency response of the discrete-time integrator found in part ( a ) ,  and determine whether 
or not this system is a good approximation to the continuous-time system. 

(a) With a system function H&) = I / s ,  the bilinear transformation produces a discrete-time filter with a system 
function 

The unit sample response of this filter is 

and the difference equation relating the output y(n)  to the input s ( n )  is 
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(b) Because the frequency response of the continuous-time system, H,(jR) = I / jR ,  is related to the discrete-time 
filter through the mapping 

the frequency response of the discrete-time system is 

Note that because H (ejC") goes to zero at w = n, then H(eJw) will not be a good approximation to H,(jR) = 
1 / j R  except for low frequencies. However, if w << I, using the expansion 

and s i n x x x  x < < 1  

we have 

and we have, for the frequency response. 

Therefore, for small w 
H (ciw) % T, H,(jR) 

9.45 Let H,(jQ) be an Nth-order low-pass Butterworth filter with a 3-dB cutoff frequency Q,. 

(a) Show that H,(s) may be transformed into an Nth-order high-pass Butterworth filter by adding N 
zeros at s  = 0 and scaling the gain. 

(6)  What is the relationship between the corresponding digital low-pass and high-pass Butterworth 
filters that are designed using the bilinear transformation? 

(a) For an N th-order low-pass Butterworth with a system function H,(s), 

Adding N zeros to H,(s) at s = 0, we have 

Multiplying numerator and denominator by ( J R ,  yields 

which corresponds to a magnitude-squared frequency response 

Scaling t f u ( j R )  by R-N results in a filter that has a frequency response G , ( j R )  with a squared magnitude 

which is a high-pass filter with a cutoff frequency R,.. Specifically, note that IC,(jR)12 is equal to zero at 
R = 0, and that I C , ( ~ R ) ~ ~  + 1 as R + oo, 
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(h )  Applying the bilinear transformation to a low-pass Butterworth filter, we have 

For the high-pass filter, on the other hand, we have 

Therefore, we see that the poles of the low-pass digital Butterworlh filter are the same as those of the high-pass 
digital Butterworth filter. The zeros, however, which are at z = - I  in the case of the low-pass filter, are at 
z = I in the high-pass filter. Thus, excepl for a difference in the gain, the high-pass digital Butterworth filter 
may be derived from the low-pass filler by flipping the N zeros in H(z)  at z = - 1 to z = 1. 

9.46 The impulse invariance method and the bilinear transformation are two filter design techniques that 
preserve stability of the analog filter by mapping poles in the left-half s-plane to poles inside the unit 
circle in the z-plane. An analog filter is minimum phase if all of its poles and zeros are in the left-half 
s-plane. 

( a )  Determine whether or not a minimum phase analog tilter is mapped to a minimum phase discrete-time 
system using the impulse invariance method. 

(b)  Repeat part ( a )  for the bilinear transformation. 

(a) With impulse invariance, an analog filter with a system function 

will be mapped lo a digital filter with a system function 

Rewriting this system function as a ratio of polynomials, i t  follows that the locations of the zeros of H(z )  will 
depend on the locations of poles as well as the zeros of H,,(s), and there is no way 10 guarantee that the zeros 
lie inside the unit circle. A simple example showing that a minimum phase continuous-time filter will not 
necessarily be mapped to a minimum phase discrete-time tilter is the following: 

Using the impulse invariance method with T, = I, we have 

which has a zero at 
z = -(be-'  - 7e-2) % - 1.256 

Therefore, although H,(s) is minimum phase, H(z )  is not. 
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(b) The mapping between the s-plane and the z-plane with the bilinear transformation is defined by 

Therefore, a pole or a zero at s = s k  becomes a pole or a zero at 

If Ha(s) is minimum phase, the poles and zeros of H,,(s) are in the left-half s-plane. In other words, if H,(s) 
has a pole or a zero at s = sk, where sk = UL + jQn ,  

Therefore, I:kI 2 = 1 1 + ( T s / 2 ) k 1 2 1 ( 2 / ~ ) + ~ k 1 2  - [ ( 2 / K ) + ~ k ] ~ f f i ?  < I  

11 - ( T A / ~ ) ~ I ~  - 1(2/TT) - sn12 - [(2/Ts) - un12 f fi: 

and it follows that a pole or a zero in the left-half s-plane will be mapped to a pole or a zero inside the unit 
circle in the z-plane (i.e., H(z)  is minimum phase). 

9.47 The system function of a continuous-time filter H a ( s )  of order N 2 2 may be expressed as a cascade of 
two lower-order systems: 

H a ( s )  = H , I ( s ) H , ~ ( s )  
Therefore, a digital filter may either be designed by applying a transformation directly to H,(s) or by 
individually transforming H a l ( s )  and H a z ( s )  into H I  ( z )  and H:!(z),  respectively, and then realizing H ( z )  
as the cascade: 

H ( z )  = H i ( z ) H z ( z )  

( a )  If H l ( z )  and H2(z )  are designed from H O l ( s )  and Ha2(s )  using the impulse invariance technique, 
compare the cascade H ( z )  = H I ( z ) H 2 ( z )  with the filter that is designed by using the impulse invari- 
ance technique directly on H,(s). 

(b) Repeat part ( a )  for the bilinear transformation. 

(a) Due to sampling, aliasing occurs when designing a digital filter using the impulse invariance method. Because 
the operations of sampling and convolution do not commute, the filter designed by using impulse invariance on 
H,(s) will not be the same as the filter designed by cascading the two filters that are designed using impulse 
invariance on H,,(s) and Ha2(s). In other words, if 

where h(n) = h,(nT,), hl(n) = hal(nTx), and h2(n) = ha2(nT,). As an example, consider the continuous-time 
filter that has a system function 

I 
- 

I I 
tf,(s) = 

( s +  l ) ( s + 2 )  s +  1 s + 2  

Using the impulse invariance technique on Ha(s) with T, = I, we have 

On the other hand, writing H,(s) as a cascade of two first-order systems, 

and using the impulse invariance method on each of these systems with T, = 1,  we have 

which is not the same as the previous filter. 
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( b )  With the bilinear transformation. (T ,  = 2 )  

[CHAP 9 

and the two designs are the same. 

9.48 What are the properties of the s-plane-to-:-plane mapping defined by 

and what might this mapping be used for? 

This mapping is very similar to the bilinear trandormation which. with T, = 2, is 

In fact, this mapping may be considered to be a cascade of two mappings. The first is the bilinear transformation, 
and the second is one that replaces 1 with -:. 

" - -2 - - 

This mapping reflects points in the :-plane about the origin and. tbr points on the unit circle. corresponds to a shift 
of 1 8 0 :  

H(z1)Ic,=,,,,., = H(-: ) I  :=,, ,,,, = /I(-c"") = H (e.l""+n' ) 
Therefore, this mapping has the same properties as the bilinear transformation. except that the ;St axis is mapped 

Because the unit circle is rotated hy IXO'  , this mapping may be used to map low-pass analog filters into high-pass 
digital filters, and high-pass analog tilters into low-pass digital filters. 

Least-Squares Filter Design 

9.49 Suppose that the desired unit sample response of a linear shift-invariant system is 

Use the Pad6 approximation method to find the parameters of'a filter with a system function 

that approximates this unit sample response. 

Using the Pad6 approximation method, with p = q = I .  we want to solve the following set of linear equations for 
b(0). h( I), and a( I): 
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Using the last equation, we may easily solve for a ( l ) ,  

Having found a( l ) ,  we may solve for b(0) and h(l)  using the first two equations 

Therefore, we have 

H(z) = 
3 

1 - 0.52-' 

Notice that the unit sample response corresponding to this system exactly matches the given unit sample response. In 
general, however, this will not be true. A perfect match depends on hd(n) being the inverse z-transform of a rational 
function of z, and it depends upon an appropriate choice for the order of the Pad6 approximation (the number of 
poles and zeros). 

9.50 Let the first three values of the unit sample response of a desired causal filter be hd(0) = 3 ,  h d ( l )  = a ?  
and hd(2)  = &. 
(a) Using the Pad6 approximation method, find the coefficients of a second-order all-pole filter that has 

a unit sample response h(n), such that h(n)  = hd(n)  for 12 = 0, 1,2. 

(b) Repeat part ( a )  for a filter that has one pole and one zero. 

(c) Repeat part (a )  for an FIR filter that has two zeros. 

(a) For a second-order all-pole filter, the equations for the Pad6 approximation are 

which, with the given values for hn(n) become 

From the last two equations, we have 

Solving for a(1) and a(2), we find 
a ( ] )  = -A a(2) := -1 72 

Then, using the first equation, we have 
h(0) = 3 

Thus, the system function of the filter is 
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(b) Using a first-order system to match the given values of hd(n), 

the equations that we must solve are as follows, 

or, using the given values for h&), 

We may solve for a( I) using the last equation. 

+ $a( l )  = 0 

or a ( l )  = - a  
Next. we solve for h(0) and b(l) using the first two equations. 

which gives 
3 0 [::;:I = [; ,I [';I = [:;I 

Thus, the system function i s  

(c) For an FIR filter, the solution is trivial: 

9.51 Find the least-squares FIR inverse filter of length 3 for the system that has a unit sample response 

I 2 n = O  

g ( n ) =  I n = l  

0 else 

Also, find the least-squares error, 
M 

for this least-squares inverse filter. 

To find the least-squares inverse, we need to solve the linear equations 
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where 

is the deterministic autocorrelation of g(n) .  With N = 3, these equation:, may be written in matrix form as follows, 

For the given sequence g(n) ,  we compute the autocorrelation sequence as follows, 

Therefore, the linear equations become 

and the solution is 

Performing the convolution of h(n)  with g(n) ,  we have 

h(n)  = ' 

From this sequence, we may evaluate the squared error, 

' 0.494 n .= 0 

-0.235 n = 1 

0.094 n = 2 

0 else 

9.52 Find the FIR least-squares inverse filter of length N for the system having a unit sample response 

where cr is an arbitrary real number. 

Before we begin. note that if la[ > 1, G ( z )  has a zero that is outside the unit circle. In this case, G ( z )  is not minimum 
phase, and the inverse filter 1 / G ( z )  cannot be both causal and stable. However, if la1 < I ,  

and the inverse filter is 
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We begin by finding the least-squares inverse of length N = 2. The autocorrelation sequence r.,*(k) is 

I + w 2  k = O  

k = f l  

else 

Therefore, the linear equations that we must solve are 

The solution for h(O) and h ( l )  is easily seen to be 

The system function of this least-squares inverse filter is 

which has a zero at 

Note that because 

the zero of H(z) is inside the unit circle, and H(z)  is minimum phase. regardless of whether the zero of G(z) is inside 
or outside the unit circle. 

Let us now look at the least-squares inverse, hN(n) ,  of' length N .  In this case, the linear equations have the form 

Solving these equations for arbitrary a and N may be accomplished as follows. For n = 1.2, . . . , N - 2 these 
equations may be represented by the homogeneous difference equation, 

The general solution to this equation is of the form 

where c l  and c.2 are constants that are determined by the boundary conditions at 11 = O and n = N - I [the ti rst and 
last equations in Eq. (9.22)l: 

Substituting Eq. (9.23) into Eq. (9.24), we have 
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which, after canceling common terms, may be simplified to 

or 

The solution for cl and c2 is 

Therefore, h N ( n )  is 

Let us now look at what happens asyrnptoticaIly as N -t m. If Ial < 1, 

a"-N 
- lirn h N ( n )  = - - a" 

N-no -I\' 
n > O  

which is the inverse filter, that is, 
lim hN(n)  = anu(n )  = g - l ( n )  

N - m  

and 

However, if la 1 > 1, 

and 

I 
lirn H N ( z )  = - 

N - m  I - az-' 

aN-n 

lirn h N ( n )  = - = a-n-2 
N- lo  @N+? 

n 1 0  

a  -2 
lirn HN ( z )  = - 

N + m  1 -a-Iz- 1 

which is not the inverse filter. Note that although &n) = hN(n)  * g(n)  does not converge to S(n) as N + m, taking 
the limit o ~ B N ( z )  as N + co, we have 

which is an all-pass filter, that is, 

9.53 The first five samples of the unit sample response of a causal filter are 

h(0) = 3 h(1) = - 1  h(2) = 1 h(3)  = 2 h(4) = 0 

If it is known that the system function has two zeros and two poles, determine whether or not the filter is 
stable. 

The system function of this filter has the form 
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To determine whether or not this system is stable, it is necessary to find the denominator polynomial, 

and check to see whether or not the roots of A(z) lie inside the unit circle. Given that H(z) has two poles and two 
zeros, we may use the Pad6 approximation method to find the denominator coefficients: 

Using the last two equations, we have 

which become 

Substituting the given values for h(n), we have 

The solution is 
a )  = - 4 2 )  = 1 3 

and the denominator polynomial is 
A(z) = I - i z - '  + !z-2 

Because the roots of this polynomial are not inside the unit circle, the filter is unstable. 

Supplementary Problems 

FIR Filter Design 

9.54 What type of window(s) may be used to design a low-pass filter with a passband cutoff frequency w, = 0.35n, a 
transition width A o  = 0.025~,  and a maximum stopband deviation of 8, = 0.003? 

9.55 Use the window design method to design a minimum-order low-pass filter with a passband cutoff frequency o, = 
0.457, a stopband cutoff frequency w, = OSn, and a maximum stopband deviation 6,  = 0.005. 

9.56 We would like to design a bandstop filter to satisfy the following specifications: 

(a) What weighting function W(eJU) should be used to design this filter? 
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( b )  What are the minimum and maximum numbers of extremal frequencies that a type I filter of order N = 128 
must have? 

9.57 Suppose that we would like todesign a low-pass filter oforder N = 128 with apassband cutoff frequency w, = 0 . 4 8 ~  
and a stopband cutoff frequency of w, = 0 . 5 2 ~ .  

(a) Find the approximate passband and stopband ripple if we were to use a Kaiser window design. 

( b )  If an equiripple filter were designed so that it had a passband ripple equal to that of the Kaiser window design 
found in part (a ) ,  how small would the stopband ripple be? 

9.58 We would like to design an equiripple low-pass filter of order N = 30. For a type I filter of order N ,  what is the 
minimum number of alternations that this filter may have. and what is the maximum number? 

9.59 For a low-pass filter with ti,, = ti,, what is the difference in the stopband attenuation in decibels between a Kaiser 
window design and an equiripple filter if both filters have the same transition width? 

IIR Filter Design 

9.60 Find the minimum order and the 3-dB cutoff frequency of a continuous-time Butterworth filter that will satisfy the 
following Frequency response constraints: 

9.61 Use the bilinear transformation to design a first-order low-pass Butterworth filter that has a 3-dB cutoff frequency 
w,. = 0 . 5 ~ .  

9.62 Use the bilinear transformation to design a second-order bandpass Butterworth filter that has 3-dB cutoff frequencies 
w, = 0 . 4 ~  and w,, = 0 . 6 ~ .  

9.63 If the specifications for an analog low-pass filter are to have a I-dB cutoff frequency of 1 kHz and a maximum 
stopband ripple 6, = 0.01 for If I > 5 kHz, determine the required filter order for the following: 

( a )  Butterworth filter 

(h) Type 1 Chebyshev filter 

(c) Type I1 Chebyshev filter 

(d) Elliptic filter 

9.64 Let H,( jQ)  be an analog filter with 
HAjQ)ln=o = 1 

( a )  If a discrete-time filter is designed using the impulse invariance method, is it necessarily true that 

(b)  Repeat part ( a )  for the bilinear transformation 

9.65 Consider a causal and stable continuous-time filter that has a system function 

If a discrete-time filter is designed using impulse invariance with T, = 1, find H ( z ) .  

9.66 The system function of a digital filter is 
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(a)  Assuming that this filter was designed using impulse invariance with T, = 2, find the system function of two 
different analog filters that could have been the analog filter prototype. 

(b )  If this filter was designed using the bilinear transformation with T, = 2, find the analog filter that was used as 
the prototype. 

9.67 Determine the characteristics of the s-plane-to-z-plane mapping 

9.68 The system function of an analog filter Ha(s) may be expressed as a parallel connection of two lower-order systems 

If Ha(s), Hal(s) ,  and Ha2(s) are mapped into digital filters using the impulse invariance technique, will it be true that 

What about with the bilinear transformation? 

9.69 If an analog filter has an equiripple passband, will the digital filter designed using the impulse invariance method 
have an equiripple passband? Will it have an equiripple passband if the bilinear transformation is used? 

9.70 Can an analog allpass filter be mapped to a digital allpass filter using the bilinear transformation? 

9.71 An IIR low-pass digital filter is to be designed to meet the following specifications: 

Passband cutoff frequency of 0.221~ with a passband ripple less than 0.01 

Stopband cutoff frequency of 0.241~ with a stopband attenuation greater than 40 dB 

(a) Determine the filter order required to meet these specifications if a digital Butterworth filter is designed using 
the bilinear transformation. 

(b )  Repeat for a digital Chebyshev filter. 

(c) Compare the number of multiplications required to compute each output value using these filters, and compare 
them to an equiripple linear phase filter. 

Least-Squares Filter Design 

9.72 Suppose that the desired unit sample response of a linear shift-invariant system is 

Use the Pad6 approximation method to find the parameters of a filter with a system function 

that approximates this unit sample response. 

9.73 The first five samples of the unit sample response of a causal filter are 

h(0) = 0.2000 h(1) = 0.7560 h(2) = 1.0737 h(3) = -0.8410 h(4) = -0.6739 

If it is known that the system function has two zeros and two poles, determine whether or not the filter is stable. 
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Answers to Supplementary Problems 

A Hamming or a Blackman window or a Kaiser window with ,9 = 4.6. 

h(n)  = w(n)h,,(n), where w(n)  is a Kaiser window with B = 4.09 and N = 107, and 

1 0 5 w 5 0 . 3 ~  
5 0 . 3 5 ~  9 w 5 0 . 8 ~  
1 0 . 8 5 ~  5 w 5 K 

(b) The minimum is 66 and the maximum is 69. 

( a )  6 ,  % 6,  =0.0058.(b)SS =0.0016. 

The minimum number is 17 and the maximum is 18. 

5 dB. 

N = 9 and Q,. = 17.342~.  

0.65( 1 - zr2)  
H ( z )  = 

2.65 -t 1 . 3 5 r 2  ' 

( a )  N = 4. ( h )  N = 3. ( c )  N = 3. ( d )  N = 3. 

( a )  No. (b) Yes. 

I - z e - Z z - '  
H ( z )  = -- 

( 1  - C - ~ Z - ~ ) ~ '  

(a )  One possible filter has a system function 

and another is I 

Note, however, that the second filter has a complex-valued impulse response. 

(b) This filter is unique and has a system function 

This is a cascade of two mappings. The first is the bilinear transformation, and the second is the mapping z + zZ, 
which compresses the frequency axis by a factor of 2. Thus, a low-pass filter is mapped into a bandstop filter, and a 
high-pass filter is mapped into a bandpass filter. 

True for both methods. 

9.69 The digital filter will have an equiripple passband with the bilinear trimsformation but not with the impulse 
invariance method. 
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9.70 Yes. 

9.71 (a) Butterworth filter order is N = 69. 

(h) Chebyshev filter order is N = 17. 

(c) For an equiripple filter, we require N = 185, which requires 185 delays. In addition, 93 multiplications are 
needed to evaluate each value of y(n). The Butterworth and Chebyshev filters require 69 and 17 delays, 
respectively, and approximately twice this number of multiplications to evaluate each value of y(n) .  

9.72 Pad6 gives b(0) = 1, b ( l )  = 0.5, and a ( l )  = -0.5, or 

9.73 PadC's method with p = q = 2 gives 

0.2 + 0.82-' + 1.42-~ 
H ( z )  = 

1 + 0.222-1 + 0.8zr2 

Because the roots of the denominator lie inside the unit circle, this filter is stable. 
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Complex sequence, 2
Conjugate symmetry, 4
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contour integration, 151
partial fraction expansion, 149
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Kaiser window, 361
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Lattice filter, 298

all-pole, 300
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IIR, 301
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Least-squares filter design, 376

FIR least squares inverse, 379
Pade approximation, 377
Prony's method, 378
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Linear convolution using DFT, 232
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Linear phase (continued)
network, 289
system function constraints, 191
types I-IV, 190

Linear system, 8
Lollipop, 1
Low-pass filter, 59
LSI, 10

M
Memoryless, 7
Minimum energy delay, 195
Minimum phase, 194
Minimum phase lag, 195
Mixed radix FFT, 270
Modulator, 64
Modulo, 21, 226, 271
Mortgage, 46, 172
Multiplicative inverse, 271

N
Node, 287
Nyquist frequency, 103
Nyquist rate, 103

O
Odd harmonics, 277
Odd sequence, 4
One-sided z-transform, 151
One's complement, 303
Oscillator, 328
Overflow, 309
Overlap-add, 233
Overlap-save, 234

P
Pade approximation, 377
Pairing and ordering, 309
Paley-Wiener theorem, 184
Parallel network, 60, 295
Parks-McClellan algorithm, 365
Parseval's theorem, 64
Partial fraction expansion, 149, 187
Particular solution, 16
Passband, 59

deviation, 358
Period, 3
Periodic convolution, 225

theorem, 64
Phase, 55

generalized linear, 58
linear, 58
shifter, 69

Poles, 143
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Power, 22
series, 150

Prime factor FFT, 271
Prony's method, 378

Q
Quantization, 303

filter coefficient, 304
Quantizer, 104

R
Radix-2 FFT, 262
Radix-R FFT, 270
Realizable system, 185
Reconstruction filter, 106
Rectangular window, 360
Reflection coefficient, 298
Region of convergence, 142
Relatively prime, 271
Residue, 151
Right-sided sequence, 3
Round-off noise, 306

S
Sample rate conversion, 110
Sampling, 103

bandpass, 119, 120
DTFT, 231
frequency, 101
period, 101
theorem, 103

Schur-Cohn stability test, 300
Selectivity factor, 367
Shifting property, 63
Shift-invariance, 9
Shuffling, 265
Sifting property, 6
Sign bit, 302
Sign magnitude, 302
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aperiodic, 3
complex conjugate, 2
conjugate symmetry, 4
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down-sampling, 5
duration, 3
exponential, 2
finite length, 3
infinite length, 3
left-sided, 3
manipulations, 4
periodic, 3
right-sided, 3
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Signal (continued)
unit step, 2

Signal-to-quantization noise ratio, 106
Signal manipulations, 4
Sink node, 288
Slide rule method, 15
Source node, 288
SQNR, 106
Stability, 10

Schur-Cohn test, 300
triangle, 185
z-transform and, 184

Step-down recursion, 299
Step-up recursion, 298
Stopband, 59

deviation, 358
Summation property, 155
Superposition sum, 9
Symmetric sequence, 4
System, 7

additive., 8
causal, 10
function, 183
homogeneous, 8
invertible, 11
linear, 8
LSI, 10
memoryless, 7
shift-invariant, 9
stable, 10
unit sample response, 10

T
Transition band, 359
Transposed network, 296
Transposition theorem, 296
Twiddle factor, 263
Two's complement, 106, 303

U
Uniform quantizer, 104
Unit circle, 143
Unit sample, 2
Unit step, 2
Unit sample response, 10

for a rational system function, 187
Up-sampling, 5, 112

property, 88, 163

W
Windows, 360
Warping, 375

Z
Z-transform, 142
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Z-transform (continued)
inverse, 149
one-sided, 151
properties, table of, 148
region of convergence, 142
useful pairs, table of, 146

Zeros, 16, 143
Zero-order hold, 107
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