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Preface

This book is designed primarily to supplement standard texts in introductory Descriptive
Geometry, based on the author’s firm conviction that numerous solved problems constitute one of
the best means for clarifying and fixing in mind basic principles. Moreover, the statements of
theory and principle are sufficiently complete that, with suitable handling of lecture-laboratory
time, the book could be used as a text by itself.

In most engineering and technical schools the same course in Descriptive Geometry is offered
to engineering and science students alike. They are given the same lectures and attend the same
laboratory classes to solve the same types of problems. This book, therefore, attempts to present, as
simply as possible, the basic principles which the author believes should be a vital and necessary part
of every engineering and science student’s education. A thorough understanding of these fundamen-
tal phases of graphical analysis should be sufficient to develop the student’s potential for solving more
difficult graphical problems to be encountered later on in individual fields of endeavor.

No attempt is made to reach every phase of work involved in such a wide field of study
because, first of all, and unfortunately, in many engineering schools only a minimum of time is.allo-
cated for the study of Descriptive Geometry; secondly, the diversity of interests and departmental
requirepdents make it imperative that only the fundamental items of interest to the majority of
engineéring and science students be included in a basic course of study.

The subject matter is divided into chapters covering duly-recognized areas of theory and
study. Each chapter begins with statements of pertinent definitions, principles and theorems together
with illustrative and descriptive material. This is followed by graded sets of solved and supplemen-
tary problems. The solved problems illustrate and amplify the theory, present methods of analysis,
provide practical examples, and bring into sharp focus those fine points which enable the student
to apply the basic principles correctly and confidently. Most of the practical problems are analyzed
and solved step by step to insure complete understanding on the part of the student. It should be
mentioned, however, that the solutions as given do not usually limit themselves to any one particular
method. Most of the problems could be solved in several different ways, all consistent with proven
principles of graphical analysis.

The author wishes to acknowledge the cooperation rendered by members of his staff whose
assistance was invaluable. Professor H. L. McKee and Mr. Joseph Parris were especially helpful with
problem selection. Others who graciously assisted with the typing of the manuscript and with the
drawings are Mrs. Caroline Horey and Messrs. Roger Mohrlang, Henry Carmichael, Lynn Shaeffer
and Chi Tsau. Special appreciation is expressed to Mr. Nicola Miracapillo, associate editor of the
publishers, and to Mr. Henry Hayden, art editer, for valuable suggestions and fine spirit of cooper-
ation. And finally, I extend heartfelt thanks to my wife and children for their grace and encourage-
ment during the many months while the manuscript was being prepared.

M. C. Hawx
Carnegie Institute of Technology

August, 1962
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Chapter 1

Orthographic Drawing

1.1 INTRODUCTION

Orthographic drawing is the basis of all engineering drawing, and it is also the basis
for the study of Descriptive Geometry. A well-trained engineer or technician must be able
to pick up a drawing and understand it. This understanding, of necessity, involves the
basic principles of orthographic drawing.

Generally speaking, a course in Engineering Drawing consists of drawing various
objects in two or more views utilizing the principles of orthographic projection. These
views may be projected on the three principal planes —horizontal, frontal and profile —or
on auxiliary planes. In turn, the views may or may not be sectioned. Also included in a
standard Engineering Drawing course would be problems dealing with pictorial drawing,
freehand sketching, fasteners, piping drawings, working drawings, etc.

Many students entering an engineering school have had limited experience in ortho-
graphic drawing in the high school or technical school which may have prepared them for
college. It may have only consisted of several weeks of Mechanical Drawing, but this
previous contact with the principles involved in orthographic drawing forms a frame of
reference which usually proves valuable in solving Engineering Drawing problems. Un-
fortunately, however, very few college students have been introduced to the basic principles
of Descriptive Geometry before they enroll in the engineering school.

The question might then be asked, “Well, what is Descriptive Geometry?” Very
briefly, Descriptive Geometry is the graphical solution of point, line and plane problems
in space. These solutions are accomplished by means of the same principles of orthographic
drawing which are involved in making a simple three-view drawing of an object. There-
fore the student who seeks to understand Descriptive Geometry must also be acquainted
with the basic principles of elementary Engineering Drawing. In other words, Descriptive
Geometry is the graphical solution of the more advanced problems of Engineering Drawing;
and both phases utilize the principles of orthographic drawing.

1.2 DEFINITIONS
The following terms are used repeatedly throughout this text, and therefore a thorough

understanding of their meaning is imperative for the proper study of Descriptive Geometry.

(1) Orthographic Projection —the use of parallel lines of sight at 90° to an image plane.

(2) Image Plane —the plane which is perpendicular to the lines of sight. This plane is
located between the eye of the observer and the object which is being viewed.

(8) Line of Sight—the path from the observer’s eye to a particular point on the object.
These lines of sight are parallel.

(4) Horizontal Plane —an image plane, all points of which are at the same elevation. [See
Fig. 1-1(a) below.] The top, or plan view, is determined by the projection of the object
on this plane. The lines of sight for this horizontal plane are vertical and are there-
fore perpendicular to it.
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(9)
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Fig.1-1. Principal Planes

Frontal Plane —an image plane at 90° to the horizontal and profile planes. [See Fig.
1-1(b) above.] The front elevation view is determined by the projection of the object
on this plane. The lines of sight for this frontal plane are horizontal and are there-
fore perpendicular to it.

Profile Plane — an image plane at right angles to both the horizontal and frontal planes.
[See Fig. 1-1(c) above.] The right and left side elevation views are determined by
the projection of the object on this plane. The lines of sight for this profile plane are
horizontal and are therefore perpendicular to it.

Folding Line or Reference Plane Line —the line made by the intersection of two image
planes. It is designated as a long line, two short dashes and then another long line.
Elevation View —any orthographic view for which the lines of sight are horizontal
and perpendicular to the image plane. It may be projected from a plan view, other
elevation views, or from inclined views. Any view projected from the plan view must
be an elevation view.

Inclined View —any orthographic view for which the lines of sight are neither hori-
zontal nor vertical. It may be projected from an elevation view or other inclined
views, but never from a plan view.

Line —the path of a moving point.

Straight Line — the path of a moving point proceeding constantly in the same direction.
A line having a definite length is determined by its extremities. However, any two
points on the line may be chosen for the purpose of locating the entire line in another
view. The end view of a line is a point which represents all points on the line.
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(12) Level Line —a line which ig parallel to the horizontal image plane and which therefore
has all points on the line at the same elevation. It will appear in its true length in the
plan view. [See Fig. 1-2(a) below.]

(18) Frontal Line—a line which lies parallel to the frontal image plane. The line must
show in its true length in the front view even though it may be level, vertical, or
inclined. [See Fig. 1-2(b) below.]

(a) Level Line (b) Frontal Line (c&oﬁle Line
Fig. 1-2.

(14) Profile Line — an inclined line which lies parallel to the profile image plane. The line
must show in its true length in the profile view. [See Fig. 1-2(c) above.]

(15) Vertical Line—a line which is perpendicular to a level plane. It will appear in its
true length in any elevation view.

(16) Inclined Line — a line neither vertical nor horizontal but which may appear in its true
length in either the frontal or profile planes. It cannot appear in its true length in
the plan view.

(17) Obligue Line — a line inclined to all three principal planes. It cannot appear in its true
length in any of the three principal planes. '

(18) Contour Line—a straight or curved line T 77 57
used on topographical drawings which RN §
locates a series of points at the same 7T @
elevation. Therefore a contour line is a / 180190
level line. [See Fig. 1-3] /
(19) Bearing — the angle between the plan 1::)0
view of a line and a line running due I
north and south. North is always as-
sumed to be at the top of the drawing
sheet unless otherwise indicated by a di-
rectional arrow on the drawing. The
acute angle is usually given for the bear-
ing. In Fig. 1-4(a) the line AB has a
bearing of S45° E. This means that the
line is located 45° east of the south line.
If the bearing is taken from B to A, then
it would be expressed as N 45°W. The
bearing can only be found on the plan
view, and furthermore, it is not affected
in any way by the fact that the line may .
be level or inclined. Fig. 1-4(b) shows Fig. 1-4(a). S
. Bearing of a Line
some sample bearings. Fig. 1-4(b). Sample Bearings

Fig.1-3. Contour Lines
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(20) Normal View of a Line or Plane —the view which shows the true length of the line or
the true size of the plane. A normal view of a plane shows the true size of any angle
on the plane and the true length of any line which lies on the plane.

(21) Slope of a Line—tangent of the angle that the line makes with a horizontal plane.
Two conditions must be met in order to determine the slope of a line. First, the line
must be shown in an elevation view; secondly, the line must appear in its true length
in this elevation view. Note: An inclined view may show the true length of a line but

it cannot show the true slope of the line because a horizontal plane does not appear as
an edge in an inclined view.

1.3 MULTIVIEW DRAWINGS g/
aphic

By multiview drawing we mean a logical arrangement of two or more ortho
views of an object, shown on a one-plane sheet of drawing paper. The relationship of the
views are dependent upon the fact that both views are projected on image planes per-
pendicular to each other.

Before an engineer can draw an object in space, whether it be a line, plane, or com-
bination of lines and planes, he must be able to visualize the object. Once he establishes
the position of the object in his mind, he then imagines that he is moving around the object
to secure the various views necessary to complete his understanding of what the object
looks like. This is called the “direct” or “change-of-position” method of drawing,

Vertical Line
of Sight

VS
Plan View

Horizontal
Image Plane

Frontal
Image Plane

) Profile

Projection Line, : Image Plane

&/
~
oe®
\9
PN
§3°

Horizontal Lines of Sight

Fig.1-5. The Three Principal Projection Planes

In Fig. 1-b, in order to obtain a right side view of the block, the observer must imagine
that he has left the position in front of the block and is now looking at the block from the
right side position. His line of sight is perpendicular to the profile image plane and, as
in the front view, is still horizontal.

If the observer views the object from any position as he moves around the object and
still maintains a horizontal line of sight, he will be obtaining an elevation view since the
elevation of all points on the object will maintain their same relationship. The front, rear,
left side, and right side views are all elevation views. Likewise, any views in between
these four positions which have horizontal lines of sight are called auxiliary elevation views.
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In Fig. 1-5 above, we have an object which lies behind the frontal plane, to the left of
the profile plane, and below the horizontal plane. This position in space is referred to as
the third-angle projection, which forms the basis for practically all engineering drawing
in the United States. In the third-angle projection system, the image plane is imagined
to be located between the observer and the object. In third-angle projection, the block
shown in Fig. 1-5 would have the six basic views as shown in Fig. 1-6.

Six Principal Views — Third-Angle Projection

In most foreign countries, as well as for some architectural and structural drawings
in the United States, the first-angle projection is employed. In the first-angle projection,
the object is imagined to be located between the observer and the image plane. Fig. 1.7
shows the six basic views of our block as they would be drawn using the first-angle pro-
jection system.

Fig. 1-7.

Six Principal Views — First-Angle Projection
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Now, since most orthographic drawings of an object require three views, and since
these views are mutually perpendicular to each other, it becomes necessary to revolve two
of the image planes until they lie in the plane of the third image plane. These three image
planes can now be located in their relative positions on a one-plane sheet of drawing paper.
The method commonly practiced in a course of Engineering Drawing is that of maintaining
the position of the frontal plane and revolving the horizontal plane 90° about the H-F hori-
zontal axis until it falls in line with the frontal plane. The profile plane is then revolved
90° about the FP-P vertical axis until it is coincidental with the frontal image plane and the
revolved position of the horizontal image plane. This method shows the object in the
position as shown in Fig. 1-8 with the plan view on top, the front view in front, and the
profile view projected from the front view. It is obvious that the three-dimensional rela-
tionship of views is such that the front and top views show the length of the object; the
front and side views show the height of the object; and the top and side views show the
depth of the object.

Horizontal Axis

Vertical Axis

Fig. 1-8. Revolving of Horizontal and Profile Planes
to Coincide with Frontal Plane

In Fig. 1-8, it should be noted that the distance from the top of the block to the hori-
zontal image plane is the same in both the front and profile views. This would also be
true for any elevation view that is directly related to the plan view. The distance between
the block and the frontal image plane is the same in both the plan and profile views. These
facts are very important, and they form the basis for the transfer of distances from one
view to another. The distance from the block to the profile image plane is the same in
both the plan and front views.

An alternate to the above method of revolving planes is that of maintaining the posi-
tion of the plan view and then revolving both the frontal and profile image planes until
they lie in the same plane as the horizontal image plane, or plan view. Fig. 1-9 below shows
this alternate method which locates the plan view on top, the front view in front, and the
profile view is now projected from the plan view. Both methods are correct and the student
should feel free to use either method to solve the problems unless the given data makes
more practical the use of one method in preference to the other.

/
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Fig.1-9. Revolving of Frontal and Profile Planes
to Coincide with Horizontal Plane

14 NOTATION

Since, in most instances, this
book is being used as a supplemen-
tary text, it is quite likely that the
notation system used by the author
is different from that used by the
student in his course of Descrip-
tive Geometry. Fig. 1-10 shows
geveral notation methods which
are recommended by authors of
Descriptive Geometry textbooks.
However, even though the notation
systems may vary, the methods of
problem solving are all based on
the same basic principles.

As noticed in Figures 1-8 and
1-9, the intersection of the horizon-
tal and frontal image planes is des-
ignated by placing the letter H on
the side which shows the plan view,
and the letter F' is placed on the
side which gives us the front view.
Similarly, the intersection of the
plan and profile views is designated
by placing the letter H on the plan
side of the reference line and the
letter P is located on the profile
gside of the intersection. If the
profile view is projected from the
front view, then the letter F is
placed on the frontal plane side of
the intersection line, and the letter
P would be located on the profile
side.

Since most Descriptive Geom-
etry problems require views which
are projected on planes other than

2
\ \
/ \
oH.AN 21 h 2
A\ A
(PN
H 8 FL1 |
p—-’_—l P) I
F ! P | -
xF 1 x* L2 T *3
wlm
Flp =
\ \
> >
27 \ Xp \
A °"\
- o\
T HRP |
F | FRP |
XF ! Xr I .
1 Xr I XR
g
F|R B,
\ ¢ N\
\ /
Xu \ 2H, N\
A H
=
H S 4
F l H IV
! . v ! 4
Xr [ Xp x i
FIP P’
Fig. 1-10.

Yarious Systems of Notation
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the three principal planes (H,F,P), it becomes necessary
to label these additional plane intersection lines by some
logical system. The author suggests using numbers to

designate these additional image planes. In Fig. 1-11, we
bl

have this system demonstrated. The auxiliary elevation
view projected from the plan view is designated view 1, and
the folding line between the two views is labeled H-1.

An inclined view is projected from the front elevation view, F—n \
aH

NSO

and this inclined view is designated view 2 with the folding
line between the two views being labeled F-2. This system —
offers a logical system for anyone who is desirous of know-

H
ing the exact procedure which was followed in the attempt 7 Fb;_
a

at solution. Flo

The reference plane lines, or folding lines, are repre- \Laz
sented by a long line broken by two short dashes. This line b*
should be a dark line, yet fine enough to insure accuracy ) / q
when stepping off distances from it. On some problems, a#

depending on the scale being used, the use of thick lines “’#

could cause repeated error and, subsequently, the answer
derived by the student could be far from being correct.

When reference is made to a line itself in space, capital Fig.1-11. Notation of Line AB
letters are used to designate the line, such as the line AB
shown in Fig. 1-11. However, the individual points on a view are labelled with a lower case
letter having a superscript letter or exponent number corresponding to the view on which
the points are located. If the points are located on any of the three principal planes, they
will have superscripts of small capital letters. A point which has been revolved will follow
the same procedure as mentioned above but will also have a lower case letter 7 as a subscript
to the point in its revolved position. “

1.5 RELATED VIEWS

One of the most fundamental principles which must be thoroughly understood by the
student of Descriptive Geometry is that of relationship of views. This relationship is
established when their image planes are perpendicular to each other and they have a
reference line located between them. When views are related, the two views of any point

lie on the same projecting line which is perpendicular to the reference line which lies
between the two views.

bict

Related to
Views View
P, F,1,3 H (Plan)
H,2 F (Front)
H, 4 3 (Aux. Elev.)
3,b 4 (Inclined)

Fig.1-12. Related Views
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In Fig. 1-12 above, we have several views of a simple object. You will notice that the
location of points for “every other view” is the same distance from the folding line. Dis-
tance X in the profile view is the same as distance X in the front elevation and auxiliary
elevation views. The distance Y in the inclined view 4 is the same as that in the plan
view. The distance Z in the inclined view 2 is the same as the distance Z in the plan view.
Therefore it may be stated with the force of a rule that in all views which are related to a
common view, any point on an object is the same distance away from the folding line. It
will also be noted in Fig. 1-12 that every view adjacent to the plan view shows the true
height of the object. The table shows which views are related to each other.

1.6 VISUALIZATION

Many students of engineering and science are able to follow certain rules and patterns,
but when they are called upon to visualize the item they are at a loss. This is usually the
result of improper visualization study of basic principles involving the lines and planes.

LINES. As far as direction is concerned, straight lines may be classified as vertical,
horizontal, or inclined. Fig. 1-13 shows several positions of lines in space. It is sug-
gested that the student try to visualize the various positions of the line AB by holding a
pencil to indicate the directions as shown. At (1) we have shown an inclined frontal line
which appears in its true length in the front elevation view. At (2) the horizontal line
appears in its true length in the plan view. The oblique line at (3) does not appear in its
true length in any of the principal views. At (4) the vertical line will appear as a point in
the plan view, and in its true length in both the front elevation and profile views. The
profile line at (5) will appear in its true length~in the profile view. In both (6) and (7) the
oblique line does not appear in its true length in any of the three given views. At (8) the
horizontal-frontal line appears in its true length in both the plan and front glevation views.
The horizontal line at (9) appears as a point in the front view and in its true length in both

the plan and profile views. 4
T o o 8
gt ————— pH afl ¥
bF_ b7 & b BE _ bF
y af b / \
aF a®
] = (5] pr L8]
atbH, a’ b* aH/
T.L. pH &
a¥ | b b*
. o e a4
sl y aF ————4F
b rl— A4
o¥ 7] L8] bH &
P b g
al E
F’ a? T.L. prar | ¥ TL
o T e ——=
(% b¥
bF

Note: Folding lines have been omitted

Fig.1-13  Visualization of Lines
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PLANES. As far as visualization is concerned,
planes may be classified as horizontal, vertical, or in-
clined. It should be made clear that every plane surface
must appear either as an edge or as a plane of similar
configuration. In other words, a triangular surface will
always appear as an edge (a line) or as a triangle. Like-
wise, a square-shaped plane must always appear as an
edge or as a four-sided plane. This four-sided plane will
either be a square, a rectangle, or a parallelogram.

In Fig. 1-14 we have three principal views of a hori-
zontal plane. The plane appears as an edge in both the
front and profile views, or any other elevation view,
whereas the true size of any horizontal plane will appear Fig. 1-14. Horizontal Plane
in the plan view.

Fig. 1-15 below shows three possible positions for a vertical plane. At (a) we have a
vertical plane which is parallel to the frontal image plane; it is therefore in its true size
in the front view. It is represented as an edge in both the plan and profile views. The
vertical plane at (b) is shown parallel to the profile image plane, thus being represented
as an edge in both the plan and front views. The true size of the plane appears in the
profile view. At (c¢) the vertical plane is inclined to both the frontal and profile image
planes; therefore the plan view shows the plane as an edge and the true size of the plane
is not shown in the given views.

al bH cf

H
F

(b)
Fig. 1-16. Inclined Planes
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In Fig. 1-16 above we have some typical positions of an inclined plane. An inclined
plane is one which is neither vertical nor horizontal. It cannot appear in its true size in
any of the three basic views—plan, front, or profile. It may appear as an edge in the
front view (a), or in the profile view (b), but it cannot appear as an edge in the plan view.
At (¢) we have the inclined plane in its most common position, that of being inclined to all
three principal planes of projection. In this case, it will not appear as an edge in any of
the three principal views. It is usually referred to as an oblique plane.

1.7 PROBLEM LAYOUT

Textbooks in Descriptive Geometry use various methods to express given data for the
problems which usually accompany the text. Some show the given data on a sheet ready
for further development or a solution. See Fig. 1-17(a) below. Others express the data
in statement form requiring the student to plan for proper spacing and locating given points.
The scale is usually established by the instructor beforehand. In this system the relation-
ship between points is given by direction and elevation. Thus in F\l\%f 1-17(b) line AB bears
N30°E, and B is 100’ map distance from A and 40’ below A. At (¢) the following informa-
tion is given about plane ABC: B is 20’ east, 30’ north of A and 10’ above A4; point C is 40’
east, 10" south of A and 15’ below A. Having been given a suitable scale by the instructor,
the student should locate point A at a convenient position on the paper and then step off
the distance 20’ east and 30" north of A; this establishes point B in the plan view. Point B
in the front view would be projected directly below its location in the plan view and at an
elevation of 10’ above point A, which has also been projected directly from the plan view.
Point C would be located in a similar manner.

10’

[ 15
{

(a) (b)
Fig.1-17. Problem Layout

Still another method of problem layout which is used extensively is that of coordinate
dimensions. Every point has three coordinates in space even though in many problems one
or more of these coordinates may be omitted in the given data. If a coordinate is unknown
and the complete location of the point is part of the problem, the letter X is inserted in the
given data. Example: Point A(3,44, X).

Coordinate dimensions are usually given in inches and the drawing is made full scale,
regardless of the fact that the scale of the problem is specified otherwise. Coordinate paper,
847x 11”7, divided into quarters of an inch is very convenient for problems using coordinate
dimensions.
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The “origin’’, or zero point, is assumed to be the lower left hand corner of the drawing
space. Example of coordinate dimensioning for the plane ABC established by the line AB
and the point C: A(2, 3,7), B(4, 3%, 6), C(5,2, T4). See Fig. 1-18 below. For locating point A4,
the first ordinate 2 tells us that the plan and front views of A are located 27 from the left
border line. The second ordinate 3 locates the front view of A, 3’7 above the horizontal base
line which passes through the origin. The third ordinate 7 establishes the point A in the
plan view 7’/ above the horizontal base line. Points B and C would be located in a similar
manner,

8%/’
10 ‘ : A
9
8
H
ki a¥
bH
6 .
S
i
5
4 N
b
e :
/’— s
8 ur.. '
GF
2
y
0 1 2 3 4 5 6 7 8

Fig.1-18. Problem Layout — Coordinate Data

Chance of subsequent error and time-saving are two good reasons for the student to
label each point as soon as it is located. It is also advisable for the student to check the
location of points with the given data. A common error is that of confusing the east and
west directions. North, of course, is always assumed to be at the top of the drawing sheet.

The answers to the problems in this text have been derived by graphical solution, and
in most cases they have not been substantiated by subsequent mathematical calculations.
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In correcting Descriptive Geometry problems, the instructor should allow a “tolerance”
commensurate with the scale being used. The scales used for the solved problems in this
text are such that the student can directly check the drawings. In practice the scales
should be altered, if necessary, to suit the size of the drawing paper being used.

Some of the supplementary problems in the text are based on the use of an Architect’s
scale, whereas others require the use of an Engineer’s scale. It is suggested that the student
purchase both types of scales in order to insure a greater degree of accuracy as well as to
be acquainted with the use of both types.

Solved Problems

1. Given: Plan and front elevation views in Fig. 1-19.

Problem: Draw profile views from both the plan and
front elevation view.

Solution: See Fig. 1-19 below.

l*' 1”4"1 H|P
BH cH A e?
N\
. \,
\
\
E\] aH dH: \ dpa’P
|
|
§ l
1
fH eH P fp
H
- —_
bF eF
eF bF
\
AN //
: N //
:N a’, A pl // P
e - — 7 o T,
(A | f "
=
Fig. 1-19
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2. Given: Plan and front elevation views in Fig. 1-20. Location of H-1 and F-P.
Problem: Draw an auxiliary elevation view off the plan, and a profile view from the
front elevation view.

Solution: See Fig. 1-20.

H
F e 1L e l’
J
R o |
= ¥
Fig. 1-20
. on Fi{P

3. Given: Plan and front elevation views in Fig. 1-21. Loca-
tion of H-1 and 1-2.
Problem: Draw the required elevation views.

Solution: See Fig. 1-21.

°:°H bH Q d%
90°

i \Jd" D

i N\
F aF‘ \ 1

45° Y
:'IN ydg, A . & 9
F € b \'
b¥e” Fig.1-21
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4. Given: Plan and front elevation views in Fig. 1-22. Location of H-P and F-1.
Problem: Draw a profile view projected from the plan, and an inclined view projected
from the front view.

Solution: See Fig. 1-22,

" H|P
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Fig. 1-22

5. Given: Plan and front elevation views in Fig. 1-23. Location of F-1.
Problem: Draw an inclined view projected from the front elevation view.

Solution: See Fig. 1-23.

2" sq. !
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Fig. 1-23
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6.

Given: Plan and front elevation views in Fig. 1-24. Location of F-1.

Problem: Draw an inclined view projected from the front elevation view.
Solution: See Fig. 1-24.

ngH

aHeH

Fig. 1-24

/

eF fF yF cf

7. Given: Plan and front elevation views in Fig. 1-25. Location of F-1.

Problem: Draw an inclined view projected from the front elevation view.

Solution: See Fig. 1-25. 117
bH ¥ cHEH

H
a? g
. it eHpH
F - _gF
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Fig. 1-25
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8. Given: Plan and front elevation views 9. Given: Plan and front elevation views
in Fig. 1-26. Location of H-P, in Fig. 1-27. Location of H-1.
P-1, and F-2.

Problem: Draw an auxiliary elevation
Problem: Draw the required profile view as indicated.

and inclined views. Solution: See Fig. 1-27.

Solution: See Fig. 1-26.

d!

bt

CLF fF‘bF‘ chF dF

10. Given: Plan and front elevation views in Fig. 1-28. Location of F-P, H-1, and 1-2.

Problem: Draw the required profile, auxiliary elevation, and inclined views.
Solution: See Fig. 1-28.

el

Fig. 1-28.
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Supplementary Problems

11. Given: Front view and partial plan view as shown in Fig. 1-29 below of a truncated pyramid having

a regular hexagonal base.
Preblem: Complete the plan view and draw an inclined view showing the true size of the cut surface.

I"_l"j 3"

e 177~ 37—

- 2/( »

[ 1

&

Fig. 1-29 Fig. 1-30

12. Given: Plan and auxiliary elevation views in Fig. 1-30 above. Location of F-2.
Problem: Draw a front elevation view and an inclined view as indicated.

13. Given: Plan and front elevation views of a regular hexagonal prism in Fig. 1-31 below. Loecation of

H-1 and 1-2,
Problem: Draw the required auxiliary elevation and inclined views.

" ¢
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\\ Fig. 1-31 Fig. 1-32

i \ o,

14. Given: Plan and front elevation views in Fig. 1-32 above. Location of F-1 and H-2.
Problem: Draw the required inclined and auxiliary elevation views.
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15. Given: Plan and front elevation views in the adja-

cent Fig. 1-83. Location of -1 and H-2.

Problem: Draw the required auxiliary elevation
and inclined views.

16. Given: Front elevation and profile views in Fig.
1-34 below. Location of F-1 and F-2.

Problem: Draw the required inclined views.

17. Given: Plan and front elevation views in Fig. 1-35
below. Location of H-1 and F-P,
Problem: Draw the profile and auxiliary elevation
views as required.

18. Given: Plan and front elevation views as shown
in Fig. 1-36 below of a truncated pyramid
having a regular hexagonal base. Location
of F-1 and 1-2.

Problem: Draw the required inclined views.
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19. Given: Plan and profile views in Fig. 1-37 below. Incomplete front elevation view., Location of F-1.
Problem: Complete the front elevation view and draw inclined view 1.
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20. Given: Plan and front elevation views in Fig. 1-38 below. Location of H-1, 1-2, and F-3.
Problem: Draw the required elevation and inclined views.
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Chapter 2

Fundamental Views —
Point, Line, and Plane

The projecting of a point or line from one view to another is vitally important to the
solution of Descriptive Geometry problems. If a point in space is located on a line in one
view, it must appear on that line in every view of the line.

If we have an oblique line in space, which contains point X in one view, as shown in
Fig. 2-1 below, the point’s location in the other two principal views would be found by
simple projection from one view to another.

b¥ bH
/ &
af at cH
H H
F F R
F l U,P
a t wP aF
xX ___.“; BP cx\ BF
F .
¥ plp dr
Fig.2-1 Fig. 2.2

In Fig. 2-2 above, the point C in the front view appears to be on the line AB, but we
notice in the plan view that point C is actually located in front of the line. Likewise,
point D in the plan view appears to be located on the line AB but, again, we notice that the
elevation of point D is actually lower than any point on the line. Therefore a point which
appears to be located on a line in one view may not be on the line at all but may lie in
front of the line, behind it, above it, or below it.

21
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21 To PROJECT a POINT on a LINE from ONE VIEW to ANOTHER VIEW
when the LINE is PARALLEL to a PRINCIPAL PLANE

Analysis: Project the point at 90° to the folding line between the two views.

Example 1: Frontal Line (Fig. 2-3 below). Line AB is given in both the horizontal and frontal
projection planes. Point X is located on line AB in the plan view. To locate its position in the frontal
plane, simply project at 90° to the H-F folding line and obtain »*. Folding line F-P is placed perpendicular
to the H-F line. Points A, B, and X in the profile view will be the same distance away from the frontal
plane as they are in the plan view. The line will appear parallel to the frontal plane in both the horizontal
and profile projection planes.

Example 2: Level Line (Fig. 2-4 below). Line AB is given in both the horizontal and frontal pro-
jection planes. Point X is located on line AB in the front view. To obtain its position in the plan view
of line AB, project perpendicular to the H-F folding line to obtain #%. Place folding line H-P perpendicular
to the H-F line and project points A4, B, and X from the plan view to the profile view. The distance these
points will appear from the horizontal plane will be the same in both the front and profile views. The line
will appear parallel to the horizontal plane in both the frontal and profile projection planes.

F ,/ H
7 F N
. W |
s i aP F
F ~ h
¢ F .—__lmy aF A d P
x bF bP ’.UF - \m
FlP bF ~ P
aF &F bF b
F|pP
Fig. 2-3 Fig. 2-4 Fig. 2-5

Example 3: Profile Line (Fig. 2-5 above). Line AB is given in both the horizontal and frontal pro-
jection planes. Point X is located on line AB in the front view. It is impossible to project it directly to
the plan view, therefore a new view must be drawn and the point X would then be projected to the line
AB in this new view. This new view could be a profile view, auxiliary elevation view, or an inclined view.
After the point is located in the new view, it can then be projected to the plan view or any other view.

Note: A point on a line divides all views of that line into proportional segments which
always have the same ratio. Thus if point X is located midway between A and B in the
front view, it will appear midway between A and B in all views of the line, except, of
course, when the line appears as a point.

22 To LOCATE a POINT in a PLANE

Analysis: Choose any one of an infinite number of lines which can be drawn through a
point on a plane. The various views of the given point must lie on the cor-
responding views of the chosen line passing through the point.

Example: The given data reveals plane ABC containing the point X in the plan view. See Fig. 2-6
below. Draw a line, YZ, through the point X on the plan view of the plane. Locate the line in the front
elevation view by simple orthographic projection. Be sure that the points Y and Z are located on lineg
AC and BC respectively.* Since line YZ passes through point X in the plan view, project point X down
to the front elevation view and its location will be on the line YZ in the front view.

*Note: The same principle would apply for the projection of any line on a plane from one view to
another.
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Fig.2-6. To Locate a Point in a2 Plane

2.3 FUNDAMENTAL VIEWS

Practically every problem which must be solved graphically by an engineer or drafts-
man will involve certain bagic or fundamental views. From the understanding of four
basic views is derived the solutions of the more difficult space problems involving points,
lines, and planes.

A thorough knowledge of these four fundamental views and related material will form
a solid foundation for developing the student’s potential to analyze and solve all problems
involving Descriptive Geometry. For this reason, the problems at the end of this chapter
are both numerous and varied.

The four fundamental views are:

1. The true length of a straight line

2. The straight line appearing as a point

3. The plane appearing as an edge

4. The plane appearing in its true size and shape

2.3.1-A The TRUE LENGTH of a STRAIGHT LINE

Analysis: Any line in space which is parallel to an image plane will be projected on that
plane in its true length. Similarly, if a line is parallel to a folding line (refer-
ence line) in one view, it will appear in its true length in the related view on
the other side of the folding line.

Examples: In Fig. 2-7 below we have several examples of lines which appear in their true length
in the three principal views. At (a) the line is vertical and therefore appears in its true length in any
elevation view. At (b) and (¢) we have shown level lines which appear as true length in the plan view.
At (d) is shown a frontal line which reveals its true length in the front view. And finally, at (e) is illus-
trated a profile line which shows its true length in the profile view.




24 FUNDAMENTAL VIEWS — POINT, LINE, and PLANE [CHAP. 2

(a) Vertical (b) Horizontal (c) Horizontal (d) Frontal (e) Profile
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Fig.2-7. True Length Lines

In the case of an oblique line which does not ap-

pear in its true length in any of the principal views, " /\

a new view is drawn by placing an image plane
parallel to the line as shown in one of the given views,
In Fig. 2-8, for example, the line AR is given in both
the plan and front elevation views. It is obvious

-+
'
N
bF‘
Fip b®

o)

from observation that the line is neither parallel nor . - BHE
perpendicular to any of the three principal planes; W
therefore it is an oblique line. A -
Since a line must be parallel to an image plane " ¥ o
in order to be shown in its true length, a new image Foal o
plane is located parallel to the plan view of the line. AN r
Q

tion view projected directly from the plan, will have
the same elevational relationship between its points
as the front view. In other words, points 4 and B
in this auxiliary elevation view will be the same
distance from folding line H-1 as they are from H-F

to their corresponding points in the front elevation i
view. Fig.2-8. True Length of an

Oblique Line.

The intersection of this auxiliary elevation image )&
plane with the horizontal image plane is designated a? N
as H-1 folding line. This new view, being an eleva- BF
G &
\J 2
b2

Another means of determining the true length of
the line is that of projecting an inclined view directly
from the front elevation view. By passing an ineclined image plane parallel to the front
view of the line and projecting perpendicular to it, we obtain the true length of the line
in view 2.

The folding line H-1 can be placed on either side of the plan view of line AB and
parallel to it without affecting the true length of the line. Likewise, folding line F-2 can
be placed parallel to, and at any distance from, the front view of line AB. Available
drawing space and clarity should determine the location of the folding line. If possible,
the student should avoid “overlapping” views.

The student may be called upon to check his graphical solution for finding the true
length of a line by also making a mathematical calculation. The graphical means of
determining the true length of a line is usually accurate enough for most requirements.
However, given sufficient data, a mathematical solution is more accurate and easily cal-
culated.

In Fig. 2-9(a) below we have shown an oblique line AB which represents the diagonal
of an imaginary rectangular box. If the,length of the box is 27, its depth 37, and its

\
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height 17, the true length of the line would be equal to the square root of the sum of the

squares of L, D, and H.

1

True length of AB

= y/5.56256 = 2.35851in.

Fig. 2-9(a)

In Fig. 2-9(b) we have shown the plan and front elevation

VIE+ D'+ H? = \/22+ (32 +1° = V4 +.5625+1

bﬂ'
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=
Fig. 2-9(b) o |

2.3.1-B The TRUE SLOPE of a STRAIGHT LINE

Analysis: The true slope of a line is the tan-
gent of the angle that the line
makes with a horizontal plane.
The angle between the true length
of the line and a horizontal plane
is called the slope angle. The slope
angle of any line can be seen only
in the elevation view which shows
the line in its true length.

Note: Even though an inclined view may
show the true length of a line, it cannot show
the true slope because an inclined view cannot
show a horizontal plane as an edge.

Examples: In Fig. 2-10, we have shown the true
slope angle for a frontal line. Fig. 2-11 shows an
oblique line AB which must first be shown in its
true length in an elevation view before its slope can
be determined. As noted above, the inclined view 2
may show the true length of the line but it cannot
show the slope.

The angle of slope is usually expressed in de-
grees. However, in civil engineering the slope 1is
expressed either as per cent grade (Fig. 2-12 below),
or as batter (Fig. 2-13 below).

The % grade is given by the expression

% grade = Vertical rise % 100
Horizontal run
Perhaps the most convenient method of measur-
ing the horizontal run is to use an engineer’s scale
since 10 main divisions on each of its various scales
contain 100 subdivisions.

Fig. 2-14 below shows the method of indicating
the % grade of a highway.

Fig. 2-10.

H Frontal Line

views of this oblique line.
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Fig. 2-11
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e Frontal Line A

y |

F Fig.2-13. Batter
. +~Uphill Downhill
@ 100 Unit; +10% . ownhi

Rmr: . W
_ Rise _ b8 _ o
Grade = Rap <100 = oo X 100 = 58% L 100’
Fig.2-12. Per Cent Grade of a Frontal Line Fig.2-14. Highway Having 10% Grade

To find the per cent grade of any oblique line, the line must be first shown true length in an
elevation view. In Fig. 2-15 below the grade calculation is made by drawing a line parallel to the H-1
folding line and setting off 100 units aleng this line. The rise is measured perpendicular to the H-1 line,
thus establishing the 58% grade.

Fig. 2-16 below illustrates the method for obtaining the grade of an oblique line from the plan and
front views only. The run is measured on the plan view of the line by setting off 100 units and establishing
point 2. The rise will appear in the front view as the difference in elevation between o and xF.

A

&

aF

Fig.2-15. Grade of an Oblique Line Fig. 2-16. Grade Measured from Plan and
Front Views Only

Steel Angle )

Ric
12 Roof Pitch = S‘se
/ pan
12 1z 1
24 2

Fig.2-17. Slope of a Structural Member Fig. 2-18. Pitch of a Roof

In structural engineering, the slope of a beam or other structural member is expressed as shown
in Fig. 2-17 above.

The pitch of a roof in architectural drafting would be specified as shown in Fig. 2-18 above.
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2.3.1-C To DRAW the VIEWS of a LINE GIVEN the TRUE LENGTH,

FUNDAMENTAL VIEWS — POINT, LINE, and PLANE

SLOPE and BEARING

Analysis:

27

It should be remembered that bearing can only be shown on the plan view and
that the direction of north is always assumed to be toward the top of the
drawing sheet. Since the bearing of the line is given, the line, indefinite in
length, may be drawn in the plan view completely independent of the slope and
true length. An auxiliary elevation view having lines of sight perpendicular

to the bearing will show the true length and slope of the line.

Once the true

length is established in the auxiliary elevation view, the line may be projected
back to the plan view. The front view can now be projected from the plan

view with the distances taken from the auxiliary elevation view.

Example: Line AB bears N 45° E, is 420’ long and has a downward grade of 30% from A to B.
Construct the plan and front elevation views of the line.

Fig. 2-19 below shows the four steps involved int the solution of the problem.

Step 1: Establish point A in both the plan and front views. From point A in the plan view, draw a
line having a bearing of N 45° E. This line is of an indefinite length., Construct a folding line H-1 parallel
to the bearing line.

Step 2: Locate point A in the auxiliary elevation view, placing it the same distance away from the
folding line as it is in the front view. From point A in view 1, draw a light line parallel to H-1 and measure
off 100 units using any convenient scale. Measure a perpendicular distance of 30 units to locate a point
on a line established as 30% downward grade. This line is also indefinite in length. (If the slope angle is

given instead of the per cent grade, then a protractor should be used to lay out the angle.)

bl

£ = Not Slope Angle

Fig.2-19. Locating a Line of Given Bearing, Grade, and True Length
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Step 3: From A along this 30% grade line of indefinite length, measure 420’ to locate point B. This
view now gives us both the true length and grade of the line AB. Project point B back to the bearing line
on the plan view.

Step 4: To locate point B in the front view, project from the plan view down to the front view and
step off the same distances for point B in the front view as we have on the auxiliary elevation view 1.
Similar points on all elevation views will be the same distance below the horizontal image plane.

Note: A common error made by many students is that of laying out the slope angle or grade in the
front view. This can only be done when the bearing of the line is due east and west. Remember that in
order to see the slope or grade of a line, the line must appear in its true length in an elevation view.

232 The STRAIGHT LINE APPEARING as a POINT

Analysis: A line will appear as a point in any view in which the lines of sight are parallel
to the line in space. The point view of a line represents every point on the
line. The line must first appear in its true length in the view adjacent to that
which shows it as a point. Usually the line is represented in its true length
before it is projected as g point, but occasionally the point view of the line is
established first and then the true length and other relative projections are
made.

Example: In Fig. 2-20(a) below a vertical line projects as a point in the plan view; at (b) a level line

projects as a point in the front elevation view; at (c) line AB is a level line appearing as a point in the
profile view.
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Fig.2-20. Views Showing a Line as a Point

Fig. 2-21 shows an oblique line which requires
four views to show it as a point. The first step in
determining the point view of the line is to establish
its true length. Then place the folding line perpen-
dicular to the true length of the line. The resulting
projection of the line is that of a point.

The true length view can either be an auxiliary
elevation view projected from the plan or it may be

F
an inclined view projected from the front view. The o7 ¥
advantage of showing the true length in an auxiliary . / 3
elevation view is that of being able to show the slope a -
of the line in the same view if it is required. As men- )(
tioned before, the inclined view 3 cannot show the as\ .
slope of the line because a horizontal plane does not / w
appear as an edge in this view and slope must be Fig.2-21. Line Appearing Vbs/\l'b“a‘

measured from a horizontal base line. as a Point /
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2.3.3-A The PLANE APPEARING as an EDGE

Definition: A plane is a surface such that a straight line connecting any two points
in the surface lies entirely on that surface. Therefore any two lines in a plane will either
be parallel or will intersect. For the purpose of problem solving, a plane can be considered
as being of an indefinite extent.

Planes not perpendicular to any of the three principal planes of projection are called
oblique planes.

In general engineering practice, there are four ways of representing a plane in multi-
view drawing. The problems in this text can be solved by using any or all of these plane
representations. In Fig. 2-22 below the four representations of planes are shown as fol-
lows: (a) Two intersecting lines*, (b) Two parallel lines, (¢) Three points not in a straight
line, and (d) A point and a line.

*Note: In order for a plane to be represented as intersecting lines, the intersection
point must project between related views as a common point.

LIS 4

F

bF‘
¢ (a) (b) (@) )
Fig. 2-22. Representations of a Plane Surface

Analysis: (1) The edge view of a plane should never be visualized as being a line but rather
as a plane in which points are located at varying distances from the observer.
(2) The method of showing an oblique plane as an edge is that of drawing an
auxiliary view with lines of sight parallel to a horizontal, frontal, or profile
line on the plane. (8) The line on the plane must first appear in its true length.
(4) Any plane will appear as an edge, or straight line, in that view which
shows any line in that plane as a point.

Example: To obtain the edge view of plane
ABC in Fig. 2-28, draw a level line AD in the front
view. Project to the plan view where the level line
will now appear in its true length. Locate the
folding line H-1 perpendicular to the true length
line. Project the points from the plan view to the
auxiliary elevation view. The true length line in
the plan view now appears as a point. Project
also points B and C in the auxiliary view. The
straight line joining these two points (and the
point view of line AD) determines the edge view
of plane ABC.

If an innumerable number of level lines were
drawn in the front view and shown as true length
lines in the plan view, they would all project as
points in the auxiliary elevation view. So actually,
the edge view of a plane is an innumerable number
of points which represent an innumerable number
of true length lines. Fig. 2-23. Edge View of a Plane

True Slope Angle
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An edge view of the plane can also be shown in an inclined view by drawing a frontal line CE in
the plan view, showing it in its true length in the front view and then as a point in the inclined view
which is projected from the front view.

23.3-B The TRUE SLOPE of a PLANE

Analysis: The slope angle of any plane is the angle that the plane makes with a horizontal
reference plane. This slope angle may be measured in degrees or in per cent
grade, just as the slope of a line is measured.

Example: In Fig. 2-23, the true slope angle of the plane can be seen only in the elevation view

which shows the plane as an edge. The angle between this edge view and a horizontal reference plane is
the true slope.

Note: Even though an inclined view may show the edge view of a plane, it cannot show the true
slope because it cannot show a horizontal reference plane as an edge.

In geology and mining engineering, the term “dip” is used to express the slope angle
of a plane. (See Art. 9-1)

~

234 The PLANE APPEARING in its TRUE SIZE and SHAPE

Analysis: A plane surface will appear in its true size and shape when the lines of sight
are perpendicular to the plane. Any plane surface parallel to an image plane
will project on that image plane in its true size and shape. Thus a level plane
will appear in its true size in the plan view., To determine the true size of an
oblique plane, the plane must first of all appear as an edge. Any true length
line on the plane which appears as a point will also show the plane as an edge
in the same view. A new view with lines of sight perpendicular to the edge
view will show the plane in its true size and shape.

Example: To obtain the true size of plane ABC as shown in Fig. 2-24 below, the first step would
be to show a true length line on the plane. This can be done by either drawing a frontal line CE in the

plan view or a level line CD in the front view. The auxiliary elevation view 1 will show the level line
as a point and, thus, the plane appears as an edge. The inclined view 2 shows the true size of the plane.

Fig.2-24. True Size of an Oblique Plane
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If a frontal line is used, its true length will ap-
pear in the front view, and view 3, an inelined view,
will show the frontal line as a point and the plane as
an edge. The inclined view 4 shows the plane in its ¢
true size and shape. View 4, of course, reveals the
plane to be the same size and shape as it appears in
view 2. This constitutes an excellent check for the
accuracy of the work.

Edge View

Quite often a problem requiring the finding of a
plane in its true size can be simplified by using a line
already on the plane in its true length. Fig 2-25 shows b*b
a plane, one line of which, AB, already appears in its
true length. In this case, the line AB is shown as a
point in view 1 whieh also reveals the plane as an
edge. Subsequent projection in view 2 determines the
true size of the plane.

True Size

24 To LOCATE a GIVEN PLANE FIGURE
in a GIVEN PLANE

Analysis: A view showing the given plane in
its true size will also show the true Fig.2-25. Plane with Given True Length Line
size and shape of the given plane
figure. As mentioned previously,
the true size view of a plane must be adjacent to a view showing the plane as
an edge and the line of sight must be perpendicular to the edge view.

Example: In Fig, 2-26 below the plane ABCD and point X, the center of a 1" square, are given in
both the plan and front elevation views. Two sides of the square are to be parallel to the longest sides
of the plane which is represented by parallel lines. Draw an auxiliary elevation view showing the plane
as an edge. From this edge view, draw an inclined view which will show the true size of the plane
ABCD and will also locate point X on the plane. Using X as the center, draw the required 1’ square
with two sides parallel to AB and CD. The four corners of the square can now be projected back to the
edge view and thence to the plan and front elevation views.

True Size

Fig.2-26. To Locate a Given Plane Figure on a Given Plane

25 To DRAW a CIRCLE of GIVEN DIAMETER on.an OBLIQUE PLANE

Analysis: A circle will appear as a circle or as an ellipse in every view except the view
showing the circle as an edge. A level diameter will appear true length in the
plan view and therefore will be the major axis of the ellipse. A view showing
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the oblique plane as an edge will also show the major axis as a point. Using
this point view of the axis as the center of the circle, measure the actual given
diameter of the circle. Project this diameter back to the plan view to determine
the minor axis of the ellipse. Using the trammel method (see Art. A.5), or any
other convenient method, the ellipse can now be completed in the plan view.
The ellipse in the front elevation view will be obtained by the same method
except that the major axis of the ellipse will now be a frontal line through the
given center and equal in length to the diameter of the given circle. An inclined
view is drawn showing the plane as an edge, the major axis as a point, and the
actual diameter of the given circle is again measured. Project this diameter
back to the front elevation view to obtain the minor axis of the ellipse.
Example: In Fig. 2-27, the plane ABC and the center of a circle, point X, are given in both the
plan and front elevation views. It is required to locate a circle of given diameter in the plane ABC.
Again, it is necessary to show the plane as an edge, but not necessary to show it in its true size and
shape. Having point X located in the edge view of the plane, measure the actual diameter of the circle.
This diameter, represented by line 1-2, can now be projected back to the plan view where it will determine
the minor axis of the ellipse in this view. The minor axis will be located through the point X and

perpendicular to the major axis represented by line 3-4. Using the trammel method, or any other standard
method, the ellipse can now be constructed in the plan view.

b~ D
i
)
an\\ 4
H — —
F

D = Given Circle Diameter

M L

Fig. 2-27.

To complete the front elevation view, draw an inclined view 2 showing the plane as an edge. Locate
point X in this view and lay out the true diameter of the given circle. Through point X in the front view,
lay out the major axis of the ellipse equal to the actual diameter of the given circle. The minor axis,
represented by line 5-6, can now be projected from view 2 back to the front elevation view where it will
be located perpendicular to the major axis 7-8 and through point X. Having both the major and minor
axes determined, the ellipse can now be constructed as in the plan view.

Note: It should be noted that the major and minor axes in one view do not necessarily correspond
to the major and minor axes in related views. However a test for accuracy is that of projecting the
extreme left and right points on the ellipse from the plan view to the front elevation view.



CHAP. 2] FUNDAMENTAL VIEWS — POINT, LINE, and PLANE 33

1.

Solved Problems

Given: Plan and profile views of the line AB in Fig. 2-28. Scale: 17 =1'-0".
Problem: Determine the true length and slope of the line AB.

Solution: \
From both the plan and profile views project ¢

line AB into the front view. Draw an auxiliary ele-

vation view with the folding line H-1 parallel to the

plan view of the line. View 1 will show both the

true length and slope of the line AB.

Ans. T.L.=5-11", Slope = 39°

Slope

“y

Given: AB is the centerline of a pipe which & Fig. 2-28

runs parallel to a vertical building wall. See a - .
Fig. 2-29 below. The true distance between b
A and B is 150', and point B is 75 lower \4
than A. A pipe connection is located 50" from 811" b
B. Scale: 17/ =100, H .
Problem: Locate the point of intersection in
all three principal planes of projection. What
is the elevation of the pipe connection if the
elevation of point A is 350’ above sea level? |
Solution:

Using the given data, lay out AB as a frontal
line having its true length shown in the front eleva-
tion view. In the front view, measure along the line a” 24y af
from B a distance of 50’. Label this point C. Draw F|P r———l
a profile view of line AB and project point C into
this view. Project point C also into the plan view. The elevation of point C can be measured in either
the front or profile view. Ans. Elevation = 300’ above sea level

b* b*

3'-84"

Given: Plane ABC in Fig. 2-30 below. Point B is 4’ east, 2’ south of A and 6’ below A.
Point C is 7’ east, 3’ north of A and 2’ above A. Point X on the plane is 2’ east, 17 south
of A and 3’ below A. Scale: §”"=1-0".
Problem: What is the bearing of a level line passing through point X7
Solution:

Draw the plan and front elevation views of plane ABC and point X. Draw a level line through

point X in the front view until it intersects line BC. Label the intersection point ¥ and. project it
up to the plan view. Measure the bearing of line XY in the plan view.

Ans. Bearing XY = N73°E Bearing .,
ol c bH
a
H — .
F
H
F
aF
Fig. 2-29 Flp Fig. 2-30
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5.

FUNDAMENTAL VIEWS — POINT, LINE, and PLANE [CHAP. 2

Given: A tunnel at the bottom of a vertical shaft bears N35°15’W. The tunnel has
a downward grade of 20% and is 128’ long. Scale: 17 =80".

Problem: How would the tunnel appear in the plan and front elevation views? What.
is the difference in elevation between the two ends of the tunnel?
Solution:

Locate point A in both the plan and front elevation views. See Fig. 2-31 below. From point 4
in the plan view, draw a line of indefinite length having a bearing of N 85°15' W. Draw auxiliary
elevation view 1 to show the true length and grade of the tunnel from A. Label the lower end of the
tunnel point B and project it back to the plan and front views. The vertical distance between the
ends of the tunnel can be measured in either the front view or auxiliary elevation view 1.

Ans. Difference in Elevation = 25/

af

H

F
Difference in
Elevation
bF i

Fig. 2-31 Fig. 2-32 % Fig.2-33

Given: Plane ABC in Fig. 2-32 above. Point B is 8’ east, 8’ north of A and 5’ below A.
Point C is 8" east, 8’ south of A and 2’ below A. Point X in plane ABC has a map
distance of 9’ away from A and bearing N 60°E from A. Scale: ¥ =1-0".
Problem: Locate point X in the front elevation view.
Solution:

Using the given data, draw the plan and front elevation views of plane ABC. From point 4
in the plan view, draw a line having a bearing of N 60° E and having a plan view length of 9. Label
the intersection of line AX with BC as point D. Locate point D in the front view. Draw a line

from point A in the front view through point D until it meets the projection of X from the plan view.
This intersection will establish the front view of point X.

Given: Quadrilateral ABCD in Fig. 2-33 above.

Problem: Determine if the quadrilateral forms a plane.

Solution:
Connect AC and BD in both views to form intersecting lines. If the point of intersection can
be projected directly between views then the quadrilateral is a plane figure. (See Art. 2.8.3-A4)

Given: A plane is determined by ABCD [A(1,1,4) B(1%,24,3) C4,14, X) D(3%, 4, 43)).
See Fig. 2-34. (See Art. 1.7 for coordinate problem layout.)

Problem: Complete the plan view and determine the angle which the plane makes with
the horizontal plane.
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Solution:

To locate point C in the plan view represent the plane by means of intersecting lines. Draw an
auxiliary elevation view showing the plane as an edge. This elevation view 1 will show the slope of
the plane. Ans. Slope = 50°

True Size Plane ABCD

8.

Fig.2-34

Given: The diagonals of a plane are represented by the lines AB and CD [A(1,24,5})
B(3,2,5) C(2,11,3%)). The diagonals are of equal length and intersect each other at
right angles. Scale: 37=1—-0".

Problem: Determine the true size and slope of plane ABCD. Find the true length and

bearing of the line CD. Complete the plan and front views of the plane.
Solution:

Connect points 4, B, and C in both the plan and front elevation views as shown in Fig. 2-35
above. Draw an auxiliary elevation view showing the plane as an edge. The slope of the plane is
measured in this view. Draw an inclined view showing the plane ABC in its true size. From point C
draw a perpendicular to AB. Make this line CD equal in length to the line AB in view 2. The plane
ABCD appears true size in view 2. Project point D back to the other views and connect it to point C.
The bearing of CD will be measured in the plan view. (See Art. 2.3.4)

Ans. T.L. = 8—6", Slopeof plane = 33°30’, Bearing = N 22° E

Given: A pipeline is 160’ long, bears S45°E,
and slopes downward 20°. The highest end of
the line is at elevation 200’. Scale: 1”7 = 100".

Problem: Draw the plan and front elevation
views of the pipeline. What is the elevation at

the lower end?
Solution:

From point A in the plan view, draw a line of in-
definite length and having a bearing of S45° E. See
Fig. 2-36. Place folding line H-1 parallel to the plan
view of the line from A. Project into auxiliary elevation
view 1 where line AB will appear in its true length of
160’ and will have a slope of 20°. Project point B to the o
plan view. Points A and B can now both be located in
the front elevation view. The elevation of point B can be
measured in either the front elevation view or auxiliary
elevation view 1. Ans. Elevation B = 145’ Fig. 2-36 ' bF
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Given: Plane ABC in both views, line ¥Z in the plan view and point X in the front
view. Line YZ and point X lie on the plane of ABC. See Fig. 2-87.

Problem: Complete the plan and front elevation views.

Solution:

To locate point X in the plan view, draw a line from
A through X in the front view until it intersects line BC.
Project this point of intersection to the plan view and
show the plan view of the line from A. Project point X
from the front view up to the new line from A in the
plan view. The intersection thus incurred will determine
the plan view of point X. To locate the line YZ in the
front elevation view, project the intersections in the
plan view of the line with the plane down to the front
view. These intersections on lines AC and BC will de-
termine the direction of the line in the front view.
Their limits will be determined by projecting points Y
and Z down to the directional line in the front view.
(See Art. 2.2)

Fig. 2-37

Given: Scale: 1”=80". The points A and B are the portals of two coal mining shafts.
A is located 120’ east and 40’ south of B. Its elevation is 30’ lower than B. From the
entrance point A, one shaft bears N 80°W and has a downward slope of 20 degrees.
From the entrance point B, the other shaft bears N 50° E until it intersects the shaft
from A.

Problem: Determine the true length of each shaft. What is the slope of the shaft
from B? Show both shafts in the front elevation view.
Sclution:

Using the given data, locate points 4 and B in both the plan and front elevation views as shown
in Fig. 2-38 below. Locate the intersection of the bearing lines in the plan view. Label this inter-
section point C. Draw an auxiliary elevation view 1 to determine the true length of the shaft from
A to the intersection €. Draw an auxiliary elevation view 2 to obtain the true length and slope of
shaft BC. Project point C into the front view and locate its elevation as established by view 1.

Ans. T.L.of AC = 116/, T.L.of BC = 110/, Slope of BC = 39°

o

True Size Plane ABC

!

Fig. 2-38
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12.

13.

14.

Given: Fig. 2-39 above shows the plan and front elevation views of a truncated tri-
angular prism. Scale: §/=1".

Problem: Determine the location of a point X on the oblique plane ABC which will be
equidistant from the three edges of the plane. How far above the base of the prism is
point X? Show point X in all views.

Solution:

Draw an auxiliary elevation view showing plane ABC as an edge. From this view project an
inclined view to show the true size of the plane. Using angle bisectors, locate the point X equidistant
from all three edges of the plane. Project point X back to the other views. In the front view measure
the vertical distance from point X to the base of the prism. Ans. 13"

Given: Fig. 2-40 shows the structural framework
between two adjacent buildings. Scale:g;” =1—-0".

Problem: Determine the true length of structural
members AB and CD. What is the true length and
per cent grade of member BC?

Solution:

Place a folding line H-1 parallel to the plan view of
CABD. Project to obtain an auxiliary elevation view. This
auxiliary elevation view will yield the true length and
grade as required.

Ans. T.L: AB=11'-38", CD =138-3", BC=7-21".

Grade BC = 18%

b~

80"

49"

Given: A hip roof which must be covered with b*
asbestos shingles is shown in Fig. 2-41 below.
Scale: 1”7 =30".

Problem: Show the true size of planes A and B.
How many “squares” of shingles will be required
to cover the roof? (1Square = 100 Sq. Ft.) 70 | 70" | 0"
Solution: |

Since plane B is shown as an edge in the front eleva- Fig. 2-40
tion view, a folding line F-1 is placed parallel to this edge
view in order to obtain an ineclined view which will show the
true size of plane B. Place a folding line F-P or H-P perpendicular to folding line H-F in order to
obtain an edge view of plane A. Place a folding line parallel to the edge view of plane A and project
to obtain the true size of plane A. Calculate the area of planes A and B, then multiply by two since
there are two of each size planes. Amns. 12 Squares

10/—0""

41__0_/]1

~F
aF a

1

True Size Plane B
True Size Plane A

80"

Fig. 2-41
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15. Given: AB and CD are the centerlines of two conveyor ducts having circular cross
‘sections. One duct bears N 45° W from A4, is 75’ long, and has a slope from A4 of —20°,
Point C, which is located 50’ due west of A and at the same elevation as A, is the begin-
ning of a duct bearing N 15°E, which is 55’ long and has a slope of —15° from C.
Both ducts have a diameter of 3'—0”. See Fig. 2-42 below. Scale: 17 = 40".

Problem: What is the vertical clearance between the two ducts?
Solution:

Locate the points A and C in the plan view. Draw lines of indefinite length from both 4 and C
having the given bearings. Draw auxiliary elevation view 1 to determine the end of the duct which
begins at A. Label this point B and project it to the plan view. Draw auxiliary elevation view 2
in order to show the true lemgth and slope of the duct from C. Label the other end of the duct,
point D. Project points A and B from the plan view into auxiliary elevation view 2. The intersection
of the bearing lines in the plan view will determine the vertical distance, or clearance, in elevation
view 2. Ans. 6'—6"

Vertical Clearance

d2

b2

@ g
N
d
H arl dr
- —
aF\IdF/ b
100'—0"" Elev.
cf
Fig. 2-42 Fig. 2-43

16. Given: Three terra cotta pipelines converge at a manhole C from A, B, and D. Point D
is located 40’ due south of the manhole and has a 20% grade. The pipeline from A
has a bearing of S65° E and has a true length of 35’. The line from B bears S45° W
and is 50’ long. Both lines A and B have the same grade as the pipeline from D.
Point C is at an elevation of 100’ above sea level. Scale: 17/ =40".

Problem: What is the true length of pipeline CD? What is the elevation of the three
points A4, B, and D? Show the complete plan and front elevation views of the sewer line.

Solution:

Locate line CD in the plan view as well as the bearing lines from C on which points A and B
are to be located. See Fig. 2-43 above. A profile view of line CD will determine the true length of
CD and will locate point C in all elevation views. Place folding lines H-1 and H-2 parallel to the
bearing lines on which points A and B are to be located. Project point C into each of the auxiliary
elevation views. Lay out the given grade and true lengths of lines CA and CB. From views 1 and 2,
project points A and B back to the plan and front views. The elevation of points A, B, and D
relative to point C can be measured individually in the elevation views showing their true lengths,
or they may all be measured from a horizontal base line through point C in the front elevation view.

Ans. T.L.CD = 41'—0". Elevation A4 = 106’—6’’/, B =110'—0", D = 108'—6""
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17. Given: Two mine tunnels start at a common point A in a vertical shaft as shown in
Fig. 2-44 below. Tunnel AB is 160’ long, bears S42°15"E on a downward slope of 24°.
Tunnel AC is 110’ long, bears N 40°30’E on a downward slope of 18°. Scale: 1= 100’

Problem: If a new connecting tunnel between points B .and C were dug, what would
be its length, bearing, and per cent grade?
Solution:

Using the given data, locate point A in the plan view and draw lines of indefinite length having
the given bearings. Draw auxiliary elevation view 1 showing the tunnel from A in its true length.
Projeet the end B of this tunnel back to the plan view. Draw auxiliary elevation view 2 showing
the second tunnel from A in its true length. Project the end C of this tunnel back to the plan view
also. Connect points B and C in the plan view and measure the bearing of the proposed connecting
tunnel. Draw an auxiliary elevation view 8 which will show both the true length and grade of the
proposed connecting tunnel from B to- C.

Ans. T.L.BC = 192/, Bearing BC = N9°W, PerCentGrade BC = 15%

e?
-
&
¢ T.L
15
-
=
(=4
H — —
F
b3
Level dar
N ¢’
bF
Fig. 2-44 Fig. 2-45

18. Given: A mine shaft AB slopes downward 30° from A. Point B is located 55’ due
north of A. It is proposed to connect the mine shaft with a level ventilating duct from
point C in another shaft. Point C is 30’ west and 25 north of A. Points 4, B, and C
lie in a plane perpendicular to the profile plane. See Fig. 2-45 above. Scale: 177 =40".

Problem: Locate point C in the front elevation view. What will be the true length of
the ventilating duct? At what distance from point A will the duct enter the shaft AB?
What is the true distance from C to point A?

Solution:

Using the given data, locate the plan view of the shaft and point C. Draw a profile view
showing the slope of plane ABC. Line AB and point C can now be located in the front elevation
view. An inclined view 1 will show the true size of the plane ABC. All measurements can be made
in this view even though the true length of the ventilating duct can be obtained in the plan and
front views.

Ans. T.L.CD = 30'—0", Distance from A = 29’'—0"", Distance fromCtoA = 41'—6"
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19. Given: Fig. 2-46 below shows a symmetrical “A” frame which is being used in an
industrial plant as a structural support. Scale: & =1'—0".
Problem: What is the true length and slope of structural members AB, AF, and BF?

Solution:

Draw folding lines H-1, H-2, and H-3 parallel to the plan view of lines AB, AF, and BF,
respectively. Project into these auxiliary elevation views to obtain the true length and slope of
lines AB, AF, and BF.

Ans. T.L. AB=11'-10", Slope AB = 57°30'

T.L. AF =8~6", Slope AF = 36°

T.L. BF =6'—6", Slope BF =50°30/

Slope

5'__0//

Fig. 2-46



CHAP. 2] FUNDAMENTAL VIEWS —POINT, LINE, and PLANE 41

20. Given: A 12’ high television antenna AB is erected atop an apartment building. Its
stability is maintained by three guy wires located as follows: C is & south, 7’ east of
AB and is 2’ higher than B. D is 4’ south, 9’ west of AB and is fastened to an anchor
3’ above B. Point E is 8 north, 2’ east and at the same elevation as B. See Fig. 2-47
below. Scale: 3 =1'-0".

Problem: What is the true length and bearing of each guy wire? What angle does
each of the wires make with the vertical antenna? Show the antenna in all views.

Solution:

Using the given data, show the antenna and guy wires in both the plan and front elevation
views. Measure the bearing of each guy wire in the plan view. Draw auxiliary elevation views 1, 2,
and 3 to siow the true lengths of the guy wires and antenna, Measure the angle formed by the guy
wire and the antenna in each of the auxiliary elevation views.

Ans. Guy Wire AC: T.L. = 14'—6', Bearing = S41° E, Angle ¢ = 47°

Guy Wire AD: T.L. = 18'—4", Bearing = $66° W, Angle 8 = 48°

Guy Wire AE: T.L. = 14'—6", Bearing = N15° E, Angle y = 34°

Fig. 2-47
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Given: Plane ABC is shown in Fig. 2-48.
B is 25’ west, 20’ south of 4 and at the
same elevation as A. C is 12/ west, 20/
south of A and 15’ above A. Scale: 1”7 =20,

Problem: Using two views only, locate
point X on the plane at an elevation of 5’
above A and 10’ south of A. Show this
point X in both views. Determine the true
distance from A to point X.

Solution:

Draw the plan and front elevation views
of plane ABG. At a distance of 5’ above 4 in
the front view, draw a level line on the plane.
Show the plan view of this level line intersecting
a frontal line drawn 10’ south of A. The inter-
section will determine point X in the plan view.
Project point X from the plan view down to the
front elevation view. To find the true length dis-
tance from A to X, draw an auxiliary elevation
view having the folding line H-1 parallel to line
AX in the plan view.

Ans. T.L. AX =13'—10"

Fig. 2-48

Given: Plane ABC is shown in Fig. 2-49 below. B is 20’ east, 30’ north of A and
25’ below A. C is 60’ east, 10’ north of A and 15’ below A. Scale: 1”7 =40,

Problem: What is the slope of the plane? Determine the diameter of the largest circle

which could be drawn on the plane as limited by ABC.

Solution:

Using the given data, draw the plan and front elevation views of the plane ABC. Draw a level
line on the front view of the plane. The level line will appear true length in the plan view. Place
folding line H-1 perpendicular to the true length line and project the plane into the auxiliary eleva-
tion view 1. The slope will be measured in view 1. Place folding line 1-2 parallel to the edge view
of the plane and project to obtain the true size of the plane in view 2. Bisect the angles to locate
the center for the inscribed circle. Draw the inseribed circle and measure its diameter in view 2.

Amns. Slope of plane ABC = 38°, Diameter of circle = 26'—0"

Fig. 2-49

Edge View of Plane

True Size of Plane
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23. Given: Two ‘“feeder line” sanitary sewers start from a common point A in a manhole.
See Fig. 2-50 below. Sewer line AB is 50’ long, falls 20% and has a bearing of N 60° W.
Sewer line AC is 45’ long, falls 15° and bears due south. Both of these sewer lines
terminate at the main “trunk” sewer line which leads to a river. Scale: 17 =40".

Problem: How far are points B and C from each other? What is the bearing of the
main sewer line between points B and C? Determine the slope of the sewer line from

B to C in degrees.
Solution:

Using the given data, from point A in the plan view, draw lines of indefinite length in the
direction of the given bearings. Draw a profile view showing the true length and slope of the sewer
line AC. Project point C to the plan view. Draw an auxiliary elevation view showing the true length
and slope of the sewer line AB. Project point B to the plan view. Connect points B and C in the
plan view and measure the bearing. Place folding line H-2 parallel to the plan view of BC and project
into the auxiliary elevation view 2 in order to obtain the true length and slope of BC.

Amns. True Length BC = 79’, Bearing BC = S 32° E, Slope BC = —4°

4’__0/’

Fig. 2-50 Fig. 2-51

24. Given: The three equal legs of a surveyor’s tripod are located in their relationship to
the plumb line as follows: Leg A bears N 30° W and has a slope of 30 degrees; Leg B is
extended 3’'—3” due east of the plumb line and at the same elevation as the bench mark.
The plumb bob touches the bench mark at a vertical distance of 4’ below the top of the
line. Leg C bears S45° W and has a slope of 45°. Scale: 17 =1-0".

Problem: Determine the true length of legs A, B, and C. What angle does leg B make
with the plumb line? Show the three legs in both the plan and front views.
Solution:

Draw partial plan and front elevation views. See Fig. 2-51 above. Since leg XB is a frontal line
it will appear in its true length in the front view and thus will determine the true length of the other
two legs, XA and XC. The angle formed by XB and the plumb line is measured in the front view.
Pass folding lines H-1 and H-2 parallel to legs XA and XC respectively. In each of the two auxiliary
elevation views lay out the given slope angle and measure the true length of each leg. Project points
A and C back to the plan and front views.

Ans. T.L.oflegs A,B,and C = 5'-2”; Anglebetweenleg B and plumb line = 39°
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25.

26.
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Given: A production line conveyor system is presently laid out as indicated in the
following chart:

Section Bearing Slope Length
AB N45° W —20% 120/
BC Due West 0 90’
CD S25°W —20° 135’

A revision in production methods calls
for the elimination of the present con-
veyor system and the installation of a
new conveyor directly from A4 to D.
See Fig. 2-52. Scale: 177 =120".
Problem: What would be the true
length, slope in degrees, and bearing
of the new conveyor? Draw the plan
and necessary elevation views showing
the conveyor system.

Solution: oL

Using the given data, and beginning with
point A in the plan view, draw a bearing line
from A at N 45° W of indefinite length. Draw a3
an auxiliary elevation view 1 showing the true
length and slope from A to B. Project point B
back to the plan view. Repeat the procedure for lines BC and CD until point D is located in the
plan view. Place folding line H-3 parallel to the plan view of AD and project to obtain the true length
and slope of line AD. The bearing of AD is measured in the plan view.

Ans. T.L.AD = 239, Slope AD = 17°, Bearing AD = S82° W

Fig. 2-52

Given: Two sewer lines AR and CB converge at a manhole B as shown in Fig. 2-53
below. Point A is 35’ north, 10’ east of B and 30’ above B. Point C is located 20’ north,
60’ west of B and 15" above B. Scale: 17 =40".

Problem: A new sewer line is to be located in the plane ABC and beginning at point D
which is located 80’ due west of A, Using two views only, locate point D in the front
view. Using as many views as necessary, determine the length of each sewer line that
converges at B. What is the slope of the plane?

c2

b* Fig. 2-53
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27.

Solution:

Locate plane ABC in both the plan and front elevation views. Locate point D in the plan view
and draw a line to the plan view of point B. Project the intersection of line DB and AC in the plan
view down to the front elevation view. From point B in the front view, draw a line through the
projected point of intersection until it meets the projection of D from the plan. This will establish
point D in the front view. Show the true length of a level line on the plane. Draw an auxiliary
elevation view 1 showing the plane as an edge. The slope of the plane ig measured in this view.
Draw an inclined view 2 showing the plane in its true size. The true length of each sewer line is
measured in this view.

Ans, T.L,AB = 47'—0”, T.L.CB = 64'—6", T.L.DB = 49'—0", Slope = 40°

Given: From a lighthouse 250’ above sea level, a submarine is sighted N 45°W of the
observer and at an angle of depression of 20°3(0’. Five minutes later the submarine is
spotted N 12° E and at an angle of depression of 15°15’. Scale: 17 =400".

Problem: How far is the ship from the lighthouse at each sighting? How far did the
submarine travel in five minutes? What was the course bearing and speed of the sub-
marine if the course and speed were steady? (1 Knot = 6080"/hr.)

Solution:

Let point A represent the lighthouse as shown in Fig. 2-54 below. From A draw lines of
indefinite length and having the given bearings. Place a folding line H-1 parallel to the bearing of
the first sighting from the lighthouse. The auxiliary elevation view 1 will establish the location of
the ship on the sea at first sighting. Project point B representing the ship back to the plan view.
Locate folding line H-2 parallel to the bearing of the second sighting from the lighthouse. Auxiliary
elevation view 2 will determine the distance from the lighthouse to the ship at second sighting. Project
the location of the ship at second sighting back to the plan view. Connect the plan view of the ship
locations at first and second sightings. This line will determine the course bearing of the submarine.
Disregarding the curvature of the earth, this line will also show the distance the submarine travelled
in five minutes. Calculate the speed by simple mathematics.

Ans. Distance—1st Sighting = 710, Distance—2nd Sighting = 940/, Distance Submarine Travelled =
775', Bearing = N 57°30' E, Speed = Approx. 1.5 Knots

Fig. 2-54
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28.

29.

30.

31.

32.
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Given: A rocket launcher bears due east, is 30’ long and has a slope of 30 degrees. The
launcher is supported by two braces at its midpoint. The braces are perpendicular to
the launcher, to each other, and are the same length as they rest on the level ground.
See Fig, 2-55 below. Secale: 17 =20

Problem: What is the true length, slope, and bearing of these braces?

Solution:

Draw the complete front elevation view and a partial plan view. Draw an inclined view 1
showing the launcher braces in their true length. Locate points Y and Z in the plan view. Draw an
auxiliary elevation view showing the true length of one of the braces. The slope can be measured
in this view. Both braces will have the same slope. Their bearings are measured in the plan view.
Ans. Brace XY: T.L.=12'-3}", Slope =38°, Bearing =S 26° E
Ans. Brace XZ: T.L.= 12'-38}", Slope =88°, Bearing = N 26° E

%
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Fig. 2-55.

Supplementary Problems

A horizontal supporting bar is 12’ long and has a bearing of N 60° E. A vertical connection is made
at the mid-point of the bar. Locate this connecting point in all three principal planes. Will the
connection be shown at the mid-point of the bar in every view? Scale: 1”7 =1'-0".

Ans. Yes, except when the bar appears asg a point.

The inclined railway to the top of Mt. Washington is 660’ long. The elevation at the top is 1250/
above sea level. The slope of the incline is 60°. If there are five “A” frame supports located equi-
distant along the incline, what would be the elevation of the connection for the middle support?
Locate the five support connections in all three principal planes. Scale: 1”7 =100/,

Amns. Elevation = 964’
A stretch of straight highway is 155’ long, bears S 60°30’' W with a 10% downward grade. Show the

centerline of this highway segment in the plan and front elevation views. Determine the difference
in elevation between the two ends of the highway segment. Scale: 17 =50". Ans. 15'—6"

A surveyor’s transit tripod is set up on a level ﬁighway. Leg AB is 6’ long and has a slope of 45°.
Leg AC is 5'—3" long. Leg AD has a slope of 60°. In the plan view one leg bears due south and the
egs are equally spaced. Determine the slope of leg AC. How long is leg AD? Scale: " =1-0".

ns. Slope AC = 54°, T.L.AD = 4'-11"



CHAP. 2]

33.

calculations, using the method explained in Art. 2.3.1-A.
4. T.L.2}", Slope 35°30’
5. T.L. 34", Slope 22°

6. T.L. 21", Slope 26°80’

Amns. 1. T.L.2%"”, Slope 13°
2. T.L.2§", Slope 35°
3. T.L. 115", Slope 31°30’

FUNDAMENTAL VIEWS — POINT, LINE, and PLANE
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7. T.L. 2’2", Slope 43°30’
8. T.L. 234", Slope 22°

9. T.L.2.%",

Slope 50°307

In each of the problems shown in Fig. 2-56 below the student will determine the true length and slope
of the line AB. Measure to the closest sixteenth of an inch. Check the true lengths by mathematical
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34.

35.

36.

37.

38.

edge view, slope, and true size of the plane:

39.

40.

41.

42.

43.

FUNDAMENTAL VIEWS — POINT, LINE, and PLANE [CHAP. 2

An assembly line conveyor section begins on the second floor of a manufacturing plant. The start of
the conveyor is located 24’ west, 8 north and 16’ above the other end of the conveyor. If the sloping
distance from the elevation of the second floor to the false ceiling of the first floor is 11’—3"’, and the
conveyor starts 3’ above the elevation of the second floor, what is the true length, slope, and bearing
of the conveyor? How much of the conveyor will protrude above the second floor and below the first
floor ceiling? Scale: {7 =1'—0"

Ang. T.L. = 30’, Slope = 32°, Bearing = N71°30' W, Above = 5'—8", Below = 13'—0",
In each of the following problems show the line in the plan and front elevation views. By graphical

methods, determine the difference in elevation between the two ends of the line. Measure to the
closest inch.

Line Bearing Slope True Length Scale Ans.
(1) AB N 30°AW from A Falls 20° 32'—6" 17 =10 111"
(2) CD N15°E from C Rising 50° 10'—6" 1 =1-0" 8’1"
(83) EF S75°W from E Rising 100% 6'—3" 1 =1-0" 4’5"
4) GH Due east from G Rising 0.5 1307 17" =40/ 580"
5y JK S35°E fromJ Falling 45% 38" 17" =1'-0" 1—-6"
(6) LM N75° W from L % 65'—9" 1" =2¢ 379"
() NP Due south from N Rising 80% 12'-3"” 17 =1'-0" 3'—6""
8) QR N 45°30' E from @ Falling 30°30’ 27 17 =10" 138"

A plane is determined as follows: A(1},21, 62) B(3,4,5) C(4,2},5%). Scale: 1 =1'-0", Determine
the diameter of a circle which would circumscribe the plane limited by ABC. What is the slope of
the plane? Ans. Diameter =12/, Slope = 56°

=

Two intersecting lines determine the plane ABCD. Point B is located 50’ east, 70’ north of A and
20’ below A. Point C is located 10’ west, 60’ north of A and 30’ below A. Point D is located 4¢’
east of A and 30’ north of A. Scale: 1”7 =20". Show the true size of the plane as limited by ABCD.
Determine the slope of the plane. Ans. Slope = 27°30’

The inclined view 2 in Fig. 2-57 shows a 2" di-
ameter circle in its true size and shape. Scale:

12"/ =1'—-0", Project the circle back to the aux- g 1

iliary elevation, plan, and front views. Determine N
the slope of the plane. Ans. Slope =30° b
In each of the following problems determine the / . X {9?»,

! y
Plane ABC. Point B is 25’ east of A and at the
same elevation as A. Point C is 20’ east, 20’ north o a% 46°
of A and 10’ above A. Scale: 1" =10, - /
Ans. Slope =27° F

Plane DEF. Point E is 20/ east, 6’ north of D

and 3’ above D. Point F is 2’ west, 6’ north of D

and 4’ below D. Scale: 1" =1-0", Fig. 2-57
Ans. Slope =33°

Plane GHJ. Point G is 6’ due south of H and 6 above H. Point J is 3’ north, 4’ west of G and
10’ below G. Scale: 1" =1'-0". Amns. Slope = 64°

Plane KLM. Point K is 20’ due north of L and 85’ above L. Point M is 40’ due north of L and
10" above L. Secale: 17 =20, Ans. Slope = 90°

Plane NOP. Point N is 70’ west, 45’ north of O and 30’ above O. Point P is 15’ west, 20’ north of O
and 25 below O. Scale: 1" = 40’. Amns. Slope = 74°30’
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44.

45.

46.

Plane QRS. Point R is 15’ east, 20’ south of @ and 30" above Q. Point S is 30’ east, 15’ north of @

and 10’ above Q. Scale: 1/ =10". Ans. Slope =50°
Plane TUV. Point U is 8'—6" due south of T and 4'—3"" above T. Point V is 4'~9” east of U, 2’3"
north of U, and at the same elevation as T. Secale: /= 1/—0". Ans. Slope =51°30'

Plane XYZ. Point Y is 2'—9” due east of X and at the same elevation as X. Point Z is 3'—8" due
east of X and 3’ below X. Secale: 1"’ =1'-0". Ans. Slope =90°

In the following problems show the true size of plane ABC. Also determine the slope of the plane:

(See Art. 1.7 for coordinate problem layout)

47.
48.
49.
50.
51.

52.

53.

54.

55.

A(1,1,3) B(14,2,41) C(3,1,3)). Ans. Slope =37°

A(1,2,3]) B(2,1,4%) C(3,24,4). Ans. Slope=60°

A(1,3,4) B(1,2,8) C(24,11, 41). Amns. Slope = 62°

A(7,21,3) B(6,1,4) C(5,2,4%). Ans. Slope=173°

A(64,2,4) B(7,14,5) C(5%,3,4). Ans. Slope =4b°

Detormine the true size and slope of plane ABCD. Line AD is parallel to BC. Scale: 1" = 1'=0".
See Fig. 2-58 below. Ans, Slope =42°

The hip roof of a utility shed adjoining a barn is to be 12’ long, 8’ wide, and will begin at the barn

and extend 8—8” along the ridge. The two corner rafters will have a slope angle of 45°. Scale:
17 =1—0”, What is the true length of the corner rafters? How much higher will the ridge of the
roof be above the plane of the eaves? Show the plan and front elevation views of the roof.

Ans. T.L.=T7'=54", Higher by 5'—3"
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Fig. 2-59 above shows the plan and partial front view of a metal transition piece. The bottom open-
ing, EFGH, is a plane. Complete the front view. Scale: %” =1’—0"”. Determine the true size and
slope of the plane EFGH. Ans. Slope =45°

Line AB is a vertical pole 8 high. It is held in position by three guy wires which are located as
follows: AC is 10’ long, has a 45° slope and a bearing of N 60° W. Guy wire AD is 8 long, makes
an angle of 30° with the pole and has a bearing of N20° E. The wire from E is fastened to the
pole 2’ from the top, is due south and makes an angle of 30° with the pole. If point E is at an eleva-
tion of 6" above B, what is the true length of the wire from E? Scale: 1" =1'-0". Locate the three
guy wires in the front and plan views. Ans. T.L.=6'-3L"
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56.

57.

58.

59.

60.
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The front elevation and profile views of a bridge
panel are shown in Fig. 2-60. Scale: }''=1'-0".
What is the true length and slope of the diago-
nals AB and CD?

Ans. T.L.of AB = 27'—0"
Slopeof AB = 26°30’
T.L.of CD = 32'—0"
Slope of CD = 21°45’

A sewer line connecting four manholes is located
as follows: The line from manhole A to manhole
B has a bearing of N 45° E, is 120’ long, and
slopes downward at 10°; from manhole B to
manhole C the line bears due east, is 100’ long,
and slopes downward at 15°; from manhole C to
manhole D the line bears S 30° E, is 140’ long,
and slopes downward at 18°, Secale: 1”7 =40".
If a sewer line were connected directly from
manhole A to manhole D what would be its true
length, slope, and bearing?
Ans. T.L.AD = 264’

Slope AD = —20°

Bearing AD = S82°30'E

A flagpole, DE, extends 10’ into the air. Three
guy wires are attached to the pole 8’ below the
top and are fastened at various levels to anchors
as shown in Fig. 2-61. Scale: 1"/ =1'-0". What
is the true length, slope, and bearing of each
guy wire?

Ans.
Line True Length Slope Bearing
AD 11'—4" 55° NbB3°W
BD 11'-10" 44°3¢/ N45°E
CD 9'—11" 47° S17°wW

Two pipes, AB and CD, intersect at D as shown
in Fig. 2-62. They both slope downward towards
D and the pipe from A has a slope of 45°. If
point C is 10" lower in elevation than point 4,
what is the true length and slope of CD? What
is the true length of pipe AB? Show both pipes
in the front elevation view. Secale: 1’/ = 50'.
Ans. T.L.CD = 142’

Slope CD = 39°

T.L.AB = 198’

Three structural members AD, BD, and CD,
are attached to a vertical wall. B is 8 east of 4
and 6’ below A. Point C is 14’ due east of A and
5’ above A. Point D is 6 east, 5 south of A
and 4’ above A. Scale: 1"=1'-0". Determine
the angle each structural member makes with
the wall. What is the true length of each struc-
tural member?

Ans. T.L.AD = 8-91”

Angle with wall = 35°30’

T.L.BD = 11'=-5"
Angle with wall = 26°45’
T.L.CD = 9'—6"

Angle with wall = 32°
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61.

62.

63.

64.

Fig. 2-63 below shows the plan and front elevation views of a construction elevator support frame.
The height of the frame is 30’ and has four guy wires attached as shown. Scale: 17 =20’. What is
the true length, slope, and bearing of wires A and C? What is the true length and slope of wires
B and D? What angles do the wires B and D make with the structural support to which they are
attached? '

Ams. Line T.L. Slope Bearing Angle with Support
A 36'—6" 41°30’ N42°W
B 38'—0" 45° 45°
C 44’-0" 28°30’ N 67°30' E
D 39'—6" 37° 53¢
B 3
«a
g
A cl3l 3
® B
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b /ay a1 //
18'—0" 20'—0"" 16'—0"
6'—0"" 6'—0"

Fig. 2-64 2'—6" g
Fig. 2-63 L————-vl'—-}-‘ 10

Fig. 2-64 above shows a metal transition piece for a fume exhaust system. Scale: $''=1'-0". Show
the true size of planes A,B,C, and D. If the inside of the duct is to receive a protective coating of
epoxy resin paint, how many square feet of metal will receive the paint coat? (Disregard metal
thickness.) Ans. 119 ft?

A sewer line under Side Street slopes downward at
—15% until it reaches another sewer line under Main
Street which slopes downward at —30%. See Fig. 2-65. R
What is the true size of the angle between the two <o

sewer lines? If a sewer line sloping —25% under J_

Cross Street intersected the Main Street sewer line, -~
what angle would be formed by these two intersecting CROSS ST.
lines?
Ans, Angle between Side St. and Main St. = 137°

Angle between Cross St. and Main St. = 94°
A flat metal plate, ABCD, is located as follows: B is
3’ west, 6/ north of A and 6’ below 4; C is 8 east, PLAN

4’ north of A and 4’ above A; D is 8’ east and 7' north
of A. Scale: 1" =1'—0". Locate point D in the front
view. Determine the true size and slope of the plane.
A point X on the plane is located 5’ above B and 8’
away from C. If X is the center of a circle, determine
diameter of the largest circular hole which can be cut
in the plate and yet maintain a 6" edge clearance.
Show the hole in all views. Fig. 2-65

Ans. Slope =45°, Diameter =5—6"

MAIN ST.
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65.

66.

67.
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Fig. 2-66 below shows the front elevation and profile views of an airplane landing gear. Secale:
3""=1"-0". Determine the true length of the landing gear supports AB,AC, and AD.

Ans. T.L.AB = 7'—5", T.L.AC = 5'-4", T.L.AD = 5'—91"

An airplane at A, elevation 1500, is bearing $45° W at a speedometer reading of 120 miles per hour.
It is gaining altitude at the rate of 2100’ per minute. From A, a ship is sighted at bearing 810° E
on a 40° angle of depression. Twenty seconds later the ship is sighted at bearing N60° E on a 45°
angle of depression. Scale: 1” =1000’. Assuming the ship’s course to be steady, what is its bearing
and speed in knots? (1 Knot = 6080’/hr.) Ans. Bearing = N 63° W, Speed = Approx. 28 Knots

A truck hoist is constructed as shown in Fig. 2-67 below. Point A is located at the mid-point of ED.

AB has a slope of 60° and a bearing of N 15° E. Scale: 1”7 =1'-0". Determine the true length of AB.

What is the true length, slope, and bearing of structural member DG? When the main structural

member ED appears as a point, what angles are formed by each set of structural braces?

Ans. T.L.AB = 3'-5”, T.L.DG = 8—0"”, Slope DG = 48°, Bearing DG = N 41° W, Angle BAC =
60°30’, Angle FDG = 98°

8/ —0" 9: 1’0" [__1'—6" 2" | 20! ;

‘l‘lon 1'-9/7

3¢

2'—6" Dia.

Fig. 2-66

10'-0”

Fig. 2-67



Chapter 3

Skew Lines

THEOREMS

A theorem is a true statement capable of being proved.
The following are a group of theorems which the student of Descriptive Geometry

should be able to recognize as self-evident truths. This can only be done by careful study
and analysis. The truths expressed in these theorems will greatly aid in the selection of
methods involved in the solution of problems contained in the next several chapters.

LINES and PLANES

(1)
(2)

(18)

Two lines perpendicular to the same plane are parallel.

Two lines lying on the same plane must either be parallel to each other or will inter-
sect each other.

Two lines parallel to each other in space will appear parallel, or as points, in all
orthographic views.

Two lines appearing parallel to each other in one view are not necessarily parallel
to each other in space.

Two perpendicular lines will appear perpendicular in any view that shows a normal
view of either or both of the lines. (These lines need not intersect.)

A line external to a plane and parallel to any line on the plane is also parallel to the
plane itself,

A line perpendicular to a plane is perpendicular to every line on that plane. An end
view of the line shows the true length of every line on the plane.

If a line is perpendicular to one of two perpendicular planes, it is parallel to the
other.

If a line is paralle] to two intersecting planes, it is parallel to their intersection.

If a line is perpendicular to a plane, then every plane through that line is also per-
pendicular to that plane.

A point on a plane may have an infinite number of lines passing through it. How-
ever, only one of these lines can have the same slope as the plane and this line must
be perpendicular to a level line on the plane.

No line on a plane can have a slope greater than the slope of the plane.

A plane angle may project smaller or larger than its true size.

A normal view of a plane is an end view of every line perpendicular to that plane.
An edge view of a plane is a normal view of every line perpendicular to that plane.
If two parallel planes are cut by a third plane, the intersections are parallel.

If a plane is perpendicular to two intersecting planes, it is perpendicular to their
intersection.

If two planes are perpendicular, a line in one of them perpendicular to their inter-
section is perpendicular to the other plane.

53
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(19) The angle a line makes with a plane is the angle the line makes with its projection
on that plane.

(20) If two planes are parallel, any line in one plane is also parallel to the other plane.

SKEW LINES

Skew lines are lines which are non-intersecting and non-parallel.

The principles involved in the study of skew line relationships are very important
‘and should be thoroughly understood by every student of engineering and science. This
chapter reveals the practicality of studying these basic principles and their application
to several fields of endeavor.

One of the most common engineering problems is that of determining the true length,
slope, and bearing of the shortest line connecting two skew lines. Problems which in-
volve clearances between cables, pipes, braces,
ete. are typical of those encountered in the
engineering profession.

Another application of these principles
can be seen in problems which require the
shortest connecting tunnel between two mine
tunnels. Again the perpendicular distance will
be the required distance. If the connecting
tunnel is to have a specific grade, a simple
principle must be followed which would apply H
to all similar problems.

Still another practical application of the
principles explained in this chapter involves
finding the shortest connection between two
oblique sewer lines or pipelines (see Fig. 3-1).
In this case the shortest possible sewer or pipe
connection will probably involve the use of
right-angled tees since the shortest distance
between any two skew lines is a third line
which is perpendicular to both.

Fig. 3-1. Non-intersecting, Non-parallel Pipelines

3.1 To DRAW a PLANE CONTAINING ONE GIVEN LINE and
PARALLEL to ANOTHER GIVEN LINE

Analysis: A geometric theorem tells us that if a line external to a plane is parallel to a
line on the plane, then both the external line and the plane are parallel. There-
fore through one of the given lines a line should be drawn which is parallel to
the other given line. The two lines which now intersect determine a plane
having a line parallel to a given line in space. The required plane must be
represented by the two intersecting lines in at least two views. It must be
remembered that intersecting lines can represent a plane only when the inter-
section can be projected between related views as a common point.

Example: In Fig. 3-2 below we have given the plan and front elevation views of two non-intersecting,
non-parallel lines AB and CD. Through any point on the line CD, in this case Z, the line XY is drawn
parallel to the line AB in space. This procedure is followed in both views, thus determining a plane
CDXY, one line of which, XY, is parallel to the line AB in space.

This solution can be verified by drawing another view showing the plane as an edge. In this view
the line AB will appear parallel to the plane.
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3.2 To DETERMINE the SHORTEST DISTANCE BETWEEN any
TWO NON-INTERSECTING, NON-PARALLEL LINES

Analysis: (Line Method) The shortest distance between two non-intersecting, non-parallel
lines will be the perpendicular distance. This perpendicular distance can be
located at only one possible position in space. In a view showing one of the
lines in its true length, the shortest distance will appear perpendicular to it.
However, if either skew line appears as a point, the shortest distance will be
perpendicular to the other skew line. In this same view, the shortest distance
will be in its true length. Therefore the solution of the problem depends upon
showing one of the skew lines as a point and projecting a perpendicular from
this point view of a line to the other skew line.

Example: The two non-intersecting, non-parallel lines AB and CD are given in both the plan and
front elevation views in Fig. 3-3 below. Since either of the lines can be shown in its true length, draw
an auxiliary elevation view in which the true length of the line AB will appear. Also show line CD in
this view. The shortest distance will be perpendicular to line AB but its exact location is yet unknown.
Draw an inclined view showing the line AR as a point. The shortest distance will be the perpendicular
distance from AB to the line CD even though the true length of CD does not appear in this view. Label
the shortest distance line XY and project this common perpendicular back to view 1. Since XY is in its
true length in view 2, it must be parallel to the folding line 1-2 in view 1. Also XY must be perpendicular
to AB in view 1, where AB is shown in true length. Therefore point X can be located in view 1. Project
XY to the H and F views,

Slope Angle

cH

31’1
ys

1

H Fig. 3-3.

Shortest Distance between
Two Non-intersecting, Non-parallel Lines
(Line Method)

aF, o (IF

cF

bY
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The bearing of the shortest distance line can be measured on the plan view. To determine the slope
of the shortest distance line, a new auxiliary elevation view is drawn showing only the line XY in its
true length. This true length distance will of course check with line XY in the inclined view 2.

Analysis: (Plane Method) Through one of the given lines pass a plane having a line
parallel to the other given line. This second given line, external to the plane,
will be parallel to the plane itself (see Art. 3.1). Every point on the second
given line will be equidistant from the newly-formed plane. An elevation view
showing the plane as an edge will not only show the true length of the per-
pendicular distance but it will also show its slope.

In order to determine the exact location of this shortest distance, a new
view must be projected having lines of sight perpendicular to the edge view of
the plane. This view will show both the given lines in their true length and
the perpendicular distance between these two lines will show as a point in this
inclined view where the lines appear to intersect.

Example: The plan and front elevation views of lines AB and CD are given in Fig. 8-4 below. A
plane CDE is constructed containing line CD and having DE parallel to line AB, Draw an auxiliary
elevation view showing the plane as an edge. The line AB will be parallel to the edge view of the plane
in this view. The perpendicular distance between the plane and the line will be the true length of the
shortest distance.

To determine the exact lo-
cation of this shortest distance,
project an inclined view directly
off the auxiliary elevation view
to see the true length of both
lines AB and CD. Since folding
line 1-2 was placed parallel to
the edge view of the plane, the
inclined view will also show the
true gize of the plane. The
point view of the shortest dis-
tance XY will be located where
the true length of both lines
appear to intersect. Project
line XY back to the auxiliary
elevation view and thence on to
the other views. Note that the
plan view of line XY will be -
parallel to the H-1 folding line, F

since the true length of XY is L
shown in view 1.
The slope of the shortest
. Level

d!"
xF
distance line will appear in - \
view 1, whereas the bearing ¢ \ s Shortest Distance between
will be determined by its posi- Two Non-intersecting, Non-parallel Lines

tion in the plan view. b (Plane Method)

Plane ag an Edge

~N
> \<— True Size of

Plane

Fig. 3-4.

3.3 To DETERMINE the SHORTEST LEVEL DISTANCE BETWEEN
TWO NON-INTERSECTING, NON-PARALLEL LINES

In many phases of engineering the problem arises relative to locating the shortest
level distance between two skew lines representing the center lines of pipes, tunnels, wires,
braces, etc.

As an example, in mining engineering it is often deemed imperative to connect two
tunnels with a new passageway having no slope at all. Quite often a track is to be laid
between two tunnels and the track is to be perfectly level.
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Analysis: The shortest level distance between two skew lines will appear in its true length
when the plane which contains one skew line and is parallel to the other appears
as an edge. Even though the true length of the shortest level distance is known,
its exact location is not determined in the auxiliary elevation view. Since the
true length of the shortest level distance will appear in an elevation view, the
point view of the shortest level distance will also appear in the elevation view
having lines of sight parallel to the shortest level distance. Where the two
given lines appear to intersect in this new elevation view, the shortest level
distance line will appear as a point.

Note: The line method of Art. 3.2 cannot be used to determine the shortest level
distance, because in the line method the view which shows the required line in its true
length also shows an inclined line as a point and, therefore, the view cannot be an eleva-
tion view.

Example: In Fig. 3-5 below, the two skew lines AB and CD are given in both the plan and front
elevation views. The plane CDE is drawn containing the line DE parallel to line AB. The auxiliary
elevation view is drawn showing the plane as an edge and the line AB parallel to it. The shortest level
distance is the level distance between the two parallel lines, one of which represents the edge view of a
plane. This level distance will be parallel to the H-1 folding line. In order to show the point view of
the shortest level distance, folding line 1-2 must be located perpendicular to the H-1 folding line. The
elevation view 2 will determine the exact location of the level line as the point where the lines AB and CD
appear to intersect. The level line XY is then projected back to the other views, and it will be noted that
line XY in the plan view will appear in its true length. In the front elevation view, the line XY must be
parallel to the H-F' folding line, since every level line is parallel to the horizontal image plane.

Plane as an Edge

&

Fig. 3-5. Shortest Level Distance between Two Non-intersecting, Non-parallel Lines
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34 To DETERMINE the SHORTEST LINE of GIVEN SLOPE
CONNECTING TWO NON-INTERSECTING, NON-PARALLEL LINES

Analysis: Again, if a plane is drawn containing one of the skew lines and parallel to the
other skew line, an auxiliary elevation view showing the plane as an edge will
also show the other skew line parallel to it. Since the plane and line appear
parallel in an elevation view, the required line can be drawn at the specified
slope angle. However, even though the direction of the grade line is determined,
its exact location is not known. The projection of a new view, having the
folding line perpendicular to the direction of the shortest line of given slope,
will show the required line as a point where the skew lines appear to intersect.

Note: The line method of Article 3.2 cannot be used to determine the shortest line of
given slope because in the line method the view which shows the required line in its true
length also shows an inclined line as a point and therefore the view cannot be an eleva-
tion view.

Example: In Fig. 3-6 below, the two skew lines AB and CD are given in both the plan and front
elevation views. The plane CDE is drawn containing the line DE parallel to line AB. The auxiliary
elevation view is drawn showing the plane as an edge and the line AB parallel to it. Any shortest grade
line desired will appear in its true length in this view and will make the specified slope angle with the
folding line H-1. To obtain the exact location of the required line of given slope, draw folding line 1-2
perpendicular to the directional line having the given slope, and the intersection point of AR and CD in
this view shows the required line as a point. Simple projection will locate the line in the other views.

Given Slope

a"\Y

X

Level

F
cf \ \e’

bF

Fig. 3-6. Shortest Line of Given Slope between Two Non-intersecting, Non-parallel Lines
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1.

Solved Problems

Given: Point B is located 1’—6”” due north of A
and 1’ below A. Point C is located 1’ north,
1’ west of A and 2’ below 4. Point D is 8’ east,
2’ north of A and at the same elevation ag A.
See Fig. 3-7. Scale: 87 =1-0".

Problem: Using the two skew lines AR and CD,
draw a plane which contains the line AB and
which is parallel to the line CD. Draw an
auxiliary elevation view to verify your solution.
Determine the slope of the plane.

Solution:

In both the plan and front elevation views, draw
line BE parallel to the line CD. The line CD is now
parallel to the plane ABE. Draw auxiliary elevation
view 1 to show the line and plane parallel to each other.
The slope is measured in view 1.

Ans. Slope = 44°30'

Given: Plan view of plane ABC and line XY.
Front elevation view of plane ABC and point X.
Line XY is parallel to the plane. Refer to
Fig. 3-8.
Problem: Complete the front view of line XY.
Solution:

From point B in the plan view draw a line parallel
to the plan view of XY. It will intersect the line AC
at point D. Project point D down to the front view and
connect it to point B. From point ¥ in the plan view
project a line down to the front view. From point X
in the front view draw a line parallel to BD in the
front view. Where this line intersects the projection
from Y in the plan view will determine the position of
Y in the front view.

biA 3. Given:

Fig. 3-9.

Solution:

Edge View of Plane ABE

59

Problem:
of plane DEF.

Plan view of planes ABC and DEF.
Front elevation view of plane ABC and point
F. Planes ABC and DEF are parallel. See

Complete the front elevation view

In the plan view of the plane ABC draw a line
from point A parallel to the plan view of the line FE.
From point B in the plan view draw a line parallel to
the plan view of the line DF. Project these newly
drawn lines to the front view of plane ABC. From
point F' in the front view draw a line parallel to AG
in the front view until it intersects the projection of
E from the plan view. Again from point F in the
front view draw a line parallel to BH in the front
view until it intersects the projection of D from the
plan view. Connect points D, E, and F to obtain the
front view of plane DEF parallel to plane ABC.
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Given: Two lines AB and CD. Point B is located 1’—6”” due north of A and 2/ below A.
Point C is 2'—6’" east, 2’ north of A and 1’ below A. Point D is located 2’'—6" east,
6’ south of A and 2’ below A. See Fig. 3-10 below. Scale: " =1—0".

Problem: Determine the shortest distance between the lines AB and CD. What is the
slope and bearing of the shortest distance?
Solution:

Using the given data, draw the plan and front elevation views of lines AB and CD. It will be
noted that the two lines are parallel profile lines. A profile view will show the shortest distance as
a point. The shortest distance will be a frontal-level line. Label the line XY and show it in all views.
The true length of the shortest distance will appear in both the plan and front elevation views.

Ans. T.L. = 2/—6", Slope = 0°, Bearing = Due East-West

e H{P '

o \

=
=~

H
I d
F
aF
Fig.3-10

cF
o xF
b¥ dr

Given: Fig. 3-11 above shows the plan and front elevation views of a power line and
a telephone line. Scale: 177 =200".

Problem: Determine the clearance between the two lines. Represent the clearance
distance by a line in all views. Use the line method.
Solution:

Since line AB is a frontal line, it will appear true length in the front elevation view. Place
folding line F-1 perpendicular to the true length of AB. Project lines AB and CD into the inclined
view 1. Line AB will appear as a point in this inclined view. Draw a perpendicular line from the
point view of AB to line CD. This perpendicular line from AB to CD represents the true clearance
between the two lines. Project this clearance line back to the front and plan views. See Art. 3.2
and Fig. 3-2. Ans. Clearance = 30’

Given: Two pipelines are represented by lines AB and CD in Fig. 3-12 below. Scale:
17 =30,

Problem: Determine the true length, slope, and bearing of the shortest distance be-
tween the two pipelines.

Solution:

Draw an auxiliary elevation view showing the true length of AB. Draw an inclined view
showing the point view of the line AB. Project line CD into both of these views. The perpendicular
distance from the point view of AB to the line CD is the shortest distance between the two pipelines.
Since view 2 shows the true length of the shortest distance, view 1 will show the shortest distance
to be parallel to the folding line 1-2. Project the shortest distance back to the plan view from which
the bearing can be determined. An auxiliary elevation view having folding line H-3 parallel to the
plan view of the shortest distance will reveal both the true length and slope of the required line.
(See Art. 3.2.) Ans. T.L. = 20/, Slope = 57°30’, Bearing = N 6° E
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Fig. 3-12

7. Given: A 3 cube. Scale: 3”"=1—0".
Problem: What would be the true length and slope of
the shortest distance between the non-intersecting di-
agonals of any two adjacent faces? TUse the line
method. Refer to Fig. 3-18.

Solution:

Draw the plan and front elevation views of the cube
showing the two non-intersecting diagonals. Draw an auxiliary
elevation view 1 to show the horizontal diagonal as a point.
Show the diagonal on the vertical surface of the cube in this
view also. Draw a perpendicular line from the point view of
one diagonal to the other diagonal. This perpendicular line
represents the true length of the shortest distance between the
two non-intersecting diagonals. The slope of the shortest dis-
tance can also be measured in the auxiliary elevation view 1.
Ans. T.L.= 18", Slope = 35°
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8.

9.
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Given: Point A, at elevation 1550, is the portal of a mine tunnel which bears N60° E
on a downward grade of 30%. A second tunnel entrance is located at point B which is
50’ south, 110’ east of A and 50’ below A. This second tunnel bears N45°E on an
upward grade of 35%. See Fig. 3-14 below. Scale: 17 =80".

Problem: Determine the true length, bearing, and grade of the shortest connecting
tunnel. What would be the elevation at both ends of the connecting tunnel? Show
this proposed connecting tunnel in all views where necessary. Use the line method.
Solution:

Using the given data, locate points A and B in the plan view., From points A and B, draw
lines of indefinite length at the given bearings. Locate folding line H-1 parallel to the plan view of
the tunnel from A. Show the tunnel from A in elevation view 1. Place folding line H-2 parallel to
the plan view of the tunnel from B. Show the tunnel from B in elevation view 2. Project the tunnel
from B back to the plan view and then on into the auxiliary elevation view 1. Locate folding line 1-3
perpendicular to the tunnel from A in elevation view 1. Show both tunnels in the inclined view 3.
The tunnel from A will appear as a point in this view. Draw a perpendicular line from the point
view of the tunnel from A to the tunnel from B. This distance is the shortest connecting distance
between the two given tunnels. Label each end of the connecting tunnel X and Y respectively. Project
XY back to elevation view 1, then on to the plan view which will yield the bearing of connecting
tunnel XY. Placing folding line H-4 parallel to the plan view of XY, draw an elevation view of XY
showing it in its true length again. The grade of the connécting tunnel can be measured in this view.
The elevation of points X and Y can be measured in view 1.

Ans. T.L. = 80/, Bearing = N37° W, Grade = 42%, Elev.X = 1503', Elev.Y = 1534’

Grade o

L

Fig. 3-14

b2

Given: AB and CD are the centerlines of two 3’ diameter pipe lines as shown in Fig.
8-15 below. Point B is located 2’ east, 3’ north of A and 2’ below A. Point C is located
1/—6”” east, 1’—6’ north of A and at the same elevation as A. Point D is located 1" west,
3’ north of A and 2’ below A. Scale: ¥ =1—0".

Problem: How much clearance, if any, is there between the two pipes? Use the line
method.
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Solution:

Using the given data, draw the plan and front elevation views of lines AR and CD. Draw an
auxiliary elevation view 1 showing both pipes, one of which, CD, appears in its true length., Draw
an inclined view 2 showing pipe centerline CD as a point. Show pipe centerline AB in this view also.
Draw a perpendicular line from the point view of CD to the line AB. This perpendicular distance,
minus the pipe itself, determines the clearance between the two pipes. Amns. Clearance = 41"

dl

bF
Fig. 3-15 Fig.3-16

10. Given: Two mining shafts AB and CD in Fig. 3-16 above. Point B is 300’ south, 260’
east of A and 150’ above A. Point C is located 360’ south, 175" west of A and 500’
above A. Point D is 160’ north, 130’ east of A and 220’ above A. Scale: 17 = 500",

Problem: It is proposed to connect these two shafts with a new ventilating tunnel.
Determine the true length, slope, and bearing of the shortest possible ventilating tunnel
connecting the shafts. Show this ventilating tunnel in all views. Use the line method.
Solution:

Draw the plan and front elevation views of shafts AR and CD. Draw an auxiliary elevation
view 1 showing the true length of CD. Project AB into this view also. Draw an inclined view 2
which will show the point view of shaft CD. Project AB into this view and draw a perpendicular
line from the point view of CD to the line AB. This line, XY, will be the shortest distance between the
two shaits. Project XY back to the plan view to determine the bearing of the ventilating tunnel.
Draw auxiliary elevation view 8 to obtain the true length and slope of XY. The true length of XY
in both views 2 and 3 must be the same.
Ans. T.L. = 275, Slope = 61°, Bearing = Due North-South

W s I e
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11.

12,
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Given: Two skew lines, AB and CD in Fig. 3-17. Point B is located 2’—6"” due east of A
and 1’ below A. Point C is located 1’ east, 1’ south of A and 1’ above A. Point D is
located 8’ east, 1’ north of A and 1’—6” above A. Scale: §” =1'—0".

Problem: Determine the true
length, slope, and bearing of the
shortest distance from line AB to
line CD. Show the shortest dis-
tance in all views,

Solution:

Draw the plan and front elevation
views of lines AB and CD. Draw an
inclined view 1 which will show line CD
and the point view of line AB. From the
point view of line AB, draw a line per-
pendicular to CD. Label this line XY.
The line XY in this view is the shortest
distance between lines AB and CD. Pro-
ject XY back to the other views. The
bearing of the shortest distance from AB
to CD will appear in the plan view. Draw
an auxiliary elevation view 2 to obtain
the slope of XY as well as a check on the
true length obtained in view .1

Ans. T.L. =1'-1L", Slope =52°, Bear- Fig. 3-17
ing = S32°E
Given: Lines AB and CD are the centerlines of two sewer pipes. Point B is 15" north,

75’ west of A and 55’ above A. Point C is located 25’ due south of A and 75" above A.
Point D is 40’ north, 40’ west of A and 40’ above A. Scale: 177=80". See Fig. 3-18.

Problem: Using only 90° tees, show where to connect the two sewer pipes with a third
pipe of shortest possible length. Determine the true length, slope, and bearing of the
third pipe. Show this third pipe in all views. Use the plane method.

Solution:

Using the given data, draw
the plan and front elevation
views of lines AB and CD. Con-
struct a plane, CDE, containing
the line CE parallel to the line
AB in both views. Draw an
auxiliary elevation view 1 to ob-
tain an edge view of the plane
parallel to line AB. The per-
pendicular distance between AB
and CD in view 1 is the true
length of the shortest connecting
pipe. To obtain the exact loca-
tion of this shortest distance, an
inclined view 2 must be drawn to
show the connecting pipe as a

point. Label the point view of H - —TF |
the connecting pipe XY and pro- F $
ject it back to the other views.
The bearing of the third pipe b* difv

. . . y
will be measured in the plan view. eF
Auxiliary elevation view 1 will xF

yield both the true length and
slope of the shortest conmecting
pipe. Ans. T.L.=26'—0", Fig. 3-18 @
Slope = 35°, Bearing = N41° E &
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13.

14.

Given: Two mining tunnels AB and CD. Point B is 360’ east, 310’ south of A and
400’ below A. Point C is 60’ east, 400" south of A and 320’ below A. Point D is 375’
east, 60 south of A and 50’ below A. Refer to Fig. 3-19. Secale: 17 =400".

Problem: What would be the true length and bearing of the shortest level tunnel con-
necting AB and CD? Show the shortest level tunnel in all views.

Solution:

Locate tunnels AB and CD in the
plan and front elevation views. In both
views, draw a plane CDE containing the
line DE parallel to AB. Draw an auxili-
ary elevation view 1 to show line AP
parallel to the plane CDE. The level dis-
tance between the two parallel lines is
the required distance but the exact loca-
tion of this level tunnel is not known. A
point view of the level tunnel will estab-
lish its location in view 1. Locate folding
line 1-2 perpendicular to the H-1 folding
line. View 2 will therefore be an elevation
view which will show the level line as a
point. Label the level tunnel XY and
project it back to the other views. The
true length will be measured in either the
plan view or auxiliary elevation view 1.
The bearing is obtained in the plan view.
Ans. T.L.=95, Bearing = N14°W

bF Fig. 3-19

Given: AB and CD are the centerlines of two partial pipelines (see Fig. 3-20). Point B
is 15" north, 60" west of A and 20’ above A. Point C is 15’ south, 5’ east of A and 80’
above A. Point D is 60’ north, 25’ west of 4 and 30’ above A. Scale: 177 =8(’.
Problem: Show where to connect the two pipelines with the shortest level pipe. What
would be the true length and bearing of the shortest possible level pipe? Show the
shortest level distance in all views. Extend the lines, if necessary, for the solution of
the problem.

Solution: e

Bearing

Using the given data, draw the
plan and front elevation views of lines
AB and CD. Draw a plane CDE contain-
ing the line DE parallel to the line AB
in both views. Draw an auxiliary elevation
view 1 to show the edge view of the plane
parallel to the line AB. The level distance
between the two parallel lines in view 1 is
the true length of the shortest possible
level connecting pipe. To determine the
exact location of the shortest level dis- a?
tance, draw elevation view 2 with folding
line 1-2 perpendicular to folding line H-1. et
The intersection of lines AB and CD in H
view 2 will locate the point view of the F
shortest level distance. Label the inter-
section XY and project it back to the
other views. The bearing of XY will be
measured in the plan view and the level
line XY must appear parallel to the H-F

folding line when it is projected to the F ?/
front view. i N g

Ans. T.L.=68', Bearing = N 32°30' E Fig.3-20

o B e
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15.

16.
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Given: Two tunnels, AB and CD in Fig. 3-21 below. Point B is located 80’ east, 20/
north of A and 30’ below A. Point C is located 10’ east, 75’ north of 4 and 60’ above A.
Point D is located 100’ east, 45’ north of A and 45’ above A. Scale: 1= 60’.

Problem: The two tunnels are to be connected by a ventilating duct from the mid-point
of AB, entering the second tunnel CD at an angle of 60°. Determine the true length,
slope, and bearing of the ventilating duct. Show the duct in all views.

Solution:

Draw the plan and front elevation views of tunnels AB and CD. In both views, connect the ends
of tunnel CD to the mid-point of tunnel AB. Draw an inclined view 1 to show the edge view of plane
CDX. Draw inclined view 2 which will show the true size of plane CDX. From point X in this view,
draw a line which intersects CD at 60°. Label this intersection point ¥ and project it back to the
other views. The bearing of the ventilating duct will be measured in the plan view. Draw auxiliary
elevation view 3 which will show both the true length and slope of line XY. The true length of XV
obtained in view 3 will, of course, be the same as that which is obtained in view 2.

Ans. T.L.=97, Slope =49°30’, Bearing = N17°30' W

Bearing N ¥
c

: Slope
3z,
Y 1/3/
an\
\
bH
H 3

Fig. 3-21

Given: The centerlines of two sewer lines are determined by lines AB and CD as
shown in Fig. 3-22 below. Point B is 50’ due east of A and 20’ above A. Point C is
10’ due north of A and 30’ below A. Point D is 30" east, 30’ south of A and at the
same elevation as A. Scale: 1”7 =30-0".

Problem: The sewer lines are to be connected by a branch pipe having a downward
grade of 25% from line AB. Determine the true length and bearing of the shortest
connecting branch pipe. Show this pipe in all views.
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Solution:

Using the given data, draw the plan and front elevation views of lines AB and CD. Draw the
plane ABE containing the line 4F parallel to CD in both the plan and front views. Draw an auxiliary
elevation view 1 showing line CD parallel to the edge view of plane ABE. To obtain the exact location
of the required line of given slope, draw folding line 1-2 perpendicular to the directional line having
the grade of —25%. The intersection of lines AB and CD in the inclined view 2 will show the required
line as a point. Label the connecting pipe XY and project it back to the other views. The true length
appears in auxiliary elevation view 1 and the bearing is measured in the plan view.

Ans. T.L. = 30'—6"/, Bearing = S40° E

a’
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aF dr
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Fig.3-22
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Supplementary Problems

In each of the following problems 17 to 23 draw a plane which contains the line AB and is parallel to
the line CD. To verify your solution draw an edge view of the plane to determine if the line CD lies parallel
to the plane. Find the slope of the plane. See Art. 1.7 for the coordinate system of problem layout.

17. A(1,1,6) B(3,24,6) C(
18. A(1,4,4) B(2,3,6) O,

1,2 D(2},2,5). Amns. Slope = 60°
3,1
19. A@2,1,54) B(3,34,4) C
2,
1,

s 4)
,54) D{4,8,5). Ans. Slope=65°
(1,2,5) D(4,2,5). Ans. Slope = 67°

4) D(4},3,5%).  Ans. Slope =44°30'

29. A(1,1,5) B(4,2,) c(2,
5) D(5,2},4). Ans. Slope = 38°30'

21. A(2,3,4) B(4,2,6) C@,

22. Lines AB and CD. Point B is located 3’ east, 3’ south of A and at the same elevation as A. Point C
is located 2’ east, 2’ north of A and 3’ above A. Point D is 6’ east, 1’ south of A and 1’ above A.
Scale: £ =1—0". Ans. Slope = T70°3(/

23. Lines AB and CD. Point B is located 3’ due north of A and is 2’ above A. Point C is located 2’ east,
2’ north of A and 2" above A. Point D is 4’ due east of A and 3’ above A. Scale: £ =1'-0",
Ans. Slope = 54°30/

a¥ bH

24. TFig. 3-23 shows the plan and front elevation views of two

supporting braces, AB and CD. Point B is located 7' due

east of A and 4’ below A. Point C is 6" east, 1'—6'"' south

of A and 2’ below A. Point D is located 8’ east, 4" south of

A and 2’ below A. Scale: §"=1"—0". Determine the true ~—
length, slope, and bearing of the shortest connecting brace H

between AB and CD. -

Ans. T.L. = 2'-1", Slope = 30°, Bearing = N18°30'E

25. Two mining shafts AB and CD. Point B is 300’ south, \
260’ east of A and 150’ above A. Point C is located 360’
south, 175" west of 4 and 500’ above A. Point D is 160’
north, 130’ east of A and 220’ above A. Scale: 177 =200'.
It is proposed to connect these two shafts with a new Fig. 3-23 bF
ventilating tunnel. Determine the true length, slope, and :
bearing of the shortest possible ventilating tunnel connect-
ing the shafts. Show this ventilating tunnel in all views.
Use the plane method.

dH

Ans. T.L.=275, Slope =61°, Bearing = Due North-South @o?»
Y
26. Point A, at elevation 1550/, is the portal of a mine tunnel S
which bears N60°E on a downward grade of 30%. A RS

second tunnel entrance is located at point B which is 50’ af 3
south, 110’ east of 4 and 50’ below A. This second tunnel

bears N 45° E on an upward grade of 35%. Scale: 1”7 =50’.

See Fig. 3-24. Determine the true length, bearing, and Fig. 3-24
grade of the shortest connecting tunnel. What would be

the elevation at both ends of the connecting tunnel? Show this proposed connecting tunnel in all views.
Use the plane method.

Ans. T.L.=80’, Bearing = N 87° W, Grade = 42% Elev. X = 1503, Elev. Y = 1534’

bH

In the following prob- 27. A(2,4,7 B(2,2,7) C(14,24,5) D(5,84,6). Scale: 17=1—0",
lems 27 to 31 determine Ans. T.L.=1-9%", Slope=0°, Bearing =N 16° W

the true length, slope, and
p 28. A(2,3,5) B(4§,1, 6) C(51 31 4%) D(4,4,6). Scale: 1"=1"-0",

bearing of the shortest A RN NI . ;
distance between the two ns. T.L,=2'-2", S]ope—54 Bearing =N 63° E

skew lines AB and CD. 29. A(2,83,5) B(534,6) C(2,4,64) D(54,1,5%). Scale: 1”7 =1/—0",

Show this shortest dis- Ans. T.L.=3—6", Slope = 34°, Bearing = N19° W

tance line in all views.

Use the line method. 30. A(4,1,6) B(7,8,5) C(6,14,7 D(7,1,5). Scale: " =1'—0".
Ans. T.L.=2'-7", Slope“42° Bearing =N 52° E

See Art. 1.7 for co-
ordinate system of prob- 31. A(5,1,5) B(7,8;56) C(6,1,7) D(7,0,5). Scale: g =1-0"
lem layout. Ans. T.L.=4'—6", Slope = 34°, Bearing = N 45° E
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32. Lines AB and CD are the centerlines of two sewer pipes. Point B is 15" north, 75’ west of A and
55’ above A. Point C is located 25" due south of A and 75’ above A. Point D is 40’ north, 40’ west of
A and 40’ above A. Scale: 1" =40’. Using only 90° tees, show where to connect the two sewer pipes
with a third pipe of shortest possible length. Determine the true length, slope, and bearing of the

third pipe. Show this third pipe in all views. Use the line method.
Ans. T.L.=26"—0", Slope = 35°, Bearing=N41° E

33. AB and CD are two control cables (see Fig. 3-25). The cables are located as follows: A(1,8,7)
B(3,4,44) C(},4,4)) D(2},2,6). Scale: 1" =1'-0". Using the line method, determine the clear-

ance between the two cables. See Art. 1.7 for the coordinate syste:..
of problem layout. Ans. Clearance =10’/

aH

34. Points A and B are the anchors for two cables. Point B is 4’ south, ar
2" east of A and 5 below A. The bearing of the cable from A is
S60°E and it slopes downward 30°. The cable from B bears
N 45° E and it has a slope of —20°. Secale: 1" =1'—0", Determine
the clearance between the two cables. Ans. Clearance =2'—10" H/ \bH

35. Two utility lines, AB and CD. Point B is located 5’ east, 30’ south oF F /b""
of A and 15’ below A. Point C is located 15’ east, 30’ south of A \
and at the same elevation as A. Point D is located 30’ east, 20’
gsouth of A and 12’ below A. Scale: 1”=20"—0". Determine the oF
true length, slope, and bearing of the shortest distance between the
two lines. Ans. T.L.=17'—6", Slope =45°, Bearing = N72° W Fig. 3-25 dF

36. A four-sided support frame is shown in Fig. 3-26. A cable must

extend from point X in a S 60° E direction on a falling slope of 40°.
Scale: 1" =1'—0". What is the clearance between the cable and the
closest member of the support frame? Show this clearance in all
views. Ans. Clearance = 2'—9'/

870"

5'—0""

In each of the following problems 37 to 41 determine the true length

3'_g"

and bearing of the shortest level distance connecting the skew lines AB
and CD.

H
Extend the lines if necessary for the solution of the problem. Show F

the shortest level distance in all views. See Art. 1.7 for the coordinate E:' k
system of problem layout. 2

37. A(41,1,5) B(5},24,7) C(5,2,4}) D(7,24,53). Scale: 1”=1—0". 3
Ans. T.L.=1'—9", Bearing =N10°W y b &

38. A(1,34,5) B(3,1,41) CQ1,L.4) Dy,2, 54). Scale: 17 =40". Fig. 3-26
Ans. T.L.=5—6", Bearing=N8° W

dH
39. A(2,4,7) B(44,2,6) C(3,2%,54) D(5,4,5). Scaler 1 =30"
Ans. T.L.=29—0", Bearing=N14° E
40. A(3,3,6) B(5,2,6)) C(2,21,4) D(4,3%,58). Scale: 17 =50 b
Ans. T.L.=55'—6", Bearing=N26°W aH
1. A(1,14,5) B(3,3,6) C(3,1,6) D(4,2%,41). Scale: 1" =30".
H H

Ans. T.L.=59"—0", Bearing=N68°W __ <
F cF
42. Two pipelines are determined by their centerlines AB and CD shown
in Fig. 3-27, Point B is located 10" north, 50’ west of A and 35’
above A. Point C is located 20’ south, 5’ west of A and 60’ above A. br
Point D is located 40’ north, 30’ west of A and 25’ above A. Scale: dr

1= 20'—0". What would be the true length and bearing of the

shortest possible level pipe connecting AB and CD? Show the level

pipe in all views.

Ans. T.L.=27—6", Bearing = N-43°30'E Fig.3-27 aF

s N &
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43.

44.

SKEW LINES [CHAP. 3

Two guy wires, AB and CD, are located as follows: B is 20’ east, 5’ south of A and 18 below A.
Point C is located 12’ due east of A and 5’ above A. Point D is located 20’ east, 10’ north of A and
15’ below A. Scale: 1”7 =10'—0". Determine the true length, slope, and bearing of the shortest wire
to connect the two guy wires. Ans. T.L.=10'—0", Slope=382°, Bearing=N47°E

Three supporting pipes are shown in Fig. 3-28 below with a cable, XY, passing through the pipe
frame. Scale: 1"/ =10'—0"". How close does the cable come to the pipe support frame?

Ans. Distance = 6"

cH

8—0" .

H 3
¥ % a¥
s
N
x"/ =
Ed aX c?
50" 20'—0" 80" d"
H H .
F b ra
dF

>
T

‘9 aFf bF

xF o
>
N
S
af * &
Fig. 3-28 Fig. 3-29

In each of the following problems 45 to 49 determine the true length and bearing of the shortest line

of given slope connecting the skew lines AB and CD.

The given slopes or grades are from line AB to line CD. Extend the lines if necessary for solution

of the problem. Show the shortest line in all views, See Art. 1.7 for the coordinate system of problem

layout.

45. A(1,24,6) B(24,3,6) C(1,1,7) D(3,8,5). Downward 25%. Scale: 17 =1'-0",
Anrs. T.L.=104", Bearing=S827°E

46. A(3,38,4%) B(6,1,5) C(5,2,54) D(64,38,4). Upward 30°. Scale: 17 =20".
Ans. T.L.=18-9”, Bearing=N23°E

47. A(2,8,7) B(3,33,7) C(4,1,6%) D(24,3,5L1). Downward 30%. Scale: 1" =1-0",
Ans. T.L.=5-2", Bearing =S25° E

48. A(2%,2,5) B(51,1,44) C(54,2,6) D(6,8,4%). Upward 20°. Scale: 17 =30".
Ans. T.L.=54'-6", Bearing =N 30°30' E

49. A(11,2,61) B(3,24,58) C(3,1,64) D(2L,8,54). Downward 85%. Scale: 17=1"-0".
Ans. T.L.=5}", Bearing=S837°W

50. AB and CD are the centerlines of two natural gas lines. See Fig. 3-29 above. Point B is 15’ east,

5’ north of 4 and at the same elevation as A. Point C is 10’ due north of A and 15 below A. Point D
is 25’ east, 15’ south of A and 5 above A. Scale: 1”7 =10'—0". Determine the shortest connecting
pipe having a downward slope of 25%. What would be the true length and bearing of this new con-
necting pipe? Show the connecting pipe in all views. Ans, T.L,=10"—6", Bearing =S18°30'E
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51.

52,

53.

54.

55.

Two pipelines are determined by the lines AB and CD. Point B is 15’ north, 50" west of A and 40’
above A. Point C is 20’ south, 10’ east of A and 60’ shove A. Point D is 45’ north, 30’ west of A
and 40’ above A. Scale: 1" = 30’—0". Determine the location and true length of the shortest possible
connecting pipe bearing N 20° E and having a rising grade of 35%. Show the connecting pipe in all
views. Ans. T.L.=33—6"

The flight direction of a jet plane at A is N 45° E as shown in Fig. 3-30 below. It is gaining altitude
at the rate of 300’ in 1000’. Scale: 1" =1000’. Determine the clearance between the flight path and
an obstruction represented by line XY. A(4},2%,6) X(55,2,63) Y1, 3%, 74).

Amns. Clearance = 765’

pH
yH a/
d=
H |/
oy F ; ¥
af
. cF b
oF
2F
Fig. 3-30 Fig. 3-31

The centerlines of two mine shafts are determined by the lines AB and CD. See Fig. 3-31 above.
Point B is 100’ east, 20’ north of A and 20’ below A. Point C is 60’ south, 25’ west of A and 25’
below A. Point D is 60’ east, 10’ south of A and 15 above 4. A new connecting tunnel, XY, is driven
between the two main shafts. Its bearing is N45°W and slopes downward 30° to the northwest.
Scale: 1" =50’. Determine the true length of the connecting tunnel. Show tunnel XY in all views.

Ans. T.L.=384—¢"

From point A4, at an elevation of 1800’, a tunnel bears S 20° E on a downward grade of 85%. Amnother
tunnel starts at B which is located 130’ south, 50’ west of 4 and 120’ above A. This second tunnel
bears S80° E on a downward grade of 20%. Scale: 1’ = 100", What would be the true length, slope,
and bearing of the shortest connecting tunnel? What would be the elevation at both ends of the
connecting tunnel? Show the proposed connecting tunnel in all views. Use the line method. Let point X
represent the lower end of the connecting tunnel.

Ans, T.L. =145, Slope=171°, Bearing = N 23° W, Elev. X =1760’, Elev.Y = 1895

AB and CD determine the centerlines of two mine tunnels. Point B is 350" south, 180’ west of A and
150" above A. Point C is 350’ south, 300’ west of A and 50’ above A. Point D is located 200’ south,
50" east of A and 100’ above A. Scale: 1” = 200’. What would be the true length and bearing of the
shortest possible level connecting tunnel between the two given mine tunnels? Show the level tunnel
in all views. Ans. T.L. =70, Bearing=N33°W

e GOER R



Chapter 4

Piercing Points and Plane Intersections

It should be obvious to the student of Descriptive Geometry that a line, which neither
lies in nor parallel to a plane, must intersect the plane. The knowledge and application
of this basic principle is very essential to the solution of problems involving Descriptive
Geometry. Many of the subsequent problems in this text are dependent for their solutions
upon the student’s ability to determine the point where a line intersects a plane.

4.1 To DETERMINE WHERE a LINE INTERSECTS a PLANE
A. Edge-View Method

Analysis: Assuming that the straight line is neither parallel to nor in the plane, it will
intersect the plane at a point common to both the line and the plane. The limits
of the line and plane as given may have to be extended in order to determine
this “pierce point”.

Since an edge-view of the plane contains all points in the plane, the view
showing the plane as an edge will also show the point where the line pierces
the plane. )

Note: Another method would involve showing the line as a point. This
point view of the line will contain the pierce point common to both the line
and the plane.

Example 1: (Given Plane Appears as an Edge) In Fig. 4-1 below, the plane ABCD and the line XY
are given in both the plan and front elevation views. The plane appears as an edge in the plan view.
The intersection of the line and the plane is determined by point P which is common to both. Using careful
visualization, we notice that the YP portion of the line lies wholly in front of the plane and therefore
will appear visible in the front view. The plan view shows that the XP portion of the line lies wholly
behind the plane and, therefore, will be hidden in the front view.

H
F o b¥
CF»,, ... . J.
Fig.4-1. A Line Intersecting a Vertical Plane Fig.4-2. A Line Intersecting an Oblique Plane

72
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Example 2: (Oblique Plane) In Fig. 4-2 above, the plane ABC and the line XY are given in both
the plan and front elevation views. Draw an auxiliary elevation view showing the plane as an edge. The
pierce point P in this view is the point of intersection which can now be projected back to the plan and
front elevation views. Careful visualization reveals the visible and hidden portions of the line.

Note: The pierce point could also have been determined by showing the plane as an edge in an
inelined view projected from the front view.

B. Two-View Cutting Plane Method

Analysis: The intersection of a line and an oblique plane can be determined by using a
vertical cutting plane which contains the given line.  The line of intersection
of the cutting plane with the oblique plane and the given line must intersect
or be parallel because they both lie in the vertical cutting plane. (See Fig. 4-3.)
Since the cutting plane appears as an edge in the plan view, the relationship
between the line of intersection and the given line is not apparent in the plan
view. The related view, however, reveals this relationship. Should the two
lines intersect in the related view, it is evident that the point of intersection is

~common to both the given plane and the given line and therefore determmes
the pierce point of the given line and given plane.

Edge view of the
vertical cutting plane
containing line XY ]

Vertical Cutting Plane

a/H
H
F
aF
cF
Fig.4-3. A Pictorial View of the Vertical Fig.4-4. A Line Intersecting an Oblique Plane
Cutting Plane Method (Vertical Cutting Plane Method)

Example: In Fig. 4-4 the oblique plane ABC and the line
XY are given in both the plan and front elevation views. A
vertical cutting plane, coincidental with and containing the
given line XY, appears as an edge in the plan view. The inter-
section of the given plane ABC and the vertical cutting plane
containing XY is the line VZ. The lines XY and VZ both lie
in the vertical cutting plane and intersect each other at point P
in the front view. Since point P.is on line VZ, it is also on
plane ABC because line VZ is on plane ABC. Therefore point P F
is the required point, being common to both the given line XY
and the given plane ABC. It can now be projected to the related
view. Use careful visualization to determine what portion of
the line should be visible in each view.

Note: If line VZ had appeared parallel to XY in the front

view, it would have indicated that the line XY was parallel to
plane ABC and therefore it would have no point of intersection

x \ . .
Edge view of the ¢
front cutting plane

with the given plane. containing line XV
Another similar solution would be that of having the Fig. 4-5.

cutting plane shown as an edge in the front view and con- A Line Intersecting an Oblique Plane

taining the given line (see Fig. 4-5). (Front Cutting Plane Method)



74 PIERCING POINTS AND PLANE INTERSECTIONS [CHAP. 4

Even though the two-view method has the advantage of quick construction and
minimum space requirements, the edge-view method is usually the easier method for the
beginning student to understand.

4.2 INTERSECTION of PLANES

One of the most common problems encountered in Descriptive Geometry is that of
determining the line of intersection of two planes. As mentioned previously, a plane is
considered to be indefinite in extent, and, likewise, the line of intersection between two
planes is also considered to be of an indefinite length. On the other hand, if a particular
plane surface is “closed”, or limited, the line of intersection between that plane and another
plane would then be considered limited.

The intersection of any two oblique planes is a straight line which is common to both
planes. Any two points common to both planes will, therefore, determine the position of
the line of intersection.

The three general methods used in determining the line of intersection between any
two planes are the “edge-view” method, the “two-view pierce point” method, and the
“two-view cutting plane” method.

A. Edge-View Method
Case 1I: Edge-view Given
Analysis: Two non-parallel planes will intersect in
a straight line which is common to both
planes. Since the direction of a straight
line is determined by any two points on the
line, it becomes necessary to locate two
points common to both planes. An edge
view of one of the planes will reveal where H
any two lines on the other plane intersect F
the plane shown as an edge.
Example: In Fig. 4-6 the two planes, ABCD and EFG,
are given in the plan and front elevation views. The plane
ABCD is shown as an edge in the front view. Lines EF and EG Plane as Edge
on plane EFG intersect the plane ABCD at points X and Y
respectively. Since points X and Y are common to both planes, aFbF
they must, therefore, lie on the line of intersection. To locate
the line of intersection on the plan view, simply project points
X and Y to their corresponding positions. The front view shows

the EXY portion of plane EFG to lie wholly above plane ABCD;
therefore EXY will be visible in the plan view.

Fig. 4-6.

Case 1I: Edge-view Not Given

Analysis: Assuming that two views of each
plane are given, an additional
view showing both planes, one as
an edge, will show two points
common to both planes, thus de-
termining the line of intersection.

Example: In Fig. 4-7 the plan and front eleva-
tion views of planes ABC and DEFG are given. An
auxiliary elevation view is drawn showing both
planes, one of which, ABC, appears as an edge. In
this view, line E'G of plane DEF(@G pierces ABC at
point X, and line DF pierces plane ABC at Y. Points

X and Y are two points on the common line of inter-

section between the two planes.
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In this problem the two given planes are limited and the line of intersection may be regarded as
terminating at the points X and Y. Careful visualization will determine the visibility of the other lines
in the planes.

B. Two-View Pierce Point Method

Analysis: Following the method of Art. 4.1-B, a line on one of the planes may be selected
and the point of its piercing the other plane will be one point common to both
planes. Repeat the procedure using another line and determining its pierce
point with the other plane. These two “pierce points” determine the line of
intersection of the two planes.

Example: The two oblique planes ABC and DEFG are given in both the plan and front elevation
views in Fig. 4-8 below. Using the method of Art. 4.1-B, the line DF of plane DEFG is found to pierce

ABC at point Y. Likewise, the line EG of plane DEFG pierces the plane ABC at point X. Points X and Y,
being common to both planes, determine the line of intersection of both planes.

Careful visualization will determine the visibility of the other lines in the plane.

Edge View

Horizontal Cutting
Plane
Fig. 4-8.
Intersection of Two Oblique Planes Fig.4-9. Intersection of Two Oblique Planes
(Two-view Pierce Point Method) (Two-view Cutting Plane Method)

C. Two-View Cutting Plane Method

Analysis: If two given oblique planes are intersected by a third plane which appears as
an edge in one view, the three planes will meet at a common point, unless the
third plane should happen to be parallel to the intersection of the two given
planes. The method used to determine the location of two or more points on
the line of intersection is that which is explained in the article dealing with
the edge-view method.

Example: The two oblique planes ABC and DEF are given in both the plan and front elevation views
in Fig, 4-9 above. A vertical cutting plane intersects the two given planes at points 1-2 and 3-4. The lines
from 1 to 2 and from 3 to 4 are extended in the front view to locate point X which is a point common to
both planes extended and is, therefore, on the line of intersection of the two planes. Point X is located on
the plan view by projecting it up to the edge view of the cutting plane.

To locate a second point on the line of intersection, a horizontal cutting plane intersects the given
planes at points 5-6 and 7-8. The lines from 5 to 6 and from 7 to 8 are extended in the plan view to locate
point ¥ which is a point common to both planes extended and is, likewise, on the line of intersection of
the two planes. To locate point Y in the front view, simply project down to the edge view of the horizontal
cutting plane.

c e e —
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Solved Problems

1. Given: Plane ABC and line MN in Fig. 4-10. A(1,1,4) B#4,1,5%) C(3,2%,4) M(1%,24,5%)
N(33,%,33). See Art. 1.7 for the co-
ordinate system of problem layout.
Scale: 17=1-0".

Problem: Using the edge-view
method, determine the intersection
of line MN with plane ABC. What
is the map distance from point A
to the pierce point? Show proper
visibility.

Solution:

Using the given data, draw the plan
and front elevation views of line MN and
plane ABC. Draw auxiliary elevation
view 1 to show plane ABC as an edge with
line MN intersecting the plane at point P.
Project point P back to the plan and front
elevation views. Measure the distance
from A to P in the plan view for the re-
quired map distance. Careful visualization
will reveal proper visibility.

Amng. Distance =8'~72"

2. Given: Points 4, B, and C represent a vein of ore. Point Y is the portal of a tunnel
which has progressed toward the vein as far as point X. Point B is 24’ east, 18'—6”
north of A and 15'—6" above A. Point C is 41’—6” east, 18’ south of A and 21’ below
A. Point X i% 46’ east, 77 south of A and 12/ ‘above A. Point Y is 61’ east, 13’ south
of A and 18’ a’lgove A. Refer to Fig. 4-11 below. Scale: 1”7 =40".

Problem: Determine how much further the tunnel must be extended in order to reach
the vein of ore.
Solution:

Using the given data, draw the
plan and front elevation views of plane
ABC and line XY. Show the plane
ABC as an edge in an elevation view,
projecting line XY into the same view.
Extend line XY until it intersects the
edge view of the plane. Project the
entire tunnel back to the plan view.
Now having two views of the line from
X to the plane, an auxiliary elevation
view can be drawn to determine the
true length of that distance. (See Art.
4.1). Ans. Distance = 32’

Fig.4-11
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3.

Given: Planes ABC and EFG shown in Fig. 4-12 below. Point B is 2" east, 8’’ north
of A and 3” above A. Point C is 23" east, 1”” north of A and 2” above A. Point F is
located 4’ due north of A and 27 above A. Point F is 24’ due north of A and 8" above
A. Point G is 24" east, 14" north of A and 1" above A. Scale: 7 =1".

Problem: Using the edge-view method, determine the bearing of the line of intersec-
tion between the two planes.
Selution:

Using the given data, draw the plan and front elevation views of planes ABC and EFG. An
auxiliary elevation view is drawn showing both planes, one of which, ABC, appears as an edge.
Auxiliary elevation view 1 locates two points common to both planes. Label these two points' X and Y.
Project points X and Y to the plan and front views and connect them to locate the line of intersection
in these two views. Measure the bearing of the line of intersection in the plan view. Careful visuali-
zation will determine proper visibility. Amns. Bearing = N6°W

Fig.4-12
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4.

PIERCING POINTS AND PLANE INTERSECTIONS

Given: Fig. 4-13 shows the plane of a
roof section and the top of an antenna,
point X. Scale: & =1-0".

Problem: Using the cutting plane meth-
od, determine the true length of the ver-
tical antenna. Show the antenna in the

front elevation view.
Solution:

Using the cutting plane method of Art.
4.1-B, draw a line through the plan view of
point X. This line represents the plan view of
a vertical cutting plane and also its intersection
with the plane of the roof section. Label the
intersections of this cutting plane with AD and
BC, points E and F respectively. Project points
E and F to their corresponding positions in the
front view. Connect E and F in the front view.
From point X in the front view, draw a vertical
line down till it meets the line EF. Label this
intersection point, Y. The line XY in the front
view is the true length of the antenna.

Ans. T.L.=17—-6"

[CHAP. 4

Fig.4-13

Given: Planes ABC and DEFG shown in Fig. 4-14. A(4,24,5%) B(34,3,63) C(2%,4,43)
D(2,3%,6%) E3,31,5) F(2,1,61) G(1,1,7). See Art. 1.7 for the coordinate system of

problem layout.

Problem: TUsing the edge-view
method, show the intersection of the
two planes in all views. Determine
the bearing of the line of intersec-
tion.
Solution:

Using the given data, locate the plan
and front elevation views of both planes.

Draw an auxiliary elevation view showing
both planes, one of which, DEFG, appears

as an edge. Auxiliary elevation view 1 lo-
cates two points, X and Y, which lie on
the line of intersection. Project X and Y
back to the plan view to determine the
bearing of the line of intersection. You
will notice that the line of intersection in
the plan view extends from point Y to the
intersection with line EF., Label this in-
tersection point, Z. Project Y and Z to
their corresponding positions in the front
view. Use careful visualization to deter-
mine proper visibility.

Ans, Bearing =N64° W

Given: Plane ABCD is intersected by a control cable, XY. Point B is located 100’ due
east of A and 50’ below A. Point C is located 75’ due south of 4 and 65’ below A. Point
D is 100’ east, 75" south of A and 115’ below 4. Point X is 20” west, 25’ south of A and
120" below A. Point Y is located 120’ east, 25’ south of A and 25” above 4. See Fig. 4-15

below. Secale: 17 =100".

Problem: Locate the pierce point of the control cable with the plane by using the edge-
view method. Determine the true length and bearing of a line from point 4 to the

pierce point. The pierce point is how much lower than A?
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Draw the plan and front elevation views of line XY and plane ABCD. Draw an inclined view
showing the plane as an edge and the line XY piercing it at point P. Project point P back to the front
elevation and plan views. Draw a line from A to P in the plan view. Measure the bearing of line AP
in this view. Draw auxiliary elevation view 2 in order to obtain the true length of AP. Measure the
elevational relationship between A and P in either the front view or in auxiliary elevation view 2.
Show the proper visibility of the line and plane by careful visualization.

Ans. T.L. = 78'—6'", Bearing = S 63°30’ E, Elevation of P = 40’ lower than A

Given: A mine tunnel, in the direction XY as shown in Fig. 4-16, is driven toward a
vein of coal represented by plane ABC. Point B is 80’ east, 80’ north of A and 80’

below A. Point C is located 120’ due east of 4
and 40’ above A. Point X is 10’ west, 50’ north
of A and 50’ above A. Point Y is 40’ east, 15’
north of A and 25’ above A. Scale: 177 =100".

Problem: How long will it take the miners to
reach the vein of coal, starting from point X, if
they average 12’ per hour? What is the total
length of the tunnel necessary to reach the
vein?

Solution:

Using the given data, draw the plan and front
elevation views of plane ABC and tunnel XY. As ex-
plained in Art. 4.1-B, the cutting plane method is used
to determine points D and E in both views. The inter-
section of line DFE in the front view with the line XY
extended will locate the pierce point P. Project point P
up to the plan view. Draw an inclined view 1 to find
the true length of the entire tunnel. Divide the true
length of XP by 12 to determine the total time required
to reach the vein.

Ans. T.L.= 89, Time = 7 hrs. 25 mins.

Fig.4-16
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8.

10.

11.

PIERCING POINTS AND PLANE INTERSECTIONS [CHAP. 4

Given: A square base right pyramid ABCD with vertex
O and a line XY passing through the pyramid. A(3,3,7)
B(4,3,8) (C(5,3,7 D{4,3,6) 04,57 X(3,3%,8)
Y(5%,34,6). Refer to Fig. 4-17. See Art. 1.7 for the
coordinate system of problem layout. Scale: 1/ = 1",

Problem: Determine the true distance between the
pierce points of line XY and the pyramid. Use two
views only and show proper visibility.

Solution:

Using the given coordinate data, draw the plan and front
elevation views of the pyramid and line. By means of the cutting
plane method of Art. 4.1-B, the pierce points V and Z are de-
termined in the front view. Project points V and Z from the front
view up .to the line XY in the plan view. Pierce points V and Z
are thus located in the plan view. Since the line XY is a level
line, the distance between points V and Z in the plan view is a
true length distance. Careful visualization will determine proper

visibility. Ams. T.L.=1L"

Supplementary Problems

In each of the following cases determine the point of intersection
between the given plane ABC and the line XY. Use the edge-view
method. Show proper visibility. If the scale of 1” =10’ is used,
determine the map distance from point A to the pierce point. See
Art. 1.7 for the coordinate system of problem layout.

(@) A(1,2%,4) B(14,1,6) C(34,14,5) X(1,14,6) Y(34,1,4)
Ans. 16'—4"
(3) A(14,14,5) B(24,3,6)) C(4,1,4)) X(34,1,6)
Y2}, 24, 4%) Ans. 15'—6"
(¢) A(1,1,6) B(2},2L,5) C(34,4,64) X(2,4,5) Y(34,2,7)
Ans, 170"
@ A(4,37) B@2§,1,5) C34,1468) X(1}1,54)
Y(3,24,7) Ans, 11'-10"

() A(L,3,53) B(3,3,5 C414,6}) X225 Y(3435)
Ans. 207"

Line XY and plane ABC are determined as follows: A(1,1,4)
B(4,1,51) C(3,24,4) X(1§,2L,51) Y (3%, 3,3%). See Art. 1.7 for
the coordinate system of problem layout. Using the two-view
cutting plane method, find the approximate coordinate location of
the pierce point of line XY with plane ABC.

Ans. Pierce point = (28,14, 41)

Two planes, ABC and DEF, are shown in Fig. 4-18. A(1,1,61
B(2,84,41) C(3,2,6)) D(1,1%,54) E(13,3, 61) F(3,13,43).
Determine the intersection of the two planes. Show proper visi-
bility. What is the bearing of the line of intersection?

Ans. Bearing = NT77° W

a’ 7 17 gfp* 47 ¢
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Fig. 4-18
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12. A bent plate, ABCD, is located as follows: Point B is 10’ east, 15’ north of A and 25’ below A. Point C
is 40’ east, 10’ north of A and 15’ below A. Point D is 85’ east, 10’ south of A and 5 above A. The
“pend line” is AC. See Fig. 4-19 below. A cable, XY, must pass through the bent plate. Point X is
10’ north, 8" west of A and 10’ below A. Point Y is 40’ east, 5" south of A and 5’ below A. Scale:
1”7 =10’. Using two views only, determine the point, or points, where the cable will pass through the
bent plate. What is the elevational relationship between the pierce point, or points, and A?

13.

14.

15.

Ans. Pierce point is 8 —6" lower than 4.
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Fig.4-20

The two planes ABC and DEF shown in Fig. 4-20 above intersect each other. Point B is 6’ north,
4’ east of A and 6’ below A. Point € is 4’ south, 12’ east of A and 4’ below A. Point D is 2" south,
4’ east of A and 6 below A. Point E is 6’ north, 2’ east of A and 2’ below A. Point F' is 1’ north,
10’ east of A and 5’ below A. Scale: 1" =1'—0". Using the edge-view method, show the line of inter-
section between the two planes. Determine the visibility in both plan and front views. What is the

bearing of the line of intersection?

The plane of ABC is intersected by a level line
XY. Point B is 10’ east, 20’ north of A and 15
below A. Point C is 30’ east, 5 north of A and
10’ above A. The line XY is at an elevation of
3’ below A with point X located 2’ due north of
A and point Y located 3’ due south of C. Scale:
17 =10’'. Determine the pierce point of line XY
with the plane of ABC. What is the bearing of
a line drawn from the pierce point to A?

Amns. Bearing = S45°E

Two planes, ABC and DEF, intersect each other.
Refer to Fig. 4-21. Point B is 20’ east, 10’ north
of A and 25’ above A. Point C is 30" east, 5’
south of A and 10’ above A. Point D is 12’ east,
10’ north of A and 20’ above A. Point E is 25
east, 10’ south of A and 5" above A. Point F' is
35" east, 13’ north of A and 10’ above A. Scale:
17 =10'. Locate the line of intersection between
the two given planes and show this line in both
the plan and front views. Determine the visi-
bility of the planes in all views. What is the
bearing of the line of intersection? Use the
edge-view method.

Ans. Bearing = N42°W

Ans. Bearing = N 68° W

dF

fF

Fig. 4-21
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16.

17.

18.

19.

20.

PIERCING POINTS AND PLANE INTERSECTIONS [CHAP. 4

A rectangular frame, ABCD, is supported by two wooden braces, EF and GH. Determine the points
where the braces pass through the plane ABCD. How much of the braces must be removed if they are
not to extend beyond the plane of the frame? See Fig. 4-22 below. Point B is 4’ east, 3’ north of 4
and 8 above A. Point C is 13’ east, 9’ south of A and 8 above A. Point D is 9’ east, 12’ south of A
and at the same elevation as A. Point F is 1’—6"’ east, 6’/ south of A and 8—9" above A. Point F' is
7'—6'" east, 4’ north of A and at the same elevation as A. Point G is 9’ east, 10'—6"" south of A and
8'—9"” above A. Point H is 15’ east, 6’ south of A and at the same elevation as A. Scale: %” =1'=0",

Amns. Remove 3'—10"

Two planes, ABCD and EFG, intersect each other. A4(2,2,5) B(2,2,8) C(5,4,8) D(5,4,5) E(24,84, 64
F(34,2,74) G(44,3, 54). Determine the bearing of the line of intersection between the two planes.
Show complete visibility. Ans. Bearing = N 30°30' W
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Fig. 4-22 Fig.4-23

A pyramid with base ABC and vertex O is shown in Fig. 4-23 above. A line XV passes through the
pyramid. Point B is 12’ east, 2’ north of A and at the same elevation as 4. Point C is & east, 6 south
of A and at the same elevation as A. Point O is 6’ east, 2’ south of A and 10’ above A. Point X is
4’ due south of A and 4’ above A. Point ¥ is 12’ east, 6’ north of A and 8 above 4. Scale: 17=1-0",
Show the intersection of the line XY with the pyramid in both the plan and front views. If point X
is located 2’ further south of A, what would be the distance between the piercing points of the new
line XY and the pyramid? Ans. T.L.=1—6"

Plane ABC and line XY are located as follows: A(1, 11, 4) B(2%, 22,58) C(4,1,4) X(1, 11,51)
Y(24,24, 3%). Determine the approximate coordinate location for the intersection of line XV with

plane ABC. Ans. Pierce point = (12,18,41)

A vein of ore is determined by plane ABC. A rising mine tunnel, XY, is driven toward the vein of
ore. See Fig. 4-24 below. Point B is 100’ east, 75’ south of A and 85’ above A. Point C is 200’ east,
50’ north of A and 25’ above A. Point X is 150’ east, 50’ south of 4 and 25’ below A. Point Y is 250
east, 90’ south of A and 75’ below A. Scale: 1” =50’. How much must the tunnel be extended in
order to reach the vein of ore? Ans. 116’
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The horizontal base of a pyramid is represented by an equilateral triangle, 3" on each side. The three
lateral faces of the pyramid makes angles of 45°, 60°, and 75° with the base plane. Construct a plan
view and the necessary elevation views of the pyramid to determine its altitude. Scale: 12" =1'-0".

Ans. Altitude = 1_11%’ !

Two planes, ABCD and EFG, intersect each other. A(2,4,6)
B(2,2,6) C(5,4,7) D(5,2,7) E(2},34,74) F(34,24,6)
G(5,8,64). See Art. 1.7 for the coordinate system of problem
layout. Determine the bearing of the line of intersection. Show
complete visibility. Ans. Bearing = N64° E

Fig. 4-256 above shows the plan and front elevation views of a
roof section ABCD. Point X represents the top of a television
antenna, Using two views only, determine the true length of the
vertical antenna. Scale: 1”7 =1'-0". Ans. T.L.=9-0"

1

Planes RST and UVW are given in the adjacent Fig. 4-26. Point
S is 2" east, 3" north of B and 3" above E. Point T is 24/’ east,
1" north of R and 2 above E. Point U is located 1’ due north
of R and 2" above R. Point V is 2%" due north of R and 3’ above
E. Point W is 21" east, 11" north of K and 1" above E. Scale:
12”7 =1'—0"”. Determine the line of intersection betwedn the two
planes by using the two-view cutting plane method. What is the
bearing of the line of intersection? Ans. Bearing = N6°W
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Chapter 5

Perpendicular Relationships:
Lines and Planes

5.1 PROJECTION of a POINT on a PLANE

Analysis: A perpendicular line from the given
point to the given plane will determine
the projection of the point on the plane.
It is therefore necessary to locate the
intersection of the perpendicular line
with the given plane.

Example: In Fig. 5-1, the plane ABC and the point X
are given in both the plan and front elevation views. The
problem requires locating the projection of point X on plane
ABC. The first step is to find the perpendicular from the
point to the plane. Draw true length lines AD (horizontal)
and AE (frontal) in both the plan and front elevation views
respectively. Lines AD and AE are derived from the geo-
metric theorem stating that a line is perpendicular to a
plane if it is perpendicular to two non-parallel lines in the
plane. From point X in both views, draw a line of indefinite
length perpendicular to the true length lines. The second
step is to locate the intersection of this perpendicular line
with the given plane. Assume a vertical cutting plane
through the perpendicular from X in the plan view. The
intersection of the cutting plane and given plane ABC is
along line YZ. The intersection of YZ and the perpendicular
from X in the front elevation view will locate the projection
of the point on the plane. The plan view of this point is
obtained by simple projection from the front elevation view.

5.2 PROJECTION of a LINE on a PLANE

Fig. 5-1.
Projection of a Point on a Plane

Analysis: The projection of a line on a plane is based upon the same principle as shown in
the previous article. It was shown that the projection of a point on a plane is
the point at which a perpendicular from the point to the plane intersected the
plane. The projection of a line on a plane is determined simply by projecting

any two points of that line on the given plane.

Once the two point projections

are determined, a line is drawn through them to obtain the required projections

of the line on the plane.

Example 1: (Fwo-View Cutting Plane Method) In Fig. 5-2 below, the plane ABC and the line XY are
given in both the plan and front elevation views. Draw true length lines AD and CE in both plan and
front views, respectively. From points X and Y in each view, draw perpendiculars to the true length lies.
Assume vertical cutting planes through the perpendiculars from X and Y in the plan view. The inter-
sections of the cutting planes with the given plane are along lines ST and UV. The intersection of ST and
the perpendicular from X in the front view will locate the projection of point X in the front view. Label
this point P. The intersection of UV and the perpendicular from Y in the front view will locate the
projection of point Y in the front view. Label this point Q. With the projection of both X and ¥ determined,
simply connect P and @ in the front view to determine the required line. The plan view of points P and @

is obtained by simply projecting from the front view.

84
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Fig.5-2. Fig. 5-3.
Projection of a Line on a Plane BF Projection of a Line on a Plane
(Two-View Cutting Plane Method) (Edge—-View Method)

Example 2: (Edge-View Method) In Fig. 5-3 above, the plane ABC and the line XY are given in both
the plan and front elevation views. An auxiliary elevation view is drawn showing the plane as an edge
as well as the line XY. Draw perpendicular projection lines from each end of the line XY to the edge
view of the plane. Label the intersection of these projections from X and Y as P and @, respectively. The
auxiliary elevation view 1 shows the perpendicular projection lines in their true length, so they must
appear in the plan view parallel to the H-1 folding line. Project P and @ back to the plan view until they
intersect the projections from X and Y which are parallel to the H-1 folding line. These intersections will
determine the plan view of the given line projected on the plane ABC. Simple projection and transfer of
distances will locate the front elevation view of the given line projected on the plane,

5.3 SHORTEST DISTANCE from a POINT to a LINE

A. Line Method Slope Angle—a>c"

Analysis: The shortest distance from a given point %
to a given line is the perpendicular dis-
tance. When the given line appears in
its true length, the shortest distance will
appear as a perpendicular to it. If a
view is drawn showing the given line as
a point, the required distance will appear
in its true length,

Example: Fig. 5-4 shows the given line AB and the Z an*

point C in both the plan and front elevation views. To
determine the shortest distance between point C and the line
AB, we first show the line AB in its true length in either
an auxiliary elevation view as shown, or by taking an inclined . &
view off the front view. The shortest distance will appear Fig.5-4.
in this view as the perpendicular from point C to the line af
AB. Label this point of intersection, D.

To obtain the true length of the shortest distance, CD, draw an inclined view which shows the line
AB as a point. Since folding line 1-2 is parallel to CD in view 1, view 2 will show the shortest distance
in its true length. Project point D back to the other views.
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Note: If the problem also involves finding the slope of the shortest distance, view 2 would be omitted
and an alternate auxiliary elevation view would be drawn to determine both the true length and slope of
the shortest distance. This procedure, of course, would be preceded by locating point D on line AB in the
plan view. The bearing of the shortest distance would appear in the plan view.

B. Plane Method

Analysis: A line and a given point not on
the line determine a plane. If Slope A“gledﬂq:?cz
the plane is shown in its true size, '
then a perpendicular from the
point to the line will be the short-
est distance.

a?

True Size
of Plane ABC

Example: Using the same set-up as in the line
method, Fig. 5-5 shows line AB and point C in both
the plan and front elevation views. Connect points
A and B with C to form plane ABC. Show the plane
first as an edge, and then in its true size. Draw a
perpendicular from point C to line AB. Label this in-
tersection point, D. In view 2, CD is the true length
of the shortest distance from point C to line AB.

Note: Ag in Fig. 5-4, if the slope of the short-
est distance is required, then, after projecting line
CD back to the plan view, an auxiliary elevation
view should be drawn which will give both the slope
of the shortest distance as well as a check for true . . A A
length. The bearing of the shortest distance will be Fig.5-5. Shortest Distance from a Point to a Line
shown in the plan view. (Plane Method)

54 To DRAW a LINE PERPENDICULAR to a PLANE
A. Edge-View Method

Analysis: A view showing the plane as an edge will show the true length of a line per-
pendicular to the plane. Since the view shows the true length of this perpen-
dicular distance, the related view will show the perpendicular line parallel to
the folding line. The point where the perpendicular line pierces the given
plane will be evident in the edge view, and its location in other views is de-
termined by simple projection.

Example: In Fig. 5-6 below the plane ABC and the point X are given in both the plan and front
elevation views. The auxiliary elevation view shows the plane ABC as an edge. From point X in this view,

a perpendicular line is drawn to the edge view of the plane. This perpendicular line pierces the plane at Y.

Line XY, being in its true length in view 1, must appear parallel to H-1 in the plan view. Point Y is
obtained in the front view by simple projection.

B. Two-View Method

Analysis: A geometric theorem tells us that, if a line is perpendicular to a plane, it is
perpendicular to every line on that plane. Therefore, the required perpendicular
will appear perpendicular to any true length line shown on the plane in that
particular view. The pierce point of this perpendicular line can be determined
by the methods shown in Article 4.1.

Example: In Fig. 5-7 below, plane ABC and the point X are given in both the plan and front eleva-
tion views. The level line AD is drawn in the front view and projected to the plan view where it establishes
the direction of all true length lines on the plane in that view. The line from X must be perpendicular
to this true length line. A frontal line AE is drawn in the plan view and is projected to the front view
where it establishes the direction of all true length lines on the plane in that view. Again, the line from X
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must be perpendicular to the true length line. Since the direction of the perpendicular line to the plane is
established in two views, the pierce point Y is determined by the method of Article 4.1-B.

& &y o b1

F

[

Fig.5-6. Line Perpendicular to a Plane Fig.5-7. Line Perpendicular to a Plane
(Edge-View Method) {Two-View Method)

55 SHORTEST GRADE LINE from a POINT to a PLANE

Analysis: The plane must appear as an edge in an elevation view in order to show the
slope angle of the required grade line.

Example: The plan and front elevation views of plane ABC and point X are given in Fig. 5-8 below.
Draw an auxiliary elevation view showing point X and the edge view of plane ABC. To locate the shortest
level distance from X to the plane, draw a line parallel to folding line H-1 from X to the edge view of the
plane. To locate the shortest 30% grade line from X to the plane, draw a line from X at 30% with the
H-1 line, Since the lines XD and XE are in their true length in view 1, they will appear parallel to H-1 in
the plan view. Locate lines XD and XE in the front view by simple projection.

It should be noted that all shortest grade lines will have the same bearing regardless of the slope
expressed. b
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Fig.5-8.
Shortest Grade Line from a Point to a Plane
F
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56 To DRAW a PLANE through a GIVEN POINT and PERPENDICULAR
to a GIVEN LINE

Analysis: This problem is the reverse of the two-view method in Article 5.4. In Fig. 5-7,
the plane and the point were given, and the perpendicular line through the
given point was found to be perpendicular to any true length line on the plane.
In this case, however, the line is given and a point known to be in the indefinite

plane is also given. Through this given point, a level .
a

line is drawn which will be in itsr true length and ' 21 xF
perpendicular to the given line in the plan view. @-";
Likewise, a frontal line is drawn through the given .

point in the plan view, and its true length will appear
perpendicular to the given line in the front view.
Since both lines are passed through point X, they in- H
tersect at that point, establishing a plane. F

Note: An additional view showing the line in its
true length will also show the plane as an edge per- A0l O
pendicular to the line.

Example: In Fig. 5-9, the line AB and the point X are given in both ¥ x¥
the plan and front elevation views. A level line of indefinite length YX is
drawn through point X. In the plan view, the line will appear in its true .
length and perpendicular to the given line AB. A frontal line of indefinite - Fig-5-9. Plane through a

length ZX is drawn through point X. In the front view the line will appear Given P_Oi“t and
in its true length and perpendicular to the given line AB. The plane XY Z, Perp?ldlcula:r to
containing the given point X, is perpendicular to the line AB. a Given Line

5.7 To DRAW a PLANE through a GIVEN LINE and PERPENDICULAR
to a GIVEN PLANE

Analysis: Two intersecting lines determine v
a plane. Since one line in the
required plane is already given, .
the solution requires another line ?
on the plane to be constructed.
This second line which must in-
tersect the given line also must
be perpendicular to the given
plane. The required plane, in
order to be perpendicular to the H
given plane, must contain a line F
perpendicular to the given plane.
Example: In Fig. 5-10, the plane ABC and
the line XY are given in both the plan and front
elevation views. A level line AD is drawn and it a
appears in its true length in the plan view. A line
X7 is drawn perpendicular to the true length line
in the given plane. A frontal line CE is drawn and
it appears in its true length in the front view. 2"
Again, the line XZ is drawn perpendicular to the
true length line in the given plane. Since both lines Fig.5-10
pass through point X, they determine the required Plane Containing a Given Line and

plane. Perpendicular to a Given Plane
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58 To DRAW a PLANE through a GIVEN POINT PERPENDICULAR

to EACH of TWO GIVEN PLANES

Analysis: A geometric theorem tells us that
all planes containing a line per-
pendicular to another plane are
themselves perpendicular to the
other plane. If two lines, one
perpendicular to one of the given
planes and the other perpendicu-
lar to the other given plane, inter-
sect at a given point, they de-
termine a plane perpendicular to
each of the two given planes.

Example: In Fig. 5-11, the two planes ABC
and DEF along with point X are given in both the
plan and front elevation views. Level and frontal
lines are shown in both given planes and they appear
in their true length, In both views, line XY is
passed through point X perpendicular to plane ABC.
In both views, line XZ is passed through point X
perpendicular to plane DEF. XYZ is the required
plane which is perpendicular to both planes ABC
and DEF.

e

b* | lr

& dr
Fig.5-11. Plane through a Given Point

and Perpendicular to each
of Two Given Planes

Solved Problems

1. Given: Line AB is perpendicular to line
CD. A@4,1,6%) B(5%,31,5) C(33,2,X)
D(5%,1%,6%4). See Art. 1.7 for the co-
ordinate system of problem layout. Re-
fer to Fig. 5-12.

Problem: Determine the complete co-
ordinate location for point €. Draw the
plan and any other necessary views.

Solution:

Using the given data, draw the front view
and partial plan view. Draw an inclined view
showing point D and the true length of line AB.
From point D in this view, draw a line perpen-
dicular to AB until it intersects the projection
from point C in the front view. Point C is thus
located in the inclined view and can now be
transferred to the plan view. The missing
ordinate for point C is found in the plan view.
Ans. C(84,2,5%)

Fig.5-12 pu

bF
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2.

3.
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Given: Point C(4,3,44) is the vertex of a triangle whose base is A(1,2%,5) B(3,1,6).
Refer to Fig. 5-13 below. Scale: 6”7 =1—0".
Problem: Determine the true length, slope, and bearing of the altitude of the triangle.

Solution:

The plan and front elevation views of plane ABC can be determined by the given data. Draw
an auxiliary elevation view to show the plane as an edge. Draw inclined view 2 which will show the
true size of triangle ABC. From point C in view 2, draw a perpendicular to line AB. Label this
intersection point, X, and project CX back to the other views., The true length of the altitude is
measured in view 2. The bearing of the altitude is measured in the plan view. Draw auxiliary eleva-
tion view 3 to obtain the slope of the altitude. The true length will also appear in this view.

Ans. T.L. = 21%”, Slope = 36°, Bearing = N56° W

Plane as Edge >/I)H
Bearing — ‘6
yH

a/
S

Fig.5-13 Fig.5-14

Given: AB is the centerline of a mining tunnel. From point X on the surface of the
ground, a ventilating shaft is to be sunk to the tunnel. Point B is located 150’ east,
50’ north of A and 40’ above A. Point X is 60’ east, 60’ north of A and 75’ above A.
See Fig. 5-14 above. Scale: 17 =100".

Problem: Using the line method, determine the true length, bearing, and per cent
grade of the shortest possible ventilating shaft. Show the ventilating shaft in all views,

Solution:

Using the given data, draw the plan and front elevation views of tunnel AB and point X. Draw
an inclined view 1 showing tunnel AB in its true length and point X. Construct a perpendicular line
from point X to the line AB. Label this intersection point, Y. Project line XY back to the front and
plan views. Measure the bearing in the plan view. Draw an auxiliary elevation view 2 in order to
find the true length and grade of line XY. Ans. T.L,=65'—6", Bearing = S 37° E, Grade =—128%
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4. Given: Two struts are determined by the lines AB and CD which are to be connected
by another strut perpendicular to both AB and CD. Point B is 12’ east, 16’ north of A
and 14’ below A. Point C is located 6’ west, 10’ north of A and at the same elevation
as A. Point D is 4’ east, 12’ north of A and 16’ below 4. Refer to Fig. 5-15 below.
Scale: &7 =1-0".

Problem: Using the line method, determine the true length, slope, and bearing of the
connecting strut.
Solution:

Using the given data, locate the front and plan views of struts AB and CD. Draw an auxiliary
elevation view 1 showing both struts, one of which, AB, is shown true length. Draw inclined view 2
in order to see AB as a point. In this same view, draw CD and a line perpendicular to CD from the
point view of AB. This perpendicular distance is the true length of the connecting strut. Label each
end of the strut X and Y. Project the strut XY back to the other views. The bearing of XY is
measured in the plan view. Draw auxiliary elevation view 3 to obtain the slope of the connecting strut.

Ans. T.L. = 7-0", Slope = 30°, Bearing = N 77°30' W

Slope

c?

b2wla?
Lz,

dZ

dl’-‘

Fig.5-15
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5.
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Given: The base of a right pyramid,

ABCD, is located as follows: A(2,2,5)

B(33,1%,6) C(4%,2,6) D(3%,24,5). The

altitude of the pyramid is 24”. See Fig.

5-16. Scale: 17 =1".

Problem: Draw the plan and front ele-

vation views of the pyramid showing

proper visibility. H

Solution: F
Using the given data, draw the base of

the pyramid in both the plan and front elevation

views. - Locate the center of the base by drawing

diagonals. Label the center of the base, point

X. Draw inclined view 1 to show the base plane

as an edge. From point X in this view draw a

perpendicular line 21" long. Label the vertex

of the pyramid, point Y. Project the vertex

back to the other views. Connect points A, B,

C, and D to point Y to complete the views.

Careful visualization will determine proper
visibility.

Given: There is a problem of possible interference between an existing 127 diameter
pipeline AB and a 10’ diameter spherical tank. See Fig. 5-17. Point B is located 12’
east, 5" north of A and 3’ below A. The center of the spherical tank, point X, is to be
located 4’ east, 8’ north of A and 6’ below A. Scale: §”=1-0".

Problem: What would be the clearance, if any, between the pipe and the tank? Use
the plane method.
Solution:

Using the given data, locate the line AB and the point X in both the plan and front elevation views.
Connect point X to each end of line AB to form plane ABX. In auxiliary elevation view 1, show the
plane as an edge. Draw inclined view 2 which will show the true size of plane ABX. Using X as the

center, draw a partial sphere. Show the pipe diameter on line AB. Measure the clearance as indicated
by drawing a perpendicular from X to line AB. Amns. Clearance =1'=9"

H\1

Clearance

Fig.5-17
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7. Givem: Plane ABC and point X are located as follows: B is 8" due east of A and at the
same elevation as A. Point C is 8’ east, 6’ north of A and 4’ below A, Point X is located
6’ east, 1’ north of A and 5’ below 4. Refer to Fig. 5-18 below. Scale: 3/ =1-0".

Problem: Find the shortest horizontal distance from the point X to the plane ABC.
Determine the length of the shortest line from X to the plane and having a slope of 30°.
What is the bearing of each line? Show both lines from X in all views.
Solution:

Draw the plan and front elevation views of plane ABC and point X. Since line AB is a frontal-
Ievel line, the plane will appear as an edge in the profile view. Draw a level line from point X to the
plane ABC extended. Label the intersection point Y and project XY back to the other views. In the
profile view also, draw a line from X to intersect the plane and sloping 30°. Label the intersection
point Z and project XZ back to the other views. Line XY is the shortest horizontal distance from X
to plane ABC and line XZ is the shortest line from X to ABC, having a slope of 30°. The true lengths
are measured in the profile view and the bearings are measured in the plan view.
Ans. Level T.L. = 6/—61", 30° Slope Line T.L. = 4'—0", Bearing XY and XZ = Due North-South

Plane
as Edge

Plane as Edge

Fig.5-18

8. Given: A television antenna extends above the roof of a house as shown in Fig. 5-19
above. The roof plane ABCD and the top of the antenna, point X, are located as follows:
A(8,3%,6%) B(6,33,7%) C(6%,14,6) D(3%,1%,5) X(44,4%,5%). Scale: }/=1-0".
Problem: If a supporting brace extending to point X is perpendicular to the roof,
how long must the brace be? How long is the vertical antenna? Show the brace
and antenna in all views.

Solution:

Using the given data, lay out the plan and front elevation views of the roof plane and the top
of the antenna. Draw auxiliary elevation view 1 to show point X and the edge view of the roof plane.
From point X in view 1, draw a perpendicular to the edge view of the plane ABCD. This distance
will be the true length of the brace. Label the intersection of the brace and roof as point V and
project it back to the plan and front elevation views. From point X in view 1, draw a vertical line
perpendicular to the H-1 folding line. The intersection of this line with the roof will be the true

length of the antenna. Label the intersection point, ¥, and project it back to the plan and front eleva-
tion views. Ans. Brace T.L. = 5'—7", Antenna T.L. = 9'—0"
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9.

10.

11.

PERPENDICULAR RELATIONSHIPS: LINES AND PLANES [CHAP. 5

Given: Plane ABC and point X are shown in Fig. 5-20 below. The plane and point X
are located as follows: A(4,3,4%) B(5,1,53) C(6,2%,4) X(54,8,5). See Art. 1.7 for
the coordinate system of problem layout. Scale: }”=1"—-0".

Problem: Determine the true length and bearing of the shortest line from X to the
plane and having a —45° slope. Use the edge-view method.

Solution:

Draw the plan and front elevation views of plane ABC and point X as per given data. Draw
auxiliary elevation view 1 to show point X and the edge view of plane ABC. From point X, draw a
line at —45° slope until it intersects the edge view of the plane. Label the intersection point, Y, and
project line XY back to the plan and front views, using proper visibility. The true length of the

required line is measured in view 1 and the bearing of XY is measured in the plan view.
Ans. T.L. = 3'—7", Bearing = S24°W

Fig. 5-20 Fig.5-21

Given: Point X and intersecting planes ABC and BCD, having BC as the common
line of intersection. See Fig. 5-21 above. Point B is 2’ east, 5’ north of A4 and
6’ below A. Point C is 12’ east of A, 5 north of 4 and 1’ below A. Point D is 9
east, 1’ south of A and 10’ below A. Point X is 5’ east, 1’ north of A and 2’ below A.
Scale: 3”7 =1-0".

Problem: How far is point X from each plane? Show these distances in all views
with proper visibility.

Solution:

Using the given data, draw the plan and front elevation views of planes ABC, BCD, and point X,
Since the common line of intersection, BC, is a frontal line, it will appear true length in the front
elevation view. Locate folding line F-1 perpendicular to the true length line of intersection and
project to secure the edge view of each plane and point X. Draw a perpendicular to each plane from
point X. The perpendicular distance is the true distance from the point to each plane. Project the
lines XY and XZ back to the other views. Use careful visualization to determine proper visibility.
Ans., XY =4'"—6", XZ=1"—9"

Given: Plane ABCD and points X and Y. The plane and points are located as follows:
A(1,2,5) B(@2,24,4) C(4,1,5) D(3,5,6}) X(2,31,6}) Y(11,1,4}). See Fig. 522
below. Scale: $"=1-0".
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12.

Problem: Which of the points is
closest to the plane and by how
much? Show the perpendicular dis-
tances in all views. Determine
proper visibility.

Solution:

Using the given data, locate the plan
and front elevation views of the plane
ABCD and the points X and Y. Draw
auxiliary elevation view 1 to show points
X and Y in relation to the edge view of
plane ABCD. Draw a perpendicular line
from both X and Y to the edge view of
the plane. The perpendicular distance is
the true distance from each point to the
plane. Measure both true length distances
and subtract to determine which point is
closer and by how much. Label the inter-
section of the line from X to the plane
with the letter V. Label the intersection
of the line from Y to the plane with the
letter Z. Projeet lines XV and YZ back
to the other views.

Amns. Y is closer by 2'—7"

Given: ABC and DEF are parallel planes and point X is located on the plane ABC.
Point B is 7" east, 5’ north of A and 4’ below A. Point C is located 8 east, 2’ south of
A and at the same elevation as A. Point D is 1’—6”” east, 1’ south of A and 5" above A.
Point £ is located 8—6" east, 4’ north of A and 1’ above A. Point F' is located 9—6""
east, 3’ south of A and 5’ above A. The point X on plane ABC is 7 due east of A.
See Fig. 5-23 below. Scale: {7/ =1—0",

Problem: Determine the shortest distance from point X to the plane DEF. Show
this distance in all views. Show proper visibility.

Solution:

Draw the plan and front elevation views of the two planes. Locate point X in the plan view.
Draw auxiliary elevation view 1 to show both planes as parallel edge views. Project point X from the
plan to the auxiliary elevation view 1, locating it on the edge view of plane ABC. Draw a perpendicular
from X to the edge view of plane DEF. Label this point, Y, and project the line XY back to the plan
and front views. In the plan view, the line XY will be parallel to folding line H-1, since the true length
of the required line is shown in view 1. Use careful visualization to determine proper visibility.

Ans. Distance =4'—0"
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Given: A pipeline is represented by the line AB in Fig. 5-24. A 90° tee is to be in-
stalled in the pipeline to connect a pipe from point X. Scale: %7 =1-0".

Problem: What is the true length, slope, and bearing of the connecting pipe? How
far from point A must the pipeline be cut? Use the line method. Show the connecting
pipe in all views.

Solution:

Using the given data, locate the pipeline and point X in both the plan and front elevation views.
Draw auxiliary elevation view 1 showing point X and the true length of AB. From point X, draw a
perpendicular line to the pipeline. Label this connecting point, Y, and project XY back to the plan
and front views. Auxiliary elevation view 1 will show the true distance of the connection from point A.
The bearing of the-connecting pipe will be measured in the plan view. To obtain the true length and
slope of the connecting pipe, draw auxiliary elevation view 2.

Ans. T.L. = 13'—5"”, Slope = 53°, Bearing = N 26° E, Distance from A = 7'—6"

]

14’0

RIb:

90

_L Slope

bF

160"

Fig.5-24

14. Given: Plane ABC and point Y located as follows: A(3,2,8) B(33,X,63) C(4,3%,X)

Y(1,3,6%). Refer to Fig. 5-25.
Problem: Draw the plane ABC perpendicular to line YA. What is the approximate
coordinate location of point B?

Solution:

Using the given data, draw partial plan and front elevation views of the plane and point Y.
Connect point Y to point A in both views. Draw auxiliary elevation view 1 to show line YA in its
true length. At point A in view 1 draw a line perpendicular to the true length of YA. Project point
B from the plan view to view 1 and locate point C in this view also. Both points B and C will be
located on the line drawn perpendicular to the true length of YA. Points 4, B, and C in view 1
establish the edge view of the plane which is perpendicular te the line YA. Complete the plan and
front elevation views. Ans. B(3%, —g, 63%)
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15. Given: Planes ABC, DEF and point X located as follows: Point B is 2’ east, 4 north
of A and 2’ above A. Point C is 5 east, 2’ north of A and 3’ below A. Point D is 9’
east, 2’ north of A and 4’ below A. Point E is 12’ east, 5’ north of A and 2’ above A.
Point F is 14’ east, 1’ south of A and 1’ below A. Point X is located 7’ east, 3’ south
of A and 3’ above A. See Fig. 5-26 below. Scale: %7 =1"-0".

Problem: Locate a plane through point X which is perpendicular to both planes ABC
and DEF. Determine the slope of this new plane.
Solution:

Using the given data, draw the plan and front elevation views of planes ABC, DEF and point X.
Draw a true length line in each of the given planes in both views. In both views, line XY is passed
through point X perpendicular to plane ABC. In both views, line XZ is passed through point X per-
pendicular to plane DEF. XYZ is the required plane which is perpendicular to both planes ABC and
DEF. Auxiliary elevation view 1 will show the plane XYZ as an edge and the slope can be measured
in this view. Ans. Slope = 46°

Fig.5-26
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16.
17.
18.
19.
20.
21.
22,
23.
24.
25.

26.

27.

28.

30.

31.

PERPENDICULAR RELATIONSHIPS: LINES AND PLANES

Supplementary Problems

In each of the following problems 16 to 25 determine the true length, slope, and bearing of the shortest
distance from point X to line AB. Show the shortest distance as a line in all views. Measure the true length
to the nearest sixteenth of an inch. Scale: 12/ =1'-0",

See Art. 1.7 for the coordinate system of problem layout.

[CHAP. 5

Bearing = Due East—West

T.L. Slope Bearing
A(2,4,5) B(4,2,6%) X(3,3,5%) Ans. 1 18° N22°W
A(2,3L,4%) B(2,2,6) X(24,14,5) Amns. 13" 39°307 N34°W
A(2,4,6) B(4,4,5) X(3,31,51) Ans. 18v 73° N26° E
A(2,4},6) B(4,44,6) X(24,3,9) Ans. 1147 56° Due N-S
A@2,8,6) B(2,2,4)) X(2,8%,5) Ans. 187 656°30' Due N-S
A(1,2L,5) B(4,4, 51) X(2%,2,6) Ans. 18" 42° S23°W
A(2,1,4}) B(4%,384,6) X(3,24,6%) Ans, 13" 3230’ S 28°30' E
A(5,14,5) B(5,41,6) X(3,3, 51) Ans. 2! 3°30’ N82°E
A(21,1,5) B(8L,4,6) X(24,8,6%) Amns. 1" 1°30/ S 35°30'E
A@2,41,6) B(5,2,5) X(5,3, 4 Ans. 17 45° N29° W
‘Fig. 5-27 shows a plane, ABCD, represented -
by parallel lines. Scale: 1”=1'—0". Find B_gr L2 5’0"
the shortest horizontal distance from X to l
the plane. Also determine. the shortest line ¢t
from X to the plane and having a 25% grade. \
What is the bearing of each line? af
Ans. Shortest Horizontal distance = 5'—21" . 5 ’
Shortest Line of 25% Grade = 4'—38" s EL
Bearing of both lines = N 656°30" E Xl -+ dv
© x
ABCD is a parallelogram having point X as \
the geometric center. Complete the plan and ¥
front elevation views. A(2},4,54) B(5,3,7) H -
X(3%,21,7). Determine the coordinate loca- F
tions of points C and D. af N
Ans. Point C = (44,1,8]) ?a‘
Point D = (2,2, 7) P
bP
Line AB determines a portion of a water line. x -
Point B is located 150’ east and 75’ north of . o
A, as well as being 50’ above A. Point X ¢ N
locates the water meter in a mnearby house. °|
X is 75 east and 75’ north of A and is 75’ =
above A. Scale: 1”=50". Determine the Fig.5-27 1
shortest distance from the meter to the main ar
line if a 45° connection is made at the main
line. Ans. T.L.=76’
In Fig. 5-28 we have shown the plan of a corner lot in a resi- at
dential area. Scale: 1”7 =100’. AB and BC are the centerlines :%L N
of an existing water main. If the water meter in the house is L7 Elevations:
located at D, what would be the shortest distance to the exist- _ ,J30/‘. A=160"
ing water line? Show this shortest distance in all views. § ! B=125'
Ans. 155/ c= 8
D =185
What would be the true length of a branch pipe from X to . .
the line AB if the connection is to be made with a 90° tee? b - ¢
Seale: 17 =40". A(1,1,4) B(381,2,4) X(1,24,4). Determine
the slope and bearing of this new connecting pipe. 180’
Ans. T.L. = bb'—6", Slope = —68° R
Fig.5-28

AB is a pipe segment to which another pipe from C must be connected with a 45° elbow. A(L,14,8)
B(31,84,8) C(2,1,9). Scale: 1”7 =1'—0". Determine the true length, slope, and bearing of the
connecting pipe. Ans. T.L. = 8'-2", Slope = 56°30’, Bearing = S27° E
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32.

33.

Fig. 5-29 shows the roof of a cottage and the top of a nearby
flagpole. Scale: 1”7 =10'—0". The shortest possible guy wire
is to be anchored to the roof from the top of the pole, How long
must this guy wire be? Ans. T.L.=17-10"

AB represents a coal mining tunnel. An explosion has sealed
off the tunnel at the main access shaft from the surface of the

earth. It is decided to start a new shaft from point X on the o
earth’s surface in order to reach the entombed miners. Point B

is located 150’ east, 50’ north of A and 40’ above A. Point X is 7 A N AT
60" east, 60’ north of A and 76’ above A. Scale: 1" =50". De- Wﬁ_t"xp

termine the true length, bearing, and grade of the emergency
shaft. If the disaster crew averages 13’ per hour, how long will
it take them to reach the tunnel which has been sealed off from
the main shaft?
Ans. T.L. = 65'—6"
Bearing = S37° E
Grade = 128% .
Time = About 5 hrs. Fig.5-29

12'—0"

In each of the following problems 34 to 38 determine the true length of the shortest distance from point

X to the plane ABC. What is the bearing of the shortest distance? Secale: 17 =1'-0".

40.

41.

42.

See Art. 1.7 for the coordinate system of problem layout.

T.L. Bearing

A(2,3,5) B(3,1,64) C(84,2L,4) X(24,4,43) Ans. 1'—9” N47° E
A(1,8,6) B(21,2,6) C(4, 4,5i) X(3,4L,7) Amns. 1'-61" S10°30''W
A(1,11,561) B(3,2,4) C(4},8,6) X(2,1,6%) Amns. 163" S14°30'W
A(14,3,4) B(2,8,5) C(4},8L%,6) X(8L,8,71) Ans. 0'— 11” N 63°30'' W

A(2,4, ) B(2,8,5) C(4,3,4) X(31,1,5) Amns. 1'-118" S27°W
Fig. 5-30 shows a transition piece which is to be connected by a
cable passing through point X. Scale: 1" =1-0". Determine $
the shortest possible distance from the point X to the nearest N Opening 12” sq.
face of the transition. Amns. Distance =2'—11" o

Plane ABC and point X. Point B is 10’ east, 8 north of 4 and
12’ below A. Point C is 16’ east, 2’ south of A and 5 below A.
Point X is 6" east, 2’ south of A and 14’ below A. Scale:
4"=1"—0". Determine the shortest horizontal distance from point
X to the plane of ABC. What would be the shortest line from X
to the plane having a grade of 35%7? Determine the bearing of
each line from X.
Amns. Shortest Horizontal Distance = 12'—7" F T e
Shortest line having 35% Grade = 10'—0"

Bearing of both lines = N 23°30’' E | »
] N

Line AB determines a portion of a water line. Point B is located i FiL
150’ east and 75’ north of A, as well as being 50’ above A. i v
Point X locates the water meter in a nearby house. X is 75’ east l Er
and 75" north of A and is 75’ above A. Secale: 17=50'. De- | &0

termine the true length, slope, and bearing of the shortest pos-
sible connecting pipeline from the water meter to the main
water line. Solve by using the line method. Show the connecting
pipeline in all views.
Ans. T.L.=54’

Slope = —50°

Bearing = S46° 30’ E
Two lines, AB and CD, intersect to form a plane. It is required to find the distance from a given
point X to the plane of ABCD. Point B is located 9’ east, 5’ south of A and its elevation is not given.
Point C is 1’ west, 8’ south of A and 5 below A. Point D is 6’ east, 1’ north of 4 and 1’ above 4.
The point X is located 7’ east, 8’ south of A and 2’ above A. Scale: 1" =1'—0".
Ans. Distance =2'—10"

Fig.5-30



Chapter 6

Dihedral Angle and
Angle Between Line and Plane

An engineer is often required to determine the angle between two intersecting planes.
He is also expected to know how to determine the true size of the angle between a line
and a plane. The knowledge of the underlying principles involved in these two items may
be considered essential to most students of engineering and science.

6.1 DIHEDRAL ANGLE

Definition: A dihedral angle is the angle formed by two intersecting planes. The dihedral
angle is measured in a plane perpendicular to the line of intersection of the
two planes. (See Fig. 6-1 below.)

Vertical
Plane

Plane Y
as Edge

-+—— Plane Y

 -|

. Vertical Plane

Fig.6-1. Dihedral Angle

A. Line of Intersection Given

Analysis: A view which shows the line of intersection of the two planes as a point will
also show the two planes as edges. The angle between the two edge views of
the planes is the true size of the dihedral angle.

Example: (Fig. 6-2 below.) It is desired to find the dihedral angle between the two given planes,
ABD and ACD, having the line of intersection of the two planes given. An auxiliary elevation view is
drawn showing the line of intersection AD in its true length. The inclined view 2 is then drawn to show
the line of intersection as a point. This view also shows the two given planes as edges. The dihedral angle
is measured between the two edge views.

Since inclined view 2 shows the edge views of both planes, an additional view projected from each
edge view will show the true size of each plane. Inclined view 3 shows the true size of plane ACD.

100
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True Size of
Plane ACD

Fig.6-2

B. Line of Intersection Not Given

Analysis: If both planes can be seen as edges in the same view the dihedral angle can
be measured between the two edge views.

Example: In Fig. 6-3 below, the two planes ABC and DEF are given in both the plan and front
elevation views. An auxiliary elevation view is drawn showing plane DEF as an edge. Plane ABC is
also projected into each view. An inclined view 2 is then drawn to show the true size of plane DEF. Any
view that is projected from view 2 will show the plane DEF as an edge. However, in order for plane ABC
to appear as an edge in the inclined view 3, a line on plane ABC must be shown as a point in that view.
Therefore, in view 1 a line parallel to folding line 1-2 is drawn from B to Y so that line BY will appear
in its true length in view 2. This true length line in view 2 establishes the line of sight for inclined view 3
because it will show line BY as a point on the edge view of plane ABC. Either angle formed by the two
edge views can be considered the dihedral angle.
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Fig.6-3
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6.2 To DETERMINE the ANGLE between a LINE and a PLANE

A. Plane Method

Analysis: The reguired angle lies in a projecting plane which is perpendicular to the
given plane. The projecting plane will contain the given line. A view showing
the given plane as an edge and the given line in its true length will also show
the angle between the two. Any view related to the view in which the true
size of the plane appears will show the plane as an edge. Therefore a view
which is related to the true size of the plane and which shows the true length
of the given line will also show the true size of the angle made by the line
piercing the given plane.

Example: In Fig. 6-4 below, the plane ABC and the line XY are given in both the plan and front
elevation views. Draw auxiliary elevation view 1 to show the plane as an edge. Inclined view 2 shows
the true size of plane ABC. As in view 1, the line XY is projected into this inclined view also. Folding
line 2-3 is located parallel to the line XY in view 2, thus yielding view 3 where the line will be shown in

its true length and the plane ABC will again appear as an edge. The true size of the angle between the
line and the plane can be measured in this view.

The pierce point of the line and plane can be determined by methods previously explained. Careful
visualization will show which portions of the line XYV are hidden and which are visible.

True Size of Plane

S
T.L, . -
Y \A
cS

True Size of Angle
between Line and Plane

Fig.6-4. Angle between a Line and a Plane — (Plane Method)

B. Line Method

Analysis: The line method of determining the angle between a line and a plane involves
showing the line in its true length, then as a point, and then again in a view
showing the true length with the plane appearing as an edge.

Example: In Fig. 6-b below, plane ABC and line XY are given in both the plan and front elevation
views. An inelined view 1 is drawn showing the line in its true length. Another inclined view 2 shows
the point view of the line. In view 1 a line BD on the plane is drawn parallel to the folding line 1-2 thus
appearing in view 2 as a true length line on the plane. Folding line 3-2 is located perpendicular to the
true length of BD, thus showing plane ABC as an edge and the line XY in its true length again. The inter-
section of the line and the plane in this view determine the true size of the angle between them.
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True Size of Angle
between Line and Plane

x?

Plane as Edge

Fig.6-5. Angle between a Line and a Plane — (Line Method)

C. Complementary-Angle Method

Analysis: If the complement of the required angle can be determined, then the angle itself
will be known. Therefore, select any point on the given line and draw a per-

pendicular to the given plane.

determine a plane.

This perpendicular line and the given line
Show the true size of this newly-constructed plane, and

the required angle will be 90° minus the true size of the complementary angle.

Example: In Fig. 6-6 the plane
ABC and the line XY are given in
both the plan and front elevation
views. Draw a true length line in
both the plan and front elevation
views of the plane ABC. From point
X in each view draw a line of in-
definite length, XZ, perpendicular to
the true length lines. Plane ABC can
now be disregarded since it is imma-
terial where line XZ pierces the plane.
Draw an auxiliary elevation view
showing plane XYZ as an edge. Draw
an inclined view 2 showing plane
XYZ in its true size. The comple-
mentary angle YXZ is seen in its-true
size in this view. Construct a 90°
angle at point X which includes the
complementary angle. The right angle
minus the complementary angle will
determine the required angle between
the line XY and the plane ABC.

x2

Required Angle

2F

Fig.6-6. Angle between a Line and a Plane
(Complementary-Angle Method)
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Solved Problems

Given: ABD and ACD represent two in-
tersecting planes as shown in Fig. 6-7.
Point B is 6’ east, 4’ north of A and 6’ above
A. Point C is 6’ east, 3’ south of A and 6
above A. Point D is located 10’ due east of
A and 3’ above A. Scale: {7/ =1'-0".
Problem: Determine the dihedral angle
formed by the intersection of the two
planes.

Solution:

Using the given data, complete the front and
plan views. Since the common line of intersection
between the two planes is a frontal line, it will
appear in its true length in the front view. Place
folding line F-1 perpendicular to the intersection
line AD and project both planes into the inclined
view. Both planes will appear as edges in view 1
and the dihedral angle is measured in this view. Fig. 6-7
Ans. Dihedral Angle = 82°

Given: A metal sheet is bent to form two planes, ABC and ABD. See Fig. 6-8 below.
Point B is located 6’ due east of A and at the same elevation as A. Point C is 8’ east,
2’ south of A and 2" above A. Point D is 3’ east, 8’ south of A and 3" below A. Scale:
£ =1-0".

Problem: Determine the dihedral angle between the two planes. Show the true size
of each plane.

Solution:

Draw the plan and front elevation views of both planes. Since the common line of intersection
between the two planes is a frontal-level line, a profile view will show the line of intersection as a
point and both planes as edges. The dihedral angle is measured in the profile view. Draw inclined
views 1 and 2 in order to obtain the true size of each plane. Ans. Dihedral Angle = 90°

T.L. bH

Fig.6-8
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Given: Plan and front elevation views of an airplane
windshield section. See Fig. 6-9. Scale: 1/ =1'—-0".
Problem: Determine the dihedral angle between the two

Since the metal frame BE is a frontal line, it will appear in its
true length in the front view. Draw an inclined view showing the
line of intersection as a point and the two planes as edges. The
dihedral angle is measured in this view.

Given: Fig. 6-10 shows partial plan and front elevation

3.
2/_0//
y .
window panes.
Solution:
S
!
©
Ans. Dihedral Angle =155°
4.

views of a hip roof. Scale: &7 =1-0".
Problem: Determine the dihedral angle between planes
A and B.

Solution:

Locate a point on plane B, such as D. The two planes involved
are ABC and ABD. Draw auxiliary elevation view 1 showing both
planes and having the line of intersection AB shown in its true length:
Draw inclined view 2 showing the line of intersection as a point and
the planes as edges. The angle between the two edge views is the
dihedral angle. Amns. Dihedral Angle =119°30'

s ¥

5.

|

16!_0//

Dihedral Angle

Fig.6-9

Given: Two planes, ABC and ABD, in-
tersect along line AB. Point B is 4’ east,
8’ south of A and 8 below A. Point C is
11’ east, 2’ north of A and 10’ below A.
Point D is located 7’ due north of A and
11’ below A. See Fig. 6-11. Scale:
1”7 =1"—0".

Problem: Determine the dihedral angle
between the two planes.

Solution:

Using the given data, draw the plan and
front elevation views of both planes. Draw
auxiliary elevation view 1 showing both planes
and having the line of intersection shown in its
true length. Construct an inclined view show-
ing both planes as edges and the line of inter-
section as a point. The dihedral angle is meas-
ured in this view. Amns. Dihedral Angle = 50°

Dihedral
Angle

Dihedral
Angle

Fig.6-11
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6. Given: Fig. 6-12 below shows the plan and front elevation views of a hopper which is
fed by a pipe represented by the centerline XY. Scale: & =1-0".

16
Problem: Determine the angle the pipe makes with the hopper.
Solution:
Draw inclined view 1 to show the line XY and the true size of the hopper face intersected by

the pipe. Place folding line 1-2 parallel to the line XY in view 1. Draw inclined view 2 in order to

obtain the true length of XY and the plane as an edge. The required angle is measured in this view,
Ans. Angle =21°3¢0 ’

l+ Sidewall

a* by

g

1 d"c"  Floor

Fig. 6-12

Dihedral Angle

7. Given: A triangular pyramid 2”7 high
has an equilateral base 2’/ on a side as
shown in Fig. 6-13. Scale: =17,

Problem: Determine the dihedral angle
between any two lateral surfaces.
Solution:

Using the given data, draw the plan and
front elevation views of the pyramid. Draw an
inclined view to show the common line of inter-
section in its true length. Locate one additional
point on each of the two planes in this same
view. Draw inclined view 2 in order to obtain
the point view of the line of intersection be-
tween the two planes. The two planes will ap-
pear as edges in this view and the angle between
the edge views will be the dihedral angle.
Ans. Dihedral Angle =68°
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8. Given: A bulkhead iz determined by the plane ABCD through which a control cable
XY must pass. Point B is 1’ west, 2’ north of A and 3’ below A. Point C is 4’ west,
17 south of A and 6 below A. Point D is 5’ west, 1’ north of A and 3’—6" below A.
Point X is 1’ due west of A and 6” above A. Point Y is 3'—6” west, 9" north of A and
4’ below A. See Fig. 6-14 below. Scale: 1”7 =1/-0".

Problem: Use the plane method to determine the angle between the cable and the bulk-
head. Show proper visibility.
Solution:

Draw the line XY and the plane ABCD in both plan and front elevation views. Draw auxiliary
elevation view 1 to show line XY and the edge view of plane ABCD. Inclined view 2 will show the
true size of the plane. Place folding line 2-3 parallel to XY in view 2 and project both the line and
plane into inclined view 3. View 8 will show the cable XY in its true length and the bulkhead ABCD
as an edge. The angle between the cable and bulkhead is measured in this view. Careful visualization
will determine proper visibility. Ans. Angle =16°30'

dl

dB

Angle between
Cable and Bulkhead

Fig. 6-14

9. Given: The base of a right rectangu-
lar pyramid measures 2" long by 14"
wide. The vertex of the pyramid is
located 21”7 above the base but the
pyramid is truncated 1 above the base
at an angle of 80°, See Fig. 6-15.
Scale: 47 =17,

Problem: Determine the dihedral an-
gle between the cut surface and the
front lateral surface.

Solution:

Using the given data, construct the
plan and front elevation views of the trun-
cated pyramid. Draw inclined view 1 which
shows the common line of intersection CD in
its true length. Draw inclined view 2 which
shows both planes as edges. The angle be-
tween the edge views is measured as the
dihedral angle. Ans. Angle=105° 1

Fig. 6-15
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Given: A mine tunnel XY is heading in the direction of a vein of coal which is deter-
mined by plane ABC. Point B is 40’ east, 40’ north of A and 60’ below A. Point C is
65’ east, 30” south of A and 20’ below A. Point X is 80" east, 40’ north of A and 20/
above 4. Point Y is 55’ east, 20’ north of A and at the same elevation as A. See Fig.
6-16 below. Scale: 17 =60".

Problem: At what angle will the mine tunnel meet the vein of coal? How much farther
must the mine tunnel be extended to meet the vein of coal? If point A is at an elevation
of 500, at what elevation would the tunnel reach the vein of coal?

Solution:

Using the given data, draw the plan and front elevation views of plane ABC and the line XY.
Draw auxiliary elevation view 1 to show the plane as an edge. Draw inclined view 2 which will show
the true size of plane ABC and the line XY. Locate folding line 2-3 parallel to line XY in view 2 and
project into another inclined view which will show the true length of line XY and the plane as an edge.
Extend line XY in view 3 until it intersects the edge view of the plane. The extension of the tunnel
and the angle it makes with the plane are both measured in this view. The elevation of point P can
be measured in either elevation view 1 or the front elevation view.

Ans. Angle =74°30’, Tunnel Extension = 38/, Elevation Point P = 480’

Fig. 6-16
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Given: Two planes ABCD and
ABEF are located as follows:
A(6,24,8) B(44,4,6) C(7,3,8)
D(5%,1,6) E(5,24,8%) F(34,4,6%).
See Fig. 6-17,

Problem: Determine the true size
of the dihedral angle between the
two planes.

Solution:

Using the given data, lay out
the plan and front elevation views of
both planes. Draw inclined view 1
showing both planes and having the
line AB in its true length. Draw in-
clined view 2 in order to show the line
of intersection as a point and each of
the planes as edges. The dihedral angle
is measured in this view.

Amns. Dihedral Angle =173°30'

Fig. 6-17

Given: Fig. 6-18 shows the plan
and front elevation views of
three guy wires which are fas-
tened to three mutually perpen-
dicular planes. Scale: 17=20".

Problem: Find the true length of
each guy wire and the angle each
wire makes with the plane to
which it is attached.

Solution:

Draw auxiliary elevation view 1
to obtain the true length and slope of
wire AD. Draw inclined view 2 in
order to obtain the true length of BD.
This view will also show the angle
between wire BD and the back wall.
Draw a profile view of CD and then
project into the inclined view 3 which
will show the true length of CD and
the angle which wire CD makes with
the side wall.

Ans. T.L.AD =21’, Slope AD = 54°30’

T.L. BD =14/, Angle a = 58°30’

T.L. CD =21’, Angle o = T4°

10

-Dihedral
Angle
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Slope

4[

13’




110 DIHEDRAL ANGLE AND ANGLE BETWEEN LINE AND PLANE [CHAP. 6

13. Given: Plane ABC and line XY located as follows: A(1,5,6) B(2,3,7%) ((8,41,6)

X(14,3%,61) Y(24,41,6}). See Fig. 6-19 below.

Problem: Determine the angle between line XY and the plane ABC. Use the com-
plementary-angle method.

Solution:

Using the given data, draw the plan and front elevation views of plane ABC and line XY. Locate
a true length line on both views of the plane. From point X in both views draw a line of indefinite
length perpendicular to the true length line. For convenience stop the line at point Z in the front view
s0 that YZ will be in its true length in the plan view. Draw auxiliary elevation view 1 to show the
edge view of plane XYZ. Draw inclined view 2 in order to show the true size of plane XYZ. In view 2,
since XZ is perpendicular to the original plane ABC, a line from X perpendicular to XZ will represent
the edge view of plane ABC. The angle between XY and the line drawn perpendicular to XZ will be
the required angle between line XY and the plane ABC. Ans. Angle =52°30’

bH

L

Req’d
Angle

\/

%2

Fig.6-19

Supplementary Problems

In each of the following problems 14 to 18 determine the dihedral angle formed by the planes ABC and

BCD. In each of these problems the line BC is common to both planes.

14.
15,
16.
17.
18.

See Art. 1.7 for the coordinate system of problem layout.

A(1,14,43) B(1,4,6}) C(3,3,5)) D(24,1L,5) Ans. 18°30'
A(1,24,38) B(14,2,4) €24, 1,20 D@L,2,4) Ans. 123°30’
A(24,3,6) B(4,3,51) C(14,1,48) D(3,2,43) Ans. 27°30/
A(1,4,6) B(3,3,61) C(1,24,4) D(3L,4},51) Ans. 168°

A@24,4,6) B(1},3,5) C4 4,5 D@23,17) Ans. 19°
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19. Two intersecting planes, ABC and BCD, are shown in 207 T_o" 30"
Fig. 6-20. Scale: %”:1’—0”. Determine the dihedral Ib”
angle between the two planes. Ans. Angle =100° N !

20. Two planes ABD and ACD. Point B is located 6' east,
4’ north of A and 6’ above A. Point C is 6" east, 3’ south
of A and 3’ above A. Point D is 10’ due east of A and
3’ above A. Scale: 1/ =1'—0". Determine the dihedral Y
angle between the two planes. Ans. Angle=114° H d

50"
/

12
1
-]

21. Fig. 6-21 below shows a tetrahedron. Scale: 12" =1'—0".
Determine the angle the line AB makes with the plane
ACD. TUse only the edges necessary for solution.

Amns. Angle=51°

22. Two planes ABC and BCD are located as follows:
A(8,3,7 B4,5,7) C(4,3,6) D(5,3,7). Determine the bF
dihedral angle between the two planes.
Ans. Angle = 95°

12"
o
|
ol B

B'—0"

4—0”

23. The plan and front elevation views of a bridge pier are dar
shown in Fig. 6-22 below. Scale: 13—6” =1'—0". Determine Fig.6-20
the dihedral angle between planes A and B.
Ans. Angle = 95°

T
o
S
.
L+
ro

24. Scale: 2" =1’'—0". Using the same figure as in Problem
23 determine the dihedral angle between planes B and C.
Ans. Angle=100°

’
pa—

25. Fig. 6-28 below shows a hopper which feeds ore into open
top freight cars. Scale: 1”7 =1'—0". Determine the
dihedral angle between sides A and B.

Ans. Angle =99°

a|w [

26. Using the same figure as in Prob. 25 determine the dihe- aF i
dral angle between planes A and C. Scale: 1”7 =1—0".
Ans. Angle=27°30'

27. Planes ABC and DEF. Point B is 8’ east, 4’ north of A
and 9’ above A. Point C is 12’ east, 2’ south of A and
4’ above A. Point D is 2’ east, 4’ north of A and 8 above

—
]
]
1/
[£]

7

k]

-
&
li”

A. Point F is 10’ east, 4’ south of A4 and 1’ above A. Fig. 6-21 b
Point F' is 14’ east, 5’ north of A and 4’ above A. Scale: 18- 5=
1”7 =1"—0". Determine the dihedral angle between the
two planes. Ans. Angle = 44° —r
g
AL
A o] K
\ 7 N
F=— 5
1 I "
H ' 3
F H —
F
! -
B .
3
) 5
C Fig. 6-23 J
&’ -
i
Fig. 6-22 260
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28.

29.

true

DIHEDRAL ANGLE AND ANGLE BETWEEN LINE AND PLANE

A steel plate transition piece is shown in Fig. 6-24.
Scale: 1””=1'—0". Determine the dihedral angle be-
tween planes A and B. Ans. Angle = 80°

Using the same figure as in Problem 28 determine the

dihedral angle between planes B and C. Scale: 1" = &I

1/—-0", Ans. Angle=106°

In each of the following problems 30 to 35 determine the

6'—0’"

size of the angle between the line XY and the plane F

ABC. Use either the line method or the plane method.

30.
31

32.
33.

34.

35.

36.

37.

38.

39.

See Art. 1.7 for the coordinate system of problem layout.

A(1,14,5) B(2,21,4) C(3%, 4,58 X(14,1.41) Y(3,2,4))
A(11,2,31) B(2},1,53) C(4,14,38) X(14,21,5)

Y(3L 11,%)

A(1},14,5) B(2,34,4)) C(3§,1,6) X(1,2,5) Y(3},2},4)
A(3,3} 5) B(13,33,7) C(1},13,4§) X(2,2},4})
¥(13,3,6)

A, 3% 61) B(2%,21,51) C(31,41,61) X(11,3L,51)
Y(3,3%,61) S
A(14,14,6%) B(2,3,51) C(4,2,5) X(1,2,5) Y(3,2,51) la" . .
Ans. 30. 38°30' 32, 37°30/ 34, 43° f ot
31, 256° 33. 22°30’ 35. 26°30/ o
Fig. 6-25 shows a pyramid intersected by a line XY. Secale: i \ H
12”7 =1'—0", Determine the angle between the line and the plane H dH Y
OCD. Ans. Angle =69°30/ -1
F 1" 1 o
Line XY represents one of several brace rods which support two ~—1 . 1 -
intersecting billboards as shown in Fig. 6-26 below. Scale: 0
3" =1—0". Determine the angle that the rod makes with the t
billboard at anchor Y. Ans. Angle —36° ‘ ::r
Using the same data as in Problem 37 determine the angle that
the rod makes with the billboard at anchor X. Secale: 1" =1'-0". x5 .
Ans. Angle =51°30’ 5] l \ 4
Fig. 6-27 below shows the plan and front elevation views of a —-L—F _— of
hopper which is fed by a pipe represented by the centerline XY. @ d*d
Scale: £”=1'—0". Determine the angle that the pipe makes .
with the wall. Ans. Angle =37°30’ Fig.68-25
60"
— 50
y" YA
: 7 :{
< y © | «
:°| @ :x:’l‘/ )
] = M *
&l B=54 wan
T H
H __ F I __L__/ yF
F R
18,—0” i ©,
= "  |—Wwan
] S
BN X
é E;T \,yr — Floor
© ;T 8q.
Fig. 6-26 Fig. 6-27



CHAP. 6] DIHEDRAL ANGLE AND ANGLE BETWEEN LINE AND PLANE 113

40.

41.

42.

43.

Fig. 6-28 below shows a television antenna supported by two brace rods attached to the roof of a house.
Scale: ""=1—0". What angles do the braces make with the roof?

Ans. XY =70° XZ =48°

Tig. 6-29 below shows a regular hexagonal pyramid. Seale: 12" =1'-0". Determine the dihedral
angle between planes AOB and AOF. Ans. Angle =125°

Using the same figure as for problem 41 determine the angle between line OC and plane AOF, Scale:
12" =1'—0". Ans. Angle = 45°

There is possible interference between a pipe XY and a plate ABCD. Determine whether or not there
is interference and find the angle between the pipe and the plate. X(11,5,74) Y(3,54,74) A(2,6, T)
B(3,45,8) C(44,4%,71) D(3%,6,64). Show the pierce point of the line and plane in all views. Also
show proper visibility. See Art. 1.7 for the coordinate system of problem layout.

Ans. No interference. Angle = 26°

| or_gn
af l"

. >
> d I____l,,__l
) bE el
e wH -
F=)
N
4 ¥ (i dH
B
N
H| g onl g H e
¢ 115—0 50" ul f
H —f -
—_— F .
F 0
N &
>
N
a0
af fTbF eFef df

Fig.6-28 Fig. 6-29




Chapter 7

Revolution

The method of solving Descriptive Geometry problems, as already discussed in pre-
ceding chapters, is based on what is called “change-of-position”. The various views which
were obtained depended upon the fact that the observer assumed a different position of
viewing the stationary point, line, or plane in space. However, many basic problems can
be solved by having the observer remain stationary while the object is revolved to a posi-
tion which will reveal certain required information.

Even though the majority of space problems are solved by the “change-of-position”
method, it is sometimes more convenient for the engineer to solve a problem by using
revolution. Therefore, a thorough knowledge of both methods will prove advantageous
to the engineer. It is then his decision as to which method should be used for a particular
type of problem.

7.1 BASIC PRINCIPLES of REVOLUTION

Before a student can solve a problem by revolution, he must first of all be acquainted
with certain basic and fundamental principles of revolution. A thorough knowledge of
these basic concepts will make the revolution method a vital tool in the solution of problems
involving space relationship.

The following are principles of revolution:

) A point can only revolve about a straight line axis.

) A point revolves in a plane perpendicular to the axis.

(3) A point revolves in the path of a circle whose center is the axis.
) The point view of the axis will show the circular path of the revolving point.
)

(5) When the axis appears in its true length, the path of the point will appear as a
straight line whose length is equal to the diameter of the circular path.
Vd ~,

The student should study Fig. 7-1 to /7 Point View of "\ ) )
make absolutely certain that he thoroughly {/ AmH i Y Cireular Path of Point X
understands the underlying principles of L % a"b :"
revolution. Of course, failure to understand \ &5 /
these basic concepts may result in assump- 24 \\__// Fig.7-1.
tions which are contrary to fact. H Point Revolving about

In many Descriptive Geometry prob- F e a Straight Line Axis
lems, the axis about which a point revolves
does not appear in its true length in either
the plan or front elevation views. There- . T, | Edge View of Circular Path
fore, a new view must be drawn which will L
show the true length of the axis, then an L True Length of Axis
additional view will show the point view of
the axis. b¥

114
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In Fig. 7-2, the oblique line axis is Lowest Position )
shown in both the plan and front elevation of Point X\’{T e bl
views. Point X which revolves about this o\ 2
axis is also located in the two given views. ”
r—L

Using the “change-of-position” method, a -
new view is drawn which shows the axis, ,’ \
AB, in its true length and the point X lo- 1
cated at a fixed distance from the axis. ‘\
Inclined view 2 determines the point view N
of the axis and the circular path of point X
as it revolves about the axis.

Should it be required to locate the low- of Point X

est and highest positions of point X as it

revolves about the oblique line axis, the ex- Fig.7-2.
treme points of the circular path shown as Point Revolving
an edge in view 1 will determine these about an Oblique Line

positions. In view 2 the low and high posi-
tions of point' X are designated by the addi-
tional subscript letters L and H.

72 To FIND the TRUE LENGTH of a LINE

Analysis: If a line is parallel to a projection plane, it will
be projected on that plane in its true length.
Therefore, if a line in space is revolved about an
axis until it lies parallel to a projection plane,
it will then appear in its true length.

Example: In Fig. 7-3, the oblique line AB appears in both the
plan and front elevation views. Using a vertical axis through point A
in the plan view, point B should be revolved until line AB lies parallel
to the frontal plane. It will then appear in its true length in the front
view. Note that the revolving of point B does not alter its elevation.
The true slope of the line can also be seen in the front view since the
line appears in its true length in an elevation view.

Fig. 7-4 below shows the same oblique line being revolved about
a horizontal axis. At (¢) the axis passes through one end of the line
and, at (b) the axis passes through the mid-point of the line,

Highest Position

True Length
of Axis -

Fig. 7-3.
True Length of a Line by
Revolving about a Vertical Axis

H
H o ~—True Length
True Length a! Ore of Axisgt
of Axis
i = b
H
Fo| el
Point View /
of Axis /
i
Ol e — N — - bF
Point View_/ /
of Axis
/

(a) b

Fig.7-4. True Length of a Line by Revolving about

bF

()

a Horizontal Axis
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In general, the axis can pass through any point of the line. For cohvenience, it is usually better to
pass the axis through one of the end points of the line. In this case only one point needs to be revolved

to show the true length of the line as shown in Figures 7-3 and 7-4(a).

7.3 To FIND the TRUE SIZE of a PLANE

Analysis: Two conditions must be met in order for a plane to be revolved into its true size.

First, it must revolve about an axis which lies on the plane.

Second, the axis

about which the plane revolves must lie parallel to the image plane upon which
the plane is projected. Therefore, if the plane is to be revolved so that it will
appear true size in the plan view, it must be revolved about a level line axis

on the plane.
plane is revolved until the plane

is level.

Example: In Fig. 7-5, the plane ABC is to be
revolved until it lies parallel to the horizontal plane.
A horizontal axis is drawn in the front elevation
view which will appear in its true length in the
plan view and as a point in the auxiliary elevation
view 1. The plane is revolved about the point view
of the axis in view 1 until it lies parallel to the
horizontal plane. Project the revolved points B and

to the plan view until they intersect the projec-
tions of points B and C drawn parallel to the H-1
folding line. Connect these revolved points B and C
in the plan view to point A in order to determine
the true size of the plane.

It should be noted that a plane will appear as
an edge in the view which shows the axis as a point.
This edge view, being an elevation view, also shows
the true slope of the plane.

74 To FIND the DIHEDRAL ANGLE

Analysis: A cutting plane which is passed
perpendicular to the intersection
of two planes determines the di-
hedral angle between the two
planes. After determining the
line of intersection between the
two planes, a cutting plane is
passed at a right angle to this line
of intersection and the intersec-
tion of the cutting plane with the
two given planes is thus deter-
mined. The plane of the angle
formed by these two intersection
lines is revolved to a position in
which its true size is shown.
Example: In Fig, 7-6, the plan and front
elevation views of planes ABC and BCD are given.
An auxiliary elevation view is drawn showing both
planes with their common line of intersection BC

appearing in its true length. A cutting plane XY
is drawn perpendicular to line BC at any point, in

True Size b
of Plane -y’\

bH¢\

/

After determining the location of the axis, each point on the

A
\‘¥ Point View
of Axis

.l,)F

Dihedral

Fig. 7-5.
True Size of a Plane by

Revolving about a Horizontal Axis

Cutting
Plane

Parallel

Fig. 7-6.

Dihedral Angle
by Revolution
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this case E. The cutting plane cuts the two given planes at F, E, and G. Project these points back to the
plan view. These points determine the dihedral angle which now must be revolved about a level-line axis
through a point such as F. The axis appears as a point in view 1. Revolve points G and E through the
horizontal axis at F' until they lie in a plane parallel to the horizontal image plane. The dihedral angle
now revolved to a horizontal plane will appear in its true size in ‘the plan view.

7.5 To FIND the ANGLE BETWEEN a LINE and a PLANE

Analysis: In order to determine the angle between a line and a plane by revolution, the line
must be revolved about an axis which is perpendicular to the plane. Revolution
about any other axis will not show the true angle desired. A view showing the
true size of the plane will also show the axis as a point. Therefore the axis will
appear in its true length in the view showing the plane as an edge and will be
perpendicular to this edge view of the plane. The line is revolved until it
appears in its true length in the view showing the plane as an edge. The true
angle between the line and the plane is measured in this view.

Example: In Fig. 7-7 below, the plane ABC and the line XY are given in both the plan and front
elevation views. An auxiliary elevation view 1 is drawn showing the line XY and the edge view of the
plane ABC. An inclined view is then drawn which would show the true size of the plane, but drawing the
true size of the plane in this view will serve no useful purpose since we are only interested in showing
the point view of the axis about which the line XY will revolve. The line XY is revolved until it appears
in its true length in the auxiliary elevation view 1 where the angle can be measured.

y2
|
|

N2
True Size of Plane—=] \ - o
\L ——"" \_Point View
b of Axis

cr

Fig.7-7. Angle between a Line and a Plane by Revolution

76 To FIND a LINE at GIVEN ANGLES with TWO PRINCIPAL PLANES

Analysis: A right circular cone will have elements having the same length, and these
elements will make the same angle with the base of the cone. The intersection
of two cones having elements the same length, with a common vertex, and with
axes perpendicular to each other, will determine the required line. The two
cones must intersect along a common element line making the required angles
with both principal planes which are perpendicular to each other.
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Depending upon the location of the cone
bases, there are eight possible solutions to the
problem. Since the two principal planes are
perpendicular to each other, the sum of the
two given angles cannot be more than 90°. If
the sum of the two given angles is exactly 90°,
then the two cones are obviously tangent.

Example: It is required to locate a line which makes a 45°
angle with the frontal plane and a 30° angle with the horizontal
plane (see Fig. 7-8).

Determine a convenient location for point X in both the plan
and front elevation views. This point will be the common vertex of
two right circular cones having the same slant height. In the front
view, construct the right circular cone XAC having a given slant
height and making an angle of 30° with the horizontal base plane
which is, of course, parallel to the horizontal projection plane. Show
this cone in the plan view. In the plan view, construct the right
circular cone XBD having the same slant height as cone XAC and
making an angle of 45° with the vertical base plane which is parallel
to the frontal projection plane. Show this cone in the front view.
The intersection of the revolved positions of points A and B will
determine the required line from vertex X. Note the possible alter-
nate positions of the cones.

Solved Problems

1. Given: Three guy wires, 4, B, and C, are
attached at point O located 2/ below the
top of a mast, XY. A(2%,3,54) B(3%2,8)
C(6,23,6) X(44,44,7) Y(43,2,7). See Art.

[CHAP. 7

Fig.7-8.

Locating a Line Making Given Angles
with Two Principal Planes

H
b; x o'y cH

1.7 for the coordinate system of problem lay-
out. Refer to Fig. 7-9. Scale: §=1—0".
Problem: Determine the true length of each
guy wire by the method of revolution. Also

determine the angle each guy wire makes
with the mast. H

Solution: F

Using the given data, draw the guy wires and
mast in both the plan and front elevation views.
In the plan view, using the mast as a vertical axis,
revolve points 4, B, and C until they lie in a plane
parallel to the frontal plane. From points 4, B, and
C in the front view, draw level lines until they inter-
sect the projections of 4, B, C, revolved. Connect
each of these intersecting points to point O in the
front view. Both the true length of each guy wire
and the angle it makes with the mast can be
measured in this front elevation view.

Ans. Guy wire AO: T.L. = 10'~91""  Angle = 68°

Guy wire BO: T.L.=9—10" Angle = 35°

Guy wire CO: T.L.=9'—5" Angle = 50°

Fig.7-9
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Given: Plane ABCD. Point B is located 17 east,
14 north of A and 4 below A. Point C is located
8’ east, 27 north of A and 1§ below A. Point D
is located 2 due east of A and 1”7 below A. See
Fig. 7-10. Scale: ¥’ =1".

Problem: By the method of revolution, show the
true size of the plane in the plan view.

Solution:

Draw the plan and front elevation views of plane
ABCD. Since the front view shows the edge view of the
plane, a level axis is assumed through point A in the front
view and points B, C, and D are then revolved until they
lie in a horizontal plane. From points B, C, and D in the
plan view, frontal lines are drawn until they intersect the
projections of B, C, and D revolved. Connect the three
points of intersection as shown to obtain the true size of
the plane.

Given: Plane ABC. Point B is located 5
east, 6/ north of A and 6’ below A. Point C
is located 10’ east, 5’ north of A and 4’

below A. See Fig. 7-11. Scale: §”=1"-07. TrueSize

Problem: Determine the true size of each
plane angle by the methods of revolution.
Solution:

Using the given data, construct the plan and
front elevation views of plane ABC. Draw auxili-
ary elevation view 1 to show the plane as an edge.

119

True Size
of Plane

Assume a level axis through point A in view 1 and
revolve points B and C until they lie in a hori-
zontal plane. Project points B and C into the plan
view until they intersect the projections of B and
C drawn parallel to the H-1 folding line in the
plan view. These intersections determine the posi-
tions of points B and C revolved, thus showing the
true size of the plane. Each of the plane angles
can be measured in this view.

Ans. Angle A =28°, Angle B=97°, Angle C =55°

Given: Plane ABC is located as fol-
lows: Point B is 5’ east, 4’ north of A
and 5 above A. Point C is located &
east, 4 south of A and 2’ above A.
See Fig. 7-12. Scale: {”7=1'-0".
Problem: Using the methods of revo-
lution, determine the diameter of the
largest circle to be drawn within the
limited plane, ABC.,

True Size of Plane

Solution:

Using the given data, draw the plan
and front elevation views of plane ABC.
Draw auxiliary elevation view 1 to show the
plane as an edge. Assume a level axis
through point A and revolve points B and C
in view 1 until they lie in a horizontal plane.
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From points B and C in the plan view, draw lines parallel to the -1 folding line until they intersect
the projections from view 1 of points B and C revolved. Connect these points of intersection to the
plan view of point A. The true size of the plane ABC is now established. Angle bisectors will
determine the center for the largest circle to be inscribed within the limited plane ABC. Draw the
circle and measure the diameter using the given scale. Ans. Diameter =5'—2"

Given: Two water lines from points A and B converge at a common point C as shown
in Fig. 7-13 below. Point 4 is 80’ west, 30’ north of C and 30’ above C. Point B is
located 20’ east, 20’ north of C and 40’ above C. Scale: 1’ =30".

Problem: Using revolution, determine the true length of each water line and the true
size of the angle between them.

Solution:

Using the given data, draw the plan and front elevation views of both water lines, Draw
auxiliary elevation view 1 to show the edge view of plane ABC. Assume a level axis through point C
and revolve points 4 and B in view 1 until they lie in a horizontal plane. From points 4 and B in
the plan view, draw lines parallel to the H-1 folding line until they intersect the projections from
view 1 of points A and B revolved. Connect these points of intersection to point C in the plan view and
measure the required angle. The plan view will also show each water line in its true length.

Ans. T.L. AC = 52'—0”, T.L. BC = 49'—4", Angle ACB = 61°3(¢/

Req'd Angle

bH

Fig.7-13

Given: Two support braces intersect at a common point C as shown in Fig. 7-14 below.
Point A is located 6’ west, 2’ south of C and at the same elevation as C. Point B is
located 3’ east, 4’ south of C and 3’ above C. Scale: & =1"—0".

Problem: By the methods of revolution, determine the angle between the two braces.
Check your answer by an independent method.

Solution:

Draw the plan and front elevation views of the two braces AC and BC. Draw auxiliary elevation
view 1 to show the plane ABC as an edge. Assume a level axis through point B in view 1 and revolve
both A and C until they lie in a horizontal plane parallel to H-1. From points 4 and C in the plan
view, draw lines parallel to the H-1 folding line until they intersect the projections of points A and C
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revolved. Connect the revolved positions of A and C in the plan view. Also connect point B to the
ptan view of C revolved. The required angle can now be measured in the plan view.

The answer can be checked by drawing inclined view 2 which will show the true size of plane
ABC. Angle C is the required angle in this view. Ans. 105°30/

7 o

Fig. 7-14

7. Given: Lines AB and BC in Fig. 7-15
represent two supporting braces of an
engine mount. Point B is 97 east, 1’
north of A and 9” below A. Point C is
1-10” due east of A and 7" above A.
Scale: 27=1-0". v
Problem: Using the revolution method,
determine the true length of each sup-
porting brace and the true size of the
angle between them.

Solution:

Using the given data, draw the plan and
front elevation views of the two braces. Draw
auxiliary elevation view 1 which will show the
edge view of plane ABC. Assume a level axis
through point 4 and revolve points B and C
until they lie in a horizontal plane. From points aF
B and C in the plan view, draw lines parallel
to the H-1 folding line until they intersect the
projections of points B and C revolved. Connect
these intersecting points from B and C revolved
and from point A to B revolved in the plan view. bF
This view yields the true length of each brace as
well as the true size of the angle between them.

Ans. T.L.AB=1-5{", T.L. BC =2—0", Fig. 7-15

Angle ABC =66°
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8. Given: Plane ABC shown in Fig. 7-16 below. Point B is 1’ west, 8’ north of A and 4/
below A. Point C is 7’ east, 5’ north of A and 9’ below A. Scale: %7 =1—-0".

Problem: Revolve the plane until it appears true size in both the plan and front eleva-
tion views. Determine the true length of the three lines which limit the plane. Deter-
mine the true size of each plane angle. What is the slope of the plane?

Solution:

Using the given data, draw the plan and front elevation views of plane ABC. Draw inclined
view 1 to show the plane as an edge. Assume an axis through point B and revolve points 4 and C
until they lie parallel to the frontal plane. From points A and C in the front view, draw lines parallel
to folding line F-1 until they intersect the projections from points A and C revolved. Connect the
revolved points to point B in the front view to obtain the true size of the plane. The true size of
each plane angle can be measured in this view. The front view also shows the true length of AB,
AC, and BC.

Draw auxiliary elevation view 2 in order to show the plane as an edge. The slope of the plane is
measured in this view. In view 2, assume a level axis through point A, and revolve both B and C until
they lie in a horizontal plane. From points B and € in the plan view, draw lines parallel to the H-2
folding line until they intersect the projections of B and C revolved. Connect these points of inter-
section to the plan view of point A. Plane ABC is again shown in its true size. The true lengths of
lines AB, BC, and AC can be measured in the plan view, The true size of each plane angle can also
be found in this view. If the problem is solved accurately, the size of plane ABC revolved will be the

. same in both plan and front views.

Ans. T.L.AB=5-1" Angle A = 46° Slope = 56°
T.L.AC =12'—6" Angle B=111°30’
T.L.BC=9—1L" Angle C =22°30’

H

61‘
e True Size //

of Plane -~ /
N

-~ !

Fig. 7-16
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9.

10.

Given: Plan and front elevation i Size of
views of a grain hopper. Refer o "
to Fig. 7-17. Scale: " =1'-0". T
Problem: Determine the dihedral
angle between planes ABCD and
BDEF.
Solution:

Draw an auxiliary elevation view

Edge View of
Cutting Plane

8-0"

showing the line of intersection, BD,
in its true length. Pass a cutting plane H
perpendicular to BD at any point, such F

as Y. The dihedral angle is the plane
angle between YX and YZ. To obtain
the true gize of the dihedral angle in
the plan view, the cutting plane must
be revolved about a level line axis such
as XZ. In the elevation view 1, revolve
point Y to a level position and project
back to the plan view in order to obtain
the true size of the dihedral angle. 207 30" | )

Ans. Angle = 97°30/ Fig.7-17

Given: Plane ABC and line BX in Fig. 7-18 below. Point B is 6’ east, 10’ north of A
and 4’ below A. Point C is 17’ east, 2’ south of A and 9’ above A. Point X is 20’ east,
8 north of A and 3’ below A. Scale: & =1—0".

Problem: Using the revolution method, determine the angle between line BX and the
plane ABC. What is the true size of angle ACB?

Solution:

Use the given data to lay out the plan and front elevation views of plane ABC and line BX.
Draw auxiliary elevation view 1 to show the line BX and the edge view of plane ABC. Construct
inclined view 2 in order to show line BX and the true size of plane ABC. In view 2, revolve point X
about the axis through B until it lies parallel to folding line 1-2. In elevation view 1, draw a line from
point X parallel to folding line 1-2 until it intersects the projection of point X revolved. From this
intersecting point, draw a line to point B. The angle between the line and plane can now be measured
in view 1. Plane angle ACB is measured in view 2.

Ans. Angle =20°80/

Angle ACB = 36°

True Size
of Plane
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11. Given: Line AB. Point B is 8 east, 4’ north of A and 7 below A. See Fig. 7-19.

12.

Scale: 3 =1-0".

Problem: Determine the true size of the angles which the line AB makes with the

horizontal, frontal, and profile planes.
Solution:

Draw the plan and front eleva-
tion views of line AB. Assume a ver-
tical axis through point B in the plan
view and revolve point A until it lies
in a plane parallel to the frontal plane.
Measure the slope, or H angle, in the
front view. Assume a horizontal axis
through the front view of point A and
revolve point B until it lies in a plane
parallel to the horizontal plane. The
angle which line AB makes with the
frontal plane is measured in the plan
view. Draw a profile view of line AB.
Assume a horizontal axis through point
B in the profile view and revolve point
A until it lies in a plane parallel to the
frontal plane. The angle which line
AB makes with the profile view is
measured in the frontal view.

Ans. H=238°, F =20°30", P=45°

Use the revolution method.

A

~—
/’

Fig.7-19

%8

Given: Fig. 7-20 shows a flagpole, XY, supported by three guy wires: XA, XB, and

177 — 17 Y44
1" = 1"—0".

XC. Scale:

Problem: Determine, by revolution, the true length of each guy wire and the angle
it makes with the surface to which it is anchored.

Solution:

Draw the plan and front elevation views
of the flagpole, guy wires, and three mutually
perpendicular surfaces. Draw a profile view of
wire XA. Assume a level axis through point X
in this view and revolve point A until it lies in
a horizontal plane. Project the revolved position
of A into the plan view and connect to point X
in this view. The true length of the guy wire
and the angle it makes with the side wall can
be measured in this view.

In the front view, assume a level axis
through point X and revolve point B until it lies
in a horizontal plane. Project the revolved posi-
tion of B into the plan view and connect to
point X in the plan view. The true length of
XB and the angle it makes with the back wall
can be measured in this view.

In the plan view, assume the axis to be
the vertical flagpole and revolve the point C
until it lies in a plane parallel to the frontal
plane. Project the revolved position of C down
to the front view and connect to point X in the
front view. The true length of XC and its slope
can be measured in this view.

Ans. Guy Wire T.L. Angle
XA 19'—0" 32°
XB 13'—10" 46°30’
XC 22'—10" 61°30’

P\H
R
\ 18’
\ H
_ \ ¥ b;
17 Y 7
|\ \ '/
3 \2 4
AN &
P \ clf
xHyH
:e /
_§ [
* /]
H cH
= ——
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8
1 V-
n
1
10’

Fig.7-20
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13. Given: Plane ABC and line XY in Fig. 7-21 below. Point B is 7’ due east of A and 1’
above A. Point C is 4’ east, 8’ south of A and 6’ above A. Point X is 9’ east, 1’ south
of A and 5’ above A. Point Y is 4’ east, 6’ south of A and 4’ above A. Scale: {’/=1"-0",

Problem: Using the revolution method, determine (a) the true size of the angle be-
tween line XY and the plane ABC, (b) angle BAC, (c) the true length of line XY.

Solution:

Using the given data, draw the plan and front elevation views of the line and plane. Draw
inclined view 1 to show the line XY and the edge view of plane ABC. Construct inclined view 2 which
will show the line XY and the true size of plane ABC. In view 2, revolve point X about the axis through
Y until X is lying on a plane parallel to folding line 1-2. From point X in view 1, draw a line parallel
to folding line 1-2 until it intersects the projection of point X revolved. Connect point X revolved in
view 1 to point Y in this view. This line is the true length of XY. Measure the angle between the
true length of XY and the edge view of the plane. Angle BAC would be measured in view 2.

Ans. (a) Angle=25°, (b) Angle BAC=63°, (¢) T.L.XY =T7'—24"

True Size
of Plane ot
V -Slant
Slant Height B Height
H
F
|-Slant
Height

Slant Height

Fig.7-21 Fig.7-22

14. Given: Plan and front elevation views of vertex point X and slant height of 1”7 for
two intersecting cones. See Fig. 7-22 above. Scale: {7 =1".

Problem: Locate a line through point X which shall make an angle of 35° with the
frontal plane and an angle of 50° with the horizontal plane.
Solution:

Locate point X in both plan and front views. This point will be the common vertex of two right
circular cones both having a slant height of 1”7, In the plan view construct the right circular cone
XAB having a slant height of 1’ and making an angle of 35° with the vertical base plane which is
parallel to the frontal plane. Show this cone in the front view. In the front elevation view construet
the right circular cone XCD having a slant height of 1’ and making an angle of 50° with the horizontal
base plane. Show this cone in the plan view. The intersection of the revolved positions of points A
and C will determine the line which makes an angle of 35° with the frontal plane and an angle of 50°
with the horizontal plane. Fig. 7-22 shows alternate positions of cones.
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See

16.
17.
18.
19.

20.

21,

22.

REVOLUTION

Supplementary Problems

[CHAP. 7

In the following problems determine, by revolution, the true length and slope of line AB:

Art. 1.7 for coordinate system of problem layout.

A(1,1,53) B(3,8,4%) Scale; 17" =1"—0" Ans.
A(2,4,6) B(4,1,5) Scale: 1/ =1'-0" Ans.
A(11,24,5) B(34,4,6) Seale: 17 =20’ Ans.
A2}, 1,4%) B(G,1,5%) Scale: £ =1—0" Amns.
A%, 4,63) B(44,2,5)) Scale: 17 =10’ Ans.

T.L.
3'—0"
15'—0"
53'—9""
5'—4"
46'—6"

Slope
41°30’
53°
34°
OO
25°30’

A short-wave radio antenna, AB, is supported by three guy wires located as follows: A(5,5, 73)
B(5,0,7%) C(,1,5) D1} 21,8) E(7,14,9). Scale: 1" =1—0". Determine the true length of each

9 &4
guy wire by using the revolution method.

Ans. T.L.AC=18—-11", T.1. AD =18'—0", T.L.AE =17"—38"

A flagpole AB, shown in Fig. 7-23, is 12’ high. Its stability
is maintained by three guy wires located as follows: Point
C is 8 south, 7’ east of AB and 2’ higher than B. Point D
is 4’ south, 9’ west of AB and is fastened to an anchor 3’
above B. Point E is 8 north, 2’ east of B and at the same
elevation as B. Scale: 2./ =1'—0"”. By means of revolu-
tion, determine the true length and slope of each guy wire.

Ans. TL.AC = 14'—6"" Slope AC = 43°
T.L. AD = 18'—4'" Slope AD = 42°
T.L. AE = 14'—6"" Slope AE = 56°

A short-wave radio antenna, XY, is 15’ high. Three guy
wires are attached to the top of the antenna. See Fig. 7-24
below. Point ¥ on the ground is at an elevation of 137’
Point A is 13’ west, 3’—6’" north of X and at an elevation
of 141’—6”. Point B is 5’6" east, 9'—6" south of X and
at an elevation of 139'—6'". Point C is 12'—6" east, 10’
north of X and at the same elevation as B. Scale: 1" =
1’—0"". Determine, by revolution, the true length and slope
of each guy wire.
Ans. T.L.AX = 17—0" SlopeAX = 38°

T.L. BX = 16’'—8" Slope BX = 48°30’

T.L.CX = 20'—4” Slope CX = 38°

Wall

H bH

a¥bY
dH
H e
F o
dr o
3 RO 7
Fig.7-23

cH
aH
\mw
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H F
F o

" - br [l Ground
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Fig. 7-24

Fig. 7-25
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A flagpole is held rigid by three pipe braces attached to a vertical wall as shown in Fig. 7-25 above.
Point B is 5'—6" east of A and 4’—6" above A. Point C is 17’ east of A and 2’ above A. Point X is
7'—6"" east, 10’ above A and located 12’ from the wall, Point Y is 7'—6’' east, 12’ south of 4 and 2’
below A. Scale: ["=1'—0". By means of revolution, determine the true length of each pipe brace.

Ans. T.L.AX=17—-4", T.L. BX =13'—4", T.L.CX =17—4"

Using the same data and scale as used in Problem 23, determine, by the revolution method, the angle
each pipe brace makes with the vertical wall. Ans. Angle A =44°, Angle B =64°, Angle C=44°

By the revolution method, determine the true size of each plane angle in the plane ABC. A(1,14,8)
B(4,4,81) C(4,2,6). Ans. Angle A =50°, Angle B=60°, AngleC ="T0°

Line AB and point X are located as follows: A(4,11,8), B(6,4%,6), X(51,5,74). Scale: 1”7 =1'-0".
As point X revolves about the axis AB, what is the diameter of the moving point? Ans. 12'—10"

Two sewer lines from points A and B converge at a manhole, C. Point B is 10’ east, 20’ south of A
and 10’ below A. Point C is 25’ west, 25’ south of A and 25’ below A. Scale: 1 =20'. Using the

revolution method, determine the angle between the two sewer lines. Ans. Angle = 34°3¢/
The axis of a shaft is represented by line AB in Fig. 7-26. Point aX L

X is the tip of a lever handle perpendicular to the axis. Point B

is 8’ east, 3’ south of A and 6" above A. Point X is 3’ due east of H B

A and at the same elevation as B. Scale: 1” =1'—0". If point A
is on the floor, how much clearance, if any, is there between the

=

lever handle and the floor? How long is the lever handle? If LxF bF
there is a clearance, how long can the handle be made in order
to just touch the floor?
Ans. Clearance = 6/
Handle Length = 3'—41" Fig. 7-26
Maximum Length = 4’'—11" a’
Fig. 7-27 shows the structural framework between two adjacent ] R
buildings. Scale: 1’ =1'—0". By means of revolution, determine -1 2
the true length of structural members AB and CD. cHpH ®
Ans. T.L.AB =11'-38", T.L.CD = 13'-3" a’*} j

Two pipelines AB and CB converge at point B. Point A is 35’ H
north, 10’ east of B and 30’ above B. Point C is located 20’ north,
60’ west of B and 15’ above B. A new pipeline DB is to be located
in the plane of ABC connecting B and point D which is located . c
30’ due west of A. Scale: 1”=20'. By means of revolution,
determine the true length of each pipeline.

Ans. T.L.AB = 47—0”, T.L.CB = 64'—6", T.L.DB = 49’—0"' ' .
Plane ABC and point X. Point B is 2’ east, 2’ north of A and A

2" below A. Point C is 3'—6" east, 9" north of A and 9"’ above A. | 1o

Point X is 2" east of A and 1’ north of 4. Scale: 17 =1—0". T2
Using the revolution method, show a 9" diameter hole on the Fig.7-27

plane and having X as its center. How close does the circle
come to the nearest edge of the limited plane? Ams. B8 da¥

o

Planes ABC and BCD are shown in Fig. 7-28. Point B is 11’ ¥ bH
east, 6" north of 4 and 1'—6"" below A. Point C is 3’ east, 5 —6"
south of A and 3’ above A. Point D is 6'—6" east, 3’—6" north
of A and 8 above A. Scale; 1" =1'—0". Determine the true size
of the dihedral angle by revolution. Ans. 78°30"

|
%

ABC and ABD are two planes which intersect along line AB.

Point B is 4’ east, 8’ south of A and 8 below A. Point C is 11’

east, 2’ north of A and 10’ below A. Point D is located 7' due

north of A and 11’ below 4. Scale: 1”=1'-0". By means of

revolution, determine the dihedral angle between the two planes.

Ans. Dihedral Angle = 50° b*
Fig. 7-28
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34.

35.

REVOLUTION [CHAP. 7

Fig. 7-29 shows the plan and front elevation

views of a concrete bridge pier. Scale: 1—36” = | 8.0 |
1’—0”". By means of revolution, determine the l‘
true size of the dihedral angle between (a)
planes B and C, (b) planes A and B.
Ans. (a) Angle = 95°
(b) Angle = 100°
Y A
Fig. 7-30 shows two intersecting planes, A and %
B. Scale: 1”7 =1—0". By means of revolution,
determine the dihedral angle between the two
planes. Ans. Angle =99° B
5 T
C = S
o
® B H
(=21 ——
F
A
H ——
F 3/_0”
4 C 4
] z
B
e
) B
A
8 v | e
. . 14 !
Fig. 7-29 Fig. 7-30

In each of the following problems determine, by revolution, the true size of the angle between line XY

and the plane ABC.

36.
37.
38.
39.
40.

41.

42.

43.

See Art. 1.7 for the coordinate system of problem layout.

X(1,2,5) Y(3,2,5}) A(11,11,61) B(2,3,51) C€(4,2,5) Ans. 26°30'
X(14,1,4]) Y(3,2,4) A(L,1},5 B(2,244) C@3L, 4,58 Ans. 38°30’
X(1,2,5) Y(3},21,4) A(13,11,5) B(2,31,41) C(34,1,6) Ans. 37°30’
X(13,31,51) Y(3,31,61) A(1,34,6)) B(2L,24,5}) C(34,44,6)) Ans. 43°
X(2,2},41) Y(1},3,6) A(1,34,50) B(14,34,7 C(11,14,4)) Ans. 22°80'

Plane ABC and the line XY are located as follows: A(54,21,61) B(6,4,5%) C(61, 14, 61) X(61,1L,7)
Y(6,21,5%). By means of revolution, determine the true size of the angle between line XY and the
plane ABC. Ans. Angle = 76°

Line AB is located as follows; Point B is 2’ east, 1’ south of A and 1'—6'" above A. Scale: 1”"=1'-0".
Determine, by means of revolution, the true length of the line and the angle it makes with the H, F,
and P planes.

Ans. T.L.AB = 2'—83%"

Angle H = 34°
Angle FF = 22°
Angle P = 48°

A pipe XY and a wall ABCD are located as follows: X(14,5,74) Y(3,54,74) A(2,6,7) B(3,44,8)
C(41,41,71) D34, 6, 61). By means of revolution, determine the angle between the pipe and the plane
of the wall. Ans. Angle = 26°
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44. Fig. 7-31 below shows a tetrahedron. Secale: 12" =1'—0’’. By means of revolution, determine the angle
the line BC makes with the plane ABD.
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Ams. Angle = 51°
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Fig.7-31
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Fig.7-32

45. Two vertical walls are intersected by a pipe, XY. See Fig. 7-32 above. Scale: 3’ =1'—0". By means
of revolution, determine the angle that the pipe makes with the wall (a) at point X, (b) at point Y.

Ans. {a) Angle = 36°, (b) Angle = 51°30’




Chapter 8

Intersection and Development

Many Descriptive Geometry textbooks devote a great amount of time and material
to the study of both intersection and development of surfaces. As mentioned in the preface
to this text, the decrease in time allocated to the basic courses of engineering drawing
and descriptive geometry has necessitated the condensing of material to be presented in
these courses. Therefore this chapter on Intersection and Development presents only
those bagic and fundamental items of study which the author believes will best meet the
need of most students of engineering and science. No attempt is made to reach every
type of intersection of surface. If the student can understand the principles explained
in this chapter, he should have little or no difficulty understanding the more complicated
problems derived from these basic concepts of Intersection and Development.

In previous chapters we have explained the various methods involved in the determina-
tion of intersecting lines, planes, and combinations of lines and planes. However, the
study of intersecting lines and planes reaches a more practical realm when the student
can see the application of these aforementioned methods. The purpose of this chapter is
to analyze the more common types of surface intersections which are more likely to be of
direct benefit to the practicing engineer. The examples are such that the fundamental
principles of surface intersections can be readily adhered to without complicated descrip-
tive steps of procedure. The problems in this chapter are basic and yet involve careful
analysis on the part of the individual student.

In Chapter 4 we have shown that a line intersects a plane at a point which is com-
mon to both the line and the plane. We have shown also that the intersection of two
nonparallel planes is a straight line common to both planes. The author suggests that
the student return to Articles 4.1 and 4.2 to refresh his memory regarding the basic con-
cepts of intersecting lines and planes.

81 DEFINITIONS

(1) Generatriz —a straight line whose continuous motion generates, or forms, a surface.

(2) Directriz —a straight or curved line continuously in contact with the generatrix.

(8) Director —a surface to which the generatrix is constantly parallel.

(4) Element—a straight line shown on the surface indicating a specific position of the
generatrix.

(5) Awis—a centerline about which a generatrix revolves.

(6) Development —laying out, or unfolding, a surface into a plane. Fig. 8-1(a) and (b)
below show the theory behind the development of a cylinder and cone respectively.
A developed surface shows all lines in their true length and all angles in their true
size. The surface is usually assumed to be cut at its shortest element to facilitate
ease in fabrication. In the problems to follow, the additional surface necessary for
“lapping”’ or “seaming” is not shown.

130
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Fig. 8-1(a). Development of a Right Cylinder Fig.8-1(b). Development of a Right Circular Cone

(7) Triangulation —a method used in the development or approximate development of
surfaces whereby the surfaces are divided into triangles. Once the true length of
each side of each triangle is obtained, all the triangles are then connected in proper
sequence to form the development.

(8) Ruled Surface —a surface generated by a straight line.

(9) Single-Curved Surface—a ruled surface which can be developed (e.g. cone, convolute,
cylinder).

(10) Double-Curved Surface —a surface generated by a curved generatrix which revolves
about an axis or moves along a curve. It has no straight line elements (e.g. sphere,
torus, paraboloid).

(11) Warped Surface—a ruled surface which cannot be developed. No two consecutive
elements may be parallel or intersect (e.g. conoid, cylindroid, helicoid).

(12) Right Section —a plane section perpendicular to the axis.

(13) Girth Line or Stretchout Line — a line drawn perpendicular to the true length elements
in a view showing the development.

(14) Bend Line —lateral edge along which the development is folded to form the desired
shape.

INTERSECTION

82 To DETERMINE the POINTS at WHICH a STRAIGHT LINE
PIERCES a CYLINDER

Analysis: Right Circular Cylinder.
Draw a view showing the

axis of the cylinder as a + _
point. Show the straight A
line in this same view and ~ “——

the points of intersection f -

will be obvious. These points
can be located in other views o™\
by simple projection.

Example: In Fig. 8-2 the plan and front
elevation views of the line and cylinder are \
given. Points X and Y in the plan view obvi- b
ously determine the location of the intersec-

tion. Project X and Y down to the front eleva- . . . . . .
tion views and determine proper visibility. Fig.8-2. Line Intersecting a Right Circular Cylinder

Given

Analysis: Oblique Cylinder. If successive views are drawn to show the axis of the
cylinder as a point, then the problem is reduced to the analysis above. However
the two-view cutting-plane method is usually employed in the case of an oblique
cylinder because it is simple enough to be readily understood and is quicker.
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A cutting plane containing the given line and parallel to the axis of the
cylinder will intersect the cylinder in elements. The intersections of the given
line with these elements will be the required “pierce points”.

Example: In Fig. 8-3 below, the plan and front elevation views of the oblique cylinder and line are
given. A cutting plane containing line AR and parallel to the axis of the cylinder is drawn in both views.
This is done by drawing line BC parallel to the axis in both views. The upper base plane of the cylinder
is intersected by the cutting plane in the line CD, cutting across the upper base of the cylinder at points
V and Z. These points V and Z lie in the cutting plane and are the higher ends of the straight-line elements.
One straight-line element is drawn from V in both views and the other element from Z is drawn in the plan
view. The front view of the element from Z happens to be the extreme element shown in the front. Both
elements must be drawn parallel to the axis of the cylinder. The intersection of these elements with the line
AB determines the pierce points X and Y. These pierce points can be verified by projecting between views.

Given

Fig.8-3. Line Intersecting an Oblique Cylinder

8.3 INTERSECTION of a PLANE and a PRISM

Analysis: Draw an auxiliary elevation view
which will show the edge view of a
the given plane, and the points v
where the prism edges intersect
the plane will be evident. Con-
nect these intersection points in
plan and front views using proper

visibility. H -
F b
Example: Fig. 8-4(a) shows the plan and front
elevation views of plane ABC and the oblique prism. Ve
Draw auxiliary elevation view 1 to show the edge
view of plane ABC and the prism [see Fig. 8-4(d)]. A
The parallel edges of the prism will intersect the aF oF
plane at points 1, 2, and 3. Project these three Ll 1
points back to the plan and front views and connect Given

them, showing proper visibility for plane and prism. Fig. 8-4.(a)
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“/q

/

X

Plane as Edge \

Fig.8-4 (b). Intersection of a Plane and a Prism

84 INTERSECTION of PRISMS
A. Edge View Method

|\

133

Analysis: Determine where the edges of the two prisms pierce each other by showing the
edge view of each prism. Connect the piercing points and determine the proper

visibility.

Note: If only one prism appears as an edge in one of the given views, a
new auxiliary view can be drawn to show the edge view of the other prism.

Example: In Fig. 8-5, the extreme surface
limits of the two prisms are given in the three
primary views. Extend the surface limits of the
horizontal prism in the plan view until they inter-
sect the edge view of the vertical prism. Extend the
surface limits of the vertical prism in the profile
view until they intersect the edge view of the hori-
zontal prism. Label the piercing points as shown in
the figure. Project the piercing points from the plan
view down to the front view until they meet the
projection of corresponding points from the profile
view. Careful visualization will determine proper
vigibility.

Fig.8-5. Intersection of Prisms (Edge View Given)
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B. Cutting-Plane Method

Analysis: The two prisms must be intersected by a cutting plane or a series of cutting
planes which determine points common to both prisms. If the cutting planes
selected are parallel to the edges of the prisms, the solution is further simplified.

Example: Partial plan and front elevation views are given. See Fig. 8-6. In the plan view extend
the edges of the oblique prism until they intersect the vertical surfaces of the right prism. Pass a vertical
cutting plane through the two prisms as shown. Label the points as shown. Simple projection will locate
points 1, 2, and 3 in the front view. Points 6 and 7 lie in the cutting plane and are common to both prisms.
Project points 4 and 5 from their locations in the plan view down to their corresponding positions in the
front view. Since both points 4 and 6 are in the upper surface of the oblique prism, a projection from
point 4 in the front view to the vertical edge on which point 6 is located will determine the exact position
of point 6-in the front view. The same relationship between points 5 and 7 determines the location of
point 7 in the front view. Careful visualization will determine the proper visibility.

Given

Fig.8-6. Intersection of Prisms (Cutting-Plane Method)

85 INTERSECTION of PRISM and PYRAMID

Analysis: Draw an auxiliary view which will show the prism as an edge. Use the pierce
point method to locate the points common to both prism and pyramid.

Example: Partial plan and front elevation views given in
Fig. 8-7(a). Draw auxiliary elevation view to show the pyramid = 7
and the edge view of the prism. Refer to Fig. 8-7(b). Label
points 1 through 6 on the edge view of the prism in view 1.
Points 3 and 4 can be projected directly to the plan view and )
subsequently to the front elevation view. Pass an edgewise H
cutting plane through points 1-5 and 2-6 in view 1. This cutting 7 -
plane will intersect OC at point 7, BC at point 8, and OA at
point 9. Project lines 7-8 and 7-9 to the plan view to locate /]\
points 1, 2, 5, and 6 in the plan view. Simple projection will
locate these points in their corresponding positions in the front !\‘
view. A further check for the plan view of point 2 is made by :
passing a cutting plane through points 3 and 2 in view 1 until Z I 5
it intersects OB at point 10. Project point 10 to the plan view
and draw a line from point 3 to point 10. If drawn correctly, Given
the line will pass through point 2 in the plan view. Careful
visualization will determine proper visibility. Fig.8-7 (a)

Ly,

=
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Fig.8-7(b). Intersection of Prism and Pyramid

8.6 INTERSECTION of CONE and PRISM (CUTTING-PLANE METHOD)
A. Vertical Cutting Planes

Analysis: A series of vertical cutting planes passing through the axis of the cone and
cutting the prism will have elements on which will be a point of intersection:
common to both cone and prism.

Example: Fig. 8-8 below shows the given views. In the plan view, pass a series of cutting planes
through the axis of the cone which intersect the edge view of the given prism. Label these points 0 through
6 and A through E as shown. Show the elements in the front view. Project points 4, B, D, and E to the
front view until they intersect elements 1, 2, 4, and 5 respectively. Point C in the front view will be at the
same elevation as the highest point of intersection of the cone and prism shown by the extreme elements of
the cone in the front view. Connect the points A through E to show proper visibility for the line of
intersection.

0o 1 2 3 4 5 8

Fig.8-8. Intersection of Cone and Prism (Vertical Cutting Planes)
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B. Horizontal Cutting Planes

Analysis: A series of parallel horizontal cutting planes perpendicular to the vertical axis of
the cone will determine points of intersection common to both cone and prism.

Example: Fig. 8-9 below shows the given views. In the plan view draw circles 1, 2, and 3, being
sure to include the extreme elements of the edge view of the prism. Draw the horizontal cutting planhes
in the front elevation view. In the plan view, label the intersection of the cutting planes with the prism
as points A through E. Project these points down to the front view until they meet the corresponding
cutting planes. Points A through E are now determined in the front view and are then connected to show
proper visibility of the line of intersection.

m)

p
=
N
[\

Given

Fig.8-9. Intersection of Cone and Prism (Horizontal Cutting Planes)

8.7 INTERSECTION of TWO CYLINDERS

Analysis: Locate corresponding straight line elements on both cylinders. The intersection
of these corresponding elements will determine points common to both cylinders;
therefore these points will be located on the line of intersection of the two
cylinders.

Example: Two right cylinders with same diameter m
given in Fig. 8-10(a). Divide one-half of the edge view w

of the vertical cylinder into a convenient number of
segments. See Fig. 8-10(b). Label the points on the cir- A
cumference 1 through 13. In the front elevation view,
draw a semi-circle at the end of the horizontal eylinder l
as shown. Divide it into the same number of segments
as in the plan view of the vertical cylinder. Label the
points to correspond elevationally with the same points . T
in the plan view. Draw level lines from these points in Given
the front view until they meet the projection of cor- 17
responding points from the plan view. Connect these
points which are on the line of intersection of the two
cylinders to obtain proper visibility. Symmetry deter- Fig. 8-10(a)
mines the complete line of intersection.
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Fig.8-10(3). Intersection of Cylinders — Same Diameters

Example: Two right cylinders with different diameters. Refer to Fig. 8-11 below. Draw a revolved
right section of the inclined cylinder in both the plan and front elevation views. Divide the right sections
into a convenient number of elements. Label each element, making sure that their corresponding positions
are orthographically correct. In this case, element 5 is high and element 13 is low. Element 1 is farthest
away from the observer and element 9 is closest to the observer. Show all elements of the inclined cylinder
in both views, locating them parallel to the axis of the inclined cylinder. In the plan view, where the
elements intersect the edge view of the vertical cylinder, label these points with their proper element
number. Project each intersection point on the plan view down to the front view until it meets its
corresponding element in this view. These “meeting points”, such as 8, 9, and 10, are points on the line of
intersection of the two cylinders. Connect these points and be careful to obtain proper visualization.

1 1
2-16 2 \{‘ 15
315 f]

414 /4/ \ 1

_ Y )

t i 711

810
H nE H 9

P r )

l 8
Given <
ol

10

Fig.8-11. Intersection of Cylinders — Different Diameters
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8.8 INTERSECTION of a CYLINDER and a CONE
A. Inclined Cutting-Plane Method

[CHAP. 8

Analysis: A series of cutting planes passing through the vertex of the cone and the edge
view of the cylinder will locate the common points of intersection between the

cone and the cylinder. See Fig. 8-12 below.

'\[’k
\>
—

[~ 2 <} b{lb\c

- N C;Jﬂ‘

3 4 5 6 T 89

Fig.8-13. Intersection of Cylinder and Cone (Inclined Cutting Planes)

Example: See Fig. 8-13 above. Draw a profile view to show the cone and the edge view of the
cylinder. Pass a series of cutting planes through the vertex O and cutting the edge view of the cylinder.
Label the elements on the baseline of the cone 1 through 9. Show these elements in both plan and front
elevation views. From each point of intersection shown on the profile view, such as X and Y, project to
the front view until it intersects the corresponding element in this view. Because X and Y lie on element 3
in the profile view, they will lie on element 3 in all views. Continue this procedure until all points are

located. Careful visualization will determine proper visibility.

B. Horizontal Cutting-Plane Method

Analysis: A series of horizontal cutting planes will cut
straight-line elements from the cylinder and
circles from the cone. Their intersections will
determine common points on the line of intersec-
tion of the cone and the cylinder. See Fig. 8-14.

Example: See Fig. 8-15 below. Draw a revolved right section of
the cylinder in the front view and divide it as shown so that the front
view will show a series of seven parallel horizontal cutting planes.
Draw the circles in the plan view, representing the surface of the
cone which is cut by each cutting plane. Show the straight-line ele-
ments of the cylinder in the top view, being careful to locate them in
their proper position by transfer of distances such as shown for
elements 2 and 6. The intersection of these straight-line elements
with the circles cut from the cone will determine common points of
intersection of the cone and the cylinder. These points can then be
projected down to the front view until they intersect the correspond-
ing elements in the front view. Careful visualization will determine
proper visibility. Symmetry determines the complete line of inter-
section.

Fig. 8-14
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Fig.8-15. Intersection of Cylinder and Cone (Horizontal Cutting Planes)

8.9 INTERSECTION of TWO RIGHT CIRCULAR CONES
HAVING PARALLEL BASES

Analysis: A series of cutting planes parallel to the bases of the cones will intersect each of
the cones in a circle. The intersection of the circles will determine points which
are common to the line of intersection of the two given cones.

s
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Fig.8-16. Intersection of Two Right Circular- Cones
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Example: In Fig. 816 above, the partial plan and front elevation views of the two cones are given.
Since the bases of both cones are horizontal, a series of four horizontal cutting planes are passed through
the front elevation view of the intersecting cones. The cutting planes cut a circle from each cone as shown
in the plan view. The intersection of the corresponding circles from each cone will determine points common
to each cone and these points lie on the line of intersection of the two cones. Continue the process until all
required points are established in the plan view and then projected to the front elevation view. To locate
the highest point of intersection, point O, draw cutting plane AB through both cone vertices, X and Y.
This cutting plane determines two straight-line elements in each cone, XZ and YV. The intersection of
these two elements in the front view will determine point O, the highest point on the line of intersection
of the two cones. To obtain the plan view of point O simply project from the front view to the cutting
plane AB in the plan view.

As far as visibility is concerned, in the plan view all points which lie on the line of intersection are
visible. In the front view however, points 1 through 5 will be visible since they lie on the near half of each
corresponding set of circles cut from each cone. Since points 1’ to 5’ lie on the far half of each correspond-
ing set of circles, these points will be on the hidden portion of the line of intersection in the front view.

DEVELOPMENT

8.10 DEVELOPMENT of a PRISM

Analysis: The true length of the lateral edges must be determined along with their rela-
tive positions in respect to the right section of the prism. A view showing the
right section of the prism will also determine the length of the development.

Example: The plan and front elevation views of the truncated hexagonal prism are given. See Fig,
8-17 below. Label the vertical edges of the prism as shown. Draw a girth line (stretchout line) directly
across from the hexagonal base of the prism. The length of the girth line must be equal to the perimeter
of the prism base. Along this girth line, lay out the distances AB, BC, etec., taken from the plan view
where these distances appear in their true length. Draw the lateral edges perpendicular to the girth line
and equal to their true length shown in the front view. Connect points 1, 2, 3, ete. with straight lines to
complete the development of the lateral surfaces of the prism. The “bend lines” are shown by a circle
over the line to be bent to establish proper shape.

Note: The true shape of the base is shown in the plan view. To obtain the true shape of the cut
surface, an inclined view is projected perpendicular to the edge view of the cut surface in the front view
and can be transferred to the development.

5-e? B-fH
4-dH _;—\l-a,"
o 3-c¥ 2-b¥
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\3-5 3 5
q [ @
| 2-6 2 6
1 1 1
(o] [ (] (] (]
& cfe" | bTfT of a b ¢ d \_ e f a
Girth Line (Stretchout Line)

-©- = Bend Line

Fig.8-17. Development of a Prism
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8.11 DEVELOPMENT of a RIGHT PYRAMID

Analysis: Determine the true length of each of the lateral edges which radiate from a
vertex point. Knowing these true lengths and the perimeter of the pyramid
base is sufficient to complete the development.

Example: See Fig. 8-18 below. The plan and front elevation views of the pyramid are given. Label
the lateral edges as shown, All inclined edges of the right pyramid are of equal length, and it is, therefore,
necessary to find the true length of only one edge. The true length of the base perimeter is seen in the
plan view. Revolve edge OD in the plan view to obtain the true length in the front view. This same
distance “X” will also be the true length of OA, OB, and OC. Using distance X as a radius, swing an arc
of indefinite length. From a point D on the are, step off a chordal distance equal to distance DA in the plan
view. This locates point A in the development. Continue this procedure until the development is complete,

A / A
af! de
a
H — —
F
0
b
Fig. 8-18. Development of a Right Pyramid .
afb” die"  df d —6— = Bend Line

Example: (Truncated Right Pyramid.) See Fig. 8-19 below. The plan and front elevation views are
given. Label the edges as shown. Since the cut surface appears as an edge in the front view, edges A-1
and B-2 are equal and C-3 is the same length as D-4. It is necessary, therefore, to determine the true length
of two edges —in this case, A-1 and D-4. By revolution, these two true length distances are measured in
the front view. Using the true length distance OD as a radius, swing an arc of indefinite length. Along
line OD, measure the true length of D-4 as obtained in the front view. From point D, swing an arc equal
to DA in the plan view and intersecting the arc of indefinite length. This locates point A on the develop-
ment. Draw a line from A to point Q. Along this line, measure the true length of A-1 as obtained in the
front view. Continue this procedure until the development is complete. The true size of the base is shown
in the plan view. An inclined view 1 will determine the true size of the cut surface.

True Size
1 Cut Surface

4 _d

Fig. 8-19

Development of a
Truncated Right Pyramid

—0-2 ‘Bend Line
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812 DEVELOPMENT of an OBLIQUE PYRAMID

Analysis: The procedure used to develop an oblique pyramid is essentially the same as for
a right pyramid except that the lateral edges of an oblique pyramid are of
various lengths; therefore, the true length of each edge must be individually
determined. Usually the true length of each edge can best be obtained by the
method of revolution.

Example: See Fig. 8-20 below. The plan and front elevation views of the oblique pyramid are given.
Label the edges as shown. Revolve each edge to obtain its true length in the front view. For the develop-
ment, lay out OA equal to the true length of QA in the front view. From point 4, swing an arc equal to
AB in the plan view. From point O, swing an arc equal to the true length of OB in the front view until it

intersects the arc from A drawn previously. This intersection point will determine point B in the develop-
ment. Continue the procedure until the development is complete.

b o
a
bu | a¥ 2/ dar \ef
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¢
a “Tp ~6—= Bend Line
bf af aFb" dfef df of Fig.8-20. Development of an Oblique Pyramid

813 DEVELOPMENT of a RIGHT CIRCULAR CYLINDER

Analysis: Fig. 8-1(a¢) shows how a cylinder is “rolled out” for development. The elements
of the cylinder must appear as true length lines and the girth line must be equal
to the circumference of the cylinder. In the development, the distance between
the true length elements must equal the distance between elements as shown on
the right section view of the cylinder.

Example: Refer to Fig. 8-21 below. The plan and front elevation views of the truncated right
cylinder are given. In the plan view, divide the circumference of the circle into a convenient number of
parts —in this case, 16. Show and label these vertical elements in both views. The true length of each
element is shown in the front view. Draw a girth line directly across from the cylinder base. The length
of the girth line is established either by calculating the circumference equal to #D, or by using dividers and
simply stepping off the sum of the chordal distances between elements as shown in the plan view. This
latter method is preferred. If the circle is divided into 16 parts as shown, the chordal distance method
results in the negligible error of about 0.6 percent. Label all the elements and draw them perpendicular
to the girth line, making them as long as they are in the front view by simple projection. Connect the high
points of each element in the development by using a French curve. The true size of the cylinder base is
shown in the plan view. An inclined view 1 will show the true size of the cut surface. Attach these true
size surfaces to the surface development if required.
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Fig. 8-21.

Development of a Truncated
Right Circular Cylinder

814 DEVELOPMENT of an OBLIQUE CYLINDER

Analysis: A view should be drawn to show the true length of the cylinder elements. An-
other view is then projected showing the right section of the cylinder and the
true distance between the elements which will appear as points in this view.

Example: See Fig. 8-22 below. The plan and front elevation views of the oblique cylinder are given.
Draw an auxiliary elevation view of the eylinder showing the axis XY in its true length, Show a revolved
right section of the cylinder and divide half of the elliptical circumference into six equal divisions as shown.
Label these elements 1 through 7 and project them back to the elevation view 1 where they will appear in
their true length and parallel to the axis XY. Draw the girth line perpendicular to the true length of the
axis and directly across from element 1. Along the girth line step off six spaces, each equal to the chordal
distance between points 1-2 or 2-3, etc. as shown in the revolved right section of the eylinder. Draw the
element lines perpendicular to the girth line. From view 1 project the extreme points of the elements
1 through 7 until they intersect their corresponding element lines in the development. Connect these points
of intersection by using a French curve. Since the cylinder
is symmetrical, a half development is sufficient to explain the
method involved.

Half
\ Development

Plane of
Right Section

Girth Line
(Stretchout Line) Fig. 8-22.

Development of an Oblique Cylinder

X
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8.15 DEVELOPMENT of a RIGHT CIRCULAR CONE

Analysis: Fig. 8-1(b) shows how a cone is “rolled out” for development. All elements are
of equal length and are equal to the slant height of the cone if the cone is a
right circular cone and not truncated. If the right circular cone is truncated,
the true length of each element must be determined. In the development of the
cone, the base circle becomes a circular arc equal in length to the circumference
of the cone base.

Example: (Right Circular Cone.) See Fig. 8-23 below. Divide the base circle in the plan view into
equal parts to establish the location of twelve equally-spaced elements. Draw and label these elements in
both the plan and front views. Each element would be equal in length to distance A. Locate point O in
the development at any convenient position on the paper. Using distance 4 as a radius, swing an arc of
indefinite length. Begin with element 1 and swing an arc equal to the chordal distance B shown in the

plan view between elements 1 and 2. Continue this operation to locate all the elements, being sure to end
with the same element number as that with which the development was started.

Fig.8-23. Development of a Right Circular Cone

Note: The graphical method explained is usually satisfactory, and dividing the circular base into
more parts will yield a greater degree of accuracy. However, the circular arc in the development can be
computed mathematically if it is necessary for greater precision. If the latter method is chosen, the fol-

lowing formula is used: g = §(360°) where R equals the radius of the base and S equals the slant height

of the cone. If the development is symmetrical, a half development can be shown provided that the division
is made through a symmetrical axis.

Example: (Truncated Right Circular Cone.) See Fig. 8-24 below. Divide the base circle in the plan
view into 12 equal parts to establish the location of 12 equally-spaced elements. Draw and label these
elements in both the plan and front views. Since the cone is truncated, only elements 1 and 7 are shown
true length in the front view. Therefore, the highest point on each of the other elements is revolved in the
plan view to lie in a plane parallel to the frontal plane. Assume a plane through elements 1 and 7 in the
plan view. The true length of elements 2 through 12 can now be measured in the front view after drawing
a level line from their highest point to the extreme element O-1, The true length of element 1, the shortest
element, would be equal to O-1 minus O-B in the front view. The true length of each element would be
determined in this way. The true length of elements 4 and 10, for example, would be equal to O-1 minus
O-C in the front view. For the actual development, draw a circular arc having a radius equal to O-1 in the
front view and equally divided into twelve spaces, each having a distance of A as shown. The true length
of each element derived from the front view will be laid out on each corresponding radial line element.
A French curve will be useful in laying out a smooth development.
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Fig.8-24.
Development of a Truncated Right Circular Cone

8.16 DEVELOPMENT of an OBLIQUE CONE

Analysis: The elements will be unequal in length, and therefore the true length of each
element must be determined. The cone base will determine the length of the
development, but the base will not develop as a circular arc such as seen in
Article 8.15.

Example: Fig, 8-25. The plan and front elevation views of the oblique cone are given. In the plan
view, divide the circumference of the base into twelve parts. Show these twelve elements in both views.
In the plan view revolve the elements into a frontal plane in order to obtain their true length as shown in
the true length diagram. Draw a line O-1 to start the development. From point 1, swing an arc equal to
the chordal distance “A” in the plan view between the elements at the base of the cone. From point O,
swing an arc equal to the true length of 0-2 as measured in the true length diagram. The intersection of
this arc with the arc from point 1 will determine point 2 in the development. Continue this procedure until
the development is complete. Connect the points with a smooth curve.

Note: If the oblique cone had been truneated, the procedure would be the same except that the highest
point on each element would be projected from the front view te the true length diagram. In this case, the
cone should be cut along the shortest element line.

Fig. 8-25.
g g 10 1112 12 11 10 98 Development of an Oblique Cone

4 3 21 12 8 4 567

True Length Diagram
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8.17 TRANSITIONS

There are many irregular forms common to sheet metal work whose patterns may be
developed by means of methods other than those previously shown in this chapter. The
most common types of irregular forms are those which connect two sections of ventilating
or heating ductwork of different sizes and shapes. These irregular forms are called
transition pieces, and their surfaces may be developed or approximately developed by means
of triangulation (see definitions, Page 131).

Since it is obvious that an innumerable number of transition pieces could be required,
the author has selected two of the most common types which he believes best express the
basic principles involved in all such transitional developments.

A. Transition — Square to Square

Analysis: Determine the true lengths of the sides of the triangular surfaces and reproduce
them in proper sequence in the development.

Note: The same analysis would apply for rectangular to square and rec-
tangular to rectangular transition pieces.

Example: In Fig. 8-26 below, the plan and front elevation views of a transition piece are given. The
true size of the square base and top are shown in the plan view. At the side of the front elevation view
construct a true length diagram to obtain the true length of the seam line 3-E and also the true length of
the bend line 3-C. Since all of the lines connecting the corners in the plan view are equal, the true length
distance obtained for 3-C would also apply for 2-B, 2-C, 1-4, 1-B, etc.

To lay out the complete development in one piece, lay out the true length of the seam line 3-E. From
point 8 swing an arc equal to the true length of 3-C. From point E swing an arc equal to the true length
of E-C which can be obtained from the plan view. The intersection of these two arcs determines the location
of point € in the development. Similarly, the intersection of the ares 3-2 drawn from point 3, and C-2
drawn from point C determines point 2. Continue this procedure until the seam line is again drawn at the
other end of the development.

Development

Fig. 8-26
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B. Transition — Rectangular to Circular

Analysis: Divide the surface of the transition into triangular areas and determine the
true length of each side of the triangle as in the previous analysis. Actually it
involves determining the true length of the bend lines required to form the
metal from the rectangular shape to the circular shape. Once the triangles are
obtained they must be reproduced in proper sequence in order to obtain the
proper development.

Note: The same analysis would apply for square to circular transition
pieces.

Example: In Fig. 8-27 below, the partial plan and front elevation views of the transition piece are
given. Since the circle is in the center of the rectangle making both halves symmetrical, it is not necessary
to divide the entire circle into a number of equal parts. In fact, in this case only one-quarter of the circle
need be divided, but we have divided the near half-portion to further clarify the solution. Connect the
numbered points on the circle to the rectangular base points A and D. These lines will form the bases of
a series of triangles whose altitude is equal to the vertical height of the transition piece, and whose
hypotenuse will be equal to the true distances from either A or D to the points located on the circumference.
(See the true length diagram located to the right of the front elevation view.) Assume the transition is to
be made in two parts having seams at 5-F and 7-F.

To begin the half development, draw line AD equal in length to the plan view of AD. From both
points A and D draw arcs having a radius equal to the true length of 4-1 and D-1 as shown in the true
length diagram. The intersection of these arcs determines point 1 of the development. Next, with points
A and D as centers and radii equal to the true lengths of A-2, A-3, A-4, ete., as shown in the true length
diagram, draw arcs of indefinite length. Set the compass to the chordal distance between the numbered
points on the near semi-cirele in the plan view, and, beginning at point 1 in the development, step off four
spaces on either side. Through the intersection points thus obtained draw lines to points A and D as shown.
From points 5 and 7 in the development draw arcs equal to the true length of 5-E and 7-F as shown in the
front elevation view. Using points A and D in the development as centers, draw arcs equal to A-E and
D-F' which are shown true length in the plan view. The intersections thus obtained will locate points
E and F in the development,

Half Development

e

True Length
Diagram

F a-d

Fig. 8-27
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Solved Problems

1. Given: The line AB is the axis of a hollow cylinder having a diameter of 14 (see Fig.
8-28 below). Point B is 11" due east of A and 14” below A. Line XY pierces the
cylinder. Point X is 14%” west, 13”” north of A and 14" below A. Point Y is 1§ east,
¥’ south of A and at the same elevation as A. Scale: ¥’ =1".

Problem: Using the two views only, determine the two points where the line XY pierces
the eylinder.
Solution:

Using the given data, draw partial plan and front elevation views of the line and cylinder. Pass
a plane parallel to the axis of the cylinder and containing the line X¥. This cutting plane cuts across
the upper base of the cylinder at points 1 and 2 in the plan view. These two points determine the
upper ends of the two straight line elements which lie in the cutting plane. Draw both elements
1 and 2 parallel to the axis in both views. The intersection of elements 1 and 2 with line XY are the
required piercing points P; and P.. These pierce points may be checked by simply projecting between
views.

Fig. 8-28 Fig.8-29

2 Given: A right triangular pyramid (base ABC vertex O) and plane DEFG A(l % 2,8%)
B(2%,2,6%) C(34,2,8) 0(2%4,4,74) D(1,3%,7%) E@3,8%,7) F(34,24,8%) G(14,24,9).
Refer to Fig. 8-29 above. See Art. 1.7 for the coordmate system of problem layout.
Problem: Find the intersection of the plane and the pyramid. Show complete visi-
bility.

Selution:

Draw the plan and front elevation views of the plane and pyramid. Draw auxiliary view 1 to
show the pyramid and edge view of the plane. Label the intersections of the plane with edges OB, OC,
and OA of the pyramid 1, 2, and 3 respectively. Project the intersection points to the plan and front
elevation views. Careful visualization will determine proper visibility.
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3.

Given: Partial plan and front eleva-
tion views of two intersecting prisms

in Fig. 8-30. Scale: 3 =17 @
Problem: Determine the line of in- 6
tersection of the two prisms.

Solution: 7
In the plan view extend the three

edges of the level triangular prism until

they intersect the edges of the vertical tri-

angular prism. Label the points as shown ﬁ 1

on the plan view 1 through 6 and A, B, and

C. Project these points down to the front

elevation view and label them in this view

also. Pass a vertical cutting plane coinci-

dental with the edge of the vertical prism Given

where points C, 6, and B are located. Label

the intersection of the plane with the top

ridge of the level prism, point X. Project

point X down to its corresponding position

in the front elevation view. Draw a line

from point X to point 6 in the front view.

The intersection of this line with the ver-

tical edge on which point B is located will

determine point 7 which is the required

point of intersection common to both planes.

Label point 7 in the plan view. Careful

visualization will determine correct visi- Fig. 8-30

bility.

Given: Partial plan and front elevation views of the intersecting prism and pyramid
in Fig. 8-31 below. Scale: 7 =1".
Problem: Determine the line of intersection of the prism and pyramid.

Solution:

Draw the given views. Label the pyramid base ABCD and vertex O, as shown. In the plan view
extend the edges of the pyramid until they intersect the vertical prism. Label these intersection points
1 through 4 and project them to the front view. Label intersection points E, F, and G in the plan view.
To locate points E, F, and G in the front view, assume vertical cutting planes passing through the
plan view of these points. Project the intersection of the cutting plane with the edges of the pyramid
down to the front view. The intersection of the cutting plane with the pyramid edges OA, OB, and OD
will limit the vertical edges of the prism-points E, F, and G in the front view. Careful visualization

will determine proper visibility. bH e
N
S
>< B
i’l 600 a‘,
H ' _L H aH
—_— H a
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1 1
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Fig. 8-31 a”b* dfe’



150 INTERSECTION AND DEVELOPMENT [CHAP. 8

5. Given: Partial plan and front elevation views of an oblique pyramid and a prism.
See Fig. 8-32 below. Scale: 3 =17,

Problem: Determine the line of intersection of the two solids.

Solution:

Draw the two given views. Label the edges of the vertical triangular prism A4, B, and C. In the
plan view label the apparent intersection points 1, 2, 3, and 4. Locate these points in their correspond-
ing positions in the front view. In the plan view pass a cutting plane coincidental to vertical surface
AC. Locate the points 5 and 6 in both plan and front views. In the front view connect point 5 to
point 3. The intersection of this line with the vertical edge from A will determine the intersection
point D. Again in the front view connect point 6 to point 1. The intersection of this line with the
vertical edge from C will determine the intersection point F. The vertical edge from B will intersect
the inclined surface at point E. Careful visualization will determine proper visibility.

2)%4q.

Fig. 8-32 Fig. 8-33

6. Given: Partial plan and front elevation views of a prism intersecting a cone in Fig.
8-33 above. Scale: i” = 1",

Problem: Show the intersection of the cone and prism.

Solution:

Draw the given views. In the front view pass a series of horizontal cutting planes through both
the prism and cone as shown. In the plan view locate the intersection of the cutting planes with the
extended edges of the prism. Careful visualization will determine proper visibility.

7. Given: Two intersecting cylinders. See Fig. 8-34 below. Scale: 4 =17,

Problem: Show the line of intersection of the two cylinders.
Solution:

Draw the given views. Pass a series of parallel vertical cutting planes as shown in the plan view.
Draw a right section of the inclined cylinder. Show the cutting planes in this view. The cutting planes
determine common points which lie on the intersection of the cylinders such as X, Y, 1, and 9. Project
these points of intersection to the front view from both the plan view and the inclined right section
view. Careful visualization will determine proper visibility.
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Given: Two right circular cones are each
247 high and have 2” diameter bases
which are parallel. The vertex of one
cone is located 1”7 west and 17 south of
the other vertex. See Fig. 8-35. Scale:

177 — I44
=17

Problem: Determine the intersection of
the two cones.

Solution:

Using the given data, draw partial plan
and front elevation views of the two right cir-
cular cones. In the front elevation view pass
two horizontal cutting planes through both
cones. In the plan view show the circles cut
from each cone by these two cutting planes.
The intersection of corresponding circles will
locate common points on the line of intersection
of the two cones. To locate the highest point of
intersection, draw vertical cutting plane AB
through vertices X and Y in the plan view. The
intersection of straight-line elements XW and
YV in the front elevation view determines the
highest point of intersection of the two cones.
Careful visualization will determine proper
visibility.

L

\—

Fig.8-35
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Given: Plan and front elevation views of the oblique cylinder representing a heating
duct which passes through the corner of a factory room. Refer to Fig. 8-36 below.

Scale: $7 =1,

Problem: Make a half development of the asbestos nhecessary to completely cover

the duct.
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10.

INTERSECTION AND DEVELOPMENT

Solution:

Draw the plan and front elevation
views of the duct as given. Since the axis
of the cylinder is a frontal line, each ele-
ment will appear true length in the front
view. Draw a partial right section view
of the duct and divide the elliptical half-
circumference into a convenient number of
elements, in this case 7, for half of the
right section. Project these elements to
the front view where they will appear true
length. The elements can also be shown
in the plan view parallel to the axis.
Draw a girth line corresponding to the
plane of the partial right section and
transfer the spacing between elements
from the view showing the one-half right
section. The true length of each element
would be transferred from the front view.
In order to make a smooth curve, connect
the element ends as shown by using an
instrument such as the French curve.

[CHAP. 8

ey
Half
Development

Fig.8-36

Given: Plan and front elevation views of the truncated right pyramid shown in Fig.

8-37 below. Scale: 1”7 =1".

Problem: Develop the lateral surfaces of the pyramid.

Solution:

Draw the given views. Since the pyramid is a right pyramid having a horizontal truncation,
each intersecting edge of the lateral surfaces will be the same length, In the plan view revolve edge
C in order to obtain the true length of OC in the front elevation view. Edge CG can now be measured
true length in the front view. The true length of each horizontal edge is measured in the plan view.
Lay out an arc having a radius equal to the true length of OC. Draw a line from O to C and step off
the true length of CG. From point C on the development swing an arc equal to the true length of CD
measured on the plan view. The intersection of this arc with the original base arc will locate point D
on the development. Connect D to O and step off the true length of DH which is equal to CG. Continue
the procedure until the development is complete. An arc from O having radius OG will simplify the
location of points H, E, and F in the development. ¢

Fig. 8-37
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11.

Given: Plan and front elevation views of the truncated pyramid. See Fig. 8-38 below.
Scale: 37 =1".
Problem: Develop the lateral surface of the pyramid.

Solution:

Draw the plan and front elevation views as given. Label the lateral edges as shown. Edges A-1
and C-3 are shown true length in the front view. To obtain the true length of edges B-2 and D-4
revolve point 4 into a frontal plane and measure A-4 revolved in the front view. Since the true size
of the base is seen in the plan view and the true length of the lateral edges are shown in the front
view, the development is drawn with point O as a vertex center from which the true length edges
are constructed. See preceding development.

bH ctf b-2
T True Size
| Right Section
I a-1 c-3
b¥ ]
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Fig. 8-38
12. Given: Plan and front elevation views of the prism shown in Fig, 8-39 above. Scale:
%1/ =17,
Problem: Draw a development of the prism.
Solution:

Draw the plan and front elevation views as given. Label the edges as shown. Draw a view
showing the right section in its true size. This right sectional view will show the proper relationship
between the lateral edges of the prism. Draw a girth line corresponding to the plane of the right
section in the front view. Project the true length of the elements from the front view and the spacing
between them from the view showing the true size of the right section. Bend where indicated.

13. Given: An oblique cone has a 13" diameter horizontal base. The vertex is located 2

due east of the center of the base and 21" above the base. The cone is to be truncated
by a horizontal plane 11’ above the base. See Fig. 8-40 below. Scale: {7 =1".
Problem: Make a half development of the truncated oblique cone.
Solution:

Using the given data, draw the plan and front elevation views of the truncated oblique cone.
In the plan view divide the circular base into 12 equal parts, and show the 12 elements from the base
to the vertex of the cone. Draw a true length diagram (see Art. 8.16) to determine the true length
of each element. With the spacing between the elements and their true length known, the development
can now be made by the method of Fig. 8-25.
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Half Development

Fig. 8-40

7

3 5 6
12 11 10 $ 8

True Length Diagram

14. Given: Plan and front elevation views of a transition piece. See Fig. 8-41 below.
Scale: 47 =1",
Problem: Using the triangulation method, draw a complete development of the tran-
sition.
Solution:

Label each of the eight points as shown and draw a diagonal on each of the four surfaces. To
the right of the front elevation view draw XY equal to the height of the transition. From point Y,
and to the left, step off the plan view distances of each bend line such as A-E, B-F, ete. Connect
these points to point X in the true length diagram in order to obtain the true length of each bend line.
To the right of point Y step off the plan view distances of each diagonal such as A-F, F-C, ete. Connect
these points to point X in the true length diagram in order to obtain the true length of each diagonal.
Assume A-E to be the seam line and draw A-E to begin the development. From point E draw an arc
equal to the true length of E-F as shown in the plan view. From point A draw an arc equal to the true
length of diagonal A-F as obtained in the true length diagram. The intersection of these two ares will
determine point F in the development. Continue this procedure until the complete development is
made. The true lengths of the top and bottom edges of the transition will be obtained from direct
transfer of distances in the plan view. The true lengths of tlhe bend lines and diagonals are measured
in the true length diagram and these distances are then transferred to the development.

g
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Fig. 8-41 T.L. Bend Lines T.L. Diagonals

True Length Diagram
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15. Given: Partial plan and front elevation views of the transition piece shown in Fig.
8-42 below. Scale: 37 =1’

Problem: Draw a half development of the transition using the principles of triangu-
lation.
Solution:

Label the points as shown and draw the primary bend lines A-E, B-E, etc. in both views. Divide
the semi-circle into six equal parts and connect these points to the fransition base corners C and D.
To the right of the front elevation view draw XY equal to the height of the transition piece. From
point X step off the plan view distance of each bend line such as D-1, D-2, D-3, etc. Connect these
points to Y in order to obtain the true length of each bend line. Assuming this to be a two-part
development, the seam lines would be G-1 and F-T.

Begin the development by drawing a line equal to the true length of C-D shown in the plan view.
From point C draw an arc equal to the true length of C-4 obtained in the true length diagram. From
point D draw an arc equal to the true length of D-4 obtained in the true length diagram. The inter-
section of these two ares will locate point 4 in the development. From point C draw arcs equal to the
true lengths of C-5, C-6, and C-7. From point D draw arcs equal to the true lengths of D-1, D-2, and
D-3. Beginning at point 4 draw arcs in each direction having a radius equal to the chordal distance
between successive circumferential points in the plan view. The intersection of these ares with the
previously constructed arcs from points C and D will determine points 1 through 7 in the development.
From points C and D draw arcs equal to the plan view distances of C-F' and D-G. Draw an arc from
point 7 equal to the vertical height of the transition. The intersection of this arc with the previous
arc from C will determine point F' in the development. Draw an arc from point 1 equal to the true
length of G-1 obtained in the true length diagram. The intersection of this arc with the previous arec
from point D will locate point G in the development. Connect the points as shown.

Half
Development
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83733

d-

Given True Length

Diagram




INTERSECTION AND DEVELOPMENT [CHAP. 8

156

Supplementary Problems

16. Tig. 8-43 below shows the partial plan and front elevation views of two intersecting prisms. Show

the intersection of the two prisms. Scale: 127 =1'-0".
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Fig. 8-43

17. Determine the lines of intersection of the right circular cone and triangular prism shown in Fig, 8-44

above. . Scale: 12" =1'—0",
18. Show the intersection of the cylindrical and semi-cylindrical ducts. See Fig. 8-45. Scale: 12" =1'—0",

1%”D

24" D

r
2

Fig.8-45 Fig. 8-46

19. Fig. 8-46 above shows the partial plan and front elevation views of two right circular cones which
intersect. Determine the line of intersection of the two cones. Develop the largest cone. Scale:

12 =1'-0".




CHAP. 8]

INTERStCTION AND DEVELOPMENT 157

20. Draw the given views and develop the lateral surfaces of each prism shown in Fig. 8-47 below. Scale

21.

22,

23.

24,

to suit.
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Fig.8-47

Fig. 8-48 shows the plan and front elevation views of a truncated
right pyramid. Make a complete development of the pyramid.
The pyramid is a transitional duct. Scale: 127 =1'—0".

Draw the given views and develop the lateral surfaces of the
oblique pyramid. Refer to Fig. 8-49 below. Scale: 12/ =1'-0",

Fig., 8-50 below shows the plan and front elevation views of a
hollow eylinder. Make a half development of the cylinder. Scale:
12" =1/—0".

Fig. 8-51 below shows the plan and front elevation views of a
truncated right cylindrical sleeve. Make a half development
directly off the front elevation view. Scale: 12" =1"—0".
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25. Fig. 8-52 below shows a cylindrical solid. Draw the given views and develop the lateral surface of
the cylinder. Scale to suit.

26. Make a half development of the hollow truncated cylinder shown in Fig. 8-53 below. Scale: 127 = 1'—¢"",
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Fig. 8-52 Fig. 8-53 Fig.8-54

27. Fig. 8-54 above shows a cylinder intersecting an oblique pyramid. Determine the intersection, and
develop the cylinder. Secale: 12/ — 1'—0".

28. Fig. 8-556 below shows the partial plan and front elevation views of a horizontal cylinder and vertical
prism. Determine the intersection of the cylinder and prism. Make a development of each piece.
Seale: 12/ =1'—0".
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Fig. 8-55

29. Fig. 8-56 above shows the partial plan and front elevation views of a cylinder and prism. Show the
intersection of the cylinder and prism. Draw a half development of the cylinder. Seale: 127 =1'—0".
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30.

31.

32.

33.

4.

35.

Show the intersection of the two circular cylinders in Fig. 8-57 below. Draw the development of each
cylinder. Scale: 12"/ =1'—0",

Fig. 8-58 below shows partial plan and front elevation views of two intersecting circular cylinders.
Determine the intersection of the two cylinders and make half developments of each. Scale: 12" =1'—0"",
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Fig. 8-57 Fig. 8-58 Fig. 8-59

Complete the plan view and develop the hollow right circular cone shown in Fig. 8-59 above. Scale:
12" =1'-0".
Draw the given views and make a half development of the lateral surface of the oblique cone shown

in Fig. 8-60 below. Scale: 12" =1'—0".

Fig. 8-61 below shows the front and partial plan views of a right circular cone intersected by a
triangular prism. Determine the intersection of the prism and cone. Make complete developments of
both the prism and cone. Scale: 127 =1/-0".

Fig. 8-62 below shows the plan and partial front elevation views of a truncated cone and intersecting
cylinder. Determine the intersection of the cone and cylinder. Make half developments of each.

Scale: 127" =1'-0".
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Fig. 8-60 Fig. 8-61 Fig. 8-62
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36. TFig. 8-63 below shows the plan and front elevation views of a square to rectangular transition piece.
By means of triangulation, draw a half development. Scale: 12”7 =1'—0",
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Fig.8-63 » Fig.8-64

37. Fig. 8-64 above shows the plan and front elevation views of a square to rectangular transition piece.
Draw a half development using the method of triangulation. Secale: 12/ =1/—0".

38. Fig. 8-65 below shows the plan and front elevation views of a cylindrical to rectangular transition

piece. Draw a complete development of the transition piece using the triangulation method. Scale:
12”7 =1'—0".
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Fig. 8-65 Fig. 8-66

39. Fig. 8-66 above shows the plan and front elevation views of a cylindrical to rectangular transition
piece. By means of triangulation, draw a half development. Scale: 12”7 =1/'—0"".




Chapter 9

Mining and Topographic Problems

The basic relationships of points, lines, and planes which have been explained thus
far find their practical application in the fundamental problems encountered by students
in Mining Engineering and topographic works. For these students there are several texts
which adequately cover the more involved problems encountered in this field of endeavor.
The purpose of this brief chapter is, therefore, merely to acquaint the student of Engineer-
ing or Science with the elementary relationship of Descriptive Geometry to Mining and
Topography.

Before a student can attempt the solution of mining problems, he must understand
the meaning of terms used in mining operations. The following terms and their meanings
are essential for a clear understanding of the basic mining problems (see Fig. 9-1).

Vertical Borehole

Inclined Borehole

,/— Outerop

C

Earth’s Surface

iower Pl;ne.(F;)otwail)-, ,

Vein Thickness .+ . . . -3 ' s

Fig.9-1. Portion of a Stratum

9.1 DEFINITIONS

(1) Stratum —a layer, vein, or seam of ore, usually considered to be an inclined plane of
uniform thickness. The thickness of the stratum is the distance between the parallel
surfaces of the stratum.

(2) Headwall —the upper bedding plane, or top surface, of the stratum.
(8) Footwall —the lower bedding plane, or bottom surface, of the stratum.

{(4) Borehole—the hole drilled from the earth’s surface to the stratum in order to de-
termine the position of the stratum.

(5) Owutcrop —the location of the intersection of the stratum with the earth’s surface.
(6) Strike—the bearing of a horizontal line on the plane of the stratum.

161
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(7) Dip—the true slope angle of the stratum, measured at right angles to the strike and
downward from a horizontal plane.

(8) Shaft—an opening, generally vertical, from the earth’s surface to the mining activities.
(9) Tunnel —an underground passageway, level or inclined, from the shaft to the stratum.

Note: There are several other terms necessarily used in Mining but the above are
sufficient for the basic problems covered in this chapter.

9.2 To DETERMINE the STRIKE and DIP from GIVEN MAP DATA

Analysis: Sufficient data is given to locate points on the stratum. Locate a level line on
the plane and show its bearing, or strike, on the plan view. Since the dip is
the same as slope angle, any elevation view showing the plane as an edge will
also show the dip of the vein.

Example: The given map data is shown in Fig. 9-2(a) below. The elevation of point C is 350". This
data is transferred to the plan and front elevation views of Fig. 9-2(8). A level line is drawn on the front
view of the plane from point C. The true length of this line, as shown in the plan view, will determine the
strike of the plane as being N 70° W,

The auxiliary elevation view 1 shows the plane of the vein as an edge, and the slope angle of 45°
is the dip of the stratum. The dip of a stratum is usually represented on a map by drawing a short line
away from the strike line and perpendicular to it. This dip line should point toward the low portion of
the plane. The dip, or slope angle of 45°, is shown by placing the angle value alongside the dip line. The
dip is then verbally described as being 45° SW. A stratum having a dip of 45° SW is quite different from
a stratum having a dip of 45° NE, even though the strike in both cases is the same.

/ b 800
A o/

(/) — 700
” 0 — 600
/ \ —- 500
Level F — ;gg
Points A, B, and C are out- — 300
erop points on the upper 200

plane of a stratum.
aF 100

(a) Given Map Data (b) Strike and Dip

Fig.9-2. Determining the Strike and Dip
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93 To DETERMINE the STRIKE, DIP, OUTCROP, and THICKNESS of a VEIN

Analysis: Three points determine a plane. A level line shown in the plan view will
determine the strike of the vein. The dip, being the same as the slope angle,
will be measured in an elevation view which shows the plane as an edge. A
point on the footwall is located by a vertical borehole intersecting the lower
surface of the stratum. Assuming the vein of ore to be of uniform thickness
and therefore parallel, an edge view of the footwall is drawn parallel to the
headwall, or upper plane of the stratum. The thickness of the vein is deter-
mined by the perpendicular distance between the two plane surfaces. An
elevation view showing the vein of ore as an edge will also show the earth’s
irregular contour lines as straight horizontal lines. This elevation view will
show the intersection of each contour line with the vein of ore. Projecting
these points of intersection to the plan view will determine the plan view of

the outecrop.

Example: The contour map of a portion of mining property is shown in Fig. 9-3 below, with points
A, B, C, and D given. The points A, B, and C are three points on the upper plane of the vein. B and C
are points of outerop on the upper plane. Point D is located on the lower plane of the vein and directly
below point A.

The strike is determined by drawing a level line on the front view of plane ABC and showing the
bearing of this level line in the plan view. An auxiliary elevation view, projected from the plan view and
showing the plane as an edge, will determine the dip. Assuming the upper and lower planes to be parallel,
we may draw the lower plane by locating point D in view 1. The thickness of the vein would be the
perpendicular distance between the lines representing the upper and lower bedding planes.

The intersection of plane ABC with the 260’ level in the auxiliary elevation view determines points
X and Y, which are located on both the vein and the earth’s surface. These two points X and Y, when
projected back to the plan view, will determine two points on the upper outcrop line. Additional points
on the upper and lower outcrop lines are determined in the same manner. All the visible ore is located

within the upper and lower outcrop lines.

Lower
QOuterop Line

200

Lower
Bedding Plane

.~ Upper

Vein Outerop Line

Thickness ‘
X | A
i

/O

Dip F

Upper b*

Bedding Plane

aF

dre

oF

Fig.9-3. Strike, Dip, Thickness, and Line of Qutcrop of a Vein
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9.4 To DETERMINE the STRIKE, DIP, and THICKNESS of a VEIN
USING TWO NON-PARALLEL BOREHOLES

Analysis: Two non-parallel boreholes will intersect the headwall and footwall at two points
on each surface.

A. Line Method: The two points on the headwall should be connected with a straight line.
A view which shows this line as a point will also show the headwall as an edge
even though its direction is as yet unknown. Since the headwall and footwall
are assumed to be parallel, the view will also show the footwall as an edge, and
its position is, therefore, determined by locating the two points on the footwall
surface. The headwall can now be drawn parallel to the footwall and the vein
thickness will be apparent.

The plan view of a level line on the headwall will determine the strike of
the vein. An elevation view showing the headwall and footwall as parallel
edges will also show the dip of the vein.

Note: The student should be certain that the dip is measured in an eleva-
tion view and not in an inclined view.

Example: In Fig. 9-4 below, a vertical borehole from A intersects the headwall at B and the footwall
at C. An inclined borehole from D intersects the headwall at E and the footwall at F. The points B and F
on the headwall are connected and this line is shown in its true length in the auxiliary elevation view 1.
The point view of line BE will appear on the edge view of the headwall in the inclined view 2. The points
C and F on the footwall will appear in the inclined view 2, and since both the headwall and footwall are
assumed to be parallel, a line drawn through C and F will also determine the direction of the headwall
through the point view of line BE. The thickness of the vein is measured in this view.

To determine the strike of the vein, a level line of random length is drawn on the headwall in view 1
and projected to the headwall shown as an edge in view 2. This level line can now be located in the plan
view to determine the strike. A new auxiliary elevation view showing the strike as a point will also show
the headwall and footwall as parallel lines, confirming the vein thickness obtained in view 2 as well as
giving the dip of the vein.

2
f % Parallel

e?b? o’
dat Vein Thickness

Vein
Thickness

fF

Fig.9-4. Strike, Dip, and Thickness of a Vein Using 2 Non-Parallel Boreholes
(Line Method)
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B. Plane Method: Connect the two points on the headwall and also connect the two points

on the footwall.

of the lines and parallel to the other line.

edge view of the plane, parallel to
the other line. Since this eleva-
tion view shows both the headwall
and footwall as edges and parallel
to each other, both the dip and
thickness of the vein can be meas-
ured in this view. The strike of
the vein would be determined by
the plan view of a level line drawn
on the headwall or footwall.

Example: See Fig. 9-5, Having the same
given data as in the line method, draw a plane
containing line CF' and having line GF parallel to
line BE in both plan and front elevation views. Make
line GF of sufficient length in the front view so that
CG will be a level line, Thus it will appear in true
length in the plan view and will determine the
strike of the vein. The auxiliary elevation view 1
will show the plane CFG as an edge parallel to the
headwall. Both the dip and vein thickness are
measured in this view.

abbHc!

Fig. 9-5.
Strike, Dip, and Thickness of a2 Vein

Using 2 Non-Parallel Boreholes
(Plane Method)

Using the method of Article 3.1, draw a plane containing one
Draw an elevation view showing the

9.5 GEOLOGIST’S COMPRESSED METHOD for FINDING the APPARENT DIP
WHEN the TRUE DIP and STRIKE ARE KNOWN

One of the most frequent problems encountered by Geology students is that of deter-

mining the apparent dip of a stratum when the true dip and strike are known.

By defini-

tion, the apparent dip of a stratum is the slope angle of any line in the plane of the stratum

other than the dip line.

As we have already learned, the true dip is the slope angle of the

stratum measured perpendicular to the strike and downward from a horizontal plane.
An apparent dip line, not being perpendicular to the strike line, must always have a slope
angle smaller than the true dip.

Analysis: Draw a line parallel to the given strike line and intersecting the plan view of

both the given true dip line and the apparent dip line. This new strike line can
be drawn at any distance from the given strike line, but its location will
determine the vertical distance it lies below the given strike. If the true dip
line is revolved 90° into the horizontal projection plane, the true dip angle will
appear. If the apparent dip line is revolved 90° into the horizontal projection

plane, the apparent dip will appear and will measure less than the true dip.

Example: In the adjacent Fig. 9-6, the strike
AB and the true dip angle are given. An auxiliary
strike line is drawn any convenient distance from
the given strike line, intersecting the plan view of
both the true dip line and apparent dip line at points
C and F, respectively. The true dip is constructed
at A (angle CAD), thus determining point D. The
line EF' is drawn perpendicular to the plan view of
the apparent dip line, BE, and is equal in length to
the line CD. The apparent dip angle is EBF.

True Dip

<7

Fig. 9-6.

Apparent Dip:
Geologist’'s Method
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9.6 CUTS and FILLS

Of the many types of problems encountered by civil engineers, one of the most com-
mon is that of determining the extent of earth cuts and fills necessary in railroad and
highway construction. In determining the location of a new highway it is vitally important
to know exactly how much earth must be removed (cut) from a hillside in order to fill in
at the designated road elevation (see Fig. 9-7 below). The principles involved are quite
similar to those used earlier in this chapter in the determination of the outcrop of a
stratum.

Fig.9-7

The following are some of the terms used in locating cuts and fills:

(1) Profile —a vertical section of the earth’s —
gurface containing a given line which o / /
may be either straight or curved. The L 7 y
length of the profile must be equal to < S
the true length of the given line. (See / / /N
Y

Fig. 9-8.) v
(2) Section—a vertical section at right A

angles to the profile line. 2 A8
(3) Cut—earth removed to obtain a re-
quired slope or elevation.
(4) Fill—earth added to existing contour
in order to obtain a required slope or 135
elevation. BTN R Dl 125
(5) Amngle of Repose—when loose earth is - 120
dumped onto a horizontal surface a

right circular cone is formed. The Profile
Fig.9-8

AN
| V%
]

145
140
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maximum angle of slope that the side of the earth, or other such material, can have
without further sliding is called the angle of repose. This slope is usually designated
by a ratio whose first number is the horizontal distance and whose second number
is the vertical distance.

Example: Fig. 9-9 below shows a contour map and the proposed location of a level road at 100’
elevation and of a given width. The angle of repose for cuts and fills is 11:1. It is required to show the
limits of both cuts and fills.

Draw a typical section of the road, showing the parallel contour intervals for both cuts and fills.
Draw lines having the correct angle of repose from both edges of the road. On the contour map draw cut
and fill contour lines parallel to the centerline of the road and projected from the section. The intersection
of these parallel cut and fill contour lines with their corresponding natural contour lines will determine
points on the required cut and fill lines. Connect the points as shown to determine the exact limits for
both cuts and fills.

\\»
\\

\

a = Angle of repose

B’ Contour Intervals

Fig.9-9
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Solved Problems

1. Given: A, B, and C are three points on
the upper bedding plane of a stratum.
Point B is 11(’ east, 230’ north and 120~ / N
above A. Point C is 270’ east, 80’ north
and 100’ above A. See Fig. 9-10. Scale:
1 =300".
Problem: Determine the strike and dip
of the stratum.
Solution:

Using the given data locate the three
points in the plan and front elevation views.
Connect the three points to represent a plane
in both views. A level line in the front view
will determine the strike in the plan view. Place
folding line H-1 perpendicular to the strike and
draw auxiliary elevation view 1 to show the
plane as an edge. The dip is measured in this
view, Fig.9-10
Ans. Strike = N 58° W, Dip = 25°

2. Given: Points A, B, and C are on the upper bedding plane of a vein of ore. Point B
is 10’ due east of A and 7’ below 4. Point C is located 20 east, 10’ south of A and &
above A. Point D is located on the lower bedding plane & directly below C. See Fig.
9-11. Seale: 17 =20".

Problem: Determine the strike, dip, and thickness of the rvein.
Solution:

Using the given data, draw the plan and
front elevation views of plane ABC and point
D. A level line on the plane will reveal the
strike in the plan view. Draw auxiliary eleva-
tion view 1 to show plane ABC as an edge, and
point D. The dip is measured in this view. The
lower bedding plane can be drawn parallel to
the edge view of plane ABC and through point
D. The perpendicular distance between the two
parallel lines is the vein thickness.

Ans. Strike = NT72°W

Dip = 66°

Thickness = 3'—3"'

Fig.9-11

3. Given: Fig. 9-12(a) is a contour map
showing point C as a point of outcrop on
the upper bedding plane of a stratum.
Points A and B are vertical boreholes
which strike the stratum at elevations of
160’ and 210’ respectively. The borehole
from B continues on through the stratum
and reaches the footwall at an elevation
of 195’. Point B is located 65" east of A
and 115’ north of A. Point C is located
140’ east of A and 85’ north of A. Scale:
177 =100,

Problem: Determine the strike, dip, and
thickness of the stratum. Fig. 9-12(a)
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Solution:

Draw the plan and front elevation
views, showing points A4, B, and C on
the upper bedding plane, and locate the
point D on the lower bedding plane as
shown in Fig. 9-12(b). A level line on
the upper bedding plane will determine
the strike of the stratum in the plan
view. Draw auxiliary elevation view 1
to show the plane ABC as an edge. The
true dip of the stratum is measured in ot
this view. Locate point D in this view H

bid?

Strike

and draw a line through D parallel to
the edge view of plane ABC. The per-
pendicular distance between the two
bedding planes determines the thick-
ness of the stratum.
Ans. Strike = N 86° W

Dip = 22°30’

Thickness = 13’'—6" af

Given: The upper bedding plane of an
ore stratum containing points A and B
has a strike of N60°W and a dip of
45°SW. A(2,1%,X) B(44,21,5). See
Fig. 9-13. Scale: 17 =40".

Problem: Determine the true distance
from A to B.

Solution:

Using the given data locate points A and
B in the front view and point B in the plan
view. Construet a plane ABC in the front view
having line BC level. Line BC in the plan will
have the given strike of N 60° W. Locate fold-
ing line H-1 perpendicular to the strike line and
draw the point view of line BC. Since view 1 is
an elevation view, the 45° dip of the plane can
be shown in the view. Locate point A in view 1
by transferring the distance from the front
view. Project from view 1 to locate A in the
plan view. By revolution locate the revolved
position of point A in the plan, and measure the
true distance from A to B in the plan view.
Ans. True Distance = 53'—9"

Given: Fig. 9-14(a) shows a contour map
whose shaded area reveals the outecrop
of a stratum. Scale: 17 =860".
Problem: Determine the strike, dip, and
thickness of the stratum.

Solution:

Connect two points of the same outerop
line and having the same elevation as shown in
Fig. 9-14(b) below. Here points A and B were
chosen on the 240’ level line of the contour map.
The angle between line AB and due north will
determine the strike. Off to the side of the con-
tour map draw parallel elevation lines having

169

Vein
Thickness

”' Fig. 9-12(b)

Level

Fig.9-13

|_—Outcrop

Fig. 9-14(a)
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10’ intervals. These lines are drawn perpendicular to the strike.

Project several points from the

contour map to the elevational lines as shown. The intersections thus obtained will determine the
thickness of the stratum. The dip can be measured in this view also.

Ans. Strike = N 55° W, Dip = 45°, Thickness = 13’

\ 210
200 ‘ >
\ 4% \

190

NV

Fig. 9-14(b)

6. Given: In Fig. 9-15(a) the points A and B indicate the
surface location of two skew boreholes that penetrate a
stratum. Point A is 50’ lower than point B. The slope
angle and bearing of the borehole from A are shown in
the figure. From A the headwall and footwall are
reached after drilling 75’ and 300’ respectively. From
B the headwall and footwall are reached after drilling
50’ and 125’ respectively. Scale: 177 =200".

Problem: Determine the strike, dip, and thickness of
the stratum.
Solution:

)

Strike

=N

S
&

i

\/

l Thickness

Q.'

o/

S
¥ &
VS
Y S
¥ &
S S
; >
Dip

130’

/—Vertical
HY
il

P

275"

Fig.9-15(a)

Draw the given view as shown in Fig. 9-15(b) below. Locate folding line H-1 parallel to the
bearing of the borehole from A. Draw an auxiliary elevation view 1 showing the slope of the borehole
from A as well as points W and X representing the headwall and footwall respectively. Project W
and X to the plan view. Show the borehole AX in the front view. Draw the front elevation view of
the vertical borehole from B showing Y and Z representing the headwall and footwall respectively.
Connect ¥ to W and Z to X in both plan and front elevation views. In the front view construct a
plane YWYV having YV level and VW parallel to ZX. Show plane YWV in the plan view again with
VW parallel to ZX. The strike is measured in the plan view. Place folding line H-2 perpendicular to
the strike and draw auxiliary elevation view 2 showing headwall and footwall paraliel to each other.
In view 2 the perpendicular distance is the vein thickness. The dip is also measured in this view.

Ans. Strike = N 83° E, Dip = 15°, Thickness = 72’




CHAP. 9]

Vein Thickness

MINING AND TOPOGRAPHIC PROBLEMS

Fig. 9-15(b) z'

Given: Points A, B, and C are on a
stratum of ore (see Fig. 9-16). A vertical
borehole is to be drilled from point X on
the surface of the ground. B is 110’ east,
40’ south and 20’ above A. Point C is
80’ east, 60’ north and 70’ above A.
Point X is located 60’ due east of A and
80’ above A. Scale: 17 =60".

Problem: Using two views only, deter-
mine how deep the hole must be drilled
in order to reach the stratum. What is
the strike of the plane?

Solution:

Using the given data draw the plan and
front elevation views of the plane ABC and
point X. Draw a level line in the front view
and measure the strike in the plan view. In the
plan view draw a line from point A through
point X until it intersects BC at D. Show the
line in the front view of the plane. In the front
view draw a vertical line from point X to the
line AD. Label the intersection point Y. Meas-
ure XY in the front view to obtain the required
length of the vertical borehole.

Amns. Borehole = 55'—6""

Strike = N 56°30' W

dEN

bH

171

F

Fig. 9-16
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Given: Points A4, B, and C are on the
upper bedding plane of a vein of ore.
Point B is 30’ east, 60’ north and 45
below A. Point C is 60’ east, 15’ north
and 20’ above A. Refer to the adjacent
Fig. 9-17. Scale: 17 =40".

Problem: What is the strike of the vein?
Using two views only, determine the true
dip of the vein by revolution.

Solution:

Using the given data draw the plan and
front elevation views of the plane ABC. A level

line AD will determine the strike as seen in the k /
plan view. From point B in the plan view draw /
a line perpendicular to AD. Label the intersec- aF Level — > ef

tion point E. Locate BE in the front view.
Revolve BE in the plan view and show the
revolved position of BE in the front elevation
view. The true dip is measured from a hori-
zontal base line as shown.
Ansg. Strike = N 60°30' E

Dip = 50° Fig.9-17

bF

Given: Map data: Strike = S45°W, True Dip = 50° NW, Apparent Dip Direction =
Due West. See Fig. 9-18 below.

Problem: Using the geologist’s method determine the apparent dip.
Solution:

Draw a strike line from point A at S 45° W. From point A draw the true dip at 50° NW. Con-
struct a line parallel to the strike. Draw the apparent dip line DE in a due west direction. From

point E construct a right triangle having the distance EF =BC. The angle EDF is the required
apparent dip angle. Amns. Apparent Dip = 40°

Apparent Dip

4
4 Fig.9-18 N Fig. 9-19

Given: Map data: Strike = N45°E, Apparent Dip Direction = Due East, Apparent
Dip = 30°. See Fig. 9-19 above.

Problem: Using the Geologist’s method determine the true dip.
Solution:

Draw a strike line from point A at N 45° E. Terminate the strike line at B and draw the
apparent dip line BC in a due east direction. Construct the apparent dip angle of 30°. Draw a line
CD parallel to the strike. At point C construct a perpendicular line terminating at E. Draw line AD
perpendicular to the strike line, and construct a right triangle having DF equal to CE. The angle
DAF is the required true dip angle. Ans. True Dip = 39° SE
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11. Given: Fig. 9-20(a) below shows a contour map having XY representing the center line
of a proposed level highway. The road is 20’ wide and is at an elevation of 100”.
The angle of repose for both cuts and fills is 1:1. Scale: 177 =4¢".

Problem: Determine the extent of the cut and fill lines.

Solution:

Using the given data draw the 20’ wide highway with XY as the center (see Fig. 9-20(b) below).
Draw a typical section of the road showing the parallel contour lines at 5 intervals with the angle of
repose at 1:1, Project the cut and fill contour lines from the section back to the contour map, and
draw them parallel to the center line of the road. The intersection of these parallel cut and fill
lines with their corresponding natural contour lines will determine points on the lines of cut and fill.
Connect these points as shown to locate the exact limits of both cuts and fills.

Y
./ 120\ /
) 115
S ~4
@,;\/

2%

[~ 85 %
\d’o\ \
X

Fig. 9-20(a)

Q\?b

Fig. 9-20(b)
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16.
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18.

19.

20.
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Supplementary Problems

In each of the following problems determine
for the coordinate system of problem layout.

[CHAP. 9

and label the strike and dip of the plane ABC. See Art. 1.7

Strike Dip

A(1,1,4) B@2,1,3)) C(3%2.4)) Ans. S83°30'E 52°
A(13,11,4) B(24,2,4)) CGL 43D Ans. DueEast-West 56°30'
A(1L,2,5) B24,8,4) CG,34,5% Ans. N6°E 41°30’
A(4,1L,5) B(44,1,8) C6,1%,43) Ans. ST6°E 15°30'
A(3},11,4)) B(,1,3)) C(T7,14,3)) Ans. ST4°E 17°30'
Ans. N85°30'E 36°

A@,2,7 B(,3L,5 C(4},24,6))

the three points 4, B, and C determine the upper bedding plane of a stratum.
The bench mark (B.M.) is a reference point
Determine the strike and dip of the stratum.

In Fig. 9-21(a) below,
Their elevations are in parentheses. Seale: 17 =100".
from which the bearings and map distances are given.
Ans. Strike = N 54°30' E, Dip = 29°

the three points A, B, and C determine the upper bedding plane of a stratum.
200’. The bench mark (B.M.) is a reference point from
Determine the strike and dip of the stratum.

In Fig. 9-21(b) below,
Their elevations are in parentheses. Scale: 1=
which the bearings and map distances are given.
Ans. Strike = S 56°30’' B, Dip = 21°30
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Fig.9-21. Problems Involving Strike, Dip, and Thickness of Veins

In Fig. 9-21(c) above, the points A and B indicate the surface location of two skew boreholes that pene-
trate a vein of ore. The slope angle and the bearing of the borehole from A is shown in the figure.
Point A is located 40’ lower than point B. From A the headwall and footwall are reached after drilling
30’ and 100’, respectively. From B the headwall and footwall are reached after drilling vertically
25’ and 60’, respectively. Scale: 1" = 50’. Determine the strike, dip, and thickness of the vein.

Ans. Strike = N 61° E, Dip = 29°, Thickness = 31
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21.

22,

23.

24.

25.

In Fig. 9-21(d) above, the points A and B are surface locations of two non-parallel boreholes that pene-
trate a vein of sandstone. Point A is 25’ above point B. The slope angle and bearing of each borehole
are given in the figure. From A the upper bedding plane and footwall are reached after drilling 50
and 100/, respectively. From B the upper and lower bedding planes are reached after drilling 40’ and
125/, respectively. Scale: 17 =50’. Determine the strike, dip, and thickness of the stratum.

Ans. Strike = N 54°30’ W, Dip = 43°, Thickness = 47’

In Fig. 9-22 points X and Y are located on a stratum of ore
which has a strike of N60°W and a dip of 45° SW. Scale: Y
1" = 60’. Locate the plan view of point X. What is the bearing of
a line connecting X and Y? Ans. Bearing = N 88°30' W

Two non-parallel boreholes are drilled toward a stratum of ore. H
The borehole from point A has a bearing of N45° W and has a F
slope of 35°. It reaches the headwall of the vein after drilling to yF
an elevation of 240’ below the surface. The footwall is reached
after drilling to an elevation of 360’ below the surface. The bore-
hole from B, located 300’ due east of A and at the same elevation
as A, has a bearing of N 45° W and has a slope of 45°. It reaches X
the headwall of the vein after drilling to an elevation of 220’ L
below ground, and the footwall is reached after drilling to an

elevation of 430’ below ground. Scale: 1”7 =200’. Using the plane Fig.9-22
method, determine the strike, dip, and thickness of the stratum.

Ans. Strike = N 79° W, Dip = 72°, Thickness = 54/

60’

F

125’

Using the same given data as for problem 23, determine the strike, dip, and thickness of the stratum
using the line method. Scale: 17/ = 200". Ans. Strike = N 79° W, Dip = 72°, Thickness = 54’

Points A, B, and C are located on the upper bedding plane of an ore stratum (see Fig. 9-23 below).
Point B is also on the outcrop line. Point D is located on the lower bedding plane 50’ directly below C.
The boreholes at A and C reach the upper bedding plane of the stratum at elevations of 200’ and 300/,
respectively, Trace the contour map and determine the strike, dip, and thickness of the vein. Draw
the outerop lines. Seale: 17 =50, Ans. Strike = N 75°30’ W, Dip = 63°30’, Thickness — 22’

Q//

a"+

Fig.9-23
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26. A vein of ore is determined by plane ABC. Line XY is a mine shaft heading in the direction of the
stratum. Point B is 100’ east, 75’ south of A and 85’ above A. Point C is 200’ east, 50’ north of 4
and 25’ above A. Point X is 150’ east, 50’ south of A and 25’ below A. Point Y is 250’ east, 90’ south
of A and 75 below A. Scale: 17 =50". Using two views only, determine how much the shaft must be
lengthened in order to reach the vein of ore. Determine the strike and dip of the vein.

Ans. Lengthen shaft 115’, Strike = S67° W, Dip = 38°30’

27. Points A, B, and C are located on the headwall of a stratum. Point X is located on a shaft from which
a tunnel is to be driven toward the stratum. Point B is located 15’ east, 30’ south of A and 15’ above
A. Point C is located 45’ east, 10’ north of A and 10’ above A. Point X is 25’ north, 10’ west of A and
30’ above A. Scale: 177 =20'. Determine the shortest distance, bearing, and slope of a tunnel from X
to the stratum. Show the tunnel in all views.
Ans. Shortest Distance = 37'—9”", Bearing = S 42° E, Slope = 66°

28. Using the same given data as for Problem 27, determine the shortest distance from point X to the
stratum if the tunnel is to have a grade of 20%. Scale: 1”7 =20'. Determine the strike and dip of the
stratum. Show the tunnel in all views.

Amns. Shortest Distance = 65'—6’/, Strike = N 51° E, Dip = 24°80’

29. A and B are points on the upper outcrop line of a vein of ore. A vertical borehole from C reaches the
upper plane at a depth of 30’ and then reaches the footwall at a depth of 45’. Point B is located 50’
west, 250’ south of A and 100’ below A. Point C is located 150’ east, 75" south of A and 70’ below 4.
Secale: 1”7 =100’. Determine the strike, dip, and thickness of the stratum.

Amns. Strike = N 49° E, Dip = 32°, Thickness = 12/

30. Using the same given data as for Problem 29, determine the strike, dip, and thickness of the stratum
if the borehole from C reaches the headwall and footwall at depths of 45’ and 75/, respectively. Scale:
177 =100". Amns. Strike = N 44° E, Dip = 36°, Thickness = 25’

31. Using the same given data as for Problem 29, determine the strike, dip, and thickness of the stratum
if the borehole from C reaches the headwall and footwall at depths of 35’ and 60’, respectively. Scale:
17 =100, Amns. Strike = N 47° E, Dip = 34°30", Thickness = 23’

32. In each of the following problems certain map data is given. Using the geologist’s method determine
the missing data.

(@) Given: Strike = N 60° W, True Dip = 45° NE, Apparent Dip Direction = Due East. Find: Ap-

parent Dip.

(b) Given: Strike — N 30° W, Apparent Dip Direction = S40° W, Apparent Dip = 45°. Find: True
Dip.

(¢) Given: Strike = N 30° E, True Dip = 45° SW, Apparent Dip Direction = N 30° W. Find: Ap-
parent Dip.

{d) Given: Strike = N 60° E, Apparent Dip Direction = S75° E, Apparent Dip = 36°. Find: True
Dip.

(e) Given: Strike = Due North, True Dip = 30°, Apparent Dip Direction = N 30° E. Find: Ap-
parent Dip.

Ans. (a) 26°807, (b) 47° SW, () 41°, (d) 44°30’ SE, (e) 16°

33. Trace Fig. 9-24 and draw a
profile along centerline XY
which represents a level high-
way at 180’ elevation. Desig-
nate cut and fill areas with
contrasting shade lines. Scale:
17 = 40",

130

» 150

Fig. 9-24
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34. Fig. 9-25 below shows a contour map having contour intervals of 10’. It is required to locate a curved
highway having its center line in an arc of 150’ radius from point X. The highway is 30’ wide and at
a constant elevation of 260". Using a slope of 11:1 for both cuts and fills, draw the lines of cuts and

fills. Secale: 1" =50".

Fig.9-25

35. Using the same given data as shown above, construct a profile along the center line of the highway.



Chapter 10

Vector Geometry

Physical quantities may be divided into two groups — scalar quantities and vector
quantities. Scalar quantities such as temperature, volume, and time have only magnitude,
while vector quantities such as force, velocity, and acceleration have both magnitude and
direction.

Problems dealing with vectors are often encountered in engineering, and two methods
are readily available for their solutions: one deals with mathematics, the other with graphics.
The advantages of graphic solutions of vector problems are especially noteworthy, and
they make the method a valuable one —complex calculations are eliminated, considerable
time is often saved, and a graphic solution makes the problem more easily understood. Too,
the accuracy afforded by this type of solution is quite suflicient for that demanded by
most vector problems.

10.1 DEFINITIONS

(1) Vector —line segment representing a vector quantity. As such, it has a given direc-
tion and length.

(2) Line of Action— line along which the vector lies coincident. The vector ‘“acts” along
this direction.

(8) Concurrent Vectors — vectors whose lines of action intersect at a common point.

(4) Nonconcurrent Vectors — vectors whose lines of action do not intersect at a common
point.

Coplanar Vectors —vectors lying in the same plane.

R
N N

Noncoplanar Vectors —vectors not lying in the same plane.

Resultant — vector obtained by adding two or more vectors. It may replace the vectors
added together, as it has the exact same effect as the vectors.

(8) Equilibrant — vector needed to exactly balance one or more vectors, in order to main-
tain equilibrium. It coincides with the resultant of the given vectors in both magni-
tude and position, but its direction is exactly opposite.

(9) Space Diagram — diagram not drawn to scale, showing only the direction and position
of the vectors.

(10) Vector Diagram — diagram showing the addition or resolution of vectors, with vectors
drawn in true direction and magnitude.

(11) Tension —force tending to pull an object apart or stretch it.
(12) Compression —force tending to squeeze the object together.

—_
~
~—

10.2 BASIC VECTOR PRINCIPLES

(1) The transmissibility principle states that a vector may act anywhere along its line of
action without changing the effect produced by the vector. (See Solved Problem 2)

(2) Two concurrent or parallel vectors are always coplanar, but three or more vectors
may or may not be so.

(3) Each vector in the vector diagram must be parallel to its corresponding vector in the
same view of the space diagram.

178
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(4) The vector diagram for several forces in equilibrium about a point must be a closed
figure, with vectors laid end-to-end in continuous direction. This means the tip of
the last vector added must just touch the tail of the initial vector, when the vectors
are added by the polygon method, tails-to-tips. This insures that all forces cancel
out, leaving no effective force acting at the point; i.e., the system is indeed in
equilibrium.

(5) For problems dealing with equilibrium about a point, the following notation is adopted:
a vector placed in the member pointing away from the point implies a tension in that
member; and a vector placed in the member pointing toward the point implies a com-
pression in that member.

10.3 RESULTANT of CONCURRENT COPLANAR VECTORS

Two methods are commonly used: the parallelogram method and the polygon method.
The latter requires fewer construction lines and is generally preferred. Solutions employ-
ing both methods are included in the examples below.

A. Parallelogram Method

Analysis: The resultant of any two vectors, tails together, is the diagonal of a parallelo-
gram constructed with the two vectors as sides.

Example: In Fig. 10-1(a) below we are given the space diagram of three forces (4 =50#, B = 180#,
C =90#) and asked to find the resultant.

In Fig. 10-1(b) below, step off the right length for each vector (determined by its magnitude) on the
line of action of that vector from the intersection point @, using a convenient scale. Note that A and B
form two sides of a parallelogram; complete it by drawing a line parallel to B through the tip of A, and a
line parallel to A through the tip of B. Draw in the diagonal from point @Q: this is the resultant R: of A
and B. Construct a second parallelogram with R, and the remaining vector C as sides, and draw in their
resultant, B.. R is the desired resultant of 4, B, and C, and is the one single force that can replace them.
Ans. R.=140#, directed as shown

The equilibrant of A, B, and C would be represented by a vector lying along the same diagonal as R,,
but exagtly opposite in direction. It is the one force that will just balance 4, B, and C.

Note: The order in which vectors are added is immaterial, but the vectors must always be placed
tails-together for this method.

C

180#
0.

90°

B
2

q 15°

/ :
~NF

A/

Fig. 10-1(b) Fig. 10-1(¢)
Fig. 10-1(e) Resultant by Parallelogram Method  Resultant by Polygon Method

B. Polygon Method

Analysis: Draw in the final side of the polygon formed by adding vectors one after an-
other, the tail of each succeeding vector attached to the tip of the last vector
added. This final side, drawn from the tail of the first vector to the tip of the
last vector added, is the resultant.
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Example: Same problem as above. In Fig. 10-1(c) above, a convenient scale chosen, draw in A to
scale from a point Q. Now draw B (direction remaining unchanged) with its tail to the tip of A, and
similarly attach C to B. The resultant R is drawn from the tail of A to the tip of C, and is in that direc-
tion. This gives us both the magnitude and direction of the resultant. Ans. B =140#

104 RESULTANT of NONCONCURRENT COPLANAR VECTORS

A. Line-of-action Method

Analysis: Move two vectors along their lines of action to the common intersection point,
and find the resultant by the paralielogram method. Using this resultant and
an unused vector, continue the process until only the final resultant remains.

Example: In Fig. 10-2 we are given three forces (A =20%#,
B = 15#, C = 25#) acting on a plank, and asked to find their resultant
and its position.

In Fig. 10-3 below, slide A and C (arbitrarily chosen) along their
lines of action until they meet at their intersection Q. A scale chosen,
mark off the true length of each vector from @, and find the resultant
R; by the parallelogram method. Now slide R; and the remaining
vector, B, along their lines of action until their tails are together at
their common intersection P. Drawing each in its true length, use
the parallelogram method again to find R, the resultant of A, B, and
C. We now know the magnitude, position, and direction of the
resultant. Ans. R;=50%# Fig. 10-2

This method is good for lines of action that intersect sharply.
But for parallel or nearly parallel lines of action, intersecting out-
side the limits of the drawing, a more general method is needed to
determine the position of the resultant.

4 A =20#
c
C1
C=25# |
R|
|
| Cs
| q
B=158N_]
C.
(b)

(@) Fig. 10-3

B. Component Polygon Method

Analysis: The magnitude and direction of the resultant is found by simply using the
polygon method in a vector diagram. To find its position, draw construction
lines from the tip and tail of each vector in the vector diagram to a point @ off
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to the side. TFor construction lines touching two original vectors, draw parallel
construction lines between the lines of action of those two vectors in the space
diagram, forming part of a polygon. For the two construction lines touching
only one original vector in the vector diagram, close the polygon by drawing
parallel construction lines from the respective lines of action of those vectors
in the space diagram. The intersection of these last two lines is a point on
the line of action of the resultant.

Example: Same problem as above, In Fig. 10-3(b) above, draw the vector diagram (polygon method)
and construction lines to point Q. Note that C. and Cs touch two vectors. C, touches A and C; so, parallel
to Cz draw (' in the space diagram (c¢) between the lines of action of A and C from any point X on the
line of action of A. Draw Cs on a similar basis from the newly found point Y. Since C: touches only 4
and C. touches only B, from X draw C. parallel to Ci, and from point Z draw C. parallel to C.. Their
intersection P is on the line of action of the resultant, because both C; and C. touch the resultant in (b).
Compare the position of the resultant with that found using the other method. Ans. R=D50#

10.5 RESULTANT of CONCURRENT NONCOPLANAR VECTORS
Analysis: Since these vectors do not all lie in the same plane, we need two views to

determine their positions. Completing the vector diagram in each view will
give two views of the resultant, from which we can find its true length, and
hence its magnitude.

2 C=170#

B 60°
Yy . 4
< 39°
qH
H
F
B
C 45°
159 {
k N\ gbo
A
(@)
Example: In Fig. 10-4(e) we are given
three force vectors (A =250#, B =150#,
C =170#) in a space diagram, and asked to

find the resultant.
Before we can complete the vector dia-

gram, we need to get the true length line of
each vector in order to mark off its correct
magnitude and establish a definite length for
it in each view of the vector diagram. Thus,
in Fig. 10-4(b), from a point @, draw a line
parallel to A in the two views. Choose a point
X on this line, and get the true length line of
QX in inclined view 1. On this line mark off
250#, the magnitude of A. Project this dis-
tance back to the front and plan views; this
gives us the length of A in each view. Using
the polygon method, from the tip of A draw

(b)

xl

Fig. 10-4. Resultant of 3 Noncoplanar Vectors
by Polygon Method
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a line parallel to B in both views. In this case, use point ¥ and revolution to determine the true length
line, and mark off 150# thereon. Project this distance back to the front and plan views to get the length
of B in both views. From the tip of B now draw a line parallel to C in both views, and get the true length
line, using point Z. On this line mark off 170#. Now, with this distance projected back to both views,
complete the polygon in each view of the vector diagram by drawing in the dashed line from @ to the
tip of C. This is the resultant; draw auxiliary view 3 to find its true length, and thus its magnitude.
Ans. B =250#

Note: The parallelogram method could just as well have been used in both views.

10.6 RESOLUTION of a YECTOR into TWO COPLANAR COMPONENTS

Any vector may be broken down into two coplanar components in specified directions,
and replaced by them. This process is known
as resolution.

Analysis: Form a parallelogram with the
single vector as a diagonal, and sides m
along the component directions.
These two sides represent the com-
ponents of the force in the specified
directions.

(@)

Example: We are given a 1000# force acting on
the block as shown in Fig. 10-5(a); and asked to find
the two forces acting along lines QM and QN which
could replace the single force.

Choose a convenient scale and mark off 1000#
along the force line in (b). Extend lines QM and QN
until a line drawn parallel to QM through the tip of
the 1000# vector intersects QN, and a line drawn
parallel to QN through the tip intersects QM. Dis-
tance QX represents the component of force in QM,
and QY is the component of force in QN.

Ans, QX =1050#, QY =5056#

In cases dealing with equilibrium about a point,
we use another method, similar to the one above.
Through the tip and the tail of the force vector draw
lines parallel to the components, as in (¢). This forms
a closed triangle, determining the force along each
component, Observing basic principle 4, draw the vec-

(%)

tors in continuous direction; this gives us the magni- Fig. 10-5
tude and direction of the forces needed in each com- Resolution of a Force into Two
ponent to keep the block from moving. Coplanar Components

10.7 RESOLUTION of a VECTOR into THREE CONCURRENT
NONCOPLANAR COMPONENTS

Any vector in space may be broken into three specific concurrent components in given
directions and replaced by them. Two methods are commonly used, and each has its ad-
vantage in special cases. We include solutions to both.

A. Edge-View of Plane Method

Analysis: Get the plane formed by two unknown components — usually forces —to appear
as an edge. This allows the force to be resolved into only two components in
that view of the vector diagram, which you readily do. One of these components
represents the two unknown forces which appear as an edge. Divide this com-
ponent into the two respective forces with the aid of another view in the vector
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diagram. Obtain the true length lines of each component to find the actual
magnitudes of force. (Note basic principles 3, 4, and 5.)

Example 1: In Fig. 10-6(a), we are given Hii
a tripod supporting a 250# vertical load, and oY
asked to find the stresses acting in each leg. bt
H
b H
F
qH
a’ " \e¢f
a¥ N
cH
L L H
F
- ®)
aF' bF cF
ANNANANNN N\ N\
(@) Fig. 10-6 (©)

Resolution of a Force into 3 Noncoplanar
Components, Edge-View of Plane Method

Since line AC is level in the front view of Fig. 10-6(b) above, it is a true length line in the plan view.
Draw folding line H-1 perpendicular to AC, making legs QA and QC appear as an edge in the auxiliary
elevation view. Now in the vector diagram (c), immediately draw in the known force F in both the plan
view and elevation view 1, choosing a convenient scale and marking off 250# in view 1, since the force line
appears in true length there. Thus, in view 1 the force may be resolved along the two lines by drawing
sides parallel to the components of force in the auxiliary view of (b). Remember that the vector diagram
of a system in equilibrium must be a closed figure with the vectors added in continuous direction; hence,
the reversed direction of the force components in the legs — they exactly balance the acting force. In the
plan view of (¢), also determine vector B, the component of force acting along leg QB. The separation point
between A and C (components of force acting in legs QA and QC, respectively) is as of yet not known in
the auxiliary view 1, but we know A and C lie end-to-end from the tip of F' to the tail of B in this view.
Hence, in the plan view, draw in lines from the tip of F and the tail of B parallel to the legs QA and QC in
that view of (b). Their intersection completes the polygon in that view and determines the desired point of
separation of forces A and C in view 1, found by projection. Again, vectors must be drawn in continuous
direction in both views. Find the magnitude of the force in each leg by taking views to get true length.

Ans. A =105#
B = 88#
C=110#

Note that vector B, placed in leg @B, points toward the point @, about which equilibrium was taken.
In this manner, note that all stresses are compressions.
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Example 2: Solve the above problem, using Bow’s notation.

In Fig. 10-7(a) below, having completed the space diagram, note that the vertical force appears as a
point in the plan view. Swing it to the side (never between the two components which appear as an edge —
@A and QC in this problem) for ease in notation. In the plan view only, place capital letters around the
equilibrium point Q, in every space between the force and the frame, and between any two members of the
frame itself (Bow’s notation should always be used in only one view). Now draw an arrow to indicate which
way the forces are to be read around the equilibrium point: the direction is arbitrary. With the arrow
drawn as shown, the vertical force reads X7, the force in leg QB reads TV, etc. Had we reversed the
direction of the arrow, the force in leg @B would read VT, the vertical force would read TX, etc.

Hi1

* (a) (®

ax b* oF Fig. 10-7
N N\ W\ ) Resolution of Force into 3 Noncoplanar
Components, using Bow’s Notation

Now in the vector diagram, Fig. 10-7(b) above, draw the only known force-first —the vertical load—in
both the plan and auxiliary elevation views. Since it reads X7 by Bow’s notation, label it X at the begin-
ning and T at the end. By the direction of the arrow, vector T'V is next. Hence, from 7' in each view of (b),
draw a line parallel to @B of (a). Yet point V is unknown. Note that the remaining vectors VW and WX
lie along one straight line in view 1 of (a); so complete the triangle in the elevation view of (b) by drawing
the vectors as one straight line from point X, parallel to QAC in the same view of (a). This determines
point V, leaving only point W unknown. Now in the plan view of (b), draw a line parallel to WX — plan
view (a) — from point X, and a line parallel to VW from point V. Their intersection determines point W,
which may be projected to view 1 to determine the length of VW and WX in that view. Draw the vectors
in continuous direction, and obtain the true length lines of each vector in order to determine the actual
magnitudes of the stresses. Ans. A=105# B=88#% C=110#

B. Point-View of Line Method

Analysis: Obtain a view in which one unknown component appears as a point. This allows
the known force to be resolved into only two components in that view of the
vector diagram. As in the previous method, use a related view of the vector
diagram to complete the resolution. Derive true lengths to find actual mag-
nitudes.

Example: Same problem as above. Before we can get the point view of a line, we must show the line
in true length. Thus, in Fig. 10-8(a), draw auxiliary elevation view 1 to obtain the true length of QB.
Place folding line 1-2 perpendicular to QB, getting QB as a point in view 2. The problem is simplified now
to resolving the force into two components in this view. In the vector diagram (b) below, establish force F
in both views 1 and 2. It appears in true length in view 1, so mark off 250# on this line. Resolve this force
into two components in view 2 by drawing lines parallel to the components of view 2 in (a). Hence, in view 1
of (b), draw in vectors A and C — the components of force in legs QA and QC, respectively — by projecting
from view 2. Obtain component B by completing the polygon in view 1. Since it appears as a point in
view 2, it must be true length in view 1. Vectors must be drawn in continuous direction in both views of
the vector diagram. A, B, and C, when placed in their respective members, all point toward the equilibrium
point; hence, all stresses are compressions in the legs. Again, the true length lines —as in the previous
method — determine the actual magnitudes of 4, B, and C.

Ans. A —=105%# B =88% C=110#
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qH
aH
H
F T
aF
AANNN
(@)
Fig. 10-8
Resolution of Force into 3 Noncoplanar (b)
Components, Point-View of Line Method

Solved Problems

1. Given: Fig. 10-9(a). Space diagram showing two coplanar forces (A =10#, B=25#)
acting at point Q. Use vector scale 17 =20#.

Problem: Find the resultant force acting at point Q.

(@) (%)

. Fig. 10-9
Solution:

Parallelogram method. See Fig. 10-9(b) above. Slide A along its line of action until its tail is
also at Q. Draw 4 and B to scale, and complete the parallelogram. Draw in the diagonal from point
Q; this is the resultant force acting at @, directed as shown.

Polygon method. See Fig, 10-9(¢c) above, Slide A along its line of action until its tail is also at
point @. Mark A to scale, and draw B to scale from the tip of A. Draw a line from the tail of A
(point @) to the tip of B. This is the resultant force, acting at point @ in the direction shown.

Ans. Resultant = 31.3#
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2. Given: Fig. 10-10(a). Space diagram of two coplanar forces (A =12#, B=8#) acting
on the block as shown. Use the vector scale 17 =10#.

Problem: Find the resultant and its line of action.

(@) (b)
. Fig. 10-10
Solution:

Fig. 10-10(b). Since each vector can act anywhere along its line of action, move both until their
tails are together at the common intersection point, @ Now they may be added. Draw A and B to
scale, and complete the parallelogram. The resultant is represented by the diagonal drawn from point
Q; thus, @ is a point on the line of action of the resultant. Ans. Resultant =7.9#%

3. Given: Fig. 10-11(a). Space diagram
showing four noncoplanar forces (A=
75%#, B=100#, C=380#, D= 50#). Use
the vector scale 177 =100#.

Problem: Find the resultant, using both
the parallelogram and polygon methods.
Solution:

Parallelogram method. See Fig. 10-11(b).
Slide vectors along their lines of action until
their tails are together at the common intersec-
tion point, Q. Vectors A, C, and D are shown
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Ans. A =105# DB =88~ ‘ Fig. 10-11
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true length in the front view, so draw
them to scale there. Select a point X &/ &
on the line of action of B; obtain the 4
true length of QX in auxiliary eleva-
tion view 1. On this true length line, . e
mark off 100#, and project back to the P Y
other two views to get the length of B //
in both views. Complete parallelograms ,,/_____/ "
in both views until only the final re-
sultant remains. Draw inclined view 2 H
to get its true length. F
Polygon method. See Fig. 10-11
(¢). Draw A in both views, marking it 4 F
to scale in the front view. In both B
views, draw a line parallel to B from <
the tip of A; select a point X on this PN\A N
line, and draw auxiliary elevation view . AN
1, obtaining Y X in true length. Mark q\ \ \E c \
D %'

off 100# on this line from Y, and pro- \ N\ \\
ject this distance back to both views. \ N
Now, from the tip of B in both views, 2 N
draw C and mark to scale in either \

view. Similarly, mark D to seale in the 3
front view, drawing from the tip of C. \'?

Draw the resultant from the point @ \

to the tip of D, and draw inclined view \

2 to get its true length. .

Ans. Resultant = 125# Fig. 10-11(c)

4. Given: Fig. 10-12(a) shows a space dia- 2

gram of three coplanar forces (A =T70#, A -7
B=90#, C=60#). Use the vector scale \\ /
17 =100#. \
Problem: Find the resultant, its vertical
and horizontal components, and its line
of action by the component polygon A c
method. /
Selution: v

Fig. 10-12(b). Draw a vector diagram to
scale, Find the vertical and horizontal com-
ponents of the resultant by drawing a vertical Fig. 10-12(q)
line from the tail and a horizontal line from the
tip of the resultant. Draw lines from the ends
of the vectors to point @. From a peint X on the line of action of B in the space diagram, draw Cy'

parallel to C.. Draw Ci’ similarly from the newly found point Y, determining point Z. Find the
intersection peint, P, of lines Cy' and C.' drawn from X and Z. P is on the line of action of R.

Ans. Resultant —142#, Horizontal comp. =86#, Vertical comp.=113#

—z ——————
B =90# Y\— - s 7
\ I3 Cy
\ C/ 7 /
v

Fig. 10-12(b)
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5. Given: Fig. 10-13(a) below. Space diagram showing four weights resting on a weight-

-

less bar. (A=25#, B=380#, C=15#, D=40#). Use the vector scale 1”=40# and
the distance scale 177 =4/,

Problem: Find the magnitude and position of the single weight which could replace
the four, and have the same effect.

or o 5 ] 9/ 1’ A
: Cl
Y Cy l‘— K '—! C
x Ca l Y A B
| c
B 7 | / Cs g
A | R C Ci
G o
cY | :
I
P G
' D
(@) (b)
Fig. 10-13
Solution:

See Fig. 10-13(b) above. Since the individual forces are parallel, the resultant is simply the sum
of the individual weights. Draw vector diagram, with the vectors marked to scale in it. Draw lines
from the ends of each vector to point Q. Draw C. parallel to C; from a point V on the line of action
of A. Similarly, draw Cs' from the newly determined point X, and C4 from point Y. Find the inter-
section point P of €y drawn from V and Cs drawn from Z. Point P is on the line of action of the
resultant R, whose magnitude and direction has already been determined in the vector diagram.

Ans., Resultant =110#, Distance K =5—38" '

Given: Three forces (A =600#, B=2800#, C=750#) act on the bridge truss as shown
in Fig. 10-14(a) below. Use the vector scale 1”7 =1000# and the distance scale 17 =
20'—0".

Problem: Determine the reactions in the supporting columns.

Solution:

See Fig. 10-14(b) below, Lay off the vec-
tors to seale in a vector diagram, and draw lines
from the ends of each vector to point Q. In the
space diagram, draw C.’ parallel to C: from a
point X anywhere on the line of action of A.
Similarly, draw Cs’ from the newly found point
Y. Find the intersection point, P, of C. drawn
from X and Cs drawn from Z. Through P,
draw the line of action of the resultant, as
found in the vector diagram. Now work back-
wards with the resultant and the horizontal
and vertical components of force in the sup-
porting columns. In Fig. 10-14(c) draw the
resultant and resolve it into horizontal and
vertical components. H represents the combined Fig. 10-14(a)
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Fig. 10-14(c)

horizontal force in the supporting columns. Draw lines Cs, Cs, and C; from any point V off to the
side as shown. As yet, the desired division of the vertical component into S; and S. is not known.
Arbitrarily choose S: to lie above S: in (¢). In (b), from any point D on Ss;, draw C;5' parallel to Cs,
between S: and the resultant — since Cs touches these two vectors in (¢). From the intersection of C5
and the resultant, point T, draw Cs’' until it meets the line of action of the horizontal force. From this
point, U, draw C;' until it meets the line of action of S;. Draw a line Cs’ from F to D, connecting the

two vertical reactions —S; and S:-— in the supporting columns.

Determine the division of the total

vertical component into S; and S:; by drawing Cs from V in (¢), parallel to Cs' in (b).

Ans. S; = 1180#, S, = 870#, H = 376#

Given: An 850# block resting on a 80° inclined slope.
See Fig. 10-15. Use the vector diagram 177 = 1000+#.

Problem: Find the force component tending to pull the
block down the slope and the perpendicular component

pressing the block against the surface.

Solution:

Draw an 850#% force vector straight down from the center
of mass of the block, to scale. Using the parallelogram method,
resolve this force into two components, one parallel and one
perpendicular to the surface; both pass through the center of

mass of the block. Ans. A =425#, B ="740%

Given: A 150# weight hanging from the two
cables shown in Fig. 10-16(a). Use the vector
scale 177 =100#.

Problem: Find the tensions in cables @A and
QB.

Solution:

See Fig, 10-16(b). This is an equilibrium problem.
Draw a 150#% wvertical force vector to scale. From the
tip of this vector.draw a line parallel to @A, and a line
parallel to @B from the tail; this forms a closed triangle.
Draw the vectors in continuous direction. Note that the
resultant of A and B exactly balances the 150# force.
Placing A and B in their respective members, find that
they both point away from the knot; hence, both forces
are tensions. Ans., A =105#, B=205#

150#

(a) (b)
Fig. 10-16
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9. Given: Fig. 10-17(a) below shows a 120# weight hanging from point Q. Springs at
points A and B record a tension of 90# in cable AQ and 100# in cable BQ respectively.
Use the vector scale 1’7 = 80#.

Problem: Find angles 6 and y.

NARRRRNNNY \\\\\}\\\\\\\}\\\\\\\\\\
a b

1204

(@) (b)
Fig. 10-17

Solution:

See Fig. 10-17(b) above. Draw in the 120# vertical force vector from a point @’. From the tail
of this vector, swing an arc of radius representing 90#; from the tip swing another arc, radius repre-
senting 100#. Draw A and B from the ends of the force vector to the intersection point of the ares, C.
A and B are now parallel to the respective cables @A and @B; hence, measure the angles ¢ and vy as
shown in the vector diagram. Ans. 9 =35°, y=43°

10. Given: Fig. 10-18(a) below. A cable and boom holding a 550# ball in suspension. Use
the vector scale 1”7 =400#.

Problem: Determine the stresses acting in both members of the framework.

q/
al b¥ Qqﬂ
H — —
F F 550#
q B
)
R YA
IMNANNNRNNARANNNNRNNNNN A
(a) (b
Fig. 19-18
Solution:

This is an equilibrium problem. Draw the 550# vertical force vector to scale in a vector diagram.
See Fig. 10-18(b) above. Resolve this force into the two components shown, by drawing a line parallel
to one of the components (QA) from the tip of the vector and another line parallel to the other member
(@B) from the tail. Their intersection determines the closed figure shown. Draw vectors in continuous
direction. A and B exactly balance the 550# force vector. B, placed in the boom, points toward the
point Q; while A, placed in the cable, points away from the point.

Ans. B = 950#, compression, A = 550#, tension
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11.

12.

Given: A 750# weight is supported by the framework shown in Fig. 10-19 below. Use
the vector scale 1”7 = 500#.

Problem: Find the tension in the cable BC.

T50#

LLLLLLLL L Ly

(a) (b)
Fig. 10-19 Fig. 10-20

Solution:

First, construet an equilibrium vector diagram about point @. Draw in Fig. 10-20(a) above the
750% force vector to scale, and resolve the force into two components by drawing lines parallel to QA4
and QB from the ends of the vector. This determines B, the component of force in @B. Place B in its
corresponding member @B, and observe that it points away from the point @; hence, it is a tension.
Now, in Fig. 10-20(b), construct an equilibrium vector diagram about the point B. From a point B,
draw in B to scale, directed away from B’ since it is a tension. Resolve this known force into two
components € and D, acting in the members BC and BD, by the methods used in (a) above. Note that
C, placed in member BC, points away from the point B, as indeed a tension should. The combined
effect of C and D exactly balances B. Ans., C=650# tension

Given: A 375# weight hangs at the end of a ten foot weightless boom as shown in
Fig. 10-21(a) below. The tension in the cable cannot exceed 1000#. TUse the vector
scale 1”7 = 600# and the distance scale 1”7 =6"—0".

Problem: Find the minimum distance X above the boom that the cable may be fastened.
What is the stress in the boom when the cable is so fastened?

375#

g 10

(@) (b

Fig. 10-21
Solution:

We must find the angle 6. In the vector diagram (b) above draw in the 375# vertical force to
scale. Resolve this force into two components acting along the given members by swinging an arc from
the tip of this force, radius representing 1000#, and finding the intersection point of this are with a
horizontal line drawn from the tail of the vector. A and B act together to exactly balance the force.
Measure 6; it equals 22°, Thus, in (c) above construct the triangle, knowing ¢; measure X. The stress
in the boom is represented by B; placing B in the boom, note that it points toward the equilibrium point.
Ans. X = 4'—0"”, B = 925# compression
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Given: A 130 ft long rope hangs over
a gorge, supporting a 650# weight
which has rolled to its natural posi- P Loo’ —
tion. See Fig. 10-22(¢). Use the vec- 15

tor scale 17 =1000# and the distance #
scale 177 =50'—0". s
Problem: Find the tension in the rope
and the distance X. N 7

Solution:

Understand the basic principle that the
angles of the rope above the horizontal are Q
the same on both sides of the suspended
pulley when the pulley is in natural position.

In (b) below find « by these relations:

X seca + (100 —X) sec a = 130 :
X seca + 100 seca — X seca = 130 Fig. 10-22(a)
seca = 1.3

In (c) below construct the angle ¢ at P and S, and find the intersection point @ of the two lines. This
determines the distance X. At @, draw the vertical force to scale, and resolve the force into two
components acting along the rope by drawing lines parallel to the rope from both ends of the foree
vector. Placing these component vectors in the respective members QP and QS, see that they both point
away from the point; hence, both feel a tension. Note, too, that tensions in the rope are the same on
both sides of the pulley; this will always be true for any rope slipping over a “frictionless pulley”.

Ans. Tension = 510#, X = 42'—6"

r— (100 —X) ——>1
7 S
o
a e ——— 0
Fig. 10-22(b) Fig. 10-22(c)

Given: A roller is desired to exert a 360# force against the slant surface shown in
Fig. 10-23(a) below. The roller is supported by two cables with a 25° included angle
between them. Use the vector scale 17 = 400%#.

Problem: How heavy a roller is needed, and what is the tension in the cables when
this roller is used?

Solution:

See Fig. 10-23(b) below. Draw an equilibrium vector diagram about a point in the center of the
roller. Establish the only known force acting on the point —a 360# normal force acting toward the
point, exerted by the slanted surface in order to maintain equilibrium. Resolve this force in (b) into two
components, by drawing from the ends of the known vector lines parallel to the other forces acting at
the point — the weight of the roller and the tension in the cables. B represents the weight of the roller.
To find the actual tension in the cables, take inclined view 1 of A, and resolve A into two components
acting along the cables. Ans. Roller = 335#, Cable Tension = 216# in both
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15.

16.

(@)

Fig. 10-23

Given: Fig. 10-24. Each cable in the above Problem 14 can stand a maximum tension
of 450#. Use the vector scale 1”7 = 600#.

Problem: Find the maximum roller
weight, and maximum force which may
be exerted against the surface.

Solution:

Draw a line parallel to the cables in the
front view, and draw inclined view 1 of the line.
Draw lines at an angle of 12.5° to either side of
this line, and on them mark off 450# on each —
as they appear in true length in this view. Find
the resultant A by the parallelogram method,
and project back to the front view to establish
A there. Resolve this known force into two
equilibrium components parallel to the other
forces acting on the center point of the roller —
its weight and the normal force of the surface.
B represents the maximum roller weight, and
C the maximum force against the surface.
Ans. B=695#, C = T45# Fig. 10-24

Given: A plane originally sets otut on a N

due north heading, but is blown off course

by a 75 m.p.h. wind directed S45° E. N

The plane shows an air speed reading of 75 mph
/

200 m.p.h. Use the vector scale 177=100
m.p.h. /

Problem: Find the actual speed and 200 mph

/
direction of the plane, both with respect 45 200 moh /
to the earth. / ?

Solution: / %

Draw a 200 m.p.h. vector directed due / /
north, and attach the wind velocity vector either / /
from its tail or tip. See Fig. 10-25. The actual /
velocity vector with respeect to earth is simply /
the resultant of the two, found by either (a) the 75 mph
parallelogram or (b) the polygon method. b
Ans. Actual Speed = 155 m.p.h. (@) (%)

Actual Direction = N 20° E Fig. 10-25
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17. Given: A pilot sets his plane on a compass heading of N 20° W; his air speed indicator
shows a velocity of 275 m.p.h. At this altitude, a 90 m.p.h. wind is blowing at a direc-
tion of S50°W. At a given time, the
pilot finds himself directly over a point
that is 90 miles south and 110 miles east
of town X. Use the vector scale 1" =200
m.p.h. and the distance scale 17 =200
miles.

Problem: How close will the plane come
to town X?

Solution: 0
Draw a 275 m.p.h. vector to scale, directed \

N 20° W. Add to this the wind velocity vector, v
by either the parallelogram [Fig. 10-26(a)] or 500-]
polygon method [Fig. 10-26(b)]; their resultant
is the actual velocity vector with respect to
earth. A perpendieular line drawn from X to
the resultant will represent the distance.

Ans. Distance = 28 miles ' Fig. 10-26

N

20%

i}

(a) (b

18. Given: A boat desires to cross the six mile wide river from point @ directly north to
point P. A water current of 4 m.p.h. is heading due east, and the boat itself is capable
of a velocity of 6 m.p.h. in still water. Use the vector scale 1”7 =4 m.p.h. and the
distance scale 17 =4 miles.

Problem: Find the compass heading the boat must set out on. How long will it take
to cross the river?
Solution:

Refer to Fig. 10-27. We desire a resultant
veloeity vector directed straight across the river
to point P. Draw the water current vector A
to scale from point Q. From the tip of this
vector swing an are, radius representing the
6 m.p.h. velocity of the boat in still water. Find
point C, where this arc intersects the straight
line drawn from Q to P. The resultant velocity
vector is now directed from @ to C when the
boat sets out on this compass heading of N o W.
Divide the six mile width by the magnitude of
the resultant velocity, in order to find the time
elapsed in going from point @ to point P.

Ans. Heading 6 = N42° W

Time = 1 hr. 20 min.

19. Given: A ship X is on an actual course
of N15°E, and travelling at a rate of
15 m.p.h. Ship Y, shown in Fig. 10-28,
capable of travelling at a velocity of 26
m.p.h. in still water, desires to pass in
front of X and not come within 5 miles of
it at the nearest point. A water current
of 8 m.p.h. in a direction of S60° E tends
to pull the ship Y off its compass heading.
Use the vector scale 1”7 =20 m.p.h. and
the distance scale 1”7 =20 miles. Fig. 10-28
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20.

21.

Problem: Find the compass heading of the ship Y if it desires to pass in front of X
in the least possible time.
Solution:

In relative motion problems, it is often helpful to introduce another vector acting on both objects,
having the effect of setting one of the objects at rest. Set ship X at rest by adding a 15 m.p.h. veetor-
direction exactly opposite to that of X’s motion — to both ships. From the tip of this vector for Y,
draw the water current vector: from itg tip, swing an are of radius representing 26 m.p.h. We want
the resultant vector to lie along the line from Y tangent to an arc of radius designating 5 miles, drawn
about X. Find point P, the intersection of the first arc and the tangent line. This determines both the
resultant velocity and the heading of the ship Y. Ans. Heading = N48° E

Given: A plane at A4, travelling at an actual speed

of 360 m.p.h., is on a course of N 35° E —both with

respect to ground (see Fig. 10-29). One minute

after this plane passes over A4, a second plane leaves

B in an attempt to intersect the first plane. This N ¢
second plane has a velocity of 400 m.p.h. in still
air, but a wind velocity of 80 m.p.h. is directed
N 15°W. Use the vector scale 1””7=400 m.p.h.
and the distance scale 1’/ =6 miles.

Problem: What must be the compass heading of
the second plane? Find the time that the second
plane is in flight until the intersection point.
Solution:

350 /6mi

12 mi

3mi

After one minute, the first plane will be at C. Set
the first plane at rest by introducing a 360 m.p.h. velocity
vector — directed exactly opposite to its motion — acting on
both planes. To the plane at B, add the wind velocity vector, Fig. 10-29
and from the tip of the resultant of the two vectors, swing
an arc, radius representing 400 m.p.h. Since we want the
resultant of all velocity vectors at B to be directed straight
toward C, find the intersection point P of the arc and the line from B to C. This determines both the
resultant velocity R and the compass heading of the plane at B. Find the time elapsed by dividing the
distance from B to C by this resultant velocity. Ans. Heading = ¢ = N 3° E, Time = 2.4 minutes

Given: The cable and pulley system

shown in Fig. 10-30 is pulling up a 300#

box at constant velocity. Use the vector o
scale 177 =600#.

Problem: Find the stress in each of the g
three supporting cables, using the edge

view of plane method. H __b" L
Solution: F

The tension is the same in all portions of
the cable slipping over the pulley. Use this fact
to find the direction of the resultant force pull-
ing at the intersection point of the three cables
in the front view of Fig. 10-31(a)} below. Draw
auxiliary view 1 to get cables @A and QC as an Fig. 10-30
edge. Draw a line parallel to the force F' in
both views of the vector diagram in Fig. 10-31
(b) below. Place an H-F folding line parallel to

ALTHLLLLNIRIRRLNRRR R R

af bF cf
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aH

Fig. 10-31(a)

the force line in the plan view — this allows us
to draw to scale the tensions in the cable on
their true length lines in the front view. Find
the resultant and project back to the two
original views to establish F' in both views. In
view 1, resolve F into two components parallel
to the lines in view 1 of (a). Draw the vectors
in continuous direction. The separation point
between A and C is as of yet unknown. Project
from view 1 to find B in the plan view. From
the tip of F' and the tail of B in the plan view,
draw lines parallel to @A and QC in the plan
view of (a); project the intersection point of
these two lines to view 1 to find the separation
point between A and C. Get the true length
lines of A, B, and C to find the actual magni-

"~ tudes of the stresses in cables QA4, @B, and QC.

22.

Since B in the plan view 1s, by coincidence,
parallel to the folding line H-1, B shows in true
length in view 1. Placing A, B, and C in their
respective members, note that each points away
from the point. Hence, all are tensions.

Ans. A =150#%#, B=240#, C =440#

Fig.

10-31(b)

[CHAP. 10

Given: Space diagram in Fig. 10-32 (a) below showing two cables and a mast, with-

holding the acting force F'=1000#. Use the vector scale 1”7 =1000#.

Problem: Use Bow’s notation, and find the stresses acting in the mast and in each

cable.

Selution:

In Fig. 10-32(a), the bent line (for Bow’s notation) in the plan view represents the mast, which
actually appears as a point in this view. Hence, it is convenient to resolve the force by the point view
of line method. First place capital letters in all spaces about the equilibrium point D in the plan view,

and choose a direction of reading; this is indicated by the arrow.
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23.

24.

bH
w
ct \4 X
dHaH
T
F
H H e L
F F X -
dr .
\ TF a
F -
B &y
/ bF aF Syr
N T‘L._‘\,/
WF
Fig. 10-32(a} Fig. 10-32(b)

In the vector diagram in Fig. 10-32(b) above establish the known force F as follows: In both
views draw lines parallel to F' as it appears in the same views of (a). Choose any point A on this line,
and obtain the true length line of XA in view 1. Mark off 1000# along this line, and project this
distance back to the plan and front views. Since the force is known as XT by Bow’s notation, label
the beginning of the vector as X and the end as T. Next in order, according to the direction of the
arrow, is vector TV. Thus, in both views draw a line parallel to DC as it appears in the corresponding
views of (a). Vector VW must complete the triangle in the plan view, because WX appears as a point
there. Therefore draw a line parallel to DB — plan view (a) — from point X in the plan view of (b). The
intersection of the last two lines drawn determines point V. Project this point to the front view to
obtain TV there. Also in the front view of (b), draw vector VW parallel to DB — front view (a) — and
project from the plan view to find point W. Complete the polygon in the front view by connecting
point W with point X. This vector WX is in true length, as it appears as a point in the plan view. TV
is also in true length in the front view, and revolution determines the true length of VW. These true
length lines represent the actual magnitudes of the stresses in the various members, drawn to scale.
All vectors must be drawn in continuous direction around the figures. Place the vectors in the cor-
responding members, according to basic principle (5), in order to determine whether the stress is a
tension or compression,

Ans. TV = 1040# Tension, VW = 370# Tension, WX = 1210# Compression

Supplementary Problems

Two coplanar forces (A =5#, B=12#) act on r

the block shown in Fig, 10-33. Find the equili- A

brant and resultant. Use the vector scale 1”7 [T~

=5#, Ans. E=R=13# ”o\

Two rockets on a missile are set so that there B -
is an angle of 40° between them; each is capable \

of giving out a 12,000# thrust. Find the maxi-

mum total forward thrust. Use the vector scale
177 =5000%#. Ans. Thrust = 22,5004 Fig. 10-33
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95. Three concurrent forces (4 = 75#, B = 190#, C = 240#) act on point @ as shown in Fig. 10-34 below.

Find the resultant. Use the vector scale 1" =100#. Ans. Resultant = 373#
A ¢ B C
7/
H /
F - /
- B
! e
300 \ - / 45
A ~~Z \
/o T—~ 1o
~ 1
A
Fig. 10-34 Fig. 10-35

26. Given the two forces A = 50# and B = 35# shown in Fig. 10-35 above, find the resultant and the angle
it makes with the right horizontal line. Use the vector scale 1 = 20#.
Ans. Resultant = 44.5#, Angle = 92°

"97. Five different forces act on the rock as shown in Fig. 10-36 below. Find the resultant. Use the vector

scale 17" = 30#. Ans. Resultant = 1156#
2
"‘300
B
& 3
N A
[} ”
30°
¢ A
70% L
5 H
5 F
3 h‘a* 2 30# Ag,o__-
B
#* 5 A 30°
S
20> \C
Fig. 10-36 Fig. 10-37

98. Given the three forces A = 45#, B = 95#, and C = 120# shown in Fig. 10-37 above. Find the resultant.
Use the vector scale 1”7 = 50#. Ans. Resultant = 95#
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29. Fig. 10-38 below shows three forces: A =300#, B =520#, and C =240#. Find the resultant. Use the

vector scale 1/ = 200#. Ans. Resultant = 584#
A %
450
30°
/ \?/ 4
H — —— e
F
A
] e
RN

Fig. 10-38 Fig. 10-39

30. It is desired to resolve force F' (F = 750#) into three coplanar components along lines QM, QN, and QP
(see Fig. 10-39 above). The component along QP is known to equal 300# in the direction shown. Find
the components of force in @M and QN. Use the vector scale 17 = 200#.
Ans. QM = 985#, QN = 1000#

31. Force A (56#, 30° slope) acts on the block shown in Fig. 10-40 below. Find the component of force
pushing the block to the left, in the direction shown. Use the vector scale 1’7 =20#.
Ans, Force = 42#

o
OUOMNNNNRNNNNNNANN

Fig. 10-40 Fig. 10-41

32. Wind strikes a barn at an angle of 70° with the side of the barn; it exerts a 3300# total force on the
barn in that direction. Find the parallel and perpendicular components of force with respect to the
side of the barn. Use the vector scale 1’ = 10004#.

Amns. parallel component = 1130#, normal component = 3100#

33. Force A of 1500# acts on cables QB and QC as shown in Fig. 10-41 above. Springs record a 1050#
tension in eable QB and a 625# tension in cable QC. Find the angles ¢ and y. Use the vector scale
17 = 300#. Ans. 9=85°, y=40°




200 VECTOR GEOMETRY [CHAP. 10

34. A 180# weight is suspended by the rope framework shown in Fig. 10-42 below. BCE is an equilateral
triangle. Find the tensions in the cables AB and CD. Use the vector scale 17 =50#.
Ans. AB=132#, CD = 161#

’/J//////#/////////{////d/L
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Fig. 10-42 Fig. 10-43

35. A steel beam weighing 1000# is shown in Fig. 10-43 above; its center of mass is at the center of the
beam. Find the tensions in the supporting cables A and B. Use the vector scale 17 =200# and the

distance scale 17 =2, Ans. A=0635#, B =36b#

36. Forces A, B, and C produce a \ ,
torque on the bar shown in Fig. - 8 c
10-44. A =120#, B=80#, C= R)
150#. Find (a) the single force i Eo
which will keep the bar in equilib-

800
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rium, and (b) its line of action. -l

Use the vector scale 1" =50# and A B

the distance scale 17 =2,

Ans. (a) Force = 168#, (b) Line
of action passes through a
point 4'-9” directly to the Fig. 10-44
left of the center of mass.

37. An airplane registers a compass heading of N 120° W and an air speed of 450 m.p.h. The wind velocity
is 100 m.p.h. at N120° E. Find the ground speed and the actual course of the plane, Use the vector
scale 1”7 = 100 m.p.h. Ans. Ground Speed = 410 m.p.h., Course = N 1382° W

38. A rowboat, capable of a 5 m.p.h. velocity in still water, desires to reach a point six miles north across
the river and five miles downstream. A water current, velocity of six m.p.h., is running due East,
parallel to the shoreline.

What must be the compass heading of the boat, and how long will it be until landing time?
Ans. Heading = N 27° W, Time = 1.36 hours.

39. A boat, capable of a 12 m.p.h. velocity in still water, is travelling at maximum speed due East against
a 5 m.p.h. water current flowing due West. The boat observes an island 1250 feet directly ahead, and
decides to bypass the island to the North, missing it by 500 feet. Find the compass heading on which
the pilot must set the boat. Use the vector scale 1”7 = 5 m.p.h. and the distance scale 1”7 = 250'.
Ans, Heading = NT76°E

40. Boat A, capable of an 8 m.p.h. velocity in still water, is on an actual course directed due North. Wind
blowing in the direction N 15° E tends to give the boat a 2 m.p.h. velocity vector in that direction.
A 4 m.p.h. water current is flowing due West. Boat B is originally 9 miles West and 8 miles North of
boat A, and travelling at 12 m.p.h. due East — actual course and speed with respect to land. 5 miles
north of its original position, boat A sees boat B, and desires to intercept it.

What is the closest that boat A can come to boat B?7 What must be its compass heading upon
observing boat B in order to come this close? How much time will have elapsed in boat A’s travelling
from its original position until the closest point is reached? Use the vector scale 1”7 = 4 m.p.h. and
the distance scale 1’ = 2 miles. Ans. Heading = N 38° E, Distance = 0.9 mile, Time = 49 min.




CHAP. 10] VECTOR GEOMETRY 201

41.

42.

43. A system of three forces (A =40#, B = 24#, and C = 3b#)

44.

A 180# plank (center of mass at the geometrical center of the plank) supports a 4256# ball as shown
in Fig, 10-45 below. Only the right end of the plank is firmly attached to a surface. Find the normal
and tangential components of force at each supporting surface. Use the vector scale 17 = 200# and
the distance scale 1 = 2’. (Hint: Find the resultant force acting on the plank at the right end.)
Ans. Inclined surface: normal comp. = 278#
Level surface: normal comp. = 348#,
tangential comp. = 103#

M
4 8.

30’

50

Fig. 10-45 S S S S S SSSS
Fig. 10-46

A 70’ rope hangs over a gorge, supporting a 150# box hanging from a pulley. Refer to Fig. 10-46
above. Find the distance X when the box is closest to the ground. What is the tension in the rope at
this point? How far above ground is the bottom of the box at this point? Use the vector scale 1" = 50#
and the distance scale 1”7 = 10,

Amns. Distance X = 11'—6’/, Tension = 83#, Height = 5'—8"

H
is shown in Fig. 10-47 below. When the system is in b
equilibrium position, it’'s found that the pulleys are at N
the same height, and separated by a distance of five feet. ~15°
The boom is free to swing out from the wall. When the
system is in equilibrium, find the distance X, the tension
in the weightless boom, and the angle ¢. Use the vector q7
gscale 1’7 == 20# and the distance scale 1/’ = 1/'—0". - To
Ans, Distance X = 3'—6", Tension = 66.5%, ¢ = 18°30’ /30/ }

c

Three guy ropes hold a pole upright as shown in Fig. ot
10-48. The pole feels a 100# compression. Find the
stresses in the ropes. Use the vector scale 17 = 50#. H

Ans. QA = 33# tension, @B = 42# tension, ——= -
QC = 5%.5# tension F r

105°] 6o
o
48 bF { c
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A
Fig. 10-47 Fig. 10-48
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45. Fig. 10-49 shows a framework supporting a \\\\\\\\\\/\Q\\\\\\\\\\Q
a? ) e ]

75°60°

220# ball. Find the stress in each leg of the 450
framework, using Bow's Notation. Use the
vector scale 1”7 = 100#.
Ans. QA = 115# tension

@B = 200# compression

QC = 85# tension

46. Fig. 10-50 below shows one-half of the support- F

ing system of a steel roller. QA is known to be

the weakest cable, capable of standing a 450#

tension. Find the heaviest roller that can be
suspended, and the force this roller exerts

against the slant surface. Use the vector scale

177 =200+#,

Ans. Roller = 1740#

Normal force = 900#

Fig. 10-49

bl

152

Fig. 10-50



APPENDIX

Frequently it will be found necessary to perform certain plane constructions in the
. solving of Descriptive Geometry problems. The most common ones are herein described
 and illustrated. In all probability, the student is familiar with these methods, but it has
been the author’s experience that the elementary processes often slip one’s mind. Thus,
these constructions are appended in order to provide the student with a handy reference
source.

Al To DRAW a LINE PARALLEL or PERPENDICULAR to a GIVEN LINE

See Fig. A-1. Let XY be the given
line. Using a T-square and a triangle with
its hypotenuse along the T-square blade, ad-
just both instruments until one of the tri-
angle legs corresponds to the line XY. Hold
the T-square firmly and slide the triangle
along the T-square to the proper place and
draw the line VW parallel to XY using the
same leg of the triangle. For a perpen-
dicular line use the other leg of the triangle
to draw MP perpendicular to XY. Fig. A-1

A2 To DIVIDE a STRAIGHT LINE into any NUMBER of EQUAL PARTS

See Fig. A-2. Suppose it is required to divide
the line XY into six equal parts. From either
end of the line draw a line of indefinite length
making any angle with XY; e.g., XZ. Using
dividers, step off six equal segments on XZ and
connect point 6 with point Y. From points 1,2,
3, 4, and 5, construct lines parallel to line 6-Y.
These lines will cut XY at the points 17,2, 3", 4/,
and 5/, which divide XY into the required six
equal parts. Fig. A-2

A3 To DRAW the INSCRIBED CIRCLE of a TRIANGLE

See Fig. A-3 below. Let the given triangle be XYZ. Using an arbitrary radius and
any of the vertices of the triangle as a center —e.g., Y —draw an arc which cuts the two
sides of the triangle forming the angle. Using these two intersection points U and V as
centers, draw two arcs of equal radius. Draw the line YW to the intersection point W
of the two ares, and extend the line past W. Similarly, construct the angle bisector of
one other angle: the two bisectors will meet at a point T. From T, draw a line perpendicular
to any side and draw the required circle, using this distance as a radius and 7' as a center.

203
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Fig. A-3 Fig. A-4

A4 To DRAW the CIRCUMSCRIBED CIRCLE of a TRIANGLE

See Fig. A-4 above. Let the given triangle be XYZ. Using the end points of any
side of the triangle—e.g., Z and Y —as centers, and a radius larger than half of ZY, pass
arcs on both sides of the line ZY. Connect the two intersection points of the arcs, U and
V, with a straight line. In a similar manner construct the perpendicular bisector of one
other side of the triangle. The two bisectors will meet at a point W. Using W as a
center and WX, WY, or WZ as a radius, draw the required circle. This method can be
used to pass a circle through any three points not on the same straight line.

A5 To DRAW an APPROXIMATE ELLIPSE

(a) The Trammel Method. See Fig. A-5(a) below. The major and minor axes of
the ellipse must be known. Draw the two axes perpendicular to each other at their re-
spective midpoints. Upon a stiff piece of paper with a straight edge, such as a 3" X 5"
card, mark a point X. From this point mark another point Y such that XY is equal to
half the major axis. Likewise, locate a second point Z such that XZ is equal to half the
minor axis. Lay the trammel across the axes so that the points ¥ and Z touch the minor
and major axes, respectively, and mark where the point X falls. Moving the trammel
such that the points Y and Z always touch the two axes as shown, mark a number of
points in like manner. When enough points have been thus located, the ellipse may be
traced out using an irregular curve.

Major Axis

Minor Axis

(@)

Fig. A-5
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(b) The Concentric Circle Method. See Fig. A-5(b) above. Again the minor and
major axes must be known. Draw the two axes perpendicular to each other at their
respective midpoints, and draw two concentric circles from the point of intersection, using
half the minor axis and half the major axis as radii. Draw a number of diameters of
the larger circle at various angles with the major axis. From the points where these
diameters intersect the smaller circle, draw lines parallel to the major axis. Similarly,
from the points where the diameters meet the larger circle, draw lines parallel to the
minor axis. The intersection point of the two lines drawn from the same diameter will
be a point on the ellipse. Having a number of points thus located, draw the ellipse
using an irregular curve.

A6 To CONSTRUCT a REGULAR POLYGON in a GIVEN CIRCLE

See Fig. A-6 below. Draw a diameter of the circle and divide it into the same num-
ber of equal parts as the required polygon has sides, in this case 7. Construct an equilateral
triangle, OAT’, on the diameter, and draw a line from the vertex of the triangle through the
second point of division on the diameter, 2’. The distance X from point A to the inter-
section point P is now used to step off the vertices of the polygon on the circle.

[4 Given Radius

—E—

%
\x
Q /z

Fig. A-6 Fig. A-T

A7 To DRAW an ARC of GIVEN RADIUS TANGENT to TWO STRAIGHT LINES

See Fig. A-7 above. Using the required given radius draw an arc from an arbitrarily
selected point on each of the lines, and draw new lines parallel to them and tangent to the
arcs. From the point of intersection of these new lines, draw perpendiculars to VX and
YZ to locate the points of tangency. The required arc tangent to the two lines is then
drawn between these points.

A8 To DRAW a LINE TANGENT to a CIRCLE
from an EXTERIOR POINT

See Fig. A-8. Using the T-square and triangle
in conjunction as in Article A.1, move the triangle
until one leg passes through the point P and is
tangent to the circle. Slide the triangle along the
T-square until the other leg passes through the
center of the circle. This leg now intersects the
circle at the point of tangency. Mark the point
and draw the required tangent. Fig. A-8
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A9 To RECTIFY the CIRCUMFERENCE of a CIRCLE

See Fig. A-9. Draw a line tangent to the circle at any point S. From point S, step
off three times the diameter of the circle on the tangent line. Draw the diameter ST and
the radius OR at an angle of 30° from the diameter ST. Construct RP perpendicular to
ST and draw a line from C, the end of the tangent line, to point P. This distance is the
circumference of the circle with an error of about 1/22,000.

t

r
|
300
0—4
} }
s ! ¢

Fig. A-9

A.10 To CONSTRUCT a HEXAGON in a GIVEN CIRCLE

(a) Triangle Method. See Fig. A-10(a) below. Draw a diameter of the circle. At
each end of the diameter, using the 30°-60° triangle, construct chords at 60° to the
diameter and connect the free ends of the chords to complete the hexagon.

N
-

-
S

(&)
Fig. A-10

(b) Divider Method. See Fig. A-10(b) above. Using dividers set at a distance equal
to the radius of the circle, step off successive arcs around the circle and connect these
points in order to form the hexagon.

A.11 To MEASURE an ANGLE by its NATURAL TANGENT

As mentioned in Art. 2.3.1-B, the grade of a line is c
the slope expressed in per cent. In Fig. A-11 the natural
tangent of angle ABC is CA divided by AB. Check the
quotient obtained by consulting a table of natural tangents.
The result will be the value of the angle expressed in
degrees and minutes. b
a

Note: The procedure is reversed if the per cent grade
is required for a known angle, Fig. A-11
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Addition of vectors, 179-181
Altitude of pyramid, 92
Altitude of triangle, 90
Angle,
between intersecting lines, calculated, 206
between line and plane, 102-103
by revolution, 117
bisector of, 203
caleulation of, 206
cone development, 144
dihedral, 100
by revolution, 116
of repose, 166
slope, 4
Apparent dip, 165
Approximate ellipse, 204
Arc, radius given, tangent to two lines, 205
Auxiliary elevation views, 4
Axis, definition of, 130
horizontal, 115
of revolution, 114
vertical, 115

Basic views, 4-7
Batter, 25

Bearing of a line, 3
Bedding planes, 161
Bench mark, 174
Bend lines, 131
Bibliography, 207
Bisector of angle, 203
Borehole, 161

Bow’s notation, 184, 196
Bridge Truss, 188

Calculation, of angle, 206

of true length, 24-25
Change-of-position method, 4
Circle, circumference of, 142, 205

circumseribed, 204

hexagon in, 206

inscribed, 208

regular polygon in, 205

to rectify, 206
Clearance distance, between line and

sphere, 92

between two skew lines, 62-63
Complementary angle method, 103
Component polygon method for vectors, 180
Components of a vector, coplanar, 182
Compression, 178
Concentric circle method, ellipse, 205
Concurrent vectors, 178

Cone, development angle, 144
development of, 144-145
intersection of, (see Intersection)
oblique, (see Oblique cone)
right circular, (see Right circular cone)
slant height of, 125

Contour interval, 167, 177

Contour lines, 3

Contour map, 173

Coordinate dimensions, 11, 12

Coplanar vectors, 178

Cuts and fills, 166

Cutting planes, horizontal, 136, 138

inclined, 138

vertical, 135
Cylinder, development of, 142-143

extreme elements of, 132

intersection of, (see Intersection)

oblique, 132, 143

right circular, (see Right circular cylinder)
Cylinders, typical intersections of, 136, 137

Descriptive geometry, 1
Development, by triangulation, 144, 145, 147
definition of, 130
half-, 143
length of, 140
of different objects, 140-147
Diagram, space, 178
true length, 145
vector, 178
Diameter of inscribed circle, 42
Dihedral angle, 100-101
by revolution, 116
Dip, apparent, 165
of a plane, 30, 162
Direct method of drawing, 4
Direction of sight, 4
Director, 130
Directrix, 130
Distance, between parallel planes, 95
(see also Shortest distance)
Division of a line into equal parts, 203
Double-curved surface, 131
Drawings, multiview, 4
orthographic, 1
topographical, 3

Earth, section of, 166

Edge, plane as, 29-30

Edge view of plane, 29-30
Elements, 130

Elevation of contour lines, 163
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Elevation views, 2 Line (cont.)
Ellipse, approximate, 204-205 in a plane, 73
concentric circle method, 205 inclined, 3
Trammel method, 204 intersecting a surface, (see Intersection)
Equal parts, division of a line into, 203 level, 3
Equilibrant, 178 location of, 22
Equilibrium, definition of, 179 making given angles with two planes, 117
of forces, coplanar concurrent, 189-190 oblique, 3, 24
noncoplanar concurrent, 195-197 of action, 178
of cut or fill, 166-167
Fills and cuts, 166 of outcrop, 163
First-angle projection, 5 of sight, 1, 4
Folding line, 2 parallel to a line, 203
Footwall, 161 per cent grade, 25-26
Forces, concurrent, 178 perpendicular to a line, 203
in equilibrium, (see Equilibrium) perpendicular to a plane, 86
parallel, 188 plane perpendicular to, 88
resultant of, (see Resultant) profile, 22
Front view, 2, 4 projection of, on plane, 84
Frontal lines, 3 reference plane, 2, 6-8
Frontal plane, 2 revolution of, 115
Fundamental views, 23 rise, 25-26
run, 25-26
Generatrix, 130 shortest, (see Shortest line)
Geologist’s Compressed method, 165 skew, 54
Girth line, 131 slope of, 4, 25-26
Grade, per cent, 25-26 straight, 2
Grade line, shortest, 87, 107 stretchout, 1381
tangent to circle, from a point, 205
Half-development, 143 true length of, (see True length of a line)
Headwall, 161 visualization of, 9
Hexagon in a circle, 206 Line-of-action method for vectors, 180
Horizontal plane, 1, 10 Lines and planes, theorems on, 53-54
Lines, arc, tangent to two, 205
Image plane, 1 bend, 131
Inclined lines, 3 contour, 3
Inclined planes, 10 frontal, 3
Inclined view, 2 horizontal, 3
Inscribed circle, 203 inclined, 3
Intersecting lines, 29 non-parallel, non-intersecting, 53
angle between, calculated, 206 oblique, 3, 24
Intersection, of a cone, and c¢ylinder, 138 perpendicular, 84
and prism, 135, 150 skew, 53
of line, and cylinder, 131 Location, of a given figure in a plane, 31
and plane, 72, 73 of circle on a plane, 31-32
of plane, and prism, 132 of folding line, 24
of prism, and cone, 135 of line, (see Line) “
and pyramid, 134 of point, (see Point)
of two cylinders, 136-137, 151 of stratum, 163
of two planes, 74-75 Lower bedding plane, 161

of two prisms, 133

of two right circular cones, 139, 151 Map distance, 34

Maps, topographic, 173
Mining terminology, 161
Multiview drawings, 4

Line, 2
as a point, 28
bearing of, 3

bend, 131 .

contour, 3 Non-concurrent vectors, 178

dividing into equal parts, 203 Non-coplanar vectors, 178

folding, 2 Non-parallel, non-intersecting lines, 53
frontal, 3 Normal view, 4

girth, 131 North, direction of, 3



Notation, Bow’s, 184, 196
various systems of, 7, 8

Oblique cone, development of, 145
Oblique cylinder, 143
Oblique lines, 3, 24
Obligue planes, 11, 24
Oblique prism, development of, 153
Oblique pyramid, development, 142
Observer, position of, 4
Orthographic drawing, 1
Orthographic projection, 1
Outerop, 161

determination of, 163

Parallel forces, 188
Parallelogram method of vector addition, 179
Per cent grade, 25-26
Perpendicular image planes, 8
Perpendicular, from a point to a line, 85-86
to a plane, 84, 86
Perpendicular relationships, 8, 84-99
Perpendicularity, rule of, 8
Pierce point, line and cylinder, 131
line and plane, 72-73
Pitch of a roof, 26
Plane, as an edge, 29-30
bedding, 161
dip of, 30, 162
edge view of, 29-30
frontal, 2
horizontal, 1, 10
image, 1
inelined, 10
intersection of, (see Intersection)
line in, 73
line perpendicular to, 84
oblique, 11, 29
parallel to two lines, 54
perpendicular image, 8
perpendicular, to a line, and through a
given point, 88
to a plane, and through a given line, 88
to two planes, and through a given
point, 89, 97
point in, 22
principal, 2, 4
profile, 2
projection of a line on, 84
projection of a point on, 84
representation of, 29
slope of, 30
strike of, 161
through a line, parallel to a second line, 54
perpendicular to a plane, 88
through a point, perpendicular to a
given line, 88
perpendicular to two planes, 89
true size of, (see True size of a plane)
vertical, 10
visualization of, 10

Planes, dihedral angle between, 100
principal views of, 10, 29
Planes and lines, theorems on, 53-54
Plan view, 1
Point, line as, 28
location of, 21
on line, 21-22
on plane, 22
notation of, 7, 8
projection of, on a plane, 22, 84
revolution of, 114-115
Point view of a line, 28
Polygon method of vector addition, 179
Polygon, regular, in a circle, 205
Position of observer, 4
Principal planes, 2, 4
Principal views, 5-7
of a straight line, 9
Prism, development of, 140
intersecting a cone, 135
intersecting a pyramid, 134
oblique, 132
right, 133
Prisms, intersection of two, 133
Problem layout, 11
Profile line, 3
Profile plane, 2
Profiles, 166
Projection, orthographic, 1
of line on plane, 22, 84-85
of point on line, 21, 22
of point on plane, 22, 84
Pyramid, development of, 141-142
oblique, 142
right, 141
truncated, 18, 19

Radial line development, 141, 144
Rectifying the circumference, 206
Reference plane line, 2, 6-8
Regular polygon in a circle, 205
Related views, 8, 9
Relative motion, 194-195
Repose, angle of, 166
Resolution of a vector into components,
182-185
Resultant, definition of, 178
of vectors, 178-180
Revolution, of a line, 115
of a plane, 116
of a point, 114-115
principles of, basic, 114
Revolved view, 138, 139
Right circular cone, development of, 144
Right circular cylinder, development of, 142
intersection of, (see Intersection)
Right prism, development of, 140
Right pyramid, development of, 141
Right section, 131, 140
Rise, of line, 25-26
Ruled surface, 131
Run, of line, 25-26
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Scalar quantity, 178
Scale, architect’s, 13
engineer’s, 13
of problems, 11
Seams, 130
Section of the earth, 166
Section, right, 131, 140
Shaft, 162
Sheet-metal seams, 130
Shortest distance, from point to line, 85-86
from point to plane, 84
between skew lines, 55-56
Shortest grade line, point to plane, 87
Shortest level distance between skew lines, 56
Shortest line of given slope, point to plane, 87
Shortest line of given slope, between
skew lines, 58
Single-curved surface, 131
Skew boreholes, 161, 164
Skew lines, 54
Slant height of a cone, 125
Slope, by revolution, 124
of a line, 4, 25-26
of a plane, 30
Space diagram, 178
Span of a roof, 26
Straight line, 3
Stratum, 161
outcrop of, 163
thickness of, 161
Stretchout line, 131
Strike and dip, of a plane, 161-164
Surface, ruled, 131
Surfaces, development of, 140
double-curved, 131
single-curved, 131
warped, 131

Tangent arc, 205
Tangent to circle, 205
Tension, 178
Theorems on lines and planes, 53-54
Thickness of vein, 163-164
Third-angle projection, 5
Top view, 1
Topographic maps, 173
Topographic terminology, 161
Trammel method for ellipse, 204
Transition piece, 146
development of, 146-147
Transmissibility principle, 178, 186
Triangle, circumscribed circle of, 204
inscribed circle of, 204
Triangulation, definition of, 131
development by, 145, 147

True length, of a line, 9, 23-25
by calculation, 24-25
by revolution, 115
of a vector, 181
True length diagram, 145
True length lines in a plane, 29
True size of a plane, 10, 30
by revolution, 116
Truncated solids, 141, 145
Truss, bridge, 188
Tunnel, 162
T-square, 203

Upper bedding plane, 161

Vector, definition of, 178
resolution of, 182
Vector diagram, 178
Vector geometry, 178
Vector quantity, 178
Vector principles, basie, 178
Vectors, addition of, 179-181
ecomponent, 182, 187
concurrent, 178
coplanar, 178
equilibrant, 178
non-concurrent, 178
non-coplanar, 178
parallelogram method for, 179
polygon method for, 179
resultant of, 178
true length of, 181
velocity, 193
Veins, 161, 164
Velocity vectors, 193
relative, 194-195
Vertical line, 3
Vertical planes, 10
Views, arrangement of, 4-6
auxiliary elevation, 4
basic four, 23
edge, 29-30
elevation, 2
front, 2, 4
fundamental, 23
inclined, 2
normal, 4
plan, 1
principal, (see Principal views)
related, 6, 8-9
spacing of, 6
top, 1
Visualization, of lines, 9
of planes, 10

Warped surfaces, 131
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