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Preface

Because of its emphasis on basic concepts and fundamental principles, Continuum
Mechanics has an important role in modern engineering and technology. Several under-
graduate courses which utilize the continuum concept and its dependent theories in the
training of engineers and scientists are well established in today’s curricula and their
number continues to grow. Graduate programs in Mechanics and associated areas have
long recognized the value of a substantial exposure to the subject. This book has been
written in an attempt to assist both undergraduate and first year graduate students in
understanding the fundamental principles of continuum theory. By including a number of
solved problems in each chapter of the book, it is further hoped that the student will be
able to develop his skill in solving problems in both continuum theory and its related fields
of application.

In the arrangement and development of the subject matter a sufficient degree of con-
tinuity is provided so that the book may be suitable as a text for an introductory course in
Continuum Mechanics. Otherwise, the book should prove especially useful as a supple-
mentary reference for a number of courses for which continuum methods provide the basic
structure. Thus courses in the areas of Strength of Materials, Fluid Mechanics, Elasticity,
Plasticity and Viscoelasticity relate closely to the substance of the book and may very well
draw upon its contents.

Throughout most of the book the important equations and fundamental relationships
are presented in both the indicial or ‘“tensor” notation and the classical symbolic or “vector”
notation. This affords the student the opportunity to compare equivalent expressions and
to gain some familiarity with each notation. Only Cartesian tensors are employed in the
text because it is intended as an introductory volume and since the essence of much of the
theory can be achieved in this context.

The work is essentially divided into two parts. The first five chapters deal with the
basic continuum theory while the final four chapters cover certain portions of specific
areas of application. Following an initial chapter on the mathematics relevant to the
study, the theory portion contains additional chapters on the Analysis of Stress, Deforma-
tion and Strain, Motion and Flow, and Fundamental Continuum Laws. Applications are
treated in the final four chapters on Elasticity, Fluids, Plasticity and Viscoelasticity. At
the end of each chapter a collection of solved problems together with several exercises for
the student serve to illustrate and reinforce the ideas presented in the text.

The author acknowledges his indebtedness to many persons and wishes to express his
gratitude to all for their help. Special thanks are due the following: to my colleagues,
Professors W. A. Bradley, L. E. Malvern, D. H. Y. Yen, J. F. Foss and G. LaPalm each of
whom read various chapters of the text and made valuable suggestions for improvement;
to Professor D. J. Montgomery for his support and assistance in a great many ways; to
Dr. Richard Hartung of the Lockheed Research Laboratory, Palo Alto, California, who
read the preliminary version of the manuscript and gave numerous helpful suggestions; to
Professor M. C. Stippes, University of Illinois, for his invaluable comments and suggestions;
to Mrs. Thelma Liszewski for the care and patience she displayed in typing the manuscript;
to Mr. Daniel Schaum and Mr. Nicola Monti for their continuing interest and guidance
throughout the work. The author also wishes to express thanks to his wife and children
for their encouragement during the writing of the book.

Michigan State University GEORGE E. MASE
June 1970
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Chapter 1

Mathematical Foundations

1.1 TENSORS AND CONTINUUM MECHANICS

Continuum mechanics deals with physical quantities which are independent of any
particular coordinate system that may be used to describe them. At the same time, these
physical quantities are very often specified most conveniently by referring to an appropriate
system of coordinates. Mathematically, such quantities are represented by tensors.

As a mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
quantities, known as its components. Specifying the components of a tensor in one
coordinate system determines the components in any other system. Indeed, the law of
transformation of the components of a tensor is used here as a means for defining the
tensor. Precise statements of the definitions of various kinds of tensors are given at the
point of their introduction in the material that follows.

The physical laws of continuum mechanics are expressed by tensor equations. Because
tensor transformations are linear and homogeneous, such tensor equations, if they are valid
in one coordinate system, are valid in any other coordinate system. This invariance of
tensor equations under a coordinate transformation is one of the principal reasons for the
usefulness of tensor methods in continuum mechanics.

1.2 GENERAL TENSORS. CARTESIAN TENSORS. TENSOR RANK.

In dealing with general coordinate transformations between arbitrary curvilinear
coordinate systems, the tensors defined are known as general tensors. When attention is
restricted to transformations from one homogeneous coordinate system to another, the
tensors involved are referred to as Cartesian tensors. Since much of the theory of con-
tinuum mechanics may be developed in terms of Cartesian tensors, the word “tensor” in
this book means “Cartesian tensor” unless specifically stated otherwise.

Tensors may be classified by rank, or order, according to the particular form of the
transformation law they obey. This same classification is also reflected in the number of
components a given tensor possesses in an n-dimensional space. Thus in a three-dimensional
Euclidean space such as ordinary physical space, the number of components of a tensor is
8% where N is the order of the tensor. Accordingly a tensor of order zero is specified in
any coordinate system in three-dimensional space by one component. Tensors of order
zero are called scalars. Physical quantities having magnitude only are represented by
scalars. Tensors of order one have three coordinate components in physical space and are
known as vectors. Quantities possessing both magnitude and direction are represented by
vectors. Second-order tensors correspond to dyadics. Several important quantities in con-
tinuum mechanics are represented by tensors of rank two. Higher order tensors such as
triadics, or tensors of order three, and tetradics, or tensors of order four are also defined
and appear often in the mathematics of continuum mechanics.
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1.3 VECTORS AND SCALARS

Certain physical quantities, such as force and velocity, which possess both magnitude
and direction, may be represented in a three-dimensional space by directed line segments
that obey the parallelogram law of addition. Such directed line segments are the geometrical
representations of first-order tensors and are called vectors. Pictorially, a vector is simply
an arrow pointing in the appropriate direction and having a length propertional to the mag-
nitude of the vector. Equal vectors have the same direction and equal magnitudes. A wunit
vector is a vector of unit length. The null or zero vector is one having zero length and an
unspecified direction. The negative of a vector is that vector having the same magnitude
but opposite direction.

Those physical quantities, such as mass and energy, which possess magnitude only are
represented by tensors of order zero which are called scalars.

In the symbolic, or Gibbs notation, vectors are designated by bold-faced letters such as
a, b, etc. Scalars are denoted by italic letters such as a, b, A, etc. Unit vectors are further
distinguished by a caret placed over the bold-faced letter. In Fig. 1-1, arbitrary vectors a
and b are shown along with the unit vector € and the pair of equal vectors ¢ and d.

N T S

Fig.1-1

The magnitude of an arbitrary vector a is written simply as a, or for emphasis it may
be denoted by the vector symbol between vertical bars as |a.

14 VECTOR ADDITION. MULTIPLICATION OF A VECTOR BY A SCALAR

Vector addition obeys the parallelogram law, which defines the vector sum of two vectors
as the diagonal of a parallelogram having the component vectors as adjacent sides. This
law for vector addition is equivalent to the triangle rule which defines the sum of two vectors
as the vector extending from the tail of the first to the head of the second when the summed
vectors are adjoined head to tail. The graphical construction for the addition of a and b
by the parallelogram law is shown in Fig. 1-2(a). Algebraically, the addition process is
expressed by the vector equation

a+b =b+a=c¢c (1.1)

Vector subtraction is accomplished by addition of the negative vector as shown, for
example, in Fig. 1-2(b) where the triangle rule is used. Thus
a—b=-b+a=4d (1.2)

The operations of vector addition and subtraction are commutative and associative as
illustrated in Fig. 1-2(c), for which the appropriate equations are

(a+b)+g = a+(b+g) = h (1.9)

h

(a) (b) (¢)

Fig.1-2



CHAP. 1] MATHEMATICAL FOUNDATIONS 3

Multiplication of a vector by a scalar produces in general a new vector having the same
direction as the original but a different length. Exceptions are multiplication by zero to
produce the null vector, and multiplication by unity which does not change a vector. Multi-
plication of the vector b by the scalar m results in one of the three possible cases shown in
Fig. 1-3, depending upon the numerical value of m.

mb b b
mb
b
mb
m>1 0<m<1 m <0
Fig.1-3

Multiplication of a vector by a scalar is associative and distributive. Thus

m(nb) = (mn)b = n(mb) (Z1.4)
(m+nb = (n+m)b = mb+nb (1.5)
m(a+b) = m(b+a) = ma+ mb (1.6)

In the important case of a vector multiplied by the reciprocal of its magnitude, the
result is a unit vector in the direction of the original vector. This relationship is expressed

by the equation ~
b = b/b (2.7)

1.5 DOT AND CROSS PRODUCTS OF VECTORS
The dot or scalar product of two vectors a and b is the scalar

A= ab = b+a = abcos¥d (1.8)

in which ¢ is the smaller angle between the two vectors as shown in Fig. 1-4(a). The dot
product of a with a unit vector € gives the projection of a in the direction of e.

(b)

Fig.1-4

The cross or vector product of a into b is the vector v given by
v = axb = —bxa = (absinf)e (1.9)

in which ¢ is the angle less than 180° between the vectors a and b, and € is a unit vector
perpendicular to their plane such that a right-handed rotation about e through the angle
¢ carries a into b. The magnitude of v is equal to the area of the parallelogram having
a and b as adjacent sides, shown shaded in Fig. 1-4(b). The cross product is not commutative.
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The scalar triple product is a dot product of two vectors, one of which is a cross product.
a*(bxe) = (axb)re = apbXxe)= A (1.10)

As indicated by (1.10) the dot and cross operation may be interchanged in this product.
Also, since the cross operation must be carried out first, the parentheses are unnecessary
and may be deleted as shown. This product is sometimes written [abc] and called the box
product. The magnitude A of the scalar triple product is equal to the volume of the
parallelepiped having a, b, ¢ as coterminous edges.

The vector triple product is a cross product of two vectors, one of which is itself a
cross product. The following identity is frequently useful in expressing the product of a

crossed into b X c.
axX(bXe) = (a*c)h— (a*b)e = w (1.11)

From (1.11), the product vector w is observed to lie in the plane of b and c.

16 DYADS AND DYADICS

The indeterminate vector product of a and b, defined by writing the vectors in juxtaposi-
tion as ab is called a dyad. The indeterminate product is not in general commutative, i.e.
ab > ba. The first vector in a dyad is known as the antecedent, the second is called the
consequent. A dyadic D corresponds to a tensor of order two and may always be represented

as a finite sum of dyads
D = aib; + ashy + - -+ + anby (1.12)

which is, however, never unique. In symbolic notation, dyadics are denoted by bold-faced
sans-serif letters as above.

If in each dyad of (1.12) the antecedents and consequents are interchanged, the resulting
dyadic is called the conjugate dyadic of D and is written

D. = bia; + beas + - -+ + byan (1.13)

If each dyad of D in (1.12) is replaced by the dot product of the two vectors, the result is a
scalar known as the scalar of the dyadic D and is written

Ds = ai*bs + azx*bs + -+ + an by (1.1%)

If each dyad of D in (1.12) is replaced by the cross product of the two vectors, the result is
called the vector of the dyadic D and is written

D, = ayXbi+asXbs+ -+ +avXby (1.15)
It can be shown that D., D, and D, are independent of the representation (1.12).

The indeterminate vector product obeys the distributive laws

a(b+¢) = ab + ac (1.16)
(a+b)e = ac + be (1.17)
(a+b)(c+d) = ac+ ad + be + bd (1.18)
and if A and p are any scalars,
(A +u)ab = xab + pab (1.19)

(Aa)b = a(Ab) = xab (1.20)
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If v is any vector, the dot products v+-D and D-v are the vectors defined respectively by
v'D = (veabi+ (veagbe+ -+ + (vean)by = u (2.21)
D-v = aj(bi*v)+ as(baev)+ -+ +an(by'v) = w (1.22)

In (1.21) D is called the postfactor, and in (1.22) it is called the prefactor. Two dyadics D
and E are equal if and only if for every vector v, either
veD = v'E or D-'v=E'v (1.23)
The unit dyadic, or idemfactor 1, is the dyadic which can be represented as
I = &8 + &0 + e:es (1.24)
where €, €:, €3 constitute any orthonormal basis for three-dimensional Euclidean space
(see Section 1.7). The dyadic I is characterized by the property

I'v = vl = v (1.25)
for all vectors v.

The cross products v X D and D X v are the dyadics defined respectively by

vxD = (vXap)bi+ (vXagby+ --+ + (vXan)by = F (1.26)
DXv = aibiXv)+ asbaXv)+ - +anbyXv) = G (1.27)

The dot product of the dyads ab and cd is the dyad defined by
abred = (b-c)ad (1.28)

From (1.28), the dot product of any two dyadics D and E is the dyadic
D-E = (aib;+ashbo+ - - +anby) * (c1di +c2d2+ - - - + cndn)

= (b1*c1)aid; + (br-c)ards + -+ - + (bycv)andy = G (1.29)
The dyadics P and E are said to be reciprocal of each other if
E'D =D-E = | (1.80)

For reciprocal dyadics, the notation E=D"! ‘and D=E! is often used.

Double dot and cross products are also defined for the dyads ab and cd as follows,

ab :cd = (a-c)(b-d) = A, ascalar (1.31)
abXcd = (axc)b-d) = h, avector (1.32)
ab, ed = (a-¢)(bxd) =g, avector (1.83)
abed = (aXc)(bxd) = uw, adyad (1.34)

From these definitions, double dot and cross products of dyadics may be readily developed.
Also, some authors use the double dot product defined by

ced = (bec)(a-d) = A, ascalar (1.35)
A dyadic D is said to be self-conjugate, or symmetric, if
D = D, (1.36)
and anti-self-conjugate, or anti-symmetric, if
D = -D. (1.87)

Every dyvadic may be expressed uniquely as the sum of a symmetric and anti-symmetric
dyadic. For the arbitrary dyadic D the decomposition is

= }(D+D)+3D—D.) = G+H (1.38)
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for which G = 4(D.+(Dc)e) = 4(D.+D) = G (symmetric) (1.39)
and H. = (Dc—(Dc)c) = #(D.—D) = —H (anti-symmetric) (1.40)
Uniqueness is established by assuming a second decomposition, D = G* + H*., Then
G*+H* = G+H (1.41)
and the conjugate of this equation is
G*—H* = G—H (1.42)

Adding and subtracting (1.41) and (1 +42) in turn yields respectively the desired equalities,
G* =G and H* =H.

1.7 COORDINATE SYSTEMS. BASE VECTORS. UNIT VECTOR TRIADS

A vector may be defined with respect to a particular coordinate system by specifying
the components of the vector in that system. The choice of coordinate system is arbitrary,
but in certain situations a particular choice may be advantageous. The reference system
of coordinate axes provides units for measuring vector magnitudes and assigns directions
in space by which the orientation of vectors may be determined.

The well-known rectangular Cartesian coordi-
nate system is often represented by the mutually
perpendicular axes, Oxyz shown in Fig. 1-5. Any
vector v in this system may be expressed as a
linear combination of three arbitrary, nonzero,
noncoplanar vectors of the system, which are
called base vectors. For base vectors a,b,c and
suitably chosen scalar coefficients A, u, v the vector
v is given by

v = Aa+ub + e (1.43)

Base vectors are by hypothesis linearly independ-
ent, i.e. the equation
Aa+pb+ve = 0 (1.44)

is satisfied only if A=p=v=0. A set of base
vectors in a given coordinate system is said to
constitute a basis for that system. Fig. 1-5

The most freqtientA choice of base vectors for the rectangular Cartesian system is the

set of unit vectors i, j, k along the coordinate axes as shown in Fig. 1-5. These base vectors
constitute a right-handed unit vector triad, for which

ixi=% fxk=1 &xi=3 (1.45)
and ??z??zf(ﬁzl
i§=7k=k1=0 (1.46)

Such a set of base vectors is often called an orthonormal basis.
In terms of the unit triad f, ;i\, 1;, the vector v shown in Fig. 1-6 below may be expressed by
vV = v+ v, + vk (1.47)

in which the Cartesian components
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A
V: = v*i = vCOSa
}'\
vy, = v*J = vcosp .
A o
v. = v-k = vcosy

are the projections of v onto the coordinate axes.
The unit vector in the direction of v is given ac-
cording to (1.7) by
& = v/v
= (cos a)/i\ + (cos ,8)§ + (cos y)ﬁ (1.48)

Since v is arbitrary, it follows that any unit vec- L4
tor will have the direction cosines of that vector
as its Cartesian components.
In Cartesian component form the dot product
of a and b is given by
arh = (a1 +a,]+ak): (0140, +0b:k)
= a/:cb:c + ayby + azbz (1-49) Fig.1-6
For the same two vectors, the cross product a X b is
axh = (abs—a:by) i + (@:be—a:b2) ] + (a:by — ada)k (1.50)
This result is often presented in the determinant form
T
aXx b = a 0Oy Qa: (1 .51)
bx by bz

in which the elements are treated as ordinary numbers. The triple scalar product may also
be represented in component form by the determinant

aa; ay az
[abe] = |bs by D (1.52)
€z Cy Cz

In Cartesian component form, the dyad ab is given by
ab = (i +a,] +ak)(®:A + 0,5 + k)
= axb,/ff + axby’ivj\ + azb;ivl;
+ aybx’j\? -+ ayby’j\)j\ + (bez,j\i\(
+ @bk + abyk + b kk (1.53)
Because of the nine terms involved, (1.58) is known as the nonion form of the dyad ab.
It is possible to put any dyadlc into nonion form. The nonion form of the idemfactor in
terms of the unit triad i 1, ],k is given by
1 =31+55+kk (1.54)
In addition to the rectangular Cartesian coordinate system already discussed, curvi-
linear coordinate systems such as the cylindrical (R,4,2) and spherical (7,9, ¢) systems
shown in Fig. 1-7 below are also widely used. Unit triads (€r, & €:) and (€r, €0, &) of base
vectors illustrated in the figure are associated with these systems. However, the base

vectors here do not all have fixed directions and are therefore, in general, functions of
position.
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(a) Cylindrical (b) Spherical
Fig.1-7

1.8 LINEAR VECTOR FUNCTIONS. DYADICS AS LINEAR VECTOR OPERATORS

A vector a is said to be a function of a second vector b if a is determined whenever
b is given. This functional relationship is expressed by the equation

a = f(b) (1.55)

The function f is said to be linear when the conditions
f(b+c) = f(b) + £(c) (1.56)
f(Ab) = xf(b) (1.57)

are satisfied for all vectors b and ¢, and for any scalar A.

Writing b in Cartesian component form, equation (1.55) becomes

a = f(b:i + b, + b.k) (1.58)
which, if f is linear, may be written
a = bA(1) + b4(3) + baA(K) (1.59)
In (1.59) let £f(i)=wu, £(3)=v, f(k)=w, so that now
a=uib+vib+whkb = ui+vi+wk)b (1.60)
which is recognized as a dyadic-vector dot product and may be written
a=D-b (1.61)

where D = ui+ v§+ wk. This demonstrates that any linear vector function f may be
expressed as a dyadic-vector product. In (1.61) the dyadic D serves as a linear wvector
operator which operates on the argument vector b to produce the image vector a.

1.9 INDICIAL NOTATION. RANGE AND SUMMATION CONVENTIONS

The components of a tensor of any order, and indeed the tensor itself, may be represented
clearly and concisely by the use of the indicial notation. In this notation, letter indices,
either subscripts or superscripts, are appended to the generic or kernel letter representing
the tensor quantity of interest. Typical examples illustrating use of indices are the tensor

. symbols ) ;
ai, b]: Tijy Fi > Cijk, Rra



CHAP. 1] MATHEMATICAL FOUNDATIONS 9

In the “mixed” form, where both subscripts and superscripts appear, the dot shows that j
is the second index.

Under the rules of indicial notation, a letter index may occur either once or twice in a
given term. When an index occurs unrepeated in a term, that index is understood to take
on the values 1,2, ...,N where N is a specified integer that determines the range of the
index. Unrepeated indices are known as free indices. The tensorial rank of a given term
is equal to the number of free indices appearing in that term. Also, correctly written
tensor equations have the same letters as free indices in every term.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called summation conven-
tion, repeated indices are often referred to as dummy indices, since their replacement by
any .other letter not appearing as a free index does not change the meaning of the term in
which they occur. In general, no index occurs more than twice in a properly written term.
If it is absolutely necessary to use some index more than twice to satisfactorily express a
certain quantity, the summation convention must be suspended.

The number and location of the free indices reveal directly the exact tensorial character
of the quantity expressed in the indicial notation. Tensors of first order are denoted by
kernel letters bearing one free index. Thus the arbitrary vector a is represented by a symbol
having a single subscript or superscript, i.e. in one or the other of the two forms,

ai, at

The following terms, having only one free index, are also recognized as first-order tensor
quantities:
@iibj, Fiak, R%qp, €ipthiVk

Second-order tensors are denoted by symbols having two free indices. Thus the arbitrary
dyadic D will appear in one of the three possible forms

D4, DY or D', Dy

In the “mixed” form, the dot shows that j is the second index. Second-order tensor
quantities may also appear in various forms as, for example,

Asjip, BY i, Sijhivr

By a logical continuation of the above scheme, third-order tensors are expressed by symbols
with three free indices. Also, a symbol such as A which has no indices attached, represents
a scalar, or tensor of zero order.

In ordinary physical space a basis is composed of three, noncoplanar vectors, and so
any vector in this space is completely specified by its three components. Therefore the
range on the index of ai, which represents a vector in physical three-space, is 1,2,3.
Accordingly the symbol @; is understood to represent the three components ay, as, as. Also,
a; is sometimes interpreted to represent the ith component of the vector or indeed to rep-
resent the vector itself. For a range of three on both indices, the symbol A; represents
nine components (of the second-order tensor (dyadic) A). The tensor A;; is often presented
explicitly by giving the nine components in a square array enclosed by large parentheses as

Ay An An
Ay = Az A Ax (1.62)
A Ay Ay
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In the same way, the components of a first-order tensor (vector) in three-space may be
displayed explicitly by a row or column arrangement of the form

a
a; = (a,a0a3) or @ = |as (1.63)
as ‘
In general, for a range of N, an nth order tensor will have N» components.

The usefulness of the indicial notation in presenting systems of equations in compact
form is illustrated by the following two typical examples. For a range of three on both
¢ and j the indicial equation

Xi = Cij%; (1'64)

represents in expanded form the three equations
Z1 = €11 + C1222 + C1323
To = C2121 + Ca0%2 + C2323 (1.65)
T3 = €3121 -+ C32%2 + C3323
For a range of two on 7 and j, the indicial equation -
Aij = BipCiqeDypq (1.66)
represents, in expanded form, the four equations
Ay = BuCuDiy + BuCieDiz + B12C11D2y + B15C12Dse
Az = BuCauDit + BiiCo2Dys + B12Co1Dsy + B1sCosDss
Asi = ByCuDii + BoiCi2Dys + B2:C11Dst + BosCiaDos
Az = ByC2nD1 + B2iCosDiz + BoyCo1Dsy + BysCosDss

For a range of three on both ¢ and j, (1.66) would represent nine equations, each having
nine terms on the right-hand side.

(1.67)

110 SUMMATION CONVENTION USED WITH SYMBOLIC NOTATION

The summation convention is very often em-
ployed in connection with the representation of
vectors and tensors by indexed base wvectors
written in the symbolic notation. Thus if the
rectangular Cartesian axes and unit base vectors
of Fig. 1-5 are relabeled as shown by Fig. 1-8,
the arbitrary vector v may be written

vV = 161 + ve6s + V33 (1.68)

in which v, vs,vs are the rectangular Cartesian
components of v. Applying the summation con-
vention to (1.68), the equation may be written in
the abbreviated form

vV = 'I)ié\i (1.69)

where 7 is a summed index. The notation here is
essentially symbolic, but with the added feature
of the summation convention. In such a “com-
bination” style of notation, tensor character is
not given by the free indices rule as it is in true
indicial notation. Fig. 1-8
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Second-order tensors may also be represented by summation on indexed base vectors.
Accordingly the dyad ab given in nonion form by (1.53) may be written

ab = (a@)(be) = abee; (1.70)

It is essential that the sequence of the base vectors be preserved in this expression. In
similar fashion, the nonion form of the arbitrary dyadic D may be expressed in compact

notation by R
D = Dijeie; (1.71)

1.11 COORDINATE TRANSFORMATIONS. GENERAL TENSORS

Let zi represent the arbitrary system of coordinates z',2% 2° in a three-dimensional
Euclidean space, and let ¢' represent any other coordinate system gL, 62,0° in the same
space. Here the numerical superscripts are labels and not exponents. Powers of x may
be expressed by use of parentheses as in ()2 or (x)*. The letter superscripts are indices
as already noted. The coordinate transformation equations

6 = giat, 22, 2% (1.72)

assign to any point (z?, 2%, 2®) in the xt system a new set of coordinates (6,62 6°) in the ¢
system. The functions ¢ relating the two sets of variables (coordinates) are assumed to
be single-valued, continuous, differentiable functions. The determinant

a0 a0t a0t
dxt 9x® 9x?

902 962 96*
I = % o w (.78)
oxr' ox? ox
or, in compact form, a6
J = %’ (1.74)

is called the Jacobian of the transformation. If the Jacobian does not vanish, (1.72)
possesses a unique inverse set of the form

xt = xi(9?, 62, 6%) (1.75)

The coordinate systems represented by z* and ¢ in (1.72) and (1.75) are completely general
and may be any curvilinear or Cartesian systems.

From (1.72), the differential vector d¢' is given by

. 00t .

i = 27 j
dg redic (1.76)
This equation is a prototype of the equation which defines the class of tensors known as
contravariant vectors. In general, a set of quantities b’ associated with a point P are said
to be the components of a contravariant temsor of order one if they transform, under a
coordinate transformation, according to the equation
gt _ .
- 2
dx? b
where the partial derivatives are evaluated at P. 1In (1.77), b’ are the components of the
tensor in the «’ coordinate system, while b’t are the components in the ¢ system. In general

b= (1.77)
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tensor theory, contravariant tensors are recognized by the use of superscripts as indices.
It is for this reason that the coordinates are labeled ' here rather than z;, but it must be
noted that it is only the differentials dx', and not the coordinates themselves, which have
tensor character.

By a logical extension of the tensor concept expressed in (1.77), the definition of con-
travariant tensors of order two requires the tensor components to obey the transformation
law 36t 96’

4 I ~~_ PBrs
B pyieer B (1.78)

Contravariant tensors of third, fourth and higher orders are defined in a similar manner.

The word contravariant is used above to distinguish that class of tensors from the
class known as covariant tensors. In general tensor theory, covariant tensors are recognized
by the use of subscripts as indices. The prototype of the covariant vector is the partial -
derivative of a scalar function of the coordinates. Thus if é = (2, 22, 2°) is such a function,

o0 _ 3 o

6t T 9zl 9g° (1.79)

In general, a set of quantities b; are said to be the components of a covariant tensor of
order one if they transform according to the equation

’ oxi
i = —=bj 80
b 6t b] (1 8 )
In (1.80), b; are the covariant components in the ¢' system, b; the components in the a;
system. Second-order covariant tensors obey the transformation law
dx" da
a0t 96’

Bj; B (1.81)

Covariant tensors of higher order and mized tensors, such as

36" dx™ 939, 1
x™ 96° 37 = ™

T = (1.82)

are defined in the obvious way.

112 THE METRIC TENSOR. CARTESIAN TENSORS

Let ' represent a system of rectangular Cartesian coordinates in a Euclidean three-
space, and let ¢ represent any system of rectangular or curvilinear coordinates (e.g. eylindri-
cal or spherical coordinates) in the same space. The vector x having Cartesian components
x' is called the position vector of the arbitrary point P(z', 22, x%) referred to the rectangular
Cartesian axes. The square of the differential element of distance between neighboring
points P(x) and Q(x + dx) is given by

(ds)> = dzxidzx (1.83)
From the coordinate transformation

xt = (41, 62, 6°) (1.8%)
relating the systems, the distance differential is

dat = 2% age (1.85)
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and therefore (1.83) becomes

(dsp = %%d()”d()q = gpedorde (1.86)

where the second-order tensor g, = (92/867)(dx'/3¢%) is called the metric tensor, or funda-
mental tensor of the space. If 6 represents a rectangular Cartesian system, say the «'
system, then dxt oxt

goa = 3% 374 dpq (1.87)

where 8,4 is the Kronecker delta (see Section 1.13) defined by 84 = 0 if p#q and 8,¢=1
if p=aq.

Any system of coordinates for which the squared differential element of distance takes
the form of (1.83) is called a system of homogeneous coordinates. Coordinate transforma-
tions between systems of homogeneous coordinates are orthogonal transformations, and
when attention is restricted to such transformations, the tensors so defined are called
Cartesian tensors. In particular, this is the case for transformation laws between systems
of rectangular Cartesian coordinates with a common origin. For Cartesian tensors there
is no distinction between contravariant and covariant components and therefore it is cus-
tomary to use subscripts exclusively in expressions representing Cartesian tensors. As
will be shown next, in the transformation laws defining Cartesian tensors, the partial
derivatives appearing in general tensor definitions, such as (1.80) and (1.81), are replaced
by constants. '

1.13. TRANSFORMATION LAWS FOR CARTESIAN TENSORS.
THE KRONECKER DELTA. ORTHOGONALITY CONDITIONS

Let the axes Oxzixsxs and Oxixizi represent
two rectangular Cartesian coordinate systems
with a common origin at an arbitrary point O
as shown in Fig. 1-9. The primed system may be
imagined to be obtained from the unprimed by
a rotation of the axes about the origin, or by a
reflection of axes in one of the coordinate planes,
or by a combination of these. If the symbol a;
denotes the cosine of the angle between the ith
primed and jth unprimed coordinate axes, ie.
ai; = cos (x!,x;), the relative orientation of the
individual axes of each system with respect to the
other is conveniently given by the table

2y 2 r3
xq @y ayo a3
29 agy G2z @23
x3 as; ass as33 Fig.1-9

or alternatively by the transformation tensor

air A2 axs‘
A = Qg1 Qg2 Q23
as1 Qa2 As3
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From this definition of a;, the unit vector ’é; along the x1 axis is given according to (1.48)
and the summation convention by

4
/él = a1181 + (11262+ (14383 = alj'éj (1.88)

An obvious generalization of this equation gives the arbitrary unit base vector 'é; as

A7

€;

= Qij 8j (1 .89)

In component form, the arbitrary vector v shown in Fig. 1-9 may be expressed in the
unprimed system by the equation
vV = ’Ujéj (1.90)
and in the primed system by

AL

v = /¢ (1.91)
Replacing €; in (1.91) by its equivalent form (1.89) yields the result
vV = 0048 (1.92)

Comparing (1.92) with (1.90) reveals that the vector components in the primed and unprimed
systems are related by the equations

v = aij’Ui’ (1-93)

- The expression (1.93) is the transformation law for first-order Cartesian tensors, and as
such is seen to be a special case of the general form of first-order tensor transformations,
expressed by (1.80) and (1.77). By interchanging the roles of the primed and unprimed
base vectors in the above development, the inverse of (1.93) is found to be

’Ui, = QijV; (1-94)

It is important to note that in (1.93) the free index on a;; appears as the second index. In
(1.94), however, the free index appears as the first index.

By an appropriate choice of dummy indices, (1.93) and (1.94) may be combined to pro-
duce the equation
Vi = QiU (1.95)

Since the vector v is arbitrary, (1.95) must reduce to the identity v; = ;. Therefore the
coefficient a;;ai, whose value depends upon the subscripts j and %, must equal 1 or 0
according to whether the numerical values of 7 and % are the same or different. The
Kronecker delta, defined by

1 for i=j

8; = 1.96
’ {0 for i+ (2.96)

may be used to represent quantities such as ai;ax. Thus with the help of the Kronecker delta
the conditions on the coefficient in (1.95) may be written

Gk = Sk (1.97)

In expanded form, (1 .97) consists of nine equations which are known as the orthogonality
or orthonormality conditions on the direction cosines a;. Finally, (1.93) and (1.94) may also

be combined to produce v: = a;ax;vr from which the orthogonality conditions appear in the
alternative form
Qiiax; = Qi (1 ..98)

A linear transformation such as (1.93) or (1.94), whose coefficients satisfy (1.97) or (1.98),
is said to be an orthogonal transformation. Coordinate axes rotations and reflections of
the axes in a coordinate plane both lead to orthogonal transformations.
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The Kronecker delta is sometimes called the substitution operator, since, for example,

8ib; = 8ib1 + 8izbs + 8isbs = bi (1.99)
and, likewise,
8;Fi = 8uFu + 82iF 2k + 8sFsc = Fi (1.100)

It is clear from this property that the Kronecker delta is the indicial counterpart to the
symbolic idemfactor 1, which is given by (1.54).

According to the transformation law (1.94), the dyad wv; has components in the primed
coordinate system given by
uiv; = (QipUp)(@jqVq) = QipliaUpVq (1.101)

In an obvious generalization of (1.101), any second-order Cartesian tensor T; obeys the

transformation law ,
Ti]' = QipQjq qu (1 1 02)

With the help of the orthogonality conditions it is a simple calculation to invert (1.102),
thereby giving the transformation rule from primed components to unprimed components:
Ty = pitaiTra (1.103)

The transformation laws for first and second-order Cartesian tensors generalize for an
Nth order Cartesian tensor to

Th... = QuQialem - . - Toam. .. (1.104)

114 ADDITION OF CARTESIAN TENSORS. MULTIPLICATION BY A SCALAR

Cartesian tensors of the same order may be added (or subtracted) component by com-
ponent in accordance with the rule

Aik... = Bik... = Ti... (1.105)

The sum is a tensor of the same order as those added. Note that like indices appear in the
same sequence in each term.

Multiplication of every component of a tensor by a given scalar produces a new tensor of
the same order. For the scalar multiplier A, typical examples written in both indicial

and symbolic notation are .
bi = A or b = Aa (1.106)

By = My or B =) . (1.107)

1.15 TENSOR MULTIPLICATION

The outer product of two tensors of arbitrary order is the tensor whose components
“are formed by multiplying each component of one of the tensors by every component of the
other. This process produces a tensor having an order which is the sum of the orders of
the factor tensors. Typical examples of outer products are

(a) aib,- = Tij (C) Dikam = Dijkm
(b) viij = Q5 (d) €k Vm = Oijkm

As indicated by the above examples, outer products are formed by simply setting down the
factor tensors in juxtaposition. (Note that a dyad is formed from two vectors by this very
procedure.)
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Contraction of a tensor with respect to two free indices is the operation of assigning
to both indices the same letter subscript, thereby changing these indices to dummy indices.
Contraction produces a tensor having an order two less than the original. Typical examples
of contraction are the following.

(a) Contractions of T; and ww;
Ty = Tu+Te+Txs

UV = UVt + U2 + UsVs

(b) Contractions of E;ax

Ei,-a,- = b;
E’ijai = Cj
Ewax = dx

(¢) Contractions of EijFim
EiFim = Gim EiFu = Py
Ei;F = Hp EiFm = Qum
EiFim = Kim Eiijj = R
An inner product of two tensors is the result of a contraction, involving one index from
each tensor, performed on the outer product of the two tensors. Several inner products

important to continuum mechanics are listed here for reference, in both the indicial and
symbolic notations.

Outer Product Inner Product
Indicial Notation Symbolic Notation
1. ab; a:b; a*b
2. a;E alsx = fr f
al; = h E-a = h
3. EjFinm EiFim = Gim E‘F =6
4. EijEinm Ei;Eim = Bim E-E = (E?

Multiple contractions of fourth-order and higher tensors are sometimes useful. Two
such examples are
1. EijFkm contracted to E;Fi;, or E:F

2. EyjExmEy contracted to Ei;EjmEng, or (E)?

116 VECTOR CROSS PRODUCT. PERMUTATION SYMBOL. DUAL VECTORS

In order to express the cross product a X b in the indicial notation, the third-order tensor
;o known as the permutation symbol or alternating tensor, must be introduced. This
useful tensor is defined by

(1 if the values of 1, 7,k are an even permutation of 1,2,3 (i.e. if
they appear in sequence as in the arrangement 1231 2).

—1 if the values of 4,7,k are an odd permutation of 1,2,3 (i.e. if

gk they appear in sequence as in the arrangement 321 3 2).

0 if the values of 4,j,k are not a permutation of 1,2,3 (i.e. if
L two or more of the indices have the same value).
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From this definition, the cross product axb =¢ is written in indicial notation by

eijkajbk = ¢ (1.108)
Using this relationship, the box product aXb-c= A may be written
A= €i,-kaib,~ck (1.109)

Since the same box product is given in the form of a determinant by (1.52), it is not sur-
prising that the permutation symbol is frequently used to express the value of a 3 X3
determinant,

It is worthwhile to note that ¢, obeys the tensor transformation law for third order
Cartesian tensors as long as the transformation is a proper one (deta; = 1) such as arises
from a rotation of axes. If the transformation is improper (deta;; = —1), e.g. a reflection
in one of the coordinate planes whereby a right-handed coordinate system is transformed
into a left-handed one, a minus sign must be inserted into the transformation law for .
Such tensors are called pseudo-tensors.

The dual vector of an arbitrary second-order Cartesian tensor T;; is defined by
vi = €T (1.110)

which is observed to be the indicial equivalent of T., the “vector of the dyadic T”, as defined
by (1.15).

1.17 MATRICES. MATRIX REPRESENTATION OF CARTESIAN TENSORS

A rectangular array of elements, enclosed by square brackets and subject to certain laws
of combination, is called a matriz. An M X N matrix is one having M (horizontal) rows
and N (vertical) columns of elements. In the symbol Ay used to represent the typical
element of a matrix, the first subscript denotes the row, the second subscript the column
occupied by the element. The matrix itself is designated by enclosing the typical element
symbol in square brackets, or alternatively, by the kernel letter of the matrix in seript.
For example, the M X N matrix o4, or [Ay] is the array given by

Ay A ... Awn
o4 = [y = A e Al (2.111)
Ami Ame Aun

A matrix for which M = N, is called a square matriz. A 1x N matrix, written [au],
is called a row matriz. An M x 1 matrix, written [ax1), is called a column matriz. A matrix
having only zeros as elements is called the zero matriz. A square matrix with zeros every-
where except on the main diagonal (from A to Awy) is called a diagonal matriv. If the
nonzero elements of a diagonal matrix are all unity, the matrix is called the unit or identity
matriz. The N X M matrix AT, formed by interchanging rows and columns of the M XN
matrix o4, is called the transpose matrix of 4.

Matrices having the same number of rows and columns may be added (or subtracted)
element by element. Multiplication of the matrix [Ay] by a scalar 1 results in the matrix
[Ai]. The product of two matrices, 4B, is defined only if the matrices are conformable,
i.e. if the prefactor matrix ¢4 has the same number of columns as the postfactor matrix
B has rows. The product of an M X P matrix multiplied into a P X N matrix isan M XN
matrix. Matrix multiplication is usually denoted by simply setting down the matrix
symbols in juxtaposition as in

cAB = (C or [Aij][Bjk] = [Cik] (1.112)
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Matrix multiplication is not, in general, commutative: <4B = BeA.

A square matrix o4 whose determinant |A;| is zero is called a singular matriz. The
cofactor of the element A;; of the square matrix 4, denoted here by Atj, is defined by

Al = (=1)i*iMy (1.113)

in which M;; is the minor of Ay; i.e. the determinant of the square array remaining after the
row and column of A;; are deleted. The adjoint matrix of <4 is obtained by replacing each
element by its cofactor and then interchanging rows and columns. If a square matrix
oA = [Ay] is non-singular, it possesses a unique inverse matriz 4! which is defined as
the adjoint matrix of c4 divided by the determinant of c4. Thus

oA 1 [—’ﬂ (1.114)
leA|
From the inverse matrix definition (1.114) it may be shown that
Al = cAeA™ = 9 (1.115)

where J is the identity matrix, having ones on the principal diagonal and zeros elsewhere,
and so named because of the property

JA =AY = A (1.116)

It is clear, of course, that J is the matrix representation of 8,;» the Kronecker delta, and of |,
the unit dyadic. Any matrix ¢4 for which the condition 4T =c4~! is satisfied is called
an orthogonal matrixz. Accordingly, if <4 is orthogonal,

ATA = AAT = ¢ (1.117)

As suggested by the fact that any dyadic may be expressed in the nonion form (1.53),
and, equivalently, since the components of a second-order tensor may be displayed in the
square array (1.62), it proves extremely useful to represent second-order tensors (dyadics)
by square, 8 X 3 matrices. A first-order tensor (vector) may be represented by either a
1 X 3 row matrix, or by a 8 X 1 column matrix. Although every Cartesian tensor of order
two or less (dyadics, vectors, scalars) may be represented by a matrix, not every matrix
represents a tensor.

If both matrices in the product <48 = ( are 3 X 3 matrices representing second-order
tensors, the multiplication is equivalent to the inner product expressed in indicial notation by

AijBy = Ci (1.118)

where the range is three. Expansion of (1.11 8) duplicates the “row by column” multiplica-
tion of matrices wherein the elements of the ith row of the prefactor matrix are multiplied
in turn by the elements of the kth column of the postfactor matrix, and these products
summed to give the element in the ith row and kth column of the product matrix. Several
such products occur repeatedly in continuum mechanics and are recorded here in the various
notations for reference and comparison.

(a) Vector dot product
a‘b = bra = 2 [as][bn] = [A]

b
ab; = ba; = A [@1, @z as]| by | = [@:1b1 + a2bs + asbs) (1.119)
bs



CHAP. 1] MATHEMATICAL FOUNDATIONS 19

(b) Vector-dyadic dot product

arE=b o = B
aili; = b; [ali] [Eij] = [bli]
Ey Ei E13—| [a1E11 + a2E01 + asE's, (1.120)
[01,02,03] | Ea1 Es Eg = B+ 0By + asFs,
Esyy Ezp Es a:1E13 + asE2s + asFas)
(¢) Dyadic-vector dot product
E‘a = ¢ fa = ¢
Eija; = e [Eillan] = [ea]
Euw Ep Eu | o a:E11 + a:E12 + asEs (1.121)
Ey Ex Eyp|a| = a01Ea + asE2 + asFzs
Esi Es Es || as 0:1Es1 + a2Es + asEss

118 SYMMETRY OF DYADICS, MATRICES AND TENSORS

According to (1.36) (or (1.87)), a dyadic D is said to be symmetric (anti-symmetric) if it is
equal to (the negative of) its conjugate D.. Similarly the second-order tensor D;; is
symmetric if

Dy = Dy (1.122)
and is anti-symmetric, or skew-symmetric, if
Dy = —Dj (1.123)
Therefore the decomposition of Dy analogous to (1.38) is
Dy = ¥(Dyj+ Ds) + $(Dyi — D3) (1.12%)
or, in an equivalent abbreviated form often employed,
Di; = Dajp + Dun (1.125)

where parentheses around the indices denote the symmetric part of Di;, and square brackets
on the indices denote the anti-symmetric part.

Since the interchange of indices of a second-order tensor is equivalent to the interchange
of rows and columns in its matrix representation, a square matrix ¢4 is symmetric if it is
equal to its transpose c4T. Consequently a symmetric 8 X 3 matrix has only six independent
components as illustrated by

Ay A A
A = AT = Az Az Ass (1.126)
A A Ags

An anti-symmetric matrix is one that equals the negative of its transpose. Consequently
a 3 X 8 anti-symmetric matrix B has zeros on the main diagonal, and therefore only three
independent components as illustrated by

0 By Bis
B = -BT = =By, 0 B2 (1.127)

—Bi13 —Bgs 0
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Symmetry properties may be extended to tensors of higher order than two. In general,
an arbitrary tensor is said to be symmetric with respect to a pair of indices if the value of
the typical component is unchanged by interchanging these two indices. A tensor is anti-
symmetric in a pair of indices if an interchange of these indices leads to a change of sign
without a change of absolute value in the component. Examples of symmetry properties
in higher-order tensors are

(@) Rikm = Rixjm (symmetric in k and j)

(b) e = € (anti-symmetric in k and ¢)

(¢) Gigkm = Giimk (symmetric in ¢ and 7; k and m)
(d) Bix = Bii = Brii = Bsx  (symmetric in all indices)

1.19 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF SYMMETRIC
SECOND-ORDER TENSORS

In the following analysis, only symmetric tensors with real components are considered.
This simplifies the mathematics somewhat, and since the important tensors of continuum
mechanics are usually symmetric there is little sacrifice in this restriction.

For every symmetric tensor Ti;, defined at some point in space, there is associated with
each direction (specified by the unit normal #;) at that point, a vector given by the inner

product
Vi = Tij’nj (1'128)

Here Ti; may be envisioned as a linear vector operator which produces the vector v; conjugate
to the direction n;. If the direction is one for which v; is parallel to n; the inner product
may be expressed as a scalar multiple of n:.. For this case,

Tyn; = A (1.129)

and the direction n; is called a principal direction, or principal axis of Ty;. With the help
of the identity =; = 8;m;, (1.129) can be put in the form

(Tij—Adiyn; = 0O (1.180)
which represents a system of three equations for the four unknowns, #: and A, associated
with each principal direction. In expanded form, the system to be solved is

(Tu—Mn+ Tieng + Tisng = 0
Tong + (Toe—Ans + Tasms = 0 (1.181)
Tsing + Taane + (Tss—A)ms = 0
Note first that for every A, the trivial solution n: = 0 satisfies the equations. The purpose
here, however, is to obtain non-trivial solutions. Also, from the homogeneity of the system

(1.131) it follows that no loss of generality is incurred by restricting attention to solutions
for which nm; =1, and this condition is imposed from now on.

For (1.130) or, equivalently, (1.131) to have a non-trivial solution, the determinant of
coefficients must be zero, that is,
]Tij—/\Sijl =0 (1.132)

Expansion of this determinant leads to a cubic polynomial in A, namely,

ML +IIA-1II, = 0 (1.183)
which iz known as the characteristic equation of Ty, and for which the scalar coefficients,
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Ii = Ty = tr Tij (trfice of Tij) (1.134)
IIT - :}'(Tii Tjj — Tij Tij) (1.135)
IIIT = |Tij| = det Tij (1.136)

are called the first, second and third invariants, respectively, of Ti. The three roots of the
cubic (1.133), labeled A, A2y, Aay, are called the principal values of Ty For a symmetric
tensor with real components, the principal values are real; and if these values are distinct,
the three principal directions are mutually orthogonal. When referred to principal axes,
both the tensor array and its matrix appear in diagonal form. Thus

Ay O 0 A O 0
T = 0 A2y 0 or T = 0 A2y 0 (1.137)
0 0 Ay 0 0 A3)

If A = Aw), the tensor has a diagonal form which is independent of the choice of A
and A axes, once the principal axis associated with A has been established. If all
principal values are equal, any direction is a principal direction. If the principal values are
ordered, it is customary to write them as Aq), Aan, Ay and to display the ordering as in
A 2 Aan 2 Aam-

For principal axes labeled Ox*x%z¥, the transformation from Ozix.x; axes is given by
the elements of the table

%1 523 x3
] ay = n{V agz = b agg = 0
2 ag; = n{? agy = toy = (D
3 ag = n{® asy = nf® gy = n{®

in which n{ are the direction cosines of the jth principal direction.

120 POWERS OF SECOND-ORDER TENSORS. HAMILTON-CAYLEY EQUATION

By direct matrix multiplication, the square of the tensor T is given as the inner
product Ty Tx;; the cube as Tix Tkm Tmj; ete. Therefore with Ti; written in the diagonal form
(1.187), the nth power of the tensor is given by

Xy 0 0 X O 0
mr = 0 Ao O or ™ = 0 X O (1.138)
0 0 )\7(13) 0 0 /\1(13)

A comparison of (1.138) and (1.137) indicates that T;; and all its integer powers have the
same principal axes.

Since each of the principal values satisfies (1.133), and because of the diagonal matrix
form of T" given by (1.138), the tensor itself will satisfy (1.183). Thus

73— L 72+ 1L T — 1119 = 0 (1.139)

in which 9 is the identity matrix. This equation is called the Hanislton-Cayley equation.
Matrix multiplication of each term in (1.139) by T produces the quation,

T+ = LT%— ILT? + IILT (1.140)
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Combining (1.140) and (1.139) by direct substitution,
Tt = (B—-1II)T2 + (1L — LIL)T + LIIL 9 (1.141)

Continuation of this procedure yields the positive powers of T as linear combinations of
T2, T and J9.

121 TENSOR FIELDS. DERIVATIVES OF TENSORS

A tensor field assigns a tensor T(x,t) to every pair (x,t) where the position vector x
varies over a particular region of space and t varies over a particular interval of time.
The tensor field is said to be continuous (or differentiable) if the components of T(x,?) are
continuous (or differentiable) functions of x and ¢. If the components are functions of x
only, the tensor field is said to be steady.

With respect to a rectangular Cartesian coordinate system, for which the position vector
of an arbitrary point is X = o8 (1.142)

tensor fields of various orders are represented in indicial and symbolic notation as follows,

(@) scalar field: ¢ = o(xi,t) or ¢ = $(x,1) (1.143)
(b) vector field: vi = vi(x,t) or v = v(x,t) (1.144)
(¢) second-order tensor field:

Ty = Ty(x,t) or T = T(x,t) (1.145)

Coordinate differentiation of tensor components with respect to z; is expressed by the
differential operator 4/9z;, or briefly in indicial form by ¢;, indicating an operator of tensor
rank one. In symbolic notation, the corresponding symbol is the well-known differential
vector operator Vv, pronounced del and written explicitly

—~ a0 _ Al
Vo= & = @ (1.146)
Frequently, partial differentiation with respect to the variable z; is represented by the

comma-subscript convention as illustrated by the following examples.

d¢ Pvi

(a ox; ¢, @ 0% 0Tk i
0vi aTi'

(0 ox:  Yut (e) W: = Ly
v 2Ty

(©) x; — Vi D szvozm = Tuem

From these examples it is seen that the operator o produces a tensor of order one higher
if ¢ remains a free index ((a) and (c) above), and a tensor of order one lower if i becomes
a dummy index ((b) above) in the derivative.

Several important differential operators appear often in continuum mechanics and are
given here for reference.

_ 94

grad¢ = V¢ = m& or ¢ = ¢, (1.147)
divy = V- v or 94w = v, (1.148)
curlv = v Xv Or 30,7, = ¢, (1.149)

Vi = V-V¢ or O = ¢4 (1.150)
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1.22 LINE INTEGRALS. STOKES” THEOREM

In a given region of space the vector function of position, F = F(x), is defined at every
point of the piecewise smooth curve C shown in Fig. 1-10. If the differential tangent vector
to the curve at the arbitrary point P is dx, the integral

XB
f F-dx = F-dx (1.151)
c XA

taken along the curve from A to B is known as the line integral of F' along C. In the indicial

notation, (1.151) becomes s
J; Fidx; = ‘I: Fidx; (1.152)

)4

xy

Fig.1-10 Fig.1-11

Stokes’ theorem says that the line integral of F taken around a closed reducible curve
C, as pictured in Fig. 1-11, may be expressed in terms of an integral over any two-sided
~surface S which has C as its boundary. Explicitly,

ﬁ:F'dx = fsﬁ'(vxF)dS (1.153)

in Whi;:h 1 is the unit normal on the positive side of S, and dS is the differential element of
surface as shown by the figure. In the indicial notation, (1.153) is written

ﬁ Fidx; = j; ’)’Lifiijk,de (1.154)

123 THE DIVERGENCE THEOREM OF GAUSS

The divergence theorem of Gauss relates a volume integral to a surface integral. In
its traditional form the theorem says that for the vector field v = v(x),

J:,dlvvdV = Ln*vdS (1.155)

where 1 is the outward unit normal to the bounding surface S, of the volume V in which
the vector field is defined. .In the indicial notation, (1.155) is written

f 'Ui,idV = j Vil dS (1.156)
v S

The divergence theorem of Gauss as expressed by (1.156) may be generalized to incor-
porate a tensor field of any order. Thus for the arbitrary tensor field Tix... the theorem is

written .
j; Tijk..,p dv = j; Tijk,,np dsS (1.157)
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Solved Problems

ALGEBRA OF VECTORS AND DYADICS (Sec.1.1-1.8)

1.1.

1.2

1.3.

14.

Determine in rectangular Cartesian form the
unit vector which is (a) parallel to the vector
v =21+37—6k (b) along the line joining
points P(1,0,3) and Q(0,2, 1).

(@ v = v = V@2+@2+(-62 =7

= v = @i+ M5 -6k Q0.2,1)

(b) The vector extending from P to Q is
u=0-Di+e-0f+a-3k
A A A
= —i+2j -2k

u = V(=1)2+ @22+ (-2)2 = 3 Fig. 1-12
Thus A= Wi+ @37 - @3k directed from P to Q
or & = w3t - @i+ @3k directed from Q to P

Prove that the vector v = ai + bf +ck is normal
to the plane whose equation is ax + by + ¢z = A.

Let P(x;,yq,2;) and Q(xs,¥s, 2,) be any two points in
the plane. Then ax; + by; + ¢z; = A and axy + by, + ¢z = A
and the vector joining these points is u = (xz—xl)’i\ +
(ys— yl)? + (29— z,)ﬁ. The projection of v in the direction
of u is

u-v 1 2 i
= —[me—2)i+ (a— v ]
u u A A A A
+ (g —2)k] * [ai + bj + ck]
1 A—2A xz
= ;(ax2+by2+cz2—ax,—by1—cz1) == = 0
Since u is any vector in the plane, v is L to the plane. Fig.1-13

If r= x: + y§+ zf( is the vector extending from the origin to the arbitrary point
P(z,y,2z) and d = ai+ bfi\ +ck is a constant vector, show that (r—d):r =0 is the
vector equation of a sphere.
Expanding the indicated dot product,
t—d)er = [(@—a)i+@—b)F + e—ok][zT +¢T + 2k]
= 22+ 92+ 22~ax—by—cz = 0
Adding d%2/4 = (a2 + b2+ ¢2)/4 to each side of this equation gives the desired equation
(x—al/2)2 4+ (y—b/2)2 + (z—¢/2)2 = (d/2)2
which is the equation of the sphere centered at d/2 with radius d/2.

Prove that [a*bX¢]r = (a*r)bX ¢ + (b'r)e Xa + (c'r)a X b.
Consider the product a X [(b X ¢) Xr]. By direct expansion of the cross product in brackets,
aX|[(bXe)Xr] = aX|[(ber)e—(c*r)b] = —(b*rjcXa — (c°r)axXb
Also, setting bX¢ =,
ax[(bXe)Xr] = aX(vXr) = (a*r)bXc — (a*bXe)r
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Thus —(be*r)c Xa — (c*rjaXb = (a*r)bXc¢c — (a*bXc)r and so
(a*bXe)r = (a*r)bXe + (berjeXa + (c°r)axXb

This identity is useful in specifying the displacement of a rigid body in terms of three arbitrary
points of the body.

1.5. Show that if the vectors a,b and ¢ are linearly dependent, a:bXe¢=0. Check the
linear dependence or independence of the basis
AL op
u = 3i+j -2k
A A A
v =4i—-3 -k
A A0
w=1-2j+k
The vectors a, b and ¢ are linearly dependent if there exist constants A, 4 and », not all zero,
such that Aa + ub + v¢ = 0. The component scalar equations of this vector equation are

Aa, + ub, +ve, = 0
Aay + pby +ve, = 0
Na, + pb, +vc, = 0
This set has a nonzero solution for A, 4 and » provided the determinant of coefficients vanishes,

ay b:c Cx

which is equivalent to a*b X ¢ = 0. For the proposed basis u,v,w,

3 1 -2
4 -1 -1 = 0
1 -2 1

Hence the vectors u,v,w are linearly dependent, and indeed v = u + w.

1.6. Show that any dyadic of N terms may be reduced to a dyadic of three terms in a

form having the base vectors €, €», €; as (a) antecedents, (b) consequents.
Let D= 81b1+a2b2+ st +8NbN = aibi (i = 1,2, . .,N).

(@) In terms of base vectors, a; = a;;€;+ a9;€, + 03,85 = aji@j and so D = aﬁ@jbi = 'Ej(aﬁbi) = Qjcj
with 7 =1,2,3.

(b) Likewise setting b; = b;;€; it follows that D — a;b,8; = (b;a,)€; = g;€; where j=1,2,3.
(] n= n*3 K 7 77

1.7. For the arbitrary dyadic D and vector v, show that D:v=v-D..
Let D = a;b; +asb, + -+ +ayby. Then
D+*v = a;(b;*v) + ag(bysv) + -+ + ay(by*v)
= (vebya; + (vebya, + .-+ + (vebylay = veD,

18. Prove that (D.*D). = D.-D.
From (1.71), b = D,-]-/e\i@]- and D, = D]-i@,-'é]-. Therefore
.DC ‘b= Diieiej * Dm@p}éq = DJ'iqu(gj 'sp)€i3<1

A A LVAA A A ANA _ AA AA
and (©.+0). = D;Dp(e;re,)ee; = Dpeq(e,-e)eD; = Dyese,Djeje; = D D
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1.9.

1.10.

1.11.

1L.12.

1.13.

1.14.

1.15.
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Show that (DX v). = —v X D..

DX v = ajb; Xv)+ ay(byXVv)+ -+ + ay(by X v)
OXv), = (byXv)a; + (by X v)ag + -+ + (by X V)ay
= —(vXbya; — (vXbya, — -+ — (vXbylay = —v XD,

If D= aii+ b§§+ cf{f( and r is the position vector r = x’i\+y/j\+zﬁ, show
that r*D-r =1 represents the ellipsoid ax?+ by?+ ¢cz®> = 1.
A A A AA AA AA A A A
reoer = (wi+yj+zk)e(aii+ bjj+ckk) (xi+yj+ zk)
= (x/i\+y}j\+ zﬁ)°(ax’i\+ bylj\+ czﬁ) = ax2+ by +¢22 = 1

For the dyadics D = 331t + 2/]'\’]'\-— ;ﬁ + 5kk and F = 4;1’; +6 /]V]\— 3§§+ ﬁﬁ, com-
pute and compare the double dot products D:F and D--F.

From the definition ab:cd = (asc)(b+d) it is seen that D:F=12+5=17. Also, from
abeccd = (bec)(ad) it follows that D**F =12+ 3+ 5 = 20.

Determine the dyadics 6 =D*F and H=F-D if D and F are the dyadics given in
Problem 1.11.
From the definition ab+cd = (b - c)ad,

AAN AA AA AN AA AA AA AA
6 = B11+277 -3k +5kk). 4ik +6j3 —3kj +kk)
= 12ik +125j+37j —jk —15kj + bkk

11

AA AA AN AN AA AN AA AA
Similarly, H (4ik +63j —8kj+kk)-Bii+2jj—jk + 5kk)
AA AA AN AA AN
= 20ik +12jj—6jk —6kj+ 8kk
. . . NS [y
Sholv glrectly from the nonion form of the dyadic D that D = (D+i)i +(D*j)j +
A A A A
(D-k)k and also i*D*i = Dy, i*D*j = Dy, ete.
Writing D in nonion form and regrouping terms,
~ A aa A A aa A A aa
D = (Dyi + Dyj + Dy k)i+ (Dyyi + Dyyj + Dyyk)j + (Dyei + Dy,§ + D k)k
A A A A A A A A A
=i i+di+dk = 0 DHi+ - Ni+0-Tk
A

A A A A A A
Also now id; = 1-(0+7) = T+(Dyi + D, + D.k) = Dy,

>

2 A a~ 2 2 2
]'dl = jeD-i :Dyx, ].dZ: jeDej = Dyyr ete.
For an antisymmetric dyadic A and the arbitrary vector b, show that 2b:A = A, Xb.
From Problem 1.6(a), A = ©;¢; + €5, + €;¢3; and because it is antisymmetric, 2A = (A —A;)
or
2A = (}e\lcl + )e\zcz + 33(33 —_ Clal — C232 - 0363)
= (€1e; — ¢&; + e, — €€y + €405 — €5€y)
[(be€)e; — (bre)) €] + [(be8y)c, — (b e)) €] + [(b+E)e; — (b+ c3) €]

= [(€,Xe)Xb+ (€ Xe) Xb+ (€% ¢z) Xb] = (A, Xb)

and so 2b- A

If D= 6ii + :;+4f(f{ and u = 2’i\+l’;, v = 53’: show by direct calculation
that D-(uXxXv) = (DXu)-v.

Since uXv = (2i+k)><5? = 10i{\—5
§+4

AA A AA A A A A
De(uXv) = (6ii+3ij+4kk)+ (—5i + 10k) = —30i + 40k
Next, DXu = (6ii+3ij+4kk) X (2i +k) —-6ik +8kj—6ij+3ii

AA

AA A AA A A A
and (pXu)*v = (8ii —6ij—6ik+8kj)e5j = —30i + 40k
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1.16. Considering the dyadic
= 31i— 4317+ 251+57 + kk
as a linear vector operator, determine the
vector r’ produced when D operates on

= 41 + 2§ + 5k.

!

Y = D-*r
A A A A A
= 12i + 83 — 81 + 25§ + 5k
A A A
= 4i+10j 4+ 5k Fig. 1-14

1.17. Determine the dyadic D which serves as a llnear vector operator for the vector
function a = f(b) = b+ bXr where r = zi + y] + 2k and b is a constant vector.

In accordance with (1.59) and (1.60), construct the vectors

A A A A A A
u = (i) = i+ iXr = i—2j+yk
A A A A A A
v = f(j) = j+iXr = 2zi+]j —2xk
A A A A A A
w = f(k) = k+kXr = —yi+2j+k
A A A A A A A A A A A A A A A
Then D =uwui+vjt+wk = (i—2zj+tyk)i+@i+i—ak)j+(—yi+zj+kk
and a =D'b = (b,+bz—by)T+ (—bz+b,+b2)7 + (by—be+b)k

As a check the same result may be obtained by direct expansion of the vector function,

A A A A A A
a=">b+bXr = bi+b,j+bk+ (bz—by)i+ (bx—0b2)j+ (byy—ba)k

1.18. Express the unit triad e¢, ee, ér in terms of
1, ], k and confirm that the curvilinear triad

_ A
is right-handed by showing that & x €, = €.
By direct projection from Fig. 1-15,
A L . A . ~
e, — (cosgp cose)i + (cosgsing)j - (sing)k "
A . ~ 2
e, = (—sing)i + (cos6)j
A . ~ . . o~ ~
e, = (singcosd)i -+ (sing sing)j + (cos ¢) k
and so Fig.1-15
A A A
i f k
A A . .
e, X € = cosS¢ cos§ cospsing —sing
—sin g cos 8 0
. ~ . . A . a A
= (singcose)i + (singsing)j + [(cos?6 + sin26) cosglk = ‘e,

1.19. Resolve the dyadic D = 3ii+4ik+63i+735+10ki+2kj into its symmetric
and antisymmetric parts.
Let D =E+F where E=E, and F= —F,. Then
= (1/2o+p) = WETT+4Tk +4kT+67T+61F+ 1455
+10ki+ 105k + 21??+ 23k)

AA

= 311+3l]+7lk+3]1+7]]+]k+7kl+k] = E,

AA
= (1/2)(p—-pb,) (1/2)(4ik—4ki+6j i —6i j +10ki— 10ik+2kj—2jk)

Il

= —3717-31k+387i-Gk+3ki+kj = -F
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1.20. With respect to the set of base vectors ai, as, as (not necessarily unit vectors), the set
al, a?, a® is said to be a reciprocal basis if a;* a’ = §&;. Determine the necessary rela-
tionships for constructing the reciprocal base vectors and carry out the calculations
for the basis
A A A A A A A A
b: = 8i +43, b:= —i+2j+2k, by =i+j+k
By definition, a;+al=1, a,*al=0, ag-al=0. Hence al is perpendicular to both a, and
ag. Therefore it is parallel to a; X ag, j.e. al = A(ag X ag). Since a;cal=1, a;*AayXaz=1 and
A = 1/(a; * a, X ag) = 1/[a,a,a5]. Thus, in general,

al_a2><a3 2_a3><a1 3__a1><a2

[—a@’ ¥ fasza:] @ [a,a5a)
For the basis by, by, b, 1/A = by *by X by =12 and so

bl = (byxby)/12 = (7 —k)/4

b2 = (byxbp/12 = —1/3 + 3/4 +k/12

b = (byxby)/12 = 21/8 — /2 + 5k/6

I

INDICIAL NOTATION — CARTESIAN TENSORS (Sec. 1.9-1.16)

1.21. For a range of three on the indices, give the meaning of the following Cartesian tensor
symbols: Aii, Bijj, Rij, a; Tij, aibjSij.
Aj;; represents the single sum A; = Ay + A+ Ags
B;;; represents three sums: (1) For i= 1, By;y + By + Bygss.
(2) For i=2, By + Bags + Bogs
(8) For i=3, B3y + Bagy + Bgss.
R;; represents the nine components Ry, Ris, Ryg, Roy, Rog, Rog, B3y, Rag, Ras.
a; T;; represents three sums: (1) For j=1, ayTyy + agTo + a3Ts;.
(2) For j =2, ayTyy + agTa + a3Ts,.
(8) For j =38, a;Tyg+ ayTas + agTas.

a;b;S;; represents a single sum of nine terms. Summing first on 4, @;b;S;; = a;b;S1; + agb;Se; +
a3h;S3,. Now summing each of these three terms on j,

aibjSij = a1b15'11 + albzslz + a1b3S13 + a2b1821 + 02b2S22
+ a2b3323 + a3b1331 + a3b25’32 + a/3b3S33

1.22. Evaluate the following expressions involving the Kronecker delta 8;; for a range of
three on the indices.

(@) 83 = 813+ 8pp+ 83 = 3

(b) 88 = 813815 + 89580 + 8583 = 3

(©) 8;8dj = 81818k T S8k T 83838 = 3
(d) 88 = 8idpx + 8i2dpi + Sigdsk = ik

(&) 8yAy = 81;An + 8240 + 834n = Ap

1.23. For the permutation symbol e show by direct expansion that (@) eiweni; = 6,
(b) €Al — 0.

(a) First sum on 1, ijkekij = €1jkck1j T €2jkckz; T €3jkeraj
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Next sum on j. The nonzero terms are
€iikeki; — €1akek1z T erskenis T eatreror T eoskeros T estnensr T esanense
Finally summing on k, the nonzero terms are
Gijkeki; — €1236312 T 130013 T ea13ennr T+ egyernz + egiaensy T eao€rsn
= (D) + (D1 + (1)1 + OO+ OQ) + (-1)(-1) = 6
() Summing on j and % in turn,
kil = ekli0 + el T eigl3ay
= 1o T 6130103 T €i10201 T €300 + €i31030; + 50030,

From this expression,

when ¢ = 1, e300, = aya3 —azas = 0
when i = 2, epo = aag—aze; = 0
when @ = 3, eza;0, = a0, —aya; = 0

Note that e;,a;0; is the indicial form of the vector a crossed into itself, and so aXa = 0.

1.24. Determine the component f. for the vector expressions given below.
(@ f; = €k Tk

fo = epTi = e1sTi3+ 9375 = T3+ Ty
(B) fi = e;,;b0;— ¢;,;b;
f2 = 02,1b1 + 02'2b2 + 62’3b3 bl Cl'zbl — 02,2b2 — 63,21)3

= (cg,1— ¢1,2)b1 + (€g,5— €3 9)b3

(¢) i = Bijfj*
fo = Boift + Byofs + Bosfs

1.25. Expand and simplify where possible the expression Dyzix; for (a) Dy = Dy,
(b) Dy; = —Dj.
Expanding, Dyww; = Dyex; + Dojesx; + Dyjeg;
= Dyywywy + Dypwy g + Dygayag + Doyorgwy + Dypwows
+ Dygitoxs + Dgyq2y + Dyoxay + Dggxsxs
(@) Dijyr; = Dyy(y)? + Doy(25)2 + Dyg(w3)?2 + 2D 192125 + 2Dg3%ows + 2D ;52125
(b) Dyxw; = 0 since Dyy = —Dyy, Dyy = —Dyy, ete.

1.26. Show that einekpq = 8ip8jq — 8igdp for (@)i=1, j=q¢=2, p=38 andfor (b)i=qg=1,
J=p=2. (It is shown in Problem 1.59 that this identity holds for every choice of
indices.)

(@) Introduce i=1, =2, p=38, ¢q=2 and note that since k is a summed index it takes on

all values. Then _
Sijkekpg = €12k¢k32 = €121€132 T €129€232 T €1o3€33 = 0

and siijq — Biqup = 813822 - 812823 =90

(b) Introduce i=1, =2, p=2, g¢g=1. Then ejexpy = €1a3e391 = —1 and 8ip8iq — Bigdpp =
812891 — 811892 = —1.

1.27. Show that the tensor B = €xa; is skew-symmetric.
Since by definition of ¢;;, an interchange of two indices causes a sign change,

By = ep0; = —(eza;) = —(By) = —By
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1.28.

1.29.

1.30.

MATHEMATICAL FOUNDATIONS [CHAP. 1
If B; is a skew-symmetric Cartesian tensor for which the vector b, = (§)¢, B,
show that B, =¢b,.
Multiply the given equation by ¢,, and use the identity given in Problem 1.26.
epaidi = epqeiaBi = $Opidar — Spkde)Bi = F(Bpq—Bep) = $(Bpgt Bpg) = Bpg
Determine directly the components of the metric
tensor for spherical polar coordinates as shown
in Fig. 1-7(b).
Writ 0% 9% ind label th
rite (1.87) as gpq—agp 2, and labe e co-
ordinates as shown in Fig. 1-16 (r = 6y, ¢ = 6,5, 6 = 63).
Then %y
%y = 6; sing, cos by
%y — 6, sin @, sin g,
Xz = 6 COS by
Fig.1-16
H
enee 92, . 9%, 3%y . .
%, = sin g, cos 6, %, = 6 COS By COS 85 6, = —¢, sin g, sin 6,
) . . 0y . 922 .
98, = sin 6, sin 6, 6, = 6, cOS 85 Sin 64 305 = 4, sin 6, cos 85
dxy dry . dxy 0
801 = €08 6y 6192 = #q 81N 6, 5;; =
. dz; 9 . . .
from which g, = 35 3a. = sin2 g, cos? 953 + sin24, sin2 63 + cos29, = 1
1 06y
dx; ox; 2 5 R 2 . 2
gos = 71— -— = 65cos26,cos26; + #7cos26, sin29; + 63sin2e, = 67
365 36,
L T SN 2.0 2 — 2.9
P33z = @ 673 = ¢7sin%4, sin2 93 + 6 sin?6, cos®> 3 = 67sIn?4,

Also, g, =0 for p+ gq. For example,

dx; dx;
gis = 671 871 = (sin 64 cos 63)(6; cos 6, cos 83)
1 962
+ (sin 8, sin 63)(8, cos 6, sin 65) — (cos 6,)(64 sin 6,)

= 0

Thus for spherical coordinates, (ds)2 = (d6,)2 + (6,)2(d6,)2 + (8, sin 6,)2(dg3)2.

Show that the length of the line element ds
resulting from the curvilinear coordinate incre-
ment dé; is given by ds=1/gidé; (no sum).
Apply this result to the spherical coordinate
system of Problem 1.29.

Write (1.86) as (ds)?2 = g,qd6,dd¢,. Thus for the
line element (d6,,0,0), it follows that (ds)2 = gq,(d6,)?
and ds = Vg,; d8,. Similarly for (0, d6y, 0), ds = Vg, ds;
and for (0,0,dg;), ds = V933 d8s. Therefore (Fig. 1-17), Fig. 1-17

Ty gin g da
rde¢
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1.31.

1.32.

1.33.

(1) For (de4,0,0), ds = dg; = dr
(2) For (0, ds,,0), ds = 6,do, = rd¢
(8) For (0,0,ds3), ds = 6;sing, dg3 = rsing do

If the angle between the line elements represented by (d6:,0,0) and (0,d6.,0) is

denoted by B,,, show that cosg, = #—2—\/9:
11 22

Let ds; = Vg;;d6; be the length of line element represented by (d¢;,0,0) and ds, = Vg do,
ox
be that of (0,ds,,0). Write (1.85) as dx; = #dak, and since (ds)2 = cos B, ds; ds,,
k

(ds)2 = dx;jdx; = §;;dx;dx;
axl 0z, 0y 6x2 dxy drg
= — d = de, d
36, 96, 39, 1902 + 5o 36, 6, 81d6y + 86, aozdol b2 912 401 062
de, d02 912

Hence using the result of Problem 1.30, cos B, = g9 5— ds, da,
2

V911 VP2 ’

A primed set of Cartesian axes Ox{x;x; is obtained by a rotation through an angle
6 about the xs axis. Determine the transformation coefficients a; relating the axes,
and give the primed components of the vector v = 2:€; + v:62 + v4€;.

From the definition (see Section 1.13) a; =

cos (x;,«;) and Fig. 1-18, the table of direction
cosines is

zy %, 23
x1 cos 8 sin ¢ 0
zg —sin ¢ cos 6 0
x5 0 0 1

Thus the transformation tensor is

cos ¢ sing
A = —sing cose O
0 0 1

By the transformation law for vectors (1.94),

vy = ayv; = vy cosd + vy sineg
Vp = ayv; = —vysing + vycos g
F A— —

V3 = aaj'vj = g

The table of direction cosines relating
two sets of rectangular Cartesian axes
is partially given as shown on the xy 3/5 —4/5 0
right. Determine the entries for the
bottom row of the table so that Ox{xix}
is a right-handed system. 24

2y Xy %3
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1.34.

1.35.

1.36.

1.37.

MATHEMATICAL FOUNDATIONS [CHAP. 1

The unit vector €; along the x} axis is given by the first row of the table as €; = (3/5)€; — (4/5)€,.
Also from the table €, = €. For a right-handed primed system By = € X%, or % =

[(3/5)8; — (4/5)8,] X & = (~8/5), — (4/5)%; and the third row is | o} | —4/5 [-35 | 0 ].

Let the angles between the primed and

. . . . . Xy X X3
unprimed coordinate directions be given
by the table shown on the right. Deter- x] 135° 60° 120°
mine the transformation coefficients aj; , 900 450 450
and show that the orthogonality condi- 2
tions are satisfied. ] 45° 60° 120°

The coefficients a;; are direction cosines and
may be calculated directly from the table. Thus

-1Ve 1z —1/2
a; = IS VAYCRRS VAVE)
1wz 1z —1/2
The orthogonality conditions ajay = 8y require:

1. For j=k=1 that a0, + a0y, + @323y =1 which is seen to be the sum of squares of
the elements in the first column.

2. For j=2, k=238 that a3+ agtto3+ a30033 =0 which is seen to be the sum of products
of corresponding elements of the second and third columns.

3. Any two columns “multiplied together element by element and summed” to be zero. The
sum of squares of elements of any column to be unity.

For orthogonality conditions in the form @ 0 = 8, the rows are multiplied together
instead of the columns. All of these conditions are satisfied by the above solution.

Show that the sum A4y + [J.‘Bij represents the components of a second-order tensor
if Ay; and Bj; are known second-order tensors.

By (1.108) and the statement of the problem, A;; = apiaqu;,q and Bj; = a,a,B,,. Hence
My + uBy; = M%ia‘in;m) + wlapiagBhy) = apiaqj()‘A;q + 1Bpg)

which demonstrates that the sum transforms as a second-order Cartesian tensor.

Show that (Pijk + Py + Pi) xvixsoe = 3Pij. xix k.

Since all indices are dummy indices and the order of the variables w; is unimportant, each
term of the sum is equivalent to the others. This may be readily shown by introducing new dummy
variables. Thus replacing i, j, k¥ in the second and third terms by p, q,r, the sum becomes

Pigxximy, + Py, + Pyp o,
Now change dummy indices in these same terms again so that the form is

Pyxwiay, + Pygoxere; + Pigaw, = 8Py, xxsx,

If B;; is skew-symmetric and A;; is symmetric, show that A;B;; = 0.
Since A;; = Ay and By = —By, A;By; = —A;B; or A;By;+ A;B; = AyB;+ Ay B, = 0.

Since all indices are dummy indices, A,,B,q = A;;B;; and so 24;;B;; =0, or A;B;; =0
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1.38. Show that the quadratic form Djxix; is unchanged if D;; is replaced by its symmetric
part D(ij).
Resolving D;; into its symmetric and anti-symmetric parts,
Dy = Duj + Dy = L(Dy;+ Dy) + 3(Dy;—Dy)

Then Djyww; = Dy + Dypww; = F(Dyai; + Dygrgr,) = Dyja;

1.39. Use indicial notation to prove the vector identities
(1) ax (bXe) = (a*c)b— (a*b)e, (2) axbra=0
(1) Let v=bXec. Then v; = gubjc; and if aXv=w, then
Wy = epqilaeiibick
(8pi8qk — SpiSqs)aqbjcx  (see Problem 1.26)

= agbyeq — aghgc,

= (aqcq)by — (agbgley

Transcribing this expression into symbolic notation,
w = aX{(bXe) = (a*c)b— (a*b)e

(2) Let axb=v. Thus v; = ua;b; and if A =vea, then A= plaa;br). But e is skew-
symmetric in 7 and j, while (aa;b;) is symmetric in ¢ and j. Hence the product eja;a;b;
vanishes as may also be shown by direct expansion.

N = gpoaby + €;j00,0;by + eijaaiajb;,
(e3210305 + €23189a3)by + * -

(—aas + azaz)by + (0)by + (0003 = 0

1.40. Show that the determinant
Au A12 A13

detA;; = |Aa A Ay
Az Az Ass
may be expressed in the form €A :A2;Ask.

From (1.52) and (1.109) the box product [abc] may be written

a, oy asg
A = a*bXec = J[abe] = epabie, = |by by by
¢ C3 Cg

If now the substitutions a; = Ay;, b, = A, and ¢; = Ay are introduced,
A= epibier = epAyndoAak

This result may also be obtained by direct expansion of the determinant. An equivalent expression
for the determinant is €414 jpA s

1.41. If the vector v»; is given in terms of base vectors a,b,¢ by v = aai + Bbi + vei,

show that « = ~——€ijkvib—jck

€ bee,’

parlpOaCr vy = aa; + Bb; + vey
aay + Bby + veo

aag + Bbs + vey

Vy

V3
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vy by ¢
vy by ¢
vz by c3

By Cramer’'s rule, « = ————  and by (1.52) and (1.109), a = 20"
a; by ¢ epardplqcy

Gi]'k’vib]'ck

ay by ¢

a3 by ¢

. . €ijk AV iC €@ V)
Likewise g = o Y= b o
€pqrdp0qCr €parp0qCr

MATRICES AND MATRIX METHODS (Sec. 1.17-1.20)
142. For the vectors a = 3i+4k, b = 2] — 6k and the dyadic D = 311 +27%

4)]'\3\— 5123'\, compute by matrix multiplication the products a*D, Db and a-D-b.

3 0 2
Let a*D =v; then [v;,vyv5] = [3,0, 4/ 0 —¢ o | = [9,—20, 6].
0 -5 o0
wy 3 0 21 o —12
Let o*b=w; then | w, [ =0 —4 0 2| = -8
wg 0 -5 0| —6 ~10
0
Let a*p*b=v-b=); then [A\] = [9,-20,6]] 2| = (—76].
—6

1.43. Determine the principal directions and principal values of the second-order Cartesian

tensor T whose matrix representation is

3-1 0
T5] = |-1 3 0
0 0 1
From (1.132), for principal values 2, ‘
3—=x -1 0
-1 3-x 0 = 1-N[@B-N2—-1] = 0

which results in the cubic equation A3 — 7A2 + 14\ — 8 = (A—1)A\—2)(A —4) = 0 whose principal
values are Ay =1, Ag) =2, A3 = 4.

Next let n{D be the components of the unit normal in the principal direction associated with
Acy = 1. Then the first two equations of (1.131) give 2ni1) - n;” = 0 and —nlm + 2n;1) =0,
from which 2{" = ={" = 0; and from nm = 1, n{ = =1,

For A =2, (1.137) yields n¥ —n® =0, —2@ + 2 =0, and -2 = 0. Thus
n® = 0 = *1///2, since nm; =1 and 2s? = 0.

For Xy, = 4, (1.131) yields —nia) - néa) =0, —nia) - n;:” =0, and 3n:§3) = 0. Thus
2 = o, n{® = - = F1//2.

The principal axes x} may be referred to the original axes x; through the table of direction
cosines
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from which the transformation matrix (tensor) may be written:

0
=1/\/2
:1/\/§

x Zy X3
a* 0 0 *1
@} *1/V2 *1/V/2 0
@ F1/V2 +1//2 0
0 =1 0
+1/4/2 0 or a; = +1/V2
+1/4/2 0 T1/V/2

1.44. Show that the principal axes determined in Problem 1.43 form a

1.45.

orthogonal axes.

Orthogonality requires that the conditions

nm; =1 was used in determining the ay, orthogonality is automatically satisfied for

@0y = Sjic

be satisfied.

35

0 =1
=1///2 0
=1/1/2 0

right-handed set of

Since the condition
j=k.

Multiplying the corresponding elements of any row (column) by those of any other row (column)
and adding the products demonstrates that the conditions for j+ k are satisfied by the solution

in Problem 1.43.

Finally for the system to be right-handed,

A x HAB = aw,

G S
Ve 12
—-1/2 12

Thus

A

€3

0] = 3+1& = &
0

As indicated by the plus and minus values of

a;

in Problem 1.43,

there are two sets of prin-

cipal axes, ¥ and z¥*. As shown by the sketch
both sets are along the principal directions
with x* being a right-handed system, «%¥* a

left-handed system.

*
T3

L

4

Fig.1-19

Show that the matrix of the tensor T of Problem 1.43 may be put into diagonal
(principal) form by the transformation law T = Gipttiq Tra, (or in matrix symbols

T* = cATAT).

ij

[ o 0 1
= W2 W2 o
| -1V2 Ve o
[ o 0o 10
= V2. vz oo o
| —2V2 2v/2 o0 |1

3 -1 oo 12 —1n2
-1 8 oo 12 N2
0 0 11 0 0
1V/2 —1/V/2 1 00
17vV2 12| = o 2 0
0 0 0 0 4
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1.46.

1.47.

1.48.

MATHEMATICAL FOUNDATIONS [CHAP. 1

Prove that if the principal values A, A, Ay of a symmetric second-order tensor
are all distinct, the principal directions are mutually orthogonal.

The proof is made for Ay, and A3,. For each of these (1.129) is satisfied, so that Ti]-n;2) =

>\(2,n§2) and T;n® = x(g)n?”. Multiplying the first of these equations by n{a) and the second

LY ARS ]
2)
by n;<,

@) (3) _ (2),(3)
Ti]-'nj n;" = Naoyn; my

@), (2) __
Tiyny™ni™ = Nayny

Since T; is symmetric, the dummy indices i and j§ may be interchanged on the left-hand side of
the second of these equations and that equation subtracted from the first to yield

@, 3 _
A2y = A@g)n“ny™ = 0

Since A¢gy # A(3y, their difference is not zero. Hence nfz)nga) =0, the condition for the two
directions to be perpendicular.

Compute the principal values of (T)? of Problem 1.43 and verify that its principal
axes coincide with those of T.

3-1 off 3-1 o 10 =6 0
T2 = | -1 3 0-1 38 0| = |—6 10 0
0 0 1] 0 o 1 0 0 1

The characteristic equation for this matrix is
10 — A —6 0

-6 10-x 0 = (1-MN[10—-2)2—-36] = A—NAN—4H(A—16) = 0
0 0 1—2
from which Ay =1, Aoy =4, Ay = 16. Substituting these into (7.131) and using the condition
nn; = 1,
1) _ g (1 —
For Ay =1 o =0 or 2P =n{P=0, n{’==1
(1 ) —6n + on{V = 0 1 2 » Mg
6n? —6n® = 0
For Ay =4, —6nP + 602 = 0 or n®=n®= +1V/2, P =0
2 _
—=3ngs" = 0
—6n> — 1P = 0
For Ay = 16, —6nP —6n{® = 0r or n®=-nP==x1NV2 ¥ =0
—15n = 0

which are the same as the principal directions of T.

Use the fact that (T)2 has the same principal directions as the symmetrical tensor T
to obtain /T when

5 -1 -1
T = -1 4 0
-1 0 4

First, the principal values and principal directions of T are determined. Following the procedure
of Problem 1.43, the diagonal form of T is given by

3 0 0
0 4 0
0 0 6
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with the transformation matrix being

V3 V3 11/3
[a] = 0 1V2 —1//2
—21/6 16 16

V3 0 0
Therefore W = 0 2 0 and using [a;] to relate this to the original axes by the
0 0 Ve,

transformation VT = A,/T*A, the matrix equation is

V3 0 —=2//6{|V3 0 o V3 103 1/V/3
WT;] = |1V/3 12 1WV/el o 2 o R VAVERRS VAV
173 —1/V/2  11/6 0 o0 Vell —-2ne Ve 11/e

V2 +4 V2 —2 V2 —2 5.414 —0.586 —0.586

= % VZ—2 Ve+vVe+1 V2—V6+1| = .402| —0.586 4.863 —0.035
6

Vea—2 Ve—-vVe+1 V24+Ve+1 —0.586 —0.035 4.863

CARTESIAN TENSOR CALCULUS (Sec. 1.21-1.23)

1.49. For the function A = Aixix; where Ay is constant, show that or/dx: = (Ay+ Az
and 92\/9x:dx; = Ay + Aji.  Simplify these derivatives for the case Ai; = Aj.

. N dx; 0x; . ox; . N _ _

Consider By Aﬁ(ﬁ x; + Aijac,-a—% . Since Eral 8;x, it is seen that P A, + Agx; =
2 0% ;

(Akj—i-Ajk)xj. Continuing’ the differentiation, ﬁ‘ = (Ak]+A]k)—&’E_] = Akp + Apk' If Aij = Aﬁ,
P k P

EIN

a'?k = 2Aijj and

d2, 8Ty, = 245

1.50. Use indicial notation to prove the vector identities (@) Vv X V¢ = 0, (b) V'V xa = 0.

(a) By (1.147), V¢ is written ¢ ; and so v =V X Vg has components v; = €ikdi®,k = €ijkd,kj» But
ek is anti-symmetric in j and k, whereas ¢ j; is symmetric in j and k; hence the product
€ij®,k; vanishes. The same result may be found by computing individually the components of
v. For example, by expansion v; = ejg36,03 1 €1300,32 = (¢,08— #,32) = 0.

(b) VeV Xa=x= (e,-jkak,j),,- = eijkak,ji =0 since ak,i}‘ == a’k,ji and €ijk = ~Ejilee

151. Determine the derivative of the function A = (x1)? + 2x@2 — (#3)* in the direction
of the unit normal A = (2/7)é: — (3/7T)e: — (6/7)&; or fi = (28 — 3e; —6&)/7.

The required derivative is N - Vir+n = A;n. Thus
on ’

D= (2o, +2m)E - @m)] + @ugf = Howm F 2ept 6y
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1.52.

1.53.

1.54.

MATHEMATICAL FOUNDATIONS [CHAP. 1

If Ai; is a second-order Cartesian tensor, show that its derivative with respect to
Zx, namely A;jk, is a third-order Cartesian tensor.

. . 4 ’
For the Cartesian coordinate systems x; and «;, x; = a;%; and 9x;/0x; = aj;. Hence
’
: - My o (ai,0;4A,,) = a;a 94pq 9%m  _ Qi@ ioUpemA
ik = o7 @pa; = Qipljqg T = OpQjqOrméipg,m
i ou, az, - ptiatie whia 5y oal, ip%iq pq

which is the transformation law for a third-order Cartesian tensor.

If v» = and f(r) is an arbitrary function of r, show that (a) V(f(r)) = f/(r)x/r,
and (b) V3(f(r)) = f”(r) + 2f’/r, where primes denote derivatives with respect to 7.

2
(a) The components of Vf are simply f; Thus f:i= %%, and since %2—) = 21‘6—61.£ = 28;%; it
i b i
ar _ % _8fer _
follows that e Thus f;= ar om; flai/r.
_ _ _ ;%4 3 %\ 2f!
) VY = fu= P = f1 G <; -5 > =+

Use the divergence theorem of Gauss to
show that L xzm; dS = V§; where n;dS

represents the surface element of S, the
bounding surface of the volume V shown
in Fig. 1-20. 2z; is the position vector of
n;dS, and n; its outward normal.

By (1.157),
f zm;dS = f x; ;dV
s v
v
= &,V Fig.1-20

1.55. If the vector b = ¥ Xv, show that f Abmn dS = f AibidV where A= \(z;) is
\ 4

a scalar function of the coordinates.

Since b=V Xv, b; = ¢uv, ; and so

f )\bini as = f €5k )\’Uk,]-ni dS
S S

= f €iik (Avk,j),i dVv by (1.157)
v

f (ei]'k )\,ivk,j + €k )\'Uk’ji) 'A%
\4

= f )\,ibi dV  since )\fijk'uk,ji =0
Vv
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MISCELLANEOUS PROBLEMS
1.56. For the arbitrary vectors a and b, show that
A = (axh)-(axb)+ (a-b)? = (ab)?
Interchange the dot and cross in the first term. Then
A = a*bX(axXb) 4 (a*b)a*b)
= a-[(beb)a— (b+a)b] + (a<b)(a*h)
= (a-a)b+b) — (b-a)(a*bh) + (a-b)a*b)
= (ab)Z
since the second and third terms cancel.
157. If 1 = e Xu and Vv = o X v, show that g—t(uXv) = o X (uXv).
(a) In symbolic notation,
%(uXv) = aXv4+uxv = (@aXu)Xv+uX@xv)
= (veelu — (veme + (W*vie — (U*e)v
= (veo)lu — (W*e)v = o X uXV)
(b) In indicial notation, let C%(uXv) = w. Then
_d . .
wp = o (eic%Vk) =  epUVk T €Uk
and since %; = ejpquptly and Vg = emamVns
W; = €keipq@phqVk T EijkCicmalljOmVn = (eijkekmn_Einkekmj)ujwmvﬁ
and using the result of Problem 1.59(a) below,
Wy = (8imdjn — 8n8im — 8imSjn T 8ijSmn)Ujom¥y
= (8i8mn— SinSjm)Ujwom¥n = €imkekjnj©mVn
which is the indicial form of o X (u X v).
Smp smq Sms
1.58. Establish the identity e .., = [3mw Sn¢  ns
81'p Srq 8rs
Ay A Ag
Let the determinant of A;; be given by detd4d = Ay, Ay Agsz|. An interchange of rows
1 i X
or columns causes a sign change. Thus Ay Ay Ag
Ay Ay Agg Ap Ay Ag
Ay A Ap| = |[Ap Ay Ayl = —detd
Az Az Ag Az Az Ag
and for an arbitrary number of row changes,
Aml Am2 Am3
Anl An2 Ans = Emnr detA

Ay A Ag
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or column changes,
Ay Ay Ay
Ay Apy Ay = epgs det A
Agy Az Ay
Hence for an arbitrary row and column interchange sequence,
Amp Amq Ams
Ay Apg Ay = emnrepgs det A
A, A, A,

When A;; = §;;, detA =1 and the identity is established.

1.59. Use the results of Problem 1.58 to prove (@) epasesnr = 8pndar — 8prdan, (D) epasesar = —28pr.
Expanding the determinant of the identity in Problem 1.58,
epastmnr = Smp(Bngdrs ~ 83681g) T Simg(Snsdrp — Snpdyg) + Sms(8npdrq — SngSrp)
(a) Identifying s with m yields,
pascsnr = Sp(OngSrs — 8ngdrg) F S5q(Snsdpy — Sppdys) + 855(8np8rg — SngSrp)
= Srpdug — Spndrg T 8qndrp — SupSgr + 38,pSrg — 38,08,y
= Oupdrg ~ Sngdpp

(b) Identifying ¢ with = in (a),

epasesar = Sqpdrq ™ 8qgdrp = 8pr — 88, = —28,,

1.60. If the dyadic B is skew-symmetric B - —B;, show that B,xa = 2a-B.
Writing B = b€ + b,6, + by&; (see Problem 1.6),
B, = by X€ + by X8 + by X
and B,Xa = (b;X€)Xa-+ (byX€) Xa+ (byX8) Xa
= (@b)& — (a-€)b; + (a*by)8, — (a-8yby + (a+by)®; — (a- &b,

= a* (b€ +bye,+by®;) — a- (&b, + &b, + ;b

= a*B — a*B, = 2a°B
1 0 -1
1.61. Use the Hamilton-Cayley equation to obtain (B)* for the tensor B = 0 3 0
Check the result directly by squaring (B)2. -1 0 -2
The characteristic equation for B is given by
11— 0 -1
0 3—2A 0 = —=222-60+9 = 0
-1 0 -2 =2

By the Hamilton-Cayley theorem the tensor satisfies its own characteristic equation. Hence
(B): — 2(B)2 — 6B + 91 = 0, and multiplying this equation by B yields (B)* = 2(B)3 + 6(B)2 — 9B or
(B)* = 10(B)2 + 3B — 181. Hence
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3 0 -3 18 0 0 5 0 7
®* = 100 9 0] + 0o 9 0} — 0 18 0 = 0 81 0
-3 0 —6 0o 0 18 7 0 26

Checking by direct matrix multiplication of (B)2,

2 0 1)[2 o 1 5 0 7
@®* = |0 9 olfo 9 of = |08 0
1 0 5|1 0 5 7 0 26

1.62. Prove that (a) A, (D) AyAy, (¢) einxxpAip are invariant under the coordinate trans-
formation represented by (1.103), i.e. show that As = Ai, ete.

(a) By (1.103), A;; = a’piaqu;)q‘ Hence Ay = apiain;q = 8qu;>q = A;p = A}

i

_ ’ ’ _ ’ ’ _ ’ r oA
(®) Aydy = a0 ApnitnAmn = SpmdqnlpeAmn = Apgdpg = Aydy
—_— ’ _ ’

(©) emeripAip = €ijkerip@mitnpAmn = (881 = 88 CminpAmn
— ’ — ’ _ ’
- ('Smn - 6’mn‘sjj)“lrrm - (Smjanj - 'Smnsjj)Amn - EmjkfkjnAnm

1.63. Show that the dual vector of the arbitrary tensor T;; depends only upon Tuj but that
the product T:;Si; of Ti; with the symmetric tensor Sy is independent of Tuj.

By (1.110) the dual vector of Ty is v, = e T, 0r ¥ = e (Tigry T Trjen) = e Ty sinee
e Ty = 0 (e is anti-symmetric in j and k, T, symmetric in j and k).
For the product T”S” = T(ij)Sij + T[ij] Sij' Here T[i]'] S” =0 and T”S“ = T(,-]-)Sij.

1.64. Show that D: E is equal to D++E if E is a symmetric dyadic.
Write b =D,6¢, and E=E, 68, By (1.81), D:E=DyE,(& )%+ €). By (1.35),
DeoE=DyE, (& &,)(8 +8,) = D;E,(€+&)(&-8) since E,;=E, Now interchanging the
role of dummy indices p and ¢ in this last expression, D+*E = Dijqu(@]- . @q)('éi . 'ép).

1.65. Use the indicial notation to prove the vector identity ¥V X (aXxb) = b Va—b(V-a)+
a(V+b) —a-Vvh.
Let V X (aXb) = v; then v, = e;q € 0.0;b, O
v, = epgiciik (@k),q = epaiciie(@,qbi T aibk,q)
= (8p:8qk — Spkdai)(@s,q bk T @sby,q) = @p,qbq — ag,qbp + pbgq — Ggbp,q

Hence v = b*Va—b(V-a)+a(Veb)—a+*Vb.

1.66. By means of the divergence theorem of Gauss show that f nx(axx)dS = 2aV
S

where V is the volume enclosed by the surface S having the outward normal n. The
position vector to any point in V is x, and a is an arbitrary constant vector.

In the indicial notation the surface integral is f €qpiTlp €ij1. @%; dS. By (1.157) this becomes

s
the volume integral f (eqpitin @;%y),p AV and since a is constant, the last expression becomes
v

J;' €qpi€ijk @ i, p AV = f (848K — Sqxk Spa;xy , AV = fv (ag®p p— apxq_p) 'A%
v

= f (@g8pp — Ap8gy) AV = f (Bay,—ay)dV = 2a,V
v v
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1.67.

1.68.

1.69.

1.70.

1.71.

MATHEMATICAL FOUNDATIONS [CHAP. 1

For the reflection of axes shown in Fig. 1-21 show that the transformation is
orthogonal.

From the figure the transformation matrix is

1 0 0
la] = |0 -1 o0
0 0 1

The orthogonality conditions Qi = 8j  OT @y = Sy
are clearly satisfied. In matrix form, by (1.117),

1 0 0 1 0 o 1 0
0 -1 o 0-1 o = 0 1
0 0 1 0 0 1 0 0 1 Fig.1-21

Show that (IXv):D = vxD.

AA AAN AA A A A
IXv = (1i+7]j+kk)X (vi+v,j+v,k)
A A A A A A A A A
= i(vyk—wv,j) + J(=v.k + v,i) + k(v,j vyi)
A A A A A A
= (vXi)i+ (vX{i+ vXkk = vxi

Supplementary Problems

A A A A A A

Show that u =i+ j—k and v = i—3j are perpendicular to one another. Determine w so
A A A

that u, v,a/ forms a right-handed triad. Ans. w = (—1/\/6)( i+ j+ 2k)

Determine the transformation matrix between the u, v,€v axes of Problem 1.69 and the coordinate

directions. B
1V3  1/V/3 —1/V/3
Ans.  [ay] = V2 -1V/2 o
—1/V/6 —1/V/6 —2/\/8

Use indicial notation to prove (@) Vex=3, () VXx=0, (¢) aVx =a where x is the position
vector and a is a constant vector.

Determine the principal values of the symmetric part of the tensor T; = 1 —6 —6

Ans. Ny = =15, Ay =5, A, =10 —3 —18 1
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1.73.

1.74.

1.75.

1.76.

1.77.

©1.99.

1.80.

7 3 0
For the symmetric tensor T;; = 3 7 4 determine the principal values and the directions
of the principal axes. 0 4 7
1 T2 r3
% —3/5V/2 12 —4/5V/2
Ans. Ay =2, Moy =T, Ay =12,
wd 4/5 0 —3/5
x¥ 3/5V2 12 4/5V2

Given the arbitrary vector v and any unit vector €, show that v may be resolved into a component
parallel and a component perpendicular to @, i.e. v = (v-8)€+ 28X (vX8€).

If Vev=0, VXv=w and V Xw=—V, show that V2v =V,

Check the result of Problem 1.48 by direct multiplication to show that \/f\/? =T.

3 2 0
Determine the square root of the tensor B = (2 3 0
0 0 9

30/5+1) 3(VE-1) o0
Ans. VB = | 3(V5—1) 1(/5+1) 0
0 0 3

Using the result of Problem 1.40, detA = ¢ A;;A5A43;, show that det (AB) = det A detB.
Verify that (a) 83pvp = Vg, (b) 631'A]'i = Ajg, (C) Bi]'ei]'k =0, (d) SiZSjSAij = A23.

Let the axes Oz} xéx; be related to Ox;x.x3 by the table

%, %y %3

« 3/5/2 12 4/5v/2
xy 4/5 0 —3/5
A —3/5V/2 1/V?2 —4/5\/2

(a) Show that the orthogonality conditions a;a; = 8 and a,.a,, = 8, are satisfied.
(b) What are the primed coordinates of the point having position vector x = 2%, — €;?

(¢) What is the equation of the plane z; — 25 + 323 = 1 in the primed system?
Ans. (b) (2/5V/2, 11/5, —2/5\/2) (c) V2a; — xh — 2V/2 a3 = 1

Show that the volume V enclosed by the surface S may be givenas V = 1 f V(x+x)-n dS where

x is the position vector and n the unit normal to the surface. Hint: Write V = (1/6) f (w;) jn; dS
and use (1.157).



Chapter 2

Analysis of Stress

21 THE CONTINUUM CONCEPT

The molecular nature of the structure of matter is well established. In_numerous
investigations of material behav1or however the individual molecule is of no concern and

onIy the behavior of ‘the materlal as a whole is deemed 1mportant For these cases the
observed macroscopic behavior is ‘usually explained by disregarding molecular considerations
and, instead, by assuming the material to be continuously distributed throughout its volume
and to completely fill the space it occupies. This continuum concept of matter is the
“fundamental postulate of Continuum Mechanics. Within the limitations for which the
continuum assumption is valid, this concept provides a framework for studying the behavior

of solids, liquids and gases alike.

Ado/phon of the 1e continuum v viewpoint as the bas1s s for the mathematical description of

d dlébiacement are expressed
as p1ecew1se contlnuous functlons of the space coordmates and tlme

mater1al behavior means that field quantltles such as stress an

22 HOMOGENEITY. ISOTROPY. MASS-DENSITY
A homogeneous_ material is one having identical properties at all points. With respect

to some property, a material is isotropic if that t property is the same in all dm

pomt A mafcerlal is called amsotromc w1th respect to those propertles which are dlrectlonal
at a pomt N

The concept of density is developed from
the mass-volume ratio in the neighborhood
of a point in the continuum. In Fig. 2-1 the
mass in the small element of volume AV is
denoted by AM. The average density of the
material within AV is therefore

b = N (2.1)
The density at some interior point P of the
volume element AV is given mathematically
in accordance with the continuum concept by
the limit,

AM aM

= lim % = == 2
P A‘l/glo AV dV, / (2.2)
Mass-density p is a scalar quantity. Fig. 2-1

44
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2.3 BODY FORCES. SURFACE FORCES

Forces are vector quantities which are best described by intuitive concepts such as push
or pull. Those forces which act on all elements of volume of a continuum are known as
body forces. Examples are gravity and inertia forces. These forces are represented by the
symbol b; (force per unit mass), or as p; (force per unit volume). They are related through
the density by the equation

pbi = »¢ or b =p (2.3)

Those forces which act on a surface element, whether it is a portion of the bounding
surface of the continuum or perhaps an arbitrary internal surface, are known as surface
forces. These are designated by f; (force per unit area). Contact forces between bodies
are a type of surface forces.

/,

-~

24 CAUCHY’S STRESS PRINCIPLE. THE STRESS VECTOR

A material continuum occupying the region R of space, and subjected to surface forces
fi and body forces b;, is shown in Fig. 2-2. As a result of forces being transmitted from
one portion of the continuum to another, the material within an arbitrary volume V
enclosed by the surface S interacts with the material outside of this volume. Taking ni
as the outward unit normal at point P of a small element of surface AS of S, let Afi be the
resultant force exerted across AS upon the material within ¥ by the material outside of
V. Clearly the force element Af; will depend upon the choice of AS and upon n.. It should
also be noted that the distribution of force on AS is not necessarily uniform. Indeed the
force distribution is, in general, equipollent to a force and a moment at P, as shown in
Fig. 2-2 by the vectors Af; and AM..

L3
l t§'A"

Fig. 2-2 Fig. 2-3

The average force per unit area on AS is given by Af;/AS. The Cauchy stress principle
asserts that this ratio Afi/As tends to a definite limit dfi/dS as AS approaches zero at the
point P, while at the same time the moment of Af; about the point R_,V,?_‘Pi,sh?% in_@bg_}ig@g
process. The resulting vector dfi/dS (force per unit area) is called the stress vector t;»
“and is shown in Fig. 2-3. If the moment at P were not to vanish in the limiting process,
a couple-stress vector, shown by the double-headed arrow in Fig. 2-3, would also be defined
at the point. One branch of the theory of elasticity considers such couple stresses but
they are not considered in this text.
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Mathematically the stress vector is defined by

S . Afi _dfs D : A_f —_ g
o= Imas = gs ot = lim o o= oo (2-4)

The notation tﬁa’ (or t"A") is used to emphasize the fact that the stress vector at a given
point P in the continuum depends explicitly upon the particular surface element AS chosen
there, as represented by the unit normal =; (or ﬁ). For some differently oriented surface
element, having a different unit normal, the associated stress vector at P will also be
different. The stress vector arising from the action across AS at P of the material within
V upon the material outside is the vector —t,fa). Thus by Newton’s law of action and
reaction, o . N .
—t™ = t{-m  or ™ = t-w (2.5)

The stress vector is very often referred to as the traction vector.

2.5 STATE OF STRESS AT A POINT. STRESS TENSOR

At an arbitrary point P in a continuum, Cauchy’s stress principle associates a stress

vector t;‘A‘) with each unit normal vector n;, representing the orientation of an infinitesimal
surface element having P as an interior point. This is illustrated in Fig. 2-3. The
totality of all possible pairs of such vectors tﬁ) and n; at P defines the state of stress at that
point. Fortunately it is not necessary to specify every pair of stress and normal vectors
to completely describe the state of stress at a given point. This may be accomplished by
giving the stress vector on each of three mutually perpendicular planes at P. Coordinate
transformation equations then serve to relate the stress vector on any other plane at the
point to the given three.

Adopting planes perpendicular to the coordinate axes for the purpose of specifying
the state of stress at a point, the appropriate stress and normal vectors are shown in
Fig. 2-4.

Fig. 2-4

For convenience, the three separate diagrams in Fig. 2-4 are often combined into a
single schematic representation as shown in Fig. 2-5 below.

Each of the three coordinate-plane stress vectors may be written according to (1.69) in
terms of its Cartesian components ag

A A A A A
— (ep) A ( A (epdAa ( A
tler = ¢V + 108 + 1508 = Vg
(8 _ plep A (e A (A  _ @A
t = e+ tEe + e = g (2.6)

A A A A A
A (@) A A (e3) A
tlesd — t(les)e1 -+ t2e., e + t;ea)eg = tje" e;
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r3

4738

X //4;:/

Fig. 2-5 Fig. 2-6

The nine stress vector components, N
£ = o, (2.7)

4
are the components of a second-order Cartesian tensor known as the stress temsor. The
equivalent stress dyadic is designated by Z, so that explicit component and matrix rep-
resentations of the stress tensor, respectively, take the forms

g g g

11 12 13

z = Ty Ty Ty or [o;] = Ty O Ty (2.8)

g g

31 T3 33

Pictorially, the stress tensor components may be displayed with reference to the
coordinate planes as shown in Fig. 2-6. The components perpendicular to the planes
(0,1 995 045) are called normal stresses. Those acting in (tangent to) the planes (o), 0,3 0y,
0,5 O5pp 05,) are called shear stresses. A stress component is positive when it acts in the
positive direction of the coordinate axes, and on a plane whose outer normal points in one
of the positive coordinate directions. The component ¢, acts in the direction of the jth
coordinate axis and on the plane whose outward normal is parallel to the ith coordinate

axis. The stress components shown in Fig. 2-6 are all positive.

2.6 THE STRESS TENSOR — STRESS VECTOR RELATIONSHIP

The relationship between the stress ten-

sor o,; at a point P and the stress vector tﬁ’
on a plane of arbitrary orientation at that
point may be established through the force
equilibrium or momentum balance of a small
tetrahedron of the continuum, having its
vertex at P. The base of the tetrahedron
is taken perpendicular to n;, and the three
faces are taken perpendicular to the coor-
" dinate planes as shown by Fig. 2-7. Des-
ignating the area of the base ABC as dS, the
areas of the faces are the projected areas,
dS; = dSn; for face CPB, dS;=dSn. for
face APC, dSs; = dSns for face BPA or
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dS: = dS(n-e) = dScos(n,e) = dSn (2.9)

The average traction vectors —tf‘é"’ on the faces and t*® on the base, together with the

average body forces (including inertia forceg, if present), acting on the tetrahedron are
shown in the figure. Equilibrium of forces on the tetrahedron requires that

EE® S — R g8, — tr@ g, — 1@ 48, + b*dV = 0 (2.10)

If now the linear dimensions of the tetrahedron are reduced in a constant ratio to one
another, the body forces, being an order higher in the small dimensions, tend to zero more
rapidly than the surface forces. At the same time, the average stress vectors approach
the specific values appropriate to the designated directions at P. Therefore by this limiting
process and the gubstitution (2.9), equation (2.10) reduces to

tWAS = £, dS + P nydS + t&nydS = t& n;dS (2.11)

Cancelling the common factor dS and using the identity tied = o, (2.11) becomes
t™ = om, or t® =mn-Z (2.12)

Equation (2.12) is also often expressed in the matrix form
[t] =[] [ow) (2.13)
which is written explicitly
953y T2 T3

(6P, 60, 67] = [an s | o om o (2.14)

T

The matrix form (2.14) is equivalent to the component equations
tia) = N0, T Nyo,, + Nyay,

te = Moy, Noy, + 1,0, (2.15)

A
(n) __
t™ = N0, + 1yo,, + N0,

2.7 FORCE AND MOMENT EQUILIBRIUM. STRESS TENSOR SYMMETRY

Equilibrium of an arbitrary volume V
of a continuum, subjected to a system of
surface forces tﬁ'A" and body forces b: (in-
cluding inertia forces, if present) as shown
in Fig. 2-8, requires that the resultant force
and moment acting on the volume be zero.

Summation of surface and body forces
results in the integral relation,

f t™ s + f pbidV
S \%4

or (2.16)
ftdas + [ pav = o
S v

Replacing ¢{™ here by o,n, and converting

the resulting surface integral to a volume

integral by the divergence theorem of Gauss EN

(1.157), equation (2.16) becomes Fig. 2-8

i
=
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{ o, +ob)av = 0 or {(v-z+mar = o (2.17)
v Vv

Since the volume V is arbitrary, the integrand in (2.17) must vanish, so that
T + Pbi =0 or V:'Z+pb=0 (2.18)
which are called the equilibrium equations.

In the absence of distributed moments or couple-stresses, the equilibrium of moments
about the origin requires that

L ei].kx].t,(c") as + J; ei].kxjpbde = 0
or (2.19)

Lxxt<3>ds+fxprdv - 0
Vv

in which «; is the position vector of the elements of surface and volume. Again, making
the substitution ¢ = o, applying the theorem of Gauss and using the result expressed

in (2.18), the integrals of (2.19) are combined and reduced to

fv s dV = 0 or 5,dV = 0 (2.20)

v

For the arbitrary volume V, (2.20) requires
exoy = 0 or X, =0 (2.21)
Equation (2.21) represents the equations o, = 0,,, 0, = 0,,, 0, = 0y, Or in all
o, = o, (2.22)

which shows that the stress tensor is symmetric. In view of (2.22), the equilibrium equations
(2.18) are often written

oy, +pb, = 0 (2.23)
which appear in expanded form as
Ty My Ty b =
%%+%+Zijj+pb2:0 (2.24)
G Tt = 0

2.8 STRESS TRANSFORMATION LAWS

At the point P let the rectangular Cartesian
coordinate systems Pzxix:xs and Prxixzsxi of Fig.
2-9 be related to one another by the table of
direction cosines

X Lo X3
!
E3Y agy A a3
’
Ty @21 A2z Q23

L3 asy a3z a33
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or by the equivalent alternatives, the transformation matrix [ai;], or the transformation

dyadic AA
A = qee; (2.25)

According to the transformation law for Cartesian tensors of order one (1.98), the

components of the stress vector t,fﬁ’ referred to the unprimed axes are related to the primed
axes components ¢ by the equation

H® = ait™® or ™ = A-t® (2.26)

Likewise, by the transformation law (1.102) for second-order Cartesian tensors, the stress
tensor components in the two systems are related by

—— ’/ = . .
o; = @, .0, oOr Z = A-Z-A (2.27)
In matrix form, the stress vector transformation is written
(W] — RIFIN
[ta™] = [aa][t;] (2.28)
and the stress tensor transformation as ’
[ai]'] = [aip] [qu] [aqj] (2‘29)
Explicitly, the matrix multiplications in (2.28) and (2.29) are given respectively b
§Y y by
t;(a) au Oz Q13 tﬁ;\‘)
A A
| = Q2 G2z Qo || ™ (2.80)
A
A Q31 O3 Q33 t(:)
3
ofy Of Of Gy Qpp Gz || Oy 01 Oy || Oy Gy Gy
and Oy Og Oy = @oy Gy Qg || Oy Oy Oyg || Gy Doy Ay, (2.31)
05 O3 O3 Ay Qg Qg O31 O3 O35 || Qi3 Qo Oy

2.9 STRESS QUADRIC OF CAUCHY

At the point P in a continuum, let the stress
tensor have the values o,; when referred to directions
parallel to the local Cartesian axes P¢ {,{, shown
in Fig. 2-10. The equation

0,{L; = *k* (a constant) (2.32)

represents geometrically similar quadric surfaces
having a common center at P. The plus or minus
choice assures the surfaces are real.

The position vector r of an arbitrary point lying
on the quadric surface has components {=rn,
where n; is the unit normal in the direction of r.
At the point P the normal component on, of the

A
stress vector ¢{™ has a magnitude

oy = twy = t®en = ¢ nn (2.33) Fig. 2-10

i i v

Accordingly if the constant k2 of (2.32) is set equal to 0,72, the resulting quadric
0, iy = Foyr? (2.34)
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is called the stress quadric of Cauchy. From this definition it follows that the magnitude
o, of the normal stress component on the surface element dS perpendicular to the position

vector r of a point on Cauchy’s stress quadric, is inversely proportional to 72, i.e. oy = =k

Furthermore it may be shown that the stress vector tg'A" acting on dS at P is parallel to the
normal of the tangent plane of the Cauchy quadric at the point identified by r.

2.10 PRINCIPAL STRESSES. STRESS INVARIANTS. STRESS ELLIPSOID

At the point P for which the stress tensor com-

ponents are o, the equation (2.12), tg'A" =o,m, as-

sociates with each direction n: a stress vector t{™.
Those directions for which tf" and n; are collinear as
shown in Fig. 2-11 are called principal stress direc-
tions. For a principal stress direction, :

t™ = om;  or t® = on (2.35)

in which o, the magnitude of the stress vector, is
called a principal stress value. Substituting (2.35)
into (2.12) and making use of the identities n, = §n,
and o, =0, results in the equations

3

(0,=8;0)n, =0 or (T—lo)'n =0 (2.36) Fig. 2-11

7

In the three equations (2.36), there are four unknowns, namely, the three direction cosines
#; and the principal stress value o.

For solutions of (2.36) other than the trivial one n; =0, the determinant of coefficients,
[au — Si].ol, must vanish. Explicitly,

ST s T3
’Uij — 81‘j“| =0 or Toy Oy — O Oyg = 0 (2.37)
31 O30 O337 O

which upon expansion yields the cubic polynomial in o,

o —I;o* +II;0 —III; = 0 (2.38)

where I, =9o,=1trZ (2.39)
I, = Moo, oy0,) (2.40)

III; = |o,| = detX (2.41)

are known respectively as the first, second and third stress invariants.

The three roots of (2.38), ¢,,, 0., 0¢;) are the three principal stress values. Associated
with each principal stress o, ,, there is a principal stress direction for which the direction
cosines n'¥’ are solutions of the equations

i

0. —0,8 M =0 or (T—o, N)'n® =0 (k=1,23) (2.42)
ij (k) Vij F (k)
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In (2.42) letter subscripts or superscripts enclosed by parentheses are merely labels and as
such do not participate in any summation process. The expanded form of (2.42) for the
second principal direction, for example, is therefore

. _ @) @ @
("11 ‘7(2))”‘1 topn? +ong® = 0

021n§2) + (022 - 0(2))1%;2) + 0'231%;2) =0 (243)

@ %)) _ 2 —
oy " oy, +(°33 "(2))"3 =0

Because the stress tensor is real and symmetric, the principal stress values are also real.

When referred to principal stress directions, the stress matrix [0,;] is diagonal,

oy 0 0 o 0 0
[“ij] = 0 T2 0 or ["ij] = 10 o1 0 (2.44)
0 0 %3 0 0 1

in the second form of which Roman numeral
subscripts are used to show that the principal
stresses are ordered, i.e. o, > o, >¢,,. Since
the principal stress directions are coincident
with the principal axes of Cauchy’s stress
quadric, the principal stress values include both
the maximum and minimum normal stress
components at a point.

In a principal stress space, ie. a space
whose axes are in the principal stress direc-
tions and whose coordinate unit of measure is
stress (tﬁ'A", t;:",tfo,'A") as shown in Fig. 2-12,
the arbitrary stress vector tﬁ'A') has components

t(.’:) _

A
@ _
1 T oy 2 = Nys t3" = oM, (2.45)

9o

according to (2.12). But inasmuch as (m1)? + (n2)? + (n3)2 = 1 for the unit vector n;, (2.45)
requires the stress vector ¢{™ to satisfy the equation
(ti'A")2 (t;:':))z (t‘3'A")2

("(1))2 (“(2))2 ("(3))2

= 1 (2.46)

in stress space. This equation is an ellipsoid known as the Lamé stress ellipsoid.

211 MAXIMUM AND MINIMUM SHEAR STRESS VALUES

If the stress vector t,‘a’ is resolved into orthogonal components normal and tangential to
the surface element dS upon which it acts, the magnitude of the normal component may
be determined from (2.33) and the magnitude of the tangential or shearing component is
given by
o = LW — 42 (2.47)

S N
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This resolution is shown in Fig. 2-13 where
the axes are chosen in the principal stress
directions and it is assumed the principal
stresses are ordered according to o, > oy, > oy,

Hence from (2.12), the components of tg'A" are
ti“) = on

tén) = oy, (2.48)

= oyl

o1y
and from (2.33), the normal component mag- 2
nitude is

oy = olnf + anng + amn§ (2.49)
Substituting (2.48) and (2.49) into (2.47), the
squared magnitude of the shear stress as a .
function of the direction cosines n; is given by Fig. 2-13

2 — 2,2 2 92 2 2 2 2 22
og = ofhi + ofn; + ofyni — (on? +oymi + o M%) (2.50)

The maximum and minimum values of ¢, may be obtained from (2.50) by the method of
Lagrangian multipliers. The procedure is to construct the function

F = og — Anin; (2.51)

in which the scalar X is called a Lagrangian multiplier. Equation (2.51) is clearly a function
of the direction cosines n;, so that the conditions for stationary (maximum or minimum)
values of F' are given by o0F/on;=0. Setting these partials equal to zero yields the
equations

n,{c2 — 20’1(01%? +oni+o,m2)+a} = 0 (2.52a)

s
ny{0% ~ 20, (0% + o2 + o m2) +A) = 0 (2.52b)

2 2 2
ny{o 20y (o0 + oy} + oy 1

I1I

which, together with the condition nmn: = 1, may be solved for A and the direction cosines
N1, N2, N3, conjugate to the extremum values of shear stress.

One set of solutions to (2.52), and the associated shear stresses from (2.50), are

m = *1, m = 0, ns = 0; for which ¢, =0 (2.53a)
n = 0, ne = =1, ng = 0 for which ¢;=0 (2.53D)
n = 0, ne = 0, ns = *1;  for which o3 =10 (2.53¢)

The shear stress values in (2.53) are obviously minimum values. Furthermore, since (2.35)
indicates that shear components vanish on principal planes, the directions given by (2.53)
are recognized as principal stress directions.

A second set of solutions to (2.52) may be verified to be given by

n = 0, ne = *1/\/2, mns = =1/\/2; for which oy = (o, —0,)/2 (2.540)
m = *1/\/2, n = 0, ns = =1/\/2; for which oy = (o, —o)/2  (2.54D)
nmo= *1/\/2, n = 12, ns = 0; for which og = (o, —o)/2  (2.54¢)

Equation (2.54b) gives the maximum shear stress value, which is equal to half the difference
of the largest and smallest principal stresses. Also from (2.54b), the maximum shear stress
component acts in the plane which bisects the right angle between the directions of the
aximum and minimum principal stresses.
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212 MOHR’S CIRCLES FOR STRESS

A convenient two-dimensional graphical
representation of the three-dimensional state
of stress at a point is provided by the well-
known Mohr’s stress circles. In developing
these, the coordinate axes are again chosen in
the principal stress directions at P as shown
by Fig. 2-14. The principal stresses are as-
sumed to be distinct and ordered according to

g > o, > o (2.55)

III

For this arrangement the stress vector t;s’ has
normal and shear components whose magni-
tudes satisfy the equations Fig. 2-14

N = oln% + "n”ﬁ + "m”§ (2.56)

2 2 — 2,2 242 2 2
oy Tog = ofni+ o5y t op Mg (2.57)

Combining these two expressions with the identity nni =1 and solving for the direction

cosines 7;, results in the equations
(“N - “n)("'N - ‘TIII) + ("s)2

()2 = ey (2.580)
2 _ (o — UIII)(UN B "I) + (‘Ts)2

() = (o~ o) (o —oy) (2.580)

(ns)? = (o = o)l — o) F (25" (2.58¢)

(‘Tm - cr1)(‘7111 - ‘711)
These equations serve as the basis for Mohr’s stress circles, shown in the “stress plane” of
Fig. 2-15, for which the o, axis is the abscissa, and the og axis is the ordinate.

In (2.58a), since o,—o;, >0 and o, —o,; > 0 from (2.55), and since (n:)? is non-negative,
the numerator of the right-hand side satisfies the relationship

((rN — O'H)(UN - O'IH) + (O'S)2 = ( (2.59)
which represents stress points in the (oy, 05) Plane that are on or exterior to the circle
[oy = (o + o )/2]* + (0g)* = [(o,— o)/2)? (2.60)

In Fig. 2-15, this circle is labeled C;.

os

91 — %m

L4131 o1 o1 oN

Fig. 2-15
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Similarly, for (2.58b), since o;~o,; >0 and o;,—0, <0 from (2.55), and since (n2)?
is non-negative, the right hand numerator satisfies

(”N - "III)("N - "'1) + ("s)z =0 (2.61)
which represents points on or interior to the circle
[UN - (am + o-l)/2]2 -+ (crs)2 = [(OHI — UI)/2]2 (2.62)

labeled C; in Fig. 2-15. Finally, for (2.58¢), since oy~ 0, <0 and o, ;—0, <0 from
(2.55), and since (ns)? is non-negative,

(oy — o)(oy — o) T (og)? =0 (2.63)
which represents points on or exterior to the circle
[UN - (0[ + 0'11)/2]2 + (o's)2 = [(UI - 011)/2]2 (264)

labeled C; in Fig. 2-15.

Since each “stress pomt” (pair of values of oy and o) in the (s, ;) plane represents a
particular stress vector t‘"’ the state of stress at P expressed by (2.58) is represented in
Fig. 2-15 as the shaded area bounded by the Mohr’s stress circles. The diagram confirms
a maximum shear stress of (o, —o,,)/2 as was determined analytically in Section 2.11.
Frequently, because the sign of the shear stress is not of critical importance, only the top
half of this symmetrical diagram is drawn.

, The relationship between Mohr’s stress diagram and the physical state of stress may
be established through consideration of Fig. 2-16, which shows the first octant of a sphere
of the continuum centered at point P. The normal n: at the arbitrary point Q of the
spherical surface ABC simulates the normal to the surface element dS at point P. Because
of the symmetry properties of the stress tensor and the fact that principal stress axes are
used in Fig. 2-16, the state of stress at P is completely represented through the totality of
locations @ can occupy on the surface ABC. In the figure, circle arcs KD, GE and FH
designate locations for @ along which one direction cosine of n: has a constant value.
Specifically,

a1
£2]

Fig. 2-16
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ni1 = cos¢on KD, ms = cosfonGE, ns = cosfdon FH
and, on the bounding circle ares BC, CA and AB,
n1 = cosw/2 = 0 onBC, 1m: = cosw/2 = 0 onCA, ns = cos=/2 = 0 on AB

According to the first of these and the equation (2.58a), stress vectors for @ located on
BC will have components given by stress points on the circle C: in Fig. 2-15. Likewise, CA
in Fig. 2-16 corresponds to the circle C», and AB to the circle Cs in Fig. 2-15.

The stress vector components o, and o for an arbitrary location of @ may be deter-
mined by the construction shown in Fig. 2-17. Thus point ¢ may be located on Cs by
drawing the radial line from the center of Cs at the angle 28. Note that angles in the
physical space of Fig. 2-16 are doubled in the stress space of Fig. 2-17 (arc AB subtends
90° in Fig. 2-16 whereas the conjugate stress points ¢, and o, are 180° apart on Cs). In
the same way, points g, k and f are located in Fig. 2-17 and the appropriate pairs joined by
circle arcs having their centers on the o, axis. The intersection of circle arcs ge and hf
represents the components o, and o4 of the stress vector tﬁ'A" on the plane having the normal
direction n; at @ in Fig. 2-16.

9s

o o1 (4 oN

2.13 PLANE STRESS

In the case where one and only one of the principal stresses is zero a state of plane
stress is said to exist. Such a situation occurs at an unloaded point on the free surface
bounding a body. If the principal stresses are ordered, the Mohr’s stress circles will have
one of the characterizations appearing in Fig. 2-18.

g S Is s r os
o1 11 o oy o111 911 71 oy o11x o1 91 oy
am=0 0":0 0;20

Fig. 2-18
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If the principal stresses are not ordered and the direction of the zero principal stress
is taken as the x; direction, the state of stress is termed plane stress parallel to the ziz.
plane. For arbitrary choice of orientation of the orthogonal axes z; and z: in this case,
the stress matrix has the form

%11 %12 0
["ij] = T, Oy O (2.65)
0 0 0

The stress quadric for this plane stress is a cylinder with its base lying in the z:2: plane
and having the equation

0,22 + 20,2, + 0,02 = *k? (2.66)

Frequently in elementary books on Strength of Materials a state of plane stress is rep-
resented by a single Mohr's circle. As seen from Fig. 2-18 this representation is necessarily
incomplete since all three circles are required to show the complete stress picture. In
particular, the maximum shear stress value at a point will not be given if the single circle
presented happens to be one of the inner circles of Fig. 2-18. A single circle Mohr’s diagram
is able, however, to display the stress points for all those planes at the point P which include
the zero principal stress axis. For such planes, if the coordinate axes are chosen in
accordance with the stress representation given in (2.65), the single plane stress Mohr's
circle has the equation

[oy = (04 F 05)/2)2 + (0g)2 = [(0,, = 0,,))/2]* + (0,)° (2.67)

The essential features in the construction of this circle are illustrated in Fig. 2-19. The
circle is drawn by locating the center C at o, = (o, + 0,,)/2 and using the radius
R = V(e — 0,,)/2]* + (0,,)* given in (2.67). Point A on the circle represents the stress
state on the surface element whose normal is »; (the right-hand face of the rectangular
parallelepiped shown in Fig. 2-19). Point B on the circle represents the stress state on
the top surface of the parallelepiped with normal n.. Principal stress points o, and ¢, are
so labeled, and points E and D on the circle are points of maximum shear stress value.

1 ag
E
A
11 C 91 ATN
B
D
Fig.2-19

2.14 DEVIATOR AND SPHERICAL STRESS TENSORS

It is very often useful to split the stress tensor o into two component tensors, one of
which (the spherical or hydrostatic stress tensor) has the form
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o, 0 O
ZM = o, = 0 o, O (2.68)
0 0 o
where o, = —p = ¢,,/3 is the mean normal stress, and the second (the deviator stress tensor)
has the form
01" Oy Tl N 811 812 S13
2, = Oy Ogy — Oy Oy = S21 S22 So3 (2.69)
% [ Oy — Oy 831 832 Ss3
This decomposition is expressed by the equations
o; = Sijakk/3 +s; or 2= ol+Z, (2.70)

The principal directions of the deviator stress tensor s;; are the same as those of the
stress tensor o,;- Thus principal deviator stress values are

Sty T Oy T Oy (2.71)

The characteristic equation for the deviator stress tensor, comparable to (2.38) for the
stress tensor, is the cubic

8+ 1Izys — Iz, = 0 or §°+ (siSu + SuSm + Sms1)s — SiSusSm = 0 (2.72)

It is easily shown that the first invariant of the deviator stress tensor Iz, is identically
zero, which accounts for its absence in (2.72).

Solved Problems

STATE OF STRESS AT A POINT. STRESS VECTOR.
STRESS TENSOR (Sec. 2.1-2.6)
2.1. At the point P the stress vectors tﬁﬁ)

and ti‘ﬁ*’ act on the respective surface
elements n: AS and n* AS*. Show that

the component of t{™ in the direction
of n¥ is equal to the component of

t&* in the direction of 7.

n -
¢ -

It is required to show that

(n%) (h), %
— n
t," ' = 4t

A
From (2.12) ti("*)'ni = a]-in;-"ni, and by (2.22)
0j; = Tij» SO that

onin; = (oymnf = t{"n} Fig. 2-20
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2.2.  The stress tensor values at a point P are given by the array

7 0 -2
Z = 0 5 0
-2 0 4

Determine the traction (stress) vector on the plane at P whose unit normal is
n= (2/3)€1 — (2/8)€. + (1/3)8..

From (2.12), t®> =1+3. The multiplication is best carried out in the matrix form of (2.18):

7 0 —2
@ 2R ] = _ _ |14_2 -10 -4 4
60, £, ] [2/3,-2/3,1/3]| 0 5 o [3 5 33 T3
—2

23. For the traction vector of Problem 2.2, determine (a) the component perpendicular
to the plane, (b) the magnitude of t{, (c) the angle between ¢ and .
(@ ¢ R = (48, —108) (38, — 38 +48) = 449

®) [t = V16 + 100/9 = 5.2

(¢) Since t™ - n= |t"] cos 8, coso = (44/9)/5.2 = 0.94 and 6 = 20°.

24. The stress vectors acting on the three coordinate planes are given by t‘el) t‘eﬁ) and t(e3’
Show that the sum of the squares of the magnitudes of these vectors is 1ndependent
of the orientation of the coordinate planes.

Let S be the sum in question. Then
A A A A A A
— (e plep (ey) (eg) (e3) 2(ea)
S — tiEI tiel -+ tiez tie2 + tiea ties

which from (2.7) becomes S = oy;0q; + 09,09; + 005 = a;05, an invariant.

2.5. The state of stress at a point is given by the stress tensor

o Qo bo
g, = aoc o Co
be Co o

where a,b, ¢ are constants and ¢ is some stress value. Determine the constants a,b
and ¢ so that the stress vector on the octakedral plane (d = (1/v/3)& + (1//3)8é: +
1/\/§)e3 vanishes.

In matrix form, ti(“) = o;n; must be zero for the given stress tensor and normal vector.

g ao bo 1/\/5 0 a+b = —1
ac @ co 1/\/5 = 0 hence a+4+c¢ = —1
bo co o || 1/V3 0 b+e¢ = —1
Solving these equations, ¢ = b = ¢ = —1/2. Therefore the solution tensor is
o  —o/2 —a/2
oy = —0/2 ¢ —a/2

—a/2 —6/2 o
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2.7.
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The stress tensor at point P is given by the
array

7-5 0
2 = -5 3 1
0 1 2

Determine the stress vector on the plane passing

through P and parallel to the plane ABC shown
in Fig. 2-21.

%2

The equation of the plane ABCis 3x;+ 6x,+ 223 = 12,
and the unit normal to the plane is therefore (see Prob-
lem 1.2)

?l = %@1 + %82 + %@3 Fig' 2-21

From (2.14), the stress vector may be determined by matrix multiplication, . -

75 0
[3/7,6/7,2/7}| =5 8 1| = %[_9, 5, 10]
0 1 2
Thus t® = —7—931‘??@24-170-33.

The state of stress throughout a continuum is given with respect to the Cartesian
axes Oz 2223 by the array

8xix: Hx; O
s = 523 0 2z
0 223 0
Determine the stress vector acting at the point P(2,1, \/§ ) of the plane that is tangent
to the cylindrical surface z; +22 =4 at P.

At P the stress components are given by

6 5 0
T = |5 0 2V3
0 23 o

The unit normal to the surface at P is determined
from grad¢ = V¢ = V(x% =+ x§ —4), Thus V¢ =
22,8, + 22,6; and so

Ve = 28 + 2V/36; atP
A
e 3
Therefore the unit normal at P is i = —+ £33.

This may also be seen in Fig. 2-22. Finally the stress
vector at P on the plane L to A is given by

6 5 0 0 5/2
5 0 2v3 || 1/2 = 3
0 2vV3 o || V3 V3

or t® = 58/2+ 38, + V3%, Fig. 2-22
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EQUILIBRIUM EQUATIONS (Sec.2.7)

2.8. For the distribution of the state of stress given in Problem 2.7, what form must the
body force components have if the equilibrium equations (2.24) are to be satisfied

everywhere.
Computing (2.24) directly from £ given in Problem 2.7,
3y + 10xy + 0 + pb; = 0
0+0+2+pb, = 0

04+0+0+pby = 0

These equations are satisfied when b; = —182,/p, by = —2/p, bg = 0.

2.9. Derive (2.20) from (2.19), page 49.
Starting with equation (2.19),
f eijkx,.t,‘f’ ds + f etipbdV. = 0
S 14

substitute tz") = g;n; in the surface integral and convert the result to a volume integral by

(1.157):
f (ei®jop)n, dS = f (€ijopi).p AV
s \'

Carrying out the indicated differentiation in this volume integral and combining with the first
volume integral gives

f Eijk{xj’pdpk -+ xj(apk,p + pbk)} dV = 0
4
But from equilibrium equations, o, + pb, = 0; and since x;, = 8;, this volume integral

reduces to (2.20), f o AV = 0.
v

Al

STRESS TRANSFORMATIONS (Sec. 2.8)

2.10. The state of stress at a point is given with respect to the Cartesian axes Oxix:xs by
' the array

2 -2 0
T = -2 V2 o
0 0 —/2

Determine the stress tensor 2’ for the rotated axes Oxixzx: related to the unprimed
axes by the transformation tensor
0 1V/2 1//2

A = V2 12 -1/2
-1V/2 12 -1/2

The stress transformation law is given by (2.27) as of; = a;,ajq0,q or X' = A*Z+A. The de-
tailed calculation is best carried out by the matrix multiplication [of] = [a;)][0pq][aq;] given in

(2.29). Thus
0 Ve 1//2 2 -2 0 0 1V —1//2
o] = V2 172 —1/2 -2 V2 o ||l 12 172
L -1/vV2 12 -1/2 0 o0 —/z |12 -12 -1/2
0 o 2
= 0 1—V2 -1

L2 -1 1+V2
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2.11. Show that the stress transformation law may be derived from (2.33), the equation
oy = o,;N,M; expressing the normal stress value on an arbitrary plane having the unit

2.12.

normal vector n..

Since oy is a zero-order tensor, it is given with respeect to an arbitrary set of primed or
unprimed axes in the same form as

and since by (1.94) n{ =a

oN

i1

' ’ 7
ojmin}

P an? nn?

= oymim;

I

= o;

QipMplight

jqe'q T

= oM N;

oN —

TpqMlpTlq

where new dummy indices have been introduced in the last term. Therefore

(of;

Qip

and since the directions of the unprimed axes are arbitrary,

’
Uijaipaj

= Opg

For the unprimed axes in Fig. 2-23, the stress

tensor is given by

Determine the stress tensor for the primed

T

r 0 0
0 0
0

[en R ]

T

axes specified as shown in the figure.

It is first necessary to determine completely the
transformation matrix A. Since x| makes equal angles

with the x; axes, the first row of the transformation
table together with agy is known. Thus

Qjg = TpgMpig = 0

Ty g r3
af 113 13 1/V/3
@

a} 1/V2

Fig. 2-23

Using the orthogonality equations a;a; = 8j, the transformation matrix is determined by com-
puting the missing entries in the table. It is left as an exercise for the student to show that

Therefore

[a;;)

[of}]

1/V3  1/V/3
—2/V6 1/Ve
0 —1/V/2

[ 1v3 1/v3
—2/V6 1/V6
0 -1z

1/V3]
1/Ve
1/V2

1/V3|
V6
12

T 0 0
T 0

0
0 0 7

1/vV3 —2/\/6 0
V3 16 —1/V2
V3 16 12
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V3 V3 V3 INVE 26 o r 0 0
= | —2e/V6 V6 Ve V3 O INVE —1V2Z| = o - 0
0 -V 2|l INVE 1WVE 12 0 0 r

The result obtained here is not surprising when one considers the Mohr’s circles for the state of
stress having three equal principal stress values.

CAUCHY’S STRESS QUADRIC (Sec. 2.9)
2.13. Determine the Cauchy stress quadric at P for the following states of stress:
(¢) uniform tension o, = ¢, =0, =0; 0, =0, = 0,, = 0
(b) uniaxial tension Oy = 05 Oyp = O35 = Cig = 013 = Ogg = 0
(c) simple shear Oip = 0y = T3 0y = Ogp = Og3 = 0,3 = 0,3 = 0
(d) plane stress with Oy = 0 = 0gp; 01y = 0y = T Ogg = Ogy = Opg = 0.

From (2.32), the quadric surface is given in symbolic notation by the equation $eZ et = k2,
Thus using the matrix form,

(o 0 o[
(@ [(18283]] 0 o O | = a{% + o2 + US"% = )2
10 0 o ¢3 |
Hence the quadric surface for uniform tension is the sphere f"l’ + {% -+ gg = =k2/o.
r—'a 0 0— F{I_‘
(b) [§1, {2; :3] 00 0 {2 = Uf% = =2
[0 0 0] | $s_]
Hence the quadric surface for uniaxial tension is a circular cylinder along the tension axis.
0 r 0| _fl—
(0) [{1, 3‘2» §3] r 0 0 {2 = 27-;‘1;'2 = k2
0 0 0 || ¢ |

and so the quadric surface for simple shear is a hyperbolic cylinder parallel to the {3 axis.

o 7 0 $1
@ [Bulatl|r o 0[] = o} + 2188, + ot2 = =*k2
0 0 0 _§3J
and so the quadric surfa—ce for plane stress is a general conic cylinder parallel to the zero principal

axis.

2.14. Show that the Cauchy stress quadric for a state of stress represented by

a 0 O
z = 0 b 0
0 0 ¢

is an ellipsoid (the stress ellipsoid) when @, b and ¢ are all of the same sign.

The equation of the quadric is given by

a 0 0 &
[(1:82,83] 0 & O ¢ = a;? + bfg + c;g — 2
0 0 ¢ {3

R R + B ¢ +J2
Therefore the quadric surface is the ellipsoid L+ =+ - = —/—,
be ac ab abe
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PRINCIPAL STRESSES (Sec. 2.10-2.11)

2.15. The stress tensor at a point P is given with respect to the axes Oxixsxs by the values

3 1 1
(Tij = 1 0 2
1 2 0

Determine the principal stress values and the principal stress directions represented
by the axes Ox¥x}x¥.

From (2.37) the principal stress values ¢ are given by

3—e 1 1
1 —o 2| = 0 or, upon expansion, (0 +2)(c—4)(c—1) =0
1 2 —0o
The roots are the principal stress values o, = —2, oy =1, oy =4. Let the x} axis be the

direction of oy, and let ni(” be the direction cosines of this axis. Then from (2.42),

1) ay —
@B+2m Y+ + 2l = 0

a® 4 2D + 20D = 0
2® + 200 + 20D = 0
Hence ni" = 0; 2{V = —n{ and since nn; =1, (n,)2 = 1/2. Therefore =¥ =0, 2" =1/V2,
ngl) =-1/V2.
Likewise, let x3 be associated with o(5). Then from (2.42),
2n® + n® +2» = 0
n® —n® + 2n{® = 0
n® + 20 — 2@ = 0

so that n{® =1/V/3, 2P = —1/V/3, n{® = —1/V/3.

Finally, let «} be associated with o3y. Then from (2.42),

_,(® (3) 3) —
n,” + 1" + Ny 0

n{® — 4n{® + 2n{® = 0
(3) (3) 4 (3) —

n,” + 2n2 4'n3 =0

so that #{® = —2/1/6, n{® = -1/Vs, ni{® = -1/V6.

2.16. Show that the transformation tensor of direction cosines determined in Problem 2.15
transforms the original stress tensor into the diagonal principal axes stress tensor.

According to (2.29), [o};] = [ayp)[opg][@e;], Which for the problem at hand becomes

0 1z 123 1 1 0 1/V3 —2/V6
[of] = V3 ~1V/3 —1/V/3 || 1 0 2 V2 —-1/V/3 —-1/V6
L —2/V6 —1/V6 =16 || 1 2 o || —1/V2 —1//3 —1/V/6

0 -2 \/é_r 0 13 —2/\/s -2 0 0

= 1473 —1/V/3 —1/V/3 W2 —1/3 —1n6 | = 01 0

| —8/V6 —4/V6 —4n/6 || —1/V/2 —1/V/3 —1/V/E 00 4
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2.17. Determine the principal stress values and principal directions for the stress tensor

2.18.

From (2.37), T T—a T = 0 or (r—o)—2r0-+ 0% + 2120 = [8r—o0le2 = 0.
T T T—o

Hence oy, =0, o¢) =0, o3y = 3r. For o, = 37, (2.42) yield

0, (@ (3 3 _ (3) _ 9.,(3) 3 _— €)) (3 _ 9, (3) —
2n7 "+ n + g =0, 7, 2n," + 0> =0, n> + ng 2n,» =0

and therefore #(¥ =2 =n®=1//3. For oy, = 0w, =0, (2.42) yield

nytngtng =0, ntntng =0 ntnygtng =0

which together with nn; =1 are insufficient to determine uniquely the first and second principal
directions. Thus any pair of axes perpendicular to the nzf:” direction and perpendicular to each

other may serve as principal axes. For example, consider the axes determined in Problem 2.12, for
which the transformation matrix is

V3 13 143
0 —-1n2 12

According to the transformation law (2.29), the principal stress matrix [o’f]] is given by

[‘ V3 13 w3 |[+ + | 1V/3 —2W6 o
o5] = | —2V6 V6 INVE ||+ « ¢ ||INB 16 —1//2
0 —-1VZ W2 |l+ - < |lINV3 1NVE 1WZ

['V3r Var V3r\[1V3 —2/V6 o 3 0 0

= 0 0 0 V38 Ve —1/V2 | = |0 o0 o

L0 0 0 1/V3 1V6 12 0 0 0

Show that the axes Ox¥z}x}, (where
z¥, 3 and x¥ are in the same vertical
plane, and «¥, ; and x» are in the same
horizontal plane) are also principal axes
for the stress tensor of Problem 2.17.

The transformation matrix [a;] relating y A b
the two sets of axes clearly has the known . cos”1UNV3)
elements '

- - 0
l[ay] = — - \/2/\/5 cos~1(1/V/3)

1/V3 V3  1/V3

as is evident from Fig. 2-24. From the orthog-
onality conditions a;a; = 8y, the remaining
four elements are determined so that Fig. 2-24



66 ANALYSIS OF STRESS [CHAP. 2

-1//2  11/2 0
[a] = —-1/V6 —116 /213

1/V3  1/V/3 1/V/3
As before, \

o] = | =1V6 ~ING V23 || r » - 1/V2 —1V6  1/V/3
VAVERE VAVE R VoYL NN | I 0 V2/V3 1n/3

0 0 0 -1/V2 =16  1//3 0 0
= 0 0 0 Ve -inve 3| = |o o
\/g'r \/—377’ \/§T 0 \/E/\/g 1/\/§ 0 0

—1/\/§ 1/\/5 0 T T T —1/\/5 —1/\/6 1/\/&:,
0
0

3r

2.19. Show that the principal stresses o}, and the stress components ¢, for an arbitrary

set of axes referred to the principal directions through the transformation coefficients
3

@; are related by o, = ¥ a,a 0.
p=1

From the transformation law for stress (2.27), 0j; = api@gop,; but since oy, are principal
stresses, there are only three terms on the right side of this equation, and in each p = q. There-
3

fore the right hand side may be written in form 0ij = 3 Gpillpioy.
p=1

2.20. Prove that ¢, 0,0, is an invariant of the stress tensor.,
By the transformation law (2.27),
oioikoK; = %ip®jqOpqLirQisTrshm@ inTmn
= (@) (0500 ) (1 s @) 00150y,
= SPTBQnﬁmapqarsamn
= (3pr9pg) (8qnTmn)(8smays)

Irq%qmTrm — Oij%i0%j

2.21. Evaluate directly the invariants Iy, ITs, I11s for the stress tensor

6 -3 0
S -3 6 0
0 0 8

Determine the principal stress values for this state of stress and show that the
diagonal form of the stress tensor yields the same values for the stress invariants.

From (2.39), Iz = o = 646 + 8 = 20.
From (2.40), II: = (1/2)(aiiajj——aijaij)

= o0y T 093033 + 033011 — 015015 — 093003 — 03,09,
= 36+ 48 +48 —9 = 123,
From (2.41), Illy = |o;] = 6(48) + 3(—24) = 216.
The principal stress values of o are oy =3, oy =8, oy =9. In terms of principal values,
Iy = oy+oy+ogy = 3+8+9 = 9
Hy = owon+ oyoyg + ooy = 24 + 72 + 27 = 123
II; = ooy = (24)9 = 216
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2.22.

2.23.

The octahedral plane is the plane which makes equal angles with the principal stress
directions. Show that the shear stress on this plane, the so-called octahedral shear
stress, is given by

%oct — %\/(‘71 - 011)2 + (UII - "m)z + (“m - 0'1)2

- With respect to the principal axes, the normal
to the octahedral plane is given by x3 (oy11)

A

A= L(8,+6,+8)
V3
Hence from (2.12) the stress vector on the octa-
hedral plane is
tw = L (8 +8+8)
° (013131 + ‘711@232 + 01116383)

_ 1 A A A
= _3 (o€ + 011€; + oy1€3)

and its normal component is

AL
oy = net™™ = Yo+ oy +omr)
Therefore the shear component is
_ a ~ 2 _ 2 2 2
socr = Nt™Wetw—oy = {§o7+op +oiy) — Hop+ oy + oy 2172
— 2 2 2 2 2 2
= 38(e7+op T oqyy) — (o7 + o7 +oqyp + 201011 + 2oyoyyp + 2oygro1) 32

= %{(0’% — 20011 + U%I) + (U% — 20qy011 T "%n) + ("%n — 2oyyy0y + 0?)}1/2

= %\/(01 - 011)2 + (UII - 0111)2 + (o — op)?

5 0 0
The stress tensor at a point is given by o, =10 —6 —12 | Determine the maxi-
0 —12 1

mum shear stress at the point and show that it acts in the plane which bisects the
maximum and minimum stress planes.

From (2.38) the reader should verify that the principal stresses are oy =10, oy =25,

o = —15. From (2.54b) the maximum shear value is og = (oy; —0;)/2 = —12.5. The principal

axes Ox} sy are related to the axes of maximum shear Oxjz;x; by the transformation table

below and are situated as shown in Fig. 2-26.

! 1V2 0 1/V2

Z 0 1 0

x4 —1//2 0 1/Ve 2 o
e

Fig. 2-26
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The stress tensor referred to the primed axes is thus given by

Wz o 1210 o o |[VE o ~1//3 —25 0 —125
o] = 0 1 0 0 5 o0 0 1 0 = 0 5 0
—-1//2 0 1//2 0 0 -15 || 12 0 1//2 —-125 0 —2.5

The results here may be further clarified by showing the stresses on infinitesimal cubes at the
point whose sides are perpendicular to the coordinate axes (see Fig. 2-27).

Fig. 2-27

-MOHR’S CIRCLES (Sec. 2.12-2.13)

2.24. Draw the Mohr’s circles for the state of stress discussed in Problem 2.23. Label
important points. Relate the axes Oxizsxs (conjugate to o, ) to the principal axes
Oz zs 25 and locate on the Mohr’ s diagram the points giving the stress states on the
coordinate planes of Ox,z.xs.

The upper half of the symmetric Mohr’s circles diagram is shown in Fig. 2-28 with the maxi-
mum shear point P and principal stresses labeled. The transformation table of direction cosines is

xy 0 1 0
2 —3/5 0 4/5
3 4/5 0 3/5

from whlch a diagram of the relative orientation of the axes is made as shown in Fig. 2-29. The
xl and x; axes are coincident. %y and «; are in the plane of a} x5 as shown. From the angles

= 36.8° and B = 53.2° shown, the points A(—6,12) on the plane L to 2, and B(1,12) on the
plane 1 to w3 are located. Point C(5, 0) represents the stress state on the plane 1 to ;.

}as

o = —15 o =5 o; = 10

Fig. 2-28 Fig. 2-29
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2.25. The state of stress at a point referred to axes Oxix.23 is given by

-5 0 0
o, = | 0 —6 -12
0-12 1

Determine analytically the stress vector components on the plane whose unit normal
is n = (2/3)& + (1/3)& + (2/3)&. Check the results by the Mohr’s diagram for
this problem.

From (2.18) and the symmetry property of the stress tensor, the stress vector on the plane of
1 is given by the matrix product

-5 0 0 2/3 —10/3
0 -6 -12 (/13| = | —10
0 —12 1 2/3 -10/3
Thus t™ = —108,/3 — 108, — 108,/3; and from (2.8), oy = t™ & = —70/9. From (2.47),
gy — 70.7/9.
For o;; the principal stress values are oy = 10, oy = —5, oy = —15; and the principal axes
are related to Ox;x,x3 by the table
Xy Lo %3
o 0 —3/5 4/5
£ 1 0 0
x; 0 4/5 3/5
0 —3/5 4/5 2/3 1/3
Thus in the principal axes frame, =] = agm; or |1 0 0 1/3 | = | 2/3 |. Accordingly
0 4/5 3/5 2/3 2/3

the angles of Fig. 2-16 are given by ¢ = 8 = cos™12/3 = 48.2° and ¢ = cos—11/3 = 70.5°, and
the Mohr’s diagram comparable to Fig. 2-17 is as shown in Fig. 2-30.

os

\<?¢\: 141°
\

> Oy

o = 10

Fig. 2-30
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2.26. Sketch the Mohr's circles for the three cases of plane stress depicted by the stresses
on the small cube oriented along the coordinate axes shown in Fig. 2-31. Determine
the maximum shear stress in each case.

[y

o

X2

(a) (b (©)
Fig. 2-31

The Mohr’s circles are shown in Fig. 2-32,

as 4 os ‘} [

(0)max = @ (O8)max = 7 (@) max = 0/2

o =a o =r

op =10 oN oy = 0 4%

(a) (b (0
Fig. 2-32

SPHERICAL AND DEVIATOR STRESS (Sec. 2.14)

12 4 0
2.27. Split the stress tensor o; = | 4 9 —2| into its spherical and deviator parts and
0 -2 3

show that the first invariant of the deviator is Zero.
UMZOkk/3:(12+9+3)/3:8. Thus

0 4 4 0
0ij = aMsij + 8ij = 0 8 0 + 4 1 -2
8 0 -2 -5

and s; = 4+1—5 = 0.

2.28. Show that the deviator stress tensor is equivalent to the superposition of five simple
shear states.

The decomposition is
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S$11 S12 813 0 812 0 0 0 813 0 0 0
891 Spy  Sa3 = sy O 0] + 0 0 0 + |0 0 83
831 Saz 833 0 0 0 831 0 0 0 sz O

sy O 0 0o 0 0

+ {0 —s8; 0} 4+ [0 —sg53 O

0 0 0 0 0 S33

where the last two tensors are seen to be equivalent to simple shear states by comparison of cases
(@) and (b) in Problem 2.26. Also note that since s; =0, —s1; — 833 = 8.

2.29. Determine the principal deviator stress values for the stress tensor

10 -6 O
o, = |—6 10 0
0 0 1
3 —6 0
The deviator of o;; is 8; = -6 3 0 and its principal values may be determined
from the determinant 0 0 —6
3—s —6 0
-6 38-—s 0 = (-6—98)(@E+3)6s—9 = 0
0 0 —6—s
Thus s; =9, sy = —3, sy =—6. The same result is obtained by first calculating the principal

stress values of o; and then using (2.71). For oy, as the reader should show, o¢; =16, oy =4,
oy =1 and hence s; =16—7=9, sy =4—7T=-8, sy =1—T7=—6.

2.30. Show that the second invariant of the stress deviator is given in terms of its principal
stress values by Ils, = (si8u + SuSm + sms:), or by the alternative form IIr, =
—3(si+ s+ stu).

In terms of the principal deviator stresses the characteristic equation of the deviator stress
tensor is given by the determinant

s;— s 0 0
0 Sy —$ 0 = (sy—8)sp—8)(su—8) = 0
0 0 Spr— S
= 8 + (88 + sySm + Sms)S — #8udm
Hence from (2.72), IIy = (s1811 +8usm + 8;8y). Since 8y + sy + 8y = 0,
Iy, = 3288y + 2sy s + 288 — (1 st sm)?) = —§(s + 8} + %)

MISCELLANEOUS PROBLEMS

2.31. Prove that for any symmetric tensor such as the stress tensor o, the transformed
tensor o, in any other coordinate system is also symmetric.

[ — —_— 4
From (2.27), of; = QjpQjq0pq = ®jqPipTgp = Oji-
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2.32.

2.33.

2.34.

2.35.

2.36.

ANALYSIS OF STRESS [CHAP. 2

At the point P the principal stresses are such that 2¢,; = ¢, +0;;. Determine the unit
normal n: for the plane upon which oy, = ¢, and o5 = (o, —oy;)/4.

From (2.38), oy = nioy + n3(oy+ op)/2 + naoyy = (o + orx)/2; and since nd+nl+ ny =1,
these equations may be combined to yield n; = ng. Next from (2.47),

o = 7"%‘7? + nﬁ(oﬂr onp)?/4 + niafn — (o Forp)?/4 = (o —oy)?/16
Substituting n; = n; and n% —1= —nf - n§ = —an into this equation and solving for n,, the direc-
tion cosines are found to be 7, = 1/2V2, n, = V3/2, ny = 1/2V/2. The reader should apply these
4 0 0
results to the stress tensor o; = 05 0
0 0 6

Show that the stress tensor o, may be decomposed into a spherical and deviatoric
part in one and only one way.

Assume two decompositions, a; = §;A + 8;; = §\* + s’fj with s; =0 and s;;=0. Then
o; = 38X = 3A*, so A =A% and from A§;+s; = A§;+ s}'} it follows that s;; = s¥.

Prove that the principal stress values are real if Z is real and symmetric.

For real values of the stress components the stress invariants are real and hence the coefficients
in (2.38) are all real. Thus by the theory of equations one root (principal stress) is real. Let o(s)
be this root and consider a set of primed axes #{ of which xj3 is in the direction of o(3). With respect to

g1 —o o1 0
such axes the characteristic equation is given by the determinant op1 04— 0 0 =0
0 0 0(3) — g

or (o¢g —0)[(0]; — 0)(0ss — o) —o13] = 0. Since the discriminant of the quadratic in square brackets

D = (o}, + 0b)? — A[o],09 — (012)?] = (0{; — 042)? + 4day5 > 0, the remaining roots must be real.

Use the method of Lagrangian multipliers to show that the extremal values (maximum
and minimum) of the normal stress o, correspond to principal values.
From (2.33), oy = oymn; with mm; = 1. Thus in analogy with (2.51) construct the function
H = oy — \ymn; for which 0H/én; = 0. Then
oH _
ang,
= aijsipn]- + aijniajp - 2)‘81'17"1'

aijni,pnj + oy p — 2)\ni,p7"i

= apjnj -+ aipni - 2"81'1)77’1' = 2(0'pi ~- )\sip)’ﬂi =0

which is equivalent to equation (2.86) defining principal stress directions.

Assume that the stress components o,; are derivable from a symmetric tensor field

¢,; by the relationship o, = € €;nibgn pm- SHOW that in the absence of body forces the
equilibrium equations (2.23) are satisfied.

Using the results of Problem 1.58, the stress components are given by

05 = 8ij(Paqop — Pap.ap) T Ppipi T Pip.pi — Pop.ji T Piiop
or explicitly 011 = ¢33,22 T P22,33 19 = 031 = —daz
o2 = 11,33 T Pz, 11 O3 = 03 = 11,93

$22,11 T 911,22 g31 = 013 = T9$22,13

o33
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2.37.

2.38.

Substituting these values into ¢;; ; = 0,

o11,1 T 012,22 T 013,83 = P33,201 T Pag,331 — $33,212 — Po2,133 — O
091,1 T 022,02 T 023,83 = —¢gs,011 T b11,332 T 33,112 — Pi1,033 = O
031,1 + 032,90 + 033,83 = —dao,131 — P11,232 T P22,113 T 11,003 = 0

Show that, as is asserted in Section 2.9, the normal to the Cauchy stress quadric
at the point whose position vector is r is parallel to the stress vector ¢{™.

Let the quadric surface be given in the form ¢ = ¢;;¢;{; = k% = 0. The normal at any point is
then V¢ or 9¢/df; = ¢,;. Hence ¢, = 0,858+ 0;8:8;p = 20,,i$;. Now since {; = rn;, this becomes

A
20, or 2r(opmy) = Zt;").

At a point P the stress tensor referred to axes Oxix-23 is given by
15 -10 0
o, = |—10 5 0
0 0 20
If new axes Oxixsxs are chosen by a rotation about the origin for which the trans-
3/6 0 —4/5
formation matrix is [ay] =| 0 1 0 |, determine the traction vectors on each
4/5 0 3/5

of the primed coordinate planes by projecting the traction vectors of the original axes
onto the primed directions. In this way determine ¢/. Check the result by the trans-
formation formula (2.27).

From (2.6) and the identity t;é\i) = 0;; (2.7), the traction vectors on the unprimed coordinate

axes are t© = 158, — 108,, t© = —108, + 5%, t© = 208, which correspond to the rows
of the stress tensor. Projecting these vectors onto the primed axes by the vector form of (2.12),

ti) = ptled 4 nzt(é\Z) + ngtles?, gives
ted = 3159, — 108, — £(208;) = 9&, — 69, — 16¢
5 1 2 5 3 1 3

which by the transformation of the unit vectors becomes

(6D = 93e] +48)) — 68, — 16(—48, +28)) = 918)/5 — 68, — 128,/5
Likewise t& = —68, + 58, — 8¢,
and t® = —12%)/5 — 8%, + 84%,/5

91/56 —6 —12/5

so that o = —6 5 -8
—12/5 —8 84/5

a/5 o0 —4/5|[ 15 —10 o]l 85 0 45
By (2.2?), o = 0 1 0 ~10 5 0 0 1 0
45 0 85| o0 o0 20| —45 0 35

[~ o —6 —16|[ 35 o 45 91/5 —6 —12/5

= |-10 5 o 0 1 o = -6 5 -8

| 12 -8 12| -4/5 0 3/5 —12/5 -8  84/5
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2.39.

2.40.
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Show that the second invariant of the deviator stress tensor ITz;, is related to the
octahedral shear stress by the equation o, = \/—31I;,.

From Problem 2.22, oocr = V(o — 071)% + (071 — oqy)2 + (o1 —op)?, and because o; = oy + sy,
o = Oy + 811y etc.,

soct = ¥V(s1—su)? + (51— syp)? + (81— 8p)?

=1 \/2(312 + sty + sTy) — 2(sysyp + S18n + 8rsy)
Also sp+ s+ sy = 0 and so (sr+ s +81)2 =10 or

2, 2 2 _
St F 8y + s = —2(sysyp + spsyy + syusy)

Hence %ct = %\/‘6(31311 + susm + spsy) = \/_%HZD

The state of stress throughout a body is given by the stress tensor

0 Czxs 0 -
o; = Cuxs 0 —Cux,
0 —C’xl 0

where C is an arbitrary constant. (@) Show that the equilibrium equations are
satisfied if body forces are zero. (b) At the point P(4,—-4,7) calculate the stress
vector on the plane 2%+ 2x;— 25 = —7, and on the sphere (x1)? + () + (23)2 = (9)2.
(¢) Determine the principal stresses, maximum shear stresses and principal deviator
stresses at P. (d) Sketch the Mohr’s circles for the state of stress at P.

(a) Substituting directly into (2.24) from 0;;, the equilibrium equations are satisfied identically,

(b) From Problem 1.2, the unit normal to the plane 2x; + 2x, —x; = —7 is h = %31 + %@2 - %@3.
Thus from (2.12) the stress vector on the plane at P is
t™ = (38,+26,—18)- (1088, + 7C €6, —4C 8.8, — 4C 88,
= CH&+8 —38+58) = 1C14¢,+188,—88,)

The normal to the sphere ;= (9)2 at P is n=¢,; With ¢ =zx;,—81, or n = %31 -
£€, 4+ 1%, In the matrix form of (2.14) the stress vector at P is

0 ¢ o
(4/9, —4/9,7/9]| 7C 0 —4C | = [~28C/9,0, 16C/9]
0 —4C 0

() From (2.87), for principal stresses a,

— 7 0  09nae = V&G
7 —0 —4| = o(62—65) = 0; hence
0 -4 —&¢
or = V65, oy = 0, oy = —V/65. The
maximum shear stress value is given by p— o = V&b o

(2.54b) as o5 = (oy — 01)/2 = =V65. Since
the mean normal stress at P is oy =
(oy+ o1+ 011;)/8 = 0, the principal devia-
tor stresses are the same as the principal
stresses.

(d) The Mohr’s circles are shown in Fig. 2-33. Fig. 2-33
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Supplementary Problems

14 7 -7
2.41. At point P the stress tensor is o; = 7 21 0. Determine the stress vector on the
-7 0 35

plane at P parallel to plane (a¢) BGE, (b) BGFC of the small parallelepiped shown in Fig. 2-34.

Fig. 2-34

Ans. (@) t = 11¢; + 128, + 96, (b) t™ = (21, +148,+218,)/\/5

2.42. Determine the normal and shear stress components on the plane BGFC of Problem 2.41.
Ans. oy = 63/5, og = 37.7/b

2.43. The principal stresses at point P are oy = 12, oy =3, oyp = —6. Determine the stress vector and
its normal component on the octahedral plane at P.

Ans. t™ = (12€,+3¢,—68,)/V/3, oy = 3

2.44. Determine the principal stress values for

011 211
(@ o; = {1 0 1 and b o;=1(1 2 1
110 11 2
and show that both have the same principal directions.
Ans. (@) oy =2, oy=ogy=-—1, B)o; =4, oy =0y =1
3 —10 0
2.45. Decompose the stress tensor o; = —10 0 30 into its spherical and deviator parts and
0 30 —27
determine the principal deviator stresses. Ans. 8, =381, sy =8, s =—39

2.46. Show that the normal component of the stress vector on the octahedral plane is equal to one third
the first invariant of the stress tensor.

0 1 2
247. The stress tensor at a point is given as o;; = |1 gy 1| with oy unspecified. Determine oy
2 1 0

so that the stress vector on some plane at the point will be zero. Give the unit normal for this

traction-free plane.
A

Ans. opp = 1, 0 = (8, —26+ &)/V6
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2.48.

2.49.

2.50.
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Sketch the Mohr's circles and determine the maximum shear stress for each of the following
stress states:

T 7 0 r 0 0
(@) oy = r 7t 0 ) o5 = 0 — 0
0 0 0 0 0 —2r

Ans. (a) og =17, (b) og = 37/2

Use the result given in Problem 1.58, page 39, together with the stress transformation law (2.27),
page 50, to show that €ijkEpamTipTiqOkm 1S an invariant.

In a continuum, the stress field is given by the tensor

diwy  (l—ae, 0
o5 = |(—ad)z, (2X—8x)/3 0
0 0 252

Determine (a) the body force distribution if the equilibrium equations are to be satisfied throughout
the field, (b) the principal stress values at the point P(a, 0, 2\/3), (c) the maximum shear stress at
P, (d) the principal deviator stresses at P.

Ans. (a) by = —4xs, (b) a, —a, 8a, (¢) *=4.5a, (d) —11a/3,—5a/3,16a/3



Chapter 3

Deformation and Strain

3.1 PARTICLES AND POINTS

In the kinematics of continua, the meaning of the word “point” must be clearly under-
stood since it may be construed to refer either to a “point” in space, or to a “point” of a
continuum. To avoid misunderstanding, the term “point” will be used exclusively to
~designate a “location in fixed space. The word “particle” will denote a small volumetric
element, or materlal point”, of a continuum. In brief, a pomt is a place m space, a particle
;1s a small part of a material continuum.

3.2 CONTINUUM CONFIGURATION. DEFORMATION AND FLOW CONCEPTS

At any instant of time ¢, a continuum having a volume V and bounding surface S will
occupy a certain region R of physical space. The identification of the particles of the
continuum with the points of the space it occupies at time ¢ by reference to a suitable set of
coordinate axes is said to specify the configuration of the continuum at that instant.

The term deformation refers to a change in the shape of the continuum between some
1n1t1a1 (undeformed conﬁguratlon and a subsequent (deformed) conﬁguratlon The emphasns
1n deformatlon studies 1s on the 1n1t1al and _final conﬁguratlons _No attentlon is glven to

“deformation « occurs By contrast, the word ﬂow is used to des1gnate the contmumg state
vof ‘motion of a contmuum Indeed, a configuration hlstory is inherent in flow investigations
for which the spec1ﬁcat10n of a time-dependent velocity field is given.

3.3 POSITION VECTOR. DISPLACEMENT VECTOR

In Fig. 8-1 the undeformed configuratioh of a material continuum at time ¢=10 is
shown together with the deformed configuration of the same continuum at a later time
t =t. For the present development it is useful to refer the initial and final configurations
to separate coordinate axes as in the figure.

Yo

xy

Fig. 3-1

77
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Accordingly, in the initial configuration a representative particle of the continuum
occupies a point P, in space and has the posttion vector

X = XTI+ X5+ X1 = Xade (8.1)

with respect to the rectangular Cartesian axes OX1X.Xs. Upper-case letters are used as
indices in (3.1) and will appear as such in several equations that follow, but their use as
summation indices is restricted to this section. In the remainder of the book upper-case
subscripts or superseripts serve as labels only. Their use here is to emphasize the connection
of certain expressions with the coordinates (X1X2X5), which are called the material coor-
dinates. In the deformed configuration the particle originally at P, is located at the point
P and has the position vector

X = 1€ + X8y + 236s = X (3.2)

when referred to the rectangular Cartesian axes oxix2xs. Here lower-case letters are used
as subscripts to identify with the coordinates (%1x223) which give the current position of
the particle and are frequently called the spatial coordinates.

The relative orientation of the material axes OX,X>X; and the spatial axes ox:zs2s is
specified through direction cosines «,, and ay, which are defined by the dot products of
unit vectors as

A A

eI, =1

kK K./é = ag (3.3)

Kk — %k

No summ:.tion is implied by the indices in these expressions since k¥ and K are distinct

indices. Inasmuch as Kronecker deltas are designated by the equations iK'iP = 8kp and
€€ = 8p, the orthoganality conditions between spatial and material axes take the form

s = By (3.4)

“kx%kp T %K%K T Okpi  UrpPup T Cpply

In Fig. 3-1 the vector u joining the points P, and P (the initial and final positions,
respectively, of the particle), is known as the displacement vector. This vector may be

expressed as
u=ue (3.5)

or alternatively as U = UK’I\K (3.6)

in which the components Ux and ux are interrelated through the direction cosines @y e
From (1.89) the unit vector & is expressed in terms of the material base vectors Ix as

A

€ = ayly (8.7)

Therefore substituting (3.7) into (3.5),
u = wle,l) = Ud =T (3.8)
from which Uy = o0, (3.9)

Since the direction cosines o, are constants, the components of the displacement vector are
observed from (3.9) to obey the law of transformation of first-order Cartesian tensors, as
they should.

The vector b in Fig. 3-1 serves to locate the origin o with respect to O. From the

geometry of the figure,
u=b+x-—-X (3.10)
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Very often in continuum mechanics it is possible to consider the coordinate systems
0X:X,X;3 and ox1x20s superimposed, with b =0, so that (3.10) becomes

u=x—-X (8.11)
In Cartesian component form this equation is given by the general expression
U, = X, — o Xy (3.12)

However, for superimposed axes the unit triads of base vectors for the two systems are
identical, which results in the direction cosine symbols «,, becoming Kronecker deltas.
Accordingly, (3.12) reduces to

u, = v, — X, (3.13)

in which only lower-case subscripts appear. In the remainder of this book, unless specifi-
cally stated otherwise, the material and spatial axes are assumed superimposed and hence
only lower-case indices will be used.

34 LAGRANGIAN AND EULERIAN DESCRIPTIONS

When a continuum undergoes deformation (or flow), the particles of the continuum

move along various paths in space. This motion may be expressed by equations of the
form
Xy — xi(Xl,Xz, X3, t) = xi(X, t) or x = X(X, t) (311;—)

which give the present location x: of the particle that occupied the point (X:1X:X3) at time
t=0. Also, (3.14) may be interpreted as a mapping of the initial configuration into the
current configuration. It is assumed that such a mapping is one-to-one and continuous,
with continuous partial derivatives to whatever order is required. The description of
motion or deformation expressed by (3.14) is known as the Lagrangian formulation.

If, on the other hand, the motion or deformation is given through equations of the form
X = Xi(x1, 22, 23,t) = Xi(x,t) or X = X(x,{) (3.15)

in which the independent variables are the coordinates z: and t, the description is known
as the Eulerian formulation. This description may be viewed as one which provides a
tracing to its original position of the particle that now occupies the location (i, x2, #3). If
(8.15) is a continuous one-to-one mapping with continuous partial derivatives, as was also
assumed for (3.14), the two mappings are the unique inverses of one another. A necessary
and sufficient condition for the inverse functions to exist is that the Jacobian

ax;
J = \ X, (3.16)
should not vanish.
As a simple example, the Lagrangian description given by the equations
ry = X1 + Xz(et— 1)
22 = Xi(e~t—1) + X, (8.17)
Xz = X3
has the inverse Eulerian formulation,
—21 + x2(ef — 1)
X1 = 11—— e”2— et
zile7t—1) —x
X, = 1{ o (3.18)

X3 = x5
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3.5 DEFORMATION GRADIENTS. DISPLACEMENT GRADIENTS

Partial differentiation of (8.14) with respect to X; produces the tensor dx:/0X; which is
called the material deformation gradient. In symbolic notation, 9z:/0X; is represented by

the dyadic s 5 s
F = xyy = a—;{‘l‘él + a—;;’éz + 67"5363 (3.19)

in which the differential operator Vx = %’éi is applied from the right (as shown
explicitly in the equation). The matrix form of F serves to further clarify this property
of the operator Vx when it appears as the consequent of a dyad. Thus
i) 0r1/0X:1  o0x1/0X- 021/90X 3
F =l [ g g i :' = 0x2/0X1  022/0X2  9x2/0Xs = [ox/0X;] (3.20)

3X1’ 90Xz’ 0X;
X3 . 0x3/0X:1  0xs/0Xs 023/0X 5

Partial differentiation of (8.15) with respect to z; produces the tensor 8Xi/0x; which is
called the spatial deformation gradient. This tensor is represented by the dyadic

X A 0X A X

H = Xy, = 5x—1e1 + 6‘:}582 + mea (3.21)
having a matrix form
X1 6X1/6x1 BXI/axz aXl/a%'s
d a d
I = X, [a—xl , % , @;:, = 0Xo/0x1  0Xo/0x 0Xo/0s = [aXi/aivj] (3.22)
X3 0Xs/0x1  0Xs/dxs 0X3/dxs

The material and spatial deformation tensors are interrelated through the well-known
chain rule for partial differentiation,
ar: 0X;  oX, 0%;

0X; dxx ox; 0Xx

ik (3.23)

Partial differentiation of the displacement vector u; with respect to the coordinates
produces either the material displacement gradient oui/dX;, or the spatial displacement
gradient ou/dx;. From (8.13), which expresses u; as a difference of coordinates, these tensors
are given in terms of the deformation gradients as the material gradient

ou; _ du;

X, T oax T 83 or J = uvx = F—1 (3.24)
7 3
and the spatial gradient
% = ij_% or K=uvy, =1—H (325)
J J

In the usual manner, the matrix forms of J and K are respectively

[—uln 3 3 5 ous /90X, ou1/9X, u1/0X3

d = | w [a_Xi VX, aTQ,] = | 0u/oXy  ows/oXe oup/oXs | = [ow/dX)] (3.26)
L U3 J dus/0X, ous/dX. 0us/9X;

and .
[y 5 oul/oxy  our/dx:  dui/dxs
a 9 o

K = | u [% s Gaa (97@] = | ow/om dus/ow: dus/ows | = [ow/ow;] (3.27)

| Us | us/dxr  Jus/dx>  us/dxs
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3.6 DEFORMATION TENSORS. FINITE STRAIN TENSORS

In Fig. 3-2 the initial (undeformed) and final (deformed) configurations of a continuum
are referred to the superposed rectangular Cartesian coordinate axes OX:X.X; and ozixzxs.
The neighboring particles which occupy points P, and Qo before deformation, move to
points P and @ respectively in the deformed configuration.

XS: T3

XZ! Lo

Xl! £31

Fig. 3-2

The square of the differential element of length between P, and Qo is

(dX)2 = dX-dX = dXidXi = SijdXide (3.28)
From (3.15), the distance differential dX; is seen to be
dX; = ’?g dz; or dX = H-dx (3.29)
J

so that the squared length (dX)? in (3.28) may be written

0Xi 0Xk g0 duw; = Cydawidw; or  (dX) = dx-C-dx (3.30)
ox; 0x;j

in which the second-order tensor

@dxyp =

0Xx 0 X
0x; 0%;

Cy = C = H.-H (3.31)

is known as Cauchy’s deformation tensor.
In the deformed configuration, the squ/a:re of the differential element of length between

P and Q is

(dx)2 = dx+dx = dxidx; = Sijdxidxj (332)
From (3.14) the distance differential here is

_ 9% gx. = F-

dr; = X, dX; or dx = F-dX (3.33)

so that the squared length (dx)? in (3.32) may be written
— 9%k 0%k ‘. = G dX.dX: 2 — ‘G-
(dz)? = 53X, 9X, dX:dX; = G;dX:dX; or (dz)? = dX-6-dX (3.34)

in which the second-order tensor

0xk 0%k
g = X or G
Gi = 3% 0%, ©

is known as Green’s deformation tensor.

F.-F (3.35)
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The difference (dx)?— (dX)? for two neighboring particles of a continuum is used as
the measure of deformation that occurs in the neighborhood of the particles between the
initial and final configurations. If this difference is identically zero for all neighboring
particles of a continuum, a rigid displacement is said to occur. Using (3.34) and (3.28),
this difference may be expressed in the form

(dx)* — (dX)* = <g§("§% - sij> dX:.dX; = 2L;dX.dX;
i j

or (dx)®* — (dX)* = dX-(F.*F— 1)*dX = dX-2l¢*dX (3.86)
in which the second-order tensor

1 /9xx oz
Ly = —2—<a—)£a—)(k]*‘ 8ij> or lc = '%(Fc' F— I) (337)

is called the Lagrangian (or Green’s) finite strain tensor.
s /"‘

Using (3.82) and (3.30), the same difference may be expressed in the form

(da)? — (dX) = <si,-— ‘Z—’f‘%?) dwidz; = 2By da de,
1 7
or (dz)? — (AX? = dx-(1—He-H)-dx = dx-2Es-dx (3.38)

in which the second-order tensor

I YA %) ¢
By = 2<8” a1 ax,->

is called the Eulerian (or Almansi’s) finite strain tensor.

Es = (1 — H.-H) (3.39)

An especially useful form of the Lagrangian and Eulerian finite strain tensors is that
in which these tensors appear as functions of the displacement gradients. Thus if dxi/0X;
from (3.24) is substituted into (3.87), the result after some simple algebraic manipulations
is the Lagrangian finite strain tensor in the form

Ly = 1<%+au,- Uk Uk

2\0X; ' aX: 0X; 0X;

In the same manner, if 9Xi/dz; from (3.25) is substituted into (3.39), the result is the
Eulerian finite strain tensor in the form

+

> of Lo = 30+ de+derd) (3.40)

o= l/ow | ouy ok dux - 1 K-
By = (Gt ) o B MK oKW (3-41)
The matrix representations of (3.40) and (3.41) may be written directly from (3.26) and
(3.27) respectively.

3.7 SMALL DEFORMATION THEORY. INFINITESIMAL STRAIN TENSORS

The so-called small deformation theory of continuum mechanics has as its basic condi-
tion the requirement that the displacement gradients be small compared to unity. The
fundamental measure of deformation is the difference (dx)? — (dX)?, which may be expressed
in terms of the displacement gradients by inserting (3.40) and (3.41) into (3.36) and
(3.38) respectively. If the displacement gradients are small, the finite strain tensors in
(8.36) and (3.38) reduce to infinitesimal strain tensors, and the resulting equations represent
small deformations.
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In (3.40), if the displacement gradient components du:;/0X; are each small compared to
unity, the product terms are negligible and may be dropped. The resulting tensor is the
Lagrangian infinitesimal strain tensor, which is denoted by

1/ ou; ou;
Ly = §<6_X'] + 5)7’) or L = {(uVx + Vxu) = $(J+Jo) (3.42)
Likewise for dui/dx; € 1 in (3.41), the product terms may be dropped to yield the Eulerian
infinitesimal strain tensor, which is denoted by

1 /0w | du; .
o = p(im ti) or B TR = HKHK .49

If both the displacement gradients and the displacements themselves are small, there is
very little difference in the material and spatial coordinates of a continuum particle.
Accordingly the material gradient components du:/0X; and spatial gradient components
oui/dx; are very nearly equal, so that the Eulerian and Lagrangian infinitesimal strain
tensors may be taken as equal. Thus

l. =¢, or L=E (3.44)

if both the displacements and displacement gradients are sufficiently small.

3.8 RELATIVE DISPLACEMENTS. LINEAR ROTATION TENSOR.
ROTATION VECTOR

In Fig. 3-3 the displacements of two neighboring Q
particles are represented by the vectors #{*® and %’
(see also Fig. 3-2). The vector N -
dui = ul%® —y4®  or du = u® — u® p
1 i X
(3.48) @,

is called the relative displacement vector of the particle
originally at @, with respect to the particle originally
at Py. Assuming suitable continuity conditions on the P
displacement field, a Taylor series expansion for u{"® 2P

may be developed in the neighborhood of P,. Neglect- P,

ing higher-order terms in this expansion, the relative

displacement vector can be written as Fig. 3-3

dui = (ow/dX)p,dX; or du = (uVy)r,*dX (8.46)

Here the parentheses on the partial derivatives are to emphasize the requirement that the
derivatives are to be evaluated at point Po. These derivatives are actually the components
of the material displacement gradient. Equation (3.46) is the Lagrangian form of the
relative displacement vector.

It is also useful to define the unit relative displacement vector du,/dX in which dX is
the magnitude of the differential distance vector dX;. Accordingly if v, is a unit vector in
the direction of dX, so that dX,=+,dX, then

dui  _ owi dX; _ ou , Gu
T oax; i f dx

Since the material displacement gradient ou./0X; may be decomposed uniquely into a
symmetric and an antisymmetric part, the relative displacement vector du; may be written as
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o 1 ou; ou; 1 Uiy A
du: = [2 <8Xj + aXi> + 2 <8Xj &Xi)] aX;
or du = [$(aVy + Vyu) + $(uv, — vV, u)]-dX (3.48)

The first term in the square brackets in (3.48) is recognized as the linear Lagrangian strain
tensor l;. The second term is known as the linear Lagrangian rotation tenmsor and is
denoted by

1/ 0w oU;
Wo = 3(fe-2) or W= Juv, - vy (3.49)

In a displacement for which the strain tensor I; is identically zero in the vicinity of point
Py, the relative displacement at that point will be an infinitesimal rigid body rotation.
This infinitesimal rotation may be represented by the rotation vector

W, or w=13VyXu (3.50)
in terms of which the relative displacement is given by the expression

du, = ¢zw;dX, or du = wxdX (8.51)

ijk

= 1
w; 2€%

The development of the Lagrangian description of the relative displacement vector, the
linear rotation tensor and the linear rotation vector is paralleled completely by an analogous
development for the Eulerian counterparts of these quantities. Accordingly the Eulerian
description of the relative displacement vector is given by

ou;
ox;

du; = dr; or du = K-dx (3.52)

and the unit relative displacement vector by

ou; dx; oU; du A A
du = Gogl = gam OF g = uV R = KR (8.53)

Decomposition of the Eulerian displacement gradient dui/dx; results in the expression
dui _ [1 /6w | du 1/oui %ﬂ _
de [2 <axj + axi> t3 <ax,- oz dz;
or da = [}uv, +V,u) + $uv, -V, u)]-dx (3.54)

The first term in the square brackets of (3.54) is the Eulerian linear strain tensor ;- The
second term is the linear Eulerian rotation tensor and is denoted by

_ 1 fou_a o
A 2(650]' 8x,-> or 2 = {(uv, - V,u) (3.55)

From (3.55), the linear Eulerian rotation vector is defined by

o, = %Eijk“’kj or 0 = 2V Xu (3.56)

1

in terms of which the relative displacement is given by the expression

du, = ¢o,dx,  or du = o Xdx (8.57)

i

3.9 INTERPRETATION OF THE LINEAR STRAIN TENSORS

For small deformation theory, the finite Lagrangian strain tensor L; in (3.36) may be
replaced by the linear Lagrangian strain tensor l;;, and that expression may now be written
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(dz)? — (dX)? = (da—dX)(dz +dX) = 2l;dX:dX;

or (dx)? — (dX)? = (dox —dX)(dx+dX) = dX-21-dX (3.58)
Since dx =~ dX for small deformations, this equation may be put into the form

dex — dX dX; dX; _ de —dX _ A, «

T = li].d—XHYJ - lijvivj or —E:X— = YLy (3.59)

The left-hand side of (3.59) is recognized as the
change in length per unit original length of the
differential element and is called the normal strain
for the line element originally having direction
cosines dX,/dX.

When (3.59) is applied to the differential line
element PyQ,, located with respect to the set of
local axes at Py as shown in Fig. 3-4, the result will
be the normal strain for that element. Because
PyQo here lies along the X axis,

dXy/dX = dXs/dX = 0, dX./dX =1
and therefore (3.59) becomes

dx —dX o
T — l22 = a‘}(i2 (3.60) Fig.3-4

Thus the normal strain for an element originally along the X, axis is seen to be the com-
ponent ly,. Likewise for elements originally situated along the X, and X3 axes, (3.59) yields
normal strain values ;1 and Iz respectively. In general, therefore, the diagonal terms of
the linear strain tensor represent normal strains in the coordinate directions.

Fig.3-5

The physical interpretation of the off-diagonal terms of l;; may be obtained by a con-
sideration of the line elements originally located along two of the coordinate axes. In
Fig. 8-5 the line elements PyQo and PoM, originally along the X, and X; axes, respectively,
become after deformation the line elements PQ and PM with respect to the parallel set of
local axes with origin at P. The original right angle between the line elements becomes
the angle 4. From (3.46) and the assumption of small deformation theory, a first order
approximation gives the unit vector at P in the direction of @ as
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A aul A A au3 A
n = mm + e + mea (3.61)

and, for the unit vector at P in the direction of M, as

o = Mg L g o
n; = % e + 3x, & + e (3.62)
— Baf, = M owm | dw | u
Therefore cosf = np+nz = 3X; 0%, T ox, T X, (3.63)
or, neglecting the product term: which is of higher order,
— Ous | dus
cosf = 3X3 + aXz = 2l23 (364)

Furthermore, taking the change in the right angle between the elements as Yoz = /24,
and remembering that for the linear theory Y5 18 very small, it follows that

Yo = Sy, = sin(a/2—6) = cos§ = 21, (8.65)

Therefore the off-diagonal terms of the linear strain tensor represent one-half the angle
change between two line elements originally at right angles to one another. These strain
components are called shearing strains, and because of the factor 2 in (3.65) these tensor
components are equal to one-half the familiar “engineering” shearing strains.

A development, essentially paralleling the one just presented for the interpretation of
the components of l;, may also be made for the linear Eulerian strain tensor ;- The
essential difference in the derivations rests in the choice of line elements, which in the
Eulerian description must be those that lie along the coordinate axes after deformation.
The diagonal terms of ¢; are the normal strains, and the off-diagonal terms the shearing
strains. For those deformations in which the assumption L, = e; 18 valid, no distinction
is made between the Eulerian and Lagrangian interpretations.

3.10 STRETCH RATIO. FINITE STRAIN INTERPRETATION

An important measure of the extensional strain of a differential line element is the
ratio dz/dX, known as the stretch or stretch ratio. This quantity may be defined at either
the point P, in the undeformed configuration or at the point P in the deformed configuration.
Thus from (3.34) the squared stretch at point P, for the line element along the unit vector
m = dX/dX, is given by
<dx>2 2 . adX; dX] 2 A

X )r, = Agp, = GijzX—dX or Agpy = m*G-m (3.66)

Similarly, from (3.30) the reciprocal of the squared stretch for the line element at P along
the unit vector n = dx/dx is given by
<dX>2 _ 1 = C dzx; d.%'j 1 A

ikl = i — or = h-C+'n 3.67
dz /» Xon Tdx dx A2a (3.67)

For an element originally along the local X, axis shown in Fig. 3-4, m=¢, and
therefore dX./dX = dX,/dX =0, dX./dX =1 so that (3.66) yields for such an element

2

Aoy = Gas = 1+ 2Lo» (3.68)

2
A
(e3)*

Similar results may be determined for Afsl) and A
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For an element parallel to the x, axis after deformation, (3.67) yields the result

1
A2

(eg)

= 1 — 2Ex» (8.69)

with similar expressions for the quantities 1//\f31) and 1//\(2g3) . In general, A, is not equal

to Ay,, since the element originally along the X, axis will not likely lie along the . axis
after deformation.

The stretch ratio provides a basis for interpretation of the finite strain tensors. Thus
the change of length per unit of original length is

de —dX dx
d—X = d_)( -1 = Ady — 1 (370)

and for the element Po@Qo along the X. axis (of Fig. 38-4), the unit extension is therefore

Loy = Ay, —1 = V1+2Ly—1 (3.71)

This result may also be derived directly from (3.36). For small deformation theory, (3.71)
reduces to (3.60). Also, the unit extensions L, and L, are given by analogous equations
in terms of Li; and Ls; respectively.

For the two differential line elements shown in Fig. 3-5, the change in angle y,, = =/2 -6
is given in terms of A, and A3, by

2L23 . 2L23
A Ay V1+ 2L \/1+2L3s

sin y,, (3.72)

When deformations are small, (3.72) reduces to (3.65).

3.11 STRETCH TENSORS. ROTATION TENSOR

The so-called polar decomposition of an arbitrary, nonsingular, second-order tensor is
given by the product of a positive symmetric second-order tensor with an orthogonal second-
order tensor. When such a multiplicative decomposition is applied to the deformation
gradient F, the result may be written

Fy = 9 _ Ry Sk; = TuRy; or F = RS = T-R (3.73)
aX; ‘
in which R is the orthogonal rotation tensor, and S and T are positive symmetric tensors
known as the right stretch tensor and left stretch tensor respectively.

The interpretation of (3.73) is provided through the relationship dux; = (dx:/6X;) dX;
given by (3.33). Inserting the inner products of (3.73) into (3.33) results in the equations

dz; = RuSkjdX; = TuRr;dX; or dx = R:S$-dX = T-R-dX (3.74)

From these expressions the deformation of dX; into dz: as illustrated in Fig. 3-2 may be
given either of two physical interpretations. In the first form of the right hand side of
(8.74), the deformation consists of a sequential stretching (by §) and rotation to be followed
by a rigid body displacement to the point P. In the second form, a rigid body translation
to P is followed by a rotation and finally the stretching (by T). The translation, of course,
does not alter the vector components relative to the axes X; and x..
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3.12 TRANSFORMATION PROPERTIES OF STRAIN TENSORS

The various strain tensors L, Ej;, Ii; and € defined respectively by (3.37), (3.39), (3.42)
and (3.43) are all second-order Cartesian tensors as indicated by the two free indices in
each. Accordingly for a set of rotated axes X having the transformation matrix [by] with
respect to the set of local unprimed axes X; at point P, as shown in Fig. 3- 6(a), the com-
ponents of Lj; and 1 are given by

szj = bipbjeLypq or lc = B+Ls* B, (3.75)
and li = bipbialpg or L = B-'L'B, (3.76)

(a) (%)
Fig. 3-6

Likewise, for the rotated axes z{ having the transformation matrix [ay] in Fig. 3-6(b),
the components of E; and e}; are given by

E,=aaFE o Ei=A'EA (8.77)
and ¢ = Q0. or FE = A-E-A. (3.78)

By analogy with the stress quadric described in Section 2.9, page 50, the Lagrangian
and Eulerian linear strain quadrics may be given with reference to local Cartesian coor-
dinates 5, and {, at the points P, and P respectively as shown in Fig. 3-7. Thus the
equation of the Lagrangian strain quadric is given by

lij'l]inj = *+h? or n'leny = x£h2 (3.79)

78

No §‘2

| T)l wi

Xy,

Fig. 3-7
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and the equation of the Eulerian strain quadric is given by
;¢ = 9 or  {-E+f = xg? (3.80)
Two important properties of the Lagrangian {Eulerian} linear strain quadric are:

1. The normal strain with respect to the original {final} length of a line element is
inversely proportional to the distance squared from the origin of the quadric P,
{P} to a point on its surface.

2. The relative displacement of the neighboring particle located at Qo {Q) per unit
original {final} length is parallel to the normal of the quadric surface at the point
of intersection with the line through P,Q, {PQ}.

Additional insight into the nature of local deformations in the neighborhood of P, is
provided by defining the strain ellipsoid at that point. Thus for the undeformed continuum,
the equation of the bounding surface of an infinitesimal sphere of radius R is given in
terms of local material coordinates by (3.28) as

(dX)* = 8;dX;dX; = R? or (dX)® = dX-1-dX = R? (8.81)
After deformation, the equation of the surface of the same material particles is given by
3.30 -
(8.30) as (dX)? = Cydaidz; = B2 or (dX)* = dx-C-dx = R? (3.82)

which describes an ellipsoid, known as the material strain ellipsotd. Therefore a spherical
volume of the continuum in the undeformed state is changed into an ellipsoid at P, by the
deformation. By comparison, an infinitesimal spherical volume at P in the deformed
continuum began as an ellipsoidal volume element in the undeformed state. For a sphere
of radius r at P, the equations for these surfaces in terms of local coordinates are given
by (3.32) for the sphere as

(dz)* = dydwide; = 2 or (de)? = dx-l-dx = 72 (3.83)
and by (3.34) for the ellipsoid as
(dz)* = GydXidX; = 72 or (da)® = dX+G+dX = 7 (3.84)

The ellipsoid of (3.84) is called the spatial strain ellipsoid. Such strain ellipsoids as
described here are frequently known as Cauchy strain ellipsoids.

3.13 PRINCIPAL STRAINS. STRAIN INVARIANTS. CUBICAL DILATATION

The Lagrangian and Eulerian linear strain tensors are symmetric second-order Cartesian
tensors, and accordingly the determination of their principal directions and principal
strain values follows the standard development presented in Section 1.19, page 20.
Physically, a principal direction of the strain tensor is one for which the orientation of an
element at a given point is not altered by a pure strain deformation. The principal strain
value is simply the unit relative displacement (normal strain) that occurs in the principal
direction.

For the Lagrangian strain tensor l;, the unit relative displacement vector is given by
(3.47), which may be written

du; du . A
CW = (lij + Wij)vj or d_f = (l. + W) v (385)
Calling lE'A" the normal strain in the direction of the unit vector n;, (8.85) yields for pure

strain (W;; = 0) the relation .
™ =1Lm or 1™ =1-ha (3.86)
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If the direction n: is a principal direction with a principal strain value I, then
I = ln = lsgn; or I = I = N-A (3.87)
Equating the right-hand sides of (3.86) and (3.87) leads to the relationship
(Li—8lm; = 0 or (L—MU):A =0 (3.88)

which together with the condition #m: =1 on the unit vectors n; provide the necessary
equations for determining the principal strain value ! and its direction cosines n;. Nontrivial
solutions of (3.88) exist if and only if the determinant of coefficients vanishes. Therefore

li—8l =0 or |L—N =0 (3.89)

which upon expansion yields the characteristic equation of l;;, the cubic
B-LP2+ILI-IIL, =0 (3.90)
where I = s = trL, IL = 3(al;—Lily),  IIILL = |l = detl (3.91)

are the first, second and third Lagrangian strain invariants respectively. The roots of
(8.90) are the principal strain values denoted by Ly, L) and las).

The first invariant of the Lagrangian strain tensor may be expressed in terms of the
principal strains as
L =L = lo+le+les (8.92)
and has an important physical interpretation. To see this, consider a differential rec-
tangular parallelepiped whose edges are parallel to the principal strain directions as
shown in Fig. 3-8. The change in volume per unit original volume of this element is called
the cubical dilatation and is given by

AV, dXi(1 + L) dXs(1 + L)) dXs(1 + Lip) — dX:1dX2dXs

D, = = (3.93)
Vo dX,dX,dX;
For small strain theory, the first-order approximation of this ratio is the sum
Do = Iy +le + 1l = L (3.94)
M Xy

Fig. 3-8
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With regard to the Eulerian strain tensor ¢; and its associated unit relative displacement
vector e(“) the principal directions and pr1nc1pa1 strain values ¢, ¢, ¢,, are determined

in exactly the same way as their Lagrangian counterparts. The Eulerian strain invariants
may be expressed in terms of the principal strains as

Ie = ey T T e,
I = €nee T e T e e (3.95)
Il = ¢, €2) €3)

The cubical dilatation for the Eulerian description is given by

AVIV. = D = ¢, + €oy T € (3.96)

1)

3.14 SPHERICAL AND DEVIATOR STRAIN TENSORS

The Lagrangian and Eulerian linear strain tensors may each be split into a spherical
and deviator tensor in the same manner in which the stress tensor decomposition was
carried out in Chapter 2. As before, if Lagrangian and Eulerian deviator tensor com-
ponents are denoted by di; and e;; respectively, the resolution expressions are

l I(trL)
L =d;+8,5 or L=L+ (3 (3.97)
and 6 = eyt or E=Ept '(t?f E) (3.98)

The deviator tensors are associated with shear deformation for which the cubical dilatation
vanishes. Therefore it is not surprising that the first invariants di; and e; of the deviator
strain tensors are identically zero.

3.15 PLANE STRAIN. MOHR’S CIRCLES FOR STRAIN

When one and only one of the principal strains at a point in a continuum is zero, a
state of plane strain is said to exist at that point. In the Eulerian description (the
Lagrangian description follows exactly the same pattern), if x; is taken as the direction
of the zero principal strain, a state of plane strain parallel to the z;x> plane exists and the
linear strain tensor is given by

€1 €12 0 €1 € 0
€ = €19 €99 0 or [eij] = €9 €y 0 (3.99)
0 0 0 0 0 0

When z; and z. are also principal directions, the strain tensor has the form

¢y, 0 0 ¢y 0 O
€ = 0 €9 0 or [cij] = 0 €9 0 (3.100)
0 0 0 0 0 0

In many books on “Strength of Materials” and “Elasticity’”’, plane strain is referred
to as plane deformation since the deformation field is identical in all planes perpendicular
to the direction of the zero principal strain. For plane strain perpendicular to the x; axis,
the displacement vector may be taken as a function of z; and z. only. The appropriate
displacement components for this case of plane strain are designated by
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U = us(x1, 22)
Uz = Us(T1, X2) (8.101)

us = C (a constant, usually taken as zero)

Inserting these expressions into the definition of «; given by (3.43) produces the plane
strain tensor in the same form shown in (3.99).

A graphical description of the state of strain at a point is provided by the Mohr’s
circles for strain in a manner exactly like that presented in Chapter 2 for the Mohr's circles
for stress. For this purpose the strain tensor is often displayed in the form

1 %712 5713
& = | e e Yy (8.102)
371 %7’23 €33

Here the i (with 7 - j) are the so-called “engineering” shear strain components, which are
twice the tensorial shear strain components.

The state of strain at an unloaded point on the v/2
bounding surface of a continuum body is locally . D
plane strain. Frequently in experimental studies
involving strain measurements at such a surface
point, Mohr’s strain circles are useful for reporting
the observed data. Usually three normal strains are
measured at the given point by means of a strain
rosette, and the Mohr’s circles diagram constructed
from these. Corresponding to the plane stress
Mohr’s circles, a typical case of plane strain diagram
is shown in Fig. 3-9. The principal normal strains

€111 €11 €1

are labeled as such in the diagram, and the maxi- E
mum shear strain values are represented by points
D and E. Fig. 3-9

3.16 COMPATIBILITY EQUATIONS FOR LINEAR STRAINS

If the strain components ¢; are given explicitly as functions of the coordinates, the six
independent equations (3.43)
_ (o o
T 2\9r; | o

may be viewed as a system of six partial differential equations for determining the three
displacement components w. The system is over-determined and will not, in general,
possess a solution for an arbitrary choice of the strain components ;. Therefore if the
displacement components u; are to be single-valued and continuous, some conditions must
be imposed upon the strain components. The necessary and sufficient conditions for such
a displacement field are expressed by the equations

Poy | Pan T Fem  _ (3.108)
0Lk OLm 0%; 0%; 0x; 0Tm oxi 0%k

There are eighty-one equations in all in (3.103) but only six are distinct. These six written
in explicit and symbolic form appear as
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1 62‘11 82522 — 62‘12
T 94 0} 0x1 022
5 62622 62633 _ 32623
T oal 0x3 02 023
3 82‘33 62‘11 — 62‘31
© o ox; 03 021
) or V,XEXVY, =0 (3104)
g (% O L) _ P
0x1 dr1 odxe O0xs 0%2 023
9 <6_ O Gy Py
82 \0%1 dxs 3 T X301y
3 (S "’_> = T
0xs \ 921 0xs 03 T am 0%

Compatibility equations in terms of the Lagrangian linear strain tensor l; may also be
written down by an obvious correspondence to the Eulerian form given above. For plane
strain parallel to the x.x, plane, the six equations in (8.104) reduce to the single equation

82511 62522 62612

= 2 r X E X =0 3.105
oxs oxs P Vx Vx ( )

where E is of the form given by (3.99).

Solved Problems

DISPLACEMENT AND DEFORMATION (Sec. 8.1-3.5)

3.1. With respect to superposed material axes X; and spatial axes w:;, the displacement
field of a continuum body is given by 1= X1, 22 = X2+ AXs, 3= X;+AX, where
A is a constant. Determine the displacement vector components in both the material
and spatial forms.

From (3.18) directly, the displacement components in material form are u; = ;—X, =0,
Uy = 2y — Xy = AX;, uy3 = w3— X3 =AX,. Inverting the given displacement relations to obtain
X, =w, X,=(xy—Axg)/(1 —A?), X3= (v3— Ax,)/(1— A2, the spatial components of u are
Uy = 0, Uy = A(xa —AxQ)/(l - A2), Ug = A(xz—Axg)/(l _A2).

From these results it is noted that the originally straight line of material particles expressed
by X, =0, X,+X3=1/(1+A) occupies the location ®; =0, x,+x; =1 after displacement.
Likewise the particle line X; =0, X, =X, becomes after displacement x, = 0, 2, = x5 (Inter-
pret the physical meaning of this.)

3.2. For the displacement field of Problem 3.1 determine the displaced location of the
material particles which originally comprise (a) the plane circular surface X; =0,

X:+ X35 =1/(1— A?, (b) the infinitesimal cube with edges along the coordinate axes

of length dX;=dX. Sketch the displaced configurations for (a) and (b) if A = 4.

(a) By the direct substitutions X, = (x, — Ax3)/(1 — A2) and X3 = (x3— Ax,)/(1 — A2), the circular
surface becomes the elliptical surface (1+ A2)x; — 4Azyxy + (1+A2x2 = (1—A2). For

A =}, this is bounded by the ellipse 5x§ — 8xoxg + 5m§ = 3 which when referred to its

principal axes ] (at 45° with x;, i = 2, 3) has the equation 32 + 923 = 3. Fig. 3-10 below
shows this displacement pattern.
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Xi4+X5=4/3

Fig. 3-10

Fig. 3-11

[CHAP. 3

() From Problem 3.1, the displacements of the edges of the cube are readily calculated. For the

edge X; =Xy, X, = X3 =0, uy = uy = tz = 0.

For the edge X; = 0 = X,, X5 = X,

uy = us = 0, uy = AX; and the particles on this edge are displaced in the X, direction propor-

tionally to their distance from the origin. For the edge X;=X3=10, X, = X,,
us = AX,. The initial and displaced positions of the cube are shown in Fig. 3-11.

Uy = uy =0,

For superposed material and spatial axes, the displacement vector of a body is given
by u = 4X38 + X.X3¢; + X:X3&. Determine the displaced location of the particle

originally at (1,0, 2).

The original position vector of the particle is X = e, +28¢,.
and since x = X +u, its final position vector is x = 5€, + 6¢,.

With respect to rectangular Cartesian ma-
terial coordinates X;, a displacement field is
given by U, = —AX2X3, U, = AX1X3, Us=0
where A is a constant. Determine the dis-
placement components for cylindrical spatial
coordinates z; if the two systems have a com-
mon origin.

From the geometry of the axes (Fig. 3-12) the

transformation tensor a,x = €, Iy is

cosxy, sinw, 0

apyg = | —sinzy cosxzy O

0 0 1
and from the inverse form of (3.9) u, = a,xUg. Thus
since Cartesian and cylindrical coordinates are related

through the equations X; = x; cos x;, X, = % sinx,,
X3 = z3, equation (3.9) gives

Uy = (—cos2)AX, X3 + (sinwp)AX, X,

Its displacement is u = 4€, +4%€;

Fig. 3-12

= (—cos xy)Axzx, sin zy + (sin xy)Axsx, cosxy = 0

uy = (sin 2)AX,X5 + (cos 29)AX X5

= (sin? xg)Ax %3 + (cos? w)Axxy = Azyxg

ug = 0

This displacement is that of a circular shaft in torsion.
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3.5. The Lagrangian description of a deformation is given by z; = X, + Xa(e?2— 1),
22 = Xo + X3(e®>—e72), x3=e>X3 where ¢ is a constant. Show that the Jacobian
J does not vanish and determine the Eulerian equations describing this motion.

1 0 (e2—1)
From (3.16), J = [0 1 (e2—e"2)| = e = 0.
0 0 (e2)

Inverting the equations, X; =, +a3e72—1), X, = xy+x3(e™¢—1), Xg= e 2,

3.6. A displacement field is given by u = X, X7&; + X1X:& + X:X3€;. Determine inde-
pendently the material deformation gradient F and the material displacement gradient
J and verify (3.24), J=F—1L

From the given displacement vector u, J is found to be

X3 0 2XX,
= |2x,Xx, X2 0

0  2X,X; X3

ou;
X

Since x =u+X, the displacement field may also be described by equations % = X1(1+X§),
xy = Xy(1+ X3), %3 = X3(1+ X;) from which F is readily found to be

1+X5 0 2X,X,
dx;/0X; = 2X,X, 1+X: 0
0 2X,X; 1+X;

Direct substitution of the calculated tensors F and J into (8.24) verifies that the equation is satisfied.

3.7. A continuum body undergoes the displacement u = (8X:—4Xs5)8: + (2X:— X3)&: +
(4X>— X:)&. Determine the displaced position of the vector joining particles A(1,0,3)
and B(3, 6, 6), assuming superposed material and spatial axes.

From (3.18), the spatial coordinates for this displacement are 2 = X, +3X, —4X;, 2z, = 2X,+
X, —X;, 23=-X;+4X,+ X; Thus the displaced position of particle A is given by z, = —11,
@y =—1, 23 =2; and of particle B, x; = —8, x, =6, x; = 27. Therefore the displaced position
of the vector joining A and B may be written V = 8¢, + 732 + 2583.

3.8. For the displacement field of Problem 3.7 determine the displaced position of the
position vector of particle C(2,6,3) which is parallel to the vector joining particles
A and B. Show that the two vectors remain parallel after deformation.

By the analysis of Problem 3.7 the position vector of C becomes U = 8%, + 7€, + 25 €; which
is clearly parallel to V. This is an example of so-called homvgeneous deformation.

3.9. The general formulation of homogeneous deformation is given by the displacement
field % = A;X; where the A;; are constants' or at most functions of time. Show that
this deformation is such that (a) plane sections remain plane, (b) straight lines
remain straight.

(a) From (3.13), # = Xit+uw = Xi+ AX; = 55+ ApX;

(¥
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According to (3.16) the inverse equations X; = (8;+ B;)x; exist provided the determinant
|8;; + Aj;| does not vanish. Assuming this is the case, the material plane g, X;+a = 0 becomes
Bi(8;;+ Bij)x; + « = 0 which may be written in standard form as the plane N+ =0
where the coefficients A; = B,(8;; + B;;).

(b) A straight line may be considered as the intersection of two planes. In the deformed geometry,
planes remain plane as proven and hence the intersection of two planes remains a straight line.

An infinitesimal homogeneous deformation wu; = A;X; is one for which the coeffi-
cients 4;; are so small that their products may be neglected in comparison to the
coefficients themselves. Show that the total deformation resulting from two suc-
cessive infinitesimal homogeneous deformations may be considered as the sum of the
two individual deformations, and that the order of applying the displacements does
not alter the final configuration.

Let «; = (8;;+4;)X; and x] = (8;;+ B;j®; be successive infinitesimal homogeneous displace-
ments. Then ] = (8;+ By)(8y, + 40Xy, = (8y + By + Ay + BijA ;)X Neglecting the higher
order product terms Bj;A, this becomes x] = (§y + By, + A;) X, = (85 + Ci)X), which represents
the infinitesimal homogeneous deformation

w = w —X; = CpXy = By +AwX = A+ Bup)X = u+uf

DEFORMATION AND STRAIN TENSORS (Sec. 3.6-3.9)
3.11. A continuum body undergoes the deformation z; = X;, 22 = Xo+A4X;, 25=X;+A4X>

3.12.

where A is a constant., Compute the deformation tensor G and use this to determine
the Lagrangian finite strain tensor Lg.

From (3.85), 6 =F.*F and by (3.20) F is given in matrix form as

1 0 0 1 0 0
[6x/0X;] = (0 1 A so that [G;] = [0 1+A4%2 24
0 A 1 0 24 1+ A2
0 0 0
Therefore from (3.37), L; = He—1n = % 0 A2 24
0 24 A2

For the displacement field of Problem 3.11 calculate
the squared length (dx)? of the edges OA and OB, X3
and the diagonal OC after deformation for the

small rectangle shown in Fig. 3-13. B X,

Using 6 as determined in Problem 3.11 in (3.84), the X,
squared length of the diagonal OC is given in matrix o)
form by A X,

10 0 0
[0, dX,, dX,)| 0 1+A2 24 X,
0 24 1+A42||dx,

(dx)?

Il

Fig. 3-13
= (1+A)AX,)? + 44dX,dXy + (1+ A2)(dX,)?

Similarly for OA, (dx)? = (1 + A2)(dX,)? and for OB, (dx)® = 1+ A2)(dX,)2.



CHAP. 3] DEFORMATION AND STRAIN 97

3.13. Calculate the change in squared length of the line elements of Problem 3.12 and check
the result by use of (3.36) and the strain tensor Ls found in Problem 3.11.

Directly from the results of Problem 8.12, the changes are:
(@) for OC, (dx)2 — (dX)2 = (1+ A2)(dX5+dX2) + 44 dX,dX, — (dX; + dX3)
= AdX5+dX;) + 44 dX,dX,

(b) for OB, (da)® — (dX)2 = (1+A2)dX; — dX; = A2dX;

(¢) for OA, (dz)2 — (dX)2 = (1+A2dX; — dX; = A2dX:.
By equation (3.36), for OC
0 0 0 0
(dw)2 — (dX)2 = [0,dX, dX3)| 0 A2 24 || dX, | = AXdX; + dX3) + 44 dX,dX,
0 24 A?|| dx,

The changes for OA and OB may also be confirmed in the same way.

3.14. For the displacement field of Problem 3.11 calculate the material displacement
gradient J and use this tensor to determine the Lagrangian finite strain tensor L.
Compare with result of Problem 3.11.

From Problem 3.11 the displacement vector components are u; =0, uy, = AX3 u3= AX, so

that
0 0 0 0 0 0
] = 0 0 A and J.1 = 0 A2 0
0 A 0 0 0 A2
Thus from (3.40)
0 0 0 0 0 0 0 0 0 0 0 0
20 = [0 0 A + [0 0 A] + [0 A2 0 = | 0 Az 24
0 A 0 0 A 0 0 0 A2 0 24 A2

the identical result obtained in Problem 3.11.

3.15. A displacement field is given by 21 = X1+ AX,, 22 = Xo+AX;, 23= X3+ AX, where
A is a constant. Calculate the Lagrangian linear strain tensor L and the Eulerian
linear strain tensor E. Compare L and E for the case when A is very small.

From (3.42), ;
0 A 0 0 0 A 0 A A
2L = (J+J) = |0 0 A| + 1A 0 0] = | A 0 A4
A 0 0 0 4 0 A A 0
Inverting the displacement equations gives
wy = A(A%; +ay— Auag)/(1+A3), uy = A(—Aw; + A2z, + x3)/(1 + A3),

ug = A(xy— Axy+ A2zx5)/(1 + A3)
from which by (3.43)

A? 1 -A Az —A 1
A A
2E = (K+K;) = 1+ 4% —A A2 1 + 1+ A48 1 Az —A
1 -4 A2 —A 1 Az
242 1—-A 1—A
A
= e — 2 —
= ;holi-4 242 1-4

1—-4 1—-A 242

When A is very small, A2 and higher powers may be neglected with the result that E reduces to L.
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A displacement field is specified by u = X; X»&, + (X2 — X3)& + X7 X38;. Determine
the relative displacement vector du in the direction of the —X, axis at P(1,2,—1).
Determine the relative displacements ug, — ur for @Qu(1,1, 1), @1, 3/2, —1),
Qs(1,7/4,—-1) and Q4(1,15/8,—1) and compare their directions with the direction
of du.

For the given u, the displacement gradient § in matrix form is
2X,X, X2 0
[Bu/0X;] = 0 1 —2X,
0 2X,X, X2
so that from (3.46) at P in the —X, direction,

4 1 0 0 -1
[du) = o 1 2|l -1] = |21
0 —4 4 0 4
Next by direct calculation from w, wup = 2€,+€,—4¢ and ug, = €, — €. Thus
Ug, —Up = —e — e+ 3e; Likewise, ug, —up = (—& — &, + 3.5¢)/2, ug, —up = (—€, — & +

3.75€,)/4, ug, —up = (— € — €, + 3.875€;)/8. It is clear that as Q, approaches P the direction
of the relative displacement of the two particles approaches the limiting direction of du.

For the displacement field of Problem 3.16 determine the unit relative displacement
vector at P(1,2, —1) in the direction of Q(4,2, 8).

The unit vector at P in the direction of Q is % = 3¢,/5 + 4@,/5, so that from (3.47) and the
matrix of J as calculated in Problem 3.16,

4 1 ol 35 12/5
[du/dX] = |0 1 2| 0o | = | 85
0 —4 4| 45 16/5

Under the restriction of small deformation theory, L =E. Accordingly for a dis-
placement field given by u = (x1 — 23)2€; + (%2 + 22)2& — x12,€5, determine the linear
strain tensor, the linear rotation tensor and the rotation vector at the point P(0,2,-1).

Here the displacement gradient is given in matrix form by

2(zy — x3) 0 —2(xy — xg)
[ou/ox;] = 0 2wy + 23)  2(xy + x3)
—%q —x, 0
which at the point P becomes
2 0 -2
[dui/dw)), = 0 2 2
-2 0 0

Decomposing this matrix into its symmetric and antisymmetric components gives

2 0 —2 0O 0 0
la] + [wy] = 0 2 1] 410 0
-2 1 0 0 —1 0

Therefore from (3.56) the rotation vector «; has components wy = —1, wy=wg=0.
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3.19. For the displacement field of Problem 8.18 determine the change in length per unit
length (normal strain) in the direction of %= (8¢, —@:+4&:)/9 at point P(0,2,—-1).

From (3.59) and the strain tensor at P as computed in Problem 3.18, the normal strain at P in
the direction of ¥ is the matrix product

0 -2 8/9
ez()ll) = [8/9, —1/9, 4/9] 0 2 1 -1/9 = —6/81
-2 1 0 4/9

3.20. Show that the change in the right angle between two orthogonal unit vectors 3 and M
in the undeformed configuration is given by %-2L-% for small deformation theory.

Assuming small displacement gradients, the unit vectors in the deformed directions of 9 and M
are given by (8.47) as (¥ + %) and (& + J+%) respectively. (The student should check equations
(3.61) and (3.62) by this method.) Writing J+% in the equivalent form %+, and dotting the two
displaced unit vectors gives (as in (3.63)), cos 6 = sin (7/2:— 6) = sin You = Yow OF Yy = [P +P4]
[+ B =P RPN+ Jo*J+f. Here J ) is of higher order for small displacement
gradients and since ¥ L&, $+% =0 so that finally by (3.42), You =P 2L 0.

3.21. Use the results of Problem 3.20 to compute the change in the right angle between
v= (88 —€+48)/9 and &= (48,448 —78&)/9 at the point P(0,2,—1) for the dis-
placement field of Problem 3.18.

Since L =E for small deformation theory, the strain tensor ¢; = l;; and so at P

4 0 —4 4/9
You = [8/9,-1/9,4/9] 0 4 2 4/9 | = 318/81
-4 2 0 || -79

STRETCH AND ROTATION (Sec. 3.10-3.11)

3.22. For the shear deformation z; = X, 22 = Xo+ AX;,
23 = X3+AX, of Problem 8.11 show that the
stretch A, is unity (zero normal strain) for line
elements parallel to the X; axis. For the diagonal
directions OC and DB of the infinitesimal square
OBCD (Fig. 3-14), compute A, and check the
results by direct calculation from the displacement
field.

From (3.66) and the matrix of G as determined in
Problem 3.11, the squared stretch for m = 31 is Fig. 3-14

dL

10 0
= [1,0,0]| 0 1+42 24
0 24 1+A4A2

—

2
A
(ey)

A

o o
it
—

Likewise for OC, m = (€ +€)/V2 and so
1 0 0 0
Als, = [0,1V2,1V2)| 0 1+42 24 V2| = (1442
0 24 1+A2 | 1/V/2
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From the displacement equations the deformed location of C is 2, = 0, =z, = dL + AdL,
23 = dL+ AdL. Thus (dx)2 = 2(1 + 4)2(dL)? and since dX = \/EdL, the squared stretch (dz/dX)2
is (1 + A)2 as calculated from (3.66).

Similarly, for DB, = (—&,+8)/V2 and so Alp, = (1—A)

The stretch ratios A, and 1, are equal only if n is the deformed direction of fn.
For the displacement field of Problem 3.22, calculate A, for h = (& +63)/\/§ and
show that it agrees with A (213) for the diagonal OC in Problem 3.22.
Inverting the displacement equations of Problem 3.22 one obtains
X, = m, Xy = (wp—Axg)/(1-A2%), X3 = (x3—Awxy)/(1—A?)

from which the Cauchy deformation tensor € may be computed. Then using (3.67),

1 0 0 0
Kzl = [0,1/V2,1/V2]] 0 (1+A2/(1—A22 —24/(1— A2)2 V2 | = 11— 41— A2
(n) 0 —24/(1—A22 (1+A%/1—A22 || 1/V/2

Thus }‘fﬁ) = (1—A?2/(1—-A)2 = (1+ A)2 which is identical with A(zﬁ) calculated for OC. The
diagonal element OC does not change direction under the given shear deformation.

By a polar decomposition of the deformation gradient F for the shear deformation
21=X1, 22=Xo+AXs, 23 = X3+ AX,, determine the right stretch tensor § together
with the rotation tensor R. Show that the principal values of § are the stretch ratios
of the diagonals OC and DB determined in Problem 3.22.

In the polar decomposition of F, the stretch tensor § =V6; and from (3.73), R=Fs"1. By

1 0 0
(8.85), G=F,*F or here [Gy] = |0 1+ A2 24 . The principal axes of G are given by
0 24 1+ A2 1 0 0
a 45° rotation about X; with the tensor in principal form [GZ] =10 (1—A)y2 0
0 0 1+ A)2
1 0 0 1 0 0
Therefore [S;] = [VG§] = |0 (1—4) 0 = |0 Aps O
0 0 (1+4) | 0 0 Acocy

Relative to the coordinate axes X;, the decomposition is

1 00 1 0 0
(Fiyl = [RallSk] = 010 01 4
0 0 1 0 A 1
In this example the deformation gradient F is its own stretch tensor § and R =1I. This is the

result of the coincidence of the principal axes of L; and E4 for the given shear deformation.

An infinitesimal rigid body rotation is given by w1 = —CX:+ BX;, u,=CX,—AX;,
us = —BX: + AX, where A,B,C are very small constants. Show that the stretch
is zero (S = 1) if terms involving squares and products of the constants are neglected.
For this displacement,
1+ C2+ B2 —AB —AC
Gy = ~AB  14+A42+C*  —BC
—AC —BC 1+ A2+ B2
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Neglecting higher order terms, this becomes

1 0
[Gi]'] = 01
0 0

- o o
Il
R
&
k%]
&y

STRAIN TRANSFORMATIONS AND PRINCIPAL STRAINS (Sec. 3.12-3.14)

3.26. For the shear deformation z;= X1, %2 = X2 +V2Xs, 3= X:+1/2X: show that the
principal directions of Lg and Ea coincide as was asserted in Problem 3.24.

0 0 0
From (3.37), [Ly] = | 0 1 V2 | which for principal axes given by the transformation
0 V2 1
1 0 0 0 0 0
matrix [a;] = | 0 1/V/2 1/y/2 | becomes [Lf]] =10 1-V2 0
0 —1V2  1//2 0 0  1+y2
0 0 0
Likewise from (3.39), [E;] = |0 -1 V2 | which by the same transformation matrix [a;]
0 V2 -1
0 0 0
is converted into the principal-axes form [E’,";] = |0 -1 —\/—i 0 . The student should

verify these calculations. 0 0 14 \/5

3.27. Using the definition (3.37), show that the Lagrangian finite strain tensor L;; trans-
forms as a second order Cartesian tensor under the coordinate transformations
Xy = bjixj' and Xi’: binj.

dxy, 0x
By (3.37), L;; = %<5&:§{% — 6“> which by the stated transformation becomes

Pt 3(byiry) X Ibrl) 3K, da;
T 2\ X, 8X; 0X;, 0X; o
1 dx) oxf by, dx), ] B
fred 5 <bmibnj'5pq B‘AX_;‘n m - a—xaa—x] (smce bpkbqk = 8pq)
1/ ox] ox)
= bmibﬂ]' [E <8_X'%m ﬁ - S;nn = bmibnjL;nn

3.28. A certain homogeneous deformation field results in the finite strain tensor

1 3 -2
(L] = 3 1 —2 |. Determine the principal strains and their directions for this
-2 -2 6
deformation.

Being a symmetric second order Cartesian tensor, the principal strains are the roots of
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3.29.

3.30.

DEFORMATION AND STRAIN [CHAP. 38
1-L 3 —2
3 1-L -2 = L3 — 8Lz — 4L + 32 = 0
-2 -2 6—L
Thus L, = —2, Ly =2, Ly =8, The transformation matrix for principal directions is
V2 —-1V2 o
[a/ij] = 1/\/§ 1/\/§ 1/\/5

-1V/6 —1/V/6 2//6

For the homogeneous deformation 2 =1/8Xi, x:=2Xs, s =1/3Xs— X, determine
the material strain ellipsoid resulting from deformation of the spherical surface
X'+ X;+ X5 =1. Show that this ellipsoid has the form 22/A%, + 22/A%, + 22/AZ, = 1.

By (3.82), or alternatively by inverting the given displacement equations and substituting into
X;X; =1, the material strain ellipsoid is #% + x] + 22 + ,x; = 3. This equation is put into
the principal-axes form «3/3 + #3/6 + #2/2 = 1 by the transformation

1 0 0
a] = |0 12 1/V/2
0 —1/V2 11/2

From the deformation equations, the stretch tensor § =1/G is given (calculation is similar to
that in Problem 8.24) as

V3 0 0
5] = | o 33+l V8-3
2y/2 2V/2
V3—3 +V/3+3
vz 2v2 |
1 0 0
which by the transformation {a;] = 0 V32 —1/2 is put into the principal form
0 1/2 V3/2
V3 0 o0
51 = | o VB o
0 0 V2

with principal stretches AZ, = 3, ALy =6, A(23) = 2. Note also that the principal stretches may
be calculated directly from (3.66) using [a;;] above.

For the deformation of Problem 3.29, determine the spatial strain ellipsoid and show
that it is of the form A%, X; + A%, X £ A3 X3 = 1.
By (3.84) the sphere w;x; =1 resulted from the ellipsoid X+*6+X =1, or
3 0 0 X,
X, X5, X5) [ 0 5 —VB || Xo | = 3X? + 5X2 + 3X) — 2V/3X,X, = 1
0 —V3 3| X

This ellipsoid is put into the principal-axes form 3X§ + 6X§ + 2X§ =1 by the transformation

1 0 0

0 —1/2 V/3/2
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3.31.

3.32.

3.33.

Verify by direct expansion that the second invariant II, of the strain tensor may be
expressed by
b e

l21 l22

lll l13

l31 l33

l22 l23

II,

ls s

Expansion of the given determinants results in II, = l1lps + loolss + I35l — (l?g'*‘ l§3 +12).
In comparison, direct expansion of the second equation of (2.91) yields

Iy = 4+ e + L)l — (Uyily T bojla; + Igils))]
= [y + log + L)y + log + I3g) — (Lyglyy + Liplia + Lislys
+ loglyy + Loolys + laglos + lgilsy + I3alse + lsslss)]

= liloy + loglag + lgglyy — (55 + I35 + 13;)

For the finite homogeneous deformation given by w; = A;;X; where A;; are constants,
determine an expression for the change of volume per unit original volume. If the
A;; are very small, show that the result reduces to the cubical dilatation.

Consider a rectangular element of volume having original dimensions dX,, dX,, dX, along the
coordinate axes. For the given deformation, «; = (4;;+ §;;)X;. Thus by (3.33) the original volume
dV, becomes a skewed parallelepiped having edge lengths dx; = (4;(,y + 8iny)) X (ny, 7 = 1,2,3. From
(1.109) this deformed element has the volume dV = e(A;; + 8;1)(A 5 + 8jp)(A s + 83) dX; dX, dX,.
Then

dv dVy + AV AV
v, = Tav, 1+ av, = eii(As 8l (Ajg + 8j9)(Ars + 8is)
If the A;; are very small and their powers neglected,

AV/dVy = e (A;18508ks T 8114 08ks + 8i18j0A ks + 8118j98k3) — 1 = Ay + A + Ay,

For linear theory the cubical dilatation I; = du;/8X;, which for u; = 4;X; is l; = Ay + Agy+ Ass,

A linear (small strain) deformation is specified by u: = 421 — 22+ 3ws, U2 = 21 + Tixo,
us = —3%1 + 422 + 4x;. Determine the principal strains ¢, and the principal deviator
strains e ,, for this deformation.

Since ¢; is the symmetrical part of the displacement gradient du;/dx;, it is given here by

4 0 0 8 0 0
¢ = |0 7 2 or in principal-axes form by s’fj =10 4 0. Also, ¢;,/3=05 and so the
024 -1 0 O 003 3 0 0
strain deviator is e¢; = 0 2 2 | and its principal-axes form ¢; = [0 —1 0 |. Note
2 -1 ‘ 0o 0 -2

that €(m) — €(m) — Ekk/3'

PLANE STRAIN AND COMPATIBILITY (Sec.3.15-3.16)

3.34.

A 45° strain-rosette measures longitudinal strain along the P 'Y
axes shown in Fig. 3-15. At a point P, ¢, = 5 X 1074
e, = 4x1074, = 7X107*in/in. Determine the shear

€22 - 45°
strain ¢, at the point.

12

By (3.59), with % = (@1 +32)/\/§ as the unit vector in the ]
direction, Fig. 3-15
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5X10—4 €19 o[ 1/v/2

1/Vz, 11V/2, 0] 2 TX1074 0 || 12 | = 4x10-¢
0 0 0 0
12X 104 + 2¢,
Therefore ———— = = 4x 104 or €12 = —2 X104,

2

3.35. Construct the Mohr’s circles for the
case of plane strain

0 0 0
& = (0 5 3
0 v3 3

and determine the maximum shear
strain. Verify the result analytically.

€S

With the given state of strain referred
to the w; axes, the points B(ey, =5, €3 =1V3)
and D are established as the diameter of the
larger inner circle in Fig. 3-16. Since
€1y = 0 is a principal value for plane strain,
the other circles are drawn as shown.

A rotation of 30° about the x, axis
(equivalent to 60° in the Mohr's diagram)
results in the principal strain axes with the

principal strain tensor s*{]- given by Fig. 3-16
1 0 0 0 0o olf1 o 0 00 0
0 V32 w20 5 Val|lo V3 —12| = |o 6 o
0 -1/2 V32 {0 V3 3|0 1/2 V32 00 2

3

Lo

£31
Fig. 3-17 Fig. 3-18

Next a rotation of 45° about the «§ axis (90° in the Mohr diagram) results in the »/ axes and
the associated strain tensor ¢f; given by

Wz vz o]lo o o |[1v/zZ —1vV2 o 3 3 0
-1vV2 1vZ ollo 6 o || 1VZ V2 o] = 3 3 0
0 0 1/lo 0 2 0 0 1 0 0 2

the first two rows of which represent the state of strain specified by point F in Fig. 3-16. Note
that a rotation of —45° about «j would correspond to point E in Fig. 3-16.
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3.36.

The state of strain throughout a continuum is specified by
2 xh ws
2 2
€., = x5, X3 X
X123 x% 159

Are the compatibility equations for strain satisfied?

Substituting directly into (3.104), all equations are satisfied identically. The student should
carry out the details.

MISCELLANEOUS PROBLEMS

3.37.

3.38.

3.39.

Derive the indicial form of the Lagrangian finite strain tensor Ln of (3.40) from its
definition (3.37).

From (8.24), dx;/0X; = 8;;+ 0u;/0X;. Thus (3.37) may be written

1 ouy Ay,
Ly = 3 aki+m 5;:1“*'6_}(]_ _Bij]

Subes 4+ ouy 4 s Oy, ouy, duy,
kiSk; akig)_(; rigx, T 9x, 9, 8ij

DO |

ou; ou; Uy auk:l

) 9t 9%
- 2[an axX, | oxX, 0X,

1

A displacement field is defined by # = X1 — CX:+ BX;, 2, = CX; + X — AX;,
23 = —BX; + AX, + Xs. Show that this displacement represents a rigid body rotation
only if the constants A, B, C are very small. Determine the rotation vector w for the
infinitesimal rigid body rotation.

1 -C B
For the given displacements, F = C 1 -A and from (3.87),
—B A4 1
B2+(C2 —AB —AC
e = _12_ —AB  A2+C* —BC
—AC —BC A%+ B2

If products of the constants are neglected, this strain tensor is zero and the displacement reduces
to a rigid body rotation. From (3.50), the rotation vector is

31 32 A
w o= % a/X, /X, /X, = A% + B& + C&
—CX,+BX; CX,—AX; —BX,+AX,
For the rigid body rotation represented by wu; = 0.02X3 % = —0.03X5 u; =

—0.02X; + 0.03X,, determine the relative displacement of Q(3,0.1,4) with respect to
P(3,0,4).
From the displacement equations, ug = .08¢; —.12€, —.057€, and up = .08¢, —.12€, — .06%¢,,
Hence du = Ugyg— Up = —.00333. The same result is obtained by (3.51), with w = .03 31 -+ .0232:
CEECIC?
du = |.03 .02 0 = —.003%,
0 .1 0
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3.40. For a state of plane strain parallel to the xxs axes, determine expressions for the
normal strain ¢/, and the shear strain ¢;; when the primed and unprimed axes are
oriented as shown in Fig. 3-19.

By equation (3.59),
0 0 0

e52 = [0, cos g, sin 6] €7 €3 || cos @

o o o

€33 €33 sin ¢
€93 €052 0 + 2ey38iN6 cOSO + eg58in26

€50 + €33 €27 —
2 2

€33 .
€08 26 + ey3 sin 2¢

Similarly from (3.65) and Problem 3.20,

0 0 o0 0
€3 = [0,c086,5in6]| 0 ey €5 || —sine
0 ez €33 cos ¢
= e SiN6 cOSO + €3C0526 — €3 8iN20 - eqq SIN G COS O
22 23 23 33
€2 — €33
=  e3co820 — 5 sin 2¢
x:; X3 %3
] xé
8
xy T2
7.
£
/e
Fig. 3-19 Fig. 3-20

3.41. For a homogeneous deformation the small strain tensor is given by

0.01 —0.005 0
[¢] = |-—0.005 0.02 0.01
0 001 —0.03

What is the change in the 90° angle ADC depicted by the small tetrahedron OABC
in Fig. 3-20 if OA = OB = OC, and D is the midpoint of AB?

The unit vectors % and % at D are given by $ = (€, —,)/v/2 and 2 = (2€;—€,—¢,)/V/6. From
the result of Problem 3.20,
02 —o1 o |[-1/V6
Yw = V2, -1V2,01| —01 04 02| —1NV6| = —01//3
0 .02 —06 2/V6
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3.42.

3.43.

3.44.

3.45.

5 -1 —1

At a point the strain tensor is given by ¢ = |(—1 4 0| and in principal form
6 0 0 -1 0 4

by & = 0 4 0. Calculate the strain invariants for each of these tensors

0 0 3
and show their equivalence.
By (3.95) and Problem 331, Ip = 6+4+4 = 13, I« = 6+ 4+ 3 = 138. Likewise II;

19+19+16 = 54, Il = 24+ 18+ 12 = 54. Finally III; = 5(16) —4 —4 = 72, I,
(6)(4)(8) = 72. The student should check these calculations.

i

For the displacement field x1 = X1+ AX;, 22 = Xo— AX3, 23 = X3 — AX, + AX,,
determine the finite strain tensor Ls. Show that if A is very small the displacement
represents a rigid body rotation.

Since u; = AX3, uy = —AX; uz = —AX,+AX,, by (3.40),

0o 0 A 0 0 -4 A2 —A2 0 A2 —A2 0
2l = 0 0 -4 + 0 0 A + |42 A2 0 = —A2z A2 0
—-A A 0 A -4 0 0 0 242 0 0 242

If A is small so that A2 may be neglected, Lz = 0; and by (3.50) the rotation vector w = A@l + A@z.

Show that the displacement field u1 = Ax1+ 3x2, u2 = 8x1— Bx2, us =5 gives a state
of plane strain and determine the relationship between A and B for which the
deformation is ¢sochoric (constant volume deformation).

A 3 0
From the displacement equations, by (3.438), ¢ = | 3 —B 0 which is of the form of
0 0 0

(3.99). From (3.96), the cubical dilatation is D =¢; = A — B, which is zero if 4 = B.

A so-called delta-rosette for measuring longitudinal xy E2) x{
surface strains has the shape of the equilateral
triangle A and records normal strains e ,e/, e in 60°
the directions shown in Fig. 3-21. If ¢, =a, ¢, =D, 60°
e;; = ¢, determine ¢, and ¢, at the point. o

By (3.59) with L =E, for the x{ direction, Fig. 3-21

a ey 0 ][ 1/2]
[1/2,V3/2,0] | ez e O || V32| = b or 23y + 3y = 4b — a

0O 0 0 | L 0 |

Also for the xy direction
a 5 0] —1/27]

[1/2,V3/2,0] | ez ey O || V3/2

0 0 oL o |

or —2\/§e12 + 3¢y = 4¢c — a

1l
o

Solving simultaneously for ;5 and ey, yields e, = (b —¢)/V3 and ey = (—a + 2b+ 2¢)/3.
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3.46.

3.47.

3.48.

3.49.

3.50.

DEFORMATION AND STRAIN [CHAP. 3

Derive equation (3.72) expressing the change in angle between the coordinate direc-
tions X» and X3 under a finite deformation. Show that (8.72) reduces to (3.65) when
displacement gradients are small.

Let vy3 = #/2—6 be the angle change as shown in Fig. 8-5. Then sin yy3 = cos (#/2—6) =
ﬁz-ﬁs, or by (3.33) and (3.34)

sin y dx,  dxg dX,*F,*FedX,
23 —— =
|dao| |daxs| VidX, - 6+ dX, VdX, - 6+ dX,
Now dividing the numerator and denominator of this equation by [dX,| and |dX.| and using (3.85)
2 3 )
and (3.66) gives 5 on . on
. 5 3 X :
siny,s = _ 276 €
\/82'6‘@2 \/'63-6-@3 Ao Aén

Next from (3.97), €,+G c8; = €y CLg+1)+8; = &- 21+ €, + 32 o1 '33 = 2L,; since €,+€; = 0.
Also from (3.68), Ag,y = m, ete., and so
2Ly,
V1 + 2Ly V1 + 2L,
dua/9X g + dug/9X,y + (du/dX 5)(dus/ 60X 5)
V1 + 20uy/0X; + (3ui/0X,)(0u/0X5) V1 + 20u3/6X ;5 + (9ur/0X ) (9ur/ 0K 5)

Il

sin yo3

If 0u;/0X; <1 this reduces to sinyy,; = dus/6X;s + dug/dX, = 2lg.

For the simple shear displacement z; = X;, ;= X», 3= X +2X,/V/3, determine
the direction of the line element in the X»X; plane for which the normal strain is zero.

Let m = my €y + my€; be the unit normal in the direction of zero strain. Then from (3.66),
since A2(ﬁl) =1,

1 0 0 0
[0,my,mg]| 0 7/3 2//3 || my| = 1
0 2/V3 1 m3

or 7m§ + 4V/3 MoMmg + 3m§ = 3. Also mg + mg =1, and solving simultaneously m, = +v/3/2,
mg = ¥1/2, or my =0, my = 1. Thus there is zero strain along the X4 axis and for the element
at 60° to the X, axis.

The student should verify this result by using the relation m-* 2l m =0 derived from (3.36).

Supplementary Problems

For the shear displacement of Problem 3.47, determine the equation of the ellipse into which the

circle Xg +X§ =1 is deformed. Amns. xg +9x§ =3
Determine the shear angle y,; for the deformation of Problem 3.47 3
(Fig. 322).  Ans. yy3 = sin—12/\/7 Xa

Given the displacement field z; = X;+2X; x,= X,—2X,, xy =
X3—2X,+2X,, determine the Lagrangian and Eulerian finite strain
tensors Lg and E4.

2 -2 0 2 -2 0
Ans. g =|—-2 2 0|, E, = -2 2 0 )5'

0 0 4 0 0 4 Fig. 3-22
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3.51.

3.52.

3.53.

3.54.

3.55.

3.56.

3.57.

3.58.

3.59.

3.60.

3.61.

Determine the principal-axes form of the two tensors of Problem 3.50.

4 0 0 49 0 0
Ans. Lz =0 0 o0, EAs=]0 o0 o
0 0 4 0 0 4/9

For the displacement field of Problem 8.50 determine the deformation gradient F, and by a polar
decomposition of F find the rotation tensor R and the right stretch tensor §.

2 1 2 2 -1 0 1 0 2
Ans.R:% 1 2-2, s={-1 2 0/, F=1 0 1 -9
2 2 1 0o 0 3 2 2 1

Show that the first invariant of L; may be written in terms of the principal stretches as

T = [(Af,e\l) —-1) + (A‘fgz) —1) + (Afga) —1))/2. Hint: See equation (3.68).

1 -8 2

The strain tensor at a point is given by g = | —8 1 —\/5 . Determine the normal strain
W2 V2 g

in the direction of % = €,/2 —€,/2 + €,/V/2 and the shear strain between $ and 2= -e/2+

/2 + &/V2. Ans. ep =6, v, = 0.

Determine the principal-axes form of ¢; given in Problem 8.54 and note that 3 and £ of that
problem are principal directions (hence 7v,, = 0).

6 0 0
Ans. e?j = 0 2 0
0 0 -2

Draw the Mohr’s circle for the state of strain given in Problem 3.54 and determine the maximum
shear strain value. Verify this result analytically. Ans. Ypax =4

Using ¢; of Problem 3.54 and e’{j given in Problem 38.55, calculate the three strain invariants from
each and compare the results. Ans. I =6, II; = —4, III, = —24.

For ¢; of Problem 3.54, determine the deviator tensor e;; and calculate its principal values.
-1 -3 2 4 0 0

Ans. e; = | =3 —1 =2 |, ¢ = [0 0 0
V2 V2 2 0 0 —4

A displacement field is given by u; = 3x1x§, Uy = 2a3%;, Uz = x% — %1%5. Determine the strain
tensor ¢; and check whether or not the compatibility conditions are satisfied.

3x§ 32 w0+ 03 —xy/2
Ans. ¢; = 32y + a3 0 x,/2 |, Yes.
—xy/2 x,/2 24

For a delta-strain-rosette the normal strains
are found to be those shown in Fig., 3-23.
Determine e, and ey, at the location.

Ans. ey =1X 1074, ¢, = —0.2885 X 10—4 oy =1X10-4

i = 15X 104

For the displacement field =z, = X, + AXj,,
29 = X,, 3= X3—AX,, calculate the vol-
ume change and show that it is zero if A
is a very small constant. Fig.3-23

60° 60°

g = 2X 104



Chapter 4

Motion and Flow

41 MOTION. FLOW. MATERIAL DERIVATIVE

Motion and flow are terms used to describe the instantaneous or continuing change in
configuration of a continuum. Flow sometimes carries the connotation of a motion leading
to a permanent deformation as, for example, in plasticity studies. In fluid flow, however,
the word denotes continuing motion. As indicated by (8.14) and (3.15), the motion
of a continuum may be expressed either in terms of material coordinates (Lagrangian
description) by '

X = ﬂ’/‘i(X1,X2,X3, t) = xi(X, t) or X = X(X, t) (4.1)
or by the inverse of these equations in terms of the spatial coordinates (Eulerian description)
as

X = X,-(xl,xz, X3, t) — Xg(x, t) or X = X(X, t) (42)
The necessary and sufficient condition for the inverse functions (4.2) to exist is that the
Jacobian determinant

J = |9xi/0X)| (4.3)

should not vanish. Physically, the Lagrangian description fixes attention on specific
particles of the continuum, whereas the Eulerian description concerns itself with a particu-
lar region of the space occupied by the continuum.

Since (4.1) and (4.2) are the inverses of one another, any physical property of the con-
tinuum that is expressed with respect to a specific particle (Lagrangian, or material descrip-
tion) may also be expressed with respect to the particular location in space occupied by the
particle (Eulerian, or spatial description). For example, if the material description of the

density p is given by
p = pXit) or o= p(X,t) (4.4)

the spatial description is obtained by replacing X in this equation by the function given
in (4.2). Thus the spatial description of the density is

p = p(Xi(x,1),t) = p*(@i,t) or p = p(X(x,¢),1) = p*(x, 1) (4.5)

where the symbol p* is used here to emphasize that the functional form of the Eulerian
description is not necessarily the same as the Lagrangian form.

The time rate of change of any property of a continuum with respect to specific particles
of the moving continuum is called the material derivative of that property. The material
derivative (also known as the substantial, or comoving, or convective derivative) may be
thought of as the time rate of change that would be measured by an observer traveling
with the specific particles under study. The instantaneous position z: of a particle is itself
a property of the particle. The material derivative of the particle’s position is the instan-
taneous velocity of the particle. Therefore adopting the symbol d/dt or the superpositioned
dot (*) as representing the operation of material differentiation (some books use D/Dt), the
velocity vector is defined by

vi = do/dt = & or v = dx/dt = x (4.6)

110
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In general, if Py;. .. is any scalar, vector or tensor property of a continuum that may be
expressed as a point function of the coordinates, and if the Lagrangian description is

given by
Py = Py (X,17) (4.7)

the material derivative of the property is expressed by

dP;... _ Py . .(X1)
i - 5t (48)

oPy;. . (X, t)
at

X coordinates are held constant, i.e. the same particles are involved, in taking the derivative.

When the property P;;... is expressed by the spatial description in the form

The right-hand side of (4.8) is sometimes written [ ]x to emphasize that the

Pi... = Py (x1) (4-9)
the material derivative is given by

dPIJ(th) _ aPl](x)t) + aPl](xyt) %
dt o dt 0k dt

(4.10)

where the second term on the right arises because the specific particles are changing position
in space. The first term on the right of (4.10) gives the rate of change at a particular
location and is accordingly called the local rate of change. This term is sometimes written

oP;.. .(x,1)
[2P
on the right in (4.10) is called the convective rate of change since it expresses the contribu-
tion due to the motion of the particles in the variable field of the property.

} to emphasize that x is held constant in this differentiation. The second term

From (4.6), the material derivative (4.10) may be written

dPy.. (x,1) Py, . (x,1) aPi;. . (x,1)
dt - at + Vk axk (4.11)
which immediately suggests the introduction of the material derivative operator
d _ o, 2 4 _ o,
(ﬁ = a—t + ’U}ca or dt = at + v Vx (4.12)

which is used in taking the material derivatives of quantities expressed in spatial coordinates.

42 VELOCITY. ACCELERATION. INSTANTANEOUS VELOCITY FIELD

One definition of the velocity vector is given by (4.6) as v: = dxi/dt (or v =dx/dt). An
alternative definition of the same vector may be obtained from (3.11) which gives z: = u: + X
(or x = u+X). Thus the velocity may be defined by

_da _ du+ X)) _ dus _dx _ du+X) du

Vi =T at —oat YT @ T T at Tt

since X is independent of time. In (4.13), if the displacement is expressed in the Lagrangian
form w; = w(X,t), then

. duX ) oulX E) . duX ) ouX 1)
L Y| or VvV EuE g T T (4-14)

(4.13)




112 MOTION AND FLOW [CHAP. 4

If, on the other hand, the displacement is in the Eulerian form u; = u(x, t), then

vi(x, ) = ’I:Li(x, t) = du&(tx, t) — aui((;;, t) + wi(x, t)a_%%
or vix,t) = u(x,t) = dug;, ) = % + v(x,t) © V, u(x,t) (4.15)

In (4.15) the velocity is given implicitly since it appears as a factor of the second term on
the right. The function
vi = vi(x,t)  or v = v(x,t) (4.16)

is said to specify the instantaneous velocity field.

The material derivative of the velocity is the acceleration. If the velocity is given in
the Lagrangian form (4.14), then

_ . deX, ) oan(X, ) . _dvX ) av(X, 1)
@ = v = i = ot or a‘— v=—ug = 5 (4.17)
If the velocity is given in the Eulerian form (4.15), then
' _ dvix,t) dwnix, t) Ivi(x, )
a:(x, t) = T = T -+ Uk(x, t)a_xk—
or atet) = DD WD) 4 v, 1) v, vix, ) (4.18)

43 PATH LINES. STREAM LINES. STEADY MOTION

A path line is the curve or path followed by a particle during motion or flow. A
stream line is the curve whose tangent at any point is in the direction of the velocity at that
point. The motion of a continuum is termed steady motion if the velocity field is independent
of time so that 9v:/9t = 0. For steady motion, stream lines and path lines coincide.

44 RATE OF DEFORMATION. VORTICITY. NATURAL STRAIN INCREMENTS

The spatial gradient of the instantaneous velocity field defines the velocity gradient

tensor, 9vi/dz; (or Yiy). This tensor may be decomposed into its symmetric and skew-
symmetric parts according to

_ovi 1 {dv | ov; 1/ovi  dv)\ _ B
Y“ = axj = 2(ax3+ax1> + 2<ax] oz — DlJ + Vl]

or Y = 3(vV, +V, V) + $(vV, — vV, v) = (D+V) (4.19)

This decomposition is valid even if v; and dv:i/ox; are finite quantities. The symmetric tensor

= p. = L[ov 9 -1
D; = D; = 2<ax5 + axi> or D = §vv, +V,v) (4-20)

is called the rate of deformation tensor. Many other names are used for this tensor; among

them rate of strain, stretching, strain rate and velocity strain tensor. The skew-symmetric
tensor /s s
Vi (2 _
Vii = *V]'i = é (55; - 6:17]1> or vV = %(va - Vx V) (4-21)

is called the vorticity or spin tensor.
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The rate of deformation tensor is easily shown to be the material derivative of the
Eulerian linear strain tensor. Thus if in the equation

de; 1d [ou | ou; dE 1d
U - =% i owj e L a
dt T 24t <6xj * axi> or g T g WVt VW (4.22)

the differentiations with respect to the coordinates and time are interchanged, i.e. if

d <a—u‘> is replaced by 9 <dui> , the equation takes the form

dt ax; dox; \ dt
de;; 1/0v; | ov; dE
_H _— - ({X% hihet) — L. -2 — 1 =
dt 2 <ax,- + axi> DU or dt 2(va + Vx V) D (423)

By the same procedure the vorticity tensor may be shown to be equal to the material
derivative of the Eulerian linear rotation tensor. The result is expressed by the equation

do,; . .

dt — 2\9x; ox
A rather interesting interpretation may be attached to (4.23) when that equation is

rewritten in the form
dei]. = Di].dt or dE = Ddt (4.25)

The left hand side of (4.25) represents the components known as the natural strain incre-
ments, widely used in flow problems in the theory of plasticity (see Chapter 8).

45 PHYSICAL INTERPRETATION OF RATE OF DEFORMATION
AND VORTICITY TENSORS

In Fig. 4-1 the velocities of the neighboring
particles at points P and @ in a moving continuum
are given by v: and w; + dv; respectively. The
relative velocity of the particle at @ with respect
to the one at P is therefore

dv;, = g—;—':dxj or dv = vV, *dx (4.26)
J

in which the partial derivatives are to be evalu-
ated at P. 1In terms of D;; and Vi;, (4.26) becomes

dv; = (Dij + V) dx;

or dv = (D+V)-dx (4.27) Fig. 4-1

If the rate of deformation tensor is identically zero (D;; = 0),
dvi = Vida; or dv = V-dx (4.28)

and the motion in the neighborhood of P is a rigid body rotation. For this reason a velocity
field is said to be irrotational if the vorticity tensor vanishes everywhere within the field.

Associated with the vorticity tensor, the vector defined by
4 = €3V, or q = Ve XV (4.29)

is known as the wvorticity vector. The symbolic form of (4.29) shows that the vorticity
vector is the curl of the velocity field. The vector defined as one-half the vorticity vector,
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Q, = 39, = deyv,; or Q= dq = 4V, Xv (4.30)

is called the rate of rotation vector. For a rigid body rotation such as that described by
(4£.28), the relative velocity of a neighboring particle separated from P by dz: is given as

dv, = ¢;Q.dx, or dv = QXdx (4.81)

i k"7
The components of the rate of deformation tensor have the following physical interpreta-

tions. The diagonal elements of D;; are known as the siretching or rate of extension com-
ponents. Thus for pure deformation, from (4.27),

dv, = D,dz, or dv = D-dx (4.32)
and, since the rate of change of length of the line element dx: per unit instantaneous length
is given by o do, da, 4 )

d;" = az = Dige = D”vj or d  =D-'% (4-33)
the rate of deformation in the direction of the unit vector v, is
d =d"vy, =D,y or d=7%D% (4.84)

From (4.84), if v, is in the direction of a coordinate axis, say ez,
d = d22 or d = ez' D'ez = Dzz (4.35)

The off-diagonal elements of D;; are shear rates, being a measure of the rate of change
between directions at right angles (See Problem 4.18).

Since D;; is a symmetric, second-order tensor, the concepts of principal axes, principal
values, invariants, a rate of deformation quadric, and a rate of deformation deviator tensor
may be associated with it. Also, equations of compatibility for the components of the rate
of deformation tensor, analogous to those presented in Chapter 3 for the linear strain
tensors may be developed.

4.6 MATERIAL DERIVATIVES OF VOLUME, AREA AND LINE ELEMENTS

In the motion from some initial con-
figuration at time ¢=0 to the present 23, X3
configuration at time ¢, the continuum
particles which occupied the differential
volume element dV, in the initial state
now occupy the differential volume ele-
ment dV. If the initial volume element is
taken as the rectangular parallelepiped
shown in Fig. 4-2, then by (1.10)

dV = dX1@1 X dXz’éz-ng’éa
= dX:1dX.dX; (4.36)

Due to the motion, this parallelepiped is w2 X

moved and distorted, but because the

motion is assumed continuous the volume

element does not break up. In fact,

because of the relationship (3.33), dx:=

(9z:/8X;) dX; between the material and z, X,

spatial line elements, the “line of particles” Fig. 4-2
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that formed dX; now form the differential line segment dx{" = (62:/0X:)dX,. Similarly
dX: becomes dx;* = (9x:/0X2) dX: and dX; becomes dz:®” = (92:/3Xs)dXs. Therefore the
differential volume element dV is a skewed parallelepiped having edges dz{*, dz®, dz® and
a volume given by the box product

dV = dx® X dx® « dx® = . dx(l) dx(z) dxf) (4.87)
But (4.87) is seen to be equal to
dv = ¢ 0% 9% 9k 4x ix, dX: = Jdve (4.38)

“ik 90X, 60Xz 0X3
where J = |0x:/0X;| is the Jacobian defined by (4.3).

Using (4.88), it is now possible to obtain the material derivative of dV as

d d dJ
at (dV) = at (J dVo) = at dVe (4.39)

since dV, is time independent, so that (—ld? (dVo) = 0. The material derivative of the Jacobian
J may be shown to be (see Problem 4.28)

dJ _ 0v; r _ .
i Jaxi or J =Jy v (4.40)
and hence (4.39) may be put into the form
d av1 d
G @v) = dv or (V) = v -vdv (4.41)

For the initial configuration of a continuum, a differential element of area having the
magnitude dS° may be represented in terms of its unit normal vector n; by the expression
+ dS°n;.  For the current configuration of the continuum in motion, the particles initially
making up the area dS°n; now fill an area element represented by the vector dS#; or dS;. It
may be shown that X

dSi - (9 !

dX or dS = JdX-Xv, (4.42)

from which the material derivative of the element of area is

d 0X;

d _a avJ
a8 = & <J ox;

> X, g, (4.43)

;

The material derivative of the squared length of the differential line element da; may
be calculated as follows,

2 (@) = 2 (dmdz) = zd(sfi) da (h44)
However, since da; = (32:/0X;) dX;,
dt (o) = ;(;ﬁ;)d}(- = g%dX,- = g;’;giX’;dX,- = v da (445)
and (4.44) becomes
3 (@r) = 2 dmde or 4 da?) = 2dx-v,v-dx (4.46)

dt dt

The expression on the right-hand side in the indicial form of (4.46) is symmetric in ¢ and E,
and accordingly may be written

avi avk - a’l); a’vk
gx—k dar dx; + 9z dridzx, = <axk ailh) dx; dx (447)
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or, from (4.20),

2 () = 2Dydmdz,  or 2 (da?) = 2dx-D-dx (4.48)

4.7 MATERIAL DERIVATIVES OF VOLUME, SURFACE AND LINE INTEGRALS

Not all properties of a continuum may be defined for a specific particle as functions of
the coordinates such as those given by (4.7) and (4.9). Some properties are defined as
‘integrals over a finite portion of the continuum. In particular, let any scalar, vector or
tensor property be represented by the volume integral

f P, (x,t) dV (4-49)

where V is the volume that the considered part of the continuum occupies at time ¢. The
material derivative of Py . (t) is

dpe) = 2 P wpav (4.50)

and since the differentiation is with respect to a definite portion of the continuum (i.e. a
specific mass system), the operations of differentiation and integration may be interchanged.
Therefore

d * d
%j; Py . (x,t)dV = ‘I‘:%[Pz(x,t) dv] (4.51)
which, upon carrying out the differentiation and using (4.41), results in
d j‘ * _ f [dP?;...(x, t) | o 30y
i, Phomtav =[S0 4 Pl n gt } av (4.52)

Since the material derivative operator is given by (4.12) as d/dt = 8/8t + v, 8/0xp, (4.52)
may be put into the form

d P (x,t 3
ﬁj; Ph (x,)dV = j; [—%+E(Uppz...(){,t)):} av (4.58)

By using Gauss’ theorem (1.157), the second term of the right-hand integral of (4.58) may
be converted to a surface integral, and the material derivative then given by

d aP%. . (x,t
- fv Pi (x,t)dV = fv —%dV + _£ 0 [PY...(x, 1) 45, (4.54)

This equation states that the rate of increase of the property P;...(t) in that portion of the
continuum instantaneously occupying V is equal to the sum of the amount of the property
created within V plus the flux v,,[P?},,,(x, t)] through the bounding surface S of V.

The procedure for determining the material derivatives of surface and line integrals is
essentially the same as that used above for the volume integral. Thus for any tensorial
property of a continuum represented by the surface integral

Q... (t) = LQ?}...(x,t) ds, (4.55)

where S is the surface occupied by the considered part of the continuum at time ¢, then, as
before,

d % ’
aj; Q5. (x,t)dS, = _fs 2103, .(x,t) ds,) (4.56)



CHAP. 4] MOTION AND FLOW 117

and, from (4.43), the differentiation in (4.56) yields

El‘%ﬂ = L [im—d@ + 2—;’;;@2"]-...(:«,0] S, — L [Qﬁ...g%zdsp} (4.57)

For properties expressed in line integral form such as

Ry () = fc RS (x,t) da, (4.58)

the material derivative is given by

d d
%L Ry . (x,t)dz, = J;Et—[R?;W(x,t)dxp] (4.59)

Differentiating the right hand integral as indicated in (4.59), and making use of (4.45),
results in the material derivative

d

LiRe] = AR L9 O) gy o [ RS ()] d (4.60)

dt (o} axq

Solved Problems

Y

MATERIAL DERIVATIVES. VELOCITY. ACCELERATION (Sec. 4.1-4.3)

4.1.

4.2.

The spatial (Eulerian) description of a continuum motion is given by =z, = Xiet +
Xs(et—1), x2 = Xs(et—e™t) + X5, 3= Xs. Show that the Jacobian J does not vanish
for this motion and determine the material (Lagrangian) description by inverting the
displacement equations.

By (4.8) the Jacobian determinant is
et 0 et—1
J = |ox/oX;] = [0 1 et—et] = et
0 0 1

Inverting the motion equations, X; = zje~t 4+ a3(e~t—1), X, = a, — x3(et —e~t), X5 = ws.
Note that in each description when ¢ =10, z; = X,.

A continuum motion is expressed by z:=X:, 2= e{(Xz2+ X3)/2 + e YX,— X3)/2,
23 = eY(X2+ X3)/2 — e (X, — X;)/2. Determine the velocity components in both their
material and spatial forms.

From the second and third equations, X, + X3 = e~ t(z,+23) and X, — X3 = et(xy — x3).
Solving these simultaneously the inverse equatjons become X, = x;, X, = e Hux,+ x3)/2 +
et(xy — x3)/2, X3 = e t(xp+ x3)/2 — et(xy — x3)/2. Accordingly, the displacement components u; =
z; — X; may be written in either the Lagrangian form u; = 0, u, = (X, + X3)/2 + e~ (X, — X;)/2 —
Xy uz = ef(Xp+ X3)/2 — e~4(X;—~ X3)/2 — X3, or in the Eulerian form wu; = 0, u; = z, —
ez, + a3)/2 — et(wy — 23)/2, uz = 3 — e~ Hzy + 23)/2 + et(zy — 3)/2.

By (4.14), v; = du;/d9t = 8X;/0t and the velocity components in Lagrangian form are v, =0,
vy = eH(Xy + X3)/2 — e~ X, — X3)/2, vz = ef(X,+ X3)/2 + e~ (X, — X;3)/2. Using the relationships
Xo+ X3 = e txyt+x;) and X, — X3 = et(xy —x3) these components reduce to v, = 0, v, = x3,
V3 = Zg.
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4.3.

4.4.

4.5.

4.6.

4.7.
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Also, from (4.15), for the Eulerian case,
dug/dt = vy = e Yaxg+x3)/2 — ety — 23)/2 + vy(2 —e~t—et)/2 + vy(—et + et)/2
dug/dt = wg e~ Hag + x3)/2 + et(wy — x)/2 + vo(—e~t+ €t)/2 + vy(2 — et — et)/2

l

Solving these equations simultaneously for v, and v, the result is as before v, = 3, V3 = Xy

A velocity field is described by v: = #1/(1+1t), v2 = 222/(1 +t), vs = 3zs/(1 +1). Deter-
mine the acceleration components for this motion.

By (4.18), dvy/dt = a; = —x/1+82 4+ 2,/A+82 = 0
dvp/dt = ay = —2wy/(1+1)2 + day/(1 + )2 = 2x,/(1+ £)2
dvg/dt = a3 = —3wa/(1+ )2+ 9xg/(L+ )2 = Bay/(L+ )2

Integrate the velocity equations of Problem 4.3 to obtain the displacement relations
z: = 2¢(X,?) and from these determine the acceleration components in Lagrangian
form for the motion. -

By (4.13), v, = da/d¢ = /(1 + t); separating variables, dwx,/x; = dt/(1+t) which upon inte-
gration gives Inx; = In(1+1¢) + InC where C is a constant of integration. Since x; = X; when
t=0, C =X, and so &; = X,(1+¢). Similar integrations yield z, = Xy(1 + ¢)2 and z; = X,(1 + £)3.

Thus from (4.14) and (4.17), v{ = Xy, v, = 2X,(1+1¢), vy =38X4(1+¢2 and a; =0, ay,=2X,,
ag = 6X5(1+t).

The motion of a continuum is given by z; = A + (¢ B/A) sin MA + ), x2 = —B —
(e7BA) cos A(A +ot), x3 =X, Show that the particle paths are circles and that the
velocity magnitude is constant. Also determine the relationship between X, and X,
and the constants A and B.

By writing x; — A = (e=BMA) sin MA + wt), x5 + B = (—e~BM)) cos MA + wt), then squaring
and adding, ¢ is eliminated and the path lines are the circles (x;—A)2 + (z,+ B)2 = e—2B\/),
From (4.6), vy = we™B* cos MA + wt), vy, = we BAsinN(A + ot), v3=0 and v2 = 'u% + 'ug + v‘z =
wZ~2B\, Finally, when t =0, x; = X; and so X; = A + (e~ BM)) sin A, X, = —B — (¢~ BM/)\) cos \A.

A velocity field is specified by the vector v = xite; + x.£2€; + x,25t€s. Determine
the velocity and acceleration of the particle at P(1,8,2) when ¢ =1.
By direct substitution, v, = €, + 3¢, + 2€,. Using the vector form of (4.18) the accelera-
tion field is given by
a = 27€ + 25t + 2%y €; + (x7t8, + @yt €, + 2,45t Sy)
(20,6 €€, + xytee; + 128,86, + x,t 858,
or a = (2} + 223128, + (2wot + wotd) € + (w475 + 20 x,412) €y

Thus ap = 3¢, + 98, + 6%,

For the velocity field of Problem 4.8 determine the streamlines and path lines of the
flow and show that they coincide.

At every point on a streamline the tangent is in the direction of the velocity. Hence for the
differential tangent vector dx along the streamline, vX dx =0 and accordingly the differential
equations of the streamlines become dux /v, = dxy/vy = dxs/vg. For the given flow these equations
are dx,/x; = dw,/2xy = dxy/3x;. Integrating and using the conditions x; = X; when ¢ =0, the
equations of the streamlines are (#,/X,)2 = xp/X,, (2,/X)3 = x3/X;, (2s/X,)3 = (25/X3)2.

Integration of the velocity expressions dx;/dt = v, as was carried out in Problem 4.4 yields
the displacement equations x; = X (1+41¢), x, = Xp(1+1)2, x; = X4(1+£)3. Eliminating ¢ from
these equations gives the path lines which are identical with the streamlines presented above.
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4.8.

4.9.

The magnetic field strength of an electromagnetic continuum is given by A = e~4t/r
where 72 = z} + 2} + 22 and A is a constant. If the velocity field of the continuum
is given by v: = Baixst, v: = Ba2t?, v; = Bxsxs, determine the rate of change of
magnetic intensity for the particle at P(2,—1,2) when ¢t =1.

Since d(r—1)/dx; = —x;/r3, equation (4.11) gives
N o= —de—at/y — e~ AYBx?xst + Bajt2 + Baluy)/rd

Thus for P at t=1, Ap = —e~4(34 + B)/9.

A velocity field is given by vy = 4a3 — 8x2, 22 = 321, vs = —4z;. Determine the
acceleration components at P(b,0,0) and Q(0, 4b, 3b) and note that the velocity field
corresponds to a rigid body rotation of angular velocity 5 about the axis along
A A A
€ = (4€;+ 3¢€;)/5.

From (4.18), a; = —26x;, ay = ~9x, + 1223, a3 = 12, — 16x3. Thus at P(b,0,0), a = —25b @x
which is a normal component of acceleration. Also, at Q(0, 4b, 3b) which is on the axis of rotation,
a=0. Note that v=wxXx= (46 +3€) X (x,€,+ 2,6, + 23 6;) = (4w — 32,) &; + 32, ¢, — 4z, &,.

RATE OF DEFORMATION, VORTICITY (Sec. 4.4-4.5)

4.10.

4.11.

A certain flow is given by v =0, v. = A(z1®2— x2)e B, vs = A(x2 — 21%3)e" Bt where
A and B are constants. Determine the velocity gradient ov:/dx; for this motion and
from it compute the rate of deformation tensor D and the spin tensor V for the point
P(1,0,3) when t=0.
0 0 0
By (4.19), avi/ax,. = X x;y —2x5; | Ae~Bt which may be evaluated at P when t =0

—x3 22y, —uy

and decomposed according to (4.20) and (4.21) as

0 0 0 0 0 —1.54 0 0 1.54
Y = D+V = 0 'A —6A4 = 0 A 34 + 0 0 —34
—34 0 —A —154 -34 -4 ~1.54 34 0

For the motion «: = X1, 22 = X5+ Xi(e 2 —1), 23 = X3+ Xi(e * —1) compute the
rate of deformation D and the vorticity tensor V. Compare D with de,;/dt, the rate
of change of the Eulerian small strain tensor E.

Here the displacement components are u; =0, u, = z,(e~2t—1), uy = x,(e~3t—1) and from ‘
(4.14) the velocity components are v; =0, vy = —2we~2, v; = —3x,e-3t, Decomposition of the
velocity gradient 6v;/0x; gives 6v,/dx; = D;; + Vi;. Thus

0 00 0 —e~% —3¢~3/2 0 e=2t 3¢=3t/2
dvfox; = —2e72t 0 0 = —~e—2t 0 0 + —e~2t 0
—3e~3t 0 0 —3e—3t/2 0 0 ~3e73/2 0 0

Likewise, decomposition of the displacement gradient gives du;/dx; = €;+ w;. Thus

0 0 0 0 e—2t =3t 0 —e 2t —e—3t
ouyfox; = e”2 0 0 = e~ 2t 0 0
e 0 0 e73t 0 0 e=3 0 0

[\ R
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4.12,

4.13.

4.14.

4.15.

4.16.
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Comparing D with dg/dt,
0 —e~2t —3e~3t/2
deij/dt = —e—2t 0 0 = Dij
—3e—3t/2 0 0

The student should show that du/dt = V;.

A vortex line is one whose tangent at every point in a moving continuum is in the
direction of the vorticity vector q. Show that the equations for vortex lines are
dxi/qy = dxs/qe = dxs/qs.

Let dx be a differential distance vector in the direction of q. Then gXdx =0, or
(g2 dowy — g3 dwy) €; + (s dw; — g, dx) €, + (qyday — qpdw))€; = 0

from which dx,/q; = dx,/q, = dws/qs.

Show that for the velocity field v = (Azs— Bxs)€: + (Bxi— Cxs)€: + (Caxz— Axy)és
the vortex lines are straight lines and determine their equations.

From (4.29), ¢ = Vx X v = 2(C€,+A€,+ B¢;), and by Problem 4.12, the d.e. for the vortex
lines are A dxz = Bdwx,, Bdx; = Cdzs, Cdry,= A dx,. Integrating these in turn yields the equa-

tions of the vortex lines x5 = Bwy/A +K;, »; = Cxy/B+K,, z,= Ax,/C+ K, where the K, are
constants of integration.

Show that the velocity field of Problem 4.13 represents a rigid body rotation by
showing that D = 0.

Calculating the velocity gradient dv/dx;, it is found to be antisymmetric. Thus ov;/ox; =
0 -B A
B 0 —C | =V, and D;=0.

-A C 0

For the rigid body rotation v = 3x;€; — 4x;€; + (4% — 8x:1)€s, determine the rate of
rotation vector @ and show that v = @ X x.

From (4.30), 2 =q, or Q = 4@1+332. This vector is along the axis of rotation. Thus

(4€,+3€) X (2,6, + 0,8, + 2,€) = B8x;8, — w3 @, + (dowy—32) 8 = v

A steady velocity field is given by v = (2} — 2123)&; + (2} 22 + 22)€.. Determine the
unit relative velocity with respect to P(1, 1, 3) of the particles at Q:(1, 0, 3), Q2(1, 3/4, 3),
Qs3(1,7/8,8) and show that these values approach the relative velocity given by (4.26).

By direct calculation wvp— Vo, = —€, + 2@2, 4(vp — vQ2) = —731/4 + 232 and 8(vp— v93) =
—15¢,/8+28€,. The velocity gradient matrix is

3x% — a2 —2w,x, 0

[8vi/ox;] = 2xx,  2i+1 0
0 0 0



CHAP. 4] MOTION AND FLOW ' 121

4.17.

4.18.

4.19.

and at P(1,1,3) in the negative x, direction,

2 -2 0 0 +2
(d'vi/dx)g = 2 2 0l = -2
? 0o ofl o 0
Thus (dv/dx)g = —2 @1 + 232 which is the value approached by the relative unit velocities
2

Vp— VQi.

For the steady velocity field v = 8x}x.@: + 202236, + 212222 &, determine the rate
of extension at P(1,1,1) in the direction of %= (88, —48,)/5.

6xy0y 33 0
Here the velocity gradient is [9v; /0y = 0 4y25 ng and its symmetric part
6 15 05 Xoxy  xywy 20Ty
atPis [Dyl = |15 4 15
05 15 2

Thus from (4.34) for % = (3@, —4¢€,)/5,

6 1.5 0.5 3/5
d = [3/5,0,—4/5]| 1.5 4 1.5 0 = 7T4/25
0.5 15 2 —4/5

For the motion of Problem 4.17 determine the rate of shear at P between the orthog-
onal directions % = (38;—4€:)/5 and % = (46 + 38;)/5.

In analogy with the results of Problem 3.20 the shear rate y,, is given by ilu,, =%2+2D+%, or
in matrix form

12 3 1] 35
Yw = [4/5,0,8/5]| 3 8 8 0 | = 8925
1 3 4|45

A steady velocity field is given by v: = 2xs, v, = 223, vs = 0. Determine the principal
directions and principal values (rates of extension) of the rate of deformation tensor
for this motion.

0 0 2 1 0 0 1
Here [ov;/0]) = |0 0 2| = |0 0 1|+ 0 0 1 and for principal values
0o 0 0 _1 1 0 -1 -1 0
A of Dy,
- 0 1
0 - 1 = 0 = =A% 4 2a
1 1 =

Thus A\ = +V2, M =0, A= —V2.
The transformation matrix to principal axis diri:ctions is
-1/2 -1/2  1//2
[ay] = W2 -1V2 o
vz 12 1n2
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+2 0 o
with the rate of deformation matrix in principal form [DT]] = 0 0 0
0 0 —V/2

4.20. Determine the maximum shear rate y___for the motion of Problem 4.19.

Analogous to principal shear strains of Chapter 3,
the maximum shear rate is Y. = (\f — Am/2 = V2.

This result is also available by observing that the
motion is a simple shearing parallel to the z;x, plane in
the direction of the unit vector 7 = (€, +&,)/v/2. Thus,

as before,
0 0 1][1//2 v
Ymax = Yw = [0,0,1]|0 0 1|12 | = V2
110 0

It is also worth noting that the maximum rate of
extension for this motion occurs in the direction

= (€ +86+12¢,)/2 as found in Problem 4.19. Thus

0 01

A
Moo= d™ o= [1/2,1/2,V/2/2]| 0 0 1
1 10

MATERIAL DERIVATIVES OF VOLUMES, AREAS, INTEGRALS, ETC. (Sec. 4.6-4.7)

4.21. Calculate the second material derivative of the scalar product of two line elements, i.e.
determine d?(dxz?)/dt?.
d(de;) _ avl d(dx?)

From (4.45), at dxk, and it is shown in (4.48) that = 2D;; dx; da;.  Therefore
d2(dx2? dDy
((z i ) 2 { * da; i da; + D” 57 % dx; + Dyjde;z >~ dka
and by simple manipulation of the dummy indices,
d2(dx?) dD; By, vy,
) = 2 [ dt + ij'a—xi‘ -+ lea dx dx]

4.22. Determine the material derivative »—f pidS; of the flux of the vector property p:
through the surface S.

By (4.57),

d . f dpl a’l)k _f 9& _ f dpl B’Uk 6
dtfplds - S[%‘”’im a8 Spiaxidsk - J at T Pigg, ”"ax St

4.23. Show that the transport theorem derived in Problem 4.22 may be written in symbolic
notation as

2fvhas = [ [®+wyep+ v x(pxv)|-Ads

By a direct transcription into symbolic notation of the result in Problem 4.22,

4 hds = dp ) — (p- N
dtj;p ndS = L[dt+ p(V-v) (p V)v:l ndS

J.

B‘t’ + (veV)p + p(Vov) — (p-V)v:l -hds
S X
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Now use of the vector identity VX (pXv) = p(V+*v) —v(Vep)+ (veV)p — (p* V)v (see Problem
1.65) gives

d
%f prhds = f [a—p+v(V-p)+V><(va):|'ﬁdS
s s Lot

4.24. Express Reynold’s transport theorem as given by equations (4.53) and (4.54) in
symbolic notation.

Let P*(x, t) be any tensor function of the Eulerian coordinates and time. Then (4.53) is

a‘%fv Prx,t)dV = fv ["P + V- (P*v)}

.and by Gauss’ divergence theorem this becomes (4.54),

&
2 Prxpav = & av+ [ prvedas
dt v v ot s

4.25. If the function P*(x,t) in Problem 4.24 is the scalar 1, the integral on the left is
simply the instantaneous volume of a portion of the continuum. Determine the
material derivative of this volume.

Using the vector form of (4.53) as given in Problem 4.24, (—%f dVv = f V-.vdV. Here
‘ v v

V «v dV represents the rate of change of dV, and so V *v is known as the cubical rate of dilata-
tion. This relationship may also be established by a direct differentiation of (4.88). See Problem 4.43.

MISCELLANEOUS PROBLEMS

4.26. From the definition of the vorticity vector (4.29), q = curlv, show that q, =
and that 2V =

ik Vk j

jik qk'
By (4.29), ;= €V,; = € (Vik,j1 T vk, ) and since &k, jy = 0 (see, for example, Problem
1.50), q; = Eijkv[k,j] = €ijk ij. From this result €Ersd; = €irs €ijk Vk] = (S,jssk - SrkSSj) Vk]' - 2VS,-.

4.27. Show that the acceleration a may be written as a 6 3t AT gXxXv+3iyod
F _ 6’vi G'Ui
rom (4.18), a; = a_t+ vka and so
a'v,- a’Ui avk avk
a; = 3t-+?)k<a-xk a—x: +’Uka—xi'
_ 9y 190(evy) 1 V)
- —a? + 2vkvik + E axi = a—t + ei,-kqj'vk + E axi

which, as the student should confirm, is the indicial form of the required equation.

4.28. Show that d(InJ)/dt = divv.

Let dx;/0X,, be written here as ; p so that J = epqr@y p%s q%s g and J becomes the sum of
the three determinants, J= epar(®1,p%y,a%3,r + ¥1,p%2,q%s R T %1, p%s, T3, r). Now &y p = v s p,
ete, and so J = epgr(V1,s%;, p%2,0%s,r T ¥1,pV2,s%s,a%3,r T %1, p%2,@V3,5%5,8). Of the nine 3% 3
determmants resulting from summation on s in this expression, the three non-vanishing ones yield
J= vy,1J + vy, 5 + v3,3J = v, ,J. Thus J=JV-+v and so d(In J)/dt = divv.
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4.29.

4.30.

4.31.

4.32.
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Show that for steady motion (év:i/dt=0) of a continuum the streamlines and
pathlines coincide.

As shown in Problem 4.7, at a given instant ¢ streamlines are the solutions of the differential
equations dux;/v, = day/v, = das/vs. Pathlines are solutions of the differential equations dwx;/dt =
vi(x,t). If v; = vy(x), these equations become dt = dx,/v, = dxy/v, = daz/v; which coincide with
the streamline differential equations.

For the steady velocity field v1 = iz + 23, v = —a — w22, vs=0 determine
expressions for the principal values of the rate of deformation tensor D at an arbitrary
point P(xy, 2, 3).

By (4.19) Bv,-/axj = Dij + Vij’ or

2,2, xf + 3x§ 0 2x,%, —xf + xg 0 0 2(00? + xg) 0
——3x% — xg —2z20 0 = —xf + xg —2zy2y 0 | + —2(96? + xg) 0 0
0 0 0 0 0 0 0 0 0

Principal values d;, are solutions of

2z, —d  —xital 0
—a2+wy —2wwe—d 0| = 0 = —d—4xiz] +d2— (22 —a?)?
0 0 —d

Thus dg; =0, diy =—(a] +22), dg) = (2} +23). Note here that dy= (z%+23), dy=0,
dyp = — (o} + 23).

Prove equation (4.48) by taking the material derivative of dS; in its cross product
form dS; = ¢, dx;® da>.

. x; axi Bx] axk
Using (3.83), dS; = €3.(02;/0X,) dX (0%, /0X3) dX3 and = dS; = ey, -5 —o 5 dX,dX; =
axX. 3 39X aX; ¥ 0X; 90X, 0X,
1 9% 1 '
JdX,dXs. Thus a—xp 3%, dS; = 8;,dS; =dS, = a_xp JdX,dX; and by Problem 4.28,
ds X, @ X, 9
2r <__1Jﬂ_']_1_ﬁ>dx2dx3
dt dx,  dx, dxq dz,,
ox; ox v, o0x; ox v
= | epjr —3 dXy 77k dXg) TV _ e k '
< R A > 3) ot <€‘“’° ax, ™2 5%, dX3> oz,

= (9vglowg) dS, — (dv/dz,) dS,

Use the results of Problems 4.27 and 4.28 to show that the material rate of change

of the vorticity flux c%f q*ndS equals the .ﬁux of the curl of the acceleration a.
S .

Taking the curl of the acceleration as given in Problem 4.27,
Vxa = ng—:—}- V X (@XV) + VX V(02/2)
or VXa = 9q/ot + VX (qXv) = dq/dt + q(V-v) — (q* V)v

since q = VXv and V X V(22/2) = 0. Thus if q is substituted for p in Problem 4.23,

c%f g-fds = f [%+q(V°v)——(q~V)v}-ﬁdS - f (V X a) + 8 dS
S S S
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4.33. For the vorticity ¢; show that (%j; q,dV = j; [ % + 4,9, — q,2,] dS;.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

4.4.

4.45.

From Problem 4.32 the identity V X a = dq/dt+ V X (q X v) may be written in indicial form
as 8¢;/0t = e, 0, ;= €isplepmrIm?y),s»  Thus

0g;
E?dv = f [eijk A, ; — (Eispepmrqmv'r),s] av
\4 \4

and by the divergence theorem of Gauss (1.157),

ag;
f Ty av = f ety dS; — f (8im8sr — 8:ir8sm)(@mvy) dS; = f [eiikar + av; — giv;] dS;
v s 5 s

Supplementary Problems
A continuum motion is given by =z; = X et + Xj(et —1), x, = Xy + Xz(et —et), x3 = X3. Show
that J does not vanish for this motion and obtain the velocity components.

Ans. vy = (X;+ Xget, vy = Xglet+et), v3=0 or vy = x; — @3, Vs = wz(et+e~ %), v3=0

A velocity field is specified in Lagrangian form by v;=—X,e~t v, = —X3, vz = 2t. Determine
the acceleration components in Eulerian form. Ans. a; = e~ tHxyt+trg—13), ay =0, az=2

Show that the velocity field v; = ¢b;x, + ¢; where b; and ¢; are constant vectors, represents a
rigid body rotation and determine the vorticity vector for this motion.
Ans. q; = bx; ; — b, = 2b;

Show that for the flow v; = x;/(1+t) the streamlines and path lines coincide.

The electrical field strength in a region containing a fluid flow is given by A = (A cos 3t)/r where

72 = 2% + 22 and A is a constant. The velocity field of the fluid is vy = xj2y + 23, v, = —2} —
aleg, v3 = 0. Determine dA\/dt at P(x,, x,, %3). Ans. da/dt = (—3A sin 3t)/r

Show that for the velocity field v; = a2z, + 23, vy, = —af — .25, v3 =0 the streamlines are
circular.

\

For the continuum motion ; = X;, x, = e{{X,+ X3)/2 + e~ HX5— X3)/2, x5 = ei(Xy+ X3)/2 —
e~ X, — X,)/2, show that D;; = de;/dt at ¢ =0. Compare these tensors at ¢ =0.5.

For the velocity field v, = xf g + xg, vy = —(w‘; +x1x§), vg = 0, determine the principal axes
and principal values of D at P(1,2, 3).

5 0 0 3/V10 1//10 o
Ans. Djj = [0 0 0 |; a; = 0 0 1

0 0 —5 1/V/10 —3/\/10 o

For the velocity field of Problem 4.41 determine the rate of extension in the direction
P=(¢, —26+ 2€;)/3 at P(1,2,3). What is the maximum shear rate at P?

Ans. d¥’ = —24/9, Ypax =5
Show that d(dz,/0X;)/dt = v; ;2 ; and use this to derive (4.41) of the text directly from (4.38).

Prove the identity e, (V5?,,5),q = 9pYq,q + Vy@p,q — 94¥p,q Where v; is the velocity and g; the
vorticity. Also show that v, ;v;; = D;Dy; — ¢i9/2.

Prove that the material derivative of the total vorticity is given by

d
Ef q; dV = L [Eijkak + qjvi] dS’
\%4



Chapter 5

Fundamental Laws
of Continuum Mechanics

51 CONSERVATION OF MASS. CONTINUITY EQUATION

Associated with every material continuum there is the property known as mass. The
amount of mass in that portion of the continuum occupying the spatial volume V at time ¢
is given by the integral

m = fv o(x, t) AV (5.1)

in which p(x, t) is a continuous function of the coordinates called the mass density. The law
of conservation of mass requires that the mass of a specific portion of the continuum remain
constant, and hence that the material derivative of (5.1) be zero. Therefore from (4.52)
with Pj.. (x,t) = p(x,t), the rate of change of m in (5.1) is

dm _ 4 = [ -
= 5 oetav = V[dt +p|av = o (5.2)
Since this equation holds for an arbitrary volume V, the integrand must vanish, or
d d :
agqupvk,k =0 or d—;+p(v-v) =0 (5.3)

This equation is called the continuity equation; using the material derivative operator it
may be put into the alternative form

d d

a—g+(pvk)lk =0 or 6—;’ +Ve(pv) =0 (5.4)

For an incompressible continuum the mass density of each particle is independent of
time, so that dp/dt = 0 and (5.3) yields the result

Ve =0 or divye =0 (6.5)

The velocity field v(x, t) of an incompressible continuum can therefore be expressed by the
equation V= epS,; O V=VXs (5.6)
in which s(x, ) is called the vector potential of v. 4

The continuity equation may also be expressed in the Lagrangian, or material form.
The conservation of mass requires that

fv p,(X,0)dV, = j; p(x,t)dV (5.7)

where the integrals are taken over the same particles, i.e. V is the volume now occupied by
the material which occupied V, at time ¢ = 0. Using (4.1) and (4.38), the right hand integral
in (5.7) may be converted so that

_j; po(X,0)dV, = f p(x(X, 1), )] dV, = fv p(X, )7 AV, (5.8)

Ve

126
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Since this relationship must hold for any volume V,, it follows that
po = o/ (5.9)

which implies that the product pJ is independent of time since V is arbitrary, or that

2en =0 (5.10)

Equation (5.10) is the Lagrangian differential form of the continuity equation.

52 LINEAR MOMENTUM PRINCIPLE. EQUATIONS OF MOTION.
EQUILIBRIUM EQUATIONS

A moving continuum which oe-
cupies the volume V at time ¢ is
shown in Fig. 5-1. Body forces b:
per unit mass are given. On the dif-
ferential element dS of the bgunding
surface, the stress vector is ¢{™. The
velocity field v; = dui/dt is prescribed
throughout the region occupied by
the continuum. For this situation, ER
the total linear momentum of the
mass system within V is given by

Ly
1

Pt) = f pv,dV  (5.11) Fig. 5-1
14

Based upon Newton’s second law, the principle of linear momentum states that the time
rate of change of an arbitrary portion of a continuum is equal to the resultant force acting
upon the considered portion. Therefore if the internal forces between particles of the con-
tinuum in Fig. 5-1 obey Newton’s third law of action and reaction, the momentum principle
for this mass system is expressed by

) _ if
Lti dS+j;pbidV = vaidV

or (5.12)
ft‘f-’ds +fpbdv - (%fpvdv

Upon substituting t(“) = o;m, into the first integral of (5.12) and converting the result-
ing surface integral by the dlvergence theorem of Gauss, (5.12) becomes

fv(m +pb)dV = dtfpvdv or fv(vx-z+pb)dv = 4 (vav (s

In calculating the material derivative in (5.13), the continuity equation in the form given
by (5.10) may be used. Thus

fif Y = [o, 2D du] _ (v
&J, W o= g ) eddV, = ) [wEEE g av, = ) Shedv (5.

Replacing the right hand side of (5.18) by the right hand side of (5.14) and collecting terms
results in the linear momentum principle in integral form,

f (u].i,].+pb,.—pz')i)dV =0 or f(VX‘Z'f-pb—p\.I)dV =0 (5.15)
v v
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Since the volume V is arbitrary, the integrand of (5.15) must vanish. The resulting
equations, . .
ot pb, = Py, or Vi'Z + pb = pv (5.16)
are known as the equations of motion.

The important case of static equilibrium, in which the acceleration components vanish,
is given at once from (5.16) as
o,;tpb, =0 or Ve +pb =0 (5.17)

These are the equilibrium equations, used extensively in solid mechanics.

53 MOMENT OF MOMENTUM (ANGULAR MOMENTUM) PRINCIPLE

The moment of momentum is, as the name implies, simply the moment of linear
momentum with respect to some point. Thus for the continuum shown in Fig. 5-1, the
total moment of momentum or angular momentum as it is often called, with respect to the
origin, is
N(t) = j; «x®;pV, AV or N = J; (x X pv) dV (5.18)

in which «; is the position vector of the volume element dV. The moment of momentum .
principle states that the time rate of change of the angular momentum of any portion of a
continuum with respect to an arbitrary point is equal to the resultant moment (with respect
to that point) of the body and surface forces acting on the considered portion of the con-
tinuum. Accordingly, for the continuum of Fig. 5-1, the moment of momentum principle
is expressed in integral form by

2 d
L ci].kx].t;(c >dS + j; c“kx].pbk av. = at .I‘: €530 PV) dv
or d (5.19)
f(xxt(“))ds+f(x><pb)dV = —f(xva)dV
s v dt Jv

Equation (5.19) is valid for those continua in which the forces between particles are equal,
opposite and collinear, and in which distributed moments are absent.

The moment of momentum principle does not furnish any new differential equation of
motion. If the substitution £{™ =g n_ is made in (5.19), and the symmetry of the stress

pk™"p
tensor assumed, the equation is satisfied identically by using the relationship given in (5.16).

If stress symmetry is not assumed, such symmetry may be shown to follow directly from
(6.19), which upon substitution of ¢, =q,n, reduces to

j‘: €@V = 0 or J; 2,dV =0 (5.20)

Since the volume V is arbitrary,
=0 or 2, =0 (5.21)

which by expansion demonstrates that o=

€k 7 jk

ki®

54 CONSERVATION OF ENERGY. FIRST LAW OF THERMODYNAMICS.
ENERGY EQUATION

If mechanical quantities only are considered, the principle of conservation of energy
for the continuum of Fig. 5-1 may be derived directly from the equation of motion given
by (5.16). To accomplish this, the scalar product between (5.16) and the velocity v; is first
computed, and the result integrated over the volume V. Thus
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fpvibidV = f v, ,dV + f pv,b, dV (5.22)
\4 \4 ’ v

sav = L[ rogy — 4 ety o &
But J;pvividV = 5} av = S Hav = G (5.23)

which represents the time rate of change of the kinetic energy K in the continuum. Also,
v, = (0,),—v, 0, and by (4.19) v, = D, +V,, so that (5.22) may be written

igi.j i i, Lj i

dK
dt + .j:, Dij“z‘idV = j; (vi"ji),]‘dv + J‘; pv,b,dV (5.24)

since V.o, = 0. Finally, converting the first integral on the right hand side of (5.24) to a

it
surface integral by the divergence theorem of Gauss, and making use of the identity

W = o, the energy equation for a continuum appears in the form

dK A
| dE + J; DijoﬁdV = L vit,f ).dS + j; pb, v, dV (5.25)

This equation relates the time rate of change of total mechanical energy of the continuum
on the left side to the rate of work done by the surface and body forces on the right hand
side of the equation. The integral on the left side is known as the time rate of change of
internal mechanical energy, and written dU/dt. Therefore (5.25) may be written briefly as

dK U _ W

dt dt ~— dt
where dW/dt represents the rate of work, and the special symbol & is used to indicate that
this quantity is not an exact differential.

(5.26)

If both mechanical and non-mechanical energies are to be considered, the principle of
conservation of energy in its most general form must be used. In this form the conservation
principle states that the time rate of change of the kinetic plus the internal energy is equal
to the sum of the rate of work plus all other energies supplied to, or removed from the
continuum per unit time. Such energies supplied may include thermal energy, chemical
energy, or electromagnetic energy. In the following, only mechanical and thermal energies
are considered, and the energy principle takes on the form of the well-known first law of
thermodynamics.

For a thermomechanical continuum it is customary to express the time rate of change
of internal energy by the integral expression

wo_ dy = (i
dt = VpudV = Vp’LLdV (527)

where u is called the specific internal energy. (The symbol u for specific energy is so well
established in the literature that it is used in the energy equations of this chapter since
there appears to be only a negligible chance that it will be mistaken in what follows for the
magnitude of the displacement vector u;.) Also, if the vector ¢; is defined as the heat flux
per unit area per unit time by conduction, and z is taken as the radiant heat constant per
unit mass per unit time, the rate of increase of total heat into the continuum is given by

((ii—gt? = —j; cnidS + f pde (5.28)
\ '
Therefore the energy principle for a thermomechanical continuum is given by
dK au 4w aQ
@ Ta T @t (5-29)
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or, in terms of the energy integrals, as
1f PPV + | pdv = f £y dS + f b dV + fpzdv - f on dS
dt Jv P72 v s v v S (5.90)

Converting the surface integrals in (5.30) to volume integrals by the divergence theorem of
Gauss, and again using the fact that V is arbitrary, leads to the local form of the energy
equation:

d /v? 1 1
a<§+u> = ;(oijvi),j + bivi — ;C“ + 2 |
N (5.31)
P P

Within the arbitrarily small volume element for which the local energy equation (5.31)
is valid, the balance of momentum given by (5.16) must also hold. Therefore by taking the
scalar product between (5.16) and the velocity pd,v, = v,0, ; T pv;b, and, after some simple
manipulations, subtracting this product from (5.31), the result is the reduced, but highly
useful form of the local energy equation,

du 1 1

a ;aijD}.]. — ;CU + z (5.32)
This equation expresses the rate of change of internal energy as the sum of the stress power
plus the heat added to the continuum.

5.5 EQUATIONS OF STATE. ENTROPY. SECOND LAW OF THERMODYNAMICS

The complete characterization of a thermodynamic system (here, a continuum) is said
to describe the state of the system. This description is specified, in general, by several
thermodynamic and kinematic quantities called state variables. A change with time of the
state variables characterizes a thermodynamic process. The state variables used to describe
a given system are usually not all independent. Functional relationships exist among the
state variables and these relationships are expressed by the so-called equations of state.
Any state variable which may be expressed as a single-valued function of a set of other
state variables is known as a state function.

As presented in the previous section, the first law of thermodynamics postulates the
interconvertibility of mechanical and thermal energy. The relationship expressing con-
version of heat and work into kinetic and internal energies during a thermodynamic
process is set forth in the energy equation. The first law, however, leaves unanswered the
question of the extent to which the conversion process is reversible or irreversible. All
real processes are irreversible, but the reversible process is a very useful hypothesis since
energy dissipation may be assumed negligible in many situations. The basic criterion for
irreversibility is given by the second law of thermodynamics through its statement on the
limitations of entropy production.

The second law of thermodynamics postulates the existence of two distinct state
functions; T the absolute temperature, and S the entropy, with certain following properties.
T is a positive quantity which is a function of the empirical temperature 4, only. The
entropy is an extensive property, i.e. the total entropy in the system is the sum of the
entropies of its parts. In continuum mechanics the specific entropy (per unit mass), or

entropy density is denoted by s, so that the total entropy L is given by L = j; psdV. The

entropy of a system can change either by interactions that occur with the surroundings, or
by changes that take place within the system. Thus

ds = ds® + ds® (5.33)
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where ds is the increase in specific entropy, ds® is the increase due to interaction with the
exterior, and ds® is the internal increase. The change ds® is never negative. It is zero
for a reversible process, and positive for an irreversible process. Therefore

ds®” > 0 (irreversible process) (5.34)
ds®”? = 0 (reversible process) (5.35)

In a reversible process, if dg, denotes the heat supplied per unit mass to the system, the
change ds‘® is given by

ds'® = 4w reversible process 5.36
T

5.6 THE CLAUSIUS-DUHEM INEQUALITY. DISSIPATION FUNCTION

According to the second law, the time rate of change of total entropy L in a continuum
occupying a volume V is never less than the sum of the entropy influx through the con-
tinuum surface plus the entropy produced internally by body sources. Mathematically, this
entropy principle may be expressed in integral form as the Clausius-Duhem inequality,

d i
mﬁpsdv = j‘:pedV— Sf’Tﬁds (5.87)

where e is the local entropy source per unit mass. The equality in (5.87) holds for reversible
processes; the inequality applies to irreversible processes.

The Clausius-Duhem inequality is valid for arbitrary choice of volume V so that trans-
forming the surface integral in (5.87) by the divergence theorem of Gauss, the local form
of the internal entropy production rate v, per unit mass, is given by

_ds 1 /¢ -
v o= G <T>,i = 0 (5.38)
This inequality must be satisfied for every process and for any assignment of state variables.
For this reason it plays an important role in imposing restrictions upon the so-called
constitutive equations discussed in the following section.

In much of continuum mechanics, it is often assumed (based upon statistical mechanics

of irreversible processes) that the stress tensor may be split into two parts according to

the scheme, o5 = ol + o (5.39)

()
where o is a conservative stress tensor, and o isa dissipative stress tensor. With this
assumption the energy equation (5.32) may be written with the use of (4.25) as
du 1 . 1 . dq
?l? = ;U{:;C) (i}_ + ;o';jD) Eij + % (5.40)

In this equation, 105}” ¢; 1s the rate of energy dissipated per unit mass by the stress, and
p

dq/dt is the rate of heat influx per unit mass into the continuum. If the continuum under-
goes a reversible process, there will be no energy dissipation, and furthermore, dq/dt =
dqry/dt, so that (5.40) and (5.36) may be combined to yield

du 1 . ds

-(ﬁ = ;U;ic)cﬁ + T% (5.41)
Therefore in the irreversible process described by (5.40), the entropy production rate may
be expressed by inserting (5.41). Thus

ds _ 1ldq 1 o,
@ - Tdt + p_To“ €; (542)
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The scalar o> ¢, is called the dissipation function. For an irreversible, adiabatic process
(dg = 0), ds/dt > 0 by the second law, so from (5.42) it follows that the dissipation function
is positive definite, since both p and T are always positive.

5.7 CONSTITUTIVE EQUATIONS. THERMOMECHANICAL AND
MECHANICAL CONTINUA

In the preceding sections of this chapter, several equations have been developed that
must hold for every process or motion that a continuum may undergo. For a thermo-
mechanical continuum in which the mechanical and thermal phenomena are coupled, the
basic equations are

(a) the equation of continuity, (5.4)

i) d
FhEv), =0 or FHFV(v) =0 (5-43)

(b) the equation of motion, (5.16)
o;; pb, = o0, or Ve 2 +pb = pv (5.44)

1

{c) the energy equation, (5.32)

du 1 1 du _ 1.
s _UijDij_;ci,i+z or o = FZ-D—PV'C+Z (5.45)

-]

Assuming that body forces b; and the distributed heat sources z are prescribed, (5.43),
(5.44) and (5.45) consist of five independent equations involving fourteen unknown functions
of time and position. The unknowns are the density p, the three velocity components v,
(or, alternatively, the displacement components u;), the six independent stress components
o,, the three components of the heat flux vector c;, and the specific internal energy u. In
addition, the Clausius-Duhem inequality (5.38)

% e — %(—%—> = 0 . (5.46)
which governs entropy production, must hold. This introduces two additional unknowns:
the entropy density s, and T, the absolute temperature. Therefore eleven additional equa-
tions must be supplied to make the system determinate. Of these, siz will be in the form
known as constitutive equations, which characterize the particular physical properties of
the continuum under study. Of the remaining five, three will be in the form of temperature-
heat conduction relations, and two will appear as thermodynamic equations of state; for
example, perhaps as the caloric equation of state and the entropic equation of state. Specific
formulation of the thermomechanical continuum problem is given in a subsequent chapter.

It should be pointed out that the function of the constitutive equations is to establish
a mathematical relationship among the statical, kinematical and thermal variables, which
will describe the behavior of the material when subjected to applied mechanical or thermal
forces. Since real materials respond in an extremely complicated fashion under various
loadings, constitutive equations do not attempt to encompass all the observed phenomena
related to a particular material, but, rather, to define certain ideal materials, such as the
ideal elastic solid or the ideal viscous fluid. Such idealizations or material models as they
are sometimes called, are very useful in that they portray reasonably well over a definite
range of loads and temperatures the behavior of real substances.
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In many situations the interaction of mechanical and thermal processes may be
neglected. The resulting analysis is known as the uncoupled thermoelastic theory of con-
tinua. Under this assumption the purely mechanical processes are governed by (5.43) and
(5.44) since the energy equation (5.45) for this case is essentially a first integral of the
equation of motion. The system of equations formed by (5.43) and (5.44) consists of four
equations involving ten unknowns. Sixr constitutive equations are required to make the
system determinate. In the uncoupled theory, the constitutive equations contain only the
statical (stresses) and kinematic (velocities, displacements, strains) variables and are often
referred to as stress-strain relations. Also, in the uncoupled theory, the temperature field
is usually regarded as known, or at most, the heat-conduction problem must be solved
separately and independently from the mechanical problem.. In isothermal problems the
temperature is assumed uniform and the problem is purely mechanical.

Solved Problems

CONTINUITY EQUATION (Sec.5.1)

5.1.° An irrotational motion of a continuum is described in Chapter 4 as one for which the
vorticity vanishes identically. Determine the form of the continuity equation for
such motions.

By (4.29),curl v=0 when g =0, and so v becomes the gradient of a scalar field ¢(x; t) (see
Problem 1.50). Thus v; = ¢ ; and (5.8) is now dp/dt + pg . = 0 or dp/dt + pV32¢ = 0.

52. If P,, .(x, t) represents any scalar, vector or tensor property per unit mass of a con-
tinuum so that P¥  (x,t) = pP5” (x,t) show that

dit f PPu (X, f dP” (x ) av
By (4.52),
d o _ d * sk OVk
dt VPPij.A.dV = .I;[E(ppij )+ ePy axk:l av

dP}*. wx [ do vy, f dPj*

since by (5.8), do/dt+ pvy , = 0.

5.3. Show that the material form d(pJ)/dt =0 of the continuity equation and the spatial
form dp/dt + pv, , = 0 are equivalent.

Differentiating, d(pJ)/dt = (dp/dt)J + pdJ/dt = 0 and from Problem 4.28, dJ/dt = Jv),, so
that d(pJ)/dt = J(dp/dt + pv,. ;) = 0.

5.4. Show that the velocity field v: = Axi/r3, where x;xi = 7> and A is an arbitrary con-
stant, satisfies the continuity equation for an incompressible flow.

From (5.5) vy, =0 for incompressible flow. Here
Vi = Ax; /13— 3z /75) = A(8y/1® — 3wxy/15)
and so v, = (3—3)/r3 = 0 to satisfy the continuity equation.
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For the velocity field v, = z,/(1+1), show that pZ, 2,2, = p X X, X .

Here v, =3/(1+1t) and integrating (6.8) yields Inp = —In(1+ 83 +InC where C is a
constant of integration. Since p =p, when t=0, this equation becomes p = py/(1+ t)3. Next
by integrating the velocity field dzi/z; = dt/(1+1t) (no sum on 1), x; = X;/(14+¢t) and hence
p% 2553 = peX ;1 XX 3.

LINEAR AND ANGULAR MOMENTUM. EQUATIONS OF MOTION (Sec. 5.2-5.3)

5.6.

5.7.

5.8.

5.9.

Show by a direct expansion of each side that the identity e,
and (5.21) is valid.

By (1.15) and (2.8),

#9:.6, = £, used in (5.20)

A A A A A A A A

z,, = 011€) X (1 =+ 019€1 X (-] + 013€1 X €3 + e 4+ 033€3 X €3
_— A A A
= (023 —o03)€ + (03, —013)€ + (015 — 0p1) €

Also, expanding e;,0;, gives identical results, (093 —0gp) for i =1, (o5 — oy3) for =2, (01 — 09y)
for 7= 3. '

If distributed body moments m; per unit volume act throughout a continuum, show
that the equations of motion (5.16) remain valid but the stress tensor can no longer
be assumed symmetric.

Since (5.16) is derived on the basis of force equilibrium, it is not affected. Now, however, (5.19)
acquires an additional term so that

d A
a €k TPV av = f qkajt,i“) as + f (Gijkxjpbk + mi) av
v S 14

which reduces to (see Problem 2.9) f (k05 +m;) dV = 0, and because V is arbitrary, €k +
m; = 0 for this case. v

The momentum principle in differential form (the so-called local or “in the small”
form) is expressed by the equation a(pv,)/ot = pb, + (o, — pvv,) ;- Show that the equa-
tion of motion (5.16) follows from this equation.
Carrying out the indicated differentiation and rearranging the terms in the resulting equation
yields
'U,l(ap/at + P,jvj + p'v]',j) + p(a’v,/ﬂt + ’U]"Ui‘j) = pbi + 034,

The first term on the left is zero by (5.4) and the second term is ea;. Thus pa; = pb; + 0;;,; which
is (5.16).

Show that (5.19) reduces to (5.20).

Substituting opkny, for t,(c") in (5.19) and applying the divergence theorem (1.157) to the resulting
surface integral gives

d
f ik{(®jopk),p + 2jpb} AV = FT f €ijep(x;vi) AV
v 1%
Using the results of Problem 5.2, the indicated differentiations here lead to
f e,-jk{x,-’papk + xj(vpk,p + pbk - p’l‘)k) -— p’Ujvk} dV = 0
v

The term in parentheses is zero by (5.16), also Zip = 8jp and uvv =0, so that finally
f €k ik dVv = 0.
v
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5.10.

For a rigid body rotation about a point, v, = ¢;02,. Show that for this velocity

(5.19) reduces to the well-known momentum principle of rigid body dynamics.

The left hand side of (5.19) is the total moment M; of all surface and body forces relative to
the origin. Thus for v; = 0%y,

d d
Mi = 'd_t f €;ik¥ jPEkpqWpPLq av = % f wpp(S,-pajq - Siqup)xjxq av
1% A

d d
= % [wp fv p(8ip%gq — Hp%;) dV:‘ = @ (wplip)

where I, = f 0(8;p%tq — @px;) AV is the moment of inertia tensor.
v

ENERGY. ENTROPY. DISSIPATION FUNCTION (Sec. 5.4-5.6)

5.11.

5.12.

5.13.

5.14.

Show that for a rigid body rotation with v, = ¢ 0, the kinetic energy integral of

(5.23) reduces to the familiar form given in rigid body dynamics.

From (5.23),

Vi 1
K P 2 av = é‘ PE; KWLk Eipqp¥q av
v v

1
E J‘; pwpwj(b‘jpskq - 85q8kp)xkxq dv

wjwp

= 5 j; p(8jptqtqy — %px;) AV =

wjopl

o*l* e

2

In symbolic notation note that K =

At a certain point in a continuum the rate of deformation and stress tensors are
given by

1 6 4 \ 4 0 -1
D, = (6 3 2 and o, = | 0-2 7
4 2 5 -1 7 8

Determine the value A of the stress power Dijoij at the point.

Multiﬁlying each element of D;; by its counterpart jn oy and adding, A = 44+0—4+0—6+
14 — 4 4+ 14 + 40 = 58.

If o,=—p3; where p is a positive constant, show that the stress power may be
expressed by the equation Do, = 4 fd_e.
ij i p dt

By (4.19), Dj; = v;;— Vi;; and since Vo =0, it follows that Djjoi5 = vy, ;(—p8y5) = —pvy ;.
From the continuity equation (5.8), v;; = —(1/p)(dp/dt) and so Djo;; = (p/p)(do/dt) for oy = —psy;.

Determine the form of the energy equation if ¢, = (—p+aA* D)8, + 2p*D,; and the

heat conduction obeys the Fourier law ¢, = —kT .
From (5.32), p
Pd_1: = (—p+)\*Dkk)6ijDij + 2#*DijDij + kT,ii + z

= 1;5;—‘; O 202 — 4Tl + AT + 2

where I, and II, are the first and second invariants respectively of the rate of deformation tensor.
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515. If o,; = —P3,, determine an equation for the rate of change of specific entropy during
a reversible thermodynamic process.

c . ds _du | pdp .
L= ¢ £e _au P oo
Here o o;;° and (5.41) gives T FTiy + 5 4¢ upon use of the result in Problem 5.18.

5.16. For the stress having o = BD;.D,, determine the dissipation function in terms of
the invariants of the rate of deformation tensor D.

Here by (4.25), o7’ &; = pDyD\;D;; which is the trace of D3 (see page 16) and may be evaluated

ij
by using the principal axis values D1y, D¢y, D¢3y. Thus by (1.188) the trace
DyDyDy; = Diy, + Dy + D,
= (Dayt D)+ Dgy)® — 3(Dyy + Deyy + D5)(D1yDcay + D(9yDcsy + D(3,Dy5)
+ 3D(1;D5,D s

Therefore o &; = B[I§ — SI,II, + SIII,).

CONSTITUTIVE EQUATIONS (Sec. 5.7)

5.17. For the constitutive equations o; = Ki].qupq show that because of the symmetry of
the stress and rate of deformation tensors the fourth order tensor K 1pq 128 at most 36
distinct components. Display the components in a 6 X 6 array.

Since oy = 0j;, Ky = K;q; and since Dy = Dy, Kijpg = Kijgp. If K;;pq is considered as the
outer product of two symmetric tensors A;iBpg = Kijpq, it is clear that since both A;; and Bj; have
six independent components, K;ipq will have at most 36 distinct components.

The usual arrangement followed in displaying the components of Kijpq is

Kllll K1122 K1133 K1123 K1131 K1112

K2211 K2222 K2233 K2223 K2231 K2212

K3311 K3322 K3333 K3323 K3331 K3312
ijpa
K2311 K2322 K2333 K2323 K2331 K23l2

K3111 K3122 K3133 1(3123 K3131 K3112

K1211 K1222 K1233 K1223 K1231 K1212

5.18. If the continuum having the constitutive relations

o :Ki].mDm of Problem 5.17 is assumed isotropic

so that Ki].m has the same array of components in any
rectangular Cartesian system of axes, show that by
a cyclic labeling of the coordinate axes the 36 com-
ponents may be reduced to 26.

The coordinate directions may be labeled in six different
ways as shown in Fig. 5-2. Isotropy of K;jpq then requires
that K90 = Ky133 = Kypgs = Kypyy = Kagyy = Kggpp and that
Kioy = Kig13 = Kogpg = Kpypy = Ks131 = Kjgg which reduces
the 36 components to 26. By suitable reflections and rotations
of the coordinate axes these 26 components may be reduced
to 2 for the case of isotropy. Fig. 5-2

5.19. For isotropy K,-qu may be represented by Kiqu = A*8.8  + u*(8. 8. +8. 8, ). Use

W pq g iq”jp
this to develop the constitutive equation o, =KD, interms of \* and p*.
% = N*8;8pqDpq + 1 (885, + 8iq81p)Dpq

)\*Biij, + [l*(D” + D“) = )\*Siijp + 2#*Di]'
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520. Show that the constitutive equation of Problem 5.19 may be split into the equivalent
equations o, = (3A* +2,*)D, and s, = 2u*D;, where s, and D], are the deviator ten-
sors of stress and rate of deformation, respectively.

Substituting o;; = 8; + 8y04,/3 and Dy = Djj + 8D /8 into oy = N8;Diy + 2p*Dy;  of
Problem 5.19 results in the equation 8y + 8;01/8 = N*8y;Dyy + 2u*(Dy; + 8;D1x/3).  From this
when i+ j, s;=2p*Dj; and hence o = (3\* + 2p*) Dy

MISCELLANEOUS PROBLEMS

dqi

5.21. Show that > = (8, ; T 4;v; )/p Where p is the density, a: the acceleration and

dt\p
¢; the vorticity vector.
: : - g ¢ g .
By direct differentiation gf <-;l = %—- gp%. But ¢; = eu0,; + qvi,; — 4:v;,; (see Problem
4.32); and by the continuity equation (5.8), § = —pv;,;. Thus
d [ 1 '
at <f> = ;(Gijkafk,j + @ — G T G = (egrtr, s+ 4L e

5.22. A two dimensional incompressible flow is given by v1 = A(x] — 3)/1%, v2 = A(2z122)/7*,
vs=0, where 72 = 22 + . Show that the continuity equation is satisfied by this
motion. .

By (5.5), w;; =0 for incompressible flow. Here w;; = A[—4a,(#? — x2)/r8 + 2x,/r4] and
vy 9 = A[2x/14 — 8x,x5/r8]. Adding, vyi+ ve,s = 0.

5.23. Show that the flow of Problem 5.22 is irrotational.
By (4.29), curlv =0 for irrotational flow. Thus

A A A
€y €, €3
curlv = 8/0x, CIGE 8/dx3
A@? —x2)/rt 2Axxy/rt 0
= Al2x,/rt — 823 wy/r8 + 2aq/7t + dxy(a? — x3)/79) & = 0
5.24. In a two dimensional incompressible steady flow, vi= —Auxo/r where 2= 2% +3.

Determine v, if v2=0 at z; =0 for all z,. Show that the motion is irrotational
and that the streamlines are circles.

From (5.5), v;; =0 or vy 1= —Vg2= 2Ax,x,/rt for this incompressible flow. Integrating
with respect to #, and imposing the given conditions on v, yields v, = Ax,/r2
For an irrotational motion, curlv = 0. Here
curlv = A[(@? —22)/rt + (—a] +23)/ri]€ = 0

‘From Problem 4.7, page 118, the equations for streamlines are day/v, = dxof/vy. Here these

equations are z,dx; + ¥3dx, = 0 which integrate directly into the circles xf + xg = constant.

595. For a continuum whose constitutive equations are o, = (—p+21*Dy,)8; +2u*D,,
determine the equations of motion in terms of the velocity vi.

From (5.16), p’l.)i = pbi + 0i5,; OF here pi'),- = pbi - p,jSi]- + }\*DkkjjSij + 2["*Dij,j' By deﬁnition,
2Dii = Vi, + Vj,i SO that Dkk = Vg, k and 2Di]',j = Vi, + Vj, 45+ Therefore
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5.26.

5.27.

5.28.

5.29.

5.30.
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PO = pby—pi + (\F+ B¥)v;,55 + wtvg
In symbolic notation this equation is

v = pb — Vp + (\* + u*)V(V e v) + w*2v

If the continuum of Problem 5.25 is considered incompressible, show that the diver-
gence of the vorticity vanishes and give the form of the equations of motion for
this case. ‘

By (4.29), ¢;= €Uk, 55 and divg = ;v ;= 0 since ek is antisymmetric and Vg, ;i 1S sym-
metric in ¢ and j. Thus for V+v =0 the equations of motion become o¥; = pb; — P, + u¥v;
or in Gibbs notation ov = pb — Vp + u*y2v. ‘

Determine the material rate of change of the kinetic energy of the continuum which
occupies the volume V and give the meaning of the resulting integrals.

By (5.23), dK/dtzf pv0;dV. Also the total stress power of the surface forces is
A 4
f vitg“)dS which may be written f vio;m; dS and by the divergence theorem (1.757) and the

s s
equations of motion (5.16) expressed as the volume integrals f vioym; dS = J' o0, ; AV +
5 v
f p(vi0; — b)) dV. Thus

v v
dK ; A
& = f pbiv; dV — f o, AV + f v;t™ dS
v A S

This sum of integrals represents the rate of work done by the body forces, the internal stresses
and the surface stresses, respectively.

A continuum for which o’ = A*Dy, 8+ 2u*D,; undergoes an incompressible irrota-
tional flow with a velocity potential ¢ such that v =grad¢. Determine the dissipa-

tion function of ¢,..

Here of” &; = o{”’Dyy = (\*Dyy8;; + 2u*Dy)Dy; = 2u*Dy;D;; since Dy = Y,k = 0 for incompres-

sible flow. Also since v; = ¢ ;, the scalar DiiDy; = ¢,1j9,1; and so ai(jD)Dij = 2u%¢ ;i 0,4

Because the motion is incompressible and irrotational, ¢ ; =0 and 26,450,535 = (6,19,),5; =
V2A(V¢)2 It is also interesting to note that
Vig?) = (¢¢),iiij = 2(¢ ;¢ + 49, 55¢,; + ®,u9,5 T 2¢,i;9,4)

which for ¢ ; =0 reduces to 4¢ ;¢ ;. Thus ¢ & = u*V2Ve)2 = p¥v4(g2)/2.

kA

For a continuum with o,; = —p3;, the specific enthalpy h = #+p/p. Show that the
energy equation may be written % =p/p+ T$ using this definition for the enthalpy.

From (5.41), & = —pd;Dylp + T3 for the given stress; and by the result of Problem 5.13 and
the definition of h, % = h — Plo — pplp? = —pp/p? + T4 Canceling and rearranging, h = p/p+ T3,

.

If the continuum of Problem 5.25 undergoes an incompressible flow, determine the
equation of motion in terms of the vorticity q in the absence of body forces and
assuming constant density.

For incompressible flow, V+v=0; and if b= 0, the equation of motion in Problem 5.25
reduces to pv; = —p,; * u*v; ;. Taking the cross product V X with this equation for p = constant
gives eyqiliq = —epqibig/o + (u*/0)epqivi,jiq»  But e,qp,,, =0 and by (4.29) the result is dp =
(4*/p)q,;;. In symbolic notation, dq/dt = (u*/p)V2q.
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5.31.

5.32.

5.33.

5.34.

5.35.

5.36.

5.37.

5.38.

5.39.

5.40.

Supplementary Problems

Show that for the rate of rotation vector Q, T:lii <%> = o -va .
Show that the flow represented by v, = —2%x.xs/r%, v, = (x% - xg)xg/r‘*, vy = wy/r2 where

r2 = mf + xg, satisfies conditions for an incompressible flow. Is this motion irrotational?

In terms of Cartesian coordinates «,%, z the continuity equation is
3p/t + 3(pv,)/9x + 9(pv,)/dy + 3(pv)/dz = 0
Show that in terms of cylindrical coordinates r, 6, z this equation becomes

r(8p/dt) + d(rpv,)/or + 3(pvg)/38 + r(3(pv,)/32) = 0

Show that the flow v, = (1—172) cos /72, vy = (1472 sing/r2, v, =0 satisfies the continuity
equation in cylindrical coordinates when the density p is a constant.

If P; . (x,t) is an arbitrary scalar, vector or tensor function, show that

f Py opqngdS = f [uqui]-“_,q—\L-pP.ij“_(i)p—bp)] av
s v

If a continuum is subjected to a body moment per unit mass h in addition to body force b, and a
couple stress g"‘) in addition to the stress t(“), the angular momentum balance may be written

d

qt pm+ xXv)dV = f (h+xXb)dV + f (g(:‘)+x><t‘"))ds
\4 \ 4 S

where m is distributed angular momentum per unit mass. If fi+6 = g™, show that the local form

of this relation is pdm/dt = h+ V6 + Z,.

If a continuum has the constitutive equation o; = —p8;; + BDy; + aDyDy; show that o; =
3(—p — 2411,/8). Assume incompressibility, Dy = 0.

For a continuum having o; = —p8;;, show that du = Tds — pdv where in this problem v = 1/p,
the specific volume.

If Tds/dt = —v,;/p and the specific free energy is defined by ¥ = u — Ts, show that the energy
equation may be written p d¥/dt + ps dT/dt = o;;D;;.

For a thermomechanical continuum having the constitutive equation
o = hegdi; T 2ue; — (BN + 2p)a 8;(T — T'o)

where T, is a reference temperature, show that g = 3a(T —T,) when o; = 8; = o — o118:j/3.



Chapter 6

Linear Elasticity

6.1 GENERALIZED HOOKE’S LAW. STRAIN ENERGY FUNCTION

In classical linear elasticity theory it is assumed that displacements and displacement
gradients are sufficiently small that no distinction need be made between the Lagrangian
and Eulerian descriptions. Accordingly in terms of the displacement vector w;, the linear
strain tensor is given by the equivalent expressions

o=y = 3 (H) = s = s,y

i ij 2\8X; ' 80X, 2\9x;  ox
or (6.1)

L =E = {uVy + Vxu) = }uV, + V,u) = Vv + vu)

In the following it is further assumed that the deformation processes are adiabatic (no heat
loss or gain) and isothermal (constant temperature) unless specifically stated otherwise.

The constitutive equations for a linear elastic solid relate the stress and strain tensors
through the expression ~

o = Ci].kmekm or Z =C:E (6.2)
which is known as the generalized Hooke’s law. In (6.2) the tensor of elastic constants
Cijxm has 81 components. However, due to the symmetry of both the stress and strain
tensors, there are at most 36 distinct elastic constants. For the purpose of writing Hooke’s
law in terms of these 86 components, the double indexed system of stress and strain com-
ponents is often replaced by a single indexed system having a range of 6. Thus in the
notation

o, = o Oyy = 04 = 0,
Oy = 0, T, = 0y = o (6.3)
0'33 = T, (712 = 0’2l = 0’6
and : € = € 2¢; = 2¢,, = ¢,
G = € 2e, = 26, = « ' (6.4)
€y = € 2, = 2¢, = ¢
Hooke’s law may be written
op = Cyyey (K,M=1,2,38,4,5,6) (6.5)

where Cku represents fhe 36 elastic constants, and where upper case Latin subscripts are
used to emphasize the range of 6 on these indices.

When thermal effects are neglected, the energy balance equation (5.32) may be written

du 1 1 .
aE = ;UijDij = PREA (6.6)

140
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The internal energy in this case is purely mechanical and is called the strain energy (per
unit mass). From (6.6),

du = %cﬁdeﬁ (6.7)

and if u is considered a function of the nine strain components, % = u(e, ) its differential
is given by

du = —aeﬁ de,; (6.8)
Comparing (6.7) and (6.8), it is observed that
1 . ou
; o.’i.j _ ée—” (6.9)

The strain energy density u* (per unit volume) is defined as

u* = pu (6.10)

and since p may be considered a constant in the small strain theory, »* has the property that
ou ou*

O’ij == P 55—- = 5_5— (6 A1 )

Furthermore, the zero state of strain energy may be chosen arbitrarily; and since the stress
must vanish with the strains, the simplest form of strain energy function that leads to a
linear stress-strain relation is the quadratic form

u* = %Cukm uekm (6.12)
From (6.2), this equation may be written
u* = doye, or u* = $2:E (6.13)

In the single indexed system of symbols, (6.12) becomes
u* = %CKMexeM (6'.14)

in which Cxm = Cux. Because of this symmetry on Cxkwu, the number of independent elastic
constants is at most 21 if a strain energy function exists.

6.2 ISOTROPY. ANISOTROPY. ELASTIC SYMMETRY

If the elastic properties are independent of the reference system used to describe it, a
material is said to be elastically isotropic. A material that is not isotropic is called aniso-
tropic. Since the elastic properties of a Hookean solid are expressed through the coefficients
Cxwm, a general anisotropic body will have an elastic-constant matriz of the form

Ci Ci Cis Cu Cis Cu)
Cy C22 Caz Cau Cz Co
Caai Csz Cazs Cu Css Cas
C = 6.15
[Cr] Cia Cie Cis Cu Css Caus ( )
Csi Cs2 Css Css Css Css

Cet Ce2 Ces Ces Cos Ces

When a strain energy function exists for the body, Ckm = Cmk, and the 36 constants in
(6.15) are reduced to 21.

»
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A plane of elastic symmetry exists at a
point where the elastic constants have the same
values for every pair of coordinate systems
which are the reflected images of one another
with respect to the plane. The axes of such
coordinate systems are referred to as “equiva-
lent elastic directions.” If the x:x2 plane is one
of elastic symmetry, the constants Cxu are in-
variant under the coordinate transformation

T = X1, Xz = Xy, X4 = —x (6.16)

as shown in Fig. 6-1. The transformation
matrix of (6.16) is given by

0
0

(6.17)

S = O

1
[arij] = 0
0

i

Inserting the values of (6.17) into the transformation laws for the linear stress and strain
tensors, (2.27) and (3.78) respectively, the elastic matrix for a material having zz; as a
plane of symmetry is

Cu Cr Ci 0 0 Cs
C21 022 023 O 0 C2G
[CKM] — Cst Cs2 Csgs 0 0 Css (6.18)
0 0 0 Cu Cs O
0 0 0 Csse Css O

Ce1 Ce2 Ces 0 0 CesJ

The 20 constants in (6.18) are reduced to 13 when a strain energy function exists.

If a material possesses three mutually perpendicular planes of elastic symmetry, the
material is called orthotropic and its elastic matrix is of the form

Cu Ci2 Ciz O 0 0
Cu Cxp Cu 0 0 0
[Ckm] = C Cm Cm 0O 0 0 (6.19)
0 0 0 Cu O 0
0 0 0 0 Css O

0 0 0 0 0 Ce]

having 12 independent constants, or 9 if Cxu = Cux.

An axis of elastic symmetry of order N exists at a point when there are sets of equiva-
lent elastic directions which can be superimposed by a rotation through an angle of 2:/N
about the axis. Certain cases of axial and plane elastic symmetry are equivalent.

6.3 ISOTROPIC MEDIA. ELASTIC CONSTANTS

Bodies which are elastically equivalent in all directions possess complete symmetry and
are termed isotropic. Every plane and every axis is one of elastic symmetry in this case.

]
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For isotropy, the number of independent elastic constants reduces to 2, and the elastic
matrix is symmetric regardless of the existence of a strain energy function. Choosing as
the two independent constants the well-known Lamé constants, A and u, the matrix (6.19)
reduces to the isotropic elastic form '

A +20 A A 0 0 0
A A+2p A 0 0 0
' A oA+2p 0

[Ckm] = A 2 0 0 (6.20)

0 0 0 ® 0 0

0 0 0 0 p 0

Y 0 0 0 0 w |
In terms of A and p, Hooke’s law (6.2) for an isotropic body is written

o = A + 2p.ei]. or . X = Me+ 2uE (6.21)

where = ¢, =1 This equation may be readily inverted to express the strains in terms
of the stresses as :
=X 1 - 1
T BEh ) v T2 T BT amray©te® (6.22)

where © = ¢,, = I;, the symbol traditionally used in elasticity for the first stress invariant.

For a simple uniaxial state of stress in the z: direction, engineering constants E and v
may be introduced through the relationships o,, = E¢;, and e,, = ¢;; = —ve;,. The constant
E is known as Young’s modulus, and v is called Poisson’s ratio. In terms of these elastic
constants Hooke’s law for isotropic bodies becomes

E v
o; = 175 <‘ij + 1i—25, 81]€kk> or s = . <E 4 =% 2 1 > (6'.23)
or, when inverted,
1+ 1+ v
% — TE % E' §yo OF E = —p—3 — 510 (6.24)

From a consideration of a uniform hydrostatic pressure state of stress, it is possible to
define the bulk modulus,
_ E _ 3A+2u
K=3gq-5; o K="—"3
which relates the pressure to the cubical dilatation of a bpody so loaded. For a so-called state
of pure shear, the shear modulus G relates the shear components of stress and strain. G
is actually equal to x and the expression

(6.25)

= G = _Z—HE‘{-_V) : (6.26)

may be proven without difficulty.

6.4 ELASTOSTATIC PROBLEMS. ELASTODYNAMIC PROBLEMS

In an elastostatic problem of a homogeneous isotropic body, certain field equations,
namely,

(a) Equilibrium equations,
Ujl,j+Pbi =0 or V'E+pb =0 (6.27)
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(b) Hooke’s law,
0; = Ad e +2p.eij or 2 = M+ 24E (6.28)

U
(¢) Strain-displacement relations,
o = ¥u,;+u) or E = }uv+ vu) (6.29)

must be satisfied at all interior points of the body. Also, prescribed conditions on stress
and/or displacements must be satisfied on the bounding surface of the body.

The boundary value problems of elasticity are usually classified according to boundar
conditions into problems for which '

(1) displacements are prescribed everywhere on the boundary,
(2) stresses (surface tractions) are prescribed everywhere on the boundary,

(3) displacements are prescribed over a portion of the boundary, stresses are prescribed
over the remaining part.

For all three categories the body forces are assumed to be given throughout the continuum.

For those problems in which boundary displacement components are given everywhere
by an equation of the form ’
u, = g(X) or u= gX) (6.30)
the strain-displacement relations (6.29) may be substituted into Hooke’s law (6.28) and the
result in turn substituted into (6.27) to produce the governing equations, .

pt s+ (At pu, b, = 0 or  uVM+ (A+p)VV u+pb = 0 (6.81)

i,jj
which are called the Navier-Cauchy equations. The solution of this type of problem is

therefore given in the form of the displacement vector u;, satisfying (6.31) throughout the
continuum and fulfilling (6.30) on the boundary.

For those problems in which surface tractions are prescribed everywhere on the
boundary by equations of the form
ti” = oym, or t™ = 3I:h | (6.32)
the equations of compatibility (3.104) may be combined with Hooke’s law (6.24) and the
equilibrium equation (6.27) to produce the governing equations,

1 v
Tij.kk + 1+, Tkk.i + P(bi,j + bj.i) + 1— Vsijpbk.k = 0

or
v

1
VIE + {35 VVO + (Vb +bV) + ;7—hV'b = 0 (6.33)
which are called the Beltrami-Michell equations of compatibility. The solution for this
type of problem is given by specifying the stress tensor which satisfies (6.33) throughout
the continuum and fulfills (6.82) on the boundary.

For those problems having “mixed” boundary conditions, the system of equations (6.27),
(6.28) and (6.29) must be solved. The solution gives the stress and displacement fields
throughout the continuum. The stress components must satisfy (6.32) over some portion
of the boundary, while the displacements satisfy (6.30) over the remainder of the boundary.

In the formulation of elastodynamics problems, the equilibrium equations (6.27) must
be replaced by the equations of motion (5.16)

o;; T pb, = p’(.)i or V'Z+pb = pv (6.34)
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and initial conditions as well as boundary conditions must be specified. In terms of the
displacement field u;, the governing equation here, analogous to (6.31) in the elastostatic
case is

wU; 5

+A+pu, b, = pti;, or pVM+A+p)VV-eut+pb = pu  (6.35)

4, di
Solutions of (6.35) appear in the form u = ui(x,t) and must satisfy not only initial condi-
tions on the motion, usually expressed by equations such as

u, = u(x,0) and u, = u(x,0) (6.36)

i 1

but also boundary conditions, either on the displacements,

u = gxt) or u=gxi 6.37)

or on the surface tractions,

K = tP(xt)  or P = tP(x1) (6.38)

6.5 THEOREM OF SUPERPOSITION. UNIQUENESS OF SOLUTIONS.
ST. VENANT PRINCIPLE

Because the equations of linear elasticity are linear equations, the principle of super-
position may be used to obtain additional solutions from those previously established. If,
for example, ¢, %"’ represent a solution to the system (6.27), (6.28) and (6.29) with body
forces bV, and o, u{® represent a solution for body forces b*, then o, = oi” + o7,
u, = u{® +u{® represent a solution to the system for body forces b, = b;V + b{®.

The uniqueness of a solution to the general elastostatic problem of elasticity may be
established by use of the superposition principle, together with the law of conservation of
energy. A proof of uniqueness is included among the exercises that follow.

St. Venant’s principle is a statement regarding the differences that occur in the stresses
and strains at some interior location of an elastic body, due to two separate but statically
equivalent systems of surface tractions, being applied to some portion of the boundary.
The principle asserts that, for locations sufficiently remote from the area of application
of the loadings, the differences are negligible. This assumption is often of great assistance
in solving practical problems.

6.6 TWO-DIMENSIONAL ELASTICITY. PLANE STRESS AND PLANE STRAIN

Many problems in elasticity may be treated satisfactorily by a two-dimensional, or
plane theory of elasticity. There are two general types of problems involved in this plane
analysis. Although these two types may be defined by setting down certain restrictions
and assumptions on the stress and displacement fields, they are often introduced descrip-
tively in terms of their physical prototypes. In plane stress problems, the geometry of
the body is essentially that of a plate with one dimension much smaller than the others.
The loads are applied uniformly over the thickness of the plate and act in the plane of the
plate as shown in Fig. 6-2(a) below. In plane strain problems, the geometry of the body is
essentially that of a prismatic cylinder with one dimension much larger than the others.
The loads are uniformly distributed with respect to the large dimension and act per-
pendicular to it as shown in Fig. 6-2(b) below.
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Ty 3

() (b)
Fig. 6-2

For the plane stress problem of Fig. 6-2(a) the stress components o, o, o,, are taken
as zero everywhere, and the remaining components are taken as functions of #; and x. only,

Cas = 0ap(@, %)  (6,8=1,2) (6.39)

Accordingly, the field equations for plane stress are

(a) Oaps T pby = 0 or V*'EZ+pb=0 (6.40)
1+ v 1+v v
(b) €ag = ——E—O’B—ES 8Ty or E = Z - =le
@ o @ E E
, (6.41)
€3 — E oo
(c) - € = $Ugpgt+uz,) or E = }(uv + Vu) (6.42)
in which ¥ = > & +--% and
inw V = 3% € %2 €2 n
oy 0 O € & O
z o oy 0, E = G & 0 (6.43)
0 0 0 0 0 o

Due to the particular form of the strain tensor in the plane stress case, the six compatibility
equations (3.104) may be reduced with reasonable accuracy for very thin plates to the

single equation _
€12 T €22,11 — 2‘12,12 (6.44)

In terms of the displacement components u., the field equations may be combined to give
the governing equation

E . E _ E . E . _
2——(1+V)Vua+2——(1_v)u3,,,a+pba =0 or _“2(1+V)V“+2(1_V)VV u + pb _(6(25)
9 e ' '
2 =
where 2 = P +a——x§ .

For the plane strain problem of Fig. 6-2(b) the displacement component us is taken as
zero, and the remaining components considered as functions of x; and z. only,

Un = Ua(Z1, X2) (6.46)
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In this case, the field equations may be written

(@) oo+ pby = 0 or V'Z+pb =0 (6.47)
(b) Ous = A8ypeyy T+ 2ueqgs or Z = Me + 2uE
N (6.48)
Opy = VOap = m .
() g = 3aptug,) or E = uVv+ Vu) (6.49)
oy 9 O &4 € O ‘
in which z = 19 Oy 0 and E = €5 €99 0 (6.50)
0 o 0 0 0

From (6.47), (6.48), (6.49), the appropriate Navier equation for plane strain is
uV 2, + A+ p)ug g + pb, = 0 or wVu+ A+ p) VY ru+pb = 0 (6.51)

As in the case of plane stress, the compatibility equations for plane strain reduce to the
single equation (6.44).

~If the forces applied to the edge of the plate in Fig. 6-2(a) are not uniform across the
thickness, but are symmetrical with respect to the middle plane of the plate, a state of
generalized plane stress is said to exist. In formulating problems for this case, the field
variables o.5, ¢,, and u, must be replaced by stress, strain and displacement variables
averaged across the thickness of the plate. In terms of such averaged field variables, the
generalized plane stress formulation is essentially the same as the plane strain case if A is

replaced by o) B
yis o v

A+2n T 1—>2

N (6.52)

A case of generalized plane strain is sometimes mentioned in‘ elasticity books when ¢,
is taken as a constant other than zero in (6.50).

6.7 AIRY’S STRESS FUNCTION

If body forces are absent or are constant, the solution of plane elastostatic problems
(plane strain or generalized plane stress problems) is often obtained through the use of the
Airy stress function. Even if body forces must be taken into account, the superposition
principle allows for their contribution to the solution to be introduced as a particular
integral of the linear differential field equations.

For plane elastostatic problems in the absence of body forces, the equilibrium equations
reduce to

U(IB.B = 0 or V'z = 0 (6.53)
and the compatibility equation (6.44) may be expressed in terms of stress components as
V2(au+ 022) = 0, vz(ﬂl =0 (6'.54)

The stress components are now given as partial derivatives of the Airy stress function
¢ = ¢(x1, x2) in accordance with the equations

Oy = P O = TP O = b1 (6.55)
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The equilibrium equations (6.53) are satisfied identically, and the compatibility condition
(6.54) becomes the biharmonic equation

ViV*) = Vi = bir T 20 4100 T S op = 0 (6.56)

Functions which satisfy (6.56) are called bikarmonic functions. By considering biharmonic
functions with single-valued second partial derivatives, numerous solutions to plane elasto-
static problems may be constructed, which satisfy automatically both equilibrium and
compatibility. Of course these solutions must be tailored to fit whatever boundary
conditions are prescribed.

6.8 TWO-DIMENSIONAL ELASTOSTATIC PROBLEMS IN POLAR COORDINATES

Body geometry often deems it convenient to formulate two-dimensional elastostatic
problems in terms of polar coordinates r and 4. Thus for transformation equations

Z1 = rcosd, z2 = rsind 6.57)

the stress components shown in Fig. 6-3 are found to lead to equilibrium equations in
the form -

do 1 do L
(rr) (r9) (rr) (60) —
ar > 20 T - + R = 0 (6.58)
1 a(r(”) ao(re) 20’( 9) —
- re) + = 0 6.59
r 86 or + r ? ( )

in which R and Q represent body forces per unit volume in the directions shown.

Z2 da
88)
ocop + 5 48

9 ¢ry)

/, \ /.,<,,)+ o

dr

— "
Fig. 6-3

Taking the Airy stress function now as & = ®(r, §), the stress components are given by

vy = s+ 108 (6.60)

Oopy = 0°®/0r? (6.61)

o = ~2(222) e
The compatibility condition again leads to the biharmonic equation

ViV*®) = Vo = 0 (6.63)
but, in polar form, W2 = Ll + 1o + 1 &

ort " ror | r2agr’
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6.9 HYPERELASTICITY. HYPOELASTICITY

Modern continuum studies have led to constitutive equations which define materials
that are elastic in a special sense. In this regard a material is said to be hyperelastic if it
possesses a strain energy function U such that the material derivative of this function is
equal to the stress power per unit volume. Thus the constitutive equation is of the form

2w = %a..p.. =1, (6.64)

[ p ij i

in which Dj; is the rate of deformation tensor. In a second classification, a material is said
to be hypoelastic if the stress rate is a homogeneous linear function of the rate of deforma-
tion. In this case the constitutive equation is written

0'“ = Kt]kmD ) (6.65)

in which the stress rate o}, is defined as
y = & V, — o,V 6.66
Ty = ﬁ("ﬁ) T %V T %q7 a (6.66)

where V. is the vorticity tensor.

6.10 LINEAR THERMOELASTICITY

If thermal effects are taken into account, the components of the linear strain tensor e
may be considered to be the sum

ij

¢ = €5+ D (6.67)

]

in which ¢;’ is the contribution from the stress field and ¢, is the contribution from the
temperature field. Due to a change from some reference temperature T, to the temperature
T, the strain components of an elementary volume of an unconstrained isotropic body are
given by

P = o(T — T)s, (6.68)

where « denotes the linear coefficient of thermal expansion. Inserting (6.68), together with
Hooke’s law (6.22), into (6.67) yields

_ A

1
& = 2 (o‘.j - m Sijokk> + T - TO)SiJ. (6.69)

which is known as the Duhamel-Neumann relations. Equation (6.69) may be inverted to
give the thermoelastic constitutive equations

oy = M6y + 2ue, — (3A+2u)ad (T —T,) (6.70)
Heat conduction in an isotropic elastic solid is governed by the well-known Fourier law

of heat conduction,
¢, = —kT (6.71)

where the scalar k, the thermal conductivity of the body, must be positive to assure a
positive rate of entropy production. If now the specific heat at constant deformation ¢ is
introduced through the equation .

—c, ., = pcT (6.72)

it

and the internal energy is assumed to be a function of the strain components ¢; and the
temperature T, the energy equation (5.45) may be expressed in the form
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kT, = pc™ T + (3A+2u)aT, i, (6.73)
which is known as the coupled heat equation.

The system of equations that formulate the general thermoelastic problem for an
isotropic body consists of

(a) equations of motion . .
o,;tpb, =% or V:Z+pb=1u (6.74)

i

(b) thermoelastic constitutive equations

0 = Adeq, T+ Zp.eij — Br+ 2,u.)a3ij(T— T)

1

or (6.75)
2 = AMe+ 2uE — (1 +2u)al(T — T)
(c¢) strain-displacement relations

o = Hu,;+u;) or E = 3V + Vu) (6.76)

LY
(d) coupled heat equation

KT o = peT + (Br+2p)aT 6y, or  kVT = pe®T + (31 +2u)aT,i (6.77)

This system must be solved for the stress, displacement and temperature fields, subject to
appropriate initial and boundary conditions. In addition, the compatibility equations must
be satisfied.

There is a large collection of problems in which both the inertia and coupling effects
may be neglected. For these cases the general thermoelastic problem decomposes into two
separate problems which must be solved consecutively, but independently. Thus for the
uncoupled, quasi-static, thermoelastic problem the basic equations are the

(@) heat conduction equation

KT , = p¢®T or kV?T = peT (6.78)

k13

(b) equilibrium equations
0;; T pb, = 0 or VZ+pb =0 (6.79)

(¢) thermoelastic stress-strain equations

0; = Adq, + 21""1‘} - (Br+ 2,u.)a8ij(T =T)

i

or (6.80)
2 = Me+ 2uE — (BA+2u)al(T — T)

(d) strain-displacement relations

¢ = $u,;+tu) or E=}Vu+uy) (6.81)
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Solved Problems

HOOKE’S LAW. STRAIN ENERGY. ISOTROPY (Sec. 6.1-6.3)

6.1.

6.2.

6.3.

6.4.

6.5.

Show that ‘the strain energy density «* for an isotropic Hookean solid may be
expressed in terms of the strain tensor by u* = A(trE)%/2 + ,E:E, and in terms of
the stress tensor by u* = [(1+4v)Z:Z — »(tr 2)?]/2E.

Inserting (6.21) into (6.13), u* = (A§;;e + 2ue;) /2 = Aeyie;if/2 + peyye;; which in symbolic
notation is u* = A(trE)2/2 + uE:E.

Inserting‘ (6.24) into (6.13), u¥* = Uij[(l + V)aij - vb‘i]-akk]/ZE = [(1 + V)Uijo’ij — PUiinj]/zE which in
symbolic notation is u* = [(1+»)Z:Z — »(tr £)2]/2E.

Separating the stress and strain tensors into their spherical and deviator components,
express the strain energy density »* as the sum of a dilatation energy density wes>
and distortion energy density u(p.

Inserting (3.98) and (2.70) into (6.13),
u* = 'gl‘(si]' + akksij/3)(eij + epp8ij/3) = %(sijeij + ”iiejj/3 + siiejj/?’ + aiiejj/3)

. . *
and since ¢; = s; = 0 this reduced to u* = uf, + uip, = y¢/6 + 8;5€,;/2.

w

Assuming a state of uniform compressive stress o; = —Dp3;, develop the formulas
for the bulk modulus (ratio of pressure to volume change) given in (6.25).

With oy = —pB,-]-, (6.24) becomes €4 = [(1 + v)(—p&lj) + v81](3p)]/E' and so € = ["‘3})(1'*‘ V) +
9ps]/E. Thus K = —p/e; = E/3(1 —2y). Likewise from (6.21), oy = (3\+2p)e; = —3p so that
K = (3\ + 24)/8.

Express uf;, and uf,, of Problem 6.2 in terms of the engineering constants K and G
and the strain components.

From a result in Problem 6.3, o; = 8Ke; and so
u?s) = aiiejj/G = Keiiejj/Z = K(IE)2/2

From (6.21) and (2.70), oy = '\6i1'5kk + 2,ueij = 8 + [4%% Si]'/3 and since o = (3)\+ 2#) € it follows
that sij = 2p(€i]- — €k 8”/3). ThuS

u’("D) = 2/‘(51'1' — ekkaij/3)(eij _ eppsi]-/3)/2 = ,u(eijeij - eiiejj/3)

Note that the dilatation energy density ufs) appears as a function of K only, whereas the distortion
energy u’("D) is in terms of 4 (or G), the shear modulus.

In general, u* may be expressed in the quadratic form u* = C}, ¢, in which the
C,’:M are not necessarily symmetrical. Show that this equation may be written in the
form of (6.14) and that ou*/de, = o,.

Write the quadratic form as
u* = LCrumexen + 3Cxmexem = 4Cimexem + $Chnener = 3(Cikm + Cupdexey = $Crmexem
where Cyy = Cyi.

Thus the derivative du*/deg is now

au*/aER = "}CKM(SK,RGM-'_GK‘M,R) = '%CKM(SKREM_FEKBMR) = %‘(CRMEM+CKR5K) = CRMEM = op



152

6.6.

6.7.

LINEAR ELASTICITY [CHAP. 6

Show that for an orthotropic elastic continuum
(three orthogonal planes of elastic symmetry)
the elastic coefficient matrix is as given in
(6.19), page 142,

Let the z,2, (or equivalently, x{x}) plane be a
plane of elastic symmetry (Fig. 6-4). Then ox = Cxumen
and also og = Cgyepr. The transformation matrix
between z; and 2] is

1 0 0
a] = |0 1 0
0 0-1 Fig. 6-4
and from (2.2?) and (3.78), o =ok, ex=ex for K=1,2,8,6 whereas og = —og, ex = —ex

for K =4,5. Thus, for example, from o] = Cypepr,
“f = o1 = Cye + Cpoep + Cigeg — Crgeqy — Cyse5 + Crges
But from o; = Cyprey,
01 = Cyie1 + Cygep + Cygeg + Cygeq + Crses + Crees
These two expressions for of = o, are equal only if Cy = C;5 =0. Likewise, from o} = oy,
U’;;: o3, 04, = —0ay, Ug = —os;, Ué = og it is found that 024 = Czs = C34 = C35 = 064 = C35 = C41 =
Cyp = Cy3 = Cysy = C5p = C53 = C56 = 0.
pnis

If x923 (or xyx3’) is a second plane of elastic symmetry such that o} = Ckpesf, the trans-
formation array is

-1 0 o0
[a.i,-] = 0 1 0
0 0 1
and now from (2.2?) and (3.78), o =og, e ——ex for K =1,28,4 whereas of = —og,

C}é = —eg for K= 5, 6. Now Cls = Czs = Css = C45 = C54 = CGI = Csz = C63 =0 and the elastic

-coefficient matrix attains the form (6.19). The student should verify that elastic symmetry with

respect to the (third) x,x; plane is identically satisfied by this array.

Give the details of the reduction of the orthotropic elastic matrix (6.19) to the
isotropic matrix (6.20).

For isotropy, elastic properties are the same with respect to all Cartesian coordinate axes.
In particular, for the rotated x; axes shown in Fig. 6-5, the method of Problem 6.6 results in the
matrix (6.19) being further simplified by the conditions C;; = Cyp = Cg3, Cyy = C55 = Cg, and
Cip = Cyy = Cy3 = Cyy = Cy3 = Cyy.

Fig. 6-5 Fig. 6-6
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6.8.

6.9.

6.10.

Finally, for the axes ;' obtained by a 45° rotation about x, as in Fig. 6-6 above, the transformation

matrix is
Ve 1V2 o
lag] = | -1/V/Z 1/2 o
0 0 1

so that of = (03—01)/2=(C;;—Cio)(e;—)/2 and e =ep—e. But of = Cyeg and so
2Cy = Cy; — Cyp- Thus defining 4 =Cy and A = Cy,, (6.20) is obtained.

Give the details of the inversion of (6.21) to obtain (6.22).

From (6.21) with <= j, O — (3)\ + 2,(1.)6“ and so 2ﬂE.U = i — k&ijakk/(37\ + 2#) or €5 = Cfij/2;l,—
}\Sijakk/2,u(3>\ + 2,‘1).

Express the engineering constants v and E in terms of the Lamé constants A and p.

From (6.25), E/(1—~2»s) = 3\ + 24; and from (6.26), E/(1+») = 2. Thus (B\+2u)(1—2) =
2u(1+») from which » = A2\ + x). Now by (6.26), E = 2p(1 4 ») = p(BN +2p)/ (N + p).

Determine the elastic coefficient matrix for a continuum having an axis of elastic
symmetry of order N =4. Assume Cxky = Cux.

Let x5 be the axis of elastic symmetry. A rota-
tion 6 = 27/4 = 7#/2 of the axes about x5 produces g
equivalent elastic directions for N = 4. The trans- : 7
formation matrix is

0 1 o
la] = | -1 0 o
0 0 1
and by (2.27) and (3.78), oy =0, o) =0y, of= o0y,
[ — A A [ [ - |
04 = —05, 05 = 04, 05 = -—0g and €; = ey, €5 = €7, €3 = €3,
€ = —e5, € =€y, € = —eg. Thus, for example, from

0’:; = o3, C34 = C35 = C36 =0, C31 = C32. Likewise, from
the remaining five stress relations, the elastic matrix

becomes Fig. 6-7
Cn Cip Cy 0 Cis
Ciz Cu Cyg 0 —Cy
Ciz3 Ci3 Cgs 0 0 0
[Ckm] =
0 0 0 Cy 0 0
0 0 0 Cyy 0
Cis —Cis 0 0 Ces

with seven independent constants.

ELASTOSTATICS. ELASTODYNAMICS (Sec. 6.4-6.5)

6.11.

Derive the Navier equations (6.31).

Replacing the strain components in (6.28) by the equivalent expressions in terms of displace-
ments yields o;; = Moy, + p(u;j+u; ). Thus o5 = Ay + u(w;, ;;+u; ;).  Substituting this
into the equilibrium equations (6.27) and rearranging terms gives w5+ (N puy i + pb; = 0.
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6.12. Show that if V*Fi=0, the displacement u; = (A +2u)F; ;/p(A+p) — Fi3/p is a
solution of the Navier equation (6.31) for zero body forces.

Differentiating the assumed solution, the terms pu;;; = (A + 2p)F, jpii/ (N + 1) — Fi 1i;; and
N+ wu ;i = AN+ 20)F ) il — W+ p)Fy rj5/u  are readily calculated. Inserting these into (6.31)

gives
A+ 20)F i/ N+ ) — [0 — A+ 20) + A+ p)]Fj 506 = 0
provided F ;= V4F; = 0.

6.13. If body forces may be neglected, show that (6.35) is satisfied by u, = ¢, + ¢, ¥y ;
provided ¢ and y, each satisfies the familiar three dimensional wave equation.
Substituting the assumed u; into (6.85) yields
(e, ek + b, jaa) T A+ 0@, 55 + eipg¥apn) = p(B1 T e, i)
Since €jpqvq,pji = 0, this equation may be written
(A 208,100 —p9),i + €iliVic,qq — p¥R),; = O
which is satisfied when V2 = pg /(A + 2x) and V2, = pvi/n.

6.14. Writing ¢2/%¢ = 4 where c2 = (A+2u)/p for the wave equation derived in Problem

613, show that ¢ = L E Ot Rr=eh

tions of their arguments and 72 = zx;.

is a solufion with g and k arbitrary func-

Here it is convenient to use the spherical form V2 = %28—6; <¢2 (%) since ¢ = ¢(r,t). Thus

r2(d¢/0r) = r(9’'+ K') — (g + k) where primes denote derivatives with respect to the arguments of
9 and h. Then V2 = (9”+h")/r. Also ¢ = (g'c—h'e)/r and ¢ = c2(g” + h'')/r. Therefore
¢2V2¢ = ¢ for the given ¢.

6.15. Derive the Beltrami-Michell equations (6.33) and determine the form they take when
body forces are conservative, i.e. when pb, = ¢ ..

Substituting (6.24) into (3.103) yields
1+ Mo, km + %km.ii = ik, jm — Ojm.ik) = ¥(8ijO,km T Skm©,i5 — 81k O, im — 8im O, ix)

where © = Iy = ¢;. Only six of the eighty-one equations represented here are independent. Thus
setting m =k and using (6.27) gives

ai]',kk + (-),,-j + P(bi,j + bj,i) = V(Sije’kk + e,ij)/(l + V)

from which €3, = —(1+»)pby /(1 —»). Inserting this expression for © ;. into the previous
equation leads to (6.33).

If pb; = ¢, then p(b; ; + b; ;) = 2¢ ;; and pby = ¢, = V3¢ so that (6.33) becomes
vzﬂij + 9,1]/(1 + V) + 2¢,ij + V(Sl]vzlﬁl(l - V) =0

TWO-DIMENSIONAL ELASTICITY (Sec. 6.6-6.8)

6.16. For plane stress parallel to the z,x: plane, develop the stress-strain relations in terms
of A and . Show that these equations correspond to those given as (6.41).

Here o33 = 013 =093 =0 so that (6.21) yields ;3 = e53 =0 and ez = —A{egy + eps)/ (A + 2p).
Thus (6.21) reduces to o,5 = 2\uypey, /(N + 21) + 2pe,p With «, 8,y = 1,2 from which o,, =
2u(3\ + 2p)ey, /(N +24) so that the equation may be inverted to give

€ap = *)\SaBUV‘//Z#(B)‘_’- 2u) + 003/2# = _VaaBa'y'y/E + 1+ V)UDIB/E

Also, €33 = —Aeyy/(N+2p) = —Xoyy /228N +24) = —vo,,/E
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6.17.

6.18.

6.19.

6.20.

6.21.

For plane strain parallel to x:x2, develop the stress-strain relations in terms of v and
E. Show that these equations correspond to those given as (6.48).

Here u3 =0 so that e;3 =0 and (6.24) gives o33 = v(0q; + 099) = Noge/2(A + #). Thus (6.24)
becomes ey = (1 + v)oga/E — v(1 +9)8,04/E from which ey, = (1 +»)(1 — 2v)0,,/E. Finally,
inverting,

0up = vE8,pe /(L +v)(1—20) + Eeqp/(1+v) = Ngpgeqyy + 2peqg

Develop the Navier equation for plane stress (6.45) and show that it is equivalent to
the corresponding equation for plane strain (6.51) if A" = 2xu/(A +2p) is substituted
for .

Inverting (6.41) and using (6.42) leads to ong = E(ug,p+ g o)/2(1 +2) + 2vE S 4gu,, ., /2(1 — »2).
Differentiating with respect to 5 and substituting into (6.40) gives

Euy, a/2(1+v) + Bug 5o /201 — 9) + pby = wT%q + p(3\ + 2u)ug go/ (A + 20) + pby = 0

Thus since u(3\ + 2u)/(N + 24) = @Ap/ (A + 2p) + ) = (V' 4+ u), (6.45) and (6.51) have the same form
for the given substitution. '

Determine the necessary relationship between the constants A and B if ¢ =
Azixzy + Bxj is to serve as an Airy stress function.

By (6.56), ¢ must be biharmonic or ¢ 1;1; + 26,1100 + ¢.9000 = 0 + 244w, + 120Bx, = 0, which
is satisfied when A = —5B,

Show that ¢ = %[ 1%z — %cx?g] + ZPE x2 is suitable for use as an Airy stress function

and determine the stress components in the region z; >0, —c<z:<e.

Since V%¢ is identically zero, ¢ is a valid stress function. The stress components as given by

(6.55) are oy = ¢99 = —BFx;xy/2¢% + P/2¢, o015 = —¢,y0 = —8F(c2 — x3)/4c3, a9y = ¢,3; = O.

These stresses are those of a cantilever beam subjected to a transverse end load F and an axial
pull P (Fig. 6-8).

712

o11
c
?

y

AAEERRARTRRTRRRRTRREN

\

T2

Fig. 6-8

In Problem 2.36 it was shown that the equilibrium equations were satisfied in the
- . . .

absence of body forces by o, = ¢, € bgnpm Show that Airy’s stress function is

represented by the case ¢,, = ¢(2,,2,) with ¢,, = ¢,, = ¢, = ¢, = ¢, = 0.

Since ¢35 is the only non-vanishing component, ¢;; = €;pq€imndgn,pm bECOMeES 0} = €p3€im3H33, pm
which may be written o,5 = eqy3epr3a3,,;- Thus since ¢s3 = ¢, 045 = (8ap8yr — 8oy 8va)b, vt =
8apb, vy — ®,a8- The stress components are therefore oy = ¢,;; + ¢,00 — ¢, 11 = 9,22, 012 = —9,12,
o2 = 11T b2~ 9,20 = 110
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6.22.

LINEAR ELASTICITY [CHAP. 6

e

In polar coordinates (7, §) the Airy stress function Pz AN

® = Bf is used in the solution of a disk of radius \
a subjected to a central moment M. Determine the /

stress components and the value of the constant B. \ l

From (6.60) and (6.61), o(;r, = oceey = 0. From (6.62) /
ocrey = B/r2. Equilibrium of moments about the center of 0(r0&

2 o A 7

the disk requires M = o002 de = Bds = 27B. -~
Thus B = M/2x. 0 0 Fig. 6-9

LINEAR THERMOELASTICITY (Sec. 6.10)

6.23.

6.24.

6.25.

Carry out the inversion of (6.69) to obtain the thermoelastic constitutive equations
(6.70).

From (6.69) with i =174, o3 = (BN + 2p)(e; — 8T — Ty)). Solving (6.69) for o;; gives
o = 2,uei]- + )\Sijakk/(3)\ + 2/4) b 2,ua8ij(T— TO)
2uei; + Nyj(erre — 8a(T — Tg)) — 2uadi(T — Ty)

Il

= 2‘11.63']' + )s&i,-ekk - (3)\ + 2#)&8,']'(1' - To)

Develop the thermoelastic energy equation (6.73) by use of the free energy f=u—Ts.

Assuming the free energy to be a function of the strains and temperature, f = f(¢;, T) and
substituting into (5.41) pu = o€+ pTs where dots indicate time derivatives, the result is
(0;;— pdf/de;) &; — p(s + 3f/3T)T = 0. Since the terms in parentheses are independent of strain
and temperature rates, it follows that o;; = pdf/de;; and s = —3f/dT. From (5.38) for a reversible
isothermal process, —¢;; = pTs = pT<:—s &+ ‘—;2% T). At constant deformation, ¢&; =0 and

e‘ij

comparing this equation with (6.72) gives ¢ = T(8s8/0T) or from above, since 9s8/9T = —o2f/0T2,
e = —32f/3T2. Also, from above, p(62f/3¢;0T) = 80,;/0T and so combining (5.88) with (6.71),

do;; (v) e
—e; = kT = pr<£—,’ Eif+£%‘ T). Finally from (6.70), 90,/dT = (3\+2u)ad;T, so that

kT ; = pc™T + (3X + 2p)aTye; which is (6.73).

Use (6.13) and (6.70) to develop the strain energy density for a thermoelastic solid.
Substituting (6.70) directly into (6.13), '
w* = Nyerkei/2 + peijey — (BN + 2wadi(T — To)ei;/2
= heie;i/2 + peijei; — (3N + 2w)a(T — To)ey/2

MISCELLANEOUS PROBLEMS

6.26.

Show that the distortion energy density u}, may be expressed in terms of princinal
stress values by the equation u},, = [(¢;, —0,)? + (0, — 0,)? + (0, — 0,)?]/12G.

From Problem 6.2, u{p, = 8;;€;;/2 = 8;;8;;/4G which in terms of stress components becomes
ucpy = (035 — 8301/3) 01 — 8305p/3)/4G = (0501 — 04103;/3)/4G
In terms of principal stresses this is
wipy = [oF + o5 + 03 — (01 + 0p + 03)(0y + 0 + 03)/3]/4G
= [2(c} + 0 + 0 — 0100 — 0903 — 0301)/3]/4G

= [(oy — 02)2 + (o3 — 03)2 + (03 — 01)2]/12G



CHAP. 6] LINEAR ELASTICITY 1_57

6.27. Use the results of Problem 6.1 to show that for an elastic material du*/d¢; = o,; and
au*/ao‘i} = €e
From Problem 6.1, u* = he;e;;/2 + uejjei; and so
ou*/depq = )\/Z[Eﬁ(aeﬁ/ae‘pq) + ¢ (aeiilaepq)] + 2,u.eij(aeij/6£pq)

M2ei858iq + €idipdia] T 2ueidipdia = M2eudpg T €8pg] t 2uepq

= Aeiiqu -+ 2,ll.€pq = Opq
Likewise from Problem 6.1, u* = [(1 + »)oy05; — vo;05]/2E and so

Ju*/ao'pq = [2(1 + V)Uijsipsjq - V(Uﬁqu -+ O'nqu]/zE = [(1 -+ V)O'pq - liquﬂii]/E = €pq

6.28. Express the strain energy density u* as a function of the strain invariants.

From Problem 6.1, u* = \eje;/2 + pejjey;; and since by comparison with (3.91), I, =
II; = (eyej; — €5¢i5)/2, it follows that

wt = M2 + w—20+ D) = (V2 + w2 — 2l

€ii and

6.29. When a circular shaft of length L and radius
a is subjected to end couples as shown in Fig.
6-10, the nonzero stress components are
0,3 = —Gat,, o, = Gax, where o« is the angle
of twist per unit length. Determine expres-
sions for the strain energy density and the
total strain energy in the shaft.

From Problem 6.1, u* = [(1+»)Z:Z — »(tr Z)?]|/2E.
Here trX = 0 and Z:2 = 2G22%2 where 72 =
22 +27. Thus u* = Ga2r2/2. The total strain
energy is given by Fig. 6-10

Ge® (¢ (¥ b
v = f wrdV = ——f f f Pdrdsde, = GalatzL/4
) v 2 0 0 0

2T a
Note that since T = I f Ga(x% +x§)r drds = Gaain/2, U = TaL/2, the external work.
0 0

6.30. Show that for a continuum having an axis of elastic symmetry of order N =2, the
elastic properties (Hooke’s law and strain energy density) are of the same form as a
continuum having one plane of elastic symmetry. '

Here a rotation of axes 8 = 27/N = 27/2 = 7 produces equivalent elastic directions, But this
is precisely the same situation as the reflection about a plane of elastic symmetry.

6.31. Show that (6.19) with Cu = sz = 033, Cu =
Css = Ces and Cr2 = Ci3 = Cas may be reduced to
(6.20) by an arbitrary rotation 6 of axes about z;
(Fig. 6-11).

The transformation between z; and x; axes is
cosd sing 0
a; = —sing cosé 0
0 0 1

and from (2.27),
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6.32.

6.33.

6.34.

6.35.

6.36.

LINEAR ELASTICITY [CHAP. 6
o = (—siné cos@)oy; + (cos?@ — sin26)o;, + (sin @ cos 6)os,
or in single index notation,
og = (—siné cos6)o, + (cos29 — sin26)ag + (sin 6 cos 8)oy
Likewise from (3.78) and (6.4),
¢ = (—2sin6 cosb)e; + (cos28 — sin26)eg + (2 sin @ cos e,

But og = Cyeq for an isotropic body and so here oy — 0y = 2C(e;— ¢;). Finally from (6.19) with
the given conditions, o; = Cjye; + Ciplea+e;) and oy = Cypep + Crole; + ) and so oy — oy =
(Cll - CIZ)(EZ- el). Therefore (Cll - C12) = 2044 and with C44 = u, C12 =N Cll =A+2u as
given in (6.20).

For an elastic body in equilibrium under body forces b; and surface forces t(‘A‘), show
that the total strain energy is equal to one-half the work done by the external forces
acting through their displacements u;.

It is required to show that f pbu, dV + f (w w; dS = 2 f u* dV. Consider first the surface

integral with t(" = o;u; and convert by Gauss’ theorem. Thus

f oﬁu{n]« as = f (a,vjui),j av = f (Uij,ju{ + “iiui,j) av
S \' v

But o, ;= “ij(‘ij + ""ij) = 0jj€ij and from equilibrium 05,5 — _Pbi‘ Thus
f My ds = —f by dV + 2f oiyei/2 AV
S \4

and the theorem is proved.

Use the result of Problem 6.32 to establish uniqueness of the elastostatic solution of a
linear elastic body by assuming two solutions o, ui¥ and o, ug®.

(1 _ (2 1)

For linear elasticity superposition holds, so o;; = o o, u = uf o

— u;*’ would also be

a solution for which b, = 0. Thus for this “difference” solution f Wy, dS = 2f u*dV from

Problem 6.32. Smce the two assumed solutions satisfy boundary condltlons, the left hand integral

is zero here since t‘"’ = t{"’ — ¢{¥ on the boundary for equation (6.32) and u; = u" — u? on

the boundary for equation (6.80). Thus f u*dV = 0 and since u* is positive definite this occurs
v

only if ¢; = ¢’ — 62].2) =0, or ' = egj?). If the strains are equal for the two assumed solu-

tions, the stresses are also equal by Hooke’s law and the displacements are equal to within a rigid
body displacement. Thus uniqueness is established.

The Navier equations (6.81) may be put in the form pu:j; + Uj, ji + pbi = 0

_®
1-2
which for the incompressible case (v = 1) are clearly indeterminate. Use the equilib-
rium equations for this situation to show that uuj; + ©,:/3 + pb; = 0.
From equation (6.24), ¢; = (1 —2»)0;;/E; and for » = 4, & =u;,; = 0. Thus from (6.24),
e, = Ui+ Uy = 201+ voy JE — 2084010, /E
But u;; =0 and E=3G when »={, so that u; ; = —pb/G — oy, i/3G or uV2u;+ 6,/3+ pb, =0.

Supplementary Problems

Prove that the principal axes of the stress and strain tensors coincide for a homogeneous isotropic
elastic body.

Develop the expression for the strain energy density u* for an orthotropic elastic medium. Use
equations (6.14) and (6.19).

Ans. u* = (Cllel + 2C12€2 + 2C13€5)€1/2 + (02252 + 202364)62/2 + Cagtg + 04462 + C55€§ + CGGE(%'
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6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

6.49.

6.50.

Determine the form of the strain energy density for the case of (a) plane stress, (b) plane strain.
Ans. (@) u* = [0} + o3y — 2v011095 + 2(1 +»)010]/2E
(0) w* = (u+M2)eH+ Gy) + Aeqyeps + 2uels

Determine the value of ¢ for which »; = A sin—z—lz (€, = et), up=uz =0 is a solution of equation

(6.35) when body forces are zero. Ans. e=V(AN+2u)/p

Show that the distortion energy density u(p, = (gijoi; — 040;;/3)/4G and the dilatation energy density
’Mz‘S) = aiiajj/ISK. ,

Show that 1/(1+») = 2\ + u)/(B\ +2x) and »/(1 —») = N (A + 2p).

For plane strain parallel to x,2,, show that b; =0 and that b, and b, are functions of x, and
x4 only.

Use the transformation laws for stress and strain to show that the elastic constants Cij,, are the
components of a fourth order Cartesian tensor so that Cijim = @;pjqrOmsCpgrs-

Show that the Airy stress function ¢ = 2:0': + 12xfav§ - Gx; satisfies the biharmonic equation
V4p =0 and determine the stress components assuming plane strain.

®3— 3wy —2wx, 0
Ans. (47} = 24 —2001'.1:2 x% + .’tg 0
0 0 2(x]—23)

Determine the strains associated with the stresses of Problem 6.43 and show that the compatibility
equation (6.44) is satisfied.

x? — 322 — 2u(x] — 23) —22,2, 0
Ans. ¢ = 24 (%) —2%,2, €3+ x5 — (x> —x3) 0
0 0 0

For an elastic body having an axis of elastic symmetry of order N =6, show that C,, = Cy,
Cs5 = Cyy, Cgg = 2(C1;— Cyy) and that C;5 and Cyg are the only remaining nonzero coefficients.

Show that for an elastic continuum with conservative body forces such that pb, = Vy =y ,, the
compatibility condition (6.44) may be written V2o,, = Y2y/(1—») for plane strain, or
V204, = (1+»)¥2¢y for plane stress.

If V*F; =0, show that w; = 2(1—»)V2F;/G — F; ;;/G is a solution of the Navier equation (6.31)
when b, =0 (see Problem 6.12), If F = B(avz'é1 —x 32)/1' where 72 = xx;, determine the stress
components..

Ans. oy = —0gy = 6QGE,%y/75, 033 = 0, oyy = 3QG(x5— #2)/75, 013 = —o93 = 3QGx.xs/r5, where
Q = 4B(1 —»)/G.

In polar coordinates an Airy stress function is given by & = Cr2(cos 20 — cos 2a) where C and «

are constants. Determine C if 04 =0, o0,9=7 when ¢ =a, and o9 =0, o0, =—r Wwhen

= —a. Ans. C = 7/(2 sin 2a)

Show that in plane strain thermoelastic problems o33 = »(oy; + 093) — «E(T — Ty) and that ¢, =
NSypeaq + 2ueqg — 8458\ + 2u)a(T — T'y). In plane stress thermoelasticity show that

33 = —voy Fon)/E+o(T—Ty) and e = (1+ »)ogs/E — 18,5000 /E + 845 (T — Toa

In terms of the Airy stress function ¢ = ¢(x, #,), show that for plane strain thermoelasticity the
compatibility equation (6.44) may be expressed as Vi¢ = —aEV2(T — Ty)/(1 —») and that for plane
stress as Vip = —aEVHT — T,).

-



Chapter 7

Fluids

7.1 FLUID PRESSURE. VISCOUS STRESS TENSOR. BAROTROPIC FLOW

In any ﬁ}\;id at rest the stress vector tE‘:’ on an arbitrary surface element is collinear with
the normal n of the surface and equal in magnitude for every direction at a given point.
Thus

tm = o, = —P,M;  or t™ = I.f = —p,n (7.1)

in which p, is the stress magnitude, or hydrostatic pressure. The negative sign indicates a
compressive stress for a positive value of the pressure. Here every direction is a principal
direction, and from (7.1) '
o, = —p8; or X = —pl (7.2)
which represents a spherical state of stress often referred to as hydrostatic pressure.
From (7.2), the shear stress components are observed to be zero in a fluid at rest.

For a fluid in motion, the shear stress components are usually not zero, and it is cus-
tomary in this case to resolve the stress tensor according to the equation

o, = —P8;+ 7, or S = —pl+r (7.3)

¥
where 7,; 18 called the viscous stress tensor and p is the pressure.

All real fluids are both compressible and viscous. However, these characteristics vary
widely in different fluids so that it is often possible to neglect their effects in certain situa-
tions without significant loss of accuracy in calculations based upon such assumptions.
Accordingly, an inwviscid, or so-called perfect fluid is one for which 7; is taken identically
zero even when motion is present. Viscous fluids on the other hand are those for which
7,; must be considered. For a compressible fluid, the pressure p is essentially the same as
the pressure associated with classical thermodynamics. From (7.3), the mean normal stress

is given b
£ d o, = —p+ir, or 40 = —p+ir (7.4)

For a fluid at rest, 7, vanishes and p reduces to p, which in this case is equal to the negative
of the mean normal stress. For an incompressible fluid, the thermodynamic pressure is
not defined separately from the mechanical conditions so that » must be considered as an
independent mechanical variable in such fluids.

In a compressible fluid, the pressure p, the density p and the absolute temperature T are
related through a kinetic equation of state having the form

p = pp,T) (7.5)
An example of such an equation of state is the well-known ideal gas law
p = pRT (7.6)

160
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where R is the gas constant. If the changes of state of a fluid obey an equation of state
that does not contain the temperature, i.e. p = p(p), such changes are termed barotropic.
An isothermal process for a perfect gas is an example of a special case which obeys the
barotropic assumption.

7.2 CONSTITUTIVE EQUATIONS. STOKESIAN FLUIDS. NEWTONIAN FLUIDS

The viscous stress components of the stress tensor for a fluid are associated with the
dissipation of energy. In developing constitutive relations for fluids, it is generally assumed
that the viscous stress tensor r,, is a function of the rate of deformation tensor D;. If the
functional relationship is a nonlinear one, as expressed symbolically by

r, = f;(D,) or T = f(D) 7.7
the fluid is called a Stokesian fluid. When the function is a linear one of the form

w = KD, or T =K:D (7.8)

ijpq

where the constants Kijpq are called viscosity coefficients, the fluid is known as a Newtonian
fluid. Some authors classify fluids simply as Newtonian and non-Newtonian.

Following a procedure very much the same as that carried out for the generalized
Hooke’s law of an elastic media in Chapter 6, the constitutive equations for an isotropic
homogeneous Newtonian fluid may be determined from (7.7) and (7.8). The final form is

o; = —DP8,; + A%, D, +2u*D,; or T = —pl+A*(trD) + 21.*D (7.9

where A* and u* are viscosity coefficients of the fluid. From (7.9), the mean normal stress

is given b,
£ v Yo, = —p +4Br*+2,*)D;, = —p +«*D,;

or (7.10)
3(trZ) = —p + 3BA* +2u*)(trD) = —p + «*(trD)

where «* = }(8\* +2u*) is called the coefficient of bulk viscosity. The condition that
= A+ g =0 (7.11)

is known as Stokes’ condition, and guarantees that the pressure p is defined as the average
of the normal stresses for a compressible fluid at rest. In this way the thermodynamic
pressure is defined in terms of the mechanical stresses.

In terms of the deviator components s, = o, — 8,0,,/3 and D/ = D, —8,D,,/3, equa-
tion (7.9) above may be rewritten in the form

s, + ¥8,0, = —p8,;+ 8,(\* +3u*)D, + 2u*Dj;
or (7.12)
S+ }(tr) = —pl + IA* + $u*)(tr D) + 2u.*D’

Therefore in view of the relationship (7.10), equation (7.12) may be expressed by the pair
of equations ,
S.. — ZM*DI.]. ~or S = 2/.1,*0' (713)

1

o, = —3p+38*D, or trX = —3p+3«*(trD) (7.14)

the first of which relates the shear effects in the fluid and the second gives the volumetric
relationship.
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7.3 BASIC EQUATIONS FOR NEWTONIAN FLUIDS.
- NAVIER-STOKES-DUHEM EQUATIONS

In Eulerian form, the basic equations required to formulate the problem of motion for
a Newtonian fluid are

(a) the continuity equation (5.3),
pev, =0 or  p+p(Vyrv) =0 (7.15)

(b) the equations of motion (5:16'),
o, T pb, = p’l')i or Vi Z+pb = pv (7.16)

(¢) the energy equation (5.32),

w = loijD —lc .tz or u = lE:D—le'C‘f'z (7.17)
3 P P 3

(d) the constitutive equations (7.9),
o; = —p8; +A*8; D, + 2u*D,;  or X = —pl+ A*I(trD) + 2.*D  (7.18)

Y
(e) the kinetic equation of state (7.5),
p = pp,T) (7.19)

If thermal effects are considered, as they very often must be in fluids problems, the
addltlonal equations

(f) the Fourier law. of heat conduction (6.71),
¢, =—kT, or ¢=—-kvyT (7.20)

(9) the caloric equation of state,
u = u(p, T) ’ (7.21)
are required. The system of equations (7.15) through (7 21) represents sixteen equations
in sixteen unknowns and is therefore determinate.

If (7.18) above is substituted into (7.16) and the definition 2D, = (v,;+w,,) is used, the
equations that result from the combination are the Namer-Stokes-Duhem equations of

motion, — *
p’vi=pbi-p_i+(/\ +p)11t+yv .
or (7.22)

pv = pb— VD + (A\* +u*)V(V * V) + u*V2v

When the flow is incompressible (v,,=0), (7.22) reduce to the Nawvier-Stokes equations
for incompressible flow,

PO, = pb,— D +pu*v,,, or pv = pb— Vp + u*Viv (7.23)

If Stokes condition is assumed (A* = —%u*), (7.22) reduce to the Navier-Stokes equations

for compressible flow . . *
pV; = pb =D+ dutv,  +pty,

or (7.24)
pV = pb — VP + $p*V(V * V) + p*V2v
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The Navier-Stokes equations (7.23), together with the continuity equation (7.15) form
a complete set of four equations in four unknowns: the pressure p and the three velocity
components v,. In any given problem, the solutions of this. set of equations must satisfy
boundary and initial conditions on traction and velocity components. For a viscous fluid,
the appropriate boundary conditions at a fixed surface require both the normal and
tangential components of velocity to vanish. This condition results from the experimentally
established fact that a fluid adheres to and obtains the velocity of the boundary. For an
inviscid fluid, only the normal velocity component is required to vanish on a fixed surface.

If the Navier-Stokes equations are put into dimensionless form, several ratios of the
normalizing parameters appear. One of the most significant and commonly used ratios is
the Reynolds number N ., which expresses the ratio of inertia to viscous forces. Thus if
a flow is characterized by a certain length L, velocity V and density p, the Reynolds number
is '

N = VL/v (7.25)

(R)

where v = u*/p is called the kinematic viscosity. For very large Reynolds numbers, the
viscous contribution to the shear stress terms of the momentum equations may be neglected.
In turbulent flow, the apparent stresses act on the time mean flow in a manner similar to
the viscous stress effects in a laminar flow. If turbulence is not present, inertia effects
outweigh viscous effects and the fluid behaves as though it were inviscid. The ability of
a flow to support turbulent motions is related to the Reynolds number. It is only in the case
of laminar flow that the constitutive relations (7.18) apply to real fluids.

74 STEADY FLOW. HYDROSTATICS. IRROTATIONAL FLOW

The motion of a fluid is referred to as a steady flow if the velocity components are
independent of time. For this situation, the derivative 9v,/dt is zero, and hence the material
derivative of the velocity

dv; .0 dv . _ 0V

—d?sfvi—at+v]fui,j or EEV—R

+ Ve VeV (7.26)

reduces to the simple form

b, = v, or vV = V-VgV (7.27)

A steady flow in which the velocity is zero everywhere, causes the Navier-Stokes equa-
tions (7.22) to reduce to
pb, =p, or pb = VP : (7.28)

which describes the hydrostatic equilibrium situation. If the barotropic condition p = p(p)
is assumed, a pressure function

Po) = [ 2 (7.29)
po P
may be defined. Furthermore, if the body force may be prescribed by a potential function
b= -, or b=-VQ (7.80)
equations (7.28) take on the form ‘
(@+P), =0 or V@Q@+P)=0 (7.81)

A flow in which the spin, or vorticity tensor (4.21),

= l/ovi  9v; — v —
Vs = 2<ax,- ax,) or V = }(vv-Vv) (7.32)
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vanishes everywhere is called an irrotational flow. The vorticity vector ¢, is related to
the vorticity tensor by the equation

% = ¢,V or q =V (7.33)

ijk v
and therefore also vanishes for irrotational flow. Furthermore,
¢ = V,; O q = VXv " (7.34)

and since V Xv =0 is necessary and sufficient for a velocity potential ¢ to exist, the
velocity vector for irrotational flow may be expressed by

v, = —¢, or v = —V¢ (7.35)

7.5 PERFECT FLUIDS. BERNOULLI EQUATION. CIRCULATION

If the viscosity coefficients A* and p* are zero, the resulting fluid is called an inviscid
or perfect (frictionless) fluid and the Navier-Stokes-Duhem equations (7.22) reduce to
the form . .
pv; = pb,—p, or pv = pb— Vp (7.36)

1

which is known as the Euler equation of motion. For a barotropic fluid with conservative
body forces, (7.29) and (7.80) may be introduced so that (7.36) becomes

v, = —(@+P), or Vv = —V(@Q+P) (7.87)
For steady flow (7.37) may be written
vv,; = —(@Q@+P), or v-VYv = —-V(Q+P) (7.38)

If the Euler equation (7.87) is integrated along a streamline, the result is the well-
known Bernoulli equation in the form (see Problem 7.17)

Q+ P+ Y2 + f Wi, = C(t) (7.89)

For steady motion, 9v,/39t = 0 and C(t) becomes the Bernoulli constant C which is, in general,
different along different streamlines. If the flow is irrotational as well, a single constant
C holds everywhere in the field of flow.

When the only body force present is gravity, the potential @ = gh where g is the
gravitational constant and % is the elevation above some reference level. Thus with h,=Plg
defined as the pressure head, and v%/2¢g = h, defined as the velocity head, Bernoulli’s equa-
tion requires the total head along any streamline to be constant. For incompressible fluids

(liquids), the equation takes the form
h+h, +h, = h+plpg+ v*/29 = constant (7.40)

By definition, the velocity circulation around a closed path of fluid particles is given by
the line integral
r, = f vdx, or T,6 = fv-dx (7.41)

From Stokes theorem (1.153) or (1.154), page 23, the line integral (7.41) may be converted
to the surface integral

r, = J; MV ;4S  or T, = j;ﬁ-(va)dS (7.42)

where 1 is the unit normal to the surface S enclosed by the path. If the flow is irrotational,
V Xv =0 and the circulation is zero. In this case the integrand of (7.41) is the perfect
differential d¢ = —v-dx with ¢ the velocity potential.
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The material derivative dr /dt of the circulation may be determined by using (4.60)
which when applied to (7.41) gives

T, = §(1’)idxi+'vidvi) or T = §("r-dx+v-dv) (7.43)

For a barotropic, inviscid fluid with conservative body forces the circulation may be shown
to be a constant. This is known as Kelvin's theorem of constant circulation.

7.6 POTENTIAL FLOW. PLANE POTENTIAL FLOW

The term potential flow is often used to denote an irrotational flow since the condition
of irrotationality, ¥ X v =0, is necessary and sufficient for the existence of the velocity
potential ¢ of (7.35). For a compressible irrotational flow, the Euler equation and the
continuity equation may be linearized and comblned as is done in acoustics to yield the
governing wave equation

$ = ¢, or § = V% (7.44)
where c¢ is the velocity of sound in the fluid. For a steady irrotational flow of a compressible
barotropic fluid, the Euler equation and continuity equation may be combined to give

(e®8,—vo)v,, = 0 or AV-'v —v:(v'Vv) = 0 (7.45)

which is the so-called gas dynamical equation.

For incompressible potential flow the continuity equation attains the form
¢, = 0 or V% =0 ‘ (7.46)

and solutions of this Laplace equation provide the velocity components through the defini-
tion (7.35). Boundary conditions on velocity must also be satisfied. On a fixed boundary,
for example, d¢/on = 0. An important feature of this formulation rests in the fact that
the Laplace equation is linear so that superposition of solutions is possible.

In a two-dimensional incompressible flow parallel to the z x, plane, v,=0, and the
continuity equation becomes

Voo = 0 or V-v =0 (7.47)

where, as usual in this book, Greek subscripts have a range of two. By (7.47), regardless
of whether the flow is irrotational or not, it is possible to introduce the stream function
¢ = y(x,, x,) such that

Vo = _eaB3¢;B (7'48)
If the plane flow is, indeed, irrotational so that
V¢ = —bpa OF V = —Vo¢ (7.49)

then from (7.48) and (7.49) the stream function and velocity potential are seen to satisfy
the Cauchy-Riemann conditions

¢, = ¢, and ¢, = —y, (7.50)
By eliminating ¢ and ¢ in turn from (7.50) it is easily shown that
b = 0 or V% = 0 (7.51)

Il

Vo = 0 or V¥ 0 (7.52)
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Thus both ¢ and y are harmonic functions when the flow is irrotational. Furthermore, the

complex potential .
o(2) = ¢(x, ) + iy(x,,x,) (7.53)

is an analytic function of the complex variable, z = z, +1x, so that its derivative d¥/dz

defines the complex velocity .
dv/dz = —v, + v, (7.54)

Solved Problems

FUNDAMENTALS OF FLUIDS. NEWTONIAN FLUIDS (Sec. 7.1-7.8)

7.1. Show that the deviator 8;; for the stress tensor o, of (7.3) is equal to ¢
of Tij of (7.3).

;» the deviator
From (7.8), o; = —8p + r; and so here

8ij = 05 = 8yokk/3 = —p8;+ iy — 8y(—3p + 1a)/3 = myy; — Sym/3 = b

72. Determine the mean normal stress o,/3 for an incompressible Stokesian (nonlinear)
fluid for which r; = oD + BD,D,; where a and B are constants.

From (7.9), o;; = —p8y; + aDy; + BDyD,; and so o; = —8p + oD; + BDy.Dy;. But Dy =
Dy; and D;;=v;; =0 for an incompressible fluid so that
O'ﬁ/3 = —-p + ,BDIJD”/:; = =-p — ZBIID/3

where II; is the second invariant of the rate of deformation tensor.

7.3. Frictionless adiabatic, or isentropic flow of an ideal gas, is a barotropic flow for which
P = ¢p* where C and k are constants with k = c®/c™, the ratio of specific heat at
constant pressure to that at constant volume. Determine the temperature-density
and temperature-pressure relationships for such a flow.

Inserting p = Cok into equation (7.6), the temperature-density relationship is pk~1/T = R/C,

a constant. Also, since p = (p/C)1/k here, (7.6) yields the temperature-pressure relationship as
pk—D/K/T = R/Cl/k, a constant.

74. Determine the constitutive equation for a Newtonian fluid with zero bulk viscosity,
i.e. with «* = 0.

If x*=0, \*=—24*/3 by (7.11) and so (7.9) becomes 0ij = —P8; — (2u*/3)8;; Dy, + 2u*D;;
which is expressed in terms of the rate of deformation deviator by

0 = ~P8i; + 2p*(Dy; — 8;D1/3) = —p8;; + 2u*D);

If the deviator stress 8;; is introduced, this constitutive relation is given by the two equations
sij = 2[1.* l):J and g = —3p.
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7.5.

7.7.

7.8.

Determine an expression for the “stress power” ¢,D, of a Newtonian fluid having
equation (7.9) as its constitutive relation.

From (7.9) and the stress power definition,
oDy = —pdyDy; + N*8;;DiuDi; + 2p*DyDy; = —pDy + N*DyDj; + 2u*DyD;
In symbolic notation, this expression is written
2:D = —p(trD) + A*(trp)2 + 2u*D:D

In terms of Dj; the expression is

aijDij = —pDﬁ + A*DiiDjj + 2,‘1,*(D;] + si]'Dkk/3)(D1".j + 8“qu/3) = —pDii + K*DﬁDjj + 2/‘*Di,jDi,j
In symbolic notation,
Z2:D = —p(trb) + «*(trp)2 + 2u*D": D’
Determine the conditions under which the mean normal pressure p,,= —o,/3 is

equal to the thermodynamic pressure p for a Newtonian fluid.

With the constitutive equations in the form (7.18) and (7.14), the latter equation gives
Pemy—P = —«*Dy;. Thus pmy =p when x* =0 (by (7.11) when A* = —24*) or when Dy =0.

Verify the Navier-Stokes-Duhem equations of motion (7.22) for a Newtonian fluid
and determine the form of the energy equation (7.17) for this fluid if the heat conduc-
tion follows the Fourier law (7.20).

Since Dj = v;;, equation (7.18) may be written o;; = —p&y + N*8;v, + p¥(v; ;+ ;). Thus
0,5 = —P,;8; + M8V + p* Wity = —pi (W vyt ey
and with this expression inserted into (7.16) a direct verification of (7.22) is complete.
Substituting the above equation for ¢;; together with (7.20) into the energy equation (7.17), the

result is .
ot = [—p8y + N8y + w* (vt ;)] (v +v;,0/2 — kT 5 + p2

which reduces to
pU = —PYv;; + }\*’Ui,i’b'j,j + ,llf*(’Ui']' + vj,i)('vi,j + 'U]-’i)/z - kT}ﬁ + p2

Determine the traction force T, acting on
the closed surface S which surrounds the
volume V of a Newtonian fluid for which
the bulk viscosity is zero.

The element of traction is dT; = t{™dS and
the total traction force is T; = f t{»dS which

s
because of the stress principle is T; = f ojn; dS.
From Problem 7.4, this becomes S

T, = f (—psy; + 2u*Diyn; dS
S

for a zero bulk modulus fluid; and upon application
of Gauss’ theorem, y

T, = f (2u*Dij; — p,) AV Fig. 7-1
\'4
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7.9.

7.10.

FLUIDS [CHAP. 7

In an axisymmetric flow along the 23 axis the velocity is taken as a function of xs; and
r where 7* = 7 + 2. If the velocity is expressed by v = ¢€, + v58; where &, is
the unit radial vector, determine the form of the continuity equation.

Equation (5.4) gives the continuity equation in symbolic notation as dp/at + V o (pv) = 0.

d(pv
Here the cylindrical form of the operator V may be used to give V «(pv) = %8_(7‘;;_(1) + (o 3).

Inserting this into (5.4) and simplifying, the continuity equation becomes or 9%

7(9p/0t) + d(rpq)/dr + d(rovy)/oey = 0

In a two-dimensional flow parallel to the 2z plane, vs and d/dx;s are zero. Determine
the Navier-Stokes equations for an incompressible fluid and the form of the con-
tinuity equation for this case.

From (7.23) with ¢=3, pby=p, and when i=1,2, pVy = pby — P o + #*V4 - The con-
tinuity equation (7.15) reduces to v, , = 0. ¢

If body forces were zero and v, = V1(21, T t), v =0, p = p(x,, Xy, t) the necessary equations
would be pv, = —ap/ox, + p*(@2v,/00% + 6%v,/322) and ov,/ox, = 0.

HYDROSTATICS. STEADY AND IRROTATIONAL FLOW  (Sec. 7.4)
7.11. Assuming air is an ideal gas whose temperature varies linearly with altitude as

7.

12.

13.

T = To— axs where T, is ground level temperature and x; measures height above
the earth, determine the air pressure in the atmosphere as a function of z; under
hydrostatic conditions.

From (7.6) in this case, p = pR(Ty — axg); and from (7.28) with the body force by = —g, the
gravitational constant, dp/dr; = —pg = —pg/R(Ty— ax;). Separating variables and integrating
vields Inp = (9/Ra) In (Ty—ax;) + InC where C is a constant of integration. Thus p=
C(Ty— ax3)9/Re and if p = p, when 3 =0, C=pyTy~9/Re and so p = py(l — axs/Ty)9/Ra,

A barotropic fluid having the equation of state P = Ap* where A and % are constants
is at rest in a gravity field in the z direction. Determine the pressure in the fluid
with respect to 23 and po, the pressure at z; = 0.

From (7.28), dp/dxy = —pg, dp/dxy, = dp/dxy = 0. Note that pressure in 2; and x, directions
is constant in the absence of body forces by and b,. Since here p = (p/M)V/k, P~ Vkdp = —g\—1/kdg,
and integration gives (k/(k—1))pte—D/k = —gN"Vkgs + C. But p=p, when 23 =0 so that
C = (k/(k— D)p{k=1/k, Therefore x5 = (kpo/(k —1)gpe)(1 — (p/po)*—D/K) where po = (Po/N)1/E,

A large container filled with an incompressible
liquid is accelerated at a constant rate a = .6, +
a:€; in a gravity field which is parallel to the zs
direction. Determine the slope of the free surface
of the liquid.

From (7.28), dp/dx, =0, dp/dxy = pa, and dp/dxs =
—plg —ag). Integrating, » = p@s%s + f(xs) and p =
—p(9 — ag)xsz + h(z,) where f and h are arbitrary functions
of their arguments. In general, therefore, p = pasz, —
p(g —as)xz+ p, where p, is the pressure at the origin of
coordinates on the free surface. Since p = Py everywhere
on the free surface, the equation of that surface is Xof23 =
(g — aj)/a,. Fig.7-2

as

a,
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7.14. If a fluid motion is very slow so that higher order terms in the velocity are negligible,
a limiting case known as creeping flow results. For this case show that in a steady
incompressible flow with zero body forces the pressure is a harmonic function, i.e.
Vip =0.

For incompressible flow the Navier-Stokes equations (7.23) are
p(a’vt/at + vjvi,j) = Pbi - p’i + [l.*’l)i,ﬁ
and for creeping flow these linearize to the form
p(a’l)t/at) = Pbi bl p’i =+ l"*vi,jj

Hence for steady flow with zero body forces, »; = p*v; ;. Taking the divergence of this equation
yields p ; = u*v;;;; and since the continuity equation for incompressible flow is v;; = 0, it follows
that here p ; = V2p = 0.

7.15. Express the continuity equation and the Navier-Stokes-Duhem equations in terms of
the velocity potential ¢ for an irrotational motion.

By (7.85), v; = —¢; so that from (7.15) the continuity equation becomes s—pV2p =0. Also
with v; = —¢;, (7.22) becomes

—pé,i = pby—pi— (N + ¥ i — w0,
or —p(@s,: /0t + ¢k 0,u) = pby — pi — (\F+2u%)g s
In symbolic notation this equation is written

—pV(3g/dt + (V$)?/2) = pb — Vp ~ (\* +24%)V(V2¢)

7.16. Determine the pressure function P(p) for a barotropic fluid having the equation of
state p = Ap* where A and & are constants.

From the definition (7.29),

P dp P kal/k ® k p Do
P(p) = f = = f (p/)\)—l/k dp = __.__I:p(k—l)/k] — —{=—-=
2, o 2, k—1 P, k—1\p pp

Also since dp = Akp*—1dp, the same result may be obtained from

e Ak ° k p_Po
P = k=2 = k—1 = — &
(») f Ao P k—l[” :Lo P 1<p o

Py

PERFECT FLUIDS. BERNOULLI EQUATION. CIRCULATION (Sec.7.5)
7.17. Derive equation (7.89) by integrating Euler’s equation (7.37) along a streamline.

Let dx; be an increment of displacement along a streamline. Taking the scalar product of this
increment with (7.87) and integrating gives

f %dxl + f 'Uj'v“'jdxi + f Q‘idxi + f P'idx," == C(t)

Since ,;dx; =dQ and P ;dx; = dP the last two terms integrate at once. Also, along a stream-
line, dx; = (v;/v) ds where ds is the increment of distance. Thus in the second integral,

v;v; ;de; = v;v;;(v/vyds = v, (/) ds = v day; = vdyy

Therefore f v;v;,de; = f vidv; = dvv; = 302, and (7.89) is achieved.
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7.18.

7.19.

" Determine the circulation around the square z; = =1, ml*e

FLUIDS [CHAP. 7

The barotropic fluid of Problem 7.16 flows from a large closed tank through a thin
smooth pipe. If the pressure in the tank is N times the atmospheric pressure, deter-
mine the speed of the emerging fluid.

Applying Bernoulli’s equation for steady flow between point 4, at rest in fluid of the tank and
point B, in the emerging free stream, (7.39) assumes the form £, + P, + %vi = Qp + P+ %’ug.
But v, =0, and if gravity is assumed negligible this equation becomes (see Problem 7.16),

b_(Ba-22) o ‘%vz or vi = 2k Pr Nes _ 1
k—1\pa s B o F k—1pg\ pa
Since pp/ps = (pp/ps) 1k = N=1/k the result may be written

2 _ 2k Ds

= —t (k—1)/k —
VB %=1 on (N 1)

Show that for a barotropic, inviscid fluid with conservative body forces the rate of
change of the circulation is zero (Kelvin’s theorem).

From (7.43) T, = § (¥;dz; +v;dv;) and by (7.87), ¥; = —(& + P); for the case at hand. Thus
f‘c = § (—2 ;da; — P ;dx; +v;dvy) = —§ (d2 + dP — d(v2/2)) = —§ d(@+ P—2/2) =0, the inte-

grand being a perfect differential.

z2 = *1, x3 =0 (see Fig. 7-3) for the two-dimensional
flow v = (x1+ 902)31 + (xf — Z2)€s.

Using the symbolic form of (7.42) with # = €, and 1
VXv = (28,—1)¢, !
1 1
r. = f f 22y —1)deyde, = —4 1] A
-1v -1
The same result is obtained from (7.41) where
Fig.7-3
T, = § vedx
1 -1 R 1
= f 1~ wo) day + f (xy+1)day + f (1 —=y) day + f (¢, —1)de; = —4
-1 1 1 -1

with the integration proceeding counterclockwise from A.

POTENTIAL FLOW. PLANE POTENTIAL FLOW (Sec. 7.6)

7.21.

7.22.

Give the derivation of the gas dynamical equation (7.45) and expreés this equation in
terms of the velocity potential 4.

For a steady flow the continuity equation (5.4) becomes p,iV; + pv;,; = 0 and the Euler equa-
tion (7.36) becomes pv;v; ; + p; = 0 if body forces are neglected. For a barotropic fluid, p = p(p)
and so dp = (9p/dz;)(3x;/3p)dp; or rearranging, p ;= (dp/dp)p ; = c%p ; where ¢ is the local velocity
of sound. Inserting this into the Euler equation and multiplying by v; gives pv;v;v;; + c2vip; = 0.
From the continuity equation c2v;p; = —c2v;; = —¢28;;v;,; and so (c28;;— v;v;)v;; = 0. In terms
of ¢ ; = —v; this becomes (¢28;;— ¢ ;¢ ,)¢,:; = 0.

Show that the function ¢ = A(—x? — a2 +2x2) satisfies the Laplace equation and
determine the resulting velocity components.

Substituting ¢ into (7.46) gives —24 —24 444 =0. From (7.85), v, = 24x,, vy = 2Ax,,
vy = —4Ax; Also, by the analysis of Problem 4.7 the streamlines in the 2, plane are represented

by x%xs = constant; in the z, plane by xfx:, = constant. Thus the flow is in along the x; axis
against the z;x, plane (fixed wall).
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7.23.

7.24.

7.25.

7.26.

Show that the stream function y(;, #2) is constant along any streamline.

From (7.48) and the differential equation of a streamline, di;/v; = dwy/v, (see Problem 4.7),
—dxy/p,g = dxafy,y Or y,1dx;+ ¢ odx; =dy =0. Thus y = a constant along any streamline.

Verify that ¢ = A(2? —«3) is a valid velocity =,
potential and describe the flow field.

equipotential
lines

stream-
lines

For the given ¢, (7.46) is satisfied identically by
24 —24 = 0; and from (7.49), vy = —24x,, vy =
+2Ax,. The streamlines are determined by integrat-
ing dx,/x, = —dxy/x, to give the rectangular
hyperbolas x4 = C (Fig. 7-4). The equipotential
lines A(xf—x§)=Cl form an orthogonal set of
rectangular hyperbolas with the streamlines. Finally
from (7.50), ¢ = —2Az,x,+ Cp and is seen to be con-
stant along the streamlines as was asserted in Prob-
lem 7.23. Fig. 7-4

zy

A velocity potential is given by ¢ = Az, + Bxi/r> where 72 = x? + x;. Determine
the stream function ¢ for this flow.

From (7.50), y,1 = —¢,5 = 2Bx;x,/r* so that by integrating, ¢ = —Buxy/r2 + f(x5) where f(x5)
is an arbitrary function of =, Differentiating, y , = —B(x? —xg)/r‘*-{- f(xs). But from (7.50),
Vo =6,=A+B(z>+a2)/rt. Thus f(z) = A and f(zs) = Awy+ C. Finally then y =
Az, — Bxo/r2 + C.

Differentiate the complex potential ®(z) = A/z to obtain the velocity components.

Here do/dz = —A/22 = —A/(x, + ixy)? which after some algebra becomes de/dz =
—A(z? — a3)/rt + i2Az,zy/r%. Thus

vy = A@@2 —ad)t  and vy = 2Ammy/rt
Note that since ® = A/z = A(x, — ix)/r2, ¢ = Azy/r? and ¢ = —Awxy/r2. Also note that
v, = —¢,; = AW} —a3)/r* and vy = —¢,p = 2Axxy/rt

MISCELLANEOUS PROBLEMS

7.27.

Derive the one-dimensional continuity equation for the flow of an inviscid incompres-
sible fluid through a stream tube.

Let V be the volume between arbitrary cross sec-
tions A and B of the stream tube shown in Fig. 7-5.
In integral form, for this volume (5.2) becomes

f V+vdV = 0 since p is constant here. Convert-
v
ing by Gauss’ theorem, f fievdS = 0 where h is

the outward unit normal to the surface S enclosing V.
Since 2 L v on the lateral surface, the integration re-

duces to Fig.7-5
A A
f nA'VAdS + f npg°*Vpg ds = 0
Sa Sg
The velocity is assumed uniform and perpendicular over S, and Sg; and since v = —vghp,

vAf dS——va dS =0 or v,S, = vgSp = a constant.
Sa Sg
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7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

FLUIDS [CHAP.'7

The stress tensor at a given point for a Newtonian fluid with zero bulk viscosity is

-6 2 -1\
o, =| 2 -9 4 | Determine r,.
-1 4 -3
From (7.14), for this fluid p = —0;;/3 = 6. Then from (7.3),
-6 2 -1 6 0 0 0 2 —1 )
i = o+ 68; or 2 -9 4|+ [0 = 2 -3 4
-1 4 -3 0 0 6 -1 4 3

Show that o, and ,, of (7.3) have the same principal axes.

When written out, (7.3) becomes ‘o), = —p + Tiy Oy = — P+ 799, 033 = —P + 143, 09 = T12,
093 = 733, 013 = 735. For principal directions «} of 0yj, 07y =053 =0of3 =0 and by the last three
equations of (7.3), a}'} = 72’} =0 for i j. Thus a2} are principal axes for 7;; also.

A dissipation potential ®,, is often defined for a Newtonian fluid by the relationship
¢, = (K/Z)D“.D].]. + ,L*Di;.Di;., Show that 0®,/0D,, = 7.

Here 0@p/0Dpq = (x/2)[Dy(8D;;/3Dyq) + (0D4/0D,)Dy) + 24[DY(3D}/9D,)]. But aDy/oD,, =
Sp8iq = 8pq and 9Dy/dD,; = 8,,8;, — 8;;8,4/3 so that

3¢p/0Dpq = kDybpg + 2u*(Dyj— 8Dik/3) (819850 — 8i38p4/3) = xDySpq + 2u*(Dyq — 8,4D/3)

Finally since & = \* 4 24%/3,
6¢D/6qu = A*Squii + 2,u*qu = Tpq

Determine the pressure-density relationship for the ideal gas discussed in Problem 7.11.

At #3=0, p=p, and p = Po- The ideal gas law (7.6) is here p = pR(Ty— ax;) so that
Po = poRTy; and from the pressure elevation relationship p = po(1 — axy/Ty)9/Re of Problem 7.11,
plpg = (T/Ty)¢9/Re—1_ Thus writing p = Po(l — aws/Tp)9/Re in the form p/p, = (T/Ty)9/Re, it is
seen that T/T0 = (p/p0)+Rlx/g and so P/Po = (p/po)(l—ROt/g)'

For a barotropic inviscid fluid with conservative body forces show that the material
derivative of the total vorticity, a f q.dV = f v.q.dS..
dt Jv *i g Y

From (4.54) and the results of Problem 4.33, 4 q; dV =, (eijx 2 + q;9;,) dS;. But here
dt i s ik Yk § i
v
a, = —(@+ P) ;. from (7.37); and by the divergence theorem (1.157),
f i@+ P), dS; = f €@+ P) g dV = 0
s v

since the integrand is zero (product of a symmetric and .antisymmetric tensor). Hence

d

For an incompressible Newtonian fluid moving inside a closed rigid container at rest,

show that the time rate of change of kinetic energy of the fluid is ~,u*f q%>dV assum-
ing zero body forces. ¢ is the magnitude of the vorticity vector. v
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7.34.

7.35.

7.36.

7.37.

7.38.

7.39.

7.40.

From Problem 5.27, the time rate of change of kinetic energy of a continuum is

% = f ob;v;dV — f aijvi,idV + f viti(")dS
v v s

In this problem the first and third integrals are zero; and for a Newtonian fluid by (7.18),

dK
—d? = - f 0355, av = - j‘: (—pb‘,-j + )\*SijDkk + 2/¢*D,-]-)'vi,j 'A%
\4
But incompressibility means v;; = D;; =0 and so
dK
—;i_t_ = _2ﬂ* ‘I‘: D” vi,]' dvV = _/.l.* L (vi,]' + 'Uj,i)vi,‘]- av

= —p* f (ekjiQi)vy,; AV = —p* f G lexsivi,) AV = —u* f ., dV
v v v

Show that for a perfect fluid with negligible body forces the rate of change of cir-
culation T, may be given by — f ex(1/p) ;0 . dS,.
S

From (7.43), i‘c = f 1')i de; + § v;dv;; and since § d(3v%) = 0, the second integral is zero.

From (7.86) with b; =0, v; = —p,;/p and so now

r, = _§(p,k/P)dwk = '—L eiik(D,1/0),5m; dS

where (7.42) has been used in converting to the surface integral, Differentiating as indicated,

T, = "J; €kl (1/p),ip, + P,13/0) dS; = —f eiik(1/p), 5 0,k dS;
s

Supplementary Problems

The constitutive equation for an isotropic fluid is given by o;; = —p8;; + Kijpq Dy With Kﬁpé con-
stants independent of the coordinates. Show that the principal axes of stress and rate of deformation
coincide.

Show that (1/p)(do/dt) = 0 is a condition for ““"ii/3 = p for a Newtonian fluid.

Show that the constitutive relations for a Newtonian fiuid with zero bulk viscosity may be expressed
by the pair of equations s; = 24*D;; and —o; = 3p.

Show that in terms of the vorticity vector q the Navier-Stokes equations may be written
v = b— Vp/p — v*V X q where »* = pu*/p is the kinematic viscosity. Show that for irrotational
motion this equation reduces to (7.36).

If a fluid moves radially with the velocity v = v(r,t) where 72 = x;%;, show that the equation of

nuity is %+ 0% 4 2 2 ag) =
continuity is at+var+r2 ar (r2v) 0.

A liquid rotates as a rigid body with constant angular velocity « about the vertical zg axis. If
gravity is the only body force, show that p/p — w2r2/2 + gx; = constant.
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7.41.

7.42.

7.43.

7.44.

7.45,

7.46.

7.47.

7.48.

FLUIDS _ [CHAP. 7

For an ideal gas under isothermal conditions (constant temperature = T), show that p/p, = p/p, =
e~ (@/RTyxs) where p, and p, are the density and pressure at x3 = 0.

Show that if body forces are conservative so that b; = —9,;, the Navier-Stokes-Duhem equations
for the irrotational motion of a barotropic fluid may be integrated to yield —p(dg/0t+ (V¢)2/2) -+
P2 + P + (\*+ 2u*)V2p = f(t). (See Problem 7.15.)

Show that the velocity and vorticity for an inviscid flow having conservative body forces and
constant density satisfy the relation ¢; — q;v;,; = 0. For steady flow of the same fluid, show that
Vi, = 9Yi,5-

For a barotropic fluid having p = p(p) and P(p) defined by (7.29), show that grad P = grad p/p.

Show that the Bernoulli equation (7.89) for steady motion of an ideal gas takes the form
(@) @ + p In(p/p) + v2/2 = constant, for isothermal flow, (b) @ + (k/k—1)(p/p) + v2/2 = constant,
for isentropic flow.

Show that the velocity field v, = —2ux,wyx,/r4, Vg = (xf - x%)x?,/r“, V3 = ®y/r2 where 72 = xf +
x% + x§ is a possible flow for an incompressible fluid. Is the motion irrotational? Ans. Yes

If the velocity potential &(z) = ¢ + 4y is an analytic function of the complex variable z = x; +
. . . . d¢ 19y 14d¢ oy

= 9 0 = ¥ =Y - _ %Y
%y re®® show that in polar coordinates ar 30 and - 38 ar

If body forces are zero, show that for irrotational potential flow ¥, = »* = u*/p is the kinematic
viscosity.



Chapter 8

Plasticity

81 BASIC CONCEPTS AND DEFINITIONS

Elastic deformations, which were considered in Chapter 6, are characterized by com-
plete recovery to the undeformed configuration upon removal of the applied loads. Also,
elastic deformations depend solely upon the stress magnitude and not upon the straining
or loading history. Any deformational response of a continuum to applied loads, or to
environmental changes, that does not obey the constitutive laws of classical elasticity may
be spoken of as an inelastic deformation. In particular, irreversible deformations which
result from the mechanism of slip, or from dislocations at the atomic level, and which
thereby lead to permanent dimensional changes are known as plastic deformations. Such
deformations occur only at stress intensities above a certain threshold value known as the
elastic limit, or yield stress, which is denoted here by o,.

In the theory of plasticity, the primary concerns are with the mathematical formulation
of stress-strain relationships suitable for the phenomenological description of plastic defor-
mations, and with the establishment of appropriate yield criteria for predicting the onset
of plastic behavior. By contrast, the study of plastic deformation from the microscopic
point of view resides in the realm of solid state physics.

The phrase plastic flow is used extensively in plasticity to designate an on-going plastic
deformation. However, unlike a fluid flow, such a continuing plastic flow may be related
to the amount of deformation as well as the rate of deformation. Indeed, a solid in the
“plastic” state can sustain shear stresses even when at rest.

Many of the basic concepts of plas-

ticity may be introduced in an elementary p : B
way by consideration of the stress-strain |
diagram for a simple one-dimensional ten- |
sion (or compression) test of some hypo- |
thetical material as shown by Fig. 8-1. !
In this plot, ¢ is the nominal stress (force/ :
original area), whereas the strain ¢ may oy~ — I
represent either the conventional (engi- |
neering) strain defined here by :

|

e = (L—Lo)/Le (8.1)

T
™
s
Ty

where L is the current specimen length
and Lo the original length, or the natural
(logarithmic) strain defined by Fig. 8-1

e = In(L/L)) = In(1+e) = e—e¥/2+ 0(ed) (8-2)
For small strains, these two measures of strain are very nearly equal as seen by (8.2) and it

is often permissible to neglect the difference.

175
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The yield point P, corresponding to the yield stress o,, separates the stress-strain curve
of Fig. 8-1 into an elastic range and a plastic range. Unfortunately, the yield point is not
always well-defined. It is sometimes taken at the proportional limit, which lies at the
upper end of the linear portion of the curve. It may also be chosen as the point J, known as
Johnson’s apparent elastic limit, and defined as that point where the slope of the curve
attains 50% of its initial value. Various offset methods are also used to define the yield
point, one such being the stress value at 0.2 per cent permanent strain.

In the initial elastic range, which may be linear or nonlinear, an increase in load causes
the stress-strain-state-point to move upward along the curve, and a decrease in load, or
unloading causes the point to move downward along the same path. Thus a one-to-one
stress-strain relationship exists in the elastic range.

In the plastic range, however, unloading from a point such ag B in Fig. 8-1 results in the
state point following the path BC which is essentially parallel with the linear elastic portion
of the curve. At C, where the stress reaches zero, the permanent plastic strain ¢« remains.
The recoverable elastic strain from B is labeled ¢® in Fig. 8-1. A reloading from C back to
B would follow very closely the path BC but with a rounding at B, and with a small
hysteresis loop resulting from the energy loss in the unloading-reloading cycle. Upon a
return to B a load increase is required to cause further deformation, a condition referred
to as work hardening, or strain hardening. It is clear therefore that in the plastic range
the stress depends upon the entire loading, or strain history of the material.

Although it is recognized that temperature will have a definite influence upon the plastic
behavior of a real material, it is customary in much of plasticity to assume isothermal con-
ditions and consider temperature as a parameter. Likewise, it is common practice in
traditional plasticity to neglect any effect that rate of loading would have upon the stress-
strain curve. Accordingly, plastic deformations are assumed to be time-independent and
separate from such phenomena as creep and relaxation.

82 IDEALIZED PLASTIC BEHAVIOR

Much of the three-dimensional theory for analyzing plastic behavior may be looked
upon as a generalization of certain idealizations of the one-dimensional stress-strain curve
of Fig. 8-1. The four most commonly used of these idealized stress-strain diagrams are
shown in Fig. 8-2 below, along with a simple mechanical model of each. In the models
the displacement of the mass depicts the plastic deformation, and the force F plays the role
of stress.

In Fig. 8-2(a), elastic response and work-hardening are missing entirely, whereas in
(b), elastic response prior to yield is included but work-hardening is not. In the absence
of work-hardening the plastic response is termed perfectly plastic. Representations (a) and
(b) are especially useful in studying contained plastic deformation, where large deformations
are prohibited. In Fig. 8-2(c), elastic response is omitted and the work-hardening is assumed
to be linear. This representation, as well as (@), has been used extensively in analyzing
uncontained plastic flow.

The stress-strain curves of Fig. 8-2 appear in the context of tension curves. The
compression curve for a previously unworked specimen (no history of plastic deformation)
is taken as the reflection with respect to the origin of the tension curve. However, if a
stress reversal (tension to compression, or vice versa) is carried out with a real material
that has been work-hardened, a definite lowering of the yield stress is observed in the
second type of loading. This phenomenon is known as the Bauschinger effect, and will be
neglected in this book.
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Fig. 8-2

83 YIELD CONDITIONS. TRESCA AND VON MISES CRITERIA

A yield condition is essentially a generalization to a three-dimensional state of stress of
the yield stress concept in one dimensional loading. Briefly, the yield condition is a
mathematical relationship among the stress components at a point that must be satisfied
for the onset of plastic behavior at the point. In general, the yield condition may be
expressed by the equation

_ fley) = C, (8.3)
where C, is known as the yield constant, or as is sometimes done by the equation
fila) =0 \ (8.4)

in which f (s,) is called the yield function.
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For an isotropic material the yield condition must be independent of direction and may
therefore be expressed as a function of the stress invariants, or alternatively, as a sym-
metric function of the principal stresses. Thus (8.3) may appear as

folop o o) = Cy (8.5)

Furthermore, experiment indicates that yielding is unaffected by moderate hydrostatic stress
so that it is possible to present the yield condition as a function of the stress deviator

invariants in the form
fa(Ilz,, IlIs)) = O (8.6)

Of the numerous yield conditions which have been proposed, two are reasonably simple
mathematically and yet accurate enough to be highly useful for the initial yield of isotropic
materials. These are:

(1) Tresca yield condition (Maximum Shear Theory)

This condition asserts that yielding occurs when the maximum shear stress reaches
the prescribed value C,. Mathematically, the condition is expressed in its simplest form
when given in terms of principal stresses. Thus for o;> o, > o, the Tresca yield
condition is given from (2.54b) as

3(o,— o) = C, (aconstant) (8.7)

To relate the yield constant C, to the yield stress in simple tension ¢,, the maximum
shear in simple tension at yielding is observed (by the Mohr’s circles of Fig. 8-3(a), for
example) to be ¢,/2. Therefore when referred to the yield stress in simple tension,
Tresca’s yield condition becomes

o, — G, = O (8.8)

I I Y

The yield point for a state of stress that is so-called pure shear may also be used as a
reference stress in establishing the yield constant C,. Thus if the pure shear yield
point value is k, the yield constant C, equals & (again the Mohr’s circles clearly show
this result, as in Fig. 8-3(b), and the Tresca yield criterion is written in the form

o, — oy, = 2k (8.9)

ag os

oy/2

o =0 o=k

o oy =0 o = oy 4% o = —k oN

‘ (a) Simple Tension (b) Pure Shear
Fig.8-3

(2) von Mises yield condition (Distortion Energy Theory)

This condition asserts that yielding occurs when the second deviator stress invariant
attains a specified value. Mathematically, the von Mises yield condition states
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~II;, = Cy (8.10)
which is usually written in terms of the principal stresses as '
("I - ‘711)2 + ("11 - ‘3’111)2 + ("'m - ‘71)2 = GCY (8.11)

With reference to the yield stress in simple tension, it is easily shown that (8.11) becomes

(oy—op)? + (o — 0y)? + (09— 0))? = 202 (8.12)
Also, with respect to the pure shear yield value %, von Mises condition (8.11) appears
n the form (01— o) + (o — o) + (o — o) = 6k2 (8.13)

There are several variations for presenting (8.12) and (8. 13) when stress components
other than the principal stresses are employed.

84 STRESS SPACE. THE n-PLANE. YIELD SURFACE

A stress space is established by using
stress magnitude as the measure of dis-
tance along the coordinate axes. In the
Halgh-Westergaard stress space of Fig.
8-4 the coordinate axes are associated
with the principal stresses. Every point
in this space corresponds to a state of
stress, and the position vector of any such
point P(ey, o, 1) may be resolved into a
component OA along the line OZ, which
makes equal angles with the coordinate
axes, and a component OB in the plane
(known as the I1-plane) which is perpendic-
ular to OZ and passes through the origin.
The component along OZ, for which o, =
o = oy, represents hydrostatic stress, so
that the component in the II-plane repre-
sents the deviator portion of the stress
state. It is easily shown that the equation o1
of the II-plane is given by

oyt o+ oy, = 0 (8.14) i Fig. 8-4

In stress space, the yield condition (8.5), fyloy o 0y) = C, defines a surface, the
so-called yield surface. Since the yield conditions are independent of hydrostatic stress,
such yield surfaces are general cylinders having their generators parallel to OZ. Stress
points that lie inside the cylindrical yield surface represent elastic stress states, those
which lie on the yield surface represent incipient plastic stress states. The intersection of
the yield surface with the II-plane is called the yield curve.

In a true view of the Il-plane, looking along OZ toward the origin O, the principal stress
axes appear symmetrically placed 120° apart as shown in Fig. 8-5(a) below. The yield
curves for the Tresca and von Mises yield conditions appear in the Ii-plane as shown in
Fig. 8-5(b) and (c) below. In Fig. 8-5(b), these curves are drawn with reference to (8.7) and
(8.11), using the yield stress in simple tension as the basis. For this situation, the von Mises
circle of radius /2/3 oy is seen to circumscribe the regular Tresca hexagon. In Fig. 8-5(c),
the two yield curves are based upon the yield stress k in pure shear. Here the von Mises
circle is inscribed in the Tresca hexagon.

P(oy, o1y, o111)

s‘1 1V3

o1
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o

radius = k\/2

oy o1r

(@) ® ©
Fig. 8-5

The location in the II-plane of the projection of an arbitrary stress point P(o,, oy, o;;)
is straightforward since each of the stress space axes makes cos™! \/2% with the 1I-plane.
Thus the projected deviatoric components are (V2/80,1/2/3 0y, V/2/30,,). The inverse
problem of determining the stress components for an arbitrary point in the II-plane is not
unique since the hydrostatic stress component may have any value.

85 POST-YIELD BEHAVIOR. ISOTROPIC AND KINEMATIC HARDENING

Continued loading after initial yield is reached leads to plastic deformation which may
be accompanied by changes in the yield surface. For an assumed perfectly plastic material
the yield surface does not change during plastic deformation and the initial yield condition
remains valid. This corresponds to the one-dimensional perfectly plastic case depicted by
Fig. 8-2(a). For a strain hardening material, however, plastic deformation is generally
accompanied by changes in the yield surface. To account for such changes it is necessary
that the yield function £ (c,) of (8.4) be generalized to define subsequent yield surfaces
beyond the initial one. A generalization is effected by introduction of the loading function

fioy <, K) = 0 (8.15)

which depends not only upon the stresses, but also upon the plastic strains ¢f and the work-
hardening characteristics represented by the parameter K. Equation (8.15) defines a loading
surface in the sense that ff =0 is the yield surface, f:‘ <0 is a surface in the (elastic)
region inside the yield surface and ff > 0, being outside the yield surface, has no meaning.

Differentiating (8.15) by the chain rule of calculus,

of* of* of*
N * — 1 '—1 P _"'1'
df} 50, S + 27 A + 5 dK (8.16)

Thus with ff=0 and (8f}/d0,) do; < 0, unloading is said to occur; with ff=0 and
(af,‘/aaﬁ) do,; =0, neutral loading occurs; and with ff=0 and (af;"/aai].) do,; >0, loading
occurs. The manner in which the plastic strains ¢f enter into the function (8.15) when
loading occurs is defined by the hardening rules, two especially simple cases of which are

described in what follows.

The assumption of isotropic hardening under loading conditions postulates that the yield
surface simply increases in size and maintains its original shape. Thus in the II-plane the
yield curves for von Mises and Tresca conditions are the concentric circles and regular
hexagons shown in Fig. 8-6 below.
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Original yield curves

(a) Mises Circles (b) Tresca Hexagons

Fig. 8-6 .

In kinematic hardening, the initial yield surface is translated to a new location in stress

space without change in size or shape. Thus (8.4) defining an initial yield surface is
replaced by

fl(a'ij—aij) =0 (8.17)
where the «,; are coordinates of the center of the new
yield surface. If linear hardening is assumed, P
&; = cef (8.18) v

where ¢ is a constant. In a one-dimensional case,
the Tresca yield curve would be translated as shown
in Fig. 8-7. Fig. 8-7

8.6 PLASTIC STRESS-STRAIN EQUATIONS. PLASTIC POTENTIAL THEORY

Once plastic deformation is initiated, the constitutive equations of elasticity are no
longer valid. Because plastic strains depend upon the entire loading history of the material,
plastic stress-strain relations very often are given in terms of strain increments — the
so-called incremental theories. By neglecting the elastic portion and by assuming that the
principal axes of strain increment coincide with the principal stress axes, the Levy-Mises
equations relate the total strain increments to the deviatoric stress components through
the equations \

' de; = s, dx (8.19)

)

Here the proportionality factor d\ appears in differential form to emphasize that incre-
mental strains are being related to finite stress components. The factor dA may change
during loading and is therefore a scalar multiplier and not a fixed constant. Equations
(8-19) represent the flow rule for a rigid-perfectly plastic material.

If the strain increment is split into elastic and plastic portions according to
dei]. = dcf]: + def; (820)
and the plastic strain increments related to the stress deviator components by
def = s,;dr (8.21)

the resulting equations are known as the Prandtl-Reuss equations. Equations (8.21) rep-
resent the flow rule for an elastic-perfectly plastic material. They provide a relationship
between the plastic strain increments and the current stress deviators but do not specify
the strain increment magnitudes.



182 PLASTICITY [CHAP. 8

The name plastic potential function is given to that function of the stress components

9(o,) for which

a9
P =
de g, A (8.22)

For a so-called stable plastic material such a function exists and is identical to the yield
function. Moreover when the yield function fi(o,) = Iz, (8.22) produces the Prandtl-
Reuss equations (8.21).

8.7 EQUIVALENT STRESS. EQUIVALENT PLASTIC STRAIN INCREMENT

With regard to the mathematical formulation of strain hardening rules, it is useful
to define the equivalent or effective stress oy, as

1
%k — = {[("11 - ‘722)2 + ("22 - "'33)2 + (‘733 - ”11)2] + 6(‘7?2 + ”%3 + "31)}1/2 (8.23)

V2

This expression may be written in compact form as
Opq = \/3sijsij/2 = \/3IIzD (8.24)
In a similar fashion, the equivalent or effective plastic strain increment deE, is defined by
deby = (BI(def, — dely)? + (del, — deby)? + (def, — dek, )]
+ 4[(def,)” + (def,)* + (defy )32 . (8.25)

which may be written compactly in the form

dega = v% deg de{; (8.26)

In terms of the equivalent stress and strain increments defined by (8.24) and (8.25)
respectively, dx of (8.21) becomes
3 defq

%kq

dxr

(8.27)

88 PLASTIC WORK. STRAIN-HARDENING HYPOTHESES

The rate at which the stresses do work, or the stress power as it is called, has been given
in (5.82) as o, D, per unit volume. From (4.25), de, =D, dt, so that the work increment
per unit volume may be written

AW = o, de; (8.28)

and using (8.20) this may be split into
dW = o (def +def) = dWE + dW* (8.29)
For a plastically incompressible material, the plastic work increment becomes
dW? = Uijdes = sijdfs (8.30)

Furthermore, if the same material obeys the Prandtl-Reuss equations (8.21), the plastic work
increment may be expressed as

dwP = o deEQ (8.31)
and (8.21) rewritten in the form
3 dwr
des = 50—23“ (832)

EQ
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There are two widely considered hypotheses proposed for computing the current yield
stress under isotropic strain hardening plastic flow. One, known as the work-hardening
hypothesis, assumes that the current yield surface depends only upon the total plastic work
done. Thus with the total plastic work given as the integral

wr = fcrij def (8.33);
the yield criterion may be expressed symbolically by the equation
filoy) = F(WP) - (8.34)

for which the precise functional form must be determined experimentally. A second harden-
ing hypothesis, known as the strain-hardening hypothesis, assumes that the hardening 1s a
function of the amount of plastic strain. In terms of the total equivalent strain

fdegq (8.35)
this hardening rule is expressed symbolically by the equation '
fi(ey) = H(eEy) (8.36)

for which the functional form is determined from a uniaxial stress-strain test of the
material. For the Mises yield criterion, the hardening rules (8.34) and (8.26) may be shown
to be equivalent.

89 TOTAL DEFORMATION THEORY

In contrast to the incremental theory of plastic strain as embodied in the stress-strain
increment equations (8.19) and (8.21), the so-called total deformation theory of Hencky
relates stress and total strain. The equations take the form

= (p+1G)s, (8.37)
= (1-2v)o,/E (8.38)
In terms of equivalent stress and strain, the parameter ¢ may be expressed as

3 €EQ

¢ = 5o (8.89)
where here £, = V2, £/3 so that
’ _ 3 €EQ
(5 = 2 ora Si]. (8.40)

8.10 ELASTOPLASTIC PROBLEMS

Situations in which both elastic and plastic strains of approximately the same order
exist in a body under load are usually referred to as elasto-plastic problems. A number of
well-known examples of such problems occur in beam theory, torsion of shafts and thick-
walled tubes and spheres subjected to pressure. In general, the governing equations for
the elastic region, the plastic region and the elastic-plastic interface are these:

(a) Elastic region
1. Equilibrium equations (2.23), page 49
2. Stress-strain relations (6.23) or (6.24), page 143
3. Boundary conditions on stress or displacement
4. Compatibility conditions .
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(b) Plastic region
1. Equilibrium equations (2.23), page 49
2. Stress-strain increment relations (8.21)
3. Yield condition (8.8) or (8.11)
4. Boundary conditions on plastic boundary when such exists

(c) Elastic-plastic interface
1. Continuity conditions on stress and displacement

811 ELEMENTARY SLIP LINE THEORY FOR PLANE PLASTIC STRAIN

In unrestricted plastic flow such as occurs in metal-forming processes, it is often pos-
sible to neglect elastic strains and consider the material to be rigid-perfectly plastic. If
the flow may be further assumed to be a case of plane strain, the resulting velocity field
may be studied using slip line theory.

'Taking the z;x. plane as the plane of flow, the stress tensor is given in the form

%1 T2 0
o; = O, Oy 0 (8.41)
0 0 o

33

and since elastic strains are neglected, the plastic strain-rate tensor applicable to the
situation is

€.11 EIZ 0
& = &y & O (8.42)
0 0 0

In (8.41) and (8.42) the variables are functions of #; and x: only, and also
& = 3v,;+v,) (8.43)
where v, are the velocity components.

For the assumed plane strain condition, dej; = 0; and so from the Prandtl-Reuss equa-

tions (8.21), the stress o, is given by
0y = ¥oy, +0y) (8.44)

Adopting the standard slip-line notation o, =—p, and V(o —0y,)%4 + (0,,)> = k, the
principal stress values of (8.41) are found to be

oy = Ptk
O = P (8.45)
= -p—-k :

%3

The principal stress directions are given z,
with respect to the z,z, axes as shown in B L{¢V)
Fig. 8-8, where tan2§ = 2¢,/(0,, — 0,,).

As was shown in Section 2.11, the maxi- o2y /4
mum shear directions are at 45° with respect o a
to the principal stress directions. In Fig. P
8-8, the maximum shear directions are des- 2y
ignated as the « and g directions. From the Fig. 8-8
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geometry of this diagram, ¢ = z/4 + ¢ so that
1
. tan2¢

and for a given stress field in a plastic flow, two families of curves along the directions of
maximum shear at every point may be established. These curves are called shear lines, or
slip lines.

tan2p = (8.46)

For a small curvilinear element bounded by the two pairs of slip lines shown in Fig. 8-9,

6, = —Dp — ksin2¢
0,, = —D + ksin2¢ (8.47)
0, = kcos2¢

and from the equilibrium equations it may be shown that

p+2kp = C, a constant along an « line

. (8.48)
p —2k¢ = C, aconstant along a g line

£2]

Fig. 8-9 Fig. 8-10

With respect to the velocity components, Fig. 8-10 shows that relative to the « and

lines .
B ’ V, = P, COS¢ — Vg Sing

(8.49)
v, = V,8in¢ + v, cosé

For an isotropic material, the principal axes of stress and plastic strain-rate coincide.
Therefore if «, and x, are slip-line directions, ¢, and ¢,, are zero along the slip-lines so that

9 (v, OS¢ — v, sin¢) = 0 (8.50)
0z =0
{i (v sSinB + v, cos qS)} = 0 (8.51)
0x o=0
These equations lead to the relationships
dv, —v,d¢ = 0 onalines (8.52)
dv, +v,d$p = 0 on g lines (8.53)

Finally, for statically determinate problems, the slip line field may be found from (8.48),
and using this slip line field, the velocity field may be determined from (8.52) and (8.53).



186 PLASTICITY _ [CHAP. 8

Solved Problems

BASIC CONCEPTS. YIELD PHENOMENA (Sec. 8.1-8.4)

8.1. Making use of the definitions (8.1) and (8.2), derive the relationship between natural
and engineering strain. How are the strain increments of these quantities related?

From (8.1), L/Ly=e+1 and so (8.2) becomes e¢=In(e-+1). Differentiating this equation,
de/de = 1/(e+ 1) = Ly/L since dL = Lde = Lgde. i

82. Under a load P in a one-dimensional test the true stress is o= P/A while the
engineering stress is S = P/A, where A, is the original area and A4 is the current
area. For a constant volume plastic deformation (A4¢Lo= AL), determine the con-
dition for maximum load.

Here S =P/Ay=(P/A)(A/Ay) = o(Ly/L) =o/(1+¢), and on an S-e plot the maximum load
occurs where the slope dS/de = 0. Differentiation gives dS/de = (do/de—o)/(1+ ¢)2 and this is
zero when do/de = 0. From Problem 8.1, this condition may be expressed by do/de = o/(1 + ¢).

83. As a measure of the influence of the intermediate principal stress in yielding the Lode
parameter, p= (20, — o, — o )/(0;—0y;) is often used. Show that in terms of the
principal stress deviators this becomes u=3s,_/(s;—s,).

From (2.71), o¢; = sy + oy, ete., with oy = 0;/8. Thus
w = [2(8ptoy) — (st opy) — (sppp + an))/[(sy+ op1) — (3111 + opp)]
[8syr — (81 + 831 + sy )N/ (51— 8p1p)

But s;+s;; +sp = Iz, =0 andso u = 3s;/(s; — syp).

84. For the state of stress o, =0, 0,,=0,;,=0, 0, =1, 0,,=0,,=0 produced in a ten-
sion-torsion test of a thin-walled tube, derive the yield curves in the o-r plane for the
Tresca and von Mises conditions if the yield stress in simple tension is oy

For the given state of stress the principal stress values are of = (¢ + V42 +2)/2, oy =0,
om = (0 — V472 +62)/2 as shown by the Mohr’s diagram in Fig. 8-11. Thus from (8.8) the Tresca
yield curve is V472 + o2 =0y, or o2+ 472 =02, an ellipse in the o-r plane. Likewise from (8.12)
the Mises yield curve is the ellipse o2 + 372 = ¢%. The Tresca and Mises yield ellipses for this
case are compared in the plot shown in Fig. 8-12.

Mises

Tresca

/oy

o1 omn

1.
o/oy 0

Fig. 8-11 Fig. 8-12
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8.5.

8.6.

8.7.

8.8.

Convert the von Mises yield condition (8.10) to its principal stress form as given in
(8.11).

From (2.72), —Ilg = —(si8;; +spsm +818); and by (2.71), 8 = oy~ oy, etc, where
oy = (op+ oy +0111)/8. Hence

—IIz, = —(owy +onoy +oypon) + (op+ oy + 0yy)2/3

2 2 2 _ _
2(o1 +“II+”m 010 — o101 — o111 91)/6

Thus (or—oy)? + (o1 — ”III)Z + (oy; —op? = 6Cy

With the rectangular coordinate system OXYZ oriented so that ’the XY plane coincides
with the IT-plane and the ¢, axis lies in the YOZ plane (see Fig. 8-13 and 8-4), show
that the Mises yield surface intersects the II-plane in the Mises circle of Fig. 8-5(b).

o1 o11 o111

-1/V/2. 1/V2 0
Y —-1/V6 —1V6 2/V/6

z 1/V3 1/V3 1/V3

“eost (1h/§ )

Fig. 8-13
The table of transformation coefficients between the two sets of axes is readily determined to
be as shown above. Therefore -

op = ~XW2—YN6+ 23, on = XN2—YN6+2ZN3, oy = 2YIV6 + ZN3

and (8.12) becomes
(—V2X)2 + (X/V2—3YV6)2 + (X/V2+3YVE)2 = 202

which simplifies to the Mises yield circle 3X2 + 8Y2 = 26,2, of Fig. 8-5(b).

Using the transformation equations of Problem 8.6, show that (8.14), o, + oy + 0o =0,
is the equation of the II-plane.

Substituting into (8.14) the o’s of Problem 8.6, oy + oy + oy = V3Z =0, or Z=0 which
is the XY plane (II-plane).

For a biaxial state of stress with ¢,=0, om/oy
determine the yield loci for the Mises and 1 C
Tresca conditions and compare them by a
plot in the two-dimensional ¢,/0, vs. o, /0y
space. . : % -

From (8.12) with oy = 0, the Mises yield condi-
tion becomes

U[/OY

2 _ 2
of —oon tom = oy F A

which is the ellipse
(af/oy)? — (”I"III/"%') + (omt/oy)2 = 1 Fig. 8-14
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with axes at 45° in the plot. Likewise, from (8.8) and the companion equations oy — o = oy,
oy — 01 = oy, the Tresca yield condition results in the line segments AB and ED with equations
(or/oy) — {oy/oy) = =1, DC and FA with equations oy/oy = *1, and BC and EF with equations
o/oy = F1, respectively.

The von Mises yield condition is referred to in Section 8.3 as the Distortion Energy

Theory. Show that if the distortion energy per unit volume %, is set equal to the

yield constant C, the result is the Mises criterion as given by (8.12).
From Problem 6.26, u{p, is given in terms of the principal stresses by
ulpy = [(o1~09)% + (02— 03)2 + (03— 0)2]/12G

and for a uniaxial yield situation where o; =y, oy = oy;; =0, u(p) = 02/6G. Thus Cy = ¢%/6G
and, as before, the Mises yield condition is expressed by (8.12).

PLASTIC DEFORMATION. STRAIN-HARDENING (Sec. 8.4-8.8)

8.10.

8.11.

8.12.

8.13.

Show that the Prandtl-Reuss equations (8.21) imply that principal axes of plastic
strain increments coincide with principal stress axes and express the equations in
terms of the principal stresses.

From the form of (8.21), when referred to a coordinate system in which the shear stresses are
zero, the plastic shear strain increments are seen to be zero also. In the principal axes system,
(8.21) becomes def/sI = deﬁ/sn = defnlsm = dAx. Thus def = (o — app) dA, defl = (o3 — op)dA, ete,,
and by subtracting,

P P P__ 4P P _ 4P
dep —deyy _ depp — depg _ deyyp — dep dr
or — o511 o1 — 911 o1 T 01

For the case of plastic plane strain with ¢, =0, de,; =0 and o,, = 0, show that the
Levy-Mises equations (8.19) lead to the conclusion that the Tresca and Mises yield
conditions (when related to pure shear yield stress k) are identical.

Here (8.19) becomes dej; = (201; — 033) dN/3, deyy = —(0yy + 033)dN/3, 0 = 2033 — 04;. Thus in the
absence of shear stresses, oy = oyy, oy = 033 = 041/2, oy =0 = 099. Then from (8.9) the Tresca
yield condition is oy — oy = 04y = 2k. Also, from (8.18) for this case, Mises condition becomes
(011/2)2 + (—011/2)2 + (—0yy)2 = 6k2 or of, =4k2 and oy = 2k.

Show that the Prandtl-Reuss equations imply equality of the Lode variable n (see
Problem 8.3) and v = (2def; — def’ — defy;)/ (del — defyy ).

From equations (8.21),

v = (28 — 81— 8yr) AN/ (8p — sypp) dA

Il

(2(011 —op) — (0'1 —oy) — (o — UM))/((UI —oy) — (Um - ”M))

(2o —or —o Moy —om) =

Writing IIs, = s_s. /2, show that ollz /80, = s,

ij < ij j*
Here 0llz /d0,q = (98;j/00,4)s;; where 3s;;/80,q = 8(0;; — 8;j04x/3)/dapq = 8;,8jq — 8i8p¢/3. Thus

aIIzD/Oapq = (aip(s]'q - 8ijqu/3)sij = 8pq since 8 = IzD =0.
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8.14.

8.15.

8.16.

8.17.

8.18.

Show that when the plastic potential function 9(o;,) = IIz;, the plastic potential equa-
tions (8.22) become the Prandtl-Reuss equations.

The proof follows directly from the result of Problem 8.13, since 89/ds;; = s;; in this case and
(8.22) reduce to (8.21).

Expand (8.24) to show that the equivalent stress o,, may be written in the form
of (8.23).

From equation (8.24),
0%q = 88;85/2 = B8(0y5— 8ijopp/3)(0i; — 8;j0qe/3)/2 = (8oyjoi; — 0;05;)/2
Expanding this gives
[B(o3; + 03y +033) + 6(cTy + 05y + 031) — (o1 + 020 + 033)%]/2
= [2(c2, + 03y + 02y — 011099 — 020033 — a33014) + 6(0F, + 02y +02,)]/2
= [(011— 099)% + (022 — 039)% + (033 — 011)% + 6(03, + 034 +02,)]/2

which confirms (8.23).

In plastic potential theory the plastic strain increment vector is normal to the loading
(vield) surface at a regular point. If [N,,N,,N,] are direction numbers of the normal
to the yield surface f,(o,), show that del/s, = def/s;; = del;/s;;; under the Mises yield
condition and flow law.

The condition of normality is expressed by N = grad f; which requires N,;/(3f,/d0y) =
N,o/(3f1/80y;) = N3/(3f1/8e1;;) for the Mises case where f; = (oy— oy)2 + (o1 —oypp)2 + (ogp — o2 —

20,2,‘—“ 0. Here 9f;/d0y = 2(20; — oy —oyy;) = 681, ete., and since the plastic strain increment vector
is along the normal it follows that dej /s; = dejy/sy = deﬁl/sm.

Determine the plastic strain increment ratios for (a) simple tension with o, = oy,

(b) biaxial stress with o,, = —0,/V/3, 0, =0,/\/3, 053 =0, =0y =0, =0, (c) pure

shear with ¢, = ¢,//3.

(@) Here oy =0y =0y, o =oy =0 and 8; = 20y/3, s;; = 8;; = —oy/3. Thus from Problem
8.16, def/2 = —defl/l = —deﬁl/l.

(b) Here o =o0y/V3, oy =0, oy = —oy/V3 and s;=o0y/V3, sy =0, sy = —oy/V3. Thus

def /1= —defn/l and the third term is omitted since it is usually understood in the theory that

if the denominator is zero the numerator will be zero too.

(¢) Here oy = Uy/'\/g, oy =0, oy = -—ay/\/§ and again def/l = —defull.

Determine the plastic work increment dW? and the equivalent plastic strain incre-
ment def, for the biaxial stress state o, = —0,/V38, 0, =0,/V3, oy =0,=0y=
o, = 0 if plastic deformation is controlled so that def = C, a constant.

In principal-axis form, (8.30) becomes dWP = gyde} + oypdely + oy defyy; and for the stress

state given, Problem 8.17 shows that def = -—defn,

dWP = —oyC/V3 + (ay/V/3)(—C) = —2Coy/V3

del = 0; hence

From (8.25),

degQ {2[(def - def})2 + (def - deﬁ!)2 + (def — def)z]}1/2/3

I III
{2[C2+ C2+ 4C2}1/2/3 = 2C/1V/3
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8.19. Verify (8.32) by showing that for a Prandtl-Reuss material the plastic work increment
is dWP = oy, deh, as given in (8.31).

From (8.20), dWP = g;5;;d\ for a Prandtl-Reuss material satisfying (8.21). But from (8.27),

d\ = 3deEQ/2aEQ for such a material and so dWP = (38“81]/2)(dEEQ/UEQ) which because of the

definition (8.24) gives dWP = opq deEQ Thus deEQ = dWP/ogq here and (8.32) follows directly
from (8.21).

8.20. For a material obeying the Mises yield condition, the equivalent stress o,, may be
taken as the yield function in the hardening rules (8.34) and (8.36). Show that in this
case o J” = H' where F’ and H’ are the derivatives of the hardening functions with
respect to their respective arguments.

Here (8.34) becomes opq = F(WP) and so dogg = F'dWP, Likewise (8.26) is given here(by
opq — H(ega) and so dogg = H’ degQ. Thus F'dWP = H' dega; and since from (8.31) (or Problem
8.19) dWP = opqdehq, it follows at once that opoF” = H'.

TOTAL DEFORMATION THEORY (Sec. 8.9) ‘

8.21. The Hencky total deformation theory may be represented through the equations
¢; = e T With & = ef +§,5/3 = (5,/2)G + §,(1 —2v)0,,/3E and f = ¢s,.
Show that these equations are equivalent to (8.37) and (8.38).

The equation ef: = ¢8;; implies e =0 so that ef; = eP = ¢s”, and from ¢; = eg -l—ef; it fol-
lows that here ¢; = f‘; From the same equation, e¢; + Sufkk/3 = e + Swekk/3 + e which reduces

to ¢; = e +e = (¢ +1G)s;;, (8.37). Also from e"—eii, € = (1 200 /E, (8 38).

8.22. Verify that the Hencky parameter ¢ may be expressed as given in (8.39).

Squaring and adding the components in the equation e = ¢8;; of Problem 8.21 gives eI: ‘]’ =
@288, or ¢ = \’35” e;;/2 lopq which when multiplied on each side by 2/3 becomes

¢ = 3’\‘26116 /8 [205q = 3eEQ/2crEQ

ELASTOPLASTIC PROBLEMS (Sec. 8.10)

8.23. An elastic-perfectly plastic rectangular beam is loaded steadily in pure bending.
Using simple beam theory, determine the end moments M for which the remaining
elastic core extends from —a to a as shown in Fig. 8-15.

ko e |

M M ¢
a
- —t* — X3 %11
c |
t é

xq Z2 l %2

Fig. 8-15

Here the only nonzero stress is the bending stress ¢;;. In the elastic portion of the beam
(—a < xy<a), oy = Ee;y = Ex,/R where R is the radius of curvature and E is Young’s modulus,
In the plastic portion, o;; = oy. Thus

= 2 f = (29)2b day, + 2 f 2o0yb dxy = boy(c? — a2/3)

where oy = Ea/R, the stress condition at the elastic-plastic interface, has been used. From the
result obtained, M = 2bc20y/3 at first yield (when @ =¢), and M = bc2oy for the fully-plastic
beam (when a = 0).
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8.24. Determine the moment for a beam loaded as in Problem 8.23 if the material is a

piecewise linear hardening material for which o, = o, + A(e,, —

The stress distribution for this beam is shown in Fig, 8-16.
Again €, = /R and so

¢ E(w)?b ¢ @y oy ,
M = 2!; de2+2£ |:0Y+A<72__E>:] xzbd:fcz

2Eba3 oy AN o 5 A(c3 —ad)
3R +2b{—é—<1—E>(c a)+—3R

or using oy = Ea/R as in Problem 8.23,

M = c2boy(l1— A/E) + 2¢3bA/3R + boSR2(A/E — 1)/3E?2

8.25. An elastic-perfectly plastic circular shaft of radius
¢ is twisted by end torques T as shown in Fig. 8-17.
Determine the torque for which an inner elastic core
of radius a remains.

The shear stress o, is given here by o, = kr/a for
0=r=aqa, and by o 3=k for a=r=e¢ where k is the
yield stress of the material in shear. Thus

_ a ¢ _ 27k
T = 2r (kr3/a) dr + 2x kr2dr = T(c3 — a3/4)
0 ) ' a

Therefore the torque at first yield is Ty = 7kc3/2 when a = ¢;
and for the fully plastic condition, T, = 27kc3/3 = 4T,/3
when a = 0.

8.26. A thick spherical shell of the dimensions shown in
Fig. 8-18 is subjected to an increasing pressure po.
Using the Mises yield condition, determine the pres-
sure at which first yield occurs.

Because of symmetry of loading the principal stresses
are the spherical components o4 = 61 = 01, 0(rpr) = o111 -
Thus the Mises yield condition (8.12) becomes o(gg) — 0(7py = oy-
The elastic stress components may be shown to be

Oy — TP (b3/r3 —1)/(b3/a3 — 1)
Oee) = Oppy — Po(b3/2r8 +1)/(b3/ad —1)

Therefore oy = 3b3py/2r3(b3/a® —1) and py = 20y(1 — a3/b3)/3
at first yield which occurs at the inner radius a.

SLIP LINE THEORY (Sec. 8.11)

oy/E) after yield.

Fig. 8-17

Fig. 8-18

8.27. Verify directly the principal stress values (8.45) for the stress tensor (8.41) with

04 = (0, + 0,,)/2 as given in (8.44).

The principal stress values are found from the determinant equation (2.87) which here becomes

o1 — o 912
019 Ogo — 0'. 0 - 0
0 0 —p—o
Expanding by the third column,
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(=P —o)[(e11 ~ 0)(o33— 0) — 035] = (—p—a)[o? — (g3 + onp)a — ofa] = 0

The roots of this equation are clearly ¢ = —p and o = L(oyy +099) * \/11-(011 +o9)2 + ol =—p =k

8.28. Using the condition that the yield stress in shear k is constant, combine (8.47) with
the equilibrium equations and integrate to prove (8.48).

From the equilibrium equations doy;/6%; + 9015/02y = 0 and 9oy5/8%; + dogy/dx, = 0 which
are valid here, (8.47) yields

—ap/dx; — k(2 cos 2¢)(3p/9%,) + k(—2 sin 2¢)(dp/dxy) = 0
and —k(2 sin 2¢)(3¢/0%,) — 0p/dxy + k(2 cos 24)(0p/dxs) = 0

If «; is along an « line and x, along a B line, ¢ =0 and these equations become —ap/dx, —
2k(d¢/3x;) = 0 along the « line, —ap/dx, + 2k(34/dx;) = 0 along the g line. Integrating directly,
p + 2kp = C; on the « line, p — 2k¢ = C, on the B line.

8.29. In the frictionless extrusion through a square die causing a fifty per cent reduction,
the centered fan region is composed of straight radial g lines and circular « lines as
shown in Fig. 8-19. Determine the velocity components along these slip lines in
terms of the approach velocity U and the polar coordinates r and 4.

\ S 7?
- — — ¢ —

Fig. 8-19

Along the straight g lines, d¢ =0; and from (8.53), dv, =0 or v, = constant. ~From the
normal velocity continuity along BC, the constant here must be U cos ¢ and so v, = U cosg. Along
the circular « lines, d¢ = d6; and from (8.52),

)
vy = f Ucose¢doe = Ufsine + 1/V2)
—T/4
MISCELLANEOUS PROBLEMS

8.30. Show that the von Mises yield condition may be expressed in terms of the octahedral
shear stress o, (see Problem 2.22) by o_, = V/20,/3.

In terms of principal stresses 3o, = \/(”I —o1)2 + (o —opp)2 + (ogr —o7)2 (Problem 2.22)

and so 90%; = (o — o) + (o1 —o1)? + (o1 —07)2 = 2¢% in agreement with (8.12).

8.31. Show that equation (8.13) for Mises yield condition may be written as
s + 83 + 8%, = 2k

111
From (2.71), o = s; + oy, ete., and so (8.18) at once becomes
(si—su)? + (sy—sm)? + (s;p —sp)2 = 6k2

Expanding and rearranging, this may be written s% + S%I + 8%11 — (sy+ 8y +847)2/3 = 2k2. But
spt syt sy = Iy = 0 and the required equation follows.
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8.32.

8.33.

8.34.

8.35.

8.36.

At what value of the Lode parameter p = (20, —o,— oy, )/(e;—0y,) are the Tresca
and Mises yield conditions identical?

From the definition of g, oy = (op+ oq1)/2 + u{o; —oq1)/2 which when substituted into the
Mises yield condition (8.12) gives after some algebra (see Problem 8.42) op — oy = 20y/V3+42.
Tresca’s yield condition, equation (8.8), is oy — oy = oy. Thus when p =1 the two are identical.
When o;; = o, « =1 which is sometimes called a cylindrical state of stress.

g T 0
For the state of stress o, = | 7 o 0 | where ¢ and + are constants, determine the
0 0 ¢

yield condition according to Tresca and von Mises criteria.
The principal stresses here are readily shown to be of = o+ 17, oy =0, oy =o—r7.  Thus
from (8.8), the Tresca condition o; — oyy = oy gives 2r =oy. From (8.12) the Mises condition

gives 7 = ay/\/§ . Note that in each case yielding depends on , not on o, i.e. yielding is independent
of hydrostatic stress.

Show that the Prandtl-Reuss equations imply incompressible plastic deformation and
write the equations in terms of actual stresses.

From (8.21), defi = s;dx =0 since s; = IzD = 0 and the incompressibility condition deg =0
is attained. In terms of stresses, deZ = (035 — 8s;051/8) A\. Thus defl = (2/8)[o1; — (oag + 033)/2] dA,
etc., for the normal components and def2 = ay5 d\, etc., for the shear components.

Using the von Mises yield condition, show that in the II-plane the deviator stress com-
ponents at yield are

, = [~20,cos (0 —=/6)]/3, s, = [20,c08(§+7/6)]/3, sy = (20,8In6)/3
where 6 =tan-1Y/X in the notation of Problem 8.6.

The radius of the Mises yield circle is \/Z—/Z’wy so that by definition X = V2/3 oy COS 6,
Y= \/%oy siné at yield. From the transformation table given in Problem 8.6 together with
o = sy + oy, ete., the equations sy — sy = —V2Xx = —@2/V3 Yoy cos 6 and s;+ sy — 2syp =
—V6Y = —2¢y sin g are obtained. Also, in the I-plane, s; + s;p + sy = 0. Solving these three
equations simultaneously yields the desired expressions, as the student should verify.

" s

An elastic-perfectly plastic, incompressible
material is loaded in plane strain between
rigid plates so that o, =0 and ¢, =0 (Fig.
8-20). Use Mises yield condition to determine
the loading stress o, at first yield, and the
accompanying strain e,,.

The elastic stress-strain equation

Eey3 = o33 — {0yt 090)
reduces here to o33 = voy;. Thus the principal stresses
are oy =0, o = —voyy, o = —oy; and by (8.12)
we have

(va11)? + (09;(L = )2 + (—01y)? = 202

from which oy = —oy/V1—r— 2 (compressive) at
yield. Likewise, from Ee;; = a;3— v(oge +033) We

see that here ¢; = —oy(1 —»2)/EV1—v—»% at yield. Fig. 8-20
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8.37. An elastic-perfectly plastic rec-

T
tangular beam is loaded in pure ¢
bending until fully plastic. Deter- M M _i_

mine the residual stress in the RN 4
beam upon removal of the bending f— b —]
moment M. ‘ Fig. 8-21

For the fully plastic condition, the moment is (see Problem 8.23) M = bc2sy. This moment
would cause an elastic stress having o = Mc/I = 30y/2 at the extreme fibers, since I = 2b¢3/3.
Thus removal of M is equivalent to applying a corresponding negative elastic stress which results
in the residual stress shown in Fig. 8-22.

oy 3oy/2

| A
_ % Y

2N

fully negative residual
" plastic elastic stress
Fig. 8-22

8.38. A thick-walled cylindrical tube of the dimensions shown in Fig. 8-23 is subjected to
an internal pressure p,. Determine the value of p, at first yield if the ends of the tube
are closed. Assume (a) von Mises and (b) Tresca’s yield conditions.

g(86)

Fig. 8-23 ‘ Fig. 8-24
The cylindrical stress components (Fig, 8-24) are principal stresses and for the elastic analysis
may be shown to be o(,;y = —p;(b2/72 — 1)/Q, 049y = p;(b2/r2 + 1)/Q, 0(,,, = p;/Q where Q = (b2/a2 — 1),
(@) Here Mises yield condition is
(0 — 9¢68)% + (9¢o0) — 0(22))? + (0zy — ()2 = 203 or  pZbi/rt = Q%}/3

The maximum stress is at » = a, and at first yield p; = (oy/V3)(1 — a?/b2),

(b) For the Tresca yield condition, ogg) — 0(,r) = oy since o,, is the intermediate principal stress.
Thus 2p;b%/72 = Qoy and now at r = a, p; = (oy/2)(1 — a2/b2) at first yield.
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8.39.

8.40.

8.41.

8.42.

8.43.

8.44.

8.45.

8.46.

8.47.

8.48.

8.49.

8.50.

8.51.

Supplementary Problems

A one-dimensional stress-strain law is given by ¢ = Ke» where K and n are constants and e is
true strain. Show that the maximum load occurs at ¢ = n.

Rework Problem 8.4 using the yield stress in shear % in place of oy in the Mises and Tresca yield
conditions.’ Amns. Mises: (o/V8k)2 + (r/k)2 = 1; Tresca: (o/2k)2 + (/)2 = 1

Making use of the material presented in Problem 8.6, verify the geometry of Fig. 8-5(c).

From the definition of Lode’s parameter u (see Problem 8.3) and the Mises yield condition, show

that o; — oy = 20y/V3+ 2.
In the II-plane where ¢ = tan—1Y/X with X and Y defined in Problem 8.6, show that ¢ = —V/3 tans.

Show that the invariants of the deviator stress IIy = 8;;8;;/2 and Iy = 8;;8j.8k/3 may be written
I;, = (s2+ 3 +5%;)/2 and Iy = (3 + 8%, +53,)/3 respectively.

Show that von Mises yield condition may be written in the form

(011 — 099)2 + (095 — 033)? + (033 — 011)2 + 6(0%y + 035 +05y) = 6k2

Following the procedure of Problem 8.17, determine the plastic strain increment ratios for
(a) biaxial tension with o;; = 095 = oy, (b) tension-torsion with oy = oy/2, o, = oy/2.

Ans. (@) dey =del, = —defy /2 (b) def,/2 = —de}, = —def, = deT,/3

Verify the following equivalent expressions for the effective plastic strain increment degQ and note
that in each case def;Q = def1 for uniaxial tension o,y.

(@) debg = V273 [(deF))2 + (defy)? + (degg)? + 2(dery)? + 2(dedy)? + 2(degy )2]1/2
(B) debg = (V2/3)[(def) — deb))? + (dely — dely )2 + (defy — deb) )2 + 6(dely)? + 6(degy )2 + 6(deg; )2]1/2
A thin-walled elastic-perfectly plastic tube is loaded in combined tension-torsion. An axial stress

o = oy/2 is developed first and maintained constant while the shear stress r is steadily increased
from zero. At what value of r will yielding first occur according to the Mises condition?

Ans. 7= oy/2

Ty
The beam of triangular cross section shown in Fig. 8-25 f
is subjected to pure bending. Determine the location of b
the neutral axis (a distance b from top) of the beam when . ‘ h
fully plastic. Ans. b= h/V2 3 N.A.
A° 4&
Show that the stress tensor (8.41) becomes — 2h -
-p k0 Fig. 8-25
o; = k—p 0
0 0 —p

when referred to the axes rotated about xz; by an angle ¢
in Fig. 8-8.

A centered fan of a circle ares and g radii includes an
angle of 30° as shown in Fig. 8-26. The pressure on AB
is k. Determine the pressure on AC.

Ans. p = k(1+ #/3) Fig. 8-26




Chapter 9

Linear Viscoelasticity

9.1 LINEAR VISCOELASTIC BEHAVIOR

Elastic solids and viscous fluids differ widely in their deformational characteristics.
Elastically deformed bodies return to a natural or undeformed state upon removal of
applied loads. Viscous fluids, however, possess no tendency at all for deformational
recovery. Also, elastic stress is related directly to deformation whereas stress in a viscous
fluid depends (except for the hydrostatic component) upon rate of deformation.

Material behavior which incorporates a blend of both elastic and viscous characteristics
is referred to as viscoelastic behavior. The elastic (Hookean) solid and viscous (Newtonian)
fluid represent opposite endpoints of a wide spectrum of viscoelastic behavior. Although
viscoelastic materials are temperature sensitive, the discussion which follows is restricted
to isothermal conditions and temperature enters the equations only as a parameter.

9.2 SIMPLE VISCOELASTIC MODELS

Linear viscoelasticity may be introduced conveniently from a one-dimensional viewpoint
through a discussion of mechanical models which portray the deformational response of
various viscoelastic materials. The mechanical elements of such models are the massless
linear spring with spring constant G, and the viscous dashpot having a viscosity constant .
As shown in Fig. 9-1, the force across the spring o is related to its elongation ¢ by

o = Ge (9.1 )
and the analogous equation for the dashpot is given by !
o = né (9.2)

where ¢ =de/dt. The models are given more generality and dimensional effects removed
by referring to o as stress and e as strain, thereby putting these quantities on a per unit basis.

g [ 4
G
n
1 1
& o AMVWWVWWWW———~ o [T —
(a) Linear Spring (b) Viscous Dashpot
Fig.9-1

196
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The Maxwell model in viscoelasticity is the combination of a spring and dashpot in series
as shown by Fig. 9-2(a). The Kelvin or Voigt model is the parallel arrangement shown in
Fig. 9-2(b). The stress-strain relation (actually involving rates also) for the Maxwell
model is

+2 = ¢ (9.8)

@ a»
3 ]Q

and for the Kelvin model is
o = Ge+ e (9-4)

These equations are essentially one-dimensional viscoelastic constitutive equations. It is
helpful to write them in operator form by use of the linear differential time operator
9, = 0/ot. Thus (9.3) becomes

{(0,/G + 1/n}e = {8,}e (9.5)

and (9.4) becomes ,
o = {G+17d,}e (9.6)

with the appropriate operators enclosed by parentheses.

——AWAM—
G n
o «——MWWW—— |- -0 oo —o
7 ‘
(@) Maxwell - (b) Kelvin

Fig. 9-2

The simple Maxwell and Kelvin models are not adequate to completely represent the
behavior of real materials. More complicated models afford a greater flexibility in por-
traying the response of actual materials. A three-parameter model constructed from two
springs and one dashpot, and known as the standard linear solid is shown in Fig. 9-3(a). A
three-parameter viscous model consisting of two dashpots and one spring is shown in
Fig. 9-3(b). It should be remarked that from the point of view of the form of their con-
stitutive equations a Maxwell unit in parallel with a spring is analogous to the standard
linear solid of Fig. 9-3(a), and a Maxwell unit in parallel with a dashpot is analogous to the
viscous model of Fig. 9-3(b).

G2 GZ
Gl 1
0 ~e—o—ANAMMNM—o— 0 0 o «—D}o— —O—t- o
Mg , 72
(@) Standard Linear Solid (b) Three-parameter Viscous Model
Fig.9-3

A four-parameter model consisting of two springs and two dashpots may be regarded
as a Maxwell unit in series with a Kelvin unit as illustrated in Fig. 9-4 below. Several
equivalent forms of this model exist. The four-parameter model is capable of all three of
the basic viscoelastic response patterns. Thus it incorporates “instantaneous elastic re-
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sponse” because of the free spring G,, “viscous flow” because of the free dashpot »,, and,
finally, “delayed elastic response” from the Kelvin unit.

Gy
AW
G, Kb
o a—o——ANANMMA —i | E ———o—~ o
2
Fig.9-4

The stress-strain equation for any of the three or four parameter models is of the
general form
Pyo + 0,6+ o = @€+ q e+ qge 9.7)

where the p.’s and ¢’s are coefficients made up of combinations of the G’s and »’s, and depend
upon the specific arrangement of the elements in the model. In operator form, (9.7) is
written

{p,0; +Dp,8, +D,}0 = {q,07 +q,0, + q,}e (9.8)

9.3 GENERALIZED MODELS. LINEAR DIFFERENTIAL OPERATOR EQUATION

The generalized Kelvin model consists of a sequence of Kelvin units arranged in series
as depicted by Fig. 9-5. The total strain of this model is equal to the sum of the individual
Kelvin unit strains. Thus in operator form the constitutive equation is, by (9.6),

g ag ag
+ N S — 9.9
) {Gl +n,0,} {Gz + 1,9} {Gy+ 30 (9-9)
Gy G, Gy
MWW MMWW— AMWWWW—
0 ——g——o— o~ l—— — — — —— Ju—-— o o

Fig. 9-5

Similarly, a sequence of Maxwell units in parallel as shown in Fig. 9-6 is called a generalized
Maxwell model. Here the total stress is the resultant of the stresses across each unit; and
so from (9.5),

.
€

= ) e e

M CV [ VW) * {8,/G, + 1/4,) + + (0,/Gy + 17y (9.10)
G, G, Gy
1 19 -
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For specific models, (9.9) and (9.10) result in equations of the form
Do+ Do +P, 5+ 0 = gt qit gt - . (9.11)

which may be expressed compactly by

ki dta _ = -aie
2PGE = 2t (9.12)

This linear differential operator equation may be written symbolically as
{P}o = {Qe (9.13)
where the operators {P} and {Q} are defined by

Py = ;p:—t @ = iqlaa,; (9.14)

94 CREEP AND RELAXATION

The two basic experiments of viscoelasticity are the creep and relaxation tests. These
tests may be performed as one-dimensional tension (compression) tests or as simple shear
tests. The creep experiment consists of instantaneously subjecting a viscoelastic specimen
to a stress ¢, and maintaining the stress constant thereafter while measuring the strain
(creep response) as a function of time. In the relaxation experiment an instantaneous strain
¢, 1s imposed and maintained on the specimen while measuring the stress (relaxation) as a
function of time. Mathematically, the creep and relaxation loadings are expressed in terms
of the unit step function [U(t—t))], defined by

f(®
[Ut-t)] = {2 iii‘l (9.15) N
and shown in Fig. 9-7.
For the creep loading, t t
o = o[Ut)] ' (9.16) Fig. 9-7

where [U(t)] represents the unit step function applied at time t,=0. The creep response
of a Kelvin material is determined by solving the differential equatlon

E-}—f — ”o[l;(t)] (9.17)

which results from the introduction of (9.16) into (9.4). Here r = /G is called the retarda-
tion time. For any continuous function of time f(f), it may be shown that with ¢ as the
variable of integration,

t t
| rowe-tyar = [UE-t) f(t)ar (9.18)
by means of which (9.17) may be integrated to yield the Kelvin creep response
dt) = 3 1—e U] (9.19)

The creep loading, together with the creep response for the Kelvin and Maxwell models
(materials) is shown in Fig. 9-8 below.
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Ty

Oo/G

Ty
Y

(a) Creep Loading (b) Creep Response
Fig.9-8
The stress relaxation which occurs in a Maxwell material upon application of the strain
e = ¢[U(?)] (9.20)
is given by the solution of the differential equation -
o+ o/t = Ge[8(1)] (9.21)

obtained by inserting the time derivative of (9.20) into (9.3). Here [§(?)] = d[U(¢)]/dt is a
singularity function called the unit impulse function, or Dirac delta function. By definition,

[8(t—t)] = 0, t =t (9.22q)

f T st—t)dt = 1 (9.22b)

This function is zero everywhere except at ¢ =t where it is said to have an indeterminate
spike. For a continuous function f(f), it may be shown that when £ > ¢,

t
[ oy —tnar = ft)[UE-1,) (9.29)
with the help of which (9.21) may be integrated to give the Maxwell stress relaxation
a(t) = Gee VT[U(t)] (9.24)
The stress relaxation for a Kelvin material is given directly by inserting ¢ = ¢[8(%)]
into (9.4) to yield
a(t) = Ge [U(#)] + 7e,[8(2)] (9.25)

The delta function in (9.25) indicates that it would require an infinite stress to produce an
instantaneous finite strain in a Kelvin body.

9.5 CREEP FUNCTION. RELAXATION FUNCTION. HEREDITARY INTEGRALS

The creep response of any material (model) to the creep loading o = o [U(f)] may be

written in the form
(9.26)

where ¥(t) is known as the creep function. For example, the creep function for the gen-
eralized Kelvin model of Fig. 9-5 is determined from (9.19) to be

w(t) = 24(1—9'%)(0‘(0] (9.27)
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where J; = 1/G, is called the compliance. If the number of Kelvin units increases indefinitely
8o that N— « in such a way that the finite set of constants (r,J,) may be replaced by the
continuous compliance function J(r), the Kelvin creep function becomes

¥(t) = fo "I e=t'7) dr (9.28)

The function J(r) is referred to as the “distribution of retardation times”, or retardation
spectrum.

In analogy with the creep response, the stress relaxation for any model subjected to the
strain e = ¢ [U(t)] may be written in the form

olt) = (), (9.29)

where ¢(t) is called the relazation function. For the generalized Maxwell model of Fig. 9-6,
the relaxation function is determined from (9.24) as

) = 3 G [U®) | (9.50)

Here, as N - « the function G(+) replaces the set of constants (G, ;) and the relaxation
function is defined by

#(t) = fo " G-t dr (9.81)

The function G(r) is known as the “distribution of relaxation times”, or relaxation spectrum.

In linear viscoelasticity, the superposition principle is valid. Thus the total “effect”
of a sum of “causes” is equal to the sum of the “effects” of each of the “causes”. Accord-
ingly, if the stepped stress history of Fig. 9-9(a) is applied to a material for which the creep
function is ¥(t), the creep response will be

e(t) = o, ¥(t) + ol‘lf(t—tl) + o, ¥(t—t,) + o, ¥(t—t) = igo oi\If(t*ti) (9.32)

Therefore the arbitrary stress history o= o(t) of Fig. 9-9(b) may be analyzed as an
infinity of step loadings, each of magnitude do and the creep response given by the super-
position integral .
da(t’)
(t) = v v(t—t)dr (9.33)

Such integrals are often referred to as hereditary integrals since the strain at any time is
seen to depend upon the entire stress history.

Aa . Ad

oo b— -
¢ I ! !
{

Fig.9-9
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For a material initially “dead”, i.e. completely free of stress and strain at time zero, the
lower limit in (9.33) may be replaced by zero and the creep response expressed as

() =} d‘(’l(tf') ¥(t—t') dt’ (9.34) |

Furthermore, if the stress loading involves a step discontinuity of magnitude ¢, at t =0,
(9.84) is usually written in the form

(t) = o¥(t) + f dol dt, —t) dv’ (9.85)

Following similar arguments as above, the stress as a function of time may be rep-
resented through a superposition integral involving the strain history ¢(f) and the relaxation
function ¢(t). In analogy with (9.33) the stress is given by

oft) = _w%qs(t—t’) v (9.36)

and with regard to a material that is “dead” at ¢ =0, the integrals comparable to (9.34)
and (9.35) are respectively

oty = § d;l(tt,') ot — t) dt’ | (9.87)
and ot) = eglt) + j; t d;(f,') ot —t) dt’ (9.88)

Since either the creep integral (9.34) or the relaxation integral (9.37) may be used to
specify the viscoelastic characteristics of a given material, it follows that some relationship
must exist between the creep function ¥(£) and the relaxation function ¢(t). Such a relation-
ship is not easily determined in general, but using the Laplace transform definition

f f(t)e-s dt (9.89)
0
it is possible to show that the transforms ¥(s) and ¢(t) are related by the equation

¥(s)p(s) = 1/s? (9.40)

where s is the transform parameter.

9.6 COMPLEX MODULI AND COMPLIANCES

If a linearly viscoelastic test specimen is subjected to a one-dimensional (tensile or shear)
stress loading o = o, sinot, the resulting steady state strain will be ¢=¢, sin (ot —8), a
sinusoidal response of the same frequency o but out of phase with the stress by the lag angle
5. The stress and strain for this situation may be presented graphically by the vertical
projections of the constant magnitude vectors rotating at a constant angular velocity o as
shown in Fig. 9-10 below.

The ratios of the stress and strain amplitudes define the absolute dynamic modulus
o,/¢, and the absolute dynamic compliance ¢ /o, In addition, the in-phase and out- of-phase
components of the stress and strain rotating vectors of Fig. 9-10(e) are used to define

o, CO8 8

(a) the storage modulus G, =

o
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sin §
(b) the loss modulus G, = %

€

cos §
(c) the storage compliance J, = fo

%

in 8
(d) the loss compliance J = S8m

0

o, € .
’ 0 = gg Sin ot

€ = ¢y sin (of — 8§)

! -2 | t

(@) (b

Fig.9-10

A generalization of the above description of viscoelastic behavior is achieved by
expressing the stress in complex form as

o* = g et (9.41)
and the resulting strain also in complex form as
* = el (9.42)
From (9.41) and (9.42) the complex modulus G*(i») is defined as the complex quantity
o*/e* = G*(lo) = (o,/e)e® = G, +1G, (9.43)

whose real part is the storage modulus and whose imaginary part is the loss modulus.
Similarly, the complex compliance is defined as

*le* = J*(lm) = (eo/o-o)e—ia

(9.44)

. G*
= J, —i, . e,
where the real part is the storage compli- 8 > ! >
ance and the imaginary part the negative Gy 8 J
of the loss compliance. In Fig. 9-11 the g 2
vector diagrams of G* and J* are shown.

Note that G* = 1/J*. Fig. 9-11

9.7 THREE DIMENSIONAL THEORY

In developing the three dimensional theory of linear viscoelasticity, it is customary to
consider separately viscoelastic behavior under conditions of so-called pure shear and pure
dilatation. Thus distortional and volumetric effects are prescribed independently, and
subsequently combined to provide a general theory. Mathematically, this is handled by
resolving the stress and strain tensors into their deviatoric and spherical parts, for each of
which viscoelastic constitutive relations are then written. The stress tensor decomposition
is given by (2.70) as

oy = S;+8,0,/3 (9.45)
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and the small strain tensor by (3.98) as
¢ = €;+ 8,6./3 (9.46)

. 1

Using the notation of these equations, the three dimensional generalization of the viscoelastic
constitutive equation (9.13) in differential operator form is written by the combination

{P)s, = 2(QJe, (9.470)
and {M}s, = 3{N}e, (9.470)
where {P}, {Q}, {M} and {N} are operators of the form (9.14) and the numerical factors
are inserted for convenience. Since practically all materials respond elastically to moderate
hydrostatic loading, the dilatational operators {M} and {N} are usually taken as constants
and (9.47) modified to read
{P}s; = 2{Q}e; (9.48a)
o, = 3K, (9.48b)
where K is the elastic bulk modulus.

Following the same general rule of separation for distortional and volumetric behavior,
the three-dimensional viscoelastic constitutive relations in creep integral form are given by

e, = ftqf(t—t')%dt' (9.490)
ij o s at/ *
t do,,
o = [ w-t)5iar (9.49b)
it 0 v ot
and in the relaxation integral form by
t 1e
s, = | 86— 1) L ay (9.500)
0 .
t Oe.. )
0, = f 6. (t— 1) iy (9.500)
n 0 v at

The extension to three-dimensions of the complex modulus formulation of viscoelastic
behavior requires the introduction of the complex bulk modulus K*. Again, writing shear
and dilatation equations separately, the appropriate equations are of the form

st = 2G*(in)e* = 2(G,+iG,)e? (9.510)
¥ = 3K*(1:w)e* = 3(K1+’£K2)e: (9.51b)

ii it

9.8 VISCOELASTIC STRESS ANALYSIS.
CORRESPONDENCE PRINCIPLE

The stress analysis problem for an iso-
tropic viscoelastic continuum body which
occupies a volume V and has the bounding
surface S as shown in Fig. 9-12, is formulated
as follows: Let body forces b, be given
throughout V and let the surface tractions
tg'A"(xk, t) be prescribed over the portion S, of
S, and the surface displacements g,(x,,?) be
prescribed over the portion S, of S. Then
the governing field equations take the form

of: Fig. 9-12
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1. Equations of motion (or of equilibrium)

Giivi + bi = pui (9.52)
2. Strain-displacement equations
2¢; = (u,; +u,;)) (9.53)
or strain-rate-velocity equations
2&; = (v,;+ ;) (9.54)
3. Boundary conditions n
’ oy (@, ) n(x,) = ™ (x,, ) onS, (9.55)
u(r,t) = g,/(,1%) on S, (9.56)
4. Initial conditions
u,(z,,0) = u, (9.57)
v,(x,,0) = v, (9.58)

5. Constitutive equations
(2) Linear differential operator form (9.48)
or
(b) Hereditary integral form (9.49) or (9.50)
or

(¢) Complex modulus form (9.51)

If the body geometry and loading conditions are sufficiently simple, and if the material
behavior may be represented by one of the simpler models, the field equations above may be
integrated directly (see Problem 9.22). For more general conditions, however, it is con-
ventional to seek a solution through the use of the correspondence principle. Thijs principle
emerges from the analogous form between the governing field equations of elasticity and the
Laplace transforms with respect to time of the basic viscoelastic field equations given above.
A comparison of the pertinent equations for quasi-static isothermal problems is afforded
by the following table in which barred quantities indicate Laplace transforms in accordance
with the definition ‘

flx,s) = f f(z,, tye=stdt (9.59)
0
Elastic Transformed Viscoelastic
1. ¢,,7¥b, =0 1. 5,,+b, =0
2. 2 = (u,;+u;) 2. 2¢ = (4; T %))
8. oyn, = £ on S, 3. o,i, = ™  on S,
u, = ¢, on S, u, = g, on S,
4. s, = 2Ge, 4. P(s)5, = 2Q(s)¢,
= 3K« 5. = 3K¢

From this table it is observed that when G in the elastic equations is replaced by Q/P, the
two sets of equations have the same forzn._Accordingly, if in the solution of the “correspond-
ing elastic problem” G is replaced by Q/P for the viscoelastic material involved, the result
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is the Laplace transform of the viscoelastic solution. Inversion of the transformed solution
yields the viscoelastic solution.

The correspondence principle may also be stated for problems other than quasi-static
.problems. Furthermore, the form of the constitutive equations need not be the linear dif-
ferential operator form but may appear as in (9.49), (9.50) or (9.51). The particular problem
under study will dictate the appropriate form in which the principle should be used.

Solved Problems

VISCOELASTIC MODELS (Sec. 9.1-9.3)

9.1. Verify the stress-strain relations for the Maxwell and Kelvin models given by (9.3)
and (9.4) respectively.

In the Maxwell model of Fig. 9-2(a) the total strain is the sum of the strain in the spring plus
the strain of the dashpot. Thus e =es+ep and also é=ég+ép. Since the stress across each
element is o, (9.1) and (9.2) may be used to give ¢ = ¢/G + o/4.

. In the Kelvin model of Fig. 9-2(b), o0 = og+ op and directly from (9.1) and (9.2), ¢ = né+ Ge.

9.2. Use the operator form of the Kelvin model stress-strain relation to obtain the stress-
strain law for the standard linear solid of Fig. 9-3(a).

Here the total strain is the sum of the strain in the spring plus the straih in the Kelvin unit.
Thus e = eg + e or in operator form e = o/G; + o/{Gy+ 159;}. From this

Gl{Gg + 112(93}5 = {G2 + 7]26t}0 + GIU
and so G1G2€ + GIWZE = (Gl + G2)t7 + 172&.

9.3. Determine the stress-strain equation for the four parameter model of Fig. 9-4. Let
n, > © and compare with the result of Problem 9.2.

Here the total strain e = ex + ¢, which in operator form is
e = o/{Gy+ 3} + {3+ 1/71}0/G1{3¢}
Expanding the operators and collecting terms gives
G+ (Gy/ny + (G + Go)na) 6 + G1Goolnng = Gi€+ GGoe/ny

As 7~ = this becomes ¥ + (G + Gp)a/n, = Gy€+ G1Gyé/9, which is equivalent to the result of

Problem 9.2.
9.4. Treating the model in Fig. 9-13 as a G, k!
special case of the generalized Max- — WWM———m
well model, determine its stress-strain
equation. - ~
Writing (9.10) for N =2 in the form G, ki
— WWWW———
o = Gie/{o,+ 1/} + Gé/{d,+ 1/75}

and operating as indicated gives Fig.9-13
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9.5.

{Bt + 1/1'2}((.7 + (7/7'1) = Gl{at + 1/1'2}; + G2{6t+ 1/7’1};
which when expanded and rearranged becomes

7:' + (7‘1 + 7'2)&/1’17'2 + 0/7’17'2 = (Gl + Gz) .€.+ (G1/1'2 + Gg/‘rl)é

The model shown in Fig. 9-14 may be considered as a
degenerate form of the generalized Maxwell model with 1"
G, =5, = » for the case N =38. Using these values in

(9.10) develop the stress-strain equation for this model.-

Gs
Here (9.10) becomes o = nyé + Goe/{9,} + €/{8:/G3 + 1/93} or %G
2

{at/G3 + 1/7[3}0" = {at/Gg + 1/773}(1]1‘6"" GzE) + e" ng
Application of the operators gives L

G/Gg+ a/ng = 9°¢/Gs + (1 + Go/G3 + 11/195) €+ Go/ngé I"

m

- which may also be written

173& + G30’ == 771?)3.5."" (G2113+ G3'I71 + G3?73); + G2G3E Fig. 9-14

CREEP AND RELAXATION (Sec. 9.4)

9.6.

9.7.

9.8.

(9.23),

Determine the Kelvin and Maxwell creep response equations by direct integration of
(9.17) and (9.21) respectively.

t
Using the integrating factor et/7, (9.17) becomes eet/T = 2 f et’/7[U(¢')] dt’ which by formula
(9.18) yields 7o

eet!T = (ao[U®)]/n)[ret"/7]E = (oo/G)et/T — 1)[U(2)] or e = (o/G)A — e~ t/T)[U(2)].
t
Use of et/T as the integrating factor in (9.21) gives oet/™ = Ge, f et’/7[3(t)] dt’; and by formula
0

oet/T = Geg[U(2)] or o = Gee UT[U(¢)]

Determine the creep response of the standard linear solid of Fig. 9-3(a).
Since € = eg + ex for this model the creep response from (9.1) and (9.19) is simply
() = [1/Gy+ (/G (L — e=t/m)]ag[U(D)]
The same result may be obtained by setting 79, = = in the generalized Kelvin (N = 2) response
e = iél Ji(1 — e~ t/T)oo[U(t)] or by integrating directly the standard solid stress-strain law. The

student should carry out the details.

The creep-recovery experiment consists of a Y
creep loading which is maintained for a period
of time and then instantaneously removed.
Determine the creep-recovery response of the ) e
standard solid (Fig. 9-3(a)) for the loading |
shown in Fig. 9-15. 5

Y

7o t

From Problem 9.7 the response while the load is
on (t< 2ry) is

e = oo[l/Gy + (1/Gp)(1 — e~ t/my)] Fig. 9-15
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9.9.

9.10.

LINEAR VISCOELASTICITY [CHAP. 9

At t = 2r, the load is removed and o becomes zero at the same time that the “elastic” deformation
0o/G; is recovered. For t > 2r, the response is governed by the equation &+ e/ry = 0 which is
the stress-strain law for the model with o = 0 (see Problem 9.2). The solution of this differential
equation is ¢ = Ce~T/7; where C is a constant and T =t—2r;, At T =0, ¢ = C = oo(1 — ¢~2)/G,
and so

e = og(l—e"2)eT/T/Gy = og(e2—1)e~t//Gy,  for t > 2r,

The special model shown in Fig. 9-16 is elongated at a constant rate &= e /t, as
indicated in Fig. 9-17. Determine the stress in the model under this straining.

JWV\(/;VWV de
G n
~ ‘ﬁ - > 60 __________
|
|
1 |
| _
t >t
Fig. 9-16 Fig. 9-17

From Problem 9.5 the stress-strain law for the model is o + o/r = 3¢+ 8Gé + Ge/r and so
here ¢+ o/r = 3Gey/t, + Geot/rt,. Integrating this yields o = €87+ Gt —9) 4+ Ce—t/7 where C
is the constant of integration. When ¢t =0, o = 7¢/t; and so C = —peyft;. Thus o =
€o(27 + Gt —ne~t/7)/t;. Note that the same result is obtained by integrating

€ t € t 1ot T
oet/T = t—"f 3Get'/fdt'+t—°f GEeIT 4y
1y 1+

T

Determine by a direct integration of the stress-strain law for the standard linear
solid its stress relaxation under the strain e= ¢ [U(?)].

Writing the stress-strain law (see Problem 9.2) as ¢ + (G + Go)o/ny = €Gy([5(£)] + G1G5[U(®)]/15)
for the case at hand and employing the integrating factor e(Gi+G2)t/n2 it is seen that
¢ ) €G1Gy (1
oe(G1+Gt/ny = ‘oGlf [3(tr)]e(G1+Gz)t//n2 di’ + —_f [U(t')]e(G1+G2)t'/"72 dt’
0 T2 Yy
Integrating this equation with the help of (9.18) and (9.23),
o = G(Gy+ Gie— C1+GIt/m)[U()]/(Gy + Gy)

CREEP AND RELAXATION FUNCTIONS. HEREDITARY INTEGRALS (Sec. 9.5)

9.11. Determine the relaxation function ¢(t) for the G,
three parameter model shown in Fig. 9-18. VWWWY—
The stress-strain relation for this model is “——0— . o>
G 72

o+ o/ry = (Gy+ Go)e + G1Goe/ns A AA A E

and so with ¢ = ¢[U(t)] and e = ¢[5(¢)] use of the
integrating factor et/7, gives Fig.9-18

f " em{Ue)] ay
0

Thus by use of (9.18) and (9.23), o = ¢y(G; + Gpe~t/72) = ¢y¢(t). Note that this result may also be
obtained by putting #; = « in (9.30) for the generalized Maxwell model.

‘ G,G
vetlty = e(Gy+ Gy) f evrmfs(t)] ay + 2712
0 2



CHAP. 9] LINEAR VISCOELASTICITY 209

9.12. Using the relaxation function ¢(f) for the model of Problem 9.11, determine the creep
function by means of (9.40).

The Laplace transform of ¢(f) = Gy + Gqe~t/7y is $(8) = Gy/8 + Gy/(s+1/7y) (see any stand-
ard table of Laplace transforms). Thus from (9.40),

v(8) = (s+ 1/r)/[Gys(s+ 1/rg) + Gos?] = 1/Gys — [Go/G1(Gy + Gp)l/(s + G1/(Gy + Go)7y)
which may be inverted easily by a Laplace transform téble to give
v = 1/Gy — [Go/Gy(Gy + Gp)le~Gat/(G+G7y

This result may be readily verified by integration of the model’s stress-strain equation under creep
loading.

9.13. If a ramp type stress followed by a sus-
tained constant stress o, (Fig. 9-19) is
applied to a Kelvin material, determine
the resulting strain. Assume o/t =A.

The stress may be expressed as
o = At[U(E)] — Mt —t)[U(E—t))]

which when introduced into (9.4) leads to

Fig. 9-19

ty

t .
cet/t = %[ fo ‘ et /TU)] dt! — f (' — t)et/T[UW — t,)] dt’:l

Integrating with the aid of (9.18) gives
e = WO{E+r(e~t/T—1))U®)] — (t—2t) + 7(eC=0/T—1)[U(t—¢t)]}

which reduces as t—> © to e = At;/G = 0{/G.

9.14. Using the creep integral (9.84) together with the Kelvin creep function, verify the
result of Problem 9.13.

For the Kelvin body, ¢(t) = (1 —e~t/7)/G and (9.34) becomes
t
() = f %([U(t’)] + t[8(t)] — [U®F —t)] — (' — ) [8(t' — )L — e~ /) dt’
which by (9.18) and (9.23) reduces to

A ¢ ¢
e = el |:[U(t)] f (L—e-C=th/nydt! — [U(t—ty)] f (1 — e (t—tn/7) dt’:|
0

151

A straightforward evaluation of these integrals confirms the result presented in Problem 9.13.

9.15. By a direct application of the superposition principle, determine the response of a
Kelvin material to the stress loading shown in Fig. 9-20.

[+

A

A
1 1 _
t; 2t 3t, t

t . 1 1

Fig.9-20 Fig. 9-21
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The stress may be represented as a sequence of ramp loadings as shown in Fig. 9-21 above.
From Problem 9.13, ¢ = = (G)[t+ r(e~¥/7—1)][U(t)] for this stress loadmg In the present case
therefore

(t) = WRAE+ (e t/T—IN[UE)] — ((E—ty) + (e~ C—t/T—1)[U(t — t,)]
~((6—2t;) + r(e=Ct=260/7 — I)[U(t — 28,)] + (¢ — 3t,) + r(e=E=36>/T — D)[U(t — 3t,)]]
Note that as ¢t > «, ¢ 0.

COMPLEX MODULI AND COMPLIANCES (Sec. 9.6)

9.16. Determine the complex modulus G* and the lag angle & for the Maxwell material of
Fig. 9-2.

Writing (9.8) as ¢+ o/r = Gé¢ and inserting (9.41) and (9.42) gives Twogeivt + ggelot/r =
Giwege!@t=8  from which oge®d/ey = G* = Giwr/(1 +iwr), or in standard form

G* = G(w272+ iwr)/(1 + wr2)
From Fig. 9-11, tan§ = G4/G; = Gur/Gw?r® = 1/er.

9.17. Show that the result of Problem 9.16 may also be obtained by simply replacing the
operator 9, by 7» in equation (9.5) and defining o/ = G*.

After the suggested substitution (9.5) becomes (iw/G + 1/3)e = iwe from which

ale = Gio/(ie+1/7) = Gior/(1 + iwr)
as before.

9.18. Use equation (9.10) for the generalized Maxwell model to illustrate the rule that
“for models in parallel, the complex moduli add”.

From Problem 9.17 the complex modulus for the Maxwell model may be ertten G* = g/e =
Giwr/(1 + twr). . Thus writing (9.10) as

o = G {d)e/{8,+1/7} + Go{dcye/{0+ 1/re} + -+ + Gn{03e/{0; + L/ry)
the generalized Maxwell complex modulus becomes
G* = Grior/(1+iwry) + Gaiory/(1 +dwry) + -+ + Guiory/(L+iory) = Gf + Gy + -+ + GF

9.19. Verify the relationship J, =1/G(1+tan?s) between the storage modulus and
compliance.

From (9.48) and (9.44), J* =1/G* and so J; —iJy = 1/(G;+1Gy) = (G, —iGy)/(G2 + G2).
Thus
Ji = GG + GE) = 1/G,(1 + (Go/GY?) = 1/G4(1 + tan2s)

9.20. Show that the energy dissipated per cycle is related directly to the loss compliance

J, by evaluating the integral f o de over one cycle. ,

For the stress and strain vectors of Fig. 9-10, the integral f o de evaluated over one cycle is

27/w de 2m/w
f ——dt = f (0 sin wt)egw cos (wt — 8) dt

0 7 dt 0

2m/0
= ggEgw f sin ot (cos wt cos § + sin wt sin 8) dt
0

2r/w 2n/w

2ot

a%w[-’l f s“‘ B dt + sz (sinZ wt) dt:| = olnly
0 0
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THREE DIMENSIONAL THEORY. VISCOELASTIC
STRESS ANALYSIS (Sec. 9.7-9.8)

9.21. Combine (9.48a) and (9.48b) to obtain the viscoelastic constitutive relation o, =
8,;{R}eq + {S}¢; and determine the form of the operators {R} and {S}.

Writing (9.48a) as {P}(o;; — 8;j011/3) = 2{@}(e;; — 8ij61/3) and replacing oy here by the right hand
side of (9.48b), the result after some simple manipulations is ’

o; = 8{(BKP —2Q)/3P}e;;. + {2Q/P}e;

9.22. A bar made of Kelvin material is pulled in tension so that o, = o [U(t)], 0, =0y =

c s = 05, = 0 where o, is constant. Determine the strain ¢, for this loading.

g )

12 7
From (9.48b), 3¢; = oo[U(t)]/K for this case; and from (9.48a) with i =j =1, {P}{(ey; —¢,,/3) =
{2Q}(e1; — €:/3). But from (9.6), {P} =1 and {Q} = {G +43,} for a Kelvin material; so that now
20,[U)]/3 = 2{G+ 19 ey — 0o[U(1)]/9K)
or er + e/t = oUDIBK + G)/9mK + o4[8()]/9K
Solving this differential equation yields
1 = 08K+ @1 —e T [UWB/IKG + oget/7[U(t)]/9K
As t—> o, ¢; = (BK+ G)oy/IKG = oy/E.

9.23. A block of Kelvin material is held in a container
with rigid -walls so that ¢, =¢; =0 when the
stress o, = —o,[U(?)] is applied. Determine ¢,
and the retaining stress components o,, and o,
for this situation.

Here ¢; = ¢;; and oyy = g33 so that (9.48b) becomes
oy + 2005 = 3Ke;; and (9.48a) gives 2(ay;— 099)/8 =
2G{1 + 79,}(2¢,,/8) for a Kelvin body. Combining these
relations yields the differential equation Fig. 9-22

¢ + (UG +38K)ey /4G = —30y[U()}/4G~
which upon integration gives

er = —30,[U(t)](1 — =G + 3K)t/4G1) /(4G + 3K)

Inserting this result into (9.48a) for i=j =2 gives

opy = (Foo/2 — 9Kao(l — e~ (4G +3K)1/1G7)/(8G + 6K))[U(t)]

9.24. The radial stress component in an elastic half-
space under a concentrated load at the origin
may be expressed as

Ty = (P/Zﬂ')[(l — 2v)a(T, 2y — B(r, z)]

where o and 8 are known functions. Determine
the radial stress for a Kelvin viscoelastic half-
space by means of the correspondence principle
when P = P [U(t)]. Fig. 9-23
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9.25.

9.26.

9.27.
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The viscoelastic operator for the term (1—2) is {3Q}/{8KP + Q} so that for a Kelvin body
the transformed viscoelastic solution becomes

_ _ 3p, . G + 33
Fon = Eg[m olr,2) = Blr, "’]

which may be inverted with help of partial fractions and transform tables to give the viscoelastic
stress :

3Py G 3K
= — — (3K + G)t/
T 2r [(31{ +etmra® ") olrz) + Bl 2)

The correspondence principle may be used to obtsin displacements as well as stresses.
The 2 displacement of the surface of the elastic half space in Problem 9.24 is given by
Wi,=gy = P(1—=+?)/Exr. Determine the viscoelastic displacement of the surface for
the viscoelastic material of that problem. ‘

The viscoelastic operator corresponding to 1 —vé)/E is {8K+4Q}/4Q(3K + @) which for the
Kelvin body causes the transformed displacement to be

Wi=0y = PoBK + 4G+ 2s))/4rrs(3K + G + 33)(G + 78)

After considerable manipulation and inverting, the result is

_ PyBK+4G)[1  3¢-GK+Gem 3K+G
Ve T LaGK+G) G T K+ 46 GBRFIO°

Note that when ¢ =0, w,~¢) = 0 and when ¢— «, Wa=0) = Po(1 — »2)/Exnr, the elastic deflection.

A simply supported uniformly loaded beam is HEEEN [ ]P0
assumed to be made of a Maxwell material. *
Determine the bending stress o,, and the deflec- 2L

tion w(x, t) if the load is » = p,[U(?)]. , Fig. 9-24

The bending stress for a simply supported elastic beam does not depend upon material properties,
so the elastic and viscoelastic bending stress here are the same. The elastic deflection of the beam
is w(x;) = poa(x,)/24E1 where a(x;) is a known function. For a Maxwell body, {P} = {3, + 1/+}
and {@} = {Gd;}, so that the transformed deflection is

__ poal®:) /(3K/r 4+ 3K+ G)s
YV 9KGs?

which when inverted gives

w(xly t)

Poc(y) t  3K+G
241 3n 9KG

When ¢t =0, w(z;,0) = pya(x,)/24EI, the elastic deflection.

Show that as ¢ > « the stress o,, in Problem 9.23 approaches o, (material behaves as
a fluid) if the material is considered incompressible (v =1/2).

From Problem 9.23,
02lt e = —0y(9K — (4G + 3K))/2(4G + 3K) = —0o(8K — 2G)/(8K + 4G)

which may be written in terms of » as 929lt o = —70o/(1 — ). Thus for » = 1/2, 09slt 0y = —0g.
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MISCELLANEOUS PROBLEMS

9.28.

9.29.

9.30.

Determine the constitutive relation for the G, n

Kelvin-Maxwell type model shown in Fig. . —’W\N\N\/‘—:”:'——

9-25 and deduce from the result the Kelvin
and Maxwell stress-strain laws.

-—0—| Gy ot
Here MWW
o = oy +og = &/{8,/Gy+1/n} + {Gy+ 18 )e s
which upon application of the time operators _—_[I:}
becomes
o+ alry = 1€+ (Gy+ Gy + no/ry)é + (Gof1y)e Fig.9-25

In this equation if 7, =0 (spring in parallel with Maxwell), ¢+ o/ry = (Gy+ Gy e + (Go/7y)e.
Further, if G, =0, the Maxwell law &+ o/r; = Gy¢ results. Likewise, if G, is taken zero first
(dashpot .in parallel with Maxwell), &+ o/ry = ny€+ (Gy+ny/r))é; and when 7, =0, this also
reduces to the Maxwell law.
If the four-parameter constitutive relation is rewritten
7]1(‘7 + Gld = ’”1"72? + (G1’71 + G2171 + Gl'ﬂz)a + Glee

and n, set equal to zero, the result is the Kelvin law ¢ = nge + Gge. Likewise, if G; =0 the
reduced equation is & = o€ + G,¢, again representing the Kelvin model.

‘

Use the superposition principle to obtain

the creep recovery response for the stand- 604 ’
ard linear solid of Fig. 9-3(a) and compare
the result with that obtained in Problem 9.8.
With the stress loading expressed by Zry t
o = ao[U@®)] — oo[U(t — 27y)] oy ————

(see Fig. 9-26), the strain may be written at once
from the result of Problem 9.7 as Fig. 9-26

e = op(1/Gy + (L= e~tm)/G[UM)] — oo(l/Gy + (1 — e~ ¢~ 27)/G)[U(t — 27,)]
At times t > 2r, both step functions equal unity and
e = og(—e~tIT+e~t—2NIT)G, = oy(e2— 1)et/T/G,

which agrees with the result in Problem 9.8.

Determine the stress in the model of Prob-
lem 9.9 when subjected to the strain history
shown in Fig. 9-27. Show that eventually
the “free” spring in the model carries the

entire stress. ts t
From Problem 9.9 and the superposition prin-
ciple the stress is Fig.9-27
o = en(2—e~tT) + GOIUMI/t, — efn(@— e~ E—t7) + Gt —t))HU{—tl/t,

For times ¢t > t, the stress is o = eym(ett/T—1)e~t/7/t; + G¢;, and as t—> » this reduces to
o = Ge.
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9.31.

9.32.

9.33.

9.34.

LINEAR VISCOELASTICITY [CHAP. 9

The “logarithmic retardation spectrum” L is defined in terms of the retardation spec-
trum J by L(Inr) = 7J(z). From this definition determine the creep function y(¢) in
terms of L(In ). '

Let InT =\ so that e* =7 and thus dr/d\ = er = 7, or dr =rd(lnr). From this, (9.28)
defining y(t) becomes y(t) = f L(nr)(1—e~t/7)d(In7). In the same way, if H(In7) = 7G(7)
0

defines the logarithmic relaxation spectrum, ¢(¢) in (9.81) may be written

() = fm H(In 7)e—t/7d(In 1)
0

For the Maxwell model of Fig. 9-2(a) deter-
mine the storage and loss moduli, G, and T
G,, as functions of Inoer and sketch the
shape of these functions.

From Problem 9.16,
G* = G272+ dwr)/(1 + w2r2)
for a Maxwell material. Thus
G, = Go?rY/(1+o?r2) = Ge/(1+ 2V

where A=Inwr. For A=0, G,=G/2; for
A=w, G;=@G; and for A = —o, G, =0. Like-

wise G, = GeM/(1+e2) and for A =0, G, = G/2; ~2
for A = *w, G, =0. The shape of the curves for
these functions is as shown in Fig. 9-28. Fig. 9-28

Determine the viscoelastic operator form of the elastic constant v (Poisson’s ratio)
using the constitutive relations (9.48).

Under a uniaxial tension oy = o, (9.48b) gives €i/3 = 0o/9K so that (9.48a) for i=j=1
vields ¢; = {3KP + Q}oo/{9KQ). In the same way (9.48a) for i = j = 2 yields €9 =
{2Q — 3PK}o,/{18KQ}. Thus in operator form, » = —ey/e;; = {3PK — 2Q}/{6KP + 2Q).

A cylindrical viscoelastic body is inserted into a
rigid snug-fitting container (Fig. 9-29) so that
€.y = 0 (no radial strain). The body is elastic in
dilatation and has the creep function g, = A+
Bt + Ce* where A,B,C,\ are constants. If
é3 = §[U(?)], determine o(t).

Here o¢; = 3Ke; and by the symmetry of the problem,
20y; + 033 = 8Kegy. Also from (9.50a) with i = j = 1,

t degg , ’ .
01 — o33 = —-f v ¢s(t—t)dt’. Solving for o33 from
0

these two relations we obtain
2 (fdeg
o33 = Kegg + 3 fo T pg(t — ) dt’
The relaxation function ¢, may be found with the help of (9.40). The result is

s = [(ri—Nemnt — (ry— Nerzt]/(ry — ry)

where 7, 5, = [AN — B = \/(A\x + B)2 + 4BCx 1/2(A + C). Thus finally
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9.35.

9.36.

9.37.

. 9 (. [(ry—Nertt=t) — (ry — N)erst—t)]
- o33 = Kéit + -?;f € E——
0

which upon integration gives

o33 = (Kégt + 2&[—(r; —NA — ent)/3r; + (ry— N1 — en2t)/8ry)/(ry — r))[U(D)]

[U@)] dt’

The “creep buckling” of a viscoelastic column may be analyzed within the linear
theory through the correspondence principle. Determine the deflection w(z,,t) of a
Kelvin pinned-end column by this method.

Py w(zy, t) N N

2 42

£2]
Fig. 9-30

The elastic column formula is d2w/dx> + Pow/EI =0, and for a Kelvin material E may be
replaced by the operator {E +179;} so that for the viscoelastic column {E + nat}(dzw/dxf )+
Pyw/I = 0. Assuming the deflection in a product form w(zy,t) = W(x,)6(f), the operator leads to
the differential equation

(Bo + 16)(d2W/dz?) + PoWe/l = 0 from which 6+ [1 + P,W/EI(d2W/dz?)]6/r = 0

where 7 = 7/E. But the elastic buckling load is Pp = —EI(d2W/dxf)/W and so 6+
(1—Py/Pg)e/r = 0 which integrates easily to yield 6 = ¢(Po/Pp—1t/T,  Finally then the “creep
buckling” deflection is w = We(Po/Ps—10t/T,

Formulate the steady-state vibration problem for a viscoelastic beam assuming the
constitutive relations are those given by (9.48).

The free vibrations of an elastic beam are governed by the equation EI(B‘*w/axf) +
pA(32w/3t2) = 0. From (9.48) the viscoelastic operator for E is {9KQ/(3KP + Q)}, and if the deflec-
tion w(w,,t) = W(x,)6(t) the resulting viscoelastic differential equation may be split into the space
equation d4W/dx‘f — AW = 0 and the time equation {3KP + Q}(d2¢/dt?) -+ (kt/pA){9KQ}(8) = O.
The solution W; of the space equation represents the ith mode shape, and from the time equation for

N
k =k; the solution 6; = 3 Ajerst where N depends upon the degree of the operator. The total
i=1 o N

solution therefore is w(xy,t) = E W;(x,)A;erst in which the );; are complex.

i=1j=1

Supplementary Problems

Determine the constitutive equation for the four parameter model shown in Fig. 9-31.
Ans. 3+ (Gy/na+ Gofng+ Gi/n)o + (G1Golnmp)e = G1€+ (G Gaoln)e

G,
— AW

<0——°—JW\NW‘——ID—— 7 =
—

Fig. 9-31
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9.38.

9.39.

9.40.

9.41.

9.42.

9.43.

9.44. -

9.45.

LINEAR VISCOELASTICITY [CHAP. 9

Determine the creep response of the standard linear solid by direct integration of &+ e/lry =
Uo[U(t)](Gl + G2)/G1772 + Uo[a(t)]/Gl. (See Problem 9.7.)

Deduce the Kelvin and Maxwell stress-strain laws from the results established in Problem 9.5 for
the four parameter model of that problem. (Hint. Let G3; = 0, ete.)

Use equation (9.40) to obtain w(f) if (t) = a(b/t)ym Gy
with m <1. (Hint. Take m =1—k; then ¢(t) =

. m
abmk—1,) Ans. y(t) = S?TT(%)

Determine the creep and relaxation functions for the
model shown in Fig. 9-32.

Ans. y(t) = 1/Gy — G1e= Gt/ G+ 6D /Gy(Gy + Gy)
¢(t) = Gy + Gee— ¥/, Fig. 9-32

Determine G* for the model shown in Fig. 9-38.

G,(1+ 'rg w?) + G2w2'r§ o(Gorg + 93(1 + 7'22, «?))
Ans. G* = + 1
1+ w2-r§ 1+ wzrg

MW — ‘

G, 72

!
—wine— '
ol ——— |
73 | [
I [ t
1 - R

Fig. 9-33 Fig. 9-34

In the model of Problem 9.42 let G; = G, =G and 12 = 73 = 7 and determine the stress history
of the resulting model when it is subjected to the strain sequence shown in Fig. 9-34.

Ans. o = ;—O(G(2t—t1) + (4~ (L+ /T e~t/) for t, < ¢ < 2t,
1

A viscoelastic block having the constitutive equation 6+ ac = Be+ ye where o, 8,y are con-
stants is loaded under conditions such that ¢ = —oo[U(t)], 025 =0, e33=0 (see Fig. 9-35).
Assuming o; = 8Ke;, determine og4(£), 035(0) and o33().

- 3aK — 2y + 3K — 28 3aK — 2y
01 2(3<K + 1)

Ans. o33 = — >e—)‘t:| where A = (8aK 4 v)/(3K + B).

28K+ 8)  2(3aK + )

P[U)] 0T )
| , |

-

Fig. 9-35 Fig.9-36

A pinned-end viscoelastic column is a Maxwell material for which & + o/r = E<. The initial
shape of the column is w = wy sin (zx/l) when the load Py [U(t)] is applied (see Fig. 9-36). Deter-
mine the subsequent deflection w(x;, t) as a function of Pjg, the elastic buckling load.

Ans. w(xy,t) = wy sin (rx,/l)e—t/(1—Pgp/PedT



Absolute dynamic,
compliance, 202
modulus, 202
Acceleration, 111
Addition and subtraction,
of matrices, 17
of (Cartesian) tensors, 15
of vectors, 2
Adiabatic process, 140
Airy stress function, 147
Almansi strain tensor, 82
Angle change, 86
~Angular momentum, 128
Anisotropy, 44, 141
Antisymmetric,
dyadic, 5
matrix, 19
tensor, 19
Axis of elastic symmetry, 142

Barotropic change, 161
Base vectors, 6
Basis, 6, 9

orthonormal, 6
Bauschinger effect, 176
Beltrami-Michell equations, 144
Bernoulli equation, 164
Biharmonic equation, 148
Body forces, 45
Boundary conditions, 144, 146
Bulk,

modulus, 143

viscosity, 161

Caloric equation of state, 132
Cartesian,

coordinates, 6

tensors, 1, 12, 13
Cauchy,

deformation tensor, 81

strain ellipsoids, 89

stress principle, 45

stress quadric, 50
Cauchy-Riemann conditions, 165
Circulation, 164

Kelvin’s theorem of, 165
Clausius-Duhem inequality, 131
Column matrix, 17
Compatibility equations, 92, 114
Complex,

modulus, 202

potential, 166
Compliance, 201
Component, 1, 7
Compressible fluid, 165
Configuration, 77
Conformable matrices, 17
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Conjugate dyadic, 4
Conservation of,

energy, 128

mass, 126
Constitutive equations, 132
Continuity equation, 126
Continuum concept, 44
Contraction, 16
Contravariant tensor, 11
Convective,

derivative, 110

rate of change, 111

Conventional stress and strain, 175

Coordinate transformation, 11
Correspondence principle, 205
Couple-stress vector, 45
Coupled heat equation, 150
Covariant tensor, 12
Creep,

function, 200

test, 199
Cross product, 3, 5, 16
Cubical dilatation, 90
Curvilinear coordinates, 7
Cylindrical coordinates, 8

Dashpot, 196
Decomposition,

polar, 87

velocity gradient, 112
Deformation, 77

gradients, 80

inelastie, 175

plane, 91

plastic, 175

tensors, 81

total (deformation) theory, 183
Del operator, 22
Density, 44, 126

entropy, 130

strain energy, 141
Derivative,

material, 110, 114

of tensors, 22

of vectors, 22
Deviatoric,

strain tensor, 91

stress tensor, 57
Diagonal matrix, 17
Dilatation, 90
Direction cosines, 7
Displacement, 78, 83

gradient, 80

relative, 83
Dissipation function, 132
Dissipative stress tensor, 131
Distortion energy theory, 178
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Divergence theorem (of Gauss), 23
Dot product of,

dyads, 5

vectors, 3
Duhamel-Neumann relations, 149
Dyadiecs, 1, 4

antisymmetric, 4

conjugate of, 4

symmetric, 4
Dyads, 4

nonion form, 7
Dynamic moduli, 203

Effective,
plastic strain increment, 182
stress, 182
Elastic,
constants, 141
limit, 175
symmetry, 142
Elasticity, 140
Elastodynamics, 143
Elastoplastic problems, 183
Elastostatics, 143
Energy,
kinetic, 129
strain, 141
thermal, 129
Engineering stress and strain, 175
Entropy, 130
specific, 130 -
e—5 identity, 39
Equations of
equilibrium, 48, 128
motion, 128
state, 130
Equivalent,
plastic strain increment, 182
stress, 182
Euclidean space, 11
Eulerian,
coordinates, 78
description, 79
finite strain tensor, 82
linear strain tensor, 83

Field equations,
elastic, 143, 147
viscoelastie, 205
Finite strain tensor, 81, 82
First law of thermodynamics, 129
Flow, 77, 110
creeping, 169
irrotational, 164
plastic, 175
potential, 175
rule, 181
steady, 163
Fluid, )
inviscid, 160
perfect, 160, 164
pressure, 160

Forces,

body, 45

surface, 45
Fourier heat law, 149
Fundamental metric tensor, 13

Gas,
dynamical equation, 165
law, 160
Gauss’s theorem, 23
Generalized,
Hooke’s law, 140
Kelvin model, 198
Maxwell model, 198
plane strain, 147
plane stress, 147
Gibb’s notation, 2
Gradient,
deformation, 80
displacement, 80
Green’s ‘
deformation tensor, 81
finite strain tensor, 82

Hamilton-Cayley equation, 21
Hardening,

isotropic, 180

kinematic, 181

strain, 176, 183

work, 176, 183
Harmonic functions, 166
Heat,

conduction law, 149

flux, 129

radiant, 129
Hencky equations, 183
Hereditary integrals, 201
Homogeneous,

deformation, 95

material, 44
Hookean solid, 196
Hydrostatic pressure, 160
Hydrostatics, 163
Hyperelastic material, 149
Hypoelastic material, 149
Hysteresis, 176

Ideal,

gas, 160

materials, 132
Idealized stress-strain curves, 177
Idemfactor, 5
Identity matrix, 18
Incompressible flow, 126
Incremental theories, 181
Indeterminate vector product, 4
Indices, 9
Indicial notation, 8
Inelastic deformation, 175
Inertia forces, 48
Infinitesimal strain, 83
Initial conditions, 145
Inner product, 16



Integral theorems, 23
Internal energy, 129
Invariants, 21

of rate of deformation, 114

of strain, 89, 90

of stress, 51
Irreversible process, 130
Irrotational flow, 113, 164
Isothermal process, 140
Isotropy, 44, 142

Jacobian, 11, 79
Johnson’s apparent elastic-limit, 176

Kelvin (material) model, 197
Kinematic,

hardening, 181

viscosity, 163
Kinetic energy, 129
Kronecker delta, 13

Lagrangian,
description, 79
finite strain tensor, 82
infinitesimal strain tensor, 83
Lamé constants, 143
Laplace,
equation, 165
transform, 202, 205
Left stretch tensor, 87
Levy-Mises equations, 181
Line integrals, 23
Linear,
momentum, 127
rotation tensor, 83
thermoelasticity, 149
vector operator, 8
viscoelasticity, 196
Local rate of change, 111
Logarithmic strain, 175

Mass, 126
Material,
coordinates, 78
derivative, 110, 114-117
description of motion, 79
Matrices, 17-19
Maximum,
normal stress, 52
shearing stress, 52, 53
Maxwell (material) model, 197
Metric tensor, 13
Mises yield condition, 178
Modulus,
bulk, 143
complex, 203
loss, 203
shear, 143
storage, 202
Mohr’s circles,
for strain, 91
for stress, 54-56
Moment of momentum, 128
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Momentum principle, 127
Motion, 110

steady, 112
Multiplication of,

matrices, 18

tensors, 15

vectors, 3

Navier-Cauchy equations, 144
Navier-Stokes equations, 162
Navier-Stokes-Duhem equations, 162
Newtonian viscous fluid, 161, 196
Normal stress components, 47

Octahedral,

plane, 59
 shear stress, 192
Orthogonal,

tensor, 87

transformation, 13
Othogonality conditions, 13, 14
Orthotropic, 142
Outer product, 15

Parallelogram law of addition, 2
Particle, 77
Path lines, 112
Perfectly plastic, 176
Permutation symbol, 16
m-plane, 179
Plane,

deformation, 91

elasticity, 145

strain, 91, 145

stress, 56-57, 145
Plastie,

deformation, 175

flow, 175

potential theory, 181

range, 176

strain increment, 182
Point, 77
Poisson’s ratio, 143
Polar,

decomposition, 87

equilibrium equations, 148
Position vector, 77
Post-yield behavior, 180
Potential,

flow, 165

plastic, 182
Prandtl-Reuss equations, 181
Pressure,

fluid, 160

function, 163
Principal,

axes, 20

strain values, 89

stress values, 51, 58
Proper transformation, 17
Proportional limit, 177
Pure shear, 178
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Quadric of,
strain, 88, 89
stress, 50

_Quasistatic viscoelastic problem, 205

Range convention, 8

Rate of deformation tensor, 112
Rate of rotation vector, 114
Reciprocal basis, 28

Rectangular Cartesian coordinates, 6

Relative displacement, 83
Relaxation,

function, 201

spectrum, 201

test, 199
Retardation,

spectrum, 201

time, 199
Reversible process, 130
Reynold’s transport theorem, 123
Right stretch tensor, 87
Rigid displacement, 82
Rotation tensor,

finite, 87

infinitesimal, 83, 84
Rotation vector, 83

St. Venant’s principle, 145
Scalar, 1

field, 22

of a dyadic, 4

triple product, 4

Second law of thermodynamics, 130

Shear,

modulus, 143

strain components, 86

stress components, 52
Slip line theory, 184
Small deformation theory, 82
Spatial coordinates, 78
Specific,

entrop¥, 130

heat, 149
Spherical,

coordinates, 8

tensor, 57, 91
Spin tensor, 112
Standard linear solid, 197
State of stress, 46
Stokes’ condition, 161
Stokes’ theorem, 23
Stokesian fluid, 161
Strain,

deviator, 91

ellipsoid, 88

energy, 141

hardening, 176

natural, 112, 175

plane, 91

rate, 112

shearing, 86

spherical, 91

transformation laws, 88

Stream function, 165
Stream lines, 112
Stress,
components, 47
conservative, 131
deviator, 57
effective, 182
ellipsoid, 52
function, 147
invariants, 51
Mohr’s circles for, 54-56
normal, 47
plane, 56
power, 130
principle, 51
-quadrie, 50
shear, 47, 52
spherical, 57
symmetry, 48
tensor, 46
transformation laws, 49
vector, 45
Stretch,
ratio, 86
tensor, 87
Summation convention, 8, 10
Superposition theorem, 145
Surface forces, 45
Symbolie notation, 2, 10
Symmetry,
elastic, 142
tensor, 19

Temperature, 130
Tension test, 175
Tensor,
Cartesian, 1, 12, 13
components of, 1
contravariant, 11
covariant, 12
deformation, 81
derivative of, 22
fields, 22
general, 1, 11
metrie, 12
multiplication, 15
powers of, 21
rank, 1
stretch, 87
transformation laws, 1
Tetrahedron of stress, 47

Thermal equation of state, 132

Thermodynamic process, 130
Thermoelasticity, 133, 149
Transformation,

laws, 13, 88

of tensors, 1

orthogonal, 13, 14
Tresca yield condition, 178
Triangle rule, 2
Triple vector product, 4
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Two-dimensional elastostatics, Velocity, 110, 111
in polar form, 148 complex, 166
in rectangular form, 145 potential, 164

strain, 112

Viscoelastic stress analysis, 204-206
Viscoelasticity, 196
Viscous stress tensor, 160

Uncoupled thermoelasticity, 133, 150
Uniqueness theorem, 145, 158

Unit, . Voigt model, 197

dyadic, 5 . .
. . Vorticity,
relative displacements, 83
. tensor, 112
triads, 7
vector, 113
vector, 3
Work,

Vector, hardening, 176
addition, 2 plastic, 182
displacement, 78
dual, 16 Yield,
field, 22 condition, 177
of a dyadic, 4 curve, 179
position, 12, 77 surface, 179
potential, 126 Young’s modulus, 143
products, 3, 4, 16
rotation, 83 Zero,
traction, 46 matrix, 17
transformation law, 14 ' order tensor, 1
vorticity, 113 vector, 2



