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Dedicated to
Paul Erdos

who as the founder of modern combinatorics has been
posing problems, coining conjectures and tackling theorems
in number theory, graph theory and combinatorics
besides showing the world
the way to count the number of ways in more than one way
for more than half a century.

Say mathematician, how many are the combinations in one composition
with ingredients of six different tastes—sweet, pungent, astringent, sour,
salt and bitter—taking them by ones, twos, or threes, etc.?

[From Lilavathi of Bhaskara (the great twelfth century mathematician of
India) as quoted in N.L. Biggs: The Roots of Combinatorics, Historia

Mathematica 6 (1979), 109—-116.]






Preface

At an introductory level, combinatorics is usually considered as a branch of discrete
mathematics in which the main problem is that of counting the number of ways of
arranging or choosing objects from a finite set according to some simple specified rules.
Thus the crux of the problem, at the beginning stage at least, is mainly that of
enumeration. But if the prescribed rules and constraints become complicated the
question to ask naturally is whether an arrangement satisfying the given requirements
exists in the first place; if so, in the subsequent analysis one investigates the methods of
constructing such arrangements. In some cases these arrangements also have to meet
certain optimality criteria, in which case we seek an optimal solution of the problem. A
typical statement in some of these optimal situations will assert that the minimum for
one kind of a selection will correspond to the maximum for another kind, yielding a
“‘max-min theorem.”’” Thus in a wider sense, combinatorics deals with the enumeration,
existence, analysis, and optimization of discrete structures.

Combinatorial mathematics has a variety of applications. It is utilized in several
physical and social sciences, for example, chemistry, computer science, operations
research, and statistics. Consequently, there has recently been a rapid growth in the
depth and breadth of the field of combinatorics. The subject is becoming an increasingly
important component of the curriculum both at the graduate and undergraduate levels at
universities and colleges in the United States and abroad.

In this book I have attempted to present the important concepts of contemporary
combinatorics in a sequence of four chapters. I hope that students will find this book
useful for a course in combinatorics or discrete mathematics either as the main text or as
a supplementary text. It is designed for students with a wide range of maturity and can
also serve as a useful and convenient reference book for many professionals in industry,
research, and academe.

In each chapter the basic ideas are developed in the first few pages by giving
definitions and statements of theorems to familiarize the reader with concepts that will
be fully exploited in the selection of solved problems that follow the text. These
problems are grouped by topic and are presented in increasing order of maturity and
sophistication. A beginning student may therefore stop at any point and proceed to the
next chapter without losing the continuity of the development of the material. The
collection of solved problems is the unifying feature of the book.

Unlike other branches of mathematics, in combinatorics the solutions of problems
play a special role because in many instances a problem may need an ad hoc argument
based on some kind of special insight; that is, it may not be possible to solve it by
applying results of known theorems alone. I present a variety of problems covering
various branches of the subject. Students are encouraged to try to solve a problem
without looking at the solution. The thrill is in solving the problem independently, and
the reward is invariably heightened if the student can solve the problem by a different
(and possibly more elegant) method. I have used these problems as assignments and
projects in my courses on combinatorics and discrete mathematics during the past few
years, and the contributions and encouragements of my students—too numerous to -
mention individually—are gratefully acknowledged.

In writing a book like this, I have benefitted enormously from the contributions of
other mathematicians and scientists in the field. Since this book is meant to provide basic
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PREFACE

theory and solved problems, I have provided a short list of books for further study for
the discriminating student, instead of an exhaustive bibliography. Let me take this
opportunity to express my deep sense of gratitude to some outstanding mathematicians
who have made significant contributions in modern combinatorics. I have come into
contact with them over the past two decades either at national and international
conferences or by private correspondence. They include K. Bogart, R. Brualdi, V.
Chvital, J. Conway, R.P. Dilworth, P. Erd6s, M. Gardner, R. Graham, M. Hall, Jr.,, F.
Harary, P. Hilton, A.J. Hoffman, V. Klee, D. Kleitman, D. Knuth, E. Lawler, G. Polya, A.
Ralston, F. Roberts, G.C. Rota, H. Ryser, E. Snapper, R. Stanley, R. Stanton, W. Trotter,
A. Tucker, and H. Wilf.

I wish to thank my colleagues and friends at the University of Maine for giving me
the facilities and encouragement for writing this book. In particular I am grateful to Ali
Ozluk and Frank Curtis for invaluable suggestions and critical review of the manuscript.
If I have not given proper credit in this book to anyone who deserves recognition for
specific results, 1 apologize for the omission, and I will make every effort to include
such acknowledgment in subsequent editions. Likewise, it is possible that there are
errors and misprints. I accept complete and total responsibility for them. If they are
brought to my attention they too will be rectified. Any feedback in this regard from the
reader is welcome.

In conclusion I would like to express my immense gratitude to the editorial and
production staff at McGraw-Hill, particularly to my sponsoring editor Arthur Biderman
for his unfailing cooperation and encouragement and to my editing supervisor Patricia
Andrews for the indefatigable assistance she gave me during the final stage of the
production of this book. The manuscript was completely and thoroughly edited by Dr.
David Beckwith, who was my initial sponsoring editor. After retiring from McGraw-Hill
he undertook to complete the editing of the manuscript. He showed his special love of
combinatorics by combing every single detail in the manuscript. For this admirable and
enviable professionalism I am truly beholden to him. :

V.K. BALAKRISHNAN
University of Maine
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Chapter 1

Basic Tools

1.1 THE SUM RULE AND THE PRODUCT RULE

How many arrangements of a specified kind can be undergone by a given set of objects? Or, in how
many ways can a prescribed event occur? Combinatorics is the branch of mathematics that seeks to answer
such questions without enumerating all possible cases; it depends on two elementary rules.

DISJUNCTIVE OR SUM RULE Tf an event can occur in m ways and another event can occur in n ways,
and if these two events cannot occur simultaneously, then one of the two events can occur in m + n ways.
More generally, if E, ({ = 1,2,. .., k) are k events such that no two of them can occur at the same time, and
if E; can occur in n; ways, then one of the £ events can occur in n, + n, + -+ -+ n, ways.

Example 1. If there are 18 boys and 12 girls in a class, there are 18 + 12 = 30 ways of selecting 1 student (either a boy
or a girl) as class representative.

Example 2. Suppose E is the event of selecting a prime number less than 10 and F is the event of selecting an even
number less than 10. Then E can happen in 4 ways, and F can happen in 4 ways. But, because 2 is an even prime, E or F
can happen in only 4 + 4 — 1 =7 ways.

SEQUENTIAL OR PRODUCT RULE If an event can occur in m ways and a second event can occur in n
ways, and if the number of ways the second event occurs does not depend upon how the first event occurs,
then the two events can occur simultaneously in mnr ways. More generally, if £, (= 1,2, ..., k) are k events
and if £, can occur in n, ways, E, can occur in n, ways (no matter how E, occurs), E; can occur in n, ways
(no matter how E| and E, occur), ..., E, can occur in n, ways (no matter how the previous k — 1 events
occur), then the k events can occur simultaneously in n,n,n, -+ - n, ways.

Example 3. A boqkshelf holds 6 different English books, 8 different French books, and 10 different German books.
There are (i) (6)(8)(10) =480 ways of selecting 3 books, 1 in each language; (i) 6 + 8 + 10 = 24 ways of selecting 1
book in any one of the languages.

Example 4. The scenario is as in Example 3. An English book and a French book can be selected in (6)(8) = 48 ways;
an English book and a German book, in (6)(10) = 60 ways; a French book and a German book, in (8)(10) = 80 ways.
Thus there are 48 + 60 + 80 = 188 ways of selecting 2 books in 2 languages.

Example 5. If each of the 8 questions in a multiple-choice examination has 3 answers (1 correct and 2 wrong), the
number of ways of answering all questions is 3° = 6561.

1.2  PERMUTATIONS AND COMBINATIONS

Suppose X is a collection of n distinct objects and r is a nonnegative integer less than or equal to #. An
r-permutation of X is a selection of r out of the n objects. Selections are ordered; thus, for example, 2 54
and 245 are different 3-permutations of X ={1,2, 3,4,5}. An n-permutation of X is called simply a
permutation of X.

The number of r-permutations of a collection of n distinct objects is denoted by P(n, r); this number is
evaluated as follows. A member of X can be chosen to occupy the first of the » positions in n ways. After
that, an object from the remaining collection of » — 1 objects can be chosen to occupy the second position in
n — 1 ways. Notice that the number of ways of placing the second object does not depend upon how the first
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2 BASIC TOOLS [CHAP. 1

object was chosen or placed. Thus, by the product rule, the first two positions can be filled in n(z — 1) ways
... and all r positions can be filled in

n!
P(n,r)=nn— 1)---(n—r+1)=—(-’-l—:—’;)—!-
ways. Here we have introduced the factorial function, m!=(1)(2)---(n) and 0!= 1. In particular, the
number of permutations of n objects is P(n, n) = n!.

Example 6. There are P(6, 6) = 6! = 720 6-letter ‘‘words”’ that can be made from the letters of the word NUMBER, and
there are P(6,4) = 6!/2! = 360 4-letter ‘‘words.”’

An unordered selection of r out of the n elements of X is called an r-combination of X. In other words,
any subset of X with r elements is an r-combination of X. The number of r-combinations or 7-subsets of a set
of n distinct objects is denoted by C(n,r) (‘‘n choose r’’). For each r-subset of X there is a unique
complementary (n — r)-subset, whence the important relation C(n,r) = C(n,n —r).

To evaluate C(n, r), note that an r-permutation of an n-set X is necessarily a permutation of some
r-subset of X. Moreover, distinct r-subsets generate distinct »-permutations. Hence, by the sum rule,

Pn,r)=P@r,r)+ P, ry+---+P(r,r)

The number of terms on the right is the numbér of r-subsets of X; i.e. C(n, r). Thus P(n,r) =C(n, r)P(r,r) =
C(n,r) r!. The following theorem summarizes our results.

Theorem 1.1.

n:
@) P, r)=m

Pn,r) n!
r! rl(n—r)

Gi) Cwn,r= =C(n,n—r)

Example 7. From a class consisting of 12 computer science majors, 10 mathematics majors, and 9 statistics majors, a
committee of 4 computer science majors, 4 mathematics majors, and 3 statistics majors is to be formed. There are

120 12+11-10-9
4181 4-3-2-1

C(12,4) = =11+-5-9=495
ways of choosing 4 computer science majors, C(10, 4) = 210 ways of choosing 4 mathematics majors, and C(9,3) =84

ways of choosing 3 statistics majors. By the product rule, the number of ways of forming a committee is thus
(495)(210)(84) = 8,731,800.

Example 8. Refer to Example 7. In how many ways can a committee consisting of 6 or 9 members be formed such
that all 3 majors are equally represented?

A committee of 6 (with 2 from each group) can be formed in C(12,2)+C(10,2)-C(9, 2) = 106,920 ways. The
number of ways of forming a committee of 9 (with 3 from each group) is C(12, 3)- C(10, 3) - C(9, 3) = 2,217,600. Then,
by the sum rule, the number of ways of forming a committee is 106,920 + 2,217,600 = 2,324,520.

1.3 THE PIGEONHOLE PRINCIPLE

Some of the most profound and complicated results in modern combinatorial theory flow from a very
simple proposition: If n pigeonholes shelter n + 1 or more pigeons, at least 1 pigeonhole shelters at
least 2 pigeons.
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Example 9. To ensure that a class includes at least 2 students whose last names begin with the same letter of the
(English) alphabet, the class should have at least 27 students. (Here the letters are the pigeonholes.)

Example 10. Suppose there are many red socks, many white socks, and many blue socks in a box. What is the least
number of socks that one should grab from the box (without looking at the contents) to be sure of getting a matching
pair?

If each color is considered as a pigeonhole, then n = 3, Therefore, if one grabs # + 1 = 4 pigeons (socks), at least 2 of
them will share a color.

A straightforward generalization of the pigeonhole principle is as follows: If n pigeonholes shelter
kn + 1 pigeons, where k is a positive integer, at least 1 pigeonhole shelters at least k + 1 pigeons.

Example 11. Rework Example 10 if 3 pairs, all of one color, are desired.
There are still r = 3 pigeonholes, and we want to ensure that one (or more) of them shall contain £ + 1 = 6 (or more)
pigeons. Thus we grab kn + 1 = (5)(3) + 1 = 16 pigeons.

Example 12. A chest contains 20 shirts, of which 4 are tan, 7 are white, and 9 are blue. At the least, how many shirts
must one remove (blindfolded) to get r =4, 5,6, 7, 8,9 shirts of the same color?

Case 1. r=4=k+ 1. So k=3, and since there are 3 colors, n = 3. Thus, at least kn + 1 = 10 shirts must be
removed.

Case 2. r=5=k+1. Here the analysis is simplest if we imagine that shirts are drawn from the chest
sequentially. In a longest chain—which is what we are looking for—the first 4 draws are ‘‘wasted’’ in removing
the 4 <r tan shirts, and the remainder of the sequence consists of as many draws of white and blue shirts (n = 2)
as are required to ensure r =5 shirts of the same color. But this latter number is given by the pigeonhole
principle as kn +1=4(2) + 1 = 9. Thus, 4 + 9 =13 shirts must be removed.

Case 3. r=6=k+ 1. The situation is like that of Case 2; so 4 + (kn + 1) =4 + [5(2) + 1] = 15 shirts must be
removed.

Cased. r=T=k+1. Asin Cases 2 and 3, 4+ (kn + 1) =4 + [6(2) + 1] = 17 shirts.

Case 5. r=8=k+ 1. Now both the tan and the white shirts are worthless, sothat 4+ 7+ (kn+ )=4+7 +
[7(1) + 1] = 19 shirts must be removed.

Case 6. r=9=£k+1, Like Case 5; 4+ 7+ (kn+1)=4+7+[8(1) + 1] = 20 shirts.

The conclusions of Example 12 can be summarized as a theorem.

Theorem 1.2. 1Let S be a set composed of x; objects of type 1, x, = x, objects of type 2, x, = x, objects of
type 3,..., x, =x,_, objects of type n. Let . denote the smallest integer with the property
that every subset of § of size », contains 7 or more objects of the same type. Then,

nr—1)+1 r<x,
r—Dr-1)+1+x, x, <r=x,
=Y —2)r— 1D+ 1+x +x, X, <r=x,

...............................

The following theorem is an extension of the pigeonhole principle.

Theorem 1.3, 1f there are p, +p, + -+ +p, —n+ 1 or more pigeons among hole 1, hole 2, ..., and hole
n, then, for some j, hole j has p; or more pigeons.

Proof. Suppose the conclusion of the theorem is false. Then, hole 1 has at most p, — 1 pigeons and
hole 2 has at most p, — 1 pigeons and ..., and hole n has at most p, — 1 pigeons. So the total number of
pigeons is at most p, +p, + -+ p, — n, resulting in a contradiction.
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Example 13. If an undergraduate club is to include at least 6 freshmen or at least 5 sophomores or at least 4 juniors or
at least 3 seniors, no more than 6 +5+4 + 3 —~ 4 + 1 = 15 students need be invited to join.

Definition: If x is a teal variable, the floor of x, denoted LxJ, is the greatest integer less than or equal to x.

Theorem 1.4. Given m pigeons within n pigeonholes, at least 1 hole contains at least p + 1 pigeons, where

p=Llm—1)/nl
Proof. 1f, on the contrary, every hole contained at most p pigeons,
. m—1
No. of ptgeonssnpsn< " )=m —1<m

Example 14. Suppose there are 26 students (m = 26) and 7 cars (n = 7) to transport them. Then p =|25/71=3, so
that at least 1 car must have 4 or more passengers.

Solved Problems

THE SUM AND PRODUCT RULES

1.1  There are 15 married couples in a party. Find the number of ways of choosing a woman and a man
from the party such that the two are (a) married to each other, (b) not married to each other.

(@) A woman can be chosen in 15 ways. Once a woman is chosen, her husband is automatically chosen. So
the number of ways of choosing a married couple is 15. () A woman can be chosen in 15 ways. Among the 15
men in the party, one is her husband. Out of the 14 other men, one can be chosen in 14 ways. The product rule
then gives (15)(14) =210 ways.

1.2 Find the number of (a) 2-digit even numbers, (b) 2-digit odd numbers, (c) 2-digit odd numbers with
distinct digits, and (d) 2-digit even numbers with distinct digits.

Let E be the event of choosing a digit for the units’ position, and F be the event choosing a digit for the
tens’ position.

(@) E can be done in 5 ways; F can be done in 9 ways. The number of ways of doing F does not depend upon
how E is done; hence, the sequence {E, F} can be done in (5)(9) = 45 ways. Likewise, {F, E} can be done
in (9)(5) =45 ways.

(b) The argument is as in (a): there are 45 2-digit odd numbers.

(c) If F is done first, the number of ways of doing E depends upon how F was done; so we cannot apply the
product rule to the sequence {F, E}. But we can apply the product rule to the sequence {E, F'}. There are 5
choices for the units’ digit, and for each of these there are 8 choices for the tens’ digit. So the sequence
{E, F} can be done in 40 ways; i.e., there are 40 2-digit odd numbers with distinct digits.

(d) We distinguish two cases. If the units’ digit is 0—which can be accomplished in 1 way—the tens’ digit can
be chosen in 9 ways. If 2, 4, 6, or 8 is chosen as the units’ digit, the tens’ digit can be chosen in 8 ways.
Thus the sum and product rules give a total of (1)(9) + (4)(8) = 41 ways.

1.3 A computer password consists of a letter of the alphabet followed by 3 or 4 digits. Find (@) the total
number of passwords that can be created, and (b) the number of passwords in which no digit repeats.

(@) The number of 4-character passwords is (26)(10)(10)(10), and the number of 5-character passwords is
(26)(10)(10)(10)(10), by the product rule. So the total number of passwords is 26,000 + 260,000 =
286,000, by the sum rule.
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1.4

LS

1.6

1.7

1.8

(b) The number of 4-character passwords is (26)(10)(9)(8) = 18,720, and the number of 5-character passwords
is (26)(10)(9)(8)(7) = 131,040, for a total of 149,760.

How many among the first 100,000 positive integers contain exactly one 3, one 4, and one 5 in their
decimal representation?

It is clear that we may consider instead the 5-place numbers 00000 through 99999. The digit 3 can be in any
one of the 5 places. Subsequently the digit 4 can be in any one of the 4 remaining places. Then the digit 5 can be
in one of 3 places. There are 2 places left, either of which may be filled by 7 digits. Thus there are
(SXA(B)TXT) = 2940 integers in the desired category

Find the number of 3-digit even numbers with no repeated digits.

By Problem 1.2(d), The hundreds’ and units’ positions can be simultaneously filled in 41 ways. For each of
these ways, the tens’ position can be filled in 8 ways. hence the desired number is (41)(8) = 328 ways.

A palindrome is a finite sequence of characters that reads the same forwards and backwards [GNU
DUNG]. Find the numbers of 7-digit and 8-digit palindromes, under the restriction that no digit may
appear more than twice.

By the mirror-symmetry of a palindrome (of length n), only the first Lo + 1)/2] positions need be
considered. In our case this number is 4 for both lengths. Since the first digit may not be 0, there are 9 ways to
fill the first position. There are then 10 — 1 =9 ways to fill the second position; 10 — 2 = 8 ways for the third;
10 — 3 =7 ways for the fourth. Thus there are (9)(9)(8)(7) = 4536 palindromic numbers of either length.

Prove that a palindromic (decimal) number of even length is divisible by 11.

The inductive proof exploits the fact that when the first and last characters are stripped from a palindrome, a
palindrome remains. Thus, let N be a palindromic number of length 2. If £ = 1, the theorem obviously holds. If
k=2, we have

N=a, ,10* "+a, ,10*?+--- +a,10* +a,10 ' +--- +qa,, ,10" +a,,_,10°

= (12,‘_1(102"*l + 100) + (412,(4102/‘_2 4o a2k—2101)

=ay,_P+Q
Here, P=100---001 =11X 9090- - - 9091
—— e e
length 2k length 24—2

and either Q@ = 0 (divisible by 11) or, for some 1 =r=<=k—1,
Q = 10" {palindrome of length 2(k — #)} = 10"{11R}

where the last step follows from the induction hypothesis. Therefore, ¥ is divisible by 11, and the proof is
complete.

In a binary palindrome the first digit is 1 and each succeeding digit may be 0 or 1. Count the binary
palindromes of length n.

See Problem 1.6. Here we have I_(n + 1)/ 2j-1= |_(n -1)/2 | free positions, so the desired number is

2l_(n -1)/2]
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1.10

1.11

1.12

1.13
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Find the number of proper divisors of 441,000. (A proper divisor of a positive integer n is any
divisor other than 1 and ».)

Any integer can be uniquely expressed as the product of powers of prime numbers; thus, 441,000 =
2(3*)(5°)(7?). Any divisor, proper or improper, of the given number must be of the form 273"GENTY,
where 0=g=3,0=b=2,0=c =3, and 0 =d =2, In this paradigm the exponent a can be chosen in 4 ways; b
in 3 ways; ¢ in 4 ways; d in 3 ways. So, by the product rule, the total number of proper divisors will be
@B (3)—2=142.

Count the proper divisors of an integer N whose prime factorization is
n n n
N=py'p* " p

By Problem 1.9, the number of proper divisors of N is (n, + 1)(n, +1)---(n, + 1) — 2.

Refer to Problem 1.9. Find the number of ways of factoring 441,000 into 2 factors, m and #, such that
m>1, n>1, and the only common divisor of m and # is 1. (In other words, m and n are relatively

prime.)

Consider the set X = {2°, 3%, 5°, 7%} associated with the prime factorization of 441,000. It is clear that each
element of X must appear in the prime factorization of m or in the prime factorization of n, but not in both.
Moreover, the 2 prime factorizations must be composed exclusively of elements of X. It follows that the number
of relatively prime pairs m, n is equal to the number of ways of partitioning X into 2 unordered nonempty subsets
(unordered because mn and nm represent the same factorization).

The possible unordered partitions are the following:

X =2} + 325,77 = (3 + {20, 5%, ) = {5°) + 2, 3%, T} = (T + 2°, 32, 5%)
and X={2°,33+{5,71={2°,5°} + 3%, 7} ={2°, 7’} + 32,57}

Our answer is therefore 4 +3=7=2*""~1,

Generalize Problem 1.11 by showing that the integer of Problem 1.10 has 2*~! — 1 factorizations into
relatively prime pairs m,n (m>1, n>1).

Make an induction on k. For k = 1, the result holds trivially. For k = 2, we must show that a set of k distinct
elements,

Z={a,,a,,...,a,_\,a,}

has 2°7' — 1 unordered partitions into 2 nonempty parts, provided that the corresponding result holds for all
(k — 1)-sets. Now, one partition of Z is

Z={a}U{a,,a,,...,a,_}={a}UW

All the remaining partitions may be obtained by first partitioning W into two parts—which, by the induction
hypothesis, can be done in 2° % — 1 ways—and then including a, in one part or the other—which can be done in
2 ways. By the product rule, the number of partitions of Z is therefore 1+ (27> —1)2)=2"""—1. e

In a binary sequence every element is O or 1. Let X be the set of all binary sequences of length n. A
switching function (Boolean function) of # variables is a function from X to the set ¥ = {0, 1}. Find
the number of distinct switching functions of n variables.

The cardinality of X is » =2". So the number of switching functions is 2".
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A switching function f is self-dual if the value of f remains unchanged when, in each element of the
domain of f, the digits 0 and 1 are interchanged. For example, when n = 6, f(101101) = f(010010) if f
is a self-dual switching function. List all self-dual switching functions of 2 variables.

There are 4 self-dual switching functions from the set X = {00, 01, 10, 11} to the set ¥ ={0, 1}:
(@ f,(00)=F(11)=£,(01)=£,(10) =0.
(b)  £00)=£(11)=£,01)=£(10) = L.
© fO0)=£11)=0; £0)=£10)=1.
@ f£,00)=£(11)=1 £01)=F(10)=0.

Find the number of self-dual switching functions of n variables.

In the notation of Problem 1.13, X can be partitioned into r/2 =2""" pairs (£, €), where sequence & is
sequence £ after a 0-1 interchange. A self-dual switching function maps each pair into 0 or into 1; hence there
are 2"'? such functions. (This is the square root of the total number of switching functions.)

A collection consists of 7, identical objects of type i, where i = 1, 2, ..., k. Find the number of ways
of selecting at least 1 object from the collection.

Suppose the *‘objects’” of type i are all p,, the ith prime factor of an integer N. Then we are asked for the
number of divisors of N, with only the divisor 1 (no object selected) excluded. From Problem 1.10, this number is
n,+ D), +1)--(n,+1)—1.

How many 3-digit numbers can be formed by using the 6 digits 2, 3, 4, 5, 6, and 8, if (a) repetitions of
digits are allowed? (b) repetitions are not allowed? (c) the number is to be odd and repetitions are
not allowed? (d) the number is to be even and repetitions are not allowed? (¢) the number is to be
a multiple of 5 and repetitions are not allowed? (f) the number must contain the digit 5 and
repetitions are not allowed? (g) the number must contain the digit 5 and repetitions are allowed?

(@ (6)6)(6).

(®)  (6)(5)4).

(¢c) The last digit can be chosen in 2 ways; so the answer is (2}(5)(4).

(d) From (b) and (c), (6)(5)(4) — (2)(5)(4) = (4)(5)(4).

(e) The last digit can be chosen in only 1 way; so the answer is (1)(5)(4).
(f) The digit 5 can be located in 3 ways; the answer is (3)(5)(4).

(&) An indirect approach, as in (d), is simplest. With repetitions allowed, there are (6)(6)(6) =216 3-digit
numbers. Of these, (5)(5)(5) = 125 do not contain the digit 5. So the answer is 216 — 125 =91,

A bit is either O or 1; a byte is a sequence of 8 bits. Find () the number of bytes, (b) the number of
bytes that begin with 11 and end with 11, (¢) the number of bytes that begin with 11 and do not end
with 11, and (d) the number of bytes that begin with 11 or end with 11.

(@) 2° = 256. () The 4 open positions can be filled in 24=16 ways. (c) Use (b): 2°=64 bytes begin with
11; so the answer is 64 — 16 = 48. (d) Again use (b): 64 bytes begin with 11; likewise, 64 bytes end with 11. In
the sum of these numbers, 64 + 64 = 128, and each byte that both begins and ends with 11 is counted twice.
Hence our answer is 128 — 16 = 112 bytes.

There are 10 members—A, B, C, D, E, F, G, H, I, and J—in the executive council of a club. The
council has to choose a chair, a secretary, and a treasurer among themselves. It is understood that
nobody can hold more than one office at a time. Find the number of ways of selecting these
office-bearers, if (¢) any member can hold any office; (b) A has to be the chair; (¢) B declines the
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chair; (d) C has to be either the secretary or the treasurer; (e) either D or E has to be the treasurer; and
(f) I and J decline all offices.

(@) (10)(9)(8). (b) (1X9)(8). (c) There are 9 ways of choosing a chair, 9 ways of choosing a secretary, and 8
ways of choosing a treasurer; altogether, (9)(9)(8) ways. (d) (9)(8) + (9)(8). (&) (9)(8) + (9)(8). ( ) 8)7)(6).

Find the number of 5-digit integers that contain the digit 6 exactly once.
Case 1. The first digit in the number is 6. There are p = (1)(9)X(9)(9)(9) ways of accomplishing this.

Case 2. The first digit is not 6. As the first digit cannot be O either, it can be supplied in 8 ways. The digit 6
must occupy one of the remaining 4 places; this can be done in 4 ways. The 3 remaining positions can be filled in
(9X%(9)(9) ways. So in this case there are g = (8)(4)(9)(9)(9) ways.

By the sum rule, the number of integers in the desired category is p +g.

Find the total number of positive integers with distinct digits.

We have to consider numbers with at least 1 digit and at most 10 digits. The number of positive integers in
the desired category will be

[91 + [(9)N] + [(9)(9)8)] + [(INNBUD] + [(OHNBHTNO)] + - - -+ + [(DNNBHTNEHSNH(3)2)(1)]
=9/ [’/4! wfel +vV# « /] /et /gyl .H/;l +ifa k/j

The class of all subsets of a set X 1s called the power set of X and is denoted by 2. If X has n
elements, how many elements has 2%7

Any subset A of X may be defined by making an *‘include in A/exclude from A** choice for each of the n
elements of X. Thus there are 2" subsets A (including the null set and X itself); i.e., 2% has 2" elements.

If a set X has 2n + 1 elements, find the number of subsets of X with at most n elements.

Partition the power set of X (Problem 1.22) into a set P, consisting of all subsets of X with at most »
elements, and a set P, consisting of all subsets of X with at least n + 1 elements. It is obvious that if o € P,, then
o', the complement of o in X, belongs to P,; and vice versa. Thus P, and P, are in one-to-one correspondence
and so have the same number of elements. This number—which is the answer to our problem-—is one-half the
number of elements of 2*: (1/2)2>"*' =2",

Find the number of common divisors of 2 positive integers, m and n, having prime factorizations

m=p°q"r® and n = p“q”s’.

Any common divisor must have in its prime factorization only those primes that are common to m and n,
each to a power than exceeds neither the power in m nor the power in n. Thus, with A=min(q, «) and
B=min (b, B), a typical common divisor is p'q’, where i is in the set {0,1,2,...,A} and j is in the set
{0,1,2, ..., B} So the number of common divisors will be (A + 1)(B + 1).

(@) Find the number of positive integers with n digits in which no 2 adjacent digits are the same (call
this property redness). (b) Count the even red numbers.

(@) Let X(n) be the number of n-digit red integers. The first place can be filled in 9 ways. The second place can
be filled in 9 ways. In fact, each place can be filled in 9 ways; thus X(n)=9".

(b) Let X(n) = Y(n) + Z(n), where Y(n) and Z(n), respectively, count the even and odd red numbers. Since 9" is
odd, Y(n) cannot be equal to Z(n); but is seems likely that one will be equal to (9" — 1)/2 and the other to
(9" +1)/2. This is indeed the case: we shall prove by induction that Y(x) = 9" +(—1)"1/2 and Z(n) =
9" - (—-1"1/2.
The result is true for 7 = 1, since ¥(1) = 4 and Z(1) = 5. Now, any even red number with n + 1 digits can be
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constructed by appending a final even digit to a red number with n digits. If the n-digit number is even, this can
be done in 4 ways; otherwise, in 5 ways. Thus we have established that

Y(n + 1) =4Y(n) + 5Z(n) = 4Y(n) + 5[X(n) — Y(n)]

9n+l +(_1)n+l
=5X(ny—Y(n) -
9n+l __(_l)n+l
Also Z(n+1)=X(n+1)~Y(n+1)=————2———

As the result is true for » + 1 whenever it is true for n, the induction is complete.

Find the number of binary sequences of length # that contain an even number of Is.

If a binary sequence of length » — 1 has an even number of 1s, we append the digit O to it, to obtain a binary
sequence of length n. If a binary sequence of length n — 1 has an odd number of 1s, we append the digit 1 to it.
In other words, the number of binary sequences of length » with an even number (or, for that matter, with an odd
number) of 1s is equal to the number of binary sequences of length n — 1, which is 2" 7'

Find the number of n-character strings that can be formed using the letters A, B, C, D, and E such that
each string has an even number of A’s.

The total number of strings is 5", out of which there are 3" strings which contain zero (an even number) A’s
and zero B’s. The set X of the residual 5" —3" strings can be partitioned into a class {X;} of subsets as
follows: two strings s and s’ belong to the same subset X, if and only if the locations of C’s, D’s, and E’s in §
are exactly the same as in s5'. This means that there are exactly as many strings in X, as there are sequences of A’s
(1s) and B’s (0s) of some fixed length n, < n. Half of these strings will have an even number of A’s, by Problem
1.26. Thus the total number of strings in X with an even number of A’s is (5" — 3")/2; and the solution to our
problem is: -
s'-3" 5"+3"

2 2

3"+

PERMUTATIONS AND COMBINATIONS

1.28

1.29

A function f from a set A to a set B is one-one if distinct elements x and y of A have distinct images
fx) and f(y) in B. Find the number of one-one functions from A to B if A has m elements and B has
n=m eclements (a necessary condition).

There are P(n, m) choices for the range of the function; thus there are P(n, m) distinct functions.

Find the probability p, that a randomly assembled group of n people includes at least 2 people with
the same birthday (day of the year).

Here we deal not with a sample of people, but with a sample of birthdays—i.e., integers from 1 to 365
inclusive. Our notion of probabxhty is:
number of ‘‘favorable’” samples

total number of samples

Probability =

In this problem it is simplest to consider the complementary event: all n birthdays are distinct. This event is
realized in P(365, n) samples; and the total number of samples is 365", Hence, 1 —p, = P(365,n)/365", or

_P(365,n) _ (365)(365 — 1)(365—2) -+ [365 — (n — 1)]
Pn= 365" 365"

=1—(1"?6§)(1 365) ( n3;51
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It may be verified that p, > 1/2 when n >23.

There are n married couples at a party. Each person shakes hands with every person other than her or
his spouse. Find the total number of handshakes.

The 2n people fall into C(2r, 2) = (2n)(2n — 1)/2 unordered pairs, out of which n pairs will be the married
couples. Thus the number of pairs who are not married couples is n(2n — 1) —n = 2n(n ~ 1), and this is also the
number of handshakes.

In how many ways may n girls and n boys be seated in a row of 2n chairs, if the two sexes must
alternate?

The chairs are marked 1,2, 3, ..., 2n. There are P(n, n) = n! ways of seating the boys in the odd-numbered
chairs. After the boys are seated, the girls can be seated in n! ways. So this pattern will give rise to (n!)’ seating
arrangements. There are the same number of arrangements with the girls in the odd-numbered chairs. Thus the
total number of arrangements 2(n!)2.

Ten different paintings are to be allocated to n office rooms so that no room gets more than 1
painting. Find the number of ways of accomplishing this, if (@) n =14 and (b) n =6.

(@) P(14,10), by Problem 1.28. (b)) Now the supply exceeds the demand; so we map from rooms to
paintings, obtaining P(10, 6) from Problem 1.28.

Solve Problem 1.32 if there are 10 identical posters instead of 10 distinct paintings.

(@) Choose any 10 of the 14 rooms; this can be done in C(14, 10) ways. Then hang 1 poster in each room.
Since any poster is like any other, there is only one way of doing so. Hence the answer is C(14, 10). (b) Choose
6 posters from the collection and hang 1 poster in each room; there is (1)(1) =1 way of doing this.

A circular permutation is an arrangement of distinct objects around a circle (or other simple closed
curve). Find the number of circular permutations of n distinct objects.

If the n sites where the objects are to be placed are distinct and marked 1,2,...,n, there will be n!
arrangements, as usual. If that is not the case, the number will be smaller, owing to the fact that 2 distinct linear
permutations can define the same circular permutation. (For example, the permutations ABCD and BCDA
represent the same circular permutation.) This smaller number is, in fact, (# — 1)! The proof is simple: A
distinguished object may be placed somewhere on the circle in 1 way. On the ‘‘punctured”’ circle defined by this
first placement, the remaining 7 — 1 objects may be ranged in clockwise order (say) in P(n — 1,7 — 1) = (n — 1)!
ways.

Two linear permutations of n objects, p and g, are called reflections of each other if the first object in
p is the last object in ¢, the second object in p is the (n — 1)st object in g, . . ., the last object in p is
the first object in g. A circular permutation of »n objects is a ring permutation if the defining linear
permutation of # — 1 objects (see Problem 1.34) and its reflection are not considered distinct. Find the
number of ring permutations of n distinct objects.

Each ring permutation defines 2 circular permutations; so the number of ring permutations is (n — 1)!/2.

A combinatorial proof is one that uses combinatorial reasoning instead of calculation; e.g., our proof
that C(n, r) = C(n, n — r). Give a combinatorial proof of the identity

Cm+n2)—Cim,2)—C@n,2)=mn
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Consider a collection of m mathematics majors and n nursing majors. By the product rule, the number of
ways of choosing a mathematics major and a nursing major is mn. A different route must lead to the same
number: from the C(m + n, 2) possible pairs of students we eliminate the C(m, 2) pairs of 2 mathematics majors
and the C(n, 2) pairs of 2 nursing majors.

Give a combinatorial proof of Pascal’s identity,
Cn,ry=Cn~-1,n+Cn—-1,r—1)

Consider a set X with n elements. Let ¥ be any subset of X with n — 1 elements. Every subset of X with r
elements is either a subset of ¥ with r elements or the union of a subset of ¥ with r — 1 elements and the
singleton set consisting of the unique element of X which is not in Y. There are C(n — 1, r) subsets in the former
category and C(n — 1,r — 1) subsets in the latter category. The sum of these 2 numbers is necessarily C(n, r).

Pascal’s identity is perhaps the most important single formula in combinatorics.

Prove the binomial theorem for a positive integer n:

(x+y)n =xn +C(n, l)xn—ly R C(n, r)xn—-ryr + .. +yn = E C("l, r)xn—ryr
r=0

A typical term in the expansion of (x +y)" is x"~'y" multiplied by an integral coefficient. If we write out
(x+y) as (x+¥y),(x+y), - (x+y),, we see that this integral coefficient is just the number of ways of

selecting the r out of n parentheses that shall furnish the r y’s going into x”~"y’. The integral coefficient therefore
equals C(n, r).

Because of their occurrence in the binomial theorem, the integers C(n,7) are known as binomial
coefficients.

Prove:

(@) 2 Ccn,n=2" ®) 20(—1>’C<n,r)=o

© 2 Cmp=2 Cor=2""

reven r odd

(@) Set x =y =1 in the binomial theorem. (b) Set x = —y =1 in the binomial theorem. (¢) Add and subtract
the results of (@) and (b).

Retrieve the results of Problem 1.39 by combinatorial arguments.

(@ Consider a set X with n elements. Then (Problem 1.22) X has 2" subsets, giving the right-hand side of the
identity. But also the set X has C(n, r) subsets of cardinality r, where r runs from 0 to n. So the total number
of subsets is C(n,0)+ C(n, 1) + - - - + C(n, r), as on the left-hand side of the identity.

(b),(c) It is only necessary to establish that X has just as many subsets with an even number of elements as
subsets with an odd number. But this is obviously true when » is odd, because each even (odd) subset can
be paired off with its odd.(even) complement. Suppose, then, that n is even (and positive). With 6 a
designated element of X, make the decomposition X = X’ U {8}. Because X' is odd (has odd cardinality), it
has equal numbers of even and odd subsets. (Remember that the null set is included among the even
subsets.) Now, all subsets of X may be obtained by either including or not including 6 in a subset of X',
Since inclusion of @ changes the parity of the subsets, it is evident that X must have twice as many even
subsets and twice as many odd subsets as does X'—that is, X must have equally many even and odd subsets.

Establish the identity C(2n,2)=2C(, 2) + n® by a combinatorial argument.



12

1.42

1.43

1.44

1.45

BASIC TOOLS [CHAP. 1

Consider a set X with 2n elements which is partitioned into 2 subsets, ¥ and Z, each of cardinality of n.
Every subset of X with 2 elements belongs to one of the following three mutually exclusive classes of subsets: (7)
the class of all 2-element subsets of Y; (ii) the class of all 2-element subsets of Z; (iii) the class of all subsets
{y, z} with y €Y and z € Z. There are C(z, 2) subsets in each of the first two classes and n® subsets in the third
class.

In buying a ticket in a state-sponsored lottery, one chooses a subset T consisting of 6 distinct numbers
from the set of the first 48 positive integers. After the sales are closed, a computer selects at random 6
numbers out of these same 48; these 6 numbers constitute the winning set, W. If T =W, the ticket
holder wins the jackpot. If T and W have 5 numbers in common, the ticket holder wins the second
prize. If T and W have 4 numbers in common, the ticket holder wins the third prize. Find (a) the
number of different tickets that can be sold; (b) the number of distinct second-prize tickets; (c) the
number of distinct third-prize tickets.

{a) C(48, 6). (b) To win a second prize, one has to choose 5 numbers out of the set W and 1 number out of

the complement of W, which consists of 42 numbers. So the number of distinct second-prize tickets will be
C(6,5)C(42, 1) =252. (c) C(6,4)C(42,2) = 12,915,

(@) Establish the identity (convelution rule or Vandermonde identity)

Clp +q.r)= 2 C(p, HNC(g,r —J)

j=0

(b) Connect the convolution rule with Problem 1.42.

(@ By the binomial theorem, the left-hand side of the convolution rule is the coefficient of x” in (1 + x)” *9: the
right-hand side is the coefficient of x” in (1 +x)"(1 +x)?. The two coefficients must, of course, be equal.

(b) In the convolution rule, let p =42 and g =r=26:
C(48,6) = C(42,0)C(6, 6) + C(42, 1)C(6,5) + C(42,2)C(6,4) + - -+ + C(42, 6)C(6,0)

which represents the same classification (by overlap with the winning set) of distinct tickets.

Establish Newton’s identity,
Cn, nNC@r, k)y=Cn, k)Cln — k,r — k)

Suppose there are » faculty members in a university. The faculty assembly consists of r members, and the
faculty senate consists of & members; every member of the senate is also a member of the assembly. (Hence,
n = r = k.) The number of ways of forming a senate can be computed by two methods: (i} First choose r people
from the set of n faculty members to constitute the assembly; this can be done in C(n, r) ways, After that, choose
k senators from the r assembly people; this can be done in C(r, k) ways. So the total number of ways is
C(n, r)C(r, k), as in the left-hand side of Newton’s identity. (ii) First choose k faculty members to constitute the
senate; this can be done in C(n, k) ways. These k individuals are ipso facto members of the assembly; the
additional » — k assembly people may be chosen from the n — k remaining faculty in C(n — &, r — k) ways. Hence
the total number of ways is C(n, k)C(n — k, r — k), as in the right-hand side.

Prove that if # is a prime number, C(n, r) is divisible by n for r=1,2,...,n— L.

Set k =1 in Newton’s identity to obtain #C(n, r) = nC(n — 1,7 ~ 1). Since n divides the right-hand side of
this equation, it divides the left-hand side. Because n is a prime, it must then divide either r or C(n, r). But n
cannot divide r, for it is greater than r.
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Use a combinatorial argument to prove
C(n+r+1,r)=2C(n+j,j)
j=0

The left-hand side is the number of ways of choosing r elements from a set X = {x, %5, X, ..., X, ., ,}- AS
for the right-hand side, consider the construction of an r-element subset A of X. If x| is not to be in A, the »
clements of A have to be chosen from the remaining » + r + 1 — 1 elements of X; this can be done in C(n +r, 1)
ways. If x, is to be in A, then we need r — 1 additional elements, which may or may not include x,. If x, is not
included, these r — 1 elements have to come from the remaining # + r + 1 — 2 elements of X; they can be chosen
in Cn+r—1,r—1) ways. If x, and x, are included in A, then . ... The process terminates when x,, x,, ..., X,
are included in A and we must pick 0 elements from the remaining n + 1, which can be done in C(n + 1,0) =
C(n,0) =1 way. Thus we have obtained, in reverse order, the summands in the right-hand side of our equation
and have shown that the sum also counts the r-subsets of X.

Prove:
Cim +n,n)=C(@n, 0)C(n,0)+ Con, HYC(n, 1)+ -+ + C(n, )C(n, n) .

In the convolution formula [Problem 1.43(a)] set ¢ = r and note that C(q, g —j)=C(q, j).

Find the number of 5-digit positive integers such that in each of them every digit is greater than the
digit to its right.

There are C(10, 5) ways of selecting 5 distinct (necessary) digits. Once these digits are chosen, there is only
1 way of arranging them in a decreasing order from left to right. So the number of these integers is C(10, 5).

Find the number of ways of arranging the letters which appear in (@) ELASTIC and (b) ASBESTOS.

(a) As the 7 letters are distinct, there are 7! ways. (b) The 5 letters which do not repeat are A, B, E, O, and T.
The 5 positions to be occupied by these letters may be chosen from among 8 positions in P(8, 5) ways. There is
then only 1 way of assigning the 3 S’s to the 3 remaining positions. So the answer is P(8,5).

A and B are 2 students in a group of n. Find the number of ways of assigning the n students to a line
of n single rooms such that (a) A and B are in adjacent rooms, and (b) A and B are not in adjacent
TOOmS.

(@) There are n — 1 ways of choosing a pair of adjacent rooms, and 2 ways of installing A and B in the chosen
pair. So there are 2(n — 1) ways of accommodating A and B. The other n — 2 students can be assigned to
the other n — 2 rooms in (n — 2)! ways. So the total number of ways is

20— D —2)! =2m— 1)

b)) n!=2m—-1=@—2)n— 1L

There are 18 chairs (marked 1,2,...,18) in a row to seat 5 chemistry majors, 6 mathematics majors,
and 7 physics majors. Find the number of seating arrangements, if (@) the chemistty majors occupy
the first 5 seats; (b) the chemistry majors are barred from the first 5 seats; (c) the chemistry majors
occupy the first 5 seats and the mathematics majors occupy the next 6 seats; and (d) students with the
same major sit in a block.

(@ (51)(13!). (b) The 5 chemistry majors can occupy the 13 seats marked 6, ..., 18 in P(13, 5) ways. Once
the chemistry majors are seated, the other students can occupy the remaining chairs in 13! ways. So the answer is

v
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P(13,5)(131) = (13!)*/8!. (c) (5!)(6!)(7!). (d) First permute the 3 groups and then permute the students within
each group: (3)(SH)(6!1)(7!).

Find the number of ways of seating » women and n men at a round table so that between every 2
women there is a man,

By Problem 1.34, there are (n — 1)! ways of seating the women. Now put a chair between every 2 women;
these chairs can be occupied by the men in n! ways. So the number of seating arrangements is n! (z — 1)

The n members of the board of directors include the president and 2 vice presidents. Find the number
of ways of seating the board at a round table so that the vice presidents are on either side of the
president.

The president occupies a chair. The 2 chairs on either side of the president can be occupied by the 2 vice
presidents in 2 ways. The other n —3 members can be seated in (n — 3)! ways. Thus the answer is 2(n — 3)1.

Find the number of ways of seating » out of n people around a circular table, and the others around
another circular table.

First choose the  individuals for the first table—this can be done in C(n, r) ways. These r individuals can be
seated in (z — 1)! ways (Problem 1.34). The remaining # — r individuals can be seated in (n —r — 1)! ways. So
the answer is C(n, Nr— D! (n—r— DL

There are 3 apartments—A, B, and C— for rent in a building. Each unit will accept either 3 or 4
occupants. Find the number of ways of renting the apartments to 10 students.

This is clearly a case of “‘a four and two threes.”” Now A can be given 4 occupants, and B and C 3 each, in
C(10, 4)C(6, 3)C(3, 3) ways. The total number will be 3 times this, or 3C(10, 4)C(6, 3).

Let 1,2,3,...,n label n fixed points on the circumference of a circle. Each of these points is joined
to every one of the remaining n — 1 points by a straight line, and the points are so positioned on the
circumference that at most 2 straight lines meet in any interior point of the circle. Find the number of
such interior intersection points. ‘

Any interior intersection point corresponds to 4 of the labeled points—namely, the 4 endpoints of the
intersecting line segments. Conversely, any 4 labeled points determine a quadrilateral, the diagonals of which
intersect once within the circle. Thus the answer is C(n, 4).

Find the number of ways of seating m women and n men (m < n) at a round table so that no 2 women
sit side by side. (Compare Problem 1.52.)

Place n chairs around the table, in which the man may be seated in (n — 1)! ways. Then place a chair
between every 2 men, creating n distinct vacant places. By Problem 1.28, the m women can be assigned to these
n places in P(n, m) ways. Once the women are seated, the extra chairs are removed (which can be done in 1 way).
So the answer is (n — 1)! P(n, m).

A point in the cartesian plane whose coordinates are integers is called a lattice point. Consider a path
from the origin to the lattice point A(m, n), where m and » are nonnegative, that (i) starts from the
origin; (ii) is always parallel to the x-axis or the y-axis; (iif) makes turns only at a lattice point, either
along the positive x-axis or along the positive y-axis; and (iv) terminates at A. Determine the number
of such paths.

A typical path is a sequence of m + n unit steps, m of them horizontal and » of them vertical. Hence the
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number of paths is C(n + n, m) = C(m + n, n), the number of ways of reserving positions in the sequence for one
or the other kind of step.

Establish the identity
Co+l,r+D=Cn,n+Cn—1,n+Cn—-2,n+---+C@,r)

The identity is readily verified for n = 1. For n > 1, use Pascal’s identity (Problem 1.37) to replace the
left-hand member by C(n, r + 1) + C(n, r). Obviously the induction will succeed.

Prove that 1+2+3+ - +n=nn+1)/2.
Set r =1 in the identity of Problem 1.59.

A woman has 11 colleagues in her office, of whom 8 are men. She would like to have some of her
colleagues to dinner. Find the number of her choices if she decides to invite (a) at least 9 of them, and
(b) all her women colleagues and sufficient men colleagues to make the numbers of women and men
equal.

(@ C(1,9+C(11,10)+C(11,11)=467.

(b} She has to invite 4 men, since there will be 4 women dining, including herself. So the answer is C(8, 4).

Prove:

., nn+1D2n+1)

12+2° 43+ +n 5

Sum the easily derived identity k* = C(k, 1) + 2C(k, 2) on k:
2 B=2 Ck1)+22 Ck?2)
k=1 k=1 k=2

By Problem 1.59 the two sums on the right equal C(n + 1,2)=n(n + 1)/2 and C(n + 1,3) = (n + D(m)(n — 1)/6.
Hence,

o o, nnt+1) 20—1D)7 nr+1)(2n+1)
Z’lk” 2 [H 3 ]‘ 6

Evaluate the sum §=(1)2) + 2)3)+ B3)@)+ -+ (m)(n + 1).
Because k(k + 1) can be written as 2C(k + 1, 2),
S=2[C2,2)+C3,2)+---+C(n+1,2)]

But then, by Problem 1.59 with =2 and n replaced by n + 1, § =2C(n + 2, 3).

Show that

n—r 1
EOP(r+k,r)—r+1 P(n+1,r+1)

Multiply both sides of the identity of Problem 1.59 by r! to obtain the desired identity. Note that the
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left-hand side may be expanded as
MGy O +HIBYA) -+ DI+ + [ —r+ 1) - (n—Dn]

We therefore have a generalization of Problem 1.63.

According to Problem 1.28, a permutation of X ={1,2,3,...,n} is a one-one mapping of X onto
itself. If P and Q are 2 permutations of X, their product, P (), is the permutation of X obtained by
following the mapping Q with the mapping P. Moreover, the inverse, P ', of P is the permutation of
X represented by the mapping inverse to the mapping P. Letting n =5, @ =234 15—ie,

(1,2,3,4, 5)—7 (2,3,4,1,5)

—and P=12534, find (@) PoQ, (b) Q°P, ) 0", and @) P
(a) {1,2,3,4, 5)—Q>(2, 3,4, 1,5)—P> (2, 53,1,4)

sothat PoQ=25314.(b) QoP=23541. ()0 '=41235.(d) P '=12453.

Show that if P and Q are 2 permutations on X, then (PoQ) '=Q " oP !,

Refer to Problem 1.65. An equivalent definition of P~' is PoP ' =P 'oP =1, where I is the identity
mapping on X. Bearing in mind that multiplication of permutations is associative, we have

PoQ)o(Q 'eP )y=PoloP '=Pop ' =]
and (@ "eP HoPeQ)=Q "eloQ=Q 'eQ =1

A permutation P of x = {x,,x,,...,x,} is a derangement if P(x,) # x; fori =1,2,..., n. Prove that
the inverse of a derangement is a derangement.

If P(x,)=x, (j#i), then P~ '(x;) =x, (i # ).

Is the product of 2 derangements necessarily a derangement?

No; for example, the product of derangements P and P~ (Problem 1.67) is I, which is certainly not a
derangement. Thus, while the permutations compose a group under multiplication (the symmetric group), the
derangements constitute merely a subset, not a subgroup.

A particle starts from a fixed point O which is taken as the origin of x coordinates. At every unit of
time, starting with ¢ =0, the particle either remains at its present position or moves 1 unit in the
positive x direction. The probability that the particle stays in its present position is ¢ and the
probability that it moves is p; thus p + g = 1. Let P,(r) be the probability that the particle has moved r
units when ¢ = n. Show that:

@ PnN=pP,_,r—1)+gqP,_ (.
() P,r)=C(n,rpq""; ie, Pr) is the coefficient of x" in (px + ¢q)".
(The motion of the particle is known as a one-dimensional biromial random walk.)

(@) At t=n, either the particle has just arrived from the point x =7 —1, the probability of which is
P,_,(r—1)p, or it had already reached x=r at t=n —1 and stayed there, the probability of which is

P, _,(ng.
(b) This is proved by induction on n, as follows. P, (0)=1=C(0, 0)p°q°, and P (r) =0 when r >0; so the
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theorem is true when n = 0. Suppose the theorem is true for n — 1. Then,

P_(n=Cn—1,rpq " and P_r—1)=Cn—1,r—1)p" '¢g"""

r_on—r

whence P, (r) =gqP,_ () +pP,_r —1)=[Cn—1,r —1)+Cn — 1)},NIp'q" " =Cn,nNp'q

So the theorem is true for n as well.

In a two-dimensional binomial random walk a particle starts (t = 0) from the origin O(0, 0) of a
cartesian coordinate system and moves in one unit of time one unit of distance either parallel to the
+X-axis (with probability p) or parallel to the +Y-axis (with probability g), where p +4=1.
Determine the probability II, (r, s) that the coordinates of the particle at t = n are (7, 5).

In each unit of time the particle must move one way or the other. Hence, at t=n, s=n —r. We can
therefore view the two-dimensional walk as the walk of Problem 1.69 with the ‘‘remains at its present position”
option replaced by ‘‘moves 1 unit in the positive y direction.”” This gives at once:

0 s#En-—r
H" r, s):{P"(r) s=n—r

In Problem 1.70 let p = 1/3, and g = 2/3. Compute the probabilities of the following events: (@) the
particle passes through the point (5, 2); (b) the particle passes through (5, 2) and (7, 1); and (c) the
particle passes through (5, 2) and (6, 3).

(@) This event can occur only at t =7, with probability P.(5) = C(7, 5)(1/3)°(2/3)%.

(b) First to hit (5,2) and then (7, 1) would require a decrease in the y coordinate; the other order, a decrease in
the x coordinate. But either coordinate can only increase, so the probability here is zero.

(¢) The probability of the path (5,2)-(6,2)-(6,3) is P,(5)(1/3)(2/3) and the probability of the path
(5, 2)-(5,3)-(6, 3) is P,(5)}(2/3)(1/3). The desired probability is the sum, or (4/9)P.,(5).

Consider a bidirectional random walk on the X axis. The particle starts (at time ¢ = 0) from the origin
and can make steps of +1 (with fixed probability p) or —1 (with fixed probability ¢ = 1 — p). Show
that P (r)—the probability that the particle is at x = r after n steps—is the coefficient of x" in the
binomial expansion of (px + g/x)".

Obviously, P,(r) obeys

P(ry=pP,_(r—1)+gqP _,(r+1) @)

which is a recurrence relation in 2 integer variables, » and r. First, get rid of r by introducing the generating
function

F,x)= 2 P«

)= —c

[Observe that P,(r) =0 for |r| >n.] When (i) is multiplied by x” and summed over all r, the result is
q ..
Fn(x)=<px+-x-> F,_.(x) (i)
The solution to (if)—a difference equation in n alone—is evidently
_ 7\ _ 9\
Fx)y={ px+ Y Fox)={ px + T (iii)

since Fy(x) = P,(0) = 1. Thus P,(r) is the coefficient of x” in (px + g/x)", as asserted.
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In Problem 1.72 let p =3/4 and g = 1/4. Compute the probability that the particle has x =1 during

Ist=4

There are precisely three sequences of four steps (starting from the origin) that satisfy the prescribed
condition:

Sequence Probability
(+1, +1, -1, +1) P'q
(+1, +1, +1, —1) P’q
(+1,+1, +1, +1) r

The required probability is therefore

sy 43 135
pqtp =p(g+t) =75

The reader should note that the first two sequences land the particle at x =2; and the third sequence, at
x =4, However, the answer is not P,(2) + P,(4), because the forbidden sequences (+1, —1, +1, +1) and
(=1, +1, +1, +1) contribute to P,(2).

A finite sequence {(a,,q,,...,a,) of real numbers is unimodal if there exists a positive integer
1<j<n such that (a,<a,<---<a;_,=g,>a;,,>''->a, Show that the sequence
(Cn,0),C(@, 1),...,C(n,n)) is unimodal for any n>1, and find the largest number(s) in the
sequence.

By Theorem 1.1(if), C(n,r + 1)/C(n,r)= (@ —r)/(r + 1). Thus the sequence is strictly increasing for
n—r>r+1, or r<(n—1)/2, and strictly decreasing for r > (n — 1)/2. Explicitly, for n=2k (k=1,2,...),

Ck, )< <CQ2k,k)>++->C(2k,2k)
and, forn =2k + 1,

CQk+1,0)<-+-<CQRk+1,k)=C2k+ Lk+1)>--->C(2k + 1,2k + 1)

n—=r_.r

Show that the sequence {a,,a,,a,,...,a,), where a,=C(n,r)x" 'y" and x and y are positive, is
unimodal.
As in Problem 1.74 we determine that the sequence is strictly increasing for

ny—x
x+y

r<t=

and strictly decreasing for r > ¢. There are four possibilities:

(@) t<0.Thena,>a,>a,>-"">a,.
) t=0.Thena,=a,>a,>a,>--->a,.
{¢) t>0 and ¢ is not an integer. Let k =Le+ 1; then
gy <a, <---<a,>ay,>"->a

n

(d) t>0 and 7 is an integer. Then a,<a, <---<ag,=4a,,,>a,,,>'"*>a,
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LetX=1{0,1,2,3,4,5,6,7,8,9, 10}. Show that if § is any subset of X with 7 elements, then there are
2 elements of S whose sum is 10.

The subsets H, = {0, 10}, H, ={1,9}, H, = {2, 8}, H, ={3, 7}, H; = {4, 6}, and H, = {5} may be considered
as 6 pigeonholes; and the elements of S, as 7 pigeons.

Show that in any group of people there will be at least 2 people who know the same number of people
in the group.

Suppose that in the group X ={1,2,...,n} there are k people who do not know anybody in the group.

(@) If k> 1, there are at least 2 people who know nobody in the group.

() Ifk =0 let x, be the number of people known to i, where i = 1,2,...,n. Since | =x,<n -1 for each i, the
n numbers x, cannot all be distinct. So there are at least 2 integers i and j such that x, =x;.

(¢) If k=1, we ignore the person who does not know anyone in the group. We are then back in situation (b),
with n replaced by n — 1.

Consider a tournament in which each of n players plays against every other player and each player
wins at least once. Show that there are at least 2 players having the same number of wins.

The number of wins for a player is at least 1 and at most n — 1. These n — 1 numbers correspond to n — 1
pigeonholes to accommodate n player-pigeons,

Show that any set of n integers has a subset such that the sum of the integers in the subset is divisible
by n.

Let X ={x,,X,,...,x,}and 5,=x, +x, +---+x, where i=1,2,3,...,n If any s, is divisible by n, we
are done. Suppose this is not the case. Then the remainder r; obtained when s, is divided by # is at least 1 and at
most n — 1; so that, by the pigeonhole principle, we must have r, =r,_ for some p <gq. But then

S, =8, =X,

+tx, 1t

leaves a remainder 0, i.e., is divisible by n.

Let X denote a set of 9 positive integers, and, for any subset E of X, let s(E) represent the sum of the
elements of E. Find the range of values of the largest element, n, of X for which there must exist two
subsets A and B such that s(A) = s(B).

For any subset E,
I=ssEysn+@m—-1)+---+n—8)=9%—136

So the number of distinct values of s(E) is at most 92 — 36. As there are 2° — 1 = 511 nonempty subsets E, the
pigeonhole argument yields

511>9n - 36 @

as a sufficient condition for the existence of two equal-sum subsets. Clearly, () is satisfied for values of n from 9
(the smallest possible) through 60.

If 5 points are chosen at random in the interior of an equilateral triangle each side of which is 2 units
long, show that at least 1 pair of points has a separation of less than 1 unit.
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The equilateral triangle can be partitioned into 4 equilateral triangles, and each side is 1 unit. We have 5
points and 4 triangles; the conclusion is obvious.

If 10 points are chosen at random in the interior of an equilateral triangle each side of which is 3 units
long, show that some pair of points are within 1 unit of each other.

Subdivide the original triangle into 9 equilateral triangles (each side is 1 unit) by trisecting each side and
drawing parallel lines through the points of subdivision. There are 9 triangles and 10 points.

If 5 points are chosen at random in the interior of a square and each side is 2 units, show that the
distance between some pair of points is smaller than V2 units.

Divide the square into 4 congruent squares by joining the midpoints of opposite edges. The diagonal of each
of the small squares is V2. We have 4 squares and 5 points.

Show that any set of 7 distinct integers includes 2 integers x and y such that either x +y or x —y is
divisible by 10.

Let X = {x,, x,, ..., x,} be a set of 7 distinct integers and let r, be the remainder when X, is divided by 10.
Consider the following partition of X:

H ={x,:r,=0} l H,={x :r,=5}
H,={x,:r,=1 or 9} H,={x,:r,=2or 8}
H,={x,:r,=3or T} H, ={x,:r,=4 or 6}

There are 6 pigeonholes for 7 pigeons. If x and y are in H, or in H,, then both x +y and x — y are divisible by
10. If x and y are in one of the other 4 subsets, then either x — y or x +y is divisible by 10, but not both.

The total number of games played by a team in a 15-day season was 20. The rules required the team
to play at least 1 game daily. Show that there was a period of consecutive days during which exactly 9
games were played.

Let x, be the number of games played by the team up to and including the ith day. The 15 numbers
X2 X, .. 5 X, (set A) are all distinct and increasing; hence the 15 numbers x, +9,x, +9,..., x5 + 9 (set B) are
also distinct and increasing. Thus we have a set (AUB) of 30 positive integers (pigeons) with at most
x,5 +9 = 29 distinct values (pigeonholes). No 2 elements of A, nor of B, can be equal. Therefore, for some i and
Jsx;=x,+9, or

9 = x, — x, = number of games played in days i + 1,i +2,...,]

Show that in any assignment of n objects to r places there will be at least 2 places with the same
number of recipients, if n <r(r —1)/2.

Let x, be the number of objects assigned to place i, where i = 1,2,...,r. No 2 places get the same number
of recipients if and only if the r integers x, are all distinct. If this condition is fulfilled, we can relabel the places
so as to make x, <x, <-:-<x;<:--<ux,. Thenx, =i~ 1 for all i, whence, by addition

-1
Sx,z23(—1) or nZLr—z—)

So, if n<r(r — 1)/2, the x, cannot all be distinct.

There are 12 microcomputers and 8 laser printers in an office. Find the minimum number of connec-
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tions to be made which will guarantee that if 8 or fewer computers want to print at the same time,
each of them will be able to use a different printer.

We shall show that 40 connections will do the job, leaving it to the reader to prove that this number is
minimal. Suppose the printers are denoted by P, (j=1,2,...,8) and the computers by C, ¢(=1,2,...,12).
Connect the first printer to the first 5 computers. Then connect the second printer to the 5 consecutive printers
starting with C,. Then connect the third printer to the 5 consecutive printers starting with C,. Continue like this,
generating the the connection matrix of Fig. 1-1.

Py P, P Py Ps Pg P; Py
C 1 0 0 1] 0 0 0 0
C, 1 1 0 0 0 0 0 0
Gt 11 0 0 0o o0 o
Cy 1 1 1 1 0 0 0 0
Cs 1 1 1 1 1 0 0 0
Glo 1 1 1 1 1 0 o
o o 1t 1 1 1 1 o
Cs 0 0 0 1 1 1 1 1
Co 0 0 0 0 H 1 1 i
colo o 0o 0o o 1 1 1
cylo o o o o o 1 1
cplo 0 0 o o o o 1

Fig. 1-1

Let the 8 computers requiring a printer be G, C.,n ..., Gy, where i, <i, <--- <iy (Obviously, if any 8
computers can be accommodated, any smaller number can be accommodated.) The crucial observation is that

s<i=s+4 (s=12,...,8) @)

Indeed, if i <s there would be s positive integers smaller than s; and if i =5+ 5, at most 12 —(s + 6) +
1 =7 — 5 values would be available to the 8 — s remaining indices. It follows from (/) and Fig. 1-1 that P, can be
reserved for C; ; P, for C, ;... P, for C, .

If each row and each column of an n X n matrix is a permutation of the first n positive integers, the
matrix is known as a latin square of order n. Two latin squares of order n, A = {a,] and B = [b],
are orthogonal if the n° ordered pairs (a;, b;;) are all distinct. Suppose A, A,,..., A, are pairwise
orthogonal latin squares of order n. Show that ¢ cannot exceed n — 1.

Obviously ¢ = 0 for n = 1 and n = 2; thus we assume n > 2. The pairwise orthogonality of A, A,, ..., A, is
not disturbed if the first row of each of these matrices is transformed into [1 2 3 --- n] through suitable
permutations of the columns. Now the first element in the second row of any one of these matrices must come
from the set {2, 3,..., n}. Moreover, if { and j are the first elements in the second rows of 2 of these matrices,
then i and j are distinct. (Otherwise, the orthogonality condition is violated, because all first rows are
{1 2 --- n}. Hence the set {2, 3,.. ., n} has to supply ¢ distinct values for the (2, 1)-element; perforce r<n — 1.

Prove that any set of 3 distinct integers includes 2 integers x and y such that F(x, y)=x"y — xy” is
divisible by 10.

The result is true if the set includes x =0 or y = 0. Also,

F(=x, y)= F(x, —y) = —F(x, y) and F(—x, =) =F(x, y)
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so that we may assume without loss of generality that the 3 distinct integers are all positive. Now, for any x and
y, F(x, y) is even. So it is enough to show that F(x, y) is divisible by 5, which will certainly be the case if either x
or y is divisible by 5. Since F(x, y) = xy(x — y)x + y), what we have to prove is this: given any 3 positive
integers none of which is divisible by 5, the sum or difference of 2 of them is divisible by 5.

Now, the last digit of any number not divisible by 5 belongs to the set A= {1,2,3,4,6,7,8,9}. Let
B={1,4,6,9} and C ={2, 3,7, 8}—two pigeonholes. Of the 3 integers (pigeons) in our set, at least 2 belong to B
or at least 2 belong to C. In either case, either their sum or their difference is divisible by 5. This completes the
proof.

Show that any sequence of n® + 1 distinct real numbers contains a subsequence of at least » + 1 terms
that is either an increasing sequence or a decreasing sequence. In particular, every sequence of n
distinct numbers has a monotone subsequence of length at least /7.

For the sequence {(g,:i=1,2,..., n*+1), let p, be the number of terms in the longest increasing
subsequence that starts with a,. If p, =n + 1 for some i, we are done. Suppose, on the contrary, p, = n for every
i. Let H,={a,: p, =j}, where j= 1,2,...,n The n* + 1 elements of the sequence are thus partitioned into n
sets. By Theorem 1.3 (choose p, =+ -:p, =n+1), at least n + 1 of these elements belong to one of the n sets,
say, H,. Let a, and 4, be two numbers in H,, where i<j. If a,<ay, there is a subsequence with at Jeast r + 1
terms starting from a,, which is a contradiction. Thus a,> g, whenevet i <j. So take any n + 1 elements from H,
and arrange them in increasing order of their subscripts, to obtain a decreasing sequence of n + 1 elements,

In particular, every sequence of k distinct numbers has a monotone subsequence (decreasing or increasing)
of at least Vk — 1 + 1 >Vk numbers.

Suppose X is the set of the first 2n positive integers and S is any subset of X with n+ 1 elements.
Show that S contains 2 integers such that 1 is divisible by the other.

Any element r of S can be written as r = 2's, where ¢ is a nonnegative integer and s is an odd number from
the set X. There are at most n choices for s. So there are at least 2 numbers x and y in S such that x = 2"s and
y = 2%, with p # ¢q. Hence, either x divides y or vice versa.

(a) Suppose P,(x, y,), where i=1,2,...,5, are 5 lattice points (Problem 1.58) in the plane. Show
that at least 1 of the line segments determined by pairs of these lattice points has a lattice point as its
midpoint. (b) Generalize the result of (a) to n-dimensional Euclidean space.

(@) The set A of all lattice points in Euclidean 2-space can be partitioned into 4 subsets: A, is the
subset where both the coordinates are odd; A, is the subset where both the coordinates are even,;
A, is the subset in which the first coordinate is odd and the second coordinate is even; and A, is
the subset in which the first coordinate is even and the second coordinate is odd; Out of the 5
given lattice points, at least 2 must belong to 1 of these 4 subsets. The midpoint of the segment
joining this pair is a lattice point.

(b) Given 2"+ 1 lattice points in Euclidean n-space, the midpoint of at least one of the line
segments determined by these points is a lattice point.

RAMSEY NUMBERS
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Show that in any group of 6 people there will always be a subgroup of 3 people who are pairwise
acquainted or a subgroup of 3 people who are pairwise strangers.

Let {A,B,C, D, E, F} be a group of 6 people. Suppose that the people known to A are seated in room Y and
the people not known to A are seated in room Z; A is not in either room. Then there are necessarily at least 3
people in either room Y or in room Z. (2) Suppose B, C, and D to be in room Y. Either these 3 people are mutual
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strangers (and the theorem is true) or at least 2 of them (say, B and C) know each other. In the latter case, A, B,
and C form a group of 3 mutual acquaintances—and the theorem is true. (b) In (@), replace room Y by room Z
and interchange the notions of ‘‘acquaintance’” and ‘‘strangers.”’

Show that in any group of 10 people there is always (a) a subgroup of 3 mutual strangers or a
subgroup of 4 mutual acquaintances, and (b) a subgroup of 3 mutual acquaintances or a subgroup of 4
mutual strangers.

(@) Let A be 1 of the 10 people; the remaining 9 people can be assigned to 2 rooms: those who are known to A
are in room Y and those who are not known to A are in room Z. Either room Y has at least 6 people or room
Z has at least 4 people. (i) Suppose room Y has at least 6 people. Then, by Problem 1.93, there is either a
subgroup of 3 mutual acquaintances or a subgroup of 3 mutual strangers (validating the theorem) in this
room. In the former case, A and these 3 people constitute 4 mutual acquaintances. (ii) Suppose room Z has
at least 4 people. Either these 4 people know one another or at least 2 of them, B and C, do not know each
other. In the former case we have a subgroup of 4 mutual acquaintances. In the latter case A, B, and C
constitute 3 mutual strangers.

(b) In the previous scenario, let people who are strangers become acquaintances, and let people who are
acquaintances pretend they are strangers. The situation is symmetric.

Show that in any group of 20 people there will always be either a subgroup of 4 mutual acquaintances
or a subgroup of 4 mutual strangers.

Suppose A is one of these 20 people. People known to A are in room Y and people not known to A are in
room Z. Either room Y has at least 10 people or room Z has at least 10 people. (i) If Y has at least 10 people,
then by Problem 1.94(b), there is either a subgroup of 3 mutual acquaintances or a subgroup of 4 mutual
strangers—as asserted—in this room. In the former case A and these mutual acquaintances will form a subgroup
of 4 mutual acquaintances. (ii) Interchange ‘‘acquaintances’ and *‘strangers’’ in (i).

Let p and g be 2 positive integers. A positive integer r is said to have the (p, q)-Ramsey property if
in any group of r people either there is a subgroup of p people known to one another or there is a
subgroup of ¢ people not known to one another. [By Ramsey’s theorem all sufficiently large integers
r have the (p, g)-Ramsey property.] The smallest r with the (p, g)-Ramsey property is called the
Ramsey number, R(p, g). Show that (@) R(p, q) =R(q, p), (b) R(p, 1)=1, and (¢) R(p,2) =p.

(@) See Problems 1.93(b), 1.94(b), and 1.95(b). (b) This is obvious. (¢) In any group of p people, if all of
them are not known to one another, there will be at least 2 people who do not know each other.

Show that R(3, 3)=6.

Problem 1.93 implies that R(3,3)<6. To show that R(3,3)>5, it is enough to consider a seating
arrangement of 5 people about a round table in which each person knows only the 2 people on either side. In
such a situation there is no set of 3 mutual acquaintances and no set of 3 people not known to one another.

Show that if m and n are integers both greater than 2, then

Rm,n)=R(m — 1,n) +R(m,n—1)

[This recursive inequality gives an (unsharp) upper bound for R(m, n).]

Letp=R(m —1,n), g=R(m,n — 1), and r =p + q. Consider a group {1,2,...,r} of r people. Let L be the
set of people known to person 1 and M be the set of people not known to person 1. The 2 sets together have r — 1
people; so either L has at least p people or M has at least g people. (@) If L has p = R(m — 1, n) people, then, by
definition, it contains a subset of m — 1 people known to one another or it contains a subset of n people unknown
to one another. In the former case the m — 1 people and person 1 constitute m people known to one another.
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Thus, in their case, a group of R(m — 1, n) + Rim,n — 1) people necessarily includes m mutual acquaintances or n
mutual strangers; i.e.,

R(m,n)<R(m—1,n) +Rm,n — 1)

() By the usual symmetry argument the same conclusion follows when M contains g people.

Show that if m and n are integers greater than 1, then
Rm,n)<Cm+n—2,m—1) i)

(a nonrecursive upper bound).

When m =2 or n =2, (i) holds with equality (Problem 1.96). The proof is by induction on k =m + n. As
we have just seen, the result is true when k= 4. Assume the result true for £ — 1. Then

R(m—l,n)SC(m+n—3,m—2) and Rmn—1)<Cm+n—-3,m—1)
Now, Pascal’s identity gives C(m +n — 3m—2)+Cm+n—3,m~ H=Cm+n~2,m—1), so that
R(m—1,n)+R(m,n-l)SC(m+n—2,m—1)

But (Problem 1.98) R(m,n) <R(m—1,n) + R(m,n—1).

If Rom — 1, n) and R(m, n — 1) are both even and greater than 2, prove that
R(m,m)y<=R(m—1,n) +R(m,n — -1

As in Problem 1.98, let p=R(m —1,n), g =R(m,n—1),and r=p +gq. It suffices to establish that in any

group X ={1,2,...,r—1}of r—1 people there is either a subgroup of m people who know one another or a
subgroup of n people who do not know one another. Let d, be the number of people known to person i, for
i=1,2,...,r— 1. Since knowing is mutual, d, +d, +--- + d,_, is necessarily even. But r — 1 is odd; so d, is

even for at least 1 i, which we may take to be i = 1. Let L be the set of people known to person 1 and let M be
the set of people not known to person 1. Since there are an even number of people in L, there must be an even
number of people in M as well. Now either L has at least p — 1 people or M has at least g people. But p — 1 is
odd. So either L has at least p people or M has at least ¢ people. (a) Suppose L has at least p people. Because
p =R(m — 1, n), L must contain either m — 1 people known to one another or n people not known to one another
(in which case the theorem holds). In the former case these m — 1 people and person 1 will constitute m people
known to one another (and the theorem holds). (b) The case of ¢ or more people in M is handled by symmetry.

Show that R(4,3)=9.
By Problems 1.97, 1.96(c), and 1.100,

R(4,3)<R(3,3)+R(4,2)—1=9

To prove that R(4,3) =R(3,4) > 8, we exhibit a group of 8 people which has no subgroup of 3 people known to
one another and no subgroup of 4 people not known to one another. Here is a scenario: 8 people sit about a round
table. Each person knows exactly 3 people: the 2 people sitting on either side of him and the person sitting
farthest from him.

Show that R(5,3) = 14.

R(5,3)=R(4,3)+R(5,2)= 9 +5=14. To see that R(5,3) = R(3,5)>13, consider a group of 13 people
sitting at a round table such that each person knows only the fifth person on his right and the fifth person on his
left. In such a situation there is no subgroup of 3 mutual acquaintances and no subgroup of 5 mutual strangers.
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Show that R(4,4)=18.

R(4,4)=R(3,4) + R(4,3)=9+ 9 =18. To show that R(4,4)> 17, consider an arrangement of 17 people
about a round table such that each person knows exactly 6 people: the first, second, and fourth persons on one’s
right and the first, second, and fourth persons on one’s left. It can be verified that in this arrangement there is no

subgroup of 4 mutual acquaintances or of 4 mutual strangers.
[Ramsey numbers R(p, g) with p, g > 2 are called nontrivial. In Problems 1.97-1.103, 4 of the 7 known

nontrivial Ramsey numbers have been computed.]

Letk, (i=1,2,...,t) and m be positive integers, with each £, =m and r = 2. Let {C,,C,,...,C,) be
an ordered partition of the class C of all m-element subsets of an n-element set X. [There are thus
C(n, m) elements in C.] Then the positive integer n has the generalized (k,, k,, . . ., k,; m)-Ramsey
property if, for some value of / in the range 1 to ¢, X possesses a k;-element subset B such that all
m-element subsets of B belong to C,. The smallest such n is the generalized Ramsey number,
Rk, ky, ..., k;m). Show that R(p, q) =R(p, q;2).

Let n = R(p, q) and suppose that X = {1,2, ..., n} is a group of n people. The class of all 2-element subsets
of Xis C={{i, j} : i #j}. Let C = C, U C, be any partition of C; this partition defines and is defined by a relation
of ‘*knowing” whereby i and j know each other if and only if {i, j} belongs 1o C,. Now, since n = R(p, ¢), either
X has a subgroup of p people who know one another—i.e., a p-element subset B all 2-element subsets of which
belong to C,—or X has a subgroup of ¢ mutual strangers—i.e., a g-element subset B’ all 2-element subsets of
which belong to C,. Hence n = R(p, q; 2); and it is easy to see that the inequality cannot hold.

Show that the pigeonhole principle is equivalent to the proposition that
Rk ky .. ks D=k +hky+ -k —t+1

Let Rk, ky, ..., k31)=n. Thus » is the smallest positive integer such that when any n-clement set X is
arbitrarily partitioned as X =C, UC, U - - UC,, then C, contains at least ¥, elements, or C, contains at least £,
elements, or ..., or C, contains at least k, elements. The proof of Theorem 1.3 demonstrates that this minimal »n
has the value &, +k, + -+ & —1+1.

Let A be any n X n matrix. Matrix P is an m X m principal submatrix of A if P is obtained from A
by removing any n —m rows and the same n — m columns. Show that for every positive integer m,
there exists a positive integer n such that every n X n binary matrix A has an m X m principal
submatrix P in one of the following four categories:
(i) P is diagonal.
(ii) Every nondiagonal entry of P is 1.
(iii) P is lower triangular and every element in the lower triangle is 1.
(iv) P is upper ftriangular and every element in the upper triangle is 1.
Let n be any positive integer greater than R(m, m, m, m; 2) and let A = [a,] be any n X n binary matrix, the

rows of which constitute the set X ={r,,r,,...,r }
The class C of all 2-element subsets of X is partitioned into 4 classes, as follows:

Cl = {{I‘i, rj} : aj,. = 0, d,.j = 0} C3 = {{ri’ )'j} : aji = Ov aij = 1}
C,={r.r}:a,=1,a,=1} C,={lr.r}ia,=1,q,=0}

Since n = R(m, m, m, m; 2), there exists a subset X’ of X with m elements (rows) such that all 2-element subsets
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of X’ are contained in one of these 4 classes. This implies the existence of an m X m principal submatrix in one
of the categories (i) through (iv).

A collection of points in the plane are in general position if no 3 of the points are collinear. A
polygon with n sides, or n—gon, is convex if the line segment joining any 2 interior points is also
within the n-gon. Show that if 5 points in the plane are in general position, then 4 of them are the
vertices of a convex quadrilateral.

Let the smallest convex polygon that contains the 5 points be a convex m-gom, obviously, all the vertices of
this m-gon belong to the given set of points. If m = 5 or m = 4, there is nothing to prove. If m = 3 (the only other
possibility), there is a triangle formed by 3 of the 5 points (say, A, B, and C), and the other 2 points, D and E, are
inside the triangle. Then the line determined by D and E will divide the triangle into 2 parts such that 1 of these 2
parts contains 2 vertices of the triangle (say, A and B); ABDE is the sought convex guadrilateral.

If n points are located in general position in the plane, and if every quadrilateral formed from these n
points is convex, then the n points are the vertices of a convex n-gon.

Suppose the n points do not form a convex r-gon. Consider the smallest convex polygon that contains the 7
points. At least one of the n points (say, the point P) is in the interior of this polygon. Let O be one of the
vertices of the polygon. Divide the polygon into triangles by drawing line segments joining Q to every vertex of
the polygon. The point P then will be in the interior of one of these triangles, which contradicts the convexity
hypothesis.

Show that for any integer m =3 there exists an integer n such that whenever n points in the plane are
in general position, some m of these points are the vertices of a convex m-gon.

Let n=R(5, m; 4) and let X be any set of n points in general position. The class C of all 4-element subsets
of X is partitioned into 2 subclasses, C, and C,, the former being the subclass of quartets of points which
determine convex quadrilaterals. Now, according to Ramsey’s theorem, there exists an m-element subset, B, of X
such that every 4-element subset of B belongs to C,, or there exists a S-element subset, B’, of X such that every
4-glement subset of B’ belongs to C,. The latter alternative is impossible, by Problem 1.107. The former
alternative must then hold; and Problem 1.108 at once gives the proof.

An arithmetic progression of length » is a sequence of the form (@a+d,a+2d,...,a+ @n—1)d).
Show that in any partition of X ={1,2,...,9} into 2 subsets, at least 1 of the sets contains an

. arithmetic progression of length 3.

Suppose that the theorem is false. Let X be partitioned into P and Q, and let 5 be an element of P. Obviously
both I and 9 [d = 4] cannot be in P; so that there are 3 cases to consider.

Casel. lisinP and9isin Q. Since 1 and S are in P, 3 is in Q. Since 3 and 9 are in O, 6 is in P. Since 5 and 6
are in P, 4 is in Q. Since 3 and 4 are in Q, 2 is in P. Since 5 and 6 are in P, 7 is in Q. Since 7 and 9arein O, 8 is
in P. But then P contains the arithmetic progression 2, 5, 8—a contradiction.

Case 2. 9isin P and 1is in Q. Set X is invariant when each element is replaced by its tens-complement. Under
this transformation the present case becomes Case 1, which has already been disposed of.

Case 3. 1 and 9 are in Q. The number 7 is either in P or in Q; suppose it is in P. Since 5 and 7 are in P, both 3
and 6 are in Q. That means Q has the arithmetic progression 3, 6, 9. On the other hand, if 7 is in Q, then 8 is in P.
Since 1 and 7 are in Q, 4 is in P. Since 4 and 5 are in P, 3 is in 0. Since 1 and 3 are in @, 2 is in P. Then P has
the arithmetic progression 2, 5, 8.

A geometric progression of length n is a sequence of the form {a,ad,ad®,ad’,...,ad"""). Show
that in any partition of X ={1,2,3,..., 2%} into 2 sets, at least 1 of the sets contains a geometric
progression of length 3.
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Given the partition X =X, UX,, let P={1,2,...,9}, P, ={k€P:2" '€X,},and P,=P—P,. If P, is
empty, then X, must contain the geometric progression 1, 2, 4. If P, is empty, then X, contains 1, 2, 4. Finally, if
P =P UP, is a partition, Problem 1.110 ensures that one of the subsets—say, P,—contains on arithmetic
progression k, k + I, k + 2I. In consequence, X, must contain the geometric progression 27", 2712/, 2 7(2')%.

CATALAN NUMBERS

L112 A path from P, to P, in the cartesian plane is a sequence (P, P, ..., P, ) of lattice points (Problem

L113

L114.

1.58), P.(x;, y,), such that, for each i =0,1,....m—1, x,, , =x,+ 1Ly, =y, 00 x,, |, =X, Y;,, =
y; + 1. This path is good if y, <x, ( =0, 1, ..., m); otherwise it is bad. (a) Find the number of paths
from P, to P,. (b) Obtain a necessary and sufficient condition for given endpoints P, and P, to be
linked by paths of both categories.

(a) In Problem 1.58 set m=x,, —x, and n =y, —y, to obtain the required number as C(x,, —x, +y,, —
Yor X,,, = X,). (b) See Fig. 1-2: a good path is one that lies entirely below the 45° line. Thus the conditions y, < x,
and y, <x, are necessary for a good path, to which may be adjoined x,=x, and y, =<y, (the x and y
coordinates can never decrease along the path). Under these 4 conditions all paths will be good, unless it is
possible for a path to intersect the 45° line at some ordinate less than or equal to y, ; i.e., unless x, =y,,. Thus the
desired criterion is

Yo <X =Yu <X,

Count the good paths from (x,, y,) to (x,,, ¥,,)-

Figure 1-2 shows a bad path from (x,, y,) to (x,,, y,,); it first intersects the line y = x in the lattice point Q.
If subpath A, from (x,, y,) to @, is reflected in the 45° line, then A| + A, is a path from (y,, x,) to (x,,, y,,).
{All paths from (y,, x,) are bad, but that is of no importance here.] Conversely, any path from (y,, x,) to (x,,, ¥,.)
defines by partial reflection a bad path from (x,, y,) to (x,,, y,,). By Problem 1.58 there are C(x,, —y, +¥,, —
X4, X,, —¥,) bad paths—and hence

C&x,, = X9+ ¥, =Yg X,y = %) = Cx,, — X + ¥, = Yos Xy — ¥o)

good paths—from (x,, y,) to (x,,, y,,)-

The nth Catalan number, C,, is defined as the number of good paths from (1, 0) to (n,n — 1). Show
that

1
C,,=;C(2n—2,n—-1)
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Making the appropriate substitutions in Problem 1.113, we have

-1 1
C”=C(2n—2,n—1)—C(2n—2,n)=C(2n—2,n——1)[1—y—n—“] =;C(2n—2,n—1)

Find the number of paths from (0, 0) to (n, n) such that (a) either x > y at all interior lattice points or
y > x at all interior lattice points; and (b) y =x at every lattice point on the path; and (c) the path
never crosses the line y = x.

(@) The number of paths of this type will be twice the number of good paths from (1, 0) to (n,n — 1), or 2C,..
(b) Let A be the point (n, n). Suppose the origin 0(0, 0) is transferred to 0'(—1,0). The new coordinates are
0'(0,0), 0(1,0), and A(n + 1, n). The number of good paths (in the new system) from O to A—namely,
C,,,—is equal to the number of paths (in the old system) from O fo A in which y <x at every lattice point.

(¢) By reflectional symmetry, the required number is twice the number found in (b), or 2C, ..

(The Ballot Problem) Suppose P and Q are 2 candidates for a public office who secured p votes and
q votes, respectively. If p > g, find the probability that P stayed ahead of @ throughout the counting
of votes.

In the cartesian plane let x and y, respectively, denote the votes accumnulated by P and Q at any stage. Every
path (Problem 1.112) from (0, 0) to (p, g) represents a possible history of the voting, and conversely. Thus
(Problem 1.58) the number of ways the voting could have gone is C(p + g, p), out of which P leads continually
inC(p+g—1,p—1)—C(p+q—1,p) [this is the number of good paths from (1,0) to (p, @)1. The desired
probability is therefore

Cp+q—lp-D-Clp+tq—1.p) _p—4q
Cp+a.p) ptq

Let X ={1,2,...,n}. A function f from X to X is monotonic increasing if f(@)=f(j) whenever i <j.
Find the number of monotonic increasing functions f from X to X such that f(i) <i for every i in X.

Any function of this type will have a graph, y = f(x), consisting of lattice points that can be embedded in a
unique way in a path from (0, 0) to (r, n) that does not rise above the line y = x. Conversely, any path from (0, 0)
to (1, n) that does not rise above y = x defines a function of this type. Thus, from Problem 1.115(b), the answer is

C,...

n

Find the number of sequences of the form (i, u,, ..., u,,) such that
({) wu, is either —1 or +1, for every is
Gi) u,+u,+--+u, =0 for t=k=2n—1; and
Git) wu,tu,+---+u, =0
Consider a path from (0, 0) to (1, n) as traced by a particle which makes unit steps in the x and y directions.
Let the particle’s location after / steps be (x,, y,) and define

u, E(x‘. _xi—l)_ ()’,— _yi~—1)

Then, if the particle never rises above the line y =x, the integers u, (i=1,2,..., 2n) satisfy (i), (ii), and (iii)
above.

Conversely, every sequence (u,) that obeys (), (if), and (iii) defines a path from (0, 0) to (n, n) that never
rises above y = x. Hence [Problem 1.115(b)], the number of such sequences is C, ..

Find the number of sequences of the form (@, a,....,d,,, ), Where

(i) each g, is a nonnegative integer;
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(i) a,=a,,,, =0; and
(iii) a;,, — a, is either —1 or 1, for every i.

Define u, =a,,, —a, (=1,2,...,2n), or, inversely,

k
ak+1=2ui k=0,1,...,2n)
i=1

Then the a; obey (i), (i), and (iii) above if and only if the u, obey (i), (i), and (iii) of Problem 1.118. Thus the
number of a sequences equals the number of # sequences, which is C,, ,.

To obtain the product of n numbers, n — 1 successive multiplications are to be performed, involving 2
factors at a time. A pair of parentheses is used to indicate the 2 components of a multiplication
whenever the lack of these would cause ambiguity. Find the number of ways of expressing the
product of » numbers in this manner, if the # numbers can be arranged in any order.

The product of a and b can be expressed as ab or ba. The product of a, b, ¢, and d can be expressed as
{(ab){(cd), (cd)ab), a{(bc)d), and so on. Let w, be the number of ways of expressing the product of x,,x,,...,x,
by inserting parentheses. From each product of these n numbers, we can obtain a product of x ,x,,...,x,x,,,
by one of the following methods:

(a) Suppose the product of the » numbers is y. Then we can form either x,, ,y or yx,,, (2 possibilities).

(b) Suppose u is the product of the first r numbers out of the n numbers, and v is the product of the remaining
n —r numbers. Then we have the 4 possibilities (x,,,u)v, (ex, . W, u(x,, ,v), and u(vx,, ).

Now r can vary from 1 to n — 1. Thus each representation involving n numbers defines 2+ 4(n — 1) =
4n — 2 representations involving n + 1 numbers; or

2"Q2n)! _ (2n)!

W, =(n—2)u,=@n—-2)4n—-6)w,_, = =MAn—-2)4n—-6)--- 3= 2 p

It then follows from Problem 1.114 that w, = n!C,.
We note that exactly n —2 pairs of parentheses—one opening and one closing—are required in any
parenthesisation of an n-factor product.

Rework Problem 1.120 if the order of the n numbers is fixed.

It is clear that any parenthesisation of n numbers in fixed order gives rise to #! homologous parenthesisa-
tions when the numbers are permuted among themselves. Moreover, every parenthesisation counted in Problem
1.120 can be derived by permutation from the homologous fixed-order parenthesisation. Thus the required
number of ways is w,/n! = C,—an alternate definition of the nth Catalan number.

A diagonal triangulation of a convex polygon is a division of the polygon into triangles by diagonals
which do not intersect except at vertices of the polygon. Show that the number of triangles and the
number of diagonals in any diagonal triangulation of a convex polygon with n vertices are n — 2 and
n — 3, respectively.

Suppose that the numbers of triangles in 2 different triangulations are p and ¢. Then
pm=gqm=sum of the interior angles of the polygon

whence p = q. With the n vertices of the polygon marked 1,2,.. ., n, the diagonals 13,14, ...,1n—1 yield a
particular triangulation. This—and therefore every—triangulation involves » — 2 triangles.

In counting the edges of the » — 2 triangles in any triangulation, each diagonal involved is counted twice,
since it is an edge of exactly 2 triangles. Each side of the polygon is counted once, since it is an edge of exactly 1
triangle. Therefore, with x = number of diagonals, we have 3(n —2)=2x +n, or x=n—3.
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Consider a triangulation of a convex n-gon (n = y). Let us call a constituent triangle type 0, type 1, or
type 2, according as the triangle has 0, 1, or 2 sides in common with the polygon. Prove that there
must be at least two type 2 triangles in the triangulation.

Let f,, f,, and f, be the respective numbers of the 3 types. Fr(;m Problem 1.122,
ftfith=n—2 @)
and, by a double counting of the sides of the polygon,
fi+t2,=n

Subtract (i) from (i) f, —f, =2, or f, =2+, =2.

A particular diagonal triangulation of a convex hexagon is shown in Fig. 1-3(a); 5 of the 6 sides are
labeled in clockwise order x,, x,,. . . , Xs. Show that the triangulation induces a unique parenthesisa-
tion of the ‘‘product’ x,;x, - ** Xs.

Xy X3 - S~

X X4 X X4

X5 Xs

@) ® ©

S

<
h
\
hY
\
\
\
A
\

(1 ((xp x3) x4)) X5

@ @
Fig. 1-3

Problem 1.123 guarantees that the triangulation must involve a type 2 triangle that does not contain the
unlabeled side. Take any such triangle (in the present case there is just 1) and collapse it into that side which is a
diagonal of the hexagon; label the surviving side with the parenthesized product of the labels of the 2 sides
that vanish. The resulting labeled pentagon is shown in Fig. 1-3(b). Now iterate the process—see Figs.
1-3(c), (d), (¢)—until the initially unlabeled side carries the sought parenthesisation of x,x, * « * Xs.

Show that the number of diagonal triangulations of a convex polygon with n+ 1 vertices is C,
(whereby still another definition is given for the Catalan numbers).

The general ‘‘collapse procedure’” of Problem 1.124, together with the reverse ““explosion procedure,”’
establishes a one-to-one correspondence between triangulations of a convex (7 + 1)-gon and parenthesisations of
an ordered n-factor product. An appeal to Problem 1.121 gives the required result.
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1.126 Find the number of triangulations of a convex polygon with n =4 vertices such that every triangle is
type 1 or type 2 (Problem 1,123),

The triangulation must involve # — 3 diagonals (Problem 1.122), and, by Problem 1.123, there must be
precisely two type 2 triangles. Number the vertices consecutively in such fashion that diagonal d, = 2n cuts off
one of these type 2 triangles (see Fig. 1-4). Now our triangulation must induce a triangulation of the convex
(n—1)-gon 23 - -+ n 2 (interior shaded in Fig. 1-4) that also has the property f, = 0. This implies that side d,
must be covered by a type 2 triangle (else the n-gon would have three type 2 triangles). Hence there are 2 choices
for d,: d,=3n and d,=2n—1. Repeating the argument for the residual (n —2)-gon, etc., we obtain
MHR)Q2)---2)=2""* triangulations of the n-gon, in each of which the chosen d,_, cuts off the second type 2
triangle. Because vertex 1 can be any vertex of the n-gon, we would seem to have altogether n2" *
triangulations. But in this grand total each triangulation is counted twice—once according to its beginning type 2
triangle and once according to its ending type 2 triangle. Our answer is therefore n2" >,

Fig. 1-4

1.127 To see a talent show, one has to buy an entrance ticket worth $5.00. A customer is allowed to buy
only 1 ticket. Some people come with exactly one $10 bill, and some people come with exactly one
$5 bill; suppose there are m customers in the former category and n customers in the latter category.
The box office has no money initially. The customers stand in front of the box office in a line. Find
the number of ways a line can be formed so that each customer gets a ticket and every customer who
presents a $10 bill gets a $5 bill along with the ticket.

Obviously m cannot exceed n. Let the symbol T denote a $10 customer and let F denote a $5 customer.
Each line in front of the box office can then be considered-as a vector with m + n components, such that ({) m
components are the symbol T and » components are the symbol F; (ii} the ith component represents the ith
customer away from the box office. Conversely, every such vector is a line of customers, The number of vectors
is C(m + n, m). A vector is feasible if every F gets a ticket and if every T gets a ticket and a $5 bill in change.
Any other vector is infeasible. For example, a vector whose first component is T is infeasible.

We now count the infeasible (n + n) vectors by showing that each such vector corresponds to a unique
(m + n + 1) vector having first component T and having m T’s in all. Suppose v is an infeasible vector; i.e., at
some stage a customer with a $10 bill comes to the box office and (for the first time) the box office has no $5 biil
to give back. If this customer is represented by a T in the ith position, then among the previous /i — 1 components
there occur equal numbers of T’s and F’s. In other words, among the first i components the number of F’s is p
and the number of T’s is p + 1, for some nonnegative integer p. Let an additional F be introduced as the first
component. Then, up to and including the new (i + 1)st component, the number of F’s and the number of F’s
will be p + 1. Suppose that each T is changed into a F, and each F is changed into a T, among these first 2p + 2
components. The unique result is a vector with m + n + 1 components, the first component being T and with m
T’s in all. Conversely, consider any vector with m + n + 1 components, starting with T and having a total of m
T’s. Since m < n, there must be subvector (starting from the first component) with equal numbers of T’s and F’s.
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In this subvector, change T’s into F’s and vice versa, discard the first component, and adjoin the remaining
portion of the vector to this subvector at its end. Then we have an infeasible vector for the given problem.

By virtue of the one-one correspondence just demonstrated, there are C(@n + n,m — 1) infeasible vectors.
Thus, by difference, the number of feasible vectors is

n—m+1

T Cim+n,m) )

Cm+nm~—Cmt+nm—1)=

By Problem 1.114, this number is the Catalan number C,,, if m=n.

Repeat Problem 1.127 if it is given that the first g customers are F’s.

The number of possible line-vectors is equal to the number of sequences of m T’s and n—¢ F’s, or
C(m + n — g, m). If g =m, all these vectors are feasible (the box office has accumulated at least m $5 bills by the

time the first $10 customer arrives).
If g<m, the reasoning follows Problem 1.127: One establishes a one-one correspondence between

infeasible (m + n) vectors and (m + n + 1) vectors of which the first q + 1 components are T’s, there being m Ts
in all. Consequently, the number of infeasible vectors is

C(m+n+1—q—l,m—q——1)=C(m+n—q,n+l)

and the number of feasible vectors is

C(m+n—q,m)-—C(m+n—q,n+1)

Find the number of binary vectors in which the number of 1s is m and the number of Os is n, such that
every component after the first is preceded by more Os than 1s.

Obviously m cannot exceed n. Also, the first 2 components are both 0. We distinguish between two cases:
m < n and m = n. In the former case, the situation is analogous to Problem 1.127, where F corresponds to 0 and
T corresponds to 1. Of the two Os at the beginning, we do not take the first into consideration. We then have a
feasible vector (with m + » — 1 components) in which the number of 1s is m. By (i) of Problem 1.127 there are

n—m

Cim+n—1,m)

such vectors.

If m = n, let a O represent a unit step in the x direction and a 1 represent a unit step in the y direction. Then
there are just as many binary vectors of the given type as there are paths from (0,0) to (n, n) with the property
that x >y at each interior lattice point. By Problem 1.115(a), the number of these paths is C,.

Find the number of ways of arranging 2n distinct real numbers as two n-vectors, u=
fw, u, -+ wlandv=[v, v, - v,], such that (/) in each vector the components are in
strict decreasing order and (ii) u; > v, for all i

Imagine that the 2n numbers correspond to 2n customers (of distinct heights) waiting in front of a box office
to buy a $5 ticket, as in Problem 1.127, such that there are n customers who have exactly one $5 bill and n who
have exactly one $10 bill. Let each u, correspond to a person with a $5 bill (an F) and each v, to a T. Now
assume that in the waiting line the 2n customers stand in order of decreasing heights (first in line is tallest). Then
we have a vector of F’s and T’s with 2# components out of which the number of F’s is n. We assert that this
vector is feasible in the sense of Problem 1.127. In fact, consider the T customer who corresponds to v; in the
vector v. The number of T’s ahead of this customer in the line is i — 1, whereas—by condition (i )}—the number
of F’s ahead of him is at least i. So this vector is indeed feasible.

Conversely, every feasible vector w can be decomposed into 2 vectors, 4 and v, as above: the vector v is the
subline of $5 customers and v is the subline of $10 customers, each arranged in order of decreasing heights. In
the feasible vector w each T is preceded by more F’s than T’s; hence u and v must obey condition (ii). This
one-to-one correspondence shows that the required number of ways is C, ;.
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1.131 Prove combinatorially that the Catalan numbers satisfy the nonlinear recursion relation
Con=2CCiry =D
i=1

The proof is obvious from Fig. 1-5. By Problem 1.115(b) there are C, ., paths from (0, 0) to (n, n) with
¥y =x at each lattice point. Let X, (i = 1,2,..., n) denote the subset of these paths that have (i, /) as their second
lattice point on the line y =x. By Problem 1.115(a) there are C, ways of going from (0,0) to (i, i); and by
Problem 1.115(b) [with the origin of coordinates translated to (4, i)] there are C,_, ., ways of going from (i, {) to

{n, n). Hence, by the product rule, X; contains C,C, _,,, paths.
y=x
y‘\ ///
,,;"(n, ")
/,,/ ;
"‘/._.‘a'
o
i) fomad
//’ ¥
e !
/// '/
I .
©,0) *
Fig. 1-5
STIRLING NUMBERS
1.132 Define the falling factorial polynomials by [x],=1 and
[xl,=xx—1Dx—-2)---x—n+1) n=1,2,3,..) ()

The coefficient of x" in [x], is known as the Stirling number of the first kind, s(z, r); thus

[x],= > s(n, r)x” where s(n,ry=0forr>n 3
r=>0 -
Prove the recurrence relation

sm+1,r)=srn,r—1)—ns(n,r) (iii)

By (), Ix],,, = & — m)[x],; so that (i) gives

2 s+ 1,rNx" =x Z s(n,r)x" —n Z s(n, rx”
r=9

r=0 r=0

= 2 [s(n,r — 1) — ns(n, Hlx’
r=0

and equating coefficients of x” yields (iii).
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1.133 The absolute value of s(n, r) is called the signless Stirling number of the first kind; we denote it as

1.134

1.135

s'(n, r). Verify that s(n,r) =(—1)"""s'(n, r).
From the right-hand side of (i) of Problem 1.132 one sees that
s(n, r)=2i,i2"'i(,,_1,_(,_1) @)
where the summation is over all (n — r) combinations {i,,i,,...,i,_,} of the set X={-=1,-2,...,—(n— 1)}

Because each summand has algebraic sign (—1)" ", the same is true for s(n, r).

Construct a triangle of the signless Stirling numbers of the first kind, analogous to Pascal’s triangle.

Use the recursion formula
sm+1,n=s(m,r—1)+ns'(n,n

[substitute s(n, r) =(—1)"""s'(n,r) in (i) of Problem 1.132] and the ‘‘edge values” s'(n,1)=(n—1)! and
s'(n,n) =1 to generate Table 1-1.

Table 1-1
r
1 2 3 4 5 6
n

1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1

Define the rising factorial polynomials by (x1°=1 and
=2+ Dx+2)- - x+n—1) n=1,2,3,..)

Show that

*x

x]" = z s'(n,Nx" where s'n,r)=0forr>n
r=90

Follows at once from Problem 1.133 {when set X is replaced by X' ={+1, +2, ..., +(n — 1)}, then s(n, 1} is
replaced by |s(n, r)| =s'(n, r)].

1.136 Establish the following analogue to the binomial theorem (Problem 1.38):

x+yl"= EO Cln, NIx1" " [yI"

Perform an induction on n. The formula is true for n = 1, because

[x+y]' =x+y=C(1,0x]'[yI° + (1, D[y
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Assume the formula true for » =m — 1, Then

x+y]"=G+y+m—-Dx+y]" '=@+y+m—1) 2_ Cin—1,0[x]" 7 "yl

r=0

=2 +m—r=1+ G +nCm = 1L,0k"" D

I
Mz

Clm = L,NE" DY + 2 Com = 1,001" 1™

~
Il
=]

3

Cln =1, 901"y + 2 Com = Lr = Dixl" [y’

,
i

3

=2, Com, n[x1" " "[y]"
0

r

and the formula holds for n =m.

Find the number of ways of putting n distinct objects into m distinct boxes, if the (left-to-right) order
of objects within a box is significant and if empty boxes are permitted. (Note that if m > n, at least
m — n boxes must be empty.)

Indicate the desired number by f(n, m). Suppose that a distribution of # — 1 of the objects-—there are
Sfin — 1, m) such distributions—brings i, objzects into box 1, i, objects into box 2, ...,i_ objects into box m; here

=20 (k=12,...,m) and iyti++i, =n—1

Then the nth object can go into box & in i, + 1 ways [leftmost, second from left, ..., (i, + 1)st from left], for a
total of
G, +H+E+ D+ -+, +D=n—1+m

arrangements. Since this number is independent of the particular distribution of the n ~ 1 objects, we have the
relation

fao,my=mn—1+m)fin—~1,m)

from which

fmmy=m+n—-Dm+n-2)--m=[ml"

Rework Problem 1.137 if m =n and empty boxes are not allowed.

Now each box must be given a leftmost object; this can be done in P(n, m) ways. The remaining n — m
objects can, by Problem 1.137, be distributed in [m]”™™ ways. So the answer is:

n—m)!

o @-1
T(—m)! gm—1)

Pn,m)[(m]" " = mm+1)m+2)-(n—1)

=nlCn~t,m—1)

If m and n are positive integers, prove that the equation
x,+x,+---+x,=n @

has exactly [m]”/n! solutions in nonnegative integers x,. (The result also holds for n = 0.)
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This is a matter of putting n identical objects (1s) into m distinct boxes (an x, box, an x, box,..., an x,,
box), empty boxes being allowed. If we temporarily make the 1s distinct by labeling them 1, 1,,...,1,, then
Problem 1.137 implies [m]" arrangements. However, arrangements that differ only with regard to the labels
carried by the 1s give the same solution to (i). Thus the answer is [m]"/n!, as stated.

Note: Many books cite the result as C(n +m —1,m — 1); equivalence is easily demonstrated.

Suppose A= {a =1,2,. m} is an alphabet consisting of m letters which are ordered as
a,<a,<---<a, A word 0 @, - - - §, from this alphabet is called an increasing word (of length n)
ifg=0=---= 0 Show that the number of increasing words of length n is [m]"/n!.

An increasing word of length # will consist of x, a,’s, followed by x, a,’s, .. ., followed by x,, a,,’s, where

x=0k=12,...,m) and

x,+x,++x,=n

m

Conversely, any nonnegative integral solution of (i) of Problem 1.139 defines an increasing word of length n.

A function f whose domain is N={a,, @,,...,,} and range is M ={B, B,,...,B,} is an
increasing function (from N to M) if f(a;) =f(a;) whenever o; < a;. Determine the number of such
functions.

We can always suppose the listing of the sets to be such that

a, <a,<--<a, and B=B=-=8,
Then an increasing function from N to M will map the first x, a’s into B,, the next x, a’s into B,, ..., the last
x,, «’s into 8, . Here, the x, (k= .., m) are nonnegative integers whose sum is . Conversely, any set of x,

with these properties defines an mcreasmg function from N to M. Therefore, by Problem 1.139, the required
number is [m1"/n! =Cln +m—1,m—1).

For prescribed nonnegative integers A, A,, ..., A, find the number of solutions in integers of the
equation x, + x, ++- - +x, =n with x; = A, for each i.

For each i, let x, = A, +y, and write A=A, + A, +---+ A, . We then have to solve
y,ty,+ody,=n—A y, =0 (i=12,...,m)

If A> n, there is no solution; otherwise, by Problem 1.139, there are C(n — A +m — 1, m — 1) solutions.

Use a combinatorial argument to establish the identity

n

1" = 2 un, Klxl, i)

k=1

where u(n, by= @' /kHYCn — 1,k — 1).

The number of increasing words of length » afforded by an m-letter alphabet is [m]"/n!, as was shown in
Problem 1.140. Consider the set of all increasing words of length n composed from the k-letter subalphabet
a, <a, <---<a,, such that each of the k letters appears at least once in the word. By Problem 1.142—with
m replaced by k and with all A, = 1— the cardinality of this set is C(n — 1, k — 1). Now, there are C(m, k) choices
for the subalphabet, and k ranges from 1 to m. Clearly, the corresponding sets constitute a partition of the
increasing words of length n; therefore,

[m],

) _ S cmbCe—1.k~1)= 2 Cr—1,k— ==t a (i)
k=1 k=1

n!
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(The reader should verify the second equality.) Define

n x n
F@=[x"-nt 2 Cu— 1k~ 1)% =[x = 2 uln, B)[x],
k=1 * k=1
F(x)is a polyr;omial in x of degree at most #n — 1 which, according to (ii), vanishes forx =1,2,...n,.... Hence,
F(x)=0, and (i) is proved.

Find the number of ways of selecting » distinct integers out of the first n positive integers such that
the selection does not contain 2 consecutive integers.

Arrange the first n positive integers in a row, in increasing order starting from 1. If a number is chosen, put
the symbol Y under that number; otherwise, put the symbol N under the number. Let x, be the number of N’s
preceding the first Y; x, the number of N’s between the first and second Y’s; .. .; x, the number of N’s between
the (r—1)st and rth Y’s; and x,,, the number of N’s following the rth Y. Then there is a one-to-one
correspondence between acceptable selections and integral solutions of

X, tx, o tx,, =n-r with x,z0,x,=1,...,x,=1,x,,, =0

Problem 1.142 gives the desired number as C(n —r + 1, 7).

Find the number of ways of choosing r positive integers from among the first # positive integers such
that no 2 consecutive integers appear in the choice and the choice does not include both 1 and n.

Case 1. The choice includes 1. In the notation of Problem 1.144, x, =0 (there is a Y under 1) and x, ., =1
(there is an N under 7). Thus we count the solutions of

X, tx,+otx, , =n—r with n,=hx=1o,x =1

and obtain C(n —r —1,r — 1).

Case 2. The choice does not include 1. Now x, =1 (there is an N under 1). Thus we count the solutions of

X, +x,+-+x,  ,=n—vr with xn=lx,=l,...,x,zlL,x,,, =0

and obtain C(n — r, r).
The total number of ways is,

C(n—r—1,r—1)+C(n—r,r)=[1+£r_~5]C(n—r—1,r—1)=%C(n—r-1,r—1)

The number of ways of partitioning a set of n elements into m (nonempty) subsets is denoted by
S(n, m) and is known as the Stirling number of the second kind. By definition, S(0, 0) = 1; also,
S(n, m) =0 if m > n. Show that the number of surjections (onto mappings) from a set of n elements to
a set of m elements is m! S(n, m).

Given sets X={x,x,,...,x,} and Y={y,,y,,...,y,}, let X=X, UX,U---UX_ be an arbitrary
partition of X into m nonempty subsets. Then any one-to-one correspondence between the y, and the X, defines a
unique surjection from X to Y; there are precisely m! such one-to-one correspondences. Since there are (by
definition) S(n, m) partitions—and since distinct partitions yield distinct surjections—we have m!S(n, m)
surjections in all. -

Determine the number of ways of distributing » distinct (distinguishable) objects among m identical
(indistinguishable) boxes, if (@) each box must get at least 1 object; (b) not every box need receive an
object. (c) Repeat (a), if the boxes are distinguishable.
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Directly from the definition of S(n, m) we have:
(@ Sn,m) ®» S, +SE2)+---+ S(n, m)

(¢) This is just the number of surjections from the set of objects to the set of boxes, or m! S(n, m).

Prove: (@) S(n,2)=2"""—1; (%) S(n,n — 1) =C(n, 2).

(a) See Problem 1.12. (b) Any partition of a set X with n elements into a class of n — 1 subsets will contain
i subset with 2 elements and n — 2 subsets with 1 element each. Now the 2-element subset can be composed in

C(n, 2) ways.

Show that S(n + 1, m) =S(n,m — 1) + mS(n, m).

Let X ={x,, % ..., X5 A={x,, }and X' =X U A. Then S(n + 1, m) is the number of ways of partitioning
X' into m subsets. There are two means of effecting such a partition: either take a partition of X into m— 1
subsets and adjoin the set A or take a partition of X into m subsets and include the element x,,,, in any one of
these. There are S(n, m — 1) ways of accomplishing the former objective and mS(n, m) ways of accomplishing the
latter. Thus the relation is established.

From the recurrence relation of Problem 1.149 and the boundary conditions S(n, 1) = S(n,n) =1 and
S(n, m) =0 for m > n, construct a triangle of Stirling numbers of the second kind.

The triangle is indicated in Table 1-2.

Table 1-2

m

i 2 3 4 5 6 7

n

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1

Show that
X = kE Sn, k) [x],
=1

First we establish the formula when x is a positive integer. Let X be a set of n elements and Y a set of m
clements. Let A be the set of all mappings f from X to Y. Since each element in X has m possible images in Y,
there are m" functions in the set A. For k= 1,2,...,m define the subsets

A, ={f€A: fiX) has cardinality k}

In other words, f is in A, if and only if f is a surjection from X to some subset of Y with k elements. There are
C(m, k) subsets of ¥ with & elements; hence, by Problem 1.146, the cardinality of A, is C(m, k) k'S, k)=
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[m], S(n, k). Because the sets A, constitute a partition of A, we have:

m" = 2, S, k)ml, = 2 S, k) (m],
k=1 k=1

The remainder of the proof follows Problem 1.143.

Prove the ‘‘orthogonality relations’’

@ 2, st k)Sk,m)=S§, ®) 2, S, k)stk,m)=8,,
k k

where 6,,, is the Kronecker delta.

(@) By Problems 1.132 and 1.151,

i

i, = > s, k)x* x*

k

> Stk, mixl,,

Therefore , [x], =2 sn, k)(Z Stk, m)[x]m) = Z(Z s(n, k)Sk, m))[x]m
'3 m k

By the linear independence of the polynomials [x], (n =0, 1, ..., n), any one of them must have the same
coefficient on either side of the above equation.

)
X" =2 S, k)xl, = 2, S(n, k)(Z sk, m)x’") =) (2 Sn, k)stk, m)) X"
k k m m k

Let s, be the p X p matrix with entries 5@/, j) and S, be the p X p matrix with entries S(, f), where
0=i, j=p — 1. Prove that the two matrices are inverses.

By Problem 1.152, s S, =S _s =1, where I is the p X p identity matrix.

Show that S(n, m) =§kl Cin—1,k)Sk,m—1).

The left-hand side represents the number of partitions of n objects into m =< n cells. Let a denote a particular
one of the objects, and in each partition distinguish the cell containing a as the a cell. Partition the partitions (!)
according to the composition of the a cell, which must contain r objects =0, 1, ..., n — m) besides a. These r
objects may be chosen in C(n — 1,r) ways. For each choice, the other m — 1 cells may be filled in
S(n —1—r,m— 1) ways. Thus,

S(n,m)ZZ Cn—-1,nSn—1—rm—1)

and the required formula results on chati;?rig the summation index from rto k=n—-1-r.

Prove that the sequence (S(n, 1), S, 2), ..., S(n, n)) is unimodal (Problem 1.74) for all n > 2.

As we see from Problem 1.150, this is certainly true—with a single peak—for small values of ». Making an
induction, we suppose the result true for every k =< n; i.e., for each k = n, there exists an integer m such that the
sequence (S(k, m)) peaks at m = m,. Moreover, we include in the induction hypothesis the assertion that n, is
nondecreasing in k (Problem 1.150 bears this out for small k). From Problem 1.149 we have:

Sn+1,my=Sn,m—1)+mSr,m

and Sa+1i,m—1)=8n,m—-2)+m—1)SHr,m—1)
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Hence, by subtraction,
Sr+1i,m—Su+1,m—1)=[Snm—1)—8Srm—2)]+m[S(h,m) —Sn,m— 1)} + 80, m—1)

By the induction hypothesis, the right-hand side—and therefore the lefi-hand side—is positive for all m =m,,
which implies that ‘

Sn+ 1, 1)<Sn+1,2)<---<8S(n+1,m,) @
Next consider the case m =m, + 2. By Problem 1.154,

Sn+1,m—-Se+1,m—1)= Z Cn, )[Stk,m — 1) — Sk, m — 2)]

k=n

By the induction hypothesis (including the assumed variation of m,), each bracketed term on the right-hand side
is negative. Hence, ‘

So+1,m,+1)>Sn+1,m,+2)>-->Sn+1,n+1) (ii)

Together, (i) and (i) establish that (S(n + 1, m)) is unimodal, with either m,,, =m, orm,,, =m, + 1. The
induction is complete.

1.156 Prove the following relations:

(@ C@G+j,isnit+)) =% C(n, k)sk, Ds(n — k, j).
by CE+j,i)Sn,itj)= % Cn, K)Sk, i)S(n — k, j).
(@) By our definition (Problem 1.132),

b+ 31, = 2 stn, K@ + ) =2 s, k) 2 Ck dx'y*™ @

k k

But, by an induction that exactly parailels Problem 1.136, we have
[x +y], = 2 Co, OIxLIYL, (if)
k

In (i), the coefficient of x'y’ is s(n, i + YC(i +j, i); in (i), the coefficient of xy’ is 3 C(n, kysth, idstn —
k, j).
(b) By Problem 1.151 and formula (if) above,

G+ =2, S b)x +yl, = 2 S0, k) 2 Ck, DXLyl _, (iii)
k k i
Next we expand (x +y)" by the binomial theorem and use Problem 1.151 again:
@+ =2 Cln, 'y = 2, Cn, k) 2, Sth, DI, 2 St — k, NIy], (iv)
k k i Jj

This time we compare the coefficients of [x],[y]; in (i) and in (iv) to obtain the result.

1.157 - Denote by §,(n, k) the number of ways of partitioning a set with n elements into k subsets such that

each subset has at least i elements. Show that
S.(n, k) =kS,(n—1,k)+Cln—1,i — 1)S;(n — i, k—1)

Let x be a fixed element of a set X with n elements. Any partition of X into £ subsets such that
each subset has at least i elements falls into one of two categories, according to the cardinality of the
subset that contains the element x is (1) greater than i, or (2) equal to i. (Compare Problem 1.154.)
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1.158

1.159

1.160

1.161

A partition in category 1 is obtained by partitioning the set X' = X — {x} into k subsets such that each subset
has at least i elements and then including x in one of these k subsets. Thus the number of partitions in category 1
is §,(n — 1, k)k.

To generate a category 2 partition, we select i —1 elements from the set X’ to form a set Y—in
C(n —1,i — 1) ways. The cardinality of Z= X' —Y is n — i, and so Z can be partitioned into £ — 1 subsets of size
i or greater in S,(n — 1, k — 1) ways. To each such partition we adjoin the set ¥ U {x} to obtain a partition of X of
the second category. Thus the number of partitions in category 2 is C(n — 1, — 1)S,(n — i,k — 1).

A permutation of a finite set X is a bijective (one-to-one and onto) mapping from X to X. Suppose
f is a permutation of X and x is any element of X. Define recursively, f'(x)=f(x), f ‘0=
f l()c)), s f i(x) =f(f i_l(x)), .... Since X is finite, there exists a positive integer r such that
f7(x) = x. The sequence (x, £ (), £(), ..., "' (%) is called a cycle of order (or length) r of the
permutation f. Obviously, every permutation of X can be represented as a composition of & disjoint
cycles, where k is at least 1 and at most the cardinality of X. Let

P, ={f:f is a permutation of an n-set X and f has exactly k cycles}

Find the cardinality of P, ,.

Let the cardinality of P,, be d(n, k). The only permutation having n cycles is the identity mapping; so
d(n,n)= 1. Let X’ be the set obtained by adjoining a new element, y, to the set X. Then d(n + 1, k) is the number
of permutations of X’ each of which has k cycles. Now, if f is a permutation of X with £ —1 cycles, the
composition of f with the cycle of order 1 (y) defines a permutation of X’ with k£ cycles. Next, consider a
permutation of X with & cycles. When y is put into one of these cycles, a permutation of X" with k cycles results,
The element y can join a cycle either at the beginning or in between 2 elements of the cycle. (Putting y at the end
is equivalent to putting it at the beginning.) Since there are k cycles, y can be included in & + (n — k) ways. Thus
we have the relation

din+ 1, k)=dn k — 1)+ ndn, k) @)

We note at once that (i) is identical to the recurrence relation for the signless Stirling numbers of the first
kind (see Problem 1.134); further, the starting values for the d(n, k) are the same as for the s'(n, k). Consequently,
d(n, k) =s'(n, k) for all n and %, giving a direct combinatorial significance to the signless Stirling numbers.

Evaluate él s'(n, k).

From Problem 1.158,

n

S sk =2, dn, k) =n!
k=1

k=1

Find the number of functions from a set X of n elements to a set Y of m elements such that the ranges
of these functions each have exactly r elements (generalization of Problem 1.146).

A subset of Y with » elements can be chosen in C(m,r) ways. Once a set is chosen, there are r! S(n,r)
surjections from X to that set, by Problem 1.146. Thus the total number of functions in this category is

Cn, »yrt S(n, vy = P(m, r)S(n, r)

The number of partitions of a set with n elements is the Bell number, B, ; by fiat, B, = 1. Prove:

n n—1
@ B,= 2 S(,m) ®) B,=2 C(n—1,kB,
m=1 k=0

(@) This follows directly from the definitions of the two kinds of numbers.
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(b) Proof is by the “g-cell’” argument of Problem 1.154.

A partition of a nonempty subset Y of a set X is called a partial partition of X. Show that the number
of partial partitions of a set X with n elements is B, ., — 1.

Let @ be an element not in X and let X ' be a set obtained by adjoining a to X. Excluding the partition of X !
into one part, there are B, — 1 partitions of X'. From each of these partitions delete the set which contains a:
this accounts for all the partial partitions of X (still another application of the method of Problem 1.154).

Supplementary Problems

There are 5 candy bars of different kinds and 4 pieces of different kinds of cakes on a tray. Suppose Eve takes
either a candy bar or a piece of cake. Then, Adam takes a candy bar and a piece of cake. In which case has Adam
more choices?

Ans. Adam has more choices if Eve takes a candy bar.

Find the number of 4-character strings (words) that can be formed using the 26 letters of the alphabet.
Ans.  (26)(26)(26)(26) = 456,976

Count the m X n binary matrices. Ans. 2™

If the set A has m elements and the set B has n elements, how many elements have the product sets A X B and
B X A? Ans. mn

If A has m elements and B has n elements, find the number of functions (mappings) from (a) A to B, and (b)
AXB to B. Ans. (@) n™; () n™"

There are 4 roads between A and B and 6 roads between B and C. Find the number of ways to go (@) from A to
C; (b) from A to C and back to A; (¢) from A to C and back to A without using a road more than once.
Ans. (@) 24; (b) 576; () 360

Find the number of ways of placing 7 objects in n = r distinct places so that no place receives more than 1 object,
if the r objects are (@) distinct (and (b) identical. Ans. (@) P(n,1); (b) C(n, r)

There are 5 mathematics students and 7 statistics students in a group. Find the number of ways of selecting 4
students from the group, if (@) there are no restrictions; () all must be mathematics majors; (c) all must be
statistics majors; (d) all must belong to the same discipline; and () the 2 disciplines must have the same number

of representatives.
Ans. (a) €(12,4); (b) CG, 4)C(7,0); (c) C(5, 0)C(7,4); @) C5, 4)C(7,0)+ CG, 0)C(7,4); (e) C(5,2) C(1,2)

A country club has 8 men and 6 women on its governing board. There is 1 married couple in the board. Find the
number of ways of forming a fund-raising committee consisting of 3 men and 3 women from the board such that
the committee may include either the husband or the wife but not both.

Ans. C(1,2)C(5,3)+C(7,3)C5,2) + C(7,3)C(5,3)

In a town council there are 10 Democrats and 11 Republicans. There are 4 women among the Democrats and 3
women among the Republicans. Find the number of planning committees of 8 councillors which have equal
numbers of men and women and equal numbers from both parties.
Ans. C(6,0)C(4,4)C(8,H)C(3,0) + C(6, 1N)C(4,3)C8,3)C3, D + C(6,2)C(4,2)C(8, DC(3,2) +

C(6, 4)C(4,0)C(8,0)C(3,4)
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Find the number of ways of scheduling m women speakers and n men speakers so that (@) speakers of the same
gender are grouped together, and (b) the women are grouped together.
Ans, @ 2minl; B)ynl(n+Dml=m+ D!m!

Find the number, N, of linear arrangements of b identical blue marbles and r identical red marbles such that (@)
between every pair of marbles of one color there is a marble of the other color; (b) between every pair of blue
marbles there is exactly 1 red marble; and (c) no two red marbles are adjacent.

1 when [r—b|=1
_ _§JO when r<b-—1 -
Ans. (a) N"{Z when r=»b . (b) N= r—b+2 otherwise (C) N C(b + l,r)
0 otherwise

A display case in a jewelry store has 4 shelves. Each shelf can accommodate at most 10 stones. Find the number
of ways of displaying 10 diamonds in the case if (a) they are indistinguishable, (b) they are distinguishable.
Ans. (a) C(13,3)=C(13,10); (b) P(13,10)

Find the number of ways of assigning 15 distinct paintings to 18 different dormitories so that no dormitory
receives more than 1 painting. Ans. P(18,15)

Find the number of ways of assigning 18 distinct paintings to 15 different dormitories so that no dormitory
receives more than 1 painting and the number of unassigned paintings is a minimum. Ans. P(18,15)

Find the number of ways of assigning 15 identical posters to 18 dormitories so that no dormitory receives more
than 1 poster. Ans. C(18,15)

Find the number of ways of assigning 18 identical posters to 15 dormitories so that no dormitory receives more
than 1 poster and the number of unassigned posters is a minimum. Ans. 1

Find the number of ways of assigning 18 identical posters to 15 dormitories with no restrictions on the number of
posters a dormitory can receive. [Hint: Compare Problem 1,175(a).] Ans. C(32,14)

There are 15 display cases in an art gallery. Each case can accommodate a row of up to 20 paintings. Find the
number of ways of displaying 18 different paintings. Ans. 181 C(32,14) = P(32, 18)

There are 12 members in a committee who sit around a table. There is 1 place specially designated for the
chairman. Besides the chairman there are 3 people who constitute a subcommittee. Find the number of seating
arrangements, if (a) the subcommittee sit together as a block, and (b) no 2 of the subcommittee sit next to each

other. Ans. (a) 9!3!; (b) 8! P(9,3)
Prove combinatorially that
C(3n,3)=3C(n,3)+ 6nC(n,2) + n’
Derive the result of Problem 1.46 from Pascal’s identity,
vC(n~i'-r+},.r) = C‘(rn"+~r,rv)+CA(.n+r,r— 1)

Show that if p is a prime number and k is any integer, then k” — k is divisible by p. (This is essentially Fermat’s
Little Theorem.) [Hint: The theorem clearly holds for k = 1; and we have

G+1)" = (k+D=K —k)+[(Clh DK™+ -+ C(p, p~ k]

Now use Problem 1.45.]
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A box has 6 blue marbles, 8 red marbles, 11 green marbles, 14 white marbles, and 16 yellow marbles. Find the
minimum number of marbles one has to pick to ensure that 10 marbles of the same color are obtained.
Ans. 6+8+(10—-1D(B3)+1=42

Find the minimum number of students to be admitted to a college such that at least 1 of the 50 United States is
represented by 20 or more students. Ans. (50)}19%9)+1=951

A typical telephone number in the United States is of the form NXX NXX XXXX, where the Ns are digits other
than O or 1 and the Xs are any digits. The first 3 digits constitute the area code. Find the minimum number of area
codes needed to serve a 23-million-subscriber area. Ans. 3

Four sightseeing buses are to leave the starting point at 1-hour intervals. The numbers of unreserved seats are 8,
10, 13, and 9, respectively. How many additional tickets must be sold by the bus company so that the number of
vacant seats is at most 2 in the first bus or at most 3 in the second bus or at most 4 in the third bus or at most 1 in
the fourth bus? Ans. 27

There are 20 small towns in a district. A group of 3 people have to be chosen from 1 of these towns. For this
purpose volunteers are solicited from all 20 towns. Find the minimum number of volunteers who must come
forward. Ans. 41

When Eve was out of town for 14 days, she made 17 long-distance telephone calls to Adam. If she made at least
1 call every day, show that there is a period of consecutive days during which she made exactly 10 calls.
(Hint: Review Problem 1.85.)

Show that in any line of 65 people with distinct heights there is a subline of 9 people whose heights strictly
increase or strictly decrease. (Hint: See Problem 1.90.) ‘

Show that in any assembly of 924 people there will always be either 7 mutual acquaintances or 7 mutual
strangers. (Hint: Apply Problem 1.99.)

Find the number of 5-letter strings with distinct letters in alphabetical order (26-letter alphabet), such that the
string (@) starts with H, and (b) ends with R. Ans. (a) C(18,4);, (b) C(17,4).



Chapter 2

Further Basic Tools

2.1 GENERALIZED PERMUTATIONS AND COMBINATIONS

If X is a collection of n objects that are not necessarily distinct, any arrangement (or ordering) of r <n
objects from X is known as a generalized r-permutation of X. (If r = n, we speak simply of a generalized
permutation of X.)

Example 1. The collection X ={A, A,B,B,B,C,C} has AABCBBC as one of its generalized permutations.

Definition: 1fn, (i=1,2,...,k), r, and n are k + 2 positive integers such that n, +n, + -+ +n, =r=n,
then

P, 1)

P(n;nl,nz,...,nk)————m

Since P(n,r) =P(n,n)/(n —r)!, it follows from the definition that

Pinsni,n,, ... .,n)=Pmsn,n,...,n,n—r)

Example 2.
_ _PU8,3+4+6) 1851 18!
P83, 4.6) =37 1e1 ~ 31416/ ~ 3141 6!5!
_ P(I8,3+4+6+5)

stareist L8346
Theorem 2.1. The number of generalized permutations of a collection X consisting of n, identical objects of
type i (=1,2,...,k) is P(n;ny,n,,...,n); here, n=n, +n,+ - +n,.

Proof. Let p be the total number of generalized permutations of X. If the n objects in X were all
distinct, there would be P(n, n) permutations of X. Now the n, distinct objects of type 1 would give rise to
n,! permutations, the other n — n, objects being held fixed. This is true for the objects from each of the &
types. So, by the product rule, each of the p generalized permutations will define g=n,!n,!--n,!
permutations of the supposedly distinct elements of X. Thus pg = P(n, n), or

_ P(n, n)
q

=Pn;n,n,,...,n,)

Example 3. The collection of letters that form the word COMMITTEE is X = {C, E, E,I, M,M, 0, T, T}, with 9 letters
belonging to 6 types. The number of generalized permutations of X is

Trzrarararar - 45360

P(9;1,2,1,2,1,2)=
Example 4. Twelve light bulbs (4 identical red, 3 identical white, and 5 identical blue) are to be installed in 18 sockets
in a row, leaving 6 empty sockets. Thus we have 18 objects (12 light bulbs and 6 empty sockets) that fall into 4
categories; these may be arranged in P(18; 4, 3, 5, 6) ways. But P(18; 4,3, 5,6) = P(18; 4, 3, 5). Thus, without bothering
about the empty sockets, one can assert that the number of ways of installing 4 identical red bulbs, 3 identical white
bulbs, and 5 identical blue bulbs in 18 sockets in a row is P(18;4, 3, 3).

Suppose now that X is a collection of n distinct objects and suppose that S is any r-subset of X. Then an

45
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ordered partition of S is called a generalized r-combination of X. Again, if r =n, we use the term
generalized combination.

The number of generalized r-combinations of X having n, objects in the first cell, n, objects in the
second cell, ..., n, objects in the kth cell, is denoted C(n; n,, n,,...,n,). Since n, + n,+ -+ +n,=r, the
product rule gives

C;ng,n,,...,n)=C,n)Cr—n;,ny) Cln—n,—n,=—-+-=n,_,,n)
n! P(n,r)
Tanyon (=0t ninyteeon!

and we have proved
Theorem 2.2. C(n;n,,n,,...,n)=Pm;n,n,, ...,n), where ny +n,+---+tn,=r=n.

Example 5. Seventeen students want to go to a party, and there are 5 vehicles available to them. The numbers of
empty seats in these vehicles are 4, 3, 2, 5, and 1. Hence, there are

17! 2!

. e 9
Cc(17;4,3,2,5,1)= 21312150 11 =5.15X10
ways of transporting all but 2 students to the party.
The integers C(n; n,, n,, ..., n,) are often referred to as the multinomial coefficients (see Problem 2.1).

Theorem 2.3. The number of (unordered) partitions of a set of cardinality n into p, subsets of cardinality
n,, p, subsets of cardinality n,, ..., p, subsets of cardinality », (where the n, are distinct and
Z p,n, = n) is given by

pl terms pz terms pl( terms
r % AN g % A r A Al
C3 My ey By Mgy e o g Myyes ey My e oy ) n!
P Pt pd [p! (0, D7 p,! (0,172 -~ (o (1,1

Proof. The numerator of the given expression counts the ordered partitions of the n set into subsets of
the required sizes. Now these ordered partitions fall into classes of p,! p,!- - - p,! members each: members in
the same class differ only in the order in which like-sized cells are listed. Because each class represents a
single unordered partition, and vice versa, the theorem follows.

Example 6. (i) The number of ways of placing 12 students in the moming, aftemoon, and evening recitation sections
so that 4 of them go to each section is C(12; 4, 4, 4). (ii) The number of ways of dividing 12 students into groups of 4 is
C(12; 4,4,4)/3! . (iii) The number of ways of dividing 12 students into foursomes for bridge (with assignment of N, S,
E,W)is

C(12;4,4,4)

3l (41)=4C(12;4,4,4)

2.2. SEQUENCES AND SELECTIONS

Let X={a,,a,,...,a,} be a set of n objects and r a positive integer. Then if X is sampled with
replacement r times, an ordered r-set is obtained which is called an r-sequence of X. By Chapter 1 there
are n” r sequences of X.

Example 7. In an undergraduate residence hall there are (at least 6) students in each of the 4 years. There is a bench in
front of the hall which can accommodate exactly 6 people. Any filling of the bench from left to right by residents (all
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facing the same way) is a 6-sequence of X ={1, 2, 3,4}, where | means a first-year student, etc. The number of seating
arrangements is 4° = 4096.

Considered without regard to order, the r-set obtained above is known as an r-selection (or r-sample).
In an r selection all that matters are the nonnegative integers x; giving the numbers of occurrences of the q;
(i=1,2,...,n). Problem 1.139 gives at once:

Theorem 2.4, 'The number of distinct r selections from a collection X of n distinct objects is [n]'/r! =
Cr+n—1,n-1).

Example 8. If, in Example 7, the distribution of the years along the bench were irrelevant, there would be only
C(6+4—1,4-1)=_84 seating arrangements.

2.3. THE INCLUSION-EXCLUSION PRINCIPLE

The number of elements in a finite set A is denoted by n(A) or by |A|. It is easily verified that
n(A UB)=n(A)+ nB)—n(ANB)

whenever A and B are finite sets. Thus, to find the number of elements in either A or B, we add n(A) and n(B)
(we include both sets) and then subtract n(A N B) from the sum (we exclude what is common to both). This is
the idea underlying the inclusion-exclusion principle, which can be formulated in a more general setting
involving a finite number of sets.

If A is a subset of X, then the complement of A in X is denoted by A’. If A and B are both subsets of X,

then obviously
n((AUB)") =nX) — n(AUB) =n(X) — [n(4) + n(B)] + n(ANB)
But (AUB)Y =A'NB’', so that
n(A' NB") = n(X) — [n(A) + nB)] + n(ANB)

(It is a little simpler to derive the inclusion-exclusion formula in terms of complements.)
If x is an arbitrary element of X and if A is some subset of X, then the count of x in n(4) is 1 if x is in A,
and 0 if x is not in A.

Example 9. Let X={a,b,c,d,e, f, g, h}, A={a,b,c,d}, and B ={c,d, e}. Because n(X) =8, n(A)=4, n(B)=3,
mANB)=2, and n(A’ N B') =3 the equation n(A’ N B') = n(X) — [n(A) + n(B)] + n(A N B) is seen to hold. The count
of a in the left-hand side of this equation is 0, since @ is not in A'; the count of a in the right-hand side is
1-[1+0]—-0=0.

Two forms of the inclusion-exclusion principle follow.

Theorem 2.5 (Sieve Formula). If A, A,,..., A, are subsets of a finite set X. then
A NALN - Ay =nX)— s, +5,— -+ (—1)7s,

where s, denotes the sum of the cardinalities of all the k-tuple intersections of the given m
subsets (k=1,2,...,m).

Proof. Let x be an arbitrary element of X. It suffices to show that the count of x is the same on either
side of the stated equation. We consider two cases: (i) x is not an element of any of the m subsets; (ii) x is an
element of exactly 7 = 1 of the m subsets, which we may always suppose tobe A}, 4,, ..., A,. In the former
case, the count of x is 1 on both sides of the equation. In the latter case, the count of x on the left-hand side is
0. As for the right-hand side, we have
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= 2nA, NA N NAY  k=12...,m)

the summation being over all £ combinations of {1,2,...,m}. In a summand involving a k¥ combination of
{1,2,...,r}, the count of x will be 1; in all other summands, the count of x will be 0. Hence, the count of x
on the right-hand side is

1-CrD+E2)-CE3)+ -+ (=1 Crn=01-1)=0

and the proof is complete.

Theorem 2.6. With the notation as in Theorem 2.5,
A UA U UA) =5 =g+ (D" s,

Proof. m(A,UA,U---UA )=nX)—n(A;NA,N---NA,); now use the formula from Theorem
24,

Example 10 (Probléme des Rencontres). Let us use the inclusion-exclusion principle, Theorem 2.4, to determine D,
the number of derangements of m distinct objects (Problem 1.67). Denote by Q the set of all permutations of
{x,s %50 ..., %, ), and let A, (=1,2,...,m) be the subset of QO composed of those permutations that leave x, fixed. From
first principles, n(@)=m! and, for k=1,2,...,m,

!
se= 2 nA, ﬂAizﬂ---r'\A,.k)=C(m,k)(m—k)g=%—
Hence D,=nA NA,N---NA.)

= m! l _l. ’"_l__ ~ml o}
=m! 1—“+2!—---+(—-1) | =mie

2.4. SYSTEMS OF DISTINCT REPRESENTATIVES

Given N sets, not necessarily distinct. If it is possible to choose exactly 1 element from each set, with the
chosen elements distinct, then the family of N sets has a system of distinct representatives (SDR) made up
of the selected elements. For an SDR to exist it is obviously necessary that the following marriage condition
hold for the family: the total number of elements in any subfamily of k sets is at least k (k= 1,2,...,N).

Theorem 2.7 (Philip Hall’s Marriage Theorem). The marriage condition is also sufficient for the
existence of an SDR.

Proof. Assuming that the marriage condition holds for the sets A,, A,,..., A4, let the sets be depleted
until a family F' ={A[,A,,..., Ay} is reached such that removal of 1 more element from any of the A]
would cause the marriage condition to be violated. We assert that each member of F’ consists of a single
element; because these elements are distinct (by the marriage condition), F' itself is the required SDR.

Suppose, on the contrary, that A; (say) has 2 elements, x and y. Then the minimality of F' requires the
existence of subsets P and Q of the set {2, 3,...,N} such that

X=(A! '—x)u(U A;) and Y=(4| —y)U(g A;)

iep
have cardinalities n(X) < n(P) and n(Y) < n(Q). Consequently, by addition,
nX)+n@)=nXUY)+nXNY)=nP)+n(Q) @

where the first equality follows from the simplest form of the inclusion-exclusion principle. Now, by the
definitions of X and ¥,
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XUY=A{U< U A,f) and  xnr= U A/

iEPUQ ieEPNQ
and the marriage condition gives:
nXuY)=1+nPUQ) and nXNY)=nPNQ)
By addition and the inclusion-exclusion formula,

AXUY)+nXNY)=1+rPUQ)+nPNQ)
=1+nP)+n(Q)
>nP)+ n(Q) (i)

The contradiction between (i) and (ii) establishes the theorem.

Example 11. A family of sets will, in general, have many SDRs. A more refined form of the marriage theorem
includes a lower bound on the number of SDRs, expressed in terms of the size of the smallest set in the family.

Companion theorems to Theorem 2.7 play important roles in matrix theory, graph theory, and the theory
of partially ordered sets. Some of these will be explored in the Solved Problems.

Solved Problems

GENERALIZED PERMUTATIONS AND COMBINATIONS .

2.1 (The Multinomial Theorem) Show that the typical term in the expansion of (x, +x, + -+ x,)" is
Cs My Mgy e oo s X XY X (n,+n,+---+n,=n
The number of ordered partitions of the set
S={C,+ +x), 0, tx),, X))

into a cell of n, elements, each providing an x;;...; a cell of n, elements, each providing an x,—is
Clnsn,n,,....n,).

2.2 There are 20 marbles of the same size but of different colors (1 red, 2 blue, 2 green, 3 white, 3
yellow, 4 orange, and 5 black) in an urn. Find the number of ways of arranging 5 marbles from this
urn in a row. ‘

There are 7 distinct cases. (i) All marbles are of the same color. There is 1 possible 5-sample (the black
marbles) and 1 way of arranging it. (ii) Exactly 4 are of the same color. The number of 5-samples is
C(2,1)C(6,1)=12. Each sample has P(5;4,1) =35 arrangements. So the total number of arrangements is
(12)(5) = 60. (iii) 3 of one color and 2 of another color. There are C(4, 1)C(5, 1) = 20 samples, each yielding
P(5;3,2) = 10 arrangements. So the total here is (20)(10) = 200. (iv) 3 of one color, 2 of two different colors.
The number of samples is C(4, 1)C(6, 2) = 60; each sample gives P(5; 3, 1, 1) = 20 arrangements. The total here
is (60)(20) = 1200. (v) 2 of one color, 2 of another color, and -1 of a third color. The number of samples is
C(6,2)C(5,1) =75, and each sample yields P(5; 2,2, 1) = 30 arrangements. The total here is (75)(30) = 2250.
(vi) 2 of one color and the other 3 of different colors. The number of samples is C(6, 1)C(6,3) = 120. Each
sample admits P(5;2,1,1,1) =60 arrangements, for a total of (120)(60) = 7200 arrangements. (vii) 5 of
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different colors. There are C(7, 5) = 21 samples, each giving P(5; 1, 1, 1, 1, 1) = 120 arrangements. Here the total
number of arrangements is (21)(120) = 2520.
The grand total of arrangements is 1 + 60+ -+ + 2520 = 13,431.

Show that if m and n are positive integers, then (mn)! is divisible by (m!)".

As a count of generalized permutations,

n terms
(mn)!
(m!y*

Pnnymom,...,m)=

is an integer.

Evaluate

Z Cnsn,,ny, ... m)

nytngtecta=n

By the multinomial theorem, the sum is (1 +1+--- +1D)"=k"

A particle in the plane is free to move from any lattice point (Problem 1.58) to any of the 4
neighboring lattice points. Find the number of ways that the particle can start from the origin and
return to the origin after covering a total distance of 2n units.

A path of length 2n which retums to its starting point must consist of p rightward steps, p leftward steps, ¢
upward steps, and g downward steps (2p +2q = 2n). Hence the desired number is

> PQn;p, p.q9)

ptg=n

A particle starts from a lattice point U(u,, 4y, . . ., ;) in k-dimensional Euclidean space, makes a step
of 1 unit parallel to the positive direction of one of the coordinate axes, continues to do likewise at
every lattice point en route and stops at the lattice point V(v,, v,, . . ., U,), creating a path from U to V.
Find the number of such paths.

Letu=u,+u,+- +u andv=v, +v,+ - tv, Inany of the considered paths the number of steps
parallel to the positive X; axisis v, —u, (i = 1, 2,...,k); and so the path length is v — u. The required number of
paths is therefore P(U — u; U, — Uy, ..., U — Uy)-

Show that (n!)! is divisible by (nH" M,

Consider a collection of n! objects of (n — 1)! types, with n objects of each type. This collection can be
arranged in

(n—1)! terms
'_._Jb—\
(nH!
P(n!;n,n,---,n)=W‘m

ways.
Give a noncomputational (combinatorial) proof of Theorem 2.2 in the case r = n.

Let X be the »n set of Theorem 2.1 and let Y be a set of n distinct locations along a straight line. Any
generalized permutation of X determines a unique ordered partition of Y.(the ith cell consists of those locations



CHAP. 2] FURTHER BASIC TOOLS 51

occupied by the n, identical objects of type i). Conversely, any ordered partition of Y determines a unique
generalized permutation of X. This one-to-one correspondence immediately implies Theorem 2.2.

2.9  Obtain from Theorem 2.3 an explicit formula for the Bell number, B, (Problem 1.161).

First observe that the conclusion of Theorem 2.3 remains true if some (but not all) of the p; are zero. Make
an n-way classification of the partitions of an n set X according to the number p, of 1 cells, the number p, of 2
cells, ..., the number p, of n cells. By Theorem 2.3, a given class will contain

n!
[P, (1D [P, 12)72 - - - [p, ! (n1)P"]

partitions of X. The total number of partitions is therefore

2 1
- T TS O T e D R T

B, =n!

210 From Problem 2.9 infer that

n
B, = d e
S x=0
Expanding ¢” — 1 in a Maclaurin series, we have
e = ex'll!+x212!+x3/3!+-~- — exl/l!ex2/2!ex3/3l .

G @ty @ rnh
of T vttty T

@ 2n’ @) /2"
Xl: 0! + 1! +...+T+...

...................................................

n 0 n 1 n P,
x[(x | @t _+M+...]

0! 1! ) p,!

XKoo

The coefficient of x” in e ' will be the coefficient of x” in the product of the first » infinite series on the right;
thus this coefficient has the value

1 1 1
1p|+2py+---+np,=n Pl !(1!)!,1 PZ!(2')P2 P,,!(n!)p'"

or B,/n!, by Problem 2.9. The desired result now follows from Taylor’s theorem.

SEQUENCES AND SELECTIONS

2.11 Find the number of r sequences of a set X of n distinct elements such that each of the sequences
involves every element of X at least once.

Clearly, we must have r =n. Let P represent a set of r distinct positions along a straight line. Then an
r-sequence of the specified kind determines, and is determined by, a surjection from P to X. By Problem 1.146,
the required number is n! S(r, n).
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Suppose X is a collection of n distinct objects. Find the number of r selections from X such that each
selection includes the ith object at least p, =0 times (( =1,2,...,n).

Let g, be the number of times the ith object is included in an n-selection. Then the number of selections is
the number of solutions in integers of

g, tq,+-+q,=r and q;,=p; i=12,...,n

n

By Problem 1.142, this number is C¢ —p +n—1,n — 1), where p=2 p,.

Find the number of ways of allocating r identical objects to n distinct places so that the jth place gets
at least p; =0 objects (j=1,2,...,n).
This is just the dual of Problem 2.12: each allowable r selection of Problem 2.12 is equivalent to reserving

at least p; of the r identical places (now called ‘‘objects’”) for the ith distinct object (now called “‘place’’). Hence
the answer is that found in Problem 2.12, C¢- —p+n—1,n—1).

Find the numbers of ways of allocating (a) 10 identical VCRs, to dormitories A through F in such a
manner that the total number allocated to dormitories A and B does not exceed 4. (b) 10 students to
their dormitories with the same stipulation as in (a).

(@ By Problem 1.139 or Problem 2.13 there are C(r + 1,1) =7 + 1 ways to distribute 0 =r =<4 VCRs between
dorms A and B; the remaining 10 — r VCRs may then be distributed in C(10 — r + 3, 3) ways. The product
rule yields

> ¢+ 1)C(13—r,3)
r=0

() Choose 0= =4 out of the 10 students; this can be done in C(10, r) ways. These can be assigned to dorms
A and B in 2" ways. Now assign the remaining 10 — r students, in 4'°"" ways. The answer is therefore

4
> (10,274
r=0

[Is it just an accident that we have obtained the first five terms of the binomial expansion of (2 + 4)'°7]

Consider a collection of n objects of different types such that any 2 objects of the same type are
indistinguishable. Suppose there are x, objects of type i, where i = 1,2,.... These objects are to be
distributed among a group of distinguishable boxes in such manner that box j receives y; objects
(j=1,2,...). Denote the number of allowable distributions by [(x;,x,,..)* (¥, ¥, .. . where
the subscript 7 is a reminder that £ x, = X y, = n. Interpret and, when possible, evaluate the following
expressions:

@ [(1,1,..0)*(1,1,...)1, | @ l@,a5...,a0,)*(1,1,..01,
®) 1,1, )*¢,n—p], () [(A,1,....0x=,1,...,1,n—n],
© r,n—-r=*1,1,...)], (8) [@ypay...,a,)x@,n—1)],

@ 1,1,...)%@,,a,,...,a,)], (h) [r,n—r)*@,,a,...,a,)l,
(@) There are n distinct objects and they have to be placed in » distinct boxes so that each box gets exactly 1
object. This can be done in n! ways.

(b) There are n distinct objects out of which r objects go to box 1 and n — r objects go to box 2. This can be
done in C(n, r) ways.
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216

217

(¢) There are r identical objects of one type and » — r identical objects of another type. These n objects are to
be put in n distinct boxes so that each box gets exactly one object. This can be done in C(n, r) ways.

(d) There are n distinct objects and they have to be put in m distinct boxes so that box j gets exactly a, objects

(j=1,2,...,m). This can be done in C(n;a,,qa,,...qa,) ways (see the definition of a generalized
combination).

(¢) There are n objects belonging to m types, with a; objects in type i ({ = 1,2, ..., m). These n objects have to
be put in # distinct boxes such that each box gets exactly 1 object. This can be done in P(n;4,,4,,...,4,,)
ways (by Theorem 2.1). [Observe that the answers to (d) and () are identical.]

(f) This is the special case of (d) corresponding to m=r+1, a,=---=a,=1, a,,, =n—r. Hence the
answer is C(n; 1,1,...,1,n—r)=P(n,r).

(g) Here box 1 must get r objects from among the m categories. Let u; be the number of objects of the ith
category going to box I; we must have

u,tu,+tu,=r and O0=u,=aqa; (i=12,....,m) )

The number of integral solutions of (¥) is the value of the given expression, because to each filling (u,) of
box 1 corresponds the unique filling {a, — u,) of box 2. [For a method of handling (*), see Problem 2.21.]

(h) Here the r objects of category 1 must be distributed among m boxes. Let u; be number of objects of
category 1 that go to box j; we must have '
u,fu,+---tu,=r and O=u;=a (j=1.2,....m

This is the same system as found in part (g); so the answer is the same. Again note that to each distribution
{u;) of the category 1 objects corresponds the unique distribution (aj - uj) of the category 2 objects.

Prove the duality principle of distribution:
[ X e s X)) * (Vs Yau oo s Y =LY Yoo oo ¥ ) * G Xy, X)), @)

The proof rests on the simple observation—already exploited in previous problems—that assigning an object
to a location is tantamount to assigning the location to the object. More generally, if exactly u,; identical objects
of type i are assigned to (the distinct) box j, then exactly u,; identical box numbers j are assigned to (the distinct)
object-type i. Consequently, both the left-hand and right-hand sides of (i) are equal to the number of nonnegative
integral solutions of the linear system

P q—1
zuij=yj (j=1,2,...,g—1) EM,-,-SX,- i=1.L2,...,p)
i=1 j=1

(The system may be solved by the techniques of integer programming.)

Find the value of [(2,1,1,...,D=(2,1,1,...,1D],.

There are n objects belonging to n — 1 types: 2 identical objects, x and x, of type 1 and 1 object of each of
the remaining types. Also there are # — 1 marked boxes. Box 1 will get 2 objects, and the other boxes will get 1
object each. There are three mutually exclusive cases: (i) Box I has the 2 identical objects. Then the remaining
n — 2 distinct objects can be distributed to the remaining n — 2 boxes in (n — 2)! ways. (ii) Box I has one of the
objects x. The other object x can be distributed in C(n —2, 1) ways. Then we distribute the remaining n — 2
objects to the other boxes (including box 1) in (n —2)! ways. Thus in this case there are C(n — 2, 1)}(n — 2)
ways. (iii) Box 1 has neither object x. In this case the 2 identical objects can be assigned to 2 of the other n — 2
boxes in C(n — 2,2) ways. Two of the other n — 2 objects can be assigned to box 1 in C(n — 2, 2) ways. There
are n — 4 boxes and n — 4 objects left. Thus in this case there are C(n — 2, 2)C(n — 2,2)(n — 4)! ways. The total
number of ways is the sum of the ways obtained in the three cases, or

n*—n+2)n-—2)
4
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Consider a set X of n consecutive natural numbers. A p-block in X is a subset of p consecutive
numbers in X. Find the number of ways of forming m pairwise disjoint p blocks in X.

Suppose that the blocks are B,,B,, ..., B,,, where the order is that of the smallest elements of the biocks.
Let x, (i =2,3,...,m) be the number of elements of X that are between B, , and B;; let x, and x,,,, be the
respective numbers of elements preceding B, and succeeding B,,. The number of ways of forming m pairwise
disjoint p blocks is the number of solutions in nonnegative integers of x, +x, ++-- +x,,, =n—mp; ie.,
C(n — mp + m, m). (Note that the answer vanishes, as it should, for mp > n.)

Suppose there are x, identical objects of type i (( =1,2,...,m) in a collection. In how many ways
may the collection be distributed among n distinct boxes, if box j must receive at least g;; type-i
objects (=1,2,...,m; j'=1,2,...,n)?

The fact that there are separate demand conditions on each type of object—and not merely lumped
conditions as in Problems 2.15 and 2.16—allows a simple solution, provided the numbers g, satisfy the
necessary conditions

q; =x, i=12,...,m)

i

Z q;;
j=1

In that case, we may distribute the objects type by type. By Problem 1.142, the ith type can be distributed in
C(x, — q, + n — 1,n — 1) ways. Therefore, by the product rule, the collection can be distributed in

[Tcx,~g,+n—1,0-1)
i=1

ways.

THE INCLUSION-EXCLUSION PRINCIPLE

2.20

2.21

In a dormitory, there are 12 students who take an art course (A), 20 who take a biology course (B), 20
who take a chemistry course (C), and 8 who take a drama course (D). There are 5 students who take
both A and B, 7 students who take both A and C, 4 students who take both A and D, 16 students who
take both B and C, 4 students who take both B and D, and 3 students who take both C and D. There
are 3 who take A, B, and C; 2 who take A, B, and D; 2 who take B, C and D; 3 who take A, C, and D.
Finally, there are 2 in all four courses. It is also known that there are 71 students in the dormitory who
have not signed up for any of these courses. Find the total number of students in the dormitory.

Let N be the total number of students. Then 71=N — s, + 5, — 5, + 5,, where

s, =12+20+20+8=60 $,=5+7+4+16+4+3=39 §35=3+2+2+3=10 5,=2
Thus 71 =N —29, or N = 100.

Find the number of solutions in integers of the equation a +b+c+d=17, where 1=a=3,
2=bh=4,3=c=5,4=d=6.

Leta=1+a b=2+p, c=3+1v d=4+ 8 The transformed system is
atBtyt+té=7 0<a B, 7,6=2 @)
Let X be the set of all solutions in nonnegative integers of @ + 8+ vy +8 =7; and let A be the subset of X for

which @ =3, B be the subset for which 8 =3, C be the subset for which ¥ =3, D be the subset for which § = 3.
Applying Theorem 2.5 and Problem 1.142, we have:
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2.22

2.23

2.24

nX)=C(10, 3) mA) =nB) = n(C)=nD)=C(1,3)
nANB)=nANC)=---=n(CND)=C4,3)

and all higher-order intersections are empty. Thus,
nX)=120 5, =C4, 1)C(7,3)= 140 5,=C(4,2)C4,3)=24

and the answer is 120 - 124 + 24 =4,

Prove that the Stirling number of the second kind may be evaluated from the following inclusion-
exclusion formula:

m! S, m)=m" — C(m, LYm — 1)" + C(m,2)(m — 2)" —--- + ~=D""'Cm,m — 11"

Let M denote the set of all mappings from X ={x,,x,,...,x,} to Y={y,,y,,...,¥,}, and, for i=
1,2,...,m, let A, be the subset of M consisting of those mappings that fail to cover y,. We have n(M) = m" and

s, = C(m, k)(m — k)" *k=12,....m—1)

[There are C(m, k) ways to set apart k elements of ¥, and X can be mapped into the remaining elements in
(m — k)" ways.] Then Theorem 2.5 gives for the number of mappings that cover every element of Y—i.c., the
number of surjections from X to Y—as

m" —Cm, DIm — 1" + -« + (= 1)""'Clm, m — 1)1"

But, by Problem 1.146, the number of surjections is m! S(n, m).

Find the number of permutations of the digits 1 through 9 in which (a) none of the blocks 2 3, 4 5,
and 6 7 8 appears; (b) none of the blocks, 34, 45, and 7 3 8 appears.

Let X be the set of all the permutations; then n(X)=9!.

(@) Let A, B, and C be the subsets of permutations which respectively contain 23, 45, and 67 8 as blocks.
Then n(A) = 8! [this is the number of permutations of the set {1,2, 3,4, 5,6, 7, 8, 9}]. Similarly, n(B) = 8!,
nC)=T, n(ANB)=T, n(ANC)=nB NC)=6!. Thus the answer is

91 — (8! + 8! + 71) + (7! + 6! + 6!) — 5!

(5) Let A, B, and C be the subsets of X in which 34, 45, and 73 8 respectively appear as blocks. Then
n(A) = n(B) = 8! and n(C) = 7! . Observe that A N B is the subset of permutations in which 3 4 5 appears as
a block; so n(ANBY="T!. Here n(ANC)=0=n(ANBNC) and n(B NC)=6!. Thus the answer is

M-8 +81+7H+(TM+0+61)—-0
A partition of a positive integer N is an unordered collection of positive integers (or parts) whose
sum is N. Let f(N, r) be the number of partitions of N in which each part is repeated fewer than r

times (=2, 3,...,N + 1) and let g(V, r) be the number of partitions of N having no part divisible by
r. Prove that f(N,r) =gV, 7).

We apply Theorem 2.5 twice to the set X of all partitions of N. First define A, as the subset of X composed
of those partitions in which part i is repeated r or more times (i=1,2,..., LN /rJ). Then

n( ﬂ A;) =fN, ) =n(X)—s, +5,—+ (D",

in which the s, are defined in the usual manner in terms of the intersections of the A,.
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Next define B, as the subset of X composed of those partitions containing ir as a part (i=1,2,... AN/rD.
We have:

n( ﬂ B;) =gV, =nX)—0o, +a,— - +(=D""a,, |

where the g, are defined analogously to the s,.

But g, = 5,, for all k. Indeed, if x € X is a partition of N whose parts include i,7, i,r, .. ., i r—so that x has
a count of 1 in o,—then there exists an x* € X in which parts i, i,, .. ., i, are each repeated r times—so that x*
has a count of 1 in s,. Consequently, f(N,r)=gWV,r).

DERANGEMENTS AND OTHER CONSTRAINED ARRANGEMENTS

2.25

2.26

2.27

2.28

Use a combinatorial argument to establish the identity

S )
< -n! @
The »! permutations of an n set may be classified according as they have n, n — 1,n—2,...,0 fixed points;

thus,

n!=Cm,mD, +Cn,n—1)D, + Cn,n —2)D, + - -+ Cln, 0D,

Divide through by n! to obtain (i).

Each of the n children in a class is given a book by the teacher; the books are all distinct. The students
are required to return the books after 1 week. The same n books are again distributed for another
week. In how many distributions does nobody get the same book twice?

The books can be distributed the first week in n! ways. Each such distribution gives rise to D, ways of
distributing them the second week. So the answer is n! D,.

Given the sequence X = (x,, X,, . . ., X,,), find the number of derangements of X such that the first n
elements of each derangement are (@) the first n elements of X, and (b) the last n elements of X.

(a) The first n elements can be deranged in D, ways. The same is true for the last n elements. So the answer
is (D,)’. (b) Each of the n! permutations of the last n elements in the first n places is indeed a derangement. This
is true for the other half as well. The answer is (n!)z.

Each of n women who attend a banquet checks her coat and hat with the receptionist on arrival. Upon
leaving, each woman is given a coat and a hat at random. Find the number of ways these coats and
hats may be distributed such that (¢) nobody gets back either her coat or her hat, and (b) nobody gets
back both her coat and her hat.

(@ The number of derangements for coats is D, and the number of derangements for hats is D,. Because the
handing out of coats is independent of the handing out of hats, there are (D,,)2 distributions with the
specified property.

®) LetA, (j=12,....,n) be the subset of distributions in which woman j gets back both her coat and her hat.
Then, applying Theorem 2.5,

aX)=m) s, =C,nle—n1  ¢=12...,n)

and the answer is given by n(X) —s, + -+ (—=1)s,.
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2.29

2.30

231

2.32

233

Let A denote an r-subset of an n set X. How many permutations of X induce derangements of A?

Let A, (i =1,2,...,r) denote the subset of permutations of X which leave the ith element of A fixed. Then
nX) = n! s, =C(r, jYn —)! (G=12,...,n

and Theorem 2.5 yields the answer as n(X) —s, +---+(—1)'s,.

Show that D, = (n — 1)(D,_, + D, _,), where n = 3. (Of course, D, =1 and D, =0.)

Consider those derangements of X ={1,2,...,n} in which r occupies the first position. Then either 1 does
not occupy the rth position or it does. There are D, _, derangements of the former type (with respect to X — {rh
position r functions as position 1) and D,_, of the latter type. The element » can be chosen in n — 1 ways.

(@) Show that D, =nD,_, +(—1)", for n=2, and (b) Use this result to evaluate D,. (D, can be
computed without using the inclusion-exclusion principle.)

(@ The substitution £, =D, —nD,_, takes the recursion formula of Problem 2.30 into E, = —E, _,. Since
E,=D,— 2D, = 1, the latter recursion formula has the solution E, = (—1)", for n =2.

(b) By iteration,
D, =n((n—1D, ,+(-1)"")+(-1)
=nn—1D, ,+n(—1)""+(-1)"
=nn—1)n—2D,_5+nn— 1)1 +n(=1)"""+(-1)"

=n(n—1)-3)—na—1) @ +nmn—1)-(5)—-

+(=1Y"nn - D+ (1) e+ (-1)"
1 1 -1
=”’[E‘§?+"'+T]

Find the number, T, of permutations of Z = {1,2,3,...,n} such that no permutation contains a block
of 2 consecutive integers.

Use inclusion-exclusion. Let X denote the set of all permutations of Z; n(X) =n!Let A, (i=1,2,...,n— 1)
represent the subset of X consisting of all permutations in which the block i +1 occurs. If one chooses r
mutually disjoint blocks, these r objects and the remaining n — 2r elements of Z together generate (n —r)!
permutations. This same number, (n — r)!, is obtained for any selection of r blocks, disjoint or not (prove it!).
Hence, s,=Cn—1,nn—n!, forr=1,2,...,n—1, and )

’121 " ! nj |nt_ =Dt
T,= 2 CDCr—1nm—nt=2 (-1) [F— r— 1!

n—1 _1 r n—2 _1 L]
=n! 2 -(—-r'—)-%(n—l)! > (s!)
r=0 ° s=0 :

Referring to Example 10, we see that

T,=[D,—(-1)"1+[D -)""1=D,+D,_,

=t

or, by Problem 2.30, T, =D, /n.

Tabulate D, and T, for n = 1(1)10.
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Start with D, =0 and T, = 1. To compute D, use the relation D, = (n — )T, _, (Problem 2.32); to compute
T, use the relation T, =D, + D,_, (Problem 2.32). See Table 2-1.

Table 2-1
n D, T,
1 0 1
2 i 1
3 2 3
4 9 11
5 44 53
6 265 309
7 1854 2119
8 14833 16 687
9 133496 148 329
10 1334961 1468 457

234 Find the number of ways the integers 0,1,2,...,n—1 can be arranged in a circle so that no
arrangement, when read clockwise, has a block of 2 consecutive integers or the block [# —10].

Let X be the set of circular permutations of {0,1,2,...,n— 1}; by Problem 1.34, n(X) =(n — 1)!. If we
operate modulo n, the n excluded blocks can be notated as i i +1 (i = 0,1,2,...,n—1). Let A, be the subset of
X in which each circular permutation contains the block i i + 1. To evaluate s,, for r < n, we may suppose the r
blocks selected to be disjoint (see Problem 2.32), thus leading to (r+n— 2r— Dt =@—r-—1)! circular
permutations; i.e.,

sr=C(n,r)(n-r—1)! r=12,...,n—1)

Clearly, s, = 1. Theorem 2.5 now yields the answer

rgo(—l)’C(n,r)(n —r=1 + (—1)"=n!r§)ﬁ(—(_;1_)—r)

235 There are 8 letters to different people to be placed in 8 different addressed envelopes. Find the

number of ways of doing this so that at least 1 letter gets to the right person.
The answer is, from Table 2-1, 8! — D, =40 320 — 14 833 = 25 487.

2.36. Find the number of 4-digit positive integers the sum of the digits of which is 31.

We wish to count the solutions in integers of the system

at+b+c+d=31 0=a,b,c,d=9

By the method of Problem 2.21 the answer is

C(34,3) — C(4, 1)C(24, 3) + C(4,2)C(14,3) — C(4,3)C(4,3) + 0

2.37 Find the number of injections (one-to-one mappings) from a finite set X of n elements to X such that

each has at least 1 fixed point.

The total number of injections is 7! . Any derangement of X defines a unique injection which has no fixed
point, and vice versa. Thus the answer is n! — D,
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238 Out of 30 students in a dormitory, 15 take an art course, 8 take a biology course, and 6 take a
chemistry course. It is known that 3 students take all 3 courses. Show that 7 or more students take
none of the courses.

Let A be the set of students who take the art course, B be the set for biology, and C be the set for chemistry.
Then s, =15+ 8 +6 =29 and s, =3 (given). Let x be the number who are not in any of these courses; by
Theorem 2.5,

x=30—-29+s5,—3=5,—2
Now the intersection of the 3 scts is a subset of the intersection of any 2 of the sets. Therefore,

s, =23+3+3=9 or x=9-2=7

2.39 There are 6 pairs of children’s gloves in a box. Each pair is of a different color. Suppose the right
gloves are distributed at random to 6 children, and then the left gloves also are distributed to them at
random. Find the probability that (a) no child gets a matching pair, (b) everybody gets a matching
pair, (c) exactly 1 child gets a matching pair, and (d) at least 2 children get matching pairs.

The right gloves can be distributed in 6! ways, aftsr which the left gloves can be distributed in 6! ways.
Thus there are (6!)(6!) equiprobable outcomes.

(@) For each of the 6! distributions of right gloves there are D distributions of left gloves that result in no
matching pairs. The required probability is therefore (6!)D/(6!)* = D,/6! .

(b) For each of the 6! distributions of right gloves there is 1 distribution of left gloves that yields 6 matching
pairs. The required probability is (6!)( D/ =1/6!.

(¢) For each of the 6! distributions of right gloves there are (1)D, distributions of left gloves that give
Annie—and Annie alone—a matching pair. Hence the required probability is

61(61X(1)D,] _ D,
6y S

(d) Using the results of (a) and (c),

. Dy Dy
Probability =1 — o5

COMBINATORIAL NUMBER THEORY
2.40 Find the number of positive integers less than 601 that are not divisible by 3 or 5 or 7.

Let X ={1,2,...,600}; then n(X) = 600. If A, B, and C are the subsets of integers in X that are divisible by
3, 5, and 7, respectively,

s, = n(A) + n(B) + n(C) = (6—29) + (9-29) +L$_| =405

5, =nANB)+mANC) +nBNC)
() AmE ]

600
s3=n(AﬂBﬁC)=—l*bg=5

Thus, n(A’ NB"NC')y=600— 405+ 85— 5=275.

241 (Sieve of Eratosthenes) Derive an expression for the counting function
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7r(n) = number of primes not exceeding the positive integer n

Fratosthenes’ method is based on the observation that an integer k=2 is composite if and only if it is

divisible by a prime p <k'/2, Thus let X ={2,3,...,n} and let r be the number of primes that do not exceed
n''? ie.,

2=p,<p,<---<p,=n'’<p,,, @)
Then, if A, (i =1,2,...,r) represents the subset of X composed of multiples of p,, the union U, A, will consist

of all composite integers in X and the first r primes.
We compute n(U, A,) by means of Theorem 2.5. Here,

sl -2

and, in general,

5= 2 |som| G=teon (i)
] 1=iy<iy<<ijsr | PiPiy """ Py T
the summation in (ii) being over all j combinations of {1,2,...,r}. Hence,
(U a)=s -5t
and so mn)y=n—1+r—s,+s,— -+ (=1)s, ' (i)

where r is given (i) and the s, by (i) Note that if the 7 function is extended to arbitrary real arguments, r can be
expressed as 7(n'’?).

Show that 97 is the twenty-fifth prime. _
Since 98, 99, and 100 are composite, it suffices to show that #(100) = 23. In the notation of Problem 2.41,

r=4(p,=2,p,=3,ps=5 p,=7)

100 100 100 100
1= I.TJ +LT.] +[—5“J +L—7“J= 17
100 100 100
527 L(z)(a)_' +tm(S)J +[(2><7)J
100 100
+[(_37(—5'5J +|I3.)(T)_|

+l_ 100 J
(5XT)
=45

_l- 100 J+l- 100 J+l. 100 J+l- 100 J_6
BT LeeM] Tl Ll Lacys)

'[——@—J"O
BT L @@6Gn]

whence m(100)=100—1+4-117+45-6+0=25

A positive integer is squarefree if its prime factorization involves no power higher than the first. (We
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244

245

246

247

agree that 1 is squarefree.) Show how to compute the number of squarefree integers not exceeding a
given integer n.

Let X ={1,2,...,n}and, as in Problem 2.41, let r be the number of primes not exceeding the square root of
n. Now define A, (i=1,2,...,r) as the subset of X composed of multiples of p’. The sought number is just
n(N, A}), which is given by Theorem 2.5.

Find the number of squarfree integers not exceeding 100.
Follow Problem 2.43 (and Problem 2.42):
l_lOOJ L |-100J I-l OJ
5, = 42
3?
10

100
5= + +04+---+0=3
2232 L2%5?

5,=0

5,=0

and n(n A;)=100—42+3=61

Two positive integers are relatively prime if the only positive divisor they have in common is 1. The
number of positive integers not exceeding n and relatively prime to 7 is denoted by ¢(n), where ¢ is
Euler’s phi (or totient) function. Obtain a formula for Euler’s phi function.

Let p,, P,, ..., p, be the distinct prime divisors of the positive integer 7, and let A, ( =1,2,..., k) be the
set of all positive integers from 1 to n that are divisible by p,. Then, in Theorem 2.5,

n
§ =, i=1,2,...,k
; Zpi,Piz"'P,-j G )
where the summation is over all j combinations of {1,2, ..., k}. Thus,
dmy=n—s, +s,—+ (=1,

= [1—(%‘+...) +<p11p2 +) _(p]plzps +)+]
(D

=m(ﬁl—1)(1’2—1)"'(pk—1)

Evaluate ¢(3528).
Since 3528 = (2*)(3%)(7%), the distinct prime divisors are 2, 3, and 7. Problem 2.45 gives:

$(3528) = = (2~ 13— 1)(7 — 1) = 1008

(2)(3)(7)

Show that ¢(p) =p — 1 if and only if p is prime,

If p is prime, ¢(p) =p — 1, by Problem 2.45. Conversely, if p is not prime, there exists a positive integer
1 <d <p such that d divides p. Therefore p and d are not relatively prime, and the definition of the phi function
implies ¢(p) =p — 2. Certainly, then, $(p)#p — 1.
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A function whose domain is the set of positive integers is called a number-theoretic function. A
number-theoretic function f is multiplicative if the range of f is closed under multiplication and if
flmn) =f(m)f(n) whenever m and n are relatively prime. Show that Fuler’s phi function is
multiplicative.

Let m and n be relatively prime. If the distinct prime factors of m form the set M ={p,, p,...., p,} and the
distinct prime factors of n form the set N ={q,, ¢, . - ., q,}, then M NN =@. Let p be the product of the r primes
in M and g be the product of the s primes in N. By Problem 2.45,

Bmn) = (p, — 1)+ (p, — 1)Nq, 1)+ (g, = 1)
mn *pq P p, g, q,

m

=[5 @ -0 -v][F@ - @ -]

= ¢p(m)dp(n)

Suppose 1 =d,,d,,...,d, =n are the distinct positive divisors of the positive integer n. Show that
2 ¢(d,)y=n.

First observe that the summation can also be written as = ¢(n/d.); for as d, runs through the divisors of n
(in increasing order), n/d, runs through the divisors of » (in decreasing order). Let X = {1,2,...,n} and, for
i=1,2,...,r,let X,={mE&X : the g.c.d of m and n is d,}. Because any pair of positive integers has a unique
g.c.d., and because d, EX, for each i, it is clear that {X,,X,,...,X,} is a partition of X, Now, m is in X; if and
only if m/d, and n/d, are relatively prime. Thus the number of elements in X; is the number of positive integers
not exceeding n/d, and relatively prime to it; i.e. ¢(n/d,). The desired result now follows from the fact that {X,}
is a partition.

Verify the result of Problem 2.49 for n = 12.
The distinct divisors of 12 are 1, 2, 3, 4, 6, and 12.

X, ={1,5,7,11} and  n(X,)=$(12/1)=4

X,=1{2,10} and  n(X,)=$(12/2)=2
X,=1{3,9) and  n(X,)=@(12/3)=2
X,={4,8} and  n(X,)= @(12/4)=2
X, = {6} and  n(X,)= $(12/6) =i
X,,={12} and  n(X,,)=$(12/12) =1

and 4+2+2+2+1+1=12

The Mobius function, w(n), of a positive integer n is defined by u(n) = 1, if n =1 or n is the product
of an even number of distinct primes; u{n) = —1, if » is the product of an odd number of distinct
primes; and wu(n) = 0 for all other n. Show that the Euler phi function and the M6bius function are
related as follows:

¢(n)=n2%d)

dln

where the sum is over all the divisors of n, including 1 and n.

This follows immediately from the second equation of Problem 2.45.
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2.52

2.53

2.54

2.55

2.56

Rewrite the result of Problem 2.41 in terms of the Mobius function.

From the formula (ii) for the s, it is apparent that

n—s,+s2—s3+~~-= 2 ,u,(d)l_—Z"J

dip\py b,

(The term n on the left side corresponds to d = 1.) Hence (iii) becomes

- me'H=-1+ 3 w@|5]

dlpypy-p,

Show that the Mobius function is multiplicative (Problem 2.48).

We have to show that u(mn) = u(m)u(n) whenever m and n are relatively prime. This is true when m =1 or
n =1, Suppose m > 1 and n > 1. It is also true (0 = 0) when either m or z is divisible by p*, where p is a prime
and k > 1. The only remaining case is when both m and n are products of distinct primes: m =p, p, - - p, and
n=gq,q," " *4q, Then

plmn) = (=1)"" = (=1)°(-1)" = pm)p(n)

Let f be a multiplicative function and let

gm =2 fd)

din
where the sum is over all the divisors d of n. Show that g is multiplicative.
Let d,,d,,...,d, be the distinct divisors of the positive integer m and let e,,e,,...,e, be the distinct
divisors of the positive integer n. Then,

glm) = 2 fd) and  gm= 2 fe)

If m and n are relatively prime, the distinct divisors of mn are the st numbers d.e;, with 4, and e, relatively prime
for all i and j. Therefore,

gmmy =2 2, fide)= Z £d) 2 fe;) = g(m)g(n)

i=1j=1
If n=2, evaluate

@ 2 pd and () 2 |w@)

din dln

We need consider only those divisors of n which are squarefree (including 1). Suppose » has k prime
factors.

(@) The sum of the Mdbius-function values of the squarefree divisors of n is
Ck,0)— Clk, 1) + Ck,2) — - -+ + (= 1)*Ck, k) = 0
[by Problem 1.39(b)].
(b) 2* [by Problem 1.39()].

Let n be a positive integer and let its divisors be

1=d,<d,<--<d,=n
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Prove that for all i and j,

d\d,_,., ifandonlyifd|d,_,.,

J
We have d,d,_,,, =n and dd,_;,, = n. Therefore,

d

=i+l d!-jH

d d,

J i

dd,_;. =dd, or

7

One side of this last equation is an integer if and only if the other side is.

257 (@) (Classical Mobius Inversion Formula) Let f be a number-theoretic function and let

g =2 fd)

din

Show that

oy =2 we(G) =2 uw(5)s@

(b) Prove the converse of (a).

(@) Denote the divisors of n as in Problem 2.56. We have:
t n t
2 #’(di)g<;) = 2 :U'(di)g(dt-iﬂ)
i=1 i i=1
=X ud) X fd)
i=1 djid,_; 4y

Problem 2.56 may be used to invert the order of the double summation:

guu) > f(d)—Ef(d) > )

dild, i+ dilde—j+y

On the right-hand side the inner sum vanishes for j= 1,2,...,t — 1—in consequence of Problem
2.55(a)—while for j =¢ it has the value u(d,) = 1. We see then that

S wiaps() =1d) =1

which is the Mdobius formula.
(b) In the notation of Problems 2.56 and 2.57(a), we have

2 -3 ,u(d)g( ) s #( ‘)g(d)

j=1d,d; i=tdjld;

3 d, i+
=2 8d) X .u( = 1)
i=1 d-pjalde-it1 s

where the last step follows from Problem 2.56. For simplicity, replace the summation index ¢t —j + 1 by &,
obtaining

2 fid)= Eg(d) > )

dild, 41
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2.58

2.59

For i=1,2,...,t—1, the coefficient of g(d,) is zero [Problem 2.55(a)]; for i =1, the coefficient is
u(d,) = 1. Thus,

> fid))=g(d,) =g
J=1
and the proof is complete.

With reference to Problem 2.57(a), show that f is multiplicative if and only if g is multiplicative.

If f is multiplicative, then g is multiplicative, by Problem 2.54.
Suppose g is multiplicative, Let # and n be relatively prime and let the divisorsof mandnbe d,, d,,...,d,
and e, ¢,,..., e, respectively. The divisors of mn are d.e,, where 1 =i =s and 1 =j =<{; hence, by the Mobius

formula,

fmn) = E Z ulde;)g )

But u is multiplicative (Problem 2.53), and d, and e, are relatively prime, so that
mde) = /"'(d.')#(e,‘)

Also (by assumption) g is multiplicative, and m/d, and n/e, are relatively prime, so that

(‘“’U) g( ) ( )
Thus fom =5 wd)a () 2 A(e,.)g (fj) = fom)f(n)

and f is multiplicative,

The number of positive divisors of the positive integer n is denoted by 7(n), and the sum of the
positive divisors of n is denoted by &(n). (a) Prove that these two functions are multiplicative. (b)
Show how to compute their values for a given #.

(@) If f is multiplicative and if

g =2 fd)

din

then by Problem 2.54, g is multiplicative. Now the function f(n)=1 is clearly multiplicative; to it
corresponds g(n) = 7(n), which is therefore also multiplicative. The same argument, using f(x) = n, shows
that o(n) is multiplicative.

(b) I p is prime, the divisors of p* are 1, p, p?, ..., p*. Hence,

k+1__ g

Mp)=1+k and a(p*)=1+p+p2+...+pk=Pp__1_

These results, the prime factorization theorem, and the multiplicative property of 7(n) and o(n) allow the
computation of the two functions. For example,

7(4068)=-7(2°3) = (1+9) (1+2) =

o (4068)= (2%“1) (32+1 1)= 13,299
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Show that for any positive integer n,
S war() =1
d|n d
Apply the Mébius inversion formula to the relation

M= 1

din

Consider the formal series L(s) = ==, f(n)n~* defined by a number-theoretic function f. Show that if
f is multiplicative, this series can be represented as an infinite product:

Ls)= [] F(p.s)  where F(p,s)=1+f(p)p”* +fpPp E+ AP

p prime

[F(p,s) is also a formal series.]

It suffices to show that, for every positive integer n, the term n”° arises in the infinite product with the same
coefficient that it has in the infinite series; namely, f(n). Let n have the unique prime factorization

k

k
n= H pi whence n”° = H p;
i=1 i

It is seen that when the infinite product is multiplied out, one and only one product gives a term in n~°: this is the
~—as

product of f(pS")p; “* from F(p,,s) f(p3*)p, % from F(p,,$),..., Apip, °¥ from F(p,, s), and 1s from all
other F(p,s). Thus, n~* appears with coefficient

OO AP =Fp;' p3% P =f)

f being multiplicative.
The celebrated Riemann zeta function is defined by
- 1
()= 5
n=1 N
Prove that

15 oae
.[(S) ,.§=:1 n

By Problem 2.61, with f(n)=1,

1 i
4.*(s)—H(1 _p_s) “Ta-r5

On the other hand, for f(n) = u(n), Problem 2.61 gives

o ) I
21 _H(l P )_;(S)

ns

Let A={a,,a,,...,a,} be an alphabet with m distinct letters. A circular word of length n from A
is an n sequence of A arranged clockwise around a circle, as in Fig. 2-1(a). In a circular word only the
clockwise order of the letters matters: circular words f and f’ are identical if some rotation of the
diagram for f takes it into the diagram for f’. Count the distinct circular words of length n from A.
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b b b
b b
a a 4a a
b b
b b b b b
(@) b) p=6 (© p=3 @ p=1

Fig. 2-1

It is apparent from Fig. 2-1(a) that when a circular word of length n is ‘‘spelled’”— with any of its letters
chosen as the initial letter—the clockwise sequence repeats after # letters. Hence, the set of repetition-distances
for the circular word is nonempty. The smallest element, p, of this set is called the period of the circular word,
Figures 2-1(b)—(d) show three circular words of length n =6 (m =2), and their corresponding periods.

It is easy to see that any repetition-distance—in particular, the period p—must divide n. Furthermore, a
circular word of period p determines precisely p distinct # sequences of A. {For example, the circular word of
Fig. 2-1(c) determines the 3 sequences babbab, abbabb, bbabba.] Consequently, the M(p) (say) circular

words with a given period p account for pM(p) n sequences. Because there are m” n-sequences in all, and
because p is a divisor of n, we must have

> pM(p)=m"

pin

Application of the Mobius inversion formula to this last equation yields

M =3 pdm™ o M@ =7 S pdm

dlx dix

and the answer to our problem is El: M(p).
pin

2.64 How many circular words of length 12 may be drawn from a 5-letter alphabet?

The periods, or divisors of 12, are 1, 2, 3, 4, 6, and 12; the corresponding Mébius-function values are 1, —1,
—1, 0, 1, and 0, respectively. The integers M(p) are given by the expression of Problem 2.63:

1
M(1)=-1—[(1)5'“]=5
M(2) = % [(DH5* + (—1)5**1=10
M@3) = % (5" + (—=1)5%"°1=40
1 471 4/2 4/4
M@ =7 (15" + (=157 +(0)5 1=150
M(6) = % [(D5%" + (—1)5%% + (—=1)5° + (1)5°/°] = 2580

1
M(12) - (15 +(=1)5'22 + (- 1)5'2% + (0)5'%% + (1)5'2/¢ + (0)5'*'2)
= 20,343,700

The number of circular words is the sum of these 6 integers, or 20,346,485. (For comparison, the number of 12
sequences is 5' = 244,140,625.)
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GENERALIZED INCLUSION-EXCLUSION PRINCIPLE
265 Let X be an N set and let I = {m,, m,,..., 7,} be an m-set of properties. If {m; , ..., m }is an

arbitrary k subset of Il, denote by n(#, , 7, ..., ™ 8 the number of elements of X that possess these
k properties (and possibly other properues too) Define sp=N, and, for k=1,2,.

—En(vr,l Tippeens

2’ 'I:

)

where the sum is extended over all k-subsets of II [C(m, k) summands]. Finally, let ¢; (j=
0,1,...,m) be the number of elements of X that have exactly j of the m properties, and let f;
(j=1,2,...,m) be the number of elements that have at least j properties. (a) Prove

Theorem 2.8.

e, =5, —C(j+1,1)5,,, +C(+2,2)85,,~ "+ D" Cm, m - j)s,,
(b) Prove
Theorem 2.9.
£=5=CU D5y +CU+1,2)85,, =000 F —1D)"7Cm — 1,m - j)s,,

(@) We show that every element of X has the same count on (makes the same contribution to) either side of the
equation of Theorem 2.3.
If an element has fewer than j properties, its count is 0 on either side.
If an element has exactly j properties, its count is 1 on the left, and (C;, j)=1 (in s,) on the right.
If an element has exactly j + I properties (1 <! =m — j), its count on the left is 0. On the right, it has
the count C(j +1, j)ins; C(G+ L j+1Dins, ;.. .; C(j+1,j+1D)ins;,,. The total count on the right is
therefore

CU+LN—CU+L,DCGHLj+ D +HCG+LDCG+Lj+2) = +(—1CG+LDCG +Lj+1)
=C(+1 )= CUDCG +1, )+ CADCG + 1, j) =+ +(=1'CUDCG +1, )
=C(j+1Lj)1-1)'=0

This completes the proof.
Observe that, for j.= 0, Theorem 2.8 is just the sieve formula [in Theorem 2.5 let A, ((=12,...,m)

be the subset of elements possessing property 7).

(b) It is enough to show that the given series for f, satisfies the difference equation f; — f;+1 =e; and the end
condition f, = e,,. Now, using Pascal’s identity,

f=fo=5—[CUD+CU s, +ICG+1,2) +C( +1, Dls;.
— e+ (=D)"VICn—1,m— )+ Cn—1,m — j— D]s,,
'—S _C(J +1 1)J+] +C(j+272)sj+2_ e +(—1)m—jc(mym—j)sm

Further, f, =5, =¢€,.

2.66 With X and II as in Problem 2.65, find the number of elements of X having an even number of the
properties and the number having an odd number of the properties.

If we define E(x)=¢, +e;x + e,x> + - +e,x", then the numbers of elements having an even and an odd
number of properties will be %[E(l)iE(—l)]. Now, by Theorem 2.3,
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Ex) =2 ex'=2 [2 —D*C, j)sk]x"

=0 L=

3

m

(=15, 2 Clk, )2 = 2 (= 1)'s,(1 =

k=0

i

=
il

DMs

50— Df
k

il
(=]

Therefore, LE(1)2E(-1)] = %[sot > (—2)"sk:|
k=0

2,67 Find the number of m-letter words that can be formed using the letters A, B, C, and D, such that each
word has an odd number of A’s.

In the notation of Problem 2.65 let w, ({ = 1,2,...,m) be the property that the ith letter of the word is A.
We have s, =4" possible words, and

s, = C(m, kyd"~* *k=12,...,m)
By Problem 2.66 the desired number is
g[so -2 (—2)ksk] =;[4’" ~ 2 C(m, k)(—2)"4’""‘]
k=0 k=0
C

_2m)=2m—l(2m__ 1)

[N

2.68 Check Problem 2.67 by direct use of the generating function E(x).
Since e; = C(m, j)3”~ for all j,
E@) =2, C(m, )x'3"~ = (x + 3)"
j=0

and so L[E(1) ~ E(~1)] = 14" - 2™).

2.69 Of the 100 students in Problem 2.20, how many take (a) exactly 1 course? (b) exactly 2
courses? (c) exactly 3 courses? (d) at least 1 course? (e) at least 2 courses? (f) at least 3
courses?

With the 5, as computed in Problem 2.20, Theorems 2.7 and 2.8 give:

@ e, =60~ C(2, 1)(39) +C(3,2)(10) — C(4, 3)2) = 4
(b) e, =39—C(3,1)10) + C(4, 2)(2) =21

© e,=10-C(41)2)=2

@ f,=60—-C(1, 1)39)+C(2,2)(10) — C(3, 3)(2) =29
@ f,=39—C(2,1)10)+C(3,2)2) =25

() £=10-C3G,1)2)=4

2.70 A function w from a set X to the set of real numbers is called a weight function on X. If X is finite
and A is a subset of X, the weight of A, denoted w(A), is the sum of all w(x) for x € A. If I is a set of
m properties (cf. Problem 2.65), let A; (j=0,1,2,...,m) be the set of all elements in X having
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exactly j properties and j let B, (j=1,2,...,m) be the set of all elements in X having at least j
properties. For each j, write E; =w(A;) and F;=w(B;). If Q is a subset of II, w(Q) is defined as the
sum of the weights of all the elements in X which have every property in Q. Finally, in analogy to the
s, of Problem 2.65, define

w(X) k=0
;=Y > w(@) k=12,...,m ()
ocIl )
n(Q)=k

Prove that Theorems 2.8 and 2.9 remain valid if e,, f,, and s; are replaced, respectively, by E;, F;, and
S

e
In the proof of Problem 2.65(a), simply replace *‘count of x>’ (1 or 0) by *‘weight of x’* [w(x) or 0]. The
proof of Problem 2.65(b) extends without change. Note that for the particular weight function w(x) =1, we have
S. =5, efc.
) 7

Let X = {a, b, ¢, d, e, f} be a set with weights 2, 3, 4, 5, 6, and 7, respectively, and let II = {a, 8, 7, 6}
be a set of properties. Given: (i) a, b, ¢, e, and f have property a; (ii) b, ¢, d, and f have property S;
(#ii) a, d, e, and f have property v; (iv) b, ¢, d, and e have property 8. Compute all E;, F;, and §;.

In the notation of Problem 2.70, A,, A,, and A, are empty; A, ={a}; A, ={b,c,d, e, f}. Hence,
E,=0 E,=0 E,=2 E,=25 E,=0
Further, B, =B, =X, B, = A,, and B, is empty; hence
F,=F,=21 F,=25 F,=0
By (i) of Problem 2.70, S, =w(X)=2+3+4+5+6+7=27.
w({a}) =wia) + w(b) + w(c) + wle) + w(f) =22
w({B) = w(b) +w(c) + wd) + w(f) =19
w({yh =w(@ + wd) + wie) + w(f) =20
w({8}) = w(b) + w(c) + w(d) + w(e) = 18
$,=22+19+20+18=79
w({a, B} =w(b) +w(c) + w(f) =14
w({a, yD) = wla) +wle) + w(f) =15
w({a, 8}) = w(b) + w(c) + w(e) = 13
w({B, YD =wid) + w(f) =12
w({B, 8}) = w(b) + wlc) + w(d) =12
w({y, 8P = wid) + w(e) =11
S,=14+15+13+12+12+11=T71

w({a, B, YD =w(f)=17
w({a, B, 8}) = w(b) + wlc) =17
w({B, 7, 8 =w(d) =5
w({a, 7, 8}) = w(e) =6
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S, =7+7+5+6=25

Finally, S, =FE, =0.

2.72  Verify the generalized Theorems 2.8 and 2.9 for the data of Problem 2.71.
Checking Theorem 2.7 for j=0,1,...,4:

S, — C(1,1)S, +C(2,2)S, — C(3,3)S, + C(4,4)5,=27—-79+77-25+0=0=E,
§,—C@2, 1S, +C(3,2)8,—C(4,3)5,=79-154+75-0=0=E,
$,~C3, 1S, +C4,2)S,=71—-75+0=2=E,
$,—<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>