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Preface

The introductory physics course, variously known as “‘general physics” or
“college physics,” is usually a two-semester in-depth survey of classical topics
capped off with some selected material from modern physics. Indeed the name
“college physics” has become a euphemism for introductory physics without
calculus. Schaum’s Outline of College Physics was designed to uniquely
complement just such a course, whether given in high school or in college. The
needed mathematical knowledge includes basic algebra, some trigonometry, and a
tiny bit of vector analysis. It is assumed that the reader already has a modest
understanding of algebra. Appendix B is a general review of trigonometry that
serves nicely. Even so, the necessary ideas are developed in place, as needed. And
the same is true of the rudimentary vector analysis that’s required—it too is taught as
the situation requires.

In some ways learning physics is unlike learning most other disciplines. Physics
has a special vocabulary that constitutes a language of its own, a language
immediately transcribed into a symbolic form that is analyzed and extended with
mathematical logic and precision. Words like energy, momentum, current, flux,
interference, capacitance, and so forth, have very specific scientific meanings.
These must be learned promptly and accurately because the discipline builds layer
upon layer; unless you know exactly what velocity is, you cannot know what
acceleration or momentum are, and without them you cannot know what force is,
and on and on. Each chapter in this book begins with a concise summary of the
important ideas, definitions, relationships, laws, rules, and equations that are
associated with the topic under discussion. All of this material constitutes the
conceptual framework of the discourse, and its mastery is certainly challenging in
and of itself, but there’s more to physics than the mere recitation of its principles.

Every physicist who has ever tried to teach this marvelous subject has heard the
universal student lament, “I understand everything; I just can’t do the problems.”
Nonetheless most teachers believe that the “doing” of problems is the crucial
culmination of the entire experience, it’s the ultimate proof of understanding and
competence. The conceptual machinery of definitions and rules and laws all come
together in the process of problem solving as nowhere else. Moreover, insofar as the
problems reflect the realities of our world, the student learns a skill of immense
practical value. This is no easy task; carrying out the analysis of even a
moderately complex problem requires extraordinary intellectual vigilance and
unflagging attention to detail above and beyond just “knowing how to do it.”
Like playing a musical instrument, the student must learn the basics and then
practice, practice, practice. A single missed note in a sonata is overlookable; a
single error in a calculation, however, can propagate through the entire effort
producing an answer that’s completely wrong. Getting it right is what this book is
all about.

Although a selection of new problems has been added, the 9th-edition revision
of this venerable text has concentrated on modernizing the work, and improving the
pedagogy. To that end, the notation has been simplified and made consistent
throughout. For example, force is now symbolized by F and only F;, thus
centripetal force is F¢, weight is Fyy, tension is Fr, normal force is Fy, friction is
Fy, and so on. Work (W) will never again be confused with weight (Fy), and period

iii
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v

SIGNIFICANT FIGURES

(T) will never be mistaken for tension (F7). To better match what’s usually written in
the classroom, a vector is now indicated by a boldface symbol with a tiny arrow
above it. The idea of significant figures is introduced (see Appendix A) and
scrupulously adhered to in every problem. Almost all the definitions have been
revised to make them more precise or to reflect a more modern perspective. Every
drawing has been redrawn so that they are now more accurate, realistic, and
readable.

If you have any comments about this edition, suggestions for the next edition, or
favorite problems you’d like to share, send them to E. Hecht, Adelphi University,
Physics Department, Garden City, NY 11530.

Freeport, NY EuGeNE HEcHT
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Chapter 1

Introduction to Vectors

A SCALAR QUANTITY, or scalar, is one that has nothing to do with spatial direction. Many
physical concepts such as length, time, temperature, mass, density, charge, and volume are scalars;
each has a scale or size, but no associated direction. The number of students in a class, the quan-
tity of sugar in a jar, and the cost of a house are familiar scalar quantities.

Scalars are specified by ordinary numbers and add and subtract in the usual way. Two candies in one
box plus seven in another give nine candies total.

A VECTOR QUANTITY is one that can be specified completely only if we provide both its mag-
nitude (size) and direction. Many physical concepts such as displacement, velocity, acceleration,
force, and momentum are vector quantities. For example, a vector displacement might be a change
in position from a certain point to a second point 2 cm away and in the x-direction from the
first point. As another example, a cord pulling northward on a post gives rise to a vector force
on the post of 20 newtons (N) northward. One newton is 0.225 pound (1.00 N = 0.225 1b). Simi-
larly, a car moving south at 40 km/h has a vector velocity of 40 km/h-soUTH.

A vector quantity can be represented by an arrow drawn to scale. The length of the arrow is
proportional to the magnitude of the vector quantity (2 cm, 20 N, 40 km/h in the above examples).
The direction of the arrow represents the direction of the vector quantity.

In printed material, vectors are often represented by boldface type, such as F. When written by hand,
the designations F and F are commonly used. A vector is not completely defined until we establish some
rules for its behavior.

THE RESULTANT, or sum, of a number of vectors of a particular type (force vectors, for example)
is that single vector that would have the same effect as all the original vectors taken together.

GRAPHICAL ADDITION OF VECTORS (POLYGON METHOD): This method for finding
the resultant R of several vectors (A, B, and C) consists in beginning at any convenient point and
drawing (to scale and in the proper directions) each vector arrow in turn. They may be taken in
any order of succession: A+ B+ C =C+A+B=R. The tail end of each arrow is positioned at
the tip end of the preceding one, as shown in Fig. 1-1.

End

VAN
o

X\W)\\“Sgﬂ
i
==}

>l

Start
Fig. 1-1
1
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2 INTRODUCTION TO VECTORS [CHAP. 1

The resultant is represented by an arrow with its tail end at the starting point and its tip end at the
tip of the last vector added. If R is the resultant, R = |R| is the size or magnitude of the resultant.

PARALLELOGRAM METHOD for adding two vectors: The resultant of two vectors acting at
any angle may be represented by the diagonal of a parallelogram. The two vectors are drawn as
the sides of the parallelogram and the resultant is its diagonal, as shown in Fig. 1-2. The direc-
tion of the resultant is away from the origin of the two vectors.

Fig. 1-2

SUBTRACTION OF VECTORS: To subtract a vector B
of B and add individually to vector A, that is, A — B = A +

—

from a vector A, reverse the direction
(—B).

THE TRIGONOMETRIC FUNCTIONS are defined in relation to a right angle. For the right tri-
angle shown in Fig. 1-3, by definition

i B i A i B
sin 0 — opposite _ B esh= adjacent I opposﬁe _B
hypotenuse C hypotenuse C adjacent A4
We often use these in the forms
B=Csin 6 A= Ccosf B= Atan 60

hypotenuse
c opposite—6
B
0
adjacent-6
A
Fig. 1-3

A COMPONENT OF A VECTOR is its effective value in a given direction. For example, the x-
component of a displacement is the displacement parallel to the x-axis caused by the given displa-
cement. A vector in three dimensions may be considered as the resultant of its component vectors
resolved along any three mutually perpendicular directions. Similarly, a vector in two dimensions



CHAP. 1] INTRODUCTION TO VECTORS 3

may be resolved into two component vectors acting along any two mutually perpendlcular direc-
tions. Figure 1-4 shows the vector R and its x and y vector components, R, and R which have
magnitudes

R, =|Rjcos® and || =[R|sin @
or equivalently

R, = Rcos 0 and R, = Rsin 0

COMPONENT METHOD FOR ADDING VECTORS: Each vector is resolved into its x-, y-,
and z-components, with negatively directed components taken as negative. The scalar x-component
R, of the resultant R is the algebraic sum of all the scalar x-components. The scalar y- and z-
components of the resultant are found in a similar way. With the components known, the magni-

tude of the resultant is given by
R=\/R:+ R+ R

In two dimensions, the angle of the resultant with the x-axis can be found from the relation

tan 0 — 2
no=—
a RX

UNIT VECTORS have a magnitude of one and are represented by a boldface symbol topped
with a caret. The special unit vectors i, j, and k are assigned to the x-, y-, and z-axes, respec-
tively. A vector 3i represents a three-unit vector in the +x-direction, whlle —5k represents a five-
unit vector in the —z-direction. A vector R that has scalar x-, y-, and z-components R,, R,, and
R., respectively, can be written as R = Ry i+ Ry] + R.k.

THE DISPLACEMENT: When an object moves from one point in space to another the displa-
cement is the vector from the initial location to the final location. It is independent of the actual
distance traveled.
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Solved Problems

1.1  Using the graphical method, find the resultant of the following two displacements: 2.0 m at 40°
and 4.0 m at 127°, the angles being taken relative to the +x-axis, as is customary. Give your
answer to two significant figures. (See Appendix A on significant figures.)

Choose x- and y-axes as shown in Fig. 1-5 and lay out the displacements to scale, tip to tail from the
origin. Notice that all angles are measured from the +x-axis. The resultant vector R points from starting
point to end point as shown. We measure its length on the scale diagram to find its magnitude, 4.6 m. Using
a protractor, we measure its angle € to be 101°. The resultant displacement is therefore 4.6 m at 101°.

VA
74 210.0°
(25.0 m) cos 30.0° \
X
4.0 m
ﬁ (25.0 m) sin 30.0°
QI—\A 127°
0 2.0m
%40.0° ~
X
Fig. 1-5 Fig. 1-6

1.2 Find the x- and y-components of a 25.0-m displacement at an angle of 210.0°.

The vector displacement and its components are shown in Fig. 1-6. The scalar components are
x-component = —(25.0 m) cos 30.0° = —21.7 m
y-component = —(25.0 m) sin 30.0° = —12.5 m

Notice in particular that each component points in the negative coordinate direction and must therefore be
taken as negative.

1.3  Solve Problem 1.1 by use of rectangular components.

We resolve each vector into rectangular components as shown in Fig. 1-7(a) and (b). (Place a cross-
hatch symbol on the original vector to show that it is replaced by its components.) The resultant has scalar
components of

R, =13m—-241m=-0.88m R, =129 m+3.19m=448m

Notice that components pointing in the negative direction must be assigned a negative value.
The resultant is shown in Fig. 1.7(c); there, we see that

R= \/(0.88 m)? + (448 m)> =4.6 m tan ¢ =

and ¢ = 79°, from which § = 180° — ¢ = 101°. Hence R =4.6 m—101° FroM +x-AX1s; remember vectors
must have their directions stated explicitly.
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YA Ay y
4.0 m ﬁ
2.0m (4.0 m) sin 53°
=3.19m 4.48 m
(2.0 m) sin 40°
=129m
o 127° 0

o 40 530 ¢ R
(2.0 m) cos 40° =1.53 m * (4.0 m) cos 53°=2.41m x 0.88 m X

(@) (b) (c)

Fig. 1-7

1.4  Add the following two force vectors by use of the parallelogram method: 30 N at 30° and 20 N at
140°. Remember that numbers like 30 N and 20 N have two significant figures.

The force vectors are shown in Fig. 1-8(a). We construct a parallelogram using them as sides, as shown

in Fig. 1-8(b). The resultant R is then represented by the diagonal. By measurement, we find that R is 30 N at
72°.

140° 30N

Fig. 1-8

1.5  Four coplanar forces act on a body at point O as shown in Fig. 1-9(a). Find their resultant
graphically.

Starting from O, the four vectors are plotted in turn as shown in Fig. 1-9(b). We place the tail end of
each vector at the tip end of the preceding one. The arrow from O to the tip of the last vector represents the
resultant of the vectors.

20°1 110
100 N 160
110N 30° /
30°/ \45° R 100
20° 80N X
| 0 0 45°
160 N 80
(@) (b)

Fig. 1-9
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We measure R from the scale drawing in Fig. 1-9(b) and find it to be 119 N. Angle « is measured by
protractor and is found to be 37°. Hence the resultant makes an angle § = 180° — 37° = 143° with the
positive x-axis. The resultant is 119 N at 143°.

1.6  The five coplanar forces shown in Fig. 1-10(a) act on an object. Find their resultant.

(1) First we find the x- and y-components of each force. These components are as follows:

Force x-Component y-Component

19.0 N 19.0 N 0N

150 N (15.0 N) cos 60.0° = 7.50 N (15.0 N) sin 60.0° = 13.0 N
16.0 N —(16.0 N) cos 45.0° = —11.3 N (16.0 N) sin 45.0° = 11.3 N
11.0N —(11.0 N) cos 30.0° = —9.53 N —(11.0 N) sin 30.0° = —5.50 N
220N 0N —22.0 N

Notice the + and — signs to indicate direction.

(2) The resultant R has components R, = ¥ F, and R, = ¥ F,, where we read X F, as “the sum of all the x-
force components.” We then have

R, =190N+750N—-113N-953N+0N=+57N
R,=0N+13.0N+113N-550N~-220N=-32N

R=\/R:+R}=65N

(4) Finally, we sketch the resultant as shown in Fig. 1-10(b) and find its angle. We see that

32N
tan ¢ = ﬂ =0.56
from which ¢ =29°. Then 6= 360°—29° = 331°. The resultant is 6.5 N at 331° (or —29°) or
R = 6.5 N—331° FROM +X-AXIS.

(3) The magnitude of the resultant is

y VA
150N
160N

45.0° \6("0 0 \ 57N
— —_—
30.0° 190N x P %
11.0N > 32N

R
220N

Fig. 1-10
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1.7

1.8

1.9

Solve Problem 1.5 by use of the component method. Give your answer for the magnitude to two
significant figures.

The forces and their components are:

Force x-Component y-Component

80 N 80 N 0

100 N (100 N) cos 45° =71 N (100 N) sin 45° =71 N
110 N —(110 N) cos 30° = —95 N (110 N) sin 30° =55 N
160 N —(160 N) cos 20° = —150 N —(160 N) sin 20° = =55 N

Notice the sign of each component. To find the resultant, we have

R, =SF,=80N+7I N-95N—150 N=—-94 N
R =%F,=04+7IN+55N-5N=71N

The resultant is shown in Fig. 1-11; there, we see that
R=1/(94 N’ + (71 N)> = 1.2 x 10> N

Further, tana = (71 N)/(94 N), from which o = 37°. Therefore the resultant is 118 N at 180° — 37° = 143°
or R = 118 N—143° FROM +X-AXIs.

R 100N

30N
71N

94 N X

Fig. 1-11 Fig. 1-12

A force of 100 N makes an angle of # with the x-axis and has a scalar y-component of 30 N. Find
both the scalar x-component of the force and the angle . (Remember that the number 100 N has
three significant figures whereas 30 N has only two.)

The data are sketched roughly in Fig. 1-12. We wish to find F, and 6. We know that
30 N
100 N
0 = 17.46°, and thus, to two significant figures, # = 17°. Then, using the cos #, we have

F, = (100 N) cos 17.46° = 95 N

sin 6 = =0.30

A child pulls on a rope attached to a sled with a force of 60 N. The rope makes an angle of 40° to
the ground. (a) Compute the effective value of the pull tending to move the sled along the ground.
(b) Compute the force tending to lift the sled vertically.
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As shown in Fig. 1-13, the components of the 60 N force are 39 N and 46 N. (a) The pull along the
ground is the horizontal component, 46 N. (b) The lifting force is the vertical component, 39 N.

F,=60sin40°=39 N
60 N :

40°
F,. =60 cos 40° =46 N X

Fig. 1-13 Fig. 1-14

1.10 A car whose weight is F} is on a ramp which makes an angle 6 to the horizontal. How large a
perpendicular force must the ramp withstand if it is not to break under the car’s weight?

As shown in Fig. 1-14, the car’s weight is a force Fy, that pulls straight down on the car. We take
components of F along the incline and perpendicular to it. The ramp must balance the force component
Fy, cos @ if the car is not to crash through the ramp.

1.11  Express the forces shown in Figs. 1-7(c), 1-10(b), 1-11, and 1-13 in the form R = R,i + R}j + Rk
(leave out the units).

Remembering that plus and minus signs must be used to show direction along an axis, we can write

=L

For Fig. 1-7(c): = —0.88i + 4.48j
For Fig. 1-10(h): R =5.7i—32j
For Fig. 1-11: R = —94i + 71j
For Fig. 1-13: R = 46i + 39j

1.12° Three forces that act on a particle are given by F, = (205 —36j+ 7312) N,
F, = (—17i + 21j — 46k) N, and F; = (—12k) N. Find their resultant vector. Also find the mag-
nitude of the resultant to two significant figures.

We know that

R,=YXF, =20N-17N+0N=3N
R, =%F,=-3N+2IN+0N=—-15N
R.=SF.=73N—-4N—-12N=15N

Since R = in + Ryj + R.k, we find
R =3i— 15+ 15k
To two significant figures, the three-dimensional pythagorean theorem then gives

R=\/R:+ R+ R}=+459 =21 N
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1.13

1.14

1.15

1.16

Perform graphically the following vector additions and subtractions, where A, B, and C are the
vectors shown in Fig. 1-15: () A+B; (b)) A+ B+C; (c)A—B; (d) A+B—C.

See Fig. 1-15(a) through (d). In (c), A — B = A + (—B); that is, to subtract B from A, reverse the
direction of B and add it vectorially to A. Similarly, in (d), A+ B — C = A + B + (—C), where —C is equal
in magnitude but opposite in direction to C.

S
. B B
A , i o
< + B
1e8 . -B
- A e
B T A /
A-B
(@) (b) () (d)
Fig. 1-15

If A = —12i + 25j+ 13k and B = —3j + 7k, find the resultant when A is subtracted from B.
From a purely mathematical approach, we have
B — A = (=3j+ 7k) — (—12i + 25) + 13k)
= —3j+ 7k 4 12i — 25j — 13k = 12i — 28j — 6k

Notice that 12i — 25j — 13k is simply A reversed in direction. Therefore we have, in essence, reversed A and
added it to B.

A boat can travel at a speed of 8 km/h in still water on a lake. In the flowing water of a stream, it
can move at 8§ km/h relative to the water in the stream. If the stream speed is 3 km/h, how fast can
the boat move past a tree on the shore when it is traveling (a) upstream and (b) downstream?

(a) If the water was standing still, the boat’s speed past the tree would be 8 km/h. But the stream is
carrying it in the opposite direction at 3 km/h. Therefore the boat’s speed relative to the tree is
8 km/h — 3 km/h = 5 km/h.

(b) In this case, the stream is carrying the boat in the same direction the boat is trying to move. Hence its
speed past the tree is 8 km/h + 3 km/h = 11 km/h.

A plane is traveling eastward at an airspeed of 500 km/h. But a 90 km/h wind is blowing south-
ward. What are the direction and speed of the plane relative to the ground?

The plane’s resultant velocity is the sum of two velocities, 500 km/h—©gasT and 90 km/h — souTH.
These component velocities are shown in Fig. 1-16. The plane’s resultant velocity is then

R= /(500 km/h)® + (90 km/h)’ = 508 km/h
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1.17

1.18

1.19

1.20

1.21

1.22

1.23

INTRODUCTION TO VECTORS [CHAP. 1
N N
500 km/h
90 km/h
500 km/h 0 = _
-, — - >
a E R E
~ 90 km/h
R
Fig. 1-16 Fig. 1-17
The angle « is given by
90 km/h
t =———=0.18
M@ =500 km/h

from which a = 10°. The plane’s velocity relative to the ground is 508 km/h at 10° south of east.

With the same airspeed as in Problem 1.16, in what direction must the plane head in order to
move due east relative to the Earth?

The sum of the plane’s velocity through the air and the velocity of the wind will be the resultant velocity
of the plane relative to the Earth. This is shown in the vector diagram in Fig. 1-17. Notice that, as required,
the resultant velocity is eastward. Keeping in mind that the wind speed is given to two significant figures, it is
seen that sin § = (90 km/h)(500 km/h), from which § = 10°. The plane should head 10° north of east if it is
to move eastward relative to the Earth.

To find the plane’s eastward speed, we note in the figure that R = (500 km/h) cos 6 = 4.9 x 10° m/h.

Supplementary Problems

Starting from the center of town, a car travels east for 80.0 km and then turns due south for another 192 km,
at which point it runs out of gas. Determine the displacement of the stopped car from the center of
town. Ans. 208 km—67.4° SOUTH OF EAST

A little turtle is placed at the origin of an xy-grid drawn on a large sheet of paper. Each grid box is 1.0 cm by
1.0 cm. The turtle walks around for a while and finally ends up at point (24, 10), that is, 24 boxes along the
x-axis, and 10 boxes along the y-axis. Determine the displacement of the turtle from the origin at the
point. Ans. 26 cm—23° ABOVE X-AXIS

A bug starts at point 4, crawls 8.0 cm east, then 5.0 cm south, 3.0 cm west, and 4.0 cm north to point B.
(a) How far north and east is B from A4? (b) Find the displacement from 4 to B both graphically and
algebraically. Ans.  (a) 5.0 cm—EAsT, 1.0 cm —NORTH; (b) 5.10 cm — 11.3° SOUTH OF EAST

Find the scalar x- and y-components of the following displacements in the xy-plane: (¢) 300 cm at 127° and
(b) 500 cm at 220°. Ans.  (a) —180 cm, 240 cm; (b) —383 cm, —321 cm

Two forces act on a point object as follows: 100 N at 170.0° and 100 N at 50.0°. Find their resultant.
Ans. 100 N at 110°

Starting at the origin of coordinates, the following displacements are made in the xy-plane (that is, the
displacements are coplanar): 60 mm in the +y-direction, 30 mm in the —x-direction, 40 mm at 150°, and
50 mm at 240°. Find the resultant displacement both graphically and algebraically. Ans. 97 mm at 158°
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1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

Compute algebraically the resultant of the following coplanar forces: 100 N at 30°, 141.4 N at 45°, and
100 N at 240°. Check your result graphically. Ans.  0.15 kN at 25°

Compute algebraically the resultant of the following coplanar displacements: 20.0 m at 30.0°, 40.0 m at
120.0°, 25.0 m at 180.0°, 42.0 m at 270.0°, and 12.0 m at 315.0°. Check your answer with a graphical
solution. Ans.  20.1 m at 197°

Two forces, 80 N and 100 N acting at an angle of 60° with each other, pull on an object. (¢) What single
force would replace the two forces? (b) What single force (called the equilibrant) would balance the two
forces? Solve algebraically. Ans.  (a) R: 0.16 kN at 34° with the 80 N force; (b) —R: 0.16 kN at 214° with
the 80 N force

Find algebraically the (a) resultant and (b) equilibrant (see Problem 1.26) of the following coplanar forces:
300 N at exactly 0°, 400 N at 30°, and 400 N at 150°. Ans.  (a) 0.50 kN at 53°; (b) 0.50 kN at 233°

What displacement at 70° has an x-component of 450 m? What is its y-component? Ans. 1.3 km,
1.2 km

What displacement must be added to a 50 cm displacement in the +x-direction to give a resultant displace-
ment of 85 cm at 25°? Ans. 45 cm at 53°

Refer to Fig. 1-18. In terms of vectors A and B, express the vectors (a) B, (b) R, (¢) S, and (d) Q.
Ans. (a) A+B; (b)) B; (¢) =A; (d) A — B

R B
- = 6
Q P
A . A
S
E
— D
B
Fig. 1-18 Fig. 1-19

Refer to Fig. 1-19. In terms of vectors A and B, express the vectors (a) E, (b)) D—C, and (c)
E+D—-C.  Ans. (a) —A—Bor —(A+B); (b) &; (c) —B

A child is holding a wagon from rolling straight back down a driveway that is inclined at 20° to the
horizontal. If the wagon weighs 150 N, with what force must the child pull on the handle if the handle is
parallel to the incline? Ans. S1' N

Repeat Problem 1.32 if the handle is at an angle of 30° above the incline. Ans. 59 N

Find (¢) A+ B+ C, () A — B, and (¢) A — C if A = 7i — 6}, B = —3i + 12j, and C = 4i — 4].
Ans. (a) 8i+ 2j; (b) 10i — 18f; (c) 3i — 2

Find the magnitude and angle of R if R = 7.0i — 12j.  Ans. 14 at —60°
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1.36

1.37

1.38

1.39

1.40

1.41
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Determine the displacement vector that must be added to the displacement (25§ — 16}) m to give a displace-
ment of 7.0 m pointing in the +x-direction? Ans. (—18i+ 16j) m

A force (15i — 16j + 27k) N is added to a force (23j — 40k) N. What is the magnitude of the resultant?
Ans. 21 N

A truck is moving north at a speed of 70 km/h. The exhaust pipe above the truck cab sends out a trail of
smoke that makes an angle of 20° east of south behind the truck. If the wind is blowing directly toward the
east, what is the wind speed at that location? Ans. 25 km/h

A ship is traveling due east at 10 km/h. What must be the speed of a second ship heading 30° east of north if
it is always due north of the first ship? Ans. 20 km/h

A boat, propelled so as to travel with a speed of 0.50 m/s in still water, moves directly across a river that is
60 m wide. The river flows with a speed of 0.30 m/s. (a¢) At what angle, relative to the straight-across
direction, must the boat be pointed? (b) How long does it take the boat to cross the river?
Ans. (a) 37° upstream; (b) 1.5 x 10% s

A reckless drunk is playing with a gun in an airplane that is going directly east at 500 km/h. The drunk
shoots the gun straight up at the ceiling of the plane. The bullet leaves the gun at a speed of 1000 km/h.
According to someone standing on the Earth, what angle does the bullet make with the vertical?
Ans.  26.6°



Chapter 2

Uniformly Accelerated Motion

SPEED is a scalar quantity. If an object takes a time interval ¢ to travel a distance /, then

total distance traveled
time taken

Average speed =

or

/

Vg = 7

Here the distance is the total (along-the-path) length traveled. This is what a car’s odometer reads.

VELOCITY is a vector quantity. If an object undergoes a vector displacement s in a time interval
t, then

vector displacement
time taken

Average velocity =

vy =
V[I’U -

~ | »n|

The direction of the velocity vector is the same as that of the displacement vector. The units of velocity
(and speed) are those of distance divided by time, such as m/s or km/h.

ACCELERATION measures the time rate-of-change of velocity:

change in velocity vector
time taken

Average acceleration =

—

Ve —,
SN
a,,

T

where V; is the initial velocity, v is the final velocity, and 7 is the time interval over which the change
occurred. The units of acceleration are those of velocity divided by time. Typical examples are (m/s)/s (or
m/s?) and (km/h)/s (or km/h-s). Notice that acceleration is a vector quantity. It has the direction of
v, —¥;, the change in velocity. It is nonetheless commonplace to speak of the magnitude of the accel-
eration as just the acceleration, provided there is no ambiguity.

UNIFORMLY ACCELERATED MOTION ALONG A STRAIGHT LINE is an important situa-
tion. In this case, the acceleration vector is constant and lies along the line of the displacement
vector, so that the directions of v and a can be specified with plus and minus signs. If we repre-
sent the displacement by s (positive if in the positive direction, and negative if in the negative
direction), then the motion can be described with the five equations for uniformly accelerated mo-
tion:

13
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S:,U[I’Ut
Ut

Vo = P
vy — v
P

v} = vf + 2as
s = v;t +%a12

Often s is replaced by x or y, and sometimes v, and v; are written as v and v,, respectively.

DIRECTION IS IMPORTANT, and a positive direction must be chosen when analyzing motion
along a line. Either direction may be chosen as positive. If a displacement, velocity, or accelera-
tion is in the opposite direction, it must be taken as negative.

INSTANTANEOUS VELOCITY is the average velocity evaluated for a time interval that ap-
proaches zero. Thus, if an object undergoes a displacement AS in a time At¢, then for that object
the instantaneous velocity is

—

. AS
im —
Ar—0 At
where the notation means that the ratio AS/A¢ is to be evaluated for a time interval A¢ that approaches
Zero.

V:

GRAPHICAL INTERPRETATIONS for motion along a straight line (the x-axis) are as follows:

o The instantaneous velocity of an object at a certain time is the slope of the displacement versus time
graph at that time. It can be positive, negative, or zero.

o The instantaneous acceleration of an object at a certain time is the slope of the velocity versus time
graph at that time.

e For constant-velocity motion, the x-versus-z graph is a straight line. For constant-acceleration
motion, the v-versus-7 graph is a straight line.

e In general (i.e., one-, two-, or three-dimensional motion) the slope at any moment of the distance-
versus-time graph is the speed.

ACCELERATION DUE TO GRAVITY (g): The acceleration of a body moving only under the
force of gravity is g, the gravitational (or free-fall) acceleration, which is directed vertically down-
ward. On Earth, g =9.81m/s? (i.e., 32.2 ft/s?); the value varies slightly from place to place. On
the Moon, the free-fall acceleration is 1.6 m/s>.

VELOCITY COMPONENTS: Suppose that an object moves with a velocity v at some angle 6
up from the x-axis, as would initially be the case with a ball thrown into the air. That velocity
then has x and y vector components (see Fig. 1-4) of ¥, and ¥,. The corresponding scalar compo-
nents of the velocity are

vy = v cos 6 and v, = v sin 6
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and these can turn out to be positive or negative numbers, depending on 6. As a rule, if ¥ is in the first
quadrant, v, > 0 and v, > 0; if ¥ is in the second quadrant, v, <0 and v, > 0; if V is in the third
quadrant, v, < 0 and v, < 0; finally, if v is in the fourth quadrant, v, > 0 and v, < 0. Because these
quantities have signs, and therefore implied directions along known axes, it is common to refer to them
as velocities. The reader will find this usage in many texts, but it is not without pedagogical drawbacks.
Instead, we shall avoid applying the term ‘““velocity” to anything but a vector quantity (written in
boldface with an arrow above) whose direction is explicitly stated. Thus for an object moving with a
velocity v = 100 m/s— WEsT, the scalar value of the velocity along the x-axis is v, = —100 m/s; and the
(always positive) speed is v = 100 m/s.

PROJECTILE PROBLEMS can be solved easily if air friction can be ignored. One simply con-
siders the motion to consist of two independent parts: horizontal motion with a=0 and
Uy = U; = Vg (i.€., constant speed), and vertical motion with a = g = 9.81 m/s> downward.

Solved Problems

2.1 Change the speed 0.200 cm/s to units of kilometers per year.

m (0300 (10757 (3600 2) (2420 (3654 — 3.1
0.200 s = (0.200 /s/) (10 (;ni) (3600/1{) (24/@1,) (365 y) =63.1 y

2.2 A runner makes one lap around a 200-m track in a time of 25 s. What were the runner’s (a)
average speed and (b) average velocity?

(a) From the definition,

distance traveled 200 m

Average speed = =8.0m/s

time taken 25

(b) Because the run ended at the starting point, the displacement vector from starting pont to end point has
zero length. Since v, =§/1,
0 m

‘va’u| :f_om/s

2.3 An object starts from rest with a constant acceleration of 8.00 m/s* along a straight line. Find (a)
the speed at the end of 5.00 s, (b) the average speed for the 5-s interval, and (¢) the distance
traveled in the 5.00 s.

We are interested in the motion for the first 5.00 s. Take the direction of motion to be the +x-direction
(that is, s = x). We know that v; =0, t=15.00 s, and a = 8.00 m/sz. Because the motion is uniformly
accelerated, the five motion equations apply.

(a) v = vy +at = 0+ (8.00 m/s%)(5.00 s) = 40.0 m/s
ix X 40.
(h) vm,:U' —;Uf“ :0+200 m/s =20.0 m/s

(¢)  x=wut+La =0+1(8.00m/s?)(5.005)> =100 m or x=uv,=(20.0 m/s)(5.00s) =100 m
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A truck’s speed increases uniformly from 15 km/h to 60 km/h in 20 s. Determine (@) the average
speed, (b) the acceleration, and (¢) the distance traveled, all in units of meters and seconds.

For the 20 s trip under discussion, taking +x to be in the direction of motion, we have

(1) (1000 ™Y (L)

v = 60 km/h = 16.7 m/s

(a) Vg = 3(Vix + vp) = 3(4.17+16.7) m/s = 10 m/s
v — v (16.7-417)m/s )

(b) a=———= 50 =0.63 m/s

(¢) X = vt = (10.4 m/s)(20 s) =208 m = 0.21 km

A car moves in a straight line and its odometer readings are plotted against time in Fig. 2-1. Find
the instantaneous speed of the car at points 4 and B. What is the car’s average speed? What is its
acceleration?

15—
g L
3 10 B B
g [
a [
5.0 — f
- A }
- }Ax =4.0m
| At=80s.
0 R T
0 10 20
Time (s)
Fig. 2-1

Because the speed is given by the slope Ax/Ar of the tangent line, we take a tangent to the curve at
point A. The tangent line is the curve itself in this case. For the triangle shown at 4, we have

Ax 4.0m

AT 808 " 0.50 m/s

This is also the speed at point B and at every other point on the straight-line graph. It follows that ¢ = 0 and
v, = 0.50 m/s = vy,

An object’s one-dimensional motion along the x-axis is graphed in Fig. 2-2. Describe its motion.

The velocity of the object at any instant is equal to the slope of the displacement—time graph at the point
corresponding to that instant. Because the slope is zero from exactly 1 =0s to t =2.0 s, the object is
standing still during this time interval. At t = 2.0 s, the object begins to move in the +x-direction with
constant-velocity (the slope is positive and constant). For the interval t =2.0sto t =4.0 s,
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2.7

Displacement along the x-axis (m)

2.8

ﬂj_x/ﬂ—xi_3.0m—0m_3.0m
run Iy — 1 T 40s—-20s 20s

Vgp = slope = =1.5m/s
The average velocity is then v,, = 1.5 m/S— POSITIVE X-DIRECTION.

During the interval 1 = 4.0 s to t = 6.0 s, the object is at rest; the slope of the graph is zero and x does
not change for that interval.

From t=6.0 s to 1 =10 s and beyond, the object is moving in the —x-direction; the slope and the
velocity are negative. We have
Xr—x; —20m-30m —50m

, = sl == = B
Uy, = slope =10 100s—6.0s 4.0 s

=—-13m/s

The average velocity is then v,, = 1.3 m/S— NEGATIVE X-DIRECTION.

The vertical motion of an object is graphed in Fig. 2-3. Describe its motion qualitatively, and find
its instantaneous velocity at points 4, B, and C.

B P
I
—~ 12F ;
E L | B
w |
v | |
i 10 - i ; C
g | | |
it S+ | I
VA
= } |
\ g oF ! D
12 g - !
Time (s) g 4l !
B R 1
A At
777777777777777777777777777 2
0 T R T N T L
10 15
Time (s)
Fig. 2-2 Fig. 2-3

Recalling that the instantaneous velocity is given by the slope of the graph, we see that the object is
moving fastest at # = 0. As it rises, it slows and finally stops at B. (The slope there is zero.) Then it begins to
fall back downward at ever-increasing speed.

At point A4, we have
Ay 120m-3.0m _9.0m
At 40s-0s  40s

The velocity at A is positive, so it is in the +y-direction: ¥, = 2.3 m/s— up. At points B and C,

v, = slope = =23m/s

vg = slope = 0m/s
Ay 55m-13.0m _-7.5m

Ve =slope = = e e sy T 65 2 m/s

Because it is negative, the velocity at C is in the —y-direction: Vo = 1.2 m/s— powN. Remember that velocity
is a vector quantity and direction must be specified explicitly.

A ball is dropped from rest at a height of 50 m above the ground. (¢) What is its speed just before
it hits the ground? () How long does it take to reach the ground?
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If we can ignore air friction, the ball is uniformly accelerated until it reaches the ground. Its acceleration
is downward and is 9.81 m/s>. Taking down as positive, we have for the trip:

y=50.0m a=9.81 m/s® v; =0

(a) vjz'-v = v,z}, +2ay = 0+ 2(9.81 m/s*)(50.0 m) = 981 m*/s*
and so vy = 31.3 m/s.
(b) From a = (v, —vy)/t,
ke (31.3—0)m/s:3.19S
a 9.81m/s?

(We could just as well have taken up as positive. How would the calculation have been changed?)

A skier starts from rest and slides 9.0 m down a slope in 3.0 s. In what time after starting will the
skier acquire a speed of 24 m/s? Assume that the acceleration is constant.

We must find the skier’s acceleration from the data concerning the 3.0 s trip. Taking the direction of
motion as the +x-direction, we have t = 3.0 s, v;, =0, and x = 9.0 m. Then x = v, + %at2 gives
2x 18m
=S5 =T a2— 2.0m/s2
t (3.0s)
We can now use this value of a for the longer trip, from the starting point to the place where
v = 24 m/s. For this trip, v, =0, vy =24 m/s, a = 2.0 m/s”. Then, from vy = v; +at,

_ Ux— U 24m/s

A bus moving at a speed of 20 m/s begins to slow at a constant rate of 3.0 m/s each second. Find
how far it goes before stopping.

Take the direction of motion to be the +x-direction. For the trip under consideration, v; = 20 m/s,
v =0m/s,a=-3.0 m/s’. Notice that the bus is not speeding up in the positive motion direction. Instead, it
is slowing in that direction and so its acceleration is negative (a deceleration). Use
v_%x = ’U%,( + 2ax
—(20m/s)*

. =17 _—67
to find Y 2(—3.0m/s?) m

A car moving at 30 m/s slows uniformly to a speed of 10 m/s in a time of 5.0 s. Determine (a) the
acceleration of the car and (b) the distance it moves in the third second.

Let us take the direction of motion to be the +x-direction.

(a) For the 5.0 s interval, we have ¢ = 5.0 s, v;, = 30 m/s, v, = 10 m/s. Using vy = v;, + at gives

~(10-30) m/s )
a= 50s =—-4.0m/s
(b) x = (distance covered in 3.0 s) — (distance covered in 2.0s)

X = (vixt3 +%at%) - (vixt2 +%a[%)
x = vty — 1) +5a(53 — )
Using v, =30 m/s, a = —4.0 m/s>, 1, =2.0's, 13 = 3.0 s gives

x = (30 m/s)(1.0 s) — (2.0m/s%)(5.0 s*) = 2.0m
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2.12

2.13

2.14

The speed of a train is reduced uniformly from 15 m/s to 7.0 m/s while traveling a distance of
90 m. (@) Compute the acceleration. (b)) How much farther will the train travel before coming to
rest, provided the acceleration remains constant?

Let us take the direction of motion to be the +x-direction.
(@) We have v;, = 15 m/s, v = 7.0 m/s, x = 90 m. Then v%v = ’U,Zx + 2ax gives
a=—0.98 m/s*
(b) We now have the new conditions v;, = 7.0 m/s, vy =0, a = —0.98 m/s>. Then

2 2
U = Vi + 2ax

gives X=————>—=25m

A stone is thrown straight upward and it rises to a height of 20 m. With what speed was it
thrown?

Let us take up as the positive y-direction. The stone’s velocity is zero at the top of its path. Then vy, = 0,
y=20m, a = —9.81m/s>. (The minus sign arises because the acceleration due to gravity is always down-
ward and we have taken up to be positive.) We use v%‘, = ’U,z} + 2ay to find

vy = \/~2(-9.81 m/s?)(20 m) =20 m/s

A stone is thrown straight upward with a speed of 20 m/s. It is caught on its way down at a point
5.0 m above where it was thrown. («) How fast was it going when it was caught? () How long did
the trip take?

The situation is shown in Fig. 2-4. Let us take up as positive. Then, for the trip that lasts from the
instant after throwing to the instant before catching, v, = 20 m/s, y = +5.0 m (since it is an upward dis-
placement), a = —9.81 m/s?.

here
5.0m
A
20 m/s
o

Fig. 2-4
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(a) We use v%-v = v,g}, + 2ay to find
v, = (20 m/s)” +2(—9.81 m/s?)(5.0 m) = 302 m*/s’

Uf} = i\/302 1'1'12/52 =17 m/S

We take the negative sign because the stone is moving downward, in the negative direction, at the final
instant.

(b)) We use a = (v — vy,)/t to find
(=17.4—-20) m/s
—9.81 m/s?

Notice that we retain the minus sign on vy,

3.8s

2.15 A ball that is thrown vertically upward on the Moon returns to its starting point in 4.0 s. The
acceleration due to gravity there is 1.60 m/s*> downward. Find the ball’s original speed.

Let us take up as positive. For the trip from beginning to end, y = 0 (it ends at the same level it started
at), a = —1.60 m/s*, 1 = 4.0 s. We use y = v, ¢ + Sar* to find

0 =v;,(4.0 5) +1(~1.60 m/s*)(4.0 s)

from which v;, = 3.2 m/s.

2.16 A baseball is thrown straight upward on the Moon with an initial speed of 35 m/s. Compute (@)
the maximum height reached by the ball, (b) the time taken to reach that height, (¢) its velocity
30 s after it is thrown, and (d ) when the ball’s height is 100 m.

Take up as positive. At the highest point, the ball’s velocity is zero.
(a) From v,zy = v,z‘ + 2ay we have, since g = 1.60 m/s? on the Moon,
0=(35m/s)*+2(-1.60 m/s?)y or  y=0.38 km
(b) From vy = v, + at we have
0=35m/s+ (—=1.60 m/s*)t or (=225
(¢) From vy = v, + at we have
v =35m/s+ (—1.60 m/s*)(30s)  or vy =—13m/s

Because vy is negative and we are taking up as positive, the velocity is directed downward. The ball is on
its way down at 1 = 30 s.

(d) From y = v, +Lar* we have
100 m = (35 m/s)t +1(~1.60 m/s*)*  or  0.807 — 354100 =0

By use of the quadratic formula,

e —b+ Vb2 —4dac
o 2a

we find t = 3.1 s and 41 s. At ¢t = 3.1 s the ball is at 100 m and ascending; at t = 41 s it is at the same
height but descending.

2.17 A ballast bag is dropped from a balloon that is 300 m above the ground and rising at 13 m/s. For
the bag, find (a) the maximum height reached, (b) its position and velocity 5.0 s after it is released,
and (c) the time at which it hits the ground.
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The initial velocity of the bag when released is the same as that of the balloon, 13 m/s upward. Let us
choose up as positive and take y = 0 at the point of release.

(a) At the highest point, v, = 0. From p%»v = vﬁ + 2ay,
0=(13m/s)* +2(-9.81 m/s*)y or y=86m

The maximum height is 300 + 8.6 = 308.6 m or 0.31 km.
(b) Take the end point to be its position at ¢ = 5.0 s. Then, from y = v;,¢ + %atz,

y=(13m/s)(5.0 s) +1(-9.81 m/s?)(5.0 s)> = —57.5mor —58 m
So its height is 300 — 58 = 242 m. Also, from vg, = v;, + at,
v = 13 m/s + (=9.81 m/s?)(5.0 s) = —36 m/s
It is on its way down with a velocity of 36 m/s — DOWNWARD.
(¢) Just as it hits the ground, the bag’s displacement is —300 m. Then
y:U,-yt—i-%azz becomes —300m = (13 m/s)t +%(—9.81 m/s?)r
or 4.907 — 13t — 300 = 0. The quadratic formula gives ¢ = 9.3 s and —6.6 s. Only the positive time has
physical meaning, so the required answer is 9.3 s.

We could have avoided the quadratic formula by first computing vy:
vfy = v%, + 2as becomes 1{%‘, = (13 m/s)* +2(—9.81 m/s?)(—300 m)

so that v = +77.8 m/s. Then, using the negative value for v; (Why?) in v, = v+ at gives t = 9.3 s, as
before.

2.18 Asshown in Fig. 2-5, a projectile is fired horizontally with a speed of 30 m/s from the top of a cliff
80 m high. (¢) How long will it take to strike the level ground at the base of the cliff? (b) How far
from the foot of the cliff will it strike? (¢) With what velocity will it strike?

v,=30m/s
O\\\\
80 m
X \\O 30 m/s
o
|
40m/s| |
|
|
|
|
Fig. 2-5

(a) The horizontal and vertical motions are independent of each other. Consider first the vertical motion.
Taking up as positive and y = 0 at the top of the cliff, we have

Y=t + %ayt2

or —80m = 0+1(-9.81 m/s*)7

from which 1 =4.04 s or 4.0 s. Notice that the initial velocity had zero vertical component and so
v; = 0 for the vertical motion.
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(b) Now consider the horizontal motion. For it, a = 0 and so v, = v;, = v = 30 m/s. Then, using the
value of ¢ found in (a), we have

x =wv,t = (30 m/s)(4.04 s) = 121 m or 0.12 km

(¢) The final velocity has a horizontal component of 30 m/s. But its vertical component at 1 = 4.04 s is
given by vy, = v, + a,t as

vy =0+ (—9.8 m/s%)(4.04 s) = —40 m/s

The resultant of these two components is labeled v in Fig. 2-5; we have

v=1/(40 m/s)’ + (30 m/s)> = 50 m/s

The angle 6 as shown is given by tan 6 = 40/30 and is 53°. Hence, v = 50 m/s— 53° BELOW X-AXIS.

2.19 A stunt flier is moving at 15 m/s parallel to the flat ground 100 m below, as shown in Fig. 2-6.
How large must the distance x from plane to target be if a sack of flour released from the plane is
to strike the target?

15 m/s

100 m
Target

Fig. 2-6

Following the same procedure as in Problem 2.18, we use y = v;,t + %a},zz to get
—100 m = 0+ 3 (—9.81 m/s?)s or t=452s
Now x = v, ¢ = (15 m/s)(4.52 s) = 67.8 m or 68 m.

2.20 A baseball is thrown with an initial velocity of 100 m/s at an angle of 30.0° above the horizontal,
as shown in Fig. 2-7. How far from the throwing point will the baseball attain its original level?

Fig. 2-7

We divide the problem into horizontal and vertical parts, for which
v;y = v; cos 30.0° = 86.6 m/s and vy, = v; sin 30.0° = 50.0 m/s

where up is being taken as positive.
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In the vertical problem, y = 0 since the ball returns to its original height. Then
y=uvyt+lar  or  0=(50.0m/s)+1(-9.81 m/s’)

and 1 =10.2 s.
In the horizontal problem, v;, = vy = v, = 86.6 m/s. Therefore,

x =t = (86.6 m/s)(10.2 s) =884 m

2.21 As shown in Fig. 2-8, a ball is thrown from the top of one building toward a tall building 50 m
away. The initial velocity of the ball is 20 m/s—40° ABOVE HORIZONTAL. How far above or below
its original level will the ball strike the opposite wall?

20 m/s

40°

Fig. 2-8

We have

v, = (20 m/s) cos 40° = 15.3 m/s

vy = (20 m/s) sin 40° = 12.9 m/s
Consider first the horizontal motion. For it,

Vix = Uy = vy = 15.3 m/s
Then x = vt gives
50 m = (15.3 m/s)¢ or =3.27s
For the vertical motion, taking down as positive, we have
v =yt +La,? = (=129 m/s)(3.27 s) +1(9.81 m/s?)(3.27 s)> = 105 m = 0.11 km

Since y is positive, and since down is positive, the ball will hit at 0.11 km below the original level.

2.22 (a) Find the range x of a gun which fires a shell with muzzle velocity v at an angle of elevation 6.
(b) Find the angle of elevation 6 of a gun which fires a shell with a muzzle velocity of 120 m/s and
hits a target on the same level but 1300 m distant. (See Fig. 2-9.)

(a) Let t be the time it takes the shell to hit the target. Then, x = v;f or ¢ = x/v;.. Consider the vertical
motion alone, and take up as positive. When the shell strikes the target,

Vertical displacement = 0 = v;,¢ + § (—g)¢

Solving this equation gives ¢ = 2v;,/g. But t = x/v;,, so
x 2u,, or e 20,0y, _ 2(v; cos 6)(v; sin )
Vix g g g
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Fig. 2-9

The formula 2 sin 6 cos 6 = sin 20 can be used to simplify this. After substitution, we get
_ v,g sin 20
g
The maximum range corresponds to § = 45°, since sin 26 has a maximum value of 1 when 26 = 90° or
0 =45°.
(b) From the range equation found in (a), we have
2
sin 20 — % _ (9.81 m/s )(13(2)0 m)
v; (120 m/s)
Therefore, 20 = arcsin 0.885 = 62° and so 6 = 31°.

X

= 0.885

Supplementary Problems

Three kids in a parking lot launch a rocket that rises into the air along a 380-m long arc in 40 s. Determine
its average speed. Ans. 9.5 m/s

According to its computer, a robot that left its closet and traveled 1200 m, had an average speed of 20.0 m/s.
How long did the trip take? Ans.  60.0 s

A car’s odometer reads 22687 km at the start of a trip and 22791 km at the end. The trip took 4.0 hours.
What was the car’s average speed in km/h and in m/s? Ans. 26 km/h, 7.2 m/s

An auto travels at the rate of 25 km/h for 4.0 minutes, then at 50 km/h for 8.0 minutes, and finally at
20 km/h for 2.0 minutes. Find («) the total distance covered in km and (b) the average speed for the complete
trip in m/s. Ans.  (a) 9.0 km; (b) 10.7 m/s or 11 m/s

A runner travels 1.5 laps around a circular track in a time of 50 s. The diameter of the track is 40 m and its
circumference is 126 m. Find (a) the average speed of the runner and (b) the magnitude of the runner’s
average velocity. Be careful here; average speed depends on the total distance traveled, whereas average
velocity depends on the displacement at the end of the particular journey.

Ans. (a) 3.8 m/s; (b) 0.80 m/s

During a race on an oval track, a car travels at an average speed of 200 km/h. (a) How far did it travel in
45.0 min? (b) Determine its average velocity at the end of its third lap. Ans. (a) 150 km; (b) zero
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2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

The following data describe the position of an object along the x-axis as a function of time. Plot the data,
and find the instantaneous velocity of the object at (a) t = 5.0's, (b) 16 s, and (c¢) 23 s. Ans.  (a) 0.018
m/s in the positive x-direction; (b) 0 m/s; (¢) 0.013 m/s in the negative x-direction

1(s) ‘ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

x(cm)‘ 0 40 78 11.3 143 168 18.6 19.7 20.0 195 182 162 135 103 6.7

For the object whose motion is described in Problem 2.29, find its velocity at the following times: (a) 3.0 s,
(b) 10s, and (c¢) 24 s. Ans. (a) 1.9 cm/s in the positive x-direction; (b) 1.1 cm/s in the positive
x-direction; (¢) 1.5 cm/s in the negative x-direction

For the object whose motion is plotted in Fig. 2-3, find its instantaneous velocity at the following times:
(a) 1.0 s, (b) 4.0 s, and (¢) 10 s. Ans. (a) 3.3 m/s in the positive y-direction; (») 1.0 m/s in the positive
y-direction; (¢) 0.83 m/s in the negative y-direction

A body with initial velocity 8.0 m/s moves along a straight line with constant acceleration and travels 640 m
in 40 s. For the 40 s interval, find (a) the average velocity, (b) the final velocity, and (c¢) the acceler-
ation. Ans. (a) 16 m/s; (b) 24 m/s; (c) 0.40 m/s2

A truck starts from rest and moves with a constant acceleration of 5.0 m/s>. Find its speed and the distance
traveled after 4.0 s has elapsed. Ans. 20 m/s, 40 m

A box slides down an incline with uniform acceleration. It starts from rest and attains a speed of 2.7 m/s in
3.0 s. Find (a) the acceleration and (b) the distance moved in the first 6.0 s. Ans. () 0.90 m/s*; (b) 16 m

A car is accelerating uniformly as it passes two checkpoints that are 30 m apart. The time taken between
checkpoints is 4.0 s, and the car’s speed at the first checkpoint is 5.0 m/s. Find the car’s acceleration and its
speed at the second checkpoint. Ans. 1.3 m/s’, 10 m/s

An auto’s velocity increases uniformly from 6.0 m/s to 20 m/s while covering 70 m in a straight line. Find the
acceleration and the time taken. Ans. 2.6 m/s*, 5.4 s

A plane starts from rest and accelerates in a straight line along the ground before takeoff. It moves 600 m in
12 s. Find (@) the acceleration, (b) speed at the end of 12 s, and (¢) the distance moved during the twelfth
second. Ans.  (a) 8.3 m/s%; (b) 0.10 km/s; (¢) 96 m

A train running along a straight track at 30 m/s is slowed uniformly to a stop in 44 s. Find the acceleration
and the stopping distance. Ans. —0.68 m/sz, 0.66 km or 6.6 x 10> m

An object moving at 13 m/s slows uniformly at the rate of 2.0 m/s each second for a time of 6.0 s. Determine
(a) its final speed, (b) its average speed during the 6.0 s, and (¢) the distance moved in the 6.0 s.
Ans. (a) 1.0 m/s; (b) 7.0 m/s; (c) 42 m

A body falls freely from rest. Find (a) its acceleration, () the distance it falls in 3.0 s, (c) its speed after falling
70 m, (d) the time required to reach a speed of 25 m/s, and (¢) the time taken to fall 300 m.
Ans. (a) 9.81 m/sz; (b) 44 m; (¢) 37 m/s; (d) 2.6's; (e) 7.8 s

A marble dropped from a bridge strikes the water in 5.0 s. Calculate (a) the speed with which it strikes and
(b) the height of the bridge. Ans. (a) 49 m/s; (b) 0.12 km or 1.2 x 10> m

A stone is thrown straight downward with initial speed 8.0 m/s from a height of 25 m. Find () the time it
takes to reach the ground and (b) the speed with which it strikes. Ans. (a) 1.6 s; (b) 24 m/s
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A baseball is thrown straight upward with a speed of 30 m/s. (¢) How long will it rise? (b) How high will
it rise? (¢) How long after it leaves the hand will it return to the starting point? (¢ ) When will its speed be
16 m/s? Ans. (a) 3.1s; (b) 46 m; (¢) 6.1 s;(d) 1.4sand 4.7 s

A bottle dropped from a balloon reaches the ground in 20 s. Determine the height of the balloon if () it
was at rest in the air and (b) it was ascending with a speed of 50 m/s when the bottle was dropped.
Ans. 2.0 km; (b) 0.96 km

Two balls are dropped to the ground from different heights. One is dropped 1.5 s after the other, but they
both strike the ground at the same time, 5.0 s after the first was dropped. (¢) What is the difference in the
heights from which they were dropped? (b) From what height was the first ball dropped? Ans. (a) 63 m;
() 0.12 km

A nut comes loose from a bolt on the bottom of an elevator as the elevator is moving up the shaft at
3.00 m/s. The nut strikes the bottom of the shaft in 2.00 s. (a) How far from the bottom of the shaft was the
elevator when the nut fell off? (b)) How far above the bottom was the nut 0.25s after it fell off?
Ans. (a) 13.6 m; (b) 14 m

A marble, rolling with speed 20 cm/s, rolls off the edge of a table that is 80 cm high. (¢) How long does it
take to drop to the floor? (b) How far, horizontally, from the table edge does the marble strike the
floor? Ans. (a) 0.40s; (b) 8.1 cm

A body projected upward from the level ground at an angle of 50° with the horizontal has an initial speed of
40 m/s. (a) How long will it take to hit the ground? (b) How far from the starting point will it strike? (c) At
what angle with the horizontal will it strike? Ans. (a) 6.3 s; (b) 0.16 km; (¢) 50°

A body is projected downward at an angle of 30° with the horizontal from the top of a building 170 m high.
Its initial speed is 40 m/s. (@) How long will it take before striking the ground? () How far from the foot of
the building will it strike? (¢) At what angle with the horizontal will it strike? Ans. (a)4.2 s;(b) 0.15 km;
(c) 60°

A hose lying on the ground shoots a stream of water upward at an angle of 40° to the horizontal. The speed
of the water is 20 m/s as it leaves the hose. How high up will it strike a wall which is 8.0 m away?
Ans. 54 m

A World Series batter hits a home run ball with a velocity of 40 m/s at an angle of 26° above the horizontal.
A fielder who can reach 3.0 m above the ground is backed up against the bleacher wall, which is 110 m from
home plate. The ball was 120 cm above the ground when hit. How high above the fielder’s glove does the ball
pass? Ans. 6.0 m

Prove that a gun will shoot three times as high when its angle of elevation is 60° as when it is 30°, but the
bullet will carry the same horizontal distance.

A ball is thrown upward at an angle of 30° to the horizontal and lands on the top edge of a building that is
20 m away. The top edge is 5.0 m above the throwing point. How fast was the ball thrown?
Ans. 20 m/s

A ball is thrown straight upward with a speed v from a point s meters above the ground. Show that the time
taken for the ball to strike the ground is (v/g)[1 + /1 + (2hg/v?)].



Chapter 3

Newton’s Laws

THE MASS of an object is a measure of the inertia of the object. Inertia is the tendency of a
body at rest to remain at rest, and of a body in motion to continue moving with unchanged
velocity. For several centuries, physicists have found it useful to think of mass as a representation
of the amount of or quantity-of-matter.

THE STANDARD KILOGRAM is an object whose mass is defined to be one kilogram. The
masses of other objects are found by comparison with this mass. A gram mass is equivalent to
exactly 0.001 kg.

FORCE, in general, is the agency of change. In mechanics it is that which changes the velocity
of an object. Force is a vector quantity, having magnitude and direction. An external force is one
whose source lies outside of the system being considered.

THE NET EXTERNAL FORCE acting on an object causes the object to accelerate in the direc-
tion of that force. The acceleration is proportional to the force and inversely proportional to the
mass of the object. (We now know from the Special Theory of Relativity that this statement is
actually an excellent approximation applicable to all situations where the speed is appreciably less
than the speed of light, c.)

THE NEWTON is the SI unit of force. One newton (1 N) is that resultant force which will give
a 1kg mass an acceleration of 1m/s?>. The pound is 4.45N.

NEWTON’S FIRST LAW: An object at rest will remain at rest; an object in motion will continue
in motion with constant velocity, except insofar as it is acted upon by an external force. Force is
the changer of motion.

NEWTON’S SECOND LAW: As stated by Newton, the Second Law was framed in terms of
the concept of momentum. This rigorously correct statement will be treated in Chapter 8. Here
we focus on a less fundamental, but highly useful, variation. If the resultant (or net), force F act-
ing on an object of mass m is not zero, the object accelerates in the direction of the force. The
acceleration a is proportional to the force and inversely proportional to the mass of the object.
With F in newtons, m in kilograms, and & in m/s?, this can be written as

a= or F = ma

S|

The acceleration a has the same direction as the resultant force F.

The vector equation F = ma can be written in terms of components as
EEX‘ = may EF‘ = ma}, EFZ = ma,

where the forces are the components of the external forces acting on the object.

27
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NEWTON’S THIRD LAW: Matter interacts with matter — forces come in pairs. For each force
exerted on one body, there is an equal, but oppositely directed, force on some other body interacting
with it. This is often called the Law of Action and Reaction. Notice that the action and reaction
forces act on the two different interacting objects.

THE LAW OF UNIVERSAL GRAVITATION: When two masses m and m’ gravitationally in-
teract, they attract each other with forces of equal magnitude. For point masses (or spherically
symmetric bodies), the attractive force Fg is given by

!/
mm
Fo=G=

. . —11 21,02 o
where r is the distance between mass centers, and where G = 6.67 x 107" N-m~/kg" when F; is in
newtons, m and m' are in kilograms, and r is in meters.

THE WEIGHT of an object (Fy) is the gravitational force acting downward on the object. On
the Earth, it is the gravitational force exerted on the object by the planet. Its units are newtons
(in the SI) and pounds (in the British system). Because the Earth is not a perfect uniform sphere,
and moreover because it’s spinning, the weight measured by a scale will be very slightly different
from that defined above.

RELATION BETWEEN MASS AND WEIGHT: An object of mass m falling freely toward the
Earth is subject to only one force — the pull of gravity, which we call the weight Fy of the
object. The object’s acceleration due to Fj is the free-fall acceleration g. Therefore, F = ma pro-
vides us with the relation between F = Fy,, a =g, and m; it is Fj = mg. Because, on average,
g =9.81m/s> on Earth, a 1.00kg object weighs 9.81 N at the Earth’s surface.

THE TENSILE FORCE (F7) acting on a string or chain or tendon is the applied force tending
to stretch it. The magnitude of the tensile force is the tension (Fr).

THE FRICTION FORCE (ﬁf) is a tangential force acting on an object that opposes the sliding
of that object on an adjacent surface with which it is in contact. The friction force is parallel to
the surface and opposite to the direction of motion or of impending motion. Only when the
applied force exceeds the maximum static friction force will an object begin to slide.

THE NORMAL FORCE (ﬁN) on an object that is being supported by a surface is the compo-
nent of the supporting force that is perpendicular to the surface.

THE COEFFICIENT OF KINETIC FRICTION (u) is defined for the case in which one surface
is sliding across another at constant speed. It is
friction force  Fy

Fk = hormal force  Fy
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THE COEFFICIENT OF STATIC FRICTION () is defined for the case in which one surface
is just on the verge of sliding across another surface. It is

maximum friction force  F;(max)

Hs normal force ~ Fy

where the maximum friction force occurs when the object is just on the verge of slipping but is none-
theless at rest.

DIMENSIONAL ANALYSIS: All mechanical quantities, such as acceleration and force, can be
expressed in terms of three fundamental dimensions: length L, mass M, and time 7. For example,
acceleration is a length (a distance) divided by (time)?; we say it has the dimensions L/T?, which
we write as [LT~2]. The dimensions of volume are [L3], and those of velocity are [LT~!]. Because
force is mass multiplied by acceleration, its dimensions are [MLT~?]. Dimensions are helpful in
checking equations, since each term of an equation must have the same dimensions. For example,
the dimensions of the equation

s = vt +%al2

are [L] — [LT7[T) + [LT)[T?]

so each term has the dimensions of length. Remember, all terms in an equation must have the same
dimensions. As examples, an equation cannot have a volume [L’] added to an area [L?], or a force
[MLT™?] subtracted from a velocity [L7T~']; these terms do not have the same dimensions.

MATHEMATICAL OPERATIONS WITH UNITS: In every mathematical operation, the units
terms (for example, Ib, cm, ft3, mi/h, m/s*) must be carried along with the numbers and must un-
dergo the same mathematical operations as the numbers.

Quantities cannot be added or subtracted directly unless they have the same units (as well as the
same dimensions). For example, if we are to add algebraically 5 m (length) and 8 cm (length), we must
first convert m to cm or cm to m. However, quantities of any sort can be combined in multiplication or
division, in which the units as well as the numbers obey the algebraic laws of squaring, cancellation, etc.
Thus:

(1) 6m>+2m*>=8m?’ (m? + m* — m?)
(2) 5cm x2cm’ =10 cm? (cm x cm® — cm3)
kg kg
(3) 2m’ x 1500 —5 = 3000 kg <m3 xS kg>
km km km km
@ 2sx3 7 =6 (st—z*T)

15 .
(%) —g3:50m3 g3—>g><ﬁ—>cm3
g/cm g
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Solved Problems

Find the weight on Earth of a body whose mass is (a) 3.00 kg, (b) 200 g.

The general relation between mass m and weight Fy, is Fy, = mg. In this relation, m must be in kilo-
grams, g in meters per second squared, and Fy, in newtons. On Earth, ¢ = 9.81 m/s*. The acceleration due to
gravity varies from place to place in the universe.

(a) Fy = (3.00 kg)(9.81 m/s?) = 29.4 kg-m/s> = 29.4 N
) Fy = (0.200 kg)(9.81 m/s*) = 1.96 N

A 20.0 kg object that can move freely is subjected to a resultant force of 45.0 N in the
—x-direction. Find the acceleration of the object.

We make use of the second law in component form, X F, =ma,, with X F, = —45.0 N and
m = 20.0 kg. Then

NF, -450N B 2

a, =

where we have used the fact that 1 N = 1 kg:m/s’>. Because the resultant force on the object is in the
—x-direction, its acceleration is also in that direction.

The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord.

We mentally isolate the object for discussion. Two forces act on it, the upward pull of the cord and the
downward pull of gravity. We represent the pull of the cord by Fyr, the tension in the cord. The pull of
gravity, the weight of the object, is Fjy = 50 N. These two forces are shown in the free-body diagram in Fig.
3-1(b).

=Y

Fy=50N

(b)

Fig. 3-1

The forces are already in component form and so we can write the first condition for equilibrium at
once, taking up and to the right as positive directions:

HYF. =0 becomes 0=0

+1XF, =0 becomes Fr—50N=0

from which Fr = 50 N. Thus, when a single vertical cord supports a body at equilibrium, the tension in the
cord equals the weight of the body.
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3.4 A 5.0 kg object is to be given an upward acceleration of 0.30 m/s2 by a rope pulling straight
upward on it. What must be the tension in the rope?

The free-body diagram for the object is shown in Fig. 3-2. The tension in the rope is F7, and the weight
of the object is Fy = mg = (5.0 kg)(9.81 m/sz) =49.1 N. Using ¥ F,, = ma, with up taken as positive, we
have

Fr —mg = ma, or Fr —49.1 N = (5.0 kg)(0.30 m/s?)

from which F; = 50.6 N = 51 N. As a check, we notice that Fy is larger than Fy, as it must be if the object is
to accelerate upward.

=1
~
ol
3
iy

0 R on?
L F,
o B

(a) ()

Fig. 3-2 Fig. 3-3

3.5 A horizontal force of 140 N is needed to pull a 60.0 kg box across the horizontal floor at constant
speed. What is the coefficient of friction between floor and box? Determine it to three significant
figures even though that’s quite unrealistic.

The free-body diagram for the box is shown in Fig. 3-3. Because the box does not move up or down,
a, = 0. Therefore,

L F, = ma, gives Fy —mg = (m)(0 m/s?)

from which we find that Fy = mg = (60.0 kg)(9.81 m/s*) = 588.6 N. Further, because the box is moving
horizontally at constant speed, a, = 0 and so

Y F, = ma, gives 140 N—-F; =0
from which the friction force is F; = 140 N. We then have

F, 140N
S - =0.238
M= T Ss8 6N 0

3.6  The only force acting on a 5.0 kg object has components F, = 20 N and F, = 30 N. Find the
acceleration of the object.

We make use of ¥ F, = ma, and X F,, = ma, to obtain
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_ _ _ 2
a, p” 50 ke 4.0 m/s
Y F 30 N
_Zy_ 77 _ 2
YT TS0 kg 6.0 m/s

These components of the acceleration are shown in Fig. 3-4. From the figure, we see that
a=1/(4.0)* + (6.0)> m/s* = 7.2 m/s’

and 0 = arctan (6.0/4.0) = 56°.

a,=6.0 m/s>

0

a,=4.0m/s?

Fig. 3-4

3.7 A 600 N object is to be given an acceleration of 0.70 m/sz. How large an unbalanced force must
act upon it?

Notice that the weight, not the mass, of the object is given. Assuming the weight was measured on the
Earth, we use Fy, = mg to find

Fy 600 N

=—=———-=61k
g  9.81m/s? &

Now that we know the mass of the object (61 kg) and the desired acceleration (0.70 m/s*), we have

F =ma = (61 kg)(0.70 m/s*) = 43 N

3.8 A constant force acts on a 5.0 kg object and reduces its velocity from 7.0 m/s to 3.0 m/s in a time
of 3.0 s. Find the force.

We must first find the acceleration of the object, which is constant because the force is constant. Taking
the direction of motion as positive, from Chapter 2 we have
vy—v;  —40m/s

_Y _ 2
a=-—— == 1.33 m/s

Now we can use F = ma with m = 5.0 kg:
F=(50keg)(—-1.33m/s?) = —6.7N

The minus sign indicates that the force is a retarding force, directed opposite to the motion.
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3.9

3.10

3.11

3.12

A 400-g block with an initial speed of 80 cm/s slides along a horizontal tabletop against a friction
force of 0.70 N. (a) How far will it slide before stopping? (b) What is the coefficient of friction
between the block and the tabletop?

(a) We take the direction of motion as positive. The only unbalanced force acting on the block is the
friction force, —0.70 N. Therefore,

Y F=ma becomes —0.70 N = (0.400 kg)(a)

from which a = —1.75 m/sz. (Notice that m is always in kilograms.) To find the distance the block
slides, we have v;, = 0.80 m/s, v = 0, and a = —1.75 m/s”. Then v%x — v} = 2ax gives
U — i (0—0.64) m?/s’

Y= T mye) e

(h) Because the vertical forces on the block must cancel, the upward push of the table Fy must equal the
weight mg of the block. Then

__ friction force 0.70 N _ 018
My T (040 kg)(9.81 m/s?)

A 600-kg car is moving on a level road at 30 m/s. (a¢) How large a retarding force (assumed
constant) is required to stop it in a distance of 70 m? () What is the minimum coefficient of
friction between tires and roadway if this is to be possible? Assume the wheels are not locked, in
which case we are dealing with static friction — there’s no sliding.

(a) We must first find the car’s acceleration from a motion equation. It is known that v;, = 30 m/s, v = 0,
and x = 70 m. We use v/zx = v%x + 2ax to find

U= Uk _ 0= 900 m’/s’

_ 2
X qom ~ oHm/s

Now we can write
F = ma = (600 kg)(—6.43 m/s*) = —3860 N = —3.9 kN

(b) The force found in (a) is supplied as the friction force between the tires and roadway. Therefore, the
magnitude of the friction force on the tires is Fy = 3860 N. The coefficient of friction is given by
us = Fy/Fy, where Fy is the normal force. In the present case, the roadway pushes up on the car
with a force equal to the car’s weight. Therefore,

Fy = Fy = mg = (600 kg)(9.81 m/s*) = 5886 N
_F 3860

that [ S )
so tha b Fy 5386 0.66

The coeflicient of friction must be at least 0.66 if the car is to stop within 70 m.

An 8000-kg engine pulls a 40000-kg train along a level track and gives it an acceleration
a; = 1.20 m/s>. What acceleration (ay) would the engine give to a 16 000-kg train?

For a given engine force, the acceleration is inversely proportional to the total mass. Thus

L, ™M _ 8000 kg +40000 ke
27 m, ' 8000 kg + 16000 kg

(1.20 m/s*) = 2.40 m/s’

As shown in Fig. 3-5(a), an object of mass m is supported by a cord. Find the tension in the cord
if the object is (a) at rest, (b) moving at constant velocity, (c¢) accelerating upward with accelera-
tion a = 3g/2, and (d) accelerating downward at a = 0.75g.
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Two forces act on the object: the tension F7 upward and the downward pull of gravity mg. They are
shown in the free-body diagram in Fig. 3-5(b). We take up as the positive direction and write ¥ F, = ma, in
each case.

(a) a, =0: Fr—mg=ma, =0 or Fr=mg

b) a, =0: Fr—mg=ma, =0 or Fr=mg

(0 a, =3g/2: Fr —mg =m(3g/2) or Fr=25mg
(d) a, = —3g/4 Fr —mg =m(—3g/4) or Fr=0.25mg

Notice that the tension in the cord is less than mg in part (d); only then can the object have a downward
acceleration. Can you explain why Fr =0 if a, = —g?

t@’ 1500 N
o O O

Fy=mg

e
—

>

é<
—

Free-body diagram
(b)

Fig. 3-5 Fig. 3-6

A tow rope will break if the tension in it exceeds 1500 N. It is used to tow a 700-kg car along level
ground. What is the largest acceleration the rope can give to the car? (Remember that 1500 has
four significant figures; see Appendix A.)

The forces acting on the car are shown in Fig. 3-6. Only the x-directed force is of importance, because
the y-directed forces balance each other. Indicating the positive direction with a + sign and a little arrow we
write,

X F =ma,  becomes 1500 N = (700kg)(a)

from which a = 2.14 m/s%.

Compute the least acceleration with which a 45-kg woman can slide down a rope if the rope can
withstand a tension of only 300 N.

The weight of the woman is mg = (45 kg)(9.81 m/s?) = 441 N. Because the rope can support only
300 N, the unbalanced downward force F on the woman must be at least 441 N — 300 N = 141 N. Her
minimum downward acceleration is then

F 141N ,
S L '
m 45 kg m/s

A 70-kg box is slid along the floor by a 400-N force as shown in Fig. 3-7. The coefficient of
friction between the box and the floor is 0.50 when the box is sliding. Find the acceleration of the
box.
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3.16

140 N

—
ool

Fig. 3-7

Since the y-directed forces must balance,
Fy =mg = (70 kg)(9.81 m/s?) = 687 N
But the friction force F; is given by
Fr = . Fy = (0.50)(687 N) = 344 N
Now write ¥ F, = ma, for the box, taking the direction of motion as positive:

400 N — 344 N = (70 kg)(a) or  a=0.80 m/s’

Suppose, as shown in Fig. 3-8, that a 70-kg box is pulled by a 400-N force at an angle of 30° to the
horizontal. The coeflicient of kinetic friction is 0.50. Find the acceleration of the box.

70 kg
3 Fy
o —
[l%
Fig. 3-8

Because the box does not move up or down, we have ¥ F, = ma, = 0. From Fig. 3-8, we see that this
equation is

Fy+200 N—mg=20

But mg = (70 kg)(9.81 m/s*) = 687 N, and it follows that F, = 486 N.
We next find the friction force acting on the box:

Fr = Fy = (0.50)(486 N) =243 N
Now let us write 3 F, = ma, for the box. It is
(346 — 243) N = (70 kg)(a,)

from which a, = 1.5 m/s2.
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3.17 A car moving at 20 m/s along a horizontal road has its brakes suddenly applied and eventually
comes to rest. What is the shortest distance in which it can be stopped if the friction coefficient
between tires and road is 0.90? Assume that all four wheels brake identically. If the brakes don’t
lock the car stops via static friction.

The friction force at one wheel, call it wheel 1, is
Fry = pFyvi = pFwn
where Fyy| is the weight carried by wheel 1. We obtain the total friction force Fy by adding such terms for all
four wheels:
Fy = pFwy + wgFwn + psFws + pFwa = p(Fwy + Fya + Fs + Fipa) = pFyy
where Fy, is the total weight of the car. (Notice that we are assuming optimal braking at each wheel.) This
friction force is the only unbalanced force on the car (we neglect wind friction and such). Writing F = ma for
the car with F replaced by —u Fyy gives —u Fy = ma, where m is the car’s mass and the positive direction is
taken as the direction of motion. However, Fj;,, = mg; so the car’s acceleration is
1 F L
= MTw B e = (—0.90)(9.81 m/s?) = —8.8 m/s>
m m
We can find how far the car went before stopping by solving a motion problem. Knowing that v; = 20 m/s,
vy =0, and a = —8.8 m/s>, we find from p)zr — v = 2ax that
0 — 400) m* /s
_ (0=400) m*/s™_ o3 )
—17.6 m/s?

If the four wheels had not all been braking optimally, the stopping distance would have been longer.

3.18 Asshown in Fig. 3-9, a force of 400 N pushes on a 25-kg box. Starting from rest, the box achieves
a velocity of 2.0 m/s in a time of 4.0 s. Find the coefficient of kinetic friction between box and
floor.

275N
1

306 N 40(;)N
50°%!

77777 25 g

v
=y

Fig. 3-9

We will need to find /" by use of F = ma. But first we must find « from a motion problem. We know that
v; =0, v, =2.0 m/s, t = 4.0 s. Using v, = v; + at gives

v —v;  2.0m/s
t  40s

Now we can write ¥ F, = ma,, where a, = a = 0.50 m/s*>. From Fig. 3-9, this equation becomes

257 N—F; = (25 kg)(0.50 m/s?)  or  F=245N

a= =0.50 m/s’

We now wish to use u = Fy/Fy. To find Fy we write ¥ F, = ma, = 0, since no vertical motion occurs.
From Fig. 3-9,

Fy—306 N—(25)(98))N=0 or Fy=55IN
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3.19

3.20

Then

F 245
S W L) Y
M= gy 7551

A 200-N wagon is to be pulled up a 30° incline at constant speed. How large a force parallel to the
incline is needed if friction effects are negligible?

The situation is shown in Fig. 3-10(a). Because the wagon moves at a constant speed along a straight
line, its velocity vector is constant. Therefore the wagon is in translational equilibrium, and the first con-
dition for equilibrium applies to it.

We isolate the wagon as the object. Three nonnegligible forces act on it: (1) the pull of gravity Fj, (its
weight), directed straight down; (2) the force F exerted on the wagon parallel to the incline to pull it up the
incline; (3) the push F)y of the incline that supports the wagon. These three forces are shown in the free-body
diagram in Fig. 3-10(b).

For situations involving inclines, it is convenient to take the x-axis parallel to the incline and the y-axis
perpendicular to it. After taking components along these axes, we can write the first condition for equili-
brium:

+

ANF. =0 becomes F—050Fy =0

NYF, =0 becomes Fy—0.87 Fp =0

+ pl

Solving the first equation and recalling that Fj = 200 N, we find that F = 0.50 F},. The required pulling
force to two significant figures is 0.10 kN.

1><

300\

Fig. 3-10

A 20-kg box sits on an incline as shown in Fig. 3-11. The coefficient of kinetic friction between
box and incline is 0.30. Find the acceleration of the box down the incline.

In solving inclined-plane problems, we take x- and y-axes as shown in the figure, parallel and perpen-
dicular to the incline. We shall find the acceleration by writing > F, = ma,. But first we must find the friction
force F;. Using the fact that cos 30° = 0.866,

F, =ma, =0 gives Fy —0.87mg =0
from which Fy = (0.87)(20 kg)(9.81 m/s*) = 171 N. Now we can find F; from

Fr = mFy = (0.30)(171 N) = 51 N
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Fig. 3-11

Writing ¥ F, = ma,, we have
F; — 0.50mg = ma, or 51 N —(0.50)(20)(9.81) N = (20 kg)(a,)

from which a, = —2.35 m/s®. The box accelerates down the incline at 2.4 m/s>.

When a force of 500 N pushes on a 25-kg box as shown in Fig. 3-12, the acceleration of the box
up the incline is 0.75 m/s”. Find the coefficient of kinetic friction between box and incline.

The acting forces and their components are shown in Fig. 3-12. Notice how the x- and y-axes are taken.
Since the box moves up the incline, the friction force (which always acts to retard the motion) is directed
down the incline.

Let us first find F; by writing X F, = ma,. From Fig. 3-12, using sin 40° = 0.643,

383 N — Fp — (0.64)(25)(9.81) N = (25 kg)(0.75 m/s?)

from which F; =207 N.
We also need Fy. Writing ¥ F, = ma, = 0, and using cos 40° = 0.766, we get

Fy—321N=(0.77)25)(98) N=0 or Fy=5I10N
Fr 207

Th =L 2" _041
en e S TR

Fig. 3-12
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3.22 Two blocks, of masses m; and m,, are pushed by a force F as shown in Fig. 3-13. The coefficient
of friction between each block and the table is 0.40. (¢) What must be the value of F if the blocks
are to have an acceleration of 200 cm/s*? How large a force does m; then exert on m,? Use
m; = 300 g and m, = 500 g. Remember to work in SI units.

The friction forces on the blocks are Fy; = 0.4m;g and Fy, = 0.4m,g. We take the two blocks in
combination as the object for discussion; the horizontal forces on the object from outside (i.e. the external
forces on it) are F, Fy, and Fp,. Although the two blocks do push on each other, the pushes are internal
forces; they are not part of the unbalanced external force on the two-mass object. For that object,

Y F, =ma, becomes F — Fyy — Fp = (my +my)a,

(a) Solving for F and substituting known values, we find
F=040g(m; +my) + (m + my)a, =3.14 N+ 1.60 N =4.7 N

(b) Now consider block m, alone. The forces acting on it in the x-direction are the push of block m; on it
(which we represent by F,) and the retarding friction force Fy, = 0.4m,g. Then, for it,

Y F,=ma, becomes Fy — Fpy = ma,
We know that a, = 2.0 m/s2 and so

Fy=Fp+ma, =196 N+1.00 N=2.96 N=3.0N

v

(70kg)g  (9.0kg)g
Free-body diagram

(@) )

Fig. 3-13 Fig. 3-14

3.23 A cord passing over an easily turned pulley (one that is both massless and frictionless) has
a 7.0-kg mass hanging from one end and a 9.0-kg mass hanging from the other, as shown in
Fig. 3-14. (This arrangement is called Atwood’s machine.) Find the acceleration of the masses and
the tension in the cord.

Because the pulley is easily turned, the tension in the cord will be the same on each side. The forces
acting on each of the two masses are drawn in Fig. 3-14. Recall that the weight of an object is mg.

It is convenient in situations involving objects connected by cords to take the direction of motion as the
positive direction. In the present case, we take up positive for the 7.0-kg mass, and down positive for the
9.0-kg mass. (If we do this, the acceleration will be positive for each mass. Because the cord doesn’t stretch,
the accelerations are numerically equal.) Writing ¥ F,, = ma, for each mass in turn, we have

Fr —(7.0)(9.81) N = (7.0 kg)(a) and (9.0)(9.81) N — Fr = (9.0 kg)(a)
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If we add these two equations, the unknown Fr drops out, giving
(9.0 —7.0)(9.81) N = (16 kg)(a)

for which a = 1.23 m/s>. We can now substitute 1.23 m/s® for a in either equation and obtain F, = 77 N.

3.24 In Fig. 3-15, the coefficient of kinetic friction between block A4 and the table is 0.20. Also,
my = 25 kg, mp = 15 kg. How far will block B drop in the first 3.0 s after the system is released?

A
(@)
S
T
R L || >
F; Fy,
C—
(i
Free-body diagram
(®)
Fig. 3-15

Since, for block 4, there is no motion vertically, the normal force is
Fy =mug = (25 kg)(9.81 m/s*) = 245 N
and Fr =y Fy = (0.20)(245 N) =49 N
We must first find the acceleration of the system and then we can describe its motion. Let us apply
F = ma to each block in turn. Taking the motion direction as positive, we have
Fr — Fr=mya or Fr —49 N = (25 kg)(a)

and mpg — Fr = mpa or — Fr + (15)(9.81) N = (15 kg)(a)
We can eliminate F; by adding the two equations. Then, solving for a, we find a = 2.45 m/s”.
Now we can work a motion problem with a = 2.45 m/s*, v; = 0, 1 = 3.0 s:
y=uvyt+al  gives  y=0+1(245m/s’)(3.05)° =11m
as the distance B falls in the first 3.0 s.

3.25 How large a horizontal force in addition to F; must pull on block 4 in Fig. 3-15 to give it an
acceleration of 0.75 m/s®> toward the left? Assume, as in Problem 3.24, that g = 0.20,
my =25 kg, and mp = 15 kg.

If we were to redraw Fig 3-15 for this case, we would show a force F pulling toward the left on 4. In
addition, the retarding friction force F; should be reversed in direction in the figure. As in Problem 3.24,
Fr =49 N.
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3.26

3.27

We write F = ma for each block in turn, taking the direction of motion to be positive. We have
F—Fr—49 N = (25kg)(0.75m/s*)  and  Fp — (15)(9.81) N = (15 kg)(0.75 m/s?)

We solve the last equation for Fr and substitute in the previous equation. We can then solve for the single
unknown F, and we find it to be 226 N or 0.23 kN.

The coefficient of static friction between a box and the flat bed of a truck is 0.60. What is the
maximum acceleration the truck can have along level ground if the box is not to slide?

The box experiences only one x-directed force, the friction force. When the box is on the verge of
slipping, Fy = u Fy,, where Fy is the weight of the box.

As the truck accelerates, the friction force must cause the box to have the same acceleration as the truck;
otherwise, the box will slip. When the box is not slipping, ¥ F, = ma, applied to the box gives F; = ma,.
However, if the box is on the verge of slipping, F; = p Fy so that u Fy, = ma,. Because Fy, = mg, this gives

a4, = “s;”g = 11,¢ = (0.60)(9.81 m/s>) = 5.9 m/s>

as the maximum acceleration without slipping.

In Fig. 3-16, the two boxes have identical masses of 40 kg. Both experience a sliding friction force
with py = 0.15. Find the acceleration of the boxes and the tension in the tie cord.

=

wA

Fig. 3-16

Using Fy = pFy, we find that the friction forces on the two boxes are
Fipn = (0.15)(mg)  and Frp = (0.15)(0.87mg)

But m =40 kg, so F;p =59 N and Frg =51 N.
Let us now apply X F, = ma, to each block in turn, taking the direction of motion as positive. This
gives

Fr —59 N = (40 kg)(a) and 0.5mg — Fyr — 51 N = (40 kg)(a)

Solving these two equations for ¢ and Fr gives a = 1.1 m/s2 and Fr = 0.10 kN.
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In the system shown in Fig. 3-17(a), force F accelerates block m1; to the right. Find its acceleration
in terms of F and the coefficient of friction y; at the contact surfaces.

A
v
y
E)
=z

3.29

Fyz -y
P F
T m, = = m, e
Fy, F;
myg Fi mg
(@) (b) (©
Fig. 3-17

The horizontal forces on the blocks are shown in Fig. 3-17(b) and (¢). Block m, is pressed against m; by
its weight m,g. This is the normal force where m; and m, are in contact, so the friction force there is
Fry = wymyg. At the bottom surface of my, however, the normal force is (m; +m,)g. Hence,
F{ = p(m; +my)g. We now write ¥ F, = ma, for each block, taking the direction of motion as positive:

Fr = pymyg = ma and F — Fr — pmyg — e (my +my)g = mya
We can eliminate F; by adding the two equations to obtain
F = 2pumyg — e (my +my)(g) = (my + my)(a)

g F—2mimg
my + niy

from which

In the system of Fig. 3-18, friction and the mass of the pulley are both negligible. Find the
acceleration of m, if m; = 300 g, m, = 500 g, and F = 1.50 N.

-
F
5 my || ——

Ut

Fig. 3-18

Notice that m1; has twice as large an acceleration as m,. (When the pulley moves a distance d, m; moves
a distance 2d.) Also notice that the tension Fr in the cord pulling m is half Fr,, that in the cord pulling the
pulley, because the total force on the pulley must be zero. (F = ma tells us that this is so because the mass of
the pulley is zero.) Writing ¥ F, = ma, for each mass, we have

FT[ = (ml)(za) and F— FT2 = na
However, we know that F7; = %FTz and so the first equation gives Fr, = 4m;a. Substitution in the second
equation yields

P 1.50 N
" 4my+m,  1.20 kg+0.50 kg

F = (4m +my))(a)  or =0.882 m/s’
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3.30

3.31

In Fig. 3-19, the weights of the objects are 200 N and 300 N. The pulleys are essentially friction-
less and massless. Pulley P; has a stationary axle, but pulley P, is free to move up and down. Find
the tensions Fy; and Fp, and the acceleration of each body.

Mass B will rise and mass A will fall. You can see this by noticing that the forces acting on pulley P, are
2Fr, up and F7; down. Since the pulley has no mass, it can have no acceleration, and so Fy; = 2Fp, (the
inertialess object transmits the tension). Twice as large a force is pulling upward on B as on 4.

Let a be the downward acceleration of 4. Then a/2 is the upward acceleration of B. (Why?) We now
write X F,, = ma, for each mass in turn, taking the direction of motion as positive in each case. We have

Fri —300 N = (mp)(3a) and 200 N — Fry = mpa

But m = Fy /g and so m, = (200/9.81) kg and mp = (300/9.81) kg. Further Fr| = 2F,. Substitution of
these values in the two equations allows us to compute Fy, and then Fy; and a. The results are

Fr =327TN Fry =164 N a=178 m/s®

Compute the mass of the Earth, assuming it to be a sphere of radius 6370 km. Give your answer
to three significant figures.

Let M be the mass of the Earth, and m the mass of an object on the Earth’s surface. The weight of the
object is equal to mg. It is also equal to the gravitational force G(Mm)/rz, where r is the Earth’s radius.
Hence,

mg = G—r2

2 2 6 2
. gr’ (9.81 m/s%)(6.37 x 10° m) 24
fi hich M === =597 x 107 k
rom wiie G~ 667x10 1 N-m2/kg % &
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3.42

3.43

3.44
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Supplementary Problems

Once ignited, a small rocket motor on a spacecraft exerts a constant force of 10 N for 7.80 s. During the
burn the rocket causes the 100-kg craft to accelerate uniformly. Determine that acceleration.
Ans. 0.10 m/s®

Typically, a bullet leaves a standard 45-caliber pistol (5.0-in. barrel) at a speed of 262 m/s. If it takes 1 ms to
traverse the barrel, determine the average acceleration experienced by the 16.2-g bullet within the gun and
then compute the average force exerted on it. Ans. 3 x10° m/s*; 0.4 x 10° N

A force acts on a 2-kg mass and gives it an acceleration of 3 m/s>. What acceleration is produced by the same
force when acting on a mass of (a) 1 kg? (b) 4 kg? (c) How large is the force? Ans. (a) 6 m/sz; (b)2 m/sz;
()6 N

An object has a mass of 300 g. (¢) What is its weight on Earth? (b) What is its mass on the Moon? (¢) What
will be its acceleration on the Moon when a 0.500 N resultant force acts on it? Ans. (a) 2.94 N;
(b) 0.300 kg; (¢) 1.67 m/s?

A horizontal cable pulls a 200-kg cart along a horizontal track. The tension in the cable is 500 N. Starting
from rest, (¢) How long will it take the cart to reach a speed of 8.0 m/s? (b) How far will it have
gone? Ans. (a)3.2s;(b) 13 m

A 900-kg car is going 20 m/s along a level road. How large a constant retarding force is required to stop it in
a distance of 30 m? (Hint: First find its deceleration.) Ans. 6.0 kN

A 12.0-g bullet is accelerated from rest to a speed of 700 m/s as it travels 20.0 cm in a gun barrel. Assuming
the acceleration to be constant, how large was the accelerating force? (Be careful of units.)
Ans. 14.7 kN

A 20-kg crate hangs at the end of a long rope. Find its acceleration (magnitude and direction) when the
tension in the rope is () 250 N, (b) 150 N, (¢) zero, (d ) 196 N. Ans. (a)2.7 m/s2 up; () 2.3 m/s2 down;
(c) 9.8 m/s2 down; (d) zero

A 5.0-kg mass hangs at the end of a cord. Find the tension in the cord if the acceleration of the mass is
(a) 1.5 m/s” up, (b) 1.5 m/s> down, (¢) 9.8 m/s*> down.  Ans. (a) 57 N; (b) 42 N; (¢) zero

A 700-N man stands on a scale on the floor of an elevator. The scale records the force it exerts on whatever is
on it. What is the scale reading if the elevator has an acceleration of (a) 1.8 m/s2 up? (b) 1.8 m/s2 down?
(¢) 9.8 m/s> down? Ans.  (a) 0.83 kN; (b) 0.57 kN; (c) zero

Using the scale described in Problem 3.41, a 65.0 kg astronaut weighs himself on the Moon, where
g=1.60 m/sz. What does the scale read? Ans. 104 N

A cord passing over a frictionless, massless pulley has a 4.0-kg object tied to one end and a 12-kg object tied
to the other. Compute the acceleration and the tension in the cord. Ans. 49 m/s*, 59 N

An elevator starts from rest with a constant upward acceleration. It moves 2.0 m in the first 0.60 s. A
passenger in the elevator is holding a 3.0-kg package by a vertical string. What is the tension in the string
during the accelerating process? Ans. 63 N

Just as her parachute opens, a 60-kg parachutist is falling at a speed of 50 m/s. After 0.80 s has passed, the
chute is fully open and her speed has dropped to 12.0 m/s. Find the average retarding force exerted upon the
chutist during this time if the deceleration is uniform. Ans. 2850 N + 588 N = 3438 N = 3.4 kN
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3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

A 300-g mass hangs at the end of a string. A second string hangs from the bottom of that mass and supports
a 900-g mass. («) Find the tension in each string when the masses are accelerating upward at 0.700 m/s>.
() Find the tension in each string when the acceleration is 0.700 m/s> downward. Ans. (a) 12.6 N and
9.45N; (b) 10.9 N and 8.19 N

A 20-kg wagon is pulled along the level ground by a rope inclined at 30° above the horizontal. A friction
force of 30 N opposes the motion. How large is the pulling force if the wagon is moving with («) constant
speed and (b) an acceleration of 0.40 m/s>? Ans. (a) 35 N; (b) 44 N

A 12-kg box is released from the top of an incline that is 5.0 m long and makes an angle of 40° to the
horizontal. A 60-N friction force impedes the motion of the box. (¢) What will be the acceleration of the box
and (b) how long will it take to reach the bottom of the incline? Ans. (a) 1.3 m/s>; (b) 2.8 s

For the situation outlined in Problem 3.48, what is the coefficient of friction between box and incline?
Ans. 0.67

An inclined plane makes an angle of 30° with the horizontal. Find the constant force, applied parallel to the
plane, required to cause a 15-kg box to slide (a) up the plane with acceleration 1.2 m/s2 and (b) down the
incline with acceleration 1.2 m/s*. Neglect friction forces. Ans.  (a) 92 N; (b) 56 N

A horizontal force F is exerted on a 20-kg box to slide it up a 30° incline. The friction force retarding
the motion is 80 N. How large must F be if the acceleration of the moving box is to be (a) zero and
(b) 0.75 m/s*?  Ans. (a) 0.21 kN; (b) 0.22 kN

An inclined plane making an angle of 25° with the horizontal has a pulley at its top. A 30-kg block on the
plane is connected to a freely hanging 20-kg block by means of a cord passing over the pulley. Compute the
distance the 20-kg block will fall in 2.0 s starting from rest. Neglect friction. Ans. 29 m

Repeat Problem 3.52 if the coefficient of friction between block and plane is 0.20. Ans. 0.74 m

A horizontal force of 200 N is required to cause a 15-kg block to slide up a 20° incline with an acceleration of
25 cm/sz. Find (a) the friction force on the block and () the coefficient of friction. Ans. (a) 0.13 kN;
(b) 0.65

Find the acceleration of the blocks in Fig. 3-20 if friction forces are negligible. What is the tension in the cord
connecting them? Ans. 33 m/s?, 13N

4.0kg 5.0kg

F=30N

Fig. 3-20

Repeat Problem 3.55 if the coefficient of kinetic friction between the blocks and the table is 0.30.
Ans. 039 m/s*, 13 N

How large a force F is needed in Fig. 3-21 to pull out the 6.0-kg block with an acceleration of 1.50 m/s” if the
coefficient of friction at its surfaces is 0.40? Ans. 48 N



46

3.58

3.59

3.60

3.61

3.62

3.63

NEWTON’S LAWS [CHAP. 3

2.0
kg

6.0 kg

lm

Fig. 3-21 Fig. 3-22

In Fig. 3-22, how large a force F is needed to give the blocks an acceleration of 3.0 m/s? if the coefficient of
kinetic friction between blocks and table is 0.20? How large a force does the 1.50-kg block then exert on the
2.0-kg block? Ans. 22 N, 15N

(@) What is the smallest force parallel to a 37° incline needed to keep a 100-N weight from sliding down the
incline if the coefficients of static and kinetic friction are both 0.30? (b) What parallel force is required to keep
the weight moving up the incline at constant speed? (c) If the parallel pushing force is 94 N, what will be the
acceleration of the object? (d) If the object in (c¢) starts from rest, how far will it move in 10 s?

Ans.  (a) 36 N; (b) 84 N; (c) 0.98 m/s2 up the plane; (d) 49 m

A 5.0-kg block rests on a 30° incline. The coefficient of static friction between the block and the incline is
0.20. How large a horizontal force must push on the block if the block is to be on the verge of sliding (a) up
the incline and (b) down the incline? Ans. (a) 43 N; (b) 16.6 N

Three blocks with masses 6.0 kg, 9.0 kg, and 10 kg are connected as shown in Fig. 3-23. The coefficient of
friction between the table and the 10-kg block is 0.20. Find (a) the acceleration of the system and (b) the
tension in the cord on the left and in the cord on the right. Ans. (a) 0.39 m/s*; (b) 61 N, 85 N

Fig. 3-23

The Earth’s radius is about 6370 km. An object that has a mass of 20 kg is taken to a height of 160 km
above the Earth’s surface. (¢) What is the object’s mass at this height? (b)) How much does the object weigh
(i.e., how large a gravitational force does it experience) at this height? Ans. (a) 20 kg; (b) 0.19 kN

The radius of the Earth is about 6370 km, while that of Mars is about 3440 km. If an object weighs 200 N on
Earth, what would it weigh, and what would be the acceleration due to gravity, on Mars? The mass of Mars
is 0.11 that of Earth. Ans. 75N, 3.7 m/s2



Chapter 4

Equilibrium Under the Action of Concurrent Forces

CONCURRENT FORCES are forces whose lines of action all pass through a common point.
The forces acting on a point object are concurrent because they all pass through the same point,
the point object.

AN OBJECT IS IN EQUILIBRIUM under the action of concurrent forces provided it is not ac-
celerating.

THE FIRST CONDITION FOR EQUILIBRIUM is the requirement that XF =0 or, in compo-
nent form, that

YF,=YF,=YF.=0
That is, the resultant of all external forces acting on the object must be zero. This condition is sufficient

for equilibrium when the external forces are concurrent. A second condition must also be satisfied if an
object is to be in equilibrium under nonconcurrent forces; it is discussed in Chapter 5.

PROBLEM SOLUTION METHOD (CONCURRENT FORCES):

(1) TIsolate the object for discussion.

(2) Show the forces acting on the isolated object in a diagram (the free-body diagram).
(3) Find the rectangular components of each force.

(4) Write the first condition for equilibrium in equation form.

(5) Solve for the required quantities.

THE WEIGHT OF AN OBJECT (Fj) is essentially the force with which gravity pulls downward
upon it.

THE TENSILE FORCE (ﬁT) acting on a string or cable or chain (or indeed, on any structural
member) is the applied force tending to stretch it. The scalar magnitude of the tensile force is the
tension (Fr).

THE FRICTION FORCE (F;) is a tangential force acting on an object that opposes the sliding
of that object across an adjacent surface with which it is in contact. The friction force is parallel
to the surface and opposite to the direction of motion or of impending motion.

THE NORMAL FORCE (Fy) on an object that is being supported by a surface is the compo-
nent of the supporting force that is perpendicular to the surface.

47
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4.1

4.2

EQUILIBRIUM UNDER THE ACTION OF CONCURRENT FORCES [CHAP. 4

Solved Problems

In Fig. 4-1(a), the tension in the horizontal cord is 30 N as shown. Find the weight of the object.

The tension in cord 1 is equal to the weight of the object hanging from it. Therefore F;; = Fy,, and we
wish to find Fr; or Fy.

Notice that the unknown force Fr; and the known force of 30 N both pull on the knot at point P. It
therefore makes sense to isolate the knot at P as our object. The free-body diagram showing the forces on the
knot is drawn as in Fig. 4-1(b). The force components are also shown there.

We next write the first condition for equilibrium for the knot. From the free-body diagram,

SZYF. =0 becomes 30 N — Fpy cos 40° =0
HTXF=0 becomes Fry sin 40° — Fyy =0

Solving the first equation for Fr, gives Fr, = 39.2 N. Substituting this value in the second equation gives
Fy =25 N as the weight of the object.

VA
Fry
Fr, sin 40°
40° 30N
—
Fr, cos 40° X
Fr=Fy
(a) ()

Fig. 4-1

A rope extends between two poles. A 90-N boy hangs from it as shown in Fig. 4-2(a). Find the
tensions in the two parts of the rope.

We label the two tensions Fp; and Fp,, and isolate the rope at the boy’s hands as the object. The free-
body diagram for the object is shown in Fig. 4-2(b).

After resolving the forces into their components as shown, we can write the first condition for equili-
brium:

HKYF. =0 becomes Fry cos 5.0°— Fry cos 10° =0
+TTXF, =0 becomes Fy) sin 5.0° 4+ Fpy sin 10° — 90N =0
When we evaluate the sines and cosines, these equations become
0.996F 7, —0.985F7 =0 and 0.087F7, + 0.174F7; —90 =0
Solving the first for Fr, gives Fy, = 0.990F 7. Substituting this in the second equation gives
0.086F7; +0.174F7; —90 =0
from which F7; = 0.35 kN. Then, because Fr, = 0.990Fr;, we have Fy, = 0.34 kN.
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— y A
10° X\ —
Fry @ Fr,
FTI o F
Fyp, sin 10° ‘\lo(’f\__/—;?/n-' Fp, sin 5.0°
— L
Fy cos 10° Fp,y c085.0° X
L Yy Fy=90N
(@) (b)
Fig. 4-2

4.3 A 50-N box is slid straight across the floor at constant speed by a force of 25 N, as shown in Fig.
4-3(a). How large a friction force impedes the motion of the box? (b) How large is the normal
force? (¢) Find p; between the box and the floor.

Notice the forces acting on the box, as shown in Fig. 4-3(a). The friction force is F; and the normal
force, the supporting force exerted by the floor, is Fy. The free-body diagram and components are shown in
Fig. 4-3(b). Because the box is moving with constant velocity, it is in equilibrium. The first condition for
equilibrium, taking to the right as positive, tells us that

H3F. =0 or

25cos40° — F; =0

(@) We can solve for the friction force F; at once to find that F; = 19.2 N, or to two significant figures,

Fr=19N.

(b) To find Fy we use the fact that

+TEF,=0 or

Fy+25sin40°—-50=0

Solving gives the normal force as Fy = 33.9 N or, to two significant figures, Fy = 34 N.

(¢) From the definition of p, we have

25N

Fr 192N
= —=—"=0.57
Me =y T339N
y A
25N
‘k M o
Fy 25 sin 40
B Ff 40°
- 25 cos 40° X
50N
Y
()

Fig. 4-3
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4.4
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Find the tensions in the ropes shown in Fig. 4-4(a) if the supported object weighs 600 N.

Let us select as our object the knot at 4 because we know one force acting on it. The weight pulls down
on it with a force of 600 N, and so the free-body diagram for the knot is as shown in Fig. 4-4(b). Applying
the first condition for equilibrium to that diagram, we have

HKYF. =0 or Fry cos 60° — Fry cos 60° =0
+TTXF,=0 or Fry sin 60° + Fp, sin 60° — 600 = 0

The first equation yields Fr; = Fr,. (We could have inferred this from the symmetry of the system. Also
symmetry, Frz = Fry4.) Substitution of Fr; for Fr, in the second equation gives Fr; = 346 N, and so
Fr, =346 N also.

Let us now isolate knot B as our object. Its free-body diagram is shown in Fig. 4-4(c). We have already
found that Fr, = 346 N or 0.35 kN and so the equilibrium equations are

HYF. =0 or Fr3 cos 20° — Fps — 346 sin 30° =0
+FTXF,=0 or Fry sin 20° — 346 cos 30° =0
The last equation yields Fr3 = 877 N or 0.88 kN. Substituting this in the prior equation gives Frs = 651 N

or 0.65 kN. As stated previously from symmetry Fry = Fr3 = 877 N or 0.88 kN. How could you have
found Fy, without recourse to symmetry? (Hint: See Fig. 4.4(d).)

v VA VA
Fr Fry
* £
FT3
\
Fry
_ b o s 0 Do Frs
FTZ — |
600 N L 300
\ / P
\ / Fr
Y
() (©) ()]

Fig. 4-4
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4.5

Each of the objects in Fig. 4-5 is in equilibrium. Find the normal force Fy in each case.

200 N

200 N_T
30.0°
- 30.0° F;

4.6

4.7

4.8

Fyy=500N ﬁFN Fp=150N <7

(@) (b) ©

Fig. 4-5

We apply ¥ F, = 0 in each case.

(a) Fy + (200 N) sin 30.0° —500 =0  from which  Fy = 400N
) Fy — (200 N) sin 30.0° — 150 =0 from which Fy =250N
) Fy — (200 N) cos 0 =0 from which Fy = (200 cos ) N

For the situations of Problem 4.5, find the coefficient of kinetic friction if the object is moving
with constant speed. Round off your answers to two significant figures.

We have already found Fy for each case in Problem 4.5. To find F;, the sliding-friction force, we use
3 F, = 0. Then we use the definition of 1.
(@) We have 200 cos 30.0° — Fy = 0 so that Fy = 173 N. Then, p, = F;/Fy = 173/400 = 0.43.
() We have 200 cos 30.0° — Fy = 0 so that F; = 173 N. Then, w; = Fy/Fy = 173/250 = 0.69.

(¢) We have —200 sin 6 4+ F; = 0 so that F; = (200 sin 6) N. Then, p;, = Fy/Fy = (200 sin 0)/(200 cos 6)
= tan 0.

Suppose that in Fig. 4-5(¢) the block is at rest. The angle of the incline is slowly increased. At an
angle 6 = 42°, the block begins to slide. What is the coefficient of static friction between the block
and the incline? (The block and surface are not the same as in Problems 4.5 and 4.6.)

At the instant the block begins to slide, the friction has its critical value. Therefore, i, = F;/Fy at that
instant. Following the method of Problems 4.5 and 4.6, we have
Fy = Fy cos 6 and Fy=Fy sin 0
Therefore, when sliding just starts,
_F_ Fy sin 6
 Fy Fy cos#
But 6 was found by experiment to be 42°. Therefore, p; = tan42° = 0.90.

s =tan 6

Pulled by the 8.0-N block shown in Fig. 4-6(a), the 20-N block slides to the right at a constant
velocity. Find p; between the block and the table. Assume the pulley to be frictionless.

Because it is moving at a constant velocity, the 20-N block is at equilibrium. Since the pulley is
frictionless, the tension in the continuous rope is the same on both sides of the pulley. Thus, we have
FT] — FT2 - 80 N
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20N

(b

Fig. 4-6

Looking at the free-body diagram in Fig. 4-6(b) and recalling that the block is at equilibrium, we have
LYF. =0 or Fy =F7» =80N
+TXF, =0 or Fy=20N
Then, from the definition of i,

F 8ON
2t _%7 N g4
e =g = 20N~ 040

Supplementary Problems

4.9 For the situation shown in Fig. 4-7, find the values of Fy; and Fp, if the object’s weight is
600 N. Ans. 503 N, 783 N

4.10  The following coplanar forces pull on a ring: 200 N at 30.0°, 500 N at 80.0°, 300 N at 240°, and an unknown
force. Find the magnitude and direction of the unknown force if the ring is to be in equilibrium.
Ans. 350 N at 252°
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4.11 In Fig. 4-8, the pulleys are frictionless and the system hangs at equilibrium. If Fy-3, the weight of the object
on the right, is 200 N, what are the values of Fy,; and Fj,? Ans. 260 N, 150 N

Fig. 4-8 Fig. 4-9

4.12  Suppose Fjy; in Fig. 4-8 is 500 N. Find the values of Fy, and Fy; if the system is to hang in equilibrium as
shown. Ans. 288 N, 384 N

4.13 If in Fig. 4-9 the friction between the block and the incline is negligible, how much must the object on the
right weigh if the 200-N block is to remain at rest? Ans. 115N

4.14  The system in Fig. 4-9 remains at rest when Fj = 220 N. What are the magnitude and direction of the
friction force on the 200-N block? Ans. 105 N down the incline

4.15 Find the normal force acting on the block in each of the equilibrium situations shown in Fig. 4-10.

Ans. () 34N; (b) 46N; (¢) 91N

70N
40°

55°
S0N

40° 40°

(@) (b (©

Fig. 4-10

4.16  The block shown in Fig. 4-10(a) slides with constant speed under the action of the force shown. (¢) How
large is the retarding friction force? (b) What is the coefficient of kinetic friction between the block and the
floor? Ans. (a) 12 N; (b) 0.34
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The block shown in Fig. 4-10(b) slides at a constant speed down the incline. (a) How large is the friction force
that opposes its motion? (b) What is the coefficient of sliding (kinetic) friction between the block and the
plane? Ans. (a) 39 N; (b) 0.84

The block in Fig. 4-10(c) just begins to slide up the incline when the pushing force shown is increased to
70 N. (a) What is the critical static friction force on it? (b) What is the value of the coefficient of static
friction? Ans. (a) 15 N; (b) 0.17

If Fj = 40 N in the equilibrium situation shown in Fig. 4-11, find Fr; and Fps. Ans. 58 N, 31 N

Fig. 4-11

Refer to the equilibrium situation shown in Fig. 4-11. The cords are strong enough to withstand a maximum
tension of 80 N. What is the largest value of Fy, that they can support as shown? Ans. 55N

The object in Fig. 4-12 is in equilibrium and has a weight F, = 80 N. Find Fy, Fy», Fr3, and Fry. Give all
answers to two significant figures. Ans. 37 N, 88 N, 77 N, 0.14 kN
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4.22  The pulleys shown in Fig. 4-13 have negligible weight and friction. What is the value of Fy if the system is at
equilibrium? Ans. 185N

4.23 In Fig. 4-14, the system is in equilibrium. (¢) What is the maximum value that Fj, can have if the friction
force on the 40-N block cannot exceed 12.0 N? (b) What is the coefficient of static friction between the block
and the tabletop? Ans. (a) 6.9 N; (b) 0.30

40N

Fig. 4-14

4.24  The system in Fig. 4-14 is just on the verge of slipping. If Fj; = 8.0 N, what is the coefficient of static friction
between the block and tabletop? Ans. 0.35



Chapter 5

Equilibrium of a Rigid Body Under Coplanar Forces

THE TORQUE (OR MOMENT) about an axis, due to a force, is a measure of the effectiveness
of the force in producing rotation about that axis. It is defined in the following way:

Torque =t =rF sin 0

where r is the radial distance from the axis to the point of application of the force, and € is the acute
angle between the lines-of-action of ¥ and F, as shown in Fig. 5-1(a). Often this definition is written in
terms of the lever arm of the force, which is the perpendicular distance from the axis to the line of the
force, as shown in Fig. 5-1(b). Because the lever arm is simply r sin 6, the torque becomes

T = (F)(lever arm)

The units of torque are newton-meters (N-m). Plus and minus signs can be assigned to torques; for
example, a torque that tends to cause counterclockwise rotation about the axis is positive, whereas one
causing clockwise rotation is negative.

(a) ()

Fig. 5-1

THE TWO CONDITIONS FOR EQUILIBRIUM of a rigid object under the action of coplanar
forces are

(1) The first or force condition: The vector sum of all forces acting on the body must be zero:
YF.=0 LF,=0

where the plane of the coplanar forces is taken to be the xy-plane.

(2) The second or torque condition: Take an axis perpendicular to the plane of the coplanar forces. Call
the torques that tend to cause clockwise rotation about the axis negative, and counterclockwise
torques positive; then the sum of all the torques acting on the object must be zero:

HXt=0
56
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THE CENTER OF GRAVITY of an object is the point at which the entire weight of the object
may be considered concentrated; i.e., the line-of-action of the weight passes through the center of
gravity. A single vertically upward directed force, equal in magnitude to the weight of the object
and applied through its center of gravity, will keep the object in equilibrium.

THE POSITION OF THE AXIS IS ARBITRARY: If the sum of the torques is zero about one
axis for a body that obeys the force condition, it is zero about all other axes parallel to the first.
We can choose the axis in such a way that the line of an unknown force passes through the in-
tersection of the axis and the plane of the forces. The angle # between r and F is then zero;
hence, that particular unknown force exerts zero torque and therefore does not appear in the
torque equation.

Solved Problems

5.1 Find the torque about axis 4 in Fig. 5-2 due to each of the forces shown.

T~—=_ -
Lever // T = 25N 20N
arm / 250
/
90°
m
4 80¢ 10N
Fig. 5-2

We use t = rF sin 0, recalling that clockwise torques are negative while counterclockwise torques are
positive. The torques due to the three forces are

For 1I0N: 1= —(0.80 m)(10 N)(sin 90°) = —8.0 N-m
For 25 N: T = +(0.80 m)(25 N)(sin 25°) = +8.5 N-m
For 20 N: T = +£(0.80 m)(20 N)(sin 0°) =0

The line of the 20-N force goes through the axis and so # = 0° for it. Or, put another way, because the line of
the force passes through the axis, its lever arm is zero. Either way, the torque is zero for this (and any) force
whose line passes through the axis.

5.2 A uniform beam of length L weighs 200 N and holds a 450-N object as shown in Fig. 5-3. Find
the magnitudes of the forces exerted on the beam by the two supports at its ends. Assume the
lengths are exact.

Rather than draw a separate free-body diagram, we show the forces on the object being considered (the
beam) in Fig. 5-3. Because the beam is uniform, its center of gravity is at its geometric center. Thus the
weight of the beam (200 N) is shown acting at the beam’s center. The forces F; and F, are exerted on the
beam by the supports. Because there are no x-directed forces acting on the beam, we have only two
equations to write for this equilibrium situation: ¥ F}, = 0 and ¥t = 0.
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L2 L/4 L/4

200N Support

450 N

@450N

Fig. 5-3

+TXF,=0 becomes Fi+F,—200N—-450N =0

Before the torque equation is written, an axis must be chosen. We choose it at 4, so that the unknown force
F; will pass through it and exert no torque. The torque equation is then

MY T = —(L/2)(200 N)(sin 90°) — (3L/4)(450 N)(sin 90°) + LF; sin 90° = 0

Dividing through the equation by L and solving for F,, we find that F, = 438 N.
To find F; we substitute the value of F, in the force equation, obtaining F; = 212 N.

A uniform, 100-N pipe is used as a lever, as shown in Fig. 5-4. Where must the fulcrum (the
support point) be placed if a 500-N weight at one end is to balance a 200-N weight at the other
end? What is the reaction force exerted by the support on the pipe?

The forces in question are shown in Fig. 5-4, where Fj is the reaction force of the support on the pipe.
We assume that the support point is at a distance x from one end. Let us take the axis to be at the support
point. Then the torque equation, ¥+)X 1t = 0, becomes

+(x)(200N)(sin 90°) 4+ (x — L/2)(100 N)(sin 90°) — (L — x)(500 N)(sin 90°) = 0
This simplifies to
(800N)(x) = (550 N)(L)

and so x = 0.69L. The support should be placed 0.69 of the way from the lighter-loaded end.
To find the load Fg held by the support, we use +T ¥ F), = 0, which gives

—200N — 100N — 500N =0
from which Fr = 800 N.

L2

200 N 100 N

500N Y

Fig. 5-4
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5.4

5.5

5.6

Where must a 0.80-kIN object be hung on a uniform, horizontal, rigid 100-N pole so that a girl
pushing up at one end supports one-third as much as a woman pushing up at the other end?

The situation is shown in Fig. 5-5. We represent the force exerted by the girl as F, and that by the
woman as 3F. Take the axis point at the left end. Then the torque equation becomes

—(x)(800N)(sin 90°) — (L/2)(100 N)(sin 90°) + (L)(F)(sin 90°) =0
A second equation we can write is X F,, = 0, or
3F —800N - 100N+ F =0
from which F = 225 N. Substitution of this value in the torque equation gives
(800N)(x) = (225N)(L) — (100N)(L/2)
from which x = 0.22L. The load should be hung 0.22 of the way from the woman to the girl.

3L/4
L2
. | s
L2 4
. 100N F F
Y
800 N 200N
300 N
\
X
y ™ 400N
Fig. 5-5 Fig. 5-6

A uniform, 0.20-kN board of length L has two objects hanging from it: 300 N at exactly L/3
from one end, and 400 N at exactly 3L/4 from the same end. What single additional force acting
on the board will cause the board to be in equilibrium?

The situation is shown in Fig. 5-6, where I is the force we wish to find. For equilibrium, ¥ F,, = 0 and so

F =400 N+ 200 N +300 N =900 N

Because the board is to be in equilibrium, we are free to choose the axis anywhere. Choose it at point 4.
Then ¥t =0 gives

+(x)(F)(sin 90°) — (3L/4)(400 N)(sin 90°) — (L/2)(200 N)(sin 90°) — (L/3)(300 N)(sin 90°) =0
Using F = 900 N, we find that x = 0.56L. The required force is 0.90 kN upward at 0.56L from the left end.

The right-angle rule (or square) shown in Fig. 5-7 hangs at rest from a peg as shown. It is made of
a uniform metal sheet. One arm is L cm long, while the other is 2L cm long. Find (to two
significant figures) the angle 8 at which it will hang.

If the rule is not too wide, we can approximate it as two thin rods of lengths L and 2L joined
perpendicularly at A. Let v be the weight of each centimeter of rule. Then the forces acting on the rule
are as indicated in Fig. 5-7, where Fj is the upward reaction force of the peg.
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Fig. 5-7

Let us write the torque equation using point 4 as the axis. Because t = rF sin 6 and because the torque
about 4 due to Fjy is zero, the torque equation becomes
+(L/2)(yL)[sin (90° — 0)] — (L)(2yL)(sin §) =0
Recall that sin (90° — ) = cos 6. After making this substitution and dividing by 2vL? cos 6, we find that
sin 6 1

cosH_tangzz

which yields 6 = 14°.

Consider the situation shown in Fig. 5-8(a). The uniform 0.60-kN beam is hinged at P. Find the
tension in the tie rope and the components of the reaction force exerted by the hinge on the beam.
Give your answers to two significant figures.

The reaction forces acting on the beam are shown in Fig. 5-8(b), where the force exerted by the hinge is
represented by its components, Fry and Fgy. The torque equation about P as axis is

+(3L/4)(T)(sin 40°) — (L)(800 N)(sin 90°) — (L/2)(600 N)(sin 90°) = 0

800N
(@) ®)

Fig. 5-8
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5.8

5.9

(We take the axis at P because then Fry and Fgp do not appear in the torque equation.) Solution of this
equation yields Fr = 2280 N or to two significant figures F; = 2.3 kN.
To find Fry and Fgy we write

HYF. =0 or — Frcos 40° + Fry =0
+TXF, =0 or Fr sin 40° + Fgy — 600 — 800 = 0
Since we know Fr, these equations give Fry = 1750 N or 1.8 kN and Fg, = 65.6 N or 66 N.

A uniform, 0.40-kN boom is supported as shown in Fig. 5-9(a). Find the tension in the tie rope
and the force exerted on the boom by the pin at P.

The forces acting on the boom are shown in Fig. 5-9(b). Take the pin as axis. The torque equation is
then

+(3L/4)(Fr)(sin 50°) — (L/2)(400 N)(sin 40°) — (L)(2000 N)(sin 40°) =0
from which F7 = 2460 N or 2.5 kN. We now write:
i)EFY:O or FRH—FTZO
and so Fpy = 2.5 kN. Also
LF,=0 or Fry —2000 N —400 N =0

and so Fry = 2.4 kN. Fgy and Fry are the components of the reaction force at the pin. The magnitude of
this force is

(2400)* + (2460)* = 3.4 kN
The tangent of the angle it makes with the horizontal is tan 6 = 2400/2460, and so 6 = 44°.

(@) ()

Fig. 5-9

As shown in Fig. 5-10, hinges 4 and B hold a uniform, 400-N door in place. If the upper hinge
happens to support the entire weight of the door, find the forces exerted on the door at both
hinges. The width of the door is exactly /1/2, where 4 is the distance between the hinges.
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A
FRV y
F
<« 1y

400 N

Fig. 5-10

The forces acting on the door are shown in Fig. 5-10. Only a horizonal force acts at B, because the upper
hinge is assumed to support the door’s weight. Let us take torques about point A as axis:

HX1=0 becomes + (h)(F)(sin 90.0°) — (//4)(400 N)(sin 90.0°) =0
from which F = 100 N. We also have
HYF. =0 or F—Fry=0
TXF,=0 or Fry—400 N=0
We find from these that Fzy = 100 N and Fgy = 400 N.
For the resultant reaction force Fi on the hinge at A, we have
Fgr = 1/ (400)* + (100)> = 412 N
The tangent of the angle that F, makes with the negative x-direction is Fg) /Fgy and so the angle is

arctan 4.00 = 76.0°

A ladder leans against a smooth wall, as shown in Fig. 5-11. (By a “‘smooth” wall, we mean that
the wall exerts on the ladder only a force that is perpendicular to the wall. There is no friction
force.) The ladder weighs 200 N and its center of gravity is 0.40L from the base, where L is the
ladder’s length. (¢) How large a friction force must exist at the base of the ladder if it is not to slip?
(b) What is the necessary coefficient of static friction?

(a) We wish to find the friction force F;. Notice that no friction force exists at the top of the ladder. Taking
torques about point A4 gives the torque equation

(421, = —(0.40L)(200 N)(sin 40°) 4+ (L)(Fy,)(sin 50°) =0
Solving gives Fy, = 67.1 N. We can also write

EFYZO or Ff*FNZZO
S$F,=0 or  Fy —200=0

and so F; = 67 N and Fy; = 0.20 kN.
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5.11

Ff
FN]
Fig. 5-11
F 671
b y=—=——=034
(b) M= = 200

For the situation shown in Fig. 5-12(a), find F7, Fy,, and Fy3. The boom is uniform and weighs
800 N.

Let us first apply the force condition to point A. The appropriate free-body diagram is shown in
Fig. 5-12(h). We then have

Fry cos 50.0°—2000 N =0 and Fry — Fp, sin 50.0° =0

From the first of these we find Fr, = 3.11 kN; then the second equation gives Fy; = 2.38 kN.
Let us now isolate the boom and apply the equilibrium conditions to it. The appropriate free-body
diagram is shown in Fig. 5-12(¢). The torque equation, for torques taken about point C, is

L1, = +(L)(Fp3)(sin 20.0°) — (L)(3110 N)(sin 90.0°) — (L/2)(800 N)(sin 40.0°) = 0

Solving for Fr3, we find it to be 9.84 kN. If it were required, we could find Fry and Fgy by using the x- and
y-force equations.

50.0°

Fpy=3.11kN

2000 N

(a) (® ©

Fig. 5-12
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5.14
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Supplementary Problems

As shown in Fig. 5-13, two people sit in a car that weighs 8000 N. The person in front weighs 700 N, while
the one in the back weighs 900 N. Call L the distance between the front and back wheels. The car’s center of
gravity is a distance 0.400L behind the front wheels. How much force does each front wheel and each back
wheel support if the people are seated along the centerline of the car? Ans.  2.09 kN, 2.71 kN

Fig. 5-13

Two people, at the ends of a uniform beam that weighs 400 N, hold the beam at an angle of 25.0° to the
horizontal. How large a vertical force must each person furnish to the beam? Ans. 200 N

Repeat Problem 5.13 if a 140-N child sits on the beam at a point one-fourth of the way along the beam from
its lower end. Ans. 235 N, 305 N

As shown in Fig. 5-14, the uniform, 1600-N beam is hinged at one end and held by a tie rope at the other.
Determine the tension F; in the rope and the force components at the hinge. Ans.  Fr =0.67 kN,
FRH - 067 kN, FRV - 16 kN

Tie rope

(S8

Fig. 5-14 Fig. 5-15

The uniform beam shown in Fig. 5-15 weighs 500 N and supports a 700-N load. Find the tension in the tie
rope and the force of the hinge on the beam. Ans. 2.9 kN, 2.0 kN at 35° below the horizontal
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5.17 The arm shown in Fig. 5-16 supports a 4.0-kg sphere. The mass of the hand and forearm together is 3.0 kg
and its weight acts at a point 15cm from the elbow. Determine the force exerted by the biceps
muscle. Ans. 0.13 kN

il

Triceps

Biceps
Radius
Ulna

4.5 cm —>|

38 cm

Fig. 5-16

5.18 The mobile shown in Fig. 5-17 hangs at equilibrium. It consists of objects held by vertical strings. Object 3
weighs 1.40 N, while each of the identical uniform horizontal bars weighs 0.50 N. Find (@) the weights of
objects 1 and 2, and (b) the tension in the upper string. Ans. (a) 1.5N, 14 N; (b) 53N

2L/3 L3

L2 L2

Fig. 5-17

5.19  The hinges of a uniform door weighing 200 N are 2.5 m apart. One hinge is a distance d from the top of the
door, while the other is a distance d from the bottom. The door is 1.0 m wide. The weight of the door is
supported by the lower hinge. Determine the forces exerted by the hinges on the door. Ans. The
horizontal force at the upper hinge is 40 N. The force at the lower hinge is 0.20 kN at 79° above the
horizontal.
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5.20  The uniform bar shown in Fig. 5-18 weighs 40 N and is subjected to the forces shown. Find the magnitude,
location, and direction of the force needed to keep the bar in equilibrium. Ans.  0.11 kN, 0.68L from
right end, at 49°

S0N 80N

0.20L 0.60 L 0.20L

60 N
70N

Fig. 5-18 Fig. 5-19

5.21  The uniform, 120-N board shown in Fig. 5-19 is supported by two ropes as shown. A 0.40-kN weight is
suspended one-quarter of the way from the left end. Find Fy|, Fr,, and the angle § made by the left
rope. Ans.  0.19 kN, 0.37 kN, 14°

5.22  The foot of a ladder rests against a wall and its top is held by a tie rope, as shown in Fig. 5-20. The ladder
weighs 100 N, and its center of gravity is 0.40 of its length from the foot. A 150-N child hangs from a rung
that is 0.20 of the length from the top. Determine the tension in the tie rope and the components of the force
on the foot of the ladder. Ans. Fr =0.12 kN, Fgry = 0.12 kN, Fg;, = 0.25 kN

Ti
E@T ie rope %
©

500N

Tie rope

: ;

Fig. 5-20 Fig. 5-21

5.23 A truss is made by hinging two uniform, 150-N rafters as shown in Fig. 5-21. They rest on an essentially
frictionless floor and are held together by a tie rope. A 500-N load is held at their apex. Find the tension in
the tie rope. Ans.  0.28 kN
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5.24

5.25

5.26

5.27

5.28

A 900-N lawn roller is to be pulled over a 5.0-cm high curb as shown in Fig. 5-22. The radius of the roller is
25 cm. What minimum pulling force is needed if the angle § made by the handle is (a) 0° and (b) 30°? (Hint:
Find the force needed to keep the roller balanced against the edge of the curb, just clear of the
ground.) Ans. (a) 0.68 kN; (b) 0.55 kN

Fig. 5-22 Fig. 5-23

In Fig. 5-23, the uniform beam weighs 500 N. If the tie rope can support 1800 N, what is the maximum value
the load Fy can have? Ans.  0.93 kN

The beam in Fig. 5-24 has negligible weight. If the system hangs in equilibrium when Fy; = 500 N, what is
the value of Fy,? Ans.  0.64 kN

Fig. 5-24

Repeat Problem 5.26, but now find Fy if Fy, is 500 N. The beam weighs 300 N and is uniform.
Ans. 0.56 kN

An object is subjected to the forces shown in Fig. 5-25. What single force F applied at a point on the x-axis
will balance these forces? (First find its components, and then find the force.) Where on the x-axis should the
force be applied? Ans. F, =232 N, F,, = —338 N; F =410 N at —55.5% at x =2.14 m
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Yy
300 N

2.50 m
|
i x
i 1.50 m
|
e

150N
Fig. 5-25

5.29  The solid uniform disk of radius » shown in Fig. 5-26 can turn freely on an axle through its center. A hole of
diameter D is drilled through the disk; its center is a distance r from the axle. The weight of the material
drilled out is Fy,. Find the weight Fy, of an object hung from a string wound on the disk that will hold the
disk at equilibrium in the position shown. Ans.  Fy = Fyy,(r/b) cos 0




Chapter 6

Work, Energy, and Power

THE WORK done by a force is defined as the product of that force times the parallel distance
over which it acts. Consider the simple case of straight-line motion shown in Fig. 6-1, where a
force F acts on a body that simultaneously undergoes a vector displacement §. The component of
F in the direction of §is F cos §. The work W done by the force F is defined to be the compo-
nent of F in the direction of the displacement, multiplied by the displacement:

W = (F cos 0)(s) = Fs cos 6

Notice that 6 is the angle between the force and displacement vectors. Work is a scalar quantity.

If F and § are in the same direction, cos @ = cos 0° = 1 and W = Fs. But, if F and § are in opposite
directions, then cos 6 = cos 180° = —1 and W = —Fy; the work is negative. Forces such as friction often
slow the motion of an object and are then opposite in direction to the displacement. Such forces usually
do negative work. Inasmuch as the friction force opposes the motion of an object the work done in
overcoming friction (along any path, curved or straight) equals the product of F; and the path-length
traveled. Thus, if an object is dragged against friction, back to the point where the journey started, work
is done even if the net displacement is zero.

Work is the transfer of energy from one entity to another by way of the action of a force applied
over a distance. The point of application of the force must move if work is to be done.

THE UNIT OF WORK in the SI is the newton-meter, called the joule (J). One joule is the work
done by a force of 1 N when it displaces an object 1 m in the direction of the force. Other units
sometimes used for work are the erg, where 1erg =10""J, and the foot-pound (ft-Ib), where
1 ft-lb = 1.355J.

ENERGY is a measure of the change imparted to a system. It is given to an object when a force
does work on the object. The amount of energy transferred to the object equals the work done.
Further, when an object does work, it loses an amount of energy equal to the work it does.
Energy and work have the same units, joules. Energy, like work, is a scalar quantity. An object
that is capable of doing work possesses energy.

KINETIC ENERGY (KE) is the energy possessed by an object because it is in motion. If an
object of mass m is moving with a speed v, it has translational KE given by

KE = %mvz

When m is in kg and v is in m/s, the units of KE are joules.

GRAVITATIONAL POTENTIAL ENERGY (PEg) is the energy possessed by an object because
of the gravitational interaction. In falling through a vertical distance /, a mass m can do work in
the amount mgh. We define the PEg of an object relative to an arbitrary zero level, often the
Earth’s surface. If the object is at a height & above the zero (or reference) level, its

PEg = mgh

where g is the acceleration due to gravity. Notice that mg is the weight of the object. The units of PEg are
joules when m is in kg, g is in m/sz, and % is in m.

69
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THE WORK-ENERGY THEOREM: When work is done on a point mass or a rigid body, and
there is no change in PE, the energy imparted can only appear as KE. Insofar as a body is not
totally rigid, however, energy can be transferred to its parts and the work done on it will not
precisely equal its change in KE.

CONSERVATION OF ENERGY: Energy can neither be created nor destroyed, but only trans-
formed from one kind to another. (Mass can be regarded as one form of energy. Ordinarily, the
conversion of mass into energy, and vice versa, predicted by the Special Theory of Relativity can
be ignored. This subject is treated in Chapter 41.)

POWER is the time rate of doing work:

work done by a force

- - = force x speed
time taken to do this work p

Average power =

where the speed is measured in the direction of the force applied to the object. More generally, power is
the rate of transfer of energy. In the SI, the unit of power is the watt (W), and 1W =1 J/s.
Another unit of power often used is the horsepower: 1hp = 746 W.

THE KILOWATT-HOUR is a unit of energy. If a force is doing work at a rate of 1 kilowattt
(which is 1000 J/s), then in 1 hour it will do 1 kW-h of work:

1 kW-h=3.6x10°J=3.6 MJ

Solved Problems

6.1 In Fig. 6-1, assume that the object is being pulled along the ground by a 75-N force directed 28°
above the horizontal. How much work does the force do in pulling the object 8.0 m?

F F
0\
Fcos6
S

Fig. 6-1

The work done is equal to the product of the displacement, 8.0 m, and the component of the force that
is parallel to the displacement, (75 N)(cos 28°). Thus,

W = (75 N)(cos 28°)(8.0 m) = 0.53 kJ
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6.2

6.3

6.4

6.5

A block moves up a 30° incline under the action of certain forces, three of which are shown in
Fig. 6-2. F, is horizontal and of magnitude 40 N. F, is normal to the plane and of magnitude
20 N. F; is parallel to the plane and of magnitude 30 N. Determine the work done by each force
as the block (and point of application of each force) moves 80 cm up the incline.

Fig. 6-2

The component of F, along the direction of the displacement is
F) cos 30° = (40 N)(0.866) = 34.6 N
Hence the work done by F, is (34.6 N)(0.80 m) = 28 J. (Notice that the distance must be expressed in
meters.)
Because it has no component in the direction of the displacement, F, does no work.

The component of F; in the direction of the displacement is 30 N. Hence the work done by F; is
(30 N)(0.80 m) =24 1J.

A 300-g object slides 80 cm along a horizontal tabletop. How much work is done in overcoming
friction between the object and the table if the coefficient of kinetic friction is 0.20?

We first find the friction force. Since the normal force equals the weight of the object,
Fr = e Fy = (0.20)(0.300 kg)(9.81 m/s*) = 0.588 N

The work done overcoming friction is Frs cos f. Because the friction force is opposite in direction to the
displacement, 6 = 180°. Therefore,
Work = Fps cos 180° = (0.588 N)(0.80 m)(—1) = —0.47 J

The work is negative because the friction force slows the object; it decreases the object’s kinetic energy.

How much work is done against gravity in lifting a 3.0-kg object through a vertical distance of
40 cm?

An external force is needed to lift an object. If the object is lifted at constant speed, the lifting force must
equal the weight of the object. The work done by the lifting force is what we refer to as work done against
gravity. Because the lifting force is mg, where m is the mass of the object, we have

Work = (mg)(h)(cos 6) = (3.0 kg x 9.81 N)(0.40 m)(1) =121J

In general, the work done against gravity in lifting an object of mass m through a vertical distance / is mgh.

How much work is done on an object by the force that supports it as the object is lowered
through a vertical distance #? How much work does the gravitational force on it do in this
same process?
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6.7

6.8

6.9
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The supporting force is mg, where m is the mass of the object. It is directed upward while the displace-
ment is downward. Hence the work it does is
Fs cos 6 = (mg)(h)(cos 180°) = —mgh
The force of gravity acting on the object is also mg, but it is directed downward in the same direction as the
displacement. The work done on the object by the force of gravity is therefore

Fs cos 0 = (mg)(h)(cos 0°) = mgh

A ladder 3.0 m long and weighing 200 N has its center of gravity 120 cm from the bottom. At its
top end is a 50-N weight. Compute the work required to raise the ladder from a horizontal
position on the ground to a vertical position.

The work done (against gravity) consists of two parts, the work to raise the center of gravity 1.20 m and
the work to raise the weight at the end through 3.0 m. Therefore
Work done = (200 N)(1.20 m) + (50 N)(3.0 m) = 0.39 kJ

Compute the work done against gravity by a pump that discharges 600 liters of fuel oil into a tank
20 m above the pump’s intake. One cubic centimeter of fuel oil has a mass of 0.82 g. One liter is
1000 cm’.

The mass lifted is

CHI3

. g\ _ _
(600 liters) <1000 liter> (0.82 cm3) =492000 g = 492 kg

The lifting work is then
Work = (mg)(h) = (492 kg x 9.81 m/s?)(20 m) = 96 kJ

A 2.0-kg mass falls 400 cm. (¢) How much work was done on it by the gravitational force?
() How much PEg did it lose?

Gravity pulls with a force mg on the object, and the displacement is 4 m in the direction of the force.
The work done by gravity is therefore
(mg)(4.00 m) = (2.0 kg x 9.81 N)(4.00 m) =78 J

The change in PEg of the object is mgh, — mgh;, where h; and & are the initial and final heights of the
object above the reference level. We then have

Change in PEg = mgh, — mgh; = mg(hy — h;) = (2.0 kg x 9.81 N)(=4.0 m) = —78 ]
The loss in PEg is 78 J.

A force of 1.50 N acts on a 0.20-kg cart so as to accelerate it along an air track. The track and
force are horizontal and in line. How fast is the cart going after acceleration from rest through
30 cm, if friction is negligible?

The work done by the force causes, and is equal to, the increase in KE of the cart. Therefore,

Work done = (KE), 4 — (KE) or Fs cos 0° = lmv_% -0

start -2

Substituting gives
(1.50 N)(0.30 m) = £(0.20 kg)v;

from which vy = 2.1m/s.



CHAP. 6] WORK, ENERGY, AND POWER 73

6.10

6.11

6.12

6.13

6.14

A 0.50-kg block slides across a tabletop with an initial velocity of 20 cm/s and comes to rest in a
distance of 70 cm. Find the average friction force that retarded its motion.

The KE of the block is decreased because of the slowing action of the friction force. That is,

Change in KE of block = work done on block by friction force

Lo — Ly —
5 MVf — 3 mv; = Fps cos §

Because the friction force on the block is opposite in direction to the displacement, cos § = —1. Using
v =0, v; = 0.20 m/s, and s = 0.70 m, we find

0 —1(0.50 kg)(0.20 m/s)* = (F;)(0.70 m)(—1)
from which F; = 0.014 N.

A car going 15 m/s is brought to rest in a distance of 2.0 m as it strikes a pile of dirt. How large an
average force is exerted by seatbelts on a 90-kg passenger as the car is stopped?

We assume the seatbelts stop the passenger in 2.0 m. The force F they apply acts through a distance of
2.0 m and decreases the passenger’s KE to zero. So
Change in KE of passenger = work done by F
0 —1(90 kg)(15 m/s*) = (F)(2.0 m)(—1)

where cos # = —1 because the restraining force on the passenger is opposite in direction to the displacement.
Solving, we find F = 5.1 kN.

A projectile is shot upward from the earth with a speed of 20 m/s. How high is it when its speed is
8.0 m/s? Ignore air friction.
Because the projectile’s energy is conserved, we have
Change in KE +change in PEg =0
%mvz — %mv,z + (mg)(h, —h)=0
We wish to find /2, — h;. After a little algebra, we obtain

2.2 2 2
h,-—h,-:—U/ Or :_(8.0 m/s) (202m/s) 7m
: 2g 2(9.81 m/s?)

In an Atwood machine (see Problem 3.23) the two masses are 800 g and 700 g. The system is
released from rest. How fast is the 800-g mass moving after it has fallen 120 cm?

The 700-g mass rises 120 cm while the 800-g mass falls 120 cm, so the net change in PEg is
Change in PEg = (0.70 kg)(9.81 m/s*)(1.20 m) — (0.80 kg)(9.81 m/s*)(1.20 m) = —1.18 J

which is a loss in PEg. Because energy is conserved, the KE of the masses must increase by 1.18 J.
Therefore,

Change in KE = 1.18 J = 1(0.70 kg)(v} — v7) +1(0.80 kg) (v — v7)

The system started from rest, so v; = 0. We solve the above equation for v, and find v, = 1.25 m/s.

Figure 6-3 shows a bead sliding on a wire. If friction forces are negligible and the bead has a speed
of 200 cm/s at 4, what will be its speed (a) at point B? (b) At point C?
We know the energy of the bead is conserved, so we can write
Change in KE + change in PEg =0
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4 »

C
80 cm
50 cm
B

Fig. 6-3

L} —Smuf + mg(hy — hy) =0

(a) Here, v; =2.0 m/s, h; = 0.80 m, and /&, = 0. Using these values, while noticing that m cancels out, gives
A
vy = 4.4 m/s.
(b) Here, v; = 2.0 m/s, h; = 0.80 m, and &, = 0.50 m. Using these values gives vy = 3.1 m/s.

6.15 Suppose the bead in Fig. 6-3 has a mass of 15 g and a speed of 2.0 m/s at 4, and it stops as it
reaches point C. The length of the wire from 4 to C is 250 cm. How large an average friction
force opposed the motion of the bead?

When the bead moves from A4 to C, it experiences a change in its total energy: it loses both KE and PEg.
This total energy change is equal to the work done on the bead by the friction force. Therefore,

Change in PEg + change in KE = work done by friction force

mg(he — hy) +1m(vg — %) = Fys cos 0

Notice that cos § = —1, ve =0, vy =2.0 m/s, he —hy = —0.30 m, s =2.50 m, and m = 0.015 kg. Using
these values, we find that F;y = 0.030 N.

6.16 A 1200-kg car is coasting down a 30° hill as shown in Fig. 6-4. At a time when the car’s speed is
12 m/s, the driver applies the brakes. What constant force F (parallel to the road) must result if
the car is to stop after traveling 100 m?

100 sin 30°

The change in total energy of the car (KE + PEg) is equal to the work done on it by the braking force
F. This work is Fs cos 180° because F retards the car’s motion. We have

Ym(vf — of) + mg(hy — ) = Fs(—1)
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where m = 1200 kg
’l)j' =0
v;=12m/s
hy —h; = (100 m) sin 30°
s =100 m

With these values, the equation yields F = 6.7 kN.

6.17 A ball at the end of a 180-cm long string swings as a pendulum as shown in Fig. 6-5. The ball’s
speed is 400 cm/s as it passes through its lowest position. (@) To what height / above this position
will it rise before stopping? (b) What angle does the pendulum then make to the vertical?

(@) The pull of the string on the ball is always perpendicular to the ball’s motion, and therefore does no
work on the ball. Consequently, the ball’s total energy remains constant; it loses KE but gains a like
amount of PEg. That is,

Change in KE + change in PEg =0

Imv; — mo} + mgh =0

Since vy = 0 and v; = 4.00 m/s, we find 2 = 0.816 m as the height to which the ball rises.
(b) From Fig. 6-5,

eithil 0.816
e A I 1
which gives 6 = 56.9°.
v
»
25°
Fig. 6-5 Fig. 6-6

6.18 A 500-g block is shot up the incline in Fig. 6-6 with an initial speed of 200 cm/s. How far up the
incline will it go if the coefficient of friction between it and the incline is 0.150?

We first find the friction force on the block as
Fy = puFy — p(mg cos 25°)

As the block slides up the incline a distance D, it rises a distance D sin 25.0°. Because the change in
energy of the block equals the work done on it by the friction force, we have

Change in KE + change in PEg = F;D cos 180°

Im(vj —v7) + mg(D sin 25.0°) = —F;D
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6.20

6.21

6.22

WORK, ENERGY, AND POWER [CHAP. 6

We calculated F; above, and we know v; = 2.00 m/s and vy = 0. Notice that the mass of the block cancels
out in this case (but only because F; is given in terms of it). Substitution gives D = 0.365 m.

A 60000-kg train is being pulled up a 1.0 percent grade (it rises 1.0 m for each horizontal 100 m)
by a drawbar pull of 3.0 kN. The friction force opposing the motion of the train is 4.0 kN. The
train’s initial speed is 12 m/s. Through what horizontal distance s will the train move before its
speed is reduced to 9.0 m/s?

The change in total energy of the train is due to the work of the friction force and the drawbar pull:

Change in KE + change in PEg = Wy awbar + Whiiction

Im(v} — v7) + mg(0.010s) = (3000 N)(5)(1) + (4000 N)(s)(~1)
from which s =275 m = 0.28 km.

An advertisement claims that a certain 1200-kg car can accelerate from rest to a speed of 25 m/s
in a time of 8.0 s. What average power must the motor produce to cause this acceleration? Ignore
friction losses.
The work done in accelerating the car is given by
Work done = change in KE = 1m(v; — v7)
The time taken for this work is 8.0 s. Therefore,

work (1200 kg)(25 m/s)’

P = = =47 kW
oW = Yime 8.0s ’
Converting from watts to horsepower, we have
1 hp
Power = (46900 W) <746 W) =63 hp

A 0.25-hp motor is used to lift a load at the rate of 5.0 cm/s. How great a load can it lift at this
constant speed?

We assume the power output of the motor to be 0.25 hp = 186.5 W. In 1.0 s, the load mg is lifted a
distance of 0.050 m. Therefore,
Work done in 1.0 s = (weight)(height change in 1.0 s) = (mg)(0.050 m)
By definition, power = work/time, so that

(mg)(0.050 m)
1.0s
Using ¢ = 9.81 m/s, we find that m = 381 kg. The motor can lift a load of about 0.38 x 10° kg at this speed.

186.5 W =

Repeat Problem 6.20 if the data apply to a car going up a 20° incline.

Work must be done to lift the car as well as to accelerate it:
Work done = change in KE + change in PEg
= Im(v} —3) + mg(y — h)

where iy — h; = s sin 20° and s is the total distance the car travels in the 8 s under consideration. Knowing
v; =0, v, =25 m/s, and ¢ = 8.0 s, we have

5 = Vgt =% (v; 4+ v7)t = 100 m
Then  Work done = 1 (1200 kg)(625 m?/s%) + (1200 kg)(9.81 m/s*)(100 m)(sin 20°) = 0.78 x 10° kJ
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6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

from which Power = 78LOIZJ =97 kW =0.13 x 10° hp

In unloading grain from the hold of a ship, an elevator lifts the grain through a distance of 12 m.
Grain is discharged at the top of the elevator at a rate of 2.0 kg each second, and the discharge
speed of each grain particle is 3.0 m/s. Find the minimum-horsepower motor that can elevate
grain in this way.

The power output of the motor is

change in KE + change in PEg _ $m(v} — v}) + mgh
time taken B t
m
== [1(9.0 m*/s?) + (9.81 m/s”)(12 m)]

Power =

The mass transported per second, m/t, is 2.0 kg/s. Using this value gives the power as 0.24 kW.

Supplementary Problems

A force of 3.0 N acts through a distance of 12 m in the direction of the force. Find the work done.
Ans. 36]

A 4.0-kg object is lifted 1.5 m. (¢) How much work is done against the Earth’s gravity? (b) Repeat if the
object is lowered instead of lifted. Ans. (a) 59 J; (b) =59 ]

A uniform rectangular marble slab is 3.4 m long and 2.0 m wide. It has a mass of 180 kg. If it is originally
lying on the flat ground, how much work is needed to stand it on end? Ans. 3.0 kJ

How large a force is required to accelerate a 1300-kg car from rest to a speed of 20 m/s in a distance of
80 m? Ans. 3.3 kN

A 1200-kg car going 30 m/s applies its brakes and skids to rest. If the friction force between the sliding tires
and the pavement is 6000 N, how far does the car skid before coming to rest? Ans. 90 m

A proton (m = 1.67 x 107" kg) that has a speed of 5.0 x 10° m/s passes through a metal film of thickness
0.010 mm and emerges with a speed of 2.0 x 10° m/s. How large an average force opposed its motion
through the film?  Ans. 1.8 x107° N

A 200-kg cart is pushed slowly up an incline. How much work does the pushing force do in moving the cart
up to a platform 1.5 m above the starting point if friction is negligible? Ans. 2.9 kJ

Repeat Problem 6.30 if the distance along the incline to the platform is 7.0 m and a friction force of 150 N
opposes the motion. Ans. 4.0 k]

A 50000-kg freight car is pulled 800 m up along a 1.20 percent grade at constant speed. (¢) Find the work
done against gravity by the drawbar pull. (b) If the friction force retarding the motion is 1500 N, find the
total work done. Ans.  (a) 4.70 MJ; (b) 5.90 MJ

A 60-kg woman walks up a flight of stairs that connects two floors 3.0 m apart. (¢) How much lifting work is
done on the woman? (b) How much lifting work is done by the woman? (¢) By how much does the woman’s
PEg change? Ans. (a) 1.8 kJ; (b) 1.8 kJ; (¢) 1.8 kJ
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A pump lifts water from a lake to a large tank 20 m above the lake. How much work against gravity does the
pump do as it transfers 5.0 m® of water to the tank? One cubic meter of water has a mass of 1000 kg.
Ans. 9.8 x10°J

Just before striking the ground, a 2.0-kg mass has 400 J of KE. If friction can be ignored, from what height
was it dropped? Ans. 20.0 m

A 0.50-kg ball falls past a window that is 1.50 m in vertical length. (¢) How much did the KE of the ball
increase as it fell past the window? (b) If its speed was 3.0 m/s at the top of the window, what was its speed at
the bottom? Ans. (a) 7.4 J; (b) 6.2 m/s

At sea level a nitrogen molecule in the air has an average translational KE of 6.2 x 102" J. Its mass is
4.7 x 1072 kg. (a) If the molecule could shoot straight up without striking other air molecules, how high
would it rise? (b) What is the molecule’s initial speed? Ans. 14 km; (b) 0.51 km/s

The coefficient of sliding friction between a 900-kg car and the pavement is 0.80. If the car is moving at
25 m/s along level pavement when it begins to skid to a stop, how far will it go before stopping?
Ans. 40 m

Consider the simple pendulum shown in Fig. 6-7. (a) If it is released from point 4, what will be the speed of
the ball as it passes through point C? (b) What is the ball’s speed at point B? Ans. (a) 3.8 m/s;
(b) 3.4 m/s

Fig. 6-7 Fig. 6-8

A 1200-kg car coasts from rest down a driveway that is inclined 20° to the horizontal and is 15 m long. How
fast is the car going at the end of the driveway if (a) friction is negligible and (b) a friction force of 3000 N
opposes the motion? Ans. (a) 10 m/s; (b) 5.1 m/s

The driver of a 1200-kg car notices that the car slows from 20 m/s to 15 m/s as it coasts a distance of 130 m
along level ground. How large a force opposes the motion? Ans.  0.81 kN

A 2000-kg elevator rises from rest in the basement to the fourth floor, a distance of 25 m. As it passes the
fourth floor, its speed is 3.0 m/s. There is a constant frictional force of 500 N. Calculate the work done by
the lifting mechanism. Ans. 0.51 MJ

Figure 6-8 shows a bead sliding on a wire. How large must height /; be if the bead, starting at rest at A4, is to
have a speed of 200 cm/s at point B? Ignore friction. Ans. 20.4 cm
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In Fig. 6-8, i; = 50.0 cm, /1, = 30.0 cm, and the length along the wire from 4 to C is 400 cm. A 3.00-g bead
released at A coasts to point C and stops. How large an average friction force opposed its motion?
Ans.  1.47 mN

In Fig. 6-8, h; =200 cm, /, = 150 cm, and at 4 the 3.00-g bead has a downward speed along the wire of
800 cmy/s. (@) How fast is the bead moving as it passes point B if friction is negligible? (b)) How much energy
did the bead lose to friction work if it rises to a height of 20.0 cm above C after it leaves the wire?
Ans. (a) 10.2 m/s; (b) 105 mJ

Calculate the average horsepower required to raise a 150-kg drum to a height of 20 m in a time of
1.0 minute. Ans. 0.66 hp

Compute the power output of a machine that lifts a 500-kg crate through a height of 20.0 m in a time of
60.0 s. Ans. 1.63 kW

An engine expends 40.0 hp in propelling a car along a level track at 15.0 m/s. How large is the total retarding
force acting on the car? Ans. 1.99 kN

A 1000-kg auto travels up a 3.0 percent grade at 20 m/s. Find the horsepower required, neglecting friction.
Ans. 7.9 hp

A 900-kg car whose motor delivers a maximum power of 40.0 hp to its wheels can maintain a steady speed of
130 km/h on a horizontal roadway. How large is the friction force that impedes its motion at this speed?
Ans. 826 N

Water flows from a reservoir at the rate of 3000 kg/min, to a turbine 120 m below. If the efficiency of the
turbine is 80 percent, compute the horsepower output of the turbine. Neglect friction in the pipe and the
small KE of the water leaving the turbine. Ans. 63 hp

Find the mass of the largest box that a 40-hp engine can pull along a level road at 15 m/s if the friction
coefficient between road and box is 0.15. Ans. 1.4 x10° kg

A 1300-kg car is to accelerate from rest to a speed of 30.0 m/s in a time of 12.0 s as it climbs a 15.0° hill.
Assuming uniform acceleration, what minimum horsepower is needed to accelerate the car in this way?
Ans. 132 hp



Chapter 7

Simple Machines

A MACHINE is any device by which the magnitude, direction, or method of application of a
force is changed so as to achieve some advantage. Examples of simple machines are the lever,
inclined plane, pulley, crank and axle, and jackscrew.

THE PRINCIPLE OF WORK that applies to a continuously operating machine is as follows:
Work input = useful work output + work to overcome friction

In machines that operate for only a short time, some of the input work may be used to store energy
within the machine. An internal spring might be stretched, or a movable pulley might be raised, for
example.

MECHANICAL ADVANTAGE: The actual mechanical advantage (AMA) of a machine is

force exerted by machine on load

AMA = force ratio = -
force used to operate machine

The ideal mechanical advantage (IMA) of a machine is

distance moved by input force

IMA = dist: tio =
1stance ratio distance moved by load

Because friction is always present, the AMA is always less than the IMA. In general, both the AMA and
IMA are greater than one.

THE EFFICIENCY of a machine is

. work output ower output
Efficiency = . but _p - P
work input power input

The efficiency is also equal to the ratio AMA/IMA.

Solved Problems

7.1  Ina particular hoist system, the load is lifted 10 cm for each 70 cm of movement of the rope that
operates the device. What is the smallest input force that could possibly lift a 5.0-kN load?

The most advantageous situation possible is that in which all the input work is used to lift the load, i.e.,
in which friction and other loss mechanisms are negligible. In that case,

Work input = lifting work

If the load is lifted a distance s, the lifting work is (5.0 kN)(s). The input force F, however, must work
through a distance 7.0s. The above equation then becomes

(F)(7.0s) = (5.0 kKN)(s)
which gives F' = 0.71 kN as the smallest possible force required.

80
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7.2 A hoisting machine lifts a 3000-kg load a height of 8.00 m in a time of 20.0 s. The power supplied
to the engine is 18.0 hp. Compute (a) the work output, (b) the power output and power input, and
(c) the efficiency of the engine and hoist system.
(@) Work output = (lifting force) x (height) = (3000 x 9.81 N)(8.00 m) = 235 kJ

work output 235 kJ

P = = =118k
() ower output time taken 20.0 s 8 kW
746 k
Power input = (18.0 hp) (W) = 13.4 kW
. power output 11.8 kW
Effi = = =0.881 = 83.1
(c) fereney power input  13.4 kW 088 88.1%
or Efficiency = work output _ 235 kI =0.877=87.7%

work input  (13.4 kJ/s)(20.0 s)

The efficiency is 88%:; the differences arise from the rounding off process.

7.3  What power in kW is supplied to a 12.0-hp motor having an efficiency of 90.0 percent when it is
delivering its full rated output?

From the definition of efficiency,

power output _ (12.0 hp)(0.746 kW /hp)

efficiency 0.900 =995 kW

Power input =

7.4  For the three levers shown in Fig. 7-1, determine the vertical forces F;, F,, and F; required to
support the load Fj = 90 N. Neglect the weights of the levers. Also find the IMA, AMA, and
efficiency for each system.

% 40m %Z.Om% % 3.0m A
IF A | AI‘Om
| v F—x>

(@) (b (©)

Fig. 7-1

In each case, we take torques about the fulcrum point as axis. If we assume that the lifting is occurring
slowly at constant speed, then the systems are in equilibrium; the clockwise torques balance the counter-
clockwise torques. (Recall that torque = rF sin 6.)

Clockwise torque = counterclockwise torque

(a) (2.0 m)(90 N)(1) = (4.0 m)(F;)(1) from which  F; =45 N
b) (1.0 m)(90 N)(1) = (3.0 m)(F,)(1) from which F, =30 N
(o) (2.0 m)(90 N)(1) = (5.0 m)(F3) sin 60° from which  F; =42 N

To find the IMA of the system in Fig. 7-1(«), we notice that the load moves only half as far as the input
force, and so

IMA = distance ratio = 2.0
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Similarly, in Fig. 7-1(b). IMA = 3/1 = 3. In Fig. 7-1(c), however, the lever arm is (5.0 m)sin 60° = 4.33 m
and so the distance ratio is 4.33/2 = 2.16. To summarize,

Lever (a) Lever (b) Lever (c)
IMA 2.0 3.0 2.2
90 N 90 N 90 N
AMA BN 20 N0 AoN 22
Eff. 1.0 1.0 1.0

The efficiencies are 1.0 because we have neglected friction at the fulcrums.

7.5  Determine the force F required to lift a 100-N load Fy, with each of the pulley systems shown in
Fig. 7-2. Neglect friction and the weights of the pulleys.

(a) (®) © () (e)
Fig. 7-2

(a) Load Fy is supported by two ropes; each rope exerts an upward pull of Fy = %F w- Because the rope is
continuous and the pulleys are frictionless, F; = F. Then

F=Fr=%1Fy=%(100N)=50 N
(b) Here, too, the load is supported by the tensions in two ropes, Fr and F, where F; = F. Then
Fr+F=Fy or F=1F;=50N
(¢) Let Fy| and Fp, be tensions around pulleys 4 and B, respectively. Pulley 4 is in equilibrium, so
Fri+Fr—Fy=0 or  Fp =1Fy
Pulley B, too, is in equilibrium, so
Fro+Fry—Fp =0 or  Fry=%Fp =1Fy

But F = Fr, and so F = { Fjy =25 N.
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(d) Four ropes, each with the same tension Fr, support the load Fj. Therefore,
4Fp  =Fy  andso  F=Fp =1Fy=25N
(e) We see at once F = Fr;. Because the pulley on the left is in equilibrium, we have
Fry—Fprp —F=0
But Fry = F and so Fy, = 2F. The pulley on the right is also in equilibrium, and so
Fri+Frp+Fr—Fy=0

Recalling that Fy = F and that Fp, = 2F gives 4F = Fy, so F =25 N.

7.6  Using the wheel and axle shown in Fig. 7-3, a 400-N load can be raised by a force of 50 N applied
to the rim of the wheel. The radii of the wheel and axle are 85 cm and 6.0 cm, respectively.
Determine the IMA, AMA, and efficiency of the machine.

We know that in one turn of the wheel-axle system, a length of cord equal to the circumference of the
wheel or axle will be wound or unwound.

distance moved by F 27R  85cm

IMA = — — — 14

distance moved by Fyr  27r 6.0 cm

400 N

AMA = fi tio=———=28.0

orce ratio = ==
. AMA 8.0

EfﬁCIency = m = m =0.56 = 56%
aF
Sk 3.0m
JL F,y=(20)(9.81)N
Fig. 7-3 Fig. 7-4

7.7  The inclined plane shown in Fig. 7-4 is 15 m long and rises 3.0 m. (¢) What force F parallel to the
plane is required to slide a 20-kg box up the plane if friction is neglected? () What is the IMA of
the plane? (¢) Find the AMA and efficiency if a 64-N force is actually required.

(a) There are several ways to approach this. Let us consider energy. Since there is no friction, the work
done by the pushing force, (F)(15 m), must equal the lifting work done, (20 kg)(9.81 m/sz)(3.0 m).
Equating these two expressions and solving for F gives F = 39 N.

_ distance moved by F 15m 5.0

b IMA = = =
(5) distance Fyy is lifted 3.0 m
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. Fp 196N
(¢) AMA = force ratio = FTUN - 3.06 =3.1
, AMA  3.06
EfﬁCISIle = m = W =0.61 = 61%

Or, as a check,

work output  (Fy/)(3.0 m)
work input — (F)(15m)

Efficiency = =0.61 =61%

As shown in Fig. 7-5, a jackscrew has a lever arm of 40 cm and a pitch of 5.0 mm. If the efficiency
is 30 percent, what horizontal force F applied perpendicularly at the end of the lever arm is
required to lift a load Fy of 270 kg?

Ey

5.0 mm

Fig. 7-5

When the jack handle is moved around one complete circle, the input force moves a distance
27r = 27(0.40 m)
while the load is lifted a distance of 0.0050 m. The IMA is therefore

27(0.40 m)

_ 3
00050 m 0.50 x 10

IMA = distance ratio =

Since efficiency = AMA/IMA, we have
AMA = (efficiency)(IMA) = (0.30)(502) = 0.15 x 10°
But AMA = (load lifted)/(input force) and so

p_ load lifted _ (270kg)(9.81 m/s?)
T AMA 151

=18N

A differential pulley (chain hoist) is shown in Fig. 7-6. Two toothed pulleys of radii r = 10 cm and
R =11 cm are fastened together and turn on the same axle. A continuous chain passes over the
smaller (10 cm) pulley, then around the movable pulley at the bottom, and finally around the
11 cm pulley. The operator exerts a downward force F on the chain to lift the load Fy .
(a) Determine the IMA. (b) What is the efficiency of the machine if an applied force of 50 N is
required to lift a load of 700 N?
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Fig. 7-6

(a) Suppose that the force F moves down a distance sufficient to cause the upper rigid system of pulleys to
turn one revolution. Then the smaller upper pulley unwinds a length of chain equal to its circumference,
27r, while the larger upper pulley winds a length 27 R. As a result, the chain supporting the lower pulley
is shortened by a length 2R — 2zr. The load Fyy is lifted half this distance, or

1(2rR = 2nr) =7m(R —7r)
when the input force moves a distance 27 R. Therefore,

IMA distance moved by ¥  27R 2R 22cm _

= = = = =22
distance moved by Fjy #(R—r) R—r 1.0cm

(b) From the data,
_ load lifted 700 N

AMA = = =14
input force 50 N
and
. AMA 14
EffiClenCy = m = Z =0.64 = 64%

Supplementary Problems

7.10 A motor furnishes 120 hp to a device that lifts a 5000-kg load to a height of 13.0 m in a time of 20 s. Find the
efficiency of the machine. Ans. 36%

7.11  Refer back to Fig. 7-2(d). If a force of 200 N is required to lift a 50-kg load, find the IMA, AMA, and
efficiency for the system. Ans. 4,2.5,61%
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7.12

7.13

7.14

7.15

7.16
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In Fig. 7-7, the 300-N load is balanced by a force F' in both systems. Assuming efficiencies of 100 percent,
how large is F in each system? Assume all ropes to be vertical. Ans.  (a) 100 N; (b) 75.0 N

Fig. 7-7

With a certain machine, the applied force moves 3.3 m to raise a load 8.0 cm. Find the (a) IMA and
(b) AMA if the efficiency is 60 percent. What load can be lifted by an applied force of 50 N if the efficiency is
(¢) 100 percent and (d ) 60 percent? Ans.  (a)41; (b) 25;(¢) 2.1 kN; (d) 1.2 kN

With a wheel and axle, a force of 80 N applied to the rim of the wheel can lift a load of 640 N. The diameters
of the wheel and axle are 36 cm and 4.0 cm, respectively. Determine the AMA, IMA, and efficiency of the
machine. Ans. 8.0, 9.0, 89%

A certain hydraulic jack in a gas station lifts a 900-kg car a distance of 0.25 cm when a force of 150 N pushes
a piston through a distance of 20 cm. Find the IMA, AMA, and efficiency. Ans. 80, 59, 74%

The screw of a certain press has a pitch of 0.20 cm. The diameter of the wheel to which a tangential turning
force F is applied is 55 cm. If the efficiency is 40 percent, how large must F be to produce a force of 12 kN in
the press? Ans. 35N

The diameters of the two upper pulleys of a chain hoist (Fig. 7-6) are 18 cm and 16 cm. If the efficiency of the
hoist is 45 percent, what force is required to lift a 400-kg crate? Ans. 0.48 kN



Chapter 8

Impulse and Momentum

THE LINEAR MOMENTUM (p) of a body is the product of its mass (m) and velocity (¥):
Linear momentum = (mass of body) (velocity of body)
p=mv

Momentum is a vector quantity whose direction is that of the velocity. The units of momentum are
kg-m/s in the SI.

AN IMPULSE is the product of a force (F) and the time interval (Af) over which the force acts:
Impulse = (force) (length of time the force acts)

Impulse is a vector quantity whose direction is that of the force. Its units are N-s in the SI.

AN IMPULSE CAUSES A CHANGE IN MOMENTUM: The change of momentum produced
by an impulse is equal to the impulse in both magnitude and direction. Thus, if a constant force
F acting for a time Ar on a body of mass m changes its velocity from an initial value v; to a
final value ¥, then
Impulse = change in momentum
FAL=m(V, —¥,)

Newton’s Second Law, as he gave it, is F = Ap/At from which it follows that F At = Ap. Moreover,
F At = A(mv) and if m is constant F At = m(v, — ¥,).

CONSERVATION OF LINEAR MOMENTUM: If the net external force acting on a system of
objects is zero, the vector sum of the momenta of the objects will remain constant.

IN COLLISIONS AND EXPLOSIONS, the vector sum of the momenta just before the event
equals the vector sum of the momenta just after the event. The vector sum of the momenta of
the objects involved does not change during the collision or explosion.
Thus, when two bodies of masses m; and m, collide,
Total momentum before impact = total momentum after impact
mlﬁ'l + m2ﬁz = Wl]V] + le\_fz
where u; and u, are the velocities before impact, and v; and ¥, are the velocities after. In one dimension,
in component form,
MUy + Moy = MUy + MVsy

and similarly for the y- and z-components. Remember that vector quantities are always boldfaced and
velocity is a vector. On the other hand, v, u,,, v;,, and v,, are the scalar values of the velocities (they

can be positive or negative). A positive direction is initally selected and vectors pointing opposite to this
have negative numerical scalar values.
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A PERFECTLY ELASTIC COLLISION is one in which the sum of the translational KEs of the
objects is not changed during the collision. In the case of two bodies,

1 2,1 2 _ 1 2 1 2
zmlul —|—§m2u2 = §m11)1 —|—§m2112

COEFFICIENT OF RESTITUTION: For any collision between two bodies in which the bodies
move only along a single straight line (e.g., the x-axis), a coefficient of restitution e is defined. It
is a pure number given by
Uax — Vix
e =——
Uy — Uy
where u;, and u,, are values before impact, and v, and v,, are values after impact. Notice that
|u1c — us,| 1s the relative speed of approach and |v,, — vy, is the relative speed of recession.
For a perfectly elastic collision, ¢ = 1. For inelastic collisions, e < 1. If the bodies stick together after
collision, e = 0.

THE CENTER OF MASS of an object (of mass m) is the single point that moves in the same
way as a point mass (of mass m) would move when subjected to the same external forces that
act on the object. That is, if the resultant force acting on an object (or system of objects) of
mass m is F, the acceleration of the center of mass of the object (or system) is given by
A = f/ m.

If the object is considered to be composed of tiny masses n1;, m,, ms, and so on, at coordinates
(x1,1,21), (X2,)2,22), and so on, then the coordinates of the center of mass are given by

. X xm; on = Y ym; Xz,
cm T cm T
by m;

Z
by m; em Zm,—

where the sums extend over all masses composing the object. In a uniform gravitational field, the center
of mass and the center of gravity coincide.

Solved Problems

8.1  An 8.0-g bullet is fired horizontally into a 9.00-kg cube of wood, which is at rest, and sticks in it.
The cube is free to move and has a speed of 40 cm/s after impact. Find the initial velocity of the
bullet.

Consider the system (cube + bullet). The velocity, and hence the momentum, of the cube before impact
is zero. Take the bullet’s initial motion to be positive in the positive x-direction. The momentum conserva-
tion law tells us that

Momentum of system before impact = momentum of system after impact
(momentum of bullet) + (momentum of cube) = (momentum of bullet + cube)
mpug, + Mmcve, = (mp + me)v,
(0.008 0 kg)vp, + 0 = (9.008 kg)(0.40 m/s)

Solving gives vy, = 0.45 km/s and so vz = 0.45 km/s— POSITIVE X-DIRECTION.
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8.2

8.3

8.4

8.5

A 16-g mass is moving in the +x-direction at 30 cm/s while a 4.0-g mass is moving in the
—x-direction at 50 cm/s. They collide head on and stick together. Find their velocity after the
collision.

Let the 16-g mass be m; and the 4.0-g mass be m,.
Take the +x-direction to be positive. That means that the velocity of the 4.0-g mass has a scalar value of
vy, = —50 cm/s. We apply the law of conservation of momentum to the system consisting of the two masses:
Momentum before impact = momentum after impact
My + myvy, = (my + ma)v,
(0.016 kg)(0.30 m/s) + (0.0040 kg)(—0.50 m/s) = (0.020 kg)v,
v, = +0.14 m/s

(Notice that the 4.0-g mass has negative momentum.) Hence, v = 0.14 m/s— POSITIVE X-DIRECTION.

A 2.0-kg brick is moving at a speed of 6.0 m/s. How large a force F is needed to stop the brick in a
time of 7.0 x 107* s?

Let us solve this by use of the impulse equation:

Impulse on brick = change in momentum of brick
F At = mvy — my;
F(7.0 x 107*s) = 0 — (2.0 kg)(6.0 m/s)

from which F = —1.7 x 10* N. The minus sign indicates that the force opposes the motion.

A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges
with a speed of 90 m/s. What average force impeded its motion through the plastic?

Use the impulse equation to find the force F on the bullet as it takes a time At to pass through the
plastic. Taking the initial direction of motion to be positive,

FAt = mvy — my;

We can find Ar by assuming uniform deceleration and using x =v,¢? where x=0.020 m and
gy = 5 (v; +v7) = 195 m/s. This gives Ar = 1.026 x 10~* s. Then

(F)(1.026 x 10™* 5) = (0.015 kg)(90 m/s) — (0.015 kg)(300 m/s)

which gives F = —3.1 x 10* N as the average retarding force. How could this problem have been solved
using F = ma instead of the impulse equation? By using energy methods?

The nucleus of an atom has a mass of 3.80 x 107> kg and is at rest. The nucleus is radioactive
and suddenly ejects a particle of mass 6.6 x 107" kg and speed 1.5 x 10’ m/s. Find the recoil
speed of the nucleus that is left behind.

Take the direction of the ejected particle as positive. We are given, m,; = 3.80 x 1072 kg,
m, = 6.6 x 10777 kg, m,; = m,; —m, = 3.73 x 1072 kg, and v, = 1.5 x 107 m/s; find the final speed of
the nucleus, v,,. The momentum of the system is conserved during the explosion.
Momentum before = momentum after
0 = myp vy =+ myvpy

0= (3.73 x 107> kg)(v,) + (6.6 x 107 kg)(1.5 x 10" m/s)
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Solving gives
(6.6 x 1072 kg)(1.5x 10" m/s)  10.0 x 107
3.73 x 1075 kg T 373%x 107

The fact that this is negative tells us that the velocity vector of the nucleus points in the negative direction,
opposite to the velocity of the particle.

=2.7x10° m/s

—Uyy =

A 0.25-kg ball moving in the +x-direction at 13 m/s is hit by a bat. Its final velocity is 19 m/s in
the —x-direction. The bat acts on the ball for 0.010 s. Find the average force F exerted on the ball
by the bat.

We have v; = 13 m/s and vy = —19 m/s. Taking the initial direction of motion as positive, the impulse
equation then gives
F At = mvy — my;
F(0.010 ) = (0.25 kg)(—19 m/s) — (0.25 kg)(13 m/s)

from which F = —0.80 kN.

Two girls (masses m; and m,) are on roller skates and stand at rest, close to each other and face to
face. Girl 1 pushes squarely against girl 2 and sends her moving backward. Assuming the girls
move freely on their skates, with what speed does girl 1 move?

We take the two girls to comprise the system under consideration. The problem states that girl 2 moves
“backward,” so let that be the negative direction; therefore the “forward” direction is positive. There is no
resultant external force on the system (the push of one girl on the other is an internal force), and so
momentum is conserved:

Momentum before = momentum after

0 = mv; + myv,
from which vV =——

Girl 1 recoils with this speed. Notice that if m,/m; is very large, v; is much larger than v,. The velocity of girl
1, ¥}, points in the positive forward direction. The velocity of girl 2, ¥,, points in the negative backward
direction. If we put numbers into the equation, v, would have to be negative and v; would come out positive.

As shown in Fig. 8-1, a 15-g bullet is fired horizontally into a 3.000-kg block of wood suspended
by a long cord. The bullet sticks in the block. Compute the speed of the bullet if the impact causes
the block to swing 10 cm above its initial level.

7 =y, —=-
S’ 15¢

3.000 kg

Fig. 8-1
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8.9

8.10

8.11

Consider first the collision of block and bullet. During the collision, momentum is conserved, so

Momentum just before = momentum just after
(0.015 kg)v 4+ 0 = (3.015 kg) V'

where v is the initial speed of the bullet, and V is the speed of block and bullet just after collision.
We have two unknowns in this equation. To find another equation, we can use the fact that the block
swings 10 cm high. If we let PEg = 0 at the initial level of the block, energy conservation gives

KE just after collision = final PEg
1(3.015 kg) V> = (3.015 kg)(9.81 m/s*)(0.10 m)

From this we find /' = 1.40 m/s. Substituting this in the previous equation gives v = 0.28 km/s for the speed
of the bullet.

Notice that we cannot write the conservation of energy equation %mv2 = (m+ M)gh, where
m = 0.015 kg and M = 3.000 kg because energy is lost (through friction) in the collision process.

Three masses are placed on the x-axis: 200 g at x =0, 500 g at x =30 cm, and 400 g at
x = 70 cm. Find their center of mass.

S, (0)(0.20 kg) + (0.30 m)(0.50 kg) + (0.70 m)(0.40 kg)

Xom = - —0.39
Yom = o (0.20 + 0.50 + 0.40) kg o

The y- and z-coordinates of the mass center are zero.

A system consists of the following masses in the xy-plane: 4.0 kg at coordinates (x =0,
y=>5.0m), 7.0 kg at (3.0 m, 8.0 m), and 5.0 kg at (—3.0 m, —6.0 m). Find the position of its
center of mass.

_ S _ (0)(40 ke) + (30 m)(7.0 ke) + (-3.0m)(50ke) _ o
Yem =TS, 4.0 +7.0 1+ 5.0) kg -

o _ Zym; _ (5.0 m)(4.0 kg) + (8.0 m)(7.0 kg) + (—6.0 m)(5.0 kg) _ 290 m
Tom =S, 16 kg -

and z.,, = 0.

Two identical railroad cars sit on a horizontal track, with a distance D between their centers. By
means of a cable between them, a winch on one is used to pull the two together. (a) Describe their
relative motion. (b) Repeat if the mass of one car is three times that of the other.

The forces due to the cable on the two cars are internal forces for the two-car system. The net external
force on the system is zero, and so its center of mass does not move, even though each car moves toward the
other. Taking the origin of coordinates at the mass center, we have
Ympx;  myxy + X,

Sm; omy+m,

Xem = 0=
where x; and x, are the positions of the centers of the two cars.

(a) If my = m,, this equation becomes
X1+ X
2

The two cars approach the center of mass, which is originally midway between the two cars (that is,
D/2 from each), in such a way that their centers are always equidistant from it.

0=

or X1 = —Xp

(b) If my = 3m,, then we have

_ 3}’)/12)(:] +m2x2 o 3.’(31 +X2

3]’}12 =+ niy 4
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from which x; = —x,/3. The two cars approach each other in such a way that the mass center remains
motionless and the heavier car is always one-third as far away from it as the lighter car.

Originally, because |x||+ |x,| =D, we had x,/3+x, =D. So m, was originally a distance
X, = 3D/4 from the mass center, and m; was a distance D/4 from it.

8.12 A pendulum consisting of a ball of mass m is released from the position shown in Fig. 8-2 and

8.13

strikes a block of mass M. The block slides a distance D before stopping under the action of a
steady friction force 0.20Mg. Find D if the ball rebounds to an angle of 20°.

Fig. 8-2

The pendulum ball falls through a height (L — L cos 37°) = 0.201L and rebounds to a height
(L — L cos 20°) = 0.060 3L. Because (mgh),,, = (mv?)pouom for the ball, its speed at the bottom is
v =+/2gh.

Although KE is not conserved in the collision, momentum is. Therefore, for the collision,

Momentum just before = momentum just after
my/2g(0.201L) + 0 = —m+/2g(0.0603L) + MV

where V is the velocity of the block just after the collision. (Notice the minus sign on the momentum of the
rebounding ball.) Solving this equation, we find

m
= "0.981/gL
V=170981\e

The block uses up its translational KE doing work against friction as it slides a distance D. Therefore,
2

IMV*=FD  or %M(O.%SgL)(%) (0.2Mg)(D)

from which D = 2.4(m/M)*L.

Two balls of equal mass approach the coordinate origin, one moving downward along the
+y-axis at 2.00 m/s and the other moving to the right along the —x-axis at 3.00 m/s. After
they collide, one ball moves out to the right along the +x-axis at 1.20 m/s. Find the scalar x
and y velocity components of the other ball.

Take up and to the right as positive. Momentum is conserved in the collision, so we can write
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(momentum before), = (momentum after)

RY

or m(3.00 m/s) + 0 = m(1.20 m/s) + muv,
and (momentum before), = (momentum after),
or 04 m(—2.00 m/s) = 0 4 mv,

(Why the minus sign?) Solving, we find that v, = 1.80 m/s and v, = —2.00 m/s.

8.14 A 7500-kg truck traveling at 5.0 m/s east collides with a 1500-kg car moving at 20 m/s in a
direction 30° south of west. After collision, the two vehicles remain tangled together. With
what speed and in what direction does the wreckage begin to move?

The original momenta are shown in Fig. 8-3(a), while the final momentum MYV is shown in Fig. 8-3(b).
Momentum must be conserved in both the north and east directions. Therefore,
(momentum before)y = (momentum after)g
(7500 kg)(5.0 m/s) — (1500 kg)[(20 m/s) cos 30°] = Muvg
where M = 7500 kg + 1500 kg = 9000 kg, and vg is the scalar eastward component of the velocity of the
wreckage.
(momentum before)y = (momentum after)y
(7500 kg)(0) — (1500 kg)[(20 m/s) sin 30°] = Moy
The first equation gives vg = 1.28 m/s, and the second gives vy = —1.67 m/s. The resultant is
v= \/(1.67 m/s)® + (1.28 m/s)* = 2.1 m/s
The angle ¢ in Fig. 8-3(b) is
1.67 .
0 = arctan (m) =353
N N
1500 kg x 20 m/s
7500 kg X 5.0 m/s 30° y Mo,
- E 0 E
Mv,,
Mv
(@) ®
Fig. 8-3
8.15 Two identical balls collide head-on. The initial velocity of one is 0.75 m/s — EAsT, while that of

the other is 0.43 m/s— wesT. If the collision is perfectly elastic, what is the final velocity of each
ball?

Since the collision is head-on, all motion takes place along a straight line. Take east as positive and call
the mass of each ball m. Momentum is conserved in a collision, so we can write
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Momentum before = momentum after
m(0.75 m/s) + m(—0.43 m/s) = mv; + mv,
where v; and v, are the final values. This equation simplifies to
0.32 m/s = vy + vy (1)
Because the collision is assumed to be perfectly elastic, KE is also conserved. Thus,
KE before = KE after
Im(0.75 m/s)” +1m(0.43 m/s)” = Lot + L mo}
This equation can be simplified to
0.747 = v} + v} 2)
We can solve for v, in (/) to get v, = 0.32 — v; and substitute this in (2). This yields
0.747 = (0.32 — v))* + v%

from which 207 — 0.64v; — 0.645 =0
Using the quadratic formula, we find that

0.64 £ 1/(0.64)* + 5.16
v = y)
from which v; = 0.75 m/s or —0.43 m/s. Substitution back into Eq. (1) gives v, = —0.43 m/s or 0.75 m/s.
Two choices for answers are available:
(v =0.75 m/s, v, = —0.43 m/s) and (v = =043 m/s, v, =0.75 m/s)

We must discard the first choice because it implies that the balls continue on unchanged; that is to say, no
collision occurred. The correct answer is therefore v; = —0.43 m/s and v, = 0.75 m/s, which tells us that in a
perfectly elastic, head-on collision between equal masses, the two bodies simply exchange velocities. Hence
V) = 0.43 m/s—wesT and v, = 0.75 m/s— EAST.

=0.16+0.59m/s

Alternative Method

If we recall that e = 1 for a perfectly elastic head-on collision, then

_27n becomes 1= e
T —u ecome = (075 m/s) — (—0.43 m/s)

which gives
1)2—1}1:1.181’1’1/8 (3)

Equations (/) and (3) determine v; and v, uniquely.

A 1.0-kg ball moving at 12 m/s collides head-on with a 2.0-kg ball moving in the opposite
direction at 24 m/s. Determine the motion of each after impact if (a) e =2/3, (b) the balls
stick together, and (c¢) the collision is perfectly elastic.

In all three cases momentum is conserved, and so we can write
Momentum before = momentum after
(1.0 kg)(12 m/s) + (2.0 kg)(—24 m/s) = (1.0 kg)v; + (2.0 kg)v,
which becomes
=36 m/s = v; + 2v,

(@) When e=2/3,

I becomes 2_ Y2~ U
T —uy 37 (12m/s) — (=24 m/s)
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from which 24 m/s = v, — v;. Combining this with the momentum equation found above gives
v, = —4.0 m/s and v; = —28 m/s.

(b) In this case v; = v, = v and so the momentum equation becomes

3v=-36 m/s or v=—12m/s

(¢) Heree=1, so

Uy — Vg Uy — U
== becomes 1=

T~ (12 m/s) — (—24 m/s)

from which v, — v; = 36 m/s. Adding this to the momentum equation gives v, = 0. Using this value for
v, then gives v; = —36 m/s.

8.17 A ball is dropped from a height /& above a tile floor and rebounds to a height of 0.654. Find the
coefficient of restitution between ball and floor.

The initial and final velocities of the floor, u; and v;, are zero. Therefore,
Uy — Uy

e
Uy —u U

But we can write equations for the interchange of PEg and KE both before and after the bounce:
mgh = Lmuj and  mg(0.65h) = Lmuv3
Therefore, taking down as positive, we have u, = v/2gh and v, = —/1.30gh. Substitution gives

V1.30gh
= =+0.65=0.81
¢ V2gh

8.18 The two balls shown in Fig. 8-4 collide and bounce off each other as shown. (¢) What is the final
velocity of the 500-g ball if the 800-g ball has a speed of 15 cm/s after the collision? (b) Is the
collision perfectly elastic?

AN 50 cm/s

0 -~
30e¢m/s 00000 TTTTTTTTTTOTTToC T (} Q 500¢g
800 ¢ Q P el T

Fig. 8-4

(a) Take motion to the right as positive. From the law of conservation of momentum,

(momentum before), = (momentum after),
(0.80 kg)(0.30 m/s) + (0.50 kg)(—0.5 m/s) = (0.80 kg)[(0.15 m/s) cos 30°] + (0.50 kg)v,

from which v, = —0.228 m/s. Taking motion upward as positive,

(momentum before), = (momentum after),
0 = (0.80 kg)[—(0.15 m/s) sin 30°] 4 (0.50 kg)v,
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from which v, = 0.120 m/s. Then

v= /R + 0= \/(70.228 m/s)? + (0.120 m/s)* = 0.26 m/s
and v = 0.26 m/s— RIGHT.

Also, for the angle 6 shown in Fig. 8-4,

0.120 .
0 = arctan (m> =28

(b) Total KE before = 1(0.80 kg)(0.30 m/s)* +1(0.50 kg)(0.50 m/s)* = 0.099 J
Total KE after =1(0.80 kg)(0.15 m/s)* +1(0.50 kg)(0.26 m/s)* = 0.026 J

Because KE is lost in the collision, it is not perfectly elastic.

What force is exerted on a stationary flat plate held perpendicular to a jet of water as shown in
Fig. 8-5? The horizontal speed of the water is 80 cm/s, and 30 mL of the water hits the plate each
second. Assume the water moves parallel to the plate after striking it. One milliliter (mL) of water
has a mass of 1.00 g.

80 cm/s

Fig. 8-5

The plate exerts an impulse on the water and changes its horizontal momentum. Taking the direction to
the right as positive,

(impulse), = change in x-directed momentum
F, At = (anX)ﬁnul - (I’}’Z’UX)

initial
Let us take ¢ to be 1.00 s so that m will be the mass that strikes in 1.00 s, namely 30 g. Then the above
equation becomes

F.(1.00 s) = (0.030 kg)(0 m/s) — (0.030 kg)(0.80 m/s)

from which F, = —0.024 N. This is the force of the plate on the water. The law of action and reaction tells us
that the jet exerts an equal but opposite force on the plate.

A rocket standing on its launch platform points straight upward. Its jet engines are activated and
eject gas at a rate of 1500 kg/s. The molecules are expelled with a speed of 50 km/s. How much
mass can the rocket initially have if it is slowly to rise because of the thrust of the engines?

Because the motion of the rocket itself is negligible in comparison to the speed of the expelled gas, we
can assume the gas to be accelerated from rest to a speed of 50 km/s. The impulse required to provide this
acceleration to a mass m of gas is
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8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

F At = my; — my; = m(50000 m/s) — 0
from which F = (50000 m/s) %
But we are told that the mass ejected per second (m2/Ar) is 1500 kg/s, and so the force exerted on the expelled
gas is
F = (50000 m/s)(1500 kg/s) = 75 MN
An equal but opposite reaction force acts on the rocket, and this is the upward thrust on the rocket. The
engines can therefore support a weight of 75 MN, so the maximum mass the rocket could have is
weight 75 x 10° N
g 98l m/s?

Mocker = =7.7 % 10° kg

Supplementary Problems

Typically, a tennis ball hit during a serve travels away at about 51 m/s. If the ball is at rest mid-air when
struck, and it has a mass of 0.058 kg, what is the change in its momentum on leaving the racket?
Ans. 3.0 kg-m/s

During a soccer game a ball (of mass 0.425 kg), which is initially at rest, is kicked by one of the players. The
ball moves off at a speed of 26 m/s. Given that the impact lasted for 8.0 ms, what was the average force
exerted on the ball? Ans. 1.4 kN

A 40000-kg freight car is coasting at a speed of 5.0 m/s along a straight track when it strikes a 30 000-kg
stationary freight car and couples to it. What will be their combined speed after impact? Ans. 2.9 m/s

An empty 15000-kg coal car is coasting on a level track at 5.00 m/s. Suddenly 5000 kg of coal is dumped
into it from directly above it. The coal initially has zero horizontal velocity. Find the final speed of the
car. Ans. 3.75 m/s.

Sand drops at a rate of 2000 kg/min from the bottom of a hopper onto a belt conveyer moving horizontally
at 250 m/min. Determine the force needed to drive the conveyer, neglecting friction. Ans. 139 N

Two bodies of masses 8 kg and 4 kg move along the x-axis in opposite directions with velocities of 11 m/s—
POSITIVE X-DIRECTION and 7 m/s— NEGATIVE X-DIRECTION, respectively. They collide and stick together. Find
their velocity just after collision. Ans. 5 m/s— POSITIVE X-DIRECTION

A 1200-kg gun mounted on wheels shoots an 8.00-kg projectile with a muzzle velocity of 600 m/s at an angle
of 30.0° above the horizontal. Find the horizontal recoil speed of the gun. Ans. 3.46 m/s

Three masses are placed on the y-axis: 2 kg at y = 300 cm, 6 kg at y = 150 cm, and 4 kg at y = —75 cm.
Find their center of mass. Ans. y=1m

Four masses are positioned in the xy-plane as follows: 300 g at (x =0, y =2.0 m), 500 g at (—2.0 m,
—3.0m), 700 g at (50 cm, 30 cm), and 900 g at (—80 cm, 150 cm). Find their center of mass.
Ans. x=-0.57Tm, y=0.28 m

A ball of mass m sits at the coordinate origin when it explodes into two pieces that shoot along the x-axis in
opposite directions. When one of the pieces (which has mass 0.270m) is at x = 70 cm, where is the other
piece? (Hint: What happens to the mass center?) Ans. at x = —26 cm
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A ball of mass m at rest at the coordinate origin explodes into three equal pieces. At a certain instant, one
piece is on the x-axis at x = 40 cm and another is at x = 20 cm, y = —60 cm. Where is the third piece at that
instant? Ans. at x = —60 cm, y = 60 cm

A 2.0-kg block of wood rests on a long tabletop. A 5.0-g bullet moving horizontally with a speed of 150 m/s
is shot into the block and sticks in it. The block then slides 270 cm along the table and stops. () Find the
speed of the block just after impact. (b) Find the friction force between block and table.

Ans.  (a) 0.37 m/s; (b) 0.052 N

A 2.0-kg block of wood rests on a tabletop. A 7.0-g bullet is shot straight up through a hole in the table
beneath the block. The bullet lodges in the block, and the block flies 25 cm above the tabletop. How fast was
the bullet going initially? Ans.  0.64 km/s

A 6000-kg truck traveling north at 5.0 m/s collides with a 4000-kg truck moving west at 15 m/s. If the two
trucks remain locked together after impact, with what speed and in what direction do they move immediately
after the collision? Ans. 6.7 m/s at 27° north of west

What average resisting force must act on a 3.0-kg mass to reduce its speed from 65 cm/s to 15 cm/s in
0.20 s? Ans. 75N

A 7.00-g bullet moving horizontally at 200 m/s strikes and passes through a 150-g tin can sitting on a post.
Just after impact, the can has a horizontal speed of 180 cm/s. What was the bullet’s speed after leaving the
can? Ans. 161 m/s

Two balls of equal mass, moving with speeds of 3 m/s, collide head-on. Find the speed of each after impact if
(a) they stick together, (b) the collision is perfectly elastic, (¢) the coefficient of restitution is 1/3.
Ans. (a) 0 m/s; (b) each rebounds at 3 m/s; (c¢) each rebounds at 1 m/s

A 90-g ball moving at 100 cm/s collides head-on with a stationary 10-g ball. Determine the speed of each
after impact if (@) they stick together, (b) the collision is perfectly elastic, (¢) the coefficient of restitution is
0.90. Ans.  (a) 90 cm/s; (b) 80 cm/s, 1.8 m/s; (¢) 81 cm/s, 1.7 m/s

A ball is dropped onto a horizontal floor. It reaches a height of 144 ¢cm on the first bounce, and 81 cm on the
second bounce. Find («) the coefficient of restitution between the ball and floor and (b) the height it attains
on the third bounce. Ans. (a) 0.75; (b) 46 cm

Two identical balls undergo a collision at the origin of coordinates. Before collision their scalar velocity
components are (i, = 40 cm/s, u, = 0) and (u, = —30 cm/s, u, = 20 cm/s). After collision, the first ball is
standing still. Find the scalar velocity components of the second ball. Ans. v, =10 cm/s, v, = 20 cm/s

Two identical balls traveling parallel to the x-axis have speeds of 30 cm/s and are oppositely directed. They
collide perfectly elastically. After collision, one ball is moving at an angle of 30° above the +x-axis. Find its
speed and the velocity of the other ball. Ans. 30 cm/s, 30 cm/s at 30° below the —x-axis (opposite to the
first ball)

(a) What minimum thrust must the jet engines of a 2.0 x 10° kg rocket have if the rocket is to be able to rise
from the Earth when aimed straight upward? (b) If the engines eject fuel at the rate of 20 kg/s, how fast must
the gaseous fuel be moving as it leaves the engines? Neglect the small change in the mass of the rocket due to
the ejected fuel.  Ans. (a) 20 x 10° N: (b) 98 km/s



Chapter 9

Angular Motion in a Plane

ANGULAR DISPLACEMENT () is usually expressed in radians, in degrees, or in revolutions:
1 rev = 360° = 27 rad or 1 rad = 57.3°

One radian is the angle subtended at the center of a circle by an arc equal in length to the radius of the
circle. Thus an angle 6 in radians is given in terms of the arc length / it subtends on a circle of radius r by

0=-
r
The radian measure of an angle is a dimensionless number. Radians, like degrees, are not a physical unit
— the radian is not expressable in meters, kilograms, or seconds. Nonetheless, we will use the abbrevia-
tion rad to remind us that we are working with radians.

THE ANGULAR SPEED (w) of an object whose axis of rotation is fixed is the rate at which its
angular coordinate, the angular displacement ¢, changes with time. If § changes from 6; to 6 in
a time ¢, then the average angular speed is

O —0;

Wyy = =
av
t

The units of w,, are exclusively rad/s. Since each complete turn or cycle of a revolving system carries it
through 27 rad

w =27f

where f is the frequency in revolutions per second, rotations per second, or cycles per second. Accord-
ingly, w is also called the angular frequency. We can associate a direction with w and thereby create a
vector quantity @. Thus if the fingers of the right hand curve around in the direction of rotation, the
thumb points along the axis of rotation in the direction of @, the angular velocity vector.

THE ANGULAR ACCELERATION («) of an object whose axis of rotation is fixed is the rate
at which its angular speed changes with time. If the angular speed changes uniformly from w; to
wy in a time ¢, then the angular acceleration is constant and

_ 9w

ot

(67

The units of « are typically rad/s?, rev/min?, and such. It is possible to associate a direction with Aw, and
therefore with o, thereby specifying the angular acceleration vector @, but we will have no need to do so
here.

EQUATIONS FOR UNIFORMLY ACCELERATED ANGULAR MOTION are exactly analogous
to those for uniformly accelerated linear motion. In the usual notation we have:
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Linear Angular
Vay = %(’Ui + ’U/) Wyy = %(wl + a)/)
S = Vgt 0 = w,,t
vy =v; +at wr = w; + ot

vf = v,z + 2as

s = v,-z—i—%atz

ag%- = a),2 + 2a6

0 = w;it + %atz

Taken alone, the second of these equations is just the definition of average speed, so it is valid whether
the acceleration is constant or not.

RELATIONS BETWEEN ANGULAR AND TANGENTIAL QUANTITIES: When a wheel of
radius r rotates about an axis whose direction is fixed, a point on the rim of the wheel is de-
scribed in terms of the circumferential distance / it has moved, its tangential speed v, and its tan-
gential acceleration ay. These quantities are related to the angular quantities 0, w, and «, which
describe the rotation of the wheel, through the relations

[=r0 V= rw ar =ra

provided radian measure is used for 6, w, and «. By simple reasoning, / can be shown to be the length of
belt wound on the wheel or the distance the wheel would roll (without slipping) if free to do so. In such
cases, v and ay refer to the tangential speed and acceleration of a point on the belt or of the center of the
wheel.

CENTRIPETAL ACCELERATION (ac): A point mass m moving with constant speed v around
a circle of radius r is undergoing acceleration. Although the magnitude of its linear velocity is
not changing, the direction of the velocity is continually changing. This change in velocity gives
rise to an acceleration ac of the mass, directed toward the center of the circle. We call this accel-
eration the centripetal acceleration; its magnitude is given by
(tangential speed)? B v

€ 7 radius of circular path  r

where v is the speed of the mass around the perimeter of the circle.

Because v = rw, we also have ac = rw”®, where » must be in rad/s. Notice that the word ““accelera-
tion” is commonly used in physics as either a scalar or a vector quantity. Fortunately, there’s usually no
ambiguity.

THE CENTRIPETAL FORCE (F) is the force that must act on a mass m moving in a circular
path of radius r to give it the centripetal acceleration v?/r. From F = ma, we have

where F is directed toward the center of the circular path.
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Solved Problems

9.1 Express each of the following in terms of the other angular measures: (a) 28°, (b) rev/s,
(c) 2.18 rad/s

R I rev
(a) 28° = (28 deg) (360 deg) = 0.078 rev
27 rad
= (28 deg) (360 deg) = 0.49 rad
_ revy (360 deg\ = deg
() 7(025 )(lrev)igOT
rev\ (2w rad 7 rad
= (025 % )(uev)*zT
rad rad\ /360 deg deg
(c) 218——(218 )(27rrad> 125 .
rad 1 rev rev
=(2.18 0.347 —
( ) (27r I‘dd)

9.2  The bob of a pendulum 90 cm long swings through a 15-cm arc, as shown in Fig. 9-1. Find the
angle 6, in radians and in degrees, through which it swings.

Fig. 9-1

Recall that / = rf applies only to angles in radian measure. Therefore, in radians

[ 0.15m
Then in degrees 6 = (0.167 rad) <360 deg) =9.6°
27 rad

9.3 A fan turns at a rate of 900 rpm (i.e., rev/min). (¢) Find the angular speed of any point on one of
the fan blades. (») Find the tangential speed of the tip of a blade if the distance from the center to
the tip is 20.0 cm.
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rev rev
— 900~ — 15.0—
(a) S =900 =150~
and since w = 27f
w= 94.2?

for all points of the fan blade.

(b) The tangential speed is wr, where w must be in rad/s. Therefore,
v=or = (94.2 rad/s)(0.200 m) = 18.8 m/s

Notice that the rad does not carry through the equations properly — we insert it and delete it as needed.

A belt passes over a wheel of radius 25 cm, as shown in Fig. 9-2. If a point on the belt has a speed
of 5.0 m/s, how fast is the wheel turning?

N

5.0 m/s

Fig. 9-2
v 50m/s _ rad
Tr025m s

As a rule, ® comes out in units of s~' and the rad must be inserted ad hoc.

A wheel of 40-cm radius rotates on a stationary axle. It is uniformly speeded up from rest to a
speed of 900 rpm in a time of 20 s. Find (a) the constant angular acceleration of the wheel and (b)
the tangential acceleration of a point on its rim.

(a) Because the acceleration is constant, we can use the definition o = (o, — ;) /1 to get

rad\ /900 rev rad rev
- (zﬂa) <T) s ) - (2” 7) (05 o rd

=47
20 s s?

rad m

(b)  Then ar = ra = (0.40 m) (4.7?) =188 =19 m/s’

72}

A pulley of 5.0-cm radius, on a motor, is turning at 30 rev/s and slows down uniformly to 20 rev/s
in 2.0 s. Calculate (a) the angular acceleration of the motor, (b) the number of revolutions it
makes in this time, and (c) the length of belt it winds in this time.
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9.7

9.8

9.9

_op—w , (20-30) rad/s 2
(a) a=——= 2 70 s = —107 rad/s
(b) 0 = wyt =% (0 + w;)t = (1007 rad/s)(2.0 s) = 1007 rad

(¢) With 6 =314 rad
/=70 =(0.050m)(314 rad) = 16 m

A car has wheels of radius 30 cm. It starts from rest and accelerates uniformly to a speed of
15 m/s in a time of 8.0 s. Find the angular acceleration of its wheels and the number of rotations
one wheel makes in this time.

We know that ar = (vy — v;)/t, and so
_15m/s

_ 2
ar = — oo = 1.875m/s

Then a = ra gives
_ar 1875 m/szi 5
== — = 6.2 rad/s

Notice that we must introduce the proper angular measure, radians.
Now we can use 0 = w;t + S ar* to find

0 =0-+1(6.2rad/s*)(8.0 5)* = 200 rad
and

1 rev
27 rad

(200 rad)( > =32 rev

The spin-drier of a washing machine revolving at 900 rpm slows down uniformly to 300 rpm
while making 50 revolutions. Find (@) the angular acceleration and (b) the time required to turn
through these 50 revolutions.

We easily find that 900 rev/min = 15.0 rev/s = 30.07 rad/s and 300 rev/min = 5.00 rev/s = 10.07 rad/s.
(a) From a)_,z- = w? 4 2ab, we have

22 2 2
o —w;  (10.0m rad/s)” — (30.07 rad/s) 2
_ = =-4.0 d
20 2(1007 rad) ™ rad/s

«

(b) Because w,, =% (w; + ws) = 20.07 rad/s, 6 = w,,! yields

0 1007 rad

" wg  200rrad/s 50

A 200-g object is tied to the end of a cord and whirled in a horizontal circle of radius 1.20 m at a
constant 3.0 rev/s. Assume that the cord is horizontal, i.c., that gravity can be neglected. Deter-
mine (a) the acceleration of the object and (b) the tension in the cord.

(a) The object is not accelerating tangentially to the circle but is undergoing a radial, or centripetal,
acceleration given by
2
v 2
ac=—=r
cT
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where @ must be in rad/s. Since 3.0 rev/s = 6.0x rad/s,
ac = (6.0m rad/s)*(1.20 m) = 426 m/s* = 0.43 km/s’

(b) To cause the acceleration found in (), the cord must pull on the 0.200-kg mass with a centripetal force
given by

Fe = mac = (0.200 kg)(426 m/s*) = 85 N

This is the tension in the cord.

What is the maximum speed at which a car can round a curve of 25-m radius on a level road if the
coefficient of static friction between the tires and road is 0.80?

The radial force required to keep the car in the curved path (the centripetal force) is supplied by the
force of friction between the tires and the road. If the mass of the car is m, then the maximum friction (and
centripetal) force is 0.80mg; this arises when the car is on the verge of skidding sideways. Therefore, the
maximum speed is given by

ﬂ’l’U2

——=080mg or  v=1/080gr= \/(0.80)(9.81 m/s?)(25 m) = 14 m/s

A spaceship orbits the Moon at a height of 20000 m. Assuming it to be subject only to the
gravitational pull of the Moon, find its speed and the time it takes for one orbit. For the Moon,
m,, = 7.34 x 10** kg and r = 1.738 x 10° m.

The gravitational force of the Moon on the ship supplies the required centripetal force:

2
_ mgmy,  mgv

RrR? R
where R is the radius of the orbit. Solving, we find that

1N m2 kol 2
. |Gy, (6.67 x 10~ N-m?/kg )(7.346>< 10* kg) —1.67 km/s
R (1.738 +0.0200) x 10° m

G

from which we find that

2
Time for one orbit = L 6.62 x 10* s = 110 min
v

As shown in Fig. 9-3, a ball B is fastened to one end of a 24-cm string, and the other end is held
fixed at point Q. The ball whirls in the horizontal circle shown. Find the speed of the ball in its
circular path if the string makes an angle of 30° to the vertical.

The only forces acting on the ball are the ball’s weight mg and the tension F; in the cord. The tension
must do two things: (1) balance the weight of the ball by means of its vertical component, Fy cos 30°; (2)
supply the required centripetal force by means of its horizontal component, F; sin 30°. Therefore we can
write

o

Fr cos30° = mg and Frsin30° = my.
;

Solving for Fr in the first equation and substituting it in the second gives

2
W = T or V =1/ l’g(0577)

However, r = BC = (0.24 m) sin30° = 0.12 m and g = 9.81 m/sz, from which v = 0.82 m/s.

mg sin30°  mv
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Fcos 30°

Fig. 9-3

9.13 As shown in Fig. 9-4, a 20-g bead slides from rest at 4 along a frictionless wire. If /1 is 25 cm and
R is 5.0 cm, how large a force must the wire exert on the bead when it is at (a) point B and (b)

point D?
TN
F
h
mg
Vv
(b)
Fig. 9-4
(@) As a general rule, remember to keep a few more numerical figures in the intermediate steps of the

calculation than are to be found in the answer. This will avoid round-off errors. Let us first find the
speed of the bead at point B. It has fallen through a distance 7 — 2R and so its loss in PEg is
mg(h — 2R). This must equal its KE at point B:

Lmv* = mg(h — 2R)

2

where v is the speed of the bead at point B. Hence,

v=1/2g(h—2R) = \/2(9.81 m/s2)(0.15 m) = 1.716 m/s

As shown in Fig. 9-4(b), two forces act on the bead when it is at B: (1) the weight of the bead mg and (2)
the (assumed downward) force F of the wire on the bead. Together, these two forces must supply the
required centripetal force, nmv? /R, if the bead is to follow the circular path. We therefore write



106

(b)

ANGULAR MOTION IN A PLANE [CHAP. 9

2

muv
F=""
mg + R
2 2
171
or F= W’TZ’ — mg = (0.020 kg) {(01)56() - 9.81> m/sz] —0.98 N

The wire must exert a 0.98 N downward force on the bead to hold it in a circular path.

The situation is similar at point D, but now the weight is perpendicular to the direction of the required
centripetal force. Therefore the wire alone must furnish it. Proceeding as before, we have

v=\/2g(h— R) = /2(9.81 m/s)(0.20 m) = 1.98 m/s

2 2
) _mv~ (0.020 kg)(1.98 m/s)”
and F=—%= 0.050 m = 16N

9.14 As shown in Fig. 9-5, a 0.90-kg body attached to a cord is whirled in a vertical circle of radius
2.50 m. (a) What minimum speed v, must it have at the top of the circle so as not to depart from
the circular path? (b) Under condition (a), what speed v, will the object have at the bottom of the
circle? (¢) Find the tension Fg;, in the cord when the body is at the bottom of the circle and
moving with the critical speed vj.

(@)

()

As Fig. 9-5 shows, two radial forces act on the object at the top: (1) its weight mg and (2) the tension
Fr;. The resultant of these two forces must supply the required centripetal force.

o

mv
TZMg+FTt

For a given r, v will be smallest when F7, = 0. In that case,

2
muy

—=mg or v, = /18
;

Using r = 2.50 m and g = 9.81 m/s® gives v, = 4.95 m/s as the speed at the top.

In traveling from bottom to top, the body rises a distance 2r. Therefore, with v, = 4.95 m/s as the speed
at the top and with v, as the speed at the bottom, conservation of energy gives

KE at bottom = KE at top + PEg at top

b 2
muy =Lmu; + mg(2r)
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where we have chosen the bottom of the circle as the zero level for PEg. Notice that m cancels. Using
v, =4.95 m/s, r =2.50 m, and g = 9.81 m/s’ gives v, = 11.1 m/s.

(¢) When the object is at the bottom of its path, we see from Fig. 9-5 that the unbalanced radial force on it
is Fr, — mg. This force supplies the required centripetal force:

mos
Fry —mg= e

Using m = 0.90 kg, g =9.81 m/s?, v, = 11.1 m/s, and r = 2.50 m gives

2
FT,,_m<g+Ur”> —53N

9.15 A curve of radius 30 m is to be banked so that a car may make the turn at a speed of 13 m/s
without depending on friction. What must be the slope of the curve (the banking angle)?

The situation is shown in Fig. 9-6 if friction is absent. Only two forces act upon the car: (1) the weight
mg of the car and (2) the normal force F exerted by the pavement on the car.

The force Fy must do two things: (1) its vertical component, F cos 6, must balance the car’s weight; (2)
its horizontal component, Fy sin#, must supply the required centripetal force. We can therefore write

2
Fy cos = mg and Fy sing ="
;

Dividing the second equation by the first causes Fy and m to cancel and gives

2 2
tan 6 =L :—(13 m/s)
gr  (9.81 m/s?)(30 m)
From this we find that 6, the banking angle, must be 30°.

=0.575

radius = 30 m

Fig. 9-6

9.16 As shown in Fig. 9-7, a cylindrical shell of inner radius r rotates at angular speed w. A wooden
block rests against the inner surface and rotates with it. If the coefficient of static friction between
block and surface is u,, how fast must the shell be rotating if the block is not to slip and fall?
Assume r = 150 cm and p, = 0.30.

The surface holds the block in place by pushing on it with centripetal force me’r. This force is
perpendicular to the surface; it is the normal force that supplies a friction force to the block so it will not
slide down. Because Fy = uFy and Fy = mre?, we have
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Fig. 9-7

Ff - /’LSFN = .us’nrwz

This friction force must balance the weight mg of the block if it is not to slip. Therefore,
_ L2 _ 4
mg = pmre or W=,/
V par

9.81 m/s?
=|———=4"7rad/s =0.74
1) 030)(1.50 m) rad/s rev/s

Inserting the given values, we find

Supplementary Problems

Convert (a) 50.0 rev to radians, (b) 487 rad to revolutions, (¢) 72.0 rps to rad/s, (d) 1.50 x 10% rpm to rad/s,
(e) 22.0 rad/s to rpm, ( /) 2.000 rad/s to deg/s. Ans. (a) 314 rad; (b) 24 rev; (c) 452 rad/s; (d) 157 rad/s;
(e) 210 rev/min; ( ) 114.6 deg/s

Express 40.0 deg/s in (a) rev/s, (b) rev/min, and (c) rad/s. Ans. (a) 0.111 rev/s; (b) 6.67 rev/min; (c)
0.698 rad/s

A flywheel turns at 480 rpm. Compute the angular speed at any point on the wheel and the tangential speed
30.0 cm from the center. Ans.  50.3 rad/s, 15.1 m/s

It is desired that the outer edge of a grinding wheel 9.0 cm in radius move at a rate of 6.0 m/s. (a) Determine
the angular speed of the wheel. (b)) What length of thread could be wound on the rim of the wheel in 3.0 s
when it is turning at this rate? Ans. (a) 67 rad/s; (b) 18 m

Through how many radians does a point on the Earth’s surface move in 6.00 h as a result of the Earth’s
rotation? What is the speed of a point on the equator? Take the radius of the Earth to be
6370 km. Ans. 1.57 rad, 463 m/s

A wheel 25.0 cm in radius turning at 120 rpm increases its frequency to 660 rpm in 9.00 s. Find (a) the
constant angular acceleration in rad/s’, and (b) the tangential acceleration of a point on its
rim.  Ans. (a) 6.28 rad/s’; (b) 157 cm/s’
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9.34

9.35

9.36

9.37

The angular speed of a disk decreases uniformly from 12.00 to 4.00 rad/s in 16.0 s. Compute the angular
acceleration and the number of revolutions made in this time. Ans. —0.500 rad/sz, 20.4 rev

A car wheel 30 cm in radius is turning at a rate of 8.0 rev/s when the car begins to slow uniformly to rest in a
time of 14 s. Find the number of revolutions made by the wheel and the distance the car goes in the
14 s. Ans. 56 rev, 0.11 km

A wheel revolving at 6.00 rev/s has an angular acceleration of 4.00 rad/s>. Find the number of turns the
wheel must make to reach 26.0 rev/s, and the time required. Ans. 502 rev, 314 s

A string wound on the rim of a wheel 20 cm in diameter is pulled out at a rate of 75 cm/s. Through how
many revolutions will the wheel have turned by the time that 9.0 m of string has been unwound? How long
will it take? Ans. 14 rev, 12 s

A mass of 1.5 kg moves in a circle of radius 25 cm at a constant 2.0 rev/s. Calculate (a) the tangential speed,
(b) the acceleration, and (c¢) the required centripetal force for the motion. Ans. (@) 3.1 m/s; (b) 39 m/s’
radially inward; (¢) 59 N

(a) Compute the radial acceleration of a point at the equator of the Earth. (b) Repeat for the north pole of
the Earth. Take the radius of the Earth to be 6.37 x 10° m. Ans.  (a) 0.0337 m/s?; (b) zero

A car moving at 5.0 m/s tries to round a corner in a circular arc of 8.0 m radius. The roadway is flat. How
large must the coefficient of friction be between wheels and roadway if the car is not to skid? Ans. 0.32

A box rests at a point 2.0 m from the axis of a horizontal circular platform. The coefficient of static friction
between box and platform is 0.25. As the rate of rotation of the platform is slowly increased from zero, at
what angular speed will the box first slide? Ans. 1.1 rad/s

A stone rests in a pail that is moved in a vertical circle of radius 60 cm. What is the least speed the stone must
have as it rounds the top of the circle if it is to remain in contact with the pail? Ans. 2.4 m/s

A pendulum 80.0 cm long is pulled to the side, so that its bob is raised 20.0 cm from its lowest position, and
is then released. As the 50.0 g bob moves through its lowest position, (¢) what is its speed and (b) what is the
tension in the pendulum cord? Ans. (a) 1.98 m/s; (b) 0.735 N

Refer back to Fig. 9-4. How large must / be (in terms of R) if the frictionless wire is to exert no force on the
bead as it passes through point B? Assume the bead is released from rest at A. Ans. 2.5R

If, in Fig. 9-4 and in Problem 9.33, 7 = 2.5R, how large a force will the 50-g bead exert on the wire as it
passes through point C? Ans. 29 N

A satellite orbits the Earth at a height of 200 km in a circle of radius 6570 km. Find the speed of the satellite
and the time taken to complete one revolution. Assume the Earth’s mass is 6.0 x 10** kg. (Hint: The
gravitational force provides the centripetal force.) Ans. 7.8 km/s, 88 min

A roller coaster is just barely moving as it goes over the top of the hill. It rolls nearly without friction down
the hill and then up over a lower hill that has a radius of curvature of 15 m. How much higher must the first
hill be than the second if the passengers are to exert no force on the seat as they pass over the top of the lower
hill? Ans. 7.5 m

The human body can safely stand an acceleration 9.00 times that due to gravity. With what minimum radius
of curvature may a pilot safely turn the plane upward at the end of a dive if the plane’s speed is 770 km/h?
Ans. 519 m
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A 60.0 kg glider pilot traveling in a glider at 40.0 m/s wishes to turn an inside vertical loop such that he
exerts a force of 350 N on the seat when the glider is at the top of the loop. What must be the radius of the
loop under these conditions? (Hint: Gravity and the seat exert forces on the pilot.) Ans. 102 m

Suppose the Earth is a perfect sphere with R = 6370 km. If a person weighs exactly 600.0 N at the north
pole, how much will the person weigh at the equator? (Hint: The upward push of the scale on the person is
what the scale will read and is what we are calling the weight in this case.) Ans. 5979 N

A mass m hangs at the end of a pendulum of length L which is released at an angle of 40.0° to the vertical.
Find the tension in the pendulum cord when it makes an angle of 20.0° to the vertical. (Hint: Resolve the
weight along and perpendicular to the cord.) Ans. 1.29mg



Chapter 10

Rigid-Body Rotation
THE TORQUE (OR MOMENT) due to a force about an axis was defined in Chapter 5.

THE MOMENT OF INERTIA () of a body is a measure of the rotational inertia of the body.
If an object that is free to rotate about an axis is difficult to set into rotation, its moment of in-
ertia about that axis is large. An object with small 7 has little rotational inertia.

If a body is considered to be made up of tiny masses m;, m,, mjs ..., at respective distance ry, r,, rs,
..., from an axis, its moment of inertia about the axis is

2 2 2 2
I =myri +myrs +nm3rs + -+ = g m;r;

The units of 7 are kg-m?.
It is convenient to define a radius of gyration (k) for an object about an axis by the relation

I =Mk

where M is the total mass of the object. Hence k is the distance a point mass M must be from the axis if
the point mass is to have the same [ as the object.

TORQUE AND ANGULAR ACCELERATION: A torque 7, acting on a body of moment of
inertia I, produces in it an angular acceleration « given by

T=1a

Here, 7, I, and « are all computed with respect to the same axis. As for units, 7isin N-m, 7 is in kg~m2,
and o must be in rad/s’.

THE KINETIC ENERGY OF ROTATION (KE,) of a mass whose moment of inertia about an
axis is I, and which is rotating about the axis with angular velocity w, is

KE, = 110’

where the energy is in joules and w must be in rad/s.

COMBINED ROTATION AND TRANSLATION: The KE of a rolling ball or other rolling ob-
ject of mass M is the sum of (1) its rotational KE about an axis through its center of mass
(Chapter 8) and (2) the translational KE of an equivalent point mass moving with the center of
mass. In symbols,

KE o = 10" +1 Mo

Note that 7 is the moment of inertia of the object about an axis through its mass center.

THE WORK (W) done on a rotating body during an angular displacement 6 by a constant
torque 7 is given by

W=r76
where W is in joules and # must be in radians.
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THE POWER (P) transmitted to a body by a torque is given by
P=70w

where 7 is the applied torque about the axis of rotation, and w is the angular speed, about that same axis.
Radian measure must be used for w.

ANGULAR MOMENTUM is a vector quantity that has magnitude /w and is directed along the
axis of rotation. If the net torque on a body is zero, its angular momentum will remain un-
changed in both magnitude and direction. This is the Law of Conservation of Angular Momentum.

ANGULAR IMPULSE has magnitude 7¢, where ¢ is the time during which the constant torque 7
acts on the object. In analogy to the linear case, an angular impulse 77 on a body causes a
change in angular momentum of the body given by

Tt =lw; — lw;

PARALLEL-AXIS THEOREM: The moment of inertia / of a body about an axis parallel to
an axis through the center of mass is
I =1, + MK

where I ,,= moment of inertia about an axis through the center of mass
M = total mass of the body
h = perpendicular distance between the two parallel axes

The moments of inertia (about an axis through the center of mass) of several uniform objects, each
of mass M, are shown in Fig. 10-1.

’ @EZZ 47

Hoop or hollow Uniform disk Uniform Uniform rectangular Uniform
cylinder or cylinder rod block sphere
I=Mr? I1=31Mr? =L ML? 1= M@+ b%) =M

Fig. 10-1

ANALOGOUS LINEAR AND ANGULAR QUANTITIES:

Linear displacement s < angular displacement 6
Linear speed v < angular speed 10)
Linear acceleration ar <«  angular acceleration @
Mass (inertia) m  « moment of inertia 1
Force F < torque T
Linear momentum mv <«  angular momentum lo
Linear impulse Ft < angular impulse Tt
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If, in the equations for linear motion, we replace linear quantities by the corresponding angular quan-
tities, we get the corresponding equations for angular motion. Thus, we have

Linear: F = ma KE = %mv2 W=Fs P=Fv
Angular: T =l KE, = %Ia)2 W=7160 P=10

In these equations, 0, w, and « must be expressed in radian measure.

10.1

10.2

10.3

Solved Problems

A wheel of mass 6.0 kg and radius of gyration 40 cm is rotating at 300 rpm. Find its moment of
inertia and its rotational KE.
I = MK* = (6.0 kg)(0.40 m)* = 0.96 kg-m?
The rotational KE is %Iwz, where @ must be in rad/s. We have
revy (I min\ /27 rad
= Ve ) () =314
@ (300min) (60.0 s) ( 1 rev ) 314 rad/s

50 KE, = 11w’ = 1(0.96 kg-m*)(31.4 rad/s)* = 0.47 kJ

A 500-g uniform sphere of 7.0-cm radius spins at 30 rev/s on an axis through its center. Find its
(a) KE,, (b) angular momentum, and (c¢) radius of gyration.

We need the moment of inertia of a uniform sphere about an axis through its center. From Fig. 10-1,
[ =2Mr* = (0.40)(0.50 kg)(0.070 m)* = 0.000 98 kg-m’
(@) Knowing that w = 30 rev/s = 188 rad/s, we have
KE, = 170 = 1(0.00098 kg-m*)(188 rad/s)” = 0.017 kJ
Notice that w must be in rad/s.
(b) Its angular momentum is
Tw = (0.000 98 kg-m?)(188 rad/s) = 0.18 kg-m*/s

¢) For any object, I = Mk>, where k is the radius of gyration. Therefore,
y obj

i /0.000 98 kg - m?
=4/—=4/————————=0.044d m =44
k I 0.50 ke 0.044 m cm

Notice that this is a reasonable value in view of the fact that the radius of the sphere is 7.0 cm.

An airplane propeller has a mass of 70 kg and a radius of gyration of 75 cm. Find its moment of
inertia. How large a torque is needed to give it an angular acceleration of 4.0 rev/s*?

I = MI* = (70 kg)(0.75 m)* = 39 kg-m’

. 2
To use 7 = I, we must have « in rad/s":

d
a= (4.0 re_zv) (271'&) = 8.07 rad/s’
s rev

Then 7=1Ia = (39 kg-m?)(8.07 rad/s*) = 0.99 kN-m
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As shown in Fig. 10-2, a constant force of 40 N is applied tangentially to the rim of a wheel with
20-cm radius. The wheel has a moment of inertia of 30 kg-m?. Find () the angular acceleration,
(b) the angular speed after 4.0 s from rest, and (c¢) the number of revolutions made in that 4.0 s.
(d) Show that the work done on the wheel in the 4.0 s is equal to the KE, of the wheel after 4.0 s.

Fig. 10-2

(@) Using 7 = I, we have
(40 N)(0.20 m) = (30 kg-m*)«
from which a = 0.267 rad/s> or 0.27 rad/s’.
(b) We use oy = w; + at to find
wr =04 (0.267 rad/s?)(4.0 s) = 1.07 rad/s = 1.1 rad/s

(¢) Because 0 = w,t =1 (w; + w;)t, we have

0 =1(1.07 rad/s)(4.0 s) = 2.14 rad

which is equivalent to 0.34 rev.
(d) We know that work = torque x 6, and so
Work = (40 N x 0.20 m)(2.14 rad) =17 J

Notice that radian measure must be used. The final KE, is %Ia)? and so

KE, =1(30 kg-m*)(1.07 rad/s)* = 17 J

1
2

The work done equals KE,.

The wheel on a grinder is a uniform 0.90-kg disk of 8.0-cm radius. It coasts uniformly to rest from
1400 rpm in a time of 35 s. How large a friction torque slows its motion?

We will first find « from a motion problem; then we will use 7 = Ia to find 7. We know that

J = 1400 rev/min = 23.3 rev/s, and since @ = 27f, w; = 146 rad/s and w; = 0. Therefore,

o —w;  —146 rad/s 2
== - — 421
. 15 s rad/s

(07

We also need I. For a uniform disk,
I =1Mr* =1(0.90 kg)(0.080 m)* = 2.9 x 107 kg - m?
Then 7=1Ia = (0.0029 kg-m?)(—4.2 rad/s*) = =12 x 107> N-m
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10.6

10.7

10.8

Rework Problem 10.5 using the relation between work and energy.

The wheel originally had KE,, but, as the wheel slowed, this energy was lost doing friction work. We
therefore write

Initial KE, = work done against friction torque
%Iw,2 =70
To find 6, we note that
0 = Wyt = (0; + wp)t = $ (146 rad/s)(35 s) = 2550 rad
From Problem 10.5, 7 = 0.0029 kg-m? and so the work-energy equation is
1(0.0029 kg-m?)(146 rad/s)* = 7(2550 rad)
from which 7 = 0.012 N-m or 1.2 x 107> N-m.

A flywheel has a moment of inertia of 3.8 kg-m?. What constant torque is required to increase its
frequency from 2.0 rev/s to 5.0 rev/s in 6.0 revolutions?

Given
0 = 127 rad w; = 4.0m rad/s wy = 107 rad/s
we can write
Work done on wheel = change in KE, of wheel
7O = %Ia)_?- — %Ia),2
()(127 rad) = 1 (3.8 kg-m?)[(1007* — 167%) (rad/s)’]

which gives 7 = 42 N-m. Notice in all of these problems that radians and seconds must be used.

As shown in Fig. 10-3, a mass m =400 g hangs from the rim of a wheel of radius » = 15 cm.
When released from rest, the mass falls 2.0 m in 6.5 s. Find the moment of inertia of the wheel.
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We will write 7 = I« for the wheel and F = ma for the mass. But first we find @ from a motion problem,
using y = vt + Sar’:
20m=0+1a(6.55s)
which gives a = 0.095 m/sz. Then, from ar = ar,
0.095 m/s”
o= aTT = WH;I{S = 0.63 rad /s’
The net force on the mass m is mg — Fr and so F = ma becomes
mg — Fr = may
(0.40 kg)(9.81 m/s?) — Fy = (0.40 kg)(0.095 m/s?)

from which F; = 3.88 N.
Now we write 7 = I« for the wheel:

(Fr)(r)=1Ia  or  (3.88 N)(0.15 m) = 7(0.63 rad/s®)
from which 7 = 0.92 kg-m?.

Repeat Problem 10.8 using energy considerations.
Originally the mass m had PEg = mgh, where & = 2.0 m. It loses all this PEg, and an equal amount of
KE results. Part of this KE is translational KE of the mass, and the rest is KE, of the wheel:
Original PEg = final KE of m + final KE, of wheel
mgh = %mv% +%Ia)j%
To find v, we note that v; = 0, y =2 m, and t = 6.5 5. (Observe that a # g for the mass, because it does not
fall freely.) Then

20m
Vo = { =S5, = 0308 m/s
and v, =1 (v; + vy) with v; = 0 gives
vy = 204, = 0.616 m/s
Moreover, v = wr gives
S 0.616 m/s
STy T 005m

Substitution in the energy equation gives
(0.40 kg)(9.81 m/s?)(2.0 m) = 1(0.40 kg)(0.62 m/s)* +11(4.1 rad/s)*
from which 7 = 0.92 kg-m?.

=4.1rad/s

The moment of inertia of the pulley system in Fig. 10-4 is 7 = 1.70 kg~m2, while r; = 50 cm and
r, = 20 cm. Find the angular acceleration of the pulley system and the tensions Fy; and Fp,.

Note at the beginning that a = ar gives oy = (0.50 m)« and a = (0.20 m)a. We shall write F = ma for
both masses and 7 = I« for the wheel, taking the direction of motion to be the positive direction:
(2.0)(9.81) N — Fp = 2q, or 19.6 N—Fr = (1.0 m)a
Fry—(1.8)(981) N=1.8a, or Fr,—17.6 N=(0.36 m)x
(Fri)(r1) = (Fra)(r2) = Ia or  (0.50 m)Fy, — (0.20 m)Fp, = (1.70 kg-m?)ax

These three equations have three unknowns. We solve for Fz; in the first equation and substitute it in the
third to obtain

(9.81 N-m) — (0.50 m)a — (0.20 m)Fy = (1.70 kg-m*)ax
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(2.0)09.81)N  (1.8)(9.81)N

Fig. 10-4

We solve this equation for Fr, and substitute in the second equation to obtain
—1la+49 — 17.6 = 0.36«

from which o = 2.8 rad/s’.
We can now go back to the first equation to find Fy; = 17 N, and to the second to find Fr, = 19 N.

10.11 Use energy methods to find how fast the 2.0-kg mass in Fig. 10-4 is falling after it has fallen 1.5 m
from rest. Use the same values for 7, r;, and r, as in Problem 10.10.

If the angular speed of the wheel is w, then v; = rjw and v, = r,w. As the wheel turns through an angle
0, the 2.0-kg mass falls through a distance s; and the 1.8-kg mass rises a distance s5:

81 Ay . ry
f=—=—= from which Sy =8 —
rnoon r

From energy conservation, because PEg is lost and KE is gained,
Mg — MagSy) = %mlv% + %mﬂ% + %Iw2
Since
s, = (20/50)(1.5 m) = 0.60 m v; = (0.50 m) @ v, = (0.20 m) w
we can solve to find w = 4.07 rad/s. Then

v; = rjo = (0.50 m)(4.07 rad/s) = 2.0 m/s

10.12 A motor runs at 20 rev/s and supplies a torque of 75 N-m. What horsepower is it delivering?
Using w = 20 rev/s = 407 rad/s, we have
P =7w= (75 N-m)(407 rad/s) = 9.4 kW = 13 hp
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The driving wheel of a belt drive attached to an electric motor has a diameter of 38 cm and
operates at 1200 rpm. The tension in the belt is 130 N on the slack side, and 600 N on the tight
side. Find the horsepower transmitted to the wheel by the belt.

We make use of P = 7w. In this case two torques, due to the two parts of the belt, act on the wheel. We
have

S =1200 rev/min = 20 rev/s
and ® = 407 rad/s

therefore P = [(600 — 130)(0.19) N-m]|(407 rad/s) = 11 kW =15 hp

A 0.75-hp motor acts for 8.0 s on an initially nonrotating wheel having a moment of inertia
2.0 kg-m?. Find the angular speed developed in the wheel, assuming no losses.

Work done by motor in 8.0 s = KE of wheel after 8.0 s
(power) x (time) = 17w’
(0.75 hp)(746 W /hp) x (8.0 s) = 1(2.0 kg-m*)w’

from which w = 67 rad/s.

As shown in Fig. 10-5, a uniform solid sphere rolls on a horizontal surface at 20 m/s and then
rolls up the incline. If friction losses are negligible, what will be the value of /4 where the ball

Fig. 10-5

stops?

The rotational and translational KE of the sphere at the bottom will be changed to PEg when it stops.
We therefore write

(% Mo + %Iwz)slarl = (Mgh)eng

But for a solid sphere, I = %Mrz, Also, w = v/r. The above equation becomes
1 , 12 2\ (02 I, 1, B 2

Using v = 20 m/s gives 7 = 29 m. Notice that the answer does not depend upon the mass of the ball or the
angle of the incline.

Starting from rest, a hoop of 20-cm radius rolls down a hill to a point 5.0 m below its starting
point. How fast is it rotating at that point?

PEg at start = (KE, + KE,) at end
Mgh = %Iw2 +%M’U2
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But I = My for a hoop and v = wr. The above equation becomes

Mgh = lez 2 lez 2

from which \/ (9.81 m/s*)( 5 0 m) =35rad/s
(0.20 m

10.17 As a solid disk rolls over the top of a hill on a track, its speed is 80 cm/s. If friction losses are
negligible, how fast is the disk moving when it is 18 cm below the top?

At the top, the disk has translational and rotational KE, plus its PEg relative to the point 18 cm lower.
At the final point, the PEg has been transformed to more KE of rotation and translation. We therefore
write, with 4 = 18 cm

(KE, + KE, ) + Mgh = (KE, +KE,).4
%MU,Z +%1w,2 + Mgh = %Mv% +%Iw}
For a solid disk, 7 = %Mrz. Also, w = v/r Substituting these values and simplifying give
L 4R eh = bR+
But v; = 0.80 m/s and & = 0.18 m. Substitution gives vy = 1.7 m/s.

10.18 Find the moment of inertia of the four masses shown in Fig. 10-6 relative to an axis perpendicular
to the page and extending (a) through point 4 and (b) through point B.

2 kg B 3 kg
¢ R =9
| N -7 |
| < 1 120 cm
AT |
| 7 AN }
e S|
R
5kg 250 cm 4kg
Fig. 10-6

(@) From the definition of moment of inertia,
I =mr +ms+ -+ myry = (2.0 kg+3.0kg+4.0kg+5.0 kg)(rz)

where r is half the length of the diagonal:

r=1,/(120 m)* + (250 m)> = 1.39 m

Thus, I =27 kg-m?.
(b) We cannot use the parallel-axis theorem here because neither 4 nor B is at the center of mass.
Hence we proceed as before. Because r=1.25m for the 2.0- and 3.0-kg masses, while

(1.20)* + (1.25)* = 1.733 for the other two masses,

Iy = (2.0 kg + 3.0 kg)(1.25 m)> + (5.0 kg + 4.0 kg)(1.733 m)* = 33 kg-m’
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The uniform circular disk in Fig. 10-7 has mass 6.5 kg and diameter 80 cm. Compute its moment
of inertia about an axis perpendicular to the page (a) through G and (b) through A.

(a) I =1 Mr* =1(6.5 kg)(0.40 m)* = 0.52 kg-m?
(b) By the result of (a) and the parallel-axis theorem,

Iy = I+ MK =0.52 kg-m” + (6.5kg)(0.22 m)* = 0.83 kg-m?’

Mg

Fig. 10-7 Fig. 10-8

A large roller in the form of a uniform cylinder is pulled by a tractor to compact earth; it has a
1.80-m diameter and weighs 10 kN. If frictional losses can be ignored, what average horsepower
must the tractor provide to accelerate it from rest to a speed of 4.0 m/s in a horizontal distance of
3.0 m?

The power is equal to the work done by the tractor divided by the time it takes. The tractor does the
following work:

Work = (AKE), + (AKE), = L Iw; + 1muv;
We have v, = 4.0 m/s, w; = vy /r = 4.44 rad/s, and m = 10000/9.81 = 1019 kg. The moment of inertia of
the cylinder is
I =1m? =1(1019 kg)(0.90 m)* = 413 kg-m’

Substituting these values, we find the work required to be 12.23 kJ.
We still need the time taken to do this work. Because the roller went 3.0 m with an average velocity
Vgy =% (4 +0) = 2.0 m/s, we have

s 30m
v, 20m/s
work 12 2301J 1 hp
Then Power = e~ 15s — (8150 W)<746 W) =11 hp

As shown in Fig. 10-8, a thin uniform rod 4B of mass M and length L is hinged at end 4 to the
level floor. It originally stands vertically. If allowed to fall to the floor as shown, with what
angular speed will it strike the floor?
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The moment of inertia about a transverse axis through end 4 is

12 2 3
As the rod falls to the floor, the center of mass G falls a distance L/2. We can write
PEg lost by rod = KE, gained by rod

L\ 1 [(ML* ,
Mg(z)z( 3 )“’

1 L\? ML
IA:IG+Mh2:—ML2+M(—) =

from which w = +/3g/L.

10.22 A man stands on a freely rotating platform, as shown in Fig. 10-9. With his arms extended, his
rotation frequency is 0.25 rev/s. But when he draws them in, his frequency is 0.80 rev/s. Find the
ratio of his moment of inertia in the first case to that in the second.

Fig. 10-9

Because there is no torque on the system (why?), the law of conservation of angular momentum tells us
that

Angular momentum before = angular momentum after

liw; = Iywy
Or, since we desire 7;/1y,

I oy 0.80rev/s

I o 025rev/s
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10.23 A disk of moment of inertia /; is rotating freely with angular speed w; when a second, nonrotat-

ing, disk with moment of inertia I, is dropped on it (Fig. 10-10). The two then rotate as a unit.
Find the final angular speed.

From the law of conservation of angular momentum,

Angular momentum before = angular momentum after
Ilwl +12(0) = Ilw+12w

- Lo,
T L+5

Solving gives

Fig. 10-10

10.24 A disk like the lower one in Fig. 10-10 has moment of inertia /; about the axis shown. What will

10.25

be its new moment of inertia if a tiny mass M is set on it at a distance R from its center?

The definition of moment of inertia tells us that, for the disk plus added mass,

1= mri+ MR’
disk

where the sum extends over all the masses composing the original disk. Since the value of that sum is given as
I,, the new moment of inertia is / = I, + MR>.

A disk like the lower one in Fig. 10-10 has 7 = 0.0150 kg-m? and is turning at 3.0 rev/s. A trickle
of sand falls onto the disk at a distance of 20 cm from the axis and builds a 20-cm radius ring of
sand on it. How much sand must fall on the disk for it to slow to 2.0 rev/s?

When a mass Am of sand falls onto the disk, the moment of inertia of the disk is increased by an
amount *Am, as shown in the preceding problem. After a mass m has fallen on the disk, its moment of
inertia has increased to I + mr?. Because the sand originally had no angular momentum, the law of con-
servation of momentum gives

(momentum before) = (momentum after) or lw; = (I + mrz)a)f

from which

m =

I(w; —wy)  (0.0150 kg-m?)(6.0m — 4.07) rad/s
2

= =0.19k
roy (0.040 m2)(4.07 rad/s) &
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10.26

10.27

10.28

10.29

10.30

10.31

10.32

10.33

10.34

10.35

10.36

10.37

10.38

10.39

10.40

10.41

Supplementary Problems

A force of 200 N acts tangentially on the rim of a wheel 25 cm in radius. (¢) Find the torque. (b) Repeat if
the force makes an angle of 40° to a spoke of the wheel. Ans. (a) 50 N-m; (b) 32 N-m

A certain 8.0-kg wheel has a radius of gyration of 25 cm. (¢) What is its moment of inertia? (b) How large a
torque is required to give it an angular acceleration of 3.0 rad/s*? Ans. (a) 0.50 kg-m?; (b) 1.5 N-m

Determine the constant torque that must be applied to a 50-kg flywheel, with radius of gyration 40 cm, to
give it a frequency of 300 rpm in 10 s if it’s initially at rest. Ans. 25 N-m

A 4.0-kg wheel of 20 cm radius of gyration is rotating at 360 rpm. The retarding frictional torque is
0.12 N-m. Compute the time it will take the wheel to coast to rest. Ans. 50 s

Compute the rotational KE of a 25-kg wheel rotating at 6.0 rev/s if the radius of gyration of the wheel is
22 cm. Ans.  0.86 kJ

A cord 3.0 m long is coiled around the axle of a wheel. The cord is pulled with a constant force of 40 N.
When the cord leaves the axle, the wheel is rotating at 2.0 rev/s. Determine the moment of inertia of the
wheel and axle. Neglect friction. (Hint: The easiest solution is by the energy method.) Ans. 1.5 kg-m?

A 500-g wheel that has a moment of inertia of 0.015 kg-m? is initially turning at 30 rev/s. It coasts to rest
after 163 rev. How large is the torque that slowed it? Ans. 0.26 N-m

When 100 J of work is done upon a flywheel, its angular speed increases from 60 rev/min to 180 rev/min.
What is its moment of inertia? Ans.  0.63 kg-m’

A 5.0-kg wheel with radius of gyration 20 cm is to be given a frequency of 10 rev/s in 25 revolutions from
rest. Find the constant unbalanced torque required. Ans. 2.5 N-m

An electric motor runs at 900 rpm and delivers 2.0 hp. How much torque does it deliver? Ans. 16 N-m

The driving side of a belt has a tension of 1600 N, and the slack side has 500 N tension. The belt turns a
pulley 40 cm in radius at a rate of 300 rpm. This pulley drives a dynamo having 90 percent efficiency. How
many kilowatts are being delivered by the dynamo? Ans. 12 kW

A 25-kg wheel has a radius of 40 cm and turns freely on a horizontal axis. The radius of gyration of the
wheel is 30 cm. A 1.2-kg mass hangs at the end of a cord that is wound around the rim of the wheel. This
mass falls and causes the wheel to rotate. Find the acceleration of the falling mass and the tension in the
cord. Ans. 0.77 m/s>, 11 N

A wheel and axle having a total moment of inertia of 0.0020 kg-m? is caused to rotate about a horizontal
axis by means of an 800-g mass attached to a cord wrapped around the axle. The radius of the axle is 2.0 cm.
Starting from rest, how far must the mass fall to give the wheel a rotational rate of 3.0 rev/s?
Ans. 5.3 cm

A 20-kg solid disk (/ :%Mrz) rolls on a horizontal surface at the rate of 4.0 m/s. Compute its total
KE. Ans. 0.24 kJ

A 6.0-kg bowling ball (I = 2Mr?/5) starts from rest and rolls down a gradual slope until it reaches a point
80 cm lower than its starting point. How fast is it then moving? Ignore friction losses. Ans. 3.3 m/s

A tiny solid ball (1 = 2Mr? /5) rolls without slipping on the inside surface of a hemisphere as shown in Fig.
10-11. (The ball is much smaller than shown.) If the ball is released at 4, how fast is it moving as it passes (a)
point B, and (b) point C? Ans. (a) 2.65 m/s; (b) 2.32 m/s
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Fig. 10-11

8.5 cm

Compute the radius of gyration of a solid disk of diameter 24 cm about an axis through its center of mass
Ans.

10.42
and perpendicular to its face.
In Fig. 10-12 are shown four masses that are held at the corners of a square by a very light frame. What is the
moment of inertia of the system about an axis perpendicular to the page (a) through 4 and (b) through

10.43
(a) 1.4 kg-m%; (b) 2.1 kg-m>
-

Ans.

B?

Fig. 10-13

70¢g

Fig. 10-12

10.44 Determine the moment of inertia (a) of a vertical thin hoop of mass 2 kg and radius 9 cm about a horizontal,
parallel axis at its rim; (b) of a solid sphere of mass 2 kg and radius 5 cm about an axis tangent to the

(@) I=Mr>+Mr*=003kg-m* (b) I =2Mr> + Mr*=7x 10" kg-m’

5.0 rad/s, 5.0 m/s

Ans.
Rod 04 in Fig. 10-13 is a meterstick. It is hinged at O so that it can turn in a vertical plane. It is held
Ans.

sphere.
horizontally and then released. Compute the angular speed of the rod and the linear speed of its free end as it

10.45
10.46 Suppose that a satellite ship orbits the Moon in an elliptical orbit. At its closest point to the Moon it has a
Ans. 1y Jre

passes through the position shown in the figure. (Hint: Show that I = mL? /3.)
speed v, and a radius 7. from the center of the Moon. At its farthest point, it has a speed v, and a radius r;.

Find the ratio v./v,. (Hint: At the closest and farthest points, the relation v = rw is valid.)
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10.47

10.48

10.49

A large horizontal disk is rotating on a vertical axis through its center; for the disk, I = 4000 kg-m?. The
disk is coasting at a rate of 0.150 rev/s when a 90.0-kg person drops onto the disk from an overhanging tree
limb. The person lands and remains at a distance of 3.00 m from the axis of rotation. What will be the rate of
rotation after the person has landed? Ans.  0.125 rev/s

A neutron star is formed when an object such as our Sun collapses. Suppose a uniform spherical star of mass
M and radius R collapses to a uniform sphere of radius 107> R. If the original star has a rotation rate of 1 rev
each 25 days (as does the Sun), what will be the rotation rate of the neutron star? Ans. 5% 10° rev/s

A 90-kg person stands at the edge of a stationary children’s merry-go-round (essentially a disk) at a distance
of 5.0 m from its center. The person starts to walk around the perimeter of the disk at a speed of 0.80 m/s
relative to the ground. What rotation rate does this motion give to the disk if gy = 20000 kg-m?? (Hint:
For the person, I = mrz.) Ans.  0.018 rad/s



Chapter 11

Simple Harmonic Motion and Springs

THE PERIOD (7) of a cyclic system, one that is vibrating or rotating in a repetitive fashion, is
the time required for the system to complete one full cycle. In the case of vibration it is the total
time for the combined back and forth motion of the system. The period is the number of seconds

per cycle.

THE FREQUENCY (f) is the number of vibrations made per unit time or the number of cycles
per second. Because (T) is the time for one cycle, f =1/T. The unit of frequency is the heriz
where one cycle/s is one hertz (Hz).

THE GRAPH OF A VIBRATORY MOTION shown in Fig. 11-1 depicts the up-and-down oscil-
lation of a mass at the end of a spring. One complete cycle is from a to b, or from ¢ to d, or
from e to f. The time taken for one cycle is T, the period.

Displacement ()

Y=>X =
\ql)
ksl
£
Equilibrium E:.
position ~o <
y= P b Time

e S

Fx#ﬂ c d

Fig. 11-1

THE DISPLACEMENT (x or y) is the distance of the vibrating object from its equilibrium posi-
tion (normal rest position), i.e., from the center of its vibration path. The maximum displacement

is called the amplitude (see Fig. 11-1).

A RESTORING FORCE is one that opposes the displacement of the system; it is necessary if
vibration is to occur. In other words, a restoring force is always directed so as to push or pull
the system back to its equilibrium (normal rest) position. For a mass at the end of a spring, the
stretched spring pulls the mass back toward the equilibrium position, while the compressed spring
pushes the mass back toward the equilibrium position.

126
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SIMPLE HARMONIC MOTION (SHM) is the vibratory motion which a system that obeys
Hooke’s Law undergoes. The motion illustrated in Fig. 11-1 is SHM. Because of the resemblance
of its graph to a sine or cosine curve, SHM is frequently called sinusoidal motion. A central fea-
ture of SHM is that the system oscillates at a single constant frequency. That’s what makes it
“simple” harmonic.

A HOOKEAN SYSTEM (a spring, wire, rod, etc.) is one that returns to its original configuration
after being distorted and then released. Moreover, when such a system is stretched a distance x (for
compression, x is negative), the restoring force exerted by the spring is given by Hooke’s Law

F = —kx

The minus sign indicates that the restoring force is always opposite in direction to the displacement. The
spring constant k has units of N/m and is a measure of the stiffness of the spring. Most springs obey
Hooke’s Law for small distortions.

It is sometimes useful to express Hooke’s Law in terms of F, the external force needed to stretch
the spring a given amount x. This force is the negative of the restoring force, and so

Fo = kx

THE ELASTIC POTENTIAL ENERGY stored in a Hookean spring (PE,) that is distorted a dis-
tance x is %kxz. If the amplitude of motion is x, for a mass at the end of a spring, then the
energy of the vibrating system is 1kxj at all times. However, this energy is completely stored in
the spring only when x = +x, that is, when the mass has its maximum displacement.

ENERGY INTERCHANGE between kinetic and potential energy occurs constantly in a vibrating
system. When the system passes through its equilibrium position, KE = maximum and PE, = 0.
When the system has its maximum displacement, then KE =0 and PE, = maximum. From the
law of conservation of energy, in the absence of friction-type losses,

KE + PE, = constant
For a mass m at the end of a spring (whose own mass is negligible), this becomes
%mvz + %kx2 = %kx%

where x, is the amplitude of the motion.

SPEED IN SHM is determined via the above energy equation as

k
ol =5 - )

ACCELERATION IN SHM is determined via Hooke’s Law, F = —kx, and F = ma; once displaced
and released the restoring force drives the system. Equating these two expressions for F gives

k
a=——x
m
The minus sign indicates that the direction of @ (and F) is always opposite to the direction of the

displacement X. Keep in mind that neither F nor & are constant.
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REFERENCE CIRCLE: Suppose that a point P moves with constant speed vy around a circle,
as shown in Fig. 11-2. This circle is called the reference circle for SHM. Point A is the projection
of point P on the x-axis, which coincides with the horizontal diameter of the circle. The motion
of point 4 back and forth about point O as center is SHM. The amplitude of the motion is x,
the radius of the circle. The time taken for P to go around the circle once is the period T of the
motion. The velocity, vy, of point 4 has a scalar x-component of

v, = —7 sin 0

When this quantity is positive v, points in the positive x-direction, when it’s negative v, points in the
negative x-direction.

Once around

in time TK

Displacement
X

Fig. 11-2

PERIOD IN SHM: The period T of a SHM is the time taken for point P to go once around
the reference circle in Fig. 11-2. Therefore,

2mr  2wx
T2 _ 2770
Vo Vo

But vy is the maximum speed of point 4 in Fig. 11-2, that is, v, is the value of |v,| in SHM when x = 0:

k . k
o, =1/(x3 —x*)—  gives vy = xo\/:
m m

This then gives the period of SHM to be
m
T =2m/—
e

for a Hookean spring system.

ACCELERATION IN TERMS OF 7: Eliminating the quantity k/m between the two equations
a=—(k/m)x and T =2m\/m/k, we find
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THE SIMPLE PENDULUM very nearly undergoes SHM if its angle of swing is not too large.
The period of vibration for a pendulum of length L at a location where the gravitational accel-

eration is g is given by
L
T =2m[—
8

SHM can be expressed in analytic form by reference to Fig. 11-2 where we see that the horizon-
tal displacement of point P is given by x = x( cos 6. Since 6 = wt = 2nft, where the angular fre-
quency o = 2rf is the angular velocity of the reference point on the circle, we have

X = X( cos 27ft = x( cos wt
Similarly, the vertical component of the motion of point P is given by
¥y = X, sin 27ft = x sin wt

Also from the figure, v, = vy sin 27ft.

Solved Problems

11.1 For the motion shown in Fig. 11-3, what are the amplitude, period, and frequency?

x (cm)

0.75 | mmmmmmm e e e e e

t(s)

075 M M M M

Fig. 11-3

The amplitude is the maximum displacement from the equilibrium position and so is 0.75 cm. The
period is the time for one complete cycle, the time from A4 to B, for example. Therefore the period is 0.20 s.
The frequency is

1 1
= T=020s" 5.0 cycles/s = 5.0 Hz

11.2 A spring makes 12 vibrations in 40 s. Find the period and frequency of the vibration.

clapsed time _ 405 _ 5 ,_vibrationsmade 12 _ 4y,
elapsed time 40 s

"~ vibrations made 12
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11.5
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When a 400-g mass is hung at the end of a vertical spring, the spring stetches 35 cm. What is the
spring constant of the spring, and how much further will it stretch if an additional 400-g mass is
hung from it?

We use F, = ky, where
Foq = mg = (0.400 kg)(9.81m/s*) = 3.92 N

F 392N
With an additional 400-g load, the total force stretching the spring is 7.84 N. Then
F 7.84 N
y_7_711.2N/m_0'70m_2X350m

Provided it’s Hookean, each 400-g load stretches the spring by the same amount, whether or not the spring is
already loaded.

A 200-g mass vibrates horizontally without friction at the end of a horizontal spring for which
k = 7.0 N/m. The mass is displaced 5.0 cm from equilibrium and released. Find (a) its maximum
speed and (b) its speed when it is 3.0 cm from equilibrium. (¢) What is its acceleration in each of
these cases?

From the conservation of energy,
122 1,2 1.2
skxg = 3mv” +5kx

where k = 7.0 N/m, xy = 0.050 m, and m = 0.200 kg. Solving for v gives

(a) The speed is a maximum when x = 0; that is, when the mass is passing through the equilibrium
position:
k [7.0 N/m

v = \/M [(0.050)* — (0.030)%] m? = 0.24 m/s

(b) When x = 0.030 m,

0.200 kg

(¢) By use of F =ma and F = kx, we have

a= %x = (35577 (x)

which yields @ = 0 when the mass is at x = 0 and @ = 1.1 m/s> when x = 0.030 m.

A 50-g mass vibrates in SHM at the end of a spring. The amplitude of the motion is 12 cm, and
the period is 1.70 s. Find: (a) the frequency, (b) the spring constant, (¢) the maximum speed of the
mass, (d) the maximum acceleration of the mass, (¢) the speed when the displacement is 6.0 cm,
and ( /') the acceleration when x = 6.0 cm.

1

=——=0.588 Hz

(a) S =7 1705

(b) Since T =2m\/m/k,

N =
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11.6

11.7

_4n’m _47°(0.050 kg)

= =0.68 N/m
T° (1.70 s)? /
k [0.68 N/m
(C) Vo =x0\/;= (012 m) Wolig:ollél m/s
(d) Froma = —(k/m)x it is seen that ¢ has maximum magnitude when x has maximum magnitude, that is,

at the endpoints x = +x,. Thus,

k 0.68 N/m
ay=—Xg=————

— _ 2
™ = 0,050 kg (0.12m) = 1.6 m/s

(e) From |v| = /(x3 — x?)(k/m),

~J10.12 m)? — (0.06 m)?](0.68 N/m)
|v| = \/ 0,050 kg) =0.38 m/s
. ~ k__ 068N/m B )

A 50-g mass hangs at the end of a Hookean spring. When 20 g more is added to the end of the
spring, it stretches 7.0 cm more. (a) Find the spring constant. (b) If the 20 g is now removed, what
will be the period of the motion?

(@) Under the weight of the 50-g mass, F,,, ; = kx;, where x; is the original stretching of the spring. When
20 g more is added, the force becomes Fiy | + Foy o = k(x| + x,), where F, , is the weight of 20 g and
X, is the stretching it causes. Subtracting the two force equations gives

Foin = kx2

(Note that this is the same as F,,, = kx, where F,,, is the additional stretching force and x is the amount
of stretch due to it. Hence we could have ignored the fact that the spring had the 50-g mass at its end to
begin with.) Solving for k, we get

Feyi (0 020 kg)(9.81 m/s?)
X2 0.070 m

m [0.050 kg

As shown in Fig. 11-4, a long, light piece of spring steel is clamped at its lower end and a 2.0-kg
ball is fastened to its top end. A horizontal force of 8.0 N is required to displace the ball 20 cm to
one side as shown. Assume the system to undergo SHM when released. Find (a) the force
constant of the spring and (b) the period with which the ball will vibrate back and forth.

k= =28 N/m

_external force Fiy 8.0 N
displacement x ~ 0.20 m

B m [20kg
(b) T727T\/;727r 40N/m714

(a) =40 N/m
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Fig. 11-4

When a mass m is hung on a spring, the spring stretches 6.0 cm. Determine its period of vibration
if it is then pulled down a little and released.

Since
Foxt _ mg
X 0.060 m

we have T = 27r\/% =2, /0'020 M 0495

Two identical springs have k =20 N/m. A 0.30-kg mass is connected to them as shown in
Fig. 11-5(a) and (b). Find the period of motion for each system. Ignore friction forces.

k=

(a) Consider what happens when the mass is given a displacement x > 0. One spring will be stretched x and
the other will be compressed x. They will each exert a force of magnitude (20 N/m)x on the mass in the
direction opposite to the displacement. Hence the total restoring force will be

F = —(20 N/m)x — (20 N/m)x = —(40 N/m)x

Comparison with F = —kx tells us that the system has a spring constant of kK = 40 N/m. Hence,

m 10.30 kg
T—27r\/%—27r 40N/m—0.54s

(a) (%)

Fig. 11-5
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11.10

11.11

11.12

(b) When the mass is displaced a distance y downward, each spring is stretched a distance y. The net
restoring force on the mass is then

F=—(20 N/m)y — (20 N/m)y = —(40 N/m)y

Comparison with F = —ky shows k to be 40 N/m, the same as in (a). Hence the period in this case is
also 0.54 s.

In a certain engine, a piston undergoes vertical SHM with amplitude 7.0 cm. A washer rests on
top of the piston. As the motor speed is slowly increased, at what frequency will the washer no
longer stay in contact with the piston?

The maximum downward acceleration of the washer will be that for free fall, g. If the piston accelerates
downward faster than this, the washer will lose contact.
In SHM, the acceleration is given in terms of the displacement and the period as

4r®
a=— ?X
(To see this, notice that « = —F/m = —kx/m. But from T = 2m\/m/k, we have k = 47r2m/T2, which then
gives the above expression for a.) With the upward direction chosen as positive, the largest downward (most
negative) acceleration occurs for x = +x5 = 0.070 m; it is

47?
=77
The washer will separate from the piston when « first becomes equal to g. Therefore, the critical period for
the SHM, T., is given by

47’ 0.070
%(0.070 m)=g or T.=2m]/ . M _053s

This corresponds to the frequency f, = 1/T,. = 1.9 Hz. The washer will separate from the piston if the
piston’s frequency exceeds 1.9 cycles/s.

dg (0.070 m)

A 20-kg electric motor is mounted on four vertical springs, each having a spring constant of
30 N/cm. Find the period with which the motor vibrates vertically.

As in Problem 11.9, we may replace the springs by an equivalent single spring. Its force constant will be
4(3000 N/m) or 12000 N/m. Then

m [ 20 kg
T_27r\/%_27r m—026s

Mercury is poured into a glass U-tube. Normally, the mercury stands at equal heights in the two
columns, but, when disturbed, it oscillates back and forth from arm to arm. (See Fig. 11-6.) One
centimeter of the mercury column has a mass of 15.0 g. Suppose the column is displaced as shown
and released, and it vibrates back and forth without friction. Compute (a) the effective spring
constant of the motion and () its period of oscillation.

(@) When the mercury is displaced x m from equilibrium as shown, the restoring force is the weight of the
unbalanced column of length 2x. The mercury has a mass of 1.50 kilograms per meter. The mass of the
column is therefore (2x)(1.50 kg), and so its weight is mg = (29.4 kg-m/s*)(x). Therefore, the restoring
force is

F = (29.4 N/m)(x)

which is of the form F = kx with k£ = 29.4 N/m. This is the effective spring constant for the motion.
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J)}
)
J)
a

AR
T/

Fig. 11-6 Fig. 11-7

(b) The period of motion is

T= 2m/%: 1.16VM s

where M is the total mass of mercury in the U-tube, i.e., the total mass being moved by the restoring
force.

Compute the acceleration due to gravity at a place where a simple pendulum 150.3 cm long
makes 100.0 cycles in 246.7 s.

246.7 s
We he = =2.467
e have 1000 s
Squaring T = 2m/L/g and solving for g gives us
a7°

g=—zl= 9.749 m/s’

The 200-g mass shown in Fig. 11-7 is pushed to the left against the spring and compresses the
spring 15 cm from its equilibrium position. The system is then released, and the mass shoots to
the right. If friction can be ignored, how fast will the mass be moving as it shoots away? Assume
the mass of the spring to be very small.

When the spring is compressed, energy is stored in it. That energy is %kx(z), where xq = 0.15 m. After
release, this energy will be given to the mass as KE. When the spring passes through the equilibrium position,
all the PE, will be changed to KE. (Since the mass of the spring is small, its KE can be ignored.) Therefore,

Original PE, = final KE of mass

1 2 _ 1 2
skxy =3mv

1(400 N/m)(0.15 m)* = 1(0.200 kg)»?

from which v = 6.7 m/s.

Suppose that, in Fig. 11-7, the 200-g mass initially moves to the left at a speed of 8.0 m/s. It
strikes the spring and becomes attached to it. (¢) How far does it compress the spring? (b) If the
system then oscillates back and forth, what is the amplitude of the oscillation? Ignore friction and
the small mass of the spring.
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Because the spring can be considered massless, all the KE of the mass will go into compressing the
spring. We can therefore write

Original KE of mass = final PE,
Imvg = Lkxg
where vy = 8.0 m/s and x; is the maximum compression of the spring. For m = 0.200 kg and
k =400 N/m, the above relation gives x, = 0.179 m = 0.18 m.

The spring compresses 0.179 m from its equilibrium position. At that point, all the energy of the
spring—mass system is PE,. As the spring pushes the mass back toward the right, the mass moves
through the equilibrium position. The mass stops at a point to the right of the equilibrium position
where the energy is again all PE,. Since no losses occurred, the same energy must be stored in the
stretched spring as in the compressed spring. Therefore, it will be stretched x; = 0.18 m from the
equilibrium point. The amplitude of oscillation is therefore 0.18 m.

11.16 In Fig. 11-8, the 2.0-kg mass is released when the spring is unstretched. Neglecting the inertia and
friction of the pulley and the mass of the spring and string, find («) the amplitude of the resulting
oscillation and (b) its center or equilibrium point.

11.17

(a)

(®)

k=300 N/m

Fig. 11-8

Suppose the mass falls a distance /i before stopping. At that time, the PEg it lost (mgh) will be stored in
the spring, so that

1
mgh:zkh2 or 11:2’7;(—g=0.13m

The mass will stop in its upward motion when the energy of the system is all recovered as PEg.
Therefore it will rise 0.13 m above its lowest position. The amplitude is thus 0.13/2 = 0.065 m.

The center point of the motion is a distance of 0.065 m below the point from which the mass was
released, i.e., a distance equal to half the total travel below the highest point.

A 3.0-g particle at the end of a spring moves according to the equation y = 0.75 sin 637 where y is
in centimeters and ¢ is in seconds. Find the amplitude and frequency of its motion, its position at
t =0.020 s, and the spring constant.

The equation of motion is y = y, sin 27ft. By comparison, we see that the amplitude is y, = 0.75 cm.

Also,

2nf =63s'  from which /=10 Hz
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11.26
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(Note that the argument of the sine must be dimensionless; because 7 is in seconds, 27/ must have the unit
1/s.)
When ¢ = 0.020 s, we have
y=0.75 sin (1.26rad) = (0.75)(0.952) = 0.71 cm

Notice that the argument of the sine is in radians, not degrees.
To find the spring constant, we use f = (1/27)/k/m to get

k =4m*f*m =119 N/m = 12 N/m

Supplementary Problems

A pendulum is timed as it swings back and forth. The clock is started when the bob is at the left end of its
swing. When the bob returns to the left end for the 90th return, the clock reads 60.0 s. What is the period of
vibration? The frequency? Ans. 0.667 s, 1.50 Hz

A 300-g mass at the end of a Hookean spring vibrates up and down in such a way that it is 2.0 cm above the
tabletop at its lowest point and 16 cm above at its highest point. Its period is 4.0 s. Determine (a) the
amplitude of vibration, () the spring constant, (¢) the speed and acceleration of the mass when it is 9 cm
above the table top, (d) the speed and acceleration of the mass when it is 12 cm above the table-
top. Ans.  (a) 7.0 cm; (b) 0.74 N/m; (c) 0.11 m/s; zero; (d) 0.099 m/s, 0.074 m/s2

A coiled Hookean spring is stretched 10 cm when a 1.5-kg mass is hung from it. Suppose a 4.0-kg mass
hangs from the spring and is set into vibration with an amplitude of 12 cm. Find («) the force constant of the
spring, (b) the maximum restoring force acting on the vibrating body, (¢) the period of vibration, (d) the
maximum speed and the maximum acceleration of the vibrating object, and (e) the speed and acceleration
when the displacement is 9 cm. Ans. (a) 0.15 kN/m; (b) 18 N; (¢) 1.0s; (d) 0.73 m/s, 4.4 m/sz;
(e) 0.48 m/s, 3.3 m/s’

A 2.5-kg mass undergoes SHM and makes exactly 3 vibrations each second. Compute the acceleration and
the restoring force acting on the body when its displacement from the equilibrium position is 5.0 cm.
Ans. 18 m/s?, 44 N

A 300-g mass at the end of a spring oscillates with an amplitude of 7.0 cm and a frequency of 1.80 Hz.
(a) Find its maximum speed and maximum acceleration. (b) What is its speed when it is 3.0 cm from its
equilibrium position? Ans.  (a) 0.79 m/s, 8.9 m/sz; (b) 0.72 m/s

A certain Hookean spring is stretched 20 cm when a given mass is hung from it. What is the frequency of
vibration of the mass if pulled down a little and released? Ans. 1.1 Hz

A 300-g mass at the end of a spring executes SHM with a period of 2.4 s. Find the period of oscillation of a
133-g mass attached to the same spring. Ans. 1.6s

With a 50-g mass at its end, a spring undergoes SHM with a frequency of 0.70 Hz. How much work is done
in stretching the spring 15 cm from its unstretched length? How much energy is then stored in the
spring? Ans. 0.0117J,0.011)

In a situation similar to that shown in Fig. 11-7, a mass is pressed back against a light spring for which
k =400 N/m. The mass compresses the spring 8.0 cm and is then released. After sliding 55 cm along the flat
table from the point of release, the mass comes to rest. How large a friction force opposed its motion?
Ans. 23 N
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11.31

11.32

11.33

11.34

11.35

A 500-g mass is attached to the end of an initially unstretched vertical spring for which k = 30 N/m. The
mass is then released, so that it falls and stretches the spring. How far will it fall before stopping? (Hint: The
PEg lost by the mass must appear as PE,.) Ans. 33 cm

A popgun uses a spring for which £ = 20 N/cm. When cocked, the spring is compressed 3.0 cm. How high
can the gun shoot a 5.0-g projectile? Ans. 18 m

A cubical block vibrates horizontally in SHM with an amplitude of 8.0 cm and a frequency of 1.50 Hz. If a
smaller block sitting on it is not to slide, what is the minimum value that the coefficient of static friction
between the two blocks can have? Ans. 0.72

Find the frequency of vibration on Mars for a simple pendulum that is 50 cm long. Objects weigh 0.40 as
much on Mars as on the Earth. Ans. 0.45 Hz

A “‘seconds pendulum” beats seconds; that is, it takes 1 s for half a cycle. (¢) What is the length of a simple
“seconds pendulum” at a place where g = 9.80 m/s2? (b) What is the length there of a pendulum for which
T =1.00s? Ans. (a) 99.3 cm; (b) 24.8 cm

Show that the natural period of vertical oscillation of a mass hung on a Hookean spring is the same as the
period of a simple pendulum whose length is equal to the elongation the mass causes when hung on the

spring.

A particle that is at the origin of coordinates at exactly t = 0 vibrates about the origin along the y-axis with a
frequency of 20 Hz and an amplitude of 3.0 cm. Give its equation of motion in centimeters.
Ans. y =3.0 sin 125.6¢

A particle vibrates according to the equation x = 20 cos 16¢, where x is in centimeters. Find its amplitude,
frequency, and position at exactly 1 =0 s. Ans. 20 cm, 2.6 Hz, x = 20 cm

A particle oscillates according to the equation y = 5.0 cos 23¢, where y is in centimeters. Find its frequency
of oscillation and its position at = 0.15 s. Ans. 3.7 Hz, —4.8 cm



Chapter 12

Density; Elasticity

THE MASS DENSITY (p) of a material is its mass per unit volume:

mass of body m

P = Yolume of body Vv

The SI unit for mass density is kg/m3 , although g/cm3 is also used: 1000 kg/m3 =1 g/cm3. The density of
water is close to 1000 kg/m”’.

THE SPECIFIC GRAVITY (sp gr) of a substance is the ratio of the density of the substance to
the density of some standard substance. The standard is usually water (at 4°C) for liquids and
solids, while for gases, it is usually air.
p
Pstandard

sp gr =

Since sp gr is a dimensionless ratio, it has the same value for all systems of units.

ELASTICITY is the property by which a body returns to its original size and shape when the
forces that deformed it are removed.

THE STRESS (o) experienced within a solid is the magnitude of the force acting (F), divided by
the area (A4) over which it acts:

force
Stress = -
area of surface on which force acts
F
o=—
A

Its SI unit is the pascal (Pa), where 1 Pa = 1 N/mz. Thus, if a cane supports a load the stress at any point
within the cane is the load divided by the cross-sectional area at that point; the narrowest regions
experience the greatest stress.

STRAIN (¢) is the fractional deformation resulting from a stress. It is measured as the ratio of
the change in some dimension of a body to the original dimension in which the change occurred.
change in dimension

Strain = —— - -
original dimension

Thus, the normal strain under an axial load is the change in length (AL) over the original length Lj:
. AL
=T

Strain has no units because it is a ratio of like quantities. The exact definition of strain for various
situations is given later.
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THE ELASTIC LIMIT of a body is the smallest stress that will produce a permanent distortion
in the body. When a stress in excess of this limit is applied, the body will not return exactly to
its original state after the stress is removed.

YOUNG’S MODULUS (Y) or the modulus of elasticity, is defined as

stress

Modulus of elasticity = -
strain

The modulus has the same units as stress. A large modulus means that a large stress is required to
produce a given strain — the object is rigid.

F/A _ FL,

Accordingly, = ALJL, ~ AAL

Its SI unit is Pa. Unlike the constant k in Hooke’s Law, the value of Y depends only on the material of
the wire or rod, and not on its dimensions or configuration. Consequently, Young’s modulus is an
important basic measure of the mechanical behavior of materials.

THE BULK MODULUS (B) describes the volume elasticity of a material. Suppose that a uni-
formly distributed compressive force acts on the surface of an object and is directed perpendicular

to the surface at all points. Then if F is the force acting on and perpendicular to an area A4, we
define

P A=P=—
ressure on Y
The SI unit for pressure is Pa.
Suppose that the pressure on an object of original volume V) is increased by an amount AP. The
pressure increase causes a volume change AV, where AV will be negative. We then define

Volume stress = AP Volume strain = — %
0
Then Bulk modulus = strgss
strain
B AP VyAP
- AVV, AV

The minus sign is used so as to cancel the negative numerical value of AV and thereby make B a positive
number. The bulk modulus has the units of pressure.
The reciprocal of the bulk modulus is called the compressibility K of the substance.

THE SHEAR MODULUS (S) describes the shape elasticity of a material. Suppose, as shown in
Fig. 12-1, that equal and opposite tangential forces F act on a rectangular block. These shearing
forces distort the block as indicated, but its volume remains unchanged. We define
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that case
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tangential force acting
area of surface being sheared

Shearing stress =

gy = Z
distance sheared

distance between surfaces

Shearing strain =
AL
& = —
Ly
stress
strain

G F/A
 AL/Ly AAL

Shear modulus =
_ FL,

Since AL is usually very small, the ratio AL/ L, is equal approximately to the shear angle « in radians. In

Ay
LT T F
e / —_—
//// | / 4 7 /
AL] 7 / /
/
/I } / / ,/
/ | // /
LO \rl }/, /’ //
v/ L L /
-7 /
F // -7 > /
- — —
{ > - A y /fw
-7 /
Fig. 12-1

Solved Problems

Find the density and specific gravity of gasoline if 51 g occupies 75 cm®.
0.051 k
£ —68x 10> kg/m’

. mass
Density = = —
volume 75 x 107% m
op or — density of gasoline 6.8 x 10 kg/m3 — 0.68
P &= " density of water 1000 kg/m?
=0.68

mass of 75 cm’ gasoline 5l g
T 75¢g

sp gr =
P g mass of 75 cm?® water

or

12.2  What volume does 300 g of mercury occupy? The density of mercury is 13600 kg/m’

From p=m/V,
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12.3

124

12.5

12.6

12.7

12.8

V:T— 0.300 kg

> = 13 600 kgjm? 221 x 1073 m® =22.1 em®

The specific gravity of cast iron is 7.20. Find its density and the mass of 60.0 cm® of it.

We make use of

density of substance
sp gr = -
density of water

and p=

<I3

From the first equation,
Density of iron = (sp gr)(density of water) = (7.20)(1000 kg/m*) = 7200 kg/m’
s0 Mass of 60.0 cm® = pV = (7200 kg/m*)(60.0 x 10~° m?) = 0.432 kg

The mass of a calibrated flask is 25.0 g when empty, 75.0 g when filled with water, and 88.0 g
when filled with glycerin. Find the specific gravity of glycerin.

From the data, the mass of the glycerin in the flask is 63.0 g, while an equal volume of water has a mass
of 50.0 g. Then
__mass of glycerin 63.0 g

= =12
mass of water 500 g 6

Sp gr

A calibrated flask has a mass of 30.0 g when empty, 81.0 g when filled with water, and 68.0 g
when filled with an oil. Find the density of the oil.

We first find the volume of the flask from p = m/V, using the water data:

M _(81.0-300) x 10 kg

-6 3
; 1000 kg/m3 =510x10°m

Then, for the oil,

my (68.0 —30.0) x 107 kg 3
p=—a = =745 k
Poil =73 510 x 106 m? g/m

A solid cube of aluminum is 2.00 cm on each edge. The density of aluminum is 2700 kg/m®. Find
the mass of the cube.

Mass of cube = pV = (2700 kg/m?)(0.0200 m)* = 0.0216 kg = 21.6 g

What is the mass of one liter (1000 cm?) of cottonseed oil of density 926 kg/m>*? How much does
it weigh?

m = pV = (926 kg/m*)(1000 x 107° m?) = 0.926 kg
Weight = mg = (0.926 kg)(9.81 m/s?) = 9.08 N

An electrolytic tin-plating process gives a tin coating that is 7.50 x 10~ c¢m thick. How large an
area can be coated with 0.500 kg of tin? The density of tin is 7300 kg/m>.

The volume of 0.500 kg of tin is given by p = m/V to be

pomo 0500ke o5 005 m?
p 7300 kg/m’
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The volume of a film with area 4 and thickness ¢ is V' = At. Solving for A4, we find
vV 685x107° m’

A==

e — 2
{75010 m Sm

as the area that can be covered.

A thin sheet of gold foil has an area of 3.12 cm” and a mass of 6.50 mg. How thick is the sheet?
The density of gold is 19300 kg/m>.

One milligram is 107 kg, so the mass of the sheet is 6.50 x 107° kg. Its volume is
V = (area) x (thickness) = (3.12 x 10~* m?)(r)
where 7 is the thickness of the sheet. We equate this expression for the volume to m/p to get

_ 6.50 x 107® kg
32 x107*mA)(r)=—~2— "2
(312> 107 m)(T) = 75350 g/’

from which 7 = 1.08 x 107° m = 1.08 pm.

The mass of a liter of milk is 1.032 kg. The butterfat that it contains has a density of 865 kg/m?
when pure, and it constitutes exactly 4 percent of the milk by volume. What is the density of the
fat-free skimmed milk?

Volume of fat in 1000 cm®of milk = 4% x 1000 cm® = 40.0 cm?®

Mass of 40.0 cm® fat = Vp = (40.0 x 107 m*)(865 kg/m?) = 0.034 6 kg

Density of skimmed milk = mass__ (1032 — 0.0346)7kg ;= 1.04 x 10° kg/m’
volume (1000 — 40.0) x 107° m?

A metal wire 75.0 cm long and 0.130 cm in diameter stretches 0.0350 cm when a load of 8.00 kg
is hung on its end. Find the stress, the strain, and the Young’s modulus for the material of the
wire.

2
o= £ BOKIOSI M) _ 54, 157 N/m? = 591 x 107 Pa
A" (650 x 104 m)

AL 0.0350 cm

=——= =4. 10
€=, T 750em 67X 10

591 x 10" P
=TT X0 T8 197 % 10" Pa =127 GPa
e 4.67 x 1074

A solid cylindrical steel column is 4.0 m long and 9.0 cm in diameter. What will be its decrease in
length when carrying a load of 80 000 kg? ¥ = 1.9 x 10" Pa.

We first find
Cross-sectional area of column = 72 = 7(0.045 m)> = 6.36 x 10> m?
Then, from Y = (F/A)/(AL/Ly) we have

4
AL — FLy _ [(8.00 x 107)(9.81) N](4.0 m) —26x10° m —2.6mm
AY (636 x 1073 m?)(1.9 x 10'! Pa)

Atmospheric pressure is about 1.01 x 10° Pa. How large a force does the atmosphere exert on a
2.0 cm? area on the top of your head?
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12.14

12.15

12.16

12.17

Because P = F/A, where F is perpendicular to 4, we have F = PA. Assuming that 2.0 cm? of your head
is flat (nearly correct) and that the force due to the atmosphere is perpendicular to the surface (as it is), we
have

F=PA=(101x10° N/m*)(20x 107 m?) =20 N

A 60-kg woman stands on a light, cubical box that is 5.0 cm on each edge. The box sits on the
floor. What pressure does the box exert on the floor?
F (60)(9.81) N

p=_=_DV0) N 5 4%10° N/m>
4 (50x 1072 m)? /

The bulk modulus of water is 2.1 GPa. Compute the volume contraction of 100 mL of water
when subjected to a pressure of 1.5 MPa.

From B=—AP/(AV/V,), we get

Vo AP (100 mL)(1.5 x 10° Pa)

AV =—
B 2.1 x 10° Pa

= —0.071 mL

A box-shaped piece of gelatin dessert has a top area of 15 cm? and a height of 3.0 cm. When a
shearing force of 0.50 N is applied to the upper surface, the upper surface displaces 4.0 mm
relative to the bottom surface. What are the shearing stress, the shearing strain, and the shear
modulus for the gelatin?

_ tangential force  0.50 N

= = =0.33 kP
: area of face 15 x 1074 m? a
displacement  0.40 cm
= = =0.1
& height 3.0 cm 0.13
0.33 kPa

A 15-kg ball of radius 4.0 cm is suspended from a point 2.94 m above the floor by an iron wire of
unstretched length 2.85 m. The diameter of the wire is 0.090 cm, and its Young’s modulus is
180 GPa. If the ball is set swinging so that its center passes through the lowest point at 5.0 m/s, by
how much does the bottom of the ball clear the floor?

Call the tension in the wire F7 when the ball is swinging through the lowest point. Since F7 must supply
the centripetal force as well as balance the weight,

2
m 25
Fr :mg—i——v = m<9.81 +—)
r r
all in proper SI units. This is complicated, because r is the distance from the pivot to the center of the ball
when the wire is stretched, and so it is rq + Ar, where ry, the unstretched length of the pendulum, is

rg =2.85m+0.040 m =2.89 m

and where Ar is as yet unknown. However, the unstretched distance from the pivot to the bottom of the ball
is 2.85 m + 0.080 m = 2.93 m, and so the maximum possible value for Ar is
294m—293m=0.0l m

We will therefore incur no more than a 1/3 percent error in r by using r =ry = 2.89 m. This gives
Fr =277 N. Under this tension, the wire stretches by
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A= Lo _ (277 N)2(2.85 m) =69%x107° m
AY " 7(4.5 x 107* m)*(1.80 x 10! Pa)

Hence the ball misses by
2.94 m — (2.8540.0069 + 0.080) m = 0.0031 m = 3.1 mm

To check the approximation we have made, we could use r = 2.90 m, its maximum possible value. Then
we find that AL = 6.9 mm, showing that the approximation has caused negligible error.

A vertical wire 5.0 m long and of 0.008 8 cm? cross-sectional area has ¥ = 200 GPa. A 2.0-kg
object is fastened to its end and stretches the wire elastically. If the object is now pulled down a
little and released, the object undergoes vertical SHM. Find the period of its vibration.

The force constant of the wire acting as a vertical spring is given by k = F/AL, where AL is the
deformation produced by the force (weight) F. But, from F/4 = Y(AL/L,),

_F A4y (88x1077 m?)(2.00 x 10" Pa)
TALT Ly, 5.0 m

Then for the period we have
T:27T\/E:27r __20ke (047
k 35 x 10 N/m

=35 kN/m

Supplementary Problems

Find the density and specific gravity of ethyl alcohol if 63.3 g occupies 80.0 mL. Ans. 791 kg/m®, 0.791
Determine the volume of 200 g of carbon tetrachloride, for which sp gr = 1.60. Ans. 125 mL
The density of aluminum is 2.70 g/cm®. What volume does 2.00 kg occupy? Ans. 740 cm®

Determine the mass of an aluminum cube that is 5.00 cm on each edge. The density of aluminum is
2700 kg/m>.  Ans. 0.338 kg

A drum holds 200 kg of water or 132 kg of gasoline. Determine for the gasoline (a) its sp gr and (b) p in
kg/m®.  Ans. (a) 0.660; (b) 660 kg/m*

Air has a density of 1.29 kg/m® under standard conditions. What is the mass of air in a room with dimen-
sions 10.0 m x 8.00 m x 3.00 m? Ans. 310 kg

What is the density of the material in the nucleus of the hydrogen atom? The nucleus can be considered to be
a sphere of radius 1.2 x 107" m, and its mass is 1.67 x 10727 kg. The volume of a sphere is (4/3)mr .
Ans. 2.3 x 10" kg/m®

To determine the inner radius of a uniform capillary tube, the tube is filled with mercury. A column of
mercury 2.375 cm long is found to have a mass of 0.24 g. What is the inner radius r of the tube? The density
of mercury is 13600 kg/m®, and the volume of a right circular cylinder is 712 h. Ans.  0.49 mm

Battery acid has sp gr = 1.285 and is 38.0 percent sulfuric acid by weight. What mass of sulfuric acid is
contained in a liter of battery acid? Ans. 488 g
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12.36

12.37

A thin, semitransparent film of gold (p = 19300 kg/m?) has an area of 14.5 cm? and a mass of 1.93 mg. ()
What is the volume of 1.93 mg of gold? (b) What is the thickness of the film in angstroms, where
1A =10"""m? (¢) Gold atoms have a diameter of about 5A. How many atoms thick is the
film?  Ans. (a) 1.00 x 107'°m?; () 690 A; (¢) 138 atoms thick

In an unhealthy, dusty cement mill, there were 2.6 x 10° dust particles (sp gr = 3.0) per cubic meter
of air. Assuming the particles to be spheres of 2.0 um diameter, calculate the mass of dust
(a)ina20m x 15 m x 8.0 m room and (b) inhaled in each average breath of 400-cm® volume. Ans. (a)
78 g; (b) 13 ug

An iron rod 4.00 m long and 0.500 cm? in cross-section stretches 1.00 mm when a mass of 225 kg is hung
from its lower end. Compute Young’s modulus for the iron. Ans. 176 GPa

A load of 50 kg is applied to the lower end of a steel rod 80 cm long and 0.60 cm in diameter. How much will
the rod stretch? ¥ = 190 GPa for steel. Ans. 73 pm

A platform is suspended by four wires at its corners. The wires are 3.0 m long and have a diameter of
2.0 mm. Young’s modulus for the material of the wires is 180 GPa. How far will the platform drop (due to
elongation of the wires) if a 50-kg load is placed at the center of the platform? Ans.  0.65 mm

Determine the fractional change in volume as the pressure of the atmosphere (1 x 10° Pa) around a metal
block is reduced to zero by placing the block in vacuum. The bulk modulus for the metal is
125 GPa.  Ans. 8x 107

Compute the volume change of a solid copper cube, 40 mm on each edge, when subjected to a pressure of
20 MPa. The bulk modulus for copper is 125 GPa. Ans.  —10mm?

The compressibility of water is 5.0 x 107" m?/N. Find the decrease in volume of 100 mL of water when
subjected to a pressure of 15 MPa. Ans. 0.75 mL

Two parallel and opposite forces, each 4000 N, are applied tangentially to the upper and lower faces of a
cubical metal block 25 cm on a side. Find the angle of shear and the displacement of the upper surface
relative to the lower surface. The shear modulus for the metal is 80 GPa. Ans. 8.0 x 107 rad,
2.0x 10 "m

A 60-kg motor sits on four cylindrical rubber blocks. Each cylinder has a height of 3.0 cm and a cross-
sectional area of 15 cm?. The shear modulus for this rubber is 2.0 MPa. (a) If a sideways force of 300 N is
applied to the motor, how far will it move sideways? (b) With what frequency will the motor vibrate back
and forth sideways if disturbed? Ans. (a) 0.075 cm; (b) 13 Hz



Chapter 13

Fluids at Rest

THE AVERAGE PRESSURE on a surface of area A is found as force divided by area, where it
is stipulated that the force must be perpendicular (normal) to the area:

force acting normal to an area
area over which the force is distributed

Average pressure =

P_F
T4

Recall that the SI unit for pressure is the pascal (Pa), and 1 Pa = 1 N/m?.

STANDARD ATMOSPHERIC PRESSURE is 1.01 x 10° Pa, and this is equivalent to 14.7 Ib/in.%.
Other units used for pressure are

1 atmosphere (atm) = 1.013 x 10° Pa
1 torr = I mm of mercury (mmHg) = 133.32 Pa
1 Ib/in.> = 6.895 kPa

THE HYDROSTATIC PRESSURE due to a column of fluid of height # and mass density p is
P = pgh

PASCAL’S PRINCIPLE: When the pressure on any part of a confined fluid (liquid or gas) is
changed, the pressure on every other part of the fluid is also changed by the same amount.

ARCHIMEDES’ PRINCIPLE: A body wholly or partly immersed in a fluid is buoyed up by a
force equal to the weight of the fluid it displaces. The buoyant force can be considered to act
vertically upward through the center of gravity of the displaced fluid.

Fp = buoyant force = weight of displaced fluid

The buoyant force on an object of volume V' that is totally immersed in a fluid of density p; is p, Vg, and
the weight of the object is py Vg, where p; is the density of the object. Therefore, the net upward force on
the submerged object is

Fyet(upward) = Vg(py — po)

Solved Problems

13.1  An 80-kg metal cylinder, 2.0 m long and with each end of area 25 cm?, stands vertically on one
end. What pressure does the cylinder exert on the floor?
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13.2

13.3

13.4

13.5

13.6

13.7

2
P normal force _ (80 kg)(9.81 m/s%) —31x10° Pa
area 25 x 107* m?

Atmospheric pressure is about 1.0 x 10> Pa. How large a force does the still air in a room exert
on the inside of a window pane that is 40 cm x 80 cm?

The atmosphere exerts a force normal to any surface placed in it. Consequently, the force on the
window pane is perpendicular to the pane and is given by

F=PA4=(10x 10° N/m*)(0.40 x 0.80 m*) =3.2 x 10* N

Of course, a nearly equal force due to the atmosphere on the outside keeps the window from breaking.

Find the pressure due to the fluid at a depth of 76 cm in still («) water (p,, = 1.00 g/em’) and (b)
mercury (p = 13.6 g/em?).

(a) P = p,gh = (1000kg/m*)(9.81 m/s*)(0.76 m) = 7450 N/m* = 7.5 kPa

(b) P = pgh = (13600 kg/m*)(9.81 m/s*)(0.76 m) = 1.01 x 10° N/m” ~ 1.0 atm

When a submarine dives to a depth of 120 m, to how large a total pressure is its exterior surface
subjected? The density of seawater is about 1.03 g/cm®.

P = atmospheric pressure + pressure of water
= 1.01 x 10°N/m* + pgh = 1.01 x 10° N/m* + (1030 kg/m?)(9.81 m/s*)(120 m)
=1.01 x 10° N/m? + 12.1 x 10° N/m? = 13.1 x 10° N/m* = 1.31 MPa

How high would water rise in the pipes of a building if the water pressure gauge shows the
pressure at the ground floor to be 270 kPa (about 40 1b/in.2)?

Water pressure gauges read the excess pressure due to the water, that is, the difference between the
pressure in the water and the pressure of the atmosphere. The water pressure at the bottom of the highest
column that can be supported is 270 kPa. Therefore, P = p,,gh gives

P 2.70 x 10° N/m?

het _ ~275
pvg (1000 kg/m?)(9.81 m/s2) m

A reservoir dam holds an 8.00-km? lake behind it. Just behind the dam, the lake is 12.0 m deep.
What is the water pressure (a) at the base of the dam and (b) at a point 3.0 m down from the
lake’s surface?

The area of the lake behind the dam has no effect on the pressure against the dam. At any point,
P =py,gh.
(a) P = (1000 kg/m*)(9.81 m/s*)(12.0 m) = 118 kPa

(b) P = (1000 kg/m?)(9.81 m/s*)(3.0 m) = 29 kPa

A weighted piston confines a fluid density p in a closed container, as shown in Fig. 13.1. The
combined weight of piston and weight is 200 N, and the cross-sectional area of the piston is
A =8.0cm’ Find the total pressure at point B if the fluid is mercury and h =25 cm
(prg = 13600 kg/m?). What would an ordinary pressure gauge read at B?
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Notice what Pascal’s principle tells us about the pressure applied to the fluid by the piston and atmo-
sphere: This added pressure is applied at all points within the fluid. Therefore the total pressure at B is
composed of three parts:

Pressure of atmosphere = 1.0 x 10° Pa

. . F 200 N
Pressure due to piston and weight = W T3 = 25X 10° Pa
A 8.0x10"m

Pressure due to height / of fluid = hpg = 0.33 x 10° Pa
In this case, the pressure of the fluid itself is relatively small. We have
Total pressure at B = 3.8 x 10° Pa
The gauge pressure does not include atmospheric pressure. Therefore,

Gauge pressure at B =2.8 x 10° Pa

[

Fig. 13-1 Fig. 13-2

In a hydraulic press such as the one shown in Fig. 13-2, the large piston has cross-sectional area
A; =200 cm? and the small piston has cross-sectional area 4, = 5.0 cm?. If a force of 250 N is
applied to the small piston, find the force F; on the large piston.

By Pascal’s principle,

. . F, F
Pressure under large piston = pressure under small piston or A—l = A—2
1 2
A 200
that F,=—F,=—250N = 10kN
so Hha T T 0

For the system shown in Fig. 13-3, the cylinder on the left, at L, has a mass of 600 kg and a cross-
sectional area of 800 cm?. The piston on the right, at S, has a cross-sectional area of 25 cm” and a
negligible weight. If the apparatus is filled with oil (p = 0.78 g/em®), find the force F required to
hold the system in equilibrium as shown.

The pressures at points H; and H, are equal because they are at the same level in a single connected
fluid. Therefore,
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L || 600kg

Fig. 13-3

Pressure at H; = pressure at H,
pressure due to pressure due to F
(left piston ) - <and right piston
(600)(9.81) N F
0.0800m>  25x 10 *m
from which F = 31 N.

) + (pressure due to 8.0 m of oil)

S+ (8.0 m)(780 kg/m’)(9.81 m/s%)

A barrel will rupture when the gauge pressure within it reaches 350 kPa. It is attached to the
lower end of a vertical pipe, with the pipe and barrel filled with oil (p = 890 kg/m?). How long
can the pipe be if the barrel is not to rupture?

From P = pgh we have

P 350 x 10> N/m?
h=1 = =40.1
' T pg (9.81 m/s?)(890 kg/m’) m

A vertical test tube has 2.0 cm of oil (p = 0.80 g/cm?) floating on 8.0 cm of water. What is the
pressure at the bottom of the tube due to the fluid in it?

P = p1ghy + prgh, = (800 kg/m*)(9.81 m/s?)(0.020 m) + (1000 kg/m?)(9.81 m/s*)(0.080 m)
= 0.94 kPa

As shown in Fig. 13-4, a column of water 40 cm high supports a 31-cm column of an unknown
fluid. What is the density of the unknown fluid?

The pressures at point 4 due to the two fluids must be equal (or the one with the higher pressure would
push the lower-pressure fluid away). Therefore,

Pressure due to water = pressure due to unknown fluid

pi1ght = paghy

from which Py = Z—Ipl = %(1000 kg/m?) = 1290 kg/m* = 1.3 x 10* kg/m*
2
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40 cm
31 cm

Fig. 13-4 Fig. 13-5

The U-tube device connected to the tank in Fig. 13-5 is called a manometer. As you can see, the
mercury in the tube stands higher in one side than the other. What is the pressure in the tank if
atmospheric pressure is 76 cm of mercury? The density of mercury is 13.6 g/cm?.

Pressure at 4; = pressure at A,
(P in tank) + (P due to 5 cm mercury) = (P due to atmosphere)

P+ (0.05 m)(13 600 kg/m?)(9.81 m/s*) = (0.76 m)(13 600 kg/m?*)(9.81 m/s?)

from which P = 95 kPa.
Or, more simply perhaps, we could note that the pressure in the tank is 5.0 cm of mercury /lower than
atmospheric. So the pressure is 71 cm of mercury, which is 94.6 kPa.

The mass of a block of aluminum is 25.0 g. (¢) What is its volume? (b) What will be the tension in
a string that suspends the block when the block is totally submerged in water? The density of
aluminum is 2700 kg/m>.

(@) Because p =m/V, we have

pom_ 00250ke o0 1076 m3 = 9.26 em®
p 2700 kg/m?

(b) The block displaces 9.26 x 107 m® of water when submerged, so the buoyant force on it is

Fp = weight of displaced water = (volume)(p of water)(g)
= (9.26 x 107 m*)(1000 kg/m?*)(9.81 m/s*) = 0.0908 N

The tension in the supporting cord plus the buoyant force must equal the weight of the block if it is to
be in equilibrium (see Fig. 13-6). That is, Fy + Fp = mg, from which

Fr =mg — Fp = (0.0250 kg)(9.81 m/s>) —0.0908 N = 0.154 N

A piece of alloy has a measured mass of 86 g in air and 73 g when immersed in water. Find its
volume and its density.

Figure 13-6 shows the situation when the object is in water. From the figure, Fp + F; = mg, so
Fp =(0.086)(9.81) N — (0.073)(9.81) N = (0.013)(9.81) N
But Fp must be equal to the weight of the displaced water.
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ALy

Fig. 13-6

Fp = weight of water = (mass of water)(g)
= (volume of water)(density of water)(g)

or (0.013)(9.81) N = ¥/(1000 kg/m*)(9.81 m/s?)
from which ¥ = 1.3 x 107> m>. This is also the volume of the piece of alloy. Therefore,
mass 0.086 kg 3 3
f alloy = = =6.6 x 10° kg/m’
pOb ARy = Solume 1.3 x 105 m> 6.6 10" ke/m

13.16 A solid aluminum cylinder with p = 2700 kg/m® has a measured mass of 67 g in air and 45 g
when immersed in turpentine. Determine the density of turpentine.

The Fjp acting on the immersed cylinder is
Fg=(0.067 — 0.045)(9.81) N = (0.022)(9.81) N

This is also the weight of the displaced turpentine.
The volume of the cylinder is, from p = m/V,
m 0.067 kg

. -5 3
V of cyllnder:;:m:ZS x 107 m

This is also the volume of the displaced turpentine. We therefore have, for the turpentine,
mass _ (weight)/g  (0.022)(9.81)/(9.81) kg

" volume  volume 2.48 x 1073 m

8.9 x 10* kg/m’

13.17 A glass stopper has a mass of 2.50 g when measured in air, 1.50 g in water, and 0.70 g in sulfuric
acid. What is the density of the acid? Its specific gravity?

The Fj on the stopper in water is (0.00250 — 0.00150)(9.81) N. This is the weight of the displaced
water. Since p =m/V, or pg = Fy,/V, we have
weight
rg
(0.00100)(9.81) N

V= =1.00 x 10°° m*
(1000 kg/m?)(9.81 m/s?) mem

Volume of stopper = volume of displaced water =

The buoyant force in acid is

[(2.50 — 0.70) x 107](9.81) N = (0.00180)(9.81) N
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But this is equal to the weight of displaced acid, mg. Since p =m/V, and since m = 0.00180 kg and
¥ =1.00 x 107° m?, we have

. 0.001 80 kg ; ;
facid=—————"-=18x10"k
PO A = 100 % 106 m? x 107 ke/m
Then, for the acid,
Spar — pofacid 1800 18

p of water 1000

Alternative Method

Weight of displaced water = [(2.50 — 1.50) x 107%](9.81) N
Weight of displaced acid = [(2.50 — 0.70) x 107°](9.81) N

weight of displaced acid 180

=—=1.
weight of equal volume of displaced water  1.00 8

SO sp gr of acid =

Then, since sp gr of acid = (p of acid)/(p of water), we have

p of acid = (sp gr of acid)(p of water)=(1.8)(1000 kg/m®) = 1.8 x 10° kg/m*

The density of ice is 917 kg/m’. What fraction of the volume of a piece of ice will be above water
when floating in fresh water?

The piece of ice will float in the water, since its density is less than 1000 kg/m?>, the density of water. As
it does,

Fp = weight of displaced water = weight of piece of ice

But the weight of the ice is p;.gV’, where V' is the volume of the piece. In addition, the weight of the displaced
water is p,.gV’, where V' is the volume of the displaced water. Substituting in the above equation gives

PicegV = pugV’
Pice 917

ylr=tiey o 2Ly 09171
P 1000

The fraction of the volume that is above water is then
V—v' vV-0917V

=1-0917=0.
% % 0.917 = 0.083

A 60-kg rectangular box, open at the top, has base dimensions 1.0 m by 0.80 m and depth 0.50 m.
(a) How deep will it sink in fresh water? (b) What weight Fyy, of ballast will cause it to sink to a
depth of 30 cm?

(@) Assuming that the box floats, we have
Fp = weight of displaced water = weight of box
(1000 kg/m*)(9.81 m/s?)(1.0 m x 0.80 m x y) = (60 kg)(9.81 m/s*)

where y is the depth the box sinks. Solving gives y = 0.075 m. Because this is smaller than 0.50 m, our
assumption is shown to be correct.

(b) Fp = weight of box + weight of ballast
But the Fj is equal to the weight of the displaced water. Therefore, the above equation becomes
(1000 kg/m*)(9.81 m/s*)(1.0 m x 0.80 m x 0.30 m) = (60)(9.81) N + Fy,
from which Fy;, = 1760 N = 1.8 kN. So the ballast must have a mass of (1760/9.81) kg = 180 kg.
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A foam plastic (p, = 0.58 g/cm®) is to be used as a life preserver. What volume of plastic must be
used if it is to keep 20 percent (by volume) of an 80-kg man above water in a lake? The average
density of the man is 1.04 g/cm®.

At equilibrium we have
Fp on man + Fp on plastic = weight of man + weight of plastic
(Pw)(0.80V,,)g + P Vg8 = P Ving + Py V8
or (Pw = Pp)Vyp = (pm — 0.80p,,) V'

where subscripts m, w, and p refer to man, water, and plastic, respectively.
But p,,V,, = 80 kg and so ¥,, = (80/1040) m’. Substitution gives

[(1000 — 580) kg/m’]V, = [(1040 — 800) kg/m*][(80/1040) m’]
from which ¥, = 0.044 m’.

A partly filled beaker of water sits on a scale, and its weight is 2.30 N. When a piece of metal
suspended from a thread is totally immersed in the beaker (but not touching bottom), the scale
reads 2.75 N. What is the volume of the metal?

The water exerts an upward buoyant force on the metal. According to the law of action and reaction,
the metal exerts an equal downward force on the water. It is this force that increases the scale reading from
2.30 N to 2.75 N. Hence the buoyant force is 2.75 — 2.30 = 0.45 N. Then, because

Fjz = weight of displaced water = p, gV = (1000 kg/m*)(9.81 m/s*)(V)
we have the volume of the displaced water, and of the piece of metal, as

045N

-6 3 3

A piece of pure gold (p =19.3 g/em?) is suspected to have a hollow center. It has a mass of
38.25 g when measured in air and 36.22 g in water. What is the volume of the central hole in the
gold?

From p=m/V,

0.03825 kg
19300 kg/m?
(38.25 —36.22) x 1073 kg

1000 kg/m?
Volume of hole = (2.030 — 1.982) cm® = 0.048 cm®

Volume of 38.25 g of pure gold = =1.982 x 10~ m?

Volume of displaced water = =2.030 x 107 m?

A wooden cylinder has mass m and base area A. It floats in water with its axis vertical. Show that
the cylinder undergoes SHM if given a small vertical displacement. Find the frequency of its
motion.

When the cylinder is pushed down a distance y, it displaces an additional volume 4y of water. Because
this additional displaced volume has mass Ayp,,, an additional buoyant force Ayp,g acts on the cylinder,
where p,, is the density of water. This is an unbalanced force on the cylinder and is a restoring force. In
addition, the force is proportional to the displacement and so is a Hooke’s Law force. Therefore the cylinder
will undergo SHM, as described in Chapter 11.

Comparing Fz = Ap,.gy with Hooke’s Law in the form F = ky, we see that the spring constant for the
motion is k = Ap,.g. This, acting on the cylinder of mass m, causes it to have a vibrational frequency of

f_l\/?_l [4p.g
T 2rVm T 27\ om
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What must be the volume V' of a 5.0-kg balloon filled with helium (py, = 0.178 kg/m3) if it is to
lift a 30-kg load? Use py;, = 1.29 kg/m°.
The buoyant force, Vp,;,g, must lift the weight of the balloon, its load, and the helium within it:
Vpairg = (35 kg)(g) + Vpueg

k k
which gives V= ke ke

= = =32m’
Pair — PHe 1.11 kg/rn2 "

Find the density p of a fluid at a depth % in terms of its density p, at the surface.

If a mass m of fluid has volume ¥V, at the surface, then it will have volume ¥, — AV at a depth /. The
density at depth / is then
m m

while  py=—

Py, " AV Ve

1% _ VO o 1

po Vo= AV 1 (AV/V,)

However, from Chapter 12, the bulk modulus is B= P/(AV/V,) and so AV /V, = P/B. Making this
substitution, we obtain

which gives

p 1
pp 1—P/B
If we assume that p is close to py, then the pressure at depth £ is approximately pogh, and so
p 1

oo 1— (pogh/B)

Supplementary Problems

A 60-kg performer balances on a cane. The end of the cane in contact with the floor has an area of 0.92 cm?.
Find the pressure exerted on the floor by the cane. (Neglect the weight of the cane.) Ans. 6.4 MPa

A certain town receives its water directly from a water tower. If the top of the water in the tower is 26.0 m
above the water faucet in a house, what should be the water pressure at the faucet? (Neglect the effects of
other water users.) Ans. 255 kPa

At a height of 10 km (33000 ft) above sea level, atmospheric pressure is about 210 mm of mercury. What is
the resultant normal force on a 600 cm? window of an airplane flying at this height? Assume the pressure
inside the plane is 760 mm of mercury. The density of mercury is 13 600 kg/m3. Ans. 4.4 kN

A narrow tube is sealed onto a tank as shown in Fig. 13-7. The base of the tank has an area of 80 cm?.
(a) Find the force on the bottom of the tank due to oil when the tank and capillary are filled with oil
(p=0.72 g/cm3) to the height 4. (b) Repeat for 4,. Ans.  (a) 11 N downward; (b) 20 N downward

Repeat Problem 13.29, but now find the force on the top wall of the tank due to the oil. Ans. (a) 1.1 N
upward; (b) 9.6 N upward

Compute the pressure required for a water supply system that will raise water 50.0 m vertically.
Ans. 490 kPa
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— ) N hy=35cm

18 cm hy=20cm

Fig. 13-7

The area of a piston of a force pump is 8.0 cm’. What force must be applied to the piston to raise oil
(p=0.78 g/cmz) to a height of 6.0 m? Assume the upper end of the oil is open to the atmosphere.
Ans. 3TN

The diameter of the large piston of a hydraulic press is 20 cm, and the area of the small piston is 0.50 cm?. If
a force of 400 N is applied to the small piston, (a) what is the resulting force exerted on the large piston?
(b)) What is the increase in pressure underneath the small piston? (¢) Underneath the large
piston? Ans. (a) 2.5 x 10° N; (b) 8.0 MPa; (¢) 8.0 MPa

A metal cube, 2.00 cm on each side, has a density of 6600 kg/m>. Find its apparent mass when it is totally
submerged in water. Ans. 448 g

A solid wooden cube, 30.0 cm on each edge, can be totally submerged in water if it is pushed downward with
a force of 54.0 N. What is the density of the wood? Ans. 800 kg/m’

A metal object “weighs” 26.0 g in air and 21.48 g when totally immersed in water. What is the volume of the
object? Its mass density? Ans. 4.55 cm®, 5.72 x 10° kg/m?

A solid piece of aluminum (p = 2.70 g/cm?) has a mass of 8.35 g when measured in air. If it is hung from a
thread and submerged in a vat of oil (p=0.75 g/cm3), what will be the tension in the thread?
Ans. 0.059 N

A beaker contains oil of density 0.80 g/cm3. By means of a thread, a 1.6-cm cube of aluminum
(p=2.70 g/em?) is submerged in the oil. Find the tension in the thread. Ans. 0.076 N

A tank containing oil of sp gr = 0.80 rests on a scale and weighs 78.6 N. By means of a wire, a 6.0 cm cube
of aluminum, sp gr = 2.70, is submerged in the oil. Find (a) the tension in the wire and (b) the scale reading if
none of the oil overflows. Ans. (a) 4.0 N; (b) 80 N

Downward forces of 45.0 N and 15.0 N, respectively, are required to keep a plastic block totally immersed in
water and in oil. If the volume of the block is 8000 cm?, find the density of the oil. Ans. 620 kg/m®

Determine the unbalanced force acting on an iron ball (r = 1.5 cm, p = 7.8 g/cm®) when just released while
totally immersed in (a) water and (b) mercury (p = 13.6 g/cm3). What will be the initial acceleration of the
ball in each case? Ans. (a) 0.94 N down, 8.6 m/s2 down; (b) 0.80 N up, 7.3 m/s2 up
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A 2.0 cm cube of metal is suspended by a thread attached to a scale. The cube appears to have a mass of
47.3 g when measured submerged in water. What will its mass appear to be when submerged in glycerin,
sp gr = 1.26? (Hint: Find p too.) Ans. 45 ¢g

A balloon and its gondola have a total (empty) mass of 2.0 x 10? kg. When filled, the balloon contains
900 m® of helium at a density of 0.183 kg/m>. Find the added load, in addition to its own weight, that the
balloon can lift. The density of air is 1.29 kg/m®. Ans. 7.8 kN

A certain piece of metal has a measured mass of 5.00 g in air, 3.00 g in water, and 3.24 g in benzene.
Determine the mass density of the metal and of the benzene. Ans.  2.50 x 10° kg/m®, 880 kg/m*

A spring, which may be either bronze (sp gr 8.8) or brass (sp gr 8.4), has a mass of 1.26 g when measured in
air and 1.11 g in water. Which is it? Ans. brass

What fraction of the volume of a piece of quartz (p = 2.65 g/cm®) will be submerged when it is floating in a
container of mercury (p = 13.6 g/em’)? Ans.  0.195

A cube of wood floating in water supports a 200-g mass resting on the center of its top face. When the mass is
removed, the cube rises 2.00 cm. Determine the volume of the cube. Ans. 1.00 x 10° cm®

A cork has a measured mass of 5.0 g in air. A sinker has a measured mass of 86 g in water. The cork is
attached to the sinker and both together have a measured mass of 71 g when under water. What is the
density of the cork? Ans. 2.5 x 107 kg/m’

A glass of water has a 10-cm’ ice cube floating in it. The glass is filled to the brim with cold water. By the
time the ice cube has completely melted, how much water will have flowed out of the glass? The sp gr of ice is
0.92. Ans. none

A glass tube is bent into the form of a U. A 50.0 cm height of olive oil in one arm is found to balance 46.0 cm
of water in the other. What is the density of the olive 0il? Ans. 920 kg/m®

On a day when the pressure of the atmosphere is 1.000 x 10° Pa, a chemist distills a liquid under slightly
reduced pressure. The pressure within the distillation chamber is read by an oil-filled manometer (density of
oil = 0.78 g/cm®). The difference in heights on the two sides of the manometer is 27 cm. What is the pressure
in the distillation chamber? Ans. 98 kPa



Chapter 14

Fluids in Motion

FLUID FLOW OR DISCHARGE (J): When a fluid that fills a pipe flows through the pipe
with an average speed v, the flow or discharge J is

J=Av
where A is the cross-sectional area of the pipe. The units of J are m®/s in the SI and ft*/s in U.S.

customary units.
Sometimes J is called the rate of flow or the discharge rate.

EQUATION OF CONTINUITY: Suppose an incompressible (constant-density) fluid fills a pipe
and flows through it. Suppose further that the cross-sectional area of the pipe is 4; at one point
and A, at another. Since the flow through A4; must equal the flow through A4,, one has

J = Av; = A,v, = constant

where v; and v, are the average fluid speeds over 4, and 4,, respectively.

THE SHEAR RATE of a fluid is the rate at which the shear strain within the fluid is changing.

Because strain has no units, the SI unit for shear rate is s~'.

THE VISCOSITY (1) of a fluid is a measure of how large a shear stress is required to produce
unit shear rate. Its unit is that of stress per unit shear rate, or Pa-s in the SI. Another SI unit
is the N-s/m? (or kg/m-s), called the poiseuille (Pl): 1Pl =1kg/m-s =1 Pa-s. Other units used
are the poise (P), where 1 P =0.1, and the centipoise (cP), where 1 cP = 1073 Pl. A viscous fluid,
such as tar, has large 7.

POISEUILLE’S LAW: The fluid flow through a cylindrical pipe of length L and cross-sectional
radius R is given by

:WR4(P1'_P0)

J
&nL

where P; — P, is the pressure difference between the two ends of the pipe (input minus output).

THE WORK DONE BY A PISTON in forcing a volume ¥V of fluid into a cylinder against an
opposing pressure P is given by PV

THE WORK DONE BY A PRESSURE P acting on a surface of area 4 as the surface moves
through a distance Ax normal to the surface (thereby displacing a volume 4 Ax = AV) is

Work = PAAx = PAV

157
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BERNOULLI’'S EQUATION for the steady flow of a continuous stream of fluid: Consider two
different points along the stream path. Let point 1 be at a height 4, and let v, p;, and P; be
the fluid-speed, density, and pressure at that point. Similarly define /4, vy, p2, and P, for point 2.
Then, provided the fluid is incompressible and has negligible viscosity,

Py +1pvi + hipg = Py +1pv3 + hopg

where p; = p, = p and g is the acceleration due to gravity.

TORRICELLI’S THEOREM: Suppose that a tank contains liquid and is open to the atmo-
sphere at its top. If an orifice (opening) exists in the tank at a distance & below the top of the
liquid, then the speed of outflow from the orifice is \/2gh, provided the liquid obeys Bernoulli’s
equation and the top of the liquid may be regarded as motionless.

THE REYNOLDS NUMBER (Ng) is a dimensionless number that applies to a fluid of viscosity
n and density p flowing with speed v through a pipe (or past an obstacle) with diameter D:

__pvD
Ui

For systems of the same geometry, flows will usually be similar provided their Reynolds numbers are
close. Turbulent flow occurs if Ny for the flow exceeds about 2000 for pipes or about 10 for obstacles.

Ng

Solved Problems

14.1 Oil flows through a pipe 8.0 cm in diameter, at an average speed of 4.0 m/s. What is the flow J in
m?®/s and m’/h?

J = Av = 71(0.040 m)*(4.0 m/s) = 0.020 m* /s
= (0.020 m?/s)(3600 s/h) = 72 m*/h

14.2 Exactly 250 mL of fluid flows out of a tube whose inner diameter is 7.0 mm in a time of 41 s.
What is the average speed of the fluid in the tube?

From J = Av, since | mL = 107° m3,

(250 x 107% m?) /(41 s)
7(0.003 5 m)*

Uzﬁz —0.16 m/s

143 A 14 cm inner diameter (i.d.) water main furnishes water (through intermediate pipes) to a
1.00 cm i.d. faucet pipe. If the average speed in the faucet pipe is 3.0 cm/s, what will be the
average speed it causes in the water main?

The two flows are equal. From the continuity equation, we have
J = Alvl = A2’U2
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Letting 1 be the faucet and 2 be the water main, we have

A 7 1\’
vy =0 A—; = T—r; = (3.0 cm/s) (ﬁ) =0.015 cm/s
2

How much water will flow in 30.0 s through 200 mm of capillary tube of 1.50 mm i.d., if the
pressure differential across the tube is 5.00 cm of mercury? The viscosity of water is 0.801 cP and
p for mercury is 13 600 kg/m>.

We shall make use of Poiseuille’s Law with
P, — P, = pgh = (13600 kg/m*)(9.81 m/s*)(0.0500 m) = 6660 N/m>

Kk )
and 1= (0.801 c1>)<10*3 %) =8.01 x 10 kg/m-s

Thus, we have
4 —4 _\4 2
P, — P 7.5x%x1 6660 N
g =T Pz Py)  m(7.5x 0 m) (6660 N/m7) 55 10-6 m?/s = 5.2 mL/s
8nL 8(8.01 x 10~ kg/m-s)(0.200 m)

In 30.0 s, the quantity that would flow out of the tube is (5.2 mL/s)(30 s) = 1.6 x 10> mL.

An artery in a certain person has been reduced to half its original inside diameter by deposits on
the inner artery wall. By what factor will the blood flow through the artery be reduced if the
pressure differential across the artery has remained unchanged?

From Poiseuille’s Law, J o #*. Therefore,
Joriginal Toriginal 2

Under the same pressure differential, compare the flow of water through a pipe to the flow of
SAE No. 10 oil.  for water is 0.801 cP; n for the oil is 200 cP.

From Poiseuille’s Law, J o 1/7. Therefore,

Juaer 200 cP
_ Y 5
J()il 0.801 cP 30

so the flow of water is 250 times as large as that of the oil under the same pressure differential.

Calculate the power output of the heart if, in each heartbeat, it pumps 75 mL of blood at an
average pressure of 100 mmHg. Assume 65 heartbeats per minute.

The work done by the heart is P AV. In one minute, AV = (65)(75 x 10~ m?). Also

1.01 x 10° Pa

=133x10*P
760 mmHg SR

P = (100 mmHg)

work _ (133 x 10* Pa)[(65)(75 x 10~° m?)]

=1.1W
time 60 s

SO Power =

What volume of water will escape per minute from an open-top tank through an opening 3.0 cm
in diameter that is 5.0 m below the water level in the tank? (See Fig. 14-1.)

We can use Bernoulli’s equation, with 1 representing the top level and 2 the orifice. Then P; = P, and
hy =50m, h, =0.
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1
o 5.0m
- .
S : 4
Fig. 14-1

Py +3pvi +hipg = Py+1pv3 + hypg
Lpvi + hipg = pv3 + hapg

If the tank is large, v; can be approximated as zero. Then, solving for v,, we obtain Torricelli’s equation:

vy = /2g(h — ) = 1/2(9.81 m/s)(5.0 m) = 9.9 m/s

and the flow is given by
J =04, = (9.9 m/s)m(1.5 x 107> m)* = 7.0 x 107> m>/s = 0.42 m* /min

A water tank springs a leak at position 2 in Fig. 14-2, where the water pressure is 500 kPa. What
is the velocity of escape of the water through the hole?

R DI PAI

Fig. 14-2

We use Bernoulli’s equation with P, — P, = 5.00 x 10° N/m?, h; = h,, and the approximation v; = 0.
Then

(Py = Py) + (hy — hy)pg =} pv3

2(P, — P 2(5. 103 N/m?
whence vy = (7 2)= (500 x 10 {m):31.6 m/s
p 1000 kg/m-

Water flows at the rate of 30 mL/s through an opening at the bottom of a tank in which the water
is 4.0 m deep. Calculate the rate of escape of the water if an added pressure of 50 kPa is applied to
the top of the water.
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14.11

From Bernoulli’s equation in the case where v; is essentially zero,

(Py = Py) + (hy — hy)pg = %PU%
We can write this twice, before the pressure is added and after.
(P1 = P2)iegore + (h1 = h2)pg = (03 pegore
(Pr = P2)pegore + 5 % 10° N/m* + (hy = hy)pg = 3 p(03) yier
If the opening and the top of the tank are originally at atmospheric pressure, then
(P1 = P2)before = 0

and division of the second equation by the first gives

(v%)after _5x 104 N/m2 + (hy — hy)pg
(V3)before (Il — hy)pg

But (hy — hy)pg = (4.0 m)(1000 kg/m?*)(9.81 m/s*) = 3.9 x 10* N/m?

4 2
Therefore, (92)afier _ [89x10 N/m — 151
(UZ)before 3.9 x 104 N/m2

Since J = Aw, this can be written as

J,
ZAler 151 or  Juper = (30 mL/s)(1.51) = 45 mL/s
Jbefore

161

How much work W is done by a pump in raising 5.00 m® of water 20.0 m and forcing it into a

main at a gauge pressure of 150 kPa?

W = (work to raise water) + (work to push it in) = mgh+ P AV

W = (5.00 m*)(1000 kg/m?*)(9.81 m/s*)(20.0 m) + (1.50 x 10° N/m?)(5.00 m*) = 1.73 x 10° J

14.12 A horizontal pipe has a constriction in it, as shown in Fig. 14-3. At point 1 the diameter is 6.0 cm,
while at point 2 it is only 2.0 cm. At point 1, v; = 2.0 m/s and P, = 180 kPa. Calculate v, and P,.

We have two unknowns and will need two equations. Using Bernoulli’s equation with /; = h,, we have

2 2 > 2
Py +3pvi = Py +3p0) or  Pi+ip(vy —vy) =Py

Fig. 14-3

Furthermore, v; = 2.0 m/s, and the equation of continuity tells us that

2
vy = v, % — (2.0 m/s) (%) — (2.0 m/s)(9.0) = 18 m /s
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Substituting then gives
1.80 x 10° N/m* +1 (1000 kg/m*)[(2.0 m/s)* — (18 m/s)’] = P,
from which P, = 0.20 x 10° N/m? = 20 kPa.

What must be the gauge pressure in a large fire hose if the nozzle is to shoot water straight
upward to a height of 30.0 m?

To rise to a height A, a projectile must have an initial speed /2gh. (We obtain this by equating %mv% to
mgh.) We can find this speed in terms of the difference between the pressures inside and outside the hose (the
gauge pressure) by writing Bernoulli’s equation for points just inside and outside the nozzle:

Piy + 390t + hinpg = Powt + 3 V2w + houpg
Here h,, ~ h;, and because the hose is large v;, ~ 0, therefore
Py — Poy = %Pvgut
Substitution of v/2gh for v, gives
Py, — Py = pgh = (1000 kg/m*)(9.81 m/s)(30.0 m) = 294 kPa

How could you obtain this latter equation directly from Torricelli’s Theorem?

At what rate does water flow from a 0.80 cm i.d. faucet if the water pressure is 200 kPa?
We use Bernoulli’s equation for points just inside and outside the faucet:
Pin + 3000 + hinpg = Pou + 3 prau + howpg
Taking /oy = hy, and Py, — Py, = 200 kPa, we have

2
Vi — i = (200 x 10° Pa)=
P

Assuming vizn < vfmt, we solve to obtain v,, = 20 m/s. The flow rate is then

J =04 = (20 m/s)(xr*) = (20 m/s)(7)(0.16 x 107* m*) = 1.0 x 107° m*/s

The pipe shown in Fig. 14-4 has a diameter of 16 cm at section 1 and 10 cm at section 2. At
section 1 the pressure is 200 kPa. Point 2 is 6.0 m higher than point 1. When oil of density 800
kg/m® flows at a rate of 0.030 m’/s, find the pressure at point 2 if viscous effects are negligible.

From J = v;4; = v,4, we have

3
(1 :i:—OOSO m /S 3= 1.49 m/S
Ay 7(8.0 x 1072 m)
J 0.030 m’
= = 000 e s

T4 7(50x 102 m)
We can now use Bernoulli’s equation:

P +%PU% +pg(hy —hy) = P, +%pv%
Setting P; = 2.00 x 10° N/m? i, — h; = 6 m and p = 800 kg/m* gives

P, =2.00 x 10° N/m’ +1(800 kg/m?)[(1.49 m/s)* — (3.82 m/s)’] — (800 kg/m*)(9.81 m/s*)(6.0 m)
= 1.48 x 10° N/m? = 1.5 x 10° kPa.
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6.0 m

Fig. 14-4 Fig. 14-5

14.16 A venturi meter equipped with a differential mercury manometer is shown in Fig. 14-5. At the
inlet, point 1, the diameter is 12 cm, while at the throat, point 2, the diameter is 6.0 cm. What is
the flow J of water through the meter if the mercury manometer reading is 22 cm? The density of
mercury is 13.6 g/em®.

From the manometer reading we obtain
P, — P, = pgh = (13600 kg/m?)(9.81 m/s?)(0.22 m) = 2.93 x 10* N/m?

Since J = v1 4| = v24,, we have v; = J/A, and v, = J/A4,. Using Bernoulli’s equation with #; — /1, =0
gives

(P1 = Py) +1p(vf —v3) =0
11
2.93 x 10* N/m? + 1(1000 kg/m”) (E - P)JZ -0
1 2
where
Ay =7} = 7(0.060)> m* =0.01131 m*>  and A, = 73 = 7(0.030)> m*> = 0.0028 m?
Substitution then gives J = 0.022 m’/s.

14.17 A wind tunnel is to be used with a 20 cm high model car to approximately reproduce the situation
in which a 550 ¢cm high car is moving at 15 m/s. What should be the wind speed in the tunnel? Is
the flow likely to be turbulent?

We want the Reynolds number Ny to be the same in both cases, so that the situations will be similar.

That is, we want
Np— (va) _ (va)
n tunnel n air

Both p and 7 are the same in the two cases, so we have

. D,
v,D, =v,D, from which v, = UHF" = (15 m/s)(550/20) = 0.41 km/s
!
To investigate turbulence, we evaluate Ny using p = 1.29 kg/m> and 5 = 1.8 x 10> Pa-s for air. We find
that Nz = 5.9 x 10%, a value far in excess of that required for turbulent flow. The flow will obviously be
turbulent.
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Supplementary Problems

Oil flows through a 4.0 cm id. pipe at an average speed of 2.5 m/s. Find the flow in m’/s and
em’/s.  Ans. 3.1x107° m’/s =3.1 x 10° cm? /s

Compute the average speed of water in a pipe having an i.d. of 5.0 cm and delivering 2.5 m’® of water per
hour. Ans.  0.35 m/s

The speed of glycerin flowing in a 5.0 cm i.d. pipe is 0.54 m/s. Find the fluid’s speed in a 3.0 cm i.d. pipe that
connects with it, both pipes flowing full. Ans. 1.5 m/s

How long will it take for 500 mL of water to flow through a 15 cm long, 3.0 mm i.d. pipe, if the pressure
differential across the pipe is 4.0 kPa? The viscosity of water is 0.80 cP. Ans. 7.5

A molten plastic flows out of a tube that is 8.0 cm long at a rate of 13 cm®/min when the pressure differential
between the two ends of the tube is 18 cm of mercury. Find the viscosity of the plastic. The i.d. of the tube is
1.30 mm. The density of mercury is 13.6 g/em®. Ans. 0.097 kg/m-s =97 cP

In a horizontal pipe system, a pipe (i.d. 4.0 mm) that is 20 cm long connects in line to a pipe (i.d. 5.0 mm)
that is 30 cm long. When a viscous fluid is being pushed through the pipes at a steady rate, what is the ratio
of the pressure difference across the 20-cm pipe to that across the 30-cm pipe? Ans. 1.6

A hypodermic needle of length 3.0 cm and i.d. 0.45 mm is used to draw blood (7 = 4.0 mPl). Assuming the
pressure differential across the needle is 80 cmHg, how long does it take to draw 15 mL? Ans. 17s

In a blood transfusion, blood flows from a bottle at atmospheric pressure into a patient’s vein in which the
pressure is 20 mmHg higher than atmospheric. The bottle is 95 cm higher than the vein, and the needle into
the vein has a length of 3.0 cm and an i.d. of 0.45 mm. How much blood flows into the vein each minute?
For blood, = 0.0040 Pa-s and p = 1005 kg/m>.  Ans. 3.4 cm’

How much work does the piston in a hydraulic system do during one 2.0-cm stroke if the end area of the
piston is 0.75 cm? and the pressure in the hydraulic fluid is 50 kPa? Ans. 75 m]

A large open tank of nonviscous liquid springs a leak 4.5 m below the top of the liquid. What is the
theoretical velocity of outflow from the hole? If the area of the hole is 0.25 cm?, how much liquid would
escape in exactly 1 minute? Ans. 9.4 m/s, 0.014 1 m’

Find the flow in liters/s of a nonviscous liquid through an opening 0.50 cm? in area and 2.5 m below the level
of the liquid in an open tank. Ans. 0.35 liter/s

Calculate the theoretical velocity of efflux of water from an aperture that is 8.0 m below the surface of water
in a large tank, if an added pressure of 140 kPa is applied to the surface of the water. Ans. 21 m/s

What horsepower is required to force 8.0 m® of water per minute into a water main at a pressure of
220 kPa? Ans. 39 hp

A pump lifts water at the rate of 9.0 liters/s from a lake through a 5.0 cm i.d. pipe and discharges it into the
air at a point 16 m above the level of the water in the lake. What are the theoretical (a) velocity of the water
at the point of discharge and (b) power delivered by the pump. Ans. (a) 4.6 m/s; (b) 2.0 hp

Water flows steadily through a horizontal pipe of varying cross-section. At one place the pressure is 130 kPa
and the speed is 0.60 m/s. Determine the pressure at another place in the same pipe where the speed is 9.0
m/s. Ans. 90 kPa.
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A pipe of varying inner diameter carries water. At point 1 the diameter is 20 cm and the pressure is 130 kPa.
At point 2, which is 4.0 m higher than point 1, the diameter is 30 cm. If the flow is 0.080 m®/s, what is the
pressure at the second point? Ans. 93 kPa

Fuel oil of density 820 kg/m® flows through a venturi meter having a throat diameter of 4.0 cm and an
entrance diameter of 8.0 cm. The pressure drop between entrance and throat is 16 cm of mercury. Find the
flow. The density of mercury is 13 600 kg/m3. Ans. 93 x 1073 m3/s

Find the maximum amount of water that can flow through a 3.0 cm i.d. pipe per minute without turbulence.
Take the maximum Reynolds number for nonturbulent flow to be 2000. For water at 20°C,
n=10x10"Pa-s. Ans. 0.0028 m?

How fast can a raindrop (r = 1.5 mm) fall through air if the flow around it is to be close to turbulent, i.e., for
N close to 10? For air, n= 1.8 x 107> Pa-s and p = 1.29 kg/m3. Ans. 4.6 cm/s



Chapter 15

Thermal Expansion

TEMPERATURE may be measured on the Celsius scale, on which the freezing point of water is
at 0°C, and the boiling point (under standard conditions) is at 100 °C. The Kelvin (or absolute)
scale is displaced 273.15 Celsius-size degrees from the Celsius scale, so that the freezing point of
water is 273.15 K and the boiling point is 373.15 K. Absolute zero, a temperature discussed
further in Chapter 16, is at 0 K (—273.15°C). The still-used Fahrenheit scale is related to the Cel-
sius scale by

Fahrenheit temperature = % (Celsius temperature) + 32

LINEAR EXPANSION OF SOLIDS: When a solid is subjected to a rise in temperature AT, its
increase in length AL is very nearly proportional to its initial length L, multiplied by AT. That
18,

AL = aLy AT

where the proportionality constant « is called the coefficient of linear expansion. The value of « depends
on the nature of the substance. For our purposes we can take « to be constant independent of 7,
although that’s rarely, if ever, exactly true.

From the above equation, « is the change in length per unit initial length per degree change in
temperature. For example, if a 1.000000 cm length of brass becomes 1.000019 cm long when the
temperature is raised 1.0 °C, the linear expansion coefficient for brass is

AL 0.000019 cm

= = =1.9x107°°C™
LoAT ~ (1.0 em)(1.0°C) x107°C

«

AREA EXPANSION: If an area Ay expands to Ay + AA when subjected to a temperature rise
AT, then

where 7 is the coefficient of area expansion. For isotropic solids (those that expand in the same way in all
directions), v = 2a approximately.

VOLUME EXPANSION: If a volume V, changes by an amount A}V when subjected to a tem-
perature change of AT, then

AV = BVy AT

where 3 is the coefficient of volume expansion. This can be either an increase or decrease in volume. For
isotropic solids, 8 = 3a approximately.

166
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15.4
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15.6

Solved Problems

A copper bar is 80 cm long at 15 °C. What is the increase in length when it is heated to 35°C? The
linear expansion coefficient for copper is 1.7 x 107> °C "

AL =aLyAT = (1.7 x 107°°C1)(0.80m)[(35 — 15)°C] = 2.7 x 10 * m

A cylinder of diameter 1.000 00 cm at 30 °C is to be slid into a hole in a steel plate. The hole has a
diameter of 0.99970 cm at 30°C. To what temperature must the plate be heated? For steel,
a=11x107°C"

The plate will expand in the same way whether or not there is a hole in it. Hence the hole expands in the
same way a circle of steel filling it would expand. We want the diameter of the hole to change by

AL = (1.00000 — 0.99970) cm = 0.000 30 cm
Using AL = aLy AT, we find
AT:£: 0.0003100m _70C
aly (1.1 x 1073 °C71)(0.999 70 cm)

The temperature of the plate must be 30 + 27 = 57°C

A steel tape is calibrated at 20 °C. On a cold day when the temperature is —15 °C, what will be the
percent error in the tape? oy = 1.1 x 107> °C7 1.

For a temperature change from 20 °C to —15°C, we have AT = —35°C. Then,

AL
T =a AT =(11x 107°°C 1) (=35°C) = —3.9 x 10* = —0.039%
0

A copper rod (a=170x107°C™") is 20cm longer than an aluminum rod
(=220 x 1073 OC_l). How long should the copper rod be if the difference in their lengths is
to be independent of temperature?

For their difference in lengths not to change with temperature, AL must be the same for both rods
under the same temperature change. That is,

(CYLO AT) = (O[LO AT)

copper

or (1.70 x 1072 °C YLy AT = (2.20 x 107°°C ") (Ly — 0.20 m) AT

aluminum

where L, is the length of the copper rod, and AT is the same for both rods. Solving, we find that
LO =0.88 m.

At 20.0°C a steel ball (o = 1.10 x 107> °C™") has a diameter of 0.900 0 cm, while the diameter of
a hole in an aluminum plate (o = 2.20 x 107> oC_l) 15 0.899 0 cm. At what temperature (the same
for both) will the ball just pass through the hole?

At a temperature AT higher than 20.0 °C, we wish the diameters of the hole and of the ball to be equal:

0.9000 cm + (0.9000 cm)(1.10 x 107°°C™") AT = 0.8990 cm + (0.8990 cm)(2.20 x 107°°C") AT

Solving for AT, we find AT = 101 °C. Because the original temperature was 20.0 °C, the final temperature
must be 121 °C.

A steel tape measures the length of a copper rod as 90.00 cm when both are at 10°C, the
calibration temperature for the tape. What would the tape read for the length of the rod when
both are at 30 °C? ageq = 1.1 x 107 °C™"5 agopper = 1.7 x 1072 °C"
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At 30°C, the copper rod will be of length
Ly(1 + o AT)
while adjacent “centimeter’” marks on the steel tape will be separated by a distance of
(1.000 cm)(1 4+ o, AT)
Therefore, the number of “centimeters’ read on the tape will be

Ly(1 4+ a,AT) (90.00 cm)[1 + (1.7 x 107> °C~")(20°C)] 90001+3.4><10’4

(Lem)(1+a,AT)  (1.000 cm)[1 + (1.1 x 1073 °C~1)(20°C)] TTl422x 107

Using the approximation

1+ x
for x small compared to 1, we have
14+34x107* 4 L 4 4
90.00 ————————— =~ 90.00(1 + 3.4 x 107")(1 =22 x 107") = 90.00(1 + 3.4 x 107" —2.2 x 10
1+22%10° (134> 107( x107) (134 x107)

=90.00+0.0108
The tape will read 90.01 cm.

A glass flask is filled “to the mark™ with 50.00 cm® of mercury at 18 °C. If the flask and its
contents are heated to 38 °C, how much mercury will be above the mark? ag,es = 9.0 x 10°6°Cc!
and Bereary = 182 x 107°°C.

We shall take Byjas = 3g1aes @ @ good approximation. The flask interior will expand just as though it
were a solid piece of glass. Thus,
Volume of mercury above mark = (AV for mercury) — (AV for glass)
= BuVo AT = B Vo AT = (B — B)Vo AT
= [(182 = 27) x 107°C~"](50.00 cm?)[(38 — 18) °C]

=0.15 cm®

The density of mercury at exactly 0°C is 13600 kg/m’, and its volume expansion coefficient is
1.82 x 107*°C~!. Calculate the density of mercury at 50.0 °C.

Let

po = density of mercury at 0°C

p1 = density of mercury at 50 °C

Vo = volume of m kg of mercury at 0°C
V| = volume of m kg of mercury at 50°C

By conservation of mass, m = pyVy = p; V1, from which

Vo Vo 1
A YN A TN INT)

P1 = Po

AV

But —
u Ve

=p[AT =(1.82 % 1074 °C1)(50.0°C) = 0.009 10
Substitution into the first equation then gives

p1 = (13600 kg/m?) = 13.5 x 10* kg/m’?

1
140.00910
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Show that the density of a liquid or solid changes in the following way with temperature:
Ap = —pBAT.
Consider a mass m of liquid in a volume V), for which p, = m/V,. After a temperature change AT, the
volume will be
V=Vy+ V,BAT
and the density will be

m m
PSS AT
But m/Vy = py, and so this can be written as
p(1+BAT) = py
Thus we find that
Ap=p—py=—pBAT

In practice, p is close enough to p, so that we can say Ap ~ —pySAT.

Solve Problem 15.8 using the result of Problem 15.9.
We have
Ap = —(13600 kg/m*)(182 x 107¢°C~1)(50.0°C) = —124 kg/m’

50 — 124 kg/m* = 13.5 x 10° kg/m’

Pso°c = Po°c

A steel wire of 2.0 mm? cross-section is held straight (but under no tension) by attaching it firmly
to two points a distance 1.50 m apart at 30 °C. If the temperature now decreases to —10 °C, and if
the two tie points remain fixed, what will be the tension in the wire? For steel,
a=11x107°C"and ¥ =2.0 x 10" N/m*.

If it were free to do so, the wire would contract a distance AL as it cooled, where
AL =aLyAT = (1.1 x 107°°C")(1.5 m)(40°C) = 6.6 x 10 * m

But the ends are fixed. As a result, forces at the ends must, in effect, stretch the wire this same length AL.
Therefore, from Y = (F/A)(AL/Ly), we have

_ YAAL (2.0 x 10" N/m?)(2.0 x 107 m?)(6.6 x 10™* m)

Tension = F = Iy 150 m =176 N =0.18 kN

Strictly, we should have substituted (1.5 — 6.6 x 10~*) m for L in the expression for the tension. How-
ever, the error incurred in not doing so is negligible.

When a building is constructed at —10°C, a steel beam (cross-sectional area 45 cm?) is put in
place with its ends cemented in pillars. If the sealed ends cannot move, what will be the compres-
sional force in the beam when the temperature is 25°C? For this kind of steel,
a=11x107°C""and ¥ =2.0 x 10" N/m?.

We proceed much as in Problem 15.11:

AL
T =aAT =(11x 107°°C7")(35°C) =3.85 x 10°*
0

50 F= YA% = (2.0 x 10" N/m?)(45 x 107* m?)(3.85 x 107*) = 3.5 x 10° N
0
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Supplementary Problems

Compute the increase in length of 50 m of copper wire when its temperature changes from 12 °C to 32 °C.
For copper, o = 1.7 x 1073 °C™1. Ans. 1.7 cm

A rod 3.0 m long is found to have expanded 0.091 cm in length after a temperature rise of 60 °C. What is «
for the material of the rod? Ans. 5.1 x 107%°C™!

At 15.0°C, a bare wheel has a diameter of 30.000 cm, and the inside diameter of a steel rim is 29.930 cm. To
what temperature must the rim be heated so as to slip over the wheel? For this type of steel,
a=1.10x107°C".  Ans. 227°C

An iron ball has a diameter of 6 cm and is 0.010 mm too large to pass through a hole in a brass plate when
the ball and plate are at a temperature of 30 °C. At what temperature (the same for ball and plate) will the
ball just pass through the hole? a=12x10"°°C™" and 1.9 x107°°C™! for iron and brass,
respectively. Ans. 54°C

(@) An aluminum measuring rod, which is correct at 5.0 °C, measures a certain distance as 88.42 cm at
35.0 °C. Determine the error in measuring the distance due to the expansion of the rod. () If this aluminum
rod measures a length of steel as 88.42 cm at 35.0 °C, what is the correct length of the steel at 35°C? The
coefficient of linear expansion of aluminum is 22 x 1076 °C~!. Ans.  (a) 0.058 cm; (b) 88 cm

A solid sphere of mass m and radius b is spinning freely on its axis with angular velocity w,. When heated by
an amount AT, its angular velocity changes to w. Find wy/w if the linear expansion coefficient for the
material of the sphere is a. Ans. 1420 AT + (« AT)?

Calculate the increase in volume of 100 cm® of mercury when its temperature changes from 10°C to 35°C.
The volume coefficient of expansion of mercury is 0.000 18 °C~L. Ans.  0.45 cm®

The coefficient of linear expansion of glass is 9.0 x 107 °C~'. If a specific gravity bottle holds 50.000 mL at
15°C, find its capacity at 25°C. Ans.  50.014 mL

Determine the change in volume of a block of cast iron 5.0cm x 10 cm x 6.0 cm, when the temperature
changes from 15°C to 47°C. The coefficient of linear expansion of cast iron is
0.000010°C™".  Ans. 0.29 cm®

A glass vessel is filled with exactly 1 liter of turpentine at 20 °C. What volume of the liquid will overflow if the
temperature is raised to 86°C? The coefficient of linear expansion of the glass is 9.0 x 1076°C~!; the
coefficient of volume expansion of turpentine is 97 x 107> °C~". Ans. 62 mL

The density of gold is 19.30 g/cm3 at 20.0°C, and the coefficient of linear expansion is 14.3 x 107¢°C~!.
Compute the density of gold at 90.0°C. Ans. 19.2 g/cm3



Chapter 16

Ideal Gases

AN IDEAL (OR PERFECT) GAS is one that obeys the Ideal Gas Law, given below. At low to
moderate pressures, and at temperatures not too low, the following common gases can be consid-
ered ideal: air, nitrogen, oxygen, helium, hydrogen, and neon. Almost any chemically stable gas
behaves ideally if it is far removed from conditions under which it will liquefy or solidify. In
other words, a real gas behaves like an ideal gas when its atoms or molecules are so far apart
that they do not appreciably interact with one another.

ONE MOLE OF A SUBSTANCE is the amount of the substance that contains as many particles
as there are atoms in exactly 12 grams (0.012 kg) of the isotope carbon-12. It follows that one
kilomole (kmol) of a substance is the mass (in kg) that is numerically equal to the molecular
(or atomic) mass of the substance. For example, the molecular mass of hydrogen gas, H, is 2
kg/kmol; hence there are 2 kg in | kmol of H;. Similarly, there are 32 kg in 1 kmol of O,, and
28 kg in 1 kmol of N,. We shall always use kilomoles and kilograms in our calculations. Some-
times the term molecular (or atomic) weight is used, rather than molecular mass, but the latter is
correct.

IDEAL GAS LAW: The absolute pressure P of n kilomoles of gas contained in a volume V is
related to the absolute temperature 7 by

PV =nRT

where R = 8314 J/kmol - K is called the universal gas constant. If the volume contains m kilograms of gas
that has a molecular (or atomic) mass M, then n = m/M.

SPECIAL CASES of the Ideal Gas Law, obtained by holding all but two of its parameters con-
stant, are

Boyle's Law (n, T constant) : PV = constant

Charles’ Law (n, P constant) : = constant

Gay-Lussac’s Law (n, V constant) : = constant

Nl N

ABSOLUTE ZERO: With n and P constant (Charles’ Law), the volume decreases linearly with
T and (if the gas remained ideal) would reach zero at 7"= 0K. Similarly, with » and V' constant
(Gay-Lussac’s Law), the pressure would decrease to zero with the temperature. This unique tem-
perature, at which P and V' would reach zero, is called absolute zero.

STANDARD CONDITIONS OR STANDARD TEMPERATURE AND PRESSURE (S.T.P.) are
defined to be

T=27315K=0°C P=1013x10° Pa=1 atm
171
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Under standard conditions, 1 kmol of ideal gas occupies a volume of 22.4 m®. Therefore, at S.T.P., 2 kg
of H, occupies the same volume as 32 kg of O, or 28 kg of N,, namely 22.4 m®.

DALTON’S LAW OF PARTIAL PRESSURES: Define the partial pressure of one component of
a gas mixture to be the pressure the component gas would exert if it alone occupied the entire
volume. Then, the total pressure of a mixture of ideal, nonreactive gases is the sum of the partial
pressures of the component gases.

GAS-LAW PROBLEMS involving a change of conditions from (P, V,,T)) to (P2, V2, Ta) are
usually easily solved by writing the gas law as
PV PV,

T, T

(at constant n)

Solved Problems

16.1 A mass of oxygen occupies 0.0200 m> at atmospheric pressure, 101 kPa, and 5.0 °C. Determine its
volume if its pressure is increased to 108 kPa while its temperature is changed to 30 °C.

From

SIS £14) P\ (T,
0% he vo=1(21) (22
Tl Tz W€ nhave 2 1 P2 Tl

But 7} =5+273 =278 K and 7, = 30 + 273 = 303 K, so

101 /303
Vy = (0.0200 m*) (%) (2%) =0.0204 m*

16.2 On a day when atmospheric pressure is 76 cmHg, the pressure gauge on a tank reads the pressure
inside to be 400 cmHg. The gas in the tank has a temperature of 9 °C. If the tank is heated to
31°C by the Sun, and if no gas exits from it, what will the pressure gauge read?

P 1 Vl P 2 V2 TZ Vl
- p,=r(22)(L
R R VP AN

But gauges on tanks usually read the difference in pressure between inside and outside; this is called the
gauge pressure. Therefore,

Py =76 cmHg + 400 cmHg = 476 cmHg
Also, V; = V,. We then have

273 + 31
P, = (476 cmHg) (ﬁ) (1.00) = 513 cmHg

The gauge will read 513 cmHg — 76 cmHg = 437 cmHg.

16.3 The gauge pressure in a car tire is 305 kPa when its temperature is 15 °C. After running at high
speed, the tire has heated up and its pressure is 360 kPa. What is then the temperature of the gas
in the tire? Assume atmospheric pressure to be 101 kPa.
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PV PV g (&) (ﬁ)

T, T, PiJ\V
with P, =305 kPa+ 101 kPa =406 kPa  and P, =360 kPa + 101 kPa = 461 kPa
461
Then Ty = (273 +15)( 35¢ ) (1.00) = 327 K

So the final temperature of the tire is 327 — 273 = 54°C.

16.4 Gas at room temperature and pressure is confined to a cylinder by a piston. The piston is now
pushed in so as to reduce the volume to one-eighth of its original value. After the gas temperature
has returned to room temperature, what is the gauge pressure of the gas in kPa? Local atmo-
spheric pressure is 740 mm of mercury.

PV, P, Vi (Th

= P,o=pr L) (22

T, T, VYAV
But 7| = 7>, P = 740 mmHg, V, = V/;/8. Substitution gives

P, = (740 mmHg)(8)(1) = 5920 mmHg

Gauge pressure is the difference between actual and atmospheric pressure. Therefore,

Gauge pressure = 5920 mmHg — 740 mmHg = 5180 mmHg
Since 760 mmHg = 101 kPa, the gauge reading in kPa is

101 kPa

5180 mmHg) (oo &
(5180 mm g)<760 mmHg

> = 690 kPa

16.5 An ideal gas has a volume of exactly 1 liter at 1.00 atm and —20 °C. To how many atmospheres
pressure must it be subjected to be compressed to 0.500 liter when the temperature is 40 °C?

PR _PVa o p o p (D) (2
T, T EATANE
1.00 L 273 K440 K
from which P, =(1.00 atm) (0 50000 L) (;i g + 28 K> =2.47 atm

16.6 A certain mass of hydrogen gas occupies 370 mL at 16 °C and 150 kPa. Find its volume at —21 °C

and 420 kPa.
PV, PV, _ P\ (T
177272 V, — 1) (22
T 1, Ses 2=" (Pz) (Tl)
150 kPa\ /273 K — 21 K
V2= (370 mL) (420 kPa) (273 K+ 16 K) =15 mtL

16.7 The density of nitrogen is 1.25 kg/m® at S.T.P. Determine the density of nitrogen at 42°C and
730 mm of mercury.

Since p =m/V, we have V| =m/p; and V, = m/p, for a given mass of gas under two sets of condi-
tions. Then
PV P, Py Py

= gives — =
T T, oiTy p T,
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Since S.T.P. are 760 mmHg and 273 K,

P\ (T, 3, (730 mmHg 273 K 3
— o (22) (L) = (125 kg/m = 1.04 kg/m’
P=n (Pl) (Tz) (125 kg/m )(760 mmHg /) \273 K + 42 K 04 ke/m

Notice that pressures in mmHg can be used here because the units cancel in the ratio P,/P;.

16.8 A 3.0-liter tank contains oxygen gas at 20 °C and a gauge pressure of 25 x 10° Pa. What mass of
oxygen is in the tank? The molecular mass of oxgyen gas is 32 kg/kmol. Assume atmospheric
pressure to be 1 x 10° Pa.

The absolute pressure of the gas is
P = (gauge pressure) 4 (atmospheric pressure) = (25 + 1) x 10° N/m* = 26 x 10> N/m?
From the gas law, with M = 32 kg/kmol,

m
PV = (5 RT
5 2 -3 3y _ m J
(26 x 10° N/m“)(3.0 x 107° m’) = (732 kg/kmol) <8314—km01-K) (293 K)

Solving gives m, the mass of gas in the tank, as 0.10 kg.

16.9 Determine the volume occupied by 4.0 g of oxygen (M = 32kg/kmol) at S.T.P.

Method 1
Use the gas law directly:
m
PV = (M)RT
-3
- 1 <ﬂ>RT _ (4.0 x 107 kg)(8314 J/kmol-K)(273 K) 8% 107 m’
P)\M (1.01 x 103 N/m?)(32 kg/kmol)

Method 2
Under S.T.P., 1 kmol occupies 22.4 m®. Therefore, 32 kg occupies 22.4 m’, and so 4 g occupies

40¢ 3 -3 3
224 m’) = 2. 107" m’
(32000 g)( m’) 8 x 107" m

16.10 A 2.0-mg droplet of liquid nitrogen is present in a 30 mL tube as it is sealed off at very low
temperature. What will be the nitrogen pressure in the tube when it is warmed to 20 °C? Express
your answer in atmospheres. (M for nitrogen is 28 kg/kmol.)

We use PV = (m/M)RT to find
p_MRT _(20x 10° kg)(8314 J/kmol-K)(293 K)
oMV (28 kg/kmol)(30 x 10~ m?)
1.0 atm
1.01 x 10° N/m?

= 5800 N/m?

= (5800 N/m?) =0.057 atm
( )

16.11 A tank of volume 590 liters contains oxygen at 20 °C and 5.0 atm pressure. Calculate the mass of
oxygen in the tank. M = 32 kg/kmol for oxygen.

We use PV = (m/M)RT to get

_PVM (5% 1.01 x 10° N/m?)(0.59 m*)(32 kg/kmol)

=39k
RT (8314 J /kmol - K)(293 K) 3.9 ke

m
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16.12

16.13

16.14

16.15

16.16

16.17

At 18°C and 765 mmHg, 1.29 liters of an ideal gas has a mass of 2.71 g. Compute the molecular
mass of the gas.

We use PV = (m/M)RT and the fact that 760 mmHg = 1.00 atm to obtain

Wy MRT _ (000271 kg)(83145J/kmc;1-K)(291 K) 500 ke/kmol
PV~ [(765/760)(1.01 x 10° N/m2)](0.001 29 m?)

Compute the volume of 8.0 g of helium (M = 4.0 kg/kmol) at 15°C and 480 mmHg.

We use PV = (m/M)RT to obtain

mRT  (0.0080 kg)(8314 J/kmol -K)(288 K) ; .
y = MRT _ —0.075 m® = 75 lit
MP (4.0 kg/kmol)[(480/760)(1.01 x 10° N/m?)] m Hers

Find the density of methane (M = 16 kg/kmol) at 20 °C and 5.0 atm.
We use PV = (m/M)RT and p =m/V to get

_ PM (5.0 x 1.01 x 10° N/m*)(16 kg/kmol)

o 3
P=RT ™ (8314 J/kmol -K)(293 K) =33 ke/m

A fish emits a 2.0 mm® bubble at a depth of 15 m in a lake. Find the volume of the bubble as it
reaches the surface. Assume its temperature does not change.

The absolute pressure in the bubble at depth / is
P = pgh + atmospheric pressure
where p = 1000 kg/m3 and atmospheric pressure is about 100 kPa. At 15 m,
Py = (1000 kg/m*)(9.8 m/s*)(15 m) + 100 kPa = 247 kPa

and at the surface, P, = 100 kPa. Following the usual procedure, we get

(PO (22) — (20 s (27) 10) — 49
V,="1 (Pz) (T1> = (2.0 mm”) 100 (1.0) = 4.9 mm

A 15 cm long test tube of uniform bore is lowered, open end down, into a fresh-water lake. How
far below the surface of the lake must the water level be in the tube if one-third of the tube is to be
filled with water?

Let /1 be the depth of the water in the tube below the lake’s surface. The air pressure P, in the tube at
depth & must equal atmospheric pressure P, plus the pressure of water at that depth:

P2:Pa+pgh

The gas law gives us the value of P, as

P, = (Pl)(%) (%) = (1.01 x 10° Pa) (%)(1.00) =1.50 x 10° Pa
Then, from the relation between P, and A,
P,—P, 0.50 x 10° Pa
T pg (1000 kg/m*)(9.81 m/s%)

where atmospheric pressure has been taken as 100 kPa.

h =51m

A tank contains 18 kg of N, gas (M = 28 kg/kmol) at a pressure of 4.50 atm. How much H, gas
(M = 2.0 kg/kmol) at 3.50 atm would the same tank contain?
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16.19

16.20

16.21

16.22
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We write the gas law twice, once for each gas:
PNV =ngyRT and PyV =ngRT
Division of one equation by the other eliminates V/, R, and T
ny _ Py 3.50 atm

in  Pn 450 atm 0-778
m 18 kg
But =—=—"__=0.643 kmol
Y N T8 kg/kmol 0 o
so ny = (nn)(0.778) = (0.643 kmol)(0.778) = 0.500 kmol

Then, from n = m/M, we have
my = (0.500 kmol)(2.0 kg/kmol) = 1.0 kg

In a gaseous mixture at 20 °C the partial pressures of the components are as follows: hydrogen,
200 mmHg; carbon dioxide, 150 mmHg; methane, 320 mmHg; ethylene, 105 mmHg. What are
(a) the total pressure of the mixture and (b) the mass fraction of hydrogen? (My = 2.0 kg/kmol,
Mco, = 44kg/kmol, M eihane = 16 kg/kmol, Mphyiene = 30 kg/kmol.)

(a) According to Dalton’s Law,
Total pressure = sum of partial pressures = 200 mmHg + 150 mmHg + 320 mmHg + 105 mmHg = 775 mmHg
(b) From the Gas Law, m = M(PV /RT). The mass of hydrogen gas present is

vV
= My Py —
my HLH ( RT)

The total mass of gas present, m,, is the sum of similar terms:
V
m; = (MHPH + MCOZ PC02 + Mmethanerelhane + MethylenePethylene) ﬁ
The required fraction is then
my My Py

m; MHPH + MCO: PCO: + Mmclluchmclhanc + McthylcncPcthy]cnc

(2.0 kg/kmol)(200 mmHg)

(2.0 ke/kmol) (200 mmHg) + (44 kg/kmol)(150 mmHg) + (16 kg/kmol)(320 mmHg) + (30 kg/kmol)(105 mmHg) 2

Supplementary Problems

A certain mass of an ideal gas occupies a volume of 4.00 m’ at 758 mmHg. Compute its volume at
635 mmHg if the temperature remains unchanged. Ans. 477 m®

A given mass of ideal gas occupies 38 mL at 20 °C. If its pressure is held constant, what volume does it
occupy at a temperature of 45°C? Ans. 41 mL

On a day when atmospheric pressure is 75.83 cmHg, a pressure gauge on a tank of gas reads a pressure of
258.5 cmHg. What is the absolute pressure (in atmospheres and kPa) of the gas in the tank?
Ans. 334.3 cmHg = 4.398 atm = 445.6 kPa

A tank of ideal gas is sealed off at 20°C and 1.00 atm pressure. What will be the pressure (in kPa and
mmHg) in the tank if the gas temperature is decreased to —35°C? Ans. 82 kPa = 6.2 x 10? mmHg
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16.23 Given 1000 mL of helium at 15°C and 763 mmHg, determine its volume at —6°C and
420 mmHg.  Ans. 1.68 x 10° mL

16.24 One kilomole of ideal gas occupies 22.4 m> at 0°C and 1 atm. (¢) What pressure is required to compress
1.00 kmol into a 5.00 m® container at 100 °C? (b) If 1.00 kmol was to be sealed in a 5.00 m> tank that could
withstand a gauge pressure of only 3.00 atm, what would be the maximum temperature of the gas if the tank
was not to burst? Ans. (a) 6.12 atm; (b) —30°C

16.25 Air is trapped in the sealed lower end of a capillary tube by a mercury column as shown in Fig. 16-1. The top
of the tube is open. The temperature is 14 °C, and atmospheric pressure is 740 mmHg. What length would
the trapped air column have if the temperature were 30°C and atmospheric pressure were
760 mmHg? Ans. 12.4 cm

8.0 cm
12 cm
Fig. 16-1

16.26 Air is trapped in the sealed lower part of the vertical capillary tube shown in Fig. 16-1 by an 8.0 cm long
mercury column. The top is open, and the system is at equilibrium. What will be the length of the trapped air
column if the tube is now tilted so it makes an angle of 65° to the vertical? Take
P, =76 cmHg. Ans.  0.13 m

16.27 On a day when the barometer reads 75.23 cm, a reaction vessel holds 250 mL of ideal gas at 20.0 °C. An oil
manometer (p = 810 kg/m?) reads the pressure in the vessel to be 41.0 cm of oil and below atmospheric
pressure. What volume will the gas occupy under S.T.P.? Ans. 233 mL

16.28 A 5000-cm® tank contains an ideal gas (M = 40 kg/kmol) at a gauge pressure of 530 kPa and a temperature
of 25 °C. Assuming atmospheric pressure to be 100 kPa, what mass of gas is in the tank? Ans.  0.051 kg

16.29 The pressure of air in a reasonably good vacuum might be 2.0 x 10~ mmHg. What mass of air exists in a
250 mL volume at this pressure and 25 °C? Take M = 28 kg/kmol for air. Ans. 7.5 x 1072 kg

16.30  What volume will 1.216 g of SO, gas (M = 64.1 kg/kmol) occupy at 18.0 °C and 755 mmHg if it acts like an
ideal gas? Ans. 457 mL

16.31 Compute the density of H,S gas (M = 34.1 kg/kmol) at 27°C and 2.00 atm, assuming it to be ideal.
Ans. 2.76 kg/m®

16.32 A 30-mL tube contains 0.25 g of water vapor (M = 18 kg/kmol) at a temperature of 340 °C. Assuming the
gas to be ideal, what is its pressure? Ans. 2.4 MPa
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One method for estimating the temperature at the center of the Sun is based on the Ideal Gas Law. If the
center is assumed to consist of gases whose average M is 0.70 kg/kmol, and if the density and pressure are
90 x 10° kg/m® and 1.4 x 10'" atm, respectively, calculate the temperature. Ans. 13 x 10" K

A 500-mL sealed flask contains nitrogen at a pressure of 76.00 cmHg. A tiny glass tube lies at the bottom of
the flask. Its volume is 0.50 mL and it contains hydrogen gas at a pressure of 4.5 atm. Suppose the glass tube
is now broken so that the hydrogen fills the flask. What is the new pressure in the flask?
Ans. 76.34 cmHg

As shown in Fig. 16-2, two flasks are connected by an initially closed stopcock. One flask contains krypton
gas at 500 mmHg, while the other contains helium at 950 mmHg. The stopcock is now opened so that the
gases mix. What is the final pressure in the system? Assume constant temperature. Ans. 789 mmHg

Krypton Helium

450 cm?
=\, 950 mmHg -

0

EAPE(FS SR —
500 mmHg . f——

Fig. 16-2

An air bubble of volume V), is released near the bottom of a lake at a depth of 11.0 m. What will be its new
volume at the surface? Assume its temperature to be 4.0 °C at the release point and 12 °C at the surface. The
water has a density of 1000 kg/m3, and atmospheric pressure is 75 cmHg. Ans. 2.1V,

A cylindrical diving bell (a vertical cylinder with open bottom end and closed top end) 12.0 m high is lowered
in a lake until water within the bell rises 8.0 m from the bottom end. Determine the distance from the top of
the bell to the surface of the lake. (Atmospheric pressure = 1.00 atm.) Ans. 206 m—4.0m=16.6 m



Chapter 17

Kinetic Theory

THE KINETIC THEORY considers matter to be composed of discrete particles or molecules in
continual motion. In a gas, the molecules are in random motion with a wide distribution of
speeds ranging from zero to very large values.

AVOGADRO’S NUMBER (N,) is the number of particles (molecules or atoms) in 1 kmol of
substance. For all substances,

N4 = 6.022 x 10°® particles/kmol

As examples, M = 2 kg/kmol for H, and M = 32 kg/kmol for O,. Therefore, 2 kg of H, and 32 kg of
O, each contain 6.02 x 10% molecules.

THE MASS OF A MOLECULE (or atom) can be found from the molecular (or atomic) mass
M of the substance and Avogadro’s number N4. Since M kg of substance contains N, particles,
the mass my of one particle is given by

my = —
Ny

THE AVERAGE TRANSLATIONAL KINETIC ENERGY of a gas molecule is 3kz7 /2, where T
is the absolute temperature of the gas and kg = R/N,4 = 1.381 x 102 J/K is Boltzmann’s constant.
In other words, for a molecule of mass my,

(average of Lmyv®) = 3k, T

Note that Boltzmann’s constant is also given as k (with no subscript) in the literature.

THE ROOT MEAN SQUARE SPEED of a gas molecule is the square root of the average of v’
for a molecule over a prolonged time. Equivalently, the average may be taken over all molecules
of the gas at a given instant. From the expression for the average kinetic energy, the rms speed
is

3kgT
my

vrms

THE ABSOLUTE TEMPERATURE of an ideal gas has a meaning that is found by solving

Tmovl =3kpT. It gives
2\ /1
T=(—]|= 3
<3k3> (2 movnm>

ms — 2
The absolute temperature of an ideal gas is a measure of its average translational kinetic energy (KE) per
molecule.

179
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THE PRESSURE of an ideal gas was given in Chapter 16 in the form PV = (m/M)RT. Noticing
that m = Nmy, where N is the number of molecules in the volume V, and replacing 7 by the
value determined above, we have

PV = L Nmgvpns
Further, since Nmygy/V = p, the density of the gas,

1.2
P= 3 PUrms

THE MEAN FREE PATH (m.f.p.) of a gas molecule is the average distance such a molecule
moves between collisions. For an ideal gas of spherical molecules with radius b,

1
T 4nV2RA(N)V)

where N/V is the number of molecules per unit volume.

m.f.p.

Solved Problems

17.1 Ordinary nitrogen gas consists of molecules of N,. Find the mass of one such molecule. The
molecular mass is 28 kg/kmol.

M 28 kg/kmol
Ny 6.02 x 10%° kmol

=47 %10 kg

17.2 Helium gas consists of separate He atoms rather than molecules. How many helium atoms, He,
are there in 2.0 g of helium? M = 4.0 kg/kmol for He.

Method 1
One kilomole of He is 4.0 kg, and it contains N, atoms. But 2.0 g is equivalent to
0.0020kg
— = =0. kmol
4.0 kg/kmol 0.00050 kmo

of helium. Therefore,
Number of atoms in 2.0 g = (0.000 50 kmol) N,
= (0.000 50 kmol)(6.02 x 10%® kmol™") = 3.0 x 10%

Method 2

The mass of a helium atom is

M 4.0 kg/kmol 97
My = — = =6.64x 107"k
0 N4 6.02 x 102 kmol ™ &
.0020 k
SO Number in 2.0 g = 0.0020 ke =3.0x10%

6.64 x 1027 kg

17.3 A droplet of mercury has a radius of 0.50 mm. How many mercury atoms are in the droplet? For
Hg, M = 202 kg/kmol and p = 13 600 kg/m®.

The volume of the droplet is
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4rr 4m —4 _\3 10 3
3 (50x107" m)" =524 x 100" m

The mass of the droplet is
m=pV = (13600 kg/m?)(5.24 x 107" m*) = 7.1 x 107° kg
The mass of a mercury atom is
M 202 kg/kmol
my=-—= 6 —
Ny 6.02 x 10%° kmol
The number of atoms in the droplet is then

-6
Number — 7 7.1 x 107" kg
my  3.36 x 107> kg

=3.36x 107> kg

=2.1x10"

17.4 How many molecules are there in 70 mL of benzene? For benzene, p = 0.88 g/cm3 and
M = 78 kg/kmol.

Mass of 70 cm® = m = p¥ = (880 kg/m*)(70 x 10~° m*) = 0.0616 kg

M 78 kg/kmol s
o= M _ —130x 105k
TN, 6.02 x 10% kmol ! g
m 0.0616 kg

: 3 23
Number in 70 cm™ = m—o = m =48 x 10

17.5 Find the rms speed of a nitrogen molecule (M = 28 kg/kmol) in air at 0°C.

We know that L mgvin, = 3k, T and so

3%y T
Urms = T
my
M 28 kg/kmol 2%
But my=— = =4.65x 107"k
TNy 6.02x 10% kmol ! £
3(1.38 x 10723 J/K)(273 K

Therefore Urms = \/ ( 165 107/26 L(g ) =0.49 km/s

17.6 A gas molecule at the surface of the Earth happens to have the rms speed for that gas at exactly
0°C. If it were to go straight up without colliding with other molecules, how high would it rise?

The molecule’s KE is initially
KE = %mov%ms = %kBT
The molecule will rise until its KE has been changed to PEg. Therefore, calling the height /2, we have
%kBT = mogh

(LN ((3ksTY (1) |(3)(1.38 x 1077 J/K)(273 K)
"= (m0)< 2 > - (m0> { 2(9.81 m/s?)
_ 57610 kg-m
my

Solving gives

where my is in kg. The height varies inversely with the mass of the molecule. For an N, molecule,
my = 4.65 x 10726 kg (Problem 17.5), and in this case 4 turns out to be 12.4 km.
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Air at room temperature has a density of about 1.29 kg/m3 . Assuming it to be entirely one gas,
find v, for its molecules.

Because P = 1 pupy,s, we have

/ 3(100 x 10° Pa
Urms = 129 k / )~480 m/s

where we assumed atmospheric pressure to be 100 kPa.

Find the translational kinetic energy of one gram mole of any ideal gas at 0°C.

For any ideal gas, kBT = movrms, which is the KE of each molecule. One gram mole contains
N4 x 1073 molecules. Hence the total KE per mole is

RT
KE o = (N4 x 107) GkBT) =3x 10*3T =34%kJ)
where T was taken as 273 K, and use was made of the fact that kzN, = R.

There is about one hydrogen atom per cm?® in outer space, where the temperature (in the shade) is

about 3.5 K. Find the rms speed of these atoms and the pressure they exert.

_ [3ksT _ [3ksT  [3RT
Vpms = e\ MN, 7~295 m/s or 0.30 km/s

where M for hydrogen is 1.0 kg/kmol and 7 = 3.5 K. We can now use P = pvfms/3 to find the pressure.
Since the mass m, of a hydrogen atoms is (1.0 kg/kmol)/N,, and because there are N = 10® atoms/m?, we

have
Nmo N 61 3
70 _ (2 =10%(—) k
p= 5= (3= () kem

1 10°
2 2 —17
and P= %p'l}rms = § (m) (295) =5x%x10 Pa

Find the following ratios for hydrogen (M = 2.0 kg/kmol) and nitrogen (M = 28 kg/kmol) gases
at the same temperature: (a) (KE)y/(KE)y and (b) (rms speed)y/(rms speed)y.

(a) The average translational KE of a molecule, 3k T, depends only on temperature. Therefore the ratio is
unity.

(vrms)]-[ _ 3kl!?T/WlOH _ NN

()

3kgT /mon \ mon

M /
Urms MN =37
Urmﬂ MH

Certain ideal gas molecules behave like spheres of radius 3.0 x 107" m. Find the mean free path
of these molecules under S.T.P.

But my = M /N4, so

Method 1

We know that at S.T.P. 1.00 kmol of substance occupies 22.4 m®. The number of molecules per unit
volume, N/V, can be found from the fact that in 22.4 m? there are N, =6.02x 10?® molecules. The mean
free path is given by



CHAP. 17] KINETIC THEORY 183

17.12

17.13

17.14

17.15

17.16

17.17

17.18

17.19

1 1 ( 22.4m°
m.f.

= = =24x10"m
P 4TV20X(N/V)  4mv/2(3.0 x 10710 m)* \ 6.02 x 102"’)

Method 2
Because M = myN 4 = my(R/kp) and m = Nmy,

PV = (%)RT becomes PV = NkyT
N P 1.01 x 10° N/m?

N__ £ _ =2.68 x 10® m~?
V  kgT (138 x 1003 J/K)(273 K) X m

We then use the mean free path equation as in method 1.

and so

At what pressure will the mean free path be 50 cm for spherical molecules of radius
3.0 x 1071 m? Assume an ideal gas at 20 °C.

From the expression for the mean free path, we obtain
N 1
I 47\/20*(m.f.p.)
Combining this with the Ideal Gas Law in the form PV = NkgT (see Problem 17.11) gives
kgT (1.38 x 107 J/K)(293 K)

_ — = 5.1 mPa
4203 (m.f.p.)  4myv/2(3.0 x 10710 m)*(0.50 m)
Supplementary Problems
Find the mass of a neon atom. The atomic mass of neon is 20.2 kg/kmol. Ans. 336 x 1072 kg

A typical polymer molecule in polyethylene might have a molecular mass of 15 x 10°. (¢) What is the mass in
kilograms of such a molecule? (b)) How many such molecules would make up 2 g of polymer?
Ans. (a) 2.5 x 1072 kg; (b) 8 x 10"

A certain strain of tobacco mosaic virus has M = 4.0 x 107 kg/kmol. How many molecules of the virus are
present in 1.0 mL of a solution that contains 0.10 mg of virus per mL? Ans. 1.5 x 10"

An electronic vacuum tube was sealed off during manufacture at a pressure of 1.2 x 10~/ mmHg at 27 °C. Its
volume is 100 cm’. (¢) What is the pressure in the tube (in Pa)? (b)) How many gas molecules remain in the
tube?  Ans. (a) 1.6 x 107> Pa; (b) 3.8 x 10!

The pressure of helium gas in a tube is 0.200 mmHg. If the temperature of the gas is 20 °C, what is the
density of the gas? (Use My, = 4.0 kg/kmol.) Ans. 4.4 x 107 kg/m’

At what temperature will the molecules of an ideal gas have twice the rms speed they have at
20°C? Ans. 1170 K ~ 900 °C

An object must have a speed of at least 11.2 km/s to escape from the Earth’s gravitational field. At what
temperature will v, for H, molecules equal the escape speed? Repeat for N, molecules. (My, = 2.0 kg/
kmol and My, = 28 kg/kmol.) Ans. 1.0 x 10* K; 1.4 x 10° K



184

17.20

17.21

17.22

17.23

KINETIC THEORY [CHAP. 17

In a certain region of outer space there are an average of only five molecules per cm®. The temperature there
is about 3 K. What is the average pressure of this very dilute gas? Ans. 2x 107! Pa

A cube of aluminum has a volume of 1.0 cm® and a mass of 2.7 g. (@) How many aluminum atoms are there
in the cube? (b) How large a volume is associated with each atom? (¢) If each atom were a cube, what would
be its edge length? M = 108 kg/kmol for aluminum. Ans. (a) 1.5x10%; (b) 6.6 x 1072 m>; (¢)
4.0x 10" m

The rms speed of nitrogen molecules in the air at S.T.P. is about 490 m/s. Find their mean free path and the
average time between collisions. The radius of a nitrogen molecule can be taken to be
20107 m. Ans. 52x 10 m, 1.1 x107'0s

What is the mean free path of a gas molecule (radius 2.5 x 107'° m) in an ideal gas at 500°C when the
pressure is 7.0 x 10" mmHg? Ans. 10 m



Chapter 18

Heat Quantities

THERMAL ENERGY is the random kinetic energy of the particles (usually electrons, ions,
atoms, and molecules) composing a system.

HEAT is thermal energy in transit from a system (or aggregate of electrons, ions, and atoms) at
one temperature to a system that is in contact with it, but is at a lower temperature. Its SI unit
is the joule. Other units used for heat are the calorie (1 cal =4.184 J) and the British thermal
unit (1 Btu = 1054 J). The “Calorie” used by nutritionists is called the “large calorie” and is actu-
ally a kilocalorie (1 Cal = 1 kcal = 10? cal).

THE SPECIFIC HEAT (or specific heat capacity, ¢) of a substance is the quantity of heat re-
quired to change the temperature of unit mass of the substance by one degree.

If a quantity of heat AQ is required to produce a temperature change A7 in a mass m of substance,
then the specific heat is

c= A0
- mAT
In the SI, ¢ has the unit J/kg- K, which is equivalent to J/kg-°C. Also widely used is the unit cal/g-°C,
where 1 cal/g-°C = 4184 J/kg-°C.

Each substance has a characteristic value of specific heat, which varies slightly with temperature. For
water, ¢ = 4180 J/kg-°C = 1.00 cal/g-°C.

or AQ =cm AT

THE HEAT GAINED (OR LOST) by a body (whose phase does not change) as it undergoes a
temperature change AT, is given by

AQ =mc AT

THE HEAT OF FUSION (L;) of a crystalline solid is the quantity of heat required to melt a
unit mass of the solid at constant temperature. It is also equal to the quantity of heat given off
by a unit mass of the molten solid as it crystallizes at this same temperature. The heat of fusion
of water at 0°C is about 335 kJ/kg or 80 cal/g.

THE HEAT OF VAPORIZATION (L,) of a liquid is the quantity of heat required to vaporize a
unit mass of the liquid at constant temperature. For water at 100°C, L, is about 2.26 MJ/kg or
540 cal/g.

THE HEAT OF SUBLIMATION of a solid substance is the quantity of heat required to convert
a unit mass of the substance from the solid to the gaseous state at constant temperature.

CALORIMETRY PROBLEMS involve the sharing of thermal energy among initially hot objects
and cold objects. Since energy must be conserved, one can write the following equation:
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Sum of heat changes for all objects = 0

Here the heat flowing out of the high temperature system (AQ,, < 0) numerically equals the heat
flowing into the low temperature system (AQ;, > 0) and so the sum is zero. This, of course, assumes
that no thermal energy is otherwise lost from the system.

ABSOLUTE HUMIDITY is the mass of water vapor present per unit volume of gas (usually the
atmosphere). Typical units are kg/m? and g/cm?.

RELATIVE HUMIDITY (R.H.) is the ratio obtained by dividing the mass of water vapor per
unit volume present in the air by the mass of water vapor per unit volume present in saturated
air at the same temperature. When it is expressed in percent, the ratio is multiplied by 100.

DEW POINT: Cooler air at saturation contains less water than warmer air does at saturation.
When air is cooled, it eventually reaches a temperature at which it is saturated. This temperature
is called the dew point. At temperatures lower than this, water condenses out of the air.

Solved Problems

18.1 (a¢) How much heat is required to raise the temperature of 250 mL of water from 20.0°C to
35.0°C? (b)) How much heat is lost by the water as it cools back down to 20.0 °C?

Since 250 mL of water has a mass of 250 g, and since ¢ = 1.00 cal/g-°C for water, we have

(a) AQ = me AT = (250 g)(1.00 cal/g-°C)(15.0°C) = 3.75 x 10° cal = 15.7 kJ

(b) AQ = me AT = (250 g)(1.00 cal/g-°C)(—15.0°C) = —3.75 x 10° cal = —15.7 kJ

18.2 How much heat does 25 g of aluminum give off as it cools from 100 °C to 20 °C? For aluminum,
¢ =880 J/kg-°C.

AQ = me AT = (0.025 kg)(880 J/kg-"C)(—80°C) = —1.8 kJ = —0.42 keal

18.3 A certain amount of heat is added to a mass of aluminum (¢ = 0.21 cal/g-°C), and its tempera-
ture is raised 57 °C. Suppose that the same amount of heat is added to the same mass of copper
(¢ =0.093 cal/g-°C). How much does the temperature of the copper rise?
Because AQ is the same for both, we have
MCA | ATA] = MCcy ATCu

) 21
or ATe, = (%) (AT, = (%) (57°C) = 1.3 x 10°C

18.4 Two identical metal plates (mass = m, specific heat = ¢) have different temperatures; one is at
20°C, and the other is at 90 °C. They are placed in good thermal contact. What is their final
temperature?
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18.6

18.7

Because the plates are identical, we would guess the final temperature to be midway between 20 °C and
90 °C, namely 55°C. This is correct, but let us show it mathematically. From the law of conservation of
energy, the heat lost by one plate must equal the heat gained by the other. Thus the total heat change of the
system is zero. In equation form,
(heat change of hot plate) + (heat change of cold plate) =0
mC(AT)hot + mc(AT)cold =0
Be careful about AT It is the final temperature (which we denote by T in this case) minus the initial
temperature. The above equation thus becomes
me(Ty —90°C) + me(Ty —20°C) =0

After canceling mc from each term, we solve and find Ty = 55°C, the expected answer.

A thermos bottle contains 250 g of coffee at 90 °C. To this is added 20 g of milk at 5°C. After
equilibrium is established, what is the temperature of the liquid? Assume no heat loss to the
thermos bottle.

Water, coffee, and milk all have the same value of ¢, 1.00 cal/g-°C. The law of energy conservation
allows us to write
(heat change of coffee) + (heat change of milk) =0
(em AT) opee + (cm AT) iy =0
If the final temperature of the liquid is 7, then
ATeopree = Ty —90°C ATy =Ty —5°C
Substituting and canceling ¢ give
(250 g)(T; —90°C) + (20 g)(T; — 5°C) =0
Solving gives T, = 84°C.

A thermos bottle contains 150 g of water at 4 °C. Into this is placed 90 g of metal at 100 °C. After
equilibrium is established, the temperature of the water and metal is 21 °C. What is the specific
heat of the metal? Assume no heat loss to the thermos bottle.

(heat change of metal) 4 (heat change of water) = 0
(CWI AT)melal + ((,‘Wl AT)water =0
e (90 £)(—=79°C) + (1.00 cal/g-°C)(150 g)(17°C) = 0
Solving gives ¢pea = 0.36 cal/g-°C. Notice that AT = 21 — 90 = —79°C.

A 200-g copper calorimeter can contains 150 g of oil at 20°C. To the oil is added 80 g of
aluminum at 300 °C. What will be the temperature of the system after equilibrium is established?
ccy = 0.093 cal/g-°C, cp; = 0.21 cal/g-°C, ¢y = 0.37 cal/g-°C.

(heat change of aluminum) + (heat change of can and oil) = 0

(cmAT)py + (em AT )y + (em AT); =0
With given values substituted, this becomes

cal R cal R
(0.21 g—OC) (80 g)(T;y —300°C) + (0.093g_0c) (200 g)(T; —20°C)
cal
+ (O.37g_—oc) (150 g)(T; —20°C) =0

Solving gives Ty as 72°C.
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18.8 Exactly 3.0 g of carbon was burned to CO, in a copper calorimeter. The mass of the calorimeter
is 1500 g, and there is 2000 g of water in the calorimeter. The initial temperature was 20 °C,
and the final temperature is 31°C. Calculate the heat given off per gram of carbon.
cca = 0.093 cal/g-°C. Neglect the small heat capacity of the carbon and carbon dioxide.

The law of energy conservation tells us that
(heat change of carbon) + (heat change of calorimeter) + (heat change of water) =0
(heat change of carbon) + (0.093 cal/g-°C)(1500 g)(11°C) + (1 cal/g-°C)(2000 g)(11°C) =0
(heat change of carbon) = —23 500 cal
Therefore, the heat given off by one gram of carbon as it burns is

23500 cal

30 2 = 7.8 kcal/g

18.9  Determine the temperature 7y that results when 150 g of ice at 0 °C is mixed with 300 g of water
at 50°C.
From energy conservation,

(heat change of ice) + (heat change of water) =0

(heat to melt ice) + (heat to warm ice water) + (heat change of water) =0

(mLf)ice + (Cm AT)ice water + (Cm AT)water =0

(150 g)(80 cal/g) + (1.00 cal/g-°C)(150 g)(T; — 0°C) + (1.00 cal/g-°C)(300 g)(T; — 50°C) =0

from which T, = 6.7°C.

18.10 How much heat is given up when 20 g of steam at 100 °C is condensed and cooled to 20 °C?

Heat change = (condensation heat change) + (heat change of water during cooling)
=mL,+ cm AT
= (20 g)(—540 cal/g) + (1.00 cal/g-°C)(20 g)(20°C — 100 °C)
= —12 400 cal = —12 kcal

18.11 A 20-g piece of aluminum (¢ = 0.21 cal/g-°C) at 90 °C is dropped into a cavity in a large block of
ice at 0 °C. How much ice does the aluminum melt?

(heat change of Al as it cools to 0°C) + (heat change of mass m of ice melted) = 0
(me AT) 5y + (Lym)ie, = 0
(20 £)(0.21 cal/g-°C)(0°C — 90°C) + (80 cal/g)m =0

from which m = 4.7 g is the quantity of ice melted.

18.12 In a calorimeter can (which behaves thermally as if it were equivalent to 40 g of water) are 200 g
of water and 50 g of ice, all at exactly 0 °C. Into this is poured 30 g of water at 90 °C. What will be
the final condition of the system?

Let us start by assuming (perhaps incorrectly) that the final temperature is 7, > 0 °C. Then
heat change of " heat to " heat to warm n heat to warm |
hot water melt ice 250 g of water calorimeter -

(30 2)(1.00 cal/g-°C)(T; — 90°C) + (50 g)(80 cal/g) + (250 g)(1 cal/g-°C)(T, — 0°C)

+(40 g)(1.00 cal/g-°C)(T; — 0°C) =0
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Solving gives T, = —4.1 °C, contrary to our assumption that the final temperature is above 0 °C. Apparently,
not all the ice melts. Therefore, T, = 0°C.
To find how much ice melts, we write

Heat lost by hot water = heat gained by melting ice
(30 g)(1.00 cal/g-°C)(90°C) = (80 cal/g)m

where m is the mass of ice that melts. Solving gives m = 34 g. The final system has 50 g — 34 g = 16 g of ice
not melted.

An electric heater that produces 900 W of power is used to vaporize water. How much water at
100°C can be changed to steam in 3.00 min by the heater? (For water at 100°C,
L, =226 x 10° J/kg.)
The heater produces 900 J of heat energy per second. So the heat produced in 3.00 min is
AQ = (900 J/s)(180 s) = 162 kJ
The heat required to vaporize a mass m of water is
AQ = mL, = m(2.26 x 10° J/kg)

Equating these two expressions for AQ and solving for m gives m = 0.0717 kg = 71.7 g as the mass of water
vaporized.

A 3.00-g bullet (¢ = 0.0305 cal/g-°C = 128 J/kg-°C) moving at 180 m/s enters a bag of sand and
stops. By what amount does the temperature of the bullet change if all its KE becomes thermal
energy that is added to the bullet?

The bullet loses KE in the amount
KE = 1mv® =1(3.00 x 107 kg) (180 m/s)” = 48.6 J

This results in the addition of AQ = 48.6 J of thermal energy to the bullet. Then, since AQ = mc AT, we can

find AT for the bullet:
AQ 48.6 J
AT =% — =127°C
me  (3.00 x 1073 kg)(128 J/kg-°C)

Notice that we had to use ¢ in J/kg-°C, and not in cal/g-°C.

Suppose a 60-kg person consumes 2500 Cal of food in one day. If the entire heat equivalent of
this food were retained by the person’s body, how large a temperature change would it cause?
(For the body, ¢ = 0.83 cal/g-°C.) Remember that 1 Cal = 1 kcal = 1000 cal.
The equivalent amount of heat added to the body in one day is
AQ = (2500 Cal)(1000 cal/Cal) = 2.5 x 10° cal
Then, by use of AQ = mc AT,
AQ 2.5 % 10° cal

AT =—== =50°C
me (60 x 10 g)(0.83 cal/g-°C)

A thermometer in a 10 m x 8.0 m x 4.0 m room reads 22 °C and a humidistat reads the R.H. to
be 35 percent. What mass of water vapor is in the room? Saturated air at 22°C contains
19.33 g H,O/m".
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3
mass of water/m

%R.H. = x 100

mass of water/m® of saturated air
_ mass/m’
70.019 33 kg/m?

from which mass/m> = 6.77 x 107> kg/m>. But the room in question has a volume of 10m x 8.0m
x 4.0 m = 320 m>. Therefore, the total mass of water in it is

(320 m*)(6.77 x 10 kg/m’) = 2.2 kg

35 x 100

On a certain day when the temperature is 28 °C, moisture forms on the outside of a glass of cold
drink if the glass is at a temperature of 16 °C or lower. What is the R.H. on that day? Saturated
air at 28 °C contains 26.93 g/m’ of water, while, at 16°C, it contains 13.50 g/m".

Dew forms at a temperature of 16 °C or lower, so the dew point is 16 °C. The air is saturated at that
temperature and therefore contains 13.50 g/m>. Then

mass present/m> ~13.50

RH. =

= = =0.50 = 50%
mass/m’ in saturated air  26.93 ¢

Outside air at 5°C and 20 percent relative humidity is introduced into a heating and air con-
ditioning plant where it is heated to 20 °C and its relative humidity is increased to a comfortable
50 percent. How many grams of water must be evaporated into a cubic meter of outside air
to accom3plish this? Saturated air at 5°C contains 6.8 g/m’ of water, and at 20°C it contains
17.3 g/m”.

Mass/m> of water vapor in air at 5°C = 0.20 x 6.8 g/m3 =1.36 g/m3
Comfortable mass/m® at 20°C = 0.50 x 17.3 g/m’ = 8.65 g/m’
1 m? of air at 5°C expands to (293/278) m® = 1.054 m® at 20°C
Mass of water vapor in 1.054 m® at 20°C = 1.054 m® x 8.65 g/m3 =912¢g
Mass of water to be added to each m® of air at 5°C = (9.12 — 1.36) g =7.8 g

Supplementary Problems

How many calories are required to heat each of the following from 15 °C to 65°C? (a) 3.0 g of aluminum, (b)
5.0 g of pyrex glass, (¢) 20 g of platinum. The specific heats, in cal/g - °C, for aluminum, pyrex, and platinum
are 0.21, 0.20, and 0.032, respectively. Ans.  (a) 32 cal; (b) 50 cal; (c) 32 cal

When 5.0 g of a certain type of coal is burned, it raises the temperature of 1000 mL of water from 10 °C to
47°C. Calculate the thermal energy produced per gram of coal. Neglect the small heat capacity of the
coal. Ans. 7.4 kcal/g

Furnace oil has a heat of combustion of 44 MJ/kg. Assuming that 70 percent of the heat is useful, how many
kilograms of oil are required to raise the temperature of 2000 kg of water from 20°C to
99°C? Ans. 22 kg

What will be the final temperature if 50 g of water at exactly 0°C is added to 250 g of water at
90°C? Ans. 75°C
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A 50-g piece of metal at 95 °C is dropped into 250 g of water at 17.0 °C and warms it to 19.4 °C. What is the
specific heat of the metal? Ans.  0.16 cal/g-°C

How long does it take a 2.50-W heater to boil away 400 g of liquid helium at its boiling point (4.2 K)? For
helium, L, = 5.0 cal/g. Ans. 56 min

A 55-g copper calorimeter (¢ = 0.093 cal/g-°C) contains 250 g of water at 18.0 °C. When 75 g of an alloy at
100°C is dropped into the calorimeter, the resulting temperature is 20.4 °C. What is the specific heat of the
alloy? Ans. 0.10 cal/g-°C

Determine the temperature that results when 1.0 kg of ice at exactly 0°C is mixed with 9.0 kg of water at
50°C. Ans 37°C

How much heat is required to change 10 g of ice at exactly 0 °C to steam at 100 °C? Ans. 7.2 kcal

Ten kilograms of steam at 100°C is condensed in 500 kg of water at 40.0°C. What is the resulting
temperature? Ans. 51.8°C

The heat of combustion of ethane gas is 373 kcal/mole. Assuming that 60.0 percent of the heat is useful, how
many liters of ethane, measured at standard temperature and pressure, must be burned to convert 50.0 kg of
water at 10.0°C to steam at 100.0°C? One mole of a gas occupies 22.4 liters at precisely 0°C and
latm.  Ans. 3.15x 107 liters

Calculate the heat of fusion of ice from the following data for ice at 0 °C added to water:

Mass of calorimeter 60 g
Mass of calorimeter plus water 460 g
Mass of calorimeter plus water and ice 618 g
Initial temperature of water 38.0°C
Final temperature of mixture 5.0°C
Specific heat of calorimeter 0.10 cal/g-°C

Ans. 80 cal/g

Determine the result when 100 g of steam at 100 °C is passed into 200 g of water and 20 g of ice at exactly
0°C in a calorimeter which behaves thermally as if it were equivalent to 30 g of water. Ans. 49 g of
steam condensed, final temperature 100 °C

Determine the result when 10 g of steam at 100 °C is passed into 400 g of water and 100 g of ice at exactly
0°C in a calorimeter which behaves thermally as if it were equivalent to 50 g of water. Ans. 80 gofice
melted, final temperature 0 °C

Suppose a person who eats 2500 Cal of food each day loses the heat equivalent of the food through
evaporation of water from the body. How much water must evaporate each day? At body temperature,
L, for water is about 600 cal/g. Ans. 4.17 kg

How long will it take a 500-W heater to raise the temperature of 400 g of water from 15.0°C to
98.0°C. Ans. 278 s

A 0.250-hp drill causes a dull 50.0-g steel bit to heat up rather than to deepen a hole in a block of hard wood.
Assuming that 75.0 percent of the friction-loss energy causes heating of the bit, by what amount will its
temperature change in 20.0 s? For steel, ¢ = 450 J/kg-°C. Ans. 124°C

On a certain day the temperature is 20 °C and the dew point is 5.0 °C. What is the relative humidity?
Saturated air at 20 °C and 5.0 °C contains 17.12 and 6.80 g/m3 of water, respectively. Ans.  40%
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How much water vapor exists in a 105-m® room on a day when the relative humidity in the room is 32
percent and the room temperature is 20°C? Saturated air at 20°C contains 17.12 g/m> of water.
Ans. 0.58 kg

Air at 30 °C and 90 percent relative humidity is drawn into an air conditioning unit and cooled to 20 °C. The
relative humidity is simultaneously reduced to 50 percent. How many grams of water are removed from a
cubic meter of air at 30 °C by the air conditioner? Saturated air contains 30.4 g/m3 and 17.1 g/m3 of water at
30°C and 20 °C, respectively. Ans. 19 g



Chapter 19

Transfer of Heat Energy

ENERGY CAN BE TRANSFERRED by conduction, convection, and radiation. Remember that
heat is the energy transferred from a system at a higher temperature to a system at a lower tem-
perature (with which it is in contact) via the collisions of their constituent particles.

CONDUCTION occurs when thermal energy moves through a material as a result of collisions
between the free electrons, ions, atoms, and molecules of the material. The hotter a substance,
the higher the average KE of its atoms. When a temperature difference exists between materials
in contact, the higher-energy atoms in the warmer substance transfer energy to the lower-energy
atoms in the cooler substance when atomic collisions occur between the two. Heat thus flows
from hot to cold.

Consider the slab of material shown in Fig. 19-1. Its thickness is L, and its cross-sectional area is 4.
The temperatures of its two faces are 7| and T,, so the temperature difference across the slab is
AT =T, — T,. The quantity AT/L is called the temperature gradient. 1t is the rate-of-change of tem-
perature with distance.

T, T,
pe
Fig. 19-1

The quantity of heat AQ transmitted from face 1 to face 2 in time At is given by

AQ AT
2¥ g2
At e L

where k1 depends on the material of the slab and is called the thermal conductivity of the material. In the
SI, k7 has the unit W/m-K, and AQ/At¢is in J/s (i.e., W). Other units sometimes used to express ky are
related to W/m - K as follows:

I cal/s-cm-°C = 418.4 W/m-K and 1 Btu-in./h-ftz-oF:0.144 W/m-K

THE THERMAL RESISTANCE (or R value) of a slab is defined by the heat-flow equation in
the form

PR — h _
p = wnere R_kT
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Its SI unit is m*-K /W. Its customary unit is ft*-h - °F/Btu, where 1 ft>-h-°F/Btu = 0.176 m*-K/W. (It is
unlikely that you will have occasion to confuse this symbol R with the symbol for the universal gas
constant.)

For several slabs of the same surface area in series, the combined R value is

where Ry,..., are the R values of the individual slabs.

CONVECTION of thermal energy occurs in a fluid when warm material flows so as to displace
cooler material. Typical examples are the flow of warm air from a register in a heating system
and the flow of warm water in the Gulf Stream.

RADIATION is the mode of transport of radiant electromagnetic energy through vacuum and the
empty space between atoms. Radiant energy is distinct from heat, though both correspond to en-
ergy in transit. Heat is heat; electromagnetic radiation is electromagnetic radiation — don’t confuse
the two.

A blackbody is a body that absorbs all the radiant energy falling on it. At thermal equilibrium, a
body emits as much energy as it absorbs. Hence, a good absorber of radiation is also a good emitter of
radiation.

Suppose a surface of area 4 has absolute temperature 7" and radiates only a fraction € as much
energy as would a blackbody surface. Then € is called the emissivity of the surface, and the energy per
second (i.e., the power) radiated by the surface is given by the Stefan—Boltzmann Law:

P=cAdoT*

where o = 5.67 x 107° W/m2~K4 is the Stefan—Boltzmann constant, and T is the absolute temperature.
The emissivity of a blackbody is unity.

All objects whose temperature is above absolute zero radiate energy. When an object at absolute
temperature 7 is in an environment where the temperature is 7,, the net energy radiated per second by
the object is

P =edo(T* - T))

Solved Problems

19.1 An iron plate 2 cm thick has a cross-sectional area of 5000 cm?. One face is at 150 °C, and the
other is at 140°C. How much heat passes through the plate each second? For iron,

10°C
0.02 m

a0 _ kTAE = (80 W/m-K)(0.50 mz)(

N . ) =20 kJ/s

19.2 A metal plate 4.00 mm thick has a temperature difference of 32.0 °C between its faces. It transmits
200 kcal/h through an area of 5.00 cm”. Calculate the thermal conductivity of this metal in
W/m-K.
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P\ L ~(2.00 x 10° cal)(4.184 J/cal) 4.00 x 107° m
"7 At AT, =T,) (1.00 h)(3600 s/h) (5.00 x 107* m?)(32.0 K)
= 58.5 W/m-K

19.3 Two metal plates are soldered together as shown in Fig. 19-2. It is known that A4 = 80 cm?,
Ly =L,=30mm, 7} =100°C, T, = 0°C. For the plate on the left, k7; = 48.1 W/m - K; for
the plate on the right k7, = 68.2 W/m-K. Find the heat flow rate through the plates and the
temperature 7' of the soldered junction.

We assume equilibrium conditions so that the heat flowing through plate 1 equals that through plate 2.
Then
T,—-T T-T,

kA
T1 L

= krzA

But L, = L,, so this becomes
le(IOOOC - T) = krz(T - OOC)

48.1

: _ o kT] _ o _ o
from which T = (100°C) (k” +kT2) = (100°C) (48.1 +68.2) =414°C

The heat flow rate is then

AQ T, —T
L

100 — 41.4)K
A A : :

w 2

19.4 A beverage cooler is in the shape of a cube, 42 cm on each inside edge. Its 3.0-cm thick walls are
made of plastic (k; = 0.050 W/m-K). When the outside temperature is 20 °C, how much ice will
melt inside the cooler each hour?

The cubical box has six sides, each with an area of about (0.42 m)2. Then, from AQ/At =krAAT/L,
we have, with the ice inside at 0°C
AQ

<ZT:(OMOW%nkX0@Hﬂ%®(

20°C
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In one hour, AQ = (60)2(8.43) = 30350 cal. To melt 1.0 g of ice requires 80 cal, so the mass of ice melted in
one hour is

30350 cal

=50 caljg ~ 3 ke

A copper tube (length, 3.0 m; inner diameter, 1.500 cm; outer diameter, 1.700 cm) passes through
a vat of rapidly circulating water maintained at 20 °C. Live steam at 100 °C passes through the
tube. (¢) What is the heat flow rate from the steam into the vat? (b) How much steam is condensed
each minute? For copper, k7 = 1.0 cal/s-cm-°C.

Because the thickness of the tube is much smaller than its radius, the inner surface area of the tube,
27r;L = 2(0.750 cm)(300 cm) = 1410 cm?
nearly equals its outer surface area,
2mr, L = 27(0.850 ¢cm)(300 cm) = 1600 cm?
As an approximation, we can consider the tube to be a plate of thickness 0.100 cm and area given by

A =1(1410 cm® + 1600 cm?) = 1500 cm”

AQ AT cal '\ (1500 cm?)(80°C)
(@) At kTAT N ( ' s~cm~“C) (0.100 cm)

(b) In one minute, the heat conducted from the tube is

= 1.2 x 10° cals/s

AQ = (1.2 x 10° cal/s)(60 s) = 72 x 10° cal
It takes 540 cal to condense 1.0 g of steam at 100 °C. Therefore

72 x 10° cal

_ 4 5 2
540 cal/g =133x 10" g=1.3 x 10" kg

Steam condensed per min =

In practice, various factors would greatly reduce this theoretical value.

() Calculate the R value for a wall consisting of the following layers: concrete block (R = 1.93),
1.0 inch of insulating board (R = 4.3), and 0.50 inch of drywall (R = 0.45), all in U.S. Customary
Units. (b) If the wall has an area of 15 m?, find the heat flow per hour through it when the
temperature just outside is 20 °C lower than inside.

(a) R=R +Ry+ - -+Ry=193+43+045=6.7

in U.S. Customary Units. Using the fact that 1 U.S. Customary Unit of R = 0.176 m2~K/W, we get
R=1.18 m*- K/W.

_AAT
R

2 o
(Ar) = I3mICOC) 300 — 0,915 MI = 2.2 x 10 keal

(®) AQ - L18 m>-K/W

A spherical body of 2.0 cm diameter is maintained at 600 °C. Assuming that it radiates as if it
were a blackbody, at what rate (in watts) is energy radiated from the sphere?

A = surface area = 4mr> = 47(0.01 m)* = 1.26 x 10> m?

P=AoT* = (1.26 x 107° m?)(5.67 x 10°° W/m?.K*)(873 K)* =41 W
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19.11

19.12

19.13

19.14

19.15

19.16

An unclothed person whose body has a surface area of 1.40 m? with an emissivity of 0.85 has a
skin temperature of 37 °C and stands in a 20 °C room. How much energy does the person lose per
minute?

From P = 6A0'(T4 — T?), we have the energy loss
eAo(T* — THAr = (0.85)(1.40 m?)(0)(T* — T (60 s)

Using o = 5.67 x 1078 W/m?-K*, T =273 + 37 =310 K, and T, = 273 + 20 = 293 K gives an energy loss
of

7.6 kJ = 1.8 kcal

Supplementary Problems

What temperature gradient must exist in an aluminum rod for it to transmit 8.0 cal per second per cm? of
cross section down the rod? ky for aluminum is 210 W/K -m. Ans. 16°C/cm

A single-thickness glass window on a house actually has layers of stagnant air on its two surfaces. But if it
did not, how much heat would flow out of an 80 cm x 40 cm x 3.0 mm window each hour on a day when
the outside temperature was precisely 0°C and the inside temperature was 18°C? For glass, ks is
0.84 W/K-m.  Ans. 1.4 x 10® keal/h

How many grams of water at 100 °C can be evaporated per hour per cm? by the heat transmitted through a
steel plate 0.20 cm thick, if the temperature difference between the plate faces is 100 °C? For steel, kr is
42 W/K-m.  Ans. 0.33 kg/h-cm?

A certain double-pane window consists of two glass sheets, each 80 cm x 80 cm x 0.30 cm, separated by a
0.30-cm stagnant air space. The indoor surface temperature is 20 °C, while the outdoor surface temperature
is exactly 0°C. How much heat passes through the window each second? kr = 0.84 W/K-m for glass and
about 0.080 W/K -m for air. Ans. 69 cal/s

A small hole in a furnace acts like a blackbody. Its area is 1.00 cm?, and its temperature is the same as that of
the interior of the furnace, 1727°C. How many calories are radiated out of the hole each second?
Ans. 21.7 cal/s

An incandescent lamp filament has area 50 mm? and operates at a temperature of 2127 °C. Assume that all
the energy furnished to the bulb is radiated from it. If the filament’s emissivity is 0.83, how much power must
be furnished to the bulb when it is operating? Ans. T8 W

A sphere of 3.0 cm radius acts like a blackbody. It is in equilibrium with its surroundings and absorbs 30 kW
of power radiated to it from the surroundings. What is the temperature of the sphere? Ans. 2.6 x10° K

A 2.0 cm thick brass plate (k7 = 105 W/K -m) is sealed to a glass sheet (k7 = 0.80 W/K-m), and both have
the same area. The exposed face of the brass plate is at 80 °C, while the exposed face of the glass is at 20 °C.
How thick is the glass if the glass—brass interface is at 65°C? Ans.  0.46 mm



Chapter 20

First Law of Thermodynamics

HEAT (AQ) is the thermal energy that flows from one body or system to another, which is in
contact with it, because of their temperature difference. Heat always flows from hot to cold. For
two objects in contact to be in thermal equilibrium with each other (i.e., for no net heat transfer
from one to the other), their temperatures must be the same. If each of two objects is in thermal
equilibrium with a third body, then the two are in thermal equilibrium with each other. (This fact
is often referred to as the Zeroth Law of Thermodynamics.)

THE INTERNAL ENERGY (U) of a system is the total energy content of the system. It is the
sum of all forms of energy possessed by the atoms and molecules of the system.

THE WORK DONE BY A SYSTEM (AW) is positive if the system thereby loses energy to its
surroundings. When the surroundings do work on the system so as to give it energy, AW is a
negative quantity. In a small expansion AV, a fluid at constant pressure P does work given by

AW = PAV

THE FIRST LAW OF THERMODYNAMICS is a statement of the law of conservation of en-
ergy. It states that if an amount of heat AQ flows into a system, then this energy must appear
as increased internal energy AU for the system and/or work AW done by the system on its sur-
roundings. As an equation, the First Law is

AQ = AU + AW

AN ISOBARIC PROCESS is a process carried out at constant pressure.

AN ISOVOLUMIC PROCESS is a process carried out at constant volume. When a gas under-
goes such a process,

AW =PAV =0
and so the First Law of Thermodynamics becomes
AQ =AU

Any heat that flows into the system appears as increased internal energy of the system.

AN ISOTHERMAL PROCESS is a constant-temperature process. In the case of an ideal gas
where the constituent atoms or molecules do not interact when separated, AU =0 in an isother-
mal process. However, this is not true for many other systems. For example, AU # 0 as ice melts
to water at 0°C, even though the process is isothermal.

For an ideal gas, AU = 0 in an isothermal change and so the First Law becomes

AQ =AW (ideal gas)
198
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For an ideal gas changing isothermally from (P, V) to (P,, V,), where P1 V| = P, V>,
V. V.
AQ =AW =PV, In(=2) =2.30P,V, log( -2
Vi 4

Here, In and log are logarithms to the base e and base 10 respectively.

AN ADIABATIC PROCESS is one in which no heat is transferred to or from the system. For
such a process, AQ = 0. Hence, in an adiabatic process, the first law becomes

0=AU+AW

Any work done by the system is done at the expense of the internal energy. Any work done on the system
serves to increase the internal energy.
For an ideal gas changing from conditions (Py, V', T}) to (P,, V5, T5) in an adiabatic process,

PVIi=pPw] and TV '=11]"

where v = ¢,/c, is discussed below.

SPECIFIC HEATS OF GASES: When a gas is heated at constant volume, the heat supplied
goes to increase the internal energy of the gas molecules. But when a gas is heated at constant
pressure, the heat supplied not only increases the internal energy of the molecules but also does
mechanical work in expanding the gas against the opposing constant pressure. Hence the specific
heat of a gas at constant pressure c,, is greater than its specific heat at constant volume, c,. It
can be shown that for an ideal gas of molecular mass M,

R .
Vi (ideal gas)
where R is the universal gas constant. In the SI, R = 8314 J/kmol-K and M is in kg/kmol; then ¢, and ¢,
must be in J/kg-K = J/kg-°C. Some people use R = 1.98 cal/mol-°C and M in g/mol, in which case c,
and ¢, are in cal/g-°C.

SPECIFIC HEAT RATIO (y =c¢,/c,): As discussed above, this ratio is greater than unity for a
gas. The kinetic theory of gases indicates that for monatomic gases (such as He, Ne, Ar),
v = 1.67. For diatomic gases (such as O,, N»), v = 1.40 at ordinary temperatures.

WORK IS RELATED TO AREA in a P-V diagram. The work done by a fluid in an expansion
is equal to the area beneath the expansion curve on a P-V diagram.

In a cyclic process, the work output per cycle done by a fluid is equal to the area enclosed by the P-V
diagram representing the cycle.

THE EFFICIENCY OF A HEAT ENGINE is defined as

__ work output
~ heat input

The Carnot cycle is the most efficient cycle possible for a heat engine. An engine that operates in
accordance to this cycle between a hot reservoir (7)) and a cold reservoir (7,) has efficiency
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T,
effpax =1 — ?L
h

Kelvin temperatures must be used in this equation.

20.1

20.2

20.3

20.4

Solved Problems

In a certain process, 8.00 kcal of heat is furnished to the system while the system does 6.00 kJ of
work. By how much does the internal energy of the system change during the process?
We have
AQ = (8000 cal)(4.184 J/cal) =33.5k]  and AW =6.00 kJ
Therefore, from the First Law AQ = AU + AW,
AU =AQ — AW =33.5kJ] —6.00 k] =27.5kJ

The specific heat of water is 4184 J/kg- K. By how many joules does the internal energy of 50 g of
water change as it is heated from 21 °C to 37°C?

The heat added to heat the water is
AQ = cm AT = (4184 J/kg-K)(0.050 kg)(16°C) = 3.4 x 10° J

If we ignore the slight expansion of the water, no work was done on the surroundings and so AW = 0. Then,
the first law, AQ = AU + AW, tells us that

AU=AQ=34KkJ

How much does the internal energy of 5.0 g of ice at precisely 0 °C increase as it is changed to
water at 0 °C? Neglect the change in volume.
The heat needed to melt the ice is
AQ =mL; = (5.0 g)(80 cal/g) = 400 cal
No external work is done by the ice as it melts and so AW = 0. Therefore, the First Law, AQ = AU + AW,
tells us that
AU = AQ = (400 cal)(4.184 J/cal) = 1.7 kJ

A spring (k = 500 N/m) supports a 400-g mass which is immersed in 900 g of water. The specific
heat of the mass is 450 J/kg- K. The spring is now stretched 15 cm and, after thermal equilibrium
is reached, the mass is released so it vibrates up and down. By how much has the temperature of
the water changed when the vibration has stopped?

The energy stored in the spring is dissipated by the effects of friction and goes to heat the water and
mass. The energy stored in the stretched spring was
PE, = Lkx® = 1 (500 N/m)(0.15 m)* = 5.625 J
This energy appears as heat that flows into the water and the mass. Using AQ = cm AT, we have
5.625J = (4184 J/kg-K)(0.900 kg) AT + (450 J/kg-K)(0.40 kg) AT

5.62517

which gives AT = 3950 J/K

=0.0014 K
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Find AW and AU for a 6.0-cm cube of iron as it is heated from 20 °C to 300 °C at atmospheric
pressure. For iron, ¢ =0.11 cal/g-°C and the volume coefficient of thermal expansion is
3.6 x 107°°C~". The mass of the cube is 1700 g.

AQ = cm AT = (0.11 cal/g-°C)(1700 g)(280°C) = 52 kcal

The volume of the cube is ¥ = (6.0 cm)® = 216 ecm®. Using (AV)/V = BAT gives
AV =VBAT = (216 x 10°® m*)(3.6 x 107°°C")(280°C) = 2.18 x 10~ m’

Then, assuming atmospheric pressure to be 1.0 x 10° Pa, we have

AW =P AV = (1.0 x 10° N/m?)(2.18 x 10°* m*) =0.22 J

But the First Law tells us that
AU = AQ — AW = (52000 cal)(4.184 J/cal) —0.22
=218000J —0.22J~22x10°J

Notice how very small the work of expansion against the atmosphere is in comparison to AU and AQ. Often
AW can be neglected when dealing with liquids and solids.

A motor supplies 0.4 hp to stir 5 kg of water. Assuming that all the work goes into heating the
water by friction losses, how long will it take to increase the temperature of the water 6 °C?
The heat required to heat the water is
AQ = mc AT = (5000 g)(1 cal/g-°C)(6°C) = 30 kcal
This is actually supplied by friction work, so
Friction work done = AQ = (30 kcal)(4.184 J/cal) = 126 kJ
and this equals the work done by the motor. But
Work done by motor in time 7 = (power)(¢) = (0.4 hp x 746 W /hp)(¢)
Equating this to our previous value for the work done gives

1.26 x 10° J .
l—m—4203—7m1n

In each of the following situations, find the change in internal energy of the system. (a) A system
absorbs 500 cal of heat and at the same time does 400 J of work. (b) A system absorbs 300 cal
and at the same time 420 J of work is done on it. (¢) Twelve hundred calories is removed from a
gas held at constant volume. Give your answers in kilojoules.

(a) AU = AQ — AW = (500 cal)(4.184 J/cal) — 400 J = 1.69 kJ
(b) AU = AQ — AW = (300 cal)(4.184 J/cal) — (—420 J) = 1.68 kJ
() AU = AQ — AW = (—1200 cal)(4.184 J /cal) — 0 = —5.02 kJ

Notice that AQ is positive when heat is added to the system, and AW is positive when the system does
work. In the reverse cases, AQ and AW must be taken negative.

For each of the following adiabatic processes, find the change in internal energy. (a) A gas does
5 J of work while expanding adiabatically. (b) During an adiabatic compression, 80 J of work is
done on a gas.

During an adiabatic process, no heat is transferred to or from the system.
(a) AU=AQ—AW =0-5]=-51]
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(b) AU=AQ AW =0—(~80J) =+80 ]

The temperature of 5.00 kg of N, gas is raised from 10.0 °C to 130.0 °C. If this is done at constant
pressure, find the increase in internal energy AU and the external work AW done by the gas. For
N, gas, ¢, = 0.177 cal/g-°C and ¢, = 0.248 cal/g-°C.

If the gas had been heated at constant volume, then no work would have been done during the process.
In that case AW = 0, and the first law would tell us that (AQ), = AU. Because (AQ), = ¢,m AT, we would
have

AU = (AQ), = (0.177 cal/g-°C)(5000 g)(120 °C) = 106 kcal = 443 kJ
The temperature change is a manifestation of the internal energy change.

When the gas is heated by 120 °C at constant pressure, the same change in internal energy occurs. In
addition, however, work is done. The first law then becomes

(AQ), = AU + AW =443 kI + AW

But (AQ), = ¢,m AT = (0.248 cal /g-°C)(5000 g)(120 °C)
= 149 keal = 623 kJ
50 AW = (AQ), — AU = 623 kI — 443 kJ = 180 kJ

One kilogram of steam at 100 °C and 101 kPa occupies 1.68 m’. (@) What fraction of the observed
heat of vaporization of water is accounted for by the expansion of water into stream? (») Deter-
mine the increase in internal energy of 1.00 kg of water as it is vaporized at 100 °C.

(@) One kilogram of water expands from 1000 cm® to 1.68 m>, so AV = 1.68 — 0.001 ~ 1.68 m>. There-
fore, the expansion work done is

AW =P AV = (101 x 10° N/m?)(1.68 m®) = 169 kJ
The heat of vaporization of water is 540 cal/g, which is 2.26 MJ/kg. The required fraction is therefore

AW 169 kJ
= = =0.0748
mL,  (1.00 kg)(2260 kJ/kg)

(b) From the First Law, AU = AQ — AW, so

AU =226 x10°J—0.169 x 10° J = 2.07 MJ

For nitrogen gas, ¢, = 740 J/kg-K. Find its specific heat at constant pressure. (The molecular
mass of nitrogen gas is 28.0 kg/kmol.)

Method 1

R 7407J 8314 J/kmol-K
— i =1.04 kJ/kg-K
% CU+M kg~KjL 28.0 kg/kmol 04 ki/ke

Method 2
Since N, is a diatomic gas, and since c,/c, = 1.40 for such a gas,
¢, = 1.40c, = 1.40(740 J/kg-K) = 1.04 kJ /kg-K

How much work is done by an ideal gas in expanding isothermally from an initial volume of 3.00
liters at 20.0 atm to a final volume of 24.0 liters?
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For an isothermal expansion by an ideal gas,
V. V.
AW =PV, In (VT) =2.30P, V, log (7?)

= (2.30)(20.0 x 1.01 x 10° N/m?)(3.00 x 1073 m%log(%) =12.6 kJ

20.13 The P-V diagram in Fig. 20-1 applies to a gas undergoing a cyclic change in a piston—cylinder
arrangement. What is the work done by the gas in (a) portion 4B of the cycle? (b) Portion BC? (¢)
Portion CD? (d) Portion DA?

In expansion, the work done is equal to the area under the pertinent portion of the P—V curve. In
contraction, the work is numerically equal to the area but is negative.

P (Pa)
5 4 B
40X 10° f--mmmmmmmmoo oo >
N A v
s\ ___ <
2.0 % 10 b - '
0 | B \ \ F \
0 1.0 2.0 3.0 4.0 50 ¥V (ecmd)
Fig. 20-1
(a) Work = area ABFEA = [(4.0 — 1.5) x 107® m*](4.0 x 10° N/m*) = 1.0 J
(h) Work = area under BC =0

In portion BC, the volume does not change; therefore P AV = 0.

(¢) This is a contraction, AV is negative and so the work is negative:
W = —(area CDEFC) = —(2.5 x 107° m*)(2.0 x 10° N/m?) = —0.50 J

(d) W =0

20.14 For the thermodynamic cycle shown in Fig. 20-1, find (a) the net work output of the gas during
the cycle and (b) the net heat flow into the gas per cycle.

Method 1
(@) From Problem 20.13, the net work done is 1.0 J —0.50 J = 0.5 J.

Method 2
The net work done is equal to the area enclosed by the P-V diagram:

Work = area ABCDA = (2.0 x 10° N/m?)(2.5 x 107° m*) = 0.50 J
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(b) Suppose the cycle starts at point A. The gas returns to this point at the end of the cycle, so there is no
difference in the gas at its start and end points. For one complete cycle, AU is therefore zero. We have
then, if the first law is applied to a complete cycle,

AQ=AU+AW =0+0.50J =0.50 J =0.12 cal

What is the net work output per cycle for the thermodynamic cycle in Fig. 20-2?

P (10° Pa)

0 0.5 1.0 15
¥V (m®)

Fig. 20-2

We know that the net work output per cycle is the area enclosed by the P—V diagram. We estimate that
in area ABCA there are 22 squares, each of area

(0.5 10° N/m*)(0.1 m*) = 5 kJ
Therefore,
Area enclosed by cycle ~ (22)(5kJ) =1 x 10? kJ

The net work output per cycle is 1 x 10? kJ.

Twenty cubic centimeters of monatomic gas at 12 °C and 100 kPa is suddenly (and adiabatically)
compressed to 0.50 cm®. What are its new pressure and temperature?

For an adiabatic change involving an ideal gas, P,V | = P,V ] where v = 1.67 for a monatomic gas.

Hence,

py= P (Y (100 x 105 N/m? 20 1’67—474 10’ N/m? = 47 MP
2_172_(.>< /m)ﬁ =4.74 x /m” = a

To find the final temperature, we could use P, V,/T, = P,V,/T,. Instead, let us use

nwvit=nry!

A\ ! 20 \0:67
or T, =T, <7‘) = (285 K) (m) = (285 K)(11.8) =3.4 x 10° K
2 .
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As a check,
PV P,
T,
(1 x 10° N/m?)(20 em®)  (4.74 x 107 N/m?)(0.50 cm®)
285 K N 3370 K
7000 = 7000 v

20.17 Compute the maximum possible efficiency of a heat engine operating between the temperature
limits of 100 °C and 400 °C.

The most efficient engine is the Carnot engine, for which

. T, 33K

20.18 A steam engine operating between a boiler temperature of 220 °C and a condenser temperature of
35.0°C delivers 8.00 hp. If its efficiency is 30.0 percent of that for a Carnot engine operating
between these temperature limits, how many calories are absorbed each second by the boiler?
How many calories are exhausted to the condenser each second?

K
Actual efficiency = (0.30)(Carnot efficiency) = (0.300) (1 - ig;’%) =0.113

But the relation

- tput k
Efficiency — - WOTK
input heat
gives
1.00 cal/s

(8.00 hp)(746 W /hp) <m

k )
output work/s _ = 12.7 kcal/s

efficiency 0.113

To find the energy rejected to the condenser, we use the law of conservation of energy:

Input heat/s =

Input energy = (output work) + (rejected energy)
Thus, Rejected energy/s = (input energy/s) — (output work/s)
= (input energy/s)[1 — (efficiency)]
= (12.7 kecal/s)(1 — 0.113) = 11.3 kcal/s

20.19 Three kilomoles (6.00 kg) of hydrogen gas at S.T.P. expands isobarically to precisely twice its
volume. (¢) What is the final temperature of the gas? () What is the expansion work done by the
gas? (¢) By how much does the internal energy of the gas change? (d ) How much heat enters the
gas during the expansion? For H,, ¢, = 10.0 kJ /kg-K.

(a) F‘I'OTT’If)ll/l/T‘]:1')21/2/7—'2\)\/“1"1I,l:P27

T, =T, (%) = (273 K)(2.00) = 546 K
1
(b) Because 1 kmol at S.T.P. occupies 22.4 m’, we have V=672 m>. Then
AW =P AV = P(V, — V) = (1.01 x 10° N/m?)(67.2 m*) = 6.8 MJ
(¢) To raise the temperature of this ideal gas by 273 K at constant volume requires
AQ = c¢,m AT = (10.0 kJ/kg-K)(6.00 kg)(273 K) = 16.4 MJ
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This is also the internal energy that must be added to the 6.00 kg of H, to change its temperature from
273 K to 546 K. Therefore, AU = 16.4 MJ.

(d) Because the system obeys the First Law during the process,
AQ =AU+ AW =164 MJ 4+ 6.8 MJ =23.2 MJ

A cylinder of ideal gas is closed by an 8.00 kg movable piston (area = 60.0 sz) as shown in Fig.
20-3. Atmospheric pressure is 100 kPa. When the gas is heated from 30.0 °C to 100.0°C, the
piston rises 20.0 cm. The piston is then fastened in place, and the gas is cooled back to 30.0 °C.
Calling AQ; the heat added to the gas in the heating process, and AQ, the heat lost during
cooling, find the difference between AQ; and AQ,.

Piston

7
\&

Fig. 20-3

During the heating process, the internal energy changed by AU;, and work AW, was done. The gas
pressure was

.00)(9.81) N
P:%—f— 1.00 x 10° N/m* = 1.13 x 10° N/m?
60.0 x 10~# m

Therefore, AQy =AU+ AW, =AU, + PAV
= AU, + (1.13 x 10° N/m?)(0.200 x 60.0 x 10~* m*) = AU, + 136 J

During the cooling process, AW = 0 and so (since AQ, is heat lost)
—AQZ = AU2

But the ideal gas returns to its original temperature, and so its internal energy is the same as at the start.
Therefore AU, = —AU,, or AQ, = AU,. It follows that AQ; exceeds AQ, by 136 J = 32.5 cal.

Supplementary Problems

A 2.0 kg metal block (¢ =0.137 cal/g-°C) is heated from 15°C to 90 °C. By how much does its internal
energy change? Ans. 86 kJ

By how much does the internal energy of 50 g of oil (¢ = 0.32 cal/g-°C) change as the oil is cooled from
100°C to 25°C. Ans.  —1.2 keal



CHAP. 20] FIRST LAW OF THERMODYNAMICS 207

20.23

20.24

20.25

20.26

20.27

20.28

20.29

20.30

20.31

20.32

20.33

20.34

20.35

20.36

A 70-g metal block moving at 200 cm/s slides across a tabletop a distance of 83 cm before it comes to rest.
Assuming 75 percent of the thermal energy developed by friction goes into the block, how much does the
temperature of the block rise? For the metal, ¢ = 0.106 cal/g-°C. Ans. 3.4x1073°C

If a certain mass of water falls a distance of 854 m and all the energy is effective in heating the water, what
will be the temperature rise of the water? Ans.  2.00°C

How many joules of heat per hour are produced in a motor that is 75.0 percent efficient and requires
0.250 hp to run it? Ans. 168 kJ

A 100-g bullet (¢ = 0.030 cal/g-°C) is initially at 20 °C. It is fired straight upward with a speed of 420 m/s,
and on returning to the starting point strikes a cake of ice at exactly 0 °C. How much ice is melted? Neglect
air friction. Ans. 26 g

To determine the specific heat of an oil, an electrical heating coil is placed in a calorimeter with 380 g of the
oil at 10°C. The coil consumes energy (and gives off heat) at the rate of 84 W. After 3.0 min, the oil
temperature is 40 °C. If the water equivalent of the calorimeter and coil is 20 g, what is the specific heat
of the oil? Ans.  0.26 cal/g-°C

How much external work is done by an ideal gas in expanding from a volume of 3.0 liters to a volume of 30.0
liters against a constant pressure of 2.0 atm? Ans. 5.5k]

As 3.0 liters of ideal gas at 27 °C is heated, it expands at a constant pressure of 2.0 atm. How much work is
done by the gas as its temperature is changed from 27 °C to 227 °C? Ans. 0.40 kJ

An ideal gas expands adiabatically to three times its original volume. In doing so, the gas does 720 J of work.
(@) How much heat flows from the gas? (b)) What is the change in internal energy of the gas? (¢) Does its
temperature rise or fall? Ans. (a) none; (b) —720 J; (¢) it falls

An ideal gas expands at a constant pressure of 240 cmHg from 250 cm® to 780 cm?®. It it then allowed to cool
at constant volume to its original temperature. What is the net amount of heat that flows into the gas during
the entire process? Ans.  40.4 cal

As an ideal gas is compressed isothermally, the compressing agent does 36 J of work. How much heat flows
from the gas during the compression process? Ans. 8.6 cal

The specific heat of air at constant volume is 0.175 cal/g-°C. (¢) By how much does the internal energy of
5.0 g of air change as it is heated from 20°C to 400°C? (b) Suppose that 5.0 g of air is adiabatically
compressed so as to rise its temperature from 20 °C to 400 °C. How much work must be done on the air
to compress it? Ans. (a) 0.33 kcal; (b) 1.4 kJ or since work done on the system is negative, —1.4 kJ

Water is boiled at 100°C and 1.0 atm. Under these conditions, 1.0 g of water occupies 1.0 cm®, 1.0 g of
steam occupies 1670 cm’, and L, = 540 cal/g. Find (a) the external work done when 1.0 g of steam is formed
at 100 °C and (b) the increase in internal energy. Ans.  (a) 0.17 kJ; (b) 0.50 kcal

The temperature of 3.0 kg of krypton gas is raised from —20°C to 80°C. (a) If this is done at constant
volume, compute the heat added, the work done, and the change in internal energy. (b) Repeat if the
heating process is at constant pressure. For the monatomic gas Kr, ¢, =0.0357 cal/g-°C and
¢, = 0.0595 cal/g-°C. Ans.  (a) 11 kcal, 0, 45 kJ; (b) 18 keal, 30 kJ, 45 kJ

(a) Compute ¢, for the monatomic gas argon, given ¢, = 0.125 cal/g-°C and v = 1.67. (b) Compute ¢, for the
diatomic gas nitric oxide (NO), given ¢, = 0.166 cal/g-°C and v = 1.40. Ans.  (a) 0.0749 cal/g-°C; (b)
0.232 cal/g-°C
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Compute the work done in an isothermal compression of 30 liters of ideal gas at 1.0 atm to a volume of 3.0
liters. Ans. 7.0 kJ

Five mole of neon gas at 2.00 atm and 27.0 °C is adiabatically compressed to one-third its initial volume.
Find the final pressure, final temperature, and external work done on the gas. For neon, v =1.67,
¢, = 0.148 cal/g-°C, and M = 20.18 kg/kmol. Ans. 1.27 MPa, 626 K, 20.4 kJ

Determine the work done by the gas in portion AB of the thermodynamic cycle in Fig. 20-2. Repeat for
portion CA. Give answers to one significant figure. Ans. 0.4 MJ, —0.3 MJ

Find the net work output per cycle for the thermodynamic cycle in Fig. 20-4. Give your answer to two
significant figures. Ans. 2.1 k]

P (atm)
6

10 V (liters)

Fig. 20-4

Four grams of gas, confined to a cylinder, is carried through the cycle shown in Fig. 20-4. At A the
temperature of the gas is 400 °C. («) What is its temperature at B? (b) If, in the portion from 4 to B,
2.20 kcal flows into the gas, what is ¢, for the gas? Give your answers to two significant figures.
Ans. (a) 2.0 x 10° K; (b) 0.25 cal/g-°C

Figure 20-4 is the PV diagram for 25.0 g of an enclosed ideal gas. At A the gas temperature is 200 °C. The
value of ¢, for the gas is 0.150 cal/g-°C. (a) What is the temperature of the gas at B? (b) Find AU for the
portion of the cycle from A4 to B. (¢) Find AW for this same portion. (d) Find AQ for this same
portion. Ans. (a) 1.42 x 10° K; (b) 3.55 kcal = 14.9 kJ; (¢) 3.54 kJ; (d) 18.4 kJ



Chapter 21

Entropy and the Second Law

THE SECOND LAW OF THERMODYNAMICS can be stated in three equivalent ways:

(1) Heat flows spontancously from a hotter to a colder object, but not vice versa.
(2) No heat engine that cycles continuously can change all its heat-in to useful work-out.

(3) Ifasystem undergoes spontaneous change, it will change in such a way that its entropy will increase
or, at best, remain constant.

The Second Law tells us the manner in which a spontaneous change will occur, while the First Law
tells us whether or not the change is possible. The First Law deals with the conservation of energy; the
Second Law deals with the dispersal of energy.

ENTROPY (S) is a state variable for a system in equilibrium. By this is meant that S is always
the same for the system when it is in a given equilibrium state. Like P, V, and U, the entropy is
a characteristic of the system at equilibrium.

When heat AQ enters a system at an absolute temperature 7', the resulting change in entropy of the
system is

_A0

AS
T

provided the system changes in a reversible way. The SI unit for entropy is J/K.

A reversible change (or process) is one in which the values of P, V', T, and U are well-defined during
the change. If the process is reversed, then P, V', T, and U will take on their original values when the
system is returned to where it started. To be reversible, a process must usually be slow, and the system
must be close to equilibrium during the entire change.

Another, fully equivalent, definition of entropy can be given from a detailed molecular analysis of
the system. If a system can achieve a particular state (i.e., particular values of P, V', T, and U) in ()
(omega) different ways (different arrangements of the molecules, for example), then the entropy of the
state is

S=kylnQ

where In is the logarithm to base e, and kp is Boltzmann’s constant, 1.38 x 10~ J/K.

ENTROPY IS A MEASURE OF DISORDER: A state that can occur in only one way (one ar-
rangement of its molecules, for example) is a state of high order. But a state that can occur in
many ways is a more disordered state. One way to associate a number with disorder, is to take
the disorder of a state as being proportional to €2, the number of ways the state can occur. Be-
cause S = kpln(Q, entropy is a measure of disorder.

Spontaneous processes in systems that contain many molecules always occur in a direction from a

state that can exist _, [ state that can exist
in only a few ways in many ways

Hence, when left to themselves, systems retain their original state of order or else increase their disorder.
209
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THE MOST PROBABLE STATE of a system is the state with the largest entropy. It is also the
state with the most disorder and the state that can occur in the largest number of ways.

21.1

21.2

Solved Problems

Twenty gram of ice at precisely 0 °C melts to water with no change in temperature. By how much
does the entropy of the 20-g mass change in this process?

By slowly adding heat to the ice, we can melt it in a reversible way. The heat needed is

AQ =mL; = (20 g)(80 cal/g) = 1600 cal
AQ 1600 cal
50 AS =7 =K

Notice that melting increases the entropy (and disorder).

= 5.86 cal/K =25 J/K

As shown in Fig. 21-1, an ideal gas is confined to a cylinder by a piston. The piston is pushed
down slowly so that the gas temperature remains at 20.0 °C. During the compression, 730 J of
work is done on the gas. Find the entropy change of the gas.
The First Law tells us that
AQ = AU + AW
Because the process was isothermal, the internal energy of the ideal gas did not change. Therefore, AU = 0
and
AQ =AW =-7301J
(Because the gas was compressed, the gas did negative work, hence the minus sign.) Now we can write
AQ  —T73017
AS =—== =
T 293 K
Notice that the entropy change is negative. The disorder of the gas decreased as it was pushed into a smaller

volume.
F
A

B Piston —¢

—2.49 J/K

- : Gas

((
&

Fig. 21-1 Fig. 21-2

21.3 As shown in Fig. 21-2, a container is separated into two equal-volume compartments. The two

compartments contain equal masses of the same gas, 0.740 g in each, and ¢, for the gas is 745
J/kg-K. At the start, the hot gas is at 67.0 °C, while the cold gas is at 20.0 °C. No heat can leave or
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enter the compartments except slowly through the partition 4B. Find the entropy change of each
compartment as the hot gas cools from 67.0 °C to 65.0°C.
The heat lost by the hot gas in the process is
AQ = me, AT = (0.000740 kg)(745 J /kg-K)(—2.0°C) = —1.10 J
For the hot gas (approximately the temperature as 66 °C),
AQ  —110J

AS,=—=r~—— = -32x107J/K
=, Y amre k- o210
For the cold gas, since it will gain 1.10 J,
A 1.10J
AS, = Q. =38x107° J/K

T. " (273+21)K

As you can see, the entropy changes were different for the two compartments; more was gained than was
lost. The total entropy of the universe increased as a result of this process.

The ideal gas in the cylinder in Fig. 21-1 is initially at conditions Py, V;, T;. It is slowly expanded
at constant temperature by allowing the piston to rise. Its final conditions are P,, V5, T}, where
V, = 3V,. Find the change in entropy of the gas during this expansion. The mass of gasis 1.5 g,
and M = 28 kg/kmol for it.

Recall from Chapter 20 that, for an isothermal expansion of an ideal gas (where AU = 0),

AW:AQ:P|V| hl(%)
1

A PV V. V.
Consequently, AS = TQ = % In (—2) = % R In (72)
1 1 1

where we have used the Ideal Gas Law. Substituting the data gives

1.5x 107° kg J

Two vats of water, one at 87 °C and the other at 14 °C, are separated by a metal plate. If heat
flows through the plate at 35 cal/s, what is the change in entropy of the system that occurs in a
second?

The higher-temperature vat loses entropy, while the cooler one gains entropy:
AQ (=35 cal)(4.184 J/cal)

_AQ  (35cal)(4.184 J/cal)
AS. = T K =0.51J/K

Therefore 0.51 J/K — 0.41 J/K =0.10 J/K.

A system consists of 3 coins that can come up either heads or tails. In how many different ways
can the system have (@) all heads up? (b) All tails up? (¢) One tail and two heads up? (d) Two tails
and one head up?

(a) There is only one way all the coins can be heads-up: Each coin must be heads-up.

(b) Here, too, there is only one way.

(¢) There are three ways, corresponding to the three choices for the coin showing the tail.

(d) By symmetry with (c), there are three ways.
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Find the entropy of the three-coin system described in Problem 21.6 if (@) all coins are heads-up,
(b) two coins are heads-up.

We use the Boltzmann relation S = kz1In €2, where 2 is the number of ways the state can occur, and
kp=138x 107> J/K.

(a) Since this state can occur in only one way,
S=kzlnl=(138x 102 J/K)(0) =0
(b) Since this state can occur in three ways,

S=(138x102 J/K)In3 =152 x 107> J/K

Supplementary Problems

Compute the entropy change of 5.00 g of water at 100 °C as it changes to steam at 100 °C under standard
pressure. Ans. 7.24 cal/K =30.3 J/K

By how much does the entropy of 300 g of a metal (¢ = 0.093 cal/g-°C) change as it is cooled from 90 °C to
70°C? You may approximate 7' = %(Tl + 7). Ans. —6.6 J/JK

An ideal gas was slowly expanded from 2.00 m® to 3.00 m® at a constant temperature of 30 °C. The entropy
change of the gas was +47 J/K during the process. (¢) How much heat was added to the gas during the
process? (b) How much work did the gas do during the process? Ans. (a) 3.4 kcal; (b) 14 kJ

Starting at standard conditions, 3.0 kg of an ideal gas (M = 28 kg/kmol) is isothermally compressed to one-
fifth of its original volume. Find the change in entropy of the gas. Ans. —1.4kJ/K

Four poker chips are red on one side and white on the other. In how many different ways can (a) only 3 reds
come up? (b) Only two reds come up? Ans. (a) 4; (b) 6

When 100 coins are tossed, there is one way in which all can come up heads. There are 100 ways in which
only one tail comes up. There are about 1 x 10 ways that 50 heads can come up. One hundred coins are
placed in a box with only one head up. They are shaken and then there are 50 heads up. What was the change
in entropy of the coins caused by the shaking? Ans. 9x 1072 J/K



Chapter 22

Wave Motion

A PROPAGATING WAVE is a self-sustaining disturbance of a medium that travels from one
point to another, carrying energy and momentum. Mechanical waves are aggregate phenomena
arising from the motion of constituent particles. The wave advances, but the particles of the med-
ium only oscillate in place. A wave has been generated on the string in Fig. 22-1 by the sinusoi-
dal vibration of the hand at its end. The wave furnishes a record of earlier vibrations of the
source. Energy is carried by the wave from the source to the right, along the string. This direc-
tion, the direction of energy transport, is called the direction (or line) of propagation of the wave.

Fig. 22-1

Each particle of the string (such as the one at point C) vibrates up and down, perpendicular to the
line of propagation. Any wave in which the vibration direction is perpendicular to the direction of
propagation is called a transverse wave. Typical transverse waves, besides those on a string, are electro-
magnetic waves — light and radio waves. By contrast, in sound waves the vibration direction is parallel to
the direction of propagation, as you will see in Chapter 23. Such a wave is called a longitudinal (or
compressional) wave.

WAVE TERMINOLOGY: The period (T) of a wave is the time it takes the wave to go through
one complete cycle. It is the time taken for a particle such as the one at 4 to move through one
complete vibration or cycle, down from point 4 and then back to A. The period is the number
of seconds per cycle. The frequency (f) of a wave is the number of cycles per second: Thus,
1
f==
If 7 is in seconds, then f is in hertz (Hz), where 1 Hz = 1 s~ '. The period and frequency of the wave are
the same as the period and frequency of the vibration.
The top points on the wave, such as 4 and C, are called wave crests. The bottom points, such as B
and D, are called troughs. As time goes on, the crests and troughs move to the right with speed v, the
speed of the wave.

The amplitude of a wave is the maximum disturbance undergone during a vibration cycle, distance y,
in Fig. 22-1.

213
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The wavelength (1) is the distance along the direction of propagation between corresponding points
on the wave, distance AC for example. In a time T, a crest moving with speed v will move a distance A to
the right. Therefore, s = vt gives

/IZUT:—,
S
and

v=fA

This relation holds for all waves, not just for waves on a string.

IN-PHASE VIBRATIONS exist at two points on a wave if those points undergo vibrations that
are in the same direction, in step. For example, the particles of the string at points 4 and C in
Fig. 22-1 vibrate in-phase, since they move up together and down together. Vibrations are in-
phase if the points are a whole number of wavelengths apart. The pieces of the string at 4 and
B vibrate opposite to each other; the vibrations there are said to be 180°, or half a cycle, out-of-
phase.

THE SPEED OF A TRANSVERSE WAVE on a stretched string or wire is

\/ tension in string
v =

mass per unit length of string

STANDING WAVES: At certain vibrational frequencies, a system can undergo resonance. That
is to say, it can efficiently absorb energy from a driving source in its environment which is oscil-
lating at that frequency (Fig. 22-2). These and similar vibration patterns are called standing waves,
as compared to the propagating waves considered above. These might better not be called waves
at all since they do not transport energy and momentum. The stationary points (such as B and

Vibrator

=

(a) Fundamental (L = %l)

e

(b) First overtone (L =2 31)

(d) Third overtone (L =41 1)

Fig. 22-2
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D) are called nodes; the points of greatest motion (such as A, C, and E) are called antinodes. The
distance between adjacent nodes (or antinodes) is 1. We term the portion of the string between
adjacent nodes a segment, and the length of a segment is also %/1.

CONDITIONS FOR RESONANCE: A string will resonate only if the vibration wavelength has
certain special values: the wavelength must be such that a whole number of wave segments (each
%)» long) exactly fit on the string. A proper fit occurs when nodes and antinodes exist at positions
demanded by the constraints on the string. In particular, the fixed ends of the string must be
nodes. Thus, as shown in Fig. 22-2, the relation between the wavelength A and the length L of
the resonating string is L = n(34), where n is any integer. Because . =vT =uv/f, the shorter the
wave segments at resonance, the higher will be the resonance frequency. If we call the fundamen-
tal resonance frequency fi, then Fig. 22-2 shows that the higher resonance frequencies are given

by fu = nfi.

LONGITUDINAL (COMPRESSIONAL) WAVES occur as lengthwise vibrations of air columns,
solid bars, and the like. At resonance, nodes exist at fixed points, such as the closed end of an
air column in a tube, or the location of a clamp on a bar. Diagrams such as Fig. 22-2 are used
to display the resonance of longitudinal waves as well as transverse waves. However, for longitu-
dinal waves, the diagrams are mainly schematic and are used simply to indicate the locations of
nodes and antinodes. In analyzing such diagrams, we use the fact that the distance between node
and adjacent antinode is } /.

Solved Problems

22.1 Suppose that Fig. 22-1 represents a 50-Hz wave on a string. Take distance y, to be 3.0 mm, and
distance AE to be 40 cm. Find the following for the wave: (a¢) amplitude, () wavelength, (c)
speed.

(a) By definition, the amplitude is distance y, and is 3.0 mm.
(b) The distance between adjacent crests is the wavelength, and so 4 =20 cm.
(c) v=2f = (020 m)(50 s') = 10 m/s

22.2 Measurements show that the wavelength of a sound wave in a certain material is 18.0 cm. The
frequency of the wave is 1900 Hz. What is the speed of the sound wave?

From A =T = v/f, which applies to all waves,

v=f = (0.180 m)(1900 s ') = 342 m/s

22.3 A horizontal cord 5.00 m long has a mass of 1.45 g. What must be the tension in the cord if the
wavelength of a 120 Hz wave on it is to be 60.0 cm? How large a mass must be hung from its end
(say, over a pulley) to give it this tension?

We know that
v=J2f = (0.600 m)(120 s™') = 72.0 m/s
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Further, since v = \/ (tension)/(mass per unit length),

1.45 x 107 kg

2 _
S0 )(72.0 m/s)> = 1.50 N

Tension = (mass per unit length)(v?) = <
The tension in the cord balances the weight of the mass hung at its end. Therefore,
_Fr 150N

FT:mg or m ?7m:0153 kg

A uniform flexible cable is 20 m long and has a mass of 5.0 kg. It hangs vertically under its own
weight and is vibrated from its upper end with a frequency of 7.0 Hz. (a) Find the speed of a
transverse wave on the cable at its midpoint. (b)) What are the frequency and wavelength at the
midpoint?

(@) Weshalluse v = \/ (tension)/(mass per unit length). The midpoint of the cable supports half its weight,
so the tension there is

Fr =1(50kg)(9.81 m/s’) =24.5 N

Further Mass per unit length = %Il;g =0.25 kg/m

[ 245N
so that v = m—99 m/s

(b) Because wave crests do not pile up along a string or cable, the number passing one point must be the
same as that for any other point. Therefore the frequency, 7.0 Hz, is the same at all points.
To find the wavelength at the midpoint, we must use the speed we found for that point, 9.9 m/s.
That gives us

99 m/s

v
7T 70mg Am

A

Suppose that Fig. 22-2 shows a metal string under a tension of 88.2 N. Its length is 50.0 cm and
its mass is 0.500 g. (¢) Compute v for transverse waves on the string. (b) Determine the frequen-
cies of its fundamental, first overtone, and second overtone.

(a) tension 88.2 N 297m)s
v= - = =
mass per unit length (5.00 x 10~* kg)/(0.500 m)
(h) We recall that the length of the segment is /2 and we use 4 = v/f. For the fundamental:
) . 297 m/s
A=1.00m and f = 100 m =297 Hz

For the first overtone:

. 297 m/s
)v = 0500 m dnd f = m = 594 Hz
For the second overtone:
. 297 m/s
)v = 0333 m dnd f = m = 891 Hz

22.6 A string 2.0 m long is driven by a 240-Hz vibrator at its end. The string resonates in four

segments. What is the speed of transverse waves on the string?
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Since each segment is /2 long, we have

A , L 20m

Then, using A = vT = v/f, we have
v=f72=(240s")(1.0 m) = 0.24 km/s

22.7 A banjo string 30 cm long resonates in its fundamental to a frequency of 256 Hz. What is the
tension in the string if 80 cm of the string have a mass of 0.75 g?

First we shall find v and then find the tension. We know that the string vibrates in one segment when
f =256 Hz. Therefore, from Fig. 22-2,

% =L or J=(030m)(2)=0.60m
and v=f1=(256s"")(0.60 m) = 154 m/s
The mass per unit length of the string is
0.75 x 10 kg 4

Then, from v = /(tension)/(mass per unit length),
Fr = (154 m/s)*(9.4 x 10™* kg/m) =22 N

22.8 A string vibrates in five segments to a frequency of 460 Hz. (¢) What is its fundamental fre-
quency? (b) What frequency will cause it to vibrate in three segments?
Detailed Method

If the string is n segments long, then from Fig. 22-2 we have n(§4) = L. But A = v/f,, so L = n(v/2f,).
Solving for f, gives

v
fi=n(5;)
We are told that f5 = 460 Hz, and so

460 Hz — 5(%) or % —92.0 Hz

Substituting this in the above relation gives
fu = (n)(92.0 Hz)

(@) f, =92.0Hz.
() f;=(3)(92 Hz) = 276 Hz

Alternative Method

We recall that for a string held at both ends, f,, = nf;. Knowing that f5 = 460 Hz, we find f; = 92.0 Hz
and f3 = 276 Hz.

22.9 A string fastened at both ends resonates at 420 Hz and 490 Hz with no resonance frequencies in
between. Find its fundamental resonance frequency.

In general, f, = nf;. We are told that f, = 420 Hz and f,,; = 490 Hz. Therefore,
420 Hz = nf; and 490 Hz = (n+ 1)f
We subtract the first equation from the second to obtain f; = 70.0 Hz.
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A violin string resonates in its fundamental at 196 Hz. Where along the string must you place
your finger so its fundamental becomes 440 Hz?

In the fundamental, L = %i. Since 4 =v/f, we have f; = v/2L. Originally, the string of length L,
resonated to a frequency of 196 Hz, and so

v
196 Hz = ——
Y

We want it to resonate to 440 Hz, so we have

440 Hz = ——
2L,

We eliminate v from these two simultaneous equations and find
L, 196 Hz

L, 440 Hz 0445

To obtain the desired resonance, the finger must shorten the string to 0.445 of its original length.

A 60 cm long bar, clamped at its middle, is vibrated lengthwise by an alternating force at its end.
(See Fig. 22-3.) Its fundamental resonance frequency is found to be 3.0 kHz. What is the speed of
longitudinal waves in the bar?

Because its ends are free, the bar must have antinodes there. The clamp point at its center must be a
node. Therefore, the fundamental resonance is as shown in Fig. 22-3. Because the distance from node to
antinode is always 12, we see that L = 2(}4). Since L = 0.60 m, we find 4 = 1.20 m.

Then, from the basic relation (p. 214) 4 = v/f, we have

v=Jf = (120 m)(3.0 kHz) = 3.6 km/s

Compressional waves (sound waves) are sent down an air-filled tube 90 cm long and closed at one
end. The tube resonates to several frequencies, the lowest of which is 95 Hz. Find the speed of
sound waves in air.

The tube and several of its resonance forms are shown in Fig. 22-4. Recall that the distance between a
node and an adjacent antinode is /4. In our case, the top resonance form applies, since the segments are
longest for it and its frequency is therefore lowest. For that form, L = 4/4, so

A =4L =4(0.90 m) = 3.6 m
Using 2 =T = v/f gives
v=7f = (3.6 m)(95s™") = 0.34 km/s

To what other frequencies will the tube described in Problem 22.12 resonate?

The first few resonances are shown in Fig. 22-4. We see that, at resonance,

L=n(2,)
where n =1,3,5,7,..., is an odd integer, and 4, is the resonance wavelength. But 4, = v/f,, and so
L:n%f” or f,,:nﬁ:nfl

where, from Problem 22.12, f; =95 Hz. The first few resonance frequencies are thus 95 Hz, 0.29 kHz,
0.48 kHz, ....
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Fig. 22-3 Fig. 22-4

22.14 A metal rod 40 cm long is dropped, end first, onto a wooden floor and rebounds into the air.
Compressional waves of many frequencies are thereby set up in the bar. If the speed of compres-
sional waves in the bar is 5500 m/s, to what lowest-frequency compressional wave will the bar
resonate as it rebounds?

Both ends of the bar will be free, and so antinodes will exist there. In the lowest resonance form (i.e., the
one with the longest segments), only one node will exist on the bar, at its center, as shown in Fig. 22-5. We
will then have

L= 2(%) or A=2L=2(0.40 m) =0.80 m

Then, from /i = vT = v/f,
5500 m/s

v

22.15 A rod 200 cm long is clamped 50 cm from one end, as shown in Fig. 22-6. It is set into longi-
tudinal vibration by an electrical driving mechanism at one end. As the frequency of the driver is
slowly increased from a very low value, the rod is first found to resonate at 3 kHz. What is the
speed of sound (compressional waves) in the rod?

0 50 100 150 200 cm

%z | |
[ ]
4 N 4 4 it 4 N 4

} N
' g
— ©segment
Half segment, se/lg/rrzlen
A4

Fig. 22-5 Fig. 22-6
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The clamped point remains stationary, and so a node exists there. Since the ends of the rod are free,
antinodes exist there. The lowest-frequency resonance occurs when the rod is vibrating in its longest possible
segments. In Fig. 22-6 we show the mode of vibration that corresponds to this condition. Since a segment is
the length from one node to the next, then the length from 4 to N in the figure is one-half segment.
Therefore, the rod is two segments long. This resonance form satisfies our restrictions about positions of
nodes and antinodes, as well as the condition that the bar vibrate in the longest segments possible. Since one
segment is 1/2 long,

L=2(1/2) or A =L =200 cm
Then, from A =T = v/f,

v=J2f = (2.00 m)(3 x 10° s') = 6 km/s

(a) Determine the shortest length of pipe closed at one end that will resonate in air to a sound
source of frequency 160 Hz. Take the speed of sound in air to be 340 m/s. (b) Repeat for a pipe
open at both ends.

(a) Figure 22-4(a) applies in this case. The shortest pipe will be 1/4 long. Therefore,
1, 1/w 340 m/s
L=-A=-| - )=————-=0.531
4" 4<f) 4(160 s 1) m

(b) In this case the pipe will have antinodes at both ends and a node at its center. Then,
1 1 /v 340 m/s
L=2|-A)=z|=)=7—+"—=-=1.06
<4 > 2(f> 2(160 5 1) "

A pipe 90 cm long is open at both ends. How long must a second pipe, closed at one end, be if it is
to have the same fundamental resonance frequency as the open pipe?
The two pipes and their fundamental resonances are shown in Fig. 22-7. As we see,
L,=202) L=z

from which L. =5 L, =45 cm.

1
2
A glass tube that is 70.0 cm long is open at both ends. Find the frequencies at which it will

resonate to sound waves that have a speed of 340 m/s.

A pipe that is open at both ends must have an antinode at each end. It will therefore resonate as in Fig.
22-8. We see that the resonance wavelengths 4, are given by

L :n(ﬂ—”) or I :Z—L
2 n

L,=2(:4)
4 N 4 N 4
! ! ! C——— 0
_ 1
L=a 4 N 4 N 4 N 4
4 N ( 0

Fig. 227 Fig. 22-8
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where n is an integer. But 4, = v/f,, so

fo=(2) ) = ) (%) — 2437 Hz

Supplementary Problems

The average person can hear sound waves ranging in frequency from about 20 Hz to 20 kHz. Determine the
wavelengths at these limits, taking the speed of sound to be 340 m/s. Ans. 17 m, 1.7 cm

Radio station WJR in Detroit broadcasts at 760 kHz. The speed of radio waves is 3.00 x 108 m/s. What is
the wavelength of WJR’s waves? Ans. 395 m

Radar waves with 3.4 cm wavelength are sent out from a transmitter. Their speed is 3.00 x 10° m/s. What is
their frequency?  Ans. 8.8 x 10° Hz = 8.8 GHz

When driven by a 120 Hz vibrator, a string has transverse waves of 31 cm wavelength traveling along it. («)
What is the speed of the waves on the string? (b) If the tension in the string is 1.20 N, what is the mass of
50 cm of the string? Ans. (a) 37 m/s; (b) 0.43 g

The wave shown in Fig. 22-9 is being sent out by a 60 cycle/s vibrator. Find the following for the wave: (a)
amplitude, (b) frequency, (¢) wavelength, (d ) speed, (e) period. Ans. (a) 3.0 mm; (b) 60 Hz; (¢) 2.00 cm;
(d) 1.2 m/s; (e) 0.017 s

y (mm)

P /\ 777777777 /\ 777777777 /\ 7777777777777777
0 7 A 7 A T AY T

I A /A A A

Fig. 22-9

A copper wire 2.4 mm in diameter is 3.0 m long and is used to suspend a 2.0 kg mass from a beam. If a
transverse disturbance is sent along the wire by striking it lightly with a pencil, how fast will the disturbance
travel? The density of copper is 8920 kg/m®. Ans. 22 m/s

A string 180 cm long resonates in three segments to transverse waves sent down it by a 270 Hz vibrator.
What is the speed of the waves on the string? Ans. 324 m/s

A string resonates in three segments to a frequency of 165 Hz. What frequency must be used if it is to
resonate in four segments? Ans. 220 Hz

A flexible cable, 30 m long and weighing 70 N, is stretched between two poles by a force of 2.0 kN. If the
cable is struck sideways at one end, how long will it take the transverse wave to travel to the other end and
return? Ans. 0.65s



222

22.28

22.29

22.30

22.31

22.32

22.33

22.34

22.35

22.36

22.37

WAVE MOTION [CHAP. 22

A wire under tension vibrates with a fundamental frequency of 256 Hz. What would be the fundamental
frequency if the wire were half as long, twice as thick, and under one-fourth the tension? Ans. 128 Hz

Steel and silver wires of the same diameter and same length are stretched with equal tension. Their densities
are 7.80 g/em® and 10.6 g/ecm?, respectively. What is the fundamental frequency of the silver wire if that of
the steel is 200 Hz? Ans. 172 Hz

A string has a mass of 3.0 gram and a length of 60 cm. What must be the tension so that when vibrating
transversely its first overtone has frequency 200 Hz? Ans. 72 N

(a) At what point should a stretched string be plucked to make its fundamental tone most prominent? At
what point should it be plucked and then at what point touched (b) to make its first overtone most
prominent and (c¢) to make its second overtone most prominent? Ans. (a) center; (b) plucked at 1/4
of its length from one end, then touched at center; (¢) plucked at 1/6 of its length from one end, then touched
at 1/3 of its length from that end

What must be the length of an iron rod that has the fundamental frequency 320 Hz when clamped at its
center? Assume longitudinal vibration at a speed of 5.00 km/s. Ans. 7.81m

A rod 120 cm long is clamped at the center and is stroked in such a way as to give its first overtone. Make a
drawing showing the location of the nodes and antinodes, and determine at what other points the rod might
be clamped and still emit the same tone. Ans.  20.0 cm from either end

A metal bar 6.0 m long, clamped at its center and vibrating longitudinally in such a manner that it gives its
first overtone, vibrates in unison with a tuning fork marked 1200 vibration/s. Compute the speed of sound in
the metal. Ans. 4.8 km/s

Determine the length of the shortest air column in a cylindrical jar that will strongly reinforce the sound of a
tuning fork having a vibration rate of 512 Hz. Use v =340 m/s for the speed of sound in air.
Ans 16.6 cm

A long, narrow pipe closed at one end does not resonate to a tuning fork having a frequency of 300 Hz until
the length of the air column reaches 28 cm. (¢) What is the speed of sound in air at the existing room
temperature? (b) What is the next length of column that will resonate to the fork? Ans. (a) 0.34 km/s;
(b) 84 cm

An organ pipe closed at one end is 61.0 cm long. What are the frequencies of the first three overtones if v for
sound is 342 m/s? Ans. 420 Hz, 700 Hz, 980 Hz



Chapter 23

Sound

SOUND WAVES are compression waves in a material medium such as air, water, or steel. When
the compressions and rarefactions of the waves strike the eardrum, they result in the sensation of
sound, provided the frequency of the waves is between about 20 Hz and 20000 Hz. Waves with
frequencies above 20 kHz are called wultrasonic waves. Those with frequencies below 20 Hz are
called infrasonic waves.

EQUATIONS FOR SOUND SPEED: In an ideal gas of molecular mass M and absolute tem-
perature 7T, the speed of sound v is given by

v= \/% (ideal gas)

where R is the gas constant, and  is the ratio of specific heats ¢,/c,. 7 is about 1.67 for monatomic gases
(He, Ne, Ar), and about 1.40 for diatomic gases (N,, O,, H,).
The speed of compression waves in other materials is given by

modulus
V=
\/ density

If the material is in the form of a bar, Young’s modulus Y is used. For liquids, one must use the bulk
modulus.

THE SPEED OF SOUND IN AIR at 0°C is 331 m/s. The speed increases with temperature by
about 0.61 m/s for each 1°C rise. More precisely, sound speeds v; and v, at absolute tempera-

tures 7} and T, are related by
u_ |4
U T,

The speed of sound is essentially independent of pressure, frequency, and wavelength.

THE INTENSITY (/) of any wave is the energy per unit area, per unit time; in practice, it is
the average power carried by the wave through a unit area erected perpendicular to the direction
of propagation of the wave. Suppose that in a time Ar an amount of energy AE is carried
through an area AA that is perpendicular to the propagation direction of the wave. Then

_ AE P,
T AA At AA

It may be shown that for a sound wave with amplitude «, and frequency f, traveling with speed v in a
material of density p,

[ =27 pvag

If £ is in Hz, p is in kg/m®, v is in m/s, and g, (the maximum displacement of the atoms or molecules of
the medium) is in m, then 7/ is in W/mz.
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LOUDNESS is a measure of the human perception of sound. Although a sound wave of high in-
tensity is perceived as louder than a wave of lower intensity, the relation is far from linear. The
sensation of sound is roughly proportional to the logarithm of the sound intensity. But the exact
relation between loudness and intensity is complicated and not the same for all individuals.

INTENSITY (OR LOUDNESS) LEVEL (f) is defined by an arbitrary scale that corresponds
roughly to the sensation of loudness. The zero on this scale is taken at the sound-wave intensity
Io = 1.00 x 10~'2 W/m?, which corresponds roughly to the weakest audible sound. The intensity
level, in decibels, is then defined by
1
=10log| —
v o <10)

The decibel (dB) is a dimensionless unit. The normal ear can distinguish between intensities that differ by
an amount down to about 1 dB.

BEATS: The alternations of maximum and minimum intensity produced by the superposition of
two waves of slightly different frequencies are called beats. The number of beats per second is
equal to the difference between the frequencies of the two waves that are combined.

DOPPLER EFFECT: Suppose that a moving sound source emits a sound of frequency f;. Let v
be the speed of sound, and let the source approach the listener or observer at speed vy, measured
relative to the medium conducting the sound. Suppose further that the observer is moving toward
the source at speed v, also measured relative to the medium. Then the observer will hear a sound
of frequency f, given by

v+,
v — Uy

Jo =15

If either the source or observer is moving away from the other, the sign on its speed in the equation must
be changed.

When the source and observer are approaching each other, more wave crests strike the ear each
second than when both are at rest. This causes the ear to perceive a higher frequency than that emitted
by the source. When the two are receding, the opposite effect occurs; the frequency appears to be
lowered.

Because v + v, is the speed of a wave crest relative to the observer, and because v — v; is the speed of
a wave crest relative to the source, an alternative form is

crest speed relative to observer
crest speed relative to source

Jo=1Js

INTERFERENCE EFFECTS: Two sound waves of the same frequency and amplitude may give
rise to easily observed interference effects at a point through which they both pass. If the crests
of one wave fall on the crests of the other, the two waves are said to be in-phase. In that case,
they reinforce each other and give rise to a high intensity at that point.

However, if the crests of one wave fall on the troughs of the other, the two waves will exactly cancel
each other. No sound will then be heard at the point. We say that the two waves are then 180° (or a half
wavelength) out-of-phase.

Intermediate effects are observed if the two waves are neither in-phase nor 180° out-of-phase, but
have a fixed phase relationship somewhere in between.
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Solved Problems

An explosion occurs at a distance of 6.00 km from a person. How long after the explosion does
the person hear it? Assume the temperature is 14.0 °C.

Because the speed of sound increases by 0.61 m/s for each 1.0 °C, we have
v=2331 m/s+ (0.61)(14) m/s = 340 m/s
Using s = vt, we find that the time taken is
s 6000 m

Tv 340m/s

17.6 s

To find how far away a lightning flash is, a rough rule is the following: “Divide the time in
seconds between the flash and the sound, by three. The result equals the distance in km to the
flash.” Justify this.

1

The speed of sound is v ~ 333 m/s = 3 km/s, so the distance to the flash is
t

NESR

3

where ¢, the travel time of the sound, is in seconds and s is in kilometers. The light from the flash travels so
fast, 3 x 10% m/s, that it reaches the observer almost instantaneously. Hence 7 is essentially equal to the time
between seeing the flash and hearing the thunder. Thus the rule.

Compute the speed of sound in neon gas at 27.0 °C. For neon, M = 20.18 kg/kmol.

Neon, being monatomic, has  ~ 1.67. Therefore,

_ ART  [(1.67)(8314 1 /kmol [K)(300 K)
YTV M ¢ 20.18 kg/kmol =454 m/s

Find the speed of sound in a diatomic ideal gas that has a density of 3.50 kg/m® and a pressure of
215 kPa.
We know that v = \/yRT /M. From the gas law PV = (m/M)RT, so
RT v

M m
However, p = m/V, and so the expression for the speed becomes

3
7y ((ETTETER 103 Pa) _ 53 /s
p 3.50 kg/m

We used the fact that v ~ 1.40 for a diatomic ideal gas.

A metal rod 60 cm long is clamped at its center. It resonates in its fundamental to longitudinal
waves of 3.00 kHz. What is Young’s modulus for the material of the rod? The density of the
metal is 8700 kg/m?.

This same rod was discussed in Problem 22.11. We found there that the speed of longitudinal waves in it
is 3.6 km/s. We know that v = /Y /p, and so

Y = pv* = (8700 kg/m?®)(3600 m/s)* = 1.1 x 10" N/m?
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23.6 What is the speed of compression waves (sound waves) in water? The bulk modulus for water is
2.2 x 10° N/m>.

Ik 1 2.2 x 10° N/m?
. bu mgduus: x 10 /gn 15 ks
density 1000 kg/m

23.7 A tuning fork oscillates at 284 Hz in air. Compute the wavelength of the tone emitted at 25°C.

At 25°C, v =331 m/s+ (0.61)(25) m/s = 346 m/s
Using A = vT = v/f gives
p= MO m
f 284571

23.8 An organ pipe whose length is held constant resonates at a frequency of 224.0 Hz when the air
temperature is 15°C. What will be its resonant frequency when the air temperature is 24 °C?

The resonant wavelength must have the same value at each temperature because it depends only on the
length of the pipe. (Its nodes and antinodes must fit properly within the pipe.) But 1 = v/f, and so v/f must
be the same at the two temperatures. We thus have

(] (%} . (%)
—_— = = (224 Hz)( —
wams O S (24HY (vl)
At temperatures near room temperature, v = (331 + 0.617) m/s, where ¢ is the celsius temperature. Then we

have

B 331+ (0.61)(24)]
f> = (224.0 Hz) {W} =0.228 kHz

23.9  An uncomfortably loud sound might have an intensity of 0.54 W/m?>. Find the maximum dis-
placement of the molecules of air in a sound wave if its frequency is 800 Hz. Take the density of
air to be 1.29 kg/m® and the speed of sound to be 340 m/s.

From I = 27r2f zpva%,

1 |1 1 0.54 W/m? 6
- = =99x10°m=99
=7\ 200 (8005 Tn) \/(2)(1.29 kg/m?®)(340 m/s) . " rm
23.10 A sound has an intensity of 3.00 x 10~° W/m?. What is the sound level in dB?

1
=101Io
’ g<1.00 x 1012 W/m2>

3.00 x 1078
- IOIOg(;> — 101og (3.00 x 10*) = 10(4 + log 3.00)

1.00 x 10712
= 10(4 +0.477) = 44.8 dB

23.11 A noise-level meter reads the sound level in a room to be 85.0 dB. What is the sound intensity in
the room?
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23.13

23.14

23.15

I
1.00 x 10~12 W/m?

I 85.0
lo === =850
g(l.OO x 10712 W/m2> 10

I
1.00 x 10712 W/m?
I=(1.00x 1072 W/m?)(3.16 x 10%) = 3.16 x 107* W/m’

8= 1010g< > =85.0dB

= antilog 8.50 = 3.16 x 10°

Two sound waves have intensities of 10 and 500 W/cm?. What is the difference in their intensity
levels?

Call the 10 uW/cm? sound 4, and the other B. Then
Iy
B4 = 10log )= 10(log 1, — log I))
0

1
Bp = 1010g(1—3> = 10(log I3 — log I))
0

Subtracting gives

B — B4 =10(loglyz —logl,) = IOIOgC—B)

A

= 1010g<%) = 10log 50 = (10)(1.70)

=17 dB

Find the ratio of the intensities of two sounds if one is 8.0 dB louder than the other.

We saw in Problem 23.12 that
1
B — B = 1010g(,—3)
4
In the present case this becomes

1 1
8.0 =10log (—B) or 2 antilog 0.80 = 6.3

A tiny sound source emits sound uniformly in all directions. The intensity level at a distance of
2.0 m is 100 dB. How much sound power is the source emitting?

The energy emitted by a point source can be considered to flow out through a spherical surface which
has the source at its center. Hence, if we find the rate of flow through such a surface, it will equal the flow
from the source. Take a concentric sphere of radius 2.0 m. We know that the sound level on its surface is
100 dB. You can show that this corresponds to I = 0.010 W/m>. Thus, the energy flowing each second
through each m? of surface is 0.010 W. The total energy flow through the spherical surface is then I(47rr2),
where 7 = 0.010 W/m* and r = 2.0 m:

Power from source = (0.010 W/m?)(47)(2 m)* = 0.50 W

Notice how little power issues as sound from even such an intense source.

One typist typing furiously in a room gives rise to an average sound level of 60.0 dB. What will be
the decibel level when three equally noisy typists are working?
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If each typist emits the same amount of sound energy, then the final sound intensity /, should be three
times the initial intensity 7;. We have

I
By = log (1—/) =logl; —logl
A .
and B; =logl; —logl,
Subtraction yields
By — B; = log Iy —log],

I
from which Br = B; + log (Tf) = 60.0 dB + log3 = 60.5 dB

1

The sound level, being a logarithmic measure, rises very slowly with the number of typists.

An automobile moving at 30.0 m/s is approaching a factory whistle that has a frequency of
500 Hz. (a) If the speed of sound in air is 340 m/s, what is the apparent frequency of the whistle
as heard by the driver? (b) Repeat for the case of the car leaving the factory at the same speed.

: LU+, 340 m/s +30.0 m/s
= = H =544 H
((1) fo fs v — (500 Z) 340 m/s ~0 5 VA
RN 340 m/s + (—30.0 m/s)
(h) fo =1 p——— (500 Hz) 340 m/s — 0 =456 Hz

A car moving at 20 m/s with its horn blowing (f = 1200 Hz) is chasing another car going at
15 m/s. What is the apparent frequency of the horn as heard by the driver being chased? Take the
speed of sound to be 340 m/s.

v (1200 HZ)M

—1.22kH
v— v, 340 — 20 z

Jo=1s

When two tuning forks are sounded simultaneously, they produce one beat every 0.30 s. (a) By
how much do their frequencies differ? (b) A tiny piece of chewing gum is placed on a prong of one
fork. Now there is one beat every 0.40 s. Was this tuning fork the lower- or the higher-frequency
fork?

The number of beats per second equals the frequency difference.

. 1

(a) Frequency difference = 0305~ 3.3 Hz
. 1

(b) Frequency difference = 0405~ 2.5 Hz

Adding gum to the prong increases its mass and thereby decreases its vibrational frequency. This
lowering of frequency caused it to come closer to the frequency of the other fork. Hence the fork in
question had the higher frequency.

A tuning fork of frequency 400 Hz is moved away from an observer and toward a flat wall with a
speed of 2.0 m/s. What is the apparent frequency (a) of the unreflected sound waves coming
directly to the observer, and () of the sound waves coming to the observer after reflection? (c)
How many beats per second are heard? Assume the speed of sound in air to be 340 m/s.

(a) The fork is receding from the observer, so
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f(,:fsv+v0:(400HZ) 340 m/s+ 0

—397.7 Hz =398 H
v— v, 340 mjs — (—20ms) o007 He =398 Hz

(b) The wave crests reaching the wall are closer together than normally because the fork is moving toward
the wall. Therefore, the reflected wave appears to come from an approaching source:
v+,

, 340 m/s + 0
_ 1Y% g0 1
Jo =ty = O H) s — 2.0 ms

=402.4 Hz = 402 Hz

(¢)  Beats per second = difference between frequencies = (402.4 — 397.7) Hz = 4.7 beats per second

23.20 In Fig. 23-1, S; and S, are identical sound sources. They send out their wave crests simulta-
neously (the sources are in phase). For what values of L; — L, will constructive interference
obtain and a loud sound be heard at point P?

L
S2C'7777777777772 7777777777 ::;”P
5,
Fig. 23-1

If L, = L,, the waves from the two sources will take equal times to reach P. Crests from one will arrive
there at the same times as crests from the other. The waves will therefore be in phase at P and an interference
maximum will result.

If L, = L, + 4, then the wave from S| will be one wavelength behind the one from S, when they reach
P. But because the wave repeats each wavelength, a crest from S; will still reach P at the same time a crest
from S, does. Once again the waves are in phase at P and an interference maximum will exist there.

In general, a loud sound will be heard at P when L, — L, = +n 4, where n is an integer.

23.21 The two sound sources in Fig. 23-1 vibrate in-phase. A loud sound is heard at P when L; = L,.
As L; is slowly increased, the weakest sound is heard when L; — L, has the values 20.0 cm,
60.0 cm, and 100 cm. What is the frequency of the sound source if the speed of sound is
340 m/s?

The weakest sound will be heard at P when a crest from S| and a trough from S, reach there at the same
time. This will happen if L; — L, is %/1, or A+ %/l, or 24+ %}v, and so on. Hence the increase in L; between
weakest sounds is A, and from the data we see that A = 0.400 m. Then, from 1 =v/f,

v 340 m/s

S == 0a00m ~ PO Hz

Supplementary Problems

23.22 Three seconds after a gun is fired, the person who fired the gun hears an echo. How far away was the surface
that reflected the sound of the shot? Use 340 m/s for the speed of sound. Ans. 510 m
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What is the speed of sound in air when the air temperature is 31 °C? Ans. 0.35 km/s

A shell fired at a target 800 m distant was heard to strike it 5.0 s after leaving the gun. Compute the average
horizontal velocity of the shell. The air temperature is 20 °C. Ans. 0.30 km/s

In an experiment to determine the speed of sound, two observers, A and B, were stationed 5.00 km apart.
Each was equipped with gun and stopwatch. Observer A heard the report of B’s gun 15.5 s after seeing
its flash. Later, A fired his gun and B heard the report 14.5 s after seeing the flash. Determine the speed
of sound and the component of the speed of the wind along the line joining A to B.
Ans. 334 m/s, 11.1 m/s

A disk has 40 holes around its circumference and is rotating at 1200 rpm. Determine the frequency and
wavelength of the tone produced by the disk when a jet of air is blown against it. The temperature is
15°C. Ans. 0.80 kHz, 0.43 m

Determine the speed of sound in carbon dioxide (M = 44 kg/kmol, v = 1.30) at a pressure of 0.50 atm and a
temperature of 400 °C. Ans. 0.41 km/s

Compute the molecular mass M of a gas for which v = 1.40 and in which the speed of sound is 1260 m/s at
precisely 0°C. Ans.  2.00 kg/kmol (hydrogen)

At S.T.P., the speed of sound in air is 331 m/s. Determine the speed of sound in hydrogen at S.T.P. if the
specific gravity of hydrogen relative to air is 0.069 0 and if v = 1.40 for both gases. Ans. 1.26 km/s

Helium is a monatomic gas that has a density of 0.179 kg/m® at a pressure of 76.0 cm of mercury and a
temperature of precisely 0 °C. Find the speed of compression waves (sound) in helium at this temperature
and pressure. Ans. 970 m/s

A bar of dimensions 1.00 cm® x 200 cm and mass 2.00 kg is clamped at its center. When vibrating longi-
tudinally it emits its fundamental tone in unison with a tuning fork making 1000 vibration/s. How much will
the bar be elongated if, when clamped at one end, a stretching force of 980 N is applied at the other
end? Ans. 0.123 m

Find the speed of compression waves in a metal rod if the material of the rod has a Young’s modulus of
1.20 x 10'° N/m? and a density of 8920 kg/m®.  Ans. 1.16 km/s

An increase in pressure of 100 kPa causes a certain volume of water to decrease by 5 x 10~ percent of its
original volume. (¢) What is the bulk modulus of water? () What is the speed of sound (compression waves)
in water?  Ans. (a) 2 x 10° N/m?; (b) 1 km/s

A sound has an intensity of 5.0 x 107’ W/m2. What is its intensity level? Ans. 57 dB

A person riding a power mower may be subjected to a sound of intensity 2.00 x 1072 W/mz. What is the
intensity level to which the person is subjected? Ans. 103 dB

A rock band might easily produce a sound level of 107 dB in a room. To two significant figures, what is the
sound intensity at 107 dB?  Ans. 0.0500 W/m?

A whisper has an intensity level of about 15 dB. What is the corresponding intensity of the
sound?  Ans. 3.2x 107" W/m?

What sound intensity is 3.0 dB louder than a sound of intensity of 10 zW/cm?? Ans. 20 W /em?

Calculate the intensity of a sound wave in air at precisely 0 °C and 1.00 atm if its amplitude is 0.0020 mm
and its wavelength is 66.2 cm. The density of air at S.T.P. is 1.293 kg/m®. Ans. 8.4 mW/m’
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What is the amplitude of vibration in a 8000 Hz sound beam if its intensity level is 62 dB? Assume that the
air is at 15°C and its density is 1.29 kg/m?>. Ans. 1.7x107° m

One sound has an intensity level of 75.0 dB while a second has an intensity level of 72.0 dB. What is the
intensity level when the two sounds are combined? Ans. 76.8 dB

A certain organ pipe is tuned to emit a frequency of 196.00 Hz. When it and the G string of a violin are
sounded together, ten beats are heard in a time of exactly 8 s. The beats become slower as the violin string is
slowly tightened. What was the original frequency of the violin string? Ans. 194.75 Hz

A locomotive moving at 30.0 m/s approaches and passes a person standing beside the track. Its whistle is
emitting a note of frequency 2.00 kHz. What frequency will the person hear (@) as the train approaches and
(b) as it recedes? The speed of sound is 340 m/s. Ans.  (a) 2.19 kHz; (b) 1.84 kHz

Two cars are heading straight at each other with the same speed. The horn of one (/' = 3.0 kHz) is blowing,
and is heard to have a frequency of 3.4 kHz by the people in the other car. Find the speed at which each car
is moving if the speed of sound is 340 m/s. Ans. 21 m/s

To determine the speed of a harmonic oscillator, a beam of sound is sent along the line of the oscillator’s
motion. The sound, which is emitted at a frequency of 8000.0 Hz, is reflected straight back by the oscillator
to a detector system. The detector observes that the reflected beam varies in frequency between the limits of
8003.1 Hz and 7996.9 Hz. What is the maximum speed of the oscillator? Take the speed of sound to be
340 m/s. Ans.  0.132 m/s

In Fig. 23-1 are shown two identical sound sources sending waves to point P. They send out wave crests
simultaneously (they are in-phase), and the wavelength of the wave is 60 cm. If L, = 200 cm, give the values
of L; for which (a¢) maximum sound is heard at P and (b) minimum sound is heard at P. Ans. (a)
(200 + 601) cm, where n =0,1,2,...; (b) (230 = 60n) cm, where n =0,1,2,... .

The two sources shown in Fig. 23-2 emit identical beams of sound (4 = 80 cm) toward one another. Each
sends out a crest at the same time as the other (the sources are in-phase). Point P is a position of maximum
intensity, that is, loud sound. As one moves from P toward Q, the sound decreases in intensity. (¢) How far
from P will a sound minimum first be heard? (b) How far from P will a loud sound be heard once
again? Ans. (a) 20 cm; (b) 40 cm




Chapter 24

Coulomb’s Law and Electric Fields

COULOMB’S LAW: Suppose that two point charges, g and ¢’, are a distance r apart in va-
cuum. If ¢ and ¢’ have the same sign, the two charges repel each other; if they have opposite
signs, they attract each other. The force experienced by ecither charge due to the other is called a
Coulomb or electric force and it is given by Coulomb’s Law,

i
Frp = k% (in vacuum)
r

As always in the SI, distances are measured in meters, and forces in newtons. The SI unit for charge ¢ is
the coulomb (C). The constant k in Coulomb’s Law has the value

k = 8.988 x 10° N-m?/C?

which we shall usually approximate as 9.0 x 10° N~m2/C2. Often, k is replaced by 1/4mey, where
€ = 8.85 x 10712 CZ/N-m2 is called the permittivity of free space. Then Coulomb’s Law becomes,
1 qq' .
E=7T— (in vacuum)
dmey 1

When the surrounding medium is not a vacuum, forces caused by induced charges in the material
reduce the force between point charges. If the material has a dielectric constant K, then ¢, in Coulomb’s
Law must be replaced by Ke, = €, where € is called the permittivity of the material. Then

For vacuum, K = 1; for air, K = 1.0006.
Coulomb’s Law also applies to uniform spherical shells or spheres of charge. In that case, r, the
distance between the centers of the spheres, must be larger than the sum of the radii of the spheres.

CHARGE IS QUANTIZED: The magnitude of the smallest charge ever measured is denoted by
e (called the quantum of charge), where e = 1.60218 x 107! C. All free charges, ones that can be
isolated and measured, are integer multiples of e. The electron has a charge of —e, while the pro-
ton’s charge is +e. Although there is good reason to believe that quarks carry charges of magni-
tude e/3 and 2e¢/3, they only exist in bound systems that have a net charge equal to an integer
multiple of e.

CONSERVATION OF CHARGE: The algebraic sum of the charges in the universe is constant.
When a particle with charge +e is created, a particle with charge —e is simultaneously created in
the immediate vicinity. When a particle with charge +e disappears, a particle with charge —e also
disappears in the immediate vicinity. Hence the net charge of the universe remains constant.

THE TEST-CHARGE CONCEPT: A fest-charge is a very small charge that can be used in
making measurements on an electric system. It is assumed that such a charge, which is tiny both
in magnitude and physical size, has a negligible effect on its environment.

232
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AN ELECTRIC FIELD is said to exist at any point in space when a test charge, placed at that
point, experiences an electrical force. The direction of the electric field at a point is the same as
the direction of the force experienced by a positive test charge placed at the point.

Electric field lines can be used to sketch electric fields. The line through a point has the same
direction at that point as the electric field. Where the field lines are closest together, the electric field
is largest. Field lines come out of positive charges (because a positive charge repels a positive test charge)
and come into negative charges (because they attract the positive test charge).

THE STRENGTH OF THE ELECTRIC FIELD (E) at a point is equal to the force experienced
by a unit positive test charge placed at that point. Because the electric field strength is a force
per unit charge, it is a vector quantity. The units of E are N/C or (see Chapter 25) V/m.
If a charge ¢ is placed at a point where the electric field due to other charges is E, the charge will
experience a force Fj given by
P, = gF

If ¢ is negative, F; will be opposite in direction to E.

ELECTRIC FIELD DUE TO A POINT CHARGE: To find E (the signed magnitude of E) due
to a point charge ¢, we make use of Coulomb’s Law. If a point charge ¢’ is placed at a distance
r from the charge ¢, it will experience a force

g (14
Fr=— 1" — I
E™ 4ne 12 1 47e 2

But if a point charge ¢’ is placed at a position where the electric field is E, then the force on ¢’ is

FE = q/E

Comparing these two expressions for Fg, we see that
_la
 4mer?

This is the electric field at a distance r from a point charge ¢g. The same relation applies at points outside
a finite spherical charge ¢. For ¢ positive, E is positive and E is directed radially outward from ¢; for ¢
negative, E is negative and E is directed radially inward.

SUPERPOSITION PRINCIPLE: The force experienced by a charge due to other charges is the
vector sum of the Coulomb forces acting on it due to these other charges. Similarly, the electric
intensity E at a point due to several charges is the vector sum of the intensities due to the indivi-
dual charges.

Solved Problems

24.1 Two coins lie 1.5 m apart on a table. They carry identical charges. Approximately how large is the
charge on each if a coin experiences a force of 2 N?

The diameter of a coin is small compared to the 1.5 m separation. We may therefore approximate the
coins as point charges. Coulomb’s Law, Fg = (k/K)q1q2/r2, gives (with K approximated as 1.00)
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5 Fgr’ (2N)(1.5m)’
N =4 =TT T 90100 Nom2/C

=5x107""C?

from which ¢ =2 x 107> C.

24.2 Repeat Problem 24.1 if the coins are separated by a distance of 1.5 m in a large vat of water. The
dielectric constant of water is about 80.

From Coulomb’s Law,

where K, the dielectric constant, is now 80. Then
Fper’K 2 N)(1.5 m)?
g JErK [N mis)
k 9 x 10° N-m?/C

24.3 A helium nucleus has charge +2¢, and a neon nucleus +10e, where e is the quantum of charge,
1.60 x 107" C. Find the repulsive force exerted on one by the other when they are 3.0
nanometers (1 nm = 107° m) apart. Assume the system to be in vacuum.

Nuclei have radii of order 107> m. We can assume them to be point charges in this case. Then
(2)(10)(1.6 x 107 C)?

50X 107 ) =51x10""" N=0.51 nN
U X 7 m

Fp= qu = (9.0 x 10° N-m?/C?)

24.4 In the Bohr model of the hydrogen atom, an electron (¢ = —e) circles a proton (¢’ = ¢) in an
orbit of radius 5.3 x 10™'" m. The attraction of the proton for the electron furnishes the centri-
petal force needed to hold the electron in orbit. Find (a) the force of electrical attraction between
the particles and (b) the electron’s speed. The electron mass is 9.1 x 107! kg.

(L6x1077C)°

ot 2 82 x 1078 N=82nN
(5.3 x 10711 m)?

I
(a) Fp =k = (9.0 x 10° N-m?/C?)
;

(b) The force found in (a) is the centripetal force, mo? /r. Therefore,

o

82 x 107 N:m’—f}

2 x 1078 N)( 2 8 10~ 1
/(8.2 x 10~ (8.2 x 10~ N(5331>< 0~ 'm) —22%10° m/s
9.1 x 10" kg

24.5 Three point charges are placed on the x-axis as shown in Fig. 24-1. Find the net force on the
—5 pC charge due to the two other charges.

from which

Because unlike charges attract, the forces on the —5uC charge are as shown. The magnitudes of F g3 and
Fpg are given by Coulomb’s Law:

(3.0 x 107 C)(5.0 x 107°°C)
(0.20 m)?

Fiy = (9.0 x 10° N-m?*/C?) =34N

(8.0 x 107°C)(5.0 x 107°C)
(0.30m)?

Fpg = (9.0 x 10° N-m?/C?) =40N
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24.6

24.7

3.0uC =5.0uC 8.0uC
+ )_»
O 20 cm 4 30 cm
-
F; Fy
Fig. 24-1 Fig. 24-2

Notice two things about the computation: (1) Proper units (coulombs and meters) must be used. (2) Because
we want only the magnitudes of the forces, we do not carry along the signs of the charges. (That is, we use
their absolute values.) The direction of each force is given by the diagram, which we drew from inspection of
the situation.
From the diagram, the resultant force on the center charge is
Fr=Fp—Fp3=40N—-34N=06N

and it is in the +x-direction.

Find the ratio of the Coulomb electric force Fr to the gravitational force F; between two
electrons in vacuum.

From Coulomb’s Law and Newton’s Law of gravitation,
2 2
Fp=k®%  and  Fy=6"%
r r
Fe kq? /P B ke
Fo  Gm?/rt ™ Gm?
(9.0 x 10° N-m?/C?)(1.6 x 10 C)*
(6.67 x 10711 N-m?/kg?)(9.1 x 103! kg)?

Therefore

=42 x10%

As you can see, the electric force is much stronger than the gravitational force.

As shown in Fig. 24-2, two identical balls, each of mass 0.10 g, carry identical charges and are
suspended by two threads of equal length. At equilibrium they position themselves as shown.
Find the charge on either ball.

Consider the ball on the left. It is in equilibrium under three forces: (1) the tension F7 in the thread; (2)
the force of gravity,

mg = (1.0 x 107" kg)(9.81 m/s*) =9.8 x 107* N

and (3) the Coulomb repulsion Fp.
Writing 3 F, = 0 and ) F, = 0 for the ball on the left, we obtain

Frcos 60°— Fp =0 and Fr sin 60° —mg =0

From the second equation,
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po_ Mg _98x107'N
T7sin60° 0.866
Substituting in the first equation gives
F = Fp cos 60° = (1.13 x 107 N)(0.50) = 5.7 x 107* N
But this is the Coulomb force, qu'/rz. Therefore,
' = — Fer* (57 % 107*N)(0.40m)’
k 9.0 x 10°N-m2/C?

=1.13x107° N

from which ¢ = 0.10 uC.

24.8 The charges shown in Fig. 24-3 are stationary. Find the force on the 4.0 uC charge due to the
other two.

+4.0uC

20 cm 20 cm

+2.0ﬂcQ60° 60°Q+ 3.0uC

Fig. 24-3

From Coulomb’s Law we have

(2.0 x 107°C)(4.0 x 107°C)

!
449 9 22
Fp=k—=(9.0x 10° N-m~/C — 18N
=y = a (0.20m)?
i _6 _6
Fry = k2L = (9.0 x 10°N-m?/C?) (3.0x 10 C)(4.02>< 10°C) 5.
4 (0.20m)

The resultant force on the 4 uC charge has components

Fry = Fry c0s 60° — Fps cos 60° = (1.8 — 2.7)(0.50) N = —0.45N
Fp, = Fpy sin 60° + Fpy sin 60° = (1.8 +2.7)(0.866) N = 3.9N

5o Fi=/F} +F}, = /(0457 + (39N =39N

The resultant makes an angle of tan™' (0.45/3.9) = 7° with the positive y-axis, that is, 6 = 97°.
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24.9

Two charges are placed on the x-axis: +3.0 4C at x = 0 and —5.0 uC at x = 40 cm. Where must a
third charge ¢ be placed if the force it experiences is to be zero?

The situation is shown in Fig. 24-4. We know that ¢ must be placed somewhere on the x-axis. (Why?)
Suppose that ¢ is positive. When it is placed in interval BC, the two forces on it are in the same direction and
cannot cancel. When it is placed to the right of C, the attractive force from the —5 pC charge is always larger
than the repulsion of the +3.0 C charge. Therefore, the force on g cannot be zero in this region. Only in the
region to the left of B can cancellation occur. (Can you show that this is also true if ¢ is negative?)

For ¢ placed as shown, when the net force on it is zero, we have F; = F5 and so, for distances in meters,

L 430 10°C) L4950 107°°C)
> (0.40m + d)*

After canceling ¢, k, and 10~° C from each side, we cross-multiply to obtain
5d° =3.0(040+d)?* or d*—12d—024=0
Using the quadratic formula, we find

b VB —dac 1.2+ V14471096

d
2a 2

=0.60£0.775m

Two values, 1.4 m and —0.18 m, are therefore found for d. The first is the correct one; the second gives the
point in BC where the two forces have the same magnitude but do not cancel.

Fy Fy +3.0uC -5.0uC

q
% d 40 cm

Fig. 24-4

24.10 Compute (a) the electric field E in air at a distance of 30 cm from a point charge

g, = 5.0 x 107 C, (b) the force on a charge ¢, = 4.0 x 107'°C placed 30 cm from ¢;, and (¢)
the force on a charge ¢; = —4.0 x 107'° C placed 30 cm from ¢, (in the absence of ¢,).

(a) E:k%: (9.0 109N-m2/C2)5Z)§01i)n;C:0.50 kN/C
directed away from g;.

(b) Fp = Eq> = (500 N/C)(4.0 x 107°C) = 2.0 x 107" N = 0.20 uN
directed away from g¢;.

(c) F = Eqy = (500 N/C)(—4.0 x 107'°C) = —0.20 uN

This force is directed toward ¢;.
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24.11 For the situation shown in Fig. 24-5, find (a) the electric field £ at point P, (b) the force on a
—4.0 x 107% C charge placed at P, and (c¢) where in the region the electric field would be zero (in
the absence of the —4.0 x 10~® C charge).

9 5.0 cm P 5.0 cm 9>
<t
+20x 1078 C -50x107%C
Fig. 24-5

(a) A positive test charge placed at P will be repelled to the right by the positive charge ¢, and attracted to
the right by the negative charge ¢,. Because E, and E, have the same direction, we can add their
magnitudes to obtain the magnitude of the resultant field:

q @l k
E—E +E —k ;|+k—|j|:—2(\q1\+|qzl)
r Fy

where r; =r, =0.05 m, and |q,| and |g¢,| are the absolute values of ¢; and ¢,. Hence,

~9.0x 10" N-m*/C’

0050 m) (25 x 107 C) = 9.0 x 10° N/C
. m

directed toward the right.
(b) A charge ¢ placed at P will experience a force Egq. Therefore,

Fp = Eq= (9.0 x 10° N/C)(—4.0 x 107°C) = —0.036 N

The negative sign tells us the force is directed toward the left. This is correct because the electric field
represents the force on a positive charge. The force on a negative charge is opposite in direction to the
field.

(¢) Reasoning as in Problem 24.9, we conclude that the field will be zero somewhere to the right of the
—5.0 x 1078 C charge. Represent the distance to that point from the —5.0 x 1078 C charge by d. At that
point,

El—E2:0

because the field due to the positive charge is to the right, while the field due to the negative charge is to
the left. Thus

20 107° 50x 107"
k(@_‘iﬂ):(9.0x1091\1.m2/c2) 0x107C  >0x107C)_,
(d+0.10 m) d

" 3
Simplifying, we obtain
3d* —0.2d — 0.01 =0

which gives d = 0.10 m and —0.03 m. Only the plus sign has meaning here, and therefore d = 0.10 m.
The point in question is 10 cm to the right of the negative charge.

24.12 Three charges are placed on three corners of a square, as shown in Fig. 24-6. Each side of the
square is 30.0 cm. Compute E at the fourth corner. What would be the force on a 6.00 C charge
placed at the vacant corner?
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FA

Fig. 24-6

The contributions of the three charges to the field at the vacant corner are as indicated. Notice in
particular their directions. Their magnitudes are given by E = kq/r2 to be

E;,=4.00x10° N/C  Eg=4.00x10°N/C  Es=5.00x10° N/C
Because the Eg vector makes an angle of 45.0° to the horizontal, we have

E, = Eg cos 45.0° — E; = —1.17 x 10° N/C

E, = Es — Eg cos 45.0° = 2.17 x 10° N/C
Using E = /E? + E and tan0 = E, /E,, we find E = 2.47 x 10° N at 118".

The force on a charge placed at the vacant corner would be simply F = Eg. Since ¢ = 6.00 x 107¢ C,
we have Fp = 1.48 N at an angle of 118°.

Two charged metal plates in vacuum are 15 cm apart as shown in Fig. 24-7. The electric field
between the plates is uniform and has a strength of E = 3000 N/C. An electron (¢ = —e,
m, = 9.1 x 107! kg) is released from rest at point P just outside the negative plate. () How
long will it take to reach the other plate? (b) How fast will it be going just before it hits?

E=3000N/C
+ > —_
+ > =
+ > —
———————————————————— -9
A P
+ > —
4e > —
k 15 cm H

Fig. 24-7
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The electric field lines show the force on a positive charge. (A positive charge would be repelled to the
right by the positive plate and attracted to the right by the negative plate.) An electron, being negative, will
experience a force in the opposite direction, toward the left, of magnitude

Fr = |qlE = (1.6 x 107" C)(3000 N/C) =4.8 x 107" N
Because of this force, the electron experiences an acceleration toward the left given by

_Fp 48x107'°N
T m 9.1 x 1073 kg

In the motion problem for the electron released at the negative plate and traveling to the positive plate,

v;=0 x=015m a=53x10"m/s

=53%x10" m/s’

(@) From x = v;t +1ar* we have

=y 2o (2015 m) S=24x10"s
a 5.3 x 10" m/s

(b) v=v;+at =0+ (53 x 10" m/s?)(2.4 x 107* s) = 1.30 x 10" m/s

As you will see in Chapter 41, relativistic effects begin to become important at speeds above this.
Therefore, this approach must be modified for very fast particles.

Suppose in Fig. 24-7 an eclectron is shot straight upward from point P with a speed of
5.0 x 10° m/s. How far above A will it strike the positive plate?

This is a projectile problem. (Since the gravitational force is so small compared to the electrical force, we
ignore gravity.) The only force acting on the electron after its release is the horizontal electric force. We
found in Problem 24.13(a) that under the action of this force the electron has a time-of-flight of 2.4 x 1078 s.
The vertical displacement in this time is

(5.0 x 10° m/s)(2.4 x 107 s) = 0.12 m

The electron strikes the positive plate 12 cm above point A.

In Fig. 24-7 a proton (¢ = 4+e, m = 1.67 x 107" kg) is shot with speed 2.00 x 10° m/s toward P
from A. What will be its speed just before hitting the plate at P?

Fr  qE (1.60 x 107" C)(3000 N/C) oo
_TE_9% _ =2. 1
T m 1.67 x 10777 kg 88 > 107 m/s

For the problem involving horizontal motion,
v, =200x10°m/s x=015m a=288x 10" m/s®
We use v_% = ’U? + 2ax to find

v = \/uf + 2ax = \/(2.00 % 105 m/s)* + (2)(2.88 x 10'" m/s%)(0.15 m) = 356 km/s

Two identical tiny metal balls have charges ¢; and ¢,. The repulsive force one exerts on the other
when they are 20 cm apart is 1.35 x 107* N. After the balls are touched together and then
separated once again to 20 cm, the repulsive force is found to be 1.406 x 10~* N. Find ¢, and ¢,.

Because the force is one of repulsion, ¢, and ¢, are of the same sign. After the balls are touched, they
share charge equally, so each has a charge %(ql + ¢»). Writing Coulomb’s Law for the two situations
described, we have



CHAP. 24] COULOMB’S LAW AND ELECTRIC FIELDS 241

24.17

24.18

24.19

24.20

24.21

24.22

24.23

24.24

24.25

24.26

24.27

24.28

q91492
. 135 N=k——
0-000135 0.040 m?

5 (a1 +Q2)}2

and 0.000140 6 N =k
0.040 m?

After substitution for k, these equations reduce to
G194, =6.00x 1071°C>  and ¢ +¢,=500x10°C

Solving these equations simultaneously gives ¢g; = 20 nC and ¢, = 30 nC (or vice versa). Alternatively, both
charges could have been negative.

Supplementary Problems

How many electrons are contained in 1.0 C of charge? What is the mass of the electrons in 1.0 C of
charge? Ans. 6.2 x 10" electrons, 5.7 x 107" kg

If two equal charges, each of 1 C, were separated in air by a distance of 1 km, what would be the force
between them? Ans. 9 kN repulsion

Determine the force between two free electrons spaced 1.0 angstrom (10710 m) apart. Ans. 23 nN
repulsion

What is the force of repulsion between two argon nuclei that are separated by 1.0 nm (1079 m)? The charge
on an argon nucleus is +18e. Ans. 75 nN

Two equally charged balls are 3 cm apart in air and repel each other with a force of 40 uN. Compute the
charge on each ball. Ans. 2 nC

Three point charges are placed at the following points on the x-axis: +2.0uC at x =0, —3.0uC at
x =40 cm, —5.0uC at x =120 cm. Find the force (¢) on the —3.0uC charge, (b) on the —5.0uC
charge. Ans. (a) —0.55 N; (b) 0.15 N

Four equal point charges of 3.0 uC are placed at the four corners of a square that is 40 cm on a side. Find
the force on any one of the charges. Ans. 0.97 N outward along the diagonal

Four equal-magnitude point charges (3.0 uC) are placed at the corners of a square that is 40 cm on a side.
Two, diagonally opposite each other, are positive, and the other two are negative. Find the force on either
negative charge. Ans. 0.46 N inward along the diagonal

Charges of +2.0, +3.0, and —8.0 uC are placed at the vertices of an equilateral triangle of side 10 cm.
Calculate the magnitude of the force acting on the —8.0 uC charge due to the other two charges.
Ans. 31N

One charge of (5.0 4C) is placed at exactly x = 0, and a second charge (+7.0 uC) at x = 100 cm. Where
can a third be placed so as to experience zero net force due to the other two? Ans. at x =46 cm

Two identical tiny metal balls carry charges of +3 nC and —12 nC. They are 3 m apart. (¢) Compute the
force of attraction. (b) The balls are now touched together and then separated to 3 cm. Describe the forces
on them now. Ans. (a) 4 x 107* N attraction; (b) 2 x 10™* N repulsion

A charge of +6.0 uC experiences a force of 2.0 mN in the +x-direction at a certain point in space. (a) What
was the electric field there before the charge was placed there? (b) Describe the force a — 2.0 4C charge would
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experience if it were used in place of the +6.0 uC charge. Ans. (a) 0.33 kN/C in +x-direction; (b)
0.67 mN in —x-direction

A point charge of —3.0 x 107 C is placed at the origin of coordinates. Find the electric field at the point
x = 5.0 m on the x-axis. Ans. 11 kN/C in —x-direction

Four equal-magnitude (4.0 uC) charges are placed at the four corners of a square that is 20 cm on each side.
Find the electric field at the center of the square («a) if the charges are all positive, (b) if the charges alternate
in sign around the perimeter of the square, (¢) if the charges have the following sequence around the square:
plus, plus, minus, minus. Ans. (a) zero; (b) zero; (¢) 5.1 MN/C toward the negative side

A 0.200-g ball hangs from a thread in a vertical electric field of 3.00 kN/C directed upward. What is the
charge on the ball if the tension in the thread is («) zero and (b) 4.00 mN? Ans.  (a) +653 nC; (b)
—680 nC

Determine the acceleration of a proton (¢ = +e, m = 1.67 x 10?7 kg) in an electric field of strength
0.50 kN/C. How many times is this acceleration greater than that due to gravity? Ans. 4.8 x 10'°
m/s’, 4.9 x 10°

A tiny, 0.60-g ball carries a charge of magnitude 8.0 uC. It is suspended by a thread in a downward 300 N/C
electric field. What is the tension in the thread if the charge on the ball is (a) positive, (b)
negative? Ans.  (a) 8.3 mN; (b) 3.5 mN

The tiny ball at the end of the thread shown in Fig. 24-8 has a mass of 0.60 g and is in a horizontal electric
field of strength 700 N/C. It is in equilibrium in the position shown. What are the magnitude and sign of the
charge on the ball? Ans. =3.1uC

E=700N/C

Fig. 24-8

An electron (¢ = —e, m, =9.1 x 103! kg) is projected out along the +x-axis with an initial speed of
3.0 x 10% m/s. It goes 45 cm and stops due to a uniform electric field in the region. Find the magnitude
and direction of the field. Ans. 57 N/C in +x-direction

A particle of mass m and charge —e is projected with horizontal speed v into an electric field (E) directed
downward. Find (a) the horizontal and vertical components of its acceleration, a, and ay; (b) its horizontal
and vertical displacements, x and y, after time #; (¢) the equation of its trajectory. Ans. (a) a, =0,
a, = Ee/m; (b) x = vt, y = La,i* =1 (Ee/m)?; (¢) y = L (Ee/mv’)x* (a parabola)



Chapter 25

Potential; Capacitance

THE POTENTIAL DIFFERENCE between point 4 and point B is the work done against electri-
cal forces in carrying a unit positive test-charge from A4 to B. We represent the potential differ-
ence between 4 and B by Vz—V, or by V. Its units are those of work per charge (joules/
coulomb) and are called volts (V):

1V=11J/C

Because work is a scalar quantity, so too is potential difference. Like work, potential difference may
be positive or negative.
The work W done in transporting a charge ¢ from one point A4 to a second point B is

W=q(Vg—V4)=qV

where the appropriate sign (+ or —) must be given to the charge. If both (V3 — V) and ¢ are positive
(or negative), the work done is positive. If (V3 — V) and ¢ have opposite signs, the work done is
negative.

ABSOLUTE POTENTIAL: The absolute potential at a point is the work done against electric
forces in carrying a unit positive test-charge from infinity to that point. Hence the absolute poten-
tial at a point B is the difference in potential from 4 = oo to B.

Consider a point charge ¢ in vacuum and a point P at a distance r from the point charge. The
absolute potential at P due to the charge g is

y =k
p

where k = 8.99 x 10° N.m?/C? is the Coulomb constant. The absolute potential at infinity (at r = c0) is
Zero.

Because of the superposition principle and the scalar nature of potential difference, the absolute
potential at a point due to a number of point charges is

V:k}j%

where the r; are the distances of the charges ¢; from the point in question. Negative ¢’s contribute
negative terms to the potential, while positive ¢’s contribute positive terms.

The absolute potential due to a uniformly charged sphere, at points outside the sphere or on its
surface is V' = kq/r, where ¢ is the charge on the sphere. This potential is the same as that due to a point
charge ¢ placed at the position of the sphere’s center.

ELECTRICAL POTENTIAL ENERGY (PEg): To carry a charge ¢ from infinity to a point
where the absolute potential is ¥, work in the amount ¢V must be done on the charge. This
work appears as electrical potential energy (PEg) stored in the charge.

Similarly, when a charge ¢ is carried through a potential difference V', work in the amount ¢} must
be done on the charge. This work results in a change gV in the PEj of the charge. For a potential rise, V'
will be positive and the PE will increase if ¢ is positive. But for a potential drop, V' will be negative and
the PEg of the charge will decrease if ¢ is positive.
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V' RELATED TO E: Suppose that in a certain region the electric field is uniform and is in the
x-direction. Call its magnitude E,. Because E, is the force on a unit positive test-charge, the
work done in moving the test-charge through a distance x is (from W = F,Xx)

V=ExXx

The field between two large, parallel, oppositely charged metal plates is uniform. We can therefore use
this equation to relate the electric field £ between the plates to the plate separation d and their potential
difference V': For parallel plates,

V =FEd

ELECTRON VOLT ENERGY UNIT: The work done in carrying a charge +e (coulombs)
through a potential rise of exactly 1 volt is defined to be 1 electron volt (eV). Therefore,

1eV=(1.602x10""C)(1V)=1.602x10""7
Equivalently,

work (in joules)

Work or energy (in eV) = B

A CAPACITOR is a device that stores charge. Often, although certainly not always, it consists of
two conductors separated by an insulator or dielectric. The capacitance (C) of a capacitor is de-
fined as

magnitude of charge on either conductor

Capacitance = . ——
b magnitude of potential difference between conductors

For ¢ in coulombs and V in volts, C is in farads (F).

PARALLEL-PLATE CAPACITOR: The capacitance of a parallel-plate capacitor whose opposing
plate faces, each of area A, are separated by a small distance d is given by
A
C=Ke—
€0d

where K = ¢/¢, is the dimensionless dielectric constant (see Chapter 24) of the nonconducting material
(the dielectric) between the plates, and
€ =8.85x 1072 C?*/N-m* = 8.85 x 102 F/m

For vacuum, K = 1, so that a dielectric-filled parallel-plate capacitor has a capacitance K times larger
than the same capacitor with vacuum between its plates. This result holds for a capacitor of arbitrary
shape.

CAPACITORS IN PARALLEL AND SERIES: As shown in Fig. 25-1, capacitances add for
capacitors in parallel, whereas reciprocal capacitances add for capacitors in series.

ENERGY STORED IN A CAPACITOR: The energy (PEg) stored in a capacitor of capacitance
C that has a charge ¢ and a potential difference V' is

! 1,
PE, =—qV =-CV? =
E=29Y =3

N =

q
C
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9=4q1 74" 45 9=91=9:=9;
V=v,=V,=V, V=V, +V,+ 7V,
Ceq:Cl+C2+C3 LZL_FL_FL
Ceq Cl CZ C3
(a) Capacitors in parallel (b) Capacitors in series

Fig. 25-1

Solved Problems

25.1 In Fig. 25-2, the potential difference between the metal plates is 40 V. («¢) Which plate is at the
higher potential? (b)) How much work must be done to carry a +3.0 C charge from B to 4? From
A to B? (¢) How do we know that the electric field is in the direction indicated? (d) If the plate
separation is 5.0 mm, what is the magnitude of E?

Fig. 25-2

(a) A positive test charge between the plates is repelled by 4 and attracted by B. Left to itself, the positive
test charge will move from A to B, and so A4 is at the higher potential.

(b) The magnitude of the work done in carrying a charge ¢ through a potential difference V" is ¢¥. Thus the
magnitude of the work done in the present situation is

W = (3.0 C)(40 V) = 0.12 kJ

Because a positive charge between the plates is repelled by A, positive work (+120 J) must be done to
drag the 3.0 C charge from B to 4. To restrain the charge as it moves from A to B, negative work
(=120 J) is done.
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(¢) A positive test-charge between the plates experiences a force directed from A4 to B and this is, by
definition, the direction of the field.

(d) For parallel plates, V' = Ed. Therefore,

V. 40V
d ~0.0050 m

Notice that the SI units for electric field, V/m and N/C, are identical.

E= =8.0 kV/m

How much work is required to carry an electron from the positive terminal of a 12-V battery to
the negative terminal?

Going from the positive to the negative terminal, one passes through a potential drop. In this case it is
V =—12 V. Then

W=qV=(-16x10""C)(-12V)=19x 1078 J

As a check, we notice that an electron, if left to itself, will move from negative to positive because it is a
negative charge. Hence positive work must be done to carry it in the reverse direction as required here.

How much electrical potential energy does a proton lose as it falls through a potential drop of
5kV?

The proton carries a positive charge. It will therefore move from regions of high potential to regions of
low potential if left free to do so. Its change in potential energy as it moves through a potential difference V'
is Vq. In our case, V= —5 kV. Therefore,

Change in PE; = Vg = (=5 x 10° V)(1.6 x 107" C) = -8 x 1070 J

An electron starts from rest and falls through a potential rise of 80 V. What is its final speed?

Positive charges tend to fall through potential drops; negative charges, such as electrons, tend to fall
through potential rises.

Change in PE; = Vg = (80 V)(=1.6 x 107" C) = —1.28 x 1077 J
This lost PEg appears as KE of the electron:
PEj lost = KE gained

1.28 x 1077 J = L} — Imv} = Smuf — 0

-17
vf:\/(1.28><10 DO _ 534 100 mys

9.1 x 103! kg

(a) What is the absolute potential at each of the following distances from a charge of 2.0 uC:
r =10 cm and r = 50 cm? (b) How much work is required to carry a 0.05 uC charge from the
point at r = 50 cm to that at r = 10 cm?

20x10°C

_4_ 9 N2 /(2 5
(a) Vlofkr (9.0 x 10° N-m*/C") 010m 1.8 x10° V
10
V50:5—0V10:36 kV
(b) Work = g(Vyg — Vo) = (5 x 107 C)(1.44 x 10° V) = 7.2 mJ

Suppose, in Problem 25.5(a), that a proton is released at r = 10 cm. How fast will it be moving as
it passes a point at r = 50 cm?
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As the proton moves from one point to the other, there is a potential drop of
Potential drop = 1.80 x 10° V —0.36 x 10° V = 1.44 x 10° V
The proton acquires KE as it falls through this potential drop:
KE gained = PEj, lost
o ———"
1(1.67 x 107 kg)vf — 0 = (1.6 x 107" C)(1.44 x 10° V)

from which v, = 5.3 x 10® m/s.

In Fig. 25-2, let £ = 2.0 kV/m and d = 5.0 mm. A proton is shot from plate B toward plate A4
with a speed of 100 km/s. What will be its speed just before it strikes plate 4?

The proton, being positive, is repelled by 4 and will therefore be slowed down. We need the potential
difference between the plates, which is

V =Ed= (2.0 kV/m)(0.0050 m) =10 V
Now, from the conservation of energy, for the proton,

KE lost = PEg gained
%mv%; — %mvi =qV
Substituting m =1.67x 1072 kg, v=1.00x10°m/s, ¢=1.60x10"""C, and V=10V gives
vy = 90 km/s. As we see, the proton is indeed slowed.

A tin nucleus has a charge +50e. (a) Find the absolute potential }” at a radius of 1.0 x 1072 m
from the nucleus. (b) If a proton is released from this point, how fast will it be moving when it is
1.0 m from the nucleus?

(50)(1.6 x 107" C)

=12k

(a) V:k%: (9.0 x 10° N-m?/C?)

(b) The proton is repelled by the nucleus and flies out to infinity. The absolute potential at a point is the
potential difference between the point in question and infinity. Hence there is a potential drop of 72 kV
as the proton flies to infinity.

Usually we would simply assume that 1.0 m is far enough from the nucleus to consider it to be at
infinity. But, as a check, let us compute V" at r = 1.0 m:

(50)(1.6 x 107°C)
1.0 m

Vi = k% = (9.0 x 10° N-m?/C?) —72x10°8V

which is essentially zero in comparison with 72 kV.
As the proton falls through 72 kV,
KE gained = PEj lost
%mv} - %mvl2 =qV
1(1.67 x 107 kg)vf — 0 = (1.6 x 107" C)(72000 V)

from which vy = 3.7 x 10° m/s.

The following point charges are placed on the x-axis: +2.0uC at x =20 cm, —3.0uC at
x =30 cm, —4.0 uC at x = 40 cm. Find the absolute potential on the axis at x = 0.
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Potential is a scalar, and so

4 oni 2,00 [20x10°C -3.0x10°C —4.0x10°C
V=kY Z=(9.0x10°N-m*/C
2., = 00x m/ )( 020m | 030m ' 040m

= (9.0 x 10° N-m?/C?)(10 x 107 C/m — 10 x 107°C/m — 10 x 10°°C/m) = —90 kV

25.10 Two point charges, +¢ and —¢, are separated by a distance d. Where, besides at infinity, is the
absolute potential zero?

At the point (or points) in question,

0=kL x4 or r=r
r ry

This condition holds everywhere on a plane which is the perpendicular bisector of the line joining the two
charges. Therefore the absolute potential is zero everywhere on that plane.

25.11 Four point charges are placed at the four corners of a square that is 30 cm on each side. Find the
potential at the center of the square if (a) the four charges are each +2.0 4C and (b) two of the
four charges are +2.0 uC and two are —2.0 uC.

S YN SN2y D0 X107 C) ;
(a) V_kzr[_k = (9.0x 10 Nm/c)(0.30m)(cos450)_3'4><10 v
_ _ —6
(») V= (9.0 x 10° Nom? /) (20 20-20-20) x 107°C_ g

(0.30 m)(cos 45°)

25.12 In Fig. 25-3, the charge at 4 is +200 pC, while the charge at B is —100 pC. (a) Find the absolute
potentials at points C and D. (b) How much work must be done to transfer a charge of +500 uC
from point C to point D?

200x107'°C 1.00x107'°C
0.80 m 0.20 m

&) Ve=kS L~ (9.0x10°N-m?/C2 — 225V=-23V
r

2.00 x 107'°C 100 % 1071°¢C
0.20 m 0.80 m

Vp = (9.0 x 10° N~m2/C2)< > =4788 V=479V

(b) There is a potential rise from Cto Dof V=V, — V=788V —(-2.25V)=10.13 V. So

W = Vg = (1013 V)(5.00 x 10* C) = 5.1 mJ

+200 pC D c - 100 pC

A B

% 20 cm % 60 cm >l< 20 cm A

Fig. 25-3
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Find the electrical potential energy of three point charges placed as follows on the x-axis: +2.0 uC
at x =0, +3.0 uC at x =20 cm, and +6.0 uC at x = 50 cm. Take the PEg to be zero when the
charges are far separated.

Let us compute how much work must be done to bring the charges from infinity to their places on the
axis. We bring in the 2.0 4C charge first; this requires no work because there are no other charges in the
vicinity.

Next we bring in the 3.0 uC charge, which is repelled by the +2.0 uC charge. The potential difference
between infinity and the position to which we bring it is due to the +2.0 uC charge and is

20uC 2x10°°C
020m 0.20 m

Vieor =k (9.0 x 109N~m2/C2)< > =9.0x10*V

Therefore the work required to bring in the 3 4C charge is
Wsuc = qVi—02 = (3.0 x 107°C)(9.0 x 10* V) = 0.270 J

Finally we bring the 6.0 uC charge in to x = 0.50 m. The potential there due to the two charges already
present is

20x107° 0x107°
onjzk< 0x10°C 3.0x10°C

_ 4
050m  030m >_12'6X10V

Therefore the work required to bring in the 6.0 uC charge is
Weue = qVi—os = (6.0 x 107°C)(12.6 x 10 V) = 0.756 J
Adding the amounts of work required to assemble the charges gives the energy stored in the system:
PE; =0.270J+0.756 J =1.07J

Can you show that the order in which the charges are brought in from infinity does not affect this result?

Two protons are held at rest, 5.0 x 107'> m apart. When released, they fly apart. How fast will
each be moving when they are far from each other?

Their original PE; will be changed to KE. We proceed as in Problem 25.13. The potential at
5.0 x 107> m from the first charge due to that charge alone is

1. 107"
V = (9.0 x 10° N-m%/C?) (%) =288 V
m

The work needed to bring in the second proton is then
W =qV = (1.60 x 107" C)(288 V) = 4.61 x 1077 J
and this is the PEg of the original system. From the conservation of energy,
Original PE; = final KE
4.61 x 1077 J = Imjof + myv3

Since the particles are identical, v; = v, = v. Solving, we find that v = 1.7 x 10° m/s when the particles are
far apart.

In Fig. 25-4 we show two large metal plates connected to a 120-V battery. Assume the plates to be
in vacuum and to be much larger than shown. Find («¢) E between the plates, (b) the force
experienced by an electron between the plates, (¢) the PEj lost by an electron as it moves from
plate B to plate A, and (d) the speed of the electron released from plate B just before striking plate
A.

(a) Eisdirected from the positive plate 4 to the negative plate B. It is uniform between large parallel plates
and is given by
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Vo120V
E=— =500 = 0000 V/m =60 kV/m
directed from left to right.
(b) Fp=qE=(—1.6x10"" C)(6000 V/m) = =9.6 x 107" N

The minus sign tells us that F is directed oppositely to E. Since plate A is positive, the electron is
attracted by it. The force on the electron is toward the left.

(c) Change in PE; = Vg = (120 V)(=1.6 x 1077 C) = =1.92x 1077 J = -1.9x 1077 J
Notice that ¥ is a potential rise from B to A.

(d) PE[ lost = KE gained
1.92 x 1077 J = Lmvf — Lmo}

1.92x 1077 3 =1(9.1 x 107" kg)vj — 0

from which v, = 6.5 x 10° m/s.

2.0 cm

25.16 As shown in Fig. 25-5, a charged particle remains stationary between the two horizontal charged

plates. The plate separation is 2.0 cm, and m = 4.0 x 107" kg and ¢ =2.4 x 107'* C for the
particle. Find the potential difference between the plates.
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Since the particle is in equilibrium, the weight of the particle is equal to the upward electrical force.
That is,

mg = qFE
mg (4.0 x 107" kg)(9.81 m/s?) 6
E="8_ =1.63x10°V
or 7 24x10 5 C X107 V/m

But for a parallel-plate system,

V = Ed = (1.63 x 10° V/m)(0.020 m) = 33 kV

An alpha particle (¢ =2e, m=6.7 x 10777 kg) falls from rest through a potential drop of
3.0 x 10° V (3.0 MV). (¢) What is its KE in electron volts? (b)) What is its speed?

qV  (2¢)(3.0 x 10°)

(a) Energy in eV ==~ = =6.0 x 10° eV = 6.0 MeV

e

(b) PE;; lost = KE gained
gV =} — b
(2)(1.6 x 1072.C)(3.0 x 10° V) = 1(6.7 x 10 kg)v} — 0

from which v, = 1.7 x 107 m/s.

What is the speed of a 400 eV (a) electron, (b) proton, and (c¢) alpha particle?
In each case we know that the particle’s kinetic energy is

1.60 x 10712 J

Lon? —
SNV (400 eV) ( 100 eV

) =640 x 10717 J

Substituting m, = 9.1 x 1073 kg for the electron, m, = 1.67 x 10°% kg for the proton, and m, =
4(1.67 x 10727 kg) for the alpha particle gives their speeds as () 1.186 x 107 m/s, (b) 2.77 x 10° m/s, and
(¢) 1.38 x 10° m/s.

A capacitor has a capacitance of 8.0 uF with air between its plates. Determine its capacitance
when a dielectric with dielectric constant 6.0 is placed between its plates.

C with dielectric = K(C with air) = (6.0)(8.0 uF) = 48 uF

What is the charge on a 300 pF capacitor when it is charged to a voltage of 1.0 kV?

qg=CV = (300 x 1072 F)(1000 V) = 3.0 x 10~ C = 0.30 uC

A metal sphere mounted on an insulating rod carries a charge of 6.0 nC when its potential is
200 V higher than its surroundings. What is the capacitance of the capacitor formed by the sphere
and its surroundings?

g 60x107°C

C=y="00v

=30 pF
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25.22 A 1.2 uF capacitor is charged to 3.0 kV. Compute the energy stored in the capacitor.

Energy = LgV =1CV? =1(1.2 x 107° F)(3000 V)* = 5.4 J

25.23 The series combination of two capacitors shown in Fig. 25-6 is connected across 1000 V. Com-
pute (@) the equivalent capacitance C,q of the combination, (b) the magnitudes of the charges on
the capacitors, (¢) the potential differences across the capacitors, and (d ) the energy stored in the
capacitors.

o1 1
(@) Co G TG, T30pF T60pF 20 pF
from which C = 2.0 pF.

(b) In a series combination, each capacitor carries the same charge, which is the charge on the combina-
tion. Thus, using the result of (a), we have

41 = = q=CeqV = (20 x 1072F)(1000 V) = 2.0 nC

@ 20x107°C
pood 2V A0 & v — 067 KV
(©) 17 C, T 30x10 2F

¢ 20x107°C
=~ _333V=033kV
TG, 60x10°2F

d Energy in C; =3¢, V; =1(2.0 x 1072 C)(667 V) = 6.7 x 1077 J = 0.67 uJ
2 2
Energy in C; =1¢,7, =1(20x 1077 C)(333 V) =33 x 1077 J=0.33 pJ
Energy in combination = (6.7 +3.3) x 1077 J=10x 107" J=1.0 uJ

The last result is also directly given by ¢V or 1 C, V7.

Ak

2.0 pF
4 £ >~ C,
—+ —
g c, |
- -
pa "I "I I" . 6.0 pF
+I +1h_
3.0 pF 6.0 p
V'=1000 V 4ot 120 v e —
Fig. 25-6 Fig. 25-7

25.24 The parallel capacitor combination shown in Fig. 25-7 is connected across a 120 V source.
Determine the equivalent capacitance C,y, the charge on each capacitor, and the charge on the
combination.

For a parallel combination,

Ceq = Cy + C, = 2.0 pF + 6.0 pF = 8.0 pF
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25.25

25.26

Each capacitor has a 120 V potential difference impressed on it. Therefore,
g1 =C V= (2.0x 102 F)(120 V) = 0.24 nC
¢ = GV, = (6.0 x 1072 F)(120 V) = 0.72 nC

The charge on the combination is ¢; + ¢, = 960 pC. Or, we could write
q=CeqV = (8.0 x 1072 F)(120 V) = 0.96 nC

A certain parallel-plate capacitor consists of two plates, each with area 200 cm?, separated by a
0.40-cm air gap. (¢) Compute its capacitance. (b) If the capacitor is connected across a 500 V
source, find the charge on it, the energy stored in it, and the value of E between the plates. (¢) If a
liquid with K = 2.60 is poured between the plates so as to fill the air gap, how much additional
charge will flow onto the capacitor from the 500 V source?

(a) For a parallel-plate capacitor with air gap,

A 1 200 x 10~* m? BT
C=Ke==(1)(885x 1072 F/m)=————— =44 x 10" F =44 pF
fog = (D85 x /™) 0% 10 m % P
(b) q=CV = (44 x10"""F)(500 V) =2.2 x 107 C = 22 nC

Energy = igV =122 x 107°C)(500 V) = 5.5 x 1070 J = 5.5 uJ

v 500V
d 40x1073 m

(¢) The capacitor will now have a capacitance K = 2.60 times larger than before. Therefore,

E= =13 x10° V/m

g=CV =(2.60x44x10""F)(500 V) =5.7x 10°* C =57 nC
The capacitor already had a charge of 22 nC and so 57 nC — 22 nC or 35 nC must have been added to it.

Two capacitors, 3.0 uF and 4.0 pF, are individually charged across a 6.0-V battery. After being
disconnected from the battery, they are connected together with a negative plate of one attached
to the positive plate of the other. What is the final charge on each capacitor?

The situation is shown in Fig. 25-8. Before being connected, their charges are
¢ =CV =(30x10°F)(6.0 V) = 18 uC
qs = CV = (4.0 x 10°°F)(6.0 V) = 24 uC
These charges partly cancel when the capacitors are connected together. Their final charges are given by

3+ qs=qs—q3 = 6.0 uC

g3=18uC :.||.i
TR N |
°:I

A <t v > B
q,=24uC
—apt+ _ F
Sl -IF
94
(a) Before (b) After

Fig. 25-8
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Also, the potentials across them are now the same, so that V' = ¢/C gives
@ 4
30x10°F 40x10°F

Substitution in the previous equation gives
0.75¢4 + g4 =6.0uC  or g, =34 uC

or g5=0.75q,

Then ¢35 = 0.75¢; = 2.6 uC.

Supplementary Problems

Two metal plates are attached to the two terminals of a 1.50-V battery. How much work is required to carry
a +5.0-uC charge (a) from the negative to the positive plate, (b) from the positive to the negative
plate? Ans. (a) 7.5u), (b) =7.5u]

The plates described in Problem 25.27 are in vacuum. An electron (¢ = —e, m, = 9.1 X 1073 kg) is released
at the negative plate and falls freely to the positive plate. How fast is it going just before it strikes the
plate? Ans. 7.3 x 10° m/s

A proton (¢ = e, m, = 1.67 x 10727 kg) is accelerated from rest through a potential difference of 1.0 MV.
What is its final speed? Ans. 1.4 x 10" m/s

An electron gun shoots electrons (¢ = —e, m, = 9.1 x 103! kg) at a metal plate that is 4.0 mm away in
vacuum. The plate is 5.0 V lower in potential than the gun. How fast must the electrons be moving as they
leave the gun if they are to reach the plate? Ans. 1.3 x 10° m/s

The potential difference between two large parallel metal plates is 120 V. The plate separation is 3.0 mm.
Find the electric field between the plates. Ans. 40 kV/m toward negative plate

Anelectron (¢ = —e, m, = 9.1 x 107! kg) is shot with speed 5.0 x 10® m/s parallel to a uniform electric field
of strength 3.0 kV/m. How far will the electron go before it stops? Ans. 2.4 cm

A potential difference of 24 kV maintains a downward-directed electric field between two horizontal parallel
plates separated by 1.8 cm. Find the charge on an oil droplet of mass 2.2 x 107! kg that remains stationary
in the field between the plates. Ans. 1.6 x107'® C = 10e

Determine the absolute potential in air at a distance of 3.0 cm from a point charge of
500 pC. Ans. 15 kV

Compute the magnitude of the electric field and the absolute potential at a distance of 1.0 nm from a helium
nucleus of charge +2e¢. What is the potential energy (relative to infinity) of a proton at this
position?  Ans. 2.9 x 10° N/C, 2.9V, 4.6 x 107" J

A charge of 0.20 uC is 30 cm from a point charge of 3.0 4C in vacuum. What work is required to bring the
0.20-uC charge 18 cm closer to the 3.0-uC charge? Ans. 0.0271]

A point charge of +2.04C is placed at the origin of coordinates. A second, of —3.0 uC, is placed on
the x-axis at x =100 cm. At what point (or points) on the x-axis will the absolute potential be
zero? Ans. x=40cm and x = —0.20 m

In Problem 25.37, what is the difference in potential between the following two points on the x-axis: point A
at x = 0.1 m and point B at x = 0.9 m? Which point is at the higher potential? Ans. 4 x 10° V, point 4
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25.51
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An electron is moving in the +x-direction with a speed of 5.0 x 10° m/s. There is an electric field of 3.0 kV/m
in the +x-direction. What will be the electron’s speed after it has moved 1.00 cm? Ans. 3.8 x 10 m/s

An electron has a speed of 6.0 x 10° m/s as it passes point A on its way to point B. Its speed at B is
12 x 10° m/s. What is the potential difference between 4 and B, and which is at the higher poten-
tial? Ans. 3.1V, B

A capacitor with air between its plates has capacitance 3.0 uF. What is its capacitance when wax of dielectric
constant 2.8 is placed between the plates? Ans. 8.4 uF

Determine the charge on each plate of a 0.050-uF capacitor when the potential difference between the plates
is 200 V. Ans. 10 uC

A capacitor is charged with 9.6 nC and has a 120 V potential difference between its terminals. Compute its
capacitance and the energy stored in it. Ans. 80 pF, 0.58 uJ

Compute the energy stored in a 60-pF capacitor (¢) when it is charged to a potential difference of 2.0 kV and
(b) when the charge on each plate is 30 nC. Ans. (@) 12 mJ; (b) 7.5 ud

Three capacitors, each of capacitance 120 pF, are each charged to 0.50 kV and then connected in series.
Determine (@) the potential difference between the end plates, (b) the charge on each capacitor, and (c¢) the
energy stored in the system. Ans.  (a) 1.5kV; (b) 60 nC; (¢) 45 uJ

Three capacitors (2.00 uF, 5.00 uF, and 7.00 uF) are connected in series. What is their equivalent
capacitance? Ans. 1.19 uF

Three capacitors (2.00 uF, 5.00 uF, and 7.00 uF) are connected in parallel. What is their equivalent
capacitance? Ans. 14.00 uF

The capacitor combination in Problem 25.46 is connected in series with the combination in Problem 25.47.
What is the capacitance of this new combination? Ans. 1.09 uF

Two capacitors (0.30 and 0.50 uF) are connected in parallel. (¢) What is their equivalent capacitance? A
charge of 200 C is now placed on the parallel combination. (b) What is the potential difference across it? (c)
What are the charges on the capacitors? Ans.  (a) 0.80 uF; (b) 0.25 kV; (¢) 75 uC, 0.13 mC

A 2.0-uF capacitor is charged to 50 V and then connected in parallel (positive plate to positive plate) with a
4.0-uF capacitor charged to 100 V. (a) What are the final charges on the capacitors? () What is the potential
difference across each? Ans.  (a) 0.17 mC, 0.33 mC, (b) 83 V

Repeat Problem 25.50 if the positive plate of one capacitor is connected to the negative plate of the
other. Ans.  (a) 0.10 mC, 0.20 mC; (b) 50 V

(a) Calculate the capacitance of a capacitor consisting of two parallel plates separated by a layer of paraffin
wax 0.50 cm thick, the area of each plate being 80 cm?. The dielectric constant for the wax is 2.0. (b) If the
capacitor is connected to a 100-V source, calculate the charge on the capacitor and the energy stored in the
capacitor. Ans. (a) 28 pF; (b) 2.8 nC, 0.14 uJ



Chapter 26

Current, Resistance, and Ohm’s Law

A CURRENT (I) of electricity exists in a region when a net electric charge is transported from
one point to another in that region. Suppose the charge is moving through a wire. If a charge ¢
is transported through a given cross section of the wire in a time ¢, then the current through the
wire is
=1

t
Here, ¢ is in coulombs, ¢ is in seconds, and [ is in amperes (1 A = 1 C/s). By custom the direction of the
current is taken to be in the direction of flow of positive charge. Thus, a flow of electrons to the right
corresponds to a current to the left.

A BATTERY is a source of electrical energy. If no internal energy losses occur in the battery,
then the potential difference (see Chapter 25) between its terminals is called the electromotive force
(emf) of the battery. Unless otherwise stated, it will be assumed that the terminal potential differ-
ence of a battery is equal to its emf. The unit for emf is the same as the unit for potential differ-
ence, the volt.

THE RESISTANCE (R) of a wire or other object is a measure of the potential difference (V)
that must be impressed across the object to cause a current of one ampere to flow through it:

V
R:—
1

The unit of resistance is the ohm, for which the symbol €2 (Greek omega) is used. 1 2 =1 V/A.

OHM’S LAW originally contained two parts. Its first part was simply the defining equation for
resistance, V' = IR. We often refer to this equation as being Ohm’s Law. However, Ohm also sta-
ted that R is a constant independent of V' and I. This latter part of the Law is only approxi-
mately correct.

The relation V' = IR can be applied to any resistor, where V' is the potential difference (p.d.) between
the two ends of the resistor, I is the current through the resistor, and R is the resistance of the resistor
under those conditions.

MEASUREMENT OF RESISTANCE BY AMMETER AND VOLTMETER: A series circuit
consisting of the resistance to be measured, an ammeter, and a battery is used. The current is
measured by the (low-resistance) ammeter. The potential difference is measured by connecting the
terminals of a (high-resistance) voltmeter across the resistance, i.e., in parallel with it. The resis-
tance is computed by dividing the voltmeter reading by the ammeter reading according to Ohm’s
Law, R=V/I. (If the exact value of the resistance is required, the resistances of the voltmeter
and ammeter must be considered parts of the circuit.)

THE TERMINAL POTENTIAL DIFFERENCE (or voltage) of a battery or generator when it de-
livers a current [ is related to its electromotive force e and its internal resistance r as follows:

256
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(1) When delivering current (on discharge):

Terminal voltage = (emf) — (voltage drop in internal resistance)
V=&-—1Ir

(2) When receiving current (on charge):

Terminal voltage = emf + (voltage drop in internal resistance)
V=&+1Ir

(3) When no current exists:

Terminal voltage = emf of battery or generator

RESISTIVITY: The resistance R of a wire of length L and cross-sectional area A4 is
L
R=p—
P4

where p is a constant called the resistivity. The resistivity is a characteristic of the material from which
the wire is made. For L in m, 4 in m?, and R in €, the units of p are 2-m.

RESISTANCE VARIES WITH TEMPERATURE: If a wire has a resistance R, at a tempera-
ture T, then its resistance R at a temperature 7 is

R = RO + OéRo(T — To)

where « is the temperature coefficient of resistance of the material of the wire. Usually « varies with
temperature and so this relation is applicable only over a small temperature range. The units of « are
K orec™.

A similar relation applies to the variation of resistivity with temperature. If p, and p are the
resistivities at T, and 7', respectively, then

p = po+ap(T — Tp)

POTENTIAL CHANGES: The potential difference across a resistor R through which a current
I flows is, by Ohm’s Law, /R. The end of the resistor at which the current enters is the high-
potential end of the resistor. Current always flows “downhill,” from high to low potential,
through a resistor.

The positive terminal of a battery is always the high-potential terminal if internal resistance of the
battery is negligible or small. This is true irrespective of the direction of the current through the battery.

Solved Problems

26.1 A steady current of 0.50 A flows through a wire. How much charge passes through the wire in
one minute?

Because I = g/t, we have g = It = (0.50 A)(60 s) = 30 C. (Recall that 1 A =1 C/s.)
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How many electrons flow through a light bulb each second if the current through the light bulb is
0.75 A?

From I = ¢g/1, the charge flowing through the bulb in 1.0 s is
g=1Ir=(0.75 A)(1.0s) =0.75 C

But the magnitude of the charge on each electron is e = 1.6 x 107" C. Therefore,

charge 0.75 C 18
Number — _ —47x1
umber charge/electron 1.6 x 1071 C 710

A light bulb has a resistance of 240 Q2 when lit. How much current will flow through it when it is
connected across 120 V, its normal operating voltage?
vV 120V

An electric heater uses 5.0 A when connected across 110 V. Determine its resistance.

V110 V
R=T7=%50a 2%

What is the potential drop across an electric hot plate that draws 5.0 A when its hot resistance is
24

V=IR=(50A)24 Q) =0.12 kV
The current in Fig. 26-1 is 0.125 A in the direction shown. For each of the following pairs of

points, what is their potential difference, and which point is at the higher potential? (a) 4, B; (b)
B, C;(c) C,D;(d) D, E; (e) C, E; () E, C.

10.0 Q 9.00 V
A B C
S
3.00 Q 5.00 Q
120V
S TaaLn A\
1=0.125 A D

6.00 Q

Fig. 26-1

Recall the following facts: (1) The current is the same (0.125 A) at all points in this circuit because the
charge has no other place to flow. (2) Current always flows from high to low potential through a resistor. (3)
The positive terminal of a pure emf (the long side of its symbol) is always the high-potential terminal.
Therefore, taking potential drops as negative, we have the following:

(@ Vyp=-IR=—(0.125 A)(10.1 Q) = —1.25 V; A4 is higher.
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26.8
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26.10

) Vpe=—-&=-9.00 V; B is higher.

(¢) Vep=—(0.125 A)(5.00 ©2) — (0.125 A)(6.00 ©2) = —1.38 V; C is higher.

(d) Vpg=+6&=+12.0V; E is higher.

() Verp=—(0.125 A)(5.00 2) — (0.125 A)(6.00 Q) + 12.0 V = +10.6 V; E is higher.
(f) Vec=—(0.125 A)(3.00 £2) — (0.125 A)(10.0 2) —9.00 V = —10.6 V; E is higher.

Notice that the answers to (¢) and ( /) agree with each other.

A current of 3.0 A flows through the wire shown in Fig. 26-2. What will a voltmeter read when
connected from (a) A to B, (b) 4 to C, (¢) a to D?

6.0 Q 8.0V 3.0Q 7.0V
L e L
Fig. 26-2

(a) Point 4 is at the higher potential because current always flows “downhill” through a resistor. There is a
potential drop of /R = (3.0 A)(6.0 Q) = 18 V from A to B. The voltmeter will read —18 V.

(b) In going from B to C one goes from the positive to the negative side of the battery; hence there is a
potential drop of 8.0 V from B to C. The drop adds to the drop of 18 V from A4 to B, found in (a), to
give a 26 V drop from A to C. The voltmeter will read —26 V from 4 to C.

(¢) From C to D, there is first a drop of IR = (3.0 A)(3.0 Q) = 9.0 V through the resistor. Then, because
one goes from the negative to the positive terminal of the 7.0 V battery, thereis a 7.0 V rise through the
battery. The voltmeter connected from 4 to D will read

—-8V-80V-90V+70V=-28V

Repeat Problem 26.7 if the 3.0 A current is flowing from right to left instead of from left to right.
Which point is at the higher potential in each case?

Proceeding as before, we have
(@) Vg =+(3.0)(6.0) = +18 V; B is higher.
() Ve =4(3.0)(6.0) —8.0=+10 V; C is higher.
() Vup=4(3.0)(6.0) — 8.0 + (3.0)(3.0) + 7.0 = +26 V; D is higher.

A dry cell has an emf of 1.52 V. Its terminal potential drops to zero when a current of 25 A passes
through it. What is its internal resistance?

As is shown in Fig. 26-3, the battery acts like a pure emf e in series with a resistor . We are told that,
under the conditions shown, the potential difference from A to B is zero. Therefore,

0=+4+6&—-1Ir or 0=152V-(25A)

from which the internal resistance is r = 0.061 Q.

A direct-current generator has an emf of 120 V; that is, its terminal voltage is 120 V when no
current is flowing from it. At an output of 20 A the terminal potential is 115 V. (¢) What is the
internal resistance r of the generator? (b) What will be the terminal voltage at an output of 40 A?

The situation is much like that shown in Fig. 26-3. Now, however, & = 120 V and [/ is no longer 25 A.
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25A

Fig. 26-3 Fig. 26-4

(@) In this case, / = 20 A and the p.d. from A4 to Bis 115 V. Therefore,
115V =+4120 V- (20 A)r

from which r = 0.25 Q.
(b) Now I =40 A. So

Terminal p.d. = & — Ir = 120 V — (40 A)(0.25 Q) = 110 V

As shown in Fig. 26-4 the ammeter—voltmeter method is used to measure an unknown resistance
R. The ammeter reads 0.3 A, and the voltmeter reads 1.50 V. Compute the value of R if the
ammeter and voltmeter are ideal.

R=—=—"7-=50Q

V_150V
I 03A

A metal rod is 2 m long and 8 mm in diameter. Compute its resistance if the resistivity of the
metal is 1.76 x 10°° Q-m.

M 7100

L -8
R=p—=(1.76 x107°Q m)———
P4 ( )7T(4>< 1073 m)

Number 10 wire has a diameter of 2.59 mm. How many meters of number 10 aluminum wire are
needed to give a resistance of 1.0 Q? p for aluminum is 2.8 x 107°Q-m.

From R = pL/A, we have

-3 2
L RA_(0QmMES9x 107 mY4 g
P 28 x 1078 Q-m

(This problem introduces a unit sometimes used in the United States.) Number 24 copper wire has
diameter 0.020 1 in. Compute (@) the cross-sectional area of the wire in circular mils and (b) the
resistance of 100 ft of the wire. The resistivity of copper is 10.4 - circular mils/ft.

The area of a circle in circular mils is defined as the square of the diameter of the circle expressed in mils,
where 1 mil = 0.001 in.
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(a) Area in circular mils = (20.1 mil)* = 404 circular mils
L (10.4 © - circular mil/ft) 100 ft
Q R= Pa~ 404 circular mils =2570

The resistance of a coil of copper wire is 3.35 © at 0°C. What is its resistance at 50 °C? For
copper, a = 4.3 x 1073 °C™ 1.

R =Ry + aRy(T — Ty) =335 Q+ (4.3 x 1072 °C7")(3.35 2)(50°C) = 4.1 Q

A resistor is to have a constant resistance of 30.0 €2, independent of temperature. For this, an
aluminum resistor with resistance Rj; at 0°C is used in series with a carbon resistor with resis-
tance Ry, at 0°C. Evaluate Ry and Ry, given that a; = 3.9 x 107°°C~! for aluminum and
ay = —0.50 x 107} °C~! for carbon.

The combined resistance at temperature 7" will be
R = [Ro1 + a1 Ry (T = Tp)] + [Rop + xR (T — T
= (Ro1 + Rpz) + (a1 Ro; + aa Ry )(T — Tp)
We thus have the two conditions
Ry + Ry, = 30.0 Q and a1 Ry + xRy =0
Substituting the given values of a; and a», then solving for Ry, and Ry, we find
Ry =340 Ry, =27 Q

In the Bohr model, the electron of a hydrogen atom moves in a circular orbit of radius
53 x 107" m with a speed of 2.2 x 10° m/s. Determine its frequency / and the current I in
the orbit.

v 2.2 % 10° m/s s
=—=———+_=66x10
S = T B3 10T m) X 107 rev/s
Each time the electron goes around the orbit, it carries a charge e around the loop. The charge passing a
point on the loop each second is

IT=ef = (1.6 x 1077 C)(6.6 x 10" s7') = 1.1 mA

A wire that has a resistance of 5.0 Q is passed through an extruder so as to make it into a new
wire three times as long as the original. What is the new resistance?

We shall use R = pL/A to find the resistance of the new wire. To find p, we use the original data for the
wire:
5.0 Q:pLo/AO or p = (Ao/Lo)(SO Q)
We were told that L = 3L,,. To find 4 in terms of 4,, we note that the volume of the wire cannot change.
Hence,
VO = L()AO and VO =LA

L A
from which LA =LyA, or A= (—0) (4o) ==L

_ L (A40/Lo)(5.0 2)(3Ly)
Therefore, R= i N

=9(5.0 Q) =45 Q
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It is desired to make a wire that has a resistance of 8.0 Q from 5.0 cm® of metal that has a
resistivity of 9.0 x 1078 ©-m. What should the length and cross-sectional area of the wire be?

We use R = pL/A with R=8.0 Q and p =9.0 x 1078 Q-m. We know further that the volume of the
wire (which is LA) is 5.0 x 107® m>. Therefore we have two equations to solve for L and A:

L
8.00=(9.0x10"% Q-m) (Z) and  LA=50x10"°m’

From them, we get L =21 m and 4 = 2.4 x 107" m?.

Supplementary Problems

How many electrons per second pass through a section of wire carrying a current of 0.70 A?
Ans. 4.4 x 10" electrons/s

An electron gun in a TV set shoots out a beam of electrons. The beam current is 1.0 x 107> A. How many
electrons strike the TV screen each second? How much charge strikes the screen in a minute?
Ans. 6.3 x 10" electrons/s, —6.0 x 10~* C/min

What is the current through an 8.0-(2 toaster when it is operating on 120 V? Ans. 15 A
What potential difference is required to pass 3.0 A through 28 ? Ans. 84V

Determine the potential difference between the ends of a wire of resistance 5.0  if 720 C passes through it
per minute. Ans. 60 V

A copper bus bar carrying 1200 A has a potential drop of 1.2 mV along 24 cm of its length. What is the
resistance per meter of the bar? Ans. 4.2 pQ/m

An ammeter is connected in series with an unknown resistance, and a voltmeter is connected across the
terminals of the resistance. If the ammeter reads 1.2 A and the voltmeter reads 18 V, compute the value of
the resistance. Assume ideal meters. Ans. 15Q

An electric utility company runs two 100 m copper wires from the street mains up to a customer’s premises.
If the wire resistance is 0.10 Q per 1000 m, calculate the line voltage drop for an estimated load current of
120 A. Ans. 24V

When the insulation resistance between a motor winding and the motor frame is tested, the value obtained is
1.0 megohm (106 Q). How much current passes through the insulation of the motor if the test voltage is
1000 V? Ans. 1.0 mA

Compute the internal resistance of an electric generator which has an emf of 120 V and a terminal voltage of
110 V when supplying 20 A. Ans. 0.50 Q

A dry cell delivering 2 A has a terminal voltage of 1.41 V. What is the internal resistance of the cell if its
open-circuit voltage is 1.59 V? Ans. 0.09 Q

A cell has an emf of 1.54 V. When it is in series with a 1.0-{2 resistance, the reading of a voltmeter connected
across the cell terminals is 1.40 V. Determine the cell’s internal resistance. Ans. 0.10 Q
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26.32

26.33

26.34

26.35

26.36

26.37

26.38

26.39

26.40

26.41

The internal resistance of a 6.4-V storage battery is 4.8 m{2. What is the theoretical maximum current on
short circuit? (In practice the leads and connections have some resistance, and this theoretical value would
not be attained.) Ans. 1.3 kA

A Dbattery has an emf of 13.2 V and an internal resistance of 24.0 m). If the load current is 20.0 A, find the
terminal voltage. Ans. 12.7V

A storage battery has an emf of 25.0 V and an internal resistance of 0.200 Q2. Compute its terminal voltage
(a) when it is delivering 8.00 A and (b) when it is being charged with 8.00 A. Ans. (a)23.4 V;(b)26.6 V

A battery charger supplies a current of 10 A to charge a storage battery which has an open-circuit voltage of
5.6 V. If the voltmeter connected across the charger reads 6.8 V, what is the internal resistance of the battery
at this time? Ans. 0.12 Q

Find the potential difference between points 4 and B in Fig. 26-5 if R is 0.70 2. Which point is at the higher
potential? Ans. —5.1 V, point 4

6.0V 2.0 Q 9.0V R
30A 4 '-| ke VvV . |_. VvV B
Fig. 26-5

Repeat Problem 26.36 if the current flows in the opposite direction and R = 0.70 €. Ans. 11.1 V, point
B

In Fig. 26-5, how large must R be if the potential drop from 4 to Bis 12 V? Ans. 3.0 Q

For the circuit of Fig. 26-6, find the potential difference from (a) 4 to B; (b) B to C, and (c¢) C to 4. Notice
that the current is given as 2.0 A. Ans. (a) —48 V; (b) +28 V; (¢) +20 V

Compute the resistance of 180 m of silver wire having a cross-section of 0.30 mm?. The resistivity of silver is
1L6x10°Q-m.  Ans. 9.6 Q

The resistivity of aluminum is 2.8 x 1078 Q-m. How long a piece of aluminum wire 1.0 mm in diameter is
needed to give a resistance of 4.0 ? Ans. 0.11 km

8.0 Q

4.0Q
Ao A
6.0V
9.0Q 12V
C '-||-°

— =

20A

Fig. 26-6
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26.42 Number 6 copper wire has a diameter of 0.162 in. (a) Calculate its area in circular mils. (b) If
p =104 Q-circular mils/ft, find the resistance of 1.0 x 10’ ft of the wire. (Refer to Problem
26.14.) Ans.  (a) 26.0 x 10° circular mils; (b) 0.40

26.43 A coil of wire has a resistance of 25.00 Q at 20°C and a resistance of 25.17 Q at 35°C. What is its
temperature coefficient of resistance? Ans. 4.5x 1074°C!



Chapter 27

Electrical Power

THE ELECTRICAL WORK (in joules) required to transfer a charge ¢ (in coulombs) through a
potential difference V' (in volts) is given by

W =gqV

When ¢ and V" are given their proper signs (i.c., voltage rises positive, and drops negative), the work will
have its proper sign. Thus, to carry a positive charge through a potential rise, a positive amount of work
must be done on the charge.

THE ELECTRICAL POWER (in watts) delivered by an energy source as it carries a charge ¢
(in coulombs) through a potential rise V' (in volts) in a time ¢ (in seconds) is

. k
Power finished = -
ime
Vi
p=-1
t
Because ¢/t = I, this can be rewritten as
P=VI

where 7 is in amperes.

THE POWER LOSS IN A RESISTOR is found by replacing V in VI by IR, or by replacing /
in VI by V/R, to obtain

V2
P=VI=I"R="
R

THE THERMAL ENERGY GENERATED IN A RESISTOR per second is equal to the power
loss in the resistor:

P=VI=1IR

CONVENIENT CONVERSIONS:

IW =1J/s=0.239 cal/s = 0.738 ft-1b/s
1kW = 1.341 hp = 56.9 Btu/min
1hp = 746 W = 33000 ft-1b/min = 42.4 Btu/min
1kW-h=3.6 x 10°J = 3.6 MJ

265
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27.1

27.2

27.3

27.4

27.5

27.6

27.7

ELECTRICAL POWER [CHAP. 27

Solved Problems

Compute the work and the average power required to transfer 96 kC of charge in one hour
(1.0 h) through a potential rise of 50 V.

W =gV = (96000 C)(50 V) = 4.8 x 10° J = 4.8 MJ

W 48x10°]

P= = 3600 s =13kW

How much current does a 60 W light bulb draw when connected to its proper voltage, 120 V?

From P = V1,
60 W

P
17V7—120V70.50A

An electric motor takes 5.0 A from a 110 V line. Determine the power input and the energy, in J
and kW -h, supplied to the motor in 2.0 h.

Power = P = VT = (110 V)(5.0 A) = 0.55 kW
Energy = Pt = (550 W)(7200 s) = 4.0 MJ
= (0.55 kW)(2.0 h) = 1.1 kW-h

An electric iron of resistance 20 2 takes a current of 5.0 A. Calculate the thermal energy, in
joules, developed in 30 s.

Energy = I°Rt = (5 A)*(20 ©)(30 s) = 15kJ

An electric heater of resistance 8.0 2 draws 15 A from the service mains. At what rate is thermal
energy developed, in W? What is the cost of operating the heater for a period of 4.0 h at
10 ¢/kW -h?

W =I"R= (15 A)*(8.0 Q) = 1800 W = 1.8 kW
Cost = (1.8 kW) (4.0 h)(10 ¢/kW-h) = 72 ¢

A coil develops 800 cal/s when 20 V is supplied across its ends. Compute its resistance.

P = (800 cal/s)(4.184 J/cal) = 3347 J/s
Then, because P = V> /R,

(20 V)?

== 0120
3347 1/s

A line having a total resistance of 0.20 € delivers 10.00 kW at 250 V to a small factory. What is
the efficiency of the transmission?
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We use P = VI to find I = P/V. Then

P\’ 10000 W\ >
1 1 = 2 = —_— = —_— =
Power lost in line = I°R = (V) R ( 750 ) (0.20 ©2) = 0.32 kW
power delivered by line 10.00 kW

Efficiency = =0.970 = 97.0%

power supplied to line  (10.00 + 0.32) kW

27.8 A hoist motor supplied by 240 V requires 12.0 A to lift an 800-kg load at a rate of 9.00 m/min.
Determine the power input to the motor and the power output, both in horsepower, and the
overall efficiency of the system.

Power input = IV = (12.0 A)(240 V) = 2880 W = (2.88 kW)(1.34 hp/kW) = 3.86 hp

9.00 1.00 h 1.00 mi
Power output = Fv = (800 x 9.81 N)( minm) (746 J/FS)) ( %0 (r)n;n) = 1.58 hp

1.58 hp output

= 0.408 = 40.
3.86 hp input 0408 0.8%

Efficiency =

27.9 The lights on a car are inadvertently left on. They dissipate 95.0 W. About how long will it take
for the fully charged 12.0 V car battery to run down if the battery is rated at 150 ampere-hours
(A-h)?

As an approximation, assume the battery maintains 12.0 V until it goes dead. Its 150 A -h rating means
it can supply the energy equivalent of a 150 A current that flows for 1.00 h (3600 s). Therefore, the total
energy the battery can supply is

Total output energy = (power)(time) = (V1) = (12.0 V x 150 A)(3600 s) = 6.48 x 10° J
The energy consumed by the lights in a time ¢ is
Energy dissipated = (95 W)(¢)

Equating these two energies and solving for ¢, we find ¢ = 6.82 x 10* s = 18.9 h.

27.10 What is the cost of electrically heating 50 liters of water from 40 °C to 100 °C at 8.0 ¢/kW -h?

Heat gained by water = (mass) x (specific heat) x (temperature rise)
= (50 kg) x (1000 cal/kg-°C) x (60°C) = 3.0 x 10° cal

4.184J 1kW-h 8.0 ¢
_ 6 . _
Cost = (3.0 x 10 Cdl)( 1 cal ) (3.6 x 10° J) (1 kW -h) =28¢

Supplementary Problems

27.11 A heater is labeled 1600 W/120 V. How much current does the heater draw from a 120-V source?
Ans. 133 A

27.12 A bulb is stamped 40 W/120 V. What is its resistance when lighted by a 120-V source? Ans.  0.36 kQ

27.13 A spark of artificial 10.0-MV lightning had an energy output of 0.125 MW :s. How many coulombs of
charge flowed? Ans. 0.0125C
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27.14

27.15

27.16

27.17

27.18

27.19

27.20

27.21

27.22

27.23

27.24

27.25

27.26

27.27

27.28

ELECTRICAL POWER [CHAP. 27

A current of 1.5 A exists in a conductor whose terminals are connected across a potential difference
of 100 V. Compute the total charge transferred in one minute, the work done in transferring this charge,
and the power expended in heating the conductor if all the electrical energy is converted into
heat. Ans. 90 C, 9.0 kJ, 0.15 kW

An electric motor takes 15.0 A at 110 V. Determine («) the power input and (b) the cost of operating the
motor for 8.00 h at 10.0 ¢/kW-h. Ans. (a) 1.65 kW; (b) $1.32

A current of 10 A exists in a line of 0.15 €2 resistance. Compute the rate of production of thermal energy in
watts. Ans. 15W

An electric broiler develops 400 cal/s when the current through it is 8.0 A. Determine the resistance of the
broiler. Ans. 26 Q

A 25.0-W, 120-V bulb has a cold resistance of 45.0 2. When the voltage is switched on, what is the
instantaneous current? What is the current under normal operation? Ans. 2.67 A, 0.208 A

At a rated current of 400 A, a defective switch becomes overheated due to faulty surface contact. A milli-
voltmeter connected across the switch shows a 100-mV drop. What is the power loss due to the contact
resistance? Ans. 40.0 W

How much power does a 60 W/120 V incandescent light bulb dissipate on a voltage of 115 V? Neglect the
bulb’s decrease in resistance with lowered voltage. Ans. 55 W

A house wire is to carry a current of 30 A while dissipating no more than 1.40 W of heat per meter of its
length. What is the minimum diameter of the wire if its resistivity is 1.68 x 107* Q-m? Ans. 3.7 mm

A 10.0-92 electric heater operates on a 110-V line. Compute the rate at which it develops thermal energy in W
and in cal/s. Ans.  1.21 kW = 290 cal/s

An electric motor, which has 95 percent efficiency, uses 20 A at 110 V. What is the horsepower output of the
motor? How many watts are lost in thermal energy? How many calories of thermal energy are developed per
second? If the motor operates for 3.0 h, what energy, in MJ and in kW -h, is dissipated? Ans. 2.8 hp,
0.11 kW, 26 cal/s, 24 MJ = 6.6 kW-h

An electric crane uses 8.0 A at 150 V to raise a 450-kg load at the rate of 7.0 m/min. Determine the efficiency
of the system. Ans. 43%

What should be the resistance of a heating coil which will be used to raise the temperature of 500 g of water
from 28 °C to the boiling point in 2.0 minutes, assuming that 25 percent of the heat is lost? The heater
operates on a 110-V line. Ans. 7.2 Q

Compute the cost per hour at 8.0 ¢/kW -h of electrically heating a room, if it requires 1.0 kg/h of anthracite
coal having a heat of combustion of 8000 kcal/kg. Ans. T4 ¢/h

Power is transmitted at 80 kV between two stations. If the voltage can be increased to 160 kV without a
change in cable size, how much additional power can be transmitted for the same current? What effect does
the power increase have on the line heating loss? Ans. additional power = original power, no effect

A storage battery, of emf 6.4 V and internal resistance 0.080 €, is being charged by a current of 15 A.
Calculate (a) the power loss in internal heating of the battery, (b) the rate at which energy is stored in the
battery, and (c) its terminal voltage. Ans. (a) 18 W; (b) 96 W; (¢) 7.6 V
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27.29 A tank containing 200 kg of water was used as a constant-temperature bath. How long would it take to heat
the bath from 20 °C to 25°C with a 250-W immersion heater? Neglect the heat capacity of the tank frame
and any heat losses to the air. Ans. 4.6 h



Chapter 28

Equivalent Resistance; Simple Circuits

RESISTORS IN SERIES: When current can follow only one path as it flows through two or
more resistors connected in line, the resistors are in series. In other words, when one and only
one terminal of a resistor is connected directly to one and only one terminal of another resistor,
the two are in series and the same current passes through both. A node is a point where three or
more current-carrying wires or branches meet. There are no nodes between circuit elements (such
as capacitors, resistors, and batteries) that are connected in series. A typical case is shown in Fig.
28-1(a). For several resistors in series, their equivalent resistance R.q is given by

Ryy=R +Ry+Ry+--- (series combination)

where Ry, R,, Rs, ..., are the resistances of the several resistors. Observe that resistances in series com-
bine like capacitances in parallel (see Chapter 25). It is assumed that all connection wire is effectively
resistanceless.

In a series combination, the current through each resistance is the same as that through all the
others. The potential drop (p.d.) across the combination is equal to the sum of the individual potential
drops. The equivalent resistance in series is always greater than the largest of the individual resistances.

R,
1y
=
R, R, R R,
I I I L I
e \\\ o e A\ AN\roe AN\ o R —— .
a b c d a b
R,
I
—=
(a) Resistors in series (b) Resistors in parallel

Fig. 28-1

RESISTORS IN PARALLEL: Several resistors are connected in parallel between two nodes if
one end of each resistor is connected to one node and the other end of each is connected to the
other node. A typical case is shown in Fig. 28-1(b), where points a and b are nodes. Their
equivalent resistance Req is given by

1 1 1 1

= — ... (parallel combination)
Rq R Ry R

The equivalent resistance in parallel is always less than the smallest of the individual resistances. Connect-
ing additional resistances in parallel decreases R., for the combination. Observe that resistances in
parallel combine like capacitances in series (see Chapter 25).

The potential drop V" across each resistor in a parallel combination is the same as the potential drop
across each of the others. The current through the nth resistor is I, = V/R, and the total current
entering the combination is equal to the sum of the individual branch currents.

270
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Solved Problems

28.1 Derive the formula for the equivalent resistance R.q of resistors Ry, R,, and Rj; (a) in series and
(b) in parallel, as shown in Fig. 28-1(a) and (b).
(a) For the series network,
Vie =Vay + Ve + Vg = IRy + IRy + IRy
since the current 7 is the same in all three resistors. Dividing by I gives

v,
;":R1+R2+R3 of  Rq=R +Ry+Rs

since V,,/1 is by definition the equivalent resistance R, of the network.

(b) The p.d. is the same for all three resistors, whence

Vah I, = Vab _ Vab
H =
R, TOR;

I] ==
R,

Since the line current 7 is the sum of the branch currents,

Vv, v, vV,
I =1 I I — ab ab ab
|+ 1+ 1 R, + R, TR
Dividing by ¥V, gives
I_1+1+1 or 1_1+1+1
Vo R Ry R Ryq R Ry R

since V,,,/I is by definition the equivalent resistance R, of the network.

28.2 As shown in Fig. 28-2(a), a battery (internal resistance 1 §2) is connected in series with two
resistors. Compute (a) the current in the circuit, (b) the p.d. across each resistor, and (¢) the
terminal p.d. of the battery.

&=18V 18V 1Q 18V
il e e
r=1Q

12Q 5Q b 12Q ¢ 5Q ¢

18Q
(a) (b) (©

Fig. 28-2

The circuit is redrawn in Fig. 28-2(b) so as to show the battery resistance. We have

Ryq=50+12Q+1Q=180

Hence the circuit is equivalent to the one shown in Fig. 28-2(¢). Applying V' = IR to it, we have:

Vo18V
(a) I=F=1gq=10A
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28.5

28.6
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(b) Since I = 1.0 A, we can find the p.d. from point b to point ¢ as
Ve = IRy = (1.OA)(12Q2) =12V
and that from ¢ to d as
Vi =1IR,=(1LOA)(5Q2)=5V
Notice that [ is the same at all points in a series circuit.
(¢) The terminal p.d. of the battery is the p.d. from a to e. Therefore,
Terminal p.d.=V,, +V,,,=124+5=17V
Or, we could start at e and keep track of the voltage changes as we go through the battery from e to a.
Taking voltage drops as negative, we have

Terminal pd. = -Ir+&=—(1.0A)(1 Q)+ 18 V=17V

A 120-V house circuit has the following light bulbs turned on: 40.0 W, 60.0 W, and 75.0 W. Find
the equivalent resistance of these lights.

House circuits are so constructed that each device is connected in parallel with the others. From
P = VI = V*/R, we have for the first bulb

V2 (120 V)?
TP, 40W
Similarly, R, =240 Q and R; = 192 ). Because they are in parallel,

1 1 1 1
Ry 3600 2400 1920

eq
As a check, we note that the total power drawn from the line is 40.0 W + 60.0 W + 75.0 W=175.0 W.
Then, using P = VZ/R, we have

R, =360 O

or R, =823 Q

V2 (120 V)*
R. = = =82.30Q
¢ total power  175.0 W

What resistance must be placed in parallel with 12 €2 to obtain a combined resistance of 4 Q?

From L:L+L
Req Rl R2
we have L=L+L
40 12Q R,
NY) R,=60Q

Several 40-€) resistors are to be connected so that 15 A flows from a 120-V source. How can this
be done?

The equivalent resistance must be such that 15 A flows from 120 V. Thus,
V120V
“4 T 15A

The resistors must be in parallel, since the combined resistance is to be smaller than any of them. If the
required number of 40-Q) resistors is n, then we have

1 1
M*(m) or  m=5

=80

For each circuit shown in Fig. 28-3, determine the current / through the battery.
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5.0Q 2.0Q 7.0 Q
. LA e A

30y =L+ 20V —t—_ -
040 — 7.0Q 3.0Q 03Q — 6.0 Q 1.0Q
8.0Q 10.0 Q
— - Al
(a) (®)
15.0Q 19.0Q
1
- AN\ p- A
17V —l—+
020 T 9.0Q 8.0Q 50Q
20Q

Fig. 28-3

(a) The 3.0-Q2 and 7.0-2 resistors are in parallel; their joint resistance R; is found from
11 110
R 3007700 210
Then the equivalent resistance of the entire circuit is

or R =210

Ryq=210+500Q+04Q=750Q

and the battery current is

3 30V
=-——=40A
R 4.0

I= 750

€q

(b) The 7.0-€2, 1.0-Q2, and 10.0-2 resistors are in series; their joint resistance is 18.0 €2. Then 18.0 €2 is in
parallel with 6.0 ; their combined resistance R; is given by

1 1 1

R S R =450
R 1809 600 !

Hence, the equivalent resistance of the entire circuit is

Rq=450+200+800+030Q2=1480

and the battery current is

& 20V

=R ~1180

=14A
Req

(¢) The 5.0-Q and 19.0-92 resistors are in series; their joint resistance is 24.0 §2. Then 24.0 € is in parallel
with 8.0 ; their joint resistance R; is given by

1 1 1

S S R =600
R 200 son O R=60
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Now R; = 6.0 Q is in series with 15.0 €2; their joint resistance is 6.0 Q2 + 15.0 Q = 21.0 Q. Thus 21.0
is in parallel with 9.0 ; their combined resistance is found from

1 1 1

—— 4 Ry=63Q
R, 2100 900 2 =63

Hence the equivalent resistance of the entire circuit is

Ry =63Q2+200+020=85Q

and the battery current is

28.7 For the circuit shown in Fig. 28-4, find the current in each resistor and the current drawn from the

battery.
Notice that the p.d. from «a to b is 40 V. Therefore, the p.d. across each resistor is 40 V. Then,
40V 40V 40V
127—2.09720A 157—5'0Q78.0A 187—8.0975'0A

Because [ splits into three currents.
I=hL+L+13=20A+80A+50A=33A

24V
2.0Q + - b
- il
=
a L ﬁ ,,,,, LTE?
50Q | = |
1 al Is b ! !
e e ‘ !
el a a |
8.0Q @ ) v © !
I | |
| |
: i :
03Q L <ol
+ —_
e40V e o-/\/v\/-o
Fig. 28-4 Fig. 28-5

28.8 In Fig. 28-5, the battery has an internal resistance of 0.7 2. Find (a) the current drawn from the
battery, (b) the current in each 15-0 resistor, and (c¢) the terminal voltage of the battery.

(a) For parallel group resistance R; we have

L1113
R 15Q 150 150 159

or R =500Q

Then R =5002+030+07Q=600Q

& 24V
and =2 2V _40A
an Ry 609 0
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(b) Method 1

The three-resistor combination is equivalent to R; = 5.0 Q. A current of 4.0 A flows through it.
Hence, the p.d. across the combination is

IR, = (40 A)(50 Q) =20 V

This is also the p.d. across each 15-Q resistor. Therefore, the current through each 15-Q) resistor is

Vo o20V
sERTo 0 P A
Method 2
In this special case, we know that one-third of the current will go through each 15-) resistor. Hence
40 A

Iis = — = 1.3A
(¢) We start at ¢ and go to b outside the battery:
V from a to b = —(4.0 A)(0.3 Q) — (4.0 A)(5.0 Q) = -21.2V
The terminal p.d. of the battery is 21.2 V. Or, we could write for this case of a discharging battery,
Terminal p.d. =& —Ir=24V — (4.0 A)(0.7 Q) =212V

28.9 Find the equivalent resistance between points a and b for the combination shown in Fig. 28-6(a).

e

3.0Q 200

6.0 Q 273 Q

9.0 Q 9.0 Q
A AN~ A A

12.09\%\ $7-°9 12.0;%\ $7.09
A\om AM\o—ae

b
5.0Q 5.0Q

(@) (b)

Fig. 28-6

The 3.0-Q and 2.0-€2 resistors are in series and are equivalent to a 5.0-(2 resistor. The equivalent 5.0  is
in parallel with the 6.0 ), and their equivalent, R, is
1 1

_— = = -1 =
R, 50 Q+6.0 Q 0.20 +0.167 = 0.367 2 or R =273Q

The circuit thus far reduced is shown in Fig. 28-6(b).
The 7.0 ©2 and 2.73 Q are equivalent to 9.73 Q2. Now the 5.0 Q, 12.0 €2, and 9.73 Q are in parallel, and

their equivalent, R, is
11 N 1 N 1
R, 500 1209 9.73Q

This 2.6 Q is in series with the 9.0-Q) resistor. Therefore, the equivalent resistance of the combination is
9.00+26Q=11.6 Q.

=038 Q" or R =260
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28.10 A current of 5.0 A flows into the circuit in Fig. 28-6 at point @ and out at point b. (¢) What is the
potential difference from « to »? (b) How much current flows through the 12.0-9) resistor?

In Problem 28.9, we found that the equivalent resistance for this combination is 11.6 €2, and we are told
the current through it is 5.0 A.

(a) Voltage drop from a to b = IR.q = (5.0 A)(11.6 Q) =58 V

(b) The voltage drop from a to cis (5.0 A)(9.0 Q) = 45 V. Hence, from part (a), the voltage drop from ¢ to
b is
58V—-45V=13V
and the current in the 12.0-) resistor is

Vo o13V
== —11A
2TRT 120

28.11 As shown in Fig. 28-7, the current / divides into /; and /,. Find I, and I, in terms of 7, R, and

R,.
The potential drops across R; and R, are the same because the resistors are in parallel, so
LRy =hLR,
But I =1, + I, and so I, = I — I;. Substituting in the first equation gives
IR, =(I—1)R,=IR, — IR I R
= — = — or . R
115 1)1 2 — 11y "R 1R
Using this result together with the first equation gives
R R
L=2tn=-"1"1
R' R +R
@7.0 A
a
n
10 w % Q
R, P 0

Fig. 28-7 Fig. 28-8

28.12 Find the potential difference between points P and Q in Fig. 28-8. Which point is at the higher
potential?

From the result of Problem 28.11, the currents through P and Q are

2Q+180Q

I, =
PT1004+5Q0+20+180Q
10Q+50

IQ:IOQ+SQ+ZQ+18Q(

(70A) =40 A

70 A)=3.0A
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Now we start at point P and go through point a to point Q, to find
Voltage change from P to Q = +(4.0 A)(10 Q) — (3.0 A)(2 Q) =+34 V

(Notice that we go through a potential rise from P to a because we are going against the current. From « to
O there is a drop.) Therefore, the voltage difference between P and Q is 34 V, with Q being at the higher
potential.

28.13 For the circuit of Fig. 28-9(a), find (a) I; I, and I5; (b) the current in the 12-) resistor.

27V 27V
I, 1
a e 111t b LI b
+ — + —
12Q 1.0Q 1.0Q

@ .J\N\r. ﬁll @ 2.0 Q 22Q Ilﬁ
T Sy Y R Y Y - Y P VT -

40Q
@ .J\/\/\/_. ﬁ13 @ Izﬁ
. 8.0Q 50€Q I 8.0Q 40Q
g ! " g ’J\/\/\/" ’J\/\/\/" h
20Q
(@) vy (@]

Fig. 28-9

(a) The circuit reduces at once to that shown in Fig. 28-9(b). There we have 24 Q in parallel with 12 Q, so
the equivalent resistance below points ¢ and b is

11 n 13
Ry, 24Q 120 24Q
Adding to this the 1.0-2 internal resistance of the battery gives a total equivalent resistance of 9.0 2. To
find the current from the battery, we write
3 27V

L=7-=>—2=30A
""" Ry 900

or R, =8.00Q

This same current flows through the equivalent resistance below a and b, and so
p.d. from a to b = p.d. from cto d =1, R,;, = (3.0 A)(8.0 Q) =24V
Applying V' = IR to branch cd gives

Ve 24V
L=g,"aa 104
Ve 24V
Similarly, I = R—g” =g =20A
gh

As a check, we note that I, + 5 = 3.0 A = I;, as should be.
(b) Because I, = 1.0 A, the p.d. across the 2.0-Q resistor in Fig. 28-9(b) is (1.0 A)(2.0 Q) = 2.0 V. But this
is also the p.d. across the 12-Q resistor in Fig. 28-9(a). Applying V' = IR to the 12 Q gives
Vi, 20V
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28.14 A galvanometer has a resistance of 400 €2 and deflects full scale for a current of 0.20 mA through
it. How large a shunt resistor is required to change it to a 3.0 A ammeter?

In Fig. 28-10 we label the galvanometer G and the shunt resistance R,. At full scale deflection, the
currents are as shown.

2% 1074A ﬁ 400 Q

g We—=> ")
2.9998 A

3A

Fig. 28-10

The voltage drop from a to b across G is the same as that across R,. Therefore,
(2.9998 A)R, = (2.0 x 1074 A)(400 Q)
from which R, = 0.027 Q.

28.15 A voltmeter is to deflect full scale for a potential difference of 5.000 V across it and is to be made
by connecting a resistor R, in series with a galvanometer. The 80.00-C2 galvanometer deflects full
scale for a potential of 20.00 mV across it. Find R,.

When the galvanometer is deflecting full scale, the current through it is

¥V _2000x107°V
TR 80.00Q

When R, is connected in series with the galvanometer, we wish I to be 2.500 x 10~ A for a potential
difference of 5.000 V across the combination. Hence, V' = IR becomes

5.000 V = (2.500 x 10~ A)(80.00 Q + R,)

=2.500 x 107* A

from which R, = 19.92 kQ.

28.16 The currents in the circuit in Fig. 28-11 are steady. Find I, I,, I5, and the charge on the capacitor.

When a capacitor has a constant charge, as it does here, the current flowing to it is zero. Therefore
I, =0, and the circuit behaves just as though the center wire were missing.
With the center wire missing, the remaining circuit is simply 12 €2 connected across a 15-V battery.

Therefore,
& 15V
I, =2 o= 1.25 A

In addition, because I, =0, we have , =1} = 1.3 A.
To find the charge on the capacitor, we first find the voltage difference between points ¢ and b. We start
at a and go around the upper path.
Voltage change from a to b = —(5.0 Q); + 6.0 V+ (3.0 Q)1,
=—(5.02)(1.25A)+6.0 V+ (3.0 Q)(0) =—-0.25V
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Therefore b is at the lower potential and the capacitor plate at b is negative. To find the charge on the
capacitor, we write

0 =CVy=(2x10"°F)(0.25 V) =0.5 uC

28.17 Find the ammeter reading and the voltmeter reading in the circuit in Fig. 28-12. Assume both
meters to be ideal.

5 50Q 6.0V 3.0Q , 6oV
L e Yy "
C=2uF 3.0Q . 60V

1= °-”_° b 'J\/\/\/" = "||'° 1 8.()V_'I'_
15V ul

.-|I-. 4.0Q ; 9.0Q

I

70Q b

Fig. 28-11 Fig. 28-12

The ideal voltmeter has infinite resistance and so its wire can be removed without altering the circuit.
The ideal ammeter has zero resistance. It can be shown (see Chapter 29) that batteries in series simply add or
subtract. The two 6.0-V batteries cancel each other because they tend to push current in opposite directions.
As a result, the circuit behaves as though it had a single 8.0-V battery that causes a clockwise current.

The equivalent resistance is 3.0 2 + 4.0 Q + 9.0 Q = 16.0 €, and the equivalent battery is 8.0 V. There-
fore,

& 80V
=—=—--=050A
R 160 0-50
and this is what the ammeter will read.
Adding up the voltage changes from a to b around the right-hand side of the circuit gives

Voltage change from a to b= —6.0 V+8.0 V—(0.50 A)(9.0 Q) =-2.5V

Therefore, a voltmeter connected from a to b will read 2.5 V, with b being at the lower potential.

Supplementary Problems

28.18 Compute the equivalent resistance of 4.0 Q2 and 8.0 €2 (a) in series and (b) in parallel. Ans. (a) 12 Q; (b)
2.7 Q

28.19 Compute the equivalent resistance of (a) 3.0 £, 6.0 Q, and 9.0  in parallel; (b) 3.0 Q, 4.0 Q, 7.0 Q,
10.0 Q, and 12.0 Q in parallel; (c) three 33-Q2 heating elements in parallel; (d) twenty 100-Q2 lamps in
parallel. Ans. (a) 1.6 Q; (b) 1.1 Q; (¢) 11 ©; (d) 5.0

28.20 What resistance must be placed in parallel with 20 € to make the combined resistance 15 €2? Ans. 60 Q
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28.21

28.22

28.23

28.24

28.25

28.26

28.27

28.28

28.29

28.30

EQUIVALENT RESISTANCE; SIMPLE CIRCUITS [CHAP. 28

How many 160-(2 resistors (in parallel) are required to carry 5.0 A on a 100-V line? Ans. 8

Three resistors, of 8.0 2, 12 €2, and 24 (2, are in parallel, and a current of 20 A is drawn by the combination.
Determine (a) the potential difference across the combination and (b) the current through each
resistance. Ans. (a) 80 V; (b)) 10 A, 6.7 A, 33 A

By use of one or more of the three resistors 3.0 €2, 5.0 €2, and 6.0 €, a total of 18 resistances can be obtained.
What are they? Ans. 070,14 Q,190,2.00,240,2.70,3.00,320,340,500,57Q,6.0Q,
7.09,790,800,9.00,11Q,14Q

Two resistors, of 4.00 Q and 12.0 Q, are connected in parallel across a 22-V battery having internal resis-
tance 1.00 Q2. Compute (a) the battery current, (») the current in the 4.00- resistor, (c) the terminal voltage
of the battery, (d) the current in the 12.0-(2 resistor. Ans. (a) 5.5 A; (b)4.1 A;(c)17V;(d) 1.4 A

Three resistors, of 40 €2, 60 2, and 120 €2, are connected in parallel, and this parallel group is connected in
series with 15 € in series with 25 Q. The whole system is then connected to a 120-V source. Determine (a) the
current in the 25 €2, (b) the potential drop across the parallel group, (c¢) the potential drop across the 25 €2,
(d) the current in the 60 €2, (e) the current in the 40 2. Ans. (a)2.0 A; (b)40 V; (c) 50 V;(d) 0.67 A; (e)
1.0 A

What shunt resistance should be connected in parallel with an ammeter having a resistance of 0.040 2 so
that 25 percent of the total current will pass through the ammeter? Ans. 0.013 Q

A 36-() galvanometer is shunted by a resistor of 4.0 2. What part of the total current will pass through the
instrument? Ans.  1/10

A relay of resistance 6.0 {2 operates with a minimum current of 0.030 A. It is required that the relay operate
when the current in the line attains 0.240 A. What resistance should be used to shunt the
relay? Ans. 0.86

Show that if two resistors are connected in parallel, the rates at which they produce thermal energy vary
inversely as their resistances.

For the circuit shown in Fig. 28-13, find the current through each resistor and the potential drop across each
resistor. Ans. for 20 €, 3.0 A and 60 V; for 75 Q, 2.4 A and 180 V; for 300 2, 0.6 A and 180 V

X

300 Q

ZOQ$

240 V "
7SQ$

]

Fig. 28-13
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28.31 For the circuit shown in Fig. 28-14, find (a) its equivalent resistance; (b) the current drawn from the power
source; (¢) the potential differences across ab, c¢d, and de; (d ) the current in each resistor. Ans. (a) 15 Q;
b)20A; (¢) Vi =80V, V,y=120V, V;, =100 V; (d) I, =20 A, I;y =12 A, [[5=8 A, I = 11.1 A,
ILis=56A, Li=33A

4.0Q
1
+Z.l aoJW\,-ob + ® —

c a
| |
e— -
10Q 15Q
12Q$ 6.0Q$ 48V
| |
300V d cm = md -V
[
30 Q 15Q 10Q
9.0 Q 18 Q 30 Q
| ]
L] b 8.0Q
e
u Yy
Fig. 28-14 Fig. 28-15

28.32 It is known that the potential difference across the 6.0-2 resistance in Fig. 28-15 is 48 V. Determine (a) the
entering current /, (b) the potential difference across the 8.0-(2 resistance, (c¢) the potential difference across
the 10-Q resistance, (d) the potential difference from a to b. (Hint: The wire connecting ¢ and d can be
shrunk to zero length without altering the currents or potentials.) Ans. (a) 12 A; (b) 96 V; (¢) 60 V;
(d)204V

28.33 In the circuit shown in Fig. 28-16, 23.9 calories of thermal energy are produced each second in the 4.0-(2
resistor. Assuming the ammeter and two voltmeters to be ideal, what will be their readings? Ans. 5.8 A,
80V,58V

oo e M~ .
10Q ‘J\/\/\I"

: ‘J\/\/\/“ 1 15Q 10 Q 1 .-®-..
A=A coo £ =120V
A\~ i+

r=10Q

é .

Fig. 28-16 Fig. 28-17
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28.34 For the circuit shown in Fig. 28-17, find (a) the equivalent resistance; (b) the currents through
the 5.0-Q, 7.0-Q, and 3.0-Q resistors; (c¢) the total power output of the battery. Ans. (a) 10 €
(h) 12 A, 6.0 A,2.0A; (¢c) 1.3kW

28.35 In the circuit shown in Fig. 28-18, the ideal ammeter registers 2.0 A. (a) Assuming XY to be a resistance, find
its value. (b) Assuming XY to be a battery (with 2.0-() internal resistance) that is being charged, find its
emf. (¢) Under the conditions of part (b), what is the potential change from point Y to point X?
Ans. (a) 5.0 Q; (b)) 6.0 V; (¢) —10V

6.0 Q

& =40V & =80V 30Q V v v

+ - - +

||t AN~ R ) = .
'-| 12Q X Y
rn=20Q rn=20Q ‘_/\N\/_.

Fig. 28-18

28.36 The Wheatstone bridge shown in Fig. 28-19 is being used to measure resistance X. At balance, the current
through the galvanometer G is zero and resistances L, M, and N are 3.0 2, 2.0 , and 10 €, respectively.
Find the value of X. Ans. 15 Q

.1\ §M " "’\/)\(/\r‘ 1 jv\;\g;

\%\ L M
L
/1 Am & B

40 cm D 60 cm

.-||-. o e "

Fig. 28-19 Fig. 28-20

28.37 The slidewire Wheatstone bridge shown in Fig. 28-20 is balanced when the uniform slide wire 4B is divided
as shown. Find the value of the resistance X. Ans. 2 Q



Chapter 29

Kirchhoff’s Laws

KIRCHHOFF’S NODE (OR JUNCTION) RULE: The sum of all the currents coming into a
node (i.e., a junction where three or more current-carrying leads attach) must equal the sum of
all the currents leaving that node.

KIRCHHOFF’S LOOP (OR CIRCUIT) RULE: As one traces out a closed circuit, the algebraic
sum of the potential changes encountered is zero. In this sum, a potential rise is positive and a
potential drop is negative.

Current always flows from high to low potential through a resistor. As one traces through a resistor
in the direction of the current, the potential change is negative because it is a potential drop.

The positive terminal of a pure emf source is always the high-potential terminal, independent of the
direction of the current through the emf source.

THE SET OF EQUATIONS OBTAINED by use of Kirchhoff’s loop rule will be independent
provided that each new loop equation contains a voltage change not included in a previous equa-
tion.

Solved Problems

29.1 Find the currents in the circuit shown in Fig. 29-1.

This circuit cannot be reduced further because it contains no resistors in simple series or parallel
combinations. We therefore revert to Kirchhoff’s rules. If the currents had not been labeled and shown
by arrows, we would do that first. No special care need be taken in assigning the current directions, since
those chosen incorrectly will simply give negative numerical values.

We apply the node rule to node b in Fig. 29-1:

Current into b = current out of »

L+L+1=0 (1)
Next we apply the loop rule to loop adba. In volts,
70, +60+40=0 or I :%A
(Why must the term 7.0 /; have a negative sign?) We then apply the loop rule to loop abca. In volts,
—40-80+50L=0 or 12:152%00A

(Why must the signs be as written?)
Now we return to Eq. (/) to find

10.0 12.0 —50— 84

L=-L-L=————= =-38A
} bR 70 5.0 35 38
The minus sign tells us that /5 is opposite in direction to that shown in the figure.
283
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7.0Q 50Q ¢ a ' d
e el la % gl

N

_-I-_ 40V
@ I, Ilﬁ U; h
@ . 40Q

ﬁ
o S Wi

el

¢ 7.0Q

Fig. 29-1 Fig. 29-2

29.2 In Fig. 29-2, find I;, I, and L if switch S is () open and (b) closed.

(a)

(b)

When S is open, /5 = 0, because no current can flow through the open switch. Applying the node rule
to point a gives

11+13:[2 or [2:Il+0:Il
Applying the loop rule to loop acbda gives
—120+705 +80,+9.0=0 (1)

To understand the use of signs, remember that current always flows from high to low potential through
a resistor.

Because I, = I, (/) becomes
1507, =30 or I, =020A

Also, I, = I} = 0.20 A. Notice that this is the same result that one would obtain by replacing the two
batteries by a single 3.0-V battery.

With S closed, I5 is no longer known to be zero. Applying the node rule to point a gives
L+L=1 )
Applying the loop rule to loop acha gives
—12.0+70L —405=0 (3)
and to loop adba gives
—9.0—-80,—-40L=0 (4)

Applying the loop rule to the remaining loop, acbda, would yield a redundant equation, because it
would contain no new voltage change.

We must now solve (2), (3), and (4) for I;, I, and 5. From (4),
L=-20L-225
Substituting this in (3) gives
—120+7.01;+9.0+8.0, =0 or 700 +8.05L =3.0
Substituting for /5 in (2) also gives
I, —20,-225=1, or I, =300 +225
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1° 300 A
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@[l 3.0Q

e
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Fal

an 1\

9.0V

W\ e

Fig. 29-3 Fig. 29-4

Substituting this value in the previous equation finally gives
21.0, +15.754+ 8.0, = 3.0 or L =-044 A
Using this in the equation for /; gives

I, =3.0(—0.44) +225=—-132+225=093 A

285
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Notice that the minus sign is a part of the value we have found for /,. It must be carried along with its

numerical value. Now we can use (2) to find

L=L—-1=(-044)-093=-137A

Each of the cells shown in Fig. 29-3 has an emf of 1.50 V and a 0.075 0-Q internal resistance. Find

I, I,, and L.
Applying the node rule to point a gives
L=5L+1L
Applying the loop rule to loop abcea gives, in volts,
—(0.0750)1, 4+ 1.50 — (0.0750)1, + 1.50 — 3.007; =0
or 3.007; +0.150 1, = 3.00
Also, for loop adcea,
—(0.0750)13 4+ 1.50 — (0.0750)1; + 1.50 — 3.001; =0
or 3.007; +0.150 3 = 3.00
We solve Eq. (2) for 3.00 /; and substitute in Eq. (3) to get
3.00 — 0.150 15 + 0.150 I, = 3.00 or L =1L
as we might have guessed from the symmetry of the problem. Then Eq. (/) yields
I, =21,
and substituting this in Eq. (2) gives
6.007, +0.150 7, = 3.00 or I, =0488 A
Then, I =1, =0.488 A and I} =21, =0.976 A.

(1)

The currents are steady in the circuit of Fig. 29-4. Find I, I, L5, 14, I5, and the charge on the

capacitor.
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The capacitor passes no current when charged, and so Is = 0. Consider loop acha. The loop rule gives
—80+40,=0 or L =20A
Using loop adeca gives
—3.0I; -9.0+80=0 or I,=-033 A
Applying the node rule at point ¢ results in
L+L+L=1 or L=16TA=17A
and at point a, in
L=L+1 or I,=-033 A

(We should have realized this at once, because /s = 0 and so Iy = I.)
To find the charge on the capacitor, we need the voltage V, across it. Applying the loop rule to loop
dfgced gives

2015+ V —704+90+30, =0 or 04V, —70+9.0-10=0

from which V;, = —1.0 V. The minus sign tells us that plate g is negative. The capacitor’s charge is
Q0 =CV=(50uF)(1.0 V) =5.0uC

29.5 For the circuit shown in Fig. 29-5, the resistance R is 5.0 {2 and & = 20 V. Find the readings of
the ammeter and the voltmeter. Assume the meters to be ideal.

120V

N\‘
—
)
o
0
LN

:

f .-|I-. b c

8oV 7.0 Q

Fig. 29-5

The ideal voltmeter has infinite resistance and so it can be removed from the circuit with no effect. Let
us write the loop equation for loop cdefc:

—RI} +120—-80—-70L=0
which becomes
50, +7.0, =40 (1)
Next we write the loop equation for loop cdeac. It is
=500 +12.0+2.0/5+20.0=0
or 50 —2.05 =320 (2)
But the node rule applied at e gives
L+L=1 (3)
Substituting (3) in (/) gives
50L+700+701;=4.0
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29.6

29.7

29.8

We solve this for /3 and substitute in (2) to get

40— 1201,
01 —20( 22700 — 3,
501, 0( = ) 32.0

which yields 7; = 3.9 A, which is the ammeter reading. Then (/) gives I, = —2.2 A.
To find the voltmeter reading V,,, we write the loop equation for loop abca:

Vi —700L—&=0

Substituting the known values of I, and &, then solving, we obtain V,, = 4.3 V. Since this is the potential
difference between «a to b, point » must be at the higher potential.

In the circuit in Fig. 29-5, I; = 0.20 A and R = 5.0 Q. Find &.
We write the loop equation for loop cdefc:
—RI; +120-80-70L=0 or —(5.0)(0.20) + 120 -8.0-7.0, =0
from which 7, = 0.43 A. We can now find I3 by applying the node rule at e:
L+L=1 or L=5L-1,=023 A
Now we apply the loop rule to loop cdeac:
—(5.0)(0.20) + 12.0 + (2.0)(0.23) + & =0

from which & = —11.5 V. The minus sign tells us that the polarity of the battery is actually the reverse of
that shown.

Supplementary Problems

For the circuit shown in Fig. 29-6, find the current in the 0.96-Q resistor and the terminal voltages of the
batteries. Ans. 50A,48V,48V

For the network shown in Fig. 29-7, determine (a) the three currents 7, /,, and I5, and (b) the terminal
voltages of the three batteries. Ans. (@) [ =2A, L=1A, =-3A; () V=14V, V, =38V,
VIO = 85 V

E=60V
=030 Q
11
il 2
+ _
6oy _&- 90
=50V 1Q =
40V
r,=020Q I+ 020 1
2
[ o-||||||-o ] [ o-/\/\/\/-o o-||||-o <=l
+ - + -
-L* 7.8 Q
10.0 V —
05Q —
|
0.96 Q 1.5Q

A At

Fig. 29-6 Fig. 29-7
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29.9

29.10

29.11

29.12
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Refer back to Fig. 29-5. If the voltmeter reads 16.0 V (with point b at the higher potential) and 7, = 0.20 A,

find &, R and the ammeter reading. Ans. 146V, 021 Q, 12 A

Find 1), I, I;, and the potential difference between point b to point e in Fig. 29-8. Ans. 2.0 A, —8.0 A,
6.0 A, —13.0V

a
u
15V
1.0 Q
- + A
i Lo b
X0
950
10V
0.50 Q
¥ _ L ] \/\/\ro L] o-||—~ ]
. ..||||.. e d b
3.0Q 6.0V
30V 1.4 Q .
0.10Q , ’
— —+ 3
o e|ifif o oy ~()-

Fig. 29-8 Fig. 29-9
In Fig. 299, R=10.0Q and & =13 V. Find the readings of the ideal ammeter and voltmeter.
Ans. 8.4 A, 27 V with point a positive

In Fig. 29-9, the voltmeter reads 14 V (with point « at the higher potential) and the ammeter reads 4.5 A.
Find & and R. Ans. £§=0,R=320Q



Chapter 30

Forces in Magnetic Fields

A MAGNETIC FIELD (B) exists in an otherwise empty region of space if a charge moving
through that region can experience a force due to its motion (as shown in Fig. 30-1). Frequently,
a magnetic field is detected by its effect on a compass needle (a tiny bar magnet). The compass
needle lines up in the direction of the magnetic field.

MAGNETIC FIELD LINES drawn in a region provide a means for showing the direction in
which a compass needle placed in the region will point. A method for determining the field lines
near a bar magnet is shown in Fig. 30-2. By tradition, we take the direction of the compass
needle to be the direction of the field.

Magnetic field

N A A A
e S S )

<V

©
| F=0 | | F into page | |F0ut of page | | F into page ®@ @

Fig. 30-1 Fig. 30-2

A MAGNET may have two or more poles, although it must have at least one north pole and one
south pole. Because a compass needle points away from a north pole (N in Fig. 30-2) and toward
a south pole (S), magnetic field lines exit north poles and enter south poles.

MAGNETIC POLES of the same type (north or south) repel each other, while unlike poles at-
tract each other.

A CHARGE MOVING THROUGH A MAGNETIC FIELD experiences a force due to the field,
provided its velocity vector is not along a magnetic field line. In Fig. 30-1, charges (¢) are moving
with velocity v in a magnetic field directed as shown. The direction of the force F on each charge
is indicated. Notice that the direction of the force on a negative charge is opposite to that on a
positive charge with the same velocity.

THE DIRECTION OF THE FORCE acting on a charge +¢ moving in a magnetic field can be
found from a right-hand rule (Fig. 30-3):

289
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F out of page

-
v

Magnetic
field

Fig. 30-3

Hold the right hand flat. Point its fingers in the direction of the field. Orient the thumb along the
direction of the velocity of the positive charge. Then the palm of the hand pushes in the direction of
the force on the charge. The force direction on a negative charge is opposite to that on a positive
charge.

It is often helpful to note that the field line through the particle and the velocity vector of the particle
determine a plane (the plane of the page in Fig. 30-3). The force vector is always perpendicular to this
plane.

THE MAGNITUDE OF THE FORCE (F) on a charge moving in a magnetic field depends upon
the product of four factors:

(1) g, the charge (in C)

(2) v, the magnitude of the velocity of the charge (in m/s)

(3) B, the strength of the magnetic field

(4) sin 6, where 6 is the angle between the field lines and the velocity v.

THE MAGNETIC FIELD AT A POINT is represented by a vector B that is variously called the
magnetic induction, the magnetic flux density, or simply the magnetic field.
We define the magnitude of B and its units by way of the equation

Fy = quBsin 0

where F), is in newtons, ¢ is in coulombs, v is in m/s, and B is the magnetic field in a unit called the zesla
(T). For reasons we will see later, a tesla is also expressed as a weber per square meter: 1 T =1 Wb/ m?
(see Chapter 32). Still encountered is the cgs unit for B, the gauss (G), where

1G=10"*T
The Earth’s magnetic field is a few tenths of a gauss. Also note that
N N
1 T=1Wb/m?=1 —1

C-(m/s) A-m

FORCE ON A CURRENT IN A MAGNETIC FIELD: Since a current is simply a stream of
positive charges, a current experiences a force due to a magnetic field. The direction of the force
is found by the right-hand rule shown in Fig. 30-3, with the direction of the current used in place
of the velocity vector.
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The magnitude AF,, of the force on a small length AL of wire carrying current [ is given by
AFy =I(AL)B sin 0

where 6 is the angle between the direction of the current 7 and the direction of the field. For a straight
wire of length L in a uniform magnetic field, this becomes

Fy = 1ILB sin 0

Notice that the force is zero if the wire is in line with the field lines. The force is maximum if the field
lines are perpendicular to the wire. In analogy to the case of a moving charge, the force is perpendicular
to the plane defined by the wire and the field lines.

TORQUE ON A FLAT COIL in a uniform magnetic ficld: The torque 7 on a coil of N loops,
each carrying a current [, in an external magnetic field B is

7= NIAB sin 0

where A is the area of the coil, and @ is the angle between the field lines and a perpendicular to the plane
of the coil. For the direction of rotation of the coil, we have the following right-hand rule:

Orient the right thumb perpendicular to the plane of the coil, such that the fingers run in the
direction of the current flow. Then the torque acts to rotate the thumb into alignment with the
external field (at which orientation the torque will be zero).

Solved Problems

30.1 A uniform magnetic field, B = 3.0 G, exists in the +x-direction. A proton (¢ = +e) shoots
through the field in the +y-direction with a speed of 5.0 x 10® m/s. (¢) Find the magnitude
and direction of the force on the proton. (b) Repeat with the proton replaced by an electron.

(a) The situation is shown in Fig. 30-4. We have, after changing 3.0 G to 3.0 x 107* T,
Fy = quBsin 6 = (1.6 x 1077 C)(5.0 x 10° m/s)(3.0 x 107 T) sin 90° =2.4 x 107" N

B (out of page)

z . . . . .

Fig. 30-4 Fig. 30-5
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The force is perpendicular to the xy-plane, the plane defined by the field lines and v. The right-hand rule
tells us that the force is directed into the page, in the —z-direction.

(b) The magnitude of the force is the same as in (a), 2.4 x 10 '® N. But, because the electron is negative, the
force direction is reversed. The force is in the +z-direction.

The charge shown in Fig. 30-5 is a proton (¢ = +e, m, = 1.67 x 10727 kg) with speed
5.0 x 10° m/s. It is passing through a uniform magnetic field directed out of the page; B is
30 G. Describe the path followed by the proton.

Because the proton’s velocity is perpendicular to B, the force on the proton is
quB sin 90° = quB
This force is perpendicular to v and so it does no work on the proton. It simply deflects the proton and causes
it to follow the circular path shown, as you can verify using the right-hand rule. The force guB is radially
inward and supplies the centripetal force for the circular motion: Fy; = quB = ma = mv* /r and
my
R 1
= (1)

For the given data,

(167 x 10727 kg)(5.0 x 10°m/s) m
(1.6 x 10712 C)(30 x 1074 T)
Observe from Eq. (/) that the momentum of the charged particle is directly proportional to the radius of
its circular orbit.

A proton enters a magnetic field of flux density 1.5 Wb/m? with a velocity of 2.0 x 10" m/s at an
angle of 30° with the field. Compute the force on the proton.

Fy = quBsin 0 = (1.6 x 107" C)(2.0 x 10" m/s)(1.5 Wb/m?) sin 30° = 2.4 x 107> N

A cathode ray beam (an electron beam; m, = 9.1 x 107! kg, ¢ = —e) is bent in a circle of radius
2.0 cm by a uniform field with B = 4.5 x 107> T. What is the speed of the electrons?

To describe a circle like this, the particles must be moving perpendicular to B. From Eq. (/) of Problem
30.2,

rgB  (0.020 m)(1.6 x 107 C)(4.5 x 107 T)
V= —=

m 9.1 x 103 kg

=1.58x 10"m/s = 1.6 x 10*km/s

As shown in Fig. 30-6, a particle of charge ¢ enters a region where an electric field is uniform and
directed downward. Its value E is 80 kV/m. Perpendicular to E and directed into the page is a
magnetic field B = 0.4 T. If the speed of the particle is properly chosen, the particle will not be
deflected by these crossed electric and magnetic fields. What speed should be selected in this case?
(This device is called a velocity selector.)

The electric field causes a downward force Eq on the charge if it is positive. The right-hand rule tells us
that the magnetic force, quB sin 90°, is upward if ¢ is positive. If these two forces are to balance so that the
particle does not deflect, then
E 80 x10°V/m
B~ 04T
When ¢ is negative, both forces are reversed, so the result v = E/B still holds.

Eq = quB sin 90° or v= =2x10° m/s
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E=380kV/m
X X X X X
qUB
X X X X X
_ B=04T
q > v=? (into page)
X X X X X
Eq
X X X X X
Fig. 30-6

30.6 In Fig. 30-7(a), a proton (¢ = +e, m, = 1.67 x 107> kg) is shot with speed 8.0 x 10° m/s at an
angle of 30.0° to an x-directed field B = 0.15 T. Describe the path followed by the proton.

0.500v=v, v, B=0.15T
(out)
. . +q o .
+gq 0.866 v =, X
—_— . . .
_
(a) Side view (b) End view
Fig. 30-7

We resolve the particle velocity into components parallel to and perpendicular to the magnetic field. The
magnetic force in the direction of v, is zero (sin # = 0); the magnetic force in the direction of v, has no x-
component. Therefore, the motion in the x-direction is uniform, at speed

v, = (0.866)(8.0 x 10° m/s) = 6.93 x 10° m/s
while the transverse motion is circular (see Problem 30.2), with radius

~mu, (1.67 x 1077 kg)(0.500 x 8.0 x 10° m/s)

_ L _ —0.28
4B (1.6 x 109 C)(0.15 T) m

The proton will spiral along the x-axis; the radius of the spiral (or helix) will be 28 cm.
To find the pitch of the helix (the x-distance traveled during one revolution), we note that the time taken
to complete one circle is

Period = 2 — 2r(0.28 m) —44x107 s
v (0.500)(8.0 x 105 m/s)
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During that time, the proton will travel an x-distance of

Pitch = (v,)(period) = (6.93 x 10° m/s)(4.4 x 1077 s) = 3.0 m

Alpha particles (m, = 6.68 x 10727 kg, ¢ = +2e) are accelerated from rest through a p.d. of
1.0 kV. They then enter a magnetic field B = 0.20 T perpendicular to their direction of motion.
Calculate the radius of their path.

Their final KE is equal to the electric potential energy they lose during acceleration, Vg:

2Vq

Im*=vq or  w=
m

By Problem 30.2, they follow a circular path in which

_mu_ 2 Vq
(1

(1000 V)(6.68 x 102 kg)
~0.20 T\/ =0032m

32x 1079 C

In Fig. 30-8, the magnetic field is out of the page and B = 0.80 T. The wire shown carries a
current of 30 A. Find the magnitude and direction of the force on a 5.0 cm length of the wire.
We know that
AFy; = I(AL)B sin 6 = (30 A)(0.050 m)(0.80 T)(1) = 1.2 N

By the right-hand rule, the force is perpendicular to both the wire and the field and is directed toward the
bottom of the page.

X X x I X X
. . . . . W
B=0.80T >
(out) B into page

I=30A X X X X X
C | — D
. . B . . . L ZAL

AF >
. . . . . X X X X X
Fig. 30-8 Fig. 30-9

As shown in Fig. 30-9, a loop of wire carries a current / and its plane is perpendicular to a
uniform magnetic field B. What are the resultant force and torque on the loop?

Consider the length AL shown. The force AF on it has the direction indicated. A point directly opposite
this on the loop has an equal, but opposite, force acting on it. Hence the forces on the loop cancel and the
resultant force on it is zero.

We see from the figure that the AF’s acting on the loop are trying to expand it, not rotate it. Therefore
the torque (7) on the loop is zero. Or, we can make use of the torque equation,

7= NIAB sin 0

where 6 is the angle between the field lines and the perpendicular to the plane of the loop. We see that 6 = 0.
Therefore sin # = 0 and the torque is zero.
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30.10 The 40-loop coil shown in Fig. 30-10 carries a current of 2.0 A in a magnetic field B =0.25 T.

30.11

30.12

Find the torque on it. How will it rotate?

Method 1

7= NIAB sin 0 = (40)(2.0 A)(0.10 m x 0.12 m)(0.25 T)(sin 90°) = 0.24 N-m

(Remember that 6 is the angle between the field lines and the perpendicular to the loop.) By the right-hand
rule, the coil will turn about a vertical axis in such a way that side ad moves out of the page.

Fig. 30-10

Method 2

Because sides dc and ab are in line with the field, the force on each of them is zero, while the force on
each vertical wire is

Fy =ILB = (2.0 A)(0.12 m)(0.25 T) = 0.060 N

out of the page on side ab and into the page on side bc. If we take torques about side bc as axis, only the force
on side ad gives a nonzero torque. It is

7= (40 x 0.060 N)(0.10 m) = 0.24 N-m

and it tends to rotate side ad out of the page.

In Fig. 30-11 is shown one-quarter of a single circular loop of wire that carries a current of 14 A.
Its radius is a = 5.0 cm. A uniform magnetic field, B = 300 G, is directed in the +x-direction.
Find the torque on the loop and the direction in which it will rotate.

The normal to the loop, OP, makes an angle # = 60° with the +x-direction, the field direction. Hence,
7= NIAB sin § = (1)(14 A)(r x 25 x 10~* m*)(0.0300 T) sin 60° =2.9 x 10~* N-m

The right-hand rule shows that the loop will rotate about the y-axis so as to decrease the angle labeled 60°.

Two electrons, both with speed 5.0 x 10® m/s, are shot into a uniform magnetic field B. The first is
shot from the origin out along the +x-axis, and it moves in a circle that intersects the +z-axis at
z =16 cm. The second is shot out along the +y-axis, and it moves in a straight line. Find the
magnitude and direction of B.
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VA
\
/P

- 5 >
X X

»

z
Fig. 30-11 Fig. 30-12

The situation is shown in Fig. 30-12. Because a charge experiences no force when moving along a field
line, the field must be in either the +y- or —y-direction. Use of the right-hand rule for the motion shown in
the diagram for the negative electron charge leads us to conclude that the field is in the —y-direction.

To find the magnitude of B, we notice that r = 8 cm. The magnetic force Bquv provides the needed
centripetal force mv* /r, and so

~mv (9.1 x 107" kg)(5.0 x 10° m/s)

- =36x10*T
ar (1.6 x 10 C)(0.080 m) 8

B

30.13 At a certain place on the planet, the Earth’s magnetic field is 5.0 x 107> T, directed 40° below the
horizontal. Find the force per meter of length on a horizontal wire that carries a current of 30 A
northward.

Nearly everywhere, the Earth’s field is directed northward. (That is the direction in which a compass
needle points.) Therefore, the situation is that shown in Fig. 30-13. The force on the wire is

FM_

Fy = (30 A)(L)(5.0 x 107 T) sin 40°  so that 9.6 x 107* N

The right-hand rule indicates that the force is into the page, which is west.



CHAP. 30] FORCES IN MAGNETIC FIELDS 297

30.14

30.15

30.16

30.17

30.18

30.19

30.20

30.21

30.22

30.23

Supplementary Problems

Anion (g = +2e) enters a magnetic field of 1.2 Wb/m? at a velocity of 2.5 x 10° m/s perpendicular to the
field. Determine the force on the ion. Ans. 9.6 x 107 N

Calculate the speed of ions that pass undeflected through crossed E and B fields for which £ = 7.7 kV/m and
B=0.14T. Ans. 55 km/s

The particle shown in Fig. 30-14 is positively charged in all three cases. What is the direction of the force on
it due to the magnetic field? Give its magnitude in terms of B, ¢, and v. Ans. (a) into page, quB; (b) out
of page, quB sin 6; (¢) in plane of page at angle 6 + 90°, quB

x x x x
7 -
— 3 EEEe—— x ) X B into page
B B
> x x x x
0
-y - > x X x
v
-y -5 x x x x
(@ (® ()
Fig. 30-14

What might be the mass of a positive ion that is moving at 1.0 x 10’ m/s and is bent into a circular path of
radius 1.55m by a magnetic field of 0.134 Wb/m?? (There are several possible answers.)
Ans. n(3.3 x 1072 kg), where ne is the ion’s charge

An electron is accelerated from rest through a potential difference of 3750 V. It enters a region where
B=4.0x10"2T perpendicular to its velocity. Calculate the radius of the path it will follow.
Ans. 5.2 cm

An electron is shot with speed 5.0 x 10® m/s out from the origin of coordinates. Its initial velocity makes an
angle of 20° to the +x-axis. Describe its motion if a magnetic field B = 2.0 mT exists in the +x-direction.
Ans. helix, r = 0.49 cm, pitch = 8.5 cm

A beam of electrons passes undeflected through two mutually perpendicular electric and magnetic fields. If
the electric field is cut off and the same magnetic field maintained, the electrons move in the magnetic field in
a circular path of radius 1.14 cm. Determine the ratio of the electronic charge to the electron mass if
E =8.00 kV/m and the magnetic field has flux density 2.00 mT. Ans. e/m, =175 GC/kg

A straight wire 15 cm long, carrying a current of 6.0 A, is in a uniform field of 0.40 T. What is the force on
the wire when it is (@) at right angles to the field and (b) at 30° to the field? Ans. (a) 0.36 N; (b) 0.18 N

What is the direction of the force, due to the Earth’s magnetic field, on a wire carrying current vertically
downward? Ans. horizontally toward east

Find the force on each segment of the wire shown in Fig. 30-15if B = 0.15 T. Assume the current in the wire
to be 5.0 A. Ans. In sections AB and DE, the force is zero; in section BC, 0.12 N into page; in section
CD, 0.12 N out of page
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C
_—
35°

N ’ = \20 cm

B 16 cm ﬂ
—_— >

1
—— | — {——
A B D E
_
Fig. 30-15

A rectangular coil of 25 loops is suspended in a field of 0.20 Wb/m?. The plane of the coil is parallel to the
direction of the field. The dimensions of the coil are 15 cm perpendicular to the field lines and 12 cm parallel
to them. What is the current in the coil if there is a torque of 5.4 N-m acting on it? Ans. 60 A

An electron is accelerated from rest through a potential difference of 800 V. It then moves perpendicularly to
a magnetic field of 30 G. Find the radius of its orbit and its orbital frequency. Ans. 3.2 cm, 84 MHz

A proton and a deuteron (m, ~ 2m,, q, = e) are both accelerated through the same potential difference and
enter a magnetic field along the same line. If the proton follows a path of radius R,, what will be the radius of
the deuteron’s path? Ans. R, = Rp\/i



Chapter 31

Sources of Magnetic Fields

MAGNETIC FIELDS ARE PRODUCED by moving charges, and of course that includes electric
currents. Figure 31-1 shows the nature of the magnetic fields produced by several current config-
urations. Below each is given the value of B at the indicated point P. The constant
po =47 x 1077 T-m/A is called the permeability of free space. It is assumed that the surrounding
material is vacuum or air.

THE DIRECTION OF THE MAGNETIC FIELD of a current-carrying wire can be found by
using a right-hand rule, as illustrated in Fig. 31-1(a):

Grasp the wire in the right hand, with the thumb pointing in the direction of the current. The
fingers then circle the wire in the same direction as the magnetic field does.

This same rule can be used to find the direction of the field for a current loop such as that shown in Fig.
31-1(b).

current /

(¢) Interior point of
long solenoid with
n loops per meter:

P B = uynl
| It is constant in
U the interior
(a) Long straight wire:
_ ol
2mr
where r is distance to N\ \ 1 7
P from the axis of the wire < » N
4 $. 2 d g N § S
—= ( (, o__ 1 v )
I \/3 e
S g

I 3tV >{
§ T
/— L)) P
D
”’\\P}k/
;/C.D\ (d) Interior point of

( toroid having

/

N loops:
B= MoNT
(b) Center of a circular coil T 2ar
with radius @ and N loops: where r is the
~ pgNI radius of the circle
B= 2a on which P lies
Fig. 31-1
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FERROMAGNETIC MATERIALS, primarily iron and the other transition elements, greatly en-
hance magnetic fields. Other materials influence B-fields only slightly. The ferromagnetic materials
contain domains, or regions of aligned atoms, that act as tiny bar magnets. When the domains
within an object are aligned with each other, the object becomes a magnet. The alignment of do-
mains in permanent magnets is not easily disrupted.

THE MAGNETIC MOMENT of a flat current-carrying loop (current = I, area = A4) is I4. The
magnetic moment is a vector quantity that points along the field line perpendicular to the plane
of the loop. In terms of the magnetic moment, the torque on a flat coil with N loops in a mag-
netic field B is 7 = N(IA)B sin 0, where 6 is the angle between the field and the magnetic moment
vector.

MAGNETIC FIELD OF A CURRENT ELEMENT: The current element of length AL shown
in Fig. 31-2 contributes AB to the field at P. The magnitude of AB is given by the Biot-Savart
Law:

,LL()I AL

717’2

AB = sin 0

where r and 6 are defined in the figure. The direction of AB is perpendicular to the plane determined by
AL and r (the plane of the page). In the case shown, the right-hand rule tells us that AB is out of the

page.

Fig. 31-2

When r is in line with AL, then # = 0 and thus AB = 0. This means that the field due to a straight
wire at a point on the line of the wire is zero.

Solved Problems

31.1 Compute the value of B in air at a point 5 cm from a long straight wire carrying a current of
15 A.
From Fig. 31-1(a),

g Hol _ (47 x 1077 T-m/A)(15 A)

== =6x107°T
Zar 27(0.05 m) 6> 10
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31.2

31.3

314

31.5

31.6

A flat circular coil with 40 loops of wire has a diameter of 32 cm. What current must flow in its
wires to produce a field of 3.0 x 10™* Wb/m? at its center?

From Fig. 31-1(b),

o NI » (47 x 1077 T-m/A)(40)(I)
- 30x 1074 T =
2 o x 2(0.16 m)

which gives 7 = 1.9 A.

An air-core solenoid with 2000 loops is 60 cm long and has a diameter of 2.0 cm. If a current of
5.0 A is sent through it, what will be the flux density within it?

From Fig. 31-3(c),

2000

B = ponl = (47 x 107" T-m/A) (m

)(5.0 A)=0021T

In Bohr’s model of the hydrogen atom, the electron travels with speed 2.2 x 10° m/s in a circle
(r=35.3x 10" m) about the nucleus. Find the value of B at the nucleus due to the electron’s
motion.

In Problem 26.17 we found that the orbiting electron corresponds to a current loop with 7 = 1.06 mA.
The field at the center of the current loop is

g ol _ (47 % 1077 T-m/A)(1.06 x 107 A)

=13T
2r 2(53 x 10-1T m)

A long straight wire coincides with the x-axis, and another coincides with the y-axis. Each carries
a current of 5 A in the positive coordinate direction. (See Fig. 31-3.) Where is their combined field
equal to zero?

Fig. 31-3

Use of the right-hand rule should convince you that their fields tend to cancel in the first and third
quadrants. A line at § = 45° passing through the origin is equidistant from the two wires in these quadrants.
Hence the fields exactly cancel along the line x = y, the 45° line.

A long wire carries a current of 20 A along the axis of a long solenoid. The field due to the
solenoid is 4.0 mT. Find the resultant field at a point 3.0 mm from the solenoid axis.
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The situation is shown in Fig. 31-4. The field of the solenoid, B,, is directed parallel to the wire. The field
of the long straight wire, B, circles the wire and is perpendicular to B;. We have B, = 4.0 mT and

ol _ (47 x 107 T-m/A)(20 A)
Y 2mr T 2w(3.0 x 1073 m)

=133 mT

Since B, and B, are perpendicular, their resultant B has magnitude

B= \/(4.0 mT)? + (1.33 mT)? = 4.2 mT

3 O
3 O

10 cm

6.0 A 4.0A

Fig. 31-4 Fig. 31-5

31.7 As shown in Fig. 31-5, two long parallel wires are 10 cm apart and carry currents of 6.0 A and
4.0 A. Find the force on a 1.0 m length of wire D if the currents are (@) parallel and (b) anti-
parallel.

(@) This is the situation shown in Fig. 31-5. The field at wire D due to wire C is directed into the page and
has the value
g Hol _ (47 x 1077 T-m/A)(6.0 A)
T 2@ 27(0.10 m)

=12x107°T

The force on 1 m of wire D due to this field is

Fy = ILB sin 6 = (4.0 A)(1.0 m)(1.2 x 107> T)(sin 90°) = 48 uN
The right-hand rule applied to wire D tells us the force on D is toward the left. The wires attract each
other.

(b) If the current in D flows in the reverse direction, the force direction will be reversed. The wires will repel
each other. The force per meter of length is still 48 uN.

31.8 Consider the three long, straight, parallel wires shown in Fig. 31-6. Find the force experienced by
a 25-cm length of wire C.

The fields due to wires D and G at wire C are

_ ol _ (47 x 1077 T-m/A)(30 A)

— ot _ =20x10*T
D= Jnr 27(0.030 m) 010

into the page, and

(47 x 1077 T-m/A)(20 A)

=0. 1074T
27(0.050 m) 080> 10

B; =
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D C G
3.0cm 5.0cm
30A 10A 20 A
Fig. 31-6

out of the page. Therefore, the field at the position of wire C is
B=20x10"*-080x10*=12x10"*T
into the page. The force on a 25-cm length of C is
Fy = ILB sin § = (10A)(0.25m)(1.2 x 10~ T)(sin 90°) = 0.30 mN

Using the right-hand rule at wire C tells us that the force on wire C is toward the right.

31.9 A flat circular coil with 10 loops of wire has a diameter of 2.0 cm and carries a current of 0.50 A.
It is mounted inside a long solenoid that has 200 loops on its 25-cm length. The current in the
solenoid is 2.4 A. Compute the torque required to hold the coil with its axis perpendicular to that
of the solenoid.

Let the subscripts s and ¢ refer to the solenoid and coil respectively. Then
7= N.,A.B sin 90°
But By = ponl; = ug(N,/Ly)I,, which gives

F= MONCNSICI.S(WVE)

Ly
(47 x 1077 T-m/A)(10)(200)(0.50 A)(2.4 A)7(0.010 m)’
B 0.25 m
=38x10°N-m

31.10 The wire shown in Fig. 31-7 carries a current of 40 A. Find the field at point P.

Since P lies on the lines of the straight wires, they contribute no field at P. A circular loop of radius r
gives a field of B = uyl/2r at its center point. Here we have only three-fourths of a loop, and so

. 3\ (uol\  (3)(4m x 1077 T-m/A)(40 A)
papancr= (3) (%) = G am m

=94x107*T =0.94 mT

The field is out of the page.
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Fig. 31-7

Supplementary Problems

Compute the flux density in air at a point 6.0 cm from a long straight wire carrying a current of
9.0 A. Ans. 30uT

A closely wound, flat, circular coil of 25 turns of wire has a diameter of 10 cm and carries a current of 4.0 A.
Determine the value of B at its center. Ans. 1.3 x 107> Wb/m?

An air-core solenoid 50 cm long has 4000 loops wound on it. Compute B in its interior when a current of
0.25 A exists in the winding. Ans. 2.5 mT

A uniformly wound air-core toroid has 750 loops on it. The radius of the circle through the center of its
windings is 5 cm. What current in the winding will produce a field of 1.8 mT on this central cir-
cle? Ans. 0.6 A

Two long parallel wires are 4 cm apart and carry currents of 2 A and 6 A in the same direction. Compute the
force between the wires per meter of wire length. Ans. 6 x 107> N/m, attraction

Two long fixed parallel wires, 4 and B, are 10 cm apart in air and carry 40 A and 20 A respectively, in
opposite directions. Determine the resultant field (@) on a line midway between the wires and parallel to them
and (b) on a line 8.0 cm from wire 4 and 18 cm from wire B. (¢) What is the force per meter on a third long
wire, midway between 4 and B and in their plane, when it carries a current of 5.0 A in the same direction as
the current in 4?7  Ans. (a) 2.4 x 1074 T; (b)) 7.8 x 107> T; (¢) 1.2 x 1072 N/m, toward A4

The long straight wires in Fig. 31-3 both carry a current of 12 A, in the directions shown. Find B at the point
(a) x=-5.0cm, y=5.0 cm and (b) x = —7.0 cm, y = —6.0 cm. Ans. (a) 96 uT, out; (b) 5.7 uT, in

A certain electromagnet consists of a solenoid (5.0 cm long with 200 loops) wound on a soft-iron core that
intensifies the field 130 times. (We say that the relative permeability of the iron is 130.) Find B within the iron
when the current in the solenoid is 0.30 A. Ans. 020 T

A certain solenoid (50 cm long with 2000 loops) carries a current of 0.70 A and is in vacuum. An electron is
shot at an angle of 10° to the solenoid axis from a point on the axis. (¢) What must be the speed of the
electron if it is to just miss hitting the inside of the 1.6 cm diameter solenoid? () What is then the pitch of the
electron’s helical path? Ans. (a) 1.4 x 10" m/s; (b) 14 cm



Chapter 32

Induced EMF; Magnetic Flux

MAGNETIC EFFECTS OF MATTER: Most materials have only a very slight effect on a steady
magnetic field, and that effect is best described in terms of an experiment.

Suppose that a very long solenoid or a toroid is located in vacuum. With a fixed current in the coil,
the magnetic field at a certain point inside the solenoid or toroid is Bj, where the subscript ( stands for
vacuum. If now the solenoid or toroid core is filled with a material, the field at that point will be changed
to a new value B. We define:

. B
Relative permeability of the material = k;; = B
0

Permeability of the material = pu = kg

Recall that i is the permeability of free space, 47 x 10~/ T-m/A.

Diamagnetic materials have values for k,, slightly below unity (0.999984 for solid lead, for
example). They slightly decrease the value of B in the solenoid or toroid.

Paramagnetic materials have values for k;; slightly larger than unity (1.000 021 for solid aluminum,
for example). They slightly increase the value of B in the solenoid or toroid.

Ferromagnetic materials, such as iron and its alloys, have k;, values of about 50 or larger. They
greatly increase the value of B in the toroid or solenoid.

MAGNETIC FIELD LINES: A magnetic field may be represented pictorially by lines, to which
B is everywhere tangential. These magnetic field lines are constructed in such a way that the num-
ber of lines piercing a unit area perpendicular to them is proportional to the local value of B.

THE MAGNETIC FLUX (®,) through an area A4 is defined to be the product of B, and A4
where B, is the component of B perpendicular to the surface of area A:

®,y =B, A= BAcosH

where 6 is the angle between the direction of the magnetic field and the perpendicular to the area. The
flux is expressed in webers (Wb).

AN INDUCED EMF ecxists in a loop of wire whenever there is a change in the magnetic flux
through the area surrounded by the loop. The induced emf exists only during the time that the
flux through the area is changing.

FARADAY’S LAW FOR INDUCED EMF: Suppose that a coil with N loops is subject to a
changing magnetic flux through the coil. If a change in flux A®,;, occurs in a time At then the
average emf induced between the two terminals of the coil is given by

AD,,

At

The emf e is measured in volts if A®/Ar is in Wb/s. The minus sign indicates that the induced emf
opposes the change which produces it, as stated generally in Lenz’s Law.

305
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LENZ’S LAW: An induced emf always has such a direction as to oppose the change in mag-
netic flux that produced it. For example, if the flux is increasing through a coil, the current pro-
duced by the induced emf will generate a flux that tends to cancel the increasing flux. Or, if the
flux is decreasing through the coil, that current will produce a flux that tends to restore the de-
creasing flux. Lenz’s Law is a consequence of Conservation of Energy. If this were not the case,
the induced currents would enhance the flux change that caused them to begin with and the pro-
cess would build endlessly.

MOTIONAL EMF: When a conductor moves through a magnetic field so as to cut field lines,
an induced emf will exist in it, in accordance with Faraday’s Law. In this case,
AD,,

At
The symbol || means that we are concerned here only with the magnitude of the average induced emf;
its direction will be considered below.

The induced emf in a straight conductor of length L moving with velocity ¥ perpendicular to a field B
is given by

6] =

|&] = BLv

where B, ¥, and the wire must be mutually perpendicular.

In this case, Lenz’s Law still tells us that the induced emf opposes the process. But now the
opposition is produced by way of the force exerted by the magnetic field on the induced current in
the conductor. The current direction must be such that the force opposes the motion of the conductor.
Knowing the current direction, we also know the direction of e.

Solved Problems

32.1 A solenoid is 40 cm long, has cross-sectional area 8.0 em?, and is wound with 300 turns of wire
that carry a current of 1.2 A. The relative permeability of its iron core is 600. Compute (a) B for
an interior point and (b) the flux through the solenoid.

(@) From Fig. 31-1(c),

_ NI (4w x 1077 T-m/A)(300)(1.2 A)

Bo L 0.40 m

=113 mT

and so B =k By = (600)(1.13 x 10°T) = 0.68 T
(b) Because the field lines are perpendicular to the cross-section of the solenoid,

®y =B, A=BA=(0.68T)(8.0x10* m?) = 54 uWb

32.2 The flux through a certain toroid changes from 0.65 mWb to 0.91 mWb when the air core is
replaced by another material. What are the relative permeability and the permeability of the
material?

The air core is essentially the same as a vacuum core. Since k), = B/By and ®,, = B, 4,
0.91 mWb

~0.65mwp 40

ke
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This is the relative permeability. The magnetic permeability is

= kypo = (1.40) (4w x 1077 T-m/A) = 5.6m x 107’ T-m/A

32.3 The quarter-circle loop shown in Fig. 32-1 has an area of 15 cm’. A magnetic field with
B =0.16 T exists in the +x-direction. Find the flux through the loop in each orientation shown.

El

0°

X

=V
=

20°
B, /
/ B
20°
(a) (b) (©
Fig. 32-1
We know that & = B A.
(a) By =B A=BA= (016 T)(15x 10* m?) =24 x 107* Wb
(b) By = (B cos 20°)4 = (2.4 x 107* Wb)(cos 20°) = 2.3 x 10~* Wb
(c) @), = (B sin 20°)4 = (2.4 x 10~* Wb)(sin 20°) = 8.2 x 107° Wb

32.4 A hemispherical surface of radius R is placed in a magnetic field B as shown in Fig. 32-2. What is
the flux through the hemispherical surface?

-1
4

Fig. 32-2

The same number of field lines pass through the curved surface as through the shaded cross-section.
Therefore,

Flux through curved surface = flux through flat surface = B, 4

where in this case B, = B and 4 = 7R%. Then ®,, = 7BR".
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32.5 A 50-loop circular coil has a radius of 3.0 cm. It is oriented so that the field lines of a magnetic
field are normal to the area of the coil. Suppose that the magnetic field is varied so that B
increases from 0.10 T to 0.35 T in a time of 2.0 milliseconds. Find the average induced emf in
the coil.

32.6

32.7

A®y; = B A — B A = (0.25 T)(m?) = (0.25 T)7(0.030 m)* = 7.1 x 10~* Wb

AP 1 x 107"
|6 = NJ’ = (50) <7><0VVb) — 18V

At 2x 1073 s

The magnet in Fig. 32-3 induces an emf in the coils as the magnet moves toward the right or the
left. Find the directions of the induced currents through the resistors when the magnet is moving
(a) toward the right and (b) toward the left.

(@)

®)

Fig. 32-3

Consider first the coil on the left. As the magnet moves to the right, the flux through the coil, which is
directed generally to the left, decreases. To compensate for this, the induced current in the coil will flow
so as to produce a flux toward the left through itself. Apply the right-hand rule to the loop on the left
end. For it to produce flux inside the coil directed toward the left, the current must flow through the
resistor from B to A.

Now consider the coil on the right. As the magnet moves toward the right, the flux inside the coil,
also generally to the left, increases. The induced current in the coil will produce a flux toward the right
to cancel this increased flux. Applying the right-hand rule to the loop on the right end, we find that the
loop generates flux to the right inside itself if the current flows from C to D through the resistor.

In this case the flux change caused by the magnet’s motion is opposite to what it was in (a). Using the
same type of reasoning, we find that the induced currents flow through the resistors from A to B and
from D to C.

In Fig. 32-4(a) there is a magnetic field in the +x-direction, with B = 0.20 T and a loop of wire in
the yz-plane. The loop has an area of 5.0 cm? and rotates about line CD as axis. Point 4 rotates
toward positive x-values from the position shown. If the loop rotates through 50° from its
indicated position, as shown in Fig. 32-4(b), in a time of 0.20 s, () what is the change in flux
through the coil, (b) what is the average induced emf in it, and (¢) does the induced current flow
from A4 to C or C to A4 in the upper part of the coil?

(@)

Initial flux = B, A = BA = (0.20 T)(5.0 x 10* m?) = 1.0 x 10~* Wb
Final flux = (B cos 50°)4 = (1.0 x 10~* Wb)(cos 50°) = 0.64 x 10~* Wb
Ady =0.64 x 107* Wb — 1.0 x 107* Wb = —0.36 x 10~ Wb = —36 Wb
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32.8

329

32.10

D . 4 A
B ;
I .
Sy
17
X ///} X
. I
// !
E' |
E
(@) (®)

Fig. 32-4

At

() |6l =N

0.36 x 107* Wb
N

_ -4 v _
0205 )l.8><10 V=0.18mV

(¢) The flux through the loop from left to right decreased. The induced current will tend to set up flux from
left to right through the loop. By the right-hand rule, the current flows from 4 to C. Alternatively, a
torque must be set up that tends to rotate the loop back into its original position. The appropriate
right-hand rule from Chapter 30 again gives a current flow from 4 to C.

A coil of 50 loops is pulled in 0.020 s from between the poles of a magnet, where its area
intercepts a flux of 3.1 x 107 Wb, to a place where the intercepted flux is 0.10 x 107 Wb.
Determine the average emf induced in the coil.

Ay | _ ((3:1-0.10) x 107 Wb

Y, 0.020 s =075V

6] =N

A copper bar 30 cm long is perpendicular to a field of 0.80 Wb/m? and moves at right angles to
the field with a speed of 0.50 m/s. Determine the emf induced in the bar.

|6| = BLv = (0.80 Wb/m>)(0.30 m)(0.50 m/s) = 0.12 V

As shown in Fig. 32-5, a metal rod makes contact with a partial circuit and completes the circuit.
The circuit is perpendicular to a magnetic field with B = 0.15 T. If the resistance is 3.0 €2, how
large a force is needed to move the rod as indicated with a constant speed of 2.0 m/s? At what rate
is energy dissipated in the resistor?

The induced emf in the rod causes a current to flow counterclockwise in the circuit. Because of this
current in the rod, it experiences a force to the left due to the magnetic field. To pull the rod to the right with
constant speed, this force must be balanced.

Method 1
The emf induced in the rod is
|&] = BLv = (0.15 T)(0.50 m)(2.0 m/s) = 0.15 V

6] 015V
= =0. A
R~ 300 0%

from which Fy; = ILB sin 90° = (0.050 A)(0.50 m)(0.15 T)(1) = 3.8 mN

and I =
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X X X X X X

B=0.15T (into page)

X X X X X X
x X 50cm x » v=20m/s
X X X X X X
X >
X X X X X X
Fig. 32-5

Method 2

The emf induced in the loop is

AD BAA B(LAx
|‘”@|:N’ AtM’:(l) At (At = a1
as before. Now proceed as in Method 1.
To find the power loss in the resistor, we can use
P =I’R=(0.050 A)*(3.0 Q) = 7.5 mW
Alternatively, P=Fv=(375%x107° N)(2.0 m/s) = 7.5 mW

32.11 The metal bar of length L, mass m, and resistance R shown in Fig. 32-6(a) slides without friction
on a rectangular circuit composed of resistanceless wire on an inclined plane. There is a vertical
magnetic field B. Find the terminal velocity of the bar (that is, the constant velocity it attains).

(@)

Fig. 32-6

Gravity pulls the bar down the incline as shown in Fig. 32-6(b). Induced current flowing in the bar
interacts with the field so as to retard this motion.
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32.12

Because of the motion of the bar in the magnetic field, an emf is induced in the bar:
& = (Blv) | = BL(v cos 6)

This causes a current

emf BLv
=" (=
R (R)0089

in the loop. A wire carrying a current in a magnetic field experiences a force that is perpendicular to the plane
defined by the wire and the magnetic field lines. The bar thus experiences a horizontal force F, (perpendicular
to the plane of B and the bar) given by

B2
F, = BIL = ( . “) cos 0

and shown in Fig. 32-6(c). However, we want the force component along the plane, which is

BL?
Fup plane = Fjy cos 0= ( R 1)) cos’ 0

When the bar reaches its terminal velocity, this force equals the gravitational force down the plane.
Therefore,

B’ .
<Rv> cos? 0§ = mg sin 0

Rmg) ( sin 6
v= 28} (227
B2L?) \cos?0

Can you show that this answer is reasonable in the limiting cases 6 = 0, B =0, and 6§ = 90°, and for R very
large or very small?

from which the terminal velocity is

The rod shown in Fig. 32-7 rotates about point C as pivot with the constant frequency 5.0 rev/s.
Find the potential difference between its two ends, which are 80 cm apart, due to the magnetic
field B = 0.30 T directed into the page.

X X X B=030T X X/ X
(into page) ;

Fig. 32-7

Consider a fictitious loop CADC. As time goes on, its area and the flux through it will increase. The
induced emf in this loop will equal the potential difference we seek.



312 INDUCED EMF; MAGNETIC FLUX [CHAP. 32

AD,, BAA
&l =N—— =(1
1= M5 - o (B52)
It takes one-fifth second for the area to change from zero to that of a full circle, 72, Therefore,
AA o 7(0.80 m)?
&l=B—=8B =030T)———=30V
141 At 0.20 s ( ) 0.20 s

32.13 A 5.0 Qcoil, of 100 turns and diameter 6.0 cm, is placed between the poles of a magnet so that the
flux is maximum through its area. When the coil is suddenly removed from the field of the
magnet, a charge of 1.0 x 107* C flows through a 595-Q galvanometer connected to the coil.
Compute B between the poles of the magnet.

As the coil is removed, the flux changes from BA, where A4 is the coil area, to zero. Therefore,
AD,, BA
=M _ yZZ2

At At
We are told that Ag = 1.0 x 1074 C. But, by Ohm’s Law,
Aq
At

where R = 600 ©, the total resistance. If we now equate these two expressions for || and solve for B, we find

—4
p_RAG_ (600 )(1.0x10°C) . o
NA ~ (100)(7 x 9.0 x 10+ m?)

éa

:N’

|6|=IR="9R

Supplementary Problems

32.14 A flux of 9.0 x 107 Wb is produced in the iron core of a solenoid. When the core is removed, a flux (in air)
of 5.0 x 1077 Wb is produced in the same solenoid by the same current. What is the relative permeability of
the iron?  Ans. 1.8 x 10°

32.15 In Fig. 32-8 there is a +x-directed magnetic field of 0.2 T. Find the magnetic flux through each face of the
box shown. Ans.  Zero through bottom and rear and front sides; through top, 1 mWb; through left
side, 2 mWb; through right side, 0.8 mWb.

10 cm 30°
10 cm

Fig. 32-8
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32.16

32.17

32.18

32.19

32.20

32.21

A solenoid 60 cm long has 5000 turns on it and is wound on an iron rod of 0.75 cm radius. Find the flux
through the solenoid when the current in it is 3.0 A. The relative permeability of the iron is
300. Ans. 1.7 m/Wb

A room has its walls aligned accurately with respect to north, south, east, and west. The north wall has an
area of 15 m?, the east wall has an area of 12 mz, and the floor’s area is 35 m>. At the site the Earth’s
magnetic field has a value of 0.60 G and is directed 50° below the horizontal and 7.0° east of north. Find the
fluxes through the north wall, the east wall, and the floor. Ans.  0.57 mWb, 56 uWb, 1.6 mWb

The flux through the solenoid of Problem 32.16 is reduced to a value of 1.0 mWb in a time of 0.050 s. Find
the induced emf in the solenoid. Ans. 67V

A flat coil with radius 8.0 mm has 50 loops of wire. It is placed in a magnetic field B = 0.30 T in such a way
that the maximum flux goes through it. Later, it is rotated in 0.020 s to a position such that no flux goes
through it. Find the average emf induced between the terminals of the coil. Ans. 0.15V

The square coil shown in Fig. 32-9 is 20 cm on a side and has 15 loops of wire. It is moving to the right at
3.0 m/s. Find the induced emf (magnitude and direction) in it (a) at the instant shown and (b) when the entire
coil is in the field region. The magnetic field is 0.40 T into the page. Ans. (a) 3.6 V counterclockwise;
(b) zero

x x l_;(into
X X X ape
v=3.0m/s X X X X page)

}Qgﬂ X X X

.Ucm X X X

Fig. 32-9

The magnet in Fig. 32-10 rotates as shown on a pivot through its center. At the instant shown, in what
direction is the induced current flowing (a) in resistor AB? (b) in resistor CD? Ans. (a) B to A4;
() Cto D

Fig. 32-10
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32.22

32.23

32.24

32.25
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A train is moving directly south with a speed of 10 m/s. If the downward vertical component of the Earth’s
magnetic field is 0.54 G, compute the magnitude and direction of the emf induced in a rail car axle 1.2 m
long. Ans. 0.65 mV from west to east

A copper disk of 10 cm radius is rotating at 20 rev/s about its axis and with its plane perpendicular to a
uniform field with B = 0.60 T. What is the potential difference between the center and rim of the disk? (Hint:
There is some similarity with Problem 32.12.) Ans. 038V

How much charge will flow through a 200-(2 galvanometer connected to a 400-(2 circular coil of 1000 turns
wound on a wooden stick 2.0 cm in diameter, if a magnetic field B = 0.0113 T parallel to the axis of the stick
is decreased suddenly to zero? Ans. 5.9 uC

In Fig. 32-6, described in Problem 32.11, what is the acceleration of the rod when its speed down the incline
is v? Ans. g sin 0 — (B*L*v/Rm) cos® 0



Chapter 33

Electric Generators and Motors

ELECTRIC GENERATORS are machines that convert mechanical energy into electrical energy.
A simple generator that produces an ac voltage is shown in Fig. 33-1(a). An external energy
source (such as a diesel motor or a steam turbine) turns the armature coil in a magnetic field B.
The wires of the coil cut the field lines, and an emf

& = 2nNABf cos 2xft

is induced between the terminals of the coil. In this relation, NV is the number of loops (each of area A) on
the coil, and £ is the frequency of its rotation. Figure 33-1(b) shows the emf in graphical form.

As current is drawn from the generator, the wires of its coil experience a retarding force because of
the interaction between current and field. Thus the work required to rotate the coil is the source of the
electrical energy supplied by the generator. For any generator,

(input mechanical energy) = (output electrical energy) + (friction and heat losses)

Usually the losses are only a very small fraction of the input energy.

Armature coil

Input

emf

Time

Slip rings
Brush

(@) (b)
Fig. 33-1

Output
voltage

ELECTRIC MOTORS convert electrical energy into mechanical energy. A simple dc motor (i.e.,
one that runs on a constant voltage) is shown in Fig. 33-2. The current through the armature coil
interacts with the magnetic field to cause a torque

7= NIAB sin 0

on the coil (see Chapter 30), which rotates the coil and shaft. Here, 6 is the angle between the field lines
and the perpendicular to the plane of the coil. The split-ring commutator reverses / each time sin 6
changes sign, thereby ensuring that the torque always rotates the coil in the same sense. For such a
motor,

Average torque = (constant) |[NIAB|
315
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Armature coil

Output
shaft
o

/|
Rotating split-ring -L
commutator

<—

Fig. 33-2

Because the rotating armature coil of the motor acts as a generator, a back (or counter) emf is
induced in the coil. The back emf opposes the voltage source that drives the motor. Hence, the net
potential difference that causes current through the armature is

Net p.d. across armature = (line voltage) — (back emf)
(line voltage) — (back emf)
armature resistance

and Armature current =

The mechanical power P developed within the armature of a motor is
P = (armature current)(back emf)

The useful mechanical power delivered by the motor is slightly less, due to friction, windage, and iron
losses.

Solved Problems

ELECTRIC GENERATORS

33.1 An ac generator produces an output voltage of & = 170 sin 377¢ volts, where ¢ is in seconds.
What is the frequency of the ac voltage?

A sine curve plotted as a function of time is no different from a cosine curve, except for the location of
t = 0. Since & = 2nNABf cos 2xft, we have 377t = 2xft, from which we find that the frequency /' = 60 Hz.

33.2 How fast must a 1000-loop coil (each with 20 cm? area) turn in the Earth’s magnetic field of
0.70 G to generate a voltage that has a maximum value (i.e., an amplitude) of 0.50 V?

We assume the coil’s axis to be oriented in the field so as to give maximum flux change when rotated.
Then B = 7.0 x 107> T in the expression
& = 2nNABf cos 2nft
Because cos 2xft has a maximum value of unity, the amplitude of the voltage is 2rNABf. Therefore,

r= 0.50 V 0.50 vV

= =0.57 kH
27NAB ~ (27)(1000)(20 x 10 m2)(7.0 x 105 T) “
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33.3

334

33.5

When turning at 1500 rev/min, a certain generator produces 100.0 V. What must be its angular
speed if it is to produce 120.0 V?

Because the amplitude of the emf is proportional to the angular speed (or frequency) f, we have, for two
speeds f; and f>,

& _h
& f

1200 V
100.0 V

or  fHh=f Z? = (1500 reV/min)( ) = 1800 rev/min

A certain generator has armature resistance 0.080 €2 and develops an induced emf of 120 V when
driven at its rated speed. What is its terminal voltage when 50.0 A is being drawn from it?

The generator acts like a battery with emf = 120 V and internal resistance r = 0.080 . As with a
battery,

Terminal p.d. = (emf) — Ir = 120 V — (50.0 A)(0.080 2) = 116 V

Some generators, called shunt generators, use electromagnets in place of permanent magnets, with
the field coils for the electromagnets activated by the induced voltage. The magnet coil is in
parallel with the armature coil (it shunts the armature). As shown in Fig. 33-3, a certain shunt
generator has armature resistance 0.060 €2 and shunt resistance 100 2. What power is developed
in the armature when it delivers 40 kW at 250 V to an external circuit?

u
.
Armature = Field 250 vV
0.060 Q = 100 Q 40 kW
[ ]
|
Fig. 33-3
From P = V1,
. P 40000 W
Current to external circuit = 7, = 730V 160 A
. Ve 250V
Field current = I, = r—/f =000 25 A

Armature current = [, = I, + [, = 162.5 A
Total induced emf = || = (250 V + I,r, drop in armature)
=250 V + (162.5 A)(0.06 Q) =260 V
Armature power = [,|&| = (162.5 A)(260 V) = 42 kW

Alternative Method

Power loss in armature = I2r, = (162.5 A)*(0.06 ) = 1.6 kW
Power loss in field = Ifz»rf = (2.5 A)*(100 ) = 0.6 kW
Power developed = (power delivered) + (power loss in armature) + (power loss in field)
=40 kW + 1.6 kW + 0.6 kW =42 kW
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ELECTRIC MOTORS

33.6

33.7

33.8

The resistance of the armature in the motor shown in Fig. 33-2 is 2.30 . It draws a current of
1.60 A when operating on 120 V. What is its back emf under these circumstances?

The motor acts like a back emf in series with an /R drop through its internal resistance. Therefore,

Line voltage = back emf + Ir
or Back emf = 120 V — (1.60 A)(2.30 Q) =116 V

A 0.250-hp motor (like that in Fig. 33-2) has a resistance of 0.500 2. () How much current does
it draw on 110 V when its output is 0.250 hp? (b) What is its back emf?

(a) Assume the motor to be 100 percent efficient so that the input power VI equals its output power
(0.250 hp). Then

(110 V)(I) = (0.250 hp)(746 W/hp)  or  I=1.695A

(b) Back emf = (line voltage) — Ir = 110 V — (1.695 A)(0.500 Q) = 109 V

In a shunt motor, the permanent magnet is replaced by an electromagnet activated by a field coil
that shunts the armature. The shunt motor shown in Fig. 33-4 has armature resistance 0.050 €2
and is connected to 120 V mains. (¢) What is the armature current at the starting instant, i.e.,
before the armature develops any back emf? (b) What starting rheostat resistance R, in series with
the armature, will limit the starting current to 60 A? (¢) With no starting resistance, what back
emf is generated when the armature current is 20 A? (d) If this machine were running as a
generator, what would be the total induced emf developed by the armature when the armature
is delivering 20 A at 120 V to the shunt field and external circuit?

]
]
>
3 oJ\/\NV\/\I Field 3 Armature 120V
Field (=3 120V 150Q (2 0.25Q
= Rheostat =
>
Armature
0.050 Q
]
n
Fig. 33-4 Fig. 33-5

impressed voltage 120 V
Armat t= = =24 kA
(@) rrature curren armature resistance  0.050 2

impressed voltage 120 V
b Armat t=—————— 60A=—°———
) rmAture curren 0.050 2 + R or 0.050 O + R
from which R =2.0 Q.
(¢) Back emf = (impressed voltage) — (voltage drop in armature resistance)

=120 V— (20 A)(0.050 Q) = 119 V = 0.12 kV

(d) Induced emf = (terminal voltage) 4 (voltage drop in armature resistance)
=120 V+ (20 A)(0.050 Q) = 121 V = 0.12 kV
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33.9 The shunt motor shown in Fig. 33-5 has armature resistance of 0.25 2 and field resistance of
150 €. It is connected across 120-V mains and is generating a back emf of 115 V. Compute: (a)
the armature current /,, the field current /;, and the total current /, taken by the motor; (b) the
total power taken by the motor; (¢) the power lost in heat in the armature and field circuits; (d)
the electrical efficiency of this machine (when only heat losses in the armature and field are

considered).
_ (impressed voltage) — (back emf) (120 — 115)
(@) lo= armature resistance T025Q 20 A
__impressed voltage 120V
77 field resistance 150 Q 080 A
I =1,+1,=2080 A=21 A
(b) Power input = (120 V)(20.80 A) = 2.5 kW
(¢) I2r, loss in armature = (20 A)*(0.25 ) = 0.10 kW
I7ry loss in field = (0.80 A)*(150 Q) = 96 W
(d) Power output = (power input) — (power losses) = 2496 — (100 + 96) = 2.3 kW
Alternatively,
Power output = (armature current)(back emf) = (20 A)(115 V) =2.3 kW
Then Efficiency — Poveroutput _ 2300 W _ ) o)) g3g,

power input 2496 W

33.10 A motor has a back emf of 110 V and an armature current of 90 A when running at 1500 rpm.
Determine the power and the torque developed within the armature.

Power = (armature current)(back emf)=(90 A)(110 V)=9.9 kW

From Chapter 10, power = Tw:

power . 9900 W
angular speed (27 x 25) rad/s

Torque = =63 N-m

33.11 A motor armature develops a torque of 100 N-m when it draws 40 A from the line. Determine
the torque developed if the armature current is increased to 70 A and the magnetic field strength
is reduced to 80 percent of its initial value.

The torque developed by the armature of a given motor is proportional to the armature current and to
the field strength (see Chapter 30):
70

Torque = (100N -m) (%) (0.80) = 0.14 kN-m

Supplementary Problems

ELECTRIC GENERATORS

33.12 Determine the separate effects on the induced emf of a generator if (@) the flux per pole is doubled, and (b)
the speed of the armature is doubled. Ans. (a) doubled; (b) doubled
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33.13

33.14

33.15

33.16

ELECTRIC GENERATORS AND MOTORS [CHAP. 33

The emf induced in the armature of a shunt generator is 596 V. The armature resistance is 0.100 €. (a)
Compute the terminal voltage when the armature current is 460 A. (b) The field resistance is 110 €. Deter-
mine the field current, and the current and power delivered to the external circuit. Ans.  (a) 550 V; (b)
5 A, 455 A, 250 kW

A dynamo (generator) delivers 30.0 A at 120 V to an external circuit when operating at 1200 rpm. What
torque is required to drive the generator at this speed if the total power losses are 400 W?
Ans. 31.8 N-m

A 75.0-kW, 230-V shunt generator has a generated emf of 243.5 V. If the field current is 12.5 A at rated
output, what is the armature resistance? Ans. 0.0399 Q

A 120-V generator is run by a windmill that has blades 2.0 m long. The wind, moving at 12 m/s, is slowed
to 7.0 m/s after passing the windmill. The density of air is 1.29 kg/m3. If the system has no losses, what is
the largest current the generator can produce? (Hint: How much energy does the wind lose per
second?) Ans. 77 A

ELECTRIC MOTORS

33.17

33.18

33.19

33.20

33.21

33.22

33.23

33.24

33.25

A generator has an armature with 500 loops, which cut a flux of 8.00 mWb during each rotation. Compute
the back emf it develops when run as a motor at 1500 rpm. Ans. 100V

The active length of each armature conductor of a motor is 30 cm, and the conductors are in a field of
0.40 Wb/m>. A current of 15 A flows in each conductor. Determine the force acting on each conductor.
Ans. 1.8 N

A shunt motor with armature resistance 0.080 €2 is connected to 120 V mains. With 50 A in the armature,
what are the back emf and the mechanical power developed within the armature? Ans. 0.12 kV,
5.8 kW

A shunt motor is connected to a 110-V line. When the armature generates a back emf of 104 V, the armature
current is 15 A. Compute the armature resistance. Ans. 0.40 Q

A shunt dynamo has an armature resistance of 0.120 Q. (@) If it is connected across 220-V mains and is
running as a motor, what is the induced (back) emf when the armature current is 50.0 A? () If this machine
is running as a generator, what is the induced emf when the armature is delivering 50.0 A at 220 V to the
shunt field and external circuit? Ans. (a) 214 V; (b) 226 V

A shunt motor has a speed of 900 rpm when it is connected to 120-V mains and delivering 12 hp. The total
losses are 1048 W. Compute the power input, the line current, and the motor torque. Ans. 10 kW,
83 A,93 N-m

A shunt motor has armature resistance 0.20 €2 and field resistance 150 €2, and draws 30 A when connected to
a 120-V supply line. Determine the field current, the armature current, the back emf, the mechanical power
developed within the armature, and the electrical efficiency of the machine. Ans. 0.80 A,29 A,0.11 kV,
3.3 kW, 93%

A shunt motor develops 80 N-m of torque when the flux density in the air gap is 1.0 Wb/m* and the
armature current is 15 A. What is the torque when the flux density is 1.3 Wb/m? and the armature current
is 18 A? Ans. 0.13 kN-m

A shunt motor has a field resistance of 200 2 and an armature resistance of 0.50 2 and is connected to 120-V
mains. The motor draws a current of 4.6 A when running at full speed. What current will be drawn by the
motor if the speed is reduced to 90 percent of full speed by application of a load? Ans. 28 A



Chapter 34

Inductance; R-C and R-L Time Constants

SELF-INDUCTANCE: A coil can induce an emf in itself. If the current in a coil changes, the
flux through the coil due to the current also changes. As a result, the changing current in a coil
induces an emf in that same coil.

Because an induced emf e is proportional to A®,, /At and because Ad,, is proportional to Ai,
where i is the current that causes the flux,

IN
& = —(constant) Ki

Here i is the current through the same coil in which e is induced. (We shall denote a time-varying current
by i instead of 1.) The minus sign indicates that the self-induced emf & is a back emf and opposes the
change in current.

The proportionality constant depends upon the geometry of the coil. We represent it by L and call it
the self-inductance of the coil. Then

Ai
L=

At
For & in units of V, i in units of A, and ¢ in units of s, L is in henries (H).

&=

MUTUAL INDUCTANCE: When the flux from one coil threads through another coil, an emf
can be induced in either one by the other. The coil that contains the power source is called the
primary coil. The other coil, in which an emf is induced by the changing current in the primary,
is called the secondary coil. The induced secondary emf & is proportional to the time rate of
change of the primary current, Ai,/Ar:

£ =m0
S A

where M is a constant called the mutual inductance of the two-coil system.

ENERGY STORED IN AN INDUCTOR: Because of its self-induced back emf, work must be
done to increase the current through an inductor from zero to I. The energy furnished to the coil
in the process is stored in the coil and can be recovered as the coil’s current is decreased once
again to zero. If a current 7 is flowing in an inductor of self-inductance L, then the energy stored
in the inductor is

Stored energy = 1 LI°

For L in units of H and [/ in units of A, the energy is in J.

R-C TIME CONSTANT: Consider the R-C circuit shown in Fig. 34-1(a). The capacitor is initi-
ally uncharged. If the switch is now closed, the current i in the circuit and the charge ¢ on the
capacitor vary as shown in Fig. 34-1(b). If we call the p.d. across the capacitor v., writing the
loop rule for this circuit gives

—iR—v,+&6=0 or i=
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i(A) q (C)
C
-+
=1k
= | lg=E/R - q.,=Cé&
LN 7
(e 0.63 g,
Switch ] R i
037 iy t——f~——-- \
|
i ! i
etfot 0 ‘ 0
0 RC 1(s)
&
(a) (®)
Fig. 34-1

At the first instant after the switch is closed, v. = 0 and i = &/R. As time goes on, v, increases and i
decreases. The time, in seconds, taken for the current to drop to 1/2.718 or 0.368 of its initial value is RC,
which is called the time constant of the R-C circuit.

Also shown in Fig. 34-1(b) is the variation of ¢, the charge on the capacitor, with time. At t = RC, ¢
has attained 0.632 of its final value.

When a charged capacitor C with initial charge ¢, is discharged through a resistor R, its discharge
current follows the same curve as for charging. The charge ¢ on the capacitor follows a curve similar to
that for the discharge current. At time RC, i = 0.368i, and ¢ = 0.368¢, during discharge.

R-L TIME CONSTANT: Consider the circuit in Fig. 34-2(a). The symbol 7§ represents a
coil of self-inductance L henries. When the switch in the circuit is first closed, the current in the
circuit rises as shown in Fig. 34-2(b). The current does not jump to its final value because the
changing flux through the coil induces a back emf in the coil, which opposes the rising current.
After L/R seconds, the current has risen to 0.632 of its final value i. This time, 1 = L/R, is
called the time constant of the R-L circuit. After a long time, the current is changing so slowly
that the back emf in the inductor, L(Ai/Ar), is negligible. Then i =iy, = &/R.

i (A)
L
(00 e S
. G Y S— ‘
\ ‘ |
“p 0 * .
0 L/R £(s)
.
(@) (b)

Fig. 34-2
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EXPONENTIAL FUNCTIONS are used as follows to describe the curves of Figs 34-1 and 34-2:

.. _t/RC

I1=1e g capacitor charging and discharging
q=q.(1—e ") capacitor charging

q=q,. ek capacitor discharging

i=i(1— e_’/(L/R)) inductor current buildup

where e = 2.718 is the base of the natural logarithms.

When ¢ is equal to the time constant, the relations for a capacitor give i = 0.368i, and ¢ = 0.632¢.,
for charging, and ¢ = 0.368¢.. for discharging. The equation for current in an inductor gives i = 0.632i,,
when ¢ equals the time constant.

The equation for i in the capacitor circuit (as well as for ¢ in the capacitor discharge case) has the
following property: After n time constants have passed,

i = iy(0.368)" and q = q.(0.368)"
For example, after four time constants have passed,

i =iy(0.368)* = 0.018 3i,

Solved Problems

34.1 A steady current of 2 A in a coil of 400 turns causes a flux of 10~* Wb to link (pass through) the
loops of the coil. Compute (@) the average back emf induced in the coil if the current is stopped in
0.08 s, (b) the inductance of the coil, and (c) the energy stored in the coil.

L ADy (107 —0) Wb
() 6] = N’Tt ‘ = 400" = 0.5V
Ll C|6A] (0.5 V)(0.085)
(b) |6’|—LA[ or L= AT 2-0A =0.02H
(¢) Energy = JLI* = 1(0.02 H)(2 A)> = 0.04 J

34.2 A long air-core solenoid has cross-sectional area 4 and N loops of wire on its length d. () Find
its self-inductance. (b) What is its inductance if the core material has permeability pu?

(a) We can write

Ay, Ai
— N=M : JJE— 5 e
|&] N‘ AL ‘ and |&] s
Equating these two expressions for |&| gives
L=N
=

If the current changes from zero to I, then the flux changes from zero to ®,,. Therefore, Ai = I and
Ad,, = ®,, in this case. The self-inductance, assumed constant for all cases, is then
®,  BA

L=N-M"_NZZ
I I
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But, for an air-core solenoid, B = pgnl = py(N/d)I. Substitution gives L = uoNzA/d.

(b) If the material of the core has permeability p instead of u, then B, and therefore L, will be increased by
the factor p/pug. In that case, L = uN’4 /d. An iron-core solenoid has a much higher self-inductance
than an air-core solenoid has.

34.3 A solenoid 30 cm long is made by winding 2000 loops of wire on an iron rod whose cross-
sectional area is 1.5 cm?. If the relative permeability of the iron is 600, what is the self-inductance
of the solenoid? What average emf is induced in the solenoid as the current in it is decreased from
0.60 A to 0.10 A in a time of 0.030 s?

From Problem 34.2(b) with ky, = u/py,
KptoN*4  (600)(47 x 107" T-m/A)(2000)*(1.5 x 10~*m?)

L= 0.30 m =1atH
A 0.50 A

34.4 At a certain instant, a coil with a resistance of 0.40 € and a self-inductance of 200 mH carries a
current of 0.30 A that is increasing at the rate of 0.50 A/s. («¢) What is the potential difference
across the coil at that instant? (b) Repeat if the current is decreasing at 0.50 A/s.

We can represent the coil by a resistance in series with an emf (the induced emf), as shown in Fig. 34.3.

(a) Because the current is increasing, & will oppose the current and therefore have the polarity shown. We
write the loop equation for the circuit:

Vg —IR—& =0
Since V7, is the voltage across the coil, and since & = L|Ai/At|, we have
Veoil = iR+ & = (0.30 A)(0.40 ©) 4 (0.200 H)(0.50 A/s) =0.22 V
(b) With i decreasing, the induced emf must be reversed in Fig. 34-3. This gives V,; = iR — & = 0.020 V.

= { ] ®
i 1%

coil

Fig. 34-3

34.5 A coil of resistance 15 €2 and inductance 0.60 H is connected to a steady 120-V power source. At
what rate will the current in the coil rise (a) at the instant the coil is connected to the power
source, and (b) at the instant the current reaches 80 percent of its maximum value?
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The effective driving voltage in the circuit is the 120 V power supply minus the induced back emf,
L(Ai/At). This equals the p.d. in the resistance of the coil:
Ai
120V—-L—=iR
Al
(This same equation can be obtained by writing the loop equation for the circuit of Fig. 34-2(a). In doing so,
remember that the inductance acts as a back emf of value L Ai/At.)

(a) At the first instant, i is essentially zero. Then

Ai 120V 120V
At L 060H

(b) The current reaches a maximum value of (120 V)/R when the current finally stops changing (i.e., when
Ai/At = 0). We are interested in the case when

= (0.80) (122 V)

=0.20 mA/s

Substitution of this value for i in the loop equation gives
Ai 120 vV
120V—-L—=(0.80) —— | R
A= (030 (Z3Y)

Ai(0.20)(120 V) (0.20)(120 V)

f hich al_ _
rom whie At L 0.60 H

=40 A/s

34.6 When the current in a certain coil is changing at a rate of 3.0 A/s, it is found that an emf of
7.0 mV is induced in a nearby coil. What is the mutual inductance of the combination?

Ai, At 5o 105
E=M%l o M= éaA = (1.0 x 107 V)30t =23 mH

347 Two coils are wound on the same iron rod so that the flux generated by one passes through the
other also. The prlmary coil has N, loops and, when a current of 2.0 A flows through it, the flux
initis 2.5 x 107* Wb. Determine the mutual inductance of the two coils if the secondary coil has

N, loops.
o A(PMY Al
|65l = Ns|—x, and |6, = M|
, ARyl (2.5%x 107 —0) Wb 4
give M =N, A, =N 20— 0)A =(13x10*N)H

34.8 A 2000-loop solenoid is wound uniformly on a long rod with length d and cross-section 4. The
relative permeability of the iron is k,,. On top of this is wound a 50-loop coil which is used as a
secondary. Find the mutual inductance of the system.

The flux through the solenoid is

2000
@y = BA = (kyrpond,) A = (kapiol, A)( p )
This same flux goes through the secondary. We have, then,
AdD,,
At

Ai
|(ng| =N, £

s

and |/’\—M‘
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34.10

34.11
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from which
M=, A<§M _N ©y -0 _ SOkMHOIpA(2OOO/d) _10x 10* kypp104
HIAVA S 1,—0 I, d

A certain series circuit consists of a 12-V battery, a switch, a 1.0-MQ resistor, and a 2.0-uF
capacitor, initially uncharged. If the switch is now closed, find (a) the initial current in the circuit,
(b) the time for the current to drop to 0.37 of its initial value, (¢) the charge on the capacitor then,
and (d) the final charge on the capacitor.

(a) The loop rule applied to the circuit of Fig. 34-1(a) at any instant gives
12V—iR—v.=0
where v, is the p.d. across the capacitor. At the first instant, ¢ is essentially zero and so v, = 0. Then

12V

12V_—iR—0=0 =V
! T Tox100 0

=12 A

(b) The current drops to 0.37 of its initial value when
1=RC=(1.0x10°Q)(2.0x10°F)=20s
(¢) At t=2.0s the charge on the capacitor has increased to 0.63 of its final value. (See (d) below.)

(d) The charge ceases to increase when i = 0 and v, = 12 V. Therefore,

Giinal = Cv. = (2.0 x 1078 F)(12 V) = 24 uC

A 5.0-uF capacitor is charged to a potential difference of 20 kV between plates. After being
disconnected from the power source, it is connected across a 7.0-M() resistor to discharge.
What is the initial discharge current, and how long will it take for the capacitor voltage to
decrease to 37 percent of the 20 kV?

The loop equation for the discharging capacitor is

v, —iR=0
where v, is the p.d. across the capacitor. At the first instant, v, = 20 kV, so
3
=l 20X10 Vg mA
R 7.0x10°Q

The potential across the capacitor, as well as the charge on it, will decrease to 0.37 of its original value in
one time constant. The required time is

RC = (7.0 x 10° Q)(5.0 x 10 * F) =35 s

A coil has an inductance of 1.5 H and a resistance of 0.60 2. If the coil is suddenly connected
across a 12-V battery, find the time required for the current to rise to 0.63 of its final value. What
will be the final current through the coil?

The time required is the time constant of the circuit:

. L 15H
Time constant = R-0609 2.5s

After a long time, the current will be steady and so no back emf will exist in the coil. Under those conditions,

5: 12V 20 A

= 0.60 Q

|
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34.12

34.13

34.14

34.15

34.16

34.17

34.18

34.19

34.20

A capacitor that has been charged to 2.0 x 10° V is allowed to discharge through a resistor. What
will be the voltage across the capacitor after five time constants have elapsed?

We know (p. 323) that after n time constants, ¢ = ¢..(0.368)". Because v is proportional to ¢ (that is,
v = ¢q/C), we may write

Vs = (2.0 x 10° V)(0.368)° = 1.4 kV

A 2.0-uF capacitor is charged through a 30-M(Q resistor by a 45-V battery. Find (@) the charge on
the capacitor and (b) the current through the resistor, both 83 s after the charging process starts.

The time constant of the circuit is RC = 60 s. Also,
4=V .C=45V)20x10°F)=9.0x107C
(a) q=q.(1—e %) = (9.0 x 107 C)(1 — e 3/%)
But e83/00 — 71383 — 025

Then substitution gives

g=(9.0x 107 C)(1 —0.25) =67 uC

. 45V
(b) 1= l’()eir/RC = (m) ((371'383) =0.38 /JA

If, in Fig. 34-2, R=20Q, L =0.30 H, and & =90 V, what will be the current in the circuit
0.050 s after the switch is closed?

The time constant for this circuit is L/R = 0.015 s, and i = §/R = 4.5 A. Then
i=in(1—e/WRYy = (45 A) (1 —e>F) = (4.5 A)(1-0.0357) =43 A

Supplementary Problems

An emf of 8.0 V is induced in a coil when the current in it changes at the rate of 32 A/s. Compute the
inductance of the coil. Ans. 025 H

A steady current of 2.5 A creates a flux of 1.4 x 10~ Wb in a coil of 500 turns. What is the inductance of the
coil? Ans. 28 mH

The mutual inductance between the primary and secondary of a transformer is 0.30 H. Compute the induced
emf in the secondary when the primary current changes at the rate of 4.0 A/s. Ans. 12V

A coil of inductance 0.20 H and 1.0-Q resistance is connected to a 90-V source. At what rate will the current
in the coil grow (a) at the instant the coil is connected to the source, and (b) at the instant the current reaches
two-thirds of its maximum value? Ans. (a) 0.45 kA/s; (b) 0.15 kA/s

Two neighboring coils, 4 and B, have 300 and 600 turns, respectively. A current of 1.5 A in A4 causes
1.2 x 107* Wb to pass through 4 and 0.90 x 10™* Wb to pass through B. Determine () the self-inductance
of A, (b) the mutual inductance of 4 and B, and (c¢) the average induced emf in B when the current in A4 is
interrupted in 0.20 s. Ans. (a) 24 mH; (b) 36 mH; (¢) 0.27 V

A coil of 0.48 H carries a current of 5 A. Compute the energy stored in it. Ans. 6]
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34.21

34.22

34.23

34.24

34.25

34.26

34.27

34.28

34.29
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The iron core of a solenoid has a length of 40 cm and a cross-section of 5.0 cmz, and is wound with 10 turns
of wire per cm of length. Compute the inductance of the solenoid, assuming the relative permeability of the
iron to be constant at 500. Ans. 0.13 H

Show that (@) 1 N/A> =1 T-m/A =1 Wb/A-m =1 H/m, and (b) 1 C*/N-m? =1 F/m.

A series circuit consisting of an uncharged 2.0-uF capacitor and a 10-M(Q2 resistor is connected across a 100-
V power source. What are the current in the circuit and the charge on the capacitor (a) after one time
constant, and (b) when the capacitor has acquired 90 percent of its final charge? Ans. (a) 3.7 pA,
0.13 mC; (b) 1.0 uA, 0.18 mC

A charged capacitor is connected across a 10-k€2 resistor and allowed to discharge. The potential difference
across the capacitor drops to 0.37 of its original value after a time of 7.0 s. What is the capacitance of the
capacitor? Ans. 0.70 mF

When a long iron-core solenoid is connected across a 6-V battery, the current rises to 0.63 of its maximum
value after a time of 0.75 s. The experiment is then repeated with the iron core removed. Now the time
required to reach 0.63 of the maximum is 0.0025 s. Calculate (@) the relative permeability of the iron and (b)
L for the air-core solenoid if the maximum current is 0.5 A. Ans. () 0.3 x 10%; (b)) 0.03 H

What fraction of the initial current still flows in the circuit of Fig. 34-1 seven time constants after the switch
has been closed? Ans.  0.00091

By what fraction does the current in Fig. 34-2 differ from i, three time constants after the switch is first
closed? Ans. (i, —i)/ix = 0.050

In Fig. 34-2, R=5.0 2, L =0.40 H, and & = 20 V. Find the current in the circuit 0.20 s after the switch is
first closed. Ans. 3.7 A

The capacitor in Fig. 34-1 is initially uncharged when the switch is closed. Find the current in the circuit
and the charge on the -capacitor five seconds Ilater. Use R =7.00 M, C=0.300uF, and
£ =12.0V. Ans. 159 nA, 3.27 uC



Chapter 35

Alternating Current

THE EMF GENERATED BY A ROTATING COIL in a magnetic field has a graph similar to
the one shown in Fig. 35-1. It is called an ac voltage because there is a reversal of polarity (i.e.,
the voltage changes sign); ac voltages need not be sinusoidal. If the coil rotates with a frequency
of f revolutions per second, then the emf has a frequency of f in hertz (cycles per second). The
instantaneous voltage v that is generated has the form

v = v Sin wt = v, sin 27ft

where v, is the amplitude (maximum value) of the voltage in volts, w = 27xf is the angular velocity in
rad/s, and f is the frequency in hertz. The frequency f of the voltage is related to its period T by

'y
where 7 is in seconds.
Rotating coils are not the only source of ac voltages; electronic devices for generating ac voltages are
very common. Alternating voltages produce alternating currents.
An alternating current produced by a typical generator has a graph much like that for the voltage
shown in Fig. 35-1. Its instantaneous value is 7, and its amplitude is #,. Often the current and voltage do
not reach a maximum at the same time, even though they both have the same frequency.

v (V)4
Period, T
Vo -~
0 1(s)
Y7 SE——— 1 cycle (90°)
Fig. 35-1

METERS for use in ac circuits read the effective, or root mean square (rms), values of the current
and voltage. These values are always positive and are related to the amplitudes of the instanta-
neous sinusoidal values through

V= Vi = —2 — 07074,

V2

I=1. — \% — 0.707i,

It is customary to represent meter readings by capital letters (7, 7), while instantaneous values are
represented by small letters (v, i).

329
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THE THERMAL ENERGY GENERATED OR POWER LOST by an rms current / in a resistor
R is given by I’R.

FORMS OF OHM’S LAW: Suppose that a sinusoidal current of frequency f with rms value [
flows through a pure resistor R, or a pure inductor L, or a pure capacitor C. Then an ac volt-
meter placed across the element in question will read an rms voltage V' as follows:

Pure resistor: V =1IR
Pure inductor: V =1X,

where X; = 2nfL is called the inductive reactance. Its unit is ohms when L is in henries and " is in hertz.
Pure capacitor: V = IX¢

where X¢ = 1/2nfC is called the capacitive reactance. Tts unit is ohms when C is in farads.

PHASE: When an ac voltage is applied to a pure resistance, the voltage across the resistance
and the current through it attain their maximum values at the same instant and their zero values
at the same instant; the voltage and current are said to be in-phase.

When an ac voltage is applied to a pure inductance, the voltage across the inductance reaches its
maximum value one-quarter cycle ahead of the current, i.e., when the current is zero. The back emf of
the inductance causes the current through the inductance to lag behind the voltage by one-quarter cycle
(or 90°), and the two are 90° out-of-phase.

When an ac voltage is applied to a pure capacitor, the voltage across it lags 90° behind the current
flowing through it. Current must flow before the voltage across (and charge on) the capacitor can build
up.

In more complicated situations involving combinations of R, L, and C, the voltage and current are
usually (but not always) out-of-phase. The angle by which the voltage lags or leads the current is called
the phase angle.

THE IMPEDANCE (Z) of a series circuit containing resistance, inductance, and capacitance is
given by

Z= \/R2 + (X, — X¢)?
with Z in ohms. If a voltage V' is applied to such a series circuit, then a form of Ohm’s Law relates V' to
the current 7 through it:
V=17
The phase angle ¢ between V' and [ is given by
— Xc

X
tan¢:LT or cos ¢ =

PHASORS: A phasor is a quantity that behaves, in many regards, like a vector. Phasors are
used to describe series R-L-C circuits because the above expression for the impedance can be
associated with the Pythagorean theorem for a right triangle. As shown in Fig. 35-2(a), Z is the
hypotenuse of the right triangle, while R and (X — X¢) are its two legs. The angle labeled ¢ is
the phase angle between the current and the voltage.



CHAP. 35] ALTERNATING CURRENT 331

Voltage phase
VA 14
X - X V.= Ve
4 2 > Current phase 4 7 >
(@) (b)
Fig. 35-2

A similar relation applies to the voltages across the elements in the series circuit. As shown in Fig.
35-2(b), it is

Vi=Vi+ (V- Vo)

Because of the phase differences a measurement of the voltage across a series circuit is not equal to the
algebraic sum of the individual voltage readings across its elements. Instead, the above relation must be
used.

RESONANCE occurs in a series R-L-C circuit when X; = X¢. Under this condition Z =R is
minimum, so that 7 is maximum for a given value of V. Equating X; to Xc, we find for the
resonant (or natural) frequency of the circuit

—

2/ LC

POWER LOSS: Suppose that an ac voltage V' is impressed across an impedance of any type. It
gives rise to a current I through the impedance, and the phase angle between V and I is ¢. The
power loss in the impedance is given by

Power loss = VI cos ¢

The quantity cos ¢ is called the power factor. It is unity for a pure resistor; but it is zero for a pure
inductor or capacitor (no power loss occurs in a pure inductor or capacitor).

A TRANSFORMER is a device to raise or lower the voltage in an ac circuit. It consists of a
primary and a secondary coil wound on the same iron core. An alternating current in one coil
creates a continuously changing magnetic flux through the core. This change of flux induces an
alternating emf in the other coil.

The efficiency of a transformer is usually very high. Thus, we may usually neglect losses and write

Power in primary = power in secondary
il =Vah
The voltage ratio is the ratio of the numbers of turns on the two coils; the current ratio is the inverse
ratio of the numbers of turns:
N
N,

L N

d -
an 12 Nl
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Solved Problems

A sinusoidal, 60.0-Hz, ac voltage is read to be 120 V by an ordinary voltmeter. (¢) What is the
maximum value the voltage takes on during a cycle? (b)) What is the equation for the voltage?

(a) V= or vy =V2V=v2(120 V) =170 V

S‘@
[\)O

(b) v = vy sin 2xft = (170 V) sin 120m¢

where ¢ is in s.

A voltage v = (60.0 V) sin 1207¢ is applied across a 20.0-2 resistor. What will an ac ammeter in
series with the resistor read?

The rms voltage across the resistor is

V =0.707v, = (0.707)(60.0 V) = 42.4 V
V424V

Then I'=®%=%00

=212A

A 120-V ac voltage source is connected across a 2.0-uF capacitor. Find the current to the
capacitor if the frequency of the source is (¢) 60 Hz and (b) 60 kHz. (¢) What is the power
loss in the capacitor?

1 1

Xe = = =133 k0
(@) €7 2nfC T 27(60 s1)(2.0 x 106 F)
V120V

(b) Now X =1.33Q,s01 =90 A. Notice that the impedance effect of a capacitor varies inversely with
the frequency.

(¢) Power loss = V1 cos ¢ = VI cos 90° =0

A 120-V ac voltage source is connected across a pure 0.700-H inductor. Find the current through
the inductor if the frequency of the source is (¢) 60.0 Hz and (») 60.0 kHz. (¢) What is the power
loss in the inductor?

(a) X, = 2nfL = 27(60.0 s)(0.700 H) = 264 Q
Vo120V

(b)) Now X; =264 x 10> 2, so I = 0.455 x 107> A. Notice that the impedance effect of an inductor varies
directly with the frequency.

(¢) Power loss = VI cos ¢ = VI cos 90° =0

A coil having inductance 0.14 H and resistance of 12 2 is connected across a 110-V, 25-Hz line.
Compute (a) the current in the coil, (b) the phase angle between the current and the supply
voltage, (¢) the power factor, and (d ) the power loss in the coil.
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35.6

35.7

(a) X, = 2nfL = 27(25)(0.14) = 22.0 Q
and Z:\/R2+(XL—XC)2:\/(12)2+(22—0)2:25.1 Q
Vo110V
=—=—"m=44A
> Z 2510
X, -Xe 2-0 o
(h) tan ¢ = RS =1.83 or ¢ =613
The voltage leads the current by 61°.
(¢) Power factor = cos ¢ = cos 61.3° = 0.48
(d) Power loss = V1 cos ¢ = (110 V)(4.4 A)(0.48) = 0.23 kW

Or, since power loss occurs only because of the resistance of the coil,

Power loss = I’R = (4.4 A)*(12 Q) = 0.23 kW

A capacitor is in series with a resistance of 30 {2 and is connected to a 220-V ac line. The reactance
of the capacitor is 40 €. Determine (@) the current in the circuit, (b) the phase angle between the
current and the supply voltage, and (¢) the power loss in the circuit.

(@) Z =R+ (X, - Xc) =\/(30)° + (0 - 40)° =50 ©
Vo220V
X, — X, —4
(b) tanqﬁ:gfo 9L 133 or ¢ = —53°

R 30
The minus sign tells us that the voltage /ags the current by 53°. The angle ¢ in Fig. 35-2 would lie below
the horizontal axis.

(¢) Method 1

Power loss = VT cos ¢ = (220)(4.4) cos (—53°) = (220)(4.4) cos 53° = 0.58 kW

Method 2
Because the power loss occurs only in the resistor, and not in the pure capacitor,

Power loss = I’R = (4.4 A)*(30 ) = 0.58 kW

A series circuit consisting of a 100-Q2 noninductive resistor, a coil with a 0.10-H inductance and
negligible resistance, and a 20-pF capacitor is connected across a 110-V, 60-Hz power source.
Find (@) the current, (b) the power loss, (¢) the phase angle between the current and the source
voltage, and (d) the voltmeter readings across the three elements.

(a) For the entire circuit, Z = \/R* + (X, — X¢)?, with
R =100
X, = 2nfL = 27(60 s ')(0.10 H) = 37.7 Q

1 1

X = - = 1327 Q
€7 2nfC " 27(60 s1)(20 x 1076 F)

from which

v 110V

Z= (1007 + (38— 133> = 1380 and =
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The power loss all occurs in the resistor, so

Power loss = I’R = (0.79 A)*(100 Q) = 63 W

X, —Xe -95Q
2L 7C_ 7T . — —44°
tan ¢ R 1000 0.95 or 1)

The voltage lags the current.
Ve =IR=1(0.79 A)(100 Q) =79 V
Ve=1Xc=(0.79 A)(132.7 Q) = 0.11 kV
Ve =1X; =(0.79 A)(37.7Q) =30 V

Notice that Vi + V; + Vi does not equal the source voltage. From Fig. 35-2(b), the correct relation-
ship is

V= \/Vfe + (VL= Ve = \/(79)2 + (=757 =109 V

which checks within the limits of rounding-off errors.

35.8 A 5.00-9 resistance is in a series circuit with a 0.200-H pure inductance and a 40.0-nF pure
capacitance. The combination is placed across a 30.0-V, 1780-Hz power supply. Find (a) the
current in the circuit, (b) the phase angle between source voltage and current, (¢) the power loss in
the circuit, and (d) the voltmeter reading across each element of the circuit.

359

(@)

X, = 2nfL = 2x(1780 s71)(0.200 H) = 2.24 kQ
1 1
X, = — =224 kO
€7 2nfC  2m(1780 s71)(4.00 x 10-8 F)
and Z=1\/R+ (X, —Xc)* =R=5.000Q
Vo300V
Then [—2—5.009—6.00A
X, — X,
tanqﬁ:gzo or ¢ =0°
R
Power loss = VT cos ¢ = (30.0 V)(6.00 A)(1) = 180 W
or Power loss = I*R = (6.00 A)*(5.00 ) = 180 W
Vg = IR = (6.00 A)(5.00 Q) = 30.00 V

Ve = IXc = (6.00 A)(2240 Q) = 13.4 kV
V, = IX; = (6.00 A)(2240 Q) = 13.4 kV

This circuit is in resonance because X = X;. Notice how very large the voltages across the inductor
and capacitor become, even though the source voltage is low.

As shown in Fig. 35-3, a series circuit connected across a 200-V, 60-Hz line consists of a capacitor
of capacitive reactance 30 €2, a noninductive resistor of 44 €2, and a coil of inductive reactance
90 Q and resistance 36 2. Determine (a) the current in the circuit, (b) the potential difference
across each element, (¢) the power factor of the circuit, and (d ) the power absorbed by the circuit.
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X.=30Q

4

200V R, =44Q
60 Hz

000

Coil with

X,=90Q

R,=36Q

Fig. 35-3
(a) Z= \/(Rl + R+ (X — Xo)? = \/(44 +36)* + (90 — 30)* = 0.10 k2

Vo200V

(b) p.d. across capacitor = IXc = (2.0 A)(30 Q) =60 V

p.d. across resistor = IR; = (2.0 A)(44 Q) =88 V

Impedance of coil = \/R2 + X2 = 1/(36)> + (90)* = 97 Q

p.d. across coil = (2.0 A)(97 ©) = 0.19 kV

R 80
(¢) Power factor = cos ¢ = Z =100 =0.80
(d) Power used = VI cos ¢ = (200 V)(2A)(0.80) = 0.32 kW
or Power used = I°R = (2 A)*(80 Q) = 0.32 kW

35.10 Calculate the resonant frequency of a circuit of negligible resistance containing an inductance of
40.0 mH and a capacitance of 600 pF.

1 1
Jo= = =32.5 kHz

2mVLC 27/(40.0 x 10=3 H)(600 x 10~ F)

35.11 A step-up transformer is used on a 120-V line to furnish 1800 V. The primary has 100 turns. How
many turns are on the secondary?

Vi N, . 120 V. 100 turns
V, N, 1800V N,

from which N, = 1.50 x 10* turns.

35.12 A transformer used on a 120-V line delivers 2.0 A at 900 V. What current is drawn from the line?
Assume 100 percent efficiency.
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Power in primary = power in secondary
1;(120 V) = (2.0 A)(900 V)
[1 = 15 A

35.13 A step-down transformer operates on a 2.5-kV line and supplies a load with 80 A. The ratio of

35.14

35.15

35.16

35.17

35.18

35.19

35.20

35.21

35.22

the primary winding to the secondary winding is 20: 1. Assuming 100 percent efficiency, deter-
mine the secondary voltage V>, the primary current /;, and the power output P,.

1 1

The last expression is correct only if it is assumed that the load is pure resistive, so that the power factor is
unity.

Supplementary Problems

A voltmeter reads 80.0 V when it is connected across the terminals of a sinusoidal power source with

f =1000 Hz. Write the equation for the instantaneous voltage provided by the source.

Ans. v = (113 V)sin 200077 for ¢ in seconds

An ac current in a 10 2 resistance produces thermal energy at the rate of 360 W. Determine the effective
values of the current and voltage. Ans. 6.0 A, 60 V

A 40.0-Q resistor is connected across a 15.0-V variable-frequency electronic oscillator. Find the current
through the resistor when the frequency is (¢) 100 Hz and (b) 100 kHz. Ans. (a) 0.375 A; (b) 0.375 A

Solve Problem 35.16 if the 40.0-Q2 resistor is replaced by a 2.00-mH inductor. Ans. (a) 11.9 A; (b)
11.9 mA

Solve Problem 35.16 if the 40.0-Q resistor is replaced by 0.300-uF capacitor. Ans. (a) 2.83 mA; (b)
283 A

A coil has resistance 20 2 and inductance 0.35 H. Compute its reactance and its impedance to an alternating
current of 25 cycles/s. Ans. 55,59 Q

A current of 30 mA is taken by a 4.0-uF capacitor connected across an alternating current line having a
frequency of 500 Hz. Compute the reactance of the capacitor and the voltage across the capacitor.
Ans. 809,24V

A coil has an inductance of 0.100 H and a resistance of 12.0 Q. It is connected to a 110-V, 60.0-Hz line.
Determine (@) the reactance of the coil, (b) the impedance of the coil, (¢) the current through the coil, (d) the
phase angle between current and supply voltage, (¢) the power factor of the circuit, and ( /) the reading of a
wattmeter connected in the circuit. Ans.  (a) 37.7 Q; (b) 39.6 ; (¢) 2.78 A; (d) voltage leads by 72.3°;
(e) 0.303; () 92.6 W

A 10.0-uF capacitor is in series with a 40.0-(2 resistance, and the combination is connected to a 110-V, 60.0-
Hz line. Calculate («) the capacitive reactance, (b) the impedance of the circuit, (¢) the current in the circuit,
(d) the phase angle between current and supply voltage, and (e¢) the power factor for the circuit.

Ans.  (a) 266 €; (b) 269 Q; (¢) 0.409 A; (d) voltage lags by 81.4°; (e) 0.149
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35.23

35.24

35.25

35.26

35.27

35.28

35.29

35.30

A circuit having a resistance, an inductance, and a capacitance in series is connected to a 110-V ac line. For
the circuit, R =9.0 Q, X; =28 Q, and X = 16 . Compute (@) the impedance of the circuit, (b) the current,
(¢) the phase angle between the current and the supply voltage, and (d) the power factor of the cir-
cuit. Ans. (a) 15 Q; (b) 7.3 A; (¢) voltage leads by 53°; (d) 0.60

An experimenter has a coil of inductance 3.0 mH and wishes to construct a circuit whose resonant frequency
is 1.0 MHz. What should be the value of the capacitor used? Ans. 8.4 pF

A circuit has a resistance of 11 2, a coil of inductive reactance 120 €2, and a capacitor with a 120-2
reactance, all connected in series with a 110-V, 60-Hz power source. What is the potential difference across
each circuit element? Ans. Vp=011kV, V;, =V=12kV

A 120-V, 60-Hz power source is connected across an 800-Q2 noninductive resistance and an unknown
capacitance in series. The voltage drop across the resistor is 102 V. (¢) What is the voltage drop across
the capacitor? (b) What is the reactance of the capacitor? Ans. (a) 63 V; (b) 0.50 k2

A coil of negligible resistance is connected in series with a 90-( resistor across a 120-V, 60-Hz line. A
voltmeter reads 36 V across the resistance. Find the voltage across the coil and the inductance of the
coil. Ans. 0.11 kV, 0.76 H

A step-down transformer is used on a 2.2-kV line to deliver 110 V. How many turns are on the primary
winding if the secondary has 25 turns? Ans. 5.0 x 10?

A step-down transformer is used on a 1650-V line to deliver 45 A at 110 V. What current is drawn from the
line? Assume 100 percent efficiency. Ans. 3.0 A

A step-up transformer operates on a 110-V line and supplies a load with 2.0 A. The ratio of the primary and
secondary windings is 1:25. Determine the secondary voltage, the primary current, and the power output.
Assume a resistive load and 100 percent efficiency. Ans. 2.8 kV, 50 A, 5.5 kW



Chapter 36

Reflection of Light

THE NATURE OF LIGHT: Light (along with all other forms of electromagnetic radiation) is a
fundamental entity and physics is still struggling to understand it. On an observable level, light
manifests two seemingly contradictory behaviors, crudely pictured via wave and particle models.
Usually the amount of energy present is so large that light behaves as if it were an ideal continu-
ous wave, a wave of interdependent electric and magnetic fields. The interaction of light with
lenses, mirrors, prisms, slits, and so forth, can satisfactorily be understood via the wave model
(provided we don’t probe too deeply into what’s happening on a microscopic level). On the other
hand, when light is emitted or absorbed by the atoms of a system, these processes occur as if the
radiant energy is in the form of minute, localized, well-directed blasts; that is, as if light is a
stream of particles. Fortunately, without worrying about the very nature of light, we can predict
its behavior in a wide range of practical situations.

LAW OF REFLECTION: A ray is a mathematical line drawn perpendicular to the wavefronts of
a lightwave. It shows the direction of propagation of electromagnetic energy. In specular (or mir-
ror) reflection, the angle of incidence equals the angle of reflection, as shown in Fig. 36-1.
Furthermore, the incident ray, reflected ray, and normal to the surface all lie in the same plane,
called the plane-of-incidence.

, 'c_é
N $
&z S
-
2
0,0,
Mirror
Fig. 36-1

PLANE MIRRORS form images that are erect, of the same size as the object, and as far behind
the reflecting surface as the object is in front of it. Such an image is virtual; i.e., the image will
not appear on a screen located at the position on the image because the light does not converge
there.

SPHERICAL MIRRORS: The principal focus of a spherical mirror, such as the ones shown in
Fig. 36-2, is the point F where rays parallel to and very close to the central or optical axis of
the mirror are focused. This focus is real for a concave mirror and virtual for a convex mirror.
It is located on the optical axis and midway between the center of curvature C and the mirror.
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> —_—
RW /\ S~ Virtual focus

¢ /F\'\\/ . .
> —

(a) Concave mirror (b) Convex mirror

Fig. 36-2

Concave mirrors form inverted real images of objects placed beyond the principal focus. If the object
is between the principal focus and the mirror, the image is virtual, erect, and enlarged.
Convex mirrors produce only erect virtual images of objects placed in front of them. The images are

diminished (smaller than the object) in size.

MIRROR EQUATION for both concave and convex spherical mirrors:
1 1 2 1

— ===
So S R f
where s, = object distance from the mirror
s; = image distance from the mirror
R = radius of curvature of the mirror
f focal length of the mirror = R/2.

In addition,

e s, is positive when the object is in front of the mirror.

e ; is positive when the image is real, i.e., in front of the mirror.

e s; is negative when the image is virtual, i.e., behind the mirror.

e R and f are positive for a concave mirror and negative for a convex mirror.

THE SIZE OF THE IMAGE formed by a spherical mirror is given by

length of image image distance from mirror

Linear magnification =

Solved Problems

length of object object distance from mirror

Si

S,

36.1 Two plane mirrors make an angle of 30° with each other. Locate graphically four images of a

luminous point 4 placed between the two mirrors. (See Fig. 36-3.)

From A draw normals A4’ and AB’ to mirrors OY and OX, respectively, making AL = LA’ and

AM = MB'. Then A’ and B’ are images of A.
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M
JL "W AI
l0em (@O TR
T AT RE
140 cm S
H/ B
|
 30m 3.0m \\
B R B
Fig. 36-3 Fig. 36-4

Next, from 4’ and B’ draw normals to OX and OY, making A’N = NA” and B'P = PB”. Then A" is
the image of 4" in OX and B” is the image of B’ in OY.

The four images of 4 are A’, B', A”, B”. Additional images also exist, for example, images of 4" and
B’.

A boy is 1.50 m tall and can just see his image in a vertical plane mirror 3.0 m away. His eyes are
1.40 m from the floor level. Determine the vertical dimension and elevation of the shortest mirror
in which he could see his full image.

In Fig. 36-4, let AB represent the boy. His eyes are at E. Then A'B’ is the image of AB in mirror MR,
and DH represents the shortest mirror necessary for the eye to view the image 4'B’.
Triangles DEC and DA’ M are congruent and so

CD =DM =5.0cm
Triangles HRB' and HCE are congruent and so
RH = HC =70 cm

The dimension of the mirror is HC + CD = 75 cm and its elevation is RH = 70 cm.

As shown in Fig. 36-5, a light ray /O is incident on a small plane mirror. The mirror reflects this
ray upon a straight scale SC which is 1 m distant and parallel to the undeflected mirror MM.
When the mirror turns through an angle of 8.0° and assumes the position M'M’, across what
distance on the scale will the spot of light move? (This device, called an optical lever, is useful in
measuring small deflections.)

When the mirror turns through 8.0° the normal to it also turns through 8.0°, and the incident ray makes
an angle of 8.0° with the normal NO to the deflected mirror M’M’. Because the incident ray /O and the
reflected ray OR make equal angles with the normal, angle JOR is twice the angle through which the mirror
has turned, or 16°. Then

IR =10tan16° = (1.0 m)(0.287) = 29 cm

The concave spherical mirror shown in Fig. 36-6 has radius of curvature 4 m. An object 0O’,
5 cm high, is placed 3 m in front of the mirror. By (@) construction and (b) computation, deter-
mine the position and height of the image II'.

In Fig. 36-6, C is the center of curvature, 4 m from the mirror, and F is the principal focus, 2 m from
the mirror.
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Fig. 36-5 Fig. 36-6

(a) Two of the following three convenient rays from O will locate the image.

(1) The ray OA, parallel to the principal axis. This ray, like all parallel rays, is reflected through the
principal focus F in the direction AFA’.

(2) The ray OB, drawn as if it passed through the center of curvature C. This ray is normal to the
mirror and is reflected back on itself in the direction BCB'.

(3) The ray OFD which passes through the principal focus F and, like all rays passing through F, is
reflected parallel to the principal axis in the direction DD’.

The intersection 7 of any two of these reflected rays is the image of O. Thus II’ represents the position
and size of the image of OO’. The image is real, inverted, magnified, and at a greater distance from the
mirror than the object. (Note: If the object were at I1’, the image would be at 00’ and would be real,
inverted, and smaller.)

(b) By the mirror equation,

1 1
—t—-= or s+—= or s;=6m
So i [

x|
w
&
EEN S}

The image is real (since s; is positive) and 6 m from the mirror. Also,

Height of image
Height of object

Si

=——=2 or height of image = (2)(5 cm) = 0.10 m

SO

36.5 An object 00" is 25 cm from a concave spherical mirror of radius 80 cm (Fig. 36-7). Determine
the position and relative size of its image II’ (a) by construction and (b) by use of the mirror
equation.

(a) Two of the following three rays from O locate the image.

(1) A ray OA, parallel to the principal axis, is reflected through the focus F, 40 cm from the mirror.

(2) A ray OB, in the line of the radius COB, is normal to the mirror and is reflected back on itself
through the center of curvature C.

(3) A ray OD, which (extended) passes through F, is reflected parallel to the axis. Because of the large
curvature of the mirror from A4 to D, this ray is not as accurate as the other two.
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Fig. 36-7

The reflected rays (44', BB’, and DD') do not meet, but appear to originate from a point / behind the
mirror. Thus /I’ represents the relative position and size of the image of OO’. The image is virtual
(behind the mirror), erect, and magnified.
I 1 2 1 1 2
b == — == =67
(b) 5 +S[ R or 25+Si %0 or s cm
The image is virtual (since s; is negative) and 66.7 cm behind the mirror. Also,
_66.7 cm
25 cm

size of image
size of object

S; .
! = 2.7 times

Linear magnification = 2=
SO

As shown in Fig. 36-8, an object 6 cm high is located 30 cm in front of a convex spherical mirror
of radius 40 cm. Determine the position and height of its image, (¢) by construction and (b) by
use of the mirror equation.

Fig. 36-8

(a) Choose two convenient rays coming from O:

(1) A ray OA, parallel to the principal axis, is reflected in the direction 44’ as if it passed through the
principal focus F.

(2) A ray OB, directed toward the center of curvature C, is normal to the mirror and is reflected back
on itself.

The reflected rays, 44" and BO, never meet but appear to originate from a point 7 behind the mirror.
Then II' represents the size and position of the image of 00’.
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All images formed by convex mirrors are virtual, erect, and reduced in size, provided the object is

in front of the mirror (i.e., a real object).
I 1 2 1 1 2
b 4= 4y =_Z 5= —12
(5) s s R 305" s o em
The image is virtual (s; is negative) and 12 cm behind the mirror. Also,

Height of image |s; 12 cm . .

—_— = || = =0.40 height of = (0.40)(6.0 =24

Height of object |s,| 30 cm or cight of image = ( )(6.0 cm) om

36.7 Where should an object be placed, with reference to a concave spherical mirror of radius 180 cm,
to form a real image having half its linear dimensions?

The magnification is to be 1/2; hence s; = s5,/2. Then

1 1 2 1 2 2
+—-—== or

g 5 TR ; + ?—0 =130 or s, = 0.27 m from mirror

36.8 How far must a girl stand in front of a concave spherical mirror of radius 120 cm to see an erect
image of her face four times its natural size?

The erect image must be virtual; hence s; is negative, and s; = —4s,. Then
1 N 1 2 1 1 2 45 f .
— —_ == or —_—— = or S, = cm Irom mirror
s, s R s, 4s, 120 °

36.9 What kind of spherical mirror must be used, and what must be its radius, in order to give an erect
image one-fifth as large as an object placed 15 cm in front of it?

An erect image produced by a spherical mirror is virtual; hence s; = —s,/5 = —15/5 = —3 cm. As the
virtual image is smaller than the object, a convex mirror is required. Its radius is given by

1 1 2 1 1 2 .
; + Y_z R or 5 3°R or R = —7.5 cm (convex mirror)

36.10 The diameter of the Sun subtends an angle of approximately 32 minutes (32') at any point on the
Earth. Determine the position and diameter of the solar image formed by a concave spherical
mirror of radius 400 cm. Refer to Fig. 36-9.

Ray ﬁ‘
om I
Of Sup fop

32’

C 16" 200 200
16’

Fig. 36-9

Since the sun is very distant, s, is very large and 1/s, is practically zero. So

1 1

N

2 or 0+—=
o Si R S; o 400
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36.13

36.14

36.15

36.16

36.17

36.18

36.19

36.20

36.21
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and s; = 200 cm. The image is at the principal focus F, 200 cm from the mirror.
The diameter of the Sun and its image II' subtend equal angles at the center of curvature C of the
mirror. From the figure,

1’2
F

tan 16’ = =7 or I’ =2CF tan16' = (2)(2.00 m)(0.00465) = 1.9 cm

A dental technician uses a small mirror that gives a magnification of 4.0 when it is held 0.60 cm
from a tooth. What is the radius of curvature of the mirror?

Because |s;/s,| = 4 and s, = 0.60 cm, the mirror equation becomes (in cm)

1 1 2

060 24 R

from which R = 0.96 cm or R = 1.6 cm. Both answers are positive and so the mirror must be concave. (This
agrees with the fact that the image formed by a convex mirror is diminished, not magnified.) The plus sign

(and R = 0.96 cm) gives a real image, a situation that would not be convenient. (Why?) Hence the mirror has
R=1.6 cm.

2
1. +0417 ==
or 667 +0.417 R

Supplementary Problems

If you wish to take a photo of yourself as you stand 3 m in front of a plane mirror, for what distance should
you focus the camera you are holding? Ans. 6 m

Two plane mirrors make an angle of 90° with each other. A point-like luminous object is placed between
them. How many images are formed? Ans. 3

Two plane mirrors are parallel to each other and spaced 20 cm apart. A luminous point is placed between
them and 5.0 cm from one mirror. Determine the distance from each mirror of the three nearest images in
each. Ans. 5.0, 35, 45 cm; 15, 25, 55 cm

Two plane mirrors make an angle of 90° with each other. A beam of light is directed at one of the mirrors,
reflects off it and the second mirror, and leaves the mirrors. What is the angle between the incident beam and
the reflected beam? Ans. 180°

A ray of light makes an angle of 25° with the normal to a plane mirror. If the mirror is turned through 6.0°,
making the angle of incidence 31°, through what angle is the reflected ray rotated? Ans. 12°

Describe the image of a candle flame located 40 cm from a concave spherical mirror of radius 64 cm.
Ans. real, inverted, 0.16 m in front of mirror, magnified 4 times

Describe the image of an object positioned 20 cm from a concave spherical mirror of radius 60 cm.
Ans. virtual, erect, 60 cm behind mirror, magnified 3 times

How far should an object be from a concave spherical mirror of radius 36 cm to form a real image one-ninth
its size? Ans. 0.18 m

An object 7.0 cm high is placed 15 cm from a convex spherical mirror of radius 45 cm. Describe its image.
Ans. virtual, erect, 9.0 cm behind mirror, 4.2 cm high

What is the focal length of a convex spherical mirror which produces an image one-sixth the size of an object
located 12 cm from the mirror? Ans. —2.4 cm
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36.22

36.23

It is desired to cast the image of a lamp, magnified 5 times, upon a wall 12 m distant from the lamp. What
kind of spherical mirror is required, and what is its position? Ans. concave, radius 5.0 m, 3.0 m from
lamp

Compute the position and diameter of the image of the Moon in a polished sphere of diameter 20 cm. The
diameter of the Moon is 3500 km, and its distance from the Earth is 384000 km, approximately.
Ans. 5.0 cm inside sphere, 0.46 mm



Chapter 37

Refraction of Light

THE SPEED OF LIGHT as ordinarily measured varies from material to material. Light (treated
macroscopically) travels fastest in vacuum, where its speed is ¢ = 2.998 x 10® m/s. Its speed in air
is ¢/1.0003. In water its speed is ¢/1.33, and in ordinary glass it is about ¢/1.5. Nonetheless, on a
microscopic level light is composed of photons and photons exist only at the speed c. The appar-
ent slowing down in material media arises from the absorption and re-emission as the light passes
from atom to atom.

INDEX OF REFRACTION (n): The absolute index of refraction of a material is defined as

speed of light in vacuum c

"= speed of light in the material v

For any two materials, the relative index of refraction of material-1, with respect to material-2, is

. . ny
Relative index = —
1

where n; and n, are the absolute refractive indices of the two materials.

REFRACTION: When a ray of light is transmitted obliquely through the boundary between two
materials of unlike index of refraction, the ray bends. This phenomenon, called refraction, is
shown in Fig. 37-1. If n, > n;, the ray refracts as shown in the figure; it bends toward the normal
as it enters the second material. If n, < n;, however, the ray refracts away from the normal. This
would be the situation in Fig. 37-1 if the direction of the ray were reversed. In either case, the
incident and refracted (or transmitted) rays and the normal all lie in the same plane. The angles
0; and 6, in Fig. 37-1 are called the angle of incidence and angle of transmission (or refraction),
respectively.

Fig. 37-1
SNELL’S LAW: The way in which a ray refracts at an interface between materials with indices
of refraction n; and n, is given by Snell’s Law:
n; sin 6; = n; sin 0,
346
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where 6; and 6, are as shown in Fig. 37-1. Because this equation applies to light moving in either
direction along the ray, a ray of light follows the same path when its direction is reversed.

CRITICAL ANGLE FOR TOTAL INTERNAL REFLECTION: When light reflects off an inter-
face where n; < n, the process is called external reflection, when n; > n, it’s internal reflection. Sup-
pose that a ray of light passes from a material of higher index of refraction to one of lower
index, as shown in Fig. 37-2. Part of the incident light is refracted and part is reflected at the
interface. Because 6, must be larger than 6;, it is possible to make 6; large enough so that
0, = 90°. This value for 6; is called the critical angle 6.. For 0; larger than this, no refracted ray
can exist; all the light is reflected.

Refracted Red

Blue
n, a
Reflected

Red and blue

Fig. 37-2 Fig. 37-3

The condition for total internal reflection is that #; exceed the critical angle 6, where

n; sin 6, = n; sin 90° or sin 0, =
i
Because the sine of an angle can never be larger than unity, this relation confirms that total internal
reflection can occur only if n; > n,.

A PRISM can be used to disperse light into its various colors, as shown in Fig. 37-3. Because
the index of refraction of a material varies with wavelength, different colors of light refract differ-
ently. In nearly all materials, red is refracted least and blue is refracted most.

Solved Problems

37.1 The speed of light in water is (3/4)c. What is the effect, on the frequency and wavelength of light,
of passing from vacuum (or air, to good approximation) into water? Compute the refractive index
of water.

The same number of wave peaks leave the air each second as enter into the water. Hence the frequency
is the same in the two materials. But because wavelength = (speed)/(frequency), the wavelength in water is
three-fourths that in air.
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The (absolute) refractive index of water is

__speed in vacuum ¢ 4 133
~ speed in water  (3/4)c 3

37.2 A glass plate is 0.60 cm thick and has a refractive index of 1.55. How long does it take for a pulse
of light incident normally to pass through the plate?

x 0.0060 m

=2 =31x10"
v (2.998 x 105/1.55) m/s . °

37.3 Asis shown in Fig. 37-4, a ray of light in air strikes a glass plate (n = 1.50) at an incidence angle
of 50°. Determine the angles of the reflected and transmitted rays.

The law of reflection applies to the reflected ray. Therefore, the angle of reflection is 50°, as shown.
For the refracted ray, n; sin 6; = n, sin 6, becomes,

. l . 1.0 .
sin 6, = i sin §; = — sin 50° = (.51

n, L.5
from which 6, = 31°.
4,
{]01‘% 0\06 I
% 500|509 & 40°
Air I Air
Glass
0, ’&%
(%’9» Water
Fig. 374 Fig. 37-5

37.4 The refractive index of diamond is 2.42. What is the critical angle for light passing from diamond
to air?

We use n; sin 6; = n, sin 6, to obtain
(2.42) sin 6, = (1) sin 90.0°
from which sin 6§, = 0.413 and 0, = 24.4°.

37.5 What is the critical angle for light passing from glass (n = 1.54) to water (n = 1.33)?

n; sin 0; = n, sin 6, becomes n; sin 6, = n, sin 90°

from which sin 6, = % — 70864 or 6, =59.7°
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37.6 A layer of oil (n = 1.45) floats on water (n = 1.33). A ray of light shines onto the oil with an

37.7

37.8

incidence angle of 40.0°. Find the angle the ray makes in the water. (See Fig. 37-5.)

At the air—oil interface, Snell’s Law gives
Hair SIN 40° = nyy sin Oy
At the oil-water interface, we have (using the equality of alternate angles)
Noit SN Oil = Myater SIN Oyater

Thus, n,;, sin 40.0° = Ry, SIN Gyaer; the overall refraction occurs just as though the oil layer were absent.
Solving gives
nyir sin 40.0°  (1)(0.643)

sin Ovater = Moater = 1.33 or Oater = 28.9°

As shown in Fig. 37-6, a small luminous body, at the bottom of a pool of water (n = 4/3) 2.00 m
deep, emits rays upward in all directions. A circular area of light is formed at the surface of the
water. Determine the radius R of the circle of light.

A
o \
Air | | 45.0°
R 7/
60 05 S o
'm I 45.0
Water
6.0, i
B C
Y
Fig. 37-6 Fig. 37-7

The circular area is formed by rays refracted into the air. The angle 6, must be the critical angle, because
total internal reflection, and hence no refraction, occurs when the angle of incidence in the water is greater
than the critical angle. We have, then,

sinf,="9— —_ or f, =48.6°
n,

From the figure,

R =(2.00 m) tan 6, = (2.00 m)(1.13) =2.26 m

What is the minimum value of the refractive index for a 45.0° prism which is used to turn a beam
of light by total internal reflection through a right angle? (See Fig. 37-7.)

The ray enters the prism without deviation, since it strikes side 4B normally. It then makes an incidence
angle of 45.0° with normal to side AC. The critical angle of the prism must be smaller than 45.0° if the ray is
to be totally reflected at side AC and thus turned through 90°. From #; sin 6. = n, sin 90° with n, = 1.00,

1
Mini = —14]
T = G0 45.0°
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37.9

37.10

37.11
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The glass prism shown in Fig. 37-8 has an index of refraction of 1.55. Find the angle of deviation
D for the case shown.

No deflection occurs at the entering surface, because the incidence angle is zero. At the second surface,
0; = 30° (because its sides are mutually perpendicular to the sides of the apex angle). Then, Snell’s Law
becomes

. . . 1.55 .
n; sin ; = n, sin 6, or sin 6, = o sin 30°

from which 6, = 50.8°. But D = 6, — 6, and so D = 21°.

Air
(n=1)

Index n

A

o,
6. D

Fig. 37-8 Fig. 37-9

Asin Fig. 37-9, an object is at a depth d beneath the surface of a transparent material of refractive
index n. As viewed from a point almost directly above, how deep does the object appear to be?

The rays from A that are shown emerging into the air both appear to come from point B. Therefore, the
apparent depth is CB. We have

b
— =tan 6, and —=tan 0;
cA4

If the object is viewed from nearly straight above, then angles 6, and 6; will be very small. For small angles,
the sine and tangent are nearly equal. Therefore,

CB _tan 6; _sin6;

CA tan6, siné,

But 7 sin i = (1) sin r, from which

sin 0; 1

sinf, n
Hence,

— tual depth CA
Apparent depth CB = %

The apparent depth is only a fraction 1/n of the actual depth 4.

A glass plate 4.00 mm thick is viewed from above through a microscope. The microscope must be
lowered 2.58 mm as the operator shifts from viewing the top surface to viewing the bottom
surface through the glass. What is the index of refraction of the glass?
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37.12

37.13

37.14

We found in Problem 37.10 that the apparent depth of the plate will be 1/n as large as its actual depth.
Hence,

(actual thickness)(1/n) = apparent thickness
or (4.00 mm)(1/n) = 2.58 mm

This yields n = 1.55 for the glass.

As shown in Fig. 37-10, a ray enters the flat end of a long rectangular block of glass that has a
refractive index of n,. Show that all entering rays can be totally internally reflected only if
n, > 1.414.

Fig. 37-10

The larger 6, is, the smaller 63 will be. Therefore the ray is most likely to escape if §; = 90°. In that case,
ny sin 6, = n, sin 6, becomes (1)(1) = ny sin 6,
For the ray to just escape, 6, = 90°. Then
ny sin 63 = ny sin 6, becomes ny sin 63 = (1)(1)

We thus have two conditions to satisfy: n, sin 8, = 1 and n, sin 6; = 1. Their ratio gives

sin 6,
- =1
sin 6
But we see from the figure that sin 6; = cos 6,, and so this becomes
tan 6, =1 or 0, = 45.00°
Then, because n, sin 6, = 1, we have
e 1
> sin 45.00°

This is the smallest possible value the index can have for total internal reflection of all rays that enter the end
of the block. It is possible to obtain this answer by inspection. How?

= 1414

Supplementary Problems

The speed of light in a certain glass is 1.91 x 10® m/s. What is the refractive index of the glass?
Ans. 1.57

What is the frequency of light which has a wavelength in air of 546 nm? What is its frequency in water
(n=1.33)? Its speed in water? Its wavelength in water? Ans. 549 THz, 549 THz, 2.25 x 10% m/s,
411 nm
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A beam of light strikes the surface of water at an incidence angle of 60°. Determine the directions of the
reflected and refracted rays. For water, n = 1.33. Ans.  60° reflected into air, 41° refracted into water

The critical angle for light passing from rock salt into air is 40.5°. Calculate the index of refraction of rock
salt. Ans. 1.54

What is the critical angle when light passes from glass (n = 1.50) into air? Ans. 41.8°

The absolute indices of refraction of diamond and crown glass are 5/2 and 3/2 respectively. Compute («) the
refractive index of diamond relative to crown glass and (b) the critical angle between diamond and crown
glass. Ans. (a) 5/3; (b) 37°

A pool of water (n = 4/3) is 60 cm deep. Find its apparent depth when viewed vertically through air.
Ans. 45 cm

In a vessel, a layer of benzene (n = 1.50) 6 cm deep floats on water (n = 1.33) 4 cm deep. Determine the
apparent distance of the bottom of the vessel below the upper surface of the benzene when viewed vertically
through air. Ans. 7 cm

A mirror is made of plate glass (n = 3/2) 1.0 cm thick and silvered on the back. A man is 50.0 cm from the
front face of the mirror. If he looks perpendicularly into it, at what distance behind the front face of the
mirror will his image appear to be? Ans. 51.3 cm

A straight rod is partially immersed in water (n = 1.33). Its submerged portion appears to be inclined 45°
with the surface when viewed vertically through air. What is the actual inclination of the rod?
Ans. arctan 1.33 = 53°

The index of refraction for a certain type of glass is 1.640 for blue light and 1.605 for red light. When a beam
of white light (one that contains all colors) enters a plate of this glass at an incidence angle of 40°, what is the
angle in the glass between the blue and red parts of the refracted beam? Ans.  0.53°



Chapter 38

Thin Lenses

TYPES OF LENSES: As indicated in Fig. 38-1, converging, or positive, lenses are thicker at the
center than at the rim and will converge a beam of parallel light to a real focus. Diverging, or ne-
gative, lenses are thinner at the center than at the rim and will diverge a beam of parallel light
from a virtual focus.

The principal focus (or focal point) of a thin lens with spherical surfaces is the point F where rays
parallel to and near the central or optical axis are brought to a focus; this focus is real for a converging
lens and virtual for a diverging lens. The focal length fis the distance of the principal focus from the lens.
Because each lens in Fig. 38-1 can be reversed without altering the rays, two symmetric focal points exist
for each lens.

Real focus Virtual focus -~ \/

=L . B j

(a) Converging lens (b) Diverging lens
Fig. 38-1

OBJECT AND IMAGE RELATION for converging and diverging lenses:
1 1 1

+—=
So Si f

where s, is the object distance from the lens, s; is the image distance from the lens, and f is the focal

length of the lens. The lens is assumed to be thin, and the light rays paraxial (close to the principal axis).

Then

e s, is positive for a real object, and negative for a virtual object (see Chapter 39).

e s, is positive for a real image, and negative for a virtual image.

e [ is positive for a converging lens, and negative for a diverging lens.

size of image  image distance from lens
size of object object distance from lens

S;

So

Also, Linear magnification =

Converging lenses form inverted real images of objects located outside the principal focus. When the
object is between the principal focus and the lens, the image is virtual (on the same side of the lens as the
object), erect, and enlarged.

Diverging lenses produce only virtual, erect, and smaller images of real objects.

LENSMAKER’S EQUATION:

Copyright 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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where 7 is the refractive index of the lens material, and r; and r, are the radii of curvature of the two lens
surfaces. This equation holds for all types of thin lenses. A radius of curvature, r, is positive when its
center of curvature lies to the right of the surface, and negative when its center of curvature lies to the left
of the surface.

If a lens with refractive index n; is immersed in a material with index n,, then #n in the lensmaker’s
equation is to be replaced by n;/n,.

LENS POWER in diopters (m~') is equal to 1/f, where f is the focal length expressed in meters.

LENSES IN CONTACT: When two thin lenses having focal lengths f| and f; are in close con-
tact, the focal length f of the combination is given by

111
oAk

For lenses in close contact, the power of the combination is equal to the sum of their individual powers.

Solved Problems

38.1 An object OO’, 4.0 cm high, is 20 cm in front of a thin convex lens of focal length +12 cm.
Determine the position and height of its image I’ (a) by construction and () by computation.

(a) The following two convenient rays from O will locate the images (see Fig. 38-2).
(1) A ray OP, parallel to the optical axis, must after refraction pass through the focus F.

(2) A ray passing through the optical center C of a thin lens is not appreciably deviated. Hence ray
OCI may be drawn as a straight line.

The intersection I of these two rays is the image of O. Thus II' represents the position and size of the
image of OO'. The image is real, inverted, enlarged, and at a greater distance from the lens than the
object. (If the object were at II', the image at OO’, would be real, inverted, and smaller.)

I 1 1 1 1 1

b —+—== —=
(5) so+s,- f or 20cm s; 12 cm

or s; =30 cm

The image is real (since s; is positive) and 30 cm behind the lens.

Height of image |s; 30 cm . .
—= = X= =1.5 height of = (1.5)(4.0 =6.0
Height of object |s,| 20 cm or cight of image = (1.5)(4.0 cm) om
P
B I I
o' F C
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38.2 An object 00’ is 5.0 cm in front of a convex lens of focal length +7.5 cm. Determine the position
and magnification of its image II’ (a) by construction and () by computation.

(@) Choose two convenient rays from O, as in Fig. 38-3.
(1) A ray OP, parallel to the optical axis, is refracted so as to pass through the focus F.
(2) A ray OCN, through the optical center of the lens, is drawn as a straight line.
These two rays do not meet, but appear to originate from a point /. Thus /I’ represents the position

and size of the image of 00’.
When the object is between F and C, the image is virtual, erect, and enlarged, as shown.
1 1 1 1 1 1

(5) SF5T7 0% Soem s 75em

or si=—15cm

Since s; is negative, the image is virtual (on the same side of the lens as the object), and it is 15 cm in
front of the lens. Also,

size of image
size of object

s;| ISem

T 50cm

Linear magnification =
s

4

I

Fig. 38-3

38.3 An object 00’, 9.0 cm high, is 27 cm in front of a concave lens of focal length —18 cm. Deter-
mine the position and height of its image I’ (a) by construction and (b) by computation.

(a) Choose the two convenient rays from O shown in Fig. 38-4.
(1) Aray OP, parallel to the optical axis, is refracted outward in the direction D as if it came from the
principal focus F.
(2) A ray through the optical center of the lens is drawn as a straight line OC.

Then II' is the image of OO’. Images formed by concave or divergent lenses are virtual, erect, and
smaller.

o’ F I C

Fig. 38-4
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I 1 1 1 1 1
b Sy LI 5= —10.8 cm = —11
(5) s,,+s,~ f or 27 cm+s, 18 cm or Vi 0.8 cm cm

Since s; is negative, the image is virtual, and it is 11 cm in front of the lens.

10.8 cm . .
= em = 0.40 or height of image = (0.40)(9.0 cm) = 3.6 cm

Si

Linear magnification =

So

38.4 A converging lens (f =20 cm) is placed 37 cm in front of a screen. Where should the object be
placed if its image is to appear on the screen?

We know that s; = +37 cm and f = +20 cm. The lens equation gives

1 1 1 1
—+ = and — =0.050 cm™" = 0.027 cm™! = 0.023 cm™!
s, 37cm 20cm Sy

from which s, = 43.5 cm. The object should be placed 44 cm from the lens.

38.5 Compute the position and focal length of the converging lens which will project the image of a
lamp, magnified 4 times, upon a screen 10.0 m from the lamp.

From s, +5; = 10.0 and s; = 4s,, we find s, = 2.0 m and s; = 8.0 m. Then

1 1 1 1 1 .
> or fzgonerlﬁm

=5 5 T20m 80m 80m

38.6 In what two positions will a converging lens of focal length +9.00 cm form images of a luminous
object on a screen located 40.0 cm from the object?
Given s, +s5; = 40.0cm and f = +9.00 cm, we have
1, 1 o
s, 40.0cm—s, 9.0 cm

The use of the quadratic formula gives

or  s>—40.0s,+ 360 =0

40.0 £ /1600 — 1440
S, =
2
from which s, = 13.7 cm and s, = 26.3 cm. The two lens positions are 13.7 cm and 26.3 cm from the object.

38.7 A converging lens with 50 cm focal length forms a real image that is 2.5 times larger than the
object. How far is the object from the image?
Because the magnification is 2.5, we have s; = 2.5s5,. Then
b, 11
s, 2.5s, 50cm
This gives s; = (2.5)(70 cm) = 175 cm. So the required distance is
si+5,=70cm+ 175 cm =245 cm = 2.5 m

or s, =70 cm

38.8 A lens of focal length f projects upon a screen the image of a luminous object magnified M times.
Show that the lens distance from the screen is f (M + 1).

The image is real, since it can be shown on a screen, and so s; > 0. We then have
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38.9

38.10

38.11

38.12

38.13

A lens has a convex surface of radius 20 cm and a concave surface of radius 40 cm and is made of
glass of refractive index 1.54. Compute the focal length of the lens, and state whether it is a
converging or a diverging lens.

First, notice that r; > 0 and r, > 0 because both surfaces have their centers of curvature to the right.
Consequently,

1 I 1 1 1 0.54
c=m—-1)[———)=(154—1 - = =474
f (n )(rl rz) (15 )<20 cm 40 cm) 40 cm or f=+74cm

Since f turns out to be positive, the lens is converging.

A double convex lens has faces of radii 18 and 20 cm. When an object is 24 cm from the lens, a
real image is formed 32 cm from the lens. Determine (a) the focal length of the lens and (b) the
refractive index of the lens material.

111 1 1 7 96
(a) z=—+—-= + = or f= 7cm

1 1 1 1 1 1
(h) ]:(n_l)(ﬁ_i) or ﬁ:(n—l)(m—m> or n=1.7

=+13.7cm =14 cm

A glass lens (n = 1.50) has a focal length of +10 c¢cm in air. Compute its focal length in water

(n=1.33).
Using
1 (’ﬂ_ 1) (i_l)
f n rnon
. 1 1 1
we get For air : 57(1‘50—1)<E—g>

1 /150 11
For water:  —= (- —1)(=——
or water f <133 ) (rl }"2)

Divide one equation by the other to obtain /' = 5.0/0.128 = 39 cm.

Each face of a double convex lens has a radius of 20.0 cm. The index of refraction of the glass is
1.50. Compute the focal length of this lens (¢) in air and (b) when it is immersed in carbon
disulfide (n = 1.63).

We use
I (nl 1) (l 1)
f n o n
(@) T oaso-p(L -1 o f=+420.0cm
o 20cm —20 cm s ’
1 (150 1 1
e | - 12
() 7 (1.63 ) (20 cm  —20 cm) or f 5 em

Here, the focal length is negative and so the lens is a diverging lens.

Two thin lenses, of focal lengths +9.0 and —6.0 cm, are placed in contact. Calculate the focal
length of the combination.
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[ B N B
f fi f» 90cm 60cm  18cm

or  f =—18 cm (diverging)

38.14 An achromatic lens is formed from two thin lenses in contact, having powers of +10.0 diopters

38.15

38.16

38.17

38.18

38.19

38.20

38.21

38.22

38.23

38.24

38.25

38.26

and —6.0 diopters. Determine the power and focal length of the combination.

Since reciprocal focal lengths add,
1

Power = +10.0 — 6.0 = +4.0 diopters and focal length = = —
power +4.0 m

=+25cm

Supplementary Problems

Draw diagrams to indicate qualitatively the position, nature, and size of the image formed by a converging
lens of focal length f for the following object distances: (a) infinity, (b) greater than 2f, (¢) equal to 2f, (d)
between 2f and f, (e) equal to f, (/) less than f.

Determine the nature, position, and linear magnification of the image formed by a thin converging lens of
focal length +100 cm when the object distance from the lens is () 150 cm, (b) 75.0 cm. Ans. (a) real,
inverted, 300 cm beyond lens, 2: 1; () virtual, erect, 300 cm in front of lens, 4: 1

In what two positions of the object will its image be enlarged 8.0 times by a lens of focal length
+4.0 cm? Ans. 4.5 cm from lens (image is real and inverted), 3.5 cm from lens (image is virtual and erect)

What are the nature and focal length of the lens that will form a real image having one-third the dimensions
of an object located 9.0 cm from the lens? Ans. converging, +2.3 cm

Describe fully the image of an object which is 10 cm high and 28 cm from a diverging lens of focal length
—7.0 cm. Ans. virtual, erect, smaller, 5.6 cm in front of lens, 2.0 cm high

Compute the focal length of the lens which will give an erect image 10 cm from the lens when the object
distance from the lens is (a) 200 cm, (b) very great. Ans. (a) —11 cm; (b) —10 cm

A luminous object and a screen are 12.5 m apart. What are the position and focal length of the lens which
will throw upon the screen an image of the object magnified 24 times? Ans.  0.50 m from object,
+0.48 m

A plano-concave lens has a spherical surface of radius 12 c¢cm, and its focal length is —22.2 cm. Compute the
refractive index of the lens material. Ans. 1.5

A convexo-concave lens has faces of radii 3.0 and 4.0 cm, respectively, and is made of glass of refractive
index 1.6. Determine (a) its focal length and (b) the linear magnification of the image when the object is
28 cm from the lens. Ans. (a) 420 cm; (b) 2.5:1

A double convex glass lens (n = 1.50) has faces of radius 8 cm each. Compute its focal length in air and
when immersed in water (n = 1.33). Ans.  +8 cm, +0.3 m

Two thin lenses, of focal lengths +12 and —30 cm, are in contact. Compute the focal length and power of the
combination. Ans.  +20 cm, +5.0 diopters

What must be the focal length of a third thin lens, placed in close contact with two thin lenses of 16 cm and
—23 cm focal length, to produce a lens with —12 cm focal length? Ans. —9.8 cm



Chapter 39

Optical Instruments

COMBINATION OF THIN LENSES: To locate the image produced by two lenses acting in
combination, (1) compute the position of the image produced by the first lens alone, disregarding
the second lens; (2) then consider this image as the object for the second lens, and locate its im-
age as produced by the second lens alone. This latter image is the required image.

If the image formed by the first lens alone is computed to be behind the second lens, then that image
is a virtual object for the second lens, and its distance from the second lens is considered negative.

THE EYE uses a variable-focus lens to form an image on the retina at the rear of the eye. The
near point of the eye, represented by d,, is the closest distance to the eye from which an object
can be viewed clearly. For the normal eye, d, is about 25 cm. Farsighted persons can see dis-
tinctly only objects that are far from the eye; nearsighted persons can see distinctly only objects
that are close to the eye.

A MAGNIFYING GLASS is a converging lens used so that it forms an erect, enlarged, virtual
image of an object placed inside its focal point. The magnification due to a magnifier with focal
length f is (d,/f)+ 1 if the image it casts is at the near point. Alternatively, if the image is at
infinity, the magnification is d,/f.

A MICROSCOPE that consists of two converging lenses, an objective lens (focal length f,) and

an eyepiece lens (f,), has
e d q
Magnification = (—" + 1) (—" - 1)
e fo

where g, is the distance from the objective lens to the image it forms. Usually ¢, is close to 18 cm.

A TELESCOPE that has an objective lens (or mirror) with focal length f, and an eyepiece with
focal length f, gives a magnification M = f,/f,.

Solved Problems

39.1 A certain nearsighted person cannot see distinctly objects beyond 80 cm from the eye. What is the
power in diopters of the spectacle lenses that will enable him to see distant objects clearly?

The image must be on the same side of the lens as the distant object (hence the image is virtual and

s; = —80 cm), and nearer to the lens than the object (hence diverging or negative lenses are indicated). As the
object is at a great distance, s, is very large and 1/s, is practically zero. Then

1—0—1—1 or 0 I _1 or f = —80 cm (diverging)

s s S 807 - sne

359
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39.2

39.3

39.4

39.5

39.6

OPTICAL INSTRUMENTS [CHAP. 39

1 1
fin meters —0.80 m

and Power in diopters = = —1.3 diopters

A certain farsighted person cannot see clearly objects closer to the eye than 75 cm. Determine the
power of the spectacle lenses which will enable her to read type at a distance of 25 cm.

The image must be on the same side of the lens as the type (hence the image is virtual and s; = —75 cm),
and farther from the lens than the type (hence converging or positive lenses are prescribed). We have
I 1 1

]:E—% or f=4+375cm

and Power = = 2.7 diopters

1
0.375 m

A projection lens of focal length 30 cm throws an image of a 2.0 cm x 3.0 cm slide onto a screen
10 m from the lens. Compute the dimensions of the image.

U T R
— e — =~ =323m!
s, 7 5 030 10 >Bm

. . . . S;
and so Linear magnification of image = |-
SO

1I0m
(1/3.23) m

The length and width of the slide are each magnified 32 times, so

Size of image = (32 x 2.0 cm) x (32 x 3.0 cm) = 64 cm X 96 cm

A camera gives a clear image of a distant landscape when the lens is 8 cm from the film. What
adjustment is required to get a good photograph of a map placed 72 cm from the lens?

When the camera is focused for distant objects (for parallel rays), the distance between lens and film is

the focal length of the lens, 8 cm. For an object 72 cm distant:
I 1 1 1 1

s [ s, 8 72

The lens should be moved farther away from the film a distance of (9 —8) cm = 1 cm.

or s;i =9 cm

With a given illumination and film, the correct exposure for a camera lens set at f//12 is (1/5) s.
What is the proper exposure time with the lens working at f'/4?

A setting of //12 means that the diameter of the opening, or stop, of the lens is 1/12 of the focal length;
f/4 means that it is 1/4 of the focal length.

The amount of light passing through the opening is proportional to its area, and therefore to the square
of its diameter. The diameter of the stop at /4 is three times that at /12, so 3% = 9 times as much light will
pass through the lens at f/4, and the correct exposure at f/4 is

(1/9)(exposure time at //12) = (1.45) s

An engraver who has normal eyesight uses a converging lens of focal length 8.0 cm which he
holds very close to his eye. At what distance from the work should the lens be placed, and what is
the magnifying power (magnification) of the lens?

Method 1

When a converging lens is used as a magnifying glass, the object is between the lens and the focal point.
The virtual erect, and enlarged image forms at the distance of distinct vision, 25 cm from the eye. We have
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1 1 1 1 1 1 200

o= - = S, =——=06. =6.1

s(,+s,- 7 or S0+_25 om " 830om or S, 3 6.06 cm = 6.1 cm
and Magnifying power = SS—D = ﬁ = 4.1 diameters
Method 2

By the formula,
. . d, 25
Magnification = 7 +1= 30 +1=4.1

39.7 Two positive lenses, having focal lengths of +2.0 cm and +5.0 cm, are 14 cm apart as shown in
Fig. 39-1. An object 4B is placed 3.0 cm in front of the +2.0 lens. Determine the position and
magnification of the final image 4”B"” formed by this combination of lenses.

B
e
3.0cm| 6.0cm % 8.0 cm 133 cm >IB”

14 cm

Fig. 39-1

To locate image A’B’ formed by the +2.0 lens alone:
1 1 1 1 1

si f sozﬁ_io_
The image A4'B’ is real, inverted, and 6.0 cm beyond the +2.0 lens.
To locate the final image A”B”: The image 4'B’ is (14 — 6.0) cm = 8.0 cm in front of the +5.0 lens and
is taken as a real object for the +5.0 lens.
1 1 1

S_,«:ﬁ_% or s; =133 cm

1
60 or s; = 6.0 cm

A"B" is real, erect, and 13 cm from the +5 lens. Then,

. . . A"B" A'B" A"B” 60 133
Total linear magnification = —=—X ——=-—X —— =
AB AB  A'B’ 30 8.0
Note that the magnification produced by a combination of lenses is the product of the individual
magnifications.

3.3

39.8 In the compound microscope shown in Fig. 39-2, the objective and eyepiece have focal lengths of
+0.80 and +2.5 cm, respectively. The real image 4'B’ formed by the objective is 16 cm from the
objective. Determine the total magnification if the eye is held close to the eyepiece and views the
virtual image 4”B" at a distance of 25 cm.
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Eyepiece

Objective

Fig. 39-2

Method 1

Let 5,0 = object distance from the objective
sio = real-image distance from objective

1 1 1 1 1 19

S0 Jo 5o 080 16 16 ™

and so the objective produces the linear magnification

Sio

_ 19 1\
= (16 cm)<ﬁ cm ) =19

So0

The magnifying power of the eyepiece is

ol

SiE

SiE -25
SE_ gl |22 =11
ol

SoE

Therefore, the magnifying power of the instrument is 19 x 11 = 2.1 x 10* diameters.

Alternatively, under the conditions stated, the magnifying power of the eyepiece can be found as

25 25
B2 -n
i ast

Method 2

By the formula, with 5,5 = 16 cm,

. . 25 16 )
Magnification = (E—i- l) (0—8— l) =21x10

The telephoto lens shown in Fig. 39-3 consists of a converging lens of focal length +6.0 cm placed
4.0 cm in front of a diverging lens of focal length —2.5 cm. (a) Locate the image of a very distant
object. (b) Compare the size of the image formed by this lens combination with the size of the
image that could be produced by the positive lens alone.

(@)

If the negative lens were not employed, the image 4B would be formed at the focal point of the +6.0
lens, 6.0 cm distant from the +6.0 lens. The negative lens decreases the convergence of the rays
refracted by the positive lens and causes them to focus at A’B’ instead of AB.

The image AB (that would have been formed by the +6.0 lens alone) is 6.0 — 4.0 = 2.0 cm beyond
the —2.5 lens and is taken as the (virtual) object for the —2.5 lens. Then s, = —2.0 cm (negative because
AB is virtual), and
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Rays from top . ;
of object B

10.0 cm 4

1 1 1 1 + b1 or s; = +10 cm
s; f s, 25cm 20cm 10cm e

The final image A’B’ is real and 10 cm beyond the negative lens.

. . . . A'B’
(b) Linear magnification by negative lens = =3 -

10 cm

“20cm

S

Sy

so the diverging lens increases the magnification by a factor of 5.0.

39.10 A microscope has two interchangeable objective lenses (3.0 mm and 7.0 mm) and two inter-
changeable eyepieces (3.0 cm and 5.0 cm). What magnifications can be obtained with the micro-
scope, if the distance between the eyepiece and objective is 17 cm.

Because the image formed by the objective lens lies very close to the eyepiece, s, = 17 cm. Then the
magnification formula for a microscope, with d, = 25 cm, gives the following possibilities for M:

9.33)(56.6) = 528 = 5.3 x 10?
9.33)(24.2) = 226 = 2.3 x 10?
5)(56.6) = 283 = 2.8 x 10°
5)(24.2) = 121 = 1.2 x 10*

For fr=3cm, fo =03 cm:

For fr =3 cm, fp =0.7cm: M =
For fr =5cm, fo =03 cm: M
For fy =5cm, fp =0.7cm: M=

=
(
(
(

39.11 Compute the magnifying power of a telescope, having objective and eyepiece lenses of focal
lengths +60 and +3.0 cm respectively, when it is focused for parallel rays.

focal length of objective 60 cm

- — 20 dic
focal length of eyepiece 3.0 cm 0 diameters

Magnifying power =

39.12 Reflecting telescopes make use of a concave mirror, in place of the objective lens, to bring the
distant object into focus. What is the magnifying power of a telescope that has a mirror with
250 cm radius and an eyepiece whose focal length is 5.0 cm?

As for a refracting telescope (one with two lenses), M = f,,/fr Where, in this case, f, = R/2 = 125 cm
and fr = 5.0 cm. Thus, M = 25.

39.13 As shown in Fig. 39-4, an object is placed 40 cm in front of a converging lens that has
f = +48.0 cm. A plane mirror is 30 cm beyond the lens. Find the positions of all images formed
by this system.



364

39.14

39.15

39.16

39.17

39.18

OPTICAL INSTRUMENTS [CHAP. 39

For the lens

I 1 1 1 1 4

I S S R s =10
s/ s, 80 40 40 OO0 % em
This is image A’'B’ in the figure. It is real and inverted.
+8.0
Ag >
B' D

ok

40 cm 30 cm

Fig. 39-4

A’'B' acts as an object for the plane mirror, 20 cm away. A virtual image CD is formed 20 cm behind the
mirror.

Light reflected by the mirror appears to come from the image at CD. With CD as object, the lens forms
an image of it to the left of the lens. The distance s; from the lens to this latter image is given by

1 11 1 1
—=—-——=-——=0.105 i =9.5
57 58 %0 or S cm
The real images are therefore located 10 cm to the right of the lens and 9.5 cm to the left of the lens.
(This latter image is upright.) A virtual inverted image is found 20 cm behind the mirror.

Supplementary Problems

A farsighted woman cannot see objects clearly that are closer to her eye than 60.0 cm. Determine the focal
length and power of the spectacle lenses that will enable her to read a book at a distance of
25.0 cm. Ans. +42.9 cm, +2.33 diopters

A nearsighted man cannot see objects clearly that are beyond 50 cm from his eye. Determine the focal length
and power of the glasses that will enable him to see distant objects clearly. Ans. =50 cm, —2.0 diopters

A projection lens is employed to produce 2.4 m x 3.2 m pictures from 3.0 cm x 4.0 cm slides on a screen
that is 25 cm from the lens. Compute its focal length. Ans. 31 cm

A camera gives a life-size picture of a flower when the lens is 20 cm from the film. What should be the
distance between lens and film to photograph a flock of birds high overhead? Ans. 10 cm

What is the maximum stop rating of a camera lens having a focal length of +10 cm and a diameter of
2.0 cm? If the correct exposure at f/6 is (1/90) s, what exposure is needed when the diaphragm setting is
changed to f/9? Ans.  f/5, (1/40) s
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39.19

39.20

39.21

39.22

39.23

39.24

39.25

39.26

39.27

39.28

39.29

39.30

What is the magnifying power of a lens of focal length +2.0 cm when it used as a magnifying glass (or simple
microscope)? The lens is held close to the eye, and the virtual image forms at the distance of distinct vision,
25 cm from the eye. Ans. 14

When the object distance from a converging lens is 5.0 cm, a real image is formed 20 cm from the lens. What
magnification is produced by this lens when it is used as a magnifying glass, the distance of most distinct
vision being 25 cm? Ans. 7.3

In a compound microscope, the focal lengths of the objective and eyepiece are +0.50 cm and +2.0 cm
respectively. The instrument is focused on an object 0.52 cm from the objective lens. Compute the magnify-
ing power of the microscope if the virtual image is viewed by the eye at a distance of 25 cm.
Ans. 3.4 x10°

A refracting astronomical telescope has a magnifying power of 150 when adjusted for minimum eyestrain. Its
eyepiece has a focal length of +1.20 cm. (a) Determine the focal length of the objective lens. (b)) How far
apart must the two lenses be so as to project a real image of a distant object on a screen 12.0 cm from the
eyepeice? Ans. (a) +180 cm; (b) 181 cm

The large telescope at Mt Palomar has a concave objective mirror diameter of 5.0 m and radius of curvature
46 m. What is the magnifying power of the instrument when it is used with an eyepiece of focal length
1.25cm?  Ans. 1.8 x 10°

An astronomical telescope with an objective lens of focal length +80 cm is focused on the moon. By how
much must the eyepiece be moved to focus the telescope on an object 40 meters distant? Ans. 1.6 cm

A lens combination consists of two lenses with focal lengths of +4.0 cm and +8.0 cm, which are spaced
16 cm apart. Locate and describe the image of an object placed 12 cm in front of the +4.0-cm lens.
Ans. 40 cm beyond +8.0 lens, real, erect

Two lenses, of focal lengths +6.0 cm and —10 cm, are spaced 1.5 cm apart. Locate and describe the image of
an object 30 cm in front of the +6.0-cm lens. Ans. 15 cm beyond negative lens, real, inverted, 5/8 as
large as the object.

A telephoto lens consists of a positive lens of focal length +3.5 cm placed 2.0 cm in front of a negative lens
of focal length —1.8 cm. (a) Locate the image of a very distant object. (b) Determine the focal length of the
single lens that would form as large an image of a distant object as is formed by this lens
combination. Ans. (a) real image 9.0 cm in back of negative lens; (b) +21 cm

An opera glass has an objective lens of focal length +3.60 cm and a negative eyepiece of focal length
—1.20 cm. How far apart must the two lenses be for the viewer to see a distant object at 25.0 cm from
the eye? Ans. 2.34 cm

Repeat Problem 39.13 if the distance between the plane mirror and the lens is 8.0 cm. Ans. at 6.0 cm
(real) and 24 cm (virtual) to the right of the lens

Solve Problem 39.13 if the plane mirror is replaced by a concave mirror with a 20 cm radius of curva-
ture. Ans. at 10 cm (real, inverted), 10 cm (real, upright), —40 cm (real, inverted) to the right of the
lens



Chapter 40

Interference and Diffraction of Light

COHERENT WAVES are waves that have the same form, the same frequency, and a fixed phase
difference (i.e., the amount by which the peaks of one wave lead or lag those of the other wave
does not change with time).

THE RELATIVE PHASE of two coherent waves traveling along the same line together specifies
their relative positions on the line. If the crests of one wave fall on the crests of the other, the
waves are in-phase. If the crests of one fall on the troughs of the other, the waves are 180° (or
one-half wavelength) out-of-phase.

INTERFERENCE EFFECTS occur when two or more coherent waves overlap. If two coherent
waves of the same amplitude are superposed, total destructive interference (cancellation, darkness)
occurs when the waves are 180° out-of-phase. Total constructive interference (reinforcement,
brightness) occurs when they are in-phase.

DIFFRACTION refers to the deviation of light from straight-line propagation. It usually corre-
sponds to the bending or spreading of waves around the edges of apertures and obstacles. Dif-
fraction places a limit on the size of details that can be observed optically.

SINGLE-SLIT DIFFRACTION: When parallel rays of light of wavelength 1 are incident nor-
mally upon a slit of width D, a diffraction pattern is observed beyond the slit. Complete darkness
is observed at angles 6,,, to the straight-through beam, where

m'i = D sin §,,

Here, m' = 1,2,3,..., is the order number of the diffraction dark band.

LIMIT OF RESOLUTION of two objects due to diffraction: If two objects are viewed through
an optical instrument, the diffraction patterns caused by the aperture of the instrument limit our
ability to distinguish the objects from each other. For distinguishability, the angle 6 subtended at
the aperture by the objects must be larger than a critical value 6., given by

. A

sin 6, = (1.22) D

where D is the diameter of the circular aperture.

DIFFRACTION GRATING EQUATION: A diffraction grating is a repetitive array of apertures
or obstacles that alters the amplitude or phase of a wave. It usually consists of a large number
of equally spaced, parallel slits or ridges; the distance between slits is the grating spacing a. When
waves of wavelength A are incident normally upon a grating with spacing a, maxima are observed
beyond the grating at angles 6,, to the normal, where

mJl. = asin 6,
366
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Here, m = 1,2,3,.. ., is the order number of the diffracted image.

This same relation applies to the major maxima in the interference patterns of even two and three
slits. In these cases, however, the maxima are not nearly so sharply defined as for a grating consisting of
hundreds of slits. The pattern may become quite complex if the slits are wide enough so that the single-
slit diffraction pattern from each slit shows several minima.

THE DIFFRACTION OF X-RAYS of wavelength 4 by reflection from a crystal is described by
the Bragg equation. Strong reflections are observed at grazing angles ¢, (where ¢ is the angle be-
tween the face of the crystal and the reflected beam) given by

mJl. = 2d sin ¢,

where d is the distance between reflecting planes in the crystal, and m =1,2,3,..., is the order of
reflection.

OPTICAL PATH LENGTH: In the same time that it takes a beam of light to travel a distance
d in a material of index of refraction n, the beam would travel a distance nd in air or vacuum.
For this reason, nd is defined as the optical path length of the material.

Solved Problems

40.1 Figure 40.1 shows a thin film of a transparent material of thickness d and index n, where
ny > ny > ny. For what three smallest gap thicknesses will reflected light rays 1 and 2 interfere
totally (a) constructively and (b) destructively? Assume the light has a wavelength in the film of
600 nm.

(a) Ray 2 travels a distance of roughly 2d farther than ray 1. The rays reinforce if this distance is 0, 4, 24,
34, ..., mA, where m is an integer. Hence for reinforcement,

mi=2d  or  d=(im)(600 nm) = 300m nm

The three smallest values for ¢ are 0, 300 nm, and 600 nm.

(b) The waves cancel if they are 180° out-of-phase. This occurs when 2d is $4, (A+34), 2A+14),...,
(mA+1%2),..., with m an integer. Therefore, for cancellation,

2d=mi+3i  or  d=%3m+1i=(m+1)(300) nm

The three smallest values for d are 150 nm, 450 nm, and 750 nm.

Fig. 40-1 Fig. 40-2
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40.2 Two narrow horizontal parallel slits (a distance a = 0.60 mm apart) are illuminated by a beam of
500-nm light as shown in Fig. 40-2. Light that is diffracted at certain angles 6 reinforces; at others,
it cancels. Find the three smallest values for 6 at which (a) reinforcement occurs and (b) cancella-
tion occurs. (See Fig. 40-3.)

The difference in path lengths for the two beams is (r; — ;). From the figure,

sin 6 = 7(” —n)
a
(a) For reinforcement, (r; —rp) =0, 4, 24, .... The corresponding three smallest values for § are found
from
Sint%:o or 90:0
. 500 x 10~ m 4
S 91 = m =833 x 10 or 01 — 0.048°
2(500 x 10~ m) »
p=—F—==16.7%x 10 = °
n op 6 % 10,4 m or 62 0.095
(b) For cancellation, (r; — ry) =34, (A+34), (24 +17),... . The corresponding three smallest values for 6
are found from

. 250 nm 4

0p=————=417x 10 or 6, =0.024°
S 7= 600000 nm x !

750 nm
i - _=0. or 6,=0.072°
sin 6, 600000 om 0.001 25 P
1250 nm

inf;=————=0.00208 or 6#;=0.12°
S %= 600000 nm 3

40.3 Monochromatic light from a point source illuminates two narrow, horizontal parallel slits. The
centers of the two slits are a = 0.80 mm apart, as shown in Fig. 40-3. An interference pattern
forms on the screen, 50 cm away. In the pattern, the bright and dark fringes are evenly spaced.
The distance y shown is 0.304 mm. Compute the wavelength A of the light.

Fig. 40-3

Notice first that Fig. 40-3 is not to scale. The rays from the slit would actually be nearly parallel. We can
therefore use the result of Problem 40.2 with (r; —r,) =mi at the maxima (bright spots), where
m=0,1,2,.... Then

(ry — 1)

a

sin 6 = becomes mJl. = a sin 6,,

Or, alternatively, we could use the grating equation, since a double slit is simply a grating with two lines.
Both approaches give mA = a sin 0,,,.
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40.4

40.5

40.6

We know that the distance from the central maximum to the first maximum on either side is 0.304 mm.
Therefore, from Fig. 40-3,

~0.0304 cm

9, — — 0.000 608
n o) =5 = =0.00060

Then, for m =1,
m)=asin @,  becomes (1)1 = (0.80 x 107 m)(6.08 x 107%)

from which 4 = 486 nm, or to two significant figures 0.49 x 10° nm.

Repeat Problem 40.1 for the case in which n; < n; > n, or ny > ny <n.

Experiment shows that, in this situation, cancellation occurs when « is near zero. This is due to the fact
that light often undergoes a phase shift upon reflection. The process is generally rather complicated, but for
incident angles less than about 30° it’s fairly straightforward. Then there will be a net phase difference of
180° introduced between the internally and externally reflected beams. Thus when the film is very thin
compared to /4 and d =~ 0, there will be an apparent path difference for the two beams of %/1 and cancellation
will occur. (This was not the situation in Problem 40.1, because there both beams were externally reflected.)

Destructive interference occurs for d = 0, as we have just seen. When d = %)L cancellation again occurs.
The same thing happens at d = %/1 + %/1. Therefore cancellation occurs at d = 0, 300 nm, and 600 nm.

Reinforcement occurs when d = }—‘X, because then beam 2 acts though it had traveled an additional
124 (2)(44) = A. Reinforcement again occurs when d is increased by 2 and by 4. Hence, for reinforcement,
d = 150 nm, 450 nm, and 750 nm.

When one leg of a Michelson interferometer is lengthened slightly, 150 dark fringes sweep
through the field of view. If the light used has 4 = 480 nm, how far was the mirror in that leg
moved?

Darkness is observed when the light beams from the two legs are 180° out of phase. As the length of one
leg is increased by % 4, the path length (down and back) increases by 4 and the field of view changes from dark
to bright to dark. When 150 fringes pass, the leg is lengthened by an amount

(150)(1 2) = (150)(240 nm) = 36000 nm = 0.0360 mm

As shown in Fig. 40-4, two flat glass plates touch at one edge and are separated at the other edge
by a spacer. Using vertical viewing and light with 4 = 589.0 nm, five dark fringes (D) are obtained
from edge to edge. What is the thickness of the spacer?

The pattern is caused by interference between a beam reflected from the upper surface of the air wedge
and a beam reflected from the lower surface of the wedge. The two reflections are of different nature in that
reflection at the upper surface takes place at the boundary of a medium (air) of lower refractive index, while
reflection at the lower surface occurs at the boundary of a medium (glass) of higher refractive index. In such

2(A/2) 3(A/2)

D D D D

Fig. 40-4 Fig. 40-5
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cases, the act of reflection by itself involves a phase displacement of 180° between the two reflected beams.
This explains the presence of a dark fringe at the left-hand edge.

As we move from a dark fringe to the next dark fringe, the beam that traverses the wedge must be held
back by a path-length difference of 4. Because the beam travels twice through the wedge (down and back up),
the wedge thickness changes by only %i as we move from fringe to fringe. Thus,

Spacer thickness = 4(3 1) = 2(589.0 nm) = 1178 nm

In an experiment used to show Newton’s rings, a plano-convex lens is placed on a flat glass plate,
as in Fig. 40-5. (The curvature is vastly exaggerated.) When the lens is illuminated from directly
above, a top-side viewer sees a series of bright and dark rings centered on the contact point, which
is dark. Find the air-gap thickness at (a) the third dark ring and (b) the second bright ring.
Assume 500 nm light is being used.

(a) The gap thickness is zero at the central dark spot. It increases by %/1 as we move from a position of
darkness to the next position of darkness. (Why %/1?) Therefore, at the third dark ring,

Gap thickness = 3(} 1) = 3(250 nm) = 750 nm

(b) The gap thickness at the first bright ring must be large enough to increase the path length by %/1. Since

the ray traverses the gap twice, the thickness there is ‘—1‘/1. As we go from one bright ring to the next, the

gap thickness increases by %/l. Therefore, at the second bright ring,

Gap thickness = ;4 + 12 = (0.750)(500 nm) = 375 nm

What is the least thickness of a soap film which will appear black when viewed with sodium light
(A =589.3 nm) reflected perpendicular to the film? The refractive index for soap solution is
n=1.38.

The situation is shown in Fig. 40-6. Ray b has an extra equivalent path length of 2nd = 2.76d. In
addition, there is a relative phase shift of 180°, or %i, between the beams because of the reflection process, as
described in Problems 40-4 and 40-6.

Cancellation (and darkness) occurs if the retardation between the two beams, is %},, or %}., or %A, and so
on. Therefore, for darkness,

2.76d + 17 =m(3 7) where m=1,3,5, ...
When m = 1, this gives d = 0. For m = 3, we have

_ L ~589.3 nm
2760 2.6

as the thinnest possible film other than zero.

=214 nm

a b
y

Air A £

S D ’ 40

oap cm
film d ZF
B
Air

Fig. 40-6 Fig. 40-7
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40.9

40.10

40.11

40.12

A single slit of width D = 0.10 mm is illuminated by parallel light of wavelength 600 nm, and
diffraction bands are observed on a screen 40 cm from the slit. How far is the third dark band
from the central bright band? (Refer to Fig. 40-7.)

For a single slit, the locations of dark bands are given by the equation m’A = D sin 6,,,. Then

5 ) 1*7
sin 0y — 52 23000107 m) o0 o g 1o
D~ 010x10°m

From the figure, tan § = y/40 cm, and so
» = (40 cm)(tan 0) = (40 cm)(0.018) = 0.72 cm

Red light falls normally on a diffraction grating ruled 4000 lines/cm, and the second-order image
is diffracted 34.0° from the normal. Compute the wavelength of the light.

From the grating equation mA = a sin 6,

I
L _asing, _ (4000 Cm) (0.559)

_ =5 —
5 = 3 =6.99 x 1077 cm = 699 nm

Figure 40-8 shows a laboratory setup for grating experiments. The diffraction grating has 5000
lines/cm and is 1.00 m from the slit, which is illuminated with sodium light. On either side of the
slit, and parallel to the grating, is a meterstick. The eye, placed close to the grating, sees virtual
images of the slit along the metersticks. Determine the wavelength of the light if each first-order
image is 31.0 cm from the slit.

. A [] first-order
Grating -
////'// 31 cm
)
/I>§€i:\\ 01 100 cm 07 glit Source
. : -
: Tt 31 cm
Ll first-order

Fig. 40-8

tan 6, =31.0/100 or 6, =17.2°

_asin 6, (0.000200 cm)(0.296)

I I =592 x 1077 cm = 592 nm

SO A

Green light of wavelength 540 nm is diffracted by a grating ruled with 2000 lines/cm. (a) Compute
the angular deviation of the third-order image. (b) Is a 10th-order image possible?

32 3(5.40 x 107> cm)

in0; =— = =0.324 0 =18.9°
(@) S0 = 5.00 x 10~% cm 0 or

10 10(5.40 x 1073
() sin 6y = 104 _ 1005:40x 10 7 em)
a 5.00 x 107% cm

Since the value of sin # cannot exceed 1, a 10th-order image is impossible.

= 1.08 (impossible)
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Show that, in a spectrum of white light obtained with a grating, the red (4, = 700 nm) of the
second order overlaps the violet (/, = 400 nm) of the third order.

27, 2(700) 1400

For the red: sin 0, =— = —— (ain nm)
a a a
For the violet: sin 0; = 3% _ 3(400) _ 1200
a a a

As sin 0, > sin 03, 6, > 05. Thus the angle of diffraction of red in the second order is greater than that of
violet in the third order.

A parallel beam of X-rays is diffracted by a rock salt crystal. The first-order strong reflection is
obtained when the glancing angle (the angle between the crystal face and the beam) is 6°50". The
distance between reflection planes in the crystal is 2.8 A. What is the wavelength of the X-rays?
(1 angstrom =1 A=0.1 nm.)

Note that the Bragg equation involves the glancing angle, not the angle of incidence.

_2sing _(2)(28 A)(0.119)

1 I =0.67 A

A

Two point sources of light are 50 cm apart, as shown in Fig. 40-9. They are viewed by the eye at a
distance L. The entrance opening (pupil) of the viewer’s eye has a diameter of 3.0 mm. If the eye
were perfect, the limiting factor for resolution of the two sources would be diffraction. In that
limit, how large could we make L and still have the sources seen as separate entities?

Sources
‘N\\

; : f N
»—/L/% Eye

Fig. 40-9

In the limiting case, 6 = 6., where sin 6, = (1.22)(4/D). But, we see from the figure that sin 6, is nearly
equal to s/L, because s is so much smaller than L. Substitution of this value gives

_ sD_(0.50 m)(3.0 x 10~ m)
T12227 (1.22)(5.0 x 1077 m)

We have taken 4 = 500 nm, about the middle of the visible range.

L =2.5km

Supplementary Problems

Two sound sources send identical waves of 20 cm wavelength out along the +x-axis. At what separations of
the sources will a listener on the axis beyond them hear (a) the loudest sound and (b) the weakest
sound? Ans.  (a) m(20 cm), where m = 0,1,2,...; (b) 10 cm + m (20 cm)

In an experiment such as that described in Problem 40.1, brightness is observed for the following film
thicknesses: 2.90 x 107 m, 5.80 x 107" m, and 8.70 x 1077 m. (¢) What is the wavelength of the light
being used? (b) At what thicknesses would darkness be observed? Ans.  (a) 580 nm; (b) 145(1 4+ 2m) nm
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40.18

40.19

40.20

40.21

40.22

40.23

40.24

40.25

40.26

40.27

40.28

40.29

40.30

40.31

40.32

A double-slit experiment is done in the usual way with 480-nm light and narrow slits that are 0.050 cm apart.
At what angle to the straight-through beam will one observe (a) the third-order bright spot and (b) the
second minimum from the central maximum? Ans. (a) 0.17°; (b) 0.083°

In Problem 40.18, if the slit-to-screen distance is 200 cm, how far from the central maximum are (a) the
third-order bright spot and (b) the second minimum? Ans.  (a) 0.58 cm; (b) 0.29 cm

Red light of wavelength 644 nm, from a point source, passes through two parallel and narrow slits which are
1.00 mm apart. Determine the distance between the central bright fringe and the third dark interference
fringe formed on a screen parallel to the plane of the slits and 1.00 m away. Ans. 1.61 mm

Two flat glass plates are pressed together at the top edge and separated at the bottom edge by a strip of
tinfoil. The air wedge is examined in yellow sodium light (589 nm) reflected normally from its two surfaces,
and 42 dark interference fringes are observed. Compute the thickness of the tinfoil. Ans. 12.4 pm

A mixture of yellow light of wavelength 580 nm and blue light of wavelength 450 nm is incident normally on
an air film 290 nm thick. What is the color of the reflected light? Ans. blue

Repeat Problem 40.1 if the film has a refractive index of 1.40 and the vacuum wavelength of the incident light
is 600 nm. Ans. (a) 0, 214 nm, 429 nm; (b) 107 nm, 321 nm, 536 nm

Repeat Problem 40.6 if the wedge is filled with a fluid that has a refractive index of 1.50 instead of air. -
Ans. 785 nm

A single slit of width 0.140 mm is illuminated by monochromatic light, and diffraction bands are observed
on a screen 2.00 m away. If the second dark band is 16.0 mm from the central bright band, what is the
wavelength of the light? Ans. 560 nm

Green light of wavelength 500 nm is incident normally on a grating, and the second-order image is diffracted
32.0° from the normal. How many lines/cm are marked on the grating? Ans.  5.30 x 10° lines/cm

A narrow beam of yellow light of wavelength 600 nm is incident normally on a diffraction grating ruled 2000
lines/cm, and images are formed on a screen parallel to the grating and 1.00 m distant. Compute the distance
along the screen from the central bright line to the first-order lines. Ans. 12.1 cm

Blue light of wavelength 4.7 x 10~ m is diffracted by a grating ruled 5000 lines/cm. (a) Compute the angular
deviation of the second-order image. () What is the highest-order image theoretically possible with this
wavelength and grating? Ans. (a) 28°; (b) fourth

Determine the ratio of the wavelengths of two spectral lines if the second-order image of one line coincides
with the third-order image of the other line, both lines being examined by means of the same grating.
Ans. 3:2

A spectrum of white light is obtained with a grating ruled with 2500 lines/cm. Compute the angular
separation between the violet (4, =400 nm) and red (4, = 700 nm) in the (a) first order and (b) second
order. (¢) Does yellow (4, = 600 nm) in the third order overlap the violet in the fourth order?

Ans. (a) 4°20"; (b) 8°57"; (¢) yes

A spectrum of the Sun’s radiation in the infrared region is produced by a grating. What is the wavelength
being studied, if the infrared line in the first order occurs at an angle of 25.0° with the normal, and the
fourth-order image of the hydrogen line of wavelength 656.3 nm occurs at 30.0°? Ans. 2.22x10°m

How far apart are the diffracting planes in a NaCl crystal ofor which X-rays of wavelength 1.54 A make a
glancing angle of 15°54’ in the first order? Ans. 281 A



Chapter 41

Relativity

A REFERENCE FRAME is a coordinate system relative to which physical measurements are
taken. An inertial reference frame is one which moves with constant velocity, i.e., one which is
not accelerating.

THE SPECIAL THEORY OF RELATIVITY was proposed by Albert Einstein (1905) and is con-
cerned with bodies that are moving with constant velocity. The theory is predicated on two postu-
lates:

(1) The laws of physics are the same in all inertial reference frames. Therefore, all motion is relative.
The velocity of an object can only be given relative to some other object.

(2) The speed of light in free space, c, has the same value for all observers, independent of the motion of
the source (or the motion of the observer).

These postulates lead to the following conclusions.

THE RELATIVISTIC LINEAR MOMENTUM of a body of mass m and speed v is

R mv -
p = —— ’Ymv

1 — (v/c)?

where v = 1/4/1 — (v/c)* and ~v> 1. Some physicists prefer to associate the v with the mass and

introduce a relativistic mass myp = ym. That allows you to write the momentum as p = myzv, but mp
is then speed dependent. Here we will use only one mass, m, which is independent of its speed, just like
the two other fundamental properties of particles of matter, charge and spin.

LIMITING SPEED: When v =c, the momentum of an object becomes infinite. We conclude
that no object can be accelerated to the speed of light c, and so c is an upper limit for speed.

RELATIVISTIC ENERGY: The total energy of a body of mass m is given by

E = 7mc2
where

total energy = kinetic energy + rest energy
or
E=KE+E,

When a body is at rest v = 1, KE = 0 and the rest energy (E,) is given by

E) = mc’

The rest energy includes all forms of energy internal to the system.
The kinetic energy of a body of mass m is

KE = 7mc2 — mc?

374
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If the speed of the object is not too large, this reduces to the usual expression
KE = %mv2 (v<c)
Using the expression p = ymw, the total energy of a body can be written as

EZ — Wl2C4 +p202

TIME DILATION: Time is relative, it flows at different rates for differently moving observers.
Suppose a spaceship and a planet are moving with respect to one another at a relative speed v
and each carries an identical clock. The ship’s pilot will see an interval of time Afg pass on her
clock, with respect to which she is stationary. An observer on the ground will also see a time in-
terval pass on the ship’s clock, which is moving with respect to him. He, however, will see that
interval to take a time (measured via his clock) of Ary where Arny # Ats. The observer on the
ground will see time running more slowly on board the ship:

AtM =7 Afs

Similarly the pilot will see time running more slowly on the ground.

The time taken for an event to occur, as recorded by a stationary observer at the site of the event, is
called the proper time, Atg. All observers moving past the site record a longer time for the event to occur.
Hence the proper time for the duration of an event is the smallest measured time for the event.

SIMULTANEITY: Suppose that for an observer two events occur at different locations but at
the same time. The events are simultaneous for this observer, but in general they are not simulta-
neous for a second observer moving relative to the first.

LENGTH CONTRACTION: Suppose an object is measured to have an x-component length Lg
when at rest (Ls is called the proper length). The object is then given an x-directed speed v, so
that it is moving with respect to an observer. That observer will see the object to have been shor-
tened in the x-direction (but not in the y- and z-directions). Its x-length as measured by the ob-
server with respect to whom it is moving (Ly) will then be

Ly = Ls\/1 — (v/c)?

where Lg > Ly.

VELOCITY ADDITION FORMULA: Figure 41-1 shows a coordinate system S’ moving at a
speed wvpo with respect to a coordinate system S. Now consider an object at point P moving in
the x-direction at a speed wvpo: relative to point O’. The speed of the object with respect to O is
not the classical value of vpo: + voro, but instead
v — UPO" T V0"0
PO — 1 +’UP0/’;}0/0
c

Notice that even when vpgyr = vgo = ¢ the value of vpy = c.
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Yoo P
O—
UPO'
o’ g
10) X
Fig. 41-1

Solved Problems

How fast must an object be moving if its corresponding value of ~y is to be 1.0 percent larger than
~ is when the object is at rest? Give your answer to two significant figures.

Use the definition v =1/4/1— (v/c)* to find that at v =0, v=1.0. Hence the new value of

~v=1.01(1.0), and so
2 1\?
N0 oy N R
1 (C) (1.01) 0.980

Solving gives v = 0.14c = 4.2 x 107 m/s.

Compute the value of « for a particle traveling at half the speed of light. Give your answer to
three significant figures.

1 1

1 1
T = = = — 115
Ji—@er (i o500 V0TS0 0866

If 1.00 g of matter could be converted entirely into energy, what would be the value of the energy
so produced, at 10.0 cents per kW -h?

We make use of AE, = (Am)c* to find
Energy gained = (mass lost)c® = (1.00 x 107> kg)(2.998 x 10° m/s)* = 8.99 x 10" J

Value of energy = (8.99 x 10" J)( L kW-h ) ($ 0.10

=$2. 106
3.600 x 10° J kW~h) §2.5010

A 2.0 kg object is lifted from the floor to a tabletop 30 cm above the floor. By how much did the
mass of the system consisting of the Earth and the object increase because of this increased PEg?

We use AE, = (Am)c?, with AE, = mgh. Therefore,

_ AEy _mgh (2.0 kg)(9-81 m/s*)(0.30 m)

Am
c? c? (2.998 x 108 m/s)?

=65%x107"7 kg
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41.5 An electron is accelerated from rest through a potential difference of 1.5 MV and thereby
acquires 1.5 MeV of energy. Find its final speed.

Using KE = ymc* — mc? and the fact that KE = APEg we have
KE = (1.5 x 10° eV)(1.6 x 107" J/eV) =24 x 107" J

KE 24x10°"
= <10 7T 67 x 107 ke
c” (2998 x 10® m/s)

But m = 9.11 x 107" kg and so ym = 3.58 x 107 kg.
To find its speed, we use v = 1/4/1 — (v/c)?, which gives us

%: - (g)zz (7%)2 (g:ié)zz 0.064 6

from which v=cV1—0.0646 = 0.967c = 2.9 x 10* m/s

Then (ym —m) =

41.6 Determine the energy required to give an electron a speed 0.90 that of light, starting from rest.

1
KE:(’YWZ—M)CZZ L — —m|F=mt | — 1

1= (v/c)? 1= (vfc)?

= (9.11 x 107" kg)(2.998 x 10° m/s)? | Z106% 1077 T = 0.66 MeV

1 —(0.90)?

41.7 Show that KE = (ym — m)c® reduces to KE = %mv2 when v is very much smaller than c.

N —1/2
KE = (ym — m)c* = M | = mdd <1U2> -1
1= (v/e)? ¢

Let b = —v”/c? and expand (1 + 5)~'"/? by the binomial theorem:

R

Tv 3v
2¢2 8¢t
1o 3 1 3 :
Then KE = mc? <l+§:—+§:—4+-~)—l] :Emvz+§n1vzz—2+m

If v is very much smaller than c, the terms after %mv2 are negligibly small.

41.8 An electron traveling at relativistic speed moves perpendicularly to a magnetic field of 0.20 T. Its
path is circular, with a radius of 15 m. Find («) the momentum, (b) the speed, and (¢) the kinetic
energy of the electron. Recall that, in nonrelativistic situations, the magnetic force guB furnishes
the centripetal force mv’/r. Thus, since p = muo it follows that

p=qBr
and this relation holds even when relativistic effects are important.

First find the momentum using p = ¢Br

(a) p=(1.60 x 107" C)(0.20 T)(15 m) = 4.8 x 107" kg-m/s
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Because p = mv/+/1 — (v?/c%) with m = 9.11 x 107! kg, we have
(mc)(v/c)
V1= (v*/c?)

48 x 107" kg-m/s =

Squaring both sides and solving for (v/c)* give

v ! o VoL
2 1+323x1077 ¢ VI+323x107

Most hand calculators cannot handle this. Accordingly, we make use of the fact that 1/v/1+x~ 1 —1x
for x <« 1. Then

vicr 1 —1.61 x 1077 = 0.999999 84

1
KE = (ym —m)c*> =mc? | —————— 1
V1= (*/c?)
But we already found (v/c)* = 1/(1 +3.23 x 1077). If we use the approximation 1/(1 + x) ~ 1 — x for
x < 1, we have (v/c)* ~ 1 —3.23 x 107", Then
B
V3.23 x 1077

Evaluating the above expression yields

KE = m<32( 1) = (mc*)(1.76 x 10*)

KE=14x10"27=90x10% eV

An alternative solution method would be to use E* = p>c? + m?*c* and recall that KE = E — mc?

The Sun radiates energy equally in all directions. At the position of the Earth
(r = 1.50 x 10" m), the Sun’s radiation is 1.4 kW/m? How much mass does the Sun lose per
day because of the radiation?

The area of a spherical shell centered on the Sun and passing through the Earth is

Area = 41 = 47(1.50 x 10" m)* = 2.83 x 10 m?

Through each square meter of this area, the Sun radiates an energy per second of 1.4 kW/m?. Therefore the
Sun’s total radiation per second is

Energy/s = (area)(1400 W/m?) = 3.96 x 10 W

The energy radiated in one day (86400 s) is

Energy/day = (3.96 x 10% W)(86 400 s/day) = 3.42 x 10*! J/day
Because mass and energy are related through AE, = Amc?, the mass loss per day is

_AE,  342x10°'J

Am =
¢ (2,998 x 108 m/s)>

=3.8x 10" kg

For comparison, the Sun’s mass is 2 x 10°° kg.

A beam of radioactive particles is measured as it shoots through the laboratory. It is found that,
on the average, each particle “lives” for a time of 2.0 x 10~% s; after that time, the particle
changes to a new form. When at rest in the laboratory, the same particles “live” 0.75 x 10~% s
on the average. How fast are the particles in the beam moving?

Some sort of timing mechanism within the particle determines how long it “lives’. This internal clock,

which gives the proper lifetime, must obey the time-dilation relation. We have At;, = v Atg where the
observer with respect to whom the particle (clock) is moving sees a time interval of Any = 2.0 x 1078 s.
Hence
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20x 107 s=~(075x10"%s)  or  0.75x 1078 = (2.0 x 107%)4/1 — (v/c)*

Squaring both sides of the equation and solving for v gives v = 0.927¢c = 2.8 x 108 m/s.

Two twins are 25.0 years old when one of them sets out on a journey through space at nearly
constant speed. The twin in the spaceship measures time with an accurate watch. When he returns
to Earth, he claims to be 31.0 years old, while the twin left on Earth knows that she is 43.0 years
old. What was the speed of the spaceship?

The spaceship clock as seen by the space-twin reads the trip time to be Afg which is 6.0 years long. The
Earth bound twin sees her brother age 6.0 years but her clocks tell her that a time Aty = 18.0 years has
actually passed. Hence Ay = v Afg becomes

6=184/1— (v/c)?

from which (v/c)* =1—0.111 or v=0.943¢c = 2.83 x 10* m/s

Two cells that subdivide on Earth every 10.0 s start from the Earth on a journey to the Sun
(1.50 x 10" m away) in a spacecraft moving at 0.850c. How many cells will exist when the
spacecraft crashes into the Sun?

According to Earth observers, with respect to whom the cells are moving, the time taken for the trip to
the Sun is the distance traveled (x) over the speed (v),
x 1.50 x 10" m
Aty == = =588s
M7 0T (0.850)(2.998 x 108 m/s)
Because spacecraft clocks are moving with respect to the planet, they appear from Earth to run more slowly.
The time these clocks read is

Atg = Aty /v = A/ 1 — (v/c)?

and so Atg =310s
The cells divide according to the spacecraft clock, a clock that is at rest relative to them. They therefore

undergo 31 divisions in this time, since they divide each 10.0 s. Therefore the total number of cells present on
crashing is

(2)*" = 2.1 x 10° cells

A person in a spaceship holds a meterstick as the ship shoots past the Earth with a speed v
parallel to the Earth’s surface. What does the person in the ship notice as the stick is rotated from
parallel to perpendicular to the ship’s motion?

The stick behaves normally; it does not change its length, because it has no translational motion relative
to the observer in the spaceship. However, an observer on Earth would measure the stick to be
(1 m)y/1— (v/c)2 long when it is parallel to the ship’s motion, and 1 m long when it is perpendicular to
the ship’s motion.

A spacecraft moving at 0.95¢ travels from the Earth to the star Alpha Centauri, which is 4.5 light
years away. How long will the trip take according to (a) Earth clocks and (b) spacecraft clocks?
(¢) How far is it from Earth to the star according to spacecraft occupants? (d) What do they
compute their speed to be?
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A light year is the distance light travels in 1 year, namely
1 light year = (2.998 x 10° m/s)(3.16 x 107 s) = 9.47 x 10"° m
Hence the distance to the star (according to earthlings) is

d, = (4.5)(9.47 x 10 m) = 4.3 x 10" m

: 4.3 x10'
(a) Ate=i= 3 10 rrgl =1.5x%x10%s
v (0.95)(2.998 x 10° m/s)
(h) Because clocks on the moving spacecraft run slower,
Alerare = At\/1 = (v/c)* = (1.51 x 10° §)(0.312) = 4.7 x 10" s

(¢) For the spacecraft occupants, the Earth—star distance is moving past them with speed 0.95c. Therefore
that distance is shortened for them; they find it to be

dopare = (43 % 10" m)1/1 = (0.95)% = 1.3 x 10'* m
(d) For the spacecraft occupants, their relative speed is

Ao 1.34x 10" m ¢
- - —28x%10
YT Nty 471 x 107 s x 107 m/s

which is 0.95c. Both Earth and spacecraft observers measure the same relative speed.

41.15 As a rocket ship sweeps past the Earth with speed v, it sends out a pulse of light ahead of it. How
fast does the light pulse move according to people on the Earth?

Method 1
With speed c (by the second postulate of Special Relativity).

Method 2
Here vg¢p = v and vpyr = ¢. According to the velocity addition formula, the observed speed will be
(since u = ¢ in this case)

vpo' + Voo v+c  (v+c)e

Upo = Voo =
JrUPOC?;OO 1+ (v/c) cHw

Supplementary Problems

41.16 At what speed must a particle move for v to be 2.0? Ans. 2.6 x 10° m/s
41.17 A particle is traveling at a speed v such that v/c = 0.99. Find ~ for the particle. Ans. 7.1

41.18 Compute the rest energy of an electron, ie., the energy equivalent of its mass, 9.11 x 1073 kg.
Ans.  0.512 MeV = 820 pJ

41.19 Determine the speed of an electron having a kinetic energy of 1.0 x 10°> eV (or equivalently 1.6 x 1o 1.
Ans. 1.6 x 10® m/s

41.20 A proton (m = 1.67 x 10777 kg) is accelerated to a kinetic energy of 200 MeV. What is its speed at this
energy? Ans. 170 x 108 m/s
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41.21

41.22

41.23

41.24

41.25

41.26

Starting with the definition of linear momentum and the relation between mass and energy, prove that
E? = p?c? + m*c*. Use this relation to show that the translational KE of a particle is y/m?c* + p*c? — mc?.

A certain strain of bacteria doubles in number each 20 days. Two of these bacteria are placed on a spaceship
and sent away from the Earth for 1000 Earth-days. During this time, the speed of the ship is 0.9950c. How
many bacteria are aboard when the ship lands on the Earth? Ans. 64

A certain light source sends out 2 x 10" pulses each second. As a spaceship travels parallel to the Earth’s
surface with a speed of 0.90c, it uses this source to send pulses to the Earth. The pulses are sent perpendi-
cular to the path of the ship. How many pulses are recorded on Earth each second? Ans. 8.7 x 10"
pulses/s

The insignia painted on the side of a spaceship is a circle with a line across it at 45° to the vertical. As the ship
shoots past another ship in space, with a relative speed of 0.95c, the second ship observes the insignia. What
angle does the observed line make to the vertical? Ans. tan § =0.31 and 6 = 17°

As a spacecraft moving at 0.92c travels past an observer on Earth, the Earthbound observer and the
occupants of the craft each start identical alarm clocks that are set to ring after 6.0 h have passed. According
to the Earthling, what does the Earth clock read when the spacecraft clock rings? Ans. 15h

Find the speed and momentum of a proton (m = 1.67 x 10777 kg) that has been accelerated through a
potential difference of 2000 MV. (We call this a 2 GeV proton.) Give your answers to three significant
figures. Ans.  0.948c, 1.49 x 1078 kg-m/s



Chapter 42

Quantum Physics and Wave Mechanics

QUANTA OF RADIATION: All the various forms of electromagnetic radiation, including light,
have a dual nature. When traveling through space, they act like waves and give rise to interfer-
ence and diffraction effects. But when electromagnetic radiation interacts with atoms and mole-
cules, the beam acts like a stream of energy corpuscles called photons or light-quanta.

The energy (E) of each photon depends upon the frequency f (or wavelength /) of the radiation:

E:M:%

where & = 6.626 x 1073* J.s is a constant of nature called Planck’s constant.

PHOTOELECTRIC EFFECT: When electromagnetic radiation is incident on the surface of cer-
tain metals electrons may be ejected. A photon of energy hf penetrates the material and is ab-
sorbed by an electron. If enough energy is available, the electron will be raised to the surface and
ejected with some Kkinetic energy, %mwz. Depending on how deep in the material they are, eclec-
trons having a range of values of KE will be emitted. Let ¢ be the energy required for an
electron to break free of the surface, the so-called work function. For electrons up near the sur-
face to begin with, an amount of energy (hf —¢) will be available and this is the maximum
kinetic energy that can be imparted to any electron.
Accordingly, Einstein’s photoelectric equation is

%mvrznax = hf -9

The energy of the ejected electron may be found by determining what potential difference must be
applied to stop its motion; then %mvz = Ve. For the most energetic electron,

W~ = Ve

where V; is called the stopping potential.

For any surface, the radiation must be of short enough wavelength so that the photon energy /f is
large enough to eject the electron. At the threshold wavelength (or frequency), the photon’s energy just
equals the work function. For ordinary metals the threshold wavelength lies in the visible or ultraviolet
range. X-rays will eject photoelectrons readily; far-infrared photons will not.

THE MOMENTUM OF A PHOTON: Because E? = m?c* + p*>c?, when m =0, E = pc. Hence,
since E = Af

hf
<

> S

E=pc=nf and p=

The momentum of a photon is p = i/

COMPTON EFFECT: A photon can collide with a particle having mass, such as an electron.
When it does so, the scattered photon can have a new energy and momentum. If a photon of ini-
tial wavelength 4; collides with a free, stationary electron of mass m, and is deflected through an
angle 6, then its scattered wavelength is increased to A;, where

/IS:/"L,"F

h (1 —cos 0)

e

382
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The fractional change in wavelength is very small except for high-energy radiation such as X-rays or
~-rays.

DE BROGLIE WAVES: A particle of mass m moving with momentum p has associated with it
a de Broglie wavelength

h h
A=—=—
p  mv
A beam of particles can be diffracted and can undergo interference phenomena. These wavelike proper-
ties of particles can be computed by assuming the particles to behave like waves (de Broglie waves)
having the de Broglie wavelength.

RESONANCE OF DE BROGLIE WAVES: A particle that is confined to a finite region of
space is said to be a bound particle. Typical examples of bound-particle systems are a gas mole-
cule in a closed container and an electron in an atom. The de Broglie wave that represents a
bound particle will undergo resonance within the confinement region if the wavelength fits prop-
erly into the region. We call each possible resonance form a (stationary) state of the system. The
particle is most likely to be found at the positions of the antinodes of the resonating wave; it is
never found at the positions of the nodes.

QUANTIZED ENERGIES for bound particles arise because each resonance situation has a dis-
crete energy associated with it. Since the particle is likely to be found only in a resonance state,
its observed energies are discrete (quantized). Only in atomic (and smaller) particle systems are the
energy differences between resonance states large enough to be easily observable.

Solved Problems

42.1 Show that the photons in a 1240 nm infrared light beam have energies of 1.00 eV.

—34 8
E o gy = e _ (063 X107 J-5)2998 X 107 m/S) _y 6o o 19719 1 — 100 eV
=7 1240 x 10° m

42.2 Compute the energy of a photon of blue light of wavelength 450 nm.

g e (663% 107 7-5)(2.998 x 10° m/s)

=442 %107 J=276eV
7 450 x 10° m X ¢

42.3 To break a chemical bond in the molecules of human skin and thus cause sunburn, a photon
energy of about 3.50 ¢V is required. To what wavelength does this correspond?

e (663x 107 7-5)(2.998 x 10° m/s)
T E (3.50eV)(1.602 x 10" J/eV)

Ultravoilet radiation causes sunburn.

= 354 nm
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42.4 The work function of sodium metal is 2.3 eV. What is the longest-wavelength light that can cause
photoelectron emission from sodium?

At threshold, the photon energy just equals the energy required to tear the electron loose from the
metal, namely the work function ¢:

o

1.602 x 107" J> (6.63 x 1077-5)(2.998 x 10° m/s)
A

(2.3 eV)( 1.00 eV

4=54%x10"m

42.5 What potential difference must be applied to stop the fastest photoelectrons emitted by a nickel
surface under the action of ultraviolet light of wavelength 200 nm? The work function of nickel is
5.01 eV.

he  (6.63 x 107* J-5)(2.998 x 10°
g (663 ) Sbaka M/S) _995% 1071 J = 621 eV
A 2000 x 1071 m
Then, from the photoelectric equation, the energy of the fastest emitted electron is

6.21 eV —-5.01eV=1.20eV

Hence a negative retarding potential of 1.20 V is required. This is the stopping potential.

42.6 Will photoelectrons be emitted by a copper surface, of work function 4.4 ¢V, when illuminated by
visible light?
As in Problem 42.4,

he  (6.63 x 1073* J-5)(2.998 x 10° m/s)
Threshold 4 = — = =282
resho P 4.4(1.602 x 10°9) J i

Hence visible light (400 nm to 700 nm) cannot eject photoelectrons from copper.

427 A beam (1 =633 nm) from a typical laser designed for student use has an intensity of 3.0 mW.
How many photons pass a given point in the beam each second?

The energy that is carried past the point each second is 0.0030 J. Because the energy per photon is /ic/ 4,
which works out to be 3.14 x 10~'? J, the number of photons passing the point per second is

0.0030 J/s

15
3.14 x 107 J/photon = 9:5> 107 photon/s

Number/s =

42.8 In a process called pair production, a photon is transformed into an electron and a positron. A
positron has the same mass as the electron, but its charge is +e. To three significant figures, what
is the minimum energy a photon can have if this process is to occur? What is the corresponding
wavelength?

The photon must have the energy equivalent of the mass into which it transforms, which is
mc = (2)(9.11 x 107! kg)(2.998 x 10* m/s)* = 1.64 x 1073 J = 1.02 MeV

Then, because this energy must equal ic/4,
, he
A=
1.64 x 107137
This wavelength is in the very short X-ray region, the region of ~y rays.

=121x10"”m
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42.9

42.10

42.11

42.12

42.13

What wavelength must electromagnetic radiation have if a photon in the beam is to have the same
momentum as an electron moving with a speed of 2.00 x 10° m/s?

The requirement is that (1) eepon = (A/4) From this,

photon*
h 6.63 x 10734 J.-s

=t —3.64
mu (9.1 x 107 kg)(2.00 x 105 m/s) o

This wavelength is in the X-ray region.

Suppose that a 3.64-nm photon moving in the +x-direction collides head-on with a 2 x 10° m/s
electron moving in the —x-direction. If the collision is perfectly elastic, find the conditions after
collision.

From the law of conservation of momentum,

momentum before = momentum after
h
%fmvo =5 —my

But, from Problem 42.9, i/, = muj in this case. Hence, /A = mv. Also, for a perfectly elastic collision,

KE before = KE after

@—I—lmv% = hfc—o—lrm}z

Ao 2 A2
Using the facts that 1/1y = mv, and h/A = mv, we find

vo(c + %’UO) =v(c+ %v)

Therefore v=wv, and the electron moves in the +x-direction with its original speed. Because
h/2 = mv = my,, the photon also “rebounds,” and with its original wavelength.

A photon (A = 0.400 nm) strikes an electron at rest and rebounds at an angle of 150° to its
original direction. Find the speed and wavelength of the photon after the collision.

The speed of a photon is always the speed of light in vacuum, c. To obtain the wavelength after

collision, we use the equation for the Compton effect:

/

Jdy = A+ (1 = cos 6)
mc
6.63 x 107 J-s

(9.11 x 1073 kg)(2.998 x 10% m/s)
2y =400 x 107" m 4 (2.43 x 1072 m)(1 + 0.866) = 0.405 nm

2y =4.00x 107" m +

(I —cos 150°)

What is the de Broglie wavelength for a particle moving with speed 2.0 x 10°® m/s if the particle is
(a) an electron, (b) a proton, and (¢) a 0.20 kg ball?

We make use of the definition of the de Broglie wavelength:

h 663x107*J.s  331x10* m kg

A:%:m(Z.Ox 10% m/s) m

Substituting the required values for m, one finds that the wavelength is 3.6 x 10 m for the electron,
2.0 x 10713 m for the proton, and 1.7 x 107* m for the 0.20-kg ball.

An electron falls from rest through a potential difference of 100 V. What is its de Broglie
wavelength?
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42.15

42.16
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Its speed will still be far below ¢, so relativistic effects can be ignored. The KE gamed L, equals the
electrical PE lost, Vg. Therefore,

2Vq (100 V)(1.60 x 1077 C) ]
_ 2 —5.927 % 10
°T \/ 9.11 x 10T kg X 107 m/s

5 10-3
and A= 6 i 6x10 " J-s =0.123 nm
mv (9.11 x 10731 kg)(5.927 x 10° m/s)

What potential difference is required in an electron microscope to give electrons a wavelength of
0.500 A?

2 \mi 2mi?

where use has been made of the de Broglie relation, 4 = i/mv. Substitution of the known values gives the KE
as 9.66 x 10717 J. But KE = Vg, and so
_KE_9.66x10""J

— = =600V
q 1.60 x 1071 C

2 2
KE of electron = %mvz = 1,,,(&) _

What are the KE and wavelength of a thermal neutron?

By definition, a thermal neutron is a free neutron in a neutron gas at about 20°C (293 K). From
Chapter 17, the thermal energy of a gas molecule is 3k7/2, where k is Boltzmann’s constant
(1.38 x 107 J/K). Then

=3kT =6.07x 107" J

This is a nonrelativistic situation for which we can write
| 22 2
KE = Emv2 = n;_r;} = §_m or  p* = (2m)(KE)

h h 6.63x 107 J.s
e — =0.147 nm
P /2m)(KE) /(2)(1.67 x 10-7 kg)(6.07 x 1021 J)

Then A=

Find the pressure exerted on a surface by the photon beam of Problem 42.7 if the cross-sectional
area of the beam is 3.0 mm?. Assume perfect reflection at normal incidence.
Each photon has a momentum
h 6.63x1073* 1.5 -
=-=——-——-——=1.05x10""" kg-
P T 33 %100 m . gm/s

When a photon reflects, it changes momentum from +p to —p, a total change of 2p. Since (from Problem
42.7) 9.5 x 10" photons strike the surface each second, we have

Momentum change/s = (9.5 x 10'°/5)(2)(1.05 x 10727 kg-m/s) = 2.0 x 10~"" kg-m/s’
From the impulse equation (Chapter 8),
Impulse = Ft = change in momentum
we have F = momentum change/s = 1.99 x 107! kg~m/s2

F 199 x 107" kg-m/s’
Then Pressure = — = x g-m/s

_ 6 2
A7 30xi06me 08X 10T N/m
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42.17 A particle of mass m is confined to a narrow tube of length L. Find (a) the wavelengths of the de
Broglie waves which will resonate in the tube, (b) the corresponding particle momenta, and (¢) the
corresponding energies. (d) Evaluate the energies for an electron in a tube with L = 0.50 nm.

(a) The de Broglie waves will resonate with a node at each end of the tube because the ends are impervious.
A few of the possible resonance forms are shown in Fig. 42-1. They indicate that, for resonance,
L= %j'l? 2(%)\.2), 3(%&3), ooy n(%)\,n), ... or

2L
Ay =— n=1,273,...
n

(h) Because the de Broglie wavelengths are 4, = h/p,, the resonance momenta are

nh
pn_i }’l—172737...

(¢) As shown in Problem 42.15, p* = (2m)(KE), and so
i

KE) =17
(KE), 8L%m

n=1,2,3,...

Notice that the particle can assume only certain discrete energies. The energies are quantized.
(d) Withm=9.1x10"% kg and L = 5.0 x 107! m, substitution gives

(KE), =24 x 107" n* J = 1.52* eV

L

[ « Particle |

< < > > L=3GA

T o< <> L=4(G4)
Fig. 42-1

42.18 A particle of mass m is confined to an orbit with radius R. For resonance of its de Broglie wave on
this orbit, what energies can the particle have? Evaluate for an electron with R = 0.50 nm.

To resonate on a circular orbit, a wave must circle back on itself in such a way that crest falls upon crest
and trough falls upon trough. One resonance possibility (for an orbit circumference that is four wavelengths
long) is shown in Fig. 42-2. In general, resonance occurs when the circumference is » wavelengths long,
where n =1,2,3,... . For such a de Brogliec wave we have

R h nh
ni, = 27R and Pn = /Tn = ﬁ
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42.20

42.21

42.22

42.23

42.24
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2

Fig. 42-2

As in Problem 42.17,
2 2,2
P n°h
KE), =—"F=-—5—5—
(KE), 2m 8w’ R*m
The energies are obviously quantized. Placing in the values requested gives

(KE), =24 x 1072 n* J = 0.15n% eV

Supplementary Problems

Compute the energy of a photon of blue light (1 = 450 nm), in joules and in eV. Ans. 441 x 10777
=276 eV

What is the wavelength of light in which the photons have an energy of 600 eV? Ans.  2.07 nm

A certain sodium lamp radiates 20 W of yellow light (4 = 589 nm). How many photons of the yellow light
are emitted from the lamp each second? Ans. 5.9 x 107

What is the work function of sodium metal if the photoelectric threshold wavelength is 680 nm?
Ans. 1.82 eV

Determine the maximum KE of photoelectrons ejected from a potassium surface by ultraviolet radiation of
wavelength 200 nm. What retarding potential difference is required to stop the emission of electrons? The
photoelectric threshold wavelength for potassium is 440 nm. Ans. 3.38eV,3.38V

With what speed will the fastest photoelectrons be emitted from a surface whose threshold wavelength is
600 nm, when the surface is illuminated with light of wavelength 4 x 10~ m? Ans. 6 x 10° m/s
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42.25

42.26

42.27

42.28

42.29

42.30

42.31

42.32

Electrons with a maximum KE of 3.00 eV are ejected from a metal surface by ultraviolet radiation of
wavelength 150 nm. Determine the work function of the metal, the threshold wavelength of the metal,
and the retarding potential difference required to stop the emission of electrons. Ans. 5.27 eV,
235 nm, 3.00 V

What are the speed and momentum of a 500-nm photon? Ans. 2.998 x 10% m/s, 133 x 1077 kg-m/s

An X-ray beam with a wavelength of exactly 5.00 x 107" m strikes a proton that is at rest (m =
1.67 x 107 kg). If the X-rays are scattered through an angle of 110°, what is the wavelength of the
scattered X-rays? Ans. 518 x 107 m

An electron-positron pair, each with a kinetic energy of 220 keV, is produced by a photon. Find the energy
and wavelength of the photon. Ans.  1.46 MeV, 8.49 x 107" m

Show that the de Broglie wavelength of an electron accelerated from rest through a potential difference of 7
volts is 1.226/\/7 nm.

Compute the de Broglie wavelength of an electron that has been accelerated through a potential difference of
9.0 kV. Ignore relativistic effects. Ans. 13x10"'m

What is the de Broglie wavelength of an electron that has been accelerated through a potential difference of
1.0 MV? (You must use the relativistic mass and energy expressions at this high energy.)
Ans. 87x107" m

It is proposed to send a beam of electrons through a diffraction grating. The electrons have a speed of
400 m/s. How large must the distance between slits be if a strong beam of electrons is to emerge at an angle
of 25° to the straight-through beam? Ans. n(4.3 x 107° m), where n =1,2,3,....



Chapter 43

The Hydrogen Atom

THE HYDROGEN ATOM has a diameter of about 0.1 nm; it consists of a proton as the nu-
cleus (with a radius of about 10~!° m) and a single electron.

ELECTRON ORBITS: The first effective model of the atom was introduced by Niels Bohr in
1913. Although it has been surpassed by quantum mechanics, many of its simple results are still
valid. The earliest version of the Bohr model pictured electrons in circular orbits around the nu-
cleus. The hydrogen atom was then one electron circulating around a single proton. For the elec-
tron’s de Broglie wave to resonate or ‘“fit” (see Fig. 42-2) in an orbit of radius r, the following
must be true (see Problem 42.18):

nh

27

where 7 is an integer. The quantity mw,r, is the angular momentum of the electron in its nth orbit. The
speed of the electron is v, its mass is m, and % is Planck’s constant, 6.63 x 10734 J.s.

The centripetal force that holds the electron in orbit is supplied by Coulomb attraction between the
nucleus and the electron. Hence, F = ke /r* = ma = muv} /r, and

muo,r, =

mv’ k e

2

Foo o
Simultaneous solution of these equations gives the radii of stable orbits as r, = (0.053 nm)nz. The energy
of the atom when it is in the nth state (i.e., with its electron in the nth orbit configuration) is

13.6
En =3 eV
n

As in Problems 42.17 and 42.18, the energy is quantized because a stable configuration corresponds to a
resonance form of the bound system. For a nucleus with charge Ze orbited by a single electron, the
corresponding relations are

2 2
13.67
r, = (0.053 nm) (%) and E,=——5—¢V
n

where Z is called the atomic number of the nucleus.

ENERGY-LEVEL DIAGRAMS summarize the allowed energies of a system. On a vertical energy
scale, the allowed energies are shown by horizontal lines. The energy-level diagram for hydrogen
is shown in Fig. 43-1. Each horizontal line represents the energy of a resonance state of the
atom. The zero of energy is taken to be the ionized atom, i.c., the state in which the atom has
infinite orbital radius. As the electron falls closer to the nucleus, its potential energy decreases
from the zero level, and thus the energy of the atom is negative as indicated. The lowest possible
state, n = 1, corresponds to the electron in its smallest possible orbit; it is called the ground state.

EMISSION OF LIGHT: When an isolated atom falls from one energy level to a lower one, a
photon is emitted. This photon carries away the energy lost by the atom in its transition to the
lower energy state. The wavelength and frequency of the photon are given by

/
hf = 170 = energy lost by the system
390

Copyright 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



CHAP. 43] THE HYDROGEN ATOM 391

E (eV)
Tonized atom
O b —— n=0wE=0
e ——— n=4,E=-0.85¢eV
,,,,,,,,,,,,,, n=3,E=-151¢eV
_2 —
e n=2,E=-34¢V
_4 -
_6 —
78 —
12
o Ground state
,,,,,,,,,,,,,, n=1,E=-13.6eV
-14 —

Fig. 43-1

The emitted radiation has a precise wavelength and gives rise to a single spectral line in the emission
spectrum of the atom. It is convenient to remember that a 1240 nm photon has an energy of 1 eV, and
that photon energy varies inversely with wavelength.

THE SPECTRAL LINES emitted by excited isolated hydrogen atoms occur in series. Typical is
the series that appears at visible wavelengths, the Balmer series shown in Fig. 43-2. Other series
exist; one, in the ultraviolet, is called the Lyman series; there are others in the infrared, the one
closest to the visible portion of the spectrum being the Paschen series. Their wavelengths are
given by simple formulas:

1 1 1
Lyman: ; = R(12 — nz) n = 2, 3,
Balmer: l:R i—i n=34
A 22 2 T
1 1 1
Paschen: Z:R(?_ﬁ) n=4,5...

where R = 1.0974 x 10’ m~' is called the Rydberg constant.

ORIGIN OF SPECTRAL SERIES: The Balmer series of lines in Fig. 43-2 arises when an elec-
tron in the atom falls from higher states to the n =2 state. The transition from n=3 to n =2
gives rise to a photon energy AE;, =1.89 eV, which is equivalent to a wavelength of 656 nm,
the first line of the series. The second line originates in the transition from n =4 to n=2. The
series limit line represents the transition from n = oo to n = 2. Similarly, transitions ending in the
n =1 state give rise to the Lyman series; transitions that end in the n =3 state give lines in the
Paschen series.
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364.6 - Series limit
Ultraviolet
410 Violet
434 Blue
486 Blue-green
656 Red
A (nm)
Fig. 43-2

ABSORPTION OF LIGHT: An atom in its ground state can absorb a photon in a process
called resonance absorption only if that photon will raise the atom to one of its allowed energy
levels.

Solved Problems

43.1 What wavelength does a hydrogen atom emit as its excited electron falls from the n = 5 state to
the n = 2 state? Give your answer to three significant figures.

Since E, = —13.6/n* ¢V, we have
Es =—-0.54 eV and E, =-340¢eV
The energy difference between these states is 3.40 — 0.54 = 2.86 eV. Because 1240 nm corresponds to

1.00 eV in an inverse proportion, we have, for the wavelength of the emitted photon,
;L (1.00 eV

43.2 When a hydrogen atom is bombarded, the atom may be raised into a higher energy state. As the
excited electron falls back to the lower energy levels, light is emitted. What are the three longest-
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43.3

434

43.5

wavelength spectral lines emitted by the hydrogen atom as it returns to the n =1 state from
higher energy states? Give your answers to three significant figures.

We are interested in the following transitions (see Fig. 43-1):

n=2—n=1: AE,, =-34—(-13.6)=102¢V
n=3—n=1: AEy =-15-(-13.6)=12.1¢eV
n=4—n=1:  AE, =—085—(—13.6) = 128 eV

To find the corresponding wavelengths we can proceed as in Problem 43.1, or we can use AE = Af = hc/J.
For example, for the n = 2 to n = 1 transition,
), ) =34 1. ) 8
PR :(663><10 J-5)(2.998 x 10 m/s):1.22nm
AE; (10.2 eV)(1.60 x 10~ J/eV)
The other lines are found in the same way to be 102 nm and 96.9 nm. These are the first three lines of the
Lyman series.

The series limit wavelength of the Balmer series is emitted as the electron in the hydrogen atom
falls from the n = oo state to the n =2 state. What is the wavelength of this line (to three
significant figures)?

From Fig. 43-1, AE = 3.40 — 0 = 3.40 eV. We find the corresponding wavelength in the usual way from
AE = hc/A. The result is 365 nm.

What is the greatest wavelength of radiation that will ionize unexcited hydrogen atoms?

The incident photons must have enough energy to raise the atom from the n = 1 level to the n = oo level
when absorbed by the atom. Because E,, — E; = 13.6 eV, we can use E,, — E; = /ic/A to find the wave-
length as 91.2 nm. Wavelengths shorter than this would not only remove the electron from the atom, but
would add KE to the removed electron.

The energy levels for singly ionized helium atoms (atoms from which one of the two electrons has
been removed) are given by E, = (—54.4/112) eV. Construct the energy-level diagram for this
system.

See Fig. 43-3.
E (eV)
Tonized atom
] s n=wE=0
I —— n=4,E=-34¢V
77777777777777 n=3,E=-6.04¢V
_8 —
- n=2,E=-13.6eV
-24 |-
-32
—48 [~
L G d stat
roundstate n=1,E=—544eV
=56 [~
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What are the two longest wavelengths of the Balmer series for singly ionized helium atoms?

The pertinent energy-level diagram is shown in Fig. 43-3. Recall that the Balmer series corresponds to
transitions from higher states to the n = 2 state. From the diagram, the two smallest-energy transitions to the
n = 2 states are

n=3-n=2 AEs;, =13.6 — 6.04 =7.6 eV
n=4—-n=2 AE;, =136 -34=102¢V

Using the fact that 1 eV corresponds to 1240 nm, we find the corresponding wavelengths to be 163 nm and
122 nm; both wavelengths are in the far ultraviolet or long X-ray region.

Unexcited hydrogen atoms are bombarded with electrons that have been accelerated through
12.0 V. What wavelengths will the atoms emit?

When an atom in the ground state is given 12.0 eV of energy, the most these electrons can supply, the
atom can be excited no higher than 12.0 eV above the ground state. Only one state exists in this energy
region, the n = 2 state. Hence the only transition possible is

n=2-n=1: AE,; =13.6 -34=10.2¢V
The only emitted wavelength will be

1.00 eV
10.2 eV

A= (1240 nm)( ) =122 nm

which is the longest-wavelength line in the Lyman series.

Unexcited hydrogen gas is an electrical insulator because it contains no free electrons. What
maximum-wavelength photon beam incident on the gas can cause the gas to conduct electricity?

The photons in the beam must ionize the atom so as to produce free electrons. (This is called the atomic
photoelectric effect.) To do this, the photon energy must be at least 13.6 eV, and so the maximum wavelength
is

1.00 eV

) =91.2 nm

which is the series limit for the Lyman series.

Supplementary Problems

One spectral line in the hydrogen spectrum has a wavelength of 821 nm. What is the energy difference
between the two states that gives rise to this line? Ans. 1.51 eV

What are the energies of the two longest-wavelength lines in the Paschen series for hydrogen? What are the
corresponding wavelengths? Give your answers to two significant figures. Ans. 0.66 eV and 0.97 eV,
1.9x10°° mand 1.3 x 107 m

What is the wavelength of the series limit line for the hydrogen Paschen series? Ans. 821 nm

The lithium atom has a nuclear charge of +3e. Find the energy required to remove the third electron from a
lithium atom that has already lost two of its electrons. Assume the third electron to be initially in the ground
state. Ans. 122 eV
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Electrons in an electron beam are accelerated through a potential difference V" and are incident on hydrogen
atoms in their ground state. What is the maximum value for V' if the collisions are to be perfectly
elastic? Ans. <102V

What are the three longest wavelengths that singly ionized helium atoms (in their ground state) will absorb
strongly? (See Fig. 43-3.) Ans.  30.4 nm, 25.6 nm, 24.3 nm

How much energy is required to remove the second electron from a singly ionized helium atom? What is the
maximum wavelength of an incident photon that could tear this electron from the ion? Ans. 544 eV,

22.8 nm

In the spectrum of singly ionized helium, what is the series limit for its Balmer series? Ans. 91 nm



Chapter 44

Multielectron Atoms

A NEUTRAL ATOM whose nucleus carries a positive charge of Ze has Z electrons. When the
electrons have the least energy possible, the atom is in its ground state. The state of an atom is
specified by the quantum numbers for its individual electrons.

THE QUANTUM NUMBERS that are used to specify the parameters of an atomic electron are
as follows:

e The principal quantum number n specifies the orbit, or shell, in which the electron is to be found. In the
hydrogen atom, it specifies the electron’s energy via E, = —13.6/n2 eVv.

o The orbital quantum number { specifies the angular momentum L of the electron in its orbit:

L= (;’_T) Wi

where £ is Planck’s constant, and £ =0,1,2,...,n— 1.

o The magnetic quantum number m, describes the orientation of the orbital angular momentum vector
relative to the z direction, the direction of an impressed magnetic field:

h
Lz = (E) (mé)
where m, = 0, £1, £2, ..., £/.

o The spin quantum number mg has allowed values of i%.

THE PAULI EXCLUSION PRINCIPLE maintains that no two electrons in the same atom can
have the same set of quantum numbers. In other words, no two electrons can be in the same
state.

Solved Problems

44.1 Estimate the energy required to tear an n =1 (i.e., inner-shell) electron from a gold atom
(Zz="19).

Because an electron in the innermost shell of the atom is not much influenced by distant electrons in
outer shells, we can consider it to be the only electron present. Then its energy is given approximately by an
appropriately modified version of the energy formula of Chapter 43 that takes into consideration the charge
(Ze) of the nucleus. With n = 1, that formula, E, = —13.62%/n?, gives

E; = —13.6(79)> = —84900 ¢V = —84.9 keV

To tear the electron loose (i.e., remove it to the E,, = 0 level), we must give it an energy of about 84.9 keV.

44.2 What are the quantum numbers for the electrons in the lithium atom (Z = 3) when the atom is in
its ground state?
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The Pauli Exclusion Principle tells us that the lithium atom’s three electrons can take on the following

quantum numbers:

Electron 1: n=1
Electron 2: n=
Electron 3: n=

my=0, m;=
m, =0, m;=
my=0, m,=

1
2
1

4

Notice that, when n =1, ¢ must be zero and m, must be zero (why?). Then there are only two n =1
possibilities, and the third electron has to go into the n = 2 level. Since it is in the second Bohr orbit, it is
more easily removed from the atom than an n = 1 electron. That is why lithium ionizes easily to Li".

Why is sodium (Z = 11) the next univalent atom after lithium?

Sodium has a single electron in the n = 3 shell. To see why this is necessarily so, notice that the Pauli
Exclusion Principle allows only two electrons in the n = 1 shell. The next eight electrons can fit in the n = 2

shell, as follows:

n=2, £=0,
n=2 (=1,
n=2, (=1,
n=2, (=1,

my =0, mS::I:%
my=0, m;==+]
my=1, my==+}
my=—1, mg==1

The eleventh electron must go into the n = 3 shell, from which it is easily removed to yield Na™.

(a) Estimate the wavelength of the photon emitted as an electron falls from the n = 2 shell to the
n =1 shell in the gold atom (Z = 79). (b) About how much energy must bombarding electrons
have to excite gold to emit this emission line?

(a) Asnoted in Problem 44.1, to a first approximation the energies of the innermost electrons of a large-Z

atom are given by E,

—13.622/}12 eV. Thus, we have

AE,; = 13.6(79)*(: - 1) = 63700 eV

This corresponds to a photon with

A= (1240 nm)(

1eV

63700 eV

> =0.0195 nm

It is clear from this result that inner-shell transitions in high-Z atoms give rise to the emission of X-rays.

(b) Before an n = 2 electron can fall to the n = 1 shell, an n = 1 electron must be thrown to an empty state
of large n, which we approximate as n = oo (with E_, = 0). This requires an energy

AE,, =0—
1, nz

—13.62>  13.6(79)°
T

=84.9 keV

The bombarding electrons must thus have an energy of about 84.9 keV.

44.5 Suppose electrons had no spin, so that the spin quantum number did not exist. If the Exclusion
Principle still applied to the remaining quantum numbers, what would be the first three univalent

atoms?

The electrons would take on the following quantum numbers:
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Electron 1: n=1, ¢=0, m;=0  (univalent)

Electron2: n=2, ¢=0, m;=0 (univalent)

Electron 3: n=2, (=1, m=0

Electron 4: n=2, (=1, m=+1

Electron 5: n=2, (=1, m,=—1

Electron 6: n=3, ¢=0, m;=0  (univalent)
Each electron marked “univalent” is the first electron in a new shell. Since an electron is easily removed if it
is the outermost electron in the atom, atoms with that number of electrons are univalent. They are the atoms
with Z = 1 (hydrogen), Z = 2 (helium), and Z = 6 (carbon). Can you show that Z = 15 (phosphorus) would
also be univalent?

Electrons in an atom that have the same value for £ but different values for m, and m;, are said to
be in the same subshell. How many electrons exist in the £ = 3 subshell?
Because m1, is restricted to the values 0, +1, +2, 43, and m, = i% only, the possibilities for ¢/ = 3 are
(m€7 m,y) = (07 i%% (1/ i%)v (_17 i%)a (27 j:%)v (_27 i%)v (37 i%)7 (_37 i%)

which gives 14 possibilities. Therefore, 14 electrons can exist in this subshell.

An electron beam in an X-ray tube is accelerated through 40 kV and is incident on a tungsten
target. What is the shortest wavelength emitted by the tube?

When an electron in the beam is stopped by the target, the photons emitted have an upper limit for their
energy, namely, the energy of the incident electron. In this case, that energy is 40 keV. The corresponding
photon has a wavelength given by
1.0 eV

) =0.031 nm

Supplementary Problems
If there were no m, quantum number, what would be the first four univalent atoms? Ans. H, Li, N, Al

Helium has a closed (completely filled) outer shell and is nonreactive because the atom does not easily lose an
electron. Show why neon (Z = 10) is the next nonreactive element.

It is desired to eject an electron from the n = 1 shell of a uranium atom (Z = 92) by means of the atomic
photoelectric effect. Approximately what is the longest-wavelength photon capable of doing this?
Ans. 0.0108 nm

Show that the maximum number of electrons that can exist in the ¢th subshell is 2(2¢ + 1).



Chapter 45

Nuclei and Radioactivity

THE NUCLEUS of an atom is a positively charged entity at the atom’s center. Its radius is
roughly 107" m, which is about 107> as large as the radius of the atom. Hydrogen is the lightest
and simplest of all the atoms. Its nucleus is a single proton. All other nuclei contain both protons
and neutrons. Protons and neutrons are collectively called nucleons. Although the positively
charged protons repel each other, the much stronger, short-range nuclear force (which is a mani-
festation of the more fundamental strong force) holds the nucleus together. The nuclear attractive
force between nucleons decreases rapidly with particle separation and is essentially zero for nu-
cleons more than 5 x 10~'5 m apart.

NUCLEAR CHARGE AND ATOMIC NUMBER: Each proton within the nucleus carries a
charge +e, whereas the neutrons carry no electromagnetic charge. If there are Z protons in a nu-
cleus, then the charge on the nucleus is +Ze. We call Z the atomic number of that nucleus.

Because normal atoms are neutral electrically, the atom has Z electrons outside the nucleus. These Z
electrons determine the chemical behavior of the atom. As a result, all atoms of the same chemical
element have the same value of Z. For example, all hydrogen atoms have Z = 1, while all carbon atoms
have Z = 6.

ATOMIC MASS UNIT (u): A convenient mass unit used in nuclear calculations is the atomic
mass unit (0). By definition, 1u is exactly 1/12 of the mass of the common form of carbon atom
found on the Earth. It turns out that

lu=1.6605x 107" kg = 931.494 MeV /c*

Table 45-1 lists the masses of some common particles and nuclei, as well as their charges.

Table 45-1

Particle Symbol Mass, u Charge
Proton » 1H 1.007276 +e
Neutron n, on 1.008 665 0
Electron e, 87, e 0.000 548 6 —e
Positron et, 6%, e 0.000 548 6 +e
Deuteron d,TH 2.01355 +e
Alpha particle o, 3He 4.0015 +2e

THE MASS NUMBER (4) of an atom is equal to the number of nucleons (neutrons plus pro-
tons) in the nucleus of the atom. Because each nucleon has a mass close to 1 u, the mass number
A is nearly equal to the nuclear mass in atomic mass units. In addition, because the atomic elec-
trons have such small mass, A4 is nearly equal to the mass of the atom in atomic mass units.
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ISOTOPES: The number of neutrons in the nucleus has very little effect on the chemical beha-
vior of all but the lightest atoms. In nature, atoms of the same element (same Z) often exist that
have unlike numbers of neutrons in their nuclei. Such atoms are called isotopes of each other.
For example, ordinary oxygen consists of three isotopes that have mass numbers 16, 17, and 18.
Each of the isotopes has Z =8, or eight protons in the nucleus. Hence these isotopes have the
following numbers of neutrons in their nuclei: 16 —8 =28, 17—-8 =9, and 18 —8 = 10. It is cus-
tomary to represent the isotopes in the following way: '$O, 70, 80, or simply as '°O, 7O, and
180, where it is understood that oxygen always has Z = 8.

In keeping with this notation, we designate the nucleus having mass number 4 and atomic number Z
by the symbolism

%(CHEMICAL SYMBOL)

BINDING ENERGIES: The mass of an atom is not equal to the sum of the masses of its com-
ponent protons, neutrons, and electrons. Imagine a reaction in which free electrons, protons, and
neutrons combine to form an atom; in such a reaction, you would find that the mass of the atom
is slightly less than the combined masses of the component parts, and that a tremendous amount
of energy is released when the reaction occurs. The loss in mass is exactly equal to the mass
equivalent of the released energy, according to Einstein’s equation AEy = (Am)c?. Conversely, this
same amount of energy, AE, would have to be given to the atom to separate it completely into
its component particles. We call AE, the binding energy of the atom. A mass loss of Am=1u is
equivalent to

(1.66 x 10727 kg)(2.99 x 10° m/s)* = 1.49 x 107" J = 931 MeV

of binding energy.

The percentage “‘loss’ of mass is different for each isotope of any element. The atomic masses of
some of the lighter isotopes are given in Table 45-2. These masses are for neutral atoms and include the
orbital electrons.

Table 45-2
Neutral atom Atomic mass, u Neutral atom Atomic mass, u

‘H 1.007 83 IBe 7.01693
H 2.01410 2Be 9.01219
*H 3.01604 2c 12.000 00
3He 4.002 60 YN 14.003 07
Li 6.01513 0 15.99491
L 7.016 00

RADIOACTIVITY: Nuclei found in nature with Z greater than that of lead, 82, are unstable or
radioactive. Many artificially produced elements with smaller Z are also radioactive. A radioactive
nucleus spontaneously ejects one or more particles in the process of transforming into a different
nucleus.

The stability of a radioactive nucleus against spontaneous decay is measured by its half-life t,,. The
half-life is defined as the time in which half of any large sample of identical nuclei will undergo decom-
position. The half-life is a fixed number for each isotope.
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Radioactive decay is a random process. No matter when one begins to observe a material, only half
the material will remain unchanged after a time 7, ,; after a time #,/, only J x § = of the material will
remain unchanged. After » half-lives have passed, only (%)” of the material will remain unchanged.

A simple relation exists between the number N of atoms of radioactive material present and the
number AN that will decay in a short time Ar. It is

AN = AN At
where L, the decay constant, is related to the half-life 7, , through
My =0.693

The quantity AN/A¢, which is the rate of disintegrations, is called the activity of the sample. It is equal
to AN, and therefore it steadily decreases with time. The SI unit for activity is the becquerel (Bq), where
1 Bq = 1 decay/s.

NUCLEAR EQUATIONS: In a balanced equation the sum of the subscripts (atomic numbers)
must be the same on the two sides of the equation. The sum of the superscripts (mass numbers)
must also be the same on the two sides of the equation. Thus the equation for the primary radio-
activity of radium is

226

88 Ra — 222

86Rn + gHe

Many nuclear processes may be indicated by a condensed notation, in which a light bombarding
particle and a light product particle are represented by symbols in parentheses between the symbols for
the initial target nucleus and the final product nucleus. The symbols n, p, d, a, ¢~, and ~ are used to
represent neutron, proton, deuteron (%H), alpha, particle, electron, and gamma rays (photons), respec-
tively. Here are three examples of corresponding long and condensed notations:

UN+IH — YC+3He "“N(p,a)'cC
HAl+gn — Mg+ {H YAl(n, p)*’Mg
3Mn+IH— 3Fe+2in  Mn(d, 2n)”Fe

The slow neutron is a very efficient agent in causing transmutations, since it has no positive charge
and hence can approach the nucleus without being repelled. By contrast, a positively charged particle
such as a proton must have a high energy to cause a transformation. Because of their small masses, even
very high-energy electrons are relatively inefficient in causing nuclear transmutations.

Solved Problems

45.1 The radius of a carbon nucleus is about 3 x 107> m and its mass is 12 u. Find the average density
of the nuclear material. How many more times dense than water is this?

_m_m (12 u)(1.66 x 107 kg/u)
V. 4md/3 47(3 x 10715 m)?*/3

o 1.8 x 10" 1
=22 " —2x1

P 1000~ 2710

=18 x 10" kg/m*

p

45.2 In a mass spectrograph, the masses of ions are determined from their deflections in a magnetic
field. Suppose that singly charged ions of chlorine are shot perpendicularly into a magnetic field
B =0.15T with a speed of 5.0 x 10* m/s. (The speed could be measured by use of a velocity
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selector.) Chlorine has two major isotopes, of masses 34.97 u and 36.97 u. What would be the
radii of the circular paths described by the two isotopes in the magnetic field? (See Fig. 45-1.)

Negative X X X
ion beam

Fig. 45-1

The masses of the two isotopes are

X

B into page
X

X

my = (34.97 u)(1.66 x 107" kg/u) = 5.81 x 107 kg
my = (36.97 u)(1.66 x 10~ kg/u) = 6.14 x 10 ** kg

Because the magnetic force guB must provide the centripetal force mv’ /r, we have

mv m(5.0 x 10* m/s)

r= = m(2.98 x 10** m/kg)

“¢B (1.6x10°7 C)(0.105 T)

Substituting the values for m found above gives the radii as 0.17 m and 0.18 m.

How many protons, neutrons, and electrons are there in (a) *He, (b) '°C, and (¢) *°°Pb?

(@) The atomic number of He is 2; therefore the nucleus must contain 2 protons. Since the mass number of
this isotope is 3, the sum of the protons and neutrons in the nucleus must equal 3; therefore there is 1
neutron. The number of electrons in the atom is the same as the atomic number, 2.

(b) The atomic number of carbon is 6; hence the nucleus must contain 6 protons. The number of neutrons
in the nucleus is equal to 12 — 6 = 6. The number of electrons is the same as the atomic number, 6.

(¢) The atomic number of lead is 82; hence there are 82 protons in the nucleus and 82 electrons in the atom.

The number of neutrons is 206 — 82 = 124.

What is the binding energy of 'C?

One atom of '>C consists of 6 protons, 6 electrons, and 6 neutrons. The mass of the uncombined
protons and electrons is the same as that of six 'H atoms (if we ignore the very small binding energy of
each proton-electron pair). The component particles may thus be considered as six 'H atoms and six

neutrons. A mass balance may be computed as follows.
Mass of six 'H atoms = 6 x 1.0078 u
Mass of six neutrons = 6 x 1.008 7 u
Total mass of component particles
Mass of '2C atom

Loss in mass on forming '>C
Binding energy = (931 x 0.099 0) MeV

= 6.0468 u
6.0522 u
12.0990 u
12.0000 u
= 0.0990 u
=92 MeV
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45.5 Cobalt-60 (°°Co) is often used as a radiation source in medicine. It has a half-life of 5.25 years.

45.6

How long after a new sample is delivered will its activity have decreased (a) to about one-eighth

its original value? () to about one-third its original value? Give your answers to two significant
figures.

The activity is proportional to the number of undecayed atoms (AN/Az = AN).
(a) In each half-life, half the remaining sample decays. Because 1 x 1 x 1 =1 three half-lives, or 16 years,
are required for the sample to decay to one-eighth its original strength.

(b) Using the fact that the material present decreased by one-half during each 5.25 years, we can plot the

graph shown in Fig. 45-2. From it, we see that the sample decays to 0.33 its original value after a time of
about 8.3 years.

Fraction remaining (N/N,)

0.5

0.333

!
25 t (years)

Solve Problem 45.5(b) by using the exponential function.
The curve in Fig. 45-2 is an exponential decay curve and it is expressed by the equation

N
e e—M
Ny

where A is the decay constant, and N/N, is the fraction of the original N, particles that remain undecayed
after a time ¢. Inasmuch as At;/, = 0.693, A = 0.693/¢,/, = 0.132/year and N/N, = 0.333. Thus,

0.333 = e—O.l32t/year
Take the natural logarithm of each side to find

In (0.333) = —0.132¢/year

from which ¢ = 8.3 years.
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For the situation described in Problem 45.5, what is N/N, after 20 years?

As in the previous problem,

—\t

oM, (0132)20)

N
N o264
No

from which N/Ny = 0.071.

In this and the previous problem, we used 7 in years because A was expressed in (years)”'. More often, A
would be expressed in s~ and ¢ would be in seconds. Be careful that the same time units are used for 7 and A.

Potassium found in nature contains two isotopes. One isotope constitutes 93.4 percent of the
whole and has an atomic mass of 38.975 u; the other 6.6 percent has a mass of 40.974 u. Compute
the atomic mass of potassium as found in nature.

The atomic mass of the material found in nature is obtained by combining the individual atomic masses
in proportion to their abundances,
Atomic mass = (0.934)(38.975 u) + (0.066)(40.974 u) = 39.1 u

The half-life of radium is 1.62 x 10° years. How many radium atoms decay in 1.00 s in a 1.00 g
sample of radium? The atomic weight of radium is 226 kg/kmol.
A 1.00 g sample is (0.001 00/226) kmol and so it contains

~£0.00100
226

¢ atoms
kmol

kmol) (6.02 x 10? ) =2.66 x 10*! atoms

The decay constant is
_0.693 0.693

A= = =136x 10" 57!
(1620 y)(3.156 x 107 5/y) * °
Then % = AN = (1.36 x 107" s71)(2.66 x 10*") = 3.61 x 10" 57!

is the number of disintegrations per second in 1.00 g of radium.
The above result leads to the definition of the curie (Ci) as a unit of activity:

1 Ci =3.7 x 10" disintegrations /s

Because of its convenient size, we shall sometimes use the curie in subsequent problems, even though the
official SI unit of activity is the becquerel.

Technetium-99 (?STC) has an excited state that decays by emission of a gamma ray. The half-life
of the excited state is 360 min. What is the activity, in curies, of 1.00 mg of this excited isotope?

The activity of a sample is AN. In this case,

0.693  0.693
tiy 21600 s

=321 %107 s7!

We also know that 99.0 kg of Tc contains 6.02 x 10 atoms. A mass m will therefore contain
[m/(99.0 kg)](6.02 x 10%) atoms. In our case, m = 1.00 x 10~° kg, and so

1.00 x 107% kg
99.0 kg

=1.95%x 10" s =1.95x 10" Bq

Activity = AN = (3.21 x 107 s—1)< )(6.02 x 10%)

How much energy must a bombarding proton possess to cause the reaction 7Li(p, n)7Be? Give
your answer to three significant figures.
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The reaction is as follows:
ILi+H —Be +n

where the symbols represent the nuclei of the atoms indicated. Because of the masses listed in Table 45-2
include the masses of the atomic electrons, the appropriate number of electron masses (m,) must be sub-
tracted from the values given.

Reactants Products
ILi 7.016 00 — 3m, IBe 7.01693 — 4m,
‘H 1.00783 — 1m, on 1.008 66
TOTAL 8.02383 — 4m, TOTAL 8.02559 — 4m,

Subtracting the total reactant mass from the total product mass gives the increase in mass as 0.001 76 u.
(Notice that the electron masses cancel out. This happens frequently, but not always.)

To create this mass in the reaction, energy must have been supplied to the reactants. The energy
corresponding to 0.00176 u is (931 x 0.00176) MeV = 1.65 MeV. This energy is supplied as KE of the
bombarding proton. The incident proton must have more than this energy because the system must possess
some KE even after the reaction, so that momentum is conserved. With momentum conservation taken into
account, the minimum KE that the incident particle must have can be found with the formula

(1 +%>(1.65) MeV

where M is the mass of the target particle, and m that of the incident particle. Therefore, the incident particle
must have an energy of at least

(1+1)(1.65) MeV = 1.89 MeV

Complete the following nuclear equations:

(@ 'IN+3He — {0 +? ) P — Nsi 4 2
(b) iBe+3He — '3C +? (¢) *H — 3He + 2
(¢) iBe(p, a)? (/)%Ca(a, 7)¥sc

(a) The sum of the subscripts on the left is 7+ 2 = 9. The subscript of the first product on the right is 8.
Hence the second product on the right must have a subscript (net charge) of 1. Also, the sum of the
superscripts on the left is 14 +4 = 18. The superscript of the first product is 17. Hence the second
product on the right must have a superscript (mass number) of 1. The particle with nuclear charge 1 and
mass number 1 is the proton, 1H.

(h) The nuclear charge of the second product particle (its subscript) is (4 + 2) — 6 = 0. The mass number of
the particle (its superscript) is (9 +4) — 12 = 1. Hence the particle must be the neutron, (l)n.

(¢) The reactants ZBe and | H have a combined nuclear charge of 5 and a mass number of 10. In addition to
the alpha particle, a product will be formed of charge 5 — 2 = 3 and mass number 10 — 4 = 6. This is
SLi.

(d) The nuclear charge of the second product particle is 15 — 14 = +1. Its mass number is 30 — 30 = 0.
Hence the particle must be a positron, +(1)e.

(e) The nuclear charge of the second product particle is 1 — 2 = —1. Its mass number is 3 — 3 = 0. Hence
the particle must be a beta particle (an electron), ,?e.

(/) The reactants, 3 Ca and $He, have a combined nuclear charge of 22 and mass number of 47. The ejected
product will have charge 22 — 21 = 1, and mass number 47 — 46 = 1. This is a proton and should be
represented in the parentheses by p.

In some of these reactions a neutrino and/or a photon are emitted. We ignore them for this discussion
since the mass and charge for both are zero.
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Uranium-238 (2;§U) is radioactive and decays by emitting the following particles in succession
before reaching a stable form: «, 3, 8, , o, a, o, «a, 8, 8, «, 3, 8, and « (8 stands for “beta
particle,” e”). What is the final stable nucleus?

The original nucleus emitted 8 alpha particles and 6 beta particles. When an alpha particle is emitted, Z
decreases by 2, since the alpha particle carries away a charge of +2e. A beta particle carries away a charge of
—le, and so as a result the charge on the nucleus must increase to (Z + 1)e. We then have, for the final
nucleus,

Final Z =92+ 6 — (2)(8) =82
Final 4 =238 — (6)(0) — (8)(4) = 206

The final stable nucleus is 205Pb.

The half-life of uranium-238 is about 4.5 x 10° years, and its end product is lead-206. We notice
that the oldest uranium-bearing rocks on Earth contain about a 50 : 50 mixture of >**U and *°°Pb.
About what is the age of these rocks?

Apparently about half the 2**U has decayed to *°Pb during the existence of the rock. Hence the rock
must have been formed about 4.5 billion years ago.

A 5.6-MeV alpha particle is shot directly at a uranium atom (Z = 92). About how close will it get
to the center of the uranium nucleus?

At such high energies, the effects of the atomic electrons can be ignored. We also assume the uranium
atom to be so massive that it does not move appreciably. Then the original KE of the alpha particle will be
changed into electrostatic potential energy. This energy, for a charge ¢’ at a distance r from a point charge ¢,
is (Chapter 25)

!
Potential energy = ¢'V = ek
r

Equating the KE of the alpha particle to this potential energy, we find that

(5.6 x 10° eV)(1.60 x 107" J/eV) = (8.99 x 10")%?26)

where e = 1.60 x 107" C. We find from this that r = 4.7 x 107" m.

Neon-23 beta-decays in the following way:

23 23 0 0=
10Ne — llNa + _1€ + oV

where 7 is an antineutrino, a particle with no charge and no mass. Depending on circumstances,
the energy carried away by the antineutrino can range from zero to the maximum energy
available from the reaction. Find the minimum and maximum KE that the beta particle e
can have. Pertinent atomic masses are 22.994 5 u for >*Ne, and 22.989 8 u for 2*Na. The mass of

the beta particle is 0.000 55 u.

Before we begin, note that the given reaction is a nuclear reaction, while the masses are those of neutral
atoms. To calculate the mass lost in the reaction, we must subtract the mass of the atomic electrons from the
atomic masses given. We have the following nuclear masses:

Reactant Products
BNe 22.9945 — 10m, ZNa 22.9898 — 11m,
,(l)e m,
v 0

TOTAL 22.9945 — 10m, TOTAL 22.9898 — 10m,
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which gives a mass loss of 22.994 5 — 22.989 8 = 0.004 7 u. Since 1.00 u corresponds to 931 MeV, this mass
loss corresponds to an energy of 4.4 MeV. The beta particle and antineutrino share this energy. Hence the
energy of the beta particle can range from zero to 4.4 MeV.

A nucleus YP, the parent nucleus, decays to a daughter nucleus D by positron decay:
NP — D+ e+ (v

where v is a neutrino, a particle that has zero mass and charge. (¢) What are the subscript and
superscript for D? (b) Prove that the mass loss in the reaction is M, — M, — 2m,, where M, and
M are the atomic masses of the parent and daughter.

(@) To balance the subscripts and superscripts, we must have ,*D.

(b) The table of masses for the nuclei involved is

Reactant Products
Mp M, —nm, D My;— (n—1m,
Ve m,
81} 0
TOTAL M, —nm, TOTAL M, —nm, +2m,

Subtraction gives the mass loss:
(M, —nm,) — (M — nm, +2m,) = M, — M, — 2m,

Notice how important it is to keep track of the electron masses in this and the previous problem.

Supplementary Problems
How many protons, neutrons, and electrons does an atom of 23§U possess? Ans. 92, 143, 92

By how much does the mass of a heavy nucleus change as it emits a 4.8-MeV gamma ray?
Ans. 52x 102 u=28.6x 107 kg

Find the binding energy of '7Ag, which has an atomic mass of 106.905 u. Give your answer to three
significant figures. Ans. 915 eV

The binding energy per nucleon for elements near iron in the periodic table is about 8.90 MeV per nucleon.
What is the atomic mass, including electrons, of 3¢ Fe? Ans. 559 u

What mass of $9Co has an activity of 1.0 Ci? The half-life of cobalt-60 is 5.25 years. Ans. 88 x 107 kg

An experiment is done to determine the half-life of a radioactive substance that emits one beta particle for
each decay process. Measurements show that an average of 8.4 beta particles are emitted each second by
2.5 mg of the substance. The atomic mass of the substance is 230. Find the half-life of the sub-
stance. Ans. 1.7 x 10" years

The half-life of carbon-14 is 5.7 x 10* years. What fraction of a sample of '*C will remain unchanged after a
period of five half-lives? Ans.  0.031

Cesium-124 has a half-life of 31 s. What fraction of a cesium-124 sample will remain after 0.10 h?
Ans.  0.00032
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A certain isotope has a half-life of 7.0 h. How many seconds does it take for 10 percent of the sample to
decay?  Ans. 3.8x10°s

By natural radioactivity >®U emits an a-particle. The heavy residual nucleus is called UX;. UX; in turn
emits a beta particle. The resultant nucleus is called UX,. Determine the atomic number and mass number
for (a) UX; and (b) UX,. Ans.  (a) 90, 234; (b) 91, 234

Upon decaying %33Np emits a beta particle. The residual heavy nucleus is also radioactive, and gives rise to
25U by the radioactive process. What small particle is emitted simultaneously with the formation of
uranium-235? Ans. alpha particle

Complete the following equations. (See Appendix H for a table of the elements.)
(@ TNa+3He —{$Mg+?  (d) '"{B+3He — §N+7?

(h) %Cu— fe+? @ 'BCd+ Je—7?

() "Ag—1"Cd+7 (f) 53U —5Th+?

Ans. (a) {H; (b) %Ni; (¢) Ve; (d) on; () %5 Ag; (/) 3He

Complete the notations for the following processes.
(@) **Mg(d, a)? (e) "Te(d, 2n)?

(b) *Mg(d, p)? (f) >Mn(n, 7)?
(0 *Ar(a, p)? (9) YCo(n, a)?
(d) C(d, n)?

Ans. (a) *Na; (b) Mg; (¢) PK; (d) PN: (e) "L (/) **Mn; (g) **Mn

How much energy is released during reactions (a) }H+§Li—>2§He and (b) fH—Q—%H—»gHe—i-(l)n?
Ans. (a) 17.4 MeV; (b) 17.6 MeV

In the 14N(n7 p)”C reaction, the proton is ejected with an energy of 0.600 MeV. Very slow neutrons are
used. Calculate the mass of the '*C atom. Ans. 14.003 u



Chapter 46

Applied Nuclear Physics

NUCLEAR BINDING ENERGIES differ from the atomic binding energies discussed in Chapter
45 by the relatively small amount of energy that binds the electrons to the nucleus. The binding
energy per nucleon (the total energy liberated on assembling the nucleus, divided by the number
of protons and neutrons) turns out to be largest for nuclei near Z =30 (4 = 60). Hence the nu-
clei at the two ends of the table of elements can liberate energy if they are in some way trans-
formed into middle-sized nuclei.

FISSION REACTION: A very large nucleus, such as the nucleus of the uranium atom, liberates
energy as it is split into two or three middle-sized nuclei. Such a fission reaction can be induced
by striking a large nucleus with a low- or moderate-energy neutron. The fission reaction produces
additional neutrons, which, in turn, can cause further fission reactions and more neutrons. If the
number of neutrons remains constant or increases in time, the process is a self-perpetuating chain
reaction.

FUSION REACTION: In a fusion reaction, small nuclei, such as those of hydrogen or helium,
are joined together to form more massive nuclei, thereby liberating energy.

This reaction is usually difficult to initiate and sustain because the nuclei must be fused together even
though they repel each other with the Coulomb force. Only when the particles move toward each other
with very high energies do they come close enough for the strong force to bind them together. The fusion
reaction can occur in stars because of the high densities and high thermal energies of the particles in these
extremely hot objects.

RADIATION DOSE is defined as the quantity of radiant energy absorbed in a unit mass of sub-
stance. A material receives a dose of 1 gray (Gy) when 1 J of radiation is absorbed in each kilo-
gram of the material:

energy absorbed in J

Dose in Gv — .
O3 I Y = L ass of absorber in kg

so a gray is 1 J/kg. Although the gray is the SI unit for radiation dose, another unit is widely used. It is
the rad (rd), where 1 rd = 0.01 Gy.

RADIATION DAMAGE POTENTIAL: Each type (and energy) of radiation causes its own char-
acteristic degree of damage to living tissue. The damage also varies among types of tissue. The
potential damaging effects of a specific type of radiation are expressed as the quality factor QF of

that radiation. Arbitrarily, the damage potential is determined relative to the damage caused by
200-keV X-rays:

QF — biological effect of 1 Gy of the radiation
~ biological effect of 1 Gy of 200 ke-V X-rays

For example, if 10 Gy of a particular radiation will cause 7 times more damage than 10 Gy of 200-keV
X-rays, then the QF for that radiation is 7. Quite often, the unit RBE (relative biological effectiveness) is
used in place of quality factor. The two are equivalent.

409

Copyright 1997, 1989, 1979, 1961, 1942, 1940, 1939, 1936 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



410 APPLIED NUCLEAR PHYSICS [CHAP. 46

EFFECTIVE RADIATION DOSE is the radiation dose modified to express radiation damage to
living tissue. Its SI unit is the sievert (Sv). It is defined as the product of the dose in grays and
the quality factor of the radiation:

Effective dose (Sv) = (QF)(dose in Gy)

For example, suppose a certain type of tissue is subjected to a dose of 5 Gy of a radiation for which the
quality factor is 3. Then the dose in sieverts is 3 x 5 =15 Sv.

While the sievert is the SI unit, another unit, the rem (radiation equivalent, man), is very widely used.
The two are related through 1 rem = 0.01 Sv.

HIGH-ENERGY ACCELERATORS: Charged particles can be accelerated to high energies by
causing them to follow a circular path repeatedly. Each time a particle (of charge ¢) circles the
path, it is caused to fall through a potential difference V. After n trips around the path, its en-

ergy is g(nV).
Magnetic fields are used to supply the centripetal force required to keep the particle moving in a
circle. Equating magnetic force quB to centripetal force mv’ /r gives

mv = qBr

In this expression, m is the mass of the particle that is traveling with speed v on a circle of radius r
perpendicular to a magnetic field B.

THE MOMENTUM OF A PARTICLE is related to its KE. From Chapter 41, since the total en-
ergy of a particle is the sum of its kinetic energy plus its rest energy, E = KE + mc?, and with

E? = m?c* 4 p2c? it follows that
KE = \/p2c? + m*c* — mc?

Solved Problems

46.1 The binding energy per nucleon for >**U is about 7.6 MeV, while it is about 8.6 MeV for nuclei of
half that mass. If a >**U nucleus were to split into two equal-size nuclei, about how much energy
would be released in the process?

There are 238 nucleons involved. Each nucleon will release about 8.6 — 7.6 = 1.0 MeV of energy when
the nucleus undergoes fission. The total energy liberated is therefore about 238 MeV or 2.4 x 10> MeV.

46.2 What is the binding energy per nucleon for the 23§U nucleus? The aromic mass for U is

238.05079 u; also m, = 1.007276 u and m, = 1.008 665 u.
The mass of 92 protons plus 238 — 92 = 146 neutrons is
(92)(1.007276 u) + (146)(1.008 665 u) = 239.93448 u
The mass of the **U nucleus is
238.05079 — 92m, = 238.050 79 — (92)(0.000 549) = 238.00028 u
The mass lost in assembling the nucleus is then
Am = 239.93448 — 238.00028 = 1.9342 u
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Since 1.00 u corresponds to 931 MeV, we have

Binding energy = (1.9342 u)(931 MeV /u) = 1800 MeV

o 1800 MeV
and Binding energy per nucleon = Tge =7.57 MeV

When an atom of **U undergoes fission in a reactor, about 200 MeV of energy is liberated.
Suppose that a reactor using uranium-235 has an output of 700 MW and is 20 percent efficient.
(@) How many uranium atoms does it consume in one day? (b)) What mass of uranium does it
consume each day?

(a) Each fission yields
200 MeV = (200 x 10°)(1.6 x 1079 J
of energy. Only 20 percent of this is utilized efficiently, and so
Usable energy per fission = (200 x 10°)(1.6 x 107'%)(0.20) = 6.4 x 1012 J

Because the reactor’s usable output is 700 x 10° J/s, the number of fissions required per second is

7% 1087
Fissions/s :6.4%0*14:: 1.1 x 10% 57!
and Fissions/day = (86400 s/d)(1.1 x 102 s™') = 9.5 x 10** d™!

(b) There are 6.02 x 10*° atoms in 235 kg of uranium-235. Therefore the mass of uranium-235 consumed
in one day is

9.5 x 10*
Mass = [ 2220} (235 kg) = 3.7 k
ass (6.02x1026)( 35 ke) = 3.7 ke

Neutrons produced by fission reactions must be slowed by collisions with moderator nuclei before
they are effective in causing further fissions. Suppose an 800-keV neutron loses 40 percent of its
energy on each collision. How many collisions are required to decrease its energy to 0.040 eV?
(This is the average thermal energy of a gas particle at 35°C.)

After one collision, the neutron energy is down to (0.6)(800 keV). After two, it is (0.6)(0.6)(800 keV);
after three, it is (0.6)*(800 keV). Therefore, after n collisions, the neutron energy is (0.6)"(800 keV). We want
n large enough so that

(0.6)"(8 x 10° eV) = 0.040 eV
Taking the logarithms of both sides of this equation gives

n10g0.6 + log(8 x 10°) = log 0.04
(n)(—0.222) + 5.903 = —1.398

from which we find 7 to be 32.9. So 33 collisions are required.

To examine the structure of a nucleus, pointlike particles with de Broglie wavelengths below
about 107'® m must be used. Through how large a potential difference must an electron fall to
have this wavelength? Assume the electron is moving in a relativistic way.

The KE and momentum of the electron are related through

KE = \/p*c? + m*c* — mc®
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Because the de Broglie wavelength is A\ = /1/p, this equation becomes

e\ 2
KE = (%C) et — mc?

Using A = 10716 m, h = 6.63 x 10_34J~s, and m = 9.1 x 107! kg, we find that
KE=199x107 J=1.24x 10" eV

The electron must be accelerated through a potential difference of about 101 ev.

The following fusion reaction takes place in the Sun and furnishes much of its energy:

41H — $He + 2+(1)e + energy

where +?e is a positron electron. How much energy is released as 1.00 kg of hydrogen is con-
sumed? The masses of 'H, *He, and +?e are, respectively, 1.007 825, 4.002 604, and 0.000 549 u,
where atomic electrons are included in the first two values.

The mass of the reactants, 4 protons, is 4 times the atomic mass of hydrogen (‘H), less the mass of 4
electrons:
Reactant mass = (4)(1.007 825 u) — 4m,
=4.031300 u — 4m,

where m, is the mass of the electron (or positron). The reaction products have a combined mass

Product mass = (mass of 3He nucleus) + 2m,
= (4.002 604 u — 2m,) + 2m,
=4.002604 u
The mass loss is therefore

(reactant mass) — (product mass) = (4.0313 u — 4m,) — 4.0026 u

Substituting m, = 0.000 549 u gives the mass loss as 0.026 5 u.
But 1.00 kg of 'H contains 6.02 x 10*® atoms. For each four atoms that undergo fusion, 0.026 5 u is
lost. The mass lost when 1.00 kg undergoes fusion is therefore

Mass loss/kg = (0.026 5 1)(6.02 x 10%°/4) = 3.99 x 10** u
= (3.99 x 10** u)(1.66 x 107" kg/u) = 0.006 63 kg
Then, from the Einstein relation,

AE = (Am)c? = (0.006 63 kg)(2.998 x 10° m/s)* = 5.96 x 10'* J

Lithium hydride, LiH, has been proposed as a possible nuclear fuel. The nuclei to be used and the
reaction involved are as follows:

‘i + JH  —  23He
6.01513 2.01410 4.002 60
the listed masses being those of the neutral atoms. Calculate the expected power production, in

megawaltts, associated with the consumption of 1.00 g of LiH per day. Assume 100 percent
efficiency.
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The change in mass for the reaction must be computed first:

Reactants Products
SLi 6.01513 u—3m, 2 $He 2(4.00260 u — 2m,)
2H 201410 u — 1m,

TOTAL  8.02923 u — 4m, TOoTAL  8.00520 u — 4m,

We find the loss in mass by subtracting the product mass from the reactant mass. In the process, the electron
masses drop out and the mass loss is found to be 0.02403 u.

The fractional loss in mass is 0.0240/8.029 = 2.99 x 10>, Therefore, when 1.00 g reacts, the mass loss
is

(2.99 x 107%)(1.00 x 10~* kg) = 2.99 x 10~® kg
This corresponds to an energy of
AE = (Am)c? = (2.99 x 107° kg)(2.998 x 10° m/s)* = 2.687 x 10'' J
energy  2.687 x 10 g
time = 86400 s

Then Power = =311 MW

Cosmic rays bombard the CO, in the atmosphere and, by nuclear reaction, cause the formation of
the radioactive carbon isotope 1gC. This isotope has a half-life of 5730 years. It mixes into the
atmosphere uniformly and is taken up in plants as they grow. After a plant dies, the '*C decays
over the ensuing years. How old is a piece of wood that has a '*C content which is only 9 percent
as large as the average '*C content of new-grown wood?

During the years, the 14C has decayed to 0.090 its original value. Hence (see Problem 45.6),
N — A\t

Sy becomes 0.090 — 6—0.693t/(5730 years)
No

After taking the natural logarithms of both sides, we have

—0.693¢
In0.090 = ———
n0.090 5730 years
. 5730
from which = (%) (=2.41) = 1.99 x 10* years

The piece of wood is about 20000 years old.

Iodine-131 has a half-life of about 8.0 days. When consumed in food, it localizes in the thyroid.
Suppose 7.0 percent of the BIT localizes in the thyroid and that 20 percent of its disintegrations
are detected by counting the emitted gamma rays. How much "*'T must be ingested to yield a
thyroid count rate of 50 counts per second?

Because only 20 percent of the disintegrations are counted, there must be 50/0.20 = 250 disintegrations
per second. From Chapter 45,
AN 0.693N - 0.693N
=0 - 2 -
A= or 2308 = 5 d)(3600 s/h) (24 h/d)

from which N = 2.49 x 10%.

However, this is only 7.0 percent of the ingested '*'I. Hence the number of ingested atoms is
N/0.070 = 3.56 x 10°. And, since 1.00 kmol of "'T is approximately 131 kg, this number of atoms
represents

< 3.56 x 10° atoms

131 kg/kmol) = 7.8 x 107" k
6.02 x 10% atoms/kmol)( g/kmol) . g

which is the mass of '3'I that must be ingested.
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A beam of gamma rays has a cross-sectional area of 2.0 cm? and carries 7.0 x 10® photons
through the cross-section each second. Each photon has an energy of 1.25 MeV. The beam passes
through a 0.75 cm thickness of flesh (p = 0.95 g/cm®) and loses 5.0 percent of its intensity in the
process. What is the average dose (in Gy and in rd) applied to the flesh each second?
The dose in this case is the energy absorbed per kilogram of flesh. We have
Number of photons absorbed/s = (7.0 x 10® s71)(0.050) = 3.5 x 10" s~

Energy absorbed/s = (3.5 x 107 s7')(1.25 MeV) = 4.4 x 10’ MeV /s
We need the mass of flesh in which this energy was absorbed, which is

Mass = pV = (0.95 g/cm?)[(2.0 cm?)(0.75 cm)] = 1.43 ¢
We than have

energy/s (4.4 x 10" MeV/s)(1.6 x 10" J/MeV)
mass 1.43 x 1073 kg

Dose/s = =4.9 mGy/s =0.49 rd/s

A beam of alpha particles passes through flesh and deposits 0.20 J of energy in each kilogram of
flesh. The QF for these particles is 12 Sv/Gy. Find the dose in Gy and rd, as well as the effective
dose in Sv and rem.
Dose  absorbed energy o 1 o 0,20 Gy = 20 rd
mass
Effective dose = (QF)(dose) = (12 Sv/Gy)(0.20 Gy) = 2.4 Sv = 2.4 x 10? rem

A tumor on a person’s leg has a mass of 3.0 g. What is the minimum activity a radiation source
can have if it is to furnish a dose of 10 Gy to the tumor in 14 min? Assume each disintegration
within the source, on the average, provides an energy 0.70 MeV to the tumor.

A dose of 10 Gy corresponds to 10 J of radiation energy being deposited per kilogram. Since the tumor
has a mass of 0.003 0 kg, the energy required for a 10 Gy dose is (0.0030 kg)(10 J/kg) = 0.030 J.
Each disintegration provides 0.70 MeV, which is

(0.70 x 10° eV)(1.60 x 107 J/eV) = 1.12 x 107 J
To provide 0.030 J, we need

0.030J

— 268 x 10'" disintegrati
1.12 x 10~13 J/disintegration % 1sintegrations

They are to occur in 14 min (or 840 s), and so we require
2.68 x 10"
840 s

Hence the source activity must be at least 3.2 x 108 Bq. Since 1 Ci = 3.70 x 10" Bq, the source activity must
be at least 8.6 mCi.

disintegrations = 3.2 x 10° disintegrations/s.

A beam of 5.0 MeV alpha particles (¢ = 2¢) has a cross-sectional area of 1.50 em?. It is incident
on flesh (p = 950 kg/m?) and penetrates to a depth of 0.70 mm. (¢) What dose (in Gy) does the
beam provide to the flesh in a time of 3.0 s? (b) What effective dose does it provide? Assume the
beam to carry a current of 2.50 x 10~ A and to have QF = 14.

We first find the number of particles deposited in the flesh in 3.0 s:

-9
Number in 3.0s = Ir_ (230 x 107 C/5)(3.05) =2.34 x 10" particles
a 32x 107 C




CHAP. 46] APPLIED NUCLEAR PHYSICS 415

46.14

46.15

46.16

46.17

46.18

46.19

46.20

46.21

Each deposits an energy of (5.0 x 10° eV)(1.60 x 107" J/eV) = 8.0 x 10" J. Therefore,

Doge _ Sherey _ (234 x 10'%)(8.0 x 10713 J)
© mass (950 kg/m?)(0.070 x 1.5 x 10~° m?)

Effective dose = (QF)(dose) = (14)(188) = 2.6 x 10* Sv

=188 Gy = 1.9 x 10*> Gy

Supplementary Problems

Consider the following fission reaction:

oo+ U - BBa o+ N+ 5in o+ 5 %e

1.0087 235.0439 137.9050 92.906 0 1.008 7 0.00055

where the neutral atomic masses are given. How much energy is released when (a) 1 atom undergoes this type
of fission, and (b) 1.0 kg of atoms undergoes fission? Ans. (a) 182 MeV; (b) 7.5 x 1013 J

It is proposed to use the nuclear fusion reaction
27H —  3He
2.014102 4.002 604
to produce industrial power (neutral atomic masses are given). If the output is to be 150 MW and the energy

of the reaction will be used with 30 percent efficiency, how many grams of deuterium fuel will be needed per
day? Ans. 75 g/day

One of the most promising fusion reactions for power generation involves deuterium (°H) and tritium (*H):

%H + fH — ‘z‘He + (l)n

2.01410 3.01605 4.002 60 1.008 67

where the atomic masses including electrons are as given. How much energy is produced when 2.0 kg of *H
fuses with 3.0 kg of *H to form *He? Ans. 1.7 x 1087

What is the average KE of a neutron at the center of the Sun, where the temperature is about 10’ K? Give
your answer to two significant figures. Ans. 1.3 keV

Find the energy released when two deuterons (}H, atomic mass = 2.014 10 u) fuse to form 3He (atomic
mass = 3.01603 u) with the release of a neutron. Give your answer to three significant figures.
Ans.  3.27 MeV

The tar in an ancient tar pit has a '*C activity that is only about 4.00 percent of that found for new wood of
the same density. What is the approximate age of the tar? Ans. 26.6 x 10° years

Rubidium-87 has a half-life of 4.9 x 10" years and decays to strontium-87, which is stable. In an ancient
rock, the ratio of ¥Sr to ®’Rb is 0.0050. If we assume all the strontium came from rubidium decay, about
how old is the rock? Repeat if the ratio is 0.210. Ans. 3.5 x 10% years, 1.35 x 10'° years

The luminous dial of an old watch gives off 130 fast electrons each minute. Assume that each electron has an
energy of 0.50 MeV and deposits that energy in a volume of skin that is 2.0 cm? in area and 0.20 cm thick.
Find the dose (in both Gy and rd) that the volume experiences in 1.0 day. Take the density of skin to be
900 kg/m®.  Ans. 42 4Gy, 4.2 mrd
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46.22 An alpha-particle beam enters a charge collector and is measured to carry 2.0 x 107" Cof charge into the
collector each second. The beam has a cross-sectional area of 150 mm?, and it penetrates human skin to a
depth of 0.14 mm. Each particle has an initial energy of 4.0 MeV. The QF for such particles is about 15.
What effective dose, in Sv and in rem, does a person’s skin receive when exposed to this beam for 20 s? Take
p =900 kg/m® for skin.  Ans. 0.63 Sv, 63 rem



Appendix A

Significant Figures

INTRODUCTION: The numerical value of every observed measurement is an approximation.
Consider that the length of an object is recorded as 15.7 cm. By convention, this means that the
length was measured to the nearest tenth of a centimeter and that its exact value lies between
15.65 and 15.75 cm. If this measurement were exact to the nearest hundredth of a centimeter, it
would have been recorded as 15.70 cm. The value 15.7 cm represents three significant figures (1, 5,
7), while the value 15.70 represents four significant figures (1, 5, 7, 0). A significant figure is one
which is known to be reasonably reliable.

Similarly, a recorded mass of 3.406 2 kg means that the mass was determined to the nearest tenth of
a gram and represents five significant figures (3, 4, 0, 6, 2), the last figure (2) being reasonably correct and
guaranteeing the certainty of the preceding four figures.

In elementary measurements in physics and chemistry, the last figure is estimated and is also
considered as a significant figure.

ZEROS may be significant or they may merely serve to locate the decimal point. We will take
zeros to the left of the normal position of the decimal point (in numbers like 100, 2500, 40, etc.)
to be significant. For instance the statement that a body of ore weighs 9800 N will be understood
to mean that we know the weight to the nearest newton: there are four significant figures here.
Alternatively, if it was weighed to the nearest hundred newtons, the weight contains only two sig-
nificant figures (9, 8) and may be written exponentially as 9.8 x 10° N. If it was weighed to the
nearest ten newtons, it should be written as 9.80 x 10° N, displaying the three significant figures.
If the object was weighed to the nearest newton, the weight can also be written as 9.800 x 103 N
(four significant figures). Of course, if a zero stands between two significant figures, it is itself sig-
nificant. Zeros to the immediate right of the decimal are significant only when there is a signifi-
cant figure to the text of the decimal. Thus the numbers 0.001, 0.0010, 0.00100, and 1.001 have
one, two, three, and four significant figures, respectively.

ROUNDING OFF: A number is rounded off to the desired number of significant figures by
dropping one or more digits to the right. When the first digit dropped is less than 5, the last digit
retained should remain unchanged; when it is 5 or more, 1 is added to the last digit retained.

ADDITION AND SUBTRACTION: The result of adding or subtracting should be rounded off,
so as to retain digits only as far as the first column containing estimated figures. (Remember that
the last significant figure is estimated.) In other words, the answer should have the same number
of figures to the right of the decimal point as does the least precisely known number being added
or subtracted.

Examples: Add the following quantities expressed in meters.

(a) 25.340 (b) 58.0 (¢) 4.20 (d) 4155
5.465 0.0038 1.6523 3.64
0.322 0.00001 0.015 0.238
31.127 m (A4ns.) 58.003 81 5.8673 419.378
= 58.0 m (Ans.) = 5.87 m (Ans.) =419.4 m (A4ns.)
417
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418 SIGNIFICANT FIGURES [APPENDIX A

MULTIPLICATION AND DIVISION: Here the result should be rounded off to contain only as
many significant figures as are contained in the least exact factor.

There are some exceptional cases, however. Consider the division 9.84 + 9.3 = 1.06, to three places.
By the rule given above, the answer should be 1.1 (two significant figures). However, a difference of 1 in
in the last place 0of 9.3 (9.3 £ 0.1) results in an error of about 1 percent, while a difference of 1 in the last
place of 1.1 (1.1 £0.1) yields an error of roughly 10 percent. Thus the answer 1.1 is of much lower
percentage accuracy than 9.3. Hence in this case the answer should be 1.06, since a difference of 1 in the
last place of the least exact factor used in the calculation (9.3) yields a percentage of error about the same
(about 1 percent) as a difference of 1 in the last place of 1.06 (1.06 = 0.01). Similarly, 0.92 x 1.13 = 1.04.

TRIGONOMETRIC FUNCTIONS: As a rule, the values of sines, cosines, tangents, and so
forth, should have the same number of significant figures as their arguments. For example,
sin 35° = 0.57 whereas sin 35.0° = 0.574.

Exercises
1 How many significant figures are given in the following quantities?
(@) 454 ¢ (¢) 0.0353m (i) 1.118 x 107° V
() 22N (f) 1.0080 hr (j) 1030 kg/m*
(¢) 2205N (g) 140A (k) 125000 N
(d) 03937s (h) 9.3 x 10" km
Ans. (a) 3 (¢e) 3 (i) 4
b 2 (f)s () 4
© 4 (® 3 (k6
dy4 () 2
2 Add: (a) 703 h (b) 18.425 cm (¢) 0.0035s (d) 40 N
7 h 7.21 cm 0.097 s 0.632 N
0.66 h 50 cm 0.225 s 0.148 N

Ans. (a) 711 h, (b) 30.6 cm, (c) 0.326's, (d) 4.8 N

3 Subtract: (@) 7.26 J (b) 5624 m (c¢) 34 kg
02 ] 16.8 m 0.2 kg

Ans. (a) 7.1 ], (b) 545.6 m, (c) 34 kg

4 Multiply: (a) 2.21 x 0.3 (d) 107.88 x 0.610
(b) 72.4 x 0.084 (¢) 12.4 x 84.0
(0) 202 x 4.113 (f) 72.4 x 8.6

Ans. (a) 0.7 (d) 65.8
) 6.1  (¢) 1.04x10°
(¢) 831 (f)62x10°

97.52 14.28 0.032 9.80

250 D572 95001 “Da30

Ans.  (a) 38.4, (b) 20.0, (¢) 8, (d) 1.05

5 Divide: (a)




Appendix B

Trigonometry Needed for College Physics

FUNCTIONS OF AN ACUTE ANGLE: The trigonometric functions most often used are the
sine, cosine, and tangent. It is convenient to put the definitions of the functions of an acute angle
in terms of the sides of a right triangle.

In any right triangle: The sine of either acute angle is equal to the length of the side opposite that
angle divided by the length of the hypotenuse. The cosine of either acute angle is equal to the length of
the side adjacent to that angle divided by the length of the hypotenuse. The tangent of either acute angle
is equal to the length of the side opposite that angle divided by the length of the side adjacent to that
angle.

If 6 and ¢ are the acute angles of any right triangle and A4, B, and C are the sides, as shown in the
diagram, then

o it B it A
dng— OPPOSe _ B opposite _ A Q
hypotenuse C hypotenuse C :
adjacent A adjacent B % B
cosh = dacent 4 cos¢>:J7:— 2
hypotenuse C hypotenuse C &
opposite B opposite A4
adjacent A4 ng adjacent B Adjazent -0

Note that sin § = cos ¢; thus the sine of any angle equals the
cosine of its complementary angle. For example,

sin 30° = cos(90° — 30°) = cos 60° cos 50° = sin(90° — 50°) = sin 40°

As an angle increases from 0° to 90°, its sine increases from 0 to 1, its tangent increases from 0 to
infinity, and its cosine decreases from 1 to 0.

LAW OF SINES AND OF COSINES: These two laws give the relations between the sides and
angles of anmy plane triangle. In any plane triangle with angles «, 8, and v and sides opposite 4,
B, and C, respectively, the following relations apply:

Law of Sines

4 B C
sinaw sinf  sinvy

A sina B sing C sinvy /
or == = =

B sinf Z_Sinfy A sina c

N

Law of Cosines Ja\ (7]
A* =B+ C* - 2BC cosa
B> =A*+C*-24C cos 3
C* = 4> + B> —24B cos~y
If the angle € is between 90° and 180°, as in the case of angle C in the above diagram, then
sin = sin(180° — 0) and cosf = —cos (180° — 6)
419
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sin 120° = sin(180° — 120°) = sin 60° = 0.866
c0s 120° = — cos(180° — 120°) = — cos 60° = —0.500

Solved Problems

In right triangle ABC, given 4 =8, B=06, v =90°. Find the values of the sine, cosine, and
tangent of angle o and of angle S.

B
C=8.0246.02 =100 = 10
sina = A/C =8.0/10 = 0.80 sinf3 = B/C = 6.0/10 = 0.60 ¢ A=8
cos @ =B/C=6.0/10=0.60 cos 3=4/C=8.0/10=0.80
tan o= A/B=8.0/60=13  tan f=B/4=6.0/8.0=0.75 Y
B=6

Given a right triangle with one acute angle 40.0° and hypotenuse 400. Find the other sides and
angles.

. ., A ) . B
sin40.0 =200 and c0s40.0 =200

Using a calculator, we find that sin40.0° = 0.642 8 and
c0s40.0° = 0.766 0. Then

a = 400 sin40.0° = 400(0.6428) = 257
b =400 cos40.0° = 400(0.7660) = 306
B =90.0° —40.0° = 50.0°

Given triangle 4BC with a = 64.0°, = 71.0°, B =40.0°. Find
A and C.

~v=180.0° — (a+ 3) = 180.0° — (64.0° 4+ 71.0°) = 45.0°
By the law of sines,
A B and C B
sina sinf siny sing
Bsin « .0si .0° .0(0.
“w _ .smoz:40(.)sm640 :400(08988):38.0
sin 3 sin 71.0° 0.9455

o Bsiny _400sin45.0° _ 40.0(0.707 1)

= = =299
sin 3 sin71.0° 0.9455

and

(a) If cosa = 0.438, find « to the nearest degree. (b) If sin 8 = 0.800 0, find S to the nearest tenth
of a degree. (¢) If cosy =0.7120, find ~ to the nearest tenth of a degree.

(a¢) On your calculator use the inverse and cosine keys to get o = 64°; or if you have a cos™' key use it.
(b) Enter 0.8000 on your calculator and use the inverse and sine keys to get 3 = 53.1°.

(¢) Use your calculator as in (a) to get 44.6°.
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5 Given triangle ABC with o = 130.8°, 4 = 525, C = 421. Find B, 3, and ~.

sin 130.8° = sin (180° — 130.8°) = sin49.2° = 0.757
Most hand calculators give sin 130.8° directly.
) . Csina 421sin30.8° 421(0.757)
For ~: siny = 4 = 535 = 535 = 0.607
from which v = 37.4°.

For 3:  f=180°— (y+a) = 180° — (37.4° + 130.8°) = 11.8°

_Asinfg 525sin11.8°  525(0.204)

For B: B=ha T smi30s 0757

=142

6 Given triangle ABC with 4 = 14, B = 8.0, v = 130°. Find C, o,
and (.
cos 130° = —cos (180° — 130°) = —cos 50° = —0.64
For C: By the law of cosines,
C? = A* + B* — 24Bcos 130°
= 147 + 8.0 — 2(14)(8.0)(—0.643) = 404

and C = /404 = 20.
For «a: By the law of sines,

_ Asiny _ 14(0.766)

sin « c w01 0.533
and o = 32°.
For (3 B =180° — (aw+ ) = 180° — (32° + 130°) = 18°
Exercises
7 Solve each of the following right triangles 4ABC, with v = 90°.

(@) a=233,C=346 (d)A=254,B=382

(b) B=492°,B=222 (¢) B=673, C =888

(©) a=666°A4=113

Ans. (a) B=66.7°, A=137, B=318 (d)a=233.6°, 3 =564 C =459

(b) @ =408, 4=192,C=293  (¢) a=40.7", 3=149.3", 4 = 579
(¢) =234, B=489,C=123

8 Solve each of the following oblique triangles 4ABC.

(@) A=125 a=>546° =652 (¢) B=504,C=2333,53=1185

(b) B=321, a=753",v=385  (f)B=120, C=270, a=118.7°

(¢) B=215C=150, B3=427" (g) A=24.5 B=18.6,C =264

(d) A=512, B=426, a =488 (h) A=6.34, B=7.30, C =998

Ans. (@) B=139, C=133, ~4=602° (¢) A=251, a=260° ~=2355
() A=339, C=218, (=662 (f)A=344, (=178, =435
() A=300, a=109.1°0 v=282° (g a=632°, B=427°, ~=741°
(d) C=680, B=388" ~=924° (h) a=2393", B=469°, ~=0938



Appendix C

Exponents

POWERS OF 10: The following is a partial list of powers of 10. (See also Appendix E.)

0
10 =1 10“:%:0.1
10' =10
1 1
10> =10 x 10 = 100 1072 =—=—=10.01
, 102~ 100
10° = 10 x 10 x 10 = 1000 | |
— = 1073 =—=——=10.001
10* =10 x 10 x 10 x 10 = 10000 0 0 = 1000 0.00

10° =10 x 10 x 10 x 10 x 10 = 100 000 | |
— =——-=20.0001

-4
10°=10x 10 x 10 x 10 x 10 x 10 =1000000 10" =752 = 157000

In the expression 10°, the base is 10 and the exponent is 5.

MULTIPLICATION AND DIVISION: In multiplication, exponents of like bases are added:

S xd=d" =4 10" x 1073 =103 = 10*
10° x 10° = 107 = 10° (4x10H2x 10 =8x 10" =8 x 1072
10 x 10 = 10" = 10? (2x10)(3x 1073 =6x 1072 =6 x 10°

In division, exponents of like bases are subtracted:

5 2
1
Lo =a —28:10076 :gx 10746 = 4 x 10°
a
10 5 s ,3 56x107% 56 5, >

SCIENTIFIC NOTATION: Any number may be expressed as an integral power of 10, or as the
product of two numbers one of which is an integral power of 10. For example,

2806 = 2.806 x 10° 0.0454 = 4.54 x 107>
22406 = 2.2406 x 10* 0.00006 = 6 x 107°

454 = 4.54 x 10° 0.00306 = 3.06 x 10~
0.454 = 4.54 x 10! 0.0000005 =5 x 1077

OTHER OPERATIONS: A nonzero expression with an exponent of zero is equal to 1. Thus,
=1 10"=1  (3x10°=1 82x10°=82

A power may be transferred from the numerator to the denominator of a fraction, or vice versa, by
changing the sign of the exponent. For example,
5 7 5

1 ) )
4 3
1077 =— 5x 10 7713 71 2f7><10 Sa = 5

422
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The meaning of the fractional exponent is illustrated by the following:
107 =v102 102 =V10°  102=vi0 4= V8 =er-3
To take a power to a power, multiply exponents:
(102 = 1032 = 10° (102} = 1023 = 107 (@) 2=a

To extract the square root, divide the exponent by 2. If the exponent is an odd number it should first
be increased or decreased by 1, and the coefficient adjusted accordingly. To extract the cube root, divide
the exponent by 3. The coefficients are treated independently. Thus,

V9 x 104 =3 x 10? V49 %105 =v49x 105 =7.0 x 1073

V3.6 x 107 =v/36 x 105 = 6.0 x 10° V125 x 108 = V125 x 106 = 5.00 x 10°

Most hand calculators give square roots directly. Cube roots and other roots are easily found using the
X
y* key.

Exercises
1 Express the following in powers of 10.
(a) 326 (d) 36000008 (g) 0.000002 (i) v/0.000081
(b) 32608 (e) 0.831 (h) 0.000706 (j) v/0.000027
(¢) 1006 (f) 0.03
Ans. (a) 3.26 x 10° (d) 3.6000008 x 10”7  (g) 2x107° (1) 9.0x 1073
(b) 3.2608 x 10* (¢) 831x107! (h) 7.06x 107*  (j) 3.0 x 1072
(¢) 1.006 x 10° (f) 3x1072
2 Evaluate the following and express the results in powers of 10.
@ 1500x260 () LIPBx17.28 (i) (V27 % 107)(V1.25 x 10°%)
“ ¢ 70.000 172 8 ' '
. (16000)(0.0002)(1.2) . 3 52
22 1x107%)(2 x 1
(b) 22035000 (/) ogoy0.006) 000032 ) (1} 1072107
_ ) 0.004 x 32000 x 0.6 (3x 10°)*(2 x 107°)?
() 4020000 (&) 525053000 x 0.08 () 3.6 %108
(d) 82800+0.12 (h) (v/14400)(,/0.000025) () 8(2x107%)7"
Ans. (a) 390 x10°  (¢) 1.728x10° (i) 1.5x 10'
(b) 770 x 10°  (f) 1 x 10° (j) 4x 10
() 20x107° (g 5x107° (k) 3 x 10°

(d) 6.9 x 10° (h) 6.0x107! (1) 1x10°



Appendix D

Logarithms

THE LOGARITHM TO BASE 10 of a number is the exponent or power to which 10 must be
raised to yield the number. Since 1000 is 103, the logarithm to base 10 of 1000 (written log 1000)
is 3. Similarly, log 10000 =4, log 10 =1, log 0.1 = —1, and log 0.001 = —3.

Most hand calculators have a log key. When a number is entered into the calculator, its logarithm to
base 10 can be found by pressing the log key. In this way we find that log 50 = 1.69897 and
log 0.035 = —1.45593. Also, log 1 = 0, which reflects the fact that 10° = 1.

NATURAL LOGARITHMS are taken to the base ¢ =2.718, rather than 10. They can be found
on most hand calculators by pressing the In key. Since ¢’ =1, we have In 1 = 0.

Examples:

log 971 =2.9872 In 971 = 6.878 3
log 9.71 = 0.9872 In 9.71 =2.2732
log 0.0971 = —1.012 8 In 0.0971 = —2.3320

Exercises: Find the logarithms to base 10 of the following numbers.

(a) 454 (f) 0.621
(b) 5280 (g) 0.9463
(©) 96500 (k) 0.0353
(d) 30.48 (i) 0.0022
(&) 1.057 (i) 0.0002645

Ans. (a) 2.6571  (f) —0.2069
(b) 37226 (g0 —0.02397
(c) 4.9845 (h) —1.4522
(d) 14840 (i) —2.6576
() 0.0241 (j) —3.5776

ANTILOGARITHMS: Suppose we have an equation such as 3.5 = 10°3*; then we know that
0.544 is the log to base 10 of 3.5. Or, inversely, we can say that 3.5 is the antilogarithm (or in-
verse logarithm) of 0.544. Finding the antilogarithm of a number is simple with most hand calcu-
lators: Simply enter the number; then press first the inverse key and then the log key. Or, if the
base is e rather than 10, press the inverse and In keys.

Exercises: Find the numbers corresponding to the following logarithms.

(@) 3.1568 (f) 09142
(b) 1.6934 (g) 0.0008
(c) 5.6934 (h) —0.2493
(d) 2.5000 (i) —1.9965
(e) 2.0436 (i) —2.7994

424
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Ans. (a) 1435 (f) 8.208
(b) 49.37 (g) 1.002
(¢) 4937x10° (h) 0.5632
(d) 316.2 (i) 0.01008
(e) 110.6 (j) 0.001587

BASIC PROPERTIES OF LOGARITHMS: Since logarithms are exponents, all properties of ex-
ponents are also properties of logarithms.

(1) The logarithm of the product of two numbers is the sum of their logarithms. Thus,
log ab =log a+log b log (5280 x 48) = log 5280 + log 48

(2) The logarithm of the quotient of two numbers is the logarithm of the numerator minus the
logarithm of the denominator. For example,

a 536
log b= log a —log b log M5 log 536 — log 24.5

(3) The logarithm of the nth power of a number is n times the logarithm of the number. Thus,
log d" =nlog a log (4.28)* = 3 log 4.28

(4) The logarithm of the nth root of a number is 1/n times the logarithm of the number. Thus,

n 1 1 1
logva = . log a log V32 = 3 log 32 log V792 = 3 log 792

Solved Problem

1 Use a hand calculator to evaluate (a) (5.2)"%, (b) (6.138)%, (¢) v/3, (d) (7.25 x 101105,

(a) Enter 5.2; press y* key; enter 0.4; press = key. The displayed answer is 1.934.

(b) Enter 6.138; press y* key; enter 3; press = key. The displayed answer is 231.2.

(¢) Enter 5; press y* key; enter 0.333 3; press = key. The displayed answer is 1.710.

(d) Enter 7.25 x 107'!; press y* key; enter 0.25; press = key. The displayed answer is 2.918 x 1073,

Exercises
2 Evaluate each of the following.
1
(1) 28.32 x 0.082 54 (5) 739
572 x 31.
(2) 573 x 6.96 x 0.004 81 (6) 0.572 < 31.8
96.2
79.28 779 273
®) G57 () 473 %765 300
65.38
“4) (8) (8.642)°

225.2



426

Ans.

(1) 2.337
) 19.2
(3) 1.247
(@) 0.2902
(5) 0.004 18
(6) 0.189
(7) 44.3
(8) 74.67

LOGARITHMS

(9) (0.08642)

(10) (11.72)°
(11) (0.0523)°
(12) /9463

(13) V/946.3

(14) v/0.006 61
(15) V1.79

(16) VO.182

(17) V643 x (1.91)°

(18) (8.73 x 1072)(7.49 x 10°)
(19) (3.8 x 107°)*(1.9 x 107%)

8.5x 107%
2 - -
(20) 1.6 x 10722

(1) V2.54 x 10°
(22) V9.44 x 10°
(23) V72 x 101

4) VI3 x 101

(1.1 x 1072)(6.8 x 1072
25
@3) \/ 1.4 x 1072

(26) 2.04 log 97.2

(27) 37 log 0.0298
(28) 6.30 log (2.95 x 10%)
(29) 8.09 log (5.68 x 107'°)
(30) (2.00)*""*

(9) 0.007467 (17) 177 (25) 0.73
(10) 1611 (18) 6.54 x 10°  (26) 4.05
(11) 0.000 143 (19) 2.7 x 107 (27) =56
(12) 97.27 (20) 5.3 x 1072 (28) 21.9
(13) 30.76 (1) 1.59x 10> (29) —123
(14) 0.0813 (22) 9.72x 10> (30) 1.64
15) 1.21 (23) 8.5x 1077
(16) 0.653 (24) 42 x107°

[APPENDIX D



Appendix E

Prefixes for Multiples of SI Units

Multiplication
Factor Prefix Symbol

10" tera T

10° giga G

10° mega M

10° kilo k

10 hecto h

10 deka da

10" deci d

1072 centi c

107 milli m

107 micro 1

107° nano n

10712 pico p

1071 femto f

10718 atto a

The Greek Alphabet

A «@ alpha H n eta N v nu T T tau
B 163 beta (C) 0 theta = 13 Xi Y v upsilon
r ~ gamma I L iota (0) 0 omicron d 10) phi
A 6 delta K K kappa II T pi X X chi
E € epsilon A A lambda P p rho v P psi
Z ¢ zeta M 1 mu by o sigma Q ) omega
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Acceleration

Area

Density

Energy

Force

Length

Mass

Power
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Appendix F

Factors for Conversions to Sl Units

1 ft/s*> = 0.3048 m/s*

g =9.807 m/s’

1 acre = 4047 m>

1 ft> =9.290 x 102 m?

1in2 =6.45x 107* m?

1 mi? = 2.59 x 10° m?

1 g/cm3 =10’ kg/m’

1 Btu = 1054 ]

1 calorie (cal) =4.184 ]

1 electron volt (eV) =
1.602 x 107" J

1 foot pound (ft-1b)=1.356 J

1 kilowatt hour (kW -h) =
3.60 x 10° J

1 dyne =10 N

11b=4448 N

1 angstrom (A) =10"m

1 ft =0.3048 m

lin. =254 x 10 m

1 light year = 9.461 x 10> m

1 mile = 1069 m

1 atomic mass unit (u) =
1.6606 x 1077 kg

I gram = 1073 kg

1 Btu/s = 1054 W

Pressure

Speed

Temperature

Time

Volume

1 cal/s =4.184 W
1 ft-lb/s = 1.356 W
1 horsepower (hp) = 746 W
1 atmosphere (atm) =
1.013 x 10° Pa
1 bar = 10° Pa
1 ecmHg = 1333 Pa
1 Ib/ft> = 47.88 Pa
1 Ib/in.” (psi) = 6895 Pa
1 N/m? = 1 pascal (Pa)
1 torr = 133.3 Pa
1 ft/s (fps) = 0.3048 m/s
1 km/h = 0.2778 m/s
1 mi/h (mph) = 0.44704 m/s
Tketvin = Tcelsius + 27315
Tkelvin = 8(TFahrenheit + 45967)
= g(TFahrenheil - 32)
TKelVin = gTRankine
1 day = 86400 s
1 year = 3.16 x 10 s
1 ft’ =2.832x 107 m’
1 gallon = 3.785 x 107> m®
lin =1.639 x 107> m’
1 liter = 107> m®

TCelsius



Appendix G

Physical Constants

Speed of light in free space. . .. ................. c =2.99792458 x 10® m/s
Acceleration due to gravity (normal) . .. ........... g =9.807 m/s’
Gravitational constant . . ......... ... ... ..... G =6.67259 x 107" N-m?/kg’
Coulomb constant . . ......................... ko =8.988 x 10° N-m?/C?
Density of water (maximum). . . ................. =0.999972 x 10° kg/m3
Density of mercury (S.T.P.) . ....... ... ... ....... =13.595 x 10° kg/m3
Standard atmosphere . .. ........ ... ... ... ... =1.0132 x 10° N/m?
Volume of ideal gas at ST.P. ... ................ =22.4 m®/kmol
Avogadro’snumber . . . ... ... ... Ny = 6.022 x 10%® kmol ™!
Universal gas constant . . . ..................... R = 8314 J/kmol-K
Icepoint . ..... ... ... . . . . =273.15K
Mechanical equivalent of heat. . .. ............... =4.184 J/cal
Stefan—Boltzmann constant. . . . ................. o =567 %107 W/m*.K*
Planck’sconstant . . . . ......... ... .. .. ... ... .. h =6.626 x 107°* J-s
Faraday ........ ... ... . . . . ... . . F =9.648 5 x 10* C/mol
Electronic charge . . .. ....... ... ... . ... .. .... e =1.6022x 107" C
Boltzmann’s constant . . . . ..................... kg =138 x 1072 J/K
Ratio of electron charge tomass. .. .............. e/m, =17588 x 10" C/kg
Electronrest mass .. ......................... m, =9.109 x 107! kg
Protonrestmass . ................. ... .. m, =1.6726 x 107" kg
Neutron rest mass . .. ...t ... m, =1.6749 x 1077 kg
Alpha particle restmass . . . . ................... = 6.645 x 1077 kg
Atomic mass unit (1/12 mass of >C). .. ........... u =1.6606 x 107" kg
Restenergyof lu.......... ... ... ... ......... =931.5 MeV
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Appendix H

Table of the Elements

The masses listed are based on '2C = 12 u. A value in parentheses is the mass number of the most stable
(long-lived) of the known isotopes.

Element Symbol Atomic Number Z Average Atomic Mass, u
Actinium Ac 89 (227)
Aluminum Al 13 26.9815
Americium Am 95 (243)
Antimony Sb 51 121.75
Argon Ar 18 39.948
Arsenic As 33 74.9216
Astatine At 85 (210)
Barium Ba 56 137.34
Berkelium Bk 97 (247)
Beryllium Be 4 9.0122
Bismuth Bi 83 208.980
Boron B 5 10.811
Bromine Br 35 79.904
Cadmium Cd 48 112.40
Calcium Ca 20 40.08
Californium Cf 98 (251)
Carbon C 6 12.0112
Cerium Ce 58 140.12
Cesium Cs 55 132.905
Chlorine Cl 17 35.453
Chromium Cr 24 51.996
Cobalt Co 27 58.9332
Copper Cu 29 63.546
Curium Cm 96 (247)
Dysprosium Dy 66 162.50
Einsteinium Es 99 (254)
Erbium Er 68 167.26
Europium Eu 63 151.96
Fermium Fm 100 (257)
Fluorine F 9 18.998 4
Francium Fr 87 (223)
Gadolinium Gd 64 157.25
Gallium Ga 31 69.72
Germanium Ge 32 72.59
Gold Au 79 196.967
Hafnium Hf 72 178.49
Helium He 2 4.0026
Holmium Ho 67 164.930
Hydrogen H 1 1.008 0
Indium In 49 114.82
Iodine 1 53 126.904 4
Iridium Ir 77 192.2
Iron Fe 26 55.847
Krypton Kr 36 83.80
Lanthanum La 57 138.91
Lawrencium Lr 103 (257)
Lead Pb 82 207.19
Lithium Li 3 6.939
Lutetium Lu 71 174.97
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TABLE OF THE ELEMENTS

Table of the Elements (Continued)
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Element Symbol Atomic Number Z Average Atomic Mass, u
Magnesium Mg 12 24.312
Manganese Mn 25 54.9380
Mendelevium Md 101 (256)
Mercury Hg 80 200.59
Molybdenum Mo 42 95.94
Neodymium Nd 60 144.24
Neon Ne 10 20.183
Neptunium Np 93 (237)
Nickel Ni 28 58.71
Niobium Nb 41 92.906
Nitrogen N 7 14.0067
Nobelium No 102 (254)
Osmium Os 76 190.2
Oxygen (0] 8 15.9994
Palladium Pd 46 106.4
Phosphorus P 15 30.9738
Platinum Pt 78 195.09
Plutonium Pu 94 (244)
Polonium Po 84 (209)
Potassium K 19 39.102
Praseodymium Pr 59 140.907
Promethium Pm 61 (145)
Protactinium Pa 91 (231)
Radium Ra 88 (226)
Radon Rn 86 222
Rhenium Re 75 186.2
Rhodium Rh 45 102.905
Rubidium Rb 37 85.47
Ruthenium Ru 44 101.07
Samarium Sm 62 150.35
Scandium Sc 21 44.956
Selenium Se 34 78.96
Silicon Si 14 28.086
Silver Ag 47 107.868
Sodium Na 11 22.9898
Strontium Sr 38 87.62
Sulfur S 16 32.064
Tantalum Ta 73 180.948
Technetium Tc 43 97)
Tellurium Te 52 127.60
Terbium Tb 65 158.924
Thallium Tl 81 204.37
Thorium Th 90 232.038 1
Thulium Tm 69 168.934
Tin Sn 50 118.69
Titanium Ti 22 47.90
Tungsten \Y 74 183.85
Uranium U 92 238.03
Vanadium \Y% 23 50.942
Xenon Xe 54 131.30
Ytterbium Yb 70 173.04
Yttrium Y 39 88.905
Zinc Zn 30 65.37
Zirconium Zr 40 91.22
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Absolute humidity, 186
Absolute potential, 243
Absolute temperature, 166, 179
and molecular energy, 179
Absolute zero, 171
Absorption of light, 392
ac circuits, 329-337
ac generator, 329
Acceleration, 13
angular, 99
centripetal, 100
due to gravity, 14
and force, 28
radial, 100
in SHM, 127
tangential, 100
Accelerator, high energy, 410
Action—Reaction Law, 28
Activity, nuclear, 401
Actual mechanical advantage,
80
Addition of vectors, 1
Adiabatic process, 199
Alpha particle, 399
Alternating voltage, 329-337
Ammeter, 279
Ammeter—voltmeter method, 256
Ampere (unit), 256
Amplitude of vibration, 126, 213
Analogies, linear and rotational
motion, 99, 112
Angular acceleration, 99
and torque, 111
Angular displacement, 99
Angular frequency, 129
Angular measure, 99
Angular momentum, 112
conservation of, 112, 121
Angular motion, 99-110
equations for, 99, 100
Angular velocity, 99
Antinode, 215
Apparent depth in refraction, 350
Archimedes’ principle, 146
Armature, 315
Astronomical telescope, 359
Atmospheric pressure, 146
Atomic mass, 400
Atomic mass unit, 399
Atomic number, 390, 399
Atomic photoelectric effect, 394
Atomic table, 430
Atwood’s machine, 39
Avogadro’s number, 179
Axis for torque, 56, 57

Index

Back emf, 316
Ballistic pendulum, 90
Balmer series, 391
Banking of curves, 107
Battery, 256

ampere-hour rating, 267
Beats, 224
Becquerel (unit), 401
Bernoulli’s equation, 158
Beta particle, 399
Binding energy, 400, 409
Biot—Savart Law, 300
Blackbody, 194
Bohr model, 234, 261, 301, 390
Boltzmann’s constant, 179
Boyle’s Law, 171
Bragg equation, 367
British thermal unit, 185
Bulk modulus, 139
Buoyant force, 146

Calorie (unit), 185

nutritionist’s, 185
Calorimetry, 185
Capacitance, 244
Capacitive reactance, 330
Capacitors, 244, 285, 321

in ac circuit, 330-332

charging of, 323

energy of, 244

in parallel, 244

in series, 244
Carbon dating, 413
Carnot cycle, 199
Celsius temperature, 166
Center of gravity, 57
Center of mass, 88
Centigrade temperature (see

Celsius temperature)

Centipoise (unit), 157
Centripetal acceleration, 100
Centripetal force, 100
Chain hoist, 84, 85
Chain reaction, 409
Charge:

conservation of, 232

of electron, 232
Charge motion in B field, 290-293
Charge quantum, 232
Charles’ Law, 171
Coherent waves, 366
Collisions, 87
Component method, 3
Components of a vector, 2
Compressibility, 139

433

Compressional waves, 213-214,
218-223

Compton effect, 382
Concave mirror, 339

ray diagram for, 343
Concurrent forces, 47
Conduction of heat, 193
Conductivity, thermal, 193
Conical pendulum, 105
Conservation:

of angular momentum, 112, 121

of charge, 232

of energy, 70

of linear momentum, 87
Constants, table of, 429
Continuity equation, 157
Convection of heat, 194
Conversion factors, 29, 428
Convex mirror, 339

ray diagram for, 342
Coplanar forces, 56
Coulomb (unit), 232
Coulomb force, 232
Coulomb’s Law, 232
Counter emf, 316
Crest of wave, 213
Critical angle, 347
Curie (unit), 404
Current, electric, 256
Current loop, torque on, 291

Dalton’s Law of partial pressures,
172
Daughter nucleus, 407
de Broglie wavelength, 383
de Broglie waves, resonance, 383,
387
Decay constant, 401
Decay law, radioactivity, 403
Decibel (unit), 224
Density, 138
Deuteron, 399
Dew point, 186
Diamagnetism, 305
Dielectric constant, 232, 244
Differential pulley, 84, 85
Diffraction, 366
and limit of resolution, 366
by single slit, 366
of X-rays, 367
Diffraction grating, 366
Dimensional analysis, 29
Diopter (unit), 354
Direct current circuits, 256—288
Discharge rate, fluids, 157
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Disorder, 209
Displacement, angular, 99
Displacement vector, 1
Domain, magnetic, 300
Doppler effect, 224

Dose, of radiation, 409, 410
Double-slit interference, 368

Earth, age of, 406
magnetic field of, 290
Effective radiation dose, 410
Effective values of circuits, 329
Efficiency, 80, 199
Elastic collision, 88
Elastic limit, 139
Elasticity, 138
Electric current, 256
Electric field, 233
of parallel plates, 238, 244
of point charge, 233
related to potential, 244
Electric field strength, 233
Electric generator, 315-320
Electric motor, 315-320
Electric potential, 243
Electric potential energy, 243
Electric power, 265-269
Electromotive force (see emf)
Electron, 232, 399
Electron volt (unit), 244
emf (electromotive force),
256
counter, 316
induced, 305-314
motional, 306
Emission of light, 390
Emissivity, 194
Energy, 69
in a capacitor, 244
conservation of, 70
electric potential, 243
gravitational potential, 69
heat, 191, 198
in an inductor, 321
internal, 198
kinetic, 69
quantization of, 383
relativistic, 374, 375, 381
rotational kinetic, 111
in SHM, 127
in a spring, 127
of vibration, 127
Energy-level diagram, 390
helium ion, 393
hydrogen, 391
Entropy, 209-212
Equation of continuity, 157
Equations:
nuclear, 40
uniform motion, 13
Equilibrant, 11

INDEX

Equilibrium, 47-55
under concurrent forces, 47
first condition for, 47
of rigid body, 56—68
second condition for, 56
thermal, 198
Equivalent capacitance, 244
Equivalent optical path length, 367
Equivalent resistance, 270
Erg (unit), 69
Exclusion principle, 396
Explosions, 87
Exponential decay, 403
Exponential functions, in R-C
circuit, 323
Exponents, math review, 422
Eye, 359
F = ma, 28
[ stop of lens, 360
Fahrenheit temperature, 166
Farad (unit), 244
Faraday’s Law, 305
Farsightedness, 360
Ferromagnetism, 300, 305
Field:
electric, 233
magnetic, 299
Field lines, 233, 289
First condition for equilibrium, 47
First Law of Thermodynamics, 198
Fission, nuclear, 409
Five motion equations, 13
Flow and flow rate, 157
Fluid pressure, 146
Fluids:
in motion, 157—-165
at rest, 146156
Flux:
magnetic, 305
Focal length:
lens, 353
mirror, 338
Focal point:
lens, 353
mirror, 338
Foot-pound (unit), 69
Force, 28
and acceleration, 28
centripetal, 100
on current, 290
on moving charge, 290
nuclear, 399
restoring, 126
Free-body diagram, 47
Free fall, 14, 19
Frequency and period, 99, 126, 128
Frequency of vibration, 213
Friction force, 47
Fundamental frequency, 215
Fusion, heat of, 185
Fusion, nuclear, 409

Galvanometer, 278, 312
Gamma ray, 401
Gas, speed of molecules in, 179
Gas constant, 171
Gas Law, 171
Gas-Law problems, 172
Gauge pressure, 172
Gauss (unit), 290
Gay-Lussac’s Law, 171
Generator, electric, 315, 329
Graphing of motion, 14
Grating equation, 366
Gravitation, Law of, 28
Gravitational potential energy, 69
Gravity:
acceleration due to, 14
center of, 57
Gray (unit), 409
Greek alphabet, 427
Ground state, 396
Gyration radius, 111

Half-life, 400
Heat:

conduction of, 193

convection of, 194

of fusion, 185

radiation of, 194

in resistors, 265

of sublimation, 185

transfer of, 193-197

of vaporization, 185
Heat capacity, 185
Heat conductivity, 193
Heat energy, 191, 198
Heat engine efficiency, 199
Helium energy levels, 393
Henry (unit), 321
Hertz (unit), 126
High-energy accelerators, 410
Hookean spring, 127
Hooke’s Law, 127, 128, 138
Horsepower (unit), 70
House circuit, 272
Humidity, 186
Hydraulic press, 148
Hydrogen atom, 390—395

energy levels of, 391
Hydrostatic pressure, 146

Ideal gas, 171-178
mean-free path, 180
pressure of, 180

Ideal Gas Law, 171

Ideal mechanical advantage, 80

Image size, 339, 353

Imaginary image (see Virtual

image)

Impedance, 330

Impulse, 87
angular, 112

Index of refraction, 346



Induced emf, 305-314

motional, 306
Inductance, 321-328

energy in, 321

mutual, 321

self, 321

of solenoid, 323
Inductive reactance, 330
Inelastic collision, 88
Inertia, 27

moment of, 111
Inertial reference frame, 374
Infrasonic waves, 223
In-phase vibrations, 214, 224
Instantaneous velocity, 14
Intensity:

of sound, 223
Intensity level, 224
Interference, 366

double-slit, 368

of sound waves, 224

thin film, 368—369
Internal energy, 198
Internal resistance, 256
Isobaric process, 198
Isothermal process, 198
Isotope, 400
Isotropic material, 166
Isovolumic process, 198

Jackscrew, 84
Joule (unit), 69
Junction rule, 283

Kelvin scale, 166, 179
and molecular energy, 179
Kilogram (unit), 27
Kilomole (unit), 171
Kilowatt-hour (unit), 265
Kinetic energy, 69
of gas molecule, 179
rotational, 111
translational, 69
Kinetic theory of gases, 179—184
Kirchhoff’s Laws, 283

Large calorie, 185
Law:

of cosines, 419

of reflection, 338

of sines, 419

of universal gravitation, 28
Length contraction, 375
Lens(es):

combinations of, 359

in contact, 354

equation for, 353

power of, 354

ray diagrams for, 354—355
Lensmaker’s equation, 353
Lenz’s Law, 305
Lever arm, 56

INDEX

Levers, 81

Light:
absorption of, 392
diffraction of, 366
emission of, 390
interference of, 366
reflection of, 338—-345
refraction of, 346—352
speed of, 346

Light quantum, 382

Limit of resolution, 366

Limiting speed, relativity, 374

Line of propagation, 213

Linear momentum, 87-98

Logarithms, 424

Longitudinal waves, 213, 215
resonance of, 218-220
speed of, 223

Loop rule, 283

Loudness level, 224

Loudness of sound, 224

Lyman series, 391

Machines, 80-86
Magnet, 289
Magnetic field, 289

charge motion in, 291, 293

of Earth, 290

lines of, 289

of long straight wire, 299

of magnet, 289

sources of, 299-304

torque due to, 291
Magnetic field strength, 290
Magnetic flux, 305
Magnetic flux density, 290
Magnetic force:

on current, 290

on magnet, 289

on moving charge, 290—293
Magnetic induction, 290
Magnetic moment of coil, 300
Magnetic permeability, 305
Magnetic quantum number, 396
Magnification, 339, 353, 359-361
Magnifying glass, 359
Manometer, 150
Mass, 27

of atoms and molecules, 179, 181

relativistic, 320

and weight, 28
Mass center, 88
Mass density, 138
Mass number, 399
Mass spectrograph, 401
Mean free path, 180
Mechanical advantage, 80
Meters, ac, 329
Metric prefixes, 427
Michelson interferometer, 369
Microscope, 359, 361

435

Mirrors, 338

equations for, 339

ray diagrams for, 340—342
Modulus of elasticity, 139—140
Mole (unit), 171
Molecular mass, 171, 179
Molecular speeds, 150
Molecular weight, 171
Moment arm (see Lever arm)
Moment of inertia, 111

of various objects, 112
Momentum:

angular, 112

linear, 87-98

relativistic, 377, 381, 410
Motion, linear, 13—-26

five equations for, 13

relative, 9
Motion, rotational, 99-125

equations for, 99, 100
Motional emf, 306
Motor, 315
Multielectron atoms, 396—398
Mutual inductance, 321

Natural frequency (see Resonance
frequency)

Nearpoint of eye, 359

Nearsightedness, 359

Neutrino, 406

Neutron, 399

Neutron star, 125

Newton (unit), 27

Newton’s Law of Gravitation, 28

Newton’s Laws of Motion, 27-46

Newton’s rings, 370

Node, 215

Node rule, 283

Normal force, 47

Nuclear equations, 401

Nuclear fission, 409

Nuclear force, 399

Nuclear fusion, 409

Nuclear physics, 399-416

Nucleon, 399

Nucleus of atom, 399

Nutritionist’s calorie, 185

Ohm (unit), 256
Ohm’s Law, 256

ac circuit forms, 330
Opera glass, 365
Optical instruments, 359-365
Optical path length, 315
Orbital quantum number, 396
Order number, 366, 367
Out-of-phase vibrations, 214, 224
Overtones, 214

Pair production, 384
Parallel-axis theorem, 112
Parallel plates, 244
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Parallelogram method, 1
Paramagnetism, 305
Parent nucleus, 407
Partial pressure, 172
Particle in a tube, 387
Pascal (unit), 138
Pascal’s principle, 146
Paschen series, 391
Path length, optical, 367
Pauli exclusion principle, 396
Pendulum, 129

ballistic, 90

conical, 105

energy in, 75

seconds, 137
Perfectly elastic collision, 88
Period, 126, 213

and frequency, 126

in SHM, 128
Permeability:

of free space, 299, 305

magnetic, 305

relative, 304, 305
Permittivity, 232
Phase, 214, 224

in ac circuits, 330

change upon reflection, 369

in light waves, 366
Photoelectric effect, 382

atomic, 394
Photoelectric equation, 382
Photon, 382
Physical constants, table of, 429
Pipes, resonance of, 220
Planck’s constant, 382
Plane mirror, 338—-339
Point charge:

field of, 233

potential of, 243
Poise (unit), 157
Poiseuille (unit), 157
Poiseuille’s Law, 157
Pole of magnet, 289
Polygon method, 1
Positron, 399
Postulates of relativity, 374
Potential, absolute, 243
Potential difference, 243

related to E, 244

and work, 243
Potential, electric, 243
Potential energy:

electric, 243

gravitational, 69

spring, 127
Power, 70

ac electrical, 332—333

dc electrical, 265269

of lens, 354

in rotation, 112
Power factor, 332
Prefixes, SI, 427

INDEX

Pressure, 146
due to a fluid, 146
of ideal gas, 179, 180
standard, 146
and work, 157
Principal axis, 338
Principal focus, 338, 353
Principal quantum number, 396
Prism, 347
Probability and entropy, 209, 211
Projectile motion, 15
and range, 23-26
Proper length, 375
Proper time, 375
Proton, 399
Pulley systems, 82, 83
differential, 84, 85

Quality factor, radiation, 409
Quantized energies, 383
Quantum numbers, 396
Quantum physics, 382
Quantum of radiation, 382

R value, 193
Rad (unit), 409
Radial acceleration, 100
Radian measure, 99
Radiation damage, 409
Radiation dose, 410
Radiation of heat, 194
Radioactivity, 400
Radium, 404
Radius of gyration, 111
Range of projectile, 23, 26
Ray diagrams:

lenses, 354—355

mirrors, 340342
RBE, 409
R-C circuit, 321

current in, 322

time constant of, 321
Reactance, 330
Real image, 339
Recoil, 89
Reference circle, 128
Reference frame, 374
Reflection, Law of, 338
Refraction, 346—352
Refractive index, 346
Relative humidity, 186
Relative motion, 9
Relative permeability, 304, 305
Relativistic mass, 374
Relativity, 346—352

energy in, 374-375

length in, 375

linear momentum in, 374,

377-378

mass in, 374

time in, 375

velocity addition in, 375

Rem (unit), 410
Resistance, 256

temperature variation of, 257
Resistivity, 257
Resistors:

in parallel, 270

power loss in, 265

in series, 270
Resolution, limit of, 366
Resonance, 215

of de Broglie waves, 382, 387

of L-C circuit, 331
Resonance frequency, 215
Rest energy, 374
Restitution coeflicient, 88
Restoring force, 126
Resultant, 2
Reversible change, 209
Reynolds number, 158
Right-hand rule:

force on moving charge, 289

force on wire, 291

magnetic field of wire, 299

torque on coil, 291
Rigid-body rotation, 111-125
R-L circuit, 322
Rocket propulsion, 96, 97
Root mean square (rms) values,

329

Rotation of rigid bodies, 111-125
Rotational kinetic energy, 111
Rotational momentum, 112
Rotational motion:

in a plane, 99-110

of rigid bodies, 111-125

and translation, 111
Rotational power, 112
Rotational work, 111
Rydberg constant, 392

Scalar, 1
Scientific notation, 422
Screw jack, 84
Second Law of Thermodynamics,
209-212
Seconds pendulum, 137
Self-inductance, 321
Series connection, 270
Series limit, 391
Shear modulus, 139
Shear rate, 157
Shunt resistance, 278
SI prefixes, 427
Sievert (unit), 410
Significant figures, 417
Simple harmonic motion (SHM),
126—137
acceleration in, 127
energy interchange in, 127
velocity in, 128
Simple machines, 80—86
Simultaneity in relativity, 375



Single-slit diffraction, 366, 371
Sinusoidal motion, 127

Slip ring, 315

Snell’s Law, 346

Solenoid:

field of, 299
self-inductance of, 323

Sound, 223-231

intensity of, 223
resonance of, 218-220
speed of, 223

Sources of magnetic fields, 299 —

304

Special Theory of Relativity, 374
Specific gravity, 138

Specific heat capacity, 185

of gases, 199

Spectral line, 391

Spectral series, 391

Specular reflection, 338

Speed, 13

of compressional waves, 223
of gas molecules, 179

of light, 346

limiting, 374

of sound, 223, 225

of waves on a string, 214, 215
Spherical mirror, 338
Spin quantum number, 396
Spring:

constant of, 127

energy of, 127

Hookean, 127

period of, 128

vibration of, 126—137
Standard atmospheric pressure,

146

Standard conditions for a gas, 171
Standing waves, 214
State variables, 209
Stationary state, 383
Stefan—Boltzmann Law, 194
Stopping potential, 382
Strain, 138
Stress, 138
Sublimation, heat of, 185
Subtraction of vectors, 2
Sun, energy source of, 412
Superposition principle, 233

Tangential quantities, 100
Telephoto lens, 362
Telescope, 359, 363, 365

INDEX

Temperature:
coefficient of resistance, 257
gradient of, 193
molecular basis for, 179
Temperature scales, 166, 179
Tensile force, 47
Terminal potential, 256
Tesla (unit), 290
Test charge, 232
Thermal conductivity, 193
Thermal expansion, 166—170
Thermal neutron, 385
Thermal resistance, 193
Thermodynamics, 198—208
First Law of, 198
Second Law of, 209
Zeroth Law of, 198
Thin lens formula, 353
Thin lenses, 353358
types of, 353
Threshold wavelength, 382
Time constant:
R-C, 321
R-L, 322
Time dilation, 375
Toroid, field of, 299
Torque, 56
and angular acceleration, 111
axis for, 57
on current loop, 291
and power, 112
work done by, 111
Torr (unit), 146
Torricelli’s theorem, 158
Total internal reflection, 347
Transfer of heat, 193—-197
Transformer, 331
Transverse wave, 213, 214
Trigonometric functions, 2
review of, 419-421
Trough of a wave, 213
Twin paradox, 379

Ultrasonic waves, 223

Uniformly accelerated motion,
13-26

Unit vectors, 3

Units, operations with, 29

Universal gas constant, 171

Uranium-262, 411

Uranium-266, 406

Vaporization, heat of, 185
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Vector addition:

component method, 2
graphical method, 1
parallelogram method, 2

polygon method, 1
Vector notation, 1
Vector quantity, 1
Vector subtraction, 2
Vectors in ac circuits, 330
Velocity, 13

angular, 99

of gas molecules, 179

instantaneous, 14

in SHM, 127
Velocity addition, relativistic, 375
Velocity selector, 292
Venturi meter, 163
Vibratory motion, 126
Virtual image, 339
Viscosity, 156
Volt (unit), 243
Voltmeter, 278

Water equivalent, 185
Watt (unit), 70

Wave mechanics, 382
Wave motion, 213-222

Wave terminology, 213
Wavelength, 214

relation to velocity and
frequency, 214

Weber (unit), 305
Weight, 28, 47

and mass, 28

Wheatstone bridge, 282
Wheel and axle, 83
Work, 70

against gravity, 71
electrical, 243, 265
of expansion, 157
in machines, 80
and P-V area, 199
and rotation, 111
and torque, 111

Work-energy theorem, 70
Work function, 382

X-ray diffraction, 367

Young’s double slit, 368, 369
Young’s modulus, 139

Zeroth Law of Thermodynamics,

198



