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In the Third Edition of College Mathematics, I have maintained the point-of-view of
the first two editions. Students who are engaged in learning mathematics in the
mathematical range from algebra to calculus will find virtually all major topics from
those curricula in this text. However, a substantial number of important changes have
been made in this edition. First, there is more of an emphasis now on topics in discrete
mathematics. Second, the graphing calculator is introduced as an important problem-
solving tool. Third, material related to manual and tabular computations of logarithms
has been removed, and replaced with material that is calculator-based. Fourth, all
material related to the concepts of locus has been modernized. Fifth, tables and graphs
have been changed to reflect current curriculum and teaching methods. Sixth, all
material related to the conic sections has been substantially changed and modernized.
Additionally, much of the rest of the material in the third edition has been changed
to reflect current classroom methods and pedagogy, and mathematical modeling is
introduced as a problem-solving tool. Notation has been changed as well when
necessary.

My thanks must be expressed to Barbara Gilson and Andrew Littell of
McGraw-Hill. They have been supportive of this project from its earliest stages. I
also must thank Dr. Marti Garlett, Dean of the Teachers College at Western Governors
University, for her professional support as I struggled to meet deadlines while
beginning a new position at the University. I thank Maureen Walker for her handling
of the manuscript and proofs. And finally, I thank my wife, Dr. Jan Zlotnik Schmidt,
for putting up with my frequent need to work at home on this project. Without her
support, this edition would not have been easily completed.

PHILIP A. SCHMIDT
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New Paltz, NY
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REVIEW OF ALGEBRA
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Elements of Algebra

IN ARITHMETIC the numbers used are always known numbers; a typical problem is to con-
vert 5 hours and 35 minutes to minutes. This is done by multiplying 5 by 60 and adding 35; thus,
560 + 35 = 335 minutes.

In algebra some of the numbers used may be known but others are either unknown or not specified;
that is, they are represented by letters. For example, convert 4 hours and m minutes into minutes. This is
done in precisely the same manner as in the paragraph above by multiplying /# by 60 and adding m; thus,
h- 60+ m = 60h + m. We call 60h + m an algebraic expression. (See Problem 1.1.)

Since algebraic expressions are numbers, they may be added, subtracted, and so on, following the
same laws that govern these operations on known numbers. For example, the sum of 5- 60 + 35 and
260+ 351s (5+2) 60+ 2 -35; similarly, the sum of - 60 + m and k - 60 4+ m is (h + k) - 60 4 2m. (See
Problems 1.2-1.6.)

POSITIVE INTEGRAL EXPONENTS. If a is any number and 7 is any positive integer, the product
of the n factors ¢ - a - a - - - ais denoted by «”". To distinguish between the letters, a is called the base and n
is called the exponent.

If @ and b are any bases and m and n are any positive integers, we have the following laws of
exponents:

(1) am . Cl” — am+l7

(2) (aM)n R al’”ﬂ

am m—n a
3) yza , a#0, m > n; =T a#0, m<n

@) (a-b)'=dd"
a n aﬂ
5 (=) =— b#0
® (3)=5. »*
(See Problem 1.7.)
LET n BE A POSITIVE INTEGER and a and b be two numbers such that 4" = g; then b is called an nth
root of a. Every number a # 0 has exactly n distinct nth roots.

If @ 1s imaginary, all of its nth roots are imaginary; this case will be excluded here and treated later.
(See Chapter 35.)
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4 ELEMENTS OF ALGEBRA [CHAP. 1

If a is real and n is odd, then exactly one of the nth roots of a is real. For example, 2 is the real cube
root of 8, (2* = 8), and —3 is the real fifth root of —243[(—3)°= —243].

If a is real and 7 is even, then there are exactly two real nth roots of @ when a > 0, but no real nth
roots of @ when a < 0. For example, +3 and —3 are the square roots of 9; +2 and —2 are the real sixth
roots of 64.

THE PRINCIPAL nth ROOT OF a is the positive real nth root of @ when a is positive and the real nth
root of a, if any, when a is negative. The principal nth root of a is denoted by /a, called a radical. The
integer n is called the index of the radical and a is called the radicand. For example,

V9=3 Jea=2 J-243=-3
(See Problem 1.8.)

ZERO, FRACTIONAL, AND NEGATIVE EXPONENTS. When s is a positive integer, r is any
integer, and p is any rational number, the following extend the definition of ¢" in such a way that the
laws (1)-(5) are satisfied when 7 is any rational number.

DEFINITIONS EXAMPLES
6) @ =1,a%#0 2°=1,(ﬁ)0:1,(—8)°=1

3 [ — (s r 5_ — - — 2 _
(7 al* = = (Ja) 312 = 3, (64)°/0= (V6a) = 27 = 32,371 =32 =}
®) a?=1/d" a#0 =131 =13

[NOTE: Without attempting to define them, we shall assume the existence of numbers such as aﬁ, a”,...,in which
the exponent is irrational. We shall also assume that these numbers have been defined in such a way that
the laws (1)—(5) are satisfied.] (See Problem 1.9-1.10.)

Solved Problems

1.1 For each of the following statements, write the equivalent algebraic expressions: (a) the sum of x and 2,
(b) the sum of a and —b, (¢) the sum of 5a and 3b, (d) the product of 2a and 34, (e) the product of 2a and 5b,
(/) the number which is 4 more than 3 times x, (g) the number which is 5 less than twice y, (k) the time
required to travel 250 miles at x miles per hour, (i) the cost (in cents) of x eggs at 65¢ per dozen.

(@) x+2 (d) (2a)3a) = 64> (&) 2v-5
b) a+(=b)y=a—-b (e) QRa)5b)= 10ab (h) 250/x
(¢) 5a+3b (f) 3x+4 (i) 65(x/12)
1.2 Let x be the present age of a father. (¢) Express the present age of his son, who 2 years ago was one-third his

father’s age. (b) Express the age of his daughter, who 5 years from today will be one-fourth her father’s age.

(@) Two years ago the father’s age was x—2 and the son’s age was (x—2)/3. Today the son’s age is
24+ (x=2)/3.

(b) Five years from today the father’s age will be x + 5 and his daughter’s age will be 1 (x + 5). Today the
daughter’s age is L(x + 5) - 5.



CHAP. 1] ELEMENTS OF ALGEBRA 5

1.3 A pair of parentheses may be inserted or removed at will in an algebraic expression if the first parenthesis of
the pair is preceded by a + sign. If, however, this sign is —, the signs of all terms within the parentheses must
be changed.

(@ Sa+3a—6a=(5+3-6a=2a (b fa+ib—ta+3ib=1ta+b
(¢) (13a*—b?) + (—4&® + 3b*) — (6a* — 5b%) = 13a® — b* — 4a® + 3b* — 6a* + 5b* = 3a* + Tb°
(d) (2ab—3bc)—[5— (4ab — 2bc)] = 2ab — 3bc — [5 — 4ab + 2bc]
= 2ab —3bc— 5+ 4ab —2bc = 6ab — 5bc— 5
(e)  (2x+ 5y —4)3x = (2%)(3x) + (5r)(3x) — 4(3x) = 6x* + 15xy — 12x

(f) Sa-2 (g) 2x-3y (h) 3a*+2a-1
3a+4 5x + 6y 2a-3
15a*> — 6a 10x? — 15xy 6a* + 4a*> — 2a
+) 20a—8 +) 12xy — 18)? +) 94> — 6a + 3
15a® + 14a -8 10x% — 3xy — 18y? 6a> — 54> — 8a+3
. X2 +4x=2 ) X2 =2x—-1
@ Xx=3x 4+ x¥*-14x+6 W +3x=2xt 4 -9 x+5
(=) x> = 3x? (=) x* 4+ 333 =247
4x% — 14x 23 —Tx% +x
(—)4x? — 12x (=) =2x% — 6x% + dx
-2x+6 —x2 =3x+5
(2o = =3x+2
3
¥ +x2-1ld4x+6 P -92 4 x+5 3
S S M 4x -2 =xr-2x—-14+—-—"
x—3 XAy 4 3x—2 A v
1.4 The problems below involve the following types of factoring:
ab + ac—ad = a(b + ¢ —d) @ *+ 2ab+ b = (a * b)*
@+ b = (a+b)(a*—ab + b?) @ —b*=(a—b)a+b)
acx® 4+ (ad + be)x + bd = (ax + b)(¢cx + d) @ —b* = (a—b)(a® + ab + b?)
(@) Sx—10y = 5(x—2y) () X*=3x—4=x-dHx+1D
(b) Yer —1gt=1g1(1~g) (f) 4P —12x+9=(2x-3)
(©) X +4dx+4=(x+2)7 (8) 1262 +7x—10= (4x + 5)(3x—2)
d) ¥ +5x+4=x+Dx+4) () X¥*—-8=(x=2)(x*+2x+4)
() 2x*—12x% + 10x% = 2x%(x% — 6x + 5) = 2x*}(x — )(x = 5)
1.5 Simplify.
@ 8 42 2 @ 4x—12 _4(x-3)_ 4(x-3) _ 4
12x+20 4-3x+4-5 3x+5 15-5x 53-x) =5(x-3) 5
® 9 3x-3x _ 3x © M-x—6  (x+2)(x-3) x-3
12xy—15xz  3x-4y—3x-5z 4y—5z X+Tx+10 x+2D(x+5 x+5
© Sx=10 _5(x=2)_5 ) 62 +5x—6  (2x+3)3x—2) 3x-2
O PV R TR 2x2=3x-9  (2x+3)(x-3) x-3
(9) 3a2—11a+6.4—4a—3a2_ Ba—2)a—-3)2-3a)2+a) _ 3a—-2
) Ta2-4—6 362-16 (a-3)a+24Ga+2)(3a—2)  4Ga+2)
1.6 Combine as indicated.
2a+b a—6b 3Qa+b)+2(a—-6b) 8a-—9b
(a) + = =

10 15 30 30
2 3 5 2:4-3-245-x 2+5x
O T I e
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© 2 3 2Qa+1)=3@Ba-1) _ 5-5q
3a—1 2a+1  @Ba-DQa+1)  Ba-DQa+1)
) 3 s 3 5 _ 3(x=y)-5 _ 3x-3y-5
x+y =32 x+y (x+y)x-y) @FEp)x-y) (xFp)(x-y)
© a-2 2a+1 a—2 2a+1
¢ _

6a*>—5a—6 + 94> —4  (2a—-3)(Ba+2)  (Ba+2)3a-2)
_(@=2)Ba=2)+ QRa+1DQ2a-3) _ Ta* — 12a + 1
a a—3)3a+2)(3a-2) " (2a-3)Ba+2)(3a-2)

Perform the indicated operations.

1.8

1.9

(@ 3*=3-3-3-3=81 () 2°-2*=2"=210=1024 () d/d*=d"" =0

(h) —3*=-81 (2) (%)2(%)2= (%)5 ) a*/a" =1/a""*=1/d°

(¢) (=3)*=81 (hy a"Bamt?t = gmtrts (m) (-2)%/(=2)°=(-2)’=-8

(d) _(_3)4: —81 0] (a2)5: 25 = g0 ) a2nb5m/a3l7b2m _ b3m/un

(e) —(=3y=27 ) (a2n)3: " (0) 3673 /6"1 = 626 /61 = 6+t
Evaluate.

(@) 812 =B1=9
) 813/4:(“81)3

(d) (=2D'3=J=271=-3

&) (=32)"5= (i/—zz)“: (== 1

6

3
© @"=(E)=-0=% 0 -w0r=—@n--0
Evaluate.
(@ 4°=1 (0) (4a)’=1 (0 47'=1 () 1257 =1/125"7 =1
() 4°=4-1=4 (@) 43+a)’=4-1=4 (f) 5= (%)2= L (-12571=-1

. 5/6 5 5
) _(é) :—<6&) :_(%) =-1

) 4/5 ] 4 4
(@) —(—ﬁ) :_('_i) :‘<_%) =71
Perform each of the following operations and express the result without negative or zero exponents:

81a\ "t 3l p?

@ (bs ) B
© (a - 3b*2)(2a*1 - bz) =24"—ab® — 64~ b2 + 36° = 5—ab® — 6/ab’
a4+ b2 (aP+ b)) P+ d
a' =" (@ =) P)  ab?—dPh

2 7 » 6 a4 oplz ps
O\)\Te) T T a

a\2p23 6 o2 97 St O” _
%) L ) T e ppas b

==

2 1
(b) (al/2+a_l/2) =a+2d+a’! :a+2+2

(d)

Supplementary Problems

Combine.
(@) 2x+(3x—4y)
(b) Sa+4b—(—2a+ 3b)

(¢)

[(s4+20)—(s+ 3] = [(2s + 31) — (=45 + 50)]

(@ 8x%y—{3x%y + [2x)7 + 4x%y — (3x3% — 4%}
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1.12  Perform the indicated operations.
(@) 4x(x—y+2) © (=)= +3%) (e (2x° +5x?=33x+20) + 2x—5)
by x+2)3x-4) (d) (FP-3x+352x-7) (f) (¥ + 532 =22x+10) = 2x—3)

1.13  Factor.
(@) 8x+ 12y (e) 16a*—8ab+ b (i) (x=p)+6(x—y)+5
(b) 4dax+6ay—24az  (f) 25x% + 30xy + 9y* (j) 4x*—8x-5
(¢©) a*—4p? (g) ¥ —dx—12 (k) 404> + ab — 6b*
(d) 50ab* —984°b* (h)y a* + 23ab— 50p> () x*+24x%)? —25)*

1.14  Simplify.

@ —b? 164> =25 a*—10a + 25
(@ 5——=— (d) X
2ax + 2bx 2a—-10 4a+5
2 b) 2 2
X +4x+3 X+ xy—06y 8x
®) 2 (@ 3 . 2} X3 - 2
1-x 2x7 +6x°y  x*—=5xy+6y
1—x—12x7
© Tiy—ex
1.15  Perform the indicated operations.
Sx dx 3a 4b x? 2x+3 2x-3
@ Bt © %3 @ x+35-7735 ©) He—x e
3a  Sa 2a-3b 1 a+2 a-2
b T Ha @D ozp*tas V) %6 w6
1.16  Simplify.
X 1 1
a ‘3 Yy xSy
(@) ) X (o) 2 (d) m
2—= 3 1-Z LI NI
a X y X

ANSWERS TO SUPPLEMENTARY PROBLEMS
LIl (a) 5x—4y () Ta+b  (¢) i—-6s  (d) xy(y—3x)

112 (a) 4x*—4xy+8x () =5x*+19x%7 —12y* (e) x*+5x—4
(b) 15x*—14x-38 (d) 2x3=13x2+31x=35  (f) xX*2+4x—5-5/2x-3)

113 (a) 4(2x+3y) (&) (4a—b) (@) (x=y+1D)(x=-y+5)
(b) 2a(2x+3y—122) () (x+3) () @x+1DH@x-5)
(¢) (a—2b)a+2b) (& (x—6)(x+2) (k) (5a+2b)(8a - 3b)
(d) 2ab*(5b—Ta)(5b + Ta) (h) (a+25b)(a—2b) ) (x=p)(x+ )2 +252)
a—>b x+3 4x—1 s 4y
1.14 (o) 7 b - ~—1 (¢) P~ (d) 5(4a”—25a+ 25) (e) =3
| lla 9a* - 16b° 3a—2b 25
LIS (@ ;x Q) N (© “Taab (d) oy (@] P
Sa 8
(f) s (2) T2 =27
2 9y
16 @ 2 o EE o x+2 @ —

2a-3 X xX+y



Functions

A VARIABLE IS A SYMBOL selected to represent any one of a given set of numbers, here assumed
to be real numbers. Should the set consist of just one number, the symbol representing it is called a
constant.

The range of a variable consists of the totality of numbers of the set which it represents. For
example, if x is a day in September, the range of x is the set of positive integers 1,2, 3,...,30; if x (ft) is
the length of rope cut from a piece 50 ft long, the range of x is the set of numbers greater than 0 and less
than 50.

Examples of ranges of a real variable, together with special notations and graphical representations,
are given in Problem 2.1

FUNCTION. A correspondence (x, y) between two sets of numbers which pairs to an arbitrary number
x of the first set exactly one number y of the second set is called a function. In this case, it is/customary to
speak of y as a function of x. The variable x is called the independent variable and y is called the
dependent variable.

A function may be defined

(a) By a table of correspondents or table of values, as in Table 2.1.

Table 2.1

X 1 2 3 4 5 6 7 8 9 10
y 3 4 5 6 7 8 9 10 11 12

() By an equation or formula, as y = x + 2.

For each value assigned to x, the above relation yields a corresponding value for y. Note that the table
above is a table of values for this function.

A FUNCTION IS CALLED single-valued if, to each value of y in its range, there conresponds just one
value of x; otherwise, the function is called multivalued. For example, y = x + 3 defines y as a single-
valued function of x while y = x? defines y as a multivalued (here, two-valued) function of x.

At times it will be more convenient to label a given function of x as f(x), to be read ‘‘the f function of
x” or simply “f of x.” (Note carefully that this is not to be confused with “‘f times x.””)'If there are two

8
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CHAP. 2] FUNCTIONS 9

functions, one may be labeled f(x) and the other g(x). Also, if y = f(x) = x> = 5x + 4, the statement “the
value of the function is —2 when x = 3" can be replaced by “f(3) = —2.” (See Problem 2.2.)

Let y = f(x). The set of values of the independent variable x is called the domain of the function
while the set of values of the dependent variable is called the range of the function. For example, y = x>
defines a function whose domain consists of all (real) numbers and whose range is all nonnegative
numbers, that is, zero and the positive numbers; f{x) = 3/(x —2) defines a function whose domain
consists of all numbers except 2 (why?) and whose range is all numbers except 0. (See Problems 2.3-2.8.)

A VARIABLE w (dependent) is said to be a function of the (independent) variables x, y, z, ... if when a
value of each of the variables x, y, z, . .. is known, there corresponds exactly one value of w. For example,
the volume V of a rectangular parallelepiped of dimensions x,y,z is given by V' = xyz. Here V is a
function of three independent variables. (See Problems 2.9-2.10.)

ADDITIONAL TERMINOLOGY If the function y = f(x) is such that for every y in the range
there is one and only one x in the domain such that y = f(x), we say that f is a one-to-one
correspondence. Functions that are one-to-one correspondences are sometimes called bijections. Note
that all functions of the form ax + by + ¢ = 0 are bijections. Note that y = x? is not a bijection. Is y = x3
a bijection? (Answer: Yes!)

Solved Problems

2.1 Represent graphically each of the following ranges:

(@) x>-2 —_— () 2<x<2or|x|<2 % 9
(h) x<5 - ) Ixl>3 = 3
(c) x=-1 e (g) 3=x=5 hry 5
d) -3<x<4 -3 e (hy x<-3,x=4 >3 .

2.2 Given fix) = x> — 5x + 4, find

(@ f0)=0"-5-0+4=4 (d) fla)=d*—5a+4
(h) f)=22-5-2+4==2 () fi=x)=x>+5x+4
(©) fi=3)=(=3%=5-3)+4=28 ) fb+D=GB+1Y>=5b+1)+4=0-3b

(g) f3x)=(3x)*=53x)+4=9x>—15x+4
(h) fix+a)—fla)=[(x+a)* —5(x + a) + 4] — (& — Sa+ 4) = x> + 2ax — 5x

for+ @ —flx) [+ a)? —5(x+a)+4]— (x> —5x+4) _ 2ax—5a+ @

@) =2x-5+a
a a a
2.3 In each of the following, state the domain of the function:
x=2
) = 5, —— - = ) = /25 — x2 ——
(@) y=5x d) y G-t d) )y 5-x )y T
) y=-5x (@ y=- ©® y=V¥-9 0 y=
FE 9 r=y & y=yx ! y_16+x2
1
C =
© y=1753

Ans. (a), (b), all real numbers; (¢) x#—=5; (d) x#3,—4; () x#0; (f) =5<x<5 or |x|<35;
(g) x<-3,x=3 or |x| = 3; (h) x # £4; (i) all real numbers.
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2.5

2.6

2.7

2.8

FUNCTIONS [CHAP. 2

A piece of wire 30 in. long is bent to form a rectangle. If one of its dimensions is x in., express the area as a
function of x.

Since the semiperimeter of the rectangle is % 30 = 15 in. and one dimension is x in., the other is (15 — x)
in. Thus, 4 = x(15—Xx).

An open box is to be formed from a rectangular sheet of tin 20 x 32 in. by cutting equal squares, x in. on a
side, from the four corners and turning up the sides. Express the volume of the box as a function of x.

From Fig. 2-1. it is seen that the base of the box has dimensions (20 — 2x) by (32 — 2x) in. and the height
is x in. Then

V =x20-2x)(32 = 2x) = 4x(10 — x)(16 — x)

A closed box is to be formed from the sheet of tin of Problem 2.5 by cutting equal squares, x cm on a side,
from two corners of the short side and two equal rectangles of width x cm from the other two corners, and
folding along the dotted lines shown in Fig. 2-2. Express the volume of the box as a function of x.

One dimension of the base of the box is (20 —2x) cm; let y cm be the other. Then 2x + 2y = 32 and
y =16 —x. Thus,

V= x(Q20—-2x)(16 — x) = 2x(10 — x)(16 — x)

20-2¢ ¥
20
¢

Fig. 2-1 Fig. 2-2 Fig. 2-3

A farmer has 600 ft of woven wire fencing available to enclose a rectangular field and to divide it into
three parts by two fences parallel to one end. If x ft of stone wall is used as one side of the field, express
the area enclosed as a function of x when the dividing fences are parallel to the stone wall. Refer to
Fig. 2-3.

The dimensions of the field are x and y ft where 3x 4+ 2y = 600. Then y = 1(600 — 3x) and the required
area is

1 3
A=xy=x" 5(600 —-3x) = EX(200 -X)

A right cylinder is said to be inscribed in a sphere if the circumferences of the bases of the cylinder are in the
surface of the sphere. If the sphere has radius R, express the volume of the inscribed right circular cylinder as
a function of the radius r of its base.

Let the height of the cylinder be denoted by 2. From Fig. 2-4, h = +/R*> — 1 and the required volume is

V=m? 2h=2m*R— 2
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2.9

2.10

2.11

2.12

2.13

2.14

Given z = f{x,y) = 2x* + 3y* — 4, find

(@) f(0,0)=2(0)*>+3(0)>—4=—4 b) f2,-3) =202 +3(=3)>—4 =231
(©) flmx,=») =2=x)* + 3= —4 =2x" +3)* -4 = f(x,y)

2.2
Given fix,) == find
X =)y
i _ x>+ (—y)2 . X2+ y2 _
(Cl) f()‘v_.}) - 2 _(_y)z - 2 _}’2 —f(X,)/')
(U /P +A)y) Y1 P
O 1(53) = Tan sy = Tareiy o = A

Supplementary Problems

Represent graphically each of the following domains:

(a) x>=3 (¢) x=0 (e) Ixl<2 (g 4=x=<4
b x<5 d -3<x<-1 ) Ixl=0 (h) x<-3x=5

In the three angles, 4, B, C of a triangle, angle B exceeds twice angle 4 by 15°. Express the measure of angle
C in terms of angle A.

Ans. C=165°—-34

A grocer has two grades of coffee, selling at $9.00 and $10.50 per pound, respectively. In making a mixture of
100 Ibs, he uses x 1b of the $10.50 coffee. (¢) How many pounds of the $9.00 coffee does he use? (b) What is
the value in dollars of the mixture? (¢) At what price per pound should he offer the mixture?

Ans. (a) 100—x (b) 9(100 —x)+ 10.5x (¢) 9+0.015x
In a purse are nickels, dimes, and quarters. The number of dimes is twice the number of quarters and the

number of nickels is three less than twice the number of dimes. If there are x quarters, find the sum (in cents)
in the purse.

Ans. 65x—15
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2.15

2.16

2.17

2.18

2.19

2.20

2.21

FUNCTIONS [CHAP. 2

A and B start from the same place. 4 walks 4 mi/hr and B walks 5 mi/hr. (¢) How far (in miles) will each
walk in x hr? (b) How far apart will they be after x hr if they leave at the same time and move
in opposite directions? (¢) How far apart will they be after 4 has walked x > 2 hours if they move in
the same direction but B leaves 2 hr after 4? (d) In (¢), for how many hours would B have to walk in
order to overtake A?

Ans. (a) A,4x;B,5x b) 9x (¢) |4x—5(x—2)| d) 8

A motor boat, which moves at x mi/hr in still water, is on a river whose current is y < x mi/hr. (¢) What is

the rate (mi/hr) of the boat when moving upstream? (b) What is the rate of the boat when moving

downstream? (¢) How far (miles) will the boat travel upstream in 8 hr? (d) How long (hours) will it take the
boat moving downstream to cover 20 mi if the motor dies after the first 15 mi?

15 5

Ans. x—y b) x + 8(x — d)y ——+=

ns. (a) x—y () x+y (c) 8(x=y) ()x+y 5

o x-3 , , .t a)—
Given i) = S5, find 10), A1), fi=3), i) f39), ix +a, Lt 1B

a-=3 3y—-3 x+a-3 5
Ta+23y+2 x+a+2 x+2(x+a+2)

Ans. —%, —%, 6, 0

A ladder 25 ft long leans against a vertical wall with its foot on level ground 7 ft from the base of the wall. If
the foot is pulled away from the wall at the rate 2 ft/s, express the distance (y ft) of the top of the ladder
above the ground as a function of the time ¢ seconds in moving.

Ans. y=2J144-Tt—1

A boat is tied to a dock by means of a cable 60 m long. If the dock is 20 m above the water and if the cable is
being drawn in at the rate 10 m/min, express the distance y m of the boat from the dock after  min.

Ans. y =10y =12t + 32

A train leaves a station at noon and travels east at the rate 30 mi/hr. At 2 p.m. of the same day a second train
leaves the station and travels south at the rate 25 mi/hr. Express the distance d (miles) between the trains as a
function of 7 (hours), the time the second train has been traveling.

Ans.  d=5J617 + 1441 + 144

For each function, tell whether it is a bijection:

(@ y=x*
() y=1x
(¢ y=2x*+3

Ans. (a) No (b) Yes (c) No



Graphs of Functions

A FUNCTION y = f(x), by definition, yields a collection of pairs (x, f(x)) or (x, y) in which x is any
element in the domain of the function and f{x) or y is the corresponding value of the function. These
pairs are called ordered pairs.

EXAMPLE 1. Obtain 10 ordered pairs for the function y = 3x —2.

The domain of definition of the function is the set of real numbers. We may choose at random any
10 real numbers as values of x. For one such choice, we obtain the chart in Table 3.1.

Table 3.1

X -2 -

SIEN

<
|
[o<]
|
o |
|
I [rol—
I
[\

o | L1 2
-1 1] 4

[ jall INTIY
~
—_
o

(See Problem 3.1.)

THE RECTANGULAR CARTESIAN COORDINATE SYSTEM in a plane is a device by which there
is established a one-to-one correspondence between the points of the plane and ordered pairs of real
numbers (a, b).

Consider two real number scales intersecting at right angles in O, the origin of each (see Fig. 3-1),
and having the positive direction on the horizontal scale (now called the x axis) directed to the right and
the positive direction on the vertical scale (now called the y axis) directed upward.

Let P be any point distinct from O in the plane of the two axes and join P to O by a straight line. Let
the projection of OP on the x axis be OM = a and the projection of OP on the y axis be ON = b. Then
the pair of numbers («, b) in that order are called the plane rectangular Cartesian coordinates (briefly, the
rectangular coordinates) of P. In particular, the coordinates of O, the origin of the coordinate system, are
(0, 0).

The first coordinate, giving the directed distance of P from the y axis, is called the abscissa of P,
while the second coordinate, giving the directed distance of P from the x axis, is called the ordinate of P.
Note carefully that the points (3, 4) and (4, 3) are distinct points.

The axes divide the plane into four sections, called gquadrants. Figure 4-1 shows the customary
numbering of the quadrants and the respective signs of the coordinates of a point in each quadrant. (See
Problems 3.1-3.4.)

13
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v
A
II I
(=) ++)
Np---—-- P(a, b)
b i
a { > x
[ M
I11 v
(==) (+-)
Fig. 3-1

THE GRAPH OF A FUNCTION y = f(x) consists of the totality of points (x,y) whose coordinates
satisfy the relation y = f(x).

EXAMPLE 2. Graph the function 3x — 2.

After plotting the points whose coordinates (x, y) are given in Table 3.1, it appears that they lie on a
straight line. See Fig. 3.2. Figure 3-2 is not the complete graph since (1000, 2998) is one of its points and
is not shown. Moreover, although we have joined the points by a straight line, we have not proved that
every point on the line has as coordinates a number pair given by the function. These matters as well as
such questions as: What values of x should be chosen? How many values of x are needed? will become
clearer as we proceed with the study of functions. At present,

(1) Build a table of values.
(2) Plot the corresponding points.
(3) Pass a smooth curve through these points, moving from left to right.

Fig. 3-2

It is helpful to picture the curve in your mind before attempting to trace it on paper. If there is doubt
about the curve between two plotted points, determine other points in the interval.
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ANY VALUE OF x for which the corresponding value of function f{x) is zero is called a zero of the
function. Such values of x are also called roots of the equation f{x) = 0. The real roots of an equation
f(x) =0 may be approximated by estimating from the graph of f{x) the abscissas of its points of
intersection with the x axis. (See Problems 3.9-3.11.)

Algebraic methods for finding the roots of equations will be treated in later chapters. The graphing
calculator can also be used to find roots by graphing the function and observing where the graph
intersects the x axis. See Appendix A.

Solved Problems

31 (a) Show that the points A(1,2), B(0,—3), and C(2,7) are on the graph of y = 5x—3.
(b) Show that the points D(0, 0) and E(—1,—2) are not on the graph of y = 5x —3.

(a) The point A(1, 2) is on the graph since 2 = 5(1) — 3, B(0,-3) is on the graph since =3 = 5(0) — 3,
and C(2, 7) is on the graph since 7 = 5(2) — 3.

(b) The point D(0,0) is not on the graph since 0 # 5(0) — 3, and E(—1,-2) is not on the graph since
—2#5(-1)-3.

3.2 Sketch the graph of the function 2x. Refer to Table 3.2.

Table 3.2

y = fix) 0 2 4

Fig. 3-3

This is a linear function and its graph is a straight line. For this graph only two points are necessary.
Three points are used to provide a check. See Fig. 3-3. The equation of the line is y = 2x.

33 Sketch the graph of the function 6 — 3x. Refer to Table 3.3.

Table 3.3
X 0 2 3
y=fx) 6 0 -3

See Fig. 3-4. The equation of the line is y = 6 — 3x.
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34 Sketch the graph of the function x>. Refer to Table 3.4.
Table 3.4

X

y=fx)

[CHAP. 3

See Fig. 3-5. The equation of this graph, called a parabola, is y = x*. Note for x # 0, x> > 0. Thus, the
increases; that is, as we move from the origin
along the x axis in either direction, the curve moves farther and farther from the axis. Hence, in sketching

curve is never below the x axis. Moreover, as |x| increase, x

parabolas sufficient points must be plotted so that their U shape can be seen.

4

0,6)

2,0)

(3,-3)

Fig. 3-4

v
3,9 ]
4
-2,4)
(L1
[+
Fig. 3-5

2

3,9)

35 Sketch the graph of the function x? 4+ x — 12. Refer to Table 3.5.

Table 3.5

X

1

0

-1

y=Ax)

—-10

—12

—-12

The equation of the parabola is y = x> + x — 12. Note that the points (0,—12) and (=1,—12) are not
joined by a straight line segment. Check that the value of the function is —12} when x = —1. See Fig. 3-6.

3.6 Sketch the graph of the function —2x* 4 4x + 1. Refer to Table 3.6.

Table 3.6

y=Ax)

See Fig. 3-7.

3.7 Sketch the graph of the function (x + 1)(x — 1)(x — 2). Refer to Table 3.7.

Table 3.7
X 3 2 % 1 0 -1 =2
¥y = f(x) 8 0 -3 0 2 0 -12
This is a cubic curve of the equation y = (x + 1)(x — 1)(x —2). It crosses the x axis where x = —1, 1,

and 2. See Fig. 3-8.
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Yi Yi
B(L3) 3,8
0.1 1 @ B
X X
0 A
-1,-5) 3,-5)
(=2, -12)
Fig. 3-7 Fig. 3-8 Fig. 3-9

3.8 Sketch the graph of the function (x + 2)(x — 3)*. Refer to Table 3.8.

Table 3.8

X 5 4
y=flx) 28

(ST
(%)
[\
—_

[
|

—
|

[\
|

(98]

ool
=)
IN

12 18 16 0 =36

This cubic crosses the x axis where x = =2 and is tangent to the x axis where x = 3. Note that for

x > =2, the value of the function is positive except for x = 3, where it is 0. Thus, to the right of x = =2, the
curve is never below the x axis. See Fig. 3-9.

3.9 Sketch the graph of the function x> 4 2x — 5 and by means of it determine the real roots of x> + 2x — 5 = 0.
Refer to Table 3.9.

Table 3.9

X 2 1 0 -1 -2 ) —4
y=fx) 3 =2 -5 -6 -5 -2 3

The parabola cuts the x axis at a point whose abscissa is between 1 and 2 (the value of the function
changes sign) and at a point whose abscissa is between —3 and —4.

Reading from the graph in Fig. 3-10, the roots are x = 1.5 and x = —3.5, approximately.

¥
(-4,3) \ / 2,3)
0 X
-3,-2) 1,-2)
(-2,-5) 0,-5)

(-1,-6)

Fig. 3-10
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3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

GRAPHS OF FUNCTIONS [CHAP. 3

Supplementary Problems

Sketch the graph of each of the following functions:
(@) 3x-2 © x*-1 () x*—4x+4 (@) (x=2(x+1)?
b 2x+3 d) 4—x° (f) (x+2)(x—D(x=3)

From the graph of each function f(x) determine the real roots, if any, of f{x) = 0.
(@) xX*=4x+3 () 2x*+4x+1 (¢) x*=2x+4

Ans. (a) 1,3 (b) -0.3,-1.7 (¢) none

If 4 is a point on the graph of y = f(x), the function being restricted to the type considered in this chapter,
and if all points of the graph sufficiently near 4 are higher than A (that is, lie above the horizontal drawn
through A), then A4 is called a relative minimum point of the graph. (a) Verify that the origin is the relative
minimum point of the graph of Problem 3.4. (b) Verify that the graph of Problem 3.5 has a relative minimum
at a point whose abscissa is between x = —1 and x = 0 (at x = —%), the graph of Problem 3.7 has a relative
minimum at a point whose abscissa is between x = 1 and x = 2 (approximately x = 1.5), and the graph of
Problem 3.8 has (3, 0) as relative minimum point. Also, see Chapter 48 for a more sophisticated discussion of
minima.

If Bis a point on the graph of y = f(x) and if all points of the graph sufficiently near B are lower than B (that
is, lie below the horizontal drawn through B), then B is called a relative maximum point of the graph.
(a) Verify that (1, 3) is the relative maximum point of the graph of Problem 3.6. (») Verify that the graph of
Problem 3.7 has a relative maximum at a point whose abscissa is between x = —1 and x = 1 (approximately
x = —0.2), and that the graph of Problem 3.8 has a relative maximum between x = —l and x =0 (at x = —%).
See Chapter 48 for additional work on extrema.

Verify that the graphs of the functions of Problem 3.11 have relative minimums at x =2, x =—1,and x = 1,
respectively.

From the graph of the function of Problem 2.4 in Chapter 2 read that the area of the rectangle is a relative
maximum when x = 175

From the graph of the function of Problem 2.7 in Chapter 2 read that the area enclosed is a relative
maximum when x = 100.

Use a graphing calculator to locate the zeros of the function y = x? + 3.
Use a graphing calculator to graph y = x?, y = x*, and y = x° on the same axes. What do you notice?

Repeat Problem 3.18 using y = x°, y = x° and y = x7.



Linear Equations

AN EQUATION is a statement, such as (¢) 2x —6 = 4 —3x, (b)) > + 3y =4, and (¢) 2x + 3y = dxy + 1,
that two expressions are equal. An equation is linear in an unknown if the highest degree of that
unknown in the equation is 1. An equation is quadratic in an unknown if the highest degree of that
unknown is 2. The first is a /inear equation in one unknown, the second is a quadratic in one unknown,
and the third is linear in each of the two unknowns but is of degree 2 in the two unknowns.

Any set of values of the unknowns for which the two members of an equation are equal is called a
solution of the equation. Thus, x = 2 is a solution of (), since 2(2)—6 =4—3(2);y = 1 and y = —4 are
solutions of (b); and x = 1,y = 1 is a solution of (¢). A solution of an equation in one unknown is also
called a root of the equation.

TO SOLVE A LINEAR EQUATION in one unknown, perform the same operations on both members
of the equation in order to obtain the unknown alone in the left member.

EXAMPLE 1. Solve: 2x — 6 =4 — 3x.

Add 6: 2x =10—-3x Check: 2(2)—6 =4-3(2)

Add 3x: 5x=10 -2=-2

Divide by 5: x=2

EXAMPLE 2. Solve: {x—1=3x+2.

Multiply by LCD = 12: 4x—6 = 9x+ 10 Check: } (-9 -1=3(-19+2
Add 6 —9x: —5x =16

Divide by —5: x=-1 .

(See Problems 4.1-4.3.)

An equation which contains fractions having the unknown in one or more denominators may
sometimes reduce to a linear equation when cleared of fractions. When the resulting equation is solved,
the solution must be checked since it may or may not be a root of the original equation. (See Problems
44-438.)

RATIO AND PROPORTION. The ratio of two quantities is their quotient. The ratio of 1 inch to 1

foot is 1/12 or 1:12, a pure number; the ratio of 30 miles to 45 minutes is 30/45 = 2/3 mile per minute.

The expressed equality of two ratios, as % = f{,, is called a proportion. (See Problems 4.11-4.12.)

19
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VARIATION. A variable y is said to vary directly as another variable x (or y is proportional to x) if y
is equal to some constant ¢ times x, that is, if y = cx.

A variable y is said to vary inversely as another variable x if y varies directly as the reciprocal of x,
that is, if y = ¢/x.

Solved Problems

Solve and check the following equations. The check has been omitted in certain problems.
4.1 x=2(1-3x)=6+34—x).
x—24+6x=6+12-3x
Tx—2=18-3x
10x =20
x=2

4.2 ay+b=cy+d.

ay—cy=d-b

(a—c)y=d-b

_d-b

Ta-c

4.3 3x-2 1
=4-—x.
5 2"
4) -2 1
Multiply by 10: 6x—4 =40—5x Check: 3()5 =4—§(4)
11x=44 2=2

x=4

44  3x+1_2x+1
3x—1 2x-3°

Here the LCD is (3x — 1)(2x — 3).

Multiply by LCD: (3x+ D2x—-3)=(2x+ D@Bx—-1)
6x2—Tx=3=6x>+x—1
—8x=2

1
xX=--

4

3P+ 2=H+1

Check: ; = T ,
3-p-1 2(=9-3

-3+4 -2+4 1 1
3-4 —2-12’ 7 7
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4.5

4.6

4.7

4.8

4.9

4.10

4.11

11 3x=2
x=3 x+1 @x=3)x+1)’

x+1DH=(x=3)=3x-2

Here the LCD is (x — 3)(x + 1).

—3x=-6
x=2
6-2 4 4
heck: -1—--=—— —_—— =
Chec 3 3 3
1 1 3x—8

=3 x—2 = m The LCD is (x — 3)(x — 2).

x=2)+(x—-3)=3x-8
2x—5=3x-8
x=3

Check: When x = 3, !
x—3

called extraneous.

is without meaning. The given equation has no root. The value x = 3 is

x2=2 1
o :x+1—x_1.
X =2=@x+Dx-1-1
=x’-2

The given equation is satisfied by all values of x except x = 1. It is called an identical equation or
identity.

L1 %5
x—1" x=-3 (x=Dx=-3)
x=3)+x=-1)=2x-5

2x—4=2x-5

There is no solution. 2x —4 and 2x — 5 are unequal for all values of x.

One number is 5 more than another and the sum of the two is 71. Find the numbers.
Let x be the smaller number and x + 5 be the larger. Then x + (x + 5) = 71, 2x = 66, and x = 33. The
numbers are 33 and 38.

A father is now three times as old as his son. Twelve years ago he was six times as old as his son. Find the
present age of each.

Let x = the age of the son and 3x = the age of the father. Twelve years ago, the age of the son was
x — 12 and the age of the father was 3x — 12.

Then 3x— 12 = 6(x — 12), 3x = 60, and x = 20. The present age of the son is 20 and that of the father
is 60.

When two pulleys are connected by a belt, their angular velocities (revolutions per minute) are inversely
proportional to their diameters; that is, w; : @, = d, : d;. Find the velocity of a pulley 15 cm in diameter when
it is connected to a pulley 12 cm in diameter and rotating at 100 rev/cm.
Let w; be the unknown velocity; then d; = 15, w, = 100, and d, = 12. The given formula becomes
w12

12 .
T00=15 and ) = E(]OO) = 80 rev/min
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4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22
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Bleaching powder is obtained through the reaction of chlorine and slaked lime, 74.10 kg of lime and 70.91 kg
of chlorine producing 127.00 kg of bleaching powder and 18.01 kg of water. How many kg of lime will be
required to produce 1000 kg of bleaching powder?

Let x = the number of kg of lime required. Then

x(kg of lime) ~ 74.10(kg of lime)
1000(kg of powder)  127(kg of powder)

127x = 74 100 and x = 583.46 kg

Supplementary Problems

Solve for x and check each of the following:

x+3 2x+1 1 x
(@) 2x—=7=29—4x © —3=3 © —— 117>
4 2
B 2x-D=3(x=2)+4x=3)=0 (@) —y=5—= () alx+3)+b(x=2)=c(x=1)
8 . 2b—3a—c
Ans. (@) 6 () 3 (@ 6 A2 (@5 () o

A piece of wire 11% m long is to be divided into two parts such that one part is % that of the other. Find the
length of the shorter piece.

Ans. 4 % m

A train leaves a station and travels at the rate of 40 mi/hr. Two hours later a second train leaves the station
and travels at the rate of 60 mi/hr. Where will the second train overtake the first?

Ans. 240 mi from the station

A tank is drained by two pipes. One pipe can empty the tank in 30 min, and the other can empty it in 25 min.
If the tank is g filled and both pipes are open, in what time will the tank be emptied?

Ans. 11 min
A man invests % of his capital at 6% and the remainder at 8%. What is his capital if his total income is $4400?
Ans.  $60,000

A can do a piece of work in 10 days. After he has worked 2 days, B comes to help him and together they
finish it in 3 days. In how many days could B alone have done the work?

Ans. 6 days

When two resistances R; and R, are placed in parallel, the resultant resistance R is given by 1/R =
1/R; + 1/R,. Find R when R; = 80 and R, = 240.

Ans. 60

How soon after noon are the hands of a clock together again?
Ans. 1 hr, 5157 min

How much water will be produced in making the 1000 kg bleaching powder in Problem 4.12?
Ans. 141.81 kg

The reaction of 65.4 g of zinc and 72.9 g of hydrochloric acid produces 136.3 g of zinc chloride and 2 g of
hydrogen. Find the weight of hydrochloric acid necessary for a complete reaction with 300 g of zinc and the
weight of hydrogen produced.

Ans. 3344g, 92 ¢
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4.23  How much water must be used to prepare a 1:5000 solution of bichloride of mercury from a 0.5-g tablet?
Ans. 2500 g

4.24  Newton’s law of gravitation states that the force F of attraction between two bodies varies jointly as their
masses m; and m, and inversely as the square of the distance between them. Two bodies whose centers are
5000 mi apart attract each other with a force of 15 Ib. What would be the force of attraction if their masses
were tripled and the distance between their centers was doubled?

Ans. 33 % b

4.25 If a body weighs 20 1b on the earth’s surface, what would it weigh 2000 mi above the surface? (Assume the
radius of the earth to be 4000 mi.)

Ans. 8% b



Simultaneous
Linear Equations

TWO LINEAR EQUATIONS IN TWO UNKNOWNS. Let the system of equations be

{alx—l—bly—l-cl =0
a2X+b2_}’+Cz =0

Each equation has an unlimited number of solutions (x, y) corresponding to the unlimited number
of points on the locus (straight line) which it represents. Our problem is to find all solutions common to
the two equations or the coordinates of all points common to the two lines. There are three cases:

¥ ¥ y L
A “ Y

~ g :
x : /| :
VR ]

/

Fig. 5-1 Fig. 5-2 Fig. 5-3

(1) The system has one and only one solution; that is, the two lines have one and only one point
in common. The equations are said to be consistent (have common solutions) and independent.
See Fig. 5-1, indicating two distinct intersecting lines.

(2) The system has an unlimited number of solutions; that is, the two equations are equivalent
or the two lines are coincident. The equations are said to be consistent and dependent. See
Fig. 5-2, indicating that the two equations represent the same line.

(3) The system has no solution; that is, the two lines are parallel and distinct. The equations are
said to be inconsistent. See Fig. 5-3, indicating that the two equations result in two parallel
lines.

24
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GRAPHICAL SOLUTION. We plot the graphs of the two equations on the same axes and scale off
the coordinates of the point of intersection. The defect of this method is that, in general, only

approximate solutions are obtained. (See Problem 5.1.)

ALGEBRAIC SOLUTION. A system of two consistent and independent equations in two unknowns

may be solved algebraically by eliminating one of the unknowns.

EXAMPLE 1. Solve the system

{ 3x—6y=10
Ix+ 15y =-14
ELIMINATION BY SUBSTITUTION
Solve (5.1) for x:
\:%+b

Substitute in (5.2):
9(10+2p) + 15y = -14
30+ 18y + 15y =-14 33y =—44
Substitute for y in (5.3):
x=104(-4) =2
Check: Using (5.2),

9(3) +15(-%) = -14

EXAMPLE 2. Solve the system

2x—=3y=10
3x—4y =38
ELIMINATION BY ADDITION
Multiply (5.4) by —3 and (5.5) by 2:
—6x+49y=-30
6x—8y= 16
Add: y=-14

Substitute for x in (5.4):
2x+42=10 or x=-16
Check: Using (5.5),
3(-16)—4(-14) =38
(See Problems 5.2-5.4.)

(5.1)
(5.2)

5.3)

5.4)
5.5)
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THREE LINEAR EQUATIONS IN THREE UNKNOWNS. A system of three consistent and
independent equations in three unknowns may be solved algebraically by deriving from it a system of
two equations in two unknowns. (The reader should consult Chapter 21 for a thorough discussion of this

topic.)

EXAMPLE 3. Solve the system

Ix—y-2z= 4

{2x+3y—4z= 1
4x—=Ty—6z = -7

We shall eliminate y.
Rewrite (5.6): 2x+3y—4z= 1

3x(5.7): 9x—=3y—6z=12
Add: 11x -10z=13

Rewrite (5.8): 4x—=Ty — 6z= -7
—7%x(5.8): —=2x+7y+ 14z= =28
Add: -17x + 8z=-35

Next, solve (5.9) and (5.10).
4%x(5.9): d4x—-40z= 52
5x(5.10): —=85x +40z=-175
Add: —41x =-123
x=3

From (5.9): 113)—10z=13 z=2
From (5.6): 23)+3y—-42)=1 y=1
Check: Using (5.7),

33)-1-2(2)=4
(See Problems 5.5-5.6.)

SOLUTIONS OF LINEAR SYSTEMS USING DETACHED COEFFICIENTS.

(5.6)
(.7)
(5-8)

.9

(5.10)

In Example 4

below, a variation of the method of addition and subtraction is used to solve a system of linear
equations. On the left the equations themselves are used, while on the right the same moves are made
on the rectangular array (called a matrix) of the coefficients and constant terms. The numbering (1),

(2), (3), ... refers both to the equations and to the rows of the matrices.

EXAMPLE 4. Solve the system

2x=3y = 2
dx+Ty=-9
USING EQUATIONS USING MATRICES
2x=3y = 2 @))] 2 =3] 2
dx+Ty=-9 2) 4 719

Multiply (/) by % and write as (3). Multiply (/) by —2 and add to (2) to obtain (4).
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1
-13
Multiply (4) by 3 /13 = 2% and add to (3) to obtain (5). Multiply (4) by % to obtain (6).

x=-1 ©) (1 0‘—%)
y=-1 (6) 0 1|-

x—3y= 1 3 (1 -3
1By=-13 @) 0 13

The required solution is x = -1, y = —1.

EXAMPLE 5. Solve, using matrices, the system

4x+4y—-3z= 6
3x+2y—-3z=-2

14
6
-2
is formed by writing in order the coefficients of x, y, z and the constant terms.
There are, in essence, three moves:

{2x—3y+2z— 14
The matrix of the system

2-3 2
(4 4 -3

323

(a) Multiply the elements of a row by a nonzero number. This move is used only to obtain an element 1 in
a prescribed position.

(b) Multiply the elements of a row by a nonzero number and add to the corresponding elements of another
row. This move is used to obtain an element 0 in a prescribed position.

(¢) Exchange two rows when required.

The first attack must be planned to yield a matrix of the form

1 % x|x
0 *x x|x
0 * x|x

in which only the elements of the first column are prescribed.

Multiply first row by % : 1 —% 1y 7
Multiply first row by — 2 and add to second row: 0 10 -=7|-22
Multiply first row by —% and add to third row: 0 % —6|-23
The second attack must be planned to yield a matrix of the form

I 0 *|x*

0 1 =x|x

0 0 =x|=x

in which the elements of the first two columns are prescribed.

Multiply second row by 2‘% and add to first row: 10 _21_0 '%
Multiply second row by f;: 0 1 —%|-4
Multiply second row by — % and add to third row: 0 0 _% _%

The final attack must be planned to yield a matrix of the form

I 0 0%
0 1 Ofx
*

0 0 1

in which the elements of the first three columns are prescribed.
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Multiply third row by —2%, and add to first row: 1 0 0|4
Multiply third row by —% and add to second row: 0 1 02
Multiply third row by —23: 0 0 1|6

The solution is x =4, y =2, z = 6.

SOLUTIONS USING THE GRAPHING CALCULATOR. Systems of equations such as

2x—3y= 2
dx+7y=-9

are easily solved using the graphing calculator. See Appendix A for graphing calculator directions. Also,
software packages, such as Maple, provide broad capabilities for this topic.

Solved Problems

5.1 Solve graphically the systems

x+2y=35 x+ y=1 : 3x— 6y = 10
@ {3x—y:1’ ®) {2x+3y:0’ © 5(9x+15y:—14'

(a x=1,y=2 b)) x=3,y=-2 (¢) x=0.7y=-13 (See Fig. 5-4.)

y /)

%,

e
2y N
N, .
[4]
3,-2)
@ ® ©

Fig. 5-4

5.2 Solve algebraically:

x+2y=5 () 3x4+2y=2 () 2x+3y=3 )
(@) {3x— =1 (@ ® {5x+6y:4 %) © jLs,x—9y:—4 o)

(a) Rewrite (1): x+2y=5
Multiply (2) by 2:  6x—=2y =2
Add:  7x =7

x =1

Substitute for x in (1):

14+2y=5 y=2

Check: Using (2),
3(Hh-2=1
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(b) Multiply (1) by —=5: —15x—10y =-10

Multiply (2) by 3: 15x+ 18y = 12
Add: 8y = 2
y=1

Substitute for y in ({):

+2(}) =2 x=

Bl

Check: Using (2),

(¢) Multiply (/) by 3: 6x+9y= 9
Rewrite (2): 5x—9y =—4
Add: 1lx = 5

5

Substitute in (1):

Check: Using (2),

5.3 If the numerator of a fraction is increased by 2, the fraction is ;'1; if the denominator is decreased by 6, the
fraction is 1. Find the fraction.
Let 3 be the original fraction. Then

x+2 1
x;— =3 or 4x—y=-8 (1)

X 1
= — —_p = — 2
=66 or 6x—y 6 (2)

Subtract (/) from (2):
2x=2 and x=1

Substitute x = 1 in ({):
4—y=-8 and y=12

The fraction is %
5.4 Solve the system

2x— y+dz=6 (2

{x—5y+3z=9 @)
3x=2y+ z=2 (3

Eliminate z.
Rewrite (/): x=5+3z= 9
Multiply (3) by —3: —9x+6y—3z=-6
Add: —8x+ y = 3 4
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Rewrite (2): 2x— y+4z= 6
Multiply (3) by —4: —12x+ 8y —4z=-8
Add: —10x+ 7y ==-2 ()

Multiply (4) by —=7:  56x—T7y =-21
Rewrite (3): —10x+7y= =2
Add:  46x =-23

Substitute x = —4 in (4):
—8(-D+y=3 and y=-1

Substitute x = —%, y=—l1in ({):
-1-5(-1)43z=9 and z=3

Check: Using (2), 2(—%) -+ 4(%) =-l+1+6=6.

5.5 A parabola y = ax’ + bx + ¢ passes through the points (1,0), (2,2), and (3,10). Determine its equation.
Since (1,0) is on the parabola:
a+b+c=0 (1)

Since (2,2) is on the parabola:
4a+2b+c=2 (2)

Since (3,10) is on the parabola:
9a+3b+c=10 (3)

Subtract (/) from (2):
3a+b=2 4

Subtract (/) from (3):
8a+2b=10 (5)

Multiply (4) by —2 and add to (5):
20=6 and a=3

Substitute a = 3 in (4):

33)+b=2 and b=-7
Substitute a = 3, b= -7 in ({):

3—7+¢=0 and c¢c=4

The equation of the parabola is y = 3x> — 7x + 4.

5.6 Solve, using matrices, the system
x=5r+3z=9
2x— y+4z= (See Problem 5.4.)
3x=2y+ z=2
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I =5 3|9
2 -1 4|6
3 =2 1f2

Rewrite first row (since first element is 1): ( 1 -5 3

Begin with the matrix:

Multiply first row by —2 and add to second row: 0 9 =2
Multiply first row by —3 and add to third row: 0 13 -8

9
-12
=25

=
I~

Multiply second row by g and add to first row:
Multiply second row by 4. 0 1
Multiply second row by — % and add to third row: 0 0

©o|& enoe
W3 vl Wi

Multiply third row by cng and add to first row: 1 0
Multiply third row by —% and add to second row: 0 1
Multiply third row by —X: 0 0

—_ O O
|
IW = o

The solution is x =1, y=—1, z=3.

5.7 Solve, using matrices, the system

3x— y—6z=4
8x+4y+3z=28

2
4
8

Multiply first row by 1i: 11 3
2

Multiply first row by —% and add to second row: 0 -4 -5

Multiply first row by —4 and add to third row:

{2x+2y+3z—2

Begin with the matrix:

2 2 3
3 -1 -6
8 4 3

o

|

N

|

\O 1)

S = =

Multiply second row by % and add to first row:

=
|

Multiply second row by — %.

[
|

191w 00| colo
|

Subtract second row from third row:

Multiply third row by % and add to first row:

—_
—_ O

Multiply third row by —1 and add to second row:
Multiply third row by %: 0 0

(=)
—_ o O
b0 1IL 1ol—

1

The solutionis x =1, y=3 =

WIS

Supplementary Problems

5.8 Solve graphically the systems

x+y=>5 x=3y=1 x+y=-1
(a) {2x—y=1 () {x—2y=0 © 3x—y= 3

Ans. (@) (2,3) () (=2-D (© G, -3

— e Bl
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5.9 Solve algebraically the systems
3x+2y=2 3x—y=1 I/x+2/y=2
o { X+2y © { X— y © { /x+2/y

x—y=9 2x + 5y =41 2/x=2/y =1
= 35
o BT e Il o I
Hint: In (e) and (f) solve first for 1/x and 1/y.
Ans. (@) x=4, y=-5 () x=4% y=12 () x=1,y=2
& x=10.y=5 @ x=0EC Py g

5.10 A and B are 30 km apart. If they leave at the same time and travel in the same direction, 4 overtakes B in
60 hours. If they walk toward each other, they meet in 5 hours. What are their rates?

Ans. A, S%km/hr; B, 2%km/hr

5.11 Two trains, each 400 ft long, run on parallel tracks. When running in the same direction, they pass in 20 s;
when running in the opposite direction, they pass in 5 s. Find the speed of each train.

Ans. 100 ft/s, 60 ft/s

5.12  One alloy contain 3 times as much copper as silver; another contains 5 times as much silver as copper. How
much of each alloy must be used to make 14 kg in which there is twice as much copper as silver?

Ans. 12 kg of first, 2 kg of second

5.13 If afield is enlarged by making it 10 m longer and 5 m wider, its area is increased by 1050 square meters. If its
length is decreased by 5 m and its width is decreased by 10 m, its area is decreased by 1050 square meters.
Find the original dimensions of the field.

Ans. 80 mx 60 m

5.14  Solve each of the following systems:
x+y+z= 3 3x +y+4z=6 4x—-3y+ 3z= 8
(a) 2x+y—z=-6 () 2x=3y—=5z=2 (e) 2x 43y +24z= 1
3x—y+z=11 3x—4y+3z=38 6x— y+ 6z=-1
4x+4y—-3z= 3 2x=3y—=3z=9 6x+2y+4z= 2
b) 12x+3y+2z=-4 (d) x+3y-2z=3 (f) {4x— y+2z=-3
3x— y+4z= 4 3x—4y— z=4 Tx—=2y—3z= 5
Ans. (@) x=1,y=-3,z=5 (o) x:%,y':—%7z:% (e) x:—%,y:—4,z:%
(b) XZZ,}':—Z,Z:—I (d) X=37y=2,z=—3 (f) X:%, y:%

5.15  Find the equation of the parabola y = ax® + bx + ¢ which passes through the points (1,6), (4.0), (3,4). Check
your result using a graphing calculator.

Ans. y=-x+3x+4
5.16  Solve the systems in Problem 5.14 above using a computer software package such as Maple.

5.17 Repeat Problems 5.8 and 5.9, solving the systems using a graphing calculator.



Chapter 6

Quadratic Functions
and Equations

THE GRAPH OF THE QUADRATIC FUNCTION y = ax? + bx + ¢, a# 0,isa parabola. Ifa > 0, the
parabola opens upward (Fig. 6-1); if @ < 0, the parabola opens downward (Fig. 6-2). The lowest point
of the parabola of Fig. 6-1 and the highest point of the parabola of Fig. 6-2 are called vertices. The abscissa
of the vertex is given by x = —b/2a. (See Problem 6.1.). See Chapter 36 for a full discussion of parabolas.

y
’A Vertex\ A
o \ / - /\0\ X
Vertex
y=ax’+bx+c,a>0 y=axt+bx+c,a<0
Fig. 6-1 Fig. 6-2
A QUADRATIC EQUATION in one unknown x is of the form
ax* +bx+c=0 a#0 6.1)

Frequently a quadratic equation may be solved by factoring. (See Problem 6.2.)
Every quadratic equation (6.7) can be solved by the following process, known as completing the
square:

(@) Substract the constant term ¢ from both members.
(). Divide both member by a, the coefficient of x°.

33
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(¢) Add to each member the square of one-half the coefficient of the term in x.
(d) Set the square root of the left member (a perfect square) equal to * the square root of the
right member and solve for x.

EXAMPLE 1. Solve 3x*> — 8x—4 = 0 by completing the square.

8 4
(@) 3x?—8x—4, b) xz_gx:?
© x-Syplo_4 16 28 [1( §)]z_(_i)2_ 16
9T T3 9 T [a\T3) ) T
4_ .2V 4 27 4=27
—_ =t — = _ + —
d x ;=5 Then x 353 3

(See Problem 6.3.)
Every quadratic equation (6./) can be solved by means of the quadratic formula

Y_—bivb2—4ac
T 2a

(See Problems 6.4-6.5.)
It should be noted that it is possible that the roots may be complex numbers.

EQUATIONS IN QUADRATIC FORM. An equation is in quadratic form if it is quadratic in some

function of the unknown. For example, if the unknown is z, the equation might be quadratic in z* or

in 23,

EXAMPLE 2. Solve x* + x? — 12 = 0. This is a quadratic in x>.

Factor:
A= -3 +4H=0
Then
¥=3=0 ¥ +4=0
x=*3 X =2

(See Problems 6.11-6.12).

EQUATIONS INVOLVING RADICALS may sometimes reduce to quadratic equations after squaring
to remove the radicals. All solutions of this quadratic equation must be tested since some may be
extraneous. (See Problems 6.13-6.16.)

THE DISCRIMINANT of the quadratic equation (6.1) is, by definition, the quantity #*> —4ac. When
a, b, ¢ are rational numbers, the roots of the equation are

Real and unequal if and only if * — 4ac > 0.
Real and equal if and only if 5> — 4ac = 0.
Complex if and only if #* —4ac < 0. (See Chapter 39.)

(See Problems 6.17-6.18.)

SUM AND PRODUCT OF THE ROOTS. If x; and x, are the roots of the quadratic equation (6.7),
then x| + x, = —b/a and x| + x, = ¢/a.
A quadratic equation whose roots are x; and x, may be written in the form

xz—(xl—i—xz)x—l—xl X, =0
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THE GRAPHING CALCULATOR. The graphing calculator can easily be used to find the roots of a
quadratic equation. See Appendix A for graphing calculator directions.

Solved Problems

6.1. Sketch the parabolas: (¢) y = x*> —2x—8, (b) y = 2x> +9x — 9. Determine the coordinates of the vertex
V(x,y) of each.

Vertex:
b 2 2 e
(a) X = % ﬁ_l y=1 2:-1-8=-9
hence, V(1,-9). See Fig. 6-3(a).
9 9 9\2 9 9
® v=mpmr =) 06)-0 s
hence, V(%,%). See Fig. 6-3(b).
y s
(12, 0) V(9/4, 9/8)
(07 _9)
(@) ®)

Fig. 6-3

6.2. Solve by factoring:
(@) 4x*=5x=x(4x—5 =0 () 4x*+20x+25=02x+52x+35 =0
(b) 4> -9=02x-3)2x+3)=0 (f) 6x*+13x+6=0CBx+2)2x+3)=0
(© X*—=4x+3=x-Dx-3)=0 (9 3x*+8ax—3a">=Bx—a)x+3a)=0
d) X*=6x4+9=(x=-3)(x-3)=0 () 10ax*>+ (15-8a*)x—12a = 2ax + 3)(5x—4a) =0
Ans. (@) 0.3 (@ L3 (@ -3-3 (9 a/3, —3a
® 3-3 @ 33 (D -i-1 B - 445

6.3. Solve by completing the square: (¢) x> —2x—1=0, (b) 3x*> +8x+7 = 0.

(@ x¥*=2x=1; X*=2x+1=14+41=2; x—-1==%2; x=1=x.2.
8 7 8§ 16 7 16 5
2 — 7 2aSe=_L. 2.° N —_2.
(b) 3x~+8x 7; x+3x 3 X +3»¢+9 3+9 5
4 -5 ING -4+ /5
=t === = "
x+3 179 T3 X 3 .
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6.4. Solve ax? 4 bx + ¢ =0, a#0, by completing the square.
Proceeding as in Problem 6.3, we have
» _ B ¢ b*—dac

x‘+bx——c x2+bv+ -
’ T a a” ' 4a* 4 a 4d*

b b% —4dac Vb2 —4ac ) —b = \b* —4dac

2= =+ d x=
x+2a 4a? 2 0 e X

6.5. Solve the equations of Problem 6.3 using the quadratic formula.

—b+ VP —dac —(=2) =22 —4)(=1) 2*A+4 2+22 . f
= = 21 -T2 - =2

@  x 2a 2
~8)+87—4-3-7 -8+./64—84 —8x-20 -8x2i\5 —-4=i5
2-3 6 6 6 3
6.6. An open box containing 24 cm? is to be made from a square piece of tin by cutting 2 cm squares from each

corner and turning up the sides. Find the dimension of the piece of tin required.
Let x = the required dimension. The resulting box will have dimensions (x —4) by (x —4) by 2, and its

volume will be 2(x —4)(x — 4). See Fig. 6-4. Then
2(x —4)* = 24, x—4=+2/3, and x =4 =23 =7.464, 0.536

The required square of tin is 7.464 cm on a side.

22—+ -4 ——F— } —b

Fig. 6-4

6.7.  Two pipes together can fill a reservoir in 6 hr 40 min. Find the time each alone will take to fill the reservoir if

one of the pipes can fill it in 3 hr less time than the other.
Let x = time (hours) required by smaller pipe, x — 3 = time required by larger pipe. Then

1 1
— = part filled in 1 hr by smaller pipe T3 part filled in 1 hr by larger pipe
X X =

. . 1 3 .
Since the two pipes together fill 55 = 2 of the reservoir in 1 hr,
3

+ =— 20(x = 3) + 20x = 3x(x —3),
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3x2 —49x 4+ 60 = 3x — 4)(x — 15) = 0, and  x=4%15

The smaller pipe will fill the reservoir in 15 hr and the larger pipe in 12 hr.

6.8. Express each of the following in the form a(x —h)* + b(y —k)> = c.
(@) xX*4+)y*—6x—9y+2=0.
(F=6x)+ (=9 =-2 (F=6x+N+07 -9y +8)=-—2+9+8 =10
(x=3+0-9"=1¢
(b) 3x*+4” +6x—16y—21=0.
3(x% 4 2x) + 4% —4y) = 21 32 4 2x + 1)+ 407 —4y +4) =21 4+ 3(1) + 4(4) = 40

3(x+ 17 +4(y—2)* =40

6.9.  Transform each of the following into the form ay/(x —h)? +k or avk — (x—h)>.

(@ VAT =8x+9=2 —2x+§ =2/ =2+ D) +§=2/(x— 17 +}
(b) V8x—x2=16—(x% —8x + 16) = /16 — (x — 4)2
(c) \/3—4x—2x2=\/i~1/%—2x—x2=\/i~\/%—(x2+2x+1)=\/§~\/%—(x+1)2

6.10. If an object is thrown directly upward with initial speed v ft/s, its distance s ft above the ground after ¢ s is
given by

s =Vvt— %gl2
Taking g=32.2 ft/s2 and initial speed 120 ft/s, find (@) when the object is 60 ft above the ground, (b) when

it is highest in its path and how high.
The equation of motion is s = 1207 — 16.17.

(a) When s = 60:
60 = 1201 —16.17 or 16.17—1201460 =0

f 120 = /(120)> — 4(16.1)60 _ 120 = /10536 _ 120 = 102.64
n 32.2 B 32.2 B 32.2

=691, 0.54

After 1 = 0.54 s the object is 60 ft above the ground and rising. After 1 = 6.91 s, the object is 60 ft
above the ground and falling.

(b) The object is at its highest point when
—-b _ —(=120)
2a 2(16.1)

=3.73s. Its height is given by 1207 — 16.17 = 120(3.73) — 16.1(3.73)> = 223.6 ft.

6.11.  Solve 9x% — 10x% + 1 = 0.

Factor: (x> = 1)(9x>=1)=0. Then x>’ =1 =0, 9x>—1=0; x

Il
I+
=

Il
1+

i

6.12.  Solve x* —6x* + 12x —9x +2 =0.
Complete the square on the first two terms: (* =63 +9xH) +3x? —9x+2=0
or (*=3x7 +3(*-3x0)4+2=0
Factor: [(x* =3x) + 21[(x* =3x) + 11=0
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Then x*—-3x4+2=(x-2(x—-1)=0 and «x=1,2

X=3x+1=0 and x=- ==

6.13. Solve v5x—1—x=1.
Transpose one of the radicals: Vix—1=/x+1

Square: Sx—1=x+2J/x+1
Collect terms: dx-2=2x or 2x—1=x

Square:
4 —4x+1=x, 47 -Sx+1=@x—Dx-1)=0, and x=11

For x = L: ,/5(%)—1—&:07&1.
T=1

For x=1: \/5(1)—1—\/— The root is x = 1.

6.14. Solve 6x+7—+3x+3=1.
Transpose one of the radicals: /6x+7=1++3x+3
Square: 6x+7=1+2/3x+3+3x+3
Collect terms: 3x+3=2/3x+3

Square:
Ox* +18x+9=4@Bx+3)=12x+12, 9’ +6x-3=33x—1)(x+1)=0, and x=

wal—

Forx=1: \Jo(h+7-3(H)+3=3-2=1.
For x=-1: 1-0=1. The roots are x =1,—1.

TV
Vx+T-+x-1
Multiply the numerator and denominator of the fraction by (vx + 1 + v/x— I):
W FT+VE=DEXFT+V-D) D+ 2V -1+ (x—1) _ T
ey P T B e R e Ve VR
Then x—3:—m, X —6x+9=x*—1, and X=3

6.15. Sol 3.

wIc

+

WIS

Check:

wIes
[

6.16.  Solve 3x* —5x ++/3x2 = 5x + 4 = 16.

Note that the unknown appears in the same polynomials in both the expressions free of radicals and
under the radical. Add 4 to both sides:

3x2 =5y +4+3x2—5x+4=20
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6.17.

6.18.

6.19.

6.20.

6.21.

Let y = 4/3x% — 5x 4+ 4. Then

V4y-20=0p+50p-4H=0 and y=4,-5

Now v/3x2 — 5x + 4 = =5 is impossible. From v/3x? — 5x + 4 = 4 we have

3xr—5x+4=16, 3 —5x—12=0Gx+4)(x—3)=0, and x=3,—%
The reader will show that both x =3 and x = —‘3—‘ are solutions.

Without solving determine the character of the roots of

(@) x*—8x+9=0. Here > — 4ac = 28; the roots are irrational and unequal.

() 3x%—8x+9=0. Here b* — 4ac = —44; the roots are imaginary and unequal.
(¢) 6x*—=35x—6=0. Here b*> — 4ac = 169; the roots are rational and unequal.
(d) 4x*—4B3x+3 =0. Here b* — 4ac = 0; the roots are real and equal.

(NOTE: Although the discriminant is the square of a rational number, the roots % V3, % /3 are not rational.
Why?)

Without sketching, state whether the graph of each of the following functions crosses the x axis, is tangent to
it, or lies wholly above or below it.

(@) 3x>+5x—2. b?* —4ac = 25 + 24 > 0; the graph crosses the x axis.

(b) 2x>+5x+4. b?* —4ac = 25— 32 < 0 and the graph is either wholly above the wholly below the x
axis. Since f{0) > 0 (the value of the function for any other value of x would do
equally well), the graph lies wholly above the x axis.

(¢) 4x*—20x+25. b? —4ac = 400 — 400 = 0; the graph is tangent to the x axis.
(d) 2x—9—4x> b —4ac=4-144 <0 and f{0) < 0; the graph lies wholly below the x axis.

Find the sum and product of the roots of

b
(@) x*+5x—8=0. Ans. Sum = - -5, product = g = -8.
(b) 8x*—x-2=0 or x2+éx—£:O. Ans. Sum:%, product:—}—l‘
() 5-10x—=3x*=0 or X’ +@x-3=0. Ans. Sum = -1 product = -3.

Form the quadratic equation whose roots x; and x, are:

(a) 3,%. Here x, +x2:%andxl : «\‘2:%- The equation is x2—¥x+§:0 or 5x>—17x+6=0.

() =24 345,-2-35.Herex, +x, =—4 and x, - x, = 4 —45 = —41. The equationis x> + 4x — 41 = 0.

© 3-iV2 3+iV2
2 2

4x> = 12x+ 11 =0.

. The sum of the roots is 3 and the product is %. The equation is x* — 3x + % =0or

Determine & so that the given equation will have the stated property, and write the resulting equation.

(@) x*+4kx +k+2 =0 has one root 0. Since the product of the roots is to be 0, k+2 =0 and k = —2.
The equation is x*> —8x = 0.

(b) 4x?>—8kx—9 = 0 has one root the negative of the other. Since the sum of the roots is to be 0, 2k = 0
and k = 0. The equation is 4x> —9 = 0.

(¢) 4x?—8kx+ 9 = 0 has roots whose difference is 4. Denote the roots by r and r + 4. Then r + (r +4) =
2r+4 =2kandr(r+4) = %. Solving for r = k—2 in the first and substituting in the second, we have
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6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

QUADRATIC FUNCTIONS AND EQUATIONS [CHAP. 6

k=2)k+2)= %; then 4k°—16=9 and k= =* % The equation are 4x* +20x +9 = Oand4x? —
20x +9=0.

(d) 2x*=3kx+ 5k =0 has one root twice the other. Let the roots be r and 2r. Then r+ 2r = 3r = 3k,
= %k, and r(2r) = 21 = %k. Thus k = 0, 5. The equations are 2x> = 0 with roots 0, 0 and 2x* — 15x +
25 = 0 with roots 3, 5.

Supplementary Problems

Locate the vertex of each of the parabolas of Problem 3.11. Compare the results with those of Problem 3.14.

Solve for x by factoring.

(@) 3x*+4x=0 (¢ X*+2x-3=0 () 10x*=9x+2=0

(b) 16x*=25=0 d) 2x*+9x-5=0 (f) 2x*=(a+4b)x+2ab =0
Ans. (@) 0,-3 (b = (© 1,-3 () 1,-5 (o 1%,

[SA0N)

(f) 3a2b

NI

Solve for x by completing the square.
(@ 2> +x=5=0 (¢) 3x°+2x=2=0 () 15x*—(16m—14)x+4m*>—-8m+3=0
(h) 2x*—4x=3=0 (d) 5x*—4x+2=0
Ans. (@) J=1=44D) ) 1Q=V10) (0 =12V @ te=ie
(@ 1@m—-1),12m-3)

Solve the equations of Problem 6.24 using the quadratic formula.

Solve 6x% 4 5xy — 6y 4+ x + 8y —2 = 0 for (@) y in terms of x, (b) x in terms of .
Ans. (@) 1Gx+2,10-2x) ) 11-3»30-D

Solve.

2 3
—_—— = V2x+3—-J4=x=2
2x2—=x  (2x*—=x)? @ ot *

=2 d) VEx+i-Bx=2=5 () Vx—2-Jx-2=2

(@ x*=29x*+100=0 (© 1
21 1

x+2 x—4
Ans. (@) *£2,%5 ) 5,7 (0 -L3ila=iv] (d) 342 (e) 3 (f) 2,6

(b

Form the quadratic equation whose roots are

(a) The negative of the roots of 3x* + 5x—8 = 0.
(b) Twice the roots of 2x*> — 5x 42 = 0.
(¢) One-half the roots of 2x2 —5x —3 = 0.

Ans. (@) 3x*=5x-8=0 (b)) x*-5x+4=0 (o) 8x*—10x-3=0
The length of a rectangle is 7 cm more than its width; its area is 228 cm?. What are its dimensions?

Ans. 12cm X 19cm

A rectangular garden plot 16 m X 24 m is to be bordered by a strip of uniform width x meters so as to
double the area. Find x.

Ans. 4 m
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6.31.  The interior of a cubical box is lined with insulating material § cm thick. Find the original interior dimensions
if the volume is thereby decreased by 271 cm®.

Ans. 10 cm

6.32. What are the dimensions of the largest rectangular field which can be enclosed by 1200 m of fencing?

Ans. 300 m x 300 m

(NOTE. See Chapter 48 for additional material involving extrema.)



Inequalities

AN INEQUALITY is a statement that one (real) number is greater than or less than another; for
example, 3 > —2,-10 < =5.
Two inequalities are said to have the same sense if their signs of inequality point in the same
direction. Thus, 3 > =2 and =5 > —10 have the same sense; 3 > —2 and —10 < =5 have opposite senses.
The sense of an equality is not changed:

(a) If the same number is added to or subtracted from both sides
(b) If both sides are multiplied or divided by the same positive number

The sense of an equality is changed if both sides are multiplied or divided by the same negative
number. (See Problems 7.1-7.3.)

AN ABSOLUTE INEQUALITY is one which is true for all real values of the letters involved; for
example, x*> 4+ 1 > 0 is an absolute inequality.

A CONDITIONAL INEQUALITY is one which is true for certain values of the letters involved; for
example, x +2 > 5 is a conditional inequality, since it is true for x = 4 but not for x =/1.

SOLUTION OF CONDITIONAL INEQUALITIES. The solution of a conditional inequality in one
letter, say x, consists of all values of x for which the inequality is true. These values liec on one or more
intervals of the real number scale as illustrated in the examples below.

To solve a linear inequality, proceed as in solving a linear equality, keeping in mind the rules for
keeping or reversing the sense.

EXAMPLE 1. Solve the inequality 5x +4 > 2x + 6.
Subtract 2x from each member } 3>

Subtract 4 from each member

Divide by 3: x> %
Graphical representation: (See Fig. 7-1.)

o+
N

o
-

(See Problems 7.5-7.6.)

Copyright 1958 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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To solve a quadratic inequality, f(x) = ax® + bx 4 ¢ > 0, solve the equality f(x) = 0, locate the roots r, and r,
on a number scale, and determine the sign of f(x) on each of the resulting intervals.

EXAMPLE 2. Solve the inequality 3x* —8x + 7 > 2x% = 3x + 1.
Subtract 2x —3x + | from each member:

X =5x+6>0

Solve the equality x> —5x 46 = 0:
x =2, x=3

Locate the roots on a number scale (see Fig. 7-2).

f(x)>0 fin<o  f>0

2 3
Fig. 7-2
Determine the sign of f(x) = x> = 5x + 6
On the interval x < 2: f(O)=6>0
On the interval 2 < x < 3: f(3)=%-%$+6<0
On the interval x > 3: f@=16-20+6>0

The given inequality is satisfied (see darkened portions of the scale) when x <2 and x > 3. (See
Problems 7.7—7.11.)

Solved Problems

7.1 Given the inequality —3 <4, write the result when (@) 5 is added to both sides, (b) 2 is subtracted from both
sides, (¢) —3 is subtracted from both sides, (d) both sides are doubled, (¢) both sides are divided by —2.

Ans. (@) 2<9, (B -5<2,  (0) 0<7, (d) —6<8, (o) 3>-2

7.2 Square each of the inequalities: (a) —3<4, (b) —3>—4
Ans. (a) 9<16, () 9<16

7.3 If a >0, b >0, prove that a> > b* if and only if a > b.

Suppose a > b. Since a > 0, @ > ab and, since b > 0, ab > b*>. Hence, ¢*> > ab > b* and d*> > b°.
Suppose @ >b*. Then &*>=b = (a—b)a+b)>0. Dividing by a+5b >0, we have a—b>0
and a > b.

b 1 1
7.4 Prove%+—2>7+7ifa>0,b>0,anda;ﬁb.
b a*> a b

Suppose a > b; then &> >b* and a—b > 0. Now a*(a—b) > b*(a—b) or & —a*h > ab>—b*> and
& + b > ab® + a®b. Since i*b* > 0,

P+b ab®+d*b ) a b 1 1

R AN A

Why is it necessary that @ > 0 and » > 0?  Hint: See Problem 7.3.
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7.5 Solve 3x +4 > 5x + 2.

Subtract Sx + 4 from each member:

=2x > =2
Divide by —2:
x<1
See Fig. 7-3.
o 1

Graphical representation

Fig. 7-3
7.6 Solve 2x — 8 < 7x + 12.
Subtract 7x — 8 from each member:
—5x < 20
Divide by —5:
x>—4
See Fig. 7-4.
- 0

Graphical representation

Fig. 7-4

7.7 Solve x% > 4x + 5.

Subtract 4x + 5 from each member:
X —4x=5>0

Solve the equality f(x) = x> —4x—5 = 0:

x=-1,5
Locate the roots on a number scale.
Determine the sign of f(x)
On the interval x < —1: f(=2)=4+8-5>0
On the interval -1 < x <5: f(0)=-5<0
On the interval x > 5: f(6)=36—-24-5>0

The inequality is satisfied when x < —1 and x > 5. See Fig. 7-5.

.

1 E—

-1 0 5

Fig. 7-5

[CHAP. 7
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7.8 Solve 3x* +2x+2 < 2x> +x + 4

Subtract 2x* 4+ x + 4 from each member:

¥ +x—2<0
Solve f(x) = x>+ x=2=0:
x=-2,1

Locate the roots on a number scale.
Determine the sign of f(x)

On the interval x < =2: f(=3)=9-3-2>0

On the interval =2 < x < I: fO)=-2<0

On the interval x > 1: fQ)=442-2>0

The inequality is satisfied when =2 < x < 1. See Fig. 7-6.

I
r

-2 0 1

Fig. 7-6

7.9 Solve (x + 5)(x — 1)(x—2) < 0.

Solve the equality f(x) = (x +5)(x—-1)(x=2)=0. x=1, 2, =5
Locate the roots on a number scale.
Determine the sign of f(x)

On the interval x < —5: f(=6) = (D=8 <0
On the interval =5 < x < 1: f(0)=5-1)-2)>0
On the interval 1 < x < 2: ) =HE) (-1 <o
On the interval x > 2: f3)=8:2-1>0

The inequality is satisfied when x < =5 and 1 < x < 2. See Fig. 7-7.

O Q)
-5 1 2

Fig. 7-7

7.10  Solve (x —2)*(x—5) > 0.
Solve the equality filx) = (x=2’(x=5)=0: x=2,2,5

Locate the roots on a number scale.

Determine the sign of f{(x)

On the interval x < 2: fO)=H)(=) <0
On the interval 2 < x < 5: fQ=H)(=-<0
On the interval x > 5: f(6)=(H)(+)>0

The inequality is satisfied when x > 5. See Fig. 7-8.

M(P

5
Fig. 7-8

(NOTE: The inequality (x —2)*(x — 5) < 0 is satisfied when x < 2 and 2 < x < 5.
The inequality (x —2)>(x — 5) = 0 is satisfied when x =5 and x = 2.)

45
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7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21
7.22

7.23

INEQUALITIES [CHAP. 7

Determine the values of k so that 3x> + kx + 4 = 0 will have real roots.

The discriminant > — 4ac = k? — 48 = (k — 43/3)(k + 4/3) = 0. The roots will be real when k = 4+/3 and
when k < —44/3, that is, when |k| = 4/3.

Supplementary Problems

If 2)? + 4xy — 3x = 0, determine the range of values of x for which the corresponding y roots are real.

Ans. Here

= —4x +/16x2 + 24x _ 2x=* V4x2 + 6x
N 4 - 2

will be real provided 4x2 + 6x = 0. Thus, y will be real for x =< —% and for x = 0.

Prove: If a >band ¢ > d, thena+c¢>b+d.
Hint: (a—b)+(c—d)=(a+c)—(b+d) > 0.

Prove: If a # b are real numbers, then o> + b > 2ab.

Hint: (a—5b)> > 0.

Prove: If a # b # ¢ are real numebrs, then a® + b* + ¢2 > ab + bc + ca.

Prove: If a > 0, b > 0, and a# b, then a/b+ b/a > 2.

Prove: If a> + b*> =1 and ¢* + d*> = 1, then ac + bd = 1.

Solve: (a) x—4>-2x+5 (¢) x*=16>0 (&) x2—6x>-5
() 4+3x<2x+24 (d) x*—4x<5 (f) 5x>+5x—-8=3x>+4
Ans. (@) x>3 b)) x<20 (© IxI>4 d -1<x<5

() x<l,x>5 (f) -4=x=3

Solve: (@) (x+D(x=2)(x+4)>0 ®) x=-1D’x=-3)x+2<0
© (x+3)(x-27(x-5°<0

Ans. (@) -4<x<-1,x>2 b)) x<-2,1<x<3 () -3<x<2,2<x<5

In each of the following determine the domain of x for which y will be real:

(@) y=+2x>=7x+3 (©) y=+61x>+ 144x + 144 () xy*+3xy+3x—4y—4=0

(b) y=+6-5x—4x? (d) Y +2xy+dp+x+14=0 (f) 62 +5xy—6)> +x+8—2=0

Ans. (@) x=1x=3 (¢) all values of x () —4=x=%
(b) —2SXS% d) x=-5x=2 (f) all values of x

Prove that if « < b, a > 0, and b > 0, then ¢ < b>. Is the converse true?
Solve Problem 7.12 using a graphing calculator.

Solve Problem 7.12 using a computer sofware package.



Chapter 8

The Locus of
an Equation

WHAT IS A LOCUS? Locus, in Latin, means location. The plural of locus is loci. A locus of points is
the set of points, and only those points, that satisfy conditions.

For example, the locus of points that are 2 m from a given point P is the set of points 2 m from P.
These points lie on the circle with P as center and radius 2 m.

To determine a locus:

(1) State what is given and the condition to be satisfied.

(2) Find several points satisfying the condition which indicate the shape of the locus.

(3) Connect the points and describe the locus fully. For example, the locus x(y — x) = 0 consists of
the lines x = 0 and y — x = 0. The reader can easily sketch several points and the locus.

DEGENERATE LOCI. The locus of an equation f(x,y) =0 is called degenerate if f(x,y) is the
product of two or more real factors g(x, y), h(x, y),.... The locus of f{(x,y) = 0 then consists of the loci

of g(x,») =0, /i(x,y) =0,.... (See Problem 8.1.)

INTERCEPTS. The intercepts on the coordinate axes of a locus are the directed distances from the
origin to the points of intersection of the locus and the coordinate axes.

To find the x intercepts, set y = 0 in the equation of the locus and solve for x; to find the y intercepts,
set x = 0 and solve for y. (See Problem 8§.2.)

SYMMETRY. Two points P and Q are said to be symmetric with respect to a point R if R is the
midpoint of the segment PQ (see Fig. 8-1). Each of the points is called the symmetric point of the other
with respect to the point R, the center of symmetry.

Two points P and Q are said to be symmetric with respect to a line /if / is the perpendicular bisector
of the segment PO (see Fig. 8-2). Each of the points P, Q is called the symmetric point of the other with
respect to /, the axis of symmetry.

A locus is said to be symmetric with respect to a point R or to a line / if the symmetric point with
respect to R or / of every point of the locus is also a point of the locus (see Figs. 8-3 and 8-4). Also see
Chapter 22 for more on symmetry.

47
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1
’ a
Q Q
@
R R
a
P,
P,
Symmetry with respect to Symmetry with respect to a
a line . point R.
Fig. 8-1 Fig. 8-2 Fig. 8-3 Fig. 8-4

SYMMETRY OF A LOCUS. The locus of a given equation f{(x,y) = 0 is symmetric with respect to
the x axis if an equivalent equation is obtained when y is replaced by —y, is symmetric with respect to
the y axis if an equivalent equation is obtained when x is replaced by —x, and is symmetric with respect
to the origin if an equivalent equation is obtained when x is replaced by —x and y is replaced by
—y simultaneously.

An equation whose graph is symmetric with respect to the y axis is called even; one whose graph is
symmetric with respect to the x axis is odd. See Chapter 22 for more on symmetry.

EXAMPLE 1. Examine x? + 2?4 x = 0 for symmetry with respect to the coordinate axes and the origin.
When y is replaced by —y, we have x> + 23 + x = 0; the locus is symmetric with respect to the x axis.
When x is replaced by —x, we have x> + 2> — x = 0; the locus is not symmetric with respect to the y axis.
When x is replaced by —x and y by —y, we have x* + 2y* — x = 0; the locus is not symmetric with respect to the
origin. (See Problem 8.3.)

ASYMPTOTES. The line x = a is a vertical asymptote to the graph of an equation (locus) if, as x gets
arbitrarily close to a, the locus gets arbitrarily large.

The line y = b is a horizontal asymptote to a locus if the locus gets arbitrarily close to b as x gets
arbitrarily large. See Fig. 8-5. (In calculus terms, if hm f(x) = a, then y = ais a horizontal asymptote to
fx). If lsz(x) = oo, then x = b is a vertical asymptote

N y=fw

Horizontal asymptote \ k

— Vertical asymptote
Fig. 8-5

EXAMPLE 2. Show that the line y —2 = 0 is a horizontal asymptote of the curve xy —2x—1=0.

The locus exists for all x # 0 and for all y # 2. Since y > 0 for x > 0, there is a branch of the locus in the first
quadrant. On this branch choose a point, say, A(1,3), and let a point P(x,y), moving to the right from A, trace the
locus.
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From Table 8.1, which lists a few of the positions assumed by P, it is clear that as P moves to the right, (a) its
ordinate y remains greater than 2 and (b) the difference y —2 may be made as small as we please by taking x
sufficiently large. For example, if we wish y—2 < 1/10'2, we take x > 10'%; if we wish y—2 < 1/10°°, we take
x > 10°°, and so on. The line y —2 = 0 is therefore a horizontal asymptote.

Table 8.1
X y
1 3
10 2.1
100 2.01
1000 2.001
10 000 | 2.0001

To find the horizontal asymptotes: Solve the equation of the locus for x and set each real linear factor of the
denominator, if any, equal to zero.

To find the vertical asymptotes: Solve the equation of the locus for y and set each real linear factor of the
denominator, if any, equal to zero.

EXAMPLE 3. The locus of x> + 4y” = 4 has neither horizontal nor vertical asymptotes. The locus of x = (y + 6)/
(y+3) has y+3 =0 as a horizontal asymptote and x — 1 = 0 as a vertical asymptote.

Solved Problems

8.1 (@) The locus xy + x*> = x(y + x) = 0 consists of the lines x = 0 and y 4+ x = 0.
() The locus y*> 4 xy*> —xy —x*> = (x + y)(3* — x) = 0 consists of the line x4y =0 and the parabola

2
y =x=0.
(¢) The locus y* + )2 —x*—x = (3> = x)()* + x4+ 1) = 0 consists of the parabolas y>—x =0 and y*+
x+1=0.
8.2 Examine for intercepts.

(@) 4x*—9y* = 36.
Set y = 0: 4x> = 36, x> = 9; the x intercepts are *3.
Set x = 0: —9y?> = 36, y*> = —4; the y intercepts are imaginary.
(h) x*=2x=y*—4y+3.
Set y = 0: X2 =2x=3=(x—-3)(x+1)=0; the x intercepts are —1 and 3.
Set x =0: y> —4y +3 = (y — 1)(y — 3) = 0; the y intercepts are 1 and 3.

8.3 Examine for symmetry with respect to the coordinate axis and the origin.

(@) 4x*—9y* = 36.
Replacing y by —y, we have 4x*> —9)? = 36; the locus is symmetric with respect to the x axis.
Replacing x by —x, we have 4x? —9y? = 36; the locus is symmetric with respect to the y axis.
Replacing x by —x and y by —y, we have 4x> —9y? = 36; the locus is symmetric with respect to the origin.
Note that if a locus is symmetric with respect to the coordinate axes, it is automatically symmetric with
respect to the origin. It will be shown in the next problem that the converse is not true.

b ¥-x*y+y =0
Replacing y by —y, we have x* + x?y —* = 0; the locus is not symmetric with respect to the x axis.
Replacing x by —x, we have —x* — x?y 4 y* = 0; the locus is not symmetric with respect to the y axis.
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Replacing x by —x and y by —p, we have —x* + x?y — »* = —(x* — x%y + *) = 0; the locus is symmetric
with respect to the origin.

(© xX*=4?-2x+8y=0.
Replacing y by —y, we have x> —4)? — 2x — 8y = 0, replacing x by —x, we have x> —4)? + 2x + 8y = 0,
and replacing x by —x and y by —y, we have x> — 4y* 4 2x — 8y = 0; the locus is not symmetric with
respect to either axis or the origin.

Investigate for horizontal and vertical asymptotes.
(a) 3x+4y—12=0.

12 — 3 12—-4y
Solve for y: y = ¥ Solve for x: x = 3 Y.
Since the denominators do not involve the variables, there are neither horizontal nor vertical
asymptotes.
(b) xy=8.

Solve for y: y = 8/x. Solve for x: x = 8/y. Set each denominator equal to zero:

x = 0 is the vertical asymptote,
y = 0 is the horizontal asymptote.
(¢) xy—y—-x—-2=0.
y+2

2
Solve for y: y = i Solve for x: x = .
x—1 y—1

Set each denominator equal to zero:

x =1 is the vertical asymptote.

y =1 is the horizontal asymptote.
(d) ¥y—x—4y=0.

1 +41+ 162
. Solve for x: x = 7+6}

x>—4 2y
Then x = 2 and x = =2 are vertical asymptotes and y = 0 is the horizontal asymptote.
() xX*y—x>+4y=0.

2 )
Solve for y: y = sz——i—4 Solve for x: x = *2 'I}Ty

There are no vertical asymptotes since when x?> +4 = 0, x is imaginary. The horizontal asymptote is
y=1.

Solve for y: y =

Discuss the following equations and sketch their loci.

y? = —8x.

Intercepts: When y = 0, x = 0 (x intercept); when x = 0,y = 0 (p intercept).

Symmetry: When y is replaced by —y, the equation is unchanged; the locus is symmetric with respect
to the x axis.

The locus is a parabola with vertex at (0, 0). It may be sketched after locating the following points:
(=1, %£22), (=2, =4), and (=3, £2/6). See Fig. 8-6.

X2 —4x+4y+8=0.
Intercepts: When y = 0, x is imaginary; when x = 0,y = =2 (y intercept).
Symmetry: The locus is not symmetric with respect to the coordinate axes or the origin.

The locus is a parabola with vertex at (2,—1). Other points on the locus are: (=2, -5), (4,—2), and (6, —5).
See Fig. 8-7.
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«

Fig. 8-6 Fig. 8-7

87 X 4yP—4x+6y—-23=0.

4+ 16+92 -6 £ /36+92
Intercepts: When y =0, x = axvie+d_ 24343 (x intercepts); when x =0, y = 0= Vio+92

2 ' 2
= —3 =442 (y intercepts).
Symmetry: There is no symmetry with respect to the coordinate axes or the origin.

Completing the squares, we have
(= dx 4+ D+ +6p+9=234+44+9=36 or (x—2>+(y+3)>=36
the equation of a circle having center at C(2,—-3) and radius 6. See Fig. 8-8.

¥,

A N
C(2,-3) \\0/

Fig. 8-8 Fig. 8-9

v

88  4x? +9)% = 36.
Intercepts: When y = 0, x = =3 (x intercepts); when x = 0,y = *£2 (y intercepts).
Symmetry: The locus is symmetric with respect to the coordinate axes and the origin.
Since the locus is symmetric with respect to both the axes, only sufficient points to sketch the portion of

the locus in the first quadrant are needed. Two such points are (1, 4ﬁ/3) and (2, 2\/5/3). The locus is called
an ellipse. See Fig. 8-9. Also see Chapter 36.

8.9 9x? — 4y = 36.
Intercepts:  When y = 0,x = *£2 (x intercepts); when x = 0, y is imaginary.
Symmetry: The locus is symmetric with respect to the coordinate axes and the origin.
The locus consists of two separate pieces and is not closed. The portion in the first quadrant has been

sketched using the points (3, 3\/5/2), 4, 3\/5), and (5, 3\/5/2). The locus is called a hyperbola. See Fig. 8-10.
Also see Chapter 40.
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¥

Fig. 8-10 Fig. 8-11

xy—y—x—2=0.

Intercepts: The x intercept is —2; the y intercept is —2.

Symmetry: There is no symmetry with respect to the coordinate axes or the origin.

Asymptotes: x=1, y=1.

To sketch the locus, first draw in the asymptotes x = 1 and y = 1 (dotted lines). While the asymptotes
are not a part of the locus, they serve as very convenient guide lines. Since the locus does not exist for x = 1
and y = 1, it does not cross the asymptotes. Since there is one value of y for each value of x # 1, that is, since
y is single-valued, the locus appears in only two of the four regions into which the plane is separated by the
asymptotes.

From Table 8.2 it is evident that the locus lies in the region to the right of the vertical asymptote and
above the horizontal asymptote (see the portion of the table to the right of the double line) and in the region
to the left of the vertical asymptote and below the horizontal asymptote (see the portion of the table to the
left of the double line). The locus is shown in Fig. 8-11; note that it is symmetric with respect to (1, 1), the
point of intersection of the asymptotes.

Table 8.2
x | 10| 4| 3] =2|-1]0 5 3 3|3 10
y 3 Z ! 0 -1 2] -5 -1 13744

Xy —x2—dy=0.

Intercepts: The x intercept is 0; the y intercept is 0.

Symmetry: The locus is symmetric with respect to the y axis.

Asymptotes: x=*2 y=1.

The asymptotes divide the plane into six regions. Since the locus does not exist when x = *2 and when
y =1 (that is, does not cross an asymptote) and since y is single-valued, the locus appears in only three of
these regions. By means of Table 8.3 the locus is sketched in Fig. 8-12. Note that only half of the table is
necessary since the locus is symmetric with respect to the y axis.

Table 8.3
x| =10 | =5 | 4| 3| -3 -2l =3l -11]0 1 3 :
25 25 4 9 25 49 9 1 1 9 49
Y] @ | a3 R I | s e M M 0 A M 0 Ml A
x| 3134|510
s e e s
Y 9 5 3 | 230 2
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8.12

8.13

8.14

¥, 1/\
1
| —— — —— — — —— —pty St . St ittt e
U
Sl I 1 -
= i .x
| |
|
0 >z
Fig. 8-12 Fig. 8-13

xzy—x2 +4y =0.

Intercepts: The x intercept is 0; the y intercept is 0.

Symmetry: The locus is symmetric with respect to the y axis.

Since the locus exists only for 0 =< y < 1, it lies entirely below its asymptote. The locus is sketeched in
Fig. 8-13 using Table 8.4.

Table 8.4
x —-10 -5 -3 -2 -1 0 1 2 3 10
¥ 25 25 9 1 1 0 1 1 9 25 25
26 29 13 2 5 5 2 13 29 26

Only half of the table is necessary since the locus is symmetric with respect to the y axis.

Supplementary Problems

Discuss and sketch.

(@ xX*=47=0 () 9x*—4y> =36 () xy=3x—-y=0

b)) ¥ +2xy+)y>=4 () 9x*—4y*+36=0 " ¥+xy+y-2=0

(¢ y=9x* (k) xy=4 () xX’y—x—-4y=0

(d) y*=6x-3 () xy=-4 6 xX2y—4xy+3y—-x—-2=0
(e) yY»*=4-2x (m) x> =-9 W) xX2y—=x>+xy+3x-2=0
() X>+1*=16 ) » 4 xp? =2xp —2x? 0 ¥P+x?-*=0

. y b y 3 o=y

© X+3°=0 0 y=x W) x4y =4

(h) 4x* + 9y2 =36 (p) y= -

Use a graphing calculator to sketch the following loci:
(@ x*=9%=0

(b) xy=16

(©) 9> +42 =136



Chapter 9

The Straight Line

THE EQUATION OF THE STRAIGHT LINE parallel to the y axis at a distance a from that axis
s x=a.

The equation of the straight line having slope m and passing through the point (x|, ) 18

Y=y =m(x—Xx;) (Point-slope form)

(See Problem 9.1.)

The equation of the line having slope m and y intercept b is

y=mx-+b (Slope-intercept form)

(See Problem 9.2.)

The equation of the line passing through the points (x;, y;) and (x,, y,), where x| # X, 18

y—y = el (x—=xp) (Two-point form)
Xy — X

(See Problem 9.3.)

The equation of the line whose x intercept is @ and whose y intercept is b, where ab # 0, is
)

é =1 (Intercept form)

X
~+
a
(See Problem 9.4.)
The length of the line segment with end points (x;, y;) and (x5, )») is

d= \/(xz—xl)z + 0 —»)?

THE GENERAL EQUATION of the straight line is Ax + By + C =0, where A, B,C are arbitrary
constants except that not both 4 and B are zero.

If C =0, the line passes through the origin. If B =0, the line is vertical; if 4 =0, the line is
horizontal. Otherwise, the line has slope m = —4/B and y intercept b = —C/B.

If two nonvertical lines are parallel, their slopes are equal. Thus, the lines Ax + By + C = 0 and
Ax + By + D = 0 are parallel.

If two lines are perpendicular, the slope of one is the negative reciprocal, of the slope of
the other. If m; and m, are the slopes of two perpendicular lines, the m; = —1/ny or mym, = —1.
Thus, Ax+ By+ C=0 and Bx— Ay + D =0, where AB# 0, are perpendicular lines. (See Problems
9.5-9.8.)

54
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Solved Problems

9.1 Construct and find the equation of the straight line which passes though the point (—1,—2) with slope
(a) 3 and (b) —%.

(a) A point tracing the line rises (slope is positive) 3 units as it moves a horizontal distance of 4 units to the
right. Thus, after locating the point 4(—1,-2), move 4 units to the right and 3 up to the point B(3, 1).
The required line is 4B. [See Fig. 9-1(«).] Using y —y; = m(x — x;), the equation is

y+2=3x+1D or 3x—4y-5=0

A= 0 L& i

(a) (»
Fig. 9-1

(h) A point tracing the line falls (slope is negative) 4 units as it moves a horizontal distance of 5 units to the
right. Thus, after locating the point A(—1,—2), move 5 units to the right and 4 units down to the point
B(4,-6). The required line is 4B as shown in Fig. 9-1(b). Its equation is

y+2=-3(x+1) or 4x+5y+14=0

9.2 Determine the slope m and y intercept b of the following lines. Sketch each.
(@ y=3x-2
Ans. m=3 b==2

To sketch the locus, locate the point (0,—2). Then move 2 units to the right and 3 units up to
another point on the required line. See Fig. 9-2(a).
(b) y=-3x+3

Ans. m=-=-3; b= %
To sketch the locus, locate the point (0,%). Then move 1 unit to the right and 3 units down to
another point on the line. See Fig. 9-2(b).

Y v
\
(0,5/2)x~-"
! I
0 R 3
13 [
: !
} >z
(a) (b)

Fig. 9-2
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9.3 Write the equation of the straight lines: (a) through (2, 3) and (—1, 4), () through (=7, —2) and (-2, —5),
and (c) through (3, 3) and (3, 6).

= %(x— x1) and label each pair of points P; and P, in the order given.
1

We use y—y,;
Xy —

4-— 1
(a) The equation is y—3 = (x—2):—§(x—2) or x+3y—11=0.

—-1-
. =5+ 3
(b) The equationis y+2=— oF ( +7):—§(x+7) or 3x+5y+31=0.

(¢) Here x| = x, = 3. The required equation is x —3 = 0.

9.4 Determine the x intercept a and the y intercept b of the following lines. Sketch each.
(@) 3x—=2y—4=0
When y =0,3x—4 =0 and x :%; the x intercept is a :f%.
When x = 0,-2y—4 =0 and y = —2; the y intercept is b = —
To obtain the locus, join the points (%,0) and (0,—2) by a straight line. See Fig. 9-3(a).

4/3 \ -4

—O x* 17 2 o' 7
-2 -3
(a) (b)
Fig. 9-3

(b) 3x+4+12=0
When y = 0,3x 4+ 12 = 0 and x = —4; the x intercept is a = —4.
When x = 0,4y + 12 = 0 and y = —3; the y intercept is b = —
The locus is the straight line joining the point (—4, 0) and (0, —3). See Fig. 9-3(b).

9.5 Prove: If two oblique lines /; and /, of slope m; and m,, respectively, are mutually perpendicular, then
my = —l/mz

Let m, = tan 0,, where 0, is the inclination of /,. The inclination of /; is 0; = 0, = 90° according as
0, is less than or greater than 90° [see Figs. 9-4(a) and (b)]. Then

m; = tan0; = tan (0, = 90°) = —cot 0, —ﬁ: L
2 my
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9.6

9.7

9.8

L\ ¥ “
Y
L,
0. 6
2\ 0 1 >z
| N
s~ 0
@ 65<90% 6, = 6,+90° ®)  6,>90°; 6, = 6,- 90°
Fig. 9-4

Find the equation of the straight line (@) through (3, 1) and parallel to the line through (3, —2) and (-6, 5)
and (b) through (—2, —4) and parallel to the line 8x -2y +3 = 0.
Two lines are parallel provided their slopes are equal. sS40 ;
(a) The slope of the line through (3, —2) and (=6, 5) is m = 12 _il = 6+ 3=y The equation of the
=Xy —b0—=
line through (3, 1) with slope =% is y—1 = —=J(x—3) or 7x+9y—30 = 0.

(b) First Solution. From y =4x+ %, the slope of the given line is m = 4. The equation of the line
through (—2, —4) with slope 4 is y+4=4(x+2) or 4x—y+4=0.
Second Solution. The equation of the required line is of the form 8x —2y + D = 0. If (—2,—4) is on the
line, then 8(—2) —2(—4) + D = 0and D = 8. The required equationis8x—2y +8 =0
or4x—y+4=0.

Find the equation of the straight line («) through (—1, —2) and perpendicular to the line through (-2, 3) and
(=5, —6) and (b) through (2, —4) and perpendicular to the line 5x 4+ 3y —8 = 0.
Two lines are perpendicular provided the slope of one is the negative reciprocal of the slope of the other.
(a) The slope of the line through (=2, 3) and (=5, —6) is m = 3; the slope of the required line is —=1/m = —%.
The required equation is y +2 = —%(x +Dorx+3y+7=0.
(b) First Solution. The slope of the given line is —%; the slope of the required line is % The required
equation is y+4 =3(x—2) or 3x =5y —26 = 0.

Second Solution. The equation of the required line is of the form 3x — 5y + D = 0. If (2,—4) is on the line,
then 3(2) = 5(—=4) + D = 0 and D = —26. The required equation is 3x — 5y —26 = 0.

Given the vertices A(7, 9), B(—5, —7), and C(12, —3) of the triangle ABC (see Fig. 9-5), find
(a) The equation of the side 4B

(b) The equation of the median through 4

(¢) The equation of the altitude through B

(d) The equation of the perpendicular bisector of the side 4B

(e) The equation of the line through C with slope that of 4B

(f) The equation of the line through C with slope the reciprocal of that of 4B

947 4
7+5(x+5)—§(x+5) or 4x—=3y—1=0

(b) The median through a vertex bisects the opposite side. The midpoint of BC is L(%,—S). The
equation of the median through 4 is

(@ y+7=

-5-9
y—9:%_77(x—7):4(x—7) or 4x—y—=19=0
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c ¢ altitude throug 1s perpendicular to . The slope o 18 —-= and 1ts negative reciproca
The altitude th h Bi dicul CA. The sl f CAis—12and i i i 1

is 3. The equation is y + 7 = 3 (x + 5) or 5x—12y—59 = 0.

(d) The perpendicular bisector of AB passes through the midpoint N(1, 1) and has slope —3.
The equation is y— 1 =—3(x—1) or 3x+4y—-7=0.

() y+3=%(x—-12) or4x—-3y—57=0. (f) y+3=3(x—-12) or3x—4y—48=0.

v

1 A(1,9)

ofN >
C(12,~-3)

L
B5,-7
Fig. 9-5

Supplementary Problems
9.9 Determine the slope and the intercepts on the coordinate axes of each of the lines (a) 4x — 5y +20 = 0 and

(b)2x+3y—12=0.
Ans. (a) m=4§,a=—57b=4 (b) m=—%,a=6,b=4

9.10  Write the equation of each of the straight lines:

(a) With slope 3 and y intercept —2. Ans. y=3x-2

(b) Through (5, 4) and parallel to 2x +3y—12=0. Ans. 2x+3y—=22=0
(¢) Through (-3, 3) and with y intercept 6. Ans. x—y+6=0
(d) Through (=3, 3) and with x intercept 4. Ans. 3x+7y—12=0
(e) Through (5, 4) and (-3, 3). Ans. x—=8y+27=0
(f) With ¢ =3 and b = -5. Ans. 5x=3y—15=0
(g) Through (2, 3) and (2, —5) Ans. x—=2=0

9.11  Find the value of k such that the line (k— 1)x + (k + 1)y —7 = 0 is parallel to the line 3x + 5y + 7 = 0.
Ans. k=4

9.12  Given the triangle whose vertices are 4(—3, 2), B(5, 6), C(1, —4). Find the equations of

(a) The sides. Ans. x=2y+7=0,5x=2y—=13=0,3x+2y+5=0
(b) The medians. Ans. x+6y—9=0,7x—6y+1=0,x=1
(¢) The altitudes. Ans. 2x+5y—4=0, 2x-3y+8=0,2x+y+2=0

(d) The perpendicular bisectors of the sides. Ans. 2x+y—6=0, 2x+5y—-11=0,2x-3y—-1=0
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9.13

9.14

9.15

For the triangle of Problem 9.12: (a) Find the coordinates of the centroid G (intersection of the medians),
the orthocenter H (intersection of the altitudes), and circumcenter C (intersection of the perpendicular
bisectors of the sides). (b) Show that G lies on the line joining H and C and divides the segment HC in the
ratio 2:1.

Ans. (&) G(LY, H=1.3), Cl2,3)

Show that the line passing through the points (5, —4) and (=2, 7) is the perpendicular bisector of the line
segment whose end points are (—4, —2) and (7, 5).

Use the determinant form of the formula for the area of a triangle (Chapter 11) to show

x y 1
(a) The equation of the straight line through P(x;,y;) and P,(x,,y,) is given by |x; y; 1|=0.
Xy 1
xpoy 1
(b) Three points P(xy, 1), Po(x,,¥,), and P3(x3,y3) are on a straight line provided [x, y, 1[=0.
x3 oy 1

Is the converse of this statement true?



Chapter 10

Families of Straight
Lines

THE EQUATION y = 3x + b represents the set of all lines having slope 3. The quantity b is a variable
over the set of lines, each value of b being associated with one and only one line of the set. To distinguish
it from the variables x, y, which vary over the points of each line, b is called a parameter. Such sets of
lines are also called one-parameter systems or families of lines. See Fig. 10-1. (See Chapter 45 for a fuller
discussion of parametric equations.)

v
b=2
b=0
b=-3
b=—4
>z
/ &
y=3x+b y=mx+5
Fig. 10-1 Fig. 10-2

Similarly, the equation y = mx + 5, in which m is the parameter, represents the one-parameter
family of lines having y intercept = 5 or passing through the point (0, 5). See Fig. 10-2. It is important to
note that one line satisfying the geometric condition is not included since for no value of m does the
equation y = mx + 5 yield the line x = 0. (See Problems 10.1-10.4.)

THE EQUATION
A1 x+ Biy+ Cy+k(4dyx+ Byy+Cy) =0 10.1)
represents the family of all lines, except for /,, passing through the point of intersection of the lines
i Aix+By+C =0 and L Ay+C, =0
(See Problem 10.5.)
60
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Equation (10.1) provides a means of finding the equation of a line which passes through the point
of intersection of two given lines and satisfies one other condition, without having first to compute the
coordinate of the point of intersection.

EXAMPLE 1. Write the equation of the line which passes through the point of intersection of the lines
it 3x+50+29=0 and L: Ix—=11y=13=0
and through the point (2, 1).
Since the given point is not on /,, the required line is among those given by
L +kly: 3x+50+29+k(7x—=11y—=13)=0
For the line which passes through (2, 1),3(2) + 5(1) + 29 + k[7(2) — 11(1) — 13] = 0 and k = 4; hence, its equation is
L +4hL: 3x+5y+29+4(7x—-11y—13)=31x—-39y-23=0
(See Problem 10.6.)

Solved Problems

10.1  Write the equation of the family of lines satisfying the given condition. Name the parameter and list any lines
satisfying the condition but not obtained by assigning a value to the parameter.

(a) Parallel to the x axis. (d) Perpendicular to 5x +3y—8 =0.
(h) Through the point (=3,2). (¢e) The sum of whose intercepts is 10.

(¢) At a distance 5 from the origin.

(a) The equation is y = k, k being the parameter.

(h) The equation is y —2 = m(x + 3), m being the parameter. The line x + 3 = 0 is not included.

(¢) The equation is xcosw + ysinw — 5 = 0, w being the parameter.

(d) The slope of the given lines is —3; hence, the slope of the perpendicular is % The equation of the family is
y=s3x+cor3x—>5y+5c=0, c being the parameter. The latter is equivalent to 3x — 5y + k = 0, with
k as parameter.

e) Taking the x intercept as a # 0, the y intercept is 10 — ¢ and the equation of the family is ad + P A 1.
(e) g p y p q y 0=
The parameter is a. “ “

10.2  Describe each family of lines: (a) x =k, (b) xcosw+ysinw—10=0, (¢) x/cos0+ y/sin0 =1, and
(d) kx+V1-k2y—10=0.
(a) This is the family of all vertical lines.
(b) This is the family of all tangents to the circle with center at the origin and radius= 10.
(¢) This is the family of all lines the sum of the squares of whose intercepts is 1.
(d) Since VI—k2 is to be assumed real, the range of k=cosw is —1 =k =1, while the range of

V1—k?=sinw is 0 =+/1—k* = 1. The equation is that of the family of tangents to the upper half
circle of (b).

10.3  In each of the following write the equation of the family of lines satisfying the first condition and then obtain
the equation of the line of the family satisfying the second condition: (a) parallel to 3x—5y+ 12 =0,
through P(1,-2), (b) perpendicular to 3x — 5y + 12 = 0, through P(1,-2), and (¢) through P(-3,2), at a
distance 3 from the origin.

(a) The equation of the family is 3x — 5y 4+ k = 0. Substituting x = 1,y = =2 in this equation and solving
for k, we find k = —13. The required line has equation 3x—5y—13 = 0.
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10.4

10.5

10.6
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(b) The equation of the family is Sx + 3y + k = 0 [see Problem 10.1(d)]. Proceeding as in (a) above, we

find k = 1; the required line has equation 5x+3y+1=0.
kx—y+Qk+2)

(¢) The equation of the family is y —2 = k(x 4 3) or, in normal form, = 0. Setting the

2+ 1
. . . . .. 3k+2
undirected distance of a line of the family from the origin equal to 3, we have [———| = 3.
=V + 1
(3k +2)? s . . . 5
Then ﬁ: 9 and k=5 Thus, the required line has equation y—2=3(x+3) or

Sx—=12y—12y +39 =0.

Now there is a second line, having equation x + 3 = 0, satisfying the conditions, but this line [see
Problem 10.1(b)] was not included in the equation of the family.

Write the equation of the line which passes through the point of intersection of the lines
l1:3x+5y+26=0and /,: 7x—11y—13 = 0 and satisfies the additional condition: (a) Passes through the
origin. (b) Is perpendicular to the line 7x +3y—9 = 0.

Each of the required lines is a member of the family

L +kly: 3x+59+260+k(Tx—=11y—=13)=0 (A)

(a) Substitution x =0,y = 0 in (A), we find k£ = 2; the required line has equation
h+2bL 3x+5+26+2(7x—11y—=13)=0 or x—y=0

. L . . 3+7k
(b) The slope of the given line is —% and the slope of a line of (A4) is —S_FW.
. . . - 7 5-11k
Setting one slope equal to the negative reciprocal of the other, we find 3735 and k =—3.

The required line has equation
11—%12: 3x+5y+26—%(7x—11y—13)=0 or 3x=Ty—=13=0
Write the equation of the line which passes through the point of intersection of the lines

li: x+4y—18 =0 and /: x + 2y —2 = 0 and satisfies the additional condition: (a) Is parallel to the line
3x4+8y+1=0. (h) Whose distance from the origin is 2.

The equation of the family of lines through the point of intersection of the given lines is
L +kly x+4y—18+k(x+2y—2=0) or A+k)x+@+2k)y—(18+2k)=0 (A)
1+k 3

(a) Since the required line is to have slope —3, we set Tir%® Then k = 2 and the line has equation
L +2h: 3x+8y—-22=0
1+k 4 4 2k)y — (18 -2k 1(18 + 2k
(b) The normal form of (d) is (¥ T @+ 20y = ( ) 0. Setting |——U8F20 |5 nd
V17 + 18k + 5k* =V17 + 18k + 5k

squaring both members, we find kK = *=4. The required lines have equations

L +4hL: Sx+12y-26=0 and =4l 3x+4y+10=0

Supplementary Problems

Write the equation of the family of lines satisfying the given condition. List any lines satisfying the condition
but not obtained by assigning a value to the parameter.

(a) Perpendicular to the x axis.

(b) Through the point (3,—1).

(¢) At the distance 6 from the origin.
(d) Parallel to 2x +5y—8 =0.
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10.7

10.8

10.9

(e)

FAMILIES OF STRAIGHT LINES

The product of whose intercepts on the coordinate axes is 10.

Ans. (@) a=k (¢) xcosw+ysino—6=0 () 10x+Kky—10k=0

(b) y=kx=3k—1,x=3 (d) 2x+5y+k=0
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Write the equation of the family of lines satisfying the first condition and then obtain the equation of that
line of the family satisfying the second condition.

(@)
(b)
(o)
(d)
(e)
(@3]
)

Find the equation of the line which passes through the point P(3,—4) and has the additional property:

(a)
(b)
(¢)

Parallel to 2x — 3y + 8 = 0; passing through P(2,-2).
Perpendicular to 2x — 3y + 8 = 0; passing through P(2,-2).

Sum of the intercepts on the coordinate axes is 2; forms with the coordinate axes a triangle of area 24.

At a distance 3 from the origin; passes through P(1,3).

Slope is %; product of the intercepts on the coordinate axes is —54.

The y intercept is 6; makes an angle of 135° with the line 7x —y —23 = 0.
Slope is %; 5 units from (2,-3).

Ans. (@) 2x=3y—10=0 (e) 3x—=2y*x18=0
(b) 3x+22y-2=0 (f) 3x—4y+24=0
(¢) 3x—4y—24=0, 4x—-3y+24=0 (g) S5x—12y+19=0, 5x—12y—111=0

(d) 3x+4y—15=0, y=3

The sum of its intercepts on the coordinate axes is —5.

The product of its intercepts on the coordinate axes is the negative reciprocal of its slope.

It forms with the coordinate axes a triangle of area 1.

Ans. (@) 2x—y—=10=0, 2x+3y+6=0 (¢) 2x+y=-2=0, 8x+99+12=0
b)) x+y+1=0, 5x+3y-3=0

Write the equation of the line which passes through the point of intersection of the lines /;: x—2y—4=10
and /,: 4x—y—4 =0 and statisfies the additional condition:

(@)
(b)
()
(d)
(e)
2]
)
(h)

Passes through the origin.

Passes through the point P(4,—6).

Is parallel to the line 16x—11y+ 3 =0.

Is perpendicular to the line 9x + 22y —8 = 0.

Is % units from the origin.

Makes an angle of 45° with the line 9x—5y—12 = 0.
Its y intercept is —2% its slope.

Makes a triangle of area % with the coordinate axes.

Ans. (@) 3x+y=0 () 7Ty+12=0, 21x—28y—60=0
(bh) Sx+4y+4=0 (f) 49x+14y—-4=0
(¢) 16x—11y—28=0 (g0 11x—8y—20=0
(d) 22x—-9y—-28=0 (h) 6x—5y—12=0, 15x—=2y—12=0,

2(12 F /89)x + (41 + 3+/89)y — 12(1 T +/89) = 0



The Circle

A CIRCLE IS THE LOCUS of a point which moves in a plane so that it is always at a constant distance
from a fixed point in the plane. The fixed point is called the center and the constant distance is the length
of the radius of the circle. The circle is one of the “‘conic sections.” That is, the circle also results from
taking particular cross sections of the right-circular cone. See Chapter 36 for a discussion of three
additional conic sections: the parabola, the hyperbola, and the ellipse. As you think about slicing a cone
with a plane, what additional cross sections are generated?

THE STANDARD FORM of the equation of the circle whose center is at the point C(h, k) and whose
radius is the constant r is

(x=h? +(y—k)? =1 (11.1)
See Fig. 11-1. (See Problem 11.1.)
W
P(x,y)
T,
C(h,k)
0 >z
Fig. 11-1

THE GENERAL FORM of the equation of a circle is
X+ > +2Dx+2Ey+F=0 (11.2)
By completing the squares this may be put in the form
(x+DP+(x+E*=D*+E-F

Thus, (/1.2) represents a circle with center at C(=D,—E) and radius vD? + E*> — F if (D>’ +E*—F) >0,
a point if (D? 4+ E*> — F) = 0, and an imaginary locus if (D> + E? — F) = 0. (See Problems 11.2-11.3.)
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IN BOTH THE STANDARD AND GENERAL FORM the equation of a circle contains three
independent arbitrary constants. It follows that a circle is uniquely determined by three independent
conditions. (See Problems 11.4-11.6.)

THE EQUATION OF A TANGENT to a circle may be found by making use of the fact that a tangent
and the radius drawn to the point of tangency are perpendicular. (See Problem 11.7.)

THE LENGTH OF A TANGENT to a circle from an external point P; is defined as the distance from
the point P to the point of tangency. The two tangents from an external point are of equal length. See
Fig. 11-2, where P, T= P, T".

’)

Fig. 11-2

The square of the length of a tangent from the external point P;(x;, y;) to a circle is obtained by
substituting the coordinates of the point in the left member of the equation of the circle when written in
the form (x —h)> + (y—k)>—r> =0 or x>+ y*> +2Dx + 2Ey + F = 0. (See Problems 11.8-11.9.)

THE EQUATION
¥ 4+12 42D x+2E,y+ F; + k(x> + )% +2Dyx + 2E,y + F>) = 0 (11.3)
where
K;: x2+}’2+201x+2E1y+Fl:0 and K: x2+y2+2sz+2E2y+F2:0

are distinct circles and k # —1 is a parameter, represents a one-parameter family of circles.

If K; and K, are concentric, the circles of (//.3) are concentric with them.

If K, and K, are not concentric, the circles of (/1.3) have a common line of centers with them and the
centers of the circles of (/1.3) divide the segment joining the centers of K| and K, in the ratio k : 1.

If K; and K, intersect in two distinct points P; and P», (11.3) consists of all circles except K, which pass
through these points. If K; and K, are tangent to each other at the point Py, (/1.3) consists of all circles
except K, which are tangent to each other at P,. If K| and K, have no point in common, any two circles of
the family (/7.3) have no point in common with each other. See Fig. 11-3. (See Problems 11.10-11.11.)
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THE CIRCLE [CHAP. 11

Solved Problems

Write the equation of the circle satisfying the given conditions.

(a) C, 0), r=5 (d) C(=5, 6) and tangent to the x axis

(b) C4, =2), r=38 (e) C(3,4) and tangent to 2x—y+5=0

(¢) C(—4, —2) and passing through P(1,3) (f) Center on y = x, tangent to both axes, r = 4

(a) Using (x —h)> + (y— k)* = 12, the equation is (x —0)> + (y— 0)> =25 or x> +y2 = 25.

(b) Using (x —h)?> + (y — k)* = r?, the equation is (x —4)* + (y + 2)* = 64.

(¢) Since the center is at C(—4, —2), the equation has the form (x + 4)> + (y+ 2)?> = /2. The condition that
P(1,3) lie on this circle is (14+4)?+3+2)7?=r>=50. Hence the required equation is
(x+ 4?2+ (y+2)* = 50.

(d) The tangent to a circle is perpendicular to the radius drawn to the point of tangency; hence r = 6.
The equation of the circle is (x 4+ 5)* + (y — 6)> = 36. See Fig. 11-4(a).

(a) (b)
Fig. 11-4
(e) The radius is the undirected distance of the point C(3,4) from the line 2x—y+5=0; thus
r= ‘%\/‘;5 = % The equation of the circle is (x —3)> + (y —4)* = % See Fig. 11-4(b).

(f) Since the center (&, k) lies on the line x = y, i = k; since the circle is tangent to both axes, || = |k| = r.
Thus there are two circles satisfying the conditions, one with center (4,4) and equation
(x—4)> 4+ (y—4)*> =16, the other with center (=4, —4) and equation (x+4)>+ (y+4)* = 16.
See Fig. 11-4(c).

Describe the locus represented by each of the following equations:

(@ xX*+)*—10x+8y+5=0 (©) x>+ +4x—6y+24=0

(b) X*+)y*—6x-8y+25=0 (d) 4x* +4)> +80x+ 12y +265=0

(a) From the standard form (x —5)* + (y+4 > = 36, the locus is a circle with center at C(5, —4) and
radius 6.

(b) From the standard form (x — 3)> 4 (y —4)? = 0, the locus is a point circle or the point (3, 4).

(¢) Here we have (x +2)> + (y — 3)> = —11; the locus is imaginary.

(d) Dividing by 4, we have x? + y* + 20x + 3y + 23 = 0. From (x + 10)’ + (y + ) = 36, the locus is a
circle with center at C(—10, —%) and radius 6.
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11.3  Show that the circles x* + y* — 16x — 20y + 115 = 0 and x? 4 3* 4 8x — 10y 4+ 5 = 0 are tangent and find the
point of tangency.

The first circle has center C(8, 10) and radius 7; the second has center C,(—4, 5) and radius 6. The two
circles are tangent externally since the distance between their centers C;C, = /144 4+ 25 = 13 is equal to the
sum of the radii.

The point of tangency P(x,y) divides the segment C,C; in the ratio 6:7. Then

_6:8+7(-4) _20 610475 95

6+7 130 YT T 6+7 13

; ; 20 95
and the point of tangency has coordinates (3, 13)-

11.4  Find the equation of the circle through the points (5, 1), (4, 6), and (2,-2).

Take the equation in general form x?+ 3% +2Dx+2Ey+ F=0. Substituting successively the
coordinates of the given points, we have

25+ 1+10D+ 2E4+F=0 10D+ 2E+ F=-26

16+36+ 8D+ 12E4+F=0 or 8D + 12E+ F=-52

4+ 4+ 4D— 4E+F=0 AD— 4E+F=-—8
with solution D = -1, E= -8 F=—32 Thus the required equation is

x2+y2—%x—‘7(’y—%=0 or 3x2 437 —2x—16y—-52=0

11.5  Write the equations of the circle having radius +/I13 and tangent to the line 2x—3y + 1 = 0 at (1, 1).

Let the equation of the circle be (x—h)* 4+ (y—k)> = 13. Since the coordinates (1,1) satisfy this
equation, we have

A-h*+1-k>=13 (0]

The undirected distance from the tangent to the center of the circle is equal to the radius; that is,

2h—3k+1 2h=3k+1
= = |=VI3 and ——="—==V13 2
— ‘ NE] @
Finally, the radius through (1, 1) is perpendicular to the tangent there; that is,
1 k=1 3

-5 (€))

Sl f radius th h{d,))=-——F———— =
ope of radius through (1, 1) slope of given line or h—1 2

Since there are only two unknowns, we may solve simultaneously any two of the three equations.
Using (2) and (3), noting that there are two equations in (2), we find h =3, k=-2and h =—1,k = 4. The
equations of the circles are (x —3)> + (y+ 2’ =13 and (x+ 1)> + (y— 4)> = 13.

11.6  Write the equations of the circles satisfying the following sets of conditions:
(a) Through (2,3) and (-1, 6), with center on 2x + 5y + 1 = 0.
(b) Tangent to 5x—y—17 =0 at (4,3) and also tangent to x —5y—5=0.
(¢) Tangent to x—2y+2 =0 and to 2x—y—17 = 0, and passing through (6,—1).
(d) With center in the first quadrant and tangent to lines y =0, 5x— 12y =0, 12x+ 5y =39 = 0.

Take the equation of the circle in standard form (x —h)?> + (y —k)* = r%.

(a) We obtain the following system of equations:

2h+5k+1=0 [center(h, k)on 2x+ 5y + 1= 0] 1)
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Q-h+Q3-k?*=+ [point (2, 3) on the circle] )
~l=h?+6-k*=¢ [point (—1,6) on the circle] 3

The elimination of r between (2) and (3) yields h—k+4 =0 and when this is solved
simultaneously with (), we obtain h=—-3, k=1. By (2), = Q2+3)>+3-1)>=29; the
equation of the circle is (x + 3)* + (y— ? =29.

(b) We obtain the following system of equations:

4-h?+@B-k?*=+ [point(4,3)on the circle] )

Sh—k—17\> _ (h—5k—5\> (the square of the directed distance from Q)
J26 B V26 each tangent to the center isr?)

k=3 _ _ 1 [the radius drawn to (4, 3) is perpendicular 3)

h—4 5 to the tangent there]

The elimination of / between (2) and (3) yields

(—26k + 78)2_ (—10k + 14)2

V26 V26
or 9k* = 59k + 92 = (k — 4)(9% — 23) = 0; then k = 4,2}.

When k =4, h = =5k + 19 = —1; then > = (4 + 1)*> + (3 —4)> = 26 and the equation of the
circle is (x + 1)? + (y—4)? = 26. When k =2 h =3¢ and r* =4§; the equation of the circle is
(r= 57 + (y= 57 = 4.

(¢) Observing the directions indicated in Fig. 11-5(«a), we obtain for each circle the following system of

equations:
—% = (x—2y+2 = 0is tangent to the circle) ()
—L\%—” = (2x—y—17 = 0is tangent to the circle) (@)
G6—h? +(=1—-k?*=/ [point (6, —1)is on the circle] 3)

The elimination of r between (/) and (2) yields
h—k-5=0 4

and the elimination of r between (/) and (3) yields

_ 2
6=h> 4 (=1-k?= W )

Eliminating / between (4) and (5), we have (1 —k)> + (=1 —k)> = (—k+7)2/5 or 9k +
14k —39 = (k+3)(%k — 13) = 0 and k= -3,1.

When k= -3,h=k+5=2,1* = (6—2)*> 4+ [-1 = (=3)]* = 20 and the equation of the circle
is (x=2+(y+37=20. When k=3 h=k+5=3 7 =(6-3"+(1-5> =3 and the

circle has equation (x —$)? + (y—1)? = 3%,
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Fig. 11-5

(d) Observing the directions indicated in Fig. 11-5(b), we have for the inscribed circle the following
system of equations:

oy STk 12h4sk=39

-13 13
Then /= %, k=r= %, and the equation of the circle is (x —%)2 +(y —%)2 =
For the other circle, we have the following system of equations:
_Sh=12k _ 12h + 5k =39

k=r, —7137" and 3

Here h =1k =r =3, and the circle has equation (x —1)? + (y -3 = £.

1
7

11.7  Find the equations of all tangents to the circle x> + y*> —2x + 8y —23 = 0:
(a) at the point (3,—10) on it, (b) having slope 3, and (c) through the external point (8,=3).

(a) The center of the given circle is C(1, —4). Since the tangent at any point P on the circle is perpendicular
to the radius through P, the slope of the tangent is % The equation of the tangent is then y 4+ 10 =
%(x—3) or x—3y—33=0.

. . . Ix—=y+b

(h) Each tangent belongs to the family of lines y = 3x + b or, in normal form, ————— =
The undirected distance from any tangent to the center of the circle is eqTJal to the radius of the

circle; thus,

3(Hh-(—4)+5b 7+b
— | =210 — = */10 and b=13,-27
+/10 or V10 an '

There are then two tangents having equations y = 3x + 13 and y = 3x —27.

(¢) The tangents to a circle through the external point (8,—3) belong to the family of lines y + 3 = m(x — 8)
or y = mx — 8m— 3. When this replacement for y is made in the equation of the circle, we have

X+ (mx —8m — 3)2 —2x + 8(mx—8m—3)—23 = (m2 + l)x2
+ (—=16m% + 2m — 2)x + (64m* — 16m — 38) = 0
Now this equation will have equal roots x provided the discriminant is zero, that is, provided
(=161 + 2m = 2)> — 4(n® + 1)(64m* — 16m — 38) = —4(m — 3)(9m + 13) = 0. Then m = 3,— 2 and the

equations of the tangents are y+3=3(x—8) or 3x—y—27=0 and y+3=—§(x—8) or
13x+9y—-77=0.

11.8  Find the length of the tangent

(a) To the circle x> 4+ y> —2x 4 8y — 23 = 0 from the point (8, —3)
(b) To the circle 4x> + 4y*> — 2x 4+ 5y — 8 = 0 from the point (—4, 4)
Denote the required length by .
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(a) Substituting the coordinates (8,—3) in the left member of the equation of the circle, we have
P=08Y+(-3°-28)+8-3)—23=0 and =+/10
(b)) From the general form of the equation x* +)> —1x +3y—2 =0, we find

P=4+@"-1(-dH+3@-2=37 and =37

11.9  For the circle x* +3? + 6x—8y = 0, find the values of m for which the lines of the family y = mx—%

(a) intersect the circle in two distinct points, (b) are tangent to the circle, and (¢) do not meet the circle.

Eliminating y between the two equations, we have

2 26 25
X+ (mx—%) +6x—8(mx—%) = 4+ x> + (6—?m)x+? =0
This equation will have real and distinct roots, two equal roots, or two imaginary roots according as its

discriminant
(6 —Lm)? —4(m* + 1)(%) =372 = 11Tm +28) =§Bm—424m—T) >, = ,or <0

(a) The lines will intersect the circle in two distinct points when m > % and m < .
(b) The lines will be tangent to the circle when m = 5 and m = 2%.

(¢) The lines will not meet the circle when 2% <m< %‘.

11.10 Write the equation of the family of circles satisfying the given conditions: () having the common center
(=2, 3), (b) having radius =5, and (c) with center on the x axis.

(a) The equation is (x + 2)* + (y — 3)*> = r?, r being a parameter.
(b) The equation is (x — h)* + (y —k)> = 25,/ and k being parameters.

(¢) Let the center have coordinates (k;,0) and denote the radius by k,. The equation of the family is
(x—k)?+y*>=Kk3, k; and k, being parameters.

11.11 Write the equation of the family of circles which are tangent to the circles of Problem 11.3 at their common
point and determine the circle of the family having the property (a) center on x + 4y 4+ 16 = 0 (b) radius is %

The equation of the family is
K +kKy X437 —16x=20y+ 115+ k(x> +1* +8x— 10y +5) =0

(a) The centers of K| and K, are (8,10) and (—4,5), respectively; the equation of their line of centers is
5x =12y 4+ 80 = 0. This line meets x + 4y + 16 = 0 in the point (=16, 0), the required center.
Now (—16,0) divides the segment joining (8, 10) and (—4, 5) in the ratio k: 1; thus,
Sk+10
k+1

The equation of the circle is K| — 2K, : x> 4+ y* + 32x— 105 = 0.

and k=-2

(b) Setting the square of the radius of K| + kK, equal to (%)2 and solving for k, we find

(4k—8)2 (_10+5k)2_115+5k_1 s
1+k 4

and k=1
T+k 1+k an ’
The required circles have equations

Ki+K:xX+)y"—4x—15+60=0 and K, +5K,: 13x>413)> —28x—185y+670=10
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11.12 For each pair of circles

11.13

11.14

11.15

K :xX* 4+ -8x—6y=0
Ky :4x? 4+ 42 —10x—10y—13 =0

K :xX®+y?P—12x—16y—125=0

@ Ky :3x +3)2 —60x— 16y + 113 =0

(b)

find the equation of the radical axis. Without finding the coordinates of their points of intersection, show
that the circles (@) intersect in two distinct points while those of (b) are tangent internally.

(a) The equation of the radical axis is K, — %K, : 22x + 14y — 13 = 0. The undirected distance from the
radical axis to the center (4,3) of K;

22(4) +143)— 13| 1174170
24/170 340
is less than 5, the radius of K. Hence, the radical axis and the circle K, intersect K; in two distinct

points
(b) The equation of the radical axis is K; — %Kz :3x —4y — 61 = 0. The undirected distance from the radical
axis to the center (6,8) of K;

’ 3(6) —4(8) — 61

5 ’:15

is equal to the radius of K; and the circles are tangent to each other.

Since the distance between the centers of K; and K»4/(10 — 6)? —I—(%—S)2 = 2370 is equal to the

difference between their radii, the circles are tangent internally.

Supplementary Problems

Write the equation of each of the following circles: (a) C(0,0), radius 7 (b) C(—4, 8), radius 3 (¢) C(5, —4),
through (0, 0) (d) C(—4, —3), through (2,1) (e) C(-2,5), tangent to x axis (f) C(=2,-5), tangent to 2x —
y+ 3 =0 (g) tangent to both axes, radius 5 (/) circumscribed about the right triangle whose vertices are (3,
4), (—1,—4), (5,-2) (i) circumscribed about the triangle of Problem 9.8.

Ans. (a) x2+y2=49
b X+ +8x—16y+71=0
(c) x2+)’2—10x+8y=0
d) X2+ +8x+6y—27=0
(e) x2+y2+4x—10y+4=0
(f) 5x%+ 512 4+20x+ 50y 4+ 129 =0
(@ X412 +x10xx10y+25=0,x>+> F10x = 10y +25=10
) X +yP=2x-19=0
() 56x%+ 56)° —260x —y—5451 =0

Find the center and radius of each of the circles.

(@ x*+)y°—6x+8y—11=0 Ans. C(3, =4), r=6
(b) ¥+ —dx—6p-L=0 Ans.  CQ2, 3), r="73/3
() IxX*+ 7Y + 14x =56y —25=0 Ans. C(-1, 4), 4=127/7

Explain why any line passing through (4, —1) cannot be tangent to the circle x> + y> —4x + 6y — 12 = 0.
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11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23

11.24

THE CIRCLE [CHAP. 11

(a) Show that the circles x> 4+ y* + 6x — 2y — 54 = 0 and x> 4+ y> —22x — 8y + 112 = 0 do not intersect.

(b) Show that the circles x> + 3> + 2x— 6y +9 = 0 and x* +)* + 8y — 6y + 9 = 0 are tangent internally.
Do this with and without a graphing calculator.

The equation of a given circle is x> 4+ y> = 36. Find (@) the length of the chord which lies along the line
3x+4y—15=0 (b) the equation of the chord whose midpoint is (3,2).

Hint: In (¢) draw the normal to the given line. Ans. (a) 63 (b) 3x+2y—13=0

Find the equation of each circle satisfying the given conditions.

(a) Through (6,0) and (—2,—4), tangent to 4x + 3y —25=0.

(b) Tangent to 3x —4y + 5 =0 at (1,2), radius 5.

(¢) Tangent to x—2y—4=0 and 2x—y—6 = 0, passes through (-1, 2).
(d) Tangent to 2x—3y—7 =0 at (2,—1); passes through (4,1).

(e) Tangent to 3x +y+ 3 =0 at (-3,6), tangent to x4+ 3y—7=0.

Ans. (@) (x=3+(y+47 =25 -1 + (y+ 1892 =297 025/14 641
B =42+ (y+2?=25x+2*+(y—67>=25
(©) xX24y*=2x=2y=3=0,x>+ >+ 118x—122y + 357 =0
d X+ +4x—10y-23=0
() ¥+ —6x—16y+33=0,x>+> +9x—11y4+48=0

Repeat Problem 11.14 using a graphing calculator.

Find the equation of the tangent to the given circle at the given point on it.
(@ X¥*+y2=169, (5,-12) (b)) x>+ —dx+6y—37=0, (3,4
Ans. (a) S5x—12y—169=0 b)) x+7y=31=0

Find the equations of the tangent to each circle through the given external point.
(@ xX*+3>=25 (1) (b)) X+y —4x+2y-31=0, (-1,5)
Ans. (a) 3x+4y—-25=0, 4x-3y—-25=0 (b) y=5=0,4x-3y+19=0

Show that the circles x> +3? +4x—6y =0 and x> + y*> + 6x +4y = 0 are orthogonal, that is, that the
tangents to the two circles at a point of intersection are mutually perpendicular. Also, that the square of the
distance between the centers of the circles is equal to the sum of the squares of the radii.

Determine the equation of the circle of the family of Problem 11.11: («) which passes through the point (0, 3)
(h) which is tangent to the line 4x 4+ 3y —25=0.

Ans. (@) 5x° + 5% +16x—60y+135=0
(b x> 437 —40x—30y +225=0,8x% +8)° —20x — 115y + 425 =0

Repeat Problem 11.23 using a graphing calculator or a computer software package such as Maple.
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Arithmetic and
Geometric
Progressions

A SEQUENCE IS A SET OF NUMBERS, called terms, arranged in a definite order; that is, there is a
rule by which the terms are formed. Sequences may be finite or infinite. Only finite sequences will be
treated in this chapter.

EXAMPLE 1

(@) Sequence:
Type:
Rule:
(b) Sequence:
Type:
Rule:

3,7, 11, 15, 19, 23, 27.

Finite of 7 terms.

Add 4 to a given term to produce the next. The first term is 3.
3,6, 12, 24, 48, 96.

Finite of 6 terms.

Multiply a given term by 2 to produce the next. The first term is 3.

AN ARITHMETIC PROGRESSION is a sequence in which each term after the first is formed by
adding a fixed amount, called the common difference, to the preceding term. The sequence of
Example 1(@) is an arithmetic progression whose common difference is 4. (See Problems 12.1-12.2.)

If a is the first term, d is the common difference, and » is the number of terms of an arithmetic
progression, the successive terms are

a,a+da+2d,a+3d, ... ,.a+m—1)d (12.1)

Thus, the /ast term (or nth term) / is given by

Il=a+m—-1)d (12.2)

The sum S of the n terms of this progression is given by

S:g(a—H) or S:g[2a+(n—1)d] (12.3)

(For a proof, see Problem 12.3.)

75
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EXAMPLE 2. Find the twentieth term and the sum of the first 20 terms of the arithmetic progression 4, 9, 14, 19,....
For this progression ¢ = 4, d = 5, and n = 20; then the twentieth termis /=a+ n—1)d=4+19-5=99 and
the sum of the first 20 terms is

20
S= g(a+1) =2 (4+99) = 1030

(See Problems 12.4-12.8.)

THE TERMS BETWEEN THE FIRST AND LAST TERMS of an arithmetic progression are called
arithmetic means between these two terms. Thus, to insert k& arithmetic means between two numbers is to
form an arithmetic progression of (k + 2) terms having the two given numbers as first and last terms.

EXAMPLE 3. Insert five arithmetic means between 4 and 22.

We have a=4, [=22, and n=54+2=7. Then 22 =4+ 6d and d = 3. The first mean is 4+ 3 =7, the
second is 7 + 3 = 10, and so on. The required means are 7, 10, 13, 16, 19, and the resulting progression is 4, 7, 10, 13,
16, 19, 22.

THE ARITHMETIC MEAN. When just one mean is to be inserted between two numbers to form an
arithmetic progression, it is called the arithmetic mean (also, the average) of the two numbers.

EXAMPLE 4. Find the arithmetic mean of the two numbers « and /.

We seek the middle term of an arithmetic progression of three terms having « and / as the first and third terms,
respectively. If d is the common difference, then a+d=1/—d and d=j3(I—a). The arithmetic mean is
a+d=a +%(l—a) =5(a+1). (See Problem 12.9.)

A GEOMETRIC PROGRESSION is a sequence in which each term after the first is formed by
multiplying the preceding term by a fixed number, called the common ratio. The sequence 3, 6, 12, 24, 48, 96
of Example 1(b) is a geometric progression whose common ratio is 2. (See Problems 12.10-12.11.)

If a is the first term, r is the common ratio, and 7 is the number of terms, the geometric progression is

a, ar, ar*, ..., ar""! (12.4)
Thus, the last (or nth) term / is given by
I=ar™! (12.5)
The sum S of the first n terms of the geometric progression (/2.4) is given by
s=9=r o g=9U=) (12.6)
1—r 1—r

(For a proof, see Problem 12.12.)

EXAMPLE 5. Find the ninth term and the sum of the first nine terms of the geometric progression 8,4,2,1,....
Herea = 8,r = 1, and n = 9; the ninth term is / = ar"~' = 8(1)* = (1)* = L, and the sum of the first nine terms is
_a—rl_8-1(55) 1 511

5
=1 =lo-5=5

-}
(See Problems 12.13-12.18.)

THE TERMS BETWEEN THE FIRST AND LAST TERMS of a geometric progression are called
geometric means between the two terms. Thus, to insert k& geometric means between two numbers is to
form a geometric progression of (k + 2) terms having the two given numbers as first and last terms.
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EXAMPLE 6. Insert four geometric means between 25 and %75

We have a =25, =k, and n=4+2=6. Using [ = ar"", =25/ then * = (1)’ and r =L The first
mean is 25(1) = 5, the second is 5(1) = 1, and so on. The required means are 5, 1,1, 55 and the geometric progression
is 25,5, 1,1, 4 L

THE GEOMETRIC MEAN. When one mean is to be inserted between two numbers to form a
geometric progression, it is called the geometric mean of the two numbers. The geometric mean of two
numbers « and /, having like signs, is (*)v/a - /. The sign to be used is the common sign of @ and /. (See
Problem 12.19.)

Solved Problems

ARITHMETIC PROGRESSIONS

12.1  Determine which of the following sequences are arithmetic progressions (A.P.). In the case of an A.P., write
three more terms.

(@) 3,6,9, 12,15, 18.
Since 6—-3=9-6=12-9=15-12=18—15=3, the sequence is an A.P. with common
difference 3. The next three terms are 18 +3 =21, 21 + 3 =24, and 24 + 3 = 27.
(h) 25,19,13,7,1, 5.
Since 19-25=13-19=7-13=1-7=-5—-1= -6, the sequence is an A.P. with d=—6.
The next three terms are =5 + (=6) = —11, =11 + (—=6) = —17, and =17 + (—6) = —23.
(¢) 5,10, 14, 20, 25.
Since 10 — 5 # 14 — 10, the sequence is not an A.P.
(d) 3a—2b,4a—b,5a,6a+ b.
Since (4a—b)— (3a—2b) = Sa— (4a—b) = (6a+ b) — S5Sa = a+ b, the sequence is an A.P. with
d = a+ b. The next three terms are (6a + b) + (a + b) = Ta + 2b,8a + 3b, and 9a + 4b.

12.2  Find the value of k such that each sequence is an A.P.

(@) k—1,k+3,3k—1.
If the sequence is to form an A.P., (k+3)—(k—1)=Bk—1)—(k+3). Then k =4 and the
AP.is 3,7, 11.
(b) 3K> 4k +1,2k> + k; 4k* — 6k + 1.
Setting (2k*> 4+ k) — (3k*> +k+ 1) = (4k* — 6k + 1) — 2k* + k), we have 3k*—7k+2=0 and
k = 2,1 The progressions are 15, 10, 5 when k =2 and 3,3,—3 when k =1.

12.3  Prove the formula S = 5 [2a + (n—1)d] for an arithmetic progression.

Write the indicated sum of the n terms in the order given by (/2.7), then write this sum in reverse order,
and sum term by term. Thus,

S={a Y+{a+d Y-+ {a+m=2d}+{a+ - Dd}
S={a+m-Dd}+{a+n-2d}+ --+{a+d }4+{a }
2S={2a+mn—-Dd}+{2a+m—-1Dd}+ - +{2a+m—1d}+{2a+ (n—1)d}

=n2a+@n—-1d]  and S:g[2a+(n—l)d]

124  (a) Find the eighteenth term and the sum of the first 18 terms of the A.P. 2,6,10,14,....
Here a=2,d=4,n=18, Then I=a+n—-1)d=2+17-4=70 and S =%5(a + 1):%(2+70):
6438.
(h) Find the forty-ninth term and the sum of the first 49 terms of the A.P. 10,4,-2,-8§,....

Here a = 10,d = —6,n = 49. Then / = 10 4 48(—6) = =278 and S = %(10 —278) = —6566.
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12.5

12.6

12.7

12.8

12.9

ARITHMETIC AND GEOMETRIC PROGRESSIONS [CHAP. 12

(¢) Find the twelfth term and the sum of the first 15 terms of the A.P. 8§, %, %, 3,....

Since a =8 and d = —%, the twelfth term is / = 8 + 11(—%) = —% and the sum of the first 15 terms is

n 15 5 15 22
S=§[2a+(n— 1)d] =7|:16+ l4(—§>] = 7(—?) =-55

(d) Find the tenth term, the sum of the first 10 terms, and the sum of the first 13 terms of the A.P.
2x 4+ 3y, x+y,=y,....
Here a = 2x + 3y and d = —x —2y. The tenth term is / = 2x + 3y) + 9(—x —2y) = =Tx — 15y.
Sum of first 10 terms is S = 5[(2x + 3y) + (=7x — 15y)] = =25x — 60y.

Sum of first 13 terms is S = 2 [2(2x + 3y) + 12(—x —2)] = ¥ (-8x - 18y) = —52x — 117y.

The seventh term of an A.P. is 41 and the thirteenth term is 77. Find the twentieth term.
If a is the first term and d is the common difference, then for

the seventh term a+ 6d=41
and for the thirteenth term a+12d =177
Subtracting, 6d = 36; then d = 6 and a =41 —6-6 = 5. The twentieth term is /=54 19 -6 = 119.

The sixth term of an A.P. is 21 and the sum of the first 17 terms is 0. Write the first three terms.
If a is the first term and d is the common difference,
a+5d=21 and 0=%(2a+16d) or a+8d=0
Then d = -7 and a = —8d = 56. The first three terms are 56, 49, 42.

Obtain formulas for (a) / in terms of a,n, S; (b) a in terms of d,n, S.

2 2
(@) FromS:g(a—H), a+l=7S and 1=7S—a.

2 2 1
(b) From S=§[2a+(n—l)d], 2a+(n—1)d=7S,2a=75—(n— l)danda=§—§(n—l)d.

If a body is dropped, the distance (s meters) through which it falls freely in ¢ seconds is approximately 167>.
(a) Show that the distances through which it falls during the first, second, third,...seconds form an
A.P. (b) How far will the body fall in the tenth second? (¢) How far will it fall in the first 20 seconds?

(a) The distance through which the body falls during the first second is 16 m, during the second second is
6(2)> — 16 = 48 m, during the third second is 16(3)> — 16(2)> = 80m, during the fourth second is
16(4)* — 16(3)*> = 112m, and so on. These are the first four terms of an A.P. whose common difference
is 32.

(b)) When n=10,/= 16+ 9(32) = 304 m.
(¢) In the first 20 s, the body falls 16(20)*> = 6400 m.

(a) Insert six arithmetic means between 7 and 77.
For the A.P. havinga=7, /[=77andn=6+2=28,77 =7+ 7d and d = 10. The required means
are 17, 27, 37, 47, 57, 67 and the A.P. is 7, 17, 27, 37, 47, 57, 67, 77.

(b) Find the arithmetic mean of 8 and —56.
From Example 4, the arithmetic means is 1(a + /) = 1[8 + (=56)] = —24.
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GEOMETRIC PROGRESSIONS

12.10 Determine which of the following sequences are geometric progressions (G.P.). In the case of a G.P., write
the next three terms.

(a) 4.8, 16, 32, 64.

Since 8 =16 =32 =6 — 3 the sequence is a G.P. with common ratio 2. The next three terms are
128, 256 512.
b) 137635
Since 16/ 1= 418 1¢» the sequence is not a G.P.
(o) 12,—-4,% -3
Since —+%

4/—4=-%/%4=-1 the sequence is a G.P. with common ratio —1. The next three
terms are £, — &,

12.11 Find the value of k so that the sequence 2k — 5, k — 4, 10 — 3k forms a G.P.

If the sequence is to form a G.P.,

k—4 10-3k ) o
M5 k4 k*—8k 4+ 16 = —6k~ + 35k — 50
Then T — 43k + 66 = (k= 3)(Tk —22) = 0 and k=32
The sequences are 1,—1, 1 when k =3 and 3,-$, 3 when k =%.
a(l—=7r")

12.12 Obtain the formula S = for a geometric progression.

Write the indicated sum of the n terms given by (/2.4), then multiply this sum by r, and subtract term by
term. Thus,

S=a+ar+a’ 4+ +a"
rS= ar+art +- -+ a" +a’

S—rS=a —ar"

1_ n
Then S(1—r)=a—ar" =a(l —/") and S = M.
—-r

12.13 (a) Find the seventh term and the sum of the first seven terms of the G.P. 12, 16,%47 e

Here a=12,r=4,n="7. The seventh term is /= ar"~' = 12(4)" = 47/3° = 16 384/243 and the

sum of the first seven terms is

g_a-rl _12-3@/3) 4 36 055368748 _ 56788
I—r -4 ¥ T 243 243
(b) Find the sixth term and the sum of the first nine terms of the G.P. 4,—6,9,.
Since @ = 4 and r = —3, the sixth term is / = 4( — %)5 =-3%/23 = 243 and the sum of the first nine
terms is

gal=r) 4l —(-3)’1 81 +3%/2) 2°+3° 4039
Col-r o 1=(=) 5 520 o4

(¢) Find the sum of the G.P. 8,-4,2,... L.

a-rl _8-(=Y)F) 2+ @) _2"+1 683
1

S= = - _ %
I-r 1-(-}) 3 327 128
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12.14 The fourth term of a G.P. is 1 and the eighth term is %56 Find the tenth term.

; ; 31 o : o 7 _ 1 703 _ 1 4 _ 1
Since the fourth term is 1,ar" = 1; since the eighth term is 5z, ar’ = 5. Then ar'/ar’ = 37 ,1" = 52,

-
and r = *+ ‘1—1. From ar® = 1, we have a = *64. In each case, the tenth term is 096

12.15 GivenS=%,r=%,l=26473.Findaandn.
. 3367 _a-QGD _, 129 4096 B
Since 87674717—%7461 o 4a—W and a=16.
No 1*243*16(3)”_1 (3)”_1* 243 *(3)5 —1=5 and =6
Vom0 4) Tiees \a) T T =0
12.16 Givena=8,r=3,5=2 Find / and n.
2 8— () 2 21 2
Since 5:0—59= (23)231—16, 31:0—59+16=ﬁ and 1:7—9.
8§ 1-3 8 8 8

n—1 n—1 6
Now [=22=38@3)"", 3" =2=(¢), n-1=6 and n=7.

12.17 If a boy undertakes to deposit 1¢ on Sept. 1, 2¢ on Sept. 2, 4¢ on Sept. 3, 8¢ on Sept. 4, and so on, (a) how
much will he deposit from Sept. 1 to Sept. 15 inclusive, (b) how much would he deposit on Sept. 30?

Here, a = 0.01 and r = 2.
(a) When n=15,
_0.01(1-2")
T1=2
(b)) When n = 30,/=0.01(2)*° = $5 368 709.12.

=0.0125% = 1) = $327.67

12.18 A rubber ball is dropped from a height of 81 m. Each time it strikes the ground, it rebounds two-thirds of the
distance through which it last fell. («) Through what distance did the ball fall when it struck the ground for
the sixth time? (b) Through what distance had it traveled from the time it was dropped until it struck the
ground for the sixth time?

(a) The successive distances through which the ball falls form a G.P. in which ¢ =81, r = % When n =6,
1=81()° =% m

(b) The required distance is the sum of the distances for the first six falls and the first five rebounds.
For the falls: a =81, r =2, n= 6, and

M_81(3_2ﬁ) _ 30266

3 3

For the rebounds: a = 54,r = %,n =5, and

541- ()] 22\ 2 s 5 422
= " =54 —_— ) = -2y =
S l—% 5413 3 3(3 ) 3 m

Thus, the total distance is %‘5 + % = 362% m.
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12.19

(a) Insert five geometric means between 8 and %
Wehave a=8,/=%, n=54+2=7.Since /[=a",}=8°and r=x1.
When r = % the first mean is 8(%) =4, the second is 4(%) =2, and so on. The required means are
4,21, 1 3> 4 L and the G.P. is 8, 4, 2, 1, %, %, %

When r = —l the means are —4, 2, — 1, %, —% and the G.P. is 8, —4, 2, —1, %, —‘1—1, %

(b) Insert four geometric means between & and

Here a=8,/=-18 n=6. Then -1= 82—1 >, P =32 and r=-2 The required means are

’
-27,18,-12,8 dnd the G.P. is % -27,18, =12, 8, 16

(¢) Find the geometric mean of % and 243.

The required mean is 1/1(243) = /81 =9.

(d) Find the geometric mean of —% and —32

The required mean is —/(—3)(—

c|oc

Supplementary Problems

ARITHMETIC PROGRESSIONS

12.20

12.21

12.22

12.23

12.24

12.25

Find

(a) The fifteenth term and the sum of the first 15 terms of the A.P. 3, 8, 13, 18....
(b) The twelfth term and the sum of the first 20 terms of the A.P. 11, 8, 5, 2,....
(¢) The sum of the A.P. for which a =63, /=31, n=17.

(d) The sum of all the integers from 1 to 200 which are divisible by 3.

Ans. (@) 73570 (b) —22,-350 (¢) 293 (d 6633

The fourth term of an A.P. is 14 and the ninth term is 34. Find the thirteenth term.
Ans. 50

The sum of the first 7 terms of an A.P. is 98 and the sum of the first 12 terms is 288. Find the sum of the first
20 terms.

Ans. 800

Find the sum of («) the first n positive integers, (b) the first n odd positive integers.
Ans. (a)  In(n+1) ) n*

(a) Sum all the integers between 200 and 1000 that are divisible by 3.
Ans. 160200

(h) Sum all the even positive integers less than 200 which are not divisible by 6.
Ans. 6534

In a potato race, 10 potatoes are placed 8 ft apart in a straight line. If the potatoes are to be picked up singly
and returned to the basket, and if the first potato is 20 ft in front of the basket, find the total distance covered
by a contestant who finishes the race.

Ans. 1120 ft
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12.26

12.27

12.28

12.29

ARITHMETIC AND GEOMETRIC PROGRESSIONS [CHAP. 12

In a lottery, tickets are numbered consecutively from 1 to 100. Customers draw a ticket at random and pay
an amount in cents corresponding to the number on the ticket except for those tickets with numbers divisible
by 5, which are free. How much is realized if 100 tickets are sold?

Ans.  $40

Find the arithmetic mean between (a) 6 and 60, (b) a —2d and a + 6d.
Ans. (a) 33 (b)) a+2d

Insert five arithmetic means between 12 and 42.

Ans. 17, 22,27, 32,37

After inserting x arithmetic means between 2 and 38, the sum of the resulting progression is 200. Find x.

Ans. 8

GEOMETRIC PROGRESSIONS

12.30

12.31

12.32

12.33

12.34

12.35

12.36

12.37

Find

(a) The eight term and the sum of the first eight terms of the G.P. 4,12, 36,....
(b) The tenth term and the sum of the first 12 terms of the G.P. 8,4,2,....
(¢) The sum of the G.P. for which a = 64,/= 729, and n = 7.

Ans. (a) 8748, 13120  (b) 1/64,15255/256 (c) 2059, 463

The third term of a G.P. is 36 and the fifth term is 16. Find the tenth term.

. + 312
Ans.  E35

The sum of the first three terms of a G.P. is 21 and the sum of the first six terms is 20 % Find the sum of the
first nine terms.

Ans. 20%

Q
<
(¢}
=}
%)
|
2
2
~
I
|
|_.
[

—1; find @ and n.

Find three numbers in geometric progression such that their sum is 14 and the sum of their squares is 84.

Ans. 2,4, 8

Prove: X" — y" = (x — p)(x" ' + X" 2y + - -+ x3" 2 + "), n being a positive integer.

In a certain colony of bacteria each divides into two every hour. How many will be produced from a single
bacillus if the rate of division continues for 12 hr?

Ans. 4096

Find the geometric mean between (a) 2 and 32, (b) —4 and —25.
Ans. (a) 8 (h) -10
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12.38 Insert five geometric means between 6 and 384.

Ans. 12, 24, 48, 96, 192

12.39 Show that for p > ¢, positive integers, their arithmetic mean A is greater than their geometric mean G.

Hint: Consider A — G.

12.40 The sum of three numbers in A.P. is 24. If the first is decreased by 1 and the second is decreased by 2,
the three numbers are in G.P. Find the A.P.

Ans. 4,8,120r 13,8, 3



Infinite Geometric
Series

THE INDICATED SUM of the terms of a finite or infinite sequence is called a finite or infinite series.
The sums of arithmetic and geometric progressions in the preceding chapter are examples of finite series.

Of course, it is impossible to add up all the terms of an infinite series; that is, in the usual meaning
of the word sum, there is no such thing as the sum of such a series. However, it is possible/to associate
with certain infinite series a well-defined number which, for convenience, will be called the sum of the
series.

Infinite series will be treated in some detail in Part IV. For the study of the infinite geometric series
here, we shall need only to examine the behavior of ", where |r| < 1, as n increases indefinitely.

EXAMPLE 1. From the table of values of (1)" in Table 13.1, it appears that, as 7 increses indefinitely, ()" decreases
indefinitely while remaining positive. Moreover, it can be made to have a value as near 0 as we please by choosing #
sufficiently large. We describe this state of affairs by saying: The limit of (%)”, as n increases indefinitely, is 0.

Table 13.1

n 1 3 5 10
(%)” 0.5 0.125 0.03125 0.0009765625

By examining the behavior of /" for other values of r, it becomes tolerably clear that

The limit of /", as n increases indefinitely, is 0 when |r| <1.

Using a calculator, one can easily see this for very small positive values of r and for negative values of r near 0,
such as r = —0.000001.

THE SUM S of the infinite geometric series

atar+at+-da™ H <1, s S= la .
—r
(For a proof, see Problem 13.1.) (Note carefully the |r| < 1 restriction.)

84
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EXAMPLE 2.  For the infinite geometric series 12 + 4 + 3 + % 4+, a=12 and r = 1. The sum of the series is
i 3 k
S = = a _ -1 = 18. (See Problems 13.2-13.5.)
— —

W=

EVERY INFINITELY REPEATING DECIMAL represents a rational number. This rational number is
also called the limiting value of the decimal.

EXAMPLE 3. Find the limiting value of the repeating decimal 0.727272.... We write 0.727272... = 0.72 +
0.0072 4 0.000072 + - - - and note that for this infinite geometric series ¢ = 0.72 and r = 0.01.

a 12 72728

Then ST T To0i - 9 9 11

(See Problem 13.6.)

SIGMA NOTATION is a convenient notation for expressing sums. > a; means add +a; +a, + - -+
a,-; + a,. For example, i=1
4
2i=2(1)4+2(12) 2(3) + 2(4)
i

=

=24446+8=20

6
Zj2:22+32+42+52+62

j=2
_ a >
Thus, a+ar—|—ar2+"'+arnl+'--=—=Zar’, Ir] <1
1—r pars

Solved Problems

13.1  Prove: The sum of the infinite geometric series a + ar + ar? + - +ar" '+ where |r| < 1,is S = IL'
—-r
The sum of the first n terms of the series is
S”:a(l—r"): a a o

1—r 1—r 1—r

. . . a . . .
As n increases indefinitely, the first term = remains fixed while »?, and hence, "', approaches zero in
—

a
a 1—r
value. Thus, S = ——.

1—=r

13.2  Determine the sum of each of the following infinite geometric series:
(@) 184+12+8+---
Herea=18,r=3 and §= ——=——5 =54,
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13.3

13.4

13.5

13.6

INFINITE GEOMETRIC SERIES [CHAP. 13

() 25-20+16—"-"- )5 125
a

Herea=25,r=—§, and S=1_r=m=7.
(¢) .64.06+.006+ - 6

5
Here a= .6, r=.1 anclS*—*é
a=mr=-0 119

6_2
93

An equilateral triangle has a perimeter of 30 cm. Another triangle is formed by joining the midpoints of the
sides of the given triangle, another is formed by joining the midpoints of the sides of the second triangle, and
so on. Find the sum of the perimeters of the triangles thus formed.

Since the side of each new triangle is  the side of the triangle from which it is formed, the perimeters of
the triangles are 30, 15, 2. ..
3

1
Then 30+15+75+"'=1—=600m.

[SIE

A rubber ball is dropped from a height of 81 m. Each time it strikes the ground, it rebounds two-thirds of the

distance through which it last fell. Find the total distance it travels in coming to rest.
1
For the falls: « =81 and r =%; SZIL :%: 243 m.
— _2
3

54
For the rebounds: ¢ = 54 and r = %; S = 12 = 162m.
3

Thus, the total distance traveled is 243 4+ 162 = 405m.

1 1

1
+ + + -+ - have a sum? Find the sum.
X+ x+ D) 1)}

For what values of x does

There will be a sum provided |r| = '% <1

When

1 - .
m‘ =1|x+1l=1,x+1)*=1,¥+2x=0, and x=—2,0. By examining the intervals

x < —=2,-2<x<0,and x > 0, we find that

7|<lwhenx<—2andx>0.
x+1

/x+1) —lwhenx<—2andx>0.

Thus, the series has a sum S = m =3

Find the limiting value of each of the repeating decimals.

(a) .0123123123...
Since .0123123123... = .0123 4 .0000123 + .0000000123 + - - - in which a = .0123 and r = .001,

a 0123 0123 123 41
1—r 1-.001" .999 ~ 9990 3330

S =

(b) 2.373737...
The given number may be written as 2 4+ [.37 +.0037 + .000037 + - - -]. For the infinite geometric
37

. . 37
series in the brackets, a = .37 and r = .01; hence, S = T=o0l 99" 99

The limiting value is 2 + 35 = 2.

() 23.1454545 ...
Write  23.1454545... = 23.1 + [.045 + .00045 + .0000045 + - - -]
045 45 231 1 12713

=231+

=231 d14+—=="" =
3 +1—.01 990 10 +22 55
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Supplementary Problems

13.7  Sum the following infinite geometric series: 3 3
a) 36+ 1244+ d) 56-22440.896—""- 3——t—=-
(a) (@) 56-224- ) 3=+
(b) 18—12+48—--- (@ 1+ivV2+1+--
(© 5+3+18+- -
Ans. (@ 54 ) 3 (© 122 @ 4 (o 242 f) %(2—\/5)
13.8 A swinging pendulum bob traverses the following distances: 40, 30, 221, ... cm. Find the distance which it
travels before coming to rest.

Ans. 160 cm.

13.9  An unlimited sequence of squares are inscribed one within another by joining the midpoints of the sides of
each preceding square. If the initial square is 8 cm on a side, find the sum of the perimeters of these squares.

Ans. 32(2++/2) em.

13.10 Express each repeating decimal as a rational fraction.

(a) 0.272727... (b) 1.702702... (c) 2.4242... (d) 0.076923076923...
Ans. (a) ll (b) % (c) % (d) Tl}

13.11 Find the values of x for which each of the following geometric series may be summed:
(@) 34+3x+3x>+--- Hint: |r| = |x]|
®) 1+x=D+x=1>+--- Hint: |/| = [x—1]
(€©) 5+5(x—=3)+5(x=37+"-
Ans. (a) -1<x<1 b)) 0<x<2 () 2<x<4

13.12 Find the exact error when é is approximated as 0.1667.

Ans.  0.000033...=1/30 000

13.13 Evaluate
2
@ Y37
J=1
Ans. 15
b)) >3-0.5)
i=0

Ans. 6

© 10 100 1000
13.14 Do you think that Y 1 is finite or infinite? What is > 12 3 12 %" 19 etc?
i=1 i=1

i=1 i=1

Does the result surprise you?

13.15 Repeat Problem 13.2 using a scientific calculator.



Mathematical
Induction

EVERYONE IS FAMILIAR with the process of reasoning, called ordinary induction, in which a
generalization is made on the basis of a number of simple observations.

EXAMPLE 1. Weobserve that 1 =12,14+3=4=221434+5=9=23%1+3+5+7= 16 = 42, /and conclude
that
14345+ +Qu-1)=n

or, in words, the sum of the first n odd integers is n.

EXAMPLE 2. We observe that 2 points determine 1 = % -2(2—1) line; that 3 points, not on a line, determine
=133 —1) lines; that 4 points, no 3 on a line, determine 6 =1 -4(4 — 1) lines; that 5 points, no/3 on a line,

determine 10 = % - 5(5—=1) lines; and conclude that n points, no 3 on a line, determine %n(n — 1) lines.

EXAMPLE 3. We observe that for n = 1,2,3,4,5 the values of
_nt 17 47n 103
T8 12 8 12

are 2, 3, 5, 7, 11, respectively, and conclude that f{(n) is a prime number for every positive integral value of n.

+6

S

The conclusions in Examples 1 and 2 are valid as we shall prove later. The conclusion in Example 3 1s false since
f(6) = 22 is not a prime number.

MATHEMATICAL INDUCTION is a type of reasoning by which such conclusions as were drawn in
the above examples may be proved or disproved.
The steps are

(I) The verfication of the proposed formula or theorem for some positive integral value of #,
usually the smallest. (Of course, we would not attempt to prove an unknown theorem by
mathematical induction without first verifying it for several values of n.)

(2) The proof that if the proposed formula or theorem is true for n = k, some positive integer, it is
true also for n =k + 1.

(3) The conclusion that the proposed formula or theorem is true for all values of 7 greater than the
one for which verification was made in Step 1.

88
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The following analogy is helpful: If one can climb to the first step of a ladder, and if for every step
one reaches, one can reach the next step, then one can reach every step of the ladder, no matter how
many steps there are.

EXAMPLE 4. Prove: 1 +3+5+ -+ Qun—1)=1n’

(I) The formula is true for n = 1 since 1 =12 (the first step of the ladder).
(2) Let us assume the formula true for n = k, any positive integer; that is, let us assume that

14+3+54- -+ @k—1)=Fk (for every step you reach- - ) (14.1H

We wish to show that, when (/4.1) is true, the proposed formula is then true for n = k + 1; that is, that
143454+ 4+ Qk=D+Qk+D)=Fk+1> (- you can reach the next.) (14.2)

[NOTE: Statements (/4.7) and (/4.2) are obtained by replacing n in the proposed formula by k£ and
k + 1, respectively. Now it is clear that the left member of (/4.2) can be obtained from the left
member of (/4.1) by adding (2k + 1). At this point the proposed formula is true or false
according as we do or do not obtain the right member of (/4.2) when (2k + 1) is added to the
right member of (14.1).]

Adding (2k + 1) to both members of (/4.1), we have
1+34+54+  +Qk—D+Qk+ 1) =K +Qk+1) = (k+ 1) (14.3)

Now (/4.3) is identical with (/4.2); thus, if the proposed formula is true for any positive integer n = k, it is
true for the next positive integer n =k + 1.

(3) Since the formula is true for n =k = 1 (Step 1), it is true for n = k + 1 = 2; being true for n = k = 2, it is
true for n = k + 1 = 3; and so on. Hence, the formula is true for all positive integral values of n.

Solved Problems

Prove by mathematical induction.

141 1+7+ 134 +(6n-5 =nGn-2).

(I) The proposed formula is true for n =1, since 1 = 1(3 =2).
(2) Assume the formula to be true for n = k, a positive integer; that is, assume

1+7+134--+(6k—5)=k(3k-2) )
Under this assumption we wish to show that
1+7+134--+(06k=5+ 6k +1)=(k+ DBk +1) 2
When (6k + 1) is added to both members of (/), we have on the right
k(Bk=2)+ 6k + 1) =3k + 4k + 1 = (k + D3k + 1)

Hence, if the formula is true for n = k it is true forn =k + 1.
(3) Since the formula is true for n =k =1 (Step 1), it is true for n =k + 1 = 2; being true for
n=k=2itis true for n =k + 1 = 3; and so on, for every positive integral value of n.

142 14+5+52+ - +57"'=15"-D.

(I) The proposed formula is true for n = 1, since 1 = 1(5—1).
(2) Assume the formula to be true for n = k, a positive integer; that is, assume
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14+54+5 45 =15k -1) (1)
Under this assumption we wish to show that
L4+5+5 4457 sk =1k — Q)
When 5F is added to both members of (/), we have on the right
1 =D +5=36H-1=16-5 - =15 -1

Hence, if the formula is turue for n = k it is true forn =k + 1.
(3) Since the formula is true for n =k =1 (Step 1), it is true for n =k + 1 = 2; being true for
n=k=2itis true for n =k + 1 = 3; and so on, for every positive integral value of n.

6 7 n+4 n(3n+7

5
123232 325 Yt Dnt2 20+ Dt
5 13+7)_5

(I) The formula is true for n = 1, since T23-233 "¢

14.3

(2) Assume the formula to be true for n = k, a positive integer; that is, assume
5 6 k+4 k(3k +7)
2 4. ]
1237234 Ykt e+ T2k DK+ 2) 0
Under this assumption we wish to show that
5 6 k+4 k+5 _ (k+ 1)(3k +10) o)

12372347 Tk k1 T hE Dk LDk +3) . 2kt 0k +3)
k+5 . .
When ET DT DTS is added to both members of (/), we have on the right
k(k +7) k45 _ 1 [k(3k+7) k+ 5]
2k + Dk +2) ' (k+ Dk+2)(k+3)  (k+ D(k+2) 2 k+3
B 1 k(3k + T)(k + 3) + 2(k + 5)
T (k+ D(k+2) 2(k + 3)
_ 1 3k + 16k* + 23k + 10
T (k4 D(k+2) 2(k +3)
1 (k + D23k + 10)

T+ Dk+2 2+3)
 (k+ 13k + 10)
T2k +2)(k+3)

Hence, if the formula is true for n = k it is true forn =k + 1.
(3) Since the formula is true for n=k=1 (Step 1), it is true for n =k + 1 =2; being true for
n=k=2,1itis true for n = k+ 1 = 3; and so on, for all positive integral values of n.

144 x¥ —y* is divisible by x + y.

(1) The theorem is true for n = 1, since x> — y*> = (x — y)(x + y) is divisible by x + .
(2) Let us assume the theorem true for n = k, a positive integer; that is, let us assume

x* = y%is divisible by x + y. )
We wish to show that, when (/) is true.
x+2 2642 is divisible by x + y. )
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14.5

14.6

14.7

14.8

14.9

14.10

14.11

14.12

14.13

14.14

14.15

14.16

14.17

)
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Now 242 = 242 — (G202 _ (2020 4 (0202 22y 22k 2k 42k 2 2y the
first term (x> — y*) is divisible by (x + y) by assumption, and in the second term (x> —)?) is
divisible by (x + y) by Step 1; hence, if the theorem is true for n = k, a positive integer, it is true for
the next one, n =k + 1.

Since the theorem is true for n = k = 1, it is true for n = k + 1 = 2; being true for n =k =2, it is
true for n =k + 1 = 3; and so on, for every positive integral value of n.

The number of straight lines determined by n > 1 points, no three on the same straight line, is 1n(n —1).

0]
@

)

The theorem is true when n = 2, since % -2(2—=1) =1 and two points determine one line.
Let us assume that k points, no three on the same straight line, determine %k(k — 1) lines.

When an aditional point is added (not on any of the lines already determined) and is joined to
each of the original k points, k new lines are determined. Thus, altogether we have %k(k -D+k=
%k(k -1+2)= %k(k + 1) lines and this agrees with the theorem when n =k + 1.

Hence, if the theorem is true for n = k, a positive integer greater than 1, it is true for the next
one, n=k+ 1.

Since the theorem is true for n =k =2 (Step 1), it is true for n =k + 1 = 3; being true for
n=k=23,itis true for n = k+ 1 = 4; and so on, for every possible integral value >1 of n.

Supplementary Problems

Prove by mathematical induction, n being a positive integer.

14243+ +n=Linm+1)

l+4+74 - +@n-2)=1inBn-1)

17+ 32
12 +22
13+ 23

14424

+5% 4+ Q=1 = Ln@n® = 1)
+3¥ 4+ =+ D2+ 1)
+3 4w =P+ 1)

+3* 4+ nt =Ldnm+ D2+ DG+ 3n-1)

124234344 +nn+ D =4inn+n+2)

R
1-3

b
3575

1 1 n
tsot +(2;1—1)(2n+1)’2n+1

1:342-343-3 4+ 4n-3"=3[2n—-D3"+1]
3 N 4 N 5 L, +2 1
1-2-2 2-3-22 3-4-23 nn+1D2" " (n+1)2"

A convex polygon of n sides has %n(n —3) diagonals.

The sum of the interior angles of a regular polygon of # sides is (n —2)180°.



The Binomial Theorem

By actual multiplication

(a+b)'=a+b, (a+b’=d"+2ab+b*,  (a+b) =d +3d°h+3ab* + b,
(a+b)* = d* +4d°b + 64°H* + 4ab® + b*,
(a+b) =d° +54*b + 10a°b* + 10a°b> + 5ab* + b, etc.

From these cases we conclude that, when » is a positive integer,

(a+ b)n =4+ nan—lb + n(n— l)an—Z »  nn—1Dn—- 2) an—3b3 +

n=1 g
2 2.3 +nab™" +b (15.1)

and note the following properties:

()
)

)

4
©)

(©6)

The number of terms in the expansion is (n + 1).

The first term a of the binomial enters the first term of the expansion with exponent n, the
second term with exponent (n— 1), the third term with exponent (n —2), and so on.

The second term b of the binomial enters the second term of the expansion with exponent 1, the
third term with exponent 2, the fourth term with exponent 3, and so on.

The sum of the exponents of ¢ and b in any term is 7.

The coefficient of the first term in the expansion is 1, of the second term is n/1, of the third term
is n(lla. 21), of the fourth term is W, etc

The coefficients of terms equidistant from the ends of the expansion are the same. Note that the
number of factors in the numerator and denominator of any coefficient except the first and last
is then either the exponent of « or of b, whichever is the smaller.

The above properties may be proved by mathematical induction.

EXAMPLE 1. Expand (3x + 2)?) and simplify term by term.
We put the several powers of (3x) in first, then the powers of (2y7), and finally the coefficients, recalling Property 6
and using (/5.1).

s 5 ,o  5-4 5.4 5

Gx+2yY) = G+ 60 @) + 5 G0 @) + 15 G0 @Y +7 G0 + @)’
=3 4530 22 +10-33%3 - 224 410327 - 230 + 5 3x - 248 2710
= 243x° 4 810x*) + 1080x"y* 4 720xy° 4 240x)* + 3210

(See Problems 15.1-15.2.)
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THE rth TERM (r = n + 1) in the expansion of (a + )" is

nn—1n=2)--m—r+2) , 11,1
1.2.3...(,,_1) a b

(See Problem 15.3.)

WHEN THE LAWS ABOVE are used to expand (a + )", where #n is real but not a positive integer, an
endless succession of terms is obtained. Such expansions are valid [see Problem 15.7(a) for a verification]
when |b| < |a].

EXAMPLE 2. Write the first five terms in the expansion of (a + b)), |b| < |a.

(@t b = a + 3ath+ TICD s EIEDES) 5

1-2 1-2-3
D0 7,
1234 ¢0T
1 3b 6b* 106° 15b*
B R A

(See Problems 15.5-15.8.)

Solved Problems

15.1  Expand and simplify term by term.

) 1)6_ s 6 25(1 ) 6-5 24<1 7>2 6-5-4 23(1 7)3

(@) (x T3] =L G+ Oy RO
65 o1 \* 6 5 (1 \ (1\°
+ﬁ(-’f ) (E}) +T(X )(E}’) +(5J’)

=xP 461y + 1565 17 + 2006 {7 + 15 Lyt + 6 5 1° + 40°

=7+ 30y + B892 43007 4 Byt 4 2x20 + )°

) 2 + 2},1/3)4 — (/) +?(x1/2)3(2y1/3) —0—%():1/2)2(2}'1/3)2 +?(xl/2)(2y1/3)3 i (2},1/3)4

2442 1 604 + 48y + 16y
24 8213 424102 13012y 4 16y

C62 0V 1
602 1p\(_ L
)+1(3x )( 2x)
52 V1V 65402 1/2)3(_1)3
+1~2(3X )( 2x)+1~2~3<3x 2x
502 V(1Y) 621/2)(_1)5 (_1)6
(3X ) 2x>+1(3x ) T\

2 4, 1)
© <§x 2x)

64 5 32 35 20 20x'/7 5 x!/? 1

720" T8t 7 e T e e T
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15.2  Write the first five terms in each expansion and simplify term by term.

2 ip 3\ 2 i\ 1202 i\ 3 12-112 15\ 3 \?
@ (nrsm) =6) T 6) o)t ) G
+12~11~10(2 1/2)9( 3 )3+12~11~1o~9(2 1/2)( 3 )4+
e (s, ol
123 3" ) Gwr) T2 BT ) G
212 21 " 3 210 32
/2 5
Bk “2(3“ P el Cl e

2 33 28 3¢
/2 .
+ 220(§m )22 aad] i e i

2]2 212 2 2 24
312m+ m* 4+ 115 m? 4 55 -i-5532 5+

39 37 30
X2 2\ 2 02\ v2\
®) VA ) T\ 2x 1 2 2/3 T2y
11109 yz3111098 A AR AN
e = ) =)
y 2x) T 1-2-3-4 \(3; 2x
2
AR T 20/3 10 +55 }222
Y23z 2x 2°x
4 72\ 4.8
X 328 X yz
165( 16/3 8) 33 330( 14/3 7) AT

11/2 2/3 11x4)’1/3 55,\'5/2 165xy2/3 N 165xl/2y1/3z_

— + —
ySle 2y628 4}7425 8}7322 8Xy

15.3  Find the indicated term and simplify.
(a) The seventh term of (a + b)"°.

In the seventh term the exponent of b is 7—1 =6, the exponent of a is 15—6 =9, and the
coefficient has six factors in the numerator and denominator. Hence, the term is

15141312111096 9.6
33456 b’ = 5005a"b
1 12
(b) The ninth term of (x—l—) .
X172
In the ninth term the exponent of b = Y is 9 — 1 = 8, the exponent of ¢ = x is 12 -8 =4, and

the coefficient has four factors in numerator and denominator. Hence, the required term is

12-11-10-9 1
()4(—

1
_ N
[ 23.4 X :’(1/2)—495(,\))(4 495

1/2 2
(¢) The twelfth term of (XT_z_y/z)

The required term is

18-17-16-15-14-13-12 (x'/?
1-2:3-4-5-6-7

7
2y 7/2 211 11 yll
)(_W) =-9-17-16- 13(214 =



CHAP. 15] THE BINOMIAL THEOREM 95

10
(d) The middle term in the expansion of ( X5 4 %/2) .

Since there are 11 terms in all, the middle term is the sixth. This term is

109 76 s 1\ X' 5/6
334 5(\ )<x1/’) 2527 7 =252y

8-
3

9
(¢) The term involving y'? in the expansion of (y3 —g) .

The first term of the binomial must be raised to the fourth power to produce y'2; hence, the second
term must be raised to the fifth power and we are to write the sixth term. This term is

9-8'7'6@3)4(_%)5:_32 14y 12\57 l4x5}]2

1-2-3-4 35 27
) 2\ 14
(f) The term involving x* in the expansion of (7 + T
X
Let p and ¢ be positive integers so that p + ¢ = 14. We are required to determine p and ¢ so that
2\? V,2 q ) ) )
(;) (%) yields a term in x*. Then 2¢g — p = 4 or 2¢ — (14— ¢) = 3¢ — 14 = 4 and ¢ = 6. The required
term, the seventh in the expansion, is
14-13-12-11-10-9 12\ (x\° PARN 3003
(7) 3003 22" 3003
1:2:3-4-5-6 x) \4 x8 212 16

15.4  Evaluate (1.02)"? correct to four decimal places.

1211 12-11-10 12-11-10-9
12 _ 12 _ 2 3 4o
(1.02)"" = (1+.02) 1+ 12(.02) + ) (.02)" + 23 (.02)" + 234 .02)" +
=14 .24+ .0264 +.00176 + .00008 + - - - = 1.26824 (approximately)

Thus, (1.02)'? = 1.2682 correct to four decimal places.

15.5  Write the first five terms and simplify term by term.

(a) (Xz_x%)l/z:(xz)1/2+%(xz)—1/2< x_4) G)(= 2)( )—3/2( %)2

1-2-3 x* 1-2-3-4

112 112 11 2 5 1 2¢
e P OO P A AP S

2 x x* 23 X a8 24 X X227 X7 !

1 1 1 5
=x-=-sp-smrm— (K>

(_T( x)( z) 11/3 3 (_%)(_%)(_%)( ) 14/3
WI " x>+Wl AGEVIE S

=141 x +3x +‘§?x9+é10x12+ (Ixl < 1)

+

5/3
15.6  Find and simplify the sixth term in the expansion of (x —2—) [x] > \/—
X

The required term is

OOYD oy _3Y_T om0
1-2-3-4-5 V 2x 367 25x%  96x12
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15.7 (a) Evaluate /26 correct to four decimal places.
1
V26 = (52 + )2 = (532 ¢ (5 27121y + (23( : )(5 )21y
1\(_1 3\(_5
DD o5 B=D=)(=3)
AAN VAN Y4 1 AANI /AN AN /4
t 3 7P + 234
dot 1
2523 5T 57 5
= 5.00000 + .10000 —.00100 + .00002 — - - -

(52)—7/2(])4 P

= 5.09902 (approximately)

Thus, v26 = 5.0990, correct to four decimal places.

[NOTE: If we write v26 = (1 +5)"? =1+15) -5 + L) - - - -
= 1+12.5-78.125+976.5625— - - -

it is clear that the expansion is not valid. The condition |b| < |a| in (a + b)" in essential when 7 is
not a positive integer.]

(b) Evaluate +/23 correct to four decimal places.
VB=@E -2 =)+ (52)“/2( 2)+(2)( 2)(5 7 =2?

(2)(—2)( D s AEHEDE3)
1-2- CRRC 1-2-3-4

—5_ 1_11 11 11

T 5 25 25 856

=4.79583 (approximately)

+ (52)—7/2(_2)4 +

Thus, 23 = 4.7958, correct to four decimal places.

158 (@) Show that the sum of the coefficients in the expansion of (a + b)", n a positive integer, is 2".
(b) Show that the sum of the coefﬁcients in the expansion of (¢ — b)", n a positive integer, is 0.
-1 -1
(@) In(a+b)"=a"+na""b N 1 3 ) a7+ +%a2b”_2 +nab"t £ b et a=b=1;
then (1+1)'=2"=1 +n+§n(n— D4+ +§n(n— 1)+ n+ 1, as was to be proved.

(b) Similarly, let @ = b =1 in the expansion of (¢ — b)" and obtain

L=n+inn=1) =+ =)= DI+ )"+ =)' =1 -1 =0

Supplementary Problems

159 Expand by the binomial theorem and simplify term by term.
(@) (a+ %b)(’ =d°+3a’h+ ﬁa4b2 + §a3b3 16azb4 ]6ab5 + §b6
(b) (Ax+1y)° =1024x° + 3205y + 40x°)? + 3% + Zx0* + 1dp)°
© (L 2_}) X 5x2 5 5 20y 32)°

T2 T 1024yT 1281 T 8y xH3 T AT X0

43 x
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15.10

15.11

15.12

15.13

15.14

15.15

15.16

Find the indicated term and simplify.

1 10
(a) Fifth term of  + x)' (d) Seventh term of (xl/3 - )
2x2/3
2 x4y 1
ixth term o — e iddle term of [—
b) Sixth f (e) Middl f
X2 4 X
272 B \" a \’
b : 1/2,1/2 _
(¢) Tenth term of ( 5 + 6a4) (f) Middle term of ( b b3/2)
(¢) The term involving x'* in the expansion of (2/x — x*)!
(h) The term free of y in the expansion of (xy!/® — y~2/3)13
105 63x'/4 55b° 105x!/3
Ans. (a) ix“ b - o ) Trga® (d) T (€) 924x°
63a"/2p'> 63a’b'?
— 180a 14 —455: 12
) g g (g) 180 (h) —4s5x

Expand (a+ b—c¢)’. Hint: Write (a +b—¢)® = [(a+ b) —c] .
Ans. @+ b> = 4+ 3a?b - 3dP ¢ + 3ab® — 3b*c + 3ac* + 3bc? — 6abe

Find the value of # if the coefficients of the sixth and sixteenth terms in the expansion of (« + )" are equal.

Ans. n=20

Find the first five terms in the expansion and simplify term by term.

x & - & 3d 6a'' 104" 154" 473
@ (2+x—z —e Tt Tt b=
2,2 32 3 6 3,8
(b) (f—%) -3y +2y}+%+8zg+---,(|xl> V202
1/ 2 4 6 8
3y2 vyt 5% 10y 5
(o) (1 x) 1—?—?—§_&7_"'7(|x|>3}’)

Find and simplify the indicated term.
(a) The sixth term in (a*> —46%'%, (la] > 2|b]).

bl()

Ans. 28—
ns 5

-1
(h) The seventh term in (x1/4 —%) , (x| > 34/3).
1/4

Ans. 729 %
X

2 -2
(¢) The term involving x* in (; + xz) . (xl < J2).
7520 i

Ans. 2
5356

Prove that the number of terms in the binomial theorem expansion of (a + )" is n+ 1.

(Hint: Use induction.)

Prove that the sum of the exponents of ¢ and b in any term of the expansion of (a + b)" is n.



Chapter 16

Permutations

ANY ARRANGEMENT OF A SET OF OBJECTS in a definite order is called a permutation of the set
taken all at a time. For example, abcd, achd, bdca are permutations of a set of letters, a, b, ¢, d taken all at
a time.

If a set contains n objects, any ordered arrangement of any r=n of the objects [is called a
permutation of the n object taken r at a time. For example, ab, ba, ca, db are permutations of the n = 4
letters a, b, ¢, d taken r = 2 at a time, while abc, adb, bad, cad are permutations of the n = 4 letters taken
r = 3 at a time. The number of permutations of n objects taken r at a time is denoted by nPr, where r = n.

THE NUMBER OF PERMUTATIONS which may be formed in each situation can be found by means
of the

FUNDAMENTAL PRINCIPLE: If one thing can be done in u different ways, if after it has been
done in any one of these, a second thing can be done in v different ways, if after it has been done in
any one of these, a third thing can be done in w different ways, ..., the several things can be done in
the order stated in u-v-w - - - different ways.

EXAMPLE 1. In how many ways can 6 students be assigned to (a) row of 6 seats, (b) a row of 8 seats?

(a) Let the seats be denoted xxxxxx. The seat on the left may be assigned to any one of the 6 students; that is, it may
be assigned in 6 different ways. After the assignment has been made, the next seat may be assigned to any one
of the 5 remaining students. After the assignment has been made, the next seat may be assigned to any one of
the 4 remaining students, and so on. Placing the number of ways in which each seat may be assigned under the x
marking the seat, we have

X X X X X X
6 5 4 3 21

By the fundamental principle, the seats may be assigned in

6-5-4-3-2-1="720 ways

The reader should assure him- or herself that the seats might have been assigned to the students with the
same result.

(b) Here each student must be assigned a seat. The first student may be assigned any one of the 8 seats, the second
student any one of the 7 remaining seats, and so on. Letting x represent a student, we have

X X X
8 7 6

S box

X X
4 3
0

and the assignment may be made in8-7-6-5-4-3=2016

98

ways.

Copyright 1958 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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(NOTE: If we attempt to assign students to seats, we must first select the six seats to be used. The problem of
selections will be considered under Combinations in Chapter 17.) (See Problem 16.1-16.5.)

Define n! (n factorial) to be

n-n—1-m=2)- -+ - - (2)(1) for positive integers 7,
!
where 0! = 1! = 1. Then, if we define (n) to be L, we call (n) a binomial coefficient and note
k k!(n—k)! k

that

(a+b)y' = Z(Z)a”_kbk, n=1.

k=0

(See Problems 16.6—16.7.) (See Chapter 15 for a discussion of the binomial theorem.)

PERMUTATIONS OF OBJECTS NOT ALL DIFFERENT. If there are n objects of which k are
alike while the remaining (n — k) objects are different from them and from each other, it is clear that the
number of different permutations of the n objects taken all together is not n!.

EXAMPLE 2. How many different permutations of four letters can be formed using the letters of the word
bass?
For the moment, think of the given letters as b, a, s, s, so that they are all different. Then

bas;sy, as\bsy sysiba  syas,b  bsys,a

basys, asybs; syspba  s,asib  bsysia

are 10 of the 24 permutations of the four letters taken all together. However, when the subscripts are removed, it is
seen that the two permutations in each column are alike.

1-2
Thus, there are = 12 different permutations.

1-2
In general, given n objects of which k are one sort, k, of another, k3 of another,. .., then the number of different
permutations that can be made from the n objects taken all together is
n!
kilkylks!. ..

(See Problem 16.8.)

IN GENERAL: The number of permutations, nPr, of different objects taken r<n at a time is
The number of permutation of n objects taken n at a time, nPn, is n!.

n—r)

Solved Problems

16.1  Using the letters of the word MARKING and calling any arrangement a word, (¢) how many different
7-letter words can be formed, (b) how many different 3-letter words can be formed?

(a) We must fill each of the positions xxxxxxx with a different letter. The first position may be filled in
7 ways, the second in 6 ways, and so on.

and there are 7-6-5-4-3-2-1 = 5040 words.

Thus, we have )1(

X X X
4 3 2

[

X X

7 6

(h) We must fill of the positions xxx with a different letter. The first position can be filled in 7 ways, the
second in 6 ways, and the third in 5 ways. Thus, there are 7-6 -5 = 210 words.
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In forming 5-letter words using the letters of the word EQUATIONS, (4) how many consist only of vowels,
(h) how many contain all of the consonants, (¢) how many begin with E and end in S, (d) how many begin
with a consonant, (¢) how many contain N, (f) how many in which the vowels and consonants alternate,
(g) how many in which Q is immediately followed by U?
There are 9 letters, consisting of 5 vowels and 4 consonants.
(a) There are five places to be filled and 5 vowels at our disposal. Hence, we can form 5-4-3-2-1 =120
words.

(b) Each word is to contain the 4 consonants and one of the 5 vowels. There are now six things to do: first
pick the vowel to be used (in 5 ways), next place the vowel (in 5 ways), and fill the remaining four
positions with consonants.

X X X X X X

We have ; hence there are 5-5-4-3-2-1= 600 words.
54 3 21
E S

(¢) Indicate the fact that the position of certain letters is fixed writing X x X X X.

Now there are just three positions to be filled and 7 letters at our disposal. Thus, there are
7-6-5=210 words.

c
(d) Here we have x x X X Xx since, after filling the first position with any one of the 4 consonants,
4 8 7 6 5

there are 8 letters remaining. Hence, there are 4-8-7-6-5 = 6720 words.

(e) There are five things to do: first, place the letter N in any one of the five positions and then fill the other
four positions from among the 8 letters remaining.

X X X X X
‘We have S8 76 5 hence, there are 5-8-7-6-5 = 8400 words.
vV c Vv c v c vV c Vv c
(f) Wemay have x x X x xor x X X Xx Xx.Hence,thereare5-4-4-3-34+4-5-3-4-2=
54 4 3 3 4 5 3 4 2

1200 words.

(g) First we place Q so that U may follow it (Q may occupy any of the first four positions but not the last),
next we place U (in only 1 way), and then we fill the three other positions from among the 7 letters
remaining.

Thus, we have and there 4-1-7-6-5 = 840 words.

X X X X X
4 1 7 6 5

If repetitions are not allowed, (¢) how many three-digit numbers can be formed with the digits
0,1,2,3,4,5,6,7,8,9? (b)) How many of these are odd numbers? (¢) How many are even numbers? (d) How
many are divisble by 5? (¢) How many are greater than 600?
In each case we have 70 .
X X X
(a) The position on the left can be filled in 9 ways (0 cannot be used), the middle position can be filled in 9
ways (0 can be used), and the position on the right can be filled in 8 ways. Thus, there are 9-9 - 8 = 648
numbers.

(b) We have 7;0 X Oid . Care must be exercised here in choosing the order in which to fill the positions.

If the position on the left is filled first (in 9 ways), we cannot determine the number of ways in which the
position on the right can be filled since, if the former is filled with an odd digit there are 4 ways of filling
the latter but if the former is filled with an even digit there are 5 ways of filling the latter.

We fill first the position on the right (in 5 ways), then the position on the left (in 8 ways, since one
odd digit and 0 are excluded), and the middle position (in 8 ways, since two digits are now excluded).
Thus, there are 8 - 8 - 5 = 320 numbers.
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(d)

(e)
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evxen. We note that the argument above excludes the possibility of first filling the

We have 7;0
position on the left. But if we fill the first position on the right (in 5 ways), were unable to determine
the number of ways the position on the left can be filled (9 ways if 0 was used on the right, 8 ways if 2, 4,
6, or 8 was used). Thus, we must separate the two cases.
First, we form all numbers ending in 0; there are 9-8 -1 of them. Next, we form all numbers
ending in 2,4, 6, or 8; there § - 8 - 4 of them. Thus, in all, there are 9-8 - 1 4+ 8 - 8 - 4 = 328 numbers.
As a check, we have 320 odd and 328 even numbers for a total of 648 as found in (a) above.

A number is divisible by 5 if and only if it ends in 0 or 5. There are 9 - 8 - 1 numbers ending in 0 and
8- 8- 1 numbers ending in 5. Hence, in all, there are 9-8 -1+ 8- 8- 1= 136 numbers divisible by 5.

The position on the left can be filled in 4 ways (with 6,7,8, or 9) and the remaining positions in 9 - 8
ways. Thus,there are 4 - 9 - 8§ = 288 numbers.

Solve Problem 16.3 (a), (b), (¢), (d) if any digit may be used once, twice, or three times in forming the three-
digit number.

(a)

()

(¢)
(d)

The position on the left can be filled in 9 ways and each of other position can be filled in 10 ways. Thus,
there are 9 - 10 - 10 = 900 numbers.

The position on the right can be filled in 5 ways, the middle position in 10 ways, and the position on the
left in 9 ways. Thus, there are 9 - 10 - 5 = 450 numbers.

There are 9 - 10 - 5 = 450 even numbers.

There are 910 - 1 = 90 numbers ending in 0 and the same number ending in 5. Thus, there are 180
numbers divisible by 5.

In how many ways can 10 boys be arranged (a) in a straight line, () in a circle?

(a)
(®)

The boys may be arranged in a straight linein 10-9-8-7-6-5-4-3-2-1 ways.
We first place a boy at any point on the circle. The other 9 boys may then be arranged in 9-8-7-6-
5-4-3-2-1 ways.

This is an example of a circular permutation. In general, n objects may be arranged in a circle in
m—1Dm—=2)- - -2-1 ways.

Evaluate.
8 1:2:3:4:5-6-7-8 100 1:2:3:45:6-7-8-9-10

@ 3= 123 = 6720 © 3@~ T23123123.4 P20
71234567 4+ 12 =D+ )

O =T 23456 @ o T T2 o= e+D

Solve for n, given (a) ,P, = 110, (b) ,P4 = 30,P,.

(a)
()

(a)
()

,,P2=n(n—l)znz—n—llo.Thennz—nz 110 = (n—11)(n + 10) = 0 and, since n is positive, n = 11.

We have n(n— 1)(n—2)(n—3) =30n(n—1) or n(n—1)(n—2)(n—3)—30n(n—1) =0.
Then n(n — D[(n—2)(n —3) — 30] = n(n— ) — 5n—24) = n(n— 1)(n — 8)(n + 3) = 0.
Since n = 4, the required solution is n = 8.

How many permutations can be made of the letters, taken all together, of the “word” MASSESS?
In how many ways will the four S’s be together? (¢) How many will end in SS?
(a) There are seven letters of which four are S’s. The number of permutations is 7!/4! = 210.

(b) First, permute the non-S’s in 1 -2 -3 = 6 ways and then place the four S’s at the ends or between
any two letters in each of the six permutations. Thus, there will be 4 - 6 = 24 permutations.
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(¢) After filling the last two places with S, we have to fill five places with 5 letters of which 2 are S’s.
Thus, there are 5!/2! = 60 permutations.

Supplementary Problems

In how many different ways can 5 persons be seated on a bench?

Ans. 120

In how many ways can the offices of chairman, vice-chairman, secretary, and treasurer be filled from a
committee of seven?

Ans. 840
How many 3-digit numbers can be formed with the digits 1,2,...,9, if no digit is repeated in any number?
Ans. 504

How many 3-digit odd numbers can be formed with the digits 1,2,3,...,9, if no digit is repeated in any
number?

Ans. 280

How many 3-digit number > 300 can be formed with the digits 1, 2, 3, 4, 5, 6, if no digit is repeated in any
number?

Ans. 80

How many 4-digit numbers > 3000 can be formed with the digits 2, 3, 4, 5 if repetitions of digits (a) are not
allowed, (b) are allowed?

Ans. (@) 18 (b)) 192

In how many ways can 3 girls and 3 boys be seated in a row if boys and girls alternate?

Ans. 72

In how many ways can 2 letters be mailed if 5 letter boxes are available?

Ans. 25

Seven-letter words are formed using the letters of the word BLACKER. (¢) How many can be formed?
() How many which end in R? (¢) How many in which E immediately follows K? (d) How many do not
begin with B? (¢) How many in which the vowels are separated by exactly two letters? (f) How many in which
the vowels are separated by two or more letters?

Ans. (@) 5040 (b)) 720 (¢) 720 (d) 4320 () 960  (f) 2400

Eight books are to be arranged on a shelf. () In how many ways can this be done? (b) In how many ways if
two of the books are to be placed together? (¢) In how many ways if five of the books have red binding and
three have blue binding, and the books of the same color are to be kept together? () In how many ways if
four of the books belong to a numbered set and are to be kept together and in order?

Ans. (a) 40 320 (b) 10 080 (c) 1440 d) 120
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16.19

16.20

16.21

16.22

16.23

16.24

16.25

16.26

How many six-letter words can be formed using the letters of the word ASSIST («) in which the S’s alternate
with other letters? (b) in which the three S’s are together? (¢) which begin and end with S? (d) which neither
begin nor end with S?

Ans. (@ 12 () 24 (¢ 24 (d) 24

(a) In how many ways can 8 persons be seated about a round table? (b) With 8 beads of different colors,
how many bracelets can be formed by stringing them all together?

Ans. (a) 5040 (b) 2520

How many signals can be made with 3 white, 3 green, and 2 blue flags by arranging them on a mast () all at
a time? (b) three at a time? (c¢) five at a time?

Ans. (@) 560 (b)) 26  (¢) 170

A car will hold 2 in the front seat and 1 in the rear seat. If among 6 persons only 2 can drive, in how many
ways can the car be filled?

Ans. 40

A chorus consists of 6 boys and 6 girls. How many arrangements of them can be made (a) in a row, facing
front, the boys and girls alternating? (b) in two rows, facing front, with a boy behind each girl? (¢) in a ring
with the boys facing the center and the girls facing away from the center? (d) in two concentric rings, both
facing the center, with a boy behind each girl?

Ans. (a) 1036800 (b)) 518400 () 39916800  (d) 86400

(a) In how many ways can 10 boys take positions in a straight line if two particular boys must not stand side
by side? (b) In how many ways can 10 boys take positions about a round table if two particular boys must
not be seated side by side?

Ans. (@) 8-91  (b) 7-8!

A man has 5 large books, 7 medium-sized books, and 3 small books. In how many different ways can they be
arranged on a shelf if all books of the same size are to be kept together?

Ans. 21 772 800

(a) How many words can be made from the letters of the word MASSACHUSETTS taken all together?
(b) Of the words in (a), how many begin and end with SS? (¢) Of the words in (a), how many begin and end
with S? (d) Show that there are as many words having H as middle letter as there are circular permutations,
using all letters.

Ans. (a) 64864800 (b)) 90720  (¢) 4 989 600



Combinations

THE COMBINATIONS of n objects taken r at a time consist of all possible sets of r of the objects,
without regard to the order of arrangement. The number of combinations of n objects taken r at a time
will be denoted by ,C,.

For example, the combinations of the n = 4 letters a, b, ¢,d taken r = 3 at a time, are

abc, abd, acd, bed

Thus, 4C3; = 4. When the letters of each combination are rearranged (in 3! ways), we obtain the 4P
permutations of the 4 letters taken 3 at a time. Hence, 4P3 = 3!(;C3) and 4C; =4P;/3!. See Chapter 16
for a discussion of permutations.

The number of combinations of n different objects taken r at a time is equal to the number of
permutations of the n objects taken r at a time divided by factorial r, or

WL nm—1)---(n—r+1)
rl - 1:2---r

n CI‘ =

(For a proof, see Problem 17.1.)

EXAMPLE. From a shelf containing 12 different toys, a child is permitted to select 3. In how many ways can this
be done?

The required number is

Gy =123 =2 = = ;0.

Notice that ,C, is the rth term’s coefficient in the binomial theorem. See Chapter 15.

Solved Problems

)IPI‘

17.1  Derive the formula ,C, = =
r!

From each of the ,C, combinations of n objects taken r at a time, r! permutations can be formed.
Since two combinations differ at least in one element, the ,C, - r! permutations thus formed are precisely the

number of permutations , P, of n objects taken r at a time. Thus,
nP,
ncr -1l :nPr and NCV' = ’7,1

104
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17.2

17.3

17.4

17.5

17.6

17.7

Show (a) n C)‘ = 9 (b) n Cl' = VICH—)“
rl(n—r)!
@ C_n(n—l)-~~(n—l‘+1)_n(n—1)~~~(n—r+1).(n—r)~~~2~1_ n!
@ ntr= 1-2---r - 1-2---r 1-:2--(m=r) rln—r)
. n! =1+ Drr=1)---2-1 _nn—=1)---G+1) P, _
®) ”Cr_r!(n—r)!_ 12 r-(n—r) B (n—r)! _(n—r)z_"c”"
Compute (@) 19Ca; (b) 12Cs; (©) 15C12, (d) 25Cy1.
10-9 15-14-13

(@ 100G = 12 =45 (@ 15C1n =15C3 = 123 =455
12-11-10-9-8 25-24-23-22

() 12Cs = 123435 792 (d) 25Cy =25Cy = 1234 12650

A lady gives a dinner party for six guests. (¢) In how many ways may they be selected from among 10
friends? (b) In how many ways if two of the friends will not attend the party together?

10-9-8-7
1-2-3-4
(h) Let A and B denote the two who will not attend together. If neither 4 nor B is included, the guests may

(a) The six guests may be selected in 1(Cg =19Cy = = 210 ways.

. 7 . .
be selected in §Cy =3C, = T3~ 28 ways. If one of A4 and B is included, the guests may be selected in
8-7-6

2‘8C5=2'8C3=2<1.2.3

) = 112 ways. Thus, the six guests may be selected in 28 4+ 112 = 140 ways.

A committee of 5 is to be selected from 12 seniors and 8 juniors. In how many ways can this be done («) if the
committee is to consist of 3 seniors and 2 juniors, (b) if the committee is to contain at least 3 seniors
and 1 junior?

(a) With each of the |, C; selections of 3 seniors, we may associate any one of the gC, selections of 2 juniors.
. . 12-11-10 8-7
Thus, a committee can be selected in 1,C3 - gCp = 23 12 6160 ways.
(b) The committee may consist of 3 seniors and 2 juniors or of 4 seniors and 1 junior. A committee of
3 seniors and 2 juniors can be selected in 6160 ways, and a committee of 4 seniors and 1 junior can be

selected in 1,Cy - gC; = 3960 ways. In all, a committee may be selected in 6160 + 3960 = 10 120 ways.

There are ten points 4, B,..., in a plane, no three on the same straight line. (¢) How many lines are
determined by the points? (b)) How many of the lines pass through A? (¢) How many triangles are
determined by the points? (d) How many of the triangles have 4 as a vertex ? (¢) How many of the triangles
have AB as a side?

(a) Since any two points determine a line, there are 1(C, = 45 lines.
(h) To determine a line through A4, one other point must be selected. Thus, there are nine lines through A.
(¢) Since any three of the points determine a triangle, there are ;(C3 = 120 triangles.

(d) Two additional points are needed to form a triangle. These points may be selected from the nine points
in ¢C, = 36 ways.

(e) One additional point is needed; there are eight triangles having AB as a side.

In how many ways may 12 persons be divided into three groups (a) of 2, 4, and 6 persons, (b) of 4 persons
each?

(a) The groups of two can be selected in |,C, ways, then the group of four in (C,; ways, and the group of
six in 4Cg = 1 way. Thus, the division may be made in ,C, ;(Cs - 1 = 13860 ways.
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(b) One group of four can be selected in |,C,; ways, then another in gC4 ways, and the third in 1 way.
Since the order in which the groups are formed is now immaterial, the division may be made in
12C4 Cy - 1 + 31 = 5775 ways.

The English alphabet consists of 21 consonants and 5 vowels.

(a) In how many ways can 4 consonants and 2 vowels be selected ?

(b)) How many words consisting of 4 consonants and 2 vowels can be formed?
(¢) How many of the words in (b) begin with R?

(d) How many of the words in (¢) contain £?

(a) The 4 consonants can be selected in 5; C; ways and the 2 vowels can be selected in 5C, ways. Thus,
the selections may be made in 5;Cy -sC, = 59 850 ways.

(b) From each of the selections in (@), 6! words may be formed by permuting the letters. Therefore,
59850 - 6! = 43092000 words can be formed.

(¢) Since the position of the consonant R is fixed, we must select 3 other consonants (in ,(Cs ways) and

2 vowels (in 5C, ways), and arrange each selection of 5 letters in all possible ways. Thus, there are
20C3 5Cy - 5! =1 368000 words.

(d) Since the position of the consonant R is fixed but the position of the vowel E is not, we must select
3 other consonants (in ,,C; ways) and 1 other vowel (in four ways), and arrange each set of 5 letters
in all possible ways. Thus, there are ,,C; - 4 - 5! = 547200 words.

From an ordinary deck of playing cards, in how many different ways can five cards be dealt (a) consisting of
spades only, (b) consisting of black cards only, (¢) containing the four aces, (d) consisting of three cards of
one suit and two of another, (¢) consisting of three kings and a pair, (f) consisting of three of one kind and
two of another?

(a) From the 13 spades, 5 can be selected in 3C5 = 1287 ways.
(b) From the 26 black cards, 5 can be selected in ,4,C5 = 65 780 ways.
(¢) One card must be selected from the 48 remaining cards. This can be done in 48 different ways.

(d) A suit can be selected in four ways and three cards from the suit can be selected in 13C3 ways; a second
suit can now be selected in three ways and two cards of this suit in ;3C, ways. Thus, three cards of one
suit and two of another can be selected in 4 +13C5 - 3 -13C, = 267 696 ways.

(e) Three kings can be selected from the four kings in ,C5 ways, another kind can be selected in 12 ways,
and two cards of this kind can be selected in 4C, ways. Thus, three kings and another pair can be dealt
in 4C3 - 12 '4C2 = 288 ways.

(f) A kind can be selected in 13 ways and three of this kind in 4C3 ways; another kind can be selected in
12 ways and two of this kind can be selected in ,C, ways. Thus, 3 of one kind and 2 of another can be
dealt in 13 4C5 - 12 -4C, = 3744 ways.

(a) Prove: The total number of combinations of n objects taken successively 1,2,3,...,n at a time is 2" — 1.
(h) In how many different ways can one invite one or more of five friends to the movies.

(a) The total number of combinations is
2O +.C+,Ci 4 +,C,=2"=1
since, from Problem 42.8(a),
2Co+,Ci+,Co+ - +,C=2"

(b) The number is sC; 4 sCy +5C3 +5Cy +5Cs =2° =1 = 31.
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17.11

17.12

17.13

17.14

17.15

17.16

17.17

17.18

17.19

17.20

Supplementary Problems

Evaluate (a) 4C, b) $Cs (© »Cs.

nn—1)(n-2)
1-2-3

Ans. (a) 15 b) 28 (¢)
Find n if (61) nC2 = 55. (b) VIC3 = 847 (C) an3 =11 '"C3.
Ans. (a) 11 b 9 () 6

Two dice can be tossed in 36 ways. In how many of these is the sum equal to (a) 4, (b) 7, (¢) 11?

Ans. (a) 3 b) 6 () 2

Four delegates are to be chosen from eight members of a club. (¢) How many choices are possible?
() How many contain member A? (¢) How many contain A or B but not both?

Ans. (a) 70 ) 35 (c) 40

A party of 8 boys and 8 girls are going on a picnic. Six of the party go in one automobile, four go in another,
and the rest walk. () In how many ways can the party be distributed for the trip? (b) In how many ways if no
girl walks?

Ans. (a) 1681 680 (b) 5880

Solve Problem 17.15 if the owner of each car (a boy) drives his own car.

Ans. (a) 168168 (b) 56

How many selection of five letters each can be made from the letters of the word CANADIANS?
Ans. 41

A bag contains nine balls numbered 1,2,...,9. In how many ways can two balls be drawn so that (a) both
are odd? (b) their sum is odd?

Ans. (a) 10 ) 20

How many diagonals has (a) a hexagon, (b) an octagon, (¢) an n-gon?

Ans. (a) 9 (b 20 (©) in(n-3)

(a) How many words consisting of 3 consonants and 2 vowels can be formed from 10 consonants and 5
vowels? (b) In how many of these will the consonants occupy the odd places?

Ans. (a) 144000 (b) 14400
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17.21

17.22

17.23

17.24

17.25

17.26
17.27
17.28

17.29
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Three balls are drawn from a bag containing five red, four white, and three black balls. In how many ways
can this can be done if (a) each is of a different color? () they are of the same color? (¢) exacly two are red?
(d) at least two are red?

Ans. (@ 60 (b)) 15 (¢ 70  (d) 80

A squad is made up of 10 privates and 5 privates first class. (¢) In how many ways can a detail of 4 privates
and 2 privates first class be formed? () On how many of these details will private X serve? (¢) On how many
will private X but not private first class Y serve?

Ans. (@) 2100 (b)) 840  (¢) 504

A civic club has 60 members including 2 bankers, 4 lawyers, and 5 doctors. In how many ways can a
committee of 10 be formed to contain 1 banker, 2 lawyers, and 2 doctors?

Ans. 228826080

How many committees of two or more can be selected from 10 people?

Ans. 20-11

Hands consisting of three cards are dealt from an ordinary deck. Show that a hand consisting of three
different kinds should show 352 times as often as a hand consisting of three cards of the same kind.

Prove (a) n Cr +ncr+l :n+lcr+l (b) 2n Cn =2 211—1Cr1—l .
Prove that ,C, = 1.
Prove that ,,|C, =2(n+1).

Derive a formula for ,,,C,.



Chapter 18

Probability

IN ESTIMATING THE PROBABILITY that a given event will or will not happen, we may, as in the
case of drawing a face card from an ordinary deck, count the different ways in which this event may or
may not happen. On the other hand, in the case of estimating the probability that a person who is now
25 years old will live to receive a bequest at age 30, we are forced to depend upon such knowledge of
what has happened on similar occasions in the past as is available. In the first case, the result in called
mathematical or theoretical probability; in the latter case, the result is called statistical or
empirical probability.

MATHEMATICAL PROBABILITY. If an event must result in some one of n, (n# 0) different
but equally likely ways and if a certain s of these ways are considered successes and the other f=n—s
ways are considered failures, then the probability of success in a given trial is p = s/n and the probability

S+]=g=l,p:1—qandq=l—p.

of failure is g = f/n. Since p + g =

EXAMPLE 1. One card is drawn from an ordinary deck. What is the probability (@) that it is a red card, (b) that it
is a spade, (¢) that it is a king, (d) that it is not the ace of hearts?
One card can be drawn from the desk in n = 52 different ways.

(@) A red card can be drawn from the deck in s = 26 different ways. Thus, the probability of drawing a red card is

—26_1
s/n=L =3

2

(b) A spade can be drawn from the deck in 13 different ways. The probability of drawing a spade is 1 =
(¢) A king can be drawn in 4 ways. The required probability is & = L.

(d) The ace of hearts can be drawn in 1 way; the probability of drawing the ace of hearts is % Thus, the probability

of not drawing the ace of hearts is 1 — & = 3!

5275
(See Problems 18.1-18.4.)
[NOTE: We write P(A) to denote the “probability that 4 occurs.”]

1
T

Two or more events are called mutually exclusive if not more than one of them can occur in a single
trial. Thus, the drawing of a jack and the drawing of a queen on a single draw from an ordinary deck are
mutually exclusive events; however, the drawing of a jack and the drawing of a spade are not mutually
exclusive.

EXAMPLE 2. Find the probability of drawing a jack or a queen from an ordinary deck of cards.
Since there are four jacks and four queens, s = 8 and p = % = 1% Now the probability of drawing a jack is 1_13
the probability of drawing a queen is %, and the required probability is 1% = % + %

109
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We have verified

THEOREM A. The probability that some one of a set of mutually exclusive events will
happen at a single trial is the sum of their separate probabilities of happening.

THEOREM A’. The probability that 4 will occur or B will occur, P(4 U B) = P(A4) + P(B)—
P(A N B). (NOTE: “U” refers to set union and “n” to set intersection.)

A U B is the set of all elements belonging either to 4 or to B or to both
={x|x is in 4 or B or both}.

A N B is the set of all elements common to 4 and B
={x|xisin 4 and x is in B}.

(See Fig. 18-1.)

AUB ANB

Fig. 18-1

For example, if 4 ={1,2,3} and B=1{2,3,7}, then 4 U B={1,2,3,7} and 4 " B={2,3}.

Two events A and B are called independent if the happening of one does not affect the happening of
the other. Thus, in a toss of two dice, the fall of either does not affect the fall of the other. However, in
drawing two cards from a deck, the probability of obtaining a red card on the second draw depends
upon whether or not a red card was obtained on the draw of the first card. Two such events are called
dependent. More explicitly, if P(A N B) = P(A) - P(B), then 4 and B are independent.

EXAMPLE 3. One bag contains 4 white and 4 black balls, a second bag contains 3 white and 6 black balls, and a
third contains 1 white and 5 black balls. If one ball is drawn from each bag, find the probability that all are white.

A ball can be drawn from the first bag in any one of 8 ways, from the second in any one of 9 ways, and from the
third in any one of 6 ways; hence, three balls can be drawn from each bagin 8 - 9 - 6 ways. A white ball can be drawn
from the first bag in 4 ways, from the second in 3 ways, and from the third in 1 way; hence, three white balls can be
drawn one from each bag in 4 -3 -1 ways. Thus the required probability is

4-3-1 1
8:9-6 36

Now drawing a white ball from one bag does not affect the drawing of a white ball from another, so that here we are
concerned with three independent events. The probability of drawing a white ball from the first bag is 45, from the
second is 4, and from the third bag is L.

3.1 we have verified

Since the probability of drawing three white balls, one from each bag, is %' 2

THEOREM B. The probability that all of a set of independent events will happen in a single
trial is the product of their separate probabilities.
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THEOREM C. (concerning dependent events). If the probability that an event will happen is p;,
and if after it has happened the probability that a second event will happen is p,,
the probability that the two events will happen in that order is p;p,.

EXAMPLE 4. Two cards are drawn from an ordinary deck. Find the probability that both are face cards (king,
queen, jack) if (@) the first card drawn is replaced before the second is drawn, () the first card drawn is not replaced
before the second is drawn.

(a) Since each drawing is made from a complete deck, we have the case of two independent events. The probability

of drawing a face card in a single draw is 1% thus the probability of drawing two face cards, under the
conditions imposed, is % : :172 = %.

(b) Here the two events are dependent. The probability that the first drawing results in a face card is 2. Now, of the

51 cards remaining in the deck, there are 11 face cards; the probability that the second drawing results in a face

| e : so12 1 11
card is ;. Hence, the probability of drawing two face cards is 35 51 = 557

(See Problems 18.5-18.10.)

EXAMPLE 5. Two dice are tossed six times. Find the probability («) that 7 will show on the first four tosses and
will not show on the other two, (b) that 7 will show on exactly four of the tosses.
The probability that 7 will show on a single toss is p:% and the probability that 7 will not show is

g=1-p=2¢

(a) The probability that 7 will show on the first four tosses and will not show on the other two is
111155 25

666666 46656

(b) The four tosses on which 7 is to show may be selected in 4C4 = 15 ways. Since these 15 ways constitue mutually

4702
exclusive events and the probability of any one of them is (%) (%) , the probability that 7 will show exactly four

) L . \*/5\2 125
times 1n SIx tosses 18 6C4(6) (6) = 15552

We have verified

THEOREM D. If pis the probability that an event will happen and ¢ is the probability that it will
fail to happen at a given trial, the probability that it will happen exactly r times in
n trials is ,C,p"¢"™". (See Problems 18.11-18.12.)

EMPIRICAL PROBABILITY. If an event has been observed to happen s times in # trials, the ratio
p=s/n is defined as the empirical probability that the event will happen at any future trial. The
confidence which can be placed in such probabilities depends in a large measure on the number of
observations used. Life insurance companies, for example, base their preminum rate on empirical
probabilities. For this purpose they use a mortality table based on an enormous number of observations
over the years.

The American Experience Table of Mortality begins with 100 000 persons all of age 10 years and
indicates the number of the group who die each year thereafter. In using this table, it will be assumed
that the laws stated above for mathematical probability hold also for empirical probability.

EXAMPLE 6. Find the probability that a person 20 years old (a) will die during the year, (b) will die during the
next 10 years, (¢) will reach age 75.

(a) Of the 100 000 persons alive at age 10 years, 92 637 are alive at age 20 years. Of these 92 637 a total of 723 will

2
die during the year. The probability that a person 20 years of age will die during the year is % =0.0078.
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(b) Of the 92 637 who reach age 20 years, 85 441 reach age 30 years; thus, 92637 — 85441 = 7196 die during the

. . . 2
(¢) Of the 92 637 alive at age 20 years, 26 237 will reach age 75 years. The required probability is

. . ... 1196
10-year period. The required probability is ——— = 0.0777.

92637
6237

06 0.2832.

(See Problem 18.13.)

18.1

18.2

18.3

Solved Problems

One ball is drawn from a bag containing 3 white, 4 red, and 5 black balls. What is the probability (@) that it is
white, (b) that it is white or red, (¢) that it is not red?

A ball can be drawn from the bag in n = 3 + 4 + 5 = 12 different ways.

(a) A white ball can be drawn in s = 3 different ways. Thus, the probability of drawing a white ball is
p=s/n=3=1

(b) Here success consists in drawing either a white or a red ball; hence, s =3 +4 =7 and the required
probability is %

(¢) The probability of drawing a red ball is p = % = % The probability that the ball drawn is not red is
1-p=1 —% = % This problem may also be solved as in (b).

If two dice are tossed, what is the probability (a) of throwing a total of 7, (b) of throwing a total of 8, (¢) of
throwing a total of 10 or more, (d) of both dice showing the same number?

Two dice may turn up in 6 X 6 = 36 ways.

(a) A total of 7 may result in 6 ways. (1, 6; 6, 1; 2, 5; 5, 2; 3, 4; 4, 3). The probability of a throw of 7 is then
%=
(b) A total of 8 may result in 5 ways (2, 6; 6, 2; 3, 5; 5, 3; 4, 4). The probability of a throw of 8 is %

(¢) Here, success consists in throwing a total of 10, 11, or 12. Since a total of 10 may result in 3 ways, a total
of 11 in 2 ways, and a total of 12 in 1 way, the probability is 3+ 2+ 1)/36 = %

(d) The probability that the second die will show the same number as the first is % This problem may also
be solved by counting the number of successes 1, 1; 2, 2; etc.

If five coins are tossed, what is the probability (@) that all will show heads, (b) that exactly three will show
heads, (c¢) that at least three will show heads?

Each coin can turn up in 2 ways; hence, the five coins can turn up in 2° = 32 ways. (The assumption
here is that HHHTT and THHHT are different results.)

(a) Five heads can turn up in only 1 way; hence, the probability of a toss of five heads is 3%

(b) Exactly three heads can turn up in sC3 = 10 ways; thus, the probability of a toss of exactly three heads is
10_5
2716

(¢) Success here consists of a throw of exactly three, exactly four, or all heads. Exactly three heads can turn
up in 10 ways, exactly four heads in 5 ways, and all heads in 1 way. Thus, the probability of throwing at
least three heads is (10 +5+1)/32 = %
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18.4

18.5

18.6

18.7

18.8

If three cards are drawn from an ordinary deck, find the probability (a) that all are red cards, () that all are
of the same suit, (c) that all are aces.

Three cards may be drawn from a deck in 5,C3 ways.

(a) Three red cards may be drawn from the 26 red cards in ,4C; ways. Hence, the probability of drawing

26C3 26~25~24. 1-2-3 2

»C;  1:2-3 52-51-50 17

(h) There are 4 ways of choosing a suit and 3C; ways of selecting three cards of that suit. Thus, the
probability of drawing three cards of the same suit is 4 - 3 C3/5,C3 = 4225

This problem may also be solved as follows: The first card drawn determines a suit. The deck now

contains 51 cards of which 12 are of that suit; hence, the probability that the next two cards drawn will
be of that suit is ,Cy/5,C, =

three red cards in a single draw is =—

425, as before.

. . )
(¢) Three aces may be selected from the four aces in 4 ways; hence, the required probability is . =555
5203

One bag contains 8 black balls and a second bag contains 1 white and 6 black balls. One of the bags is
selected and then a ball is drawn from that bag. What is the probability that it is the white ball?

The probability that the second bag is chosen is 1 5 and the probability that the white ball is drawn from
this bag is 7 Thus, the required probability is 2( ) = i4

Two cards are drawn in succession from an ordinary deck. What is the probability (@) that the first will be
the jack of diamonds and the second will be the queen of spades, (b) that the first will be a diamond and the
second a spade, (¢) that both cards are diamonds or both are spades?

(a) The probability that the first card is the jack of diamonds is é and the probability that the second is the
queen of spades is 5711 The required probability is (i)(?ll) = ﬁ.

(b) The probability that the first card is a diamond is 55 and the probability that the second card is a spade is

L The probability of the required draw is 13- 5 21034.

(¢) The probability that both cards are of a specified suit is % 572 Thus, the probability that both are

12 1B.12_2
diamonds or both are spades is 57 1t =17

A, B, and C work independently on a problem. If the respective probabilities that they will solve it are 1, % , %,
find the probability that the problem will be solved.

The problem will be solved unless all three fail; the probability that this will happen is % : % : % = %

Thus, the probability that the problem will be solved is 1 —é = %.

A tosses a coin and if a head appears he wins the game; if a tail appears, B tosses the coin under the same
conditions, and so on. If the stakes are $15, find the expectation of each.

We first compute the probability that 4 will win. The probability that he will win on the first toss is %;
the probability that he will win on his second toss (that is, that A first tosses a tail, B tosses a tail, and 4 then

tosses a head) is ; ; 3= (l)3' the probability that he will win on his third toss (that is, that A first tosses a

tail, B tosses a tail, A tosses a tail, B tosses a tail, and 4 then tosses a head) is 3-3-3-3-3=(3 ) and so on.

Thus, the probability that 4 will win is

b= 22
2ttt 1-1/22 3

and his expectation is %($15) = $10. Then B’s expectation is $5.
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On a toss of two dice, X throws a total of 5. Find the probability that he will throw another 5 before he
throws 7.

X will succeed should he throw a total of 5 on the next toss, or should he not throw 5 or 7 on this toss

but throw 5 on the next, or should he not throw 5 or 7 on either of these tosses but throw 5 on the next, and

so on. The respective probabilities are &,20- & 20.26. 4 and 50 on. Thus, the probability that he throws 5

! 36736 36736 36 36°
before 7 is

4 26 4 2626 4 £ 2

3673636736 36 36 1-5 5

W)

A bag contains 2 white and 3 black balls. A ball is drawn 5 times, each being replaced before another is
drawn. Find the probability that () the first 4 balls drawn are white and the last is black, (b) exactly 4 of the
balls drawn are white, (¢) at least 4 of the balls drawn are white, (d) at least 1 ball is white.

The probability of drawing a white ball is p = £ and the probability of drawing a black ball is %
(a) The probability that the first 4 are white and the last black is 2-2-2-3 =8
(b) Here n = 5,r = 4; the probability that exactly 4 of the balls drdwn are white is

. 4
nCp'q"™" = sCa3) () = i35
(¢) Since success consists of drawing either 4 white and 1 black ball or 5 white balls, the probability is
4 5
sCa(3)°(5) +5Cs5(3) =35

(d) Here failure consists of drawing 5 black balls. Since the probability of failure is (%)5 =%, the
probability of success is 1 — 25 = 282 The problem may also be solved as in (c).

One bag contains 2 white balls and 2 black balls, and another contains 3 white balls and 5 black balls. At five
different trials, a bag is chosen at random and 1 ball is drawn from that bag and replaced. Find the
probability (a) that exactly 3 white balls are drawn, (b) that at least 3 white balls are drawn.

At any trial the probability that a White ball is drawn from the first bag is and the probability that a
white ball is drawn from the second bag is 5 ( ). Thus, the probability that a wh1te ball is drawn at any trial is
7

p=14%-3+1(3) =L, and the probability that a black ball is drawn is ¢ =

(a) The probability of drawing exactly 3 white balls in 5 trials is C(l)3(2>2*—138915
a p ility wing exactly 3 whi 1 53\ 16) \T6) ~ 524 288"

(b) The probability of drawing at least 3 white balls in 5 trials is

7\3( 92 7\ 9 7\° 201341
5C3(E) <l6) +5C4(16) (16)+5C5(16) T 524288

A husband is 35 years old and his wife is 28. Find the probability that at the end of 20 years («) the husband
will be alive, (b) the wife will be alive, (¢) both will be alive, (d) both will be dead, (e) the wife will be alive and
the husband will not, (f) one will be alive but not the other.

(a) Of the 81 822 alive at age 35, 64 563 will reach age 55. The probability that the husband will be alive at
64563
the end of 20 years is —— IS5 = (.7890.

71627
(b) The probability that the wife will be alive at the end of 20 years is ———= 36878 = (.8245.

(¢) Since the survival of the husband and of the wife are independent events, the probability that both are

alive after 20 years is 64563 . M
Y 81822 86878

= 0.6506.
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18.13

18.14

18.15

18.16

18.17

18.18

(d) From (a) 17259 of the 81 822 alive at age 35 will not reach age 55; thus, the probability that the husband

. . . 17259 . . - . . . .
will not live for 20 years is . Similarly, the probability that the wife will not live for 20 years is
@ Hence, the robabili?1 ?Izlit after 20 years both will be dead is 17259 @ =0.0370
86878 Hep Y Y 81822 86878

(¢e) The probability that the husband will be dead and the wife will be alive after 20 years is
17259 71627
81822 86878~ 0173

(f) The probability that the wife will survive but the husband will not is found in (e). The probability that
64563 15251 . . .
31822 36378 Thus, the probability that just one will

=0.3116.

the husband will survive but the wife will not is
17259 71627 n 64563 15251
81822 86878 81822 86878

survive is

Supplementary Problems

One ball is drawn from a bag containing 4 white and 6 black balls. Find the probability that it is (a) white,
(b) black.

Ans. (a) % (b) %

Three balls are drawn together from a bag containing 8 white and 12 black balls. Find the probability that
(a) all are white, (b) just two are white, (¢) just one is white, (d) all are black.

Ans. (a) % (b) (272 (c) % (d) %

Ten students are seated at random in a row. Find the probability that two particular students are not seated
side by side.

4
Ans. 3

If a die is cast three times, find the probability () that an even number will be thrown each time, () that an
odd number will appear just once, (¢) that the sum of the three numbers will be even.

Ans. (a) é (b) % (¢) %

From a box containing 10 cards numbered 1, 2, 3,..., 10, four cards are drawn. Find the probability that
their sum will be even («) if the cards are drawn together, (b) if each card drawn is replaced before the next is
drawn.

Ans. (a) % (b) %

A and B, having equal skill, are playing a game of three points. After 4 has won 2 points and B has won
1 point, what is the probability that 4 will win the game?

.3
Ans. %
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18.21
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18.23
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One bag contains 3 white and 2 black balls, and another contains 2 white and 3 black balls. A ball is drawn
from the second bag and placed in the first; then a ball is drawn from the first bag and placed in the second.
When the pair of operations is repeated, what is the probability that the first bag will contain 5 white balls?

Ans. 2%
Three bags contain respectively 2 white and 1 back ball, 3 white and 3 black balls, 6 white and 2 black balls.

Two bags are selected and a ball is drawn from each. Find the probability («) that both balls are white,
(b) that both balls are of the same color.

Ans. (a) % b) %

If four trials are made in Problem 18.20, find the probability («) that the first two will result in pairs of white
balls and the other two in pairs of black balls, (b) that a pair of black balls will be obtained at least three
times.

i@ SO

Five cards numbered 1, 2, 3, 4, 5 respectively are placed in a revolving box. If the cards are drawn one at a
time from the box, what is the probability that they will be drwn in their natural order?

1
Ans. 120

Brown, Jones, and Smith shoot at a target in alphabetical order with probabilities %,%,% respectively of
hitting the bull’s eye. (¢) Find the probability that on his first shot each will be the first to hit the bull’s-eye.
(b) Find the probability that the bull’s-eye is not hit on the first round. (¢) Find the probability that the first
to hit the bull’s-eye is Jones on his second shot.

Ans. (@ 345 B 3 (O 5

The probability that X will win a game of checkers is % In a five-game match, what is the probability (@) that
X will win the first, third, and fifth games, and lose the others? (b) that he will win exactly three games?
(c) that he will win at least three games?

Ans. (a) % (b) % (c) %

Three pennies are tossed at the same time. Find the probability that two are heads and one is a tail.

3
Ans. 3



Chapter 19

Determinants of Orders
Two and Three

DETERMINANTS OF ORDER TWO.  The symbol |*! ’;1
2

arranged in two rows and two columns, is called a deteri%inant of order two. The elements a; and b, are
said to lie along the principal diagonal; the elements a, and b, are said to lie along the secondary diagonal.
Row 1 consists of a; and b;. Row 2 consists of a, and b,. Column 1 consists of ¢; and a,, and column 2
consists of 4, and b,.

The value of the determinant is obtained by forming the product of the elements along the principal
diagonal and subtracting from it the product of the elements along the secondary diagonal; thus,

, consisting of 22 numbers called elements

ap b

=ab, —arb
a b 102 — a0y

(See Problem 19.1.)

THE SOLUTION of the consistent and independent equations

ax+by=c
19.1
{az«\' +hy=o0c (9.1
may be expressed as quotients of determinants of order two:
C] bl ap &
X = Cle_CZbl | b2 o ajcy —axCy _la o
. [llbz_azbl a bl ’ albz_ﬂzbl ap b]
ay by a by
. . . . . b
These equations are consistent and independent if and only if Z‘ bl # 0. See Chapter 5.
> D
y=3x+1 . S
EXAMPLE 1. Solve {4x $2y-7=0 using determinants.
Arrange the equations in the form (/9.1): {431:—1_—2: i _;. The solution requires the values of three
determinants: T
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The denominator, D, formed by writing the coefficients of x and y in order
3 -1
D—|4 2|_3 2-4(-1)=64+4=10
The numerator of x, N,, formed from D by replacing the coefficients of x by the constant terms
-1 -1
N, = 7 2‘——1-2—7(—1)——2+7—5
The numerator of y, N,, formed from D by replacing the coefficients of y by the constant terms
3 -1
N},7|4 7|73~7—4(—1)721+4725

N 5 1 N, 25 5
Thenx—ﬁ—ﬁ—iandy—ﬁ—m—i. (See Problem 19.2.)

DETERMINANTS OF ORDER THREE. The symbol

a by ¢
a by ol
as b3 C3

consisting of 3% elements arranged in three rows and three columns, is called a determinant of order three.
Its value is

albzé’:; + azb:;C] + a3b1c2 - a1b302 - a2b|c3 - a3b2C1
This may be written as

ay(bycs — b3cy) — by(arc3 — azey) + ¢i(axby — azhy)

by o
by o

a, by
as bs

a
az C3

or a —b 4 (19.2)
to involve three determinants of order two. Note that the elements which multiply the determinants of
order two are the elements of the first row of the given determinant. (See Problem 19.3.)

THE SOLUTION of the system of consistent and independent equations

Cl]X"’b]y + ciz= d]
WX+ byt cz=d
ax+byy+ez=ds

in determinant form is given by

d b ¢ a; di ¢ a; by d
d by o ay dy ¢ a by, d
_ N ldy by o N s dy N lay by ds
=D Tl b o’ "D D0 D" D
a by o
a; by ¢

The determinant D is formed by writing the coefficients of x,y,z in order, while the determinant
appearing in the numerator for any unknown is obtained from D by replacing the column of coefficients
of that unknown by the column of constants.

The system is consistent and independent if and only if D # 0.
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X+3y+2:=-13
EXAMPLE 2. Solve, using determinants: y 2x —6y +3z= 32
3x =4y — z= 12

The solution requires the values of four determinants:
The denominator,

D=[2 =6 3|=1(6+12)=3(-2-9)+2(-8 + 18)

=18+33+20="71

The numerator of x,

2
N,=| 32 =6 3|=-13(6+12)—3(—32-36) +2(—128 + 72)
1

12 -4 -
=-2344+204—-112=-142
The numerator of y,
-13 2

1
N,=|2 32 3|=1(=32-36)—(-13)(-2-9) + 2(24 - 96)
3

12 -1
= —68 — 143 — 144 = =355

The numerator of z,

1 3 -13
N.=[2 —6 32|=1(-72+128)—3(24 - 96) + (—13)(-8 + 18)
-4 12
=56+216—130 =142
N, -—142 N, =355 N. 142
Then Y=t =" =Y =TT ="
A S TR B ) N TR A Ay Bl
(See Problems 19.4-19.5.)
Solved Problems
19.1  Evaluate each of the following determinants:
(@ |i 2‘:2-5—43:—2 b) |§ ‘?|:5~1—3(—2):11
R . . x+2y=—4 ax=2by= ¢
19.2  Solve for x and y, using determinants: (@) {Sx Y= 1 (b) {2ax— 3by = 4¢
1 2 -4 2 1
() D= =3-10=-7, N, = =—-12-2=-14, N, =
53 1 3
N, -l14 N, 21
y=x Ty Ty 2
=p- g r YEpT=7?

_1 =1+4+20=21
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¢ =2b
4c¢ -3b

a ¢
2a 4c

= 2ac

w p=|" -
2a -3b

‘ = 5Sbhc, N, =

Ny _5bc _5¢ N, 2ac 2c

X=— — )= —= -

D ab o TTD w b

19.3  Evaluate the following determinants:

2 =2 -l
1 -1 6 -1 6 1
@ |6 1 —1:2‘ '—(—2)‘ '+(—1)‘ ‘
PR 305 4 s 4 3
=2(5+3)+2030+4)—(18—4)=2-8+2-34—14="70
250
@ | o 3 4l=2]F H=s| O 4ol O 3|=208-12)=50+20)+0=-88
36 -5 6 -5 3
-5 3 6
3021
(© |1 =2 4|=3-6-8)-23-16)+ 12 +8) =—6
4 23
4 -3 2
(d) |5 9 —7|=436—7)+3(20 +28) + 2(-5—36) = 178
4 -1 7

2x =3y+2z= 6
19.4  Solve using determinants: x+8y+3z=-31
3x =2+ z=-15

2 =3 2
We evaluate D =1 8 3|1=284+6)+3(1-9)+2(-2—-24)=-48
3 -2 1
6 =3 2
N,=|=-31 8 3|=068@8+6)+3(=31+15)+2(62+40) = 240
-5 =21
2 6 2
N,=|1 =31 3|=2(=31+15-6(1-9)+2(=5+93) =192
3 =51
2 =3 6
N.=|1 8 =31{=2(-40-62)+3(=5+93)+6(—2—-24)=-96
3 =2 =5
_ N, 240 N, 192 _N. 96
Then X_E_Tm_ 57 _}—3—T48— s 2—3—T48— 2
2x+ y=2
19.5  Solve, using determinants: z—4y=0
4x+ z=06
2 10 2 10 2 20 2 1 2
D=0 -4 I|=-4, N,=|0 -4 1|=-2, N,=(0 0 1|=—-4, N.=|0 -4 0
4 0 1 6 0 1 4 6 1 4 0 6

[CHAP. 19

=-16
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2 =16
Then x—_—4—§, }—_—4—1, and 4—_—4—4.
Supplementary Problems
1 2 20 302 2
19.6 Evaluate. (a) ‘_3 ) ‘ (b) ’_5 1 ‘ (c) ‘ 1 _4' (d) ‘3
Ans.  (a) 7 b)) 2 (c) —14 d)y 0
. . 2x+ y=4 Sx+2y= 2
19.7  Solve, using determinants.  (a) {3)( fay=1 b) {3): —5p =126 (¢)
Ans. (a) x=3, y=-2 b)) x=2, y=-4 (¢) x=%,y=
1 2 3 2 -1 3 -2 31
19.8 Evaluate. (a) 2 -3 4 (b) 2 1 5 (¢) 3 51
-3 4 5 -2 3 =2 4 -2 1
Ans. (a) —78 (b) —4 (¢) =37 (d) O
19.9  Solve, using determinants.
1 2
—+ 4+
X oy
x+2p+2z= 4 2x =3y+5z= 4 3 4
(a) 3x — y+4z=25 b) 3x =2y+4+2z= 3 (¢) e
3x+2y— z=-4 4x+ y—4z=-6 )2( )5}
— + PR
x oy
Hint: In (¢) solve first for 1/x, 1/y, 1/z.
Ans. (@) x=2, y=-3, z=4 (b) Y——%,y=%,z=% (¢)
19.10 Verify, by evaluating the determinants.
1 2 3 2 1 -1 0
(@) |a 2a 3a|l=0 (b) 3 4 2|=|-5
8 9 10 -2 =5 3 8
3 4 5 4 -2 5 4 25 -1 25
© |7 =2 3[=-|3 7 2 d) l—7 =3 1|+ 5 -3 1
2 5 -1 5 3 -1 9 4 8 -3 4 8
x y 1 x y 1
19.11 Solve, using determinants. 1 -1 1|=0, 3 2 1|=o0.
13 21 -6 —4 1

Ans. x=-=3, y=-2

-10
—-15
Sx+3y=-6
3x+5y=-18
9
2
26
@ |4 -4
31
L
z
2_;
z
x=1
1 0
4 6
-5 =2
3 25
=(-2 -3 1
6 4 8
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Chapter 20

Determinants
of Order n

A DETERMINANT of order n consists of n> numbers called elements arranged in n rows and 7 columns|
and enclosed by two vertical lines. For example,

b a b ¢ d
ay b “ Lo a by o d
Dy = |a| D, = b Dy=la, by o D, = b ~ d
a Dy as 3 03 3
as by

day /74 Cy d4

are determinants of orders one, two, three, and four, respectively. In this notation the letters designate
columns and the subscripts designate rows. Thus, all elements with letter ¢ are in the third column and all
elements with subscript 2 are in the second row.

THE MINOR OF A GIVEN ELEMENT of a determinant is the determinant of the elements which
remain after deleting the row and the column in which the given element stands. For example, the minor
of a; in Dy is

by ¢ d
by ¢35 ds
b4 C4 614

and the minor of b; is

a ¢ d
a, dz

ag C4 d4

Note that the minor of a given element contains no element having either the letter or the subscript of the
given element. (See Problem 20.1.)

THE VALUE OF A DETERMINANT of order one is the single element of [the determinant!
A determinant of order n > 1 may be expressed as the sum of n products formed by multiplying each
element of any chosen row (column) by its minor and prefixing a proper sign. The proper sign associated
with each product is (—1)"%, where i is the number of the row and j is the number of the\column in which
the element stands. For example, for D; above,
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by ¢
by ¢

ay b
as by

ay ¢

D3y =—-a
3 y) lay e

—

is the expansion of Dj, along the second row. The sign given to the first product is —, since a, stands in
the second row and first column, and (—1)>*! = —1. In all, there are six expansions of Dj along its rows
and columns yielding identical results when the minors are evaluated.

There are eight expansions of D, along its rows and columns, of which

by ¢ d @ o b a by d @ b o
D4 = +a, b3 C3 d3 - bl as  C3 d3 + ¢ as b3 d3 - dl as b3 C3
/74 Cy d4 ag  Cy4 d4 day b4 d4 day b4 Cy

(along the first row)

b2 C) dz bl C] dl bl C1 dl b] C| d]
D4 = +a1 b3 C3 [13 —a b3 C3 d3 + as b2 Cy dz —day bz C) d2
b4 Cy d4 b4 Cyq d4 b4 Cy4 d4 b3 C3 dg

(along the first column)
b] 4] d] a ¢ d] ap bl dl ap b] C|
D4 = —dy bz Cy dz + b4 ay C dz —C4 |y b2 dz + d4 ay bz C
by ¢y ds ay ¢y d ay by dy ay by o3

(along the fourth row)

a ¢ d a ¢ d a ¢ d a ¢ d
D4 = —b1 as C3 d3 + bz (25} C3 d3 - b3 ay € d2 + b4 ady ¢ dz
a; ¢y dy a, ¢y dy a; ¢4 dy a; ¢z dy

(along the second column)
are examples. (See Problem 20.2.)
All computer mathematics packages of software give you the capability to easily evaluate
determinants. The reader should try at least one of these (Maple, or others) to gain some familiarity with
these kinds of computer computations.

THE COFACTOR OF AN ELEMENT of a determinant is the minor of that element together with the
sign associated with the product of that element and its minor in the expansion of the determinant. The

cofactors of the elements a,a,, by, b3, cy,... will be denoted by A4, 4,, By, Bs, Cy,.... Thus, the cofactor
of ¢; in Dy is C; =+ Zi 22 and the cofactor of b3 is By = — z; 2 .
When cofactors are used, the expansions of D, given above take the more compact form
Dy = @A +bB+c,Cy+d D, (along the first row)

= aqA;+arAy + azAy + azAy (along the first column)
ayAy + byBy + c4Cy + dy Dy (along the fourth row)
= bBy+byBy, +b3By +byBy (along the second column)
(See Problems 20.3-20.4.)

PROPERTIES OF DETERMINANTS. Subject always to our assumption of equivalent expansions of
a determinant along any of its rows or columns, the following theorems may be proved by mathematical
induction.
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THEOREM 1. If two rows (or two columns) of a determinant are identical, the value of the
determinant is zero. For example,

2 3 2

31 3
1 4 1

=0

COROLLARY I. If each of the elements of a row (or a column) of a determinant is multiplied
by the cofactor of the corresponding element of another row (column), the
sum of the products is zero.

THEOREM II. If the elements of a row (or a column) of a determinant are multiplied by any
number m, the determinant is multiplied by m. For example,

2 3 4 10 3 4 2 3 4
513 -1 2{=15 -1 2|=(15 =5 10
1 4 3 5 4 -3 1 4 =3

THEOREM III. If each of the elements of a row (or a column) of a determinant is expressed
as the sum of two or more numbers, the determinant may be written as the
sum of two or more determinants. For example,

2 5 4 -2+4 5 4 -2 5 4 4 5 4
4 =2 3|=|3+1 =2 3|=| 3 =2 3|+l -2 3
1 -4 3 1+0 —4 3 1 -4 3 0 -4 3

THEOREM 1V. If to the elements of any row (or any column) of a determinant there is added
m times the corresponding elements of another row (another column), the
value of the determinants is unchanged. For example,

-2 5 4] |2 5+44=2) 4| |2 -3 4
3 -2 2|=|3 —2+443) 2|=|3 10 2
1 -4 3 1 —4441) 3 1 0 3

(See Problem 20.5.)

EVALUATION OF DETERMINANTS. A determinant of any order may be evaluated by expanding
it and all subsequent determinants (minors) thus obtained along a row or column. This procedure may
be greatly simplified by the use of Theorem IV. In Problem 20.6, (@) and (b), a row (column) containing
an element +1 or —1 is used to obtain an equivalent determinant having an element 0 in another row
(column). In (¢) and (d), the same theorem has been used to obtain an element +1 or —1; this procedure
is to be followed when the given determinant is lacking in these elements.

The revised procedure consists in first obtaining an equivalent determinant in which all the elements,
save one, in some row (column) are zeros and then expanding along that row (column).

1 4 3 1
2 2 5
EXAMPLE 1. Evaluate 4 -4 -1 -3
2 5 3 3

Using the first column since it contains the element 1 in the first row, we obtain an equivalent determinant all of
whose elements, save the first, in the first row are zeros. We have
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1 4 3 1 1 44+-H1 3+ 14+ (=Dl 1 0 0 0
208 2 50 |20 8442 2+4(=3)2  S5+(=D2| |2 0o -4 3
4 -4 -1 -3| |4 —44+(H4 -1+(3)4 -3+(D4| [4 =20 -13 -7
2 5 3 3 2 5442 3432 3+(¢1)2 2 =3 =3 1
0 -4 3
=|-20 -13 —=7| (by expanding along the first row)
-3 =3 1

Expanding the resulting determinant along the first row to take full advantage of the element 0, we have

o -4 3
=20 —13 =7[=4(=20-21)+ 3(60—39) = -101
-3 =3 1

Solved Problems

20.1  Write the minors of the elements a;, b3, ¢, of Ds.

The minor of a; is by , the minor of b5 is [“! 1|, the minor of ¢; is |2 ba|
303 a as by
-1 3 —4
20.2  Evaluate: (a) 0 2 0f by expanding along the second row
2 =3 5
8§ 0 2 0
51 -3 0 .
® |_ 43 7 -3 by expanding along the fourth column
4 0 6 0
-1 3 —4
B 3 4 N e T 1 N e e
® ‘ 0 2 o= 3 et o] - Y e2ams
2 =3 5
Sl B0 2 s e
(b) =—=3)[5 1 =3|=3]+1 =3(48—8) =120
-4 3 7 =3 40 6 4 6
4 0 ©

20.3 (@) Write the cofactors of the elements ay, b3, ¢y, dy of Dy.

by ¢ d a ¢ d

The cofactor of a; is 4| =+ b3 ¢3 ds ‘, of byis Bs=—|a, ¢ d,
b4 Cyq d4 ag C4 d4

a by d a by ¢

of C is Cz =—|as b3 d3 ‘, of d4 is D4 =+ ay bz C

a, by dy a3 by o

(h) Write the expansion of Dy along (1) the second row, (2) the third column, using cofactors.
(1) D4 = a2A2 + szz + CzCz + dzDz
(2) D4 = ClCl + L’2C2 + L‘3C3 + L‘4C4

20.4  Express g;C; + g,C, + g3C3 + g4Cy4, where the C; are cofactors of the elements ¢; of D,, as a determinant.

Since the cofactors C; contain no elements with basal letter ¢, we replace ¢y, ¢, c3, ¢4 by g1,82,83,84
respectively, in Problem 20.3(b) and obtain
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a b g d
a by g d

Ci+ 20 +g3C3+g4Cy =
8101 T80 8303 78404 a by gy ds

a; by g4 dy

20.5 Prove by induction: If two rows (or two columns) of a determinant are identical, the value of the determinant
is zero.

The theorem is true for determinants of order two since

a a
! l'=a1a2—a1a2=0.

Let us assume the theorem true for determinants of order & and consider a determinant D of order
(k + 1) in which two columns are identical. When D is expanded along any column, other than the two with
identical elements, each cofactor involved is a determinant of order k with two columns identical and, by
assumption, is equal to zero. Thus, D is equal to zero and the theorem is proved by induction.

1 4 3 1
. 8 2 5 . . .
20.6 From the determinant 4 4 -1 =3 obtain an equivalent determinant.
2 5 3 3
(a) By adding —4 times the elements of the first column to the corresponding elements of the second

column
(b) By adding 3 times the elements of the third row to the corresponding elements of the fourth row
(¢) By adding —1 times the elements of the third column to the corresponding elements of the second

column
(d) By adding —2 times the elements of the fourth row to the corresponding elements of the second
row
1 4 3 1 I 4+-=H1 3 1 1 0 3 1
(@ 2 8 2 5|_ 12 8442 2 5|_|2 o 2 5
Dla -4 -1 3|7 |4 —44+(d4 -1 3|7 |4 20 -1 -3
2 5 3 3 2 5442 3 3 2 =3 3 3
1 4 3 1 1 4 3 1 1 4 3 1
) 2 8 2 5 2 8 2 5 2 8 2 5
4 -4 -1 =3 4 —4 -1 =3 T4 -4 -1 3
2 5 3 3 2434 5+3)-4 3+3)D 3+B)(=3) 14 -7 0 -6
1 4 3 1 1 44 (-1)3 301 I 1 3 1
© 2 8 2 5 2 84+ (=1)2 2 5 |12 6 2 5
a4 -1 3|7 |4 -4+ =) -1 =3|" |4 -3 -1 =3
2 5 3 2 S+ (=13 3 3 2 2 3 3
1 4 3 1 1 4 3 1 1 4 3 1
) 2 8 2 5 24(=22 84+(-2)5 24+(-=23 5+=23|_|-2 -2 -4 -1
4 -4 -1 =3 4 —4 -1 -3 T4 -4 -1 =3
2 5 3 3 2 5 3 3 2 5 3 3
20.7  Evaluate:
50 2 -9 1 1 -1 1 1 -1 2 0 0
(a) 250 =10 45(=50-2-9] 5 =5 5/=900-5-3] 1 -1 1|=135000 1 -1 1
-150 6 27 -3 3 3 -1 1 1 -1 1 1
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20.8

20.9

20.10

20.11

2 -3 1 34 (=31 2421 =343 I (0 0 o 1
o e T T B G B I R O L U b A L
2 01 6 =3 24=HED 1HEDE3) 64633 37 (11 7 =3 =3
5 4 -3 4l | 5434 4+ (D4 -3+ al 17 -4 9 4
-7 -7 11 0 -7 11
=—| 11 7 3|=— 4 7 =3|=-[736-9) + 11(=16 +21)] = 244
-7 —4 9] |3 -4 9
2 -1 =2 3 [0 -1 0 0
7 0 5
302 4 -l 7 2 0 5
@1 4 1 =50 4 =7 7_12 _; _;_5'66_330
4 3 2 1l |2 -3 8§ -8

Supplementary Problems

Verify: The value of a determinant is unchanged if the rows are written as columns or if its columns are
written as rows.

a b ¢ ap a a
Hint: Show that a) b2 G| = bl b2 b3 .
a by o G € G

Prove by induction:
(a) The expansion of a determinant of order n contains n! terms.
(b) If two rows (or two columns) of a determinant are interchanged, the sign of the determinant is changed.

by
by a

ay b

Hint: Show that
a by

and proceed as in Problem 20.5.

Show, without expanding the determinants, that

3 21 4 32 1 4 3 21 4 3 -2 2 -1
@ -1 52 6/_ |2 -4 7 -=5_|-2 13 5 _ 12 1 -4 5
a 2 -4 7 =5 |-1 5 2 6| 2 -4 7 =5 |1 3 7 2
-2 1 3 5 -2 1 3 5 -1 52 6 4 5 =5 6
0 0 -2 -2 0 -2 1 0 1
b |10 3 —4|=-52 3 —4(=102 3 -4
-5 =2 3 1 =2 3 1 =2 3
-3 -1 2
(¢) 1 =3 3|=0 Hint: Subtract the first row from the second.
4 =2 1

a=3b a+b a+5b e
(d) a=2b a+2b a+6b f

a=b a+3b a+7 g
a a+4b a+8b h

=0 (NOTE: The elements of the first three columns form an arithmetic
progression.)

0 a ay
@ |—a1 0 a
—da; —dz 0

=0 Hint: Write the rows as columns and factor —1 from each row.

Verify: If the corresponding elements of two rows (or two columns) of a determinant are proportional, the
value of the determinant is zero.
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20.12 Evaluate each of the following determinants:

-3 6 -1 1 -1 1 2 3 -1 -1 —4
-4 -3 2 4 3 2 4 -3 2 3 -6 1
@\ s 4 1 3 @D|s 41 2 @ls o0 3 1
-1 =5 0 -l -3 03 1 3 -1 5 2
24 4 -3 4
13 1 0 -l
@ -1 3 1 2 -
4 8 11 =10 9
26 9 -12 5

Ans. (@) =50 (b)) =397 (¢) =78 (d) —316

11 1 1
20.13  Show that ;‘2 1572 CCZ ddz = (b— a)(c — a)(d— a)(c — b)(d— b)(d— ¢)
113 b3 C‘3 d}

20.14 Write a determinant that is equal to x> — 1. (See Problem 20.13.)

20.15 Repeat Problem 20.7 above using a computer software package to evaluate the given determinants.



Systems of Linear
Equations

SYSTEMS OF n LINEAR EQUATIONS IN n» UNKNOWNS. Consider, for the sake of brevity, the
system of four linear equations in four unknowns

ax+byy+cz+dw=k
WX+ by +crz+dow =k,
a3xX + b3y + czz+ dyw = ks
agx +byy + cqz + dyw

(21.1)

in which each equation is written with the unknowns x,y,z, w in that order on the left side and the

constant term on the right side. Form

a
a
as
ay

€
(&)
a3
Cy4

and from it the determinants

ky

k
N.=|"

ks

ks

by
by
bs
by

€l
(&)
3

Cq

d,
dz
d3 ’
dy

d 1
(12
d 3

(14

aj
a
as

ay

a
a
as
ay

d 1
&

ds|

dy

€1
(&)
3
Cy4

by
by
bs
by

ky
ka
ks
ks

the determinant of the coefficients of the unknowns,

d,
d
ds
dy

by replacing the column of coefficients of the indicated unknown by the column of constants.
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CRAMER’S RULE STATES THAT:
(a) If D#0, the system (27.7) has the unique solution
x=N,/D, y=N,/D, z=N./D, w=N,/D
(See Problems 21.1-21.2.)

(b)) If D=0 and at least one of N, N,, N, N, #0, the system has no solution. For, if D=0
and N,#0, then x- D = N, leads to a contradiction. Such systems are called inconsistent.
(See Problem 21.3.)

(¢ If D=0and N, =N, =N.= N, =0, the system may or may not have a solutions. A system
having an infinite number of solutions is called dependent.

For systems of three or four equations, the simplest procedure is to evaluate D. If D # 0, proceed as
in (A4); if D = 0, proceed as in Chapter 5. (See Problem 21.4.)

SYSTEMS OF m LINEAR EQUATIONS IN n > m UNKNOWNS. Ordinarily if there are fewer
equations than unknowns, the system will have an infinite number of solutions.

To solve a consistent system of m equations, solve for m of the unknowns (in certain cases for
p < m of the unknowns) in terms of the others. (See Problem 21.5.)

SYSTEMS OF n EQUATIONS IN m < n UNKNOWNS. Ordinarily if there are more equations than
unknowns the system is inconsistent. However, if p =< m of the equations have a solution and if this
solution satisfies each of the remaining equations, the system is consistent. (See Problem 21.6.)

A HOMOGENEOUS EQUATION is one in which all terms are of the same degree; otherwise, the
equation is called nonhomogeneous. For example, the linear equation 2x + 3y —4z = 5 is nonhomoge-
neous, while 2x 4+ 3y — 4z = 0 is homogeneous. (The term ““5” in the first equation has degree 0, while all
other terms are of degree 1.)

Every system of homogeneous linear equations

ax+by+cz+---=0
x4+ by+cz+---=0
ayx+by+c,z+---=0

always has the trivial solution x =0,y =0,z=0,... .

A system of n homogeneous linear equations in n unknowns has only the trivial solution if D, the
determinant of the coefficients, is not equal to zero. If D = 0, the system has nontrivial solutions as well.
(See Problem 21.7.)

Solved Problems

3x =2y— z—=4w= 7 (I)
X +3z4+2w=-10 (2)
x+4y+2z4+ w= 0 (3

2x + 3y +3w= 1 ¢

21.1  Solve the system
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We find
i _é _; _‘2‘ f _(2) _18 _18 -2 -10 -10 1 5 5
D= = =—|4 -1 =-1|=2[4 -1 -1|=-210
1 4 2 1 1 4 -1 -1 3 6 -1 3 6
2 3 0 3 |2 3 -6 -1
P O I e e I - B
N, = = =—13 3 32|/=-]|3 3 2[=-105
: 0 4 2 1 0 4 2 1 4 > | 4 5 3
1 3 0 3 1 30 3
Voo s ol e T
A TR Y T | At I I R I
2 1 o 3] I2 1 -4 1
Do <0 o |1 M4 o | 7 g2 o
N. = = =| -4 -10 1|=-7|-4 -10 1|=525
1 4 0 1 1 0 0 0 s L s L
2 3 1 3] [2 =5 1 1
S B e T SO A N
N, = = =l -4 1 -10|=-7|-4 1 -10|=315
1 4 2 0 1 0 0 0 s 4 | 5 4 X
2 3 0 1 2 -5 —4 1
Then
_N,_-l05_1 N, _-315_3 _N._ 525 _ 5 oo N _ 315 3
o =200 2T D20 22T D20 22T D T 200 2
. 3—6+5+12
Y _ o3y (=5Y—4y({=3\=—"~ """V = __
Check. Using (1), 3(1) =2(3) = (=3)-4(-3) = 5 =7

[NOTE: The above system permits some variation in procedure. For example, having found x =1
and y = 5 using determinants, the value of w may be obtained by substituting in (4)

2(%) + 3(%) +3w=1, 3w=-3, w=-3

and the value of z may then be obtained by substituting in (2)

() +3z+2(-3)=-10, =-§ =-3

The solution may be checked by substituting in (/) or (3).]

2x+ y+52z+ w= 5 )
X+ y—=3z—4w=-1 #)
3x+6y —2z4+4 w= 8 3)
2x+2y4+2z-3w= 2 )

21.2  Solve the system

21 5 1 51 5 1
11 -3 -4 -1 1 -3 -4
We have D = =-120, N, = = =240,
36 -2 1 ’ 8 6 -2 1
2 2 2 =3 2 2 =3
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25 5 1 21 5 1
1 -1 -3 —4 11 -1 —4
N, = — 24  N.= —0.
: 38 =2 1 3.6 1
2 2 2 3 22 2 -3
N, 240 N, 24 1 . Nz 0
Then x_ﬁ_TZO_Z’ y—F—Tm—g and Z—E—m—o

Substituting in (1), 2(2) + (%) +50)+w=5and w= %.
Check. Using (2),(2) + (}) = 3(0) - 4(}) = —1.

2x— y+52z+ w=2
x+ y— z—-4w=1
3Ix+6y+82+ w=3
2x4+2y+2z-3w=1

Show that the system is inconsistent.

Since D = =0 while N, =

1
_‘1‘ = —80 # 0, the system is inconsistent.
-3

— » —

5 I 5 1
-1 1 -1 —4
8 6 8 1
2 2 2 3

N W — N
O N = —

2x— 3y4 z=0 (J) 6x=2y+ z=1 ()
Solve when possible: (@) x+ Sy=3z=3 (2 (© x—4y+2:=0 (2
Sx+12y—82=9 (3) Ax+6y-32=0 (3

N+ 2432= 2 (D) x+2y=3z4+ Sw=11 ()

4x— y+ z—= 2w= 0 ()

(b) 2x+4y+ z=-1 (2 d) Dt dy—62 4 10w =22 (3

I by+5= 2 (3) X+dy=62+10w=22 ()

Sx+ y—2z+ 3w=11 (4

(a) Here D = 0; we shall eliminate the variable x.

(H=202: -13y+7z=-6
(3)=502): -13y+7z=-6

7216 4249
Then y = z]—;— and from (2), x=3-5y+3z= Zl‘;‘ )

i . 4a+9 Ta+6 _ )
The solutions may be written as x = al—g , Y= 01J3r , z=a, where a is arbitrary.

(b) Here D = 0; we shall eliminate x.

2)-2(I);. —5z=-5
3)—-3(): —-4z=-4

Then z = 1 and each of the given equations reduces to x + 2y = —1. Note that the same situation arises
when y is eliminated.

The solution may be written x =—=1—=2y, z=1or as x=—-1—-2a, y=a, z=1, where a is
arbitrary.

(¢) Here D = 0; we shall eliminate z.

@=-20): —1llx==2

The system is inconsistent.
3 +3): 2x= 3

(d) Here D = 0; we shall eliminate x.
2)=4(): =9y +13z—22w=-44

3)=2(1): 0= 0
4)—=51): =9y +13z=22w=—-44
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Then y= w and, from (1), x= W The solutions are x = 11+79a—b’
44 + 13a—22b
y= ++, z=a, w=>b, where a and b are arbitrary.
The system of two equations in four unknowns

X+2y+3z—4w=>5
3x— y=5z=-5Sw=1

may be solved for any two of the unknowns in terms of the others; for example, x =1 + z + 2w,
y=2=-2z4+w.
The system of three equations in four unknowns
x+2y+3z—-4w=>5
{Sx - y=5z-5w=1
2x +3y+z— w=38

may be solved for any three of the unknowns in terms of the fourth; for example, x =1+ 4w,
y=2-=3w, z="2w.
The system of three equations in four unknowns
x+2y+3z—-4w=>5
3x— y—=5%-5Sw=1
2x +3y +z— w=38
may be solved for any two of the unknowns in terms of the others. Note that the third equation is the

same as the second minus the first. We solve any two of these equations, say the first and second, and
obtain the solution given in (a) above.

21.6 Solve when possible.

3x=2y= 1 B+ y= 1 4x15}:t3i—1§ xiifs
(@ dax+3py=41 @) 15x—=2p= 20 (© {757 - @ J1rVTET
6x + 2y = 23 4x+ 5y =17 Sx—3y+dz= 23 xtz=7
Y= V= Tx— y+6z= 27 Sx—5y4z=1
Ix=2y= 1 . _ _
(a) The system {4x 43y =4l has solution x =5, y=17.
Since 6x + 2y = 6(5) + 2(7) # 23, the given system is inconsistent.
Ix+ y=1 . . _
() The system { Sx— 2y = 20 has solution x =2, y =-=5.
Since 4x + 5y = 4(2) + 5(=5) = —17, the given system is consistent with solution x = 2,
y=-5.

X+ y+z= 2
(¢) The system {4x +5y—=3z=-15 hassolution x =1, y=-2, z=3.
Sx=3y+4z= 23
Since 7x—y+ 6z = 7(1) — (=2) + 6(3) = 27, the given system is consistent with solution
x=1, y=-2, z=3.

x+y=5
(d) The system { y+z =28 has solution x =2, y=3, z=15.
x+z=7

Since 5x— 5y +z = 5(2)—53) + (5) # 1, the given system is inconsistent.

(NOTE: If the constant of the fourth equation of the system were changed from 1 to 0, the
resulting system would be consistent.)
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21.7  Examine the following systems for nontrivial solutions:

2x=3y+3z=0 4x+ y=2z=0 x+ 2y+ z=0
(a) 3Ix—4y+5z=0 (b) x=2y+ z=0 () 3x+ 6y+3z=0

Sx+ y+2z=0 llx—4y— z=0 Sx+10y+5z=0

2 =33
(a) Since D=|3 —4 5| # 0, the system has only the trivial solution.
5 1 2
4 1 =2
(b) SinceD=|1 =2 1| =0, there are nontrivial solutions.
11 -4 -1
dx+ y=2z . _14 1
The system { =y =—2 for which D = 1 -

(d)

[CHAP. 21
2x+ y=0
3y =2z=0
2y+ w=0
4x — w=0

# 0, has the solution x = %, y= % This

solution may be written as x =4, y = 23—“, z=aor x=a, y=2a, z=3a, where a is arbitrary, or

as x:y:z=1:2:3.

1 21
(¢) Here D=3 6 3|=0 and there are nontrivial solutions.
5 10 5

Since the minor of every element of D is zero, we cannot proceed as in (b). We solve the
first equation for x = =2y —z and write the solution as x = —2a—b, y = a, z = b, where a and b

are arbitrary.

(d) Here D=

0 0

-2 0 .. .
0 1= 0 and there are nontrivial solutions.
0 -1

B~ O O
O N W =

Take x = a, where «a is arbitrary. From the first equation, y = —2a; from the second,

2z =3y =—6a and z =—3a; and from the fourth equation, w = 4a.

Thus the solution is x = a, y = —2a, z=-3a, w=4a, or x:y:z:w=1:-2:-3:4.

Supplementary Problems

21.8  Solve, using determinants.

2
5
4

x+y+z=6 3x=2y+2z4 w= 5 X+ y+ z+ w=
- ) = — 7 — 2w = 2x+3y—2z— w
@ ):—i— ,+ w_9 ) 2)ﬁ+4}_ 211_ 3 © X+ oy w
z+w+x=28 3x+7y— z+3w= 23 3x=2y+ z43w
wHx+y=7 x=3y+2z-3w=-12 Sx 42y + 32— 2w = —4
Ans. (a) x=1,y=2,z=3, w=4 b)) x=2,y=1z=-1,w=3
() \=%,y=l,z=—%,w=2

21.9  Test for consistency, and solve when possible.

2x+3y— 4z= 1 x+Ty+ 5z=-22 x+ y+
(a) 3x— y+ 2z=-2 (b) x =9y —1lz= 26 (c) 2x— 4y + 11
3

S5x=9y+ 14z = x— y— 3z=-22 4x 4+ 6y +

z
z
z

21

4
7

Ans. (a) Inconsistent b) x=2z—-1,y=-z-3 () x=33-52),y= %(5 +3z2)
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21.10

21.11

21.12

21.13

21.14

Solve, when possible.

x=3y+11=0 x— 2y— 8=0 2x=3y — 7=0
(a) 3x+2y-33=0 (b) 3x+ y— 3=0 () Sx+4y+17=0
2x=3y+ 4=0 x—=10y+32=0 4x — y+ 1=0

Ans. (a) x=T7,y=06 () No solution (¢) x=-1,y=-3

Solve the systems.
4x+2y— 6z+w=10

2x— y+3z= 38 dx+2p+z= 13
(a) { oy (b) { A () {3x— y— 9z—-w= 7
x+3y—-2z=-3 2x+ y=2z=-06 Tt w13

Ans. (@) x=3—-z,y=-2+z b)) y=4-2x,z=5
(¢) x=T7w/10, y=2-23w/20, z=—-1+w/4

Examine for nontrivial solutions.
3x+ y- 92=0 2x— 3y—5z= bil Zytzllgstvz—%
(@) {4x— 3y+ z=0 b) X+ 2y=13z=0 (©) ) V= z )=
z=0 9x—10y =30z =0 3x— 2y—-2z—-6w=0
ro = Tx+ 11y +3z—6w=0

Ans. (@) x=2z,y=3z b) x=y=z=0 (¢) x=2w,y=-w,z=w

Is it the case that the converse of the statement ““A system of n homogeneous linear equations in n unknowns
has only the trivial solution if D, the determinant of the coefficients, is not equal to zero is true?” In other
words, is this an “if and only if” statement?

Solve Problem 21.12 using a computer software package.



Introduction to
Transformational
Geometry

INTRODUCTION TO TRANSFORMATIONS. If you look back at previous chapters that included
topics in geometry, you will notice that, while we have concentrated on different topics from chapter to
chapter, all the material had one very important thing in common: The positions of all the geometric
figures were fixed. In other words, when we considered a triangle such as A 4BC in Fig. 22-1, we did not
move it. In this chapter, we consider objects in geometry as they change position. These objects (such as
triangles, lines, points, and circles) will move as a result of transformations of the plane.

B

Fig. 22-1

DEFINITION: By a transformation of the plane, we mean a rule that assigns to each point in the plane
a different point or the point itself.

Note that each point in the plane is assigned to exactly one point. Points that are assigned to
themselves are called fixed points. If point P is assigned to point Q, then we say that the image of Pis Q,
and the image of Q is P.

REFLECTIONS. Imagine that a mirror is placed along line m in Fig. 22-2. What would be the image
of point S in the mirror? How would you describe ', the image of S? If we actually placed a mirror along
m, we would see that the image of S lies on /, on the other side of m, and that the distance from S to O is
equal to the distance from O to S’ (see Fig. 22-3). We say that S’ is the image of S under a reflection in
line m. Notice that, under this reflection, O is the image of O.

136
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Fig. 222

Fig. 22-3

DEFINITION: A reflection in line m is a transformation of the plane having the property that
the image of any point S not on m is S’, where m is the perpendicular bisector of SS’;

the image of any point O on m is O itself.

We write R,,(S) = S’ to mean S’ is the image of S under the reflection in line m.

EXAMPLE 1. Image of a Point. Find the image of (a) A, (b) B, (¢) C, (d) AC, and (¢) £DAC under the

reflection in line 7 indicated in Fig. 22-4.
¢

Fig. 22-4

SOLUTIONS

(a) B, because ¢ is the perpendicular bisector of AB
b)) 4

(¢) C, because Cis on t

(d) BC (Why?)

() 4DBC, because D and C are fixed, and R,(B) = 4

EXAMPLE 2. Image of a Triangle. What is the image of AABC in Fig. 22-4 under a reflection in line ¢?

SOLUTION

We saw that R,(4) = B, R,(B) = A4, and R,(C) = C; thus, AABC is its own image. See Problems 22.1-22.3.

LINE SYMMETRY. Notice that the images of angles are angles and the images of segments are
segments under a reflection in a line. When a figure is its own image under a reflection in a line (like

AABC in Fig. 22-4), we say the figure has line symmetry.
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DEFINITION: A figure F exhibits /ine symmetry if there exists a line / such that the image of F under
a reflection in line / is F itself. In this case, / is called a line symmetry or an axis of
symmetry.

Notice that when a figure exhibits line symmetry, all its points are not necessarily fixed. In Fig. 22-4,
only points C and D are fixed in triangle ABC. See Problems 22.4-22.6.

EXAMPLE 3. Finding the Axis of Symmetry. In Fig. 22-5, find all axes of symmetry for the regular hexagon
ABCDEF.
SOLUTION

AD, FC, BE, and the indicated line / are all axes of symmetry. Find two others.

I
A f

F c
£ D
Fig. 22-5

EXAMPLE 4. Discovering Line Symmetry. Which of the objects in Fig. 22-6 exhibit line symmetry?

(@) (b)

(d) {#)

Fig. 22-6

SOLUTION
All except (c).

POINT SYMMETRY. Not only can we transform the plane by reflections in a line, but we can also
reflect in a point P. In Fig. 22-7, for example, we can reflect Q in the point P by finding the point Q' such
that QP = PQ'.

DEFINITION: A reflection in the point P is a transformation of the plane such that the image of any
point Q except Pis Q', where QP = PQ’, O, P, and Q' are collinear, and the image of
Pis P (i.e., P is fixed). If point F is its own image under such a transformation, then
we say F exhibits point symmetry. (Note that QP = PQ' means that they are equal in
length. The segments OP and PQ’ are congruent.
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A B
Q H ; H Q, F c
E D
Fig. 22-7 Fig. 22-8

Figure 22-8 shows a regular hexagon ABCDEF, with AO = OD. Notice that A4 is the image of D
under the reflection in O. We use the notation Ry(A4) = D and Ry(D) = A to indicate that 4 and D are
each other’s images under a reflection in point O. See Problem 22.7.

EXAMPLE 5. Finding Images under a Reflection in a Point. Referring to Fig. 22-7, find
(@ Ro(B), (b) Ro (C), (¢) Ro(AD), (d) Ro(£LAOB), and (¢) Ro(ABCDEF).

SOLUTIONS

(@ E Bb) F () AD (d) DOE
(¢) Hexagon ABCDEF. (Thus, ABCDEF exhibits point symmetry.)

EXAMPLE 6. Finding Point Symmetry. Which of the following exhibit point symmetry?
(a) Squares (b)) Rhombuses (¢) Scalene triangles d) S

SOLUTION
All except (¢)

REFLECTIONS AND ANALYTIC GEOMETRY. Since points can change position in transforma-
tional geometry, analytic geometry is a particularly useful tool for these transformations. Recall that in
analytic geometry, we deal extensively with the positions of points; being able to locate points and
determine distances is of great help in exploring the properties of transformations.

EXAMPLE 7. Images under Reflections (Fig. 22-9).
(a) What is the image of point 4 under a reflection in the x axis? The y axis?
(b) What is the image of B under a reflection in the y axis?
(¢) What is the image of O under a reflection in the point O?
(d) What is the image of B under a reflection in the line y = x?

(¢e) What is the image of 4 under a reflection in the line x = —1?
(f) What is the image of AAOB under a reflection in the y axis? Under a reflection in O?
y
A
AL D)
P x
0 B(1,0)

Fig. 22-9
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SOLUTIONS

(a) Point A'in Fig. 22-10 is the image of 4 under a reflection in the x axis; the coordinates of 4 are (1,—1). Point
A" is the image of 4 under a reflection in the y axis; 4" = (-1, 1).

(b) Point B in Fig. 22-11 is the image of B under a reflection in the y axis. Its coordinates are (—1,0).

(¢) Point O is a fixed point. The point in which we reflect is always fixed.

(d) R;(B)= B'(0,1) in Fig. 22-12. Notice that line / is the perpendicular bisector of BB’.

() R,(A) = A'(=3,1) in Fig. 22-13. Note that m is the perpendicular bisector of 44’.

(f) The image of AAOB under a reflection in the y axis is AA’B’O in Fig. 22-14(a), where A’ = (—1,1),
B’ = (-1,0), and O = (0,0).The image under a reflection in the origin is AA4”B"0 in Fig. 22-14(b), where
A" = (=1,-1), B" = (-1,0), and O = (0,0).

A7 A
A" A(L1T)
B(0,1)
> 7 —- t »
A
Fig. 22-10 Fig. 22-11
A’ ! m A
B’(0,1) A’(-3,1) A(LD)
| NS/ [ NS N —
2 units 2 pnits
L P —»
B(1,0)
y=x
Fig. 22-12 Fig. 22-13
A’ A’
A A A
B” -
P x * » x
B 0 B 0 B
A"

@ )
Fig. 22-14

PATTERNS IN REFLECTIONS. We can observe several patterns in the results of Example 7( f):
1. The distance from A’ to B’ in Fig. 22-14(a) equals the distance from 4 to B. In other words,
distance is preserved under a reflection. Observe that measures of angles are also preserved.
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In other words, mZBAO = mZB' A0 in Fig. 22-14(a), and that property appears to hold for
other reflections. As you will see, other properties are preserved as well.

2. Under a reflection in the x axis, the point (a, b) moves to (a,—b); under a reflection in the y axis,
(a,b) moves to (—a,b); and under a reflection in the origin, (a,b) moves to (—a,—b). These
patterns hold only for these reflections.

EXAMPLE 8. More Images under Reflections. In Fig. 22-15, find
(@) The reflection of C in the y axis
(b) The reflection of B in the origin.
(¢) The reflection of ACAB in the x axis

, )3
A P
A(I.I)Am,n
P ¢
Fig. 22-15

SOLUTIONS
@ (=2,3) () (=3,-1) (¢) AC'A'B’, where C'=(2,=3),4' = (1,-1), and B’ =(3,-1). Sketch the
triangle AA'B'C'.

TRANSLATIONS. Let us transform A 4BC in Fig. 22-16(a) by adding 1 to each x coordinate and 2 to
each y coordinate. The result is shown in Fig. 22-16(b). Notice that A ABC does not change shape, but it
does move in the plane, in the direction of ray OD, where D = (1,2). The x coordinate of D is the
“amount” by which the x coordinates of the triangle are shifted, and the y coordinate of D is the
“amount” by which the y coordinates are shifted. We call this kind of transformation a translation.

A N B'23) (33
BOD  can D(1.2)
A'Q2.2)
A(1,0) >
>«
@ ®)
Fig. 22-16

DEFINITION: A translation is a transformation of the plane such that the image of every point («, b) is
the point (a + &, b + k), where h and k are given values.
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A translation has the effect of moving every point the same distance in the same direction. We use the
notation Ty, ;y(a, b) to mean the image of (@, b) under a translation of / units in the x direction and k
units in the y direction.

As in a reflection, distance and angle measure are preserved in a translation.

EXAMPLE 9. Finding the Image of a Point. Find 7(_, 1,(1,4) and T, ;,(=1,2).

SOLUTION

Ton,H =010+ D4+ D=(0,5 TopEL)=E1+ED)2+1D)=2,3)

Notice in Fig. 22-17 that (1,4) and (-1, 2) are translated the same number of units in the same direction by the
same translation 7.

A
(0,5) l\
(-2,3) (1,4)
(—‘15
»
Fig. 22-17

EXAMPLE 10. Finding the Image of a Triangle. Find the image of A 4BC under the translation 7{; 5, where
A=(0,0),B=(1,1), and C = (1,0).
SOLUTION

T1,2(0,0) = (1,2), Ty 5(1,1) = (2,3), and T} 5(1,0) = (2,2). Hence, the image of AABCis A4'B'C"in Fig. 22-18.
All points are translated along ray 44" = OA’, where A'(1,2) has the coordinates of the translation.

A’
e
A’ ¢
B
4 > x
A C
Fig. 22-18

EXAMPLE 11. Finding the Image from Another Image. Under a certain translation, 7(5,2) = (7, 1). Find
T(-3,6) under the same translation.

SOLUTION

We have T (5,2)=(7,1). Thus, S+h=7, or h=2; and 2+k=1, or k=-1. Then T _;,(-3,6)=
24+ (=3),-1+6)=(-L,95).
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EXAMPLE 12. Finding Various Images Under Translation.
(@) Find T(_; ¢)(6,2).

(b) Find hand k if Ty, (1,7) = (0,0).

(¢) Find the image of square ABCD under the translation 7{; ;), where 4 =(0,0), 8= (1,0),C=(0,1), and
D=(,1).

(d) Find Ty, 1y(1,6) if T (4, 1) = (0,=7).
(e) Find all fixed points under T(_; 4.

SOLUTIONS

(a) T(6,2)=(6+(=1),24+0)=(5,2) b)) h=0-1=-1k=0-7=-7
(¢) ABCD, where A'=(1,1),B'=2,1),C'=(1,2), and D' = (2,2)

(d h=0-4=—-4and k=-7-1=-8,s0 7T(1,6) = (-3,-2)

(e) Only Ty, has fixed points. Any other translation, including 7', 4, has none.

EXAMPLE 13. Finding Images of Figures. Let A = (1, 1), B=(2, 2), and C = (3, 1). Find the image under
Te, -1 of (@) AB, () AABC, and (c) ZCBA.

SOLUTIONS
(@) A'B', where 4' = (3,0)and B’ =(4,1) (b)) A'B'C'withC'=(5,0) (¢) ZC'BA

ROTATIONS. Consider square ABCD in Fig. 22-19(a). Suppose we were to rotate that square
counterclockwise 90° about P, as shown by the arrow. (Imagine that the square is separate from the
page, but held to it by a pin through point P.) Then

The image of B would be 4.
The image of D would be C.
The image of C would be B.
The image of 4 would be D.

Now consider point S in Fig. 22-19(b). We can rotate it counterclockwise by, say, 50° about P, as if
it were one end of a ruler that was nailed to the page at P. The image of S’ is in the diagram.

In both these rotations, the segment from P to the point being rotated is congruent to the segment
from P to the image of that point.

(@) ®
Fig. 22-19
DEFINITION: A rotation through an angle of measure 6 degrees about a point P is a transformation

of the plane such that the image of P is P and, for any point B # P, the image of B is
B', where m< BPB = 0 and BP = B'P.
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Figure 22-20 shows P, B, B/, and 0. If 0 > 0, the rotation is counterclockwise. If 0 < 0, the rotation is
clockwise.

We use the notation Rotp ) (B) to mean the rotation of point B about point P through 0°. Segment
lengths and measures of angles are preserved under rotations.

Let us rotate point B in Fig. 22-21 through 180° about O. The image of B is B'(-2,2). Notice that
this is also the image of B under the reflection in O.

A
B -

(]
]

_ B2, 2)

i

Fig. 22-20 Fig. 22-21

Now let us rotate point B through 90° about O. The image here is B”(—2,2). Notice that this is the
image of B under the reflection in the y axis.

Be Careful. These two similarities of transformations are coincidences. They come about because we
are rotating 90° and 180° about the origin. Do not generalize beyond these cases! Note,
though, that these coincidences yield the following formulas:

Rotp gpsy(a,b) = (=b,a) ~ and  Rot, 150°y(@, b) = (—a,—b)

EXAMPLE 14. Finding the Rotation of a Point. Let 4 =(1, 3) and B = (2, 1), and find (@) Rotp, 9o°)(4),
(b) Rot o, 9p-)(B), and (c) the image of AB under a rotation of 90° about O.

SOLUTIONS

(@) Rot, gy(@, b)=(=b,a)=(=3,1) (b) Rot, 92, 1)=(-1,2)
(¢) The image of A’B’, where A' = (-3, 1) and B’ = (-1, 2), as shown in Fig. 22-22.

Ay

A(1,3)
B’ (-1,2)

A" (3,1) B(2,1)

Fig. 22-22
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EXAMPLE 15. Finding the Image of a Triangle
(a) Find the image of AA4BC under a rotation of 180° about O, if 4 = (1, 3), B=(2, 1), and C=(1, 1).

(b) Find the image of ZBAC.

SOLUTIONS

(@) Rotgosy(A) =(=1, =3)=4" (b) The image of LZBACis ZB'A'C’".
Rot(g 150°)(B) = (=2, = 1) = B’

Rot g, 150)(C) = (=1, =)=’
The image of AABC is AA'B'C’.

SYMMETRY OF ROTATION. The image of the square in Fig. 22-19 under a rotation of 90° is the
square itself. This is also true for a rotation of —90°, or 180°, and so on.

EXAMPLE 16. Determining Rotational Symmetry (Fig. 22-23)

AV
Cc(0,1)
» > x
A(=1,0) B (1,0
Fig. 22-23

(a) Find Rotp 45(0).

(b) Find Rot gy of 4, B, and C.

(¢) Find Rotg_g) of 4,B, and C.

(d) Find the image of AABC under Rot _gge).
(e) Does AABC exhibit rotational symmetry?

SOLUTIONS

(@) Rot(0)=0

(b) Rot(4) = A4'(0,1); Rot(B) = B'(0, 1); Rot(C) = C'(~1,0)
(6) Rot(4) = A"(0, 1); Rot(B) = B"(0,—1); Rot(C) = C"(1,0)
(d) Rot(AABC)= A"B"C"

(e) No, because it is not its own image for any rotation except one of 360°.

DILATIONS. Suppose we blew a balloon up most of the way and traced its outline, and then blew it
up all the way and traced it again. The outlines might look like those in Fig. 22-24. Although the balloon
has changed size from (a) to (b), its shape has not changed. Notice that if C is on 4B, then its image C'is
on A'B’. Such a transformation in the plane is called a dilation (or dilatation). The “reverse®
transformation is also a dilation: The balloon could be reduced in size in a transformation from that in
(b) to that in (a).
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(a) (b)
Fig. 22-24

DEFINITION: Given a point P in the plane and a positive number 7, a transformation of the plane
having the following properties is called a dilation of n, and P is called the center of
dilation: Point P is fixed, and for any point Q, the image of Q is the point Q' such that
PQ' = (n)(PQ) and PQ and PQ' are identical rays. The point Q' is usually denoted
D,(0).

Figure 22-25 shows a dilation in which n = 2 and the center of dilation is P. Hence, D,(4) = 4/,
D,(B) = B, and D,(P) = P. In addition, because n = 2, we know that PA’ =2PA and PB’' = 2PB.

ﬁky

Fig. 2225

Several properties of dilations are evident in Fig. 22-25:

(1) Dilations do not preserve distance.
(2) The image of a figure is similar to the figure under a dilation. In Fig. 22-25, APAB ~ PA'B’.
(3) Angles are preserved under dilations (because of item 2 above).

When the center of a dilation is O = (0,0), we can find the images of points very easily:
Dy (x,y) = (nx,ny).

EXAMPLE 17. Finding the Dilation of a Triangle. Find the image of A ABC in Fig. 22-26 under a dilation of

n= % with center of dilation at (0, 0).

SOLUTION

Di;(1,1) = (3,3) = B’ as shown in Fig. 22-26. Also, D;(1,0)=(3,0)= 4" and D;;(2,1)=(1, 4) = C’. Then
AA'B'C is the image of ABAC, and AB'A'C' ~ ABAC. Note that the image here is smaller than the original

triangle because n = 1.
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Ay
B(1,1)
A CQD
/ -
7 4
B, 7/ .
’/VC'
7, i
<
& » x
A A(1,0)
0
Fig. 22-26

EXAMPLE 18. Finding an Unknown. Given that D,(8,0) = (1,0), find » for a dilation in which (0, 0) is the
center of dilation.

SOLUTION

Since the origin is the center of dilation, (1,0) = (#8,10). Therefore, 8 =1 and n = %

EXAMPLE 19. Dilating a Square. Draw a square ABCD in the coordinate plane such that 4 = (1,1),B=
(1,2), C=(2,1), and D = (2,2). Then,

(a) With O as the center of dilation, find the image of ABCD under a dilation with n = %

(b) Find the midpoint M of AB and the midpoint M’ of A'B’.

(¢) Find Dy ;3(M).

SOLUTIONS

(a) For a dilation with center (0,0) and n = %, we have D(x, y) = (%x, %y) The image of ABCD is
2
3

A'B'C'D', where A/ = (1, 1), B'=@, 3, C'= (%, 1), and D' = (3, 3).
B M=+, 30 +2)= (1 Y and = G 13D = (. D)
© DM)=M

PROPERTIES OF TRANSFORMATIONS. We are now in a position to summarize the properties of
transformations. In particular, we are interested in what is preserved under each kind of transformation.
(1) Reflections preserve (a) distance, (b) angle measure, (¢) midpoints, (d) parallelism, and
(e) collinearity.
(2) Translations preserve these same five properties, (a) through (e).

(3) Rotations preserve all five properties as well.
(4) Dilations preserve all except distance, that is, (b) through (e).

Solved Problems

22.1 Find the image of each of the following under the reflection in line ¢ in Fig. 22-27(a): (a) point D, (b) point C,
(c) point B, (d) AC.

Ans. (@) C b)) D (¢) B (d) AD
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Fig. 22-27(a) Fig. 22-27(b)

22.2  Find the image of rectangle ABCD under the reflection in line ¢ in Fig. 22-27(a).
Ans. Rectangle ABCD

22.3  Isit true or false that every circle is its own image under a reflection in a diameter?

Ans. True

224  Find all axes of symmetry for the rectangle in Fig. 22-27(a).

Ans. tis one such axis. Are there any which are not diagonals?

22.5 Give (or draw) an example of a five-sided polygon that does not exhibit line symmetry.

Ans. There are many; Fig. 22-27(b) is one.

22.6  Explain why each figure in Fig. 22-28 exhibits line symmetry.

Hint: For each, find an axis of symmetry.

() ()] (c) (d)

Fig. 22-28

22.7 In Fig. 22-29, find (@) Rp(B), (b) Ro(A), (c) Ro(0), (d) Ry (AAOB).

Ans. (a) (=2,0) ? =2,-2) (© O
(d) AAOB' where A' = (-2,-2) and B’ = (-2,0)
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22

o <2‘, 0)

Fig. 22-29

Supplementary Problems

22.8 In Fig. 22-30, find:

(a) The image of E under a reflection in the y axis Ans. E
(b) The image of B under a reflection in the y axis Ans. C
(¢) The image of AB under a reflection in the y axis Ans. BA
(d) The image of BC under a reflection in the x axis Ans. B'C' where B' = (=1, —1);C' =(,-1)
(e) The image of ABCD under a reflection in the x axis  Ans. A'B'C'D’ where A' = A, D' =D
Ay
B(-1,1) E(0,1) c(1,1)
> X
A(-1,0) 0 D(1,0)
Fig. 22-30

22.9  Find (a) T(1,3(2,8) (b)) T(1,3(6,5) (¢) T(1,3(0,0) (d) T 3(L, D).
Ans. (@) (3,11 () (7.8 (o (1L3) @) 2,4

22.10 Find the image of rectangle ABCD in Fig. 22-30 under the translation 73 g,.
Ans. A'B'C'D’ where A' = (2,6), etc.

22.11 Under a particular translation, 7(3,4) = (0,0). Find 7(—8,—6) under that same translation.
Ans. Then T, here, = T(_5 _4); T(-=8,—6) = (—11,-10)
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22.12 Find (a) T4 3)(0,=6); (b) Ty 13, 7); (¢) Ty, iy(e,); (d) Tg (4, 1) if Ty (1, 1) = (2,2).
Ans. (@) (4,-3); (b)) @G+h7T+k); (¢) (e+h, f+k); (d) (5,2)

2213 In Fig. 22-31, find (a) Tig,o/(EF); (b) To1.0(EF); (¢) T (EF); (d) To.o/(AOEF).
Ans. (@) EF, (b) E'=(1,1:F =@2,0); (¢) E'=(0,2;F =1,1); (d) O' = 0, etc.

Ay
E(0,1) 4
o F (I, 0) -
Fig. 22-31

22.14 Letx=(4,1)and y = (0, 3), and find (a) Roty, 99-)(x); (b) Rot(p, 99°y(3); (¢) the image of yx under a rotation
of 90° about O.

Ans. (a) (=1,4); () (=3,0); (¢) y'x’, where y’ =(=3,0),x" = (=1,4)

22.15 Find the image of AEOF in Fig. 22-31 under a rotation of 180° about O.
Ans. O'=0,E'=(0,-1),F' = (-1,0); AE'O'F' is the image

24.16 1In Fig. 22-32, find
(a) ROt(O’ 900)(1‘1) and ROt(O, 900)(3)
(b) Rot, _99°)(4) and Roty, 99-)(C)
(¢c) the image of OABC under Rot, _gp°).

Ans. (a) (0,-1) and (=1,1) (b)) (0, 1) and (=1,0) (¢) O'A'B'C'; where 0' =0, A' = (0,1),
B'=(-1,1),C' = (-1,0)

Ay
B(1,1)
C(0,1)
o A(1,0) -
Fig. 22-32

22.17  Find (a) Dy/3(=1,3), (b) Dy/2(5,-3), (¢) D4(0,0), and (d) Ds(1, 6), where the center of dilation in each case is
the origin.

Ans. (@) (=3, 1); ® G- (e) (0,0); (d) (5,30
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22.18 If the center of a dilation D is (0,0) and D,(3,6) = (5, 10), find n and D,(0,-7).

Ans. n=3% (0,-%)

22.19 For A and B as given in Fig. 22-33 and dilations with centers at (0, 0), find

(a) The image of AOAB under a dilation with n = %
(b) The image of the midpoint of AB under a dilation with n = 3
Ans. (a) 0'=0,4'=(0,1), B =(},0); imageis AOA'B  (b) midpoint: (4,1); image is (2,3)

Ay

Fig. 22-33

22.20 Prove that dilations preserve “‘shapes” for triangles. In other words, prove that if the image of A ABC under
a dilation is AA4’'B'C’, then AA'B'C' ~ AABC.

22.21 Prove that translations preserve angle measure.
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Angles and Arc Length

TRIGONOMETRY, as the word implies, is concerned with the measurement of the parts of a triangle.
Plane trigonometry, considered in the next several chapters, is restricted to triangles lying in planes.
Spherical trigonometry deals with certain triangles which lie on spheres.

The science of trigonometry is based on certain ratios, called trigonometric functions, to be defined
in the next chapter. The early applications of the trigonometric functions were to surveying, navigation,
and engineering. These functions also play an important role in the study of all sorts of vibratory
phenomena-—sound, light, electricity, etc. As a consequence, a considerable portion of the subject matter
is concerned properly with a study of the properties of and relations among the trigonometric functions.

THE PLANE ANGLE XOP is formed by the two intersecting half lines OX and OP. The point O is
called the verrex and the half lines are called the sides of the angle. See Fig. 23-1.

| 4

Fig. 23-1

More often, a plane angle is to be thought of as generated by revolving (in plane) a half line from the
initial position O X to a terminal position OP. Then O is again the vertex, OX is called the initial side, and
OP is called the rerminal side of the angle.

An angle, so generated, is called positive if the direction of rotation (indicated by a curved arrow) is
counterclockwise and negative if the direction of rotation is clockwise. The angle is positive in
Figs. 23-2(a) and (c), and negative in Fig. 23-2(b).

initial sid % :
o=l e "
te,
'".Ihu Prs
p Tnitial side X
(@) &) (¢)
Fig. 23-2
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MEASURES OF ANGLES

A. A degree (°) is defined as the measure of the central angle subtended by an arc of a circle
equal to ﬁ of the circumference of the circle.
A minute (") is & of a degree; a second (") is &; of a minute.

EXAMPLE 1

(@) 136°24)=9°¢ (b) 1(127°24') =1(126°84') = 63°42’

(¢) $(81°15) =1(80°75) = 40°37.5 or 40°37'30"

(d) 1(74°29'20") = 1(72°149"20") = 1 (72°128/80") = 18°37'20"
We write m £ 4 or m X 4 to denote the “measure of angle 4.”

B. A radian (rad) is defined as the measure of the central angle subtended by an arc of a circle equal

to the radius of the circle. See Fig. 23-3.
r
Aaeotts®

Fig. 23-3

The circumference of a circle = 2n (radius) and subtends an angle of 360°. Then 2% radians =
360°, from which we obtain

1 o
1 radian = 1807 _ 57.296° = 57°17'45", approximately
n

and 1 degree = 1;%0 radian = 0.017453 rad, approximately

where 7 = 3.14159 approximately.

EXAMPLE 2 (a) %n rad = % 180

=105°, (b) 50°=50- & rad = % rad. (See Problems 23.1-23.3.)

ARC LENGTH. On a circle of radius r, a central angle of 0 radians intercepts an arc of length s = r0;
that is, arc length = radius x the measure of the central angle in radians. See Fig. 23-4.

Fig. 23-4

(NOTE: s and r may be measured in any convenient unit of length but they must be expressed in the same unit.)
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EXAMPLE 3
(a) On a circle of radius 30 in., the length of arc intercepted by a central angle of% radian is

s=r0= 30(%) =10 in.

(b) On the same circle a central angle of 50° intercepts an arc length

Sn 257
s=r0=30[=) =22
s=r 30( | 8) 3 i
(¢) On the same circle an arc length 1% ft subtends a central angle
s 18 3 .
mx 0= =305 rad when s and r are expressed in inches
s % 3 .
or mx 60=-=5=_rad when s and r are expressed in feet
PR
2

(See Problems 23.4-23.5.)
(NOTE: Throughout the remainder of this book, degree measure and radian measure will be used. The reader
should make certain that he or she knows how to use a calculator in both of these modes of angle measure.)

Solved Problems

23.1  Express each angle in radian measure: (a) 30°, (h) 135°, (c) 25°30/, (d) 42°24'35".

; o Tt dian — ’
Since 1° = 180 radian = 0.017453 rad,

(@ 30° =30 x& rad :g rad  or  0.5236 rad

(b) 135° = 135x& rad = %" rad  or 23562 rad

(&) 25°30/ = 25.5° = 25.5X —— rad = 0.4451 rad

180
(d) 42°24'35" = 42° + (%) =42.41° = 42.41 +& rad = 0.7402 rad
. n St 2 4
23.2  Express each angle in degree measure: (a) 3 rad, (b) 5 rad, (¢) 3 rad, (d) 3 rad.
Since 1 rad = = 57°17'45",
@ Trad="x1" _ g0 B T rad =530 _ o0
3 3 T 9 T
2 2 180° 2° 2
(¢) —rad==x 0" _7 or Z(57°1745") = 22°55'¢"
5 5 n T 5
(d) 4 rad = i>< 1807 _ 240 or ﬂ(57° 17'45"y = 76°23'40"
3 3 n n 3

23.3 A wheel is turning at the rate of 48 rpm (revolutions per minute or rev/min). Express this angular speed
in (@) rev/s, (b) rad/min, (¢) rad/s.

(a) 48 rev/min =2 revjs =% rev/s
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(b) Since | rev =2 = 2z rad, 48 rev/min = 48(2n) rad/min = 301.6 rad/min
(¢) 48 rev/min = 5 rev/s = 5(2r) rad/s = 5.03 rad/s or

48 rev/min = 96n rad/min = 9667071 rad/s = 5.03 rad/s

The minute hand of a clock is 12 in. long. How far does the tip of the hand move during 20 min?

During 20 min the hand moves through an angle 6 = 120° = 27/3 rad and the tip of the hand moves
over a distance s = r0 =12(2n/3) = 8n in. = 25.1 in.

A central angle of a circle of radius 30 in. intercepts an arc of 6 in. Express the measure of the central angle 0
in radians and in degrees.

_5_6_1 119~A/2Al
mxr(ﬂ—r—w—srad—ll 2733

A railroad curve is to be laid out on a circle. What radius should be used if the track is to change direction by
25° in a distance of 120 ft?

We are required to find the radius of a circle on which a central angle 0, with measure 25° or 57/36 rad,
intercepts an arc of 120 ft. Then
s 120 864

_e_sn/36_7ft:275ft

Assuming the earth to be a sphere of radius 3960 miles, find the distance of a point in latitude 36°N from the
equator.

Since 36° = g radian, s = rf = 3960(%) = 2488 miles.

Two cities 270 miles apart lie on the same meridian. Find their difference in latitude.

mAxf=>= 270 3

*0= 07 3060~ 44

A wheel 4 ft in diameter is rotating at 80 rpm. Find the distance (in ft) traveled by a point on the rim in 1 s,
that is, the linear speed of the point (in ft/s).

rad or 3°54.4'

2n 8n
80 rpm = 80(@) rad/s = 3 rad/s

Then in 1 s the wheel turns through an angle 0 measuring 87 /3 rad and a point on the wheel will travel a
distance s = r0 = 2(8n/3) ft = 16.8 ft. The linear velocity is 16.8 ft/s.

Find the diameter of a pulley which is driven at 360 rpm by a belt moving at 40 ft/s.

2
360 rev/min = 360(6—8) rad/s = 12z rad/s

Then in 1 s the pulley turns through an angle 0 measuring 127 rad and a point on the rim travels a
distance s = 40 ft.

s 40 20
d=2r= 2(6) - 2(@) ft=3 ft=2120

A point on the rim of a turbine wheel of diameter 10 ft moves with a linear speed 45 ft/s. Find the rate at
which the wheel turns (angular speed) in rad/s and in rev/s.
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In 1Is a point on the rim travels a distance s = 45 ft. Then in 1 s the wheel turns through an angle
0=s/r= 4—55 = 9 radians and its angular speed is 9 rad/s.

Since 1 rev = 2z rad or 1 rad = ZL rev, 9 rad/s = 9(%) rev/s = 1.43 rev/s.
b b

Supplementary Problems

23.12 Express in radian measure: (a) 25°, (b) 160°, (¢) 75°30, (d) 112°40', (e) 12°12'20".

Ans. (a) 5m/36 rad or 0.4363 rad (¢) 151m/360 rad or 1.3177 rad (e) 0.2130 rad
(b) 8m/9 rad or 2.7925 rad (d) 1697/270 rad or 1.9664 rad

23.13 Express in degree measure: (@) =nf4rad, (b) 7n/10, (¢) Smf6rad, (d) %rad, (e) %rad.
Ans. (@) 45° () 126°  (¢) 150°  (d) 14°1926"  (e) 80°12'51"

23.14 On acircle of radius 24 in., find the length of arc subtended by a central angle (a) of % rad, (b) of 3m/5rad,
(¢) of75°, (d) of 130°.

Ans. (a) 16 in. (b) 1447 or 45.2 in. (¢) 107w or 31.4 in. (d) 52m/3 or 54.5 in.

23.15 A circle has a radius of 30 in. How many radians are there in an angle at the center subtended by an arc
(a) of 30 in., (b) of 20 in., (¢) of 50 in.?

Ans. (@) lrad (b)) 3rad () 3rad

23.16 Find the radius of the circle for which an arc 15 in. long subtends an angle (¢) of 1 rad, (b) of
Zrad, (¢) of3rad, (&) of20°, (e) of 50°.

Ans. (a) 15in. (b) 22.5in. (¢) Sin. (d) 43.0in. (e) 17.21in.

23.17 The end of a 40-in. pendulum describes an arc of 5 in. Through what angle does the pendulum swing?

Ans. 1rad or 7°9'43"

23.18 A train is traveling at the rate of 12 mi/hr on a curve of radius 3000 ft. Through what angle has it turned in
1 min?

Ans.  0.352 rad or 20°10

23.19 A reversed curve on a railroad track consists of two circular arcs. The central angle of one measures 20°
with radius 2500 ft and the central angle of the other measures 25° with radius 3000 ft. Find the total length
of the two arcs.

Ans.  6250m/9 ft or 2182 ft

23.20 A flywheel or radius 10 in. is turning at the rate of 900 rpm. How fast does a point on the rim travel in ft/s?

Ans. 718.5 ft/s
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An automobile tire is 30 in. in diameter. How fast (rpm) does the wheel turn on the axle when the automobile
maintains a speed of 45 mph?

Ans. 504 rpm

In grinding certain tools the linear velocity of the grinding surface should not exceed 6000 ft/s. Find the
maximum number of revolutions per second (a) of a 12-in. (diameter) emery wheel, (b) of an 8-in. wheel.

Ans. (a) 6000/ rev/s or 1910 rev/s (b) 2865 rev/s

If an automobile wheel 32 in. in diameter rotates at 800 rpm, what is the speed of the car in mph?

Ans.  76.2 mph



Trigonometric
Functions of a
General Angle

ANGLES IN STANDARD POSITION. With respect to a rectangular coordinate system, an angle is
said to be in standard position when its vertex is at the origin and its initial side coincides with the positive
X axis.

An angle is said to be a first quadrant angle or to be in the first quadrant if, when in standard
position, its terminal side falls in the quadrant. Similar definitions hold for the other quadrants. For
example, the angles 30°,59°, and —330° are first quadrant angles; 119° is a second quadrant angle;
=119° is a third quadrant angle; —10° and 710° are fourth quadrant angles. See Figs. 24-1 and 24-2.

0| 30°
NG
|~

Fig. 24-1 Fig. 24-2

@)

Two angles which, when placed in standard position, have coincident terminal sides are called
coterminal angels. For example, 30° and —330°, —10° and 710° are pairs of coterminal angles. There are
an unlimited number of angles coterminal with a given angle. (See Problem 24.1.)

The angles 0°,90°,180°,270°, and all angles conterminal with them are called quadrantal angles.

TRIGONOMETRIC FUNCTIONS OF A GENERAL ANGLE. Let 0 be an angle (not quadrantal) in
standard position and let P(x,y) be any point, distinct from the origin, on the terminal side of the angle.

161
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The six trigonometric functions of 6 are defined, in terms of the abscissa, ordinate, and distance of P
from the origin O, as follows:

‘00 — «in 9 — ordinate __ ¥ _ _ abscissa _ x
sinf = sinf = distance cotangent § = cot 0 ordinate — ¥

cosine 0 = cos () = abscissa _ x secant 0 = sec 0 = distance _
distance 7 abscissa X

distance _ r

_ ordinate __ Y ¢ =
X ordinate

tangent 0 = tan 0 .
abscissa
Note that r = /x> + )* (see Fig. 24-3).
As an immediate consequence of these definitions, we have the so-called reciprocal relations:

1

cosecant 0 = csc 0 =

sin 6 = tan = sec ) = ——
csc 0 cot 0 cos
_ 1 _ 1 _ 1
cosl = cot 0 = csc 0 = —
sec 0 tan 6 sin ¢
y
A
P(xy)
! y
e j -
0 X X
Fig. 24-3

It is evident from Figs. 24-4(a)—(d) that the values of the trigonometric functions of 0 change as
0 changes. The values of the functions of a given angle 0 are, however, independent of the choice of
the point P on its terminal side.

P(x.Y)

(a) )

P(x,y)

(d)

Fig. 24-4
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ALGEBRAIC SIGNS OF THE FUNCTIONS. Since r is always positive, the signs of the functions in
the various quadrants depend upon the signs of x and y. To determine these signs one may visualize the
angle in standard position or use some device as shown in Fig. 24-5 in which only the functions having
signs are listed.

v
II I
sin § = + All +
csc 6 = +
0 > z
III v
tan 8=+ | cos O =+
cot § =+ sec = +

Fig. 24-5

When an angle is given, its trigonometric functions are uniquely determined. When, however, the
value of one function of an angle is given, the angle is not uniquely determined. For example, if sin 0 = %,
then 0 = 30°,150°,390°,510°,.... In general, two possible positions of the terminal side are found—for
example, the terminal sides of 30° and 150° in Fig. 24-4(a), (b). The exceptions to this rule occur when
the angle is quadrantal. (See Problems 24.2-24.10.)

TRIGONOMETRIC FUNCTIONS OF QUADRANTAL ANGLES. For a quadrantal angle, the
terminal side coincides with one of the axes. A point, P, distinct from the origin, on the terminal side has
either x=0,y#0, or x# 0,y = 0. In either case, two of the six functions will not be defined. For
example, the terminal side of the angle 0° coincides with the positive x axis and the ordinate of P is 0.
Since the ordinate occurs in the denominator of the ratio defining the contangent and cosecant, these
functions are not defined. Certain authors indicate this by writing cot 0° = oo and others write cot0° =
*+ oo . The trigonometric functions of the quadrantal angles are given in Table 24.1.

Table 24.1
angle 0 sin 0 cos 0 tan 0 cot 0 sec 0 csc 0
0° 0 1 0 1 undefined
90° 1 0 undefined 0 undefined 1
180° 0 -1 0 -1 undefined
270° -1 0 undefined 0 undefined -1

Solved Problems

24.1 (@) Construct the following angles in standard position and determine those which are coterminal:
125°,210°,-150°,385°,930°,-370°,-955°,-870°.

(b) Give five other angles coterminal with 125°.
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(a) The angles 125° and —955° = 125° —3-360° are coterminal. The angles 210°,-150° = 210° —
360°,930° = 210° +2-360°, and —870° = 210° — 3 - 360° are coterminal. See Fig. 24-6.
(b) 485° =125° +360°, 1205° = 125° +3-360°, 1925° =125° +5-360°, —235° =125°—360°,
—1315° = 125° —4-360° are coterminal with 125°.
v v v
125° 21(?.\ L
x x > X
(o] 0
~150°
v v v v
930° -370° ~955° -870°
Fig. 24-6
24.2  Determine the values of the trigonometric functions of angle 0 (smallest positive angle in standard position)

if P is a point on the terminal side of 0 and the coordinates of P are (¢) P (3, 4), (b) P(-3,4),

(¢) P(—=1,-3). See Fig. 24-7.

v
8

(c)

r=+y=172+ (=37 =10

sin 0 =-=3/10 =-34/10/10
cos 0 =—1/4/10 = —/10/10
tan 0 =—-3=3
cotH:—%:%

sec 0v/10/(=1) = —/10

P(-3,4)
5
4
Gl
A
-3 0
(a) (b)
Fig. 24-7
(@ r=v3¥+4=5 (b)) r=J=3P+4=5 (0
sin 0 = y/r=1% sin 0 =4
cos0 = x/r=1% cos 0 =—1
tan0 = y/x=1% tan 0 = 4 =14
cot 0=x/y=3 cot =—3
SCCH:I‘/X:% sec H:%:_%
cscO0=rly =3 csc =3

Note the reciprocal relationships.
tan = 1/cot 6 = —%, etc.

For example,

cse 04/10(=3) = —/10/3

in (b), sin=1/csc0=4%,cos0=1/sec 0 =—1,
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24.3  In what quadrant will 0 terminate, if
(a) sinf and cos 0 are both negative? (¢) sin@ is positive and secant 0 is negative?

(b) sinf and tan 0 are both positive? (d) sec 0 is negative and tan 0 is negative?

(a) Since sin0 = y/r and cos0 = x/r, both x and y are negative. (Recall that r is always positive.)
Thus, 0 is a third quadrant angle.

(b) Since sin 0 is positive, y is positive; since tan 0 = y/x is positive, x is also positive. Thus, 0 is a first
quadrant angle.

(¢) Since sin0 is positive, y is positive; since sec 0 is negative, x is negative. Thus, 0 is a second
quadrant angle.

(d) Since sec 0 is negative, x is negative; since tan 0 is negative, y is then positive. Thus, 0 is a second
quadrant angle.

244  Inwhatquadrants may 0 terminate, if (a) sin@ispositive? (b) cosOisnegative? (¢) tan0 is negative?
(d) sin@ is positive?

(a) Since sin 0 is positive, y is positive. Then x may be positive or negative and 0 is a first or second
quadrant angle.

(b) Since cos 0 is negative, x is negative. Then y may be positive or negative and 0 is a second or third
quadrant angle.

(¢) Since tan 0 is negative, either y is positive and x is negative or y is negative and x is positive. Thus, 0
may be a second or fourth quadrant angle.

(d) Since sec 0 is positive, x is positive. Thus, 0 may be a first or fourth quadrant angle.

24.5  Find the values of cos and tan 0, given sin0 = % and 0 in quadrant I.

Let P be a point on the terminal line of 0. Since sin0 = y/r = %, we take y = 8 and r = 17. Since 0 is in

quadrant 1, x is positive; thus x = /i — 32 = /(17)2 = (8)2 = 15.

To draw Fig. 24-8, locate the point P(15, 8), join it to the origin, and indicate the angle 6. Then
cosf=x/y=1and tanf = y/x = &

The choice of y = 8,r = 17 is one of convenience. Note that % = 18 and we might have taken y = 16,

r=34. Then x = 30,cos0 =3} = and tan0 = £ = &.

Fig. 24-8

24.6  Find the possible values of sin 0 and tan 0, given cos 0 = g

Since cosf is positive, 0 is in quadrant I or IV. Since cos = x/r = 27 we take x =15, r=6;

y= =67 = (5 = £/11.

(a) For 0 in quadrant I [Fig. 24-9(a)] we have x =5,y =+/11,r = 6; then sinf = y/r = /11/6 and
tan0 = y/x = /11/5.

(b) For 0 in quadrant IV [Fig. 24-9(b)] we have x = 5,y = —/11,r = 6; then sinf = y/r = —/11/6 and
tan0 = y/x = —/11/5.
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v
"f;\
P(5. /1) 5 >z

%3} N Vi
o] 5 " P8, - /10)
(a) (b)
Fig. 24-9
247  Find the possible values of sin 6 and cos 0, given tan = —3.

Since tanf = y/x is negative, 6 is in quadrant II (take x =—4, y = 3) or in quadrant IV (take
x =4,y =-3). In either case r = /16 +9 = 5.
(a) For 0 in quadrant 1I [Fig. 24-10(a)], sin0 = y/r=3%and cos0 = x/r =—1%.

(b) For 0 in quadrant IV [Fig. 24-10(b)], sin0 = y/r=—3%and cos0=x/r=1%.

P(-4,3) v
)
4 >z
R 0
z 5 =
-4 o P(4,-3)
(a) (b)

Fig. 24-10

24.8  Find the values of the remaining functions of 6, given sin § = \/§/2 and 0 = —%.

Since sin0 = y/r is positive, y is positive. Since cos0 = x/r is negative, x is negative. Thus, 0 is in
quadrant II.

Taking x = —1,y = /3, r = 1/(=1)? + (+/3)? = 2 (Fig. 24-11), we have
tand = y/x =3/—1=-/3 cot = 1/tanf = —1/3 = —/3/3

sec 0 = 1/cos0 = -2 csc 6= 1/sinf =2//3 =23/3
vy
P(-1,V3
/3 2
(J
T *
Fig. 24-11

249  Determine the possible values of cos 0 and tan 0 if sin 0 = m/n, a negative fraction.

Since sin 0 is negative, 0 is in quadrant III or IV.
(a) In quadrant III: Take y=m,r=n,x=—vn®>—m? then cosf = x/r=—vn®> —m?/n and tanf =

y/x =—m/n> —m?.

(b)) In quadrant IV: Take y=m,r=n,x =+vn*—m?, then cos® = x/r=+n>—m?/n and tanf =
y/x = mvn* = m?.
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24.10

24.11

24.12

24.13

24.14

Evaluate:
(a) sin 0° 4+ 2cos 0° 4 3sin 90° 4+ 4cos 90° 4 5 sec 0° + 6 csc 90°
(b) sin 180° + 2cos 180° + 3sin 270° + 4 cos 270° — 5 sec 180° —6.¢csc 270°

(@ 0+ 2(1)+3(1) +4(0) + 5(1) + 6(1) = 16
(B) 0+2(=1)+3(=1)+40) = 5(-1)—6(-1) = 6

Supplementary Problems

167

State the quadrant in which each angle terminates and the signs of the sine, cosine, and tangent of each

angle.
() 125° (b) 75° (¢) 320° (d) 212° (e) 460° @ 750°  (9)

Ans. (a) 1L +,—— b)) L+,+,+ () IVi— +,— (d) W= —+

N 1 (e 1 (h 1

In what quadrant will 0 terminate if
(a) sinf and cos 0 are both positive? (e) tan0 is positive and sec 0 is negative?
(h) cos0 and tan 0 are both positive? (f) tan0 is negative and sec 0 is positive?
(¢) sinf and sec 0 are both negative? (g) sin0 is positive and cos 0 is negative?
(d) cos0 and cot 0 are both negative? (h) sec 0 is positive and csc 0 is negative?

Ans. (@ I () 1  (© WU (d) I () I (f) IV

—1000°

Denote by 6 the smallest positive angle whose terminal side passes through the given point and find the

trigonometric functions of 0:

(@) P(=5,12) (b)) P(7,-24) (o) P2,3) (d) P(=3,-5)
_13

s @ ffobog b
© 3/J_2/J—gw_/2f/3

(d) =5/\34,-3//34,3,3,—/34/3,-34/5

Find the possible values of the trigonometric functions of 0, given

(@) sinf=% (d) cotf=2% (g) tanf=32 () cscO=-2/3
(b) 0059——% (e) 51n9——§ (h) cot 0 =+/6/2
(¢) tanf = 1% (f) cosf= g i) sec =—/5

L7024 7 2425 25.
Ans.  (a) 1: 55,55,51,7 51,5 1

7 7

.3 _4 _3 _4 _55. . _3 _434 _5_5

() I 3,-3,-3,-3,—-3.3 HI: —3,-3.3,3,—-7.—3
.5 _12 5 _12 _13 13. . _>5

o I g,-5. -5 ~—%-o3% IVi—-3,

13°13
(d) 1: % 2 T 242 25, HI~_l_ﬁlﬁ_
: , =

(&) HI: —2,=V5/3,2/3/5,/5/2,=3/3/5,-3; IV: =2,3/5/3,-2/5,—V5/2,3//5,—3
(N 1:V11/6,3,V11/5,5/J11,8,6/V11;  IV: =/11/6,3,—V11/5,=5/J/11,¢,-6,//11
(9 1:3/v34,534,2,3,434/5,V/34/3;  1I: —3/v/34,-5/7/34,1,5,-/34/5,—/34/3
() 1: 2/V10,+/3/3/5,2/36,76/2,4/5/3/3,4/10/2;  TI1: —2/4/10,—v/3/+/5,2/+/6,

V6/2,—5/+/3,-/10/2
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() T 2/45,-135,-2,=1,=/5,4/5/2; T —2/4/5,-1/5,2,1,=/5,=V/3/2
() W =+3/2,-1,V3,1/3/3,-2,-2/3/3; 1V =/3/2,1, —/3,-1/4/3,2,-2\3

24.15 Evaluate each of the following:
(a) tan 180° —2 cos 180° + 3¢sc270° + sin 90°
(b) sin 0° + 3cot90° + Ssec 180° —4 cos 270°

Ans. (a) 0
(h) =5



Trigonometric
Functions of an
Acute Angle

TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE. In dealing with any right triangle, it
will be convenient (see Fig. 25-1) to denote the vertices as A, B, C such that C is the vertex of the right
triangle; to denote the angles of the triangle as 4, B, C, such that m X C = 90°; and to denote the sides
opposite the angles as a, b, ¢, respectively. With respect to angle 4, a will be called the opposite side and b
will be called the adjacent side; with respect to angle B, a will be called the adjacent side and b the opposite
side. Side ¢ will always be called the hypotenuse.

v
B B(b,a)
€ a ¢ e
A c
b Al b C -
Fig. 25-1 Fig. 25-2

If now the right triangle is placed in a coordinate system (Fig. 25-2) so that angle A4 is in standard

position, point B on the terminal side of angle 4 has coordinates (b, a) and distance ¢ = v/a> + b*. Then
the trigonometric functions of angle 4 may be defined in terms of the sides of the right triangle, as follows:

a _ length of opposite side

Lin 4 =2 b length of adjacent side

cot 4 =

¢ length of hypotenuse a length of opposite side

b length of adjacent side ¢ length of hypotenuse
COSA= —= secA = —= - .

¢ length of hypotenuse b length of adjacent side
tan A= &= length of opposite side cscd = = length of hypotenuse

b length of adjacent side a length of opposite side

169
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TRIGONOMETRIC FUNCTIONS OF COMPLEMENTARY ANGLES. The acute angles 4 and
B of the right triangle 4BC are complementary; that is, m X A+ m X B=90°. From Fig. 25-1,
we have

. b
sinB=-=cos A4 cot B=- = tan4
c

SR

a . ¢
cosB=—-—=sin4 sec B =—=csc 4
a

tan B =

IS

=cot 4 cscB:g:secA

These relations associate the functions in pairs—sine and cosine, tangent and cotangent, secant and
cosecant—each function of a pair being called the cofunction of the other. Thus, any function of an acute
angle is equal to the corresponding cofunction of the complementary angle.

TRIGONOMETRIC FUNCTIONS OF 30°, 45°, 60°. The results in Table 25.1 are obtained in
Problems 25.8-25.9.

Table 25.1
Angle 0 sin 0 cos 0 tan 0 cot 0 sec 0 csc 0
30° ! 13 V3 V3 V3 2
45° V2 V2 1 1 V2 V2
o | Wi 1 | v 2 | s

Problems 25.10—25.16 illustrate a number of simple applications of the trigonometric functions. For this
purpose, Table 25.2 will be used.

Table 25.2

Angle 0 sin 0 cos 0 tan 0 cot 0 sec 0 csc 0
15° 0.26 0.97 0.27 3.7 1.0 3.9
20° 0.34 0.94 0.36 2.7 1.1 2.9
30° 0.50 0.87 0.58 1.7 1.2 2.0
40° 0.64 0.77 0.84 1.2 1.3 1.6
45° 0.71 0.71 1.0 1.0 1.4 14
50° 0.77 0.64 1.0 0.84 1.6 1.3
60° 0.87 0.50 1.7 0.58 2.0 1.2
70° 0.94 0.34 2.7 0.36 2.9 1.1
75° 0.97 0.26 3.7 0.27 39 1.0
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Solved Problems

[NOTATION: We will write AB (or ¢) to denote the length of 4B, and AB to denote ““the segment AB.”
AB denotes “the line AB.”]

25.1  Find the values of the trigonometric functions of the acute angles of the right triangle ABC given b = 24
and ¢ = 25.

Since @* = ¢ — b*> = (25)> — (24)> =49, a = 7. See Fig. 25-3. Then

oppositeside 7 adjacentside 24

sind = =— cosAd= ————=—
! hypotenuse 25 oppositeside 7
cos A = adjacent side _ 24 sec A = h}fpotenl{se _ 25
hypotenuse 25 adjacentside 24
ite sid 7 hypot 25
tan A — opp051 es? e_ 7 osc 4 — Jypo .enu.se _25
adjacentside 24 oppositeside 7
B
[ 2 a="17
4 b-24 ¢
Fig. 25-3
and sinB=% cot B=%
— _2
cos B = & sec B=%
tan B = 274 csc B= %

25.2  Find the values of the trigonometric functions of the acute angles of the right triangle ABC, given a = 2,

c=2/5.
Since b*> = > —a®> = (24/5)> =22 =20 -4 = 16, b = 4. See Fig. 25-4. Then

2 5
sind=——=-"-=cosB cot A=%4=2= tanB
245 5
cosAd = 4 —2\/§:sinB secAzﬁzx/gzcscB
25 5 4 2
2+/5
tanA=%=%=cotB cscA=T\/_=\/§=secB
B
A
c’?' a=2
A b=4 ¢

Fig. 25-4
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25.3  Find the values of the trigonometric functions of the acute angle 4, given sin 4 = 3.
Construct the right triangle 4BC having a = 3, ¢ = 7, and b = /72 — 3% = 2/10 units. See Fig. 25-5.
Then
24/1
sind =32 cot A= @
cosA*lﬁ secA*L*@
7 210 20
3 3J10
tand = ——=—— cscA=1
2J10 20 }
a=3
C
254  Find the values of the trigonometric functions of the acute angle B, given tan B = 1.5.
Refer to Fig. 25-6. Construct the right triangle 4 BC having b = 15 and a = 10 units. (Note that 1.5 =3
and a right triangle with b = 3, a = 2 will serve equally well.)
A b=15 ¢
Fig. 25-6
Then ¢ = va? + b? = /10? + 15> = 5//13 and
1 1
sin B = > =£ cot B=12
5413 13
cosB——10 __2\/ﬁ sec B——Sm—@
T sJ130 13 T 2
5V13 V13
tanBz%:% CSCB:T:T
25.5

If A is acute and sin 4 = 2x/3, determine the values of the remaining functions.

Construct the right triangle ABC having a = 2x < 3and ¢ = 3, as in Fig. 25-7.
Then b = V¢ — a> = V9 — 4x? and

— 2 — 2
sinA:E’ CosA:u7 tanA:L7 cotAzi\M,
3 3 NCpr 2
3

sec A =

3
_ csc A =—.
9 —4x? X
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B
c”'b a=2x
A C
b=v9-4x?
Fig. 25-7

25.6 If A is acute and tan 4 = x = x/1, determine the values of the remaining functions.

Construct the right triangle 4BC having a = x and b =1, as in Fig. 25-8. Then ¢ =+/x>+ 1 and

. ) 1 VX2 +1
sin4 = * , cosAd= , tand=x, cotA=—, secA=+vx*+1, cscd= v .
X2 +1 x> +1 X x

257 If A is an acute angle:

(@) Whyissind < 1? (d) Why is sin 4 < tan A?
(b)) When is sin 4 = cos A? (e) When is sin 4 < cos A?
(¢) Why is sin A4 < csc A? (f) Whenistan4 > 1?

In any right triangle ABC:
(a) Side a < side c; therefore sin4 = a/c < 1.

(b) SinA =cosA when a/c=b/c; then a=b, A = B, and 4 =45°.

(¢) SinA < 1 (above) and csc 4 = 1/sin4 > 1.

(d) SinA=a/c,tanA4 = a/b, and b < ¢; therefore a/c < a/b or sin 4 < tan 4.
() SinA < cosA when a < b;then A < Bor A <90°—4, and 4 < 45°.

(f) TanA =a/b> 1 when a > b; then 4 > B and 4 > 45°.

25.8  Find the value of the trigonometric functions of 45°.

In any isosceles right triangle ABC, A =B=45° and a=b. See Fig. 259. Let a=b=1;
then ¢ = /T + 1 =+2 and

1 1
sin4s5° = —=-+2 cot 45° =1
2
cos45° = ! *1\/5 sec 45° = +/2
22
tan45° =1=1 csc 45° =2
B
45°
®
o a=1
O
A 45 C
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25.9  Find the values of the trigonometric functions of 30° and 60°.

In any equilateral triangle ABD (see Fig. 25-10), each angle is 60°. The bisector of any angle, as B, is the
perpendicular bisector of the opposite side. Let the sides of the equilateral triangle be of length 2 units. Then

in the right triangle ABC, AB=2, AC =1, and BC = V22— 12 = /3.

sin30° =1 = cos60° cot 30° = /3 = tan 60°
cos 30° =£= sin 60° sec 30° =i=&=csc 60°
2 33
1 3
tan30° = — = — = cot 60° csc 30° =2 = sec 60°
V33

Fig. 25-10

25.10 When the sun is 20° above the horizon, how long is the shadow cast by a building 150 ft high?

In Fig. 25-11, 4 =20° and CB = 150. Then cot A = AC/CB and AC = CB cot A =150 cot 20° =
150(2.7) = 405 ft.

25.11 A tree 100 ft tall casts a shadow 120 ft long. Find the measure of the angle of elevation of the sun.

In Fig. 25-12, CB =100 and AC = 120. Then tan4 = CB/AC =13 =0.83 and m x4 = 40°.

B
B ‘
150
)
c A
4 A= ¢
Fig. 25-11 Fig. 25-12 Fig. 25-13

25.12 A ladder leans against the side of a building with its foot 12 m from the building. How far from the ground is
the top of the ladder and how long is the ladder if it makes an angle of 70° with the ground?

From Fig. 25-13, tan 4 = CB/AC; then CB= AC tan 4 = 12 tan70° = 12(2.7) = 32.4. The top of
ladder is 32 m above the ground.

Sec A = AB/AC; then AB= AC sec A = 12sec 70° = 12(2.9) = 34.8. The ladder is 35 m long.
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25.13 From the top of a lighthouse, 120 ft above the sea, the angle of depression of a boat is 15°. How far is the
boat from the lighthouse?

In Fig. 25-14, the right triangle ABC has 4 measuring 15° and CB = 120; then cot 4 = AC/CB and
AC = CB cot A =120cot 15° = 120(3.7) = 444 ft.

B
angle or
o, depressj,Jn = 150
120'
0
c 15 A
Fig. 25-14 Fig. 25-15

25.14 Find the length of the chord of a circle of radius 20 cm subtended by a central angle of 150°.
In Fig. 25-15, OC bisects ZAOB. Then BC = AC and OAC is a right triangle. In A OAC,

A
sinZCOA4 = O_j and AC = OAsin LCOA = 20sin75° = 20(0.97) = 19.4

Then BA = 38.8 and the length of the chord is 39 cm.

25.15 Find the height of a tree if the angle of elevation of its top changes from 20° to 40° as the observer advances
75 ft toward its base. See Fig. 25-16.

In the right triangle ABC, cot A = AC/CB; then AC = CB cot A or DC + 75 = CBcot 20°.
In the right triangle DBC, cot D = DC/CB;then DC = CB cot 40°.

Then DC = CB cot 20° =75 = CB cot 40°, CB(cot 20° —cot 40°) = 75,
75
CBQ2.7-12)=15, and CB = s = 50 ft.
B

2 ° 40
75 D

Fig. 25-16 Fig. 25-17

25.16 A tower standing on level ground is due north of point 4 and due west of point B, a distance ¢ ft from 4.
If the angles of elevation of the top of the tower as measured from 4 and B are o and f3, respectively, find the
height £ of the tower.

In the right triangle ACD of Fig. 25-17, cota = AC/h; in the right triangle BCD, cot§ = BC/h. Then
AC = h cota and BC = h cot f.
Since ABC is a right triangle, (4C)* + (BC)? = ¢ = I*(cot o) + h*(cot f)* and

c

J(cot a)? + (cot B)?

h=
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25.17 1If holes are to be spaced regularly on a circle, show that the distance d between the centers of two successive
holes is given by d = 2r sin (180° /n), where r = radius of the circle and n = number of holes. Find d when
r=20in. and n = 4.

Let A4 and B be the centers of two consecutive holes on the circle of radius r and center O. See Fig. 25-18.
Let the bisector of the angle O of the triangle A0OB meet AB at C. In right triangle AOC,
sin ZAOC = AC/r = 1d/r = d/2r. Then

. . . 1/360° . 180°
d=2rsinZAOC = 2r sm%LAOB =2r smE( ) = 2rsin
n n

When r=20and n=4, d=2-20 sin45°:2~20-§:20\/§in.

ZAN

Fig. 25-18

Supplementary Problems

25.18 Find the values of the trigonometric functions of the acute angles of the right triangle 4BC, given
(@) a=3,b=1 b)) a=2,¢=5 (¢ b=+1,c=4
Ans. (@) A:3/410,1/4/10,3, 4, V10,4/10/3;  B: 1//10,3/4/10,4,3,/10/3, 10
(b)  A:3321/5,2/21,321/2,5/321.%  B: V21/5,2,3/21/2,2/4/21.5, 5//21
(©) A 3NT/43NINT3, 4T % B NT/4,33T/3,3/3T, 4.4/VT

25.19 Which is the greater and why:
(a) sin55° or cos 55°? (¢) tan15° or cot 15°?
(b) sin40° or cos40°? (d) sec 55° or csc 55°7

Hint: Consider a right triangle having as acute angle the given angle.
Ans. (a) sin55°  (b) cos40° (¢) cot 15° (d) sec 55°

25.20 Find the value of each of the following:

(a) sin30° + tan45° (e)
(b) cot 45° + cos 60°

(¢) sin30°cos60° 4+ cos30°sin60° (/)
(d) c0s30°cos60° —sin 30°sin 60°

tan 60° — tan 30°
1 + tan 60°tan 30°

csc30° + csc60° 4 csc90°
sec0° + sec 30° + sec 60°

Ans. @ 3 () 3 © 1 (@ 0 (@ 1/43 () 1
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25.21

25.22

25.23

25.24

25.25

25.26

A man drives 500 ft along a road which is inclined 20° to the horizontal. How high above his starting point
is he?

Ans. 170 ft

A tree broken over by the wind forms a right triangle with the ground. If the broken part makes an angle of
50° with the ground and if the top of the tree is now 20 ft from its base, how tall was the tree?

Ans. 56 ft

Two straight roads intersect to form an angle of 75°. Find the shortest distance from one road to a gas
station on the other road 1000 m from the junction.

Ans. 970 m

Two buildings with flat roofs are 60 ft apart. From the roof of the shorter building, 40 ft in height, the angle
of elevation to the edge of the roof of the taller building is 40°. How high is the taller building?

Ans. 90 ft

A ladder, with its foot in the street, makes an angle of 30° with the street when its top rests on a building on
one side of the street and makes an angle of 40° with the street when its top rests on a building on the other
side of the street. If the ladder is 50 ft long, how wide is the street?

Ans. 82 ft

Find the perimeter of an isosceles triangle whose base is 40 cm and whose base angle is 70°.

Ans. 156 cm



Chapter 26

Reduction to
Functions of Positive
Acute Angles

COTERMINAL ANGLES. Let 6 be any angle; then
sin (0 4+ n360°) = sin 0 cot (0 + n360°) = cot 0
cos (0 + n360°) = cos 0 sec (0 + n360°) = sec O
tan (6 + n360°) = tan 6 csc (6 +n360°) = csc O

where 7 is any positive or negative integer or zero.

EXAMPLES. sin 400° = sin (40° + 360°) = sin 40°
cos 850° = cos (130° +2-360°) = cos 130°
tan (—1000°) = tan (80° — 3 - 360°) = tan 80°

FUNCTIONS OF A NEGATIVE ANGLE. Let 0 be an angle; then
sin (=) = —sin 0 cot (—0) = —cot 0
cos (—0) = cos 0 sec (—0) = sec 0
tan (—0) = —tan 0 csc(—0) = —csc 0

EXAMPLES. sin(—50°) = —sin 50°,cos(—30°) = cos 30°,tan (—200°) = —tan 200°.

REDUCTION FORMULAS. Let 0 be an angle; then
sin (90° — 0) = cos 0 sin (90° + 0) = cos 0
cos(90° = 0) = sin 0 c0s(90° + 0) = —sin 0
tan (90° — 0) = cot 0 tan (90° + 6) = —cot 6
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cot (90° —0) = tan 0 cot(90° + 0) = —tan 0
sec(90° — 0) = csc 0 sec(90° + 0) = —csc 0
csc (90° — 0) = sec 0 csc(90° + ) = sech
sin (180° —0) = sin 0 sin (180° + 0) = —sin 0

cos (180° — 0) = —cos 0 cos (180° + 0) = —cos 0
tan (180° — 0) = —tan 0 tan (180° + 0) = tan 0
cot (180° — 0) = —cot 0 cot (180° + 0) = cot0
sec (180° — 0) = —sec 0 sec (180° + 0) = —sec 0
csc(180° — 0) = csc 0 csc(180° + 0) = —csc 0

GENERAL REDUCTION FORMULA. Any trigonometric function of (n-90° = 6), where 0 is any
angle, is numerically equal

(a) To the same function of 0 if n is an even integer
(b) To the corresponding cofunction of 6 if n is an odd integer

The algebraic sign in each case is the same as the sign of the given function for that quadrant in
which 7-90° = 6 lies when 0 is a positive acute angle.

EXAMPLES
(I) sin(180° —0) =sin(2-90° —0) = sin 0 since 180° is an even multiple of 90° and, when 0 is positive acute,
the terminal side of 180° — 0 lies in quadrant II.

(2) cos(180° + 6) = cos(2-90° + 8) = —cos 0 since 180° is an even multiple of 90° and, when 6 is positive
acute, the terminal side of 180° + 6 lies is quadrant III.

(3) tan(270° —0) =tan (3 - 90° — 0) = cot 0 since 270° is an odd multiple of 90° and, when 0 is positive acute,
the terminal side of 270° — 6 lies in quadrant III.

(4) cos(270° 4+ 0) = cos(3-90° + 0) = sin 0 since 270° is an odd multiple of 90° and, when 0 is positive acute,
the terminal side of 270° + 0 lies in quadrant IV.

Solved Problems

26.1  Express each of the following in terms of a function of 0:

(a) sin(0—90°) (d) cos(—180° + 0) (g) sin(540° + 0) (j) cos(—450° —0)
(b) cos(0—90%) (e) sin(=270° —0) (h) tan(720° —0) (k) csc(—900° + 0)
(¢) sec(—=0—90°) (f) tan(0—360°) (i) tan(720° + 0) () sin(=540° —0)

(a) sin(0—90°) =sin(=90° + 0) = sin(—1-90° + ) = —cos 0, the sign being negative since, when 0 is
positive acute, the terminal side of 0 —90° lies in quadrant IV.

(h) cos(0—=90°) = cos(=90° + 0) = cos(=1-90° + 6) = sin 6.

(¢) sec(—=0—90°) = sec(—=90° —0) = sec(—1 - 90° — ) = —csc 6, the sign being negative since, when 6 is
positive acute, the terminal side of —0 —90° lies in quadrant III.

(d) cos(—180° 4+ 0) = cos (=2 - 90° + 0) = —cos 0. (quadrant I11)

(e) sin(=270° —0) = sin(=3-90° — 0) = cos 0. (quadrant I)

(f) tan(60—360°) = sin (=4 -90° 4 0) = tan 6. (quadrant I)

(g) sin(540° 4+ 6) = sin (6 - 90° + 0) = —sin 0. (quadrant III)

(h) tan(720° —0) =tan(8-90° —0) = —tan 0 = tan (2 - 360° — 0) = tan (—0) = —tan 0.
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26.3

REDUCTION TO FUNCTIONS OF POSITIVE ACUTE ANGLES [CHAP. 26

(/) tan(720° +0) =tan(8-90° + 0) = —tan 0 = tan (2 - 360° + 0) = tan 0.
(j) cos(—450° —0) = cos(=5-90° — 0) = —sin 0.

(k) ¢sc(=900° + 0) = csc(—10-90° + 0) = —csc 0.

(1) sin(=540° — 0) = sin(—6 - 90° — 0) = sin 0.

Express each of the following in terms of functions of a positive acute angle in two ways:
(a) sin130° (¢) sin200° (e) tanl65° (g) sin 670° (i) csc 865° (k) cos(—680°)
(b) tan325° (d) cos310° (f) sec250° () cot930° (j) sin(—100°) (/) tan(=290°)

(a) sin130° =sin(2-90° —50°) = sin 50° = sin (1 - 90° + 40°) = cos40°.
(b) tan325° =tan(4-90° —35°) = —tan35° = tan(3-90° + 55°) = —cot 55°.
(¢) sin200° =sin(2-90° +20°) = —=sin20° =sin (3 - 90° —70°) = —cos 70°.
(d) co0s310° =cos(4-90° —50°) = cos 50° = cos(3-90° +40°) = sin40°.
(e) tan165° =tan(2-90° —15°) = —tan 15° = tan(1 - 90° + 75°) = —cot 75°.
(f) sec250° =sec(2-90° + 70°) = —sec 70° = sec(3-90° —20°) = —csc 20°.
(g) sin 670° =sin(8-90° —50°) = —sin 50° = sin (7 - 90° + 40°) = —cos 40°
or sin 670° = sin(310° + 360°) = sin 310° = sin (4 - 90° — 50°) = —sin 50°.
(h) cot 930° = cot(10-90° + 30°) = cot 30° = cot (11-90° —60°) = tan 60°
or cot 930° = cot (210° +2-360°) = cot 210° = cot (2-90° + 30°) = cot 30°.
(/) csc 865° =csc(10-90° —35°) = csc 35° =csc(9-90° + 55°) = sec 55°
or csc 865° = csc(145° +2-360°) = csc 145° =csc(2-90° —35°) = csc 35°.
(j) sin(=100°) = sin(—2-90° 4+ 80°) = —sin 80° = sin(—1-90° — 10°) = —cos 10°
or sin(—100°) = —sin 100° = —sin (2° + 90° —80°) = —sin 80°or sin(—100°) = sin (—100° 4 360°) =
sin 260° = sin (2 - 90° 4 80°) = —sin 80°.
(k) cos(—680°) = cos(—8-90° +40°) = cos40° = cos(—7 - 90° — 50°) = sin 50°
or cos (—680°) = cos (—680° 42 - 360°) = cos40°.
(1) tan(=290°) =tan(—4-90° 4+ 70°) = —tan 70° = tan (-3 - 90° —20°) = —cot 20°
or tan (—290°) = tan (=290° 4+ 360°) = tan 70°.

Find the values of the sine, cosine, and tangent of
(a) 120° (h) 210° (¢) 315° (d) —135° (d) -240° f) -330°

Call 0, always positive acute, the related angle of ¢ when ¢ = 180° — 0,180° + 0, or 360° — 0. Then any
function of ¢ is numerically equal to the same function of 0. The algebraic sign in each case is that of the
function in the quadrant in which the terminal side of ¢ lies.

(@) 120° = 180° —60°. The related angle is 60°;120° is in quadrant II; sin 210° = sin 60° = +/3/2,
cos 120° = —cos 60° = —%, tan 120° = —tan 60° = —/3.

(b) 210° =180° +30°. The related angle is 30°;120° is in quadrant III; sin 210° = —sin 30° :—%,
€0s210° = —c0s 30° = —/3/2, tan 210° = tan 30° = +/3/3.

(¢) 315° =360° —45°. The related angle 45°;315° is in quadrant IV; sin 315° = —sin 45° = —/2/2,
c0s315° = cos45° = +/2/2,tan 315° = —tan 45° = —1.

(d) Any function of —135° is the same function of —135° 4+ 360° = 225° = ¢; 225° = 180° 4+ 45°. The
related angle is 45°;225° is in quadrant III. sin(—135°) = —sin 45° = —\/5/2, cos (—135°) = —cos45° =
—J=2/2, tan(=135°) = 1.

(e) Any function of —240° is the same function of —240° + 360° = 120°; 120° = 180° —60°. The related
angle is 60°;120° is in quadrant II; sin(=240°) = sin 60° = \/5/2, cos (—240°) = —cos 60° = —%,
tan(—240°) = —tan 60° = —/3.
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26.4

26.5

26.6

26.7

26.8

26.9

(f) Any function of —330° is the same function of —330° +360° =30°; sin(-330°) = sin 30° =1,
cos (—330°) = cos 30° = +/3/2,tan (—=330°) = tan (—=30°) = +/3/3.

Using a calculator, verify that

(a) sin 125°14' = sin(180° — 54°46') = sin 54°46' = 0.8168
(b) c0s169°40 = cos (180° — 10°20') = —cos 10°20' = —0.9838
(¢) tan200°23 = tan (180° 4 20°23')= tan 20°23' = 0.3716
(d) cot 250°44’ = cot (180° + 70°44’) = cot 70°44' = 0.3495
(e) cos313°18" = cos(360° —46°42") = cos46°42' = 0.6858
(f) sin 341°25 = sin(360° — 18°8) = —sin 18°8' = —0.3112

If tan 25° = a, find

@ tan 155° —tan 115° —tan 25° — (—cot 25°) —a+1/a - +1 1-d
, = = = = .
1 +tan155°tan115° 1+ (—tan25°)(—cot 25°) 1+ a(l/a) a+t+a 2a

tan205° —tan 115°  tan25° —(—cot 25°) a+1/a _ a2 +1

b = = = .
®) tan245° —tan335°  cot 25° + (-tan25°) l/a—a 1-a*

If mxA4+mxB+mxC=180°, then show

(a) sin(B+ C)=sin4
(b) sin}(B+ C)=cosi4

(a) sin(B+ C)=sin(180° —4) = A4
(b) sind(B+ C)=sin}(180° — 4) = sin (90° — 1 4) = cos 1 4

Show that sin 6 and tan10 have the same sign.

(a) Suppose mX.0 = n-180° If n is even (including zero), say 2m, then sin(2m - 180°) = tan (m - 180°) = 0.
The case when 7 is odd is excluded since then tan %9 is not defined.

(b) Suppose mx.0 =n-180° + ¢, where 0 < mx.¢ < 180°. If n is even, including zero, 0 is in quadrant I or
quadrant II and sin 0 is positive while 10 is in quadrant I or quadrant III and tan 10 is positive. If n is
odd, 6 is in quadrant III or IV and sin@ is negative while 16 is in quadrant II or IV and tan!6 is
negative.

Find all positive values of 0 less than 360° for which sin 6 = —.

There will be two angles (see Chapters 24 and 25), one in the third quadrant and one in the fourth

quadrant. The related angle of each has its sine equal to 44 and is 30°. Thus, the required angles are 6 with
measure 180° + 30° = 210° and 0 with measure 360° —30° = 330°.

(NOTE: To obtain all values of 0 for which sin 0 = —%7 and n - 360° to each of the above solutions;
thus 6 = 210° 4+ n-360° and 6 = 330° + n - 360°, where n is any integer.)

Find all positive values of 0 less than 360° which satisfy sin 20 = cos %9‘

Since cosl=sin(90° —10) =sin20, 20=90°-10, 450°-10, 810°-10,1170°-10,.... Then
%0 =90°,450°,810°,1170°,... and mx.0 = 36°,180°,324° 468°,....

Since cos% 0 = sin (90° +% 0) =sin20, 20 = 90° + 1 0, 450° +% 0, 810° +% 0,.... Then % 0=90°,
450°,810°,... and 6 = 60°,300°,540°,....

The required solutions have measures 36°,180°,324°;60°,300°.
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26.13

26.14
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Supplementary Problems

Express each of the following in terms of functions of a positive acute angle:
(a) sin 145°  (d) cot 155°  (g) sin(=200°) (j) cot 610°

(b) cos215° (e) sec 325° (h) cos(=760°) (k) sec 455°
(¢) tan440°  (f) csc 190° (i) tan(—1385°) (/) csc 825°

Ans.  (a) sin 35° or cos55° (g) sin 20° or cos70°
(b) —cos35° or —sin 55° (h) cos40° or sin 50°
(¢) tan80° or cot 10° (i) tan55° or cot 35°
(d) —cot 25° or —tan 65° (j) cot 70° or tan20°
(e) sec 35° or csc 55° (k) —sec 85° or —csc 5°

(f) —csc 10° or sec 80° (I) csc 75° or sec 15°

Find the exact values of the sine, cosine, and tangent of
(a) 150°  (b) 225° (¢) 300° d) —120° (e) —120° (f) -315°
Ans. (a)  5=V3/2,1/\B3 (@) —/3/2,-5\3

() —V2/2,=V2/2,1 (0 33/2,-1\3

© =3/25-3 () V2/2,42/21

Using a calculator, verify that

(a) sin155°13' =0.4192
cos —0.

(b) 104°38' 0.2526

¢) tan =-1.

(c) 305°24/ 1.4071

(d) sin114°18' = 0.9114

e) cos 51" =-0.

(e) 166°51 0.9738

Find all angles, 0 < 0 < 360°, for which

(a) sin 0=+2/2 (b) cos 0 =-—1
Ans.  (a) 45°,135°
(b 180°

When 0 is a second quadrant angle for which tan 0 = —% show that

sin (90° —0) —cos (180° —0) 2 tan (90° — ) + cos (180° =) 2++/13

@m0+ 0 +ootGo—0) 5 P

sin(270° + 0) —cot (—0)  2—13

[CHAP. 26



Graphs of the
Trigonometric
Functions

LINE REPRESENTATIONS OF THE TRIGONOMETRIC FUNCTIONS. Let 0 be any given angle
in standard position. (See the Figs. 27-1 through 27-4 for 6 in each of the quadrants.) With the vertex O
as center describe a circle of radius one unit cutting the initial side OX of 0 at A, the positive y axis at B,
and the terminal side of 0 at P. Draw MP perpendicular to ﬁ’; draw also the tangents to the circle at 4
and B meeting the terminal side of 0 or its extension through O in the points Q and R, respectively.

v
v
Q
R
P
A
6 >z ¥ O A x *
0 N A X
Q
Fig. 27-1 Fig. 27-2
v Q v
B
¥ 9]
x
v X
P
Fig. 27-3 Fig. 27-4
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In each of the figures, the right triangles OMP, OAQ, and OBR are similar, and

. MP OM BR
sin 0="5p = MP ot 0="p=0p Bk
oM 0P 00
cos 6——0P =0M sec 6——0M——0A =00
MP  AQ OP OR
an =53 =04~ "¢ ec0=3p=o5 °F

The, W,W, TQ, etc., are directed line segments, the magnitude of a function being given by the length
of the corresponding segment and the sign being given by the indicated direction. The directed segments
O_Q) and OR are to be considered positive when measured on the terminal side of the angle and negative
when measured on the terminal side extended.

VARIATIONS OF THE TRIGONOMETRIC FUNCTIONS. Let P move counterclockwise about the
unit circle, starting at A4, so that m X 6 = m X. XO P varies continuously from 0° to 360°. Using Figs. 27-1
through 27-4, Table 27.1 is derived.

Table 27.1
As 0
increases from 0° to 90° 90° to 180° 180° to 270° 270° to 360°
sin 0 I from 0 to 1 D from 1 to 0 D from 0 to —1 I from —11t0 0
cos D from 1 to 0 D from 0 to —1 I from —1to 0 I from 0 to 1
I from 0 I from large I from 0 I from large
tan 0 without limit negative without limit negative
(0 to +o0) values to (0 to +o0) values to
0 (=00 to 0) 0 (=0 to 0)
D from large D from 0 D from large D from 0
cot positive without limit positive without limit
values to (0 to —0) values to (0 to —0)
0 (400 to 0) 0 (400 to 0)
I from 1 I from large D from —1 D from large
sec 0 without limit negative without limit positive
(1 to +o00) values to (=1 to —o0) values to
—1 (- to —1) 1 (o0 to 1)
D from large I from 1 I from large D from —1
cscl positive without limit negative without limit
values to (1 to +o00) values to (=1 to —o0)
1 (4 to 1) —1 (- to —1)

I = increases; D = decreases.

GRAPHS OF THE TRIGONOMETRIC FUNCTIONS.
in radians.

In Table 27.2, values of the angle x are given
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Table 27.2
X y=sin x y =cos Xx y=tan x y=cotx y =secx y =cscx
0 0 1.00 0 *oo 1.00 +oo
/6 0.50 0.87 0.58 1.73 1.15 2.00
n/4 0.71 0.71 1.00 1.00 1.41 1.41
/3 0.87 0.50 1.73 0.58 2.00 1.15
n/2 1.00 0 +oo 0 +oo 1.00
2n/3 0.87 —0.50 -1.73 —0.58 -2.00 1.15
3n/4 0.71 —0.71 —1.00 -1.00 —1.41 1.41
5n/6 0.50 —0.87 —0.58 -1.73 —1.15 2.00
i1 0 —1.00 0 00 —1.00 ~+o00
Tn/6 —0.50 —0.87 0.58 1.73 —1.15 -2.00
Sn/4 —0.71 —0.71 1.00 1.00 —1.41 —1.41
4n/3 —0.87 -0.50 1.73 0.58 -2.00 —1.15
3n/2 —1.00 0 +oo 0 *oo —1.00
Sn/3 —-0.87 0.50 -1.73 —0.58 2.00 —1.15
Tn/4 —0.71 0.71 —1.00 —1.00 1.41 —1.41
11n/6 —0.50 0.87 —0.58 -1.73 1.15 —2.00
2n 0 1.00 0 *oo0 1.00 +oo
Note 1. Since sin(%n + x) = cos x, the graph of y = cosx may be obtained most easily by shifting the
graph of y = sinx a distance %n to the left. See Fig. 27-5.
v
SRS P § I U S
\ y= cos/:;/'/ p . )
-7 T 70
il S

Fig. 27-5

Note 2. Since csc (%n + x) = secx, the graph of y = cscx may be obtained by shifting the graph of
y = sec x a distant %n to the right. Notice, too, the relationship between the graphs for tan x

and cot x. See Figs. 27-6 through 27-9.
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y=tanx y=cotx

Fig. 27-6 Fig. 27-7
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Fig. 27-8 Fig. 27-9

PERIODIC FUNCTIONS. Any function of a variable x, f(x), which repeats its values in definite
cycles, is called periodic. The smallest range of values of x which corresponds to a complete cycle of
values of the function is called the period of the function. It is evident from the graphs of the
trigonometric functions that the sine, cosine, secant, and cosecant are of period 27 while the tangent and
cotangent are of period 7.

THE GENERAL SINE CURVE. The amplitude (maximum ordinate) and period (wavelength) of
y =sinx are, respectively, 1 and 2zn. For a given value of x, the value of y = asinx,a > 0, is a times
the value of y =sinx. Thus, the amplitude of y =asinx is a and the period is 2z. Since when
bx = 2n,x = 2 /b, the amplitude of y =sinbx, b > 0, is 1 and the period is 27/b.

The general sine curve (sinusoid) of equation

y = a sin bx, a>0, b>0,

has amplitude @ and period 27/b. Thus the graph of y = 3 sin 2x has amplitude 3 and period 27/2 = 7.
Figure 27-10 exhibits the graphs of y = sinx and y = 3sin2x on the same axes.

y=8inx+ 3 sin 2x

Fig. 27-10

COMPOSITION OF SINE CURVES. More complicated forms of wave motions are obtained by
combining two or more sine curves. The method of adding corresponding ordinates is illustrated in the
following example.
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EXAMPLE. Construct the graph of y = sinx + 3sin2x. See Fig. 27-10.

187

First the graphs of y; =sinx and y, = 3sin2x are constructed on the same axes. Then, corresponding to a
given value x = OA, the ordinate 4, B of y = sin x + 3 sin 2x is the a/gebraic sum of the ordinates 4;B; of y; = sinx

and 4,C; of y, = 3sin2x.
AISO, AQB = Asz + A2C2,A3B = A3B3 + A}C},y etc.

Solved Problems

27.1  Sketch the graphs of the following for one period:

(a) y= 4 sin x (C) y= 3 sin %x

(b) y=sin3x (d) y=2cosx=2sin (x+4im)

() y=3cosix=3sin(Gx+4in)

In each case we use the same curve and then put in the y axis and choose the units on each axis to satisfy

the requirements of amplitude and period of each curve.

(a) y =4 sin x has amplitude = 4 and period = 2x. See Fig. 27-11(a).

(b) y = sin 3x has amplitude = 1 and period = 27/3. See Fig. 27-11(b).

v v
4 1
0 o 0 T s
™ o T 7
(@) y=4sinx &) y=sin3x

-

5

”
0 2 a7 * 0 T T Jam 2
3 ; 3

(¢) y=3sinix @d) y=2cosx

)
3
-m 0 17\27317 4an *

(e) y=3cosix

Fig. 27-11
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(¢) y=3sin Lx has amplitude = 3 and period = 2n/} = 4n. See Fig. 27-11(c).
(d) y =2 cos x has amplitude = 2 and period = 27. Note the position of the y axis. See Fig. 27-11(d).
(e) y =3 cos x has amplitude = 3 and period = 4z. See Fig. 27-11(e).

27.2  Construct the graph of each of the following:

(a) y=sin x 4 cos x (¢) y=sin 2x —cos 3x
(b) y =sin 2x —cos 3x (d) y=3sin 2x+2 cos 3x
See Fig. 27-12(a)—(d).

Supplementary Problems

27.3  Sketch the graph of each of the following for one period:

(a) y=3sinx () y=sin 2x (¢) y=4sin (x/2) (d) y=4cosx
(e) y=2cos(x/3)

v v
y = sin 2x + cos 3x
y =sinx + cos x ( (y:Sinzz
11, 1€ TN
pe /  wy=cos3x
| / \
0 z 0 R

-1t -1

(a) ®)

v v
y = sin 2x — cos 3 y =3 sin 2x + 2 cos 3x
3 ( y=3sin
y=co0s 3x
1 N "~ 2
/ 1
7] ‘\‘ x x

\\ -1
-14 et -2
-3

(©) @

Fig. 27-12

27.4  Construct the graph of each of the following for one period:

(@) y=sinx+2cosx (d) y=sin 2x +sin 3x
(b) y =sin 3x+ cos 2x (e) y=sin 3x —cos 2x
(¢) y=sin x +sin 2x (f) y=2sin3x+3cos 2x



Chapter 28

Fundamental
Relations and
Identities

FUNDAMENTAL RELATIONS

Reciprocal Relations Quotient Relations Pythagorean Relations
in0
csc 0 = L tan0 = s sin? 0+ cos?0 =1
sin 0 cos 0
1 cos 0 5 )
sec 0 = cot 0 = 1 4+ tan” 0 = sec” 0
cos 0 nd
1
cot 0 = 1 4+ cot?> § =csc? 0
tan 0

The above relations hold for every value of 0 for which the functions involved are defined.

Thus, sin” 0 + cos> 0 = 1 holds for every value of 0 while tan 6 = sin 6/cos 0 holds for all values of 0
for which tan @ is defined, i.e., for all 0 # n - 90° where n is odd. Note that for the excluded values of 0,
cos = 0 and sin 0 # 0.

For proofs of the quotient and Pythagorean relations, see Problems 28.1-28.2. The reciprocal
relations were treated in Chapter 24. (See also Problems 28.3-28.6.)

SIMPLIFICATION OF TRIGONOMETRIC EXPRESSIONS. It is frequently desirable to trans-
form or reduce a given expression involving trigonometric functions to a simpler form.

EXAMPLE 1
1 | cosf)
i 0=— sOcsc 0 =cosl——: = =cot 0.
(a) Using csc et cos 6 csc cos Sin0 " s co
. sin 0 sin 0 .
() Using tan( = osp’ & 0 tan 0 = cos gcos g = sin 0.

EXAMPLE 2. Using the relation sin? 0 +cos? 0 =1,

(@) sin® 0+ sin 0 cos® 0 = (sin® 0 + cos” @) sin 0 = (1)sin O = sin 0.

189
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cos? 0 1= sinZH_ (1 = sinO)(1 + sin0)

®) 1 —sin0 1 —sinf 1 —sin0 = 1+ sinf.

(NOTE: The relation sin? 6 4 cos® 0 = 1 may be written as sin> 0 = 1 — cos® 0 and as cos®> 0 = 1 —sin? 0.
Each form is equally useful.) (See Problems 28.8-28.9.)

TRIGONOMETRIC IDENTITIES. A relation involving the trigonometric functions which is valid for all
values of the angle for which the functions are defined is called a trigonometric identity. The eight fundamental
relations above are trigonometric identities; so also are

cos ) csc 0 = cot 0 and cosftanf = sin 6

of Example 1 above.

A trigonometric identity is verified by transforming one member (your choice) into the other.
In general, one begins with the more complicated side.

Success in verifying identities requires

(a) Complete familiarity with the fundamental relations
(b) Complete familiarity with the processes of factoring, adding fractions, etc.
(¢) Practice

(See Problems 28.10-28.17.)

Solved Problems

. . sin 0 cos 0
28.1  Prove the quotient relations: tan = ——, cot 0 = ——.
cosf sin 6

For any angle 0, sin0 = y/r, cos0 = x/r, tan0 = y/x, and cot 0 = x/y, where with 0 drawn in
standard position, P(x,y) is any point on the terminal side of 0 at a distance r from the origin.

Then tang=2=2"_5M0 4 corg=X=r_cos0
x x/r cos@ ) y/r sinf
1 cos
Al = = .
( so, cot § tan 0 sin@)

28.2  Prove the Pythagorean relations: (a) sin>6+cos’0 =1 (b) 14 tan?0—sec? 0
(¢) 1+ cot? 0=csc? 0.

For P(x,y) defined as in Problem 28.1, we have A) x> +)? = r2.
(a) Dividing 4) by 2, (x/r)* + (y/r)* = 1 and sin?> 0 + cos®> 0 = 1.

(b) Dividing 4) by x?, 14 (y/x)*> = (r/x)> and 1+ tan” 0 = sec’ 0. Also, dividing sin? 0 + cos’> 6 = 1 by
cos? 0,

: 2 2
(sm@) +1= (L) or tan’0 + 1 = sec® 6.
cos 0 cos 6

(¢) Dividing 4) by y*, (x/3)?+ 1= (r/y)* and cot® 6+ 1 = csc? 0. Also, dividing sin? 0 + cos’> 6 = 1 by
sin? 0,

2 1 2
1+ (C?S 0) = (—) or 14 cot? 6 = csc? 0.
sin 0 sin
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28.3  Express each of the other functions of 0 in terms of sin 0.

cos’0=1-sin*0 and  cosf = *v1—sin?0
sinf sin 0 cot 0 = 1 _ivl—sinz()
cos  ++/1—sin’0 tan0

anf sin 0
1
csc 0 =

1
cosf  +/]1—sin20 sin

tan0 =

-

‘

sec O =

<

Note that cos @ = ++/1 —sin® §. Writing cos @ = v/1 — sin” 6 limits angle 0 to those quadrants (first and
fourth) in which the cosine is positive.

28.4  Express each of the other functions of 0 in terms of tan 0.

1 1
2 2
sec” 0 =1+tan" 0 and sec 0 = *=+/1 4 tan? 0, cosf = = |
sec 0 +\/1+tan20
in0 . 1 tan 0
Sy _ tan 0 and sin = tan 0 cos 6 = tan 0 = an ,
cos 0 +/1+tan20 +/1+tan?0
1 ++y/1 +tan?0 1
cscll=—=——"——, cot 0 =——.
sin 0 tan 6 tan 0

28.5  Using the fundamental relations, find the possible values of the functions of 6, given sin = %

From cos®> 0 = 1 —sin?6,cos 0 = +v/1 —sin’0 = = 1—5 =+ =21
Now sin# and cos 6 are both positive when 0 is a’ first quddrant angle while sinf = + and cosf =
— when 0 is a second quadrant angle. Thus,

First Quadrant Second Quadrant
sinf =3 cot 0 =1% sin =3 cot 0 =—3%
4 _5 — =5
cosf =3 sec 0 =3 cosf =—3 sec 0 = —3
i3
tan(ﬂ—izzt cscﬁzg tanH:—% cscf)z%
3
28.6  Using the fundamental relations, find the possible values of the functions of 6, given tan0 = —3.
Since tan @ = —, 0 is either a second or fourth quadrant angle.
Second Quadrant Fourth Quadrant
tand = -3 tanf = -3
— 5 —_12 _12
cot 0= 1/tan0 = —% cot 0= —1&

sec0:—\/1+tan20:—%

cosf=1/sec 0 = —1}

csc 0 =+/1+cot? 0 =13 csc O =-1

sinf =1/csc =3 sinf = -3

Sl
©
@
(e}
>

I

Sl

wlm
(@]

o

@

>
Il

b

28.7  Perform the indicated operations.
(a) (sin 0 — cos O)(sin O + cos H) = sin? H — cos?
(b) (sinA + cos A)*> = sin®> 4 + 2sin A cos A + cos> 4
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(¢) (sinx 4+ cos y)(siny —cos x) = sin x sin y — sin X cOS X + Sin y cOs y — COS X COS ¥

(d) (tan®> A —cot A)> = tan* 4 —2tan> Acot A + cot®> A
cost)  sinf+ cos0

© 1+sinﬁi sin
sin 0 2 cos?0 — sinOcos 0 + 2
1-— =
) cos 6 + cos? 0 cos? 0
28.8 Factor.

(a) sin®@—sin@cos O = sin O (sin f — cos 0)

(b) sin’ 0 + sin® 0 cos® 0 = sin” 0 (1 + cos® 0)

(¢c) sin? 0+ sinOsec 0 — 6sec® O = (sin O + 3 sec 0) (sin § — 2 sec 6)

(d) sin® O cos® O — sin® B cos® @ + sin O cos® @ = sin O cos” O (sin” @ —sin O cos O + 1)

(e) sin*0—cos*@ = (sin” @ + cos? 0) (sin? @ — cos® 0) = (sin® @ + cos’ ) (sin @ — cos ) (sin O + cos 0)

28.9  Simplify each of the following:

cos? 0 = cos

(a) sec 0 —sec 0sin® 6 = sec 0 (1 —sin® @) = sec 0 cos®> O =

() sind Ocot 0= sin0 1 cos® sin0cosO cos
smusec oot v=s cos0 sinf  cos0sin0
(¢) sin?0(1 + cot? 0) = sin? Ocsc? 0 = sin® 0— by =1
sin
(d) sin®@sec’ 6 —sec® O = (sin> 0 — 1)sec® 6 = —cos® fsec’ § = —cos> 0 -

cos?0
(e) (sinf + cos 0)? + (sin @ — cos H)* = sin’ O + 2sin H cos O + cos” @ + sin” @ — 2 sin @ cos O + cos>
= 2(sin® f + cos? ) = 2

in> 0 20
N talr12000s20—|—00t2(Jsin2925m2 coszf}—i-cf)s2 sin? 0 = sin® 0 + cos? 0 = 1
cos* 0 sin” 0
() tanf+ cos _sin9+ cos _sin9(1+sin9)+c0520
£ 1 +sin@ cosO ' 1+4sin0 cos 0 (1 +sin0)
_sin0+sin20+c0520_ sinf + 1

1
- = - =——= 0
cos 0 (1 + sin ) cosf (1 +sinf) cosb se¢

Verify the following identities:

28.10 sec? Ocsc® 0 = sec® O+ csc? 6

1 N 1 _Sil’l20+00829_ 1 1 1
cos’0 sin’f  sin®6 cos?6  sin*Ocos?f  sin’ O cos? 0

sec? 0 +csc? 0 = = csc’ fsec” 6

28.11 sec* 0 —sec’ O = tan* 0 + tan’ 0

tan* 0 + tan® 0 = tan® 0 (tan® 0 + 1) = tan® Osec’ 0 = (sec? 0 — 1) sec’ 0 = sec* 0 —sec® 0

or sect 0 —sec? 0 = sec’ 0(sec2 0-1)= sec’ Otan® 0 = 1+ tan® 0) tan” 0 = tan® 0 + tan* 0
" | ’
28.12 2csex =Y +eosx
14 cosx sin x
sin x I+cosx sin?x + (1 4 cos x)? _ sinx + 1 4 2 cos x + cos’x
1+ cosx sin x sin x (1 4 cos x) sin x (1 4+ cos x)
24 2cosx 2(1 4+ cosx) 2
= = =2cscx

- sinx(1 +cosx) sinx(l +cosx) sinx
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28.13 l—sinx= cos.x
cosx 1+ sinx
cosx cos’x _ 1 —sin’x _ (I=sinx)(1 +sinx) _1—sinx
l+sinx cosx(1+sinx) cosx(l+sinx)  cosx(l +sinx)  cosx
28.14 sec A—csc A _ tan A4 —1
sec A+csc A tanAd+1
1 1 sin 4
seccA—csc A cosA sind _ cosd _ tanA-—1
secA+csc A 1 1 _SinA+1_tanA+1
cosA sinA cosA
28.15 tanx.—zsinx= sec x
sin’x 14 cosx
sinx .
tanx —sinx Cosx—smx __sinx—sinxcosx _ sinx(l —cosx)
sin®x sin’x cos x sin’x cos xsin’x
1 —cosx 1 —cosx 1 sec x

cosxsin®x cosx(l —cos?x) cosx(l+cosx) 1+cosx

28.16 cosAcotA—smAtanA=1+sinAcosA
csc A—sec A

sin A
cosAcot A—sinAtanAd cosA _ cos’A—sin’4
csc A —sec A 1 cos A —sin A
sind cosA
_ (cos A —sin A)(cos®A + cos A sin A + sin’A)
N cos A —sin 4

= cos’A + cos Asin A + sin®A4 = 1 + cos A sin 4

cos A
cos A———sin
sin 4

sinf—cosf+1 sinf+1
sin@+cos0—1  cos0

28.17

sin6+l_(sin0+1)(sin6+cos€)—1)_sin20+sin0cosﬁ+cosﬁ—l
cos@  cosf(sin@+cosf—1) cosO(sin@+cosf—1)
—00520+sin0c059+0050_cosG(sinG—cos@—i—1)
cosO(sin0+cos0—1)  cosO(sin0+cos0—1)
_ sinf—cos0+1
" sinf0+cos0—1

Supplementary Problems

28.18 Find the possible values of the trigonometric functions of 0, given sin (0 = %

Ans. Quad I 2,V5/3,2/4/5,4/5/2,3/5.3
Quad I: 2,—/5/3,-2/+/5,—/5/2,-3//5,3
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28.19 Find the possible values of the trigonometric functions of 0, given cos () = —g.

Ans. Quad Il V11/6,—3,—V11/5,-5/4/11,-¢,6//11
Quad II. ~ —/11/6,-2,V11/5,5/4/11,-¢,-6/11

28.20 Find the possible values of the trigonometric functions of 6, given tan§ = 3.

Ans. Quad I 5/A41,4/V41,3.4,/41/4,\/41/5
Quad I =5/ VAT, ~4/VAT, 4, ~VAT/4,~VAT/3

28.21 Find the possible values of the trigonometric functions of 6, given cot 6 = —/3.

Ans. Quad I 1,—v3/2,-1/4/3,—3,-2/+/3,2
Quad IV:  =4./3/2,-1/¥3,~3,2/43,-2

in 6 0 —tan0
28.22 Find the possible value of smb4cost=tant when tan 6 = —%
sec 0+ csc 0 —cot 0

. 2
Ans. Quad II: ?3

Quad IV: %

Verify the following identities:

28.23 sin Osec 0 =tan 0 28.36 tan 0—csc Osec O(1 —2cos’ 0) = cot 0

28.24 (1 —sin® A)(1 +tan®> A) =1 28.37 sinf _ sec 0
: sin 0 +cos 0 sec 0+csc 0

sin x + tan x

28.25 (1 —cos 0)(1 +sec 0)cot O =sin 0

2826 csc® x(1 - cos’x) = 1 BBy Towx  Snxtanx
sin 0 cos 0 sec X +csc x
28.27 = SeeXTeer oy
cse 0 " sec 0 28.39 tanx—l—cotx_Sln’\_'—COSX
1-2cos> 4 03 3
2828 — " “ —tan A—cot 4 sin” 0+cos” 0 _
sin Acos A 28.40 Sn 0+ cos 0 1 —sin Ocos 0
2 2 22 ino
28.29 tan”xcsc” xcot” xsin“x =1 2841 cot 0+ 1 sin -= ese 0
28.30 sinA cosA(tan A+cot A) =1 + cos
cos? 0 _ 28.42 sin 0 cos 0 _ tan 0
831 - =sin 0 "7 cos?—sin 0 1—tan’ 0
28.32 1 — sec O—tan 0 28.43 (tanx + tan y)(1 —cot xcot )
sec 0+ tan 0 +(cot x +cot y)(l —tanx tany) =0
28.33 ; + ; =2sec® A 28.44 (xsin 0 —ycos 0)* + (xcos 0 + ysin 0)°
1—sind 1+ sind =2+ 7
I—cosx secx—1
28.34 = = (cotx —cscx) 28.45 (2rsin 0 cos 0)* + r’(cos’® O —sin® 0)* = »*

l+cosx secx+ 1
28.35 tan Osin 0 4 cos 0 = sec 0 28.46  (rsin 0 cos ¢)” + (rsin Osin ¢)* + (rcos 0)> = 12



Chapter 29

Trigonometric
Functions of
Two Angles

ADDITION FORMULAS

sin (o + ) = sinocos § + cosasin f§
cos (o« + ff) = cosacos f —sinasin ff
tana + tan f8

t ( -
an e+ f) 1 —tanotanf§

(For a proof of these formulas, see Problems 29.1-29.2.

SUBTRACTION FORMULAS

sin (o — f§) = sinocos § — cosasin f§
cos (o — ) = cosocos f§ + sinasin
t —t

tan (o« — f) = 20— tanf
1 +tanotanff

(For a proof of these formulas, see Problem 29.3.)

DOUBLE-ANGLE FORMULAS

sin2o = 2sinocosa

cos 2o = cos’o — sin’
2tana

1 —tan“a

(For a proof of these formulas, see Problem 29.9.)

195

o =1—2sin’s = 2cos’a— 1
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196 TRIGONOMETRIC FUNCTIONS OF TWO ANGLES

HALF-ANGLE FORMULAS

. 1 —cosf
sm%ﬁztw[—z
1+ cosf
2
l—cosf  sin0  1-—cosl
14+cosf 1+4cos  sinf

(For a proof of these formulas, see Problem 29.10.)

0=

I+

1
cos5

0

Il
I+

tan

1
2

Solved Problems

[CHAP. 29

29.1 Prove (1) sin(x+ f) =sinacosf + cosasinff and (2) cos(a+ ff) = cosacos f —sinasin f when o and f§

are positive acute angles.

Let o and f be the measures of positive acute angles such that o + f < 90° [Fig. 29-1(a)] and & + f§ < 90°

[Fig. 29-1(b)].

'} AV

14

“ &
D
D B
8 2
CHi &
a % d
0 X 4 ¢ ° A 0
(@) (b)

Fig. 29-1

To construct these figures, place angle « in standard position and then place angle f# with its vertex at O
and with its initial side along the termmal side of angle «. Let P be any point on the terminal side of angle
(ax+ [)’) Draw PA perpendicular to OX PB perpendicular to the terminal side of angle «, BC perpendicular

to OX and BC perpendicular to AP.

Now mZAPB = o since corresponding sides (04 and AP, OB and BP) are perpendicular. Then
AP AD+DP CB+DP _CB DP_CB. OB DP BP

sin(o+ f) = oP

= sinacos ff + cosasin f§

04 0C- AC 0OC-DB_0C DB _OC OB DB
P oOP OoP _OP OP OB OP BP

and
an cos(a+f) = oP

P OP op  or top OoP OB OP * 8P BP OP

BP
OP
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9 tano + tanﬁ
292 P tan _ fanoertanp
rove ta (OC—‘r ﬁ) 1 i "
tan (o + ﬂ) = sin (o + f) - sino cos f§ + cosasin f§

cos(x+f)  cosacosf—sinosin f

sinocos S cosasinf
__cosacosfl  cosocosfs
cosocosff  sinasinf
coso.cos f§ " cos o cos p

_ tana+tanf
" I—tanotanf

29.3  Prove the subtraction formulas.
sin (o — ) = sin [o + (—=f)] = sin o cos (—ff) + cos o sin (—f3)
= sina (cos f§) + cos o (—sin ff) = sino.cos f —cos o sin f§
cos (o — f§) = cos [a + (—f)] = cos acos (—f) —sin o sin (—f)
= cosa(cos ) — sin o (—sin f) = cos o cos f§ + sin o sin f§

tano +tan(—f) _ tano+ (—tanf)
1 —tanotan (—f) "~ 1—tano(—tan p)

tan (o — f) = tan[o + (=p)] =

_ tanou—tanf
1 +tanatanf

29.4  Find the values of sine, cosine, and tangent of 15°, using (¢) 15° =45°—30° and (b) 15° = 60° —45°.
(a) sin 15° = sin (45° —30°) = sin45°cos 30° — cos 45°sin 30°

1 V3 1 1 f3-1 ?(\@—1)

V2 Vi
cos 15° = cos (45° —30°) = cos45°cos 30° + sin45°sin 30°

R SRV T T RV/)
—E 7+E E—T(\/g+l)

tan15° = tan (45° — 30°) = tan 45 —otan3002 1-1/43 :\/§—1:2_\/5
1 + tan45°tan 30 1+1(1/43) 3+1

(b) sin 15° = sin (60° —45°) = sin 60°cos 45° — cos 60°sin 45°
3 1 1 1 2
:\/_.-_—_-_:i(\/g—l)
2 L 22 4
cos 15° = cos (60° —45°) = cos 60°cos 45° + sin 60°sin 45°
11 31 2

3+1)

BN
_ tan60° — tan45° _\/5—1_
T 1+tan60°tand5° 341

tan 15° = tan (60° — 45°) 2-3
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29.5

29.6

29.7

TRIGONOMETRIC FUNCTIONS OF TWO ANGLES [CHAP. 29

Prove (a) sin(45° + 60) —sin (45° — 0) = +/2sin 0, (b) sin(30° 4 0) + cos (60° + 0) = cos 0.
(a) sin(45° + 0) —sin (45° — 0) = (sin45°cos 6 + cos 45°sin 0) — (sin 45°cos 6 — cos 45°sin 6)

1
=2c0s45°sin0 = 2— sin 0 = \2sin 0
V2

(b) sin (30° + 0) 4 cos (60° + 0) = (sin 30°cos 0 + cos 30°sin 0) + (cos 60° cos O — sin 60°sin 0)

1 V3 1 V3
= (ECOSQ-FTSlnG) + (Ecose—Tsme) =cos 6

tan (« + ff) —tano

sin(x+p)+sin(@—p), (b) cos(a+p)—cos@—p), (c) T+ tan(@ £ and

(d) (sinacos ff—cosasin f)* + (cos ccos f + sin asin f)°.

Simplify  (a)

(a) sin(o+ p)+ sin(x— ff) = (sinacos ff + cosasin f) + (sina cos f§ — cos a sin f3)

= 2sinocosfi

()  cos(a+ f)—cos(x—f) = (cosacos ff—sinosin f) — (cos o cos § + sin o sin )

= —2sinasinf

tan (x + ff) —tano

m:tan[(“+ﬁ)—a]:tanﬁ

(©
(d) (sinacosf —cosasin ﬁ)z + (cosacos f§ + sin o sin ﬁ)2 = sinz(oc -p)+ cos’ (a=p =1

Find sin (a 4 f), cos (o + f3), sin (o — §), cos (& — f§) and determine the quadrants in which (o + ) and (o — )
terminate, given

(a) sina=7%,cosf = %; o and f in quadrant L.
(b) sina= %, cosfi = 211; o in quadrant II, f in quadrant IV.

() cosa=1%and sinf = $. See Figs. 29-2 and 29-3.

vy vy

3 5
Fig. 29-2

sin (« + ) = sinacos f+ cosasinf =43-S +3-12=36
=3.
5

cos (o + ff) = cosacos f —sin o sin

sin(x— ) = sinacos f—cosasinf=4%-5-3- 12 =18
cos (o — f) = cosocos f+sinasinf=1-34+4%-12=86

(e — p)in quadrant IV
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(b) coso=—/5/3 and sin § = —/7/4. See Figs. 29-4 and 29-5.
v

v
L]

Fig. 29-4 Fig. 29-5

sin (o + f§) = sino cos § + cos o sin/)’:?;ﬁ— (—?)(—4) = 6+1;/375

199

(o + p)in quadrant 11

_ o ABY3 2 VT 35427
cos(oc—i—[)’)—cosozcosﬁ—cosasm/3—(—T intY Gyl R e
. o o, 23 S\ YT\ 6-4/35
sm(oc—[)’)—smozcosﬁ—cosccsm/)’—g yim _T) m

cos (o —ff) = cosa cos ff + sina sin f =

5Y3 2 VT -3V5-247
(i)

(o — p)in quadrant II

__cotacotf—1 __cotacotf+1
29.8 Prove (@) cot(ax+ f) = colf+ ootz (h) cot(ax—p)= cotf—cota '
1— 1
1 l —tanotan f§ cotacotf _ cotacotf—1
t = = = =
@ cotx+h) tan(x+ ) tano + tanpf 1 " 1 cot B+ cota

cota cotf

cotacot(—f)—1 —cotacotf—1 cotacotf + 1

(b)cot(a=f) = cotfa+(=pI = cot (—f) + cotu - —cot f + cota N cotf—cota

29.9  Prove the double-angle formulas.

In sin(x+ f) =sina cosff+cosa sinfl, cos(o+ ff) =cosa cosff—sina sin f,
tana + tan f8
1 —tano tan f

put f = a. Then
sin 20 = sina cosa + coso sino = 2 sina cosa,
cos 200 = COS o COs oL — sina Sin o
2 . . . .
= cos’a —sin’o = (1 — 51n2a) —sin®a =1 -2 sin’a
= cos’a — (1 —coszu) =2 cos’o — 1,

tana + tano 2 tano
tan 2o = =

| —tano tano 1 —tan?s

tan(ax + f) =
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29.10 Prove the half-angle formulas.

In cos 20 = 1 — 2 sin’e, put o = 10. Then

. . 1- 0 . 1- 0
cos0=1-2 smz%é), smzé() = ;OS , and  sinif = =, %.

In cos 20 = 2 cos’a — 1, put o = 10. Then

1 0 1 0
cos =2 0052%9 -1, cosz%() = %, and cosif = i,/ﬁ.
sin 1 —cosf
Finall tanlp =2 — +
asy, g cos 10 1+cosf

_ . |d—cos®)(1 +cosh) _ 1—cos?0 _ sinf
V(1 +cosO)(1 +cosb) (1+cos0)?  1+cosb

_, [(—cosO)(1—cosO) _ (1—cos0)®> 1—cos0
T VA +cosO)(I—cos®) | 1—cos26  sinf

[CHAP. 29

The signs * are not needed here since tan%() and sin 0 always have the same sign (Problem 29.7) and

1 —cos 0 is always positive.

29.11 Using the half-angle formulas, find the exact values of (a¢) sin15°, (b) sin 292{’.

I—cos30°  [1-v3/2 1
@ sin15° =, °§S3° - *f/ —\2-+3

1 —cos 585° 1 —cos225°
. e _ _
(b) sin292;" = \/ 5 = \/ 5

N2
=% =22

29.12 Find the values of sine, cosine, and tangent of 16, given (a) sin6 = 3,0 in quadrant II and (b)) cos6 =2

13
0 in quadrant IV.

(a) sinf = T53’ cosl = —%, and %9 in quadrant I. See Fig. 29-6.

v

7
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(b) sin® = —2+/10/7,cos6 = dl’ld ]9 in quadrant II. See Fig. 29-7

. 1 —cosf 1-32 14

51n%()=1/—: _7: il
o /1+cos9 /1+3 /
oslo =

1 —cos0 1—’7 £
5

0 sin 0 _—2\/—/7

tan

[SIE

29.13 Show that (a) sin9=25in%9005%0, () sind== %, (o) tan4x=1j_l%7
\ X

(d) cos60=1-2sin?30, (e) sin%()z%(l—cos@),cosuﬂ—1(1+cos(9)

(a) This is obtained from sin 2« = 2sina cosa by putting o = %6.

1 —cosf
(b) This is obtained from sin%ﬁ == w by putting 0 = 2A4.

sin 0

') This is obtained fi tanif = ———
() is is obtained from tan; [T cos0

by putting 0 = 8x.

(d) This is obtained from cos2a = 1 —2sin’x by putting « = 3 0.
. S 1 —cosf \ 1 +cos0
(e) These formulas are obtained by squaring sin50 = * — and cos;0 = * —

29.14 Express (@) sin3o in terms of sina, (b) cos4w in terms of cosoa.

(a) sin3a = sin (2o + o) = sin 26:.cOs o + cos 20 Sin o
= (2sinacosa)cosa + (1 —2 sin®a) sino = 2 sin acos’a + (1 — 2 sin?0) sina

= 2sina(l — sin®a) + (1 — 2 sin’o) sino = 3 sina — 4 sin’x

(b) cosda = cos2(2u) = 2cos? 20— 1= 22 cos?o—1)> =1 =8cos* o — 8cos®u + 1
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29.15

29.16

29.17

29.18

29.19

29.20

29.21

TRIGONOMETRIC FUNCTIONS OF TWO ANGLES [CHAP. 29

Prove cos 2x = cos*x — sin*x.

cos*x —sin*x = (coszx + sinzx)(cos2x - sinzx) = cos’x — sin’x = cos 2x

- sin®x + cos’x
Prove 1 —3sin2x = —————.
SIn X + Cos x

sin3x + cos3x __ (sinx +cos X)(sin®x — sin x cos x + cos’x)

sin X + cos x sin X + cos x

=1—sinx cosx =1-42 sinx cosx) = 1 —{sin2x

Prove cos 6 = sin (6 + 30°) + cos (6 + 60°).

sin (0 + 30°) + cos (6 + 60°) = (sin 6 cos 30° + cos 0sin 30°) + (cos O cos 60° — sin Osin 60°)
V3

1 1 3
:—sm(ﬂ-l—fcos(i-i-fcosﬁ—%sinﬁ:cos9

2 2 2
1- tanzéx
Prove cos x = — 7
1 + tan3x
in2l in*L,
SIN =x SIn Fx
21 I-—F 1= —F | cos’x
1 —tan“3x CO8%5x COS*3x 21 2
o= T = 7T 51 = COS” 5X — sin” 53X = COS X
1 + tan3x sec” 53X SEC” 57X €O~ 5X

cosx +sinx cosx—sinx

Prove 2tan2x = - —
COSX—SINX COSX 4+ SInXx

cosx +sinx Ccosx—sinx

cosx—sinx cosx + sinx

_ (cosx + sin x)? = (cos x — sin x)?
(cos x — sin x)(cos x + sin x)

_ (cos®x + 2sin x cos x + sin?x) — (cos?x — 2 sin x cos x + sin’x)

cosZx — sin’x

4sin x cos x 2sin 2x

5 = 2tan2x

cos?x —sin’x  €os2x

Prove sin4 = 3—1cos24 +1cos4A.

— 2 _ 2
sintd = (sinzA)z _ (1 cos2A) _ 1—2c0s24 + cos™24

2 4
1 + cos 4A)
2

1
2

1 3 1
=—(1-2 24 —— 24+ - 44
1 ( cos + 3 cos + 3 cos

Prove tan ®x = tan*x sec?

x —tan’xsec’ x +sec’ x — 1.
tan *x = tan *x tan’x = tan*x (5602 x—1)=tan 4y sec? x — tan®x tan’x
2
= tan*xsec® x — tan’x (5602 x—1)=tan 4xsec® x — tan’x sec? x + tan’x

= tan 4X 5602 X = tanzx SeC2 X+ SeC2 x—1
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29.22 When A+ B+ C = 180°, show that sin24 + sin2B + sin 2C = 4sin A4 sin Bsin C.

Since C = 180° — (4 + B),
sin2A4 + sin2B + sin2C = sin 24 + sin 2B + sin [360° — 2(4 + B)]

=sin2A4 +sin2B —sin2(4 + B)

=sin24 +sin2B —sin2A4 cos2B—cos2A4sin2B
= (sin2A4)(1 — cos2B) + (sin 2B)(1 — cos 24)

= 2sin24sin’ B + 2sin 2Bsin’ 4

= 4sin A cos A sin’B + 4 sin Bcos Bsin’ 4

= 4sin A4 sin B (sin A cos B + cos A4 sin B)

= 4sin Asin Bsin (A4 + B)

= 4sin A sin Bsin[180° — (4 + B)]

=4sin Asin Bsin C

29.23 When 4 + B+ C = 180°, show that tan A + tan B + tan C = tan A tan Btan C.

Since C = 180° — (4 + B),
tan 4 + tan B+ tan C = tan A4 + tan B+ tan [180° — (4 + B)] = tan A + tan B—tan (4 + B)

tan A + tan B 1
=tan A +tdn3—4l —wnA@nB (tan A +Idl’lB(l “1—tnAtnB —tanAtanB)
tan A —tan B tan A + tan B
= (tand + tanB)(— 1 —tanAtanB) =—tand tan B l—tanAtan B

= —tan A tan Btan (4 + B) = tan A tan Btan [180° — (4 + B)]

= tan Atan Btan C

Supplementary Problems

29.24 Find the values of sine, cosine, and tangent of (a) 75° (b) 255°.

2 2 2 2
Ans. (a) %(\/ﬂ 1),%(\6— D,24+3  (®) —%(\/ﬂ 1),—%(\/5— D,2+3
29.25 Find the values of sin (o + f5), cos (¢ + f3), and tan (« + f3), given

(@) sina=% cosf ==, oand fin quadrant L

63 _16 _63
Ans. &5 =6 15

(b) sino = %, tan f =, o and § in quadrant L.
Ans. 7 140 171

(¢) cosa= —%, cotff = % ,o in quadrant II, f§ in quadrant III.
36 323 _ 36
Ans ~ 325 325 323
(d) sino= %7 sin f§ = %,zx in quadrant I, § in quadrant II.

442-21 2+2V42  42-421

Ans. , )
15 15 24242
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29.26 Find the values of sin (& — f), cos (o — f§), and tan (o — f5), given

29.27

29.28

29.29

29.30

(a) sino = %, sinff = 1—53,oc and f in quadrant I.
Ans. 16 6316

(b) sino=E, tanp =3, o and B in quadrant L.

(¢) cosa=—1%, cotf == o in quadrant II, § in quadrant 1.
Ans. 353, =53 —55
(d) sina =41 sinf =2 oin quadrant II, f in quadrant I.

42421 2V82-2 4244021

Ans N s
15 15 242 -2

Prove
(a) sin(o+ f)—sin(az—pf)=2cosasinf
(b) cos(a+ f)+cos(x—f) =2cosacosff

1 —tan@

tan(45° - 0) = ——

(© tan( ) 1 +tan0
tan(x+f) tan®o — tan’f
cot(@—p)  1-—tan’otan’f

(d)

tano + tan f 4+ tany —tano tan ftany
t P) =t 9] =
(©) tan(a+f+7) = tanl@+f)+7] l —tanotan f—tan ftany —tany tan o

sin(x+y) tanx+tany

0 cos(x—y)_l+tanxtany
cos 0 + sin 0

tan(45° +0) = ————
(g) tan( +6) cos ) —sin 0

() sin (o + B)sin (o — ) = sin’e —sin’f

If A and B are the measures of acute angles, find 4 + B given
(a) tanA = ‘1—1, tan B = % Hint: tan(4+ B)=1.
Ans. 45°

() tand =3 tanB=4.
Ans. 135°

If tan (x + y) = 33 and tan x = 3, show that tany = 0.3.

Find the values of sin 20, cos 20, and tan 20, given

(@) sin0 =%, 0 in quadrant L.

Ans 24 7 24

2525 7
(b) sin0 =%, 0 in quadrant II.

24 7 _24
Ans. 2525 7

(¢) sin@=—1, 0 in quadrant IV.

Ans. — \/5/2 % -3

[CHAP. 29
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(d) tan6 = —%, 0 in quadrant II.
Ans. — % % -3
(¢e) tan0 = u, 0 in quadrant I.
2u 11— 2u
Ans.
s 1+u? 1+ 1—i?
29.31 Prove
(@) tan0Osin20 = 2sin> 0
(b) cotOsin20 =1+ cos20
s 3 3
() e +1sin2x
sin X — Cos X 2
) 1—sin24 1—tan4
cos24  l1+tand
1 —tan®0
20=— "
(¢) cos 1 +tan?0
. l+4cos20
) “gnag — ot
(g) cos30 =4cos>0—3cosh
(h) cos*x =3+1cos2x+}cosdx
29.32 Find the values of sine, cosine, and tangent of
(a) 30°, given cos 60° = 1.
Ans. %, \/§/2, 1/\/§
(b) 105°, given cos210° = —/3/2.
Ans. W2 43, =1\ 2=3, —2+3)
() %6, given sin § = %, 0 in quadrant I.
Ans. 1/410, 3/4/10, 1
(d) 0, given cot20 = %, 20 in quadrant L.
Ans 343
(e) 0, given cot20 = —%, 20 in quadrant I1.
Ans. 3/J/13, 2//13, 3
29.33 Prove
(a) cosx = 20052%)(— 1=1 —Zsinzéx

(b)
(©
(d)

()

N

sinx = 2sin {xcos Lx

(sin%@—cos%@)2 =1-—sin6
tan 10 = csc 0 — cot 0

l—tan%()_l—sin()_ cos
1+tan%67 cos0 1 +sin0

1
2tan 5x

ﬁ: sin x
+ tan® 3 x

205
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29.34

29.35

29.36

TRIGONOMETRIC FUNCTIONS OF TWO ANGLES

In the right triangle ABC, in which C is the right angle, prove

b —d - c—b 1 c+b
2 siny A4 = 2 cos ;4 =

2
sin2A4 :Lzb, Ccos24 =
c

sin3x cos3x

Prove (a) 2, () tan50° —tan40° =2tan10°.

sinx  CoSXx

If A4+ B+ C=180°, prove

(a) sin A+ sin B+ sin C = 4cos %ACOS%ACOS%BCOS%C
(b) cosA+cosB+cosC=1+4sinidsiniBsiniC
(¢) sin’A4 +sin?B—sin>C = 2sin 4 sin Bcos C

(d) taniAtanIB+taniBtaniC+taniCtanld =1

2¢

[CHAP. 29



Chapter 30

Sum, Difference, and
Product Formulas

PRODUCTS OF SINES AND COSINES

sinocos B = 4 [sin (o + ) + sin (z — )]
cosasinff = 5[sin(« + f) —sin (¢ — f)]
cosocos f = 5[cos (o + f§) + cos (o — f)]
sinocsin f = —1[cos (a + B) + cos (o — B)]

(For proofs of these formulas, see Problem 30.1.)

SUM AND DIFFERENCE OF SINES AND COSINES
sin A 4 sin B = 2sin(4 + B) cos}(4 — B)
sin A —sin B = 2cos$(4 + B) sin}(4 - B)
cos A + cos B = 2cos1(4 + B) cosi(4—B)
cos A —cos B=-2sin{(4 + B) sin}(4 - B)

(For proofs of these formulas, see Problem 30.2)

Solved Problems

30.1 Derive the product formulas.
Since sin (o + ) 4 sin (o — f§) = (sinacos § + cosacos ff) + (sinocos f —cososinff)
= 2sinacosff,
sinocos B = 1[sin(a + B) + sin (z — B)]
Since sin (o + ) —sin (x — f) = 2cosasin fi,

cosasin ff = 5 [sin (x + f) —sin (o — f)]

207
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208 SUM, DIFFERENCE, AND PRODUCT FORMULAS [CHAP. 30

Since cos (« + ) + cos (x — ff) = (cosacos § —sinoasin ) + (cosacos f + sinasin )
= 2cosacosf,
cosacos i = 3[cos (a+ f) +cos (a— f)]
Since cos (a + ff) —cos (o — ff) = —2sinasin ff,

sinosin f = —4[cos (o + f) — cos (x — p)]

30.2 Derive the sum and difference formulas.
Let o + = A4 and o — f§ = B so that « = 5(4 + B) and § = 5(4 — B). Then (see Problem 30.1)
sin (o + f§) + sin (¢« — ) = 2sino.cos becomes sin 4 + sin B =25in%(A+B)cos%(A—B)
sin (o + ff) —sin (¢ — ff) = 2cosasin f§ becomes sinA—sinB =2 cos%(A + B) sin%(A —B)
cos(a+ f) +cos(e—pf) =2cosacosff  becomes cos A +cosB= ZCOS%(A + B)cos%(A—B)
cos(a+ f) —cos(x—ff) = —2sinocosf  becomes cosA—cosB=-2 sin%(A + B) sin% (A-B)

30.3 Express each of the following as a sum or difference:
(a) sin40°cos30°, (b) cos110°sin55°, (¢) ¢co0s50°cos35°, (d) sin55°sin40°.
(a) sin40°cos30° =1 [sin (40° +30°) + sin (40° —30°)] = %(sin 70° +sin 10°)
(b) cos110°sin55° = L[sin (110° + 55°) —sin (110° — 55°)] = 1 (sin 165° —sin 55°)
(¢) cos50°cos35° =1[cos(50° + 35°) + cos (50° —35°)] = 1 (cos 85° + cos 15°)
(d) sin55°sin40° = —1[cos(55° 4 40°) —cos (55° —40° )] = —1(cos 95° —cos 15°)

30.4  Express each of the following as a product:
(a) sin50° + sin40°, (b) sin70° —sin20°, (¢) c0s55° + cos25°, (d) cos35° —cos75°.
(a) sin50° 4 sin40° = 2sin %(50" +40°)cos 3(50° —40°) = 2sin45°cos 5°
(b) sin70° —sin20° = 2cos $(70° + 20°)sin (70° —20°) = 2 cos 45°sin 25°
(€) cos55° 4 ¢cos25° = 2cos 1(55° +25°) cos $(55° —25°) = 2cos40°cos 15°
(d) c0s35° —cos75° = —2sin $(35° +75°)sin $(35° — 75°) = —2sin 55°sin (=20°)
= 25sin 55°sin 20°

sin4A + sin 24
30.5 Prove m = tan34.

sin4A +sin24 2sin %(4A + 2A4)cos %(4A —2A) _ sin34

= = = tan 34
cos4A +cos24  2cos L(44 + 2d)cos L(@A—24) cos3A
inA—sinB tanl(4-B
30.6 Prove s.m 51'n = anlz( ).
sind+sinB  tan 5(4 + B)
sind—sinB _ 2cos 3(4+ B)sin 1(4 - B) tan 1(4 - B)

= cot}(4 + B)tani(4 - B);

sinA+sinB_25in%(A+B)cos%(A—B) tan%(A—i—B)
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30.7

30.8

30.9

30.10

30.11

30.12

30.13

Prove cos*xsin %x = (2 cos x — cos 3x — cos 5x).
cos xsin%x = (sin x cos x)? cos x = A]—‘sin 22xcosx = A]—‘(sin 2x)(sin 2x cos x)
= 1(sin 2x)[} (sin 3x + sin x)] = L (sin 3x sin 2x + sin 2x sin x)
= H~1(cos 5x —cos x) + [ —1(cos 3x — cos x)]}

= (208 x — cos 3x — cos x)

Prove 1 + cos2x + cos 4x + cos 6x = 4 cos x cos 2x cos 3x.
1 4 (cos2x 4+ cos4x) + cos6x = 1 + 2cos 3xcos x + cos 6x = (1 4 cos 6x) + 2 cos 3xcos x

= 2c0s%3x + 2 cos 3xcos x = 2cos 3x(cos 3x + cos x)
= 2c0s 3x(2cos2xcos x) = 4cosxcos2xcos3x

Transform 4 cos x + 3 sin x into the form c¢cos (x — o).

Since ccos(x —a) = c(cosxcosa +sinxsina), set ccosa =4 and c¢sino = 3. Then cosa = 4/c and
sino = 3/c. Since sin?x + cos’a = 1,¢ =5 and —5.

Using ¢ = 5,cosa =2, sino =2, and o = 36°52'. Thus, 4cos x + 3sin.x = 5cos (x — 36°52).

Using ¢ = =5, = 216°52" and 4 cos x + 3sinx = —5cos (x — 216°52").

Find the maximum and minimum values of 4 cos x + 3 sin x on the interval 0 < x < 27.

From Problem 30.9, 4cos x + 3sin x = 5cos (x — 36°52)).

Now on the prescribed interval, cos 0 attains its maximum value 1 when 0 = 0 and its minimum value
—1 when 0 = n. Thus, the maximum value of 4 cos x + 3 sin x is 5 which occurs when x — 36°52' = 0 or when
x = 36°52, while the minimum value is —5 which occurs when x —36°52' = 7 or when x = 216°52'.

Supplementary Problems

Express each of the following products as a sum or difference of sines or of cosines.
(@) sin35°cos25° = 3(sin60° + sin 10°)

(b) sin25°cos75° = 5(sin 100° —sin 50°)

(¢) cos50°cos70° = 1(cos120° 4 cos20°)

(d) sin130°sin 55° =—%(cosl80° —cos75°%)

(e) sindx cos2x = %(sin 6x + sin 2x)

(f) sin(x/2) cos(3x/2) = 5(sin 2x — sin x)

(g) cosTx cosdx = 1(cos 11x+ cos3x)

(h) sin5x sin4x = —1(cos 9x — cos x)

Show that
(a) 2sin45°cos15° :%(\/g+1) and cos 15° :§(\/§+1)
(b) 2sin82 {’ cos 37%° = 5(\/5 +42) (¢) 2sin 127{' sin97 %c’ = %(ﬁ ++/2)

Express each of the following as a product:

(a) sin50° +sin20° = 2sin35°cos 15° (e) sindx + sin2x = 2sin 3x cos x
(b) sin75° —sin35° =2 cos 55°sin 20° (f) sin70 —sin 30 = 2 cos 50 sin 20
(¢) cos65° +cos15° =2 cos40°cos25° (g) cos 60+ cos20 = 2cos40 cos20

(d) cos80° —cos70° = —2 sin 75°sin 5° (h) cos(3x/2)—cos(9x/2) = 2sin 3x sin (3x/2)
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30.14

30.15

30.16

30.17

30.18

30.19

SUM, DIFFERENCE, AND PRODUCT FORMULAS

Show that
(@) sin40° +sin20° = cos 10° (€) cos465° +cos165° = —/6/2
. N . o sin75° —sin15° 1
(b) sin105° +sin15° = /6/2 @ s oos 5 A
Prove
sin A4 + sin 34 sind +sinB tanl(4+ B)
- = 24 iy - - = 2
@ cosdtcos3d © sind—sinB  tan {(4 - B)
in2A4 in4A4 A B
(py Smzdtsmad 34 (g SB8AfcosB = —cotl(4—Bycotl(4 + B)
cosA—cosB

cos2A4 + cos44
(e) sinf + sin 20 + sin 30 = sin 20 + (sin 6 + sin 30) = sin 20(1 + 2 cos 0)
(f) cosO+ cos20 + cos 30 = cos20(1 + 2cos 0)
(g) sin20 + sin40 + sin 60 = (sin 20 + sin 40) + 2 sin 30 cos 30 = 4 cos 0 cos 20 sin 30

o sin3x + cos 5x +sin 7x +sin9x _ (sin 3x +sin 9x) + (sin Sx +sin 7x) tan 6x
€08 3x + €08 5x + cos 7x 4+ cos9x  (cos 3x + cos 9x) + (cos 5x + cos 7x) .

Prove

(a) cos130° +cos110° +cos10° =0 (b) c0s220° 4+ cos100° + cos20° =0

Prove

(@) cos?0sin’0 = 117,(2 sin 0 + sin 30 — sin 50)

(b) cos?0 sin*0 = §(2 —c0s 20 — 2 cos 40 + cos 60)
(¢) cos’® =%(10 cos 0 + 5 cos 30 + cos 50)

(d) sin®0 =L (10 sin0— 5 sin30 + sin 50)

Transform

(a) 4 cosx+ 3 sinx into the form ¢ sin (x + o). Ans. 5 sin(x + 53°8')
(b) 4 cosx+ 3 sinx into the form ¢ sin (x — o). Ans. 5 sin(x —306°52)
(¢) sinx—cosx into the form ¢ sin (x — o). Ans. /2 sin (x — 45°)

(d) 5 cos3t+ 12 sin3t into the form ¢ cos(3t—a). Ans. 13 cos(3t—67°23')

[CHAP. 30

Find the maximum and minimum values of each sum of Problem 30.18 and a value of x or ¢ between 0 and

27 at which each occurs.

Ans.  (a) Maximum = 5, when x = 36°52' (i.e., when x + 53°8' = 90°); minimum = -5, when x =

216°52
(b) Same as (a)
(¢) Maximum = V2, when x = 135°; minimum = —/2, when x = 315°

d) Maximum = 13, when ¢ = 22°28'; minimum = —13; when ¢ = 82°28'
(



Oblique Triangles

AN OBLIQUE TRIANGLE is one which does not contain a right angle. Such a triangle contains either
three acute angles or two acute angles and one obtuse angle.

The convention of denoting the measures of the angles by 4, B, C and the lengths of the
corresponding opposite sides by a, b, ¢ will be used here. See Figs. 31-1 and 31-2.

< c

A - B A ¢
Fig. 31-1 Fig. 312

When three parts, not all angles, are known, the triangle is uniquely determined, except in one case
to be noted below. The four cases of oblique triangles are

Case I.  Given one side and two angles
Case II. Given two sides and the angle opposite one of them
Case III. Given two sides and the included angle

Case IV. Given the three sides

THE LAW OF SINES. In any triangle, the sides are proportional to the sines of the opposite angles,
ie.,
a b ¢
sind sinB sinC

The following relations follow readily:
a_sinA b _sinB ¢ _sinC
b sinB’

¢ sinC’ a sind
(For a proof of the law of sines, see Problem 31.1.)

211
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PROJECTION FORMULAS. In any triangle ABC,

a=bcos C+ccos B
b=ccos A+acos C
c=acos B+bcos A

(For the derivation of these formulas, see Problem 31.3.)

CASE 1. Given one side and two angles
EXAMPLE. Suppose a, B, and C are given.

To find 4, use 4 = 180° —(B+ C).

b in B in B
To find b, use — = & whence b = a%m .

a sinA sin 4

; inC inC
To find ¢, use - & whence ¢ = aém

a sinA sin 4

(See Problems 31.4-31.6.)

CASE II. Given two sides and the angle opposite one of them

EXAMPLE. Suppose b, ¢, and B are given.

sinC ¢ . csin B
sinB b’ sin €= b

If sin C > 1, no angle C is determined.

If sinC = 1,C =90° and a right triangle is determined.

If sin C < 1, two angles are determined: an acute angle C and an obtuse angle C’ = 180° — C. Thus, there may
be one or two triangles determined. This is known as the “ambiguous case.”

This case is discussed geometrically in Problem 31.7. The results obtained may be summarized as follows:
When the given angle is acute, there will be

(a) One solution if the side opposite the given angle is equal to or greater than the other given side.
(b) No solution, one solution (right triangle), or two solutions if the side opposite the given angle is less than
the other given side.

When the given angle is obtuse, there will be

(¢) No solution when the side opposite the given angle is less than or equal to the other given side.
(d) One solution if the side opposite the given angle is greater than the other given side.

EXAMPLE
(I) When b =30, ¢ =20, and B =40°, there is one solution since B is acute and b > c.
(2) When b =20, ¢ =30, and B=40°, there is either no solution, one solution, or two solutions. The

particular subcase is determined after computing sin C = %HB

(3) When b =30, ¢ =20, and B = 140°, there is one solution.
(4) When b =20, ¢ =30, and B = 140°, there is no solution.

This, the so-called ambiguous case, is solved by the law of sines and may be checked by the projection formulas.
(See Problems 31.8-31.10.)
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THE LAW OF COSINES. In any triangle 4BC, the square of any side is equal to the sum of the

squares of the other two sides diminished by twice the product of these sides and the cosine of their
included angle; i.e.,

@ = b*+ % = 2bc cos A
b = +a* —2cacos B

A =d*+b*>=2ab cosC

(For the derivation of these formulas, see Problem 31.11.)

CASE III. Given two sides and the included angle
EXAMPLE. Suppose a, b, and C are given.
To find ¢, use ¢ = a® + b* — 2ab cos C.

asm C. To find B, use sin B = bsinC

To find A4, use sin 4 =

c

To check, use 4 + B+ C = 180°.
(See Problems 31.12-31.14.)

CASE 1V. Given three sides

EXAMPLE. With a, b, and ¢ given, solve the law of cosines for each of the angles.

P = 2122 22
To find the angles, use cos 4 :%, cos B = H;T, cosC:a—i_zTL.

To check, use 4 + B+ C = 180°.
(See Problems 31.15-31.16.)

Solved Problems

31.1  Derive the law of sines.

Let ABC be any oblique triangle. In Fig. 31-3(a), angles A and B are acute while in Fig. 31-3(b), angle B
is obtuse. Draw CD perpendicular to AB or AB extended and denote its length by /.

(2]
[3]

o
>
)
g

(-]

[ S,

L)
o

B
(b)

—_
Q
-~

Fig. 31-3

In the right triangle ACD of either figure, 7 = bsin A while in the right triangle BCD, h = asin B since in
Fig. 31-3(b), i = asin £ DBC = asin (180° — B) = asin B. Thus,
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b
sind  sinB’

In a similar manner (by drawing a perpendicular from B to AC or a perpendicular from 4 to BC), we

asinB=bsinA or

obtain
a c b ¢
- = or - = — .
sind sinC sinB  sinC
Thus, finally,
a b c

sind sinB sinC’

31.2  Derive one of the projection formulas.
Refer to Fig. 31-3. In the right triangle ACD of either figure, AD = bcos 4. In the right triangle BCD of
Fig. 31-3(a), DB = acos B. Thus, in Fig. 31-3(a)
¢=AB=AD+ DB =bcosA+acosB=acosB+bcosA4
In the right triangle BCD of Fig. 31-3(b), BD = acos £ DBC = acos (180° — B) = —acos B. Thus, in
Fig. 31-3(b),
¢=AB=AD—BD =bcosA—(—acos B) =acos B+ bcos A

CASE 1

31.3  Solve the triangle ABC, given ¢ = 25,4 = 35°, and B = 68°. See Fig. 31-4.

35°
A e B
Fig. 31-4

To find C: C=180° — (4 + B) = 180° — 103° = 77°

. _esind 25sin35°  25(0.5736)
To find a: =SnC -~ sm7r o094 °

) __csinB_ 25sin68°  25(0.9272)
To find b: b=nc ™ w7 - oo

To check by projection formula:
¢=uacos B+ bcos A= 15cos68° + 24 cos35° = 15(0.3746) + 24(0.8192) = 25.3

The required parts are a = 15, =24, and C = 77°.

31.4 A4 and B are two points on opposite banks of a river. From A4 a line 4C = 275 ft is laid off and the angles
CAB = 125°40' and ACB = 48°50 are measured. Find the length of AB. See Fig 31-5.

a 48°50°
B C

O n!
®
> 125740 ’/q‘,\

)
A
Fig. 31-5
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In the triangle ABC, B = 180° —(C + A) = 5°30/ and

_ bsinC_275sin48°50' _ 275(0.7528)

SnB -~ sn530 00958 2ooft

AB =

31.5 A tower 125 ft high is on a cliff on the bank of a river. From the top of the tower the angle of depression of a
point on the opposite shore is 28°40’ and from the base of the tower the angle of depression of the same
point is 18°20’. Find the width of the river and the height of the cliff.

In Fig. 31-6 BC represents the tower, DB represents the cliff, and 4 is the point on the opposite shore.
C 01000’
1720
< )

a ’
(]p 108°20

Fig. 31-6

In triangle ABC, C= 90° —28°40 = 61°20/, B =90° + 18°20/ = 108°20', 4 = 180° — (B + C) = 10°20'.
~_asinC _ 125sin 61°20"  125(0.8774) _ 611
" sind  sinl0°200  0.1794

In the right triangle ABD, DB = c¢sin18°20/ = 611(0.3145) = 192, AD = ccos 18°20' = 611(0.9492)

= 580.
The river is 580 ft wide and the cliff is 192 ft high.

31.6  Discuss the several special cases when two sides and the angle opposite one of them are given.

Let b, ¢, and B be the given parts. Construct the given angle B and lay off the side B4 = ¢. With 4 as
center and radius equal to b (the side opposite the given angle) describe an arc. Figures 31-7(a)—(e) illustrate
the special cases which may occur when the given angle B is acute, while Figs. 31-7(f)—(g) illustrate the cases
when B is obtuse.

Fig. 31-7

The given angle B is acute.

Fig. 31-7(a). When b < AD = csin B, the arc does not meet BX and no triangle is determined.

Fig. 31-7(b). When b = AD, the arc is tangent to BX and one triangle—a right triangle with the
right angle at C—is determined.
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Fig. 31-7(c). When b > AD and b < ¢, the arc meets BX in two points C and C’ on the same side of
B. Two triangles ABC, in which C is acute, and ABC’, in which C' =180° —C is
obtuse, are determined.

Fig. 31-7(d). When b > AD and b = ¢, the arc meets BX in C and B. One triangle (isosceles) is
determined.

Fig. 31-7(e). When b > ¢, the arc meets BX in C and BX extended in C'. Since the triangle ABC'
does not contain the given angle B, only one triangle 4BC is determined.

The given angle is obtuse.

Fig. 31-7(f). When b < ¢ or b = ¢, no triangle is formed.
Fig. 31-7(g). When b > ¢, only one triangle is formed as in Fig 31.7(e).

CASE 11

31.7  Solve the triangle ABC, given ¢ = 628, b =480, and C = 55°10’. Refer to Fig. 31-8.

B
o Q\\
\\ 6'?
5}
%
A 130°50°
Fig. 31-8 Fig. 319

Since C is acute and ¢ > b, there is only one solution.

bsinC _ 480sin55°10' _ 480(0.8208)

For B: sin B = =0.6274 and B=38°50

c 628 628
For A: A=180°—(B+ C)=86°0

bsind  480sin86°0"  480(0.9976)
For a: = SnB  sn3es0’ o6l o

The required parts are B=38°50",4 = 86°0’, and a = 764.
31.8  Solve the triangle ABC, given a = 525,¢ = 421, and A = 130°50’. Refer to Fig. 31-9.
Since A is obtuse and a > ¢, there is one solution.

esind _ 421sin130°50°  421(0.7566)

. : — — p — o /
For C: sinC P 55 535 0.6067 and C=37°20
For B: B=180°—(C+ A4)=11°50'
. : ogn/
For b: _ asin B 525sin11°50"  525(0.2051) —1m

sind ~ sin130°50’ ~ 0.7566
The required parts are C = 37°20’, B=11°50", and b = 142.

31.9  Solve the triangle ABC, given a = 31.5, b = 51.8, and 4 = 33°40’. Refer to Fig. 31-10.

Fig. 31-10
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Since A is acute and a < b, there is the possibility of two solutions.

bsinA _ 51.8sin33°40"  51.8(0.5544)

For B: inB= = =0.9117
or s 315 315
There are two solutions, B = 65°40’ and B’ = 180° —65°40' = 114°20".
For C: C=180°—(4+ B)=80°40'
For C': C'=180° -4+ B)=32°0'
For c. _asinC_31.56in80°40" _ 31.50.9868) _ |
: T sind  sin33°407 © 0.5544
. , _asinC’_ 31.5sin32°0" _ 31.5(0.5299)
For ¢ = Snd  sin33d0’ 0554 ol
The required parts are
For triangle 4BC: B =65°40", C=280°40, and c=56.1.
For triangle ABC': B’ =114°20', c’'=132°0, and ¢’ =30.1.

31.10 Derive the law of cosines.

In the right triangle 4BC of either figure, »* = h* + (4D)>.
In the right triangle BCD of Fig. 31-11(a), h=asin B and DB = acosB. Then AD = AB— DB =
¢—acos and

b = I 4+ (AD)* = &’sin’B + ¢ — 2cacos B+ a*cos*B

= &*(sin*B + cos’B) + > = 2cacos B = > + &> — 2cacos B

>

of —--—-z----=

Fig. 31-11

In the right triangle BCD of Fig. 31-11 (b), h = asin £ CBD = asin(180° — B) = asin B and BD =
acos Z CBD = acos(180° — B) = —acos B. Then AD = AB + BD = ¢ —acos Band b> = ¢* + a* — 2cacos B.
The remaining equations may be obtained by cyclic changes of the letters.

CASE 111

31.11 Solve the triangle ABC, given a = 132, b = 224, and C = 28°40'. See Fig. 31-12.
B
A2
°

28°40’
b=224

Fig. 31-12
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For ¢: & =d>+b*—2abcosC
= (132)> + (224)> — 2(132)(224) cos 28°40'
= (132)° + (224)> — 2(132)(224)(0.8774)
=15714 and c¢=125
asinC _ 132sin28°40' _ 132(0.4797)

. 1 = = = = = ° /
For A4: sin 4 c 125 125 0.5066 and A =30°30

. . o /
bsinC _ 224 sin 28° 40 _ 224(0.4797) — 0.859 and B — 120°40/
c 125 125

For B: sin B =

(Since b > a, A is acute; since A + C < 90°, B > 90°.)
Check: 4 + B+ C = 179°50'. The required parts are 4 = 30°30', B = 120°40', ¢ = 125.

31.12 Two forces of 17.5 1b and 22.5 1b act on a body. If their directions make an angle of 50° 10’ with each other,
find the magnitude of their resultant and the angle which it makes with the larger force.

In the parallelogram ABCD (see Fig. 31-13), A+ B= C+ D = 180° and B = 180° — 50°10' = 129°50".
In the triangle ABC,
b =c*+d —2cacos B [cos129°50' = —cos (180° — 129°50') = —cos 50° 10']
= (22.5)% + (17.5)> = 2(22.5)(17.5)(—0.6406) = 1317 and b=136.3

. asin B 17.5sin129°50  17.5(0.7679) oy
sinAd = b 363 = 363 =0.3702 and A =21°40

The resultant is a force of 36.3 1b; the required angle is 21°40'.

A 50°10' c=22.% "B

Fig. 31-13

31.13 From A4 a pilot flies 125 mi in the direction N 38°20' W and turns back. Through an error, he then flies
125 mi in the direction S51°40'E. How far and in what direction must he now fly to reach his intended

destination A4?
Denote the turn back point as B and his final position as C. In the triangle ABC (see Fig. 31-14),
b =&+ a® —2cacos B = (125)* + (125)* — 2(125)(125) cos 13°20'
= 2(125)%(1 = 0.9730) = 843.7 and b=129.0

asinB_ 125sin13°20' _ 125(0.2306)
b 29.0 T 290
Since LCAN, = A— ZN,AB = 45°20/, the pilot must fly a course S45°20' W for 29.0 mi in going from
Cto A.

=0.9940 and A= 8340

sind =
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Fig. 31-14

CASE 1V

31.14 Solve the triangle ABC, given a = 30.3, b = 40.4, and ¢ = 62.6. Refer to Fig. 31-15.

A c-62.6

Fig. 31-15

b? + c-d (40.4)2 + (62.6)2 - (30.3)2 o gn
For cosA = he 2(40.4)(62.6) 0.9159 and = 23740

E4ad -0 (62.6)° +(30.3)% 4 (40.4)
For B: B= = = 0.844 ' B=32°20
or cos ea 362.6/30.3) 0.8448 and 32°20

@+ = (30.3)7 + (40.4)* — (62.6)°
For C: = = = 0. = 124°0'
or C cos C b 3(303)@03) 0.5590 and C 0

Check: 4+ B+ C=180°.

31.15 The distances of a point C from two points 4 and B, which cannot ge measured directly, are required.
The line C4 is continued through 4 for a distance 175 m to D, the line CB is continued through B for 225 m
to E, and the distances AB=300 m, DB=326 m, and DE =488 m are measured. Find AC and BC. Refer to

Fig. 31-16.

>
A 300
B
E 28 %
D e E

Fig. 31-16
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Triangle ABC may be solved for the required parts after the angles £ZBAC and £ABC have been found.
The first angle is the supplement of ZBAD and the second is the supplement of the sum of ZABD and
ZDBE.

In the triangle 4BD whose sides are known,

(175)% + (300)* — (326)*

— e rq
2(175)(300) =0.1367 and ZBAD = 82°10

cos L BAD =

(300)2 + (326)% — (175)2
2(300)(326)

cos LABD = = 0.8469 and ZABD = 32°10'

In the triangle BDE whose sides are known,

cos 2 DBE = 25 i ;(r 2(2352)222;)(488)2 =-05538 and  ZDBE=123°40’
In the triangle ABC: AB = 300,
ZBAC =180° — £ BAD = 97°50'
Z ABC = 180° — (L ABD + £ DBE) = 24°10’

ZACB=180° — (L BAC + £ ABC) = 58°0'

ABsin Z ABC  300sin24°10"  300(0.4094)
Th AC = = = =14
en C="SnZACB 5in 58°07 0.8430 >

ABsin Z BAC  300sin97°50"  300(0.9907)
and BC = - - =350
an sin Z ACB 5in 58°07 0.8430

The required distances are AC = 145 m and BC = 350 m.

Supplementary Problems

Solve each of the following oblique triangles ABC, given:

3116 a=125 A=54°40", B=65°10".  Ans. b=139, c=133, C=60°10'

3117 h=321, A=75°20",C=38°30".  Ams. a=339, c=218, B=66°10'

3118 H =215, ¢ =150, B=42°40’. Ans.  a=300, 4=109°10", C=28°10

3119 a=512, h=426, A =48°50". Ans.  ¢=680, B=38°50', C=92°20’

3120 =504, c=333, B=118°30". Ans.  a=25.1, A=26°0", C=35°30’

3121 bh=402, a=315 B=112°20". Ans.  ¢=15.7, A=46°30", C=21°10'

3122 h=51.5, a=62.5, B=40°40". Ans.  ¢=78.9, A=52°20", C=87°0', ¢/ = 16.0, A' = 127°40’,
C'=11°40

3123 a =320, c =475, B=35°20. Ans. b =552, B=85°30", C' =59°10', b’ = 224, B' = 23°50’,

C'=120°50’
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31.24

31.25

31.26

31.27

31.28

31.29

31.30

31.31

b =120, c =270, A=118°40'. Ans.  a=344, B=17°50", C = 43°30’
a=245, bh=18.6, c=26.4. Ans.  A=63°10", B=42°40", C=74°10'
a=634, b=1.30, c=9.98. Ans.  A=39°20", B=46°50", C=93°50'

Two ships have radio equipment with a range of 200 mi. One is 155 mi N 42°40’ E and the other is 165 mi N
45°10" W of a shore station. Can the two ships communicate directly?

Ans. No; they are 222 mi apart.

A ship sails 15.0 mi on a course S 40°10’ W and then 21.0 mi on a course N 28°20" W. Find the distance and
direction of the last position from the first.

Ans.  20.9 mi, N 70°40’ W

A lighthouse is 10 mi northwest of a dock. A ship leaves the dock at 9 A.M. and steams west at 12 mi per hr.
At what time will it be 8 mi from the lighthouse?

Ans.  9:16 AM. and 9:54 AM.

Two forces of 115 1b and 215 1b acting on an object have a resultant of magnitude 275 Ib. Find the angle
between the directions in which the given forces act.

Ans.  70°50'

A tower 150 m high is situated at the top of a hill. At a point 650 m down the hill the angle between the
surface of the hill and the line of sight to the top of the tower is 12°30’. Find the inclination of the hill to a
horizontal plane.

Ans. 7°50'



Inverse Trigonometric
Functions

INVERSE FUNCTIONS. The equation

y=2x+3
defines a unique value of y for each value of x. Similarly, the equation
X
y — — 3
)

does the same; however, these two equations have an interesting, even provocative, relationship:

If f(x)=2x+3 and g(x) = %— 3,

then flg(x)=g(f(x)=x

That is, f and g “undo” each other. We call the function g the inverse of f and we call f the inverse of g.

NOTATION. This relationship is written as follows:

f=g!
and g=f"!

DEFINITION. If f and g are functions and if

f(g(x) =g(f(x)=x

for all values of x for which these composites are defined, then we say that f and g are each other’s
inverses.

To determine the equation of an inverse function for y = f(x), simply solve y = f(¥) for x and then
interchange the roles of the two variables.

222
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EXAMPLE. If f(x)=y=3x—5,

then 3x=y+5 (interchange x and y)
and x= y%S (solve for x)

x+5 .
Thus, f[o=y= % (interchange x and y)

Note that in Fig. 32-1 f(x) and f~'(x) are mirror images of each other in the line y = x:

=X -1
y W= r
=l
(—5,(2/ (5/3,0)
X
©0,-5)
Fig. 32-1
The reader should verify that for g(x) = x3, g_l(x) =7
For
M) =x% x>0, ()= 32.1)

Note also that if f(x) is not one-to-one, then f~!(x) is not a function. Thus, functions that are not one-to-one do
not have inverse functions. For f(x) = x2, unless we restrict the domain (as we did above in (32.1)), f(x) does not
possess an inverse function.

One particularly important class of inverse functions is the class of inverse trigonometric functions.

INVERSE TRIGONOMETRIC RELATIONS. The equation
X =sin y 32.2)

defines a unique value of x for each given angle y. But when x is given, the equation may have no solution
or many solutions. For example: if x = 2, there is no solution, since the sine of an angle never exceeds 1;
if x= %, there are many solutions: y = 30°, 150°, 390°, 510°, —210°, =330°, ....

To express y in terms of x, we will write

y = arcsin x (32.3)

In spite of the use of the word arc, (32.3) is to be interpreted as stating that “y is an angle whose sine is x.”
Similarly, we shall write y = arccos x if x = cosy, y = arctan x if x = tan y, etc. An alternate notation
for y = arcsin x is y = sin~! x (and similarly, y = cos™' x, etc., for the other functions). Note that
y = arcsin X, arccos x, etc., are all relations but not functions of x.

GRAPHS OF THE INVERSE TRIGONOMETRIC RELATIONS. The graph of y = arcsin x is the
graph of x = siny and differs from the graph y = sin x in that the roles of x and y are interchanged.
Thus, the graph of y = arcsin x is a sine curve drawn on the y axis instead of the x axis.

Similarly, the graphs of the remaining inverse trigonometric relations are those of the corresponding
trigonometric functions except that the roles of x and y are interchanged.
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INVERSE TRIGONOMETRIC FUNCTIONS. It is at times necessary to consider the inverse
trigonometric relations as single-valued (i.e., one value of y corresponding to each admissible value of x).
To do this, we agree to select one out of the many angles corresponding to the given value of x. For
example, when x = % we shall agree to select the value y = 30°, and when x = —%, we shall agree to select
the value y = —30°. This selected value is called the principal value of arcsin x. When only the principal
value is called for, we shall write Arcsin x, Arccos x, etc. The portions of the graphs on which the principal
values of each of the inverse trigonometric relations lie are shown in Figs. 32-2(«a) through (/) by a heavier
line. Note that Arcsinx, Arccosx, etc., are functions of x. They are called the inverse trigonometric
functions. Thus, the portions of the graphs shown in a heavier line are the graphs of these functions. Note
that Sin™' x and Arcsinx are equivalent notations, and the same is true for the other trigonometric
functions.

If = Sin~! h — E =y E
y=Sin" X, then 3 ¥ 3
If y=Cos' x, then O=sy=m
and if y= Tan™' X, then - <y< E.
2 2
Similarly,
if y=Sec! x then 0=y=m, y#g;
if y=Cot™' x  then O<y<m
and if y=Csc!x,  then —gSyS; y#0.
- — -1 2 -2
For example, Sin™! ? = g, Arctan 1 = g, Sin™! T\/g = TT[, Arccos (7) = ?n, Sec™! (ﬁ) =
—TSn and Arcese (—v/2) + —Tn

Note that the inverse trigonometric functions are inverses of the trigonometric functions. For
example sin (Sin~! x) = y.

GENERAL VALUES OF THE INVERSE TRIGONOMETRIC RELATIONS. Let y be an inverse
trigonometric relation of x. Since the value of a trigonometric function of y is known, there are
determined in general two positions for the terminal side of the angle y (see Fig. 24-4.). Let y; and y,
respectively be angles determined by the two positions of the terminal side. Then the totality of values
of y consist of the angles y; and y,, together with all angles coterminal with them, that is,

yvi+2nn and y,+2n=n

where n is any positive or negative integer, or is zero.
One of the values y; or y, may always be taken as the principal value of the inverse trigonometric
relation with the domains properly restricted.

EXAMPLE. Write expressions for the general value of (@) arcsin %, (b) arccos(—1), (¢) arctan(—1).

(a) The principal value of arcsin § is 7/6, and a second value (not coterminal with the principal value) is
5n/6. The general value of arcsin % is given by /6 + 2nn, 57/6 + 2nm, where n is any positive or negative
integer, or is zero.

(b) The principal value is 7 and there is no other value not coterminal with it. Thus, the general value is given
by n + 2nm, where n is a positive or negative integer, or is zero.

(¢) The principal value is —n/4, and a second value (not coterminal with the principal value) is 37/4. Thus, the
general value is given by —n/4 + 2nn, 3n/4 + 2nn, where n is a positive or negative integer, or is zero.
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Fig. 32-2

Solved Problems

32.1  Verify each of the following:

(a) Arcsin 0=0

(b) Arccos (=1)=n
(¢) Arctan v/3 = /3
(d) Arccot /3 = 1/6

(e) Arcsec2=m/3

(f) Arcese (—V2) = —3n/4
(g) Arccos 0 =m/2

(h) Arcsin (=1) = -n/2

(i) Arctan (—1)=-n/4
(j) Arccot 0 =m/2

(k) Arcsec (—/2) = —3n/4
() Arccsc (=2) ==5n/6

32.2  Verify each of the following:

(a) Arcsin 0.3333 =19°28' (g) Arcsin (—0.6439) = —40°5
(b) Arccos 0.4000 = 66°25 (h) Arccos (—0.4519) = 116°52/
(¢) Arctan 1.5000 = 56°19 (i) Arctan (—1.4400) = —55°13
(d) Arccot 1.1875 = 40°6¢' (j) Arccot (—0.7340) = 126°17
(e) Arcsec 1.0324 = 14°24' (k) Arcsec (—1.2067) = —145°58
(f) Arcese 1.5082 =41°32 () Arcese (—4.1923) = —166°12'
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32.3

324

32.5

32.6

INVERSE TRIGONOMETRIC FUNCTIONS [CHAP. 32

Verify each of the following:

(a) sin(Arcsin 1) = sin 7/6 =1 (e) Arccos [cos(—7/4)] = Arccos2/2 = n/4
(b) cos[Arccos (—1)] = cos 2m/3 = -1 (f) Arcsin (tan37n/4) = Arcsin (1) = —1/2
(¢) cos[Arcsin (—\/5/2)] =cos(—n/4) = \/5/2 (g) Arccos [tan (=57/4)] = Arccos(=1) ==
(d) Arcsin (sin 7/3) = Arcsin +/3/2 = /3

Verify each of the following:

(@) Arcsin v/2/2 — Arcsin y=mn/4—-n/6=mn/12
(b) Arccos 0+ Arctan (—1) = n/2 + (-n/4) = n/4 = Arctan 1

Evaluate each of the following:

(a) cos(Arcsin %), (b) sin[Arccos (—%)], (¢) tan[Arcsin (—%)].

(a) Let 0 = Arcsin %; then sin 0 = %, 0 being a first quadrant angle. From Fig. 32-3(a), cos (Arcsin %) =
cos 0=1%.

(b) Let 0= Arccos (—%); then cos 0 = —%, 0 being a second quadrant angle. From Fig. 32-3(b),
sin [Arccos (—%)] =sin 0 = \6/3

(¢) Let 0= Arcsin (—%); then sin 6 = —%, 0 being a fourth quadrant angle. From Fig. 32-3(c),
tan [Arcsin (—%)] =tan 0 = —3/\/7 = —3\/7/7.

y ¥
5 3
Al \s
[ ;]
0 3 o =z o °°
(a) (&)
Fig. 32-3

Evaluate sin (Arcsin % + Arcsin %).
Let 0 = Arcsin 12 and ¢ = Arcsin . Then sin 0 =12

From Fig. 32-4 and Fig. 32-5,

and sin ¢ = %7 0 and ¢ being first quadrant angles.

sin (Arcsin %+Arcsin 4 =3sin (0 + ¢) = sin 0 cos ¢ + cos O sin ¢
12,34 5.4_56
5T15757

o]
[=]
9]

Fig. 32-4 Fig. 32-5
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32.7 Evaluate cos(Arctan % — Arcsin 215).

Let 0 = Arctan ¥ and ¢ = Arcsin %. Then tan6 =13 and sin¢ = %, 0 and ¢ being first quadrant
angles. From Fig. 32-6 and Fig. 32-7,

cos (Arctan £ — Arcsin ) = cos (0 — ¢) = cos 0 cos ¢ + sin Osin ¢

—8.24,15.7 _297
17 25 17 25 425

Fig. 32-6 Fig. 32-7

32.8 Evaluate sin(2 Arctan 3).
Let 6 = Arctan 3; then tan 6 = 3, 6 being a first quadrant angle. From Fig. 32-8,

3 1 3
sin (2 Arctan 3) =sin 20 = 2 sin fcos 0 = 2(—)(—) ==
( ) NANTIARE

Fig. 32-8

32.9  Show that Arcsin 1/+/5 4+ Arcsin2/+/5 = /2.

Let 0 = Arcsin 1/\/5 and ¢ = Arcsin 2/\/5; then sin 0 = 1/\/3 and sin ¢ = 2/\/5, each angle terminat-
ing in the first quadrant. We are to show that 0 + ¢ = n/2 or, taking the sines of both members, that
sin(0 + ¢) = sinm/2.

From Fig. 32-9 and Fig. 32-10,

I 1 2 2
sin(ﬁ-i—qﬁ)zsin@cos(b+cosﬁsin¢=ﬁ~\/—§+ﬁ~—5:l=sing
y
Y 2
oV z
1

Fig. 32-10
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32.10 Show that 2 Arctan 4 3 = Arctan % 3

Let 0 = Arctan % and ¢ = Arctan %; then tan 0 =5 and tan¢ = %. We are to show that 20 = ¢ or,
taking the tangents of both members, that tan 20 = tan ¢. Now

2tan 0 2( 3 4

tan 20 = ——— =
an 1 —tan®0 1—()2 3

=tan ¢

32.11 Show that Arcsm — Arcsin 3 5 = Arccos :3

Let 0 = Arcsin &, ¢ = Arcsin 2, and = Arccos 2 then sin 0 =Z, sin ¢ =3, and cos y =13, each
angle terminating in the first quadrant. Taking the sine of both members of the given relation, we are to show
that sin (0 — ¢) = sin . From Figs. 32-11, 32-12, and 32-13,

_77.4_36.3_ 8

sin (0 — ¢) = sin 0 cos ¢ —cos 0 sin ¢ %-3—?5% 15 = sin ¢

v v v
& n
9 3 gt 8
A ¢ . ¥ .
ol 36 x ) 1 * 0| 15 *
Fig. 32-11 Fig. 32-12 Fig. 32-13

32.12  Show that Arccot 33 — Arccot § = Arccos 13,

Let 0 = Arccot % 32, ¢ = Arctan 1 3> and = Arccos (see Fig. 32-14); then cot 0 = ﬁ, tan ¢ =, and
cos i = 13, each angle terminating in the first quadrant Taklng the tangent of both members of the glven

relation, we are to show that tan (0 — ¢) = tan .

tan 6 —tan ¢ 21 S
tan (0 — ¢) = = 81 0
WO = e dan g 1+ @ 12 Y
v
3
b 5
0 12 #
Fig. 32-14

32.13 Show that Arctan + Arctan { + Arctan § = n/4.
We shall show that Arctan %—i— Arctan % = n/4 — Arctan %

1
3+t 7

tan (Arctan 1 + Arctan ) = 23 _ = _
2 Yol-dhd) 9
and tan (n/4 — Arctan 1) = 15 =

ool—

7
9

o0l—

32.14 Show that 2 Arctan { + Arctan = Arcsec /34/5 + Arcese V/17.

Let 0= Arctan }, ¢ = Arctan 1, 2 = Arcsecy/34/5, and = Arcescv/17; then tan 0 =1, tan ¢ =1,
sec A =+/34/5, and csc = +/17, each angle terminating in the first quadrant.
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Taking the tangent of both members of the given relation, we are to show that tan(20+ ¢) =
tan (1 + ). Now

2 tan0 24 3

tan20=— 7 =_"¥ =

an I-tan*0 1-? 4

; 341
ta11(29_|_¢):tan29+tan¢_ it+7 -

1 —tan 20 tand)_ 1
and, using Fig. 32-15 and Fig. 32-16,

3
tan (4 4 ) =15_7

[s] > X 0 ¥ : -»> X
Fig. 32-15 Fig. 32-16

32.15 Find the general value of each of the following:

(a) arcsin \/5/2 =n/4+ 2nn,3n/4 + 2nn (d) arcsin(=1)=—-n/2+ 2nn
(b) arccos 3 =n/3 +2nm,51/3 + 2nn (e) arccos 0 =m/2+ 2nm,3n/2+ 2nn
(¢) arctan 0 = 2nm,2n+ Dn (f) arctan(—+/3) = —n/3 + 2nm,2n/3 + 2nn

where 7 is a positive or negative integer, or is zero.

32.16 Show that the general value of

(a) arcsin x = nn + (—1)"Arcsin x,
(b) arccos x = 2nm = Arccos x,

(¢) arctan x = nm + Arctan x,

where 7 is any positive or negative integer, or is zero.

(a) Let 0 = Arcsin x. Then since sin (z — 0) = sin 0, all values of arcsin x are given by

1) 0+ 2mn and 2) n—-0+4+2mn=02m+ )n—0
Now, when n = 2m, that is, n is an even integer, (/) may be written as nn + 0 = nn + (—=1)"0; and

when n=2m+ 1, that is, n is an odd integer, (2) may be written as nt— 0 = nn + (—1)"0. Thus,
arcsin x = nm + (—=1)" Arcsin x, where n is any positive or negative integer, or is zero.

(b) Let 0 = Arccosx. Then since cos(—0) =cos 0, all values of arccos x are given by 6+ 2nn and
—0+4 2nm or 2nn + 0 = 2nn = Arccos x, where n is any positive or negative integer, or is zero.

(¢) Let 0= Arctanx. Then since tan (n + 0) = tan 0, all values of arctan x are given by 6+ 2mn and
(m+ 0)+2mn =0+ 2m+ )z or, as in (a), by nm + Arctan x, where n is any positive or negative
integer, or is zero.

32.17 Express the general value of each of the functions of Problem 32.15, using the form of Problem 32.16.

(a) arcsin +2/2 = nm+ (=1)'n/4 (d) arcsin(=1) = nn+ (-1)(-=n/2)
(b) arccos % =2nn*7/3 (e) arccos 0 =2nm *1/2
(¢) arctan 0 =nn (f) arctan (=3 =nn— n/3

where 7 is any positive or negative integer, or is zero.
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Supplementary Problems

32.18 Write the following in inverse function notation:
(@) sin =3 (b) coso=-I, (¢) tan x = -2, (d) cotp=1.

Ans. (a) 0= arcsin 3 (b) o= arccos(-1) (¢) x = arctan(=2) (d) B =arccos i

32.19 Find the value of each of the following:

(a) Arcsin \/§/2 (d) Arccot 1 (g) Arctan —=3) (j) Arccsc(—1)
(b) Arccos (—/2 /2) (e) Arcsin(— %) (h)  Arccot 0
(¢) Arctan 1//3 (f) Arccos(—=1) (i) Arcsec(—2)

Ans. (a) =©/3 (b)) 3n/4 (¢) =n/6 (d) =n/4 (e) —n/6 (f) 2n/3
(& -n/3 (W =n/2 () -3n/4 (j) —-n/2

32.20 Evaluate each the following:

(@) sin[Arcsin(=1) (f) sin(Arccos %) (k) Arctan (cot 230°)
(b) cos(Arccos \/5/2) (2) cos[Arcsin(—%)] (/) Arccot(tan 100°)
(¢) tan[Arctan(—1)] (h) sin(Arctan 2) (m) sin (2 Arcsin _%)
(d) sin [Arccos(—\/§/2)] (i)  Arccos (sin 220°) (n) cos(2 Arcsin %)
(e) tan(Arcsin 0) (j) Arcsin[cos (—105°)] (0) sin(% Arccos %)
Ans. (@) -1 o 2 k) 40°

» B2 @ & @ 170°

@ -1 (hy 2/5 (m) 4/5/9

d) 3 (i 130° n %

@ 0 (B —15° (o 1410

32.21 Show that
(a) sin(Arcsin %+ Arcsin $) = &

15 _ 1y =297
(b) cos (Arccos 13— Arccos 5z) = 55

. .1 1\ 1-26
(¢) sin (Arcsm 37 Arccos 3) =

(d) tan(Arctan 3 4+ Arccot B) =12

—4 12 63
(e) cos (Arctan 5 + Arcsin 1—) =%
. =3 5 63
(f) tan (Arcsm 5 Arccos E) =16
.4 12 253
(g) tan (2 Arcsin 3 + Arccos 1—) =~ %0

(h) sin(2 Arcsin £— Arccos 12) = 32
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32.22

32.23

32.24

Show that
1 1 = 12 1 43
(a) Arctan 3 + Arctan 3732 (e) Arccos e + Arctan i Arccot £
. 4 3 0z . .3 .15 -13
(b) Arcsin 3 + Arctan i1 (f) Arcsin 3 + Arcsin 7= Arccos <5
4 1 = 1 =
(¢) Arctan - —Arctan - = — (g) Arctan o+ Arctan — = — (a>0)
3 7 4 o 2

1 1 =
(d) 2 Arctan 3 + Arctan 7=

Prove: The area of the segment cut from a circle of radius r by a chord at a distance d from the center is

d
given by K = r? Arccos — — dvr? —d>.
’

Determine whether the following functions possess an inverse function:
(@ y=5x=3 (B y=Jx () y=x* ) y=x-6
Ans. (a) yes (b) yes (¢) no (d) yes



Trigonometric
Equations

TRIGONOMETRIC EQUATIONS, i.e., equations involving trigonometric functions of unknown
angles, are called

(a) Identical equations or identities, if they are satisfied by all values of the unknown angles for
which the functions are defined.

() Conditional equations, or equations, if they are satisfied only by particular values of the
unknown angles.

For example,

(a) sinxcsc x =1 is an identity, being satisfied by every value of x for which csc x /is defined.

(b) sinx = 0 is a conditional equation since it is not satisfied by x = }17[ or %n.

Hereafter in this chapter we shall use the term “‘equation” instead of “‘conditional equation.”

A SOLUTION OF A TRIGONOMETRIC EQUATION, as sin x = 0, is a value of the angle x which
satisfies the equation. Two solutions of sinx =0 are x =0 and x = 7.

If a given equation has one solution, it has in general an unlimited number of solutions. Thus, the
complete solution of sinx = 0 is given by

x =0+ 2nm, x=n+2n

where 1 is any positive or negative integer or is zero.
In this chapter we shall list only the particular solutions for which 0 = x < 2x.

PROCEDURES FOR SOLVING TRIGONOMETRIC EQUATIONS. There is no general method
for solving trigonometric equations. Three standard procedures are illustrated below and other
procedures are introduced in the solved problems.

(4) The equation may be factorable.

EXAMPLE 1. Solve sinx—2sinx cosx = 0.
Factoring, sin x — 2sinx cos x = sinx(1 —2 cos x) = 0, and setting each factor equal to zero, we have

5

sinx=0 and x=0,7; 1—-2cosx=0 or COSX:% and x:g,?.

232
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Check. For x =0, sinx —2sinx cosx = 0—2(0)(1) = 0;
for x =mn/3, sin x — 2 sin x cosx:%\/g—z(%\/g)(%)ZO;
for x =m, sinx —2sinx cosx = 0—2(0)(—1) = 0;

for x = 5n/3, sinx —2sinx cosx:—%\/g—2(—%\/§)(%):0.
Thus, the required solutions (0 =< x < 2r) are x = 0, /3,7, 57/3.

(B) The various functions occurring in the equation may be expressed in terms of a single function.

EXAMPLE 2. Solve 2 tan’x + sec? x = 2.

Replacing sec®>x by 1+ tan’y, we have 2tan’v+ (1 + tan’x) = 2,3tan’x = 1, and tan x = *1+/3. From
tan x = 1/3,x = n/6 and 77/6; from tan x = —1/~/3,x = 51/6 and 117/6. After checking each of these values in
the original equation, we find that the required solutions (0 = x < 2r) are x = /6, 51/6, 7n/6, 11n/6.

The necessity of the check is illustrated in Example 3.

EXAMPLE 3. Solve secx + tan x = 0. )
1 sinx _

Multiplying the equation sec x + tan x = g5 + gogx — 0 by cos x, we have 1 +sinx = 0 or sinx = —1; then

x = 37/2. However, neither sec x nor tan x is defined when x = 37/2 and the equation has no solution.

(C) Both members of the equation are squared.

EXAMPLE 4. Solve sinx +cosx = 1.

If the procedure of (B) were used, we would replace sin x by =+/1 — cosx or cos x by * +/1 —sin’x and thereby
introduce radicals. To avoid this, we write the equation in the form sin x = 1 — cos x and square both members. We
have

sinx = 1 =2 cos x + cos’x

2

1 —cos’x = 1—2 cosx + cos’x (33.1)

2 cos’x —2 cosx = 2 cos x(cosx—1)=0
From cosx = 0,x = n/2,3n/2; from cosx = 1,x = 0.

Check. Forx =0, sinx+cosx=0+1=1;
for x =m/2, sinx+cosx=14+0=1;
for x =3n/2, sinx+cosx=-1+0%#1.

Thus, the required solutions are x = 0,7/2.

The value x = 3n/2, called an extraneous solution, was introduced by squaring the two members. Note that
(33.1) is also obtained when both members of sin x = cosx — 1 are squared and that x = 37/2 satisfies this latter
relation.

Solved Problems

Solve each of the trigonometric equations 33.1-33.22 for all x such that 0 = x < 2z. (If all solutions are
required, adjoin +2nm, where n is zero or any positive or negative integer, to each result given.) In a
number of solutions, the details of the check have been omitted.

331  2sinx—1=0.

Here sinx =1 and x = n/6, 57/6.

33.2 sinxcosx =0.

From sinx = 0, x = 0, x; from cos x = 0, x = n/2,3n/2. The required solutions are x = 0,7/2, x, 31/2.
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33.3

334

33.5

33.6

33.7

33.8

33.9
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(tan x — 1)(4sin’x — 3) = 0.

From tan x—1 =0, tan x = | and x = n/4,51/4; from 4sin’x—3 =0, sinx = *+/3/2 and x = /3,
27/3,4n/3,5n/3. The required solutions are x = n/4,7/3,2n/3,5n/4,4n/3, 57 /3.

sin’x +sinx —2 = 0.

Factoring, (sinx + 2)(sinx—1) = 0.
From sinx +2 =0, sinx = —2 and there is no solution; from sinx—1=10, sinx =1 and x = n/2.
The required solution is x = x/2.

3cos’x = sin’x.

2 2

First Solution. Replacing sin’x by 1—cos’x, we have 3cos’x = 1 —cos’x or 4cos’x = 1. Then

cos x = =1 and the required solutions are x = n/3,2n/3,4n/3,57/3.
Second Solution. Dividing the equation by cos’x, we have 3 = tan’x. Then tan x = ++/3 and the
solutions above are obtained.

2sinx—csc x = 1.
Multiplying the equation by sinx, 2sin’x — 1 = sinx, and rearranging, we have
2sin’x —sinx—1 = 2sinx + Dsinx—1) =0

From 2sinx+ 1 =0,sinx = -} and x = 7n/6, 11n/6; from sinx = 1,x = m/2.
Check. For x=m/2, 2sinx—csc x=2()-1=1;
for x =7n/6 and 11n/6, 2sinx—csc x =2(-H - (-2) = L.
The solutions are x = n/2,7n/6, 117/6.

2secx = tan x + cot Xx.
Transforming to sines and cosines, and clearing fractions, we have

2 sinx  cosx 5

or 2sinx = sin’x 4 cos’x = 1

COS X Ccosx sinx

Then sinx = 5 and x = /6, 51/6.

tanx + 3cot x = 4.

Multiplying by tan x and rearranging, tan’x — 4 tan x + 3 = (tan x — l)(tan x —3) = 0.
Fromtan x—1=0,tan x = 1 and x = n/4, 57/4; from tanx — 3 = 0,tanx = 3and x = 71°34',251°34’".
Check. For x =mn/4 and 5n/4,tanx +3cot x =1+ 3(1) = 4;
for x = 71°34" and x —251°34, tanx 4+ 3cot x =3+ 3(}) = 4.
The solutions are 45°, 71°34/, 251°, 251°34’.

csc x + cot x = /3.
First Solution. Writing the equation in the form csc x = +/3 — cot x and squaring, we have
csc? x = 3—2+v3cot x + cot® x
Replacing csc? x by 14 cot>x and combining, this becomes 2+/3cot x—2 = 0. Then cot x = 1/+/3 and
x=mn/3,4n/3.
Check. For x =m/3, csc x +cot x = 2/\/§+ 1/\/§ =.3;

for x = 4n/3, csc x +cot x = —2//3 + 1/+/3 # /3. The required solution is x = /3.
Second Solution. Upon making the indicated replacement, the equation becomes

1 cosx

sinx  sinx

and, clearing of fractions, 1 4 cosx = J3sin x.



CHAP. 33] TRIGONOMETRIC EQUATIONS 235

Squaring both members, we have 1 + 2 cosx + cos® x = 3sin’x = 3(1 — cos’x) or
4cos’x +2cosx—2 = 2(2 cos x — I(cosx+1)=0

From 2cosx—1=0, cosx =3 and x = n/3,5n/3; from cosx+1=0, cosx=—1 and x = .
Now x = n/3 is the solution. The values x = = and 57/3 are to be excluded since csc 7 is not defined
while csc 57/3 and cot 57/3 are both negative.

33.10 cosx—+/3sinx = 1.
First Solution. Putting the equation in the form cosx — 1 = +/3sinx and squaring, we have
cos’x —2cosx + 1 = 3sin’x = 3(1 - coszx)
Then, combining and factoring,
4cos’x —2cosx—2= 2(2cosx + I)(cosx—1)=0

From 2cosx+ 1 =0,cosx = —% and x = 2n/3,4n/3; from cosx— l,cosx =1 and x = 0.
Check. For x =0, cosx—+/3sinx =1—-+3(0) = 1;
for x = 2n/3, cosx — J3sinx = —%— \/5(\/5/2) #1;
for x = 4n/3, cosx — V3sinx = —%— \/5(—\/§/2) =1.
The required solutions are x = 0,47/3.
Second Solution. The left member of the given equation may be put in the form

sin 0 cos x + cos 0 sin x = sin(0 + x)

% %, and setting

sin 0 =% and cos 0 = —Tﬁ Since sin® 0 + cos* 0 = 1,(%)24- _T‘B =1and r=2. Now sinf = § cos =
—/3/2 so that the given equation may be written as sin (0 + x) = Lwith 6 = 57/6. Then 0 + x = 57/6 + x =
arcsini = /6, 5n/6,131/6,171/6,... and x = —21/3,0,4n/3,2x, ... . As before, the required solutions are
x=0,41/3.

Note that r is the positive square root of the sum of the squares of the coefficients of cos x and sin x
when the equation is written in the form acosx + bsinx = ¢; that is,

r=+a*+b?

The equation will have no solution ifﬁ is greater than 1 or less than —1.
a +

; ; . vidi ; ati . V3 oy =
in which 0 is a known angle, by dividing the given equation by r > 0,4 cosx + (T\/_)sm x=

33.11 2cosx=1-sinx.
First Solution. As in Problem 33.10, we obtain
4cos’x = 1 —2sinx + sin’x
4(1 —sin®x) = 1 — 2sin x + sin’x
5sin’x—2sinx—3 = (5sinx 4 3)sinx—1) =0

From 5sinx+3 =0, sinx=—-%=-0.6000 and x =216°52, 323°8’; from sinx—1=0, sinx=1 and
x=mn/2.
Check. For x=7/2,2(00=1-1;
for x =216°52, 2(-$) # 1 —(-3);
for x =323°%', 2(H) = 1 - (-9).
The required solutions are x = 90°,323°8'.
Second Solution. Writing the equation as 2 cosx+sinx =1 and dividing by r =22+ 12 = /5,
we have
icosx—b—isinx:L (@)

V5 V5 V5
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Let sin0 = 2/\/37 cos 0 = 1/\/5; then (1) becomes

. . . 1
sin 0 cos x + cos 0 sinx = sin(f + x) = —=

NG

with 0 =63°26". Now 60+ x = 63°26 4 x = arcsin (1/+/5) = arcsin 0.4472 = 26°34' 153°26/,386°34, . ..
and x = 90°,323°8 as before.

EQUATIONS INVOLVING MULTIPLE ANGLES
3312 sin3x=-1V2.

Since we require x such that 0 =<x < 2x,3x must be such that 0 =3x < 6rn. Then 3x = 57/4,
Tn/4,13n/4,157/4,21n/4,231/4 and x = 57/12,77/12,13%/12,5n /4, Tn/4,237/12. Each of these values is
a solution.

33.13 cos %x = %

Since we require x such that 0 < x < 2, {x must be such that 0 < {x < . Then {x = n/3 and x = 2=/3.

33.14 sin2x+cosx = 0.
Substituting for sin 2x, we have 2sinx cosx + cosx = cos x(2sinx + 1) = 0. From cosx = 0,x = 7/2,

3n/2; from sinx = —4, x = 7r/6,111/6. The required solutions are x = n/2,7x/6, 31/2,11xn/6.

33.15 2 cos® Ly = cos’x.

Substituting 1 + cos x for 2 cos’ %x, the equation becomes cos’x — cos x — 1 = 0; then cos x = ! izﬁ =
1.6180, —0.6180. Since cos x cannot exceed 1, we consider cosx = —0.6180 and obtain the solutions
x=128°10/,231°50'.

(NOTE: To solve +/2cos %‘c = cos x and v2 cos %x = —cos x, we square and obtain the equation of

this problem. The solution of the first of these equations is 231°50' and the solution of the
second is 128°10'.)
33.16 cos2x+cosx+1=0.
Substituting 2 cos’x — 1 for cos 2x, we have 2 cos’x 4 cos x = cos x(2 cosx + 1) = 0. From cos x = 0,

x =n/2,3n/2; from cos x = —1,x = 2n/3,4n/3. The required solutions are x = n/2,2n/3, 3n/2,4n/3.

33.17 tan2x 4 2sinx = 0.
sin2x _ 2sinx cos x

Using tan2x = = , we have
cos 2x cos 2x
2sin x b b 2
sin x cos x+2sinx _ 2$inx< COS X n l) _ 2Sinx(cosx-ﬁ-cos x) —0
cos 2x cos 2x cos 2x

From sinx=0, x=0, 7m; from cosx+ cos 2x = cosx + 2 cos’x— 1 = (2 cosx — I)(cosx + 1) =0,
x=m/3, 57/3, and n. The required solutions are x =0, n/3, =, 57/3.

33.18 sin2x = cos 2x.

First Solution. Let 2x = 0; then we are to solve sinf = cos 0 for 0 <0 < 4n. Then 0 = n/4,5n/4,
9n/4,13n/4 and x = 0/2 =n/8,57/8,97/8,131/8 are the solutions.

Second Solution. Dividing by cos 2x, the equation becomes tan2x =1 for which 2x = n/4,5n/4,
9n/4,13n/4 as in the first solution.
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33.19

33.20

33.21

33.22

33.23

33.24

sin 2x = cos 4x.
Since cos 4x = cos 2(2x) = 1 —2sin?2x, the equation becomes
2sin’2x +sin2x— 1 = (2sin2x—1)(sin2x+ 1) =0

From 2sin2x—1 =0 or sin2x = 1, 2x = 7/6,51/6,131/6,171/6 and x = n/12,51/12,131/12,17n/12;
from sin2x + 1 = 0 or sin2x = —1,2x = 37/2,7n/2 and x = 3n/4,7n/4. All of these values are solutions.

sin 3x = cos 2x.

To avoid the substitution for sin 3x, we use one of the procedures below.

First Solution. Since cos 2x = sin(%n —2x) and also cos 2x = sin(%n + 2x), we consider

(a) sin3x = sin(%n — 2x), obtaining 3x = n/2 —2x, 51/2 - 2x,971/2 = 2x, . ..

(b) sin3x = sin(%n + 2x), obtaining 3x = n/2 + 2x, 57/2 + 2x,971/2 + 2x, ...

From (a), 5x =n/2,5n/2,91/2,13n/2,17%/2 (since 5x < 10n); and from (b) x = n/2. The required
solutions are x = n/10,7/2,97/10,13%/10, 177/10.

Second Solution. Since sin 3x = cos (%n —3x) and cos 2x = cos (—2x), we consider

(¢) cos 2x = cos (3n — 3x), obtaining 5x = n/2, 57/2,97/2,13n/2,177/2

(d) cos(—2x) = cos (%n — 3x), obtaining x = n/2, as before

tan4x = cot 6x.

Since cot6x = tan(n — 6x), we consider the equation tan4x = tan(im—6x). Then 4x = 7/2 - 6x,
3n/2—6x, 5n/2—6x,..., the function tan® being of period =n. Thus, 10x = =/2,3n/2,5n/2,7%/2,
91/2,...,391/2 and the required solutions are x = n/20,3n/20,r/4,7x/20,...,397/20.

sin 5x —sin 3x —sinx = 0.
Replacing sin 5Sx —sin 3x by 2 cos 4xsin x (Chapter 28), the given equation becomes
2cosdxsinx —sinx = sinx(2cos4x—1) =0
From sinx = 0,x = 0, 7; from cos 4x—1 =0 or cos 4x =1 4x = r/3,5r/3,7n/3,11n/3,13n/3,17x/3,

197/3,237/3 and x = n/12,57/12,7n/12,11% /12,137 /12,17 /12,197 /12,237 /12. Each of the values ob-
tained is a solution.

Solve the system

rsing =2 )
rcos =3 forr>0 and 0=0<2n )

Squaring the two equations and adding, r%sin 0 + r>cos 0 = > = 13 and r = /13 = 3.606.
When r > 0,sin 0 and cos 0 and both > 0 and 0 is acute. Dividing (/) by (2), tan0 = % = 0.6667 and
0 =33°41".

Solve the system

rsinf=3 f 0 and 0=0<2 0
> =0<
r=d4(l+singy 0 i @

Dividing (2) by (1),

1 4(1 +si
‘_:(—i-ismﬁ) or 4sin’0+4sinf—3=0
sin 0 3
and 2sinf + 3)2sin0—1)=0
From 2sin—1=0,sin0 = %, 0 = n/6 and 57/6; using (1), r(%) = 3 and r = 6. Note that 2sinf0 + 3 =0
is excluded since when r > 0,sin 0 > 0 by (/). The required solutions are 0 = 7/6,r = 6 and 0 = 57/6,r = 6.
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33.25 Solve the system

sinx +siny =1.2 o
cosx+cosy=1.5 for0=x, y<2n &

Since each sum on the left is greater than 1, each of the four functions is positive and both x and y are
acute.
Using the appropriate formulas of Chapter 28, we obtain

2sind(x + p)eosix—p) = 1.2 "
2 cosl(x + y)cosi(x—y) =15 )
i / / sin%(x+y) 1 1.2 1 oA o 1 ;
Dividing (1) by (2), —F——— =tanj(x +y) = -2 = 0.8000 and 5(x + y) = 38°40' since 5(x + ) is also
COS5X + ) 1.5

acute. Substituting for sin%(x +»)=0.6248 in (I'), we have cos%(x —-y) = % =0.9603 and

Hx—») =16°12.
Then x = %(x +») +%(x—y) =54°52"and y = %(x +») —%(x—y) =22°28.

33.26 Solve Arccos2x = Arcsin x.

If x is positive, o = Arccos 2x and f§ = Arcsin x terminate in quadrant I; if x is negative, o terminates in
quadrant II and f§ terminates in quadrant IV. Thus, x must be positive.

For x positive, sin f = x and cos § = v/1 — x?. Taking the cosine of both members of the given equation,
we have

cos (Arccos 2x) = cos (Arcsinx) = cos f or 2x =+/1—x?

Squaring, 4x> = 1 —x2,5x> = 1, and x = +/5/5 = 0.4472.
Check. Arccos 2x = Arccos 0.8944 = 26°30" = Arcsin 0.4472, approximating the angle to the nearest 10'.

33.27 Solve Arccos(2x*—1)=2 Arccos%.

Let o = Arccos (23> — 1) and = Arccos; then cosa = 2x? — 1 and cos f = 1.
Taking the cosine of both members of the given equation,

cos o =2x"—1=cos 2f =2cos’f— 1 =2()" -1 =-1
Then 2x°> = % and x = +1

=3

Check. For x = =1 Arccos (1) = 2 Arccos or 120° = 2(60°).

33.28 Solve Arccos2x — Arccos x = 7/3.

If x is positive, 0 < Arccos2x < Arccos x; if x is negative, Arccos 2x > Arccos x > 0. Thus, x must be
negative.

Let o = Arccos2x and f§ = Arccos x; then cosa = 2x,sino = +/1 —4x?,cos f = x, and sin f = v/1 — x?
since both o and f§ terminate in quadrant II.

Taking the cosine of both members of the given equation,

. . 1
cos (e — ) = cosacos f + sinasin f = 2x% + V1 — 4x2 1—x2=cos§:§
or VI—4x2 V1 —x? =1-2x2

Squaring, 1 —5x? 4 4x* = 1= 2x2 +4x% 3x% = 3 and x=-1
Check.  Arccos (—1) — Arccos (1) = n—2n/3 = /3.
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33.29

33.30

33.31

33.32

33.33

33.34

33.35

33.36

33.37

33.38

33.39

33.40

Solve Arcsin2x = A]—‘n: — Arcsin x.

Let o = Arcsin 2x and f# = arcsin x; then sina = 2x and sin § = x. If x is negative, « and f§ terminate in
quadrant IV; thus, x must be positive and f§ acute.
Taking the sine of both members of the given equation,

sing = sin(%n —f) = sin }‘n cos ff —cos %TE sin

or 2x=%\/§\/1—x2—%\/§x and (2v/2+ Dx =1 —x2

Squaring, (8 +4+/2 4+ 1)x> = 1 —x%,x> = 1/(10 + 4+/2), and x = 0.2527.
Check. Arcsin0.5054 = 30°22'; Arcsin 0.2527 = 14°38/, and {n— 14°38' = 30°22".

Solve Arctan x + Arctan (1 — x) = Arctan ‘3—‘.
Let o = Arctan x and ff = Arctan (1 — x); then tano = x and tan § = 1 — x. Taking the tangent of both

members of the given equation,

tana+tanf  x+(1—-x) 1

I —tanotanf - 1=x(1-x) T l—x+x2

Then 3=4—4x+4x* 4x* —4x+1=Q2x—1)> =0, and x =1
Check. Arctanl 4+ Arctan (1 —1) = 2 Arctan 0.5000 = 53°8' and Arctan % = Arctan 1.3333 = 53°8'.

tan (o + f) =

— ¢ andy — 4
= tan (Arctan3) =3

9l

3

Supplementary Problems
Solve each of the following equations for all x such that 0 = x < 2=
sinx = /3/2. Ans. w/3,2n/3
cos’x =1, Ans.  w/4, 3n/4, 5n/4, Tn/4
sinxcosx = 0. Ans. 0, n/2, &, 3n/2
(tanx—1)(2sinx+1)=0. Ans. w4, Tr/6, Sn/4, 11n/6
2sin’x —sinx—1=0. Ans. m/2, Tn/6, 117/6
sin 2x 4 sinx = 0. Ans. 0, 2n/3, ©, 47/3
cosx +cos2x = 0. Ans. w3, m, Sn/3
2tanx sinx —tanx = 0. Ans. 0, n/6, 51/6, ©
2cosx + sec x =3. Ans. 0, n/3, 57/3

2sinx +csc x = 3. Ans. /6, n/2, 51/6
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33.41 sinx +1 = cosx. Ans. 0, 3n/2

33.42 sec x—1 = tanx. Ans. 0

33.43 2cosx + 3sinx = 2. Ans. 0°,112°37

3344 3sinx+5cosx+5=0. Ans. 180°, 241°56'

3345 1+sinx = 2cosx. Ans. 36°52,270°

33.46 3sinx+4cosx = 2. Ans. 103°18', 330°27

33.47 sin2x = —/3/2. Ans. 2m/3, 51/6, 5m/3, 117/6

33.48 tan3x = I. Ans. w12, 57/12, 3=/4, 13n/12, 17%/12, Tn/4
33.49 cosx/2 = /3/2. Ans. w/3.

33.50 cotx/3 = —1//3. Ans.  No solution in given interval
33.51 sinxcosx = 1. Ans. m/4, Sn/4

33.52 sinx/2 + cosx = 1. Ans. 0, m/3, 57/3

33.53 sin3x + sinx = 0. Ans. 0, /2, w, 3m/2

33.54 cos2x tcos3x = 0. Ans. m/5, 3n/5, m, Tn/S, 9n/S

33.55 sin2x + sindx = 2 sin3x. Ans. 0, n/3, 2n/3, =, 4n/3, 57/3

33.56 cosS5x + cosx = 2 cos2x. Ans. 0, n/4, 2n/3, 3n/4, Sn/4, 4n/3, Tn/4
33.57 sinx + sin3x = cosx + cos3x. Ans. m/8, m/2, 5n/8, 9n/8, 3n/2, 13n/8

Solve each of the following systems for r =0 and 0 < 0 < 2=

33.58 r=asin0 Ans. 0=m/6,r=a/2
r=acos 20 0=>5n/6,r=a/2;0=3n/2,r=-a
3359 r=uacos 0 Ans. 0=mn/2, r=0; 0=3%/2, r=0
r=asin20 0=mn/6,r=-/3a/2

0 =5n/6, r = —/3a/2
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33.60

33.61

33.62

33.63

r=4(14+cos )

r=3secl

Solve each of the following equations:

Arctan 2x + Arctan x = /4.

Arcsin x + Arctan x = /2.

Arccos x + Arctan x = n/2.

Ans.

Ans.

Ans.
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0=mn/3,r==6
0=51/3,r =6

x=0.281

x=0.786



Complex Numbers

PURE IMAGINARY NUMBERS. The square root of a negative number (i.e., v—1,v/=+5,v/=9) is
called a pure imaginary number. Since by definition /=5 = /5 - v/—=1 and V=9 = /9 - /=1 = 3+/—1, it is
convenient to introduce the symbol i = +/~1 and to adopt +/=5 = iv/5 and v=9 = 3i as the standard form
for these numbers.

The symbol i has the property i> = —1, and for higher integral powers we have 7 = i% -[i= (=1)i =
- it =@ =1’ =1,7=i*"i=1i etc.

The use of the standard form simplifies the operation on pure imaginaries and eliminates
the possibility of certain common errors. Thus, V=9 - V4 = /=36 = 6i since V=9 - V4 = 3i(2) = 6i but
V=9 - /=4 £ /36 since V=9 - /=4 = (3i)(2i) = 6i* = —6.

Notice the cyclic nature of the powers of i. i”
m-i®=—1,i" =—i,i% =1, etc.

equals i,—1,—i,1 for every natural number,

COMPLEX NUMBERS. A number a+ bi, where ¢ and b are real numbers, is called a complex
number. The first term a is called the real part of the complex number and the second term bi is called
the pure imaginary part.

Complex numbers may be thought of as including all real numbers and all pure imaginary numbers.
For example, 5= 5+ 07/ and 3i =0+ 3i.

Two complex numbers a + bi and ¢ + di are said to be equal if and only if ¢ = ¢ and b = d.

The conjugate of a complex number a + bi is the complex number @ — bi. Thus, 2 + 3i and 2 — 3i,
—3 4+ 4i and —3 —4i are pairs of conjugate complex numbers.

ALGEBRAIC OPERATIONS
(1) ADDITION. To add complex numbers, add the real parts and add the pure imaginary parts.

EXAMPLE 1. (2+3i)+(@4—5i)=Q+4)+(3—5)i=6—2i.

(2) SUBTRACTION. To subtract two complex numbers, subtract the real parts and subtract the
pure imaginary parts.

EXAMPLE 2. (2+3i))—-(4-=5)=Q2-4)+[3-(=5]i=-2+38i.

(3) MULTIPLICATION. To multiply two complex numbers, carry out the multiplication as if
the numbers were ordinary binomials and replace i> by — 1.

EXAMPLE 3. (2+3i)(4—5i)=8+42i— 151> =8 +2i—15(—1) = 23 + 2i.

242
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(4) DIVISION. To divide two complex numbers, multiply both numerator and denominator of
the fraction by the conjugate of the denominator.

243 Q+30)@+5) _ 8—15+10+12i T 22
4=5i G-5)@E+5) 16+ 25 T4
—7+22i
41

EXAMPLE 4.

.. . 1
[Note the form of the result; it is neither nor H(_7 + 22[).]

(See Problems 34.1-34.9.)

GRAPHIC REPRESENTATION OF COMPLEX NUMBERS. The complex number x + yi may be
represented graphically by the point P (see Fig. 34-1) whose rectangular coordinates are (x, y).

The point O, having coordinates (0, 0), represents the complex number 0 4 0i = 0. All points on the
x axis have coordinates of the form (x,0) and correspond to real numbers x + 0i = x. For this reason,
the x axis is called the axis of reals. All points on the y axis have coordinates of the form (0, y) and
correspond to pure imaginary numbers 0 + yi = yi. The y axis is called the axis of imaginaries. The plane
on which the complex numbers are represented is called the complex plane. See Fig. 34-1.

In addition to representing a complex number by a point P in the complex plane, the number may be
represented by the directed line segment or vector OP. See Fig. 34-2. The vector OP is sometimes
denoted by OP and is the directed line segment beginning at O and terminating at P.

” y
__________ :)x +yi Fer yt
1
y ]
x !
) ” 0 N
Fig. 34-1 Fig. 34-2

GRAPHIC REPRESENTATION OF ADDITION AND SUBTRACTION. Let z; = x; +iy; and
zZp = X, + iy, be two complex numbers. The vector representation of these numbers suggests the
illustrated parallelogram law for determining graphically the sum z; 4+ z, = (x; + iy;) + (x5 + i)»), since
the coordinates of the endpoint of the vector z; + z, must be, for each of the x coordinates and the
y coordinates, the sum of the corresponding x or y values. See Fig. 34-3.

Since z; —z, = (x1 +iyy) — (x + iyy) = (x1 + i) + (=x, — iy,), the difference z; —z, of the two
complex numbers may be obtained graphically by applying the parallelogram law to x; + iy; and
—X, — iy,. (See Fig. 34-4.)

In Fig. 34-5 both the sum OR = z; + z, and the difference OS = z; — z, are shown. Note that the
segments OS and P,P; (the other diagonal of OP,RP,) are congruent. (See Problem 34.11.)

y (14X, y1+y2) y (X2, ¥2)
Y72 (x1, y1)
o -
R
e
. ‘\(xl_xZ! 1)
(=%35-¥2)

Fig. 34-3 Fig. 34-4
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Fig. 34-5

POLAR OR TRIGONOMETRIC FORM OF COMPLEX NUMBERS. Let the complex number
x + yi be represented (Fig. 34-6) by the vector OP. This vector (and hence the complex number) may be
described in terms of the length r of the vector and any positive angle 0 which the vector makes with the
positive x axis (axis of positive reals). The number r = /x> + )2 is called the modulus or absolute value of
the complex number. The angle 0, called the amplitude of the complex number, is usually chosen as the
smallest, positive angle for which tan 6 = y/x but at times it will be found more convenient to choose
some other angle coterminal with it.

From Fig. 34-6, x = r cos 0;and y = r sin 0;thenz = x + yi = r cos 0 + ir sin 0 = r(cos 6 + i sin 0).
We call z = r(cos 0 + i sin 0) the polar or trigonometric form and z = x + yi the rectangular form of the
complex number z.

v v
_ ()
@ ————— Px+yi r{\e = 300 .
=3 1
@ < | 0
& ! "
~ 10 L . o
0 x=r cos 6
1-i/3
Fig. 34-6 Fig. 34-7

EXAMPLE 5. Express z = 1 —i/3 in polar form. (See Fig. 34-7.)
The modulus is r = \/(1)2 + (—\/§)2 = 2. Since tan 0 = y/x = —\/§/1 = —/3, the amplitude 0 is either 120° or

300°. Now we know that P lies in quadrant IV; hence, 0 = 300° and the required polar form is

z = r(cos 0+ isin 0) = 2(cos 300° + i sin 300°)

Note that z may also be represented in polar form by

z = 2[cos (300° 4+ n360°) + i sin (300° + 1n360°)]

where 7 is any integer.

EXAMPLE 6. Express the complex number z = 8(cos 210° + i sin 210°) in rectangular form.

Since cos 210° = —\/3/2 and sin 210° = —%,
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z = 8(cos 210° + i sin 210°) = 8[——

p=)
+
-
N —
SN—
[E—
Il
|
S
S
|
&

is the required rectangular form.
(See Problems 34.12-34.13.)

MULTIPLICATION AND DIVISION IN POLAR FORM

MULTIPLICATION. The modulus of the product of two complex numbers is the product of their
moduli, and the amplitude of the product is the sum of their amplitudes.

DIVISION. The modulus of the quotient of two complex numbers is the modulus of the dividend
divided by the modulus of the divisor, and the amplitude of the quotient is the amplitude
of the dividend minus the amplitude of the divisor. For a proof of these theorems, see
Problem 34.14.

EXAMPLE 7. Find (@) the product z,z,, (b) the quotient and z;/z,, and (c) the quotient z,/z; where z; =
2(cos 300°+ i sin 300°) and z, = 8(cos 210° + i sin 210°).

(a) The modulus of the product is 2(8) = 16. The amplitude is 300° + 210° = 510°, but following the con-
vention, we shall use the smallest positive coterminal angle 510° —360° = 150°. Thus, z,z, =
16(cos 150° + i sin 150°).

(b) The modulus of the quotient z;/z, is %:% and the amplitude is 300° —210° =90°. Thus, z/z, =
1(cos 90° + i sin 90°).

(¢) The modulus of the quotient z,/z; is § = 4. The amplitude is 210° —300° = —90° but we shall use the
smallest positive coterminal angle —=90° + 360° = 270°. Thus z,/z; = 4(cos 270°+ i sin 270°).

[NOTE: From Examples 5 and 6 the numbers are z; = 1 —iy/3 and z, = —4+/3 — 4i in rectangular form.
Then

2125 = (1 = iV/3)(—4+/3 — 4i) = —8+/3 + 8i = 16(cos 150° + i sin 150°)
as in (@), and

z

_—4\/5—4i_(—4\/§—4i)(1+i\/§)_i6i__4i
L 1-i3 (A=A +iBE) 4

= 4(cos 270° + i sin 270°)

o

‘ ©

[

as in (c¢).
(See Problems 34.15-34.16.)

DE MOIVRE’S THEOREM. If n is any rational number,
[r(cos O + i sin 0)]" = ¥*(cos nO + i sin no)

A proof of this theorem is beyond the scope of this book; a verification for n = 2 and n = 3 is given
is Problem 34.17.

EXAMPLE 8. (/3= )" = [2(cos 330° + i sin 330°)]"°
= 2!%cos 10 -330° + i sin 10-330°)

L
= 1024(cos 60° + i sin 60°) = 1024(5 +%§)
=512+ 512i/3

(See Problem 34.18.)
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ROOTS OF COMPLEX NUMBERS. We state, without proof, the theorem:
A complex number a + bi = r(cos 6 + i sin 6) has exactly n distinct nth roots.
The procedure for determining these roots is given in Example 9.
EXAMPLE 9. Find all fifth roots of 4 —4i.
The usual polar form of 4 —4i is 4+/2(cos 315° + i sin 315°), but we shall need the more general form

4+/2[cos (315° 4+ k360°) + i sin (315° + k360°)], where k is any integer, including zero.
Using De Moiver’s theorem, a fifth root of 4 —4i is given by

. 5o .
{4v2[cos (315° + k360°) + i sin (315° + k360°)]}'/° = (4\/5)]/5(605 315° +k3(5’0 +isin 202 +5k360 )

= 2[cos (63° + k72°) +i sin (63° + k72°)]
Assigning in turn the values k =0, 1,..., we find

k=0: +/2(cos 63° +isin 63°) = R,

k=1: 2(cos 135° +isin 135°) = R,

k=2: /2(cos 207° + i sin 207°) = R

k=3 /2(cos 279° + i sin 279°) = R,

k=4: +/2(cos 351° +isin 351°) = Rs

k=35: \/2(cos 423° + i sin 423°) = +/2(cos 63° + i sin 63°) = R, etc.

Thus, the five fifth roots are obtained by assigning the values 0,1,2,3,4 (i.e., 0,1,2,3,...,n—1) to k. (See also
Problem 34.19.)

The modulus of each of the roots is +/2; hence these roots lie on a circle of radius /2 with center at the origin.
The difference in amplitude of two consecutive roots is 72°; hence the roots are equally spaced on this circle, as
shown in Fig. 34-8.

Solved Problems

In Problems 34.1-34.6, perform the indicated operations, simplify, and write the results in the form a + bi.
341 G-4i))+S5+T7H)=C=-5+4+Ti=-2+3i
342 @A+4+2))—(-14+3)=[4--D]I+Q2-3)i=5-i

343 Q+)3-2)=(6+2)+(-4+3)i=8—i
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344

34.5

34.6

34.7

34.8

34.9

34.10

34.11

(B +4)3—4i)=9+ 16 =25
143 (14+30)Q2—i) _ Q43+ 146

= = 14+
21 C+he=D it ti
3-2i _(3-20)Q2+43i)_(6+6)+0O-4i 12 5
2-3i (2=-3)Q2+3i) 449 13713

Find x and y such that 2x — yi =4 + 3i.
Here 2x =4 and —y = 3; then x =2 and y = -3.

Show that the conjugate complex numbers 2 -+ i and 2 — i are roots of the equation x> —4x + 5 = 0.
Forx=2+4+i: Q4 —4Q+i)+5=4+4i+i*-8—-4i+5=0.

Forx=2—i: (2-i)-4Q-i)+5=4—4i+i*-8+4i+5=0.
Since each number satisfies the equation, it is a root of the equation.

Show that the conjugate of the sum of two complex numbers is equal to the sum of their conjugates.

Let the complex numbers be a + bi and ¢ + di. Their sum is (¢ + ¢) + (b + d)i and the conjugate of the
sum is (@ + ¢) — (b + d)i.

The conjugates of the two given numbers are @ — bi and ¢ —di, and their sum is (¢ +¢) + (=b—d)i =
(@a+c)—(b+d)i.

Represent graphically (as a vector) the following complex numbers: (@) 342 b) 2—i
() —2+i (d —-1-3i

We locate, in turn, the points whose coordinates are (3, 2),(2,—1),(=2, 1), (=1,-3) and join each to the
origin O.

Perform graphically the following operations:
(@) G+4)+Q+50), () G+4)+2-3i) (© @G+3)—Q+i), @) @G+3i)—Q—i).

For (a) and (b), draw as in Figs. 34-9(a) and 34-9(b) the two vectors and apply the parallelogram law.
For (¢) draw the vectors representing 4 + 3i and —2 — i and apply the parallelogram law as in Fig. 34-9(c).
For (d) draw the vectors representing 4 + 3/ and =2+ and apply the parallelogram law as in
Fig. 34-9(d).

R
v 5v91 v 344
R
2+5i 5+1
3+41 ) x
2-3i
0 . !
(b)
(a)
v
4+3¢
Rovgi
4+3i
=2+1
z O z
2-1

(¢) (d)
Fig. 34-9
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34.12

34.13

34.14

34.15
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Express each of the following complex numbers z in polar form:

@ —1+i/3, ) 63+6i, (¢) 2-2i, (d) —-3=-3+0i, () 4i=0+4i, (f) -3-4i

(@) P lies in the second quadrant; r = 4/(=1)> + (+/3)> = 2; tan 0 = /3/(—1) = —/3 and 0 = 120°. Thus,
z = 2(cos 120° + i sin 120°).

(b) P lies in the first quadrant; r=/(6+/3)2 46> = 12; tan—6 = 6/6+/3 = 1/+/3 and 6 = 30°. Thus,
z = 12(cos 30° + i sin 30°).

(¢) P lies in the fourth quadrant; r=+/2>+(=2)>= 24/2; tan 0 = —%z —1 and 0=315°. Thus,
z = 2+/2(cos 315° + i sin 315°).

(d) P lies on the negative x axis and 0 = 180°; r = +/(=3)? + 0> = 3. Thus, z = 3(cos 180° + i sin 180°).
(e) P lies on the positive y axis and 0 = 90°; r = /0> + 4% = 4. Thus, z = 4(cos 90° + i sin 90°).

(f) P lies in the third quadrant; r = /(=3)7 + (=42 = 5 tan 0 = —4/(=3) = 1.3333, 0 = 233°8". Thus,
z = 5(cos 233°8' + i sin 233°8).

Express each of the following complex numbers z in rectangular form:

(a) 4(cos 240° + i sin 240°) (¢) 3(cos 90° + i sin 90°)
(b) 2(cos 315° +isin 315°) (d) S(cos 128° + i sin 128°)

(@) 4(cos 240° + i sin 240°) = 4[-} + i(—V/3/2)] = =2 —2i/3

(b) 2(cos 315° + i sin 315°) = 2[1/2 + i(—1/32)] = V2 — iv2

(¢) 3(cos 90° + i sin 90°) = 3[0 + i(1)] = 3i

(d) 5(cos 128° + i sin 128°) = 5[—0.6157 + i(0.7880)] = —3.0785 + 3.9400i

Prove:
(a) The modulus of the product of two complex numbers is the product of their moduli, and the amplitude
of the product is the sum of their amplitudes.

() The modulus of the quotient of two complex numbers is the modulus of the dividend divided by the
modulus of the divisor, and the amplitude of the quotient is the amplitude of the dividend minus the
amplitude of the divisor.

Let z; = ri(cos 0, + i sin 0,) and z, = ry(cos 0, + i sin 0,).
(a) z1zy = r(cos 0) + i sin 8)) - rp(cos 6, + i sin 60,)

= ryr;[(cos 0 cos B, —sinf; sin 0,) + i(sin 0 cos 6, + cos 0 sin 6,)]
= riry[cos (0; 4+ 0,) + i sin (0, + 0,)]

() ri(cos 0 +isin 0;) ri(cos 0) +isin 0;)(cos 0, — i sin 0,)
ry(cos 0, +isin 0;)  ry(cos 0, + i sin 0,)(cos 0, — i sin 0,)

ri cos 0 cos 0, + sin 0sin ) + i(sin 6 cos 0, —cos 0;sin 0,)

&) cos? 0, + sin® 0,)

= r—l[cos (6, —60,) +isin (0 —6,)]

L]

Perform the indicated operations, giving the result in both polar and rectangular form.
(a) 5(cos 170° + i sin 170°) - (cos 55° 4 i sin 55°)

(b) 2(cos 50° + i sin 50°) - 3(cos 40° + i sin 40°)

(¢) 6(cos 110° + i sin 110°)~%(cos 212° 4+ i sin 212°)

(d) 10(cos 305° + i sin 305°) = 2(cos 65° + i sin 65°)
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4(cos 220° + i sin 220°) =+ 2(cos 40° 4 i sin 40°)
6(cos 230° + i sin 230°) <+ 3(cos 75° + i sin 75°)

The modulus of the product is 5(1) = 5 and the amplitude is 170° + 55° = 225°.

In polar form the product is S5(cos 225° +isin 225°) and in rectangular form the product
is 5(—/2/2 = i2/2) = =53/2/2 = 5ir/2)2.
The modulus of the product is 2(3) = 6 and the amplitude is 50° + 40° = 90°.

In polar form the product is 6(cos 90° + i sin 90°) and in rectangular form it is 6(0 4 i) = 6i.
The modulus of the product is 6(%) = 3 and the amplitude is 110° 4 212° = 322°.

In polar form the product is 3(cos 322° + i sin 322°) and in rectangular form it is 3(0.7880—
0.6157i) = 2.3640 — 1.8471..

The modulus of the quotient is 1 = 5 and the amplitude is 305° — 65° = 240°.

In polar form the product is 5(cos 240° 4 i sin 240°) and in rectangular form it is (5—1-
iv3/2) = -3-5iV3/2.
The modulus of the quotient is 5 = 2 and the amplitude is 220° —40° = 180°.

In polar form the quotient is 2(cos 180° + i sin 180°) and in rectangular form it is 2(—=1 + 0i) = —2.

The modulus of the quotient is $ = 2 and the amplitude is 230° — 75° = 155°.
In polar form the quotient is 2(cos 155° + i sin 155°) and in rectangular form it is 2(—0.9063+
0.4226i) = —1.8126 + 0.8452i.

Express each of the numbers in polar form, perform the indicated operation, and give the result in
rectangular form

(a)
(®)
(c)
(a)
)
(¢)

(d)

N

(g

(h)

(—1+ V33 +1) (d) =2+ (=V3+1i) (9 BG+2)2+i)
(3 =3i/3)(=2 = 2i/3) (e) 6i+(=3-3i) () Q+3i)+Q2-3i)
(4—4iV3) + (23 +2i) ) A+iB)A+iv3)
(1 + iv/3)(/3 + i) = 2(cos 120° 4 i sin 120°) - 2(cos 30° + i sin 30°)
= d(cos 150° + i sin 150°) = 4(—v/3/2 +1i) = =2/3 + 2
(3 —3iV/3)(=2 — 2ix/3) = 6(cos 300° + i sin 300°) - 4(cos 240° + i sin 240°)
= 24(cos 540° + i sin 540°) = 24(—1 + 0i) = —24
(4 —4i3) + (=243 + 2i) = 8(cos 300° + i sin 300°) + 4(cos 150° + i sin 150°)
= 2(cos 150° + i sin 150°) = 2(—/3/2 + Li) = —/3 +i
=2+ (=34 1) = 2(cos 180° + i sin 180°) =+ 2(cos 150° + i sin 150°)
= cos 30° + i sin 30° = %\/g-i-%i
6i + (=3 —3i) = 6(cos 90° + i sin 90°) + 3+v/2(cos 225° + i sin 225°)
= V2(cos 225° + i sin 225°) = —1—i
(1 + iv3)(1 + iv/3) = 2(cos 60° + i sin 60°) - 2(cos 60° + i sin 60°)
= 4(cos 120° +i sin 120°) = 4(=1 +1i/3) = =2 +2iv/3
(34 2i)2+ i) = V13(cos 33°41' + i sin 33°41') - v/5(cos 26°34' + i sin 26°34)
= /65(cos 60°15 + i sin 60°15")
= /65(0.4962 + 0.8682i) = 4.001 + 7.000i = 4 + 7i
243i  /13(cos 56°19' +isin 56°19') _ cos 416°19' + i sin 416°19’

2-3i  /T3(cos 303°41' + i sin 303°41')  cos 303°41" 4 sin 303°41'
=cos 112°38' +i sin 112°38' = —0.3849 + 0.9230i
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34.17 Verify De Moivre’s theorem for n =2 and n = 3.
Let z = r(cos 0 + i sin 0).
Forn=2: 22 = [r(cos 0 + i sin O)][r(cos 0+ i sin 0)]
= 12[(cos® O —sin> 0) + i(2 sin 0 cos 0)] = r(cos 20 + i sin 20)
For n=3: 2 =2z =[(cos 20 + i sin 20)][r(cos 0 + i sin 0)]
= 1[(cos 20 cos 0 —sin 20 sin 0) + i(sin 20 cos 0 + cos 20 sin 0)]
= r3(cos 30 + i sin 30).

The theorem may be established for n a positive integer by mathematical induction.

34.18 Evaluate each of the following using De Moivre’s theorem and express each result in rectangular form:

(@ A+i3 B B=°  (© 1+D° @) @+3)%

(@) (1 + iv/3)* = [2(cos 60° + i sin 60°)]* = 2%(cos 4 60° + i sin 4 - 60°)
= 2*(cos 240° + i sin 240°) = -8 — 8i/3
(b) (V3 =1)" = [2(cos 330° + i sin 330°)]° = 32(cos 1650° + i sin 1650°)
= 32(cos 210° + i sin 210°) = —16+/3 — 16/
(o) (—1+)'" = [V2(cos 135° + i sin 135°)]'" = 32(cos 270° + i sin 270°) = —32i
(d) 2+ 3i)* = [V13(cos 56°19' + i sin 56°19)]* = 13%(cos 225°16' + i sin 225°16')

=169(=0.7038 — 7104i) = —-118.9 - 120.1/

34.19 Find the indicated roots in rectangular form, except when this would necessitate the use of tables.
(@) Square roots of 2 —2i/3 (e) Fourth roots of i
(b) Fourth roots of —8 — 8i/3 (f) Sixth roots of —1
(¢) Cube roots of =42 +4iv/2 (g) Fourth roots of —16i

(d) Cube roots of 1 (h) Fifth roots of 1 + 3i
(a) 2 —2iy/3 = 4[cos (300° + k360°) + i sin (300° + £360°)]
and (2 =2i/3)"/? = 2[cos (150° + k180°) + i sin (150° + k180°)]

Putting k£ = 0 and 1, the required roots are
Ry = 2(cos 150° +isin 150°) = 2(=i/3+1i) =3 +i
Ry = 2(cos 330° +isin 330°) =2(3/3-1i)=3—i
(b) —8 —8i\/3 = 16[cos (240° + k360°) + i sin (240° + k360°)]
and (=8 —8i/3)!/* = 2[cos (60° + k90°) + i sin (60° + k90°)]
Putting k£ = 0, 1,2, 3, the required roots are
Ry = 2(cos 60° + i sin 60°) = 2( +i1\3) =1+ i3
Ry = 2(cos 150° +i sin 150°) = 2(-13+1i)=—V3+i
Ry = 2(cos 240° + i sin 240°) = 2(-1—il3) =-1-i/3
Ry = 2(cos 330° + i sin 330°) =243 -1i)=3-i

(© —4+/2 4 42 = 8[cos (135° + k360°) + i sin (135° + k360°)]
and (—4+/2 4 4i/2)'? = 2[cos (45° + k120°) + i sin (45° + k120°)]
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Putting k£ = 0, 1, 2, the required roots are
R, = 2(cos 45° + i sin 45°) = 2(1/v2 + i/N2) = V2 + iV2
R, = 2(cos 165° + i sin 165°%)
R; = 2(cos 285° + i sin 285°)

1 = cos (0° 4 k360°) + i sin (0° + £360°) and 1'/3 = cos (k120°) + i sin (k120°). Putting k= 0,1,2,
the required roots are

Ry =cos 0° +isin0° =1

Ry, =cos 120° +isin 120° = -1 +i1/3

Ry = cos 240° + i sin 240° = —1-i1\3
Note that R3 = cos 2(120°) + i sin 2(120°) = Rs,
R} = cos 2(240°) + i sin 2(240°) = R,,
and RyR; = (cos 120° + i sin 120°)(cos 240° + i sin 240°)

=cos 0° +isin 0° = R,.

i = cos (90° + k360°) + i sin (90° + k360°) and i'* = cos (221" + k90°) + i sin (224° 4+ k90°). Thus,
the required roots are

Ry =cos 224° + i sin 224° R; = cos 2024° + i sin 2024°
Ry =cos 1124° +isin 1124° Ry = cos 2924° + i sin 2924

—1 = cos (180° +k360°) + i sin (180° + k360°) and (—=1)"/® = cos (30° + k60°) + i sin (30° + k60°).
Thus, the required roots are

Ry =cos 30° +isin 30° =13 +1i

Ry, =08 90° +isin90° =i

Ry = cos 150° +isin 150° = —1/3+1i

Ry =cos 210° +isin 210° = —1/3-1;

Rs = cos 270° + i sin 270° = —i

Rs = cos 330° +isin 330° =13-1i

Note that R} = cos R2 = cos 180° + i sin 180° and thus R, and R are the square roots of —1; that

R} = R} = R} =cos 90° +isin 90° =i and thus R, R;, Rs are the cube roots of 7; and that R} =
Ri = R?, = cos 270° 4 i sin 270° = —i and thus R,, Ry, R are the cube roots of —i.

—16i = 16[cos (270° + K360°) + i sin (270° + k360°)] and
(—16i)/* = 2[cos (671" + k90°) + i sin (671" + k90°)]. Thus, the required roots are

Ry = 2(cos 674 + i sin 671°) Ry = 2(cos 2471° + i sin 2471%)
Ry =2(cos 1571° +isin 1574°) Ry = 2(cos 337" + i sin 3374°)

1 4 3i = +/10[cos (71°34’ + k360°) + i sin (71°34' + k360°)] and
(1 +30)° = ¥10[cos (14°19 + k72°) + i sin (14°19' + k72°)]. The required roots are
R; = Y10(cos 14°19 + i sin 14°19)
R, = Y10(cos 86°19 + i sin 86°19)
Ry = Y10(cos 158°19' + i sin 158°19)
R, = ¥10(cos 230°19' + i sin 230°19")
Rs = ¥10(cos 302°19' + i sin 302°19").
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Supplementary Problems

34.20 Perform the indicated operations, writing the results in the form a + bi.
(@ (6-2)+Q+3i)=8+i (k) Q+V=53-2v=4) = (6+4/5 + (3/5-8)i
(b) (6-2i)—(Q2+3i)=4-5i () (A+2J=3)2-vV=3)=8+33i
(©) G+2)+(4=3i)=—-1—i (m) Q—-iP=3-4i
d (B=2)—@-=3i)=—14i n) @A+2)Y2=124+16i
(e) 32-i)=6-3i (0) (A+i)’Q+3i)=—6+4i
() 2i(3+4i)=—-8+6i 243 5 1,
. , , (12] P
(&) Q+3)(1+2i)=-4+7i I+i 2 2
(h)y Q@=30)5+2i)=16-11i 3-2i 17, 6 . 3-2i
() G=2i)-4+i)=—10+11i @ 34~ 25"
() Q+3)HB+2i)=13i

34.21 Show that 3 4 2i and 3 —2i are roots of x> —6x + 13 = 0.

34.22 Perform graphically the following operations:

(@ Q43+ +4i) (© Q+3)—-(1+4)
(d) @=2i)+ @2+ 3i) (d) (4-2i)-(Q2+3i)

34.23 Express each of the following complex numbers in polar form:

(a) 3+ 3i=32(cos 45° + i sin 45°) (e) —8=28(cos 180° + i sin 180°)

(b) 14 +/3i = 2(cos 60° + i sin 60°) (f) —2i=2(cos 270° 4 i sin 270°)

(©)  —23—=2i=4(cos 210° + i sin 210°) (g) —12+45i=13(cos 157°23' + i sin 157°23)
(d) V2—iv2 =2(cos 315° + i sin 315°) (h)y —4—3i=5(cos 216°52' + i sin 216°52)

34.24 Perform the indicated operation and express the results in the form a + bi.

(@) 3(cos 25° + i sin 25°)8(cos 200° + i sin 200°) = —12+/2 — 124/2i
(b)  4(cos 50° + i sin 50°)2(cos 100° + i sin 100°) = —4/3 + 4i
4(cos 190° 4 i sin 190°) .

. =-1 3
© 2(cos 70° + i sin 70°) i3
12(cos 200° + i sin 200°) .

=-2/3-2
3(cos 350° +  sin 350°) V3-2i

(d)

34.25 Use the polar form in finding each of the following products and quotients, and express each result in the

form a + bi : i
@ (+DH2-iv2) =22 @ N B
\/§+l
. L , “1+iV3 .
() (=1 —=i3) (=43 + 4i) = 8/3 + 8i () m—0‘2588+0.96591
© 1o () 400

I+ 241
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34.26

34.27

34.28

34.29

34.30

34.31

34.32

Use De Moivre’s theorem to evaluate each of the following and express each result in the form a + bi:

(@) [2(cos 6° +isin 6°)]° = 16+/3 + 16i ) (B/2+i/2)° =i

()  [V2(cos 75° + i sin 75°)]* = 2= 2/3i (@) (3+4i)*=-5269-1336.1i

(© (1+i¥=16 1-if3° 1 (I+DE3+)P
) (1—i)f =8i " Grams O Taoaay

© (1-i5/Y® =-1-il3/2

Find all the indicated roots, expressing the results in the form a + bi unless tables would be needed to do so.

(a) The square roots of i. Ans. N2/240iN2/2,—2/2—iN2)2

(b) The square roots of 1 + iv/3. Ans. J6/2+iN2/2,—6/2—i2/2

(¢) The cube roots of —8. Ans. 1+i/3,-2,1-i/3

(d) The cube roots of 27i. Ans. 3+/3/243i/2,-3/3/2 + 3i/2,-3i

(¢) The cube roots of —4+/3 + 4i.
Ans.  2(cos 50° + i sin 50°), 2(cos 170° + i sin 170°),2(cos 290° + i sin 290°)

(f) The fifth roots of 1 4.
Ans.  2(cos 9° + i sin 9°), Y/2(cos 81° + i sin 81°), etc.

(¢) The sixth roots of —/3 + i.
Ans.  J2(cos 25° + i sin 25°%), 2(cos 85° + i sin 85°), etc.
Find the tenth roots of 1 and show that the product of any two of them is again one of the tenth roots of 1.

Show that the reciprocal of any one of the tenth roots of 1 is again a tenth root of 1.

Denote either of the complex cube roots of 1 [Problem 34.19(d)] by w; and the other by w,. Show that

w%a)z = w; and w1w§ = ,.

Show that (cos 0 + i sin 0)™ = cos nf — i sin n0.

Use the fact that the segments OS and P,P; in Fig. 34-5 are equal to devise a second procedure for
constructing the differences OS = z; — z, of two complex numbers z; and z,.



The Conic Sections

I. The Parabola

THE LOCUS OF A POINT P which moves in a plane so that its distance from a fixed line of the plane
and its distance from a fixed point of the plane, not on the line, are equal is called a parabola.

Til)e fixed point F is called the focus, and the fixed line d is called the directrix of the parabola. The
line FD through the focus and perpendicular to the directrix is called the axis of the parabola. The axis
intersects the parabola in the point V, the midpoint of FD, called the vertex.

The line segment joining any two distinct points of the parabola is called a chord. A chord (as BB')
which passes through the focus is called a focal chord, while FB and FB' are called the focal radii of B
and B’, respectively. See Fig. 35-1.

_ g~
B

]
<!

directrix

Fig. 35-1

THE EQUATION OF A PARABOLA assumes its simplest (reduced) form when its vertex is at the
origin and its axis coincides with one of the coordinate axes.
When the vertex is at the origin and the axis coincides with the x axis, the equation of the parabola is

= 4px (35.1)

Then the focus is at F (p, 0) and the equation of the directrix is d : x = —p. If p > 0, the parabola opens to
the right; if p < 0, the parabola opens to the left. See Figs. 35-2(a) and (b).

254
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L Y
= 5
1} "
" L3
|4 Fep,0) Fep,0) v D N
D 0 * > ® 0 > z
(a) y*=4px,p>0 (b) y*=4px,p<0
Fig. 35-2

When the vertex is at the origin and the axis coincides with the y axis, the equation of the parabola is
x? = 4py (35.2)

Then the focus is at F (0, p) and the equation of the directrix is d : y = —p. If p > 0, the parabola opens
upward; if p < 0, the parabola opens downward. See Figs. 35-3(a) and (b).

f

¢ F(0,p)

(a) x*=4py,p>0 (b) x*=4dpy,p<0

Fig. 35-3

In either case, the distance from the directrix to the vertex and the distance from the vertex to the

focus are equal to p.
[Some authors define p > 0 and consider the four cases y* = 4px, y* = —4px, x> = 4py, x> = —4py.
Other authors label the focus F (1 p,0) and directrix d: x = —1p and obtain y* = 2px, etc.]

THE EQUATION OF A PARABOLA assumes the semireduced form
(y=hk)* = 4p(x = h) (35.1)

or (x=h>=4p(y—k) (35.2)

when its vertex is at the point (4, k) and its axis is parallel, respectively, to the x axis or the y axis. The
distance between the directrix and vertex and the distance between the vertex and focus are the same as
given in the section above.
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EXAMPLE 1. Sketch the locus and find the coordinates of the vertex and focus, and the equations of the axis and
directrix, of the parabola y> — 6y + 8x + 41 = 0.

We first put the equation in the form
(y=37==8(x+4) (35.3)

and note that, since 4p = —8, the parabola opens to the left. Having located the vertex at V(—4,3), we draw in the
axis through V parallel to the x axis.

In locating the focus, we move from the vertex to the left (the parabola opens to the left) along the axis a
distance p = 2 to the point F (=6, 3). In locating the directrix, we move from the vertex to the right (away from the
focus) along the axis a distance p = 2 to the point D (=2, 3). The directrix passes through D and is perpendicular to
the axis; its equation is x +2 = 0.

Using the point F (=6,3), if x =—6 on the parabola then (y-— 3)? = —8(—6 +4) and y="7 or —1. Then
p1(=6,—1) and p,(—6,7) liec on the parabola. See Fig. 35-4.

=0

JP 2 % Y
=
£
F(-6,3) axis:y-3=0
" -
A
= Q x
[
A,

y-3P=-8x+4)

Fig. 35-4

II. The Ellipse

THE LOCUS OF A POINT P which moves in a plane so that the sum of its distances from two fixed
points in the plane is constant is called an ellipse.

The ﬁ(x_e)d points F and F' are called the foci, and their midpoint C is called the center of the ellipse.
The line FF' joining the foci intersects the ellipse in the points V and V7, called the vertices. The segment
V'V intercepted on the line FF by the ellipse is called its major axis; the segment B’B intercepted on the
line through C perpendicular to FF' is called its minor axis.

A line segment whose extremities are any two points on the ellipse is called a chord. A chord which
passes through a focus is called a focal chord. See Fig. 35-5.

FP+FP=VV
FP_FF_ _CF
PD ™ PD’ cv

Fig. 35-5
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The ellipse may also be defined as the locus of a point which moves so that the ratio of its distance
from a fixed point to its distance from a fixed line is equal to e < 1. The fixed point is a focus F or F’, and
the fixed line d or d’ is called a directrix. The ratio e is called the eccentricity of the ellipse.

THE EQUATION OF AN ELLIPSE assumes its simplest (reduced) form when its center is at the origin
and its major axis lies along one of the coordinate axes.
When the center is at the origin and the major axis lies along the x axis, the equation of the ellipse is

(S}

i—i—y—zzl where ¢* = b* (35.4)
2T ) = :

IS

Then the vertices are at V(a,0) and V'(—a, 0) and the length of the major axis is V'V = 2a. The length of
the minor axis is B’B = 2b. The foci are on the major axis at F (—c,0) and F’(c,0) where

c=va*- b

When the center is at the origin and the major axis lies along the y axis, the equation of the ellipse is

¥ J’2 2 2
ﬁ—F;:l?Wherea =bh (35.5)
See Figs. 35-6 (a) and (b).
LY
Y
B(0,b)
L
b a
V'(~a, 0) F'(-¢,0) ¢ V(a,0) B'(-b,0)
- »- -~z
0 F(c,0) 0
[
B'(0,~b)
V'0,~a>
x2 2 x2 2
@ S+%=ta>b (b) 3toz=la>b
Fig. 35-6

Then the vertices are at V(0,a) and V/(0,—a) and the length of the major axis is V'V = 2a. The
length of the minor axis is B’B = 2b. The foci are on the major axis at F (0, c) and F'(0,—c), where

In both cases, the eccentricity is

and the directrices are perpendicular to major axis at distances *a?/c = *a/e from the center.
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THE EQUATION OF AN ELLIPSE with major axis vertical or horizontal assumes the semireduced
form

2 (h_ 2

%4_%—2](): 1 (35.4)
2 2

or (x—h) +(}’ k)™ _

= S =1 (35.5)

Here b =< a the center is at the point (%, k), and the major axis is parallel respectively to the x axis and to
the y axis. The lengths of the major and minor axes, the distance between the foci, the distance from the
center to a directrix, and the eccentricity are as given in the section above.

EXAMPLE 2. Find the coordinates of the center, vertices, and foci; the lengths of the major and minor axes; the
eccentricity; and the equations of the directrices of the ellipse

AR (v 2
(x—4) +()+2) _

1
9 25

Sketch the locus.

The center is at the point C(4,=2).

Since a®> = b%, ¢ =25 and b* = 9.

Since «? is under the term in y, the major axis is parallel to the y axis. To locate the vertices (the extremities
of the major axis), we move from the center parallel to the y axis a distance a = S to the points V(4,3) and V'(4,-7).
To locate the extremities of the minor axis, we move from the center perpendicular to the major axis a distance
b =3 to the points B'(1,—-2) and B(7,-2). The lengths of the major and minor axes are 2a = 10 and 2b = 6,
respectively.

The distance from the center to a focus is ¢ = va?> — b* = v/25—9 = 4. To locate the foci, we move from the
center along the major axis a distance ¢ = 4 to the points F(4,2) and F'(4,—-6).

The eccentricity is e = ¢/a = 4/5.

The distance from the center to a directrix is «?/c = 25/4. Since the directrices are perpendicular to the major
axis, their equations are d: y = —-2+2 =7 and ¢’ : y=-2-2 = -3 See Fig. 35-7.

Yy
y = 17/4
(3,3 d
TN F4,2)
5 >z
B(1,~2)
Ba.-2 W\cm.-z)
17'1'"(4.-6)
V'4,-D ,
y=-33/4 d
— 4y +2)?
(x-4) + +2y )
9 25

Fig. 35-7
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III. The Hyperbola

THE LOCUS OF A POINT P which moves in a plane so that the absolute value of the difference of its
distances from two fixed points in the plane is constant is called a hyperbola. (Note that the locus consists
of two distinct branches, each of indefinite length.)

The fixed points F, and F' are called the foci, and their midpoint C is called the center of the
hyberbola. The line FF’ joining the foci intersects the hyperbola in the points ¥ and V', called the
vertices. _

The segment V'V intercepted on | the line FF' by the hyperbola is called its transverse axis. The line /
through C and perpendicular to FF' does not intersect the curve, but it will be found convenient to
define a certain segment B’B on /, having C as midpoint, as the conjugate axis. See Fig. 35-8.

FP-FP=VV

£ _FP__CF
D PO ‘T Cv
Fig. 35-8

A line segment whose extremities are any two points (both on the same branch or one on each
branch) on the hyperbola is called a chord. A chord which passes through a focus is called a focal chord.

The hyperbola may also be defined as the locus of a point which moves so that the ratio of its
distance from a fixed point and its distance from a fixed line is equal to e > 1. The fixed point is a
focus F or F' and the fixed line d or d’ is called a directrix. The ratio e is called the eccentricity of the
hyperbola.

THE EQUATION OF A HYPERBOLA assumes its simplest (reduced) form when its center is at the
origin and its transverse axis lies along one of the coordinate axes.

When the center is at the origin and the transverse axis lies along the x axis, the equation of the
hyperbola is

(S}

I SR | 35.6
275 (35.6)
Then the vertices are at ¥(a,0) and V'(—a,0) and the length of the transverse axis is V'V = 2a. The
extremities of the conjugate axis are B'(0,—b) and B(0, b), and its length is B’ B = 2b. The foci are on the
transverse axis at F'(—c,0) and F (c,0), where

X y2
2

c=+a*+b?

When the center is at the origin and the transverse axis lies along the y axis, the equation of the
hyperbola is



260 THE CONIC SECTIONS [CHAP. 35

5]
Tl =

=1 35.7)

QN|"<

Then the vertices are at V(0,a) and V'(0,—a), and the length of the transverse axis is V'V = 2a. The
extremities of the conjugate axis are B'(—b, 0) and B(b,0), and its length is B’B = 2b. The foci are on the
transverse axis at F (0, ¢) and F’(0,—c), where

c=va> +b?
In both cases, the eccentricity is

_ Ja* + b?

C
e:_
a a

and the directrices are perpendicular to the transverse axis at distances +a?/c = +a/e from the center.
See Figs. 35-9(a) and (b).

i ot
- '0
3
B(0,b) V(0,a)
(T A B'(-b,0)
- >z
0 V(a,0)
B(0:b) V'(0,~a) -
P »
o Vo
Q‘@( &b
xl y2 y2 x2
(a) ;2*—?:1 (b) ;—Z_EZI

Fig. 35-9

THE STRAIGHT LINES with equations y = *(b/a)x are called the asymptotes of the hyperbola (35.6),
and the lines with equations x = *=(b/a)y are called the asymptotes of the hyperbola (35.7).

These lines have the property that the perpendicular distance from a point on a hyperbola to one of
them approaches zero as the point moves indefinitely far from the center.

THE EQUATION OF A HYPERBOLA with horizontal or vertical transverse axes assumes the
semireduced form

@=h? =k _
Y

or U_—k)z G h? =
a? b?

1 (35.6")

1 (35.7)

Here the center is at the point C (h, k), and the transverse axis is parallel, respectively, to the x axis or to the y
axis. The lengths of the transverse and conjugate axes, the distance between the foci, the distance from the
center to a directrix, the slope of the asymptotes, and the eccentricity are as given in the sections above.
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EXAMPLE 3. Find the coordinates of the center, vertices, and foci, the lengths of the transverse and conjugate
axes; the eccentricity; and the equations of the directrices and asymptotes of the hyperbola

(x+3° -1’
4 25

=1

Sketch the locus.

The center is at the point C(—3, 1). Since, when the equation is put in the reduced or semireduced form, a* is
always in the positive term on the left, «> = 4 and »* = 25; then ¢ = 2 and b = 5.

The transverse axis is parallel to the x axis (the positive term contains x). To locate the vertices, we move
from the center along the transverse axis a distance a¢ =2 to the points V(—1,1) and V'(=5,1). To locate
the extremities of the conjugate axis, we move from the center perpendicular to the transverse axis a distance b = 5
to the points B’(—=3,—4) and B(—3,6). The lengths of the transverse and conjugate axes are 2a = 4 and 2b = 10,
respectively.

The distance from the center to a focus is ¢ = va? + b2 = /4 + 25 = +/29. To locate the foci, we move from the
center along the transverse axis a distance ¢ = +/29 to the points F (=3 ++/29, 1) and F'(=3 —+/29, 1).

The eccentricity is e = ¢/a = +/29/2.

The distance from the center to a directrix is a?/c = 4+/29 = 4+/29/29. Since the directrices are perpendicular to
the transverse axis, their equations are d : x = =3 + 4\/2_9/29 and d' : x=-3— 4@/29.

The asymptotes pass through C with slopes ®£b/a = *5/2; thus, their equations are y—1 = *5/2(x + 3).
Combining these two equations, (x + 3)?/4 —(y — 1)*/25 = 0. Hence, they may be obtained most readily by the
simple trick of changing the right member of the equation of the hyperbola from 1 to 0. See Fig. 35-10.
(See Problems 35.6-35.8.)

i
™
l
n
» x=-3+4/2—9_

%
B(-3,6) X
\“ /V(-l 23
F'-3-v29, 1) |LTF3+v29, 1)
V'e5, 1)- o >
Ce3,1) | |_—BC3-0
4 w
° g
y
&
N r
il
o (5:+ 2+13 =0

Fig. 35-10

THE HYPERBOLAS OF EQUATION x? —)? = ¢? and > — x> = &%, whose transverse and conjugate
axes are of equal length 2a, are called equilateral hyperbolas. Since their asymptotes x * y =0

are mutually perpendicular, the equilateral hyperbola is also called the rectangular hyperbola. See
Figs. 35-11(a) and (b).



262 THE CONIC SECTIONS [CHAP. 35

(a) x2_y2=a2 (b) y2_x2=az
Fig. 35-11

TWO HYPERBOLAS such that the transverse axis of each is the conjugate axis of the other, as

xz_yz_l
16 9
2 2
. y_Xx _
and 9 16 1

2 12 _

7/ 5wt

r

N2 72
R % 9
‘?Q' z
‘6. N o>}
F' "0 ot F -z

0

72
Fig. 35-12

A pair of conjugate hyperbolas have the same center and the same asymptotes. Their foci lie on a
circle whose center is the common center of the hyperbolas. (See Problem 35.9.)

Solved Problems

35.1 For each of the following parabolas, sketch the curve, find the coordinates of the vertex and focus, and find
the equations of the axis and directrix.
(@) »*=16x b)) x*=-9y () x*—2x—12y4+25=0
(d) ¥ +4y+20x+4=0
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(a)
(®)
(¢)
(d)
(e)
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Ans.

(a) The parabola opens to the right (p > 0) with vertex at ¥(0,0). The equation of its axis is y = 0.
Moving from V to the right along the axis a distance p = 4, we locate the focus at F (4,0). Moving
from V to the left along the axis a distance p = 4, we locate the point D(—4,0). Since the directrix
passes through D perpendicular to the axis, its equation is x +4 = 0. If x =4, then y = £8, so
P»(4,8) and P;(4,-8) are points on the parabola. See Fig. 35-13(a).

=] Y4 D2 A
u
b directrix y-94=0
o - D©,9/4)
D(-4,0)] = F(4,0) axis V(0,0)
= (2] y=0 ~
% Pan IF©0,-9/N\_ » P1
5 217
2ol HE
(a) yz =16x (b) ¥?=-9y
Fig. 35-13
(b) The parabola opens downward (p < 0) with vertex at }(0,0). The equation of its axis is x = 0.
Moving from V downward along the axis a distance p = 9/4, we locate the focus at F (0,—9/4).
Moving from ¥ upward along the axis a distance p = 9/4, we locate the point D(0,—9/4); the
equation of the directrix is 4y—9=0. P, is the point (=9/2,-9/4) and P; is (9/2,-9/4).
See Fig. 35-13 (b).
(¢) Here (x—1)*> = 12(y — 2). The parabola opens upward (p > 0) with vertex at ¥(1,2). The equation
of its axis is x — 1 = 0. See Fig. 35-14 (a).
¥ y
2 I
Pz/ 'F(lyS) Py ,2 g ?I'i_:’
Bl =
2=0 - =
V(1,2) Y= =T = & ass
o) &k
—_ D1 * =[5
directrix éj y+1=0 ;
I 1

=

(@ (x —1Y2=12(y-2) ) (v +2)%= 20x

Fig. 35-14

(d) Here (y + 2)?> = =20x. The parabola opens to the left (p < 0) with vertex at V(0,—2). The equation

of its axis is y + 2 = 0. Since p = 5, the focus is at F (—5,—-2) and the equation of the directrix is
x—5=0. See Fig. 35-14 (b)

Find the equation of the parabola, given

1(0,0); F(0,—4)

7(0, 0); directrix: x = —5

V(1,4); F (=2,4)

F (2,3); directrix: y = —1

1(0,0); axis: y = 0; passing through (4,5).

Ans.

(a) Since the directed distance p = VF = —4, the parabola opens downward. Its equation is
x> =—16y.

(b) The parabola opens to the right (away from the directrix). Since p = DV =5, the equation is

y* = 20x.
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(¢) Here the focus lies to the left of the vertex, and the parabola opens to the left. The directed distance
p = VF=-=3and the equation is (y —4)’> = —12(x— 1.

(d) Here the focus lies above the directrix and the parabola opens upward. The axis of the parabola
meets the directrix in D(2,—1) and the vertex is at the midpoint ¥(2,1) of FD. Then p = VF =2
and the equation is (x — 2)* = 8y —1).

(e) The equation of this parabola is of the form y* = 4px. If (4,5) is a point on it, then (5)> = 4p(4),
4p = 25/4, and the equation is y> = 25/4x.

cable of a suspension bridge has supporting towers which are 50 ft high and 400 ft apart and is in the
e of a parabola. If the lowest point of the cable is 10 ft above the floor of the bridge, find the length of a

supporting rod 100 ft from the center of the span.

For

Ans.

Take the origin of coordinates at the lowest point of the cable and the positive y axis directed
upward along the axis of symmetry of the parabola. Then the equation of the parabola has the form
X% = 4py. Since (200,40) is a point on the parabola, (200)*> = 4p - 40 or 4p = 1000, and the equation is
x% = 1000y.

When x = 100, (100)*> = 1000y, and y = 10 ft. The length of the supporting rod is 10 4 10 = 20 ft.

each of the following ellipses find the coordinates of the center, vertices, and foci; the lengths of the

major and minor axes; the eccentricity; and the equations of the directrices. Sketch the curve.

(@)
(b)
(©
Ans.
(a)

X6+ /4 =1
25x% +9y? = 25
X2 49y* +4x—18y-23=0

Here @® = 16, b*> = 4, and ¢ = Va® — b2 = /16 — 4 = 2./3.

The center is at the origin and the major axis is along the x axis (¢*> under x?). The vertices are on
the major axis at a distance @ = 4 from the center; their coordinates are (4,0) and V'(—4,0). The minor
axis is along the y axis and its extremities, being at a distance b = 2 from the center, are at B(0,2) and
B'(0,—2). The foci are on the major axis at a distance 24/3 from the center; their coordinates are
F (24/3,0) and F'(=24/3,0).

The lengths of the major and minor axes are 2a = 8 and 2b = 4, respectively.

The eccentricity is e = ¢/a = 23/3/4 = 1/2./3.

The directrices are perpendicular to the major axis and at a distance a®/c = (16/2)+/3 = 8+/3/3
from the center; their equations are x = +8/3 /3.

See Fig. 35-15(a).

¥
ﬂ y = 25/12

B(0,2)

s
S F2v3,0 | Fes 0\ .2

0)

(-4

14

B'(-1,0)

Nl

B'(0,-2)

F'(0,-4/3)

{V'(0,~5/3)

x = =8v3/3
x = 8/3/3

y = ~25/12

Fig. 35-15



CHAP. 35]

)

(¢)

THE CONIC SECTIONS 265

When the equation is put in the form

X2

T

<
o

+o=1

<3|

we find @® = 25/9, b* = 1, and ¢ = Va® —b* = \25/9 -1 = 4/3.

The center is at the origin and the major axis is along the y axis («> under »?). The vertices are on
the major axis at a distance @ = 5/3 from the center; their coordinates are ¥(0,5/3) and ¥'(0,—5/3). The
extremities of the minor axis are on the x axis at a distance » = 1 from the center; their coordinates are
B(1,0) and B’(—1,0). The foci are on the major axis at a distance ¢ =4/3 from the center; their
coordinates are F(0,4/3) and F'(0,—4/3).

The lengths of the major and minor axes are 2a = 10/3 and 2b = 2, respectively.

The eccentricity is

¢ _4/3 4
CTaT53 5

The directrices are perpendicular to the major axis and at a distance 4 /c = 25/12 from the center;
their equations are y = *25/12. See Fig. 35-15(b).

When the equation is put in the form

x+2° -1 _
36 4

we have a® =36, b2 =4, and ¢ = Va? — b2 = 4/2.

The center is at the point C(=2, 1) and the major axis is along the line y = 1. The vertices are on the
major axis at a distance @ = 6 from the center; their coordinates are V(4,1) and V'(=8,1). The
extremities of the minor axis are on the line x = —2 at a distance b = 2 from the center; their coordinates
are B(=2,3) and B'(—=2,—1). The foci are on the major axis at a distance ¢ = 4+/2 from the center; their
coordinates are F (=2 4+ 4+/2, 1) and F'(=2 —4+/2, 1).

The lengths of the major and minor axes are 2a = 12 and 2b = 4, respectively. The eccentricity is
c/a=4/2/6 =22/3.

The directrices are perpendicular to the major axis and at a distance a?>/c¢ = 9+/2/2 from the center;
their equations are x = =2 + 94/2/2. See Fig. 35-16.

1

Y,
1
B2,3)

F'(~2 -4v2, 1) \ |- Fe-2+ /2, 1)

Vs DTN\ C2,1” 0 J Ve
> X
\

x = -2-9/2/2
x = -2+8V2/2

B'(-2,-1)

Fig. 35-16

35.5 Find the equation of the ellipse, given

(a)
(b)
(¢)
(d)
(e)

Vertices (£8,0), minor axis = 6.

One vertex at (0,13), one focus at (0,—12), center at (0,0).

Foci (%£10,0), eccentricity = 5/6.

Vertices (8,3) and (—4, 3), one focus at (6,3).

Directrices 4y —33 = 0, 4y + 17 = 0; major axis on x + | = 0; eccentricity = 4/5.
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Ans.

(a) Here 2a= V'V =16, 2b = 6, and the major axis is along the x axis. The equation of the ellipse is
X2+ /pr = X2 J64 4+ 3?9 = 1.

(h) The major axis is along the y axis, a = 13, ¢ = 12, and b*> = a® — ¢> = 25. The equation of the
ellipse is X2 /b + 17 /a® = x*/25 + y*/169 = 1.

(¢) Here the major axis is along the x axis and ¢ = 10. Since e =c/a=10/a=15/6, a =12 and
b? = a* — ¢ = 44. The equation of the ellipse is x>/144 + y*/44 = 1.

(d) The center is at the midpoint of V'V, that is, at C(2,3). Then a=CV =6, c=CF=4, and
b = a* — ¢ = 20. Since the major axis is parallel to the x axis, the equation of the ellipse is

=2 =37 _

36 20 :

(¢) The major axis intersects the directrices in D(—1,33/4) and D'(—1,—17/4). The center of the
ellipse bisects D'D and, hence, is at C(—1,2). Since CD = a/e =25/4 and e =4/5, a=5 and
¢=ae=4. Then b* = &® — > = 9. Since the major axis is parallel to the y axis, the equation of
the ellipse is

2 _ 2
Gl =27

9 25 !

The locus passes through the center C(0,0) and is called a diameter of the ellipse. See Fig. 35-17.

]

R(r,s)

Fig. 35-17

For each of the following hyperbolas, find the coordinates of the center, vertices, and the foci; the lengths of
the transverse and conjugate axes; the eccentricity; and the equations of the directrices and asymptotes.
Sketch each locus.

(@) x*/16+)*/4=1
(b) 25y* —9y* =225
() 9x*—4y?—36x+32y+8=0
Ans.
(a) Here @* =16,b> =4, and ¢ = \/mz 2./5.

The center is at the origin and the transverse axis is along the x axis (¢*> under x?). The vertices are
on the transverse axis at a distance @ = 4 from the center; their coordinates are V(4,0) and V'(—4,0).
The extremities of the conjugate axis are on the y axis at a distance b = 2 from the center; their
coordinates are B(0,2) and B'(0,-2).

The foci are on the transverse axis at a distance ¢ = 2+/5 from the center; their coordinates are
F (24/3,0) and F'(=2/3,0).
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The lengths of the transverse and conjugate axes are 2a = 8 and 2b = 4, are respectively.

The eccentricity is e = ¢/a = 2+/5/4 = 1/2+/5.

The directrices are perpendicular to the transverse axis and at a distance a*/c = 16/2+/5 = 8/5/5
from the center; their equations are x = iS\/g/S.

The equations for the asymptotes are x2/16 —}72/4 =0 or x = *£2y. See Fig. 35-18.

¥
A »
L
H
Va0 "
¢ B(0,2)
») 8 —>
) 0
/ V'(-4.0)* e \
d’ d
Fig. 35-18
(b)) When the equation is put in the form
P |
9 25

we find ¢ =9, b* = 25, and ¢ = Va? + b* = 34.

The center is at the origin and the transverse axis is along the y axis. The vertices are on the
transverse axis at a distance ¢ = 3 from the center; their coordinates are ¥(0,3) and V’(0,—3). The
extremities of the conjugate axis are on the x axis and at a distance b =5 from the center; their
coordinates are B(5,0) and B'(-5,0).

The foci are on the transverse axis at a distance ¢ = +/34 from the center; their coordinates are
F (0,+/34) and F'(0,—/34%).

The lengths of the transverse and conjugate axes are 2a = 6 and 2b = 10, respectively.

The eccentricity is e = ¢/a = \/34/3.

The directrices are perpendicular to the transverse axis and at a distance a*/c = 9//34 = 9/34/34
from the center; their equations are y = +9+/34/34,

The equations of the asymptotes are y?/9 — x?/25 = 0 or 5y = +3x. See Fig. 35-19(a).
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F'(2, 4-/13)
(a) O]

Fig. 35-19
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(¢) Putting the equation in the form

-9 -2 _
9 4
wehavea2=9,b2=4,andc=x/?+\/i7=\/ﬁ.
The center is at the point C(2,4) and the transverse axis is parallel to the y axis along the line x = 2.
The vertices are on the transverse axis at a distance a = 3 from the center; their coordinates are V(2,7)
and V'(2,1). The extremities of the conjugate axis are on the line y = 4 at a distance b = 2 from the
center; their coordinates are B(4,4) and B'(0,4).
The foci are on the transverse axis at a distance ¢ = +/13 from the center; their coordinates are
F (2,44 +/13) and F'(2,4 —/13).
The lengths of the transverse and conjugate axes are 2a = 6 and 2b = 4, respectively.
The eccentricity is e = ¢/a = \/13/3.
The directrices are perpendicular to the transverse axis at a distance a*/c = 9/v/13 = 94/13/13
from the center; their equations are y = 4 = 9y/13/13.
The equations of the asymptotes are

-4 =27 _
9 4
or 3x—2y+2=0and 3x 4 2y— 14 = 0. See Fig. 35-19 (b).

1

0

Find the equation of the hyperbola, given

(a) Center (0,0), vertex (4,0), focus (5,0).
(b) Center (0,0), focus (0,—4), eccentricity = 2.
(¢) Center (0,0), vertex (5,0), one asymptote 5y + 3x = 0.
(d) Center (=5,4), vertex (—11,4), eccentricity = 5/3.
(e) Vertices (—11,1) and (5,1), one asymptote x —4y + 7 = 0.
(f) Transverse axis parallel to the x axis, asymptotes 3x +y—7 =0 and 3x—y—5=0, passes through
4.4).
Ans.
(@) Herea=CV =4, ¢c=CF=5,and > = ¢ —a> = 25— 16 = 9. The transverse axis is along the x
axis and the equation of the hyperbola is x2/16 —yz/9 =1.
(b) Sincec=F'C=4ande=c/a=2,a=2andh*> = > —a* = 12. The transverse axis is along the y
axis and the equation of the hyperbola is y?/4 —x>/12 = 1.
(¢) The slope of the asymptote is —b/a = —3/5 and, since a = CV' =5, b = 3. The transverse axis is
along the x axis and the equation of the hyperbola is x>/25—3?/9 = 1.
(d Herea=V'C=6and e=c/a=5/3=10/6; then ¢ = 10 and »* = ¢* — a®> = 64. The transverse
axis is parallel to the x axis and the equation of the hyperbola is

45 -4 _

36 64 !

(¢) The center is at (=3, 1), the midpoint of V'V'. The slope of the asymptote is b/a = 1/4 and, since
a = CV =38, b=2.The transverse axis is parallel to the x axis and the equation of the hyperbola is

C+3 -1
64 4
(f) The asymptotes intersect in the center C(2,1). Since the slope of the asymptote 3x—y—5=01is
b/a=3/1, we take a=m and b= 3m. The equation of the hyperbola may be written as
(x—2)2/m*— (y — 1)>/9m* = 1. In order that the hyperbola pass through (4.,4), 4/m* —9/9m*> = 1

and m = 3. Then a = m = 3,b = 3m = 3+/3, and the required equation is

(x=2 (-=1)7*_
3+27_]

1
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358 Find the distance from the right-hand focus of 9x? —43% + 54x 4+ 16y — 79 = 0 to one of its asymptotes.

Ans. Putting the equation in the form
(x+3 =2 _

16 36 0

we find &® = 16, b* = 36, and ¢ = va* + b* = 2+/13. The right-hand focus is at F(=3 + 2+/13,2) and the
equations of the asymptotes are

43 (=27

T £T3 0 or 3x+2y+5=0 and 3x=2y+13=0

The distance from F to the first asymptote is

B3 +2V13) +22+5]

IR

359  Write the equation of the conjugate of the hyperbola 25x% — 16y> = 400 and sketch both curves.

Ans.

The equation of the conjugate hyperbola is 16y% —25x%> = 400. The common asymptotes have
equations y = *5x/4. The vertices of 25x> — 16y> = 400 are at (+4,0). The vertices of 16y —25x? =
400 are at (0, =5). The curves are shown in Fig. 35-20.

16y2-25x2 = 400

25x2~16y2 = 400

Fig. 35-20

Supplementary Problems

35.10 For each of the following parabolas, sketch the curve, find the coordinates of the vertex and focus, and find
the equations of the axis and directrix.

(@) x*=12y Ans. V(0,0), F(0,3);x =0,y +3=0
b y*=-10x Ans. V(0,0), F(=5/2,0);y =0,2x—=5=0

() x*—6+8y+25=0 Ans. V(3,-2), F(3,-4);x—=3=0,y=0.

(d) ¥*—16x+2y+49=0 Ans. V3,-1),F(7,-1);y+1=0,x+1=0

() ¥*=2x—6y—53=0  Ans. V(1,-9),F (1,—-15/2);x—1=0,2y +21 =0

() YV +20x+4y—60=0 Ans. V(16/5,=2), F (=9/5,-2);y +2=0,5x—41 =0
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35.11 Find the equation of the parabola, given
(a) 11(0,0),F (=2,0)
(b) 11(0,0),F (0,5)
(¢) 7(0,0),d:y+3=0
(d) 1(0,0), F on x axis, passes through (=2, 6)
(e) V(1,3),F (-1,3)
H F@3,2),d:y+4=0

Ans.

(@) y*=—8x
(h) x> =20y
() x*=12y
(d y*=-18x

(e) »*+8x—6y+1=0
(H xX*—6x—12py=3=0

35.12 For each of the following ellipses, find the coordinates of the center, vertices, and foci; the lengths of the
major and minor axes; the eccentricity; and the equations of the directrices. Sketch each curve.
(a) 4x>+9y? =136
(b) 25x% + 16y* = 400
() ¥ +4y*—6x+32p+69=0
(d) 16x*+9y* +32x—36y—92=10

Ans.

(@) C(0,0), (+3,0); F (£+/5,0):6,4;3;3/5/3;x = £9/5/5

(b) C0,0), (0, =5); F (0, £3);10,8;2;3;p = =2

() CGB,—4),V(5,—4); V'(1,—4),F 3+ /3,—4);4, 2,1;/3/2;x =3 + 4/3/3
(d C=1,2), V(=1,6); V'(=1,-2), F (1,2 £ /7);8,6;3:V/7/4y =2 = 16J/7/7

35.13 Find the equation of the ellipse, given

(a) V(x13,0), F (12,0)
(b) C(0,0),a=15,F(0,4)
(¢©) C0,0),b=2,d:x=16/7/7
(d) V(1,3),V'(=3,3),F (6,3)
(e) F(5,4),F'(5,-2),e=+/3/3
(/) Ends of minor axis (=2,4),(=2,2);d: x=0
(2) Directrices: y = 11/5,y = —61/5; major axis on x = 3,e =5/6
Ans.
(@) 25x% +169)° = 4225
(b) 25x2 +9y? =225
(¢) x*+8?=32,7x>+82=32
(d 9x* 425 —36x—150y +36 =10
() 3x*+2)°—30x—4y+23=0
(N X>+22+4x—12y+20=0
(g) 36x>+ 11y* =216x + 110y +203 =0
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35.14

35.15

For each of the following hyperbolas, find the coordinates of the center, the vertices, and the foci; the lengths
of the transverse and conjugate axes; the eccentricity; the equations of the directrices; and the equations of
the asymptotes. Sketch each curve.
(@) 4x*—9y* =36
(b) 16y —9x> = 144
() ¥*—4>+6x+16y—11=0
(d) 144x% —25y% — 576x + 200y + 3776 = 0
Ans.
(@) C(0,0), "(£3,0); F(=£13,0); 6,4, §; V13/3; x = £913/13; 2x £ 3y =0.
(b) C(0,0), (0, £3); F(0,+5); 6,8;%2;3; y==x2; 3x*x4dy=
(©) C(=3,2),V(=1,2); V'(=5,2),F (=3 ++/5,2); 4,2:1;:/5/2; x=-3*+45/5; x+2y—1=0,
x=2y+7=0.
(d CQ2,4),V2,16); V'2,=8),F (2,17); F'(2,=9); 24,10;2:8; y =4+ 14,
12x-5y—4=0, 12x+ 5y —44 =0.

Find the equation of the hyperbola, given

(a) V(*5,0),F (13,0)
(b) C(0,0),a=5,F(0,6)
(¢) C(0,0),b=75,d:y= *+16/41/41
(d)y C2,-3),V(7,-3), asymptote 3x—5y—21 =0
(e) C(=3,1),F (-3,5), eccentricity equal to 2
(f) C(2,4); asymptotes x + 2y — 10 = 0,x — 2y + 6 = 0; passes through (2, 0)
(g) C(=3,2),F (2,2), asymptote 4x+3y+6=0
Ans.
(a) 144x% —25y% = 3600
(b) 25x2=11y>+275=0
(¢) 16x>—=25y> +400 =0
(d) 9x* =25y =36x—150y—414=0
(&) x*=3>4+6x+6y+18=0
(N =47 —4x+32p+4=0
(g) 16x>—9y> +96x 436y —36=10



Chapter 36

Transformation
of Coordinates

THE MOST GENERAL EQUATION of the second degree in x and y has the form
Ax* +2Bxy + Cy* +2Dx + 2Ey + F=0 (36.1)

If (36.1) can be factored so that we have (ax + by + ¢)(dx + ey + f) = 0, the locus consists of two straight
lines; if B= 0,4 = C, the locus of (36.7) is a circle; otherwise, the locus is one of the conics of Chapter
35.

The locus of the equation

20x% — 24xy + 27y + 24x — 54y — 369 = 0 )
and the locus of the equation
11x> +36)° =369 =0 (@)

are identical ellipses. The difference in equations is due to their positions with respect to the coordinate
axes.

In order to make a detailed study of the loci represented by (36.7), say (1), it will be necessary to
introduce some device to change (/) into (2). The operations by which (/) is eventually replaced by (2)
are two transformations. The general effect of these transformations may be interpreted as follows: Each
point (x,y) of the plane remains fixed but changes its name, i.e., its coordinates, in accordance with a
stated law, called the equations of the tranformation.

TRANSLATION OF THE COORDINATE AXES. Recall that the transformation which moves the
coordinate axes to a new posmon while keepmg, them always parallel to their original position is called a

translation. In Fig. 36-1, Ox and Oy are the axes and O is the origin of the original system of

coordinates, while O'x’ and O'y’ are the axes and O’ is the origin of the new (translated) system.

272
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Fig. 36-1

Each point in the plane will now have two sets of coordinates, the original set being the directed
distances in proper order of the point from the original axes and the new set being the directed
distances from the new axes. In order to avoid errors, we propose to write the coordinates of a point
when referred to the original system as, for example, A(a, b) and the coordinates when referred to the
new system as A(c, d)'. Also, we shall find it convenient at times to speak of the unprimed and primed
systems.

If the axes with the origin O are translated to a new position with origin O’ having coordinates (/, k)
when referred to the original system and if the coordinates of any point are (x, ) before and (x/, y')’ after
the translation, then the equations of transformation are

x=x+h y=y+k (36.2)

EXAMPLE 1. By means of a translation, transform 3x? 4 4y? — 12x + 16y — 8 = 0 into another equation which
lacks terms of the first degree.

First Solution. When the values of x and y from (36.2) are substituted in the given equation, we obtain

3+ )40+ k) =126 + )+ 160"+ k)-8 =0
or 3x? + 4y + (6h— 12)x" + Bk + 16)y' + 31> + 4k> —12h + 16k—8 =0 3
The equation will lack terms of the first degree provided 64— 12 = 0 and 8k + 16 = 0, that is, provided & = 2

and k = —2. Thus, the translation x = x’ + 2,y = ' — 2 reduces the given equation to 3x'> 4+ 4y/?36 = 0. The
locus, an ellipse, together with the original and new system of coordinates, is shown in Fig. 36-2.
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Second Solution. We put the given equation in the form
3 —4x) + 407 +4y) = 8
and complete the squares to obtain

3 —4x 4+ 4 +407 +4y + ) =8+ 34 +44) =36
or 3(x=2)° +4(y +2)> = 36 )

The transformation x—2=x',y +2 =)' or x =x'+2,y =)' —2 reduces (4) to 3x'> +4y’> = 36 as
before. (See Problem 36.2-36.3.)

ROTATION OF THE COORDINATE AXES. Recall that the transformation which holds the origin
fixed while rotating the coordinate axes through a given angle is called a rotation.

If, while the origin remains fixed, the coordinate axes are rotated counterclockwise through an angle
of measure 0, and if the coordinates of any point P are (x,y) before and (x',y") after the rotation, the
equations of transformation are

x=x'cos0—y'sin0  y=x'sin0+ y'cos0 (36.3)
since, from Fig. 36-3,
X=0M=ON-MN=ON-RQ=0Q cos— QP sin0 = x'cos 0 —y'sin 0

and y=MP= MR+ RP=NQ+ RP=00 sin0+ QP cos = x'sin 0 + y'cos 0

Y (x,y)

9_
R‘
i
i
6 L -
3 M N -
Fig. 36-3

EXAMPLE 2. Transform the equation x> + /3xy +2)° — 5 = 0 by rotating the coordinate axes through the
angle 60°.

The equations of transformation are
x = x'cos60° — y'sin 60° = L(x' = +/3), ¥ =x'sin60° + y'cos 60° = L(+/3x" + y').
Substituting for x and y in the given equation, we obtain
1 - V3 + %\/g(x’ BB+ )+ %(\/gx’ +yY-5=0
%x’z—i-%y'z—S:O or 5x/2+y’2= 10

The locus, an ellipse, together with the original and new systems of coordinates, is shown in Fig. 36-4. (See Problems
36.4-36.6)
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Fig. 36-4

THE SEMIREDUCED FORM OF THE SECOND-DEGREE EQUATION. Under a rotation of the
coordinate axes with equations of transformation (36.3), the general equation of the second degree

Ax* +2Bxy + Cy* +2Dx +2Ey + F=0 (36.1)
becomes A'X? +2B'x"y + C'y"? +2D'x +2E'y + F' =0 (36.1
where A’ = Acos?0 + 2B sinfcos 6 + Csin 26
B' = (C— A)sin 0 cos 0 + B(cos >0 — sin 0)
= XC— A4)sin20 + Bcos 20 (36.4)

C' = Asin’0—2 Bsin0cos 0 + Ccos>0
D' = Dcos0+ Esin0 E'= Ecosf— Dsinf F'=F

2B
If B#0, (36.1") will lack the term in x'y’ if 0 is such that 0 < mx.60 < 90° and tan 20 = 1—c when

A# C, and mx.0 =45° when 4 = C. Under this transformation, the general equation (36.1), takes
the form
A'X"* 4 C'y* 42Dy +2EY + F' =0 (36.1"

which will be called the semireduced form of the second-degree equation.

Under any rotation of the coordinate axes, the quantities 4 + C and B*> — AC are unchanged or
invariant; that is, A + C = A' + C' and B> — AC = B'> — 4'C’. When (36.1) is transformed into (36.1")
B'=0and B>— AC = —-A'C". Then

If B>—AC < 0,4’ and C’ agree in sign and (36.1) represents a real ellipse, a point ellipse, or an
imaginary ellipse.

If B2 — AC =0, either A' =0 or C' = 0; now (36.1") contains either a term in x> or y’> (but not
both), and (36.1) represent a parabola or a pair of parallel lines.

If B>— AC > 0,4’ and C’ differ in sign and (36.1) represents a hyperbola or a pair of intersecting
lines.

THE REDUCED FORM OF THE SECOND-DEGREE EQUATION. Under a suitable translation
the semireduced form (36.1") of the second-degree equation takes the reduced form

A'X" + C/y”2 =F" when A'C'#0

and x"*=Gy" or y"*=Hx" when A'C'=0
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If B>— AC#0, it is a matter of individual preference whether the rotation is performed before or

after the translation of axes; however, if B> — AC = 0, the axes must be rotated first. (See Problems 36.7—

36.9.)

36.1

36.2

Solved Problems

If the equation, of translation are x = x’' — 3,y = ' +4, find

(a) The coordinates of O(0,0) when referred to the primed system of coordinates
(b) The coordinates of O’(0,0) when referred to the unprimed system

(¢) The coordinates of P(5,—3) when referred to the primed system

(d) The coordinates of P(5,—3) when referred to the unprimed system

(e) The equation of /: 2x — 3y 4 18 = 0 when referred to the primed system

(@) For x =0,y =0 the equations of transformation yield x’ = 3,)’ = —4; thus, in the primed system
we have O(3,—4)".

(b) For x'=0,)' =0 the equations of transformation yield x = =3,y = 4; thus, in the unprimed
system we have O'(-3,4).

(¢) Here x =35,y ==3; then x' = 8,)' = —7. Thus, we have P(8,—7)'.
(d) Here x' =5,y" = -3; then x =2,y = 1. Thus, we have P2, 1).

(¢)  When the values for x and y are substituted in the given equation, we have 2(x' —3) =30’ + 4) +
18 = 2x’ — 3y = 0 as the equation of / in the primed system. Note that the new origin was chosen on
the line /.

Transform each of the following equations into another lacking terms of the first degree:
(@) X>+42=2x—12y+1=0, (b) 9x*—16>=36x—96y—252=0, (¢) xy+4x—y—8=0.
(a) Since the given equation lacks a term in xy, we use the second method of Example 1. We have
(¥ =2x) +40)° = 3y) = -1 (=20 D+4(7 =3y +3) = -1+ 1+4(3) =9
and (x—1)2+4(y—%)2=9

This equation taken the form x” + 4y =9 under the transformation x—1 =x/,y—3 =)' or
x=x+1y=y+3.

(b) We have
9% —4x) = 1607 +6) =252 9 —4x +4) = 1607 + 6y +9) = 252+ 36— 144 = 144
and 9(x—2)% = 16(y + 3)* = 144

This equation taken the form 9x'2 — 16y’? = 144 under the transformation x —2 = x',y +3 = )/
orx=x'+2,y=y"-3.
(¢) Since the given equation contains a term in xy, we must use the first method of Example 1. We have,
using Equations (36.2),

X+ R+ +) -+ -8 =Xy +(k+Dx' +(h— 1)y +hk+4h—k—-8=0

The first-degree terms will disappear provided k +4 = 0 and 7 —1 = 0, that is, provided we take
h=1and k = —4. For this choice, the equation becomes x'y’ —4 = 0.
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By a translation of the axes, simplify each of the following:

(a)
(a)

(b)

X4+ 6x—4y+1=0, ) P +4y+8x—-2=0.

Since the given equation lacks a term in »?, it is not possible to use the second method of Example 1.
Using the transformation (36.2), we find

R 6+ =40 )+ 1 =X 2h+3)x 4y B+ 6h—4k+1=0

If we take i = =3, the term in x’ disappears but it is clear that we cannot make the term in y’ disappear.
However, in this case, we make the constant term

W+ 6h— 4k + 1 = (=3)* + 6(=3) — 4k + 1 = -8 — 4k
disappear by taking k = —2. Thus, the transformed equation becomes
x?—4y'=0 or x'?=4y

It is now clear that this simplification may be effected by the following variation of the second
method of Example 1:

X +ox=4y—1 M H6x+9=4y—1+9=4y+8
or x+37°=40+2)

Then the transformation x+3=x/,y+2=3" or x=x'-3,y =)' =2 reduces the equation to
x'? =4y

We have p> +4y=-8x+2, )’ +4y+4=-8x+2+4=-8x+6,(y+2)° =-8(x—3), and finally

»'? = —8x' under the transformation x = x'+3, y =)' - 2.

Write the equations of transformation for a rotation of the coordinate axes through an angle of 45° and use
them to find

(a)
()
(¢)
(d)
(e)

(a)

()

The coordinates of P(v/2,3+/2) when referred to the original (unprimed) system
The coordinates of O(0,0) when referred to the (primed) system

The coordinates of P(v/2,3+/2) when referred to the primed system

The equation of the line /: x + y + 33/2 = 0 when referred to the primed system
The equation of the line /: 3x — 3y +4 = 0 when referred to the prime system

The equations of transformation are

1
x = x'cos45° —y'sind5° = —(x' -/
Y ﬁ( »)
y=x'sin45° +)/cos45° = L(x' +"
V2

For x' = +/2,y' = 3+/2, the equations of transformation yield

1 1
x_ﬁ(ﬁ—%/i)_—z y—ﬁ(\/i+3\/§)—4

Thus, in the unprimed system the coordinates are P(=2,4).
When the equations of transformation are solved for x’ and y’, we have

1 1
! !/
=—((x+y — Xx—7
\/5( » oy ﬁ( »)
For x = 0,y = 0 these equations yield x’ = 0,3’ = 0; thus, in the primed system, we have O(0, 0)'.
Since the coordinates are unchanged, the origin is called an invariant point of the transformation.

X
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(¢) For x =2,y = 3+/2 the equations of (b) yield x’ = 4, )’ = 2. In the primed system, we have P(4,2).

(d) When the values for x and y from the equations of transformation are substituted in the given equation
of the line, we have

1 1 2
ﬁ(x'—y’)—kﬁ(x'+y')+3x/§zﬁx’+3\/§:0 or xX'+3=0

Note that the x’ axis is perpendicular to the given line.

(e) Here
3 /! ! 3 ! ! 6 / /
T(x —y)—T(x +y)+4———Ty +4=0 or 3y —=2v2=0

Note that the x' axis is parallel to the given line.

Transform the equation 2x> — 4xy + 5y° — 18x + 12y — 24 = 0 by rotating the coordinate axes through the
angle 0 where sin 0 = 1/+/5 and cos 0 = 2//5.

1 1

2x' =9/ =
\/5( X' =y)y NG

The equations of transformation are x = (x" + 2y)Y and when the values of x and y

are substituted in the given equation, we find
24 42
12 12 ! /
X460y T ——=x+—7=)y-24=0
'V NS \/5}
Thus, the effect of the transformation is to produce an equation in which the cross-product term x'y’ is
missing.

After a rotation of axes with equations of transformation

x = (12x' = 5)") y = 1565x"+12y)

followed by a translation with equations of transformation

I 16 / n 63
X =x + 3 Yy =YV 13
a certain equation of the second degree is reduced to y”? = —8x”. Sketch the locus, showing each set of

coordinate axes.

In order to distinguish between the three coordinate systems, we shall use the term wunprimed for the
original system, primed for the system after the rotation, and double-primed for the system after the
translation. We begin with the original (unprimed) axes in the usual position.

Now any pair of number, as (12,5), which are proportional respectively to cos ) = {—% and sin = % are
the coordinates of a point on the x’ axis. With the x’ and )’ axes in position, we next seek the origin O” of the
double-primed system. Using first the equations of translation and then the equations of rotation, we find
0"(0,0)" = 0"(1$, -8y = 0"(3,—4). Locating 0"(3,—4) with reference to the original system, we draw the
x” and y” axes through O” parallel to the x' and y’ axes. Finally, on this latter set of axes, we sketch the
parabola y”?> = —8x". See Fig. 36-5.



CHAP. 36] TRANSFORMATION OF COORDINATES

Fig. 36-5

279

In Problems 36.7-36.9 determine the nature of the locus, obtain the reduced form of the equation, and

sketch the locus showing all sets of coordinate axes.

36.7  20x% —24xy + 27y + 24x — 54y =369 = 0
Since B2 — AC = (=12)> =20 27 < 0, the locus is an ellipse.

First Solution. The angle 0 through which the axes must be rotated to eliminate the term in xy is

given by

g 2B 4
M= CcT20-27 7

Then cos20 =

7 _ 7 Gin0 — I—cos20 3 cos 0 — /l-l—cosZH_é_l
[24)2 + (72 25’ 2 5’ 2 5’

and the equations of rotation are x = {(4x" = 3y"), y = $+(3x’ + 4y"). When this transformation is applied to

the given equation, we find
11x"% 4 36y> = 86x' - 288/ _369 =0 as the semireduced form
Completing squares, we have

T(x"? =&+ 2) +36(»"2 = 8/ +18) = 369 + 11(5%) + 36(2) = 396

or 1(x' =2)" +36(/ -9’ = 396

The translation x' = x” + 2, )" = 3 4+ 4 gives the reduced form 11x"? + 36)"* = 396.

The x' axis passes through the point (4,3) and the coordinates of the new origin are

0"(0,0)=0"¢,%' = 0"(0,1). See Fig. 36-6



280

36.8

TRANSFORMATION OF COORDINATES [CHAP. 36

Fig. 36-6

Second Solution. Since some may prefer to eliminate the first-degree terms before rotating the axes, we
give the details for this locus.
Applying the transformation (36.2) to the given equation, we obtain

20(x" + h)* = 24(x" + B + k) + 27(y + k)* 4 24(x" + 1) — 54/ + k) — 369
=20x"% —24x"y + 27y'% + (40h — 24k + 24)x' — (24h — 54k + 54))
+ 20K — 24hk + 27k> + 24h — 54k — 369 = 0.

If the terms of first degree are to disappear, # and k must be chosen so that 40/ — 24k + 24 =0, 24h—
54k + 54 =0. Then 7 = 0,k = 1, and the equation of the locus becomes 20x'> — 24x’y’ +27y'> — 396 = 0.

As in the first solution, the equations of rotation to eliminate the term in x'y’ are x' = 1(4x" —3)"),
y' =1(Bx" 4+ 4y"). When this transformation is made, we have

D(4x" = 3y"? =2 (@4x" = 3y"Cx" + 4" + L GBx" + 4y") - 396 =0

or 11x" 4+ 36" =396, as before.

X2 4 2xy + 17 +1042x =22y +8 =0

Here B> — AC = 1—1-1 = 0; the locus is either a parabola or a pair of parallel lines. Since 4 = C = 1,
we rotate the axes through the angle 0 = 45° to obtain the semireduced form. When the transformation

1 / ! 7L / N
"_E(X s y—ﬁ(x +)

is applied to the given equation, we find x'? +4x’ — 6y’ +4 = (x' +2)> — 6y’ = 0. Then the translation
x' = x"-2,y' = y" produces the reduced form x"? —6y" = 0.

The locus is a parabola. See Fig. 36-7. The x’ axis passes through the point (1,1) and
0"(0,0)" = 0"(=2,0) = 0" (v-2,—-2).
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36.9

36.10

36.11

27x% 4 120xy 4 77 + 234x + 858y + 117 = 0.

Here B?> — AC = (60)> —27-77 > 0; the locus is a hyperbola or a pair of intersecting lines. From

tan 20 = 120/(27—77) = =12, we have cos20 = —3; then sin0 = y/1(1 +3) = 3/+/13, cos 0 = (1 = %) =

2/+/13, and the equation of rotations are

1
VB3

- L

m(&x’ +2))

x @x' =3y, y

Applying the transformation, we obtain 9x'? — y'2 4+ 18y/13x' + 64/13y' +9 = 0.

Completing the squares, we obtain 9(x' + \/ﬁ)z—(y’—%/ﬁ)z +9 =0 which after the translation
X' =x" =13,y = y" + 3413 becomes 9x">— "2 +9 =0 or y">—9x"> = 9.

The locus is a hyperbola. See Fig. 36-8. The x’ axis passes through the point (2,3) and 0”(0,0)" =
0"(=/13,3/13) = 0"(~11,3).

>

F23

>
0"(~11,3) / ‘

Fig. 36-8

Supplementary Problems

If the equations of translation are x = x' + 2,y =y’ = 5, find

(a) The coordinates of O(0,0) when referred to the primed system

(h) The coordinates of P(—2,4) when referred to the primed system

(¢) The coordinates of P(—2,4) when referred to the unprimed system
(d) The equation of /: 5x + 2y = 0 when referred to the primed system
(e) The equation of /: x —2y + 4 = 0 when referred to the primed system

Ans. (@) (=2,5 () (=49 (0 O,=1) (d) 5X'+2'=0 (¢) X'=2'+16=0

Simplify each of the following equations by a suitable translation. Draw the figure showing both sets of axes.

(@) 4x>+y*—16x+6y—11=0 (d) x¥*=12x=8y—4=0
(b) 9x>—4y* —36x+48y—144=0 (e) 16> +5x+32y+6=0
(¢) 9x>—4y*—36x+48y—-72=0 (f) xy—dx+3y+24=0

Ans. (a) 4x> +12 =36  (¢) 4'?=-9x'?=36 () 16y'>=-5x
() x> -4 =36 (d) x"*-8'=0 () Xy +36=0
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36.13

36.14

36.15

36.16

36.17
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Simplify each of the following equations by rotating the axes through the indicated angle. Draw the figure
showing both sets of axes.

(@) x*—)*=16;45° (¢) 16x7 + 24xy + 9% + 60x — 80y = 0; Arccos
(b) 9x% + 24xy + 16)* = 25; Arccos 3 (d) 31x% = 24xy + 21y = 39; Arccos 2/+/13

Ans. (@) X'y +8=0 b x*=1 () x?=4y d) x"?+3y?=3

Simplify each equation by suitable transformations and draw a figure showing all sets of axes.
(@) 3x>+2xy+3y>—8x+16y+30=0
(b) 13x* 4+ 12xy—3y>—15x— 15y =0
(¢) 25x%* —120xy + 14432 4+ 1300x + 1274y — 2704 = 0
(d) 108x> =312xy + 1732 + 750y +225 =0
(e) 16x% 4 24xy + 91> —60x — 170y — 175 =0
(f) 37x% 4+ 32xy + 13)? —42/5x = 6/5y = 0

Ans. (a) 2x" +y" =4 (¢) y"™=-10x" (e) x" =4y

() 30x" =10y =3 (d) 4x"™ —9y" =36 (f) 9x"™ + " =18

Apply the equations of transformation (36.2) directly to (36.7) and show that the first-degree terms may be
made to disappear provided B> — AC # 0.

Use (36.3) to show: (a) A'+C' =A+C, (b) B>—A'C' =B - AC.

. —(B D)= +H
Solve (36.1) to obtain x = % where H = (B> — AC)y* 4+ 2(BD — AE)y 4+ D?> — AF. Show that
A B D
H is a perfect square when A=|B C E|=0. Thus, prove (36.1) represents a degenerate locus if and only
D E F

if A=0.

Prove that A of Problem 36.16 is invariant under translation and rotation of the axes.



Points in Space

RECTANGULAR COORDINATES IN SPACE. Consider the three mutually perpendicular planes of
Fig. 37-1. These three planes (the xy plane, the xz plane, the yz plane) are called the coordinate planes;,
their three lines of intersection are called the coordinate axes (the x axis, the y axis, the z axis); and their
common point O is called the origin. Positive direction is indicated on each axis by an arrow-tip.

(NOTE: The coordinate system of Fig. 37-1 is called a left-handed system. When the x and y axes are
interchanged, the system becomes right-handed.)

| T_hg Qgrdinate planes divide the space into eight regions, called octants. The octant whose edges are
Ox, Oy, Oz is called the first octant; the other octants are not numbered.

:* /‘.- Jl.

4 4 :

Fig. 37-1 Fig. 37-2

Let P be any point in space, not in a coordinate plane, and through P pass planes parallel to the
coordinate planes meeting the coordinate axes in the points 4, B, C and forming the rectangular
parallelepiped of Fig. 37-2. The directed distances x = 04, y = OB, z = OC are called, respectively, the
x coordinate, the y coordinate, the z coordinate of P and we write P(x,y, z).

Since AF= OB and FP = OC, it is preferable to use the three edges OA, AF, FP instead of the
complete parallelepiped in locating a given point.

EXAMPLE 1. Locate the points:
(@ 234 (O (-2,-2,3) (0 2,-2,-3)
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As standard procedure in representing on paper the left-handed system, we shall draw £xOz measuring 90° and
£x0y measuring 135°. Then distances on parallels to the x and z axes will be drawn to full scale while distances
parallel to the y axis will be drawn about ; of full scale.

(a) From the origin move 2 units to the right along the x axis to 4(2,0,0), from 4 move 3 units forward parallel to
the y axis to F(2,3,0), and from F move 4 units upward parallel to the z axis to P(2,3,4). Se Fig. 37-3(a).

(b) From the origin move 2 units to the left along the x axis to 4(=2,0,0), from 4 move 2 units backward parallel to
the y axis to F(=2,-2,0), and from F move 3 units upward parallel to the z axis to P(=2,-2, 3). See Fig. 37-3(b).

(¢) From the origin move 2 units to the right along the x axis to 4(2,0,0), from A4 move 2 units backward parallel
to the y axis to F(2,-2,0), and from F move 3 units downward parallel to the z axis to P(2,-2,-3).
See Fig. 37-3(c).

(See Problem 37.1.)

A
z P(2-2.3)
[}
¢ P234)
3
4
F
’.r F
# f 2 -2
ol A " e
¢
/ A -2 0
¥ F
{ah y

(b)

"

ic)

Fig. 37-3

THE DISTANCE BETWEEN TWO POINTS P,(x,, v1,2;) and Py(x,, 15, z,) is from Fig. 37-4

d= PP, = \/(PIR)2 + (RPy)? = \/(P15)2 + (SR)* 4+ (RPy)* = \/(Xz —x)?+ =y +(z—2)?
37.1)
(See Problem 37.2.)
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IF Pi(xy,y1,z1) AND P,(x,),,2,) are the end points of a line segment and if P(x,y,z) divides the
segment in the ratio P{P/PP, = r|/r,, then
L= 2N + "lxz7 y= Yy + 1’1y27 T +hnon (37.2)
r1—|—r2 1’1+l'2 V1+}"2
The coordinates of the midpoint of P, P, are (% (x1+x2), S0+ ), S+ 22)). (See Problems 37.3-37.4.)

z

4

Py00py3.25,)
i &
i 27
T P4
i e
i ds
| ’
.
);'—- ————— AP R(-xzs)’pzh)
4 -
” -
A ekl
S0y.y15215)
0 - » x
P(x.y12,0)
y
Fig. 37-4

TWO STRAIGHT LINES IN SPACE which intersect or are parallel lie in the same plane; two lines
which are not coplanar are called skew. By definition, the angle between two directed skew lines as b and
c in Fig. 37-5 is the angle between any two intersecting lines as 5’ and ¢’ which are respectively parallel to
the skew lines and similarly directed.

A
b
7
s
b .
d
Ve C
V c' /
/
v
4
0 P x
¥
Fig. 37-5

DIRECTION COSINES OF A LINE. In the plane a directed line / [positive direction upward in
Figs. 37-6(a) and (b)] forms the angles « and f with the positive directions on the x and y axes. However,
in our study of the line in the plane we have favored the angle o over the angle f, calling it the angle of
inclination of the line and its tangent the slope of the line.

sinoe_sin(3m—f) cosp
cosa  cosa  cosa

In Fig. 37-6(a), o+ f =57 and m=tano = , and in Fig. 37-6(b),

sin(}7 + ) _cosf

. Now the angles o and f, called direction angles of the line,
cosa cosa

a=1n+ pandtana =
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or their cosines, cos o and cos f3, called direction cosines of the line, might have been used instead of the
slope to give the direction of the line /. Indeed, it will be the direction cosines which will be generalized in
our study of the straight line in space.

Q.
»> X \ > 2
/ \,
(a) (b) y
Fig. 37-6 Fig. 37-7

The direction of a line in space will be given by the three angles, called direction angles of the line,
which it or that line through the origin parallel to it makes with the coordinate axes. If, as in Fig. 37-7,
the direction angles o, 8,7, where O = o, f,7 < =, are the respective angles between the positive directions
on the x, y, z axis and the directed line / (positive direction upward), the direction angles of this line when
oppositely directed are «’ = n—a, ' = n— B,7' = n—y. Thus, an undirected line in space has two sets
of direction angles «, f,7 and = — o, = — ff,m —7, and two sets of direction cosines [cos «, cos f3, cos y] and
[—cos o, —cos fi, —cos y] since cos (nt — ¢) = —cos ¢. To avoid confusion with the coordinates of a point,
the triples of direction cosines of a line will be enclosed in a bracket. Thus we shall write /: [4, B, C] to
indicate the line whose direction cosines are the triple 4, B, C.

The direction cosines of the / determined by points P;(xy, v, z;) and P,(x,, ¥, 25) and directed from
P, to P, are (see Fig. 37-4)

N LTI

cos[i=T, cosy = y

PSS -X
cosoc=cos4P2PlSzﬁ=x2d\l7

when [/ is directed from P, to P;, the direction cosines are

[xl —X2 V1= 21 —22]

d ' d  d
Except for the natural preference for [1,%,%] over [-1,—%,—3], it is immaterial which set of

direction cosines is used when dealing with an undirected line.

EXAMPLE 2. Find the two sets of direction cosines and indicate the positive direction along the line passing
through the points P(3,—1,2) and P,(5,2,—4).

We have d =+/(2)> + (3)*> + (—6)*> = 7. One set of direction cosines is

[Xz—-\’l N=n 22—21] _ [% 3 _9]
d ' d  d 777

the positive direction being from P; to P,. When the line is directed from P, to P;, the direction cosines are
2 .36

777k
The sum of the squares of the direction cosines of any line is equal to 1; i.e.,

cos? o + cos? B+ cos’ y=1

It follows immediately that at least one of the direction cosines of any line is different from 0.
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DIRECTION NUMBERS OF A LINE. Instead of the direction cosines of a line, it is frequently more
convenient to use any triple of numbers, preferably small integers when possible, which are proportional
to the direction cosines. Any such triple is called a set of direction numbers of the line. For example, if the

direction cosines are [3,—3,— 1], sets of direction numbers are [2,-2,—1],[-2,2,1],[4,—4,-2], etc.; if
the direction cosines are [%, 1/\/57 - %], a set of direction numbers is [1,+/2, —1].

Sets of direction numbers for the line through points P;(xy,y;,z;) and P,(x,,y,,2z,) are
X2 —=x1,y2 = y1,22— z1] and [x) — X2,y — 2,21 — 22].

If [a, b, c] is a set of direction numbers of a line, then the direction cosines of the line are given by

a b c

cosg=F*—— cosff=Ff—— cOoS)=F——"-——
Vad +b* + ¢ V@ + b + ¢ Vad + b + ¢

where the usual convention of first reading the upper signs and then the lower signs holds. (See
Problems 37.5-37.8.)

37.3)

THE ANGLE ¢ BETWEEN TWO DIRECTED LINES

h: [cosay,cos By, cos ] and Iy [cosay,cos By, cos 7]
is given by
cos 6 = cos a;cos o, + cos f1cos i, + cOSy1COS 7y (37.4)

(For a proof see Problem 37.9.)

If the two lines are parallel then § = 0 or 7, according as the lines are similarly or oppositely directed,
and coso cosa, + cos fficos f, + cosyjcosy, = £1. If the sign is +, then cosw; = cosa,,cosff; =
cosfl,,cosy; = cos y,; if the sign is —, then coso; = —cosa,,cos ff; = —cos ff,,cosy; = —cosy,. Thus,
two undirected lines are parallel if and only if their direction cosines are the same or differ only in sign. In
terms of direction numbers, two lines are parallel if and only if corresponding direction numbers are
proportional.

If the two lines are perpendicular, then 0 =37 or 37/2, according as the lines are similarly or
oppositely directed, and

COS 01 COS 0y + €08 ff1¢os i, + cosycosy, =0 (37.5)
In terms of direction numbers, two lines with direction number [ay, by, ¢1] and [a,, b,, ¢;5], respectively, are
perpendicular if and only if
ay-a,+by-by+c - =0. (37.5)
(See Problems 37.10-37.12.)

THE DIRECTION NUMBER DEVICE. If /: [a;,b;,c,] and L: [ay, by, ¢;] are two nonparallel lines,
then a set of direction number [a, b, ¢] of any line perpendicular to both /; and /, is given by

= by ¢ —_|a @ _|a by
by af o af a by
These three determinants can be obtained readily as follows:
. . . by ¢
(1) Write the two sets of direction numbers in three columns Z' bl zl .
2 by

a a ap b

b .
! and strike out the first column to
ay b2 C) ay b2

(2) Repeat the first two columns to obtain

by ¢ a b
have 1 1 I
Zz by ¢ a b
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Then a is the determinant of the first and second columns remaining, b is the determinant of the
second and third columns, and c is the determinant of the third and fourth columns. This procedure
will be called the direction number device. Note, however, that it is a mechanical procedure for
obtaining one solution of two homogeneous equations in three unknowns and thus has other
applications.

EXAMPLE 3. Find a set of direction numbers [a, b, c] of any line perpendicular to /; : [2,3,4] and /, : [1,-2,-3].

3 4 2 3

Using the direction number device, we write D 31 - Then

3 4 4 2 2 3
|2 3t o= Ym0 =2 3

A set of direction numbers is [—1, 10,—7] or, if preferred, [1,—10,7]. (See Problem 37.13.)

Solved Problems

37.1  What is the locus of a point:

(a) Whose z coordinate is always 0?

(b) Whose z coordinate is always 3?

(¢) Whose x coordinate is always —5?

(d) Whose x and y coordinates are always 0?

(e) Whose x coordinate is always 2 and whose y coordinate is always 3?

(a) All points (a, b, 0) lie in the xy plane; the locus is that plane.

(b) Every point is 3 units above the xy plane; the locus is the plane parallel to the xy plane and 3 units
above it.

(¢) A plane parallel to the yz plane and 5 units to the left of it.
(d) All points (0,0, ¢) lie on the z axis; the locus is that line.

(e) In locating the point P(2, 3, ¢), the x and y coordinates are used to locate the point F(2,3,0) in the
xy plane and then a distance |c| is measured from F parallel to the z axis. The locus is the line
parallel to the z axis passing through the point (2, 3,0) in the xy plane.

37.2  (a) Find the distance between the points Pj(—1,—3,3) and P,(2,—4,1).
(b) Find the perimeter of the triangle whose vertices are 4(—2,—4,-3), B(1,0,9), C(2,0,9).
(¢) Show that the points A(1,2,4), B(4,1,6), and C(-5,4,0) are collinear.

(@ Hered=+/(x;=x)*+ (=3P + (@ -2 =V2-DP +[-4- (P + (1 -3 = V4.
() We find AB=+/[1 —(=2)]* + [0~ (=H]* + [9— (-3)]2 = 13,

BC=yJ2-1>+0-02+©9-92=1, and CA=+(-2-2+(—4—07>+(-3-97 =4/11.
The perimeter is 13 + 1 + 411 = 14 4+ 4/11.

(¢) Here AB=+/(3)*+ (=12 + (22 =14, BC =+/[(-9?%+ (3)> + (—6)* = 3./14,

and CA = /(6)2 + (=2)* + (4) = 2/14. Since BC = CA + AB, the points are collinear.
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37.3

37.4

37.5

Find the coordinates of the point P of division for each pair of points and given ratio. Find also the midpoint
of the segment. (@) P(3,2,—4), Py(6,—1,2); 1:2(b) P(2,5,4), P»(—6,3,8);=3:5.

(a) Here r; =1 and r, = 2. Then

x:r‘2x1+r1x2=2~3+1-6=47 yzrzyl+r1y2=2~2+1(—1)=17 Z=r221+r122=_

r+r 142 r+r 142 r+r

and the required point is P(4, 1,—2). The midpoint has coordinates (3(x; + x2), (1 + »2), 3z +22) =
(3.3.-1).
() Here ry =—=3 and r, = 5. Then

(ZS2EENEO SIS

=-3+5 -3+5

5-4+(—3)8:

=2
-3+5

and the required point is P(14,8,—2). The midpoint has coordinates (=2, 4, 6).

Prove: The three lines joining the midpoints of the opposite edges of a tetrahedron pass through a point P
which bisects each of them.

Let the tetrahedron, shown in Fig. 37-8, have vertices 0(0,0,0), A(«,0,0), B(b, ¢,0), and C(d, e, f.). The
midpoints of OB and AC are, respectively, D(%b,%c, 0) and E(% (a+ d),%e,%f'), and the midpoint of DE is
P(% (a+b+d), }—‘(c + e),}—‘f). The midpoints of OA and BC are, respectively, F(%a, 0,0) and
G(%(b +d), %(c+e),%f), and the midpoint of FG is P. It is left for the reader to find the midpoints H
and I of OC and 4B, and show that P is the midpoint of HI.

;\ C (de,f)

F A (a,0,0)

Fig. 37-8

Find the direction cosines of the line:

(a) Passing through P;(3,4,5) and P,(—1,2,3) and directed from P, to P,
(b) Passing through P;(2,—1,-3) and P»(—4,2, 1) and directed from P, to P,
(¢) Passing through O (0,0,0) and P(a, b, c) and directed from O to P

(d) Passing through P;(4,—1,2) and P,(2,1,3) and directed so that y is acute
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37.6

37.7

37.8

37.9
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(a) We have
X2 =X —4 2=n —2 T4 —2
coso = =—, cosfi = =—, cosy = =——.
2/6 P="a"=3% N
L . 2 1 1
The direction cosines are | ——,——=,——
6 V6 6
X=X 6 »—y_ 3 »_ —4
b coso = =—, cosff = =—, cosy = =—
®) d 61’ z d  J6l Td el

The direction cosines are | —,—

a—0 a b—0 b c—0 ¢
(¢) cosa= = , cosf= = , COSy=——=—"7-————
d e+ +¢ d  J+p+¢ d i+ +¢
The direction cosines are [ a , b , ¢ ]
VAP +E e+ P+ N+ 5+ 3

(d) The two sets of direction cosines of the undirected line are

42 _ =2 b =1
cosa=*35, cosff=7F3, cosy=Fj3

one set being given by the upper signs and the other by the lower signs. When y is acute, cos y > 0; hence
the required set is [—%,%,%].

Given the direction angles « measuring 120° and f measuring 45°, find 7 if the line is directed upward.

cos? o + cos” ff + cos? y = cos® 120° 4 cos? 45° + cos’y = (—%)2 +(1v/2)? + cos’y = 1. Then cos’y = i
and cosy = =1 When the line is directed upward, cosy = % and y = 60°.

The direction numbers of a line / are given as [2,—3, 6]. Find the direction cosines of / when directed upward.

The direction cosines of / are given by

a 2 -3
cos e =Fr—u-—0u = i7, cosf = t(7)" cosy ==+

Va2 + b2+ 3

When 7y is acute, cosy > 0, and the direction cosines are [2,—3,9].

=

Use direction numbers to show that the points A(l,2,4), B(4,1,6), and C(=5,4,0) are collinear. [See
Problem 37.2(c).]

A set if direction numbers of the line AB is [3,—1,2], for BC is [-9,3,—6]. Since the two sets are
proportional, the lines are parallel; since the lines have a point in common they are coincident and the points
are collinear.

Prove: the angle 6 between two directed lines /,: [cos oy, cos f1,cosy,] and /: [cosa,, cos 55, cos p,] is given
by cos 0 = cosa;cos oy + cos f1cos 3, + c0S 7{COS 5.

The angle 0 is by definition the angle between two lines issuing from the origin parallel, respectively, to
the given lines /, and /, and similarly directed.

Consider the triangle OP;P,, in Fig. 37-9, whose vertices are the origin and the points
Pi(cosay,cos fii,cosy,) and P,(cosa,, cos fi5,cos),). The line segment OP; is of length 1 (why?) and is
parallel to /;; similarly, OP, is of length 1 and is parallel to /,. Thus, ZP;OP, = 0. By the Law of Cosines,
(P P,)? = (OP))?> + (OP,)* = 2(0P;) (OP,) cos 0 and cos 0 = cos oy cos oy + oS 1 cOs By + COS | €OS .
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A
PZ
P,
0
4
> x
¥y

Fig. 379

37.10 (@) Find the angle between the directed lines /: [%,%,%] and /: [%,—%,%].

(b) Find the acute angle between the lines /;: [-2,1,2] and /: [2,—6,-3].

(¢) The line /; passes through A(5,-2,3) and B(2,1,—4), and the line /, passes through C(—4,1,-2) and
D(=3,2,3). Find the acute angle between them.

o

(@) ?)Ve ;11210\/560/C050 = cos oy COs o + ¢0s By o8 By +cospycosyy =2 243 (= +§-2=1=0.619 and

(b) Since /(=2 + (1> +(2)>=3, we take [—%,%,%] as direction cosines of /. Since
V(22 4 (=6)* + (=3)> = 7, we take [3,—§,—2] as direction cosines of /,. Then cos=—2-2+
19 +3(=3 =-1=-0.762, and 6 = 139°40'. The required angle is 40°20'.

(¢) Take (3467, —3\/6_7,7/\/ﬁ] as direction cosines of /; and [1/3\/§, 1/3\/57 5/3\/5] as direction
cosines of /,. Then

L1353
V367 367 3367 3201

cosf) = =0.823 and 0=34°40

37.11 (@) Show that the line joining A(9,2,6) and B(5,—3,2) and the line joining C(—1,—5,-2) and D(7, 5, 6) are
parallel.

(b) Show that the line joining A(7,2,3) and B(-2,5,2) and the line joining C(4,10,1) and D(1,2,4) are

mutually perpendicular.

(a) Here [9—-5,2—(=3),6—2] =[4,5,4] is a set of direction numbers of AB and [-1—-7,-5-75,
—2 —6] = [-8,—10,—8] is a set of direction number of CD. Since the two sets are proportional, the
two lines are parallel.

(b) Here [9,-3, 1] s a set of direction numbers of 4B and [3,8,—3] is a set of direction numbers of CD.
Since [see Equation (37.5)] 9 - 3 + (=3)8 + 1(=3) = 0, the lines are perpendicular.

37.12 Find the area of the triangle whose vertices are 4(4,2,3), B(7,-2,4) and C(3,-4,6).
The area of triangle ABC is given by 1(4B)(AC)sinA. We have AB = V26 and AC = /46.

To find sin 4, we direct the sides 4B and AC away from the origin as in Fig. 37-10. Then 4B has
direction cosines [3/+/26,—4/~/26,1/+/26], AC has direction cosines [—1//46,—6/~/46, 3 //46],

3 -1 -4 -6 1 3 24
cosd=—"—4+—" —F+— — =
V26 46 26 A6 26 A6 2646
and sind =+1—cos?4 = V153
V26:/46
24/155
The required area is $v/26 - /46 - = /155.

V2646
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C
A
B
1
1
A ! |
-y I
7 7
o ——:’-——r“-“*“—;—b X
I//
y
Fig. 37-10

37.13 Find a set of direction numbers for any line which is perpendicular to

(a) [;:[1=2,-3] and L: [4,—1,-5]
(b) The triangle whose vertices are 4(4,2,3), B(7,—2,4), and C(3,—4,6)
(a) Using the direction number device

-2 -3 1 =2 . -2 -3 -3 1 1 -2
Z 1 -5 4 _1° we obtain a—‘_l _5|—7, b= _5 4|——7, c—|4 -1 =17.

Thus, a set of direction numbers is [7,—7,7]; a simpler set is [1,—1,1].

(b) Since the triangle lies in a plane determined by the lines AB and AC, we seek direction numbers for any
line perpendicular to these lines. For 4B and AC, respective sets of direction numbers are [3,—4, 1] and
[-1,-6,3]. Using the direction number device

4 1 3 —4 -4 1 13 3 —4
jl* DS a—|_6 3|_-e, b—|3 Sl=- c,_|_1 e

Then [-6,—10,—22] is a set of direction numbers and [3,5,11] is a simpler set.

Supplementary Problems

37.14 Find the undirected distance between each pair of points:
(@) 4, 1,5 and (2, -1, 4) () (9, 7,-2)and (6, 5, 4) () (9,-2,-3)and (-3, 4, 0).
Ans.  (a) 3 ® 7 (o) 321

37.15 Find the undirected distance of each of the following points from (i) the origin, (i7) the x axis, (iii) the y axis,
and (iv) the z axis: (@) (2,6,—3) ) 2,-V3.3).

Ans. (@) 7,2,6,3 (b) 4,2,4/3,3

37.16 For each pair of points, find the coordinates of the point dividing P; P, in the given ratio; find also the
coordinates of the midpoint.

((1) P1(47175)’P2(27_134)~,3:2 Ans. %>_%72572)7(3307%)
() Pi9,7.-2), P2(6,5,4)1 : 4 Ans. (2.3,-9.5,6,1)

© P19,=2,-3), Py(=3,4,0),=1:3  Ans. (15,-5,-9,(3,1,-3)

(d) P(0,0,0),P>(2,3,4),2: =3 Ans. (—4-6,-8),(1,3,2)
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37.17 Find the equation of the locus of a point which is (a) always equidistant from the points (4,1,5) and (2,—1,4)
(b) always at a distance 6 units from (4,1,5) (¢) always two-thirds as far from the y axis as from the origin.

Ans. (@) 4x+4y+2z-21=0 () xX>+y’ +22-8x—-2y—10z+6=0
(0 5x*—4y*+572=0

37.18 Find a set of direction cosines and a set of direction numbers for the line joining P; and P,, given

(@ P1(0,0,0), Pr(4,8,-8) Ans. [§,3,-3](1,2,-2]

(b) Pi(1,3,5),Py(=1,0,-1)  Ans. [-3,-3,-9],(2,3,6]
(©) Pi(56,-3),P(1,-6,3)  Ans. [-2,-5,3][2,6,-3]
1 -9
d) P(4,2,-6), P,(-2,1,3 Ans. | —,—,—|,16,1,-9
(d) P(4,2,-6), Py(=2,1,3) ns [mmm][ 1

37.19 Find cos y, given (a) cosa = }—‘5‘,0051)’ = —% (h) o=60°,=135°

Ans. (@) =% OE=S;

37.20 Find

(a) The acute angle between the line having direction numbers [—4,—1,—8] and the line joining the points
(6,4,—1) and (4,0,3).

(b) The interior angles of the triangle whose vertices are 4(2,—1,0), B(4,1,—1), C(5,—1,—-4).
Ans. (a) 68°20 (b) A=48°10/,B=95°10',C = 36°4(0

37.21 Find the coordinates of the point P in which the line joining 4(5,—1,4) and B(-5,7,0) pierces the yz plane.

Hint: Let P have coordinates (0,b, ¢) and express the condition (see Problem 37.8) that 4, B, P be collinear.
Ans. P(0,3,2)

37.22 Find relations which the coordinates of P(x,y,z) must satisfy if P is to be collinear with (2,3,1) and
(1,-2,-95).

Ans. x—2:y—3:z—1=1:5:60rx = =—

37.23 Find a set of direction numbers for any line perpendicular to
(a) Each of the lines /;: [1,2,—4] and /,: [2, —1,3]
(b) Each of the lines joining A(2,—1,5) to B(—1,3,4) and C(0,-5,4)
Ans. (a) [2,—-11,-5] (b) [8,1,-20]

37.24 Find the coordinates of the point P in which the line joining the points 4(4,11,18) and B(—1,—4,-7)
intersects the line joining the points C(3,1,5) and D(5,0,7).

Hint: Let P divide AB in the ratio 1 :r and CD in the ratio 1 : s, and obtain relations rs — r — 4s — 6 = 0, etc.
Ans. (1,2,3)

37.25 Prove that the four line segments joining each vertex of a tetrahedron to the point of intersection of the
medians of the opposite face have a point G in common. Prove that each of the four line segments is divided
in the ratio 1:3 by G.

(NOTE: G, the point P of Problem 37.4, is called the centroid of the tetrahedron.)



Chapter 38

Simultaneous
Equations Involving
Quadratics

ONE LINEAR AND ONE QUADRATIC EQUATION

Procedure: Solve the linear equation for one of the two unknowns (your choice) and substitute in the
quadratic equation. Since this results in a quadratic equation in one unknown, the system
can always be solved.

4x* + 3y =16
Sx+y=17
Solve the linear equation for y: y = 7 — 5x. Substitute in the quadratic equation:

EXAMPLE 1. Solve the system {

42 +3(7-5x)° =16
4x% +3(49 — 70 4+ 25x%) = 16
79x% = 210x + 131 = (x = 1)(79x = 131) = 0

and x = 1,%.

When x =1,y =7—5x = 2; when x = %,y = —170—92. The solutions are x =1,y =2 and x = %l,y = —%.

The locus of the linear equation is the straight line and the locus of the quadratic equation is the ellipse in Fig.
38-1. (See Problems 38.1-38.2.)

TWO QUADRATIC EQUATIONS. In general, solving a system of two quadratic lequations in two
unknowns involves solving an equation of the fourth degree in one of the unknowns. Since the solution
of the general equation of the fourth degree in one unknown is beyond the scope of this book, only those
systems which require the solution of a quadratic equation in one unknown will be treated here.

TWO QUADRATIC EQUATIONS OF THE FORM ax? + by? = ¢

Procedure: Eliminate one of the unknowns by the method of addition for simultancous equations in
Chapter 5.

294
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v
\
(1,2)
0 x
131 102
o'~

Fig. 38-1

4> +9y* =72 (38.1)

EXAMPLE 2. Solve the system { 322 =19 (38.2)

Multiply (38.7) by 2:  8x* +18)° = 144
Multiply (38.2) by 9:  27x* —18)* = 171
Add: 35x2 =315
Then x> =9 and x = +3.

When x = 3, (38.1) gives 9y> = 72— 4x> = 72— 36 = 36,)> =4, and y = +2.
When x = =3, (38.1) gives 95> = 72—36 = 36, 1> = 4, and y = *+2.

295

The four solutions x=3, y=2;x=3, y=-2; x=-3, y=2; x=-3, y=-2 may also be written as
x==*3, y=*2; x=*3 y= *2. By convention, we read the two upper signs and the two lower signs in the

latter form.
The ellipse and the hyperbola intersect in the points (3, 2), (3,-2), (-3, 2), (—3,—2). See Fig. 38-2. (See Problems

38.3-38.4.)

Y

-3,2) (3,2)
.4
5 >
(-3,-2) (3,-2)
Fig. 38-2

TWO QUADRATIC EQUATIONS, ONE HOMOGENEOUS. An expression, as 2x> — 3xy + )2,
whose terms are all of the same degree in the variables, is called homogeneous. A homogeneous
expression equated to zero is called a homogeneous equation. A homogeneous quadratic equation in two

unknowns can always be solved for one of the unknowns in terms of the other.
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X2 =3xp+22=0 (383

EXAMPLE 3. Solve the system {sz 3 -2 =13 (384

Solve (38.3) for x in terms of y: (x —y)(x—=2y)=0and x =y, x =2y.
Solve the systems (see Example 1):
2x2 +3xy—y* =13 2x2 +3xy—y* =13
{ { x=2y
22437 =y =42 =13 8467 - =13 =13

Y=1y==I

Then x = y = +/13/2. Then x =2y = *2.

The solutions are x=+/13/2, y=+13/2; x=—/13/2, y=—V13/2; x=2, y=1; x=-2, y=—-1 or
x=+13/2, y = +/13/2; x = +2, y = +1. (See Problem 38.5.)

TWO QUADRATIC EQUATIONS OF THE FORM ax? +bxy +c¢y’ =d

Procedure: Combine the two given equations to obtain a homogeneous equation. Solve, as in Example 3,
the system consisting of this homogeneous equation and either of the given equations. (See
Problems 38.6—38.7.)

TWO QUADRATIC EQUATIONS, EACH SYMMETRICAL IN x AND y. An equation, as
2x? = 3xy + 2y* + S5x + Sy = 1, which is unchanged when the two unknowns are interchanged is called a
symmetrical equation.

Procedure: Substitute x = u 4+ v and y = u— v and then eliminate v?> from the resulting equations. (See
Problem 38.8.)

Frequently, a careful study of a given system will reveal some special device for solving it. (See
Problems 38.9-38.13.)

Solved Problems

38.1  Solve the system {i”;__ 3); =6 0 ((12 ))
Solve (2) for x : x = 4y — 6. Substitute in (/):
2)? —3(4y—-6)=2(y-3>=0 y=3,3
When y=3: x=4y—6=12—-6=6. The solutions are x =6,y = 3;x =6,y = 3. The straight line is
tangent to the parabola (see Fig. 38-3) at (6, 3).

2
y—4y=3x+1=0 (1)
38.2  Solve the system{3y_4x:7 )
Solve (2) for x : x = 33y — 7). Substitute in (/):
P —4y-3@y-T+1=0
47 =16y =9y +21 +4 =4 =25y +25=(y—-54y—5=0 or y=5 and y=3
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¥
(6,3)
]
0 >
Fig. 38-3

When y=5,x=13y—7)=2; when y =3 ,x =13y —7) =—£. The solutions are x =2,y = 5; x = -1,
y= %. The straight line intersects the parabola in the points (2,5) and (—}—2,%)‘

3=y =27 ()
38.3  Solve the system {xz =5 ()
Subtract: 2x> = 72, x*> = 36, and x = *6.
When x = 6,3 = x> + 45 = 36 + 45 = 81, and y = *9.
When x = -6, y2 =x>4+45=36+45=281, and y==9. The solutions are x= *6, y= *9;
x = *6, y = *=9. The two hyperbolas intersect in the points (6,9), (—6,9), (—6,—9) and (6,-9).

5x2432=92 (1)
38.4  Solve the system {2x2 L2 =5 Q)

Multiply (1) by 5 25x2 +15y2 = 460
Multiply (2) by —3: —6x% — 15y = =156
Add: 19x = 304 =16 and Y= +4

When x = *4:3)2=92-5x>=92-80=12; > =4 and y = =2. The solutions are x = *4, y = *2;
x = =*4, y=*2. See Fig. 38-4.

Y
(-4, 2) (4,2)
> X
(4,-2)
Fig. 38-4
X +4xy=0 (1)
38.5  Solve the system {xz =21 Q)
Solve (1) for x: x(x +4y) =0 and x = 0,x = —4y.
Solve the systems
X2 —xy+y* =2l X2 =xy+y* =21
x=0 x=—4y
y2=21, y=i\/ﬁ yz=1, y==%x1;, x=—-4yx4

The solutions are x =0, y = *+/21; x = =4, y = F1.
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32482 =140 (1)

38.6  Solve the system {5)62 + 8y — 84 )

Multiply (/) by —3: —9x% —24y? = —420
Multiply (2) by 5: 255> +40xy = 420
Add: 16x% +40xy —24y> = 0
Then

8(2x2 + Sxy — 3y2) =82x—»)(x+3y)=0 and X =3y, x==3y.

Solve the systems

3x% 4 8y = 140 {3x2 +8y% = 140
x=1y x=-3y
3P +87 =37 = 140 27y° +8y* = 35" = 140
y2:16, y =4, x:%y:iz y2:4, y=%2; x=-3y=7%6

The solutions are x = 2, y = *4; x = ¥6, y= *2.

X=3xy+2%2=15 ()

38.7  Solve the system {2x2 F2 =6 2)

Multiply (/) by —=2:  —2x* 4 6xy —4)° = =30
Multiply (2) by 5:  10x2 +5%= 30
Add: 8x2 +6xy+ 3> =(4dx+y)2x+y)=0. Then y=—4xand y = —2x.

Solve the systems

{2x2+y2:6 {2x2+y2=6
y=—4x y=-2x
2x% 4 16x% = 18x% = 6,x% = 1/3; 2x7 +4x% = 6x% = 6,x% = 1;

x=*+3/3and y = —4x = ¥4./3/3 x==*land y=-2x= 2
The solutions are x = *+/3/3,y = ¥4/3/3;x = 1,y = F2.

38.8  Solve the system {;1121134;13; =8
Substitute x =« + v,y = u—v in the given system:
@+ + @@= +3u+n+3u—n =27 +2" +6u=8 (1)
U VU=—)+4u+ V) +4u—= > — V+8u=2 (2)
Add (1) and 2(2):
4 +22u—12=2Qu-Du+6)=0;, u=15-6.

Foru=1 (2)yields V =u’ +8u—-2=1+4-2=%v= =3
Whenu=%,v=%:x=u+v=2,y=u—v=—1.
Whenu:%,v:—%:x:u+v:—l,y:u—v:2.

For u=—6, (2) yields vV = 1> +8u—2 =36—48 —2 = —14; v = =i /14.

Whenu:—(),v:i\/ﬁ:x:u-l—v:—é—i—i\/ﬁ,y:u—v:—é—im.
When u = —6,v = —i 14:x=u+v=—6—i\/ﬁ,y=u—v=—6+i\/ﬁ.

The solutions are x =2,y = —1l;x = -1,y = 2;x = =6 + ix/14,y = =6 ¥ ir/14.
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X24+3y2=25 )

xy=12 (2)
Multiply (2) by 2 and add to (/): x> +2xy +1* =49 orx+y= *7.
Multiply (2) by—2 and add to (/): x> =2xy+)> =1 orx—y= *1.
Solve the systems

38.9  Solve the system {

x+y=1 x+y=1
x—y=1 x—y=-1

2x=38; x=4 2x = 6; x=3

y=T7-x=3 y=T1-x=4

x+y=-7 x+y=-7
x—y= 1 x—y=-I

2x=—-6;, x=-3 2x=-8;, x=-4
y=-T—-x=-4 y==-T—-x=-3

The solutions are x = =4,y = £3;x = 3,y = *4. See Fig. 38-5.
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Alternate Solutions. Solve (2) for y = 12/x and substitute (/). The resulting quartic x*—25x2 4+ 144 =0

can be factored readily.
Y

(3,4)
(4,3)

N\

Fig. 38-5

2 2
x“=xy—12y" =8 (1)
38.10 Solve the system {xz S —1002 =20 ()

This system may be solved by the procedure used in Problems 38.6 and 38.7. Here we give an alternate

solution.

Procedure: Substitute y = mx in the given equations to obtain a system in the unknowns m and x: then

eliminate x to obtain a quadratic in m.

Put y=mxin (/) and (2):
X —mxr—12m*x° = x2(1 —-—m— 12m2) = 8
X2 4 mx? = 10m*x* = X*(1 + m— 10m*) = 20

Now
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2o 8 4 S0
1 +m—10m?
so that
8 _ 20
1-m—12m2 14+ m—10m?
8 + 8m — 80m* = 20 — 20m — 240m°

160m* + 28m — 12 = 4(5m — D@Em+3)=0 and m= %, m= —%

8 1
th =l =~ =25 x=%5y=mx——(x5)==*1.
enm=s:x [— X , Yy =mx 5( )
then m = =
2 8 128 . 8i/10 . _3i/10
P — N =+ s = X = + .
1 —m—12m? 57 5 7 Y 5
8iv/10 3iy/10
The solutions are x = *5,y = *1;x = * l\g—,y =3 l\é—.

X*=y¥=19 )
X +xp+1P=19 (2)

Divide (/) by (2): x—y=1.
X Hxy+yr=19 2)
x—y=1 )
Solve (3) for x: x=y+ 1.
Substitute in (2): (v + D2+ + Dy +»>=3p>+3y+1=19.
Then 3y +3y— 18 =3(y +3)(y—2) =0 and y = -3,2.
When y=-3,x=y+1=-2;wheny=2x=y+1=3.
The solutions are x =2,y ==3;x =3,y = 2.

38.11 Solve the system {

Solve the system {

Q2x—y’—4Qx-y) =5 ()

X-yr=3 @)
Factor (1): 2x—y)>—4Qx—y)—=5=Q2x—y—5)Qx—y+1)=0. Then 2x—y =5 and 2x—y = —1.
Solve the systems

38.12 Solve the system {

{(xz—y2=3 {xz—y2=3
2X—y= 2x—y:—]
y=2x-5 y=2x+1
X2=02x=5>%=3 X—Q2x+1)*=3

32 =20 +28 =(x—2)3x—14)=0 3x>+4x+4=0
-4+ J16-48 —2+2i/2
X = =

x=21 . :
When x=2,y=2x—-5=-1. y:2X+1:—1%4i\/§
Whenx =14 y=2x-5=1.

The solutions are x =2,y = —1;x = 1}, y:%;x:—2i2i\/§7y:—li4i\/§.

3 3

5/x*+3/y»=32 ()
4xy =1 )

Write (1) as 3x% 4 5y = 32x°y? = 2(4xy)>. Substitute (2): 324+ 52 =2(1>=2 (3)
Subtract 2(2) from (3): 3x> — 8xy + 5y> = 0. Then (x — »)(3x — 5y) = 0 and x = y, x = 5y/3.
Solve the systems

38.13 Solve the system {

4xy = 4xy =1
x=y x =5y/3
20 3 15
42 =1 —+1 2= 2= = .
ren 2 37 70 77207 1000
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15 5 V15
y=i—\{? and v=§y=i—6 .
V15 V15
The solutions are x = =1, py=x1l:x= T = Ay

Solve.
38.14 {Xy+y2:5 ans, YT RO
2x+3y=7 x=%,y=2
38.15 {yzxz_x_l ans, Y=L
y=2x+3 x=4y=11
=7yt =12 x=-2y=0
38.16 {A—s;:—z Ans. o
) X=5)V=53
38.17 {Y2+3y2:43 dns, T ThY=3
’ 3x2 42 =57 Tox=*4y=73
38.18 {9x2+}’2_90 dAns. TS Thy=E
) x? 495> =90 T x=%3y=73
38.19 {2/x2‘3/}’2=5 s, ST
) 1/x*+2/y*=6 ' *ly=71
38.20 {xz"‘J’2+y2:28 ans, TR
227 4+ 3xy =2y =0 T ox=+210/3,y = 421/3
3821 {xz‘xyz‘lzyzzo Ans x= 24l y =2
: X%+ xpy—10y% = 20 Tox=335y=*i/5
1822 {6x2+3xy2+2y2:24 s, T TEY=T3
337 +2xy + 27 =18 " x=%430/5,y = £24/30/5
2
V =4x-38 = ) = *+
38.23 {yz:_étz Ans. x=4,y=*2/2
2_ 2 x=5y==3
38.24 {’fz e Ans. r
y =2 x=-3,y==*i/T
2742 = x=-lLy==2
38.25 { Ans.
Xy E2x= x=3,p=+2i3
38.26 {x2+}’2—2x—2y:12 Ans x=3%x3,y=3%3
xy=6 x==2%i2,y==2%i2
33 = =1,y=-3
38.27 {‘ y =28 ans. 77
x—y=4 x=3y=-1
x+y+3/x+y=18 . _ — _ o
38.28 {x—y—Z\/x——y=15 Hint: Let\x+y=u, J/x—y=r. Ans. x =17,
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38.29

38.30

38.31

SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS [CHAP. 38

Two numbers differ by 2 and their squares differ by 48. Find the numbers. Ans. 11,13

2200

The sum of the circumference of two circles is 88 cm and the sum of their areas is 7cm2, when % is used for

7. Find the radius of each circle. Ans. 6 cm, 8 cm

A party costing $30 is planned. It is found that by adding three more to the group, the cost per person would
be reduced by 50 cents. For how many was the party originally planned? Ans. 12



Chapter 39

Logarithms

THE LOGARITHM OF A POSITIVE NUMBER N to a given base b (written log, N) is the exponent
of the power to which b must be raised to produce N. It will be understood throughout this chapter that
b is positive and different from 1.

EXAMPLE 1.

(@) Since 9 = 3%, log; 9 = 2.

(b) Since 64 = 4°,log, 64 = 3.

(¢) Since 64 = 2° log, 64 = 6.

(d) Since 1000 = 103, 1log;, 1000 = 3.
(e) Since 0.01 = 1072,10g,,0.01 = —2.

(See Problems 39.1-39.3.) Note that if f{x) = b* and g(x) = log, x (where b > 0,b # 1), Then f(g(x)) = blog, x = x,
and g(f(x)) = log,(b*) = x. Thus in, f'and g are inverse functions.

FUNDAMENTAL LAWS OF LOGARITHMS

(1) The logarithm of the product of two or more positive numbers is equal to the sum of the logarithms
of the several numbers. For example,

log,(P- Q- R) =log, P+ log, O +log, R

(2) The logarithm of the quotient of two positive numbers is equal to the logarithm of the dividend
minus the logarithm of the divisor. For example,

P
log, 0~ log, P —log, Q

(3) The logarithm of a power of a positive number is equal to the logarithm of the number, multiplied
by the exponent of the power. For example,

log, P" = nlog, P

(4) The logarithm of a root of a positive number is equal to the logarithm of the number, divided by the
index of the root. For example,
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1
log, JP = —log, P
n

(See Problems 39.4-39.7.)

IN NUMERICAL COMPUTATIONS a widely used base for a system of logarithms is 10. Such
logarithms are called common logarithms. The common logarithm of a positive number N/1 is written
log N. These interact well with the decimal number system; for example, log 1000 = log 10* = 3.

AN EXPONENTIAL EQUATION is an equation involving one or more unknowns in an exponent. For
example, 2* =7 and (1.03)™ = 2.5 are exponential equations. Such equations are solved by means of
logarithms.

EXAMPLE 2. Solve the exponential equation 2* = 7.
Take logarithms of both sides: xlog2 = log7

log7 0.8451
log2 ™~ 0.3010
(See Problem 39.16.)

Solve for x: x =

= 2.808, approximately.

IN THE CALCULUS the most useful logarithmic function is the natural logarithm in which the base is a
certain irrational number e = 2.71828, approximately.
The natural logarithm of N, In N, and the common logarithm of N,log N, are related by the formula

In N =2.3026log N

THE CALCULATOR can be used to do logarithmic calculation with extreme ease.

EXAMPLE 3. Evaluate log 82,734 rounded to six decimal places.

Press: [8] [log] On screen: 4.917684.
EXAMPLE 4. Solve for x to four significant digits: In x = —0.3916. Press: .3916 [*]. On screen: 0.6759745.
Then x = 0.6760.

Note that we use the inverse function of In x, ¢, to find the number corresponding to a given In x. For log x, we
use its inverse, 10¥.

Solved Problems

39.1 Change the following from exponential to logarithmic form:
(@ 7=49, (B 6'=L  (© 100=1, (@ =1, (o JB=2

Ans. (@) log;49=2, (b) logﬁé =-1, (¢) logl=0, (d) log4l =0,
() logg2= %

39.2  Change the following from logarithmic to exponential form:

(a) log381 =4, (b) logs ks = —4, () logjpl0=1, (d) logg27 =3
Ans. (@) 3*=81, (b)) 5= (¢) 10' =10, d) 9¥*=27.
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39.3  Evaluate x, given:

(@) x=logs125 (d) x=log & (&) log,Lt=-2
() x =1log;(0.001 (e x=log;»32 (h) loggx=2
(¢) x=logg2 (f) log,243=5 (i) log,x=0
Ans. (@) 3, since 5° = 125 (d) —4, since 27 = 11? (g) 4, since 472 = %
(b) =3, since 107 =0.001 (¢) -5, since ) =32 (h) 36, since 6 =36
(¢) 1, since 83 =2 (f) 3, since 3° =243 () 1, since a’ =1

39.4  Prove the four laws of logarithms.

Let P = 5" and Q = b7;then log, P = p and log, O = ¢.

(1) Since P-Q = b - b1 = bt log, PQ = p + q = log;, P + log,, Q; that is, the logarithm of the product of
two positive numbers is equal to the sum of the logarithms of the numbers.

(2) Since P/Q = b’ /b7 = b"71,log,(P/Q) = p —q = log, P —log, O; that is, the logarithm of the quotient
of two positive numbers is the logarithm of the numerator minus the logarithm of the denominator.

(3) Since P" = (') = b, log, P" = np = nlog, P; that is, the logarithm of a power of a positive number
is equal to the product of the exponent and the logarithm of the number.

1
(4) Since /P = P'/" = bP/" log, /P = i—i = ;log,, P; that is, the logarithm of a root of a positive number is
equal to the logarithm of the number divided by the index of the root.

39.5  Express the logarithms of the given expressions in terms of the logarithms of the individual letters involved.

P .
e_ logy(P - Q) —log, R = log, P+ log, O —log, R

(a) log,
P

(b) log, OR log, P—log,(Q - R) = log, P — (log, O + log;, R) = log, P —log, O —log, R

(¢) log, P*- 0 =log, P* +log, /O = 2log, P+ llog, 0

PO 1 P-0*

— 1 N3 1/2 .
R 5= 3108 775 = Aloa(P- 0 logy(R'/? - 5)]

= %(logb P+ 3log, O — %1ogb R—log, S)

(d) log,

39.6  Express each of the following as a single logarithm:

(a) log,x—2log,y+ log, z = (log, x + log, z) — 2log,, y = log, xz —log, y* = log, x—j
(b) log,2+log,m+1log,/—1log,g = (log,2 + log, m) + Ylog, I — log, g) Y

= log,(2n) + %logbl = log, (271\/2)
g 4

Let 3log,x =t Then logyx’ =1 and x’ = b' = % Alternatively, H3'°%* = ploasx’ = 3 (using the
inverse function property).

39.7  Show that H1o%¥ = x3,

39.8  Verify that

(a) log3860 = 3.5866 (¢) log5.463 =0.7374
(b) log52.6=1.7210 (f) log77.62 = 1.8900
() log7.84 = 0.8943 (g) log2.866 = 0.4573

(d) log728 000 = 5.8621
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39.9  Find (a) log2.864°, (b) log/2.864.
Since log2.864 = 0.4570,

(@) log2.864° = 3log2.864 = 3(0.4570) = 1.3710
(b) log2.864 = L10g2.864 = 1(0.4570) = 0.2285

39.10 Find the number whose log is 1.4232. Using a calculator, press 1.4232 [10%]. The result on the screen is 26.50
(rounded to two places).

39.11 Solve.
(a) (1.06)* = 3.
Taking logarithms, xlog 1.06 = log 3.
‘= log3 04771
~ " logl.06  0.0253
(b) 1275 = 55(7).
Taking logarithms, (2x + 5)log 12 = log 55 + 3xlog7
2xlog12 —3xlog7 = log55—>5log12
o log55—5log12  1.7404—5(1.0792)  3.6556 _ 9.700
© T 2logl2=3log7  2(1.0792)—3(0.8451)  0.3769

x = 18.86

() 41.2% =126,
Taking logarithms, xlog41.2 = (x—1)log 12.6.

—log12.6
X103412—X105126——10g126 or X—m

log 12.6 1.1004
V= N el 2—log12.6 05145 ~13%
x=-2.138

Supplementary Problems

39.12 Solve for x using a calculator.
(@) 3*=130 ) 1.07"=3 (¢) 5.72° =8.469 (d) 385" =652
Ans. (a) 3.096 (b) 16.23 (¢) 1.225 (d) —2.104
39.13  Show that 10”8 = (g + p)".
39.14 Find (a) log3.64, (b) log36.4, (¢) log364.

39.15 Find the number whose natural logarithm is (a) 10, (b) 130, (¢c) 407.1.



Chapter 40

Power, Exponential,
and Logarithmic
Curves

POWER FUNCTIONS in x are of the form x". If n > 0, the graph of y = x" is said to be of the parabolic
type (the curve is a parabola for n = 2). If n < 0, the graph of y = x" is said to be of the hyperbolic type
(the curve is a hyperbola for n = —1).

EXAMPLE 1. Sketch the graphs of (a) y = x*/2, (b) y = —x—/2.

Table 40.1 has been computed for selected values of x. We shall assume that the points corresponding to
intermediate values of x lie on a smooth curve joining the points given in the table. See Figs. 40-1 and 40-2.
(See Problems 40.1-40.3.)

v

Table 40.1 v
 TEE
9 27 -4 7 *
4 8 -1
1 1 -1 .
1 1 S 0
i § -
% % -27 y = %2 y=—x"32
v v — Fig. 40-1 Fig. 40-2

EXPONENTIAL FUNCTIONS in x are of the form »* where b is a constant. The discussion will be
limited here to the case b > 1.

The curve whose equation is y = b* is called an exponential curve. The general properties of such
curves are

307
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(a) The curve passes through the point (0, 1).

(b) The curve lies above the x axis and has that axis as an asymptote.

EXAMPLE 2. Sketch the graphs of () y = 2%, (b) y = 3*. (See Problem 12.4.)

Table 40.2
) ) Yy

X y=2" y=73"

3 8 27

2 4 9 0, 1)\

1 2 3 r3) ®

0 1 1
-1 : 3
-2 i 5 y=2°
= . .

Fig. 40-3 Fig. 40-4

The exponential equation appears frequently in the form y = ¢ ¢ where ¢ and k are nonzero constants and
e =2.71828... is the natural logarithmic base. See Table 40.2 and Figs. 40-3 and 40-4. (See Problems 40.5-40.6.)

THE CURVE WHOSE EQUATION IS y =log, x,b > 1, is called a logarithmic curve. The general
properties are

(a) The curve passes through the point (1, 0).

(b) The curve lies to the right of the y axis and has that axis as an asymptote.

EXAMPLE 3. Sketch the graph of y = log, x.
Y

Table 40.3

[N
ENES

y =log, x

Fig. 40-5

Since x =27, the table of values in Table 40.3 may be obtained from the table for y = 2% of
Example 2 by interchanging x and y. See Fig. 40-5. (See Problem 40.7.) Note that the graphs of y = 2~
and y = log, x are symmetric about the line y = x since they are graphs of inverse functions. The same
will be true for y = a¢* and y =log, x for all a > 0,a # 1.

Solved Problems

40.1  Sketch the graph of the semicubic parabola y* = x°.

Since the given equation is equivalent to y = +x*2, the graph consists of the curve of Example 1(a)
together with its reflection in the x axis. See Fig. 40-6.
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40.2  Sketch the graph of y* = x%.

POWER, EXPONENTIAL, AND LOGARITHMIC CURVES
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Refer to Fig. 40-7 and Table 40.4.

Table 40.4

X *3 *2 *1

y | 21 | 16 | 1

40.3  Sketch the graph of y = x72.

See Fig 40-8 and Table 40.5.

Table 40.5

Y

2 3 3 2
yo=x

Fig. 40-6 Fig. 40-7

=

I+
FNE
o

o=
NS
N

40.4  Sketch the graph of y =37".

See Fig. 40-9 and Table 40.6.

Note that the graph of y = b7

Table 40.6

y=x7*

Fig. 40-8

is a reflection in the y axis of the graph of y = b".

=

o= | N
—_
(e
|
—_

y 37
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40.5  Sketch the graph of y = ¢**.
See Fig. 40-10 and Table 40.7. y
Table 40.7
X 2 1 Lol =4 -1 -2
y=e*| 546 | 74| 27 |1 | 04| 0.14 | 0.02 Oi A z
y= e2\
Fig. 40-10
40.6

Sketch the graph of y = e

Refer to Fig. 40-11 and Table 40.8.

Table 40.8
x | ®2 | 23| x1 | Lo
y | 0.02 | 0.1 04 ] 08 1

y=e*
Fig. 40-11
This is a simple form of the normal probability curve used in statistics.
40.7  Sketch the graphs of (a) y = logx, (b) y = logx? = 2log x.
See Table 40.9 and Figs. 40-12 and 40-13.
Table 40.9
X 10 5 4 3 2 |1 0.5 025 | 0.1 | 0.01
y=logx 1 07| 06 | 05| 03 -03 | =06 | —1 -2
y=logx* | 2 | 14| 12 1 0.6 06 | =12 | =2 | -4
v Y
0 ¥ 0 ?
y =logx y = log x?
Fig. 40-12

Fig. 40-13
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Supplementary Problems

40.8  Sketch the graphs of (a) 1> = x73, (b) y* = x72, (¢) y* = (‘1, (d) the cubical parabola y = x°.

40.9  Sketch the graphs of

(a) y= (25)Y (C) y= 2_1/’)( (e) y= ex/Z (g) y= e.\'+2
b)) y=2" d) y= % &~ (f) y=e () y=xe™
40.10 Sketch the graphs of (@) y=1llogx, (b) y=1log3x+2), (© y=log®+1).

40.11 Show that the curve »¥ = x”, where p and ¢ are positive integers, lies entirely in
(a) Quadrants I and III if p and ¢ are both odd
() Quadrants I and IV if p is odd and ¢ is even
(¢) Quadrants I and II if p is even and ¢ is odd

40.12 Show that the curve y? = x™”, where p and ¢ are positive integers, lies entirely in
(a) Quadrants I and III if p and ¢ are both odd
(b) Quadrants I and II if p is even and ¢ is odd
(¢) Quadrants I and IV if p is odd and ¢ is even



Polynomial Equations,
Rational Roots

A POLYNOMIAL EQUATION (or rational integral equation) is obtained when any polynomial in one
variable is set equal to zero. We shall work with polynomials having integral coefficients although many
of the theorems will be stated for polynomial equations with weaker restrictions on the cogfficients.

A polynomial equation is said to be in standard form when written as

apx" +a,x" +ax" P+ - g tax+a, =0 (41.1)

where the terms are arranged in descending powers of x, a zero has been inserted as coefficient on each
missing term, the coefficients have no common factor except =1, and @y # 0. (See Problem 41.1.)

A NUMBER r IS CALLED A ROOT of f(x) = 0 if and only if f(r) = 0. It follows that the abscissas of
the points of intersection of the graph of y = f(x) and the x axis are roots of f(x) = 0.

THE FUNDAMENTAL THEOREM OF ALGEBRA. Every polynomial equation f(x) =0 has at
least one root, real or complex.

A polynomial equation of degree n has exactly n roots. These n roots may not all be distinct. If 7 is
one of the roots and occurs just once, it is called a simple root; if r occurs exactly m > 1 times among the
roots, it is called a root of multiplicity m or an m-fold root. If m = 2, r is called a double root; if m = 3, a
triple root; and so on. (See Problems 41.2—-41.3.)

COMPLEX ROOTS. If the polynomial equation f(x) = 0 has real coefficients and if the complex a + bi
is a root of f(x) = 0, then the complex conjugate a — bi is also a root. (For a proof, seec/ Problem 41.11.)

IRRATIONAL ROOTS. Given the polynomial equation f(x) = 0, if the irrational number a + +/b|
where a and b are rational, is a root of f(x) = 0, then the conjugate irrational a — +/b is also a root. (See
Problem 41.4.)

LIMITS TO THE REAL ROOTS. A real number L is called an upper limit of the real roots of f(x) = 0
if no (real) root is greater than L; a real number / is called a lower limit if no (real) root is smaller than /.
If L > 0 and if, when f(x) is divided by x — L by synthetic division, every number in the third line is
nonnegative, then L is an upper limit of the real roots of f(x) = 0.
If / < 0 and if, when f(x) is divided by x —/ by synthetic division, the numbers\in the third line
alternate in sign, then / is a lower limit of the real roots of f(x) = 0.
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RATIONAL ROOTS. A polynomial equation has 0 as a root if and only if the constant term of the
equation is zero.

EXAMPLE 1. The roots of x> —2x*+ 6x* —5x% = x>(x* =2x> + 6x = 5) =0 are 0, 0, and the three roots of
¥ =2xr+6x-5=0.

If a rational fraction p/g, expressed in lowest terms, is a root of (41.1) in which a, # 0, then p is a
divisor of the constant term a, and ¢ is a divisor of the leading coefficient of @, of (41.1). (For a proof, see
Problem 41.12.)

EXAMPLE 2. The theorem permits us to say that % is a possible root of the equation 9x* — 5x% + 8x + 4 = 0 since
the numerator 2 divides the constant term 4 and the denominator 3 divides the leading coefficient 9. It does not
assure that % is a root. However, the theorem does assure that neither % nor —% is a root. In each case the denominator

does not divide the leading coefficient.

If p, an integer, is a root of (41.1) then p is a divisor of its constant term.

EXAMPLE 3. The possible rational roots of the equation
12x* = 40x" = 5% +45x + 18 = 0

are all numbers *p/q in which the values of p are the positive divisors 1, 2, 3, 6, 9, 18 of the constant term 18 and the
values of ¢ are the positive divisors 1, 2, 3, 4, 6, 12 of the leading coefficient 12. Thus the rational roots, if any, of the
equation are among the numbers

w

+1 +2 +1 +3 +1 4+
1T 30 /3 7/ 4 — 4 — 6 —

1, £2, +3, %6, ¥9, x18, x1, +3 =

[T}
Wit

wi—
=
IN
=
9

THE PRINCIPAL PROBLEM OF THIS CHAPTER is to find the rational roots of a given polynomial
equation. The general procedure is this: Test the possible rational roots by synthetic division, accepting
as roots all those for which the last number in the third line is zero and rejecting all those for which it is
not. Certain refinements, which help to shorten the work, are pointed out in the examples and solved
problems below. (See Chapter 43 for a full description of synthetic division.)

EXAMPLE 4. Find the rational roots of x° 4+ 2x* — 18x* —8x2 +41x + 30 = 0.
Since the leading coefficient is 1, all rational roots p/q are integers. The possible integral roots, the divisors
(both positive and negative) of the constant term 30, are

+1, +2, +3, +5 +6, +10, =15, =30

1+2—-18— 84+41+30 [L
Try 1: 14 3-15-23418
1+3-15-23+18+48

Then 1 is not a root. This number (+1) should be removed from the list of possible roots lest we forget and try it
again later on.
1+2-18— 8+41+30 [2
Try 2: 24+ 8—20—56-30
1+4-10-284+15+ 0

Then 2 is a root and the remaining rational roots of the given equation are the rational roots of the depressed
equation

X4 - 102 -28x—-15=0

Now *2, =6, £10, and =30 cannot be roots of this equation (they are not divisors of 15) and should be
removed from the list of possibilities. We return to the depressed equation.
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1+4-10-28—-15 |3
Try 3: 3+21+33+15
1+7+11+ 5+ 0

Then 3 is a root and the new depressed equation is
3 2
X 4+7x"+1lx+5=0

Since the coefficients of this equation are nonnegative, it has no positive roots. We now remove +3,+5,+15 from
the original list of possible roots and return to the new depressed equation.

I1+7+11+5 [=1L
Try —1: —-1- 6-5
1+6+ 540
Then —1 is a root and the depressed equation
X 46x+5=x+Dx+35=0

has —1 and =5 as roots.
The necessary computations may be neatly displayed as follows:

1+2-18— 8+41+30 |2
24+ 8—=20-56 — 30

14+4-10-28— 15 13
3420433415

1+74+11+ 5 -1

—1-6-5

1+6+ 5

X H6x+5=Gx+DE+35=0 x=-1,-5

The roots are 2, 3, —1, —1, =5.

Note that the roots here are numerically small numbers; that is, 3 is a root but 30 is not, —1 is a root but —15
is not. Hereafter we shall not list integers which are large numerically or fractions with large numerator or
denominator among the possible roots. (See Problems 41.5-41.9.)

Solved Problems

41.1  Write each of the following in standard form.

a X*+2x’ =6+ 5x = ns. 2x° +4x"+5x—-6=
(@) 47 +2x°=6+5x=0 Ans. 2% +4x° +5x=6=0
b)) =3x>+6x—4x>+2=0 Ans. 3x° +4x2—6x-2=0
(0 2X°+x+4=0 Ans. 2X°+0-x* + 340X +0-x+4=0
(d) x2+%x2—x+2:0 Ans. 2xX° +x2=2x+4=0

() 4x*4+6x=8x2+12x=10=0 Ans. 2x*+3x° =4 +6x=5=0
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412 (a) Show that —1 and 2 are roots of x* —=9x> +4x + 12 =0.

Using synthetic division,

1+0-9+ 4412 [=L 14+0-9+ 4+12 [2
- 1+1+ 812 - 2+4-10—-12
I-1-8+12+ 0 I+2-5- 6+ 0

Since f(—1) = 0 and f(2) = 0, both —1 and 2 are roots.
(b) Show that the equation in (a) has at least two other roots by finding them.
From the synthetic division in (a) and the Factor Theorem (Chapter 43),

XMoo A+ 12=(x+ D -2 —8x+12)

Since 2 is also root of the given equation, 2 is a root of x> — x> —8x + 12 = 0.
Using synthetic division

1-1-8+12 [2
242-12
1+1-64+ 0

we obtain x* — x? —8x 4+ 12 = (x — 2)(x*> + x — 6). Then
o0 A+ 12 = (x+ Dx =22 +x—6) = (x + D(x = 2)(x + 3)(x—2)

Thus, the roots of the given equation are —1, 2, =3, 2.

(NOTE: Since x — 2 appears twice among the factors of f(x), 2 appears twice among the roots of f(x) = 0 and
is a double root of the equation.)

413 (a) Find all of the roots of (x + 1)(x —2)*(x +4)> = 0.
The roots are —1, 2, 2, 2, —4, —4; thus, —1 is a simplest root, 2 is a root of multiplicity three or a
triple root, and —4 is a root of multiplicity two or a double root.

() Find all the roots of x*(x —2)(x — 5) = 0.
The roots are 0, 0, 2, 5; 2 and 5 are simple roots and 0 is a double root.

41.4  Form the equation of lowest degree with integral coefficients having the roots /5 and 2 — 3i.

To ensure integral coefficients, the conjugates —/5 and 2 + 3i must also be roots. Thus the required
equation is
(x =V + VI = Q2 =3D]x — 2+ 3i)] = x* —4x° +8x7 +20x - 65 =0

In Problems 41.5-41.9 find the rational roots; when possible, find all the roots.
415 2x* =X -11x2 +4x+12=0
The possible rational roots are =1, =2, =3, =4, =1 +3 . Discarding all false trials, we find

2-1-11+4+12 2 27 +x-6=0Q2x-3)(x+2)=0; x=3,-2

44 6-10— 12
243-5- 6 -1
-2 1+ 6
24+1-6

The roots are 2,—1,3,-2.
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41.6 4x*-3x-4x+3=0

The possible rational roots are: =1, =3, = %, + %, + %, + %, By inspection the sum of the coefficients
is 0; then +1 is a root. Discarding all false trials, we find

-1+
4-340-443 [L  P+x+l1=0 xzil_zl\/i
44141-3
4+1+1-3 3
3+3+3
44444 (Factor out 4.)
I+1+4+1

31 i3
P — _t
The roots are 1, Ty

417 24x°=20x" —6x* +9x* —=2x* =0

Since 24x° — 20x° — 6x* 4+ 9x% — 2x? = x2(24x* — 20x> — 6x% 4+ 9x — 2), the roots of the given equation

are 0, 0 and the roots of 24x*—20x> —6x%> +9x—2 = 0. Possible rational roots are: *1, +2, i%,

=1, x3, +1 ... Discarding all false trials, we find
24-20— 6+9-2 Lo +x-2=Qx—DBx+2)=0; x=14-3
_ 12= 4=5+2
24— 8—10+4 (Factor out 2.)
12— 4- 542 %
64+ 1-2
12+ 2— 4 (Factor out 2.)
6+ 1—- 2

The roots are 0, 0, 1, 1,1

Wit

418  4x° =32x* +93x° — 119x2 + 70x =25 =0

Since the signs of the coefficients alternate, the rational roots (if any) are positive. Possible rational roots

are 1, 5,%,%,%,.... Discarding all false trials, we find

4-32493— 119470 — 25 E
10-55+ 95—60+25 B2

4-22438—- 24+10 (Factor out 2.)
2—-11+19- 124+ 5 E

5-15+ 10— 5 2
2— 6+ 4-—- 2 (Factor out 2.)

I- 3+ 2- 1
The rational roots are %,%
The equation f(x) = x*> — 3x> + 2x — 1 = 0 has at least one real (irrational) root since £(0) < 0 while for
sufficiently large x(x > 3), f(x) > 0.
The only possible rational root of x* —3x> 4+ 2x—1 = 0 is 1; it is not a root.

419 6+ 13— 112 +5x+1=0

The possible rational roots are =1, =1, t%7 + % After testing each possibility, we conclude that the
equation has no rational roots.
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41.10

41.11

41.12

If ax® + bx® + c¢x + d = 0, with integral coefficients, has a rational root r and if ¢ + ar* = 0, then all of the
roots are rational.

Using synthetic division to remove the known root, the depressed equation is
ax* + (b +arx+c+br+ar* =0

which reduces to ax® + (b + ar)x + br = 0 when ¢+ ar? = 0. Since its discriminant is (b — ar)?, a perfect
square, its roots are rational. Thus, all the roots of the given equation are rational.

Prove: If the polynomial f(x) has real coefficients and if the imaginary a + bi, b # 0, is a root of f(x) =0,
then the conjugate imaginary a — bi is also a root.

Since a + bi is a root of f(x) = 0,x — (a+ bi) is a factor of f(x). Similarly, if a« — bi is to be a root of
f(x) =0, x— (a— bi) must be a factor of f(x). We need to show then that when a + bi is a root of f(x) = 0, it
follows that

[x— (a4 bi)][x = (a—bi)] = x> = 2ax + a* + b*

is a factor of f(x). By division we find

fx) = [x*=2ax +d* + b1 O(x) + Mx + N
=[x—(a+bi)][x—(a—bi)]  O(x)+ Mx+ N

(€3]

where Q(x) is a polynomial of degree 2 less than that of f(x) and the remainder Mx + N is of degree at most
1 in x; that is, M and N are constants.
Since a + bi is a root of f(x) = 0, we have from (/),

fla+bi)=0-Q(a+bi)+ M(a+bi)+ N= (aM+ N)+bMi=0

Then aM + N =0 and bM = 0. Now b # 0; hence, bM = 0 requires M =0 and then aM + N =0
requires N = 0. Since M = N = 0, (/) becomes

f(x) = (x* =2ax + a* + b)) - O(x)

Then x? — 2ax 4+ a® + b? is a factor of f(x) as was to be proved.

Prove: If a rational fraction p/q, expressed in lowest terms, is a root of the polynomial equation (41.7)
whose constant terms «, # 0, then p is a divisor of the constant term «,, and ¢ is a divisor of the leading
coefficient ay.

Let the given equation be
apx"+ax"" +ax" - -t +a x4+ a, =0, aga,#0
If p/q is a root, then
af(p/q)" +a (p/9)"™" + axp/a) "+ - - - + a2 (p/) + aya(p/q) + @y =0
Multiplying both members by ¢", this becomes

e+t anp Tt apd T +aq =0 )

ap"+ap g+ ap
When (2) is written as

7 n—1 -2 2 2 n-2 —1
ap' +apTgrapTe 4+t anp T Y anpdT =—aq"
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it is clear that p, being a factor of every term of the left member of the equality, must divide a,¢". Since
p/q is expressed in lowest terms, no factor of p will divide ¢. Hence, p must divide g, as was to be
shown.

Similarly, when (2) is written as

ap gt ape a0 p " F a pg" T + 4" = —agp”
it follows that ¢ must divide ;.

Supplementary Problems
41.13 Find all the roots.

(@ X°=2x*—=9x3+22x +4x-24=0 (d) 6x*+5x—16x>=9x—10=0
(b) 18x*=27x° + x> +12x—4=0 () 9Ix*—19x—6x+4=0
(© 12x*—40x> —5x>+45x+18=0 () 2 +3x*=3x3-2x>=0
Ans. (@) 2,2,2-1,-3 (o -%,-132 (00 -1 (1=V13)/3
(b) 1’%7%~_% (d) _z’gv(_lilﬁ)/“ (f) 070~17_2’_%
4.14  Solve the inequalities.

(@ xX*=5x>4+2x+8>0 (© x*=33+x+4>0
(b) 6x2=17x2=5x+6<0 d) X=x*=-2+22+x-1>0
Ans. (@) x>4,-1<x<2 (b) x<—%,%<x<3 (¢) allx#2 (d) x>1

41.15 Prove: if r # 1 is a root of f(x) = 0, then r— 1 divides f(1).



Irrational Roots of
Polynomial Equations

IEf (x) = 0 IS A POLYNOMIAL EQUATION, the equation f(—x) = 0 has as roots the negatives of the
roots of /(x) = 0. When f(x) = 0is written in standard form, the equation whose roots are the negatives of
the roots of / (x) = 0 may be obtained by changing the signs of alternate terms, beginning with the second.

EXAMPLE 1
(@) The roots x> + 3x> —4x—12 = 0 are 2,-2,-3; the roots of x> —3x> —4x + 12 = 0 are 2,2, 3.

(b) The equation 6x* + 13x* — 13x— 6 = 0 hasroots 1,—1,—2,—3; the equation 6x* — 13x* + 13x — 6 = 0 has roots
_17 17 % a%’
(See Problem 42.1.)

VARIATION OF SIGN. If, when a polynomial is arranged in descending powers of the variable, two
successive terms differ in sign, the polynomial is said to have a variation of sign.

EXAMPLE 2
(@) The polynomial x> — 3x? — 4x + 12 has two variations of sign, one from +x° to —3x? and one from —4x to +12;
the polynomial x> + 3x% — 4x — 12 has one variation of sign.

(b) The polynomial 6x* + 13x* — 13x — 6 has one variation of sign; the polynomial 6x* — 13x* 4+ 13x — 6 has three.
Note that here the term with zero coefficient has not been considered.

DESCARTES’ RULE OF SIGNS. The number of positive roots of a polynomial equation f(x) = 0,
with real coefficients, is equal either to the number of variations of sign in f(x) or to the number
diminished by an even number.

The number of negative roots of f(x) = 0 is equal to the number of positive roots of f(—x) = 0.

EXAMPLE 3. Since f(x) = x> — 3x*> — 4x + 12 of Example 2(a) has two variations of sign, /(x) = 0 has either two
or no positive roots.

Since x° + 3x° —4x — 12 has one variation of sign, f(—x) =0 has one positive root and f(x) =0 has one
negative root. (See Problem 42.2.)
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DIMINISHING THE ROOTS OF AN EQUATION. Let
f)=ax"+a X"+ +a,_x+a,=0 (42.1)
be a polynomial equation of degree n. Let
S =&x=hq(x)+ Ry,
q1(x) = (x = h) - q2(xX) + Ry,

(42.2)
Gpo(X) = (x— h) - Gn-1(X) + Ry,
qn—l(x) = (X - h) : qn(x) + Rm
where each R is a constant and ¢, (x) = gqy. Then the roots of
g0 = apy" + Ry + Ry Ry + Ry =0 (42.3)

are the roots of f(x) = 0 diminished by 4.
We shall show that if r is any root of f(x) = 0 then r—/ is a root of g(y) = 0. Since f(r) =0,

Ry =—=(r=h)-q,(),
Ry = qi(r) = (r=h) - qo(r),

Ry = ()= (r—=h) - g, (),
Rn = Qn—l(r) - (V - h)aO'

When these replacements are made in (42.3), we have

apy" + [qur (1) = - = agly"™ + [qua(r) = r = h) - @y (1Y >+ -
+g () = (r =) - g2y = (r=h) - q,(r)
=aly ==Y + gy ==Y+ (Y= = )] =0.

It is clear that r — A is a root of (42.3) as was to be proved.

EXAMPLE 4. Find the equation each of whose roots is 4 less than the roots of x> 4+ 3x> —4x—12=0.

I+ 3-4-12 14 | 15168484 |=2

4428 +96 — 2-26—-84
1+ 7+24+@ 1+ 13+42 =6
4444 - 6-42
1+ 11 +@D 1+ 7 =7
__ 4 -7
1+@® !

On the left the successive remainders have been found and circled. The resulting equation is y* 4+ 15)°+
68y + 84 = 0. The given equation has roots x = 2,—-2—3; on the right, it is shown that 2—4=-2-2-4=
—6,—3 —4 = —7 are roots of the newly formed equation. (See Problem 42.3.)
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APPROXIMATION OF IRRATIONAL ROOTS

LET f (x) = 0 BE A POLYNOMIAL EQUATION having no rational roots. If the given equation had
rational roots, we suppose that they have been found using synthetic division and that f(x) is then the
last third line in process. (See Chapter 41.)

THE METHOD OF SUCCESSIVE LINEAR APPROXIMATIONS will be explained by means of
examples.

EXAMPLE 5. The equation f(x) = x> + x—4 = 0 has no rational roots. By Descartes’ rule of signs, it has one
positive (real) root and two imaginary roots. To approximate the real root, we shall first isolate it as lying between
two consecutive intgers. Since f(1) = =2 and f(2) = 6, the root lies between x = 1 and x = 2. Figure 42-1 exhibits
the portion of the graph of f(x) between (1,-2) and (2, 6).

¥
/ Q,(1.4,0.14)
Q/(2,6) RAS,
/ 1.37 14
R/ |s
4+ 0 i57 AR AR - T
N T P T
-2
(1,-2) \\(1.3,-0.50)
Fig. 42-1 Fig. 42-2 Fig. 42-3

In Fig. 42-2, the curve joining the two points has been replaced by a straight line which meets the x axis at R.
We shall take OR, measured to the nearest tenth of a unit, as the first approximation of required root and use it to
isolate the root between successive tenths. From the similar triangles RSQ and PTQ,
RS SO S0

6 3
10 RS—T—Q(PT)—g(l)—Z—OJ

The first approximation of the root is given by OR = OS— RS =2 —-0.7 = 1.3. Since f(1.3) = —0.50 and f(1.4) =
0.14, the required root lies between x = 1.3 and x = 1.4.

We now repeat the above process using the points (1.3,-0.50) and (1.4,0.14) and isolate the root between
successive hundredths. From Fig. 42-3,
S0 14

(PT) = 0—(0.1) =0.02 and OR=0S—-RS=14-0.02=1.38

RS=70 0.64

is the next approximation. Since f(1.38) = 0.008 (hence, too large) and f(1.37) = —0.059, the root lies between
x =1.37 and x = 1.38.

Using the points (1.37,-0.059) and (1.38,0.008), we isolate the root between successive thousandths. We find
(no diagram needed)

0.008
RS = W(O.Ol) =0.001 and OR=1.38-0.001 = 1.379

Since f(1.379) = 0.0012 and f(1.378) = —0.0054, the root lies between x = 1.378 and x = 1.379.
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For the next approximation

0.0012

RS = W(O.OOI) =0.0001 and OR=1.379-0.0001 = 1.3789

The root correct to three decimal places is 1.379. (See Problem 42.4.)

HORNER’S METHOD OF APPROXIMATION. This method will be explained by means of
examples.

EXAMPLE 6. The equation x* 4+ x> + x—4 = 0 has no rational roots. By Descartes’ rule of signs, it has one
positive root. Since f(1) = —1 and f(2) = 10, this root is between x = 1 and x = 2. We first diminish the roots of the
given equation by 1.

111 =4 |
12 3
T 2 3 -1
13
T 3 6
1
1 4

and obtain the equation g(y) = y* +4y? 4+ 6y — 1 =0 having a root between y =0 and y = 1. To approximate
it, we disregard the first two terms of the equation and solve 6y —1 =0 for y = 0.1. Since g(0.1) =—0.359 and
2(0.2) = 0.368, the root of g(y) =0 lies between y = 0.1 and y = 0.2, and we diminish the roots of g(y)=0
by 0.1.

1 4 6 -1 0.1
0.1 041 0.641

T 41 641 —0.359
0.1 0.42

T 42 683
0.1

[ 43

We obtain the equation A(z) = z* + 4.3z2> + 6.83z—0.359 = 0 having a root between 0 and 0.01. Disregarding the
first two terms of this equation and solving 6.83z — 0.359 = 0, we obtain z = 0.05 as an approximation of the root.
Since /1(0.05) = —0.007 and /(0.06) = 0.07, the root of i(z) = 0 lies between z = 0.05 and z = 0.06 and we diminish
the roots by 0.05.

1 43 683 0359 0.05
0.05 02175  0.352375

[ 435 7.0475 —0.006625
0.050.2200

[ 440 7.2675
0.05

1 4.45

and obtain the equation k(w) = w’ + 4.45w* 4 7.2675w — 0.006625 = 0 having a root between w = 0 and w = 0.001.
An approximation of this root, obtained by solving 7.2675w — 0.006625 = 0 is w = 0.0009.
Without further computation, we are safe in stating the root of the given equation to be

x=140.140.0540.0009 = 1.1509
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The complete solution may be exhibited more compactly, as follows:

| —4 L
1 2 3
2 3 i
13
1 3 6 y=g=01
1
1T 4 6 -1 0.1
0.1 041 0.641
I 41 641  —0359
01 042 0.359
I 42 683 Z=%83 00
0.1
I 43 683  —0.359 0.05
005 02175  0.352375
I 435 7.0475 —0.006625
0.05 0.2200 0.006625
1 440 7.2675 W= g5 - 00009

0.05

1 445 7.2675 —0.006625

(See Problems 42.5-42.6.)

42.1

42.2

Solved Problems

For each of the equations f(x) = 0, write the equation where roots are the negatives of those of f(x) = 0.

(@ xX*=8x>4+x-1=0 Ans. ¥ +8x*+x+1=0
by x*+3x+2x+1=0 Ans. x*+3x2=2x+1=0
(© 2x*=5x+8x-3=0 Ans. 2x*—5x*—8x—-3=0
d) ¥+x+2=0 Ans. ¥ 4+x-2=0

Give all the information obtainable from Descartes’ rule of signs about the roots of the following equations:
(@ f(x)=x>-8x*4+x—1=0 [Problem 42.1(a)].

Since there are three variations of sign in f(x) =0 and no variation of sign in f(—x) = 0, the given
equation has either three positive roots or one positive root or one positive root and two imaginary roots.

() f(x)=2x*-5x>+8x—3=0 [Problem 42.1(c)].

Since there are three variations of sign in f(x) = 0 and one variation of sign in f(—x) = 0, the given
equation has either three positive and one negative root or one positive, one negative, and two imaginary
roots.

() fx)=x4+x+2=0 [Problem 42.1(d)].

Since there is no variation of sign in f(x) = 0 and one in f(—x) = 0, the given equation has one negative
and four imaginary roots.
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42.3

42.4

IRRATIONAL ROOTS OF POLYNOMIAL EQUATIONS

[CHAP. 42

Form the equation whose roots are equal to the roots of the given equation diminished by the indicated

number.
(@) x*—4x>4+8x—5=0;2.

1-4+8-5 |2

2-4+8
1 —24+4+3
240
14044
_ 2
1+2

The required equation is
V42 +4p+3=0.

b 2x+9x%—5x—8=0;-3.

249- 5- 8 |23
—6- 9442
243—14+34
-6+ 9
2-3-5

_—6

2-9

The required equation is
2% —9y* =5y +34=0.

(© x*=8x +5x>+x+8=0;2.

-84 5+ 1+ 8 |2

2-12-14-26
I1-6— 7-13-18
2— 8-30
1-4-15-43
2— 4
1-2-19
2
140

The required equation is
¥ =1952 —43y— 18 = 0.

Use the method of successive linear approximation to approximate the irrational roots of

f(x):x3+3x2—2x—5:0

By Descartes’ rule of signs the equation has either one positive and two negative roots or one positive and
two imaginary roots. By the location principle (see Table 42.1), there are roots between x = 1 and x = 2,
x=-1and x=-2, and x =-3 and x = —4.

Table 42.1
x 2 1 0| 1] 2| =3| -4
fo | 1| =3 =5 | -1 3 1| -13

(a) To approximate the positive root, use Fig. 42-4. Then

_ 50

RS =22(PT)=

=75

1
ﬁ(1)=0.7 and

Y /

i 2,11y
S JUURN., AR IR
vo_vavri > x

Ta,-3)

-_(. P T

Fig. 42-4

OR=2-07=13
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Since f(1.3) = —0.33 and f(1.4) = 0.82, the root lies between x = 1.3 and x = 1.4.
For the next approximation,

0.82

RSzm(OA1)=0.07 and OR=14-0.07=1.33

Since f(1.33) = —0.0006 and f(1.34) = 0.113, the root lies between x = 1.33 and x = 1.34.
For the next approximation,

0.113

RS = m(0.0l) =0.009 and OR =1.34-0.009 = 1.331

Now f(1.331) > 0 so that this approximation is too large; in fact, /(1.3301) > 0. Thus, the root to three
decimal places is x = 1.330.

In approximating a negative root of f(x) = 0, it is more convenient to approximate the equally
positive root of f(—x) = 0.

(b) To approximate the root of f(x) = 0 between x = —1 and x = —2, we shall approximate the positive

root between x = 1 and x = 2 of g(x) = x> = 3x%> —2x + 5 = 0. Since g(1) = 1 and g(2) = =3, we obtain
from Fig. 42-5

SP 1
SR="5(TQ)=;(1)=02  and  OR=0S+SR=12

Fig. 42-5

Since g(1.2) = 0.01 and g(1.3) = —0.47, the root is between x = 1.2 and x = 1.3.
For the next approximation,

.01
SR = %(0.1) =0.002 and OR=1.2+0.002=1.202

Since g (1.202) = —0.0018 (hence, too large) and g(1.201) = 0.0031, the root is between x = 1.201 and
x =1.202.

For the next approximation,

~0.0031

SR = W(O.OOI) = 0.0006 and OR =1.201 + 0.0006 = 1.2016

Since g(1.2016) = —0.00281 and g(1.2015) = 0.00007, the root of g(x) = 0 to three decimal places is
x = 1.202. The corresponding root of the given equation is x = —1.202.

(¢) The approximation of the root —3.128 between x = —3 and x = —4 is left as an exercise.
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42,5 Use Horner’s method to approximate the irrational roots of x* +2x?> —4 = 0.

By Descartes’ rule of signs the equation has either one positive and two negative roots or one positive
and two imaginary roots. By the location principle there is one root, between x = 1 and x = 2.
Arranged in compact form, the computation is as follows:

142 +0 -4 I
1 +3 43
1+3 +3 -1
1 +4 L
T+4 47 Stk
1
14+5 +7 -1 0.1
0.1 +0.51 +0.751
1451 +751 —0249 0.249
0.1 +0.52 z=%503 003
1+52 +803
0.1
1453 +803 —0249 0.03
0.03 + 0.1599 + 0.245697
[+ 533+ 8.1899 — 0.003303 = % =0.00039

0.03 4 0.1608
1+ 5.36 +8.3507

0.03

1 +5.39 +8.3507 —0.003303

The root, correct to four decimal places, is 1 4+ 0.1 + 0.03 4+ 0.00039 = 1.1304.

42.6  Use Horner’s method to approximate the irrational roots of x> + 3x> —2x—5=0.

By the location principle there are roots between x =1 and x =2,x=—1 and x =-2,x = -3 and

x=—4.

(a) The computation for the root between x = 1 and x = 2 is as follows:

143 -2 -5 L y=3=04
1 + 4 +2 but is too large since, when used,
I+4 + 2 -3 the last number in the third line
1+ 5 is positive.
1+5 + 7
1
1+6 + 7 -3 0.3
0.3 + 1.89 +2.667
1463 + 889 —0.333
03 + 198 z:@:&%
1466 +10.87 10.87
0.3
1469 +10.87 —0.333 0.03

0.03 4+ 0.2079+0.332337

146.93 4 11.0779 — 0.000663

__0.03+ 02088 = 2000063 _ 4 50058
1+6.96 + 11.2867 11.2867
0.03

146.99 + 11.2867 — 0.000663

The root is 1.330.

When approximating a negative root of f(x) =0 using Horner’s method, it is more convenient to
approximate the equally positive root of f(—x) = 0.
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() To approximate the root between x = —1 and x = —2 of the given equation, we approximate the root
between x = 1 and x = 2 of the equation x* — 3x> — 2x + 5 = 0. The computation is as follows:

1-3 -2 +5 [
1 -2 -4
1-2 -4 +1 L
{ _1 y=5=02
1-1 -5
1
140 =5 +1 0.2
02 +40.04 —0.992
1402 —4.96 +0.008 z= % =0.001
0.2 +40.08
1+04 —488
02
1+0.6 —488  +0.008 [0.001
0.001 4+ 0.000601 — 0.004879399 0.003120601
1+0.601 — 4.879399 4 0.003120601 W= —gergmgy = 0-00063
0.001 + 0.000602
14 0.602 — 4.878797
0.001
1+ 0.603 — 4.878797 + 0.003120601
To four decimal places the root is x = 1.2016; thus, the root of the given equation is x = —1.2016

(¢) The approximation of the root x = —3.1284 between x = —3 and x = —4 is left as an exercise.

Supplementary Problems

42.7  Use Descartes’ rule of signs to show
(@) x*+5x> 424 =0 has only complex roots.
() x"—1=0 has exactly two real roots if n is even and only one real root if n is odd.
(¢) x*+3x+2=0 has exactly one real root.
(d) x7—x%42x*+3x% + 5 =0 has at least four complex roots.

() x"—=2x*+3x%=5=0 has at most three real roots.

42.8 Find all the irrational roots of the following equations:
(@ X+x=3=0 () x*=9x+3=0 (© x*4+4X° +6x7—15x-40=0
b X¥=3x+1=0 (@) X*+6x>+7Tx-3=0

Ans. (a) 12134 (6) 0.3376,2.8169,—3.1546 () 2.7325,-0.7325
(b) 0.3473,1.5321,—1.8794 (d) 0.3301,-2.2016,—4.1284
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42.9

42.10

42.11

42.12

IRRATIONAL ROOTS OF POLYNOMIAL EQUATIONS [CHAP. 42

Show that

(@) The equation f(x) = x"p;x"~' + -+ + p,_;x + p, = 0, with integral coefficients, has no rational root if
f(0) and f(1) are odd integers.

Hint: Suppose r is an integral root; then r is odd and r— 1 does not divide f(1).

(b) The equation x* —301x — 1275 = 0 has no rational roots.

In a polynomial equation of the form
XA p X A px 4+ p, =0
the following relations exist between the coefficients and roots:

(I) The sum of the roots is —p;.
(2) The sum of the products of the roots taken two at a time is p,.
(3) The sum of the products of the roots taken three at a time is —p;.

(n) The product of the roots is (—1)"p,.

If a, b, ¢ are the roots of x> —3x2 +4x +2 =0, find
(a) a+b+c
(b) ab+bc+ca
(¢) abc
d) >+ +F=(@+b+ ) —2ab+ bc+ ca)
(e d+p+¢

1 1 1 ab+bc+ca
(f) g =

a b ¢

abc
1 1 1
(@) %4—%_’_&

Ans. (a) 3, b) 4, © -2, d) 1, (e) —15, o -2 (g -

olw

For a,b, ¢ defined as in Problem 42.10, find an equation whose roots are 1/a,1/b,1/c.

Hint: Write x = 1/y. Ans. 23 +42=3y+1=0

Two of the roots of 2x> — 11x?> 4+ - - - = 0 are 2, 3. Find the third root and complete the equation.

Ans. 2xX°=11x*+17x—=6=0



Graphs of Polynomials

THE GENERAL POLYNOMIAL (or rational integral function) of the nth degree in x has the form

n—2

F) = apx" + a1 X"+ ax" P+ - - -+ @y X + o x + a, 43.1)

in which 7 is a positive integer and the a’s are constants, real or complex, with gy # 0. Then term ayx" is
called the leading term, a, the constant term, and a, the leading coefficient.

Although most of the theorems and statements below apply to the general polynomial, attention in
this chapter will be restricted to polynomials whose coefficients (the @’s) are integers.

REMAINDER THEOREM. If a polynomial f(x) is divided by x — / until a remainder free of x is
obtained, this remainder is f'(k). (For a proof, see Problem 43.1.)

EXAMPLE 1. Let f(x) = x> +2x* —=3x—4 and x—h = x—2; then h = 2. By actual division

3 2 A
x7 4+ 2x°—3x 4:x2+4x+5+ 6
x—=2 x—=2
or x> +2x> —3x —4 = (x* 4+ 4x + 5)(x —2) + 6, and the remainder is 6.
By the remainder theorem, the remainder is

f@Q=24+2-22-3-2-4=6

FACTOR THEOREM. If x — A is a factor of f(x) then f(h) = 0, and conversely. (For a proof, see
Problem 43.2.)

SYNTHETIC DIVISION. By a process known as synthetic division, the necessary work in dividing a
polynomial f(x) by x —/ may be displayed in three lines, as follows:

(I) Arrange the dividend f(x) in descending powers of x (as usual in division) and set down in the
first line the coefficients, supplying zero as coefficient whenever a term is missing.

(2) Place A, the synthetic divisor, in the first line to the right of the coefficients.

(3) Recopy the leading coefficient «, directly below it in the third line.

(4) Multiply «, by /; place the product ayh in the second line under «; (in the first line), add to a,
and place the sum ay/ + @ in the third line under «;.

(5) Multiply the sum in Step 4 by #; place the product in the second line under a,, add to a,, and
place the sum in the third line under a,.

(6) Repeat the process of Step 5 until a product has been added to the constant term a,,.
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The first n numbers in the third line are the coefficients of the quotient, a polynomial of degree n — 1,
and the last number of the third line is the remainder f'(/).

EXAMPLE 2. Divide 5x* — 8x> — 15x — 6 by x — 2, using synthetic division.
Following the procedure outlined above, we have

540-— 8-15— 6 |2 The quotient is Q(x) = 5x3 + 10x% 4+ 12x + 9

104+20+24+18 and the remainder isf(2) = 12.
5+104+12+ 9+12

(See Problem 43.4.)

DESCARTES’ RULE OF SIGNS can be used to discuss the number of positive and negative zeros of a
given polynomial (see Chapter 42).

EXAMPLE 3. Consider the polynomial P(x) = 2x> 4 x—4. P(x) has one variation of sign (from + to —);
P(—x) = 2x? — x — 4 has one variation of sign (from + to —). Descrates’ rule of signs tells us that there will be one
positive zero [one variation in sign for P(x)] and one negative zero [one variation in sign for P(—x)].

EXAMPLE 4. Suppose S(x) = x> + x* + x3 = x% 4 1. S(x) has two variations; S(—x) has three. Thus, S(x) has 2 or
0 positive and 3 or 1 negative zeros.

THE GRAPH OF A POLYNOMIAL y = f(x) may be obtained by computing a table of values, locating
the several points (x, ), and joining them by a smooth curve. In order to avoid unnecessary labor in
constructing the table, the following systematic procedure is suggested:

(I) When x = 0,y = f(0) is the constant term of the polynomial.

(2) Use synthetic division to find f(1), f(2), f(3),... stopping as soon as the numbers in the third
line of the synthetic division have the same sign.

(3) Use synthetic division to find f(—1), f(=2), f(=3),... stopping as soon as the numbers in the
third line of the synthetic division have alternating signs.

In advanced mathematics it is proved:

(a) The graph of a polynomial in x with integral coefficients is always a smooth curve without
breaks or sharp corners.

() The number of real intersections of the graph of a polynomial of degree n with the x axis is
never greater than n.

(¢) If a and b are real numbers such that f(«) and f(b) have opposite signs, the graph has an odd
number of real intersections with the x axis between x = ¢ and x = b.

(d) 1If a and b are real numbers such that f(a) and f(b) have the same signs, the graph either does
not intersect the x axis or intersects it an even number of times between x = a and x = b.
See Fig. 43-1.

@ b LL Lvi
—prmrrrrr el O x x
a b a b

Fig. 43-1
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EXAMPLE 5. Construct the graph of y = 2x> — 7x? — 7x 4+ 5. Form the table in Table 43.1.

Table 43.1
X -2 -1 0 1 2 3 4 5
y —-25 3 5 -7 —-21 -25 -7 45
2-7— 7+ 5 |1
2— 5-12
2-5-12- 7
v 2-7- 7+ 5 2
4 4— 6-26
2-3-13-21
2-7- 7+ 5 |3
6— 3-30
: + } -] 2—-1-10-25
2 J 5
2-7-7+ 5 |4
8+4—-12
24+1-3-7

2—- 77— 1+ 5 |5
10 4 154 40
2+ 3+ 8+45

2-7-7+5 |=1
-249-2

2-9+2+3

2- 7- 74+ 5 |22
- 4422-30
2-11+15-25

Fig. 43-2

It is to be noted that

(a)
()

(©
(d)

The numbers in the third line are all nonnegative for the first time in finding f(5); they alternate for the first
time in finding f(=2).

The graph intersects the x axis between x = =2 and x = —1 since f(=2) and f(—1) have opposite signs,
between x = 0 and x = 1, and between x = 4 and x = 5. Since the polynomial is of degree three, there are
no other intersections.

Reading from the graph, the x intercepts are approximately x = —1.2, x = 0.5, and x = 4.2.

Moving from left to right the graph rises for a time, then falls for a time, and then rises thereafter. The
problem of locating the point where a graph ceases to rise or ceases to fall will be considered in a later
chapter. See Fig. 43-2.

(See Problems 43.5-43.9.)

43.1

Solved Problems

Prove the Remainder Theorem: If a polynomial f(x) is divided by x—/ until a constant remainder is
obtained, that remainder is f(h).
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In the division let the quotient be denoted by Q(x) and the constant remainder by R. Then, since
Dividend = divisor times quotient + remainder,
) =Ex=-mNOX+R
is true for all values of x. When x = h, we have
fhy=h-mHOh)+ R=R

Prove the Factor Theorem: If x —/ is a factor of f(x) then f(h) = 0, and conversely.

By the Remainder Theorem, f(x) = (x — h)Q(x) + f(h).
If x— /K is a factor of f(x), the remainder must be zero when f(x) is divided by x — A. Thus, f(h) = 0.
Conversely, if (k) = 0, then f(x) = (x —h)Q(x) and x — A is a factor of f(x).

Without performing the division, show that

(@) x—21s a factor of f(x) = x> —x? — 14x + 24.

() x+ais not a factor of f(x) = x" + 4" for n an even positive integer and a # 0.

(@) fQ)=23-22=14-2+24=0 (b) f(—a)=(-a)"+d" =2d"+#0.

Use synthetic division to divide 4x* 4 12x* —21x> = 65x 4+ 9 by (a) 2x— 1, (b) 2x + 3.
(a) Write the divisor as 2(x — %). By synthetic division with synthetic divisor & = %, we find
4+12-21-65+ 9 |3

24 7- 7-36
41 14-14-72-27

Now
4 1257 = 2107 — 65x + 9 = (4x’ + 14x% — 14w — T2)(x — 1) - 27
=2+ 7% = Tx=36)2x— 1) =27
Thus, when dividing f(x) by & = m/n, the coefficients of the quotient have n as a common factor.
(b)) Here h = —3. Then from
4+12-21-65+ 9 |-3

- 6— 9445430
44+ 6-30-20+39

we have

4x* +12x° = 2122 = 65x + 9 = (2% + 3x% — 15x — 10)2x + 3) + 39

For the polynomial y = f(x) = 4x* + 12x> — 31x? — 72x 4+ 42 from a table of values for integral values of
x from x = =5 to x = 3.

Table 43.2 is the required table.

Table 43.2

x =5 -4 -3 =2 -1 0 1 2 3
y 627 90 =21 30 75 42 —45 —66 195
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43.6

43.7

4412-31— 72+ 42 |-5 44+12-31-72+42 |-4 4+12-31-72+42 |3
—-20+40— 454585 — 16416 4 60 + 48 -124+ 0+93-063
4— 84 9-1174627 4— 4-15-12+90 44 0-31421-21
4+ 12-31-72+42 |2 4412-31-72+42 |-1 f(0) =42, the constant
- 8= 84+78-12 — 4- 8439+33 term of the polynomial.
44+ 4-394+ 6+30 4+ 8—-39-334+75
4+12-31-72+42 |1 4412-31-72+ 42 |2 4412-31—- 72+ 42 |3
44+16—-15-87 8 +40+ 18 —108 12472+ 1234+ 153
44+16—-15-87-45 4420+ 9-54— 66 4424441+ 514195

Sketch the graph of y = f(x) = x* —=9x* + Tx + 4.

From Table 43.3 it is seen that the graph crosses the x axis between x = —4 and x = =3, x = —1 and
x=0, x=1and x=2, and x=2 and x = 3. From the graph in Fig. 43-3, the points of crossing are
approximately x = —3.1,-0.4,1.4, and 2.1.

Table 43.3
X -4 -3 -2 -1 0 1 2 3
y 88 —-17 =30 —11 4 3 -2 25

Fig. 43-3

Sketch the graph of y = f(x) = x° — 5x% + 8x — 3.

From Table 43.4 (formed for integral values of x from x = —1 to x = 5) it is seen that the graph crosses
the x axis between x = 0 and x = 1. If there are two other real intersections, they are both between x = 1 and
x = 3 since on this interval the graph rises to the right of x = 1, then falls, and then begins to rise to the left
of x =3.

By computing additional points on the interval (some are shown in the table), we are led to suspect that
there are no further intersections (see Fig. 43-4). Note that were we able to locate the exact points at which
the graph ceases to rise or fall these additional points would not have been necessary.

Table 43.4
|-l o 1| 3|3 2] 2] s %3 4 5
y| -7 =3 | Bl g | g ] 23] 13| 37
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Fig. 43-4

Sketch the graph y = f(x) = x° —4x> = 3x + 18.

From Table 43.5 it is evident that the graph crosses the x axis at x = —2 and meets it again at x = 3. If
there is a third distinct intersection, it must be between x =2 and x = 3 or between x =3 and x = 4.
By computing additional points for x on these intervals, we are led to suspect that no such third intersection
exists.

This function has been selected so that the question of intersections can be definitely settled. When
f(x) is divided by x + 2, the quotient is X2 =6x+49 = (x—3)? and the remainder is zero. Thus, fx) =
(x+2) (x—=3)? in factored form. It is now clear that the function is positive for x > —2; that is, the
graph never falls below the x axis on this interval. Thus, the graph is tangent to the x axis at x = 3, the
point of tangency accounting for two of its intersections with the x axis. (See Fig. 43-5.)

Table 43.5
X -3 -2 -1 0 1 2 3 4 5
y -36 0 16 18 12 4 0 6 28

Fig. 43-5

Sketch the graph of y = f(x) = x* — 6x% + 12x — 8.

From Table 43.6 it is evident that the graph crosses the x axis at x = 2 and is symmetrical with respect
to that point [i.e., f(2 + &) = —f(2 — h)]. Suppose the graph intersects the x axis to the right of x = 2. Then,
since f'(x) is positive for x = 3,4, 5 and x = 6, the graph is either tangent at the point or crosses the axis twice
between some two consecutive values of x shown in the table. But, by symmetry, the graph would then have
2+ 2+ 1 =5 intersections with the x axis and this is impossible.

When f(x) is divided by x —2, the quotient is x*> —4x + 4 = (x —2)*> and the remainder is zero. Thus,
f(x) = (x—2)>. Now it is clear that the graph lies above the x axis when x > 2 and below the axis when
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43.10

43.11

43.12

43.13

43.14

43.15

x < 2. The graph crosses the x axis at x = 2 and is also tangent there. (See Fig. 43-6.) In determining the
intersections of the graph and the x axis, the point x = 2 is to be counted three times.

Table 43.6
X -2 -1 0 1 2 3 4 5 6
y —64 =27 -8 -1 0 1 8 27 64

Fig. 43-6

Supplementary Problems

Given f(x) = x* + 5x% = 7x? — 13x — 2, use synthetic division to find

(@ Q=0 &) fAH=410 (o f=2)=-28 (d) f(=3)=-80

Using synthetic division, find the quotient and remainder when
(@ 2x*=3x*—6x+ 11x—10is divided by x—2;  (b) 3x*+ 11x° 4+ 7x% — 8 is divided by x + 2.
Ans. (@) 2X°+x*—4x+3;-4 (b)) 3x°+5x*—3x+6;-20

Use synthetic division to show

(@) x+2 and 3x—2 are factors of 3x* —20x* 4 80x — 48.
(b)) x—7and 3x + 5 are not factors of 6x* — x* — 94x? + 74x + 35.

Use synthetic division to form a table of values and sketch the graph of
(@ y=x—13x+12 () y=3x+5x*—4x-3 () y==x"+13x+12
By y=2+x>=12x=5 d) y=x*-x*-7x>+13x-6

Sketch the graph of
@ y=xx*=4 B y=x@-x) (© y=x(x-27 (@) y=x2-x".

Use Descartes’ rule of signs to discuss positive and negative zeros for

(@) P(x)=x*+x>+1 (none)
() M(x)=Tx*+ 2x + 4 (0 positive zeros, 0 or 2 negative)



Parametric Equations

IN THIS CHAPTER we consider the analytic representation of a plane curve by means of a pair of
equations, as x =,y = 2¢+ 3, in which the coordinates of a variable point (x, y) on the curve are
expressed as a function of a third variable or parameter. Such equations are called parametric equations
of the curve.

A table of values of x and y is readily obtained from the given parametric equations by assigning
values to the parameter. After plotting the several points (x, y), the locus may be sketched in the usual
manner.

EXAMPLE. Sketch the locus of x =1¢, y =21+ 3.
We form the table of values (Table 44.1), plot the points (x, y), and join these points to obtain the straight line
shown in Fig. 44-1. (See Problem 44-1.)

Table 44.1
t 2 0 -3
X 2 0 -3
y 7 3 3
)\ t=2
t=0
o, >z

Fig. 44-1

At times it will be possible to eliminate the parameter between the two equations and thus obtain the
rectangular equation of the curve. In the example above, the elimination of 7 is easy and results in\y = 2x + 3. At the
other times, however, it will be impractical or impossible to eliminate the parameter. (See Problem 44.2.)
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Parametric representation of a curve is nof unique. For example, x =1,y =21+ 3;x=Ju,y = u+3;
x=v—1, y=2v+ 1 are parametric representations with parameters ¢, u, v, respectively, of the straight line whose
rectangular equation is y = 2x + 3. (See Problems 44.3-44.4.)

PATH OF A PROJECTILE. If a body is projected from the origin with initial velocity v, ft/s at an
angle o with the positive x axis and if all forces acting on the body after projection, excepting the force of
gravity, are ignored, the coordinates of the body ¢ seconds thereafter are given by

1542

X = vgtcosa, Yy = vptsing —5gt

where g is the acceleration due to gravity. For convenience, we take g = 32 ft/s?. (See Problems 44.5-44.7.)

Solved Problems

44.1  Sketch the locus of each of the following:
(@ x=t,y=1 b)) x=4n,y=1/t (¢) x=5cos0, y=>5sin0 (d) x=2+4cosl, y=-cos20

The table of values and sketch of each are given in Figs. 44-2 to 44-5. In Fig. 44-3, ¢t = 0; hence,
we must examine the locus for values of ¢ near 0. In Fig. 44-4 the complete locus is described on the
interval 0 =< 0 = 2n. In Fig. 44-5 the complete locus is described on the interval 0 < 0 = . Note that only
that part of the parabola below y =1 is obtained; thus the complete parabola is not defined by the
parametric equations.

W
t=-~-2 t=2
Pz

t=-1 t=1

Olt-0 —»>
t]2(1|0(-1}-2 t 2 1(1/2({1/10 | -1/10 | -1/2 { ~1| -2
x|2(1]0(~-1]~2 x 8 |4 2 2/5 | =2/5 ~2 |-4}| -8
yj4i1110( 1] 4 y 1/2 |1 2 10 -10 -2 |~-1]-1/2

Fig. 44-2 Fig. 44-3
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) )
G =mn/2
8 =3n/4 g=1/4
b= o -0 » z
6 =5n/4 8 =Tn/4
8 =3n/2
6| 0 |n/a|n/2| 3n/a| n | 5m/4| 3n/2| Tn/4| 2m 61 0 | n/a} n/2 |3/} @
x |5.00(3.55| 0 |-3.55(-5.00|-3.55| O 3.551(5.00 x |3.00 (271} 2.00 |1.29 {1.00
y 0 |3.55[5.00| 3.55 0 |-3.55/-5.00{-3.55/ O y | 1.00 0 -1.00 0 1.00
Fig. 44-4 Fig. 44-5
44.2  Ineach of the following, eliminate the parameter to obtain the equation of the locus in rectangular coordinates:
(a)=(d), Problem 44.1 (¢) x=>+1t, y=1 —t(f)x =3sech, y =2tan ¢ (g) x = vo(cosa)t, y = vo(sino)t —
g, t being the parameter.
(@) Here t=x and y = 1> = x%. The required equation is y = x%.
(b) Since t =1/y,x =4t = 4/y and the equation is xy = 4.
() x*+y* = (5c0s0)> + (5sin 0)> = 25(cos® 0 + sin® 0). The required equation is x> + y* = 25.
(d) cos@=x—2and y=cos260=2cos?0—1=2(x—2)>— 1. The equation is (x —2)> = I+ 1.
(e) Subtracting one of the equations from the other, ¢t = %(x —). Then x = %(x—y)2 + %(x —) and the
required equation is x> — 2xy 4 y? —2x—2y = 0.
(f) tan¢g = %y and x? = 9sec’ ¢ = 9(1 + tan’¢) = 91+ ‘1—1)»2). The equation is 4x> — 9y = 36.
; vo(sina)x 1 gx? g 5
t: ) — _——_— .Th :V't - =X .
@ Vo COS o vocosa 2 (vycosa)? eny=xtane 2 vé cos’ *
44.3  Find parametric equations for each of the following, making use of the suggested substitution:

(@ y*=2y+2x=5=0, x=1t+3 (¢) 9x*+16)° = 144, x = 4cos b
() y*=2y+2x=5y=1+1 (d) X4y =3axy=0, y=mx

(a) First write the equation as (y—1)> = =2(x —3). Upon making the suggested substitution, we have
(y—1)>==2¢ or y=1=*+/-2t. We may take as parametric equations x =t + 3, y = 1 4++/=2r or
x=t+3, y=1-+-2t.

() From (y—1)> = =2(x—3), we obtain > = —2(x—13) or x =3 —%tz. The parametric equations are
x:3—%tz, y=1+1t

() We have 9(16cos>0) + 16y* = 144 or 3> = 9(1 —cos? ) = 9sin? 0. The parametric equations are
x=4cosl, y=3sin0 or x =4cos0,y = —3sin0. 3

(d) Substituting, we have x* + m’x® —3amx? = 0. Dividing by x?, we obtain x = I amy

3am’® . . 3am 3am® o
5 and the parametric equations are x = 5, V= 3

14+ m° 1+ m’ 1+ m’

Then y =

mx =
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44.4

44.5

44.6

(@) Show that x = acosf, y = bsin6, a > b, are parametric equations of an ellipse.

(b) Show that these equations indicate the following method for constructing an ellipse whose major
and minor axes 2a and 2b are given: With the origin as common center draw two circles having
radii @ and b. Through the origin draw a half line / meeting the smaller circle in B and the larger
circle in A. From A drop a perpendicular to the x axis meeting it in R; from B drop a
perpendicular to the x axis meeting it in S and a perpendicular to RA meeting it in P. Then as /
revolves about O, P describes the ellipse.

(@) We have cos = x/a and sin 0 = y/b; then x%/a* + y*/b* = cos? 0 +sin” 0 = 1 is the equation of an
ellipse.
(b) In Fig. 44-6, let P have coordinates (x,y) and denote by 0 the angle which / makes with the positive

x axis. Then x=OR=0Acos0 =acosf and y= RP= SB= OBsin0 = bsin( are parametric
equations of the ellipse whose major and minor axes are a and b.

L/

I( l
AP(x,y)
/ ] |

Fig. 44-6

A body is projected from the origin with initial velocity v, ft/s at an angle o with the positive x axis.
Assuming that the only force acting upon the body after projection is the attraction of the earth, obtain
parametric equations of the path of the body with ¢ (the number of seconds after projection) as
parameter.

If a body is released near the surface of the earth and all forces acting upon it other than gravity are
neglected, the distance s ft through which it will fall in ¢ seconds is given by s = %gtz. where g = 32 ft/s2
approximately.

If a body is given motion as stated in the problem and if after projection no other force acts on it, the
motion is in a straight line (Newtons’s first law of motion) and after ¢ seconds the body has coordinates
(vot cos o, vgt sin o).

Since, when small distances are involved, the force of gravity may be assumed to act vertically, the
coordinates of the projected body after ¢ seconds of motion are given by

X =vgtcosa, y= votsina—%gtz. ()
In rectangular coordinates, the equation of the path is [see Problem 44.2(g)]

g 2
=xtanog ——5———X 2
7 2v3cos?a @

A bird is shot when flying horizontally 120 ft directly above the hunter. If its speed is 30 mi/hr, find the time
during which it falls and the distance it will be from the hunter when it strikes the earth.

As in Fig. 44-7, take the bird to be at the origin when shot. Since 30 mi/hr = 30 - 5280/(60 - 60) =
44ft/s = vy and o = 0°, the equations of motion are
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(a) x=vytcosa =44tcos0° = 44¢

(b) y=vytsina —%gt2 =-16¢
When the bird reaches the ground, its coordinates are (x,—120).

From (b),—120 = —16/ and t =1/30; from (a), x = 44 (1 v/30) = 224/30. Thus the bird will fall for
%\/% s and will reach the ground 22+/30 ft from the hunter.

) ('t

4]

maximum
height
1

i

range

Fig. 44-8

A ball is projected upward from the ground at an angle 60° from the horizontal with initial velocity 60 ft/s.
Find (@) the time it will be in the air (b) its range, that is, the horizontal distance it will travel, and (c) its
maximum height attained. Refer to Fig. 44-8. (Also, see Part III for a calculus solution to maxima/minima
problems.)

Let the ball be projected from the origin; then the equations of motion are
x=ptcosa = 60rcos60° =307, y=vytsino—ig =30t/3— 167
(@) When y=0,16:>=301/3 =0 and 7= 0,15+/3/8. Now 7 = 0 is the time when the ball was projected
and t = 15\/§/8 is the time when it reaches the ground again. Thus the ball was in the air for 15\/5/8 S.
() When = 15y3/8,x = 30 15y/3/8 = 225/3/4. The range is 225+/3/4 ft.
(¢) First Solution. The ball will attain its maximum height when 7= 7(15\/3/8) = 15\/3/16. Then
¥ =30t/3 = 166> = 30(15+/3/16)+/3 = 16(15+/3/16)> = &2 ft, the maximum height.

Second Solution. The maximum height is attained where the horizontal distance of the ball is one-half

the range, i.e., when x = 225+/3/8. Using the rectangular equation y = — %5 X%+ x/3,
675

we obtain 9% ft as before.

The locus of a fixed point P on the circumference of a circle of radius a as the circle rolls without slipping
along a straight line is called a cycloid. Obtain parametric equations of this locus.

Take the x axis to be the line along which the circle is to roll and place the circle initially with its
center C on the y axis and P at the origin. Figure 44-9 shows the position of P after the circle has rolled
through an angle 6. Drop perpendiculars PR and CS to the x axis and P4 to SC. Let P have
coordinates (x,y). Then

x=0OR=0S—RS=arc PS—PA=ab—asinf
and y=RP=8S4=SC—-AC=a—acosl

Thus, the equations of the locus are x = a(0 —sin ), y = a(1 —cos ).
The maximum height of an arch is 24, the diameter of the circle, and the span of an arch or the distance
between two consecutive cusps is 27a, the circumference of the circle.
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44.9

44.10

44.11

Y \”A
P(z,y)
F(c,0) >
C 0 v
B
Cip
olE S z
Fig. 44-9 Fig. 44-10

Find the equation of the locus of the feet of perpendiculars drawn from a focus to the tangents of the
ellipse h°x? + a®y*> = a*b*. This curve is called the pedal curve of the ellipse with respect to the focus.
See Fig. 44-10.

Let P(x,y) be any point on the locus. The equations of the tangents of slope m to the ellipse are
y = mx = Ja* m* + b? or (I y—mx=*tJd®m* + b?

The perpendicular to these tangents through F(c,0) has equation

1 9
p=——xt o or  (2) my+x=+a*-"p?

m- m
Squaring (1) and (2'), and adding, we obtain
1+ mz)y2 + (1 +mH)x> =d* (1 +m?) or, since 1+’ #0, x? —I—y2 =d

as the desired equation.

Supplementary Problems

Sketch the locus and find the rectangular equation of the curve whose parametric equations are

(@) x=t+2, y=3t+5 Ans. y=3x-1
(b)) x=tan0, y=4cotl Ans. xy=4
() x=2243, y=3t+2 Ans. 2y*—8y—9x+35=0
(d) x=3+2tanf, y=—1+ Ssec 0 Ans. 4y* —25x% + 8y + 150x—321 =0
(e) x=2sin*0, y=2cos*0 Ans. (x=pP? —=4(x+»)+4=0
(f) x=tan0, y=tan20 Ans. Xly—y+2x=0
(g) x=+/cost, y= tan%r Ans. YA +xH+x2-1=0
(h) x=acos’0, y = asin’0 Ans. X3 43283 =P

) 2t 1-7 2, 2
(0] x=m7y=l+[2 Ans. x*+y =1

. 2ar 2ar?
0 x= 1+2° y= 1+2 Ans. }’z(za—x) =x

Find parametric equations for each of the following, using the suggested value for x or y:
(@ xX*=472 x=7 () 4x*=9)2 =36, x=23sec (¢) x(x*+))=x>—)" y=1x
by y=x"+x—6, x=1+2 (d) y=2x*—1, x=cost (f) (2416)y =64, x=4tan6
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Ans. (a) lez,y:%l3
b) x:t+27y:t2+5t
(¢) x=3secl,y=2tan0
(d) x=cost,y=cos2t
© le—rZ ’7:(1—t2)
iy T re
) x:4tan6,y:4cosz(9

A 30-ft ladder with base on a smooth horizontal surface leans against a house. A man is standing 3 the way
up the ladder when its foot begins to slide away from the house. Find the path of the man.

Ans. x =10cos0, y =20 sin 0 where 0 is the angle at the foot of the ladder.

A stone is thrown upward with initial speed 48 ft/s at an angle measuring 60° with the horizontal from the
top of a cliff 100 ft above the surface of a lake. Find (a) its greatest distance above the lake, (b) when it will
strike the surface of the lake, and (¢) its horizontal distance from the point where thrown when it strikes the
surface.

Hint: Take the origin at the top of the cliff.

343 + V127
4

Ans. (@) 127ft (b) slater (¢) 633+ V12D ft

Find the locus of the vertices of all right triangles having hypotenuse of length 2a.

Hint: Take the hypotenuse along the x axis with its midpoint at the origin and let 0 be an acute angle of the
triangle.

Ans. x=acos20, y =asin20 or x=asin20, y=acos20

From the two-point form of the equation of a straight line derive the parametric equations
X =x] +t(x;—x1),y =y +t(y; —y;). What values of the parameter ¢ give the points on the segment
P, P,? 1dentify the points corresponding to r=14,1,2

Verify the following method for constructing a hyperbola with transverse axis 2a and conjugate axis 2b,
where a # b. With the origin as common center draw two circles having radii ¢ and b. Through the origin
pass a half line / making an angle 0 with the positive x axis and intersecting the larger circle in A. Let the
tangent at A to the circle meet the x axis in B. Through C, the intersection of the smaller circle and the
positive x axis, erect a perpendicular meeting /in D. Through D pass a line parallel to the x axis and through
B a line perpendicular to the x axis, and denote their intersection by P. Then P is a point on the hyperbola.

Obtain the rectangular equation x = a arccos L2 ¥ 2ay —y” of the cycloid of Problem 44.8.
a
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The Derivative

IN THIS AND SUBSEQUENT CHAPTERS, it will be understood that number refers always to a real
number, that the range of any variable (such as x) is a set of real numbers, and that a function of one
variable [such as f(x)] is a single-valued function.

In this chapter a procedure is given by which from a given function y = f(x) another function,
denoted by y’ or //(x) and called the derivative of y or of f(x) with respect to x, is obtained. Depending
upon the quantities denoted by x and y = f(x), the derivative may be interpreted as the slope of a
tangent line to a curve, as velocity, as acceleration, etc.

LIMIT OF A FUNCTION. A given function f(x) is said to have a limit M as x approaches ¢

[in symbols, lim f(x) = M] if f(x) can be made as close to M as we please for all values of x # ¢ but
X—C

sufficiently near to ¢, by having x get sufficiently close to ¢ (approaching both from the left and right).

EXAMPLE 1. Consider f(x) = x? =2 for x near 3.

If x is near to 3, say 2.99 < x < 3.01, then (2.99)> — 2 < f(x) < (3.01)> =2 or 6.9401 < f(x) < 7.0601.

If x is nearer to 3, say 2.999 < x < 3.001, then (2.999)* — 2 < f(x) < (3.001)> =2 or 6.994001 < f(x) < 7.006001.

If x is still nearer to 3, say 2.9999 < x < 3.0001, then (2.9999)> —2 < f(x) < (3.0001)> =2 or 6.99940001 <
f(x) < 7.00060001.

It appears reasonable to conclude that as x is taken in a smaller and smaller interval about 3, the corresponding
f(x) will lie a smaller and smaller interval about 7. Conversely, it seems reasonable to conclude that if we demand
that f(x) have values lying in smaller and smaller intervals about 7, we need only to choose x in sufficiently smaller
and smaller intervals about 3. Thus we conclude

1jrq(x2—2) =7

2y
EXAMPLE 2. Consider f(x) = Y;i\:;() for x near 3.

2 g
When x # 3, f(x) = %\36 = x + 2. Thus, for x near 3, x + 2 is near to 5 and

2 _ v
im X —X=6_
-3 x-—=3

ONE-SIDED LIMITS. We say that the limit of f(x) as x approaches a from the left is L[ lim f(x) = L]
when f(x) gets arbitrarily close to L as x approaches a from the left-hand side of a. [Similarly,
1i1})1+f(x) = M is the right-hand limit.] Clearly, if’ lim f(x) = lim+f(x) = L, then lim f(x) = L.

345
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THEOREMS ON LIMITS. If limf(x) = M and lim g(x) = N, then
X—C X—C

1. l{n[f(x)ig(x)]=l£nf(x)ili£ng(x)=MiN.
1I. hln [kf ()] = lem f(x) = kM, where k is a constant.
UL lim [/(x) - g(0)] = lim £(x) - lim g(x) = MN.
£(x) lim f (x) )

im M .
IV. lm=——<=72 = —, provided N # 0.
x—cg(x) limgx) N

Note that in these four statements, the assumption that M and N exist is essential. (See Problem 45.2.)

CONTINUOUS FUNCTIONS. A function f(x) is called continuous at x = ¢, provided
(1) f(c) is defined,
2 1\13 f(x) exists,
(3 lim ) =/().

EXAMPLE 3.
(a) The function f(x) = x>—2 of Example 1 is continuous at x =3 since () f(3) =7, (2) lir% x*=-2)=7,
(3) lim (x* =2) =/ 3).
s X

. x2 —x—6
(b) The function f(x)= —

3 of Example 2 is not continuous at x = 3, since f(3) is not defined. (See

Problem 45.2.)

A function f(x) is said to be continuous on the interval (a, b) if it is continuous for every value of x of the
interval. A polynomial in x is continuous since it continuous for all values of x. A rational function in x, f(x) =
P(x)/Q(x), where P(x) and Q(x) are polynomials, is continuous for all values of x except those for which Q(x) = 0.

2
X +x+1

Thus, f(x) = m

is continuous for all values of x, except x = 1.

CONTINUITY ON A CLOSED INTERVAL. If a function y = g(x) is continuous for all values of x in
[a, b], then it is continuous on (a, b) and also at ¢ and b.
However, in this case, g(x) is continuous at « means lim g(x) = g(a); similarly, lin; g(x) = g(b).
x—at x—b~

(See Problem 45.4.)

INCREMENTS. Let x4 and x; be two distinct values of x. It is customary to denote their difference
x| — Xy by Ax (read, delta x) and to write x, + Ax for x,.

Now if y = f(x) and if x changes in value from x = x, to x = xy + Ax, y will change in value from
o =f(xg) to yo + Ay = f(xq + Ax). The change in y due to a change in x from x = x( to x = xy + Ax is
Ay = f(xo + Ax) = [ (xo).

EXAMPLE 4. Compute the change in y = f(x) = x> —2x + 5 when x changes in value from (a) x = 3 to x = 3.2,
(b) x=3tox=209.
(a) Take xy =3 and Ax =0.2. Then yy = f(x9) =f(3) =8, yo + Ay = f(xo + Ax) = f(3.2) = 8.84, and Ay =
8.84 —8 = 0.84.
(b) Take xy =3 and Ax =—0.1. Then y, = f(3) =8,y0 + Ay =f(2.9) = 7.61, and Ay = 7.61 —8 = —0.39.

(See Problems 45.5-45.6.)
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THE DERIVATIVE. The derivative of y = f(x) at x = X, is

im &Y = i LG+ A9~/ (X0)

A—0AX A0 Ax
. . Ay . o .
provided the limit exists. Ax is called the difference quotient.

To find derivatives, we shall use the following five-step rule:

(1) Write yy = f(xo).

(2) Write yo + Ay = f(xy + AX).
(3) Obtain Ay = f(xg + Ax) —f(xg)-
(4) Obtain Ay/Ax.

A
(5) Evaluate li‘m A—X The result is the derivative of y = f(x) at x = x;.

Ax—0

EXAMPLE 5. Find the derivative of y = f(x) = 2x*> —3x + 5 at x = x.
() yo =/f(x0) =2x3—3x0 +5

) Yo + Ay = f(xo + Ax) = 2(xg + Ax)’ = 3(xg + Ax) + 5
= 2x3 + 4xy - Ax 4+ 2(Ax)* = 3x9—3 - Ax + 5

3) Ay = f(xg + Ax) — f(xg) = 4xg - Ax — 3 - Ax + 2(Ax)*
Ay
“) A= =342 A
%) l'mgfl'm(4'—3+2-A)*4 -3
Ao Ax  anmprYo W= o=

If in the example above the subscript 0 is deleted, the five-step rule yields a function of x (here, 4x — 3) called the
derivative with respect to x of the given function. The derivative with respect to x of the function y = f(x) is denoted

dy
by one of the symbols }”,d—i, f'(x), or D,y.
Provided it exists, the value of the derivative for any given value of x, say x;, will be denoted by

dy
X=X, ’ dx

!

, or f'(xp). (See Problems 45.8-45.15.)
0

X=X

HIGHER-ORDER DERIVATIVES. The process of finding the derivative of a given function is called
differentiation.

By differentiation, we obtain from a given function y = f(x) another function y’ = f”(x) which will
now be called the first derivative of y or of f(x) with respect to x. If, in turn, y’ = f’(x) is differentiated
with respect to x, another function y” = f”(x), called the second derivative of y or of f(x) is obtained.
Similarly, a third derivative may be found, and so on.

EXAMPLE 6. Lety=f(x) = x*—3x> + 8x+ 6. Then y’ = f'(x) = 4x> — 6x + 8,y" = f"(x) = 12x* — 6, and y" =
f™(x) = 24x. (See Problem 45.16.)
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Solved Problems

Investigate f(x) = 1/x for values of x near x = 0.
1 1 1

If x is near 0, say —.01 < x < .01, then TR -100 < 1 < 100.

1

! !
Z0001 = x = 0001

If x is nearer to 0, say —.0001 < x < .0001, then or —10000 < lv < 10000.

It is clear that as x is taken in smaller and smaller intervals about 0, the corresponding f(x) does not lie in
smaller and smaller intervals about any number M. Hence, 1irr(1)(1/ x) does not exist.
X—

Evaluate when possible:

2
(@) lm@2 -5y,  (b) lim (2 —4x + 10), (© lim oS
x—2 x—1 =2 x*—=2x-3

2 2
) limx +6x+5 © 1imx+6x+5

=3 x2=2x=3" x—-1 x2=2x=3"
(@) lim (4x* = 5x) = lim 4x* ~ lim Sx = 4lim x> = Slim x = 4-4-5-2 = 6.
(b) lin}(xz—4x+10)=(l)2—4-1+10=7.

(¢) lin% (x*+6x4+5 =21 and lin} (x? = 2x —3) = —3; hence

: 2
Ptby4s MO HOES)

li = =2 =

k) x2=2x-3 limz(xz—2x—3) =3
X )

(d) lim ( + 6x +5) = 32 and lim (x* = 2x = 3) = 0; hence lim szws

does not exist.
=3 x*—2x—-3

(e) liml(xz +6x+5)=0and _1iml(x2 —2x—3) = 0. Then, when x # —1,

XH6x+5 (x+5x+1) x+5 . X>46x+5 . x+5 4
= = and lim = lim =—=-1

X2=2x-3 (x=3)(x+1) x-3 x—-1x2=2x—=3 x—-1x—3 —4

Tell why each graph in Fig. 45-1 is not continuous at a.
(a) y = g(x) exists at a and lim g(x) exists, but lim g(x) # g(a).
(b) lim h(x) does not exist since lim+ h(x) # lim h(x).

(¢) f(a) is not defused.

Discuss the continuity of y = +/x — 1. See Fig. 45-2.

Here, f(1) =+1-1=0; ]irﬁ vx—1=0, thus f(x) is continuous on [1, oo].
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45.5

y y
A 4\
\ y= hN’\!
y=g(x) i
|
T A ¢ 1 » x
a a
(@) (h)
y
A
y=flx)

(©)
Fig. 45-1

Fig. 45-2

Let P(xg, ) and Q(x, + Ax, yy + Ay) be two distinct points on the parabola y = x> — 3. Compute Ay/Ax
and interpret.
Here Yo = x% -3
Yo+ Ay = (xg + Ax)’> =3 = x3 + 2xy - Ax + (Ax)> =3
Ay = [x% +2xy - Ax + (Ax)2 -3]- [x% —=3]=2x5 " Ax+ (Ax)2

Ay
and Ay ot Ax
In Fig. 45-3, PR is parallel to the x axis and QR is parallel to the y axis. If o denotes the inclination of

the secant line PQ, tana = Ay/Ax; thus, Ay/Ax is the slope of the secant line PQ.
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Q(x°+ Ox, Yot Ay)

Ay

\ L}

Ax
P(xy.y,)

Fig. 45-3

If s = 37> 4 10 is the distance a body moving in a straight line is from a fixed point O of the line at time ¢,

(a) find the change As is s when ¢ changes from 7 = ¢, to t = #, + At, (b) find As/At and interpret.

S0+ As = 3(tg + A + 10 = 382 + 61y - At + 3(Ar)* + 10

and As=

= 61y + 3At. Since As is the distance the body moves in time Ar,% is the average

rate of change of distance with respect to time or the average velocity of the body in the interval ¢, to

45.6
(@) Here sy=32+410. Then
6ty - At +3(A1)%.
As _ 6tg - At 4 3(An)?
&) A=
to+ At.
457 Find

(@) g'(x), given g(x) =5
(b) h'(x), given h(x) = 3x

() k'(x),given k(x) = 4x2
(d) f'(x),given f(x) =4x* +3x+5

Thus verify: If f(x) = k(x) + h(x) + g(x), then f/(x) = k'(x) + h'(x) + g’ (x).

(@) y=gx)=>5
y+Ay=glx+Ax)=5
Ay=0
Ay
Ax
! . —
0= fim0=0
() y=k(x)= 45°

¥+ Ay = 4(x + Ax)’ = 4x” + 8x -
Ay = 8x - Ax + 4(Ax)?
Ay
_—= X 4A
Ax 8x + 4Ax

k'(x) = Alimo(8x + 4Ax) = 8x

(b) y=h(x) =3x
y+ Ay =3(x+ Ax) = 3x+ 3Ax

Ay = 3Ax

Ay

A 3

h'(x)= lim 3=3
Ax—0

Ax + 4(Ax)?
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45.8

45.9

45.10

45.11

(d) y=f()=4x"+3x+5
y+Ay=4(x+ AX)? 4 3(x + Ax) 4+ 5 = 4x% + 8x - Ax + 4(Ax)* +3x + 3Ax+5
Ay = 8x - Ax + 3Ax + 4(Ax)?

g:8x+3+4Ax
Ax

flx)= Alinilo(Sx +3 4+ 4Ax) =8x+3

Thus f/(x) = k'(x) + h'(x) + g'(x) = 8x + 3+ 0.
Place a straight edge along PQ in Fig. 45-3. Keeping P fixed, let Q move along the curve toward P and thus
verify that the straight edge approaches the tangent line PT as limiting position.
. Ay .
Now as Q moves toward P,Ax — 0 and lim 2o 11m)(2x0 + Ax) = 2x,. Thus the slope of the tangent

Ax—0AX  Av—0
line to y = f(x) = x* — 3 at the point P(xy, y,) is m = f'(xg) = 2x,.

Find the slope and equation of the tangent line to the given curve y = f(x) at the given point:

(@ y=2x3at(1,2), () y=-3x>+4x+5at3,-10), (¢) y=x>—4x+3at2,-1).

(a) By the five-step rule, f/(x) = 6x°; then the slope m = f/(1) = 6. The equation of the tangent line at (1,2)
isy—2=6(x—1)or6x—y—4=0.

(b)) Here f'(x)=—-6x+4 and m=/f'(3)=—14. The equation of the tangent line at (3, —10) is
l4x +y—32=0.

(¢) Heref'(x)=2x—4and m = f'(2) = 0. The equation of the tangent line at (2, —1)is y + 1 = 0. Identify
the given point on the parabola.
Find the equation of the tangent line to the parabola y*> = 8x at («) the point (2, 4), (b) the point (2, —4).

Let P(x,y) and Q(x + Ax,y + Ay) be two nearby points on the parabola. Then

y=8x )
(4 Ay’ =8(x + Ax) @
or yz+2y-Ay+(Ay)2=8x+8-Ax
Subtracting (/) from (2),
2y-Ay+ Ay’ =8-Ax, AyQy+Ay)=8-Ax, and &:L
Ax  2y+Ay

Now as Q moves along the curve toward P,Ax — 0 and Ay — 0. Thus
. Ay . 8 8 4
=lim —=lm-——=—=-
" A.lxlllo Ax A}Elo2y +Ay 2y vy

(a) At point (2, 4) the slope of the tangent line (also called the slope of the curve) is m =%=1 and the
equation of the tangent line is x—y +2 = 0.
(h) At point (2, —4) the slope of the tangent line is m = —1 and the equation is x +y +2 = 0.

Find the equation of the tangent line to the ellipse 4x> 4 9y* = 25 at (a) the point (2, 1), (b) the point (0, %).

Let P(x,y) and Q(x + Ax, y + Ay) be two nearby points on the ellipse. (Why should P not be taken at an
extremity of the major axis?) Then

4x* +9y2 =25 )

4x% 4+ 8x - Ax 4+ 4(Ax)* 4+ 9% + 18y - Ay + 9(Ay)* = 25 %)
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Subtracting (/) from (2), 8x - Ax 4+ 4(Ax)* + 18y - Ay + 9(Ay)* = 0. Then

i _ ) Ay  8x+4Ay
Ay(18y + 9Ay) = —Ax(8x + 4 - Ax) and A 1Sy 1 9Ay

A 4
When Q moves along the curve toward P,Ax — 0 and Ay — 0. Then m = lim - ——x.
Ax—0 Ax 9y

(a) Atpoint (2, 1), m = —% and the equation of the tangent line is 8x + 9y —25 = 0.
(b) At point (0,3), m = 0 and the equation of the tangent line is y —3 =

The normal line to a curve at a point P on it is perpendicular to the tangent line at P. Find the equation of
the normal line to the given curve at the given point of (a) Problem 45.9(b), (b) Problem 45.11.

(a) The slope of the tangent line is —14; the slope of the normal line is ﬁ. The equation of the normal line is
y+10= ﬁ(x—3) or x—14y—143 = 0.

(b) The slope of the tangent line at (2, 1) is —3; the slope of the normal line is % The equation of the normal
line is 9x —8y—10= 0.

At the point (0,%) the normal line is vertical. Its equation is x = 0.

If s = f(¢) is the distance of a body, moving in a straight line, from a fixed point O of the line at time 7, then

A t+ADN—f(t
(see Problem 45.6) A—j :f(JrAi;f() is the average velocity of the body in the interval of time 7 to ¢ + At

and

R Y (U R A0)
A—0 At A—0 At

is the instantaneous velocity of the body at time t. For s = 37> + 10 of Problem 45.6, find the (instantaneous)

velocity of the body at time (a)t =0, (b)t = 4.
Here v=s' = 6t. (¢) When 1 =0,v=0. (b)) When 1 =4,v =24,

The height above the ground of a bullet shot vertically upward with initial velocity of 1152 ft/s is given by
s = 1152t — 16¢*. Find (a) the velocity of the bullet 20 s after was fired and (b) the time required for the bullet
to reach its maximum height and the maximum height attained.

Here v = 1152 - 32¢.
(@) When 1 =20,v=1152—-32(20) = 512 ft/s.

(h) At its maximum height, the velocity of the bullet is 0 ft/s. When v = 1152 —32¢ = 0,7 = 36 s. When
t = 36,5 = 1152(36) — 16(36)> = 20 736 ft, the maximum height.

Find the derivative of each of the following polynomials:
@ f)=3=6x+5 (b)) f)=2"=8x+4, (o) f(x)=(x-2 (x=3 .
(@ f'=32x"—6x"""+0=6x—6.

B fl0)=2-3x"=8x"1 +0=06x*-38.
(¢) Here f(x) = x* = 10x> + 37x% — 60x + 36. Then f'(x) = 4x> — 30x? 4 74x — 60 = (x — 2)(x — 3)(4x — 10).
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45.16 For each of the following functions, find f’(x),f"(x), and f"(x):
(@ f)=2*+T7x=5, () f(x)=x"-6x, (0) fx)=x"=x"43x
(@ fl)=4x+7, f'x)=4, Mx)=0

() f'x)=3=12x, f"(x)=6x=12, ["(x)=6
(©) fl(x)=5x*=3x2+3, f"(x) =20x> — 6x, f"(x) = 60x* -6

Supplementary Problems

45.17 Find all (real) values of x for which each of the following is defined:

2 an 1 1
(@ x=3x+4 @ e+ © 5
1 1 =9
®) X2 © xX2—4x+3 * x-=3
1 1 L x=3
(C) m (f) X2—4 (l) x2_9
Ans. (a) allx (¢) x#2 (&) x#1,3 (g allx () x#=3

b x#0  (d) x#2,-3 (/) x#*2 () x#3

45.18 For each function f(x) of Problem 45.17 evaluate ljrr}_f(x), when it exists.

Ans. (@ 2 ) 1 © -1 @ -3 (H -§ @+ W4 O

I

45.19 For each function f(x) of Problem 45.17 evaluate ljn%_f (x), when it exists.
Ans. (@) 4 (b)) § (o 1 d N i © 1 h 6 () ¢
45.20 Use the five-step rule to obtain f’(x) or f(¢), given (@)  f(x)=3x+5 (b)  f(x)=x*=3x

(¢ fO=224+8t+9 (d) f(=207-12420r+3

Ans. (@) 3 (b) 2x-3 (0 4r+38 (d) 6 —241+20

45.21 Find the equation of the tangent and normal to each curve at the given point on it.

(@) y=x>+2,P1,3) Ans. 2x—y+1=0,x4+2y-7=0

(b) y=2x*=3x,P(1,-1) Ans. x—y—-2=0,x+y=0

(¢) y=x*—4x+5P(1,2) Ans. 2x+y—-4=0,x-2y+3=0

(d) y=x>+3x-10,P2,0) Ans. Ix—y—=14=0,x+7y—=2=0

() x*+1>=25P@43) Ans. 4x+3y—-25=0,3x—4y =0

(f) »* =4x-8,P3,-2) Ans. x+y—-1=0,x—y—-5=0

(&) X¥*+47=8,P=2-1) Ans. x+2y+4=02x—-y+3=0

(h) 2x*—=y*=9,P(-3,3) Ans. 2x+y+3=0,x-2y4+9=0
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45.22

45.23

45.24

45.25

45.26

45.27

45.28

45.29

45.30

THE DERIVATIVE [CHAP. 45

A particle moves along the x axis according to the law s = 272 + 8¢ + 9 [see Problem 45.20(c)], where s (ft) is
the directed distance of the particle from the origin O at time ¢ (seconds). Locate the particle and find its
velocity when (a) t =0, (b) t = 1.

Ans. (a) 9ft to the right of O,v = 8ft/s (b) 19ft to the right of O, v = 12ft/s

A particle moves along the x axis according to the law s = 2¢* — 12¢% 4 207 + 3 [see Problem 45.20(d )], where
s is defined as in Problem 45.22.

(a) Locate the particle and find its velocity when 7 = 2. (b) Locate the particle when v = 2 ft/s.
Ans. (a) 11 ft to the right of O,v = —4 ft/s
(b) t=1, 13 ft to the right of O;¢= 3, 9 ft to the right of O

The height (s m) of a bullet shot vertically upwards is given by s = 12807 — 16>, with ¢ measured in seconds.
(a) What is the initial velocity? (b) For how long will it rise? (¢) How high will it rise?

Ans. (a) 1280m/s (b) 40s (¢) 25600 m

Find the coordinates of the points for which the slope of the tangent to y = x> — 12x 4 1 is 0.
Ans. (2, —15), (=2, 17)

At what point on y = %xz —2x + 3 is the tangent perpendicular to that at the point (1, 0)?
Ans. (3, %)

Show that the equation of the tangent to the conic Ax> + 2Bxy + Cy*> + 2Dx + 2Ey + F = 0 at the point
Pi(x1,yp) on it is given by Axx+ B(x;y+y;x)+ Cy1y+ D(x; + x) + E(y; +y) + F=0. Use this as a
formula to solve Problem 45.21.

Show that the tangents at the extremities of the latus rectum of the parabola y* = 4px (a) are mutually
perpendicular and (b) intersect on the directrix.

Show that the tangent of slope m # 0 to the parabola y> = 4px has equation y = mx +p/m.

Show that the slope of the tangent at either end of either latus rectum of the ellipse h*x> + a?y? = a®b? is

equal numerically to its eccentricity. Investigate the case of the hyperbola.



Chapter 46

Differentiation of
Algebraic Expressions

DIFFERENTIATION FORMULAS

I. If y= f(x)=kx", where k and n are constants, then y' = f'(x) = knx""!. (See for example,
Problem 46.1.)
Il If y = f(x) * g(x), then y' = f'(x) + g'(x) provided f'(x) and g'(x) exist.

1

III. Ify=k-u", where k and n are constants and u is a function of x, then y' = knu"™" - u’, provided u’

exists. This is a form of the chain rule. (For a verification, see Problem 46.2.)

EXAMPLE 1. Find y’, given (a) y = 8x°/%, (b) y = (x> + 4x — 1)*/2.
(@) Here k =8, n=3 Then y' = knx""' = 8- %'\,5/471 = 10x'/4.
() Letu = x> +4x—1 so that y = «*/%. Then differentiating with respect to x, u’ = 2x +4 and
y' =3 = %\/m(Zer 4) =3 +2x +dx—1
(See Problem 46.3.)

IV. If y=f(x) - g(x), then y' =f(x)-g'(x) +g(x) f'(x), provided f'(x) and g'(x) exist. (For the
derivation, see Problem 46.4.)

EXAMPLE 2. Find y’ when y = (x* 4+ 3x2 + D(x* + 2).
Take f(x) = x* + 3x* + 1 and g(x) = x> 4+ 2. Then f/(x) = 3x> + 6x, g'(x) = 2x, and
V=10 g0 +g) £
= (¢ 4 3x7 + D2x) + (F +2)(3x7 + 6x)
=5x* + 12x% + 627 + 14x
S g0 0=/

g(x) . [g(0)T?
derivation, sece Problem 46.6.)

V. Ify , when f/(x) and g'(x) exist and g(x)# 0. (For a
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x+1
X2+1
Take f(x) = x+ 1 and g(x) = x> + 1. Then
)8 S =) ') _ (P 4+ D)= (x+ DRy _ 1-2x—
[g(0)]? (2 +1y <+ D

EXAMPLE 3. Find ', given y =

Solved Problems
46.1  Use the five-step rule to obtain y’ when y = 6x3/2.
We have y = 6x?
v+ Ay = 6(x + Ax)
Ay =6(x+ Ax)3/2 -6 = 6[(x + Ax)3/2 - x3/21

3/2

& . (x + Ax)2 = 332 . (x + Ax)/2 = X2 x+ Ax)? + 1

and Ax Ax - Ax (x + Ax)3/2 4 x3/2
. (x + Ax)* = ¥? . 3x% 4 3x - Ax + (Ax)?
Ax[(x + Ax)*/? 4+ x3/7] (x 4 Ax)¥/2 4 x3/2
. 3x2 4 3x - Ax + (Ax)? 3x2
I = . —a. _ 09,12
Then y Algllo 6 (x+ A2 4 32 2432 Ix

(NOTE: By Formula I, with k =6 and n = %, we find y' = knx""' =6~ %x'/z =9x!/2)

46.2  Use the five-step rule to find y’ when y = (x> 4+ 4)"/2. Solve also by using Formula II.

We have y=0u2+4"2
y+ Ay = [(x + Ax)* + 4172
Ay = [(x + Ax)* + 412 = (x* + 4!/?

Ay [+ A +417 =2+ ' [+ A + 417+ (7 + 4

and

Ax Ax [(x + Ax)2 + 4112 4+ (32 + 42
_ (x+AX)P? +4-(x2+4) _ 2x + Ax
AX{[(x + AxP + 42+ (2 + DV} [(x+Ax)P + 412+ (2 +4)12
Th '~ lim 2x + Ax . 2x . X
en L T ARG+ AL (212 2R (R

Let u = x> 4+ 4 so that y = 4'/?. Then u’ = 2x and y' = lu_l/2 cu'= l(x2 + 4)_1/2 2x = o .

2 2 x*+4
4 1

46.3  Find y/, given (@) y = 2x =57, (b) y=2(x*+4 + 5%, (0 y=—=. (d) y = NG (e) y = 2(3x% +2)!/2.

X A

(@) Let u=2x—5 so that y =u’. Then, differentiating with respect to x, u’ =2 and y' =3’ u' =
32x =57 2=6(2x - 5)%.

(b)) Let u=x%+4x+5 so that y = 24%. Differentiating with respect to x, u' = 6x° + 12x? and y' =
Su-u =30 447 4 5)(6x7 + 12x%) = 8(x° + 4x7 + 5)(x° + 2x7).
(¢) Herey=4x"2and y’ = 4(-2)x~° = —-8/x°.
b y
(d) Here y=x7"2and y' = (-)x73* = =1/Qx ).
() Since y =2(3x% +2)1/2, p" = 2(H)(3x? + 2)7/2(6x) = 6x/(3x* + 2)1/%.
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46.4  Derive: If y = f(x) - g(x), then ' = f(x) - g'(x) + g(x) - f'(x), provided f'(x) and g'(x) exist.

Let u = f(x) and v = g(x) so that y = u - v.
As x changes to x + Ax, let u change to u + Au, v change to v+ Av, and y change to y + Ay. Then

y+Ay=u+Auw)v+A)=uv+u-Av+v-Au+Au-Av
Ay=u-Av+v-Au+Au-Av

Ay .Av+ _Au+A Ay
and Ax " Ax v Ax " Ax
Av Au Ay
Then =1 R s R
Y Al.iT()(u Ax +ty Ax +Au Ax)

=u-v+vu' +0 v =u-v Fvou' =) g (x) +gx) f(x)

46.5 Find y', given (a) y = x>(1 —xD)%, (b) y = x2 + 4, (¢) y = Gx + 22x3 = )13,
(@) Set f(x)=xand g(x) = (1 —x>)* Then f'(x) = 5x*, g'(x) = 4(1 — x*)*(=2x), and
Y =) g/ )+ g f1(x) = x4l = X7 (=2x) + (1 —xD)* - 5t
= x*1 =¥’ [-8x7 4 5(1 — )] = ¥ (1 = x5 - 13x%)
(b) y=x 12+ 972 2+ P+ V2 2x

X 42x(x*+4) o 3x% + 8x

E+42

=W+ (P + )P =

(¢) Here y = (3x+ 1)>2x* —3)"/? and
V' =0x+ 1710 =3P 6 + (2 =317 2Bx + 1) - 3

2 2 3 _
= 2:2G3x 4 122 = 32 4 6G3x + D2y’ =313 = 2 GxF D+ 66X+ DEx —3)

(2x2 _ 3)2/3
_23x 4 DIXF*Gx+ D +302x" =3)] _ 23x + DOx’ + 32 —9)
Bl Q¥ =33 B ¥ =3y
46.6  Prove: If y :@, if £/(x) and g'(x) exist, and if g(x) # 0, then y' = g /(9 —fgx) ‘g (x).
g(x) [g(x)]

Let u = f(x) and v = g(x) so that y = u/v. Then
_u+Au A _u+Au_u_v-Au—u-Av

Ay = = Z=
y+ Ay v+ Ay Y v+Av v v(v+ Av)
.Au_ .Av
and QZV'A”_”'AV:V Ax " Ax
Ax Ax-v(v+Av) v(v+ Av)
Au 'Av
Then = tim A A vl —ue g /') =) g'()
Ax—0  v(v+ Av) V2 [g(0)?
. . 2x x+5 X V2x =32
—1/43 _ _ _ _
46.7 Find y/, given (a) y=1/x°, (b) r=-=3 (©) T (d) y_\/4—x2 (e) y= T

(@) Take f(x)=1 and g(x) = x°; then
) SO —f(0)- g’ _xP-0-1-3x 3

[g(x)]? (x*y? Toxt
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Note that it is simpler here to write y = x> and y’ = —3x7% = =3 /x%.
(b) Take f(x) = 2x and g(x) = x — 3; then

f_ 80 S —f()g' () _(x=3-2-2x-1_ -6
Lg(x)1? (x—3)? (x—3)?
Note that y = % =24 % =24+6(x—3)" and y' = 6(=1)(x—3)2 = —6/(x — 3)*.

;=D = x4+ 52 1+ 10x+x7
(C) Yy = (X2 _ 1)2 - (X2 _ 1)2

;L @=x)2 30 = LA - )TV A-2x) (=D + P x 12x7 -2t
y= 4— 2 = G- 2P TGy

The derivative exists for =2 < x < 2.

;e D Lx=33)7122 - 6x) — (2x - 33131
y =

(x+ 1)
C(x+ DI =3x)—(2x—3x) 1-4x
O 1D22x =37 (x4 1D2Q2x = 312

The derivative exists for 0 < x < %

1 1
46. Fi Loyl i g =1 = 4+ (Oy=
6.8 ind y', y”, y" given (a) y=1/x, (b) y x_1+x+1,(c)y

-1
(@) Here y=x7'; then y'=-1-x2=-x72, y"=2x73, y"=—6x"* or y' =-1/x>, y" =2/x%,
y'”:—6/x4.
() Here y = (x—1)"" 4+ (x+ 1)!; then
1 1
"=l =12+ (=1 D2=— _
y (= D2+ (=Dx+ 1) TR
T
T IRCEIVRCE
6 6

y///:_ _ —4_ —4:_ _
p" = =6 =17 = 6(x + 1) TR

(¢) Here y =2(x*>—1)7"; then

[P 2 1\2. - _ 2 _ —Zzi
Y =2 =17 (2x) = —dx(x* — 1) =1y
2
= =403 = 12— 420 = 172x) = 4 = D7 4 162 — 1) = %
(= 1PQ24x) = (1207 +4) - 37 = 1P(2x) _ (¥ = D(24x) — 6x(1267 +4) _ —48x(x* + 1)
= (2= - (-1 G

Supplementary Problems

46.9  Use the differentiation formulas to find y’, given

(@) y=2x+4x>-5x+38 Ans. y'=6x>+8x—5
(B) y=-543x-3x*-7x*  Ans. y'=3-3x-21x"
(0 y=@x-2° Ans. y' = 4(x—2)°

(d) y=x*+2 Ans. y' = 6x(x* +2)°
(e) y=@-x»H" Ans. y' = =20x(4 - x*)°
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46.10

46.11

() y=02x*+4x-5)° Ans. y = 4(‘<+1)(2x +4x-5)°
® }—‘x5/2+§x3/2 Ans. y' =1x"(x+1)
(h) _(x _4)3/2 Ans. y =3x(‘< —4)1/2
N1 22 !
@) y=>10-x) Ans. y' 7(1_\2)1/2
. 6 4 3 6 8 9
) y=teT g Ans. y/:—;—;erj
() y=x(x+1)7 Ans. y'=x*(x+ D(5x+3)
() y=@&+1Dx=37 Ans. y' = (x+ DX x—3)(5x—7)
(m) y=(x+27Q2-x? Ans. y'=—(x+2)2-x>(5x=2)
x+1 2
(n) Y= Ans. y’=—m
x?+2x-3 6—2x
) y=—5— Ans. y'=—3
X +1 2x
)= Ans. yl=—"
P y=55 YT Ay
1 6
- Ans. p! = —
@ r=ay SR G RS
_ ! ;L X
(r) Y—(X2_9)1/2 Ans. y ——7(3(2_9)3/2
(s) Y—m Ans. y —m
X x+2
n oy=—"-rs Ans. yl=—T
O r=ian SR TN
_(X2 +2)l/2 ' o -
() }—f Ans. y —m

For each of the following, find f/(x), f”(x), and f"(x):
(@ f)=3x*"=8x+12x*+5 (0) f(x)=—o
(b) fx)=x>—6x>+9x+ 18 (d) fx)=(1-x>"
Ans. (@) [f'(x)=12x( =2x +2), ["(x) = 12Bx* —4x+2), f"(x) = 24(3x-2)
b flo= 3(x2 —4x+3), ') =6(x-2), f"(x)=6
© fleo= 1100 = e S0 =

)2’ — ’C)4
30222 — 3x(3 —2x%)
PPN N V) —
@) flx)==3x(1-x)""2, f'(x)= (1= 2)1/2, S = 1=~

In each of the following state the values of x for which f(x) is continuous; also find f/(x) and state the values
of x for which it is defined.

@ fo= 6 fo= © fO=G=2" @) fe)=@E=-2"

Ans. (a) x#0; f'(x) = = x#0 (o) all x; f'(x)= 4(r 2)'/3; all x

) x#2 f'v) = x#2 (d) allx; f'()

1
, 1) =, ¥#2
)2 w2 Y7

[NOTE: Parts (a) and (b) verify: If f(x)isnot continuous at x = x, then f'(x) does not exist at x = x,. Parts
(c¢)and (d) verify: If f(x)iscontinuous at x = x,, its derivative f’(x) may or may not exist at x = x.]



Applications of
Derivatives

INCREASING AND DECREASING FUNCTIONS. A function y = f{x) is said to be an increasing
Sfunction if y increases as x increases, and a decreasing function if y decreases as x increases.

Let the graph of y = f(x) be as shown in Fig. 47-1. Clearly y = f(x) is an increasing function from 4
to B and from C to D, and is a decreasing function from B to C and from D to E. At any point of the
curve between 4 and B (also, between C and D), the inclination 0 of the tangent line to the curve is acute;
hence, f/(x) =tan0 > 0. At any point of the curve between B and C (also, between D and E), the
inclination 0 of the tangent line is obtuse; hence, f'(x) = tan0 < 0.

D

[ SGENI—

ufmmm o

-

Thus, for values of x for which f/(x) > 0, the function f(x) is an increasing function; for values of x
for which f/(x) < 0, the function is a decreasing function.

When x = b, x = ¢, and x = d, the function is neither increasing nor decreasing singe f/(x) = 0. Such
values of x are called critical values for the function f{(x).

EXAMPLE 1. For the function f{x) = x> —6x + 8,f/(x) = 2x — 6.

Setting f/(x) = 0, we find the critical value x = 3. Now f/(x) < 0 when x < 3, and f'(x) > 0 when x > 3.
Thus, fix) = x*>—6x+8 is a decreasing function when x <3 and an increasing function \when x > 3. (See
Problem 47.1.)
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RELATIVE MAXIMUM AND MINIMUM VALUES. Let the curve of Fig. 47-1 be traced from
left to right. Leaving A, the tracing point rises to B and then begins to fall. At B the ordinate f(b)
is greater than at any point of the curve near to B. We say that the point B(b,f(b)) is a relative
maximum point of the curve or that the function f(x) has a relative maximum [= f(b)] when x = b.
By the same argument D(d, f(d)) is also a relative maximum point of the curve or f(x) has a relative
maximum [= f{(d)] when x = d.

Leaving B, the tracing point falls to C and then begins to rise. At C the ordinate f{c) is smaller than
at any point of the curve near to C. We say that the point C(c, f(¢)) is a relative minimum point of the
curve or that f(x) has a relative minimum [= f(c)] when x = c.

Note that the relative maximum and minimum of this function occur at the critical values. While not
true for all functions, the above statement is true for all of the functions considered in this chapter.

Test for relative maximum. If x = ais a critical value for y = f(x) and if /'(x) > 0 for all values
of x less than but near to x = a while f/(x) < 0 for all values of x greater than but near to x = a,
then f(a) is a relative maximum value of the function.

Test for relative minimum. 1f x = a is a critical value for y = f(x) and if f/(x) < 0 for all values
of x less than but near to x = a while f/(x) > 0 for all values of x greater than but near to x = a,
then f(a) is a relative minimum value of the function.

If as x increase, in value through a critical value, x = a,f'(x) does not change sign, then f(a) is
neither a relative maximum nor a relative minimum value of the function.

EXAMPLE 2. For the function of Example 1, the critical value is x = 3.

Since f'(x) = 2(x—3) < 0 for x < 3 and f’(x) > 0 for x > 3, the given function has a relative minimum value
S =-1

In geometric terms, the point (3,—1) is a relative minimum point of the curve y = x*>—6x+8. (See
Problem 47.2.)

ANOTHER TEST FOR MAXIMUM AND MINIMUM VALUES. At 4 on the curve of Fig. 47-1, the
inclination 0 of the tangent line is acute. As the tracing point moves from 4 to B, 0 decreases; thus
f'(x) =tan0 is a decreasing function. At B, f’(x) = 0. As the tracing point moves from B to G, 0 is
obtuse and decreasing; thus f’(x) =tan0 is a decreasing function. Hence, from 4 to G, f/(x) is a
decreasing function and its derivative f”(x) < 0. In particular, f”(b) < 0. Similarly, f"(d) < 0.

As the tracing point moves from G to C,0 is obtuse and increasing; thus f/(x) is an increasing
function. At C, f'(x) = 0. As the tracing point moves from C to H, 0 is acute and increasing; thus f”/(x) is
an increasing function. Hence, from G to H,f'(x) is an increasing function and f”(x) > 0. In particular,
") > 0.

Test for relative maximum. 1f x = ais a critical value for y = f{x) and if "(a) < 0, then f{a) is a
relative maximum value of the function f(x).

Test for relative minimum. 1f x = a is a critical value for y = f(x) and if f”(a) > 0, then f{a) is a
relative minimum value of the function f(x).

The test fails when f”(a) = 0. When this occurs, the tests of the preceding section must be used.
(See Problem 47.3.)

CONCAVITY. Suppose that f{(x) is a differentiable function on (a,b). Then, if f'(x) is increasing on
(a, b), we call f concave upward on (a,b). See Fig. 47-2(a). If f/(x) is decreasing on (a, b), we say f is
concave downward on (a, b). See Fig. 47-2(b).
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h
@ (h)

Fig. 47-2

INFLECTION POINT OF A CURVE. If at x=a, not necessarily a critical value for f(x),
the concavity changes from downward to upward or upward to downward, (a, f(a)) is an inflection point
of f(x). See Fig. 47-3.

| P

(inflection point) (inflection point)

Fig. 47-3

In Fig. 47-1, G and H are inflection points of the curve. Note that at points between A4 and G the
tangent lines to the curve lie above the curve, at points between G and H the tangent lines lie below the
curve, and at points between H and E the tangent lines line above the curve. At G and H, the points of
inflection, the tangent line crosses the curve. Thus, f”(x) must be zero at an inflection point and change
sign there.

EXAMPLE 3. For the function f{x) = x> — 6x + 8 of Example 1, f/(x) = 2x — 6 and f " (x) = 2. At the critical value
x =23, f"(x) > 0; hence f(3) = —1 is a relative minimum value. Since f”(x) = 2 # 0, the parabola y = x*> — 6x + 8 has
no inflection point. (See Problem 47.4.)

EXAMPLE 4. For the function f{x) = x* + x>+ x,f"(x) = 6x + 2 =0 when x = —1. Since f"(—1) #0,

concavity must be changing when x = —%.

VELOCITY AND ACCELERATION. Let a particle move along a horizontal line and let its distance
(in feet) at time 7 = 0 (in seconds) from a fixed point O of the line be given by s = f(f). Let the positive
direction on the line be to the right (that is, the direction of increasing s). A complete description of the
motion may be obtained by examining f(?), f"(¢), and f”(¢). It was noted in Chapter 45 that f'(¢) gives the
velocity v of the particle. The acceleration of the particle is given by a a = f"(1).

EXAMPLE 5. Discuss the motion of a particle which moves along a horizontal line according to the equation
s=1r—6+91-2.
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When ¢t = 0, s = f(0) = 2. The particle begins its motion from A(s = 2) See Fig. 47-4.

o
»

==

r 3

s

=% §

Direction of Motion.

\

A C B
Fig. 47-4

Here v=f'(1) =3 =12t + 9 = 3(r— 1)(t — 3). When t = 0,v = f/(0) = 9); the particle
leaves 4 with initial velocity 9 ft/s.

Now v =0 when ¢ =1 and ¢ = 3. Thus, the particle moves (from A) for 1 s, stops
momentarily (v = 0, when 7 = 1), moves off for two more seconds, stops momentarily,
and then moves off indefinitely.

On the interval 0 < ¢ < 1,v > 0. Now v > 0 indicates that s is increasing; thus the
body leaves A with initial velocity 9 ft/s and moves to the right for 1 sto B [s = f(1) = 6]
where it stops momentarily.

On the interval 1 <t < 3,v<0. Now v < 0 indicates that s is decreasing; thus
the particle leaves B and moves to the left for 2s to A[s = f(3) = 2] where it stops
momentarily.

On the interval ¢ > 3,v > 0. The particle leaves A for the second time and moves
to the right indefinitely.

Velocity and Speed. We have a = f"(t) = 6t — 12 = 6(t — 2). The acceleration is 0 when ¢ = 2.

On the interval 0 < r<2,a < 0. Now a < 0 indicates that v is decreasing; thus the

particle moves for the first 2 s with decreasing velocity. For the first second (from 4 to B) the
velocity decreases from v = 9 to v = 0. The speed (numerical value of the velocity) decreases
from 9 to 0; that is, the particle “slows up.” When ¢t = 2, f(r) = 4 (the particle is at C) and
f'(t) = =3. Thus from B to C(t = 1 to t = 2), the velocity decreases from v = 0 to v = —3.
On the other hand, the speed increases from 0 to 3; that is, the particle “‘speeds up.”

On theinterval ¢ > 2, a > 0; thus the velocity is increasing. From Cto 4 (t =2 to t = 3)

the velocity increases from v = —3 to v = 0 while the speed decreases from 3 to 0. Thereafter
(t > 3) both the velocity and speed increase indefinitely. (See Problem 47.9.)

DIFFERENTIALS. Let y = f(x). Define dx (read, differential x) by the relation dx = Ax and define dy
(read, differential y) by the relation dy = f'(x) - dx. Note dy # Ay.

EXAMPLE 6. 1If y = f{x) = x°, then

Ay =(x+ Ax)} = x3 =357 Ax + 3x(Ax)? + (Ax)® = 3x% - dx + 3x(dx)* + (dx)’

while dy = f'(x) - dx = 3x?

to compute.

- dx. Thus, if dx is small numerically, dy is a fairly good approximation of Ay and simple

Suppose now that x = 10 and dx = Ax = .01. Then for the function above, Ay = 3(10)2(.01) 4+ 3(10)(.01)*+
(.01)* = 3.0031 while dy = 3(10)*(.01) = 3.

Solved Problems

47.1  Determine the intervals on which each of the following is an increasing function and the intervals on which it
is a decreasing function:

(@) flx)=x>—8x

(© f)y=x+3x+9x+5 (e) flx)=(x=-2)°

() fixy=2x=24x+5  (d) fix)=x>+3x () fl=x=D'x=-2)
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(a) Here f'(x) = 2(x—4). Setting this equal to 0 and solving, we find the critical value to be x = 4. We
locate the point x = 4 on the x axis and find that /’(x) < 0 for x < 4, and f/(x) > 0 when x > 4. See Fig.
47-5. Thus, f(x) = x*> —8x is an increasing function when x > 4, and is a decreasing function when
x < 4.

fixy <o fx)>0

Fig. 47-5

b flx)= 6x% — 24 = 6(x + 2)(x — 2); the critical values are x = —2 and x = 2. Locating these points and
determining the sign of f/(x) on each of the intervals x < —=2,—1 < x < 2, and x > 2 (see Fig. 47-6), we
find that f{x) = 2x* —24x + 5 is an increasing function on the intervals x < =2 and x > 2, and is a
decreasing function on the interval =2 < x < 2.

fix>0 fl(x)<0 \ f'(x)>0
2
Fig. 47-6

) flx)= —3x% 4+ 6x + 9 = —3(x + 1)(x — 3); the critical values are x = —1 and x = 3. See Fig. 47-7. Then
f(x) is an increasing function on the interval —1 < x < 3, and a decreasing function on the intervals
x <—=1and x > 3.

fa<o f'x)>0 . f'(x)<0

Fig. 47-7

(d) f'(x)=3x>43=3(x*+1); there are no critical values. Since f’(x) > 0 for all values of x, f{x) is
everywhere an increasing function.

(e) f'(x) = 3(x—2)% the critical value is x = 2. See Fig. 47-8. Then f(x) is an increasing function on the
intervals x < 2 and x > 2.

fliy>0 f'tx)y>o0

Fig. 47-8

(f) f'(x) = (x = 1)*(4x — 7); the critical values are x = | and x = %. See Fig. 47-9. Then f(x) is an increasing
function on the interval x > 7 and is a decreasing function on the intervals x < 1 and 1 < x < 1.

fx) <0 fi(x)<o0 f'(x)>0

: [

i
T

Fig. 47-9

47.2  Find the relative maximum and minimum values of the functions of Problem 47.1

(a) The critical value is x = 4. Since f/(x) < 0 for x < 4 and f'(x) > 0 for x > 4, the function has a relative
minimum vale f{4) = —16.
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47.3

47.4

(b) The critical values are x = —2 and x = 2. Since f'(x) > 0 for x < —2 and f”(x) < 0 for =2 < x < 2, the
function has a relative maximum value f(—2) = 37. Since f”(x) < 0 for =2 < x < 2 and f'(x) > 0 for
x > 2, the function has a relative minimum value f(2) = —=27.

(¢) The critical values are x = —1 and x = 3. Since f'(x) < 0 for x < —1 and f'(x) > 0 for =1 < x < 3, f(x)
has a relative minimum value f{—1) = 0. Since f/(x) > 0 for —1 < x < 3 and f/(x) < 0 for x > 3, the
function has a relative maximum value f(3) = 32.

(d) The function has neither a relative maximum nor a relative minimum value.

(e) The critical value is x = 2. Since f’(x) > 0 for x < 2 and f/(x) > 0 for x > 2, the function has neither a
relative maximum nor minimum value.

(f) The critical values are x =1 and x = %. The function has a relative minimum value f(%) = —%. The
critical value x = 1 yields neither a relative maximum nor minimum value.

Find the relative maximum and minimum values of the functions of Problem 47.1, using the second
derivative test.

(@) fix)=x"=8x,f'(x) =2x=8,f"(x)=2.
The critical value is x =4. Since f"(4) =2#0,f(4) =—16 is a relative minimum value of the
function.

(b) fix) =2x3=24x +5,f(x) = 6x% =24, f"(x) = 12x.
The critical values are x = —2 and x = 2. Since f"(-2) = =24 < 0, (—2) = 37 is a relative maximum
value of the function; since f"(2) = 24 > 0,£(2) = —27 is a relative minimum value.

() fix)=—=x>4+3x>4+9x+5,f/(x) = =3x> + 6x+ 9,1 "(x) = —6x + 6.
The critical values are x = —1 and x = 3. Since f”(—1) > 0,f(—1) = 0 is a relative minimum value of
the function; since /”(3) < 0,£(3) = 32 is a relative maximum value.

(d) fix)=x343x,f'(x) =3x> +3,f"(x) = 6x.
There are no critical values; hence the function has neither a relative minimum nor a relative
maximum value.

(e) flx)=(x=2),f"(x) = 3(x=2)*,f"(x) = 6(x=2).
The critical value is x = 2. Since /"(2) = 0, the test fails. The test of Problem 47.2 shows that the
function has neither a relative maximum nor a relative minimum value.

(f) fio)=(x=Dx=2),/"(x) = (x= 1P@x=7),f"(x) = 6Q2x = 3)(x = 1).

The critical value are x =1 and x = %. Since f”(1) = 0, the test fails; the test of Problem 47.2 shows
that f(1) is neither a relative maximum nor a relative minimum value of the function. Since f”(%) >0,
f(%) = —% is a relative minimum value.

Find the inflection points and plot the graph of each of the given curves. In sketching the graph, locate the x
and y intercepts when they can be found, the relative maximum and minimum points (see Problem 47.2), and
the inflection points, if any. Additional points may be found if necessary.

(@) y=flx)=x">—-8x (©) y=fx)==x"+3x>+9x+5 (&) y=flx)=(x-2)
() y=f)=2-24x+5  (d) y=fx)=x"+3x (f) y=f)=E=-1Dx=-2)

(a) Since f"(x) = 2, the parabola does not have an inflection point. It is always concave upward.
The x and y intercepts are x=0,x=38, and y=0;(4,—-16) is a relative minimum point.
See Fig. 47-10(a).



366

47.5

APPLICATIONS OF DERIVATIVES [CHAP. 47

o x
(4,~18)
(a) (b) (c)
v v
o -
# o (2,0)
(d) (e) N
Fig. 47-10

(b) f"(x)=12x and f"(x) = 12. Since f"(x) =0 when x =0 and f"”(0) = 125£0,(0,5) is an inflection
point. Notice the change in concavity.
They y intercept is y = 5, the x intercepts cannot be determined; (—2,37) is a relative maximum
point, (2,—27) is a relative minimum point; (0, 5) is an inflection point. See Fig. 47-10 (b).

(¢) f"(x)=—-6x+6 and f"(x)=—6. Since f"(x)=0 when x=1 and f"(1)=-6%#0,(1, 16) is an
inflection point.
The x and y intercepts are x = —1,x = 5, and y = 5;(—1,0) is a relative minimum point and (3, 32)
is a relative maximum point; (1, 16) is an inflection point. See Fig. 47-10 (c).

(d) f"(x)=6x and f"(x) = 6. The point (0, 0) is an inflection point.
The x and y intercepts are x = 0,y = 0; (0, 0) is an inflection point. The curve can be sketched after
locating the points (1, 4),(2, 14),(—1, —4), and (-2, —14). See Fig. 47-10 (d).

(e) f"(x)=6(x—2)and f"(x) = 6. The point (2, 0) is an inflection point.
The x and y intercepts are x = 2,y = —8;(2, 0) is an inflection point. The curve can be sketched
after locating the points (3, 1), (4, 8), and (1, —1). See Fig. 47-10 (e).
(f) f"(x)=6(2x—=3)(x—1) and f"(x) = 6(4x — 5). The inflection points are (1, 0) and G, —5).
The x and y interceptsare x = 1, x =2, and y = 2; (%, —%) is a relative minimum point; (1, 0) and
(%, — ) are inflection points. For the graph, see Fig. 47-10 (/).

Find two integers whose sum is 12 and whose product is a maximum.

Let x and 12 — x be the integers; their product is P = f{x) = x(12 —x) = 12x — x%.

Since f'(x) = 12— 2x = 2(6 — x), x = 6 is the critical value. Now f”(x) = —2; hence /" (6) = =2 < 0 and
x = 6 yields a relative maximum. The integers are 6 and 6.
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47.6

47.7

47.8

Note that we have, in effect proved that the rectangle of given perimeter has maximum area when it is a
square.

A farmer wishes to enclose a rectangular plot for a pasture, using a wire fence on three sides and a hedge row
as the fourth side. If he has 2400 ft of wiring what is the greatest area he can fence off?

Let x denote the length of the equal sides to be wired; then the length of the third side is 2400 — 2x.
See Fig. 47-11.

The area is A = f(x) = x(2400 — 2x) = 2400x — 2x%. Now f(x) = 2400 — 4x = 4(600 — x) and the
critical value is x = 600. Since f”(x) = —4, x = 600 yields a relative maximum £(600) = 720 000 ft>.

2400 - 2x

Fig. 47-11 Fig. 47-12

A page is to contain 54 square inches of printed material. If the margins are 1 in. at top and bottom and 1%
in. at the sides, find the most economical dimensions of the page. See Fig. 47-12.

Let the dimensions of the printed material be denoted by x and y; then xy = 54.

The dimensions of the page are x 4+ 3 and y + 2; the area of the page is 4 = (x + 3)(y + 2).

Since y = 54/x, 4 = f(x) = (x + 3)(54/x +2) = 60 + 162/x + 2x. Then f'(x) =—162/x* +3 and the
critical values are x = *9. Since f”(x) = 324/x°, the relative minimum is given by x = 9. The required
dimensions of the page are 12 in. wide and 8 in. high.

A cylindrical container with circular base is to hold 64 cubic centimeters. Find the dimensions so that the
amount (surface area) of metal required is a minimum when (@) the container is an open cup and (b) a closed
can.

Let r and £ respectively be the radius of the base and height in centimeters, V' be the volume of the
container, and A4 be the surface area of the metal required.

(@) V=mnr’h=64and A= 2nrh + nr’. Solving for i = 64/nr? in the first relation and substituting in the

64 128
second, we have 4 = Zm'(—z) + ="+
r r
3 _
Then d—A = —g + 2nr = M and the critical value is r = i
dr r? r Jr

64 4
Nowh=—2=z—;thus,r=h
r /T

——=Ccm.
Jr Jr
_128

(b) V=mh=64and 4 =2mrh+ 20 = 2nr(6—42) +om? =18 4 onp2,
r

dA 128 4(mr® —32)
Then o —r—2+4rcr :T

3 3
Now h = 6—42 = 4\/§; thus,h =2r = 4\/§cm.
nr 7 T

3
.. . 4

and the critical value is r = Z\ﬁ
Y
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47.9  Study the motion of a particle which moves along a horizontal line in accordance with

(@) x=1—67+3, b)) x=£-524+7-3, (© v=@—-D*t-4), (d) v=@-D%

(a) Here v=13~—12t=31(t—4)=0 when =0 and t=4;a=6t—12=6(t—2) =0 when 7=2. The

particle leaves A(s = 3) with velocity 0 and moves to B(=29) where it stops momentarily; thereafter it
moves to the right. See Fig. 47-13.

The intervals of increasing and decreasing speed are shown in Fig. 47-14.

A Y

+ $ > 8
B 1] A
Fig. 47-13
N v<0, a<0 , v<0, a>0 X v>0, a>0 -t
) velocity dec. 2 velocity inc. 4 velocity inc. .
speed inc. speed dec. speed inc.
Fig. 47-14

() Here v=3~=10t+7=(t—1)(3t—7)=0 when =1 and t=1;a=61=10=2(3t—5)=0 when
t= % The particle leaves A(s = —3) with velocity 7 ft/s and moves to 0 where it stops momentarily, then
it moves to B(—%) where is stops momentarily. Thereafter it moves to the right. See Fig. 47-15.
The intervals of increasing and decreasing speed are shown in Fig. 47-16.

! -
b-——‘——-‘
? > 4 . > s
A B 0
Fig. 47-15
. v>0, a<0 ., v<0, a<0  v<0, a>0 | v>0, a>0 >t
0 velocity dec. 1 vel. dec. 5/3 wvel. inc. 7/3 wvelocity inc.

speed dec. speed inc. speed dec. speed inc.

Fig. 47-16
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47.10

47.11

47.12

47.13

\ v<0, a>0 ; v<0, a<0 ) v<0, a>0 . v>0, a>0 o
o vel. inc. 1 velocity dec. 3 vel. inc. 4 velocity inc.
speed dec. speed inc. speed dec. speed inc.
Fig. 47-17
) v>0, a<0 \ v>0, a>0 >t

0 velocity dec. 1 velocity inc.
speed dec. speed inc.
Fig. 47-18

(¢) Here v=0whent=1andt=4. Also a=3—12t+9=3(t—1)(t—3)=0 when r=1and r = 3.
The intervals of increasing and decreasing speed are shown in Fig. 47-17.
Note that the particle stops momentarily at the end of 1s but does not then reverse its direction of
motion as, for example, in (b).
(d) Here a=4(t—1)° and v=a=0 when 7= 1. The intervals of increasing and decreasing speed are
shown in Fig. 47-18.

Find dy in terms of x and dx, given

(@ y=fx)=x>+5x+6, () y=f=x"-43+8, (o) y=Ax)=x+1/x%
(a) Since f'(x) =2x+5, dy =f'(x)dx = (2x + 5) dx.

(b) Since f'(x) = 4x> = 12x%, dy = (4x° — 12x?) dx.

(¢) Since f'(x) =2x—2/x3, dy = 2x—2/x%) dx.

Find the approximate displacement of a particle moving along the x axis in accordance with the law
s=1*—7, from the time 7 = 1.99 to ¢ = 2.

Here ds = (413 = 2f)dr. We take 1 =2 and dr = —0.01. Then ds = (4- 8 —2-2)(=.01) = —0.28 and the
displacement is 0.28 unit.

Find using differentials the approximate area of a square whose side is 3.01 cm.

Here 4 = x* and d4 = 2x dx. Taking x = 3 and dx = 0.01, we find d4 = 2-3(.01) = 0.06 cm?. Now
the area (9 cm?) of a square 3 cm. on a side is increased approximately 0.06 cm? when the side is increased to
3.01 cm. Hence the approximate area is 9.06 cm?. The true area is 9.0601 cm?.

Supplementary Problems

Determine the intervals on which each of the following is an increasing function and the intervals on which it
is a decreasing function.

(@) flx)=x? Ans. Dec. for x < 0; inc. for x > 0

() fix)y=4-x7 Ans. Inc. for x < 0; dec. for x >0

(¢) flx)=x>+6x-5 Ans. Dec. for x < =3; inc. for x > =3

(d) fix)=3x>+6x+18 Ans. Dec. for x < —1; inc. for x > —1

(&) fix)=(x-2)* Ans. Dec. for x < 2; inc. for x > 2

(f) fix) = (x =1 (x +2) Ans. Inc. for x < =2; dec. for =2 < x < =%

inc. for—%<x<x1 and for x > 1
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47.14

47.15

47.16

47.17

47.18

47.19

47.20

47.21

47.22

47.23

47.24
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Find the relative maximum and minimum values of the functions of Problem 47.13.
Ans. (a) Min. =0 (¢) Min. =-14 (e) Min.=0
() Max.=4 (d) Min. =15 (f) Max. = 0, Min. = —26244/3125

Investigate for relative maximum (minimum) points and points of inflection. Sketch each locus.
(@ y=x*—4x+8 () y=x-D3+5 () y=x*+32x+40 (@) y=x-3x*-9x+6
Ans. (@) Min. (2,4)  (¢) Min. (-2,-8)
() LP.(1,5  (d) Max, (1,11), Min. (3,-21), LP. (1,-5)

The sum of two positive numbers is 12. Find the numbers
(a) If the sum of their squares is a minimum
(b) If the product of one and the square of the other is a maximum
(¢) If the product of one and the cube of the other is a maximum

Ans. (a) 6and 6 (b) 4and 8 (¢) 3and 9
Find the dimensions of the largest open box which can be made from a sheet of tin 24 in. square by cutting
equal squares from the corners and turning up the sides.

Ans. 16x16x4in.
Find the dimensions of the largest open box which can be made from a sheet of tin 60 in. by 28 in. by cutting
equal squares from the corners and turning up the sides.

Ans. 48 x16x6in.
A rectangular field is to be enclosed by a fence and divided into two smaller plots by a fence parallel to one of
the sides. Find the dimensions of the largest such field which can be enclosed by 1200 ft of fencing.

Ans. 200 x 300 ft
If a farmer harvests his crop today, he will have 1200 kg worth $2.00 per kg. Every week he waits, the crop
increases by 100 kg but the price drops 10¢ per kg. When should he harvest the crop?

Ans. 4 weeks from today

The base of an isosceles triangle is 20 ft and its altitude is 40 ft. Find the dimensions of the largest inscribed
rectangle if two of the vertices are on the base of the triangle.

Ans. 10x20ft

For each of the following compute Ay, dy, and Ay — dy.

(a) y:%szrx;x:27Ax:j—1 Ans. Ayz%—}dyz%Ay—dyz%

) y=x"—x;x=3Ax= .0l Ans. Ay = .0501,dy = .05, Ay — dy = .0001

Approximate using differentials the volume of a cube whose side is 3.005 in.

Ans.  27.135in>

Approximate using differentials the area of a circular ring whose inner radius is 5 in. and whose width is é in.

Ans.  1.257in?



Chapter 48

Integration

IF F(x) IS A FUNCTION whose derivative F'(x) = f(x), then F(x) is called an antiderivative of f(x).
For example, F(x) = x* is an antiderivative of f(x) = 3x% since F'(x) = 3x2 = f(x). Also, G(x) =
X’ + 5 and H(x) = x* — 6 are antiderivatives of f(x) = 3x>. Why?
If F(x) and G(x) are two distinct antiderivatives of f(x), then F(x) = G(x) + C, where Cis a constant.
(See Problem 48.1)

THE INDEFINITE INTEGRAL OF f(x) is denoted by J f(x)dx, and is the most general antiderivative
of f(x)—that is

Jf(x) dx=Fx)+C

where F(x) is any function such that F'(x) = f(x) and C is an arbitrary constant. Thus the indefinite
integral of f(x) = 3x? is J3x2dx =x"+C.

We shall use the following antidifferentiation formulas:

R%

n+1
n+1

I Jx"dx= + C, where n # —1
11. Icf(x) dx = ch(x) dx, where c¢ is a constant

I11. J [f() + g(0)]dx = Jf(x) dx + Jg(x) dx

EXAMPLE 1
541 6
Sy — X X
(a) Jde_5+l+C 6+C
4
(b) J4x3 dx = 4jx3 dx = 4[%+ C] =x* +4C, but if we call 4C by the name C, then C; still represents an

arbitrary constant; so we can simply write 4xidx=x*+C
x? 3,
(c) I3x dx = 3dex: 3 -7+ szx +C

371
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dx 3 X2 1
(d) szj“c dx:_—z—l—C:—ﬁ-l—C

2

6
(e) J(X5+4x3+3x)dx:Jx5dx+J4x3dx+J3x dx:%+x4—3; +C

(See Problems 48.2-48.8.)

AREA BY SUMMATION. Consider the area 4 bounded by curve y = f(x) = 0, the x axis, and the
ordinates x = ¢ and x = b, where b > a.

Let the interval a = x < b be divided into n equal parts each of length Ax. At each point of
subdivision, construct the ordinate, thus dividing the area into » strips, as in Fig. 48-1. Since the areas of
the strips are unknown, we propose to approximate each strip by a rectangle whose area can be found. In
Fig. 48-2, a representative strip and its approximating rectangle are shown.

Ay Ay

P,(X,J,-)

a Ax b a

Fig. 48-1 Fig. 48-2

Suppose the representative strip is the ith strip counting from the left, and let x = x; be the
coordinate of the midpoint of its base. Denote by y; = f(x;) the ordinate of the point P; (on the curve)
whose abscissa is x;. Through P; pass a line parallel to the x axis and complete the rectangle MRSN. This
rectangle of area y;Ax is the approximating rectangle of the ith strip. When each strip is treated similarly,
it seems reasonable to take

n
VAX + P Ax + y3Ax 4+ -+ y,Ax = _2] yiAx
=

as an approximation of the area sought.

Now suppose that the number of strips (with approximating rectangles) is indefinitely increased so
that Ax — 0. It is evident from the figure that by so increasing the number of approximating rectangles
the sum of their areas more nearly approximates the area sought; that is,

A= lim > vy
b i=1
IF WE DEFINE L f(x)dx (read, the definite integral of f(x) between x = a and x = b) as
Ji f(x)ydx = Fx)lh = Fb) - Fla), (F'(x) = f(x))
then the area bounded by y = f(x) = 0, the x axis, and the ordinates x = ¢ and x = b (b > a) is given by

b
A= J f(x)dx
(See Problems 48.9-48.12.)
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48.1

48.2

48.3

48.4

48.5

48.6

48.7

Solved Problems

Prove: If F(x) and G(x) are distinct integrals of f(x), then F(x) = G(x) + C, where C is a constant.

Since F(x) and G(x) are integrals of f(x), F'(x) = G'(x) = f(x).
Suppose F(x) — G(x) = H(x); differentiating with respect to x, F/(x)— G'(x) = H'(x) and H'(x) =0.
Thus, H(x) is a constant, say, C, and F(x) = G(x) + C.
/2

3
) 2
(a) J\/;dx=Jx]/2dx=XT+C=§x3/2+C
2

(b) J(3x2 +5dx=x"+5x+C
(¢) J(be +23° —4x + 3)dx = %)»‘7 +%x4 -2 +3x+C

6
(d) I(80x19 =321 127 dx =4 = 25" + =+ C
X

At every point (x,y) of a certain curve, the slope is equal to 8 times the abscissa. Find the equation of the
curve if it passes through (1,3).
dy
Since m = d—} = 8x, we have dy = 8x dx. Then y = [ 8x dx = 4x? + C, a family of parabolas. We seek
X
the equation of the parabola of this family which passes through the point (1,3). Then 3 = 4(1)* + C and
C = —1. The curve has equation y = 4x% — 1.

For a certain curve y” = 6x — 10. Find its equation if it passes through point (1,1) with slope —1.

Since y" = 6x—10, y' = 3x*> = 10x+ Cy; since y' = —1 when x = 1, we have —1 =3—10+ C, and
C, = 6. Then y’ = 3x> = 10x + 6.

Now y = x*—5x> +6x+ C, and since y=1 when x=1, 1 =1-54+ 6+ C, and C, = —1. Thus the
equation of the curve is y = x* — 5x + 6x — 1.

The velocity at time ¢ of a particle moving along the x axis is given by v = x’ = 2 + 5. Find the position of
the particle at time ¢, if x =2 when 7= 0.

Select a point on the x axis as origin and assume positive direction to the right. Then at the beginning of

the motion (¢ = 0) the particle is 2 units to the right of the origin.
Since v :7“:: 20+ 5,dx = 2+ 5)dr. Then x = [+ Sydt = 2 + 5t + C.

Substituting x = 2 and ¢ = 0, we have 2 = 0 4+ 0 + C so that C = 2. Thus the position of the particle at
time 7 is given by x = 2 + 5+ 2.

A body moving in a straight line has an acceleration equal to 6:%, where time (7) is measured in seconds and
distance s is measured in feet. If the body starts from rest, how far will it move during the first 2 s?

Let the body start from the origin; then it is given that when 1 =0, v=0 and s = 0.

Since a = % = 6%, dv = 6dt. Then v [ 6:%dt = 2¢* + C;. When =0, v=0; then 0=2-0+ C, and
C, = 0. Thus v = 27.

Now v = % = 2[3; then ds =27 and s= j2t3dt = %t“ + C,. When t =0, s=0; then C, =0 and
s = 514. When t =2, s = %(2)4 = 8. The body moves 8 ft during the first 2 s.
A ball is thrown upward from the top of a building 320 ft high with initial velocity 128 ft/s. Determine the
velocity with which the ball will strike the street below. (Assume acceleration is 32 ft/s, directed downward.)

First we choose an origin from which all distances are to be measured and a direction (upward or
downward) which will be called positive.
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First Solution. Take the origin at the top of the building and positive direction as upward.

Then a= % =-32 and v=-32t+C
When the ball is released, t = 0 and v = 128; then 128 = —-32(0) 4+ C; and C; = 128.
Now v=ds/dt=-32t+128 and s=—16¢*+ 1284 C,. When the ball is
released, 7 = 0 and s = 0; then C, = 0 and s = —167* + 128t.
When the ball strikes the street, it is 320 ft below the origin, that is, s = —320;
hence, —320 = —16¢> + 1287, *—8t—20= (t+2)(t—10)=0, and 7= 10. Finally,
when ¢ = 10, v = =32(10) + 128 = —129 ft/s.

Second Solution. Take the origin on the street and positive direction as before. Then a = dv/dr = =32
and v = =327+ 128 as in the first solution.
Now s=—16/%+ 128t + C, but when =0, s=320. Thus C, =320 and
s = —167* 4 128 + 320. When the ball strikes the street s = 0; then ¢ = 10 and v =
—192 ft/s as before.

A ball was dropped from a balloon 640 ft above the ground. If the balloon was rising at the rate of 48 ft/s,
find (a) the greatest distance above the ground attained by the ball, (b) the time the ball was in the air, and
(c) the speed of the ball when it struck the ground.

Assume the origin at the point where the ball strikes the ground and positive distance to be directed
upward. Then

ot

==
When 7 =0, v = 48; hence, C; = 48. Then v = ds/dt = =32+ 48 and 5 = —161% 4 48t + C,.
When 7 = 0, s = 640; hence, C, = 640 and s = =167 + 481 + 640.

-32 and v==32t+C,

(@) When v=0,7=3 and s =—16G)> + 48(3) + 640 = 676. The greatest height attained by the ball was
676 ft.

(b)) When s = 0,—16¢> 4+ 481 + 640 = 0 and ¢ = —5,8. The ball was in the air for 8 s.

(¢) When t =8, v=—32(8) + 48 = —208. The ball struck the ground with speed 208 ft/s.

Find the area bounded by the line y = 4x, the x axis, and the ordinates x = 0 and x = 5.

Here y =0 on the interval 0 = x = 5. Then
5 5
A= J 4x dx = 2x* = 50 sq units
0

Note that we have found the area of a right triangle whose legs are 5 and 20 units. See Fig. 48-3. The
area is %(5)(20) = 50 sq units.

Ay

Fig. 48-3
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48.10 Find the area bounded by the parabola y = 8 + 2x — x? and the x axis.
The x intercepts are x = —2 and x = 4; y = 0 on the interval —2 = x < 4. See Fig. 48-4. Hence

4

4 )
A=J (8+2x—x2)dx=(8x+x2—?)
-2

-2

3 — 3
= (8-4+42—%>—[8(—2)+(—2)2—%] = 365q units

Fig. 48-4

48.11 Find the area bounded by the parabola y = X2 4+ 2x—3, the x axis, and the ordinates ¢ = =2 and x = 0.
On the interval -2 = x =0, y = 0. Here
3

0 22
AJ (x2+2x—3)dx:(%+x2—3x)
-2

0 3
P e e I B

3 3

The negative sign indicates that the area lies entirely below the x axis. The area is % sq units. See Fig. 48-5.

y
A
¥y
A
-2 o
» X o S
/ -2 3 4
Fig. 48-5 Fig. 48-6

48.12 Find the area bounded by the curve y = x> — 9x, the x axis, and the ordinates x = =2 and x = 4.
The purpose of this problem is to show that the required area is nor given by [ iz(x3 —9x) dx.
From Fig. 48-6, we note that y changes sign at x = 0 and at x = 3. The required area consists of three
pieces, the individual areas being given, apart from sign, by

0 0
A = J_z(,x3 —9x) dv = (Jx' =3, = 0-(4—18) = 14

3 3
A, = L)(x3 —-9x) dx = (%x4—%x2)|0 = (8741—%)—0 =-

N

4 4
Ay = L(x3 —9x) dx = (Z]—‘x4 —%xz)|3 = (64—72)—(%—%) = %

Thus, A = A; — Ay + 45 = 14+ 8 + £ =2 5q units.
Note that ffz(x3 —9x) dx = 6 < A, an absurd result.
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Supplementary Problems

Find the following indefinite integrals.

(@ 4[dx=4x+C (@ [3x+12dyx=@+1P+C
(b) [3xdx=5x+C () Jx=Dx+2de=1x+12 -2+ C
© [Gx*+4x—5)dv=x"+2x—5x+C (2) Jg:_%+c
1 2_1.3 x? =2 2
d) [x(I-x)dx=4x"-ix'4+C h) 2 dx:x-i-;—i-C

Find the equation of the family of curves whose slope is the given function of x. Find also the equation of the
curve of the family passing through the given point.

(@9 m=1,(1,-2) Ans. y=x+C, y=x-3

(b) m=—6x,(0,0) Ans. y=-3x>+C, y=-3x?

(¢) m:3x2+2x,(1,—3) Ans. y:x3-|—xz—i-C7 y:x3+x2—5
(d) m=6x%0,1) Ans. y=2X+C, y=2x"+1

For a certain curve y” = 6x + 8. Find its equation if it passes through (1,2) with slope m = 6.

Ans. y=x"+4x* —5x+2

A stone is dropped from the top of a building 400 ft high. Taking the origin at the top of the building and
positive direction downward, find () the velocity of the stone at time #, (b) the position at time ¢, (¢) the time
it takes for the stone to reach the ground, and (d) the velocity when it strikes the ground.

Ans. (a) v=32t b)) s=167 (¢) 5s (d) 160 ft/s
A stone is thrown downward with initial velocity 20 ft/s from the top of a building 336 ft high. Following the

directions of Problem 48.16, find (a) the velocity and position of the stone 2 s later, (b) the time it takes to
reach the ground, and (c¢) the velocity with which it strikes the ground.

Ans. (a) 84 ft/s, 232 ft above the ground (b) 4s (c) 148 ft/s
A stone is thrown upward with initial velocity 16 ft/s from the top of a building 192 ft high. Find («) the

greatest height attained by the stone, (b) the total time in motion, and (c¢) the speed with which the stone
strikes the ground.

Ans. (a) 196 ft () 4s (¢) 112 ft/s
A boy on top of a building 192 ft high throws a rock straight down. What initial velocity did he give it if it
strikes the ground after 3 s?

Ans. 16 ft/s

Find the area bounded by the x axis, the given curve, and the indicated ordinates.

(@) y=x*between x=2and x =4 Ans. % square units
() y=4-3x% between x =—1 and x = 1 Ans. 6 square units
(¢) y=x"?between x=0and x=9 Ans. 18 square units
(d) y=x*—x—6between x =0 and x =2 Ans. % square units
(e) y=x>between x=-2and x=4 Ans. 68 square units

(f) y=x>—xbetween x=—1 and x = 1 Ans. 1 square unit



Chapter 49

Infinite Sequences

GENERAL TERM OF A SEQUENCE. Frequently the law of formation of a given sequence may be
stated by giving a representative or general term of the sequence. This general term is a function of n,
where # is the number of the term in the sequence. For this reason, it is also called the nth term of the
sequence.

When the general term is given, it is a simple matter to write as many terms of the sequence as desired.

EXAMPLE 1

(@) Write the first four terms and the tenth term of the sequence whose general term is 1/n.
The first term (n = 1) is } = 1, the second term (1 = 2) is 4, and so on.The first four terms are 1, 4, 1, ; and
the tenth term is 4.

. . . 2
() Write the first terms and the ninth term of the sequence whose general term is (—1)"""! fnl
)
The first term ( Dis (-D'! 2 1, the second term ( 2)is (=D)! 22 4 and so on
n=1)is (— =1, n=2)1is (— =—-, .
12+1 22 +1 5
. . 2-9 9
The first four terms are 1, —%, 3, =% and the ninth term is (-3 = =_
> 9°+1 4l

Note that the effect of the factor (=1)""" is to produce a sequence whose terms have alternate signs, the sign
of the first term being positive. The same pattern of signs is also produced by the factor (=1)"*!. In order to
produce a sequence whose terms alternate in sign, the first term being negative, the factor (—1)" is used.

When the first few terms of a sequence are given and they match an obvious pattern, the general
term is obtained by inspection.

EXAMPLE 2. Obtain the general term for each of the sequences:
(@) 1,4,9,16,25,....
The terms of the sequence are the squares of the positive integers; the general term is n.

b)) 3,7, 11,15,19,23,....
This is an arithmetic progression having a = 3 and d = 4. The general term is a + (n — 1)d = 4n— 1. Note,
however, that the general term can be obtained about as easily by inspection.

(See Problems 49.1-49.3.)

LIMIT OF AN INFINITE SEQUENCE. From Example 4 of Chapter 8, the line y = 2 is a horizontal
asymptote of xy — 2x — 1 = 0. To show this, let P(x, y) move along the curve so that its abscissa takes on
the values 10, 102, 10°, ..., 10", ... . Then the corresponding values of y are
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2.1,2.01,2.001,...,2 (49.1)

+ 0
and we infer that, by proceeding far enough along in this sequence, the difference between the terms of
the sequence and 2 may be made as small as we please. This is equivalent to the following: Let ¢ denote a
positive number, as small as we please; then there is a term of the sequence such that the difference
between it and 2 is less than &, and the same is true for all subsequent terms of the sequence. For
example, let ¢ = 1/10% then the difference between the term 2+ 1/10% and 2, 2 4+ 1/10% —2 = 1/10%,
is less then ¢ = 1/10% and the same is true for the terms 2 + 1/10%7, 2+ 1/10%, and so on.

The behavior of the terms of the sequence (49.1) discussed above is indicated by the statement:
The limit of the sequence (49.1) is 2. In general, if, for an infinite sequence

81582583y e nesSpynn- (49.2)

and a positive number ¢, however small, there exists a number s and a positive integer m such that for
all n >m

|S - Snl <eé,
then the limit of the sequence is s.
EXAMPLE 3. Show, using the above definition, that the limit of sequence (49.1) is 2.
Take ¢ = 1/10”, where p is a positive integer as large as we please; thus, ¢ is a positive number as small as we

please. We must produce a positive integer m (in other words, a term s,,) such that for n > m (that is, for all
subsequent terms) |s —s,| < &. Now
2 (2+75)
10"

requires n > p. Thus, m = p is the required value of m.

| L1
w0 % 10n S or

The statement that the limit of the sequence (49.2) is s describes the behavior of s, as n increases
without bound over the positive integers. Since we shall repeatedly be using the phrase “‘as n increases
without bound” or the phrase ““as n becomes infinite,” which we shall take to be equivalent to the former
phrase, we shall introduce the notation n — oo for it. Thus the behavior of 5, may be described briefly by

lims, =s
n—00

(read: the limit of s,, as n becomes infinite, is s).
We state, without proof, the following theorem:

If lim s, = s and lim ¢, = ¢, then
Nn—00 N—00
(4) lim(s, =t,) =lims, = lim¢, =5+ ¢
n—00 n—oo n—oo
(B) lim(s,-t,) =1lims, lim¢,=s"1t
n—00 n—oo n—oo

s lims,
lim2=""2_=C_ provided ¢#0
© o t,  limt, t P 7

n—oo

or, in words, if each of two sequences approaches a limit, then the limits of the sum, difference, product,
and quotient of the two sequences are equal, respectively, to the sum, difference, product, and quotient
of their limits provided only that, in the case of the quotient, the limit of the denominator is not zero.

This theorem makes it possible to find the limit of a sequence directly from its general term. In this
connection, we shall need
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Iim a=a, where a is any constant (49.3)
Hn—00
1
lim —=0, k >0 (See Problem 49.4.) (49.4)
n—oo g
. 1 .
lim o 0, where b is a constant > 1 (See Problem 49.5.) (49.5)

(See Problem 49.6.)

THE FOLLOWING THEOREMS are useful in establishing whether or not certain sequences have
a limit.
I. Suppose M is a fixed number, such that for all values of n,
Sp = Syt and s, = M,
then lim s, exists and is =M.
n—oo
If, however, s, eventually exceeds M, no matter how large M may be, lim s, does not exist.
II. Suppose M is a fixed number such that, for all values of n,
Sp = S and S, =M,
then lim s, exists and is =M.

n—oo

If, however, s, is eventually smaller than M, no matter how small M may be, lim s, does not exist.
n—oo

EXAMPLE 4
5 19 13 7 1
(a) For the sequence > 3, s\ S, < S, and s, < 4, for all values of n; the sequence has a
limit =4. In fact, lim s, = %
n—00
(b) For the sequence 3, 5,7,9,...,2n+1, ..., s, <s,y buts, will eventually exceed any chosen M, however

large (if M = 2'9° 4 1, then 2+ 1 > M for n > 2°*), and the sequences does not have a limit.
(See Problems 49.7-49.9.)

RECURSIVELY DEFINED SEQUENCES. Sequences can be defined recursively. For example,
suppose that a; = 1 and g, = 2a, for every natural number #n. Then,

a =1, a=a =2a =2, a3 = ay,| = 2a, =4, etc.

Thus, the sequence is 1, 2, 4, 8,....
One famous such sequence is the Fibonacci sequence:

a =1, a, =1, piy = Ay + ay,.

The sequence is 1, 1, 2, 3, 5, 8, 13,....

Solved Problems

49.1  Write the first five terms and the tenth term of the sequence whose general term is

(a) 4n—1.
The first term is 4 - 1 — 1 = 3, the second term is 4-2—1 = 7, the third term is 4-3—1 = 11, the
fourth term is 4 -4 — 1 = 15, the fifth term is 4 - 5— 1 = 19; the tenth term is 4- 10— 1 = 39.
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By 27N
The first term is 27! = 20 = 1, the second term is 2>~' = 2, the third is 2*~' = 22 = 4, the fourth is
23 =8, the fifth is 2* = 16; the tenth is 2° = 512.
!
(© PR
=D =D . (=D 1 L =D? 1
The first t = =, th = ——, the th = -, th
e first term is T+1 5 > e second is 41 3 e third is Ep e
fourth is —1, the fifth is L; the tenth is — .
Write the first four terms of the sequences whose general term is
n+1
@ -
’ 141 241 341 4+1 32 5
The terms are TR TR TR or 2, 23
2n—1
b's
b) ————.
) 2n+ 1!
Th ired x X X X
e required terms are i’ a, ﬁ’ g
x21172
—1 n—1 .
(0 D =D
0 2 4 6 4 .6
X o xx X 2 XX
The terms are o T o T or 1, 'X’2’6'

Write the general term for each of the following sequences:

(a)

)

(©

(d)

(e

(N

()

(h)

2,4,6,8,10,12,....
The first term is 2 - 1, the second is 2 - 2, the third is 2 - 3, etc.; the general term is 2n.

1,3,5 7,9, 11,....
Each term of the given sequence is 1 less than the corresponding term of the sequences in (a); the
general term is 2n— 1.

2,5,8,11,14,....
The first term is 3-1—1, the second term is 3 -2 — 1, the third term is 3-3—1, and so on; the
general term is 3n— 1.

2,-5,8,—11, 14,....
This sequence may be obtained from that in (¢) by changing the signs of alternate terms beginning
with the second; the general term is (=1)""'(3n—1).

2.1, 2.01, 2.001, 2.0001,....
The first term is 2+ 1/10, the second term is 2 + 1/10?, the third is 2 + 1/103, and so on; the
general term is 2 + 1/10".

[ S T B
g 2P e 123

The successive denominators are the cubes of 2, 3,4, 5...orof 1 +1,2+1,34+1,4+1,...; the
(_l)n—l

eneral term is .
g "+ 1)

4 5
11-221-2-3"77"7
Rewriting the sequence as

1+2 242 342
> o217 3

. n
,..., the general term is

2 x3 X4

X X
27672471207 7
The denominators are 2!, 3!,..., n+ 1)!,...; the general term is

n

n+ D"
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49.4

49.5

49.6

49.7

49.8

49.9

3.5 7
. -x X’ —x
i) X, —— =y ..
@) 3175007 2=l
Theexponentsofxarez~1—1,2~2—1,2~3—1,...;thegeneraltermis(—l)”‘lﬁ.
n—1)!

() 343 L.

. 3
Rewrite the sequence as o

n+2
n—=1n"

4 5 6 th i )
TR TRETRRE e general term is

. 1
Show that lim — = 0 when k > 0.
n—oo p'
Take ¢ = 1/p*, where p is a positive integer as large as we please. We seek a positive number m such that
for n > m, |0—1/n| = 1/n* < 1/p*. Since this inequality is satisfied when 1 > p, it is sufficient to take for m
any number equal to or greater than p.

Show that lim bl—n: 0 when b > 1.

Take ¢ = 1/b?, where p is a positive integer. Since b > 1, b” > 1 and ¢ = 1/b” < 1. Thus, ¢ may be
made as small as we please by taking p sufficiently large. We seek a positive number m such that for
n>m,|0—1/b" =1/b" < 1/b”. Since n > p satisfies the inequality, it is sufficient to take for m any number
equal to or greater than p.

Evaluate each of the following:
n—oo \n n n—oo p o n—oo p?

(a) lim (§+%)= lim §+lim i=0—|—O=O

n—00

n/n
b I = lim —/— =1 = = =1
O = T = M T T G+ 1 140

n
© lim w2 ‘m1+2/n2=1+0=1
n—e 2p?=3p n—e 2-=3/n 2-0 2

. 2" —1 . 2"—1 . (1 1
(d) 31_1.11,10(4_ ontl )24_31—1»1(30 onl =4_,11_I,1(}0(§_W>

Show that every infinite arithmetic sequence fails to have a limit except when d = 0.
(@) Ifd>0,thens,=a+ n—1)d<s, =a+nd; but s, eventually exceeds any previously selected M,
however large. Thus, the sequence has no limit.

() 1If d <0, then s, > s,,; but s, eventually becomes smaller than any previously selected M, however
small. Thus, the sequence has no limit.

(¢) If d=0, the sequence is «, a, a,..., a, ... with limit a.

Show that the infinite geometric sequence 3, 6, 12,..., 32!, ..., does not have a limit.

Here s, < s,,,; but 3-2""! may be made to exceed any previously selected M, however, large. The
sequence has no limit.

Show that the following sequence does not have a limit:
1,1+1,1+1+1,1+1+1+1+"~, 1+l+1+1+"'+1,
2 23 2 3 4 2 3 4 n
Here s, < s,.,. Let M, as large as we please, be chosen, Now
I SATTE B AR ) B RS R ) P PER S Iy CUNRt S A

141 Lo 11,141 1y ... 11
and +;>3, stgtsts>3, 5t +15 >3, and so on.

W=
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Since the sum of each group exceeds 1 and we may add as many groups as we please, we can eventually
obtain a sum of groups which exceeds M. Thus, the sequence has no limit.

Supplementary Problems

49.10 Write the first terms of the sequence whose general term is

@ e © g © 3’1”—; @ o
Ans. (@ 3.3.50% © 155 D L-Hn
» 3 1+12J§’ 1+13\B’$ @ 5350 @ Lreox
@© LL3S B 565050
49.11 Write the general term of each sequence.
@ 1434 © L3dgde. ) hebdod
(b) %%3—65% @) 3.3:%6 ® 53757
(@ 2,1,5, 1,326 () L —x?/4,x4/6,-x5/8,...
Ans.  (a) ﬁ (¢) :2111 (e) i—z ) 1;,,—5’17_1
®) 11:}1_:—32) @ 2w % ) (—D”“%
49.12 Evaluate. (a) JLI?O(2—%) d) J%% (© }}Lrglom
o mIhL @ mpn e oy
© Jmo S ) fm

Ans. (@ 2 () 1 @ 0 @2 @1 N §F @0 M

l—

49.13 Explain why each of the following has no limit:
(@) 1,3,5,7,9,... () 1,-2,4,-8,16,-32,...
() 1,0,1,0,1,0,... (d) 55,55,95:35:+-

49.14 Write out the next four terms given the recursive formula:

(a) aI:—l,a,,H:%a,,
a
(b) ap = 2,112 = 3,an+2 = Upt1 +3n
Ans. (a) —%,—%,—%,—%
3 7719 19 4 47



Chapter 50

Infinite Series

THE INDICATED SUM of the terms of an infinite sequence is called an infinite series. Let
Sitsytsy s+ (50.1)
be such a series and define the sequence of partial sums
Si=s, SH=s5+8,, ..., S,;=s,+H+ +s,
If 351; S, exists, the series (50.1) is called convergent; if ,}1_1:1010 S, = S, the series is said to converge to S.

If lim S, does not exist, the series is called divergent.
n—00

EXAMPLE 1
(a) Every infinite geometric series

atar+a’+- a4
is convergent if || < 1 and is divergent if |r| = 1. (See Problem 50.1.)

(b) The harmonic series 1 + % + % +---+1/n+---is divergent. (See Problem 49.9 and Problem 50.2.)

A NECESSARY CONDITION THAT (50.1) BE CONVERGENT is lim s, = 0; that is, if (50.1) is
convergent then lim s, = 0. However, the condition is not sufficient since the harmonic series is divergent

although lim s, = lim(1/n) = 0.
n—oo n—oo

A SUFFICIENT CONDITION THAT (50.1) BE DIVERGENT is lim s, # 0; that is, if lim s, exists and
is different from 0, or if lim s, does not exist, the series is divergent. This, in turn, is not a necessary
condition since the harmonic series is divergent although lim s, = 0. (See Problem 50.3).

SERIES OF POSITIVE TERMS

COMPARISON TEST FOR CONVERGENCE of a series of positive terms.

I. If every term of a given series of positive terms is less than or equal to the corresponding term of
a known convergent series from some point on in the series, the given series is convergent.

II. If every term of a given series of positive terms is equal to or greater than the corresponding
term of a known divergent series from some point on in the series, the given series is divergent.
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The following series will be found useful in making comparison tests:

(a) The geometric series a + ar + ar* + -+ ar* + - - - which converges when [r| < 1 and
diverges when [r| = 1
(b) The pseries 1 + 21—p + 3%, +-+ % + - - - which converges for p > 1 and diverges for p =1

(¢) Each new series tested

In comparing two series, it is not sufficient to examine the first few terms of each series. The
general terms must be compared, since the comparison must be shown from some point on. (See
Problems 50.4-50.6.)

THE RATIO TEST FOR CONVERGENCE. If, in a series of positive terms, the test ratio

_ Sn+1

SH

n

approaches a limit R as n — oo, the series is convergent if R < 1 and is divergent if R > 1. If R =1, the
test fails to indicate convergency or divergency. (See Problem 50.7.)

SERIES WITH NEGATIVE TERMS

A SERIES WITH ALL ITS TERMS NEGATIVE may be treated as the negative of a series with all of
its terms positive.
ALTERNATING SERIES. A series whose terms are alternately positive and negative, as

Sp =Sy Fsy— (=1 s, (50.2

where each s is positive, is called an alternating series.
An alternating series (50.2) is convergent provided s, = s,,, for every value of n, and lim s, = 0.
n— oo

(See Problem 50.8.)

ABSOLUTELY CONVERGENT SERIES. A series (50.1), s;+ s+ s34+ +s,+ -+ in which
some of the terms are positive and some are negative is called absolutely convergent if the series of
absolute values of the terms

Isil+ Isol + Issl + -+ s, +- - (50.3)

is convergent.

CONDITIONALLY CONVERGENT SERIES. A series (50.7), where some of the terms are positive
and some are negative, is called conditionally convergent if it is convergent but the series of absolute
values of its terms is divergent.

EXAMPLE 2. The series 1 —5+4—1+ -+ is convergent, but the series of absolute values of its terms
1+14+1+51+ - is divergent. Thus, the given series is conditionally convergent.

THE GENERALIZED RATIO TEST. Let (50.7) sy +sy+s3+--+s,+ - be a series some of
whose terms are positive and some are negative. Let

. S,
lim | n+1| =R

= s,
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The series (50.1) is absolutely convergent if R < 1 and is divergent if R > 1. If R = 1, the test fails.

(See Problem 50.9.)

50.1

50.2

50.3

50.4

Solved Problems

Examine the infinite geometric series a + ar + ar’ + - - - + ar" + - - - for convergence and divergence.

ad=rh_ _a _m
-

The sum of the first n terms is S, = 1 =1
— _

If |r] < 1, hm " =0; then lim S, = ]L and the series is convergent.

n—00

If |r] > 1, 11m " does not exist and lim S,, does not exist; the series is divergent.
n—oo n—oo

If r=1, the seriesis a+a+a+---+a+---; thenlim S, = lim na does not exist.
00 fress
If r = —1, the series is a—a+a—a+---; then S, = a or 0 according as n is odd or even, and lim S,
Hn—00

does not exist.

. . . a .
Thus, the infinite geometric series convergence to I when |r| < 1, and diverges when [r| = 1.
-

Show that the following series are convergent:

@ 1424045 4. SR
¢ 379727 o

This is a geometric series with ratio r —% then |r| < 1 and the series is convergent.

- -1

(b) 2=34+3-F+- -+ =D2(3) +

This is a geometric series with ratio r = —3; then |r| < 1 and the series is convergent.
@ 144t b 1 1 1, 1, >1
c —+— .

D T A T IA

2 4 8 . . . . .
This series may be rewritten as 1 +— » +— a7 + 37 + - -+, a geometric series with ratio r = 2/2”. Since

|rl < 1, when p > 1, the series is convergent.

Show that the following series are divergent:

34 +1
@ 24545+ +—+

1 1
Since lim s, = lim n—i; = lim(l + ;) = 1#0, the series is divergent.
fruinesy -0 00

®) 1+3+5+9+ +2"“+1
16 32 4.1
2 14+1/270 1
Since hm Sy = ’ll_r:glo+ 1 2;: = }11LII.}0 + 4/ = 175 0, the series is divergent.
1 1 1 1 L
Show that 1 + yRaET] ¥ + 7R i R divergent for p =1 and convergent for p > 1.
n

Forp=1, the series is the harmonic series and is divergent.
1 _1
For p < 1, including negative values, s , for every n. Since every term of the given series is equal to
n

or greater than the corresponding term of the hdrmonlc series, the given series is divergent.
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50.5

50.6
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For p > 1, compare the series with the convergent series

| I 1 1 1 1 o1, J

tytytetonte Tty T ()
of Problem 50.2 (¢). Since each term of the given series is less than or equal to the corresponding term of
series (/), the given series is convergent.

Use Problem 50.4 to determine whether the following series are convergent or divergent:

1 1 1

1 1
——+——=+—=+---. The general term is — = —.
22 33 44 £ N

This is a p series with p = % > 1; the series is convergent.

(a) 1+

. 1
() 1+4+94164---. The general term is n’ =—.
n

This is a p series with p = =2 < 1; the series is divergent.

(o) 1+7+7+E+ .Thegeneraltermls?—w.

The series is convergent since p = % > 1.

Use the comparison test to determine whether each of the following is convergent or divergent:

I 1 1

1 1 . .
The general term —=— Thus, the terms of the given series are less than or equal to the corres-
n! n

ponding terms of the p series with p = 2. The series is convergent.
b F+i+i+d+o

1 1 . .
———— = —— Thus, the terms of the given series are less than or equal to the
142 1 on 1

corresponding terms of the geometric series with ¢ = 1 and r = % The series is convergent.

The general term

© FHivieE

n+1 1 1

1 . .
The general term —— = — + — > —. Thus, the terms of the given series are equal to or greater than
n n n n

the corresponding terms of the harmonic series. The series is divergent.

(d) $+f5+5+4+

1 . .
37 =—. Thus, the terms of the given series are less than or equal to the
‘n on

corresponding terms of the p series with p = 2. The series is convergent.

The general term

1 1 1 1
(6’) 1+§+?+F+§+"'.

1 1 . . L
The general term — — = — for n = 3. Thus, neglecting the first two terms, the given series is term by
n

term less than or equal to the corresponding terms of the p series with p = 2. The given series is

convergent.
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50.7

50.8

50.9

Apply the ratio test to each of the following. If it fails, use some other method to determine convergency or
divergency.

@ el 3 e L2 3 4
Y3738 2 TRy
. . _n _n+1 Sy _h+1 2" o+l . _
For this series s, = i Skl = S and r, = s, T T Then R= 31_130 Fp =
1 141 1
lim L lim + 1/ = — < 1 and the series is convergent.
n—o  2n n—eo 2 2
(b) 3+9+9+27+81+ r 3+32+33+
22T T RS TRE TRAEY
n 3n+1 3n+l ' 3 ) 3 )
Heres, = —,s,4,1 = ———,and r, = 2 . Then R = lim = 0 and the series
. n! (n+1)! (n+1)' 3 n+1 n—oop + 1
1S convergent.
( ) L _;,_L_;’_L L_*_ e
DT a2 3T s e
Here s, = ! = ! and r, = n(2n = 1)
="M T e e+ ) M T Den+ 1)
n2n—1) . 2—-1/n .
Then R = lim im =1 and the test fails.
o (n+ D2+ 1) (14 1/mQ@ + 1/n)
. 1 1
Since ﬁ = the given series is term by term less than or equal to the convergent p series,
n
with p = 2. The given series is convergent.
2 23 23
d
) (IS I S R S
2n—1 2n+1 2n+1
Here s, = 2 2 dr,= 2 nntl)  dn . Then R =

2an M T ar it rary nrhn+2 22T n12

. 4 S
lim =4 and the series is divergent.
n—ol+42/n

(e) 5+25+125+625+

n! (n+ 1)!

: : N s 1
In this series s, = S Sn = nt Dt 5" _nt

sl 5

However, since s, — o as n — oo, the series is divergent.

T and r, =

. Now lim r,, does not exist.
n—00

Test the following alternating series for convergence:

(@ 1=3+i=1+-

Sy > S,41, for all values of n, and lim s, = lim 1= 0. The series is convergent.
n—oo

n—oo 2 —
1 2 3 4
O mxtETst
S, > 8,41, for all values of n, and hm s, = lim ———= n ——— = 0. The series is convergent.
—00 n—00 (l’l + 1)

Investigate the following for absolute convergence, conditional convergence, or divergence:

(@ 1-1+1-14... L
|S,7+]| . 2" 1

1 1 . .
Here |s,| = =R s | = I and R= ;_}w ™ 351307 =3 < 1. The series is absolutely
convergent.
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4 4 4
) =5 4575+
n—1 n 4
Here [s,| = TEE [$p1] = L and R = lim P 0. The series is absolutely convergent.
1 1 1 1

O S p oAt A AT

The ratio test fails here.

1 1 1
Since > and lim ———— =0, the series is convergent.
AT ROy s g Ny i, I A AR £
1 . .
Since for all values of n, the series of absolute values is term by term greater

>
n+l—+vn+1 n+1

than the harmonic series, and thus is divergent. The given series is conditionally convergent.

Supplementary Problems

50.10 Investigate each of the following series for convergence or divergence:

() l+l+i+...+#+... (f) 1+L+L+...+L+..‘
Y37 2+ : KRN Jn
w Ll @t ot
27476 n § 3Ty ne2n
11 | 1 2 3 n
1 _ _ _ _ _
(@ T+3+sttz—+ () gH+3+g+ gt
) 2, 2 Y LR S ! +o--
TRETREY nl D 13735757 n—D2n+1)
1 8 1 2" 224+1 341 n*+ 1
(© 243ty tgt ot R I sy P

Ans. (a) Convergent (¢) Divergent (e) Divergent (g) Convergent (i) Convergent
(b) Divergent (d) Convergent (f) Divergent (k) Divergent (j) Divergent

50.11 Investigate the following alternating series for convergence or divergence:

@ d—h+h-d+ () F-ib+t4-34
20 22 23 o
h) 2 -3 445 s - 4z = 4.
(b) 2=3+35-3+ © 3373 57567
A 3095 o7

(© l=3+3—3+-- (hy 2 3'—1-5 7'+
@) b-t+i-t
© 4-3+i-Ft

Ans. (a) Abs. Conv. (¢) Cond. Conv. (e) Divergent (g) Divergent

(b) Divergent (d) Divergent (f) Cond. Conv. (h) Abs. Conv.



Power Series

INFINITE SERIES OF THE FORM
ot axtext+ e, (0" 4 (51.1)

and co+c'1(x—a)—|—cz(x—a)2+~--—&—c,,_l(x—a)"_l+---, (51.2)

where a, ¢y, c1, ¢5,...are constants, are called power series. The first is called a power series in x and the
second a power series in (x — a).

The power series (51.1) converges for x =0 and (5/.2) converges for x = a. Both series may
converge for other values of x but not necessarily for every finite value of x. Our problem is to find for a
given power series all values of x for which the series converges. In finding this set of values, called the
interval of convergence of the series, the generalized ratio test of Chapter 50 will be used.

EXAMPLE 1. Find the interval of convergence of the series

X+ 2434

Y xn+l
Since s, = |—| and s =—,
| nl n | n+]| n+1 )
. s . Poan n
R:hmﬂzllm - = x| =Ix].
n—oo |s, n—eofp 41 x" n—oo|n 41

Then, by the ratio test, the given series is convergent for all values of x such that |x| < 1, that is, for
=1 < x < 1; the series is divergent for all values of x such that |x| > 1, that is, for x < —1 and x > 1; and
the test fails for x = *=1.

But, when x = 1 the series is 1 +%+%+%+ -+ and is divergent, and when x = —1 the series is
-1 +%—%+%— -- - and is convergent.

Thus, the series converges on the interval —1 = x < 1. This interval may be represented graphically
as in Fig. S1-1. The solid line represents the interval on which the series converges, the thin lines the
intervals on which the series diverges. The solid circle represents the end point for which the series

converges, the open circle the end point at which the series diverges. (See Problems 51.1-51.8.)

-1 1
Fig. 51-1

389
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Solved Problems

In Problems 51.1-51.6, find the interval of convergence including the end points.

51.1

51.2

51.3

514

o X2 X
+ T + 2 + 3 + .
For this series
X1 x" sl X" (m=1) . |x
[s,| = =il [sp41] = E"’ and R= nangoT— Jim pl T' = lim = 0.
The series is everywhere convergent; that is, it is convergent for all finite values of x.
T+x+2x3 433+
nx" n
Here |s,| = |(n— Dx"" !, 5,41] = |nx"|, and R = lim 7| = lim x| =|x|.
n—oo|(n—1)x"~ n—o|n — 1

The series converges on the interval —1 < x < 1 and diverges on the intervals x < —1 and x > 1.

When x = 1, the series is 1 + 1+ 2+ 3 + - - -and is divergent.
When x = —1, the seriesis 1 =1 +2—3 4+ --- and is divergent.

The interval of convergence —1 < x < 1 is indicated in Fig. 51-2.

-1 1
Fig. 51-2
2 3
R R S A
2 4 8 '
xn—l ¥ . ¥ 2n—l . X 1
e I = | ol = 3] and =t |55 55] = 5] = 30

The series converges for all values of x such that %le < 1, that is, for =2 < x < 2, and diverges for
x<—2and x > 2.

For x =2, the seriesis 1 + 141+ 1+ --- and is divergent.
For x = -2, the seriesis | =1 +1—14---and is divergent.

The interval of convergence —2 < x < 2 is indicated in Fig. 51-3.

-2 2
Fig. 51-3
1! 2! 31
G ) T Gr
. . n! (n+ 1! | D! (D
Fno_ri_1 this  series |s,,|=|m Sur1l = Gl and R=”lergo WT =

lim T does not exist.

n—oo| X

Thus, the series diverges for every value of x.
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x+3  (x+3)7 (x+3)3+“.

51.5
-4 2.4 3-43
. . ¥ 3)" 3 3 n+1
For this series |s,| = %‘, S| = % , and
(x +3)"*! n4" . n  x+3 1
R= : =1 : =- 3.
n—oo|(n—+ 1)4n+l (x+3)" ,1ergo n+1 4 | 4|X+ |
The series converges for all values of x such that % |x+ 3| < 1, thatis,for—4 < x+3 <4or-7 < x <1,
and diverges for x <=7 and x > 1.
For x = =7, the series is — 1 + %—%—I— ---and is convergent.
For x = 1, the series is 1 +%+ % + - - and is divergent.
The interval of convergence —7 = x < 1 is indicated in Fig. 51-4.
Bt e
Fig. 51-4
2 . 4
51.6 I x+2)  x+2) .
1-2-3 234 345
Here |s,| = M 5,1] = % and
T e+ D) |+ D+ 2) 0+ 3)|
R | (x+2)™ a(n+ D(n+2)

. n

e+ D+ D0 +3) (x4 272

The series converges for all values of x such that (x + 2)*> < 1, that is, for =3 < x < —1, and diverges for
x < —3and x > —1.
1 1 " 1
1-2-3 2-3-4 3-4-5
The interval of convergence —3 = x = —1 is indicated in Fig. 51-5.

For x = =3 and x = —1 the series is --- and is convergent.

Fig. 51-5

51.7 Expand (1 4+ x)~! as a power series in x and examine for convergence.

‘Cn+l

1 .
By division, —— = 1—x+x>—x> +x*—---. Then R = lim = |x|.
x+1 n—oo

x"

The series converges for —1 < x < 1, and diverges for x < —1 and x > 1.

For x =1, the seriesis 1 =1+ 1—1+--- and is divergent.
For x =—1, the seriesis 1 +1+ 1+ 1+ --- and is divergent.

The interval of convergence —1 < x < 1 is indicated in Fig. 51-6.

-1 1

Fig. 51-6
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Thus, the series 1 —x 4+ x> — x* 4 x* — - - represents the function f(x) = (1 + x)~' for all x such that
|x| < 1. It does not represent the function for, say, x = —4. Note that f{—4) = —%, while for x = —4 the series
isl14+4+16+64+---.

51.8  Expand (I 4+ x)!/? in a power series in x and examine for convergence.

By the binomial theorem
L 0D o, OEDED 5, HEHEIED

172 — - \
I+ T3 +=7 123 ° 1234

Except forn =1,

AEHED 92,

|sn| = =1

and R = lim

n—00

—2n+3x‘7 Il
2n o

|Sn+1| = !

PEPE) (2 +3))2 o ’

The series is convergent for —1 < x < 1, and divergent for x < —1 and x > 1. An investigation at the end
points is beyond the scope of this book.

Supplementary Problems
In Problems 51.9-51.21 find the interval of convergence including the end points.

51.9 1+x2+x4+...+x2n—2+”.
Ans. -l <x<1

2 3 n

X X X X
SUI0 st st Ty T
Ans. —-1=x=1
2 3
X X X X"
5111 —— .
3Tr ety ettt
Ans. -3=x<3
X \‘2 Y3 X"
51.12 I T I TP
PP4+1 2241 32+1 n’+1
Ans. —l=x=1
xz x4 x6 1x2n
. ... -
Ans. —\/§<x<\/§
l'x 1:3:x 1:3:5:x° 1:3:5-7-x
S T s T 465 24687
Ans. —l=x=
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1-1 3.2 5,535 74,
51.15 ﬁx+ﬁx +77x +9.5x +

51.16

51.17

51.18

51.19

51.20

51.21

Ans. -1 <x<1

(x—2)+%(x—2)2+%(x—2)3+41—1(x—2)4+~~~

Ans. 1=x<3

RO VN VO VA
1.2 3-22 5-23 7.24

Ans. -3<x=1

_ 2 N3 _ N4
X a+(x a) +(x a) +(x a)

5 5 ZEER

Ans. a—b<x<a+b

x—2+l(x—2)2+1(x—2)3+1(x—2)4+“.
X 2\ x 3\ x 4\ x

Ans. x=1

XA+ X224+ B X+

Ans.  All values of x.

x=22x2 4+ B3 -4t

Ans. x=0
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Polar Coordinates

IN THE POLAR COORDINATE SYSTEM a point in the plane is located by giving its position relative
to a fixed point and a fixed line (direction) through the fixed point. The fixed point O (see Kig. 52-1) is
called the pole and the fixed half line OA is called the polar axis.

Let 6 denote the smallest positive angle measured counterclockwise in degrees or radians from OA4 to
OB, and let r denote the (positively) directed distance OP. Then P is uniquely determined when r and 0
are known. These two measures constitute the polar coordinates of P and we write P(r, 0). The quantity r
is called the radius vector and 0 is called the vectorial angle of P. Note that a positive direction, indicated
by the arrow, has been assigned on the half line O0B.

2 £
A
0 P=2,-60)

3 B 3
s P& P(3,240%)

. ,

g .
0 polar axis >4 B

Fig. 52-1 Fig. 52-2 Fig./52-3

EXAMPLE 1. Locate the point P(3,240°) or P(3,4xn/3). Refer to Fig. 52-2. .,

Lay off the vectorial angle 0 = mx AOB = 240°, measured counterclockwise from OA, and on OB locate P
such that r = OP = 3.

In the paragraph above we have restricted r and 6 so that » = 0 and 0° =< 6 < 360° /In general, these
restrictions will be observed; however, at times it will be more convenient to permit » and 0 to have
positive or negative values. If 0 is negative and r is positive, we lay off the angle 6 = £A0OB, measured
clockwise from m, and locate P on OB so that OP = r. If r is negative, we lay off 0|= ZAOB, extend
OB through the pole to B’, and locate P on OB a distance || from O.

EXAMPLE 2. Locate the point P(=2,60°) or P(=2,—=n /3). Refer to Fig. 52-3.
Lay off the vectorial angle 0 = ZA0B = 60°, measured clockwise from 04, extend OB through the pole to B,
and on OB’ locate P a distance 2 units from O. (See Problems 52.1-52.2.)

394
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Although not a part of the polar system, it will be helpful at times to make use of a half line, called
the 90° axis, which issues from the pole perpendicular to the polar axis.

TRANSFORMATIONS BETWEEN POLAR AND RECTANGULAR COORDINATES. If the pole
and polar axis of the polar system coincide respectively with the origin and positive x axis of the
rectangular system, and if P has rectangular coordinates (x,y) and polar coordinates (r,0), then the
following relations hold:

(I) x=rcosh (4) 6 =arctany/x
(2) y=rsinb (5) sin®=y/rand cosf = x/r

3 r=+x2+)?

If relations (3)—(5) are to yield the restricted set of coordinates of the section above, 6 is to be taken as
the smallest positive angle satisfying (5) or, what is equivalent, 0 is the smallest positive angle satisfying
(4) and terminating in the quadrant in which P(x, ) lies.

EXAMPLE 3. Find the rectangular coordinates of P(3,300°).
Here r=3 and 60 =300°; then x=rcosf = 3cos300° = 3(%) = %, y=rsinf = 3sin300° = 3(—%\/§) =
—3\/5/2, and the rectangular coordinates are (%,—3\/5/2).

EXAMPLE 4. Find the polar equation of the circle whose rectangular equation is x> + y*> — 8x + 6y —2 = 0.
Since x = rcosf, y =rsin6, and x*>+)? =%, the polar equation is > —8rcosf -+ 6rsinf—2=0. (See
Problems 52.3-52.5.)

CURVE SKETCHING IN POLAR COORDINATES. Preliminary to sketching the locus of a polar
equation, we discuss symmetry, extent, etc., as in the case of rectangular equations. However, there are
certain complications at times due to the fact that in polar coordinates a given curve may have more than
one equation.

EXAMPLE 5. Let P(r,0) be an arbitrary point on the curve r = 4cosf —2. Now P has other representations:
(=r,0+mn),(=r,0 —m),(r,0 —27),....

Since (r,0) satisfies the equation r=4cos0—2,(—r,0+ n) satisfies the equation —r=4cos(0+n)—2 =
—4cos0—2 or r=4cosf+2. Thus, r=4cosf—2 and r =4cosf + 2 are equations of the same curve. Such
equations are called equivalent. The reader will show that (—r, 0 — n) satisfies r = 4 cos 0 + 2 and (r, 0 — 2x) satisfies
r=4cos0—2.

3
4+ 2sinb’
Note that the given coordinates do not satisfy the given equation.

EXAMPLE 6. Show that point A(—1,7/6) is on the ellipse r =

First Solution. Another set of coordinates for 4 is (1,7n/6). Since these coordinates satisfy the
equation, A4 is on the ellipse.

Second Solution. An equivalent equation for the ellipse is

3 -3
T av2sn0-n 0 T 4=2sin0

Since the given coordinates satisfy this equation, A is on the ellipse.
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SYMMETRY. A locus is symmetric with respect to the polar axis if an equivalent equation is obtained
when

(a) 0 1is replaced by —0, or
(b) 0 1is replaced by n — 6 and r by —r in the given equation.

A locus is symmetric with respect to the 90° axis if an equivalent equation is obtained when

(a) 0 1is replaced by = — 0, or
(h) 6 is replaced by —6 and r by —r in the given equation.

A locus is symmetric with respect to the pole if an equivalent equation is obtained when

(a) 0 1is replaced by = + 0, or
(b) ris replaced by —r in the given equation.

EXTENT. The locus whose polar equation is r = f(0) is a closed curve if r is real and finite for all
values of 0, but is not a closed curve if there are values of one variable which make the
other become infinite.

The equation should also be examined for values of one variable which make the other
imaginary.

At times, as in the equation r = a (1 + sin 0), the values of 6 which give r its maximum
values can be readily determined. Since the maximum value of sin 0 is 1, the maximum value
of r is 2a which it assumes when 6 = 17.

DIRECTIONS AT THE POLE. Unlike all other points, the pole has infinitely many pairs of coordinates
(0, 8) when 0 is restricted to 0° = 6 < 360°. While two such pairs (0, 0,)
and (0, 0,) define the pole, they indicate different directions (measured
from the polar axis) there. Thus, the values of 6 for which r = f(6) = 0
give the directions of the tangents to the locus r = f(0) at the pole.

POINTS ON THE LOCUS. We may find as many points on a locus as desired by assigning values to 6
in the given equation and solving for the corresponding values of r.
EXAMPLE 7. Discuss and sketch the locus of the cardioid r = a(1 — sin 0).

Symmetry. An equivalent equation is obtained when 0 is replaced by 7 — 0; the locus is symmetric with respect to
the 90° axis.

Extent. Since r is real and =2a for all values of 0, the locus is a closed curve, lying within a circle of radius 2a with
center at the pole. Since sin 0 is of period 2=, the complete locus is described as 0 varies from 0 to 2.

Direction at the pole.  When r = 0,sin = 1 and 0 = 5n. Thus, the locus is tangent to the 90° axis at the pole.

After locating the points in Table 52.1 and making use of symmetry of the locus with respect to the 90° axis, we
obtain the required curve as shown in Fig. 52-4. (See Problems 52.11-52.17.)

Table 52.1

2n/3 3n/4 5t/6| w=| Tn/6 5n/4 4n/3 3n/2
r 0 0.13a 0.29a 0.5a a 1.5a 1.71a 1.87a 2a

>
ol—
2
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1352 120°  90° 60° 456°

Fig. 52-4

INTERSECTIONS OF POLAR CURVES. It is to be expected that in finding the points of
intersection of two curves with polar equations r = f1(0) and r = f5(0), we set f1(0) = f>(0) and solve for
0. However, because of the multiplicity of representations both of the coordinates of a point and the
equation of a curve, this procedure will fail at times to account for all of the intersections. Thus, it is a
better policy to determine from a figure the exact number of intersections before attempting to find them.

EXAMPLE 8. Since each of the circles r = 2 sin § and r = 2 cos 6 passes through the pole, the circles intersect in the
pole and in one other point. See Fig. 52-5. Since each locus is completely described on the interval 0 to 7, we set
2sin @ = 2cos 0 and solve for 0 on this interval. The solution 0 = = yields the point (v/2,1m).

r=2cos 6
Fig. 52-5
Analytically we may determine whether or not the pole is a point of intersection by setting » = 0 in each of the
equations and solving for 0. Setting sin @ = 0 we find 6 = 0, and setting cos = 0 we find 0 = 5. Since both equations

have solutions, the pole is a point of intersection. The procedure above did not yield this solution since the coordinates
of the pole (0, 0) satisfy r = 2 sin 0 while the coordinates (0,%71) satisfy r = 2 cos 0. (See Problems 52.18-52.19.)

SLOPE OF A POLAR CURVE. We state the following results without proof:

Given a polar function, r = f(0),

dy _r'sinf 4 rcosf
dx  r'cos—rsin0

()

If f(x) = sin x, then
S'(x) = cosx (2)
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and if g(x) = cos x, then
g'(x) = —sinx 3)

Using (1), (2), and (3) above, we can find derivatives and thus slopes for polar curves.

EXAMPLE 9. Find the slope of the cardioid

r=2(1 +cos0) at 9:?

d y
Y _ slope of curve
dx

_ r'sin0+rcos0
" r'cos0—rsin0
_ (=2sin 0) (sin 0) + 2(1 + cos ) (cos 0)
"~ (—2sin0) (cos0) — 2(1 + cos 0) (sin 0)

dy
At 0= gdl = 0. This indicates that r = 2(1 + cos 0) has a horizontal tangent line at 6 = g See Fig. 52-6 and
x

see Problem 52.20.

r=2(1+cos0)

%)

A
®

Fig. 52-6

Solved Problems

52.1 Locate the following points and determine which coincide with P(2,150°) and which with Q(2,30°):
(@) A(2,750°) (b) B(-2,-30°) (o) C(=2,330°) d) D(=2,-150°) (e) EQ2,-210°)
The points B, C, and E coincide with P; the points 4 and D coincide with Q. See Figs. 52-7(a)—(e).

52.2  Find the distance between the points
(a) P;(5,20°) and P,(3,140°) (b) P(4,50°) and P,(3,140°) (¢) Pi(ry,0)) and Py(r,,0,)

In any triangle OP, Py, (P, P,)* = (OP))?> + (OP,)* —2(OP,)(OP,) cos ZLP,OP,.
(a) From Fig. 52-8 (a), (P, P,)* = (5 + (3)>=2-5-3c0s 120° = 49; hence, P, P, = 7.

(b) From Fig. 52-8 (b), PP, = J@)? + (3 —2-4-3c0s90° = 5.

(¢) From Fig. 52-8 (c), P, Py = \/r% + 12 = 2r1r5 cos (0; — 0).
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52.3

52.4

POLAR COORDINATES 399

Find the set of polar coordinates, satisfying r =0,0° =< 6 < 360°, of P whose rectangular coordinates are

(a)
(a)

(b)

(¢)

(d)

2,=-2v3), (b) (a,a), (¢) (=3,0), (d) (0,2). Find two other sets of polar coordinates for each point.

We have r = /x? 4+ 2 =1/(2)* + (=243 =4and 0 = arctan y/x = arctan (=/3). Since the point is in

the first quadrant, we take 0 = 300°. The polar coordinates are (4,300°) or (4, 57/3). Equivalent sets of

polar coordinates are (4,—60°) and (-4, 2n/3).

Here r = +/a*> + a*> = a/2 and 0 = arctan 1, when a > 0. Since the point is in the first quadrant, we take
= 4n. The polar coordinates are (a\/§74ln). Equivalent sets are (a\/i7 —7n/4) and (—a\/i7 —3n/4).

Here r = +/(=3)?> + (0)> = 3. Since the point is on the negative x axis, we take 0 = n and the polar

coordinates are (3, 7). Equivalent sets are (—3,0) and (3, —n).

Here r = +/(0)> + (2)*> = 2. Since the point is on the positive y axis, we take = /2 and the polar

coordinates are (2,7/2). Equivalent sets are (2,—3n/2) and (=2, 3%/2).

C(-2,330°)

A
~
()
D¢-2,-150°) E(2,-210%)
0, »A 0 A
O >
¢/
P
//<,\ 3
(d) (e)
Fig. 52-7
Pyry . 6))
Py(3,140%)
Py(r,. 6
0 6 4
(a) (b) (c)
Fig. 52-8
Transform each of the following rectangular equations into their polar form:
(@) x*+)*>=25 (¢) 3x=y=0 (e) (P +y*—ax)’ =d2(x*+)%)
by xX*—)y*=4 (d) x*4y*=4x () *+x?+6x2=2>=0
We make use of the transformation: x = rcos 0,y = rsin 0, x> + y*> = 2.
(a) By direct substitution we obtain > =25 or r = =5. Now r = 5 and r = —5 are equivalent equations

(b)

since they represent the same locus, a circle with center at the origin and radius 5.

We have (rcos0)? — (rsin 0)> = r? (cos’ 0 — sin’ 0) = * cos 20 = 4.
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52.5

52.6

(©)
(d)

(e

N
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Here 3rcos0—rsin0 = 0 or tan 0 = 3. The polar equation is 0 = arctan 3.

We have 1 = 4rcos @ or r = 4cos @ as the equation of the circle of radius 2 which passes through the
origin and has its center on the polar axis.

Here (2 —ar cos0)?> = a*?; then (r—acos0)? =a*> and r—acos = *a. Thus we may take r=

a(l 4 cos0) or r = —a(l —cos 0) as the polar equation of the locus.

Writing it as x(x® + )?) + 6x> —2y? = 0, we have r’ cos 0 + 61> cos® 0 — 2r? sin> 0 = 0. Then rcos0 =
2sin% @ — 6cos? @ — 2(sin® 0 4 cos? ) —8cos’ 0 = 2—8cos> O and r= 2(sec O —4cosO) is the polar
equation.

Transform each of the following equations into its rectangular form:
4
=-2 : 0=-6 =4(1 +sinf ' =
(@) r (¢) rcos (e) r=4(+sin0) o) r 7 cosd
() 0=23n/4 (d) r=2sinf
In general, we attempt to put the polar equation in a form so that the substitutions x> + y? for 2, x for
rcos 0, and y for rsin 0 can be made.
(a) Squaring, we have 1> = 4; the rectangular equation is x> 4 y*> = 4.
(b) Here 0 = arctany/x = 3n/4; then y/x = tan3n/4 = —1 and the rectangular equation is x + y = 0.
(¢) The rectangular form is x = —6.
(d) We first multiply the given equation by r to obtain > = 2rsin 6. The rectangular form is x> + 3> = 2y.
(e) After multiplying by r, we have r* = 4r + 4rsin 0 or r> — 4rsin 0 = 4r; then (+* — 4rsin 0)> = 16r* and the
rectangular equation is (x> 4 y? — 4y)> = 16(x* + 7).
(f) Here 2r —rcos0 = 4 or 2r = rcos 0 + 4; then 47> = (rcos 0 + 4)* and the rectangular form of the ellipse
is 4(x> +y) = (x+4)? or 3x> + 4 —8x—16 = 0.
Derive the polar equation of the straight line:
(a) Passing through the pole with vectorial angle k&
(b) Perpendicular to the polar axis and p > 0 units from the pole
(¢) Parallel to the polar axis and p > 0 units from the pole
Let P(r,0) be an arbitrary point on the line.
(a) From Fig. 52-9 (a) the required equation is 0 = k.
(b) From Fig. 52-9 (b) the equation is r cos @ = p or r cos 0 = —p according as the line is to the right or left
of the pole.
(¢) From Fig. 52-9 (¢) the equation is r sin 0 = p or r sin @ = —p according as the line is above or below the
pole.
rsin6=p P(r,0
P(r, 6 i
|
P(r, 6)4 pi
P(r, 6) |
-= 4 O| » A
% Dy a :
l Ll " |
o LY LY 4
g : |
~ [S L
rsinfd=-p P(r, &
(a) (e)
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52.7  Derive the polar equivalent of the normal form of the rectangular equation of the straight line not passing
through the pole.

Let P(r,0) be an arbitrary point on the line. Then the foot of the normal from the pole has coordinates
N(p,w). Using triangle ONP, the required equation is rcos (0 — w) = p. See Fig. 52-10.

Fig. 52-10

52.8 Derive the polar equation of the circle of radius @ whose center is at (c, 7).
Let P(r,0) be an arbitrary point on the circle. See Fig. 52-11. Then [see Problem 52-2(c)]
? + & = 2rccos y—0)= a
or P =2rccos(y =0+ —d> =0 (@))

is the required equation.

Fig. 52.11

The following special cases are of interest:

(a) If the center is at the pole, (/) becomes > = a>. Then r = a or r = —a is the equation of the circle of
radius a with center at the pole.

(b) If (¢,y) =(*a,0°), (I) becomes r = *2acosl. Thus, r =2acosl is the equation of the circle of

radius a passing through the pole and having its center on the polar axis; r = —2acos0 is the
equation of the circle of radius a passing through the pole and having its center on the polar axis
extended.

(¢) Similarly if (¢,7) = (*a,90°), we obtain r = =2asin 0 as the equation of the circle of radius @ passing
through the pole and having its center on the 90° axis or the 90° axis extended.

52.9 Derive the polar equation of a conic of eccentricity e, having a focus at the pole and p units from the
corresponding directrix, when the axis on which the focus lies coincides with the polar axis.

In Fig. 52-12 a focus is at O and the corresponding directrix DD’ is to the right of O. Let P(r,0) be an
arbitrary point on the conic. Now

opP
PM

Il
o
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D
P(r, 8 B \M
% |
A
o
{
)
0 P > A
o
Fig. 52-12

where OP = r and PM = PB+ BM = rsin(0—90°) + p = p—rcos 0. Thus

r ep
— =, (1 0) = d ="
p=rcost e, r(1 4+ ecos0) = ep, an r T ecosd
It is left for the reader to derive the equation r = ﬁ when the directrix DD’ lies to the left of O.

Similarly it may be shown that the polar equation of a conic of eccentricity e, having a focus at the pole
and p units from the corresponding directrix, is

r—iep
" 1*esinf

where the positive sign (negative sign) is used when the directrix lies above (below) the pole.

52.10 Find the locus of the third vertex of a triangle whose base is a fixed line of length 2a and the product of the
other two sides is the constant b?.

Take the base of the triangle along the polar axis with the midpoint of the base at the pole. The
coordinates of the end points of the base are B(a,0) and C(a, 7). Denote the third (variable) vertex by P(r, 0).
See Fig. 52-13.

P(r, 6)

P
L

T e m 0 B(a,0)

Fig. 52-13

From the triangle BOP, (BP)> = 1* + a* —2arcos0 and from the triangle COP, (CP)* = 1>+ d* —
2arcos (1 — 0) = 1> + a® + 2ar cos 0. Now (BP)(CP) = b’; hence

(% + &® = 2arcos 9)(r2 +d* + 2arcos§) = (b*)* = b*
Then (r2 + az)2 —4a*r*cos?d = b*
4 2a2r2(1 —2cos® 0) = *=2d*Pcos 20 = bt —at

=27 c0s 20 + a* cos? 20 = b* — a* + a* cos* 20 = b* — a*sin? 20

and the required equation is 1> = a” cos 20 * vb* — a* sin” 20.
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52.11

52.12

3

Sketch th icr=————.
etch the conic r = >—-——p

To put the equation in standard form, in which the first term in the denominator is 1, divide numerator
3

2
1 —sin6
opens upward (§ = Jm makes r infinite).
When 0 =0,r = % When 0 = 37/2,r = %; the vertex is on the 90° axis extended % unit below the pole.
With these facts the parabola may be sketched readily as in Fig. 52-14.
The equation in rectangular coordinates is 4x> = 12y + 9.

and denominator by 2 and obtain r = . The locus is a parabola (e = 1) with focus at the pole. It

Fig. 52-14

18

ketch th icr=——-7—.
Sketch the conic r Stdsno

After dividing numerator and denominator by 5, we have

vl

"3 +4sin0

The locus is an ellipse (e = %) with a focus at the pole.

Since an equivalent equation is obtained when 0 is replaced by n — 0, the ellipse is symmetric with
respect to the 90° axis; thus, the major axis is along the 90° axis. Since ep = L58 and ep = %,p = %; the directrix
is 4 units above the pole. When 6 = 17, r = 2; when 6 = 37/2, r = 18. Thus the vertices are 2 units above and
18 units below the pole. Since a = 5(2 4 18) = 10,5 = y/a*(1 — ¢?) = 6. With these facts the ellipse may be

readily sketched as in Fig. 52-15.

V'8, 3n/2)

Fig. 52-15

In rectangular coordinates, the equation is 25x% + 9y? + 144y — 324 = 0.
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8

52.13 Sketch th icr=———.
etch the conic r = >———

8
3

5 . The locus is a hyperbola
1 —3cos0

After dividing the numerator and denominator by 3, we have r =
(e= %) with a focus at the pole.

An equivalent equation is obtained when 0 is replaced by —0; hence, the hyperbola is symmetric with
respect to the polar axis and its transverse axis is on the polar axis. When 0 = 0,r = —4 and when
0 = m,r = 1; the vertices are respectively 4 units and 1 unit to the left of the pole. Then a =5(4—1) = % and
b = +Jd*(e* — 1) = 2. The asymptotes, having slopes *h/a = * %, intersect at the center %(1 +4) = 5 units to
the left of the pole. Since ep =5 and e = %, p= %; the directrix is % units to the left of the pole.

In rectangular coordinates, the equation is 16x> — 9y* 4 80x + 64 = 0. See Fig. 52-16.

Fig. 52-16

52.14 Sketch the limacon r = 2acos0 + b when (@) a=2,b=5 (b) a=2,b=4, (¢) a=2,b=23.

(a) The equation is r = 4cos 0 + 5.
Symmetry.  An equivalent equation is obtained when 0 is replaced by —0; the locus is symmetric with
respect to the polar axis.
Extent.  Since r is real and finite for all values of 0, the locus is a closed curve. Since cos 0 is of period
2, the complete locus is described as 0 varies from 0 to 2.

Directions at the Pole.  When r = 0,cos0 = —g; the locus does not pass through the pole. After
locating the points in Table 52.2 and making use of symmetry with respect
to the polaris axis, we obtain the required curve shown in Fig. 52-17(a).
The equation in rectangular coordinates is (x* + 3> —4x)? = 25(x> + 7).

Table 52.2

0 0 /6 n/4 n/5 /2 2r/3 | 3n/4| 5m/6 T
r 9.00 8.48 7.84 7.00 5.00 3.00 2.16 1.52 1.00

(b) The equation is r = 4(1 + cos 0).

The locus a closed curve, symmetric with respect to the polar axis, and is completely described as 0
varies from 0 to 2x.

When r = 0,cos0 = —1 and 6 = . The locus passes through the pole and is tangent to the polar
axis there.

After locating the points in Table 52.3 and making use of symmetry, we obtain the required curve
shown in Fig. 52.17(b).

In rectangular coordinates the equation of the cardioid is (x? +y2 —4x)? = 16(x* + yz).
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120° 90° 60°  45° 30° 120°  90° 60° 45°
30°
135° 135°
150° 150°
180° A 180° 4
0
(a) (c)
Fig. 52-17
Table 52.3
0 0 /6 n/4 n/3 n/2 2n/3 3n/4 5m/6 n
r 8.00 7.48 6.84 6.00 4.00 2.00 1.16 0.52

(¢) The equation is r =4 cos0 + 3.
The locus is a closed curve, symmetric with respect to the polar axis, and is completely described as

0 varies from 0 to 2x.
When r = 0,cos§ = —3 = —0.750 and 6 = 138°40’,221°20'. The locus passes through the pole with

tangents 0 = 138°40' and 0 = 221°20'.
After putting in the these tangents as guide lines, locating the points in Table 52.4, and making use

of symmetry, we obtain the required curve shown in Fig. 52.17(c).
The equation in rectangular coordinates is (x> + y* —4x)*> = 9(x> +)?).

Table 52.4
0 0 n/6 n/4 n/3 n/2 2n/3 3n/4 5n/6 T
r 7.00 6.48 5.84 5.00 3.00 1.00 0.16 —-0.48 —-1.00

52.15 Sketch the rose r = a cos 30.

The locus is a closed curve, symmetric with respect to the polar axis. When r = 0,cos30 =0 and
0=mn/6,n/2,51/6,Tr/5,...; the locus passes through the pole with tangent lines 0 = n/6,0 = n/2, and

0 = 571/6 there.

The variation of r as 0 changes is shown in Table 52.5.

Table 52.5
0 30 r

0ton/6 0to m/2 ato0
n/6 to m/3 n/2tom 0to—a
n/3 to m/2 n to 3m/2 —ato 0
n/2 to 2m/3 3n/2 to 2n Otoa
2n/3 to 57/6 27 to 5m/2 ato0

Sn/6tom 5n/2 to 3n 0to—a
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The values plotted are (r, 0) not (r, 30). The curve starts at a distance a to the right of the pole on the
polar axis, passes through the pole tangent to the line 0 = 7/6, reaches the tip of a loop when 0 = /3,
passes through the pole tangent to the line 0 = n/2, and so on. The locus is known as a three-leaved

Caution.

rose.
The rectangular equation is (x> 4 1%)? = ax(x* 4 3?). See Fig. 52-18.

NP

’ o~
Fig. 52-18
In general, the roses r = a sinnf and r = a cos nf consist of n leaves when 7 is an odd integer.

52.16 Sketch the rose r = a sin40.
The locus is a closed curve, symmetric with respect to the polar axis (an equivalent equation is obtained
when 0 is replaced by n— 0 and r by —r), with respect to the 90° axis (an equivalent equation is obtained
when 6 is replaced by—6 and r by —r), and with respect to the pole (an equivalent equation is obtained when 0

is replaced by n + 0).
When r =0, sin40 =0 and 0 =0,7/4,7/2,3n/4,...; the locus passes through the pole with tangent

lines 0 = 0,0 = n/4,0 = n/2, and 0 = 3n/4 there.
The variation of r as 0 changes from 0 to n/2 is shown in Table 52.6.

Table 52.6
0 40 r
0to m/8 0tom/2 Otoa
n/8 to m/4 n/2tom ato0
n/4 to 3m/8 n to 3n/2 0to—a
3n/8 to m/2 3n/2 to 2n —ato0

The complete curve, consisting of 8 leaves, can be traced by making use of the symmetry. See Fig. 52-19.

Fig. 52-19

In rectangular coordinates, the equation of the locus is (x* + %)’ = 16a*(x*y — xp°)*.
In general, the roses r = a sinnf and r = a cos nf consist of 2n leaves when n is an even integer.
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52.17 Sketch the locus of r = cos%@.

Other equations of the locus are —r = cos$(0 + m) = —sin0 or r = sin0,—r = cos$(0 — n) = sin} 0 or
r= —sin%(), and r = cos%(@— 2n) = —cos%@.

The locus is a closed curve, symmetric with respect to the polar axis, the 90° axis, and the pole. It is
completely described as 0 varies from 0 to 4.

When r = 0,0 = =,3m,...; the line 0 = = is tangent to the locus at the pole.

The curve is traced by locating the points (Table 52.7) and making use of symmetry. See Fig. 52-20.

Table 52.7

0 %6 r

0 0 1.00
/6 /12 0.97
n/3 /6 0.87
/2 n/4 0.71
21/3 /3 0.50
51/6 5n/12 0.26

T /2 0.00 Fig. 52-20

52.18 Find the points of intersection of the limacon r = 2 cos + 4 and the circle r = 8 cos 0.

From Fig. 52-21 there are two points of intersection.
Setting 2 cos 6 + 4 = 8 cos ), we obtain cos§ = %; then 0 = 48°10' and 311°50'. (We solve for 0 on the
range 0 < 6 < 27 since the limacon is completely described on this range.) The points of intersection are

(§,48°10) and (&,311°50).

16 010"
(3;48 109

.

16 ornt
( 3’ 311750
Fig. 52-21 Fig. 52-22

4
52.19 Find the points of intersection of the ellipse r = 7T cos0 and the limacon r = 4 cos 0 — 2.

From Fig. 52-22 there are four points of intersection.

. 4 -3+ 41
Setting m: 4 cosf—2, we have 2 cos? 0+ 3 cos —4 = 0. Then cosﬁzf\/_z 0.851 or

—2.351, and 0 =31°40' and 328°20’. The corresponding points are E(=5++/41,31°40') and B(-5+
VA41,328°20/).
To obtain the other two points, we solve the equation of the ellipse with another equation r = 4 cos 0 + 2

(see Example 5) of the limacon. From 4 cos0+2 = we obtain 2 cos® 0+ 5 cos 0 = (cos 0)

_ 4
2+ cos®’
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(2cosf+5)=0. Then cosf =0 and 9:%71 and 37/2. The corresponding points are C(2,7/2) and

D(2,3n/2).
[NOTE: When sketching r = 4 cos — 2, the coordinates of C were found as (—2,3n/2) and those of D
as (=2,7m/2).]
dy
52.20 Find ) at 0 = i for r = 2(1 4+ cos 0).
dx 6

dy _ (=2sin0)(sin 0) + 2(1 + cos 0)(cos 0)

dx~ (=2sin0)(cos 0) — 2(1 + cos 0)(sin 0) en 0=

Ans. —1

Supplementary Problems

52.21 Find the rectangular coordinates of P whose polar coordinates are

(@ (-2,45°) (b Gm (0 /2 (@ &,21/3)
Ans. (@) (—V2,—V2) (b (3,00 (© (0,2) (d) (-2,23)

52.22 Find a set of polar coordinates of P whose rectangular coordinates are

@ (1,3 B 0,-5 (o (,-1) (@ (12,5
Ans. (a) (2,7/3) b) (5,3n/2) (3 (\/§,7n/4) (d) (13,7r—ArctanT52)

52.23 Transform each of the following rectangular equations into polar form:
(a) x2+y2:16 (b) yz—x2:9 () x=4 (d) y:\/gx (e) xy=12
() F+yHx=47
Ans. (a) r=4 (¢) rcos=4 (e) r*sin20 =24
(b) ?cos204+9=0 (d) 0=mn/3 (f) r=4tan0sin0

52.24 Transform each of the following polar equations into rectangular form:

. . . — - — 4
(a) rsing=-4 (@ r=2cos (o) r=1=2cos0 (f) r=7_5-7
) r=—4 (d) r=sin20
Ans. (a) y=—4 (© P+r-2=0 () (P+r+urP=x+)

b xX*+y*=16 d) (P41 =4x3%  (f) =3 —16y—16=0

ep
1 £esinf
corresponding directrix p units from the focus.

52.25 Derive the polar equation r = of the conic of eccentricity ¢ with a focus at the pole and with

52.26 Write the polar equation of each of the following:

(a) Straight line bisecting the second and fourth quadrants

(b) Straight line through (4,2n/3) and perpendicular to the polar axis
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(¢) Straight line through N(3,7/6) and perpendicular to the radius vector of N

(d) Circle with center at C(4,3r/2) and radius =4

(e) Circle with center at C(—4,0) and radius =4

(f) Circle with center at C(4,7/3) and radius =4

(g) Parabola with focus at the pole and directrix r = —4 sec 0

(h) Parabola with focus at the pole and vertex at V(3,7/2)

(7))  Ellipse with eccentricity %, one focus at the pole, and the corresponding directrix 5 units above the polar
axis

() Ellipse with one focus at the pole, the other focus at (8, n), and eccentricity = %

(k) Hyperbola with eccentricity = %, one focus at the pole, and the corresponding directrix 5 units to the left
of the 90° axis

() Hyperbola, conjugate axis = 24 parallel to and below the polar axis, transverse axis = 10, and one focus

at the pole
Ans. (a) 0=3rn/4 (¢) rcos(@—m/6)=3 () r=-8cosb
(b) rcosf=-2 (d) r=-8sind (f) r=28cos(0—m/3)
4 . _ 15 o 15
© " T=cos0 @ '74+35in9 ® " 2 3 c0s0
6 ) _ 10 _ 144
) '71+sin0 ) '73+2c030 @ " S 13sin0
52.27 Discuss and sketch:
. o . 2 o
(@) r=sin(0—45°)=-2 N "= oos0 () r=4sin20
(b) r=10sin0 (g) r=2-4cosl (m) r=2atan0sin0
(¢) r=—6cos0 (hy r=4-2cosl (n) r=4tan’0sec 0
@ r= 8 (i) P =9cos20 (o) r=cos3
2—sinf () = 16sin20 (p) r=20
__ 6 (k) r=2cos20 (9 r=al0
@ r= 1+2cosf

52.28 Find the complete intersection of
(@) r=2cosl,r=1 (b) r*=4c0s20,r =22sin0 (¢) r=1+sin0,r=+/3cosl

Ans. (@ (1,m/3),(1,57/3) () (0,0),(v2,7/6),(+2,51/6)  (©) (0,0),3,7/6)
dy

2.29 Fi
52.29 1ndd

for r=sin0 at 0 = n/2.

Ans. 0



Appendix A

Introduction to the
Graphing Calculator

IN THIS TEXT, a number of opportunities to utilize calculators have been provided to the reader. In many of these
cases, a traditional handheld calculator would be sufficient. However, handheld algebraic-entry graphing calculators
have become quite prevalent, and although some of the applications of such calculators are well above the level of

Hewerm A
PACKARD 386G

BEEE®E
silolololc
S OE®OQ
sNolofo¥o:
GHOYGRaYo
® OO OD

Fig. A1-1
(Reprinted with the permission of the Hewlett-Packard Company.)

410

Copyright 1958 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



APPENDIX A] INTRODUCTION TO THE GRAPHING CALCULATOR 411

the mathematics in this book, it would be worthwhile to introduce these devices at this point. The goal here is to
make you familiar with such calculators and to make you at ease with them. In that way, when you engage in more
advanced mathematics such as the calculus, it will be easier for you to use graphing calculators.

First, what does such a calculator look like? An example is indicated in Fig. Al-1. This diagram illustrates the
keyboard of the Hewlett-Packard HP 38G calculator.

While there are other such calculators available to you on the market, I have found that this particular one
offers the easiest retrieval of answers and meshes particularly well with the needs of the mathematics student at both
the precalculus level and more advanced levels as well. In this appendix, you will be presented with a brief overview
of the calculator and of its use in solving equations and graphing functions.

You turn the calculator on by pressing the key. Note that the key is also the key. Also, if
you wish to lighten or darken your calculator’s screen, simply hold down the key while you press the F] or
keys. (Note: Please refer to the Reference Manual provided with the HP 38G for a more detailed description of the
many uses of the calculator.)

The HOME screen is the main area in which you will work. Press to find this area. Note that the
screen is divided into two main parts: The large rectangular area is the space in which entries and answers
are indicated; the smaller rectangular area is the Editline. For example, if you press the keystrokes

ENTER

then you will find the following on the HOME screen:

HOME
75
75

75 will appear

here before —

you press ENTER
If you press the keystrokes

ENTER
then you will find the following on the [HO M E] screen:
HOME

75/5

15

Notice that the HP 36G uses algebraic-entry notation. Thus, to perform a calculation, you first press the
operations required, and then press [ENTER]. Again, if you wish to find 689—231, press the keystrokes

( B8 O B [2 B I [ENTER



412 INTRODUCTION TO THE GRAPHING CALCULATOR [APPENDIX A

To find 5 squared (5%), press the keystrokes

Now perform the following calculations using the HP 36G or similar graphing calculator:
1. 483 +286

2. 47-81

3. 843 %35

4. 75/21

5. 45x'2, or (45)?
6. 15

7. The reciprocal of 21
8

The absolute value of —45

The HP 38G can be used to solve simple equations and to graph elementary functions. Let’s look at some
examples. Please refer to the HP 38G Reference Manual for more detailed instructions.

Let us solve the equation X —2 = 9. At any one of the equation lines (marked El, E2, etc.), enter the equation
X —2=09. Note that “X” is entered by pressing the key, and then pressing the [¢] key. Also note that the “="
sign is entered by pressing the key under the ““="" sign on the lower, darkened area of the screen. After the equation
appears correctly, press ENTER]. A check mark should appear next to the equation you have entered. This check
mark indicates that when you attempt to solve, the equation checked is the one you will be solving. Next, press the
key, and then the key under the word “SOLVE” in the lower, darkened area of the screen. The number 11
should appear next to the symbol X.

Now try to solve the equation 2X — 11 = 13 using the HP 38G and the following series of steps. Press [L1B], use
the arrow keys to scroll to Solve, press ENTER], go to any of the “E” lines, and enter the equation 2X — 11 = 13.
Press ENTER]. Press the key under the box on the lower, darkened area of the screen. Press the key
and then press the key under the word SOLVE in the lower, darkened area of the screen. You should see the answer
12 appear next to the symbol X.

Next, solve each of the following using the HP 38G or similar graphing calculator:
1. 2X-15=26

2. 3X=4X+4

3. 5Y=6Y+125

Let’s now investigate the graph of the equation ¥ = X — 4. Press the key, and use the arrow keys to locate
“FUNCTION.” Press ENTER|, and at any one of the “F” lines, enter the expression X — 4. Make certain that you
press ENTER]. Note that you may enter the “X” by pressing the key under the symbol X in the lower, darkened
area of the screen. Make certain that the equation you have entered is “‘checked,” and then press the key.
The graph of the line will appear on a set of coordinate axes. Consult the Reference Manual for more details
concerning the use of the HP 38G for graphing purposes.

Now try to graph the equation ¥ = 2X — 11 using the HP 38G and the following series of steps. Press [L1B], use
the arrow keys to scroll to Function, and press ENTER]. Go to any of the “F” lines, and enter 2X — 11. Press
[ENTER]. Make certain that the expression is “‘checked” and that no other expressions are “checked.” All
expressions checked will be plotted when you press [PLOT]. Now press [PLOT]. The graph will appear on the
coordinate axes on the calculator’s screen.

Now graph each of the following using the HP 38G or similar calculator:

I. Y=2X-5
2. Y=-5Xx=13
3. 2Y=3Xx-7 (Hint: Divide both sides of the equation by 2.)
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10.

Supplementary Problems

Solve the equations
X+2Yy=7
X+3Y=10
using the graphing calculator.

Graph each on the calculator:

@ y=x*+7 (b)) y=2-8 () y=4x

(d) y=2sinx-4 (e) y=exp %)

Find the absolute minimum value for y = 3x? — 8 using the calculator.
Graph x? —y? = 4 using the calculator.

Graph x* —2)? = 16.

Find dy/dx, where y = x* —4x> + 6x + 11.

Find [(x° —sinx)dx, where y = x* —4x* + 6x + 11.

Graph y = sin(1/x), where y = x* —4x% 4+ 6x + 11.

Graph y = exp (sin x), where y = x* —4x> 4+ 6x + 11.

2

Find where y = x” —sinx.
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Appendix B

The Number System
of Algebra

ELEMENTARY MATHEMATICS is concerned mainly with certain elements called numbers and /with certain
operations defined on them.

The unending set of symbols 1,2,3,4,5,6,7,8,9,10,11,12,... used in counting are called natural numbers.

In adding two of these numbers, say, 5 and 7, we begin with 5 (or with 7) and count to the right seven (or five)
numbers to get 12. The sum of two natural numbers is a natural number; that is, the sum of two members of the
above set is a member of the set.

In subtracting 5 from 7, we begin with 7 and count to the /eft five numbers to 2. It is clear, however, that 7
cannot be subtracted from 5, since there are only four numbers to the left of 5.

INTEGERS. In order that subtraction be always possible, it is necessary to increase our set of numbers. We prefix
each natural number with a + sign (in practice, it is more convenient not to write the sign) to form the positive
integers, we prefix each natural number with a — sign (the sign must always be written) to form the negative integers,
and we create a new symbol 0, read zero. On the set of integers

=8, =T, =6, =5, =4, =3, =2, =1, 0, +1, 42, 43, +4, +5, +6, +7, +8,/...

the operations of addition and subtraction are possible without exception.

To add two integers such as +7 and —5, we begin with +7 and count to the left (indicated by the sign of —5) five
numbers to +2, or we begin with —5 and count to the right (indicated by the sign of +7) seven numbers to +2. How
would you add =7 and =57

To subtract +7 from —5, we begin with —5 and count to the left (opposite to the direction indicated by +7) seven
numbers to —12. To subtract =5 from +7 we begin with +7 and count to the right (opposite to the direction
indicated by —5) five numbers to +12. How would you subtract +7 from +5? =7 from =5? =5 from —7?

If one is to operate easily with integers, it is necessary to avoid the process of counting. To do this, we memorize
an addition table and establish certain rules of procedure. We note that each of the numbers +7 and —7 is seven steps
from 0 and indicate this fact by saying that the numerical value of each of the numbers +7 and —7is 7. We may state:

Rule 1. To add two numbers having like signs, add their numerical values and prefix their common sign.

Rule2. To add two numbers having unlike signs, subtract the smaller numerical value from the larger, and prefix the
sign of the number having the larger numerical value.
Rule 3. To subtract a number, change its sign and add.

Since 3:2=2+2+42=3+3 =6, we assume
(+3) (+2) =46 (=3) (+2) = (+3) (-2) = —6 and (-3) (-2) = +6

414
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Rule 4. To multiply or divide two numbers (never divide by 0!), multiply or divide the numerical values, prefixing a
+ sign if the two numbers have like signs and a — sign if the two numbers have unlike signs.

If m and n are integers, then m + n, m —n, and m - n are integers but m + n may do not be an integer. (Common
fractions will be treated in the next section.) Moreover, there exists a unique integer x such that m + x = n. If x = 0,
then m = n; if x is positive (x > 0), then m is less than n(m < n); if x is negative (x < 0), then m is greater than
n(m > n).

The integers may be made to correspond one-to-one with equally spaced points on a straight line as in Fig. A2-
1. Then m > n indicates that the point on the scale corresponding to m lies to the right of the point corresponding to
n. There will be no possibility of confusion if we write the point m rather than the point which corresponds to m, and
we shall do so hereafter. Then m < n indicates that the point m lies to the left of n.

]
>
i
W
1
N
I
[
o
+
-
+
B
+
W
+
F3
+
w
+
[}

A\

Fig. A2-1

Every positive integer m is divisible by *1 and =m. A positive integer m > 1 is called a prime if its only factors
or divisors are =1 and =m; otherwise, m is called composite. For example, 2, 7, 19 are primes, while
6=2-3,18=2-3-3, and 30 =2-3-5 are composites. In these examples, the composite numbers have been
expressed as products of prime factors, that is, factors which are prime numbers. Clearly, if m =r-s- ¢ is such a
factorization of m, then —m = (—=1) r- s ¢ is such a factorization of m.

THE RATIONAL NUMBERS. The set of rational numbers consists of all numbers of the form m:/n, where m and
n# 0 are integers. Thus, the rational numbers include the integers and common fractions.

Every rational number has an infinitude of representations; for example, the integer 1 may be represented by
1/1,2/2,3/3,4/4 ... and the fraction 2/3 may be represented by 4/6,6/9,8/12,.... A fraction is said to be expressed
in lowest terms by the representation m/n, where m and n have no common prime factor. The most useful rule
concerning rational numbers is, therefore:

Rule 5. The value of a rational number is unchanged if both the numerator and denominator are multiplied or
divided by the same nonzero number.

Caution: We use Rule 5 with division to reduce a fraction to lowest terms. For example, we write 15/21 =
3/3 - 5/7 = 5/7 and speak of canceling the 3s. Now canceling is not an operation on numbers. We cancel or strike out
the 3s as a safety measure, that is, to be sure that they will not be used in computing the final result. The operation is
division and Rule 5 states that we may divide the numerator by 3 provided we also divide the denominator by 3. This
point is belabored here because of the all too common error:

126—5
Ta

The fact is the 12‘;7;5 cannot be further simplified for if we divide 7a by a we must also divide 12a and 5 by a. This

would lead to the more cumbersome
12—-5/a
7

The rational numbers may be associated in a one-to-one manner with points on a straight line as in Fig. A2-2.
Here the point associated with the rational number m is m units from the point (called the origin) associated with 0,
the distance between the points 0 and 1 being the unit of measure.

-5 -4 -3 -2 -1 0 1 2 3 4 5

v
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If two rational numbers have representations r/n and s/n, where n is a positive integer, then r/n > s/n if r > s,
and r/n < s/n if r < s. Thus, in comparing two rational numbers it is necessary to express them with the same
denominator. Of the many denominators (positive integers) there is always a least one, called the least common
denominator. For the fractions 3/5 and 2/3, the least common denominator is 15. We conclude that 3/5 < 2/3 since
3/5=9/15<10/15=2/3.

Rule 6. The sum (difference) of two rational numbers expressed with the same denominator is a rational number
whose denominator is the common denominator and whose numerator is the sum (difference) of the
numerators.

Rule 7. The product of two or more rational numbers is a rational number whose numerator is the product of the
numerators and whose denominator is the product of the denominators of the several factors.

Rule 8. The quotient of two rational numbers can be evaluated by the use of Rule 5 with the least common
denominator of the two numbers as the multiplier.

If @ and b are rational numbers, a + b, a — b, and a - b are rational numbers. Moreover, if @ and b are #0, there
exists a rational number x, unique except for its representation, such that

ax=>b (A2.1)

When a or b or both are zero, we have the following situations:

b=0and a#0: (A42.]) becomes a-x =0 and x = 0, that is, 0/a = 0 when a # 0.

a=0and b#0: (A2.1) becomes 0 - x = b; then »/0, when b # 0, is without meaning since 0 - x = 0.

a=0and b=0: (A42.1) becomes 0-x = 0; then 0/0 is indeterminate since every number x satisfies
the equation.

In brief: 0/a = 0 when a # 0, but division by 0 is never permitted.

DECIMALS. In writing numbers we use a positional system, that is, the value given any particular digit depends
upon its position in the sequence. For example, in 423 the positional value of the digit 4 is 4 (100), while in 234 the
positional value of the digit 4 is 4 (1). Since the positional value of a digit involves the number 10, this system of
notation is called the decimal system. In this system, the number 4238.75 means

4(1000) + 2(100) + 3(10)+ 8(1) + 7(1/10) + 5(1/100)

It is interesting to note that from this example certain definitions to be made in a later study of exponents
may be anticipated. Since 1000 = 10,100 = 10%,10 = 10!, it would seem natural to define 1= 10°,
1/10 = 1071,1/100 = 1072,

By the process of division, any rational number can be expressed as a decimal; for example,
70/33 = 2.121212.... This is termed a repeating decimal, since the digits 12, called the cycle, are repeated without
end. It will be seen later that every repeating decimal represents a rational number.

In operating with decimals, it may be necessary to “round off” a decimal representation to a prescribed number
of decimal places. For example, 1/3 = 0.3333... is written as 0.33 to two decimal places and 2/3 = 0.6666... is
written as 0.667 to three decimal places. In rounding off, use will be made of the Computer’s Rule:

(a) Increase the last digit retained by 1 if the digits rejected exceed the sequence 50000.... For example,
2.384629... becomes 2.385 to three decimal places.

(b) Leave the last digit retained unchanged if the digits rejected are less than 5000.... For example,
2.384629... becomes 2.38 to two decimal places.

(¢) Make the last digit retained even if the digit rejected is exactly 5; for example, to three decimal places
11.3865 becomes 11.386 and 9.3815 becomes 9.382.

PERCENTAGE. The symbol %, read percent, means per hundred; thus; 5% is equivalent to 5/
100 or 0.05.
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Any number, when expressed in decimal notation, can be written as a percent by multiplying by 100 and adding
the symbol %. For example, 0.0125 = 100(0.0125)% = 1.25% = 11 %, and 7/20 = 0.35 = 35%.

Conversely, any percentage may be expressed in decimal form by dropping the symbol % and dividing by 100.
For example, 42.5% = 42.5/100 = 0.425,3.25% = 0.0325, and 2000% = 20.

When using percentages, express the percent as a decimal and, when possible, as a simple fraction. For example,
419% of 48 = 0.0425 - 48 = 2.04 and 121 % of 5.28 = 1/8 of 5.28 = 0.66. (See Problems.)

THE IRRATIONAL NUMBERS. The existence of numbers other than the rational numbers may be inferred
from either of the following considerations:

(a) We may conceive of a nonrepeating decimal constructed in endless time by setting down a succession of
digits chosen at random.

(b) The length of the diagonal of a square of side 1 is not a rational number; that is, there exists no rational
number « such that ¢*> = 2. Numbers such as \/5, \ﬁ, \5/—_3, and = (but not J=3 or {75) are called irrational
numbers. The first three of these are called radicals. The radical /a is said to be of order n; n is called the
index, and a is called the radicand.

THE REAL NUMBERS. The set of real numbers consists of the rational and irrational numbers. The real
numbers may be ordered by comparing their decimal representations. For example, V2 =1.4142..; then
7/5=14<+2,3/2=1.5> /2, ctc.

We assume that the totality of real numbers may be placed in one-to-one correspondence with the totality of
points on a straight line. See Fig. A2-3.

v

Fig. A2-3

The number associated with a point on the line, called the coordinate of the point, gives its distance and
direction from the point (called the origin) associated with the number 0. If a point 4 has coordinate a, we shall
speak of it as the point A(a).

The directed distance from point A(a) to point B(b) on the real number scale is given by 4B =b—a. The
midpoint of the segment 4B has coordinate %(a +b).

THE COMPLEX NUMBERS. In the set of real numbers there is no number whose square is —1. If there is to be
such a number, say, V=1, then by definition (V=12 = —1. Note carefully that (V=1)? = J=1v=1 = J(=1(=])) =

V1 =1 is incorrect. In order to avoid this error, the symbol i with the following properties is used:

Ifa>0,v=a=iJa, i#=-I

Then (V=2 =V-2V=2 =2 (W) = -2=-2

and V=2V=3 = (iV2) ((W3B) = V6 = =6

Numbers of the form a + bi, where a and b are real numbers, are called complex numbers. In the complex
number a + bi, a is called the real part and bi is called the imaginary part. Numbers of the form ci, where c is real, are
called imaginary numbers or sometimes pure imaginary numbers.

The complex number a + bi is a real number when » = 0 and a pure imaginary number when a = 0.

Only the following operations will be considered here:
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To add (subtract) two complex numbers, add (subtract) the real parts and add (subtract) the pure imaginary
parts; that is, (a + ib) + (¢ + id) = (a + b) + (b + d)i.

To multiply two complex numbers, form the product treating i as an ordinary number and then replace i
by —1; that is, (a + ib)(c + id) = (ac — bd) + (bc + ad)i.

Supplementary Problems

1.  Arrange each of the following so that they may be separated by <.
(a) 2/3, -3/4,5/6, —1, 4/5, —4/3, —1/4
() 3/2,2,7/5,4/3,3
(©  3/2, V3, =1/2, /5,0

2. Determine the greater of each pair.
(@ 14+ 2] and [ -4 +](=2)
() 14+ (=2) and [4] + |(=2)|
(¢) 14—=(=2) and |4] - 1(=2)|

3.  Convert each of the following fractions into equivalent fractions having the indicated denominator:

(@ 3/5,15
(b =3/5,20
(o /3, 42
d 5/7,35

() 12/13, 156

4.  Perform the indicated operations.
(@ (=2)(3)(=5)
b 3E2BD+ OO
(c) —-8—=(=6) +2
(d) 3/4+2/3
(e) 3/4-2/3
() 5/6-1/2-2/3
(g) 3/4-7/12-1/3
(h)  (1/2)(8/9)(6/5)
(i) 3/8 x 5%
() 2ix2Zx1Zx2l

(k) 25/32 + 35/64

(I 3% +7/10
(m) Afx2h+ 1}
™ e

© %
(p) 15-23

3oL
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5.

Perform the indicated operations.

(@ 53+ 23 -88
() V2 + /32 - 38
() J12-36
(d) (1+ v2)(3-v2)
(0 V3 + 3v2)(2V3 - 3V2)
() 43 =35 0QV3 + V5
(@) 4-243
53
245 = 32
35 + 442
32 — 43
W2 + 33

(h)

(@)

Perform the indicated operations.
(@) /12 + 75 — /108

(b)  iW50 = /32 — iV8

(© 27 + 2412 - 5/-88
(d) 3v=20 + 5=80 — =45

() V=9 -16
() V=12 - V=27

(9) 32+
(h) (=3 + 5) + (4 — 2i)
(i) B+ 5) — (-4 — 20

() G+5HQ2-17)

(k) V3 + iV2) 33 -35iV2)
() G-=20( + 5) (=2 - i)

(m) i73

Answers to Supplementary Problems

(a) —4,3, =1, =3/4, —1/4, 2/3, 4/5, 5/6
(b) 4/3,7/5,3/2,2,3
(0 =5, -1v2,0,3/2, 43

(a) Second
(b)  Second
(¢) First

(@ 9/15

(b -12/20
(0) 98/42
(d) 25/35
(&) 144/156

419
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(@)
(b)
@]
()
(e)
(2]
(9]
(h)
(@)
)
(k)
@)
(m)
(n)
(0)
(»)

(a)
(@]
(c)
(d)

(@3]
()

(h)

(a)
(b)
(o)
()
(e)
(@8]
©)
()
@)
)
(k)
(O]
(m)

10/7
100/21
3

2/5

-34
—70/117

-3

3V2

62
14242
-6

9 — 215

4W3-6
15
54 — 17410
13

12 + 7./6
5

—3+6i
143i
747
41—11i
28 — 7iv/6
—13 — 39

i
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Appendix C

Mathematical
Modeling

ONE OF THE MOST IMPORTANT CHANGES in the precalculus curriculum over the last 10 years is the
itroduction into that curriculum of mathematical modeling. Certainly it is the case that problems and problem
solving have been a significant part of that curriculum. How is modeling different?

According to the National Council of Teachers of Mathematics’ publication, Mathematical Modeling in the
Secondary School Curriculum, a mathematical model is ... a mathematical structure that approximates the features
of phenomenon. The process of devising a mathematical model is called mathematical modeling.” (Swetz and
Hartzler, NCTM, Reston, Virginia 1991.) Thus, one can see that mathematical modeling does not in any way replace
problem solving in the curriculum. Instead, it is a kind of problem solving.

EXAMPLE. One of the most significant applications of modeling in mathematics is in the area of population growth. Table A3.1
gives the population for a culture of bacteria from time = 0 until r =5 s.

Table A3.1

Time (7) Population (p) in millions
0 0

R W N
~N BN

See Fig. A3-1 for the graph of these data with x axis representing ¢ and y axis representing p.

Notice that for the times from 0 to 2, the graph in Fig. A3-1 is linear. In fact, it is approximately linear through
t = 4. Let us find the equation of the line that approximates these data: Since the data contain the points (1, 1) and
(2,2), a reasonable model for these data is the equation y = x. This equation, y = x, or, in function form,

px)=x

is a linear model. We can use this linear model to predict the population of this community.

421
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Fig. A3-1
For example, p(x) = x predicts that
p(3)=3.
Since p(3) = 4, our model is off by 25%. P(x) = x predicts that

péd)=4

but p(4) = 5, so the model is off by 20%.
The reader should ask herself/himself whether the quadratic model

2
P =%

is a better model for these data. For example, what is the percent error for 1 = 2, 3,4, etc.? What do these two models
predict in terms of growth for various larger values of #? If the population at time 10 is 35, which is the better model?
Using the example above, we see that the critical steps in modeling are as follows:

(a) Conjecture what model best fits the data given (or observed).
(b) Analyze the model mathematically.

(¢) Draw reasonable conclusions based on the analysis in (b).

In the example above, we
(a) Conjectured that a linear model provided a reasonable fit for given data.
(b) Conjectured a model and analyzed it mathematically.

(¢) Drew conclusions which included testing an additional model.

Supplementary Problems

1. For the following data from the U.S. Census:

Year Population of U.S.
1950 150,697,000
1940 131,669,000
1930 122,775,000
1920 105,711,000

1910 91,972,000
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1900
1890
1880
1870
1860
1850
1840
1830
1820
1810
1800
1790

75,995,000
62,480,000
50,156,000
38,558,000
31,443,000
23,192,000
17,069,000
12,866,000
9,638,000
7,240,000
5,308,000
3,929,000

(a) Graph these data, using the vertical axis for population (in millions).

(b) For which years is the graph almost linear? Ans. From 1880 to 1900

(¢) Find the equation of an approximating linear model for these data.

(d) Use your model in (¢) to predict the population in 1980.
(NOTE: The actual population in 1980 was 227 million.)

(¢e) What is the percent error in your model for 1980?

(f) Construct a quadratic model for these data.

(Hint: Review Chapter 35 before attempting this.)

(g)  Which is the better model for the above data: a linear function or a quadratic function? Why?

423



Abscissa, 13
Absolute inequality, 42

Absolutely convergent series, 384, 385

Acceleration, 362-363
Algebra, 3, 414-417
Algebraic expressions, 3, 355-356
Algebraic sums, 187
Alternating series, 384
Amplitude, 186
Angle(s):
acute, 169-170, 178—179
complementary, 170
coterminal, 161, 178
direction, 285-286
first quadrant, 161
initial side of, 155
measures of, 156
negative, 178
plane, 155
positive vs. negative, 155
quadrantal, 161
related, 180
terminal side of, 155
vectorial, 394
vertex of, 155
Arc length, 156—157
Arccos, 223, 224
Arccot, 224
Arccsc, 224
Arcsec, 224
Arcsin, 223, 224
Arctan, 223, 224

Area, summation method of calculating, 372

Arithmetic mean, 76
Arithmetic progressions, 75—76
Arithmetic series, 84
Asymptotes, 48-49
Average, 76
Axis(-es):

coordinate, 283

of imaginaries, 243

of reals, 243

of symmetry, 47-48, 138

Base, 3
Bijections, 9
Binomial theorem, 92-93

Calculator, graphing, 410-412
Cardioid, 396

Cartesian coordinates, 13
Chords, 254, 256, 259

Circle, 64-65

Circular permutations, 101
Cofunctions, 170

Combinations, 104
Common denominator, least, 416
Common difference, 75
Common logarithm(s), 304
Common ratio, 76—77
Comparison test (for convergence),
383-384
Completing the square, 33-34
Complex numbers, 242—-246, 417
Complex plane, 243
Composite numbers, 415
Computer’s Rule, 416
Concave functions, 361-362
Concavity, 361
Conchoid of Nicomedes, 409
Conditional equations, 232
Conditional inequality, 42
Conditionally convergent series, 384
Conic sections, 254262
ellipse, 256—258
hyperbola, 259-262
parabola, 254-256
Conjugate axis (of hyperbola), 259
Conjugate complex numbers, 242
Conjugate hyperbolas, 262
Constant equations, 24
Constants, 8
Continuity (on a closed interval), 346
Continuous functions, 346
Convergence, 383—384, 389
Convergent series, 383—384
Coordinate axes, 272—275, 283
Coordinate planes, 283
Coordinates, 13, 417
Cos [see Cosine(s)]
Cosecant (csc), 162, 169, 178, 179, 184,
186, 224
Cosine(s) (cos):
of coterminal angle, 178
definition of, 162
direction, 285-286
graph of, 185
inverse of, 223, 224
law of, 213
line representation of, 184
of negative angle, 178
products of sines and, 207
reduction formulas for, 178, 179
in right triangle, 169
sum/difference of sines and, 207
of two angles, 195
variations of, 184

Cotangent (cot), 162, 169, 178, 179, 184,

185, 224
Coterminal angles, 161, 178
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Cramer’s rule, 130

Csc (see Cosecant)

Cycle (in repeating decimal), 416
Cycloids, 340

Decimal system, 416

Decimals, 416

Decreasing functions, 360

Definite integral, 372

Degenerate loci, 47

Degrees (definition), 156

De Moivre’s theorem, 245

Dependent equations, 24

Dependent events, 110

Dependent systems, 130

Dependent variable, 8, 9

Derivative(s), 347, 360—363

Descartes’ rule of signs, 319,330

Determinants of order n, 122—125

Determinants of order three, 118—119

Determinants of order two, 117-118

Diagonals, 117

Differentials/differentiation, 347,
355-356, 363

Dilations, 145-147

Direct variation, 20

Direction angles, 285-286

Direction cosines, 285-286

Direction number device, 287288

Directrix, 254, 257, 259

Discriminant (of quadratic equation), 34

Distance between two points, 284—285

Divergent series, 383

Domain (of a function), 9

Double-angle trigonometric formulas,
195

Double root, 312

Eccentricity, 257, 259
Elementary mathematics, 414
Elements (of a determinant), 122—123
Ellipse, 51, 256258, 341, 395
Empirical (statistical) probability, 109,
111-112

Equation(s):

of circles, 64—65

conditional, 232

constant, 24

definition of, 19

dependent, 24

equivalent, 395

exponential, 304

homogeneous, 130, 295

identical, 232

independent, 24
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linear, 19, 24-28, 129-130
locus of, 47-49
nonhomogeneous, 130
parametric, 336—337
quadratic, 19, 33—35, 294-296
second-degree, 272, 275-276
of straight line, 54
symmetrical, 296
trigonometric, 232-233
(See also Polynomial equations)
Equilateral hyperbolas, 261-262
Equivalent equations, 395
Events, 109, 110
Exponential curve, 307-308
Exponential equations, 304
Exponential functions, 307-308
Exponents, 3, 4
Extraneous value, 21

Factoring, 33
Families of lines, 60
Fibonacci sequence, 379
Finite sequences, 75
Finite series, 84
First octant, 283
First quadrant angle, 161
Fixed points, 136
Focal chords, 254, 256, 259
Focal radii, 254
Focus(foci), 254, 256
Fractional exponents, 4
Function(s), 8
cofunctions, 170
concave, 361-362
continuous, 346
decreasing, 360
definite integral of a, 372
domain of, 9
exponential, 307-308
graphs of, 13-15
increasing, 360
indefinite integral of a, 371-372
inverse, 222224
limit of, 345
multivalued, 8
one-to-one, 223
periodic, 186
polynomial, 329-331
power, 307
quadratic, 33
range of, 9
single-valued, 8
(See also Trigonometric functions)
Fundamental principle of permutations,
98-99
Fundamental relations (trigonometric
functions), 189

General term (of a sequence), 377
Generalized ratio test, 384—385
Geometric mean, 76, 77
Geometric progression(s), 76—77
Geometric series, infinite, 8485
Graphing calculator, 410412
Graphs:

of complex numbers, 243—244

of functions, 13—15

of inverse trigonometric functions,

223-224

of polynomials, 329-331
of quadratic functions, 33
of trigonometric functions, 183—187

Half-angle trigonometric formulas, 196
Higher-order derivatives, 347

Homogeneous equations, 130, 295
Homogeneous expressions, 295

Horizontal asymptotes, 48—49

Horizontal lines, 54

Horner’s method of approximation, 322-323
Hyperbola, 51, 259-262

Hypotenuse, 169

Identical equations, 232

Identities, trigonometric, 190, 232
Images, 136—137, 139-140, 142
Imaginary numbers, 242, 417
Imaginary part (of complex numbers), 417
Inconsistent equations, 24
Inconsistent systems, 130
Increasing functions, 360
Increments, 346

Indefinite integral, 371-372
Independent equations, 24
Independent events, 110
Independent variable, 8, 9
Induction, 88

Inequality(-ies), 4243

Infinite geometric series, 84—85
Infinite sequences, 377—379, 383
Infinite series, 8485, 383385, 389
Inflection points, 362

Integers, 414-415
Integrals/integration, 371-372
Intercepts, 47

Interval of convergence, 389
Inverse functions, 222224

Inverse trigonometric functions, 222225
Inverse variation, 20

Irrational numbers, 417

Irrational roots, 319-323

Law of cosines, 213
Law of sines, 211
Least common denominator, 416
Limit(s), 345-346, 377-379
Limiting value of the decimal, 85
Line symmetry, 137-138
Line(s):
angle between two directed, 287
direction angles of a, 285-286
direction cosines of a, 285-286
direction numbers of a, 287288
horizontal, 54
intersecting, 285
parallel, 54, 285, 287
perpendicular, 54, 287
reflection in a, 137
skew, 285
straight, 54, 60—61
vertical, 54
Linear equation(s), 19
detached coefficients for solving, 2628
in one unknown, 19
simultaneous, 2428
systems of, 129-130
in three unknowns, 26
in two unknowns, 24-25
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Locus (loci), 47-49, 396
Logarithm(s), 303—304
Logarithmic curve, 308

Lower limit (of real roots), 312

Major axis (of ellipse), 256

Mathematical induction, 88

Mathematical modeling, 421422

Mathematical (theoretical) probability,
109111

Mathematics, elementary, 414

Matrix(-ces), 26—28

Maximum, relative, 18, 361

Maximum ordinate, 186

Mean, 76-77

Method of successive linear approximations,
321-322

M-fold root, 312

Minimum, relative, 18, 361

Minor axis (of ellipse), 256

Minutes, 156

Modeling, mathematical, 421-422

Modulus (of a complex number), 244

Motion, direction of, 363

Multivalued functions, 8

Mutually exclusive events, 109, 110

Natural logarithms, 304

Natural numbers, 414

Negative integers, 414
Nonhomogeneous equations, 130
Normal probability curve, 310
nth roots, 3—4

Number system, 414-417
Numerical value, 414

Oblique triangles, 211-213
Octant, 283

One-parameter families of circles, 65
One-parameter systems of lines, 60
One-sided limits, 345-346
One-to-one functions, 223
Ordered pairs, 13

Ordinary induction, 88

Ordinate, 13, 186

Origin, 13, 144, 283, 417
Orthogonal circles, 73

Parabola, 16—17, 254-256
Parallel lines, 54, 285, 287
Parameters, 60, 336
Parametric equations, 336337
Patterns (in reflections), 140—141
Pedal curve, 341
Percentages, 416—417
Period (wavelength), 186
Periodic functions, 186
Permutations, 98—99, 101, 104
Perpendicular lines, 54, 287
Plane(s), 136, 243, 283
Plane angles, 155
Plane trigonometry, 155
Point symmetry, 138—139
Point(s):
coordinates of, 417
distance between two, 284—285
fixed, 136
image of a, 137, 142
inflection, 362
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Point(s) (Cont.):
on the locus, 396
reflection in a, 138139
relative maximum,/minimum, 361
in space, 283—288
Polar axis, 394, 396
Polar coordinates, 394-397
Polar curves, 395-398
Polar form (complex numbers), 244
Pole, 394, 396
Polynomial equations, 312—314, 319-323
Polynomial functions (polynomials), graphs
of, 329-331
Positive integers, 414
Positive number, logarithm of a, 303
Power functions, 307
Power series, 389
Prime numbers, 415
Principal diagonal, 117
Principal nth root of @, 4
Principal value (inverse trigonometric
functions), 224-225
Probability, 109—112
Probability curve, normal, 310
Proportion, 19
Pure imaginary numbers, 242, 417
Pure imaginary part (of a complex number),
242

Quadrantal angles, 161, 163

Quadrants, 13, 161

Quadratic equation(s), 19, 33—35, 294-296

Quadratic form, equations in, 34

Quadratic formula, 34

Quadratic functions, graph of, 33

Quadratics, simultaneous equations involving,
294-296

Radians, 156
Radical, 4
Radicand, 4
Radius vector, 394
Range, 8, 9
Ratio, 19
Ratio test (for convergence), 384-385
Rational numbers, 415-417
Rational roots, 313-314
Real numbers, 417
Real part (of complex numbers), 417
Rectangular coordinates, 13, 395
Rectangular form (complex numbers),
244-245

Rectangular hyperbola, 261-262
Recursively defined sequences, 379
Reduced form:

of equation:

for hyperbola, 259-260
for parabola, 254—255

of second-degree equation, 275-276

(See also Semireduced form)
Reflections, 137141
Related angle, 180
Relative maximum, 18, 361
Relative minimum, 18, 361
Remainder theorem, 329

Repeating decimal, 416

Right triangles, 169

Root(s), 3-4, 15, 246, 312-314, 319-323
Rotations, 143145, 147, 274-275
Rounding off, 416

Secant (sec), 162, 169, 178, 179, 184,
186, 224
Second-degree equation(s), 272, 275-276
Secondary diagonal, 117
Seconds, 156
Semicubic parabola, 308
Semireduced form:
of equation:
for ellipse, 258
for hyperbola, 260-261
for parabola, 255-256
of second-degree equation, 275
Sense, 42
Sequences, 75-76, 377-379, 383
Series, 84-85, 384, 385
(See also Infinite series)
Sigma notation, 85
Signs, 319, 330
Simple root, 312
Simultaneous linear equations, 24-28
Sin [see Sine(s)]
Sine(s) (sin):
of coterminal angle, 178
definition of, 162
graph of, 185
inverse of, 223, 224
law of, 211
line representation of, 184
of negative angle, 178
products of cosines and, 207
reduction formulas for, 178, 179
in right triangle, 169
sum/difference of cosines and, 207
of two angles, 195
variations of, 184
Sine curve(s), 186
Single-valued functions, 8
Sinusoid, 186
Skew lines, 285
Slope, 54, 397-398
Speed, 363
Square, completing the, 33—34
Standard position, angles in, 161
Statistical (empirical) probability, 109,
111-112
Straight line(s), 54, 60—61
Successive linear approximations, method of,
321-322
Sum(s):
algebraic, 187
of complex numbers, 242244
of first n terms:
of arithmetic progressions, 75-76
of geometric progression, 76
of an infinite sequence, 383
of infinite series, 84—85
of sines and cosines, 207
Summation, area by, 372
Symmetrical equations, 296
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Symmetry, 47, 137-139, 145
Synthetic division, 329-330
Systems of linear equations, 130

Tangent(s) (tan):
to a circle, 65
of coterminal angle, 178
definition of, 162
graph of, 185
inverse of, 223, 224
line representation of, 184
of negative angle, 178
reduction formulas for, 178, 179
in right triangle, 169
of two angles, 195
variations of, 184
Test ratio, 384
Theoretical (mathematical) probability,
109-111
Transformations, 136, 147, 277, 395
Translation(s), 141-147, 272-274
Transverse axis (of hyperbola), 259
Triangles, 137, 142, 146—147, 169,
211-213
Trigonometric equations, 232-233
Trigonometric form (complex numbers), 244
Trigonometric functions, 155
of acute angles, 169—170
algebraic signs of, 163
cofunctions, 170
of complementary angles, 170
of coterminal angles, 178
fundamental relations for, 189
of a general angle, 161-163
graphs of, 183-187
inverse, 222225
line representations of, 183—184
of negative angles, 178
of quadrantal angles, 163
simplifcation of expressions
involving, 189—-190
of 30°/45°/60°, 170
of two angles, 195-196
variations of, 184
Trigonometric identities, 189, 190
Trigonometry, 155
Triple root, 312

Upper limit (of real roots), 312
Variables, 8, 9

Variation, 20, 319

Vectorial angle, 394

Velocity, 362—363

Vertex(-ices), 33, 155, 254, 256, 259
Vertical asymptotes, 48—49
Vertical lines, 54

Wavelength (period), 186

X intercepts, 47

y intercepts, 47

Zero (as exponent), 4



