SCHAUM'S

oulTlines

CALCULUS OF FINITE DIFFERENCES
AND DIFFERENCE EQUATIONS

MURRAY R. SPIEGEL

-
The perfect aid for better grades

-
Covers all course fundamentals and

supplements any class text
o

Teaches effective problem-solving
-

Features fully worked problems
- @
Ideal for independent study

THE ORIGINAL AND MOST POPULAR
COLLEGE COURSE SERIES AROUND THE WORLD




SCHAUM'S OUTLINE OF

THEORY AND PROBLEMS

OF

Calculus of

FINITE DIFFERENCES

DIFFERENCE EQUATIONS

MURRAY R. SPIEGEL, Ph.D.

Former Professor and Chairman
Mathematics Deparimeni
Rensselper Polytechnic Institute
Hortford Graduate Center

el
Hil
SCHAUM'S OUTLINE SERIES

McGraw-Hill, Inc.

Mew York 5t Louis San Francisco Auckland Bogoui
Caracas Lisbon London Madrid Mexico City Milan
Montreal MNew Delhi  San Juan Singapore
Sydney Tokyo Toronio



QA
431
S68
1971

Copyright © 1971 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

07-060218-2
.2345678910 SHSH 75432108



Preface

In recent years there has been an increasing interest in the calculus of finite differences
and difference equations. There are several reasons for this. First, the advent of high
speed computers has led to a need for fundamental knowledge of this subject. Second,
there are numerous applications of the subject to fields ranging from engineering, physics
and chemistry to actuarial science, economics, psychology, biology, probability and statistics.
Third, the mathematical theory is of interest in itself especially in view of the remarkable
analogy of the theory to that of differential and integral calculus and differential equations.

This book is designed to be used either as a textbook for a formal course in the calculus
of finite differences and difference equations or as a comprehensive supplement to all current
standard texts. It should also be of congiderable value to those taking courses in which
difference methods are employed or to those interested in the field for self-study.

Each chapter begins with a clear statement of pertinent definitions, principles and
theorems, together with illustrative and other descriptive material. The solved problems
serve to illustrate and amplify the theory, bring into sharp focus those fine points without
which the student continually feels himself on unsafe ground, and provide the repetition of
basic principles so vital to effective learning. Numerous proofs of theorems and derivations
of formulas are included among the solved problems. The large number of supplementary
problems with answers serves as a complete review of the material of each chapter.

Topics covered include the difference calculus, the sum calculus and difference equations
[analogous to differential calculus, integral calculus and differential equations respectively]
together with many applications.

Considerably more material has been included here than can be covered in most first
courses. This has been done to make the book more flexible, to provide a more useful book
of reference, and to stimulate further interest in the topics.

I wish to take this opportunity to thank Nicola Monti, David Beckwith and Henry
Hayden for their splendid cooperation.
M. R. SPIEGEL
Rensselaer Polytechnic Institute
November 1970
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Chapter 1

~ The Difference Calculus

OPERATORS

We are often concerned in mathematics with performing various operations such as
squaring, cubing, adding, taking square roots, ete. Associated with these are operators,
which can be denoted by letters of the alphabet, indicating the nature of the operation
to be performed. The object on which the operation is to be performed, or on which the
operator is to act, is called the operand.

Example 1.
If Cor[ ]3isthe cubing operator and x is the operand then Cx or | ]3x represents the cube of x, i.e. z3.

Example 2.

If D or a is the derivative operator and the operand is the function of x given by f(x) = 2x%~— 322+ 5
then
Dfx) = D@wi—38a2+5) = 0—%(2904— 322+5) = 8% — 6a
Example 3.
If g or f ( )dx is the integral operator then
5
G2t~ 3224+ 5) = [f ( )daa:](2x4—3x2+5) = f (224 — 822+ 5) dx = 32”—— @3+ 5x+c
where ¢ is an arbitrary constant.
Example 4.
The doubling operator can be represented by the ordinary symbol 2. Thus
2224 —38x245) = 4ot — 622+ 10
It is assumed, unless otherwise stated, that the class of operands acted upon by a given
operator is suitably restricted so that the results of the operation will have meaning.

Thus for example with the operator D we would restrict ourselves to the set or class of
differentiable functions, i.e. functions whose derivatives exist.

Note that if A is an operator and f is the operand then the result of the operation is
indicated by Af. For the purposes of this book f will generally be some function belonging
to a particular class of functions.

SOME DEFINITIONS INVOLVING OPERATORS

1. Equality of operators. Two operators are said to be equal, and we write A =B or
B = A, if and only if for an arbitrary function f we have Af = Bf.

2. The identity or unit operator. If for arbitrary f we have If =f then I is called the
identity or unit operator. For all practical purposes we can and will use 1 instead of I.

3. The null or zero operator. If for arbitrary f we have Of =0 then. O is called the null
or zero operator. For all practical purposes we can and will use 0 instead of O.

1



2 THE DIFFERENCE CALCULUS [CHAP. 1

4, Sum and difference of operators. We define
(A +B)f = Af + Bf, (A—B)f = Af - Bf (1)

and refer to the operators A 4B and A — B respectively as the sum and difference of
operators A and B.

Example 5. (C+D)a2 = Cu?+ D22 = a6+ 2z, (C—D)w? = Ca?— Da? = x8 — 2

5. Product of operators. We define
(A-B)f = (AB)f = A(B/) (2)

and refer to the operator AB or A+ B as the product of operators A and B. If A=B
we denote AA or A+ A as A% '

Example 6. (CD)s2 = C(Dz?) = C(2x) = 8«3, C2x2 = C(Cz?) = C(x6) = w18

6. Linear operators. If operator A has the property that for arbitrary functions f and g
and an arbitrary constant «
A(f+g9) = Af + Ag, Afaf) = <Af (9

then A is called a linear operator. If an operator is not a linear operator it is called
a non-linear operator. See Problem 1.3.

7. Inverse operators. If A and B are operators such that A(Bf) =f for an arbitrary
function f, i.e. (AB)Yf=f or AB=I or AB=1, then we say that B is an inverse of
A and write B=A-1=1/A. Equivalently A~'f = ¢ if and only if Ag=/.

ALGEBRA OF OPERATORS

We will be able to manipulate operators in the same manner as we manipulate algebraic
quantities if the following laws of algebra hold for these operators. Here A, B, C denote
any operators.

I-1. A+B =B+A4A Commutative law for sums
I-2. A+(B+C) = A+B)+C Associative law for sums

I-3. AB = BA Commutative law for products
1-4. A(BC) = (AB)C Associative law for products
1-5. AB+C) = AB+ AC Distributive law

Special care must be taken in manipulating operators if these do not apply. If they do
apply we can prove that other well-known rules of algebra also hold, for example the
index law or law of exponents AmA™=A™"" where A™ denotes repeated application of

operator A m times.

THE DIFFERENCE OPERATOR
Given a function f(x) we define an operator 4, called the diﬁerence operator, by
Af(x) = flx+R) — f(2) (4)
where h is some given number usually positive and called the difference interval or
differencing interval. If in particular f(x) = « we have

Ax = (x+h)—x = h or h = Az 5)

Successive differences can also be taken. For example
A%f(x) = A[af(z)] = Alf(x+ k) —f(z)] = f(@+2h) — 2f(x + k) + f(x) (6)



CHAP. 1} THE DIFFERENCE CALCULUS 3 |

We call A? the second order difference operator or difference operator of order 2. In gen-
eral we define the nth order difference operator by

AMf(z) = Alamtf(x))] (@)

THE TRANSLATION OR SHIFTING OPERATOR
We define the translation or shifting operator E by
Ef(x) = f(x+h) (8)
By applying the operator twice we have
E*f(x) = E[Ef(z)] = E[f(x+h)] = f(x+2h)

In general if # is any integer [or in fact, any real number], we define

Erf(x) = f(x +nh) 9
We can show [see Problem 1.10] that operators E and A are related by
A=FKE—-1 or FE=1+A (10)

using 1 instead of the unit operator I.

THE DERIVATIVE OPERATOR

From (4) and (5) we have
é_f_(x_) — f(x+h)"‘f(x) (11)

; A h
where we can consider the operator acting on f(x) to be A/Axz or A/h. The first order
derivative or briefly first derivative or simply derivative of f(x) is defined as the limit
of the quotient in (11) as h or Az approaches zero and is denoted by

Dfw) = flo) = lim 28— gy EEN 1) (12)

Az—0 AX herQ

if the limit exists. The operation of taking derivatives is called differentiation and D is
the derivative or differentiation operator.

The second derivative or derivative of order two is defined as the derivative of the
first derivative, assuming it exists, and is denoted by

D*f(x) = D[Df(x)] = f*(x) (13)
We can prove that the second derivative is given by
. AM(x) _ .. f(x+2h) — 2f(x+h) + f(x)
2 = —_—
D¥() M ey Hm 72
and can in fact take this as a definition of the second derivative. Higher ordered derivatives
can be obtained similarly. '

(14)

THE DIFFERENTIAL OPERATOR

The differential of first order or briefly first differential or simply differential of a

i is defi b
function f(x) is defined by df(x) = f(x)yazx = f(x)k 12

In particular if f(z) =« we have dx = Ax =k so that (15) becomes
df(x) = f'(x) da = f(x)h or df(z) = Df(x)dx = hDf(x) (16)
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We call d the differential operator. The second order differential of f(x) can be defined as
&f(x) = f(@)ax)? = f(x)de)? (27)
and higher ordered differentials are defined similarly. v
Note that df(x), dz =ax =h, d?f(z), (dx)® = (Ax)®>=h* are numbers which are not
necessarily zero and not necessarily small.
It follows from (16) and (17) that

ey = 0D — prwy, ) = T = popa), (18)

where in the denominator of (18) we have written (dx)* as da® as indicated by custom or
convention. It follows that we can consider the operator equivalence

_d _ a2
D—E_i’ Dz—w, (19
A . A? A?
Similarly we shall write Bay f(x) as A f(x)

RELATIONSHIP BETWEEN DIFFERENCE, DERIVATIVE AND
DIFFERENTIAL OPERATORS

From (16) we see that the relationship between the derivative operator D and the

differential operator d is
p.d_d
T dx T h
Similarly from (12) and (16) we see that the relationship between the difference operator A
and the derivative operator D is p )

. A . A
D = lim— = limy = == (21)

or d = kD (20)

Az—0 AL hoo I

with analogous relationships among higher ordered operators.

Because of the close relationship of the difference operator A with the operators D and
d as evidenced by the above we would feel that it should be possible to develop a difference
calculus or caleulus of differences analogous to differential calculus which would give the
results of the latter in the special case where h or Ax approaches zero. This is in fact
the case as we shall see and since % is taken as some given constant, called finite, as opposed
to a variable approaching zero, called infinitesimal, we refer to such a calculus as the calculus
of finite differences. v

To recognize the analogy more clearly we will first review briefly some of the results
of differential calculus.

GENERAL RULES OF DIFFERENTIATION

It is assumed that the student is already familiar with the elementary rules for dif-
ferentiation of functions. In the following we list some of the most important ones.

II-1. D[fx)+g(=)] = Df(w) + Dg(®)

I11-2. D[ef ()] = oDf(2) « = constant

11-3. D[f(x) g(x)] = f(z)Dg(z) + g(x) Df(x)
f(@) _ g(x) Df(x) — f(z) Dg(z)

e DL (x)] = et

II-5. Df(x)]™ = m[f(x)]" "' Df(x) m = constant
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11-6. Dlf(g(x))] = D[f(w)] where u= g(z)
= BB pew) g

= D.f-Dg where D,—d/du

The above results can equivalently be written in terms of d rather than D. Thus for
example II-3 becomes

dif(x)9(@)] = fl@)dg(@) + g(@)df(x) = [f(2)9'(z) + g(x)f(x)]d

DERIVATIVES OF SPECIAL FUNCTIONS
In the following we list derivatives of some of the more common functions. The con-

stant e =2.71828. .. is the natural base of logarithms and we write log.x as In z, called
the natural logarithm. All letters besides 2 denote given constants.

II1-1. Dic] = 0

II1-2. D™ = mxm !

II1-3. Dipx+q)™] = mplpx+qm?!

I11-4. D[b7] = b*lnbd

II1-5. D[e™] = re”

ITI-6. D[sin rz] = 7rCcosTr

II1-7. Dicos rx] = -rsinry

II1-8. DlIn z] = 1/z

LY. Dllomz] = %8¢ 50, b1

These results can also be written in terms of d rather than D. Thus for example III-2
becomes _ -
d(x™) = ma™ ldx

GENERAL RULES OF THE DIFFERENCE CALCULUS
The following results involving A bear close resemblances to the results 1I-1 to 1I-4 on
page 4.
V-, Af@) +g@)] = Af(@) + Ag(x)
V-2, Alaf(x)] = aAf(x) « = constant
1Vv-3. Alf(x) g(z)] f(x) Agl{x) + g(x+ h) Af(x)
g(z)af(x) + f(z+ h)Ag(x)
= f(®)ag(x) + g(x)sf(z) + af(x)Ag(x)
S[L] _ (@) af(@) — f(z) Ag(@)
9() g(x) g(x +h)
Note that if we divide by Az and let Az = 0 the above results become those of II-1 to 1I-4.

Iv-4.

FACTORIAL FUNCTIONS
Formula ITI-2 states that Dz™ = maz™1. In an effort to obtain an analogous formula

involving A we write azm (@t Ry — gm

Y h
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which however does not resemble the formula for Dx™. To achieve a resemblance we
introduce the factorial function defined by

™ = a(x—h)c—2h)- - -(x— [m—1]h) m=1,238,... (22)

consisting of m factors. The name factorial arises because in the special case x =m, h =1
we have m™ =m(m—1)(m~2)-.-2-1 =m!, ie. factorial m.

“If m =0, we define ™ =1, i.e.

x® = 1 (23)
For negative integers we define [see Problem 1.18(a)]
1 1
(—m) —_ = S — -
e N R R rE = R e R

Note that ags b= 0, ™ » g7, 0™ > g™,
- - Using (22), (23), (24) it follows that [see Problems 1.17 and 1.18(b)] for all integers m

Ax(m)
AZ

in perfect analogy to Da™ = ma™ ! and d(z™) = ma™ 'dx respectively.

= mx™ P  or Az = me™ Vh (25)

We can also define z™ for nonintégral values of m in terms of the gamma function
[see page 103].

FACTORIAL POLYNOMIALS
From (22) we find on putting m =1,2,3, ...

0 = g
x® = 2 —ah
x® = 23 — 3x?h + 2xh? (26)

@ = gt — 6x%h + 11x2h? — 62h3
x® = x5 — 102*h + 3523h> — 50x2h3 + 24xh?
ete. If p is any positive integer, we define a factorial polynomial of degree p as
Q@ + @20 + o +oay
where @9+ 0,a1, ...,a, are constants. Using (26) we see that a factorial polynomial of
degree p can be expressed uniquely as an ordinary polynomial of degree p.

Conversely any ordinary polynomial of degree p can be expressed uniquely as a factorial
polynomial of degree p. This can be accomplished by noting that

r = z®
22 = 2@ + g®Op
2% = 2® 4+ 3xDp 4 xR L 27)

x4 — x(4) + 7x(3)h -+ Gx(Z)hZ + x(l)hS
& = 2 + 15eWh + 26a®h? + 102Ph + a VRt

ete. Another method for converting an ordinary polynomial into a factorial polynomial
uses synthetic division [see Problems 1.23-1.25].

STIRLING NUMBERS
~ Any of the equations (26) can be written as

x(n) — Z ngkhnﬁk (28)
k=1
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where the coefficients s; are called Stirling numbérs of the first kind. A recursion formula

for these numbers is i1 .\ N . )
spth = Sg-q — NS (29)

where we define s, =1, si=0 for k=0, k=n+1 where n>0 (30)

Similarly any of the equations (27) can be written as
o= 2 Shap® pa-—k (31)
k=1

where the coefficients Sk are called Stirling numbers of the second kind. A recursion
formula for these numbers is

St = Sk-1 + kSk (82)
where we define .
Sy=1, 8x=0 for k=0, k=Zn+1 where n>0 (33)
In obtaining properties of the Stirling numbers results are greatly simplified by
choosing k2 =1 in (28) and (31).
For tables of Stirling numbers of the first and second kinds see pages 232 and 233.

GENERALIZED FACTORIAL FUNCTIONS
The generalized factorial function corresponding to any function f(z) is defined by

F@]™ = f@)f@—) -2k fe—[m—1k) m=123 ...  (34)
{(—m) —_ 1 _

7)) = eI fEren  Jeimn L2 (85)

[fx)]” = 1 (36)

The special case f(z) =z yields (22), (24) and (23) respectively. It should be noted that as
k=0, [f(z)]™ = [f(z)]™ and [f(z)]"™ - [f(z)] ™.

DIFFERENCES OF SPECIAL FUNCTIONS

In the following we list difference formulas for special functions analogous to the
differentiation formulas on page 5. '

V-1. A[C] = 0 .
V2. Afz™] =  mxm-Dp o
V3. al@w+o™] = mph(ps -+

V-4. A[b7] = b¥b*—1)

V-5. Ale™] = e™(em—1)

V-6. Alsin 7] = 2 sin(rh/2) cosr(x + h/2)

V-7. Alcos rx] = —2gin(rh/2) sinr(x + h/2)

V-8. Alln z] In (1 + h/x)

V-9. Allogs 2] = logs(1+h/z) - R
Note that if we divide each of these results by Az =h and take _the lil:nit as Ax or h
approaches zero we arrive at the corresponding formulas for derivatives given on page 5.
For example V-5 gives

INCA . e — 1> = @y = e
. — rr = rer = ——(e = Dle
};To AX }Ll—{% ¢ ( h dx( ) (%)

Il
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TAYLOR SERIES

From the calculus we know that if all the derivatives of f(x) up to order n+1 at least
exist at a point @ of an interval, then there is a number 5 between ¢ and any point z of
the interval such that

fo) = f@ + r@e-o + COEZ0 L OGN g e
where the remainder R, is given by
f(n+1) — nt+1
Bn = ((12)J£x1)1a) (38)

This is often called Taylor’s theorem or Taylor’'s formula with a remainder. The case
where 7 = 0 is often called the law of the mean or mean value theorem for derivatives.

If lim R, = 0 for all z in an interval, then
n -0 7’ — 2
) = @) + P@@—a + LT (39)
is called the Taylor series of f(z) about z =a and converges in the interval. We can also
write (89) with « = ¢ +h so that
f//(a)h2
1

fla+h) = f@) + F@h + —5p— + (40)

The special case where a = 0 is often called a Maclaurin series.

Some important special series together with their intervals of convergence [i.e. the
values of x for which the series converges| are as follows. '

2 3 )
1. er = 1+x+%+%+--~ —oo L
3 5 7
2. sinx = x——%-l—%—%c—!—i—--- —oo L g < ©
2 4 6
3. cosx = 1—%+%—%+... < w
x2 2t ozt | _ _
4. ln(1+x) = x—§+§——4~+--- 1<zx=1
TAYLOR SERIES IN OPERATOR FORM
If in (40) we replace a by « we have
’r hZ
fath) = f@) + F@h + TOk 4 (42)
which can formally be written in terms of operators as
h2D?2  h*D?
Bflw) = [1+0D+ 50 +757 + @ = evsta

using the series for "’ obtained from the result 1 above on replacing z by hD. This leads
to the operator equivalence B = g 42)

or using (10), page 3, A=¢P—1 or eP=1+A 43)

Such formal series of operators often prove lucrative in obtaining many important results
and the methods involved are often called symbolic operator methods.
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THE GREGORY-NEWTON FORMULA

As may be expected there exists a formula in the difference calculus which is analogous
to the Taylor series of differential calculus. The formula is called the Gregory-Newton
formula and one of the ways in which it can be written is

Af(@) (x—a@)®  A(a) (x—a)® Af(a) (z — @)™

f@) = flo) + " "F7 —+ 2 a1 Tt mpm o ar T Ba ()
which is analogous to (37). The remainder R, is given by
(n+1) — (n+1)

(n+1)!
where 7 lies between ¢ and 2. If lim R, = 0 for all # in an interval, then (44) can be

written as an infinite series which converges in the interval.

If f(=) is any polynomial of degree 7, the remainder R, =0 for all z.

LEIBNITZ’S RULE

In the calculus there exists a formula for the nth derivative of the product of two
functions f(z) and g(z) known as Leibnitz’s rule. This states that

D) = w0 + (T)onoe) + (H)on0a + -+ ()@ e o)
where for brevity we have written f and g for f(x) and g(x) and where

—1)--(n—r+1 - n!
(Z) = )Tl(n - 1"!(7?—1")!’ 0t=1 (“47)

are the binomial coefficients, i.e. the coefficients in the expansion of (1 + x)“..

An analogous formula exists for differences and is given by

we) = (evg) + ()enwB) + (3 )enema + - + (3)enE 6

which we shall refer to as Leibnitz’s rule for differences. See Problem 1.36.

OTHER DIFFERENCE OPERATORS

Various other operators are sometimes used in the difference calculus although these
can be expressed in terms of the fundamental operators A and E. Two such operators are

v and 8 defined by Vie) = @) — flw—h) | (49)

Si@) = f(x+g> - f<x—g> (50)

We call v the backward difference operator [in contrast with A which is then called the
forward difference operator] and 8 the central difference operator. These are related to

A and & by vV = AE ' =1—-E* (51)
§ = EV2 _F-v2 = AE-12 = YEV? (52)
See Problems 1.38 and 1.39.
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Two other operators which are sometimes used are called averaging operators and are
denoted by M and . respectively. They are defined by the equations

Mf(x) = 3[f(@+h)+ f(x)] (59)
wf@) = 3|f (x + —;f) + (x - g)] (54)
Some relationships of these operators to the other operators aré given by
M= E+1) =1+3A (55)
o — %(E1/2+E’—1/2) (56)

See Problem 1.40.

Solved Problems

OPERATORS

11. If C is the cubing operator and D is the derivative operator, determine each of the
following.
(@) C2x+1) (e) (C+D)(4x+2) (k) (D*—2D +1)(3z%—bx + 4)
(b) D(4z — 5a?®) (H (D+C)4x +2) (?) (C—2)D + 3)a?

(© CD@Ez—3)  (g9) (C*—4C+1(z—1) () (aCaD)e®
(d) DC(2z—3)
() C2z+1) = (2x+1)3 (b) D(4x —528) = 4 — 152 (¢) CD2x—8) =C+2=28=8
(d) DC@2x—38) = D@2x—38) = 8(2x—3)?+2 = 6(2x —3)
Another method. DC(2x—3) = D(2x —3)3 = D[828 — 8642+ 54 — 27] = 242? — T2z + b4
Note that from (¢) and (d) it is seen that the result of operating with CD is not the same as

operating with DC, i.e. CD # DC so that C and D are nmoncommutative with respect to multi-
plication. :

() (C+D)4z+2) = CAz+2) + D(4x+2) = (do+2)7+4
() D+C)dx+2) = Ddxr+2)+ Cldr+2) = 4+ (4« -+ 2)3

The results (¢) and (f) illustrate the commutative law of addition for operators C and D,
ie. C+D=D+C.

@) @—1C+)F=1) = C(¥F=1) — 40We=1) + IVE=1) = (@— 1) —da—1 + Va1
(h) (D?—2D +1)(822— b5z +4) = DX3x2— b +4) — 2D(82% — 5z + 4) + 1(8x2 — bz + 4)
= 6—26x—5) +322—5x+4 = 322 — 1T + 20
() (C—2X(D+3)x? = (C—2)[Dx?+ 3822 = (C — 2)(2% + 3x2)
= C(2x+ 322 — 2(2x +84%) = (2x+ 3x2)3 — 2(2x + 3x2)
() (xCxD)ax® = xCux(D2a3) = 2C2(3x2) = xC(3x%) = x(2Tx%) = 27210

1.2. If D is the derivative operator and f is any differentiable function, prove the operator -
equivalence Dz —xD =1=1, i.e. the unit or identity operator.

We have p g
(Dz —2D)f = Duf — «Df = %(wf)—x% = xaiJrf—xz’; — § = If

Then for any differentiable f, (Dx—«D)f =If=1 or De—aD=1=1.



CHAP. 1] THE DIFFERENCE CALCULUS 11

13.

14.

THE
1.5.

Prove that (a) the cubing operator C is a nonlinear operator while (b) the derivative
operator D is a linear operator.
(@) If f and g are any functions we have

Clf+g) = (F+9B, Cf+Cg = f2+g°

Then in general since {f+ g)3 7= f3 4¢3 it follows that C(f+g) # Cf +Cg so that C cannot
be a linear operator, i.e. C is a nonlinear operator.

(b) If f and g are any differentiable functions, we have

- 4 9 _

Dif+g) = Iz + dz = Df + Dg
e s _ df _

Also if « is any constant, then D(af) = *as = aDf

Then D is a linear operator.

(a) If C denotes the cubing operator, explain what is meant by the inverse operator

C~1. (b) Does C~1 exist always? (c) Is C~! unique? Illustrate by considering C~(8).

(a¢) By definition B = C—! is that operator such that CBf(x)= f(s) or CB=1=1, the unit
or identity operator. Equivalently C~1f(z) = g(z) if and only if Cg(z) = f(x) or [g(x)]® = f(x),
i.e. g(x) is a cube root of f(x). Thus C~! is the operation of taking cube roots. As a particular
case C—1(8) is the result of taking cube roots of 8.

(b) If f(x) is real, then C~1[f(x)] will always exist but may or may not be real. For example if
C-1(8) is denoted by « then a3 =8, ie. (x—2)(2®+2¢+4) =0 and z = 2, —~1%=V34 so that
there are both real and complex cube roots. The only case where C~1f(x) is always real when
F(x) is real is if f(x) = 0.

If f(x) is complex, C~1f(x) always exists,

(¢) It is clear from (b) that C—1f(x) is not always unique since for example C~1(8) has three differ-
ent values. However if f(x) is real and if we restrict ourselves to real values only, then C—1f(x)
will be unique. Thus if we restrict ourselves to real values we have for example C-18) =2.

DIFFERENCE AND TRANSLATION OPERATORS
Find each of the following.
(@) A(22%+ 3x) (d) E%Bx—2) (9) (A+1)2Aa~-1)(2®>+22+1)
(b)y E(4x — x?) () (2a%+A—1)(x*+22+1) (R) (E—2)(E —1)(25™ + 2)
(€) A@3—a?)  (f) (B*—3E+2)2""+12)
(@) A2x2+3x) = [2(x+ h)2+8(x+ k)] — [222 + 32]
222 + 4hx + 2h2 + 3z + 3h — 222 — 8x = 4hx + 2h2 + 3R
() E(dx—2x?) = d(x+h) — (x+ k)2 = 4x + 4h — a? — 2ha — B2
(¢) A2(x8 — x?) Ala@d —22)] = A[{{z+ k)3 — (x + h)2} — (23 — 2?)]
A[8x2h + 3xh? + h8 — 2ha — h?|
= [3(x + h)2h + 3(x + A)h2 + k3 — 2h(x + k) — k%] — [3a%h + 3wh? + b3 — 2hx — h?]
6h2x + 6h3 — 2h2
(d) BE332z—2) = E2E(8x—2) = E3(x+h)—2] = E-E[3(x+h)—2]

= E[3(x +2h)—2] = 3(x+3h)—2
(@ @A +A—1)(@2+20+1) = 2822+ 20+1) + A2+ 22 +1) — 1(=2+ 22+ 1)

= 2A[{(z+h2+2(zx + k) + 1} — {x2 + 2z +1}]
+ [{{x+h)2+2(x+ k) + 1} — {2+22+1}] — 22— 20 — 1
= 2A[2hx + k2 + 2R] + [2ha + h2+2h] — o? — 20 — 1
2[{2h(x + k) + h2 + 2k} — {2hx + h2 + 2h}]
+ 2hax + A2+ 2R — a2 — 22— 1
= 5h2+ 2hx + 2h — 22 — 20 — 1

Neobe fhat we wne 1 in 242 + A — 1 instead of the unit or identily operator I

1l
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(f) (B2—3E+2)@e/h+q) = EA2%/M+ 1) — SE(25/h + z) + 2(2%/% + 1)
= (2@+2WV/h L g4 4 2h) — B(2GE+AIh 4 g 4 h) + 2@ +RI/K 4 2
= (42250 + g + 2h) — 3(2+ 25/h + @ + R) + 2 25/h + 2
= —h
(9) A+DEA—D@E2+2z+1) = (A+1D[2A(R2+ 25+ 1) — 1(2 + 20 + 1))
= (A+D)[2{(w+ )2+ 2(x + B) + 1} — 32+ 22 + 1))
= (A+1)[4he + 2h2 + 4h— a2 — 22 — 1]
= A[4ha + 2k + 4h — 22 — 25 — 1] + [dhao + 2h2 + 4h — % — 25 — 1]
= 4h(e+h) +2R2 4+ 4h ~ (2 +R)2 —2(x+h)— 1
= 5h2+ 2he + 2h — a2 — 22— 1

Note that this result is the same as that of (e¢) and illustrates the operator equivalence
A+1)(2A—1) = 2A2 4+ A —1.

() (B—20E—1)2h+x) = (E—2)[E@/" + ) — (25/h + )]
= (B —2)[(2=+W/h + g + h) — (25 + )]
(E —2)[2=/h + ]
= E[2s/h + h] — 2[2¢/h + h]
= 2(z+h)/h L | — 2+RI/h — 9,

= —h

Note that this result is the same as that of (f) and illustrates the operator equivalence
(E—2)(E—1) = E2 — 3E + 2.

Prove that (a) A[f(z)+g(x)] = af(x) +Ag(x) and (D) Alaf(x)] = of(@), « = constant,
and thus show that A is a linear operator.
(@) Alf(x)+9@)] = [fle+h)+g(=+h)] — [fz) +9@)]
= [flx+ k) — f@)] + [glx+ k) —g@)] = Af(@) + Ag(x)
() Alaf(@)] = [af(x+h)] — [of@)] = ea[f(x+h)~flx)] = aaf(x)

Then from the definition 6 on page 2 it follows that A is a linear operator.

Provethat (1) A[f(®)g(@)] = f(®)ag(®) + gz + ) af(x)
f(®)7 _ g@)af(@) — f(x) Ag(%)
o a[33] = e b

o+ k) glx + ) — f(x) g(=)
fle+R) 9@+ h) — f(®) glz+h) + f() glz + k) — f(z) g(2)
= glx+ h)[flx+ k)~ f@)] + f@)][g(x+ k) — g(»)]
g(x + k) Af(x) + f(x) Ag{zx)
f(x) Ag () + gz + k) Af(w)

f@)] - fleth [l
@) A [y(x):l gle+h) g
g(x) fle+ k) — f(x) g(z + k)

(@) A[f(z) g(x)]

il

I

g(x) g(x + k)
_ g@)[f(x+ k) — f=)] — F@)[g(@ + k) — g(@)]
- g(x) g(x + R)

_ 9(@) Af(x) — f(z) Ag(x)
g(x) g(x + k)
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1.8. Prove formulas (a) V-4 (b) V-5 (c) V-6, page 1.

(a) ‘ A[b*] = brth — pr = pE(bh—1)
(b) A[em] = er@+h) — gr&x — erx(e'rh — 1)

. . . . Th h
(c) Afsinrx] = sinr{e-+h) — sinres = 2 sin 5~ cos 7 (m + E)

on using the trigonometric formula

. ) . [61— 8 6,+ 9
singy; — sing, = 251n<%>c05<12 2>

with 6; = r(x + h) and 6, = rz.

1.9. Prove that AE = FA, i.e. the operators A and F are commutative with respect to
multiplication.
We have for arbitrary f(x)
AEf(x) = A[Ef(x)] = Alf(z+ k)] = f(x+ 2h) — f(x + k)
EAf(®) = Elfw+h) —f@2)] = flo+2h) — flz+h)
Then AEf(x) = EAf(x), ie. AE = EA.

1.10. Prove that () A=E—1, () E=1+4, () A*=(E—1?=E—2F+1.
(@) We have for arbitrary f(x)
Af(w) = fle+h) — fla) = Ef() — flx) = (F—Df(x)
Thus A =E —1 where we use 1 instead of the unit or identity operator I.
(b) We have for arbitrary f(x)
Ef(x) = flx+h) = f@) + [flx+h) —fl@)] = fl@) +Aflx) = (1+42)f(x)
Thus E =14 A. Note that this illustrates the fact that we can treat operators A and F as

ordinary algebraic quantities. In particular we can transpose the 1 in A =FE -—1 to obtain
E =1+A.

(¢) We have for arbitrary f(x)
Af(x) = AlAf(x)] = Alf(x+ k) — f(2)]
[f(x + 2h) — f(= + B)] — [f(z + h) — f(x)]
fle+2h) — 2f(x + h) + f(z)
= Ef(x) — 2Bf(@) + f(#)
(B2 —2E + 1)f(x)
= (E —1)%f(x)

i

Thus A2 = (E —1)2 = E2—2E + 1.

1.11. Obtain a generalization of Problem 1.10 for A® where » is any positive integer.

Method 1. .
Using the fact that A and E can be manipulated as ordinary algebraic quantities we have by
the binomial theorem

n n n
A" = (E—1)» = Enr — <1>En—1 + <2>En~2 — <3>E’n—3 4 e (=D (1)

n n! . . .
where = ————  are the binomial coefficients.
7 rin—r)!

By operating on f(x) the result () is equivalent to

@) = fl+nk) — <f> f@ +m—1h) + (Z) f@ + =2k = -+ (M@
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Method 2.
" Assume that

Af@) = f@+nh) — (D flat =1k + o+ (~1)rf() (2)
is true for a positive integer =, i.e. assume the operator equivalence
n - /n
AT = (E——]_)n = Fr — <1> En—1 1+ <2> En—2 — ... + (—1)"
Then operating on both sides of (2) with A we have
Artlf(e) = f(xz-+ m+ Dh) — f(le+nh) — <’:> [f(x +nh) — f(x+ (n — 1)R)]
+ oo+ (CD[f(e+ R) — f(=)]

n n 7
= flex+n+1)h) — |:<1> + 1]f(x+nh) + |:<1>+ <2>}f(a:+(n—1)h)

. ] n n n+1
or since [see Problem 1.105] <r> + <r X 1> = <¢+ 1>
we have Antif(x) = fla+ (n+1)h) — <n_; 1> fle+nh) + (’n—;- 1> flx+ (n—1)R)
— e (D)t if() @

It follows that if (2) is true then (3) is true, ie. if the result is true for n it is also true for n+1.
Now since (2) is true for n =1 [because then (2) reduces to Af(x) = fw+h)— f(x)], it follows
that it is also true for n =2 and thus for » = 3 and so on. It is thus true for all positive integer
values of n. The method of proof given here is called mathematical induction.

Prove that (a) E“lf(x) = f(w—h), (b) E-"f(x) =f(x—nh) for any integer n.

(¢) By definition if E~1f(z) = g(z), then Eg(x) = f(x), ie. gz + k) = f(x) or g(x)=flx—h)
on replaping x by « —h., Thus E-1f(x) = f(x — h).

(b) Case 1. If » is a negative integer or zero, let n = —m where m is a positive integer or zero.
Then Emf(z) = flx+mh), ie E-"f(x) = flo—nh)
Case 2. If n is a positive integer, then by definition if
' E-nf(z) = g(x) then Evg@) = f(x) or gl +nh) = f@)
Then replacing « by x« —nh we have
E-rf(x) = glv) = fl@—nh)
In general we shall define Erf(x) = f(z+mnh)

for all real numbers =.

THE DERIVATIVE AND DIFFERENTIAL OPERATORS

1.13.

Show that (o) lim -A%(zxu?,x) = ;(2x2+3x) 4z +3

Az—0
(b) hm —(x3 x?) = ‘iz(aﬂ x?) = 6w — 2

directly from the definition.

(a) From Problem 1.5(a) we have since h = Az

A 4hx + 2h2 + 3R
2 (9.2 . 2w T s o
(222 + 3x) h 4x + 2h + 3

. A d
1 il 2 - 3 - = - (2x2
Then A;mo i (22 +‘3a’c) ’ltm% (4x + 2h + 3) dr + 3 = dw( x2 + 3x)
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(b) From Problem 1.5(c) we have since h = Az and h?= (Ax)?

A2 "6h%x + 6h3 — 2h2
m(aﬁ“—xz) = £ 5 = 6x + 6h — 2

AZ o 1 - dz
(@3 —2?) = ’}T{l)(ex’*‘eh—Z) = 6x — 2 = 3;2-(;1;3——;52)

Then im —
az—0 Ax2

. . A dn
The results illustrate the fact that AI;I_T}O yvrs flx) = T f(z). Note the operator equivalence

i Ar _ de . d 5 a2 dn .
am m = gan- The notation D = az’ D2 = T2 Dr = gl also be used. - Strictly
. . An an dr dn ' .
speaking we should write A as W and Fan as W However by custom we leave off the

parentheses in the denominator,

L14. Find (a) d(22*+3z), (D) d*(x®— x?).

(a) By definition, using dx = Ax = h we have

d(2x2+ 3x) = E%; 2x24+32)dx = @Ax+3)de = dx+3)h
(b) By definition, : .
d?(x3 —x2) = %(ﬁ —z2)(dx)2 = (6x—2)(dx)? = (6x—2)h2

1.15. Prove that D[f(x)g(x)] = f(x) Dg(z) + g(x) Df(x).

From Pfoblem 1.7(a) we have on dividing by & = Ax
A _ A : A L
U@ @] = [@ e + o+ L fe)
Then taking the limit as & = Az—>0 we have

L@@ = )@ + o) i)

which gives the required result on writing d/dx = D.
®

. i
1.16. Use Problem 1.8(c) and the fact that lim 222 = 1 to prove that T-sinre = reosz.

=0 6

From Problem 1.8(¢) we have since Ax =k

AL, 2 sin (rh/2 r(x -+ h/2) sin (rh/2)
= [sinre] = sin ( ) (;LOS — : r W cos r(x + h/2) ‘
d .. _ . A, s sin (rh/2)
Then an [sinrx] = Anglo v [sinre] = '}1_13(1) {r————; hi2) cosrix + h/2)}

_ . sin (rh/fl) . B2
r r{%——(rh/2) : ,%1_12] cos r{x + h/2)

= grelecosre
= 7 cosTe

We have used here the theorem familiar from the calculus that the limit of a product of functions is
equal to the product of the limits of the functions whenever these limits exist.
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FACTORIAL FUNCTIONS

1.17. If 2™ = z(x—h)(x—2h)---(x—[m—1]h), m = 1,2,8, ..., prove that Aix("“ =
ma™=1 or equivalently Ax™ = max™ Ph where h = Azx. v

We have

Ax(m) = (x+ h)ym> — glm)
(@ + h)(x)(x —h): - - (o — [m—2])Rh) — 2z — h)(x — 2h)- - (x — [m —11k)
a(e —h)- - - (@ — [m— 2]h) {{(z + k) — (¢ — [m — 1]R)}

= max{m—Dp

Note that for m = 1 this formally reduces to Ax‘? = & ®h

However since Az = Az — h we are led to define x(® =1.

[CHAP. 1

1.18. (a) Motivate the definition of z~™,m =1,2,3, ..., given on page 6. (b). Using the
definition on page 6 prove that

(a)

®

_é_x(—m) = —pxi—m—D or Axl—m) — —mel—m— DR
Az
From the definition of ) for m = 1,2,3,... we have
zm) = x(x—h) - (x—[m—1]k)
gplm+1) — m(x—— h). 5 '(x—mh)
so that pm+D = g (x —mh)

If now we formally put m = —1 in this last result, we are led to
:0(0) = x(—l)(x_l_h)

Using 2% =1, from Problem 1.17 we are thus led to define

1

(—1) =
x x+h

Similarly, putting m = —2 in () we find
(D = x(=20(x + 2h)
so that we are led to define

2(—D 1
x(_z) el = —
x + 2h (x + h)(x + 2h)
Proceeding in this way we are thus led to define
1
C(—m) —_ = oao
e EFmETe @imhy Mo L
as on page 6.
We have
Agl—m) = (x+h)(—m) — g(—m)
_ 1 _ 1
T (z+2h)x+3h) (@t [m+1]R) (% + h)(x + 2h)- - - (x + mh)
- 1 1 _ 1 ]
T @t2h)--tmh)|{z+m+1h  zt+h
— —mh
o (ac+h)(x+2h)---(a:+'mh)(oc+[m+1]h)
_ —mm(—m— l)h
(—m)
or equivalently é—%x—— —mg(—m D

@)

Note that the results of this problem and Problem 1.17 enable us to write for all integers m

Am(m)
Ax

= meim—1 or Agtm) = matm=1Dh
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1.19. If m is any integer and ¢ is any constant prove that

A A
(@) H[c'x(m] = CHW("“ = mexm—1

(B) Afex™] = cax™ = mchxmD

Method 1.
(a) A[cx(m)] = ¢(x + hYm) — epm) = c[(gg_{_ h)(m) — x(m)] = eAgimd
Thus by Problems 1.17 and 1.18,
A Aglm)
A—w[cx“n)] = ey T empm—D = megim—1
(b) Since Az = h we have from part (a)
A[cx(m)] = ecAxm) = mehxim—1D
Method 2.
Since A and thus A/Ax are linear operators we have
A Agplmd
A[cw(m)] = cAx(m) and E[cg(;(m)] = ¢ An

and the required result follows at once from Problems 1.17 and 1.18.

1.20. Find (a) AAx[3x(‘”], (b) A[102®], (c) A%C[Sx(‘z)], (dy A[—62(~®] expressing all results

in terms of k.

From the results of Problem 1.19 we have
(@ -[809] = 4-32® = 122® = 12a(0 — W)z —2h)

() A[l02®] = 3+10s®Dh = 30hx® = 30ha(x— h)
_ —10
= @F R @+ 2h)(@ + 3h)

18
(z + k)@ + 2h)(x + 8h) (¢ + 4h)

(0 Ao[BeD] = (~2)ECD = —102-

(d) A[—6z(—3)]

(—3)(—6)x(—1 = 182(—4 =

. A
1.21. Find (a) e (2@ — 32 + 1 — 4), (b) A(32(D —2x®@ — Fp(~D),
By Problem 1.19 and the fact that A and thus A/Ax are linear operators we have

@ Z%(2x(4) — 3 g —4) = 8u® — 6z + 1

®) A%:(3x—2—2x(2)—-5m‘_1)) = (—B2(~3 — dx1) + By}

. A2 _
122. Find —[22® —82>).

2
AA—x2[2a:(3) —82(—2] = ﬁ[—}%[zm@)—sm—m] = fg[Gx(Z)-{-lGx(—?ﬂ] = 122 — 4Rx(—®

1.23. Express 228 — 322 + 5z — 4 as a factorial polynomial in which the difference interval is k.

Method 1.

From page 6 we have
2w% — 322 + B — 4 = 2(2® + 3xDp + xRN — J(r'H = r'Uh —~ 527 — o

243 4 (Bh — )2 = (22— 3k — 5 i — 4

Il
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Method 2.
Write 2% — 3«2 + bx —'4

i

Agr® + Az® + A + A,
Agr(x — )@ — 2R) + Ayw(@ —h) + A + Ay
= Agrd + (A, — 34,22 + (2Agh2 — A h+ Az + Ay

where Ay, A;, As, Ag are constants to be determined. Equating coefficients of like powers of z we
have

AO = 2, A1 - 3A0h = -3, onhz_Alh +A2 = 5, A3 = —4
from which Ay =2 A, =6h—38 A, =22—3h+5 Az = —4
Thus 203 — 322 + 5x — 4 = 22D 4+ (6h — 3)x» + (22— 3k +B)x D — 4

Method 3.
As in Method 2 we have

248 — 322 + 5 — 4 = Agxlx—h)(z—2h) + Ax(x—h) + Agx + Ay
Let  =0. Then Az = —4 sothat
228 — 322 -+ bz
Then dividing by « we find
202 —3x + 5 = Agx—h)(z—2h) + Aj(x—h) + 4,
Now let « = h. Then A, =2h2—3h+5 so that
2x2—h2) — 3x—h) = Aglx—h)(x—2h) + Az —R)
Then dividing by # — h we find

Agx(x — h)(x —2R) + Agw(x—h) + Age

2w+h) —3 = Aglz—2h) + A,

Letting # = 2h we then find A4; =6k —3 so that 2z —4h = Ay(x —2h) and Ay =2. Thus we
obtain the same result as in Method 1.

Method 4.

As suggested by Method 8 we see that A; is the remainder on dividing 223 — 822+ bz —4 by =
yielding a first quotient, A, is the remainder on dividing the first quotient by z—h yielding a
second quotient, A5 is the remainder on dividing the second quotient by x — 2k yielding a third
quotient and finally A, is the remainder on dividing the third quotient by « — 8% yielding a quotient
which should be zero. The results can be illustrated as follows

% )22% — 322 + bz — 4

x — h )22 —38x +5 — 4 <—— First remainder
x — 2h }2:0 + (2h—38) + 2h?2 — 8h + 5 =+— Second remainder
% — 3h)2 6h — 8 <« Third remainder
2 <«—— Fourth remainder
The required coefficients are given by these remainders reading upwards. Thus we have

2u% — 302 + bw— 4 = 22 + (6h—3)x® + (2h2 —3h+ Bz — 4

Method 5.

Since the quotients and remainders can be found by use of synthetic division in which only
coefficients of the various powers of a are used we can arrange the computation of Method 4 in
the following form

h 2 -3 5
2h 2h2 — 3h

2o | 2 =3
4h

D @9

where the required coefficients are shown encircled. The numbers at the extreme left indicate mul-
tipliers to be used at each stage.
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1.24.

1.25.

1.26.

1.27.

Express 22° —3x?+ 52 —4 as a factorial polynomial in which the differencing inter-
val h=1.

In this case any of the methods of Problem 1.23 can of course be used and the results are
greatly simplified because % is replaced by 1. For example Method 5 which is the simplest method
reduces to the following

1 2 —3 5 ~4
2 —1
2 2 -1 4
4
2 3
Thus 223 — 822452 — 4 = 223 4 35 4 4 — ¢4

Check.
20(x — 1)z —2) + Bx(x —1) + 42 — 4

= 2x¢3 — 622+ 4+ 8202 — 8¢ + 4x — 4
= 243 — 3%2 4 bx —~ 4

223 + 3z + 42> — 4

Express z*+ 2 — 2 as a factorial polynomial in which & = 1.
We must be careful in using Method 5 of Problem 1.28 to introduce zero coefficients where
needed. Thus we have the following :

1 1 0 0 1 —2
1 1 1
2 1 1 1 2
2
3 1 3 7
3
1 6
Thus 2tdx—2 = 2@ 4 2B & Tp® 4 2 — 2

Check.

2@+ 623 4+ T 4+ 250 — 2 = gz —1)(x—2)0{x—3) + 6z(zx—1)z—2)+ Te(z—1) + 22— 2
= 24— 623+ 1142 — 6 + 623 — 1822 + 122 + 722 — To + 2z — 2

= gt+o—2

Show that if » =1,2,8, ...
(ax + b)™ = (ax + b)(ax + b —ah)(az + b — 2ah)- - -(ax + b —mah + ah)

The result follows from definition (34), page T, on letting f(zx) =ax+ b so that
fle—h) = a(x—h)+b = ar+b—ah, flx—2h) = a{lx—2k)+b = azx+ b— 2ah, ...,
fe—[m—1lh) = a{fzx—[m—1h) +b = az+b—alm—1k = ax+ b — mah+ ah

Show thatif m» =1,2,3, ... X

(az +B)™ = (ax + b + ah)(ax +b +2ak)- - -(az + b +mah)
The result follows from definition ($5), page 7, on letting f(z) =ax+ b so that
fle+h) = ale+h)+b = ax+b+ak, flx+28) — afs+28) +b = ax + b+ 2ak, ...,
flx+mh) = olz+mR)+ & = ex+ &+ mah
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1
)@z + 1)(3z + 43z + 1)

1.28. Write (a) (2x —35)(2z + 7)(2x +9), (b) Br—2 as factorials.

() Letting h=1,a=2, b=9 and m = 3 in Problem 1.26 we have
2+ 9B = (22 + 9)(2x + T)(2x + 5)

(b) Letting h=1, ¢=3, b =—5 and m = 4 in Problem 1.27 we have

1
(8 —2)(3x +1)(8x + 4)(8x + T)

(8 —5)(—4) =

STIRLING NUMBERS
1.29. Derive the recursion formula (29), page 7, for Stirling numbers of the first kind.

Using A =1 in (28), page 6, we can write the result as

&0
x(n) — E sZwk (1)
k=—c
where we take sp =0 for k=0, k=Zn+1 where n>0 2)
since the series (1) is actually finite and
sy = 1
since both sides of () are polynomials of degree .
Replacing # by n+1 in () we have
zr+D) = ﬁ S’I’CL'H-xk ®
k=—c
Now if h =1 we have 2 +tD = gnd(x —n) 4)

Then substituting (Z) and (3) inte (4) we have

0

o
! s’,é“xk (w—n) 3 sy ok

k==—o0 k=—cw

0

Equating coefficients of x* we find as required

nt+tl __ n _ n
Sk T Sp—1 T M

1.30. Derive the recursion formula (32), page 7, for Stirling numbers of the second kind.

Let on = 3 Spe® ()

k=—ow
where we use (91), page 7, with h = 1. Since both sides are polynomials of degree n we have

Sk=10 for k=0, k=n+1 where n>0 2)

so that the series (1) is actually finite. From (Z) we have on replacing n by n+1

fcd N
aentl = Y Sptlgm )
k==—0w
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Since an+l = g+, we have from (1) and (4)

«

Stgtd = 3 Shgegp®

— k=—w

Ms

o
S Sitlyt = 4
k=-—o k

i

But
wea® = gege—1) - w—k+1) = @—k+ha@—1)---(x—k+1) = g+ + Ly

Thus S ST = S Sha®k+D 4 gty
k=—w k=—o

= S SpatrD 4 i ESE 2t

k=—cw k=—cw

0 o
= S Sp_qxt + ¥ kSEak
k=—oc k=—w

Equating coefficients of () we find as required

Sptl =S¥+ kSy

1.31. Show how the method of Problem 1.25 can be used to obtain Stirling numbers of the
second kind by using the polynomial f(z) = z*.

‘We use the same method as that of Problem 1.25 as indicated in the following

1 1 0 ] 0 0
1 1 1

2 1 1 1 1
2 6

3 1 3 7
3

1 6
It follows that 2t = oM@ 4 623 + T2 + O

and the Stirling numbers are 1,6, 7, 1.

THE GREGORY-NEWTON FORMULA AND TAYLOR SERIES

1.32. Prove the Gregory-Newton formula (44), page 9, for the case where f(x) is a poly-
nomial and a = 0.

If f(x) is a polynomial of degree n we can write it as a factorial polynomial, i..

flx) = 4, -|-A1x(1) + Ay + Ax® -0 + A,z )
Then __AZ(;) = A, + 24,00 + 3450® + -+ + nA gD
A%f(x)

I

v 21 A4, + 324,50 4+ + nin— 14,202

Arf(x) — nlA
Axn e
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Putting z = 0 in the above equations we find

= _ A&f _ LAY 1 anf
Ay = FO), A= ol o 2 = ST agEle=0’ 4, = 71 Aah le=0
which we can agree to writé as
— Af(0) 1 AZF(0) 1 A0
Ao = JO, Ay =3, A2 =g o A T Aj;a(")

Using these in (1) we obtain the required formula for a = 0.

If we use the same method above with % replaced by « — @ and then put x = a the more
general formula (44) on page 9 is obtained.

1.33. Prove the Gregory-Newton formula with a remainder given by (44) and (45), page 9.

Let p,(x) denote the polynomial of degree n as determined in Problem 1.32. Writing
pa@) = agEn + agan A e ap

we see that it has n+1 coefficients Gg, Gy, « « -5 @y 1t follows that if f(z) is some given function
we can determine these n + 1 coefficients uniquely in terms of the values of f(x) at »+1 different

values of x, SAY ®g, By, - - .» Tt We :shall suppose that this is done. In such case
f(w()) = p‘n(xo)) f(xl) = pn(x1)3 vy f(xn) = p'n(xn) (1)
Now let
flx) = pulx) + g(@) (@
Putting z = g, &1, - - ., £, We have

fee) = palee) + 9(x0)
flzy) = palay) + g(2y)
fl@,) = pal@y) t+ 9{wn)
Then using (1) we see that
y(xo) = 0, g(xl) = 0, ey g(wn) =0

It thus follows that unless g(x) is jdentically zero [in which case f(z) is.a polynomial and we will
have f(z) = pn(w)] we must have

gla) = K(x) (@— zo)(@— o) (& — &p) 3

Thus from (2), .
f@) = paul@) + K@) (& = zo)(@ — @)+ (& %) 4

To obtain K(x) in terms of f(x) let us consider the function
U@ = fo) - po(t) — K@) (t— o) (t—mp)" -+ (¢ — @) (5

1t follows from (4) that this equation has the n+ 2 roots t = &, %g, By, -« oy L. Lhen by Problem
1.117 the (n+ 1)st derivative of U(t), ie. Unt1(), is zero for at least one value, say ¢ =,
between the smallest and largest of @, %o, @1, -+ -5 %n. But from (5)

Uty = frid(g) — (n+ 1! K(x) (6)
since p(z“)(w) = 0. Putting t=7» in (6) and setting it equal to zero it thus follows that

et D(y)
K@ = 1)
Thus we have from 03]

fe) = pate) + Lo w g oo =)
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1.34.

Since we can choose any values for xg, %y, ..., %y, let us choose -
g =@ % =a+h 23 =a+2h ..., %, = a-+nh
Then i s : ,
(n+1) 2 —ag)lntl)

n+1)!

which is Gregory-Newton’s formula with a remainder.

Work Problem 1.24 by using the Gregory-Newton formula.

For any polynomial f(x) of degree = we have

- Af(0) AZF(0) ARF(0
flw) = f(0) + S 4+ S iem 4o n!A(mlx(,,,

or using Ax = h =1,
2
f®) = f0) + af(0)z® + —A—g(,i)xm + ot A%Sglxm €]
Now f(x) = 223 — 342+ 52— 4 so that

f0) = —4, f1) =0, f(2 = 10, f(8) = 38, f(4) = 96
Then :
Af(0) = f(1) —f(0) = 4, Af(1) = f(2) —f(1) = 10, Af(2) = fB) —f(2) = 28
Af(3) = f(4) —f(8) = b8
From these we find
AZf(0) = Af(1) —Af(0) = 6, A%f(1) = Af(2) — Af(1) = 18,
AZf(2) = Af(3) — Af(2) = 30
Similarly, ’
A3f(0) = Af(1) — A%f(0) = 12, A3f(1) = A%f(2) — AZf(1) = 12
and finally
A%f(0) = A3f(1) — A3f(0) = O
From these we see that
f(0) = —4, Af(0) = 4, AZf(0) = 6, A3f(0) = 12, A%H(0) = 0

and so (7) becomes ‘
2¢3 — a2 + b — 4 = —4 + 4x®D + 3@ 4 25B3)

in agreement with the result of Problem 1.24.

The computation of the differences given above can be arranged quite simply in a table as
shown in Fig. 1-1, where each entry in a column after the second is obtained by subtracting the
entries immediately below and above it in the preceding column. For example 28 = 38 —10,
30 =58 — 28, etc. This table is called a difference table. Further uses of such tables are given
in Chapter 2.

x fl=) Af(x) AZf () A3f(x) Atf(x)
0 —4
1 0 o 6
2 10 10 18 12 0
12
3 38 28 30
58
4 96

Fig.1-1
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1.35. Show how to arrive at the Gregory-Newton formula for the case where h =1, a=90
by using symbolic operator methods.

We have for any value of n [see Problem 1.12]

Erf(u) = flu+nh) )
Then in particular if we choose u =0, n =%, b = 1, this becomes
E=f(0) = f(») 2)

Using E =144 in (2) and expanding formally by the binomial theorem, (2) becomes
fz) = E=f(0) = @-+28)%(0)

= [1 pang B8N gy A VEZD 4 '--]f(O)

£0) + wAf(0) + ””—(””2—?—1—)A2f(0) + ————”(“_é)!(”"z)

The result is the same as the infinite series obtained from (44), page 9, with A =Ax =1 and ¢ =0.

I

ABF(0) + - -
Extensions to the case where k= 1, @ 0 can also be obtained symbolically [see Problem 1.83].

LEIBNITZ’S RULE
1.36. Prove Leibnitz’s rule for the nth difference of a product of functions.
Let us define operators E; and E, which operate only on f(x) and g(x) respectively, ie.
Ey[f(x) g(x)] = fle+h)g(z), Ey[f(x) g(2)] = flx)glz+h)

Then E(E,[f(z) g(x)] = fz+h) g{x + h) = E[f(x) g(x)] so that E = E,E,. Associate the difference
operators Ay, Ay with Eq, Ey respectively, ie. E;=1+Ay, Ep =1+ 4, Then

A=FF—-—1= E1E2_1 = (1+A1)E2—1 = E2+A1E2—1 - A2+A1E2

and so
Arffgl = (Ay+ A EQ[fy]

n — A n
<A’; + C) Ay TIAE, + <2>Ag *AfE; + - + <n> A;‘E2>[fg]

= fang + G) (Af)anEg) + <’2’> (a2/)(an-2B2g) + - + <Z> (anf)(E"g)

1.37. Find A"[x%a”].

Let f =2 g = a® Then by Leibnitz’s rule we have

An[anx] — xQAn(az) + <,;L> (Aacz)(A"—laﬁ‘*h) -+ <Z> (AZxZ)(An—ZarJrzh) 4+ eee

7
= x2¢%(ah —1)* + (Z) (2hx + h2)ar+igh — 1)1 + <2 )(2h2)ax+2h(ah —1)n—2

= ga(ah — 1)n—2[a2(ah — 1)2 + n(Zha + h)ah(ah — 1) + n(n — 1)h%a"]

OTHER DIFFERENCE OPERATORS
1.38. Find (a) V(2*>+2%), (b) 8(2*+22).
(@) V(2+2r) = [2+2¢] — [(@— )2+ 2(e = )]
= 22+ 2x — [#2 — 2k + k2 + 200 — 2R]
= 2hx + 2h — A2
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[CORECHIRICHEC )

h2 h2
m2+hw+4—+2x+h — xz—hx+—l1—+2w—h>
2hx + 2h

() 822+ 2x)

il

139. Provethat (¢) V=aE-'=EFE-A=1—FE-1
(b) $=EV2_F-12 = pAF-12 = vE!2
(#) Given any function f(x) we have
Vi@ = flo) — flx—h) = Aflw—h) = AE~1f(x)

so that V = AE—1. Similarly

Vi@) = f(®) — fle—h) = E-1[flx+h) —f(x)] = E-1Af(x)
so that V = E—1A, Finally :

V@) = f(@) — fle—h) = flz) — E-f(z) = (1—E~YH)f(z)
so that V=1—E-L

® o) = f(w +§> - f<w —%) = BUf(@) - B-1G) = (BV2—E-19)f()

so that § = E1/2—F-1/2, Similarly

o - o)1) = (-]

so that 8§ = AEF~1/2, Finally

8f(x) = f<x +g> — f(x - ~’25> = Vf(x +%> = VEU2(x)
so that § = VE1/2,

AE—1/2f(x)

1.40. Find (a) M(4x>—8z), (b) u(422—82).
(@) Mx2—82x) = L[dle+h)2—8(x+h) + 422 — 8x] = 4x2 + 4ha -+ 22 — 8z — 4k

2
(b) (402 —82) = %[4(:”%) —8<x+§>+4<x—%>2—8<m—%>] = 4% — 8x + A2

MISCELLANEOUS PROBLEMS
141, If f(x) = aw"+ax" '+ - - +an, i.e.a polynomial of degree n, prove that
(@) A*f(x) = n!lak - (b) Artf(x) =0, A"*2f(z) =0, ...

Method 1.
We have
Af(x) = [ogle +B)* + age+ R+ -« + a,] — [@g™ + @@ 1 + -+ + a,)
= [agnan—1h + terms involving an—2, 273, .. N
It follows that if A operates on a polynomial of degree n the result is a polynomial of degree n — 1.

From this we see that A”f(z) must be independent of z, i.e. a constant, and so A"*1f(x) =0,
Ant2f(x) =0, ..., which proves (b). To find the constant value of A”f(x) note that we need only

consider the term of highest degree. Thus we have

A%f(x) = [agnlx+R)*~h+ ---] — [agna® " th + -]
agni(x -+ AP~ 1 —gn—11h + - ..
agnf(n— a2k + ---1h+ ---

= agn(n— 1)an—2h2 + ---

i
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Proceeding in this manner we see finally that

A(z) = agmin—1(n—2). - (D)h* = n! aghr
For another method see Problem 1.84.
Method 2.

b Since every polynomial of degree = can be written as a factorial polynomial of degree n, we
ave

aowﬂ + wlm‘n"l + vee + Ay = box(ﬂ) - blw(ﬂ—l) R bﬁ
Equating coefficients of #* on both sides we find by = ag. The required result then follows since

A‘n[aox(n) -+ blx(ﬁ'—l) oo bn] = nl aohn, Aﬂ’i’l[aox(n) + blm(n—l) + -+ bﬂ] = 0

Prove that
0 r>n

(@+r) — (;)(m+r—1)ﬂ+ <;>(x+r-'2)" - --»(«1)f<:>xn = {n! o

We have

Afgn = (E— ]_)rmn — [Ef — <:> Er-1 4 <lr> Er—2 — oo+ (_1)r<r >]x” (1)
v 2 r

Now from Problem 1.41 with A =1 we have for r>n
r r r
0 = @+ — <1>(x+r—-1)" + <2>(:c+r~—2)ﬂ — eee (—1)n<r>a:ﬂ (2)
while if =, '
n n n
! = (@+n)r — <1>(x+n-—1)” + (2>(x+n-—2)" — e (—1)"<n>a:" 0))

Thus the required result follows.

Show that (a) ATOP =0 if r>n, (b) A"0*= n!
(@) Putting 2 =0 in (2) of Problem 1.42 we have for »>mn, AT0" =0,
(b) Putting « =0 in (8) of Problem 1.42 we have for r =n, A%" =n!

We call AT0" the differences of zero.

Prove Rolle’s theorem: If f(z) is continuous in a=x=>b, has a derivative in
a<z<b, and if f(@)=0, f(b)=0, then there is at least one value n between a

and b such that f’(3) =0.

We assume that f(«) is not identically zero since in such case the result is immediate. Suppose
then that f(x) > 0 for some value between a and b. Then it follows since f(z) is continuous that
it attains its maximum value somewhere between @ and b, say at 7. Consider now

Af@) _ [+ k) —f)
Ax h

where we choose h = Az 80 small that 7 + k is between ¢ and b. Since f(y) is a maximum value,
it follows that Af(x)/sx =0 for h <0 and Af(x)/ax =0 for h>0. Then taking the limit as
h- 0 through positive values of h, we have #(n) = 0, while if the limit is taken through negative
values of &, we have f'(y) = 0. Thus f'(y) = 0. A similar proof holds if f(x) < 0 for some value
between « and b.
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Prove the mean value theorem for derivatives: If f(x) is continuous in a=2=<b
and has a derivative in a <z < b, then there is at least one value n between
a and b such that

F(®) — f(a)

T "a = f’(’?)

Use (a) to show that for any value of # such that a =z =< b,

f(x) = f(a) + (z— a)f"(y)

where 7 is between a and z.

Give a geometric interpretation of the result.

Consider the function 5
F@) = fl) - fl@) - @-a 0 =f@ ®

From this we see that F(a) =0, F(b)) =0 and that F(z) satisfies the conditions of Rolle’s

theorem [Problem 1.44]. Then there is at least one point y between a and b such that F’(y) = 0.

But from (1)

F@) = flo - B =/@ (#)
S0 that Py = po) - BOZf@
or 'ty = W )
(8) Replacing b by » in (3) we find as required
f@) = f(a) + (@ —a)f'(n) ‘ 0]

(@

where‘n is between x and a.

Note that (4) is a special case of Taylor’s series with a remainder for n = 1. The general
Taylor series can be proved by extensions of this method.

The theorem can be illustrated geo- Y Q
metrically with reference to Fig. 1-2 -
where it is geometrically evident that - B
there is at least one point B on the
curve y = f(x) where the tangent line
PRQ is parallel to the secant line ACB.
Since the slope of the tangent line at R
is f’(n) and the slope of the secant line
is [f(b) — f(@)]/(b — a), the result fol-
lows. Itis of interest to note that F(x)
in equation (1) represents geometri-
cally RC of Fig. 1-2. In the case where
f(@) =0, f(b) =0, RC represents the
maximum value of f(x) in the interval
a=x=bh

¥ = f(x)
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Supplementary Problems
OPERATORS
146. Let of =[ ]2 be the squaring operator and D the derivative operator. Determine each of the
following.
(@ S+ Vw) (e) (J2+2of —3)(20—1) (3) »*D3f(x+1)
(b) (2¢f +38D)(x%—x) () (D+2)(f —3)a? (7)) (edf —S2)Df 2%
(0 &fD(Bx+2) (9) (of — 3D + 2)a?
(@) Dof(3x+2) (k) (@D)3cf(w+1)
147. (a) Prove that the operator of of Problem 1.46 is a nonlinear operator. (b) Explain the significance
of of ~1 and determine whether it always exists and is unique. '
1.48. Prove that of3 = C2 where of and C are the squaring and cubing operators respectively.
149. Let of be the squaring operator and a be any real number. (z) Explain the meaning of the operators
acf and ofe. (b) Do the operators « and cf obey the commutative law? TIllustrate by an example.
150. Is the operator (xD)* the same as the operator xz*D*? Justify your answer.
151. Prove that (e) D?x —«xD2? = 2D, (b) D3¢ —«D% =3D% Obtaina generalization of these results and

prove it.

THE DIFFERENCE AND TRANSLATION OPERATORS

1.52.

1.53.

1.54.

1.55.

1.56.

1.57.

1.58.

1.59.

1.60.

1.61.

1.62.

1.63.

Find each of the following.

(@) A2x—1)2 (e (A+1)2(x+1)2 () (2E —1)(3A + 2)a?
(b) BBz —1) (f) (xE2+20E + 1)x? () (=AE)?x2

(¢) A2 — bx) (9) A2EBg

(d) 3E2(a2+1) (hy (3 + 2)(2E — D)a2

Determine whether (a) (B —2}A+3) = (A +3)(E— 2),  (b) (E—2x)a+3x) =(A+ S«x)(E —2) and
discuss the significance of the results. :

Prove that E is a linear operator.

Determine whether (¢) A? and (b) E2 are linear operators. Do your conclusions apply to A" and
E»? Explain.

Verify directly that A3 = (B — 13 = B3 —3E%+ 3E — 1.
Prove formulas (a) V-7, (b) V-8, (¢) V-9 on page 7.

Prove that the commutative law for the operators D . and A holds (a) with respect to addition,
(b) with respect to multiplication. :

(@) Does the associative law with respect to multiplication hold D, A and E?
(b) Does the commutative law with respect to multiplication hold for D and E?

Show that (¢) lim KA; [(2—2)] = D[z@—2)] = 2(1—2)

o i e -

d2

T [(2—w)] = —2

directly from the definition,
Find (a) d(x®— 8x2+2x—1), (b) d2(3x2 -+ 2x — b).
Prove that D[f(x)+g(x)] =D f(x) + Dg(x) giving restrictions if any.

f®y | _ g(x) Df{x) — f(x) Dg(x)
g{x) [9(x)]2

Prove that D giving restrictions if any.
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1.64

1.65.

1.66.

1.67.

. A L S . . si
Prove that lim — [cosrz] = —r sin¥z by using the fact that lim sme .
Ax—0 AL o0 8
Prove that lim A[bﬂﬁ] = b¥Inb stating assumptions made.
Az ~0 A%

Prove equation (14), page 8, giving suitable restrictions.

Obtain a relationship similar to that of equation (74), page 3, between D3f(x) and A3f(x)/Ax3.

FACTORIAL FUNCTIONS

168. Find (a) AGBx® + 5x@ — T2 4 321 4 6), (b) AAx(x(—W —32(=2%), (e) A<

1.69.

1.70.

1.71.

1.72.

1.73.

1.74.

1.75.

2(2) 4+ (-2
— /-

3
Find (@) A%(2x(~3 — 8a(—2 + 42®), (b) A"—xg(x<4)+x<—4>).

Express each of the following as factorial polynomials for A =1 and for & +# 1.
(a) 322 —5x+2, (b) 2044 5x2 — 4w+ 7.

2
Find (a) AA—x (2t — 222 + 52 — 3), (b) z\éﬁ (¢ — 222 + 5x — 3).

Express each of the following as a product of suitable factors using the indicated values of A.
(@) e~ if h=2, (b) Bx+5)® if h=1, (¢) Qe—5) 2 if h=1, (d) Gx+2)~" D if h=2

Write each of the following as a factorial function.
(@) (Bx—2)(8x+5)(8x+12), (b) (24 2x)(5 + 2x)(8 + 2x)}(11 + 2x)

1 1
© FZT9eTd’ D G DE @I DEsFID

A

Prove that
Ax

(px + @)™ = mp(px + g)m—1) for (¢) m=0,1,2,..., (b)) m=—1,—2,—3,....

( x2—1 b 22+ 1
Y ZrErd=Te’ O GzraeetoEeTI)

Express in terms of factorial functions

STIRLING NUMBERS

1.76.

1.77.

178,

1.79.

1.80.

Obtain Stirling numbers of the first kind s} for n,k = 1,2,3 by using the recursion formula (29),
page 7.

Obtain Stirlihg numbers of the second kind Si for =,k =1,2,3 using the recursion formula (32),
page 7.

Find S,‘: for k=1,2,...,6 by using the method of Problem 1.25.

Prove that sy tsf+ - +s8 =0

and illustrate by referring to the table of Stirling numbers of the first kind in Appendix A,
page 232.

Prove that
(@) s —sy sy~ 0+ (—1)n—1g; = (—1)r—1y}

(®) |sr + 8P+ e+ |87 = w

THE GREGORY-NEWTON FORMULA AND TAYLOR SERIES

181,

Express each of the following as factorial polynomials for the cases # =1 and h+#1 by using
the Gregory-Newton formula. (a) 322—5x+2, (b) 20¢+ 542 — 42+ 7.
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182, Under what conditions is the remainder B, in (45), page 9, equal to zero?

1.83. Show how to generalize Problem 1.35 by obtaining the Gregory-Newton formula for the case where
h+#1, a#0.

1.84. Prove that Anfager + agpn 14 - - +a,] = nlaght
by using the Gregory-Newton formula.

1.85. Obtain the Taylor series expansion for f(x) from the Gregory-Newton formula by using a limiting
procedure.

1.86. Obtain the Taylor series expansions (@) 1, (8) 2, (¢) 8 and (d) 4 on page 8 and Verify the
intervals of convergence in each case.’ ‘

LEIBNITZ'S RULE
1.87. Use Leibnitz’s rule to find A3(x2+2%) if h = 1.

1.88. TFind A™(wa®).
1.89. TFind A™(x2a7).

1.90. Obtain Leibnitz’s rule for derivatives from Leibnitz’s rule for differences by using an appropriate
limiting procedure.

OTHER DIFFERENCE OPERATORS
191. If f(x) =222+ 3x—5 find (@) VFi®), ) sf(x), () V2f(x), (d) 82f(x).

1.92. Evaluate (V2—3Vs 4 282)(s2+ 2x).
193. Prove that (o) V2= (QAE~1)2= A2E—2, (b) V1 = AnE %,

1.94. Determine whether the operators ¥ and 8§ are commutative.

, AN
1.95. Demonstrate the operator equivalence E = <% + 41+ —4—> .

196. Prove that VA=AV = .

- Lty _ dy ey _ dw,
1.97. Is it true that (a) 51;310 55 = da’ (b) 61;130 San T dan

Explain.
198. Show that (a) M =}(1+ Ey=E—1}4, (b) p= M/E1/2,
1.99. Determine whether () M and (b) ¢ commutes with A, D and E.

1100, Show that (@) A = s+ 182, (b) A2m*1 = Em[usm¥t+ Fam+a).

MISCELLANEOUS PROBLEMS

1.101. (a) If A and B are any operators show that (A —B)(A-+B)=A2— B2+ AB — BA. (b) Under what
conditions will it be true that (4 —B)(A+B) =A2—B?? (o) Tllustrate the results of parts (a)
and (b) by considering (A% — D2)2? and (A — D)(a+ D)2

. Dbh .
1.102. Prove that (@) Asin(px+9q) 2 sm%— sin [px + g + 3{ph+ )]

3
(3) Acos(pz+q) = 2sinlrcos[pr+q+ $phtm)]
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1.103.

1.104.

1.105.

1.106.

1.107.

1.108.

1.109.

1.110.

1.111.

1.112.

1.113.

1.114.

1.115.

1.116.

1.117.

m
Prove that (@) Amgin(px+q) = ‘:2 sin%}{l sin ‘:pm + g+ % (ph + 77):]
. ph ™ m 7
() am cos (pw +q) = 2s1n? cos px+q+—2—(ph+7r)
Use Problem 1.103 to show that
dam . . dm
(a) qom SMET = sm(x-l—%) (b) Jom COST = cos(x*}-%)
. n n n+1 ‘
Verify that , + N = rt1 and thus complete the proof of Problem 1.11, Method‘2.
(@) Show that Atanx = _sec?wtanh and (b) deduce that itamoc = seclx
1 —tanx tanh da - )
(a) Show that Atan~1x = tan‘l-—@*— and (b) deduce that a tan~1zx = 1 and
P . o ¥2 + he + 1 da x2 41
& B T e
(¢) Show that Asin~lzx = (z+h)V1—2% — 2v/1— (& + h)%.
d 1 d x 1
L odin—lg — s g =1
(b) Deduce from {(a) that gp SinTlw i and gy m.
Prove that for k=1 (a) s = —1—D"x(k) b St = —1~Akac"
k 7L! = k k! z=0
" (~1k k k
Prove that S, = T S (—1)p » p* and illustrate by using the table on page 233.
* p=0 !
Prove that (o) E[f(x) g(x)] = [Ef(x)][Eg(x)]

(b) E[f(x)]" = [Ef(2)]"
(© Em[fi(w): - fu@)] = [E7f1(#)] - [E™fn(@)]

Show that the index law for factorial functions, i.e. a(™x(®) = xm+n). does not hold.

n n
Prove that An[f(x) g(x)] = 20 (—1)k+"(k> flx + kh) g( + kR)
k=
and discuss the relationship with Leibnitz’s rule.
Prove that 1 9
n! = mr — n(n—1)n + E(lz.é'_'f_ll(n._g)n — % (n—38)n + -
R2D2  R3D3  RAD4
Show that (¢) A = kD + o1 + 31 + y
h5D5  31h8DS
2 — p2p2 3D3 4+ T hAD4 o v
(b) A2 = R2D2 + R3DS + LhiD* + ) -+ 360
8hiD4  BRSD5 | 8mSDS  903R7D7
(¢) A3 = h3D3 4 o) =+ 1 + i 2590
Find (a) A%(3x3 —2¢2 + 4z —6), (b) A3(x2+ )2 by using Problem 1.115 and compare results by

direct evaluation.

If U(t) is the function defined by (5) of Problem 1.33, prove that Unt+tD(ty = 0 for at least one
value t =17 between the smallest and largest of z,y @y, ...,%,. [Hint. Apply Rolle’s theorem

successively.]



Chapter 2

SUBSCRIPT NOTATION
Suppose that in f(x) we make the transformation z =a+kh from the variable x to
the variable k. Let us use the notation y = f() and

yr = fla+kh) 7 (1)
It follows that [see Problem 2.1]
AYe = Ye+1— Y, EYe = Y1 2)
and so as on page 3
A=E~-1 or E=1+4 3

Using this subscript notation it is clear that a unit change in the subscript % actually
corresponds to a change of I in the argument z of f(x) and conversely. In addition all of
the basic rules of the difference calculus obtained in Chapter 1 can be written with subscript

notation. Thus for example formula 1V-4, page 5, becomes

2k A - Az
A <@> — K AYxk Y Ak (4)
2k Rk Rp+1

where yx = f(a +kh), 2= g(a+kh). Also since z =a+kh becomes x=Fk if a=0
and h =1, results involving & remain valid if we replace = by k and put A =1. Thus for
example equations (22) and (25), page 6, become respectively '

m) = k(k — 1)(k — 2) e (k; —m+ 1), Akm = mkm—D (5)

It should be noted that k need not be an integer. In fact k is a variable which is discrete
or continuous according as ¥ is. An important special case with which we shall be mainly
concerned arises however if £=0,1,2,... so that the variable # is equally spaced, ie.
z=a,a+ha+2h, .... In such case we have 7o = f(@), ¥1 = fla+h), Yz =fla+2h), ... .

DIFFERENCE TABLES
A table such as that shown in Fig. 2-1 below which gives successive differences of
y=f(x) for © = a,a+h,a+2h ..., ie. Ay, A%, A%, ..., 18 called a difference table.

Note that the entries in each column after the second are located between two successive

entries of the preceding column and are equal to the differences between these entries.
Thus for example A%y, in the fourth column is between AY: and Ays of the third column and

A%y = AYz2 — AYs. Similarly A%y. = A%ys — A%y

32
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x Yy Ay A2y Ay Aty Ay
a Yo = f(a)
Ayg
a+h Sy =fle+h) A2y,
’ Ay, Ay,
a + 2h Y3 = fla+ 2h) A%y, Aty,
AYy Ay, Ay,
o+ 3h y3 = f(a+ 3h) AZy, Adyy
Ays Ay,
a + 4h Yg = fla -+ 4h) ) A2y,
Ayy
a + 5h Ys = fle +5h)
Fig. 2-1
Example 1.
The difference table corresponding to y = f(x) =23 for *=1,2,...,6 is as follows.
@ ¥ = flx) =« Ay AZy Ay Aty
1 1
7
2 8 12
; 19 6
3 27 18 0
37 6 ‘
4 64 24 0
61 6
5 125 30
91
6 216
Fig. 2-2

The first entry in each column beyond the second is called the leading difference for
that column. In the table of Fig. 2-1 the leading differences for the successive columns are
AYo, Ao, A%Yo, . .. . The leading differences in the table of Fig. 2-2 are 7,12,6,0. It is
often desirable also to include the first entry of the second column called a leading differ-
ence of order zero. ’

It is of interest that a difference table is completely determined when only one entry
in each column beyond the first is known [see Problem 2.4].

DIFFERENCES OF POLYNOMIALS

It will be noticed that for f(x) = 2® the difference table of Example 1 indicates that the
third differences are all constant, i.e. 6, and the fourth differences [and thus all higher
differences] are all zero. The result is a special case of the following theorem already

proved in Problem 1.41, page 25.

Theorem 2-1. If f(x) is a polynomial of degree n, then A"f(x) is a constant and AFIf(2),
A"+ 2f(x), ... are all zero.
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GREGORY-NEWTON FORMULA IN SUBSCRIPT NOTATION
If we put # = a + kh in the Gregory-Newton formula (44) on page 9, it becomes

A k(l) AZ k(Z) n (n)
fla+kn) = f@ + MQFD SOy ST fOF” + r ©)
where the remainder is given by
hn+1f(n+1)(.n) k(n+1)
Ex (n+1)! @)

the quantity 4 being between a and a + kh and where
ED =k, k® = k(k—1), k® = kk-1)(k-2),

In subscript notation (6) can be written as

. Ayok(l) A2y0k(2) A"']jok(n)
Ve = Yo+ —qy + 21 + o+ — + R. (8)
If Ant+lyo, A+2y,, .. . are all zero, then R, =0 and yx is a polynomial of degree » in k.

GENERAL TERM OF A SEQUENCE OR SERIES

The Gregory-Newton formula is often useful in finding the general law of formation
of terms in a sequence or series [see Problems 2.8 and 2.9].

INTERPOLATION AND EXTRAPOLATION

Often in practice we are given a table showing values of y or f(x) corresponding to
various values of z as indicated in the table of Fig. 2-3.

x %o Xy e wp
Y Yo Yi s Yp
Fig. 2-3
We assume that the values of z are increasing, je ro< < v < Tpe

An important practical problem involves obtaining values of y [usually approximate)
corresponding to certain values of & which are not in the table. It is assumed of course
that we can justify seeking such values, i.e. we suspect some underlying law of formation
which may be mathematical or physical in nature.

Finding the [approximate] value of y corresponding to an untabulated value of z
between xo and x, is often called interpolation and can be thought of as a “reading between
the lines of the table”. The process of obtaining the [approximate] value of y correspond-
ing to a value of « which is either less than xo or greater than x,, i.e. lies outside the table,
is often called extrapolation. If x represents the time, this can involve a problem in
prediction or forecasting.

Suppose that the x values are equally spaced and the nth differences of y or f(x) as
obtained from the table can be considered as small or zero for some value of n. Then we
can obtain a suitable interpolation or extrapolation formula in the form of an approximating
polynomial by using the Gregory-Newton formula. See Problem 2.11,

If the z values are not equally spaced we can use the Lagrange interpolation formula
[see page 38).

Because formulas for interpolation can also in general be used for extrapolation we
shall refer to such formulas collectively as interpolation formulas.
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CENTRAL DIFFERENCE TABLES

In the table of Fig. 2-1 it was assumed that the first value of « was x = a, the second
xz=a+h, and so on. We could however have extended the table backwards by considering

x=a—h,a—2h,....
central difference table.

By doing this we obtain the table of Fig. 2-4 which we call a

The table of Fig. 2-4 can also be written equivalently in terms of central differences as

shown in Fig. 2-b.

x Y Ay A2y A3y Aty ASy Aby
a — 8h Y_3
Ay_3
a— 2h Y—s Aly_4 \
Ay o A%y _g
a—h Y-y Aly_, Aty g
Ay, Ay _y A3y _g
@ Yo A2y, Aty _, Aby_g
Ay Ay _y ASy_ o
at+h Y1 A2y, Aty _,
Ayy Ay,
o+ 2h Yo A2y,
Ay,
a + 3h Y3
Fig. 2-4

@ ¥ 8y 82y 83y 8ty 85y 85y
a— 3k Y—3
_ Y572
a— 2k Y—2 3y_o
SY—_3as 83y 32
a—h Y—1 8%y _y oty _y
SY—1/2 83y _1/9 Y _12
a Yo 82y, 4y, L)
Y12 83y1/9 8Y1s9
at+ h Y1 82’!/1 84?]1
3Y3/9 8%y3/9
a <+ 2h Yo 321/2
~ Ys/2
a+ 3h Ys
Fig. 2-5

Note that the entries of this table can be related to those in the table of Fig. 2-4 by simply
using the operator equivalence 8 =AE~? on page 9. Thus for example,

BY-s/2 = (AE_UZ)a’y—s/z = ASE-32% 35 = Ay-3

Other tables can be made using the backward difference operator V.
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GENERALIZED INTERPOLATION FORMULAS

In using the Gregory-Newton formula (6) or (8) for interpolation, greater accuracy is
obtained when & or a + kh is near the beginning of the table rather than near the middle
or end of the table. This is to be expected since in this formula use is made of the leading
differences Af(a), A%f(a), ... .

To obtain more accuracy near the middle or end of the table we need to find interpolation
formulas which use differences near the middle or end of the table. The following are
formulas which do this. All of these formulas are exact and give the same result when
the function is a polynomial. If it is not a polynomial, a remainder or error term can
be added. The results can also be expressed in terms of the operators vV or & of page 9.

For the purposes of completeness and reference we include in the list the result (8).

1. Gregory-Newton forward difference interpolation formula.

(@) 2) (3)

Y = Yo T Ay(}? + A2yog + A?’yo—g + -

2. Gregory-Newton backward difference interpolation formula.

kD L+ 1)@ I +2)®
Yo = Yo + Ay-igy + A2y—2(_'21—)‘ + ary_s! 3!) N

3. Gauss” interpolation formulas.

k(l) k(2) k + 1 3) k + 1 “4)
b= o+ anlyy e ann E a BE
jAeY) L+1)® E1+1)® k+‘2 @
Ye = Yo + Ay~1?— + Azy_l(—sz—— : 3y_2(—§%— + A4y—2£—'ﬁ + o
4. Stirling’s interpolation formula.
1 k(l) 1 k(2) k + 1 (2>
Ye = Yo + -Z‘(Ay—1+ Ayo)—z‘!— +. Azy—1|:§<j + g—éT)—>]

1 ’ E+1)®
+ E(A3y_z+A3y—1)(—-37)— + e

5. Bessel’s interpolation formula.

1 1/ED  (B—1)
Ye = é(yo-f-?h) + Ayo{:§<—1—!—+£—ﬁ)“—

k(Z) 1 k + 1 3) k(3)
+W%M%ﬁ+mﬂﬂ%%*ﬂﬂ+“

DN | bt

ZIG-ZAG PATHS AND LOZENGE DIAGRAMS

There exists a simple technique for not only writing down all of the above interpolation
formulas but developing others as well. To accomplish this we express the central difference
table of Fig. 2-4 in the form of a diagram called a lozenge diagram as shown in Fig. 2-6
below. A path from left to right such as indicated by the heavy solid line in Fig. 2-6 or
the heavy dashed line is called a zig-zag path. ,
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~ — ~— —
Y- \(k+ 2)(1)/1!/ A%y g \(k + 3)(3)/3!/\ A4y_4/\
1 Ay_o (k+2)2/21 ASy_4 (k+ 3)® /4!

(f+-1)/11 AZy_, (k + 2)3)/31

<
N

B

:
<«
]

1 / A1 \(k-'- 1)(2)/2!/ A%y —p (e +- 2)CH741
>T»/o /11! AZy *k+ 1)(3)/3!\ Aty _, <

/
\
/
\

]l e e = TAY) —— e (222 Ay | == = (f 1))/
= (k—1)/11 A2y, E3)/31 Aty
1 / ad \(k_l)(mm/ A% \’“”/4!
:yz \(FG"*Z)u)/u/ A2y, \(k— 1)(3)/3!/ Ay, <
1 Ay, (k—2)®/2! Ay, (k — 1)®/41
~
y (k— 3)(®/11 A2y (k — 2)3)/31 Ad
— \ / 2 \ / v \
Fig. 2-6

The following rules are observed in obtaining an interpolation formula.

\
\/
A
\/
[\

37

1. A term is to be added whenever any column containing differences is crossed from

left to right. The first column in Fig. 2-6 is to be considered as containing differences
of order zero.

. If the path enters a difference column from the left with positive slope [as for exam-
ple from %o to Ay—; in Fig. 2-6], the term which is to be added is equal to the product
of the difference and the coefficient which is indicated directly below the difference.

. If the path enters a difference column from the left with negative slope [as for
example from Ay—; to A%—, in Fig. 2-6], the term which is to be added is equal to the
product of the difference and the coefficient which is indicated directly above the
difference.

. If the path enters a difference column with zero slope [as for example from 1 to
Ayo in Fig. 2-6], the term which is to be added is equal to the product of the differ-
ence and the arithmetic mean of the coefficients directly above and below the
difference.

. If the path crosses with zero slope a column between two differences [as for example
in the path from Ay, to A%y—, in Fig. 2-6], the term which is to be added is equal to
the product of the coefficient between the two differences and the arithmetic mean
of the two differences.

. A reversal of path changes the sign of the corresponding term to be added.
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LAGRANGE’S INTERPOLATION FORMULA

In case the table of Fig. 2-1 either has nonequally spaced values of z or if the nth
differences of y are not small or zero the above interpolation formulas cannot be used.

In such case we can use the formula

(X —&1)(®—22) -+ (% — Tp) (& —zo)(® — Zo) - - - (T — p)
Yolwo—@a)(@o—wa)- - (@o— ) | Y1 (wr— wo)(ws — @z) - - - (@1 — @)

y =

(& — w) (& = 1) (= 2p1)
F N a8

which is called Lagrange’s interpolation formula [although it was known to Euler|.

The result holds whether the values o, 21, . . ., Zp are equally spaced or not and whether
nth differences are small or not. Note that ¥ is a polynomial in z of degree p.

TABLES WITH MISSING ENTRIES

Suppose that in a table the x values are equally spaced, i.e. 2 = a,a+h, a+2h, ...
and that all the corresponding entries f(x), except for a few missing ones, are given. Then
there are various methods by which these missing entries can be found as shown in Prob-
lems 2.28-2.30.

DIVIDED DIFFERENCES

If a table does not have equally spaced values of z, it is convenient to introduce the
idea of divided differences. Assuming that the values of x are %o, %1, %, . .. and that the
function is f(x) we define successive divided differences by

f(xl) - f(xo)

f(x(), -7/'1) — _m_ (9)
f(x()y X1, xz) = f(ﬁh, xxzz : zfv(omO, 1) (10)
ooz z) = [ L2 )

ete. They are called divided differences of orders 1, 2, 8, etc. We can represent these differ-
ences in a divided difference table as in Fig. 2-7.

£ f{wg)
F(wo, 1)
2y f{xy) F(®g, %15 %9)
Floy, 9) Flao, 2y, Tg, %3)
X2 f(xg) flewy, 22, %) F(zg, #1, g, T3, %)
f(wg, 3) flwq, %o, 903,,904)
X3 flxs) flag, w3, %4)
flees, 24)
X4 Flay)

Fig. 2-7

Various other notations are used for divided differences. For example f(xo,T1, ¥2) 18
sometimes denoted by [2o, &1, ¥2] OF A[Xo, Z1, Z2).
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The following are some important results regarding divided differences.
1. The divided differences are symmetric. For example
f(o, 1) = f(x1,0),  f(®o, X1, X2) = [lixy, X0, X2) = f(X2, %o, x1), ete.
2. If f(x) is a polynomial of degree n then f(x,xo) is a polynomial of degree n—1,

f(x, Zo, 1) a polynomial of degree n—2,.... Thus f(, 2, 21, . . .,%n—1) i a constant
and f(x, %o, X1, .. ., %n) = 0.

3. Divided differences can be expressed in terms of first differences. For example,

(o) f(zy) f(z2)

(@0 — 21)(@0 — 22) (@1 — o) (1 — &a) (22 — ®o) (2 — 1)

f(®o, 21, 22) =

NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA

From the above results we obtain
f(®) = f(xo) + (x — xo)f(xo, 1) + (2 - Lo (& — x1)f(Xo, X1, T2)

+ o (B 20) (B — 21 (B — Xa-1)f(To, Xy, .., 00) + R (12)
where r = LW kﬁo (@ — ) (13)
’ﬁ)(x—xk) = (x—Xo)(x — 1)+ (T — Tn) 7(14)

and » is some value between the smallest and largest of =,%o, @1, ...,%:. The result (12)
can be written as
f(x) = pa(x) + R (15)

where pa(2) is a polynomial in « of degree n often called an inferpolating polynomial.

INVERSE INTERPOLATION

We have assumed up to now that the values of x in a table were specified and that we
wanted to interpolate [or extrapolate] for a value of y = f(x) corresponding to a value of
2 not present in the table. It may happen however that we want a value of z corresponding
to a value y = f(x) which is not in the table. The process of finding such a value of « is
often called inverse interpolation and a solution for x in terms of y is often designated by
x = f~'(y) where f~!is called the inverse function. In this case the Lagrange interpolation
formula or Newton’s divided difference formula are especially useful. See Problem 2.38
and 2.39.

APPROXIMATE DIFFERENTIATION
From the formula e"® =1+ A [equation (43), page 8] we obtain the operator equivalence
1 AZ AT At

D = %ln(1+A) = E(A-—?+3-—4+-"> | (16)

by formally expanding In (1 + A) using the series on page 8.

By using (16) we can obtain approximate derivatives of a function from a difference
table. Higher derivatives can be obtained by finding series expansions for D2 D3, ...
from (16). We find for example

y
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1/, G, 11, 5 137
Dz = hz(A A+12A4—6A5+180A6—---> (27)
1
D = ﬁ(A:*—gA‘*-}—%A"’—"') (18)

Use can also be made of different interpolation formulas to find approximate derivatives.
In these cases a remainder term can be included enabling us to estimate the accuracy.

Solved Problems

SUBSCRIPT NOTATION
2.1. If y=f(x) and yx = f(a +kh), show that
(@) AYr = Yr+1— Yx () Eye = Yr+1 (¢) E=1+a
Since yy, = f(a -+ kh) we have ' | '
(@) Ay, = Af(a+kh) = fla+kh+h)— flat+kh) = yri1— ¥
®) Eyo = fla+kh) = fla+kh+h) = gpor
() From parts (o) and (), v+ Ayy, = By, or (1+ Ay, = By

Then since y, is arbitrary we have E =1+A.

22. Provethatif y« = f(a +kh), 2z = g{a+khk) then
(@) Alyx+zx) = Ay + A2k (b)  Aykzr = YrA2k + Zx+ 18Uk

(@) Ay +2z) = Alf(e+kh)+ gla + Ekh)] .
[f(a + kh+ B) + gla + Kk + R)] — [fla + Eh) + g(a + kh)]

= [Yr+1+ 2+1] — lyk + 2]

(by  Alyger) Alf(a + kh) g(a + kb)) N
= fla+kh+h)gla+kh+h) — fla + kh) g(e + kh)
= Yr+1k+1 " Ytk

Y@ r1— 2 T 201 Wr+1— Yr)

11

= Yz t 24 18Yk

DIFFERENCE TABLES
23. Let f(x)=22*—Tz+9 where xz=3,5, 7,9,11. Set up a table for the differences
of f(x).

The required table is shown in Fig. 2-8 below. Note that in column 2 ‘the various values of f(x)
are computed from f(x) = 222— Tx+ 9. Thus for example f(5) = 2(5)2— 7(5) +9 = 24, etc.
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x y = f(x) Ay A%y Aly Aty
3 6
18
5 24 16
34 0
7 58 16 0
50 0
9 108 16
66
11 174
Fig. 2-8

From this table we see that the second differences are constant and equal to 16 while the
higher differences are zero illustrating Theorem 2-1, page 33.

24. Find the numerical values corresponding to the letters in the following difference
table where it is assumed that there is equal spacing of the independent variable .

Y Ay A%y Ay Aty ASy
A
F
B —1
G M
3 J -8
H N —5
C K P
—2 4
D L
I
E
Fig. 2-9

Starting at the right end it is clear that P—(—3) = —5 or P = —8. Similarly we find in
succession the equations 4 —N=Por N=12, N—M =-3 or M=15 J—(—1)=M or J =14,
E~J=NorK=26 L—K=4o0r L=380, I—(-—2)=1L or I=28, —2—H=K or H=-28,
H—G=Jor G=—-42, G-F=—-1.or F=—-41, 3—B=G or B =45 B—A=F or A =86,
C—83=Hor C=—-2, D—-C=-2o0r D=-27, E-D=Ior E=1

The final difference table with the required numbers replacing letters is as follows:

y Ay A%y Ady Aty Ady
86
—41
45 —1
—42 15
3 ‘ 14 - -3
—28 12 -5
—95 26 -8
—2 4
—27 30
28
1
Fig. 2-10

The problem illustrates the fact that a difference table is completely determiried when one
entry in each column is known. From the manner in which the letters were obtained it is clear
that they can each have only one possible value, i.e. the difference table is unique.
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2.5. By using only the difference table of Problem 2.3 [and not f(x) = 222—Tx + 9] find
the values of y = f(z) for z=13,15,17,19,21.
We must extend the difference table of Problem 2.8 as shown in Fig. 2.11. To do this we first

note that the second differences are all constant and equal to 16. Thus we add the entries 16 in this
column as shown in Fig. 2-11. We then fill in the remaining entries of the table.

From the table it is seen that the values of y corresponding to « = 13,15,17,19,21 are 256,
354, 468, 598, 744 respectively. '

x Y Ay A%y
3 6
18
53 24 16
34
7 58 16
50
9 108 16
66
11 174 16
82
13 256 16
98
15 354 16
114
17 468 16
130
19 598 16
146
21 744 16
Fig. 2-11

THE GREGORY-NEWTON FORMULA AND APPLICATIONS
26. Prove that (kh)™ = h"k™ for n=1,2,3,.... _
Since (kh) = kh = hk, the result is true for n =1.
Since (kh)2 = (kh)(kh — k) = h2k(k — 1) = h2k®, the result is true for = = 2.
Using mathematical induction [Problem 2.67] we can prove for all n
(Bh)w = (kh)(kh—h)---(kh—nh+h) = hk(k—1)-- ‘(k—n+1) = hok®

2.7. Show that if we put # =a+kh in the Gregory-Newton formula given by equations
(44) and (45) on page 9 we obtain (6) and (7) or (8) on page 34.
From equations (44) and (45) on page 9 we have

— — )2 n — a)n) 7
fo) = foy + M@ E_OD  MOEZD_ o e

(n+D(y) (m — @)n+D
where R, = ! (m+ 1)1

Then putting ¢ = e+ kk in (I) we find using Problem 2.6 and Ax = h

A Kh)(D A2 kh)@ Anf(a) (kKh)™
f}fa)(l)! ’{ga)(z! + o+ S e+ Ba

(1) - A2 F(2) An Je(n)
o ¢ MO SRS O @

fla+khy = fla) +
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2.8.

FREOYER)BHD it Dfat D() kD
(n+1)! - (n 4+ 1)!

Since fla -+ kh) = gy, f(a) = yg, Af(@) = AYq, ..., (2) yields the required result.

where R, =

The first 5 terms of a sequence are given by 2, 7, 16, 35, 70. (a) Find the general
term of the sequence. (b) What is the tenth term of the sequence? {(c) What assump-
tions are you making in these cases?

(a) Let us represent the sequence by %y, %1, 4s, . .. Where the general term is u;. The given terms
can be represented in the table of Fig. 2-12.
k 0 1 2 3 4
U 2 7 16 35 70
Fig.2-12

The difference table corresponding to this is shown in Fig. 2-18.

Uy Auk Azuk Asuk A4’M.k
2
b
7 4
9 6 :
16 10 1]
19 6
35 16
- 85
70
Fig. 2-13

Then by the Gregory-Newton formula with u, replacing y,, we have since %, =2, Auy =5,
A2u0 = 4, A3uo = 6, A4u0 =90 .
Augh(V A2ugh(® ABugh(® Atyg®
T T e - T T Py

k(e —1) + 6l —1)(k—2)
2 6

U = ’Mo+

2 + 5k +
= k8 — k2 + 5k + 2

It should be noted that if the first 5 terms of the sequence are represented by uy, %g, . -.; U5
rather than wug, %y, .. .,%, We can accomplish this by replacing k by k—1 in the above poly-
nomial to obtain

w = =18 —(k—12+5(k~1)+2 = K - 4k2 + 10k — 5

(b) The 10th term is obtained by putting k=9 and we find
ug = 98— 924+5(9)+2 = 695
(¢) In obtaining the above results we are assuming that there exists some la?v .of fgrmation.of
the terms in the sequence and that we can find this law on the basis of limited information

provided by the first 5 terms, namely that the fourth and higher order differences are zero.
Theoretically any law of formation is possible [see Problem 2.9].
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2.9.

2.10.
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Are there other formulas for the general term of the sequence in Problem 2.8?
Explain.

In obtaining the general term for the sequence in Problem 2.8 we assumed first the existence
of some underlying law or formula giving these terms. Second we assumed that the function
of k- deseribing this law was such that the fourth and higher differences were all zero. A natural
consequence of this was that the function was a third degree polynomial in-k which we found by
use of the Gregory-Newton formula. In such case the general term not only exists but is unique.

By using other assumptions we can obtain many other formulas. For example if we write

as general term
w, = k3—k2+5k+2+ k(k — 1)(k—2)(k — 8)(k ~4) 1)

we obtain all the data in the table of Problem 2.8. On putting k=9 however we would obtain
for the 10th term the value u,= 15,815 differing from that of Problem 2.8, The formula (2)
does not however have the fourth and higher differences equal to zero.

From these remarks it is clear that one must give careful consideration as to the meaning
of the three dots in writing a sequence such as 2,7,16,35,70, ... .

Find a polynomial which fits the data in the following table.

x 3 5 7 9 11

Y 6 24 58 108 174

Method 1.
The difference table corresponding to this is given in Fig. 2-8, page 41. In this case @ = 8,
5 =2 and we can use the Gregory-Newton formula (8) on page 34, We have for the leading

differences
Yo = 6, Ayo = 18, A2y0 = 16, A3y0 = 0, A4y0 = 0,

@
Then yp = 6 + 18k + 162k' +0 = 6+ 18k + 8k(k—1) = 8k%2 + 10k + 6

To obtain this in the form y = f(x) we can write it equivalently as
fix) = fla+kh) = f(8+2k) = 8k2 _+ 10k + 6
Thus using « = 8+ 2k, ie. k= (x—38)/2, we find
f&) = 8[@—3)/22 4 10[(@—3)/2] +6 = 2(x—32+5(&—8) +6 = 2*—Tw+9

That this is correct is seen from the fact that the entries in the table of Fig, 2-8 were actually
obtained by using f(®) = 22— Tx+9 [see Problem 2.3].
Method 2.

Letting @« = 8, h = Az = 2 in the Gregory-Newton formula (6), page 34, we have

— )1 2 — a)(2)
o = ) 4 A EZI0 | SAEg

18 (w— 3D | 16 (x—3)@
21 T e

= 64 9x—3) + 2z—3)(r—3—2)
= 222 —Tx +9

= 6+

using the fact that (x—a)® =(z—a)z—a— h).

It should be noted that there are other polynomials of higher degree which also fit the da:ta
[see Problem 2.12). Consequently it would have been more precise to ask for the polynomial
of least degree which fits the data.
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INTERPOLATION AND EXTRAPOLATION

2.11.

2.12.

Use the table of Problem 2.10 to find the value of ¥ corresponding to (@) x=8,
(b) £=5.5, (c)z=15, (d) x=0. (¢) What assumptions are you making in these cases?
Methed 1.

From Method 1 of Problem 2.10 we have y, = 8k2+10k+6. To find the value of & corres-
ponding to #=8 we use & =a-+kh with ¢ =3, h=2 to obtain k= (z —a)/h = (8 — 8)/2 = 2.5.
Thus the required value of y corresponding to x = 8 is

Yas = 8(2.5)2 +10(2.5) + 6 = 81

In a similar manner the values of % corresponding to z =55, =15 x =0 are (5.5 —38)/2,
(16 —3)/2, (0—38)/2 or 1.25, 6, —1.5 respectively. Then the required values of y corresponding
to = 55,15 and 0 are respectively

Y125 = 8(1.25)2 4+ 10(1.25) + 6 = 31, ye = 8(6)2+ 10(6) + 6 = 354
Y_15 = 8(—1.5)2+10(~15)+6 = 9
Method 2.
From either Method 1 or Method 2 of Problem 2.10 we have
¥y = fle) = 202 —Twe +9

Then the required values are
f® = 282—-7@8)+9 = 81

F(6.5) = 2(5.5)2 — 7(5.5) + 9 = 31
f(15) = 2(15)2 — 7(15) + 9 = 854
FIO) = 2002—700+9 = 9

Note that in parts (a) and (b) we are interpolating, i.e. finding values within the table, while
in parts {(¢) and (d) we are extrapolating, i.e. finding values outside the table.

(¢) In using the method we are assuming that there ewists some underlying law which the data
follows and that we can find this law on the basis of the limited information supplied in the
table which suggests that all third and higher differences are actually zero so that the data
is fitted by a polynomial of second degree. It is possible however that even if an underlying
law exists, it is not unique. The analogy with finding general terms of sequences or series
as discussed in Problem 2.9 is apparent,

(@) Give an example of a polynomial of degree higher than two which fits the data
of Problem 2.3. (b) Discuss the relationship of this to problems of interpolation
and extrapolation.
(@) One example of a polynomial fitting the data of Problem 2.3 is obtained by using

F(x) = 222 — T2 + 9 + (x— 8)(x — 5)(x — T)(x — 9)(x — 11) 2)

which is a polynomial of degree 5. For x =3,5,7,9,11 the values agree with those of the
table or equivalently those obtained from f(x) = 2x%— Tx + 9.

Other examples can easily be made up, for example the polynomial of degree 11 given by

Fi(z) = 262 — Tx + 9+ 3(x— 3)2(x — 5)(x — T)4x — 9)(x — 11)3 (2)
For an example of a function which fits the data but is not a polynomial we can consgider
Fo(x) = 202 — T + 9 + (£ —3)(x —5)(x— T)(x — 9)(x —11)e—= (3)

(b) Since there are many examples of functions which fit the data, it is clear that any interpola-
tion formula based on data from a table will not be unique. Thus for example if we put « =8
in (1) of part (a), we find the value corresponding to it is 126 rather than 81 as in Problem 2.11.

Uhiqueness is obtained only when we restrict ourselves in some way as for example
requiring a polynomial of smallest degree which fits the data.
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2.13. The table of Fig. 2-14 gives the values of sin® from x =25° to z=30° in steps

2.14.

of 1°. (a) Using interpolation find sin 28°24’ and (b) compare with the exact value.

» 25° 26° 27° 28° 29° 30°
sin 0.42262 0.43837 0.45399 0.46947 0.48481 0.50000
Fig. 2-14

To avoid decimals consider f(x) = 105 sinx and let # = a+kh where o = 25° and h =1°.
Then we can write ., = fla+kh) = 10%sin(25° + k+1°). The difference table is given in

Fig. 2-15. In this table k¥ =0 corresponds to « =25° k=1 to 26°, ete.
k Yk Ay A%y Ay,
0 42,262

1,575
1 43,837 - —13

1,56€2 -1
2 45,399 —14

1,648 0
3 46,947 —14

1,534 -1
4 48,481 —15

1,519
b 50,000

Fig. 2-15

It should be noted that the third differences are very small in comparison with the y;, and for all
practical purposes can be taken as zero.

When = 28°24’ = 28.4°, we have k = (28.4° —25°)/1° == 3.4. Thus by the Gregory-Newton

formula
Y34 = 109 sin (28°24)
. Ayok(l) AZyOk(z)
= Yot T 21

(—13)(3.4)(3.4 — 1)
21

42,262 + (1,575)(3.4) + R
= 47,564
This yields a value of sin28°24' = 0.47564. For an estimate of the error see Problem 2.14.

(b) The exact value to 5 decimal places is 0.47562. Thus the absolute error made is 0.00002

and the percent error is 0.004%.

Estimate the error term in Problem 2.13.

The error is given by the remainder (7), page 34, with n =2
13" () B

3!

To evaluate this note that in formulas of calculus involying trigonometric functions, angles
must be expressed in radians rather than degrees. This is accomplished by using 1° = #/180
radians. If x is in radians we have

fle) = 105sinx, fix) = 105 cos x,

Ry = (1)

f'x) = —105sinw, f7'{z) = -10° cosx

so that (1) becomes

(2)

3 (cos 7)(3.4)(8.4 — 1)(3.4 —2)
180 3!

R, = —105<-”—-
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Since the largest value of cosy is V1 -—sin225° = 0.90631 we see from (2) that Ry = —
approximately, i.e, the best value we can get for sin 28°24’ is 0.47563. The fact that this is
still not correct is due to rounding errors in the given table.

CENTRAL DIFFERENCE TABLES AND INTERPOLATION FORMULAS

2.15,

(@) Construct a central difference table corresponding to the data of Problem 2.13
by choosing a =28°. (b) Use Stirling’s interpolation formula to work Problem 2.13
and (c) compare with the exact value and the value obtained from the Gregory-
Newton formula.

(a) The central difference table is shown in Fig. 2-16.

k Yi Ay A%y, Ay
—3 42,262
1,575
—~2 43,837 —13
1,662 -1
-1 45,399 —14
1,648 0
0 46,947 —14
1,534 -1
1 48,481 ~15
1,519
2 50,000
Fig. 2-16

(b)) Here k =0 corresponds to 28°, k =1 corresponds to 29°, k = —1 corresponds to 26°, ete.
The value of % corresponding to 28.4° is k = (28.4° —28°)/1° = 0.4.

From the table we see that
yo = 46,947, Ay_, = 1,548, Ay, = 1,534, A%, = —14, Ay _,=-1, A%y ;=0
Then by Stirling’s formula

Yoo = 105 sin (28°24)

1 B 1/k®  (k+1®
Yo + Q(Ay_l-FAyn)———l! + A2y-1[§ <'——2! +'———'~‘—( 2!) >j| +
4)(—0.6) . (1L4)(04 ~
46,947 + 5 (1548+1534) ‘i‘,l) ‘ 14)[ ((0 )(=086) _ ( ;g )ﬂ P

41,662

i

it

Thus sin 28°24’ = 0.47562.

(¢) The result obtained in (b) is correct to 5 decimal places. The additional accuracy of Stir(:
ling’s formula over the Gregory-Newton formula is explained by the fact that 28°24" = 28.4
occurs in the central part of the table. Thus the Stirling formula, which uses the dlfferen?es
near the center, is expected to be more accurate than the Gregory-Newton formula, which
uses differences near the beginning of the table.
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2.16. (a) Explain why you might expect Bessel’s interpolation formula to give a better
approximation to sin 28°24’ than Stirling’s formula. (b) Can you confirm your
expectation given in part (a)? '

(a)

(b

Since the differences used in Bessel’s interpolation formula lie to one side of the center it
might be expected that since 28.4° lies to the same side, a better approximation would be
obtained. :

From the table of Fig. 2-16,
Yo = 46,947, 'y, = 48,481, Ay, = 1,584, A%y_, = —14, A%, = —15

Thus Bessel’s interpolation formula gives

1 [k T — 1)L F(2)
v = $otu) + A?lo[:E <T+%——>J + A2y Ay + e
or o4 = 1(46,947+48,481) + 1,584[1(0.4—0.6)] + {(—14—15) [_(0-4)(2—0-6)] I

= 47,562

Thus we obtain sin 28°24’ = 0.47562, Although Bessel’s formula might have been expected
to give a better approximation than Stirling’s formula we cannot confirm the expectation
in this case since the result obtained from Stirling’s formula is already accurate to 5 decimal
places.

2.17. Derive the Gregory-Newton backward difference formula by (a) using symbolic
operator methods, (b) using any other method.

(¢) We have since E—A =1

(v

E k
v = Ebyy = <m> yo = (Q—AE~"H)ky,
_ [1 b (R aB s 4 CRTE= DEATT 4 Rk Dk EAET ] "
= [1 + EAE-1 4 ﬂ%':_—lz A2E-2 4 WME* + '-.-:}yo

LD 12 JXEN
= Yo+ My_yg7 T Ao AT 0

where we have used the binomial theorem.
Assume Yy = Ag+ AL + Ayl + 1) + Ayl + 23 oo AT R— 1)

Then Ay, = A;+ 24,4+ 1)V + 345k +2)P + -0 F nd (k+n—1)="D
A%y, = 24, + 645k+2)D + - +an—DAk+n— 1)n—2)

Putting & = 0 in the expression for y, k=—11in Ay, Kk =—2 in A%y, . . we find
A2y_2 Any—n
Ay = Yo Ay = Ay-—yp, 4, = a1 v Ay = -y

LD T4 1)@ (k- n— 1)@
and so Yy = yo—I—Ay_1?—+A2y_2(—2!)——+ e F Ay T
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2.18. Derive the Gauss interpolation formulas from the Gregory-Newton formula.

The Gregory-Newton formula is
kD (2> 703
Yo = Yot Mo + Azyo““‘z! + Ay, 3T T

Now from the generalized difference table of Fig. 2-4, page 35, we have
Ay, — A2y 4 = A3y_, or A2y, = A2y, + A3y_,

Similarly,
Adyg — A8y, = Aty_;, Aty [— Aty _, = ASy_,

from which
Adyy = ABy_y + A%y _y = Ay + A%y, + ASy_,
Then by substituting in the Gregory-Newton formula we find

LD (2 L3
Y = Yo + Ayo-—-1, + (Azy_1+A3y_l)? + (Aay—1+A4y—2+A5y—2)—3T 4o

2¢H) J(2 (2 |3 | ACH I AC))
= Yot Moyy t AW Asy—l[ﬁ + ﬁ] + A4y—2l:*3‘r+ﬁ] +

A¢3)

(k+1)® (k + 1)@
ar T AM-T gy T AW

(D
= yo + Ayol—, + A%y_,

The second Gauss formula can be derived in a similar manner [see Problem 2.94].

2.19. Derive Stirling’s interpolation formula.

From the Gauss formulas we have

kL E® T+ 1)
Ve = Yot Ay F AW oF Asy—l(—:ﬁ)“‘ +
kD E+1)@ I 4 1)
Y = Yo T Ay—lT + A%_é% + A3y_2(————3—!)— +

Then taking the arithmetic mean of these two results we have

) 1k (k+1)®
Ve = Yo T FAy— +ay) T + Azy—l[é <—2T+(—2r)->:] +

2.20. Show how to express the Gregory-Newton backward difference interpolation formula
in terms of the backward difference operator V.

By Problems 1.39(a), page 25, and 1.93, page 30, we have
V = AE], V2 = A2E—2, ey Ve = AnfE-—n
Thus
AE~f(a) = V*f(a) n=123,...
or equivalently
AnE—nyo fo Vnyo
‘Using this in (8), page 34, it becomes

jXeb k4 1)@ (k+2)®
Y = Yo t Vyo—lT + szo-——“—( 2!) + Viy,— 31 +
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ZI1G-ZAG PATHS AND LOZENGE DIAGRAMS

2.21. Demonstrate the rules for writing interpolation formulas by obtaining (a) Bessel’s
formula, (b) Gauss’ second formula on page 36.

() We follow the path shown dashed in Fig. 2-5, page 37, Since the path starts with 1 in the
first column of the difference table, the first term of the interpolation formula by rule 5,
page 37, is 1 multiplied by the mean of the numbers y, and y; above and below 1, i.e.

—21(110 + 1)

Similarly by rule 4, page 37, since the path goes through Ay, the next term to be added
is Ay, multiplied by the mean of the coefficients directly above and below, i.e.

1/ kW k~1)W
A”°§<T+__1! )

Again using rule 5 since the path passes through the coefficient k¢»/2!, the next term to
be added is £/2! multiplied by the mean of the differences above and below the coefficient, i.e.

B2 1
21 2 A%y + AZyg)

Thus continuing in this manner we find the required formula

1 /D (-1 L@
Y = $Wetwy) + Ay0§<—]__!—+£-—i_!—)_> + %(Azy_l+A2y0)—2—!* + e

(b) In this case we follow the zig-zag path indicated by the solid lines of Fig. 2-5, page 37.
By rule 2 if we assume that the path enters y, with negative slope, the first term is ¥o
multiplied by the coefficient 1 directly above, ie. the first term is
Yo'l = o
The same term is obtained if we assume that the path enters y, with positive or zero slope.

By rule 3 since the path enters Ay with positive slope, the second term is Ay_; multiplied

by the coefficient directly below, i.e. B0

g

By rule 2 since the path enters A%y_, with negative slope, the third term is A%y_; multiplied
by the coeflicient directly above, i.e. o+ 1)@
2

A2y_1 1

Continuing in this manner we obtain the required formula

(k+ 1)@

L (k+1)®
Y = Yo + Ay_l—l—‘ + A2y_.1——2—!— + Ay +

3!

292. Let P denote a zig-zag path around any closed lozenge or cell in Fig. 2-5, page 37,
i.e. the path begins and ends on the same difference. Prove that according to the
rules on page 37 the contribution is equal to zero.

A general cell or lozenge is shown in Fig. 2-17.

(k — ) (n—1) AR k—r+ 1)(n+1)
(n—l)z/*‘“’/’ -1 %} m DT
— p)(n)
-ty ——tomE o (o n) PR Aty

n!
Pagy //gﬁi//y
(k—r+ 1) (k —n)ntt

n—1)! A"y m+ 1)1
Fig. 2-17
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By rule 6 a reversal of path changes the sign of the corresponding term added. Thus we need only
show that the contributions corresponding to the three paths from A*—ly, to A"*ly,_, in Fig. 2-17
are all equal.
Now if path 1 is chosen the contribution is
(B—r)™ (k—»+ 1)@+D
al T 1)1 S

Similarly if paths 2 and 8 are chosen the contributions are respectively

C, = Aw, Antly. 4

_ (k—r)n) 1 /(k—r+1)ntDd k—ryntdd
Cy, = %(Anyr—l +A"y1‘)_n!_——— + A”+1y7_1§ (n+ 1)! + {(n+ 1! @
o (=) . (k —r)n+D
C3 = &y —0y— + A “yr—l—(n-_,_—l‘)“!- *
From (1) and (3) we see that
& — r)(nd k—r+1)@+D (- )+ 1)
Cl - CB = (—n-!)_.(Anyr—l-Anyr) + A""Hy,_l <( (n+ 1))! _( (’n'l')l)! >
k — y)(n) kE—y)n) [(le—p—1) — (e —~»—
e n’!‘) (—artly,_4) + A""'lyr—l( n? <( . 7)”_(1 T n)>
—_ gy — )
= —EoD pwrry, o+ iy, EEDT
=0
so that C; = Cy. Also we note that the mean of C; and Cjy is
(k—r)™1 1/ (k—r+1)tD  (k—p@+n\
HOHCY = Ty (e T AN+ Ay T w+n1 ) = O

Thus C; = C, = C3 and the required result is proved.

2.23. Prove that the sum of the contributions around any closed zig-zag path in the lozenge
. diagram is zero.

We shall prove the result for a typical closed path such as JKLMNPQRJ in Fig. 2-18. This
path encloses 3 cells I, II, III.

Fig. 2-18

If we denote the contribution corresponding to path JK, for example, by C;x and the total
contribution around cell I, for example, by C;, then

Ci+Cn+ Cuyr = (Cyx+ Cgy+ Cyr+Cry)
+ (Cgr+ Com + Cun + Cnix)
+ (Cry + Cnp+ Cpo+ Cqr)
= Cyjg+ Cgr,+ Cry + Cyun + Cnp + Cpg + Cor + Cry
+ (Cgy + Cyg) + (Cry+ Cugr)
= CirLMnpParJ

since Cgy = —Cygx and Cry = —Cyg. Thus since C; =0, C; =0, Cpy = 0 by Problem 2.22, it fol-
lows that CJKLMNPQRJ = 0.
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2.24. Prove that if two zig-zag paths end at the same place in the lozenge diagram then
the interpolation formulas corresponding to them are identical.

Consider for example the two zig-zag paths indicated dashed and solid in Fig. 2-19. These
two paths end at the same place but begin at different places.

(e —r)®
I 11
™~
“~
1 AYy
E—r—=—1)W0
Yr+1 /\ ¢ 11 ) A%y,
\
AN
~
AYppy — = — —— 2=
Fig. 2-19

The total contribution to the interpolation formula corresponding to the dashed path is given by

T — ) T —r — 1)
v + a9, 1? ~ ay, TI!) + E , @

when R is the remaining part of the formula.

Similarly the total contribution to the interpolation formula corresponding to the solid path is

1 /(=D (—7—1)D L —r— 1)
%(yr+yr+1) + Ayr'_2-<( 1!) +( 11 ) >—Ayr(_'rT!_')'—

Note that the minus signs in (7) and (2) are used because of rule 8, page 37.

+ R (2)

To show that the results () and (2) are actually equal we need only show that their difference
is zero. We find this difference to be
k—r—1)wW k—n)! '
‘%yr+1 - %yr + %‘Ayr(——'T)'_ - %Ayr( 11 ) ()

Since Y,41 = Y, + AY, (8) can be written

—r—1  (k—r)D
%Ay,[u( e " ] = ey lltk—r—1—(k=n] = 0

so that the required result is proved.

2.925. Prove the validity of all the interpolétion formulas on page 36.

Qince all the formulas can be obtained from any one of them, it follows by Problem 2.24 that
they are all valid if we can prove just one of them. However we have already proved one of them,
namely the Gregory-Newton formula on page 36. This proves that all of them are valid.

Note that Problems 2.18 and 2.19 illustrate how some of these formulas can be obtained from
the Gregory-Newton formula.

LAGRANGE’S INTERPOLATION FORMULA

2.926. Prove Lagrange’s interpolation formula on page 38.

Since there are p + 1 values of ¥ corresponding to p—+1 values of « in the table of Fig. 2-1 on
page 32, we can fit the data by a polynomial of degree p. Choose this polynomial to be

¥ = agl@—a)(@—xy) - (x—xy) + a2 — wg) (@ — @9) + - (& — wp)

+ o0t apla —wg)(x —xq) (@ = 2p—y)



CHAP. 2] APPLICATIONS ‘OF THE DIFFERENCE CALCULUS 53

2.27.

Then putting x = x5, y =y, we have
Yo
(g — @1 )(mg — 22)* * * (w9 — @)

Yo = aolwg—wy)(wg — &g) - (g — %p) or Gy =

Similarly putting « =#,, y =y, we find

YL = al(ml - xo) (xl — xz) e (901 - (Ep) or & = 4l
. (@ — mo)(opy — @) "+ + (g — o)
with corresponding values for ay, as. ..., a,. Putting these values in the assumed polynomial we

obtain Lagrange’s formula.

(a) Work Problem 2.10 by using Lagrange’s formula and thus (b) solve Problem 2.11.
(a) Substituting the values from the table of Fig. 2-13 into Lagrange’s formula we obtain

~ 6 (& — 5)(@x — T)(x — 9)(x — 11) (£ —3)(x— T) (2 — 9 (x — 11)
¥ = @85 E-1E=93@—11) (5—3)5—"7)(56—=9)( — 11)

(2 — 3)(&x — B)(2 — 9)(x — 11) (@ — 3) (& — BY (e — T) (@ — 11)
(7—3)(7T— B)(T— 9)(7 — 11) (9—3)(9 —5)9—T)(9—11)
( — 8) (@ — 5)(w — 7)(x — 9)

T I G g a1 —s)Ai= A1 —19)

Performing the algebra we find y =222 — 7z + 9 which is a polynomial of degree two and not
four as we might have expected.

+ 24

+ 58 + 108

() The values of y for « = 8,5.5,15,0 can be obtained by substituting in the Lagrange inter-
polation formula of part (a).

TABLES WITH MISSING ENTRIES

2.28.

Find the value of u; missing in the following table.

k 0 1 2 3 4
e 3 8 15 47
Fig. 2-20

Method 1.

‘In this problem we cannot construct a difference table. However from the four pairs of values
(k, u;) which are known we would be able to fit a polynomial of degree 3. This leads us to assume
that the fourth differences are zero, i.e. A%*uy, = 0. Thus we have

(F—1)Yuy = (E*—4E3+6E2—4E+1uy, = 0
which becomes
u4_"4u3+6u2"4u1+u0 = 0
Using the values from the table we then have
47 — 4ugz + 6(15) —4(8)+3 = 0 or . ug = 27

Method 2.
Since there are 4 values of k for which u, is known, we can fit the data by a polynomial

of degree 3 which involves 4 unknown coefficients. Let us therefore assume that

w, = A® + A2 + Ak + A,
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Then putting £ =0,1,2,4 in succession we obtain the equations
A; = 3
A+ Aj+ A+ Az = 8
8A,+ 44, +24,+ A3 = 15
6445+ 164, + 44, + Ay = 47
Solving simultaneously we find

Ay =4, Ay =—-% Ay =35 A3 =3

and so : wy, = 4k®— 3k + 5K+ 3
Putting k¥ = 3 we then find uz = 27.
Method 3.

By Lagrange’s formula we have

w = u F—1)k—2)(k—4) T (k—0)k—2)(k—4)
k 00— 1)(0 —2)(0 — 4) 11-0)(1—-2)(1—9)
+ E—0k—DFE—4) (-0 —DHE—2)

B ETE—DE—4) = M E-0Ed-1)E—2)
8 L eV — 8 _ 15 Ve — 47 1\ —
= S DE—DU— ) + FEE =2~ = P ERE D=4 + 5y EE—DE—2)
Then putting k =3 we find ug = 27.

Note that Method 1 has the advantage in that we need not obtain the polynomial.

2.29. Find log 7 and logis 11 from the following table.

x 6 ( -8 9 10 11 12

f(z) =logo & 0.77815 0.90309 0.95424 1.00000 1.07918

Fig. 2-21
Since there are 5 known pairs of values we could fit a polynomial of degree 4 to the data.
We are thus led to assume that the 5th differences of f(x) = logyg« are Zzero.

If we let x = a+kh and u; = f(a+ kh), then taking ¢ =6 and h =1 the given table can
be written in the % notation as follows.

k 0 1 2 3 4 5 6
w = loggo 6+%) | 077815 090309 | 095424 | 1.00000 1.07918
Fig. 2-22

From ASu, = 0 and APu; =0, ie. (E —1)%uy = 0 and (E—1)u; =0, we are led to the equations
(E5 — 5E*+ 10E3 —- 10E% + 5E — Duy = 0, (E5 —BE4+ 10E% — 10E2+ 5E —1)uy = 0

ug — buy + 10ug — 10uy + Suy — up = 0
or @
Ug — 57.05 + 10“4 - 1071«3 -+ 5u2 — Uy = 0
Putting in the values of ug, ug, U3, 4y and ug from the table we find
Bu, + uy = b.26615
uy + Bus = 6.05223 @)

Solving simultaneously we find
uy = logypT7 = 0.84494, us = logyy11 = 1.04146

These should be compared with the exact values to 5 decimal places given by logye7 = 0.84510,
logyo 11 = 1.04139 so that the errors made in each case are less than 0.02% and 0.01% respectively.
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2.30. The amount Ax of an annuity [see Problem 2.144] after k years is given in the fol-
lowing table. Determine the amounts of the annuity for the missing years corres-

ponding to kK =4 and 5.

k 3 6 9 12
Ap 3.1216 6.6330 10.5828 15.0258
Fig. 2-23

Let A3 and E; respectfully denote the difference and shifting operators for the 8 year intervals

while A; and E; denote the corresponding operators for 1 year intervals.

Then we have

E; = 14 A, E, = 1+ 4
Since Uers = Egy = Elu,
we have Ey = Ez
or 1k+ Ag = (1—};A1)3
Thus A = Q43 —1 1)

Using the binomial theorem we then have

1

1.9

Ay

Ay

1 1/3)(—2/3
3 + 4 )é! b3

3!

4 (1/3)(=2/3)(—5/3) A3 4 e

- 5 .3
= g8 — a5 + g as +

Since there are only four pairs of values in the table we can assume that third differences A are

constant, Thus we can omit fourth and higher differences in the expansions.
1 1 5
We thus have Ay = ghp - §A§ + 5748 @
; 1 2
Al = AT~ 5l ®
1
Al = g7A *)
The difference table for the 3 year intervals is shown in Fig. 2-24.
k Uy Aguy: s Aguk Aguk
3 3.1216
3.5114
6 6.6330 0.4384
3.9498 0.0548
9 10.5828 0.4932
4.4430
12 15.0258 ~
Fig.2-24

Using (2), (3) and (4) we then have

1 1 5
Ajug = §A3u3 - —9-A§u3 + ﬁAgus
= 1.12513827
1 2 1
A%u:,. = §A§’IL3 - :27Agu3 = 5(0.43
= 0.04465185
: 1
A, = 2177 aduy = 5-(0.0548) =

1 1 5,

5 (3.5114) — 5 (0.4384) + 47 (0.0548)
2

84) — 5 (0.0548)

0.00202963

By using the above leading differences we can now complete the difference table for 1 year

intervals as shown in Fig. 2-25 below.
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k U N ATy NS
3 3.1216

1.12513827
4 4.2467 0.04465185

1.16979012 0.00202963
5 5.4165 0.04668148

1.21647160
6 6.6330

Fig. 2-25

From this table we see that
uy = 4.2467, us = b5.4165

By proceeding in a similar manner we can find ur, g, %y, %1;-

DIVIDED DIFFERENCES

2.31.

2.32.

Construct a divided difference table corresponding to the data in the following table.

x 2 4 5 6 8 10
f(x) 10 96 196 350 868 1746
Fig. 2-26

The divided difference table is as follows

® f(=)
2 10
43
4 96 19
100 2
5 196 27 0
154 2
6 350 35 0
259 2
8 868 45
439
10 1746
Fig. 2-27
— . 196 — 96
In the third column the entry 43 is obtained from —92—_—;2, 100 is obtained from e
ete.
— . 4—1
In the fourth column the entry 19 is obtained from %’ 27 is obtained from lié——_—z@ ,
ete.
In the fifth column the entries are obtained from 22 : ég’ 32 : Z7 and 4150__355 and are all
equal to 2.

Prove that  (a) f(®) = f(%o) + (& — 20)f(%, %0)
(b) f(x,x0) = f(xo,21) + (x— x1)f(x, o, 1)
() fla, a0, 21) = f(®o, &1, &) + (¥ — 2)f (2, Zo, X1, T2)

(a) By definition, f(x, ) = f(—xgz_—:jgf—()) so that

fle) = flog) + (x— x0)f (2, %g)



CHAP. 2] APPLICATIONS OF THE DIFFERENCE CALCULUS 57

2.33.

2.34.

2.35.

(b) By definition, f(x, xg, 1) = /@ xi = M 2y so that
—

fl@, o) = flwg, #1) + (2 — @y)f(, %0, #1)

f(x’ Lo, xl) - f(xOy £1, m2)

(¢) By definition, f(z, %y, 21, 25) = so that

X — Xg
 fywe ) = flRg, 21, @0) + (v — @) f(w, %o, %1, 0)

Generalizations can easily be made.

Prove that
(@) = f(wo) + (x — xo)f (2o, X1) + (x — Xo)(2 — 21)f (2o, X1, %2) + R
where R = (2 —xo)(x — 1) (@ — x2)f (2, o, X1, T2)
Using the results of Problem 2.32(a), (b) and (¢) we have
f®) = flxg) + (& — ) (=, @)
f(“'o) + (x— 900) [f(xo; 901) + (- Wl)f(x: Loy 901)]
f(2g) + (2 — ag)f(2g, 1) + (& — 2o — 2)f (2, 20, 22)
= fwe) + (@ — xo)f(@, 1) + (0 — 29) (6 — 1) [ (g, %1, %2) + (& — @0)f (25, 20, 7y, )]
flag) + (& —ag)f(ag, 1) + (2 — ) ( — 21)f (209, %1, %2} + (¥ — o) — 1) (& — @) f (0, 2y, 21, %)

which is equivalent to the required result.

I

I

]

Prove Newton’s divided difference interpolation formula
f(@) = f(®o) + (. — 20)f (o, 21) + (& — Xo) (2 — 21)f (20, 21, Z2)
' + o+ (2= %) - (X — Za—1)f(Zo, . . ., &n) + R()
where R(z) = (x—2o)(x — 1) - - (. — Xn)f (2, To, X1, . . ., Tn)

We shall use the principle of mathematical induction. Assume that the formula is true for

n=1FL ie.
f®) = flwg) + (@ —2)f(wg, 1) + * o+ + (0 —x) * (X — X ) (g, . . ., )

+ (@ —2o) (@ — @) - - (@ — 2)f (2, Tg, ©15 .+ oy Tg) (1)
Now by definition as in Problem 2.32 we have
f(x, Loy « e vy ack) - f(wo, L1y -v ey xk+1)

Xy Xy Byy v ens =
o, @gy %1, o0y Tpoq) p——— 2)

so that fl®, @0, @1, oo 2) = f(@0, %y, - - oy Bpeyy) + (8 — B 1)F (@0, B, T1y 0oy Bpet 1) 3)
Using this in (Z) we find
f®) = flwg) + (@ —ag)f(wg, ) + o+ + (@ — @)+ (& —w)f(@gy ... Xp 1)
+ (2 — wo) (@ — 21) -+ (w0 — a0y 4 )F (2, 0, B, + o5 Ppcrq)

Thus assuming that it is true for n =% we have proved it true for » =k +1. But since it is
true for » =1 [see Problem 2.32], it is true for n =2 and thus for » =38 and so on for all

positive integers.

Prove that the remainder in Problem 2.34 can be written as

f(n+1)(17)
(n+1)!

where 7 is a number between the smallest and largest of the values z, zo, 21, . . ., Ta.

R@2) = (@—z)(@—2)(@— )

By Problem 2.34 the remainder is
R(W) = (x - "70)(37 - xl)' M (x - xn)f(m; Loy L1s « - <y xn) (1)
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Since B = 0 at & = ®g, %y, « - ., %y, We know by Problem 1117, page 31, that the (n+ 1)th derivative
Rn+1)(%) is zero for some value 7, ie.
RntD)(g) = 0 &)

where 7 is a number between the smallest and largest of the valueé ac, gy iy o 05 Lo
Now by taking the (n + 1)th derivative of f(z) in Newton’s divided difference formula, we have
FOtD(@) = nl f(@e, B - .., %) + RO+I(2) ®
Then letting « = 7 in (3) and using (2) we find

(n+1)
f(mo,wl, ...,m,,) = %Ti(),l'..) (4)
Thus () becomes
(n+1)
RE) = (a=roe—a) o) ol ®)

Use Newton’s divided difference formula to express f(x) as a polynomial in = for

the data of Problem 2.31.

From Problem 2.31 we have

 wy =2 @ =4, =5, x3=86, x,=8, x5 =10

Also,

flg) = 10, fwg, 1) = 43, f(®g, %y, %3) = 19, flag, @y, %9, %3) = 2, flg, €1, %3, %3 %) = 0
Then using Problem 2.33 we have
f@ = 10+ (& —2)(48) + (& — 2)(z — 4)(19) + (x — 2}z — 4)(x — B)(2) + (w — 2)(x — H)(z — B){(z% — 6)(0)

= 223 — 3%2 + by — 4

Solve the equation z°—8x—4=0.

Consider y = f(x) = #® —3x—4. We are looking for the values of » for which y = f(z) = 0.
When =2, y=—2 and when =8, y =14. It follows that x is between 2 and 3 since ¥
changes sign from —2 to +14. Also it seems reasonable from these results that the value of
z is closer to 2 than to 3. In view of these observations we set up a table of values for x and y
as shown in Fig. 2-28, We can think of # as a function of y, ie. 2= g(y).

x 2.0 2.1 2.2 2.3 24

Y —2.0000 —1.0390 0.0480 1.2670 2.6240

Fig. 2-28

We now set up the following table of divided differences.

y = g(¥)
~-2.0000 2.0
0.10406
—1.0390 2.1 ' --0.00589
0.09200 0.00048
0.0480 2.2 —0.00432
0.08203 0.00029
1.2670 2.3 —0.00324
0.07369
2.6240 2.4

Fig. 2-29
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By Newton’ s divided difference formula,
9@ = glyo) + (¥ — ¥0)9Wo v1) + W~ Y)Y — ¥1)9(We Y1, ¥2)
+ W~y — vV — Y9 W0, Y1, Y, ¥) + -+ (1)

Since the required value of x is that for which ¥y =0, we put ¥y =0 in (7) to obtain
x = g(0) = g(yo) — Yo9Wor 1) + Wod¥D9W0, Y1, ¥2) — Yo¥1Y29 W, Y1, Yo, Ya) + « - - 2

Then letting y, = —1.0390 so that g(y,) = 2.1 and y; = 0.0480, y, = 1.2670 we have g(yy,v,) =
0.09200, g(yo, Y1, ¥s) = —0.00432, g(yg, ¥y, ¥s ¥3) = 0.00029. Thus (2) becomes

x = 2.1+ (1.0890)(0.09200) + (—1.0390)(0.0480)(—0.00432) — (—1.0390)(0.0480)(1.2670)(0.00029)
= 2.1+ 0.09559 + 0.00022 + 0.00002
= 2.19583

As a check we note that when 2z = 219583 we have 23— 3z —4 = 0.00008 so that the value
is quite accurate.

To find the remaining roots of the equation 23 —8x—4 = 0 we use the fact that « — 2.19583
must be a factor of 23— 3x — 4 and find by division that the other factor is x2+ 2.19583x + 1.82167.

Setting this factor equal to zero we find that the other two roots are complex numbers given by
—1.09792 =+ 0.78502i.

INVERSE INTERPOLATION

2.38. Using the data in the table of Problem 2.10 find the value of z cOrrespdnding’ to
y = f(x) =100 by using (a) Lagrange’s formula, (b) Newton’s divided difference
formula and (¢) the Gregory-Newton forward difference formula.

(2) Interchanging the roles of # and y in Lagrange’s formula we have
Py O 24)(y — 58)(y — 108)(y — 174) + 5 (y — 6)(y — 58)(y — 108)(y — 174)
(6—24)(6 — 58)(6 — 108)(6 — 174) (24 — 6)(24 — 58)(24 — 108)(24 — 174)

(y — 6)(y — 24)(y — 108)(y — 174) +9 (y — 6)(y — 24)(y — 58)(y — 1'14)
(58 — 6)(58 — 24)(58 — 108)(58 — 174) ' * (108 — 6){108 — 24)(108 — 58)(108 — 174)

+ 11 {y — 6)(y — 24)(y — B8)(y — 108)
(174 — 6)(174 — 24)(174 — 58)(174 — 108)

Then putting y = 100 we find « = 8.656.

@

+ 7

(b) From the table of Problem 2.10 we obtain the following divided difference table.

Y x
174 11
0.030303
108 9 ~~0.00008360
0.040000 0.000000937
b8 7 —0.00022410 —0.000000040
0.058824 0.000007661
24 b —0.00100552
0.111111
6 3

Assuming the fourth order difference to be negligible we have by Newton’s divided
difference formula

¢ = 11 + (y — 174)(0.030303) + (y — 174)(y — 108){—0.00008360)
+ (y — 174)(y — 108)(y — 58)(0.000000937)
Putting ¥ = 100 we find « = 8.628.
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(¢) Since the values of # are equally spaced we can use the Gregory-Newton formula to find an
interpolating formula for f(x). As in Problem 2.11 we find f(x) = 242 — T +9.

If f(@) =100, ie 2z2—Tz-+9=100, then 2z2—7r—91 =0 and by solving this
equation we find ' '
T*EV7T7 _ T+ 27.8747
4
Since -only the positive square root is significant for our purposes, we use it to find « = 8.718.

This can in fact be taken as the true value of x since the table of Problem 2,10 was actually
constructed by using the function f(x) = 222 — Ta+ 9. ’

x =

2.39. Work Problem 2.87 by using inverse interpolation involving Lagrange’s fdrmula.

We use the table of Fig. 2-28, page 58. Then by Lagrange’s interpolation formula we have

(y + 1.0390)(y — 0.0480)(y — 1.2670)(y — 2.6240)
( —3.0000 + 1.0390)(—2.0000 — 0.0480)(—2.0000 — 1.2670)(—2.0000 — 2.6240)

+ 21 (y + 2.0000)(y — 0.0480)(y — 1.2670)(y — 2.6240)
= (—1.0390 + 2.0000)(—1.0390 — 0.0480)(—1.0390 — 1.2670)(—1.0390 — 2.6240)

(¥ + 2.0000)(y + 1.0390)(y — 1.2670)(y — 2.6240)
(0.0480 + 2.0000)(0.0480 + 1.0390)(0.0480 — 1.2670)(0.0480 - 2.6240)

+ 23 (y + 2.0000){y + 1.0390)(y — 0.0480)(y — 2.6240)
(1.2670 + 2.0000)(1.2670 + 1.0390)(1.2670 — 0.0480)(1.2670 — 2. 6240)

+ 24 (v + 2.0000)(y + 1.0390)(y — 0.0480)(y — 1.2670)
** (2.6240 + 2.0000)(2.6240 + 1.0390)(2.6240 — 0.0480)(2.6240 — 1.2670)

X

+ 2.2

Since the required value of « is the one for which y =0, we obtain on putting y =0 in the
above result & = 2.19583 in agreement with that of Problem 2.37.

APPROXIMATE DIFFERENTIATION
2.40. Establish equation (16), page 89, (@) by symbolic operator methods and (b) by using

the Gregory-Newton formula.

(@) In using symbolic operator methods we proceed formally. We start with

el = 1+ A
[equation (43), page 8] Taking logarithms this yields
RD = In(1+4) or D = %ln(1+A)

Then ﬁsing the formal Taylor series on page 8 we find

L = 1 Az A% M
D = 7Im(A+a) = h(A—2+3 T+ )

(b) By the Gregory-Newton formula,

s k) = fl@ + kaf@ + HED) papa)

kk—lk 2
4 Me=D=2)

A3f(a) + Atf(@) + -

kk—1)(k—2)(k—3)
4!

Then differentiating with respect to k,

ha+ iy = af@) + 2 taepa) + IR g
L A= ISkZ!-l— 22k = 6 uuria) + -

Putting k = 0 we have \ ) ‘
W = s - 5D 4 B S
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ie.
1 AZ A8 At
‘Df(a) = E<A_?+?_T+ >f(a)
Since f(a) is arbitrary we have
_ 1, _a a8t
D=3 <A 231t >

) If we take into account the remainder term in the Gregory-Newton formula, then we ecan
find a corresponding remainder term for the derivative.

2.41. Given the table of values for the function f(z) in Fig. 2-30, find the approximate value

of 7(0.25).
* 0.25 0.35 0.45 0.55 0.65 0.75
F(x) 0.24740 0.34290 0.43497 0.52269 0.60518 0.68164
Fig. 2-30

We consider the difference table for 105f(x) so as to avoid decimals,
The difference columns are headed A, A2, ...

This table is as follows.
in place of 105Af(x), 105A2f(x); . ..

for brevity.

2

105f(x) A A2 A3 A4 A5
24,740

9550
34,290 —343

9207 —92
43,497 —435 4

8772 —88 4
52,269 —523 8

8249 —80
60,518 —603

7646
68,164

Fig. 2-31
Using the formula of Problem 2.40 we have
_ Az A At 5
D[105()] = sty T >[1o £(2)]
and neglecting differences of order 5 and higher we find for « = 0.25
1 (—343) , (—92) (4
Sf7 = - —_ e 96,898
103£7(0.25) o1 9550 + 3 1

or f(0.25) = 0.96898.

The table of values are those for f(x) = sinx where x is in radians.

From this we see that

F'(®) = cos . By way of comparison the true value is f(0.25) = cos0.25 = 0.96891.

2.42. Use the table of Fig. 2-31 to find f"/(0.25).
From Problem 2.40,
A2 A3 A4
D =% (A PR >

so that on squaring we find
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2.43.
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Thus 1
D2f(x) = ﬁ(A2 — A8 4 LIA% 4 - - 4)f(2)

From this it follows that
1

105fl’(0-25) = (0'1)2

or f'(0.25) = —0.25470.

(—343 +92+3.7) = —25470

The exact value is f/(0.25) = —sin 0.25 = —0.24740.

Referring to the table of Fig. 2-31 find f7(0.40).

From the Gregory-Newton formula we have

. le(k — 1 1)k —
fatkh) = f@ + kaf@ + o pepa) + FEZDEZD w4
Differentiation with respect to k yields
k — 2 3 — 1812 —
W@EER) = Af@) + 2 - Loy + 3% 3E:k+2A3f(a) PR 18k4'+22k 6

Letting ¢ = 0.25, h = 0.1 and e+ kh = 0.40 so that k =15 we find using the difference table of
Problem 2.41

105f7(0.40) = 61_1 [9550 + (—843) — 54 (—92) + 0(4)]

7(0.40) = 0.92108

The true value is f'(0.40) = cos 0.40 = 0.92106.

MISCELLANEOUS PROBLEMS

244,

The population of a particular country during various years is given in the following
table. Obtain an estimate for the population in the year (a) 1980, (b) 1955 and
(¢) 1920.

Year 1930 1940 1950 1960 1970
Population 1.0 | 12 1.6 2.8 5.4
in millions

Fig. 2-32

Let us denote the year by # and the population in millions by P. Since the years given are
equidistant it is convenient to associate the years 1930, 1940, 1950, 1960, 1970 with the numbers
k=0,1,2,8,4 respectively. This is equivalent to writing = = a-+kh where a =1930 and

h =10 so that
x — 1930

x = 1930 + 10k or k = T 1
Using this we can rewrite the given table as follows.’
k 0 1 2 3 4

P |10 1.2 1.6 2.8 5.4

Fig. 2-33

The difference table correspondihg to this is as follows.
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245.

k P AP AP AP AtP
0 1.0

0.2
1 1.2 0.2

0.4 0.6
2 1.6 0.8 0

: 1.2 0.6

3 2.8 1.4

2.6
4 5.4

Fig. 2-34

We shall assume that the third differences are all constant [equal to 0.6] and that the fourth
differences are zero. Then using the Gregory-Newton formula we find

0.2k(2 0.6k®
2! 3!

= 1.0 + 02k + 0.1k(k—1) + 0.1k(k—1)(k—2)
= (k3 — 2k2 + 3k 1 10)

P = 1.0 + (0.2)k® +

{a) From (1) we see that the year 1980 corresponds to k =5 so that
P = (53 —2(5)%+ 8(5)+ 10]
Thus we estimate that in 1980 the population will be 10 million.

(b) From (1) we see that the year 1955 corresponds to

_ 1955 — 1930
E = 0 = 2.5
Then
P = 2[(2.5)% —2(2.5)2 + 3(2.5) + 10] = 2.0625
Thus to two significant figures we would estimate that the population in 1955 was 2.1 million.

(¢) The value of k corresponding to the year 1920 is from (Z)

_ 19201930 _ _
ko= o = -1
Then
P = L[(-1)3—2(-1)2+3(-1) + 10} = 04

Thus we estimate that the population in 1920 was 0.4 million.

Suppose that it is necessary to determine some quantity y at the time when it is a
maximum or minimum. Due to error we may not be able to do this exactly. How-
ever we observe that at times ¢, ¢s, {3 near the time for maximum or minimum, the
values are given respectively by w1, ¥s,¥s. Prove that the time at which the quantity
is a maximum or minimum is given by

Yi(ts — t2) + ya(td —t2) + ys(t2 — t2)
2[ya(tz — ts) + ya(ts — 1) + ys(ts — £2)]

By Lagrange’s formula the value of y at time ¢ is given by

_ (E—t)(t—t3) (t—t)(E—ty) (t—t)(E— 1)
YT NGty | Pt t) | Bl )t )
The maximum or minimum of y occurs where dy/dt =0 [assuming it to be a relative maximum or

minimum]. Then taking the derivation of (Z) with respect to i, setting it equal to zero and solving
for t we find the required value given above.

63




64 APPLICATIONS OF THE DIFFERENCE CALCULUS : [CHAP. 2

2.46. If an error is made in one of the entries of a table show how the various differences
are affected.

Suppose that the value yo—+e is given in a table in place of the correct value y, so that e
is the error. Then the difference table can be constructed as in Fig. 2-85.

Y—4
AY_4 0
Y3 Ay A%y _y
-3 A3y _
Yz Ay Ay _g * Aty_s+e
—2 Ady_s+e
Y- o Ay _p+e ) 3 Aty_g—4de
-1 T € Ady_,—38
Yo+ e A Ay_; ~2e Y2 Aty_,+ Be
Yo — € Ady_,+3
1 N A%y + e Yo Aty_y~de
Y1 A3 —¢
. Y2 A%y, Yo Atypt+e
Ay, 9 Ay,
Y3 A%y,
Ays
Y4

Fig. 2-35

Note that the error is propagated into the higher ordered differences as indicated by the shading
in Fig. 2-35. It is of interest to note that the successive coefficients of ¢ in each column alternate
in sign and are given numerically by the binomial coefficients. Also the largest absolute error
occurring in an even difference column lies on the same horizontal line in which y, occurs.

2.47. In reading a table the entries given in Fig. 2-36 were obtained.  (a) Show that an
error was made in one of the entries and (b) correct the error.

x 1 2 3 4 5 6 7 8 9 10 11 12

f(x) | 195520 |.289418|.379426 | .464642 544281 .617356 | .683327|.741471.791207| .832039 | .863558 .885450

Fig. 2-36

(a) The difference table omitting decimal points is as follows.

106f(x) A A2 A8 At A5 A8

195,520
93,898

289,418 —3890
90,008 —902

379,426 —4792 217
85,216 —785 —419

464,642 —b5577 —202 1268
79,639 —987 649

544,281 —6564 447 1279
73,075 —540 —630

617,356 —7104 —183 955
65,971 —723 325

683,327 —7827 142 —382
58,144 —581 —57

741,471 —8408 8b 59
49,736 —496 2

791,207 —8904 87 6
40,832 —409 8

832,039 —9313 95
31,519 —314

863,558 —9627

. 21,892
885,450

Fig. 2-37
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The violent oscillations of sign which occur near the beginning to the column of fourth
differences A* and the practically constant values toward the end of this column indicate an
error near the beginning of the table, This is further supported in the column of sixth
differences A8, In view of the fact that the largest absolute error in an even difference column
is in the same horizontal line as the entry in which the error occurs, it would seem that the
error should occur in the entry corresponding to —1279 which is largest numerically. It thus
appears that the error should be in the entry 0.544281 corresponding to x= = 5.

(b) Denoting the entry which is in possible error, i.e. 0.544281, by y,+ ¢ where ¢ is the error, it is
clear from comparison with the difference table of Problem 2.46 that

My_,+e = 217
: ‘ Aty_g—4e = —202
Aty_,+6e = 447
Aty_,—4e = —183
Atyy+e = 142

Assuming that the correct fourth differences should all be constant, i.e. Ady_, = Aty 5=
Ady_, = A%y =A%y, we obtain by subtracting the first two equations, the second and
third equation, etc. the equations

Be =419 or ¢ =84, 10e =649 or ¢ =65, 10c =630 or ¢=63, be=325 or ¢= 65

; Because most of these indicate the approximate value ¢ =65 [the value «=84 seems out
of line] we shall consider this as the most probable value. :

Taking into account the decimal point, this leads to ¢ = 0.000065 and so Since Yo te=
0.544281, the true value should be close to ¥4 = 0.544281 - 0.000065 = 0.544216.

It is of interest to note that the true value was actually 0.544218, It appears that in
“copying the table the 1 and the 8 in this true value must have been interchanged.

In Fig. 2-38 the difference table taking into account this error is shown.

108f(x) A A2 A3 At AS
195,520

93,898
289,418 —3890

90,008 —902
379,426 —4792 54

85,216 —848 —4
464,642 —5640 50

79,576 —798 19
544,218 —6438 69

73,138 —729 0
617,356 ~7167 69

65,971 ‘ —660 10 i
683,327 —7827 79

58,144 —581 6
741,471 —8408 85

) 49,736 —496 2

791,207 —8904 87 ‘

40,832 —409 —2
832,039 —9313 85

31,519 —314
863,558 —9627

21,892
885,450

Fig.2-38

The changes of sign occurring in the fifth differences could be due to rounding errors as
well as the fact that the function is not actually a polynomial.
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2.48. Using the following table find the value of y corresponding to » = 0.6.

@ 0 0.1 0.2 0.3 0.4 0.5
Y 1.250 1.610 2.173 3.069 4.539 7.029
Fig. 2-39

On constructing a difference table from the given data we obtain that shown in Fig. 2-40
where we use 103y in place of y to avoid decimals.

x 103y A A2 A3 A4 AS
0 1250 s
360
0.1 1610 203
563 130
0.2 2173 333 111
896 241 94
0.3 3069 574 205
1470 446
04 4539 1620
2490
0.5 7029
Fig. 2-40

Letting a =0, h = Az = 0.1 in the Gregory-Newton formula (6) on page 34 we have

1
21(0.0%"

130

360
31(0.1)8

203
(1) L
1250 + 01 x

94
3 = L p(2) ) —_—
10% sr.E” t * + 5roap?”

2.49.

or

y = 1.250 + 3.60x + 10.152(® + 21.67x®) + 46.2524) + 78.33x(

Then the value of y corresponding to = = 0.6 is
1.250 + 3.60(0.6) + 10.15(0.6)(0.5) + 21.67(0.6)(0.5)(0.4) + 46.25(0.6)(0.5)(0.4)(0.3)
+ 78.33(0.6)(0.5)(0.4)(0.3)(0.2)

y:

(a) Work Problem 2.48 by first obtaining logi ¥ in place of . (b) Use the result in

11,283

(a) to arrive at a formula for y.
(¢) From the table of Fig. 2-39 we obtain the following table.

x 0 0.1 0.2 0.3 0.4 0.5
logio ¥ 0.0969 0.2068 0.3371 0.4870 0.6570 0.8469
Fig. 2-41
The difference table corresponding to this table is as follows.
x 104 logio¥ A A2 A3 At A5
0 969
1099
0.1 2068 204 ’
1308 —8
0.2 3371 196 3
1499 —b 0
0.3 4870 201 3
1700 —2
0.4 6570 199
1899
0.5 8469 )

Fig. 2-42
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Then we find by the Gregory-Newton formula

1099 204 8 3
4 — T E (1) —_——  _(2) __ 3} (4)
10% log;p y 969 + T %0 T gr02” 3T T Are1)3”
or logoy = 0.0969 -+ 1.0992(D + 1.022( — 0.13332() + 0.12500(5) W

Putting # = 0.6 we then obtain
loggy = 0.0969 + 1.099(0.6) + 1.02(0.6)(0.5) — 0.12333(0.6)(0.5)(0.4) -+ 0.1250(0.6)(0.5)(0.4)(0.3)
= 1.0508

Thus , y = 1016508 = 1124

The result (1) can be written as
log oy = 0.0969 -+ 1.099x + 1.02x(x — 0.1) — 0.1333x(x — 0.1)(x —~ 0.2)
-+ 0.1250%(x — 0.1)(x — 0.2)(x — 0.3)
To a high degree of approximatior; this can be written as
logoy = 0.0969 + 1.099x + 1.02x(x — 0.1) = 0.0969 + 1.02x2 + 0.997x

Thus y = 10%098* 1.022°40.9970 400 ogg , 1li02%" +0-9972

= 1.250+ 101402$2+0.997:c (2)

The values corresponding to the table of Fig. 2-89 were in fact obtained by using the
formula .
y = 1.250+10° 7 ‘ (3)
Thus the exact value corresponding to x = 0.6 is 11.40. It is of interest that the wvalue
obtained in Problem 2.48 is closer to this true value than that obtained in part (a} using
logarithms. This can be accounted for by realizing that in the process of taking logarithms
and antilogarithms we introduce small errors each fime. Further evidence of this is seen by
comparing (2) and (2). By recognizing that such errors do occur however we could be led
from (2) to (8) on replacing 1.02 by 1 and 0.997 by 1. Then (3) could be recognized as the
true formula by in fact putting « =0,0.1,...,0.5 and comparing with the corresponding
values of the original table.

Supplementary Problems

SUBSCRIPT NOTATION

2.50.

251.

2.52.

2.53.

2.54.

Show that (@) Ay, —2K) = Ayx — Az

(B) Alyw/z) = (zrAys — ViAz ) 22y 11
(¢) Aoy + bz,) = aAy, + bAz,

where a, b are any constants.

Show that (@) yi+3 = ¥ + 3Ayy + 3A2%, + ASy,

B Ay, = Ykas — BUks2+ BYks1— U

Generalize the results of Problem 2.51.
Show that (a) Ak = 4k®), (b) A2[2k3) — 3kB)] = 12k — 60k,

If y,=k3—4k2+2k—3 (a) express y, as a factorial polynomial and find (b) Ayy, (c) A%y,
(d) A3yy, (e) Atyy.
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255. If D, denotes differentiation with respect to k, show that
(@ Ac = Dy + 3D% + 1D} + gDk + -+~
() AR :Di+Di+ﬁDi+iDi+---
(¢ A} = Di+3Dh+3Dh+ -

2.56., Illustrate Problem 2.55 by finding Ai(k5— 3k% + 2k3) and check your answer.

DIFFERENCE TABLES
257. Let f(x) =5x2+32z—7 where z=2,5,811,14, Set up a difference table for f(x).

258. By using only the difference table obtained in Problem 2.57, find the values of y = f(w) for
« = 117, 20, 23, 26, 29, 32.

259. Let f(x) =243 —8a2+ 62— 10 where « = 2,4,6,8,10. {(¢) Set up a difference table for f(x) and
(b) deduce the values of f(x) for « =12,14, 16,18,20 from this difference table. .

260. () Suppose that in Problem 2.57 the difference table had been set up for values « =2,5,8,11.
Would the resulting table enable us to obtain the values of y = flz) for = =14,17,20,23?7 Explain.
(b) Answer part (a) if the difference table had been set up for values % = 2,5,8 and if the vahues
for z = 11,14,17,20 were wanted.

2.61. Suppose that it is desired tb obtain the values of f(x) = 8x%t—2¢2-+7x+5 for .x=3,7,11,15,
19,...,43. What is the minimum number of values which we must obtain directly from f(z) so
that from the resulting difference table we can determine the remaining values of f(x)?

262. Qeneralize the results of Problem 2.61 to any polynemial f(x) and any set of equidistant values of .

2.63. Find the numerical values corresponding to the letters in the following difference table where it
is assumed that there is equal spacing of the independent variable .

Y Ay A2y A%y Aty
A
B
B -
2 -1
C J L
F K
-1
G
D
Fig. 2-43

264. A difference table has one entry in the column Aby. Determine how many entries there would be
in the column (a) Ay, (b) ¥, (¢) A%y.

265. (eneralize the result of Problem 2.64 by determining how many entries there would be in the
column Amy if there were a entries in the column Any.

THE GREGORY-NEWTON FORMULA AND APPLICATIONS
" 9.66. Prove that (a) (k)@ = h3k®, (b) (kh)® = ik,

2.67. Prove that (kh)(®) = hnk( by using mathematical induction. and thus complete the proof in
Problem 2.6.

268. TFind a formula for the general term u, of a sequence whose first few terms are (a) 5,12,25,44,
(b) 1,5,14,30,55. What assumptions must you make? Are the results unique? Explain.
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2.70.

2.71.

2.72.
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Given a sequence whose first four terms are 3,7,14,30. (a) Can you obtain a formula for the
general term of the sequence? (b) Can you find the 10th term of this sequence? State clearly
the assumptions made and whether you feel that results obtained are unique.

Suppose that in Problem 2.69 the next three terms of the sequence are given as 61,113,192. What
effect if any would this additional information have in your answer to that problem?

Find y as a polynomial function in # which fits the data in the following table and state clearly
the assumptions which you make in determining this polynomial.

© 1 2 3 4 5 6
y 3 3 7 21 51 103
Fig. 2-44

Suppose that the values of « corresponding to those of ¥ in the table of Fig. 2-44 are 1,8,5,7,9, 11.
Explain how you might obtain y as a polynomial function in x from the answer to Problem 2.71,
Can you generalize the result of your conclusions?

INTERPOLATION AND EXTRAPOLATION USING THE GREGORY-NEWTON FORMULA

2.73.

2.74.

2.75.

2.76.

2.77.

2.78.

2.79.

2.80.

Use the table of Problem 2.71 to find the value of y corresponding to (a) x =38.5, (b) = = 5.6,
() #=0, (d) # =—2, (¢) x =8. What assumptions are you making in these cases?

Use the following table to find sin 45° and compare with the true value.

x 0° 30° 60° 90°
sin 0.00000 0.50000 0.86603 1.00000

Fig. 2-45

Estimate the efror term in Problem 2.74.

Use the following table to find (a) log;,5.2374, (b) logy, 5.4933.

x 5.1 5.2 5.3 5.4 55
logyg % 0.70757 0.71600 0.72428 0.73239 0.74036

Fig. 2-46

Use the following table to find (a) sin 61°24’, (b) sin 63°48’.

x® 60° 61° 62° 63° 64° 65°
sin x 0.86603 0.87462 0.88295 0.89101 0.89879 0.90631

Fig. 2-47

Estimate the error terms in (a) Problem 2.76 and (b) Problem 2.77.

Use the table of Problem 2.74 to find (a) sin 68°30’, (b) sin 45°18’ and compare with the exact

values,
(a) Use the following table to find log,y 7 where we take = = 8.14159. (b) Give an estimate of the
error term.
x 3.12 3.13 3.14 3.15 3.16
logig® 0.49415 0.49554 0.49693 0.49831 0.49969

Fig. 2-48
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2.81.

2.82.

2.83.

2.84,
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Determine if there is any difference to your answer for Problem 2.80 if we add to the table the
values of log,y« for « =311 and « = 3.17 given by 0.49276 and 0.50106 respectively.

Given the following table find (a) €%243, (b) 0411

z 0.1 0.2 0.3 0.4 0.5
e* 1.10517 1.22140 1.34986 1.49182 1.64872
Fig. 2-49

The gamma function denoted by T'(x) is given for various values of x in the following table.
Find r(1.1673).

x 1.15 1.16 1.17 1.18 1.19
T(x) 0.93304 0.92980 0.92670 0.92373 | 0.92088
Fig. 2-50

The error function, denoted by erf (x), is given for various values of # in the following table.
Find (a) erf (0.28), (b) erf (0.68), (¢) erf(1).

x 0.00 0.25 0.50 0.75
exf (x) 0.00000 0.27633 0.52049 0.71116
Fig. 2-51

CENTRAL DIFFERENCE TABLES AND INTERPOLATION FORMULAS

2.85.

2.86.

2.87.

2.88.

2.89.

2.90.

2.91.

2.92.

2.93.

2.94.

(a) Construct a central difference table corresponding to the data of Problem 2.76 by choosing
a = 5.2. (b) Use Stirling’s formula to work Problem 2.76(a) and compare with that obtained
by use of the Gregory-Newton forward difference formula.

Work () Problem 2.77, (b) Problem 2.80 by using Stirling’s formula.

Work (¢) Problem 2.76, (b) Problem 2.77, (¢) Problem 2.80 by using the Gregory-Newton back-
ward difference formula.

Work (a) Problem 2.76, () Problem 2.77, (¢) Problem 2.80 by using Bessel’s interpolation
formula.

Show how a central difference table can be expressed using the backward difference operator
v,V2, V3, ..., ‘

Write the interpolation formulas on page 36 using the “x notation” in place of the “k mnotation”.

Show how to write Bessel’s interpolation formula using (a) central differences and (b) backward
differences.

Work Problem 2.83 by using Stirling’s formula with @ = 1.17 and compare with: that obtained by
using the Gregory-Newton forward difference formula.

Use Gauss’ interpolation formula to work (@) Problem 2.76, (b) Problem 2.77, (¢) Problem 2.80,
(d) Problem 2.83.

Derive the second Gauss formula and thus complete Problem 2.18.
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Z1G-ZAG PATHS AND LOZENGE DIAGRAMS

2.95.

2.96.

297.

Demonstrate the rules for obtaining interpolation formulas [see page 37] by obtaining (a) the
Gregory-Newton forward difference formula, (b) the Gregory-Newton backward difference formula,
(¢) Gauss’ first formula on page 36, (d) Stirling’s formula. Indicate the zig-zag path in the
lozenge diagram which corresponds to each formula. ‘

By choosing an appropriate zig-zag path in Fig. 2-6, page 37, obtain an interpolation formula
differing from those on page 36.

Explain whether you could find the error term in (a) the Gauss formulas and (b) the Stirling
formula by knowing the error in the Gregory-Newton forward difference formula.

LAGRANGE’S INTERPOLATION FORMULA

2.98.

2.99.

2.100.

2.101.

2.102.

Work (a) Problem 2.71, (b) Problem 2.80 by using Lagrange’s interpolation formula.

(a) Find a polynomial in 2 which fits the data in the following table and use the result to find
the values of y corresponding to (b) 2=38, (¢) x =5, (d) =28.

x 1 2 4 6 7
Yy 6 16 102 376 576
Fig. 2-52

(a) The first, third, fourth and sixth terms of a sequence are given by 1, 7, 256 and 211 respectively.

- Determine a possible formula for the nth term of the sequence and discuss the uniqueness of the

result. (b) Obtain the second and fifth terms of the sequence.

(a) Obtain a polynomial approximation to sin # where 2« is in radiang by using the following table.

x 0 (0°) =/6 (30°) 7/4 (45°) 7/3 (60°) /2 (90°)
sin @ 0.00000 0.50000 0.70711 0.86603 1.00000
Fig. 2-53

(b) Use the result of (@) to find sin15°, sin 75° and sin 40°20’ comparing results obtained with
the exact values. Give possible reasons for errors obtained.

Show that Lagrange’s interpolation formula reduces to the Gregory-Newton forward difference
formula in the case where the = values are equally spaced.

TABLES WITH MISSING ENTRIES

2.103.

2.104.

Find the value u, missing from the following table.

k 1 2 3 4 5
i, 2 40 83 150
Fig. 2-54

Find the values u5 and kug missing from the following table,

k 4 5 6 7 8 9

e 72 146 | 192 302

Fig. 2-55
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2.105.

2.106.

2.107.

2.108.

2.109.

2.110.

2.111.

2112,

APPLICATIONS OF THE DIFFERENCE CALCULUS [CHAP. 2

(a) Use the data of Problem 2.101 to find the missing entries for sin corresponding to « = 15°
and x = 75° and compare with the exact values. (b) Is there any difference between the answers
obtained from the method of part (z) and those using the method of Problem 2.101(b)? Explain,

() Find the values of y corresponding to ¥ =8 and x =5 in the table of Problem 2.99 using
Method 1 of Problem 2.28. (b) Can you use the method of part (a) to find the value of y corres-

ponding to x = 8? If so what is this value?

Find the values 2y, %o, U3, ¢, from the following table.

k 0 5 - 10 15
Uy b 27 179 611
Fig. 2-56

Find the values ug, uy, us, g from the following table.

k 0 5 10 15 20
U 2 92 212 382
Fig. 2-57

A sequence is given by wq, %y, Ug, Us, Uy, U in which all values but u; are known. Show that if
fourth differences are assumed constant then

ug = 0.1uy — 0.5u; + ug + 0.5u, — 0.1u;

The following table shows the population of the United States for the years 1930 to 1970 at inter-
vals of 10 years. Use the table to find the population for the years (2) 1980 and (b) 1962, 1964,
1966 and 1968.

Year 1930 1940 1950 1960 1970

Population of

United States (millions) 122.8 131.7 151.1 179.3 206.2

Fig. 2-58

The following table shows the values of e~ for « = 0.1, 0.2,0.3,0.4,0.5. Use this table to find
the values of e~ for « = 0.025, 0.050 and 0.075 and compare with the exact values,

x 0 0.1 0.2 0.3 0.4

e 1.00000 0,90484 0.81873 0.74082 0.67032

Fig. 2-59

Suppose that in the table of Problem 2.89 the entries for e are replaced by corresponding ones

for e—%, Determine if there is any change in the values obtained and explain.

DIVIDED DIFFERENCES

2.113.

(a) Construct a divided difference table corresponding to the data in the following table.

" 3 5 g | 10 11
f(x) 9 35 119 205 257
Fig. 2-60
(b) Use Newton’s divided difference interpolation formula to obtain a polynomial in x which fits

the data.
(¢) Find values of f(x) for x =4 and 9.
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2,114,

2.115.

2.116.

2.117.

2.118.

2.119.

2.120.

2121.

2.122.

2123

2.124.

2.125.

(@) Find a polynomial in » which fits the data in the following table and (b) obtain values of f(x)
corresponding to x =5 and 2 = 10.

x 0 2 3 6 7 8
f() 40 8- 7 136 243 392
Fig. 2-61

Work Problem 2.28 using Newton’s divided difference interpolation formula.

Show how to derive Newton’s divided difference formula by assuming an expansion of the form
fle) = Ag+ Aj(m—aop) + Ag(w— ) —ap) + -+ + Az —a)lw—xy) - (@ —2y)

and then determining the constants Ay, 44, 4,5, ..., 4,.

Obtain the Gregory-Newton formula as a special case of Newton’s divided difference formula.

Prove that the value of flwg, @y, ...,%,) remains the same regardless of the arrangement of

Ty Xyy o v ey Xy Lew flmg, Xp, 000, 2,) = Flaog, ©o, ®q, ..., ¥y—y), ete.
Prove that the divided differences of f(x) + g(z) are equal to the sum of the divided differences of

f(x) and g(x).

Prove that the divided differences of a constant times f(x) is equal to the constant times the divided
differences of f(x).

(2) Show that there is a root of #3—x—1=0 between =1 and z =2. (b) Find the root
in (a). (¢) Determine the remaining roots of the equation.

Solve the equation @3+ 222+ 1006 —20 =0,
Determine the roots of 3 — 82+ 2x—5 = 0.
Solve the equation e~* =x. [Hint. Let y = f(x) = e=% —u.]

Solve the equation = = 5(1 —e~%).

INVERSE INTERPOLATION

2.126.

2.127.

Use the data in Problem 2.71 to find the value of % corresponding to y = f(x) =15 by using
(a) Lagrange’s formula, (b) Newton’s divided difference formula and (¢} the Gregory-Newton
forward difference formula. Compare your results with the exact value.

The amount of a 10 year annuity in which the semi-annual payment is 1 is given for different
interest rates in the following table. Determine the interest rate if the amount of the annuity is 25.

Interest rate 11% 2% 21% 3%

Amount of annuity 23.1237 24.2974 25.5447 26.8704.

Fig. 2-62
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2.128. Given the data in the following table find the value of « which corresponds to y = 10.

@ 2 4 6 8 10
y 7 15 11 14 12
Fig. 2-63

2.129. The following table gives values of f(x) for certain values of x. (a) Find the value of x which
corresponds to f(z) = 2.2000. (b) Using the fact that the entries of the table were actually
obtained from f(x) = 10 sin{{;{x +2) where « is in radians, determine the exact value of » cor-
responding to f(x) = 2.2000 and thus determine the accuracy of the result obtained in (a).

x 0.1 0.2 0.3 0.4 0.5

f(x) 2.0846 2.1823 2.2798 2.3770 2.4740

Fig. 2-64
2,130, Work Problem 2.29 by using inverse interpolation with Lagrange’s formula.

APPROXIMATE DIFFERENTIATION

2131, (a) Use the table of Problem 2.76 to find the derivative of log;g# for =z =5.2 and (b) compare
with the exaet value.

2.132. TUse the table of Problem 2.77 to find (a) the first derivative and (b) the second derivative of sina
corresponding to x = 63° and compare with the exact values.

2.133. TFind the (a) first derivative and (b) second derivative of e* at « = 0.2 using the table of Problem
2.82 and compare with the exact values.

92.134. Find the derivative of the gamma function of Problem 2.83 for (a) x = 1.18, (b) 1.174.

2.135. Find the derivative of the error function of Problem 2.84 for (a) « = 0.25, (b) « = 0.45.

= 1 1 1 logay ...
1 1 3 5
DU Y B WU - R TRLANG \ SNy | ST
() D = h<3 518+ 515%° —71g8 Y * )
1 11 5 137
2 — 2 —_—y4 — Vo Ve cve
2137. Show that (a) D? = hz(v + VS VA GV en Ve >

1 1 1 1
2 = = 2 - 84 — 86 — —— 88 e
() D hz(s 5% 55 et >
MISCELLANEOUS PROBLEMS

2138. (@) Is it possible to determine unique numerical values corresponding to the letters in the following
difference table where it is assumed that there is equal spacing of the independent variable x?
(b) Does your answer to (a) conflict with the remark made at the end of Problem 2.3?

Y Ay A%y A3y Aty
3
D
A -1
E K
B 5
F 2
C J
G
2

Fig. 2-65
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2.139.

2.140.

2.141.

2.142.

2.143.

2144,

2.145.

2.146,

APPLICATIONS OF THE DIFFERENCE CALCULUS 75

Can you formulate a rule which tells the minimum number of entries in a difference table which
must be known before all entries can be uniquely determined?

3
A table of cube roots showed the following entries. Find V55 from this table and compare with
the exact value.

x - b0 52 b4 56 58 60
% 3.6840 3.7325 3.7798 3.8259 3.8709 3.9149
Fig. 2-66

If a unit amount of money [the pfrincipal] is deposited at 6% interest compounded semi-annually
and not withdrawn, the total amount A, accumulated at the end of k years is given in the following

table. Determine the amount accumulated after (a) 9 years, (b) 16 years.
k 6 8 10 12 14
Ay 1.4258 1.6047 1.8061 2.0328 2.2879
Fig. 2-67

Referring to Problem 2.141 after how many years would one expect the money to double?

Various values of the Bessel function of zero order denoted by Jy(x) are given in the following

table. (a) Find J((0.5). (b) Determine the value of = for which Jy(x) = 0.9000.
x 0 0.2 0.4 0.6 0.8 1.0
Iy () 1.0000 0.9900 0.9604 0.9120 0.8463 | 0.7652
Fig. 2-68

A unit amount of money deposited at the end of each year for = years at an interest rate of r%
compounded annually is called an annuity. The following table shows the amount of an annuity
accumulated after 20 years at various interest rates. Use the table to determine the amount of
an annuity after 20 years if the interest rate is 119%.

A man takes out an annuity [see Problem 2.144] with an insurance company who agrees to pay
back after 20 years an amount equal to 25 times the yearly payment. Determine the interest rate

compounded annually which is involved.

According to actuarial tables the expectancy of life at age x, given by f(»), is as shown in the

following table. Determine the life expectancy of a person aged (a) 25 and (b) 40.

Interest rate r 1 11 2 24 3
Amount of annuity 22.0190 238.1237 24.2974 25.5447 26.8704
Fig. 2-69
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Fig. 2-70




76

2.147.

2.148.

2.149

2.150.

2.151.

2.152.

2.153.

2.154.

2.155.

2.156.

APPLICATIONS OF THE DIFFERENCE CALCULUS [CHAP. 2

(a) Give a possible explanation for the fact that the differences in the table of Problem 2.146 tend to
decrease and then increase. (b) Does the result produce an error in interpolation? Explain.
(¢) How might more accurate results be obtained?

The following table gives for various values of % corresponding values of InT(x) where I'(x) ig
the gamma function [see page 70]. From the known fact that

T
sin o

obtain the values of InT'(x) corresponding to the missing values.

) T(1—x) =

x 2/12 3/12 4/12 5/12 6/12 /12 8/12 | 9/12 10/12

InT(x) 0.55938 | 0.42796 0.24858

Fig. 2-71

From the theory of the gamma function we have the result
22-IP(x) (e + 4) = VrI(2a)
Can this be used in Problem 2.148 to obtain greater accuracy in the values obtained for I'(z)?
Explain. :
Use Problems 2.148 and 2.149 to find values of InT(x) for « =0.1,0.2,...,0.9.

Find a function f(x) which fits the data in the following table. [Hint. Consider In fz).]

x 0.1 0.2 0.3 0.4 0.5 0.6

fx) 0.3423 0.4080 0.5083 0.6616 0.9000 1.2790

Fig. 2-72

Complete the solution to Problem 2.45 by actually setting the derivative of (7) with respect to £
equal to zero.

Suppose that in Problem 2.45 the times in seconds are given by ¢, = 7.2, ¢, =8.1, t3 =84 and
that the quantity y at these times has values 15.6, 15.9, 15.7 respectively. Find the time at which
y is a maximum and the value of this maximum,

At times ¢, ¢y, ..., t, measured from some fixed time as origin an object is observed to be at posi-
tions ¥1,¥s, ...,¥, On a straight line measured from some fixed position as origin. If y is the
position of the object at time ¢ show that

gy (et ottt 1Y)

% = A AR EIA + similar terms

Show that Stirling’s interpolation formula can be written in the form

k2 k(2 —1
Ye = Yo+ FAYy_1F+Aydk + A%Y_57 + %(A3y_2+A3y—1)(/—3,—)
K2k — 1 kR — 12— 22)- - [R2— (n — 1)7]
+ A4y‘2_£—ﬂ—_) e 4 %(A2n—1y_n+A2nu1y_n+1) (211,—]_)!
2(k2 — 12)(k2 — 22)- - - [k2 — (n — 1)2
oy B ) R el Gt Y Y

@2n)!

Referring to Problem 2.44 what estimate of the population would you givé for the year 19107
Explain the significance of your result and give possible limitations on the reliability of interpo-
lation and extrapolation.
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2.157. Find the sum of the series
12422482 4 oo 4 2
[Hint. Find a general term for the sequence 12, 12-22, 12422432 | J
2158. Find the sum of the series (@) 1 +2+8+ -+ 4k, (b) 13+28+334 --- + 3,

2159, Find the sum of the first k terms of the series
22 52482+ 112+ ...

2.160. (o) Find a formula for the general term of the sequence 2,5,14, 31, 60,109,194, 347, ... and (b) use
the result to find the 10th term.

2.161. Provethat 2k = 14+ -+ + 5+ —4+ -+ for £ =0,1,2,.....

1 k=0
2.162. Let = . = v
€ Pk, 0 {0 k0 Show that for £ =10,1,2,...,
KD k@ L@
LU s T T

2.163. Prove Everett’s formula

kD k1)) k + 2)¢5
Y = yIT —+ A2y0(ﬁ)_ + A2y_1% +
(k_l)(l) (3 k4 1)
— Yo 1! - A2y—1? - 4y—2( 5!) -

An advantage of this formula is that only even order differences are present.

2.164. Prove that

_ EE—1--(k—n+tl) Yn-1 _ [m—1 Un—z n—1 Yn—3
Ve = (n—1)! k—n+1 1 Jk—n+2 2 Jk—n+3

— e+ (_l)n—1<z:1>%:|

2.165. Given the following tabie find the positive value of k¢ such that
Ye+s = 3Wk+a— W) + 18

k 4 8 12 16 20
Yie 6 42 110 210 342
Fig. 2-73

2.166. Given the following table find the values of k& such that
Ye+2 = 20— Yr-a) + Yr—s

k 0 5 10 15

Vi 15 25 41 63

Fig. 2-74

2.167. Referring to Problem 2.110(c) estimate the population for the year 1920 and compare with the
’ actual population whieh was 105.7 million. (b) Estimate the population for the years 1910, 1900
and 1890 and compare with the actual populations which were 92.0, 76.0 and 62.9 million respec-
tively. {c¢) Estimate the population for the years 1990 and 2000. Discuss the reliability of your

predictions.
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2.168.

2.169.

2.170.

APPLICATIONS OF THE DIFFERENCE CALCULUS [CHAPF. 2

In reading a table the entries given in Fig. 2-75 were obtained. () Show that an error was made
in one of the entries and (b) correct the error.

x 1. 2 o8 3 4 5 6 7 8 9 10

F(x) 10.28685 | 0.36771 | 0.44824 | 0.52844 | 0.60831|0.68748 | 0.76705 | 0.84592 0.92444 | 1.00263

Fig. 2-75

Suppose that ® = x, is an approximation to the root of the equation f(z) = 0. Show that under
appropriate conditions a better approximation is given by

_ flxg)
f o)

and determine these conditions. The method of obtaining roots is called Newton’s method.

[Hint. Assume that the exact root is «y-+h so that flze+ h) = 0. Then use the fact that
flwo+ k) = f(zo) + hf'(x,) approximately.]

Xo

Use the method of Problem 2.169 to work (a) Problem 2.37, (b) Problem 2.122, (¢) Problem 2,123,
(d) Problem 2.124, (¢) Problem 2.125,



Chapter 3

THE INTEGRAL OPERATOR

We have seen on page 2 that if A and B are operators such that (AB)f =f, i.e. AB=1,
then B =A~' which is called the inverse operator corresponding to A or briefly the
inverse of A.

In order to see the significance of D! where D is the derivative operator we assume
that f(x) and F(z) are such that

F(z) = D7 f(z) (@)
Then by definition if we apply the operator D to both sides of (1) we obtain
D[F(z)] = D[D7'f(x)] = (DD Y)f(z) = f(x) 2

Thus F(x) is that function whose derivative is f(x). But from the integral caleculus we
know that

f f@)de + ¢ (3)
where ¢ is the constant of integration. Thus we have
Df(x f fw)yde + ¢ 4)

We can interpret D~! or 1/D as an integral operator or anti-derivative operator.

e G

The integral in (3) or (4) is called an indefinite integral of f(x) and as we have noted all
such indefinite integrals can differ only by an arbitrary constant. The process of finding
indefinite integrals is called integration.

GENERAL RULES OF INTEGRATION

It is assumed that the student is already familiar with the elementary rules for
integration of functions. In the following we list the most important ones. In all cases
we omit the constant of integration which shoul_d be added.

I-1. f @) +o@)de = f fleydz + f 9(x) dz

I-2. f of (x) dae S f f(x)de = constant

1-3. f f(@)Dg(x)dz = f(z)g(z) — f 9(2) Df(z) dz
This is often called integration by parts.

14, f frydz = f flo dd’“ Jdt  where « = 8()

This is often called integration by substitution.

79
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It should be noted that these results could have been written using D~!. Thus, for
example, I-1 and I-2 become respectively

D-'[f(x) +g(®)] = D Y(z) + D7'g(x), D7'[af(x)] = aD7f(2)
Note that these indicate that D! is a linear operator [see page 2].

INTEGRALS OF SPECIAL FUNCTIONS

In the following we list integrals of some of the more common functions corresponding
to those on page 5. In all cases we omit the constant of integration which should be added.

TI-1. f «da =
xm+1
11-2. fxmdx - Im+1 m -1
Inx m=-—1
m+1
I1-3 bmde = (Gzi;bl))“ m
= f(a“"J” J"4T = 1y (aw + b)
— =1
bx
I1-4. f b* dac = % b>0, b+1
1L5. f e daz = %7 70
I1.6. f sinrede = — 27 r 0
II-7. f cosrx dx = sinrm r==0

DEFINITE INTEGRALS
Let f(z) be defined in an interval ¢ = =b. Divide the interval into n equal parts

of length % = Ax = (b —a)/n. Then the definite integral of f(x) between x=a and = b
is defined as

fbf(x)dx = lim R{f(@) + f(a+R) + fla+2R) + - - + fla+(n—1R])

if this limit exists.

If the graph of ¥ = f(z) is the curve C of Fig. 3-1, then this limit represents geometri-
cally the area bounded by the curve C, the # axis and the ordinates at z=a and z=D.
In this figure @x=a+kh, Zxs1=0a+(k+1)h and yx= f(@x).

y = f(x)
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In a definite integral the variable of integration does not matter and so any symbol

can be used. Thus we can write

j;bf(:r)dﬂc = j;bf(u)du = Lbf(t)dt, ete.

For this reason the variable is often called a dummy variable.

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

that

d
If f(x) = DF(x) = %F(x) then the fundamental theorem of integral caleulus states

j; feyds = f bd%F(x)dx = F(x)’: = F() — F(a)

This can also be written as

b b
f f@yde = D7f(@@)| = F@)| = F@) - Fl)
* td a3 23 |4 43 13
Example 1. 2 de = & [z = = = &£ _ L5 _
ample J; %2 do J; dx<3>doc 3|, 3 3 21

SOME IMPORTANT PROPERTIES OF DEFINITE INTEGRALS

1.

N

i

fabf(x)dx - —f:f(x)dx
fabf(x)dx

j;bf(x)dac = j;b (@) da

If m: = f(x) = ms then

b b b -
f mydx = f Mo dx
a a &

= mo(b—a)

¢ b
f f(z)de + f f(x)dz where ¢ is between a and b

IA
=
&

IS

&

or | m(b —a)

It
=h
&

&

]

SOME IMPORTANT THEOREMS OF INTEGRAL CALCULUS

Two theorems which will be found useful are the following.

Mean-value theorem for integrals. If f(x) is continuous in an interval e =x =b and
g(2) does not change sign in the interval, then there is a number ¢ such that

fb f(@)glx)yde = f(g—)f g(x)dz ¢ between @ and b

Leibnitz’s rule for differentiation of an integral.

d blo) _ fb(a) aF @ B @

o) Fl,o)de = e —;—dw + F(b(a),e) i F(a(e), @) o
where a(a), b(a) are assumed to be differentiable functions of a and F(z,«) and aF{aa
are assumed to be continuous functions of . Note that 8F/da is the partial derivative
of F with respect to «, i.e. the ordinary derivative with respect to ¢, when z is considered

to be constant.
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THE SUM OPERATOR

Because of the analogy of D and A [or more precisely A/Ax = A/k], it is natural to seek
the significance of the operator A~! which we conjecture would have properties analogous
to those of D1,

To discover the analogy we suppose that F(x) and f(x) are such that
A
g F@ = fl®) or AF(x) = hf(x) (6)
Then by definition A~?! is that operator such that
F(z) = a7'[hf(2)] (7)

Now we can show [see Problem 3.10] that A~! is a linear operator and also that if two
functions have the same difference, they can differ at most by an arbitrary function C(x)
such that C(z+h) = C(x), ie. an arbitrary periodic function with period k. Since this
is analogous to the arbitrary constant of integral calculus we often refer to it as an
arbitrary periodic constant or briefly periodic constant.

From (7) we are led by analogy with formulas (3) and (4) of the integral calculus to

define
Fl@) = A7rfx)] = X f@h + C@) (8)
or AT f(x)] = X f@) + Cile) (9)
where Ci(x) is also a periodic constant. It is of interest that (9) can be written as
(i) f@ = I i@ + ) (10)
which displays the remarkable analogy with
D-if(x) = ff(ac) de + ¢ (11)

We shall call S the sum operator and 3 f(x) [or 2f(x)ax = hZf(x)] the indefinite sum
of f(z). Note that because of (9) and (10) we can consider A~tand 3 or A/Az and 2( )Ax
as inverse operators, i.e. AZ=1 or 3=A"1 See Problem 3.11. The process of finding
sums is called summation.

GENERAL RULES OF SUMMATION

The following formulas bear close resemblance to the rules of integration on page 79.
In all cases we omit the periodic constant of summation which should be added.

ITI-1. S @) +o@)] = X f@) + 2 9@ _
I11-2. > af(x) = a f(x) « = constant
I1I-3. 2 f(x) ag(z) = f(x)g(®) — 2 9(x +h)af(x)

This is often called summation by parts.

Note that these formulas could have been written using A™! instead of =. The first
two represent the statement that 2 or A™! is a linear operator.
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SUMMATIONS OF SPECIAL FUNCTIONS

In the following we list sums of some of the more common functions. The results are

inalogous to those on page 80. In all cases we omit the periodic constant which should
e added.

IV-1. Y o=

Ve, 3 am - (7’%4"—11;5 Cme—1

V3. S (pz+gm = % m o~ —1
[For the cz;s%e] where m = —1 or is not an integer we use the gamma funection
see page 86].

V4. T = s

V5. Se = e—,f_—l

IV-6. > sinrx = - %%;Tih)

IV-T. > cosrx %E-;—gz@

These results can also be written with A~! in place of 3. The analogy of the above
with corresponding integrals is clear if we multiply the sums by % = Axz. For example,
IV-2 becomes '

o x(m+1)
2 2™k = =g m+# —1 (12)
which corresponds to
m _ xm+1
f amdr = | m+* —1 (1%)

with kh = Az, x™ and 2 corresponding to dz, ™ and [ respectively.

This relationship between the sum calculus and integral calculus is expressed in the
following important theorem.

Theorem 3-1, }Llle) [2 f(x)h + C(x)] = f fx)dx + ¢

DEFINITE SUMS AND THE FUNDAMENTAL THEOREM OF SUM CALCULUS
The definite sum of f(x) from x =a to x =a+ (n—1)h in steps of & is denoted by

a+ (n—1Dh
> f(x) = fle)+flea+h)y+ fla+2h) + - - + fla+(n—1)h] (14)
The following theorem analogous to the fundamental theorem of integral calculus on
page 81 is of great importance and is called the fundamental theorem of the sum calculus.

Theorem 3-2 [fundamental theorem of sum calculus].

a+ n—~Dh a+nh

o) = A (@) (25)

a
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where it is emphasized once again that the sum on the left is taken from z=a to
% = a+(n—1)h in steps of h. It should also be noted that the right side of (15) means that
the indefinite sum is to be found as a function of x and we are then to substitute the upper
limit ¢+ nh and lower limit @ and subtract the results. In such case the added arbitrary
periodic constant is subtracted out as in the case of definite integrals.

Example 2.
If a=1, h =2, n =8, then from (Z5) and IV-2 we have
5 7 3|7 78 1 7+5+3 W—1)(—
@ = a-lp»| = 20 o 217 (=08
20 Tl 3°2, 6 6 5 A = 17

This checks since the left side is (1){(—1) + (3)(1) + (5)(3) =117.

It is of interest to note that if we multiply both sides of (Z5) by h and then let A~ 0
and 7~ « so that nh = b —a, we obtain the fundamental theorem of integral calculus.

DIFFERENTIATION AND INTEGRATION OF SUMS
The following theorems are sometimes useful.

Theorem 3-3. If A~'F(z) = 2F(x) = G(x) then
L [aFN aF dG
a™ <dx> = 2% T @
Theorem 3-4. If A7'F(x,a) = 2F(x,a) = G(»,a) then
A—I <£'> — E — ﬁ
da - da  Oa
Theorem 3-4 is analogous to Leibnitz’s rule for differentiating an integral [see page 81].

Similar results hold for integrals. For example we have

Theorem 3-5. f [Z Flz, a):ldoz _— f F(@, ) da

THEOREMS ON SUMMATION USING THE SUBSCRIPT NOTATION

As in the case of the difference calculus all of the above results for the sum calculus
can be expressed in terms of the subscript notation ¥k = f(a +kh). For example III-3 on
page 82 becomes using zx = g(a+ kh)

EykAzk =  YrZx — 2 Zk+1AYk (16)
The periodic constant of summation in this case becomes an arbitrary constant.

Similarly formulas IV-1 through TV-7 can be written with x replaced by k and 2 =1.
For example, IV-2 becomes o+ D
S k™ = m 7 —1 (17)
The fundamental theorem of sum calculus can in subscript notation be written, using the

particular value ¢ =1, as 1

Sue = avwl, (18)

Tt is seen that the subsecript notation has some obvious advantages since k does not
appear.
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ABEL’S TRANSFORMATION

The following result, called Abel’s transformation, is sometimes useful.

7 n n k
D Uk = Uit S — > [Auk > ’Up:, (19)
E=1 =1 k=1 p=1

OPERATOR METHODS FOR SUMMATION

Various operator methods are available which can be used to obtain summations quickly.
One useful result valid for g8+1 is given by

> BP(k) = ATYB*P(k)] = %BkP(k) = 7 1_ llgkp(k) — ‘BklEEl*—lP(k)
S N PR S S S
B 5—1[1_B~1+(5—1)2 B—1F " Jp(k) + e (20)

where c is an arbitrary constant. The series terminates if P(k) is a polynomial.

SUMMATION OF SERIES

The above results are very useful in obtaining sums of various series [see Problems
3.20-3.28]. Further applications involving the important topic of summation of series are
given in Chapter 4.

THE GAMMA FUNCTION

In order to generalize the factorial ™ to the case where # is not an integer we make
use of the gamma function. This function is defined by
M

rp) = f prletdt = lim f poetdt p>0 (21)
0 ndd .
and we can show [see Problem 3.32] that
Ip+1) = pr(p) (22)
The recursion formula (22) can be used to define I'(p) for p = 0 [see Problem 3.34(c)].

Some important properties of the gamma function are as follows.

1. If p is a positive integer, T(p +1) = p!

2. I‘(%—) = \/;
w
— —_ <
3. r)r(1—7) . 0<r<i1
4. ) = f Teilntdt = — = —0.5772156649. ..
0

where y is called Euler’s constant.

If m is an integer we can write [see Problem 3.35]

hmT Gﬁ— + 1>
x(m) ——x (23)
T <;L— —m + 1>

Since (23) has meaning for all values of m we shall take it as a definition of z™ for all m.
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.. From (238) it follows that S ax = mamVh (24)
x(m+1) .
and > am = mE Dk m = —1 (25)

thus generalizing the results (25), pége 6, an‘d IV-2, page 83.
If m = —1, we obtain [see Problem 3.39]
- 1‘(% + 1)
PIEAE P e x (26)

The function on the right of (26) is sometimes called the digamma function and is denoted
by ¥(x).

The results (23) through (26) can also be written in the “k notation” with & replacing
zand k=1 :

BERNOULLI NUMBERS AND POLYNOMIALS .
Various sequences of functions fo(2),f1(%), f2(), . .. have the property that

Dfu(x) = fa—1() (27)
where in (27), as well as what follows, we shall assume that »n = 1,2,8,.... If we con-
sider the function fn(x) to be a polynomial of degree n then we can show that

_ e el ‘
fn(x) = 7l + (n__ 1) 1 + + Cp—1& + Ca (28)
where ¢q, €1, . . ., Cn are constants independent of n [see Problem 3.40]. '

To specify the polynomials, i.e. to determine ¢, €1, . . ., Ca, further conditions need to be
given. Different conditions will result in different sequences of polynomials.

Let 8,(x) be a sequence of polynomials satisfying (27), i.e.

. DB (x) = B, (29)
and the added condition "
A,Bn(x) = (71————1—)—' _ (30)

where we take =1 and define 0!=1. Conditions (29) and (30) enable us to specify
completely the polynomial B, (x). We find in fact that the first few polynomials are

Blx) =1, B@) =z—% B = 12— o+ s B@) = 00— 127+ 0 (31)
See Problem 3.41. ;

It should be noted that once B, (x) is found, we can use (29) to find B,_(), ,Bn_z(.x), vy
by successive differentiations. This is particularly useful since it is possible to obtain B, (%)
in terms of Stirling numbers of the second kind by the formula

_ 1 d n nx(k+1)
B = @ ZSETT (52)

See Problem 3.44.
‘We define the Bernoulli polynomials as
B (x) = n!B,(¥) (3%)

so that from (32)

(34)
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The first few Bernoulli polynomials are given by
Bo@) =1, Bix) = #—~%, Bsx) = 22—z + 3, By(x) = & — 822+ iz (85)

We define the Bernoulli numbers, denoted by B., as the values of the Bernoulli poly-

nomials with z =0, i.e.
Ba = Bx(0) , (36)

The first few Bernoulli numbers are given by
By =1, By = ~4, B, = % By = 0, Bs= —3% (37)
For tables of Bernoulli numbers and polynomials see Appendixes C and D, pages 234
and 235.
IMPORTANT PROPERTIES OF BERNOULLI NUMBERS AND POLYNOMIALS

In the following we list some of the important and interesting properties of Bernoulli
numbers and polynomials.

1. Bu(z) = am + <T>x“‘181 + <g>x"f2Bg + .- 4+ <Z>Bn

This can be expressed formally by Ba(x) = (¢ + B)" where after expanding, using
the binomial formula, B* is replaced by Bi. It is a recurrence formula which can be
used to obtain the Bernoulli polynomials.

2. » Bu(x+1) — Bu(z) = nan~!

3. B.(x) = nBu-1(x)

4. Bn = Bn(O) = Bn(l), B2n~~1 =0 n = 2, 3, 4, “ ..
T n n ) i

5. 1 ‘l“ (1>Bl + <2>BZ + e + (7?, _ 1>Bn‘—1 —_ 0

This can be expressed formally as (1+B)*—B*=0 where after expanding, using
the binomial fomula, B* is replaced by Br. This recurrence formula can be used to
obtain the Bernoulli numbers.

test = Bu(x)tr Ba(x) 2

This is often called the generating function for the Bernoulli polynomials and can
be used to define them [see Problems 8.51 and 3.53].

: t Bt Bt _
8. -1 = X2 ar < 1 + Bit + 51 *
This is called the generating function for the Bernoulli numbers and can be used to
obtain these numbers [see Problem 3.52].
| x x Byx? Byt Bext
9. Ecoth—z- 1 + o1 + i + 3 +
. . . . _ (n+B)r+l — Br+1
10. "+ 2 + 3 4+ - + =1y = T T 1
where »=1,2,3,... and where the right side is to be expanded and then B* replaced

by Bx.
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1 1 1 (_1)71—13”2 2n
11. —1—2g+§2;+@+ cee = 2.(2721,)(!71-) n=123,...
12. If n=1,2,3,..., then
Bu() = 2(-1y@n—1)! 2 e
& kwx
Bau(x) = 2(-1)"'(2n)! 2

EULER NUMBERS AND POLYNOMIALS
The Euler polynomials Ex(x) are defined by equation (27), i.e

DE.(x) = En-1() (38)
together with the added condition
x" 9(:" ‘

where M is the averaging operator of page 10 and = 1.
The first few Euler polynomials are given by
Eo2) = 1, Ei(x) = x—1%, Eix) = $2® — §w, Es(x) = $a® — 32+ 55 (40)

The Euler numbers are defined as

E. = 2! E.(3) (41)
and the first few Euler numbers are given by ,
Eo = 1, E1 = 0, Ez = '—1, E3 - 0, E4 = 5, Es =0 (42)

For tables of Euler numbers and polynomials see Appendixes E and F, pages 236 and 237.

IMPORTANT PROPERTIES OF EULER NUMBERS AND POLYNOMIALS

In the following we list some of the important and interesting properties of Euler num-
bers and polynomials.

o™ ex™ !

1. En(x) = '_"|— + (7’1/—1)! 4+ -+ en—1 + én
€2 €n—1 _
where €n 2[ ey 1)' (n—2)1+”'+ 1!] = 0
The first few values of éx are
€ = 1’ €1 = —%! €2 = Oy €3 = 511; €4 = 0; € = —‘%0—

2. En(x) = En-1()

3. E.(x) = (=1)*E.(1 —x)

4. E.(0) + E:(1) = 0 for n=12,3,.

5. Bu(0) + Ba—1) = 2031 for n=1,2,3, ...
" 6. Esn = 22(2n) ! Ean(d) = 0 for n=1,2,3,...

1. Eu(0) = En(l) = em = 0 for n=1,2,8,.
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10.

11.

12.

2 ezt

g+l = ZE@F = 1+ E@t + Eyo)e +

89

This is often called the generating function for the Euler pvolynomials and can be used

to define them.

_ < Ezklw”‘ — 1o 85 4, 81 4
sec —72 -1+2x +24 + moga® + o
_ s T 1. 2 . 17 62
tana = kzl 1 = x + 390 + ﬁx + 315x + 5335 % + -
where ‘ Te = 2%k ! ey
are called tangent numbers and are integers.
1 1 1 —1)"E 2t
12n+1 T Zamti + Ben+l T = (2++2(22W n=0,1,2,.
If n=1,2,3,..., thenfor 02 =1, :
< co8 (2 + Drx
Eoi(z) = 2 +1)22L
4(—1" o sin (2% + 1)xx
Eon(z) = Wzmz Z 2k + 1) 2n+ﬂ;.

Solved Problems

THE INTEGRAL OPERATOR AND RULES OF INTEGRATION

3.1

Find each of the following:

— 2
(@) D722 —5z+4) (b) D7(4e~% —8sin2x) (c) D-I[(ﬁ 33)]
(@ D-122—Bz+4) = f(2x2~5x+4)dx - 2Tx3_5_;i+ @+ o .

b) D-14e—3 — 3 sin2x) = (4e—3% — 3 gin 2x) du
(
. e 38\ —cos 2x
= 4< =3 ) 3<——2 > + ¢
= —4e¢7% 4 B cos2x + ¢
(Va — 38)2 J‘ x—6Vr+9
-1 =] = — =
(¢) D [ \/ﬁ \/;;i dx
_ x— 6212 +9
= f z5/2 o

f <x—1/2 - —g-i— 9x_3/2> dx

21/2 z—1/2

= -1/—2—61nx+9__—1/2—

+ e

= 212 — glnzx — 18z~ 1/2 + ¢
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3.2

3.3.

3.4.

THE SUM CALCULUS [CHAP. 3

Prove the formula I-3 on page 79 for integration by parts.
We have by the rules of differentiation

D[f(x) g(x)] = flx) Dg(x) + g(x) Df(x)
or fx) Dg(x) = D[f(x) g(x)] — g(x} Df()
Operating with D~ on both sides and remembering that D—1 is a linear operator, we have

D-1[f(x) Dg(@)] = D~D[f(@)g(x)] — D~[g(x) Df(x)]

or j f(z) Dgle) de = f(z)g@) ~ f 9(z) Df (@) do

Find (o) fx cosdx dx, (b) f Inz dx.

(@) We use integration by parts here. Let
fx) = », Dg(x) = cosdx

so that Df(z)y = 1, gl®) = gri‘l_ac
where in finding g(x) we omit the arbitrary constant.
Then using the formula for integration by parts,
_ sindz) f sin 4« _ gxsinde , cosdw
fxcos4xdx = w(———4 > 5 doe = i +—-—16 + e

(3) Let flz) =Ingx, Dg(x) =1 so that
Die) =1, o) ==

Then using integration by parts we have

flnxdx = mlnw—f«;-%d«: = glhes — %

Find (a) f e dz, (D) f 24 sin 2 da.

(o) In this case we must apply integration by parts twice. We obtain

f 2 ds = (29 (%’) - f (2) (—‘”2—’”) d
(%) -[ea(5) - S ()]
() -on(5) )

apart from the additive constant of integration.

In this result we make the following observations.

(i) The first factors in each of the last two terms, ie. 2¢ and 2, are obtained by taking suc-

cessive derivatives of »® [the first factor of the first term).

(i) ‘The second factors in each of the last two terms, i.e. ¢32/9 and ¢32/27, are obtained by

taking successive integrals of ¢3%/3 [the second factor of the first term)].

(iii) The signs of the terms alternate +, —, +. The above observations are quite general and
can be used to write down results essily in cases where many integrations by parts might
have to be performed. A proof of this method which we shall refer to as generalized

integration by parts is easily formulated [see Problem 3.143].
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(b) Using the generalized integration by parts outlined in part (a) we find the result

J‘ Asin2ods = (ad) ( €os 290) (42%) < sin 2m> (1247 <cosé Za:)
sm 2w ‘ —cos 2x

35. Find (o) Q%’ (®) f Ve gy () f In (90+4)d

(@) Make the substitution Va2 —cosz =t so that z —cosz = £ and (1+ sinx)dx = 2tdt
on taking the differential of both sides. Then the given integral becomes

1+ sinx)de __ 2t dt
AP = — = 2t +ec¢ = 2/x—cosx + ¢
f Ve —cosx ¢
3
(b) Let V2x—1=t so that 2x—1=13, x=4(t3+1), de = §12dt. Then the given integral

becomes

3
fe”’x*ldx = I ={2dt = 3ft2etdt

= [(tz)(et) — (28)(e?) + (2)(e?)] +

e NDwW

3
2 —26+8) + ¢ = -‘;ie‘/zz-l [(@r — 1)28 — 220 — Y3+ 2] + ¢

(¢) Let In(x+4) =1t sothat v +4 =¢f, x = et —4, dx = etdt. Then the given integral becomes

flni(’f;“)d - ftz(e;dt) _ ftzdt =L+ = lmery+o
(ax + o)+ mas—1
(m+1)a
In (ax + b)
a
Let t—=ax+ b sothat dx = dt/a. Then the required integral becomes

36. Prove that f (az + by dz
m=—1

tm+1

— m¥ —1
f(ax+b)de = lft'ndt _ (m+1)a
“ Int
= @ m=1

Replacing ¢ by azx + b yields the required result.

DEFINITE INTEGRALS AND THE FUNDAMENTAL THEOREM OF
INTEGRAL CALCULUS

2
3.7. (a) Evaluate f (x®+1)®2dx and (b) give a geometric interpretation.

1
(a) We first find the corresponding indefinite integral as follows:

D-la2+12 = f(ao2+1)2dac = f(x4+2x2+1)dx‘ = fx4dx + 2fw2dx + fdx

2903

= 5 + - t =
where we can omit the constant of integration. Thus by the fundamental theorem of integral
calculus, 2 . - .
@rifds = g+ T el = (PP - GREED
1 178

15 = 11.867 (approx.)
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3.8.
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(b) The value 178/15 = 11.867 (approx.) represents the area [shaded in PFig. 8-2] bounded by the
curve y = (¢2+1)2, the » axis and the ordinates at x =1 and 2 =2.

)

Fig. 3-2

/2 l ' 2 2

‘ ) dx
Find —3z —_—
ind (a) j; gin 62 dz, (b) j; xe~*dx, (c) .j; 2 —2r +2°

1

w2 cosdr L cos0 _ 1,1 _
0 s T 6 676"

2 . _8x —8z\ |2
o e - o))
o(5)- ()~ [0(5)-(] - -+

/2 cos 6z
() f sinbrder = ——s— 1
) ’ 6 3

() Method 1. f __dw f __dw
22— 2x + 2 (®x—1)2+1
Let x—1 =tant. Then dx = sec2tdt and so
f de _ f sec2tdt - f seet g:
@w—12+1 tan2¢t + 1 sec2 t

fdt = t+¢ = tan~l(z—1) + &

.Thus .
2 2
dx T T T
—_—— = -1 —_— = -1 — —1 (— - = — — £ -
J; P s T2 tan—1(z—1) 10 tan—1 (1) — tan—1(-1) 1 ( 4> 2

Method 2.
As in Method 1 we let ®—1=tant but we note that when =0, tant=—-1,t= —x/4

and when # =2, tant =1, t=n/4. Then
wl/4

fz __dw fz _dz j”“ sec?tdt  _ f & =
3 = . —1)2 - tanze +1 -
=0 x 22+ 2 =0 (m 1) t+1 t=—m/4 tan?t +1 t=—w/4

Note that all of these can be interpreted‘ geometrically as an area.

[CIE]

THE SUM OPERATOR AND RULES OF SUMMATION

3.9.

Ax Ax
where C(z + k) = C(z).

Prove that if S Fi(2) = f() and —Fy(x) = f(), then Fi(@)=Fs() = C(®)
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3.10.

3.11.

By subtraction we have ‘
LP@ - SR = @ - f@ = o
or AAw[Fl(x)—-FQ(x)] =0 ie A[F(®)—Fy(@] = 0

If we write Fy(x)— Fy(x) = C(x) then
‘ AC(x) = 0 or Clx+h)—Clx) = 0, ~ie Cle+h = C

We refer to C(x) as a periodic constant with period .. We have proved that if two functions
have the same difference, then they can differ by at most an arbitrary periodic constant. The
result is analogous to the theorem of integral calculus which states that two functions which have
the same derivative can differ at most by an arbitrary constant.

Prove that A~! is a linear operator, i.e. (a) A7![f(x) +g(x)] = A™'f(x) + A"g(x) and
(b) A™Y[af ()] = «aa~f(x) where f(x) and g(x) are any functions and « is any constant.
(a) By definition if AF(x) = f(x) and AG(x) = g(x) then
Fzy = A7 (), Glx) = a~lg(x) 169]
Also by adding AF(x) = f(z) and AG(x) = g(x) we have B
AlF(z) + Ga)] = flx) + g(@)
so that by definition

F(2) + Glx) = A71[f(x) + g(x)] (2)
Using () in (2) we find as required ) -
A~Lf(@) + g(x)] = A~1f(z) + A~ 1g(x) )

(b) For any constant « we have
AlaF(x)] = abdF(®) = of(x)

Thus from the first equation in (1) » : i
A™1af(x)] = aF(x) = aA71[f(2)]

If we define F(x) = A™[Rf(2)] = 2 f(x)h + C(z) as in (8), page 82, prove that (@) AZ =1
or 2=A"1 (b) A7![f(x)] = 2 f(x) + Ci(xr) where Ci(x) is an arbitrary periodic con-

stant, and (c) <A—Ax->_l fz) = 3f(z)ax + C@).

(a) By operating with A on

Fx) = A~ hf(x)] = p f(z)h + C(x) )
we obtain P
AF(x) = hf(x) = A fiao)h + AC(E) , @)
since A is a linear operator. Now by Problem 3.9, AC(%) = 0 so that (2) becomes
hfw) = ASf@h . : @)

But since f(x) is arbitrary and h # 0 it follows from (3) that
AS =1 o 3 =a-t
It follows from this and Problem 3.10 that = is a linear operator.

(b) Dividing equation (I) by k using the fact that 2 and A‘l are linear opera'gors, we have

At = Si@ + 92 = S + ow

where C(x) and thus Cy(x) = C(x)/h are periodic constants.
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(¢} This follows at once from (I) on noting that

—1 -1
AU @)] = Gl = <%> (@)
and replacing h by Aw.

3.12. Provethat (a) =[f(x)+g(@)] = 2f(@) + 2gk), (D) Z2ef(x) = «2f(a).
These follow at once from the fact that = = A~! and Problem 3.10.

3.13. Prove the formula for summation by parts, i.e.

S f@)age) = f@)g@@) — X g(z+h)af(@)

We have
Alf(@) g(®)] = f(x) Ag(x) + gl + k) Af()

or fl@) Ag(w) = A[f(x) 9(x)] — g(x + ) Af(x)
Operating on both sides with A1 yields

AT1[f(x) Ag(x)]

f(@) g(x) — &~ 1[g(x + h) Af(w)]

or since A"l =3,

S @) aglx) = flx)g(x) — 2 gz + k) Af(@)
(m+1) . _ _lh
314. Prove (a) Za™ = '(%L—ﬁ-—l)—h’ m#=-—1, (b) 2 sinrx = ——%

{¢) We have from V-2, page 7, or (24), page 86, on replacing m by m + 1

Agtm+1 = (m+ 1atmh

Then if m+# —1,

amED 4 em

a (m+1)h]. =@

) Cm)  — x(‘mﬂ‘]'l)

ie. AT T m+ D

or S gm) = it
(m -+ 1)k

apart from an additive periodic constant.

(b) From V-7, page 7,
= —2si LR ri{v+ h
Alcos ra) sin 5= sin 2

Replacing & by «— Lk, we have

Alcosr(z—4R)] = -2 sin%}E sinra

. rh
Thus on dividing by —2 smi—, we have

2
Ceosr(@—Lh)]
Al —2sin Arh = sinrw
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so that
cos r(x — 1h
A-lginrg = -— ( 3h)
2 sin 4rh
or
. cos r{x — Lh)
S sinrxe =

. 2 sin Lk
apart from an additive periodic constant.

3.15. Use Problem 3.14(d) to obtain f sinrzx dz.

From Problem 3.14(b) we have on multiplying by h
k cos r(x — 1h)

hsinre =
Zhsinr 2 sin Lrh

Letting & — 0 this yields

f miwde = i h cos r(x — Lh)
sinrwdo = lim - gk

. l:—cos r(x — 1h):][ irh :I
= lim
k=0 sin 1rh
— -1 L
_ lim cos (& — &h) lim ‘2'rh
o Q r h—+0 SIn %’I‘h

COS 1Y
r

The arbitrary periodic constant C(x) becomes an arbitrary constant ¢ which should be added to the
indefinite integral. The result illustrates Theorem 3-1, page 83,

316. (a¢) Find A~Y(ze*) = Z2za*, a =1, and (b) check your answer.

() We have from Problem 3.13

“f(x) Ag(w)] = flx) g(w) — a7 g(x + ) &f(x)]
Let f(x) =« and Ag(x) =a®. Then Af(x) =Ax = h and
ax
glx) = A~le® = ——
Thus
a® _ ax+h
A"l[xa,x] = X ath‘ — A I[Zlh_—:—i h]
xa® ha® . .
ah —1 ahl — 1A @
_ xa® _ hax+h
T oeh—1 (ah—1)2
(b) Check:
xa® haxth _ (x -+ h)ax+h hax+2h xa® _ haz+h
Algh—1 @ —12| = | a—-1 (ah— 1) @ —1  (@—1)2
(e —1)(x + h)asth — hazt2h — (ah — 1)(was) + hozth
- (ah —1)2

= za*
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DEFINITE SUMS AND THE FUNDAMENTAL THEOREM OF SUM CALCULUS
3.17. Prove Theorem 3-2, the fundamental theorem of sum calculus, i.e.

a+ (n—Dh a+nh

fo) = A7@)|

If we assume that F(x) and f(z) are related by

a

v = f(x) or AF(x) = hf(x) (1)
we have F@+h)— F(x) = hf(x) (2)
Then by putting « = ¢,a+h, ...,a+®m—1h successively in (2) we obtain the equations

F(a+h) — F(a) = hf(a)
F(a+2h) —Fa+h) = hf(at+h)

Thus by addition we have
Fla+nh) — F(@) = h{fla) + fla+h)+ -+ fla+ (m —1)h]}

or a+t+ (ﬁ"l)h F(a/_'_n};b) _ F(a) _ F(x) a+nh (3)

S fw) = @
where the sum is taken from # = e to ¢ + (n— 1)k in steps of h.

But from the second equation in (7) it follows that
A[% ] =@ o D = s )

and the required result is proved on using this in (3).

3.18. Evaluate each of the following using the fundamental theorem of sum calculus and
verify directly

7 21
(@) > 8x® if h=3 (¢) ; cosbx if h=n/2
1
6 19
(b) 2 [Ba® — x4+ 10] if h=2 (d) 2 2 if h=4
2 3
(@) Since 28x® = 8 x® = 8% = Zx;) we have by the fundamental theorem of sum
caleulus using ea=1 and h =3,
7 g0 2:10®  2.1W
28® = S| T T3 T 73
_ 20000 _ AEDEIE gy

Check: éSx@) = B[I® +4® 4 TB®] = 8[(1)(—2)(—5) + @)(—2) + (NAD)] = 240
1

23

(3 22 x
(b) 2 [3x(2)—8w(1)—|—10] = 3ﬁ - 82.2 + 105 = ——2— — 242 4 bx
Then
i 2® 8
S [8x@ —8eD +10] = 5 — 20 + b
2

= [(———8)(2)(4) — 2(8)(6) + 5(8):] - [(———2)(‘2(_2) — 22)(0) + 5(2):} = 30
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Check:
6

§ [82® — 82 +10] = [3(2)(0) — 8(2) + 10] + [3(4)(2) — 8(4) -+ 10] + [3(6)(4) — 8(6) + 10]

(¢) By IV-7, page 83, with » = 5, h = z/2 we have

sin 5[x — (#/4)]
-1 - T MU
AT1 eos ba 2 sin (57/4)
2 _ sinb[x — (z/4)] [57/2
Thus % cos 5w 2 sin 574) o
sin (467/4)  sin (—=Br/4) _ 1
2 sin (5x/4) 2 sin (bz/4)
Check: 9 '
%cos b = cos0 + cos(57/2) + cos (5z) + cos (157/2) + cos(10r) = 1
(d) Since A-1z(~3] = A = o we have
(—2)(4) —8
19 2(—2) 123 1
(—3) = = - (—-2) -
%x 8 |, g [(23) (3)—2]
= _1 1 _ 1 + _ 25
8| (23)(27) (8)(T) T 4347
Check 19 1 1 1 1 25
(—8) = - =
?” 3.7-11 T 7o11-15 T 11-15-19 T 15-19-23 1347

DIFFERENTIATION AND INTEGRATION OF SUMS

3.19. Find A~[ze™] by using Theorem 3-4, page 84.
We have from IV-5, page 83,
. ers

A—l[erx] = e"h——l

Then by differentiating both sides with respect to r [which corresponds to « in Theorem 3-4] we
find

9 9 err
-1 2 = S f_€e~
A [ar em] or <e'fh - 1>

rh — 1 1Z) - (eT%)(herh
or A~ 1fpers] = (e )((ai;h )_ l)ge )(e™)
_ (w — h)er(x+h) — ger®
- (erh — 1)2

This can be checked by referring to an alternative method of obtaining the result given in
Problem 3.16(a). From that problem we find on putting e = e"

1e hertz+h) — h)er(z+h) — georz
A~ Hwer?] = erﬁe_ 1~ (;'h—l)z = = (eh —1)2
SUMMATION OF SERIES
3.20. Sum the series 1+3 5+ 3+5:7+5:7:9+ --- ton terms.
Qince the nth term of the series is (2n — 1)(2n 4 1)(2n + 3), the series can be written as

2n+3

> x?® where h =2
5

97

30
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Then by the fundamental theorem of sum calculus,

2n+8 2n+5 w(‘i) 2n+3
2 m(3) = A—lx(3) = A
5 5 4. 2 5

2n+5)2n+3)2Cn+1)2n—1) (5)(3)()(—1)
8 8

_ (@2n+5)@n+ HCn+1)2n—1) + 15
- 8

3.21. Sum the series (a) 12+22+38>+42+--- and (b) 2°+5°+8 +11°+ --- to n terms.
Since we wish to find S %2 we need to express 22 as a factorial polynomial. This is found from

22 = 2@ + hatv

(@) Using h =1 the series is given by

n
Sz = I[P+ = AT a@+ 2]
1 1

n+1 2(3) 2(2) |n+1

1 3 2

1

[(n+1)(n)(n—1) 4t 1)(n):l _ [(1)(@(—1) +<1)(0)]
3 2 3 2

(n+Dn)(n—1) + (n+1)(n) - n(n+ 1)(2n 4+ 1)
3 2 6

As a possible check we can try a particular value of =, say 7 =3. Then we obtain

przmen = Q00 _

which is correct.

(») The nth term is (3n— 1)2. Thus using h = 8 the series can be represented by

Sn—1 3n—1 3n+2 3 (2) [3n+2
S a2 = S [¢@4+820] = A-1z® 430 = ¥ L g%
2 2 3+3 2+3

2

2

\

l:(3n +2)(3n—1)Bn—4)  (Bn+2@n= 1)] _ [(2)(-—1)(-—4) + (2)(—1)]
9 2 9 2

. Be+2@Brn—16Ent+1)+2 _ n(6n2 +3n—1)
- 18 - 2

Check: Let » =3. Then
22 + B2 + 82

(3)(6-32-;3-3—1) — o3

which is correct.

1 1

. 1
2.22., Sum the series 1.3.5+:_3_5_7—|—5.7.9+ to n terms.

s 1
The nth term of the series is @n—DEn T DEn+3)"

Now since
1
—_ (—3) — @ —,———
(@=h) 2@ + h) (% + 2h)

st follows that if we let h = 2, the required sum of the series is
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2n—1 2n—1 m+1
? (& —R)(~3 = % (x—2)(—3 = A-1g—2)K~®
1
(x—2)(=D |+l [(2p — 1)~ (=12
2@ i = ] L ]

S [ VO S 1, 1
- 4 Cn+DCn+3 | | 2 DB

= 4 ___ 1
12 42n + 1)(2n + 8)
Check: Putting n=2 we find ~1—+—1— = 1__1 = 8 which is correct.
13«5 8+5-7 12 4(6}{D 105 :
3.23. Sum the series 1 4 1 + 1 + .-
1:3*5 " 357 579 ’

In this case we are to sum the series of Problem 3.22 to infinitely many terms. The required
sum using the result of Problem 8.22 is

fim | & -t | = L
now| 127 4@n+ DEn+39) | 12

3.24. Sum the series % + cosd + cos26 + - - + cosnd.
Using h = ¢ the series is given by

2 (n+130 i — (n+1)9
14 Secoss = L+ a1teoss|” = 1 sin(e—4e) |
2 e 2 o 2 2sinde |o
1, sin(nt+})e sinds _ sin(n+J)e
T2 2 sin 14 2sinde =~ 2sinde
3.25. Sum the series 1 + 1 + 1 =+ - -- ton terms.
1-4 25" 3-6
Using A =1 the sum of the series to n terms is given by
n
1
? z(x + 8)
To find this we attempt to express the general term as a sum of factorials. We first write
1 _ (x + 1)z + 2) — (x+ 1)(x + 2) @)
z(x+3) ~  a@+1)(z+24x+3) (x + 8)®

We then seek to determine constants Ag, Ay, Ay, ... such that the numerator is the sum of fac-
torials in the form

(@+1@+2) = Ag+ Ay(x+ 8D + Ay(x+3)D + Ag(x +3)D + -+ 2)
Since the left side of (2) is of degree 2, it is clear that 4, ... must be zero. Thus

@E+D@E+2) = Ag+ Ayr+3)D + A, +3)D = Ag+ Ay(x+3) + Ax(x+ 3) (= +2)
From this identity we find 4y =2, 4; = —2, A = 1. Thus (Z) becomes
1 _ 2—2x+3) + (x+3)(x+2)
ox+3) w(z + 1)(x + 2)(x + 3)

2 _ 2 41
z(x+ 1)(x + 2)(x + 38) x(x + 1)z + 2) x(z+1)

= -1 — 2Az—1)D + (x—1)D
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Thus apart from an additive constant,

4 1 _ 2(x — 1)< _ 2(x — 1)~ (x — 1)¢—D
4 1|:x(x+3):] = +

—3 -2 -1
Then by the fundamental theorem of sum calculus

L1 [2e—1®  2@—1CD | (@—1)D
? 2x(x+3) { -3 -2 + -1 }

n+1

1
= -2, -2 - 2
= —gn R R e g(())(—3) — (0)(=2 4+ (0)¢—D

2 1 1 2 1

T T3mt+Dm+ 2T + m+Dn+e n+il + 323 T ME +

11 1 n 1 _ 2
18 n+1 @®w+1n+2) 3(n+ 1)(n+2)(n+ 3)

1
1

. 1 1 1
3.26. Sum the series atsstggt -

From Problem 3.25 by letting » = = it follows that the required sum is 11/18.

SUMMATION USING SUBSCRIPT NOTATION

3.27. Sum the series 135+ 857 +5:7+9+ --- to n terms by using the subscript or
k notation.
The kth term of the series is ¥, = 2k —1)(2k+1)(2k+3) = 2k + 3)3> where the difference
interval 2 =1 [as is always the case for the k notation].
Then the sum of the series is
2k + ) |n+1 2n+5)@® 5@

n
3 = —_———— = -
k§1 2k +3) s |, 3 5

@n+5)@r+3En+DEr—1)  ()B)A)-1)
8 8

(En+5)@2n+3)2rn+1)(@n—1) + 15
8

3.28. Sum the series 22 + 52+ 82+ --- ton terms by using the subscript or & notation.
The kth term of the series is ¥, = (3k —1)2.  Then the sum of the series is

k3 n .
S gk—12 = 3 @k—6k+1) = k21 [9(-® + k) — 6K + 1]
k=1 k=1 = .
n k(3 k2 S int1
= 3 [9k®+8kD+1] = 955 + 35+ k
= 1

k=1

= Bo+1D® + 3@+ +n+1] — BO® + O +1]
= [Bn+D@@n—1) +5Er+1)@) + (n+1)] — [(BYAN0)—1) + §(1)(0) + 1]

n(6n2 + 3n—1)
2
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ABEL’S TRANSFORMATION
3.29. Prove Abel’'s transformation.

n n n k
2 UV =  Un+1 2 Ve — 2 [:Auk E ,Up]
k=1 k=1 k=1 p=1

Using summation by parts and the fundamental theorem of sum calculus we have

a+nh a+ (n—Dh

- § g(x + k) Af(w) @)

a+ (n—Dh

2 f@agle) = f(@)g@)

a

a
where the summation is taken in steps of k.

Putting a =1, h=1, « =k and writing f(k) = f, g(k) = g, () becomes
n n
kgl g = frr18ns1 — f191 — k§1 I +14F 2)

Now let 7, = u; and Agy = vi. Then gyxi1—9r = v and so on summing from k=1 to n —1

we find

a—1 nil
_ — _ — »
k§1 (Fr+1— 9%) In 91 =y Uk
ie. n—1
g = 91+ 2 v
k=1
From this we have K
gk+1 = g1+ p§1 Vp

Then (2) becomes

k3

n . n k
2 W = un+1[.¢71+ Sove | — g — 2 {Auk[m‘l' p vp]}
K=1 k=1 k=1 p=1

n n k3

k
= u Vi — Au, v, + u — U — Au
n+1 k§1 k kgl k p§1 p] n+191 191 k§1 g1°%

n n [ k
= Up+1 kgl Vg — 2 Auk pgl ’UP:]

k=1]

since n n
Up+191 — Wd1 — k§1 g18% = Upp1f1 T WP T S k§1 Ay

n
= Upt1¥1 T W1 — 91 k§1 {uge 41 — Uc)

= U181 — W1 — F1(Uni— Uy

= 0

OPERATOR METHODS OF SUMMATION
3.30. Provethatif g+<1

spPw] = SEPM = 2Eq(1-3

apart from an arbitrary additive constant.

,BA 182A2 _ B3A3 .
—1t - BT Jrw

We have for any F(k)
ABFF(k) = Be+iF(k+1) — prF(k) = B+1EF(k) — pFF(k) = B(BE —L)F (k)
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Let )
(BE—1)F() = Py or Fk) = zp— 1 P(F)
Then
ABFF (k) = B*P(k)

Thus .

A-LBEP(E)] = pFF(k) = Bk,—BE-—lP(k)

S S _ _B 1
Fsirn—it® = p-iT+pag—o @

B—1 —17 (-1 (B—1P

apart from an arbitrary additive constant and assuming 8 +*1. Since A—1BkP(k) = 3 gkP(k) the
required result follows. Note that if P(k) is any polynomial the series terminates.

k
_ _B (:I_BBA L B B%A3 +---]P(k)

331, Use Problem 3.30 to find 3 k+ 2~
k=1

We have by Problem 3.30 with g =2, P(k) =k

A-Eke2F] = ket = 26[1—2a4+4A2—:0 1k = 2KEk—2)
Then by the fundamental theorem of sum calculus
n n+1 a+1
S Eke2k = A—1k. 2K = 2Kk —2) = 2ntl(n-—1) + 2
k=1 k=1 k=1

THE GAMMA FUNCTION

3.32.

3.33.

Prove that T'(p +1) = pT(p).
Integrating by parts we have for p > 0
M M M
Tp+1) = lim tre~tdt = lim l:(tp)(——rt) - f (—e~H)(ptr—1) dt]
M= v M=wx 1] 0
M
= lim | —Mpe~¥M + pf tp—le—t dt:l
Mo+ 0
= pf tp—le—tdt
0
= pI'(»
Prove that T(3) = V7.
We have w w
rg) = t—1/2¢—tdt = Zf e dx
0 0
on letting t =22 Then
» © v pde
Ty = (2 - dx> (2 o dy)
0 0
= 4f f e— (2 +9") dx dy N 4o o
0 0 Iy
where the integration is taken over the first quadrant \d 1 x
of the xy plane. We can however equivalently per- x

form this integration by using polar coordinates (p, &) Fig.3-3
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3.34.

3.35.

rather than rectangular coordinates (x,y). To do this we note that the element of area in the
xy plane shown shaded in Fig. 3-3 is (pdp)dp = pdpdp. Also since £ =peceosg, y =psing, we
have 22442 = o2 g0 that the result (7) with dx dy replaced by p dp d¢ becomes

w/2 0
12 — —p?
@) 4L=0 fp:o 5 pdpdg @

The limits for p and ¢ in (2) are determined from the fact that if we fix ¢, p goes from 0 to
and then we vary ¢ from 0 to =/2.

The integral in (2) is equal to
) T/2
d¢ = 4f 1d¢ = =«

/2 L T/2
4 f [f e v p dp:] de = 4 f —%8_92
=0 p=0 =0 Y b=0

Thus {r(1)}? =~ and since T'(}) > 0 we must have I'(}) = V7.

Find (a) T(5), (b) T(7/2), (¢) T(~1/2).

(@) Since I'(p+1) = pI'(p) we have on putting p = 4, I'(5) = 41'(4). Similarly on putting » =3,
r(4) = 31(3). Continuing, we find T'(5) = 4T(4) = 4+3F3) = 4+3+2I'(2) = 4+3+2+17(1).
But .

I

ra) = f e~tdt = —et 1
o 0

Thus T(5) = 4+8+21 = 4!
In general if p is any positive integer, T'(p + 1) = p!

(b) Using the recursion formula we find

15V7

7 5.8 5 3.8 5 3 __ 5 38 _
T(z) = 30(3) = 3°5TG) = 3 5" 340(F) = 33 4V7r = —3

(¢) Assuming that the gamma function is defined for all values of p by assuming that it satisfies
the recursion formula I'(p + 1) = pI'(p) for all p, we have on putting »p = —1/2

I(§) = (—Pr—§ or I(—H = -2} = —2Vx

Prove that if m is an integer then
e (% + 1)
(m) h
x = i

X
P(ﬁ —m + 1)
If m is a positive integer then
) = g(x— h)(x—2k)- - (@ —mh + h)

= @) )

Now
T(p+1) = pT(p) = pe—DTP—1) = plp—DE—2T(p—2) = ---
| = pp—Vp—2) - (p—m+DI'(p—m+1)
Thus
1*—(;‘(%2_1) = plp—Dp—2)--(p—m+1) (2)

Using (2) with p = #/k together with (1) we have

BmT <% + 1)
zm) = — (€3]

@
I‘(E—-m—i-l)

Similarly we can prove that if m is a negative integer the result holds. In general we shall take
the result as defining ™) for all values of m. See Problem 3.109.
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3.36. Assuming that the result obtained in Problem 3.35 is the deﬁnlng equation for ™
for all m, prove that Az™ = mzx™~Dh.

We have
hmr<9;;+1>
I‘<%—m+1>
x+h x
(2502 aen(3e)

T<x+h—m+1> I‘<£—m+1>

Axm> = A

x(m+1)
3.37. Show th gm = ——__  forall m+*—1.
7. Show that 3 CESIT ‘
From Problem 3.36 Azm+D = (m+ L)a‘™h, Then if m #* —1,
x(m+l) _ ) i Cm) — w(m+1) ) (m) — m(m+1) _
(m+1)h:| = & or AWV = gl e 2800 = mommy o mr

3.38. Let the digamma function be given by
: z
‘ o : I’ <‘— + 1>
T(x) = ilnI‘<%+1> = A7)

da , hT <% + 1>
Prove that A¥(x) = 1/(x +h).
Since A and D are commutative with respect to multiplication [see Problem 1.58, page 28],
A¥(xw) = ADInTx/h+1) = DAInT(x/h+1)

x+h ® ~
r<%+ 2>
: x 1
= " DlIn—F——= = Dln<—};+1> =

1‘<%+1>
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&r
. 1 g <z + 1)
3.39. Provethat X z¢V = Y = .
, x4+ h {®
hr % +1
From Problem 3.38 we have since — = (-1,
x+h z
' 1 " <ﬁ " 1)
Mg = ARV = e = —r
hT 7 + 1>
r' <—“3 + 1)
i = 1 _ h
1.e. Ex( 1 = Em-}-h = __x______
hT (ﬁ + 1)

BERNOULLI NUMBERS AND POLYNOMIALS

3.40. Prove that if f.(x) is a polynomial of degree n having the property that Df.(x) =
fa—1(x), then f.(x) must have the form

. Cox™ cixn!
f@ = 57t oD

where ¢, c1, ..., are constants independent of x.

+ A + Cn—lw + Cn

Suppose that fal@) = Agn)am + Aj(myen~1 4 -+ + Ay y()z + Ay(n)
Then by using Df,(x) = f,—1(x) we have
nAgn)an—1 + (n— 1A (m)en=2 + -+ + A,_4(n)
= Ain—1Den-14+ An—1)an=2+ -+ + A, 4(n—1)
Since this must be an identity, it follows that

nAgm) = Aoln—1), (m—14;n) = Ay(n—1), ..., Ay(0) = 4py(n—1)
From the first of these we have Agn—1) '
Aon) n

Then replacing n by n— 1 successively we find

ey = =D Adm—2) A e
o = = = Zm-n - 7 T aw—D-1  wl

where ¢, = Ag(0) is a constant independent of n. -

Similarly from the second we have
A _ Ayn—1) Ain—2) L. = 4,(0) _ 2
i) = r—1 ~ m—1Dn—-2 T @—-Dnr-2)-1 = (n—1!

where ¢; = A;(0) is a constant independent of . f

By proceeding in this manner the required result is obtained.

341, Find B,(x) for =0, 1,2,3.
By definition [see (30), page 86, with n=4] ABy(x) = 23/3!. Thus with 2 =1

‘o® 1
Bs®) = A~lgy = gjaTied
, @ @
= %A*l[x(3>+3x(2>+x(1)] = %[%_4_,5(3)4_”_2_]_*. ¢

= él;(m‘i — 6x% + 1122 — 6x) + 3(23 — 822+ 2x) + Fx2—2) + ¢

= 14— 1 A g2
= L 52 + et T
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3.44.
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Then since DB,(x) = 8,..,(x), we find
Ba(z) = Bi(x) = }o® — {22+ fow
Ba@) = Bi@) = Jot— o+ 3
Bi(x) = Bylx) = w—-%
Bo(x) = Bi(x) = 1

il

Obtain the Bernoulli polynomials Bn(x) for n =0,1,2,3.
Since by definition B,(x) = n! B,(x), we have using Problem 3.41
Byx) = 0! Bglx) = 1
B,(x) 1 Byx) = z— 4
By(x) 21 By(x) = a2 — o + 3}
Bg(x) = 3!Bg(w) = % — L2+ 4o

li

Obtain the Bernoulli numbers B. for n =10,1, 2, 3.
Since by definition B, = B,(0), we obtain from Problem 3.42

Bo = 1, Bl = —%, Bz = —(1;-, Bs =0
(@) Prove that
_ 1 d n nx(k+1)
B0 = miam &SETI

where ST are the Stirling numbers of the second kind.
(b) Use this result to solve Problems 3.41, 3.42 and 3.43.

(@) From definition (30), page 86, we have

Bu(x) = A-1 _ﬂ__l__ = —-—]'——‘A_lx“_l
» m—1)! (n— 1!
Replacing = by n+ 1 and using (31), page 7, with h =1 we have
_ 1 & an __L""_(k)_L”nx(k+l)
But1(®) = —h_!A ! {k§1 Skw(k)} ! kgl SpA™e ~ n! kgl St E+1

Then since B,(x) = DB,.1(x), we have

Bn(®) =

Ld n nm(k+1)
ol o2 SF R T

(b) Putting n =3 in the result of (a) we have
3 3 3
1 d ‘ Syx@®  S,x  Spa® l

Bs(®)

3lde| 2 3 4
1 d[x® | 3@ 2@ |-
T 8dx| 2 3 4

= }ad — 1a? + Lo

[CHAP. 3

in agreement with Problem 3.41. From these we can determine Bs(x), Bi(x) and Bg{z) as in

that problem.

We can from these also determine the Bernoulli polynomials and Bernoulli numbers as

in Problems 3.42 and 3.43.
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) _ box™ b1
It Fl®) = 3T *+ oD
prove that for n =2,3, ...

ﬁ b brn—1 = 0
wl F w1yt

+ . + bn—lx + b'n

where by = 1.
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If B. are the Bernoulli numbers prove that they must satisfy the recurrence
formula (1+B)*—B*=0 where, after formally expanding by the binomial

theorem, B* is replaced by Bx.

Use (b) to obtain the first few Bernoulli numbers.

{(¢) We have for n=1,2,3,...

(b

(c)

boAzh biAgn—1
Py R P Y

AB,(x) = + o0+ by A

Then putting « = 0 in (I) and using the fact that
Az =g = [(@+1)" — o™ |z=o = 1

we find b, by
ABL(0) = pou] + =1 + e+ by
Also since
ABn(x) = (—,%
we have on putting =20
AB,0) = {(1) 223,3,...

and the required result follows from (2) and (3).

The Bernoulli numbers are given by
B, = B,0) = a!B,(0) = =n!b,

Thus

where 0! = 1.

Then using (4) in the result of part (¢) we have

B B B B
20l T =111l = m—2)12! n—1!

Multiplying by #! (5) becomes since By =1

n n 7 .
1+ 1 Bl+ 2 Bz+"'+ n—-1 Bn——l = 0

which is the same as expanding (1 + B)*— Br =0 formally and then replacing B* by Bj.
Putting = = 2,3,4,... in (5) we find

2
1+ <1>Bl = 0: 1+2Bl =0 or Bl = -—-%

3 3 _ 4
1+ lBl+ 32:0, 1+SBI+3BZ'—0 or Bg—'g

4 4 4
1+ <1>Bl+ <2>Bg+<3>33 = 0, 1+4B1+GB2+4BS = 0 or B3 = 0
ete.

@)

@

*)

)

®)
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83.46. Prove that for r=1,2,53, ...

, . , . _ . (n+B)r+1_B‘r+1
i+ 2" + 3 + + (n—1) ey} |
where the right side is to be expanded formally using the binomial theorem and then

replacing B* by Bk.

From equation (20), page 86, we have on putting n=7r+1

.
ABr+1 = 7

Then using # = r+ 1 in equation (33), page 86, and property 1, page 87,

B, () B)r+1
—1pr = 1 — r¥i - (x+ )
AT 7 Brsal®) r+ 1 rF1
Thus by the fundamental theorem of sum calculus,
'nil o = (x+B)r+1 n _ (n+B)'r+1_ Brt+l
z=1 r+1 1 - r+1

3.47. Use Problem 3.46 to evaluate 12422432+ - - - + 7?2
Putting + = 2 in the result -of Problem 3.46 we have

(n+ B)3 — B3
3

= L(n3-+3n2B1+ 3uB2 + Bt — BY)
= —é*(na + 3n231 + 3”32)

12422+ 824 -+ + (n—1)2 =

= ind —in?+ in
= in(n—1)2n—1)
Then replacing n by n-+ 1 we have
124+22+ 32+ - + 02 = In(n+1)2n+1)
Note that this agrees with the result of Problem 3.21(a).

EULER NUMBERS AND POLYNOMIALS
3.48. Show that the Euler polynomials are given by

eox™ e xnl
Eux) = i + =11 + -+ 4 en—12 + €n
where the constants e, . . ., ¢. are given for n =1,2,3, ... by
1[ eo é1 (2 €n—1 _
en + E[m+(n+1)!+(n—2)!+ tar | =0

and e, = 1.

- From Problem 3.40 and definition (38) on page 88 it follows that
i exn—l

Byw) = ot e-mt

s+ e, t e, 1)
Then using definition (39) on page 88 together with (1) it is seen that we must have

xn €9
ME (x) = por ;L—!M(x") +

€
: Lo M@=t + o0+ epoiM(@) + e )

(n—1)

where M is the averaging operator with A =1 which is a linear operator.
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3.49.

3.50.

If n=0, (2) becomes
MEz) = 1 = ¢
while (7) yields for n =0
Eyx) = ¢
We thus conclude from (2) and (4) that
If n=1,2,8,... we have by definition of M
M@E®) = (e +1)" + v
so that on putting 2 =0
M(“’”) |a:=0 = %‘

Thus on putting « = 0 in (2) we obtain for n =1,2,3,...

1| € €y
2[n_!+ m—D1

as required.

(¢) Find eo, €1, €2, €3 and (b) obtain the first four Euler polynomials.

-+ en——l:] T ey
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()

)

©®)

(6)

(¢) We already know from Problem 3.48 that ey, = 1. Then putting = = 1,2,3 successively in the

result (6) of Problem 3.48 we have

1 11 1[ 1
g +e =0, §|:—2—!+el:]+e2=0, E[ﬁ‘ﬁ

From this we find

e = —L, e = 0, e =

(b) Using part (e¢) we obtain from (Z) of Problem 3.48

x

2
EO(‘”) =1, El(x) = x— E2(x) = %—5’

1
2’

For a table of Euler polynomials see page 237,

Obtain the first four Euler numbers.
By definition the Euler numbers are given by
E, = 2ml E (1)
Then from the results of Problem 3.49(b) we have

E0=1, E1=O, E2='—1, E3=0

For a table of Euler numbers see page 236.

MISCELLANEOUS PROBLEMS

3.51. Prove that the generating function for the Bernoulli polynomials is given by

t ezt 0 x) tn

e—1 — 2

If we let G(x, t) denote the generating function, then
G t) = Z Bald)tr = P
Py =

using the fact that g,(x) = n!g8,(x).

L
24

E3(x) = 033_!'_

(w)

€1
E—I—e2 +e =0

22

22!

1

24

1)
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3.52.

3.53.

THE SUM CALCULUS [CHAP, 3
Now by definition
_ xn—l
ABa(®) = G=D1
Then multiplying by #* and summing over n we have
= b xn—1fn
2, ARl = % =
which can be written
AS g = ¢33 L o g
P R R | T @

Using (1), we can write (2) as

AG(x,t) = te*t  or Gz, t) = A~1(te~)

so that
text
Gty = =7 te¢ 3

Taking the limit of (8) as ¢ > 0 we find since

. : i

= 1 =

tlgx‘x) G(w, t) 1, tl_rg) =1 1

that ¢ = 0. Thus we have as required
' et % Buatr
Gt = w1 = ngo n!

This generating function can be used to define the Bernoulli polynomials from which all other
properties are obtained. See for example Problem. 3.53. s

Prove that the generating function for the Bernoulli numbers is given by

This follows at once from Problem 3.51 on putting # =0 and noting that B, = B,(0). The
generating function can be used to obtain all other properties of the Bernoulli numbers.

Use the generating function of Problem 3.51 to define the Bernoulli polynomials.
(¢) Find the polynomial Bi(x) for n=0,1,2,8. (b) Prove that Bu(z) = nBn—1(%).

(a) We have o
<t e X
ette— 1 - ngo n'le
Then multiplying both sides by
d—1 = L+i+ g
we have

Dividing both sides by ¢ and using the expansion

_ xt |, w22 | w3
et = 1 + IT'+'—§T— +"§T— -+

this becomes
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Bi(x) | By(x)
1rir ey

I:Bz(x) Bi(@)  Byx)

&t x242 £33
1+1“!‘+—‘—+T+"' = Bo(x)“f'[

2!

zrit T 1iar T e | P

[33(90) By(w)  Bi(w) By(x) —

3T1t Torer TITeT T a4

Then equating coefficients of corresponding powers of t we have

B -1 By@) | Bylx) 4 By(w)  By(x)  Bylx) g2
o@ =1L gyt er Tip mi et e = 21’
By@)  By(x)  Byw)  By)
31t ' 2121 1131 41 T 31’

From these we find

By@) = 1, Bi@) = o—4, Bya) = @2—x+] Byle) = o3~ §a2 + Iz,

(b) Differentiating both sides of

o0
text _ B, (x)tr
et — 1 n§0 n!
with respect to & we have
203t _ & Bi(x)n
ef — 1 n=0 nl
But this is the same as
. ﬁ By(m)tr § B (x)tn
n=0 n! - n=0 n!
ie.
§ By(w)trt1 g B (x)tr
n=0 n! - n=0 n!
or
§ By (@)t § Bl (x)tr
n=1 (n_-]-)! i op=1 n!

sinee Bg(x) = 0. Equating coefficients of #* on both sides we thus find

B,_s(@) Bl

n—1)1 - n!

so that
B (x) = nB,_(x)

354, Find % f “sinwe g,
do a2 €

We have by Leibnitz’s rule on page 81
3 s a3 . . 3, . 2.
d (' sin xa de = f 9 [ sin xa de + Sin (a3+a) d (af) — S (a2 a) i @)
da ad da

oa 2
2 @ 2 02 x @ da

o3 3 sin o 2 sin o3
= f cos xa dx -+ — =
&

@
o2
_ singa [*® n 3 sin ot 2 sin o3
2 a @

4 sinat — 3 sina3
@
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Supplementary Problems

THE INTEGRAL OPERATOR AND RULES OF INTEGRATION
3.55. Find each of the following:

(@) D43zt — 223 +x —1) () D-1(4 cos 3z — 2 sin 32) (¢) D-1 (m 4 2>
D-12Vz ~ 3Vz) (d) D=1(4e2 + 30~%%) () D-12v)

3.56. Prove (a) formula I-1 and (b) formula I-2 on page 79.
357. Find (a) fo:e—?’m dz, (b) f (x sinzx + cosx) dx, (c) f zInzx de, (d) f 2% In2 x dx.

358. Find (a) f %2 sin 2x dz, (b) f x3e2® dg,
359. Find

o d
(@) f:x+§?§z (b) feﬁd“ © fs”“/—d” ) fx2—4x+8 (€) f(zxf3)2

THE SUM OPERATOR AND RULES OF SUMMATION
sin r(x — Lh)

-1 = =
3.60. Prove that A~l[cos 7] S cosrx Zsin 37k

3.61. TUse Problem 3.60 to obtain fcos re dx.
362. Find A-1we*] = 3 we.

363. (a) Find A—1x%a®] = S #2267, a+1, and (b) check your answer.

—x cos (x — £h) h sing
2 sin 1A 4 sin? LA

8.64. Prove that A~ Yz sin x)

365. Find (@) A~z cosrz), (b) A=Y« sin rx).

DEFINITE SUMS AND THE FUNDAMENTAL THEOREM OF SUM CALCULUS
3.66. Evaluate each of the following using the fundamental theorem of sum calculus and verify directly.

8 11

(@) S22 if h=2 (&) Xcosdx if h=x/3
2 (1]
4 10

(b) N [3x@—2;®] if =1 (d 3 6x—® if h=4
1 2

n
367. Find X~ if h=1.
1

n
368. Find ¥ z-2¢ if h=1
1

(n—1h ’
369. Showthat 8 % = ma®+ fn(n—1)hEae+ k) + fnln — 1)(n—2)k?

T=a

DIFFERENTIATION AND INTEGRATION OF SUMS

370. Verify that Theorem 3-3, page 84, is true for

(3)
@ = %£°
2w 3h
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3.1,

3.72,

3.78.

Use Theorem 3-4, page 84, to obtain IV-7 from IV-6, page 83.
Find (¢) Zwcosrz (b)) Sasinre by using Theorem 3-4, page 84.

Prove (a) Theorem 3-8, (b) Theorem 3-4, (c) Theorem 3-5, on page 84.

SUMMATION OF SERIES

3.74.

3.75.

3.76.

3.77.

3.78.

3.79.

3.80.

3.81.

3.82.

3.83.

3.84.

3.85.

3.86.

Sum the series (@) 1-+2+3+ - to » terms, () 1+4+ 7410+ -+ to n terms.

Sum each of the following series to n terms.
(@) 12 + 2.8 4+ 83+4 + ... (¢) 13 + 85+ 57+ ---
(b) 123 + 23+4 4 8-4+5 + --- (d) 2+5+ 58+ 811 + .-

Sum each of the following series to » terms.

1 1 1 1 1 1
@ t3tggtsagt © oot o0 T T
1 1 1 1 1 1
b)) ——
(b) 1'3+3'5+5'7+ () 1'2'3+2'3'4+3'4'5+
. LAy n+2
(@) Show that ¥ - = 2 — and thus (b) show that
k=12* an
1 2 3 4 _
L+ i St = 2

Find the sum of the series 12! 4+ 222 4 8+23 L 424 4+ ... b 590

cos (6/2) — cos (n+ )6
2 sin (6/2)

Show that sing + sin2¢ 4+ sin8¢ + -+ 4+ sinng =

Show that 18 + 28 + 8 4+ --- + 28 = (14+2+4+8+4---+n?2 = )

Find the sum to infinity of each of the series in Problem 3.76.
Sum the series 1+22+4+ 2324 3+42+ --- ton terms.

n
Sum the series k§1 k2 2k,

Sum the series 12 + 32 + 52 + --- to » terms.

(a) Sum the series
+ + -+ tomnterms

1-2-3 + 2.

and (b) find the limit as n — .

Sum each of the following series to n terms and to infinitely many terms.

1 1 1 1 1 1 .
@ ggtgsteqg ™t ®) gige T3 T e

SUMMATION USING SUBSCRIPT NOTATION

3.87.

3.88.

Use the subseript notation to sum the series of Problem 38.75.

Use the subscript notation to sum the series of Problem 3.76.

n2(n+ 1)2

113
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8.89. Sum the series kE k2(k+1).
=1

390. Sum the series (¢) =

< 2k — 1 @ ok —
® 3 L

=1 (k+2)(k+4) = (k+1)(k+2)(k+3)°

391. Sum the following series to n terms.
(@) 1857 + 8+57¢9 + 57911 + .-

1 1 1
® 1357 t3vseree TEereeenn T

392. Show that

n
r = (n+1)an+1 _ an+2 —a
(a) kgo ka a1 @—1E a1
(%) k§0 kak = G=—ap _(_la)z for la| <1
3.93. Sum the series 5 . 6 N 7 .
1+3+5 857 579

(a) to n terms.

(b) to infinity.

ABEL’S TRANSFORMATION n
394, TUse Abel’s transformation to sum the series k§1 %

n
395. Sum the series kgl k2 by using Abel’s transformation.

n
396. Sum the series k21 k2a*, a + 1, by using Abel’s transformation.

OPERATOR METHODS OF SUMMATION
897. Work Problem 3.92 by using the result of Problem 3.30.

398, Show that

(@) A-1rk sin ak] rk+1sin a(k—1) — r* sin ok

r2—2rcosa+1

7k +1 cog a(k — 1) — r* cos ok
r2—2rcosa+1

Il

() A~1rk cos ak]

399. Use Problem 3.98 to show that if |r{ <1

< kol — rsina
(@) kgl r* sin ok 2 —2rcosa+ 1
1 < 1—1r2
= k =
() 2 * ,El r¥ cos ak 2(r2—2r cos e+ 1)

3.100. Show that if 8 # 1 is a constant and h#1,

Jeid _ BhA B2hA2
A it e

thus generalizing the result of Problem 3.30.

A-1geP(x)] =

310L. Use Problem 3.100 to find A~1[za?]. ~Compare with Problem 3.16.

—_ --]P(x)

[CHAP. 3
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THE GAMMA FUNCTION
3.102. Find (a) T(4), (b) I'(5/2), (¢) T(-5/2).

3.103. Evaluate (a) f xte—2xdx, (b) f x2e— 2 da.
0 0

3.104. Evaluate f we™ dz.
0

1
3.105. Evaluate f %2 In2 ¢ de.
0

3106. Prove that TI'(m) = 2 f pom—1g—2* gy,
0

S P ST S Met+n+1l) T(z+1)
x+1 =x+2 e+n =~ MNetn+1) T(z+1)°

3.107. Prove that

3.108. Use Problem 3.107 to express in terms of gamma functions

1 1 1
@i T @roE T MTETD

and generalize,

3.109. Show that equation (3) of Problem 3.35 holds for all values of m.

BERNOULLI NUMBERS AND POLYNOMIALS

3.110. (o) Find B,(x) for n =4 and 5 and thus obtain (b) the Bernoulli polynomials and (c) the Ber-
noulli numbers for n = 4 and 5.

3.111. Obtain the Bernoulli numbers By, Bg, Bg without first finding the Bernoulli polynomials.

3112. Prove that B,:(x) = nB,_;(x) without using the generating function.

3.113. Prove that B, = B,(0) = B,(1).

3.114. Evaluate (a) 13423483+ --- 4+ m3, (b) 1¢-+2¢4 3¢+ coofom,

3.115. Expand bxt— 823 + 342 — 4x + 5 in a series of Bernoulli polynomials.

B, 1(x) — B, q(a)
n+1 '

x
3.116. Prove that f B,(u)du =
a

1 1 n=0
117, B = .
8.117. Prove that J; () dx { 0 n>0

3.118. Prove that B2n+ 1(-%) =0.

EULER NUMBERS AND POLYNOMIALS
3119. Find (a) ey es; (b) Eqx), Es@); (¢) Ey By

3120, Prove that (a) E,(0) = e, () E(0)+E, (1) =10, () E (1) = —e,

17 —31
3.121. Show that (a) e¢; = 10.320° (b) eg = 362,880

MISCELLANEOUS PROBLEMS
8122, Determine whether the operators (a) D and D—1, (b) A and A—1 are commutative.
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3.123.

3.124.

3.125.

3.126.

3.127.

3.128.

3.129.

3.130.

3.131.

3.132.

3.133.

3.134.

3.135.

THE SUM CALCULUS
Prove that
sin (px + ¢ — lph — 17)
—1 o — 2 2
() A~1sin(p2z+q) 5 sin Joh
cos (px +q— Lph— i7)
—1 2 2
b A-1lcos{pr—+q) 2 sin Iph
Let A—1f(x) = fy(x), A~1f,(x) = fo(x), .... Prove that
S g@) = AT f(=)g(x)]
= fi@) gx) — fole+ k) Ag(w) + [yl +2h) A2g(x)
— o (DR k= ) av—ig(o)
+ (—Dra~ Ui, (x + nh) Arg(x)}
which is called generalized summation by parts.
Use Problem 3.124 to find A~1[23+27] if A =1
n
Find k21 k3 cos 2k.
12 22,4  82.42 n2 e 4n—1 _ 1 (n — 1)dn
Show that 55 T3t s T T mrDmT2 61 Bate
Show that if sina # 0
sin?a + sin?2a 4 oo + sintng = 1 — Smmacostrdla
2 2sine
n 292 — 2 2 ntl — (g2
Show that S gegs = (a2n2 — 2an2 — 2an + +2n;l—a+1)w (a2 + a)
k=1 (a — 1)
2 n
Prove that kgo (—1)k ( k> up = (—1)rAru,
Use Problem 3.130 to show that
z n\ 1 2np !
— 1)k =
(@ 2 D <k>2k+1 1-3+5--@n+1)
—1)k+n " = !
® 2D <k> @ n
Evaluate 15+ 25+854 -+ 4 nf.
Show that
1 1 1 _ 4 ...tomterms = cot(s/2) — cot2n~1g

sin ¢ sin 20 sin 46 sin 8¢

—1 sec2x tan h - :
(¢) Show that A [—————1 —fonw tan tangx + ¢

(b) Use (@) to deduce that f sec2x dx = tanzx + c.

h
(a) Show that A'l[tan—l m] = tan—lo + ¢

d

T = tan—lz +c.
2241

(b)) Use (a) to deduce that f

[CHAP; 3
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3.136. (a) Show that
< 1
i O (. — = ~1 I
k§1 tan <k2 TET 1> tan—1(n 4 1) n
(6) Use (a) to show that

< 1 T

1 (e} =T

=, tan <k2 Tk 1> 1

3.137. Are there any theorems for integrals corresponding to the Theorems 8-3, 3-4 and 3-5 on page 847
Explain.

3.138. (a) Show that formally

1 1
-1 = = = = — 24 ..
A A 1—& Q+E+E*>+ )
(b) Use (a) to obtain the formal result 7 »
AClf@) = —3 f@)
u=x
where the sum on the right is taken for « = %, x+h, x+2h, ... .

(¢) Is the result in (b) valid? Illustrate by considering the case where f(x) = ;(90-14-_25 with h =2,
3.139. Prove Theorem 3-1, pége 83.

3.140. Prove (a) Theorem 3-3 and (b) Theorem 3-4, page 84.

Gla+ Aa) — Glo) ]

bla)
[Hint. Let G(a) = f F(x, a) dx and consider v

alal

I

3.141. Prove that (1) = f e lnwx de —y where y is Euler’s constant [see page 85].
0

3142, Use Problem 3.141 to prove that

1 1 T{n + 1)
1+g+gt o+ e TR

D=

3.143. Supply a proof of the method of generalized integration by parts [see Problem 3.4].

3.144. The beta function is defined as

1
B(m,n) = J‘ am—1(1 —z)r~ldx
0

w2
(a¢) Show that B(m,n) = 2 f sin2m—1¢g cos2nr—1 4 dg.
0

(b) Show that B(m,n) B(n, m).

3.145. Show that the beta function of Problem 3.144 is related to the gamma function by

T(m) I'(n)

B(m,n) T(m +n)

Q w0 _ 5
[Hint. Use Problem 3.106 to show that T'(m)T(n) = 4f f am—iyn=1¢=@+¥ dedy.  Then
0 0

transform to polar coordinates and use the result of Problem 3.144.]

T/2

1 g2 /2
3.146. Evaluat f dy, (b f sint 9 cos2¢ ds, (c) f Vtan ¢ ds.
146 valuate (@) Vi y, (b) . \
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/2
3.147. Show that () f snnpdy = 2n—-1,2n-3 1 7
. on om—2 "2°'%
/2 9
(b) f sin2ntle do = n__,2n—2 2
. mti on—1 3
3.148. Show that Am—1<%> — (—1)"B(m,n) if h=1.
[:Hint. Use the fact that ;1; = f e—nx dx.]
[H]

3.149. Prove property 6, page 87, i.e. Bz} = (—1)"B,(1 — ).

3150. Prove that B;=Bs=B;= -+ =0, ie. all Bernoulli numbers with odd subscript greater than 1
are equal to zero. :

" x _ w[e¥2+ e w2\ Byx?2 Byt
3.151. ShOW that Ecoth E = E <m> = 1 4 —2—!— + T + “en
3.152. Show that
1 22 24 26
(@ cotw = =— -2—!3290 +'4—!B4x3 - E!—Bsoﬁ + e
1 1 1 2 1
= L Ll L8 A e T — s
2 3% T4 Teas” T ames”
22(22 — 1 24(24 —
® tame = 22 Vg, ZZZD pasy .
= 1 2 5 AT 74 ...
x+3x3+15x +315w +
[Hint. For (a) use Problém 3.151 with « replaced by ix. For (b) use the identity tansx = cotx —
2 cot 2x.]
w0 (—1}k—1(22k — 2k —1
3153. Show that eser = > AN 2)Bo

k=0 (2k)!
[Hint. Use the identity cscx = cot x + tan (x/2).]

3.154, Let f(x) be periodic with period equal to 1 and suppose that f(z) and f'(x) are bounded and have a
finite number of discontinuities. Then f(x) has a Fourier series expansion of the form

&) = R+ S (ax cos2hrw + by sin 2kra)
k=1
1 1
where a = 2 f f(x) cos 2knw diw, b, = 2 f Flx) sin 2krx de
0 0
(@) If f(w) = Bay{w) [see page 88] show that
2(—1)n—1
a():(), ak:_(2—k7—7)_2;:_’ bk:0 k=1,2,...
k _ a1 & cos2krx
so that Ban(x) 2(—1)» k§1 2hn

(b) Use the result in (a) to obtain the second result of property 12, page 88.

3.155. Prove the first result of property 12, page 88. [Hint. Take the derivative of the second result of
property 12 already obtained in Problem 3.154(b).]

3.156. Prove property 11, page 88.
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3.157.

3.158.

3.159.

3.160.

3.161.

3.162.

3.163.

3.164.

3.165.

3.166.

3.167.

3.168.

3.169.

3.170.

3.1171.

1 2
Showthat (@) ;+gs+gr+ - = =
1. 1.1 . _
O fratmt = %0
1 01,1 1 _ a®
Show that (a) 12—2—2_+§~E+ =T
1 1,1 1 _ Tt
O wostm—aEt T T
1 1,1 1 _ a3
Show that (a) -1—5‘—§+5—3—7—3+ .= 33 .
1 1,1 1 By
® F-gtE st = 5%
Prove (a) property 4 and (b) property 6 on page 88 by using the generating function.
Show that B.(3) = <1 - —1—>B
n\g gn—1 e
(a) Show that the Bernoulli numbers can be found from
n
— (—1)*k! on
B, = ,El F+1 ok
where S} are Stirling numbers of the second kind.
(b) Use the result in (¢) to obtain the first few Bernoulli numbers.
Prove that
. _ ¥zt %8 (—1)¥ 1By (27)%*
(a) Insinxe = lnx—%——ﬁa—m—" 2k—(2k)!_— 0<x<nxm
_ 22 ozt b (—1)k—122k(22k — 1) By, 2k
() Incosx = R el 2] — . —/2 <x < 7/2
71'2 774
Prove that 1 — E!—Bz + 4—!34 - = 0.
i x2n—1
Prove that B, = 4nf0 W——ld%
Prove that
1 1 (22 —-1)Box (2¢ — 1)Byx® (22 — 1) By a2k —1
c+1 2 2! - 41 - (2k)!
) 1 1/ 1 1
[Hmt' e —1 ~ 2 <ex —1 e+ 1>]
Prove that the only zeros of the polynomial By,(#)— By, in the interval 0 =2 =1 are =0

and » =1.

(a) Obtain the generating function 8, page 89, for the Euler polynomials and (b) use it to find the
first four polynomials. ’

(a¢) Obtain the generating function for the Euler numbers and (b) use it to find the first four
numbers.

Prove properties (a) 3 (b) 8 (¢) 7 on page 88.

Prove formulas (a) 9 (b) 10 on page 89.
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3.172.

3.173.

3.174.

3.175.

3.176.

THE SUM CALCULUS [CHAP. 3

Derive the results 12 on page 89.

Obtain property 11 on page 89.

(@)

(®

(@)
(v

(@)

(®

n (—L)Fk!
ok

Show that e, = % Sk
=3

where S% are Stirling numbers of the second kind.

Use (a) to obtain a relationship between the Euler and Stirling numbers and from this find the
first four Euler numbers. :

1
eT + 1

Use part (¢) and Problem 3.166 to show that

Prove that = L{Ey0) + E{0)x + Ey(0)22 + --+}

—2(22k - 1)B2k
Ey0) = 1, Ex(0) =0, En—0 = —FGHr k=1,2,..

Show that the first few tangent numbers [see page 89] are given by
T,=1, To=0, Tg=2, T,=0, Ts=16, Tg=0, T, =272, Tg=10, Tg=T936

Use (@) to show that
%3 x5 27 9
tanx = x+2'§+16-§+ 272'7—!+7936'§—!+"'



Chapter 4

SOME SPECIAL METHODS FOR EXACT SUMMATION OF SERIES

In Chapter 3 we saw how the fundamental theorem of the sum calculus could be
used to find the exact sum of certain series. We shall consider, in the following, various
special methods which can be used in the exact summation of series.

SERIES OF CONSTANTS
Suppose the series to be summed is

n—1
o+ U+ U+ o Uy = Euk where ux = f(a+kh) (1)
=0
Then we have
n—1 _ _ _
zuk = nuo + nn 1)A'uo + M@-A%ﬁ) + - 2
k=0 2! - 31

In pari:icular the series can be summed exactly if ux is any polynomial in k. See Problems
4.1 and 4.2.

POWER SERIES
A power series in « is defined as a series having the form

o + ar + a2 + -0 = > apxt (3)
k=0

Suppose that in this series we can write ax = uxvrx where ux can be written as a polynomial
in k and where vx is such that

Vi) = kiovkx’“ 4)

i.e. the series on the right of (4) can be summed exactly to V(z). Then we can show that
[see Problem 4.3]

i axx® = V(@Eye = V(x+zA)uo

k=0

’ ZVII
= Viw + E%@Auo + E O oy 4 (5)
where primes denote derivatives of V(x). Since wux is a polynomial, the series on the
right of (5) terminates and yields the exact sum of the series on the left.

The following are some special cases.

1. vx=1. In this case V(z) = > a* = 1 1 — and we find that
k=0
< o ) TAUY %A% 6
kgoakw = kzoukx T—7 * e + d=ay + (6)

This is sometimes called Montmort’s formula.

121
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0 k
2. vy =1/k!. In this case V(z) = 3, ﬁ; = ¢ and we find that
k=0 !
& - SN Upd® |: AUy | X2A%U0
kzoakw ;¢2=<>—16! = uo+—gT + 57 Tt ] (7)

Note that we take 0! =1 by definition.
For other special cases see Problems 4.37 and 4.47.

The power series method can also be used to sum various series of constants by letting
# be equal to particular constants. See for example Problems 4.6 and 4.8.

APPROXIMATE INTEGRATION

Finite difference methods are valuable in obtaining formulas from which we can com-
pute the aproximate value of a definite integral. One important method uses the Gregory-
Newton formula [page 9] and yields the result [Problem 4.9]

a+nh n (2n 3
j; f@)de = nh[f(a) + 2afa) + ) A%f(a)
_ 3 _ 2 -—
+ 'n(n242) A%f(a) + n(67 4571,1 2—&(—) 110n — 90) A'f(@) + :I
: (8
The following are some important special cases.
1. Trapezoidal rule.
ath h
f fwyde = 5@ +fa+ ) (%)

This is obtained by letting n=1 and neglecting differences of order 2 and higher
[see Problem 4.10].

By using (9) repeatedly we can arrive at the extended trapezoidal rule

a+Nh
f f(®)de = g[f(a) + 2f(a+h) +2f(a+2h) + - -- + 2f(a+ (N —1)h) + f(a+ Nh)]
¢ (10)
which holds for any positive integer N. If we let % = f(a +kh) denote the ordinates,
(10) can be written as

a+ Nh
f fx)ydz = -g[yo + 2y + 292+ - - - + 2Yyn—1+ Yn] (11)

2. Simpson’s one-third rule.
f e = % (#(a) + 4f(a -+ h) + Fla+ 2h)] (19)

This is obtained by letting n =2 and neglecting differences of order 4 and higher.
It is of interest that third order differences do not enter in this case. See Problem
4.138.

By using (12) repeatedly we can arrive at the extended Simpson’s one-third rule
a+N

j f(x) dx = §[f(a) + 4f(a + k) + 2f(a +2h) + 4f(a +38h) + -+ + fla+ Nh)] (13)

which holds for any even positive integer N. In ordinate notation (18) can be written as

a+Nh
f fxydz = %[yo + 4ys + 2yz + 4ys + - -+ + dyn—1 + Yn) (14)
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3. Simpson’s three-eighths rule.
a+3h
j; fx)yde = % [f(a) + 3f(a + h) + 3f(a + 2h) + f(a +3h)] (25)

This is obtained by letting n =38 and neglecting differences of order 4 and higher.
See Problem 4.16.

By using (15) repéatedly we can arrive at an extended Simpson’s three-eighths rule.

4. Weddle’s rule.

a+6h
{7 rmae = R0 + fa+2h) + fla+ 4k + fla -+ 61))
+ 5{f(a + %) + f(a +5h)} + 6f(a + 3R)] (26)
which can also be written as
a+ 6h 3h
f f@ydes = F5[Wo+y2+ys+ye) + 51+ ys) + 6ys] (27)
This is obtained by letting # =6 and replacing the coefficient 41/140 of A%f(a) by
42/140 = 3/10 and neglecting differences of order 7 and higher. See Problem 4.38.

By using (16) or (17) repeatedly we can arrive at an extended Weddle’s rule [see
Problem 4.91].

In practice to obtain an approximate value for the definite integral

S " () da (18)

we subdivide the interval from a to b into N subintervals where N is some appropriate
positive integer and then use one of the above rules.

ERROR TERMS IN APPROXIMATE INTEGRATION FORMULAS

If we let R denote the error term to be added to the right hand side of any of the
approximate integration formulas given above, then we can find ® in terms of % and the
derivatives of f(x). The results are given in the following table.

Name of rule Error term R
. 13
Trapezoidal T 78, tbetween e and a+h
]
Simpson’s one-third ——me’)(g), ¢ between a and a + 2k
. . 3h5
Simpson’s three-eighths Ty FOaVX(g), ¢ between a and o+ 3k
, haSfa) | 9RO L
Weddle's —|: 140 + 1400f © |, ¢ between a¢ and a+ 6

For a specified value of % it is in general true that Simpson’s one-third rule and Wed-
dle’s rule lead to greatest accuracy followed in order of decreasing accuracy by Simpson’s
three-eighths rule and trapezoidal rule.
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GREGORY’S FORMULA FOR APPROXIMATE INTEGRATION

We can express a definite integral in operator form as

S e = 2 (B i (19)

(See Problem 4.20.) By using this we obtain Gregory’s formula for approximate integra-
tion given by

a+nh
3
f f@ds = S+ 2p 2t o+ 2+ vl

h h
_E(Vyn'_AyO) - 'zz(Vz?/n‘FAzyO) (20)

194 3h
720 (V'n—4%0) — 1gp(VUntate) — -

where the ordinates are given by % = f(a + kh), k=0,1,...,n, and where vV =AE~" is
the backward difference operator [see page 9]. In practice the series is terminated at or be-
fore terms involving the nth differences so that ordinates outside the range of integration
are not involved. See Problem 4.23.

THE EULER-MACLAURIN FORMULA

The Euler-Maclaurin formula, which is one of the most important formulas of the cal-
culus of finite differences, provides a relationship connecting series and integrals. The
formula states that

:2_: farin = & ™ fayde — [+ nh) — F@)]

h 4 14 h3 1444 rr’

+ ﬁ[f (@ +nh) — f'(a)] — m[f (@+mnh) — f7(a)]
5
30,240
and in this form is useful in evaluation of series involving f(z) when the integral of f(x)

can be found.

Conversely the formula provides an approximate method for evaluating definite in-
tegrals in the form

+ [f¥(a +nh) — fV(@)] = - (21)

a+nh
[ i = b fyo+ 20+ 20+ -+ 2001+ 0
h2 7’ ’ h'4 1444 1444
~ U —w] + e U vl
hﬁ (8] V)

where we have used the notation ux = f(a+kh), ¥ = f(a), vy, = f'(a+nh), ete.
We can also express the Euler-Maclaurin formula in terms of differences rather than
derivatives [see Problem 4.101].

ERROR TERM IN EULER-MACLAURIN FORMULA

It is possible to express the Euler-Maclaurin formula in terms of Bernoulli numbers
and polynomials including an expression for the remainder or error term.
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To do this we first show that

§ e = L@+ faen) -

“D(a+h) = [@(q)]

h2m+ 1

=+ —(2m) i ‘ﬁ [Bam(w) — Bem]f*™(a + hu) du (23)

Then replacing ¢ by a+#h, a+2h,...,a+(rn—1)h and adding, we obtain the Euler-Mac-
laurin formula with a remainder given by

j;a+"hf(x) de = L[fa)+2f(@th)+ - +2f(@tnh—h) + fa+nk)
m—1 BZ hZP
=S BT et — @) + B (el
where the remainder R is given by
h2m+1 1 n—1
B = G fo [Ban(2) — Ban] [go fem(a + hu + ho) | du 25)

This can be used in connection with evaluation of series by writing it as
n—1 a+nh h
RZO fla+kh) = f; f(x)dz — E[f(a +nh) — f(a)]

=l Bo,h?®
p=1 (p)

+ [f(213 1)(a _}_%h) f(2p— 1)(a)] — R (26)

where F is given by (25).

The result (26) is of course equivalent to (21) except that the error term R has been
introduced.

STIRLING’S FORMULA FOR n!

An important formula which can be obtained by using the Euler-Maclaurin formula
is that for n!, called Stirling’s formula and given by

B : ]
1 n n ..
n! V2rnnre [1 12” +oggn T 27)

When 7 is not an integer the result can also be used if the left side is replaced by the
gamma function T'(n+1) [see page 85]. The series in (27) is an asymplotic series and is
useful for large values of % [actually there is good accuracy even if »n =10 as shown in
Problem 4.78].
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Solved Problems

SERIES OF CONSTANTS
4,1. Provethat

o + Uy + U + -0+ Un—1 = nuo+£mTTﬁAuo+ﬁ(—7%l'@“—z)Azuo+
We have from the definition of the operator £ =1+4+A
wg + up + ug + o F Uy = uy + Eug + By + -0+ EnTly,
= (Q4+E+E24----+Er Ly,
_ En—1
T E-1%
_ (1+A§”—1u0
_ 1 n{n —1) n(n — 1)(n —2)
= K[nA—{— 21 A2 4 30 A3 4 oo g
_ nn—1) nin—1)n—2)
= [_n+ o A+ 31 AZ A+ ee dug
nn—1)

= nuy + Ay + nln—Ln=—2) 1:)3('”_2) A2yg + -

21

4.2. Sum the series 12+22+43%24 - -+ to n terms.

Comparing with the series of Problem 4.1 we have
wp = 12, wy = 22, uy = 82, ..., U,y =

Then we can set up the following difference table.

k Uy Auy Azuk A3uk A4uk
0 1
3
1 4 2
b 0
2 9 2 0
7 0
3 16 2
9
4 25
Fig.4-1

It is clear from this table that
Uy — 1, Auo = 3, A2u0 = 2, A3u0 - 0, A4u0 = 0,

which we could also obtain by observing that uy = (k+ 12, Ay, = 2k+3, A%u, =2 and putting
k=0

Thus using Problem 4.1 the required sum is

ntg + M pay + nin L2 2ty + v = a) + 2@+ pn— =2 2 2)
_ wrt+1)(@rnt1l)
- 6

in agreement with Problem 3.21(a), page 98

Note that the method of Problem 4.1 is especially useful when the kth term can be expressed
as a polynomial in k so that differences are ultimately zero.
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POWER SERIES

43. If V() = X vx® and a = wxve prove that
k=0

o 7 2 144
> aa* = V(x)u + 2V (@) Ay + MAZuo F e
k=0 1! 21
We have w A "
S oat =S vk
k=0 K=0

= ugvy T Ugvx + Uvex? + ugvgxd + -

= wgug + vwEuy + v22B2uy + vg23E3u + v
= [vg+ vyxE -+ vox2E2 4 vywdE3 4 - Ju,

= [vg+ vi(zE) + vo(xE)2 + va(kE) + ---Jug

= V(xE)u,

= Vi{x+ xa)u,

= |:V(ac) + V'(x)(xA) + Ké@(xa)z + .. :l %

22V (x)

= V(x)u, + zV'(x)Aug + o

Azuo 4 e
where we have used the Taylor series expansion

V' (x)h?

Vie+h) = V@ + V)h + 2

+ “on
with & = zA.

Note that although the above has been proved without any restriction on wu; an important
case where the series can be summed exactly oceurs when u; is a polynomial in % so that higher
differences are ultimately zero.

4.4. Prove that :
Uo AU 22020

UL = +
P T " @ap  (I-2p
Put v, =1 in the results of Problem 4.3. Then
Vi) = S vk = ok = 1+ +a?+a3+ -0 = L
k=0 k=0 1—x
Thus ——— 1 ——_— 9
(1—w)?2’ (1— )3’
and so from Problem 4.3 we have
2 xV'(x 22V (x
= wak = Ve, + 11 )Auo + —T(—)AQMO + e
— 1 x _ 2 -
= 1_xu0+ (1_x)2Au0+ (1“17)3Au0+

45. Sum the series S (k+1)(k+2)z* = 1:2 + 23z + 3422+ ---.
k=0

Comparing with Problem 4.4 we have u; = (k- 1)(k+2). Then we can construct the follow-
ing difference table.
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4.6.

4.7.

APPLICATIONS OF THE SUM CALCULUS
k Uy Au,k Az’uk A3Mk A4uk
0 2

4
1 6 2
6
2 12 2 0 0
8
3 20 2 0
10
4 30
Fig. 4-2

From this table it is clear that

wy = 2, Auy = 4, Ay = 2, Aduy = 0, Aty =0,

[CHAP. 4

These could also have been obtained by letting k=0 in the results u = (R+1)(k+2), A=

2k +4, A% =2, ....

Thus we have from Problem 4.4

2 4dx 2x2
1— 2 + (1—x)2 + (1—2x)3

é (k+ 1)k +2)ak =

2(1 — )2 + 42(1 — %) + 222
(1—x)?

2
(1—ax)3

Tt should be noted that the series converges only if |o| <1

. 2.3 3.4 45 _5-6
Sum the series 1:2 — —— + 55~ ~ 53 +

This series is a special case of the series of Problem 4.5 in which we let = = —1/5.
sum of the series is
2 _ 1%
(1+1/5)8 108
Prove that
& urxt 2AUo | X2A2Uo )
gk!‘e{w+u+zz+
Put v, = 1/k! in the results of Problem 4.3 Then
o0 _ L ock _ xz xS . _
V(z) :kgovkxk —k§0~! = 1+tao+g+gt = e

Thus
Vi = e, Ve = &
and so from Problem 4.3 we have

© " 2y
awkzmm+ﬂ@m+%ﬁmw+~

x2e%
= e%uy + xeTAuy + o A%y + o

22A2u,,
= e u0+acAu0+————2! 4+ e

Then the
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5* 82 112

4.8. i 2 b O 4 2
8. Sum the series 22 + itda T arE T 3E

+

The series is a special case with & = 1/4 of

52 82 112
22+ﬁw+2—!m2+§x3+ M

§ Gk+2yak

or
k=0 k!

Thus we can obtain the sum by putting u, = (8k+2)2 in the result of Problem 4.7. From the
difference table in Fig. 4-3 we find

uy = 4, Aug = 21, A%y = 18, Aduy = 0,

k Uy, Ay, A%y Adyy
0 4
21
1 25 18
39 0
2 64 18
57 0
3 121 18
75
4 196
Fig. 4-3
Thus
3 Bk + 2)%k “;6!2)2“ = e[4+ 210 + 92

and putting « = 1/4 the required sum is seen to be 157%/16.

APPROXIMATE INTEGRATION
4.9. Prove that

{ THeyde = k| fe) + 5 af@) + 213 e
+ n(n2;2)2 7(a) + n(6n3_457;22—!(—) 110% — 90) Af(@) + :l

By the Gregory-Newton formula (44) on page 9 we have

2 — )(2) 3 — )3
o = fa + D g o @ Eoa® SO Eop

Using Az =k and the definition of (z — a)(m) this can be written

flxy = flo) +—A—f7(bg—)(m——a) —I—A;!f;:;)(x—a)(x—a—h)

- A3f(a)(x — a)(x -S—!O;L;h)(x—a,—zh) ..

Integrating from z=a to @ -+ nh we then have
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f at nhf(m) i

a

a+mnh a+nh
f fla) dx +Afi(bi)j; (x —a) de

a+nh
(@) (@ — )@ — a— h) do

a-+nh
+ 5T (&~ a)(w — a— k)@ — a— 2h) dv

A4f(a) a+nh

+—4ﬁ4_ (x — a)(z —a— k)@ — a—2h)(@ —a—3h)dx + -

= nh[f(a) + 2afia) + 2223 pagq)

nn—2)2 n(6n3 — 4572 + 110 — 90)
+ BE=E A%(a) + T30 Atf(a) + - ]

4.10. Prove the trapezoidal rule

[ tayae = Rl + fla+ )]

Put =1 in the result of Problem 4.9. Then assuming that differences of order higher than
two are zero we have
ath
f flx) dx

a

h[f(a) + $47(a)]
= h[f(e) + F{f@+ k) — f(@)]

= 2ij@ + fa+ )

411. Use Problem 4.10 to obtain the extended trapezoidal rule

f ey de = % [f(0) + 2f(@ + k) +2f(a +2h) + -+ + 2f(a+ (N~ 1)k) + fl@+ Nh)]

From the results of Problem 4.10 we have

at+h h
[ trdn = fir@ + et )

a

a+2h h
[ ordn = glfa+ )+ flat 2]

at+h

.................................................

a+Nh I3
f fwyde = Zlfl@+ N—1h + fla+ N
a+(N—1)h

Then by addition

j'amhf(x) de = g—[f(a) 4 2f(@+h)+ -+ + 2f(@+ (N —DR) + fa+ N)]

a

or using ordinates ¥, = f(a + kh),

a+Nh h
[ ras = bttt st uad
1
1.12. (a) Findf 1—%%—2 by the extended trapezoidal rule where the interval of integration
0
is subdivided into 6 equal parts.
(b) Compare the result with the exact value.

(¢) Wehave a =0, ¢+ Nh=1 so that since N =6, h =1/6.

The work of computation can be
arranged in the following table.
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x 0 1/8 2/86 3/6 4/6 5/6 1

f(x) = 1/(1 + «2) | 1.00000000 | 0.97297297 | 0.90000000 | 0.80000000 | 0.69230769 | 0.59016393 | 0.50000000

Fig. 4-4

Then applying tﬁe extended trapezoidal rule of Problem 4.11 we have

' I —?—mx2 = % [1 + 2(0.97297297 + 0.90000000 + 0.80000000 + 0.69230769 + 0.59016393)
0 + 0.50000000]
= 0.78424077
(b) The exact value is
L ! T
L TH @ = tan-lz . = tan=11 = = 0.785398163. ..

Thus the trapezoidal rule for this number of subdivisions yields a result which is accurate to
two decimal places. The percent error is 0.147%.

4.13. Prove Simpson’s one-third rule

j;aﬂh fleyde = g[f(a) + 4f(a + k) + f(a + 2R))

Put n =2 in the result of Problem 4.9. Then assuming that differences of order 4 and higher
are zero we obtain

a+2h
[ r@as = 2hif@ + af(@) + §6%@)]
" = 2@ + (Fla+ B~ F@) + $ifla+ 20— 2(a+ M)+ fa))]

= % [f(a) + 4f(a + k) + f(a+ 2h)]

4.14. Use Problem 4.18 to obtain the extended Simpson’s one-third rule
a+Nh
f fx)de = —g[f(a) + 4f(a + k) + 2f(a +2k) + 4f(a +3h) + - - - + f(a + Nh)]

where it is assumed that N is even,

From the results of Problem 4.13 we have

a+2hk h
f fl@yde = 3 [fl@) + 4f(a + k) + fla + 2h)]
aa+4h h
f f@yde = 3 [f(a+ 2h) + 4f(a+ 3h) + fla + 4h)]
a+2h
a+Nhh .......................
f flx)de = §[f(a+ (N —2)h) + 4f(c+ (N —1)h) + f(a + Nk)]
a+ (N—Dh

Then by addition

a+Nh
f flx)yde = g[f(a) + 4fta + k) + 2f(a + 2k) + 4f(@+3k) + - -+ + fla + Nh)]

a

Using ordinates y; = f(a + kh) this can be written

a+ Nh R
[ e dn = R+ a2t e o vt o

a
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4.15. (a) Work Problem 4.12 by using the extended Simpson’s one-third rule and (b) com-
pare your result with the exact value and that obtained from the trapezoidal rule.

(#) We can apply the rule since N = 6 [which is a multiple of 3]. It is convenient to write the
rule in the form

L de h
T+ w2 §[yo+i/6+4(y1+y3+y5)+2(y2+y4)]
0
= 1/?6 [1.00000000 + 0.50000000 -+ 4(0.97297297 + 0.80000000 + 0.59016393)

-+ 2(0.90000000 -+ 0.69230769)]
= (.78539794

‘where we have used the value & = 1/6 and the table of values obtained in Problem 4.12 which
is applicable here. )

(b) The result is seen to be accurate to 6 decimal places on comparison with the exact value
0.78539816... as obtained in Problem 4.12(b). The percent error is 0.00028%. It is clear that
the result is far more accurate than that obtained using the trapezoidal rule.

4.16. Prove Simpson’s three-eighths rule

a+3h
f e = i@ + 3@+ 1) + 31+ 20) + Hlat 3h)]
Put n» = 8 in Problem 4.9 and neglect differences of order 4 and higher. Then

a+3h
f flyde = 3h[f(a) + BAf(a) + 24%f(a) + $43f(a)]

’ = 3h[f(a) + §{fa+ k) —f(@} + 2{f(a+ 2h) — 2f(a+ h) + fla)}
+ 3{f(a+ 8h) — 3f(a + 2h) + 8f(a + k) — f(a}}]

= % [f(@) + 3f(a+ k) + 3f(a+ 2h) + f(a + 3K)]

a+Nh
We can obtain an extended Simpson’s three-eighths rule for the evaluation of f f(a) de when
N is a multiple of 8 [see Problem 4.57].

4.17. (a) Work Problem 4.12 by the extended Simpson’s three-eighths rule and (b) com-
pare with the result obtained from the one-third rule.

{(a) Using Problem 4.1 and also the table of Problem 4,12 we have

1 de 3h
T Fra ?[(yo'*‘ys) + 3(yy Yo+ ys+us) T+ 2y

3075 1(1.00000000 + 0.50000000)

+ 3(0.97297297 + 0.90000000 + 0.69230769 + 0.59016393) + 2(0.80000000)]
= 0.78539586

() The percent error is 0.00293% which is about 10 times the error made using Simpson’s one-
third rule.

ERROR TERMS IN APPROXIMATE INTEGRATION FORMULAS
4.18. Find the error term in the trapezoidal rule.

The Gregory-Newton formula with a remainder after 2 terms is

f@ = i) + Y e—a® + B
where
F1(a)z = a)®

1 7 between @ and
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4.19.

Putting Ax = h and integrating from x=a to * =a+h we have

ath ath a+h
f f@) do = f o) dw + %@‘)f @—ayds + R )
where e ¢ 1 (oh a
® = 5§  reE-a®d (2)

Performing the integrations in () we find

at+h h
[ @i = i@+ e + =

a
Now to estimate the remainder or error ® we note that (x—a)@ = (x — a)(®x —a—h) does not

change sign for « between a and a4+ h. We can thus apply the mean-value theorem [see page 81]
to (2) to obtain

ath
R = _2.1_!]“'(5)1; x—a)(x—a—h)dx = —gf"(i)

where ¢ is also between ¢ and a + k. This yields the required error term.

Find the error term in Simpson’s one-third rule.
If we proceed as in Problem 4.18 the error term will be given by
1 a+2h
3i 7 () — @)® d
“Ya

However (x—a)® = (¢ —a}x—a—h)(x —a—2h) changes sign between x=¢ and «=a + 2h
so that we cannot apply the mean-value theorem. We must thus proceed in another manner.

One approach is to write the error as

a+2h
f fl@)de — g[f(a) + 4f(a+ k) + fla+2h)] @)

a

To simplify details by introducing a symmetry to this we shall choose a = —h so that the error (7)
is given by

h h
Rh) = Hwyde — Z[f(—h) + 4f(0) + f(R)] 2
. 3

We now consider & as a parameter and differentiate with respect to it. We find using Leibnitz’s
rule on page 81

R'(W) = fh) + f(=h) — %[—f’(—h) + ()] — 3[F(—R) + 47(0) + f(R)]

= W) + Ry — $70) + E[R) — F)

RO = F0) = FR) + EAR) = 0]+ R — 0]
= 300 — 3R = SIR) + )
R0 = R+ BR) — BRI — AR+ 7]
= —Riprw) - prien)
Thus RO) = RO = RO = RO = 0 ®)

If we now assume that fOV)(z) is continuous we can apply the mean-value theorem for derivatives
[see page 8] to obtain

Ry = —g[f"’(h) — (k)] = —%2— [T ()] 2 between —h and h
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Now considering oR2
ROB) = G = —E-fan() *
we can show by integrating three times using conditions (3) that [see Problem 4.89]

& = —1f w0y )

0

Since u2(h —u)?2 does not change sign between « =0 and # = h we can now apply the mean-value
theorem for integrals in (5) to obtain

k 5£(IV)
R(R) = ~%f‘“”(&)j; wh—wpdu = —2L2E

which is the required error term.

GREGORY’S FORMULA FOR APPROXIMATE INTEGRATION
atnh En -1
420. Show that f f@)de = h( i >f(a).

We have by definition

D-if(@) = f f(#) dee )
so that

a+nh

a+nk
 t@as = o)

a

@

But since E = ¢"? we formally have D = llnE' so that

Do) = Siw = i@

Then (2) can be written as

at+nh

a+nh
[ iwa = feie)|

a

= [fa+nh) — f(@)

= I (Bnfe) — f(@)]

n

=k <E > fla)

J:M flx)yde = lE—[f(aJrnh) fla)] = i-ﬁhE(yn—yo)

where yx = f(a + kh).

&

4.21. Show that

From Problem 4.20 we have, using ¥, = f(a -+ kh) so that y, = f(a), y, = fla+ nh),

atnh . h
[ tman = h(EI E1> f@) = pglietm —f@ = ppe.=v)

a

4.22, Show that

1 _ 1 1.1 ,, 1 ., 19 4_i5_”>
mil+ta) — §<1+2“ 2% Ta1% ~720% t 1607
We have [see page 8]

2 3 4 5
mte) = z -2 ¢ 2 @t 2
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Then by ordinary long division we obtain

1 _ 1
In(1+x) x2 a8
€‘ — 9 +‘E;‘—'_“'%
1,1 1 1 19 — ...
= zta~ 2% T 7™ +160
— l l —_— 2 19 4 S , S
= w2\l t3g® 12”+4 T 7207 +160w

4.23. Obtain Gregory’s formula (20), page 124, for approximate integration.

From Problem 4.21 we have

atnh
i = h(E >f() = o lfatnh) - @] = w0

a

E
Now E =144, E1=1-V
so that InE = In(1+4), InE = —In(1—V)

Then (1) can be written

a+nh -1 1
f fle) az = h[ln(l—V)yn_ln(l-!—A)yo:l

a

Now using Problem 4.22 we find

=t (1 1 1y 1o g 3 ga_ ...
ma-v’ = <v Tl AL - A A >yn
1 - (i1 1,1, 19 B e ...
ma+an? = <A+2 22 T T e T ie0” >y°
By subtraction we then have
—1 1 _ (L, -1,)_1 — 1y
maA-w’ " Wma+a¥ = (vﬂn"z%> 5 W tv) ~ 75 (Ve = Avd

1 19 3
Y (Vay,+ A%y, — 720 (V3y, — A3yy) — 160 (Viy, +Aty) — -

Also since V = E~1A = AE~1 [see Problem 1.39, page 25] we have

1 1. _ _1 1 _ Byn—ye _ BV, _ [Ent1—g
v Yn A Yo = E-1A Yn A Yo — A - A - E—1 Yo
= (Q+E+E*+-+Ey = yotyr Tyt ot

Thus (4) becomes
a-+nh
f flx) doe

a

Il

L lwo+ 20+ 200+ o+ 200+ 1)

h h
=15 (Von = a90) — 57 (V3 T A%y

_ 19

3h
720 (V3y, — A%yg) — 160 (Viy, + atyy) — ---

4.24. Work Problem 4.12 by using Gregory’s formula.
Putting ¢ =0, =6, h =1/6 and f(z) = 1/(1+#? in Gregory’s formula it becomes

135

@

(@)
&)

4)



136 APPLICATIONS OF THE SUM CALCULUS [CHAP. 4

1
de _. 1/6
f 1+ 22 7[?/0“‘2?!1“‘21!2"' cor + 2y5 + ye)
0
1/6 1/6
— Tz (Vs —ayo) — 57 (V2ys+ A%y)
19(1/6) 3(1/6)
~— 720 (V3ys — Alyy) — 160 (Viyg + Atyg)

The ordinates g, ¥y, -..,¥s can be taken from the table of Problem 4.12. To obtain the

various differences we form the following difference table where the factor 108 has been used so as
to avoid decimals,

k Yy X 108 Ayy X 108 A2y, X 108 A3y, X 108 Aty X 108
0 100000000
—2702703
1 97297297 —4594594
—7297297
2 90000000 —2702708 1891891 41581
—10000000
3 80000000 —769231 1933472 —609386
—10769231
4 69230769 +554855 1824086 —680958
—10214376 643128
5 59016393 +1197983
—9016393
6 50000000
Fig. 4-5

From this table we see that

Vye = AE-ly, = Ays = —0.09016393, Ay, = —0.02702703
V2y6 - AZE_zyG = A2y4 = 0.01197983, AZyO = —0.04594594
Vsys = ASE-3:I/6 = A3y3 = 0.00643128, A3y0 = 0.01933472
Viye = AE—4yg = A%y, = —0.00680958, Aty, = 0.00041581
Thus we have
1
de _ (1/6),

, 112 = 0.78424077 12 (—0.0631369)

_we) _ 1901/8) ,_ s/e)
N (—0.03396611) 730 (—0.01290344) 160 (—0.00639377)
= 0.78424077 + 0.00087690 + 0.00023588 + 0.00005675 + 0.00001998

= 0.78543028

It should be noted that the value 0.78424077 in the above is that obtained using the trapezoidal
rule, Thus we can think of the remaining terms in Gregory’s formula as supplying correction
terms to the trapezoidal rule. It is seen that these correction terms provide a considerable im-
provement since the value obtained above has only an error of 0.00423% whereas that obtained
without the correction terms is 0.147%. It should be noted however that Simpson’s one-third rule
is still the victor.

THE EULER-MACLAURIN FORMULA
4.25. Show that

A~ (x)

Il

1 1 [ & Br(hD)*
i@ = pl S @

= i@ - 2@) + 5hDI@) — D@ +
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We have since A=E—1=¢e"?—1 [see page 8]

- 1 _ 1 _ 1
ATH(@) = (f@) = G5 —7f@) = 35 ehD 1 f@
Then using property 8, page 87, with £ = hD this becomes
w B (hD)¥
1 k
ATf(@) = 75 ]
nD ,20 k! %)
g BhD  B.h2D*  Bg3D3 B, h4D4
= | Bt 21 T s ]f(””)
= L@ - Liw + S5iie) — A mpsi@) + -
hD 2

on using the values for By, By, By, B3, ... .

4.26. Derive the Euler-Maclaurin formula (21) on page 124.

By the fundamental theorem of sum calculus we have [see page 83]
at+nh

2 fl@) = A7) @)

where the summation in (f) is to be taken from & to a + (n — 1)k in steps of h. Using the results
of Problem 4.25 we then have

a+ (n—1)h

a+ (n-1h a+nh 1 a+nh 1 a+nh a+nh
SV 1w = el —he| |, e e
which can be written as
1 a+nh 1
fa) + fat )+ ok fet =R = @) de = §[fatnh) - f@)]

+ 1h—2 [f'(a+nh) — f'(@)] — % [F(a+nh) — f7(@)] +

199

427. Find Y

k= 100k

Let f(x) =1/, a=100, e+ (n—1)h =199, A =1 in the result of Problem 4.26 so that
7 =100. Then §(x)=—1/x2, f'(x)=2x"3, f"''(x)=—6x"% so that

199 200
1 _ de _ 11 1 _ 1 1|j__1t . 1
Bk f v 2 [200 100] + 12[ @o0E T (100)2]

1 6 6
‘ﬁ[‘m*mj "

= In2 + £(0.005) + {,(0.000075) + ---
= 0.693147 + 0.002500 + 0.00000625 + ---

by using the Euler-Maclaurin formula.

= 0.695653

to 6 decimal places. In Problem 4.32 we shall discover how accurate the result is.

ERROR TERM IN THE EULER-MACLAURIN SERIES
428. Let ¢,(2) =B, (x)—B, »=0,1,23,..., where B, (x) are the Bernoulli polynomials
and B are the Bernoulli numbers. Show that

(@) ¢.(x) = pB,_,(x) (¢) ¢,(0) =0

(B)  #,(x) = %—’f;i-(?—l%’p @ ¢, :{

1 p=1
0 p>1
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() We have using property 3, page 87,
¢p(®) = By(x) = pB,_4(x)
(b) We have since ¢, {x) = B, 41(@) — By,

¢p+1(®) = Bpei(@) = @+ 1By@) = (p+Dgplw) + By

op+1(x)
Th - P —
{c) Since by definition B,(0) = B, we have
¢p(0) = p(o)_Bp =0
(&) We have p1(2) = Byz) =By = 2~} — (-} =
Thus ¢1(1) = 1 (#3)
If p > 1 then by property 4, page 87,
¢(1) = By(1) — B, = 0 @
Then from (Z) and (2) we see that
_ 1 p=1
W) = {0 Pt

429. Show that
fa T iwde = [ (@) + f(a +R)] f o,(0) (@ + ht) du

Letting « = a + hu, using the fact that ¢,(u) =u?—u, and integrating by parts we have

at+h 1
f fleydx = *h f fla+ hu) du
0

a

= %J;lf(a+hu)d(2u—1)

1 1
= Hew-vierml — S en—vratm au |

ne (!
[f@) + fla+h)] — £l f 2u — 1)f'(a + hu) du
0

o> o>

1
(@) + fla+ W] — % [ fla+ ) dpylw)
0

|

1 1
= Z[fle) + fla+h)] — h—2f’(a + hu)ga(u) + g f so(w)f!(a + hu) du

2

[T

= 21f@ + fla+ )] f o) (a + hot) dc
4.30. Show that

B (i@ + 1)~ £/@)]

h5 1
+ 51 edwria b du

B4h [

® 2 o+ du = Fa+h) - (@)

+ & j; $o()f VP (a + hu) du

(¢) From Problem 4.28(b) with p =2 we have
¢o(w) = —By+ §oh(w) and  es(w) = Feu(w)
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Then

B (! 1
?,’; $2(w)f"(@ + hu) du %fo [~Ba + $850)f"(@ + hu) du

— Bzh 1 1"
= f e+ hu) du + 3,f Sh) (@ + hu) du

1 1

— B 14 h 17
= ——ﬁf(a+hu) . + 3—!I:¢3(u)f (a -+ hu) .

1
—h f o3(w}f" (o + hu) du:l

Byh? , .
= - 27 [f'(a+ k) — f(a)] 3'f ba(0)f""(a + hu) du

Byh? , , ;
=~ lfe+rh - @) - B f #()f" (o + o) du

1

B,h?
=~ fath - @) - l:¢4(u)f”’(a+hu)

-k f P4} f VX a 4 hu) du]
@+h) - f@)] + 25 f $4(0f 0+ hai)

(b) From Problem 4.28(b) with p =4 we have

¢s(u) = —By+ Log(u) and  s(w) = Lee(w)
Then
B (1 B (1 '
Z—"f Sa()f VN a + hu)ydu = ’4—' [-By+ %¢5(u)]f(w)(a + hu) du
* 0
B4h

= -5 f £OV)(q 4 hu) du + 5,f LWV (@ + hat) du

1

Bk 1
= =& o
= T f (a + hu) 0

+ B gy a(a+
51! [-£10C3 (a’ 'LL) 0

1
-k f Bs(W)fV (@ + ha) du]

Bk
- — _4___ [ (a + k) — £"(a)] — f d5(W)f V) (a + hu) du

_ _34 e+ k) — f"(a)] — = (wW)fFVa -+ hu) d
= Y] [f"(a 7 ()] 6!1(; Bg(u) a + hu) du

B h4 1o 1
= -7 [F7(a+ k) — f"(a)] — il () f V(@ + hu) .

1
— h f p6(@)fVD (0 + hu) du]
0

_ _BM + R) — f7( +1‘1 ' (0)fYD(a + hu) d
= =S R = @] g s P ) d

4.31. Obtain the Euler-Maclaurin series with a remainder for the case where n=1
" [see equation (24), page 125].
From Problems 4.29 and 4.30 we have

Bht
— 4! [fll/(a+ h) —_ flll(a)]

ath h Bzhz
[ t@ds = 2@+ e+ ] = 5[t b = 7@

a

»o?
+ &7 f pe(w)f V(@ + hu) du
Yo

which is the required result. This result can of course be generalized and leads to that on page 125.
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4.32. Estimate the error made in the approximation to the sum in Problem 4.27.

Using f(x) =1/, a=100, k=1, n=100, m =3 in the result of Problem 4.27 we can

write it as
S L f”"@_l 11
k=100 k w0 ¥ 21 200 100

ir_ 1 1 |_ 13 6 . 6
+ 12[ oo + (100)2:| 720 [" @ooyt + (100)4] -k

where
1 1 99 720
R = —-f B — —_—
6!.J, [Bo() — Bl ,,go (p+100+u)7] du
j‘l 6 — 35 + Byt 3 1
= — 2 — 142 2 - =
o [0 = Bu o+ ot — ]| 2 (I’+100+u)7]du

Now by the mean-value theorem for integrals we have

99 1
1
= N S _ 5,4
R l:pgo 100+ £)7] J; (w8 — 3uS + Zut — lu?) du
R 1’
f4'§p§0 (p + 100+ &)7
Thus the absolute value of the error is

99
Rl = g ;

42 Eo (p + 100 + £)7
But since 0< ¢ <1, it follows that each term in the series on the right is less than 1/(100)7 and
so the sum of the first 100 terms of the series is less than 100/(100)7 so that

1 100

oy W 2.38 X 10—14

Bl <

The fact that the error is so small shows that not only is the result 0.695653 accurate to 6
decimal places but that we could have obtained acecuracy to 12 decimal places at least by simply
obtaining more decimal places in Problem 4.27. If we do this we find

199
% = 0.693147180559945 + 0.0025 + 0.00000625 + 0.000000000078125
k=100
= 0.695653430638
accurate to all 12 decimal places.

By taking only one more term in the Euler-Maclaurin formula it is possible to obtain even
more decimal place accuracy [see Problem 4.75].

This problem serves to illustrate further the importance of being able to find an error term
since one then can determine how many figures in a calculation are accurate.

STIRLING’S FORMULA FOR »!

4.33. Prove that 1 1
Inn! = ¢+ +HInn — % + B ~ 3500 +

where ¢ is a constant independent of .

Let flw) =Inz, h =1 in the Kuler-Maclaurin formula, Then

at+n
f Inedx = 12-1na+1n(a+1)+ cer +In(e+n—1) + FIn(e+n)

’ 1/ 1 1), 1 (1 _1)_ .. ’
“ﬁ<a+n a>+360<(a+n)3 a3> @
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From Problem 8.3(b), page 90,

atn atn
f Inedr = alne — x

a
Thus we have on adding 4 1na+ 1 In{a+mn) to both sides of equation (1) and using equation (2)

(@e+n+PHIn(@+n) —n+a— @+ Ine
= I[(@)e+1)e+2)(at+n)] — %( 1 l> + 1 < 1 L> —.

= (a+n)In(a+n) — (@+mn) 2)

a

atn a 360 (a+n)3_a3

Assuming that ¢ and n are both positive integers and replacing a +=n by n, ie. » by n—a, in
this result we have

1 _ _ 1 - nt|_1/1_1 1 /1 1)
n+L)Inn n + 2a e+ Ina lnl:a!] 12<n m +360 o R

which can be written
A 1
12n 360m2

Inn! = ¢+ m+HInn —n + + .-

where ¢ is a constant independent of n.

4.34. Prove that in the result of Problem 4.38 the constant ¢ = 1 In2x.
We make use of Wallis’ product [see Problem 4.100] which states that

. 202:4+46+6¢---+(2n) - (2n) _ T
Im g 5T @D @D 2 ()

Now we can write

2-‘2-4°4'6-6-'~--(2n)-(2n) _ 24n(n1)4
1°8°8:5+5+7- - +@n—1)-2rn+1) ~ (@n+ D[22
It follows that
. 24n(n )4 .
Jm I G eaE - 2
or
lim dnln2+4lnn!—In@n+1) —2In@2n)!] = lng )

n=>w

Using the result of Problem 4.33 to find Inn! and In (2n)! and substituting in (2) we have

. 1 1
nlgr; dnln2 + 4 + (n+2)Inn — 4n + 3n 902 +
—In@r+1) — 2 — (dn+1)In@n) + dn — e+ i + ] = InZ
n (2n ¢ * n 122 T20n2 2
Thus
2¢ —2mln2 = 1n127_ or ¢ = 4In2r
4.35. Prove Stirling’s formula for n!.
Using ¢ =4 In27 in Problem 4.33 we have
1 1
Inn! = -%—lnzn'—l-(?’b‘f'-%)lnn—n'f‘ﬁ—m'l‘"' (1)
or n! = e%1n2ﬂ-e(n+%)lnne_nel/mn—--~
. _ nta, Ao
Le. n! = V2rmn e "<1+12n+ >

= m'n"e_”<l+1é——n+-”> (@)
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4.36. (a) Evaluate 20! by using Stirling’s formula and (b) compare with the true value.

(a) Method 1.
From Problem 4.35, equation (2),

201 = V&0 (20)20e—20 <1 + ﬁ+ >

V125.6636 (220 « 1020)(e—29)(1.004167)
= {11.21000)(1.048576 X 1026)(2.061096 X 10~2)(1.004167)
= 2.43282 X 1018

Method 2.
From Problem 4.35, equation (1),
1 41 1
1 = = —_— —_ —_— ot
1n 20! 211127—1- B) In 20 20+240

= 0.91894 + %(2.99574) — 20 + 0.0041667 — ---
= 0.91894 + 61.41267 — 20 + 0.0041667
= 42.33578

Then ,
logg 20! = 0.434294 In20! = 18.38618

and so
20! = 2.433 X 1018

() The exact result is 2,432,902,008,176,640,000 and thus the percent error of the result in Method 1
of part (@) is less than 0.0033%.

MISCELLANEOUS PROBLEMS

4.37. Sum the series o g2y e

A T g *
Consider the series w@?  urd g
ugw + 5+ 5+ g + o
This can be written Bug® E2uqu3 E3yugxt
uox + 1 P 3
. zE 22E? x3E3 ces

Using series 4, page 8, this can be written as

[~In(1—zB)ux = {—In(1-— a[l+ A uge = {—In(l—2z—xA)juw
{— In |:(1 ) <1 - lemﬂ} e
[— In(1—2) —In <1 — 1af—Ax>] UYL

A 1/ aa \?, 1/ aa \°
= _uoxln(l—“)‘f‘[f%‘l'E(lm_m) +§<'1—_'_—5> + -~-:]uoos

2Aug 1 %38%uq 1 x*A3u,
1—z " 2d0—=x2  3(1—=2p3

1l

= —uxln(d—z) +
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Since u, = (n+1)> we have the following difference table:

Uy, Au, Ay, A,

n=290 1

3
n=1 4 2

5 . 0
n =2 9 7 2

0

n = 16 2

9
n=4 25

Fig. 4-6

Thus
ug = 1, Aug = 3, A2uy = 2, A%u; = 0, Atuy = 0,

Then the sum of the series is

32 a3 _ 322 —2p3 _
——a(:ln(l-—:)c)-l-1_90-1-(1__90)2 = A0 2 In(1—wx)

4.38. Prove Weddle’s rule [equation (16), page 123).

Put » =6 in Problem 4.9 and neglect differences of order 6 and higher. In doing this we
need the terms involving A5f(a) and A8f(a) which are not given in Problem 4.9 but are presented
in Problem 4.60, We then find

a+6h
f Flx) da

a

6h [f(a) + 3af(a) + %z}%f(a) + 48%/(a)

+ 5k ai(a) + T1a%(a) + mAﬁf(a):l

h|:6f(a) + 18Af(a) + 27A2f(a) + 24A%f(a)
+ 2 + Baviia) + {5a%@ |

Now if we change the coefficient 41/140 to 42/140 = 8/10 the error made is quite small. If we
make this change we obtain the approximation

a+6h
f flx) de

. a

h[Gf(a) + 18Af(a) + 27A2f(a) + 244%/(a)
+ }—2—3-A4f(a) + %% ASf(a) + 13_0 As]c(a)]
% [{f(a) + flo-+2R) + f(a -+ 4R) + fla+ 6R)}

+ 5{f(a -+ k) + f(a + 5R)} + 6f(a+ 3h)]

a+Nh
The result can be extended to evaluate f f(x) dw when N is a multiple of 6 [see Problem 4.91].

a

4.39. (a) Work Problem 4.12 by Weddle’s rule and (b) compare the result with the exact
value and that obtained by Simpson’s one-third rule and Simpson’s three-eighths rule.

(¢) We can use the table of Problem 4.12 since N = 6. Then using Problem 4.38 we have
1
de =z 3(1/6) [(1.00000000 -+ 0.90000000 + 0.69230769 -+ 0. 50000000)

1+ a?
¢ -+ 5(0.97297297 -+ 0.59016393) + 6(0.80000000}]
0.78589961
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(b) The percent error from the exact value [Problem 4.12(b)] is 0.00185%. Although the accuracy
is very good it is not as good as that obtained from Simpson’s ome-third rule but it is better
than that obtained from Simpson’s three-eighths rule.

The following table shows for comparison purposes the percent errors for the various rules.

Rule Percent error
Trapezoidal 0.147%
Simpson’s one-third 0.00028%
Simpson’s three-eighths 0.00293%
Weddle’s 0.00185%

Fig. 4-7

Supplementary Problems

SERIES OF CONSTANTS
440. Sum each of the following series to = terms by using the method of Problem 4.1, page 126.

(@ 1+3+5+T7+ - () 13 + 93 + 33 + 43 + -

(®) 12 + 82 + 52 4+ 72 + ... (f) 1+8¢5 + 35T + 5+7+9 + ««-
(c) 22 + 52+ 8 + 112 + --- (g) 1+2+5 4 236 + 3+4+7 + ---
(d) 24+ 46+ 68+ -+ (h) 3+5°10 + 4+6+12 + BT+14 + ---

441. Sum the series 12 + 22x + 8222 4 4223 + --- .,

442. Can the series of Problem 4.41 be summed to n terms? Explain.

. 22 32 42 52 62
443. Sum the series 1% — 3 + 3 g T3 3

4o,
POWER SERIES
444. Sum the series

(@) ® + 202 + 323 + 4ot + ---

(b) a2 + 222 + 323 + 42t 4 .-

(¢) 1+3 + 8+5m + 5+T22 + 7T+92% + -~

2.5 5-8 , 8-11 11-14

445. Sum the series 5 31 %6 = TN
) 2 2 52 72
446. Sum the series 1_1+g—!+3_!+ﬂ+""
x2A%u, Aty
447, If Ax) = u°~—_2—!‘_+T_v“'
23A3u, 25A5u,
and B(x) = wxAuy — TR + S .

show that
o0 (_1)ku xk
@ 3 s
Ko (2k+1)!
(—1)euya®

(b kéo—(—2§ﬂ— = A(x) cosxz — B(x) sinw

A(z) sinx + B(x) cosa
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4.48.

449.

4.50.

4.51.

333 53y5 T3

Sum the series 1390—W T+_6_!_+“"
2 2,2 243 2,04
Sum the series %,ﬁ 23—9,0 %4—%—{—
Can the power series method of page 121 be used for the finite series
122 2292 323 4244 n2xn
3 P Tttt

Can the sum of the first n terms of the series of Problem 4.48 be found by using the power series
method of page 1217 Explain,

APPROXIMATE INTEGRATION

4.52.

4.53.

4.54.

4.55.

4.56.

4.57.

4.58.

4.59.

4.60.

3
d
Find f T:; by using the extended trapezoidal rule where the interval of integration is subdivided
1

into (@) 6 (b) 10 equal parts. Show that the true value is In3 = 1.09861 approx. and compare
this with the values obtained in (a) and ().

Discuss how you would improve the accuracy in Problem 4.52.
Work Problem 4.52 by using Simpson’s one-third rule and discuss the accuracy.

Show that Simpson’s one-third rule is exact if f(x) is a polynomial of degree 3. What is a geo-
metrical significance of this?

(@) Work Problem 4.52(a) by using Simpson’s three-eighths rule and discuss the accuracy. (b) Can
you work Problem 4.52(b) by Simpson’s rule? Explain.

Derive the extended Simpson’s three-eighths rule.

(2) Explain the difficulty involved in attempting to find the approximate value of
fl de
oV 1—22
without actually evaluating the integral.

(b) Can you resolve the difficulty in part (a)?

(¢) Prove the formula

a+4h 3
f fl@yds = = [14(yo+ya) + 64(y1 +us) + 24y,

a

where y, = f(a+ kh).

(b) Use (a) to obtain an approximate value for

and compare with the exact value.

Show that the next two terms in the series for

fa+nh f0) d

a
given in equation (8), page 122, are
n(2nt — 243 + 10572 — 200n + 144)

5
1440 af(a)
—_ _ 2 —_
L {1208 — 2100t + 142808 6;4)74285; 76720 = 5040) -

and use this to complete the proof in Problem 4.38.
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T/2
461, Find an approximate value of f sin ¢ dx and compare with the exact value.
0

462. Use the following table to find an approximate value for

J;l flz) d=

@ 0 ' 0.2 0.4 0.6 0.8 1.0
() 1.00000 0.81873 0.67032 0.54881 0.44933 0.36788
Fig.4-8

463. Discuss what steps you would use to work Problem 4.62 if the values corresponding to () x=10.4
() =04 and x = 0.8 were not present in the table.

THE EULER-MACLAURIN FORMULA
464. TUse the Euler-Maclaurin formula to find the sums of the series
(@) 12 + 22 4+ 82 + --- + n2
(b) 18 + 23 4 8% + .-+ + «f
(@ 1°2 +2:3 + 8.4+ «+ + nn+1)
(dy 14 + 2¢ + 3¢ + ---

465. Use the Euler-Maclaurin formula to work Problem 3.46, page 108.

1 1 1
= y+tln+o =95+ To0ur

El L

1,1 .1
4.66. Show that 1 +3 +3+ +

where v is Fuler’s constant.

467. TUse Problem 4.66 to obtain an approximate value for 7.

1 .1 1 1 _ =z _1_1 1 1
468. Showthat T+t gt T ETIE T 6 Tn T 2w 6nd 30w
' 1,1 T 1 1
4.69. Show that 1+§+g+"-+2n_1 27+In2+21nn
4.70. Sum the series % + —213 + 3—13 4 +-+ to b decimal place accuracy by using the Euler-Maclaurin

formula.

ERROR TERM IN THE EULER-MACLAURIN FORMULA
4.71. Show that

1
(a) -Z—: f e fVD(a + hu) du
Y

Bght
76!

R (1
FV(a+h) — fV@] + 57 fo $5(W)fVID (a + hu) du

1
®) gf () fVID(a + hu) du
*Yo

Bgh8 1 !
= B omt m) - @) + 4oy | srotravat i
! 1J,

4.72. Obtain the Euler-Maclaurin formula with a remainder for the case where wm = 5.
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4.73.

4.74.

4.75.

4.76.

4.77.

(@) Use mathematical induction to extend the results of Problems 4.71 and 4.72 and thus (b) prove
result (23), page 125.

Prove the result (25), page 125.

(a) Show how to improve the accuracy of the result in Problem 4.32 by taking one more term in
the Euler-Maclaurin formula, (b) Determine the accuracy of the result obtained in part (a).

Prove that if f2»—1(x) does not change sign in the interval from a to o + nh then the remainder R
given in the Euler-Maclaurin formula {24), page 125, has the property that

B, h2m+1n_l

Rl = 1 pgo [f@m™) (@ + hu + hp)]

Work Problem 4.70 by taking into account the error term in the Euler-Maclaurin formula.

STIRLING’S FORMULA FOR =!

4.78. Obtain 10! from Stirling’s formula and compare with the exact value.
. . . . 100
4.79.  Calculate the approximate value of the binomial eocefficient 50 )
4806. Use Stirling’s formula to show that oo 112
VF = lim 2P
n=w (2n)!Vn
and show that the result is equivalent to Wallis’ product.
481, Show that for large values of n -1 /2 1
n Van
482. Generalize the result of Problem 4.35 to obtain
1 1 139
1 = - —_—— = 99 .,
g ZrnnreTn <1 + 157 T 288we T BL8d0ms T >
MISCELLANEOUS PROBLEMS
2 2 2 2
4.83. Sum the series 2+ Dz (2242 + k)
1! 21 3!
481  Sum the seri Lt il L @tent d (b) to infinit
.84, um the series TTaTE T35 s T ETTIL a) to n terms an o infinity.
4.85. Show that
1+ +a2+ o +an = n4 E(J;_l)(w_l) + ll(if%__gl(x_l)z R P |
4.86 Find imat lue f 2——@——
.86. ind an approximate value for L1+ el
4.87. Obtain an approximate value for the integral
w/2
f % cot @ da
0
and compare with the exact value given by —ir In2 = —1.0888... .
488. (o) Use integration by parts and the result of Problem 4.87 to find

T/2
f In sin ¢ d#
0

(8) Explain why numerical methods are not immediately applicable to the integral in (a).
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4.89.

4.90.

491,

4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.98.

4.99.

APPLICATIONS OF THE SUM CALCULUS [CHAP. 4

Obtain equation (5) of Problem 4.19 and thus complete the proof in that problem.
Show that the seventh differences in Weddle’s rule drop out and explain the significance of this.
Derive Weddle’s extended rule.

Show that

I

@ ngo (—Dnfm) = (D1 [1 —A 2 2y ] f(n)

® B (22-1 By(2t—1
o 3 cow =[2G 20+ 28 b

These are sometimes called Euler transfqrmations and are often useful for speeding up the con-
vergence of slowly convergent series.

Show how Problem 4.92 can be used to find an approximate value for the series

(@)

® -3ty -FtgT

and compare with the exact values gi\fen by In2 and »/4 respectively.
Sum the series 12 — 22 + 32 — 42 4 ... + (—1)r—1n2
Sum the series 12 + 2+¢922 - 432 4 8-42 + 1652 + -+ to » terms.

If «s —1,—2,—38,... show that

1 1! + 21 h. = 1
z+ 1 (z+ 1)(x+2) (x + (x+2)(x + 3) %
1 1 _ 1 1
Show that o E T mrae T = ity T E
' 1
where 0 = R = m

Let f(x) have the values yg, Y1, ¥2 at ©=a, a+ h, a +2h respectively.
(¢) Obtain an interpolating polynomial for f(x).
(b) Use the interpolating polynomial in (a) to obtain the approximate result

ath
[ rras = Dot + sfat 1) — flot2m]

a

(¢) Use the interpolating polynomial in (a) to obtain the approximate result

a+4h 4h
f foyde = ipfatm) = flat2h) + 210+ 30)]

/3

(d) Show that the formula in (¢) is exact when f(x) is a polynomial of degree 3 but that the
formula in (b) is not exact in such case.

Use the results of Problem 4.98(b) and (¢) to obtain approximate values of

3 1 1
@€ o fo =@ fo e~® dn
1

and discuss the accuracy.
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4.100.

4.101.

4.102.

4.103.

(a) Show that

w/2
f sin2n o dy
2n - 2n 0

5+7 T @n—12rn+1) fm

L
=D

.|
[SMENS]
COf

.
[N
=)

.
(o}

ginZntly dy
0

(b} By taking the limit as # — = in (a) obtain Wallis’ product formule of Problem 4.34.

w2
f sin2n x dg

[Hint. For (a) see Problem 8.147, page 118, while for (b) first prove that 1 = 0

1A

T/2
1 f sin2n+1 g do
14+ == :] 0
2n

Obtain the Euler-Maclaurin formula in terms of differences instead of derivatives and give an ex-
ample of its use.

n—1
Let Sy (x) = 3 aguk.
k=0

(¢) Show that on using summation by parts

ag — A, x" —1
Sy = —— 4 7 20 (Aay)x*

n
11—« 1—x =

(b) Generalize the result of (a) by showing that after » summations by parts
k
1 P2t/ o \F . e ¥ =1 an 21/ 4
= .. A [ k k
Sn(x) l—wk§0<1—x Aa/0+ 1—2 kgo (A a,k)x 1“$k§0 1—2 Aan
(a) By letting » > « in Problem 4,102(b) show that

1 rgt x " x ‘oo
S®) = lim S,(x) = —— E< > Akgy + <1_ > S (APay)xk

1—2,S\1—x X/ k=0

(b) Discuss the case where p > = in part (¢). Under what conditions will it be true that

k
1 g
S@) = 1— kgo <1 i x) Afag

Compare with Problem 4.4.



Chapter 5

_ Difference Equations

DIFFERENTIAL EQUATIONS

In previous chapters we have examined the remarkable analogies which exist between
the difference and sum calculus and the differential and integral calculus respectively. It
should thus come as no surprise that corresponding to the theory of differential equations
there is a theory of difference equations.

To develop this analogy we recall that a differential equation is a relationship of the

form
dz n :
F<x,y£ly-—y ‘”’) = 0 (1)

’ dx, dxz,v .. .’dx"
between z and the derivatives of an unknown function y = f(x). If we can solve for
dry/dx® in (1) we obtain
dny . dy dn-—ly .
2 = afnnL . (@)

and we call the order % of this highest derivative the order of the differential equation.

A solution of a differential equation is any function which satisfies the equation, ie., re-
duces it to an identity when substituted into the equation. A general solution is one which
involves exactly n arbitrary independent constants. A particular solution is a solution
obtained from the general solution by assigning particular values to these constants.

Example 1.
. d2y
The equation Tt
y = c;e% -+ cpe? + 202+ 82+ 7 [see Problem 5.1] and a particular solution is y = 2¢® —5¢** + 22> + 65 + 7.

- 3%—}— 9y = 4a? is a differential equation of order two. A general solution is

To determine the » arbitrary constants we often prescribe n independent conditions
called boundary conditions for the function y. The problem of determining solutions of the
differential equation subject to these boundary conditions is called a boundary-value prob-
lem involving differential equations. In many cases differential equations arise from
mathematical or physical problems and the boundary conditions arise naturally in the
formulation of such problems.

DEFINITION OF A DIFFERENCE EQUATION
By analogy with differential equations we shall define a difference equation as a rela-

tionship of the form
| Ay A%y AN
F(m, Yy g’ AgE’ ""Ax"> = 0 (3)

150
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Since az=nh [and since by custom or convention (Az)? = k* is written Az® when appear-
ing in the denominator] we see that the difference equation (8) is a relationship connecting
z,Y, Ay, %, ...,A% or equivalently z, f(x), f(x+h), f(x+2h), ..., f(x +nh) since y = f(x).
Thus we can define a difference equation as a relationship of the form

G(z, f(x), f(x +h), f(x+2h), ..., f(x+nk) = 0 (4)

where f(x) =y is the unknown function.

ORDER OF A DIFFERENCE EQUATION

From the analogy with differential equations it might be suspected that we would
define the order of a difference equation as the order of the highest difference present,
ie. n in (3) or (4). However this leads to some difficulties [see Problem 5.5] and so instead
we define the order to be the difference between the largest and smallest arguments for
the function f involved divided by k. Thus in (4) if both f(x) and f(x +nh) appear explicitly
the order is [(x +nh)—x]/h =n. However if f(z} does not appear but f(z + k) and f(z +nh)
both appear then the order is [(z +nh) — (z + h)/h =n—1.

SOLUTION, GENERAL SOLUTION AND PARTICULAR
SOLUTION OF A DIFFERENCE EQUATION

A solution of a difference equation is [as in the case of differential equations| any
function which satisfies the equation. A general solution of a difference equation of order
7 is a solution which involves % arbitrary periodic constants [as on page 82]. A particular
solution is a solution obtained from the general solution by assigning particular periodic
constants.

Example 2.
The equation A%y 3ﬂ+ 2y = 4x®@, which can be written as
Ax? Ax ’

flx+2h) — (Bh+2)f(x+ k) + (2h2+ 3k + 1)f(x) = 4h2x(®
where y = f(»), is a difference equation of order 2. A general solution is given by
¥y = fl®) = e(w)(L+2h)2/t + ey(ax)(1 + R)e/h + 202 + (6 — 2h)x + 7
as can be verified by substitution [see Problem 5.4]. A particular solution is found for example by letting
cy(®) = 2+ 4h sin 2ra/h), co(®) = 5 + k21 — cos (2zx/h)]
both of which have periods A.

To determine the n arbitrary periodic constants of an nth order difference equation
we can prescribe n independent boundary conditions for the unknown function y. The
problem of determining solutions to the difference equation subject to these boundary con-
ditions is called a boundary-value problem involving difference equations. As in the case

of differential equations these may arise from the nature of a mathematical or physical
problem.

DIFFERENTIAL EQUATIONS AS LIMITS OF DIFFERENCE EQUATIONS

It will be noted that the limit of the difference equation of Example 2 as Ax =k ap-
proaches zero is the differential equation of Example 1. Also the limit of the solution of
the difference equation as Ax =k approaches zero is the solution of the differential
equation [see Problems 5.6 and 5.7].
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In general we can express a differential equation as the limit of some corresponding
difference equation.

USE OF THE SUBSCRIPT NOTATION

If the subscript notation is used, the difference equation (4) with e=a+kh, Y=
f(a+kh) can be written as

H(k, Yr, Yx+1, -+ o» Ytn) = 0 %)
If we are given the n values 9o, ¥1,¥2, . . .,Yn-1 then we can determine ¥x for k=n,n+1,....

Example 3.

The difference equation
Flz +8h)y — 5f(x+2h) + 6f(w+h) + 3f(@) = 0

can be written in subscript notation as
Yk+3 — BYk+at B+ T3y = 0
Then given yo=1, ;3 = —2, ¥y =0 we find on putting k=10,1,... thevalues y3=19, ys = b1, ....
The difference equation (5) can also be written in terms of the operator E,ie.
H(k, yx, Eyx, B>y, . . -, E"y) = 0 (6)

Example 4.
The difference equation of Example 3 can be written as

(B3 —5E2+6E +38)y, = 0

LINEAR DIFFERENCE EQUATIONS

An important class of difference equations which arises in practice is a linear differ-
ence equation. A lnear difference equation of order m is a difference equation having the

form ao(k) By + e () E" g + -+ + an(B)ye = R(E) @)
where ao(k) # 0. This equation can also be written as
[ao(K)E™ + ay(R)E" 1 + - -+ + a(k)yx = ER(k) (8)
or simply o(E)ye = E(k) : 9)
where the linear operator ¢(E) is given by
(E) = aok)E* + as(R)E"" + -+ - + an(k) (10)

A particularly important case arises when ao(k), as(k), . . ., ax(k) are all constants [i.e.
independent of k] and in such case we refer to (7), (8) or (9) as a linear difference equation
of order n with constant coefficients.

A difference equation which does not have the form (7), (8) or (9), i.e. which is not linear,
is called a nonlinear difference equation.

Example 5.
The equation of Example 4 is a linear difference equation with constant coefficients.

Example 6.
The equation [(2k + 1)E2— 3kE + 4y = 4k2 — 3k is a linear difference equation with nonconstant [i.e.
variable] coefficients.

Example 7.
The equation YxYr+1 = y2_, is a nonlinear difference equation.
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HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS
If the right side of (8) is replaced by zero we obtain
(WE™ + @ E* 14 oo+ gy = 0 (11)
or o(E)ye = 0 (12)
which is called the homogeneous equation corresponding to (9). It is also called the

reduced equation and equation (9) is called the complete equation or nonhomogeneous
equation.

Example 8.
The difference equation of Example 4 is a homogeneous linear equation.
Example 9.
The homogeneous equation corresponding to the complete equation of Example 6 is
[(2k+ 1)E? — 3kE + 4]y, = 0

It turns out that in order for us to be able to solve the complete equation (9) we first
need to solve the homogeneous or reduced equation (12) [see Theorem 5-3 below].

Since the general theory of linear difference equations is in many ways similar to that
of linear difference equations with constant coefficients we shall consider this simplified
case first.

HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS
WITH CONSTANT COEFFICIENTS

Assume that y. = 7* is a solution of (11) where we suppose that ao, a4, ..., a, are con-
stants. Then on substitution we obtain

ao?«n-i-k + alzrn+k—1 + ... + anrk = 0
or (@or™ + @™t + - Fa)rt = 0
It follows that r* is a solution of (9) if » is a solution of
Qo™ + "1+ s fan = 0 (13)

which is called the auxiliary equation and can be written ‘¢(r) =0. This equation has =
roots which we take to be 7,7, ...,7, which may or may not be different. In such case
(1) can be written in factored form as

ao(E- 7"1)(E— 7). . .(E—Tn)yk =0 (14)

Solutions of (14) depend on the nature of the roots 74, ...,7.. The following cases can
arise.

Case 1. Roots are all real and distinct.

In this case 7%, 75, ...,7% are all solutions of (11). Since constant multiples of these
solutions are also solutions and since sums of solutions are solutions [because ¢(E) is a
linear operator] we have the solution

Yo = €1y + corl + o F cark

Case 2. Some of the roots are complex numbers.
If ao,a1,...,a. are assumed to be real it follows that complex roots if they occur must
be conjugate complex numbers, i.e. if «+ Bi is a root then so also is «— 8i where a and 8
are real. In this case («+ 8¢)* and (a— Bi)* are solutions and so we have the solution
Ki(a+ Bi) + Ko(a — Bi)*
where Ki, K. are constants. To get this in real form we write the complex numbers in

polar form, i.e. L ) .
a+ Bt = p(cosd +isind), a«— i = p(cosd — ¢ sinf)
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so that by De Moivre’s theorem
(a+Bi)* = pH(coskd +isinkd), (a—pY* = p*(cos ko — i sin ko)

Then by choosing appropriate complex constants Ki, K, we find the solution in real form
given by

p*(c1 cos k6 + ¢z sin k9)
Case 3. Some of the roots are equal.
If two roots are equal, say 7»= 1, then we can show that [see for example Problem 5.17)
(e1 + c2k)ry
is a solution. Similarly if three roots are equal, say 7r3=12=17y, then a solution is
(1 + 2k + esle?)r* '

Generalizations to the case where more than three roots are equal follow a similar pattern.

LINEARLY INDEPENDENT SOLUTIONS

A set of n functions f1(k), f2(k), . . ., fa(k) is said to be linearly dependent if we can find
a set of # constants A1, As, . . ., A. not all zero such that we have identically

Arfi(k) + Asfa(k) + -+ - + Aafu(k) = 0

Example 10.

The functions bk, k2, 8k + 2k are linearly dependent since there are constants A4,, 45, A3 not all zero
such that A,(6k)+ Ay(k?) + A(8k% +2k) =0 identically, for example A; = —2, A;=—15, Ag =35,

If a set of functions fi(k), . . ., fa(k) is not linearly dependent then the set is called linearly
independent.

Example 11.

The functions 5k2, 4k + 2, 8k — 5 are linearly independent since if A,(5k%)+ A,k +2)+ A8k —5) =0
identically we must have 4; = A, =A43=0.

The following theorems are important.

Theorem 5-1: The set of functions fi(k), f2(k), .. ., fn(k) is linearly independent if and only
.if the determinant

1(0) 12(0) cor fa(0)
f1 (1) f2(1) cee fa(1) ~ 0 (15)
fim—1) fa(n—-1) ... faln—1)

Otherwise the functions are linearly dependent.
The determinant is sometimes called the Casorati and is analogous to the Wronskian for
differential equations. See Problems 5,11 and 5.12.
Theorem 5-2: If fi(k),f2(k), ..., fo(K) are n linearly independent solutions of the nth
order equation (11) or (12) the general solution is
Yo = eifs(k) + eafa(k) + -+ + eaful(k) (16)
and all other solutions are special cases of it, i.e. are particular solutions.

We sometimes refer to this theorem as the superposition principle.
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Example 12.

The equation (E2—5E + 6)y, = 0 has the auxiliary equation #2—5r-+6 =0 with roots r =2,3 so
that 2%, 3k are solutions which we can show to be linearly independent. Then the general solution is

Y = €2k + ¢, 3%

SOLUTION OF THE NONHOMOGENEOUS OR COMPLETE EQUATION

Now that we know how to solve the homogeneous difference equation we are ready to
solve the complete equation. We shall refer to the general solution of the homogeneous
equation as the complementary function or complementary solution. Also we shall refer to
any solution which satisfies the complete equation as a particular solution. The following
theorem is fundamental.

Theorem 5-3: If Y.(k) is the complementary solution [i.e. the general solution of the
homogeneous equation (12)] and Yy (k) is any particular solution of the com-
plete equation (9), then the general solution

Y = Yc(k) + Yp(k) (17)
and all solutions are special cases of it.

Example 13.

By Example 12 the general solution of (E2—5E + 6)y;, = 0 is ¢,2F + ¢,3% and a particular solution
of (E2—5E +6)y, =8k is 4k -+ 6 as can be verified. Then the general solution of (E2—5E + 6)y,, = 8k
is Y = 012k + 023k’ + 4k 4+ 6.

METHODS OF FINDING PARTICULAR SOLUTIONS

In order to apply Theorem 5-3 we must know how to find particular solutions of the
complete equation. We shall now consider several important methods for obtaining such
solutions which will be found useful.

METHOD OF UNDETERMINED COEFFICIENTS

The method of undetermined coefficients is useful in finding particular solutions of the
complete equation (9) when the right side R(k) consists of terms having certain special
forms. Corresponding to each such term which is present in R(k) we consider a trial
solution containing a number of unknown constant coefficients which are to be determined
by substitution into the difference equation. The trial solutions to be used in each case are
shown in the following table where the letters A, B, Ao, A4y, ... represent the unknown
constant. coefficients to be determined.

Terms in R(k) Trial Solution
Bt Apk
sin ek or cosak A cosak + Bsinak
polynomial P{k) of degree m Ajm + At + --- + Ay,
BP(R) B(Agem + Akmt ok <o+ Ap)
Bk sin ok or B* cosak B*(A cos ak 4 B sin ak)

Fig. 5-1
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The only requirement which must be met to guarantee success of the method is that no
term of the trial solution can appear in the complementary function. If any term of the
trial solution does happen to be in the complementary function then the entire trial
solution corresponding to this term must be multiplied by a positive integer power of &
which is just large enough so that no term of the new trial solution will appear in the
complementary function. The process is illustrated in Problems 5.20-5.22.

SPECIAL OPERATOR METHODS
We have seen that any linear difference equation can be written as

o(Eyy. = R(Kk) (18)
Let us define the operator 1/¢(E) called the inverse of ¢(E) by the relationship
1 _ _
mR(k) = U where §EU = R(k) (29)

We shall assume that U does not have any arbitrary constants and so is the particular
solution of the equation (28). We can show that 1/¢(E) is a linear operator [see Problem
5.24].

The introduction of such inverse operators leads to some special operator methods
which are very useful and easy to apply in case R(k) takes on special forms as indicated
in the following table. In this table P(k) denotes as usual a polynomial of degree .
For illustrations of the methods see Problems 5.23-5.30.

k
1. _¢_(1ET)'ek = ?ﬁ% , ¢(B8) # 0, otherwise use method 4.
2 L sinak or cos ak
© ¢(E) ¢(E)
k —ik ik — g—iak
Write cosak = ﬁ—jzit—; sinek = ﬂ?ﬂ_ and use 1.
1 1
= = cee 3+ b, AM 4 - DP(K
3. i) P(k) = PTG ————— P(k) (by+ b1A+ + bAm+ - )P(K)
where the expansion need be carried out only as far as A™ since
Am+1P(k) = 0.
4, kP(k) = Bk——=— P(k). Then use method 3.
The result also holds for any function F(k) in place of P(k).

Fig.5-2

METHOD OF VARIATION OF PARAMETERS
In this method we first find the complementary solution of the given equatlon

&(E)yr = R (20)

i.e. the general solution of
s(E)ye = 0 (21)

in the form
Y = C1U1 + cottg + - 0+ Calln (22)
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We then replace the arbitrary constants ¢s, ¢, . . . ,€x by functions of k denoted by K, K, . . ., K,
and seek to determine these so that

Y = Ko + Koo + -+ - + Kot (23)
satisfies (20). Since n conditions are needed to find Ky, K, . .., K, and one of these is that
(20) be satisfied there remain n—1 arbitrary conditions which can be imposed. These are
usually chosen so as to simplify as much as possible the expressions for Ays, A2y, ... . The
equations obtained in this way are

@L1AK1 4+ ’MzAKz 4+ - 4 unAKn =0

(Au)AK: + (AuAKz + -+ -+ (Aun)AK, = 0
.............................................. (24)
(A" 2u)AK + (A" 2up)AKy 4 - - - + (A" 2un)AKn = 0
(A" u)AKy + (A" 2ug)AKe + - - - + (A" 'un)AKn = B
which can be solved for AKy, AKs, .. .,AK, and thus Ky, Ko, . . ., K, from which (23) can be
found. For an illustration of the method see Problem 5.31. It should be noted that the

determinant of the coefficients of (24) is equal to the Casorati of the system [see (15)] which
is different from zero if ui, Uz, ..., % of (23) are linearly independent. See Problem 5.104.

METHOD OF REDUCTION OF ORDER

If an nth order equation can be written as

(E—r)E—r)- - (E—ra)yr = Rx (25)
then on letting 2z = (E —173)- - -(E — rn)yx we are led to the first order equation
(B —7)2 = R (26)

which has the solution
k Rk kk_l RD k
e = TIA_1< k+1> = "N 2 pi1 T CiTy (27)
’I"1 p=1 7..1

where ¢; is an arbitrary constant. By continuing in this manner (25) can be solved.

METHOD OF GENERATING FUNCTIONS

The generating function for yx is defined as
Gl = 2wt (28)
k=0

By using this a linear difference equation can be solved. See Problem 5.34.

LINEAR DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS

Up to now we have considered linear difference equations with constant coefficients by
using the fundamental Theorem 5-3, page 155. Since this theorem also applies to linear
difference equations with variable coefficients it can also be used to solve such equations.

Any linear first order equation with variable coefficients can be written as
Yre+1 — Akyk = Ry or (E—Ak)yk = Ry (29)

and can always be solved. The solution is given by
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_ Ry
= PR v R
Yx A1As- - Ag—1A <A1A2' - 'Ak>
k-1 Rp
= A4, - 'Ak—1p§1 m + cAiAs- - A (30)

where ¢ is an arbitrary constant. This solution can be obtained by multiplying both sides
of (29) by the summation factor wx = 1/A1A,---Ax—1 analogous to the integrating factor
for first order differential equations. See Problem 5.35.

Second or higher order linear equations with variable coefficients cannot always be solved
exactly. In such cases special methods are used. Among the most common methods are
the following.

1. Factorization of the operator. In this method we attempt to write the difference equa-
tion as
(E—A)(E—By) - (E~Ur)yx = Bx (81)
by finding Ak, Bx, ..., Ur and then using the method of reduction of order. See Prob-
lems 5.36 and 5.37.

2. Variation of parameters. This can be used when the complementary solution can be
found. See Problem 5.114.

3. Generating functions. See Problem 5.124.

4. Series solutions. In this method we assume a solution in the form of a factorial series

= 3 ok (32)

p=—w

where ¢, =0 for p < 0. See Problem 5.38.

STURM-LIOUVILLE DIFFERENCE EQUATIONS
A Sturm-Liouville difference equation is one which has the form
A(Dr—~18Yxk—1) + (@ + AR}y = 0 (8%)
where 1 =k =N-—1 and where A is independent of k.
We shall associate with (33) the boundary conditions
al,+ ey, = 0, ayly T oy Yyney = 0 (34)
where a,, a,, ay, oy, are given constants.
We seek nontrivial solutions [i.e. solutions which are not identically zero] of the equation
(83) subject to conditions (34). The problem of finding such solutions is called a Sturm-

Liouville boundary-value problem. The equations (33) and conditions (34) are called a
Sturm-Liouwville system.

We can show that in general there will be nontrivial solutions only for certain values
of the parameter A. These values are called characteristic values or eigenvalues. The
solutions corresponding to these are then called characteristic functions or eigenfunctions.
In general there will be a discrete set of eigenvalues and eigenfunctions. If Am and An
are two different eigenvalues we can denote the corresponding eigenfunctions by ¢, , and
b1 respectively.

In case Pr, Gx, 7 are real we can show that the eigenvalues are also real [see Prob-
lem 5.40]. If the eigenfunctions are real we can also show that

N
k21 T bmibur = 0 if m#~n (35)
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In general we can take 7> 0. Then (35) states that the eigenfunctions (V7 ¢} Where
m=1,...,N are mutually orthogonal. The terminology used is an extension to N di-
mensions of the idea of orthogonality in 3 dimensions where two vectors A — A+
Asj+ Ask, B = Bji+ Bsj+ Bsk are orthogonal or perpendicular if

3
AiB1+ AsBs +AsBs = 0 ie. 3 AiBr = 0 (36)
B k=1
The extension to N dimensions is obtained on replacing the upper limit 8 in the sum by
N thus yielding (35).

In case (35) holds we also say that the functions {¢, ,} are orthogonal with respect
to the weight or density .

Given a function F it is often possible to obtain an expansion in a series of eigenfunc-
tions. We find that

N
Fk = mgl cm¢m,k (37)
where the coefficients ¢ are given by
N
k; T F b :
Cn = —xF m=1,...,N (38)
2 Tebh

If we suitably normalize the functions ¢, , so that

N
kzlfrkgbghk =1 (39)

then the coefficients (38) are simplified since the denominator is equal to 1. The results
(85) and (39) can be restated as

l 0 m#n.
= 40
2 b {1 m=n (40)

In such case we say that the set {\/7, ¢, .} is an orthonormal set.

NONLINEAR DIFFERENCE EQUATIONS

An important class of nonlinear difference equations can be solved by applying suitable
transformations which change them into linear difference equations. See Problems 5.43
and 5.44.

SIMULTANEOUS DIFFERENCE EQUATIONS

If two or more difference equations are given with the same number of unknown
functions we can solve such equations simultaneously by using a procedure which elimi-
nates all but one of the unknowns. See for example Problem 5.45.

MIXED DIFFERENCE EQUATIONS

In addition to differences which may occur in equations there may also be derivatives
or integrals. In such case we refer to the equations as differential-difference equations,
integral-difference equations, etc. These equations can sometimes be solved by various
special techniques. See Problems 5.46 and 5.47 for example.
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PARTIAL DIFFERENCE EQUATIONS

Up to now we have been concerned with difference equations involving unknown func-
tions of one variable. These are often called ordinary difference equations in contrast to
difference equations involving unknown functions of two or more variables which are
called partial difference equations.

To consider such equations we must generalize the concepts of difference operators
to functions of two or more variables. To do this we can consider for example a function
f(z,y) and introduce two difference operators A, A» defined so that if h=aAax, l=Ay are
given,

Af(x, y) = fle+h,y)— flx,y), Aof(@, ) = flx,y+1) —f(x,9) (41)

These are called partial difference operators. Similarly we define partial translation oper-
ators E1, Es so that

Eif(x,y) = flx+hy), Efle,y) = fle,y+]) (42)
These are related to partial derivatives considered in elementary calculus. It is clear that
Ei=1+4, E»=1+a; (43)
We can also define powers of E4, Es, Al; Ag.
If we use the subseript notatibn
Zi.m = f(@+ kR, D+ml) (44)
it follows for example that
Eizkeom = Zk+tmy  FoRem = Zk,m+1 (45)
We can now consider partial difference equations such as for example
(B} — 8E\E: + 2E3)zk,m = 0 (46)

which can also be written
Zeio.m — Skt m+1 + 2%, m+2 = 0 (47)

Any function satisfying such an equation is called a solution of the equation.

The general linear partial difference equation in two variables can be written as
o(E1, E)zem = Rim (48)

where ¢(E1, E2) is a polynomial in E, and E» of degree n. A solution of (48) which con-
tains % arbitrary functions is called a general solution. The general solution of (48) with
the right side replaced by zero is called the complementary solution. Any solution which
satisfies the complete equation (48) is called a perticular solution. As in the one variable
case we have the following fundamental theorem.

Theorem 5-4: The general solution of (48) is the sum of its complementary solution and
any particular solution. .

Various methods are available for finding complementary solutions as in the one vari-
able case. See Problem 5.55.

As might be expected from the one variable case it is possible to express partial
differential equations as limits of partial difference equations and to obtain their solutions
in this manner. See Problem 5.56.
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Solved Problems

DIFFERENTIAL EQUATIONS
a*y dy

5.1. Show that the general solution of the differential equation v i 3% + 2y = 442
is y=cie®+ coe®+ 222+ 62+ 7. '

We have Y = ce%+ cpe2% + 222 4+ 6x + 7 1)
-Z—Z = ¢16% + 2¢,62% + 4x + 6 (2)
2
g—xz = ¢,6% + deye?r + 4 (€3]
d2y dy 9 2
Then Tz 3% + 2y = (c16%+ 4cye2® 4+ 4) — 3B(cie® + 2¢4e2T 4- 42 1 6)

+ 2(c,6% + cpe2® + 222 + 62+ 7T)
= 42

Since the given differential equation is of order 2 and the solution has 2 arbitrary constants it is the
general solution,

5.2. Find the particular solution of the differential equation in Problem 5.1 such that
¥(0) =4, y’(0) =-3.

From (1) and (2) of Problem 5.1 we have
y(0) = ¢ +ea+7T = 4 or ¢ +e¢ = —3
¥(O0) = ¢;+26+6 = —3 or ¢ +2 = —9
so that ¢; =8, ¢y = —6.
Then the required particular solution is

Yy = 3% — 6e2x + 222 + 62 + 7

DIFFERENCE EQUATIONS \
A%

53. Show that the difference equation A 32—54—2?/ = 4x® can be written as

f(x +2h) — Bh+2)f(x + k) + k2 +8h+ 1)f(z) = 4k2x® where y= f(z).
Writing Ax = h and y = f(z) the difference equation can be written as
A% (x) _ , Af(w) Ao

2 3= 1 2f(») = )
o fob2) = 2w sh) 2 1@ _ g l:f(w 0 = f(w)] b2 = dx®
Multiplying by %2 and simplifying we obtain 4
flx+2r) — BR+2)f(x+ k) + (2h2+ 3h+ 1)f(x) = 4h2x® 2

5.4. Show that the general solution of the difference equation in Problem 5.3 is given by
y = ey(x)(1 + 2R + ea(x)(1 + )" + 222 + (6 —2h)x + T (1)

where ci(2) and cx(x) have periods equal to k.

We have since ¢, + k) = ¢y(x), exla+ h) = cola),

¥y = eq(@)(d + 2R)=/M + cy(w)(1 + R)/h 4252 + (6 — 2R)x + 7 (2
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% = cl(w) [(1 + 2R)@+1/m — (1 4 2R)e/h] + 2( %)

[(L+ R)G@+m)/h — (1 4 Rye/k]

2[(x + k)2 — #2] + (6 — 2h)[(x+ h) — @]
+ 3

= 2e¢;(x)(1-+2R)*" + ex(x)(1+ R)*/k + 4o + 6

.. A2
Similarly, A’i = de,(w)(1+2h)%/h + colw)(1+ R)E/r + 4
Then
A2y
Y8 oy = [ @+ 2R+ @)L+ R+ 4]

— 8[2¢y(2)(1 + 2h)¥/* + co(x)(1 + R)*/* + 4% + 6]
+ 2[ey(w)A + 2h)=/h + eo(x)(1 + R)=/h + 202 + (6 — 2h)x + 7]
= 4x2 — 4dhax = du(x—h)
= 4@

Since the difference equation (Z) has the difference between the largest and smallest arguments
divided by h equal to '
(x+2h) —

h

it follows that the order is 2. Then since the solution (Z) has two arbitrary independent periodic
constants, it is the general solution.

= 2

A2
55. Show that hz y 5+ 2h + y = 22 is not a second order difference equation.

We can write the equation if y = f(») as

+2h) — 2f(w+ 1) + +h) —
[f(x ) }{gw )+ f@) 2h[f—(”—}7ﬂ] ¥ f@) = 2z®

or fle+2h) = 223

This equation involves only one argument and in fact is equivalent to
flw) = 2(x—2R)®
which is not really a difference equation.

The result shows that we cannot determine the order of a difference equation by simply lookmg
at the largest value of = in Any/Ax™. Because of this we must define the order as given on page 151,

DIFFERENTIAL EQUATIONS AS LIMITS OF DIFFERENCE EQUATIONS
5.6. Show that the limit of the difference equation [see Problem 5.3]
_Ai. —_ — 2)
A 3 + 2y = 4z
as Az or h approaches zero is [see Problem 5.1]
dy _ g3y — 4
T 34, T2y = 4x

This follows at once since

Ay - Py _ sl
Al;r_{lo Kao_—-g +2y] T da? de+2y

and lim 4 = lim4x(x—h) = 42
h=0 h=0
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5.7. Show that the limit as Az or h approaches zero of the solution of the difference
equation in Problem 5.6 is the solution of the differential equation in that problem.

By Problem 5.4 the general solution of the difference equation in Problem 5.6 is, if h = Az,

y = cy(x)(1+ 2R)2/h 4 co(x)( + RY=/b 4 22 + (6 —2R)x + 7T (1)
From the calculus we have
n
lim <1 +l> = ¢ = 2718%8... @)
n=+co n
or, if n = a/h where a is some given constant,
h a/h
lim <1 +—> = e = 2.71828... €3]
h=+0 a

Equivalently (8) can be written

B\ 1k
lim (1 + —> = ¢llc 4
h=0 a
L z/h
or lim (1 + —> = %/ (5)
h=0 a
Using (5) with @ =1/2 we find
lim (1 4+ 2R)z/h = g2 {(6)
h=Q
Using (5) with ¢ =1 we find
lim 1+ hR)=r = e* (t4]
h=Q
Also since ¢q(x + k) = c1(x), col@ + h) = eo(w} it follows that hm ci(x) = ¢y ’}in}) colz) = ¢o
-

where ¢; and ¢, are constants, provided that these limits exist.
Then the limit of the solution (Z) as A~ 0 is
Yy = €162 + cge® + 202+ 62 + 7

which is the general solution of the differential equation of Problem 5.6 [see Problem 5.1].

USE OF THE SUBSCRIPT NOTATION
5.8. Write the difference equation of Problem 5.3 with subscript or k& notation.
We have by the definition of the subscript notation

Y = flx), Yp+s = fl@+h), Ygip = fle+2h)

Also using ¢ = kb,
2@ = gle—h) = kh(kh—h) = h2k(k—1) = k2™

Then the equation
fle+2R) — (38R + 2)f(x + h) + (2R2+ 3k + 1)f(x) = 4o

becomes
Yr+s — (Bh+2ygsq + (@R2+8h+ Dy, = 42D

or using the operator E
E%y, — (3h+2)Eyy, + (k2 + 3h+ 1)y, = 4h2%®

which ean be written
[E2 — (3h+2)E + (2h2 + 3k + D]y, = 4R%kD
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5.9. Write the difference equation
f(x +4h) + 2f(z + 8h) — 4f(x +2h) + 3f(x +h) — 6f(x) = O
in the subscript or & notation.
We use

Y = f(®), Yx+1 = F@+R), Yrss = fle+2R), wyrss = flx+8R), Yr+a = flx +4h)

Then the difference equation is
(E4+2E3—4E2+4-3E—6)y;, = 0

LINEARLY INDEPENDENT FUNCTIONS

5.10. Determine which of the following sets of functions are linearly dependent and which
are linearly independent.

(@) 2%, 2648 (b) 2k, 2%+3, 4k (¢) 2% 4k  (d) 2, k-2, k2. 2K,

(a) Consider A2k + A,2k+3 which can be written as
A2k 4 A,+28-2k = (A, 84,)2% (1)

Sinee we can find 4, and A2'not both zero such that () is zero [as for example A;=—1, 4, =8]
it follows that the functions 2k, 2k+3 are linearly dependent.

(b) Consider A,2k+ A,2k+3 4- A 4k which can be written as
(A, + 8A,)2k + Atk (@)

Then since we can find the 3 constants 44, 45, 43 not all zero such that (2) is zero [for example
Ay, =~1, A; =8, A3 =0] it follows that the functions 2k, 2k+3, 4k are linearly dependent.

In general if a set of functions is linearly dependent it remains linearly dependent when
one or more functions is added to the set.

(¢) Consider 4,2k + A4 where A,, A, are constants. This will be zero if and only if
2k(A1+A22k) =90 oY Al + A22k =0

However this last equation cannot be true for all % unless 4; = A, = 0. Thus it follows that
2% and 4% are linearly independent.

(d) Consider A2F 4 Aok*2F + Agk?«2k where Ay, Ay, Ag are constants. This will be zero if and
only if oA+ A+ Ak = 0 or Ay + Ak + Ak = 0 ’

But this last equation cannot be true for all & unless A; =4, =A3=0. Thus the functions
are linearly independent.

5.11. Work Problem 5.10 by using Theorem 5-1, page 154.

(a) In this case f;(k) = 2%, fo(k) = 2k+3 and the Casorati is given by

20 23 1 8

0
21 24 2 16

Then by Theorem 5-1 the functions 2%, 2k+% are linearly dependent.

(b) In this case fy(k) = 2k, fo(k) = 2k+3, f,(k) = 4% and the Casorati is
' 20 23 40 1 8 1 1 1 1

21 2¢ 41 = 2 16 4 = 8|2 2 4 = 0
22 25 42 4 32 16§ 4 4 16
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where we have taken the factor 8 from elements of the second colummn in the determinant and
noted that since the first two columns are identical the determinant is zero.

Thus by Theorem 5-1 the functions 2%, 2t+3, 4% are linearly dependent.
(¢) In this case f,(k) = 2k, fz(k) = 4% and the Casorati is

20 40
2t 4

1 1
2 4

2

Then by Theorem 5-1 the functions 2%, 4k are linearly independent.

(d) In this case fi(k) =2k, fo(k) =k-2k, f3(k) = k2+2k and the Casorati is

20 Q.20 (2.20 1 0 0 2 9
21 1.21 12.21 = 2 2 2 = 1‘8 16‘ 16
22 2.22 22.22 4 8 16

Thus the functions 2%, k+ 2%, k2+ 2k gre linearly independent.

5.12. Prove Theorem 5-1, page 154.
We prove the theorem for the case of 3 functions. The general case can be proved similarly.
By definition the functions f;(k), fo(k), f3(k) are linearly independent if and only if the eqﬁation
Afi(k) + Asfoll) + Agfs (k) = 0 1)
identically holds only when A; =0, 4, =0, A;=0. Putting £=20,1,2 in (2)

A1f1(0) + Azfz(O) + A3f3(0) =0
Af1 (1) + Axfo(1) + A5f3(1) = 0 2)
Aif1(2) + Anfa(2) + Agf3(2) = 0

Now (2) will have the sole solution A, =0, A, =0, A3 =0 if and only if the determinant
10y F3(0)  F3(0)
f1)  foly fa(1)] # 0 (3)
f1@2)  f2(2)  f3(2)

which is the required result.

HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS
WITH CONSTANT COEFFICIENTS

5.13. (a) Find linearly independent solutions of the difference equation ¥x+2— 6yr+1+
8y =0 and (D) thus write the general solution.
(@) Let y, =% in the difference equation. Then it becomes
rkt2 — 6rk+1 4 87k = 0 or rE(2—6r+8) = 0

Dividing by 7* [assuming r 0 which otherwise leads to the trivial solution y; =0] we obtain
the auxiliary equation

r2—6r+8 = 0 ie. (r—2r—4) =0 or r=24
Thus two solutionsg are 2¢ and 4*%. By Problem 5.11(c) these are linearly independent solutions.
Note that the difference equation can be written as
(F2—6E+8y, = ¢

and that the auxiliary equation can immediately be written down from this on formally replac-
ing E by r in the operator E2 — 6E 4 8 and setting the result equal to zero.
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5.14.

5.15.
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(b) Using Theorem 5-2, page 154, i.e. the superposition principle, the general solution is
Y = 6,28 4 cy4k

where ¢; and ¢, are arbitrary constants.

(@) Find that particular solution of ¥r+2—6yr+1+8yxr =0 such that yo=3, ¥ =2.
(b) Find ys.

(a) From Problem 5,13 the general solution of the difference equation is
Yr = €12k + epdk
Then from y, =3, ¥; = 2 we have on putting # =0 and %k =1 respectively
3 =c¢ te, 2 = 2¢ +4dey
from which ¢; =5, ¢, = —2.
Thus the required particular solution is
Yp = 52t — 2.4k
(b) Letting k=5 we find
ys = 5:25—2.45 = 5(32) — 2(1024) = —1888

The value of y5 can also be found directly from the difference equation [see Problem 5.84]. '

Solve the difference equation Yr+2—2¥k+1+56yx =0,
The difference equation can be written
(B2—2E+5)y, = 0
and the auxiliary equation obtained by letting w, = r* in this equation is
P2—2r+5 =0

from which

o= 2EVE-20 2% 4 g .oy

2 - 2

It follows that solutions are (1 -+ 2i)* and (1 — 29)* which can be shown to be linearly independent
[see Problem 5.74]. Since in polar form

el 2,
1+21_‘/_<\/g+\/g
o

where cos g =

= 1b(cose +ising) = /5 eio

VB (cosg —ising) = VEe—i

, sing = 2 (1)

Vs

alﬁf ~

—

it follows that the two linearly independent solutions are

(VB et = (/b )kekio

(\/g e—it)k — (V5 ke K0 = BHk/2g—kid = Bk/2(cos ko — 1 sin ke)

5k/2¢ki6 = Bk/2(cos kvo + i sin kg)-

Then the general solution can be written as
%, = bF/2(cq cos ke + ¢y sin ke) (2)
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5.16.

5.17.

5.18.

Find the particular solution of the difference equation of Problem 5.15 satisfying
the conditions % =0, y:1=1.

Since y, =0, ¥; =1 we have on putting k=0, k =1 respectively in the general solution (2)
of Problem 5.15

0 = ¢, 1 = 512(c;cos6 + c3sing)
. : 1
from which ¢ =0, ¢ = —
V5 sin e
/2
Thus v = 52 ke = pok-ns2Sinke ke
VB sine sin 8

Note that ¢ can be found from () of Problem 5.15. .

(a) Solve the difference equation ¥x+2—4Yr+1 +4yx =0 and (b) find the solution
such that yo=1, y1=3.

" (a) The difference equation can be written as (BE2—4E + 4)y, = 0 and the auxiliary equation is

P2—4dr+4=0 or r—2)2=0 so that »=2,2, ie. 2 is a repeated root.

It follows that y, = 7t =2t is a solution. However we need another solution which is
linearly independent. To find it let %, = 2kv, in the given difference equation. Then it"

becomes
V49— 2”k+1 +’Uk =0 or szk =0

Thus v,= ¢; + ek and y = 2F(cy+egk)
which gives the required general solution.
(b) Putting k=0 and k=1 we find
1 = Cis 3 = 2(cl+ 02)

Thus ¢; =1, ¢, = 1/2, and the required solution is

v = 2k<1 +—’23> = (k+2)2k1

(a) Solve the difference equation ¥k+s+Yr+2— Ye+1— Yk = 0 and (b) find the solu-
tion which satisfies the conditions %o =2, y1= —1, y==3.
(a) The difference equation can be written ag (B® + E2—FE — 1)y, = 0 and the auxiliary equation is
P»+r2—r—1 =20
This can be written as
r2r+1)—=(@r+1) =0, (@E+1)e?-1) =0, or r+Dr+Dr—1) =
| so that the roots are r = —1,—1,1.

Corresponding to the two repeated roots —1, —1 we have the solution ¢(—1)% + ex(—1)k =
(—1)%(e; + eok). Corresponding to the root 1 we have the solution e3(1)k = ¢3. Then by the
principle of superposition the general solution is

= (—1)k(e; + egk) + €5
(b) Putting k = 0,1,2 respectively we find
2:01+03, _1:_01"_02"'03, 3:cl+202+03

from which ¢; = %, cg =14, c3=§. Thus the required solution is

_lk
o= o+ (—43—(2k+5)
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5.19. Find the general solution corresponding to a linear homogeneous difference equation

if the roots of the corresponding auxiliary equation are given by 3, —li \/—§i, —3,
3, —2, -3, 8, 4. 22

Corresponding to the repeated roots 3, 3,3 we have the solution 3%(¢c; + ¢,k + ¢3k2).

Corresponding to the complex roots —-% =+ —\gél [which have polar form cosé * isiné where
1 .
cos g = —3 sing = ? or 6 = 120° = 27/3 radians] we have the solution
cycoské + cxsinkse = ¢, cosz—gk + c5 singg—k

Corresponding to the repeated roots —3, —8 we have the solution (—8}(¢g + ¢7k).
Corresponding to the single root —2 we have the solution cg(—2)k.
Corresponding to the single root 4 we have the solution cgd¥.

Then the required general solution is by the prineciple of superposition given by

¥, = 8k(leg+ ek -+ egk?) + ¢y cosgg—k + 5 sin gg—k + (—8)r(eg + ek) + cg(—2)k + cqdk
METHOD OF UNDETERMINED COEFFICIENTS
5.20. Solve Yr+2— 6Yx+1+ 8y = 3k 42~ 5-3F,

The general solution of the homogeneous equation [also called complementary or reduced
equation) is by Problem 5.13
Y = € 2F + exdk )

Corresponding to the polynomial 3k2- 2 on the right hand side of the difference equation we

assume as trial solution
Ak? + Agk + Ag @

since none of these terms occur in the complementary solution (1)

Corresponding to the term —5 ¢ 3% on the right hand side of the difference equation we assume
the trial solution
. A,3F 1€)]

Thus corresponding to the right hand side we assume the trial solution [or particular solution]

v = A2+ Aok + Ag + A8

Substituting in the given difference equation we find
Yrio — 6Up+1 + 8y = Ayb+2)2+ Ayl +2) + Ay + A30H2
— 6[A(k+1)2 4+ Ayl +1) + Ay + A 30T
+ 8[A k2 + Agk + Az + A,3F]

= 34,52+ (38A,—8A )k + 34, — 44, — 24, — A 3"

Since this must equal the right hand side of the given difference equation we have
3Ak2+ (34, —8A )k + 34, — 44, — 24, — A3k = 3KE+ 25 3k
Equating coefficients of like terms we have
34, = 3, 34,—84, = 0, 34,—44,—24;, =2, A4 =5
Thus A, =1, A, = 8/3, A; = 44/9, Ay =5
and the particular solution is 8 "
ke o+ gk + 5 5e3E

Adding this to the complementary solution (1) we find

Yo — 012k+024k+k2+ §k+é‘t9—4+5'3k
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521. Solve Yr+2— 4Yk+1+ 4y = 328+ 5-4%,
The complementary solution is by Problem 5.17
012" + C2k'2k (1)

Corresponding to the term 8+ 2F on the right side of the given difference equation we would
normally assume the trial solution A;2k. This term however is in the complementary solution (1)
so that we multiply by % to obtain the trial solution 4,k 2% But this also is in the complementary
solution (7). Then we multiply by % again to obtain the trial solution A.k2-2k. Since this is not
in the complementary solution (1) it is the appropriate trial solution to use.

Corresponding to the term 5+ 4% we can assume the trial solution A,4* since this is not in the
complementary solution (7).

The trial solution or particular solution is thus given by
Vi = A1k2 . 2k + A24k
Substituting this into the given difference equation we find
Yk+e = Wt T 4y = A+ 2)2+2k+2 4 A 4k+2
— 4[A (k+1)2 2641 + A, dk+1]
+ 4[A k2« 2k + A4k
= BA2k + 44,4k
Thus we must have 8A 2k 4 4A,4F = 32k + b4k
from which A, = 3, A, = %
Then the required solution is
Yp = €128 + cgke 2k + BR2.2k 4 Se4k 2)

or Y = €28 + egl+ 2k 4 3k22k73 4 Bkl 6))

5.22. Solve Yi+3— Byr+2+ SYr+1— Y = 24(k+2)'
The complementary equation is
(B3—3E2+3E—1)y, = 0 or (E—1¥y, = 0
and the complementary solution is thus
Y = ©1 t+ cok + cgh?

Corresponding to the term 24k + 48 on the right of the given equation we would normally use
the trial solution A,k + A,. Since these terms occur in the complementary solution we multiply by
a power of k& which is just sufficient to insure that none of these terms will appear. This is k3 so
that the trial solution is u; = A k*+ Ak3. Substituting this into the given difference equation

we find 244k + 864, + 64, = 24k + 48

so that A; =1, Ay, =2. Thus the required solution is
Yy = ¢ + cok + egh? + k* + 2K3

SPECIAL OPERATOR METHODS
5.23. Let ¢(E) =aE*+mE" 1+ .- +an (a) Prove that ¢(E)8* = ¢(B)B*. (b) Prove that
. 1 koo,
a particular solution of the equation ¢(E)yx=p* is given by T’Bk = —— if
4(8) 0 sB" T 4B

(a) We have
Elgk — ﬁk+1 = B'Bk: EZ,B"’ = ’3k+2 — :32°.3k, cees E",Gk — Bk+n — ﬁn’ﬂk
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5.24.

5.25.

DIFFERENCE EQUATIONS

Thus

¢(E)‘3k (aOE'n + aiEn—l 4 e an)ﬁk
= (apB*+ a1+ -+ - +a,)fE = (B)BE

(b) Since ¢(E)B* = ¢(B)Bk from part (a) it follows that

k
S T dm i ee o
Prove that 1/¢(F) is a linear operator.
Let 1 1
,le(k)= Uy, FE—)Rz(k) =0,

Then by definition if B,{(k) and R,(k) are any functions
$EYU, = Byk), #EYU, = Ryk)
and since ¢(F) is a linear operator it follows that

#(E) [Uy+ Uy] = BEy(k) + Ry(k)

so that 1
m [Rl(k) + Rz(k)] == Ul + U2
or using (1) 1
Sy B0 T B = Balk) + i Ralh)

Also if « is any constant and R(k) is any function let

_L

+(B) aR(E) = U

Then
#(EYU = aR(k)

Dividing by a # 0 we have since ¢(¥) is a linear operator

s = E®

or 1 U
) E(k)
From (2) and (3) we have 1 1
@-)‘ aR (k) = a ¢—(ET) R(k)

The results (2) and (5) prove that 1/4(E) is a linear operator.

Solve the difference equation #u+z—2Yx+1+5yx =28k —4-Tk

[CHAP. 5

(1)

(@

(8

*

®)

The equation can be written as (E%—2E + 5y, = 23k — 4«7k, By Problems 523 and 5.24

a particular solution is given by

_—1_— 2k — « Tk e -____..1—-— k — . 1
ep g2 4™ = 2 g epysd 4
- .-—-—_——'-"—1 k—- ..————-—————-—1
= 2'm e ¥5°0 Y TN +6
_ 1, 51
T4 8 10 7

Ez—-2E+ 5

7k

7k

Since the complementary solution is as given in equation (2) of Problem 5.15 the required general

golution is
yp = Bk/2(c; cosko + cysinke) + 18 — 5 Tk

where ¢ is determined from equation (Z) of Problem 5.15.
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5.26.

5.27.

5.28.

5.29.

Let ¢(E)=aE"+aE* '+ --- +a, Prove that
$(E)[BF(k)] = B*¢(BE)F (k)

We have
EBkF(ky = Br*iF(k+1) = B*[BEF(k)]
E2BkF(k) = Br+2F(k+2) = B*[B2E2F (k)]
ErgrF(k) = Br+nF(k+n) = BE[BrErF (k)]
Then
HENRF ()] = (apB™+a Bl - -- +a)[BEF(K)]
= gkay(BE)"+ ay(BE~1+ --- +q,|F(k)
= pky(BE)F (k)
Prove that —— gEF(k) = B*—nr F(R).
(B ) ¢(ﬁE)
Let G(k) = o ﬂE) ———F(k) sothat ¢(BE)G(k) = F(k). Then by Problem 5.26
H(E)[BrG(k)] = Brs(BE) G(k) = B¥F(k)
Thus
¢(E) —— B*F(k) = pBrG(k) = p* ¢(BE) F(k)
Find -yt 2%
E2—4F +47°

The method of Problem 5.23 fails since if ¢(F) = E2 —4E + 4 then ¢(2) = 0. However we can
use the method of Problem 5.27 with F(k) =1, B =2 to obtain

1., P 1 1 1

o2 = Fan® = ¥*mgraem 4V T FmosmraW
1 ok ‘
= k = - = Z_A—1[A-1 = —1%(1)
* T —sarmyra® = ¥ 3 FATT) = 1Ak
_ 2R E®  _ J(k—1)2t
- 4 2 7 8
Find b (3K2+2).
E?—6E + 8
We use the method in entry 3 of the table on page 156. Putting £ =1+ A we have
1 o — 1 2
EoeETs®Ftd = GraE—eaTay F8Cr 2
_ 1 2
T 8 -—4a+ A2 (8% +2)
=1 1 e
= ST Ga— (8k2 + 2)

= 1[1+ (48— 182) + (A — 3422 + - -](Bk2+2)
= L[1+4A+13A24 ---](3k2+2)
= 1[8k24+2] + SA[BR® + 3k + 2] + 12A2[3Kk® + 3k + 2]
= 3[3k2+2] + 4[6kD +3] + 13[6]

4A
9
4
9 27
= kK + gk + 4t
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5.30. Work Problem 5.21 by operator methods.

The equation can be written (E?—4E +4)y, = 3+2*+ 5+4%. Then by Problem 523 and
5.28 a particular solution is given by

1 . 1 1
—_— e 2k 4 5o 4k — [ S— > } 3 4 ¢ —_—
E2—4E+4(3 2 545 3 E2—4E+4(2) 5 E2—4E+4(4k)
5
- B — k — k
Bk — )2 + ooy 4

= $k(k—1)2c + 5 -4k
Since the complementary solution is C;2% + Cyk 2k the general solution is
e = Cy2F 4+ Colee 2% 4 Blk(k—1)2k + 5 o4k

This can be written
Y = Ci128 + (Co—$k- 2% + %1922’c + &4k

and is the same as that obtained in equation (2) or (3) of Problem 5.21 if we take ¢, = C,,
02 = 02 - %.

METHOD OF VARIATION OF PARAMETERS
5.31. Solve Yk+2—b5yYr+1+ 6yx =k® by the method of variation of parameters.

The complementary solution, i.e. the general solution of yr42—5Yx+1 + 6y =0, is ¢,2k 1+ ¢o3k,
Then according to the method of variation of parameters we assume that the general solution of
the complete difference equation is

¥ = K2k + K3k )

where K, and K, are functions of k to be determined.

Now
Ay = K 2% + Kp2+8F + 2F+IAK, + ge+1AK, (2)

Since two conditions are needed to determine K; and K, one of which is that (1) satisfy the given
difference equation, we are free to impose one arbitrary condition. We shall choose this condition
to be that the sum of the last two terms in (2) is identically zero, i.e.

2k+IAK, + 8kHIAK, = 0 3)
so that (2) becomes
Ay, = K2k + K,2°+38F 4
From (4) we find
Ay, = K2k + Kpd+3k 4 2FHIAK, + 2« 3kt1AK, %)

Now the given equation can be written as ‘
(B2 —5E + 6)y, = k2 (6)

or since E=1-+A
A2—3A+2)y, = k2 (”)

Using (1), (4) and (5) in (7) we find after simplifying
kHIAK, + 2+8k+IAK, = k2 (8)

We must thus determine K; and K, from the equations (3} and (8), i.e.
2k+1AK, + 3kTIAK, = 0 }

Q)
ok +1AK, + 2+3k+1aK, = k2

Note that these equations could actually be written down directly by using equations (24) on page 157.
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From (9) we find

0 gk+1 9k+1 @
AK. = k2 2-3k+1 —J2 AK gk+1 2 12
: T e gErT 2 T T e ghFi
9k+l Qe 3k+1 2k+1  9.8k+1
Then ‘

— —y [ _K? - K2
Ky = —a 1<2k+1)’ Ky, = A 1<3k+1>

These can be obtained by using the methods of Chapter 4 or the operator method of Problem 5.27.
Using the latter we have, omitting the arbitrary additive constant,

_ 1/ e\ _ 1 K2
K, = —Z<2k+1> - _E—1(‘5‘)k<?>
P IE—1\2

1
E—2

(k?)

= GFE0)

= QA+ A+ A2+ ) (ED 4 kD)
= (PRED + D + 26D + 14 2)
= (L)k(k% + 2k + 3)

Thus taking into account an arbitrary constant ¢y,

K, = —21?(k2+2k+3) + e

Similarly we find 1
K, = —-2.3k(k2+k+1) + ¢

Then using these in (Z) we find the required solution

Y = €,2F + ek + 4k + 3k + §

METHOD OF REDUCTION OF ORDER
5.32. Solve yr+1— 7yx = Rx where » is a constant.
Method 1, using variation of parameters.

The complementary or homogeneous equation corresponding to the given equation is

Yer1— T¥x = 0 (1)
From this we find
Y = TYe—1 Ye—1 — TYr—2 ceey Yo = TY, Y1 T TYo
so that the solution of (1) is
¥ = ™Yo or yx = CEr*

where we take ¢, = y, as the arbitrary constant.
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We now replace ¢y by a function of % denoted by K(k), i.e.
e = Kk)r* (2)

and seek to determine K(k) so that the given equation is satisfied. Substitution of {2) in the given
equation yields
K(k+ 1)rkt1 — K(kyrk+1 = R,

or dividing by rk+1, R,
K(k+1) — K() = AK = 53
, R,
Thus K .:—_ A1 (W)

and so from (2)

R, k-1 R

KA — P

Yy = rka-l <_7-k+1> = 7k pglrpﬂ + erk
Method 2, multiplying by a suitable summation factor.

Multiplying the given equation by 1/rk+1 it can be written as

Yer:1  Yr _ Ry e\ _ By
¥ T gk T gkl OT ANTE /) T keI
Y E,
—_— = —-1f —
Thus ' ol A <¢k+l>
Rk k-1 R
or = pkpa-1{ -2} = 4k i k
Yx LAC N ™ Do toer
p=1

where ¢ is an arbitrary constant. The factor 1/7%+1 used is called a summation factor.

5.33. Solve Yk+z2— BYr+1+ 6yx = k2 by the method of reduction of order.
Write the equation as (E — 3)(E — 2)y, = k2. Letting z, = (B —2)y; we have

(E—8)z, = k?
Then by Problem 5.32 the solution is
k2
Ry = 3kA_1 <-3k_+1-> + cl3k = cl3k - —%‘(k2 +k+ 1)
Thus . (E -2y, = 13k — (k2 +Ek+1)

Applying the method of Problem 5.32 again the solution is

k— 1(k2
oAt <cl3 1k +k+1)> b oeg2k

Y gk+1
= %kz -+ %k + % + ey2F + 33k

We can use the method to find particular solutions by omitting the arbitrary constants.

METHOD OF GENERATING FUNCTIONS
5.34. Solve the difference equation

Yr+2 — Y1+ 2Yc = 0 if =2, y1=3
by the method of generating functions.
Let G(t) = % yett. Multiplying the given difference equation by t* and summing from
k=0

k=0 to « we have

w
Y8

S Ysott — 3 Yirtt + 2 2 ytt = 0
k=0 k=0
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i.e. : :
(Yot yst +ygd2+ -+ ) — 3(y;+yot +yst2+ --+) + 2oyt tyi2+---) = 0

This can be written in terms of the generating function G(f) as

G — v _
(t) tyzo nt 3<G(t)t y°>'+ 26G(t) = o @

Putting y, =2, y; = 8 in (Z) and solving for G(t) we obtain

_ 2-3 2 — 3t
GO = T-maee T Goniom

Writing this in terms of partial fractions we find

1 1 2 2 =
G(¢t = — = tk 280k = 1 4 2k)¢k
& 1‘t+1“‘2t kgo +k§0() kgo( )
Thus S outt o= S (14 2Hi
k=0 k=0 = .
and so Y = 142k 2)

which can be verified as the required solution.

LINEAR DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS

5.35. Solve the first order linear difference equation with variable coeflicients given by
Ye+1— Aryr = Bx or (E— Ax)yx = Rx.

Method 1, using variation of parameters.
The complementary or homogeneous equation corresponding to the given equation is
Ye+1 — Ay = 0 0

From this we have
Yo = Ap_1¥Yp—1, Yp—1 = Ap o9, ..., Yg = Ay

so that the solution of (1) is .
Y = Ap 1dp s A

or Y = A Ay "‘Ak—l
' where we take ¢; = y; as the arbitrary constant.
We now replace ¢; by a function of k denoted by K(k), i.e.
Y = KRAAg - A, (2)

and seek to determine K(k) so that the given equation is satisfied. Substitution of (2) in the given
equation yields
K(k+1)A1Ay -4y — Ay K(R)A1 Ay - Ay = By

or dividing by A4;4,---4;

Thus K = A A4, A,
and so from (7) we find the required solution
By
yp = Ajdy A ATt A, A, A

= AA, A 2——-R” + A Ay, A
= 147 k-1 2 T2 k~1

where ¢ is an arbitrary constant.
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5.36.

5.37.
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Method 2, multiplying by a suitable summation factor.

Multiplying the given equation by 1/A;A,- -+ Ay it can be written

Yr+1 _ Yi _ By
A1A2"'Ak AAy Ay - AjAy- Ay
Y R,

or Al 4—F— = —_—
(AlAz‘ ) 'Ak—1> AAye Ay

Th = A Ay A A 1< By >
en y el e _ —_ _—

k 1412 k—1 A1A2' . 'Ak

R
or Y = A1A2 Ak 1 E ‘““‘T— + CA1A2‘ ..Ak—l
p=1 1 2 p

We call 1/4,4, -4, used to multiply the given equation the summation factor.

Show that the equation ¥x+2— (k+2)yx+1+kyx =k can be written in the factored
form (F — Aw)(E — Bi)ye = k.

The given equation is in operator form
(B2 — (k+2)E + kly, = k @)
Let us try to determine Ay and By, so that (7) is the same as
EBE—ANE—By = k (2)
Now the left side of (2) can be written as
(BE—A)Wrs1—Bit) = Yriz— Brs1¥i+1 — AxlWr+1— Billi)
= Ypso— A+ Bri V11 T ArBili
Comparing with the left side of the given equation (Z) we have
A, + By, = k+2, AB, =k (€3]

From the second equation of () we are led to try either A.=k B,=1 or A, =1, By=kF
Since the second set, ie. A, =1, B, =k, satisfies the first equation of (3) the given equation can

be written as E—-—VE—-ky =k

Solve yk+2—(k+2)yk+1+kyk E, y1=0, y2=1.

By Problem 5.36 the equation can be written as

(E—1)E—-ky, = k (1)
Let z, = (B —k)y;. Then (I) becomes
(E—1)z = k @
which has the solution £
5 = AT = AT = 5 + ¢4
(2
Then (E—ky, = 5 +e = Fk—1) + ¢

By Problem 5.35 this has the solution
k(e —1) + ¢, Lk(e—1) + ¢4
= oD e s —_ - 2 7 - s —_— 1A—1 2"~ -
y, = 1-2 (k— 1A 1<1'2-----k (k—1)1A W

kel /ip(p—1) +
or w = =113 <-2-p—(p—?!)——ﬁ> + oyl — 1)1

k—1
_ (k- 1)' 2 p(p D 4 ook 21,1—! + eyl —1)! 3)

p=1
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5.38.

From y; =0, yo=1 and the difference equation we find, if k=1, Y3—3y;+y; =1 so that
Yy3=4, If weput k=2 and k=3 in (8), we find using 0! =1

Cl+02=1, 1+301+202:4
from which ¢; =1, ¢; = 0. Thus the required solution is

o = (k—l)'zp(p 1)+(k 1)1 é%

This can be written for k£ > 8 as

_ (k=1 1.1 .. 1 1
e = 5| 1+ltgtgyt +(k H7 | T k-1 1+2,+ + ot T
Solve (k+1)yr+e— Bk +2)yx+1+ 2k—1)yx = 0
The equation can be written as
(k+ 1A%y, — kAyy, — 2y, = 0 )
Assume a solution of the form w
Y = E cpk(p) (2)
p=—c
where we take
¢, = 0 for p=-1,-2,-3,... )
From (2) we obtain
Ay, = > pe k@1 4)
p=—ow
My, = 3 plp— Dokt (%)
p=—o
Substituting (2), (4) and (5) into (1), it becomes
S plp — Ve kk®=2 + I plp— e k=2 — I pe kD — F2e,k® = 0 (6)

where we have omitted the limits of summation. On using the result
kltmd) = Eim+1) 4 gpkim)
(6) can be written
S p(p = 1)ey[k®=1 + (p— k@] + Z p(p—1)ek®—2
-3 pcp[k(p) + (p — Dktr~1] — S 2e,k® = 0
This in turn becomes on collecting coefficients of k>

Sip+2)@+ 12— @+2e}k® = 0 )

Since (7) is an identity each coefficient must be zero, i.e.

P+2)p+1)2cpes— P+ 2)c, = 0 (8
Using (3) it follows that we must have p =0,1,2,... so that (8) becomes on dividing by p+2+#0
(p + 1)20p+2 —Cp = 0 (9)

Putting p=10,1,2,... in (9) we find

1202 — €y = 0, 2263 — ¢ = 0, 3204 — Cp = O, 4205 — €3 = 0,
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Then
€y €1 _ G € _ ¢ &y

=1 ST 4T mTTE BT p T mes

and so the required solution (2) becomes

_ k(2 kD k(8
Yo — c°|:1 +? +12.32+ 12.32.52+ "':l

W kD A6
Tk +22.42+22.42.62+

STURM-LIOUVILLE DIFFERENCE EQUATIONS

5.39. Prove that the eigenfunctions ¢, ,, ¢,, belonging to two different eigenvalues A ,
A, satisfy the orthogonality condition

N
2 ’rk‘ibm,k(i’n,k = O
k=1

Since Ap, ¢m,x and Ay, ¢, are the corresponding eigenvalues and eigenfunctions they must by
their definition satisfy the equations

A(pk—1A¢m,k—1) + (Qk+ )\mrk)¢m,k =0 (1)

A(pr—18¢nk—-1) + (@t MTWbnx = 0 (2
for k=1,...,N.

If we multiply these equations by ¢, ; and ¢, respectively and then subtract we find
= M)k = PmkA[Pe—18¢n,k—1] — ¢n,kAlPr—188m, k1] *

Summing from k =1 to N then yields

N N N
()\m—'}\n) kzl Tebm, kPn ke — k§1 ¢m,kA[pk—1A¢n,k—1] - kgl ¢n,kA[pk—1A¢m,k—1]

Using summation by parts this can be written

N N+1
(O — 2n) k§1 Thbmk Pk = Pi—1lPmkAnk—1" P, Db, k—1]

= pyltmN+188nN = $n,N+188m,N]

— Polbm, 18¢n,0 = Bn,188m,0]

1l

PN[m, NOnN+1 — Pn,NPm,N+1]
_ — Do[ém,08n,1 ~ Pn.0,%m,1] 4
From the boundary eonditions (34), page 158, which must be satisfied by ¢m,x and ¢, ; we have
om0 + @1Pm1 = 0,  oxdmn t av+18my+r = 0
agdn,0 + @18n,1 = 0, andan T ent1¢nn+1 = 0
By eliminating ag, ay, ey, ay+; from these equations we see that they are equivalent to
S 0Pn1 — P 0Pmi1 = 0y Pm NOnN+1T SnNPm,N+1 = O
Using these in (4) we thus have

N
()\m»_ >‘n) kgl T Pm,k Pk — 0
and if A, ¥ A, we must have as required

N
kgl Ty Pm, kPu k. T 0 (5)
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5.40.

5.41.

Prove that if px, gk, 7% in equation (33), page 158, are real then any eigenvalues of
the Sturm-Liouville system must also be real.

Suppose that \,, is an eigenvalue which may be complex and that ém,x is the corresponding
eigenfunction which may be complex. Then by definition,

Ay 1Apm k—1) + (g + Ak} bmpe = O )]
Taking the complex conjugate of this equation [denoted by a bar over the letter] we have

APk—18¢m,k~1) + (@ + Xy Emie = 0 €9)
using the fact that p;_.q, ¢, 7 are real. -

By proceeding as in Problem 5.39 multiplying the first equation ém. ks the second equation by
#m, and then subtracting, we find [compare equation (3) of Problem 5.39]

N
(}‘m—T\m) kgl rk¢m,k$m,k = 0
. N
or (Am - )\m) k§1 Tk |¢m,k[2 = 0 (3)

Since 7 > 0, the sum in (3) cannot be zero and so we must have A, —X, =0 or Ay, = A, ie.
Am 18 real.

N

Let Fv = 3 ¢,é,, Where ¢, are the eigenfunctions of the Sturm-Liouville
m=1

system on page 158 assumed to be real.

(a) Show that formally N
kg ’rk:Fk(i’m,k

1
¢, = - m=1,...,N
2 Tibh
k=1
(b) What limitations if any are there in the expansion obtained in part (a)?
. ‘
(@) If Fr = 3 Cmémx
m=1
then multiplying both sides by 7¢,,; and summing from k¥ =1 to N we have
N N N
2 kFronre = 3 3 enTidmk®nk
k=1 k=1 m=1
N N
= E cm{ E rk¢m,k¢n,k}
m=1 k=1
. ,

—_— 2
= Oy 2 Tedn.k
k=1

where we have used the fact that

N
k§1 'rk?sm,k‘ﬁn,k =0 m = n

by Problem 5.39. We thus have N

S e Fidnr
K
6, = —————

=1

N

p T bE i
k=1

which is the same as the required result on replacing n by m.
For the case where the eigenfunctions may be complex see Problem 5.129.
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(b) In order to understand the limitations for the expansion in (@) it is useful to use the analogy
of vectors in 3 dimensions as indicated on page 159. In 3 dimensions i, j, k represent unit
vectors. If we wish to expand an arbitrary 3-dimensional vector in terms of i, §, k we seek
constants Ay, 4,, Az such that

We find AI = A’i, A2 = A‘j, A3 = A*k
as the solution of this problem.

Now if the only vectors given to us were i and j [with k not present] it would not be
possible to expand the general 3-dimensional vector A in terms of i and j, i.e. we could not have

A= A1i+A2j

We say in such case that the set of unit vectors i and j are not a complete set since we have
in fact omitted k.

In an analogous manner it is necessary for us to have a complete set of eigenfunctions
in order to be able to write the expansion in (a).

5.42. Ilustrate the results of Problems 5.39-5.41 by considering the Sturm-Liouville system
A—i+ Mg = 0, Yo =0, yx+1 =10
The system is a special case of equations (83) and (34) on page 158 with
P11 =1, g =0, =1, =1 & =0 ay=0 ay+y = 1

The equation can be written
Yra1— C—=Ny + ¥p—1 = 0 1)

Letting y, = r* we find that
r2—2—-Nr+1 =20

2-A=y(@—-7N2—4

so that r = B (2)
It is convenient to write
2—A = 2cos¢ (3
so that (2) becomes
‘ r = cosg *ising )

Then the general solution of the equation is
Yy = cpcoske + cpsin ko )
From the first boundary condition yp =0 we have ¢4 = 0 so that
Yy = ¢gsinks (6)
From the second boundary condition ¥y+1 = 0 we have since ¢y 7 0
sin(N+1)¢ = 0 ]

From this we have
Nar
(N+1e = nr or 0 = 77 r=123... (8)
where we have omitted »n = 0 since this leads to the trivial solution y; =0 and we have omitted
n=—1,-2,—8,... since these lead to essentially the same solutions as n = 1,2,8,.... From (3)

and (8) we see that

- — _ﬂT_ = -2__’)177____ — .
A= 2(1 cosN+1> 4 sin ZN+ D) n=12%3,.
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Since these values start to repeat after » = N, there will be only N different values given by

= 1 2_7“7_ =
An 4 sin’ NI n=12...,N )]

These represent the eigenvalues of the Sturm-Liouville system. The corresponding eigenfunctions
are obtained from (6) as

. knTr
Y = ©€98In ﬂ—l
From the orthogonality property of Problem 5.39 we would have

2 sin = sinﬂ = 0 ms*=n 10
N+1 N+1

which can in fact be shown directly [see Problem 5.181(a)].

Similarly if we are given a function F}, we can obtain the expansion
N

- . kmax
F, = m§1 € SIN 77 (1
where e = T i_ 1, E F sin ;?_71 (22)

These can also be shown directly [see Problem 5.131(b),(c)].

NONLINEAR DIFFERENCE EQUATIONS
543. Solve u,,,— ¥, +ky. ., ¥ =0y =2
Dividing by ¥ +1, the equation can be written as

1
T o ®
Then letting 1/y;,, = v, the difference equation to be solved is
Vg1 — ¥ = k, v, = 1 ©@)
The solution to the linear difference equation in (2) is

2) —
Ve = AT = k— -+ ¢y = Mc—l_) + (7] (3)

and using the fact that v; = we find ¢; = 4. Thus

_ k=1 1 _ R—k+1
v = gty = 4)
and the required solution is
2
e = FoETI ©)

544. Solve y,,.v: =9, if y =1, y,=2.
Taking logarithms of the given difference equation it becomes
Inygios — 3Mmypss + 2Iny, = 0 (1)
Letting v, = Inyg @)
the equation (Z) can be written as a linear difference equation
Vi jo — Vg + 20, = 0, vy=0, v,=1In2 3)
The general solution to the difference equation in (3) is

v = ey + 2k 4 “4)
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Using the conditions in (3) we find ¢; == —In2, ¢, = 1 In2 so that

= (In2)@k-1—1) : (5)
The required solution of the given difference equation is thus
Iny, = (In2)2k—1-1)
or v = Sn2@=i =1

which can be written i Y = 2

(6)

SIMULTANEOUS DIFFERENCE EQUATIONS
Yy T2 — 3y =

5.45. Solve the system
By, +2,,,— 5z, = 4F

subject to the conditions y, =2,z =0.

Write the system of equations as
(E=3yx + 2 = Kk

3y, + (E — Bz, = 4’“} )
Operating on the first equation in () with E — 5 and leaving the second equation alone the system
(1) can be written (B~ B)E—3)yy + (E—5z = 1— 4k

- Sy, + (B — Bz = 4 } ®

Subtracting the equations in (2) yields

(B2—8E +12)y;, = 1 — 4k —4F )]
The general solution of (3) found by any of the usual methods is

Yy = €128 + e6F + —'4’~ - —k ;?’ 4
and so from the first equation in ()
1 . 34
2, = €328 — 3eabk — Z*4’~ - k ~ 95 )
Putting k=1 in (4) and (§) we have since y; =2, 2, =0
' 64 74
2¢, + 66y = 357 ¢y — 18cp = 35 (6)
- from which ¢; = 133/100, ¢; = —1/60.
Thus the required solution is
133 1 19
= k — —gk k-1 — = — =2 b
ve = 02 ~ g0 T4 ’“ 25 @)
133 34
= B o gk - 4k—1 — 2] — =— s

MIXED DIFFERENCE EQUATIONS
5.46. Solve the differential-difference equation
v ) = %), w® =t  u0)=k
Putting k=0 we find
WO = wl) =t or w = gre

Then since %;(0) =1, we have ¢; =1 so that

e = 1+35
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5.47.

Putting k=1 we find
Yo = N ) = 1 or Yo t) t 4 _! e

Then since y,(0) =2, ¢; =2 so that

15
yt) = 2+ ¢t + 3T
Continuing in this manner we find
_ 2 4
y3(t)——3+2t+2—!+?ﬁ
C2¢2 3 5
y4(t):4+3t+ﬁ+§+ﬁ
_ 312 23 @ | 46
y5(t)—5+4t+ﬁ+§T+E+é‘i
and in general
_ _ =2  (@m—8)r tn—1 tnti
e i T T =11 T D

which is the required solution.

Solve Problem 5.46 by using the method of generating functions.
Let the generating function of y,(¢) be

Yis,t) = 3 y(t)s*
k=0
Then from the difference equation,
S Uik = T yuld)sk
k=0 k=0

which can be written in terms of (1) as

19 o
; 5? {Y(S, t) - yo(t)} - Y(-S‘, t)
or since yy(t) = ¢
% —s8Y = 1

Putting ¢ =0 in (7) and using y,(0) = k& yields
Y(5,00 = 3 ksk
k=0
Equation (4) can be written as
1Y+ =1 or ImGEY+1) = st+e

s dt

ccest — 1
8

l{e“ <1+ > ksk+1> - 1} '
8 k=0

1 0 ( t)p 0
L3 (14 3 o) - 1)

hd typ 2 X ksptk+1gp
—_ 1 { (st) + 3 S __'_}
S |» =0 p:

so that Y(s, t)
Using (5) and (6) we find

Y(s, 8

183

(1)

(@)

)

@

©®)

©)

@
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Sinee the coefficient of s7 in this expansion is ¥,(t) we find it to be

tnt1

n — PP
wl = Grprt pgo (n—p)t? pf) ®)

This is obtained by taking the term corresponding to p =n+1 in the first summation of (?) and
p+k+1=n+1 in the second summation of (7.

The required solution (8) with = replaced by k agrees with that of Problem 5.46.

PARTIAL DIFFERENCE EQUATIONS

5.48. Write the partial difference equation u(x +h, y)—4du(z,y+1) =0 (a) in terms of
the operators Ei, E; and (b) in terms of subseript notation.

(@) Since E,u(x,y) = u(x+h,y), Eyu(x,y) = u(w, y +1), the given equation can be written as
Eu — 4E2u' =0 or (Ey—4Epu = 0 1)
where we have denocted u(x,y) briefly by u.
(b) In subscript notation
wet+h y) = vittm wax, y+) = wemin WEHY) T Uem
and the given equation can be written as

Ugstm — Y me1 = 0 or (B~ 4E)uem = 0 (2)

5.49. Solve the difference equation of Problem 5.48,
We can write equation (2) of Problem 5.48 as
By, = 4EsUe,m 1)

Considering m as fixed () can be thought of as a first order linear difference equation with constant
coefficients in the single variable k. Calling uy,m = Uy, 4E3=0a the equation becomes

A solution of (2) is
U, = akC 3)

where C is an arbitrary constant as far as L is concerned but may depend on m, ie. it is an
arbitrary function of m. We can thus write (3) as

Uk = arka ("i)
Restoring the former notation, i.e. Ug = Up,m» @ = 4E,, (4) becomes
U, m = (4Eg)Cy

But this can be written as ' 5
Uk, m — 4kEZCm = 4kCp1g )

To obtain this in terms of z and ¥y we use the fact that z=a+kh, y=>0-+ml. Then (5)

becomes
—  glz—a)/h r—a, y—b
u(®, ¥) 4(w—a C< h +7 >

‘which can be written

w(w,y) = 4°/hH z ¥ (6)
h l

where H is an arbitrary function.

We can show that (6) satisfies the equation of Problem 5.48. Then since it involves one
arbitrary function it is the general solution.
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5.50. Work Problem 5.49 by finding solutions of the form Akg™ where A, p are arbitrary
constants.

Substituting the assumed solution
U,y = Nepm
in the given difference equation (2) of Problem 5.48 we find
CONEFLm — gpkumtl = 0 op A —du = 0
on dividing by Aeum 5% 0,
From X =4y it follows that a solution is given by -
Negm = (du)kum = 4hkgktm
Since sums of these solutions over any values of ; are also solutions, we are led to the solutions
S dkpktm = gk'S pktm = 4kF (e + m)
1 13

where F' is an arbitrary function. Thus we are led to the same result as given in Problem 5.49
where the arbitrary function F(k+m) = Cy 1.

5.51. Solve w(x+1,9)—4ulx,y+1) = 0, u0,y) = ¥

The difference equation is the same as that of Problem 5.48 with A =1, I=1. Thus the
general solution is from equation (6) of Problem 5.49,

u(x,y) = £H(x+y) 3
Using the boundary condition %(0,y) = y2 we have from (1)

u(0,9) = H(y) = y?
Thus Hxz+y) = (@+y)?

and the required solution is
ww,y) = 4%(x +y)? (2

5.52. Solve wu(x+1,y)—2u(x,y+1) = 3u(z, y).
We can write the equation in subscript notation as
By, m — 2By, = BUp,m or (Ey—2E>—8)u,, = 0

Rewriting it as
Eywg,m = QEz+ 3)ug,n
we can consider it as a first order linear difference equation with constant coefficients as in Prob-

lem 5.49 having solution
Uk, = (2E,+3)kC,,

This can be written as
uk,m = 3k(1+%E2)ka
or on expanding by the binomial theorem,

gk I:l + K(2E,) + kUcz? 1) (3B, + L"Q"_:%k_:__z_). (BE)8 + -+ .:lcm

Uk, m

8[Cyp + §HCy 41 + Bh(k — DCpnig + Akl — 1)k —2)Cpig + -]

To obtain the result in terms of x and ¥ we can use « = a-+kh, y = b+ml, choosing h =1,
l=1, a=0, b=0 sothat k==x, m =y. Then writing C,, = H(y) we obtain

u(@,y) = 3°[H(y) + 32Hy + 1) + 2z~ 1DH@Y +2) + Loz —D—2)Hy+3) + -]

This contains one arbitrary funetion H(y) and is the general solution.
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5.53.

5.54.

DIFFERENCE EQUATIONS [CHAP. 5

Solve Uk,m = PUk—1,m + QUi,m—1 if ko =0 for k>0, wom=1 for m>0 and p,¢q
are given positive constants such that p+¢=1.

In operator notation the given equation ean be written
(pETY + qEZ1 — Dug,m = 0
This can also be written as

PET Wy, = (L—=qEg VU, or Eggem = T:'%;E:iukm

Considering this last equation as one in which m is fixed the solution is

k
Yom = (1—Iq)E2—1> Crm

= pk(l - qEz— 1)—‘kC

= pk[1+k(qE2_1)+k<k+1>(E ye o BEEDELD) (opoa s ]c,,,
kk+1
or wm = 7] Ou+ baCps + M5 o HEEDEED) fg o]
Now if m =0, k > 0, this becomes
0 = p"[Co+kqC +k(k+1)q2C_ :\

from which
Co = 0, C_l = 0, C...z = 0,

If k=0, m>0, it becomes

Then for all k>0, m > 0,
k(k + 1)

Uk, m 24 .

>

k(k+1) “(k+m— 2) ]

= [1+k + =11

Solve Problem 5.53 by the method of generating functions.

Let @
Gi®) = Upo t+ Uit + Wt + 0 = 20 U, m E™ )
e

Then multiplying the given difference equation by ¢* and summing from m =1 to » we have

2 U, mt™ = P E Up—1,mE™ + € 2 Uge;m—1 ™
m=1 m=1 m=1
This can be written in terms of the generating function (1) as
Gy(t) — w0 = P[Gr—1(8) — Ur—1,0] + qtGx(?) @)
Since %o =10 and ug-y,o=0 for k=1 and ug,0 = 0, (2) becomes
G(®) = PGr—1(t) + @tGi(t) 6))
or Gl) = TE5G-10 *
This equation has solution P k ’ .
Gy = ("“—"1 — q”t> Golt) 5)
and since ;
Go®) = ugo t Upat t Ut + 0 = b+ F B+ = 9Ty
(5) becomes
Pk
Glt) = TR ©

(1—gt)(1—1)
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We can write this as

t
=] k(i — —k
Gut) = pHi—g0 7

and expand into a power series in ¢ to obtain

Gilt) = p* [1 + kgt + MDD gogp o Wl DET2) q3t3:| [6+ &+ 8+ -]

The coefficient of ¢ in this product is then given by

k(k+1 1).-- -
Upm = pkl:1+kq+__(._%)_q2+...+k(k+ zm-—ﬂ(k];_)-i'-m 2)qm—1:|

which is the required solution in agreement with that of Problem 5.53.

5.55. Solve wu(x+1,y)— 4u(z,y+1) = 62%y + 4.

By Problem 5.49 the equation with the right hand side replaced by zero, i.é. the homogeneous
equation
wet+1,y) —du(@,y+1) =0 or (E;—4Eulx,y) = 0

has the solution
4=H(x + )

where H is an arbitrary function. Then to solve the complete equation we need only find a par-
ticular solution.

Method 1, using undetermined coefficients.
Assume a particular solution having the form
w(x,y) = Auxy + Ajwy + A2z + A + Agy + Ag
where 4,,...,A, are constants. Substitution in the complete equation yields
—3A.2% + (24, — 34,)vy — (44, + 34 )% + (24;— 34, — 44,0
+(A;+A,—8A)y+ A3+ Ay — 445 — 844 = 6%y + 4
Then equating coefficients of corresponding terms
—84, =6, 24, —3834, =0, 44, +34; =0, 24;—34,—44, =0, A, +A,— 345 = 0,
As+ Ay — 445~ 3845 = 4

so that
4 8 32 10 _ 20
A1=—2, A2=_§, A3 =-3“, A4=—9-, A5=_?, As——é-'
Then the required solution is
wwy) = GH@+y) - 22 — Say + 5wt + Lo - Py + P @

Method 2, using operators.
Since the complete equation is (E;—4E)u(x,y) = 622 + 4 a particuar solution is, using
El = 1+A1, E2= 1+A2,

1 (62 R S )
7, Ot = gy, =g, &Y

_ 11 e
= 3T s Yt

1 [1 Al - 4A2 (Al - 4A2)2

+ --'](6w2y+4)

3 3 9
4 8 32 10 20
= Dy — = S 2 4 24, =X 2y
= a2y 3xy-|-3aa+9x 9y+9

and so the required solution is the same as that obtained in equation (7) of Method 1.



188 DIFFERENCE EQUATIONS [CHAP. b

MISCELLANEOUS PROBLEMS
5.56. Solve the partial differential equation

ou ou .
% + 2@ = 0, u(x,0) = 2®* — 3 sinx

The given partial differential equation is the limit as & —~ 0, 1 >0 of

ww+hy) —u@y | o wey+th—u@y | _
- +2[ 7 ] = 0

which can be written in operator and subscript notation as

(B, +2hEy— 1 —2htm = 0 or By m = <1+3?—¥E2> U m

This can be solved as in Problem 5.49 to yield

oh 2k, \F
Uk,m — <1 +T-‘7E2> Cm
or in terms of « and ¥ as
on 2k \*"
ww,y) = (1 +5 - —l~E2> H (%’) )

In order to obtain meaningful results as h—~ 0, I - 0 choose 1+ 2h/1 = 0 so that (1) becomes
ww,y) = H <—y = 2“> = JEez—y)

where J is an arbitrary function. The required general solution is thus

u(@,y) = J(2zx—y) 69
Since w(@,0) = J(2x) = «® —38sinx
we have Jx) = a3 — 8sin (2/2)
Then from (2) we have om—vy
u(z,y) = 32x—yP — 3 sm< 5 >

5.57. Solve the mixed difference equation

wE+1ly) — wx,y) = 2%
The given equation can be written as
Ew—u = 2Dyu )
or Ew = (1+2Dgu @

Then treating 1-+ 2D, as a constant we find as in Problem 5.49
u(z,y) = (1+2D)"H(y) 3)

where H(y) is an arbitrary function of y. Expanding by the binomial theorem we then find

ua,y) = [1 + <f> 2D, + <:> @Dy + -+ + <;> @Dym + ...]H(y)

x *
H@) + 2(’{) H@) + 22 <2> H') + -+ + 2m <m> Hm(y) + -
Then if % is a positive integer the series terminates and we have

we,y) = H@) +2 @ H(y) + 22 (’; > H'G) + - + 2 <2> H®(y) )
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5.58. Solve the preceding problem subject to u(0,y) = »°.

5.59.

From (4) of Problem 5.57 we see that
u(0,y) = H{y) = o3

Thus
H'y) = 8y% H'(y) = 6y, H'"(y) = 6, HIV(y) = 0,

* x x
3 2
Y +6<1>y +24<2>y+48<3>

= 3 + 6xy?2 + 12x(x— 1y + 8zx(x —1)(x —2)

and so

I

u(x, y)

Find the general solution of

Uk,m = PUk+1,m—1 + QUK—1, m+1
where p and ¢ are given constants such that p+qg=1.

Method 1.

Assume a solution of the form
Up,m = Neu™

Then by substitution in the given difference equation we find after dividing by Aep™

P — At qu? = 0

from which
A = pEVE—dApgr  _ pEpVi—dpg M
2p 2 'p

Thus solutions are given by uke+pm = yktm and (ug/p)ep™ = pk¥m(g/p)k. Since sums of such
solutions are also solutions, it follows that F(k+m) and (¢/p)*G(k+m) are solutions and the
general solution is

Upm = F(k-+m)+ (g/p)Gk + m) 1)

where F' and G are arbitrary functions.

Method 2.

It is noted that the sum of the subscripts in the given difference equation is a constant. If we

"denote this by ¢ we have k+m =c¢. The equation is thus given by

U, c—k = PUk+1, e~ (k+1) T Qg—1,c— k—1) 2)
If we let
Uk, -k = Uk @)
(2) becomes
Vg = PUp+1 Tt QU 4)

which involves only one subscript and can be solved by the usual methods. We find
vg = ¢ + cp(g/p)* %
Now the constants ¢; and ¢, can be considered as arbitrary functions of the constant ¢ = k+m:
¢, = F(k+m), ¢, = G(k+m). Thus we obtain from () and (5)
we,m = F(k+m)+ G+ m)(g/p)*
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Supplementary Problems

DIFFERENTIAL EQUATIONS AND RELATIONSHIPS TO DIFFERENCE EQUATIONS
5.60. (a) Show that the general solution of the differential equation

dy _
da

= x2
is y = cet—a2—2x—2.
(b) Find that particular solution to the equation in (a) which satisfies the condition (0} = 3.
5.61. (a) Show that the equation
Ay 2

aw V<

[compare Problem 5.60] where y = f(x), Ax = h can be written as
\ flx+h) — A+ R)flx) = ha? — k2%
(b) Show that the general solution of the equation in (a) is
yx) = fl@) = Clx)(L+hr)32/h — a2+ (h—2)x — 2
where C(x+ h) = C(x).
(¢) TFind that particular solution for which y(0) = 3.

5.62. Explain clearly the relationship between the difference equation and the differential equation of
Problems 5.60 and- 5.61 discussing in particular the limiting case as k= 0.

5.63. (o) Show that the general solution of
d2y

&y = 2 —
) + y 3x be + 4
is ¥y = ¢ cosx + ¢, sinx + 3x2 — by — 2.
(b) Find that particular solution to the equation in (a) which satisfies the conditions ¥(0) =2,
y'(0) = 0. '
564. (¢) Show that the equation A2
A—mzé +y = 8@ — baD + 4

can be written as
fle+2h) — 2f(x + k) + (L + kA)f(x) = 3h%? — (3R3+ 5h2)x + 4h?
where y = f(=).
(b)) Show that the general solution of the equation in (a) is
y = fl@) = Cylx)(1+iky/h + Cy(w)(1 — ih)z/h + 322 — (3h + B)x — 2

where C,(x) and Cy(x) are periodic constants with period A.

5.65. (a) Explain clearly the relationships between Problems 5.63 and 5.64, in particular the limiting
case as h— 0. (b) What are the boundary conditions for the difference equation in Problem 5.64
which correspond to those for the differential equation in Problem 5.63?7 (c) Obtain the particular
solution of Problem 5.64 corresponding to the boundary conditions just found in (b), and explain the
relationship between this and the particular solution of Problem 5.63.

THE SUBSCRIPT NOTATION FOR DIFFERENCE EQUATIONS
5.66. Write the difference equation of (a) Problem 5.61 and (b) Problem 5.64 with subsecript notation.

567. Write each of the following in subseript notation.
(@) fle+3h) — 8f(x+ 2k) + 3f(x+h) — fl2) = x® — 222
) flx+4h) + f(x) = cos®
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5.68.

Change each of the following equations to one involving the “x notation”.
(@) 2yp4g —BYg+1 Ty = 0
() Ykrst+ Wiro—Byk+1+ 20 = B2 — 4k + 1

LINEARLY INDEPENDENT FUNCTIONS

5.69.

5.70.

5.71.

5.72.

5.73.

5.74.

Determine which of the following sets of functions are linearly dependent and which are linearly
independent. -

(@ 2k k—3 (€ 1,k, k2 k3, kt

) k+4, k-2 2k+1 (fy k2—3k+2, k24 5k—4, 2k2, 3¢
(¢) k2-—2k, 3k, 4 (g) 2k cos ke, 2% sin k6

(d) 2k, 22k 23k (h) K2, (k+1)2, (kK4 2)2, (k4 3)2

Work Problem 5.69 using Theorem 5-1, page 154.

Show that if 0 is added to any linearly independent set of functions then the new set is linearly
dependent.

Prove Theorem 5-1, page 154, for any number of functions.
Prove Theorem 5-2, page 155.

If a # b show that a* and b* are linearly independent.

HOMOGENEOUS LINEAR DIFFERENCE EQUATIONS WITH CONSTANT COEFFICIENTS

5.75.

5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

Find the solution of each of the following subject to given conditions (if any).

(@) Yr+2+bYr+1+6y;, =0 () Yr+oT 2041 T2y, =0, yp=0, g =1
®) Yp+2—3Wk+1 T 20, =0, ¥o=1, yy =2 (9) Yr+2t 16y =0, =0, ¥y, =1

© Byriot+8ypr1t4y=0 (R) 4y+2+25y, =0

@ Yrt2— % =0, 90=2, yy=—1 (@) Yr+2—Ur+1 T =0

(&) 294113y, =0, y,=4 () 4yk+ot4yrs1tue =20

Solve  Yr43— 6yYr4e + 11y, — 6y, = 0 subject to the conditions yy =0, ;1 =1, ya=1.
Solve yri 4+ ¥ = O.

Solve 4ypi14 — 25y, = 0.

Solve  yri3— 8y = 0.

Solve yri4t+ 12y 4o — 64y, = 0.

Solve ki3~ 3Yk+2+ 4Ur+1— 2y = 0.

Find the general solution corresponding to a linear homogeneous difference equation if the roots
of the corresponding auxiliary equation are given by 2, —2, —3 = 44, —2, —2, 4, —2, 2,

What is the difference equation of Problem 5.82?

Work Problem 5.14(b) directly by using the difference equation.

METHOD OF UNDETERMINED COEFFICIENTS

5.85.

Solve each of the following subject to given conditions if any.

@) Y2~ 3Yx+1t 2y = 4F (f) Yz~ 8yg+1+ 16y, =845 yy=0, y; =0
) Yero— W1 T4Y = K2 9) 2¥42—3Yr1+ Y = K> —4k+3

€ 4Ypyo+ Yy =2k2—bk+3 (B) Yr+ot+ dyx = 5(—8)k+ 10k

@D Y1~ Ve =k yo=1 () Y2y = 1/3% -

(&) Yriot 21Ty =k+2F
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586. Solve %1 —ay, = B for all values of the constants a and 8.
587. Solve yrio+ yr = 4cos 2k

5.88. Solve Y45 — 6Yr4s+ Mygq — 6y, = 4k + 8+ 2k — Bk,

5.89. Solve yri4— 16y, = k2 —5k + 2 — 43k,

5.90. Solve 43T ¥ = 2F cos3k.

591. Solve SByris— 4¥rao Ty = 3%(k—1).

SPECIAL OPERATOR METHODS
592, Solve the following difference equations by operator methods,
(@) Ypss— BYp+1 T 2y, = 4¢3k — 245k
(0)  Yraot4ypsr 4y = K2 —38k+5
(¢)  BYpt2— 8Yps+1— By = 3k—2k+1
(d)  Yr+z2— 8Yi+1 T 16y, = B34k — B(—2)k
(€)  2ykis— 241 tyx = KB — 4k + B*
() Yrie— 4Uksr + 4y = K202k
(@)  VYi+s — BYpro T BYks1— Yk = 2k +4— 31
(R)  yprs— 16y, = Sk + 2 + 3k

#(E) #(etf)
where Re denotes “real part of” and Im denotes “imaginary part of”.

1 _ eiks 1 . _ ik
593. Show that (@) —ecoskse = Re{ } (&) RET)sm k¢ = Im {¢(eis)}

594. Use Problem 5.93 to solve ¥piso + 4¥r+1— 120 = 5 cos (zk/3).

. 1
5.95. (a) Determine y- aR(k)'
(b) Show that S S (U S ie. the method of partial fractions can be
B2-6E+8 2\E—4 E-2) P

used for operators.

(¢) Show how the results of (¢) and (b) can be used to solve the equation
Ytz — 6Ug+1 + By = K2+ 3k

596. Show how operator methods can be used to solve
(B —1)XE +2)(E —8)y, = k?— 8k + 5+ 3%

597. Solve (E2+1)2y, = 2k — 3.
598. Solve Problem 5.85(a)-(¢) by operator methods.

599. Solve (a) Problem 5.87, (b) Problem 5.88, (c) Problem 5.89, (d) Problem 5.90 and (e} Problem
5.91 by operator methods.

METHOD OF VARIATION OF PARAMETERS
5100. Solve each of the following difference equations by using the method of variation of parameters.
(@)  Yes+2 ™~ BYp+1 + 6y = K
(®)  Yrsz— W1 Ty = 3T kA4
(6  Aygss— Wi+t up = 8/2F
(@) Yeroe Ty = VE
(6) BYr+s— W41 — 2y = 3k + (—2)F
(N Ykr2— Yx+1 Ty = 1/k!
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5.101. Solve Problem 5.85(a)-(i) by using variation of parameters.

5.102. Solve Problem 5.92(a)-(k) by using variation of parameters.

5.103. Solve yYi43—6yr+9+ 11y, 1— 6y, =526+ k2 by using variation of parameters.

5.104. Verify that the determinant of the coefficients (24) on page 157 is equal to the Casorati of the

system [see (15), page 154]). Discuss the significance of the case where the determinant is or is
not zero.

METHOD OF GENERATING FUNCTIONS
5.105. Verify each of the following generating functions.

@ =3¢ @ sne= 3 CU
®) A+9m = éo (:) t () cost = k%(:(z%';ﬁ’i

(c) ot = éo,i—’; @ e = éo Joti—1

@ —-In(l—¢% = kgokt—k-l-t}i (k) tan—1t = kgo_(:z%

5.106. Solve each of the following by the method of generating functions.
(@) Uk+2—6Y+1 ¥+ 8. =0, ¥ =0, y, =2
®) 241 —y =1, ¥y =0,
() Ykt T Up+1 T4y =0, yo=1, 9, =0
() 6yp+s — BUgs1 Ty = 0
(@ Ykt + 2041 +¥ =0, y=2, 9y, = -1
(N Yr+s—3Wr+s T 3Us1— ¥ = 0
@) Yur2 T W1ty =14k
() dypyo—dypr1t+ e =27y =0,y =1

5.107. Solve i+ Byx+1 — 4y = 1> Y=0, ¥ =0

5.108. Show how to obtain the generating function of the sequence (a) u =k, (b) u, = k2, (¢) w = K&
[Hint, Use Problem 5.105(z) and differentiate both sides with respect to t.] i

5.109. If G(f) and H(t) are the generating functions of u; and v, respectively show that G(f) H(t) is the
generating function of k
wp v, = pg() U—pVp

which is called the convolution of u; and vy.

5.110. Show that

* 3k

@ weve = vpuy

(0)  up (v FwE) = up vy + upwy
* % gk

©  wp(Vpwy) = (U ve)*wy

What laws of algebra does the convolution satisfy?

LINEAR DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS
5111. Solve each of the following.
(@) Yev1— Ky =k, y1 = 0 (D Y1 T4y = kL, yp =1
0 kyp+1+2y = 1 @ kyxir— e = 25 y = 0
(o) yk+1+kyk = k@
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5.112.
5.113.
5.114.
5.115.

5.116.

517

5.118.

5.119.

5.120.

5.121.

5.122.

5.123.
5.124.

5.125.

DIFFERENCE EQUATIONS [CHAP. 5

Solve yxio— (k+ Dyt oy =k ¥ =0, y2 = L

Solve  Yrso— k+ Dyprq + F2y, = 0.

Work Problem 5.113 if the right side is replaced by 2%, using variation of parameters.
Solve (k+38)yr+2 — 3(k+2)yx41 + 2k + Ly = 0.

Solve (b~ 1)yi42 — 2kyr+y + §(k+ Dy, = 0.

Let Y, # 0 be any solution of the difference equation

Yrro T+ Qs+ b = 0

Show that this second order linear difference equation can be reduced to a first order linear dif-
ference equation by means of the substitution y, = Y%, and thus obtain the solution.

Show that if Y, is a solution of the equation

Ytz t @Y1 + bl = 0
then the substitution y, = Y,u; can be used to solve the equation

Yp+2 T Gl+1 + bk = By

Use Problems 5.117 and 5.118 to solve the equations
(@ ks T Q—F)Yp+1— 2y = 0 ®) kypsa+QA—Fyers — 2y = 1
[Hint. A solution of (a) is yr=Fk.]

Discuss the relationship of the methods of Problems 5.117 and 5.118 with the method of varia-
tion of parameters.

b ab
Solve Yr+2 T <a+m> Yr+1 T myk = 0

Solve O so¥i+s — @Us1 T bes)¥esr + abeye = 0

where « is a given constant.
Solve yxiotkyr =% #=0 y1=1 by the method of generating functions.
Solve Problem 5.116 by the method of generating functions.

(a) Solve Problem 5.37 by making the substitution v, = (k—1)!v;. (b) Show that kh_rg e = e

STURM-LIOUVILLE DIFFERENCE EQUATIONS

5.126.

5.127.

5.128.

5.129.

Find eigenvalues and eigenfunctions for the Sturm-Liouville system

A%y T Ay = 0, Y1 = Yoo Yn+1 T UN
Work Problem 5.126 if the boundary conditions are y; = ¥g Un+1~ 0.

Write the orthogonality conditions for the eigenfunctions of (@) Problem 5.126 and (b) Prob-
lem 5.127.

() Show that if the eigenfunctions of a Sturm-Liouville system are not necessarily real then the
orthogonality of page 159 must be rewritten as

N
kgl TePm.k Pk = 0 m+=n

() If Fy = 2cpomi determine the coefficients ¢,, for this case.
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5.130. Can any second order linear difference equation
@by, + by, + e = 0
. be written as a Sturm-Liouville difference equation? Justify your answer.

5.131. Prove the results (a) (10), (b) (11) and (c) (12) on page 181 directly without using Sturm-Liou-
ville theory. -

5.132. Explain how you could solve the equation A2y, _;+Ay,=Fk if 9y =0, yy+1 =0. Discuss the
relationship with Sturm-Licuville theory.

NONLINEAR DIFFERENCE EQUATIONS
5.133. Solve Yr +- Yie+1 = YueYe+1 [Hi’nt. Let 1/yk = ’Uk.]

5.134. Solve ¥i¥rx+1 = 2y, +1 by letting y;, = ¢+ (1/v;) and choosing e.

5.135. Solve YrWr+1Wi+a = Wi+ YUk+1 T Yrio [Hint. Let gy = tan uy.]

5.136. Solve ¥ ¥r+1¥k+2 = B(yr + ¥x+1+ Yr+2) where K is a given constant.
5137. Solve yii+; = 8yx, ¥o=1. [Hint. Take logarithms.]

5138. Solve (@) sz =ulk+1 (B) ¥ks1=2u5 —1.

5139. Solve ¥z = 1/tp_1¥x+1-

5.140. Solve ?/;%4. 1 5yk+1yk + 61/1% =0.

5141. Solve yr+1=V1— yz.

5.142. (a) Solve ¥x+1 =V2+yr, ¥o=0 and (b) find klim Yo

5.143. (a) Solve yYr+1 = %(yk + i) , Yo=a and (b) find klim Yie

SIMULTANEOUS DIFFERENCE EQUATIONS

5144. Solve {2%»1 + vgsr = e+ 8v
Uyt Vrr = U+ Uk

Ye+1— Kz = 0

5.145. Solve .
{zk +1 4kyk 0

U+ = Py + qv;

if 1—p+gq+0.
i1 = A—pug+ 1 —gv

5.146. Solve the system of equations {

5.147. Solve Problem 5.146 if 1—p+¢=0.

2 + v = 16v
5148. Solve < —k*1™ Vk2 k,
Utz — 2Up41 = 4

MIXED DIFFERENCE EQUATIONS
5.149. Solve yiy1(f) = yi(t) subject to the conditions wo(f) = 1, ¥(0) = 1.

5150, (a) Determine lim g (t) for Problem 5.149. (b) Could this limit have been found without solving
k—co

the equation? Explain.
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5.151.

5.152.

DIFFERENCE EQUATIONS [CHAP. 5

(@) Sf’lve Y (€) = ¥p+1(t) subject to the conditions yo(t) =1, #(0)=1. (b) Find lim y(f).
(¢) Discuss the relationship of this problem with Problems 5.149 and 5.150. k=

(a) Solve iy 1(t)+ yi(t) =0 subject to the conditions yo(t) =1, yg(f) =0, y,(0) =1. (b) Dis-
cuss the limiting case of (¢) as k - =,

PARTIAL DIFFERENCE EQUATIONS

5.153.

5.154.

5.155.

5.156.

5.157.

5.158,

5.159.

5.160.

5.161.

5.162.

5.163.

Solve

Solve

Solve

Solve

Solve

Solve

Solve

Solve

Solve

Solve

Solve

w(e+1, y) + 2ux, y + 1)

I
e

wx+1, y) — 2ufx, y +1)

]

w(@e, y+1) + 2uly, v +1) = 3wy — 4o + 2,
w@+h,y) —Bu(x,y+k) = x+y.

(B\E;—2)(E{—Eu = 0.

0, w(0,y) = 3y +2.

k>0

U pt,mee — Uem = 2™

Ut t,m+1 = Ut t,m — Ug,m I Ugg = {(;
Ugro,mie — SUp+L,m+1 T 2Ug,m = 0.
Ugr1m T Ugmr1 = O

Ug,m = Up—i,m—1 T Up+1,m+1s

U+ 1(y) — wily) + 3au;;y) =0, wuly) = e~/

MISCELLANEOUS PROBLEMS

5.164.

5.165.

5.166.

5.167.

5.168.

Show that the general solution of
Yr+z — 2(cos )i+, + Y = By

is given by

where it is assumed that « # 0, =7, +27, ... .

yr = Cicoska + Cysinke + 3

k R, sin(k—pa
p=1 sin «

Obtain the general solution in Problem 5.164 in the case a = 0, xm, *27, ... .

Let 442+ 3U+1+ 20 = 6. Prove that if klim ¥, exists then it must be equal to 1.
-0

(@) Express the differential equation

y' — ey — 2y

=90

as a limiting case of a difference equation having differencing interval equal to h.

(b) Solve the difference equation of (a) by assuming a factorial series expansion.
(¢) Use the limiting form of (b) as & — 0 to obtain the solution of the differential equation in ().

(a) Solve the difference equation

Ay
e T P@y

(b) By finding the limit of the results in (a) as Ax

equation

dy
L+ Py

1t

Q)

h >0 show how to solve the differential

Q)
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-5169. (a) Solve the difference equation

- A%y Ay _
Aty = ot
(b) Use an appropriate limiting procedure in (a) to solve the differential equation
Py _ 4 _
dn? 4 da + 38y = w1+ 2

5.170. Obtain the solution of the differential equation

Py dy — o
dw2+2dx+y = ¢ 7%

by using difference equation methods.

5171. Let f(x,4,¢) =0 denote a one-parameter family of curves. The differential equation of the
family is obtained by finding dy/dx from f(x,y,¢) = 0 and then eliminating e,

(a) Find the differential equation of the family y = ca? and discuss the geometric significance.
() Explain how you might find the difference equation of a family and illustrate by using y = ex2

(¢} Give a geometric interpretation of the results in (b).
5172. Work Problem 5.171 for y = cx+ 2

5.173. QGeneralize Problem 5.171 to two-parameter families of curves f(zx,y, ¢y, ¢s) = 0 and illustrate by
using y = ¢;a®+ ¢,b* where a and b are given constants.

2
. _ Ay Ay
5.174. (a) Show that two solutions of vy = i + <—Ax>

are y =cx+ ¢ and y = ¢ — w2+ Lh% — Jeh(—1)*/M

(b) Discuss the relationship of your results in (@) with those of Problem 5.172.
5175. (a) Show that two solutions of the differential equation
’ _ Ly (&)
Y = 4 + <dm>

(b) By obtaining the graph of the solutions in {a) discuss the relationship of these solutions.

are y=cx+c¢2 and y=—x%/4

(¢) Explain the relationship between the solutions in part (¢) and Problem 5.172.

5.176. The difference equation u; = kduy,+F(Aw) or in “z notation”

) Ay
vy = og, T F <Aw>
is called Clairaut’s difference equation by analogy with Clairaut’s differential equation
_ WY dy
YT Py +F <dw>
(@) Solve Clairaut’s differential equation by differentiating both sides of it with respect to .
Illustrate by using the equation 5
_ L, [
V¥ = "4 do

and explain the relationship with Problem 5.175.

(b) Is there an analogous method of obtaining the solution of Clairaut’s difference equation? Dis-
cuss with reference to Problem 5.174.

5177. Solve ¥r+1+ (—2)y, = 0.
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5.178.

5.179.

5.180.

5.181.

5.182.

5.183.

5.184.

5.185.

5.186.

5.187.

5.188.

5.189.

5.190.

5.191.

5.192.

DIFFERENCE EQUATIONS [CHAP. 5

Solve y.yrs1+1 = 28yr 1 —yp)-

Show that the nonlinear equation
' Ye+1¥e T Ar¥i + Byyp+r = Cx
can be reduced to a linear equation by the substitution

o Pr+1
Y Vi k

Illustrate by solving Problem 5.134.

(a) Show that if ¢4, ay, a3 are constants then the equation
Yi+3+ a1BuYr+2 T 2Bk Br—1¥r+1 + o3BrBr-1Bk—2¥x = By
can be reduced to one with constant coefficients by means of the substitution
Y = BiBo ' Br—3i

(b) What is the corresponding result for first and second order equations? What is the result for
nth order equations? ’

_ a . U
Solve i1 = T by letting b +y, = ol
Solve #¥pr1 = a/(k+1).
Solve  Uxigm — 3Upro,m+r T BUk+1,m+2 — Uk,m+s — 0.
Solve U mt+1 = Up—1,m — MUy, Where ug, = 0 for m = 1,23, ... and ., = 0
for k> m.
Solve U i1 = Up—1,m + Ktg,;, ~Where ug, = 0 for m = 1,2,38,... and ug, = 0
for k> m.

Solve (a) g%+ 2%‘3 = 4, (b Zg—z = %* ¢ —y by using difference equation methods.

Solve  yp¥r+1+ V(11— )1 — y2.1) = cos(4n/k) subject to the condition y; = 0.

Solve Y() + Y(’”IT D 4 Y(“2 24 =
Solve Y(x) — Y(mz_"— 2) + Y(m4-'|_ 9 _ ... = 22 — Ag + 1.

Solve kuk =1 + Uy + Uy L R + U —25 Uy = 1’ Ug — 1/2.

Solve the partial differential equations

ou ou -
=T - 22 = 0 = 2 e— Y
@ 25, ~ 3%, 0, u0,y = ¥+
(b §—z+3% = x — 2y, u(x,0) = 22+ +1

Solve the partial differential equations

2u % 2u
—— 2 —_—
(@ a2 dx 0y + ay?

2 2
) 2—“—-—4%1—;% = x+ y, w(x,0) = 0, u(0,y) =y

0, u(x,0 =% ul0,y) =y

ox2



Chapter 6

FORMULATION OF PROBLEMS INVOLVING DIFFERENCE EQUATIONS

Various problems arising in mathematics, physics, engineering and other sciences can
be formulated by the use of difference equations. In this chapter we shall consider
applications to such fields as mechanics, electricity, probability and others.

APPLICATIONS TO VIBRATING SYSTEMS

There are many applications of difference equations to the mechanics of vibrating sys-
tems. As one example suppose that a string of negligible mass is stretched between two
fixed points P and @ and is loaded at equal intervals # by N particles of equal mass m as
indicated in Fig. 6-1. Suppose further that the particles are set into motion so that they
vibrate transversely in a plane, i.e. in a direction perpendicular to PQ. Then the equation
of motion of the kth particle is, assuming that the vibrations are small and that no ex-
ternal forces are present, given by

dz
md—zl;i = }%(yk—x—-2yk+yk+1) (1)

Fig.6-1

where #: denotes the displacement of the kth particle from PQ and r is the tension in the
string assumed constant.

Assuming that yr= Arcos(ot-+e) so that the particles all vibrate with frequency
27/o we obtain the difference equation

2
Acer + <m‘;’h—2) Ap + Aw-r = 0 @)
This leads to a set of natural frequencies for the string given by
1 4r V(%4
et P R — s - .. ,N 3
fa o \fmh SISV +1) n=12 (3)

Each of these corresponds to a particular mode of wvibration sometimes called natural
modes or principal modes. Any complex vibration is a combination of these modes and
involves more than one ofsthe natural frequencies.

In a similar manner we can formulate and solve other problems involving vibrating sys-
tems. See Problems 6.36 and 6.39.

199
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APPLICATIONS TO ELECTRICAL NETWORKS

In Fig. 6-2, a set of N capacitors or condensers having capacitance or capacity C and
N resistors having resistance R are connected by electrical wires as shown to a generator
supplying voltage V. The problem is fto find the current and voltage through any of the
resistors.

C C C C C C

als {—1t — |
§R §R §R §R %R %R

Fig. 6-2

———
——
et
——

The formulation of this problem and other problems of a similar nature involving
various combinations of capacitors, resistors or inductors is based on Kirchhoff’s two laws.
These laws can be stated as follows.

Kirchhoff’s laws. 1. The algebraic sum of the currents at any junction point of a net-
work is zero.
9. The algebraic sum of the voltage drops around any closed loop is
Zero. -

If I denotes the current, @ denotes the charge on a capacitor and # denotes time then
we have:

Voltage drop across a resi‘stor of resistance B = IR

Voltage drop across a capacitor of capacitance C =

Q
C

Voltage drop across an inductor of inductance L = L%

APPLICATIONS TO BEAMS

Suppose that we have a continuous
uniform beam which is simply supported
at points which are equidistant as indi-
cated in Fig. 6-3. If there is mno load
acting between the supports we can show
that the bending moments at these suc-
cessive supports satisfy the equation Fig. 6-3

Myi—1 + 4My + Mi+1 = 0 (4)
sometimes called the three moment equation. The boundary conditions to be used together
with this equation depend on the particular physical situation. See Problems 6.5 and 6.6.

For cases where there is a load acting between supports equation (4) is modified by
having a suitable term on the right gide.

APPLICATIONS TO COLLISIONS .

Suppose that two objects, such as spheres, have a collision. If we assume that the
spheres are smooth the forces due to the impact are exerted along the common normal to
the spheres, i.e. along the line passing through their centers.
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In solving problems involving collisions we make use of Newton’s collision rule which
can be stated as follows.

Newton’s collision rule. If v, and v15 are the relative velocities of the first sphere with
respect to the second before and after impact respectively then

V2 = —eVis 6)

where ¢, called the coefficient of restitution, is generally taken as
a constant between 0 and 1. If ¢=0 the collision is called
perfectly inelastic while if ¢ =1 the collision is called perfectly
elastic.

Another important principle which is used is the principle of conservation of momen-
tum. The momentum of an object is defined as the mass multiplied by the velocity and the
principle can be stated as follows.

Conservation of momentum. The total momentum of a system before a collision is equal
to the total momentum after the collision.

Some applications which lead to difference equations are given in Problems 6.7, 6.8 and
6.53.

APPLICATIONS TO PROBABILITY

If we denote two events by A: and A then the probabilities of the events are indi-
cated by P(A:) and P(A:) respectively. It is convenient to denote the event that either A
or As occurs or both occur by A;+ As. Thus P(A: + As) is the probability that at least one
of the events 41, A2 occurs.

We denote the event that both A, and Az occur by AiA: so that P(4:4,) is the proba-
bility that both A, and A: occur. ~

We denote by P(A:| A;) the probability that A; occurs given that A, has occurred. This
is often called the conditional probability. .

An important result is that
| P(A1As) = P(A3)P(As] Ay ®
In words this states that the probability of both A; and A. occurring is the same as the

probability that A: occurs multiplied by the probability that A, occurs given that A is
known to have occurred.

Now it may happen that P(A4:2]A:) = P(Az). In such case the fact that A; has occurred
is irrelevant and we say that the events are independent. Then (6) becomes

P(A:14;) = P(A1)P(A») A,, A, independent (™)

We also have
P(A;+As) = P(A1) + P(42) — P(A145) 8

i.e. the probability thét at least one of the events occurs is equal to the probability that
A, occurs plus the probability that As occurs minus the probability that both occur.

It may happen that both A; and A cannot occur simultaneously. In such case we
say that A; and As are mutually exclusive events and P(AA5) = 0. Then (8) becomes

P(A;+ A4s) = P(Ay) + P(4) A;, A mutually exclusive 9)
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The ideas presented above can be generalized to any number of events.

Many problems in probability lead to difference equations. See Problems 6.9-6.12
for example. ‘

THE FIBONACCI NUMBERS
The Fibonacci numbers Fi, k=0,1,2, ...,are defined by the equation

Fx = Fr-1+ Fr—s (20)
where ‘ Fo =0, Fi=1 (11) |
It follows that the numbers are members of the sequence

0,1,1,2,8,5,8,13,21, ... (22)

where each number after the second is the sum of the two preceding ones. For a table of
Fibonacci numbers see Appendix G, page 238.

We can show [see Problem 6.13] that the kth Fibonacci number in the sequence (12) is

given by . LKHW—))’C_G_\EY] k=0,1,2
RN d =0,1,2,... (29)

These numbers have many interesting and remarkable properties which are con-
sidered in the problems.

MISCELLANEOUS APPLICATIONS
Difference equations can be used in solving various special problems. Among these are
1. Evaluation of integrals. See Problem 6.15.
2. Evaluation of determinants. See Problem 6.16.
3. Problems involving principal and interest. See Problems 6.17 and 6.18.
4

Numerical solution of differential equations. See Problems 6.19-6.24.

Solved Problems

APPLICATIONS TO VIBRATING SYSTEMS

6.1. A string of negligible mass is stretched between two points P and Q and is loaded at
equal intervals by N particles of equal mass m as indicated in Fig. 6-1, page 199.
The particles are then set into motion so that they vibrate transversely. Assuming
that the displacements are small compared with & find (a) the equations of motion
and (b) natural frequencies of the system.

(#) Let yj denote the displacement of the Lth particle from PQ. Let us call 7 the tension in the
string which we shall take as constant.
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The vertical force acting on the kth particle due to the (¥ —1)th particle is

—rsing = — (U — ¥x—1) @)

Ve —yx—1)? + B2

and since we assume that the displacements are small compared with k, we can replace the
result in (7) by

(Y — Ye—1)
—T R @)

to a high degree of approximation.

Similarly the vertical force on the kth particle due to the (k+ 1)th particle is given to
a high degree of approximation by

Wi = Ye+1)
TR @)

The total vertical force on the kth particle iz thus

e —Ye—1)  TWr— Yr+1)
- % Lt L 7 BIL = i‘(yk—l—zyk+yk+l) #A]

Assuming that there are no other forces acting on the kth particle we see that by Newton’s law
the equation of motion is
“d2yy

mo_s = Ihj(yk—1—2yk+yk+1) (8)
If there are other forces acting, such as gravity for example, we must take them into aceount.

To find the natural frequencies assume that
Y — Ak cos (wt + a) (6)

ie. assume that all the particles vibrate with the same frequency w/2s. Then (5) becomes

—mw?dy = ';,;_(Ak—l — 245+ A4y @

which can be written as

2 .
Ak.-H. - <m{:_ h — 2) Ak + Ak—-l = 0 (8)

Now we can consider the points P and @ as fixed particles whose displacements are zero.
Thus we have
Ay =0, Axyy1 =0 9

Letting A, = ¢ in (8) we find that

"2+ <m—1—2h—2>r+ 1
T

it e VS

We can simplify (11) if we let

il
)

(10)

2
2-m‘;”‘ — 2coss 12
go that
r = cose * ising (13)

In this case we find that the general solution is
Ay = ¢y cosks + cgsinks (14)

Using the first of conditions (9) we find ¢; = 0 so that
A, = ecpsinke (25)
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6.2.

6.3.

‘APPLICATIONS OF DIFFERENCE EQUATIONS [CHAP. 6

From the second of conditions (9) we must have

egsin(N+1)¢ = 0 (16)
or since ¢3 # 0, "
— T ——
6_N+1 n=12,... 17)
Thus (12) yields
me2h 9 Nar ‘
- = COS g (18)
from which
27 nr 4r i
2 — 2T - L = 2T gin2 — T
w oo <1 €os %7 T 1> ok S AN D) (19)
Denoting the N different values of o2 corresponding to #=1,2,8,...,N by vy, 09, 0g, ..., 0y it
then follows that .
. ’ﬁ . nr _
Wy = thIn——z(N+1) n=12...,N (20)
Thus the natural frequencies are
= 1 [4_7 in—"T =
fn = o 'mhsm2(N+1) »=12,,..,N (21)

Find the displacement of the kth particle of the string in Problem 6.1.

Let us consider the particular mode of vibration in which the frequency corresponds to

j.e. the nth mode of vibration. In this case we see from Problem 6.1 that the displacement of
the kth particle is given by

Yeon = Apncos{ettay) 1)

. H
where Ay, = ¢,sin YV_-IW-——l @)
the additional subscript n being used for o, e and ¢ to emphasize that the result is true for the nth

mode of vibration.

Now since the difference equation is linear, sums of solutions are also solutions so that we have
for the general displacement of the kth particle

N
. nk
Y = n§1 ¢, sin N—f—l cos (wgt + ay) )

Qince this satisfies the boundary conditions at the ends of the string, ie. ¥, =10, yn+1 =0, it

represents the required displacement.

The 2N constants ¢, ay, n=1,...,N, can be found if we specify the positions and velocities
of the N particles at the time ¢ =0.

Find the natural frequencies of the string of Problems 6.1 and 6.2 if the number of
particles N becomes infinite while the total mass M and length L of the string re-
main constant.

The total mass M and length L of the string are given by
M =Nnmn, L= {N+1Hr @)
Then the natural frequencies are given by

_ 1 4:N(N + 1) sin nw
fo = 2r ML 2(N+1)

@)

L 1 4 .
or fn = o ]ﬁ NN +1) sm2—(1\7;—:_1—) @
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Now for any particular value of n we have

hm VNN+1) singr— = nz

2(N + 1) 2

[by using for example the fact that for small angles ¢, sing is approximately equal to 6]. Thus
the required natural frequencies are given by

fo = Balir m=1o. *)

M
I =p or M = oL 5)
and (4) becomes
fo = 35 % n=12,... (6)

APPLICATIONS TO ELECTRICAL NETWORKS

64. An electrical network has the form shown in Fig. 6-4 where R4, K> and E are given
constant resistances and V is the voltage supplied by a generator. (a) Use Kirch-
hoff’s laws to express the relationship among the various currents. (b) By solving
the equations obtained in (@) find an expression for the current in any of the loops.

R R R
I \/V\M Iy N\f\)\, . e o o L ‘/VV\I/\[ )
11“‘12 Ik—l_Ik
G) R, R, R, R,
) )
Fig.6-4

(a) For the first loop,

IRy + (1 — IR, —V = 0 1)
For the kth loop,
IRy + (Ig— Ly DBy — (Ix—1 —Ix)By = 0 (@)
For the (N 4 1)th loop,
InyiBy—Un—Ini)By = 0 ()
(b) Equation (2) can be written as
E
Lisy — (2 +R—‘> I+ Ly = 0 @)
2
Letting I, = 7* in (4) it can be written as
2 E, +1 =0 &
72 — {24+ 5~ z, r =
so that .
, = ZHRJ/BR,=VEHERJ/EP =4 B BB

2 2R, R, ' 4R
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Then the general solution of (4) is

I, = elr;“ + czfrgc (6)
R, R, R} R R R?
where 7 = 1 4+ == + ——l—{———l = -1 ._l 1
! 2Rk, E, 4RY "2 v 2R, By, 4R2 @
From (1),
II(RI + RQ) - V
L = — & | ®
From (3),
Io = (B+Ry)Iyiq
N = R, @

Now if we put k=2 and k=N in (6) we have

_ 2 2
I, = eyry t+eors (10
_ N N
Iy = ey + egry (11)
from which
N
Iyry — Iyrs Inr? — Iy
¢4 T SN Co =
2, N ’ 2
7‘17”2 bl ’I‘g"’i\] ”)‘%’I‘g - T%TIN
so that
N __ 2 2 _ N
I _ <Iz’l"2 INT2> I"n 4 <IN’I'1 127’1 > ,,.'"
n 2N _ .2.N 1 2 N _ .2.N 2
Ty — T3T] riTy — T3Ty

where ry, 5 are given in (?) and Iy, Iy are given by (10) and (11).

APPLICATIONS TO BEAMS

6.5.

Derive the equation of three moments
(4) on page 200.

Assume that the spacing between sup-
ports is h and consider three successive sup- I
ports as shown in Fig. 6-5. Choosing origin
O at the center support and letting x be the M,_,
distance from this origin we find that the
bending moment at « is given by

@
Mn + (M'n_Mn—l)z
M) = #)]
M, + (Mn-!-l——M'n)% 0sa=h
where M,_;, M,, M, are the bending moments at the (z — 1)th, nth and (n + 1)th supports.
Now we know from the theory of beams that the curve of deflection of a beam is y(x) where
YIiy" = M(x) )]

and YI, called the flexural rigidity of the beam, is assumed to be constant. Here Y is Young’s
modulus of elasticity and I is the moment of inertia about an axis through the centroid.

Integrating (2) using (1) we find

2
Mnx+(Mn—Mn_1)§—ﬁ+cl —h=x=0
Yy = 2 6]
' Mnx‘|" (M”L‘l“l—M’ﬂ)2—h+62 0=x=h

Now since ¥’ must be continuous at « =0, it follows that ¢, = ¢y = ¢
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6.6.

Integrating (3) we have similarly

M, x2 23
_E_+ (Mn—Mn_l)e—h+cx —h=2=0
Yy = M, x2 23 )
5 +(Mn+1—Mn)6—};+cx 0=x=h

Sinece the deflection y is zero at « = —h,0,h we find from (4)

M, h2 h2
—— - MM, ) —ch = 0 (®)
M h2 3
g~ T Mpyy—Mp) g+ ch = 0 (6)
Addition of these equations leads to the result

as required.

Suppose that the beam of page 200 is of infinite extent on the right and that at the
distance & to the left of the first support there is a load W which acts on the beam
[see Fig. 6-6]. Prove that the bending moment at the nth support is given by

M. = (1" Wh(Z—V/3)"

Fig. 6-6

The bending moment at the distance h to the left of the first support is given by

My, = —~Wh 1)
Also at infinity the bending moment should be zero so that
lim M, = 0 (2
Now from the difference equation
My_+4aM, + M,y = 0 3)
we have on making the substitution M, =
pn=l f g+ gntl = 0 or 12+ 4dr+1 =0 4
—4=16—14
ie. o= e = -2 *+ /3

Then the general solution of (3) is
M, = e)(—2+V3)n+ ep(-2—V3)" (®)

Now since —2 +1/3 is a number between —1 and 0 while —2— v/8 is approximately —3.732, it fol-
lows that condition (2) will be satisfled if and only if ¢, = 0. Then the solution (5) becomes

M, = c)(—2+V3)" (6)
Also from (1) we have ¢; = —Wh so that
M, = —Wh(-=2+V3)" = (~)n+1Wh@—-V3)" )
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APPLICATIONS TO COLLISIONS

6.7. Two billiard balls of equal mass m lie on a billiards table with their line of centers
perpendicular to two sides of the table. One of the balls is hit so that it travels with
constant speed S to the other ball. Set up equations for the speeds of the balls before
the kth impact occurs assuming that the table is smooth and the sides are perfectly
elastic.

Denote by U, and V; the speeds of the balls before the kth impact occurs. Then assuming
that U, refers to the ball which is hit initially we have

U1 = S, V]_ = 0 (1)

Since the sides are perfectly elastic, the speeds of the balls after the kth impact are Uy
and V., respectively. Then the total momentum before and after the kth impact are given by
mU, +mVy, and mUy,;—mV,; respectively. Thus by the conservation of momentum we have

'mUk + ka = mUk+1 - ka+1
or : U+ Vi = Ugsr — Vi (2
In addition we have by Newton’s collision rule
Ugs1+ Vi1 = —e(Upg—V5) 3)
where e is the coefficient of restitution between the two billiard balls.

The required equations are given by (2) and (3) which are to be solved subject to the condi-
tions (1).

'6.8. Determine the speeds of the balls of Problem 6.7 before the kth impact.
Writing the equations (2) and (3) of Problem 6.7 in terms of the shifting operator E we obtain
E—1DUg—F+1DV, =0 (2)
(BE+ U, +E—eV, = 0 @
Then operating on (1) with E —e, on (2) with F-+1 and adding we obtain
(B2+ Uy, = 0 | (3)

Letting U, =%, (3) yields
P2te =10 r = *ife = Vee=mi/2

so that the general solution of (3) is

U, = ei/2(Aemhi/24 Be~mki/2) = ¢k/2 <c1 coszzk + ¢, sin %) (4)
By eliminating V., between equations (2) and (8) of Problem 6.7 we find
(e+1)Vy = 2Ug41+ (e~ DUg (%)
Then using (4)
Vi = o I:{(e— Doy — 2Veey) sin 72 + {(e— Doy + 2Veea) cos 525] ©
From conditions (Z) of Problem 6.7 we have '
Ve <01 cos% + ¢y sin %> = 8 . @
(e—1)ep — 2Vee; = 0 &)
so that
ey = (e_—z_ellS’_ ey = % ®
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Using these in (4) and (6) we obtain the required results

Ue = 18ek—27/2 |:(e — 1) cos % + 2Ve sin 7—';] (10)

Vi = 1Setk=2)2(c41) cos”z—k 1)

APPLICATIONS TO PROBABILITY

6.9.

6.10.

A and B play a game. In each step of the game A can win a penny from B with
probability » while B can win a penny from A with probability ¢, where p and g
are positive constants such that p+¢ =1, We assume that no tie can occur. Sup-
pose that the game is started with A and B having a and b pennies respectively,
the total being a+b =N, and that the game ends when one or the other has M
pennies. Formulate (a) a difference equation and (b) boundary conditions for the
probability that A wins the game.

(@) Let u; be the probability that A wins the game when he has k pennies, Now A will win if
one of the following two mutually exclusive events occurs:
1. On the next step 4 wins a penny and then wins the game,

2. On the next step A loses a penny and then wins the game.
The probability of the first event oceurring is given by

DU +1 (1)

since if A wins on the next step [for which the probability is p] he has k+ 1 pennies and can
then win the game with probability u; . 4.

Similarly the probability of the second event occurring is given by
quz—1 2)

since if A loses on the next step [for which the probability is g] he has k—1 pennies and
can then win the game with probability wu;_ ;.

It follows that the probability of A winning the game is the sum of the probabilities
(2) and (2), ie.
U = PUp+1 T QUE—1 16))

(b) To determine boundary conditions for u; we note that A wins the game when he has M

pennies, i.e.
Similarly A loses the game when B has M pennies and thus A has N — M pennies, i.e.
uy-u = 0 (%)

Obtain the probability that A wins the game of Problem 6.9 if (a) p#gq, (b) p=q¢=4%.

We must solve the difference equation (3) of Problem 6.9 subject to the conditions (4) and (5).
To do this we proceed according to the usual methods of Chapter 5 by letting wu, = r* in equation
(3) of Problem 6.9. Then we obtain

pr2—r+q =0 @

from which
1=xvV1-—4pq 1xv1—-4dp+4p2 _ 1x(1—2p) _

55 2 2 » 4/p 5]

(@) If ps=gq, the roots of (7) are 1 and ¢/p so that
up = ey + exg/p)* 3
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Using the condition (4) of Problem 6.9, ie. uy = 1, we have
1 = ¢+ cyla/pM 4
Similarly using condition (5) of Problem 6.9, i.e. uy_p = 0, we have
0 = ¢ + epg/p)N M %)
Then solving (4) and (5) simultaneously we obtain

— —(g/p)¥N M - 1
°C T o — (glp)N-M° °2 = (g/p)M — (g/p)N-H (6)

and so from (3) we have

(g/p)s — (¢/p)N M ”
(a/p)™ — (qg/pN—HM (

Uy

Since A starts with k = a pennies, the probability that he will win the game is

_ lg/p)r — (¢/p)N M
Ya = (g/pM — (qfp)N-M @)

while the probability that he loses the game is

_ __(g/p)M — (g/p)*
1= % = CpM = (g/p)¥% : ®)

() If p=q=4, the roots of () are 1, 1, i.e. they are repeated. In this case the solution of
equation (3) of Problem 6.9 is
U, — ¢C3 + O4k (10)

Then using uy =1, uy.py = 0, we obtain

est+eM =1, c3teN—-M) =0 (11)
. M~—N 1
Le. &= S-N’ 4T W-N (12)
Substituting in (10)
_ M-—-N+k
e = M —N (19)

Thus the probability that A wins the game is
M—N+a

Yo = TOM-N (24)
while the probability that he loses the game is
1-u = % (15)

6.11. Suppose that in Problem 6.9 the game is won when either A or B wins all the money,
i.e. M=N. Find the probability of A being “ruined”, i.e. losing all his money if

(@) p#q, (b)p=g=1/2.

() Putting M = N in equation (9) of Problem 6.10 we find for the probability of A being ruined

_ {g/p)N —(g/p)* _  (9/p)*T® — (a/p)®
1=u = (a/p)¥ ~ 1 - (¢/p)e*? —1 @

" (b) Putting M =N in equation (14) of Problem 6.10 we find for the probability of 4 being ruined

1—u = N ~ a+b

N—a b @)
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The case where p = ¢ = 1/2 is sometimes called a “fair game” since A and B then have equal
chances of getting a point at each step. From (2) we note that even in a fair game the chance
of A being ruined is proportional to the initial capital of B. It follows as a consequence that
if B has many more pennies than A initially then 4 has a very great chance of being ruined.

This is illustrated by events which take place at many gambling casinos where a person
is competing in a game [which often is not even fair| against an “infinitely rich” adversary.

6.12. A and B play a game. A needs k points in order to win the game while B needs m
points to win. If the probability of A getting one point is p while the probability
of B getting one point is ¢, where p and ¢ are positive constants such that p+¢=1,
find the probability that A wins the game.

Let wu,,, denote the probability that A wins the game. The event that A wins the game can
be realized if one of the following two possible mutually exclusive events occurs:

1. A wins the next point and then wins the game."

2. A loses the next point and then wins the game.
The probability of the first event occurring is given by

DPUhg—1,m 1)

since if A wins the next point [for which the probability is p] he needs only k¥ —1 points to win
the game [for which the probability is #y-1,m)-

Similarly the probability of the second event occurring is
Uk, m—1 @)

since if A loses the next point [for which the probability is ¢] he still needs & points to win the
_game while B needs only m — 1 points to win [for which the probability is -1

It follows that the probability of A winning the game is the sum of the probabilities (Z) and
(2), ie.
Up,m = PUp—1,m T Qi m—1 3

To determine boundary conditions for u,,, we note that if k=0 while m > 0, i.e. if A needs
no more points to win, then he has already won. Thus

Ug,m = 1 m >0 4)
Also if > 0 while m = 0, then B has already won so that
Ue,o = 0 E>0 )

The solution of the difference equation (3) subject to conditions (4) and (5) has already been
found [see Problems 5.58 and 5.54, page 186] and the result is

Ek+1) - (k+m—2)
+ (m—1)! " l:l

wem = pk[l rrg+ MeED gy

FIBONACCI NUMBERS
6.13. Prove that the kth Fibonacei number is given by

o= 1 <1+\/'5'>’°_<1—\/5>’°
o= V5 2 2
We must solve the difference equation

Fp, = Fyoy+ Fi—3 \ 1)

subject to the conditions
F, = 0, F, =1 )
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Letting Fy = r* in (I) we obtain the auxiliary equation

r2—r—1 =20 or r =

e ol (50

From the conditions (2) we find

Then the general solution is

ci+ecp =0 (L+VBley+(@1—VB) = 2
Solving (5) we find 1 1
¢ = =, Cyp = ———
».;and so from (4) we have
Fo= L |[1LtVE /1 —VB\*
k N3 2 2

6.14.

Prove that lim Fress = 1+ \/5

kmw FE 2
We have using Problem 6.13
Fery _ [@+VB)o)R+1— [(1—VB)/2]e+1
Fe — [a+VB)y2— [A—VE)/2l
[+ VE)/2]++1{1 — [ — VB )/ +VB)[F+1}

[(1+VB)/2Je{1 — [(1 = VB )/ +V5)[}

{1—[@—V5)/a+VE)k+1}
{1 —[@—VB)/Q+VB):}

[(1+V5)/2]

Then since | (1—V5)/(1+ VvB)| <1 we have

lim Frvi 1+v8
kmew Fi 2

[CHAP. 6

®)

“

®)

Q)

@)

This limit, which is equal to 1.618033988..., is often called the golden mean. It is supposed to

-represent the ratio of the sides of a rectangle which is “most pleasing” to the eye.

MISCELLANEOUS APPLICATIONS

6.15.

Evaluate the integral

mcoskd — coska
Sk = j(: cosSd — coSa a9

Let a,b,c¢ be arbitrary constants and consider

™ gfcos (k + 1)8 — cos (& + 1)a] P
cos 6 — CoSa 8

aSk+1 + bSk + cSk_1 -= f
0

cosS 8 — CoS a

™ plcos ko — cos k&]
+ f de
0

T k—1)e — k—1
+ f ¢fcos ( ) cos ( Y] o
A cos @ — coSa

0 coS® —COS«

j’" [(a+¢) cos o + b] cos ke + [(c— q) sin 6] sin k¢ "
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If we now choose a,b and ¢ so that

¢ = a, b = —2acosa
the last integral becomes
m
2a f cosksdse = 0 if k=1,2,8,...
0

It thus follows that

Sk+1—2(COSa)Sk+Sk_1 =0 k=1,2,3, ces (1)
From the definition of S; we have )

So = 0, SI =T (2)

We must thus solve the difference equation (1) subject to the conditions (2).

According to the usual methods for solving difference equations we let S, =k in (Z) and

obtain
rhtl — 2(cos ek +7k—1 = 0 or 12— 2(cosa)r+1 = 0

so that

2cosa *= Vdcosla— 4

= = cosa * isina

2
Then by de Moivre’s theorem,
rkE = coska = isinke
so that the general solution is
S, = e coska + ¢, sinke )
Using the conditions (2) we have
e; = 0, cicosatcysine = « : 4)
so that ¢, = n/sina and thus
7 sin ka
St sina ®
which is the required value of the integral.
6.16. Find the value of the determinant
b a 0 0 0 0 O
e b a 0 0 0
0 a b 0 0 0 0
0 0 0 0 0 a a
0O 0 0 0 O a b

Denote the value of the kth order determinant by A;. Then by the elementary rules for evalu-
ating determinants using the elements of the first row we have

Ak = bAk.—-l - a’2Ak—2 or Ak - bAk—l -+ a,2Ak_2 =90 (1)

Letting A, = rk we obtain
vk —prk—14+g2k—2 = 0 or r2—br+ae® =0

from which .
b = Vb2—4a2 @

2
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It is convenient to let
b = 2acosé 3)

so that (2) becomes
r = acosg * aising (03]

Thus since 7* = «*(cos k¢ = isinké) we can write the general solution as
Ay = akley cos ke + ey sin ké) (5)

Now if k=1, the determinant of order 1 has the value Ay =b, while if k =2, the deter-
minant of order 2 has the value

4, = = b2 — a?

Putting k£ =2 in (5) we find that
A2— bAl -+ a2A0 = {

from which we see on putting A, =0b, 4, =b2—a? that Ay =1. It follows that we can solve
(1) subject to the conditions

Ao =1, A]_ = b (6)
These values together with (5) lead to
. _b—acosg _ cosé
o =1, 2 = TTgsine = siné @)
using (8) so that (5) becomes
_ in ko cos 6 ak sin (k 4+ 1)
A. = ak smggcosg | . AU SIMAET 2
k @ [cos ka + sin 6 sin g @)
Using the fact that
¢ = cos—1(b/2a) )]

we can write the value of the determinant in the form
oF sin [(k + 1) cos—1 (b/2a)]

A = sin [os L (6/20)] (20)
2ak+1 sin [(k+ 1) cos™1 (b/2a)]
or A, = 11
V4a2 — b2

The above results hold for |b| < 2|a]. In case |b] > 2la| we must replace cos—! by cosh™L

For the case |b| = 2]al see Problem 6.97.

A man borrows an amount of money A. He is to pay back the loan in equal sums
S to be paid periodically [such as every month, every 3 months, etc.]. This payment
includes one part which is interest on the loan and the other part is used to reduce
the principal which is outstanding. If the interest rate is ¢ per payment period,

(2) set up a difference equation for the principal P, which is outstanding after the
kth payment and (b) solve for Pr.

(a) Since the principal outstanding after the kth payment is Py, it follows that the principal out-
standing after the (k- 1)st payment is Py4q. Now this last principal to be paid is the
principal outstanding from the kth payment plus the interest due on this payment for the
period minus the sum S paid for this period. Thus

Pyoy = Pp+1iP—S ) &)
or Pk+1“‘(1+i)Pk = -8

The outstanding principal when k& =0 is the total debt A so that we have
Py, = A @
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(b) Solving the difference equation (1) we find .
P, = c¢(1+9k+ S/i
and using condition (2) we find ¢ == A —S/i so that

P, = <A-%>(1+i)k+*—§ = A(1+i)k—S|:(1—+%]f:—1] )

6.18. In Problem 6.17 determine what sum S is to be paid back each period so as to pay
back the debt in exactly n payments.

We must determine S so that P, = 0. From Problem 6.17 this is seen to be equivalent to

A +ip — S[(l_'*'%_"Ll“J = 0 (1)
_ 1
or S = A l:—————————l —a +’l)_n:] 2)
The process of paying back a debt according to {2) and Problem 6.17 is often called amortization.
The factor '
1—1+49) "
a w1 p— .___(___)_ (3)

)

is often called the amortization factor and is tabulated for various values of n and i. In terms of
this we can write (2) as

= 4 “)

Ll

6.19. Given the differential equation

d
3;4 = f@9), y@) =y,

Show that if y(x,) =1v,, ¥'(x,) =y, =f(x, vy, then the differential equation is ap-
proximated by the difference equation :

Yer1 = Y TRy, = vy, + Rf(2,9,)
where h=Ax =z, —,.

From the differential equation we have on integrating from « =z to x;;; for which the
corresponding values of y are y, and y, . respectively

f dy = f fw, ) do @

Y Ty
Tty
or ver = vt [ s @
T
If we consider f(x,¥) to be approximately constant between wx; and x4+, (2) becomes

T+
Yr+1 = Yp T+ f Floogs i) do
Ty

v + fowow) | | ®

Y, + hf(ag, vi)
as required.
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6.20. (a)

(0)
(@

®
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Use the method of Problem 6.19, sometimes called the Fuler method, to find the
value of y corresponding to 2 = 0.5 for the differential equation

dy
%:2:24-’!/, y(0)=1

Compare the result obtained in (a) with the exact value.

We have for initial conditions x5 =0, yy=1. Then by Problem 6.19 with k=10,1,2,...
we find

Y1 = Yo T hf(2e, yo)

Yy = Y1+ hf(@y, yy) )
Ys = Yo T+ hf(x9,¥o)
ete.

We can use a convenient value for h, for example % = 0.1, and construct the table of
Fig. 6-7 using equations (1) with f(uxy, ) = 20 + Y.

k @y, Y Y = (g, i) Ye+1 = Y T hyg
0 0 1.0000 1.0000 1.1000

1 0.1 1.1000 1.3000 1.2300

2 0.2 1.2300 1.6300 1.3930

3 0.3 1.3930 1.9930 1.5923

4 0.4 1.56923 2.3923 1.8815

5 0.5 1.8315

Fig. 6-7

From the table we can see that the value of y corresponding to « = 0.5 is 1.8315.

The differential equation can be written as

by _ = 2 @)

dx
fo-vaw

a first order linear differential equation having integrating factor e = ¢—%, Multiplying

by ¢~ % we have

. = _ da . _ _ _
e Idm ye—r = 2xe* or e (e—2y) = 2xwe*
Thus on integrating,
e~ ¥y = f2me—xdx = —2pe* — 2¢"% + ¢
or y = —2x — 2+ ce* ®

Since y =1 when 2 =0, we find ¢= 3. Thus the required solution is
y = 3 — 20— 2 )
Putting = = 0.5 we have for the required value of ¥
y = B8ed5 —2(0.5) — 2 = 3(1.6487) —3 = 1.9461 )

1t is seen that the result in (a) is not too accurate since the percent error is about 51%.
Better results can be obtained by using smaller values of h for example h = 0.05 [see
Problem 6.101].

This method, also called the step by step method, is important because of its simplicity
and algso theoretical value. There are of course many methods which provide greater
accuracy. One of these which is a modification of the Euler method presented here is
given in Problems 6.21 and 6.22. Other methods are given in the supplementary problems.
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6.21.

6.22.

Given the differential equation of Problem 6.19 show that a better approximation is
given by the difference equation
Yy = Yy T 30U HYLL)
Using equation (2) of Problem 6.19 we have
Tp+1
Ye+1 = Y + f flz,y) dz @
T

Instead of assuming that f(z, y) is practically constant over the range from x; to x;44, we use the
trapezoidal rule to approximate the integral in (). We thus obtain -

h
Ye+1 = Yk +'E[f(xk:yk) + floprnverd)] = v T $huk i) (2)
as required.

Use the method of Problem 6.21, sometimes called the modified Euler method, to work
Problem 6.20.

The initial values of « and y are #, =0, ¥, =1 and are entered in the table of Fig. 6-7. In
order to start the procedure using Problem 6.21 we must first find an approximate value of y
corresponding to & = 0.1, assuming that we choose h = 0.1 as in Problem 6.20, For this pur-
pose we use the ordinary Euler method of Problem 6.20 and find

y1 = y(01) = yo+ hf(®we,yo) = Yo+ kYo
= 1.0000 + 0.1(1.0000)
= 1.1000

This is entered in the table of Fig. 6-8 under Approximation I

Approximation Approximation Approximation
I II 111
k Lo Y Y Y 74 Y Yk Ui
0 0 1.0000 1.0000 .
1 0.1 1.1000 1.3000 1.1150 1.8150 1.1158 1.3158 1.1158
2 0.2 1.2474 1.6474 1.2640 1.6640 1.2648 1.6648 1.2648
3 0.3 1.4813 2.0313 1.4496 2.0496 1.4505 2.0505 1.4506 .
4 0.4 1.65657 2.4557 1.6759 2.4759 1.6769 2.4769 1.6770
5 0.5 1.9247 2.9247 1.9471 2.9471 1.9482 2.9482 1.9483
Fig. 6-8

From the differential equation we now find
y1 = flepy) = 200+ g
= 2(0.1) + 1.1000
= 1.3000
which is also entered under Approximation I in Fig. 6-8.
From the modified Euler formula of Problem 6.21 we have on putting £ =20
y1 = ¥+ $hyo+ 1)
= 1.0000 -+ £(0.1)(1.0000 + 1.3000)
= 1.1150

This better approximation to y; is entered in the table of Fig. 6-8 under Approximation IL
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6.23.
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Repeating the process we then find

y1i = f@ELy) = 2%+ 1y
2(0.1) + 1.1150
= 1.3150

and so Approximation III for y; is given by
¥ = Yo + Mo+ y1)
= 1.0000 + %(0.1)(1.0000 + 1.3150)

= 11158
which yields yi = flepy) = 22+
= 2(0.1) + 1.1158
= 1.3158
We then find 1 = Yo+ 3hlye+ 4D
= 1.0000 + —%(0.1)(1.0000 + 1.8158)
11158

Since this gives the same value as that obtained above for y; the desired accuracy to four decimal
places is achieved.

We now proceed in the same manner to find »(0.2) =y, Using the value y; = 1.1158 cor-
responding to %, = 0.1 we have for Approximation I

Yys = Y1+ hf(x,y) = vy T hyi
1.1158 + 0.1(1.3158)
= 1.2474

and vy = flogys) = 209+ ¥
2(0.2) + 1.2474
= 1.6474

i

By continuing the process over and over again we finally obtain the required value y5=(0.5) =
1.0483 as indicated in the table. This compares favorably with the exact value 1.9461 and is

accurate to two decimal places.
It will be noticed that in the modified Euler method the equation
Yer1 = Ur T 3R+ Yi+1)
is used to “predict” the value of y;+y. The differential equation
i = fleg, Yi)

is used to “correct” the value of y,.;. Because of this we often refer to the method as a “pre-
dictor-corrector” method. Many such methods are available which yield better accuracy. See for

example Problem 6.105.

Show how the boundary-value problem
e2U | #U

T ar
U(x,O) = 17 U(x’ 1) = 0: U(O,y) = 0’ U(]"y) = 0

can be approximated by a difference equation., )

It is convenient to approximate the derivatives by using central differences. If we let 8, and
E, denote the central difference operator and shifting operator with respect to @, then the partial
derivative operator with respect to « is given by ]
s 85 Eu2 — E;v2
ox B 3
where the symbol ~ denotes “corresponds to”. Thus by squaring the operators and operating on
U we have

0 0=x=1,0=y=1

D, =
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6.24.

02U 8,2

= 1 -
5~ ml = 75 (BY2 — E; V220

1
= G E—2+E) U@y

= LiU@+hy) —20@ 9 + Ua—h )]

Similarly using operators with respect to y we have

82U

Y~ syZU = l_(El/z_.E—uzzU
o2 e T R2Yy v )

= LB, —2+E; YU, )

= LU y+h) — 20 9) + Ue,y—h)]
It follows by addition that

2U L 2T L it by y) + U —hyy) + U, y+ B) + Ule, y— by — 4U(, )]
axZ | oyl R2 ’ ’ ’ ’ ’
Thus the equation U 22U .
is replaced by Gar? oy?
U@+h,y)+Ux—h,9) + U, y+ k) + U, y—h) — 4Ux,y) = 0
or Ux,y) = U@+h,y)+ U@—h,y) + Ulx,y+ k) + Uz, y — h)] ()]

which is the required difference equation.
The boundary conditions associated with this difference equation are left the same.

Show how to obtain an approximate solution to the boundary-value problem of
Problem 6.23.

We must find Uz, y) at all points inside the square 0=z =1, 0=y =1, TUsing a suitable
value of N and h such that Nk =1, we subdivide the square into smaller squares of sides
h=1/N as in Fig. 6-9. The result is often called a grid or mesh. Instead of finding Uz, y) at
all points inside the square we find the values of U(x,y) at the points of the grid such as A,B,...
in Fig. 6-9. To accomplish this we make use of the difference equation (Z) of Problem 6.23
which is, as we have seen, an approximation to the partial differential equation. By referring
to Fig. 6-10, which represents an enlargement of a part of Fig. 6-9, we see that this difference

equation, i.e.
U,y) = 3[U@—h,y) + Ulx,y+ 1)+ Uw + k, y) + Uz, y — h)] 1)

states that the value of U at P is the arithmetic mean of the values at the neighboring points
A,B C and D. By using this difference equation together with the values of U on the boundary
of the square as shown in Fig. 6-9, we can obtain approximate values of U at all poinfs in the

grid.

Y
U, 1) =0 ?
Uz, y+ 1)
B
AP IC
A P C
D ) . [
U, =0 _ UL, y) =0 Uz —h,y) Ulz, ) Ul + k. y)
D
L
U,y — 1)
X
Ulz,0) =1

Fig.6-9 Fig. 6-10
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In order to illustrate the procedure we shall use
the grid of Fig. 6-11 in which we have chosen for U
the purposes of simplification k =1/3. In this case
there are four points in the grid denoted by 1,2,3,4
of Fig. 6-11. We wish to find the values of U at 1 2
these points denoted by Uy, Us, U, U, respectively.

By applying equation (1) we see that Uy, Uy, Us, v=0 3 4 v=o0
U, must satisfy the equations
U, = XH(U;+04+0+T
U, = %EO-IFU +U +f) @) v=t
3 = %1 1 4+ 1)

The first equation for example is obtained by realizing that Uy, ie. the value of U at point 1, is
the arithmetic mean of the values of U at the neighboring points, i.e. 0,0, U,, U; the zeros being
the values of U at points on the boundary of the square.

The values Uy, U, Uz and U, can be found by solving simultaneously the above system of
equations. For a grid with a large number of subdivisions this procedure is often less desirable
than a method called the method of iteration which can take advantage of machine calculators.

Tn this method of iteration we first assume a trial set of solutions. The simplest is to take
Uy =0, Uy=0, Ug=0, U, =0. We refer to this as Trial Number 1 or the first trial as re-
corded in Fig. 6-12. :

Using the values of U,, Uy, Us, U, from the Trial 1 in equation (2) we then calculate the new

values
U, =0, Uz;=0, U; = 02800, U, = 0.2500

These are entered in Fig. 6-12 for Trial 2.

N'lr.lfrililer Ui Us Us Uy

1 0 0 0 0
2 0 0 0.2500 0.2500
3 0.0625 0.0625 0.3125 0.3125
4 0.0938 0.0938 0.3438 0.3438
5 0.1094 0.1094 0.3594 0.3594
6 0.1172 0.1172 0.3672 0.3672
7 0.1211 0.1211 0.3711 0.3711
8 0.1231 0.1231 0.3731 0.3731
9 0.1241 0.1241 0.3741 0.3741
10 0.1246 0.1246 0.3746 0.3746
11 0.1248 0.1248 0.3748 - | 0.3748
12 0.1249 0.1249 0.3749 0.3749
13 0.1250 0.1250 0.3750 0.3750
14 0.1250 0.1250 0.3750 0.3750

Fig. 6-12



CHAP. 6] APPLICATIONS OF DIFFERENCE EQUATIONS 221

Using the values of U, U,, Uy, U, from the Trial 2 in equations (2) we then calculate the
new values
U, = 0.0625, U, = 0.0625, Uz = 0.3125, U, = 0.3125

These are entered in Fig. 6-12 for Trial 3.

By continuing in this manner the remaining entries in Fig. 6-12 are obtained. The process
is continued until the yalues for U,, U,, Uz, Uy no longer change as indicated by the last two lines.
We see that the values are

U; = 01250, U, = 0.1250, Uz = 03750, U, = 0.3750

As a check the values can be substituted back into equations (2) and will be found to satisfy
them.

. 02U 32U

The equation ) + T 0 3)

is called Laplace’s equation in two dimensions. This equation arises in various problems on heat

flow, potential theory and fluid flow. In problems on heat flow for example, U = U(w,y) rep-

resents the steady-state temperature in a plane region such as a thin plate whose faces are

insulated so that heat cannot enter or escape. In the problem above, the region is a square, one

of whose sides is maintained at temperature 1 while the remaining sides are maintained at tem-

perature 0. In such case the values of U represent the steady-state temperatures at various

points in the square.

Supplementary Problems

APPLICATIONS TO VIBRATING SYSTEMS

6.25.

6.26.

6.27.

6.28.

Show that if we assume that the tension of the string in Problem 6.1 is constant but that the
displacements are not necessarily small, then the equation of motion for the kth particle is
iven b
g y a2y, . .
m—y = Wk W)

W — Ye—1D/h
\/1 + (Y — Yr—1)*/ b2

where wy

Show that if |(yx — ¥x—1)/h] <1 the equation of Problem 6.25 can be approximated by

iy,
mes = %(yk—l_zyk'i_yk-i-l) + E%[(yk—yk—l)s_ Wr+1— ¥)®]

Show that if the string of Problem 6.1 vibrates in a vertical plane so that gravity must be taken
into account, then assuming that vibrations are small the equation of the kth particle is given by
a2y,
T2 ﬁ(yk—l_2yk+yk+1) +9

where ¢ is the acceleration due to gravity.

By letting . = u, + F(k) in. the equation of Problem 6.27 and choosing F(k) appropriately, show
that the equation can be reduced to
dzuk

e ;,:—h(uk—l—zuk'l“ukﬂ)

and discuss the significance of the result.
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6.29.

6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

APPLICATIONS OF DIFFERENCE EQUATIONS {CHAP. 6

‘Suppose that the string of Problem 6.27 fixed at points P and Q [see Fig. 6-1} is left to hang

vertically under the influence of gravity. Show that the displacement yy of the kth particle is
given by

m,
v = —ggaml-m)  k=1,2..,N

where 2, = kh is the distance of the kth particle from P.

Suppose that in the string of Problem 6.1 the number of particles N becomes infinite in such
a way that the total mass and length are constant. Show that the difference equation in this
limiting case becomes the wave equation

Py _ ¥y

otz pdx2
where r is the tension and p is the density [mass per unit length] of the string, both assumed
constant.

What does the equation of Problem 6.30 become if the vibration takes place in a vertical plane
and gravity is taken into account?

Suppose that in Problem 6.1 the tension in the string is not constant but that in the portion of
the string immediately to the right of particle & the tension is 7. Show that the equation
of motion of the kth particle is &

Yre

de?

and write corresponding boundary conditions.

1
m EA(Tk—IA'yk—l)

(@) By letting y, = A coswt in the equation of Problem 6.32 show that we obtain the Sturm-

Liouville difference equation
A(TR_IAAk_l) + mwzhAk = 0
(b) Discuss the theory of the solutions of this equation from the viewpoint of eigenvalues and
eigenfunctions as presented in Chapter 5.

(¢) Tlustrate the results of this theory by considering the special case where the tension is
constant.

Suppose that at time t =0 the position and velocity of the kth particle of Problem 6.1 are given
by ;(0) and 7,(0). Show that the position of the kth particle at any time £> 0 is given by

— al : nkr 4 _ N t+ b, si t) in nkr
Y = n§1 Cq Sin 77 €08 (wat + o) = ngl {@,, COS oy n 8in opt) Sin 7
where @y, b, or ¢, and a, are determined from
N
2 . nkr
a, = C,C08a, = Nr1 k§1 21(0) sin N1
N
. —2 o . nkx
b, = —epsiney, = AT kgl yx(0) sin NT1

(¢) Show that if the (N + 1)th mass of the string of Problem 6.1 is free while the first mass is
fixed, then the frequency of the lowest mode of vibration is

_ T . T
o= \}'Jn’ilsmzN—1

(b) What are the frequencies of the higher modes of vibration?
[Hint. If the force on the (N 4+ 1)th mass is zero then ¥y = ¥n+ 1]

(o) Give a physical interpretation of the boundary conditions ag¥o T e1¥1 = 0, anyn t+
aN+1YN+1L T 0 in Problem 6.1.

(b) Obtain the natural frequencies of the system for this case.
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6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

An axis carlh'ies N equally spaced discs which are capable of torsional vibrations relative to each
other [see Fig. 6-13]. If we denote by g, the angular displacement of the kth dise relative to the
first disc show that

I—dZZ— = 0(0k+1_20k+ ak—l)

where I is the constant moment of inertia of each dise about the axis and o is the torsion constant.

Fig.6-13

(¢) Using appropriate boundary conditions obtain the natural frequencies for the system of
Problem 6.36.

(5) Explain how you would find the motion for the kth disc by knowing the state of the system
~at time ¢t=0.

(¢) Compare with results for the vibrating system of Problem 6.1.
Work Problem 6.37 if the first dise is fixed while the last is free.

A frictionless horizontal table AB has on it N identical objects of mass m connected by identical
springs having spring constant K as indicated in Fig. 6-14. The system is set into vibration by
moving one or more masses along the tablé and then releasing them.

k m k m

0000  |+0000— | GOOTY o o o o

Fig. 6-14

(@) Letting #; denote the displacement of the kth object, set up a difference equation.
(b) Find the natural frequencies of the system.
(¢) Describe the analogies with the vibrating string of Problem 6.1.

Suppose that the string of Problem 6.1 with the attached particles is rotated about the axis with
uniform angular speed Q.

() Show that if ;. is the displacement of the kth particle from the axis, then

Q2h
Yr+1 — 2 <1*m——"27 >2/k + Yp—y = 0

(b) Show that the critical speeds in case mQ2h/4r < 1 are given by

4r nr
o= — sin ————— =1 .
& = A ttgwen T hEeeN

and discuss the physical significance of these.

Discuss the limiting case of Problem 6.40 if N = « in such a way that the total mass and length
remain finite.

Explain how you would find a solution to the partial differential equation in Problem 6.30 subject
to appropriate boundary conditions by applying a limiting procedure to the results obtained in
Problem 6.2.
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APPLICATIONS TO ELECTRICAL NETWORKS

643. An electrical network consists of N loops with capacitors having constant capacitance C,, Cy
in each loop as indicated in Fig. 6-15. An alternating voltage given by Vy = K sinwt where
K and o are constants is applied across AyBy. If it is required that the voltage across AyB,
be V, =0, show that the voltage V) across Ay B is given by

sinh uk

Vi sinh uN sin wi
C
where u = cogh~1 <1 + 2_Cz_>
1
C c c ¢
By H By-1 L 1 B 1 B
1} _}_ — | ‘l- e * . -L — - -J: {—'
TC2 TC2 C, _l_ Cy
L ] L] L J
Ay An—y Ay A
Fig. 6-15

6.44. Work Problem 6.43 if the capacitors C; and C, are replaced by inductors with constant inductance
Ll! L2‘

645. Work Problem 6.43 if the capacitors C, are replaced by resistors having constant resistance .

6.46. Can Problem 6.43 be worked if it is required that the voltage across A,By be V> 0?7 Explain.

APPLICATIONS TO BEAMS .

647. Suppose that in Problem 6.6 the beam is of finite length NA. Show that the bending moment
at the mth support is given by

yrt1—N — pn+1-N
M, = —Whl: L 2 ]

FI=N — 1N
where 7, = —2+ V38, mp= —2—+/3.

6.48. Show that as N - « the result in Problem 6.47 reduces to that of Problem 6.6.

6.49. In Fig. 6-16 AB represents a continuous uniform beam on which there is a triangular load dis-
tribution where the total load on the beam is W. Suppose that the beam is simply supported at
the N +1 points Py, Py, ..., Py at distances h apart. (a) Show that the three moment equation
can be written as Wh

“Nzk

Mgy + 4My + Mgy =

where the bending moments at the ends A and B are zero, i.e. My =0, My=0. (b) Show that
the bending moment at the kth support is given by

_ WD e (2+\/§)k—(2—\/§)k} B E]

e ov LY k{(2+\/§)N—(2—\/§)N N

Alfe Py Py Pyl B
A A A L L] L

Fig. 6-16

650. Does lim M, exist in Problem 6.497  Explain.
i N=+x
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APPLICATIONS TO COLLISIONS

6.51.

6.52.

6.53.

6.54.

Show that the speeds of the balls in Problem 6.7 follow a periodic pattern and determine this
period.

(¢) Work Problem 6.7 if the two masses are given by m; and m, where m; % m,. (b) Determine
the values of m,/m, for which the speeds will be periodic and determine the periods in such cases.
(¢) Discuss the motion for the case m; = 2m,.

A billiard ball is at rest on a horizontal frictionless billiards table which is assumed to have the
shape of a square of side ! and whose sides are assumed to be perfectly elastic. The ball is hit
so that it travels with constant speed S and so that the direction in which it travels makes the
angle ¢ with the side. Determine the successive points at which the ball hits the sides.

What additional complexities arise in Problem 6.53 if the billiard table has the shape of a rec-
tangle? Explain.

APPLICATIONS TO PROBABILITY

6.55.

6.56.

6.57.

6.58.

Suppose that in Problem 6.9 we let u;, ,, be the probability of A winning the game when he has
k pennies while B has m pennies.

(a) Show that the difference equation and boundary conditions for u,,, are given by
Upom = PUgsi,m—1 T Qg—1, mt1
up,N-m = 1, uy-pmu = 0

(b) Solve the difference equation in (@) subject to the conditions and reconcile your results with
those given in Problem 6.9. [Hint. See Problem 5.59, page 189.]

Suppose that in a single toss of a coin the probabilities of heads or tails are given by p and
g=1—p respectively. Let uy,, denote the probability that exactly & heads will appear in n
tosses of the coin.

(«) Show that Ugtt,n+1 = DPUe,n * Q1,0
1 k=0
where U0 = 0 k>0

(5) By solving the problem in (@) show that

n
uk,n = k pkqn—k

This is called Bernoulli’s probability formula for repeated trials.

Suppose that A and B play a game as in Problem 6.9 and that A starts out with 10 pennies
while B starts out with 90 pennies. (@) Show that if » = ¢ = 1/2, ie. the game is fair, then the
probability that A will lose all of his money, i.e. A will be “ruined”, is 0.9. (b) Show that if
p =04, ¢=06 then the probability that A will be “ruined” is 0.983. {¢) Discuss the sig-
nificance of the result in (b) if A represents a “gambler” and B represents the “bank” at a
gambling casino. (d) What is the significance of the result in (b) if 4 is the “bank” and B is the
“gambler”?

Suppose that in Problem 6.9 p > ¢, i.e. the probability of A’s winning is greater than that of

'B. Show that if B has much more capital than A then the probability of A escaping “ruin” if

he starts out with capital a is approximately
1 —{g/p)*
What is this probability if »p =06, ¢g=04 and (¢) e=35, (b) o =100?
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6.59.

6.60.

APPLICATIONS OF DIFFERENCE EQUATIONS [CHAP. 6

Let D, denote the expected duration of the game in Problem 6.9 when the capital of A is k.
(@) Show that D, satisfies the equation
D, = pDyy1+ qDe—1+1, Dy =0, Dyyp = 0

i = k + b (g/p)—1
(b) Show that if ptq, Dy = e q9/p
prd * g—p gq—plle/pert—1]

(¢) Show that:. if p=q=1/2, D,=k(e+b—k) and thus that if A and B start out with
initial capitals @ and b respectively the expected duration is ab.

Work Problems 6.9-6.11 in case a tie can occur at any stage with constant probability ¢> 0 so
that p+q+e=1.

THE FIBONACCI NUMBERS

6.61.

6.62.

6.63.

6.64.

6.65.

6.66.

6.67.

6.68.

6.69,

Let F, denote the kth Fibonacci number and let R, =Fy/Fri1.
() Show that R =
(b) Show that R, =

H
+
=

-+
|t

ie. a continued fraction with k divisions.

(a) Solve the difference equation of part (@) in Problem 6.61 for Ej.

(b) Show that lim B, = ‘/52‘ 1
fraction in part (b) of Problem 6.61.

and thus obtain the limiting value of the infinite continued

If F, denotes the kth Fibonacci number prove that
FyorFeoi —Fp = ((1F k=123,

Generalize Problem 6.63 by showing that .
FroimFrom —Fi = (Dktm—1F} E=mm+l,m+2 ...

A planted seed produces a flower with one seed at the end of the first year and a flower with
two seeds at the end of two years and each year thereafter. Assuming that each seed is planted
as soon as it is produced show that the number of flowers at the end of k years is the Fibonaeci

number F.

Find the number of flowers at the end of k years in Problem 6.65 if a planted seed produces a
flower with four seeds at the end of the first year and a flower with ten seeds at the end of two

years and each year thereafter.

Generalize Problems 6.65 and 6.66 by replacing “four seeds” and “ton seeds” by “a seeds” and
«p seeds” respectively. What restriction if any must there be on o and b?

® )

Find the sum of the series 3 FooF
k=0 k+1 L k+3

k k k
Show that F, = %[(1) + <3>5 + <5> 52 + ]

where F) is the kth Fibonacci number.
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MISCELLANEOUS PROBLEMS

6.70. In Pascal’s triangle [see Fig. 6-17] each number is obtained by taking the sum of the numbers
which lie immediately to the left and right of it in the preceding row. Thus for example in
the sixth row of Fig. 6-17 the number 10 is the sum of the numbers 6 and 4 of the fifth row.

1 5 10 10 5 1
1 6 15 2 15 6 1

Fig. 6-17

(a) Show that if u;_ ,, denotes the kth number in the mth row, then
1 k>0

U1, m+1 = Ug+l,m T Ug,m  Where g p = {0 k=0

(b) Solve the difference equation of (a) subject to the given conditions and thus show that

m
Uk, m = k

i.e. the numbers represent the binomial coefficients.

6.71. The Chebyshev polynomials Ty(x) are defined by the equation
Ty1(®) — 22T (%) + Ty () = 0
where Tolx) = 1, Ty(x) = &
(a) Obtain the Chebyshev polynomials To(x), Ta(x), Ty(x).
(b) By solving the difference equation subject to the boundary conditions show that

T.(x) = cos(kcos~1x)
6.72. The Bessel function J,(x) of order k can be defined by
T
T(@) = %f cos (ko —  sin 8) d8
0

Show that J,(x) satisfies the difference equation
afy+1(@) — 2kJy () + Jp—1(x) = 0

6.73. Show that the Bessel functions of Problem 6.72 have the property that
Je(@) = 3[Tg—1(@) — T +1(2)]
6.74. The Laplace transform of a function F(x) is denoted by

F@y = f6) = [ e=F@de

0

(@ Show that £{Jo(e)} = —
s2+1
[VeE+1— st
(0) Show that £{Ji(x)} =
s2+1

6.75. Suppose that a principal P is deposited in a bank and kept there. If the interest rate per pe?iod
is given by 4, (@) set up a difference equation for the total amount A, in the bank after k periods

and (b) find Ag.
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6.76.

6.77.

6.78.

6.79.

6.80.

6.81.

6.82.

6.83.

APPLICATIONS OF DIFFERENCE EQUATIONS [CHAP. 6

A man deposits a sum S in a bank at equal periods. If the interest rate per period is 4, (@) set up
a difference equation for the amount A, in the bank after » periods and (b) show that

= a+aom—11 _
4, = S[+] = Ssi);

Such a set of equal periodic payments is called an annuity.

Work Problem 6.76 if the successive deposits are given by S,S+a,8+2¢,S+3a, ... . Discuss
the significance of the cases (a) ¢ >0, (b) a<0.

In a particular town the population increases at a rate a% per year [as measured at the end of
each year] while there is a loss of g individuals per year. Show that the population after k years

is given by 1008 © 1008
- _ AYvp @ A
b= (oo 1090)(10 )y 1

where Pj is the initial population.

Does the result of Problem 6.78 hold if (a) « <0, 8<0, (b) «a>0, 8<0, (&) a<0, g>07
Interpret each of the cases.

Let S denote the sum of the kth powers of the n roots of the equation
t + agrn—l + a2 4 e 4 g, = 0
(a) Show that
S;+a; =0, So+a;S;+2a,=0, ..., S,+aS, 1+ +a, S +mn, =0
(b) Show that if k> =
S+ #Sp—; + @3Sk + - @S, = 0
Obtain the generating function for the sequence Sj; of Problem 6.80.

A box contains n identical slips of paper marked with the numbers 1,2, ..., % respectively. The
slips are chosen at random from the box, We say that there is a coincidence if the number M is
picked at the Mth drawing. Let u; denote the number of permutations of % numbers in which
there are no coincidences. (a) Prove that the number of permutations in which there is 1 coin-

1
X k
is {,, Uy 'Where m =0,1,...,k

k . . . ..
cidence is ( ) Ug_q1- (b) Prove that the number of permutations in which there are m coincidences

(a) Prove that u; in Problem 6.82 satisfies the equation

k k k k
U -+ <1>uk—1+<2>uk—2+ cee + E—1 u1+ A Uy = k!, u0=1

(b) By solving the difference equation in (a) prove that

_ 1 1,1 =D
%1—"{a‘a+z“ +7FJ

(¢) Show that the probability of getting no coincidences in the drawing of the n slips from the
box of Problem 6.82 is given by :
11 e
21 3! n!

(@) Show that for large values of n the probability in (¢) is very nearly

1 —el = 0.63212...

(¢) Discuss how large = must be taken in (d) so that the probability differs from 1 — 1/e by less
than 0.01.
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6.84.

6.85.

6.86.

6.87.

6.88.

6.89.

6.90.

6.91.

6.92.

An inefficient secretary puts n letters at random into n differently addressed envelopes. Show
that the probability of getting at least one letter into its correct envelope is given by
1 1 1 (—1)n+1
SR TR TR H T
and thus show that for large » this probability is about 1/e = 0.36787.... Can you explain from
a qualitative point of view why this probability does not change much with an increase of »n as for
example from 100 to 2007

Find the probability that at least two people present at a meeting will have their blrth dates the
same [although with different ages].

A group of players plays a game in which every time a player wins he gets m times the amount
of his stake but if he loses he gets to play again. Let wu, denote the stake which a player must
make in the kth game so that he gets back not only all that he has lost prevxously but also a
profit P,

(¢) Show that u; satisfies the sum equation

k
my, = P+ ¥ Uy
p=1
(b) Show that the sum equation of (@) can be written as the difference equation
m
U1 — 7% = 0

(¢) Using appropriate boundary conditions show that

v = P[m \F
E T o om\m—1

State some limitations of the “sure profit” deal in Problem 6.86 illustrating the results by taking
m =2,

A box contains slips of paper on which are written the numbers 1, 2, 3, ..., n [compare Problem
6.82]. The slips are drawn one at a time from the box at random and are not replaced. Let
Uy, denote the number of permutations [out of the total of n! permutations] in which there is
no coincidence in k given drawings.

(@) Show that U,m = Ug—1,m = Ug—1,m—1, U0 = k!

(b) Show that the solution to the difference equation of part (a) is

k k k k
Up,m = <0>m! - <1>(m—1)! + <2>(m—2)! — .-+ (——1)k<k>0!

where 0! =1,
{¢) Show that the probability that there will be no coincidence in the k drawings is uy, ., /m!.
(d) Show that for k =m the probability obtained in (¢) reduces to that obtained in Problem 6.82.

A and B play a game with a deck of n cards which are faced downwards. A asks B to name a
card. Then A shows B the card and all the cards above it in the deck and all these cards are
removed from the deck. A then asks B to name another card and the process is repeated over
and over again until there are no cards left. If B does not name any of the top cards then A
wins the game, otherwise B wins the game. Find the probability that A wins the game.

If the deck of Problem 6.89 has 52 cards, determine whether the game is fair if B offers A
2 to 1 odds.

A sequence has its first two terms given by 0 and 1 respectively. Each of the later terms is
obtained by taking the arithmetic mean of the previous two terms. («) Find the general term
of the sequence and (b) find the limit of the sequence.

An urn has b blue marbles and » red marbles. Marbles are taken from the urn one at a time and
each one is returned following the next marble taken. Determine the probability that the kth
marble taken from the urn is blue if it is known that the nth marble taken is blue.
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6.93.

6.94.

6.95.

6.96.
6.97.

6.98.

6.99.

6.100.

6.101.

6.102.

6.103.

6.104.

6.105.

APPLICATIONS OF DIFFERENCE EQUATIONS [CHAP. 6

In the preceding problem what is the probability if nothing is known about the nth marble taken?

(¢) Show that the Stirling numbers of the second kind satisfy the equation
u = (k+1Du + u where = 41 k=0
k+1, m+1 k+1,m k. m k.0 = 0 k<0

(b) Use (¢) to show that

G Vi k k " k . et k
Ugm = g [1 (g )+ (g)em D) <k km]

and verify this for some special values of % and m.

There are three jugs which have wine in them. Half of the wine in the first jug is poured into
the second jug. Then one-third of the wine in the second jug is poured into the third jug.
Finally one-fifth of the wine in the third jug is poured back into the first jug. Show that after
many repetitions of this process the first jug contains about one-fourth of the total amount of wine.

Generalize Problem 6.95.
Work Problem 6.16 if (a) |b} > 2lal, (B) |b] = 2|al.

(@) Show that Newfon’s method [Problem 2.169, page 78] is equivalent to the difference equation
flay)

x = Xy — 57 Xy — @
n+1 n fr(xn) ’ 0

() Can you find conditions under which lim x,, exists? Justify your conclusions.

= O

Let .41 = ';—(anr‘xi), 2, >0, zp=a, A>0
n

(a) Prove that lim x, exists and is equal to VA.

n=—+x

(b) Show how the result of (a) can be used to find V2 to six decimal places.
Can you formulate a method for finding {’/f analogous to that of Problem 6.99.

Work Problem 6.20 by using & = 0.05 and discuss the accuracy.

(z) Solve the differential equation

dy _ =
dm—w+y, %(0) 1

for %(0.5) using h = 0.1 by using the Euler method and compare with the exact value.

() Work part (o) using h = 0.05.
Work Problem 6.22 by using % = 0.05 and discuss the accuracy.

Given the differential eguation 7
d—i = a2, oy =1

(@) Use the Euler method to find y(1.5) and compare with the exact value.
(6) Find y(1.5) using the modified Euler method. ’

(@) Obtain from the equation %’c—: f(z,y) the approximate “predictor” formula
h
Yes1 = Yp—1 + §(y£~1+4y;€+yé+1)

() Explain how the result in (@) can be used to solve Problem 6.20 and compare the accuracy with
the modified Euler method.
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6.106.

6.107.
6.108.

6.109.

6.110.

6.111.
6.112.

6.113.
6.114.

6.115.

6.116.

6.117.

6.118.

6.119.

(a) Explain how the method of Taylor series can be used to solve a differential equation. (b) Illus-
trate the method of (a) by working Problem 6.20. [Hint. If 3 =ax+y, then by successive dif-

ferentiations y"” =149/, ¥ =y”, .... Now use the Taylor series y(x) = y(a)+ (x — a)y'(a) +
(z—aya) , | 1
21 :

Work (a) Problem 6.102, (b) Problem 6.104 by the method of Taylor series.

Explain the advantages and disadvantages of (¢) the Euler method, (b) the modified Euler method,
(c) the Taylor series method for solving differential equations.

() Explain how the Euler method can be used to solve the second order differential equation

@2y _ dy
a2 = f<w, %@)

= =z +y y(0) =1, ¥(0) =0

(b) Use the method of (a) to solve

Py
dx?

for y(0.5) and compare with the exact value.

Show how the differential equation of Problem 6.109(a¢) can be solved using the modified Euler
method and illustrate by solving the differential equation of Problem 6.109(b).

‘Work Problem 6.109(b) by using the Taylor series method.

Explain how you would solve numerically a system of differential equations. Illustrate your
procedure by finding the approximate value of x(0.5) and %(0.5) given the equations
dx dy

= = t — = = =
at +y ¢ &y t, x(0) = 0, y(O) 0

and compare with the exact value.
‘Work Problem 6.24 by choosing a grid which is subdivided into 16 squares.

Explain how you could use the results of Problem 6.24 or 6.113 to obtain the steady-state
temperature in a square plate whose faces are insulated if three of its sides are maintained at 0°C
while the fourth side is maintained at 100°C.

Explain how you could use the results of Problem 6.24 or 6.113 to obtain the steady-state tem-

perature in a square plate if the respective sides are kept at 20°C, 40°C, 60°C and 80°C.
.U | U _

Solve the equation Fy) + el 0 for the plane Y

region shown shaded in Fig. 6-18 with the indicated

boundary conditions for U. 0,2) =

The equation 92U 92U

Py 3175 = plx,9)

where p(x,y) is some given function of ¥ and ¥ is
called Poisson’s equation. Explain how you would
solve Poisson’s equation approximately for the case
where p(x,%) = 100/(1 +x2+y%) if the region and
boundary conditions are the same as those of Prob-
lem 6.23. Fig.6-18

o0l U=1 @0

Explain how you would solve approximately Laplace’s equation in three dimensions given by

92U 92U | 9*U 0
2 dy2 922
inside a cube whose edge is of unit length if U = Ul(x,y,2) is equal to 1 on one face and 0 on

the remaining faces.
Explain how you would find an approximate solution to the boundary-value problem

W _ v

ot ax2’ U@©,t) = 0, ULt = 0, U0 =1
X



"
k

Stirling Numbers
of the First Kind s

Appendix A

T {99— | 26T | 0298— | €aF°LEE | 8EG'LEOT— | GEG'6EE'ET | 08L°G66'GP— | 9L0'BST‘COT | 9L6°LTE0ST— | OPR'EPC'0ZT | 008°9T6'68—| 2T
T |gg— |03gT |09T'8T—|€LLLST | 990°G06— | 0E6°9TF'E | 009°607'8— |9LG€GLBT | 0F9°839°0T— | 008°829°€ | IT
T |ep— |28  |ogve—  |erze9  |s@e'e9z— |089'€EL  |00LBLTI— |9L9920°T. | 088°B9E— | OT

T 98—  |9%g 9897~ | 6¥32 788°L9— | POT'SII 789°60T— | 028°0% 6

I 82— 238 096°T— 69L° 2eT'el— 890°CT 090°G— 8

I 12— gLT g8L— $29°T 79LT— 03L L

I g1 a8 87— 742 03T— 9

I 01— g8 09— 73 g

T 9— IT 9— v

T g g g

I = 2

I I
gr] 11| o1 6 8 ) 9 g 14 g ¢ T 2\

232



cond Kind

Q
8
~
£
=y
~

T | 99 | co0uT | er2@e | Lz0'6eT | 96€°229 | 2e9‘ezeT | 00%6LeT | TOSITO | 92998 | L¥0°z Al
1 | e | earr | ossTr | s6'®9 | ssveur | osrevz | osu'err | Tog'sz | 8301 I
I oF 08L 088's | 12822 ey c0I%¢ | 08e'6 | TIg o1

I 98 297 9792 1969 oL’y | seo'e | 993 6

I 82 992 090°T TOLT | 996 131 8

I 13 0F1 098 108 €9 L

I a1 g9 06 18 9

T ot 92 a1 g

I 9 L v

T g g

I z

1
gr| 11| o1 6 8 L 9 g ¥ g 4 ANy

233



Appendix C

All values Bs, Bs, B?, P

By
B,
B-
B,
Bs
Bs
By
Bi;
Bis
Big
Bys
By
B2
By
By
Bys

Bsg

_ 691
2,730

< JEN]

3,617
510

43,867
798

174,611
330

854,513
138

_ 236,364,091
2,730

8,663,103
6

_23,749,461,029
870

8,615,841,276,005

are equal to

14,322

Zero.

= —0.500000000...

= 0.166666666. . .

= —0.0333333333...

= 0.02389523895. ..

= -0.0333333333...

= 0.075757875. ..

= -0.2531135531135...

= 1.1666666666. ..

= =T.092156862745098039215. ..

= 54.971177944862155388. . .
= —b529.1242424242. ..

= 6,192.1231884057898550. ..
= —86,580.2531135531135. ..

= 1,425,517.16666. ..

~ —27,298,231.067816091954. . .

601,580,873.90064236838. . .
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Appendix D

B, o(x) =

Bix) =
Biz) =
Biz) =
B(x) =
Biz) =
Boz) =
Biz) =
Bix) =
Byz) =

B 10((0) =

1
51

2
xz—w+%

3 ,,1
w"'——§x +§
2 — 2% + 2t — o

30

5 5 1
5 e —d —_ 3 .
x ok +3:c 6%

5 1 1

6 __ 5 T ad . Tm2 ey
x 3z +2x 2x +42

7 7 7 1
7 . b — e T —
x 295 +2x 6w3+6a:

14 7 2

8 . 7 o8 et a2
x 4m+3w g% +3x

9 21
9 __ Y .8 T . = a8 3
x 5% + 6x 5 v + 2
x‘°——5x°+1§5-w8—7x°+5x4—-
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Appendix E

All valves E, Es, ...

are equal to zero.

E,
E,
E,
Es
Es
E
E:
Eu
Es
Eis
Eq
Ea
E

1

-1

5

—61

1,385

~50,521

2,702,765

—199,360,981
19,391,512,145
—2,404,879,675,441
370,371,188,237,525
—69,348,874,393,137,901
15,514,534,163,557,086,905
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Appendix F

Eo(x) =1

E1(.’.U) = ¥ —

Do =

Esxx) = %xz - %x

Esx) = %x*” - %xz + —2-11

1 1 1
Eyx) = ggat — 52" + 35

1 5__1_x4+Lx2 1

Es(x) = 1207 48 487 T 240
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Fy
F,

Fs
F,
Fs
Fe
Fy
Fs
Fo
Fy

F12
Fys
F14

Fie
Fu
Fis
Fi
Fy
Fa
Fa
Fos
Fay
Fos

00 U W N e O

21

34

55

89

144
233
377
610
987
1,697
2,684
4,181
6,765
10,946
17,711
28,657
46,368
75,025

238

Fag
Far
Fag
Fa
Fs
Fs
P,
Fas
Fa
Fas
Fye
Fa
Fas
Fs9
Fy
Fa
Fy
Fys
Fy
Fys
Fae
Fy

Fy
Fso

121,393
196,418
317,811
514,229
832,040
1,346,269
2,178,309
3,524,578
5,702,887
9,227,465
14,930,352
24,157,817
39,088,169
63,245,986
102,334,155
165,580,141
267,914,296

- 483,494,437

701,408,733
1,134,903,170
1,836,311,903
2,971,215,073
4,807,526,976
7,778,742,049
12,586,269,025



Answers to Supplementary Problems

CHAPTER 1
146, (@) 1+ 2vVe + = (e) 16x% — 8243 + 3242 — 22 + 6 (7) 0
(b) 2% — 43 + 222 4 62 — 3 (f) 2x%+ 422 — 622 — 62 (7) 1627(1 — =)
(e) 9 (9) 4xt + 84 — 222 — 62
(d) 63z 2) (h) 2x(dx + 1)
152, (a) 8xh + 4h2 — 24 () (x-2h+1)2 (1) 222 + 14xh 4 19h2
3
(b) Vbx-+5h—4 (f) 328 + 8x2h + 6xh2 + «2 () 422h? 4+ 9ah3
(c) 4n? (9) O
(d) 322 + 12xh + 12R2 + 3 (h) 222+ 14xh + 19h2
153. (a) Yes (b) No
155. (a) Yes (b) Yes (¢) Yes
159. (a) Yes (b) No
1.61. (a) Bx2—6x+2)dx (b) 6(dx)?
1.68. (a) (52 + 2023 — 142+ 3) () —32(—4 + 62(—3)  (g) h(x(D) — x(—3))
1.69. () h2(24x(—5 — 18— +8)  (b) 24a(D — 12057
1.70. (@) 32 — 25 4+ 2 and 2@ + (B —5)xV 4+ 2
(b) 2x® + 120> + 1923 4 3™ + 7 and 20 + 12ha® + (14k2 -+ 5)z(2 + (2R84 5h — 4)2 D + 7
1.71.  (a) 4%3 + 6x2h — 122h2 — 4x + 26R3 — 2R + 5
(b) 1222 4 24xh + 1452 — 4
1 .
172. (@) (22— 1)(2¢ — B5)(2z — 9)(2c — 13) @) Gz+12)5r 7 22)(5a + 32) (6w T 42)
(®) (8 + 5)(3x + 2)(3x — 1)
@
© Uz - 1)@z +3)
173, (a) (3x—2)®, h="1/3 () (@—2)=9, hL=2
®) (2x+2)®, b =13/2 (d) Ru—5)~9, h=2

239




240 ANSWERS TO SUPPLEMENTARY PROBLEMS

1 _ 2 _ 3
176. sj=1, s =-1, s =2, s1 =0, s3=1, s3=-3, 51 =0, s5=0, s =1

177, Si=1,87=1,81=1, S3=0, 85=1, Ss =3 St=0 85=0, S5=1
178. ST =1, S; =31, S§ =90, St =65 S =15 St=1

181. (a) 32 — 21 + 2 and 3@ 4+ (Bh—5)x + 2
(D) 22 + 1203 4+ 1922 4 32D + 7 and 2x@® + 12k« + (14k2 + 5)x(2) + (243 -+ Bh — 4)2(1) + 7

1.87.  2%(x2 4 122 + 30)
188. (ab — D)"xa* -+ nh{ah —1)n—1gzth
189,  (ah — 1)ma2a® + 2nh(ak — 1)~ lgas+h + nh2(nah — 1)(ah — 1)yn—2qe+h

191. (o) doh — 2R2+ 3k (b) 4xh + Bh  (c) 4h2 (d) 4R?

192. 0
194. Yes
197. Yes

1.116. (a) 18h2x — 4h2 + 18h% (b) 24h%x + 12h° + 36h*

CHAPTER 2
_ nn—1) .,
252. (a) Y+n — Y + nAyk + 21 A Y B A”yk
nn —1
B) A%, = Ygan — Wr4n—1 T (2! )yk+n—2 — o )y

254, () yp = K® — k@ — kD —3
(B) Ay, = 3k@ — 2k —1 = 8k2—5k—1
(&) A%y, = 6k —2 = 6k—2
(d) Ny, = 6
(e) Aty = 0

256. 60Kk + 108k + 54

258. 1489, 2053, 2707, 3451, 4285, 5209

259. (b) 2366, 3994, 6230, 9170, 12910

261 5

263, A=4 B=0, C=-2 D=4, E=4, F=—1, G=—5 H=2, J=3, K=-1, L =0

264. (@6 (BT (05



2.68.

2.69.

2.71.

2.72.

2.74.

2.76.

2.7,

2.79.

2.80.

2.81.

2.82.

2.83.

2.84.

2.85.

2.86.

2.87.

2.88.

2.92.

2.93.

2.98,

2.99.

2.100.

ANSWERS TO SUPPLEMENTARY PROBLEMS
@) wp = 3k2—2k+4 (b)) w = Lkk+1)(k+2)
(@) w = K3— §k2+21lk—4 (b) 651
y = w3—-4x2+5w+1_
y = H=8%—bx?+ Ta+21)

Exact value = 0.70711, Computed value = 0.71202

() Exact value = 0.71911 (b) Exact value = 0.73983
(¢) Exact value = 0.87798 (b) Exact value = 0.89259
(¢) Exact value = 0.93042 {b) Exact value = 0.71080

Computed value = 0.90399 Computed value = 0.70341
(¢) Exact value = 0.49715 (b) 1.76 X104

Computed value = 0.49706
(a) Computed value = 0.49715
Exact values (a) 1.27507 (b) 1.50833
Exact value = 0.92753
Exact values (@) 0.30788 (b) 0.62705 (c) 0.84270
(b) Computed value = 0.71911
Computed values (a) 0.87798, 0.89725 (b) 0.49715
Computed values (a) 0.71940, 0.73983  (b) 0.87800, 0.89726 (c) 0.49715
Computed values (e) 0.71915, 0.73983  (b) 0.87798, 0.89726  (¢) 0.49715
Computed value = 0.92752
Computed values () 0.71912, 0.73983  (b) 0.87798, 0.89720 (¢ 0.49715
(@) v = a3 — 42+ 52+ 1 (b) 0.49715

(@) v = 203 — 322+ 55 +2 (b) 44 (o) 202 (d) 874

(@) 4n® — 27n2 + 59n — 35 (D) 7,85

(d) 0.92756
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242 ANSWERS TO SUPPLEMENTARY PROBLEMS

2101, (o) sinaz = 2.80656(x/x)t — 6.33780(x/x)® + 0.21172(x/x)2 + 8.12777(x/x)

(b) Computed values and exact values are given respectively by 0.25859, 0.25882; 0.96612, 0.96593;
0.64725, 0.64723

2103. 15
2104. 106, 244
2.105. Exact values are 0.25882, 0.96593

2.106. (a) 44,202 (b) 874

2107. 6.2,7.6,11,17

2.108. 8,14, 22, 32

2111. Exact values are 0.97531, 0.95123, 0.92774
2113. (b) f(x) = 322 — 11z + 15 (e} 19,159
2114. (o) f(z) = 2«3 — 20z + 40 (i)) 65, 840

2121. (b) 1.82472 (¢) —0.66236 = 0.56228i

2.122. 1.86881, —1.68440 * 3.43133i

2123, 2.90416, 0.04792 = 1.31125¢

2.124. 0.5671

2125. 0, 49651

2.126. Exact value = 3.67589

2127, 2.2854%

2.128. 3.45

2.129. Exact value = 0.2181

2.131. Exact value = 0.08352

2.132. Exact values are (a) 0.4540 (b) —0.8910
2.133. Exact values are (e¢) 1.2214 (b) 1.2214
2134. Exact values are (a) —0.31683 (b) —0.29821
2135. Exact values are (a) 0.91230 (b) 0.72984

2138. A=6 B=8, C=6, D=8, E=2 F=-2, G=—4, H=-4, J=-2, K=-3



ANSWERS TO SUPPLEMENTARY PROBLEMS

2.140. Exact value = 3.80295
2.141. Exact values are (e) 1.7024  (b) 2.5751
2.142. 11.72 years
2.143. (@) 0.9385 (b) 0.6796
. 2.144. Exact value = 22.5630
2.145. 2.285%
2.146. (a) 38.8 (b) 294
2.148. Exact values are 0.74556, 0.32788, 0.18432, 0.13165, 0.08828, 0.05261
2.150. 0.97834, 0.66190, 0.47590, 0.34600, 0.24857, 0.17295, 0.113829, 0.06604, 0.02883
2151 fay=28" """
2157, Lk(k+1)(2k+1)
2158. (a) $k(k+1) (b) 1k%(k+1)2
2159, 1k(6k%+ 3k —1)
2160. (a) 2k® — 5k + 8 + 2k (b) 1177
2165. k=10
2.166. All values of k
2168. At x =6, f(x)} = 0.68748 should be 0.68784
CHAPTER 3
35, (@ Z T 4T oo (d) 20 — B~ + ¢
() %m3/2—%x4/3+c (¢ 4In(x—2)+ ¢
() 2(2sin3x + cos3x) + ¢ ) —l%% +e
357. (o) —je 3=(x+3) +ec (¢) $a(lnw —§) +e
() 2sinx —xcosz + ¢ (d) %x31n3w-%x3lnx+%x3+c
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244 " ANSWERS TO SUPPLEMENTARY PROBLEMS

358. (a) 1w sin2z — %% cos2x + Jcos2x+e

(b) {e2™(4ad — 6x2+6x—3) + ¢

359, (a) In(e* + sinx) + ¢ (d) _‘17 tan—1 <90 '; 2> +e
(b) 2eVE(Vz—1)+¢ () 2(2';1_ 5+

. 3 3 3 3 3
(¢) 6 cosVz + 6V sin Ve — 3Va2 cos Va + ¢

3.65 @ % sin r{e—3h) h cos rx
.65. a
2 sin Lrh 4 sin? 1rh
) —z cos r(x — 4h) h sin rx
2 sin 7h 4 sin2 4rh

6. @768 ®0 ©1 (@ 5p

1 1

867. 15~ Smr2)m+3)

3.68. (n+1)2ntl—2n¥2 42

x sin (@ — 4h) hcosrx
3.72. (o) — —
2 sindrh 4 sin2 4rh
b —zx cos r(x — %h) h sinre
®) 2 sin {rh 4 sin2 irh

3.74. (a) 3n(n+1) (b) $n(8n—1)

375, (a) in(n+1)n+2) (©) jn(nz+6n—1)
(B inin+ D+ 2)n+3) (@ n@n2+6n+1)

n n 1 1 1 1
376, @ —37 ® g,r1 © 3T EmrHEnTH @ %~ SmrDn+2

378, (n—1)20+142

381, @1 @3 ©g @D
382. Lnin+1)(n+2)3n+5)

383. 2nti(n2—2n+38)—6

384, Ln@n—1)@n+1)

3.85. 1

nz
@ GIDm+D



3.86.

3.89.

3.90.

3.91.

3.93.

3.94.

3.95. -

3.96.

3.102.

3.103.
3.104.

3.105.

3.108.

3.110. ‘

3.111.
3.114.

3.115.

3.119.

3.125.

(@) 2

ANSWERS TO SUPPLEMENTARY PROBLEMS

2n + 5 5 23 2n2 4+ 14n + 23

127 2m+2)(n+3)’ 12 (b) 480 4(n -+ 2)(n+ 3Hn+ Dn+5)’ 4380

l—lgn(n +1)(n+ 2)(Br+1)

(a)

21 |, 1
@ 5 * 1%

0 Zn+ TH2n+5)@n+ 3)2n+ 1)(2n—1) (b)

512 4+ n b 5
12(n+2)n+3) - 12

1

23

1

(@) 11n2 4 19n ) 11
6(2n + 1)(2n 4+ 3) 24

n+ 2

2 - on

nn+ 1)2n+1)

_*
(1—«a

@6 T BT

@ 3 @

{I"(ac +n+1)

(e +n+1)

In general,

(a) Bglx) =

& [1+a— (n+1)2a" + (2024 2n — L)ant1 — n2gn+2]

15

Vr
4

P etnt+l)  [Te+D)® | r+1)
'z+n+1) T(x+ 1) T(x+1)

§ 1 (=Dt dt [Metetl) M+l
=+ k) T (r—Dldem 1| Tw+n+1) e+l

4 3 2 5 4 3
x x 2 1 X x X x
55(90) =

94 12 Ta24 720’

120 48 " 72 720

—1/30, 1/42, —1/30

(a) %nQ(n +1)2 (b) % n(n+ 1)(2n + 1)(3n2 +3n—1)

8By(x) — 4B,(x) + Bo(x) + 2Bs(x) + 5By(x)

(a’) g4 = O)
(0)  Eyx)
(¢) Ey =5,

es = —1/240 »
_ 1 1 1 IR SRS SNV SO
=517 T e Ty ® Es) = 557 T g™ T 8% T 240
By =0

2x(x3 — 622 + 18x — 26)

)

90 8(2rn+1)2n+ 3)(2n+5)

—1/30, 0
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246 ANSWERS TO SUPPLEMENTARY PROBLEMS

3126. (n+1)8 cos2(n+1) — Bn2+9n+7) cos 2(n+2)
+ 6(n+2) cos2(n+38) — 6cos2(nt+4) — cos2

+ Tecosd — 12 cos6 + 6cos8

3.132. {n*(2nt+ 6n3 + 5n2 — 1)

3146, (@) #/4  (b) #/32  (¢) w/V2

3162. B, = —1/2, By =1/6, By =0, B, = —1/30, By =0, Bg = 1/42

CHAPTER 4
440.  (a) n2 @ 4nn+1)n+2) (9) f5nn+ D+ 2)@n+17)
(b) in2n—1)2n+1) () in*(n+1)? (h) 3n(3nm3 + 4602 + 2557 + 596)

() —é—n(6n2 + 3n—1) (f) 3@2n—1)2n+ 1)(2n + 8)(2n + 5) + I8

x4+ 1

M. G5

442, [14+a-— (m+ 12+ 2n2+ 2n— Dr+l — n2xn+2]/(1 — )3

443. 9/32

% x(x+1) 3+ 6w — #?
M @ g m O g © —q—ap
445. 359/500
446. be—1

448, (x*—Tx?) sinx + (¢ —62%) cos®

449. 3o coshvz + Ve 1+ x) sinh Vo

4.50. gnt2 4 §n+lp — 9(n+ 1)2¢n + 3(2n2 + 2n — Ljan 1 — n2pn+2]

__®
3n(3 _ x)3 [
459. Exact value = 1.09861
461. Exactvalue = 1

4.62. 0.63212



ANSWERS TO SUPPLEMENTARY PROBLEMS

464. (@) 4n(n-+1)@2n+1) (@ inm+1(n+2)
(b) In*(n+1)2 (d) Gnn+1)(2nr+1)(3n2 +3n—1)
467. vy = 0.577215
470.  1.20206
478. Exact value = 3,628,800
4.79. 2100/5y/27 =~ 4,036 X 1028
483, we *(2—x)
18 (@ qg5 2@t 16)1(12;F jé)(2n+ 5 @ 156
486.  1.092
488. (@) 1.0888
494. (-1 In(n+1)
495, 2(m2—2n+3) — 3
499. (a) 1.09861  (b) 0.785398  (c) 0.63212
CHAPTER 5
560. (b) y=5er—ux2—2x¢—2
561, y(x) = 51+ k) — a2+ (h—2)x — 2
563. y = 2cosx + Hsinz + 322 — by — 2
566. (@) Yps1— (R+1y = AP
(B) Ypso— 2Wpe1 + L+ A2y, = 8hAk2 — (3h3 + BRAhE + 4h2
567. (@) Yp+s — pio+ i1 — Y = h3EG) — 22D
(0) Yp+qat Y = coshk
568. (@) 2f(w-+2h) — 3f(x+h) + flz) = 0
() F@+8h) + 4f(z+2h) — 5fa+h) +2f(@) = T — 4%+ 1
5.69.

(a), (), (&), (e), (), (¢) Hnearly independent; (b), (k) linearly dependent
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5.75.

5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.85.

5.86.

5.87.

(@)
(b)
(¢)
(d)

Yi

Y

Y

Y

Y

Y

Y

Yy
Yr
Y
Y
Yr

ANSWERS

= ¢1(—8)k -+ co(—2)F
= 92k

= ¢, (—2/8)F + cof—2)F
= 5(3)k + T (—3)k

= 4(—8/2)k:

5e2k — 2.8k — 3

kr

kr . . 3kr
€1 s~ 4+ ¢y sin— 4 ¢gcos—— + ¢4 sin—

4

e (B/2)k/2 4 ¢x(—5/2)k/2 4+ (5/2)k/2 <03 cosk—ﬂ. + ¢4 sin&>

7k

3

27k
2k <61 + ¢ cosz— + g sinL>

28 + cp(—2)F + 4k <03 cos@z + ey sinﬂ>

4

k .
¢; - 2k/2 <cz cos§7T— + e3 smL>

TO SUPPLEMENTARY PROBLEMS

() v = 2%/2 cos (8ak/4)

@) Yx 2k—1 gin (kr/2)

(h) v = (5/2)¥[e; sin (kn/2) + ¢y cos (kr/2)]
(D) i 3k(¢q + eok)

(5 ye = (—1/2)k(e; + cok)

1

Il

3kr

4 4

2 2

3

2 2

3nlk
4

(Cl + 62k)2k + (C3 + C4k -+ 05k2 + Cgks)(_z)k
+ e4% + B(eg cos ke + cg sin ke)

where ¢ = tan—1(—4/3)

Yr+o + 6Uksg + BUktr — 136U 16 — 4845 T 464y +4 T 33T0yk 15
17920y +5 — 633634, — 6400y, = 0

(B —2)2E + 2)4(E — 4)(E2+6E +25)y;, = 0

or

(a)
(0)

()

()
(e)
()

{9)

(h)

(@)

Y

Yk
Yi

Yr

Yk
Y

Yk

Y

Y

Yk

= cl+022k+%-4k

= 2, +egk) + k2 + 4k + 8

kx

ke , 2k _ BTk 371

= 2'k<clcosE + czsin—2—> ] T_E—FE

= 1k -1k + 1

= (=1)k(e,+ k) + Lk — 1 + L2k

= Bh(k— 1)+ 452
k3

= cl+022—k+§—

4
= 2k <cl cosl{‘z + ¢ sin—) + %(—3)" + 2k — <

2

9k2 127k
o 7%

kr

2 5

= o + og(—1)F — g-g—k

¢+ Bk a=1

{Cak—f—ﬂ/(l—a) a1

¥, = 2[cos 2k -+ cos (2k — 4)}/(1 + cos 4)



5.88.

5.89.

5.90.

591.

5.92.

5.94.

5.95.

5.96.

5.97.

5.100.

5.103.

5.106.

Y

Yx

Y

Y

(a)

(b)

(0

(d)

¥
()

()

Yr

()

Yr

Y

()
(b)
(¢)

(@)

Y

()
(b)
(c)
(d)

Yr

Yx

Y

Yr

Yy

Yi

Yr

Yy

Y

Y
Yx
Y

Y

Y
Yr
Y
Y

ANSWERS TO SUPPLEMENTARY PROBLEMS 249

(2] + 022k + C33k + 2k + k2 — %k-zk — ?1;_5k

€12k + ¢o(—2)k + 2k <¢:3 cosk

ci(—1)k + ¢y cosk + ¢ smk ~+

+ ey sin—-

2

Jer k2 67k
2

15 225

2k
3 65 + 16 cos 9 [

208 11,041

_— t — = == -

422 4.3k

3375 65

8 cos (83k — 9) + cos 8k]

01+ 8=K/2 £ co(—8) K2 + cy(~1)F + ¢4 + 8¥ < ko _52 >

- CI+022k+2’3k_—lT'5k

2
= (=2)¥(e;+ esk) +ZC__1§’£+Z
7 9
= ( +3O>3 + o= + 2 — 2
= 4h(oytogk) + Sh2eak — 2 (—2)k
1em 32 36

= (3 <01 cosk + ey sm——) + k3 — 6k + 2k + 18 +ta

= 2k(ey+eok) + f—;(k4—4k3 + 5k2 — 2K)

= ¢ + ek + cgh® + LKS + Lkt — L8kt

5

ke2k gk
= 2% + ey(—2)k + 2k <03 cos% + ¢y sinﬁ> - —152 - 74—5 + + =

4

k 7k
—§)k k in T ™
cy{(—6)k + e2% + —= 558 (25\/§ sin ~5 105 cos 3>

Cy + 62’0 + 03(_2)k + <C4 +

k 8k , 38
= k 4+ eg,4k — LA = 4
€2 cd 3k + + 9 + == a7

k KTk TR
k- = -
60>3 2" 54 T 108

.k
(eq - eok) cos% + (e3+ c4k) sm-z—” + 3k — Z

64 65

s 51k 3k2
= 2k + 8% + fk® + 8k — § (&) wr = e + col@)F — T 4+ 25 _( 2)k
= ¢ + ek + K2+ 3B + Ledk
: : ’ ? Y v = e cosk3 + ¢y sin 37r
= (cl+02k+%k2)2_k
kr kr & (= 2 & 1 . wlr+1)
= cpeos +62s1n—2~ T§0k+2¢ \/§r§o T=r—915" 3
2

o + B2 4 ’—‘2— + % + (ca—BR)ZE + 053
= 2k(2k—1) () wr = 2(-1)*1—Fk)
= 1-—1/2k () ye = o1 + ok + o5k?
= 2k1—k) (9) v = (—D¥eq+cgk) + 3(2k—1)
= 6,87k + 2~k (R) y, = 2-k—1(k2+ 8Kk)
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5.107.

5.108.

5.111.

5.112.

5.113.

5.114.

5.115.

5.116.

5.119.

5.122.

5.133.

5.134.

5.135.

5.136.

5.137.

Yx

(@)

()

(c)
{d)
(e)

Yi

Yx

Y&

Y

Y

(a)

(v)

Yr

Y

Y

Yk

Y

Yx

Yi

Y

Yx

Yr

Y

Y

ANSWERS TO SUPPLEMENTARY PROBLEMS

( 1)r4r 1 1
_—(k-—r)' +;-_i:] + = (—4)

k=0

ol — 1)1 — ﬁo (le— 1)¢—

e(—2)k (—1)ykm
G—nr T ,go 2r+1

1
T 4k

© S we =
K=0

e(—DRE—1! + k — 1 + §0 (—1)r+ i — 1)

%(k — DL + (—4)%1]

k
= 1) S [2rHipl — 2rtk(e4r—
r=0

1]

k—1 k—1 e
1+e) rgl (r—11 — s§1 rgo (g —1)(—n

k— 11
A—1)! 2 + B(k—1)!

*k—1! E 5,27l

1312

(2) k® k(6
1 <1 + L + +

+ o <k<1) + o

183 " 1+82+5  132e52+7

—] + B(k—1)!

k(3) JC5) ECD
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ANSWERSE TO SUFFLEMENTARY PROBLEMS

@ =T ghere a=10+V5), £=11-V5)
(b) Y = cos(c-2k)

Y. = e(_l)k—l(cl + Czk)
Yp = ¢13F or ¥, = cy2F
(@) yr =2 cos (#/2kF1)  (B) 2

U = (=2 + ey v = —ey(—2F + ey

Y = = Do 2541+ oy(—2)k+1], g = (k—1)! [0,2% + ex(—2)¥]

uy, = {g(uy+ vg) + (1 —p)ug— quo](p — @)F}H/(1—p+q)
v, = {1 —p)up+vy) + [que— (1 — Phugl(p — @}/ (1 —p+q)

u, = gt (ug T vk, v, = v — (uy+ vg)gk

U, = (61 6k)(VB)E + (c5+ eyk)(—VB )k
v = (2¢; + 6ey + 2e.k) (V8 )k—1 + (2cy + 6, + 20,k)(—V/8 k-1

wt) = 1+t 2+ L L

(a) et

u(ee,y) = (—2)*F(x+y)

ule,y) = 2%(3x -+ 3y +2)

wz,y) = (—2)"F(x+y) + oy — 2 — 2y + 2
uw,y) = 3x/hF<%+%> — i~ 1y — ih + 3k
ulw,y) = 2x/hF<%—%> + G<%+ %)

Wem = F@k—m) — 2k—m+1

e = (1)

Ue,m = 28F(k—m) + Glk—m) + 2mH(k—m)
U = Flk—m)

U, = Fk—m) cos”s—k + Gk —m) sinﬂg + H(k—m) cos T2 4 J(k — m) sinz-gﬁ

3

3
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ANSWERS TO SUPPLEMENTARY PROBLEMS

5163. wu(y) = 8ktle~/3
4 8 3 5 7
5.167. (c = 1 T A TR o x 4
©@ v cO( tetigtres T teletrtagitass
5169. (@) ¥ = elHRER + ool shEr + L4 2
® ¥ = er + cpr + 4 10
3 9
22
5170, y = e %{¢; + eow+ 53
(—1)%k+D2%EE-1 [ odd
5.177. =
Y {(—1)1/2k2!/ék(k—1) k even
5178. ¥, = tan I:c + 3 tan—1 (1/2’“)]
ciak+l 4 oo+l
BABL Wk = TR opF b where o B = 1[b=Vb2+4a]
_ 2e4+8---(E—1ac
5182. y, = 17375 % k odd
_ 1+8¢5--+(k—1)
Y = 546 ke k even
5183. g, = Fk+m) + kEGE+m) + k2H (k -+ m)
5184, uy, = st = Stirling numbers of the first kind
5185. up,m — S’fn = Stirling numbers of the second kind
k—1y
5187. yr = cos <47r S —>
r=1 r
5188. Y(x) = (x—1/e
22 — 4 + 1 + 2¢tanl
5189. Y(x) = cos 1
1 1 1 ooy (FLE—d
5190. u, = ﬁ—-z—!—i-—?,—i—" + ]
5191, (o) wlx,y) = 1(Bx+2y)?2 + g~ (3r+2u)/2
592 _ ¥ _ %Y
— 2 Yy L =
)  ux,y) 22 + % 13 3 3 + 1
5192. (@) ulw,y) = 2 +y + 2y
®  uey = y[l + <§—A>w - %ﬂ
CHAPTER 6
VB —1 < 1—ak ) 1—-V5
6.62. a T where a =
(@) 2 1 — aktt 1+ \/g
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6.104.

6.109.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

. | ,
——{(4+V19)k — (4 —1/10 )k
2\/E{( k\/_) (4—V19)%y
2

(@) Tolx) =242—1, T;(x) =623 —38x, T,(x) =8x¢t—8x2+1

@ Apyy=Ap+id, () A =P+

An+1 - (1+1)An =8

Apsi—(A+DA, = S+na, A4, = “;SZ [ +de— 1) -2
1 1 1 (—=1)»
21 T3t Tt g

2, (cpr- 2
(a) 3 + 3791 (®) 3

b + (=1)k—np

btr BTG tr—1kn
b
b+r
(@) Exact value = 1.7974
() Exact value = % = 1.72265625

(b) Exact value = 1.1487

Exact values: #(0.5) = 0.645845
y(0.5) = 0.023425

U=0
Lk ols U, = 0.071428571, U, = 0.098214285,
, Uy = U,, U, =0.1875, Us = 0.2500,
U=0 4 5 6 lu=0 y,=u, U,=0428571428,
7_18 9 Us = 0.526785714, Uy = U,
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Abel’s transformation, 85
proof of, 101

Actuarial tables, 75

Algebra of operators, 2

Amortization, 215

Amortization factor, 215

Annuities, 55, 75, 228

Anti-derivative operator, 79

Approximate differentiation, 39, 40, 60-62

Approximate integration, 122-124, 129-136
error terms in, 132-134 '
Gregory’s formula for, 124, 134-137

Arbitrary periodic constant, 82, 93

Area, 80, 92

Associative laws, 2

Auxiliary equation, 153, 165-168

Averaging operators, 10, 88, 108

Backward difference operator, 9, 24, 25, 124
Beams, applications to, 200, 206, 207
Bending moments, 200, 206, 207
Bernoulli numbers, 86-88, 105-108, 234
generating function for, 87, 110
Bernoulli polynomials, 86-88, 105-108, 235
generating function for, 87, 109, 110
Bernoulli’s probability formula for
repeated trials, 225
Bessel functions, of order k, 227
of zero order, 75
Bessel’s interpolation formula, 36, 48, 50
Beta function, 117
Billiards, 208
Binomial coefficients, 9, 13, 227
Boundary conditions, 150, 151
Boundary-value problems, involving
difference equations, 151
involving differential equations, 150
numerical solution of, 219-221
[see also Numerical solution]
Sturm-Liouville, 158, 178-181

Calculus of differences, 4

[see also Difference calculus]
Capacitance or capacity, 200
Capacitors or condensers, 200
Casorati, 54, 157, 164, 165
Central difference operator, 9, 24, 25
Central difference tables, 35, 47-49
Characteristic funections, 158

[see also Eigenfunctions]
Characteristic values, 158

[see also Eigenvalues]
Chebyshev polynomials, 227
Clairaut’s differential and difference

equations, 197
Coefficient of restitution, 201, 208

INDEX

Coincidences, problem of, 228, 229
Collisions, applications to, 200, 201, 208, 209
Commutative laws, 2, 13
Complementary equation, 168
[see also Homogeneous equation]

Complementary function or solution, 155, 160
Complete equation, 153, 155
Complex numbers, conjugate, 153

polar form of, 153, 154
Complex roots of auxiliary equation, 1563
Conditional probability, 201
Conservation of momentum, 201
Continued fraction, 226
Convergence, intervals of, 8
Convolution, 193
Corrector methods, 218, 230
Cube roots, 11, 75
Cubing operator, 1, 10, 11
Currents, 200

De Moivre’s theorem, 154
Definite integrals, 80, 81, 91, 92
approximate values of
[see Approximate integration]
Definite sums, 83, 84, 96, 97
Density or weight, 159
Dependent events, 201
Derivative operator, 1, 8, 10, 14, 15
relationship of to difference and differential
operators, 4
Derivatives, 3
Leibnitz’s rule for, 9, 24
mean-value theorem for, 8, 27
partial, 81, 160
of special functions, 5
Determinants, evaluation of, 202, 213, 214
Difference calculus, 1-31
applications of, 32-78
general rules of, 5
Difference or differencing interval, 2
Difference equations, 150-198
applications of, 199-231
boundary-value problems involving, 151
with constant coefficients, 152
definition of, 150, 151
formulation of problems involving, 199
linear, 152
mixed, 159, 182, 183, 188, 189
nonlinear, 152, 159, 181, 182
order of, 151, 152
partial [see Partial difference equations]
series solutions of, 158
simultaneous, 159, 182
Difference operator, 2, 3, 11-14
backward, 9, 24, 25, 124
central, 9, 24, 25
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Difference operator {cont.)
forward, 9
relationship of to differential and derivative
operators, 4
second and nth order, 3
Difference and sum of operators, 2
Difference tables, 23, 82, 83, 40-42
central, 35, 47-49
Differences, caleulus of, 4
central, 9, 24, 25, 85, 47-49
leading, 33
Leibnitz’s rule for, 9, 24
of polynomials, 33
of special functions, 7
of zero, 26
Differentiable functions, 1, 10
Differential, 3, 4
Differential calculus, 4
Differential-difference equations, 159, 182
Differential equations, 150, 161
boundary-value problems involving, 150
as limits of difference equations, 151, 152,
162, 163
numerical solution of, 202, 215-221
order of, 150
partial [see Partial differential equations]
Differential operator, 3, 4, 14, 15
relationship of to difference and derivative
operators, 4
Differentiation, approximate, 39, 40, 60-62
general rules of, 4, 5
of an integral, 81, 84, 111
of sums, 84, 97
Diagamma funection, 86, 104, 105
Distributive law, 2
Divided differences, 88, 39, 56-59
Doubling operator, 1

e, b
Eigenfunctions, 158, 178, 179
expansions in series of, 159, 179, 180
mutually orthogonal, 159, 178
Eigenvalues, 158, 178, 179
reality of, 158, 179
Elastic collisions, 201
Electrical networks, applications to, 200,
205, 206
Equality of operators, 1
Error function, 70
Error term, in approximate integration
formulas, 123, 132-134
in Euler-Maclaurin formula, 125, 137-140
Euler-Maclaurin formula, 124, 136, 137
error term in, 125, 137-140
evaluation of integrals using, 124
Euler method, 216
modified, 217
Euler numbers, 88, 89, 108, 109, 236
Euler polynomials, 88, 89, 108, 109, 237
generating function for, 89
Euler transformations, 148
Euler’s constant, 85, 117

INDEX

Events, dependent and independent, 201
mutually exclusive, 201

Everett’s formula, 77

Expected duration of a game, 226

Exponents, laws of, 2

Factorial funections, 5, 6, 16-20
generalized, 7

Factorial polynomials, 6

Faectorization of operators, 158, 176

Fair game, 211

Families of curves, one- and

two-parameter, 197

Fibonacei numbers, 202, 211, 212, 238
table of, 238

Finite differences, 4

Flexural rigidity, 206

Fluid flow, 221

Forecasting, 34

Forward difference operator, 9

Fourier series, 118

Frequency, 199, 202-205

Gamma function, 6, 70, 76, 85, 86, 102-105
Gauss’ interpolation formulas, 36, 50
derivation of, 49
General solution, of a difference
equation, 151, 161, 162
of a differential equation, 150, 161
of a partial difference equation, 160
Generalized interpolation formulas, 36
Generating function, for Bernoulli
numbers, 87, 110
for Bernoulli polynomials, 87, 109, 110
for Euler polynomials, 89
method for solving difference equations,
157, 158, 174, 175, 183, 184, 186, 187
Gravity, vibrating string under, 221
Gregory-Newton backward difference
formula, 36, 48, 49
derivation of, 48
Gregory-Newton formula, 9, 21-24, 36, 42-47
inverse interpolation by means of, 59, 60
with a remainder, 9, 22, 23
in subscript notation, 34
used in approximate integration,
122, 129, 130
Gregory-Newton forward difference formula
[see Gregory-Newton formula]
Gregory’s formula for approximate
integration, 124, 134-137
Grid, 219 ’

Heat flow, 221
[see also Steady-state temperature]
Homogeneous linear difference equations, 153
with constant coefficients, 153, 165-168
in factored form, 153

Identity or unit operator, 1
Indefinite integrals, 79
Independent events, 201
Index law, 2



Inductance and inductors, 200
Induction, mathematieal, 14, 42
Inelastic collisions, 201
Integral calculus, fundamental theorem
of, 81, 91, 92
important theorems of, 82
Integral-difference equations, 159
Integral operator, 1, 79, 89-91
Integrals, 79-81
definite [see Definite integrals]
evaluation of, 202, 212, 213
indefinite, 79
- mean-value theorem for, 81
of special functions, 80
Integrating factor, 158, 216
Integration, 79
approximate [see Approximate integration]
constant of, 79
by parts [see Integration by parts]
by substitution, 79
of sums, 84
Integration by parts, 79, 90, 91
generalized, 90, 91, 11
Interest, 75 :
problems involving, 202, 214, 215
Interpolating polynomial, 39
uniqueness of, 44, 45
Interpolation and extrapolation, 34, 45-47
Interpolation formula, Bessel’s, 36, 48, 50
Gauss’, 36, 49, 50
generalized, 36
Gregory-Newton backward
difference, 36, 48, 49
Gregory-Newton forward difference
[see Gregory-Newton formula]
Lagrange’s [see Lagrange’s interpolation
formula]
Stirling’s, 36, 47-49
Intervals of convergence, 8
Inverse function, 39
Inverse interpolation, 39, 59, 60
Inverse operator, 2, 11, 79, 156
Iteration, method of, 220, 221

Kirchhoff’s laws, 200, 205

Lagrange’s interpolation formula, 34, 38, 52, 53
inverse interpolation by means of, 59, 60
proof of, 52, 53

Laplace transforms, 227

Laplace’s equation, in three dimensions, 231
in two dimensions, 221

Law of the mean for derivatives, 8

Leading differences, 33

Leibnitz’s rule, for derivatives, 9, 24
for differences, 9, 24
for differentiation of an integral, 81, 84, 111

Limits, 3, 15

Linear difference equations, 152

Linear operators, 2, 12, 93, 170

Linearly dependent and independent

functions, 154, 164, 165
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Linearly dependent and independent
solutions, 154, 155, 165, 166

Logarithm, natural, 5

Lozenge diagrams, 36, 37, 50-52

Maclaurin series, 8

Mathematical induction, 14, 42

Mean-value theorem for derivatives, 8, 27
proof of, 27

Mean-value theorem for integrals, 81

Mechanics, applications to, 199

Mesh, 219

Mixed difference equations, 159, 182, 183,

188, 189

Modes, natural or principal, 199

Modes of vibration, 199

Moment equation, 200, 206, 207

Moments, bending, 200, 206, 207

Momentum, eonservation of, 201

Montmort’s formula, 121

Mutually exclusive events, 201

Natural base of logarithms, 5
Natural frequencies, 199, 202-205
Natural logarithm, 5
Natural modes, 199
Network, electrical, 200, 205, 206
Newton-Gregory formula
[see Gregory-Newton formula]
Newton’s collision rule, 201
Newton’s divided difference interpolation
formula, 39
inverse interpolation by means of, 59, 60
proof of, 57, 58
Newton’s method, 78, 230
Noncommutative operators, 10
Nonhomogeneous equation, 153, 155
solution of, 155
Nonlinear difference equations, 152,
159, 181, 182
Nonlinear operator, 11
Nontrivial and trivial solutions, 158, 165, 180
Normalization, 159
Numerical solutions, of boundary-value
problems, 219-221
of differential equations, 202, 215-221

Operand, 1

Operations, 1

Operator, 1 [see also Operators]
anti-derivative, 79
cubing, 1, 10, 11
derivative [see Derivative operator]
difference [see¢ Difference operator]
differential [see Differential operator]
doubling, 1
identity or unit, 1
integral, 1, 79, 89-91
null or zero, 1
squaring, 2
translation or shifting, 3, 11-14, 160
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Operator methods, for solving difference
equations, 156, 169-172, 187

for summation, 85, 101, 102

symbolic [see Symbolic operator methods]
Operators, 1, 10, 11 [see also Operator]

algebra of, 2

associative laws for, 2

averaging, 10, 88, 108

definitions involving, 1, 2

distributive law for, 2

equality of, 1

factorization of, 158, 176
- . inverse, 2, 11, 79, 156

linear, 2, 12, 98, 170

noncommutative, 10

nonlinear, 2

partial difference, 160

product of, 2

sum and difference of, 2
Order, of a difference equation, 151, 152

of a differential equation, 150

reduction of, 157, 173, 174
Orthogonal functions, 159, 178
Orthonormal set, 159

Partial derivative, 81, 160

Partial difference equations, 160, 184-187
solutions of, 160

Partial difference operators, 160

Partial differential equations, 160, 188
numerical solutions of, 218-221

Partial fractions, 192

Partial translation operators, 160

Particular solutions, of a difference

equation, 151, 166, 167

of a differential equation, 150, 161
methods of finding, 155

Pascal’s triangle, 227

Payment period, 214

Periodic constant, 82, 93

Points, problem of, 211

Poisson’s equation, 231

Polar coordinates, 102, 117

Potential theory, 221

Power series, 121, 122, 127-129

Prediction or forecasting, 34

Predictor-corrector methods, 218, 230

Principal, 75, 214

Principal modes, 199

Probability, applications to, 201, 202, 209-211
conditional, 201

Product of operators, 2

Real roots of auxiliary equation, 153
Rectangular coordinates, 103
Reduced equation, 153, 168

[see also Homogeneous equation]
Reduction of order, 157, 173, 174
Repeated trials, probability formula for, 225
Resistance and resistor, 200
Restitution, coefficient of, 201, 208
Rolle’s theorem, 26

Roots, of auxiliary equation, 153, 154
of equations, 58, 59
Newton’s method for finding, 78

Sequences and series, general terms of,
34, 43, 44 [see also Series]
uniqueness of, 43, 44
Series, 8 ‘
of constants, 121, 126
of eigenfunctions, 159, 179, 180
intervals of convergence for, 8
Maclaurin, 8
power, 121, 122, 127-129
summation of, 97-100, 121, 142, 143
[see also Summation]
Taylor [see Taylor series]
Series solutions of difference equations, 158
Shifting or translation operator, 3, 11-14, 160
Simply supported beams, 200, 206, 207
Simpson’s one-third rule, 122
error term in, 123, 133, 134
proof of, 131
Simpson’s three-eighths rule, 123, 132
error term in, 123 '
proof of, 132
Simultaneous difference equations, 159, 182
Solution, of a difference equation, 150
of a differential equation, 150
nontrivial and trivial, 158, 165, 180
Springs, vibrations of, 223
Squaring operator, 28
Steady-state temperature in a plate, 221, 231
Step by step method, 216
Stirling numbers, 6, 7, 20, 21
of the first kind, 7, 20, 232
recursion formulas for, 7, 20, 21
of the second kind, 7, 20, 21, 86, 106, 230, 233
Stirling’s formula for ni, 125, 140-142
proof of, 141 -
Stirling’s interpolation formula, 36, 47, 48
derivation of, 49
String, under gravity, 221
rotating, 223
tension in, 202
vibrations of, 199, 202-205
Sturm-Liouville boundary-value problem, 158
Sturm-Liouville difference equations, 158,
178-181
Subscript notation, 32, 40, 84
use of in difference equations, 152, 163, 164
Sum ecalculus, 79-120
applications of, 121-149
fundamental theorem of, 83, 84, 96-98, 100
Sum and difference of operators, 2
Sum operator, 82, 92-95
Summation, 82
general rules of, 82, 92-95
operator methods for, 85, 101, 102
by parts [see Summation by parts]
of series, 97-100, 121, 142, 143
of special functions, 83
theorems using subscript notation, 84
using subseript notation, 100



Summation factor, 158, 174, 176
Summation by parts, 82, 149
generalized, 116
proof of, 94
Sums, definite, 83, 84, 96, 97
indefinite, 82
Superposition principle, 154, 166, 168
Symbolic operator methods, 8
differentiation formulas obtained by, 60, 61
Gregory-Newton backward difference
formula obtained by, 48
Gregory-Newton formula obtained by, 24
Synthetic division, 6, 18

Tables, central difference, 35, 47-49
divided difference, 38
location of errors in, 64, 65
with missing entries, 38, 53-56
Tangent numbers, 89, 120
Taylor series, 8
in operator form, 8
solution of differential equations by, 231
Taylor’s theorem or formula, 8
Temperature, steady-state, 221, 231
Tension, in a string, 202
Three-moment -equation, 200
Torsion constant, 223
Torsional vibrations, 223
Translation or shifting operator, 3, 11-14, 160
Trapezoidal rule, 122, 123, 130
error term in, 1238, 1382, 133
proof of, 130

INDEX
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Trial solution, 155, 156
Trivial and nontrivial solutions, 158, 165, 180

Undetermined coefficients, method of,
155, 156, 168, 169, 187

Variable coefficients, linear difference
equations with, 157, 158, 175-178
Variation of parameters, 156-158, 172, 173, 175
solution of first-order linear difference
equations by, 175
Vectors, 159, 180
Vibrating systems, applications to, 199, 202-205
Vibration, 199
frequencies of, 199, 202-205
modes of, 199
of springs, 223
of a string [see String]
torsional, 223

Wallis’ product formula, 141, 149
Wave equation, 222
Weddle’s rule, 123, 143, 144
error term in, 123
proof of, 143
Weight or density, 159
‘Wronskian, 154

Young’s modulus of elasticity, 206

Zig-zag paths, 36, 37, 50-52
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