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simplification of switching and logic circuits, and (2) the theory of Boolean algebras.

Those people whose primary interest is in switching and logic circuits can read
Chapter 4 immediately after a quick perusal of Chapter 1. We have confined our
treatment of switching and logic circuits to combinational circuits, i.e. circuits in
which the outputs at a given time depend only on the present value of the inputs and
not upon the previous values of the inputs. The extensive theory of sequential circuits,
in which the outputs depend also upon the history of the inputs, may be pursued by
the reader in Introduction to Switching Theory and Logical Design by F. J. Hill and
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Theory by M. A. Harrison (ref. 33, page 202), and other textbooks on switching theory.

The treatment of Boolean algebras is somewhat deeper than in most elementary
texts. It can serve as an introduction to graduate-level books such as Boolean Algebras
by R. Sikorski (ref. 148, page 207) and Lectures on Boolean Algebras by P. R. Halmos
(ref. 116, page 207).

There is no prerequisite for the reading of this book. Each chapter begins with
clear statements of pertinent definitions, principles and theorems together with illus-
trative and other descriptive material. This is followed by graded sets of solved and
supplementary problems. The solved problems serve to illustrate and amplify the
theory, bring into sharp focus those fine points without which the student continually
feels himself on unsafe ground, and provide the repetition of basic principles so vital
to effective learning. A few problems which involve modern algebra or point-set
topology are clearly labeled. The supplementary problems serve as a complete review
of the material of each chapter. Difficult problems are identified by a superscript °

following the problem number.

The extensive bibliography at the end of the book is divided into two parts, the
first on Switching Circuits, Logic Circuits and Minimization, and the second on
Boolean Algebras and Related Topics. It was designed for browsing. We have listed
many articles and books not explicitly referred to in the body of the text in order to
give the reader the opportunity to delve further into the literature on his own.

Queens College ELLIOTT MENDELSON
July 1970
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Chapter 1

The Algebra of Logic

AYCY

There are many ways of operating on propositions to form new propositions. We shall
limit ourselves to those operations on propositions which are most relevant to mathematics
and science, namely, to truth-functional operations. An operation is said to be truth-
functional if the truth value (truth or falsity) of the resulting proposition is determined
by the truth values of the propositions from which it is constructed. The investigation of

truth-functional operations is called the propositional caleulus, or, in old-fashioned
terminology, the algebra of logic, although its subject matter forms only a small and

atypically simple branch of modern mathematical logic.

Negation

Negation is the simplest common example of a truth-functional operation. If A is a

nrrmmrhnn fhon ‘If& ﬂohinl hr\f‘-‘ “l true “1‘uxn A 5o *Fo'lcn and falaa whan A ic trina  Wa chall
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use a speclal sign 1 to stand for negation. Thus, TA is the proposition which asserts the
denial of A. The relation between the truth values of TA and A can be made explicit by a
diagram called a truth table.

A |la

T F

F |

Fig.1-1
In thig truth ta "\IA the column under A gives the two naaibhla truth valinag T (truth)
~sa QA.U VA WAWVAL VIANAY waa 44844 Viidd\AWwa [ o} 5; LA~ ] Vidiw v ' A WNDANAG A VA VAL VY WL AN A \IIA uu‘.,

AW p w.
and F (falsity) of A. Each entry in the column under 1A gives the truth value of TA
corresponding to the truth value of A in the same row.

Conjunction
Another truth-functional operation about which little discussion is necessary is com-

junction. We shall use A & B to stand for the conjunction (A and B). The truth table
for & is

A| B A&B

T T T

F T F

T F F

F F F
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There are four possible assignments of truth values to A and B, Hence there are four rows

in the truth table. The only row in which A & B has the value T is the first row, where each
— of Aand B is true.

Disjunction

The use of the word “or” in English is ambiguous. Sometimes, “A or B”t means that
at least one of A and B is true, but that both A and B may be true. This is the inclusive
usage of “or”. Thus to explain someone’s success one might say “he is very smart or he
1s very iucky”, and this cieariy does not exciude the possibility that he is both smart and
lucky. The inclusive usage of “or” is often rendered in legal documents by the expression
“and/or”.

Sometimes the word “or” is used in an ezclusive sense. For example, “Either I will go
skating this afternoon or I will stay at home to study this afternoon” clearly means that I
will not both go skating and stay home to study this afternoon. Whether the exclusive usage
is intended by the speaker or is merely inferred by the listener is often difficult to determine
from the sentence itseif.

In 2ny case, the ambiguity in usage of the word “or” is something that we cannot allow
in a language intended for scientific applications. It is necessary to employ distinct symbols
for the different meanings of “or”, and it turns out to be more convenient to introduce
a special symbal for the inclusive usage, since this occurs more frequently in mathematical
assertions.t+

“A v B” shall stand for “A or B or both”. Thus in its truth table (Fig. 1-3) the only case

where A v B is false is the case where both A and B are false. The expression Av B will be

aallad a Arcdnimatinm (nf A and B
LalivU G Wik furvvivevie \UL ™~ Aall\l -}0

A B AvB
T T T
F T T
T F T
F F F
Fig.1-3

Condiiionals

In mathematics, expressions of the form “If A then B’ occur so often that it is necessary
to understand the corresponding truth-functional operation. It is obvious that, when A is T
and B is F, “If A then B” must be F. But in natural languages (like English) there is no
established usage in the other cases (when A is F, or when both A and B are T). In fact
when the meanings of A and B are not related (such as in “If the price of milk is 25¢ per
quart, then high tide is at 8:00 P.M. today”), the expression “If A then B’ is not regarded
as having any meaning at all.

rather than using it. However, this would sometimes get the reader lost in a sea of quotation marks,
and we adopt instead the practice of omitting quotation marks whenever misunderstanding is improbable.

ttIn some natural languages, there are different words for the inclusive and exclusive ‘“or”. For example,
in Latin, *“vel” is used in the inclusive sense, while “aut” is used in the exclusive sense.

tStrictly speaking, we should employ quotation marks whenever we are talking about an expression
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T » . smadinmal 12 o -
Thus if we wish te regard 1f A then 8” tl" th-functional (l €. the truth value must

A AR VAN VWG ¥TANIL W AURGL U

be determmed by those of A and B), we hall have to go beyond ordmary usage To thxs

mstead of “If A then B”, A - B is called a condmonal w1th antecedent A and consequent B
The truth table for - contains so far only one entry, in the third row.

AjB| A-B

T T

F T

T F

elel
Fig.1-4

As a guideline for deciding how to fill in the rest of the truth table, we can turn to
“If (€ & D) then €”, which seems to be a proposition which should always be true. When
CisTandDis F, (C & D) is F. Thus the second line of our truth table should be T (smce
(€& B)is F, Cis T, and (If (C & D) then ) is T). Likewise when € is F and D is F,
(C & D) is F. Hence the fourth line should be T. Finally, when € is T and D is T, (€ & D)
is T, and the first line should be T. We arrive at the following truth table:

A i B I A—->B
T{T| T
F T T
T F _F
F F T
Fig. 1.5

A~ B is F when and only when A is T and B is F..

To make the meaning of A - B somewhat clearer, notice that A - B and (T1A) v B always
have the same truth value. (Just consider each of the four possible assignments of truth
values to A and B.) Thus the intuitive meaning of A-> B is “not-A or B”. This is precisely
the meaning which is given to “If A then B” in contemporary mathematics.

A proposition A - B is T whenever A is F, irrespective of the truth value of B. Notice
also that A -+ B is automatically T whenever B is T, without regard to the truth value of A.

In these two cases, one sometimes says that A —» B is #rivially true by virtue of the falgity

of A or the truth of B.

Example 1.1.
The propositions 2+2=5 - 11 and 2+2=5 -+ 1 =1 are both trivially true, since Z+2 =5
is false.

Biconditionals

At this time we shall introduce a special symbol for just one more truth-functional
operation: A if and only if B. Let A < B stand for “A if and only if B”, where we ur}der-
stand the latter expression to mean that A and B have the same truth value (i.e. if A is T,
so is B, and vice versa). This gives rise to the truth table:
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A

CRE RN B
ORI Il
IO

Fig. 1-6

A proposition of the form A & B is called a biconditional. Notice that A & B always takes
the same truth value as (A - B) & (B~ A); this is reflected in the mathematical practice of

deriving a biconditional A < B by proving A B and B - A separately.

1.2 CONNECTIVES

Up to this point, we have selected five truth-functional operations and introduced special
symbols for them: 7, &, v,~>, &. Of course if we limit ourselves only to two variables,
then there are 2¢= 16 different truth-functional operations. With two variables, a truth

+ahla haa ‘cur »
]

valIC 4aas 1 Ir'ows:
Fig.1-7

HaAaar e
o I I I )

A truth-functional operation can have either T or F in each row. Hence there are 2:2:2+2
possible binary truth-functional operations.

Corresponding to any truth-functional operation (i.e. to any truth table) we can introduce
a special symbol, called a connective, to indicate that operation. Thus the symbols
1, &, v, >, & are connectives. These five connectives will suffice for all practical purposes.

Example 1.2.
The operation corresponding to the exclusive usage of “or” could be designated by a connective +,
having as its truth table:

A|B| A+s
TITI F
F T T
Tlpl r
FI|F F

Fig.1-8

1.3 STATEMENT FORMS
To study the properties of truth-functional operations we introduce the following notions.

By a statement form (in the connectives 1, &, v, =, ©) we mean any expression built
up from the statement letters A, B, C, ..., Ay, By, Ci, ... by a finite number of applications
of the connectives 1, &, v, >, <. More precisely, an expression is a statement form if it
can shown to be one by means of the following two rules:
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(1)
\*J =
forms.

(2) If A and B are statement forms, so are (TA), (A&B), (AvB), (A~ B), and (A< B).t

Example 1.3.

Examples of statement forms:

) (A= (BvC&(A))) (i) (HAS(BY); (i) (((142) = (A~ A)).

Clearly we can talk about statement forms in any given set of connectives (instead of
just 1, &, v, =, «) by using the given connectives in clause (2) of the definition.

14 PARENTHESES

The need for parentheses in writing statement forms seems obvious. An expression
such as A v B & C might mean either ((Av B) & C) or (Av (B&C)), and these two statement
forms are not, in any sense, equivalent.

While parentheses are necessary, there are many cases in which some parentheses may
be conveniently and unambiguously omitted. For that purpose, we adopt the following
conventions for omission of parentheses.

(1) Every statement form other than a statement letter has an outer pair of parentheses.
We may omit this outer pair without any danger of ambiguity. Thus instead of
((Av B) & (1C)), we write (Av B) & (10).

(2) Wf_omit the pair of parentheses around a denial (71A). Thus instead of (TA4) v C, we
write TA v C. This cannot be confused with 1(A v C), since the parentheses will not
be dropped from the latter. As another example consider (A & B) v (1 (7 (71B))). This
becomes (A& B)v 11 71B.

(3) For any binary connective, we adopt the principle of association to the left. For
example, A & B & € will stand for (A&B) & €, and A - B > € will stand for (A~ B) ~ C.

Example 14.

Applying (1)-(3) above, the statement forms in the column on the left below are reduced to the equiva-
lent expressions on the right.

("4 &) v (N4)) 1M1{(A&C)v N4

((Av (1B)) & (C & (1A4))) (Av 1B) & (C & 14)
((Av (1B)) & C) & (14)) (Av 1B)&C & 14
((714) » (B> (1(A Vv () MA = (B> 1(AvC)

More far-reaching conventions for omitting parentheses are presented in Appendix A.
In addition, Appendix B contains a method of rewriting statement forms so that no
parentheses are required at all.

-t

tAn even more rigorous definition is: B iz a statement form if and only if there iz a finite sequence Ay, ...,
A, such that
(1) A, is B;
(2) if 1=4i=n, then either A; is a statement letter or there exist j,k <i such that A; is (TA)
or A; is (A;& Ay) or A; is (A;v A;) or A; is (A; > Ay) or A; is (A; > A,).
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Every statement form A defines a truth-function: for every assignment of truth values

to the statement letters in A, we can calculate the corresponding truth value of A itself.
This calculation can be exhibited by means of a truth table.

Example 1.5.
The statement form (1A v B) «> A has the truth table

A|B|1A]| 14AvB | (1AvB) oA

|| r| T | T

F|T|T| T | F

TIF|F F F

FIFITI T I F
Fig. 1-9

Each row corresponds to an assignment of truth values to the statement letters. The columns give the
corresponding truth values for the statement forms occurring in the step-by-step construection of the
given statement form.

Example 1.6.
The statement form (A Vv (B & C)) » B has the truth table

A B c B&C Av(B&C) Av(B&C)-B
T T T T T T
F T T T T T
T F T F T F
F F T F F T
T T F F T T
F T F F ¥ T
T F F F T F
F F F F F T
Fig.i-i0

When there are three statement letters, notice that the truth table has eight rows. In
general, when there are n statement letters, there are 2* rows in the truth table, since

-— o

4L . L ___ 4 Py WA= __ MY . Ty L . L Lok a1 WAl
uinere are Lwo possipiiiules, 1 Oor r, 10r eacn sialelent ievwer,

Abbraviatad Truth Tables

ARWRE WV e UMUAL A QAW
.

By the principal connective of a statement form (other than a statement letter), we mean
the last connective used in the construction of the statement form. For example, (Av B)=>C
has - as its principal connective, A v (B - C) has v as its principal connective, and (4 v B)
has 71 as its principal connective.

There is a way of abbreviating truth tables so as to make the computations shorter.
We just write down the given statement form once, and, instead of devoting a separate
column to each statement form forming a part of the given statement form, we write the
truth value of every such part under the principal connective of that part.

Example 1.7.

Abbreviated truth table for (14 v B) € A. We begin with Fig. 1-11. Notice that each occurrence
of a statement letter requires a repetition of the truth assignment for that letter.
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(H1Av B e A

T T T

F T F

T F T

F F F

Fig. 1-11
Then the negation is handled:
(MTAv B & A
FT T T
TF T F
FT F T
TF F F
followed by the disjunction
(TAVv B & 4
FTTT T
TFTT F
FTFF T
TFTF F
and, finally, the biconditional

(1Av B) & A
FTTT T T
TFTT F F
FTFF F T
TFTF F F

Of course our use of four separate diagrams was only for the sake of illustration. In practice all the
work can be carried out in one diagram.

1.6 TAUTOLOGIES AND CONTRADICTIONS

A statement form A is said to be a tautology if it takes the value T for all assignments
of truth values to its statement letters. Clearly A is a tautology if and only if the column
under A in its truth table contains only T’s.

Example 18. A - A is a tautology.

AlA-A
T T
el o
Fig.1-12
Example 19. Av 14 is a tautology.
A4 Av4a
T F T
F T T




8 THE ALGEBRA OF LOGIC [CHAP. 1

Example 110. (Av B) & (Bv A) is a tautology.

A B AvB BvA (AvB)© (BvA)
T T T T T
P T T T T
T F T T T
F F F F T
Fig.1-14
Example 111. [A& (Bv () & [(A&B)v(A&C)] iz 2 tautology.t
A
A B C BvC A& BvO A&B A&C (A&B)V(A& Q) A
T T T T T T T T T
F T T T F F F F T
T F T T T F T T T
F F T T F F F F T
T T F T T T F T T
F T F T F F F F T
T F F F F F F F T
F F F F F F F F T
Fig. 1-15

Theorem 1.1. If K is a tautology, and statement forms A, B, €, ... are substituted for the
statement letters A, B, C, ... of K (the same statement form replacing all
occurrences of a statement letter), then the resulting statement form K# is
a tautology.

Example 1.12.

(Av B) < (BvA) is a tautology. Replace A by (Bv C) and simultaneously replace B by A. The
new statement form [(Bv C)vA] & [Av (Bv ()] is a tautology.

Proof of Theorem 1.1. K determines a truth-function f(4, B,C, . ..) which always takes
the value T no matter what the truth values of A4, B, C, ... may be. Let g1, g2, gs, ... be the
truth-functions determined by A,B,C, .... Then the truth-function determined by K#

{ \ Y and sinca f alwava tolrac tha valua
\0 - I’, . 0" SAAINA Y WAAAWW ’ aa "“J“ VERIA N WiAG YV WWiwe

muat hava tha farm & — fla(

mu L 2% — \ o f
NV AR TYC VALG AVA 1AL J J\y!\l . -’, y‘\. ..

T, f* also always takes the value T. )

A contradiction is a statement form which always takes the value F. Hence A is a
contradiction if and only if 1A is a tautology, and A is a tautology if and only if TA is a
contradiction.

Example 1.13. A & 1A is a contradiction.

A |14 | A&A

T F F

F T F
Fig.1-16

tIn writing this statement form, we have replaced some parentheses by brackets to improve legibility.
For the same purpose, we also shall use L-aces.
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Example 1.14. A © 1A ig a contradiction.

LAdailiDI€ 1.1

Example 115. (AvB)& 1A & 1B is a contradiction.

Al B ) AvB | 14|1B | (AvB)&1A4 | AvB)& 1A & B

TIT, T IFIFI F F

FlrT T T |F T F

T | F T F|T F F

FIF F TIT F F
Fig.1-18

1.7 LOGICAL IMPLICATION AND EQUIVALENCE

We say that a statement form A logically implies a statement form B if and only if every
assignment of truth values making A true also makes B true.

Example 1.16. A logically implies A.
Example 1.17. A logically implies A v B. For, whenever A is true, A v B also must be true.

wamnla 118 A
aMMPad 2.a0. ~

Theorem 1.2. A logically implies B if and only if A- B is a tautology.
Proof. A logically implies B if and only if, whenever A is true, B must also be true.

Therefore A logically implies B if and only if it is never the case that A is true and B is
false nnt +ha lanttar acanwtinn maana that A e isn wfaloca 3 o0 +that A o e fontnlnmr' A

ro2 a o
Wil IGVVCL GAODTIE bl\l].l AIACQRELID LViIGAL ™ S le VOl LAADG) 3.5 ViIAALV /v 7 AD @& VeAWA

Since we can effectively determine by a truth table whether a given statement form is a
tautology, Theorem 1.2 provides us with an effective procedure for checking whether A

Inoirallyy irmnliaa B
iCg u.nn‘y 1mpiies w.

Examplc 1.19. Show that (4 = B) — A logically implies A.
Proof. Fig. 1-19 shows that (A » B) - A) » A is a tautology.
A|B| A>B | (A>B)»A | (A>B)>A)>4
r|lr| v | T | T
F l T T F T
T F F T T
F F T F T
Fig.1-19

Statement forms A and B are called logically equivalent if and only if A and B alwa;rs
take the same truth value for any truth assignment to the statement letters. Clearly this
means that A and B have the same entries in the last column of their truth tables.
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ically equivalent to (A > B) & (B - A),

Example 120. A&

oY
3
3

is

A| B| A©B A—-B B=A | (A-B)&B~A)
T|T T T T T
FIT F T F I F
T | F F F T I F
F i F T T T i T
¢ }
Fig.1-20

Theorem 1.3. A and B are logically equivalent if and only if A & B is a tautology.

Proof. A < B is T when and only when A and B have the same truth value. Hence
A & B is a tautology (i.e. always takes the value T) if and only if A and B always have the
same truth value (i.e. are logically equivalent). p

Example 121. A - (B - C) is logically equivalent to (4 & B) - C.
Proof. [A - (B-C)] & [(A&B)— (] is a tautology as shown in Fig. 1-21.

Al|lB|C B-C |A->(B-C)| A&B | (A&B)»C | [A- (B> 0)<[(A&B)~ ()
T|[T]| T T T T T T
FiT/!|T T —T F T T
T|F|T T T F T T
F|F]|T T T F T T
T|T|F F F T F T
F|lT]|F F T F T T
TIFI!|F T T F T T
FIFIF T T F T T
Fig.1-21

Corollary 14. If A and B are logically equivalent and we replace statement letters in A
and B by statement forms (all occurrences of the same statement letter being
replaced in both A and B by the same statement form), then the resulting
statement forms are also logically equivalent.

roof. This is a direect conseqguence
roof. '1'hig 18 a direct consequence

Example 122

A - (B-C) and (A &B) > C are logically equivalent, Hence so are (CvA)—>(B-(Av B)) and
((CvA) & B)-(Av B) (and, in general, so are A=»(B—~C) and (A&B) - C for any statement forms

Theorem 1.5 (Replacement). If B and € are logically equivalent and if, within a statement
form A, we replace one or more occurrences of B by €, then the resulting
statement form A% ig logically equivalent to A.

Proof. In the calculation of the truth values of A and A%, the distinction between B
and € is unimportant, since B and € always take the same truth value. )

Example 1.23.
Let A be (AvB)—=C. Since A v B is logically equivalent to B v A, A is logically equivalent to
(BvA)-C.
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Thn followino avamnlaa

af ln l'l. 4\'"1 arnsiernawmé 3
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Yy equivaient pa

IS o1
useful in the rest of this book, for the purpose of finding, for a
0 0 Y, ate S S 17y Y a o 70

8 o
®.
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7]

5 B

.8
8
2
e
8

structure We leave verification of their logical equivalence as an exercise.

Example 1.24. 77 A and A (Law of Double Negation)

Example 125" (a) A& A and A

() AvA and A (Idempotence)
Example 1.26. (a) A&B and B& A B o
() AvB and Bv A {Commutativity)
Example 1.27. () (A&B) & C and A& (B&C)
(Associativity)

(b)) (AvB)vC and Av (BvC)

As a result of the associative laws, we can leave out parentheses in conjunctions or dis-
junctions, if we do not distinguish between logically equivalent statement forms. For
example, A v B v C v D stands for (A v B) v C) v D, but the statement forms (Av(BvC) v D,
Av((BvC)vD), (AvB)v(CvD) and Av(Bv(Cv D)) are logically equlvalent to it.

Terminology: In A;v Azv - v A,, the statement forms A; are called disjuncts, while
in Ai & A: & ... & A, the statement forms A; are called conjuncts.

Example 128. De Morgan’s Laws.

(@) W(Ave) and 1A & 1B
(3 1(A&B) and 1AV 1B

Example 1.29. Distributive Laws (or Factoring-out Laws).
(a) A& (Bv C) and (A&SB) v {(A&T)

(b)) Av (B&C) and (AvB) &(AvO)

Notice that there is a distributive law in arithmetic: a- (b+¢) = (a*d) + (a-¢); but
the other distributive law, a + (b-c) = (@ +b)-(a+c¢) is false. (Take a=b=¢c= 1.)

Example 1.30. Absorption Laws.

(I) (@ Av(A&B) and A
%) A& (AvB) and A

{II}) (@) (A&S®)v 8 and Av 18
(b) (AvB)& 1B and A& 1B

(III) If T is a tautology and F is a contradiction,
(@) (T&A) and A (¢) (F&A) and F
(b) (TVA) and T (@) (FvA) and A

We shall often have occasion to use the logical equivalence between (A & 11B) v B and
A v B, and-between (Av T1B) & B and A & B. We shall justify this by reference to Example
1.30(II), since it amounts to substituting 1B for B in Example 1.30(II) and then using
Example 1.24.

Example 1.3i. A-B and B - 1A (Contrapositive)
Example 1.32. Elimination of conditionals.

(@) A—-B and 1AV B

(b)) A~>B and (A& B)
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Example 1.33. Elimination of biconditionals.
(¢) A<>B and (A&B)v (TA& T18)

() A< B and (TAVB) & (BVA)

) nlac 1 90 4wl 1 99 ....ml..t e dnanafna Avey micrnm abodamnnmd oo, f4 o Pt "

A.uuuuplca 1.04 8N4 1.00 enapieé us 10 transiorm aily EiVEil dvaltiueliv 10 1w & 10g1 Y
equivalent statement form which contains neither < nor .
1.8 DISJUNCTIVE NORMAL FORM

By literals we mean the statement letters A, B, C, and the denials of ..atim.__A -
letters 14, 1B, 11C, .... By a fundamental conyunctwn we mean either (i) a literal <r
(ii) a conjunction of fwn or more literals no two of which involve the same statement letter.

For instance, A;, 1B, A & B, T1A; & A & C are fundamental conjunctions, while 114
A&B&A, B&A & C & 1B are not fundamental conjunctions.

One fundamental conjunection A is said to be included in another B if all the literals ¢
A are also literals of Bt. For example, A & B is included in A & B, B & (11C) is includec
in (1C) & B, B is included in A & B, and 1C & A is included in A & B & 1C, while B is

not included in A & 1B.
A statement form A is said to be in disjunctive normal form (dnf) if either (i) A is a

fundamental ccnjunction, or (ii) A is a disjunction of two or more fundamental conjunctiozs.
of which none is included in another.

Example 1.34. The following statement forms are in dnf.
(a) B
) aCvcC
(¢) Av(1B&(C)
(d) (A&1B)v (MA&1B&C)
() (B&1A)v (MA&B&D)v Av (B&C& D).

Example 1.35. The following statement forms are not in dnf.
(a) C& C
@ (CvD)& A
() (C&A&B)v (1C&A)v (C&B).

Replacing statement forms by logically equivalent ones, we can transform a statemen=
form into one in disjunctive normal form.

Example 136. (AvB)& (AvCv B
Av (B&(Cv B)) (Distributive Laws, Example 1.29)
Av{B&O (Absorption Law,
Example 1.37. 1MAvC) v (A->B)
MAvC) v (TAvB) (Example 1.32(a))
(T1A&1C)v TAv B (Example 1.28(a), De Morgan’s Laws)

v B {Bearmi o v
SAv B {Example 1.30(1a))

tMore precisely, if all literals of A which do not occur within another literal of A are also literals of B
which do not oceur withir another literal of B, Thus B& A is not included in C& A4 & 1B, and "1B& A is

not included in B& A.
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[(A&1B)& (BvA)] v [1(4&B)& 1(Bv4)]  Example 1.33(a)

Examples 1.27(a), Examples | |
1.30(11b) 1.28(b), 1.24 Example 1.33(a)

[A&1B&A] v [(MAvB) &(1B&14)]

Example 1.25 t Example 1.
[A & 1B) v [(1A&1B) & 14]

Example 1.25(a)

[A & 1B) v [14 & 1B

This is in disjunctive normal form. However, it is logically equivalent to
(Av 1A) & 1B (Example 1.29(a))
B (Example 1.30(I11a))

This example shows that there are two logically equivalent statement forms, both of which are in
digjunctive normal form.

Theorem 1.6. Every statement form which is not a contradiction is logically equivalent
to a statement form in disjunctive normal form.

Proof. By Examples 1.32 and 1.33 we may find a logically equivalent statement form
in the connectives 7, &, v, and then, by De Morgan’s Laws (Example 1.28) we can move the
negation signs inward so that negation signs apply only to statement letters. Thus we may
confine our attention to statement forms built up from literals by means of & and v. The
proof proceeds by induction on the number % of the connectives & and v in the given state-
ment form A. If n=0, A is a literal, and évery literal is already in dnf. Assume now

that A contains & of the connectives & and v, and that the theorem is true for all natural
numbers n < k.

Case 1: Ais Bv C. By inductive hypothesis, B and € are logically equivalent to state-
ment forms B* and €#, respectively, in dnf. Hence A is logically equivalent to B* v €#.
Now if any disjuncts D, of B# or of C# are included in any other disjuncts D. of B# or of
C#, then we drop the disjuncts D, (by Example 1.30(Ia)). The resulting statement form is
in dnf and is logically equivalent to A.

Case 2: Ais B & €. By inductive hypothesis, B and € are logically equivalent to state-
ment forms B# and €4, respectively, in dnf. Hence A is logically equivalent to B* & C#.
Let us assume that B# is (B,v --- v B;) and €# is (€, v --- v C,), where the B/s and C;’s
are fundamental conjunctions, and r=1,s8=1. Then B* & €* is

(Biv---vB) & (Civ - v G
which by a Distributive Law (Example 1.29(b)) is logically equivalent to
[(Blv--- vB,) & C]v .- v[('lv -evB) & c,]

and, again by a Distributive Law (Example 1.29(a)), each (B:v :--vB;) & C; is logically
equivalent to (B:&Cj) v --- v (B,&C;). Thus we obtain the disjunction of all B; & C;, where

1=i{=p 1=j=g3 EachB; & C,is a conjunction of literals. We can omit repeated literals
in B:Rr c (hv F‘vnmnln 1.25(a)). and. if both a statamant latter and its denial oceur as con-

ALARLLIPAT AU\ W) fy @iiUy AL UL & statement ietier ang 1ls genial gccur

Juncts in B & C;, then the latter is a contradiction and can be dropped (by Example
1 30(IIId)) (Not all the B; & €; will be dropped, since, in that case, A would be logically
equivalent to a disjunction of contradictions and hence, would be a contradiction itself.) The

Tastnamadlnan Lo San

1alé A3
;cm..uuus UisSjuUIlILLIvIl 1S5 111 ullJ. ’
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Remark (1\ on Th eorem 1;6= A statement form in dn_f cannot be 2 ccntradiction. For,

F 1f I.. is the demal of the statement letter. This assxgnment of truth values makes each L

wrsn nwmd dhanafa +ha w=rhn Sremmabiac cmmsemd Lo decccn {=lemna
true and ucnu: I-l OL P 0(. I-k u.uc, ana vierciore wune wuuu: umJuu\.uuu muSt o€ wrue (since

one of its disjuncts is true). Thus the disjunction cannot be a contradiction.

Example 1.39,

In A& 1B&C)v (TA& 1B&C), if we make A true, B false and C true, then the first disjunct
A & 1B & Cis true (and, alternatively, if we make A false, B false and C true, then the second disjunet is true).

Remark (2) on Theorem 1.6. From the proof it is clear that the logically equivalent
statement form in dnf may be chosen so that its statement letters aiready occur in the given
statement form, i.e. no new statement letters are introduced.

There is a special type of dnf which will be very useful. A statement form A in dnf is
said to be in full disjunctive normal form (with respect to the statement letters §,, ..., S) if

tement letter in A is one of the letters §;, ..., §;, and

(ii) each disjunct in A contains all the letters §,, ..., Sk

Example 1.40.

The statement forms (A& B & 1C) v (NMA&B&C) v (A& T1B& 1C) and "B & A & 1C are in full dis-
junctive normal form (with reapect to 4. B,C). However, (A&B)V(1A&B&C) and 1Av(A&1BR& 10
are not in full disjunctive normal form with respect to 4, B, C.

Example 1.41.

The statement form R ig in full dnf with resp r-t to B, but not with respect to A and B. The state-
ment form (A & 1B) v (A & B) is in full dnf wi espect to A and B, but not with respect to any other

collection of letters.

Theorem 1.7. Every non-contradictory statement form A containing S;, ..., Sx as its
statement letters is logically equivalent to a statement form in full dnf (with

respect t0 Sy, .. ., Si).

Proof. A is known by Theorem 1.6 to be logically equivalent to a statement form B in
dnf, and the statement letters of B already occur in A. Now assume that some statement
letter S: is missing from a disjunct D; of B. However, D; is logically equivalent to
D;& (Siv 118) (by Example 1.80(IIla)), which in turn is logically equivalent to (D; &S, v
(D; & 71S;) (by Example 1.29(c)). Hence we replace D; by (D;&S:) v (D; & 1S:). In this way
we can introduce the letters §,, . .., Sx into any of the disjuncts from which they are missing.
The final result is in full dnf with respect to Sy, ..., Sx. p

Example 1.42.
(A& 1B)vBv(MTA&B& () is in dnf, but not in full dnf with respect to 4, B, C. We obtain
a logically equivalent full dnf as follows:

(A& 1B&C) v (A&1B&C)v B v (NMA&1B&0)
(A& 1B&C) v (A& 1B&1C) v (B&A) v (B&1A) v (TA&1B&C)

(A& TB&C) v (A& B&1C) v (B&A&C) v (B&A&C) v (B& 1A &C)
viB&U14&C) v (NMA&B&0)
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In general, the method indicated in Theorem 1.7 can be summarized in the following
way If letters S,l, !'b,r are missing from a d1s_1 unct D;, we add as con]uncts to D, all of

ment form in full dnf (w1th respect to A B, C) loglcally equlvalent to "IB we construct

(1B&A&C) v (TB&A&TIC) v (1B&TA&C) v (MIB&1A&C)

1.9 ADEQUATE SYSTEMS OF CONNECTIVES
As we have remarked earlier, every statement form determines a truth function, and

this truth function may be exhibited by means of a truth table. The converse problem
suggests itself: For any given truth function, is there a statement form determining it?

There are 2™ truth functions of n variables. For, there are 2* truth assignments to
the n variables, and, to each of these assignments, the truth function can associate the value
T or the value F.

Example 1.43.
The four truth functions of one variable are

A|14] AvAa | A&4

| | !
T I F ’ T I F
F T T F
Fig.1-22

Example 1.4,
The sixteen truth functions of two variables are

B|79A]| B | Av 4 A&nA AvEB A&B

T | T F F T F T T

F T T F T F T F

T {F| F T T F T F

FIF T T T F F F

A-B A©B 1A e B) B-A NA&IB MAv 1B (B - A) (A - B)
T T F T F F F F
T F T F F T T F
F F T T F T F T
T T F T T T F F
Fig.1-23

Theorem 1.8. Every truth function is determined by a statement form in the connectives
1, &, v.

Proof. The given truth function f(zi, . .., 2.) can be exhibited as a “truth table”:
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zy Zz Lo f(z!! LTI z.—.)
T T T
F T T
T F T
F F T
Fig.1-24

There are 2" rows in the table. In each row, the last column indicates the corresponding
value f(z1,...,%s). In constructing an appropriate statement form, we shall associate the

letters A, ..., A, with the variables z,, .. ., Z«.

Case 1: The last column contains only F’s. Then the statement form (4: & TA)v --- v
(An & 71 A,) determines f. (Of course, any contradiction also determines f.)

Case 2: There are some T’s in the last column. For 1=:i=xn and 1=Fk=2" let

f a £ A, talac tha sralisa M i tho Idh wacr

A - £aq 1k £1§ VANTD UVIIT V&IUT L 111 UIT vLil AUW
&k = . .

{\ MA, if A, takes the value F in the kth row

Let D, stand for the fundamental conjunction Ay & Aax & ... & An. In an obvious way,
Dx is associated with the ¥th row of the truth table. For, Dy is T unde? the truth assignment
given in the ¥kth row (where A; is assigned the value given to z:), and Dy is F under the truth
assignment given in any other row. (Notice that, in any other row, say the jth, some A;
will be assigned a value different from its value in the ¥th row. Hence under the truth
assignment corresponding to the jth row, A will receive the value F and hence D, will also
receive the value F.) Now let k;, ..., ks be the rows in which the truth function f has the
value T. Let A be the statement form Dy, v --- v Dx,. Then A determines the truth func-
tion f. (For the kth row, f takes the value T; but Dy, also is T, and therefore so is A. For
the jth row, where 7 is different from any of k&, . . ., ks, the function f takes the value F; but
each Dy, also is F on the jth row, and hence so is A.) Notice that A is a statement form in
the connectives 1, &, v. )

Remark on Theorem 1.8. If the given truth function is not always F (Case 2), the
statement form A constructed in the proof is in full disjunctive normal form. This gives

us a way of constructing a full dnf logically equivalent to a given non-contradictory state-
ment form €. Just write down the truth table for € and then construct the corresponding

statement form A as in the proof of Theorem 1.8.

Example 1.45.
Given the truth function

2y | %2 | flznzo)

T I T | F

F T T

T F T

F F T
Fig.1-25

Dz is -lAl&Az; DsiSAl& -|A2y D4 is -IA‘& -lAz- Hence
(14,&A4,) v (4,& 14, v (14, & 14,)
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Example 1.46.
Given the truth function

zy Zo Zg3 g{zy, T3, Z2)
T T T T
F T T T
T F T T
F F T F
T T F F
F T F F
T F F F
F F F T
Fig.1-26

The statement form having g as its truth function is
(Al&Az&A:’) v (—lAl&Az&As) A% (Al& 1A2&A3) N (1Al& 1.42& -‘As)

Example 1.47.

To find a statement form in full dnf logicaily equivalent to (ﬂVﬂ) & (A v Cv 1B), construct the
latter’s truth table:

A B C | 1B AvEB AvCv B (AvB)& (AvCv 1B)
T T T F T T T
F T T F T T T
T F T T T T T
F F T T F T F
T T F F T T T
F T F F T F P
T F F T T T T
Fig.1-27
Then the method of Theorem 1.8 yields
(A&ZB&C)v (TA&B&C) v (A& 1B&C) v (A&B&C) v (A& 1B& 10

By an adequate system of connectives we mean a collection B of connectives such that
every truth function is determined by a statement form in the connectives of 8. Thus
Theorem 1.8 asserts that {7, &, v} is an adequate system of connectives.

Proof.
(ﬁ) By Theorem 1 8, 1 T , &, v; is auchate Bﬁu, rep aci ng any statement form Av B b,‘y’
the logically equivalent statement form (1A & 71B), we obtain for any statement

form in {1, &, v} a logically equivalent statement form in {1, &}.
(b) We proceed as in (a), but here we replace every A& B by 7(TAv 1B).
(¢) We can replace every A v B by the logically equivalent (TA) ~> B. )

There are two binary connectives such that each of them alone forms an adequate system.

Let | be the connective corresponding to the truth-functional operation of alternative
denial, given by the truth table
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A| B| AlB
T| T F
F|T T
T| F T
Fi| F T
Fig.1-28

A |B means ‘“not both A and B”. The connective | is called the Skeffer stroke. {|} is
adequate, since 1A is logically equivalent to A|A, and Av B is loszlcallv equivalent to
(A|A) | (B]B).

Let | be the connective corresponding to the truth-functional operation of joint denial,
given by the truth table

A| B | AlB
T|T F
F|T F
T l F F
FI|F T
Fig.1-29

A | B is read “neither A nor B”. {]} is adequate, since 1A is logically equivalent to
A | A, and A & B is logically equivalent to (A A) | (B B).

Theorem 1.10. The only one-element adequate systems of binary connectives are {|} and

{i}
Doennd T ad el ne o deiedl. £.o nwm AL o e ary conne nnds ve r'’3 J' —— e o mea o D vawmda
L Touy. .I.Jcl- y\nb y’ uc L i€ Ltrutn X IILLIUI Ul a villaly CVilliculul w Auillling 1 a qud.u'.'
system. Clearly, ¢(T,T)=F. For, if g(T,T) were T, then statement form in # alone

would always take the value T when its statement letters all took the value T, and no such
statement form could determine the negation operation. For the same reason (reversing
the roles of T and F), ¢g(F,F)=T. The situation at this stage is given by Fig. 1-30.

A|B | A#B
r|t]| F
FlrT ’ ?
T!F ?
elel o
Fig.1-30

Case 1. The second row is F and the third row is T. Then A # B is logically equivalent
to 1B, and all the statement forms in # alone using the letters A and B would be logically
equivalent to one of A, B, 1A, 1B. Then {#)} would not be adequate.

Case 2. The second row is T and the third row is F. This is handled in exactly the

same way as uase 1, smce A ?F l woulu De lOglC&lly equlvauent IO IA.
Case 3. The second and third rows are F. Then # is |.

Case 4. The second and third rows are T. Then # is L b
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(a) A necessary condition for z to be prime is that z is odd or 2z =2.
(b) A sufficient condition for f to be continuous is that f is differentiable.
(¢) A necessary and sufficient condition for Jones to be elected is that Jones wins

75 votes.

(d) Grass will grow only if enough moisture is available.
(e) It is raining but the sun is still shining.

)

He will die today unless medical aid is obtained.

(9) If taxes are increased or government spending decreases, then inflation will not

occur this year.

Solution:

(@)
(b)
(¢
(d)
(e

P - (Ov D), where P is “z is prime”, O is “z is odd”, and D is ‘“x = 2”.

D - C, where D is “f is differentiable” and C is “f is continuous”. )

E eV, where E is “Jones will be elected” and V is “Jones will win 75 votes”.
G > M, where G is “grass will grow”, and M is “enough moisture is available”.

R &S, where R is “it is raining”, and S is “the sun is still shining”.

(Note that “but” indicates conjunction, usually with an element of surprise.)
(f) 1D->M (or, equ
aid is obtained”.
() Tv G- 11, where T is “taxes are increased”, G is “government spending decreases”, and
I is “inflation will occur this year”.

anuivalently TM > D whare D ic “ha will dia tadav” and M is “medisal
ivalently, 1.4 L), whnere [} 13 "he will die foday, and 2 13 "megic al

Eliminate as many parentheses as possible from:
(@) {[(AvB)~>(10)] v [(((MB)&C) &B))}

(®) ([A&(1(1B)] & [B o (CvB))

(©) [(Be (CvB) « (A&(T(1B)))]

Solution:

(@) (AvB)>1C) v [(A\B&C&B]
(3) [A& 11B] & [Be (CvB))
(¢) B> (CvB) & (A& 11 B)

Write the truth tables for (a) (Av 1B)~» (C&A), (b) (A< 1B)v (B~ A).

Solution:

(a)
A B C B Av B C&A {Av IB)y=({C&A)
T T T F T T T
F T T F F F T
T F T T T T T
F F T T T F F
T T F F T F F
F T F F F F T
T F F T T F F
F F F T T F F
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(b)
A B | B Ae 1B B->A (A= B)v (B~ A)
T T F F T T
F T P T F T
T F T T T T
F F T F T T
1.4. Write abbreviated truth tables for
(@) (A= B)~ B)v 14, (b) (TA&B)~ (BeC).
Solution:
@ (A-B)~B) v 14 ® (14& 1B = (B0
TTTTT TPFT FTFFT TTTT
FTTTT TTPF TFFFT TTTT
TFFTF TFT FTFTF TFFT
FTFFF TTF TFTTF FFFT
FTFFT TTPFF
TFFFT TTPFF
FTFTF TFTF
TFTTF TFTF
1.5. Show that the following are tautologies.
(@) (Ao (A&TA) o 1A,
(8) (4~ B)>C)~((C~4)~ (D~ A)),
(c) (A~B)~((B~C)~(4~C))
Solution:
(a)
A4 ] 4&14 | A0 (4&14) | Ao(A&T14) o4
r|lr | F | F | T
F l T I F I T l T
() Instead of using a truth table, we show that the statement form cannot be F. Assume that
some assignment makes it F. Then ((4 = B) » C) is T while ((C > A) = (D —+ A)) is F. Since
the latter is F, C> A is Tbut D+ A is F. Since the latler is F, D is T and A is F. Since
C->Ais Tand A is F, C must also be F. Since (A >B)—~C) is T and C is F, it follows that
A > B ia F, Bnut this iz impossible, since 4 is F.
(¢) As in (b), we shall show that the statement form is a tautology by proving that the assumption
that it is ever F leads to a contradiction. Assume that some assignment makes it F. Then
A->Bis T, while (B2 C)= (A= C)is F. Since the latter is F, B~>C is Tand A->C is F.
Since the latter is F, A is T and Cis F. Since B- C is T and C is F, it follows that B is F.
Since A #» B is T and B is F, we know that A is F, contradicting the fact that A is T.
1.6. Show that the following are contradictions.

(@) (AvB)& (Av1B)& (TAvB) & (1AvB),

{hY [{A .M\ . f
W) [\ v) Vg

Solntion:

(a) Any truth assignment to A and B makes one of the conjuncts false.
(b) Let A stand for the statement form.
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1.7.

1.9.

A B C {4 1B 110 Ag&C R & NC N4 &C
T T T F F F T F F
F T T T F F F F T
T F T F T F T F F
F F T T T F F F T
T T F F F T F T F
F T F T F T F T F
T F F F T T F F F
F F F T T T F F F
9B & 1C (A&C)v (B& 11C) (M4&C) v (MB& () A
F T F F
F F T F
F T F F
F F T F
F T F F
F T F F
T F T F
T F T F

Prove that if A and A - B are tautologies, then so is B.
Solntion:

More generally, any truth assignment making both A and A - B true must also make B true.
For, if B were false, then, since A is true, A = B would be false by virtue of the truth table for -.

Dwacras
4 10vVe,

(e) If A logically implies B and B logically implies €, then A logically implies €.

(b) If A 1is logically equivalent to B and B is logically equivalent to €, then A is
logically equivalent to C.

(¢) A is logically equivalent to A.

(d) A logically implies A.

(e) If A is logically equivalent to B, then B is logically equivalent to A.

Solution:

(@) To show that A logically implies €, we shall show that, whenever A is T, € must also be T
Assume A T. Since A logically implies B, B must be T. Since B logically implies €, € must

also be T.
() If A and B always take the same truth value, and B and € always take the same truth value,
then A and C always take the same truth value.

(c) A always takes the same truth value as A.

(d) follows from h'.)i

1) v LIom (&

(¢) This is clear from the definition of logical equivalence.

For each of the following, find a logically equivalent statement form in disjunctive
normal form:
(@) (AvB)&(1BvC), (b) 1Av (B~ 10).

Solutiou:
(@) (AvB)&(1Bv () () 1A v (B-1C)
A& IB)v (A&C)v (B&1B)v (B&O) 1A v (1Bv 1C)

(A&1B)v (A&C) v (B&C) SAv 1BV IC
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1.10. For each of the following, find a log 1_ ll equivalent statement form in full disjunctive
normal form (with respect to all the variables occurring in the statement form):

(@) A& IB)v(A&C) ¢y B=(AavT10)
() (AvB)eC (@) (A=-B)»>((B~>C)» (A~ ()
Solution:
(@) A& IB)v(A&C()
A&B&C)Vv (A& B&1C)v (A&B&C)
() (AvB)e 1C
(AvB)& 1O v(HIAvB)&()
(A&1C)v(B&I1CO) v (TA&1B&O)
(A&B&I1C)v (A& TB&IC)V(A&B&IC) v (NMA&B&1C)v (14 & AB&C)
(A&B&NC) V(A& IB&EC) Y (TA&B&IC) v (TA&TB& Q)
(¢) B»(Av 0
MBv (Av 10
MBvAvC
(d WA-B)v (B-C)=>A->Q)
MA&EIB) v (M(B-C)v(A-0)
(A& 13) v (11\1.:& |v)v SAV G (9]
(A&1B)v (B&1C)v N1AV C
(A&NB&C)V(A&IB&ETIC)V(A&B&1C) v (NTA&B& 10)
V(TA&B&C)v (TA&1B&C)v (MA&NB&1C0)v (A&B&C)

1.11. Two statement forms A and B in full dnf (with respect to the same statement letters)
are logically equivalent if and only if they are essentially the same (i.e. they contain
the same fundamental conjunctions except possibly for a change in the order of the
conjuncts in each conjunction).

Solution:

Assume that A has as one of its disjuncts a fundamental conjunction B, & ... & B, (where each
B, is a literal), no permutation of the conjuncts of which is & disjunct of B. Under the truth assign-
ment which assigns T to a statement letter if it is one of the literals B; and assigns F to a statement
letter if its denial is one of the literals B;, B, & ... & B, is T, and hence A is also. But every other
essentially different fundamental conjunetion ig ¥, and therefore B must be F. Thus A and B
could not be logically equivalent.

1.12. By a fundamental disjunction we mean either (i) a literal or (ii) a disjunction of two

or more literals no two of which involve the same statement letter. One fundamental
nnnnnnn +inn A ig 50id 0 ha dmaludad im annthar B i€ oll tha litarala nf A ama alan litawala

A3
ulBJ ULIUVIVIL 7R AW O W UG LNROVRGLE IN1 QNUOUIST w» 11 Qi waal ilWCTALS O ~ Qe aiST 11werais

of B. A statement form A is in conjunctive normal form (cnf) if either (i) A is a
fundamental disjunction or (ii) A is a conjunction of two or more fundamental dis-
junctions of which none is included in another. A statement form A in cnf is said
to be in full enf (with respect to the statement letters S, ..., Si) if and only if every
conjunct of A contains all the letters §,, ..., S;.

(a) Which of the following are in cnf? Which are in full cnf?
(i) (AvBvilC)&(AvB) (iii) (Av B) & (Bv 1B)
(ii) (_A_v_Bv-lC)&(AvB) (1V) A



CHAP. 1] THE ALGEBRA OF LOGIC 23

{h) 'T"h danial of a2 stateament form A in (fulll dnf is logically aguivalant +4 a statama
\v/ \Awiiatea Vi DVAULIIITCALY AVALL 7N 142 (4WU3d) WLl A0 dUBALVGILL CYMiv@aiviiv W & Dwalvlilliviiy
form B in (full) cnf obtamed by exchangmg & and v and by changing each literal
. 2 o o - 0

absent). (Example 1((A&"IB&C) ('IA& 'IB&C)) is loglcally equ1va]ent to
(TAvBvIC) & (AvBv(C))

(¢) Any non-tautologous statement form A is logically equivalent to a statement form
in full enf (with respect to all statement letters in A).

(@) For each of the following, find a logically equivalent statement form in enf (and
one in full enf).

(i) (A-1B)&(Av(B&C()),
(i) (A&B)v(MA&B),
(iii) A & (Bv 10).
(e) Given a truth table for a truth function (not always taking the value T), construct
a statement form in full enf determining the given truth function.

Solution:
(@) (i) In enf, but not in full enf. (ii) Net in cnf, since one conjunet is included in the other,
(iif) Not in enf, since Bv 1B is not a fundamental disjunction. (iv) In full enf.

(b) This follows by several applications of De Morgan’s Laws (Example 1.28(a)).
(¢) Assume A is non-tautologous. Then 1A is not a contradiction, and, by Theorem 1.7, A is

logically equivalent to a statement form in full dnf (with respect to all the statement letters
in A). Hence by part (b), T1A is logically equivalent to a statement form in full cnf.
But A is logically equivalent to 17A.

d () A->AB)&(Av (B&(O)
(MAVIB) & (AvB)&(Av C))
(TAVIB)& (AVB)&(AVC)  (enf)

I-IA O tew A - D,IA,An~.r'\DIA..
\1av |va1a(|nv 98Bv iVJjadaiAvovija (av

(ii) (A&B)v (1A & B)
(Av14)&(Av IBY& (Bv N1A) & (Bv 1B)
(Av \B) & (Bv 14) (full enf)

(iti) A & (Bv 10)
{A->(Bv IC) & (Bv 1C) = A)
(M1AvBvAC) & (1(Bv 1IC) Vv A)
(MAVvBvAC) & ((TB&C)Vv A)
(MAVBvIC)&(NBVvA)&(CVA)

1A, R, ﬂ\I.IA‘,'!D\I.(A\,I"\ —C
\raaVov lu,u\nv oy ol AV iuy

(MAvBv1C)& (Av M1BvO) & (Av ‘IBv 'lC)&(AvaC) (full enf)

(¢) Use the same procedure as in the proof of Theorem 1.8, except that we use only the rows ending
in F (rather than T), we exchange & and v throughout, and we replace each literal by its

D,
L2 Vv

/N O /A D M
Ivjx av sovVuyj

(full cnf)

opposite.

Example. A B C
T T T F
F T T T
T F T T
F F T T
T T F F
T F F T
F F F T

Answer (MTAv 1BV 10 & (MAv IBv ) & (Av 1BV ()
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1.14.

L.15.

1.16.

= 3| W
LAY

I L I B I I I B N
oI B I BB |

oI B I T B |

ORI B

Solution: A&B&C) v (A& B&0)

Find a statement form in the Sheffer stroke | alone and one in | alone logically equiv-
alent to the statement form A & 71 B.

Solution:
For the Sheffer stroke, A& B

T(TAV B)
(4] A)v B)
{4 ]A)[(A14)] | (BI|B)}
((ATAATA] [ BIB)| ((Ajd)iAaja)|(BiB)

For {, A & B, A& (BIB), (AlAa)y! (BIB)I(BIBY))

Show that {-,v} is not an adequate system of connectives.

Qalesdiam.
MVIWUVIVAS «

If A is a statement form in -, v, then A takes the value T when the statement letters are T
(since T>T=T and Tv T =T). Hence negation is not determined by any statement form in
-, v.

Prove that {71, <} is not an adequate system of connectives.

Solution:
The eight truth funetions in the following diagram are the only ones determined by statement

forms in 1, . For, if we apply 7 to any of them or if we apply <> to any two of them we
obtain another of them.

A|B|14a]|1B | A4 | A4 | AoB | A& B
TIT F|F T I F l T | F
FlT|T|F T F F T
T|{F|F|T T l F F T
FIFiIiTI|T T F T F

Alternative solution. We shall show that the truth function determined by a statement form
in 1, > takes T an even number of times. This is clearly true for statement letters, and, when it
holds for A, it must hold for TA. It remains to show that, if it holds for A and B, it also holds for
A B. Let n be the number of rows in the truth table. = is even (since n is of the form 2%, where
k= 1), Let j and ! be the number of T’s of A and B respectively. Let m be the number of T’s of
A & B, and let 8 be the number of T’s of 1A & 1B. Then j+I—m =n—8; hence j+I—n=m—s.
Since j, 1, are even, it follows that m — s is even, i.e. m and & have the same parity (both odd or

both even), Hence m+# iec even, But m 4 g ig the number of T's of A B,
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1.17

. .
Determine whether the fcllu‘"mg arguments a

tences as statement forms and checking to see whether the conjunction of the assump-

re correct hey wanwasanmdina dla
I¢ COIiCluv WYy ITpiClenuing uie Sen-

—————tions logically implies the conclusion.

(@) Either Arlen is lying or Brewster was in Mexico in April or Crawford was not a
blackmailer. If Brewster was not in Mexico in April, then either Arlen is telling
the truth or Crawford was a blackmailer. Hence Brewster must have been in
Mexico in April.

(b) If the budget is not cut, then a necessary and sufficient condition for prices to
remain stable is that taxes will be raised. Taxes will be raised only if the budget

is not cut. If prices remain stable, then taxes will not be raised. Hence taxes

will not be raised.

Solution:
(s) Assumptions: Av Bv 1C, 1B- (14v Q).
Conclusion: B.

Does (A v Bv 1C) & (1B~ (TA v ()) logically imply B? In other words, is [(AvBv () &
(1B - (1A v ()] = B a tautology? Let us try to find a truth assignment making this statement
form false. Then the antecedent (A vBv 1C) & (1B ~ (1A v C)) must be T and the consequent
B must be F. Hence AvBv 1Cis Tand "B (1Av(C)is T. Since Bis F, 1B is T; and
iherefore since 1B - (1A v () is T, it follows that TAv C is T. Since AvBv IC is T but
B is F, it follows that Av 1 C is T. It is clear now that, if we take A to be T, C to be T, and

R to ha 'I‘ then the gstatement form § is ', Therefore the conclusion is not :myhed by ¢tha pren'u=eg.

(b) Assumptions: 1B-> (P& R), R- 1B, P- 1R.
Conclusion: “R.
Does (1B~ (P R)) & (R~ 1B) & (P 1R) logically imply TR? Let us try to find a
truth assignment making the former true and the latter false. Then 'IB—>(P<->R) is T,

PaoMRBisT and P= 1P is T Qerne mMD o™ Do mM Dewd D 2 WD 2o ) WG _JIpig
v L~ IB Ay SIIU I 7 4LV 2D 1, woiiice lllv 13 £y 4v 1> 4, DUl 4v 7 1L D 1, anu uuelcuue

1B is T. Hence by the truth of 1B > (P> R), (P R)is T. Since Ris T, P must be T.
Then since P> 1R is T, 1R is T, which is impossible. Therefore the argument is correct.

(a) and (b) can be solved by writing down the truth tables, but the method used above is usually
faster,

=
]
3
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+ + 241 5]
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integrable, then & is lmear nd f is not continuous.
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Solution:
Assumpiions: (CvE)-»>D, (C&B)<> (Av D), C- 14, (1Cv 1B) - (E & 1D). Assume
that these are all T.

Casel. CisT. Then Ais F. Since CVvE is T, D is T. Therefore Av 1D is F. Henece
C&BisF. Hence Bis F,and 1Cv (B isT. Thus F & 1D is T, and D is F, which is impessible.

Case 2. Cig F. Thus 1C is T, and therefore so is 1Cv 1R. It follows that £ & 1D is T,
and therefore E is T and D is F. Since CVE is T, then D is T, which is & contradiction. Hence
the assumptions are inconsistent.

This and similar problems can also be solved by writing out the complete truth table (which,

.
in this case, has sixteen rows).
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a statement form in 71, &, v, and A* results from A by interchanging & and v

~ves vwaiatiaia esa2 222

is 1
and replacing all statement letters by their denials, show that A* is logically

Solution:
Apply De Morgan’s Laws (Example 1.28) to 1A until no denials of conjunctions or disjunctions
remain. The result is A*,

Let A and B be statement forms in 7, &, v. By the dual A of A we mean the state-

Py 1N

ment form obtained from A by interc‘nanging & and v. Notice that (A%)¢ = A.

(a) Show that A is a tautology if and only if 71 (A?) is a tautology.

21282 | 2.2 X140 a ___79

(b) Prove that, if A—~> B is a tautology (i.e. A logically implies B), then B¢~ A?is a
tautology (i.e. B¢ logically implies Ad). (Example: Since A & B -+ A is a tautology,
soisA—>AvB)

(¢) Prove: A< B is a tautology (i.e. A is logically equivalent to B) if and only if
A? o B¢ is also a tautology (i.e. A?1is logically equivalent to B¢). (Example: Since
T(A v B) is logically equivalent to T A & 1B, it follows that 71 (A & B) is logically
equivalent to 74 v 1B.)

Soiution:

(@) By Problem 1.19, 1(Ad) is logically equivalent to (Ad)*, where (Ad)* is obtained from A¢ by
exchanging & and v, and replacing all their statement letters by their denials. But then
(Ad)* is obtained from A by replacing all statement letters by their denials; and therefore if A
is a tautology, so is (A9)* (by Theorem 1.1); and conversely if (Ad)* is a tautology, so is A. (In
this case we substitute for each statement letter its denial and then again use Theorem 1.1
plus the Law of Double Negation (Example 1.24).)

(b) Assume A — B is a tautology. Then NAvBis a tautology, and, by part (a), 'l(( TMAvB)¥)is a

tautology. But T((TAv B)Y) is T (1AZ & 89), which is logically equivalent to Bd —» Ad,

(¢) Assume A <> B is a tautology. Then A - B and B > A are tautologies. By part (b), B¢ —» Ad
and Ad —» B4 are also tautologies. Hence Ad <> Bd is a tautology. Conversely, if Ad <> Bd i3 a
tautology, then, by what we have just proved, (Ad)d «> (B4)4 is a tautology. But (Ad)d js A, and
(B4)d is B.

Supplementary Problems

Write the following sentences as statement forms.

(a) A depression will occur if government spending does not increase, and inflation will result only
if government spending increases.

(b) Jones will lose his job unless he makes good on the deficit, although Jones is the cousin of the
boss’s wife.

(c) Either f is discontinuous or if f is nonlinear, then f is differentiable.

Assume that the truth values of A, B,C are T, F, F. Compute the truth values of (a) (A— 18) &
(AvC)&B), (b)) (A (A-B) v (A=C).
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1.23. If A-> B is T, what can be deduced about the truth values of
(@) (AvC)=»(BvC(), (b) (A&C)>(B&C), () (NA&B) & (Av B)?
1.24. In each of the following cases, what further truth values can be deduced from those already given?
(@) 3Av(A->B), (b) 1(A&B)> (NMAvIB), (¢) (NMAvEB >(A-10).
) T P
1.25. Which of the following are statement forms? For the statement forms, determine the principal
connectives,
(@) ((Av(1B) > A)& (14)), () ((A-B)=>A)>A)v B), (¢) (H(AvB)vC)e (1B)
1.26. Eliminate as many parentheses as possible from
(@) ((Av(IB)VvCl&[Av(T1(1B))} & (14))
(® ((N(AvB) v (Cv(1BY)
(©) (A= (WUBvC)) > ((14)~>(1B))
1.27. Write truth tables and abbreviated truth tables for the statement forms of Exercise 1.26.
1.28. Determine which of the following are tautologies, which are contradictions, and which are neither.
(@) (A-B)>1(B=A) & (AeB)
() (A-B)>B)-»B
(©) [(A=>B)=>(C-D)] » [E~»{(D->A)>(C~A)}
@ Ae (Be(Ae(BeA)
() B& 1(AvB)
() (AVBVO) & [((4~B)~B)~0) - ()
(@) (A-B)>A) & (B~ (B~ A))
(k) (A->(B&1B)) » 14
1.29. Show that A is logically equivslent to B if and only if A logically implies B and B logically implies A.
1.30. Show that a statement form logically equivalent to & tautology is a tautology, and a statement form
logically equivalent to a contradiction is a contradiction.
1.31. Give an example to show that, if A logically implies B, then B does not neceesarily logically imply A.
1.32. Of the following pairs D and E, find those pairs for which D is logically equivalent to E, those for

which D logically implies E, and those for which E logically implies D.

D E
(a) Ceo (A&C)v (B&1C)) B-(C—A)
(d) Av (BeC) (AvB) e (AvC)
(e I(BvE) il ]
(d) Av (B&C) AvEB
{e) AeB Be A

N Ae (BeC) (AB e C
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133. Prove: A;v A, v --- v A, is T if and only if at least one of the A/s is T; and A; & A, & . & A,
is T if and only if all of the A;'s are T.
134, Prove generalizations of De Morgan’s Laws and the Distributive Laws, in the sense tha: =he
following pairs are logically equivalent:
(@) VAV - VvAy) A& ... & A,
) 1A &...&A,) RV YRZRRERVEL I W
(¢) A& @BV :--VvB,) (A&B)v --- v (A&B)
d Av (B, &...&B,) (AvB)& ... & (AVB,)
1.85. Which of the following are fundamental conjunctions?
(a) A&B& A, (b)) B& 1A, () B&C&A &C.
1.36. Which of the following are in disjunctive normal form?
(@) (A&B)v (TA&B)v (A&10)
b (B&1A)v(A&B)v (NA&B)
(¢c) 1A &NB
(d) (A&B)v (N1A&B)v (A&B&C)
{¢) (A&B)v(A&B)v (T1A&B)v (1A &B)
137. Find a statement form in disjunctive normal form logically equivalent to:
(@) (A->1B)&(BvC(C), () (AvAB)eC, (o) (AvBy10) & (BVO).
1.38. Which of the following are in full dnf (with respect to all the variables occurring in the statemen:
form)? For those not in full dnf, find a logically equivalent statement form in full dnf.
(@) A&B)v (NMA&1B)
® A&B Vv (14&0
(¢) (A&B&C)v (A&B&1C)v (A&1B&C)
(d) A&B)v C
1.38. Which of the following are in conjunctive normal form? In full enf? For any not in full enf
(with respect to all its statement letters), find a logically equivalent statement form in full enf.
(¢) Av B
) (AvB)& (Av1B)& (AvBv ()
(¢c) A& B
(d (AvB)& (Av 1B)
(¢) (A&B)v (MA&1B)
140. Which statement forms are in both dnf and cnf?
141, For each of the following truth tables (a,) (d), (¢), construct a corresponding statement form in full

dnf and one in full enf.

>
s
Q
g
C
e
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oo 3 ]S
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ORI B B I B |
O B B BB |

142. A statement form A is a tautology if and only if it is logically equivalent to a statement form in

full dnf having 2* disjuncts, where # is the number of statement letters in A.
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1.51.

1.52,0

Find a statement form in the Sheffer stroke | and a statement form in ! logically equivalent to the
statement forms (a) (Av IB) & (4 - C), (b) 1(A & B).

Show that A + B is logically equivalent to (A <> B). (Cf. Example 1.2 on page 4.)

Find a statement form logically equivalent to the denial of (Av (B& () v (TA & (Bv ().

For which binary connectives (] does {7, (]} form an adequate system of connectives?

Determine whether the following arguments are correct.

(a) If April is rainy, then flowers will bloom in May and mosquitoes will thrive in June. If mos-
quitoes thrive in June, then malaria will increase in July. If fiowers bioom in May, there will
be a lot of honey in September. If April is not rainy, then the lawns will be brown this summer.
Hence either there will be a lot of honey in September and malaria will increase in July, or the
lawns will be brown this summer.

£ £ o 4l L FEY. RIS Pe N Py -~
ar § IE (.vnuuuuua, Ml:ll y aT n 15 GiEerer TiviADIE a1 y
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and f is bounded. A sufficient condition for g o
Hence ¢ is differentiable.

(¢) If an orange precipitate forms, then either sodium or potassium is present. If sodium is not
present, then iron is present. If iron is present and an orange precipitate forms, then potassium
is not present. Hence sodium is present.

_—
o
~

Check the consistency of the following sets of assumptions.

{2) If the roof needs repair or the house has to be painted, then either the house will be sold or no

vacation will be taken this summer. The house will be sold if and only if the roof needs repai
and a vacation will be taken this summer. If the house has to be painted, then the house will
not be sold or the roof does not need repair. Either a vacation will be taken this summer, or
the house has to be painted and the house will be sold.

{b) Either devaluation will occur, or, if exports do not decrease, then price controls will be imposed.
If devaluation does not occur, then exports will decrease. If price controls are imposed, then
exports will not decrease.

A computer (called Farfel) has been built to answer any yes-or-no question, but it has been pro-
grammed either to answer all questions truthfully or to give incorrect answers to all questions
J..I. we wish to nnu out wnemer rermm:s uasr .tneotem lS ‘zﬁie, what quesuon snouxu we put to me
computer? (Hint: Let A stand for “Fermat’s Last Theorem is true” and let B stand for “Farfel
answers all questions truthfully”. Construct a statement form A such that, if “A?” is put as a

question to Farfel, then the answer will be “Yes” if and only if A is true.)

1.53.0 Find the duals of statement forms in 1, &, v which are logically equivalent to A > B and 4 & B,

1.54.0

and extend Problems 1.19-1.20 to statement forms in 1, &, v, =, <.

Prove that a statement form A whose only connective is <> is a tautology if and only if every state-
ment letter occurs in A an even number of times. (Hint: Problem 1.32(e, f).)



Chapter 2

The Algebra of Sets
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By a set we mean any collection of objects.t For example, we may speak of the set of
all living Americans, the set of all letters of the English alphabet, or the set of all real
numbers less than 4. In most cases, sets will be defined by means of a characteristic
property of the objects belonging to the set. In the examples above, we used the properties
of being a living American, a letter of the English alphabet, or a real number less than 4.

Notation: For a given property P(z), let {z: P(x)} denote the set of all objects z such

that Dim) 3a +rira
ulau (W) 1D vl ul.

Example 2.1.
The set of all real roots of the equation 4 —2z2-—3 is
{r: z iz a real nomber & 24 — 22223 = 0}

Sometimes we shall define a set merely by listing its elements within braces:
{a,b,e¢, ..., h}. In particular, {b} is the set having b as its only member. Such a set {b}
is called a singleton. The set {b, ¢} contains b and ¢ as its only members, and, if b » ¢,
then {b, ¢} is called an unordered pair. Notice that (b, ¢} = {e¢, b}.

Example 2.2.
The set of integers strictly between 1 and 5 is equal to {2, 3, 4).
Example 2.3.
The set of all real roots of the equation z¢—2x2—3 = 0 is equal to the set Ve, V3 )

We shall extend this method of denoting sets by listing a few elements of the set, fol-

lowed by dots, in such a way as to indicate the charactenstlc property of the elements of
the set.

Example 24.
{1,2,3,4, ...} is intended to represent the set of positive integers. {1, 4,9,16,25, ...,7%, ...} is the
set of squares of positive integers. {Washington, Adams, Jefferson, Madison, ...} is the set of Presldents

of the United States.
Definition: An object 2 belonging to a set A is said to be a member or element of A. We
shall write z € A to indicate that x is a member of A. The denial of z € A

wi!l ha wrwittan » & A

WILIL NG VWLIVWVIL & V= dae

Example 25. 6 € {z: z is an even integer}, 1 & {z: x is an even integer}

tSynonyms for set are totality, family, and class.

co
=]
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d B are equal when and only when A and B have the same members.
Equality of A and B is designated in the usual way by A = B, and denial of this equality
by A * B.
Example 2.6. {x:22=1 and z isa real number} = {x: x=1 or x = -1}

We say that A is a subset of B if and only if every member of A is also a member of B.
We write A C B as an abbreviation for: A is a subset of B. Sometimes, instead of saying
that A is a subset of B, one says that A is included in B. The denial of A C B is written

A D
n*u.

Example 2.7. {1,3) C {1,2,3,6}; {(ba} C {e,a,b} {124 ¢ {1,285}

Obvious properties of the inclusion relation are

Incl(i) ACA (Reflexivity).

Incl(ii) If ACB and BCC, then A CC (Transitivity).

Incl(iii)j A=PB ifandonlyif (ACB & B C A).

It is convenient to introduce a special sign for the relation of proper inclusion. We shall
use A C B as an abbreviation for ACB & A+ B. Thus A C B if and only if every member
of A is a member of B but there is a member of B which is not a member of A. If A CB,

we say that A is a proper subset of B. Hence the only subset of B which is not a proper
subset of B is B itself. The denial of A C B is written A ¢ B.

Some basic properties of proper inclusion are:
PIi) Ac¢A.

Plii) If AcCB & BCC, then ACC.
PI(iii) If ACB & BCC, then ACC.
Pl(iv) If A CB, then B¢ A.

Example 28. 1,3 c {1,285 {1,38} ¢ {1,8s {L4} ¢ {1,3}

23 NULL SET. NUMBER OF SUBSETS

Whenever Php\ is a property satisfied by no objects at all, then {z: le\l ig a gset having

¥V Adviiw Vwa a @ A [S1- 2713 9 110§

no members. For example, {x:x+ 2} is a set w1th no members We shall use @ to denote
a set with no members. The set @ is called the null set or empty set. There is precisely

one null set, since any two null sets would contain the same members (namely, none at all)

Analfrrs A Aer Ny Lo A1 A
uuu b(lEI'BIUI'B IIIUSE De equcu 1ne ﬂull set 13 ulcmueu lIl every set: w s J'l 101 au A.

Example 2.9.
The only subset of @ is @ itself.

Example 2.10.
The subsets of {x} are ) and {z}. Thus a singieton has two subsets.

Example 2.11.
If xr*y, the subsets of the unordered pair {z, ¥} are 9, {z}, {¥} and {z,y}. Thus a two-element set
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Example 212,
If z, y and z are three distinct objects, then the subsets of {x,¥,2} are @, {z}, {y}, {2}, {z,v), {=.2},
{v,2} and {z,y,z}. Thus there are eight subsets of a three-element sget.

Let P(A) denote the set of all subsets of A. Then P(4) = (B:BCA). Examples
2.9-2.12 suggest the following result.

Theorem 2.1. For any non-negative integer n, if a set A has n elements, then the set
P(A) of all subsets of A has 2* elements.

First proof: The result is clear when n =0 (Example 2.9). Assume a set A has »
elements, where 7 > 0. In choosing an arbitrary subset C of A, there are two possibilities
for each element z of A: 2 €C or x € C. Whether one element z is in the subset C is
independent of whether any other element y is in C. Hence there are 2* ways of choosing
a subset of A.

Second proof: By induction on n. The case for n = 0 is clear (Example 2.9). Assume
that the result is true for n =%k, and assume that A is a set with k+1 elements, i.e.

A — fm_ Y, PR | MTn et nraea that 4 hoa 9k+1 anhento Tat P — f(n~ ~ Y
a2 = 1 Diy e a0y Giy Brtife vwe MMUStT Prove uiar A as 4 SUoSews. v O = Gy ... Gy

Since B has k elements, then by inductive hypothesis B has 2* subsets. Every subset C of
B can be thought of as determining two distinct subsets of A, i.e. C itself and C together
with the element ax+:. In addition, every subset D of A is determined in this way by pre-
cisely one subset C of B, i.e. C is obtained by removing a;+; from DU (where, if ax+: € D,
then C is identical with D), Thus the number of subsets of A4 is twice the number of subsets
of B. But since B has 2* subsets, A has 2**! subsets. )

24 UNION

Given sets A and B, their union A UB consists of all elements of A or B or both. Thus
AUB = {z: z€A vz €B}. Remember that v stands for the inclusive “or”, i.e. for any
sentences A, B, A+ B means A or B or both.
Example 2.13. {1,2,3Yu{1,38,4,6) = {1,2,3,4,6)

{a} U {8} = {a, b}
{0,2,4,6,8 ...)U{1,85,79, ...} = {0,1,2,8,4,5,...}

If we represent the elements of A and B by points

within two circles, then their union consists of all 4 B

points lying within either of the two circles (see
Fig. 2-1). The union operation on sets has the

obvious properties:
i) AUA = A (Idempotence) N~

U(ii) AUB = BUA (Commutativity) Fig. 2-1
Ugiil) AuQ = A

U(iv) (AUB)UC = AU(BUC) (Associativity)

Uw) AUB =B ifandonlyif ACB

U(vij ACAUB & BCAUB
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Given sets A and B, their intersection ANB consists of all objects which are in both

4 and B. Thus,
ANB = {(z:2€A & zE€B)
Example 2.14. {1,2,4})n {1,8,4) = {1, 4}
{1,3,8) n {2 4,6) ?
{1,3,5}n{0,2} = @
{0,1,2} n {0, 8} = {0}

Pictorially, we can visualize the intersection as N TN
consisting of the shaded area of Fig. 2-2. A B
Two sets A and B such that ANB =@ are said %
to be disjoint.

The following properties of the intersection opera-
tion are evident.

Inti) ANA = A (Idempotence).

Int(ii) ANB = BNA (Commutativity).
Int(iii) ANQ@ = Q.
(

Int(iv)y (AnB)NC = AN(BNC) (Associativity).

Int(vy ANB =A ifandonlyif A CB.
Int(vii ANBCA & ANBCB.

The associative laws for unions and intersections allow us to omit parentheses in writing
unions or intersections of three or more sets. Thus we write ANBNC to stand for either
(ANB)NC or AN (BNC), since these sets are equal. Similarly ANBNCND has a unique
meaning, since any of the five ways of inserting parentheses yields the same result.

Important relations between unions and intersections are given by the distributive laws:

Dist(i) AN(BUC) = (ANB)U(ANC).

Dist (i) AU(BNC) = (AUB)N(AUC).

E{operty Dist (i) can be verified directly from the definitions by logical manipulations.
o AN(BUC) = (2: 2€A & z € BUC)

= {z: 2€A & (x€Bvz€())

= {z: (*€EA & zEB)v(*rE€EA & 2€())

= {(zx: x€ANB v zEANC)

= (ANB)U(ANC)

We also can check Dist (i) pictorially. In Fig. 2-3 below, we have vertical lines for
BUC and horizontal lines for A. Hence A N (BUC) is represented by the cross-hatched area.
In Fig. 2-4 below, the vertical lines indicate AN B and the horizontal lines ANC. The com-
bined area represents (ANB)U(ANC) and is seen to be identical with the cross-hatched

area of Fig. 2-3. Dist (ii) may be handled in a similar manner (see Problem 2.3).
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Fig. 2-3 Fig. 24

Diagrams as shown in Fig. 2-8 and 2-4 are called Venn diagrams. They are useful for
verifying identities involving operations on sets, but should not be considered tools of
rigorous mathematical proof. Similar pictorial methods can be given for four or more
sets (see [112]t and J. F. Randolph, American Mathematical Monthly, 1965, pp. 117-127),
but this does not seem fruitful enough to warrant consideration here.

Example 2.15. Show that AN(AuUB) = A.
By U(vi), ACAuUB. Hence, by Int(v), AN(AUB) = A.
Example 2.16. Show that A U(ANB) = A.
AU(AnB) = (AUA)N(AUB) = ANn(AuB) = A
The first equality is justified by Dist (ii), the second by U(i), and the third by Example 2.15.

The distributive laws have the obvious generalizations:
Dist(iy AN(BiUBsU---UB.) = (ANB))U(ANB,)U --- U(ANB,)
Dist (ii") AU(BiNB:N---NBy) = (AUB)N(AUB)N ---N(AUB,)

These can be proved directly, using mathematical induction.

26 DIFFERENCE AND SYMMETRIC DIFFERENCE

By the difference B~ A of B and A we mean the set of all those objects in B which are
not in A (the shaded area of Fig. 2-5). Thus,

B~A = {z: z€B & z & A} m

Ciearly,

D@ B~B =0

D) B~@ =B

D) @~A4 = O Fig. 28

D(iv) (A~B)~C = A~ (BUC) 4 B

= (A~C)~B

The symmetric difference AAB of sets A and B is
(A ~B)U (B~ A) (the shaded area of Fig. 2-6). Fig. 2-6 N
makes it clear that AAB = (AUB) ~ (ANB). Fig. 2-6

tThroughout this book numbers in brackets refer to Bibliography, pages 201-208.
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The following properties are easily verified.
SD(i) AaA =90

SD(ii) AAB = BaA

SD(iii) AaP = A

Example 2.17.

Let A = {0,1,2,3,5}, B = {0,1,2,3}, C = {0,1,4,6). Then BCA, C¢A, AnC =
BnC={0,1}, A~B={5}, A~C=1{2,8}, B~C=1{2,8}), C~B=1{4,6}, AAB={5}, AaC=
BAC = {2,8,4,5).

{0,1,5},
{2,3,4},

2.7 UNIVERSAL SET. COMPLEMENT

We shall often find it useful to confine our attention to the subsets of some given set X.
In such a case, X is called the universal set or the universe (of discourse).

The union, intersection, difference, and symmetric difference of subsets of X are again
subsets of X. When we restrict ourselves to subsets of X, there is still another operation
which can be introduced. If AC X, then the complement A of A is defined to be X~ A.
Thus, 4 = (z: 2 E€EX & v € A). Whenever we use complements, it is assumed that we
are dealing only with subsets of some fixed universe X.

The following assertions are easily verified.

Ci) A=A

Ci) {'U_B = % nB } De Morgan’s Laws

Ciii) ANnB = AuB

Clivy And =9 C(viii) ACB ifandonlyif Bc4
Cvi AUuA =X Clix)y A = B ifandonlyif 4 = B
Cvi) =X Cxy A~B = AnNB

Cvii) X =¢ Cixiy AaB = (ANB)U(ANB)

From C(x) and C(xi) we see that difference and symmetric difference are dispensable in the
presence of union, intersection and compiement.

Example 2.18.
Let us check C(ii) using definitions and logical transformations.
ACE = {z: 2€X & z€AUB} = {z: z€X & "(z€EA v zEB)}
= {(x: z€EX & €A & z2€B)}) = {z: (x€EX &xEA) & (xEX & 2&B)}

= {x: z€EX &z€AIn{z: x€EX & xz€B} = AnBE
We also may use Venn diagrams to verify the validity of C(ii). Compare Fig. 2-7 and 2-8.

]

A N B is the cross-hatched area.

e 0.0
i 4~0
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De Morgan’s Laws C(ii)-C(iii) have the obvious generalizations
C(li') A1UA2U"'UAn= Aan-zn nA-...
C(jii) AiNA:N---NAn = AiUAU---UA,
Example 2.19. —
ACB if and only if ANB=@. In'Fig. 29, the cross- —niiin ~——
hatched area is A N B. To say that this is @ is equivalent to TS A B
saying that A is entirely within B. ssiitaasiiiite
Logical proof: S ‘
A =ANnX = An(BUB) = (ANB)U(ANB) i |
= = o |
Hence if ANB =, then A = AN B; therefore, by Int (v), =
ACRB, Onthecther hand, if AC R thenbyInt({y), A=ANBE e
and therefore
ANB = (AnB)nB = An(BnB) = AnP = @ Fig. 2-9

2.8 DERIVATIONS OF RELATIONS AMONG SETS

We have seen two ways of verifying propositions about sets: by means of analogous
logical laws, or by pictorial methods (usually Venn diagrams). The first method is the
only rigorous one, but the use of diagrams is sometimes quicker and more intuitive.

Example 2.20.
Prove A~(BuC) = (A~BYn(A~C).

This is clear from Figs. 2-10 and 2-11,

o 2.0
2

Cross-hatched: (A ~B)N{d ~C) Unshaded: 4 ~ (Bu()
Fig. 2-10 Fig. 2-11

More rigorously,
A~ (BuO® {r: x€A & z& (BuC)}
= {z: x€EA & (x€B & z&0C)}
= {zx: €A &z2€B) & (x€EA &z €())}
{z: €A & z€BY N {z: 2€EA & z& C}

= (A~B)nA~0)

Example 2.21.
Prove: (AUB)NB = A ifandonlyif AnB=0.

In Fig. 2-12 below, the cross-hatched part represents (A UB) N B and lies entirely within A. The rest
of A is the lens-shaped intersection A N B, Hence to say that (AUB)N B is identical with A is equiva-
lent to saying that AnB = Q.
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Logical proof: M
- - - ﬁj —
(AUB)NB = (ANB)U(BNB)  (by Dist (ii)) A B
= (ANB)L P (by C(iv)) e
= ANnB (by U(iii)) m‘
S
Hence (AUB)NB =A ifandonly if ANB =A. But it it
ANB=A ifandonlyif ACB (Int (v)), which holds if and
only if AnB =@ (by Example 2.19 and C(i)). Fig. 2-12
Example 222,

Simplify A NBuU (BnO).

(AUB)U(BNC)  (by Cliii))
(AuB)u (BnC) (by C(i))

AU (BU(BNO)) (by Uliv))

AuB (by Example 2.16)

AnBu(@BNO)

In simplifying expressions, we make frequent use of De Morgan’s Laws C(ii) and C(iii)
for distributing complement bars over smaller expressions, C(i) for eliminating double
complements, Examples 2.15 and 2.16, and the distributive laws Dist (i) and Dist (ii).

Example 223.

Simplify (AuBUCIN(ANBNE)NC.

(AUBUCOIN(ANBNC)AC = (AUBUC)n(AuBUCINC (De Morgan)
= [(AuBUC)N(AuBUC)NC (Assaciativity of N)
= [(And)u(BuO)NnC (Dist (ii))

[BuClnC = (BNnOu(CnC) = (BNO)UP  (C(iv), U(iii))
= BnC

2.9 PROPOSITIONAL LOGIC AND THE ALGEBRA OF SETS

Every truth-functional operation determines a corresponding operation on sets. For
example, denial determines complementation: A = {x: 1 (x €A))}; conjunction determines
the intersection operation: ANB = {z: x €A & x € B); and disjunction determines the
union operation: AUB = {xr: x€A v x€B). In general, if # is a connective corre-

sponding to a truth function f(z;, ..., %.), then we define a corresponding operation @ on
sets by @(A,,...,A,) = {2: #(z€A,, ..., 2€ A,)). Thus the set-theoretic operation of

symmetric difference corresponds to the exclusive usage of “or”.

Example 2.21.

The operation of alternative denial determines the set-theoretic operation A N B, while joint denial
determines the operation 4 N B.

In general, a uniform way of determining the set-theoretic operation corresponding to
a given truth function is to express the latter in terms of 1, &, v, and then replace 1, &, v
by ~, N, U respectively. The statement letters need not be replaced since they can serve

ag gset variables in the new exnression
S set variaples 1mn pression.

asa
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If 2+ y, then {2z, y} was called the unordered pair of z and y. We say “unordered”

because {x, y} = {y, x} Let us define an ordered pair (z,%), which is determined by z and
¥, in, that order. By this we mean that the following proposition holds: if (x,y) = (w,v),
then z=u% and y=v.

Theorem 2.2. (x,¥%) = {{z}, {z,¥}) is an adequate definition of an ordered pair.

Proof. Assume (z,%)= (u,v). We must prove that x =% and y =v. We have
{{z}, {=z,9}} = {{u}, {w,v}} (2.1)
Since {x} is a member of the left side of equation (2.1}, it must aiso be a member of the
right side. Hence
{z} = {u} or {z} = {49}

Therefore z=u or z=u= In either case, z =u. Now by (2.1),

v
{z.¥} = () or {z,4} = {uv)

If {z,y) = {w,v}, then {z,y)} = {z,v} since x=u. Hence y=z or y=v. If y=uz,
then {¥}={y,v} and y=v. In all cases, y=v. If {z,y} * (v}, then {z,9)= {u)
andso z =y =wu. By (2.1),

{u,v} = {z} or (u,v} = {z,¥4}

Since {u,v} +* {z,¥}, {«,v})={x} and so u=v=2z. Therefore y=v.)

Let us recall the definition of a function. A function f from A into B is a way of
associating an element of B to each element of A. The phrase “way of associating” may
be replaced by a more precise notion:

(1) f is a set of ordered pairs such that, if (x,y) € f and (x,2) €f, then y =z;
(2) for every z in A there exists some y in B such that (x,¥) € f. (Such an object ¥

must be uniane 'hv virtue of {1\ it i denoted in the standard wav bhv f{2))
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We say that f is a function from A onto B if f is a function from A into B and every
element of B is a value f(x) for some z in A.

Example 225
The function f such that f(x) = 22 for every z in the set A of all integers is a function from A into
(but not onto) A. On the other hand, f is a function from A onto the set B of all squares.

A function f is said to be one-one if it assigns different values to different arguments,
i.e. f(x)=f(y) implies z=1y.

Example 2.26.

The function f in Example 2.25 is not one-one, since f(—n) =72 = f(n) for all integers n. On the
other hand, the function g such that g(x) = x2 for all non-negative integers x is a one-one function, since
u? = v? implies u = v for all non-negative integers u and v.

A one-one function from A onto B is called a one-one correspondence between A and B.
For example, the function %k such that h(z) = £ +1 for all odd integers x is a one-one
correspondence between the set of all odd integers and the set of all even integers.
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A ﬁmte set is a set which is either empty or can be enumerated by the positive integers

ifrom 1 up to some integer n. More precisely, A is finite if there is a positive integer n
such that there is a one-one correspondence between A and the set of all positive integers
less than n. (When n =1, A must be the empty set.)

For example, to justify the assertion that the set of fingers on a hand is finite we set

up the correspondence
ﬁ-\n\

— I / | ) ———

1

Il

%

It is clear that a subset of a finite set is finite (and hence that the intersection of any set
with a finite set is finite). Also obvious is the fact that the union of two finite sets is finite.

A set is said to be infinite if it is not finite. Examples are the set of positive integers,
the set of rational numbers, and the set of real numbers. Clearly any set containing an
infinite set must also be infinite, and therefore the union of an infinite set with any other

set is infinite. However, the intersection of two infinite sets need not be infinite. For
example, the set of even integers and the set of odd integers have an empty intersection

A set A is said to be denumerable (or countably infinite) if and only if A can be enumer-
ated by the set P. of all positive integers, i.e. if there is a one-one correspondence between
Pand A.

Example 2.27.

(1) The set of positive even integers is denumerable. Here the one-one correspondence is given by
f(m) = 2n. (2) The set of all integers is denumerable. Here the enumeration is given by 0, 1, -1, 2, —2, 3,
n/2 if n is even
—3, ... . The one-one correspondence is g(n) {

—(n—1)/2 if nis odd

Clearly the union of a finite set and a denumerable set is also denumerable. (Just
enumerate the finite set first and continue with the enumeration of the denumerable set,
omitting repetitions.) The union of two denumerable sets is again denumerable. (For, if
A ={a,as ...} and B= {by,bs, ...}, then AUB = {ay,b,,as,bs, ...}, where in the latter
enumeration we omit any repeated objects.) If we remove a finite number of elements from
a denumerable set, the remaining set is still denumerable.

A set is said to be countable if and only if it is either finite or denumerable. Obviously,
any subset B of a countable set A is also countable. (For, in an enumeration of A, we omit
all objects which are not in B. The resulting enumeration of B does or does not terminate.
If it does, B is finite. If it does not, B is denumerable.) The union of two countable sets is
a countable set. This follows from what has been said above about finite and denumerable
sets,

212 FIELDS OF SETS

By a field of sets on X we mean a non-empty collection ¥ of subsets of X such that, for
any members A and B in F, the sets AUB, ANB, and A are also in ¥. Another ‘way of
expressing: this is to say that ¥ is closed under the operations of union, intersection and

complementation. Since AUB=ANE and AnB= AUB, it suffices to verify closure

o Al nee oo —ee Sem
under complementation and either union or intersection.
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(1) the set P(X) of all subsets of X;

(2) the set of all finite subsets of X and their complements;
3) {2, X}.

Notice that any field ¥ of subsets of X must contain both @ and X. For, if B € , then
B e ¥ and hence @ =BNBEF. Therefore X=Q€EF.

213 NUMBER OF ELEMENTS IN A FINITE SET
Let #(A) stand for the number of elements in a finite set A. Clearly

#(A1VA:) = #(A)) + #(A2) — #(A1NA,)

For three sets, we have

#{AIVAUAS) = #(A)) + #(A:) + #(As)
— #(A1NA2) — #(A1NAs) — #(A2NA,)
+ #(A1NAzN As)
and, for four sets,
/A 11 A 1A 11 AN __ MI AN ) dbf AN 2 AN 2 AN
#lA1UVUA2UASUAYy) = #(A1) T #Fidg) + #{A3) T #(A4)

— #(A1NA,) — #(A1NAs) — #(A1NAL) — #(A2NAs) — #(A2NA) — #(AsNAY)
+ #(A1NA:NAs) + #(A1NA2NA) + #(A1NAsNAY) + #(AznAsﬂA4)
— #(A1NAsNAsNAY)

The general formula for n sets should be clear from the examples for n =2, 3,4,

Example 228.

In a two-party election district consisting of 135 voters, 67 peopie voied for at ieast one Democrat and
84 people voted for at least one Republican. How many people voted for candidates of both parties?

#(RnD) = #(R)+ #(D) — #(RUD) = 84+ 67— 135 = 16

Al

Here R is-the set of peﬁpu: who voted for at least one Rcyumicﬂ‘ﬂ and D the set of pvvpu: who voted fu
at least one Democratic candidate. Hence R U D is the set of all voters and RN D is the set of all peopl
who split their ballots.

Example 2.29.

A government committee reported that, among the students using marijuana, LSD or heroin at a
gsrtain university, 90% uged marijuana, 6% used LSD and 7% heroin, while 4% took marijuana and LSD,

VWi vemiil REsEsVeADevg ) maliiljuailz; REel 227 Lo e RO IMRILZEANE A0 2275

5% marijuana and heroin, 2% heroin and LSD, and 1% took all three. Are the committee’s figures
consistent?

Note that, if there are n students taking at least one of the drugs, and if H is a set of students,
then the percentage in H is #(H)/n. Hence if we let A, B, C be the sets of students taking marijuana, LSD
and heroin respectively, and we divide the equation for #(AUBUC) by n to obtain the percentages,

%{AUBUC) = %(A) + %(B) + %(C) — %(ANB) — %(ANC) — %(BNC) + %(ANBNC)
100 = 90+6+7—-4—-5-24+1 = 93
which is impossible. Hence the figures are not consistent,
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Solved Problems

2.1

Show that the cancellation law
if AUB = AUuC then B =C
is false by giving a counterexample.

Solution:
A=C={a). B=¢0.

Show that parentheses are necessary for writing expressions involving more than

PO IS T e M a1
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Solution:

Consider ANBUC. This is either AN(BUC) or (ANB)UC. But these two sets are not
necessarily equal. Take A =@ and B=C» @. Then AN(BUC) = @, but (ANB)UC =
pucC = C.

Prove the distributive law Dist (ii), page 33: AU(BNC) = (AUB)N(AUC).
Solution:

Logical Proof,
AVBNC) = {&: z€A v zE€(BNC)}
= {a: 2z€A v ®@€B & 2z€C)} = {z: (x€EA v 2EB) & (x€A v z€Q)}
= {(z: 2€EA v zEBYN{z: z€EA v zEC} = (AUB)N(AUC}
Pictorial Proof. In Fig. 2-13, the vertical lines indicate B N C and the shaded area is A. In Fig,
2-14, the vertical lines indicate A U B, the horizontal lines A UC, and the cross-hatched area
(AUB)N (AUQ) is identical with the marked area of Fig. 2-13.

Fig. 2-13

Prove the generalized distributive law Dist (ii’), page 34:
AU (Bln e an) - (AUB]) NN (AUBn)

Solution:

For n =1, the assertion is obvious and the case n =2 is the distributive law Dist (ii).
Now using mathematical induction, we assume the result true for 2 =k. Then for n=k+1,

A 13 iD ciemD AaD A\ — A D A...ADYAD \
A VDI IDEy1)] — a4V (B2 D) i1 D)
= [AU(BN--*NBY] N[AUB, ) (by Dist(ii))

[(AUB)N - NAUBL)] N (AVB,4y) (by the inductive hypothesis)

= (AURYN ¢« . NIAURYN(AUR. ..\
g AL TR\ER ARy v a1
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) ANB =9 (iii) (CNA)~B = @
(i) CNB)y~A =0 (iv) (CnA)U(CﬂB)U(AnB) * @
Solution:
In Fig. 2-15, (iv) says that FUF UG U H is non-empty. (i) says that EUF is empty. Hence

G U H is non-empty. (iii) says that G is empty and (ii) says that H is empty. Hence G U H-.is empty.
Therefore conditions (i)-(iv) are inconsistent.

AN N\

A
(XN

N

Fig. 2-15 Fig. 2-16

2.6. Show that AA(BaC) = (AAB)AC.

Solution:
In Fig. 2-16, AAB=EUHUGUJ and C=HUIUJUK, and so (AAB)AC =EU

GulUK, BAC=FUGUHUK and A = EUFUHUI, and so AA(BAC) = GUKUIUE,
Thus (AABYAC = AA(BAC).
Observe that E G K I

—t—e ——— —A— —A
(AAB)AC = (AnBNC)UV(ANBNC)U (ANBNCYV(ANBNC)
A logical derivation of this result is rather tedious and is left to the reader. It is easiest to prove
by showing (AAB)AC ¢ AA(BAC) and AA(BAC) C (AAB)AC.

2.7. Showthat AAB = @ if and only if A =B.

AAB =@ ifandoenlyif (A~B)U(B~A) = Q,
ifandonlyif A~B =@ and B~A = 9,
ifand onlyif ACB and BCA,
if and only if A = B.

Note: By C(xi), page 35, this result can be restated as
A =PB ifandonlyif (ANB)U(ANB) = @

2.8. Prove the cancellation law: If AAB=A4AC, then B=C.

Solution:

Assume AAB=AAC. Then AAAAB=AAAAC (parentheses can be omitted by virtue
of Problem 2.6). Since AAA =@, we obtainn PAB=@AC. But @AD=D for any D.
Hence B =C.
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Solution:

An(BaC) = An(B~C)u(C~B))
= ANB~C)U({ANn(C~B) = ((AnB)~C)U(AnC) ~ B)
= ((ANB)~ANC) U (ANC)~(ANB)) = (AnB)A(ANC)

The problem can also be handled by means of 8 Venn diagram, as in Problem 2.6.
2.10. Prove C(iii): ANB=AUB, logically and pictorially.
Solution:
Logical Proof.
ANnB

{x: z€X & x € (ANR)}
{z: x€EX & (x€A v z&€B)}
{z: (*€X & x€A)v (x€X & xE B))

{x: x€EX & z@A}u {x: z€EX & z€B) = AUB

Pietorial Proof. See Fig. 2-17 and 2-18,

A: vertical, B: horizontal
Unshaded region: AN B Marked region: 4 UB
Fig. 217 Fig. 2-18

2.11. Prove C(viii): ACB if and only if BC A.
Solution:
Recall that A and B are subsets of some fixed universe X. Then
A C B if and only if, for any z in X,if z€ A, then x € B,
if and only if, for any z in X,if x € R, then a2 At

if and only if, for any z in X, if x€ B, then z€ 4,
if and only if BC A.

2.12. Using mathematical induction prove the generalized De Morgan Law C(iii’):
AiNn---NA. = A1UA,U---UA,
Solution:
It is obvious for m = 1. The case » =2 is simply C(iii). Assume the result true for n = k.
Then for n=k+1,
AN NALNA, = (AN NAYNALy,

= A,f\'“nA_.,UAH.! (by C(iii))
= (A,U--VA)UA4,,, (by inductive hypothesis)

= Alu"'UA-kUA-k'f-l
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Solution:

2.15.

2.16.

By De Morgan’s law C(ii), AUB = AnB. Hence AUB = ANnB. But A_B=A_Z2.
Likewise, by De Morgan’s law C(iii), AnB = AUB. Hence ANB = ANB =AuB.

B
O C
s S’
C
:hl ;‘l
[
= I~
C
ml hhl
&
EN ’5:
C
UU U:
|
]

Solution:

1) (AuB)nA = (And)u B
(2) (AnB)ud A)n(Bud) = Xn(Bud) = BUA.
8 (ANB)UBCBUB = B. Also, BC(ANB)UB. Hence (AnB)UB = B,

(4) (AUB)NB = (ANB)U(BNB) = (ANB)UB = B (by (3)).

3-
i
©
C
E
3
Il

f
’p:

(¢) Show that the four ellipses in the diagram below form an appropriz==

diagram for four sets.

MRicema iviia 4VA AVl

Silep vaiT

assumptions?
(i) Cc (BND)u(DNB).
(ii) Everything in both A and C is either in both B and D or in neither B =zz —_

(iii) Everything in both B and C is either A or D.
( ) Everything in both C and D is either in A or B.

(b)Y Usine the diaeram of nart {(a)
\¥J lagram of part (a)

(a) Show that the fifteen regions of the diagram cover all possible cases:
AnBnCnD, AnBnénD, AnNBnCNnD, AnBNCAND,
AnBnCnD, AnBncnD, AnBncnbD, AnBnénD,
AnBnCnD, ANBnCnD, AnBAGnD, AnBnCnbD,

() C=0.

=
)
& W
)
)
)
4

o
)
(o ]]
)
o O
) D)
S

)
)

- a——

Algebra of Sets and Algebra of Logic. Given a statement form €Cin 1, &, .. == ==
be the expression obtained from € by substituting —, N, U for 1, &, v re:::e-::‘—_:’

Example: e o o~

S{(AvB)& 1C) = (AUB)NC
(a) Prove: A is logically equivalent to B if and only if S(A) = S(B) holds for = ==

(where the statement letters of a statement form € are interpreted in '€ as =
variables ranging over all subsets of a fixed universe).
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Solution:

2.17.

(a) If we replace each statement letter L in A by z €1, then the resulting sentence is equivalent to
zES(A) (since x € W;NW, if and only if €W, & zEW,;, z€ W,UuW, if and only if
xEW, v zEW,; and z€ W if and only if 1(z € W)). Hence if A is logically equivalent to B,
then x € S(A) if and only if z € S(B), which implies that S(A) = S(B). Conversely, assume that
A is not logically equivalent to B. In general if we are given a truth assignment to the state-
ment letters in an arbitrary statement form C, and if we replace statement letters which are
T by {@} and statement letters which are F by (@, then, under this substitution of sets for
statement letters, S(C) = (@} if € is T under the given assignment, and S(C)=¢9 if C

Thic halde haosauss undaw tha sarwacnandansa asonsiatine fAL

'u T 1undor tha sicvon acciommman ren vy v .
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with T and @ with F, the truth-functional operations correspond to the set-theoretic operations
(where sets are restricted to subsets of the universe {®}).

AT = F {9} = 0
MIF =T ? = (P}
T&T =T {2} n{@} = {9}
T&F = F&T = F {(P2}nQ =0n{R) =9
F&F = F 2N =9
TvT=TvF=FvT =T ({Q}ui{p} ={Quvp = Qu{p} = {9}
FvF =F PuY =90

Since A is not logically equivalent to B, there is a truth assignment making one of them T
and the other F, sey A is T and B is F. Then under the substitution of {@} for the true state-

ment letters and of @ for the false statement letters, S(A) = {@} and S(B) = @. Hence
S(A) = S(B) does not always hold.

Rmark Lurking behmd this rather, long-winded discussion is what in mathematics is
called an “isomorphism” between the structures

{T,F}, 1, &v) and ({{P)L0}h =N, V)

Note that we also have shown that an equation S(A) = §(B) holds for all sets if and only if
it holds in the domain {{@}, @} of all subsets of {@}.

(b) A logically implies B if and only if A & B is logically equivalent to A. By part (a), the latter
holds if and only if S(A&B) = S(A) always holds. But S(A&B)=S(A)NS(B), and
S(A)NS(B) = S(A) if and only if S(A) C S(B).

Define ordered n-tuples (for » = 8) by induction:

(1, T2, ..., Tn) = {1, X2, ..., Tn—1), Tn)
Thus (:,, 22, Zs) = (X1, Z2), T2} and (X1, Xz, s, Ts) = (((X1, T2), Ts), Z4). Prove that if
(1,22, .. ., Tu) = (U1, U2, ..., Us), then zi=wu, T2=Uz, ..., Ta = Un.

Solution:
We already have proved this result for n = 2. Now assume it is true for n =k = 2, and we
shall prove it must then hold for ¥+ 1. We have, by assumption,

Ty, Ty o2 0s Tiey T 41} = (U Uy o -y Uiy Upcp1)

Hence by definition,
((:cl, L9y ooy zk)p zk-{.z) = «ulr u21 ey uk)) uk+l)

By the result for n =2, we conclude .y = Ux,; and (T;, Za, ..., %) = (%1, U3, ..., %), But the
latter equation, by virtue of the inductive hypothesis, implies z, = u,, s = Uy, ..., Tjp = Ug-
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FINITE, INFINITE, DENUMERABLE, AND COUNTABLE SETS
2.18. Prove that the set W of all ordered pairs of non-negative integers is denumerable.
Solution:
Arrange W in the following infinite array:
(0, 0) {0, 1) {0, 2) (0, 3) (0, 4)
1 - - - o
{1, 0) 1,1) 1, 2) 1, 3) ..
2,0 2,1) (2, 2) (2, 3)
) / p / . /
3,0 3, 1) 3, 2) 3, 3)
4, 0) 4, 1) e
Enumerate the ordered pairs as indicated by the arrows, going up each diagonal from left to right.
Notice that the pair (i,j) appears in the [((1+ j)(i+ 7+ 1)/2) + (7 + 1)]th place in the enumeration.
This can be seen as follows: all pairs in the same diagonal have the same sum. Adding up =all
pairs in diagonals preceding the one containing (i, j}, we obtain
1424+ +(i+5) = (i+)i+7i+1)/2
There are ; pairs in the same diagonal as (i, /) and preceding (3, j).
2.19. Prove that the set of all non-negative rational numbers is denumerable.
Solution:

Every non-negative rational number co!respond to a fraction m/n, where (i) m and = are
non-negative integers, (ii) n 70, and (iii) m and n have no common mtegral factors other than =+1.
We can associate the ordered pair (m,n) with m/n, and use the enumeration given in Problem 2.18,
merely omitting those pairs (m,n) which do not satisfy conditions (i)-(iii).

2.20. The set A of all real roots of all nonzero polynomials with integral coefficients (such
roots are called real algebraic numbers) is denumerable.
Solution:

Any nonzero polynomial has only a finite number of roots. First list the finite set of all real
roots of all polynomials of degree at most one whose coefficients are in magnitude =1 (i.e. whose
coefficients are either 0,1, or —1). Then list the finite set of ali real roots of ali poiynomials of
degree =2 whose coefficients are in magnitude =2, etc. In general, at the nth step we list the
finite set of all real roots of all polynomials of degree == whose coefficients are in magnitude =n.
Of course, we omit repetitions. In this way, we obtain an enumeration of all real algebraic numbers,
That the set A is not finite follows from the fact that all integers belong to A.

2.21. Show that the set of all real numbers is not countable.

Solution:

Let R, be the set of all real numbers x such that 0 =z < 1. It suffices to show that R, is
not countable, since any subset of a countable set is countable. Every z in R, is representable as
a unique infinite decimal

* = .2,65a3...
where the infinite decimal does not end with an infinite string of 9's. (Thus although & decimal

such as .1362000 .. is also representable as .1361999. .., we shall use only the first representation.)
A sanema now that P can bha enumerated:

safSsume o
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~i 231212213
Ty = .G9)Qg;094
T = Op1Qya0k3
Construct a decimal y = .b;b.b,. as follows:
b 0 if a;; >~ 0
: 1 if ay=0

Thus, for all 4, a;» b, But then, y is in B, and is different from all of the numbers z,, z,, ...
(since the decimal representation of y differs from that of x; in the ith place}). This contradicts
the assumption that the sequence z;, z,, ... exhausts R,.

2.22. Given two sets A and B. We say that A has the same cardinality as B if there is a
one-one correspondence between A and B. We say that A has smaller cardinality
than B if there is a one-one correspondence between A and a subset of B but A does

nwnt hawva tha cama anrdinalitésr aa D
1lVV LI VT UiIT DGLIIT Lalullialivy & L.

Prove that, for any set A, A has smaller cardinality than the set P(A) of all sub-
sets of A (Cantor’s Theorem).

Qalutiam .

7y
AV LAVLE «

(1) There is a one-one correspondence between A and a subset of P(4). Namely, to each element

x of A associate the set {x) in P(4), Clearly if x and y are distinct elements of A {x) wo {41},
x of 4 asscoeiate the gset (@) in PlL), Clearly if z and ¥ are disting ents y \%; t'2;

(2) We must show that there is no one-one correspondence f between A and P(A). Assume, on
the contrary, that there is such a one-one correspondence /. Let C = {z: z€A4 & z € f(z)}.
Thus C consists of all elements 2 of A such that x is not a member of the corresponding
subset f(z) of A. But CCA. Hence CE P(A). So there must be an element ¥ in A such
that f(y) =C. Then by definition of C, y€C if and only if y&f{y). Since f(y) =C, it
follows that y€C if and only if y€C. But either y€EC or y&€C. Hence yE€C & y€&C,
which is a contradiction.

FIELD OF SETS

2.23. Prove that the collection ¥ of all subsets B of X such that either B or B is countable
is a field of sets.

Solution:
Assume BE F. Then either B or B is countable. Hence BEF. Assume now that 4 is also
in F.
Case 1: B is countable. Then A N B is countable. Hence ANBE F.
Case 2: A is countable. Then A N B is countable. Hence ANBE F.

Case 3: B is countable and A is countable. Hence A U B is countable. But AnB = AuB.
Therefore AnB € ¥.

2.24. Let X be the set of all integers, and let k be a fixed integer. Let G be the collection

of all subsets B of X such that, for any % in B, both »+% and »«—k are also in B.

(This means that a shift of k units does not alter B.) Show that G is a field of sets.
Solution:

Let B

k)

€¢G. Assume u€B. Hence u€B. So u—k&B. (For, if u—k € B, then
+ + (For, if 2u+k€ER, then u = (u+ k) —k€B) Thus

& Ty

N
)]
o
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Therefore u*k € AnB. Thus, ANBE .

3 (= G. Agsume now that
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and R ]
u€A & u€EB. Hence u*k€A & u*k€EBRB.

#AUBUC) = #(A) + #(B) + #(C)
— #(ANB)— #(ANC) — #(BNCO) (1)
+ #(ANBNC)
for arbitrary finite sets A, B and C.

Solution:
Take any element z in AUBUC. If z is in precisely one of the sets A, B, C, then « is
counted once on the right side of (I). (For example, if x €BnA f‘lv, then x is counted only

in #(B).) If z belongs to precisely two of the sets A, B, C, then x will be counted twice in the
positive sense on the right side and once in the negative sense. (For example, if x € ANBNC,
then z is counted twice in the positive sense in #(4) and #(C), and z is subtracted once in #(4NC).)
Lastly, if « belongs to ANBNC, then z is counted in every term on the right side, four times
in the positive sense and three times in the negative sense. Thus the net effect of the right side of
(1) is to count the number of elements in A UBUC.

2.26. If a boating club of 75 members admitted only owners of sailboats or powerboats,

and if 4Q mamhara anmad seilhaats and 22 momhare nomad nawarhasta has: smanss
ana i 26 MemoCIs OWINelk Sauolais allll oo INeNoeI'S OWICQA PpOwWelolals, niow mally

members owned both sailboats and powerboats?

Solution:
Let A = the set of all members owning sailboats, and B = the set of all members owning
powerboats.
#(AUB) = #(A) + #(B) — #(AnB)

Hence #(ANB)=6.

2.27. Among 50 students taking examinations in mathematics, physics and chemistry, 37
passed mathematics, 24 physics and 43 chemistry; at most 19 passed mathematics and
physics, at most 29 mathematics and chemistry, and at most 20 physics and chemistry.
What is the largest possible number that could have passed all three?

Solution:
Let M, P, C stand for the collections of students passing mathematics, physics and chemistry,
respectively.
#MUPUC) = #M) + #(P) + #(C) — #(MnP) — #MNC) — #(PnC) + #MnPNC)
50 = 87+ 24 +43 — #(MNP) — #MNC) — #(PnC) + #(MNPNC)
Hence
#MNPNC) = #MnP)+ #(MnC) + #(PNC) — b4

= 19+294+20-54 = 14
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[« PRI, PRy P » T B PR
Suppiementary rroplems
228 List all subsets of {@,{Q}}

229. {x: zis areal number & 22<0} = ?

230. Provee BUC=@Q ifandonlyif B=0Q & C=0Q.

231. Prove: If AUB = A for all sets 4, then B = @,

232, Show with an example that A U B N C requires parentheses to be unambiguous.
233. Prove: If BCA & CCA, then BUCCA; andif ACB & ACC, then ACBNC.
234, Prove: If CCA, then BNCCA and CCAUB.

2.35. Prove: P(4) n P(B) = P(ANB).

236. Is P(A) UPB) = P(AUB)? If not, give a counterexample.

2.37. {x: x is an integral multiple of 2} N {z: x is an integral multiple of 3} =

238. Disprove the cancellation law: If ANB=ANC, then B=C.

In Problems 2.39-2.54, determine whether the given equation is always true, using rigorous logical

methods and also, if possible, Venn diagrams. If an eguation is not always true, specily a counterezample.
23. (AuB)N(BUC)N(CUA) = (AnBYU(BNC)U(CNA).

240. A~(B~C) = (A~B)U(ANnBNO).

241. ANn(B~C) = (AnB) ~(AnO().

242. AU(B~C) = (AUB) ~ (AU().

243. A~ (BnC) = (A~B)u(A~0C).

244. A~(ANB) = A ~B.

2 AR AnB =

A
i - 42

246, AUB = AU(B~A).

241. (A~OU(B~C) = (AUB) ~
248, AU(BAC) = (AUB)A (AUQ).
249, A~ (BAC) = (A~B)a(A~C).

2.50. ~B = AuB.

»

251. A~B = B~ A.
AAB

252, = AAB.

253. AAB = (AnB)u(AnB).

25, AAB = AAB = 4 AB.

255. Let I = the set of integers = {...,—2,-1,0,1,2,...}; N = the set of non-negative integers =
2,...); Np = the set of non-posmve integers = {0,—1,-2,...}; E = the set of even integers;

1,
= the set of prime numbers. Find: NNn(Np), I~N, I~ (NP). N ~(Np), NU(Np), NA(Np),
I1~E, EnP.
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Prove that A = B is equivalent to each of the following conditions.
i) A~B = B~A.

iy AUB = AnB&B.
(iii) AUC = BUC & AnC = BnC.

2.57. Prove that A C B is equivalent to each of the following conditions.
(i) AAB =B~A, (i AuB =2X.

258. Prove: AAB = AuB ifandonlyif AnB = Q.

i (ANB)UC = A~B and CNA = BnA.
() A~(B~C) C CUB and ANBNC = @ and C~B C A,
(iii) (B~A)NC % @ and C~A4 C C~B.

2.61. Prove the following identities.
i) AJUAU---UA, = (A1 ~A))U(A~AJU" - U(Ay_y1~A,)
Ud,~A)UA1n4Nn - NA,)
= Al U (A2~Al) U (As -~ (A]UAz)) U (A4 -~ (AIUA,,UAS)) e
U (-‘-n -~ (Aiu.‘.iu M U“‘ﬂ-i))

(ii) A1NAzn--Nd4, = A;~ [(A)~A)U (A ~4A)U - U(4,~A4,)]
(iii) (A;~B)N(Az~By)N - -N(A,~B,) = (A;NAsN---NA,) ~ (ByUByU-+-UB,).

2.62. Simplify the following expressions.
(i) ANB)UCNB, (i) (AuB)nA)UBNA.

2.63. Find the set-theoretic operations corresponding to the truth functions for - and .

2.64. Determine whether each of the following sets of ordered pairs is a function.
(i) {(x,¥): z and y are human beings and z is the father of y}.
(ii) {(z,¥): z and y are human beings and y is the father of x}.
(iii) {(x,¥): x and ¥ are real numbers and x2+ 32 = 1}.
(iv) {(z): =1 & y=2) v (z=-1 & y=0)}.

2.65. For each of the following funeti
n

function from I onto I and also whether f is one-one.
-

functions f from the set of integers I into I, determine whether f is a

(z

() flz)=2z+1 (iii) f(z) = {

1 ifz
z—1 if x is odd
(i) flz) =—= (iv) fl®) = 22—3x+5

2.66. Prove: The set of all rational numbers is denumerable.
2.67. Prove: The set of all irrational real numbers is not countable.

2.68. By a left-open interval of the set R of real numbers, we mean either an interval
(@b = {x: a<z=0}
or an infinite interval of the form
(a=) = {z: a<gz)} or (==, b = {x: x=b}

Let F be the collection of sets of real numbers consisting of @, R, and all unions of a finite number
of left-open intervals. Show that ¥ is & field of sets.
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2.70.

2,71,

2.2,

2.78.

2.74.

= NBy — ACY — AD) — #(BNC) — =
+ #(ANBNC) + #(ANBAD) + #(ANCND) + #(BNCND)
— #(ANBACND)

{2) Generalize the result of (i) to any finite sets A,, ..., 4,,.

In an advertising survey of a hundred coffee and tea drinkers, 70 people were found to drink coffee
at times and 20 peonle drank bnﬂ\ tee and coffee, How manvy neonle sometimes drank tea?

Vereawarj et v prewpal e “asa LVl 12iRaly PUUpeT SURLTSainTS

Among Americans taking vacations last year, 90% took vacations in the summer, 65% in the winter,
10% in the spring, 7% in the autumn, 556% in the winter and summer, 8% in the spring and summer,
6% in the autumn and summer, 4% in the winter and spring, 4% in the winter and autumn,
8% in the spring and autumn, 3% in the summer, winter and spring, 3% in the summer, winter and
autumn, 2% in the summer, autumn and spring, and 2% in the winter, spring and autumn.
What percentage took vacations during every season?

If A and B both contain n elements, prove that A — B and B — A have an equal number of elements.
Show that this is no longer the case when A and B are infinite.

{a) Show that the maximum number of sets obtainable from A and B by applying the union and
difference operations is eight, (b) Show that the maximum number of sets obtainable from 4, B, C
by applying the union and difference operations is 128 = 27. (Hint: How many regions appear in
the Venn diagram for 4, B, C?) (c¢) Generalize (b) to the case of n sets Ay, ..., 4,,.

(@) Provee (ANBNC)UMANBND)U(ANCND)L(BNCND)
= {Aumn{Au{'\n{AuD\n{Rn('\n(R DYN{CuD).

Co L e AU LA [l &7 b

(B Prove: (ANB)UANCIUMAND)U(BNC)U (BND)U(CND)
= (AUBUC)N(AVBUD)Nn (AUCUD)Nn (BUCUD).

{a\D Dunwa tha fallaceivn alimndias € (=Y A\ and ahloce O A1 Meom o coba A A
\v; ALUVE WIT LULVWIILE Ell alloavivii UL \B), \V allu I TODIEINI &2i. NTAVEEL It DLW ﬂl’ ey E2qe
Let k =mn. Show that the union U of all intersections of k of the sets A4,, ..., A4, is equal

to the intersection I of all unions of n—k+1 of the sets 4, ..., 4,. (Note: In Problem
241, n=3, k=2; in(a), n=4, k=38; in(d), n=4, k=2) Hint: ProveUCIandICU.



Chapter 3

3.1 OPERATIONS

An n-ary operation on a set Y is defined to be any function f which, to each n-tuple
WYy ..., Yn) of elements %), ...,¥%» in Y, assigns an element f(yi1,...,%s) in Y. A more
traditional way of asserting that f is an n-ary operation on Y is to say that Y is closed

under the function f.

Example 3.1.

Addition, multiplication and subtraction are binary operations on the set of integers. (We use “binary”
instead of “2-ary”.) The function f such that f(z) =x—1 for every integer x is a singulary operation
on the set of all integers. (We use “singulary” instead of “l-ary”.)

Example 3.2.

The subtraction function z — y is not a binary operation on the set of non-negative integers, because
the value z — y is not always a non-negative integer. The division function z/y is not & binary operation
on the set of positive integers. (Why?)

3.2 AXIOMS B

By a Boolean algebra we mean a set B together with two binary operations A and v on
B, a singulary operation ’ on B, and two specific elements 0 and 1 of B such that the follow-
ing axioms hold.

1) ForanyrandyinB, = = z
(1) For any y . vy =y 1 Commutative Laws
(2) ForanyzandyinB, zAy = y,\mJ
(8) Forany z,y,2in B, 2 A(¥vz) = (zAY) v (TA2)
(4) Foranyz,y,zinB, zv (yr2z) = (xvy)A(zvz)
(5) ForanyzinB, zv0 = z.

} Distributive Laws

(6) ForanyzinB, zAl =z

(7) ForanyzinB, zva = 1.

(8) ForanyzinB, zaz’ = 0

(9) 0 = 1.

A Boolean algebra will be designated by a sextuple (B, A,v,’,0,1). Sometimes one refers
to the set B as a Boolean algebra, but this is just a loose misuse of language.

Example 33.
(@) The two-element Boolean algebra

= {@,{9}},n,u,”,0,{0}H

where B = {0, {D}}; A = the ordinary set-theoretic intersection operation N; v = the ordinary
set-theoretic union operation U; ' = the ordinary set-theoretic operation of complementation;
0=0; and 1 = {@}. In Chapter 2, we have verified properties (1)-(9). Of course, we first must note

that N, U and — are operations on {Q, {Q}}.

52
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(b) The Boolean algebra of all subsets of 8 non-empty set A, under the usnal operations of inter-

) 41te DOOIear snHIeLs QII=CIIPSY S©

section, union, and complementation, and with @ and A as the distinguished elements 0 and 1:
(P(A), N, U, , P, A). When there is no danger of confusion, we shall refer to this Boolean algebra

simply as ‘P(A). Part (a) is a special case of (b) when A = {@}. (Notice that we have omitted the case
where A = @; in this case, 0 = @ = A =1, violating Axiom (9).)

Example 34. (This example should be omitted by those not familiar with elementary number theory.)

Yot B ha tha sot of all nositive amaws wmrhisl nl Jiee Af AN Mheus
a A OWVV VA “Al FUQIMVG llll&sclﬂ "llll.ll oxw lllwsl “l ulv&au&a va (A A LID)y

= {1,2,5,7,10, 14, 35, 70}

For any z and y in B, let z Ay be the greatest common divisor of « and y, let zv y be the least common
multiple of « and y, and let =’ = 70/x. (For example, 5A14=1, 5v14=70, 10A35=35, 10v36 =70,
5 =14, 10'=17) Then (B,A,v,’, 1,70) is a Boolean aigebra. Verification of Axioms (i)-{(9) uses ele-
méntary properties of greatest common divisor and least common multiple.

Example 35.

It seems evident that a set of sentences closed under the operations of conjunction, disjunction and
negation should form a Boolean algebra. However, this is not quite so. For example, A& B and B& A
are not equal, but only logically equivalent. Thus we should have to replace the equality sign = in Axioms
(1)-(9) by the relation of logical equivalence. In addition, 0 could be any sentence of the form A & A,
and 1 could be any sentence of the form Av TA. If we wish to retain the equality sign = with its usual

maoanine {ia identito) thon wo maew wwanoad as Fallow.c Der tha adrdamismi houadla (A dotoveminad he a
meanin & (1.C. 1GeNuily), unell We may plrodeetd &S I0u0WsS, LYy Ule Jiaremeny ouURGee r1m~; Gelerminet oy &

statement form A, we mean the set of all statement forms which are logically equivalent to A. Then, it
is clear that: (i) [A] =B} if and only if A is logically equivalent to B; (ii) if [A] » (8], then
[AIN[B] = @. If K, and K, are statement bundles, it is obvious that if A, and B, are statement forms in
K, and A, and B, are statement forms in K,, then A, & A, is logically equivalent to B; & B;, A; v A, is
logically equivalent to B; v By, and 1A, is logically equivalent to 1B,. Therefore if we take an arbitrary
statement form C, from K, and an arbitrary statement form C, from K,, then we may define K; & K, to
be [, &€, Ky v Ky to be (€, v &,], and K| to be {71C,]. If B is taken to be the set of all statement
bundles, 0 is taken to be [A & V1A], and 1 is taken to be [A v 1A}, then (B, &,v,’,0,1) is a Boolean
algebra. Verification of Axioms (1)-(9) reduces to well-known properties of the algebra of logic. (For
example, to check Axiom (1), we consider any statement bundles K, and K,, and we take any statement
forms €, and C, in K, and K, respectively. Then K,v K, =1[C,vC,] and K,vK;={C,;vC,]. But
[C,v ] =[C,v ], since C, v C, is logically equivalent to €,V C,.)

Terminology: x A ¥ is called the meet of 2 and y.
z v y is called the join of z and y.
z’ 1is called the complement of z.
0 is called the zero element.
1 is called the unit element.

If it is necessary to distinguish the meet, join, complement, zero element and unit

element of a Boolean algebra B from those of another Boolean algebra, we shall add the
auhgerint R: A '; 0
WREOLS Y S A "‘B’ "n‘-'g, *g-

Unless something is said to the contrary, we shall assume in what follows that
B =(B,A,v,0,1) is an arbitrary Boolean algebra.

Theorem 3.1. Uniqueness of the complement: If zvy=1 and zAy=0, then y=2'.

Proof. First, y = yv 0 by Axiom (5)
Yv (TAz) by Axiom (8)
(¥ve)A(yve') by Axiom (4)

{an 2\ fas , Aa?\
vy Aalyva) by Axiom \J.)

= 1la(yve) by hypothesis
= (yva')al by Axiom (2)
= a1, hyv Aviam /8)

y Vv s IIJ ﬂA ll \ )
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&nnrd al = w0 bv Axiom (5)
Dy )

LAJLAN & = W VY SRRV N

=a'v(zaYy) by hypothesis

= (x’vz)A(z’vy) by Axiom (4)

(v 2\ A (2 v 7)) bV_A_xiﬂm {1\
\V Y AR I7 4 ~ \=J

=1a(z'vy) by Axiom (7)
= (@'vy)al by Axiom (2)
=g'vy by Axiom (6)
= yva by Axiom (1)
=y by the first part above 3

Corollary 3.2. For any z in B, (')’ =z. (Notation: We shall denote (2)’ by 2, ((¢'))’ by
z’, ete.)

Proof. First, 22 vz = zv 2z by Axiom (1)
=1 by Axiom (7)

Second, 2’ Az = zA 2 by Axiom (2)
=0 by Axiom (8)

Hence by Theorem 3.1, taking = to be 2’ and ¥ to be z, we obtain z=2".)

Theorem 3.3. Idempotence: For any 2 in B,

i) zaz = 2, (i) zvx =2
Proof.
i) z=2zal by Axiom (6) i) z==zv0 by Axiom (5)
=zA(zva) by Axiom (7) = zv(zaz’) by Axiom (8)
= (xaZ)v (xAz’) by Axiom (8) = (2vz) A(zvea’) by Axiom (4)
= (zA2)v 0 by Axiom (8) = (xva)al by Axiom (7)
=zAZ by Axiom (5) =2zve by Axiom (6) )

Definition: By the dual of a proposition concerning a Boolean algebra B, we mean the
propoeition obtained by substituting v for , A for v, 0 for 1, and 1 for 0, i.e. by exchanging
» and v, and exchanging 0 and 1.

Example 36.
The dual of zA(yvz) = (xAy)v(xAz) is zv (yaz) = (xvy) A(xvz), and vice versa. The
dusl of ava’'=1 is A2’ =0, and vice versa.

It is obvious that if B is the dual of A, then A is the dual of B.

Theorem 3.4. Duality Principle (Proof-theoretic version): If a proposition A is derivable
from Axioms (1)-(9), then the dual of A is also derivable from Axioms (1)-(9).

Proof. The dual of each of Axioms (1)-(9) is again an axiom: (1) and (2) are duals of
each other, and so are the pairs (3)-(4), (5)-(6), and (7)-(8). (9) is its own dual. Thus if in
a proof of A we replace every proposition by its dual, the result is again a proof (since
axioms are replaced by axioms), but this new proof is now a proof of the dual of A.)
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3 TvaE =2, AS3 atter ¢ act, the proof ¢ : : neipie—1s strated 1in
the proof of Theorem 3.8: the proof of (ii) is obtained by taking the duals of the proposi-
tions in the proof of {i).

Theorem 3.5. For aii 2, ¥, zin B,
(i) z2A0 =0
(i) zvl =1
(i) zAa(zvy) =
) xv(zAYy) =

{

: }Absorption Laws

J
(v) WAz =2z2az2 & Yynax =2zA2 ]~y =2
(V? zvilyve) = (@vy)ve Associative Laws
(Vi) ZA(YA2) = (ZAY)AzZ

(vili) (@vy) = @Ay |
De Morgan’s Laws

() (@ay) =avy]

(x) zvy = (@ Ay)

(xi) zAY = (vy)

(xii) Ay’ =0 e zAy=2x

(xil) 0 =1

(xiv) 1V =0

(xvl zA(@'vy) = ZAy

(xvi) zv(®’Ay) =2vy

- AL _

Proof. From now on, we usually wiil not cite the particular axioms or theorems being
used in a proof.

(i) 2A0 = (2A0)vO0 = (ZA0) v (2AZ) = (2AZ)v(ZA0) = 2A(@'Vv0) =2A2’ =0
(ii) is the dual of (i).

(i) zAa(xvy) = (@v0)a(zvy) = 2v(0ny) = 2v0 = =z

(iv) is the dual of (iii).

Assume YA2Z = 2zAz2 & y A2 = zAz’. Then
Yy =ynrl =ya(zva) = (yaz)v ([yaz)
= (zaz)v (zA2) = zA(zva’) = 2A1 =2

(vi) We shall use (v), replacing ¥ by v (yv2) and z by (zvy) vz Thus to apply (v) we
must show
(@) @vyve)az = (vy)ve)az and (B) (zv(yva)az = (Tvy)ve) Az

To prove (a): (zv(¥yva)rz = zAa(zv(yvz) = z by (lii). Also,

s
J

({ Q\A’l!:’l‘,A({’ﬂl"l
wWwwVvVy ] A A\~
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b6
Thus (xv{yvz),r=z = = = ((zv¥)v)nz
To prove (b): (zv@v)az = & - = (yve)
= -z v(@aAlyva)
—  n -’ far NN = el . far .=\
d = F\YVE)) = & AYve
Also, ((xvy)vz),\x' =z - ‘_.‘, 2 v zl = (_x’ ~ (xvy))v(z'z\z)
= "x-=z =AY V(@ A2)
= 0. .3 _.x'AZ]
=(z'r3% . >r2) =2+ (Yv2)
Thus (Ev@yva)ae = =« 3 vz =((xvy)va)az

(vii) is the dual of (vi).
(viii) To prove (zvy) = 2’ Any’, we use = ==7Taeness of the complement (Theorem 8.1).
We must show
(© Eva@ay) =€ z=Z (@ (zvy)v@ay)=1

[}
AY

-, ,A’d‘,\l‘ll\
- \\* V¥

rove {o): {or A\ A {2 A ar’)
) vy A& AY)

= yviaz]v [z AY)AY)
= Ay) v A Ay)
Y]V [ A Y]
c[#"A0] = 0v0 =0
&) Az y) vy

s alzyyvy)]
“Lmovy]alz 1]

= vylal = (vE)vy
vl=1

ns
Yy Vv

!
[N

.
-
.- -

T e %

To prove (d): (zvy)v (' AY)

l
" " "

-

= °_ 3 =
(ix) is the dual of (viii).
(x) By (viii), (zvy) = 2’Ay’. Hence =.3 " = (2'r¥'). But (2vy)” = zvy, by
Corollary 3.2
(xi) is the dual of (x).
xii) z=2Al=2Ayvy)=(@AYy)v(z, 3y - Therefore Z Ay =0 implies z = zAY.
Conversely, assume z =z Ay. Then
zAy =0v(zay) =
=zaA(x'v y’;v =
(xiii) Since O0v1=1 and 0A1=0, we obz=== 7"=1 by Theorem 8.1,
(xiv) is the dual of (xiii).
(xv) ZzAa(@vY) = (@a2)v(zay) = 0viz-3 = z2,¥.
(xvi) is the dual of (xv). )

c2)v(z,¥)
c(@Ay) = A2 =0

33 SUBALGEBRAS

It is clear that a Boolean algebra (B, A, v, ". ¢, 1 has a uzique zero element 0 and a unique
unit element 1. For, assume that z is also a passible zerc element; in particular, z = zvE
forall zin B. Henceif welet z=0, 0=0.z. But 0vz=2v0=2 Thus 0 =2 Like-
wise, if « were a possible unit element, then 1 =1 u=u-1=u, .
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The subset {0, 1} is closed? under the operations A, v,’. Feor,
[ovi=1=1v0 [0A1=0=140 v e
1vl =1 1a1 =1 {1'_
0vo =0 0A0 =0

Thus if we let A (0.13» Vio1y, ‘.13 denote the restrictions of the operations A, v, ’ to the set
{0, 1}, then B* = ({0,1}, A(g,1)s Vo135 (13, 0,1) is itself a Boolean algebra. Notice that
all we had to observe was that {0, 1} is closed under the operations a, v, ’; it is easy to check
that Axioms (1)-(9) are then automaticaily satisfied.

More generally, if A is any non-empty subset of R closed under the operations a, v, ’,
then (4, A,, v,, ‘a, 0, 1) is a Boolean algebra, where 4 Var A are th restrictions of the opera-
tions A, v, ’ to the set A. Observe that 0 and 1 must belong to A. For,if 2 € A,then2’ € A,
and thus we obtain 0 =z A2’ €A and 1 =zv 2’ € A. The Boolean algebra (A4, A,, v,, 4,0, 1)
is called a subalgebra of B. In particular, the Boolean algebra B* determined by {0,1} is
a subalgebra of 8. In fact, B* is the “smallest” subalgebra of B, since B* is a subalgebra
of any other subalgebra of B.

To show that a subset A of B is closed under A, v, ’, it suffices to show that A is closed
either under A and ’, or under v and ’. For if A is closed under A and ’, then, for any

ar imn A . = fnel . A\ = A T -‘I—A..“-- . aw ., “‘l 7 than Ffar anv
W’y 111 43, ﬂ' A\ y bd \ﬂl ,\y ’ = £, ulncwlﬂc uliiucis v “l ) WAITIly AV @iy

z,yin A, z Ay = (2'vy)y EA.

..
H'o
N
o
@
o

Example 3.7,

Let B be the Boolean algebra P(K) of all subsets of an infinite set X under the usual set-theoretic
operations of intersection, union and complementation, and with @ and K as the zero element and unit
element, respectively. Let A be the set of all subsets of X which are either finite or cofinite (i.e. the com-
plement of & finite set). Then A is closed under intersection, union and complement, and therefore A
determines a subalgebra of B. In general, the subalgebras are the fields of subsets of K.

34 PARTIAL ORDERS

Theorem 36. =z =y if and only if zvy=1w.

Proof. Assume z=y. Then
zvy = (ZAY)vy =¥
(using Theorem 3.5(iv)). Conversely, if zvy =y, then
TAY =2ZA(zvy) =
(using Theorem 3.4(iii)). p

Example 3.8.
In a Boolean algebra P(4), the relation z = y is equivalent to z Cy, for any subsets z and y of A.

tRecall that A is said to be closed under the operations A, v, '’ if, for any x and ¥ in A, the objects
z Ay, vy, and 2’ are also in A.
ttThe symbol = should not be confused with the symbol for the usual ordering of integers or of real

numbers, If necessarv. ugse =@ instead of =.

=ary, IS
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Example 39.
In the Boolean algebra ‘B assoclated with the proposmonal calculus (Example 3. 5), if A and B are

[A] = [I] 1f and only if [A& B] = [A], ie. 1f and only 1f A& B and A are loglca.lly equwalent. Clearly
A & B is logically equivalent to A if and only if A logically implies B. Thus [A] = [B}] if and only if A
logically implies B (or, equivalently, if and only if A= B is a tautology).

Theorem 3.7. (PO1) z =« (Reflexivity)
(PO2) (x=y & y=2z)->z = 2z (Transitivity)
(PO3) (x=y & y=x)—>2 = y (Anti-symmetry)
Proof.
(PO1l) zArz = =z

(PO2) Assume zAy = 2 and YAz =y. Then

ZAaz = (TAYAZ =2TAYn2) =AY =17
(PO3) Assume xAy = z and yAnz = y. Then
T =AY =YAZT =Y 4

In general, a binary relation R on a set A is any subset of A X A, i.e. any set of ordered
pairs (u,v) such that u€ A & v € A. For example, the relation of fatherhood on the set of
human beings is the set of all ordered pairs (2, %) such that 2 and ¥ are people and =z is the
father of y. In accordance with tradition, one often writes xRy instead of (x,y) € R.

A binary relation R on a set A satisfying the analogues of (PO 2) — (PO 3),

is called a partial order on A.

A partial order on a set A is said to be reflexive if and only if 2Rz holds for all z in A4,
while R is said to be #rreflexive on A if and only if xRz is false for all 2 in A. For example,
the ordinary relation = on the set of integers is reflexive while the relation < on the set of
integers is irreflexive. In Theorem 3.7 we have seen that the binary relation = on a
Boolean algebra B is a reflexive partial order.

If = is a reflexive partial order on a set A, we can define z <y to mean that z=y & z+y.
Then we have

Theorem 38. (i) J(r<2)

33 (o ps Lo as sl > o
Ul Wy X y=4%) T2
(iii) (z=y & y<2) » z<z2
(iv) (x<y & y<2) » z<z

v) N(z<y & ¥y<z)
(vi) < is an irrefiexive partial order on A.

Of course, given an irreflexive partial order < on A, we can define a reflexive partial
order = on A as follows: 2=y & (x <y or z=y).
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— e a pa!’tia Qn a S & AAA wAGIIIwAL Y 2 ‘Aa iS }d wv b i W, wivw
asubset YC A if y=z for all yin Y. An element z of A is said to be a least upper bound
- | h | I

1S .
46%)’6%3—511“38%&4—1%3_ naoniy 11

(1) z is an upper bound of Y,
(2) z=w for every upper bound w of Y.

Clearly, by (PO 3), a subset Y of A has at most one lub.

Similarly, an element z of A is said to be a lower bound of a subset Y C A if and only if
z=yforall y in Y; 2 is called a greatest lower bound (glb) of Y if and only if

(8) z is a lower bound of Y,
fA\ o1y =< » £,

\=) W = 2 I0r every
Again, by (PO 3), Y has at most one glb.

Example 3.10.
The usual order relation = on the set I of integers is a partial order on I. Any non-empty subset of I
having an upper bound (respectively, lower bound) must have a lub (respectively, glb), which is, in fact,

e - WRAN Anen w mashoabs

Lena b alosmenmd feccmoabioaole cwm-al Sl o PR S A
the greatest element {TEspECLivEly, smallest element) of the set. However, there are non-emply subsets

which have no lub, e.g. the set I itself or the set of even integers.

Example 3.11.
The usual order relation = on the set R of real numbers is a partial order on B, Any non-empty
subset of R having an upper bound (respectively, lower bound) must have a lub (respectively, glb).

Example 212,
The usual order relation = on the set @ of rational numbers is a partial order on Q. However, in

this case, there exist non-empty subsets of @ which are bounded above but do not have a lub. An example
is the set of all positive rational numbers z such that z2 < 2. (This is just another way of saying that

V2 is not rational.)
Examples 3.10-3.12 possess the additional property of commectedness:
(Conn): For any 2 and y in A, 2=y or y=z.

A partial order satisfying (Conn) is called a total order (synonyms: simple order, linear
order). Not all partial orders are total orders.

Example 3.13.
The partial order C determined by the Boolean algebra of all subsets of {0,1} is not connected, for
we have neither {0} C {1} nor {1} C {0}.

A partial order on a finite set A can be indicated by a diagram in which the elements
Al A nmen emlodiiacend a e Lo _n T o a8l ne Lo Adlae memlohl e L e amlend e I8 e o Tee 36 A
UL A1 al© picuultcyd ad pPoilIlLs, dlll a4 POUIIIL & [IdS LI IeiallOll LL JSUIE POUIIIL ¥ 11 allu Villy 11 ¥y
can be reached from z by following a sequence of zero or more upward arrows. The order

relation C in the Boolean algebra of all subsets of {0,1)} is pictured in Fig. 8-1, and the
order relation in the Boolean algebra of all subsets of {0, 1, 2} is shown in Fig. 3-2.

{0,1,2}

0,1} { 1}/' {012} ‘\{1' 2
YN o

{0} {1}
H {2}

~ é/

oc)
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a22S peIaml U222 =

possessed by all partial or:i-

Theorem 3.9. ) For any z and y, {2, ¥} has both a lub (namely, x v %) and a glb (namely,
a\

(L
TAY).

Proof. z=zxzvy (since zA(zvy) = z), and gimilarly, y=2zvy. Thus zvy is an

upper bound of {z, y} Now assume w is any upper bound of {z,y}. This means that z =w
and y=w, ie. zAaw =2 and yAw =y. Then (zvy)rw = TAaw)v (¥aw) =2vy,
ie. zvy=w. Thus zvy is the lub of {x,y}. The proof for x Ay is left to the reader. )

A Yo AYMATMAT ATY TNATIRESY

MUDDTIOQYMNARIC A WITY TN ~ n
LDAIRLEOJIUND AN FUNULILIUND. INURVNAL TULRID

By a Boolean expression we mean any expression built up from the variables =, ¥, 2, z,,
Y1, 21, X2, Yo, %2, ... by applying the operations A, v,’ a finite number of times. In other
words, all variables are Boolean expressions, and if r and ¢ are Boolean expressions, so are
(rA0), (rvo) and (7)1,

Example 3.14.
The following are Boolean expressions:

(v @) A=), (WA V ({(ZVAY), (¥ A(zvE)), ((W))AZ) AY), (W) A (zAY)

We shall use the same conventions for omitting parentheses as were used for statement
forms in Chapter 1 (cf. page 5). For this purpose, the symbols A, v, are to correspond to &, v, I

Example 3.15,
Using the conventions for omitting parentheses, we can write the Boolean expressions of Example 3.14
as follows:
(EVY) Az, Wrz)V (@ AY), WAV, ¥ AzAy ¥ A(ZAY)

Given a Boolean algebra B =(B,A,v,’,0,1) and a Boolean expression r(u,...,%x)
having its variables among i, . .., u%x, we can determine a corresponding Boolean function
3(wy, . . ., ue): for each k-tuple (b;, ..., bx) of elements of B, +3(by, ..., bi) is the element of
B obtained by assigning the values 0;, ..., D t0o u,, . .., ux respectively, and interpreting the
symbols A, v, ’ to mean the corresponding operations in 8. (In order to make the corre-
sponding function unique, we always shall list the variables u;, ..., % in the order in which
they occur in the list z, ¥, 2, 21, Y1, %1, Z2, ¥z, 22, . ... For example, ¥ v 2’ determines the
function f(x,y)=yve’; thus f(1,0)=0 and f(0,1)=1.)

Example 3.16.
The Boolean expression x v y’ determines the following funection f(z, y) with respect to the two-element

Boolean algebra B,.
f0,0) =1, f(0,1) =0, f(1,0) =1, f(1,1)=1

Notice that, if by, ...,b. are in {0,1} and (i, ...,%.) is a Boolean expression, then
73(by, . . ., ba) is also in {0,1}, since {0,1} is closed under A, v and ’.

Observe also that different Boolean expressions may determine the same Boolean func-
tion. For example, 2 A (¥v2) and (zAY)v (xAz) always determine the same Boolean

functions.
tMore preclsely, o is a Boolean expression if and only if there is a finite sequence ry, ..., 7, such that =, is

o, and, if 1=41i=n, then either r; is a variable or there exist j,k <1 such that 7, is (rjATy) or 7 is
(rsvr) or r; is (-n)
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'r(u) = [7(0) A u’] v [’r(l) Au]

is derivabie from the axioms for Boolean aigebras.
Proof. See Problem 3.7, page 66. )

Now we shall present a normal form theorem for Boolean algebras which is a gen-
eralization of the disjunctive normal theorem for propositional logic (Theorem 1.6). The
following notation will be convenient:

] ([» ifi=1
For any expression r, = . .
7 ifi=0

The symbol >, with appropriate indices, will be used to indicate repeated use of v. In
partxcular, E c(a) stands for 0(0) v (T(l) while E 2 Xy az) stands for 0(0 0) v 0(0 1) v

a=0 a; =0 as=0

o(1,0) v of1, 1).

Theorem 3.11. (Disjunctive Normal Form) For any Boolean expression z(u,, ..., %), the

pnna‘hnn

Svalsia

11 1
(U, ...,u) = Z Z e > r (@, ay v oesa) AUTTAUTIA = ¢ 0 AU
° ~ =0 az=0

ay=0
is derivable from the axioms for Boolean algebra (and therefore the corre-
sponding equation, with r replaced by -2, holds in any Boolean algebra <%B).
Proof. See Problem 3.8, page 67. )

Example 3.17.
When k =1, Theorem 3.11 reads

1
) = Zr@aur = @0 Aw)v D) A
a=
When k =2, we obtain
1 1
upug) = FT I rlag,an) Aupt Aug

(r(0,0) A uf AuS) v (7(0,1) Aul Aus) v (2(1,0) Ay Aus) v (r(1, 1) Aty Atg)

Exsmple 3.18.
When r is z v y, Theorem 3.11 states

[(OvO Az’ A¥]vAvO)Azay] v OvI) Az Ay]lv [AvI)azAay]

TVy

oArx’Ayivianzay]viaz Aaylv 1azAay]

[zAy] vz Ayl v [xAy]

Exsmple 3.19.
The representation of (xv ) A (#'vy’) in disjunctive normal form is

@EvNA@E VYY) = OAZAY)VAAZAY YV (Iazay)v (0AzAY)

= (@AY v (zAYy)
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Corollary 3.12. Let r(u;,...,u) and o(u;, ..., %) be Boolean expressions, and let ® be
some Boolean algebra If the Boolean functions 3(u,,...,w) and
o2 (U~ 1,then:
(a) the equation =(ui,...,ux) =o(u, ..., %) is provable from the axioms

for Boolean algebras;
(b) € = oC for all Boolean algebras

gebras \,a

Proof. (a)Since {0,1}CB, +B(by, ..., b) = o®(by, ...,b) whenever by, ..., b € {0,1}.
But ®(bi,...,b) =0B(by,...,0) holds if and only if the corresponding equation

(b1, ..., k) = ofby, ..., bx) can be proved from the axioms for Boolean algebras. For,
the equations 0A0=0, 0A1=1A0=0, 1A1=1, etc., are all derivable from these axioms,
and the values +B(by, ..., bx) and ¢®(b,, ..., bx) are comnutable from these equations. Hence
by Theorem 3. 11, f(ul, ce oy Ui) = O'(ul, .. ,wc) is derivable from the axioms.

(b) is an immediate consequence of (). p

The remarkable thing about Corollary 3.12 is that, if an equation holds for one Boolean
algebra (in particular, if it holds for the two-element Boolean algebra °Bg) then it holds for
all Boolean axgeuraa To mathematicians it pfﬁuam,‘y‘ woiild not have been sur‘prismg if we
had only asserted that, if an equation holds for all Boolean algebras, then it is provable
from the axioms. This latter assertion follows, in fact, from the completeness theorem for

first-order logic (see Corollary 2.15(a), page 68 of [135]).

oo
(-]

ISOMORPHISMS

A function & is called an isomorphism from a Boolean algebra B = (B, ag, vg, '8, 04, 1)
into a Boolean algebra C = (C, ap, v¢, ¢, 0p, 1) if and only if

(2) & is a one-one function from B into C,
() for any z, y in B,

oz rgy) = (%) Ac 2(Y)
Pz vgy) = &x)ve 2(y)
o(z'8) = (2(z))c

Q- L e at o e Y . S, RPN 7~ 2 (. .
QUCII 4 TUnCcLIon ¢ 13 calied aln I1SOINUIPIISIl II0IIl D 0rnLo ( 1, 1l aualdl

from B onto C.

Theorem 3.13. Let & be an isomorphism from a Boolean algebra B into (respectively, onto)
a Boolean algebra  (with the notation given above). Then

(a) @(Og) = OC and d’(lg) = lc.
(b) It is not necessary to assume that
@ vg y) = &(x) ve 2(¥) forallz,yin B

neeld ncnnid dhhn scmismmandiaen Ll 4
>OuIq Omiiv uié asouiupuivll wuiaal

(T AgYy) = P(Z) Ac 2(Y)

(c) If @ is an isomorphism from ( into (respectively, onto) a Boolean
algebra D = (D, Ap, vop, "2, 0,,1,), then the composite mapping?
@o & is an isomorphism from B into (respectively, onto) D.

tThe cemposite mapping (or composition) 8°% is the function defined on the domain B of & such that
(809¢)(x) = 6(#(x)) for each zin B. The inverse -1 is the function whose domain is the range #[B] of ¢
(here, ®[B] = {#(x): x€ B}) and such that, for any y in ®[B], (#~!)(y) is the unique x in B such that
P(x) = y.
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{(d) The inverse mapping #°! is an isomorphism from the su ubalgebra of
C determined by #[B] onto B, and, in particular, if ¢ is onto , then
$=1-is-an-isomorphism from ( onto B-
Prooj
(a) 2(0,) = (2 Ag2'8) = (2) A, 2(2"B)
o(15) = 8(0F7) = (2(0s))c = 0F = 1,
(b) B(xvy Y) = ('8 AgY'B)B) = (&(2'B Ag Y'B))C

(B(x"8) np (y2))c = ((2()T Ac (2()E)E = 2(2) v, 2(Y)

(c) First, @o® is one-one. (If z»y, then &(x)+ &(y) and therefore @(3(x)) » &((¥)).)
Second, (@c®)(x'8) = o(2(z'38)) = ©((®(z))c) = (O(2(x)))?2 = ((@2)(x))»

Lastly, (@c3)(xAgy) = O(B(x g ¥)) = O(&(z) Ap 2(¥)
= 0(2(%)) Ap 0(2(y)) = (008)(x) Agp (©°&)Y)

(d) Assume 2, w € [B]. Then z=&(x) and w = &(y) for some z and ¥ in B. Hence
2=%"Y(2) and y =& Yw). First,if 2+ w, then z =y (for,if z =y, then z=&(x) =
®(y) =w). Thus ! is one-one. Second, &(zvy¥y) = &(x) v¢ ®(¥) = 2v, w. Hence
e Nzvpw) = Tvgy = @7 Y2) vg &~ Y(w). Third, @(z'3) = (&(x))c = zc. Hence
=Y zc) = 2’3 = (27 (2))8. )

We say that B is isomorphic with C if and only if there is an isomorphism from 8 onto
f' From Thanram 2 12(d »\ 3+ fallaws that if R ie ianmnrnhisa with 72 than 7 is janmarnhin

A ENVARL A SAUVVAILL U J.u\u U, AU AUVILIV YD ViiGLy 1l U 19 190VIHIVUZ MFiLLL YFLRVIL L’ wilild b A0 ADVALIVA pPLLLV

w1th B, and if, in addition, ( is isomorphic with D, then B is isomorphic with D. Isomorphic
Boolean algebras have, in a certain sense, the same Boolean structure. More precisely, this
means that any property (formulated in the language of Boolean algebras) holding for one

Y. Y_ PR —

Al VL _
DUUR:&!I augeura also noias for any lsomorpmc DOOIEdn algem'a t

Example 3.20.
Consider the two-element subalgebra C = {0g,15} of any Boolean algebra B. Let D be the Boolean
aigebra whose elements are the integers 0 and 1 and whose operations are:

{Ap): ordinary multiplication, ie. 0Ap 0 =0Apl=1Ap0=0, 1Apl =1,
(vo): addition modulo 2,ie. Ovp0=0, Ovpl=1v,0=1 1vp1=0.
(‘D): the function 1—z,i.e. 0D =1 and 1'D =0,

Then the function ¢ on {0g, 15} such that #(0g) =0 and ¢(lg) =1 is an isomorphism of  onto D.

3.7 BOOLEAN ALGEBRAS AND PROPOSITIONAL LOGIC

A statement form A and a Boolean expression r are said to correspond if r arises from
A by replacing 71, &,v by /, A, v (respectively) and by replacing the statement letters
A,B,C,Ai,B,,C,, ... by 2,9, 2,%1,%, 21, ... (respectively).

tFor a rigorous formulation of this assertion, see page 90 of [135].
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Exampnle 3.21.
Av (B& 11C) correspondsto xv (yAz'). (1A &(B;v A)) corresponds to (z’ A (y; v ).

The statement form corresponding to a Boolean expression » will be denoted SF(x).

Theorem 3.14. The equation r =o¢ holds for all Boolean algebras if and only if SF(-) is
logically equivalent to SF(s). Hence we have a decision procedure to deter-
mine whether r = o holds for all Boolean algebras.

Proof. By Corollary 3.12, r=¢ holds for all Boolean algebras if and only if r=¢
holds for the two-element Boolean algebra (C = ({F, T}, &1y, vir.my, ‘7.1, F, T), where
the operations & 1y, v(r, 1), "(-T} have the obvious meanings given by the usual truth tables.
These are given in detail in Problem 2.16, page 44. It is clear that r = ¢ holds for ( if
and only if SF(r) and SF(o) always take the same truth values. (For, an assignment of
truth values, T or F, to the statement letters in SF(r) and SF(o) corresponds to substitution

of the same truth values for the corresponding variables in r and ¢.) p

Example 3.22,

Consgider the equation x A (yvz) = (zAy)v(zAz). The corresponding statement forms are

equatio

A&(BvC(C) and (A&B) v (A&C). To check that these statement forms are logically equivalent, we
substitute T and F for A, B, C in all possible ways and verify that the outcomes are the same. For
example, if A is F, Bis T,and Cis F, then A & (BvC) and (A& B) v (A&C) both are F. The com-
putation we make to determine this is essentially the same as the one we make to see that z A (yvz) =

F=(@xAgdv(zaz) when z is F, y is T, and z is F. (Namely, FA(TVF) = FAT = F and
(FAT)V (FAF) = FvF =F)

Solved Problems
3.1. In a Boolean algebra, let £ ~ ¥ be defined as z A ’. Prove:
(n\ A . Al = ., (dln.l m\
\%) »Vp TV TR
) z~(x~y) = zAy

(¢) A non-empty subset A determines a subalgebra if and only if A is closed under
~ and ’.
() A — 1 o e

‘W’ o P s -~

() 2=y & z~y=0 (ie. 2=y & 2AY' =0)
f =0 & 2=0

9) 2Ay=0 & z2~y=2

(h) zA(W~2) = (TAY) ~ (zA2)

(/) Does zv (¥y~2) = (zvy)~ (zvz) hold?

Soluation:
@ zvy~2z) = sv{yae) = (xvyaleve) = (zvyy Al = zvy
() s~(x~y) = zA(e~y) = 2AlAY)Y = zA(&Vvy”)

=zA(@vy) = (@A) v(izAy) = 0v Ay = Ay
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~y = zAny' €A. Conversely, if

, then z~y€ A, and therefore x A
is a subalgebra.

(0) If A ig a subalgeb

Ai
, and if Y
z~(x~y) EA. SmceA clos

[¢]
8,
8
a
I
<]
2
L]
]
l
&
=]
s

&a

Q.-

®

-~

>

£

3.2.

(d) 1~z = 1Az =z
(¢) This is Theorem 3.5(xii).

() x~2 = 2Ax' = 0. Now unse part

N7

(9) 2~y =2 & zAy ==z

Ry 2A(ly~2) = 2zA(yaz) = x AyAz. On the other hand,
(ZAY) ~(xAz) = (FAYA{ZAZ) = ZAyYA(ZvE)
= yalza@ve)) = yA(xAaz) = zAynz

() No. 1v(l~1)=1vo0o =1 However, (1vl)~(lvl) =1~1 =0,

In our axiom system for Boolean algebras, prove that Axiom (9), 0+ 1, is equivalent
(in the presence of the other axioms) to the assertion that the Boolean algebra contains
more than one element.

Solution:

3 . ey owa fo e dhocn aen ala—eat r'-..__...._..'l_ acc
Cleﬂﬂ}'. if o0+ 1, then there is more than one element. Conversel assu

forany z, z=2zA1=2A0=0. (Notice that in proving
not used Axiom (9).) Thus every element is equal to 0, an
element.

m

umeé § =1. Then
results about Boolean algebras we have
d the Boolean algebra contains just one

Let = be an integer greater than 1. Let B be the set of positivéintegers which are
divisors of ». If z and y are in B, define 2’ =n/x, z Ay = the greatest common
divisor (ged) of z and y, vy = least common multiple (lcm) of z and y. (This is a
generalization of Example 3.5.)

Show that (B, A, v, ’,1, n) is a Boolean algebra if and only if n is square-free (i.e.
7 is not divisible by any square greater than 1).

Solution:

Remember that the zero 0 and unit 15 of the algebra are the integers 1 and » respectively.
Axioms (1)-(6) and (9) represent simple properties of integers and of greatest common divisors and
least common multiples (cf., for example, [129]). However, Axioms (7) and (8) hold if and only if,

for a1l z in B, z and rwlw have no factors in common (vthc; than 1 Lh and thlE condition is ﬁ“}'v'alcnt

to n being square-free. (Example: if n = 60, which is not square-free, 6’ =10 and 6v 6’ =
lem (6,10) = 30 % 60 = 15, 6 A6’ = gcd(6,10) =2 % 1 = 0p.)

SUBALGEBRAS

o4
Dk

In the Boolean algebra of all divisors of 70 (see Example 3.4), find all subaigebras.
Solution:

We must find all subsets 4 of {1,2,5,7,10,14, 35,70} closed under A and ’. Remember that
zAy = gtd(x,y) and z’' = 70/x.
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{(a) Given a subset D of a Boolean algebra ‘B, show that the intersection? of all sub-
algebras of B containing D as a subset is itself a subalgebra of B (called the sub-
algebra generated by D).

(b) What is the subalgebra generated by the empty set @?
(¢) If D = {b}, what is the subalgebra generated by D?

Solution:
(a) Let C be the intersection of all subalgebras containing D. Clearly, if x and y are in C, then
z Ay and x' are in all subalgebras containing D and hence also are in C.

(b) {(Og, 1.!,} ia a subalgebra containing @ as a subset and is contained in all other subalgebras.
Hence {05, 15} is the subalgebra generated by 9.

a (o Aplly PHIG, ‘PPN -

fn 1 L LMY . - . PR iy N
ey 1, U, 0 7 IS @ SUDAIEEDTA CUNLaiNI

ing {b}. Therefore {04, 15, b is the subalgebra generated by {b}.

. . .
id IS CONCAilnea in ever

—_
o
~

[
~
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BOOLEAN EXPRESSIONS AND FUNCTIONS. NORMAL FORMS

3‘6.

3.7

If D is a subset of a Boolean algebra B, show that the subalgebra  generated by D
consists of the set C of all values obtained by substituting elements of D for the
variables in all Boolean functions.

Solution:

'F“un-y -“1 v!ll“ﬂ lr\mng- chtained from elements D hvy A v, ” must hnlnno to every auh-

rom elements oI L Oy A,

algebra containing D. On the other hand, the set C of all such values clearly forms a subalgebra
containing D, Hence C is the intersection of all subalgebras containing D.

"a

Prove Theorem 3.10: Given a Boolean expression r(u%), which may contain other
variables u,, . . ., % as well as u. Then the equation

rw) = [+(0) Aw] v [r(1) A u]

o alo Lo _

is derivable from the axioms for Boolean algebras.

Solution:
We shall use induction on the number m of occurrences of A,v,’ in r. If m = 0, then r is
either u or u; (for some 4). If r is u, then 7(0) =0 and (1) =1. Thus

rw) = u = [0Aw]v[1Aau] = [r0)Au] v [r(l) Au]
If r is u, then +(0) = +(1) =u;. Hence
) = w = A @vu) = maw)v (au) = [r(0)Aw] v [+(1) Ay
Now let m > 0 and assume that the resuit is true for ail expressions with fewer than m occur-
rences of A,Vv,’.
Case 1. r(u) = [e(u)]’. Now, by inductive hypothesis,
o(u) = [o(0) Au'] v [o(1) A u]

(e@)) = ([e(0) Aw] v [0(1) Au])’

o0} A w}) A fo{l) Au] = [o0) v u"] A fa(l)' v
[r(0) v u] A [r(1) v u')

[fOAr(L)] v [r(@) An] v [r(1) Au] v [uAw)
[r@) Ar(1)] v [(0) A '] v [r(1) Au]

[(x(0) A x(1)) A (w v u')] v [#(0) A %] v [7(1) A u)
[7(0) A (1) Au] v [+(0) Ar(1) Aw’] v [r(0) A '] v [r(1) A %]
[(r(0) Ax(1) A ) v (1(1) Aw)] v [(x(0) A 7(1) A ') v (7(0) A u')]
[v(1) A u] v [7(0) Au']

Hence r(u)

A,l'l

I

+The intersection of a collection of sets is the set of all objects belonging to every set in the collection.
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3.9.

= [(o(0) A ') v (a(1) Aw)] v [(p(0) Aw') v (p(1) Au)]
= [(e(0) AW} v (p(0) Aw')! v [(e{1) A 1) v (o(1) A u))
[(e(0) v p(0)) Aw’] v [(o(1) v p(1)) A u]

= [#0)Aw] v [#(1) A u]

Case 3. 7(u) = o(u) Ap(w). This is similar to Case 2 and is left to the reader.

Prove Theorem 3.11: For any Boolean expression (u, .. ., u), the equation
i i i
Uy ... %) = 2 2 2 [f(al,az,...,ak)/\u:‘/\u;’/\ '-'/\u:"]
«,=0 a,=0 ax =0

is derivable from the axioms for Boolean algebras (and therefore the corresponding
equation for - holds for any Boolean algebra B).

Solution:

We shall use induction on k. The case k=1 is an immediate consequence of Theorem 3.10.
Now assume that the result holds for k¥ and we shall prove it for an expression r(u;,%s, ..., %x+1).
By Theorem 3.10,

—fas 2 v o= [ " 2. YIS RV Y ] \ WA |
TRRL) o0 oy P 41) == |TAVHUQy o xy U 1) ANUY] ¥V [TLE) ®Yy o0 oy B 417 /N W)

But, by inductive hypothesis,

H 1
0, ... U py) = 0 ¢ S [r(0,az ... aker) AUGEA e AU
=0 Ces™ k+1
1 1 «
and 7(1!‘"’2:---!“&‘?!) = 2 Z ["'(1,-“2,:---,-4!:4.»!) Au:’/\ Tt /\u_k“"_ll
a2=0 X 1= s k+i
Hence
sz 1 H \ hY
(U Ugy .y Uppy) = { S 3 [r0an .. o) AUPEA A “:Tl']) A ‘“'1}
a, =0 Xy =0

1 1 o
\4 { ‘_Ez e > [r(l,ag,...,a,,“)/\u;:/\ Auk:_"'ll]) A u,}

J

1 1
= <a’§ eee E ['l'(o,azy ---,al:-f-l) A u; A u;zA e A u::+11>

0 4=

LN

v <a,§o a,§=. [r(Lag, .. coaean) Aug AUZEA =20 A u::-+l‘])

1
S 0 3 [rlapes .. ek AUTTAUTIA - |
= o = 1 2 k+1
s 41

Show that in any Boolean algebra B there are 22" different Boolean functions of n
variables.

Solution:
By the Disjunctive Normal Form Theorem (Theorem 3.11), the equation

1 1
— « - - @
(g ey By) = 3 -v- [f(al,...,a,,)/\ull/\ Aur
"1:0 a =0
n
is derivable, Hence the function determined by r depends only on the 2* values t{(ay, ...,a,), where
each a: is either 0 or 1. Each such value is 8 or 1. Hence there are 22° diferent Boolean functions
Ll ui ID CiLViITL UV Vi 4. A4@aCIl DUUCIL YVARIUT 1D U UL L. LJITHCT VIEIT AIT o WUIIITITIiiv DUVITAGIL AUt iU,
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3.12.

Solution:

Let D have n elements. By Problem 3.6, the elements of  are the values obtained by substi-
tuting elements of D for the variables in all Boolean functions 2. Clearly, we may confine our
attention to functions B of at most n variables, since varisbles for which the same element of D is

substituted may be identified. By Problem 3.9, there are 22" such functions. Hence since each of
the n variables may be replaced by any of the elements of D, we obtain at most 22"« n® possible
elements in (.

If + and o are Booiean expressions such that
€1, ..,)=1 = afcr,...,cn) =1

for all elements ¢y, . . ., ¢x of some Boolean algebra (, then r = ¢ is derivable from the
axioms for Boolean algebras.

Selntion:
Let p(uy, ..., %) =7A0'. If %, ..., u, are given values 0 or 1, then:

(i) if = takes the value 0, so does p;

(ii) if r takes the value 1, then, by assumption, so does ¢, and therefore o’ assumes the value 0,
and so does p, Hence p(uy,...,u,) =0 for all vaiues of u,, ..., u, in the subaigebra {0,1}.
Hence by Corollary 38.12, the equation p(ug, ...,%,) =0 is derivable from the axioms for
Boolean algebras. (Although 0 itself is not officially a Boolean expression, one can use the
expression %, A u; instead of 0 so as to fit into the formulation of Corollary 3.12)) Thus
rAo’ =0 is derivable, Hence r = ¢ is derivable (by Theorem 3.5(xii)).

(Conjunctive Normal Form.) We shall use H to indicate repeated application of A.
1
Thus [T o(«) denotes o(0) A o(1). Given a Boolean expression r(ui, .. ., %) having its
a=0

variables among u., . . ., 4, Show that the equation
1

gy ..0ou) = [ -

I ,.Lo (vlag - ve) vUTiv oo v uls) (2)

is derivable from the axioms for Boolean algebras and therefore holds in every

Boolean algebra. Also, write equation (1) for the cases n=1 and 2 =2.

Solution:
(r(uy, ...,%,)) is a Boolean expression, and, by the Disjunctive Normal Form Theorem, the
equation 1 1
-r(ul,....u,,)' e E ter E [T(alv---tan)’/‘u:l’\ A u:'] (2)
a =0 a =0

is derivable. Taking the complements of both sides of (2) and applying De Morgan’s Laws, we
obtain (Z). In the case n =1, we obtain

() = (x(0) v u) A (r(1) v »')
For n =2, we obtain
r(ug, ug) = (7(0,0) v uy v up) A (r(0,1) v u, v uy)
A(r(1,0) viuy v uy) A (r(1,1) v ul v ui)
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2.13.

Write the Boolean ex

normal forms.

3.14.

3.15.

Solution:
Disjunetive:

' AYAZYV (@ AYAZ)V(ZAY AZYYV @AY AV (ZAYAZ)V (EAYAZ)
Conjunctive: (zvyvz)a(zvy vz)

Sometimes, instead of using the theorems on disjunctive and conjunctive normal forms, it is
easier to find the appropriate expression by using known laws for Boolean algebras. Thus

EA@va)ve = (zv)A((yYvave) = zvz

Then, zvz = (zvz)v (YAy) = (gvyva)a(zvy vz).

Given a Boolean algebra 8. (i) Show that the set of all Boolean functions ? is a
Boolean algebra F. (ii) Prove that ¥ is isomorphic to the Boolean algebra of state-
ment bundles (cf. Example 3.6). (iii) Show that the set of all Boolean functions u?,
where u is a variable, is a set of generators D of F (i.e. the subalgebra generated by
D is the whole algebra F).

Solution:

(i) The operations of A, v,’ on Boolean functions are defined in the obvious way. The zero ele-
ment is (z A 2’)® and the unit element is (x v 2')3. The straightforward verification of Axioms
(1)-(9) is left to the reader.

(ii) For each Boolean funection 3, let ¥(r®) be the statement bundle containing the correspending
statement form SF(r) defined in Section 3.7. This is a well-defined function, for if +3 = ¢3, then, by
Corollary 3.12, r =¢ holds for all Boolean algebras, and therefore by Theorem 3.14, SF(r)
and SF(s) belong to the same statement bundle. That the mapping ¥ is one-one follows from
the “if” part of Theorem 3.14, The fact that ¥ preserves the Boolean operation can be
checked easily by the reader.

(iii) Every Boolean function r? belongs to every subalgebra containing the Boolean functions u?®,
since r® is obtained from the functions 4® in the same way that r is built up from the corre-
sponding variables.

(Boolean Algebra and the Algebra of Sets.) For any Boolean expression r, form the

. . . . , _
corresponding set-theoretic expression Set (r) by replacing A, v,” by N, U, —. Show

that r = o holds for all Boolean algebras if and only if Set(r) = Set(s) holds in all
fields of sets.

Use Problem 2.16(a) and Theorem 8.14.
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70
Supplementary Problems
3.16. Prove the generalized Distributive and De Morgan’s Laws:
@ AV - -vyy) = (ZAy)v -V (ZAY)
B) zv @A Ay = (ZVe) A A VY
(€) (v - vz) = TIA - AZ,
(d) (A AZ) = ziVv v,
3.17. For any Boolean algebra, prove:
@ =0 & y=(xAy)v (z'Ay) (Poretzky’s Law)
) zvy=xvz & ¥’vy=z'vz > y=z2
{fc) zvy=0 & 2=0& y=0
@ zAay=1l1ez=1&y=1
(e) @~yYvy~2) =0 z=y
SUBALGEBRAS
3.18. Show by an example that a subset of a Boolean algebra containing 0 and 1 and closed under
A and v need not be a subalgebra.
819, If A determines a subalgebra of a Boolean algebra B (i.e. A is closed under A,Vv,’) and if
b€ B~A, show that the subalgebra generated by A4 U {b} consists of all elements of the form
(@, Ab) v (a3 A b'), where a;, € A and a; € A.
3.20. Prove that, in any Boolean algebra,

(a) 2=y © zAry=0

B z=y & 2vy=1

BOOLEAN EXPRESSIONS AND FUNCTIONS. NORMAL FORMS

3.21.

3.22,

3.23.

3.24.

o

Simplify the following Boolean expressions.
{8) evidAfzvay Az Ay

(®) [#vyalzvz)))
© @Ay vicay)

Prove that two Boolean expressions either determine the same Boolean funetion in all Boolean
algebras or they never determine the same Boolean function.

Prove that, for any two disjunctive (conjunctive) normal forms in n variables r and ¢, 7 = ¢ holds
in all Boolean algebras if and only if r and o are precisely the same (i.e. the identity
1 1 1 1

alzg;o..‘aén[,(ah_”’an),\u;z,\...Au;-] = u12=,°...“%o[a(al,...,a,,)/\u;lA.../\u;.]

holds in all Boolean salgebras if and only if 7(a), ...,ay) = eley, ..., a,) for all ay, ..., a, chosen
from {0,1}).

Let r(u) be a Boolean expression. Prove:
(@) #(x(0)) = 7(0) A (1) = r(u) = 2(0) v 7(1) = =(r(1))
(0) r(uyvug) v r(uy Atg) = 7(uy) v r(uyp)

Show that the dual of 2 =y is z=y.
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41 SWITCHING CIRCUITS

A switch is a device which is attached to a point in an electric cireuit and which may
assume either of two states, closed or open. In the closed state the switch allows current to
flow through the point, whereas in the open state no current can flow through the point. We
shall indicate a switch by means of the symbol AN——, where A denotes a sentence
such that the switch is closed when A is true and open when A is false. We say that two
points are connected by a switching circuit if and only if they are connected by wires (lines)

1 3 ~ wrs o nwa lnnatad
on which a finite number of switches are located.

Example 4.1.

In Fig. 4-1 points z and y are connected by a switching circuit. The four switches are said to be
in parallel. Clearly, current flows between z and y if and only if Av Bv Cv D is true. This example
may be generalized to the case of any finite number of switches connected in parallel. Current flows
through the circuit of Fig. 4-2 if and only if the sentence A,v A,v --- v 4, is true.

™ ™
~— -

x O—— o —o0 y o O——q . o0 y
- ...
~ >
Fig. 4-1 Fig. 4-2

Example 4.2.

In the switching circuit of Fig., 4-3 current can
flow between the points z and y if and only if A& B is
true. The two switches are said to be in series. This - R
case may be generalized to the case of any finite number o A\ B\ oy
of switches connected in series. The condition for cur-
rent flow through the circuit of Fig. 4-4 is 4, &4, &
Az;& ... &A,. Fig. 4-3

2 3 n

Fig. 4-4

In the ‘witching cireuit of Fig. 4-5 below, current can flow if and only if (4 & C) v (TA v B) is true,

71
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N
A N
4
—
Fig. 4-5

Example 4.3 shows that we may combine switches in parallel and in series in the same
circuit. Such a circuit is called a series-parallel switching circuit. More precisely, if A is
any sentence, then o—— A\ o is a series-parallel switching circuit, and if S, Sy, ..., Sa
are series-parallel switching circuits, we may form a new series-parallel switching circuit
by replacing any switch in S by either

N
AN

o } } } o or [ — . . . o
N

Clearly, a condition for flow of current through a series-parallel switching circuit can be
written down by means of conjunctions and disjunctions, starting from the expressions
representing the closure of the individual switches. In Example 4.8, this condition was
(A&C)v (1A~ B).

42 SIMPLIFICATION OF CIRCUITS

The condition for flow of current through the cir-
cuit of Example 4.3 is (A& C)v (1A v B). The latter
statement form is logically equivalent to the statement
form ((A&C)v 14)v B, which in turn is logically o
equivalent to Cv 1A v B. Hence the circuit of Fig.
4-5 may be replaced by the circuit of Fig. 4-6.

Al

The circuit of Fig. 4-6 is clearly a simplification
ol thhat AFf T A E femnn $4 Semsrnlerne Laszrnse meseddaleno e PN
O1 uiau 01 Xig. 2~g, SINCE iU INIVOIVES 1€EWEI SWIwinES. Fig. 4-6
Example 44.

A condition for current fiow through the circuit of Fig. 4-7 is (A& B & 1C) v (TC& 14). However,
this is logically equivalent to 7C & [(A & B) v 714}, which in turn is logically equivalent to 1C & (B v 14).
Hence an equivalent, but simpler, circuit is that of Fig. 4-8. (The two circuits are equivalent in the sense
that one allows passage of current if and only if the other does.)

D NN

1

xy
®
[
o~
o |
|
[
)



CHAP. 4] SWITCHING CIRCUITS AND LOGIC CIRCUITS 73

Example 45.

A committee of three decldes questlons by maJonty vote Each member can press a button to signify
a “Yes” vote : 3 S hieh ass c on g v when a maioritv
votes “Yes”.

LIS s macan ! JNURY N IR, Y P, o3 £ e
Let A stand for “member 1 approves”, B for “member 2 approves”, and C f

Then a necessary and sufficient condition for a majority vote is

(A&B)v (A&C)v (B&O)

A corresponding circuit is shown in Fig. 4-9. However, the given statement form is logically equivalent to
(A&(Bv C) v (B&C), having the simpler circuit of Fig. 4-10,

D B
.
A\
O— A\ C\ o e ) S
Fig. 4-9 Fig. 4-10

Example 4.6.

A light in a room is to be controlled independently by three wall switches (not to be confused with
switches of a circuit), located at the three entrances of the room. This means that flicking any one of
the wall switches changes the state of the light (on to off, and of to on). Let us design a circuit which
allows current to fiow to the light under the required conditions.

Let A stand for “wall switch 1 is up”, B for “wall switch 2 is up”, and C for “wall switch 3 is up”.
In the truth table of Fig. 4-11, we wish to construct a statement form f(A, B, C) for the required switch-
ing circuit.

f(4,8,0C) f(4,B,C)

=3

(1)
(2)
(4)
(3)
(6)
)
(5)
(8)

I N I L T L R B -
O B e I B T I -
e RO R B B B B B B R

I L B B T L B I
e I B B - I I I )
G R B B B B B N K9
e I B I I L |

Fig. 1-11 Fig. 4-12

The requirement on f(A, B, C) is that its truth value should change whenever the truth value of one
of A, B, C changes. We arbitrarily assign the value T to f(4, B, C) when A, B, C are all T (the first row);
thus the light will be on when all wall switches are up. Then we proceed down the truth table, changing
the truth value of f(A4, B, C) whenever the truth value of precisely one of A, B, C changes. We have indi-
cated such a procedure in Fig. 4-12 by writing to the left of each row a number showing at what step the
truth value for that row has been determined. Another way of describing the assignment of truth values
is to note that T is assigned when an odd number of statement letters have the value T. We find the
resulting statement form by the method developed in the proof of Theorem 1.8; this amounts to forming
the disjunction of the truth assignments in the rows to which a T is attached:

(A&B&C)v (A&

This is logically equivalent to
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—
™
N
MB~— c
N . °
1B — -
By _
T
Fig. 4-13

43 BRIDGE CIRCUITS

Sometimes a series-parallel circuit can be replaced by an equivalent circuit which is not
a series-parallel circuit.

Example 4.7.

A series-parallel circuit corresponding to the condition [A & (Bv E)] v [C& (7B v E v D)) is given in
Fig. 4-14. This is equivalent to the circuit shown in Fig. 4-15. Clearly, the only paths through this
circuit are A& B, A&E&D A&E& "B, C&E& B, C&D, C& 1 B. Heuce, a condition for flow through
this circuit is (A& B)v (A&E&D)v (A&E& 1B)v (C&E &B)v (C& D) v (C& 1B), which is logically
equivalent to [A&(Bv E)] v [C& (1B v E v D).

> PR é RN
>~ |
— aB™ —o o E/ D —
— (-
D\ C\ 'IB\
Fig. 4-14 Fig. 4-15

The circuit of Fig. 4-15 is an example of a circuit which is not a series-parallel circuit.
Such circuits are called bridge circuits. In Example 4.7, the bridge circuit had fewer
switches (6) than the corresponding series-parallel circuit (7).

PR ——— | ) n LR

Another example of a bridge circuit is given in Fig. 4-16. A corresponding stat
form is (A& [Dv (C&E))) v [B & (E v (C & D))], whose series-parallel circuit is shown in
Fig. 4-17.

[ Sh— C/ —
—1
Fig. 4-16
N
™~ ’
—
o }k o
N
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truth function. A statement form for this

Naotice that

ofice that any bridge ¢ a
truth functlon is o btamed by finding all possible paths th ough the cu-cult For example,

Fig. 4-18

44 LOGIC CIRCUITS
The processing of information is one of the most important roles of the modern digital
computer. For this purpose, special devices are available.

An and-gate operates on two or more inputs A, ..., A, and produces their conjunction
A& A& ... & A,. An and-gate is denoted @

A,\
A;‘\/ —— A& A& ... &4
/

Ay

Fig. 4-19

More precisely, each input A; has the form of a physical quantity (say, voltage level), of
eg. denoted 0 and 1. The state 1 occurs if A. is true

which wa nchnnaca +tn dietinonich twan cfatag
DAL VYTV DL SI N Bia AAVw USRS VW 4 W WVRA W aa --] AW WA Vewy

VP AIALAR VYL LAAVUDT WU Uaouaiimwi

and the state 0 if A; is false. The output of the and-gate is likewise in two possible states,
0and 1: it is 1 if and only if A1 & A& ... & A, is true, and it is 0 if and only if
A & A & ... & A, is false. Often the state of an input or output is taken to be 1 if it is

ancsm i dne ad

transmitiing current and 0 if not. Arithmetically, the output of an and-gate is the produci
of the inputs.

Another common element of a logic circuit is an or-gate @ If the inputs are
Ay ..., Apn (n=2), then the output is A1 v Azv --- v A,.

4,

Az\

\@——> A VvAyv - vA,

P

Ay
Fig. 4-20

Thus the output is 1 if and only if the output of at least one A; is 1. Arithmetically, the
output is the maximum of the inputs.
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An inverter (1) is a device which has one mpl_t A and 7~
\/ A (1) 14
produces as its output 1A. Thus th utput is 1 if the

The actual electronic (or mechanical) devices used to construct and-gates, or-gates, and
inverters vary with the state of technology. For this reason, it is most convenient to
ignore (as far as noqslhlo\ guestions of hardware (dlod_es trangistors, vacuum tubes, Afp\

Thxs also holds for our treatment of switching circuits. Readers interested in the physlcal

realization of switchine and logic cirenits ean consult { 3] and ”3}.

Example 4.8.
To construct a logic circuit producing the output A4, <> A,, notice that A, €> A4, is logically equivalent to
(A, &A)) v (N4, & 14,) (Fig. 4-22) as well as to (4, & Ap) v (4, v 4,) (Fig. 4-23). Clearly the second
logie circuit is simpler.
() A4,

AT
Our”™ puma

= f )’z Y o \1A1&E 14y /
,— —( 1 ->
A, L) (&)
Fig. 4-22

| |

! 1
Al&Azrm:(AlVAz) 1 AIVAz

presag

}
- | /
2 < Ao,

: a8

Fig. 4-23

Example 49.
Construct a logic circuit producing

A & 1A v MA, v (A& A4)) )

= L)
ISRy TN
p—Y

\

o}
e
N
b
[

i
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r4
Q
[
.
n
™
o
oot
®
-

N N
o % 0
A
Fig. 4-25

Example 4.9 indicates that the same effect can be obtained by logic circuits as by series-
parallel switching circuits. Indeed, connection in series corresponds to an and-gate, while
connection in parallel corresponds to an or-gate.

45 THE BINARY NUMBER SYSTEM
We are accustomed to using the decimal number system. Thus 34,062 stands for the
number 2+ 610+ 0102+ 4-10° + 3+10°. In general, any positive integer can be rep-
resented in one and only one way in the form
g + @,°10 + @2+ 10> + --- — @.-10%
where 0=¢;=9 for 0=<i=Fk and a«>0. This number is denoted ar@x-)---@20:@0 in
standard decimal notation.

However, for any integer r > 1, every positive integer n can be represented uniquely in

the form
G+ @17 + Q2 7r* + - = Ane "

I\
I\

-~

U Y a A PR, | ~ -~ N M.
or v T 1 anu um .~ V. 11

[

~ as 1
Qi=—T—1

-

In particular, every positive integer can be represented in binary notation:
G + @1°2 + @202% = -+ + @m* 2"
where 0=a;=1 for 0=i=m and an=1.

A n
4.10.

| APyt |
niainps

The number 23 (in decimal notation) has the binary representation 10111, ie. 2t + 2>+ 2+ 1. The
decimal number 101 has the binary representation 1100101, i.e. 26 4 23 + 22 4 1.

A procedure for finding the binary representation of a number 7 is to find the highest
power 2™ which is =n, subtract 2™ from =, then find the highest power 2/ which is

=n-2m etc.

Further examples:

Decimal Notation Binary Notation Decimal Notation Binary Notation
1 11 1011
10 16 10000
11 35 100011
110100
101 117 1110101

C ~J O O o W N =
[y
(=
o
(3.
N
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Occurrence of the same logic circuit as part of other logic circuits suggests the use of

Iogic circuits with more than one output.

Exampie 4.11.

(o}

Y

A~ J >

SN o e
., \_CvideB
—\"J -
/D

B' T LY gl
D O
ONC Lo/ T\ __4cs
| L. N —/_r v >
Fig. 4-26

Example 4.12.
Two numbers in binary notation are added in the same way as numbers in decimal notation.

Binary notation: 100101 Decimal notation: 37
10111 23
111100 60

If we just consider the addition of one digit numbers, 0 and 1, we have the following
values for the sum digit s and the carry digit c.

A | B 8 | c

1 | 1 o l 1

(1} 1 1 0n

o l1111lo

1 i of1 o

olololo
Mliccn 0 mmssnmennsade bn dlas cernlicnlers nee fecrlhtnle cocn =lanll Jawmnda A 1 DY L2V o ;msecemcen e I
L 1IIUN o uUllc:pU’luB YO Uik gacCiuslve~ul k I11CI1 WE 3liAall UTIIVW A T D}, WILIIE € COL I'!‘.'BpUIlUB

to the conjunction.
If we wished to construct a separate logic circuit for s we would obtain

Pz T o

C{)—*@~ @-
T 1

B — LN

1 s=A+B

Fig. 4-27

Similarly we can construct a .ogic circuit for c:

—

& <
D ————
B ————
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F intn a cinola mnltinle antnut civenit
Say © Wasia Ui Al i k24 “. E2AVU @ DAlIRIV sdaMeviprae Vwvprwmyv Liivueav
A —»
A Y
~ 7~ 7~ 7~ e
O—O——@ -
I |
] N
Mo 4_90
Eig. 4-a9
T‘\A n;reu1t in Fin 20 3o snllad o n'val’dnm
A% wiA 5. TETid O AD URAATUUL © "val TMMNANT T -

If we wish to add two single-digit numbers A and Bt, while taking into account a
carry-over C from a previous addition, we obtain the table

A|B|C | s8] ¢
1 111111
01111011
1 70(1}10 ;1
o |lo |1 |10
1 ] 1] 0} 0|1
06j14i0111!0
1 |]0fo0o]1 0
ol ol ojJoio

Thus s corresponds to the statement form

(C&T(A+B) v (A+B)& 1C)
which is logically equivalent to (4 + B) + C. The carry-over ¢ corresponds to the statement
form (A&B) v (C & (A +B))

We can use the circuit constructed for A + B in Fig. 4-27 to obtain

corresponding to the above statement.
A >

] y
O—®O—0—®

B s— f ’I T \
\! \@c:(A&B)V(C&(A*‘B))#
[ 1,/
é)«—@~—

C—» T

‘] s=(A+B)+C

>

Fig. 4-30
The circuit of Fig. 4-30 is called a full adder.

tActually, A is the proposition that the first number is 1, and B is the proposition that the second num-

ber is 1,
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We can construct a circuit for adding two three-digit binary numbers A,4:4, and
—cy | 8 _ —— 8

B:B,By. Let —|FA represent a full-adder, and let HA
——lp - ey €

represent a half-adder. Then the sum is represented in Fig. 4-31 by ¢828:3,.

AD——_—" » 8
HA e
By 0 .
» 8
A, -+ FA
B, — 2y s
~ 3
A, —y-| FA
> C
B, >
Fig. 4-31

4.7 MINIMIZATION

The cost of constructing and running a switching circuit or logic circuit depends upon
the state of technology and therefore varies with time. However, at a given time, some
circuits will be less expensive than other equivalent circuits.

Example 4.13.

Tha siwanié (o 29
Ane CIrCRil (J1g. 4- DYy

(Fig. 4-38) corresponding to 1A v B, since the latter contams fewer occurrences of statement letters and
fewer connectives. In general, decreasing the number of connectives (i.e. gates and inverters in a logic
eircuit) lowers the cost, other things being equal, and decreasing the number of occurrences of statement
letters also lowers the cost, other things being equal. These two criteria usually are not the only measures
of cost; the special hardware used for constructing circuits imposes other criteria.

pnrul-'n- to nA v Rky ‘ iz more exnengive than the sauivalant airsunit

expensive Lnan wne \.\l\nvnnsnu ClaCwim

~ \\
'|A\ 1A
o——] —0 L — 0
h N \\
B A B
Fig. 4-32 Fig. 4-33

The minimization problem consists of determining methods for finding a simplest (i.e.
cheapest) circuit equivalent to a given circuit (or finding ell simplest circuits equivalent
to a given circuit). Since all that matters about the given circuit is the truth function that
it determines, the minimization problem amounts to-finding one or all simplest circuits
defining a given truth function. In Example 4.13, the circuit of Fig. 4-33 is clearly the
simplest circuit corresponding to the truth function represented by 174 v B. Of course,
for any given truth function, one can find a circuit representing the truth function and
then check the cost of the finite number of all simpler or equally simple equivalent circuits.
This method will yield all simplest equivalent circuits, but, for three or more variables, the
application of this method often will be so involved and long that it becomes practically
unfeasible. Therefore what we are seeking is a fast, convenient and practical way of

findine one ar all eimnlaat ecircnite for a civen truth funetion.
nding one or all simplest circuits for a given {ruth function.
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Let us agssume that we ar

WY WA SR WeAlAW  wiite WC el

minimization problem.

(]
-
«
£
-+

(I)  Find the “simplest” disjunctive normal form (dnf) representing the given truth
function.
(II) Find the “simplest” series-parallel switching circuit (or logic circuit) representing

. .
the given truth function.

(III) Find the “simplest” switching circuit (either series-parallel or bridge) representing
the given truth function.

Example 4.14.
Consider the truth function given by the following table.

A B C g(A,B,C)
T T T T
F T T F
T F T T
F F T F
T T F T
F T F F
T F F F
F F F F

A dnf for this function is (A&B&C)v (A& T1BR&C) v (A& B & 1C), which is logieally equivalent to
(A&B) v (A&C). It is easy to check that this is the simplest dnf for g, thus solving Problem (I). The
corresponding series-parallel circuit is given in Fig, 4-34. However, a logically equivalent statement form
is A& (Bv C), which has the simpler series-parallel circuit shown in Fig. 4-35. It is obvious that this
circuit cannot be replaced by a simpler one. Thus, a minimal dnf solving Problem (I) need not be a solution
of Probiem (II), that is, 8 solution of Probiem (II) need not be a dnf.

— e >~
o—1| . —— A -
e ™
Fig. 4-34 Fig. 4-35

The example shown in Fig. 4-16 demonstrates that there are bridge circuits which are
simpler than any equivalent series-parallel circuit. Hence a solution of Problem (III) need
not be a solution of Problem (II).

Remarks: (1) Solving minimization problem (I) requires consideration only of dnf’s.
The solution will provide what is called a two-stage and-or logic circuit. For example, the
dnf (A&B&C) v (MTA&B) v (M1B&1C) corresponds to the circuit in Fig. 4-36.

1¢ ——— \
e ®
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B e \ _ g
e (®
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d lnvprf rni This common convention stemae f'rom the

e AL WAR Y WAAVALSAL W WNsasaANS

by 'IA Smce the number of negatlon mgns often depends upon arbltrary declslons, it is
auvmame w umsmer negauuns UL ICLWIE as uuuax ulpuw, on a par WIEll letr.ers, ana nOE EO
count the number of inverters in computing the cost of the circuit.

(2) In solving minimization problem (II) for the case of logic circuits, we must consider
arbitrary statement forms (not just dnf’s). In this case, inverters are counted in computing
the cost, since negations may be applied not only to letters but also to arbitrary statement

forms. However, if we are only interested in switching circuits, consideration is restricted
v B -3 W g FALA AW A WwDWAANVvVWIA

ara aRArSe AV Yoay aa S[AT ali) LR ATRONNNs A2 Aulviiailn

to statement forms in which negation is applied only to statement letters.

Notational Convention. In writing statement forms, it is often convenient to omit the
conjunction sign &, and to write A instead of T1A.

Example 4.15.
ABCv ABC insteadof (A& 1B&C)v (NA&B&10)

ABv ABCD v AC instead of (VA& 1B)v (MA&B& 1C&D)v (TA&C)

(AvBYAvEBv () insteadof (M1AVB)&(Av IBv 10)

In Example 4.15 and in the sequel, we adopt the convention of omitting the parentheses
around the disjuncts of a disjunctive normal form. Thus, we have written ABC v ABC
instead of (ABC) v (ABC), and ABv ABCD v AC instead of (AB) v (ABCD) v (AC). This
alternative notation saves time and space, and is customary in work on circuits.

48 DON'T CARE CONDITIONS

In many problems involving design of circuits there are certain conditions which are
impossible or for which no requirement is made concerning the operation of the circuit.
Such conditions are called don’t care conditions.

Example 4.16.

The switching clrcult of Fig. 4-37 has a corresponding statement form A(BvC)v ABC. In the spe-
cial case where A is “z is an even integer”, B is “z is a perfect square”, and C is “x is an integer divisible
by 4”, the three conditions ABC, ABC, ABC are impossible. Hence there is no danger if we build a
circuit which happens to aliow current to fiow if some of these impossible conditions occur. In particular,
a circuit corresponding to the statement form

ABvC)v ABC v ABC v ABC
will accomplish the same task as the original circuit. But this statement form turns out to be logically
equivalent to A v B, which has the much simpler cireuit of Fig. 4-38. (To derive the logical equivalence,

natice that ABC v ABC is logically equivalent to AB, while A(BvC)v ARC ia logically equivalent to

A(Bv Cv BC) and therefore to A. We are left with A v AB, which is logically equivalent to A v B)

\
PN ’ —
T D

Fig. 4-37 Fig. 4-38
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Example 4.16 shows that addition of don't care conditions sometimes allows simplifica-
tion of circuits. Later (Section 4.17), we shall learn a technique enablmg us to choose

those don Hitiome which tead 1 tsimofification-of & A

Example 4.17.
The decimal digits 0 to 9 can be represented in binary notation as follows:

Deci

szaﬁ: 0 1 2 3 4 5 6 7 8 9

Binary man o U P e . L . I

Notation ot l_) bouul1 UU1lU UUl11l 0100 0101 0110 0111 1000 1001
PCbA DCRA

Consider the sentences:
A The first (right-most) binary digit is 1
B The second binary digit is 1
C The third binary digit is 1

D The fourth binary digit is 1

Then ABCD corresponds to 0
ABCD corresponds to 1
ABCD corresponds to 2
ABCD corresponds to 8

In terms of inputs A, B, C, D, let us construct a switching circuit which passes current
if and only if the number represented is 6, 7, or 8, i.e. under the condition ABCD v ABCD v
ABCD. If the inputs A, B, C, D are such that they always represent a number between 0
and 9, then we can ignore the six possibilities 1010, 1011, , 1111 (i.e. the binary rep-
resentations of 10 through 15). Hence the don’t care conditions are ABCD, ABCD, ABCD,

ABCD, ABCD, ABCD. In particular, we can use

ABCD v ARCD v ABCD v ABCD v ABCD v ABCD v ABCD
:Thus we are using four of the six don’t care conditions.) This statement form is logically
equivalent to BC v AD. (This is left as an exercise. It can be done laboriously by a truth
table, or much more easily using well-known logical equivalences from Chapter 1.) The
circuit for BC v AD is given in Fig. 4-39.

Ny S . N N
B c™ B— e b
e ——d Ot 0
— o — T P PN
Fig. 4-39 Fig. 4-40

_ If we had not made use of the don’t care conditions, our original statement form
ABCD v ABCD v ABCD could have been reduced to BCD v ABCD, with the costlier circuit

shown in Fig. 4-40,
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MINIMAL DISJUNCTIVE NORMAL FORMS

Given any dnf @, say ABCv ABD v ABCD v ABCD. 1Llet ls = the total number -

literals (i.e. letters or negations of letters) in @, and des = the total number of disjuncts of %
In the example above, Iy = 14 and de = 4.
For dnf’s ¢ and ¥, we say that @ is simpler than ¥ if and only if le=1¢ and de = <.

Py . 7 o\

and at least one of these inequalities is strict (<}

efinition of simpler is most suitable in the case of logic circuits. If one is inte>-
in switching circuits, then the size of ls alone would be a better measure --

@
(/-]
Iy
Q-
28 &
='<':‘n.
-

That we do not take into account the number of negation signs stems from the fac-.
already mentioned, that the number of such signs often depends only on arbitrary decisiors
as to which one of a proposition and its negation is to be represented by a statement letter

A dnf @ is said to be a minimal dnf for a statement form A if and only if @ is logical -
equivalent to A and no other dnf simpler than & is logically equivalent to A. We shall now
embark upon the task of describing various methods of finding the minimal dnf’s for =
given statement form.

We must emphasize again that we shall not distinguish between a fundamental con-
junction and any other permutation of the literals in that conjunction. Thus we shall no-
distinguish between ABC, BAC, BCA, ACB, CAB and CBA. Likewise we shall not dis-
tinguish between a given dnf and any other dnf obtained by permuting the disjuncts.
Hence for our purposes, AB ABC  ABC and ACB+v BA v ACB are essentially the same.

410 PRIME IMPLICANTS

Let A be a statement form. A fundamental conjunction ¢ is said to be a prime implican?
of A if and only if ¢ logically implies A but A is not logically implied by any other funda-
mental conjunction included in ¢. This is the same as saying that y logically implies A
while any fundamental conjunction obtained by eliminating literals from ¢ does not logically
imply A. Clearly, a prime implicant of A is also a prime implicant of any statement form
logically equivalent to A.

Example 4.18.

~ LU pUS [Py ~d A T ALY Vo 21T e 12
Let Abe AB vV ABC v nBC Then AC is a prime unput.unt U1 A, ror, AU 10gICauy 1mpiies

)¢
A alone does not logically imply A and C alone does not logically imply A. Oth er prime implicants
AB and BC. (Verification of these facts is left to the reader. We have no wa of knowing at this
whether we have found all the prime implicants of A.)

Example 4.19.

Let A be (B&(AVCO)v(B& (Av (:'),L This is logically equivalent to AB v BCv ABv BC. The
prime implicants turn out to be AB, BC, AB, BC, AC and AC.

The main significance of the notion of prime implicant is revealed by the following
theorem.

Theorem 4.1. Any minimal dnf ¢ for A is a disjunction of one or more prime implicants
of A.

a prime implicant of A, then y would

t a
include a fl_.nda.- 1en _1 conjunction ¢ -S!.(:h that ¢ logically implies A, If &% ig formed from



CHAP. 4] SWITCHING CIRCUITS AND LOGIC CIRCUITS 85

& hv renlacing . . he -~ +than clagrly &% is logically equivalent to &. {(For. on the one hand. ¢
N P A ‘-". 5 MJ v, Idll‘i‘l Wwiweh A l k4 AN lusl"“‘l c\iu"“l\-llu WA \b \.IA LY ) VAANY Viiw .lull“’ Y
les o and therefore ¢ logically 1mp11e &%, On the other han d, o loglcall

loglcally im

d¥ is s1mpler than ¢, contradlctmg th assumptlon that ® is a mlmmal dnf. p

We shall see shortly that a minimal dnf for A need not be a disjunction of all the prime
implicants of A.

Remark: Every fundamental conjunction which logically implies a statement form A
must include a prime implicant of A. For, if the fundamental conjunction ¢ is not itself

-a prime 1mphcant of A, then y must include a fundamental conjunction ¢, whlch logically

imnlies A. If ¢ is not 2 nrime imnvlicant of A then + must include a fundamental conjune-

SSSSpTSSwws Fme y AW AAVU O PALLNT JIpIALGEIL VL £y LTI Py A3WOLV JULVIRMT & LMASARAIIT AL LRy RAS

tion y, which loglcally implies A, etc. This procedure must eventually stop, yielding a
prime implicant of A which is included in y.

Definition. If ¢ is a fundamental conjunction and & is a dnf, then we say that y is
superfluous in ¢ v ® when and only when & is logically equivalent to y v &.

If « is a literal, y is a fundamental conjunction, and ¢ is a dnf, then we say that « is
superfluous in oy v & when and only when y v & is logically equivalent to ay v &.

9\ . ae [ P

r ous l WV'-PIL anu01y1
only if ¢ logically implies « v ®.

=n

P ¢ logically implies &. (2) « is
nd

We shall say that a dnf is irredundant if and only if it contains no superfluous disjuncts
or literals.

Of course, we mav obtain an irr dant eguivalent of a given statement form by

rodun
course, may o¢btain redundant equl stat orm
and an
a

hadi® -]
ehmmatmg superfluous conjunctions literals one by one. Clearly, redundant dnf

ir
l“ﬂ1||nn+‘l\n l\‘ ko) I"“l\ m'\l| L " 'p ‘ ﬂ A ﬂ'l 1M ata TxrAawa " ‘mn M“‘\nnn+
1§ & Gisjunciion of prime impiicants, 10T, II one o1 its dis Juncis werc not pPrime impiaicant,

some literal of that disjunct would be superfluous (cf. Problem 4.10). In addition, any
minimal dnf must be irredundant (for, elimination of superfluous disjuncts or literals
would yield a simpler dnf).

Example 4.20.
Start with the dnf AB v ABC v ABC v BC.

(1) The first occurrence of B is superfluous. (For, AC implies Bv AB v ABC v BC.) Thus we obtain
ABv ACv ABC v BC.

(2) AB is superfluous. (For, AB implies ACv ABC v BC.) We now have AC v ABCv BC.

(3) 4 is superfluous. (For, BC implies AC v A v BC.) This leaves us with AC v BC v BC, which turns

ont to be irredundant, (The reader can verify this without difficulty.)

SO 2 1lrTecdll Va2 IC& LR VeIiay 1000 QlIllgulY

Notice that AB is a prime implicant of the original dnf but that AB does not occur in the irredundant
dnf that we have constructed. Thus an irredundant dnf logically equivalent to a given statement form A
need not contain all of the prime implicants of A.

It is easy to verify that ABv ABv BCv BC is irredundant. However, it is not a minimal dnf,
since ABv ACv BC is a simpler logically equivalent dnf. Thus an irredundant dnf need not be g
minimal dnf. Hence the very simple procedure of reducing to an irredundant dnf does not solve the

oroblem of finding minimal dnf’s
pr anging nima: ani’s.
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411 THE QUINE-M:CLUSKEY METHOD FOR FINDING

2t e\ Al WAL

ALL PRIME IMPLICANTS

If A is a statement form and ¢, and ¢, are fundamental conjunctions, then we say that
é, is a completion of ¢, relative to A if and only if ¢, includes ¢, and the statement letters
in ¢, are precisely the letters occurring in A.

Exampie 4.22.

Let A be ABC v AD y_.‘i_B, and let ¢, be AC. Then there are four completions of ¢ relative to A,
namely: ABCD, ABCD, ABCD, ABCD

Lemma 42 Let © be a full dnf (i.e. a dnf in which the letters contained in any one dis-

junct are precisely the letters in any other disjunct; see page 14). Let ¢

be a fundamental conjunction all of whose letters are in . Then ¢

logically implies ¢ if and only if all completions of ¢ relative to & are
disjuncts of &.

Proof. (i) Assume ¢ logically implies @, but some completion ¢ of ¢ relative to ¢ is not
a disjunct of . Take the truth assignment corresponding to y (i.e. letters unnegated in ¢
are T, while letters negated in ¢ are ). Since y is a completion of ¢, the assignment makes

¢ T, and, therefore, it also makes & T. But all disjuncts of &, bemg different from y¢ in at
least one letter, must be F. Hence ¢ would also be F, not T.

(ii) Assume all completions of ¢ relative to & are,disjuncts of ®. Take any truth assign-
ment making ¢ T. We must prove that ¢ also is T. The truth assignment corresponds to
some completion ¢ of ¢ relative to ¢ ia letter appears unnegated in y if it is T and negated
if it is F). Then ¢ is a disjunct of 4. But, since ¢ is T, so is &. )

Lemma 4.3. If A is not a tautology, no prime implicant ¢ of A contains any letters not
in A.

Proof. Assume some letter, say B, is in ¢ but not in A. Let x be the fundamental
conjunction obtained from ¢ by removing the literal containing B. (Notice that ¢ is neither
B nor B. For, take a truth assignment making A false and choose the value of B so that
¢ is T. Then ¢ does not logically imply A.) x also logically implies ®. (For, given any truth
assignment making y T, extend it by making B true or false according as B or B occurs as
a conjunct of ¢. Then ¢ is T and therefore A is also T.) But this contradicts the assumption
that ¢ is a prime implicant of A. )

Theorem 44. Let & be a non-tautologous full dnf, and let ¢ be some fundamental con-
junction. Then ¢ is a prime implicant of & if and only if
(i) all letters of ¢ are also in &,

(ii) all completions of ¢ relative to @ are disjuncts of &, but no other
fundamental conjunction included in ¢ has this property.

Proof. Direct consequence of Lemmas 4.2-4.3. )

The Quine-McCluskey Method for Finding AUl Prime Implicants of a Non-Tautologous
Full Dnf &: Let®be y,v - vy,

(1) List ¢, .. .y ¥y

(2) If two fundamental conjunctions ¢ and x in the list are the same except that ¢ con-
tains a certain letter unnegated while x contains the same letter negated, add to the list
the fundamental conjunction obtained by eliminating from ¢ the letter in which ¢ differs
from y. Place check marks next to ¢ and y.
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(2) Reneat the pnrocess indicated in (2) until it can no longer be nnnhed_ Fundamental

\¥) ASTp VRV viaU pAVLUON 2iaNes cate ] “Aaivia e avaany =

d in (2 t
conjunctions which already have been checked can be used again in applications of (2).

The unchecked fundamental conjunctions in the resulting list are the prime implicants
of ®. (This assertion will be justified after consideration of a few examples.)

Example 4.23.
Let # be ABCv ABCv ABCv ABC v ABC. Start with
ABC
ABcC
ABC
ABC
ABC
Application of (2) yields ABC .
ABC v BC
ABC v ac
ABc v 4B
ABC vy

Notice that ABC and ABC yield BC; ABC and ABC yield AC: ABC and ABC yield AB. Now (2) is no
longer applicable. Hence the prime implicants are ABC, BC, AC, AB.

Exampie 4.24.
Let ® be L ) .
ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD

Notice that the disjuncis are listed in groups: first, those with no negations, then those with one
negation, ete. Since process (2) is applicable only to a pair of fundamental conjunctions which differ
by one in the number of negations, in seeking to apply (2) we need only compare fundamental con-
junctions with those in the next group.

(2) Application of process (2) yields ABCD

r

f 2o
AbBD

ACD

s -

ACD
ABC
ABD

¢

O
]

T
S &
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Further application of (2) produces
ABCD y (ABD y AD
[ABCD v ACD v
lA.éCD Y J ACD v
( ABCD ARC
ADU 4 l i
{ABCE Y ABD v
ABCD v 1365
ABCD vy ABD

Process (2) is no longer applicable. Hence the prime implicants are ABC, BCD, BCD, ABD, AD.

Justification of the Quine-McCluskey Method: All fundamental conjunctions in the list
logically imply ®. (It is only necessary to observe that application of process (2) to funda-
mental conjunctions which logically imply @ yields a fundamental conjunction which also
logically implies ¢.) Every prime implicant ¢ of ® will appear unchecked. (For, by Theorem
4.4, all completions of y will be disjuncts in ®. Hence y will eventually appear in the list
after suitable applications of process (2) to these completions eliminate all the letters not
in y. ¢ itself will never be checked, since if it were it would not be a prime implicant of ¢.)
On the other hand, no fundamental disjunction ¢ which is not a prime implicant will remain
unchecked. (For, ¢y must include a fundamental conjunction ¢ which is a prime implicant
of ®. By Theorem 4.4, all completions of ¢ originally appear in the list. By suitable
applications of process (2) to these completions, we obtain a fundamental disjunction x
differing from ¢ in precisely one letter. Then application of process (2) to y and x imposes

a ohanlr oan 1 Y
a ChneCr 01l .

Limitation of the Quine-McCluskey Method: One must start with a full dnf. If we

are given a dnf which is not full, we must expand it into a full dnf. This tedious and long
process can be avoided by another procedure which we shall study later.

412 PRIME IMPLICANT TABLES

Once we have obtained all prime implicants of a given statement form &, we must find
out which disjunctions of prime implicants are minimal dnf’s.
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Proof. Assume not. Let ¢ be a disjunct of & which does not include any disjunct of ¥.

Wanan aansh disiunst af o 43 #cn»a in at lnou+ one literal from & Rut then the assionment
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of truth values making ¢ T makes ¥ F, and therefore makes ¢ F. But ¢ is a disjunct of &;
so & must be T, which is a contradiction. p

Our overall strategy can now be made clear. We choose a disjunction ¥ of prime impli-
cants so that every disjunct of the full dnf ¢ includes a disjunct of ¥. (Clearly, ¥ is logically
equivalent to ¢. Since ¥ is a disjunction of prime implicants of &, ¥ logically implies &.
On the other hand, since each disjunct of @ includes a disjunct of ¥, & logically implies ¥.)
Among all such ¥’s we find the minimal ones. We shall indicate techniques for narrowing
this choice to a relatively small number of ¥’s.
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matnx is called the prime zmplzcant table for .

Example 4.25.
Let ® be ABCv ABC v ABC v ABC. Using the Quine-McCluskey method, we obtain

ABC vy
IABC % fi
LABC v o
ABC v Bc

Thus the prime implicants are AC, AB, BC, and the prime implicant table is shown in Fig. 4-41.
| ABC ABc ABC ABC

AC [ X X

AB b e

BC I X X
Fig. 4-41

We shall now describe various operations performed on prime implicant tables in order

PR T I Y S,
U UL lll nununal unI 3

(=g

Core Operation. Assume there is a disjunct ¢ of & such that the column under ¢ con-
tains a single cross. Let ¢ be the prime implicant corresponding to this cross. ¢ belongs
to what we shall call the core of ®. By Theorem 4.5, ¢ must be a disjunct of every minimal
dnf for &. We eliminate the row corresponding to ¢ as well as all columns containing a
cross in the row corresponding to ¢. (Since ¢ must be a disjunct of every minimal dnf, the
condition of Theorem 4.5 is met for the disjuncts heading any such column.)

Example 4.25 (continued).

In Fig. 4-41, the columns under ABC and ABC have a single cross each. Hence AC and BC belong to
the core. But all the columns contain a cross in the rows corresponding to AC and BC. Hence AC v BC
is the unique minimal dnf for &.

Example 4.Z6.

Let & be ) o . - L. e
ABCDv ABCD v ABCD v AB ABCD v ABCD v ABCD v ABCD
Find the prime implicants:
ABCD (ABD v BD
(ABCD v < ACD
{ABCD v BCD ¢
ABCD vy ABC
JABC' v | B¢p v
ABCD v ABC
[ABCD v ABD v
ABCD vy ACD
Hence the prime implicants are BD, ACD, ABC, ABC, ACD
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ABCD ABCD ABCD  ABcD ABcD ABCD ABCD

¢
BD X X X hd
: =)

(ol

ABC @
ABC [x] S)
ACD )

We draw circles around crosses Whlch are the only ones in a given column. In th:s case there are such

crosses in the columns under AuLU Ab’bu Aubu ABCD. Hence Aﬂb ACD, ABC and ACD are in the
core. We draw a square around each cross in any row in which there is an encircled cross. In Example

Thue avare digiunast af & insludas o arinea fmenlizand
A f1Us €VEery GISJUunly &I < INnCIUGSs & prime ImpaiCanv

)
\Z/

A DR wra than haws a sauara ar sivela in averv salumn
2.0 WT Wil GVE G S{uadS U CalGT i SVITYy Cduiaili,

in the core. Hence ABC v ACD v ABC~v ACD is the unique minimal dnf for &.

The results of Examples 4.25 and 4.26 are exceptional. Sometimes a single application
of the core operation is not sufficient. Wider coverage is afforded by adding the following

two operations.

Dominant Column Operation. If a column 8 has a cross in every row in which a column
« has a cross, then we can eliminate column 8. (To satisfy the condition of Theorem 4.5,
we have to use a prime implicant included in the fundamental conjunction heading column
a. Then by assumption the same prime implicant is included in the fundamental conjunc-

tion heading column g.)

Domingted Row Onperatio Tf tha row ocorrognandine tn 2 nrima imnlicant 1+ haa a
AT VITLLIRAUTY ‘l' WUIIV"! FYY VAANe A WYY wAIA Avqull“‘-‘ls w\J - rl SARAN lll‘y“w“u vl l‘m [~ 3

cross in every column in which the row corresponding to a prime implicant y, has a cross,
and if the number of literals of y, is smaller than that of y,, then we eliminate the row
corresponding to y,. (For, if a minimal dnf had y, as a disjunct, replacing y, by y, would

accissmnndtl~ 4l _a

lower tne COSI:, COIlEI'd(llCLlT]g the assumption that lpz 15 mmlmal)

F‘xam.ple 427,

& be

ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD
First we obtain the prime implicants:
ABCD vy ACD v {AC
ABCD v ABC v BC
{ ARCD v | BCD v [ AB
| ABCD v [(aBC v L4z
[ ABCD v ABD v
ABCD v BCD v
| azep v ACD v
| ABCD v ABC v
ABCD v ABD ¢
{.iB D v (ABD v
ABCD v | ABD vy
ABC v
| igé v
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Thus the prime implicants are BCD, ACD, AC, BC, AB, AB. The prime implicant table is
ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD
BCD X X
AC X X X X
BC x X X X
43 ®
AB O,

The columns under ABCD and ABCD have unique crosses, which we circle. Thus AB and AB belong to
the core. Put a square around each cross in the rows belonging to AB and AB. Hence all the columns
containing a circle or square can be eliminated. The new table is

ABCD ABcD ABCD
BCD x
ACD X
AC X X
BC X

The columns under ABCD and ABCD have crosses in the same row. Hence by a dominant column opera-
tion we may eliminate either column, say, the one under ABCD. This leaves us with the new table:

| ABCD  ABCD
) BED | x
20 ACD X
3 AC X
@ BC | X

Fig. 4-42

None of our operations are applicable to this table. However, notice that in order that each column
include some disjunct of the required minimal dnf, we must have ((1)or (2)) and ((8) or (4))f, i.e.
(1) v (2)) & ((8) v (4)). This is logically equivalent to

(D&E) v (1) &(4)) v ((2) &(3)) v ((2) & (4)

Thus there are four different ways of choosing the rest of the prime implicants, and we obtain the
four dnf’s:

ABv ABv BCD v AC

ABv ABv BCD v BC

ABv ABv AGD v AC

ABv ABv ACD v BC
These are the only possibilities for minimal dnf’s. Since they all have the same cost, all four are mini-
mal dnf’s, ,

We shali call the method we have used for handling the table of Fig. 4-42 the Boolean method.

Example 4.28.

Let ¢ be _ _ L ..
ABCD v ABCD v ABCD v ABCD v ABCD

v ABCD v ABCD v ABCD v ABCD v ABCD

tBy (1), we mean that row (1) appears as a disjunct in the required minimal dnf, by (2) we mean that
row (2) appears as a disjunct, etc.
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Wa obtain the prime implicants
ABCD ¢ ABD y BD
1[ ABCD y (BCD v AC
\"A:BC‘-’ '/ rr‘l.Bé "
(ABCD v ACD v
ABCD v 1 BCD v
ABCD v ABC
ABCD v \ ABD ¢
{ ABCD vy ACD
| ABcD vy { ABC vy
ABCD v AcD
{B'ﬁ
ABD
Thus the prime implicants are ABC ACﬁ BC’ 5 BD, AC. The prime implicant table is
ABCD ABCD ABCD ABCD ABCD ABcD ABCD ABCD ABcD ABCD
ABC X X
Ach X X
BCD X
ABD x
| ©® ®
a¢ ®» ©®

Circle the crosses which are unique in their columns. Hence BD and AC are in the core r
around all crogses in the rows of BD and AC. We then eliminate the rows of BRD and A_C an

*dCRNUE Raa CoUSS0S a2l WL JU0WW e Ca 24 ne L2 el EAltnluae e I

contajning squares or circles. The new table is

ABcD ABcD ABCD
(1) ABc X
@ AcD X X
3 BCD X
4 ABD X X
Fig. 4-43

Now we can apply the Boolean method used in Example 4.27. We obtain [(1) v (2)] & [(2) v (4)] & [(3) v (4)],
which is equivalent to

(M&2)&B) v DN&R) &M v [(1N&M@)] v [(DER&ME)] v [(2&B)] v [2)&(4)] v [(2)&(3) & (4)]
But, taking into account the fact that, when (2) is used, (1) is not required, and that, when (4) is used,
(3) is not required, we obtain

((2) & (3)) v ((2) & (4)) v ((1) & (4))
Thus there are three possibilities for minimal dnf’s:
BDv ACv ACD v BCD
BDv ACv ACD v ABD
BDv ACv ABCv ABD

Sinee the costs are the same, all three are (the only) minimal dnf’s for ¢.

3
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Instead of the Boolea: -.-.ethad, we may use the so-called branching method for handling the table of
Fig. 4-43. We e a col with a minimal number of crosses. In our e; xample, there are_ two _crosses in
' 3€ 0 ne er ABCD n ;

a prime lmphcant of the sought-for dnf’s, we may use exther ABC or ACD. Hence we obtam two tables
(in general, if there are n crosses in the column, we would obtain = tables) as follows: in the left-hand table
(Fig. 4-44) we assume that ABC is taken as a disjunct and we eliminate the row containing ABC as well
as every column containing a cross in that row. For the right-hand table (Fig. 4-45), we do the same

izl AR
witnl AU LY.

| ABcbD ABCD | ABCD
AcD l X ABC I
BCD BCD X
ABD I X X ABD | x
Fig. 4-44 Fig. 4-45

In the left-hand table, we can again apply the Boolean method or branching, but in this simple case it is
obvious that only the choice of ABD will yield minimal cost. In the right-hand table, we can choose either
BCD or ABD. Thus we have the following possibilities:

From the left-hand table, BD v AC v ABC v ABD.
From the right-hand table, BD v ACv ACD v BCD and BDv AC~v ACD « ABD

This is identical with the result of the Boolean method.

413 MINIMIZING WITH DON’T CARE CONDITIONS
Let us assume that we must find a minimal dnf for a statement form &, assuming that

”™n 2, n Wﬂ ran
the additional fundamental conjunctions ¢, ..., w,‘ are don’t care conditions. Then can

adapt the method used in the preceding section in the followmg manner. Find all prime

implicants of #v ¢, v --- vy,. However, in constructing the prime implicant table, use
columns only for the disjuncts of &, not for y, ..., ¢, (since we are concerned only that

each disjunct of & include some prime implicant of the required minimal dnf’s).

Example 4.29.
Let & be

Let the don’t care conditions be: ABCD, ABCD, AB"C" fiBC’D z‘i'&‘(’:’b-‘. By the standard procedure {left
as an exercise for the reader), we find that t of v ABCD~ ABCDv ABCDv ABCD v
_i_?'_tj are: BD, AC, ABC, ACD, BCD, A

are: dadry davoes sy, &

R

The prime implicant table is

ABCD ABCD ABcp ABcD ABCD
BD X X
AC X X
ABC X X
Ach X
BCD X
ABD X

47, obtaimin
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P ¥alors,

BD X X

a¢ ®

ARC X X

AcD X X
ABD X

Now the column of ABCD has a unique cross. Hence we place AC into what we call the secondary core.
(AC must be a disjunct of every minimal dnf.) Then by the core operation we drop the row of AC,
together with the columns under ABCD and ABCD:

ABCD ABcD ABCD
BD X
ABC X X
Ach X
ABD X

he bra“"h.'! method How‘“'er, it

Nowr wra san annly
2NUW WO CkRil Qppiy

and third rows yield

414 THE CONSENSUS METHOD FOR FINDING PRIME IMPLICANTS

Given two fundamental conjunctions ¢, and ¢,. If there is precisely one letter p which
nnnnofor‘ in fhn nf]nnr +‘-|n +ha fiindom

in
nonanirs nacatad nf + and . and n nial
OCCurs negated 1n one o1 ¢, and Ly &l wiliCgalel il U 1 1€l e jundamenta: con-

junction obtained from ¢, ¢, by deleting p and 7 and omitting repetitions of any other literals
is called the consensus of ¢, and ,.

Exsmple 4.30.
(i) The consensus of ABC and ABD is ACD.

{ii) The consensus of A8 and ABCD is BCD.
(iii) There is no consensus of ABC and ABD,
(iv) The consensus of A and AB is B.

(v} The consensus of A and AB is B.

Theorem 4.6. The consensus ¢ of y, and y, logically implies ¢, v y,.

Proof. Consider any truth assignment making ¢ true. Let p be the letter occurring
negated in ¢, and unnegated in y,. If pis T, then ¢, is T. If p is F, then ¢ is T. In either
case, ¢, vy, is T.p

Corollary 4.7. If ¢ is the consensus of ¢, and v, then ¢, vy, is logically equivalent to
VWV, Ve.

Consider the following two operations transforming a dnf into a logically equivalent dnf.

(i) Eliminate any disjunct which includes another.

(ii) Add as a disjunct the consensus of two disjuncts, if that consensus neither is identical
with nor includes some disjunct of the given dnf.

Given a dnf . (If we are given an arbitrary statement form, first transform it into a
logically equivalent dnf.) The consensus method consists of applying operations (i) and (ii)
until these operations are no longer applicable. The result turns out to be the disjunction
of all prime implicants of .
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Let & be ABCv ABCD v ABv ABC v ABCD.

By (), ABCv ABv ABC v ABCD (ABCD includes AB).
By (ii), ABCv ABv ABC v ABCD v AC (Consensus of ABC and AB).

By (i), ABv ABCv ABCD v AC (ABC includes A0).

By (ii)y ABv ABC v ABCD v AC v BCD (Consensus of AB and ABCD),
By (i), ABv ABCv AC v BCD (ABCD includes BCD).

By (ii), ABv ABC v AC v BCD v BC (Consensus of ABC and AQ).

By (i), ABv ACv BCD v BC (ABC includes BO).

By (ii), ABv ACv BCD v BC v CD (Consensus of BCD and BO).

By (i), ABv ACv BCv CD (BCD includes CD).

Thus, the prime implicants are AB, AC, BC, CD.

Example 4.32,

Let # be ABv ABCD v ABC v BD.
By (ii), ABv ABCD v .ziBC‘ v BD v ACD (Consensus
By (i), ABv ABCv BDv ACD (ABCD includes ACD).
By (ii), ABv ABC v BD v ACD v BC (Consensus of AB and ABC).
By (i), ABv BD v ACD v BC (ABC includes BO).

By (ii), ABv BD v ACD v BC v AD (Consensus of AB and BD).

By (ii), ABRv BDv ACD v B v AD v ABC (Consensus of BD and ACD).
By (ii), ABv BD v ACDv BCv AD v ABC v AC (Consensus of AB and ABC).
By (i), ABv BDv BCv ADv AC (ABC includes AC; ACD includes AC).

By (ii), ABv BDv BCv AD v AC v CD (Consensus of BD and BC).
Hence the prime implicants are AB, BD, BC, AD, AC, CD.

C nsus of AB and ABCD),

l lﬁl

4

Example 4.33.
Let ¢ be ABCDv ABCD v ABCD v ABC v ACD.
By (i), ABCDv ABCDv ABCv A 'ﬁ (ABCD includes ACD).
By (ii), ABCD v ABCD v ABC v v ACD  (Consensus of ABCD ard ABO.
By (i), ABCDv ABCv ACD v ACD (ABC'D includes ACD).
By (ii), ABCD v ABC v ACD v ACD v BCD (Consensus of ABC and ACD).

CD.

(v}

Hence the prime implicants are ABCD, ABC, ACD, ACD,

Justification of the Consensus Method.

(1) The process must come to an end. Since there are only a finite number of dnf’s using
the letters of the given statement form &, we must show that there can be no cycles in the
application of (i) and (ii). Once we drop a fundamental conjunction ¢ by (i), then ¢ can
never reappear by virtue of (ii). For, in all future steps, there will always be a fundamental
conjunction which is included in 4. Hence if there were a cycle, it would consist solely of
applications of (ii). But (ii} increases the number of disjuncts.

(2) Every prime implicant ¢ of & occurs as a disjunct in the dnf ¥ remaining at the end
of the process. Assume the contrary. Hence there must be a fundamental conjunction 4
which has the maximum number of literals among all fundamental disjunctions r such
that: (a) r includes ¢; (b) r includes no disjunct of ¥; (c) the letters of r occur in ®.
- Notice that ¢ is such a fundamental conjunction r. Clearly, by (a), 8 logically implies ®.
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of &. (Otherwise, by (b), # would logically imply the

A\ sl

Also. 8 canno

n ters
neg'atlon of each disjunct of \Ir, and therefore would logxcally 1mply &, But only con-

tlon) Let A be a letter of ® not in 4. By the maxxmallty of 0, Af and A must lack one of
the properties (@)-(c). The only one they can lack is (b). Hence there are disjuncts y, and

¥, of ¥ such that A6 includes y, and A4 includes ¢,. By property (b) of §, A must be a literal
of y, and A must be a literal of y,. Since A6 includes y, and A¢ includes y,, ¢, and ¢, do not
have any other literals which are negations of each other. Then the consensus n of y, and
¥, is included in 8, and therefore, by (b), includes no disjunct of ¥. Hence an application of
(ii) can be made to ¢, and v,, contradicting the assumption that the process has ended.

(3) Every disjunct ¢ of the dnf ¥ remaining at the end of the process must be a prime
implicant of . Otherwise ¢ would include some prime implicant ¢y. By (2), ¢y would be a
disjunct of the final dnf, and operation (i) would still be applicable.

MINIMAL DNF's RY THE CONSENSUS METHOD

- mand SNFANR D adaANSO VD AVAadk aaaNSas

If we have obtained all the prime implicants of a statement form & by the consensus
method, the problem remains to find the minimal dnf’s. Of course, we could construct the
full dnf for ¢ and then apply the methods already described. However, constructing the
full dnf for ® sometimes would involve a long and tedious process, and it would be conven-
ient to have ways of producing minimal dnf’s without going through that process. One
such method is to eliminate superfluous literals and disjuncts from the disjunction of the
prime implicants, obtaining irredundant dnf’s. Then one can compare the irredundant

dnf’s and pick out the minimal ones.t

Example 4.34.

Anrn . ADAR O ADA .
ADULU VYV ADVUL V ADUU vV ADU V ﬂbu has as
e eli

We have already found (Example
minate superfluous disjunets from

4.
its prime implicants ABCD, AB C ACD,

To determine whether a given disjunct ¢ is superfluous in a daof ¢v ¥ we check whether ¥ is logicaily
equivalent to ¢ v ¥. This holds if and only if ¢ logically implies ¥. But the latter holds if and only if
the result is a tautology whenever, for each literal p in ¢, we replace p in ¥ by T and the negation of p

by F. Hence we construct the following table.

ABCD  ABC [ ACD BC
ABCD F F F F
ABC F F F D
ACD F F F B
ACD F B F F
BCD F A A A

In the row corresponding to a fundamental conjunction ¢ we calculate what each of the other disjuncts
must be when ¢ is T. Then we check to see whether the disjunction of the results in that row is a
tautology. In the table above, this holds only in the last row. Hence BCD is the only superfluous disjunct.

All the other disjuncts must occur in every minimal dnf. Thus we are reduced to

ABCD v ABC v ACD v ACD

tThe method we shall outline is due to M, J. Ghazala [26).
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uperfluous literals, remember that a literal ; is superfiuous in py v ¥ if and only if ¢ logi-

To eliminate s
cally implies p v ¥. A quick check shows that none of the literals is superfluous. Hence we have a unique
irredundant dnf, which must be the only minimal dnf.

Example 4.35.
Consider the statement form ¢:

. DT . < A TN
vBDv CDv AD

1]

9
v

Cx

w D
vV D

Since the consensus method yields no additional disjuncts, this is already the disjunction of all the prime
implicants of #. For finding superfiuous disjuncts, we construct a table as in the preceding example,

#1 ¥z $3 P4 &3

Bc BC BD ¢CD AD
¢, BC F F D AD
¢2 BC F D F AD
¢3 BD F ¢ C A superfluous
¢¢ CD B F B A superfluous
¢s AD | BC BC B c

Since the disjunctions of the terms in the first, second and fifth rows .respectively) are not tautologies,
BC, BC and AD are not superfiuous and occur in all minimal dnf’s for 4. Let o; mean that @; occurs as
a disjunct in a given dnf for 4. Hence from the third row, if 7; then a.c,, for, if ¢; does not occur in the
given dnf for &, then both ¢, and ¢, must occur. (Otherwise, when o3 is T, then ¢ would not necessarily
be T, contradicting the fact that ¢, logically implies ®.) Thus o3 Vv {090y} is true, Similarly, from the
fourth row, o, v (e,03) is true. Hence we must have

010205(03 V 0305}y v 0;03)
which is eguivalent to 01050405 V 01040305

Hence the two irredundant dnf’s are BCv BCv CD v AD and BCv BC v BD v AD. Since these are
of equal cost, they are both minimal dnf’s. Notice that in this example we could have guessed this
immediately from the third and fourth rows.

Example 4.36.

Let the prime implicants of a statement form be DE, CDE, ACD, ACE, ABD, ABE, BCD, BCE.
(Observe that the consensus method is no longer applicable to the disjunction # of these fundamental con-
junctions, and therefore the latter are all the prime implicants of &.)

] o2 #3 by o5 #s #7 o3

DE CDE ACD ACE ABD ABE BCD  BCE
DE F F Ac F AB F BC
CDE F A F AB F B F
AcCD F E E F F B BE superfluous
ACE b F D F F BD B superfiuous
ABD F CE F F E c CE
ABE D F F F D cD Cc superfluous
BcD F, E A AE A AE E superfiuous
BcE D F Ap A AD A D superfluous

Rows 3, 4,6, 7 8 show that ACD, ACE, ABE, BCD, BCE are superfluous. Thus o, 03, o5 are true. From
the third row, 03 V 090, is true. From the fourth row, o,V oj0; is true. From the sixth row, ogv o035
is true. From the seventh row,
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ie true. This has been obtained by finding those subsets of the entries in the seventh row, the disjunetion

of which is a tautology and such that no proper subset of this subset has the same property. This process
can be carried out by constructing a table for the entries in the seventh row similar to the one constructed

above. From the eighth row,
gg V 0107 V 010305 V 0)030¢ V 010405 V 040g

is true. Hence we have
010905(03 V 0904)(04 V 0103) (g V 010%)
(07 v 0008 V 090404 V 020305 V 00405V 03035) (05 V 0107V 010405 V 010304 V 010405 V 040)
This is equivalent to 01090305 V 01000405

(When multiplying out, we see that these are two of the disjuncis in the expansion, and, since all the other
disjuncts include one of these, all other disjuncts may be dropped.)

Thus the irredundant dnf’s are
DE v CDEv ACDv ABD and DEv CDE v ACE v ABD
Notice that none of the literals is superfiucus. Since the costs of these dnf’s are equal, both are
minimal dnf’s.

4.16 KARNAUGH MAPS
There is a pictorial method for obtaining minimal dnf’s which is convenient for problems

tters.t

—

Let us start with the case of two statement letters.
In this case the Karnaugh map is based upon Fig. 4-46. B
Each square represents the fundamental conjunction
whose conjuncts are the literals standing at the head of

the row and column determining the sauare. To ren-

waa VFetasrdsds (AT LT L ddRadsddngs L -4 A

resent a full dnf d> we place a check in each square cor-

involving at most six statement le

av Al SV AIAUWU WA, ement el

A A

s 1]

¥
'y
&
-

Example 4.37.

AB v AB is represented in the Karnaugh map of Fig. 4-47 and ABv ABv AB in the Karnaugh
map of Fig. 4-48.

A A A A
B v v B v
B B Y Y
Fig. 4-47 Fig. 4-48
By adjacent squares we mean squares which have a - =
side in common. Clearly, a single square represents a B v
fundamental conjunction consisting of two literals, while
two adjacent squares differ in one statement letter and i
therefore represent a single literal. Thus in Fig. 4-47 B Q Y
we have AB v AB, which is logically equivalent to B. In
Fig. 4-49 we notice two pairs of checked adjacent Fig. 4-49

tSee Karnaugh [42]. Another pictorial method, somewhat less graphic than Karnaugh’s, has been given
hy Vaitoh 03]
by Veitch [03].
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the checks in each pair. Then the

eid privas e A Liad vaiw rr

0 d g [
loglcally equivalent to B A. (B corresponds to the horlzontal loop, d A to the vertical
oA is mintmal

Now let us turn to the case of three statement letters (Fig. 4-50). Each square rep-
resents the conjunction of the fundamental conjunctions heading the column and row

intersecting in that square.

AB AB AB AB

C
¢
Fig. 4-50
Example 4.38.
ABC v ABC v ABC is represented in Fig. 4-51
AB AB AB AiB
c v 4
¢ v

Fig. 4-51

Example 4.39.
ABCv ABCv ABC v ABC v ABC is represented in Fig. 1-52.

e

AB AB A AB
o 4 % %
(o} % %
Fig. 4-52

In Fig. 4-50, by adjacent squares we mean squares which differ in precisely one literal.
Thus two squares which have a side in common are adjacent. (Observe that we have used
the labeling AB, AB, AB, AB so that as we move from one square to an adjoining one,
only one literal changes.) In addition, in the first row the left-most square ABC is adjacent
to the right-most square ABC; and in the second row, ABC
is adjacent to ABC. This amounts to an identification of
the left-most vertical line with the right-most vertical line.
Pictorially we can imagine the left-most vertical line glued

to the right-most vertical line so as to form a cylinder
(Fig. 4-53).

On the cylinder, adjacent squares are adjacent in the
usual geometric sense. Fig. 453
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In Fie. 4.50. a sincle sqguare renresents a fundamental coniunction of three literals
In Ing, single gquare rep tal conjunction of three literals,

while two adjacent squares differ in one literal and therefore represent a fundamental

unetion of two literals.

Exampie 4.40.
Fig. 4-54 shows ABC v ABC which is logically equivalent to AB.

AB AB AB AB

c 4
¢ 4
Fig. 4-54

Example 4.41.
ABC v ABC is represented in Fig, 4-55 and is logically equivalent to BC.

AB AB AB AB

c 4 4

C

Fig. 4-65

Furthermore, four squares forming a square array or arranged in one row represent
a single literal.

Example 4.42.

AB AB AB AB
c Y Y
¢ v 4

Fio, A4.58
g, 2-3%

Fig. 4-56 exhibits ABC v ABC v ABC v ABC, which is logically equivalent to B.

Example 4.43.
AB AB AB AB

c v 4

Fig. 4-57

ig. 4-57 we see ABC v ABC v ABRC v ABC

which ig logicall

‘g
&
[1-3
&
3
or
"
>
'Y
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Cn
AN

4 v 4

Fig. 4-58
In Fig. 4-58 we have ABC v ABC v ABC v ABC, which is logically equivalent to C.

Example 4.45.

Fig. 4-69

Fig. 4-59 represents ABC v ABC v ABC v ABC, which is logically equivalent to B.
Notice that if we picture Fig. 4-59 on a cylinder, the four checks form a square array.

nolhess e s - 1

Tha 4+ £ 2 L-'.. 3
110e vweinnijue ior uuxuu 1Zation 1

L We draw 1 100PS around aulgu:
checks, or pairs of adjacent checks, or groups of fou checks (forming a square array or
arranged along a row), in such a way that every check belongs to at least one loop. We try
to make maximal use of groups of four checks or two checks so as to minimize the number
of disjuncts and literais—

(7
u
=
f
=,

D<
=i

Example 4.46.

(o]
&
-~

.
Fig. 4-60
The Karnaugh map of Fig. 4-60 represents ABCv ABC v ABC v ABC. The unique minimal dnf is

ABv ACv ABC. AB corresponds to the vertical loop, and AC to the horizontal loop.

Example 447.

Ty

AR AB

e [
LTI

Fig. 4-61

AR A

Fig. 4-61 represents ABC v ABC v AB_C v ABC v A:BC'. There is a unique minimal dnf: B v AC.
B corresponds to the four checks ABC, ABC, ABC, ABC, while AC corresponds to the horizontal loop

covering ABC and ABC.
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Example 4.48.

The unique minimal dnf is 4 v C.

Example 4.49.

Cu

Fig. 4-63
In this case, ABC can be combined with either ABC or ABC. Hence we have two minimal dnf's:

~
v

Cu
Gy

A~ AN~ AaD a i~
AU Vv AU V AD, AU V AU V

Let us consider now Karnaugh maps for four statement letters (Fig. 4-64).

AB AB AB AB

CcD

Fig. 4-64

Again, adjacent squares are those which differ in exactly one literal. In particular, ABCD
and ABCD are adjacent, as are ABCD and ABCD. This amounts to identifying the left-
most and right-most vertical lines, and identifying the lowest and highest horizontal lines.
Pictorially we can imagine that we have glued together the left-most and right-most vertical
lines, and the lowest and highest horizontal lines, to form a doughnut-shaped surface
(called a torus). On this doughnut, adjacent squares are adjacent in the usual geometric

sense.

A single square represents a fundamental conjunction of four literals. A pair of
adjacent squares represents a fundamental conjunction of three literals. Four squares, in
a square array or along a single row or along a single column, represent a fundamental
conjunction of two literals. Finally, eight squares arranged in two adjacent columns or in

two adjacent rows represent a single literal.

—aiu <=
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AB AB AB AB
Y

4

4

4

Fig. 4-65

The Karnaugh map in Fig. 4-65 represents AB.

Example 451,

Fig. 4-66 represents AD.

e O -1 e R
KFig. 4-67 is th

Example 453.

QO LCpITNTI

cD
ch

(0}1]

=
sz D
W Lr.

Fig. 4-67

Yy |V
v |V
vy | v
vy | v
Fig. 4-68
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Fig. 4-69

Fig. 4-69 represents D.
Minimization techniques for four statement letters are similar to those for three.

Example 4.55.

AB AB AB AB
cD AR
ch v 4
o [ I
¢p F R

Fig. 4-70

column under AB are

e
U | At . AP 03 L A ___
0€ Superiuous.

tal conjunction AB woul

The unique minimal dnf is AD v BD. Observe that the four squares in th
not joined by a ioop, since ihe corresponding it d

<
&
3
[

Example 4.56.
AB AB AB AB

CcD 4
cb G | Y
¢h ./\ v
¢D
Fig. 4-71

The check in ABCD cannot be combined with any other. Hence ABCD must_be in any minimal dnf.
The check in ABCD can be combined only with the check in ABCD. Hence BCD must be a disjunct of
any minimal dnf. Similarly, the check in ABCD can be combined only with the check in ABCD. Hence
ACD is a disjunct of any minimal dnf. Now the checks in ABCD and ABCD already have been covered.

Thus the unique minimal dnf is _ _ .
ABCD v BCD v ACD

Examples 4.55-4.56 illustrate the method to be used. For each checked square, deter-
mine whether there is a unique largest combination of checked squares containing it. If

80, put a loop around that ecombination. To avoid superfluous disjuncts, first handle each
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chaoeclrod annawva whaca nninna lavoaat somhi
AR AR WA -uu“‘ A TV AAVUVW “‘llu  AGMA 6 WV WWALAN

remammg uncovered checks handle those whose unique largest co blnatlon consists of two

ts only of itself; then, among the

Vasidy iissSaany

cons:sts of four checks ete. For any remaining checked square, determme all the possxble
largest combinations containing them, and, among the corresponding dnf’s, find the minimal
ones.

Example 4.57.

LM
cb \t{z_:?‘:; 2‘

Fig. 4-72

Considering ABCD, we see that ABC must be a disjunct (covering ABCD and ABCD). Looking at
ABCD, we note that ABC must be a disjunct (covering ABCD and ABCD). None of the other three checks
belongs to a unique largest combination. The only uncovered check is ABCD, which can be combined
either with ABCD or with ABCD. Hence we obtain two minimal dnf’s:

ABCv ABCv ACD and ABCv ABcv BCD

In the case of five statement letters, we can use a three-dimensional Karnaugh map
(Fig. 4-73).

o AB/ AB/ AB/ Ai/
K AVayays
y A //

/

Fig. 4-73

tSome choices among the remaining combinations may render superfluous some of the disjuncts already
obtained (cf. Probiem 4.22).
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usual definition of adjacent squares implies that corresnonding squares in the two

planes (e.g. ABCDE’ and ABCDE) are dJacent Combmatlon of sixteen squares are pos-
elght squares yleld fundamental conJunctlons of two htera]s, etc

For six statement letters one could use four planes, but in that case, and even more so
for larger numbers of statement letters, the geometrie picture often is too complex to permit

easy construction of minimal dnf’s.

4.17 KARNAUGH MAPS WITH DON'T CARE CONDITIONS

If we are given a fuli dnf &, together with various don’t care conditions, we construct a
Karnaugh map by placing checks in the squares corresponding to the disjuncts of & and
crosses in the squares corresponding to the don’t care conditions. In constructing minimal
dnf’s, we are free to use any of the crosses which allow us to form larger combinations of

squares.

Example 4.58.

Let & be _ . .

ABCD v ABCD v ABCD v ABCD v ABCD

and assume thai AB
shown in Fig. 4-74.

CD are don't care conditions. The -Barnaugh map is

C)
b
5]
Cn
L
B
o]
Cy
£
Gy
e
L
R
by
p
C

.=B
= []AT A
|
v

ch 4

¢Dh X X

D X \// X
Fig. 4-74

First we handle the checked squares which belong to unique largest combinations (possibly including
crosles) Thus ABCD belongs to a umque Iatgest combination: {ABCD, ABCD} Hence ABC must be a
uls;unu. of all minimal dnf's. l.m\ewme, ABCD umunga to a uxuquc 'uusc;b combination u-ne second conumn),
and therefore AR must be a disjunct of all minimal dnf’s. The other checks do not belong to unique largest
combinations. The only check still not included in a loop is ABCD. For the latter, there are two possible
combinations of four squares. Hence we may use either AD or BD. Thus there are two minimal dnf’s:

ABCv ABv AD and ABCv AB v BD.

Example 4.59.
Let ¢ be . . oL e
ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
Let the don't care conditions be
ABCDE, ABCDE, ABCDE, ABCDE, ABCDE, ABCDE

l:!l

helow,

The Karnaugh map is shown in Fig, 4-7




CHAP. 4] SWITCHING CIRCUITS AND LOGIC CIRCUITS 107

offv ] v x
g—iZ // /// /,/ l//E
CD / x v

-D/y T/ //./ %

We seek the checks belonging to unique largest combinations. First, ABCDE belongs to such a com-
bination (the four corners of both planes). Hence BD is_a disjunct of all minimal dnf’s. We get the
same result from the checks for ABCDE, ABCDE, ABCDE, ABCDE. The checks in the middle squares
of both planes belong to a unique 8-square combination: {ABCDE, ABCDE, ABCDE, ABCDE, ABCDE,
ABCDE, ABCDE, ABCDE}, yielding the disjunct BD. The only check still unaccounted for is ABCDE.
This belongs to two 2-square combinations. Hence we must have either ABCE or ACDE. Thus there are
two minimal dnf’s: ~
v ABCE

v ACDE

BD v B
BD v

St O

=0

4.18 MINIMAL DNF’s OR CNF’s

Given a statement form &, we can obtain the minimal dnf’s for ¢ and we also can obtain
the minimal dnf’s for 4. But the minimal dnf’s for 1® yield minimal cnf’s (conjunctive
normal forms) for &.

Example 4.60.
Recall that & enf is a conjunction of one or more disjunctions of one or more literals. The cnf
(AvBvC)& (AvB) & (BvC)
has as its negation o L
ABCv AB v BC
Thus by comparing the costs of the minimal dnf’s and minimal cnf’s for &, we can obtain those state-
ment forms which are minimal among all dnf’s or cnf’s for ¢.

Example 4.61.

Let & be . . . _
ABCDv ABCD v ABCD v ABCD v ABCD v ABCD v ABCD
If we examine the Karnaugh map for ¢ (Fig. 4-76, below), we find that there are three minimal dnf’s:
ABDv ACD v ACD v BCD
ABD v ACD v ABD v ABC
ABDv ACDv ABC v BCD
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A AR AR AB
CcD ¥ v
cb 4 4
¢b v 4
Cp v

On the other hand, 1% has the Karnaugh map (Fig. 4-77) obtained by putting checks in the empty squares
and erasing the checks already present in Fig. 4-76.

AB AB AB AB

CcD 4 4
ch Y 4
¢b 4 4
CD 4 4 4

Fig. 4-77

From Fig. 4-77, we see that the minimal dnf’s for ¢ are
ADv ABCv ABD v ABC

vD)&(AvBvC)& AvBvD) & (AvBv ()
AvD)& (BvCvD) & (AvaD)&(AvaC)
AvD)& (BvCvD)& (AvCvD)& (AvBv ()
AvD)& BvCvD)& (AvCvD)& (BvCv D)

Since these are cheaper than the minimal dnf’'s for &, these are minimal among all dnf’s or enf’s for &.

The procedure in the above example for finding the minimal statement forms among all
dnf’s or enf’s for ¢ does not provide a general method for finding minimal statement forms

far & 13 minimal anriag_ nanallal curitahing airarita Ar meimineal lnoia A3 Tsneeital YDA serosmman

AVL W \l. €. MMiininiai ser dTO=MJalallTl DWILLIILUE l.xx\-uu.a, Ul l11ilitlicl IUBIL l.u.\.uu,a). Lor !:Juu.upu:,

(A& B)v (C& (D v E)) is minimal, but it is neither a dnf nor a cnf.

Final Remarks: (1) We have indicated methods for finding minimal dnf’s (or minimal
dnf’s or cnf’s); This constitutes a solution of Problem IT\ on page Q'I althanoeh nneeihlv

=1 e valriz A AVAew REIUAAV M/ LA MPUDDANMEY
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not the best so 1... n (cf. Remark (2)). No reasonably good general solutions for Problems
(II) or (III) 81, are known. (2) The methods we have given for fin dlng mmlmal

are useful only for statement forms mvolvmg at most five or six statement letters) How-
ever, there are certain cases in which the number of prime implicants is so large that our
methods are not practical.t There is need then for a method for finding minimal dnf’s which
does not use the set of all prime implicants, but no general method of this kind is available.

Solved Problems

SWITCHING CIRCUITS. SIMPLIFICATION
4.1. Replace the series-parallel circuit of Fig. 4-78 by a simpler bridge circuit.

T S N
— N NN —
e

Fig. 4-78

Solution:
Consider the bridge circuit shown in Fig. 4-79. The paths through this circuit are A & B&C,

A&D&E, A&D&C, A& B&C, A&B&E. Hence a condition for passage of current is
(A&B&C)V(A&D&E)v (A&D&C)v (A&B&CO) v (A&B&E)

which is logically equivalent to [A&B&C] v [(Ev () & (A& D) v (A &B))]. But this is a con-
dition for passage of current through the given circuit.

o\ /
o— D E
Fig. 4-79

tFridshal [24] states that, for nine statement letters, the full dnf whose fundamental conjunctions are
those with 1, 3, 4, 5, 6, or 8 negated literals has 1698 prime implicants. The full dnf whose fundamental
conjunctions are those with 0, 1, 5, 6, or 7 negated literals has 765 prime implicants, and its negation has

Lo Jov, Ny o
i€ SAME numoer U.l prune xmputauts
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A committee consists of the chal_man president, secretary, and treasurer. A motion
passes if and only if it receives a majority vote or the vote of the chairman plus one

other member

AT 73 A2 X3

Desxg'n a sw1tch1ng circuit controlled by the buttons whlch passes current 1f and only

.l]. a HIULIUII 15 appl. UVCU

Let C P, S, T stand for “The chairman approves”, “The president approves”, etc. Then the
condition for approval is

[C&PVSvT) v (P&SE&T)

which has the corresponding series-parallel circuit shown in Fig. 4-80.

S~
~ ~
—
P AN
Fig. 4-80

LOGIC CIRCUITS. BINARY NUMBER SYSTEM
Let a non-negative integer less than 10 be given by its binary representation asa.a.a..

4.3.

(For example, if the integer is 3, then a;=a:

=0 and a,=ao=1; while if the

integer is 9, then as=as=1 and a:=a;, =0.) If A;is the statement that a; is 1,
construct a logic circuit corresponding to the condition that the given integer is prime.

o

Y __at
Salution:

The prime integers are

Decimal Notation

Binary Notation

0010

0011

0101 0111

A corresponding statement form is

VA & (1A, &A, & 14 v (MA& A &A) v (A& TA & A) v (A& A, & Ay)]

which is logically equivalent to
-‘A3 & ([Ao & (A) v Az)] A\ [-'AO&AI & 142])

A corresponding logic circuit is

Ay
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Justify the followin

M vaa y a

notation.

o aleorithm for tranalatine a m
g algorithm for transiating a r

A a| areaia - $43 144 4 2 P

4.5.

Use two columns. Place x at the top of the left column 43

(in our example, z =43). Divide z by 2, putting the re- 21
mainder 7 in the right hand column and the quotient go in 10
the left hand column below the given number. Repeat this 5
process with ¢o, etc. Stop when we get a quotient 0. The 2
1

0

- -

resulting binary number is to be found by reading the right
hand column from the bottom up (in our example, 101011).

Solution:
x = 2q9 + 7o, rg = Oorl

9 = 2¢,+ 7y, r, = 0or1l
Q-2 = 2q—y + Ty, -y = Oorl
21+ », re = Oorl
1 =2-0+1

S
]

L
i

Then
= 2(2q;+7r)+7ry = 4, +2r;+ 1y = 4(2¢y— 7))+ 2r;+ 1

R
I

= 8qptdry+2r +79 = 163+ 8ry+ drp + 2r + g = o0
= 2k+1 4 Zkp + oo 4 230 4 227, + 27 + 7

Thus the binary expansion of x is 1r.r,—," - rory7o.

Construct a logic circuit for adding 1 to a four-digit binary number aseza:ao.

Solution:
Let A; stand for “a, is 1”. Let bgbsbyb,b, be the result of adding 1, and let B; stand for
“b; is 1”. Then

By = 1A, and the carry C, = Ay

B, =(A,&Cp)v(T1A,&Cy) = A,+Cy and thecarry C, = 4,&Cp = 4, & Ay,

B, =(A,&1Cy) v (14, & C;) = Ay +C, and the carry Cy = A,&C, = A, & A, & Ay;
By=(A3& 1Cy)v (TA3&Cy) = Ay+C, and thecarry C3 = A;&Co = A3 & A, & A, & A, = B,

If we use () to designate the circuit of Fig. 4-27, we obtain

A () B
° U > Ho

=

—(+ > B,
v—B‘

b
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46. Describe a method for reducing the operation of subtraction of binary numbers to
the use of addition only.
Solution:
Assume given two numbers x and ¥ in binary notation, Let us assume that they are at most
n-digit numbers.
Example: =z = 11010
y= 1101 (n=5)
Change all digits of y to their opposites; in our example, 10010. Add this new number z to z.
11010
+ 10010
101100
Add 1 to the result: 101101. Omit the leading 1: 1101. This is z—y.
What we did in obtaining z from y was to form (2"—1) -y =111...1—-y. Adding this to z
n diglts
yielded z+ [(2"—1)—y] = (x—y) + (2 —1). Addition of 1 then gave (z — y) + 2", and omission
of the leading 1 finally reduced to z—y.
Another example: z = 101111 and ¥ = 110100. Then z = 001011,
101111
+ 001011
111010
1
111011. Answer: 11011,
The purpose of reducing subtraction to other operations (addition, adding 1, ete.) is to facilitate
its implementation by logic circuits.
What does the process described above yield when y is greater than z?
4.7. Assume that a number between 0 and 9 is given as a four-digit binary number.

Employing the notation of Example 4.17, make use of don’t care conditions in order
to construct a simple switching circuit (or logic circuit) for the condition that the
given number is a prime.

Solution:

ABCD v ABCD v ABCcD v ABCD

The don’t care conditions correspond to the numbers 10 through 15:

ABCD, ABCD, ABCD, ABCD, ABCD, ABCD

ABCD v ABCD v ABcD v ABCD v ABCD v ABCD v ABCD

(A method for choosing the proper don’t care conditions is presented in Section 4.17.) This state-
ment form is logically equivalent to BC v AB (exercise for the reader) and hence to B(C v A),
which has the switching ecircuit

e

o N~ .
~_
\
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48. To test whether a fundamental conjunction v is superfluous in ¢ v ®, show that it

suffices to replace all occurrences in @ of unnegated letters of ¢ by T and occurrences
of negated letters of ¢ by F, and then observe whether the result is a tautology.

Example: To see whether AC is superfluous in ABv AC v BC, we obtain TB v
TF v BT, ie. Bv B, which is a tautology. (Note that any T in a fundamental con-
junction may be dropped, and any fundamental conjunction containing an F as a
conjunct also may be omitted.)

Solntion:

We must see whether ¢ logically implies &, i.e. whenever ¢ is T, then ¢ also must be T.
When ¢ is T, all the unnegated letters of v are T and all the negated letters are F. When this

I1€L d TS

truth assignment is made in 4, we observe whether the result is always T, i.e. whether the result
is a tautology.

4.9. 1If y is a fundamental conjunction and « is a literal, to test whether « is superfluous
in ay v &, show that it suffices to replace all occurrences in « v & of unnegated letters
of ¢y by T and occurrences of negated letters by F, and then to observe whether the
result is a tautology.

Example: Is B superfluous in ABv ABv ABC? We obtain TBv BV FBC, ie.
B v B, which is a tautology.
Solution:

We must see whether y logically implies « v ®; i.e. whenever ¢ is T, then av ¢ also must be T.
But, if ¢ is T, the unnegated letters of ¢y are T and the negated ones are F. Then the result of
the indicated substitution must always be T, i.e. must be a tautology.

4.10. Prove that if one of the disjuncts of a dnf ® is not a prime implicant of &, then a
literal of that disjunct is superfluous. Hence an irredundant dnf & must be a dis-
junction of prime implicants of .

Solution:
Let @ be y v ¥, where y is not a prime implicant of ®. This means that there is a fundamental
conjunction & which is a proper part of ¢ and such that ¢ logically implies ¢y v ¥. Let a be any

literal of ¢ which is not a literal of ¢, and let $ be obtained from y by deleting «. Thus ¢ is
included in ¥. Hence ¢ logically implies 4, and therefore v logically implies ¢y v ¥. From this we
may conclude that ¢ logically implies av ¥, Thus a is superfluous in ag Vv ¥, ie. in ®.

4.11. Find an irredundant dnf logically equivalent to
ABC v ACD v ABD v ABC v BCD

Solution:
(1) ACD is superfiuous (since Bv B is a tautology). This leaves

ABCv ABD v ABC v BCD

(2 Bis superfluous (since BCv Bv BC is a tautology). This leaves
ABC v AD v ABC v BCD

(8) BCD is superfiuous (since A v A is a tautology). This leaves

ABCv AD v ABC
which is irredundant.
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>mMm.  AD
SALr

Cx

.
by the Quine-McCluskey met

4
Solution:

First we must expand the given statement form into a full dnf:
1AvBvCev ABC

ABv Cv ABC
ABCv ABC~ ABCv ABC v ABc v ABC
Then
ABC Vv {BC Y c
[4BC v AC Vv A
LaBC v JJB v
rr":Bé y/ fA:C 'V/
i.‘iéc % 1[30 Y
ABC v {AC‘ %
AB v

Thus there are two prime implicants: C, A.

4.13. Find all minimal dnf’s logically equivalent to
ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE
using the Quine-McCluskey method and prime implicant tables.

Solution:
First we find the prime implicants.

ABCDE ( ABDE
[ ABCDE v ACDE
|\ ABCDE v ABCE
}’u}cb'z; v { BCDE
< ABCDE v ACDE
| ABCDE {AC'DE'
ABCDE v ABDE
ABCDE v

4’ ABCDE v

L!‘;géﬁE v

The prime implicants are ABCDE, ABDE, ACDE, ABCE, ACDE, BCDE, ACDE, ABDE. The
prime implicant table is

ABCDE ABCDE ABCDE ARCDE ABCDE ABCDE ABCDE ABRCDE ABCDE ABCDE
ABCDE Q)
ABDE ®
ACDE X X
ABCE X X
AcDE ® [X]
BCDE X X
ACDE ® ®
ABDE @ x]
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Hence the core consists of ABCDE, ABDE, ACDE, ACDE, ABDE. Thus we obtain the new table
ABCDE _ ABCDE
ACDE X
ABCE X X
BCDE x

It is clear from this table that a minimal dnf is obtained only if we choose ABCE (since all other
ways of covering both columns would require two disjuncts, each having four literals). Hence there
is a unique minimal dnf:

4.14. Find the minimal dnf’s for the dnf
ABCDE v ABCDE v ABCDE v ABCDE v ABCDE

v ABCDE v ABCDE v ABCDE
with the don’t care conditions ABCDE, ABCDE, ABCDE, ABCDE.
Solution:
First find the prime implicants:
ABCDE vy ( ABDE v ADE
[ ABCDE v { ACDE vy
< ABCDE v ABCD
| ABCDE v ACDE v
( ABCDE v BCDE
{ ABCDE v ABRDE v
| ABCDE v | ABCE
( ABCDE v { ABCD
{ ABCDE v BCDE
| ABCDE v [ 4BcD
ABCDE v ACDE
{AECDE' Y 1 ACDE

Therefore the prime implicants are ABCD, BCDE, ABCE, ABCD, BCDE, ABCD, ACDE, ACDE,
ADE. We obtain the prime implicant table:

ABCD @

®

Hence ABCD a d ADE belong' to the core. We obtain the following new table, (Notice that row
A h

= ._._‘.

L3¢} oppeu, since it is Empry
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AR AN A ad

‘We may now use the Boolean or branching_method. However, in this case, it is obvious that the
minimal dnf is obtained using ABCD and ABCD (since any other way of covering all the columns
would require more than two disjuncts). Hence there is a unique minimal dnf:

ABCD v ADE v ABCD v ABCD

4.15. Find all solutions of Problem 4.7, using the Quine-McCluskey method and a prime

implicant table.

Solution:

The given dnf is ABCD v ABCD v ABCD v ABCD. The don’t care conditions are: ABCD,
ABCD, ABCD, ABCD, ABCD, ABCD. First we find the prime implicants.

ABCD

Hence the prime implicants

m——md ALY
lmpl l(.ilnl. wabie

Thus BC is in the core.

4

RN NN

AN

[ABC v [AB
JABD 4 AC
ACD V¢ 130
BCD ¢ lcp
(ABE v BC
ACD v
ABC ¢
4BCD v
ABC v
Bcp v
ABD v
LACD v
BCD vy
{ABC Y

are AB, AC, BD, CD, BC; and we obtain the following prime

ABCD ABCD ABcD  ABcD

AB

AC
BD
CcD

BC

X X

X

©)

We then obtain the table

| ABCD
ABI X
c | X
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Thus we may choose cither AR or AC. and the +wo minimal dnf’s: BC v AR (whish faoctors
& MuUD “G. ey |- w-w CAWiICA AL v ﬂv [- 991y lcl= ‘lc VYW LISBALALLLGRA AARS Bl Nt r ¥ ¥4 \wul\'u AGALWA D
into B(Cv A)), and BCv AC. Notice that in Problem 4.7 we obtained only BC v AB. However,

the other answer BCv AC caMfmm,dehgrngm_e ﬁrst answer gives us the simplest

statement form (although both give equally simple dnf’s).

4.16. Using the Quine-McCluskey method and prime implicant tables, find all minimal dnf’s
for
ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG
ADANDS ADBANDA . ADASAADA . ABANRDS ADONRA  ADONEA
V ADUVUULT V ADOUULT YV ADOULULI YV ADVUIILT V ADVLNT V AADVT

with the don’t care conditions
ABCDEG, ABCDEG, ABCDEG, ABCDEG,
ABCDEG, ABCDEG, ABCDEG, ABCDEG
Solution:
The prime implicants turn out to be
BCDG, CDEG, CDEG, BDEG, ADEG, BCDE, ACEG, ADEG, CDEG, ACD
(Verification is left as an exercise for the reader.) We then draw up the prime implicant Table I.
Tabie I
ABCDEG ABCDEG ABCDEG ABCDEG ABCDEG ABCDEG

BCDG X X
CDEG X X

¢

G

X
K

=)
L)

BDEG
ADEG
BCDE X
ACEG
ADEG
CDEG
ACD

X X

>
)
X
'
x
K
X
X

X
X
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Ngs annlications of the core conerati are possible

o o o ool
Ng appications the core operation are possidle, now y W 1 iminate the Igllowing col

umns by dominant column operations:

ABCDEG (since it dominates ABCDEG),

ABCDEG (since it dominates ABCDEG),
ABCDEG (since it dominates ABCDEG),
ABCDEG (since it dominates ABCDEG),

ABCDEG (since it dominates ABCDEG).
Thus, we obtain Tabie II.
Table II

ABCDEG ABCDEG ABCDEG ABCDEG ABCDEG ABCDEG

Pr Wy A0

In Table II we can apply the dominated row operation to eliminate the rows of CDEG and
ADEG (both dominated by ACD), We can also drop the first row, since it is empty. Thus we
obtain Table III.

Table III
ABCDEG ABCDEG ABCDEG ARCDEG  ARGDEE  ARCDEG

CDEG

BDEG x

BCDE X

ACEG X

ADEG

CDEG X

AR N N (pvy |

AC & & X
In Table III, the first and third columns have unique entries. Hence A ©D belongs to the secondary
core, We then can drop the last row and the first, third a!!d fourth columns, obtaining Tab!e v
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Table IV
ABCDEG ABCDEG ABCDEG
CDEG
BDEG X
BCDE X
ACEG X
ADEG X
CDEG X
Clearly, application of the Boolean method to e IV yields eight different minimal dnf’s
(by chocsing either the first or second row, either the third or sixth row, and either the fourth or

fifth row):

ACD v CDEG v ACEG v BCDE
ACD v CDEG v ACEG v CDEG
ACD v CDEG v ADEG v BCD
ACD v CDEG v ADEG v CDEG

tq‘

(1) ABCv ACDv ABDv ABC v BCD
(2) ABCv ACDv ABDv ABC v BCD v ABD (Consensus of ABC and BCD)

A Dr AN

70\ ; gz o . 2 N -~ A
\9) Ay VAV V ADUV ADUV DUU VYV ADIU V AU \uuniensus oL A

A DN ADA

nnn o ADN VWal s N7 o DU

(4) ABCv ACDv ABDv ABC v BCD v ABD v ACD v AD (Consensus of ACD and
(5) ABCv ABC v BCD v AD (since ACD, ABD, ABD, ACD all include AD)

Operations (i) and (ii), page 94, are no longer applicable.

prime implicants,

Let us draw the following table:

¢1 92 ¢3 b4
ABC ABC BCD AD
ABC F F D
ABC F D F
BCD F A A superfluous
AD BC F BC

ACD)

From the third row, o3V 0904, and we obtain o,03(03 v 0904)04, Which is equivalent to oy0q0,.
the only irredundant dnf is

Therefore this is the only minim

ABCv ABC v AD
1al dnf.

Hence ABC, ABC, BCD, AD are the

Hence
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418, Apply the consensus method to find all minimal dnf’s for
ABC v BD v ACD v ABC
Solution:

@
)
®
()
(6)
(6)
M

Operations (i) and (ii), page 94, are no longer applicable.

ABC v BD v ACD v ABC
ABCv BD v ACD v ABC v ABD (Consensus of ABC and ACD)

ABCv BDv ACD v ABC v ABD v ABC (Consensus of BD and ACD)

ABCv BD v ACDv ABC v ABD v ABC v ACD (Consensus of BD and ABC)
ABCv BDv ACDv ABC v ABD v ABC v ACD v AB (Consensus of BD and ABD)
BD v ACDv ABCv ACD v AB (ABC, ABD, ABC sll include AB)

BDv ACDv ABC v ACD v ABv BCD (Consensus of ACD and ABC)

ACD, ABC, ACD, AB, BCD.

Now we construct the following table:

# b2 ¢3 P4 Ps b6
BD ACD ABC ACD AB  BCD

BD F F AC A F
ACD F F F B B superfluous
ABC F F D F D superfluous
ACD B F B F F superfluous
AB D ¢p F F F
BCD F A A F superfluous

Hence we have the result

01(05 v o506) (03 V 0406) (04 v 0103)05(06 v 0203)

which is equivalent to

0103050 V 01090305 V 01040506

Therefore there‘ are three irredundant dnf’s:

BD v ABCv AB v BCD
T =2 2 R

BD v ABCv ABv ACD

BD v ACD v AB v BCD

Since they are of equal cost, all three are minimal dnf’s.

KARNAUGH MAPS
4.19. Using a Karnaugh map, find all minimal dnf’s for

ABcD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD

Solution:

Hence the prime implicants are BD,
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4.20.

4.21.

AB AB AB 4B
b A
chb :'r, -?/ (’//
| NN
¢D \,//

Handling the checks whose unique largest combination consists of two squares, we obtain the
four loops indicated in the diagram. Since all checks are covered, the unique minimal dnf is

ABCv ACD v ABC v ACD

Notice that, although each of the four checks in the middle belongs to & unique largest combination
of four squares, that combination is not required, since all the checks in it already have been
covered.

Use a Karnaugh map to find all minimal dnf’s for the dnf of Problem 4.18:

ABCvBDv ACD v ABC

Solution:
into a full dnf, It u“mnnu to vlace

H AavVerl PeRls

a check in every square containing one of the disjuncts. (For example, ABC generates the two

wea need not exnand the gitn:v! dnf

checks in ABCD and ABCD; BD generates four checks, etc.)
AB AB AB AB
co |V
ch } 4
¢h | y v I\
eo \yJlv|v

There are no isolated checks and no checks with a unique largest 2-square combination.
However, there are checks belonging to unique largest 4-square combinations. The first column
gives AB, and the other 4-square combination yields BD., The remaining three checks produce
three minimal dnf’s:

ABv BDv ACDv ABC (ABCD combines with ABCD, and ABCD with ABCD)
ABv BD v BCD v ABC (ABCD combines with ABCD, and ABCD with ABCD)
ABv BD v BED v ACD (ABCD combines with ABCD, and ABCD with ABCD)

This verifies the solution of Problem 4.18.

By means of a Karnaugh map, find all minimal dnf’s for

ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
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There is one isolated check, yielding the disjunct ABCDE. There is one check (ABCDE)
belonging to a unique 2-square combination, which yields the disjunct ACDE. There are two
checks (ABCDE and ABCDE) belonging to a unique 8-square combination, which yields B¢,
Another check (ABCDE) belongs to a unique 8-square combination, yielding BD. Since all the
checks are covered, we have obtained a unique minimal dnf:

ABCDE v ACDE v BC v BD

4.22. Use a Karnaugh map to find all minimal dnf’s for
ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE

Solution: - = -
AB AB AB AB
cD v /v Y
ch / ] /
/ S TS L S &

There are four checks belonging to unique largest 2-square combinations (ABCDE with
ABCDE, ABCDE with ABCDE, ABCDE with ABCDE, and ABCDE with ABCDE), yielding the dis-
juncts ABCE, ABCD, ABCD, and ABCD. There is a unique largest 4-square combination containing
ABCDE, and this yields the disjunct BDE. Now there is one check still uncovered: ABCDE.

There are apparently two equally simple ways of covering this check:
(1) ABCDE with ABCDE yielding the disjunct ACDE.
9y ABCDE wi f'ﬁﬁ' wvielding the digiunet _A_’}_-?‘,.E_

e/ writh . VLIS, YielQlLg e Q18
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However, notice that in case () tbe Zccrzre combinaiion (ARCDE. ABODE ABSDE ABADEN
pot y MAUWCEe uiav Il Cas \&) wvue e~squale COmMDINALION \/ADUVVL, nvvuuz _nDuuu, NADULI )
has been covered by four different 2-square combinations, and the disjunct BDE becomes super-

_ fluous. Thus there is actually only one minimal dnf:

ABCE v ABCD v ABCD v ABCD v ABCE

4.23. Using a Karnaugh map, find all minimal dnf’s for

ABcD v ABCD v ABCD
= 2 T T R IR V.1 T RJ PRy T o e B Y T SR - ..
assuming ABCD, ABCD, ABCD, ABCD, ABCD, ABCD, ABCD, ABCD are don’t care
conditions.
Solution:

We use checks for the disjuncts of the given dnf, and crosses for the don’t care conditions.

AB AB AB 4B

CcD X X X
ch Yy | v | X
¢éb X | v X
ép x | x

The check in ABCD is in a unique largest 4-square combination, yielding the disjunct AB. The
only uncovered check is in ABcD. _This belongs to two 4-square combinations., Hence there are
two minimal dnf’s: ABv AC and AB v BC.

4.24. Use a Karnaugh map to find all minimal dnf’s for
ABCDE « ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
with the don’t care conditions ABCDE, ABCDE, ABCDE, ABCDE, ABCDE, ABCDE.

Solution:
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There is an isolated check at ARCDE. Henee this must be a diejunet. The checks at ABCDE

< A9l 18 &1 180370 CAeCN av A DL L il NRRUY WS @ Las, " VAISLVAD BV dALS\sasad

and ABCDE belong to unique largest 2-square combinations, producmg the dlsjuncta ABCE an
ABCE. The check in ABCDE belongs to a _unique largest 4-square combination, yielding the dis-

Jjunet BDE. The only uncovered check is ABCDE. This belongs to two 2-square combinations,
yielding either ABCE or ABCD. Hence there are two minimal dnf’s:

ABCDE v ABCE v ABCE v BDE v ABc,

ABCDE v ABCE v ABCE v BDE v ABC,

4.25. Find all minimal dnf’s or cnf’s for
ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD

Solution:
Draw the following Karnaugh map.
AB AB AB AB

CcD 4
cb 4
Cb v v
(o)1} v (v |V

The checks in ABCD, ABCD and ABCD belong to unique largest 2-square combinations, yield-
ing the disjuncts ABC, ABC and ABC. The remaining check in ABCD belongs to three 2-square
combinations. Hence there are three minimal dnf’s:

r O O
i
1

5]
i Ch Cx
)

CD vy | vV 4
CcD Yy | v 4
¢b | v Y

¢p | v

ABCD belongs to a unique largest 4-square combination (the first column), yielding the diajunct AB.
ABCD belongs to a unique largest 4-square combination, producing the disjunct AC, and ABCD
belongs to a unique largest 4-square combination, yielding BC. The only uncovered check is ABCD,
which is isolated. Hence the unique minimal dnf for the negation is

ABv ACv BC v ABCD
Therefore the unique minimal enf is
(AvBAvOBvCNAvBvCvD)

This is simpler than any of the minimal dnf’s. Hence it is the minimal dnf or enf.
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426. Fin

Eedse i142

ACDE v ABCDE v ABCDE -, ABCD « ABCDE v ABCDE

with the don’t care conditions ACDE, ABCE, BCDE, ABDE, ABCDE, ABCE,
ABCDE.

2.
»

First we draw the Karnaugh map,
AB _AB AB _AB

///// )

(o]
§
\<
X
NS
N
\

nAN
The check in ABCDE is in & unique largest 4-square combination, yielding the disjunet BCE.

The other checks are covered by two 8-square combinations, yielding BD and AC. Hence there is
& unique minimal dnf: ABCD v BCE v BD v AC )
The Karnaugh map for the negation is:

xuc (.l“!(.‘ lﬂ ADUUI'J ls ll’l a unlque m.rgr:st. 4-square Lummnamun, ylel.ulng cne uISJunu. ﬂDUU

AB AB AB AB

o T ]
o/ 17777

/7Y~ T/

o) A

xlxﬁ//,//
EVAVEY I/
ALY ANAT)
VEVAVE.

Th_e_ check in ABCDE b_elopgs_ to a unique largest 2-square combination, producing the_dis-
junct BCDE. The check in ABCDE belongs to a unique largest 4-square combination, yielding A85

The remaining checks are covered by two unique largest 8-square combinations, generating AC and
AC. Hence there is a unique minimal dnf for the negation:

BCDE v ABDv ACv AC
and therefore a unique minimal enf for the given dnf:

(BvCvDvE)YAvBvD)AvC)AvVC) (2)

nd the minimal dnf (f) are of equal cost. Hence there are two minimal dnf’s or enf’
2\
2).

|
Rl
-
[
n
=]
—~ Fh
-]
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Supplementary Problems

SWITCHING CIRCUITS. SIMPLIFICATION. BRIDGE CIRCUITS
4.27. Write down a statement form representing a condition for flow of current through each of the
following series-parallel circuits.

N
@ A N
— P
NG
O] B ——-
o N
S 2o~
(® 3\
N NG
A D
-
[ — \ e o
— N N——
'IB\ A
SN

4.28. Write down a statement form representing a condition for fiow of current through each of the
following bridge circuits.
() N I
: > -
-u?
,-.\ ,,\
w r g
(®) A\ B¥ ] C ™~
1B,
/ =A/
o— D / I 14 SR
C
N ™~ —

aC

429. Draw a switching circuit having the following corresponding statement forms.
(@) [(BvA)&(MBv ()] v (C&14)
@) (A&1B&(CvD) v (1A &(BV ()
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4.30. Replace the fellowing series-parallel switching circuits by simpler bridge circuits.
(a) ~
1
A
™~
T
= =
Use at most five switches
® AN —
A\ Cx
~ ~
A —— B 2&—— b~
Use at most ten switches.
(e) N N\
C ~— E ™
A e Wad
—— A6
—
N
L — — O —y ——o
™
P
N N~
B E™

Use at most seven switches.

431. Is there an equivalent bridge circuit simpler than the series-parallel circuit of Fig. 4-13
(Example 4.6)?

432. A light is to be controlled from two wall switches such that flicking one of the wall switches changes
the state of the light (“on” to “off”, or “off” to “on”). Construct a switching circuit that will allow
current to flow to the light under the given condition. (Hin{: Compare Example 4.6.)

433. A municipal board consists of the Mayor, President of the City Council, Comptroller, and :‘.h'ree
Borough Presidents. The Mayor has two votes and all the others one vote, A motion obtaining
a majority passes except that any motion opposed by all three Borough Presidents fails. Write a
switching circuit which will indicate passage of a motion.
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L
4.34.

SWITCHING CIRCUITS AND LOGIC CIRCUITS [CHAP. 4

GIC CIRCUITS

Construct logic circuits corresponding to the following statement forms.

4.35.

() (A &1B) v (B&(CV 14)
(b) (A>B)v C

Write down statement forms corresponding to the following logic circuits.

@ . G-
; ) T f
|
—®
® 4 | 1
(%) O—O—@
B

BINARY NUMBER SYSTEM

4.38.

4.39.

4.40.

4.41.

fb
o
»

Weite tha hinamr natation for

rive Sx v netation I H

Write the decimal notation for the following numbers given in binary notation: 10110, 111011,
10001101,

Write the ternary notation (base 3) for the numbers given in Problem 4.36.
Write the decimal notation for the following numbers in ternary notation: 12011, 222110, 10110,
Solve Problem 4.36 for base 6 and base 8, instead of base 2.

Do the following additions in the binary system (and check by going over to the decimal system).

(a) 11101 (®) 11000
+ 1011 + 101110

Do the foliowing muiltiplications in the
system).
(a) 11101 (d) 11000

X 1011 X 1010

e e

inary system (and check by going over to the decimai
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443. (a) Let a non-negative integer less than 10 be given in binary notation: a 3322100 Letting A, stand
for “a; is 1”, construct a logic circuit producing the statement that the given integer is a per-
fect square.
(b) Same as (a), except that the resulting proposition states that the given integer is even.
(c) Same as (a), except that the resulting propogition states that the given integer iz a perfect
cube.
444. (a) Using half-adders and full adders, draw a logic circuit which carries out the addition of twe
four-digit binary numbers.
(b) Same as (a), except that three two-digit numbers are to be added.

4.46.

4.47.

4.49.

4.50.

4.51.

4.54.

4.55.

4.56.

4.57.

Translate the following decimal integers into binary notation using the method of Problem 4.4:
27, 59, 124.

Translate the decimal numbers of Problem 4.45 into ternary notation, using a method analogous
to the one given for binary notation.

Perform the following binary subtractions directly and also by the method indicated in Problem 4.6.

@

is logically equivalent to BCv A

1100110 (d) 1110001 (c) 10101
- 1110611 — 1011100 — 11010

D v ABCD v ABCD v ABCD v ABCD v ABC
AD (cf. Example 4.17).

Under the same assumptions as in Problem 4.7, use don’t care conditions to find a simple switching

------ it €am bho Fallaciionw . somemos cced?

l-ll LUV VL LWIT 1UNUWIGE pIUVRDTL uca

(a)
(%

the given number is odd;
the given number is composite (i.e. has a divisor different from 1 and itself).

Which of the following dnf’s are simpler than the dnf ABC v AB v BCD?
(@) ABv ABC; (b)) Av Bv CDv AC; (¢c) ABCD v ABC; (d) ABCD v AC v AB.

Which of the following are prime implicants of the dnf ABC v ABv BCD?

(a) A, (b) AC, (c) ABD, (d) B

. a mweleenn fieealinambn sashia a mod masssa ja P T
(‘A'T te: There ars pPrime im licants which do not occur in this li t.)
Show that & is logically equivalent to ¢ v @ if and only if ¢ logically implies &,

Determine whether the fundamental conjunction AB is superfluous in
(a) ABCv AB v BC; (b)) ACv BCv AB.

Determine whether the fundamental conjunction BC is superfluous in
() ABCD v ABCD v ABcD v BC; (b) BCv ABD v BD v ACD.

Show that.y v ¢ is logically equivalent to ay v @ if and only if ¢ logically implies a v ®.

Determine whether the first occurrence of the literal C is superfluous in

(a) ABC v AB v CA; (b)) ACv BC v AC.

Determine whether the first occurrence of the literal B is superfluous in

lﬂ
=

ADI’V RO AL 1w\ ADO L DO

At
F= 1Y ﬂU, \U) aADwv vV DU VvV AU,
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458, Find irredundant dnf’s logically eguivalent to
(a) ABCD v ABD v CD v ABD v ABC; (b) ABD v ACv ABD v BCD v BD,

459. Prove that a full dnf containing n letters is not a tautology if and only if it has fewer than 2»
disjuncts.

4.60. Find full dnf's logically equivalent to (a) ABD v ABC; (b) A v BC v AC.

461. Carry out the proof of Theorem 4.4, using Lemmas 4.2-4.3.

462, Show that if ya logically implies # and ¢ & logically implies ¢, then y logically implies &.

4.63. Find all prime implicants of the following statement forms, using the Quine-McCluskey method.
(@) (AB© C) & AC
(b) ABCv ABC v ABCv ABC
(¢ ABCDv ABCD v ABCD v ABcD v ABCD
(d) ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE

4.64, Do the irredundant dnf’s of Problem 4.58 contain all their prime implicants?

4.65. Prove that a statement form is logically equi;;lent to the disjunction of all its prime implicants.

4.66. Find all the prime implicants of the dnf in (a) Problem 4.11, (b) Problem 4.51.

467. Construct the prime implicant tables for the dnf’s in Problem 4.638b,¢,d.

4.68. Find the minimal dnf’s for the dnf's in Problem 4.63b,¢,d, using the Quine-McCluskey method
and prime implicant tables.

4.69. Find the minimal dnf’s for the following dnf’s, using the Quine-McCluskey method and prime im-
plicant tables,

() ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE
(b) ABCDv ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD v ABCD
(¢) ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG
v ABCDEG v ARC DW‘ v ABCDEG v ABCDEG v ABCDEG v ABCDEG
v ABCDEG v ABCDEG v ABCDEG v ABCDEG
(d) ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE

4.70. Are the irredundant dnf’s of Problem 4.58a, b minimal dnf’s?

471. Give a full argument showing that, if ¢ is a full dnf and, in the prime implicant table for &, every
column contains an entry from a row cor'responding to a fundamental conjunction in the core,
thon the dicinmation af the miomabhacs of tha aswa tho semisma smimionc] dnd fom & faf Too—o
wiICil Illlc ulﬁJull\-lll\lll va VIIC IMSIIINVCLID Vi VAIS LW S IB wile uulquc ABBAARAIALGAL NAMMA AUVL WY ‘u. n&ulllpl_
4.25-4.26).

4.72. Verify the assertion in Example 4.29 that members of the secondary core must be a disjunct of

every minimal dnf
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i~
o3
EAB

4.74.

4.75.

4.76.

4.77.

4.78.

4.79.

aw tha £allacerimas
Ui wiT® 1000 wing

£]
1]
3,

L
]
)

e

method and prime implicant tables.

with don’t care conditions

ABC‘DE' ABCDE’ ABcﬁE ABC’DE’ /IBCEE AB CDE.

(b) ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE, with don’t care conditions
ABCDE, ABCDE, ABCDE, ABCDE, ABCDE, ABCDE, AB' E.

() A_lquE_'G v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v ABCDEG v
ABCDEG v ABCDEG, with don't care conditions ABCDEG, ﬁﬁCﬁ , ABCDEG, ABCDEG,

ABCDEG, ABCDEG, ABCDEG, ABCDEG, ABCDEG.

Show that if one fundamental conjunction ¢, includes another y,, then y, is logically equivalent
to ¢y Vv ¢o.

By the consensus method, find all prime implicants of the following dnf’s:
(s) ABC v ABCD v ABC v BCD; (b) ABCDv ABv BCD v ABCD v ABCD.

By the consensus method, find all prime implicants of the dnf’s in:
(a) Problem 4.11, (b) Problem 4.18, (¢) Problem 4.63b, (d) Problem 4.69a,c.

Check the solution to Problem 4.18 by expanding the original dnf into a full dnf and using the
Quine-McCluskey method.

Apply the consensus method to find all minimal dnf’s for:
(a) AE v BCE v ABCD v ABCDE; (b) ABCv BCD v ACD v ABD; (¢) ACv BCv BD v BD.
Check your results by using the Quine-McCluskey method.

Apply the consensus method to find all minimal dnf’s for:
(¢) dnf in Problem 4.13; (b) dnf’s in Problem 4.69a, b, ¢,d; (¢) dnf’s in Problem 4.75a, b.

KARNAUGH MAPS

4.50.

Using Karnaugh maps, find the minimal dnf’s for:
(a) ABCv ABCv ABCv ABCv ABC
() ABCD v ABCD v ABCcD v ABCD v ABCD v ABCD v ABCD
(¢ ABcD v ABcD v ABCD v ABCD v ABCD v ABCD v ABCD
(@) ABCD v ABCDv ABCD v ABCD v ABCD v ABCD v ABCD
v ABCD v ABCD v ABCD v ABCD
(¢) ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE
(H ABv ACDE v ABD v CDE v ABD

Solve Problem 4.48 by means of a Karnaugh map.

yuseof K arnaugn maps, soive Problems 4. ova, 0 c, d and 4. wa,
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4.83. Using a Karnaugh map, ind all minimal dnf’s for
ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE
v ABCDE v ABCDE v ABCDE v ABCDE
(Be sure that you are not using superfiuous disjuncts.)
484, Draw a Karnaugh map for six statement letters, and try to use it to solve Problem 4.69¢ and
Problem 4.16.
4.85. Using Karnaugh maps, find all minimal dnf’s for the given statement forms, with the indicated
don’t care conditions.
(a) ABCv ABD v ACD v ABCD, with the don’t care conditions ABCD, ABCD, ABCD.
(8) ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE v ABCDE, with the don’t care
conditions ABCD, ABCDE.
(¢) ABCv ABCD v AC, with the don't care conditions ABCD, ABCD, ABCD, ABCD.
4.86. Find all minimal dnf’'s or cnf’s for the statement forms in
(a) Problems 4.13, 4.18, 4.19, 4.21, 4.22.
(b) Problems 4.63b,¢,d, 4.69¢a, b, ¢, d, 4.78a, b, ¢, 4.80a-f.
4.87. Find all minimal dnf’s or cnf’s for the following statement forms, with the indicated don’t care

conditions.

(a) ABcﬁ
dRCD,

(b) Same as Problem 4.24.
(¢) Same as Problem 4.16.
(d) Same as Problem 4.14.

(e) Same as Problem 4.73a, b, c.



Chapter 5

Topics in the Theory

of Boolean Algebra

|— [ ]
e

A lattice is an ordered pair (L,=) consisting of a non-empty set L together with a

partial order = on L satisfying:

(L4) For any « and y in L, the set {2, ¥} has both a least upper bound (lub) and a greatest
lower bound (glb).

We have seen in Chapter 3 (Theorem 3.9) that a Boolean algebra B determines a lattice
(B, =), with zvy and z Ay as the lub and glb respectively. Therefore it should cause no
confusion if, for any lattice (L, =) and for any z and y in L, we use zv ¥ and z Ay to denote
the lub and glb of {z,y}, respectively.

Example 5.1.
The set {a, b, ¢, d, ¢, f} is not a lattice with respect to the partial order pictured in Fig. 5-1. For,

{a, b} has no lub.
c./.e‘\.d
AN et
i
ao/ /\'lb

f
Fig. 5-1

Theorem 5.1. For any elements z, y, z of a lattice (L, =):
(¢) zaz=2 and zvr=2x  (Idempotence)
b) zAy=y~z and avy=yvz (Commutativity)
(¢) zA(ynz) = (xAy)Az and zv (yv2) = (zvy)vz  (Associativity)
(d) zAa(zvy) =z and zv (xAy) = x  (Absorption)
() 2=y & zAy=2 and 2=¥% & zvy=y

(f) 2=y - (zrz=yrz & xvz=yvz)

Proof. (e) and (b) follow directly from the definition of lub and glb.
(¢) First, notice that xA(yAz) yAz = 2, Also, ZA(Ynz) =yaz =1y and xA(yAz) = z.

MTharafnrwa hee A Qe idlnen - Mo e | NN

N -
Therefore by definition of gzu, .h/\\y/\»o) = T AY. 10us since we nave 4"\\9"*[ =z

and zA(yaz) = zay, it follows by the definition of glb that zaA(¥yA2z) = (zAY) Az

133
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we have (gA'M)Az = ﬂA{rAu\ = (z,\‘x\,\u = 'u,.‘ly,.‘x} =

Q
= ATSW v y 2

zv(yve) = (zvy)vz

(d) Clearly, z=z and z =xvy. Hence by definition of glb, z=zA(zvy). But zA(zvy)
=g, Therefore by (PO3), zA(xvy)=2. Similarly, zv(ZAy)==2.

(e) First, if zAry==x, then x=2zAy=y. Conversely, if =y, then, by definition of
glb, zAay=2x. Similarly, 2=y & zvy=y.

(f) Assume z=y. Then
(xA2) A (Wn2) = (xAY) Az by (a), (b), (¢))
= T AZ (by (e))

Therefore zAz=Yynz, by (e). Analogously, (xvz)v(yvz) = (Zvy)vz = yvz and
therefore zvz=yvz.)

By a unit 1 of a lattice (L,=) we mean an upper bound of the whole set L. It is clear
that, if a unit exists it is unique. By a zero 0 of (L,=) we mean a lower bound of L, and
clearly, if a zero exists it is unique. Obviously we have 0A2=0,0vz=2,2zv1=1,
Al =2z for all x in the lattice.

A lattice may lack a unit. For example, the set of all finite subsets of the set of integers,
with respect to the partial order C, is a lattice without a unit. A lattice may lack a zero,
e.g. the lattice of all cofinite subsets of the set of integers with respect to the partial order
C. In the lattice determined by a Boolean algebra (B, rg, vg, '8, 05, 15), 15 is the unit of
the lattice and Og4 is the zero of the lattice.

A lattice is said to be distributive if and only if it satisfies the following two laws:
(L5) x/\(yvz) = (x.my)v(x/\z);
(L6) zv(yaz) = (xvy)a(zva)

Theorem 5.2. In any lattice, (L5) is equivalent to (L6) (and therefore in the definition of
distributive lattice it suffices to assume either (L5) or (L6)).

Proof. Assume (L5). Then
@vy)a@ve) = [Eve)az]vzvy)az] = zv[(zr2)v (yaz)
= [gv(za2)]v(¥nz) = v (Ynrz)
Therefore (L6) holds. The proof of (L5) from (L6) is similar and is left to the reader. )
The lattice determined by a Boolean algebra is distributive. (L5) and (L6) are simply

Axioms (3) and (4) for Boolean algebras.
Example 52

The lattice shown in Fig. 5-2 is not distributive. For, / '\
Albve) = dal = d

L c
while @Ab)v (dre) = OVO = 0 \T/

=)

o

"
ki
[ ]}
o
g
-]
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there exists an inverse 2’ in the lattice such that zaz’ =0 and zv2’=1. Obviously the

———lattice determined by a Boolean algebra is complemented:
If a distributive lattice with zero and unit is complemented, then, for any z, the inverse

#’ is unique. To see this, note that the proof of Theorem 3.1 (uniqueness of complements
in Boolean algebras) still is valid under the given assumption,

Theorem 53. A complemented distributive lattice (L, =) with 0 % 1 determines a Boolean
algebra (L, A, v,’, 0, 1).

Proof. Axioms (1)-(2) were proved in Theorem 3.1(b). Axioms (3)-(4) are just the dis-
tributive laws. Axioms (5)-(6) have already been treated above. Axioms (7)-(8) follow
from the fact that the lattice is complemented, and Axiom (9) is part of our hypothesis. p

52 ATOMS

A nonzero element b of a Boolean algebra is said to be an atom if and only if, for all
elements z of the Boolean algebra, the condition z =b implies that z=b or z=0.

Example 5.3.

In the Boolean algebra P(A) of all subsets of a non-empty set A, the atoms are the singletons {x},
i.e. the sets consisting of & single element.

Example 54.

The Boolean algebra of all positive integral divisors of 70 (cf. Example 3.4) has as its atoms {2, 5,7},
as is evident from Fig. 5-3. (Remember that the integer 1 is the zero element.) -

PN
@y

Flg. 5-3

For any atom b and any element z, either baxz=b or baz =0 (since baz=D»).
This has the following consequences:

(i) If bis an atom and b=uz,v ---v ., then b=z for some i. (For, if b 2, then
bAZi#b and so bazi=0. Hence if b2z foralli, then b =ba(Trav:--va) =
brz)v---v(dAazs) =0v---v0 =0, which is a contradiction.)

(ii) If b and ¢ are different atoms, then bac=0. (For, if bac»0, then b=bnac=
cab=c)
(iii) If b is an atom and b ¥z, then b=2’. (For, b=1=2zv2’, and we then use (i).)

A Boolean algebra is called atomic if and only if, for every nonzero element z of the
algebra, there is some atom b such that b= 2xz. The Boolean algebras of Examples 5.3-5.4

are both atomie,
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that b = g, In partlcular, Zo is not an atom and therefore there is some nonzero element

2. anoh thaé - nd e i e [N A annnt ha
wl SUlil uial abl - -Dll “ll“ Wl 7 WU: deWe YV N wi N Wi w] WJIIIVII UL Qi avviiiy aviive ullwxc £

some nonzero element z: such that 2z, < z,. Continuing in this way, we obtain a sequence
s P citnle dlamd A N ae N Al N L. 4 A1 4L o deemne ~L dlain mamisnwman —eea AIobio. 2
-50, :m, 552, -« SUCLIlI LAl 40 ~ &) ~ L2 .~ M ot L3011 LI LBILID Ul ULDS STYUTIILE 41t uisuince
(by Theorem 3.8), contradicting the fact that there are only a finite number of elements
in the algebra. )

an atam: hanna tha 's

Given an element z of a Boolean algebra B, we define ¥(z) to be the set of all atoms b
of B such that b=2x. Clearly, ¥(0) =@ and ¥(1) is the set A of all atoms of 3.

Lemma 5.5. In an atomic Boolean algebra "B, the function ¥ is one-one, ie. if z %y,
then ¥(z) »* ¥(y).

Proof. Assume z#y. Then z¥y or y¥x; say, 2 *y. Hence zAy 0. Since
B i3 atomic, there is an atom db=2Ay’. Then b=z and 30 b € ¥(z). However, b=y’
and therefore b & ¥(y). (For, if b=y, then b=yAy’ =0, and b would have to be 0.)
Hence ¥(z)» ¥(y).)

Theorem 5.6. Every finite Boolean algebra 8 has 2" elements, where the positive integer
n is the number of elements in the set A of atoms of B.

Proof. By Theorem 5.4, B = (B, A,v,’, 0,1) is atomic, and, by Lemma 5.5, ¥ is a
one-one function from B into the set P(a) of all subsets of A. Now let C be any subset of
A. Since B is finite, so is A and therefore also C. Thus C = {b;, ..., b}. Let z =
byv -+ vbx. Then ¥(z)={b),...,bx}=C. (For, b= b:v co-vbe=2 for all & Thus
CC¥(x). On the other hand, if b € ¥(z), then b=2=0b;v -+ vb.. Hence

h — h
v — v

cee s dbAab)

- h N
v iy v V\VI\VK’

P
AN

Afh. e ubhY = o
A\DLIV VUg)] = {

Now if b were different from all the b’s, then each bAb;=0 and we would have
b=0v---v0=0 which is impossible. Thus b =b; for some i, i.e. ¥(x)CC.) We have
proved that ¥ is a one-one correspondence between B and the whole set P(4). Since A
has » elements, P(A) has 2" elements and therefore B also must have 2" elements. p

Something more can be said about the function ¥.

Theorem 5.7. If B is an atomic Boolean algebra, then the function ¥ is an isomorphism
from B into the Boolean algebra P(A). If 8 is a finite Boolean algebra, then
¥ is an isomorphism from B onto P(4).

Proof. Remember that A is the set of atoms of B, and ¥(x) = {b: bEA & b=xz).
We already know from Lemma 5.5 that ¥ is one-one. Next, we show that ¥(z’) = ¥(x).
For, on the one hand, if b is an atom and b =2’, then b#z. Thus ¥(2')C¥(z). On the
other hand, if b is an atom and b % z, then b=2z’. Thus ¥(z)C¥(z’). Hence ¥(z') = ¥(x).
Finally, we shall show that ¥(xA¥%) = ¥(z) N ¥(y). On the one hand, if an atom b=z Ay,
then b=z and b=y. Thus ¥(xAy)C¥(x)N¥(). On the other hand, if b is an
atomand b=z & b=y, then b =z Ay. Thus ¥(z) N¥(y) C¥(zAry). Hence ¥(zay) =
¥(z)N¥(y). Hence ¥ is an isomorphism from B into P(A). When B is finite, the proof of

*W‘e use the usual conventions: x =y means y=<2; x>y means ¥y <z; * ¥y means 1(x <y); x <y means
Te <o),
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Proof. By the second part of Theorem 5.7 and Theorem 5.6, it suffices to show that, if
A and C are finite sets with the same number of elements, then the Boolean algebras P(A)
and P(C) are isomorphic. Let A ={a),...,as} and C = {1, ...,cs}. Define the function
© from P(A) into P(C) as follows: for any subset {ay, --.,ax} of A, let e({ey, ...,an})=
{en, ...,ea}. It is obvious that @ is the required isomorphism. )

The second part of Theorem 5.7 shows that any finite Boolean algebra is isomorphic
with a Boolean algebra of all subsets of a set A. This turns out not to be true for arbitrary

EESS TS IR ONSSEEe Y & O AR Wwea aan werw 2200 WU P

infinite Boolean algebras, although, as we shall see later, any Boolean algebra is isomorphic
with a field of sets (i.e. to a subalgebra of the Boolean algebra of all subsets of a set).

33 SYMMETRIC DIFFERENCE. BOOLEAN RINGS
In a Boolean algebra B we define the operation + of symmetric difference as follows:
T+Y = (xAY)v (T AY)

In the Boolean algebra P(A) of all subsets of a non-empty set A, x+y=zay (cf.
Section 2.6). In the Boolean algebra of statement bundles (cf. Example 3.5), [A]+[B]=
{A + B], where the second + is the exclusive-or connective.

Theorem 5.9. The operation + has the following properties.
(¢) 2+y = y+=
9) 2+0 =«
(¢) z+a’ =1
@ z+(y+2) = (z+y)+2
(€) 2A(y+2) = (TAY) +(xA2)
(l z+z =0

R 1+z =
{3 m Lot — » oa a3 — L
Yy ~ Ty = & gy — T &

Proof.
(@) z2+y = (2AY) v (2 V)
Y+2 = (Yaz)v (¥ rz) = AT v (UaAT) = @BAY)v (2 AY)
(0) 240 = (zA0)v(2'A0) = (TAl)vO0 = zAl =
(o) T+ = @EA@))v(@Az) = (TArz)ve =2ve =1
(@ z+{y+2) = 2+ ((yaz) v (¥ ~2)
= @AlUnz)v @A) ) v (@ al(ya?) v (¥ A2))
= BAW V) A@VD)Y [ Ayaz) v (@AY A2
= [zAa((@a2)v @A) v ayaZ) v (@AY A2)]

= (x,\‘y’.y'\ {fr,.u/.r\\,(m"/y,\y'\v{ﬁ",\'u’.y)
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On the other hand, (z+¥)+2z = z+ (2 +¥). But, to calculate z + (x ¥), we use
the equation just found for z + (¥ + 2) after substituting z for z, « for y, and y for 2.
———We obtain

z+(@+Y) = @EATAY)V(EAZAY) V([ ATAY) v (2 AT AY)
= (BAYAZ)V(ZAYAR) V(T AYAZ) v (2 AY AZ)
= z+ (y+2)
(€) zAaW+2) = zA((YAZ)v (¥ A2)) = (ZAYAZ) v (ZAY A2).
(@Ap) +(@A2) = [(@AY) v @A2)] v [@AY) A(@A2)]
= [(zr9) A @ V) v [(@ v¥) A (2 A2)]
= WA@A@ V2N v (v Y) A2)A2)]
= [YArZAZ]v @AY AZ] = (ZAYAZ)v(TAY A2)
+z = (Zaz)v(@Az) = 0v0 = 0.

Aamwewmana ~ v ~ T & - Axan

t + Z
(x+x)+y=( x)+, 0+y=0+2 y=1z2
(k) Add z to both sides of (c) and use (f).

(¥) Add z to both sides of z +y = z and use (f).

(/) Taking y=0 in (?) ylelds =2 > z+2=0. If we exchange ¥ and z in (i) and set
y=0, weobtain z+z=0->2z=2.)

4 nd. 1D
irucuure x\ = \u:, +, X, V), wnere 4 is a s

:. element of R, such that
1) @+y)+z = z+(y+2);
2 z+y =y+z;
3) z+0 = x;
(4) for any z, there is a unique element (—z) such that z + (—z) =
() (xxy) Xz = z X (yXz);
(6) X (y+2) = (2Xy) + (v X2);
() W+a)x =z = (yxX2)+(2xX2)
A ring R is said to be commutative if and only if, in addition,
8) zXy = yXu=z.
A ring R is said to have a unit element if and only if there is an element 1 in R such that
9) 2xX1=1Xz = z.
(C}early, there cannot be another unit element u, for we would then have v =1Xu=1)

In Theorem 5.9 we have already verified that a Boolean algebra determines the com-
mutative ring (B, +, A, 0) with unit element 1. This enables us to apply the highly developed
algebraic theory of rings to the study of Boolean algebras But we also can give a more

Nnracioa ahaowant, +3nn ~f wen
Precise characterization of Boolean algebras in terms of rings, in the following way.
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for all z. (Here we employ the usual abbreviation: z?= 2z Xxz.)

Theorem 5.10. Let ® = (R, +, X, 0) be a Boolean ring. Then
(¢) z+2z =0
%) 2 = —=
(¢c) 2+y=0 e 2=y
(d) Xy =y Xz (Thus the ring must be commutative.)

Proof. First, we observe that for an arbitrary ring the cancellation law z+y=z+2 -
y=2 holds. For, if x+y=2z+2, then

(—2) + (= +y) = (—2) +(z +2)
(—2)+z2)+y = ((—z)+2x) + 2
O+y =0+2
y=z

From the cancellation law it follows that
r=2+4+2z - z=0 (1)
for,if x=x+2 then z+0=2+2 and the cancellation law yields 2 =0.
g) x+zr = (z+r)X(x+2) = 2*+2*+22+a2 = 2z+x+2+2 By (1), z+2 = 0.
f

'b) Since 2+2 =0, £=(—z) by the uniqueness assumption for (—z) (cf. Axiom (4) for

rings).

¢} If x+y =0, then, again using z+2x =0, we conclude that z =y by the uniqueness
assumption of Axiom (4).

D (z+y) = z+y) X (x+y) = 2+ (@XY) +(¥X2)+92 = (+Y) + (@ XY) + (¥ X2).
By (1), 0 = (xXy)+ (yxzx). Hence by (¢c), 2 Xy = y X z.p

Theorem 5.11. Let R = (R, +, X, 0) be a Boolean ring with unit element 1+ 0. If we
dofina

NAARALT

¥ =142 2ZAYy=zXy, 2zvy=z+y+@Xy)
then B = (R, A,v,’, 0,1) is a Boolean aigebra.
Proof. We must verify Axioms (1)-(9) for Boolean algebras.

Lhzvy = yYve.
zvy=z+y+(@Xy) = y+z+yxXz) =yve

2. 2AY = yaz. Thisis just (d) of Theorem 5.10.
3 z-(yva) = (zAY)v (xA2).
TA(yve) = zXU+z+UX2) = @XY) +(xX2) +(xX(yX2)
@A) v (@AZ) = (TXY)+(@X2)+ (2 Xy) X (2X2))
= (xXy)+(zX2)+ (22X yX2)

= (Y k(X 2\ (27X a2\
\WHNYJ) T \WwWwerM) Vvt Yy
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zv(ynz) = 2+ (YX2)+(zXyX2)

(@vi)levae) = [Evy)aa)v@ve) az] by @)
= [(rz)v (yr2)]v [@A2)v(ynz)] by (3)

e (X 2)] v [(2X2) v (¥ X 2))

= [z+(xXy)+ (@XzXY)]v [(@X2)+ (¥ X2)+ (x Xy X2?)

= [g+@xy) +@Xy)] v [(@X2) + (yxX2) + (X yX2)]

= zv[(®X2)+ (yYX2z)+ (xXyX2)

=z+@EX)+WX2)+(@EXyX2)+ (@X[(xX2)+(¥X2)+ (zXyX2)])

=z+(@X2z)+ (¥YX2)+ (xXyX2)
+[@EX(@X2)+(zX(yx2)+(xX(zxxXyXxz))] by(3)

=z+@EX)+WUX2)+t(@XyX2)+(@X2)+(xXYX2)+ (2 XyX2)

=z+yXz)+@XyXz)+[(xxX2)+(@X2)]+[(zXyx2)+ (xXyX2)]

= z+(yX2)+(xXyXz)

(6) zv0 = 0.
zv0=2+0+(2%X0) =2+0+0 =12

(Note that we have used the fact that, in any ring, X0 =0. To see this fact, observe
that £ X0 = 2 X (0+0) = (xx0)+ (x X 0); and then by (1) in the proof of Theorem

5.10, zX0=0)

6) Al = 2.
This is just X1 =z, which follows from the definition of a unit element.

() zva = 1
zve' =g+ +(xX2) =z+(1+2z)+ (X (1+2)
=1+@+z)+(xx1)+(xzXx) =1+0+(2+2) =1+0+0=1
8 Az = 0.

zAax = zX(1+2) = (xX1)+(xXx) = 2z+2 =0
(9) 0+ 1. This is an assumption of the theorem. )

Thus we see that a Boolean ring with nonzero unit element determines a Boolean algebra,
and vice versa any Boolean algebra determines a Boolean ring with nonzero unit element
(essentially Theorem 5.9).

54 ALTERNATIVE AXIOMATIZATIONS

There are numerous axiom systems for Boolean algebras.t The following system is ¢
variation of one due to Byrne [101).

A Byrne algebra is a structure (B, A,’, 0) where B is a set, A is a binary operation on B
’ is a singulary operation on B, and 0 is an element of B, satisfying the postulates:

tThe one we have used (Axioms (1)-(9)) is due to Huntington [121]. For systems proposed up to 1933
of, Huntington [122]. For later work, of. Sikorski [148], p_ 1, footnote 1.
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(R1Y 2AY = yaAnx
==/ ST AN7 YAz
(B2) zA(yn2) @Ay)rz
(B3) XA =2
(R4 2w =0 AU =2
AN 7 4 hd w Ny w
(B5) 0 = O’

Let us introduce a few definitions.

Definitions.

1 for ¢
zvy for (2’ AY)
z=y for zAy==x

From what we have already proved, it follows that, for any Boolean algebra (B, A, v,’, 0, 1),

the structure (B, A,’,0) is a Byrne algebra.

theorem.

Theorem 5.12.

(a)
(0)
()
(d)
(e)
0]
(9)
(7)
(®

)

(%)
0]

(m)
(n)

(0)

The converse is established in the following

For any Byrne algebra (B, »,’, 0), the structure (B, A,v,”,0,1) is a Boolean
algebra, where v and 1 are defined as above.

In particular,
zaz =0

2AY =0 z=y

T =2z

r=y&y=z > x=y

r=y &y=z > z2=z

TAY=zx

zA0 =0

=z

TAY = (2'vy)
vy = yve
zviyve) = (Fvy)vz
Tvze =2

z=<y o y=o

zvi=1e zvy=2

Duality: Any theorem in the language of Byrne algebras (i.e. involv-
ing the symbols A,’,0) is transformed into another theorem when we
replace A by v, and 0 by 1. Under this replacement, the defined term
z vy (ie. (' ~y’)) becomes (z’ v y’)’, which is equal to z » v, and the
defined term 1 (i.e. 0’) becomes 1’, which is equal to 0 (by (2)). Thus
the dual of a theorem is a theorem.

t=<y & zvy=y. (Hence the dual of z =y is equivalent to y = z.)

zAl ==z

rv0 =12

et = 1

w VvV A -_ L

r=2xvy

zv(TAy) = zA(zvy) =2

r=a > (rrz=ur2 & 2uz=2uy2)
- - A\ AR gHes & w VL gV
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(d)

()

(4)
)
(k)

N

U]

o~
3
~—

(9)
(r)
(s)
(?)

(¥y) zA@EvY) =2y
(1) ZA(Yve) = @AY v (TA2)

{Zn\ x v (’_)l'l\z\ = (_ﬁ_' V] 2\ Alx v Z\
\T< had \T 7 \ I7 (e 7

(23) Axioms (1)-(9) for Boolean algebras hold.

Proof.

I
e

zAx = z. Hence by (B4), z A 2’

This follows immediatel m
This follows immediately from
Assume z=y & y=2z. Then x/\y=x&y,\x=y. By(Bl), T=y.

Assume 2=y & y=2. Then zAy=2 & yaz=y. Hence zrz = (ZAy)az =
2A(ynz) = zAry =2. Thus z=z.

(@Ay)az = (xArz)Aay = 22Yy. Thus Ay =

2A0 = zA(TAz) = (xAx)Ax’ =za2 = 0.

Ax =_g Az” = 0 (by (a)). efore z”/ =z (by (b)). Likewise, &’ =’ and
2’ =z"”. Hence 2" =2 (by (e)) Therefore z’’” A a: 0 ( y(b)) Hence a:"x"’

.-

(by (b)), and therefore z’ = z*” (by (d)). Thus zA2’” =0 (by (a)), and then z=2z2"
(by (b)). Therefore x = z” (by (d)).

vy = (2”Ay") = (xAy). Hence (x'vy) = (TAYy) = zAY.

U"

vy = (x/\y) yA:c) = Yyve.

xv(yve) = (A AzZYY = @AY AZ)).

(vy)vz = zv(@vy) = @ A@AY) = (@AW A2)).

rve = ('Ax)Y = 27 = 2.

Assume z = y. herefore y"Az” =0, and, by (b), ¥’ =
Conversely, if 3y’ =
Y=z e zr=y (by (m)). Therefore z’Ay=0 & 2'Ay =2’. Hence ('Ay) =
0 e (’Ay)Y=2" andso 2v¥' =1 & zvy=1x.

Changing A to v and 0 to 1 transforms the axioms for Byrne algebras into theorems.
((B1) becomes (7); (B2) becomes (k); (B3) becomes (I); (B4) becomes (n); and (B5) becomes
1 1’ which by (k) is equivalent to 1 = 0.) Hence if we make these changes in all
propositions of a proof, we obtain a proof of the transformed theorem.

=Yy o Y=z
o YAz =y
e (Yazy = y”
o Tvy =Y
0=z, by (9). =1, by (m) and (k). Therefore zA1=12z.
This is the dual of (g).
This is the dual of (a).
This is the dual of (f).
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() zAv=2 bv (). Hence bv (1) dunal of thigis (2vlax = 2.
() Y ’ ). Hence by (p) dual of tI ( Yl

X (4‘ \\ - ‘h
~y o\ ‘-.. vV e p 4

[(’]

(v) Assume z=<y. Then 2y = z. Hence (zrz)A(yrz) = (2Ay)r2z = a2z Thus

TAz=Yyn~z Also,since z=y, we have, by (p), zvy = y. Hence (zv2z)v (yvz) =
(zvy)vz = yvz,andso by (p), zvz = yvaz

(w) Assume z=z&y=z Then z=2zvz=2zvy. Therefore zv(zvy) = (eva)vy =
Zvy = 2. Hence zvy = z.
() This is the dual of (w).
(¥) z~A@vy) =A@ Ay)Y = z2A(xzAYy). Hence
@EA@Ev) Ay = @AY)A@AYY =0
Then by (B4), zA(z'vy) = @A (@ vy)) Ay = za((@vy)Ay) = Ay (bY (4).

(z1) First, y=yvz & z=yvz (by (t)). Therefore by (v), sAy=zaA(yvz) & zAz=
ZzA(yvz). Hence by (w), (xAy)v (zA2) =2 A(yvz). On the other hand,
ZAUVIIA((ZAY) V@A) = 2AYvRIA@AY)Y A(@AZ)
= 2AHva A @ vY) A (@ vE)
= v A@A@vY) A@a(@ve))
= (Yv)a@ay)a(xzaz) (by (¥)
= z2AYv2)A(YA2Z)
= AW AZY AW AZ)
=2A0=0

Hence z A (yv2) = (zAy)v (2A2), by (b)). Now apply (d).

(z2) is the dual of (z1).
(za) All the Axioms (1)-(9) for a Boolean algebra already have been proved.
55 IDEALS
An ideal of a Boolean algebra 8 = (B, A, v,”, 0,1) is a non-empty subset J of B such
that:

i) (x€J &yel)»zvyed
(ii) (x€J & yEB) » zAyEJ
It is clear that (ii) is equivalent to
(i) (#€J & y=z) - yEJ
For, assume (ii) and let 2 €J & y =xz. Then since y =z, we have y =z Ay. Hence by

(ii), ¥ €J. Conversely, assume (ii’) and let x€J & y€B. Since zay =z, it follows by
(ii’) that zAy € J.

Notice that 0 belongs to every ideal, since 0 =2z for all 2.

Example 55. {0} is.an ideal.

Every ideal different from B is called a proper ideal. In particular, {0} is a proper ideal.

Note: An ideal J is proper if and only if 1 € J. For, if 1 € J, then JCB. Conversely,
if1€J and if y € B, then y = 1. Hence by (ii"), ¥y €B. Thus J=B.
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Example 5.7,
If A is a non-empty set and 1f P(A) is the Boolean algebra of all subsets of A, then the set J of all
finite subsets of A is an ideal. is proper if and only if A is infinite. (More generally, if m is any

infinite cardinal number, the set of all subsets of cardinality less than m is an ideal.)

Example 58.
Given » € B, the set J, of all v=u is an ideal. For, if v; =% and v,=u, then v,vv, = u; and if
v=y and y = v, then y =u. The ideal J, is calied the principal ideal generated by u.

Theorem 5.13. Given any subset C of a Boolean algebra B, the intersection W of all ideals
J containing C (i.e. such that CCJ) is itself an ideal containing C. W is

said to be generated dy C, and is denoted Gen (C).
@ U B Uy LARilICEy &F ILOCil. assumer a
s any ideal containing C, then z€J & y€J. Hence
us zvy and x Az are in W, and therefore W is an ideal. p

W, and z is in B. If
Likewise, z Az € J.

:rs.

Theorem 5.14. Given any subset C of a Boolean algebra, the ideal Gen (C) consists of all
elements of the form

(mAz)v - - v (YeAZk), k=1
where z;,...,2x €C and ¥, ..., % are arbitrary elements of B.

790 La LaLalRAde VA ~aa adaza. 1 24 AzAAd VNS

P
of D is clearly again of the same form and therefore also in D, In addition, f or an

a moaant
41T 1XITTU

roof. Let D be the set of elements of the given form. The join of any two elements
le

=
«
m
>

[t

Yr(wna)v - v @az)) = Ga@iaz))v - v (Y A(Yenazs)

(¥ry)rz) v - - v (¥ Aye) Azi)

is again in D. Thus D is an ideal. Since z =12, every member z of C is in D. Every
member (y1AZi) v --- v (yx azx) of D belongs to any ideal J containing C, for, since z: € C,
it follows that . Ax: € J and therefore that (ziAnyi1))v -+ v (zxAay) €J. Hence D is the
intersection of all ideals containing C. )

Theorem 5.15. Given any subset C of a Boolean algebra B, the ideal Gen (C) consists of
the set E of all y such that

Y=Zyv - v

where 23, . .., Zx are arbitrary members of C.

Proof. If y=xyv---vay, and z=g;v---vuzx,, then
Yvez = xy v o vEVEIAC VT,

andif y=a1v:--vax and v =y, then v=2,v - -- v, Thus £ is an ideal. In addition,
if z is in C, then 2 = z and therefore z is in E. Clearly, every member of E belongs to every
ideal containing C. Hence E = Gen(C). )

Corollary 5.16. If C is any subset of a Boolean algebra 4B, then the ideal Gen (C) generated
by C is a proper ideal if and only if

Tyv vy % 1
f

Proof. Note first that 1 =y if equivalent to 1 =u, for any u. Hence by Theorem 5.15
1€ Gen(C) if and only if 1=2,v ---vax for some z,, ...,z in C. But, 1 € Gen(C) i
and only if Gen (C) is not a pro 1d L»
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nn Aalonthea D onmd
ealn aigeora v, ana

it 4
plus y, consists all

Ay ve
where z € B and z € J.

Proof. Let H be the set of all elements (zA¥) v z, wh_re z€Randz €J. First, v €H,
since ¥y = (1Ay)v 0. Also, if vE€J, then v = OAy)vv€H. Thus JU{y}CH. In
addition,

(Zray)vaz) v ((Z2aY)vE) = ((B1vz)ay) v (2avae) EH

Also, if x € J, then
w A ((Z— A

w

va) = ((wa2DdAaNviiwarn €
7 A% 7 a7 \ 7 T= ss

Hence H is an ideal. Finally, if I is an ideal containing JU {y}, and if z €J, then (zAy) v z
€1l; thus IDH.)

Corollary 5.18. If J is an ideal of a Boolean algebra 8, and if ¥y € B~ J, then the ideal
Gen (J U {y)}) generated by J plus ¥ is a proper ideal if and only if 2vy 1

|1 8-

forallme i.e. if and only if, for all z in J, y’ * z.

Proof. By Corollary 5.16, Gen (JU {y}) is proper if and only if z,v-:-vaxvy+
forallz, ...,z inJ. (Note that if z;v -+ v v y=1, then z;v .- - vax* 1) Rut si

=k \~" PVe vaaSy i w1V vV wi

ne
J is an ideal, 2 = z,v --- vz, is also in /. Hence the indicated condition is equivalent t

v 3 £ tha fant tha
ﬂ"’lng that zv Y+ 1 for all z in J. The additional remark follows from the fact tha

zvy =1 is equivalent to ¥ =z.)

e+° ('DH

Deﬁ'nitio'& An ideal M of a Boolean algebra B is said to be mazimal if and only if M
is a proper ideal and there is no proper ideal / of 8B such that MCJ.

Theorem 5.19. Given a proper ideal M of a Boolean algebra 8. Then M is maximal if
and only if, for any ¥ in B, either y € M or ¥’ € M.

Proof.

(a) Assume M is maximal. Assume y € M. We must show that 3’ € M. Let I = Gen (MU {y}).
Then I is an ideal of B such that MCI. Hence by the maximality of M, I = B. There-
fore by Corollary 5.18, ¥’ =z for some z in M. Since M is an ideal, ¥’ € M.

(b) Assume that yEM or ¢’ €M for all y in B. Assume M CJ, where J is an ideal. We
must prove that J=B Let y€J~M. Since y&€M, y’ €M. Hence ¥y €J. Then

£

10

Definition. An ideal J in a Boolean algebra B is prime if and only if, for any z and y
inB, 2EJ&y&N)> 2y &J.

Theorem 5.20. A proper ideal J in a Boolean algebra 8B is maximal if and only if it is
prime.

Proof.

(e) Assume J is maximal. Assume z &J & y €J. Then by Theorem 5.19, z' € J and y’ €J.
Hence 2’vy’ €J. Since J is proper, 2ry = (2’vy’) €J. Thus J is prime.

(b) Assume J prime. Given y€B. By Theorem 5.19 it suffices to show that y€J or
¥y EJ. Assume y&J and y’&J. Since J is prime, 0=yAy’' €J which is a

contradic
AL U '
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Proof.

(a) Assume u is an atom. To prove J.» maximal, we shall use Theorem 5.19. Assume
yEB and y&€Jw. Then y ¥ . Hence u=y’. Since u is an atom, u =y (by Remark
(iii) on page 135). Hence v’ =u’, i.e. ¥ € Ju-.

(b) Assume J. maximal. To prove that u is an atom, we assume v = u and we must show
that v =0 or v =u. Assume v # 4. Since J. is maximal, v €J. or v €J.. Hence
v=w orv =u,ie. @‘u’ or u=v. But u£o, since v=u & v *u. Hence v = w'.
Since v =u and v =u’, it follows that v =uAuw’ = 0. Therefore » =0.)

Example 5.9.
In the Boolean algebra P(A) of all subsets of a non-empty set A, the atoms are the singletons {a},
where a €A. Hence a maximal principal ideal consists of all subsets X of 4 such that a& X.

Example 5.10.

In a finite Boolean algebra B, every maximal ideal M is principal. For, there are a finite number of
atoms a@,...,8; in B, and a;va,Vv - --va, =1, Hence there is some atom a which is not in M. Then
M=1J, To see this, observe first that since a €M, then a’' € M. Therefore J,» CM. On the other hand
if yeM then a ¥y since a @M. Since a is an atom and a#y, it follows that a<y’, and so y =a’,
Therefore M C J,.

NTTOAMTIETAIM AY ADDD AQ
0-0 QUU.I.IL‘JL‘ 4 AlLTLIDINAD

Let J be an ideal of a Boolean algebra 3.
Definition. z =,y if and only if 2 +y €J.

Recall that z+y = (xAy) v (2’ Ay) (cf. Section 5.3). Hence, since J is an ideal,
reJ&yeJ - z+y€J.

Theorem 5.22. If J is an ideal of a Boolean algebra 3,
(@) z =, x.
b z=sy > y=2.
(¢) 2=y &y=s2z > x=;2
(d) (x=y & a=;b) > (' =y &rra=yrb & zve=

ey

w
<

A

Proof.
(@) z+x=0 € J.
b z+y = y+=
)z+z=z+0+z=z+@W+N+2z = (x+y) +(¥+2).

(d) Assume z =,y and a=;b. Since z’+y = z+y, it follows that 2’ =,y’. Next,
notice that for any z, (xAz) =5 (y~2), since (zaz)+(yaz) = (x+y) r2z. Hence

TAQG=JYAQA = QAAYSsDAYy = YAbd

w

Lastly, zve = (' Aa) =(WAbY = yvb

Definition. [ ] = {y: z=,9}
~alled the equivalence class of x modulo J. Clearly, z € [z].

[] is



CHAP. 5] TOPICS IN THE THEORY OF BOOLEAN ALGEBRAS 147

Proof.

(@) First, assume [x] =[z]. Since z € [x], we obtain z €{z], i.e. z =,2z. Second, assume

x =;2. Then for ny v,

yE[zg) > 2=,y > z=,9y > y € [7]
Hence [z]C[z]. Similarly, [z]C[z]. Therefore [z]=[z]
b)) yeIN] » =y &z=9) = 2=,z > [z] =[2].)
Given an ideal J of the Boolean algebra B. Let B/J be the set of equivalence classes
modulo J. We define operations A, v,, s on B/J as follows:
[@1~ (Y] = [2A9)
[#] v, [y] = [zvy]
[#]r = [#]

These definitions are meaningful by virtue of Theorem 5.22(d). For example, if X and Y
are equivalence classes modulo J, we select any x €X and any y €Y. If ;;€X and ;1 €7,
then [zAy]=[z1Aay] by virtue of Theorem 5.22(d) and Theorem 5.23(a). Thus [z Ay]
does not depend upon the particular z chosen in X or the particular ¥ chosen in Y. This
shows that our definition of A, makes sense.

Let 0; stand for [0], and let 1, stand for [1]. Clearly, 0,=J and 1, = {y: ¥’ €J}.
Let B/J stand for (B/J, n,, v,,"s,0,, 1.

Theorem 5.24. If J is a proper ideal of a Boolean algebra B, then B/J is a Boolean algebra
(called the quotient algebra of B by J).

Lo ¢4

Proof. We must check the axioms for Boolean algebras.
1 [zlvy] = [2vy] = [yvz] = [4] v [2].
Axioms ( 2)-(8) are proved in a similar manner. (This is left as an exercise for the reader.)

@ 0,+1,, since 0 3%,;1. (This follows from the equation 0+1 =1 and the assumption
that T ie n A

masnm o idanl
bVilav v 1D & piIvyot xucah’ ’
Example 5.11.

Let J be the ideal {0}. Then x =,y if and only if z =y. Thus the elements of B/J are the single-
wors {z}, where z€B. The function f(x) = {x} is an isomorphism between B and B/{0}.

Theorem 5.25. B/J = {0,,1,} if and only if J is a maximal ideal.

PrOOf If J is maximal, then, for any z, either x €J or 2’ €J. Hence [z] =0, or .

2. = 1,. Conversely, assume that for every z in B, [2] =0, or [z]=1,. Hence z€J or
»r’ ‘_: J. Therefore hv Thaoram 5 19 7 ig mawximal A

v & . SESVATNAVAT MYy AiUIVULVIIL U.AUy U I LliGAlilieie

Remark. If x€B, then [z] =xz+J, where z+J stands for {xr+%: v €J}. For, on

the one hand, y € [z] - a:+yeJ—’ z+y=u forsomeuin J - y=x+u for some uEJ.
l'\-n H-ao n+hnr hd f — n'J.ql 'Fl\r anma a1 in v’ t oan fu-l-m = o 5 T nnﬂ +hnrnf“n‘ro )lcrf]

N
PULIIC W 11k s LiAGIL

QE
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The theory of Boolean algebras is intended to be a generalization of the algebra of sets.

We already have proved (Theorem 5.7) that every finite Boolean algebra is isomorphic to the
Boolean algebra of all subsets of some set A (namely, A is the set of atoms). This is not
true for all Boolean algebras. For, in Problem 5.16 we cite an example of an atomless
Boolean algebra B; and since the Boolean algebra P(A) of all subsets of any set A is atomic,
B cannot be isomorphic to P(A4). However, we shall show in what follows that every Boolean
algebra is isomorphic to some field of sets.

To this end, we shall need the following general mathematical principle.

Zorn’s Lemma: Given a set Z of sets such that, for every C-chain C in Z,t the union
ALeJc A is also in Z. Then there is an C-maximal set M in Z, i.e. MEZ,

and, if A is any set in Z, then M¢ A.

A proof of Zorn’s Lemma (based upon the use of a more transparent assumption, the
so-called axiom of choice) is given in Appendix C.

Theorem 526 (Maximal Ideal Theorem). If J is a proper ideal in a Boolean algebra <,
then there is a maximal ideal M in B such that JCM (i.e. every proper
ideal can be extended to a maximal ideal).

Proof. Assume J is a proper ideal. Let Z be the class of all proper ideals K in B such
that /C K. Now assume that C is an C-chain in Z. Then I’gc I is a proper ideal (cf.
Problem 5.34) containing J. Hence by Zorn’s Lemma there is a maximal set M in Z. But
M DJ and M is a maximal ideal in B (for, if M= is any proper ideal such that M C M=, then
M#* €Z and hence M = M?).)p

Consider the Boolean algebra P(A) of all subsets of an infinite set A. Let J be the ideal of all finite
aubsets of A. By Theorem 5.26, J can be extended to 8 maximal ideal M. M cannot be a principal ideal.
{For, a principal maximal ideal consists of all subsets of A not containing some fixed element b of A

(cf. Example 5.9), while every singleton {b}, being finite, belongs to J and therefore to M. Hence if M

were principal, we would have A = {b}U(4 ~ {b})EM, and then M would not be a proper ideal.) No way
is known for describing such an ideal M in a constructive way, i.e. no property is known for which the
sets satisfying this property form a maximal ideal M containing J as a subset.

Corollary 5.27. Every Boolean algebra has at least one maximal ideal.

Proof. The set {0} is an ideal. Hence by Theorem 5.26, {0} can be extended to a
maximal ideal. p

Corollary 5.28. If C is any subset of a Boolean algebra 8 such that for any u, ..., % in
C, thv -+ viun* 1, then there is a maximal ideal M containing C.

Proof. By Corollary 5.16, the ideal Gen (C) generated by C is a proper ideal. Then
by Theorem 5.26 there is a maximal ideal M containing Gen(C), and therefore also
containing C. )
tBy an C-chain C in Z we mean a subset of Z such that, if A€C and BEC and A * B, then either

ACB or BCA. More generally, if R is a binary relation on a set W, then an R-chain in W is a subset
of W on which R is transitive, connected, and antisymmetric (ie. zRy& yRx — 2 =y),
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M not containing the element z.
Proof. =z’ 1. Hence by Corollary 5.28 there is a maximal ideal M containing 2’.
Hence 2 & M. (Otherwise, 1 = zva2' € M) )

Theorem 5.30. (Stone’s Representation Theorem). Every Boolean algebra B is isomorphic
to a field of sets.

Proof. For each z in B, let =(x) be the set of all maximal ideals of B such that x & M.

Maoanly =/1\ 20 tla. ani _—m o= Semm o - f O neananbes mad Tlase Azmxr

vicaily, (i) Id L€ dTL M Ul. au Inauuuld.l Lueals OI "D, wnue \U) m ulc EmipLy S€u. rOor any

z+0, =(z) is non-empty, by Corollary 5.29. Also, E(z’) = =(z), since every maximal ideal

"M contains precisely one of the elements z and z’. Finally, =(xvy) = E(z)U=(y). (First,
if &M, then xvy & M, since x =zvy. Likewise, if ¥y &M, then xvy & M. Hence
S(r)U=(y) CE(xvy). Conversely, if tEM & yEM, then zvy € M. Hence if 2vy & M,
then x @M or y € M. Therefore =(zvy) C E(x)UZE(y).) Thus = is an isomorphism of B
into the Boolean algebra P(M) of all subsets of the set &I of all maximal ideals. The range
of = is a field of sets isomorphic to B. p

Corollary 531. For any sentence A of the theory of Boolean algebras, A holds for all
Boolean algebras if and only if A holds for all fields of sets.

{By a sentence of the theory of Boolean algebras we mean either an equality r = o, where
= and o are Boolean expressions, or an expression obtained from such equalities by appiying
the logical connectives and the quantifiers “for all z”’ and “there exists an z”.)

3.8 INFINITE MEETS AND JOINS

Given a Boolean algebra 8 = (B, A,v,”,0,1) and a subset A of B. If the least upper
bound (lub) of A exists, it is denoted \/ 2z and called the join of A. Thus in order for y

r€EA
to be the join of A, it is necessary and sufficient that:
(a) =y forall z€A.

(b) Foranyv,if 2 =<9v forall z €A, then y =w.

T tlan vnndncd Tacacae o 1 710\ £ A ~lode 24 2o Joeedald a ar amd 2o11ad Ll aaood A A
i LT gilCalEsy IOWEI pould (gio) 0L A €XiISLS, Iu IS Qénolea /\ & and caiied uie meev o0r a.
z€A
Notice that
Vv =0, ANz=1
T€EP €Y
vV =1, AN z=20
zEBR zER

Definition. The Boolean algebra B is said to be complete if and only if v zand A z
€ T€A
exist for all subsets A of B, i.e. every subset of B has both a lub and a glb.

Example 5.13.
In the field P(K) of all subsets of a non-empty set K,

V 2= U = and A= N=x

€A z€A z€A r€A
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Theorem 532, (DeMorgan’s Laws)
’
(a) [ = / A (x')\l
\ rE€A \IEA /
/ ’\'
® %= (,y,@)
z€A

(Each equation is taken to mean that, if one side has meaning, then so does the other, and
they are equal.)

Dosnnt {o\ Agarmme \/  nwicbe anmd laé ao =0 v N7 Nawr £ 2 A Sham a2 e \ 7 o
LTy, \ ) naauuu: v < TAILDW, ally ITLV Yy — \ Vv -b’ . 4N 1L W~y LTIl w = Lo
z€A z€EA z€A

Hence y =w’. Thus y is a lower bound of the set W of all 2/, where t € A. Now assume v
is a lower bound of W. Thus v=x’ for all x€A. Hence z=v" for all z€A. Thus
Vv z=1v. Hence 'v‘( v, z)’ =y. We have shown that y= A (). Hence VvV z=

T€EA TEA

z€EA
y = ( A, (z'))’. On the other hand, assume A (2') exists. Let b= ( A (=))". IfucAd,
then A (z)=wu. Henceu=>b. Thus b is an upper bound of A. If c 1s an upper bound
zx€EA

A Lo 11 oV AL d e Lo N — o 20N
Ol A, u1I€n Xr=2¢C 0 all & :ﬂ, uus 1mplies ualr ¢ =& 10I ail & Cfl nence c TASELC )
TEA
and b= ( A (2'))’=c. Therefore b= Vv z. The proof of (b) is similar. }
TE€EA T€A
Davallawr £ 292 Tf all anihaata af R hava o maat (racgnantivalyy o 1ainl thhn P g anmnlaéas
LOrGaialy Jewuos il @i SUOSCLS O & NAVE & ILCCU (IeSpeECulvely, JOilly, uicli o 13 COInpieie.

Example 5.14.

Let B be the Boolean algebra of all finite and cofinite sets of positive integers. Let A be the set of all
sets of the form {2n}, where n is a positive integer, i.e. A is the set of singletons of the positive even integers.
Then A has no join. For, if u were equal to V x, then u# would have to contain all positive even integers,

€A

But, since u would be cofinite, ¥ would also have to contain all but finitely many odd positive integers.
Then any proper subset of » obtained by removing an odd integer also would be an upper bound of 4,
contradicting the assumption that u is the least upper bound of A. Thus B is not complete.

Example 5.15.
Let A be the field of sets consisting of all finite sets of positive integers and all gets N ~ X, where N

is the set of all n;;;-_f-wgatwe 1n;;;;:;;_ and X is ;ﬁy f-i;lilwte set of posxil;: —1;1_tegers. A is a subfield of the
field P(N) of all subsets of N. Let C be the set of all singletons of the form {n}, where n is a positive
integer. Then the join of C in the Boolean algebra P(N) is N ~ {0}. However, the join of C in the

Boolean algebra 4 is N. (Notice that N ~ {0} does not belong to A.) This illustrates two facts:

(1) The join of a
of C is N ~ {0} but

Ui v D AV

set in
+h

wail

a ﬁ ld of sets is not necessarily the union. (In Example 5.15, the union
e ioin in A is N.)

kc

AT avey

(2) If A, is a Boolean subalgebra of a Boolean algebra A, and if Y is a set of elements of A4,,
then the join of Y in A, (if it exists) is not necessarily the join of Y in 4, (if it exists).

Of course the same facts hold for meets as well as joins.

Because of the fact illustrated in (2), we shall, if necessary, designate the join in a Boolean algebra

B of & set Y of elements by \/ %z, and the meet by A3 az.
z€EY TEY

Definition. By a complete field of sets we mean a field of sets such that, for any subset
A of the field, the union and intersection of the sets in A are also in the field. The field
P(K) of all subsets of a non-empty set K is an example of a complete field of sets. Clearly,
a complete field of sets is a complete Boolean algebra, with union and intersection serving
as join and meet.
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If 8 =B, A,v,"%0,1) is a Boolean algebra, then its dual B8* = (B, v, A,’, 1, 0) is also

a Boolean algebra. In fact, the function f(x) =2’ is an isomorphism between B and B*
‘cf. Problem 5.42).

Theorem 5.34. (Duality Principle). For any Boolean sentence A, the dual formula A*,
obtamed from A by exchangmg 0 and 1 and exchanging A and v, will be
true for B if and only if A is true for 3.

interpretation of A with respect to the model B* is the same as the interpretation of A*

with respect to R. b

Proof. A is true for B if and only if it is true for the isomorphic algebra B*. But the

There are various extensions of the Duality Principle. The transformation from A to
the dual A* exchanges = and =. (For, 2=y & zAy =2, and the dual of zAy =2 is
z .y =z, which is equivalent to 2 = y.) In addition, the taking of duals interchanges the
general notions of meet and join.

Example 5.16.
The second part of De Morgan’s Laws (Theorem 5.32)

®) Az = ( v <z"i\
TE€A \:r €A }
is the dual of the first part:
(a) vV z = < A (“")>
z€aA TE€EA

Hence our proof of (a) automatically is also & proofof (b).

Example 5.17.
From V\ x = 0, it follows by duality that A =« = 1. Similarly, A z = 0 follows from
TE€EP TEP TEB
vV z=1
TEB

5.10. INFINITE DISTRIBUTIVITY
Theorem 5.35. (2) A V u = V (zAu).
u€A

u€A

(b) xvué\Au = u/e\A (x v u).

(These equations are intended to mean that, if the left side is meaningful, then the right
side is also meaningful and the two sides are equal.)

Proof. Since (b) is the dual of (a), i

(For, if anb=c¢, then b = (a’Ab)v (@aab) = a’vec) By taking the dual of (5.1) and
changing a to a’, we obtain
c=a’'vb = anc=0b (5.2)

Assume now that Vv u exists. If v€A, then v= V wu and therefore
u€A

u€A

TAY = A V u
ue€EaA
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is an upper bound of the set Z. Then for all u€A, zAu=w; and therefore by (5.1),
% = 2”vw. Hence \e/Auéx'vw By (5.2), z A \G/Auéw Thus zA V u =
u u nEA

u\e/‘ (xAu).p

Remark. If the right-hand side of (a) or (b) of Theorem 5.35 is meaningful, the left-hand
side need not be. For example, if £ =0, then Vv (zau)=0, but V % need not exist
€

if B is not complete.

(xi‘ v iz V v Wik ] A (zii v X232 v V xzigz} A A (zm] vV Tmg v v xmum’
= Z1j, AX24a A" AL
1‘¥ l:‘( My 7 2l ™im)
For example,
(Fnv T12) A (T21v B2 v T2s) = (11 A T21) v (T11 A Z22) v (L11 A Las) v (12 A Za1)

v (xlz A xu) v (xm/\ xza)

One even can extend these identities to the following infinite case.

( xu) A ( xzi) A 0 A ( xki)
\ica i€ A, / i /

- A
i s N g NS ag

= W e A (ﬂ:u! AT, At A xu,k) (5.3)
where the join on the right is taken over all possible terms Zagy A Tagy A 0 A Ty, With
1€A,, ..., Jx €Ak, and where we assume that all the joins on the left-hand side exist.

This identity is proved by induction on %, using Theorem 5.35(c) (plus generalized associ-
ativity; cf. Problem 5.37).

For any sets S and W, let S¥ stand for the set of all functions from W into S. Assume
given a function assigning to each w €W and s€S an element z.,. of a given Boolean

algebra B, Consider
AN ( \V4 xw.s) = VvV ( A xw.f(w)) (54)
wWEW \s€S fESW \wveEWwW

where the join on the right extends over all functions f €S%.

Definition. If m and n are cardinal numbers, the Boolean algebra B is said to be
(m, n)-distributive if and only if, whenever W has cardinal number m and S has cardinal
number n and Zw,s is any assignment of elements of B such that the left-hand side of (5 4)

wioht hawmd atda meal-ne conea

raQ QOMRS A e g
makes sense and each term A ZTw,pw) O tn€ rigni-nanda siae maxKes sense, then the ugnb-
WwWEW

hand side makes sense and the equation (5.4) holds.

B is said to be completely distributive if and only if B is (m, n)-distributive for all
cardinals m and n. B is said to be m-distributive if and only if B is (m, m)-distributive.

We have seen above (equation (5.3)) that if m is finite every Boolean algebra is (m, n)-
distributive, no matter what n is. Obviously (m, n)-distributivity also holds when n =1.
However, if m is infinite and n=2, then a Boolean algebra need not be (m, n)-distributive,
even when n is finite.
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To verify (a), it suffices to choose a set W* such that WNW* =@ and WUW?* has cardi-
nality m, and then to extend the given assignment by letting 2., =1 for all we€W*. To
prove (b), we need only choose a set S* so that SNS* =@ and SUS* has cardinality n, and
then extend the given assignment by letting z... =0 for all s € S*.

From (e) and (b) it follows that B is compietely distributive if and only if B is m-dis-
tributive for all m.

It can be shown that B is m-distributive if and only if B is (m, 2)-distributive (cf. [140]
and [149]).

Example 5.18.
The field P(K) of all subsets of a non-empty set K is completely distributive. This follows from the

fact thet
N ( U zw.s) = U < n zw.l(w)) (5'5)
wWEW \s€ES JESW \wEW

always holds for arbitrary sets z, ,.

Remark. By the Duality Principle, it is not necessary to give separate consideration to
the dual of (5.4):

"’gW (.é\s xw”) oy E/\sw <w\e/w xw.!(w))

11 m OOMDT RTRNLRAQ
Py SIVRSNTAVRL AdAd A A ANV

Let m be an infinite cardinal number. A Boolean algebra B is said to be m-complete if
and only if every subset of B having cardinal number =m possesses a least upper bound
(lub) and a greatest lower bound (glb).

By De Morgan’s Laws (Theorem 5.32), for m-completeness it suffices to know only that
every subset of B having cardinal number =m possesses a lub (or that every subset of B
having cardinal number =m possesses a glb).

If Bo is the cardinal number of the set of integers, it is customary to use the term
o-algebra instead of Ng-complete Boolean algebra. Thus B is a c-algebra if and only if every

denumerable subset of B has a lub.

We shall use the term m-complete field of sets for a field of sets F such that any subset
of F of cardinality =m has its union in ¥. In addition, by a o-field of sets we mean a field
of sets closed under denumerable unions.

Clearly, an m-complete field of sets is an m-complete Boolean algebra, and a o-field of
sets is a «-algebra.

Example 5.19.

Let K be a non-denumerable set. The field F of all subsets of K which are either countable (i.e. either
finite or denumerable) or co-countable (i.e. their complement is countable) is a o-field, but not a complete
field of sets (nor & complete Boolean algebra). For, let A be a subset of K such that both A and its
complement are non-denumerable. Then for each z€ A, the set {z} €F. However, the union of all the

setz {z}, where z€ A, iz equal toc A, which does not belong to F
@ 15 € A, is equal to A, which does not belong to F.
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mﬁmte but not cofinite. Thu shows that we do not have a a-ﬁeld To see that G is not even a c—algebra.
observe that the same set E of all sets {x}, where x € A, cannot have & lub in ¢. For, if C were such a
set, then €A - {#}CcC. Hence ACC, and so C would be infinite. Hence C must be cofinite, and
therefore C must intersect the complement A of A. If we choose y € CNA, then C~ {y} would be an
upper bound of E in G, contradicting the assumption that C is the lub of E.

Solved Problems

5.1. In each of the following diagrams, a partial order = of a set A is represented. For
which of them is (A, =) a lattice? A distributive lattice? A complemented lattice?

™) . (©
i AN

® . (d) f’
!.; d,” .‘e\

PR N\

N ,,1\ c
Solution: )

(2) This is a distributive lattice with zero ¢ and unit ¢, but it is not a complemented lattice. (For
example, there is no y corresponding to ¢ such that cvy =e¢ and cAy=a.)

(b) This is not a lattice. (For example, f and g have no lub.)

(c) This is a complemented lattice with zero @ and unit e, but it is not distributive. (For example,
da(bve)=d, while (@Abd)v(dAac)=1b.)

(d) This is a lattice with zero a and unit f, but it is not complemented (¢ has no complement) and
not distributive (da(bve)=dae=d, while (dAd)v (dre)=bva=21))
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52. Prove that any finite lattice has a zero element and a unit element.
Solution:
Let a;,...,a, be the elements of the lattice, and let b =a;v---va, Then b is a unit.
For, a;= b for each i. Similarly, 6, A - Aa, is a zero,

33. (e) Given a set A totally ordered by a binary relation =. Prove that (A,=) is a dis-
tributive lattice. When is (4,=) a complemented lattice?

(b) Give an example of a distributive lattice lacking both zero and unit elements.

Solution:

(@) For any « and y in A, either *x =y or y =x. Then max(x,y), the larger of z and y, is
obviously the lub x v y, while min (x, y), the smaller of = and y, is the glb z Ay. Thus {4,=)
is a latticee. We must now prove the distributive law (L5) which becomes

min (z, max (y,2z)) = max (min (2, y), min (z, z))
First, max(y,z) = z and max(y,z) = y. Hence min (x,max(y,z)) = min(x,2z) and
min (%, max (y, z)) = min (z,y). Therefore min (x, max (y, z)) = max (min (z, y), min (z,2)). Now
assume min (z, max(y, z)) > max (min (z, ¥), min (z, z)), and we shall derive a contradiction. It
follows from our assumption that x > max (min (z, y), min (z,2)). Therefore z > min (z,y)
and z > min(z,z). Hence z > y and z > z. Consequently max (min (z,%), min(z,z)) =

max (y,z) and min (z, max(y, z)) = max(y,2), contradicting our assumption. The other dis-
tributive law (L6) must hold by virtue of Theorem 5.2.

For (A, =) to be complemented, there would have to be a least element 0 and a greatest ele-
ment 1, Also, for any z in A, max(x,z’) =1 and min(z,z’) = 0. But either z = max(z, 2’)
or  =min(x,2’). Hence x =1 or z = 0. Therefore A would have to contain at most two
elements,

(b) By Part (a), such a lattice is given by (I, =), where I is the set of all integers (positive,
zero, and negative) and = is the usual order relation on integers.

54. Show that lattices can be characterized by the six laws:
(@) zvy = uvzl
) zAy = ynz
() z2v(yva) = (zvy)vz
(@ zA(yaz) = (my)u}
(e) zv(zay) = z)

absorption laws
N zAa(zvy) x I

in the following sense: if (L, A, v) is a structure such that A and v are binary operation
on the set L satisfying the laws (e)-(f), and if we define 2=y by zAy =2z, then

(L, =) is a lattice with lub({z,¥}))=2v¥y and glb({z,y})) =2z A¥.

Solution:

We already know, by Theorem 5.1, that any lattice satisfies (a)-(f). Conversely, assume that
(L, A,v) is a structure satisfying (a)-(f) and define z =y by xAy =2z Notice that 2=y
zvy =y. (For, assume =y, i.e. Ay =2. Then by (¢) and (b), y=yviyarz)=yve=
zvy. Conversely, if y=xzvy, then,by (), x=zA(zvy)=zAy, ie. z=y) Now,

(i) z=g2z ie. zAz=2. (For, by (/) and (¢), z=zA(xv (xAZ)) =2 AZ)

(i) (x=y&y=z) > z=2 (For, we are given x Ay = z and yAnz =y. Then xAZ =
; 2
&eof

PAM A Z = oA fas AN = o A 4z == o ia -
A AZ ENY/ = ANy = % L& X

x
-
C AN —
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(i) =y &y=z)->xz=y. (For, z=xAy=yanxz=y) Thus = is a partial order

(iv) zAy =glb({z,¥}). (For, (xAy)Az=2Ay implies xAy = x. Likewise, Ay =y. Thus

ZAy is & lower bound of {z,y}. Assume z is any lower bound of {xz,y}, i.e.
zA =2z & zAY =2z
Then zA(ZAY) = (ZAX)AY=2AY =2, ie. 2=ZzAY.)

(v) vy =Ilub({x,y}). This is proved in a manner similar to that of (iv).

Remark. Since (a) and (b), (¢) and (d), and (¢) and (f) are duals of each other, the result
we have just demonstrated yields 8 Duality Principle for lattices.

55. (a) Show that the following inequalities hold in any lattice.
(i) @Aay)v(zaz) = zA(yve)
(i) z2v(@az) = (xvy)a(zvz)
(b) Show that each of the following inequalities is a necessary and sufficient condi-
tion for a lattice to be distributive.
(i) zA(yvz) = (zAY) v (TA2)
(iv) @vy)a(xzvz) = zv (YAr2)

(V) zAa(yve) = (zAy)vz

Solution:
(a) By duality, it suffices to prove (i). We have

zAy = xzA(yva) and xAz = 2A(yv2)

Hence (xAy)v(zAz)=xA(yva)

() For (iii) we just use (i), and for (iv) we use (ii). For (v) we first assume distributivity. Then
zA{Yyvz) = (zAy)v(zanz) = (zAy)vz
Conversely, let us assume that (v) holds. Since a A (bve) = a, it follows by (v) that
an{dve) =an(landlve) = an(cviand)
= (anc)v (@anbd) by (v)

= (aabd) v (anc)

Thus we have shown that (iii) holds and therefore that the lattice is distributive.

56. Prove that, in any lattice,

- = 2%

N LT

- P 2T
< o T \MANY)VEe

Solution:
Assume z=2x. Hence z=<zA(yvz. Also, xAy =zA(yvz). Therefore

@Ay)vzZ = xA(yva)

5.7. Let us call a lattice modular if and only if it obeys the following law:

z=2 = 2A(yv2) = (zAy)vz
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z2=g > (zAay)vz=2A(yv2)

(b) Prove that distributivity implies modularity.
Solution:

(s) This follows immediately from Problem 6.6.

‘b) This is a direct consequence of Problem 5.5(b(v)).

38. Determine which of the lattices appearing in Problems 5.1(¢c,d) and Example 5.2 are

modular.

Solntion:
c
b.\
~N /
‘a

The lattice of Problem b5.1(c) is
This is not modular, since b =d and bv(ecAand)# (bve)and, (Namely, dbvicad)=bva=5>
and (bve)ad=end=d)

The lattice of Problem 5.1(d) is

d

—_—

of

]
N\
|

This is not modular since it contains the iattice of Probiem 5.5(c) as & subiatticet, and we have just
seen that the latter is not modular.
The lattice of Example 5.2 is

This lattice is modular. To see this, we must verify

-

2= - zA(yva) = (zAy)vz

- oo - .

y we mean a lattice determined by a subset of

b
o
118
Q
(7]
a
(=N
[
=l
=%
[]
-
>
»
=
[<%
\
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Tt is obvious that if z = 2, the result 2A(¥vz) = (2Ay)vz is an immediate conaeanence of the
absorption laws, Therefore we may assume that z < z. It is obvious that this implies that z = 0
or =1, But if z=0 the inequality reduces to zAy =z Ay, and if =1 the inequality
reduces to yvz=yvaz.

59. Show that a lattice is modular if and only if it satisfies the identity

FAa(xzvy)vy = Zvy)A(zvy)
Solution:
Assume L is modular. In the condition for modularity of Problem 5.7(a), substitute z for y,
y for z and z vy for x. The antecedent then becomes the true statement y = zvy, and we obtain
(Aa(zvy))vy = (@vy) A(zvy)
Conversely, assume that the indicated identity is true. Exchanging y and z, we obtain the
identity
wAn@@va)vz = (yva)a(zva) (1)
Now, to prove modularity, we assume z = 2z and we have to prove that (¥Ax)vz=2A(yv z\
But since 2=2, zvx =2 Hence the identity (I) becomes (yAzx)vz=(yvz)Ax, which is
precisely what is required.

5.10. Prove that a laftice L is modular if and only if it does not contain a sublattice iso-

morphic to the lattice of Problem 5.1(c¢),
|
" \

Solution:

If L is modular, then L cannot contain such a sublattice, since the latter is not modular
(cf. Problem 5.8). Conversely, assume L is not modular. Then there exist elements z, y, z such
that z=z and zv(yAnz)<(zvy)az. Nowlet a=yAzx, b=zv(yax), e=y, d=(zvy)Arzg,
e=zvy. We leave it as an exercise for the reader to show that a,d, ¢, d and ¢ are pairwise
distinet and that dAc=bAc=4a, dbvd=d, and evd=cvbd=e This shows that L has
a sublattice isomorphic to the one in the diagram above.

5.11. (a) Show that in any lattice the following inequality holds.

EAy)vyarz)v(zaz) = (Zvy)A(Yve)a(zve)
(b) Show that a lattice L is distributive if and only if the following identity holds.
(ZAa)vWAR)v(zaz) = (Zv)AaWv2)al(zve)

(c) Prove that a lattice is distributive if and only if it has no sublattice isomorphic
with either the lattice of Problem 5.1(c), Fig. 5-4 below, or the lattice of Example
5.2, Fig. 5-5 below.
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Fig. 54 Fig. 5-6

Solution:

(a)

(b)

()

From Ay =yvz and zAy =zvz, weinfer

Ay = (2vy)A(yva)A(zva)

Similarly, we obtain yaz = (zvy) Alyvz) Alzvz)
and zAaz = (zvy) A(yv2)A(zva)
Hence A v yaz)v(zaz) = (v A@vaA(zve)

First, assume the lattice is distributive. Then
v Ayv)Aalzvea) = (Evy)a@vaaz)v vy Alyva)az)
= (vy)az)v(yve)ax)

= (e A2Yv{uA2 s (et A 2Ns (=2 A
WEAZVFAZ) Y \WWAY

= Ve A

1}
’

.
X

= (gAY VA Vv(zazx)
Conversely, assume the given identity holds. Now let us prove that the lattice is modular.
Assume z =2z Then
Ay viynz)vizaz) = @AY viyaz)ve = zv (yaz)
and zvyn{yvaiazva) = zvyalyvaiaz = (avyiaz
Thus we have shown modularity. Hence
z2Alyvz) = zA(@vy A(xvz)A(yvz) (by absorption)

== A [{a2 A 2V 2 (2 A Y {x A (bo the asaumed
A WAV IEAZT;VZAY) (\OF uie assumea

[xAwAz)]vzAaz)Vv(zAy) (by modularity and 2 = (zA2z)v (zA Y))
= [gaaz]vzay)v(zAz)
= (zAY)V (2AZ) (since xA(yAz) = (xAy)v(xAz)

Thus the lattice is distributive.

Clearly, if a lattice is distributive it has no sublattices of either of the two indicated forms,
since the latter are both non-distributive (cf. Example 5.2 and Problem 5.8). Conversely,
assume the lattice non-distributive. If it is not modular, then the result follows by Problem
5.10. So we may assume modularity. By parts (a) and (b) of this problem, there exist ele-
ments x, ¥, z such that

@AY v WA v(zAaz) < (v Alyva) aAlzve)

Let u = (zAay)vyaz)v(zaz),
v = (@vy)A(yva) Alzva),
d =uvEzav) = (uvz)av,
b = uvyav) = (uvy Av,
¢ = uvi(izav) = (uvz)anv.

We leave it as an exercise for the reader to show that v,d, b,¢,u are all distinct and that
dAab=baAac=cAd=u and dvb =5 — d=u

NG =90 A ®W ana <4 =eoeve=¢Ccva
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5.12.
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OoMS

In an atomic Boolean algebra B, prove that every element z is the Iub of the set ¥(z)

5.13.

5.14.

5'1 5.

of all atoms b = z (but z is not the lub of any proper subset of ¥(x})).

Solntion:

Clearly, z is an upper bound of ¥(x). Assume now that z is an upper bound of ¥(z) such that
z ¥z, and we shall obtain a contradiction. = ¥z implies xAz # 0. Since B is atomie, there
is some atom b=xAz. Hence b=z ie b€ ¥(x), Also, b =2z, But since z is an upper
bound of ¥(z), b = z. Therefore b =2zAz' =0, contradicting the fact that b is an atom. Lastly,
assume z is the lub of WcW¥(x), Let b € ¥(x)~ W, Then for every ¢cEW, ¢ =z Ab (since
cA(xAd)=(cAx)Ab = cAb’ =¢, by properties (ii)-(iii), page 135, of atoms). Hence z A b’ is
an upper bound of W and therefore * = xzAd’. But o =gx. This implies » = b’ and therefore
b =0, which is a contradiction.

(¢) In an atomic Boolean algebra, show that 1 is the Iub of the set of all atoms.
In particular, when the algebra has a finite number of atoms a, ..., e,
l=a1v- v

(b) Prove that an atomic Boolean algebra is finite if and only if its set of atoms is

n__*:r

finite.
Solution:
(a) This is an immediate corollary of Problem 5.12. The additional remark follows from the fact
that a, v * - v ay, is the lub of {ay, ..., ;).

(b) When an algebra is finite, then its set of atoms must be finite. Conversely, assume that there
are only finitely many atoms a,, ...,a,. By Problem 5.12, every element z of the algebra is the
lub of all the atoms b=z, and therefore x is of the form a; v --* v a; where j;<-' - <j,=k.
But since there are only a finite number of joins of that form, there can be only a finite
number of elements in the algebra.

Show that any infinite Boolean algebra B contains an infinite set of pairwise-disjoint
elements.

Solution:

Case 1. Assume B is atomic. Then B has infinitely many atoms, by Problem 65.18(b). If x
and y are distinct atoms, then z Ay = 0 (by property (ii) of atoms).

Case 2. B is not atomic. Then there is an element x,7 0 such that z, contains no atom.
Hence there is some x, such that 0 < z; < x,. Similarly, there is some x, such that 0 < x, < z;.
Proceeding in this manner, we obtain (using the axiom of choice) an infinite sequence zy, %,, %, - - .
such that zo > 2 > @y > -+ . Let yo=2o~ %1, y1 =%, ~ %3, Yp =%~ %3, .... Then yAy;=0
whenever t 7 j.

Exhibit a Boolean algebra which is not isomorphic to any Boolean algebra of the
form P(A).

Solution:

Consider the Boolean algebra B of statement bundles, based upon the propositional calculus
(cf. Example 8.5). B is denumerable. For, since there are denumerably many statement forms,
there can only be a countable number of statement bundles, However, distinct statement letters
determine distinet statement bundles, since distinct statement letters are not logically equivalent.
Hence there are denumerably many statement bundles. Assume B is isomorphic to some P(A4).
Then A must be infinite, for otherwise P(4) would be finite and so would B, Thus P(4) is
denumerable (since it is isomorphic with B) and A is infinite. By Cantor's Theorem (Problem 2.22),
A must have smaller cardinality than P(4). A is equinumerous with a subset of P(A4), and there-
fore A must be denumerable, But then A would be equinumerous with P(4) (since both are denum-
erable), contradicting Cantor’s Theorem. (What we have shown, by means of Cantor’s Theorem,
is that no denumerable Boolean algebra can be igomorphic with any ?(A), and we also exhibited

a particular denumersble BRoclean algebra))
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Assume [A] is an atom. Then [A] » 0y, and A cannot be & contradiction. Let A; be any
statement letter not occurring in A. Then A does not logically imply A; for we can assign A4,
the vaiuve F' and assign the statement letters in A suitable values so that A is T. In addition,
A. & A is not a contradiction, since we can make A; T and, at the same time, make A T. Also, 4; & A
jogicaily impiies A. Thus Og < [4; & A] < [A], contradicting the assumption that [A] is an atom.

This problem provides another way of solving Problem 5.15, since any Boolean algebra ?(4)
is atomic,

SYMMETRIC DIFFERENCE. BOOLEAN RINGS.

al17.

5.18.

In any Boolean algebra, prove
@ z+y = (zvy) A (zAy)
b)) z+(xvy) = 2" Ay

() y+(zAy) = 2 Ay

d zvy = 2+y+ (xAY).

Solution:
(@) (zvy)A(xzayy

(zvy) A@vy)
xAZ)Vv(EAY)v yax)v (WA Y)
= {zAy

Nv i A = o 4+ u
5 T O\ rpy w g

qa

®) =+ (xzvy) (xv(@vy) AAlzvy) (by(a)

= (zvy) Az = (zAZ)v(yaz) = yaz =«

4

nNY

’

= yvEAaM) AgalzAay)
=S YA@EAYY = yA@EVvY) = WAZ)vVyAY) = 2 Ay
@ @+ +(zvy) = y+(x+(zvy) = y+ (& Ay) (by (b))

z’ Ay (by ()

TAY

+

y{ WY S RN
oy (aj)

—_
<
>
~

Thus (x+y)+(zvy) =xAy. Hence xvy =2x+y+ (xAy), by Theorem 5.9(i).

Given a Boolean algebra B = (B, A, v,”’,0,1), we have seen that B determines a
Boolean ring with unit 7(B) = (B, +, A, 0). Theorem 5.11 tell us that, starting with
a Boolean ring R = (R, +, X, 0) with unit element 1+ 0, and defining 2’ =1+z,
zAry=xXy, and zvy=2z+y+(xXy), we obtain a Boolean algebra

b(‘R) = (R’ AV 0: 1)

Show that these transformations are inverses of each other in the sense that
b(r(8)) =8B and »(d(R)) =R

Solution:
Start with a Boolean algebra B = (B, Ag,Vg,’8,0g,15). Then 7(B) =(B,+4,A4,05) with
unit element 1. Let C = b(r(B)). By definition of (,

zc = lg +g = = z'3  (by Theorem 5.9(h))
TACY = TAgY
sV ¥V = 2tg ytg (ZAg ¥) = zvg y (by Problem 5.17(d))
Thus b(r(B)) = B
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Now let ug start with a Boolean ring R = (R, 4., X5.0,) with unit element 1. = 0_ .
R?7TR*'R R R
Then in D = b(R),
Z? = 1+4g¢=
TApY = X ¥
zvpy = 2+qy+g (xXg V)
Lot of = (D) = r(b(R)).
z+g¥ = (TAqQY' D) Vp (Z'D Agy)
= (e X 1+ ¥) vp (1 +g 2) Xg y)
= [z Xg A+g V)] +x[1+x 2) Xg y] +& [(z Xg 1 +g ¥) Xg (1 +g %) Xg V)]
= [z +g ( Xg v)] +g [y +q (@ Xg V)] +g (x Xg ¥ Xg a +q x) Xg 1+ )
= z+q ¥ tq [t Xg y) Xg Q+g z+g y+g (Xg V)]
= z4+qVtg (X ¥) + ¢ Xg (ZXQ Y) T ¥y Xg (2Xg ¥) + (xX‘R y)?
= zt+g Yt @EXR Y) tg EXR V) +g (xXg ¥) +g (2 Xg V)
=z +Q( v
Algo, X . ¥ = ZA U =2 Xa ¥. Thus r(b(R)) = R.
o Y R Y (b(R)) 4
5.19. Solutions of Equations.

(2) Show that any equation r=¢ is equivalent to an equation of the form p=0.
() Show that a finite svstem of eguations . =0, ..., r = 0 is equivalent to 2 asingle
() Show that a finite system of eq ons y -« 7, = 0 18 equivalent o a single

equation o =0.

(¢) Find necessary and sufficient conditions for the existence of a solution u of an
equation r(u, %1, ...,u) =0, and, when there is a solution, find them all.

(d) Show that r(u,u1,...,u) =0 has a unique solution in % if and only if r=u+,p,
where p does not contain .

Solution:
(a) r=c ifand onlyif (rAe¢')v(r'Ac) =0, by Theorem 5.9(j).

B 11=0&...&7r,=0 & 7yv-r-ve, =0,

(¢) Write r in disjunctive normal form. Grouping those terms involving u and those involving ’,

we obtain
r= (uAg) Vv (¥ Aey)

Hence r=0 © (une))v (U ne) =0
S Un=0& W Ao =0
L d uéai&ﬂzﬁu

S w=u=oa

Hence there is a solution if and only if e¢; =e;, and the solutions are all » such that
o3 =u=0¢]. Hence the set of solutions consists of all (¢; v W) A of, for all values of w. (For, if
os=u=g{ then (,vu)Ao; =unre =u Conversely, if o, = o], then, for any w, o, =
(0a v W) A o] = 0;.) If we wish to solve for the remaining variasbles, we then solve the inequality
03 = of, which is equivalent to the equality eyAne, = 0.

(d) By (c), if there is & unique solution, o, = ¢;. (Otherwise, o, and oy would be distinct solutions.)
Hence

r= MAe) VWAL = utoel = ut+ (1+e)

Conversely, if r=u+p, then +=0 - u=,p,
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520. Find necessary and sufficient conditions for existence of a solution and find all
solutions of the following equations.

(@ uvz=w, ) usrz=urw.

Solution:
(a) uvz=w & [uvaaw]viuva)Aaw] =0

!

AWV (zAw)v W AZAw) =
AW)V UAzAW)Y W AZAW) YV WAZAW) =0

(unlw'vizaw)) v (WAlzaw)v(ZAaw)]) =0

RO

(unAnw)vwa(z+w)) =

2 g

o1 o2
A solution exists € oy = o
S ztw=w
< (z+wAw =0
© zZAaw)+ (wAaw) =0

& zAaw =0

When 2Aw' =0, sall solutions are of the form ((z+w)v z) Aw for arbitrary z. But
[(z+w)Aaw]jv [zaw] = WAZ)V (xAW) = wA(zvZ)

The equation zAw’ =0 always has solutions z and the solutions are all elements y A w

for arbitrary y. Thus
Z T yYyAw

u=wAa(zve) = wAa@Eviyrw)) = wAa(zvy vw')

= wA(zvy') for arbitrary x, y and w

) unz = urw & [wAadr@aw)lvwAaw)Aaz)] =0
© [wada@vw) v [uaw)A@ve) = 0
& (uUnzaw)v(iurwaz) =0
S uazAaw)viwnaz)] =0
© un(w+2)=0

A solution exists if and only if 0 =< (w + 2)’. Hence a solution always exists. The solutions
are u = z A (w+2z) for all z,w,z.

5.21. Find all solutions of the system

U = (ZAwW)vo (2)
2= (vaw)vu %)
Iw vo = Zvu (@
Solution:

(@) is equivalent to
@A[EvwAav]) v WAllzAaw)ve]) =0 (a”)

(d) is equivalent to
zAfvw)aw] =0 @9

(¢) is equivalent to

—
o~
3
-3
.
<
<
S’
>
n
>
-
N
.
-
<\
—
>
2
S
~
>
(]
~
>
—
n
Y
”
<
e
2
S’
P
(]
—
(%Y
o
S’
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Hence we must solve the system (a’), (b’), (¢’). By Problem 5.19(b), this system is equivalent
to the single equation
( Vi ’ ’ 7 r I'll)
viwvoyazau]v [wAavA@EF@ve)] = 0
which is equivalent to
(A{lizvw) av]viw Avi}) v (@ A{[EAw)v o]
viza@vw) v wveyaz]v [wAvAZ]}) =0
Hence 0y is [(z' v w) Av’] v [w’' A0’], and o, is
[(zAaw)vo]vza@vw))v [(wvv)az] v [w Av A2
By easy calculation, op=vvazvw and o¢,=%. Hence a solution exists if and only if
vvzv w =9, But the latter equation is equivalent to v'A(zvw’) =0. By Problem 5.20(b),
substituting v’ for %, zv w’ for z, and 0 for w, we obtain the solution v' = 2A(zvw) =z A(Z Aw),
ie. v=2'vzvw'. The solution for u is u=(ssvy)Ae;=(vvavw vy)Av=v. Thus the
solutions are u =v = a'vzv w’ for arbitrary z,z, w.
AXIOMATIZATIONS

5.22. In our axiom system for Boolean algebra (cf. Section 3.2), prove the independence of

each of Axioms (1)-(4) and (7)-(9). Show that each of Axioms (5)-(6) is not independent.
(A member A of a system i/ of axioms is said to be independent if and only if A
is not provable from the set 9/ ~ {A} of the other axioms.)
Selution:

Axiom (1): xvy =yvz. Define a model {{0,1},A,Vv,’,0,1) as follows:
Complement: 0’'=1, 1'=0.

Join:

In the above table, the value of x v ¥ is to be found at the intersection of the row to the right
of x and the column under y. Thus

= o |<

ovo =90, 0vl1=90 1v0 =1 1v1 =1
Meet: Alo 1
0 0 0
1 0 0

Thus 0AD0 =0, 0A1 =0, 1A0 =0 1A1=190

Then Axioms (2)-(9) hold, but Axiom (1) is false. (1) fails because 1v0=1%0=0v1. To see
that Axiom (2), x Ay = ¥y Az, holds, observe that all meets are 0. Verification of the other axioms

is left as an exercise for the reader.

For the independence of Axiom (2}, use 0’ =1, 1’ =0, and the operations

vi]o 1 Alo 1
oo 1 oo o
1 11 1 111 1
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For the independence of Axiom (8), zxA(yvz)=(zAv)v(zAz), nse 0’'=1,1"=0, and
v]io 1 Ao 1
0 0 1 0 1 0
1411 1 110 1

Note that 0A(Dv1) =0A1=0, but (DAO)V(0ALl)=1v0=1,

For the independence of Axiom (4), zv (yAz) =(xvy)A(xvz), use 0'=1, 1'=90, and

v|01 A|01
olo 1 oo o
1 1 0 1 0

For the independence of Axiom (7), xv &’ =0, let the domain of the model be P(A), where
A is any non-empty set, take A to be N, and v to be U. Let 0 be D and let 1 be A. However, let
2" =0 for all x.

For the independence of Axiom (8), use the same model as for Axiom (7), except that
' =A =1 for all x.

For the independence of Axiom (9), use the model {@}, with A, v, ' as n, U, and = (PN@P =
PQUP=0=9);, 0=1=9.
To show that Axiom (5), v 0 =z, is provable from the rest, note first that xv1 =1 for

all z, For,
1l =z2zve =xv(z'Al) = zve)a(zvl]) = 1A(zvl) = 2zv1

Hence zvl = zvizaz) = (zAl)v (zaz) = za(lve) = 2A1 = 2

To show that Axiom (6), Al =z, follows from the rest, “dualize” the proof just given for
the axiom xzv 0 =2, Thus, first, A0 =0 for all z. For,

0 = 2A2 = 2A@EV0) = (zAZ)V (A0 = 0V (ZAD) = A0
Hence Al = zA(zve) = (xvO A (2vz) = z2v(0Ax) = 2v0 = 2

Detailed verification that the examples in the independence proofs satisfy the remaining axioms
is left to the reader.

IDEALS

5.23.

5.24.

If C is a subset of a Boolean algebra B and if an ideal J contains C and is contained
in every ideal containing C, show that J is the ideal Gen (C) generated by C.

Solution:

We have io show that J is equai to the intersection A of all ideals containing C. Since J is
contained in every ideal containing C, it follows that J CH. On the other hand, since J is itself
an ideal containing C, H ¢J. Therefore, J = H.

If J is an ideal of a Boolean algebra B and y € B, prove that Gen (JU {¥}) is a proper
ideal if and only if ¥ € J.

Solution:
Assume y'€J. Hence 1 = yvy € Gen (JU{y}), and therefore Gen (JU{y}) is

ideal. Conversely, assume that Gen (JU{y}) is not a proper ideal, Then 1€ uea(
by Theorem 5.17 there exist z& B and z € J such that 1 = (zAy)v z. Hence

¥ =¥ Al = YPalzayve) = WArayY)v @ Az) = YAz
But since z€J, ¥’ Ax € J and therefore ¥’ EJ,
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5.25. By a congruence relation R on a Boolean algebra 8 we mean a binary relation Ron B
satisfying the following properties.

(a) zfrz  (rellexivity)

(b) zRy -~ yRz (symmetry)

(¢) (zRy & yRz) » xRz (transitivity)

(@) zRy - (2’Ry’ & (x A2)R(y A 2)).

Define Jr = {x: 2R0}. Prove: (i) Jr is an ideal. (ii) Jr is a proper ideal if and

only if 7 (0R1). (iii)  =,;, ¥ if and only if zRy.

Solution:

() By (a), 0EJz. Assume xE€Jy and y €EJp. Hence xzi0 and yR0. By (d) z’El, and, again by
(d), (z' A ¥')Ry’. But from (d), yR0 implies y’B1. Hence by (¢), (' A ¥')R1, and, again by (d),
(' Ay’)’RO, ie. xvy €Jg. Now assume that zEJy and zEB. Then zR0 and, by (d),
(x A2)RO,i.e. Az € Jp.

(i) This follows immediately from the fact that an ideal is proper if and only if it does not
contain 1.

(iii) Since + is definable in terms of the meet and complement, it foliows by (dj that zRy -
(x+y)Ry+y), ie. xRy - (x+y)R0. But (x+ y)R0 is equivalent to z+y € Jg, which in
turn is equivalent by definition to x =Jg .

5.26. A subset F' of a Boolean algebra B is said to be a filter if and only if: (i) F is non-
empty; () (zEF&yEF) > zAycF; (li)z€EF&YER > zvy €F. By an ulire-
filter we mean a proper filter which is contained in no other proper filter. Prove:

(@) F is a filter if and only if F* = {2’:  €F)} is an ideal.

(b) F is an ultrafilter if and only if F” is a maximal ideal.

(¢) Assumption (iii) in the definition of filter may be replaced by

(iiiY) z€F &z=<y > yEF

Solution:

(a) Assume F is a filter. Given x€F', yE€F', z€B. Then z’€F and y'€F. Hence 2’ Ay'E€F
and 2’vz €F. Therefore zvy = (' AY)YEF' and zaz = (x'vz)YEF'. Thus F' is
an ideal. The converse is left as an exercise for the reader.

(b) This is an immediate consequence of (a).

(¢) The equivalence between (iii) and (iii’) follows from the equivalence between x =y and
TVY=y.

527. Call a Boolean algebra B simple if and only if {0} is the only proper ideal. Prove
that B is simple if and only if B = {0,1}.

Solution:

Clearly, if B = {0,1}, then {0} is the only proper ideal. Conversely, assume B is simple. Let

z be any element of B different from 1. Then the principal ideal J, is a proper ideal, since 1 = z.

Since B is simple, J, = {0}. But x€J, and therefore z =0, ie. B = {0,1)}.

5.28. In a Boolean algebra B, a set C of ideals of B is said to be an C-chain of ideals if and

only if, for any J, and J; in C, either J,CJ: or J.CJ,. (This amounts to saying that
the relation C totally orders C.) Prove that the union of an C-chain of ideals is
again an ideal, and, if each ideal in C is proper, so is the union.
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Solution:

Let H= |y J, where C is an C-chain of ideals. Given z and y in H, and z in B, Then
JEC

3.29.

z€J, and y€J, for some J, and J, in C. Since C is an C-chain, either J, CJ, or J,CJ,, say,
J1CJ,. Hence z€J, and yE€J,. Since J, is an ideal, ctvy €J, and zAz € J,. But since J,CH,
we obtain: zvy € H and x Az € H. Hence H is an ideal. If each ideal in C is proper, then 1 &J
for each J in C. Hence 1€ H and therefore H is also proper.

If R = (R, +, X, 0) is a commutative ring, then a non-empty subset J of R is called
a ring-theoretic ideal if and only if

(i) (zr€J & ye€J) > z—y€EJ,;
(i) @€J & z€ER) » zxz€EJ.

Prove that if J is a subset of a Boolean algebra B = (B, A,v,’,0,1), and R =
(B, +, A, 0) is the corresponding Boolean ring, then J is an ideal of B if and only if
J is a ring-theoretic ideal of R.

Solution:

Notice that, for Boolean rings, (—y) = y, and therefore we may replace z —y in condition (i)
by z +y. Now assume that J is an ideal in B. We already know that (z€J & y€J) > z+y€J,
which is condition (i), while condition (ii) reads (xE€J & zEB) » z Az € J, which is part of the
definition of an ideal. Conversely, assume that J is a ring-theoretic ideal. By (ii), (x€J & z€B) —»
zAz€J. Now it remains to show that (z€J & y€J) »zvy <€ J. So assume zEJ & y€J. By
(ii), zAy € J, and, since xvy = x+ y + (£ Ay), we may conclude by (i) that zvy € J.

Show that, if J is an ideal of a Boolean algebra B, then z =;y if and only if there

,,,,, 13 428

exists some element z in J such that xvz=yv 2.

Solution:
Assume z=;y, ie. x+y€J. Let z=x+y. Then

xvz =zv(ety) = zvy = yviz+y) = yvz

Conversely, assume vz =yvz for somezinJ. Then

I\

zAYy = (xv)ny = (yvaday = zAy

>

n
Y

n

Ay Z2'Alyve) = 2 A(xvz) = 2

Hence 2’ Ay €J. Therefore z+y = (xAy)v(z' Ay) EJ.

QUOTIENT ALGEBRAS

3L

Let B be the Boolean algebra P(A), where A is some infinite non-empty set, and let
J be the ideal of finite subsets of A. Prove that the quotient algebra 8B/J is atomless.

Solation:

Given an element [X] of B/J such that [X] # [0]. Hence X is infinite. Then there is an
infinite set ¥ such that YCX and X~Y is infinite. (To see this, enumerate a subset of
X, {a), a5 ...}, and let Y = {a,,a5,a;,...}.) Since Y is infinite, [¥] % 0g4,,. Also, since Y CX,
[¥Y] = [X]. However, since X ~ Y is infinite, X+Y &J, ie. X #,Y. Hence [X] % [Y]. Thus

0p/s < [Y] < [X], and therefore [X] cannot be an atom.
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A function f from A into B is called a hkomomorphism from into B if and only if

(@) flaer) = (flz)ye;

(@) f@nuy) = f2) ng @)

If such a function has it 1ge equal |t
from ¢4 onto B, and B is called a homomorphic image of 4. A homomorphism f is
an isomorphism of ¢4 into B if and only if f is one-one, and f is called an isomorphism

of o4 onto B if and only if f is an isomorphism of <4 into B and the ra.nge of fis B.

LIIECI 1 L2258 & Rl Al

equal to all of B, then it is called a homomorphism

We say that ¢4 ar" B are isomorphic if and only if there is an isomorphism of of
onto 8. If f is any function from A into B, by the kernel K; we mean the set

» h » VPR

{z: z€A & f(’“)iﬁgj. Prove:
(a) If f is a homomorphism from cA into 4B, then
(1) f(@ve ) = flz) vg f¥);
@) fx+ay) = f(z) +a f(y);
) f(04) = 04 and f(1,) = 1s.
(b) If f is a homomorphism from c4 into B, the range f(4) determines a subalgebra
of 3.

(¢) If f is a homomorphism from ¢4 into B, and C determines a subalgebra of B, then
f"YC) = {z: x€A & f(x) €EC} determines a subalgebra of 4.

(d) The identity mapping I4 is an isomorphism from c4 onto c4. (Hence the relation
“isomorphic” is reflexive.)

the inverse function f-1 from PR onto

(¢) If f is an isomorphism from <4 onto B, ther unction from B

A is an isomorphlsm from B onto ¢4. (Hence the relation *“isomorphic” is

yenen ndwin

Symimnieir ic.) o)

(f) If f is a homomorphism from <A into 3, and g is a homomorphism from B into an
algebra C = (C, a¢, v¢,’C, O¢, 1¢), then the composition gof is a homomorphism
from ¢4 into C. In particular, if f and ¢ are isomorphisms onto, then so is g f.
(Hence the relation “isomorphic” is transitive.)

(g) A homomorphism f from o4 into B is an isomorphism of ¢4 into B if and only
if the kernel K;= {0_,).

(k) If J is an ideal of ¢4, then the function f(x) =z +J for all z in A is a homomor-
phism from o4 onto c4/J (called the natural homomorphism from 4 onto o4/J).

(?) If B is a homomorphic image of A4, then there is an ideal J of ¢4 such that 8 and
eA/J are isomorphic.

Solution:
(a) vy ) = flz'A Ay y'1)eA)

(f@'A Ay y'A)'B = (fl@'A) ng fY'1))'B
(f@)B Ag fWYBYB = f(2) vg f(y)

= _I_A__LI_ dracnnn e o a .z ’ b N
xne proox for + is SImuar, slnce + ls aennagieé 1 wrims o1 A, v, . INOW

f0g) = flxnygzed) = f(x) ng flz'f) = [flz) ng flz)8 = Og

Hence f(ly) = fO.) = f0,)'8 = 05 = 1.
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From now on we shall amit suhserints -4 and CR wherevar thie ig nat hltn!“ to causa confusion,

Yo wilwwas Willav wuUvwaspuo o2 VWAITCA NV E Walal aw arw v aseal

Assume now that f is & homomorphism from cA into 8. Assume u, vE€ f(A). Then u = f(x)
and v=f(y) for some z, ¥y in A. Hence unv=f(2)Af(y) = f(xAy) € f(A). Similarly,

5.33.

(@

w = f(z)’ = f(x') €f(A). Hence f(A) determines a subalgebra of B.

Assume z,y € f~1(C). Then f(xAy) = f(x) Af(y) € C, since C is closed under A. Similarly,
f(#') = f(x)’ €C, since C is closed under complementation. Thus zAy € f~}C) and 2’ € f-}(C).

{d) This is obvious.
(¢) Given u,v € B. Then
fUtuAv)) =unv = fI~H)) AJUH) = SN WA F o)

Since f is one-one, f~lHuAv) = Ff-lu)A f~1v). Similarly, f(Ff—tw)) = u' = {Ff~lw) =

J((f—1(w))’). Since f is one-one, f—1(u’) = (f—1(w)).
N goNxay) = giflxny)) = g(f(z) A f(y)

= g(f(x)) A glfy)) = (g fHz) A (g°NW)

Similarly, (ge (=) = gf(®) = g(flx)) = (@Uf@)) = ((geNE)

(g) Assume f is one-one, and let z€K;. Then f(z) =0 = f(0). Since f is one-one, z=0. Con-
versely, assume K; = {0}, and assume f(x) = f(y). Then f(z+y) = f(z) + f(y) = f(z) + f(z) = 0.
Thus x+y € K, but, since K;= {0}, z+y =0, which is equivalent to z=1y.

(») flxny) = @A)+ J = [zay] = 2 Afy] = f(®) A f)

Similarly, f&) = «+J = [2] = [x = flz)

() Assume f is a homomorphism from </ onto B, Let J = K, Jis an ideal. (For, if 2,y € J
and z€ A4, then f(xvy)=f(x)vfy)=0v0=0, and f(xrz)=f(Z)Af(z) =0Af(z) =0Q.) For
any z in A, we define F([x]) = f(z). This definition iz independent of the choice of the particu-
lar representative x in [z], since

z+y €J - flz+y)=0 > fla)+fly) =0 - flo) = f{y)
Now F(z) Afw]) = F(lzaw]) = flzrw) = flx) A f(w) = F(lz]) A F([w])
Similarly, F([z]) = F([z']) = f(") = f(z)) = F([z])
To see that F' is one-one, we check that the kernel of F' is {0}. Assume F([z]) =0. Then
f(x) = 0. Hence z €K, and therefore [z] = 0. That the range of F is B follows from the
fact that the range of f is B.

(a) Let b be a nonzero element of a Boolean algebra 8. Let B, denote {z: = =b}.
Define u* =b~u for every % in B,. Then show that (Bu, A,v, #,0,0) is a
Boolean algebra (denoted B | b).

() Let b be a nonzero element of a Boolean algebra 8. Let J be the principal ideal
J» generated by b, ie. J = (z: 2=0’}). Define ¢(u)=[u]=u+J for every
% =0b. Prove that ¢ is an isomorphism of B|b onto B/J.

Solution:

(a) Since the operations A, v and # are closed in B,, Axioms (1)-(4) are automatically satisfied.

Axioms (5) and (9) are obvious. Axiom (6) becomes A b =z which holds for all = in By
Axiom (7) reads zv (b~x) =b for all z in B,, which is obvious. Finally, Axiom (8) becomes
ZA(b~2x)=0 which holds for all z.
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pzAy) = [zAy] = [2] Aly] = ¢lx) A s(w)

3

Since b+1 =5 EJ, wehave b+J =[1]. Hence

px?) = gb~2) = ¢daz) = [BAlz] = [ A[z] = [2]" = (=)

Thus ¢ is 8 homomorphism. To see that ¢ is one-one, assume that « is in the kernel K,. Then
[u) = 0g/y =J, ie. u€EJ. Hence u =15, But u=b. Therefore u=0. Hence K = {0},
and ¢ is one-one. Assume now that [v]€EB/J. Let u = vAb. Then [u] = [v]A[b] =
[v] A[1] =[v], and » € B|b. Hence [v] is in the range of ¢. Therefore ¢ is an isomorphism
of B|b onto B/J.

BOOLEAN REPRESENTATION THEOREM

5.34.

Show that every proper ideal J of a Boolean algebra 3 is equal to the intersection
H of all maximal ideals containing it.

Solution:

By Theorem 5.26, there is a maximal ideal containing J. Now JCH. We must ghow that

HcJ., Assume x&J. Then by Problem 5.24, Gen (J U {z’}) is a proper ideal. Hence by Theorem
5.26 there is 8 maximal ideal M containing Gen (J U {z’})., Therefore JCM and x&€M. Thus x&H.
Hence HCJ.

[P g, |

(For those readers acquainted with elementary point-set topology.) Definitions: A
clopen set of a topological space is a set which is both closed and open. A topological
space X is totally disconnected if and only if, for any distinct points z and y of X,
there exists a clopen set C such that x€C and y & C. A topological space which is
both compact and totally disconnected is called a Boolean space.

(a) Prove that the clopen subsets of a Boolean space X form a field of sets (called the
dual algebra Bx).

(b) Let M be the set of maximal ideals of a Boolean algebra B. For any z in B, let
Ex) = (M: MemM & x&€M}. Then if we take arbitrary unions of sets of the
form E(z) to be open sets, show that &/ becomes a Boolean space (called the
Stone space of B). Prove also that the sets Z(z) are the clopen subsets of &, and
that the dual algebra B.s is isomorphic with the original Boolean algebra 3.

(¢) If X is a Boolean space, prove that the Stone space &/ of the dual algebra Bx is
homeomorphic with the original space X.

Solution:

(a) The complement of an open space is closed and vice versa. Hence the complement of a clopen
set is clopen. In addition, the union and intersection of a finite number of closed (open) sets
are also closed (open).

(5) Any maximal ideal is a proper ideal and therefore belongs to =(x) for some 2. Now assume
that M, and M, are distinct maximal ideals. Then there must be some element x € M, ~ M,.
Hence M, € =(x') and M, € E(x). Since Z(x') = E(x), M is a totally disconnected space. To

prove compactness, agsume <3/ is covered by some collection (0.}, . of open sets i.e.

PFaove SQIPpSLLiit=S, =SS SOIT coucecLion A 18

M= U O, Let us assume <% is not covered by any finite subset of the collection {0,}, e 4,

ax €A
and let us show that this leads to a contradiction. Replace each 0, by the sets =(x) contained
in it. Hence we obtain & covering of <# by a collection U of sets of the form E(xz), where =
ranges over some set CCB. It follows that no finite subset of U covers <47. (Otherwise,
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replacing each =(x) by a corresponding 0. containing it, we would obtain a finite covering of
= (] AL M Wy WY @A LViIiSOpUsGiLLE va LWl vaaiidsaaag Avy we v AUl VUVl @& IAIAAUG \-U‘CLIIAB VA

M by 0,'s.) Hence E@)v e vEzy) %M forany x,,...,%,in C. But E(x)v -+ v E(x,) =
Z(zyv -+ vax,) (by the proof of Theorem 5.30). Hence ..(:n cr- v ) £ < for

(¢)

in C. Therefore z,v :+- vz, %1 for afly z,,...,2, in C. By Theorem 5.16 the ideal Gen (C)
generated by C is a proper ideal, and therefore by Theorem 5.26 there is a maximal ideal M
containing C. Hence for every z in C, M € =(z). This contradicts the fact that the set ~17 of
all maximal ideals is covered by the collection U of open sets. Hence the space .17 is compact.

By definition, each =(z) is open, and, since =(x) = W), each =(x) is also closed. Con-
versely, assume that Qis a clopen subset of <¥f. Since Q is closed and -3/ is compact, Q)
is itself compact. Since Q} is open, @/ is a union of sets of the form Z(x) and therefore, by
compactness, Q} is a union of a finite number of such sets: =(x)),...,=(x,). But

E(x)v - VE@E, = E@V - vz,
ie. @j is of the form Z(y).

The isomorphism between the dual algebra B.y and B already has been established in the
proof of Theorem 5.30.

Given & Boolean space X. For each z in X, let G(z) be the set of all clopen sets 4 in the dual
algebra By such that x @ A. Let us show that G(x) is a maximal ideal in Bx. If A, and A,
are in G(z), then x €4, and x € A,, and therefore z € 4,UA4,, i.e. 4,U4,€ G{=). If, in addi-
tion, A; €8y, then = €A NA, ie. A\NA3€ G(x). Thus G(z) is an ideal. Clearly, for any
clopen set A, either z&A or x € X ~ A. Hence G(x) is maximal. Thus G is a function from
X into the Stone space <# of the dual algebra By. To see that G is one-one, observe that if
2 and y are distinct points of X, then since X is totally disconnected, there is a clopen set
containing x but not y, and therefore G(x) s« G(y). To see that the range of G is all of -1/,
assume M is any maximal ideal in the field of clopen sets and assume for the sake of contra-

e _as ___ ap a bV 3 PR AV RN ES " Pl *d
aicvion wnat M = U|Z) Ior all v E A,

Case 1. For each z in X, there is a clopen set 4 in M ~ G(x). Hence x€A. Thus the
sets of M form a covering of X, and by compactness there must be finitely many sets of M
whose union is X. But the union of a finite number of sets in an ideal must again be in the
ideal. Therefore the unit element X of the field of clopen sets would have to be in M, and
M would not be a proper ideal, contradicting the definition of maximal ideal.

Case 2. There is some element z in X such that there is no clopen set in M ~ G(x) but
there is a clopen set 4 in G(x)~M. So A€M, and therefore the clopen set X~A € M,
since M is maximal. Since there is no clopen set in M ~ G(x), X ~ A € G(x). Hence both A
and X ~ A are in G(x), which is impossible.

It remains to show that G is continuous. (That G-! is also continuous then follows from
the fact that <17 and X are compact Hausdorff spaces.) Let z€ X. Since the open sets of :/
are unions of clopen sets of the form =(A), where A is some clopen set of X, it suffices to con-
sider any clopen set =(4) having G(x) as a member. We must show that there is some open
set Y containing z as a member such that G[Y] C =(4). Since =(A4) is the set of all maximal
ideals of the dual algebra not contammg the clopen set A, it follows from the fact that

o amd ezl Al - 1 L3I0\ = ol AN
(4.

G{x) € =(A) that € A. Then A is an open set such that x € A and, for any y in A, Gy EE
Hence G is continuous.

INFINITE MEETS AND JOINS

5.36.

Prove that a Boolean algebra 3B is isomorphic to a Boolean algebra P(A) of all subsets
of some non-empty set A if and only if B is complete and atomic.

Solution:

.
1e.
is
is

We already know that any Boolean algebra P(A) is atomic and complete. Conversely, assume

that B is atomic and complete, and let A be the set of atoms of B. For any element z in B, let
¥(x) = {b: bEA & b==z). By Theorem 5.7, ¥ is an isomorphism of B into P(4). Let C € P(A),

C(;A By the completeness of B, C has a lub . Hence by Problem 5.12, C = ¥(x). Thus ¥

AN Tonaemsmml o
AR 1QUINIVL pPILIDIIL UL D UllW l [l"l’
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5.87. Associativity of Meets and Joins. If for each w in a set W, X, is a set of elements
of a given Boolean algebra 8B, and X = wLer X, prove
(@ V ( V u)] = V u
WwEW \u€X, t €EX
® A(Au)= Aw
WEW \uEXy / u€X
in the sense that, if the left-hand sides exist, then so do the right-hand sides and they
are equal.
Solution:
\
Let z = k u) . Assume z€X. Then 2€X, for some vEW, Hence z =
WEW\ x€X,
VV % = z, Thus z is an upper bound of X. Assume now that y is any upper bound of X. For
u € X,
each v in W, X,CX. Hence y is an upper bound of X,, and so VvV u = y. Since this holds
u €X,
for each vin W, z=y. Therefore z = \/ u. This proves (a).
u€X
Equation (b) follows from (a) by duality.
5.38. Prove that the following identities hold in any Boolean algebra.
(@ v V u = Vv (zvu)
u€EA UuEA
b) = U = u
( ) n u é\A u/e\A (x A )
in the sense that, if the left-hand sides exist, so do the right-hand sides, and they
are equal),
Solution:
Observe first that if a set X of elements of a Boolean algebra contains as a member an upper
bound z of X, then z is the lub of X. To prove (), assume v€A. Then v = \/ %, and so
€A
vv=gv \/ u. Thus zv V u is an upper bound of {zvwu: u€Aa). Assu‘;ne now that y
€A
is any uppeur bound of {zvu uEA} Then zvu =y for all u€A. We must show that
zv \V u =y, which is equivalent to v \/ uvy = y. But the latter equation follows by
uEA u€A
Problem 5.37(a) and the observation at the beginning of this proof.
Equation (b) follows from (a) by duality.
5.39. If o4 is a Boolean suba!gepra of ‘b and Y is a set of eiements of ¢4 such that \Va ']

yE€EY
exists and belongs to ¢4, show that V‘” y exists and V“" y= v‘?B ¥ (and similarly,
by duality, for meets).

Solution:
This is an obvious consequence of the fact that the partial order =.4 is the resiriction to of
of the partial order =g on 8. (For,
TE W O TALW=W, TEQgWw < TAqW=W

and ZzA_,w=2Agw)
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L/: ¥ (and, similarly, by duality, for mtersections and meets).
¥

Solution:
Clearly, U y is an upper bound in ¥ of Y. Assume z is an upper bound in ¥ of Y. Then

€Y
yszorall;/inY. Hence z2 U ¥. Thus U y is the lubin F of Y.
yEY vVEY

541 Let F be a field of subsets of a set W such that, for every wE€ W, {w}€F. Prove
that joins (meets) coincide with unions (intersections), i.e. if Y is a collection of sets
in ¥, then \e/z y exists if and only if léJy ¥ € F (and therefore by Problem 5.40,

¥ ¥y

"/fy = U y).

yEY yeEY
Selation:
In one direction, if | y € ¥, then by Problem 5.40, U y is the lub in ¥ of ¥. Conversely,
assume that \e/;' v e.xis:se 'Yl‘hen y C \/: y for all y in Yv ?iince UY ¥ C \e/: y. Let us assume
v

y€E
that equahty does not hold and derive a contradiction., Then there is some u in W such that

u€ yFyandug U y. Sinee {u} belongs to the field ¥, z = < \/T ) ~ {u} also belongs
yEY yEY
to F, and z < Vf y But z is an upper bound of Y, contradicting the fact that \/F y is the

< L =
lul! OI 1 ¥vE€Y

542. Is a complete field of subsets of a set X necessarily the field of all subsets of X?

Solution:

If X contains more than one element, then {®,X} is a complete field of subsets. More gen-
erally, if A is any non-empty subset of X containing at least two elements, then the collection F
of all subsets Y C X such that YNA =@ or ACY is a complete field of subsets of X not con-

taining any of the non-empty proper subsets of A.

5.43. Prove that any complete field of sets ¥ is atomic.

Solution:

Let A be any non-empty set belonging to ¥, and let z, be some element of A. Then the inter-
section H of all sets in ¥ which contain z, is, by the completeness of ¥, also in F, and it is an atom
included in A. To see that H is an atom, assume WCH and WEF.

Case 1. z,€W. Then HCW and therefore H=W.
Case 2. 2,€W. Then xoEH~WEF. Hence H C H~W and therefore W = Q.

d

NITAT T
] 3

f 9
(@) If B = (B,A,v,’,0,1) is a Boolean algebra, show that 8¢ = (B,v, A,’, 1,0)
is also a Boolean algebra.

() Prove that the function f such that f(x) =2’ is an isomorphism of B onto B

Solution:

(a) Verification of Axioms (1)-(9) for B4 is straightforward. Remember that Oga = 1g,
Ig4 =0g, Aga=vg, and Vgq = Ag.

(b) f is one-one, since x’=y' - z=y. The range of f is B, since z = (z')’. Also, f(xAy) =

h:Au)'::r'\,..f—ﬂ..\\ o\ and £l
J\%] v j(%j, ana j
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5.13(a), if B is atomie, then \/ x = 1. Conversely, assume \/ z = 1.
TE€A z €A
Given any nonzero y in B, we must show that there is an atom b =y. Let us assume not and

derive a contradiction. Then for every atom x, zAy =0. Hence \/ (zAy) =0. But
€4

VV (@Ay) = yA V =z by Theorem 5.356(a). Since \/ = =1, we have 0 = \/ (zry) =y,
z€4A . z€A z€A €A
contradicting the fact that y ¥ 0.

5.46. Prove that a Boolean algebra B is isomorphic to a field P(K) of all subsets of a non-
empty set K if and only if 8 is complete and completely distributive.

Solution:
We already know that P(K) is complete and completely distributive. Conversely, assume B is
complete and completely distributive. Let

w, ifeisl
w=B S={1,-1) and T = {

w', if 8is —1

p et =y (n een)

weR fess
Hence 1= ( A ”w.f(w))
JESB \weEBR
AT e L. PPVl e E O, A\ Lo mmmer — e ./~ D
INUW DYy 1l1ieurem 9.90\aj), 10 all INUiILCIv U - D,

u = uaAl = 1A \/ / A x .. ~\ = \/ /uA A X L
Ty bl 4 I\ "lD.IUD)/ \4 \"'" I\ "W.]UD)/
€S2 \w€EB 1 €88 wE€B

Since u 7 0, there must be some f€ SB such that A A %, gw) » 0, and therefore
weEB

A - -t 0N
/\ *w,f(w) 7 VY
wERB

Now observe that if z = /\ Tw,rwy ¥ 0, then z is an atom. (To see this, assume 0= v < z.

We must prove that v = 0 But v<z= x, fto)- Since o, 4p) is v or v’ and v < v is impossible,
it follows that =z, 4y =v'. Hence v < ', which implies that v =0.) Thus for any nonzero
# € B there is an atom z such that z = u, ie B is atomic. But we already have proved (cf.
Problem 6.36) that & complete atomic Boolean algebra is isomorphic to some P(K) where K is
non-empty.

7. Regular Open Sets (For those readers acq

Let 9 be a non-empty topological space. For any Y C 99, we use the notation Y* for
the closure of Y. Recall that ¥ is the complement of Y.

nted with elementary noint-set topol gy).

Definitions: Y¢ = ¥Y< = the complement of the closure of Y. Y is regular if and
only if Y =Y.
Prove the following assertions.
(1) Yeis open.

YV -» Yeer Vee
o 4 LR S AREY |

] o
AACIIWG LA
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3) If Y is open, then Y C Ve,
4 fY is_l:egu_lar_lLis onen
’ QopeIl
i3) Y is open if and only if ¥ = 2Z¢ for some Z.
(6) If Y is open, then Ye ig regular (i.e. if Y is open, Ye=1 eee),
(7) @ and Y are regular.
(8) If X and Y are open, then (XNY)* = XenYee.
(9) Let B be the set of regular sets of a topological space 9¥. For any sets X and
Y in B, define
XAY =XnY, XvY = (XuY)e, X = X
Then 8 = (B, A, v,’, @, 9)) is a complete Boolean algebra (called the regular
open algebra of ).
Solution:
(1) The complement of a closed set is open.
{2) If XCY, then XeCY° and therefore Y° G Xe.
(8) Since Y CYe, Ye=Yc c ¥. Taking closures, we obtain Yec C (Y)c =¥, since ¥ is closed.
Hence Y = Y C Vec = Yee,
"(4) This follows immediately from (1).
(5) If Y=2¢, then Y 11 open by (1), Conversely, if Y is open, and if we let Z = ¥, then Z is
closed. Hence 2¢e=Z2c=2=7Y.
(6) Assume Y open. Then by (3), Y g Yee. Hence by (2), Y¢¢¢ C Ye. On the other hand, since Y¢
is open by virtue of (1), it follows by (3) that Ye C Yeee,
(M) @e=@c=@F=7p. Also, gpe =GP = G = @. Hence Pre = fJe = @, and Yee = @ = ).
(8) Assume X and Y open. First, let us prove
XnYe C (XNY)ee (a)
To see this, observe that XN Ye¢ C (XNY)°. (For, let z be any point of XN Y* and let N be
any open set containing the point z. We must show that N intersects XNY. But NnX is an
open set containing z, and therefore NN X must intersect Y.) Taking complements, we obtain
(XnY)ec XuYe, Taking closures, we have (XnY)e« c XeuYee = XuYee, and, taking com-
plements again, we obtain the inclusion (a). Now substituting Xee for X in (a), we have
XeenYee C (XeenY)ee, But exchanging X and Y in (z), we also have (Yan) C (YN X)ee,
and therefore by (2), (Y nXee)ee ¢ (YNX)®®e. But the last term, by (6), is (YNnX)ee. Hence
XeenYee C (XNY)ee, Conversely, since XNY CX and XnY CY, two applications of (2)
yield (XNY)ee ¢ Xeen Yee,
(9) By (7), PEB and QY€ B. The operatlon A is closed in B, for, by (8), (XNY)ee = XeenYee =

YmV M eee 16 e 3 3 e B fman hee 70\
«i¥d. ine operation Vv is closed in D: 5""-=) vy (o),

(X v Y)ee= (XUY)eeee = (Xyy)ee = XvY

Similarly, the operation ' is closed in B, since (X')ee = Xeee = Xe = X'/, Now we must show that
all the axioms for Boolean algebras are satisfied. Axioms (1), (2), (6) and (9) are obvious.
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XA¥vZ) = Xn(Yu2)ee

= Xeen (YUZ)“

= XnEUZ)* (by @)
= ((XnY)u (XnZ))e
= (XAY)v(X A2

For Axiom (4):
Xv(¥YAZ) = (XU (¥YNn2Z))ee (XuY)n(XuZ))ee
(XuY)ee n (XuZ)e  (by (8)

= ll’vV\A ll’vﬂ

=V \ =

Axiom (5) is easy: XvO0=(XuQ)ee=Xee =X, Axiom (8) is also easy: X CXc, Hence
Xe=XccX. Therefore XNnXec=(. It remains to prove Axiom (7). First, let us show that
(XUXe)e = @. Assume, to the contrary, that some point u lies in (XuUXe)e = (XuXe)e. Thus
u € (XUXe)e, which implies that there is an open set N containing » and disjoint from
XuXe=XuXe. Since NNX =0, u€Xe, ie. u€Xc, contradicting the fact that N is dis-

Joint from X U ¥e. Taking closures and complements, we obtain X v X’ = (XU Xeyee = C"} - 1_

AL 230X A CIOBLIIES all€ COMDICINeILs, e 0Dhalnl

which is Axiom (7). Thus we have shown that B is a Boolean algebra.

We still have to prove completeness. Note first that
X=gqY © XAY=X & XnY=X ©& XcY

Now let X be any collection of regular sets. Let us show that / n \ is the glb of X.
\**< /

X

First, for any YEX, N Y CY and therefore <n Y>“gY¢ Y., Thus( N Y)“ is
YEX YEX YEX

a lower bound of X. Assume that Z is a regular set which is a lower bound of X. Then ZCY
for ali YE€EX. Hence ZC N Y, and ihereiore
Yex
Zos o~ / —~ V\!c
&

= KYIEIXI}

This proves the completeness of B. <It may easily be checked that the lub of a collection X

[ 4
<

- \e2 \

(')

5.48. Show that a compiete Boolean subalgebra B of an algebra of the form P(K) need not
be a complete field of sets (i.e. infinite joins and meets need not coincide with unions
and intersections, respectively).

Solutien:

Consider the regular open algebra B of the real line (cf. Problem 5.47). It is easy to verify
that every finite open interval is regular. Since every regular set must contain a finite open inter-
val, it follows that the algebra B is atomless. Hence by Problem 5.43, B cannot be isomorphic to a

complete field of sets.

5.49. Give an example of a complete but not completely distributive Boolean algebra.

25 STV <1 Taalilild U

The regular open algebra of the real line is complete and atomless (cf. Problems 5.47-5.48).
Hence by Problems 5.46 and 5.36, the algebra cannot be completely distributive.



CHAP. 5] TOPICS IN THE THEORY OF BOOLEAN ALGEBRAS 177

350. Given o-algebras cf and B. By a o-subalgebra of <4 we mean a subalgebra determined

551,

5.52.

by a subset closed under denumerable joins and meets. By a o-homomorphism of oA
into 3 we mean a homomorphism g of o4 into B preserving denumerable joins and
meets i.e. such that g( /\ ) = /\ g(z); the corresponding equality for joins follows

e Na WM~ T axzec Tl & A o
oy uc.nuxsﬁua uawa). Dy a U-WG v UL 1 we

deaumerable joins.

{(8) If g is a o-homomorphism of <4 into B, then the range g[cA] ls a o-subalgebra of
al A y. 4

R tha rarnal X ia o ida
um

&y WU AL LUTL JAg0 1D & U'

aig is T=15 iso muxpluv vvu.n gicia .

) ¥ 7‘ r 2 PR 4 /

(0) If J is a o-ideal of ¢4, then c4/J is a o-algebra \wnere V(m+J) = \‘v‘ a:;) +J>,
i
and c4/J is a o-homomorphic image of ¢4 under the natural mapping.

Selation:
{a) These are just obvious extensions of the results in Problem 5.32.

(5) We must show that c4/J is closed under denumerable unions. To see this, we shall show that

[V xi] = \/ [#]. Clearly, [z] = I:V x‘:l and therefore [\/ x‘] is an upper bound.

Assume now thnt [2] is an upper bound of the [x]’s. Note that, in general, [u] = [v] if and

] o dind bound wEEES =2

only if uaAv’ 0 (For, [u]=[v] & [uAv] ['v] S UAVE v © (uAv)+v =20 &
(uAv)+(1Av)E,0(—)u/\(1+v)—,0(->u/\'v =,0.) Since [z =[z], ®;A7 =,;0. SinceJ

is a c-ideal, V/ (z;A2) =,0, ie. 2'A\/ z;=;0. Hence [\/ xi:l = [2]). That the natural
1 i i
mapping ¢(x) = 2+ J is a e-homomorphism of ¢4 onto c4/J is an easy consequence of the fact

RS U
that LY@,J = led‘

For any subset C C P(K), the intersection of all o-subfields of P(K) containing C is
itself a o-subfield containing C.

Solution:

The intersection H clearly is closed under denumerable joins and complements. The o-subfield
H isa ealled the s-subfield gemerated by C.

Given a subset C of a s-algebra c4. The intersection D of all ¢~ideals containing C
is itself a o-ideal containing C (called the o-ideal generated by C). The elements of

n arse al] thnaa x - \l & far alarmanta in {1 <437 on)
—~a 4 VIIUOU i IOY &iémenvs & in v (€3 PN ).
‘
Solution:

That D is a ¢-ideal containing C is obvious. Let E be the set of all z = \/ ¢; for some ¢;EC.
i

First, if «z; = V ¢ for ¢;€C, then V %;= V ¢y. Thus E is closed under denumerable joins.
i,j

Also, if x€E and y=u then z =V c, for ¢; € C, and therefore y = \/ ¢;, i.e. yEE. Thus E
1 ‘ i

is a o-ideal containing C. Hence DCE. On the other hand, for any o-ideal J containing C, if

z= Y ¢; for ¢;€C, then \/ ¢; € J and therefore x€J. Hence E CD.
i
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The Loomis Representation Theorem: Any o-ideal o4 is a o-homomorphic image of a
o-field of sets, i.e. e/ is o-isomorphic with the quotient algebra of a o-field of sets by a
Solution:

Call Y € P(A) & selection if and only if, for any a €A, Y contains exactly one of ¢ and a’. Let

S be the set of selections. Define a function r from <4 into P(S) by setting r(a) equal to the set of

all selections Y such that a €Y. Let T be the range of r. Clearly, T is closed under complements:

{=(@)) = #(a’). Let F be the o-field of subsets of S generated by 7. Let N be the subset of F con-

sisting of countable intersections N r(a)) such that A e, =0. Let J be the o-ideal generated by
i i

N. Consider the mapping ¢(a) = r(a)+J € F/J. We now show that y is & o-isomorphism of o4
onto F/J.

Let z= \/z; in 4. Then, z'Az;=0. Hence r(z’)Nr(z;) € N. Therefore
i
@) N urlz) = )N (U 1(zi)> = U@)Yn=z) €7
i 1 i
nt = safya) i}
: T\ T

Hence (z) N r? 7(z;) €N and

@ n( H’"’ﬁ-’\’ = M@ NNz = D nNr) e
i i
Hence () + Ur(z) = (;(—z) N Ur(zi)) U (-r(z) n (U 1'(20)) el
{ i i
It follows that r(z) +J = ) 7(z;) + J. Therefore
vz = 1@ +7 = Uriz)+J = Ul(z) + )
i i
In addition, pz) = @)+ T = (2 + I = (e)

Hence y is a oc-homomorphism. It is readily seen that the range of y is F/J. (For, U ¢(a) is &

e-subfield of F containing T and is therefore equal to all of F. Hence ¢[cd] = F/J.) It remains to

show that ¢ is one-one. To do this, we shall show that the kernel K is {0}. Assume a€K,. So,

¢(a) = Opsy. Therefore r(a) €J. Note that J consists of all 8 in F such that 8 C U, where
i

nEN. Here » = r,ﬁr(a,-,-) where /’\ a; = 0. Therefore r(a) C L{J ( Q r(a,,)) for some g;; such

that A a;; = 0. Hence
! (@) € Ur(aygwp) )

where f is any function such that a4, is defined for all i Since we wish to prove that a =0,

let us assume the contrary, i.e. a% 0. Hence 1>a’'=a'v0=a'Vv (/\ au) = A (@’vay). There-
fn'ro some a’ v a. 3 o 1 Say, a V Basery ¥ 1. Then ’ 3

1 AS Y

1> d'vayg = a'vaeyVv0 = a'vayg v Aay = /’\(G'V“mn"az,-)
3

Hence 1> a’vay)V g for some j = f(2); etc. We obtain a sequence a,y), @g(9), - - . such

that
1 >av alf(l) v azj(z) V e Vv ak,(k) for each k

Therefore among Gy,(,), @242y - - - Deither a nor a complement of any a;; occurs. Therefore there
exists a selection Y containing a and all ay;, Thus Y E€r(a), but Y €r(ay,), contradicting (1).

iz fails to h

ld for non-denumerable cardinalities [125),
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eV __ 4 T___L1_____
Quppliemenary rrooplems
— LATTICES
5.54. Which of the partially ordered sets given by the following diagrams are lattices? Among the

y
lattices, which (i) have a zero element, (ii) have a unit element, (iii) are complemented, (iv) are
modular, (v) are distributive?
()

(a) €es

Q) (d) K

Which of the following structures (L, =) are partially ordered sets, totally ordered sets, lattices,
distributive lattices, lattices with a zero element, lattices with a unit element, complemented lat-
tices? For those which are lattices, describe the operations A and v.

{a) L is the set of all finite subsets of a set A and = is the inclusion relation C.
+b) Same as (a), except that A itself is also a member of L.

(e) L is the set of complex numbers and a+bdi=c+di & a=ec,

‘d) L is the set of all complex numbers and a+bi=c+di «© (a<c)v (a=c & b=4d).

¢} L is the set of all complex numbers and a+bi=<=c+di & a=<c & b=d.

7 L is the set of all subalgebras of a given Boolean algebra, and = is the inclusion relation C.

2' L is the set of all sublattices of a given lattice and = is the inclusion relation C.

A: L is the set of all polynomials with real coefficients and f = g means that f divides g.
Same as (k), except that the coefficients of the polynomials must be integers.

-* L is the set of all subsets of a set 4, and = is C.

« L is the set of positive integers and z =y if and only if y is an integral multiple of z (i.e. z
divides y).

7 Assume (4, =) is a given partially ordered set. Let C be a fixed set. Let L be the set of all
Zunctions from C into A. For any f and g in L, let f =g if and only if f(z) < g(x) for ali
= in C.

= Assume (4, <) is a given partially ordered set. Let L=A, and z=<y < y==x.

ut L :s the set of all infinite subsets of an infinite set 4, and = is C.

's L is the set of all subsets of a set A containing a fixed subset C,ie. L = {(Y: CCcY Z A,

a=d = ja
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5.57.

5.58.

5.59.

5.60.

5.61.
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TOPICS IN THE THEORY OF BOOLEAN ALGEBRAS [CHAP. 5

(») L consists

space, and

acquainted with elementary group theory.)

() L is the set of all convex planar sets and = is . (By a convex set we mean a set such that,
for any two points in the set, all the points on the line connecting the two given points are
also in the get)

(s) L is the set of all functions from the unit interval [0,1] of the real line into the set of all
real numbers, and f = g means that f(z) = g(x) for all # in {0,1).

(t) L is the set of all functions from a fixed set A into a lattice (L, <), and f =g means that
f(x) = g(x) for alli x in A.

o T_.v - .. P | man .. N P o AL " 2
he lub of {u;,...,%u;} and %, A°-* Ay, is the gib of

In a lattice, prove that u,v --- v uy is
{ug, .- o %)

How many partial orders can be defined on a fixed set of two elements? Of three elements?
(What is the largest number of mutually non-isomorphic partial orders in each case? We say
that a partially ordered structure (4,=,) is isomorphic to a partially ordered structure (B,=p) if
and only if there is a one-one function f from A onto B such that x=,y & f(x) =5 f(y) for all
z and ¥y in A.) Try to extend these results to more than three elements.

How many (mutually non-isomorphic) lattices are there of two elements? Three elements? Four?
Five? Six? Draw diagrams of the lattices.
—

Given a lattice (L,=). Show by an example that a substructure (L,,=), where L; CL, may be a
lattice, but not a sublattice of (L, =) (i.e. the operations AL, and vy, may not be the restrictions of

Diatiice O (L.

the operations A; and v;).

Let L be a lattice with zero 0 and unit 1. An element z in L is said to be complemented if and
only if x has an inverse y {i.e. Ay =0 and zvy=1).

(a) If L is distributive, prove that the set of complemented elements is 8 Boolean algebra (under
the operations A and v of L).

(b) If L is modular (but not distributive), give an example containing six elements to show that
the set of complemented elements need not form & sublattice.

(¢) Show by an example that, if L is not distributive, an element can have more than one

&
CUIINIPACIIICiLi L.

Show that a lattice (L, =) is complemented if and only if L contains a zero element 0 and there is a
singulary operation z — z’ on L such that:

2% Py n £22N o i AN P \ P LA
1) AT = v, {11 x, \il) BV YY) =AY
iniak the woao Mlhoawors EOQ o munca that (T.O0V fmnlioc (T EY
L1111 WiIE PIUUL VUl LIUTUITIIL J.&y 1.5, LUVE LIGL \LJU) MUPLUCD \Lsd ).

Show that the following properties of a distributive lattice
(@) zArx = 2z

B zA(yvz) = (zAy) v (zA2)

(©) wva)ax = (yn2) Vv (zA2)

d zvl =1vze =1
(e) A1l = 1AZ2 =2

serve to characterize distributive lattices with a unit element 1 in the sense that if the structure
{4,A,v, 1) satisfies these laws then (4,A,v) is a distributive lattice with unit element 1, and
vice versa [99].
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Prove that ¢

(@) zAy

e

=zv
®) zAyAz =

Prove that the following inequalities hold in any lattice.
(@) (xAy) v (uAY) = (zvu) Alyvy)

® Ay vyaz)viizaz) = vy Alyva)A(sve)

Prove that each of the following conditions is equivalent to distributivity of a lattice.

(@) (zAry=z& x=yvz) > 2=

() FAz=yrz & zvz=yviz) > z=y (Hint: Use (a).)

() rz=yAz & xvz=yvz) > 2=y (Hint: In one direction, use Problem 5.11(c}.)

(d (v Alyva)Aa(zvz) = @AY v YAz v (@A2)
Complete the proof of Problem 5.11(¢c).

Give an example of a distributive lattice (L, =) lacking both zero and unit elements such that =
is not a total order on L.

If (L, =) is a lattice, prove that = totally orders L if and only if all subsets of L are sublattices (i.e.
are closed under A and v).

Prove that any distributive (modular) lattice can be extended to & distributive (modular) lattice

with zero and unit elements simply by adjoining such elements if they are not already present.

Prove that a lattice is modular if and only if it satisfies the law

(zrz=2Ay & zvzz=yvz & x=y) > z=y

(Hint: In one direction, use Problem 5.10.)

o~ ] alh Dwacan
U, EKiUvVEe

lub or that every

Ll 2

A lattice (L, =) is said to be complete if and only if u
that in order to verify completeness it suffices to show that every subset has
subset has a glb.

Given lattices (L., =;) and (L,, =,) and & function f from L, into L,.

Definitions.
f is an erder-homomorphism if and only if &=,y - f(%) =<, f(y).
f is a meet-homomorphism if and only if f(z A ¥) = f(z) A2 f(y).
f is a join-homomorphism if and only if f(zviy) = f(z) vs f(y).
f is a lattice-homomorphism if and only if f is both a meet-homomorphism
and a join-homomorphism.

Prove:

@) Every meet-homomorphism is an order-homomorphism.

(8} Every join-homomorphism is an order-homomorphism.

(¢) Every lattice homomorphism is a meet-homomorphism.

(d) Every lattice homomorphism is a join-homomorphism.

(e} The converses of (a)-(d) do not hold. (Counterexamples may be found using lattices of at

most four elements.)
join-, and lattice-

s natinn o
NnoLior >

(/) For one-one functions f from L, onto L, the 1S O
homomorphism are equivalent.

(@) Any order-isomorphism from a Boolean algebra of onto a Boolean algebra B 18 & lBoo:ea,-_
isomorphism, i.e. not only is it a lattice-homomorphism, but it also preserves compiemerts
flz’) = (fl)y.

——d .. —
orger-, mee
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5.75. A lattice (L, =) is said to be relatively pseudo-complemented if and only if, for any =z,y in.L, the
set {z: yAz=2} has a lub. (Such a lub is denoted y > =z.) By a pseudo-Boclean algebra, we
mean a relatively pseudo-complemented lattice possessing a zero element 0. Prove ([142}):

(¢) In a relatively pseudo-complemented lattice:
't 2=y >z ifandonlyif yaz==,

(ii) The distributive laws hold.

(iiiy For any z, x > z is a unit element 1.

(iv) y=>z=1 ifand only if y =z,

(v r=y ifandonlyif z >y=y >z=1.

(¢) y>1=1

(vil) I1>Dxr=¢z

(viili) yAaly>2)==2

(ix) Ifzx=y,then y>2=2z>z and z>x<z>y.

x) =z=y>z

xi) ¥AW=>2) =yArx

(xii) (y22)rz=¢«

(xiii) @2y Al D2 =2 (¥Ya2)

(xiv) (P 2)Ay>2) = @va) >z

xv) P22 =AYy Dz=y>(x>z)

xvi) @2NAy>D2 = z>z2

it (x2Y) = (Y22 > (x2)

aviih x =y > (xAy).

il

tb) In a pseudo-Boolean algebra, we define: —x = x> 0. Then:

B —-0=1and -1=0
il rA(—x)=0

ity r=E2y > —y=-—x
fivi o= ——2

(v) ———z=-z

(vi)y —(zvy) =-zA—y
(viih =—(@Ay) = —zv-—y

(viii) (—x)vy = 2>y
(ix) x>y = (~y)>(—2)
x) 220w =AY =y>(-2)
(xiy 0>=z=
{xii) A subset F' is a filter if and only if 1 €F and
(xEF & x>yEF) > yeF

{(¢) ln a Boolean algebra, show that y >z = y' v z.

(d) (For those readers acquainted with elementary point-set topology.) Show that the lattice of
ull open sets of a topological space is a pseudo-Boolean algebra, where A => B is the interior
of A_B. By taking the special case of the real line, show that the assertions =z v (—x)=1
and — —x = z do not hold for all pseudo-Boolean algebras.

(¢) By a Brouwecrian lattice we mean a lattice with a unit element such that, for any «,p in the
lattice, the glb of the set {z: y = xv 2z} exists (and is denoted ¥ = :z:) Show that the notion

Donlocee =l aeao o 4L L

of Brouwerian lattice is dual to the notion of pacuuu-nuuwun aigevra in the sense that a lattice
(B,=, is a pseudo-Boolean algebra if and only if the lattice (L,=) is a Brouwerian lattice.
(For a study of Brouwerian lattices, cf. [133].)

(f) In the Boolean algebra of statement bundles {cf. Example 3.5), for any statement forms A and
8, what is the interpretation of [A] > [B]?
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ATOMS

5.76.

Prove that two finite Boolean algebras are isomorphic if and only if they have the same number
of atoms.

wn
a3
-3

o
=3
?I

5.79.

5.80.

5.81.

5.82D,

5.83.

In the Boolean aigebra of ail divisors of n, where n is a square-free integer > 1 (cf. Probiem 3.3),
what are the atoms? Note that x =y <> x divides y.

(a) Bow many subalgebras are there of the Boolean algebra of all subsets of a four-element set?

(b) Given a Boolean algebra B with 2k elements, show that the number of subalgebras of B is
equal to the number of partitions of a set with & elements (where a partition is a division of
the set into one or more disjoint non-empty sets).

If o1 and B are Boolean algebras with the same finite number 2% of elements, how many isomor-
phismsg are there from </ onto B?

Consider the Boolean algebra given by the field of sets consisting of all finite unions of left-open

intervais of real numbers (cf. Probliem 2.68). What are the atoms of this aigebra?
Does the set of atoms of a Boolean algebra always have a supremum?

Show that every atomie, uniquely complemented lattice with zero and unit elements is isomorphic
to a field of sets and is therefore a Boolean algebra. (Hint: Use the proof of Theorem 5.7.)

SYMMETRIC DIFFERENCE. BOOLEAN RINGS

5.84.

5.85.

5.36.

5.88.

5.90.

591,

In an arbitrary Boolean algebra:
(a) Does the distributive relation z+ (yAz) = (z + T~ (z+2) hold?
) Is (x=y&u=v) > x+u=<y-+v valid?

In the Boolean algebra of all divisors of n, where n is a square-free integer > 1 (cf. Problem 3.3),
find an arithmetic formula for the symmetric difference z + y.

In any Boolean algebra, prove:
(@) zv{z+y) =2zvy, (b) the “dual” of z+y is (zx+1¥)".

In a-ring, z — ¥ is defined to be z 4+ (—y). In a Boolean ring, what is (—y)? Is there any difference
between x — y in the ring-theoretic sense and x ~ y as defined in Problem 317

Prove that the uniqueness of (—z) in Axiom (4) for rings need not be assumed (i.e. it can be proved
from the other axioms).

PR, | —lae o 2ol .., | PRy LY QL. tlhhadt ocaow Danlac i wima

\llr) UIVE u alnlplt 0]. a Doou:an l' g wnmouu a8 l-llllb €lIemeliv. (0} oluw uuu. cvcn.y DUVITAIL 11K
without a unit element can be extended (by addition of new elements and extension of the ring
operations to the enlarged set) to a Boolean ring with unit element. Prove that the original ring
is & maximal ideal of the extension.

In the axioms for Boolean rings, show that x +y = y +z is not independent.

Let ® = (R,+, X,0) be a commutative ring with unit element 1. We say that an element z in R
is idempotent if and only if z2 = x. Let R* be the set of ldempotent elements of B. For sny x
and y in R*, define s @y = z +y — 2zy. Prove that (R*, @, X,0) is a Boolean ring with unit
element 1. Express the Boolean operations A,v,’ in terms of the original ring operations +, X.
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r(u), prave that
r(u) = by + (by Au)

For any Boolean expression

where b; and b, are fixed elements of the Boolean algebra.

593. Solve the following equations.
(@) uAnw=0
b unz=w
(¢) u+w =17 (foru and w in terms of 1)

(d) Aru)v (cAw) =7+ (for u and w in terms of p, o, 7)

594. Solve the simultaneous equations )
xvbd =c¢

zAb =0
for z in terms of b and ¢. What further conclusion follows if b =< ¢?

5.95. Solve the following system of equations.

5.§6.__‘If r(u) is a Boolean expression and b is
= +(0) v r(1), prove:
(@) 7(u) = b has a solution. Find aii solutions.
(b) If »(u) = b has a unique solution, then, for any ¢, r(¥) =c¢ has a unique solution (namely,
z(¢)).
(¢) If B is finite and there are k atoms which are = r(0)’+ (1), then +(u) = b has 2k solutions.

AVYTINRMATTIZ ATINONQ
SALRANJIVALL & A&SEA A AUANWD

5.970, In our axiom system for Boolean algebras, determine whether Axiom (5) can be proved from
Axioms (1)-(4), (7)-(9). (See Problem 5.22.)

§.98. Determine whether or not each of the axioms (B1)-(B5) for Byrne slgebras (cf. Section 5.4) is
independent.

5.99. Show that the following variation of the axioms for Byrne algebras (cf. Section 5.4) also may serve
as an axiom system for Boolean algebras. Consider structures (B, A,’) satisfying (B1), (B2), (B5), and

(C) zAYy = zAZ ©& zAy=2x

(Hint: Prove that zAz' = wAw’ for all z and w, and introduce 0 by definition as being equal
to this common value of all z A 2')

(D) zAy = yAx
D2 zxA(ynz) = (xAy) Az
(D3) (@ AY)Y A(@'Ay) =2
(®) Investigate the independence of Axioms (D1)-(D3).

§.101. Prove the independence of Axioms (a)-(f) for lattices in Problem 5.4.

5102, [121]. Let L be a complemented lattice. Show that L is a Boolean algebra if and only if, for any
in L an

Ad for env romnlament 2 af v AV =0 € » = »
d for complement z 0f ¥, XA Y L x z.

—any
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5.103. i101’. Given a structure B = (R, A,"). Prove that B determines a Boolean algebra if and only
if the following two laws are satisfied.
fa)y r=axry > Ay =zA2
&) (xryYynz=(yn2)nzx

5164. 122, Prove that a structure B = (B,v,’) determines s Boolean algebra if and only if the

following three laws are satisfied.

(@) zvy = yvazx

B (zvy)vz = zv(yva)
() Fvy)YvEvy =2

IDEALS

5.105. If A is an infinite set, prove that the ideal of all finite subsets of A is not a principal ideal in the
field of sets P(A).

5.106. Prove that a non-empty subset J of 8 Boolean algebra is an ideal if and only if the condition

zvy€J & (x€J & ye€J) is satisfied.
What is the ideal generated by the empty subset @ of a Boolean algebra?

Given a Boolean algebra B. For any ideals J and 7 of 3B, let
Jvl = {zvy: z€J & yEl}
(a) Prove that Jv I is an ideal.
(b) Show that the set of ideals of ‘B orms
ts? Is

Are there zero and unit elemer

nbutwe lattice under the operations of N and v.
mnlpmmﬂﬁd’

mpiemerntu
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p3 2_a_

inction 4 from B in se

A non-trivial finitely-additive measure on a Boolean algebra B is a fi
of non-negative real numbers such that
Q) pxvy) = plx)+ uy) if zAy=0.

(2) uis not a constant function.

AL s
wne i1

(@) If u is a non-trivial finitely-additive measure on a Boolean algebra B, prove:
i) w0 =
(i) al@yv - ova) = plxy) + oo +oalzy) if zgAz; =0 for 4% j.
(iii) 2=y - u(@)= uly)
(iv) w(@yv - vaz) = ulz) + -0 + ul@)
(v) J, = {x: u(x) =0} is a proper ideal of B.

(vi) If p is 2-valued, i.e. if the range of u consists of two numbers (one of which, by (i), must
be 0), then J, is a maximal ideal.

(vii) If p is bounded, i.e. the range of x is bounded above, and if we define »{x) = u{x)/u(l),
then » is a non-trivial finitely-additive measure such that 0 =s(x) =1 and »(1)=1

(d) If'M is a maximal ideal of B3, and if we define

0 if zeM
K@ = 1 ifzeM

for any x in B, show that u is a non-trivial 2-valued finitely-additive measure on 3.

(¢) If B is the Boolean algebra P(K), where K is a finite set, and if we define u(4) = the number
of elements in A, prove that p is a non-trivial finitely-additive measure on 3.

(@) Prove that every Boolean algebra admits a non-trivial 2-valued finitely-additive measure.
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5.110. Given a subset D of a Baolean algebra B, recall (ef. Problem 3.5) that the intersection of all sub-
algebras containing D is a subalgebra Gp, called the subalgebra generated by D.

( ve e eleme D ks
G =d; Acee Ad,-m and either d,hED or d; LED, ie. the elements of Gp are finite joins of
i
finite meets of elements of D and complements of elements of D.

—~
e
~~

Show that tho subaleebra & of P(K) oenerated }uv the set D of all ginolatane sanaicta af all
DAOW wWidu uae nuvun eora UGp Tias; gon a7 CI [ SIngieVons COnsSisus &I a.

finite and cofinite sets. Prove that G, is complete lf and only if K is finite.

(¢) We say that & set D is a set of generators of the Boolean algebra B if and only if the sub-
a]gebra GD generated by D is the whole set B. We say that B is ﬁ.m'.tely generated if and only
lI tnere 15 a nml;e set ()f jénerawrs OI "D rrove Enal; every HHIWIY generareu noolean algem‘a
is finite.

(d) We say that a set D of generators of a Boolean algebra B is a free set of generators of B if
and only if, for every function & from D into a Boolean algebra (, there is an extension g
of h which is a Boolean homomorphism of B into (. The Boolean algebra B is said to be free
if and only if there is a free set of generators of B.

(i) For any non-negative integer k, if B is a Boolean algebra having a free set of k gen-
erators, prove that B has 2(2%) elements,

(ii) Is every subalgebra of a free Boolean algebra also free?

(iii) Show that the cardinal number of any infinite free Boolean algebra B is equal to the
cardinal number of any free set of generators of <B.

(iv) Show that if D, and D, are free sets of generators of the same Boolean algebra B, then

D, and D, have the same cardinal number.

(v) If h ig a function from a free set D of generators of a Raolean loay
algebra (C, show that there is a unique homomorphism g from B into  such that g is an
extension of h.

(vi) If Dy is a free set of generators of B, and D, is a free set of generators of B, and D,
and D, have the same cardinal number, then B, and B, are isomorphic.

(vii) Let D be a set of generators of a Boolean algebra 8. Show that D is a free set of
generators of B if and only if, for any u,,...,u, in B, if ;€D or u;€D for each
then u; A - Au, *0.

(viii) For any cardinal number m, prove that there is 8 Boolean algebra having a free set of
generators of cardinality m. (Hint: Generalize the Boolean algebra of statement bundles
(Example 3.5) by using a set of statement letters of cardinality m instead of a denumer-
able set of statement letters.)

(ix)? When is P(K) a free Boolean algebra?

QUOTIENT ALGEBRAS

BJ111, Let J he a proper ideal of a Boolean algebra B and let K be a pPOper ideal of the quotient algebra
B = '-B/J Let JD = { xEB & x4+ JE K}, Prove that JO is a proper ideal in 8 and that
to B

pz+J) = (x+J)+ K

is an isomorphism.
5.112. In a Boolean algebra B, B is an ideal. What is B/B? Why isn’t it a Boolean algebra?

5.113. (For those readers acquainted with elementary point-set topology.) Let }" be a topological space.
(@) Prove that the set F of subsets of ¥ having nowhere dense boundary is a field of sets.
(b) Prove that the set N of nowhere dense sets of ) is an ideal of F.

(¢) Show that the quotient algebra F/N is isomorphic to the algebra of regular open sets of }"
(cf. Problem 5.47). (Hint: If AEF, show that there is a unique regular set A, such that

A A wshh £ Aamen V
A+ ixy m nowaere Gense.)
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5.114. Prove that every ideal of a Boolean algebra B is principal if and only if B is finite.

5.115. For each ¢ in a set S assume that there is an associated Boolean algebra B,. By the Cartesian
product [] B, we mean the set of all functions f defined on S such that, for each s
SES
We define Boolean operations on the Cartesian product in componentwise fashion, e.g. if f and g
are in the Cartesian product, let f A g be the function defined on S such that (f A g)(8) = f(s) N, g(s)

for each s€ S,
(a) Prove that the Cartesian product of Boolean algebras is a Boolean algebra.
(b) Prove that a finite Roolean algebra of eardinality 2n is isomorphie to & Cartesian

n copies of the Boolean algebra {0,1}.
If the cardinal number of a set 4 iz m, prove that the Roolean aleshrs P(A) is izomorphic to

AT CRICIIIAL ffunder Sov 2 A0 Ny peAOVE Liiabu Wl 2 1 [Je= Z%) 18 1S30INOQIDIIC ©

a Cartesian product of m copies of {0,1)}.

(d) Show that every Boolean algebra is isomorphic to a subalgebra of a Cartesian product of
copies of {0,1}.

—
)
N

5.116. (a) Prove that if z and y are distinct elements of a distributive lattice, then there is a prime ideal
containing one of z and u but not the other. (The notion of prime ideal, although
originally defined for Boolean algebras, also makes sense for lattices. Hint for the proof:
Since xz % y, we may assume y ¥ z. Let Z be the set of all ideals containing z but not y,

and apply Zorn’s Lemma.)

(b) Prove that any distributive lattice is lattice-isomorphic to a lattice of sets. (Hint: To each
element z of the lattice associate the set of proper prime ideals not containing z.)

(¢) Prove the converse of (a), i.e. 8 lattice is distributive if, for any two distinct elements of the
lattice, there is a prime ideal containing one of the elements but not the other.

5.117. Although every Boolean algebra is, by Theorem 5.30, isomorphic to a field of sets, show that ther
nfini

re
are Roolean algebras B for which there is no isomorphism to a field of sets preserving infinite

joins and meets. (Hint: Consider the regular open algebra of the real line (Problem 5.47).)

5.118D. [137]. Prove that a distributive lattice is 8 Boolean algebra if and only if every proper prime
ideal is maximal.

INITE MEETS AND JOINS

119. Give an example of a Boolean subalgebra  of a Boolean algebra 8 such that some subset E of C
has a lub in  but not in B.

IN
3.
§.120. In any lattice, prove (assuming that all the indicated lub’s and glb’s exist):

© A Zp vV /\ Yy = A @V Y-

weEW WwEW

@ v (“’w’\Vw) = V Zp AV Up.

wew wEW wEW
(e) None of the inequalities in (a)-(d) can be changed into equalities valid for all lattices.

5.121. An ideal J of a Boolean algebra is said to be complete if and only if J is closed under arbitrary
joins of its elements.

(a) Prove that every complete ideal is a principal ideal.

(b) If J is a complete ideal of a complete Boolean algebra B, prove that the quotient algebra
B/J is complete,
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5122, (a) Prove that the set of sublattices of a lattice is & complete lattice with respect to the inel
relation C. What are the operations of join and meet?

the mclusmn relatlon C Descnbe the join and meet operatlons.

5.128. (a) Assume that g is a closure operation on a set L partially ordered by =, i.e. g is a funection
from L into L such that:

Q) ==y > g=)=g)

(2) = = g(x)

3) glg(x)) = glx)

An element z in L is said to be g-closed if and only if g(x) = x. Prove:
(i) =« is g-closed if and only if x = g(y) for some y.

(ii) If 1is a maximum element of L, then 1 is g-closed.

(iii) A glb of a set of g-closed elements is also g-closed. In particular, if # and y are g-closed,
80 is z Ay (if it exists).

(iv) If (L, =)is a complete lattice, then the set C of g-closed elements is a complete lattice with
respect to the original ordering = on L, and, for any subset ¥ of L,

ACY = ALy and vcv=a(v’vv)
yEY VEY vyEY VEY

(b) Let = be a partial order on L. For any Y C L, let Y? = the set of upper bounds of ¥ and
Y* = the set of lower bounds of ¥. We say that Y is a cut if and only if Y = Ybs, Prove:

(i) YcY®s

(if)y YcYs

(jii) XCY = (YP’CXb & Y*CX®) - (XbsCYbs & XsbC YD)

(iv) Xb= Xvsb & Xs = Xsbs

(v) Xbs= Xbsbs & Xsb = Xsbsd

(vi) Every set X°s is a cut.

(vii) The function g(X) = X®s is a closure operation on (P(L), C). The g-closed elements are

the cuts.
(viii) The set C of all cuts is & complete lattice with respect to C. Meets are intersections and
vV Y= v Y b'. The function f, such that f(z) = {x}bs for any x in L, is an
YEX Yex

order-isomorphism of (L,=) into the complete lattice (C, C); f preserves all meets and
joins already existing in (L, =), i.e. if z= \ 2z, in L, then f(z} = \ f(zy) in C,
and similarly for meets. c€A a€A
(ix) Let .£ =(L,=) determine a Boolean algebra, i.e. it is a distributive, complemented lat-
tice. Define, for any XCL, X* = {y: yAnx=0}. Then
1) XnX* = {0} = 0Oc
(2) (XuX*)® = {1}
(8) (XuX*ps = L = 1¢
(4) X* = Xbs
©) (& = {a)oee
(6) X** is an ideal of L.
(7) The function F such that F(J) = J** for any ideal J of £ is a lattice-homomorphism

from the distributive lattice of all ideals of .£ onto the lattice of cuts.

(8) Hence C forms a complete Boolean algebra, and the lattice-isomorphism f of (viii) is
a Boolean isomorphism. Thus every Boolean algebra is embeddable in a complete
Boolean algebra in such & way that unions and meets are preserved [131].
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5124. In Example 5.19, prove that the collection of all singletone {x), where € K, haa ne lub in ¥ (in

ffffff mpDE

1 4
addition to not having its

m-COMPLETENESS. o0-ALGEBRAS

5.125. Let ¥ be the collection of all subsets A of a given set K such that the cardinality of A or the
cardinality of A is = a given infinite eardinal number m. Prove that ¥ is an m-complete field of
sets, What happens if we change = to <? If K has cardinal number n >m and m<p)=n,
is F a p-complete field of sets?

5.126. If ¥ is an m-complete field of subsetsof aset Kand A€ F, provethat F|4 = {Y: YEF & Y C A}
is also an m-complete field of sets.

5.127. Prove that an infinite o-algebra must have at least 2% elements. (Hint: Problem 5.14.)

5.128. By a free o-algebra with m generators we mean a o-algebra B having a subset D of cardinality
m such that any function from D into & o-algebra ( can be extended to a o-homomorphism k from
B into (.

(a)? For every cardinal number m, show that there is a free o-algebra with m generators.
(b) Prove the analogues of Problem 5.110(d)(iv)-(vi) for free o-algebras.

(¢) Prove that any free o-algebra with m generators is isomorphic to a o-field of sets. (Hint:

Use Problem 5.58.)

5.129. We say that a Boolean algebra @B satisfies the countable chain condition (CCC) if and only if every
pairwise-disjoint set of nonzero elements of B is countable. (A set Y is said to be pairwise-dis-
joint if and only if, for any distinct elements y and zin Y, yAz=0.)

(a) Prove that a Boolean algebra B satisfies (CCC) if and only if every subset Z C B has & count-
able subset Y such that Y and Z have the same set of upper bounds.

(5) Prove that any o¢-algebra satisfying (CCC) is complete.

(c) Show that the regular open algebra of a topological space with a countable base satisfies (CCC).
(Cf. Problem 5.47.)



Appendix 4

*_ __a® _£ l\_____n.L----
minarion Oor rarenrneses

More extensive conventions for eliminating parentheses than those given in Section
1.4, page 5, will be presented here.

(I) We assign a rank to the connectives as follows:

PR 5
- 4
v 3
& 2
a 1

The rank of a statement form A will be
() O, if A is a statement letter;

(b) the rank of the principal connective of A, otherwise.

We shall describe our pi‘OCEuUi‘E for euuuuatu_lg‘ parent theses b y' induction on the number
of occurrences of connectives in the statement form. (The description will appear com-

plicated, but the simplicity of the procedure will become apparent after a few examples.)

Clearly, if A has no connectives, it is a statement letter and has no parentheses. Assume
that we have described the procedure for all statement forms having fewer than k&

occurrences of connectives, and assume that A has k oceurrences of connectives
ctives, ar A 4 en 1 1ve

VoL UL aViivwD Wi Lvadiaw ) @adlR SmUSwidAT wa

Case (i): A is a denial (71B). If B itself is of the form (T1€C), then we apply our
procedure to (7€) and omit the outer parentheses (if any) of the resulting expression,
obtaining some expression D. The final result is taken to be (71D). If B is not of the form
(1€), and the application of our procedure to B yields E, then the final result is (77E).

-y

Case (ii): A is (B« ©C), where a is &, >, v or & We apply the procedure for eliminating
parentheses to B and C, obtaining B* and €*. At this stage we have (B*«C*). We drop
the outermost pair of parentheses (if any) from B* if the rank of « is greater than or equal
to the rank of B. We drop the outermost pair of parentheses (if any) from €* if the rank
of a is greater than the rank of €.

Examples.
Al. ((1A)).

Applying (I), Case (i), twice, we obtain (11A). Then by (II) we have T17A4. In general, no
parentheses are needed to separate successive negations.

A2, (AvB)-C().

The principal connective is =, of rank 4. Since (4 v B) has rank 3, we obtain, by (I), Case (ii),
(AvB~-C), and finally by (I1), AvB-C.

190
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A3. (Av(B-O)).

The principal connective is v, of rank 3. Since (B—C) has rank 4, we do not drop the parentheses

. s in this example (I) allows no elimination of parentheses, and by (II) we obtain
Av (B-0).

A4, (B A} BY=((1B)&C)).

= is the principal connective. Application of (I) to ((Bv A) <> B) yields (Bv A <> B), and application
of I' to 71B.&C yields (MB & C). Since the rank of <> is greater than that of -, we leave the outermost
pair of parentheses of (Bv A € B). However, since the rank of & is less than that of -, we omit the
outermost pair of parentheses from (1B &C). The final result is (BvA < B)-> 1B&C.

AS. WA BV (),

TZe right-most v is the principal connective. Since (A v B) has rank equal to that of v, we may drop
tke parentheses, obtaining (A v Bv C), and finally by (II), Av Bv C.
A AV(Bv(O).

The left-most v is the principal connective. Since (B v C) has rank equal to that of v, we cannot drop

the parentheses. Thus (I) yields no elimination of parentheses, and by (II) we obtain A v (Bv C).

The results given in Examples A.5 and A.6 illustrate the principle of association to the
left. Thus Av Bv C stands for (Av B)v (). Likewise A » B - C stands for ((4A > B)~> C),
and the same holds for the other binary connectives. Association to the left is due to our
agreemen - that in (B« C), we omit outer parentheses from B if rank (B) = rank (e), but from
C if rank (C) < rank (a).

AT (Av@BvO)v B&(I(1O))).
Application of (I) to (Av (Bv C)) yields no elimination of parentheses, while (B & (1(7C))) becomes

(R& 1), Then by (I) we ohtain (A v (B DL NI and Snalle A v B& 1110
in (I) we obtain Av{BEVO v B& T 10, &fia anauy A v \.u vijvowx T
.l hﬁ roucoh idaa af snnvantinn (T ln t+that anmmaontivaa ~f ‘n:t\o‘\n- I; awa 4+~ hawva gre 4-1\-
- AVWRLIL IS UL VUL VOIIWLIVILL \l} i0 bll“lﬂ ‘-U‘l‘lc‘-'llv D VUi IIEBIICK alT LW lIaVT pivalcl

scope than those of lower rank. Thus if elimination of parenthes ylelds AvB-_C, this
stands for ((Av B) > C). The connective -, being of higher rank than v, must “connect”
the longest possible statement forms to the left and right. Thus = has (A v B) as its ante-
cedent rather than just B. Similarly,in A »B& B & Dv B, © is the conneciive of highest
rank. Hence the left side of « should be (A -~ B & B) and the right side should be Dv B.
Thus we have (A + B&B) « (DvB). Within (A > B&B), - is stronger, and we obtain
(A= (B&B)) & (DvB)).

In ordinary arithmetic, without realizing it we already have been taught an analogous

vanlrina nf arithmatina Anaratinme AAAMinm 3a ctwnnmoanct: 4+lhnm anmeas meirléinlinadinn and
ACRAAAREEILE VA GLLIUIIIITUIL UNTLIAULIVLIID. 4AAUuiuivil 1o BDIUU.ECBIJ, LTl LUI1ITD ll‘ulblpll‘.aulu‘l' @il

finally exponentiation. For example, 4 + 2+5 stands for 4 + (2-5), and not for (4+2)+5
while 5 « 2% stands for 5 - (2%, not for (5-2)3.

Sometimes, especially in long statement forms, for the sake of clarity we can keep
some parentheses which could be omitted according to our conventions. For example, in
A.T above we might write Av(BvC)v (B& 171C) instead of Av(BvC)vB&171C.
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Solved Problems

A.l

Describe an algorithm (i.e. effective procedure) for determining whether a given
expression is a statement form, and for determining the principal connective when
the expression is a statement form.

Solution:

The description is given by induction on the number of occurrences of connectives. If there are
no connectives, then the expression is a statement form if and only if it is a statement letter.
Assume now that an expression A has k connectives, where k> 0, and that our algorithm already
has been defined for expressions with fewer than k occurrences of connectives. If A does not
begin with a left parenthesis and end with a right parenthesis, then A is not & statement form.
If A does have the appropriate initial left and terminal right parentheses, omit them, obtaining an
expression B,

Case 1. B has the form 1C. If C is a statement form, then A is a statement form and its
principal connective is 7. If € is not a statement form, then neither is A.

Case 2. B is not of the form 1C. For each of the binary connectives [J in B, if B is €[]D
and if C and D are statement forms, then A is also a statement form with principal connective [J.
On the other hand, if the indicated condition does not hold for any of the binary connectives (] in
B, then A is not a statement form.

Eliminate as many parentheses as possible from:
(@) ((AvB)~> (TC)v((NB)&C)

(%) (A&(T1(1B) & (B (CvBY)

(¢) (B (CvB) e (A&(T(T1BY))

Solution:

(¢) The second v is the principal connective. Since v has higher rank than &, we can omit the
outer parentheses from ((71B) & C). Since - has higher rank than v, we cannot drop the outer
parentheses from ((A v B)—(1C)). But within (A v B)- (1C)) we can drop the outer paren-
theses from (A v B), since - has higher rank than v:

(AvB->(10) v ("BY&C
Finally, we can drop the parentheses around the denials:
(AvB—-1C) v O1B&C

o S o —mmataa 0 1 - s - = —— o a__8
> IS the principal cunnechve. we can omit

has higher rank than &:

—_
M
~

However, we cannot omit the outer parentheses of (B «> (C v B)), since the latter has the same
rank as <> and appears on the right hand side of the biconditional. Within (B € (Cv B)) we

can drop the parentheses of (C v B), and, on the other side, we can drop the parentheses around
tha daniala:

viaS UTHIRiS.

A& 1NB & (B CvB)

(¢} This is the same as (b) except that the two sides of the biconditional have been reversed. Since
(B < (Cv B)) now appears on the left hand side of the biconditional, we can drop the outer

parentheses:
Be (CvB) & A&(1(1B)

As before, we then obtain
BeCvB e A& 1B

In practice, we would never eliminate all the parentheses in part (c), since their complete
elimination will not facilitate the interpretation of the original statement form

adaCaev L2URadEe
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A3. Describe an algorithm for determining whether a given expression A has been
obtained from a tatement form as a result of applying our conventions for elimi-

We shall describe, by induction on the number of symbols of A, a procedure which either will
e al.au:menl. .I.Ul.'m HUDIEVIBWQ Dy l\ or Wul evenouuuy ceu us Uﬂlll- ulexe l! no buLll IWWIHCIIL
form. Clearly, if A has one symbol, then A abbreviates a statement form (A itself) if and only if
A is a statement letter. Now assume that A has k& symbols (where k> 1) and that our algorithm
has been defined for all expressions with fewer than k symbols.

)
>
3
P

Case 1. A either does not begin with a left parenthesis or does not end with a right paren-
thesis. (Hence if A does abbreviate a statement form F, then the outer parentheses of F were

Aealédad )
At aanvey)

Case la. A is of the form 771... 7(B). If B abbreviates a statement form 6 (and hence B does
not have the outer parentheses of G), then A abbreviates (1(7(...(716)...))). Otherwise, A is not
an abbreviation of a statement form.

Case 1b. A is of the form 717...71B, where B is a statement letter. Then A abbreviates
(... (AB). ).

fffff

Case le. A is not of the form <171...(B), and not of the form 171... 1B (where B is a
statement letter). For each occurrence of a binary connective # in A, represent A as C#D. If

(i) € abbreviates a statement form H
(ii) D abbreviates a statement form J,

(iii) © contains the outer parentheses of H (if any) if the rank of H is greater than or equal to
that of #,
(iv) D contains the outer parentheses of J (if any) if the rank of J is greater than the rank of
#, then A abbreviates (H #J).
If no occurrence of a binary connective in A satisfies (i)-(iv), then A does not abbreviate
a statement form.

Case 2. A is of the form (B).

Case 2a. Omit the initial left and terminal right parentheses, and then apply Case 1 to 8.
If B abbreviates a statement form C, then A abbreviates € also.

Case 2b. If Case 2a does not show A to be an abbreviation of a statement form, apply the
procedure of Case lc. If we obtain a statement form D, then A abbreviates D.

Exampies.

(@) Be> CvB. Case 1c applies. First, we try <> as principal connective. The left side is B,
and the right side Cv B, which abbreviates (Cv B). Since (C v B) has rank less than that of
<>, the outer parentheses around Cv B have been legitimately omitted. Thus we obtain
(B < (Cv B)).

() A & "B & A. Case lc applies. First, we consider the left-most & The left side is A and
the right side is TB& A. Hence we must consider 1B & A. Again, Case 1c applies and we
consider &. The left side is 1B (which is an abbreviation of (778)) and the right side is A.
Thus 1B & A abbreviates ((1B) & A), but, since ((1B) & A) has rank equal to that of &, clause
(iv) has been violated. Next, we try the second &. The left side is A & 1B, which is easily
seen to abbreviate (A & (1B)). Hence the original statement form is ((4 & (1B)) & A).

(¢) 711 Av B. Case lc applies. The left side of v is <14, which by Case lb abbreviates
(1(1A)). Hence we obtain ((1(14)) v B).

(d) Av 1(Av (). Case lc applies and we look at the first v. The right side is 1(4v C). To
the latter, Case 1b applies and we see immediately that A v C is a statement form. Hence the
original statement form is (A v (7(4 v C))).
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Supplementary Problems

Ad.

A5,

A6,

AT

As.

Find the ranks of the following statement forms.

FPRY A s Al
\g) a4, (9 \

Eliminate as many parentheses as possible from the following.
(@) (NA)v(B&C)) > (A< (1B)

(® ((A=>((B)) v (14 &C))

(©) (A=(14))>B)>(A->B)

(@ ((14)=(4~B))

Determine whether each of the following expressions is an abbreviation of a statement form, and,
if so, construct the statement form.

(@ AvaB->(Be()&A

() A»B—-> 11AvE

(c) 1(AvB)vA&B

(d) AvBv (C>»D)

Show that if A is a statement form, then there is at most one connective [ such that A is of the
form (B[] C), where B and C are statement forms.

Show that the algorithm of Problem A.3 is correct, i.e. when B is an abbreviation of a statement
form A, then the algorithm applied to B vields A as its only answer, and when B is not an abbrevia-
tion of a statement form, then the algorithm says so.



Appendix B

We may avoid the use of parentheses if we redefine the notion of statement form as
follows: (i) every statement letter is a statement form; (ii) if A and B are statement forms,
so are 1A, &AB, v AB, -~ AB, & AB.

Examples.
The statement form ((1A4)&(Bv A)) would be rewritten ag & 1Av BA. The statement form

(A= ((1B) & (A v C))) would be rewritten as =4 < 1Bv AC.
This way of writing statement forms is sometimes called Polish notation (in honor of its
inventor J. Lukasiewicz).

Examples.
»vABv 1C& 1BC is Polish notation for the statement form ((4A v B)=((1C) v ((1B)&())). Sim-

ilarly, & & AN1B <« Bv CB is Polish notation for ((A & (1(1B))) «© (B < (Cv B))).

Solved Problems

B.1. Write the following statement forms in Polish notation.
(@ (MA)v(B&C)~» (A= (T1B))

(AN ({A a2 (™ (I DPW . (T17A £ MY
AV \ IV o)y v L iaawvgg)

(¢) ((A=>(14))>B)~(A~B)

Solution:

(¢) >vIA&BCe ANB
() v-AINBI&AC
() »+—>AAB~AB

B.2. Find the statement forms whose transcriptions into Polish notation are
@ >vAlTB&~BCA (c) vIvAB&AB
(b) »»> ABv11AB @) vvAB~CD
Solution:
(@ ((Av(1B)) > (BeC)&A))
(2) (A-B)-((1(14)) v B))
(¢) ((N(AvB)v(A&B))
(@) ((AvB)v(C-D)

195
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'bp an algorithm for determining whether a given expression is a statement

=231 L8904 p A L S nether a Veas SApaTl220022

Pollsh notation and for constructing the corresponding statement form in its

Solution:
Assign the integer —1 to statement letters, 0 to 71, and +1 to the binary connectives &, v,—, €,

Then we have

Theorem: An expression A is a statement form in Polish notation if and only if
(I) the sum #(A) of the integers assigned to all the occurrences of symbols in A is —1;
(II) the sum #(B) of the integers assigned to all the occurrences of symbols in every

proper initial segment BT of A is non-negative.

Examplee. v+ v AB 17 B &1 BC

-1

Proof of the Theorem, First, we shall prove that any statement form in Polish notation satisfies
conditions (I) and (II). This is shown by induction on the number &k of occurrences of connectives
in A. If there are no connectives, A is a statement letter and conditions (I)-(II) are obvious.
(In this case there are no proper initial segments of A.) Now assume that the result has been
established for all statement forms having fewer than k occurrences of connectives (k =1). By our
new definition of statement form, A is of one of the forms 1B, &BC, v BC, - BC, < BC, where
B and € are statement forms (having fewer than % occurrences of connectives). Use of the induc-
tive hypothesis now yields (I)-(II). (For instance, if A is &BC, then #(A) =1+ #(B)+ #(C) =
1+ (=1)+ (-1) = =1, yielding (I). If D is & proper initial segment of A, then either D is & and
#(D) is +1=0; or D is &D, (where D, is a proper initial segment of B) and #(D) =1+ #(D,) =
140=1>0; orDis &Band #(®) =1+ #(B) =1+ (—1) =0; or Dis & BC, (where C, is a proper
initial segment of C) and #(D) = 1+ #(B) + #(C,) = 1+ (—1) + #(C,;) = 0 + #(C,) = #(C,) = 0.)

Conversely, let us assume now that an expression A satisfies (I)-(II). We prove that A is a
statement form in Polish notation by induction on the number k of symbols in A. k& =1: then
by (I), A is a statement letter, Induction step: assume that k>1 and that the result holds for

all expressions having fewer than k symbols. Case 1: A is of the form 1B. It is then easy to
show that the truth of (DI for A implieg the truth of (D-(II) for ﬂ and hence' by inductive

SAOW widv Wi wWlual Ua (a/~(aa; aOF &~ LEgLaSS s A~ \aa)

hypothesis, B is a statement form. Therefore 1B is a statement form. Case 2: A is of the form
BC, where B is a statement letter. This contradicts (II), since B is a proper initial segment of A.
Case 3: A is of the form [JC, where [J is one of the binary connectives &, v, =, <>, There must
be a shortest proper initial segment B of C such that #(B) = —1. For, as we move from left to
right in A, the sum of the symbols begins at +1 (the integer for (J) and ends with —1 (= #(A)),
and moving from one symbol to the next either leaves the sum unchanged or changes it by +1 or -1,
Hence we must finally arrive at the first proper initial segment of A whose sum is 8. This proper
initial segment is of the form []B, where B is the shortest proper initial segment of C such that
#(B) = —1. Then B satisfies (I). As for (II), consider any proper initial segment D of B. Then

ia & proper initial segment of A if and only if A is of the form BC, where C containg at least one symbol.
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sinece D D igs a ahartor nranar initial caomant af A than MR #(MD) ic >0 and #M) = Honca
€ 2 sherier proper 1nilel segment of A than [ 1=, F{(J2P) 18 > 4, ang #(B) U. =Rence

(IT) holds for B, and, by inductive hypothesis, B is a statement form in Polish notation. Let C be
BE. Thus A is [JBE. Since —1 = #(A) =14 #(B) + #(€) = 1+ (—1) + #(E) = #(E), E satisfies ().

B.4.

BS.

As for (II), let F be any proper initial segment of E. Then []BF is a proper initial segment of A.
By (II) for A, 0 = #(O)BF) = 1+ #(B) + #(F) = 1+ (—1)+ #(F) = #(F). Thus (II) holds for E, and,
by inductive hypothesis, E is a statement form in Polish notation, and therefore so is [] BE.

Notice that the second part of the proof of the theorem gives a method for constructing the
corresponding statement form in our original notation (since it locates the statement forms out of
which our given statement form is constructed).

Example. < &A91B<BvCB

The first proper initial segment whose sum is 0 is €» & A 17 B. Thus we have (8§ A1 B) &
(&BvCB). In &A1 B, the first proper initial segment whose sum is 0 is & A. Hence we
obtain A & 171 B. In & Bv CB, the first proper initial segment whose sum is ¢ is <> B, and we
obtain B> (vCB). Thus, so far, (A& 11B) < (B<>(vCB)). Finally, v CB corresponds to
Cv B, and the statement form in our original notation is (A & 11 B) & (B« (Cv B)).

Supplementary Problems

Write the following statement forms in Polish notation.
(a) B& 1(Av B)

(%) [(A-B)-» q(B>A)] & (A< B)

(0 [(A=B)=(C—>D)] = [E=>{(D+A)>(C~>A)}]

Re:‘.ez:mir_le _wl}ether each of the following _expressions is a statement form in Polish notation, and,
11 1t 18, ind the corresponding statement form in our original notation.

(¢) » 1 vAB<>C& 1AB

b "1&A-B->A

(¢) vv->->AB14AA &BA

d)y &->A->BC->&ABC
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By the axiom of choice we mean the assertion that, for any set z, there is a function f
(called a choice function for z), defined on P(x) ~ {@}, such that, for any non-empty subset
uof z, f(u)€Ewu.

vve snau sSay Lﬂdl’. a coue(,uon ﬂ OI sets 18 weu-ora.e'rea, Oy mcmswn lI ana omy lI A lS
an C-chain and every non-empty subset C of A has a least element b (i.e. if « €C, then
bCwu). Given a collection A well-ordered by inclusion, and given any set y in A, the segment
determined by y (denoted Seg (4, y)) is defined to be the set of all 2 in A such that zCy.
Notice that, if § is a section of A (i.e. if S is a subset of A such that (€S & zCy) > zE€S))
and if §» A, then S = Seg(A,u), where u is the least element of A~ S.

Theorem. The axiom of choice implies Zorn’s Lemma.

Proof. Assume that a set Z of sets has the property that, for every C-chain C in Z, the
union AIEICA is also in Z. Let F be a choice function for Z. Thus if @« DCZ, then
F(D)eD.

Let us assume that Z has no C-maximal element. We shall derive a contradiction from
this assumption.

For any y in Z, the set Y of all elements z of Z such that ¥y Cz is non-empty (since there
are no C-maximal elements). Let f(y) = F(¥). Thus for any y in Z, f(y) is an element of
Z such that yC f(y).

By a ladder we mean any subset L of Z such that L is well-ordered by inclusion, and,
for any z €L, f( s u) = 2. (By hypothesis, we know that U u€Z, since

u € Seg(L,1)
Sec (I, 7) is -_hﬁ---

vvb\—,w’.u—-‘- i1

Let L be the set of all ladders.
(1) Given two different ladders L; and L., we shall show that one of them is a segment of

the other. Let K be the set of all w &€ L,NL; such that Seg(Li,u) = Seg (L, u).
Clearly, K is a section of both L, and L,. Hence if K=L, or K =L, then one of L,
or L. is a segment of the other. Thus we must show that KCL, and KC L. do not
simultaneously hold. To this end, assume KC L, and KC L.. Let %, be the least element
of Li~K, and let u, be the least element of L:~K. Then Seg(L:u:)=K and
Seg (L2, u2) = K. By definition of ladder,

= f<u€$e.;J(L1,u,) u) = f<uLé'x u)
and va = f(uESeEJ(L,.ug) u) f(ul'e)xu>
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Hence u; =u; and Se

fact that wm EL;~K.

(2)

The union of all ladders H =LU L, is again a ladder. For, by (1) it is clear that H

is an C-chain. H is well-ordered by inclusion. (In fact, if @ » WCH and u €W, then
€L, for some L, € L and the least element of WN L, must be the least element of W.)
Finally, for any x €H, z €L, for some L, €L, and, by (1), Seg(H,z)= Seg (L, z).

Hence r = f(uESel;J(Ll :)u) = f(ueseLngH x)u).

Since H is an C-chain, the union v = U u € Z, by hypothesis. Hence HU {f(v)}
is a ladder, and therefore f(v) € H. v €

It follows that f(v)Cwv, contradicting vC f(v). p



Jpendix D

A Lattice-Theoretic Proof
_£ a2l _ & L _< 1 __ DB_____a_°* TL_ _______
Of The Cnroager-pernsiein ineorem
Lemma. Let (L,=) be a complete lattice and let ¢ be a function from L into L such that

¢ is order-preserving, i.e. =<y - ¢(x) = ¢(y). Then ¢ has a fixed point b in
L,ie. ¢(b)=0.

Proof. Let W = {z: x€EL&2=¢(x)}), and let b= VvV x We shall show that

TEW
¢(b) = b. First, $(b) is an upper bound of W. For, if x € W, z = b, and therefore ¢(z) = ¢(b).
But since €W, z = ¢(x). Hence = = ¢(b). Thus ¢(b) is an upper bound of W, and so
b= v oz= ¢(b). On the other hand, since b = ¢(b), it follows that ¢(b) = ¢(s(d)), i.e.

(b) EW. Hence ¢(b)= ;/w z=0>b. From b=¢(b) & ¢(b)=b we obtain ¢(d)=">.)

Schrioder-Bernstein Theorem. If there is a one-one correspondence f between X and a
subset of Y and a one-one correspondence g between Y and a subset of X, then
there is a one-one correspondence between X and Y. (In terms of cardinal num-
bers m and n, if m=n and n=m, then m=n.)

Proof. For every subset ZC X, let ¢(2) = X ~ g[Y ~ f[Z]] (Fig. D-1). (Recall that,
for any function &, R[C] = {h(u): »€C}.)

X Y X Y
g—l
Fig. D-1 Fig. D-2
Now, Z:CZs = f[2:)Cf[Zs) > Y ~f]Zs) C Y ~ f|Z)]

= 9[Y ~ f[Z.]] € 9[Y ~ f[Z1])]
> X~ g[¥ ~f[Zi] € X ~o[¥ ~ flZ3]
¢?E|) ¢(}z)

Hence ¢ is an order-preserving function from the complete lattice (P(X), C) into itself.
Hence by the lemma above, ¢ has a fixed point Z*, i.e.

Z* = ¢(2%) = X~ g[¥ ~f2"]]
Therefore glY ~flZ*)) = X~ 2*
It is easy now to verify, using Fig. D-2 as a guide, that the following function &,
3 E
Mz) = f(z) if 2€2
R 97'(x) if z€EX~2Z*

is a one-one correspondence between X and Y.)
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