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Preface

Beginning Physics I: Mechanics and Heat is intended to help students who are
taking, or are preparing to take, a first year College Physics course that is
quantitative in nature and focuses on problem solving. The book is specifically
designed to allow students with relatively weak training in mathematics and
science problem solving to quickly gain the needed quantitative reasoning skills as
well as confidence in addressing the subject of physics. A background in high
school algebra and the rudiments of trigonometry are assumed, but the first chapter
of the book is a mathematical review for those not comfortable with their
command of the needed mathematics. The book is written in a “user friendly”
style so that even those initially terrified of physics can develop mastery of the
subject. It develops the subject matter and methodology slowly and gently and
maintains a “coaxing” ambiance all the way through. Nonetheless, the material is
not “watered down.” The intention is to raise the level of ability of the students to
the point where they can handle the material of a rigorous noncalculus-based
course, including dealing with sophisticated problems.

In particular, Beginning Physics I should be useful to preprofessional (e.g.,
premedical and predental) students, engineering students, and science majors. It
also is suitable for liberal arts majors who are required to satisfy a rigorous science
requirement, and choose physics. Volume I of the book covers the material in a
typical first semester of such a course. Volume II, which is in preparation, will
cover the material of the typical second semester of the course.

Beginning Physics I will also serve as an excellent support book for
engineering and science students taking a calculus-based physics course, even
though the book does not use calculus. The major stumbling block for students in
such a course is typically not the calculus itself but rather the same weak
background in problem-solving skills that faces many students taking noncalculus-
based courses. Indeed, many of the physics problems found in the calculus-based
course are of the same type as, and comparable in sophistication to, those in a
rigorous noncalculus course. This book will thus help engineering and science
students raise their physics problem-solving skill levels, so that they can more
easily handle a calculus-based course.

ATVIN HALPERN
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To the Student

The Preface gives a brief description of the subject matter level, the philosophy
and approach, and the intended audience for this book. Here I wish to give you, the
student, some brief advice on how to use the book. Beginning Physics I:
Mechanics and Heat consists of an interweaving of text with solved problems that
is intended to give you the opportunity to learn through exploration and example.
The most effective way to gain mastery of the subject is to go through each
problem as if it were an integral part of the text (which it is). The section in each
chapter called Problems for Review and Mind Stretching gives a few additional
worked-out problems that both review and extend the material in the chapter. It
would be a good idea to try to solve these problems on your own before looking at
the worked-out solutions, just to get a sense of where you are in terms of mastery
of the material. Finally, there are supplementary problems at the end of the chapter,
which give only the numerical answers. You should try to do as many of these as
possible, since problem solving is the ultimate test of your knowledge in physics.
If you follow this regimen faithfully, you will not only master the subject, but you
will sense the stretching of your intellectual capacity and the development of a new
dimension in your ability to think. Good luck.

ALVIN HALPERN
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Chapter 1

Introduction and Mathematical Background

1.1 INTRODUCTION TO THE STUDY OF PHYSICS AND ITS RELATIONSHIP TO
MATHEMATICS

What Is Physics?

Physics is the study of all physical phenomena—phenomena experienced through the human
senses, either directly or with the aid of instruments. Among the topics studied are the following: (a)
the motion and distortion of objects due to interaction with their environment (mechanics); (b) heat
and thermodynamics; (¢) sound and other wave motions; (d) light and optical phenomena; (e)
electrical and magnetic phenomena; and ( /) atomic and molecular properties of matter. The typical
general physics sequence, consisting of two or three courses, usually covers all these subjects at an
elementary level, often in the order listed.

Physics Is a Science

It is based on experiment and observation. It is a quantitative science; relationships between
physical quantities (such as position and time for a moving object) are expressed as precisely as
possible. That is why physics uses the language of mathematics. Only mathematical formulas can give
the relationships between physical quantities in precise form. Thus, for example, if we wish to
describe what happens to an object that is dropped from a certain height, we can do so with different
degrees of precision. At the lowest level of precision we can say that the object falls until it hits the
ground. At a somewhat more detailed level we can say that the object speeds up as it falls. At the most
detailed level we want to know exactly where it is located and how fast it is moving at every instant of
time. For this last case we need a mathematical relationship between the height and the time and
between the speed of fall and the time.

1.2 MATHEMATICAL REVIEW

Notation

We will often use a center dot (-) to signify the product of two numbers and a slash (/) to signify
their division. When no ambiguity can exist, the center dot for multiplication will be omitted [for
example, when multiplying terms in parentheses: 3(10) to be read “three times ten” or when
multiplying by a variable: 2x to be read “two times x”]. The absolute value or magnitade of a
number, or of a variable x, is its value with a positive sign. Using the notation “absolute value of
x” = | x|, we have, for example: | —6| = 6; | 3| = 3; for x negative, x = —| x|, while for x positive,
x=|x|.

Mathematical Functions

Suppose we have a mathematical relationship between two quantities (for example, the
relationship between the distance that an object moves and the time that has elapsed or the relatiomship

1



2 INTRODUCTION AND MATHEMATICAL BACKGROUND [CHAP. 1

between two purely mathematical quantities). Then, if one of the quantities takes on a particular value,
the relationship tells us the corresponding value of the other quantity. Suppose the two quantities are
represented by the symbols x and ¢; then for every value of ¢ there is a definite value of x. The
quantities x and ¢ are called variables because they can take on a range of values. The variable x is
said to be a function of the variable ¢, or symbolically, x = f(¢), which is read “x equals a function of
t,” or in shorthand, x equals “eff” of 1.

Problem 1.1. The quantity x is related to the quantity ¢ by the relationship x = f() = 3¢ + 4. Find
the value of x when ¢ takes on each of the following values: t=0,¢t=1,1=2,t =25, t=10.

Solution
For the first value we have
x=f(0)=3-0+4=0+4=4
Similarly, for the other values we have
x=f(1)=3-14+4=34+4=7 x=f(2)=3.2+4=6+4=10
x=f(2.5)=325)+4=75+4=115 x=f(10)=3-10+4=30+4=234

Problem 1.2. The‘quantities z and x are related by the function z = f(x) = 12x — 7. Find the values
of z corresponding to the following values of x: x = 3, =3, 4, =3, 1.2.

Solution
We carry out the calculation for each value of x:
z=f(3)=12-3-7=29 z=f(-3)=12(-3)-7=-43
r=f@)=120)-7=-1  z=f(-)=12(-4)-7=-13
z=f(12)=12(12)-7=144-7=74

Problem 1.3. The quantities y and x are related through the equation y = f(x) = 2x”. Find y for
x=—4,-2,-1,0,1,2,4,45.

Solution

We calculate y for each value of x, in the order given. To save space we won’t write the f(x)
expression for each case.

y=2(-4)?=2-16 =32 y=2(-2)*=2-4=8
y=2-17=2  y=20=0  y=2(1=2
y=2027"=8 y=2(4)? =32 y=2(4.5)* =2.2025=40.5

Problem 1.4. y and ¢ are related by the function y = f() = 47 — 2t+ 6. Find y when t = —3, —2,
-1,0,1,2,3.



CHAP 1] INTRODUCTION AND MATHEMATICAL BACKGROUND 3

Solution

In the order given,

y=4(=3)% —2(-3)+6=36+6-+6 =48
y=4(=2)* —2(-2)+6=16+4+6 =26
y=4(-1 2(-1)+6=4+2+6=12
y=4(0)* —2(0)+6=0+0+6=6
y=4(1 —2(1)+6=4-2+6=38
y=4(27 —202)+6=16-4+6=18
y=4(3)% -2(3)+6=36—6+6=36

Graphs

Whenever one has a mathematical relationship between two variables, say x and ¢, one can
represent the function x = f(¢) by a two-dimensional graph. To do this, one typically draws two
straight lines, called axes at right angles to each other—one horizontal and the other vertical, as
shown in Fig. 1-1. The horizontal axis is marked off to some scale, as shown, for the variable ¢ (called
the independent variable) with negative and positive values as shown. The zero point, where the two
axes cross, is called the origin and is denoted by the letter O for origin or the numeral 0. Traditionally
the right half of the horizontal axis is chosen as positive and the left half as negative. Similarly, the
values of x (called the dependent variable) are marked off on some scale on the vertical axis, with
upward traditionally chosen as positive.

For each value of ¢ on the horizontal axis, one imagines a line drawn vertically upward to a point
(point 4 in Fig. 1-1, for example) whose height corresponds to the value of x = f(£) as measured on

x=f(1)

1k

~4+

Fig. 1-1

AT



4 INTRODUCTION AND MATHEMATICAL BACKGROUND [CHAP 1

the vertical axis. One can imagine a horizontal line from the vertical axis also drawn to the point A.
(The two imaginary lines are represented by dashed lines in Fig. 1-1). If one constructs points this way
for each value of ¢ (two more examples are shown in the figure), the points can be fitted by a smooth
curve as shown. This curve is the graph of the function x = f(¢). Each point on the graph is directly -
above (or directly below, for negative x) a value of #. The same point is then directly to the right (or to
the left) of the corresponding value of x. Thus all the information contained in the relationship
between x and ¢ [that is, the function x = f(#)] is displayed on the graph.

Problem 1.5. Plot the graph of the function in Problem 1.1 between the values = —5 and 7 = +5.
Solution

We first plot some of the values already calculated in Problem 1.1. These are shown in Fig. 1-2. As
can be secen they lie on a straight line. The x intercept, defined as the point at which the line crosses the
vertical axis, is at x = 4. The slope of the line, defined as the number of vertical units between two points
on the line divided by the corresponding number of horizontal units, is just$ = 3, as demonstrated in the
figure by means of the dashed lines. (Since the scale of our graph was chosen differently for the
horizontal and the vertical axes, the vertical distance doesn’t look three times as big as the horizontal
distance.)

Fig. 1-2

A straight line is always specified uniquely on a graph by giving the slope and the intercept with
the vertical axis. In fact the general equation of a straight line with slope m and intercept b is just
x=mt+b.

Problem 1.6. Plot the function z = f(x) found in Problem 1.2.
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Solution

The function is z = 12x — 7. We plot x on the horizontal and z on the vertical and see that this is
clearly a straight line whose vertical intercept is at z = —7 and whose slope is 12. We have to plot only
two points to draw the straight line, and this is illustrated in Fig. 1-3.

Fig. 1-3

Problem 1.7. Plot the function y = f(x) found in Problem 1.3.
Solution

Since y = 2x%, this is clearly not a straight line. Figure 1-4 shows the graph of this function; note
some of the values calculated in Problem 1.3. This is the curve of a parabola that is symmetric about the
vertical axis and touches the origin at its lowest point.

Problem 1.8. Plot the function x = f(#) where f(¢) is given in Problem 1.4.

Solution

Here the function is x = 47 — 2¢ + 6 and it is shown plotted in Fig. 1-5. Again we have a parabola,
but now it is symmetric about a vertical axis through the point # = %, which corresponds to its lowest
point x = 5.75.

Inverse Functions

When we have a function x = f(#), for every ¢ value we can determine the corresponding x value.
Is it possible to turn this around so that for every x value we can find a corresponding ¢ value? The
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Fig. 1-5

answer is a qualified yes. Sometimes there is no ambiguity, but at other times one must exercise
caution. If we succeed in doing so, then ¢ has become a function of x. To acknowledge that this new
function was obtained by turning around or “inverting” the function x = f(¥), it is usually labeled
t =f"'(x) and is called the inverse function.

Problem 1.9. Find the inverse function for the case of Problem 1.1.

Solution

The original function x = f{(¢) is given by the equation x = 3¢ + 4. To get ¢ in terms of x we want to
isolate the ¢ in the equation. First we subtract 4 from both sides of the equation, to get 3 = x — 4. Next
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we divide both sides by 3, to get r = (x — 4)/3. Finally, simplifying this last result, we get for our inverse
function, z = ~'(x) = bx — 4 This is the equation of a straight line of slope 5 and ¢ intercept (—).

Problem 1.10 shows how the graph of the inverse function can be easily obtained from that of the
original function, with no further calculation.

Problem 1.10. Obtain the graph of the iniverse function determined in Problem 1.9.
Solution

The graph of the original function is shown in Fig. 1.2. Rotate that figure 90° clockwise so that x
appears along the horizontal [Fig. 1-6(a)]. Then ¢ appears along the vertical, except the negative values
are up and the positive are down. This can be corrected by flipping the 7 axis 180 ° about the x axis [Fig.
1-6(b)]. Thus the inverse function is just the same graph rotated so that the dependent and independent
variables change place.

Problem 1.11. Find the inverse function for the function given in Problem 1.3.
Solution

Here we have the quadratic function y = 2x?. Again we try to isolate x. First we divide both sides of
the equation by 2 to get x* = /2. Then we take the square root of both sides of the equation to get x =
* \/y/—z . In this case, because of the plus and minus signs, we really have two different inverse functions:

. y .. 'y

i) x=+ 3 (i) x=-— 3
This can be understood by inverting the graph of the original function (Fig. 1-4). As in Problem 1.10, we
rotate by 90° clockwise and then flip by 180° about the new horizontal axis to get the graph for the
inverse function shown in Fig. 1-7. Notice that there are now two values of x, one positive and one
negative, for each value of y. Each branch of the curve, above and below the axis, corresponds to the
choice of (i) or (ii) above, respectively, as the inverse function. Another interesting feature is that the
inverse function (either branch) is not defined for all values of y, but rather only for positive values of y
(see Fig. 1-7). It is often the case that a function y = f(x) is defined for all x, but the inverse function
x =f"1(y) is defined for only a limited range of y values.

Trigonometric Functions

Among the mathematical functions that are particularly important in a general physics course are
the trigonometric functions. The most commonly used trigonometric functions are the sine, cosine,

2 x=yf2
1 —
i | | | | Ly
0 5 10 15 20 25 30
2 -
4 x=-\y/2
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and tangent functions. They are most usually defined in terms of ratios of sides of a right triangle, in
which an angle (say, 0) plays the role of the independent variable. Figure 1-8 shows the rules for
obtaining the sine, cosine, and tangent of angles between 6 = 0° and § = 360°. The angle is always
measured counterclockwise from the positive horizontal axis to the hypotenuse of the right triangle.

opposite 0

ine of 0 inf=————=
sine 9 s hypotenuse &
djacent
cosine of ¢ cos = D _ 2 (1.1)
hypotenuse &
it
tangent of 0 tan 0 = ——OPPOSI £
adjacent a
Also, from (1.1)
o/h sin0
tan 0 = — = 1.2
afh  cos @ (2.2)

The trigonometric functions are positive or negative depending on the quadrant. The correct signs (+)
for the functions in all four quadrants can be determined by using Fig. 1-8. The rule is that the
opposite and adjacent sides of the triangles shown are to be considered positive or negative depending
on which side of the axis they are on, while the hypotenuses are always considered positive. (Note that
only in the first quadrant is the angle of interest § inside the triangle.) The graphs of the trigonometric
functions are shown in Fig. 1-9(@), (b), and (c), where we have plotted x = sin 0, x = cos 0, and

Second quadrant First quadrant
0,>0 0y>0
ay<0 a;>0

90° <9, < 180° 0°<09,<90°
sin 0, =0,/h, >0 sin 0; =0;/h; 20

cos 0,=a,/ <0
tan62=02/a2$0

cos O, =a;/h 20
tan 9, =o0y/a; 20

hy {
| |
6, 12
az\x 93 S :
| R TS l
| & 0, ay I
| -
i by I
Third quadrant 03:
03<0 : B
a3 <0 i 3 Fourth quadrant
|
180° < 0, < 270° [ o g
sin 03 = 03/h3 < 0 I G
cos O3=a3/h; <0 270° < 9,4 <360°

tan 8= 03/a; 20

Fig. 1-8

sin 0= 04/hy <0
cos 04 =ay/hy 20
tan 0, =04/a,<0
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x = tan 0, respectively. It is seen that the functions repeat themselves every time 0 winds through
360 °, clockwise or counterclockwise:

sin § = sin(f + 360°) = sin(6 + 720°) = - --
cos 0 = cos(6 + 360°) = cos(6 +720°) = --- (1.3)
tan 0 = tan(6 + 360°) = tan(f + 720°) = ---
Thus, for example, if & = 300°, we have
sin(300 °) = sin(—60°) c0s(300°) = cos(—60°) and tan(300°) = tan(—60°) (1.4)

Figure 1-9 indicates that the maximum and minimum values of the sine and cosine functions are *1.
This is a consequence of the fact that the length of the sides a and o can never exceed that of
the hypotenuse. The tangent, however, can vary from minus infinity to plus infinity, since
tan 6 = sin 6/cos 0 and the expression becomes infinite when the cosine becomes zero.

Problem 1.12. What is the sign of the sine, cosine, and tangent in each quadrant?

Solution

From Fig. 1-8, using the sign convention discussed, we see that in the first quadrant (where 6 is an
acute angle) o, a, and & are all positive, so all three functions are positive. In the second quadrant (where
6 is between 90° and 180 °), o and 4 are positive, but a is negative. Thus, sin 8 is positive, while cos 0
and tan 6 are negative. In the third quadrant (where 6 is between 180° and 270°), both o and a are
negative, and only / is positive. Thus, sin § and cos 6 are both negative, while tan 6 is positive. In the
fourth quadrant (where @ is between 270 ° and 360 °), o is negative, while a and # are positive. Thus,
sin @ and tan 6 are negative, while cos 8 is positive.

Problem 1.13. Show that sin 6 = cos(90° — 6); cos 6 = sin(90° — 6); tan(90° — 0) = cot 0
(where cot 6 is defined as cos 6/sin 6, and thus cot § = 1/tan 0).

Solution

Consider the right triangle in Fig. 1-10. Since opposite and adjacent sides for angle 6 are adjacent
and opposite sides, respectively, for angle (90° — 0), we get all three results.

sin @ = ﬁ = cos(90°- 0)
a
h

90°— 8 cos 0= = sin(90°— 9)

Fig. 1-10

Problem 1.14. Show that (a) cos 0 = —cos(180° — 0); (b) sin 6 = sin(180° — 6).
Solution

(a) We consider the second-quadrant triangle depicted in Fig. 1-11(a). For angle 6 we must consider o
and A positive and a negative. Then @ = —|a | and cos § = —|a |/h..On the other hand, (180° — 0)
is an acute angle in a triangle with positive sides o, |a|, and / (dotted triangle in first quadrant).
Therefore cos(180° — ) = | a |/h. Comparing, we get the result cos § = — cos(180° — 8).
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(b) Since side o is positive for both 0 and (180° — 0), the sine of each angle equals o/h, and they are
equal.

Problem 1.15. Show that sin® 6 + cos® 6 = 1 for all values of 0.

Note. sin® 0 stands for (sin 0)°, etc., and is the accepted way of writing the square of a
trigonometric function.

Solution

sin® 6 + cos” @ = (o/h)* + (alh)* = (0* + a®)/h’. But, by the pythagorean theorem, o> + a* = h%, or
(@ + Ay =1.



CHAP. 1] INTRODUCTION AND MATHEMATICAL BACKGROUND 13

Problem 1.16. Show that cos(—8) = cos 0; sin(—6) = —sin 0; tan(—0) = —tan 0.

Solution

By examining the graphs in Fig. 1-9, we see that the cosine is symmetric about the 6 = 0 mark,
while the sine and tangent are antisymmetric (i.e., if they assume a value at a given positive angle, they
will assume the exact negative of that value at the corresponding negative angle). This is precisely what
had to be shown. The same results follow directly from the definitions (Fig. 1-8). Consider an angle 0 in
the first quadrant and the corresponding angle —6 below the horizontal in the fourth quadrant, as shown
in Fig. 1-11(b). Angle (360 — 6) is the counterclockwise angle to the hypotenuse in the fourth quadrant,
so the trigonometric functions for (—#6) can be obtained from the triangle shown in the fourth quadrant
with the usual sign convention. The two triangles shown are congruent, so the sides a, 0, and % have the
same magnitudes in both quadrants, but side o has opposite signs in the two quadrants. Thus, since sine
and tangent involve side o, we have sin § = —sin(—0), tan § = —tan(—6). For the cosine, which does

not involve side o, cos 8 = cos(—0).

In general, to find the sine, cosine, or tangent of a particular angle, one has to use trigonometric tables
or a calculator. However, for certain angles that often come up in general physics problems, one can
obtain the values of the trigonometric functions from Fig. 1-12. The triangle in Fig. 1-12(a) is referred
to as a “30-60-90” degree triangle; Fig. 1-12(b) shows the isosceles right triangle; and Fig. 1-12(c) is
the “3-4-5” sides triangle. (In this last triangle, the angles given are not exact, but they are a good

approximation.)

60°

45° 53°

@ ®) ©
Fig. 1-12

Problem 1.17.
(a) Find the following from Fig. 1-12: sin 30°, cos 30°, tan 60°, cos 45°, sin 37°, cos 53°.

(b) Find the following values of the inverse trigonometric functions: sin_l(%), cos '(v/3/2), and

tan”l(l).

Solution

(@) From Fig. 1-12(a) and Eqs. (.I): sin 30°=o/h = % = 0.500; cos 30° = a/h = v/3/2 = 0.866;
tan 60° = o/a = 4/3/1 = 1.73. From Fig. 1-12(b): cos 45° = a/h = 1/v/2 = 0.707. From Fig.

1-12(c): sin 37° = o/h = ¥ = 0.600; cos 53° = alh = 2 = 0.600.

(b)) From the definition of inverse functions: x = sin § < ¢ =sin ' x. So # =sin™' (}) = sin 6 =1.
From Fig. 1-12(a) [or part (a)] we have 8 = 30°. However, since the sine is also positive in the
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second quadrant, we get a second solution: 6= 180° — 30°=150°. Similarly, § = cos™'
(V/3/2) = cos 8 = \/3/2 = 0 = 30°. Since cosine is also positive in the fourth quadrant, we have
a second solution: 6 =360°—30°=330°. Repeating for the next case:
0=tan”' 1= tan 6 = 1. From Fig. 1-12(b): tan 45°=1=1, so 6 = 45° Tangent is also
positive in the third quadrant, so we have another solution: 6 = 180° + 45° = 225°,

Actually there are an infinite number of solutions to part (b) if we include angles outside the range
from 0 ° to 360 °, as can be seen from Egs. (1.3), or by turning Figs. 1-9 (), (b), (¢) on their sides as in
Problems 1.10 and 1.11. However, since the angles repeat every 360°, it is usually sufficient to
consider only angles in the range 0° to 360 °.

Problem 1.18. Figure 1-13 shows a ramp of length L and angle 0, whose base is » = 6.25 m and
whose height is 2 = 2.15 m. Find (), 0, (b) L.

h=215m

b=625m
Fig. 1-13

Solution

(@) 0 =tan"'(h/b) = tan! (2.15/6.25) = tan ! (0.344). Using a calculator or tables, we get
6 = 19.0°, ignoring the solution in the third quadrant because we know 6 is acute.

(by We can get L from the fact that sin = h/L, so L =~h/sin @ or L =2.15m/sin 19.0° =
2.15 m/0.326 = 6.60 m. This result may be checked by use of the pythagorean theorem:

P=pP+r=0625m)’+215m)*>=43.7m®> o L=66lm

which checks within rounding errors.

Simultaneous Equations

Often in solving physics problems one encounters two relationships involving the same two
variables. Then both relationships can be valid only for specific values of the variables. To see this we
look at Figure 1-14, which shows the graphs of two functions between the variables y and x: y = f;(x)
and y = f5(x). As can be seen, for an arbitrary value of x the corresponding y values will be different
for the two functions. There is, however, one particular value of x (call it x,) for which the two
functions give the same value of y (call it y ;). This is the only pair of values of x and y that are valid
for (or “satisfy”) both relationships. We say that the two “simultaneous” equations between yand x
(given by the two functions) are “solved” by the values x, and y,. (If the curves cross in more than
one place, there exist additional pairs of values that satisfy both relationships, so there are additional
solutions to the pair of equations.)
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Y

Fig. 1-14

Sometimes the two relationships can be expressed in the particularly simple form
ax+ by = ¢ and @mx+ by =c (1.5a,b)
where a;, by, ¢; and a,, b,, ¢, are constants, and x, y are the variables. (A specific example would be
6x+3y=28 and 2x-3y=4 (1.6a,b)

Here a; =6, b; =3, ¢; =7, a; =2, b, = =3, ¢, = 4.) Such equations are represented by straight
lines on a graph, since one can rewrite them in the standard slope and intercept form

y=mx+b (1.7)

(See Problem 1.19.) Equations of the form (1.5) are therefore called linear equations. Since two
straight lines can cross at most once, there is either a single solution to the pair of equations or no
solution when they don’t cross at all.

Problem 1.19. Show that Eq. (1.6a), 6x + 3y = 8, is a straight line on a y vs. x graph.
Solution

Subtracting 6x from both sides of the equation we get 3y = —6x + 8. Then we divide both sides by
3togety=—2x+ %, which is the equation of a straight line expressed in standard form. It has slope
m = —2 and vertical intercept b = 3.

Problem 1.20. Find the solution of the pair of Egs. (/.6a) and (1.6b).
Solution

The two equations are

(i) 6x+3y=28 and (i) 2x—3y=4
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We must try to get an equation that involves only one of the variables so that it can be solved for the
value of the variable. In Problem 1.19 we showed that (i) can be rewritten as

(if) y=-2x+%
We substitute this expression for y into (ii), obtaining
(iv) 2x—3(-2x+%) =4
Performing the multiplication by —3 we get
(v) 2x+6x—8=4 or 8x =12

which yields x = ¢ = 3 = 1.5. Substituting back into (iii), we obtain y = —2(1.5) +§= -3 + § = L
As a check of our results we substitute our values for x and y back into (ii) and get
2(1.5) — 3(—1) =3 + 1 = 4, as required.

Problem 1.21. Solve the simultaneous equations

(i) z=3r+4 () z=12t-7

Except for the labeling of the variables, these are the straight-line equations of Problems 1.1 and 1.2
above.

Solution

The two expressions for z must be equal, or 3¢ + 4 = 12¢ —7. Bringing the terms with ¢ to one side
of the equation and the constant terms to the other yields 9¢ = 11 or 7 = 1. Then, substituting the value
of t into, say (i), we getz =3({) +4 =L +4="7%

Problem 1.22. Solve the simultaneous equations

(i) 3z+4t=-2 (i) 2z—12t=3
Solution

We could solve these equations by the techniques of Problems 1.20 and 1.21, but let us use another
method instead. We note that if we multiply both sides of (i) by 3 we get

(iil) 9z + 12t = —6

So the coefficient of £ has the same magnitude but opposite sign in both equations. We now add the left
sides of (ii) and (iii), so the variable ¢ cancels out. The result must equal the addition of the right sides of

the two equations, and we get 11z = -3 orz = —13-1. Substituting the value of z back into (i) yields
3(-2)+4t=-2 o H=-242%=-8B o =-1

[Check these results for z and ¢ by showing they satisfy (ii).]

Problem 1.23. Solve the simultaneous equations

() y=27 (i) 2x+y=12

Solution

Here only one of the equations is linear, the other is a quadratic. We can still solve for x and y, as
follows: First we isolate y on one side of (ii): ¥ = —2x + 12. Then we substitute this for y in (i) to get

(i) 2x? = —2x+ 12 or iv) 222 4+2x-12=0
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This is the well-known quadratic equation, of the general form
(v) a?+bx+c=0
where a, b, and ¢ are constants. Its solution is given by

(vi) x= —b 4+ (B2 —4ac)'?

2a
Forourcasea=2,b=2,and ¢c = —12, so
—2+(4+96)'* 24100 -2410
X = = =
4 4 4
Thus x; =2 and x, = —3 are the two solutions for x. As luck would have it, (iv), which can be reduced

to x* + x — 6 =0, can be factored into (x + 3}(x — 2) = 0, yielding the two values of x directly. We
now find the corresponding y values by substituting each x value into either (i) or (ii). Using (i) we get

n=22=22)"=8 y2 =202 =2(-3)" =18

1.3 MEASURING PHYSICAL QUANTITIES

Measurement and Units

To find precise relationships that describe physical phenomena we must be able to measure
physical quantities such as length, area, volume, velocity, acceleration, mass, time, and temperature.
To do this we need units of measurement for all the quantities we are interested in. For example, the
most commonly used unit of time is the second, that of length is the meter or the foot, and that of mass
1s the kilogram. Not all measurable quantities require their own units. Often the unit is automatically
defined in terms of other units. For instance, if we have a unit of length, say the meter, then we already
have units of area and volume: the square meter (a square 1 meter on a side) and the cubic meter (a
cube 1 meter on a side), respectively. Another example is the unit of velocity, the meter per second,
which is already defined in terms of units of length and time. Such units are called derived units. It
turns out that in the subject of mechanics (motion and distortion of objects), only three physical
quantities must have their units defined independently. These three quantities are usually taken to be
length, mass, and time, and their units are called fundamental units.

Standards

To define a fundamental unit, everyone must agree to pick some physical example of the quantity
to be measured and say that by definition it corresponds to one unit. Thus, for example, the unit of
mass, the kilogram, is defined as a mass equal to that of a particular platinum-iridium cylinder housed
in Sevres, near Paris, France. That physical specimen is called the standard which defines the unit.
The unit of length, the meter, used to be defined as the length of a particular platinum-iridium bar, but
it has since been redefined in terms of the length of a certain wavelength of light, and most recently in
terms of the distance light travels in a certain time interval. The standard for time has always been
defined in terms of some repetitive phenomenon, such as the spin of the earth on its axis, the
revolution of the earth about the sun, and most recently in terms of the oscillations of an atomic clock.
The idea of the standard is that everyone can check their measuring apparatus against the standard for
accuracy. In the case of time our everyday clocks can always be checked against the standard to make
sure that they tell the right time. Thus, the most reliable and reproducible object or process makes the
best standard.
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History of Units

Not too long ago, units for the same physical quantities were defined independently in different
countries and were all based on different standards. Today we still have different units used in different
countries, but they are now all based on the same standards. This was essential to avoiding confusion
and discrepancies in comparing measurements made in different parts of the world. The set of units
most commonly used throughout the world, and which is almost exclusively used in scientific work, is
called the International System of units, and abbreviated SI, from the French name, Systéme
International d’Unités. In mechanics the units are the meter (m), the kilogram (kg), and the second (s),
and are what is commonly called the metric or mks (meter-kilogram-second) system.

The units of the metric system are multiplied and subdivided by powers of 10 into commonly used
subunits. Examples are the gram (g), which is one-thousandth of a kilogram; the nanometer (nm),
which is one-billionth of a meter; the centimeter (cm), which is one-hundredth of a meter; the
kilometer (km), which is one thousand meters; and the millisecond (ms), which is one-thousandth of
a second. Indeed, the prefixes to the basic unit indicate what power of 10 to multiply or divide by.

In addition to the SI units, another common set of units used in the United States and a few other
countries is referred to as the English System. Here the fundamental units are length, time, and force,
which are respectively the foot (ft), the second (sec or s), and the pound (Ib). The foot is now defined
to be precisely 0.3048 meter, the second is the same in all systems, and the pound is defined in terms
of the weight of a certain mass (given in kilograms) at a certain location on the earth’s surface. (The
relation between weight and mass will be discussed in Chap. 5.)

Systems of Units

All measurements involve specifying a multiplicative nhumber and the associated unit as in, for
example, “the length of the table is 10 ft” or “the car traveled at 30 m/s.” One must be especially
careful in relating different measured quantities. For example, if the length of a table is 10 ft and an
extension of length 3 m is added on, what is the combined length? Clearly we cannot simply add the
two numbers: 10 ft + 3 m = 13? Before adding we must either convert 10 ft to the equivalent length
in meters or convert 3 m to the corresponding length in feet.

It is usual to use a consistent set of units when dealing with a given problem. Thus if we use the
mks system, it means not only that the fundamental units are the meter, kilogram, and second but also
that all the derived units are based on these three. Thus, the unit of velocity is the meter per second
(m/s) and the unit of force is the newton (N) (this unit will be discussed in Chap. 5). This assures us
that all mathematical equations will be consistent.

Units as Algebraic Quantities

Whenever we multiply or divide physical quantities, we have to figure out what happens to the
units. For example, we know that for something moving at constant speed, distance = speed x time.
Suppose the speed is 50 feet per second (50 ft/s). To find the distance traveled in 10 s we multiply the
speed by the time to get: distance = (50 ft/s) (10 s) = 500 ft.

Notice that the units were treated as algebraic quantities; the seconds canceled out in the
numerator and denominator, giving the result in feet.

Consider a conversion from one unit to another. Suppose we are told that a certain backyard is
30 ft long, and we want to express the length in meters. We multiply the length in feet by the number
of meters per foot (m/ft) to get the length in meters: (30 ft) (0.3048 m/ft) = 9.144 m.
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Problem 1.24. A certain task takes 12 min to accomplish. Find the time it takes in seconds; in
hours.

Solution

To get the time in seconds we multiply the time in minutes by the number of seconds per minute:
t = (12 mifi) (60 s/mifi) = 720 s. To get the time in hours we multiply by the number of hours per
minute: ¢ = (12 mifi) [(315) Wmifi] = 0.20 h. Equivalently, we could divide the time in minutes by the
number of minutes per hour: ¢ = (12 min)/(60 min/h). Separating the numerical and unit parts: ¢ = (é—%
[min/(min/h)] = 0.20(pmifi) (W/mifi) = 0.20 h, as before.

Problem 1.25. Convert the speed v = 60 miles per hour to fi/s.
Solution

v = 60 mi/h. We must change both the length unit and the time unit to convert this to fi/s. Recalling
that there are 5280 feet in a mile (5280 ft/mi) and 3600 seconds in an hour (3600 s/h), we calculate as
follows:

(60 mi/h) (5280 ft/mi) _ 60 - 5280
N 3600 s/h © 3600

(et /) (ft/mat) (1/s) = 88 ft/s

Problem 1.26. The dimensions of a rectangular block are width w = 0.10 m, length / = 0.20 m, and
height # = 0.30 m. Find the volume in cubic centimeters (cm®).

Solution

Method 1. We convert each dimension to cm: w = (0.10 i) (100 cm/mi) = 10 cm, / = (0.20 o)
(100 cm/nf) = 20 cm, /& = (0.30 nt) (100 cm/nf) = 30 cm. Then the volume v=w-/-h = (10 cm)
(20 cm) (30 cm) = 6000 cm’.

Method 2. We first get the volume in cubic meters (m’: v=(0.10m) (0.20 m)
(0.30 m) = 0.0060 m®. Next we determine how many cubic centimeters (cm®) there are in a cubic
meter (m*). We note that 1 m = 100 cm, so (1 m)* = (100 cm)® = (100 cm) (100 cm) (100 cm), or
1 m® = 1,000,000 cm’®. Thus the conversion factor is 1,000,000 cm®>/m®. Then v = (0.0060 xyi3)
(1,000,000 cm*/nf®) = 6000 cm’.

It turns out that units can be treated algebraically in any physics equation; provided the units are
consistent, they will combine to give the correct final unit. As an example of a more complicated
situation, let us take the equation describing how far an object travels under constant acceleration
(acceleration will be discussed in Chapter 2). The equation is

x = vt + 3ar® _ (1.8)

where v, is the velocity at the starting time (¢ = 0 s), a is the constant acceleration, ¢ is the time
elapsed in seconds, and x represents how far the object has moved in the elapsed time.

Problem 1.27. In Eq. (1.8) we are given that v, = 20 nv/s and that the acceleration corresponds to an
increase in velocity of 3 m/s every second. Thus, a = (3 m/s)/s = 3 m/s®. Find x when £ = 10 s.

Solution
To find x we substitute all the known information into Eq. (1.8), getting
x = (20m/s) (10s) +1(3 m/s?) (10'5)°
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According to our general rule, seconds cancel out of the numerator and denominator in the first
expression on the right and (seconds)® cancel out of the numerator and denominator of the second
expression on the right:

x = (20 m/4) (10 £) +1(3 m/#%) (100 £) =200 m + 150 m = 350 m

Always include units in your manipulations, and carry the algebra through on the units. This helps
you to keep track of the units and indicates an error in your work if the units don’t come out right.

Problem 1.28. In (1.8) find x, in meters, if vy = 50 fi/s, @ = 200 cm/s%, and ¢ = 1.5 min.
Solution

We can’t just enter the information into the equation, since the units are not consistent. Since we
want x in meters, we convert all distances to meters

vo = (50 ft/s) (0.3048 m/ft) = 15.24 m/s a = (200 gur/s®) (0.01 m/car) = 2.00 m/s°.
Similarly we convert minutes to seconds: ¢ = (1.5 paifi) (60 s/mir) = 90 s. Now (I.8) gives
x = (15.24 m/s) (90 s) +1(2.00 m/s%) (90 s)* = 1372 m + 8100 m = 9472 m.

Significant Figures

Whenever a measured value is given for a physical quantity, it can only be an approximation
because it is not possible to measure anything with “infinite” accuracy. For example, in measuring the
length of a table with a meterstick one is limited to the accuracy of the rule lines on the stick [sec Fig.
1-15(a)]. Even if the meterstick were absolutely accurate (an impossibility), one would still have to
estimate the fraction of the smallest interval etched on the stick [see Fig. 1-15(b)]. Even if the person
had the “superhuman” ability to read an “infinitely” accurate ruler, there would still be uncertainty
since the apparently smooth edge of the table has some irregularities [Fig. 1-15(c)].

A scientist or engineer who specifies the numerical value of a physical quantity keeps only as
many figures in the number as are justified by the accuracy to which the physical quantity is known.
Thus, if in measuring the length of a table one uses a good meterstick with centimeter gradations
etched on it and estimates the fraction of an interval between centimeter marks, one gives the
measured value to a tenth of a centimeter, say L = 3.427 m. The 7 represents an estimate that may be
off by one- or two-tenths of a centimeter. In other words specifying that L = 3.427 m implies that one
is sure about the first three digits (3.42) but somewhat uncertain about the last digit. Nonetheless,
because one has some knowledge about the last digit, the length is said to have been measured to four
significant figures. For any measured quantity there is always some uncertainty in the last digit given.

The rules for dealing with uncertainties in measured quantities is typically discussed in detail in
the laboratory section of a course. We give an overview of the subject in the following problems.

Problem 1.29. Five lengths have been measured and recorded as follows:

L, =3427m L,=35m 1;=0333m Ly=12m Ls = 32.000 m
(a) Approximately what uncertainty is there in each measurement?

(b) What is the approximate percentage uncertainty in each measurement?
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Fig. 1-15

Solution

(@) About one or two millimeters for L, Ls, and Ls; about one or two-tenths or a meter for L,; and
about one or two meters for L4. Note the significance of placing the zeros after the decimal point in
Ls. Although mathematically they don’t change the value of Ls, they indicate the accuracy to which
Ls has been determined.

(b) For L, suppose that the uncertainty is two millimeters. Two out of 3427 corresponds to about six
out of ten thousand, or multiplying by 100 to get percent, six hundredths of one percent. Because
two millimeters is merely an estimate of the uncertainty, we can say that the percentage uncertainty
in 3.427 m is several hundredths of one percent. Similarly for L, we have an uncertainty of, say
two out of 35, which corresponds to several percent. For L; we have an uncertainty of about two
out of 333, which corresponds to several tenths of one percent. For L, we have about two out of
twelve uncertainty, which is about 20 percent. For Ls we have about two parts in 32,000
uncertainty, which corresponds to several thousandths of one percent.

The number of significant figures thus provides a rough measure of percent uncertainty: two
significant figures indicates several percent uncertainty, three significant figures indicates several
tenths of a percent uncertainty; etc. The uncertainty itself indicates that the true value can be greater
than or less than the recorded value by the amount of the uncertainty. The same holds for percent
uncertainties.
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Problem 1.30. For the lengths given in the previous problem:

(a) If one adds L, and L3, how should one record the result?

(b) If one adds L; and L,, how should one record the result?
Solution

(@ Li+L;=3427m+ 0333 m=3.760 m. Since each length is accurate to within a few
millimeters, their sum is also. The last zero in the sum should be kept; otherwise an uncertainty
of a few centimeters would be implied.

) L +L,=3427m+ 3.5m=6.9 m No chain is stronger than its weakest link, and here the
uncertainty in L, dominates. It is already tenths of a meter, and the sum of the lengths can’t have
greater certainty than that.

Problem 1.31. For the length; of Problem 1.29:
(a) If one subtracts L; from L,, how should one record the result?
(b) Repeat for L, — L;.

Solution

(@ Ly — L;=3.427 m — 0.333 m = 3.094 m. Since each length is accurate to a few millimeters, the
difference is also accurate to a few millimeters, and hence the millimeter digit, 4, is kept.

() Ly — Ly =3.5m — 3427 m = 0.1 m. As in Problem 1.30(b) we need to keep only one place to
the right of the decimal point.

In this case it is interesting to examine the percentage uncertainty in the result. Since there is only
one significant figure, the uncertainty is one or two parts out of one! Thus the uncertainty is greater
than 100%, even though the percent uncertainty in L, is only a few percent. The result of 0.1 m may
actually be as high as 0.3 m or as low as —0.1 m (meaning that L, might actually have been smaller
than L;). This drastic loss of accuracy occurs when one subtracts two measured quantities that are very
close in value, producing a difference that is comparable to the uncertainties in the individual values.

Problem 1.32. Suppose that ; and L, of Problem 1.29 refer to the length and width of a rectangular
tabletop. What is the area of the tabletop and how should it be recorded?

Solution

Area = L - L, = ? The question is how many significant figures should be kept in the product. This
can be answered by noting that the percent uncertainty in the product should be roughly the same as the
larger of the percent uncertainties in the two factors. To understand why this is reasonable, let as assume
that L, is known perfectly (not a real possibility). Then if L, were incteased by 10% the area would be
increased by 10% also (see Fig. 1-16). If, on the other hand, L, were reduced by, say, 20%, then the area
would be reduced by 20% also. If L, were not exactly known but had an error of, say, several hundreths
of a percent, as in our actual case, this would have a negligible effect on the percent uncertainty in the
product. Thus, the percent uncertainty in the product is indeed approximately the same as the larger of
the individual percent uncertainties.
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Ly=L,-20%L,=08L,

[}

L,
Ly=L, + 10%L, = L.1L,

Ar=Lyl,
Ay=LiLy= 1L L= 1.1A,= A, + 10%A,
AJ=L,L}=08L,L,= 084, = Ay~ 20%A,

Fig. 1-16

For our case the larger percent uncertainty is in L,, where it was shown in Problem 1.29 to be
several percent. Then, following our analysis (after Problem 1.29) we should keep at most three
significant figures in the product:

A= (3427m)(3.5m) = 12.0 m?

One could argue that we should keep only two significant figures in Problem 1.32 but this would
imply a larger percentage uncertainty than is justified. While one can always determine in a given
problem whether to do so or not, keeping one more significant figure in the product than found in the
cruder factor is often a reasonable thing to do.

The same rule that holds for the number of significant figures in the product of two numbers holds
for the quotient of two numbers as well. This is because, as in multiplication, the percent uncertainty

in the quotient is roughly the same as the larger of the percent uncertainties in the quantities being
divided.

Problem 1.33. A bicycle travels 634.73 ft in 42 s. What is the speed of the bicycle?

Solution

distance 63473 1t
time =~ 42§

Speed = =15.11ft/s

Note. Often in a physics problem certain numbers appear that are to be presumed exact.
Consider the circumference of a circle C = 2nR, where R is the measured radius. The 2
and the m are exact mathematical quantities, not measured quantities. Suppose, for
example, R is given as R = 2.16 m. What is the circumference C? The number of
significant figures in the answer will be the same as or at most one more than that of R (to
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reflect the percentage uncertainty in R). Since 7 is an infinite decimal, we keep only as
many places as are necessary to not lessen the accuracy of the answer. In this case three-
place accuracy suffices:

C=2(3.14)(2.16 m) = 13.6

where we have rounded up after eliminating the last digit.

A practical note for students. There are times when an instructor will give a problem in which a
physical quantity is presumed to be more accurate than the number of significant figures specified.
For example, consider the following problem: “An automobile travels at a speed of 32.5 m/s. How far
does it travel in 3 s?” This could be a trick question by the instructor to see if you remember how to
deal with significant figures, but more likely the intention is for you to assume the time is given to at
least the same accuracy as the speed. Always check with your instructor if you are not sure of the
intention.

Scientific Notation

Sometimes there is a natural ambiguity as to the intended number of significant figures in a
reported value. Suppose you are told the length of a field is 3200 m. The last two zeros may be
significant figures, or they may merely show you where the decimal point is. This ambiguity can be
avoided by specifying the length in scientific notation. In this notation every number is expressed with
exactly one digit to the left of the decimal point, and then multiplied by the appropriate power of 10.
For example, the number 356 is expressed as 3.56 - 10%, and the length 0.0003246 cm is expressed as
3.246 - 10~* cm. The power of 10, called the exponent, can be positive or negative, and tells you how
many digits to move the decimal point to the right or left, respectively. To add or subtract two numbers
in scientific notation, one first has to convert them to numbers with the same exponent. For example,

3.56 - 10% 4 2.437 - 10> = 0.356 - 10° +2.437-10° = 2.793 - 10°

To multiply or divide two numbers is particularly easy since multiplying or dividing powers of 10 is
accomplished by adding or subtracting the exponents, respectively.

Problem 1.34. Express in scientific notation the product of (a) 356 and 2000, (b) 356 and
0.0000200; find the quotient of (c) 356 divided by 2000, (d) 356 divided by 0.0000200.

Solution
3.56 - 102
. 2 . 3 = . 3 _ =1 - -1
(@) (3.56-10%)(2.000-10%) = 7.12- 10 () oon—gs = 1-78-10
3.56- 107
. 2 . -5 = . -3 : —_— = - 7
(6) (3.56-10%)(2.00 - 10-5) =7.12- 10 (@) oo =178-10

Problems for Review and Mind Stretching |

Problem 1.35. Variables y and x are related by the equation

6y+3x=12 (1)
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(@) Write y as a function of x.

(b) Calculate the value of y at the following x values: x = —2, —1, 0, 1, 2.

(c) Find the slope and y intercept of the straight-line graph of the function.
Solution

“(a) Isolate y by first subtracting 3x from each side of (i): 6y = —3x + 12. Next, divide both sides by 6
to get

which is the desired result.

(b) Substitute the values into (ii) to get

=f(-2)=—3(-2)+2=3 y=f()=—41)+2=15
=f(-1)=-}(-1)+2=25 y=r(2)=-32)+2=1
y=f(0)=—-30)+2=2

(¢) y=mx+b, where m is the slope and b is the y-intercept. For our case, (ii) above, we have
slope = —1, y intercept = 2.

Problem 1.36. Find the equation of the straight line shown in Fig. 1-17.

y
8 |-
6 -
4
2
_1 | | | x
-2 3 4 5

Fig. 1-17

A
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Solution

For a general straight line, y = Ax + B. From the graph we see that when x =0, y = —6, so the
intercept is B = —6. The slope 4 can be obtained by considering the two points where the line crosses
the axes and the right triangle formed by the dashed lines in the figure.

vertical rise 6
horizontal shift 2

so A = 3. Then our equation is y = 3x — 6.

Slope = 3

Problem 1.37. Given the function y = f(x) = 4x* + 2.

(a) Show that the graph of the function is symmetric about the y axis, and find the smallest value
of y.

(b) Find the inverse function x = £~ '(y), and sketch what it looks like on a graph.
Solution

(a) Since y takes on the same values at the points x and —x, the curve will be symmetric about a
vertical line through x = 0, or in other words, about the y axis. y will be smallest when the term 4x”
is smallest, and that occurs at x = 0. Thus, y, = 2.

() y=4x2+2 =>4 =y—2 = x2=0.25y—-0.5 or x=1+/0.25-0.5

So we have two branches of the inverse function:

x=f"Yy) =+/-025r-05 and x=£"1y) =—-/025y-05

defined for all values of y > 2. A rough graph of the inverse function is shown in Fig. 1-18.

X

—
Nf—

Fig. 1-18
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Problem 1,38,
(a) Find the sine, cosine, and tangent of the angle § shown in Fig. 1-19.

(b) Repeat for angle ¢.

Fig. 1-19

Solution

(@) Since cos 6 = a/h, we have cos § =7 = 0.385. To obtain sin 6 and tan § we need the side B

opposite 6. Using the pythagorean theorem
52+ B* =132 or B =132-52=169-25=144=B=12
Then sin § = £ = 0.923; tan § = 12 = 2.40.

(b) We could repeat the calculations of part (a) for the case of ¢. Instead we note that since
¢ =90° — 6 (complementary angles), we have

1
cos ¢ = sinf = 0.923 sing = cosf = 0.385 tan ¢ = onl 0.417

Problem 1.39. Determine the angles 6 and ¢ in Fig. 1-19.
Solution

Using the results of Prob. 1.38, we have 8 = sin™' (0.923). Utilizing the inverse sine function on a
calculator (or looking up 8 in a trigonometric table), we get 6 = 67.4°. Then, ¢ = 90° — 6 = 22.6°. As
a check we calculate tan 22.6° = 0.416, which agrees with Problem 1.38(®) to within rounding errors,

Problem 1.40. Solve the simultaneous equations
(i) y=5t-17 (i) y=£-1
Solution

Since both right sides equal y, they equal each other: # — 1 = 5¢ — 7. Bringing all terms to the left
side of the equation, we get

(i) 2—5t+6=0

This can be factored, yielding (+ — 3) (# — 2) = 0, and the two solutions for ¢ are t; =3 and £, = 2.
Then, from either (i) or (ii) we get the corresponding values of y:

y1=8 and y2=3

Ve
XN
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Problem 1.41. Suppose in Eq. (1.8) (preceding Problem 1.27) we are given a = 6.25 m/s? and told
that x = 122 m when ¢ = 3.15 s. Find v,.

Solution

x=v0t+%at2
122 m = vy(3.15 5) + 1(6.25 m/s°) (3.15 5)°
122 m = v(3.158) +31.0 m
91 m = (3.15s)vy
vy =28.9m/s

Problem 1.42. Two measured lengths are recorded as /; = 23.2 m and /, = 21.749 m.

(@) How big an uncertainty would you roughly estimate there is in the value of /;? Repeat for /.

(b) How big, roughly, are the percent uncertainties in /; and 5,?

(¢) If the two lengths are to be added, how would one record their sum L?

(d) What is the uncertainty in the recorded sum?

Solution

(@)

®)

©
@

Assume an uncertainty between 1 and 2 in the last significant digit of each number. Then for /; the
uncertainty is 0.1 to 0.2 m. For /, it is 0.001 to 0.002 m.

For definiteness we use 0.2 m as the uncertainty in /;. The percent uncertainty is then (0.2/23.2)
(100) = 0.86%. Hence, there is about a 1% uncertainty in ;. For [, we get about (0.002/22)
(100) = 0.009%. Hence, /; has about a 0.01% uncertainty.

L=L+5=232m+21.749 m =449 m.

The uncertainty of the sum should be roughly that of the less precisely known length. Therefore the
uncertainty in L is about 0.1 to 0.2 m. (Indeed, this is precisely why we keep the sum to three
significant figures.)

Problem 1.43. Assume /; and I, of Problem 1.42 are the length and width of a swimming pool.

(@) How would you record the area 4?

(b) What is the percent uncertainty in the area?

(¢) What is the uncertainty in the area?

Solution

(a)
®)

©

A=0b=(232m)(21.749 m) = 505 m.

The percent uncertainty in a product of two factors is about the same as the larger percent
uncertainty of the two factors. In our case this is /1, and from Problem 1.42 the percent uncertainty
is about 1%.

Since the percent uncertainty in the area is about 1%, and the area is about 500 m?, the uncertainty
in the area is about 1% of 500 m? or about 5 m”.
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Problem 1.44. Express in scientific notation (a) the lengths /; = 436.37 m and [, = 0.00169 m,
(b) the product of /; and /5, and (c) the ratio of /; to Z,.

Solution

(a) 5, =4.3637 - 102 m L=169-103m

(b) hil, = (4.3637- 102 m) (1.69 - 1073 m)=7-37- 10} m?
L 43637 102 m _ 5

(¢) E =169 107 m = 2.58-10

Note that in parts (b) and (c¢) we keep three significant figures, and that in part (¢) the answer has no units
(is dimensionless) since it is the ratio of two lengths.

Supplementary Problems

Problem 1.45. Given the function y = f(x) = 10x — 24, find (a) its slope and y intercept; (b) the inverse
function x = £ ~'(»); (c) the slope and x intercept of the inverse function.

Ans. (a) 10 and —24; (b)) x = 0.1y + 2.4; (¢) 0.1 and 2.4
Problem 1.46. Given the equation 12x + 16y = 24, find y as a function of x, and x as a function of y. Are these
two functions inverses of each other?

Ans. y=—-075x+ 15, x= —(‘3—‘)y +2; yes

Problem 1.47. Find the inverse of the function found in (ii) of Problem 1.35.
Ans. x=-2y+4

Problem 1.48. Find both branches of the inverse function of z = #* — 4. For what values of z is this defined?

Ans. * \z+4;z> —4

Problem 1.49. In the triangle shown in Fig. 1-20, find sides 4 and B.
Ans.  26.0; 15.0

30°

Fig. 1-20
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A student wants to determine the height of a flagpole in the schoolyard. She paces off 100 ft

from the base of the flagpole and then measures the angle between the gound and a line of sight to the top of the
flagpole to be 30°.

(@) What is the height of the flagpole?
(b) If, instead, the flagpole had been 85 ft tall, what angle would she have gotten?

Ans.

Problem 1.51.

Ans.

Problem 1.52.

(@) 57.7 ft; (b) 40.4°

If sin 6 = 0.90 and @ is acute, find cos € and tan § without first finding 6.
cos 0 =0.44; tan 0 = 2.05

Convert each of the following to the sine of an acute angle: (i) cos 55°, (ii) sin 135°,

(iii) sin 206°, (iv) sin 340°, (v) sin(—40°).

Ans.

Problem 1.53.

(i) sin 35°, (ii) sin 45°, (iii) —sin 26°, (iv) —sin 20°, (v) —sin 40°

Convert each of the following to the cosine of an acute angle: (i) sin 15°, (i) cos 128°,

(iii) cos 199°, (iv) cos 295 °, (v) cos(—130°).

Ans.

Problem 1.54.

(i) cos 75°, (i) —cos 52°, (iii) —cos 19°, (iv) cos 65°, (v) —cos 50°

Convert each of the following to the tangent of an acute angle: (i) tan 170°, (ii) tan 250°,

(iii) tan 310°, (iv) tan(—25 °), (v) cot 22°.

Ans.

Problem 1.55.

Ans.

Problem 1.56.

Ans.

Problem 1.57.

Ans.

Problem 1.58.

Ans.

Problem 1.59.

Ans.

Problem 1.60.
Vin m3,

Ans.

(i) —tan 10°, (i) tan 70°, (iii) —tan 50°, (iv) —tan 25°, (v) tan 68°

Find the solution of the pair of equations 5y + 8x = 1 and 4y — 2x = 5.

x=-Ly=1

Solve the simultaneous equations 6x + y =2 and 2x + 5y = 3.

D=

sy =

B[

x =

Find the solutions of the pair of equations y — 3x = 1 and y = x* — 9.

(x=-2,y=-5); x=5,y=16)

Find all the solutions to the pair of equations y = 3x* — 4 and y = 2x° + 2x + 4.
x=-2,y=8;(x=4,y=44

A snail moves at a speed of 80 ft/h. How many meters will it travel in 100 s?

0.677 m
A rectangular block has dimensions L = 3.24 ft, W = 39.2 cm, H = 1.62 m. Find the volume

0.627 m*
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Problem 1.61.

(a) Ifthe length [, in Problem 1.42 were to be subtracted from the length /;, how should the resulting length L'
be recorded?

(b) What, roughly, is the uncertainty in L'?
(c) Estimate the percent uncertainty in the length L'.

Ans.  (a) 1.5 m; (b) 0.1 to 0.4 m; (c) 10 to 30%

Problem 1.62. Give a rough estimate of the uncertainty and a percent uncertainty in each of the following
measured quantities: (@) 1.8307 m; (b) 321 s; (¢) 12 ft; (d) 0.000223 m.

Ans. (@) 0.0002 m, 0.01%; (B) 2's, 1%; (c) 2 ft, 20%; (d) 0.000002 m, 1%

Problem 1.63. Assuming an uncertainty of 2 in the last digit of each measurement of Problem 1.62, find its
range of possible values.

Ans. (@) 1.8305 to 1.8309 m; (b) 319 to 323 s; (c) 10 to 14 fi; (d) 0.000221 to 0.000225 m

Problem 1.64. The length of a rug is measured to be 3.1944 m. The width is measured to be 6.22 ft.

(@) Find the area in m?.
(b) Find the approximate percent uncertainty in the area.
(c) Give a rough estimate of the actual uncertainty in the area.

Ans.  (a) 6.06 m%; (b) about 0.5%; (c) about 0.03 m?

Problem 1.65.

(@) Find the perimeter of the rug in Problem 1.64 in meters.

(b) Is the percent uncertainty in the perimeter somewhat smaller or somewhat larger than the percent
uncertainty in the width?

Ans.  (a) 10.18 m; (b) somewhat smaller

Problem 1.66. Referring to Problem 1.50(a), assume that the uncertainty in the measured angle is 2°. If the
100-ft distance is known with great accuracy, what is the uncertainty in the calculated height of the flagpole?

Ans. 5 ft

Problem 1.67. Given the formula z = xy/#, let x = 132, y = 0.00736, and # = 0.0955.

(@) Write x, y, and ¢, in scientific notation.

(b) Find z*in scientific notation.

Ans. (a) 1.32-10% 7.36-1073; 9.55 - 107%; (b) 1.065 - 10°

Problem 1.68. Given the formula x = vof + %atz, suppose that vy = 32.666 m/s, a = .00177 m/s®, and
t =322 s. Convert all quantities to scientific notation and determine the value of x.

Ans.  3.2666-10" m/s; 1.77 - 107% m/s; 3.22-10% s; 1.06 - 10° m



Chapter 2

Motion in a Straight Line

In this chapter we will assume that all quantities are correct to three significant figures. Thus
Im=100m,2s=2.00s, 1.5 m/s = 1.50 m/s, etc.

2.1 TERMINOLOGY

Kinematics is the study of the physical quantities that describe the motion of an object. The most
fundamental of these quantities are the displacement (where the object is) and the time (when it is
there). From these two quantities we can define velocity, speed, and acceleration. To simplify the
mathematics, in this chapter we restrict the discussion to straight-line, or one-dimensional, motion.

One-Dimensional Coordinate System

We call the straight line along which motion takes place the x-axis. It is conventional to label a
horizontal axis by x and a vertical axis by y, but the choice is arbitrary. We pick a point on the axis and -
call it the origin. Each point of the axis is “labeled” with its coordinate which, numerically, is the
distance of the point from the origin (expressed in, say, meters). Coordinates are taken positive in one
direction (usually to the right of the origin along a horizontal axis) and negative in the opposite
direction. The labeled axis constitutes our one-dimensional coordinate system.

Particle Description

For an object to be located at a definite point on the x axis at a given time, it would have to be
infinitesimally small. Such an idealized object is called a particle. If we are dealing with a larger
object that is not rotating, such as a block sliding on the floor, we can pick one particular point of the
object and always use that point to specify the location of the object. We can thus always treat the
motion as if it were that of a particle. :

2.2 DISPLACEMENT

Absolute displacement specifies a particle’s location as measured from the origin. It has both a
magnitude and a sign. Its magnitude is the straight-line distance from the origin to the location of the
particle. Its sign is positive if the particle is on the positive side of the axis, and negative if it is on the
negative side. Absolute displacement thus corresponds exactly to the coordinate at which the particle
is located on the axis. Figure 2-1 shows an x axis with positive chosen to the right. The absolute
displacements when the particle is at the positions a, b, or ¢ are x,, x;, ot x,, respectively. The arrows
are drawn in to show if the displacement is to the right (positive) or to the left (negative).

Relative displacement is the location of a particle as measured from an arbztrarjy point of the
axis. Thus, in Fig. 2-1, dp, is the displacement of the particle at position x, relative to position x,,.
Note that dp, = x; — X,. Similarly, d, is the displacement of the particle at x, relative to position x,,
and d., = x. — x,. Like absolute displacement, relative displacement can be either positive or
negative. If right has been chosen as the positive direction, then the relative displacement is negative
when the position of the particle is to the left of the position from which it is measured.

32
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Xe o] Xa Xb

v

- dpg = dp—dg,

Fig. 2-1

Problem 2.1. In Fig. 2-1 letx, = 3 m, x, = 7 m, x, = —5 m. Find the magnitudes and signs of the
relative displacements dp,, d.,, and d,,.

Solution

dpey=xp—x,=7Tm—-3m=4m
Thus the magnitude of dj, is 4 m and the sign is positive.
, deg=%—-%x,=(—5m)—3m=-8m
Thus d,, has magnitude 8 m and is negative (x. is to the left of x,).
dope =%, —%x.=+8m

(As expected, dy. = —d,.)

2.3 VELOCITY AND SPEED .

Average Velocity

If a particle is located at position x; at time #; and moves so that it occupies a different position x,
at a later time 1,, then the average velocity v,, of the particle over that time period is defined as the
relative displacement; dy; = x, — x1, divided by the time elapsed, &, — #:
XX
Ver =

Since £, is a later time than ¢, the denominator in (2.1) is always positive. The sign of v,, is thus the
sign of the relative displacement, and thus it indicates whether the particle has moved to the right
(plus) or to the left (minus). The magnitude, | v,y |, is just the straight-line distance from x; to x,
divided by the elapsed time, #, — #;. Average velocity is thus the “time rate of change of
displacement” or the average change in displacement per unit time for the given time interval. The
units are those of distance divided by time, and the SI units are meters/second (m/s). Other units
commonly used are cm/s, ft/s, and mph (mi/h) (see Chap. 1).

2.1)

Problem 2.2. Refer to Problem 2.1. A moving particle passes point a at time #, = 4 s, point b at
time 7, = 6 s, and point c at £, = 9 s. Find the magnitude and direction of the average velocity of the
particle in the time interval from (a) ¢, to t,, (b) 1, to £, (¢) t, to Z..

Solution

(a) By applying (2.1)

Xp — Xa

Tm—3m 4m
Vav = = =

=2m/s

ty, — 1, T 6s—4s —Z—S
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Thus the magnitude of v,, is 2 m/s, and the direction is to the right.

Xc—Xxp, —-Sm—-—Tm —12m
av — = = :—'4
(8) v t.—t 9s—6s 3s m/s

The magnitude of v,, is 4 m/s, and the direction is to the left.
Xe—X; _—5m—3m —8m
t,—t, 9s—4s  5s
The magnitude of v,, i8 1.6 m/s, and the direction is to the left,

(C) Vav = =-1.6 m/s

Average Speed

Average speed is defined as the total distance traveled in a given time interval divided by that
time interval. Since distance traveled is always positive, the average speed is always positive. Its units
are the same as those of velocity. At first glance it might seem that the average speed is the same as the
magnitude of the average velocity, but this is not always the case as will be illustrated by the following
problem.

" Problem 2.3. Find the average speeds over the three time intervals of Problem 2.2. Suppose the
particle first moved to the right from point x, to point x;, and then moved to the left past x, and on to
Xe-

Solution
dist: -x, Tm-3
(a) Average speed = tsi;lr;ce = );i _2 = 6nsl —2 Isn =2m/s
distance xp+|x.|] 7m+5m
= = = = 4
() Average speed e =7, 9s—6s m/s
’ — X . 4 12
(c) Average speed = (6 = %) + (% +]xe) _4m+12m =32m/s

t,— 1,  9s—4s

Note. A comparison of Problem 2.2 and 2.3 shows that in one-way motion, average speed
equals magnitude of average velocity. However, when a particle “backtracks,” the
distance covered exceeds the magnitude of the relative displacement, so average speed
here exceeds magnitude of average velocity.

2.4 INSTANTANEOUS VELOCITY

Graph of Motion

The average velocity conveys a sense of how fast (on the average) and in what direction (on the
average) a particle is moving. Can one do better than this?

The presumption of classical physics is that, at least in principle, one can know the precise
location of a particle at any instant of time. (One might, for instance, make a videotape of the motion
of a particle, and might then play it at normal speed while a clock with a moving second hand appears
on screen.) Thus in principle, one knows the displacement x as a function (Chap. 1) of the time #; or
what comes to the same thing, one can plot x vs. ¢ on a graph such as that shown in Fig. 2-2. From the
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x(m)

1(s)

Fig. 2-2

graph (or the function) a much more precise description of velocity can be extracted. We start by
exploring the graph.

Problem 2.4. In Fig. 2-2, assume that x, =3 m at f,=4s, x,=5mat ,=4.5s, x;=4m at
tr=53s,andx, =Tmats, =6s.

(@) Tn which direction is the particle moving, between ¢, and ¢,? ¢, and 7 ¢rand £?
(b) What is the average velocity from ¢, to £.7 t,to &7 frto 1?7 1,10 15?

Solution

(@) x is increasing in the entire interval between #, and f,, so the particle is moving to the right.
Similarly, x is decreasing throughout the interval £, to z; the particle is moving to the left. Clearly,
t. is the time and x, is the point at which the particle first changed its direction of motion. Finally, x
is increasing again throughout the interval # to #, and the particle is again moving to the right.
Clearly, the direction of motion changed from left to right at (¢, xs). As can be seen, when a
particle changes direction its displacement is either a maximum or a minimum point on the x vs. ¢

graph.
) vav,ae=);::z=52_5%=4m/s
=
o= 535 =07 9

Finally, for the entire interval,

7m—3m

6s—4s =2m/s

Vay,ab =

In Problem 2.4 the average velocities in the three subintervals collectively give us much more
detailed information than does the average velocity in the overall interval #, to #,. Clearly, if we divide
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the interval ¢, to #, into a larger and larger number of smaller and smaller subintervals and calculate
average velocities in each of them, then we obtain more and more precise information on the motion
of the particle.

Geometrical Interpretation of Average Velocity on an x vs. t Graph

Figure 2-3(a) shows a portion of the graph in Fig. 2-2 on a larger scale. The dashed straight line is
the chord ae, which makes an angle 6 with the horizontal, and is the hypotenuse of a right triangle
whose side opposite to 0 is x, —x, and whose side adjacent to 6 is #, — #,. The slope of the chord is
the tangent of the angle 6 (Chap. 1). This angle is not physically important, because it depends on the
particular units and scale chosen for the graph. What is physically important is that the slope is the
ratio of the opposite side to the adjacent side of the triangle shown, and therefore

Voy = );e fa = slope of chord ae

e a

o beenreeeeee oo eeeeeneee et eseeanaens Lo, ;

B 7 P

t(s)

I oty b

(@) ®)
Fig. 2-3

Instantaneous Velocity

We are now prepared to define the most precise velocity possible—a velocity assignable not to an
interval of time but to a given instant of time. In Fig. 2-3(b) we again show the x vs. ¢ curve from ¢, to
t.. Starting with £, we pick out a steadily decreasing sequence of times,

t.>Hh>h>H> -

that approach ¢, “from above.” Over each time interval ¢, to ; (j = 1, 2, 3, ...) the average velocity
Vay is defined in the usual way. As the intervals get smaller and smaller, the corresponding chords of
the curve get closer and closer to the tangent line to the curve at the point a. The tangent line at a
point on a curve is the line that just touches the curve at that one point; it is therefore the line whose
direction is just the direction of the curve as it passes that point. Since the slope of each chord is just
Vay OVer the associated time interval, we can say that the slope of the tangent line to the curve at point a
represents the “ultimate” approximation to the velocity at point a. For this reason the slope of the
tangent line at point e—often denoted the slope of the curve at a—is called the instantaneous velocity
at point a, or at time #,. Since any point of the x vs. ¢ curve could have been used in this discussion
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instead of point a, we conclude that the slope of the tangent line to the curve at any time is just the
instantaneous velocity at that time. The instantaneous velocity is usually given the symbol v without a
subscript, and as with v,,, is completely specified by its magnitude and sign. The question of how to
find the slope of the x vs. ¢ curve at each point relates to the branch of mathematics called calculus.
For simple enough x vs. ¢ curves one can obtain the instantaneous velocity by algebraic means without
formally using calculus, and we will do that below. But bear in mind that the determination of an
instantaneous velocity generally requires the utilization of techniques of calculus.

Problem 2.5. Refer back to Fig. 2-2.
(@) What are the instantaneous velocities at points e and /7

(b) In the interval ¢, to f7, v,, was shown to be negative (Problem 2.4). How could this be determined
using the slope-of-chord approach to v,,?

(c) Where in the interval fto #, do you think the instantaneous velocity is well approximated by the
v,y of that interval?

Solution

(@) Since point e is a maximum on the curve, the tangent to the curve at that point is horizontal and
hence has zero slope. Thus the instantaneous velocity must be zero. Similar reasoning indicates
that at point £, which is a minimum, the instantaneous velocity is also zero.

(b) The chord ef will make an angle of greater than 90 ° with the horizontal graph axis. Indeed, the
angle lies in the second quadrant where the tangent is negative; hence vy, s is negative.

(c) We can see with the eye that at a time © approximately halfway between #,and ¢, the tangent to the
curve will be nearly paraliel to the chord fb. In other words, v (at time 1) & vy .

In general, if the x vs. t curve doesn’t deviate much from a straight line in any given interval, then
v at any point in the interval is nearly v,, for the interval as a whole. The ultimate example of this is a
straight-line segment, where the instantaneous velocity is-the same at each point (since the tangent to
the curve is the same everywhere) and is the same as the average velocity over the whole straight-line
segment.

Calculating v

To actually calculate the instantaneous velocity we must use algebraic techniques. This means that
we have to know the mathematical expression for x as a function of ¢, or, in other words, we must
know the equation of the x vs. ¢ graph. We call the value.of x at time ¢, x(#). Quite naturally, we use the
notation v(f) for the instantaneous velocity as a function of time. Suppose ¢, represents the time at
which we wish to know the instantaneous velocity. That is, we want to know v(#;) (read as v at time ;).
Examining (2.1), the equation for average velocity between #; and some later time #,, we have
Vay = [x(t2) — x(t))(t, — t,). Or, letting x, = x(%,) and x; = x(t,), vay = (2 — xD/(t; — £) [our Eq.
(2.1) notation]. To get (t;), the x component of the instantaneous velocity at time #;, we let £, take on
values closer and closer to 7;. We say that

*(t2) = x(n) (2.2a)

v(f) = limit as &, — ¢ of
L—h
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Ifwelett, — t; = Atand x(t;) — x(t;) = Ax, where Az and Ax are read as “delta #” and “delta x” and
represent the “increments” or changes in 7 and x, then (2.2a) can be reexpressed as
Ax
At
Observe that the conditions #, — #, and At — 0 are completely equivalent. Equations (2.24) and

(2.2b) are just different common notations for the same thing. But how do we take the limit and get an
actual answer? We illustrate by example.

v(t1) = limit as At — 0 of (2.2b)

Problem 2.6. A particle moves along the x axis in such a way that its x vs. ¢ equation is
x(t) = 5 m + (2 m/s)t. Find the velocity at (@) any instant #; (b) 1 =3 s.

Solution

First we note that, unlike a pure mathematical equation, the numerical coefficients carry units (see
Chap. 1) since the quantities x and ¢ are physical quantities. Next we note that the whole expression must
come out in cotrect units for x. The constant term is already in meters. The coefficient of the term with ¢
in it has units of velocity (m/s); when this coefficient is multiplied by ¢ in sec, the result is again in
meters.

(a) Plotting x against ¢, we get a straight line whose slope is 2 m/s. From our graphical discussion of
velocity it follows that the instantaneous velocity is constant at all times ¢ and is just equal to the
slope of the line: wW(f) = 2 m/s. Let us apply Eq. (2.2a) to get the same answer. Let #; be the time at
which we want the velocity, and let #, = t; + At be our slightly later time. Applying Eq. (2.2a) to
our case (leaving units out for the moment to avoid clutter) we have

_ (5 + 21’2) - (5 + 2t1)
av = h—t

Substituting #, = #; + At into this equation yields
B (5 + 24 +2Al‘) — (5 +22‘1)

Vav At
Canceling like terms with opposite signs in the numerator yields
2m/s At
Vay = —% =2 m/ S

where we have put the units back in the last equation. In this case the At has disappeared in our
final expression for v,,. Thus, v,, is a constant and doesn’t depend on the values of ¢, and £;.
Therefore, the instantaneous velocity at time #; is also v = 2 m/s.

(b) Since v is the same for any time #;, we have solved for v at #; = 3 s, as called for.

Problem 2.7. Suppose x(f) = 5 m + (2 m/s)t + (4 m/s*)#*. Find the velocity at any time #;, and
evaluate at 1= 1, 2, and 3 s.

Solution
Proceed as in Problem 2.6, temporarily ignoring the units.

_x(tz) —x(tl) _ H ,

ST T A ®
5426 +462) — (542t + 442

Vav:(+ ) +462) — (5424 +4142) (i)

Hh—h
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If we make the substitution #, = ; + A¢, and also note that

(t + A1)? =2 424 At + AP (iii)
we then obtain
6+2ﬁ+ﬂh+%ﬁ+®ﬁAH4Aﬂy—6+2ﬁ+Mﬁ) )
Vay = x (iv)

Simplifying the numerator and restoring the units leads to

(2 m/s)At + (8 m/sP)n Ar + (4 m/s")Ar?
Vay = Al V)

Dividing out the At we get
vay = 2 m/s + (8 m/s?)t; + (4 m/s?) At (vi)

Note that unlike the straight-line case, here v, depends on both #; and At, or equivalently it depends on
t, and t,. For fixed ¢, and each different #,, At is different and we get a different v,,. Letting Az — 0 in
(vi) yields for the instantaneous velocity: :

v(t)) =2m/s+ (8 m/s%)t (vii)

From (vii), we have v(1s)=2m/s+(8 m/s®) (1s)=10m/s, v(2s)=2m/s + (8 m/s?) (2s) =
18 m/s, and v(3 s) =2 m/s + (8 m/s?) (3 s) =26 m/s. In all our cases v is positive, so the velocity
points in the positive x direction.

Note. 1t should be noted that taking
X0) = #0) _ e Ar - 0 of 2
h—1 At

is just part of the differential calculus and is called the derivative of x with respect to t at

the point #; and is given the expression dx/dt. We won’t discuss formal calculus in this
book.

limit &, — #; of

Figure 2-4 uses arrows to indicate the absolute displacement x (drawn below the axis) and the
instantaneous velocity v (drawn above the axis, with tail at point of interest) for two positions of a
particle moving along the x axis. The times are indicated in parentheses below the positions.

Instantaneous Speed

~ The instantaneous speed at time #; is defined as the limit as t, — t; of the average speed, over the
interval #; to £. As it turns out the instantaneous speed is always equal to the magnitude of the
instantaneous velocity, so no new information is obtained.

| Vi 1)

—_— _ >
- +— —4 x
| — .
! X1 —xz

@) ()
Fig. 2-4
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Problem 2.8. In Problem 2.3 we saw that the average speed sometimes differed from the magnitude
of the average velocity. Why is it that there is never such a difference when instantaneous speed is
compared with the magnitude of the instantaneous velocity?

Solution

Over any sufficiently tiny interval A¢ the motion is necessarily in just one direction; the particle just
doesn’t have time to backtrack. Thus, average speed will equal magnitude of average velocity (Sec. 2.3)
and, in the limit as Az — 0, instdntaneous speed equals magnitude of instantaneous velocity.

2.5 ACCELERATION

Average Acceleration

Just as average velocity is the “time rate of change” of displacement [see (2.1)], so average
acceleration is the “time rate of change” of velocity:

oy = %:Z(’l) (2.3)

Like velocity, acceleration can be positive, negative, or zero. Letting w(t;) = vy; v(t) = v
2 —W

(2.4)

aav - t2 . tl
The SI units are (m/s)/s = m/s>. Other common units are em/s?, fi/s%. Among auto enthusiasts we even
have the “mixed” units mph/s (miles per hour per second). Thus a car going from 0 to 60 mphin 10 s
has a,, = 6 mph/s.

If we know v at all times ¢ (remember, v refers to instantaneous velocity), then we can plotvvs. ¢
on a graph just as we plotted x vs. ¢. Figure 2-5 is an example of such a plot. Six points on the plot are
noted with corresponding v and ¢ values. The average acceleration between 7, and # is given by the
slope of the chord joining points 2 and 5.

Instantaneous Acceleration

Instantaneous acceleration a at a given time (say #,), is defined as the limit of the average
acceleration over smaller and smaller time intervals each starting at #,. In Fig. 2-5 it is seen that the
chords from #, to £5, 1, to #4, and £t to £, . . . , get successively closer to the tangent line to the curve at
point 2. Thus the instantaneous acceleration at time ¢,, a(t,), is just the slope of the tangent line to the
v vs. tcurve at time #,. This is completely analagous to the derivation of instantaneous velocity from
the x vs. ¢ curve.

Problem 2.9. Assume the following values in Fig. 2-5: vi = —2.0 m/sat; = 1.0 s; v, = 1.0 my/s at
=208 v3;=35m/s at t;=30s;, v,=50m/s at 1,=40s; vs=60m/s at ts =5.0s;
Ve = 6.5 m/s at ts = 6.0 s. Find the average acceleration between (a) #, and £5, () 4, and ts, (©)
and #4, (d) t, and ;.

Solution
Substitute in the defining equation (2.4).

(@) L _60m/s—(-20m/s) 80m/s

_ 2
50s—10s  40s —20m/s
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H(s)

Fig. 2-5

For the remaining three intervals we get respectively:
_6.0m/s—1.0m/s

b av — = 1. 2
®) ¢ s0s_20s ~ L67m/s
~50m/s—1.0m/s 2
() Gy =10 20s =2.0m/s
_35m/s—1.0m/s _ 2
(d) e P =2.5m/s

Since a, is positive in all four cases, the average acceleration in all four intervals points along the
positive x axis.

Problem 2.10. Refer to Problem 2.9.

(@) Of the answers to (b), (c), and (d), which is the best approximation to a(ty), the instantaneous
acceleration at time #,?

(b) What is the instantaneous acceleration at z = 6.0 s?
(¢) If the velocity is zero at some instant, does the acceleration have to be zero too?
Solution

(@) The chord joining points 2 and 3, corresponding to the shortest time interval of the three, is most
nearly parallel to the tangent line to the curve at point 2. Hence a(ty) is best approximated by agy
for the interval £, to #3.
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(b) Attimets vis a maximum, so the tangent line at point 6 is horizontal (zero slope). Thus a(ts) = 0.

(¢) No. In Fig. 2-5, the velocity v goes through zero as the curve crosses the horizontal axis of the
graph sometime between #; and #,. Yet the tangent to the curve is clearly not horizontal at that
point, so the acceleration is not zero. In fact it is the nonzero acceleration which indicates that the
velocity is changing from negative values, through zero, to positive values, as time progresses from
t to &.

The calculation of instantaneous acceleration by a limiting process parallels that of instantaneous
velocity. We thus need to know v as a function of ¢, or in other words, we need the equation of the v
vs. t graph. Suppose we want a(t;) (read “a at the time #,”). Analogous to (2.2a) and (2.2b), we have

L viB) —v(th) .. Av
a(t;) =limitas f, — # of h—1 Altlglo At (2)

where v(,) — v(t)) = Avand , — £, = At.

Problem 2.11. Suppose v at any time ¢ is given by v(f) = 6.0 m/s — (2.0 m/s?)¢. Find the
instantaneous acceleration at any time 7.

Solution

Using (2.5), we have, at time ¢; (leaving out units):

(6.0 — 2.06) — (6.0 — 2.0%)
h—Hh

Using , = 1 + At,

(6.0 - 2.0t; — 2.0A1) — (6.0 —2.04,) (—2.0 m/s?)At
a = =
At At
and q is constant for all #,. The minus sign means the acceleration points in the negative x direction. It is

no surprise that the acceleration is a negative constant—because the v vs. ¢ curve is a straight line with
negative slope.

= —2.0m/s’

Note. We have seen that if we know the x vs. 7 graph [or equivalently, the function x(#)], then we
can find v at any time ¢, and if we know the v vs. ¢ graph [or v(¢)], then we can find a at
any time ¢. We now ask if the reverse is true. Does a knowledge of the a vs. ¢ curve [a(?)]
lead to a knowledge of v(f) and does a knowledge of v(¢) lead to a knowledge of x(#)? We
will answer these questions by examining the very special case in which the acceleration
is constant in time, a(f) = a = constant. Not only does this example point the way to
understanding more general cases, but it is very important in its own right. Many practical
problems (and textbook problems) involve constant acceleration, including objects falling
under gravity and objects sliding down inclines.

2.6 THE CASE OF CONSTANT ACCELERATION

Finding The Velocity

If we know that a is constant, we already know a great deal about the velocity v. In particular, we
know that the slope of the v vs. # graph is a constant, and thus the graph must be a straight line with
slope a. Figure 2-6(a) illustrates three possible graphs for a given value of a. Note that all candidates
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(a) ®)
Fig. 2-6

are parallel straight lines. To know which one is the actual v vs. ¢ graph we need one more piece of
information, such as the intercept with the v axis. This point of intersection represents v, the velocity
at ¢ = 0, which is often called the initial velocity. To completely specify the v vs. z graph we thus need
to know not only the value of the constant acceleration, but the initial velocity as well. In Fig. 2-6(b)
we single out the straight line corresponding to the known initial velocity vo. Since a is the slope of
the line, we have

_ v(t) — vy

0 or wit)—w=at
or, finally, .

v(t) = vy +at ' (2.6)

which gives us the value of v at any time ¢, provided a and v, are known.

Problem 2.12. A particle, starting with velocity vo = 2 m/s, moves along the x-axis with constant
acceleration @ = 3 m/s?. Find v at times =15, 2 s, and 3 s.

Solution
Equation (2.6) becomes v(f) = 2 m/s + (3 m/s?)¢. Thus
v(1s)=2m/s+ (3 m/s’)(1s)=2m/s+3m/s=5m/s
v(2s)=2m/s+ (3 m/s’) (2s) = 8 m/s
v(3s)=2m/s+ (3 m/s’)(3s) =11m/s

The velocity increases by equal amounts in equal time intervals, just as is expected for constant
acceleration.

Problem 2.13.

(a) An automobile initially moving at 30 fi/s accelerates uniformly at 15 ft/s®>. How fast is it moving
after 3 s? '
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(b) At the end of the 3-s interval the driver hits the brakes and now accelerates at —30 ft/s>. How
long does it take to come to a complete stop?

Solution

(a) Let us assume the initial velocity is to the right along the positive x axis. Setting ¢ = 0 at the
beginning of the motion we have from (2.6)

v(3 8) =30 ft/s + (15 ft/s%) (3 5) = 30 ft/s + 45 ft/s = 75 ft/s
(b) For the new time interval we reset the clock to ¢ = 0 at the instant the driver hits the brakes. Then
the new v, is 75 ft/s. The acceleration is negative and opposite to the direction of the velocity.
(When the acceleration is opposite to the direction of the velocity it is often called deceleration.)
Thus (2.6) becomes
v =75 ft/s + (=30 ft/s>)s.
When the car comes to rest v = 0; thus,
0="751t/s— (30 ft/s)t  whence t=2.5s=time to come to rest.

Finding the Displacement

We already know that constant acceleration (@ = const) means v = v, + at, and the v vs. ¢ graph is
a straight line. Because of this, the average velocity over any time interval ¢, to ¢, will just be midway
between the velocities at the beginning and end of the interval. In other words v,, is just the arithmetic
mean of v, and v;:

vy = 2 ervl (2.7)

Consider the time interval from 0 to ¢. Let the displacement and velocity at time 0 be labeled x, and
Vo, and at time ¢, x and v. We now apply the definition of vy, (2.1), to this interval, getting
_ X — Xp
vav - t _ 0

Or X = xo + Vu!. Applying (2.7) to the same interval yields v,, = (v + v,)/2. Substituting this into the
previous equation we get

(v+wo)t

2
Since v is the velocity at time f#, we can use the expression for v in (2.6) to get
X =xo + [vo + at) + v,]t/2, which, after multiplying out, becomes

ar?

x=xo+v0t+7 (2.8)

If, as 1s often the case, we put our x-axis origin at the location of the particle when ¢ = 0, then xy = 0,
and (2.8) reduces to :

X =xg+

x = vot + 1ar? (2.9)

Problem 2.14. Find the absolute displacements of the particle of Problem 2.12 at7=1s, 2 s, and
3 s. Assume the particle is 3 m to the right of the x-axis origin at 7 = 0.
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Solution
By (2.8), x(t) = 3 m + (2 m/s)¢ + 13 m/s>)7. So,

x(1s)=3m+2m+15m=65m
x2s)=3m+4m+6m=13m
x3s)=3m+6m+135m=225m

Problem 2.15. How far did the automobile of Problem 2.13 travel (a) in the first 3 s? (b) in the
next 2.5 s? (c) Find its absolute displacement after the entire 5.5 s.

Solution

Since the car continually moves to the right (v > 0), distance equals displacement in both (a)
and (b).

(a) Here we set xo = 0 at ¢ = 0. The displacement equation (2.9) gives
x(3'5) = (30 ft/s) (3 ) + 4(15 ft/s?) (3s)* =90 ft + 67.5 ft = 158 ft
(Only three significant figures are kept.)

(b)) We now return to the problem at the end of the 3-s period, calling that instant =0 and that
position x = 0. Then, from Problem 2.13, the new v, is 75 fi/s, and (2.9) yields

x = (75 f/s)t +4(=30 ft/s?)2 = (75 fi/s)t — (15 ft/s)72
Setting ¢ = 2.5 s we get
x(2.5 s) = (75 ft/s) (2.5 5) — (15 ft/s?) (2.55)> = 187.5 ft —93.75 ft = 93.8 ft (3 sig. fig)

(¢) The total displacement in the 5.5-s interval is just the sum of the displacements in the 3-s and 2.5-s
intervals:

x=158 t +93.8 ft =252 ft

Note. Equations (2.8) and (2.9) could not be used in one shot for the full 5.5 s because the
acceleration was not constant for the full 5.5 s. Hence the problem had to be broken into
two independent applications of (2.8) and (2.9).

Problem 2.16.

(a) Using the results of Problems 2.13 and 2.15, find the average velocity in the first 3-s interval
from the definition (2.2), and see if it is consistent with what one gets from (2.5).

(b) Do the same thing for the last 2.5 s.

Solution
(a) vav:x—xo:157.5ﬁ—0ﬂ
t—0 3s—0s
From Eq. (2.7), using the velocities in Problem 2.13,

vav=v_;V0275&/8—;30ﬂ/S:52.5ﬂ/S

=525 ft/s

which checks.
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(b) Using the notation of Problem 2.15(b) for the last 2.5 s, we again have
x—xo 9375
t—0  25s

Vay =

=375 fi/s

From (2.7) we have

0 ft/s + 75 fit/s
2

Vay =

=375 ft/s

which again checks.

Finding the Displacement from the v vs. t Graph

[CHAP. 2

In Fig. 2-7 we reproduce Fig. 2-6(b) with two arbitrary times ¢, and 4, the corresponding
velocities vy and v,, and their average, v,, = (v, + v;)/2, indicated on the graph. From its definition,

Eq. 2.1),

X2 — X1
Vay = or Xo—X1 =Vt — 1)
h—1

The right-hand side of this equation is just the product of the height and width of the dotted rectangle

on the v vs. ¢ graph; in other words, x, — x; equals the area of the rectangle.

It is easy to see that the area of the rectangle is the same as the area bounded by the v vs. # line
above, by the two vertical dashed lines on the sides and by the horizontal axis below. This follows
since triangles I and II have equal areas, and the new area differs from that of the rectangle in that
triangle 1 is removed from the rectangle and triangle II is added. Thus for the case of constant
acceleration (straight-line v vs. ¢ graph), the displacement between two points x, and x;, is just the

area under the v vs. ¢ curve between the corrresponding times #, and #,.

As an application, consider the case of Fig. 2-6(h). We consider the area under the curve from
time 0 to # and the corresponding displacement x — x,. As can be seen, the total area equals the sum
of the areas of the rectangle (4;) and triangle (4,) shown. The rectangular area is 4, = vot. The
triangular area is J the base times the height: 4, = %t(v — vp). But, from (2.6), v — vy = at so that
Ay = 3i(at) = Lar’ . Thus, the total area = x — xo = A; + Ay = vot + %atz, obtained earlier as (2.8).
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General Case of Displacement from v vs. t Graph

It can be shown using the integral calculus that the statement “x, — x; equals the area under the v
vs. ¢ curve between #, and £, is true for any v vs. ¢ curve—not just a straight line. Consider Fig.
2-8(a). The displacement from ¢, to #, is just the area under the v vs. ¢ curve (shaded). While the
rigorous proof of this requires calculus, we can see it intuitively as follows. We divide the interval
along the time axis between #; and %, into tiny subintervals of width A¢, as in Fig. 2-8(b), and note that
within each Az the v vs. ¢ curve is approximately a straight line. Then Ax for that time interval
approximately equals the area under the curve within the Az interval. Adding up all the successive Ax’s
is equivalent to adding up all the little areas under the successive At so that x, — x; is approximately
equal to the total area between f; and f,. By letting the At’s become infinitesimally small, the
approximation becomes an exact equality. The result is true even if the velocity changes direction, as
long as areas below the time axis are subtracted instead of added. Thus, in Fig. 2-8(a), we have that
X4 — X1 equals the area from #, to #; minus the area from #3 to /4.

T ! '
1
|
At intervals '

(a) (b)
Fig. 2-8

Distance Traveled on v vs. t Graph

It is interesting to note the distinction between “distance traveled” and “displacement moved
through” on a v vs. ¢ graph. In Fig. 2-8(a), consider the time interval between, say, #; and #; for which
we just obtained x4 — x;, the “displacement moved through.” The “distance traveled” is the sum of
the area between #; and #; and the area between #; and 4, rather than their difference. This follows
because, when v crosses the axis, the particle changes direction and starts to backtrack. Since the
quantity x, — x; is the straight-line displacement from position 1 to position 4, we must subtract the
backtracking between position 3 and 4. The “distance traveled,” on the other hand, includes both the
forward and backward travel as positive contributions.

Problem 2.17.

(a) For the curve depicted in Fig. 2-9, find the x displacement in the time intervals 0 t0 2 s;2t0 3 s;
3tods;4t05s. ‘

(b) What is the total x displacement from O to 5 s, and what is the total distance traveled from 0 to
58?
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v{m/s)

30 m/s

[N T
Wb ——

4&5 7 t(s)
|

|

-15m/s |-

Fig. 2-9

Solution

(a) The displacement in each time interval is just the area under the curve in that time interval. From 0
to 2 s the area is just that of the triangle with base 2 s and height 30 m/s, so

Displacement = area = 1(2 5) 30 m/s) = 30m
From 2 to 3 s the area is just a rectangle of base 1 s and height 30 m/s, so

Displacement = area = (1 s) (30 m/s) = 30 m
From 3 to 4 s we have a triangle again:

Displacement = area = (1 s) (30 m/s) = 15m

For the period 4 to 5 s, we again have a triangle; this time, however, the area is below the time axis,
so the velocity is in the negative direction and

Displacement is minus the area = —%(1 s) (15 m/s} = —7.5m

(b) The total x displacement is the sum of the individual x displacements, or equivalently, the total
areas above the axis minus those below the axis:
Total displacement =30m+30m+15m—75m=67.5m

The total distance traveled in the same time interval is the sum of all the areas, taken as positive,
and

Total distance =30m +30m+15m+75m=825m

Finding Velocity in Terms of Displacement for Constant Acceleration

It is possible to eliminate the time between (2.6) and (2.8), obtaining a direct relation between v
and x. First solve (2.6) for ¢, to get t = (v — vg)/a. Then substitute this expression in (2.8) to obtain

V-1 2
X =Xx9+ vy e —l-%a( )
2 1.2 1., 2
2V

VoV Vo VVg V0
x—xp=———+2- =4I
a a a a a

vV—1V
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After some cancellation and combining of terms, we get

%vz lvOz v2—v02
X—Xp="——-5—=—7—
a a 2a

which yields finally

Vv =vp? + 2a(x — xo) (2.10)

If the particle is assumed to be the origin at z = 0, then x, = 0, and

W = vy + 2ax v (2.11)

Problem 2.18. A truck having an initial velocity of 30 m/s accelerates uniformly at 3 m/s.

(a) How fast is it moving after it has traveled 100 m from the initial position?
(b) How long did it take to travel the 100 m?

Solution

(@) We set xo = 0 at the initial time ¢ = 0, when vo = 30 m/s. Then, from (2.1D),

v = (30 m/s)? + 2(3 m/s) (100 m) = 900 m?/s? + 600 m?/s* = 1500 m’ /s’

Taking the square root, we have v = £38.7 m/s. Since both the initial velocity and the acceleration
are positive the final velocity must be positive: v = 38.7 m/s.

(b) We know vy, and we just found v at x = 100 m. Substituting these values in (2.6) gives

Note.

_87m/s

387 m/s=30m/s+ (3m/s’)t  or 5

29s

3m/s

We could have also obtained ¢ directly from (2.9), but then we would have had to solve a quadratic
equation. Instead we will use (2.9) to check our results for v and ¢ by solving it for x. From (2.9) we
have

x=(30m/s)(298) +13m/s?) (295 =8Tm+ 126 m=99.6 m

This differs from the correct result of 100 m only due to rounding errors, so our result checks out.

We discarded the negative square root of (2.1]) in part (a) above. Does the negative
square root ever have physical meaning? We investigate this question in the next problem.

Problem 2.19. A truck is moving up a steep hill at 30 m/s when suddently the engine conks out.
The driver hits the brakes, but they don’t work either. The truck starts to accelerate at —3 my/s?.

(a) How far does the truck move forward before it starts sliding back down the hill?
(b) What is the velocity of the truck when it is 10 m forward of its initial position?
(c) What two times do the answers to (b) correspond to?

Solution

Let us call the moment the truck starts its deceleration ¢ = 0, and let the origin of the x axis (which

runs parallel to the steep hill) be the truck’s location at ¢ = 0 so that xo = 0.
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(@) Upon having moved the maximum distance forward, the velocity must be zero for an instant since
the truck is changing its direction of motion. In other words, the velocity is changing from positive
to negative and must pass through zero. Applying (2.17) allows us to solve for x directly without
any reference to the time:

(0m/s)® = (30m/s)* +2(=3 m/s"Vtmax ~ OF (6 m/5" WHimax = 900 m?/s?
OF  Xmay = 150m

(b) Here we apply (2.11) again, but now x is given and the corresponding v is to be determined:
V' = (30 m/s)* +2(=3 m/s”) (100 m) = 900 m?/s* — 600 m? /s> = 300 m?/s?
or v==+173m/s

The positive velocity corresponds to passing the 100-m mark on the way up, while the negative
velocity refers to passing the 100-m mark on the way down (after having reached the maximum
position of 150 m).

Note. The magnitude of the velocity when the truck passes the given position is the same on the
way up as on the way down. This is a general characteristic of motion under constant
acceleration.

(c) Here we use (2.6) to get the two different times at which the truck passes the 100-m mark. On the
way up

173m/s=30m/s —(3m/s’)t or (3m/sY)t=127m/s or =423
On the way down

-173m/s =30m/s — 3m/s’)t  or (3 m/s*)t = 47.3 m/s or t=158s

Freely Falling Bodies

Let us examine an important special case of constant acceleration in one dimension. Suppose an
object is released either from rest or with an initial upward or downward velocity, and after release it is
acted on only by the pull of gravity. (This assumes that air resistance is negligible.) Such an object is
said to be in free fall. Examples are a ball dropped from a height, a rock thrown vertically upward,
and an arrow shot straight downward from a height. As will be discussed in detail in Chap. 5, all
objects in free fall have the same constant acceleration vertically downward. The magnitude of this
acceleration, called the acceleration of gravity, is g = 9.80 m/s? = 980 cm/s® = 32.2 ft/s2.

Problem 2.20. A rock is dropped from rest from the roof of a building 100 m high.
(@) Find its velocity just before it hits the ground.
(b) Find the time it takes to hit the ground.

Solution

We choose the upward direction as positive and the roof as the zero of displacement. It is usual to
label the displacement in the vertical direction by the letter y rather than x. Since the acceleration of
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gravity is in the negative y direction, we have a = —g. Also, vo = 0 and y, = 0. Equations (2.6), (2.9),
and (2.11) take the forms

(i) v=-gt=—(98m/s")t
(i) y=—lg?=—(49m/s")P
(ili) v = —2gy = —(19.6 m/s’)y
(a) At the ground, y = —100 m, and (iii) gives
¥ = —(19.6 m/s*) (=100 m) = 1960 m?/s*>  or  v=+443m/s

Since it is moving downward, we choose v = —44.3 m/s.
(b) To find the time we use (i) with the value of v obtained above: —44.3 m/s = —(9.8 m/s%)t or
t=452s.

[Or we could use (if): —100 m = —(4.9 m/s) or # = 20.4 s* or ¢ = 4.52 s, as before.]

Problem 2.21. An arrow is shot straight up from the edge of a cliff (Fig. 2-10) with an initial
velocity of 50 ft/s.

(a) Find the time to reach the highest point.
(b) Find the displacement at the highest point.
(c) Find the height when the velocity is 25 fi/s.

280 ft

Fig. 2-10

Solution

In the English system of units g = 32.2 ft/s>. We choose the origin of the y axis to be the point at
which the arrow is shot, so yo = 0.

(@) Equation (2.16) becomes in this case
(i) v=501ft/s — (32.2 ft/s")t
At the highest point, v = 0, so,
50

— —_ 2 = —8 =
0=>50ft/s—(322ft/s")t or ¢ 323° 1.55s

(b) Now that we know the time we can use (2.9), which for this case is

(i) y= (50 fi/s)t — (16.1 ft/s*)s
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Substituting the time to reach the top, we obtain
y = (50) (1.55) ft — (16.1) (1.55)* ft = 38.8 ft

[Or we could have used (2.11), with v = 0 for the highest point: 0 = (50 ft/s)> — (64.4 ft/s%)y or
y = 38.8 ft, as before.]

We use (2.6) with v = 25 ft/s to get the time:
25 ft/s = 50 ft/s — (32.2 ft/s)t  or t=0.776s

Next, we find the height using either (ii) with the time just obtained, or we use (2.11) with
v = 25 fi/s. Choosing the latter, we get

(25 ft/s)? = (50 ft/s)” — (64.4 ft/sP)y  or y=29.1ft

Problem 2.22. If the arrow in Problem 2.21 just misses the edge of the cliff on the way down, find
(a) the time for the arrow to reach the base of the cliff; (b) the velocity of the arrow just before it hits
the ground.

Solution

(@

®)

We could use (ii) of Problem 2.21 to find the time by substituting in the displacement at the base of
the cliff: y = —280 ft. Then —280 ft = (50 fi/s)t — (16.1 ft/s*)7, and we can solve the quadratic
equation for the time. Instead, we note that if the velocity at the bottom were known, we could use
(i) of Problem 2.21 to get the time. Since this is a much easier way of getting the time, we try to
solve (b) first and then return to (a).

To get the velocity at the bottom we use (2.17) with y = —280 ft, which gives
V¥ = (50 ft/s)? — (64.4 ft/s?) (—280 ft) =20,532 f%/s>2 o v =-143 ft/s
where we have chosen the negative root for downward velocity.
With v and vy known, we solve (2.6) for ;
—143 fi/s = 50 ft/s — (32.2 ft/s’)t or +t=599s
As a check we substitute 1 = 5.99s in (2.9) to see if we get back y = —280 ft:
y = (50 ft/s) (5.99 s) — (16.1 ft/s%) (5.99 5)> = 300 ft — 578 ft = —278 ft

which checks to within rounding errors.

Problems for Review and Mind Stretching

Problem 2.23. An automobile starts from rest as the light turns green and accelerates at 5 m/s* for
4.0 s. Find the final (a) displacement, (b) velocity.

Solution

(a)

()

Choose a coordinate system such that x, = 0 at ¢ = 0, and note that v, = 0.
x =laf =15 /s = 2.5 /s, At t =40 s,
x=(25m/s’) (4.05)> =40m

v =at = (5.0 m/s?)t = (5.0 m/s%) (4.0 s) = 20 m/s.
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Problem 2.24. At the end of 4 s the auto of Problem 2.23 stops accelerating and moves at constant
speed for the next 10 s. Find the absolute displacement at f = 14 s.

Solution

In the final 10 s the automobile is moving at 20 m/s so that the relative displacement in that time
interval is x’ = (20 m/s) (10 s) = 200 m. The absolute displacement is then 40 m + x’ = 240 m.

Problem 2.25. Suppose that at £ = 14 s the car of Problems 2.23 and 2.24 starts to brake for a red
light with acceleration a, = —8.0 m/s>. How long will it take the car to come to rest?

Solution

The easiest approach is to consider the beginning of the braking period as a new starting time, ¢ = 0,
with v, = 20 m/s. Then v = v + at = 20 m/s — (8.0 m/s>)z. Upon coming to rest, v = 0.
20

0=20m/s— (8.0m/s’)t  whence t= s05= 2.5s

Problem 2.26. With reference to Problems 2.23 to 2.25, what will be the entire displacement moved
through by the car between the two lights? :

Solution

As in Problem 2.25, we assume ¢ = 0 at the beginning of the braking period. Then vy = 20 m/s,
X = 240 m (from Problem 2.24), and the motion ends at t = 2.5 s (Problem 2.25); by (2.8),

x = xo + vot + 3af* = 240 m + (20 m/s) (2.5 s) — 3(8.0 m/s%) (2.5 s)?
=240m+500m —25.0m=265m

Problem 2.27 A car is traveling at a constant speed of 60 f/s in a 30 mph (44 ft/s) zone. A
motorcycle cop bursts out from behind a bush at the instant the car passes, and accelerates from rest at
5.0 ft/s* until drawing alongside the car. How long does it take the cop to catch the car?

Solution

Let the instant the car passes the motorcycle be both our starting time and our zero displacement
point. Then the equation for the displacement of the car is (i) x, =v,f, where v, is the constant
velocity of the car. The equation for the displacement of the motorcycle is (i) x,, = %a,,,t2 , where a,
is the acceleration of the motorcycle and where we have used the fact that the initial velocity of the
motorcycle is zero. Since we are interested in the time # at which x,, = x,,,, we equate the right sides of (i)
and (ii), to get

vat =lan2 ot (60 ft/s)t = (2.5 ft/s))

This is a quadratic equation, but a very simple one. The trivial solution ¢ = 0 corresponds to the initial
time when, indeed, the two displacements are the same (they are both zero). The other, nonzero, solution
is the one we are interested in. To get it, divide both sides of the equation by

(25ft/s)i=60ft/s or t=240s

Problem 2.28. A ball is dropped off a high cliff, and 2 s later another ball is thrown vertically
downward with an initial speed of 30 m/s. How long will it take the second ball to overtake the first?
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Solution

We label the first ball 1 and the second ball 2. Choose the origin for both balls to be the top of the
cliff, and choose downward as positive for the displacements y, and y,. Then the accelerations of the
balls are a; =a, = g = 9.8 m/s>. If #, and #, represent the times of fall, then

h=6+20s (7)
(For example, when 1, equals 1 s, #; will already be 3 s.) The displacements for each ball are given by
y1 =voit +1gn? = (4.9 m/s*)n > y2 = vty +igh? = (30 m/s)t + (4.9 m/s),2
When ball 2 catches up, y; = y»,
(4.9 m/s")2 = (30 m/s)t, + (4.9 m/s%)t,2 (ii)
Substituting (i) into (i) we get
(4.9 m/s*) [t + (2.0 5))* = (30 m/s)t, + (4.9 m/s>)1, 2 (iii)

Because [£, + (2.0 5)° = 6, + (4.0 s)i, + (4.0 s?), (iii) becomes
(4.9 m/s")62 + (19.6 m/s)5, + 19.6 m = (30 m/s)t, + (4.9 m/s)t,2
Canceling the #,* terms, which are the same on both sides of the equation, we get
(19.6 m/s)t, + 19.6 m = (30 m/s)t, or (104m/s)t, =196m or t,=188s

Thus ball 2 catches up with ball 1 1.88 s after ball 2 is launched, or equivalently, 3.88 s after ball 1 is
launched.

Supplementary Problems

Problem 2.29 A particle moving along the x axis reaches x = 2.0 m, 3.5 m, —8.0 m, 1.5 m at respective
times t=0s, 1s, 25, 3s. Find (a) the absolute displacement for each of the four times; (b) the relative
displacement in each of the time intervals O to 15, 1t0 25,2t 35s,0to 2 s, and 0 to 3 s; (c) the average
velocity in each of the time intervals of part (b).

Ans.  (a) absolute displacement = x; () 1.5 m, —11.5m, 9.5 m, —10.0 m, —0.5 m; (¢) 1.5 m,
—=11.5m, 9.5 m, —5.0 m, —=0.167 m ‘

Problem 2.30. In Problem 2.29 assume the particle moves in only one direction between successive given
times.

(a) Find the distance traveled in each of the time intervals of Problem 2.29(b).

(b) Find the average speed in each of the time intervals. ’

(¢) In which interval(s) is the average speed different from the magnitude of the average velocity, and explain
why?

Ans. (@) 1.5 m, 11.5m, 9.5 m, 13.0 m, 22.5 m; (b) 1.5 m/s, 11.5 m/s, 9.5 m/s, 6.5 m/s, 7.5 m/s;
(c) 0to 2 s, 0 to 3 s; particle backtracks in these intervals.

Problem 2.31. For the motion graphed in Fig. 2-11, find the average velocities over the time intervals
corresponding to (a, b), (b, ¢), (¢, d), (d, e), (e, f), and (£, g).

Ans. 4.0 m/s, 0 m/s, —10 m/s, 4.0 m/s, 3.0 m/s, —3.0 m/s
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t(s)

oL

Ans. 4.0 m/s, 0 m/s, —10 m/s

Problem 2.33 For the motion of Problem 2.31, find the average velocities over the intervals (z,, ¢.), (¢, 1),
(tbs tf)a (tea tg)'
Ans. 2 m/s, —2 m/s, —0.75 m/s, 0 m/s

Problem 2.34. Referring to Problem 2.32 and Fig. 2-11, estimate the instantaneous velocities at £ = 3.01 s,
4358,5.0s.

Ans. =0 m/s, =3.5 m/s, ~0 m/s

\iij Problem 2.35. A particle moves along the x axis in accordance with

*x——4m+(10m/s)t-(3 m/s?)s2

Find v,, for the interval 2t0 6 5. . i{\‘{/; ;__N
. als
Ans. —14 nv/s
a*'/\x:
‘ Problem 2.36. For the particle of Problem 2.35, find an expression for vy Over the interval =2 s to

. t—(2s)+At o

S U A FE "\
Ans. Vo = —2m/s — (3 m/Sz)(At) f‘ '“ ) ¥ E I

P P

‘E‘g" Problem 2.37. Referring to Problems 2.35 and 2.36, find the instantaneous velocity at ¢ = 2 s.
Ans. v=—2m/s |

Problem 2.38. In the v vs. ¢ graph of Fig. 2-12, assume the times shown are correct to three decimal places.
Find the average accelerations over the time intervals (0 s, 1 5), (0 s,25),(0s,35s),(1.5s,35),(1.5s,3.55).

Ans. 100 m/s%, 75 m/s?, 41.7 m/s%, 0 m/s?, —37.5 m/s®
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v (m/s)

200 |-
175 -
150
125
100 -
51
50
25

WhF—————————
Nk

! é (s)

Fig. 2-12

Problem 2.39. Repeat Problem 2.38 for (3.55,6.55), (6.55,75s),(7s,8s),(0s, 85).
Ans. 417 m/s”, 0 m/s®, —150 m/s”, 3.13 m/s’

Problem 2.40. Referring to Problems 2.38 and 2.39, find the instantaneous accelerations at 2 s, 4.3 s, 5.2 s,
6.8s,74s,79s.

Ans. 0 mv/s%, 41.7 nv/s?, 41.7 m/s?, 0 m/s?, —150 m/s%, —150 m/s?

Problem 2.41. Refer to Problem 2.27. How far has the car traveled in the time it takes the motorcycle to catch
up? -

Ans. 1440 ft

Problem 2.42. From Problem 2.27, what is the speed of the motorcycle when it catches up?

Ans. 120 fi/s

Problem 2.43. In Problem 2.28, find the speeds of the two balls when the second overtakes the first.
Ans. vy = 38.0 m/s, v, = 48.4 m/s

Problem 2,44, How far down from the top of the cliff will the balls of Problem 2.28 meet?
Ans. 73.8 m

Problem 2.45. A coin is tossed vertically upward and reaches a maximum height of 90 cm. With what
velocity was it thrown, and how long was it in the air?

Ans. 4.2 m/s; 0.86 s

Problem 2.46. An arrow is shot vertically upward from the top edge of a 300-m cliff with a speed of 50 m/s,
and it just misses the edge on the way down. What is its speed when it hits the base of the cliff?

Ans. 91.5 m/s
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\%.‘;"f Problem 2.47. How long does it take for the arrow of Problem 2.46 to hit the base of the cliff?
Ans. 144 s

Problem 2.48. A bicycle traveling at constant speed is 50 m behind a bus that is just starting from rest with a
constant acceleration of 2 m/s>. What is the speed of the bicycle if it catches up with the bus in 6 s?

Ans. 14.3 m/s

Problem 2.49. For the bus and bicycle of Problem 2.48, how long does it take for the bus to develop a speed
equal to that of the bicycle, and how far will it have traveled in that time?

Ans. 7.15s, 51 m

j( “;’ Problem 2.50. A girl, standing still, tosses a ball vertically upwards. One second later she tosses up another
ball at the same velocity. The balls collide 0.5 s afier the second ball is tossed. With what velocity were they
" tossEd?

‘ Ans. 9.8 m/s
Pavil
V Problem 2.51. In Problem 2.50, how high did the second ball rise before the collision, and what were the
\ __welocities just before collision?

Ans. 3.68 m, *4.9 m/s

Y Problem 2.52. A brick is dropped from rest from the roof of a building. On the way down it passes a 6-ft-high

window and is observed to pass from top to bottom of the window in 0.25 s. How fast was it moving when it
passed the top of the window?

Ans. 20 ft/s

‘\5 Problem 2.53. Refer to Problem 2.52. How far below the roof of the building is the top of the window?
Ans. 625 ft



Chapter 3

Motion in a Plane

3.1 VECTOR QUANTITIES

To describe motion in a plane (two dimensions), one needs the same physical quantities as for
motion in a straight line. The difference is that quantities that were described in one dimension by a
magnitude and a sigrn must in two dimensions be described by a magnitude and a direction. Examples
of such quantities are displacement, velocity, and acceleration. Any physical quantity that is described
by a magnitude and a direction is called a vector quantity.

Definition

A vector is defined geometrically by means of an arrow. The length of the arrow is the magnitude
of the vector, and the direction of the arrow is the direction of the vector. To specify the vector
precisely, we can imagine a graph with an x and y axis at right angles to each other, and an arrow
drawn to scale on the graph, with its direction specified by the angle it makes with one of the axes of
the graph. In Fig. 3-1 we depict such a graph with three vectors A, A’, and B. The value of a vector
does not depend on where it is located on the graph, only on its magnitude and direction. The vectors
A and A’, which are parallel and have the same length, are therefore the same vector: A = A’. The
length, or magnitude, of a vector A is often depicted as | A |, or simply as 4, and is always a positive
number.

Note. In general vectors will be denoted by boldface type to distinguish them from scalars
(ordinary algebraic quantities).

Rules of Vector Algebra

1. Adding two vectors A and B gives another vector C = A + B, obtained as follows: Slide the
arrow B parallel to itself until the tail of B touches the head of A; then draw an arrow from the tail

x v o—~=

Fig. 3-1

58
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of A to the head of B; this new arrow is the vector C [see Fig. 3-2(a)]. Vector C is called the sum
of vectors A and B.

2. Multiplication of a vector A by a positive number 4 gives another vector, B, parallel to A and with
a length that is 4 times the length of A. We write B = hA (and B = h4).

3. Multiplication of a vector A by a negative number, —#, gives another vector, B, whose direction is
opposite to, or 180° from that of A and whose length is A times the length of A. We write
B = —hA (and B = hA). See Fig. 3-2(b). Note that (—1)A, often written —A, is just the vector A
turned 180°, or upside down.

4, Subtracting a vector B from a vector A gives another vector C = A — B, which is obtained by
turning B upside down and adding the result to A; C = A + (—B). See Fig. 3-2(c).

/3 i /.

C=A+B

@ ®) ©
Fig. 3-2

Problem 3.1. For the two vectors shown in Fig. 3-3(a), find A + B and A — B.
Solution

Since the tail of B is already by the head of A, we simply draw an arrow from the tail of A to the
head of B. It is helpful to complete the parallelogram determined by A and B, as in Fig. 3-3(b). Then

|

(@ ©)
Fig. 3-3
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C = A + B is just the diagonal arrow from point g to point b, as shown. This parallelogram law of
addition can also be used to find A — B. The arrow from c to b is vector A and the arrow from b to d is
—B. Therefore, D =A +(—B)=A — B, is the arrow from ¢ to 4, the other diagonal of the
parallelogram.

Note. We also can deduce that A = B + D, by adding the arrows from a to ¢ and from c to d.
Thus we can move a vector (in this case vector B) from one side of the equation to the
other by changing the sign in front of it, just as in the case of numbers.

Fig. 3-4

Problem 3.2. Show that B + A = A + B; that is, that vector addition is commutative.
Solution

The result follows from the parallelogram in Fig. 3-3(5). The arrow from a to ¢ is B, and we already
showed that the arrow from ¢ to b is A, so B + A is the arrow from a to b, which is also A + B.

Problem 3.3. Show that when you add three vectors it doesn’t matter in what order you add them.
Seolution

Consider the three vectors A, B, and C drawn head to tail in Fig. 3-4. A + B is the dotted arrow
from a to c. If we add this to C, we get the dashed arrow pointing from a to d. Similarly, B + C is the
zigzag arrow from b to d, and adding A again yields the dashed arrow from a to d. Since the order
doesn’t matter, we can call the dashed arrow A + B + C without ambiguity.

Note. If one draws any number of vectors head to tail, the resulting sum of these vectors is the
arrow from the tail of the first to the head of the last.

Also note that if two vectors being added are parallel or antiparallel, the sum will point in either
one or the other direction along the line of the original vectors. Examples are illustrated in Fig. 3-5(a)
and (b)), where G=A+D,E=A+B,and F = A + C, Also illustrated is H = A — B.

Problem 3.4. In Fig. 3-6(a) vectors A and B are parallel to the x and y axes and therefore are at right
angles to each other. Find the magnitude and direction of the vector sum C = A + B.
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Solution

In Fig. 3-6(b) the vector C is drawn in. The three vectors A, B, and C form a right triangle, with C
being the hypotenuse. The angle 6 gives the direction of C. From the pythagorean theorem, we have

C?=A2+B2=321+42=25 from which C=5.

Also,
tan0 = % so that 6 = 53°

Problem 3.5. Assume that in Fig. 3-3(a) the vector A makes an angle 6 = 30 ° with the x axis and
has a magnitude of 3. The vector B is parallel to the x axis and has a magnitude of 5. Find the
magnitude of C = A + B and the angle that C makes with vector A.
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Solution

We can solve this problem with a ruler and compass by drawing the graph to scale, as in Fig. 3-7.
To get the magnitude of C we measure (with the ruler) the distances (ad) and (ab) in Fig. 3-7. Then,
since these lengths are proportional to the lengths of A and C, respectively, we can set up the ratio
C/(ab) = Al(ad) = 3/(ad). This yields the result C = 3(ab)/(ad) ~ 8. To get the angle ¢ that C makes
with the x axis, we use a compass to measure the angle between B and C in Fig. 3-7 and get the
approximate result ¢ = 11°. '

d B (B=Y)

(Scale: 1 cm =0.75)

Fig. 3-7

Problem 3.6. Obtain a more exact result for Problem 3.5 by using trigonometry.
Solution

The situation is depicted in Fig. 3-7. From the law of cosines,
; C?>=A*+ B?> —24Bcos 150° = 9 +25 — 2 -3 - 5(— 0.866) = 34 + 26 = 60.
Thus C = +/60 = 7.75. From the law of sines, sin ¢/4 = sin 150 %C. Then

sinqﬁzi- =0.193 or ¢ =111°

Components of a Vector

As can be seen from Problem 3.6, obtaining the sum of two vectors algebraically may require the
use of complicated trigonometric formulas. Obtaining the sum of three or more vectors by such a
trigonometric procedure could become unwieldy and confusing. There exists a more useful and
manageable approach to adding vectors called the component method, which also gives valuable
insight into the properties of vectors. We start by defining the component of a vector.

Consider an arbitrary vector A whose tail is made to touch an arbitrary directed line 2, as shown
in Fig. 3-8. If sunlight were shining down perpendicular to line 2, vector A would cast a shadow on
line # as shown. This shadow, 4, is called the projection, or component, of A along #. The
projection is identified not only by a magnitude, or length, but also by a sign: positive if the sense of
the shadow is in the positive sense of line & (as is the case for Ap), negative if the shadow is in the
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Fig. 3-8

negative line 2 direction (as for the case of B,). If the vector A makes an acute angle 0 with the line,
as shown, we have 4, = 4 cos 6. Similarly, for vector B we have B, = —B cos ¢. If instead of ¢, we
used the angle 7, measured counter-clockwise from the positive 2 axis to B, then we would have
B, = B cos 7, with the minus sign now contained in the cosine. The same would be true for vectors C
and D: if one uses the counterclockwise angle from the positive & axis to the vector, one always gets
the correct magnitude and sign.

In general it is easier to use the acute angle between any vector and the axis to get the magnitude
of the component, and to put the sign in by eye. Thus for any vector, the component along 2 equals
plus or minus (£) the magnitude of the vector times the cosine of the acute angle with line 2. The
correct sign is then chosen by inspection.

Problem 3.7. In Fig. 3-8, assume the following data: 4 = 6.0, 6 = 30°, B = 4.0, ¢ = 60 ° C=5.0,
8 =217°% D = 5.5, p = 320°. Find the components of each vector on the line 2.

Solution
A, = Acosf = 6.0 cos 30° = (6.0) (0.866) = 5.20
B, = —Bcos ¢ = —4.0cos 60° = (—4.0}(0.5) = -2.0
C, = +Ccosé = —5.0c0s37° = (~5.0) (0.80) = —4.0
D, = Dcosp=5.5c0540° = (5.5) (0.766) = 4.2

Problem 3.8. In Fig. 3-9 find the components of the vector A along the x axis (x component) and
along the y axis (y component), if 4 = 10 and 0 = 30°.

Solution

A, = Acos = 10cos 30° = (10) (0.866) = 8.66
4, = Acos(90° — 0) = Asinf = 10sin30° = (10) (0.5) = 5.0

Problem 3.9. Assume now that the vector A in Fig. 3-9 has components 4, = 3.0 and 4, = 4.0. Find
the magnitude of A and the angle 0 it makes with the x axis.
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Fig. 3-9

Solution

The situation is depicted in Fig. 3-10. By the pythagorean theorem, A>= A2+ Ay2 =
(3.0 + (4.0 =9.0+ 16,0 =25, so 4=5.0. Also, tan § = A/A, = 4.0/3.0 = 1.333. Taking the

inverse tangent we get two possible answers: 6 = 53° or 0 = 53°+ 180° = 233 °. Since we know A
is in the first quadrant, because 4, and A4, are positive, we must take the solution 8 = 53°.

Note. A knowledge of the two components of a two-dimensional vector uniquely determines the

magnitude and direction of the vector.
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Problem 3.10. In Fig. 3-9, assume B = 7.0, ¢ = 30°, C = 12, and 6 = 20°. Find B,, and B,; C;, C,.

Solution
B, = —Bcos(90° — ¢) = —Bsin¢ = (-7.0) (}) = —3.5
B, = Bcos ¢ = (7.0) (0.866) = 6.06
C, =—Ccosd=—12c0s20° = (—12) (0.940) = —11.3
C, = —Csind = —125in20° = (—12) (0.342) = ~4.10

 Adding Vectors by the Component Method

Consider the addition of two vectors, C = A + B, as depicted in Fig. 3-11(a). It can be seen that
C,=A, + B, and C, =4, + B,. To convince yourself that this result is true no matter what the
orientation of the two vectors, look at Fig. 3-11(b). Here B, is positive as before, but B,, is negative. As
can be seen from the figure, this is precisely what is required so that we still have
C, =4, + B, =4, - | B,]|, as shown. The fact that the components can be positive or negative is
just what is needed to ensure the generality of our result:

The component of the sum of two vectors along any axis is just the sum of the individual
components along that axis.

This result can immediately be extended to the sum of any number of vectors (e.g., by adding a third
vector to the sum of the first two, then a fourth to the sum of the first three, etc.). Thus, to add together
a group of vectors, we first find their components along the x and y axes. Then we add the components
along the x axis to obtain the component of the sum vector along the x axis; ditto for the y axis. From
these components we obtain the magnitude and direction of the sum vector.

y y
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y // |By| A E H
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Cy : :
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A - H ) - H
Ay // j_/// :
// C //// . C 3
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4 - : :
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X v X
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C, Cy

Fig. 3-11
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Problem 3.11. In Fig. 3-11(a), assume that vector A has a magnitude 4 = 7.0 and makes an angle
0 = 40° with the x axis; similarly, assume that vector B has a magnitude B = 8.0 and makes an angle
¢ = 30° with the x axis. Find the magnitude and direction of the vector C = A + B.

Solution
First we find the components of A and B.
Ay =Acos0 =7.0cos40° = 5.36 B, =Bcos¢ = 8.0cos30° = 6.93
A, = A4sinf =7.05in40° = 4.50 B, = Bsin¢ = 8.05in30° = 4.00
Next we find the x and y components of C:
C.=A; + B, =536 +6.93 =12.3 C, =4, + B, = 4.50 +4.00 = 8.50

Finally, we follow the procedure used in Problem 3.9 to obtain the magnitude and direction of C from
the components C, and C,.
C?=C24C,2= (123 +(8.50)> =2235 or C=150

C, 8.50
t; - = —— =0. 1 = 6° 6°
an 6 C.-123 0.69 or 0 =346 or 214.6

Since C, and C, are both positive, C is in the first quadrant, and we must choose 6 = 34.6°.

Problem 3.12. Find the sum of the three vectors shown in Fig. 3-12. '

OWO

@

xS

N

&>

60°
30°

53°

Fig. 3-12
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Note. The sum of a group of vectors is often called the resultant vector R.
Solution

We first calculate the components of the three vectors:

A, =4.0c0830° =3.46 A4, =4.0sin30° = 2.00

B, =5.0sin53°=4.00 B, = —5.0cos53° = —3.00

C, = —6.0cos60° = —3.00 C, = 6.0sin60° = 5.20
The components of R are then

R, =3.46+4.00 —3.00 = 4.46 R, =2.00—3.00 +5.20 =4.20
which give
5 N 4.20 .
R = (446> +4.20°)/" =6.13 tand = VT 0.942 or 0=433

where § is the angle of R above the positive x axis.

Problem 3.13. Returning to Problem 3.11, find the magnitude and direction of the vector
C=A-—-B

Solution

Now we must find the components of A and —B, and then carry out the addition C = A + (—=B)
following the procedure of Problem 3.11. The components of A have already been obtained in Problem
“3.11: 4, = 5.36; 4, = 4.50. The components of —B are just minus the components of B. This can be
seen by noting that the shadows of B and “upside down” B have the same magnitude but opposite
directions along the line. Thus the components of —B are —B, = —6.93; —B, = —4.00. Next we find
the x and y components of C = A — B:

C,=A4,+(—B;) =536 -693 = —~1.57 C, =4, —B,=4.50-4.00=0.50
Consequently,

C?=C2+C2=(—157?% + (050> =271 or C=165

C 0.50
tand=-2L=—-——=-0.
C, 1.57 319

whence & = 162.3° or 342.3°. Since C, is negative and C, is positive, the vector C is in the second
quadrant, and we must choose J=162.3° (Alternatively, set tany = | Cy/Cy | = 0.50/1.57 =
0.319 = y = 17.7° = acute angle made by C with the x axis. Then, C must lie 17.7° above the
negative x axis.)

3.2 KINEMATICS IN A PLANE—PROJECTILE MOTION

Displacement

As a particle moves along a path in a plane, as depicted in Fig. 3-13, its absolute displacement r
at any instant of time is the vector from the origin of coordinates to the location of the particle at that
instant of time. If the particle has absolute displacements r; at time ¢, and r; at time #;, as shown, then
the vector from position 1 to position 2, Ar =r, — ry, is called the relative displacement that the
particle has moved through in the time Az =, — #;. The x and y components of r; and r, are also
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shown in Fig. 3-13. Note that Ax = x, — x; and Ay =y, — y are the changes in displacement of the
shadows of the particles on the x and y axes, respectively.

Average and Instantaneous Velocities

The average velocity of the particle over the time interval Az = ¢, — ¢, is defined as
r—r Ar
V. = = —
Y-t At

Since At is a scalar quantity, multiplying a vector by 1/A¢ does not change the direction of the vector,
SO V,, points in the direction of Ar. The x and y components of v,, are '

Ax Ay
Vav,x = —A—; Vay,y = E

and these are just the average velocities of the two shadow particles on the x and y axes, respectively.

As in Chap. 2, to find the instantaneous velocity v at the time #; we take the average over smaller
and smaller time intervals, holding # fixed. In other words, we let A# — 0 by choosing #, closer and
closer to #;. In Fig. 3-14 we see that the direction of Ar gets closer and closer to the tangent to the path
of motion at time #;. Since Ar is in the same direction as v,,, we conclude that the instantaneous
velocity v is tangent to the path of motion. From our discussion in the previous section we see that as
At — 0, Ax/At and Ay/At become v, and v,, the components of v along the x and y axes, respectively.
They also become the instantaneous velocities of the shadow particles on the x and y axes. We

conclude
vx = shadow velocity on x axis v, = shadow velocity on y axis

Average and Instantaneous Acceleration

Again as in Chap. 2, the average acceleration of the particle in the time interval At =1, — #; is
defined as
v, —vy  Av

h—1 _A_t

Ay =
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where v, and v, are the instantaneous velocities of the particle at times #, and ¢,, respectively. In Fig.
3-15 we show the path of the particle, with the instantaneous velocity displayed at the two times #; and
t,. The figure also displays the x and y components of the velocities and demonstrates their
relationship to the x and y components of Av. Then, noting that

Av, Av,
Aoy, x = —A_t and Aav,y = Xt_

we have that a,, , and g,y , are just the average accelerations of the two shadow particles on the x and y
axes, respectively. Taking the limit as £, — #, (that is, Az — 0) in our expression for a,, above, we
obtain the instantaneous acceleration a. Then, a, and a,, the x and y components of the instantaneous
acceleration, are just the instantaneous accelerations of the shadow particles on the x and y axes,
respectively.

Component Method for Planar Motion

We see that the motion of a particle in a plane can be analyzed by studying the motion of the
particle’s shadows on the x axis and the y axis, each of which is one-dimensional motion. If we know
everything about the shadow motions along the two axes, we can reconstruct the full two-dimensional
motion. This follows from the fact that the displacement, velocity, and acceleration of the shadows
represent, respectively, the x and y components of the vector displacement, velocity, and acceleration
for the full two-dimensional motion.
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Path of particle -

Fig. 3-15

Planar Motion with Constant Acceleration

A special case of motion in a plane is motion with constant acceleration. A very useful example of
this is an object that moves under the influence of gravity near the earth’s surface (neglecting air
resistance). As discussed in Chap. 2, all such objects accelerate downward at a constant acceleration
of magnitude

— 9.8 m/s> = 980 cm/s> = 32.2 ft/s’
g

Let us assume that our particle indeed moves only under the influence of gravity, so it has a constant
acceleration a whose magnitude is g and which points downward, perpendicular to the earth’s surface.
If we choose our y axis vertical (with upward positive) and our x axis horizontal, we have a, = 0 and
a, = —g. Suppose the initial velocity of the particle at time ¢ = 0 is v, with components vy, and vy,,
and the initial displacement of the particle is ry, with components xo and yo. We now apply the
straight-line motion equations developed in the last chapter for constant acceleration. The shadows on
the two axes obey the equations

Ve = Vo + Gyl X = xo + Vout + 2a.t ve? = vge? + 2a,(x — Xo) (3.1a, b, c)
Vy = Vo, + ayt Y = yo + voyl + 30,8 w2 = w2 + 2a,(y — yo) (3.2a, b, ¢)

Let us choose our origin at the position of the particle when ¢ = 0 so that x, = ¥o = 0. Then, noting
a, = 0, our shadow on the x axis moves at constant speed and our x equations become

Ve = Vi X = Vout V2 = vl (3.3a, b, ¢)
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The shadow on the y axis moves with acceleration —g so that our y equations become

vy = Voy — gt ¥y = vt — %gt2 Vy2 = v0y2 —2gy (3.4a, b, ¢)

Problem 3.14. A particle is projected horizontally from the edge of a cliff, as shown in Fig. 3-16.
(@) Find the x and y components of the displacement and the velocity 2 s later.
(b) Find the magnitude and direction of the velocity of the particle at 7 = 2 s.

Solution

(@) Choose the origin at the point of launch, with axes as shown. We apply Eqs. (3.3a, b) and (3.4a, b)
with vo, = 49 m/s, v, = 0. For the x direction at ¢ = 2 s we get

vy =49 m/s x=(49m/s) (2s) =98 m
For the y direction at t =2 s:
v = —(9.8m/s%) (25) = —19.6 m/s
y=—(49m/s*) (25)* =—19.6m
The minus sign indicates it is below its starting position.
(b) V=2 + 1,2 =492 +19.6* = 2785 v-=52.8 m/s

tan 6 = |v,/v. |, where 0 is the acute angle between v and the x axis. tan 6 = 19.6/49 = 0.40 or
6 = 21.8°. Since v, is positive and v, is negative, v lies in the fourth quadrant, or 21.8 ° below the
positive x axis.

Problem 3.15.
(a) For the particle of Problem 3.14, how much time elapses before it hits the ground?
(b) How far from the base of the cliff does the particle land?
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Solution
(@) We know that at the base, y = —122.5 m, so we use (3.4b):
—-1225m=—(49m/s>)2  or £ =(122.5/4.9)§* =25 s
sothatt=15s.
(b) Now that we know the time elapsed before it hits the ground, from (3b) we obtain
x=(49m/s)(5s) =245m

3.3 PROJECTILE MOTION

The previous problem is a particular case of what is called projectile motion. A bullet fired from a
gun, a ball thrown or batted, and an arrow shot from a bow are typical examples. In all cases
something is projected with an initial velocity, but afterwards it moves solely under the influence of
gravity (air resistance is ignored). The acceleration is thus directed vertically downward with constant
magnitude g. It is often convenient to put the origin at the point of launch, and set the launch time at
t =0, as well as to express the initial velocity in terms of its magnitude and angle of elevation above
the horizontal, as shown in Fig. 3-17. Then we have v, = v, cos 6, and Vop = Vp sin Oy, and the
equation of motion for the x and y shadow points are

R x = vy cos Ggt (3.5a, b)
v, = vy sin By — gt y = wysin ot — 1gf? (3.6a, b)
vy? = (vosin0p)* — 2gy : (3.7)

Probielh 3.16. In Fig. 3-17, the projectile is fired with an initial velocity vy = 40.0 m/s at an angle
of elevation 0y = 30°. Atz = 1.5 s, find (a) the x and y components of the velocity; (b) the magnitude
and direction of the velocity; (c) the vertical and horizontal positions of the projectile.
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Solution
(@) We first find the components of the initial velocity
Vox = Vo c0s 0y = (40 m/s) cos 30° = (40.0 m/s) (0.866) = 34.6 m/s
Vo, = Vo sinflp = (40 m/s) sin30° = (40.0 m/s) (0.50) = 20.0 m/s
Then, applying the component equations for the velocity, [(3.3a) and (3.4a)], we have
Ve = v = 34.6 m/s
vy = vg, — gt =20.0m/s — (9.8 m/s) (1.5s) =53 m/s

(b) v = (vox? + Vo, 2)/? = (34.62 +5.3)"/2 = 35.0 m/s
Also, since both components are positive, v points about the x axis at an angle
v 53
f=2="=0.15 0=87°
tan V. 346 3 or 8.7

Note that the particle is still on the way up after 1.5 s, but it is nearing the highest point.
(c) Applying the x and y equations at the time 7 = 1.5 5, we get
x=(34.6m/s)t = (34.6 m/s) (1.55) =51.9m
y = (20.0 m/s)t — (4.9 m/s*) = (20.0) (1.5) — (4.9) (1.5)* = 19.0 m

Problem 3.17. For the projectile in Problem 3.16:

(@)
(b)

(©)

Find the time for the projectile to reach the highest point and the velocity at that point.

Find the maximum height to which the projectile rises and the corresponding horizontal
displacement.

Find the time for the projectile to return to the vertical level from which it was fired and the
horizontal displacement R at that time (the horizontal range).

Solution

(@) At the highest point v, = 0, so (3.4a) yields

0=20.0-9.8¢ or t:%:2.04s

(b) Again at the highest point v, = 0, and to find y we use the v, V8. y equation (3.4c):

4
0 = 20.0% — 19.6¥max or Vmax = I% =204m

To get the horizontal position at this point, we use the result of (¢) and the x vs. ¢ equation:
x =34.6 (2.04) = 70.6 m.

(¢) To find the time to return to the same vertical level from which it is fired, we don’t have to do any
additional calculations. Instead we recall that the y shadow repeats its upward motion in reverse on
the way down. Then the time taken by the projectile to go up and return to the starting level is just
twice the time to reach the highest point, which we already calculated in (b). Thus,
t=12(2.04 s) =4.08 s. This same argument can be used to show that the path of motion
(trajectory) of the particle (projectile) is symmetric about the highest point. Since the horizontal
displacement sweeps out uniformly in time, the path on the way down will be a mirror image of the
path on the way up. Hence, the horizontal range R is twice the horizontal distance to the highest
point, and using the result of (b), we get R = 2(70.7) = 141 m.
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As a check, we will directly obtain the time in part (b). We note that upon return to the starting
vertical level we have y = 0. So (3.4b) yields 0 = 20.0¢ — 4.97°. This has two solutions, one of
which is ¢ = 0, the starting time. The other is the time of interest. Dividing out ¢, we get 4.97 = 20.0
or t = 4.08 s, as before. Then x can be obtained from the x vs. ¢ equation: x = 34.6 (4.08) = 141 m.

Problem 3.18. Assume that the projectile in Problem 3.16 is a baseball batted toward center field.
The fielder is initially 150 m from the batter and starts running to meet the ball the moment it is hit.
How fast must the fielder run to catch the ball at the same height from which it was batted?

Solution

From the results of the last problem, we see the fielder must run 150 m — 141 m = 9 m in 4.08 s.
Thus his average speed must be 9 m/4.08 s = 2.2 m/s.

Did you note how simple Problem 3.18 seems once you have solved Problem 3.17? Suppose
Problem 3.17 were not given. Would you still have known how to handle Problem 3.18? The
difference between a “difficult” and an “easy” (or straightforward) problem is often that the difficult
problem requires you to figure out what information you need, not obviously stated in the problem, to
ultimately get the answer.

Trajectory Equation

In addition to getting x vs. ¢ and y vs. ¢ equations, it is also possible to obtain an equation for the
path of the projectile in the xy plane, that is, to obtain an equation for y in terms of x. Such an equation
is called the trajectory equation. To obtain it, we climinate the time between the x vs. ¢ and the VVS. ¢
equations above. '

Problem 3.19.

(a) Find the equation of the trajectory of the projectile in Problem 3.16.

(b) Use this equation to find the horizontal range of the projectile.
Solution '

(@) This is most easily done by first finding the trajectory equation for any v, and 6, and then
substituting in the specific values for this problem. We first obtain the time ¢ in terms of x from the
x motion equation (3.5b) to get ¢ = x/(vy cos ). We then substitute this into the y motion equation
(3.6b) to get y = vo sin O[x/vg cos f)] —iglx/(vy cos 0,)]* or

gx?

2vy2 cos? 0, @
This is the equation of the parabola depicted in Fig. 3-17. For vo = 40 m/s and 6§, = 30 °, we get
y = 0.577x — 0.00408x>.

y =tan fpx —

(b) As can be seen there are two values of x for which y equals zero. One is the starting point, x = 0.
The other is the horizontal range, x = R. To obtain a general expression for the range, we set y = 0
in the trajectory equation (). Moving the negative term to the other side of the equation and
dividing both sides by x, we get tan 0, = gx/(2v,> cos® 0,). We then solve for x to get

2vg? sin 6 cos 6
x =R =20 SN0 C05%0 g“ 0 (if)
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where we have used tan 6, = sin 0y/cos 6. Substituting in the values of v, and 6, for our case, we
get R = 141 m, the same result as obtained in Problem 3.17 using the time equations.

Note. Since the trajectory equation is derived from time equations, nothing can be learned from
it that can’t also be learned directly from them.

3.4 UNIFORM CIRCULAR MOTION

Centripetal Acceleration

We now turn to a situation of great interest where we do not have constant acceleration. This is the
case of an object moving with constant speed v around a circular path of radius . Such motion is
called uniform circular motion and has the peculiar property that while the magnitude of the velocity
is just the constant speed v, the direction of the velocity is continually changing. This can be seen in
Fig. 3-18, which shows the velocity at two times #, and #,. The acceleration is thus due strictly to the
change in the direction of v. To obtain a, we again note that a,, = (V2 — v)/(t, — t1). We can use this
to deduce both the magnitude and the direction of the instantaneous acceleration a at time #; by
examining the limit as 7, — #,. First we get the direction of a by noting that a,, points in the direction
of v, — v; = Av, as shown in the velocity triangle in Fig. 3-18. As #, — 1, the velocity v, becomes
more parallel to v; and angle § — 0. Since v; = v, = v, the triangle is isosceles, and the other two
angles each approach 90°. Thus, Av and a become more and more perpendicular to v; and point
downward, toward the center of the circle (Fig. 3-18). To get the magnitude of a, we note that the two
triangles shown in Fig. 3-18 are similar isosceles triangles, so | Av|/v = | As|/r, where As is the
displacement from the position of the object at time #; to that at time £,. Multiplying both sides by v
and then dividing by Ar = t, — t; yields

|Av] _ v |As|
At r At

Fig. 3-18
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The left side is just the magnitude of the average acceleration; in the limit as Az — 0 this becomes the
magnitude of the instantaneous acceleration a. The right side is just vv,,/r, since As/At by definition
equals v,, for the time interval Az. Thus, in the limit as Az — 0, the right side becomes v*/~. Equating
the two sides in the limit then gives the result

The acceleration of a particle in uniform circular motion is called the centripetal acceleration. Since
the time #; was chosen arbitrarily, the centripetal acceleration at any point in the motion always points
in toward the center of the circle and has magnitude a = V. Thus, just as for the velocity, the
acceleration has constant magnitude but changing direction.

Uniform circular motion is one example of periodic motion, motion that repeats itself over and
over. The time for one repetition of such motion is called the period T. For uniform circular motion,
the period 7 and the constant speed v are simply related since v equals the distance traveled in one
revolution divided by the time to complete the circle, or v = 27/, From (3.8) the centripetal
acceleration can then be expressed as

472y
T2

a =

(3.9)

Problem 3.20. A rock is twirled at the end of a string of radius » = 0.5 m, at a speed of 10 m/s. Find
(@) the magnitude of the centripetal acceleration of the rock, (b) the period of revolution.

Solution
(@) a=Vv/r=(10 m/s)*/0.5 m = 200 m/s>.
(b) T =2mrlv=2(3.14) (0.5 m)/(10 m/s) = 0.314 s.

Problem 3.21. The moon travels around the earth in a nearly circular orbit. The moon’s period is
27.3 days, and its average distance from the earth is 240,000 mi. Find the velocity of the moon in its
orbit, and its centripetal acceleration. Obtain your results in the English system of units.

Solution
We have T =(27.3 days)(86,400 s/day) = 2.36x10°s. Also r = (240,000 mi)(5280 ft/mi) =
1.27x10° ft.
2 2(3.14) (1.27 x 10° fr)
V=T 236 x 105 5 /s
2 (3380 ft/s)?
g= = B3OS 00899 /52

r 127 x 109 ft

3.5 RELATIVE MOTION

All Motion Is Relative

Up until now we have talked about velocity as measured in some coordinate system. Indeed
velocity has meaning only when it is measured relative to something that is assumed to be at rest. The
velocity of a ball thrown in an airplane has a different value as measured by a passenger in the plane
and by someone on the ground.
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Relative Velocity in One Dimension

Consider a train moving along a straight track at constant velocity v = 10 m/s relative to the
earth. (Fig. 3-19). (Take the direction of motion as the positive direction.) Suppose a child is running
through a car of the train with a velocity vg; = 2 m/s relative to the train. What is the velocity v, of the
child relative to the earth, i.e., as seen by an adult on the ground watching the train go by? The answer
is almost intuitive:

vee = sum of the two velocities = 2 m/s + 10 m/s = 12 m/s

In general we have

Vee = Vet T Vee (3]0)
no matter what ¢, t, and e refer to.
vet =2 m/s vie = 10 m/s
——————-
O O O O
Fig. 3-19

Suppose that a person is sitting by a window seat in the train. What is the velocity ve; of the
earth (and everything attached to it) as seen by this person? Clearly the person sees the earth go by at
10 m/s in the backward (negative) direction. Since the person is at rest relative to the train, vg; is just
the velocity of the earth relative to the train, and again intuition correctly tells us

Vet = —Vie (3.11)

The velocity of the earth relative to the train is equal and opposite to the velocity of the train relative to
the earth.

Relative Velocity in Two Dimensions

Figure 3-20 shows a situation involving relative velocity in two dimensions. A child is shown
running on the deck of a ship with a velocity v, while the ship itself is moving relative to the earth
with a velocity vs.. What is the velocity of the child as seen by someone at rest on the shore? If we
choose our coordinate axes on the ship and the shore parallel to each other, as shown, and we examine
the shadows of the motion on the x axes and the y axes, respectively, we conclude that the shadows of
the velocities obey the relative motion equations in one dimension: (c to e) = (c to s) + (s to €), and
(e to s) = —(s to e). Since the shadows are just the components along the respective axes, we must
have for the full vector velocities the same relations:

Vee = Ves + Ve and Ves = — Ve (3.12a, b)



78 MOTION IN A PLANE [CHAP 3
Ve
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are just to show =* direction
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Fig. 3-20

Problem 3.22. An airplane is aimed due east with an airspeed of 200 mi/h (mph), while a wind is
blowing due north at 80 mph. What is the velocity of the plane relative to the ground?

Solution

The velocity of the plane relative to the air, v,,, points in the tail-to-nose direction of the plane<
(east), and its magnitude is the airspeed 200 mph (Fig. 3-21). The velocity of the air relative to the earth,

N
p =plane
a = air
e =earth
Voo
[ Vye (80 mph)
0
Vpa (200 mph)
w E
.S

Fig. 3-21
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Vae, is 80 mph due north. Then, as shown in Fig. 3-21, Vpe = Vpa + Vae. Since vy, and v, are at right
angles, the pythagorean theorem may be used, giving

Vpe = (2002 -+ 802)1/2 =215 mph ta_n@ = -2-8606 = 0.40

Hence 0 = 21.8°, so the direction is 21.8 © N of E.

Problem 3.23. Suppose the pilot of the plane in Problem 3.22 wanted to fly to a city 800 miles due
east of her starting point. Given the same airspeed and the same wind blowing, in what direction
should she aim the plane and how long does the trip take (ignoring take off and landing times)?

N
vpe o
9
Mtv” (80 mph)
Mph
w E
S

Fig. 3-22

Solution

She must aim her plane so that v, is due east (Fig. 3-22). As before, Ve = Vpa + Vae. NOW V5 is the
hypotenuse of the triangle, so Vye = (200% — 80%)"2 = 183.3 mph. In addition we have

sing =35 =040 or 0=236°

so that the plane is aimed 23.6° S of E. Note that this angle is not the same as the angle 6 of Problem
3.22. The time of flight is ‘
800 mi

Problem 3.24. Rain is falling vertically downward to the ground. The driver of a car traveling
horizontally at 30 m/s observes that the rain forms streak lines on the side windows that make an
angle of 50° with the vertical. What is the speed of the raindrops relative to the ground?

Solution

The streak lines represent the direction of the raindrops relative to the car. We are given that the
raindrops fall vertically relative to the ground. Then vy = Vee + Veg, a8 shown in Fig. 3-23. We know
that v, = 30 m/s and that 6 = 40°. From this we can find the other sides of the triangle. In particular

Vig = Vg tan @ = (30 m/s) (0.839) = 25.2 m/s
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Vertical

r =rain
{e]
¢ =car 50

g = ground v,

Veg (30 /s)

Horizontal

Fig. 3-23

Problems for Review and Mind Stretching

Problem 3.25. An arrow is shot horizontally across the chasm between two cliffs, as shown in Fig.
3-24. Find the height /4 above the chasm floor that the arrow hits the second cliff.

Solution
Choosing x and y axes as shown, we have
(i) x=vot= (80 m/s)t (i) y=—lgl=—(49m/s")F
We set x = 200 m in (i) to find the time ¢ for the arrow to reach the other cliff:
200 m = (80 m/s)¢ or t=25s

Then we solve (ii) for the corresponding y value: y = —(4.9 m/s?) (2.5 s)* = —30.6 m. Thus the arrow
hits the second cliff 30.6 m below the starting point, and 2 = 200 m — 30.6 m = 169.4 m.

200 m

200 m

Fig. 3-24
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Problem 3.26. A cannon is fired from ground level with a muzzle velocity vo = 2000 fi/s at an angle
8, = 40° above the horizontal. Find the maximum height to which the shell rises, and the time to
reach that height.

Solution

The coordinate system is shown in Fig. 3-17. We first find the components of the initial velocity
along the standard x and y axes:

vor = (2000 ft/s) cos40° = 1532 ft/s vgy = (2000 ft/s) sin40° = 1286 ft/s
Then we use (3.3) and (3.4), obtaining
(1) v =vox = 1532 ft/s (1) x = vout = (1532 ft/s)t

(iii) v, = vo, — gt = 1286 ft/s — (32.2 ft/s%)¢
(v) y= vyt — g = (1286 ft/s)t — (16.1 fi/s)P
(V) v? = v, — 2gy = (1286 ft/s)* — (64.4 ft/s)y
To find the highest point, we set v, = 0 in (v), obtaining
0= (1286 fi/s)” — (64.4 ft/s’)y  or  y=25700ft
To find the time to reach the highest point, we set v, = 0 in (iii), obtaining
0— 1286 fi/s — (322 ft/s’)t or  t=399s

Problem 3.27. Referring to Problem 3.26, assume that an enemy helicopter is hovering 100,000 ft
down range from the cannon. How high above the ground would it have to be for the shell to hit it?

Solution

First we find the time it would take the shell to cover that horizontal distance. Setting x = 100,000 ft
in (ii) of Problem 3.26, we obtain

100,000 ft = (1532 ft/s)t  or  t=653s

Next we find what vertical height this corresponds to; using (iv), we obtain

y = (1286 ft/s) (65.3 s) — (16.1 ft/s?) (65.3 5)* = 15,300 ft

Problem 3.28. Find the centripetal acceleration of a person standing at the equator, assuming that
the earth is a sphere of radius R = 6.38 10° m.

Solution

The centripetal acceleration is due to the rotation of the earth. The velocity of the person on the
equator is given by v = 2nR/T, where T = 24 h = 86,400 s is the earth’s period of rotation. Then
v (2nR/T)®  4r?R _ 39.4(6.38 - 10° m)

a=2 = =0.0337 m/s’
R R T? (86,400 s) /

Problem 3.29. A child tries to swim directly across a river that is flowing at 2.5 m/s. If the child’s
swimming speed is 1.0 m/s, find the speed and direction in which the child is moving as seen by
someone on the shore.
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Solution

The situation is depicted in Fig. 3-25. Let us use ¢, 1, and ¢ to stand for child, river, and earth,
resnectively. We are given that v, = 1.0 m/s and v, = 2.5 m/s. Then, from the figure

Veo = (Ver2 + Ve )2 = [(1.0)2 + (2.5)%]* m/s = 2.69 m/s
2.5

tanH:-l—ﬁ:Z.S or 0= 68

Cr

ce

Riverbank

Fig. 3-25

Problem 3.30. A plane aims 30 ° east of north with an airspeed of v,,, = 800 ft/s. A wind is blowing

20° north of east at v,. = 100 ft/s. Find the magnitude and direction of Vpe, the velocity of the plane
relative to the earth.

Solution

The situation is shown in Fig. 3-26. We have vy = Vp, + V,e. Since vy, and v, are not at right
angles, it is easiest to solve by the component method:
Vpe,x = Vpa,x + Vae,x = (800 ft/s) (sin30°) + (100 fi/s) (cos20°) = 494 ft/s
Vpe,y = Vpa,y + Vae,y = (800 ft/s) (cos 30°) + (100 ft/s) (sin20°) = 727 fi/s
Then vye” = (494)” + (727)?, or v, = 879 fi/s. Also, § = tan™! (727/494) = 55.8° north of east.
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Problem 3.31. For the three vectors shown in Fig. 3-27, find the magnitude and direction of their sum.

Ans.  Magnitude 29.6; direction 51.8 ° above the negative x axis

Problem 3.32. For the vectors shown in Fig. 3-27, determine A + B — C.

Ans.  Magnitude 62.9; direction 57.7 ° above the position x axis

MOTION IN A PLANE

20° 1 VYae

30°

Fig. 3-26

Supplementary Problems

83

Problem 3.33. Given the vector equation A + B + C = D, with the following information: 4, = —2.6,

A,=42;B,=15,B, =
(@) Find the x and y components of D.

~4.0; C, =50, C, = —3.3.

(b) Find the magnitude and direction of D.

Ans. (a) D, =3.9,D,= —3.1; (b) D = 5.0, 38.5° below positive x axis

Problem 3.34. We are given the vector equation A + B + C =R, with 4,=3.0, 4, = 2.5; B, = 4.2,

B,=-22;R, =35 R, =35

(a) Find the x and y components of C.

(b) Find the magnitude and direction of C.

dns. (a) C,= —3.7, C,=32; (b) C=4.9, 40.9° above negative x axis.
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45°

308

Fig. 3-27

Problem 3.35. Referring to Problem 3.25, find the magnitude and direction of the velocity of the arrow just
before it hits the cliff.

Ans.  83.7 m/s, 17.0° below the horizontal

Problem 3.36. A ball is thrown horizontally off the roof of a building directly at another building across an
alleyway.

(@) If it drops 15.0 m before it hits the side of the second building, how much time has elapsed?
(b) If the alley is 10 m wide, what must have been the initial speed of the ball?

Ans. (a) 1.75 s; (b) 5.71 /s

Problem 3.37. An arrow is fired into the air at an angle of 60 ° above the horizontal and reaches its highest
point in 3.0 s

(@) What was the initial speed of the arrow?
(b) How high did it rise?

Ans.  (a) 33.9 m/s; (b) 44.1m

Problem 3.38. Find (a) the range of the arrow in Problem 3.37; () its height when it had traversed three-
fourths of the range.

Ans. (@) 102 m; (b) 33.1 m

Problem 3.39. For the cannon shell of Problem 3.26, find the range and the time to return to ground level.
Ans. 122,000 ft; 79.8 s

Problem 3.40. A quarterback throws a football at an angle of 30° above the horizontal with a velocity of
25 m/s toward a receiver who is 15 m away. Assume the recetver starts running to catch the ball, at a constant

speed, the moment the ball is thrown. How fast must he run to just catch the ball at the height from which it was
thrown?

Ans.  15.8 m/s.
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Problem 3.41. A bomber is flying horizontally at a speed of 800 ft/s and an altitude of 1000 ft when it drops a
bomb. :

(@) How far will the bomb move horizontally before it hits the ground?
() What will be the magnitude and direction of its velocity just before it hits the ground?

Ans.  (a) 6300 ft; (b) 839 fi/s, aimed 17.5° below the horizontal

Problem 3.42. Refer back to Problem 3.41. The plane is trymg to hit a tank directly ahead that is traveling at
60 fi/s in the same direction as the plane.

(¢) How far back horizontally from the tank should the plane be when it drops the bomb?
() What would the answer be if the tank were moving toward the plane?

Ans.  (a) 5830 ft; (b) 6770 fi.

Problem 3.43. A marksman is trying to hit a stationary target that is 100 m above the level of his rifle. He
aims the rifle 5° above the horizontal, fires, and hits the target just as the bullet reaches the highest point in its
trajectory. What is the muzzle velocity of the rifle? How far away, horizontally, was the target?

Ans. 508 m/s; 2286 m

Problem 3.44. A space station in the form of a large wheel of radius R = 200 m rotates at such a rate as to
simulate the earth’s gravity for people working along the rim. The condition for this to happen is that the
centripetal acceleration on the rim be equal to the earth’s gravitational acceleration. Find the period of rotation.

Ans. 283 s

Problem 3.45. Consider the space station of Problem 3.44.

(@) What must the period of rotation be changed to if the acceleration is to be double the acceleration of
© gravity?
(b) What is the new velocity of a point on the rim?

Ans. (a) 20.0 s; (b) 62.8 m/s

Problem 3.46. Find the centripetal acceleration of the earth as it moves in its nearly circular orbit of radius
1.49x10'"" m about the sun.

Ans. 591 mm/s?

Problem 3.47. If the river in Problem 3.29 is 50 m wide, how far downstream will the child reach the other
side? -

Ans. 125 m

" Problem 3.48. An airplane pilot is to travel due south on a day that a wind of 80 km/h is blowing due west.

His airspeed is 400 km/h.

(a) In what direction must he aim the airplane?
(b) What is his ground speed?

Ans.  (a) 11.5° east of south; (b) 392 m/s
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5,
3 Problem 3.49. A river is flowing due north at 3.0 m/s. A motorboat that travels through the water at 15 m/s

leaves the western bank, heading due east. The river is 300 m wide.

(@) How far north of its starting point will the boat be when it reaches the other shore?
(b) How long will the trip take?

Ans.  (a) 60 m; (b) 20 s

Problem 3.50. Suppose the boat of Problem 3.49 were aimed 30° south of east. What are the components of
its velocity relative to the earth in the northerly and easterly directions? :

Ans.  —4.5 m/s and 13.0 ns, respectively



Chapter 4

Forces and Equilibrium

Note. In introductory mechanics it is usually assumed that all forces act in the same plane
(usually called the xy plane). Such forces are said to be coplanar. This assumption
simplifies the mathematics considerably but still allows for a substantial understanding of
the underlying physics involved.

4.1 FORCES

A force is a mechanical effect of the environment on an object. It is either a push or a pull on an
object, and has both a magnitude (in appropriate units such as newtons, dynes, or pounds—units of
force are discussed in detail in Chap. 5) and a direction. It can thus be represented by a vector. A force
has two basic effects on an object. (1) It can change the motion of the object, which is the subject of
Newton’s famous second law (Chap. 5). (2) It can distort the shape of an object such as by stretching,
compressing, or twisting the object.

Types of Forces

A force can be either due to direct contact (contact force) such as a hand pushing a block or a
rope dragging a box or due to influence from afar (action at a distance) such as the gravitational pull
of the earth on a satellite or the push of one magnet on another not in contact with it. On the human
scale there are many different forces of either type. But on the atomic scale there are only four
fundamental forces: gravitational, electromagnetic, weak nuclear, and strong nuclear—all of them
actions at a distance. :

The Resultant of a System of Forces

The vector sum of the forces acting on an object is called the resultant force on the object. The
laws of nature are such that when two or more forces are acting at the same point in an object, they can
be replaced by their resultant acting at the same point, which will have the same exact effect on the
object as the original set of forces.

Problem 4.1. In Fig. 4-1(a) two forces are shown acting at a point in an object. Find the magnitude
and direction of the single force that can replace those two forces and have the exact same effect.

Solution

In Fig. 4-1(b) the resultant R and the replaced forces F, and F, (in dashed form), as well as F,
shifted parallel to itself so that it is tail to head with F; (see Sec. 3.1). Since the two original forces are at
right angles to each other, we can use the pythagorean theorem to obtain the magnitude of the resultant
force: R* = F\* + Fy* = (30 Ib)* + (40 1b)> = 2500 Ib2 Taking the square root, we obtain R = 50 Ib.
To get the direction of R we determine its angle 6 with the horizontal. We have tan 6 = opposite/
adjacent = 40/30 = 1.33 or § = 53°. Thus R has magnitude 50 Ib and acts at an angle 53 ° above the
horizontal.

87
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F,=401b

401b

F=301b

(a) (b)
Fig. 4-1

Line of Action

When a force acts at a point in an object, one can draw an imaginary line through that point and
parallel to the force. This is called the line of action of the force.

A rigid body refers to an object that doesn’t change its shape when forces act on it. No real object
is truly rigid, but the concept is a good approximation for stiff objects. In studying the relation of force
and motion we will usually assume that we have rigid bodies. While in general the effect of a force on
a rigid body depends on where it acts, a force acting on a rigid body can be applied anywhere along its
line of action and still have exactly the same effect.

Problem 4.2, In Fig. 4-2(a) we have the same two forces acting on a rigid body as in Fig. 4-1(a), but
now they are acting at different points B and C. Can one still replace these two forces by a single
resultant force that has exactly the same effect on the motion of the rigid body and, if so, give an
example of such a resultant force?

Fig. 4-2 ®)
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Solution

The answer is yes. Since F; and F, can be moved anywhere along their lines of action without
changing their effects, we can imagine moving them so that they both act at point D, the intersection of
their lines of action (Fig. 4-21(5)). They can then be replaced by their resultant R, acting at the same
point D. As already calculated in Problem 4.1, R is 50 1b acting 53 ° above the horizontal. Furthermore,
this resultant force can be moved or slid anywhere along its own line of action without change in effect.
Figure 4-2(b) shows the resultant R acting at point E, where it still has exactly the same effect as the
original two forces (shown in dashed form) that it has replaced.

42 EQUILIBRIUM

Translational motion is the motion of the object as a whole through space, without regard to how
it spins on itself. The translational motion of a very small object, idealized as a particle, is just the
motion of the particle along its path. For a large, irregular body it is less clear what is meant by the
motion of the object as a whole or the path of the object through space. Fortunately, the idea can still
be defined precisely as the motion of a special point of the object, called the center of mass. For
simple uniform symmetric objects, such as a disk, a sphere, a rod, or a rectangular solid, the center of
mass is at the geometric center of the object (see Sec. 8.4).

Problem 4.3. Describe the translational motion of the board eraser in Fig. 4-3.
Solution

The dashed parabolic line represents the path followed by the center of mass; it thus represents the
translational motion of the eraser.

Fig. 4-3

Rotational motion is the spinning motion of an object, without regard to the motion of the object
as a whole. Often rotational motion refers to the spinning of an object about a fixed axis, such as the
spinning of a wheel on a shaft, but it can also refer to the spinning of an object on itself as the object
as a whole moves through space.

Problem 4.4. How does one describe the rotational motion of the board eraser from left to right in
Fig. 4-37

Solution

The change in the angular orientation of the eraser represents its rotational motion. Note that the
eraser has rotated clockwise through 180°.
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Problem 4.5. Describe the translational and rotational motion of the cratered moon around the
planet in Fig. 4-4.

Solution

The circular dashed line represents the translational motion of the moon. This moon has no
rotational motion since its orientation does not change. The moon, in effect, stays parallel to itself
throughout the motion.

Translational equilibrium means that the object as a whole, aside from rotation, has uniform
translational motion, that is, its center of mass is either at rest or moving at constant speed in a straight
line.
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Problem 4.6. Does the motion of the eraser in Fig. 4-3 or of the moon in Fig. 4-4 correspond to
translational equilibrium?

Solution

No. The translational motion of the eraser is a parabolic arc and that of the moon is a circle, whereas
for translational equilibrium the motion must be in a straight line. An example of approximate
translational equilibrium would be a block sliding on an ice-covered lake; the block would move in a
straight line without slowing down.
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Rotational equilibrium means that the object—whether it is undergoing translational motion or
not—is either not spinning or it is spinning in a uniform fashion. For simple symmetric objects this
means spinning at a constant rate about a fixed direction.

Problem 4.7. Does the motion of the eraser in Fig. 4-3 and of the moon in Fig. 4-4 correspond to
rotational equilibrium?

Solution

If the eraser were tumbling at a uniform rate, it would indeed be in rotational equilibrium; that, in
fact, is a good approximation to what happens if air resistance is not an important factor. The moon is
certainly in rotational equilibrium, since we are shown that the moon does not rotate at all.

A Frame of Reference refers to the “framework” that defines the coordinate system in which one’s
measurements and observations are made. If a coordinate system is fixed to the earth and another one
is fixed to a rotating merry-go-round, one is going to observe things differently in each. Each of these
coordinate systems is fixed in a different frame of reference.

An inertial frame of reference, by definition, is a frame of reference in which a completely isolated
object (no forces) will appear to be in both translational and rotational equilibrium. For most purposes
the earth can be considered an inertial frame; that is only an approximation, however, because the
earth spins on its axis—although it is a very slow spin—once every 24 h. The importance of inertial
frames is that Newton’s laws hold only in such frames, and most of the other laws of physics take on
simpler form when described in such frames. We will always assume that we are describing things in
an inertial frame of reference unless otherwise indicated.

43 NEWTON’S FIRST LAW

A totally isolated object (no forces) is in both translational and rotational equilibrium in an inertial
reference frame. However, even rigid bodies that do have forces acting on them can be in either
translational or rotational equilibrium, or both, under suitable conditions. The condition for
translational equilibrium is the statement of Newton § first law, also known as the law of equilibrium.
We give here some simple cases.

Equilibrium with Only Two Forces Acting

If the two forces F; and F, (see Fig. 4-5) are equal in magnitude and opposite in direction (that is,
F, + F, = 0), then the object is in translational equilibrium. If in addition the two forces act along a
common line of action (collinear forces), as in Fig. 4-5(b), then the object is also in rotational
equilibrium.

Note. 1t is also possible to have rotational equilibrium without translational equilibrium, a
situation that will be discussed in a later chapter.

Problem 4.8. A uniform rod is connected to two cords that exert the only forces on the rod, as
depicted in Fig. 4-6; (i.e., we assume there is no pull of gravity on the rod). For each case determine
whether the rod is in translational equilibrium. If so, can it also be in rotational equilibrium?
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F,=10N

(@ ®)
Fig. 4-5

30 30

@ ®) ©
Fig. 4-6

Solution

Since the cords are flexible and exert a force only when they are taut, they can only pull along their
length, as is depicted by arrows. Case () cannot correspond to translational equilibrium because the two
forces are not equal and opposite (F;, + F, # 0), Case (b) can correspond to translational equilibrium, if’
the two forces have equal magnitude, but it cannot represent rotational equilibrium because the two
forces don’t have a common line of action. Case (c) corresponds to both translational and rotational
equilibrium if the two cords pull with forces of equal magnitude.

Equilibrium with Three Forces Acting

If the vector sum of the three forces is zero (F, + F, + F3 = 0), then the object is in translational
equilibrium. If in addition the lines of action of the three forces pass through a common point, then
the object is in rotational equilibrium as well. Such a system of forces is called concurrent.

Problem 4.9. Consider the same cases as in Problem 4.8, except now take into account the weight of
the rod. Which of the cases can now correspond to equilibrium?

Solution

Since the rod is uniform, we can assume the weight is a single force acting downward at its center
(dotted arrows in Fig. 4-6). Now only case (z) can correspond to translational equilibrium since only in
that case could the vector sum of the three forces add up to zero if the magnitudes were suitable (see
Problem 4.10). The rod would also be in rotational equilibrium, because, by symmetry, the three forces
are concurrent. In neither case (b) nor (c) could the three vector forces add up to zero since the weight is
perpendicular to the vector sum of the two other forces and could never be balanced by them.

Problem 4.10. For case (a) of Problem 4.9, if the weight is 100 N, find the force exerted on the rod
by each of the two cords if the rod is in equilibrium () by geometric means; (b) by the component
method.
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Solution

(@) Newton’s first law tells us that the resultant of the three forces acting on the rod must be zero. In
Fig. 4-7(a) we redraw the rod as an isolated object and include only the forces acting on it (body
diagram). The condition F; + ¥, + F; = 0 implies that the three vectors, drawn head to tail, form a
closed triangle. As can be seen in Fig. 4-7(b), the triangle is equilateral for our case, so
F,=F,=F,=100N.

F, Fy

—_— = - F

@ ®) ©
Fig. 4-7

(b) We now solve the problem algebraically. Choose the x axis along the rod and the y axis
perpendicular to the rod at its center. Now slide the vectors parallel to themselves to the origin, for
easier visualization Fig. 4-7(c). Since the vector sum of the three forces equals zero, we must have
for the components

Fio+Fy+F;=0 and F1y+F2y+F3y:0
From Fig. 4-7(c), we have

Fiy, = Fic0s30° Fy, = —F,co0s30° F,=0
F\y, = Fysin30° F>, = F>5in30° F3, = —100N

Substituting into the x-component equation,
Frcos30° —Fyc0830°+0=0 or F=FK
Similarly, the y-component equation gives
Fisin30° + F,sin30° — 100N =0 or 0.5F; +0.5F, = 100N
Using F; = F, in the y-component equation gives
0.5F; + 0.5F, = 100N or Fi=100N=F,
While this method of solving a vector equation seems more cumbersome than the geometric

method, it can be applied to more general cases where the geometric approach is too difficult to
use.
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Equilibrium with Any Number of Forces

For the general case of any number » of forces, we again have two conditions for equilibrium. The
first is the condition for translational equilibrium, or Newton s first law, which says that the vector sum
of all the forces is zero: £F; = 0. For small objects or particles, where rotation can be ignored, it is the
only condition of equilibrium. For extended objects, the second condition, for rotational equilibrium,
is again needed. The general case of rotational equilibrium will be discussed in a later chapter. The
rest of this chapter is concerned only with translational equilibrium.

44 NEWTON’S THIRD LAW

This law, otherwise known as the law of action and reaction, states that if some object 4 exerts a
force F,, on object B, then object B exerts a force Fy, on object 4 that is equal in magnitude and
opposite in direction: Fy,, = —F,,. The law holds both for contact forces and for action-at-a-distance
forces.

Problem 4,11, Consider a book lying at rest on a horizontal table.
(@) What are the forces on the book?
(b) What is the reaction force to each of these forces?
(¢) What effect do the reaction forces have on the book?
Solution

(a) There are two forces acting on the book: its weight (the downward pull of gravity toward the center
of the earth) and the force exerted upward on the book by the tabletop.

(b) The reaction to the weight is an upward pull of equal magnitude exerted on the earth by the book.
The reaction to the table’s force is a downward push of equal magnitude on the table by the book.

(¢) The reaction forces have no effect on the book! By definition, any effect on the book is represented
by a force on the book. The reaction forces act on the earth and on the table—mnot on the book.

Problem 4.12. An elephant and a teenager are having a tug-of-war, as shown in Fig. 4-8(a). Does
Newton’s third law imply a draw?

(@) ®
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Solution

No. Unless the elephant is very weak, the teenager will definitely lose. It is true that the force the
elephant exerts on the teenager F., is equal and opposite to the force the teenager exerts on the elephant
F., but the motion of either “object” depends on the resultant of all the forces acting on it. Both the
teenager and the elephant are pushing the ground forward with their feet, and in each case the ground
exerts an opposite reaction force. The situation is depicted in Fig. 4-8(), where Fy and F,, represent the
horizontal forces exerted by the ground on the teenager and on the elephant, respectively. Thus, for
example, suppose that Fy; = Fi = 250 Ib. We might have Fg, = 100 b and F,e = 650 Ib. Then a net
force of 150 1b acts on the teenager to the left, and he moves leftward. Similarly, a net force of 400 Ib
acts on the elephant to the left, and the elephant also moves leftward. The next section deals with friction
and shows why it is reasonable to assume that Fge > Fiy.

Tension

At any given point in a taut rope (or cord, string, thread, or cable) we can ask: With what force
does the segment of rope on one side of the point pull on the segment of rope on the other side?
Consider the situation in Fig. 4-9(a), where a girl pulls on one end of a horizontal rope with a force F,
while the other end is attached to the wall. We consider an arbitrary point p of the rope that divides it
into two segments 4 and B, as shown. Figure 4-9(b) shows the segments as separate bodies, with the
horizontal forces on each drawn in. By Newton’s third law, the forces with which the two segments
pull on each other F,, and Fy, are equal in magnitude and opposite in direction. The tension T at the
point p is the magnitude of either of these forces: T = Fap = Fa. Since each rope segment is In
equilibrium, we also have F, = F, and F,, = Fy,, where Fy, is the force of the wall on the rope. Thus
all these forces have the same magnitude 7. Furthermore, since point p was chosen arbitrarily we
conclude that the tension is the same everywhere in the rope.

A B |
P |
A ! B
F, —— Fy ! Fpp — ™ F
-—— - | -—— -
|
|
|
|
(@) )
Fig. 4-9
“Weightless” Ropes

In general these results are true only for a horizontal rope in equilibrium. If the rope were vertical,
with one end attached to the ceiling and the other end pulled down by the gitl, then the weight of each
segment of the rope would have to be taken into account, and the tension at a point p of the rope would
equal neither the force with which the girl pulled down nor the force with which the ceiling pulled up.
Indeed, the tension would vary from point to point in the rope. The same would be true if we had a
horizontal rope that was not in equilibrium, because the forces applied to either end would not balance
out.

=\
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There is, however, one circumstance where there is a common tension throughout the rope, and
this tension always equals the magnitude of the forces acting at the ends of the rope—whether the rope
is horizontal or vertical, whether the rope is in equilibrium or not. This is the circumstance where the
rope is weightless. In most problems one characterizes such a rope as a cord, string, or thread to
indicate its “lightness.” Obviously no cord is completely weightless, but if it is very light in
comparison to the other objects in the problem, it can be assumed weightless without much error.

Problem 4.13. A block of weight w = 15 N hangs at the end of a (weightless) cord suspended from
the ceiling. What is the tension in the cord, and with what force does the cord pull down on the
ceiling?

Solution

The tension is the same at all points of the cord and is equal to the magnitude of the force pulling at
either end. Since the block is in equilibrium under the action of two vertical forces (the weight
downward and the pull of the cord upward), these two forces must have the same magnitude. Hence the
upward pull of the cord = 15 N. By Newton’s third law the magnitude of the pull of the block downward
on the cord is also 15 N, so 7= w = 15 N. The tension T also equals the magnitude of the pull of the
ceiling on the cord, which by Newton’s third law equals the pull of the cord downward on the ceiling.
Thus the downward pull of the top of the cord on the ceiling is the same as the downward pull of the
block on the bottom of the cord. Thus we see that a weightless rope transmits an applied force from one
end to the other.

4.5 FRICTION

Friction is the rubbing force between two objects whose surfaces are in contact. The force of
friction always acts parallel to the touching surfaces. By Newton’s third law each surface exerts a
frictional force that is equal in magnitude and opposite in direction to that exerted by the other. The
magnitude of the frictional force exerted by each surface on the other depends on how tightly the two
surfaces are pressed together.

Normal Force

The force responsible for this “pressing together” is called the normal force because it acts
perpendicular to the two surfaces. By Newton’s third law each surface exerts a normal force that is
equal in magnitude and opposite in direction to that exerted by the other. Figure 4-10 indicates the
frictional and normal force on each object when a block is in contact with an inclined plane. The
frictional force (parallel to the surface) and the normal force (perpendicular to the surface) acting on a
surface can always be thought of as the components of the overall force acting on that surface due to
the other surface in contact with it.

Static Friction

When two surfaces are at rest with respect to one another, the frictional force each exerts on the
other always opposes any tendency to relative motion. The frictional force on an object adjusts itself
in magnitude and direction to oppose and counterbalance any other forces on the object that would
tend to make the object start to slide. It varies, as needed, from zero magnitude up to some maximum
value to stop such slippage. Such a frictional force is called a static friction force (f,). The maximum
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(Body diagrams)

Fig. 4-10

static friction force f; max that one surface can exert on another is proportional to the normal force N
between the surfaces: f; max = sV, Where N is the magnitude of the normal force, and pg is a
proportionally constant, called the coefficient of static friction, that depends on the nature of the two
surfaces. It is possible to force one object to slide over the other by applying a parallel force to one of
the objects that is larger than N, the maximum possible static friction force.

Problem 4.14. A book of weight w = 10 N rests on a horizontal table top, as shown in Fig. 4-11(a),
and a horizontal force F is applied to it. If the coefficient of static friction y, between the book and the
tabletop is 0.25, calculate (a) the normal force exerted by the tabletop on the book, and (b) the
maximum value of the static friction force.

@ ®)
Fig. 4-11

Solution

(@) Since the book is in equilibrium, the sum of the forces acting on it must equal zero. Figure 4-1 1(d)
shows the body diagram for the book with all the forces acting on it. The frictional force is f;, and
the normal force is N. Noting that f, and F have no y components, from the condition that the sum
of the y components equals zero we have N — 10 N =0, or N= 10 N.

() The maximum value attainable by the static friction force is
fomax = 4N = (0.25) (10N) = 2.5N

Problem 4.15.

(a) In Problem 4.14, if the magnitude of the applied force is F = 2.0 N, what is the magnitude and
direction of the frictional force on the book?
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(b) Whatif F=1.0N; 0 N?
(c) What is the biggest value that F can be before the book starts to slide?

Solution

@

®

©

The frictional force opposes the tendency to motion, so it is in the direction opposite to F, as shewn
in Fig. 4-11(b). The magnitude of the frictional force adjusts itself to keep the book at rest, which
in this case means f; = F = 2.0 N. This value is possible, since it is smaller than the maximum
found in Problem 4.14(b).

If F=1.0N, then, by the same reasoning as in part (¢), we have /; = 1.0 N in the direction
opposite to E. If F =0, then f; = 0, and there is no frictional force at all.

If F is bigger than f; ..., then the frictional force cannot rise to match F and maintain equilibrium.
Thus F' = 2.5 N is the limiting value; beyond this value equilibrium cannot be maintained, and the
book starts to move.

Kinetic Friction

Once two surfaces are in motion relative to one another, the frictional force, now called kinetic

friction (f;), acting on a surface is always in a direction opposed to the velocity of that surface. To a
good approximation, its magnitude is independent of the magnitude of the velocity and is again
proportional to the normal force between the two surfaces. Thus it can be expressed as f; = N,
where p, the coefficient of kinetic friction, depends only on the nature of the two surfaces. For any
given pair of surfaces, p; < .

Problem 4.16. Assume the book in Fig. 4-11(a) is moving to the right with speed v.

(@

®)
(©

Now what are the magnitude and direction of the force of friction exerted by the tabletop on the

book?

Does f; depend on the magnitude of the applied force F?

If the book instead moves to the left with speed v, with F still to the right, what are the magnitude
and direction of the force of friction? Assume that y; = 0.2.

Solution

(@)

®)
(©

Once the book is moving the (kinetic) friction is of fixed magnitude, f; = uN. Since we still have
equilibrium in the y direction, we still have the same normal force; Thus f; = (0.2) (10 N) = 2.0 N.
The direction of the kinetic friction force is always opposite to the direction of motion, so it would
be to the left.

No.

Since the normal force is still the same, the value of £, is still 2.0 N. The direction of f; is now to the
right. Note that the direction of f; depends only on the direction of motion and not on the direction
of F.

4.6 CORDS AND PULLEYS

If a (weightless) cord is bent over a pulley, as in Fig. 4-12, there are two idealized situations in

which the tension in the part of the cord on one side of the pulley will be the same as the tension in the
part of the cord on the other side of the pulley.
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(@ )] (©)
Fig. 4-12

1. The surface of the pulley is frictionless so that the cord slides effortlessly over it (frictionless
pulley).

2. The surface of the pulley has friction, but the pulley has no weight and there is no friction
between the pulley and the axle on which it rotates (weightless pulley).

In a problem, being told that the pulley is frictionless and/or weightless (massless) is generally
shorthand for case 1 or case 2, and you can assume as much unless told otherwise.

Problem 4.17. In Fig. 4-13(a), the two blocks are connected by a light rope over a frictionless,
weightless pulley. If the system is initially at rest, will it stay at rest? If so, what is the frictional force
exerted by the table on block 4?

Solution

Figure 4-13(b) gives the body diagrams for the two blocks. For block B, assuming equilibrium, the
y-component equation gives T — W, = 0 or T= W, = 10 N. Since we have a rope and a frictionless,
weightless pulley, the tension is the same on the block-4 side of the pulley, and 7 = 10 N for block 4 as
well.

Vertical equilibrium of block 4 requires that N — W, = 0,or N = W, =30 N. Then the maximum
possible static frictional force is

Js,max = uN = (05) (30N) = 15N

Since T < f; max» the frictional force can balance T and the system remains at rest. The actual frictional
force can be obtained from the equilibrium of block A:

T—f=0 o f=T=I10N
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fs

W,= 10N

(@)

(®)

Fig. 4-13

Problems for Review and Mind Stretching

Problem 4.18. Find the resultant R of the two forces shown in Fig. 4-14.

Solution

R =F; + F,. We choose x and y axes as shown in the figure and use the component method of
addition.

Fi,=0 Fi, = 20N Fy, = —(60N) cos 37° Fa, = —(60N)sin37°
R, =Fi; + F5, =0— (60N) (0.8) = —48N
R, = Fy, + F5, = (20N) — (60N) (0.6) = —16N
R = [(—48)%+(=16)"]"/* = 50.6N

From the signs of its components, R is in the third quadrant. If § is the acute angle that R makes with the
negative x axis,

16 1

= — = — = _40
83 or 6=18

R,

Ry

tan 0 =

Thus R has magnitude 50.6 N and points away from the origin at 18.4 ° below the negative x axis.

=20N

F2=60N

Fig. 4-14
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Problem 4.19. Three forces act on a rigid body, as shown in Fig. 4-15, with their lines of action
passing through the common point B. Find their resultant and its point of application for equilibrium.
Solution '

R =F, + F, + F;. Choose the x and y axes as shown. Then
R, = Fi; + Foy + Fa, = (—50N) cos 30° + (40N) cos 45° + (ON)
= (—50N) (0.866) + (40N) (0.707) = —15.0N
R, = Fy, + Fyy + F3, = (50N) sin30° + (40 N) sin45° + (—=30N)
= (50N) (0.5) + (40N) (0.707) 4+ (—30N) = 23.3N
R=[(-152+(23.3)4)"* = 277N
R is in the second quadrant, with

233

tan 6 = |R,/R,| = 150 or 0 = 57.2 ° above the negative x axis

R can act anywhere along a line of action through B.

F,=40N

Problem 4.20. Refer to Problem 4.18.

(¢) What third force E, must be exerted on the body for it to be in translational equilibrium?

(b) Where must E be applied to give rotational equilibrium as well?
Solution

(@) For translational equilibrium, F; + F;, + E=0, or E=—(F; + F,) = —R. Hence E = 50.6 N,
and E points 18.4 ° above the positive x axis (see Fig. 4-16).

(®)

E must have the same line of action as R; that is, its line of action must also pass through point 4.

Note. The force which, when added to an existing set of forces on an object, will cause the

object to be in equilibrium is called the equilibrant of the set. (The force E in the previous
problem is thus an equilibrant.)
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E=50.6N

18.4°

18.4°

R=506N

L ]
Fig. 4-16

I4
Problem 4.21. Find the equilibrant of the forces in Problem 4.19.

Solution

Here we have the concurrent forces F;, F,, and F; which can be replaced by the single resultant
force R = F; + F, + F; with line of action through point B, as obtained in Problem 4.19. Clearly, to
have equilibrium, the added fourth force, the equilibrant E, must obey E = —R. Thus E = 27.7 N
pointing 57.2° below the positive x axis, with a line of action that must also pass through point B.

Problem 4.22. A block of weight w; = 400 N hangs from a uniform heavy rope of length 3 m and
weight w, = 300 N, as shown in Fig. 4-17(a). Find (a) the force with which the rope pulls on the
block; (b) the tension in the rope 1 m above the contact point with the block; (c) the force with which
the ceiling pulls on the rope.

Solution

In Fig. 4-17(b) we have the body diagrams for the block, the lower third of the rope, and the full
rope, respectively. Each is in equilibrium, and the vector sum of the forces on each equals zero. Since the
forces are all in the y direction, only the equilibrium condition in that direction need be applied.

3m wy, =300 N

Wy

w; = 400N

@ ®)
Fig. 4-17
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(@) For the block, Ty — wy =0, 0or T} = 400 N equals the force of the rope on the block.

(b) For the lower third of the rope, T, — 71 — w' =0, where T, is the contact force of the upper two-
thirds of the Tope on the lower third and is the tension in the rope at that point; 77 is the force of the
block on the rope, given by Newton’s third law as T 1= T,= 400 N; w' is the wéight of the lower
third of the rope, or w’ = 100 N. Thus 7, = 71 + w’ =400 N + 100 N = 500 N.

(c) For the rope as a whole, 75 — T] — wy =0, 0or T3 = T{ + wp = 400 N + 300 N = 700 N, equals
the force of the ceiling on the rope.

Problem 4.23. For the weight-and-strings setup of Fig. 4-18(a), find the tensions T 1, T, and T5.

60°

T2 50°

w=600N

@ ®)
Fig. 4-18

Solution

From the equilibrium of the block, T; = 600 N. Since the knot is in equilibrium, the body diagram,
Fig. 4-18(b), gives T; + T, + T3 = 0. Using the component method, we get

Ty + Tox + T3y =0 — Tpc0s60° + T35in50° =0 or 0.5T, = 0.766T3~

or T, = 1.532 Ts. (A sine appears in the x-component equation because the angle of Ts is giveh relative
to the y axis). Similarly, :

le—{—sz—i—Tg,y——-—T1+T2sin60°+T300550°——-0 or 0.8667, + 0.64373; = 600N
Substituting for 7>, .
(0.866) (1.53273) + 0.6437; = 600N or 1.9707; = 600N or T; =305N
Finally, T, = 1.532T5 = 467 N.

Problem 4.24. A block of weight w = 200 N is pulled along a horizontal surface at constant speed
by a force F = 80 N acting at an angle of 30° above the horizontal, as shown in Fig. 4-19.
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w=200N
“Fig. 4-19

(a) Find the frictional force f exerted on the block by the surface.

(b) Find the normal force N exerted on the block by the surface. ]

(c) Find the coefficient of kinetic friction, 1, between the block and the surface.
Soluﬁon

(@) The four vector forces acting on the block are shown in Fig. 4-19. Sjnce the block is in equilibrium,
their sum equals zero. For the x components we thus have

Feos30°—fi=0 or  f = (80N)(0.866) = 69.3N

"(b) Similarly, for the y compbnents, . ‘
Fsin30°+N—-w=0 or N = 200N — (80N) (0.5) = 160N
Note that the normal force is not equal to the weight even though the block is on a horizontal surface,

because the force F has a vertical component.

© me=fi/N=693/160 = 0.433.

Problem 4.25. A hanging weight w, is connected by a light cord over a frictionless pulley to a block
on a frictionless incline of weight w, = 500 N, as shown in Fig. 4-20. If the block on the incline
moves down at constant speed, what is the weight of the hanging block? How would your answer
change if it were moving up the incline at constant speed?
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Solution

In Fig. 4-20, all the forces on the respective blocks are shown right on the diagram for the system as
a whole. Since both blocks move in straight lines at constant speed, they are each in equilibrium. For the
hanging block, using y components, we have T; — wy = 0, or w; = T. To find 7; we turn to the block
on the incline. We choose x and y axes along the incline and perpendicular to it, respectively. We also
note that the force of the cord on each block has the same magnitude, so 7> = Ty = T, since the cord is
light and the pulley is frictionless. Then, for the x-component equilibrium equation we get

T—wysinf=0 or T=(500N)(sin37°)=300N

Then from our earlier result w, = T = 300 N. Note that we did not need to solve the y-component
equilibrium equation for the block on the incline to solve for Tand w;. This is because the y-component

« equation gives us the normal force N, which does not affect the x-component equation when there is no
friction. If the block were moving up the incline, the blocks would still be in equilibrium under the
action of the same forces, so the answer would remain the same.

Problem 4.26. Suppose that in Problem 4.25 there was friction between the block and the incline
and that the coefficient of sliding friction was uz = 0.3, but all the other data in the problem remained
unchanged. Find the weight of the hanging block, wy, if the other block moves at constant speed
(a) down the incline; (b) up the incline.

Solution

(@) We can use Fig\. 4-20 with the modification that there is an additional force on the block on the
incline, a frictional force of magnitude f; opposing the motion of the block and hence pointing
parallel to the incline in the upward direction. From the rules for friction we have f; = pV, where
N is the normal force exerted on the block by the incline. Following the reasoning of Problem 4.25
we now have for the x components

T+ N —wysin37° = or T = (500N) (0.6) — 03N
For the y components

N —wyc0837° =0 or N = (500N)(0.8) =400N
¢
Substituting into the previous equation we have

T = (500N) (0.6) — 0.3(400N) = 300N — 120N = 180N

Since the hanging block obeys w; = 7, we have our result, w; = 180 N.

(b) If the block is moving up the incline at constant speed, we proceed as before, noting that the
frictional force is now directed down the incline although it still has the same magnitude f; = .
Furthermore the y-component equation for the tlock on the incline is unchanged, so we still have
"N = 400 N and f; = 0.3(400 N) = 120 N. The x-component equation changes only in that the sign
of the x-component of the frictional force changes, and we get

T — N —w;sin37° =0 and T =300N+ 120N = 420N
Finally, w; = T =420 N.

-«

Problem 4.27. For the setup in Fig. 4-18(a)—first discussed in Problem 4.23—the breaking point of
the two cords attached to the wall and ceiling is 1500 N. How heavy can the block be without one of
the cords snapping? Assume the cord attached to the block can handle any weight.
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Solution

We first determine which of the two cords will reach a tension of 1500 N first. To do this we recall
from Problem 4.23 that equilibrium in the x direction requires

T35 sin 50 ° = T3 cos 60 ° or 0.76673 = 0.50T, or 3=0.653T, <D

Id
Clearly T3 is always less than 75, and hence T, will reach 1500 N first. We now set 7 = 1500 N; from
above, this immediately yields 75 = 0.653 (1500 N) = 980 N. We can now determine the corresponding
weight w of the block using the equilibrium equation in the y direction:

w=Ti = T55in60° + 73 c0s 50° = (1500N) (0.866) + (980N) (0.643) = 1929 N

Supplementary Problems

Problem 4.28.
(@) The earth’s moon revolves about the earth once a month and always keeps the same side facing the earth.
Describe the translational and rotational motion of the moon.
(b) Is the moon in translational and/or rotational equilibrium?
Ans.  (a) The moon as a whole translates in a circular orbit about the earth; it rotates on its axis
once a month.

(b) The moon is not in translational equilibrium; if the moon’s monthly rotation on its axis
is uniform (it is, approximately), then the moon is in rotational equilibrium.

Problem 4.29. An automobile travels in a straight line with no skidding.

(@) If the automobile travels at constant speed, are its wheels in translational and/or rotational equilibrium?

(b) If the automobile accelerates from 0 to 60 mph, are its wheels in translational and/or rotational
equilibrium?

() Is a bit of chewing gum on the rim of a wheel of the automobile in translational and/or rotational
equilibrium for the case of part (a) or part (b)?

Ans. (a) In both; (b) in neither; (c) not in translational equilibrium for either case; the bit of gum
goes through one rotation every time the wheel makes one complete turn. For part (a) it is in
rotational equilibrium, while for part (#) it is not. ,

V Problem 4.30. A uniform rod of weight 100 N is acted on by a force F, as shown in Fig. 4-21. What force F )
must be added to the rod to ensure translational equilibrium?

Ans.  56.6 N at an angle of 58.0 ° above the negative x axis

\/ Problem 4.31. In Fig. 4-22(a), assume the somewhat artificial condition that the strut is weightless and the
wall is frictionless. The cord makes an angle § = 37 ° with the strut.

(@) What are the conditions imposed on T and N if the strut is to be in translational equilibrium?

(b) Can the strut be in rotational equilibrium under the circumstances shown? Give your Justification.

Ans. (@) T=83 N, N =66 N; (b) No. The three forces cannot possibly be concurrent.
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F =60N

(oo

w=100N

Fig. 4-21

Y

@ ®)
Fig. 4-22

Problem 4.32. Assume the same situation as in Problem 4.31, except that the weight now hangs from the end
as shown in Fig. 4-22(b).

(a) Find the values of T'and N for translational equilibrium.
(b) Is the strut now in rotational equilibrium and if so why?

Ans. (a) The forces are as before: =83 N, N =66 N.

(b) Yes. If the forces are as in part (a), then the strut is also in rotational equilibrium since
the three forces are concurrent.

\/ Problem 4.33. A block weighing 200 N is suspended from the ceiling by means of three light cords joined in
a knot(Fig. 4-23). Find the tensions in the cords and the forces the cords exert on the ceiling.

Ans. Ty =200N, T, =104 N, 75 =146 N; 104 N and 146 N, downward along the cord
directions

\,/ Problem 4.34. A block slides down a 30° incline at constant speed. Find the coefficient of kinetic friction.
Ans.  pi = 0.58 ‘
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Fig. 4-23

/
%/ Problem 4.35. The same block as in Problem 4.34, when placed at rest on the incline, does not move. When
the angle of inclination is increased by 10°, the block starts to slide. What is the coefficient of static friction?

Ans. pu,=0.84

A

WA Problem 4.36. The block in Problem 4.34 is now connected to a hanging block by means of a light cord over
\/ ¥ africtionless pulley (Fig. 4-24). If the block on the incline weighs 30 N, what must be the weight of the hanging
block if it falls at constant speed?

Ans. 30N

Fig. 4-24

Problem 4.37. Suppose that for the situation of Problem 4.26 (Fig. 4-20) the block is initially at rest and the
coefficient of static friction is y, = 0.4. For what range of weights w; will the block remain at rest?

Ans. 140 to 460 N

Problem 4.38. If the block in Problem 4.24 was initially at rest and y, = 0.6, how big would the applied force
have to be to just get the block moving?

Ans. F=103 N

Problem 4.39. Suppose the rope in Problem 4.22 has a weak spot at its midpoint so that it will break if the
tension at that point reaches 2000 N. What is the heaviest block that can be suspended by the rope?

Ans. 1850 N
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Lo

\ / Problem 4.40. A block is pushed along a tabletop at constant speed by a force acting 20 ° below the horizontal
7 asin Fig. 4-25(a). If the weight of the block is 100 N and the coefficient of kinetic friction is g = 0.30, find the
magnitudes of (@) the pushing force, (b) the normal force due to the table.

Ans. (@) 358 N; (b) 112N

H =03
(a)

®)
Fig. 4-25

I

\/ Problem 4.41. Repeat Problem 4.40 if the block is being pulled at constant speed by a force acting at an angle
of 20° above the horizontal [Fig. 4-25(b)].

Ans. (a) 287 N; () 9O N

/ Problem 4.42. Find the tensions T; and T, in the two cords for the equilibrium situation depicted in
Fig. 4-26(a).

Ans. T7=80N; T, =41 N

\;ﬁ ,/‘" Problem 4.43. Repeat Problem 4.42 for Fig. 4-26(b).
Ans. Ty =139 1b; T, = 160 1b

z f
Y Problem 4.44. Repeat Problem 4.42 for Fig. 4-26(c).
Ans. T1 =253 N; T, =288N

Problem 4.45. What is the minimum coefficient of static friction between table and block for which the blocks
in Fig. 4-27 will remain in equilibrium? What is the tension 77

Ans. 0.29; 115N

Problem 4.46. A 50-N weight is hung symmetrically from the ceiling by two light cords, as shown in
Fig. 4-28. The breaking strength of the cords is 1200 N. What is the minimum angle 6 at which the weight can
be hung without the cords breaking? (Assume the vertical cord is very strong.)

Ans. 1.19°

" Problem 4.47. In Fig. 4-26(b) the breaking point of the horizontal cord is 1000 Ib, while that of the cord
attached to the ceiling is 1200 1b.
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80N

(a) 80N

)]

30°

80".‘

100N

(©
Fig. 4-26

100N L/

Fig. 4-27

(a) If the weight of the hanging block is steadily increased, which cord will snap first?
{b) What is the maximum weight that can be supported by the cords?

Ans. (a) The horizontal cord; (b) 577 Ib

Problem 4.48. Referring to Fig. 4-20, suppose y; = 0.50 and w;, = 900 N. Find the weight w, such that the
block just slides (@) up the incline at constant speed; () down the incline at constant speed.

Ans. (a) 900 N; (b) 4500 N
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50N
Fig. 4-28

\/ Problem 4.49. A child pushes a block of weight w = 300 N against a wall with a force Fécting upward at 45°
to the horizontal to stop it from falling. The situation is shown in Fig. 4-29. p; = 0.6 between the block and the
wall.

(@) What is the minimum value of F for which the block will not fall?
(b) Would the child have an easier time of it by instead exerting a force in the horizontal direction?

Ans. (@) 265 N; (b) no. The minimum force would now be 500 N.

U, =0.6

Fig. 4-29



Chapter 5

Newton’s Second Law

In this chapter we concern ourselves only with the translational motion of objects.

5.1 RESULTANT FORCE AND ACCELERATION

In Chap. 4 it was found that if the vector sum of the forces on an object—the resultant force—is
zero, then the object is in translational equilibrium; i.e., it has constant velocity, or, equivalently, zero
acceleration. If the resultant force is not zero, then we should expect that the acceleration also would
not be zero. Indeed, we should say that the unbalanced force on the object caused its acceleration.
Newton’s second law is the quantitative statement of this cause-and-effect relationship.

Experimental Facts and the Formulation of Newton’s Second Law

When a nonzero resultant force F acts on a given object, the consequent acceleration a always
points in the direction of F. Also, for a given magnitude of F, the magnitude of a is the same no matter
what the direction of the force. On the other hand, if the magnitude of F doubles, the magnitude of a
doubles; if the magnitude of F triples, the magnitude of a triples; etc. Thus the magnitude of a is
proportional to the magnitude of F, or F ox a. The proportionality constant is called the mass m of the
object, and we write F' = ma, where m is generally different for different objects. Since m is a scalar
quantity, we can combine the results for the magnitude and the direction of the acceleration in the
single equation

F = ma

This equation is the mathematical statement of Newton’s second law. In Fig. 5-1(a) and (b), we
show different resultant forces having the same magnitude acting on (q) the same object and
(b) different objects, and the resulting accelerations of those objects.

F, F, F

7, A 7

- \\
nmy ny / {\‘___A/
a

, m

31\\ P/ 2

Fi=F' = a=qa/ Fi=F, = afa; = myim, Fla=M=m+m,

@ () ©
Fig. 5-1

112
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The Meaning of Mass

As can be seen in Fig. 5-1 the mass controls the response of the object to a given magnitude force:
A small mass means a large acceleration, a large mass means a small acceleration. Because mass
measures the resistance of an object to having its velocity changed (“being shoved around”), it is
often referred to as the inertia of the object. The relative magnitude of different masses can easily be
established by applying the same magnitude force to the different objects and measuring their

accelerations. Then

m a

mia, = mydyx or —_—=

ny ay
The mass is clearly an intrinsic property of an object, but for it to be a truly fundamental property of
all matter one needs to show that objects maintain this property even when they are combined with
other objects. Figure 5-1(c) shows a resultant force being applied to two objects stuck together. The
resulting acceleration is just what one expects if the mass of the combination is M = m; + m,. The
mass is thus an indestructible and unchanging property of any object that stays with the object even
when it is combined into larger units. In the same way, when an object is broken into smaller parts, the

sum of the masses of the parts equals the original mass.

Units of Force and Mass

In the International System (SI) units, the unit of force is already determined for us from Newton’s
second law, once we have a unit of mass and a unit of acceleration. The unit of mass is the kilogram,
and the unit of acceleration is the meter per second squared. The corresponding unit of force is the
Newton (N), and from F = ma we have

1N = (1kg) (1 m/s*) =1kg-m/s’

In other words, a 1-N force gives a 1-kg mass an acceleration of 1 m/s. If one chooses the gram as the
unit of mass and the centimeter per second squared as the unit of acceleration, then the unit of force is
called the dyne. Again, from F = ma

1dyn=(1g)(1cm/s*) =1g-cm/s’

Problem 5.1. How many dynes are there in a newton?
Solution

1 N=1 kg -m/s* = (1000 g)(100 cm)/s? = 100,000 g - cm/s* = 10° dyn

Problem 5.2. What is the magnitude and direction of the acceleration of an object whose mass is
10 kg when it is acted on by a resultant force of 380 N at 30° above the positive x axis?

Solution

The direction is the same as that of the resultant force, 30° above the positive x axis. For the
magnitude F' = ma gives
F 380N 38kg-m/s )
== =""_"_=38N/kg=——"-—"=38
“ m 10kg 38 N/ke kg m/s
Problem 5.3. A constant force acts on a 30-g object and produces an acceleration of 2 m/s?. Find
the force in dynes.
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Solution

We are given mixed units, so we first convert the acceleration to the gram-centimeter-second
system: @ = 2 m/s* = 200 cm/s®. Then F = ma gives

F = (30 g) (200 cm/s”) = 6000 dyn

The English System and Weight

In the English system of units it is the unit of force, the pound (ib), that is fundamental, rather than
the mass. One pound (1 1b) is defined as the pull of gravity on an object whose mass is 0.45359 kg
at a specified latitude of the earth’s surface. (The pull of gravity on an object is commonly called
its weight.) The corresponding unit of mass is now defined using the second law, F = ma: A
mass of 1 slug is that mass which when acted on by a force of 1 Ib accelerates at 1 ft/s?, or
1 slug = (1 b)/(1 ft/s).

To convert from pounds to newtons we have to discuss the nature of weight. If an object near the
earth’s surface is acted on only by the force of gravity, it will accelerate with the acceleration
g = 9.8 m/s*. Calling the force of gravity, or weight, w, the second law gives w = mg. Since g is the
same for all objects, w/m = g is constant. Thus weight and mass are proportional at a given point on
the earth’s surface. As one changes position on the earth’s surface, both w and g vary slightly, but m
stays constant. This will be discussed in more detail when we discuss the law of universal gravitation.

We can now determine the conversion from the English to the metric system. From its definition:
1 1b = (0.45359 kg)(9.8 m/s*) = 4.445 N. The mass 0.45359 kg is given a special name and called 1
pound-mass (i.e., the mass that weighs 1 1b). Since a force of 1 Ib gives 1 Ib-mass an acceleration
g =9.8 m/s*> =322 fi/s®, while it gives 1 slug an acceleration of only 1 fi/s®, it follows that 1
slug = 32.2 1b-mass = 32.2 (0.45359 kg) = 14.7 kg.

Problem 5.4. What is the weight w, in pounds, of a 1-kg mass?
Solution

We can first get w in newtons. w = (1 kg)(9.8 m/s?) = 9.8 N. Dividing by 4.445 N/Ib we get
w = (9.8:N)/(4.445 N/Ib) = 2.20 Ib. We could also get the result directly from the fact that 0.45359 kg
weighs 1 1b, and therefore 1 kg weighs 1/0.45359 = 2.20 times as much.

Problem 5.5. A resultant force of 50 1b acts on an object weighing 12 Ib. Find the acceleration.
Solution
The mass of the object is m = w/g = (12 1b)/(32.2 ft/s”) = 0.373 slug. Then
50lb=(0.373slugla  or  a=134ft/s?

5.2 APPLICATIONS OF THE SECOND LAW

Whenever applying the second law it is essential to clearly identify the object being accelerated
and to be sure that the force appearing in the equation is the resultant of all forces acting on the object.
Also, because F = ma as a vector equation, it may be useful to resolve it into components along
convenient x and y axes.
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Forces on a Single Object

Problem 5.6. A constant force T pulls horizontally on a block of mass m = 2.0 kg, which is free to
move on a frictionless horizontal surface, as shown in Fig. 5-2(a). Starting from rest, the block is
observed to move 20.0 m in 2.0 s. Find T.

(@) ®)
Fig. 5-2

Solation

We first draw a body diagram for the block, with all forces on the block drawn in, as shown in Fig.
5-2(b). Also shown is the acceleration a. Since the acceleration is along the x direction (the block stays
on the table), we have a, = a and a,, = 0. For the x direction we have F, = ma,. Since T'is the only force
with an x component, and it points in the x direction, we have 7 = ma or T = (2.0 kg)a. Since T is
constant, we know that « is constant, and we can use the kinematic equations for constant acceleration,
together with the kinematic information given. Since the block starts from rest, we can set xo = vg, = 0.
We then have x = at2 which for our case yields 20.0 m = 1a(2.0 s)? or a = 10.0 m/s*. Then

= (2.0 kg) (10.0 m/s })=20.0N

Problem 5.7. Redo Problem 5.6, if there is now friction between the block and tabletop and the
coefficient of kinetic friction is py; = 0.3.

Solution

The body diagram in Fig. 5-2 remains the same except that there is one additional force f; in the
negative x direction. Since f, = N, we need to find the normal force N. Considering the y direction we
have (since a, =0) N=mg =19.6 N. The x equation is now T — Ji=ma or T —yN=ma.
Substituting in the known values, we get

T—03(19.6N) = (2.0kg) (10.0m/s’) or T =2588N

Problem 5.8. A block of mass m = 5.0 kg slides from rest on a horizontal frictionless surface under
the action of a force of 60 N in a direction 40 ° above the positive x axis. How fast is the block moving
at the end of 6 s?
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Solution

The situation is depicted in Fig. 5-3, where, instead of having a separate body diagram, all the
forces acting on the block are directly drawn in. Only the x motion is of interest, and F, = ma, yields

(60 N)cos40° = (5.0kg)e  or  a=9.2m/s
Since we are starting from rest we have v, = at = (9.2 m/s*)(6 s) = 55.2 mys.

F=60N

Fig. 5-3

Problem 5.9. A block of mass m = 12 kg slides down a frictionless inclined plane of angle 50°.
What is the acceleration?

Solution

The situation is shown in Fig. 5-4. Since we know the motion of the block will be down the incline,
we choose our x axis down along the incline. Since there is no friction, the only force with a component
along the incline is the weight w = mg. Then

mgsin50° =ma  or  a=gsin50° = (9.8 m/s%) (0.766) = 7.51 m/s’

Note. The acceleration is independent of the mass, just as for the case of freely falling objects.
Indeed, if the angle of the incline is any angle 6, the acceleration is @ = g sin 6.
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Problem 5.10. Suppose that in Problem 5.9 there is friction, with y; = 0.2. Find the acceleration.

Solution

A frictional force f; = uzlV, acting up the incline (in the negative x direction), must be added to the

forces already shown in Fig. 5-4. Since we have equilibrium along the y axis,

N = mgcos50° and  f; = pmgcosS0°

Then, for the x motion, mg sin 50° — wmg cos 50° = ma. Dividing out the mass we obtain

a=gsin50° — ygcos50° = g(sin50° — y; cos50°)
= (9.8 m/s?) (0.766 — 0.2 - 0.643) = 6.25 m/s”

Problem 5.11. A child weighing 80 Ib stands on a bathroom scale in an elevator. Find his “effective
weight” as read on the scale, if the elevator is (¢) moving downward at constant speed; (b) movmg
upward at constant speed; (¢) acceleratmg upward at 8.0 ft/s%; (d) acceleratmg upward at 32 ft/s%; (e)
accelerating downward at 8.0 ft/s?; ( f) accelerating downward at 32 ft/s°.

Solution

The child is under the action of two forces, the weight w = mg downward and the normal force N of

the scale upward. (The bathroom scale reads the value of N, which is what we call the “effective
weight”.) We choose our positive direction upward.

(@), (b) In these two cases the acceleration is zero, so the child is in equilibrium, and we must have

(©)

Note.

@)

G

Note.

N = mg = 80 Ib, the true weight.

Now N-—-mg=ma or N=m(g+a)=(wg)g+a)=wg+a)g=(801b)32+8)/32=
(80 1b)(2) = 100 Ib.

This “effective weight” is not just a mathematical result. The child will actually feel
heavier. Just as the scale pushes up with a force greater than the weight to give the entire
child an upward acceleration, so too the lower half of the child must push up on the upper
half with a greater than usual force to give that half its acceleration. Indeed each part of
the body must exert a proportionately greater force on every other part, hence the feeling
of weighing more.

We still have N = w(g + a)/g, but now a = 32 f/s°. Therefore N = (80 1b)(£2) = 160 Ib, or double
the weight.

Now a = —8 m/s’, and N = (80 1b)(%) = 60 Ib.
Nowa=-32ft/s>andg+a=0,s0 N=0.

The answer to part ( f) is not surprising because the child is accelerating downward with
the acceleration of gravity, which is called “free fall.” The child in fact feels weightless
since no forces other than gravity can be acting on any given part of his body. Thus, the
usual forces exerted by different parts of the body on each other are not there, and it feels
strange. A satellite moving around the earth is also in free fall, which is why the
astronauts inside feel weightless.
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Motion of Coupled Objects

In many situations objects are connected to each other by cords or directly make contact with one
another. Newton’s second law should be applied to each object and the simultaneous equations solved
to obtain the motion of the two coupled objects.

Problem 5.12. Two blocks, of masses m, = 9 kg and mp = 11 kg, are connected by a light cord on
a frictionless horizontal surface, as shown in Fig. 5-5(a). Block B is pulled to the right by a force of
12 N. Find the acceleration of the blocks and the tension in the connecting cord.

T F=12N

Wy wpg

(a) \ (b)
Fig. 5-5

Selution

We choose rightward as positive, and draw the body diagrams for the two blocks, as shown in Fig.
5-5(b). For each block there is no motion in the vertical direction, so the normal force in each case just
balances the weight. In the horizontal direction, for block B we have

F—T=mpa (1)
where a is the acceleration. For block 4 we have
T =mya (i)
Adding the two equations (which means adding the left sides of the equations and setting the result
equal to the sum of the right sides), we get
F=(mp+mya or 12N=(20kgla or a=0.60m/s (idi)
Then
T =mgqa = (9kg) (0.60 m/s*) =5.4 N

Problem 5.13. Two blocks, of masses m, = 5 kg and mp = 12 kg, are connected by a light cord
over a frictionless pulley, as shown in Fig. 5-6(a). There is no friction between block 4 and the
tabletop. Find the acceleration of each block and the tension in the cord between them.

Solution

By Sec. 4.6 the tension in a light cord is the same on both sides of a frictionless pulley. Figure
5-6(b) shows the body diagrams for the two blocks. For block B we choose downward as positive,
since that is the direction of its acceleration. Then

mpg — T = mga (l)
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For block 4 we note that the acceleration will have the same magnitude as for block B since the cord has
| a fixed length and the motion of block 4 to the right must be an exact replica of the downward motion of
block B. To be able to use the same symbol a for acceleration for both blocks, we choose a consistent
positive direction for each. Since we have chosen downward as positive for block B, we choose
rightward as positive for 4. Then, noting that the only force with a horizontal component is the tension
T, we have
T =mya (i)

Since the masses are known we can solve Eq. (i) and (i) simultaneously for @ and T. By adding the two
equations we obtain

mpg = {(my + mg)a (i)

Note. This is the same form as Eq. (jii) of Problem 5.12. Indeed, if we let F in that equation
equal mpg (instead of 12 N), the equations have identical form. Thus adding Eq. (i) and
(ii) gives us an equivalent one-dimensional 1-D situation, with the “pulling” force just
the hanging weight.

We can now solve for ¢ in Eq. (fif) and put in the numbers:
L _(12kg) (98 m/s%)
S5kg+12kg
To obtain the tension in the cord we substitute our result for a into Eq. (ii):‘
T = (5.0 kg) (6.9 m/s’) = 34.5N

One can check for numerical errors by substituting back into Eq. (7): (12 kg)(9.8 m/s®) — 345N =
(12 kg)(6.9 m/s?) or 83 N = 83 N. So it checks.

=6.9m/s’

Problem 5.14. Suppose we have the same situation as in Problem 5.13, except that there is now
friction between block 4 and the table with coefficient y; = 0.4. Find the acceleration and tension.

Solution

The body diagram for block B is the same as before, so we have

mpg — T = mpa (l)
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The body diagram for block 4 differs from the earlier case only by the addition of the frictional force fz,
as shown in Fig. 5-6(c). Since we have equilibrium in the vertical direction, N = myg. Then
Jr = N = ypmg. The horizontal equation is now

T — wymyg = mya (if)

Adding (?) and (%) yields
mpg — Wimag = (mq + mp)g (iid)
Substituting in the numerical values for 4, the masses, and g, we get [12 kg — (0.4)(5 kg)](9.8 m/s°) =

(Skg+12kgla or a=(10/17)9.8 m/s>) = 5.76 m/s’. From (i) we have T=myg — a)=
(12 kg)(9.80 m/s* — 5.76 m/s®) = 48.4 N.

Problem 5.15. Suppose blocks 4 and B of Problem 5.13 are still connected by a cord over a
frictionless pulley, but with block 4 now free to slide on a frictionless incline, as shown in Fig. 5-7(a),
instead of on a horizontal tabletop. Find the acceleration of the blocks and the tension in the cord
between them. :

O
P
B
30°
@ (b
Fig. 5-7
Solution
The equation for the motion of block B is the same as in Problems 5.13 and 5.14:
mpg — T = mpa )

For block 4 we draw the body diagram, Fig. 5-7(b), and choose axes along and perpendicular to the
incline. Note that the positive x axis is again chosen consistently with the positive downward direction
chosen for block B. For the x direction we have

T —mugsinf =mya (i)
We again add (7)) and (i), which yields
mpg — myg sin@ = (mg + my)a €N
Noting 6 = 30°, and sin 30° = 0.5, we have
[12 kg — (0.5) (5 kg)] (9.8 m/s*) = (12 kg -+ 5 kg)a
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9.
or a= 1—75 (9.8 m/s?) = 5.48 m/s’
T = mz(g — a) = (12 kg) (9.80 m/s* — 5.48 m/s*) = 51.8 N

Problem 5.16. Two blocks on a frictionless horizontal surface are pushed to the right by a horizontal
force F = 46 N, as shown in Fig. 5-8(a). Find the acceleration of the blocks and the normal force
exerted by each block on the other.

4
F mp F N
——pe]  15kg —] A e N
8kg E— B
(@ ‘ ®)
Fig. 5-8

Solution

The body diagrams showing the horizontal forces for the two blocks are shown in Fig. 5-8(b), where
we recall that from Newton’s third law, the normal forces exerted by each block on the other are equal
and opposite. Then, applying Newton’s second law to each block, we have F' — N = m4a and N = mga.
Adding the two equations yields F = (m, + mp)a. (This last result is obvious if we just treat the system
as a single object acted on by the horizontal force F.) Hence,

“=3ke 2m/s* and N =(8kg)(2m/s’) = 16N

Thus block B exerts a force of 16 N to the left on block 4, while block A exerts a force of 16 N to the
right on block B.

Problem 5.17. Suppose the order of the blocks in Problem 5.16 were interchanged. How does that
affect the answers for the acceleration and the forces between the blocks?

Solution

The situation is shown in Fig. 5-9(a), and the horizontal-force body diagrams in Fig. 5-9(b). The
equations for the two blocks are now F — N=mga and N = m,a. Adding the equations yields
F = (m4 + mp)a, just as before. Thus the acceleration is the same: a = 2 m/s?, which is to be expected.
The situation is not the same, however, for the normal force between the blocks, as can be seen by
solving for N:

N = mya = (15kg) 2 m/s*) =30 N
Now let’s consider what happens if the mass of the cord connecting two blocks cannot be ignored.

Problem 5.18. A rope of mass m = 1 kg connects two blocks on a frictionless tabletop that are
pulled to the right by a force F = 48 N, as shown in Fig. 5-10(a).
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(a) Find the acceleration of this three-object system.
(b) Find the forces T, and T3 exerted by the rope on blocks 4 and B.
Solution

(a) Since the system moves as a unit, we can treat it as a single object of mass 16 kg acted on by a
horizontal force of 48 N, yielding an acceleration of a = 48 N/16 kg = 3 m/s%.

(b) Applying Newton’s second law to each object using the body diagrams (horizonta! forces only) of
5-10(b) yields
F—TAZMAG TA—TB:ma TB:MBa
Adding the three equations, we see that the 7, and Tp forces cancel out, yielding
F =M, + m+ Mp)a = (16 kg)a. This is just our earlier result that F = (combined mass)a, and
a =3 m/s’. The first equation gives T, = F — Mya = 48 N — (5 kg)(3 m/s?) = 33 N, and the
third equation gives Tz = Mza = (10 kg)(3 m/s*) = 30 N.

Uniform Circular Motion

When an object moves in uniform circular motion, it has a centripetal acceleration a = v?/r, where
v is the magnitude of the instantaneous velocity (or speed) of the object and r is the radius of the circle
on which the object is moving (see Sec. 3.4). From Newton’s second law we know that there must be a
resultant force, of magnitude mv?/r, causing this acceleration. That resultant force is called the
centripetal force.

Problem 5.19. A small block, of mass m = 100 g, is on a frictionless horizontal table. The block is
attached to one end of a cord, of length L = 40 cm, whose other end is pinned to the center of the
table, as shown in Fig. 5-11. If the block is spun so that it makes 2 revolutions per second (1/s), find
the centripetal acceleration and the tension in the cord.
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Fig. 5-11

Solution

First we find the constant magnitude of velocity, v. We are given the frequency f (number of
revolutions per second) with which the mass twirls around on its circle of radius L = 40 cm. The period
T (number of seconds per tevolution) is just T = 1/f. Thus /=2 t/s so that 7= 1/2 s. Then

onL  (6.28) (4
y=" (6.28) (40 cm) 8)1( 0 cm) = 502 cm/s
T 3 S
2
_v_(B02em/s) e300 omys?

L 40 cm
with the acceleration directed toward the center of the circle.
The only force on the block in the plane of the tabletop is the tension in the cord S. Furthermore,
since the cord is taut, it always exerts a force on the block radially inward toward the center of the circle.
Thus S is in fact the centripetal force, and its magnitude is given by Newton’s second law:

S = ma = (100 g) (6300 cm/s”) = 630,000 dyn = 630 N

Problem 5.20. Suppose the block and cord of Problem 5.19 are removed from the table, and the
block is now twirled in a vertical circle with the same frequency as before, as shown in Fig. 5-12(a).
Assume that the speed of the block is the same at all points of the circular motion. Find the tension in
the cord at points 4 and B, the highest and lowest points of the circle.

Solution

The speed and acceleration are the same as in Problem 5.19, since the radius and the period of the
motion are unchanged. Since the mass of the block is also unchanged, the centripetal force is unchanged
as well, and, as before, is ma = 6.30 N. The difference here is that there are two forces contributing to
the acceleration, the tension S in the cord and the force of gravity, or weight,
w = mg = (0.100 kg)(9.8 m/s?) = 0.98 N. The resultant of these two forces is the centripetal force.
The situation as the block passes the highest and lowest positions, point 4 and B, tespectively, is shown
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in Fig. 5-12(b). For the highest point we choose the direction of the acceleration as positive, and (in SI
units)

S4 +mg = ma or Sy=ma—mg=630N—-098N=532N

For the lowest point we again choose the direction of the acceleration as positive, so this time it is
upward. We then get

Sp — mg = ma or Sp=ma+mg=630N+098N=728N

The following aspect of circular motion often confuses students. In our everyday experience we
feel ourselves being forced outward from the center as we move around a circular path. Does this
contradict the fact that the centripetal force is always in toward the center of the circle? The answer is
no. Consider the example of a woman sitting in the front passenger seat of an automobile that goes
around a sharp curve to the left. She feels thrown out away from the driver and toward the right door
of the car. The actual situation is depicted in Fig. 5-13. In the absence of a sideways force, the woman
wants to travel in a straight line (Newton’s first law). The automobile is curving toward the left, so the
right door moves inward toward the passenger rather than the passenger moving outward toward the
door. Only when the door makes contact is there an inward force on the passenger that gives the
necessary centripetal acceleration for her to move around the curve with the automobile.

This leads to an interesting question: What force gives rise to the centripetal acceleration of a
vehicle when it goes around a curve in the road? If the roadway is horizontal (no sideways slope), then
the only force that can act horizontally on the vehicle is the force of friction due to the roadway.
Furthermore, if there is no slippage (skidding) between the tires and the road, then this is a static
frictional force. If, on the other hand, the road is sloped (i.e., the side of the road to the “outside” of
the curve is higher than the side to the “inside” of the curve), then the normal force due to the
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Fig. 5-13

roadway has a horizontal component and contributes to the centripetal force. In this situation we say
the road is banked. The banked and unbanked situations are shown in Fig. 5-14.

Problem 5.21. A car travels around a curve on an unbanked road at 50 mi/h (mph).

(a) If the radius of curvature (i.e., radius of the circle that best matches the curve) of the road is
200 ft, find the centripetal acceleration of the car.

(b) If a man in the car weighs 160 Ib, find the centripetal force exerted on him by the car.
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Unbanked Banked

@ ®)
Fig. 5-14

Solution

(@

®)

The centripetal acceleration is given by a = v*/r. We first convert from mph to ft/s. Recall that
60 mph = 88 fi/s. Then, v = (3) (88 fi/s) = 73.3 fi/s. So
V(733 ft/s)?

[ — — L = 2
== SR = 2691/

The centripetal force on the man is F = mv?/r, where v and r are the same as in part (@), since the
man is moving with the car. Then v?/r = 26.9 ft/s?, as before. The man’s mass is obtained from his
weight by m = w/g = (160 1b)/(32 ft/s”) = 5.0 slugs. Then

F = (5.0 slugs) (26.9 fi/s*) = 134 Ib

Problem 5.22. Find the minimum coefficient of friction y, for which the car in Problem 5.21 will

not skid.

Solution

Since the car is on horizontal ground, the normal force N is vertical and just balanced by the weight

of the car, W = Mg, or N = Mg. The frictional force f;, which acts parallel to the ground, is the only
horizontal force on the car and hence constitutes the entire centripetal force, so

fo=Ma )
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Since f; < ugN, in our case, f; < Mg, so the smallest y; will correspond to the case of equality:

Js = Mg (i)
Comparing (i) and (ii), we have Ma = p,Mg. Dividing both sides by Mg, we get
269 ft/s°
AL LYY
g 32ft/s

where we have used the value of a from Problem 5.21(a).

Note. The fact that we don’t know the mass M of the car did not stop us from solving the
problem because ultimately the mass dropped out of the equations. This type of situation
can often occur in a problem. At first glance there seems to be some information missing
that is necessary to solve the problem, but by carrying the solution forward a couple of
steps, one finds that the information is not necessary at all.

Problem 5.23. A truck travels around the curve of a banked road whose banking angle is 6 = 20°. If
the radius of curvature of the road is » = 100 m, with what speed must the truck travel in order to go
around the curve with no sideways frictional force acting on the tires?

Solution

The situation, as it appears to someone just behind the truck, is shown in Fig. 5-15. The forces
acting on the truck are shown, and the direction of the curve in the road is shown by the centripetal
acceleration vector. Note, that as required, we assume no frictional forces are acting. Since the
acceleration is in the horizontal direction, it is most convenient to choose our x and y coordinate axes to
be horizontal and vertical, as shown.

Note. In many inclined-plane problems it is most convenient to choose axes along and
perpendicular to the incline. In this case, however, it is simpler to choose the axes as
stated.

We now apply Newton’s second law to the x and y directions.
MV

N sin0 = Ma = — (i)

Ncos —Mg =0 or NcosO =Mg (ii)
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Since we don’t know the mass M of the truck, we eliminate it from our equations. To do this we divide
(i) by (i) to obtain

2
tanf = — (iii)
rg
We can now substitute in the value of 6, 7, and g, to solve for v:

v = (100 m) (9.8 m/s’) (tan20°) =357 m?/s>2  or v=189m/s

Note. Equation (iii) is called the banking equation because it gives the general relation among 0,
v, and r that must hold in order to go around a curve, without the need for any frictional
force. Note further that the mass of the vehicle doesn’t enter the equation.

5.3 THE LAW OF GRAVITY

Newton’s law of universal gravitation states that every particle of matter in the universe attracts
every other particle of matter in the universe with a force directly proportional to the product of their
masses and inversely proportional to the square of the distance between them. The situation is shown

in Fig. 5-16(a) for two particles. If we assume the proportionality constant is G, the magnitude of this
force is then

F= Gm1m2

e (5.1)

The proportionality constant G is called the universal gravitational constant and has the value
G = 6.670 x 1071 N - m? /kg* = 6.670 x 1078 dyn - cm? /g2

@ ®
Fig. 5-16

From the general law (5.1) we can deduce the force that a large uniform sphere of mass M exerts
on a particle of mass m located outside the sphere [see Fig. 5-16(b)]:

- (5.2)

where R is the distance from the center of the sphere to the particle. In other words, for purposes of
gravitational pull on an object beyond its rim, the sphere behaves as if it were a particle of mass M
concentrated at its center. This is not a trivial result, but it can be obtained by using calculus.
Similarly if two spheres of masses M; and M, have center-to-center separation R,,, then the force
of attraction between the spheres is
_ GM M,

F=T2 (5.3)
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Applying (3.2) to an object of mass m just at the earth’s surface, we have F = GmM,/R,?, where M,

and R, are the earth’s mass and radius, respectively. Since F is just the weight of the object, we also
have F = mg. Thus mg = GmM,/R,?, or

_ GM,

g - Rez

(5.4)

Since g and R, were known quantities, even in Newton’s time, G could be obtained if the mass of the
carth were known, or conversely, the mass of the earth could be obtained if G were known. Since the
mass of the earth was not known at that time, G had to be determined by experiments on earth with
small known masses attracting each other with a measurable force. This was actually done, but not
easily, given how tiny the value of G turned out to be.

Problem 5.24. Find the force of gravity between two lead balls of masses m; = 20 kg and
m, = 40 kg, if the distance between their centers is 71, = 10 cm.

Solution

We use Eq. (5.1):

Gm;mz
- 2

r12
Substituting in the equation, we obtain
Fe (6.67 x 1011 N - m? /kg?) (20 kg) (40 kg)
(0.10 m)*
=534x 105N

Problem 5.25. Find the mass of the earth, given that the radius of the earth is R, = 6.38 x 10° m.
Solution
We use Eq. (5.4) above to get

9.8 m/s* = (6.67 x 10-11 N - m?/kg’) M.
' (6.38 x 106 m)?

Solving for M, we get
(9.8) (6.38 x 106)°

©= 667 x 10-1T kg
=5.98 x 10** kg

Problem 5.26. Find the acceleration of gravity g, near the surface of planet X whose radius is four
times the radius of the Earth and whose mass is 90 times the mass of the Earth.

Solution

Using Eq. (3.3), above, applied to planet X, we have g, = GM,/R,%. We are given that M, = 90M,
and R, = 4R,. Substituting these values into the equation for g, we get

G(90M,) GM, 5 5
= —5.63 — 5.63g, = 5.63(9.8 m/s%) = 55.1 m/s
(4R} .2 g ( /s) /

&x
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Problem 5.27. Find the acceleration of an object immediately after it is dropped from a height of
2000 mi above the earth’s surface.

Solution

Since this is a substantial height above the earth’s surface, we cannot assume the acceleration is
9.8 mys”. Instead, we apply the law of gravitation and Newton’s second law to the falling object. Since
gravity is the only force acting on it once it is released, we have F = GmM,/¥* = ma, where r is the
distance from the center of the earth to the object. Dividing out the mass of the object we get

GM,

a—=
r2

(@)
At this point we could substitute in the numerical values for G, M,, and 7 to get the result. This however
is very tedious, and there is a trick that avoids having to even know the values of G and M, . We recall
from Eq. (5.3) that g = GM,/R,”. Reworking this equation we get GM, = gR,2. Thus for the problem at
hand we have

_ &R’

- - r2
Noting that the radius of the earth is about 4000 mi and that = 6000 mi, we get

a = (9.8 m/s%) (29)°_ 436 m/s’

a

(i)

Problem 5.28. A rocketship with its engines off is at the exact midpoint between the earth and the
moon. What is its acceleration? Assume that the distance from the center of the earth to the center of
the moon is about 3.8 x 10° m, and the mass of the moon is 7.36 x 102 kg.

Solution.

The situation is shown in Fig. 5-17. As can be seen, there are two competing forces acting on the
rocket, the gravitational forces of the earth and moon, respectively. The net force points toward the earth,
and applying Newton’s second law, we have

GmM, _ GmM,,
Gran)”  (rem)’

Dividing by m, and simplifying, we get

=ma

- i -11 N . m2 /ke?) (5. 24 ko _ 7. 1022 k
a:4G(MeZM,,,):4(667><10 Nm/kg)(598x12 g —7.36 x 10 g):O.Ollm/52
Vem (38 x 108 m)
Earth
Moon
|
Fp F,
__________ - !m -
I
— v /N v /
%’em 5 Tem
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Note. Newton had some ideas that led him to the law of universal gravitation. We have already
seen that near the earth’s surface the force of gravity F on an object has the peculiar
property that it is proportional to the mass m of the object being pulled. Newton realized
that if the earth pulled on an object, then by the third law the object pulled with an equal
and opposite force on the earth. This force, if it obeyed the same rules, would be
proportional to the mass M, of the carth. Thus the force of gravity on the object must be
proportional to hoth masses; in other words, the force must be proportional to the product
of the two masses: F o< mM,. From this idea Newton hypothesized the same result for any
two particles in the universe. (No other force in nature has the property that the strength
of the force depends on the intrinsic sluggishness of the object being pushed or pulled.
Thus gravity has a special role in nature unlike any other force.)

Newton also had some basis for determining how the force of gravity varied with the
distance between the particles. He knew that the moon has a centripetal acceleration
toward the earth due to its orbital motion, and could even calculate its value. By
comparing this to the acceleration of gravity at the earth’s surface, he surmised the inverse
square dependence on the distance. We carry through this reasoning in the next problem.

Problem 5.29. Show how the acceleration of the moon toward the earth can be used to check that
the force of gravity varies inversely as the square of the distance, and carry out the calculation.

Solution

The moon travels around the earth in a nearly circular orbit of radius 7., = 3.84 % 108 m. It
therefore has a centripetal acceleration toward the center of the earth a,,. If the universal law of gravity is
correct, we must have

GM M, GM,
'"2 ¢ = Mpuanm or am = (i)

¥em
By the same token we already have seen that the acceleration of gravity at the earth’s surface is given by
GM,

g= E? . (ii)
where R, is the radius of the earth. Dividing Eq. (i) by Eq. (ii) we get
m  Re?
G _ 2o (ii)
g Yem

The right side can easily be calculated from the known distances. The left side can also be calculated
from known values.
First we calculate the left side. To do this we note that the centripetal acceleration is given by

ay = (iv)
where v,, is the orbital velocity of the moon. The orbital velocity is related to the orbital period of the
moon, T,, = 27.3 days, by

2
= )
m

Substituting in numerical values, and noting there are 86,400 s in a day, we get

. 6.28(3.84 x 108 m)
mT 273 % 86,400 s

= 1022 m/s
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Substituting into Eq. (iv) we get
(1022 m/s)* )
== """/ _ 000272
m 3.84 x 108 m 0.00272 m/s
Then, for the left side of Eq. (iif) we have

am  0.00272
o= = 0.0002
. = o5 = 0000278

For the right side of Eq. (iif) we have

R.\? /638 x 1052
(a) - (m) =0000276

Comparing the two numbers we see they agree to about 1%, which is consistent with the simplifying
assumptions we have made.

Using the same basic approach as in Problem 5.29, we can calculate the orbital velocities and
orbital periods of satellites moving in circular orbits of various radii about the earth.

Problem 5.30. Find the period of an earth satellite moving in a circular orbit 1000 km above the
earth’s surface.

Solution

Applying Newton’s second law, we have

GmM, m? v GM,
= ——— or —_— =
r2 r r 72

Since we are asked for the period, we can substitute v = 27#/T directly into the last equation to get

An2r  GM, ;
77 R (@)
Multiplying both sides of the equation by /47> we get
P GM, N
74 )

Note. Since the right side of Eq. (7i) is a constant, the left side must also be a constant: All earth
satellites obey the rule that the ratio of the cube of their radii to the square of their periods
is a constant. This is an example of Kepler’s third law, which is true for elliptical as well
as circular orbits.

Recalling that GM,, = gR.>, we solve Eq. (i) for the period of our satellite: T2 = 4n*r*/gR 2. Noting
that for our case » = R, + 10° m = 7.38x 10° m, we have
3
72— 39.4(7.38 x 10° m)

= =3.97 x 107 §2 or T = 6300 s = 105 min
P 3
(9.8 m/s”) (6.38 x 106 m)

Problem 5.31.

(@) Suppose the radius of the orbit of the satellite in Problem 5.30 were doubled. What would the
new period be?

(b) What would be the ratio of the orbital velocities for the two cases?
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Solution

4) We could solve this by redoing the entire previous problem for the new case, but it is much easier
p p
to use Kepler’s law: A/T? = constant. If we call the original case a, and we call the new case b, we
have /T2 = r5>/Ty?. Then

Ya

3
Tp? = (r—b> 7,2 =BT,2=8T,2 or T,=+/8T,=2.83(6300s)= 17,820 s = 297 min.

(b) v =2mr/T, so we could solve for v, and v, and find their ratio. Instead we note that r, = 2r, and
Ty = /8T, so taking ratios, we obtain
T, a 2
vo _nlTo _1olte _ 2 _ 4 907
Va ra/Ta Tb/Ta \/_g

Problems for Review and Mind Stretching

Problem 5.32. A block of mass m = 2 kg moves along a horizontal frictionless table under the
action of the forces shown in Fig. 5-18.

(a) Find the normal force N due to the table.
(b) Find the acceleration.

(¢) If the block starts from rest, how far will it move in 3.0 s?

F3=40N

F,=80N F =200N

mg

Fig. 5-18

Solution
(a) Since there is no acceleration in the y direction,
N-mg—F;=0 o N=mg+F;=(20kg) (9.8 m/s?) +4.0N =236 N

(b) The acceleration is in the horizontal direction, so F; — F, = ma implies

12N 5
200N — 8.0 N = (2.0kg)a or  a=54 e 6.0m/s

(€) Setxo=vo=0,s0x=1a” =1(60m/s")(3.0s)° =27 m
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Problem 5.33. Repeat Problem 5.32, assuming the coefficient of kinetic friction between tabletop
and block is u; = 0.20.

Solution

In Fig. 5-18 include the additional force f; = ;N in the negative x direction.
(a) Since f; is horizontal, the same equation as in Problem 5.32 holds in the y direction, so the normal
force is still N =23.6 N.
() Now XF,=ma = F, —F, — f; = ma, and we have
fi = N =02(23.6N) =472 N

so that

_ 73N

200N-80N-47N=(2.0k =3 ?
8 7 (2.0kgla or a .0k 3.65m/s

(© x=1laf =1(3.65 ms*>)(3.0 5)> = 16.4 m.

Problem 5.34. Repeat Problem 5.33, assuming that the force F; now acts 30 ° above the horizontal
to the right.

Solution

The situation is depicted in Fig. 5-19, with all the forces on the block directly drawn in.

(a) Here the normal force N is different from that of Problems 5.32 and 5.33, because F; now has
a y component:
YF,=0=N+F;sin30°—mg—F; =0

or N=mg+F;-F;sin30°=19.6 N+4.0N—(20.0 N) (0.50) = 13.6 N
(b) XF,=ma=F,cos30° — F, — fy = ma. But, fy = ;N = 0.2(13.6 N) = 2.72 N, so we have

(20.0N) (0.866) —80N—2.7N=(20kgla o a= %)6% =33m/s?

© x=iaf =133 m/s)(3.0s° =149 m.

F3=40N
Fy=200N

mg=19.6 N
N

Fig. 5-19

Problem 5.35. Two blocks of mass m, = 8.0 kg and mp = 5.0 kg are connected by a light cord over
a frictionless pulley as shown in Fig. 5-20(a). The coefficient of kinetic friction between block B and
the incline is p; = 0.20. Find the acceleration of the blocks and the tension in the cord.
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Nt

AN

™ B

37°\

(a) ®
Fig. 5-20

Solution

The body diagrams for the two blocks are shown in Fig. 5-20(b). We choose downward as positive
for block 4, and upward, parallel to the incline, as positive for block B, as shown. For blpck A,

myg — T = mya ()
For block B,
T —mpgsin37° — N = mpa and N —mpgcos37°=0 (i)
which together yield
T — mpgsin37° — pmpg cos37° = mpa (i)

Adding Egs. (i) and (iii) to eliminate 7, we get
mug — mpg sin 37 ° — pmpg cos 37 ° = (m4 + mp)a
Substituting in numbers we get
(8.0 kg) (9.8 m/s”) — (5.0 kg) (9.8 m/s?) (0.60) — 0.20(5.0 kg) (9.8 m/s*) (0.80) = (13.0 kg)a
or a=317m/s?
Substituting back into Eq. (i), we get
T =myg —mya = (8.0kg) (9.8 m/s’ —3.2 m/s?) =53 N

Problem 5.36. Block A4 of mass m, = 5.0 kg rests on block B of mass mz = 10.0 kg, which itself is
on a horizontal tabletop. A horizontal force = 100 N pulls on block B, while block 4 is constrained
by a horizontal cord attached to a wall, as shown in Fig. 5-21(a). The coefficient of kinetic friction
between all surfaces is p = 0.2.

(@) Find the acceleration of block B.
(b) Find the tension in the cord.
Solution

(@) The body diagrams for the two blocks are shown in Fig. 5-21(b) and (c). For block 4, the normal
force is due to block B. Since the frictional force is controlled by the relative motion of the two
surfaces, fi4 opposes the motion of block 4 relative to B. Since block 4 moves to the left relative to
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’ my=5kg l Ny

I ] Jia -
F
ng=10kg B EE—

A fip -

lTNB

(@) ®) ""Bg
Fig. 5-21 (c)

B, fra is to the right. For block B, in addition to the usual normal and frictional forces due to the
table (N and fi), Newton’s third law requires a downward normal force N4 due to block A and a
frictional force f4, acting to the left (equal and opposite to the frictional force on block 4). Since
both blocks are in equilibrium in the vertical direction, we have, for block A4,

Ny =myg and  fu = Ny = wmug
Similarly, for block B,
Ng =mpg + Ny =mpg + myg  and  fig = i Np = p(my +mp)g
Substituting numerical values, we get
fi =02(5.0kg) (9.8m/s’) =98N  and  fig = 0.2(15.0 kg) (9.8 m/s?) = 29.4 N
Newton’s second law in the horizontal direction now gives

F—fuu—fis=mga or 100N—-98N-294N=(100kgla or a=6.1m/s

(b) For block 4, TF, = 0 implies
fu—T=0 of T=f,=98N

Problem 5.37. A roller-coaster car passes point 4 in Fig. 5-22 at a speed of 40 fi/s, and point B at a
speed of 20 f/s. The radius of curvature of the track at both points is R = 100 ft. What is the normal
force exerted by the car on a teenager, of weight w = 96 1b, standing in the car as it passes points A
and B?
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Solution

The teenager moves in the same path as the car and with the same speed. As the teenager passes
point 4, she is moving, for an instant, on the bottom of a vertical circle of radius R = 100 ft with a speed
of v4 = 40 fi/s. She therefore has a centripetal acceleration a, vertically upward of magnitude

vt _ (40 fi/s)’
47RO 1001t
To find the normal force N, we use Newton’s second law, with upward chosen positive. In the vertical
direction we have

= 16 ft/s*

Ngy—w=may
Noting that m = w/g = (96 1b)/(32 fi/s®) = 3.0 slugs, the above equation yields
Ns—961b = (3.0 slugs) (16 ft/s’) =481b or Ny,=1441b

At point B the teenager is moving on the top of a vertical circle of radius 100 ft, this time with velocity
vg = 20 ft/s. The acceleration is now vertically downward, and ap = vg*/R = (20 ft/s)*/(100 ft) =
4.0 f/s%. This time we choose downward as positive, so that Newton’s second law gives

w — Np = mag
Substituting values, we get
96 1b — N = (3.0 slugs) (4.0 ft/sZ) =121b or Np=84D

Note that this implies the teenager feels “heavier” at point 4 and “lighter” at point B.

Problem 5.38. At what height 4 above the earth will a satellite moving in a circular orbit have half
the period of the earth’s rotation?

Solution

The earth’s period is 24 h, or 86,400 s, so the period of the satellite must be 7' = 43,200 s. We need
a direct relationship between the period and the radius of the satellite’s orbit. We can obtain such a
relationship from the two equations GM./¥* = V*/r and v = 27r/T. This was already done in Problem
5.30, and from Eq. (i) of that example we have #IT ? = GM_J47*. Then, using GM, = gRez, we get

_ gR2T? (9.8 m/s?) (6.38 x 106 m)” (43,200 5)°

_ 22 3
i 394 = 1.889 x 10~ m

or r=2.66x10"m

Since  is measured from the center of the earth, to find the height / above the earth we must subtract the
earth radius R,:

h=r—R,=2.66x10"m—0.638 x 10"m = 2.02 x 10’ m = 20,200 km

Supplementary Problems

Problem 5.39.

(@) A constant resultant force of 20 N acts on an object of weight 10 N. Find the acceleration.
(b) An object of weight 16 Ib is accelerating at 12 ft/s®. Find the resultant force in Ib.
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(c) An object of weight 6.0 1b is accelerated by a force of 12 N. Find the acceleration in cm/s>.
Ans.  (a) 19.6 m/s*; (b) 6 Ib; (¢) 438 cm/s?

Problem 5.40. A 96-Ib block on a frictionless 45 © inclined plane is pulled up the incline by a force of 160 1b
that acts parallel to the incline.

(a) Find the acceleration of the block.
(b) If the block starts from rest, how far up the incline has it moved when its velocity reaches 100 ft/s?

Ans.  (a) 30.7 f/s?; (b) 163 ft

Problem 5.41. Suppose that in Fig. 5-2(a) the force T'is 50 N and the coefficient of friction between the block
and the surface is u; = 0.25.

(a) Find m, if the block is observed to accelerate at 4 m/s.
(b) What would the acceleration be if y;, = 0.50?

Ans. (@) 7.75 kg; (b) 1.55 m/s®

Problem 5.42. Consider the situation in Fig. 5-23. If the block starts from rest, (z) how far will it travel in 5 s
and (b) how fast will it then be moving?

Ans.  (a) 103 m; (b) 41.1 m/s

20°
)
D~ - 15k
A Z
He=03
Fig. 5-23

Problem 5.43. In Problem 5.42, at the end of the 5-s interval, the force F is removed. How long will it take the
block to come to rest? [Hint: The force of friction is no longer what it was in Problem 5.42.]

Ans. 140 s

Problem 5.44. Suppose that in Fig. 5-4 we have g, = p; = 0.30. If the block is given an initial velocity up the
incline of 10.0 m/s, what is the maximum distance the block moves up the incline?

Ans. 532 m

Problem 5.45. After reaching its highest point, the block in Problem 5.44 starts back down the incline. Find
its speed when it returns to its starting point.

Ans.  7.73 m/s

Problem 5.46. In the ideal setup of Fig. 5-6(a), mz = 6.0 kg and m, = 5.0 kg. The coefficient of friction
between block 4 and the tabletop is y; = 0.30. If the system starts from rest, how far will block B have fallen
from its starting position when its speed is 10 m/s?

Ans. 125 m
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Problem 5.47. In Fig. 5-6(a) let m, = 10 kg and mp = 5 kg. If block B descends with an acceleration of
2.0 m/s%, what is the coefficient of friction y; between block 4 and the tabletop?

Ans. 0.194

Problem 5.48. In Fig. 5-7(a) assume that m, = mp = 20 kg and the coefficient of friction is y; = 0.2. Find the
acceleration of the system and the tension in the cord.

Ans.  1.60 m/s?, 164 N

Problem 5.49. In Fig. 5-8(a), the coefficient of friction between all surfaces is y; = 0.25 and F = 100 N. Find
the acceleration of the blocks and the normal force between them.

Ans.  1.90 m/s?, 348 N

Problem 5.50. 1In Fig. 5-11, m = 0.150 kg and L = 0.300 m. The tabletop is frictionless. If the breaking
strength of the cord is 500 N, what is the maximum speed that the mass can have? What is the corresponding
minimum period?

Ans.  31.6 m/s, 0.0596 s

Problem 5.51. Figure 5-24 shows a child (m = 8.0 kg) holding on tightly to a pole on the outer rim of a
merry-go-round, as it spins out of control with period 7= 2.0s. The radius of the merry-go-round is
R=10.0 m.

(a) Find the centripetal acceleration of the child and the force exerted by the pole on his hands.
(b) Will the child be able to hold on?

Ans.  (a) 99 m/s%; 792 N (b) no (792 N is about 10 times his weight)

Fig. 5-24

Problem 5.52. In an amusement park ride, people stand with their back to the inside surface of a circular
vertical wall; the radius of this circle is 10 ft. The wall begins its spin about a vertical axis through the center of
the circle, and the people move with it. Assume that the coefficient of friction between a person’s back and the
wall is no smaller than 0.8. At a certain speed the floor opens up beneath the people’s feet. What minimum
frequency of rotation f must be attained so that no one falls? (Recall that /= 1/T)

Ans. 0.319 1/s
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Problem 5.53. A truck travels around a circular curve of radius R = 200 m; the road is banked at an angle
0 = 15°. The situation is depicted in Fig. 5-15. How fast must the truck travel if there is to be no sideways
frictional force on the tires?

Ans. 23 m/s

Problem 5.54. A circular speedway curve is banked at 60 ° so that cars traveling at 200 mph can negotiate the
curve without the aid of friction. -

(@) What is the radius of curvature of the curve?

(b) 1f the road were not banked and the coefficient of static friction were y, = 0.40, what minimum radius of
curvature would be needed to prevent skidding?

Ans.  (a) 1550 ft; (b) 6720 ft

Problem 5.55. A conical pendulum consists of a bob of mass m, suspended from the ceiling by a light cord of
length L, which is set in motion in a horizontal circle of radius R, as shown in Fig. 5-25.

(a) Find a relationship between the speed v of the bob, the half-cone angle 6, and the radius R.

(b) Recalling that the period 7 is given by T = 2zR/v and noting that R = L sin 6. Find an expression for the
Y p
period of the conical pendulum in terms of L and 6.

Ans. (a) tan 0 = V’/Rg; (b) T = 2n(L cos O/g)!/

el ——

Fig. 5-25

Problem 5.56.

(a) Find the gravitational force exerted by the sun on a\' 1-kg mass on the earth’s surface.

(b) Repeat, finding the gravitational force exerted by the moon. [Data: G = 6.67 x 107" N - m%/kg?;
M = 1.99 x 10°° Kg; 7, qun = 1.50 x 10" m; Minoon = 7.36 X 1022 kg; 72 moon = 3.8 x 105 m.]

Ans. (@) Fon = 5.90 x 107> N; (8) Fumoon = 3.40% 107> N

Problem 5.57. An asteroid of mass m = 1.00 x 10'° kg passes the earth at center-to-center distance of
r = 100,000 km.
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(@) Find the force exerted on it by the Earth (R, = 6380 km).
(b) If this is the only force on it, what is its acceleration?

Ans. () 3.99 x 101> N; () 0.0399 nvs®

Problem 5.58. The acceleration of gravity at the surface of planet X is g, = 8.0 m/s?. If the planet is of radius
R, = 3.0 R,, what is the mass of planet X compared to the mass of the Earth?

Ans.  7.34 Earth masses

Problem 5.59. Find the acceleration of gravity on the surface of Neptune, given that the mass of Neptune is
16.7 times that of the Earth and the radius of Neptune is 3.89 times that of the Earth (R, = 6380 km).

Ans.  10.8 m/s?

Problem 5.60. Referring to Problem 5.59, find the orbital velocity and period of a satellite moving in a low-
lying circular orbit about Neptune.

Ans. 16.4 km/s, 2.64 h

Problem 5.61. Find the velocity and period of a satellite revolving about the earth in a circular orbit of radius
r=80R.

Ans. 2800 m/s, 31.8 h




Chapter 6

Work and Mechanical Energy

6.1 INTRODUCTION

Note:

There are many formal developments and new definitions in this chapter, and the point of
the development probably will not be immediately obvious to the student. For that reason
we attempt to put the new material in perspective. In the last chapter, we showed how
Newton’s second law can be applied to solve particular problems involving the motion of
an object. In general, when the forces vary in both magnitude and direction, it may be
very difficult to solve for the path of the motion, or for the velocity of the object.

The concept of work and its relationship to kinetic and potential energy gives us the
ability to solve relatively easily many problems that would otherwise be difficult. The
associated theorem of conservation of mechanical energy often can reduce otherwise
complicated problems to a simple “bookkeeping” operation. Most importantly, our
development of mechanical energy can be generalized so that the concept of energy, its
transfer between systems and its overall conservation, applies beyond the subject of
mechanics. Indeed, it has become one of the great underlying principles of the physical
universe.

6.2 THE NATURE OF WORK

Work of a Constant Force

The work W due to a constant force F acting on an object while it moves through a displacement
s is defined as the component of F along the s direction multiplied by the magnitude of s:

Wg = Fygs = (F cos 0)s (6.1)

See Fig. 6-1. Even though the work involves the two vector quantities F and s, it itself has no direction
and is thus a scalar. The units of work are those of force times distance. The SI unit of force is thus
the newton-meter, which is given the special name the joule: 1 J=1N-m. Other units are
the erg: 1 erg = 1 dyne - cm, and the foot-pound (which is not given a special name). Conversion
between units gives:

1J= (1.0 x 10° dyn) (1.0 x 10? cm) = 1.0 x 107 dyn - cm = 1.0 x 107 ergs
1 ft-1b = (0.3048 m) (4.45 N) = 1.356 N - m = 1.356

)

£

Fig. 6-1

142
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Problem 6.1. Find the work done by the force F in moving through the displacement s in each of the
cases of Fig. 6-2(a), (b), and (¢).

Solution

(@) Wg=F cos 0-s= (20 N)(cos 30°)(6.0 m) = (20 N)(0.866)(6.0 N) = 104 N-m = 104 J.
(b)) We= (100 dyn)(cos 37°)(12 cm) = 960 dyn-cm = 960 ergs.

(¢) Wgr = (40 Ib)cos 50°)(6.0 ft) = 154 fi-1b.

_ F=401b
. F=20N F =100 dyn
50° o 37° o >0° -
s=60m l s=12.0 cm " 5= 6.0 ft
(@) (2] ©)
Fig. 6-2

Problem 6.2. Find the work done by the force F in the cases of Fig. 6-3(a) to (d).
Solution
(@ Wg = (50 N)cos 53°)30 m) = 900 J.

(b) Here the component of F along s is negative, so Wz = (50 N)(cos 120 B30 m) =
—(50 N)(cos 60°}30 m) = —750 1.

() Here the component of F along s is zero, since § = 90°. Thus W = 0. This is generally true when
the force and the displacement are at right angles to each other.

(d) Wp = —(50 N)(cos 30°)(30 m) = —1300 J.

Note. The work is defined so that it can be positive, negative, or zero, depending on whether the -
component of F along s is positive, negative, or zero.

Problem 6.3. A block is moving on a horizontal frictional surface under the action of a number of
forces, as shown in Fig. 6-4. Determine whether the work done by each force is greater than, less than,
or equal to zero.

Solution

WF1>0, WF2>05VVf<Oa WWZO, WN:()-

Problem 6.4. A man lifts a book vertically with his hand. Find the sign of the work done by (@) his
hand on the book, (b) gravity on the book, (c) the book on his hand.

Solution
(@) The hand exerts an upward force on the book as the book moves upward, so the work is positive.

(b) The force of gravity is always pulling downward, so when the book is moving upward, gravity does
negative work.
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©

@
Fig. 6-3

() The book exerts a reaction force downward on the hand. Since the hand is moving upward, the
work done by the book on the hand is negative.

Total Work Done by a Number of Forces

The work done by each force is, by (6.1), the component of that force along the displacement of
the object, times the magnitude of the displacement. Since the displacement is the same for all the
forces acting, the total work is just the sum of the components of the individual forces times the
magnitude of the displacement. But the sum of the components of individual vectors along a given
direction is just the component of the resultant vector along that direction. We therefore conclude that
the total work done is just the work by the resultant force.

Problem 6.5. In Fig. 6-4, assume that F; = SON, F, =20 N, w = 100 N, 6 = 30°, ;. = 0.25, and
s = 15 m. Evaluate (a) N and f, (b) the work done by each force, (c) the total work due to all forces,
(d) the x and y components of the resultant force, (e) the work done by the resultant force.

Solution

(@) Since there is no acceleration in the vertical direction,

S0, N=100 N — (50 N) sin 30° = 75 N. Then, f; = i;:N = (0.25)(75 N) = 18.8 N.

YF,=0 or Fisinf+N-w=0
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o
wy

Fig. 6-4

(B) Wen = Frus = (Fy cos 30°)s = (50 N)(0.866)(15 m) = 650 J.
WFZ = szs = FzS = (20 N)(IS m) = 300 J.
W= fus = —fos = —(188 N)(15 m) = —282 1.
W, =wws=01L
Wy=Ns=01J.
©) Wi = Wi+ Wiy + We+ W, + Wy =650J+300J — 282 J =668 I

(@) R,=Fi+Fon+fixtw+Ny=433N+20N — I88N+0ON+0ON=445N.
R,=Fy, + Fy + fiy +w, + N,=25N+ON+ 0N — 100 N+ 75 N=0N.

(¢) Wi =Rs=(44.5 N)(15 m) = 668 J [checks with (¢c)].

Problem 6.6. A block of mass m = 5 kg slides down an inclined plane of length L = 15 m and
angle 0 = 37°, as shown in Fig. 6-5. Calculate the work done by each force acting on the block, as
well as the total work done by all forces, as it traverses the incline from top to bottom, if () the incline
is frictionless, (b) the coefficient of friction is ;. = 0.30.

A m
L
h
&
Y 6 <
<+
Fig. 6-5

Solution

(@) The only forces acting on the block are the weight w = mg and the normal force N. The normal
force is perpendicular to the direction of motion so it does no work. The component of the weight
along the incline is

w, = mgsin37° = (5 kg) (9.8 m/s*) (0.60) = 29.4 N
Hence, W,, = w,L = (29.4 N)(15 m) = 441 J. This is also the total work done.
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(b) There are now three forces acting on the block. The weight is the same as before and the work done
by it is still #,, = 441 J. The normal force still does no work, but we must now obtain its value in
order to determine the frictional force f;. Since the block is in equilibrium in the y-direction, we
have

N =mgcos37° = (5 kg) (9.8 m/s”) (0.80) =392 N

Then fi=uN=(03)392N)=11.8 N. Finally, the work done by friction is W;=fL =
—(11.8 N)(15 m) = —177 1. The total work done is then Wr=441J] — 177 J = 264 1.

Work of a Variable Force

Suppose the force F acting on a particle changes in magnitude and/or direction as the particle
moves from position to position. The particle need not be moving in a straight line. We want to extend
our definition of work to that done by this force as the particle moves between any two positions on its
path of motion. Consider a particle moving along the path of motion shown in Fig. 6-6(a), which is
acted on by the force F (in addition to possible other forces not shown). The force F is shown at a
number of different points along the path.

We now imagine breaking up the path into a large number N of small intervals, each one of which
is nearly a straight-line segment. If the segments are small enough, we can assume the force is nearly
constant within each segment. We can approximate the path by a succession of small displacements,
As;, i=1,2,3,..., N, as illustrated in Fig. 6-6(b), over each of which F is constant and the small
amount of work done by F is AWy = F cos 0 - As, where 0 is the angle between F and As. Adding up
the work over all the little displacements, we get

Wr =3 F;cos0; As; (6.2)

In the limit, as the number of intervals N approaches infinity and the size of each interval approaches
zero, the approximation to the actual motion becomes exact. It is therefore natural to define the work
done by the force F over the path from 1 to 2 as the right side of (6.2) in the limit as N — oo and
As; — 0. Note that as we approach this limit, the As’s become tangent to the path (and their lengths
are the corresponding arc length intervals), and 0 becomes the angle between F and the tangent to the
path at each point.

If we knew the magnitude of F and the angle it makes with the tangent to the path at every point
along the path, we could find the work graphically by plotting F cos 6 as a function of the arc length §
measured from some reference point R along the curve. The component of F tangent to the path at
each point, F' cos 0, is a function of the arc length s. Figure 6-7 is an example of the plot of F cos 6
vs. s, with points 1 and 2 of our path indicated on the s axis. We divide the s axis between points 1 and
2 into a large number of closely spaced strips. Equation (6-2) is then represented on the graph as the
sum of the area of the rectangles, which are bordered by the vertical strips on the sides, the s axis on
- the bottom, and the average value of F; cos 6, in each interval on the top. It is not hard to see that the
sum of the areas of these rectangles approximates the actual area under the curve. Indeed, as the
number of rectangles goes to infinity, and the width of each rectangle goes to zero, we get the exact
area under the curve. (This is similar to our discussion of the v vs. ¢ graph in Chap. 2.) Thus

Wr = area under the F cos ) vs. s curve (6.3)

between the starting and ending points of interest (1 and 2 for our case).

Problem 6.7. What does the F' cos 0 vs. s graph look like for the force F; of Problem 6.5? Use the
graph to calculate the work done by F; in a displacement of 15 m.
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Solution

‘In this case the path is a straight line along the horizontal (x) axis, so if we choose the origin as our
reference point for s, then s=x. In this case F,=F,cos 0 is constant and in fact equals
(50 N)(0.866) = 43.3 N. The plot of F, vs. x is thus the horizontal line shown in Fig. 6-8. The work
done in a 15-m displacement, say from x=0 to x=15m, is the area under the curve:
(43.3 N)(15 m) = 650 J.
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Problem 6.8. A block sitting on a frictionless horizontal surface is attached to a wall by means of a
spring, as shown in Fig. 6-9(a). A stretched spring exerts a force whose magnitude is proportional to
the length of stretch: F;, = kx. The proportionality constant  is called the force constant of the spring.
If a force F pulls the block to the right in such a way that it just balances the force due to the spring at
every instant, calculate the work done by the force F on the block in stretching the spring (a) from the
unstretched position through some arbitrary distance x, (b) from x; to x».

M e e

——

@ ®)
Fig. 6-9
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Solution

(@) As in Problem 6.7 the path is a straight line along the horizontal x axis, and again s = x. We take as
the origin the position of the block when the spring is unstretched. Then the displacement of the
block will always correspond to the stretch in the spring. Since F' balances the spring force,
F = F, = kx. Our F, vs. x graph is thus the straight line shown in Fig. 6-9(b). The work done in
moving from the origin to point x is the area of a right triangle of base x and height kx, or

We = 1) (he) = 1k

(b) The work done by F in going from x; to x; is the shaded area in Fig. 6-9(b). This equals the
difference in the areas of the triangle from the origin to x, and the triangle from the origin to x;:

W)y = g =3k

Problem 6.9. Repeat Problem 6.8 for the force Fip.
Solution

Since F and F, are equal and opposite, the work done by Fg, is just the negative of the work done
by F:

Wep = _%kxz (VVSP)I—>2 = %kxlz - %kaZ

Problem 6.10. Find the work done by each indicated force in Fig. 6-10.
Solution

Each force shown is perpendicular to the displacement at every moment, so it does zero work.

@ ®) ©
Fig. 6-10

6.3 KINETIC ENERGY AND ITS RELATION TO WORK

Consider a block on a frictionless horizontal surface, acted on by a constant horizontal force F, as
shown in Fig. 6-11. The acceleration is then constant, and, by (2.10) V= vg2 + 2a(x — xp). If

we multiply both sides of the equation by half the mass, m/2, and bring the v, term to the other side,

we get ma(x — xg) = %mv2 - %mvoz. Since F is the resultant force on the block, we have
2 1

F = ma; thus F(x — xo) = im* — Lmv,’. The left side is just the total work W done on the block in
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moving from x, to x. If we relabel the initial position x, and velocity vq as x; and v;, respectively, and
relabel the final position x and velocity v as x, and v,, respectively, we get

(Wr)1 .y = 3mvy® — 3mv, 2 (6.4)
The expression %mv2 is called the kinetic energy of the mass m. The symbol for kinetic energy varies
from textbook to textbook. Common symbols are K, KE, and E, and we will use the last in this book.
Thus (6.4) becomes

(Wr), 7 = Exo — Ex = AE, (6.5)

where AE, represents the change in Ej in going from the initial to the final position. The kinetic
energy has units of work, and the SI units are joules. Equation (6.5) is called the work-kinetic
energy theorem.

This result was derived by assuming constant acceleration, so we have shown its validity only
when the resultant force acting on the object is constant.

Yo v
—_— —_—
a o ———— — | a
—— ——
1
l X0 x
w
N
Fig. 6-11

Problem-6.11. Assume the block in Fig. 6-11 has a mass m = 10 kg and the force F = 25 N.

(@) If the block has an initial velocity v; = 20 m/s, use the work—kinetic energy theorem to find its
velocity v, after it has moved through a displacement of 20 m.

() Redo part (a) using Newton’s second law.
Solution

(a) Using Eq. (6.4), we have (Wp);_, = (25 N)(20 m) = 500 J = 1(10 kg)v,> — 1(10 kg)(20 m/s)>.
Then

122 = 500 m?/s? or v,=224m/s

() Using F =ma, we have 25 N = (10 kg)a or a =2.5 m/s>. Then v,> = v;> + 2a(x, — x;) =
(20 m/s)* + 2(2.5 m/s?)(20 m) = 500 m?/s” so v, = 22.4 m/s, as before.

In the previous problem, the work—kinetic energy theorem does not seem to be any more useful
than the standard F' = ma approach. This is because for constant-force problems it is very easy to
apply Newton’s second law. This is no longer the case for more complicated problems, where the
acceleration varies in either magnitude or direction, or both.

It can be shown, using the calculus, that the work—kinetic energy theorem (6.5) is still true for the
most general possible situation. No matter how complicated the path of motion, and no matter how
complicated and how numerous are the forces acting on the object, the total work done on the object
in any interval equals the final minus the initial kinetic energy for that interval. Thus, for example, if
the particle moving along the path in Fig. 6.6(a) has a velocity of magnitude v, as it passes point 1 and
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a velocity of magnitude v, as it passes point 2, then those two speeds are related by Eq. (6.5), where
(Wy)1 -2 is the total work due to all forces. The full power of this result will be recognized once we
have introduced the concept of potential energy.

6.4 GRAVITATIONAL POTENTIAL ENERGY

Consider a block of cement being hoisted vertically by a crane (Fig. 6-12). The only two forces
doing work are the tension S and the pull of gravity F,. Then in moving the block from position 1 to
position 2, the total work is the sum of the work by the two forces, so (6.5) becomes

(Wr)y g =Ws)) o+ (We)1 o = AE

A7 Ay

N Fy=mg

Isolating the work done by S on the left side of the equation, we have
(WS)1—>2 :_(Wg)1—>2+AEk (6.6)

The work done by the force S depends on how the hoist is operated; s can vary from moment to
moment and position to position. The work done by gravity, however, is predetermined, since (near the
earth’s surface) we have F, = mg, pointing vertically downward, as shown. Then

(We)y oy = —mgn -1) or — (We)1 .y = mgyr — mgy1 (6.7)

We notice that — W, depends only on where one started and where one ended and not on the details of
the block’s motion. The quantity mgy is called the gravitational potential energy £, of a mass m at
height y. Then Eq. (6.7) becomes

—(We) o2 =Ep — E; = AE, (6.8)

Substitution of (6.8) into (6.6) yields -
(Ws)y ., = AE, + AE (6.9)

It can be shown that Eq. (6.7) is true for any path of motion of an object near the earth’s surface.
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Consider an object moving on an arbitrary path, such as in Fig. 6.6(a). We divide the total work
Wrinto two parts: the work done by gravity W, and the work done by all other forces acting on the
object W'. Then

W) ma =Wi_ 2+ (W) _» =E — En
and Wll_>2 = _(Wg)l—>2 + Ep — En (610&)

or W _,=(Epn—Ey)+ (Ex — En) = AE, + AE, = (mgy, — mgy) + Gmvy? — imv %)
(6.100)

Equation (6.10b) is a very general statement: The work done by all forces other than gravity on an
object equals the sum of the changes in the gravitational potential energy and kinetic energy of the
object.

\

Problem 6.12. Use work-energy considerations to calculate the velocity of the block of Problem
6.6(b) when it just reaches the bottom of the incline, assuming it starts from rest at the top. All data are
as in Problem 6.6(b).

Solution

Measure vertical displacement z from the bottom of the incline. Then E, = mgz. The only acting
forces besides gravity are the frictional force up the incline, f; = N, and the normal force N. Since N
does no work on the block, we have

W =Wy =—fil=—wNL=—p(mgcost)L =—1771]
as was already determined in Problem 6.6(5). Then (6./0b) becomes
—1771 = (mgz; — mgz) + (Amv,2 —Imn ?) (i)
where the labels 1 and 2 refer to the top and the bottom of the incline, respectively. Substitute v; = 0,
z; =L sin 0 = (15 m)(0.6) = 9.0 m, and z, = 0 in (i) to obtain
~177 3 = [0 — (5.0 kg) (9.8 m/s?) (9.0 m)] + [1(5.0 kg)v,2 — 0] (ii)
Solving (if) we obtain

V22 = 106 m? /s? or v, =103m/s

In Egs. (6.9) or (6.10b), only the difference in the potential energy between two points appears. The
definition of the potential energy can therefore be changed by adding or subtracting a constant without
changing the energy equations.

Problem 6.13. Consider the situation in Fig. 6-13, where a book of mass m is lifted above a
tabletop, and y is the displacement measured from the tabletop to the bottom of the book. Choosing
E, = mgy means that E, = 0 when y = 0 (the book rests on the table). If we prefer our zero of
potential to be at the floor level, find the new expression, E¥, for the potential energy.

Solution

E; =mgz. Since z=y+h, we have E; =mg(y + h)=mgy + mgh=E, + const. Therefore
potential-energy differences are the same for the old and new functions.
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Problem 6.14. Suppose the incline of Problem 6.12 were set on a tabletop of height 7 = 2.0 m, as

shown in Fig. 6-14. Repeat Problem 6.12 if the zero of gravitational potential is set at the bottom of
the table. '

H=20m

Fig. 6-14

Solution

We proceed as in Problem 6.12. Everything is the same as before except that the initial and final
heights are z; and z, instead of y; and y,. Then z; =2.0m+ Lsin §=2.0m+ 9.0 m=11.0 m;
z5 = 2.0 m. Substituting into Eq. (i) of Problem 6.12, we get

—177J = (5.0 kg) (9.8 m/s%) (2.0 m) — (5.0 kg) (9.8 m/s*) (11.0 m)] + [£(5.0 kg)v,? — 0]
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Therefore —177 J = —441 J + (2.5 kg)v,?, so that
v’ =106 m?/s? or vy = 103 m/s

as before

6.5 MECHANICAL ENERGY AND THE CONSERVATION PRINCIPLE

If it should happen that no forces other than gravity do work, then W' = 0, and (6.10b) becomes
AE, + AEy = (Epp — Ep1) + (Eip — Ep) =0
which rearranges to
Epy+ Epp = Ep1 + Enp (6.11)

The sum of the potential and kinetic energies at any point is called the total mechanical energy £ at
that point:

Er = E, + E; = mgy + 1m? (6.12)

Thus Eq. (6.11) says that the total mechanical energy of an object stays constant (“is conserved”)
throughout its motion if no forces other than gravity do work. This is an example of the conservation
of mechanical energy. It is important to remember that Eq. (6.11) is a special case of Eq. (6.10b),
which is the general work-energy theorem.

Problem 6.15. Assume that in Problem 6.12 the incline is frictionless, as in Problem 6.6(a).

(a) Use energy considerations to show that the velocity at the bottom of the incline is v = 1/2g#,
where 4 is the height of the incline.

(b) Use F = ma to obtain the same result.

Solution

(@) Since there is no friction and the normal force does no work, the only force that does work on the
block is gravity. Thus the conditions for Eq. (6./7) hold and mechanical energy is conserved.
Again letting the zero of potential energy be at the bottom of the incline, we get (noting y, = 0 and
vy = 0)

2 2

mgy; + %mvl =mgy; + %mvz or mgy; +0=0+4 %mvz2
Noting y; = h, we drop the subscript 2 and solve for v, getting v = /2gh.

(b) Again, since there is no friction, the only force along the incline is the component of the weight,
mg sin 0. Then choosing our axis along the incline with downward being positive, we have

a=—=gsinf
m

Then, for constant acceleration, starting from rest, we have v* = 2aL, which gives the velocity at
the bottom of the incline. Substituting for a, we get

V2 =2(gsinf)L =2gLsin@ =2gh  or  v=+/2gh
as before.

Problem 6.16. Suppose that instead of an inclined plane, as in Problem 6.15, we had a block sliding
down a frictionless curved surface, as in Fig. 6-15. Assume the block starts from rest at a height 4, as
shown.
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Fig. 6-15

(2) Find an expression for the velocity of the block at point 2 using energy considerations.
(b) Can you repeat part () using Newton’s second law?
Solution

(a) As in Problem 6.15, we label the starting position 1 and the ending position 2 and choose the zero
of potential energy to be the bottom of the curve. Since there is no friction, and since the normal
force at any point on the curve is perpendicular to the path of motion and can do no work, we again
have the conditions for conservation of mechanical energy. Then

-mgy1 +3mvi? = mgy; +5mvy?

Therefore mgh + 0 = 0+ Imv,? or vy = 2gh

Dropping the subscript on the final velocity we have: v = /2gh.

Note that this is the same expression we got in Problem 6.15 with the frictionless incline.
Indeed, this result was obtained without knowing the exact shape of the curve, and hence is true for
all curves for which the block will reach the bottom point.

(b) We first note that the block is no longer traveling in a straight line, and the normal force varies in
both magnitude and direction from point to point. Solution of the problem thus requires the full
vector properties of Newton’s second law, as well as dealing with variable forces. The problem can
still be solved but requires the use of the calculus.

Problem 6.17. Consider a block sliding on the frictionless surface shown in Fig. 6-16.

Fig. 6-16
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(a) If the block starts from rest at point 1, find its velocity at point 2 and describe its subsequent
motion.

(b) If the block were observed to reach point 3 with velocity v; = 3 m/s, what must have been its
initial velocity at point 1?

(¢) Under the assumption of part (b), what is the block’ velocity as it reaches point 4?
Solution

(@) mgy, + %mvl2 = mgy, + %mvz2 or mgy; +0= %mv22 + mgy, and

va =28 — ) = \/2(9.8 m/s?) (5.0 m — 2.0 m) = 1/58.8 m?/s? = 7.67 m/s

The block will continue along the curve until it reaches the original height, 5.0 m, which will occur
at some point @ between points 2 and 3. At a it must have zero kinetic energy and hence zero
velocity. It will then slide back down the curve, passing point 2 with the same magnitude of
velocity as before but in the opposite direction. This follows by again applying Eq. (6.11). The
block will continue slowing down, until it comes to rest at point 1. The motion will then repeat
itself. This will go on forever as long as Eq. (6.11) truly holds, that is, as long as there is no friction
or work done by any force except gravity.

(b) To reach point 3, which is higher than point 1, the block must have had an even greater velocity at
point 1. In fact (6.11) gives

mgy —l—%mvl 2= mgys + %mw2
from which
w2 =w2+2g(» — ) = (3 m/s)* +2(9.8 m/s?) (6.0 m — 5.0 m) = 28.6 m?/s?

or v =5.35m/s

(c¢) Apply (6.11) between points 3 and 4:

mgy3 +%mV32 =0 +%mV42

Va2 =n?+2gys = 3 m/s)? +2(9.8m/s%) (6.0 m) = 126.6 m?/s2  or  vg=113m/s
We could equally well have applied Eq. (6.11) directly between points 1 and 4:
mgy1 + 3mvi? = mgy, + imv,? or  w?=wv?4+2gn
Substituting, we get
vs? = (535m/s)* +2(9.8 m/s?) (5.0 m) = 126.6 m2/s>  or vy =11.3m/s

as before.

6.6 ENERGY TRANSFER BETWEEN SYSTEMS

In Problems 6.15 to 6.17 we have used the conservation of mechanical energy, Eq. (6.11), to
obtain the velocity at one point in the motion if we know the velocity at another point. We can say
that, for the simple system consisting of a block acted on by the earth’s gravity, one form of energy
can be transformed into another form but the total energy cannot be changed. This is true, however,
only when W' = 0 in Eq. (6.10b), and hence only when no forces other than gravity are doing work on
the system. In such a case our system’s energy is isolated from, or closed to, the rest of the universe.
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Isolation does not mean that other forces, such as the normal force, which keeps the block on track,
have no effect on the system. They merely have no effect on the total energy of the system.

Suppose that some nongravitational force F' does positive work on our block. Then #’ > 0, and,
according to Eq. (6.10b) the total mechanical energy of the system increases. On the other hand, if F/
does negative work, then W’ < 0, and the mechanical energy decreases. If energy is a fundamental
quantity, where did the extra energy of our system come from when W' > 0, and where did the lost
energy go to when W’ < 0? It can be shown that in the former case some other system which is the
source of the force F gave up some of its energy; in the latter case some other system gained some
additional energy. In either case the combined energy of the two systems remains constant. We can
think of the work done by one system on the other as the mechanical transfer of energy between the
systems.

Problem 6.18. Reconsider Problem 5.15, in which a hanging block of mass mp =12 kg is
comnected by a light cord over a frictionless pulley to another block of mass m, =5kg on a
frictionless inclined plane of angle 6 = 30 °. Assume the apparatus starts from rest, with block 4 at the
very bottom of the incline and block B 10 m above the base of the incline. Find the velocity v, of the
blocks just before block B reaches the bottom using work-energy considerations, with the two blocks
treated as two separate systems.

Solution

The situation is depicted in Fig. 6-17, with positions 1 and 2 being the initial and final positions for
each block. We note that the tension in the cord does work on each system (4 and B). But the work done
by the cord on 4 is exactly the negative of the work done on B. (Overall, no net work is done by the
cord.)

Fig. 6-17

Apply the work-energy theorem (6.10b) to system A4 (with y,=v;=0 and
Y42 = (10 m)(sin 30°) = 5 m):

W)y = AE, + AE, = (magysn — magya) + (Gmava? —imv?)
= (5kg) (9.8 m/s%) (5 m) + (5 kg)»?

We can solve for v, if we can calculate (W));_, ,. Since T=51.8 N (from Problem 5.15) is along the
direction of motion of system A4, ‘

(W), _., = (51.8N) (10 m) = 518 J

%
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and so
5187 =(2451) + (2.5kgwm? or v =104m/s

Although we have already obtained our result, it is informative to analyze system B in the same
way:

(W§)1 ., = AE, + AEx = (0 — mpgyp) + (3mpv,? — 0)

Now T is opposite the direction of motion of system B so that (Wj), ., = —518 J. Hence the
mechanical energy B is diminished by 518 J, and, by (6.5), B has considerably less kinetic energy than it
would have had if it had dropped in free fall. Substituting the value of W},

—518 J = —(12 kg) (9.8 m/s%) (10 m) + (6 kg)v,2 or v =105m/s

which is the same as our previous result to within rounding errors.

Note. The importance of Problem 6.18 lies in its demonstration that when system B does
positive work (via a cord or whatever) on system A4, then system A gains precisely the
amount of mechanical energy lost by system B. In general, any system that does positive
(negative) work loses (gains) energy.

Problem 6.19. Rework Problem 6.18 by considering the two blocks to make up a single isolated
system.

Solution

If we treat the combination of 4 and B as a single system, then the cord is just an internal part of the
system and we do not have to consider the tension at all. Thus, for the combined system, no forces other
than gravity do work (W’ = 0), and so total mechanical energy is conserved:

magya + mpgys + %mAvl 2+ %val 2= mugyn + mpgym + %msz2 + %msvzz
Buty =vi =yg =0, s0
mpgyp = Magya + %(mA + mp)va?
(12 kg) (9.8 m/s%) (10 m) = (5 kg) (9.8 m/s?) (5 m) + (8.5 kg)v,?
1176 J =245 J + (8.5 kg)n, 2

In the last equation the left side is the system’s initial mechanical energy (all of which is potential energy
of block B). The first term on the right is the final potential energy of block 4, while the second term is
the combined final kinetic energy of the two blocks. Solving for the final velocity, we get v, = 10.5 m/s,
as before.

Note. Any force that has the property that the work done by the force depends only on the
starting and ending points, and not on what happened in between, is called a conservative
force. As we have seen, the force of gravity near the Earth’s surface is clearly such a force.
The name “conservative” comes from the fact that if an object moves in a path that
returns to the starting point, the total work done by such a force must be zero, since the
work is the same as if the object got there by not moving at all. Saying a force is
conservative is equivalent to saying that we can define a potential energy for the force.
Indeed, for a force whose work is described by a potential energy, we see immediately that
if an object travels on a path that returns to the starting point, we have AE, = 0, and the
work done equals zero.
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6.7 OTHER CONSERVATIVE FORCES

If the gravitational force near the earth’s surface were the only conservative force, and therefore
the only force whose work can be treated from the point of view of potential energy, it would hardly
have been worthwhile to introduce the idea. It turns out that many forces in nature are conservative.
We will discuss two of them, the spring force and the general force of gravity.

Problem 6.20. Show that the spring force is conservative, and find a suitable expression for the
spring potential energy.

Solution

In Problem 6.8 we calculated the work of an external force that is just strong enough to oppose the
pull of a spring and that stretches the spring from x; to x,, where x is measured from the unstretched
position. At any point, this external force is equal and opposite to the force due to the spring. Hence for
the work W, done by the spring we have

—(Wsp)lqz'_‘%kxf_%kxlz ()

Clearly this depends only on the starting and ending points; the spring force is conservative. Following
our earlier definition of potential energy, we write

—(WSp)l 2 =Ep— Epy (ii)

From (i) and (i), E, = %kx2 + C, where C is an arbitrary constant. If we choose our zero point of
potential energy to be at x = 0 (the unstretched position of the spring), then we get

E, =1kt - (i)

2

Note. For loosely wound springs, the spring can be compressed as well as stretched, and the
force formula Fy, = —kx is valid for negative as well as positive values of x. Then it can
be shown that the potential-energy formula, Eq. (iii), is valid for both positive and
negative values of x.

Problem 6.21. A loosely wound spring of force constant k = 100 N/m is connected to a block of
mass m = 12 kg on a frictionless horizontal surface, as shown in Fig. 6-18. The block is pulled to the
right 15 cm and released. Assume the spring is light enough so that its own mass can be neglected.

(a) Find the velocity of the block at x = 0, the unstretched position.
(b) What is the maximum distance the spring will be compressed?

(c) What is the velocity of the block when x = 10 cm?
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Solution
(a) The only force that does work is the spring force, so we have conservation of mechanical energy:
Epl + Ei ZEpz + Ep or %kxlz—k%mvlz Z%ZOCZZ +%mv22

Letting 1 be the release point we have x; = 0.15 m, v; = 0, and letting point 2 be the unstretched
position, we have x, = 0. Then

1(100N/m) (0.15m)* + 0 =0+1(12kg)v,2  or  v,? = 0.1875 m?/s?
or v, =30433m/s
The plus (minus) refers to motion through x = 0 to the right (left).

(b) Now let 2 be the point of maximum compression (x, < 0). At this point the block must stop
moving to the left; thus v, = 0 and

%(100 N/m) (0.15 m)2 +0= %(100 N/m)x22 +0 or x22 = 0.0225 m?
or Xy =—-0.15m

() With x> = 100 cm? = 0.01 m?,
3(100 N/m) (0.15 m)* + 0 = 1(100 N/m) (0.01 m?) + (12 kg)v,?

or  w?=01042m?/s> or v, ==40323m/s
The plus and minus signs refer to the block traveling to the right and left, respectively.

Note. Under conservation of mechanical energy, an object must always have the same
magnitude of velocity every time it passes a given point, even though its direction of
motion can be different. (This extends the “same place-same speed” rule of Chap. 2.)

Gravity at Large Distances from the Earth

We now turn to the gravitational force far from the earth’s surface, where it can no longer be
considered constant. This force can be shown to be conservative and thus has a potential energy. To
obtain this energy we need the work done W by this force on an object as it moves along its path.
Such a path is depicted in Fig. 6-19. To calculate the work done we can use the calculus, which gives

the result
 (—GM,m —GM,m
~(W6)ir = ( P = ) - <—_e ) (6.13)
2 r
From (6.13) the gravitational potential energy is determined as
—GM,
E, = (—r—m) fvee (6.14)

Ordinarily we choose C = 0, thereby rendering E, zero at r = co. Whether we do so or not, the minus
sign in (6./4) makes physical sense. As r decreases, GMm/r increases; so —GMm/r decreases. But a
body approaching the earth (decreasing r) should indeed lose potential energy, since the attractive
force of gravity is doing positive work on it.
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Path

M
iF|= S

Fig. 6-19

Problem 6.22. A rocket is launched from the earth’s surface. When the rocket engine burns out, the
rocket is moving with a velocity of 6.0 km/s and is at an altitude of 10 km above the earth’s surface.
What is the maximum altitude to which the rocket rises? The radius of the earth is 6380 km.

Solution

From the moment of burnout, the rocket is acted on only by the force of gravity. Conservation of
mechanical energy then holds, with the potential energy of gravity given by (6.14):

_G:\llem +lmn? = —Gr];fem N %mvzz @)
[C has been canceled from both sides of (;).] Here r; = 6380 + 10 = 6390 km, and by (5.9),
GM, = gR.? = (9.8 x 1073 km/s”) (6380 km)* = 3.99 x 10° km’ /s
At the highest point, r», we must have v, = 0. Noting that m divides out of (i), we get
399 ;(3;((;51(;1!11113/52 160 km/s)’ = —3.99 x 2)5 km® /s2 N
Solving, » = 8980 km, for an altitude of 8980 — 6380 = 2600 km.

0

Problem 6.23. Referring to Problem 6.22, what is the smallest ‘velocity the rocket must have upon
burnout (at altitude 10 km) such that it never returns to the earth?

Solution

For the rocket not to return, its velocity must never drop to zero while the rocket is a finite distance
from the earth. If it did, the earth’s gravitational attraction, however weak, would eventually pull it back
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down. Thus the smallest burnout velocity for no return, v;, must correspond to v, = 0 at r, = oc.
Substitute in (i) of Problem 6.22 (after dividing out m) to find

_ GM,

+%V12=0+0

_ (2GM\'* (7.98 x 105 km® /s?
= N 6390 km

1/2
) =11.2km/s

ri

Note. The quantity (2GM./R.)'/? =11 km/s is called the escape velocity from earth.

6.8 SYSTEMS WITH MORE THAN ONE CONSERVATIVE FORCE ACTING

Consider the case of an object moving under the action of various forces, precisely two of which,
F, and F,, are conservative. Then, if E,, and E,, are the separate potential-energy functions, the
work—kinetic energy theorem takes the form

W1/—>2 = _(Wa)1—>2 - (Wb)l—»z + AE;

or Wi_,=AEy+ AE,, + AE; (6.15)
where W' stands for the total work done by all the nonconservative forces. If this nonconservative
work vanishes, then we have energy conservation in the form

AEr = A(Eps +Epp + E) =0 (6.16)

It is obvious how (6.15) and (6.16) may be generalized to cover three, four, or more conservative
forces.

Problem 6.24. Two blocks are connected by a light cord over a frictionless pulley, as shown in
Fig. 6-20. Block 4 rests on a horizontal frictionless surface and is connected to a light spring of force
constant k. Initially, block 4 is at x = 0, the unstretched position of the spring.

(a) If the apparatus is released from rest, what is the maximum distance through which block B
falls?

(b) What is the velocity of block B when it has fallen half that distance?

my =5k
k=200 N/m Az o8

A

o
|

B |mg=10kg

y:O—"""’

Fig. 6-20
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Solution

(@) Consider the system composed of the linked blocks. Only gravity and the spring force—both
conservative—do work on the system, so total mechanical energy is conserved. Let Eg, = Lk be
the spring potential energy (with x measured to the right from the unstretched position) and
E, = mggy be the gravitational potential energy of block B (with y measured upward from the
initial position of block B). Because the length of the cord is fixed, x = —y and v4 = vp. With
subscript 1 denoting the starting position and subscript 2 the final position, we have v4; = vg; =0
and (Egp)1 = (Eg)h = 0. Also, for the maximum distance of fall vy, = vgy = 0. By (6.16),

0+0+0=%kxzz+m3gy2+0=%kx22—m3gxz+0

or 1(200 N/m)x> — (10kg) (9.8 m/s" ), =0  or  (100x; — 98)x, =0
Dividing out by x, we get 100x, = 98 or x, = 0.98 m.
(b)) Now let point 2 correspond to x = 0.49 m. With v = vg = vs, gives

040+ 0 =1(200 N/m) (0.49 m)* — (10 kg) (9.8 m/s”) (0.49 m) + }(5 kg + 10 kg)v,?

or 7.51,2 =24.0 or v =+1.79m/s.

Problems for Review and Mind Stretching

Problem 6.25. A projectile (m = 5.0 slugs) is fired at an angle 6, above the horizontal, as shown in
Fig. 6-21. Use potential-energy considerations to find the work done by gravity in the projectile
motions o — a, 0o — b, and 0 — c.

Solution

—(Wodooa = (Ep), — (Ep)o- Choose the zero of potential energy at the level of launch. Then
(E,)o =0 and

(E,), = mgye = (5.0 slugs) (32 /s*) (6.0 ) =960 ft 1o or (W), ,=—960ft-1b

o

¥ Yo Yo = 6.0 ft

A
o
1]
Y
=
=

Fig. 6-21
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Similarly,
(We)y—p = —(Ep)y = —(5.0 slugs) (32 ft/s%) (4.0 ft) = —640 fi - Ib
and (Wplo—c = —(Ep). = 0 ft-Ib,

Problem 6.26. An object moves along the x axis under the action of a force whose potential energy
is given by E, = (2.0 J/m)x + (3.5 Jm?)x>, where x is in meters.

(@) Find the work done by this force as the object moves from x = 1.0 m to x = 3.0 m.

(b) If this represents the only work done on the object, and if its kinetic energy was 140 J at
x = 1.0 m, use the work-kinetic energy theorem to find the kinetic energy of the object at

x=3.0m.
Solution
(a) —Wi3 = (Ey); — (Ep), = [(2.0 J/m) (3.0 m) + (3.5 J/m’) (3.0 m)?]
—[(2.03/m) (1.0 m) + (3.5 J/m’) (1.0 m)*] = 95 1
or Wi_3=-951].
(b) —95)= AEk = Ek3 - Ekl == Ek3 — 1407 or Ek3 =45]

Problem 6.27. Referring to Problem 6.25, assume that the speed of the projectile at point « is 9.0
ft/s. Determine (a) the initial speed v,; (b) the angle of launch 0,; (c) the speed of the projectile
as it passes point b.

Solution

(@) Once the projectile is launched, the only force acting on it (when we ignore air resistance) is
gravity. Therefore we have conservation of mechanical energy: (Ey), + (Ep), = (Ep), + (Ep), or

(2.5slugs)v,2 + 0 = (2.5 slugs) (9.0 ft/s)* + (5.0 slugs) (32 ft/s?) (6.0 ft) = 1163 ft - b
from which v,” = 465 ft°/s* or v, = 21.6 fus.

(b) The velocity at point a is horizontal since a is the highest point in the trajectory. Since the
horizontal velocity component is constant through the motion,

Vo080, = v, or (21.6)cos 6, =9.0 or 0, =65.4°

(¢) We again use conservation of mechanical energy, applied now to points a and b:
1163 fi - Ib = (2.5 slugs)v,? + (5.0 slugs) (32 ft/s?) (4.0 ft)
Solving, v, = 14.5 fi/s.

Problem 6.28. A bob of mass m = 400 g is attached to one end of a cord of length L = 1.5 m.
The other end of the cord is pinned so that the bob freely swings in a vertical circle, as shown in
Fig. 6-22(a). If the bob is released from rest at position 4, find (a) its velocity as it passes positions
B and C; (b) the tension in the cord as it passes position C.
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(@) Since the tension in the cord is always at right angles to the direction of motion, it does no work,
and mechanical energy is conserved. Choosing the lowest point of the swing, point C, as the zero

of potential energy (and the origin of our vertical coordinate y), we have
mgy, + %mva2 = mgyp + %mvb2
Dividing out the mass m and multiplying by 2, we get
Vb2 =2gy, — 22 +Va2
Next we note that

ya=L=15m va=0 y5 =L — Lcos30° = (1.5m)(1 — 0.866) = 0.201 m

v? = 2(9.8 m/s?) (1.5 m) — 2(9.8 m/s’) (0.201 m) + 0 =25.5m?/s* or vy =35.05m/s

Similarly, for point C, v =2gy, — 2gy. + v,2 with y, = 0 = v, = 0. Then
v2=2(9.8m/s) (1.5m) =294m?/s> or v.=542m/s

(b) As the bob passes position C it has an upward centripetal acceleration
ve2  29.4m?/s?

“ L 15m

Then, from Newton’s second law in the y direction,

=19.6 m/s’

T—mg=ma or T=mg+a)=/(0400kg)(9.8m/s’+19.6m/s’)=11.8N

Problem 6.29. The bob of Problem 6.28 is given an extra spurt as it passes point C so that its

velocity at that point doubles.
(a) Will it reach point D of Fig. 6-22(b)? If so, with what velocity?

(b) If so, what is the tension in the cord as it passes point D?
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Solution

(a) The new velocity at point C is v. = 10.84 m/s. Applying conservation of mechanical energy as the
bob proceeds toward point D; v,;* = 2gy. — 2gys + v.2, with y.=0and y;=2L = 3.0 m. Then

ve® =0—2(9.8m/s’) (3.0 m) + (10.84 m/s)’ = (—58.8 + 117.5) m?/s? = 58.7 m?/s?

or vy=17.66m/s
While this indicates that the bob was given enough kinetic energy at point C to rise to point D
and still have some kinetic energy left over, there is the possibility that the cord will go slack before
the bob reaches point D. The condition for this to not happen is that at point D the cord will still be
under tension, or T > 0. Part (b) tests this out.

(6) If the bob reaches D, it will have there a centripetal (downward) acceleration, of magnitude

2 2
va?  (7.66 m/s) 2
= = 39‘1
T 1.5m/s m/s

In the coordinate system of Problem 6.29, choosing downward as positive, we have, noting that
both the tension and gravity pull downward,

Ty+mg=ma, or T;=nm(a,—g)=(0400kg)(39.1m/s’—9.8m/s?)=11.7N>0
so the cord did not go slack.

Problem 6.30. A block hangs from the end of a spring of force constant k. In the equilibrium
configuration the spring is stretched a distance % (Fig. 6-23). Show that the combined potential energy
of gravity and the spring force can be written as %kxz, where x is the amount of stretch of the spring as
measured from the equilibrium position.

______ C ~¢———— Unstretched: E,=0

h
<«—Y— Equilibrium

Fig. 6-23
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Solution
With the origins of y and x as shown in the figure, the combined potential energy is given by
Ep +E; = %ky2 — mgy (@)
(where the minus sign reflects the fact that downward has been chosen as positive for ). Noting that
y = x + h, we substitute into Eq. (i) to get
Eqp + Ep = Lk(x + h)? — mg(x + h) = 3o + khx + Lkh? — mgx — mgh
Now, at the equilibrium position, the downward force of gravity must just be balanced by the upward
spring force: mg = kh. Then, khx — mgx = 0, and our expression reduces to
Ep+E;= %kx2 + %kh2 — mgh
Dropping the constant terms on the right, we get the desired result. Since adding or subtracting a

constant from potential energy only changes the location of the zero point, we drop the constant terms
on the right to get the desired result.

Problem 6.31. A block of mass m = 10 kg is first compressed 20 cm against a spring having force
constant k£ = 1000 N/m, and then released, on a horizontal surface, as shown in Fig. 6-24. If the
horizontal and-inclined surfaces are both frictionless, through what maximum vertical height y will the
block rise on the incline?

Fig. 6-24

Solution

Only gravity and the spring do work, so we have conservation of mechanical energy. The initial and
final kinetic energies of the block are zero, so all the potential energy given up by the spring must appear
as increased potential energy of gravity. Therefore we have "

1(1000 N/m) (020 m)? = (10kg) (0.8 m/s’)y or  20J=(98N)y or y= 20.4 cm

Supplementary Problems

Problem 6.32. A block on a frictionless inclined plane of length L = 8.0 m is acted on by the forces shown in
Fig. 6-25.

(a) Find the work done by each force as the block moves down the entire length of the incline.
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Fig. 6-25

(b) Find the total work done by all forces.

Ans. (@) Wp =9601, Wiy = —34.6J, Wy = 80.0 J, Wy = 0.0 J;
(b) Wr=14147

Problem 6.33. For Problem 6.32, find (a) the components of the resultant force parallel to and normal to the
incline; (b) the work done by the resultant force.

Ans. (@) R, =177TN,R,=0; (b)) Wx=14161]

Problem 6.34. In Fig. 6-4 assume that F, =40 N, w = 100 N, 6 = 37°, 14, = 0.25, and that F, points in the
opposite direction to that shown and has magnitude 10 N. The displacement is s = 12 m. Calculate (a) N and
Jx, (b) the work done by each force, (¢) the total work done by all forces.

Ans. (@) N=106 N, f, =265 N; (b) Wi, = 480 J, Wgy = —96 I, Wy= —318 I, W,, = Wy, = 0;
©) Wr=661

Problem 6.35. For Problem 6.34, find () the x and y components of the resultant force, (b) the work done by
the resultant force.

Ans. (@) R, =550 N, R, =0; (b) W =66 J

Problem 6.36.

(a) For the situation of Problem 6.34, use the work—kinetic energy theorem to find the speed of the block at
the end of the 12-m displacement, assuming the block started from rest.

(6) Through what additional displacement must the block move for the speed to be doubled?

(¢) How would the answers to (a) and (b) change if there were no frictional force?

Ans.  (a) 3.60 m/s; (b) 36 m; (c) 8.68 m/s, 36 m
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Problem 6.37. A force F, varying in both magnitude and direction, acts on a block moving along the x
axis. The F cos 0 vs. s curve for the block is shown in Fig. 6-26. Find the work done by the force in going
from (@) x=00mtox=1.0m; (h))x=10mtox=2.0 m; (©)x=20mtox=35m

Ans.  (a) 40.0 J; (b) 30.0 J; (c) —22.5)

Fcos 6 (N)

x(x =s) (m)

Fig. 6-26

Problem 6.38. Assume that the block in Problem 6.37 has mass m = 5.0 kg and that the given force
represents the resultant force acting on the block. If the block is given an initial velocity vo = 3.0 m/s at x = 0,
find its velocity at () x= 1.0 m, ()) x =2.0 m, (¢) x =3.5 m.

Ans. () 5.00 m/s; (b) 6.08 mv/s; (c) 5.29 m/s

Problem 6.39. A block of mass m = 20 kg on a horizontal surface is given a speed of 30 m/s. The block
comes to rest after traveling 150 m.

(a) Use work-energy considerations to determine the coefficient of kinetic friction fi.
(b) For the same i, what would the block initial speed have to be for it to stop after 75 m?

Ans.  (a) 0.306; (b) 21.2 m/s

Problem 6.40.

(@) Redo Problem 6.26(b) using the conservation of mechanical energy.
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(b) Assume now that, in addition to the given force, the object is acted on by a frictional force f; = 15 N. Use
the work—kinetic energy theorem to find the new value of the kinetic energy at x = 3.0 m.

Ans. (@) 451, (B) 151

Problem 6.41. An elevator whose mass, including contents, is 50 slugs starts from rest and is pulled upward
by a cable exerting a constant force F. The elevator is found to be moving at 10 fi/s after rising 20 fi. Use work
energy considerations to calculate F.

Ans. 17251

Problem 6.42.

(@) Assume thatin Fig. 6-14, L = 1.5 m, 8 = 30°, and the incline is frictionless. If the block starts from rest at
the top of the incline, find its speed when it hits the ground, using energy considerations.

(b) Redo (a) if there is friction between the incline and the block, with p; = 0.25.

Ans. (@) 7.34 m/s; (b) 6.89 m/s

Problem 6.43. Block 4, of mass m, = 6.0 kg, is connected to block B, of mass m; = 4.0 kg, by a light cord
over a frictionless pulley. The two blocks are on frictionless inclined planes, as shown in Fig. 6-27. If the system
starts from rest, find the speed of the blocks after block 4 has moved 5.0 m down along the incline. Consider
both blocks to constitute a single system, and use conservation of mechanical energy to solve the problem.

Ans. 4.84 m/s

Problem 6.44. A 200-g block is compressed 10 cm against a spring of force constant £ = 150 N/m while
resting on a frictionless inclined plane. When the block is released, it is propelled by the spring up the incline.
Through what vertical height will the block rise before coming to rest?

Ans. 383 cm

Problem 6.45. Suppose that in Fig. 6-23 m = 15 kg and k£ = 400 N/m. If the block is stretched 40 ¢cm below
the equilibrium position and released, (a) what will its velocity be when it passes the equilibrium position? ()
how high above the equilibrium position will it rise?

Ans.  (a) £2.07 m/s; (b) 40 cm
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Problem 6.46. Determine (@) the escape velocity from the surface of the moon, (b) the launch velocity for
which a projectile will rise 500 km above the moon’s surface. [Data: G = 6.673 X 107" N-m%/kg%;
Miooon = 7.36 X 10% kg; Ryoon = 1740 km].

Ans.  (a) 2.38 ku/s; (b) 1.12 km/s

Problem 6.47. A bead slides on a frictionless wire as shown in Fig. 6-28; the bead starts at a height of 5.5R
above the base of the circular loop. Find the speed and the force exerted by the loop (a) at the topmost point, (b)
at the bottommost point.

Ans. (@) 351 c/s, 1.47 N; (b) 440 cm/s, 2.94 N

Problem 6.48. A pendulum bob of mass m = 1.2 kg hangs at the end of a cord of length 2.2 m. The bob is
drawn to one side until the cord makes an angle of 50 ° with the vertical, and then released. Find (a) the work
done by gravity in moving the bob from the 50 ° position to the lowest point, (b) the tension in the cord at the
lowest point.

Ans. (@) 9.24 J; (b) 202 N

m=25g

Problem 6.49. A light spring (k = 300 N/m) rests on a horizontal frictionless surface with one end attached to
a wall. A student slowly pulls the other end of the spring until it stretches 10 cm. She then hands it at that
position to another student who slowly stretches it an additional 5.0 cm. Which student did more work, and how
much more was it?

Ans. The second student did 0.375 J more work.

Problem 6.50. Refer to Problem 6.45. (@) How high above equilibrium is the unstretched position? (b) What
is the velocity of the block as it passes that point?

Ans. (a) 36.8 cm; (b) +0.81 m/s



Chapter 7

Energy, Power, and Simple Machines

7.1 GENERALIZATION OF CONSERVATION OF ENERGY

Thus far we have explored a number of conservative forces and the associated potential energies
that can be used to represent the work they do. We have also encountered the force of friction and can
ask if it too is conservative. Since friction always opposes the motion of an object, the work done by
friction is always negative. If we move a block about on a tabletop where there is friction, as shown in
Fig. 7-1, the work done by friction in going from a to & along path C| is negative, and so is the work
done in going from b back to a along path C;. Thus the total work done by friction in going around the
closed loop (i.e., returning to its starting point) is not zero, and the foice is not conservative.

Block

Fig. 7-1

Let us recall our earlier discussion of work being the mechanical transfer of energy between
systems. A system doing positive work loses energy, and one doing negative work gains energy. Since
friction always does negative work, the system that supplies the force of friction should always gain
energy. But what sort of energy would this be? The source of friction is the interaction of the
molecules in the surface layers of the two objects that are moving past each other and it is the energy
of random jiggling of this vast number of molecules that increases. While such jiggling involves
mechanical energy at the atomic level (including both kinetic energy of the molecules and potential
energy of the forces between them), it is not mechanical energy on the macroscopic scale. Since the
motion is random, it does not manifest itself in an organized group motion of all the molecules, as it
does, for example, when a block is moving. When the block moves, all the molecules are also in
motion, but in that case they are moving in unison. When the motion of the molecules is of a random
nature, (describable, in fact, only by statistical means) we call the associated energy thermal energy.
Such energy manifests itself macroscopically in various ways, most notably as a rise in temperature,
and will be discussed in more detail in the section on heat and thermodynamics.

If we include in our considerations thermal energy, as well as other forms of energy such as
electromagnetic radiation (light) and more subtle forms of mechanical energy such as sound, the law
of conservation of energy still holds. Energy can be transformed from one type to another within a
given system, and it can be transferred from one system to another system, but the total amount of
energy stays the same.

172
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Problem 7.1. Reexamine Problem 6.12(b) from the perspective of general energy conservation.
Solution

Consider the system composed of the block and the incline, as well as the gravitational interaction
of the block with the earth. Initially, the system has zero kinetic energy, but the total energy includes the
potential energy of the block at the top of the incline and whatever thermal energy the block and incline
initially have. When the block reaches the bottom it has lost an amount of potential energy

mgh = (5.0 kg)(9.8 m/s*)(9.0 m) = 441 J

This energy must appear in the form of increased kinetic energy of the block and increased thermal
energy of the system. The increase in thermal energy is a consequence of the negative work done by
friction:

Increase in thermal energy = |Wy| = fil = (wemgcos)L = 177]

(as previously calculated in Problem 6.6(b)). The remainder of the potential energy lost by the block
must appear as kinetic energy:

E, = %mvzz =441J—-1773=2641 whence v, =103 m/s
(as before).

Problem 7.2. A block of mass m = 6.5 kg is released from rest at the top of a frictionless incline of
height 3.0 m, as shown in Fig. 7-2. Upon reaching the bottom, the block slides a distance L = 12 m
along a horizontal surface that has friction, until coming to rest.

(a@) Using energy considerations, find the thermal energy gained by the system.

(b) Find the coefficient of friction 11, between the block and the horizontal surface.

h=30m

--————— ———p

14

Solution

(a) The kinetic energy of the block is zero at the beginning and at the end of the motion. Overall, the
potential energy of the block decreases by an amount

mgh = (6.5 kg)(9.8 m/s*)(3.0 m) = 191J
This energy thus reappears as 191 J of thermal energy gained along the horizontal section.
(b) Equating the gain in thermal energy to minus the work done by friction, we get
191 J = —(—pmgL) = 11, (6.5 kg)(9.8 m/s%)(12 m) = 11,764 J) or i =0250
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Problem 7.3. A block of mass m = 9.0 kg is dropped onto a vertical light spring of force con-
stant £ = 300 N/m, as shown in Fig. 7-3(a). The block compresses the spring 1.7 m, as illustrated in
Fig. 7-3(b). Find the amount of mechanical energy converted to thermal and sound energy due to the
collision of the block with the spring.

A

y;=150m

9.0m
y=73m

OOOOOOH

—

(a) b)

Fig. 7-3

Solution

As in Problem 7.2, the initial and final kinetic energies of the block are zero. The amount of
gravitational potential energy lost is

mg(y2 —y1) = (9.0 kg)(9.8 m/s*)(15.0 m— 7.3 m) =679 J
Some of this lost energy appears as potential energy of the spring:
o2 = 1(300 N/m)(1.7 m)* = 434 ]

The remainder must represent energy appearing in some other form. The only possibility is that the
collision between the block and spring caused an increased jiggling of their molecules (thermal energy),
as well as the molecules of the surrounding air (sound energy). The total amount of such energy
generated is 679 J — 434 J =245 ],

Sk/ Problem 7.4. A ball of mass 1.5 kg is dropped from a heighf h1 = 3.0 m above the floor, and the
ball bounces straight back up. If 12.0 J of thermal energy is generated in the collision, to what height
does the ball rebound?

Solution

The ball starts with no kinetic energy and with potential energy: mghy = (1.5 kg)
(9.8 m/s?)(3.0 m) = 44.1 J. When the ball rebounds to its maximum height #,, it again has no kinetic
energy, and its potential energy is mgh,. Since 12.0 J disappears in the collision, we have
mghy +12.0J=44.1 J, or

(15kg)(9.8 m/s)hy =321]  or  hy=2.18m
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7.2 POWER

Average Power

We now turn to the question of the rate at which work is done, that is, how much work is done per
second by a force. The average power P, delivered by a force in a time Az is defined as the work AW
done by the force in the time At, divided by At: P, = AW/At. The SI unit of power is the watt (W),
where 1 W = 1 joule/second = 1 J/s. A related unit is the kilowatt, equal to 1000 W. Other units are
ergs/s and ft - 1b/s. In the English system of units a special unit of power called the horsepower (hp) is
defined: 1 hp = 550 ft- Ib/s. A calculation shows that 1 hp ~ 0.75 kW.

Problem 7.5. A horizontal force F = 10 N pulls a block of mass m = 2.0 kg along a frictionless
horizontal surface. If the block starts from rest, find the average power delivered by the force (a) in the
first 5.0 s; (b) between ¢ = 3.0 sand ¢ = 5.0 s. (¢) How would the answers to (@) and (b) change if the
force made an angle of 30° with the horizontal?

Solution

(@) To find the work done in the first 5 s we need the dlsplacement Since the force is constant,
the acceleration is also constant, and we have x = xo + vof + —at for our case xy = vo =0 and
a=F/m= (10 N)/(2.0 kg) = 5.0 m/s?. Thus x = (2.5 m/s )t2 Substituting ¢=5.0s we get
x =62.5 m, and AW = Fx = (10 N)(62.5 m) = 625 J. Finally,

AW 6251
Pp=m=—-=125W
At 50s 125

(b) Here P, = AW/At = F Ax/At, where At=50s — 30s=2.0s, and Ax =xs — x3. We have
from (a) that x5 = 62.5 m, and we find that x; = (2.5 m/s%)(3.0 s)? = 22.5 m. Thus Ax = 40.0 m.
Finally, we get

(10 N)(40.0 m)

PaV:
20s

=200 W

(¢) In this case the work is due only to the horizontal component of the force F:
F, = F cos 30° = 0.866F. The x displacements in a given time interval are all proportional to
the acceleration (since x = %at2 for our initial conditions), and the acceleration is now due to the
force F, = 0.866F, and is therefore reduced by the factor 0.866 as well. Calling the new
acceleration a’ we have a’ = 0.866a. Thus the force doing the work is reduced by a multiplicative
factor of 0.866, and the displacements are also down by a multiplicative factor of 0.866. Thus the
work in any time interval is down by (0.866)* = 0.75, and the new average powers will just be 0.75
times the original ones.

Instantaneous Power

In the case of one-dimensional motion with the force along the direction of motion we saw in
Problem 7.5 that

po—p¥_phzn
At h—1h

(7.1)

We define the instantaneous power P at the time #; as the limit as #, — # (or the limit as Ar — 0) of
P, But in this limit, Ax/Af — v, the instantaneous velocity. Then Eq. (7./) becomes

P=Fv (7.2)
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This can easily be generalized to the case of an object moving on an arbitrary path and acted on by a
force that makes an angle 6 with the tangent to the path. The situation is depicted in Fig. 7-4. If Asis a
small incremental arc length moved through in the time interval Az, then AW = F cos 6 As and
P,, = AWI/A¢, or -

As
PaV—FCOSHE (7.3)

In the limit as Az — 0, we have that As/At = v, the magnitude of the instantaneous velocity. Thus, in
general, the instantaneous power is given by

P=Fcosfv (7.4)

. 0“
Path of ™%

Fig. 7-4

Problem 7.6.

(a) Referring back to Problem 7.5, find the instantaneous power generated by the force Fat ¢ = 2.0,
3.0, 4.0, and 5.0 s.

(b) Repeat for the case of Problem 7.5, part (c)

Solution

(a) For this one-dimensional case we have Eq. (7.2): P = Fv. We also have that v = v, + at. Since
vo=0, v=ar=(5.0 m/sz)t, from which we get v, = 10.0 m/s; v; = 15.0 m/s; v, = 20.0 m/s;
vs =25.0 m/s. Recalling that F=10N, we have P, =100 W; P; =150 W; P, =200 W;
Ps =250 W.

(b) In this case the power is P’ = F cos 6 v' = 0.866FV', where v’ is the velocity for the new situation.
Since the new acceleration is due to F,, we have a' = 0.866a = v' = a't = 0.866at = 0.866v.
Thus P’ = (0.866)*Fv = 0.75Fv = 0.75P. Thus all values of power are reduced to 0.75 of their
original values, just as was concluded for the average powers of Problem 7.5(c). ‘
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Problem 7.7. A horse pulls a cart along a level road at 25 ft/s. If the net horizontal force exerted by
the horse on the cart is 40 1b, how much horsepower is the horse delivering to the cart?

Solution

P = Fv = (40 1b)(25 ft/s) = 1000 ft - Ib/s. To convert to horsepower we divide by (550 ft - Ib/s)/hp

to get P = 1.82 hp.

Problem 7.8. A truck travels along a level roadway at 60 mph (88 fi/s). At that speed, air resistance
and internal frictional forces are such that an effective forward force of 3000 Ib is necessary to keep
the truck from slowing down. What power must be delivered by the truck’s engine to keep the truck
going at constant speed?

Solution

Note.

_ (3000 1b)(88 fi/s)
550 ft-1b/(s - hp)

= 480 hp.

This is really a much more complex situation than appears at first glance. The actual
forward force is supplied by the static frictional force of the ground on the tires. Since the
point of contact of the tires with the ground has no horizontal motion if there is no
skidding, this force does no work! This is made more obvious by the fact that the ground
is just a passive system and not one supplying energy to the truck. The actual work is
done by the engine through the action of the drive shaft. This is an example of a system
where “internal work” is done by one part of a complicated system on another. An even
simpler example of this is the case of a child on ice skates pushing himself off from the
ice rink wall. Clearly the force due to the wall accelerates the child, building up kinetic
energy, but the wall force does no work since the hands it pushes are at rest against it. The
energy is delivered by the internal work of the muscles of the child.

Problem 7.9. In Problem 7.8, assume the truck engine has a maximum power capacity of 600 hp,
and the truck weighs 8000 Ib. What is the steepest incline that the truck can drive up and maintain its
speed of 60 mph?

Solution

It takes 480 hp to just keep the truck moving at the constant speed on level ground. This leaves

120 hp to increase the potential energy E, as the truck moves up the incline. Thus
120 hp = 66,000 ft - Ib/s = AE,/At, the increase of potential energy per second. The situation is
depicted in Fig. 7-5. AE, /At = mg Ah/At, where A is the increase in height in an infinitesimal time Az.
But Ah/At is just the vertical component of the truck’s velocity v,, so AE,/At = mgv,. If 0 is the angle of
the incline, then v, =vsin 6, and AE,/Ar= mgv sin 6 = (8000 Ib)(88 fi/s) sin 6 = 66,000 fi - Ib/s
(from before). Solving for sin § we get

sin 0 = 0.0938 or 0=5.38°

Problem 7.10. An electric light bulb rated at 100 W is left on for 10 days and nights.

(@) How much energy was expended?

(b) For how long must an electric heater rated at 3500 W be left on to expend the same amount of
energy?
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Fig. 7-5

Solution

(@) For the case of constant power, from the definition we have £ = Pt, where E is the total energy
expended in joules, P is the constant power generated in watts, and ¢ is the elapsed time in seconds.
A period of 10 days and nights corresponds to 240 h. Noting that there are 3600 s/h we get
t = (240 h)(3600 s/h) = 8.64x10° s. Then

E = (100 W)(8.64 x 10° 5) = 8.64 x 107 J = 86.4 MJ
(b) Now
P'Y = (3500 W)¢ = 8.64 x 107 ] or ¢ =24700s=6.86h

Problem 7.11.  For purposes of charging customers for energy usage, power companies use a special
unit of energy, the kilowatthour (kWh) defined as the energy expended by a 1-kW power source
operating for 1 hour.

(@) How many joules are there in 1 kWh?

() How many kilowatthours of energy are expended by the light bulb of Problem 7.10(a).

Solution

(@ 1 kWh = (1000 J/s)(3600 s) = 3,600,000 J.
7

¢ E=—S04X10T o ewn,

3.60 x 10° J/kWh

7.3 SIMPLE MACHINES

A simple machine is any device that allows a small force to move an object against a larger
resisting force, or a force in one direction to move an object against a resisting force in another
direction. Many simple machines do both. Examples shown in Fig. 7-6 are (@) the lever, (b) the
inclined plane, and (c) a pulley system. In all three cases we assume the applied force Fj is the
minimum force needed to move the weight, (or “load”), w (that is, to move it with essentially zero
acceleration). '

Mechanical Advantage

The ratio of the load to the applied force is called the mechanical advantage (MA) of the
machine. Clearly, the bigger the mechanical advantage the smaller the applied force necessary to
accomplish the task. In any simple machine, the applied force F; necessary when no frictional forces
must be overcome will be smaller than F,, the applied force necessary when there are frictional forces.
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When there is no friction we have the best or the “ideal” MA: (IMA)

w
- 7.5
IMA 7 (7.5a)
The actual MA is given by
w
= (7.5b)
4

and is always smaller than the IMA because there are always frictional losses.
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To find the IMA and the MA for a simple machine we can use our basic ideas about work-energy,
and general energy conservation. If we assume no friction for the examples in Fig. 7-6, then the work
input (work done by F; in moving the weight) must in each case be equal to the work output (for our
frictionless cases, the increase in gravitational energy of the load). This is equivalent to saying that the
system supplying force F is giving up energy, while the system exerting the load force (gravity in our
cases) is gaining a like amount of energy. Thus:

Work input = work output (7.6)

Since in this ideal case all the work output goes into accomplishing the goal of moving the weight, it is
also called the usefil work output. If by and h, represent the distances moved through by the applied
force and the resisting force, respectively (Fig. 7-6), then Eq. (7.6) becomes

FAhl =Wh2 (77)
Then, from Egs. (7.5a) and (7.7)
w h]
IMA = = h | (7.8a)

In other words
MA — input di§tance (7.80)
output distance

If, on the other hand, there is friction, the work input (done by F,") must be larger than the useful
work output (increase in gravitational energy of the load) by an amount equal to the thermal energy
generated by the frictional forces:

Work input = work output = useful work output + thermal energy increase (7.9)

Efficiency
The efficiency e of a simple machine is defined as the ratio

useful work output

= 7.10
¢ work input (7.10a)
For our examples this is just
Wh2
— 7.10b
“TFoh (7.100)
Using Eq. (7.7) this becomes
F Ah1 F A
= == 7.10
“TFn F (7.10c)
Thus
_ ideal appliF:d force (7.10d)
actual applied force
From Eq. (7.10c) we can determine yet another expression for e, in terms of MA and IMA:
F F,  MA
Fa _wFs_ (7.10€)

€:F/,1 W/FA_M
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Equations (7.8b), (7.9), (7.10a), (7.10d), and (7.10e) are general expressions that are true for any
simple machines.

Problem 7.12. Assume that for the lever in Fig. 7-6(a), L, = 6.0 m and L, = 1.5 m, and that
w =100 N.

(a) Ifthere is no friction in the pivot, find the force F; necessary to just lift the weight w, and find the
IMA of the machine.

(b) If the actual force needed is F; = 28 N, find the efficiency of the machine.
(¢) For part (b), how much thermal energy is generated at the pivot if the weight is lifted 10 cm?
Solution

(a) If the weight is lifted through a small distance Ay, the force Fy will act through a corresponding
distance k,. Then from work-energy: Fyh; = why or Fy = w(hy/h). But by similar triangles
we must have ho/h; = Ly/L; =025, so F,= (100 N)(0.25) =25 N. Also, IMA = wiF, =
hi/hy = L/L, = 4.0. (This same result could be obtained by balancing torques about
the pivot. Torques will be discussed in Chap. 9.)

(b) Ma = w/E; = 100/28 = 3.57; e = MA/IMA = 3.57/4.0 = 0.893 = 89.3%.

(¢) hy=0.10m = A = 0.40 m = work input = F;/#; = (28 N)(0.40 m) = 11.2 1. Useful work
output = why = Fghy = (25 N)(0.40 m) = 10.0 J. Therefore the thermal energy =
1127 — 10.0 J = 1.2 J. [Or, since we have 89.3% efficiency, 10.7% of the work input is wasted
as thermal energy: 0.107(11.2 J) = 1.2 J, as before.]

Problem 7.13. For the inclined plane in Fig. 7-6(b), assume 6 = 30° and w = 100 N.
(a) Find an expression for the IMA of this simple machine.

(b) If the coefficient of friction between block and incline is px = 0.25, find the true MA and the
efficiency of the machine.

(¢) Using the results of part (), find the thermal heat loss when A, = 35 cm.
Solution

(@) MA = w/F,. If there is no friction, then, balancing force components along the incline:
F, = w sin 6 = IMA = 1.0/sin @ = 1.0/sin 30° = 2.0. [Or, from Egs. (7.8) and Fig. 7-6(b),
MA = hy/h, = 1.0/sin 6.]

() MA = w/F,{. Again balancing components of force along the incline, but now including friction, we
get Ff —wsinf —f,=0 or F{ —wsin0 — wWcos §=0=F/ = w(sin 6 + yx cos ).

Then
MA = — 1.0 _ 1/0 _ 1.0 140
sinf + p, cosf  0.50+40.25 x0.866 0.717
MA  1.40
=—=—=0.
MA 2.0 70

(Or, equivalently, e = F,/F; = 50/71.7 = 0.70.)

(¢) Work input = (useful work output)/e = why/e = (100 N)(0.35 m)/(0.70) = 35 J/0.70 = 50 J. Then
the thermal loss = 50 J — 35 J = 15 J. (Or, thermal loss = 30% of work input, while useful work
output = 70% of work input = thermal loss = 2 (useful work output) = 3(35 J) = 15 )
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Problem 7.14. Consider the pulley system shown in Fig. 7-6(c), with weight w = 100 N.

(@) What is the value of the applied force and the IMA of the machine if both pulleys are massless
and frictionless and the cord is light?

(b) If the movable pulley from which the weight w is suspended is now assumed to weigh w, = 5 N,
but all friction can still be ignored, what is the new value of the applied force, and the MA.

(c) What is the efficiency of the machine under the conditions of part (5)?
Solution

(a) As can be seen from Fig. 7-6(c), when the weight moves up a distance ,, twice that length of cord
has been pulled down by the applied force. Thus, #; = 2k,. Then, using Eq (7.8) we have

h
Ma=— =220 or Fy=05w=(0.5(100N) = S0ON
Fs by

(b) In this case, the applied force is F; = 0.5(100 N + 5.0 N) = 52.5 N. Even though there is no
frictional loss, the useful work output relates only to the lifting of the weight w, so
w100

= 190
Y TR T s

(c) The efficiency of the machine e is the ratio of useful work output to work input:

F MA .
e — ,/4’11:11,/4:_:@:0‘95
Fih  F, ma 2.0

Note. There are many additional simple machines, such as the wedge, the screw, the jackscrew
and more complicated pulley systems. In all cases, the basic work-energy approach
discussed above can be used to analyze the IMA, the MA, and the efficiency e of the
machine.

Problems for Review and Mind Stretching

Problem 7.15. Reconsider Problem 6.31 if there is friction and the frictional forces do a total of
Wy= —15J of work. To what maximum vertical height would the block rise on the incline?

Solution

We approach the problem from an energy balance point of view. As in the Problem 6.31 the
kinetic energy is zero at the beginning and at the end. Now, however, the energy given up by the
spring goes partly into building up the thermal energy of the surfaces so that less is available to
build up gravitational potential energy. Thus- %(1000 N/m)(0.20 m)> =15 T + (98 N)y or 20] =
157+ (98 Ny =y=35.1cm.

Problem 7.16. A 25,000-kg airplane starts from rest on the runway, takes off, and reaches an
altitude of 5000 m and a speed of 250 mys, all in a time of 8.0 min.

(@) Assuming no thermal losses, what is the average power generated by the airplane engines during
this period?
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(b) Assuming that the average engine output was 1.3 times the power output of part (a), how much
thermal energy loss was there during that period?

Solution

(@) P, = AW/At. From the work-energy theorem, AW = AE; + AE,. Since the airplane starts from
rest, AE; = final kinetic energy = %(25,000 kg)(250 m/s)* = 7.81x10® J. Choosing ground level
as the zero of potential energy, AE, = final potential energy = (25,000 kg)(9.8 m/s?)
(5000 m) = 1.23x10° J. Then AW =0.78x10°J+ 1.23x10° J =2.01x10° J. Noting that
At = (8 min)(60 s/min) = 480 s, we get
2.01 x 10%)

o= X0 T 419 % 106 W = 4190 kKW
Py 480 s 9 x

(b) The average power lost to thermal sources is 0.3(4.190x 10° W) = 1.26 x10® W. The total thermal
energy loss in 8 min is thus (1.26x 10 W)(480 s) = 6.05x10% I.

Problem 7.17. A tugboat pulls a barge directly behind it at a speed of 4.0 m/s. The tugboat’s

engines generate 700 kW of power, of which 60% is needed just to keep the tugboat alone moving at
that speed.

(a) Find the tension in the rope connecting the tug and barge.
(b) If the tugboat was in front but slightly to the side of the barge so that the connecting rope made a
20 ° angle with the direction of motion, what would the tension now be?

Solution

(a) 40% of the tugboat’s engine power goes to moving the barge. So, calling this amount of power
Prarge, W get Pharge = 0.40(700 kW) = 280 kW. Let T be the tension in the rope.
_ Prarge 280 kW

v 40m/s 70-0kN

Pryge = TV or T

(b) Now T cos 20° = 70.0 kN, or T = 74.5 kN.

Problem 7.18.

(@) In Fig. 7-7 assume all the pulleys are massless and frictionless. Use energy considerations to
determine the force F necessary to just lift a weight w = 50 Ib.

(b) If there were some friction in the pulleys and their mass were not negligible, the force F would
have to be larger than in part (a). If the force F was in fact 20% larger than in part (a), what is the
efficiency of this simple machine, and what fraction of the work done by F'is converted into
potential energy of the weight w?

Solution

(a) Ifthe weight and the two massless pulleys to which it is attached move up a distance 4,, the amount
of slack let out in the cords is 2h, about each moved pulley. Thus, 4, = 4.0, and
F=025w=(025)(501b) =125

(b) F' = 1.2F soe= F/F' =0.833. This means that 83.3% of the work input is used to lift the weight
and hence is converted to potential energy of the weight.
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Fig. 7-7

Problem 7.19. A jackscrew that can be used to lift a weight w is shown in Fig. 7-8. The pitch p of
the screw is defined as the vertical height through which the screw moves when it is turned through
360°. The lever arm L is measured from the axis of the screw. The turning force F, is applied
horizontally, and perpendicular to the lever arm.

(@) Find F; in the ideal case of no friction, and find the mMA.

(b) If the jackscrew has an efficiency of 15.0%, find the MA and the actual force F, necessary to lift
the weight.

Solution

(a) Work input = work output = (for one complete turn) F,(2nL) = W(p) or F,(6.28)(0.30 m) =
(1200 kg)(9.8 m/s?)(0.0035 m) = F, = 21.8 N. IMA = W/E, = 2nL/p = 539.

M =1200kg

Fig. 7-8
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(b) e=FJE{ = F/ = Fje=218N/0.15 =145 N. Also, e = MA/IMA = MA = e(IMA) =
0.15(539) = 81. [Or, MA = WIF} = (1200 kg)(9.8 m/s?)/145 N = 81.]

Supplementary Problems

Problem 7.20. Refer to Problem 6.47 and to Fig. 6-28. If the straightaway following the loop has friction
(ux = 0.40) and the rest of the track is smooth (@) how far along the straightaway will the bead slide? (b) Repeat
(a) for a starting height of 11.0 R.

Ans. (a)2.48 m; (b) 495 m

Problem 7.21. A bullet of mass 150 g is fired with velocity 300 m/s into the trunk of a tree and penetrates to a
depth of 8.0 cm. Find (a) the thermal energy generated; (b) the average resistive force of the tree over the
8.0-cm distance.

Ans. (a) 6750 J; (b) 84,400 N

Problem 7.22. In Problem 6.48, how much work is done by a person moving the bob to the 50° position?
Ans. 9.24]

Problem 7.23. A 5.0-kg projectile is fired vertically upward from the ground level with initial velocity
vo = 100 m/s. By the time it reaches the highest point, 4 kJ of thermat energy has been generated due to air
resistance. How high does the projectile rise?

Ans. 429 m

Problem 7.24. A rifle fires a 20-g bullet with a muzzle velocity of 3000 m/s. The barrel of the gun is 0.80 m
long.

(@) If a thermal energy of 40,000 J is generated when the gun is fired, what is the total energy released in the
gunpowder explosion that projects the bullet out of the barrel?

(b) What is the average force exerted on the bullet as it moves down the gun barrel?

Ans. (a) 130,000 J; (b) 112,500 N

Problem 7.25. Assume that the net force acting on the bullet in Problem 7.24 while in the barrel is constant.

(@) What is the time of flight down the barrel?
(b) What is the time-average power exerted on the bullet?

Ans.  (a) 533 ps; (b) Pay = KE/t = 169 MW

Problem 7.26. A water-skier is pulled by a motorboat in such a way that the towline makes a 40° angle with
the skier’s direction of motion. The skier is moving at a constant speed of 18 m/s, and the tension in the line is
40 N. How much power is needed?

Ans. 552 W
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Problem 7.27. When an object falls from a great height, the air resistance exerts an upward force that
increases with the speed. Eventually the air resistance just balances the force of gravity, and from that moment
on the object descends at a constant speed called the terminal velocity. Assume that an object weighing 80 1b
has reached a terminal velocity of 110 ft/s when it is 1000 ft above the ground.

(a) Find the power, in hp, exerted on the object by the force of gravity as it descends with terminal velocity.

(b) Find the total thermal energy generated by the air resistance in the last 1000 ft before the object reaches
the ground.

Ans.  (a) 16.0 hp; (b) 80,000 ft - Ib

Problem 7.28. An engine delivers a power of 30 kW in pulling a block horizontally along a level surface at a
constant speed of 12 m/s. If the block has a mass of 500 kg, find (a) the frictional force between the block and
the surface, and () the coefficient of friction.

Ans.  (a) 2500 N; (b) 0.51

Problem 7.29. A 2000-Ib car accelerates from 0 to 60 mph (88 fi/s) in 7.0 s on a straight, level track.
Assuming no frictional losses, what minimum power must the engine have to accomplish this?

Ans. 62.5 hp

Problem 7.30.

(@) A 5000-kg truck coasts down a steep (22°) hill in low gear without using the brakes and reaches a constant
speed of 12.0 m/s. Find the thermal power generated due to friction in the drivetrain. (Ignore all other
sources of friction, including air resistance). What is the source supplying that power to the truck?

(b) If the truck were “in neutral” (with the drivetrain disconnected from the wheels) and the brakes were used
instead, how much thermal power would have to be generated in the brakes to keep the truck moving at
12.0 m/s?

Ans.  (a) 220 kW, the force of gravity; (b) 220 kW

Problem 7.31. A student uses a pulley system to hoist physics lecture notes weighing 200 Ib to a height of
20 ft. To accomplish this the student exerts a force of 30 1b and pulls a total of 200 ft of rope.

(a) Find the IMA, the MA, and the efficiency of the pulley system.
(b) If the student takes 25 s, what average power did he exert?

Ans.  (a) 10.0, 6.67, 66.7%; (b) 240 ft - Ib/s

Problem 7.32.

(@) For the lever system in Fig. 7-9(a), find the IMA and the force F needed to lift the weight in the ideal case.
(b) If the efficiency is 85%, find the MA and the actual force F’ necessary to lift the weight.

Ans. (a) 3.0, 98 N; (b) 2.55, 115 N

Problem 7.33. Repeat Problem 7.32 for the machine of Fig. 7-9(b).
Ans. (a) 4.0,12.51b; () 34, 147 1b
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Problem 7.34. Water is pulled up from a well by means of a bucket connected to the handle-and-axle system

shown in Fig. 7-10. The rope is wound on the axle as the handle is turned. If a force I = 28 1b is necessary to
turn the handle while raising a 100-Ib bucket, what is the efficiency of the simple machine?

Ans. 89%

Fig. 7-10
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Problem 7.35. A trunk is pushed up a 20° inclined plane from ground level to a platform 1.2 m above the
ground by applying a force of 100 N parallel to the incline.

(a) Find the IMA of this simple machine.

(b) If this machine has an efficiency of 80%, find the mMA.

(¢) Assuming 80% efficiency, find the weight of the trunk.

Ans. (a) 2.92; (b) 2.34; (c) 234 N

Problem 7.36. A simple machine consists of a meshed gear system as shown in Fig. 7-11. The handle on gear
1 sweeps out a circle of radius R; = 40 cm, while the axle on gear 2 (on which the rope winds up) has radius
R; =10 cm.

(@) If there are 10 teeth on gear 1 and 50 teeth on gear 2, find the IMA of the machine and the turning force F
needed on the handle to lift a 500-N weight in the ideal case.

(b) If in general the ratio of the number of teeth on gear 2 to gear 1 is labeled N, find a general expression for
the IMA for arbitrary R;, R, and N.

Ans. (a) 20, 25 N; (b) IMA = NR/R,

Fig. 7-11



Chapter 8

Impulse and Linear Momentum

8.1 IMPULSE

Impulse of a Constant Force

If a constant force F acts on an object for a time ¢, then the impulse I due to the force F is defined
as

I=Fi (8.1)

Note that this is a vector equation, and I points along F since ¢ is a positive scalar. If we restrict
ourselves to two-dimensional problems (the xy plane), Eq. (8.) is equivalent to the component
equations

L =Ft and L, =Fpt (8.2)

Figure 8-1(a) shows a simple situation in which a constant horizontal force F pulls a block along a
tabletop. The impulse I, due to F, is depicted for the given time interval ¢. The units of impulse are
those of force times time and therefore are N -s, dyn-s, or 1b - s, depending on the system of units
being used.

If more than one constant force acts on the block for the time ¢, then the total impulse is just the
vector sum of the impulses. Thus, in Fig. 8-1(), the same block is shown again, but this time with the
other forces acting: the weight, the normal force, and a kinetic frictional force. The total impulse is

Ir=Yp+1,+Iy+ 1 =Ft+wt+Ne +ft = (F+w+ N+ 1)t

S

I=F:
F i1 F
m - 1 m [rm—
1 | x
t=0 t=t
(@
y .
F (-
"
— x
©
wV
N
®
Fig. 8-1
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Since the term in parentheses on the right is just the resultant force, we have that the total impulse
equals the impulse of the resultant force.
From Fig. 8-1(b) we see that the x and y component equations for I are

(Ur),=(F=f)t  and  (Ip), = (N —w)t

Since there is equilibrium in the y direction, we have N = w and (I7), = 0. The total impulse is thus in
the x direction and involves a positive contribution from F and a negative contribution from f.

Problem 8.1.

(@) Assume that the force F in Fig. 8-1(a) has a magnitude of 100 N and the time ¢ = 8 s. Find the
impulse due to F in the 8-s interval.

(b) Suppose that after time ¢ = 8 s the force F was changed to 300 N and acted on the block for an
additional 8 s. What would the impulse be in the second 8 s?

(c) Suppose that after this second 8-s interval, the force F were changed again, this time to 400 N
acting in the negative x direction, and that the force acted for an additional 4 s. What would the
impulse be in this third time interval?

Solution

(@) The impulse clearly is in the x direction: . = F¢ = (100 N)(8 s) = 800 N -s.

(b) Again the impulse is in the x direction: I, = (300 N)(8 s) = 2400 N.

(c) Here the impulse clearly points in the negative x direction: 7, = (—400 N)(4 s) = —1600 N.

Problem 8.2. In Fig. 8-1(b) assume that ' = 50 1b, w = 30 1b, and the coefficient of kinetic friction
is ;. = 0.5. Find the total impulse in a 6-s time interval.

Solution

The impulses due to the weight and normal force are equal and opposite and therefore add up to
zero. The impulses due to F and f'are along the x axis, so the total impulse is in the horizontal direction.
The x component of the impulse due to F is (Ir), = (50 1b)(6 s) = 300 Ib - s. The frictional force is given
by f= w N = 0.5(30 Ib) = 15 Ib, so the impulse due to f'is (/). = (—15 1b)(6 s) = —90 1b - s. The total
impulse is then (I7); = (Ip)x + (), =300 1b-s — 90 Ib-s = 210 Ib-s. [Alternatively, we could first
find the resultant force Fr. (Fr),=F,+f,=501b —151b=351b. Then (Ip,= (Fp)t=
(35 1b)(6 s) = 210 1b - s, as before.]

Note. There is an interesting similarity between the definition of impulse of a constant force and
that of work of a constant force (as defined in Chap. 6). Work was defined as a force
times a distance, and impulse is defined as a force times a time. We will see below that,
just as for the case of work, the definition of impulse can be extended to the case of a
variable force acting on an arbitrarily moving object. In addition, in our study of work, we
saw that one could relate the work done to the change in kinetic energy (which is related
to the change in velocity) over the interval in which the work was performed. We will
soon see that impulse can also be related, through a quantity called momentum, to a
change in velocity over the period during which the impulse is performed.

There is, however, a very fundamental difference in the nature of the definitions of
work and of impulse. Work is defined as a scalar quantity; it has no direction. Impulse, on
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the other hand, is defined as a vector quantity. Whereas kinetic energy involves only the
magnitude of the velocity, the quantity involving velocity to which impulse is related
involves the velocity vector.

Impulse of a Variable Force

We now extend our concept of impulse to a variable force acting on an object moving on an
arbitrary path. In Fig. 8-2 we depict the situation. We consider the time interval from the initial time
tii = 1 to the final time fana = fy and divide the path of the particle up into N — 1 small segments
corresponding to small time intervals At. Thus, for example, Aty =t — t1, A, =86 — b, ...,

At; =ty — by ..., Aty =ty — ty—1. The forces Fy, Fs, ..., F,, ..., Fy_; correspond to the
average values of the forces in each of the corresponding small time intervals. Then by definition
I=1li F; Ay 8.3

Atu—1>10 Z P ( )

where the sum is over all the N — 1 intervals between #; and #y, and the limit means that all the Ar’s
get infinitesimally small (and, correspondingly, the number of intervals between #; and ty get infinitely
large). In terms of x and y components,

L= lim Y (F) Ay L= Jim 5 (F)An (8.4)

If F, and F,, are known functions of the time, Egs. (8. 4) can be understood graphically. In Fig. 8-3 we
depict an example of , as a function of time by plotting F; vs. £. (A similar depiction could be made

1 Fy_4

Path of motion

Fig. 8-2
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(F; x)i

(F:n

Fig. 8-3

for F,.) By dividing the # axis into small intervals A¢, we see that the sum in the x component of (8.4)
is approxnnated by the sum of the areas of the rectangles; in the limit as the Af’s go to zero this
becomes the area under the F,, vs. ¢ curve between the initial and final times. Thus, the x component of
the impulse is the area under the F, vs. t curve. A similar result holds for the y component. (Note the
analogy between this and the F cos 6 vs. s curve for work in Chap. 6.)

Problem 8.3. Referring to Problem 8.1, find the total impulse exerted by the force F over the
combined 20-s time interval of parts (@), (b), and (c).

Solution

The force F takes on three values during the 20-s interval. Labeling the intervals 1, 2, and 3 we
have FI—IOON Atl—SS 2—300N Atz—SS and F3—‘—4OON Af3—4S Then

=F1 At + F, At + F3 At =800 N+ s + 2400 N-s — 1600 N-s = 1600 N -s. This is just the
algebralc sum of the impulses in the individual intervals.

Problem 8.4. Figure 8-4 depicts the time curves for the x component (a) and the y component (b) of
a force acting on an object from #= 0 to ¢ = 20 s.

(a) Find I, for the 20-s interval.
(b) Find I, for the 20-s interval.
Solution
(@) I, equals the area under the F, vs. ¢ curve. We break the area up into two intervals 1 and 2.
(I); = (60N) (108) =600 N - s (), = 3(60 N)(10s) = 300N - s
L=(L),+),=90N"s

(b) 1, is the area under the F, vs. ¢ curve. We break the area up into the four intervals shown.
( 1 = (40 N)(§ s) = 200 N s. To get (1), and (,); we note that areas 2 and 3 are similar
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Fx(N) Fy(N)

1(s)

(@ ®
Fig. 8-4

triangles whose heights are in the ratio of 4 to 6. The bases must be in the same ratio, which makes
the bases 4s and 6s, respectively, so the curve crosses the axis at r=9s. Then
(), = 340 N)(4 5) =80 N -s. Similarly, ()3 = %(—60 N)(6 s) = —180 N-s. Next, (L)4=
(—60 N)(5 s) = —300 N - 5. Finally,

I, = (200 + 80 — 180 — 300)N-s = —200 N - s

8.2 MOMENTUM AND THE IMPULSE-MOMENTUM THEOREM

Case of Constant Force

If there is no friction in the setup of Fig. 8-1(a), then the force F is the resultant force on the
system, and F = ma. The acceleration of the block is then constant, so v = v + at, where ¢ is the time
measured from the instant when the velocity is v,. If we change our notation so that vy = v; at time ¢
and v = vy at the later time ¢, = t; + ¢, our equation becomes

vr=vi+a(tr—t) or  al—t)=vr—V
Multiplying this last equation by the mass of the block, we have
ma(ty — t;) = mvy — my; or F(ty — t;) = mvr — mv;
Recalling that F(¢; — t;) = I, the total impulse on the block in the time interval (¢ — t;), we have
I = mvy —my; (8.5a)

The quantity mv is called the linear momentum or just the momentum. Therefore, (8.5a) states that
impulse is equal to the change in linear momentum or

I =A(mv) (8.5b)

Note that the units of momentum (in SI) are: kg - m/s. This is the same as the units of impulse:
N-s=(kg: m/s?)s = kg - m/s. Other units of momentum are the g cm/s and the slug - ft/s.

The concept of linear momentum can be generalized to two or three dimensions. By definition, if
an object of mass m is moving at a given instant of time with velocity v, then

Linear momentum = mv (8.6)



194 IMPULSE AND LINEAR MOMENTUM [CHAP. 8

We will now show that Eqgs. (8.5) can be generalized to arbitrary motion of an object under the action
of a variable resultant force. In other words, if I represents the total impulse on an object of mass m
between times #; and #;, and v; and vrare the velocities at the initial and final points of the interval, we
will have

I =mvy —mv; = A(mv) (8.7)

To demonstrate this result we recall that F =ma can be expressed approximately in the form
F ~ m Av/At for very small A¢, since a = lima,_, o Av/A¢. Then we must have

FAt~mAv (8.8)
We now return to Fig. 8-2 and label the velocity at each time (11, #, ... , £, ..., ty) with the same
index: vy, V3, ..., V;, ..., Vy. For the change in velocity in the corresponding infinitesimal time

intervals At;, At,, etc., we have Av| = v, — vi, Av, = v; — v,, etc. Then, applying Eq. (8.8) to each
interval Az, we have F; Aty = m Avy, F, At, = m Av,, etc. Adding up all the F At terms, we get
I1=3% F; Ay =3 m Av; = m(¥ Av,). Adding up all the Av’s just gives the overall change in vector
velocity, vy — vy. Thus, I = mvy — mv,, which is just Eq. (8.7), with v; = v; and vy = vy

Problem 8.5. Suppose that the block in Problem 8.1 moves on a frictionless surface so that F is the
resultant force. Assume the mass of the block is 5.0 kg.

(a) Ifthe block has a velocity of 40 m/s at the beginning of the first time interval, what is its velocity
at the end of that interval (8 s later)?

(b) What is the velocity at the end of the full 20 s?
Solution
(@) From part (a) of Problem 8.1 we have I, = 800 N - m. Then, using (8.5a) we get
800N-m = (5.0kg)vy — (5.0kg) (40m/s) or v, =200m/s

(b) We could solve this by letting v, of part (a) be v; for the second time interval and apply Eq. (8.5a)
again to solve for vrat the end of the second time interval. Then we would repeat the process for
the last time interval. Instead we can use the general result (8.7) for the entire interval. The overall
impulse in the full 20-s interval was calculated in Problem 8.3, so we have

1600N-s = (5.0kg)vs — (5.0kg) (40m/s)  or vy =360 m/s

Problem 8.6. Suppose in Problem 8.4 the force F represents the resultant force on a particle of mass
2.0 kg moving in the xy plane. Assume that at # = 0 the particle has a velocity of magnitude 100 m/s
making an angle of 30 ° above the positive x axis. Find the magnitude and direction 8 of the velocity at
the end of the 20-s interval.

Solution
Here we split Eq. (8.7) into its x and y components:
L = mvs — mvy I, = mvs, — mvy, (i)

From Problem 8.4 we get I, = 900 N~ s and L, = =200 N - s; from the data, v;, = (100 m/s) cos30° =
86.6 m/s and vy, = (100 m/s) sin 30° = 50.0 m/s. Applying (i), we get

900N -s = (2.0 kg)vs — (2.0 kg) (86.6 m/s) or  v4=537m/s
—200 N - s = (2.0 kg)vs — (2.0 kg)(50.0 m/s) or  v5=-50.0m/s
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Then vy = (w52 + v59)!/2 = 539 m/s and tan 6 = |50/537| = 0.0931. Solving for 6 we get 0=532°.
The vector vy is in the fourth quadrant, has magnitude 539 m/s, and points 5.32° below the positive x
-axis.

Short Impulses

One of the most useful applications of the concept of impulse is to cases where very large forces
act for very short time intervals. Consider, for example, a baseball game in which a batter hits the
ball straight back at the pitcher. This is essentially a one-dimensional problem, with
I = A(mv) = mv; — mv;. Choose the positive direction from the batter toward the pitcher. For a
given initial and final velocity the impulse is completely determined, even though we don’t know the
specifics of the force the bat exerts on the ball at any instant of time. Nonetheless we can draw a rough
graph of the force vs. the time (Fig. 8-5). The solid line depicts the actual force exerted by the bat on
the ball. Time ¢, represents the instant when the pitched ball first makes contact with the bat. As the
bat makes firmer contact with the ball the force rises rapidly to some maximum value. Thereafter the
ball starts to separate from the bat, and the force drops rapidly until time ¢, is reached, when the ball
completely loses contact with the bat. The entire time interval z, — 7, is only thousandths of a second.
Whatever the exact shape of the curve, we know that the impulse is the area under the curve. For a
given impulse, the shorter the time interval over which the force acts, the higher the peak force must
be, since the area under the F vs.  curve must stay the same. Another quantity that we can determine
is the average force F,, giving rise to the impulse. This is defined as the constant force which, if acting
for the same time interval, would give rise to the same impulse. The force F, has a magnitude such
that the area under the dashed rectangle in Fig. 8-5 is equal to that under the actual curve.

Fpea.k -

Fig. 8-5

Problem 8.7. A baseball, of mass 0.20 kg, is pitched at 40 m/s and is hit straight back at the pitcher
at 90 m/s. Assume the positive x axis points toward the pitcher.

(a) Find the impulse exerted by the bat on the ball.
(b) If the ball is in contact with the bat for 0.0035 s, find the average force exerted on the ball.

(c) How would the result of part (b) change if the contact time were one-third as long?
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Solution
(a) I =mvr —mv; = (0.20kg) [(90 m/s) — (—40 m/s)] =26 N -5
(We have used the fact that v, is positive and v, is negative.)
(b) Fo At =1
so that

F3(0.00355) =26 N-s or Fay = 7430 N

(c) Since the impulse is fixed, if Az is one-third as long, F,, must be three times as great, so
Fy = 22,300 N.

Problem 8.8. A baseball catcher pulls her glove back as she catches the ball, rather than holding it
stiffly. Explain as precisely as possible why this is advantageous.

Solution

The impulse that the catcher must impart in stopping the ball is fixed by the ball’s initial
momentum. Therefore, the longer she takes to bring the ball to rest, the smaller the average force she
must exert, and hence the smaller the reaction force on her hand. It is to her advantage to lengthen the
time of contact of ball with glove as much as possible.

Problem 8.9. A bullet hits a bone in the body. The bone is known to shatter if the peak force exerted
on it exceeds 3000 N; otherwise the bone just brings the bullet to a stop. Assume the bullet has a mass
of 10 g and is traveling at a speed of 500 my/s.

(a) If the bone does not shatter, what is the total impulse delivered to it by the bullet?

(b) Assuming that the average force exerted on the bone is one-third of the peak force, what is the
shortest stopping time for the bullet?

Solution

(@) From Newton’s third law it is easy to see that the impulse exerted by the bone on the bullet is equal
and opposite to the impulse exerted by the bullet on the bone. Thus finding the former also gives
the latter; in fact they both have the same magnitude. For our case

[T]|=|A(mv)|=|(0—mv)|=(0.010 kg) (500 m/s) =5.0N-s

(b) We know that
I =5N-s=F, At =1F At (i)

Since the largest Fpea Without shattering is 3000 N, we put 3000 N in Eq. (i) to get the minimum
At

SN-5s=(1000N) Afmin  OF  Afmin = 0.0050 s = 5 ms

Problem 8.10. Assume that in Problem 8.7 the batter hit the same pitch so that the ball left the bat
with the same speed as before, but this time it was aimed 50 ° above the horizontal (so that it sailed
directly over the pitcher’s head).

(a) Choosing the x axis toward the pitcher and the y axis vertically upward, find the x and y
components of the impulse exerted by the bat on the ball.
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(b) Find the magnitude 7 and direction 6 of the impulse exerted by the bat on the ball.

() Assuming the bat is in contact with the ball for the same length of time as in part () of Problem
8.7, find the magnitude and direction of the average force.

Solution

(@) We need the x and y components of the initial and final velocities. For the incoming pitch we
have v, = —40 m/s, v;, = 0. For the batted ball, immediately after it leaves the bat, we have
V& = (90 m/s) cos 50° = 57.9 m/s, v5 = (90 m/s) sin 50° = 68.9 m/s. Then for the impulse we
have :

I, = mvg — mvy = (020 kg) [(57.9 m/s) — (—40m/s)] = 19.6 N - s
I, = mvg, — mv;, = (0.20 kg) [(68.9 m/s) — (0 m/s)] = 13.8 m/s

B =+ Iy2)1\2 = [(19.6)* + (13.8)*]1/2 N-s = 24.0 N - 5. If § is the angle of elevation of the
impulse above the x axis, we have

13.8 .

(¢) Since I = F,, At, the vector F,, has the same direction as I, and
I 240N-s

Ar= 000355 CB6ON

Fo =

Note. In the previous collision problems we have ignored the contribution of the force of gravity
to the impulse during the collisions. This is because the impulse lasts such a short time
that the contributions of an “ordinary” force such as gravity to the impulse will be very
small when compared to the contribution of the huge (but short-lived) contact forces over
the same time interval. In Problem 8.10, for example, the contact time is thousandths of a
second. The force of gravity is about 2 N; the average force due to the bat, by contrast, is
almost 7000 N and is thus the dominant contributor to the impulse during the collision.
Once the ball leaves the bat, however, the force of gravity must be taken into account.

8.3 CONSERVATION OF LINEAR MOMENTUM

Case of Two Objects

Suppose we have two objects with no external forces acting on them, moving under their own
mutual attraction or repulsion, as shown in Fig. 8-6. The force F,;, represents the force of object 4 on
object B, and F,, represents the force of object B on 4. Then, by Newton’s third law, Fy, = —F, at
any instant of time. Definition (8.3) then shows us that, over any time interval, 1., = —I,. From the
general impulse-momentum theorem, applied successively to each object, we get

Ly = A(mpvy) = mpvpr —mpvy  and  Tpg = A(maVa) = mgVar — mgVy;
Then
MpVpr — MpVpi = —(MaVar — MaVai) of  mgVar + MpVer = MyVa; + MpVpi (8.9)

The second of Egs. (8.9) may be restated as total final momentum = total initial momentum. Thus, for
our two objects, momentum is conserved, no matter what the forces between the two objects may be.
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Note. We will see later on, when we discuss center of mass, that conservation of momentum can
be generalized to a system of any number of objects when no external forces (forces from
outside the system) are acting on the system. It can even be extended to a system of
objects that do have external forces acting on them, as long as the resultant of all the
external forces adds up to zero.

For two-dimensional motion, Eq. (8.9) can be broken into its x- and y-component equations
MaVap + MpVpx = MaVaie + MpVpix (8.10a)
MaVafy + MpVps = MgV + MpVoiy (8 i Ob)

Collisions in One Dimension

Equations (8.9) and (8.10) are particularly useful in dealing with problems of collisions between
objects, where the dominant forces are the forces of the collision itself and the external forces can be
neglected (see the note following Problem 8.10). In this section we will discuss one-dimensional
collisions, (i.e., those that occur in a straight line).

Problem 8.11. Two blocks are moving in the same direction along the x axis on a horizontal
frictionless surface, as shown in Fig. 8-7. The blocks collide head-on (so that there is no change in the
line of motion of either object). Find a relationship between the velocities of the two blocks after the
collision.

Vgi=30 /s vy = 10m/s

m,=10kg my, =5kg
Fig. 8-7

Solution

Since there are no external forces in the x direction, momentum is conserved along the x axis, and
we apply Eq. (8./0a) (but drop the x subscript for convenience).

(10 kg) (30 m/s) + (5.0 kg) (10 m/s) = (10 kg)var + (5.0 kg)vsr
which reduces to 2v,r+ v, = 70 m/s.
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Problem 8.12. Assume the same situation in Fig. 8-7 except that now block B is initially moving to
the left at 20 m/s. Find the new relationship between the final velocities of the two blocks.

Solution

The situation is similar to that of Problem 8.11, and we again apply Eq. (8.10a):
(10 kg) (30 m/s) + (5.0 kg) (—20 m/s) = (10 kg)vyr + (5.0 kg)vay
or 2vgr+ v = 40 m/s.

Note. In a collision problem in which the initial velocities are known, momentum conservation
gives us a relation between the final velocities, but not enough information to completely
solve for those velocities, unless additional information is provided.

Elastic Collisions

An elastic collision is one in which the total kinetic energy of the colliding objects is the same just
before and just after the collision:

1 1 2 _1 21 2
imavafz + imbvbf = Emavai + M Vbi (81])

The implication of such a collision is that no thermal energy is generated during the collision and no
energy is lost to the surroundings. Instead, as the two objects crush up against each other they are
somewhat compressed, and, like springs, they store up potential energy which is released back in the
form of kinetic energy as they separate. Since, by assumption, there are no energy losses, mechanical
energy is conserved. Any external potential energy, such as that of gravity, is assumed to remain
unchanged during the extremely short duration of the collision process. ‘

While truly elastic collisions are believed to occur on the atomic scale, on the macroscopic scale
they are always an approximation to the actual situation, since there are inevitably some thermal
losses. Nonetheless, they are often excellent approximations to some collision processes.

Equation (8.11) is a quadratic equation in the velocities and therefore is often cumbersome to use.
It turns out that by combining Eq. (8.17) with Eq. (8.10a) one can derive a much simpler equation
involving the velocities that holds for one-dimensional elastic collisions:

(var — vr) = —(Vai — Vi) , (8.12a)

You may recognize from our discussion of relative motion in an earlier chapter that the expressions in
parentheses on the left and right are just the velocities of object 4 relative to object B, v, , after the
collision and before the collision, respectively. Then Eq. (8./2a) simply says that for a one-
dimensional elastic collision the relative velocity of approach of the two objects is equal and opposite
to their relative velocity of separation:

Vabf = —Vabi (8.]2b)

Problem 8.13. Prove that Eq. (8.724) follows from Egs. (8.11) and (8.10a), as was stated above.
Solution

We again drop the x subseript in Eq. (8.10a) since the whole problem is in one dimension.
Rearranging Egs. (8.10a) and (8.11) so that terms with the same mass appear on the same side of the
equation, we get

Mo (Ve — Vai) = M (Vi — Var) @)

1y (ver? — vai2) = Jmp(vir® — vir?) (i)
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Noting that 4> — B = (4 — B)(4 + B) for any A4 and B, we can rewrite Eq. (ii) as
ma(Var — Vai) (Var + Vai) = my(vis — Vir) (Vi + Vi) (iif)
Using Eq. (i), we see that Eq. (iii) simplifies to
Vor + Vai = Vi + Vs (v)
Bringing all final velocities to the left and all initial velocities to the right, we finally get

Vof — Vor = _(vai - Vbi)

Problem 8.14. Assume that the two blocks in Problem 8.11 had an elastic collision.
(@) Find the final velocities of the two blocks, using Eq. (8.12a) for elastic collisions.
(b) Verify that your answer truly corresponds to an elastic collision.

Solution

(@) In Problem 8.11 the conservation of momentuim yields

2vgr + vy = 70 m/s @
Applying Eq. (8.12a), we have v,; — vpr= —(30 m/s — 10 my/s) or
Vaf — Vor = —20 m/s (ii)

We now solve the two simultaneous Egs. (i) and (ii) for the final velocities, getting
Vor = 16.7m/s and vy =36.7m/s

(b) To show that our results are consistent with an elastic collision, we calculate the actual total kinetic
energy before and after the collision, getting

Ey; = 4(10 kg) (30 m/s)> +1(5 kg) (10 m/s)* = 4750 J
=410 kg) (16.7 m/s)* + 1(5 kg) (36.7 m/s)? = 4761 I

These check to within rounding errors in our final velocities.

Problem 8.15.  Assuming that the collision described in Problem 8.12 is an elastic collision, find the
final velocities of the two blocks.

Solution

From Problem 8.12 we already have the results of momentum conservation:

2V,1f + vy = 40 m/s (l)
From Eq. (8.12a) we get v, — vpr= —(30 m/s — [—20 my/s]) or
Vaf — Vo = —-50 m/s (ii)

Solving Egs. (i) and (i) for v,rand Vs, We get
Voo =—=333m/s  and vy =46.7m/s

Note that in this problem the final velocity of block A is in the negative x direction.

Problem 8.16. Two blocks of equal mass make a head-on elastic collision, with one of the blocks
initially at rest. Show that just after the collision the initially moving block will be at rest, and the
block initially at rest will have exactly the same velocity as the initially moving block.
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Solution
From Eq. (8.10a) we have mv,s+ mvye= mvy; + 0, which reduces to [
Vaf + Vbr = Vai (@)
From Eq. (8.12a) we have
Vof — Vif = —Vai (if)

Solving for the final velocities (e.g., by equating the sum of the left sides of the two equations to the sum
of the right sides) yields ’

Vaf = 0 and Vor = Vai

Problem 8.17. Use Problem 8.16 to explain the behavior of the hanging steel-ball devices sold in
novelty shops (Fig. 8-8).

BEFORE AFTER
Fig. 8-8

Solution

All the steel balls have the same mass. Steel balls collide almost elastically, so we assume the
collisions between the individual balls are elastic. Also, we have conservation of momentum in the
horizontal direction, because the tensions in the supporting strings are vertical during the collision
process. Finally, though the balls actually may be in contact when they are in their rest positions, we may
assume that they are slightly separated, to make Problem 8.16 more readily applicable.

When the first ball is moved to the side and released, it builds up a certain velocity with which it
horizontally collides with its neighbor ball, which is at rest. Then, by Problem 8.16, the first ball comes
to rest and the second ball picks up its velocity, but not for long. The second ball almost immediately
collides with the third ball, and by the same reasoning it comes to rest and the third ball picks up the
velocity. This process continues until the next-to-last ball hits the last ball. The next-to-last ball comes to
rest, and the last ball moves off with the same velocity which the first ball had. It thus rises to the same
height from which the first ball was let go. After reaching the highest point it descends and starts the
collision process going again, with the same speed, but in the opposite direction. The balls in the middle
always appear at rest because they have a negligible distance to travel from the time they are hit to the
time they once again come to rest.

Inelastic Collisions

Any collision that is not elastic is called inelastic. An inelastic collision is characterized by a
certain disappearance of kinetic energy in the collision process. In general, unless one knows precisely
how much thermal energy is generated in the collision, one cannot write down an auxiliary equation to
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use together with the momentum conservation equation (8./0a) to solve for the unknown velocities.
The best one can do is to account for the thermal energy loss in collisions of different objects by
means of an empirical quantity called the coefficient of restitution ¢. The value of e is defined as the
ratio of the magnitude of the relative velocity after the collision to that before the collision:

Vaty | _ —(vay — vey)
Vai — Vbi

(8.13)

We see from Eqgs. (8.12) that for an elastic collision, e = 1. Generally speaking, the smaller the e
value, the more thermal energy is generated and hence the more kinetic energy is lost. The lowest
possible value of e is e = 0, which corresponds to Var = Vpr. This means that the two objects move as
one after the collision; in other words, they stick together. The case of e = 0 is often called a totally
inelastic collision. The value of the coefficient of restitution depends very heavily on the nature of the
materials colliding, as well as other factors.

Problem 8.18.
(@) Redo Problem 8.14(q) if e = 0.80.
(b) What fraction of the initial kinetic energy is lost in this collision.

Solution
(a¢) Now momentum conservation and the definition of e give
2 +vpr =70 m/s
Vor — vir = —(0.80) 30 m/s — 10 m/s) = —~16 m/s
Solve as before, to find
ver = 18.0 m/s and vir =34.0m/s
(b) The initial kinetic energy was found in Problem 8.14(b) to be 4750 J. For the final kinetic energy

we now have

Ey = 4(10kg) (18.0 m/s)” + 1(5 kg) (34.0 m/s)* = 4510

E
Then Fraction lost = 1 — (fraction remaining) = 1 — E—"f =0.051 =5.1%
ki

Problem 8.19. If the collision described in Problem 8.12 is an inelastic collision with e = 0.5, find
() the final velocities of the two blocks, (b) the total thermal energy generated in the collision.

Solution
(a) From Problem 8.12 and Eq. (8.13) we have
2V + vpr =40 m/s
Vor — vor = —(0.5) [30 m/s — (—20 m/s)] = —25 m/s
Solving by addition, we get
Ve = 5.0m/s and Vor = 30.0 m/s
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(b)) The thermal energy generated is just £y — Ejr:
Ey = }(10 kg) (30 m/s)” + 1(5.0 kg) (20 m/s)> = 5500 J
Ey = 1(10 kg) (5.0 m/s)” +1(5.0 kg) (30 m/s)* = 2375 J
Thermal energy = Ey — Ep = 31257

Problem 8.20. Repeat Problem 8.18 for a totally inelastic collision.
Solution

For this case the two objects stick together, and we immediately know that v, = vy = vy While we
could proceed as in Problem 8.18 it is mote informative to insert v, directly into the momentum
equation:

MoV + My = (Mg +mp)vy  OF (10 kg) (30 m/s) + (5.0 kg) (10 m/s) = (15kg)vr (i)
or vy = 23.3 my/s. To obtain the fractional loss in kinetic energy, we again note that from Problem 8.18
(or Problem 8.14) we have Ey; = 4750 J. We get
Ei = Y(mq + mp)vs? = 415 kg) (23.3 m/s)’ =4070
Then, the fractional loss equals 1 — (4070/4750) = 0.143 = 14.3%.

The Ballistic Pendulum

A ballistic pendulum is a device that is used to measure the velocities of small swift projectiles,
such as bullets. A typical schematic of such a device is shown in Fig. 8-9. A bullet of mass m is fired
horizontally into a block of mass M and embeds itself in the block. The block, which is suspended
from the ceiling by vertical cords, then rises, as indicated by the dotted lines, through some
measurable vertical height /. From this information one can deduce the initial speed v; of the bullet.

N \
\ \
\ \
\ \ .
AN \\ Block rises after
\ N isi
< . collision
\ \
N N
\ \ L/
r——N———— ~ -
I |
L |
1
m v;
[ = - .7 A SESR <4 }
h

Fig. 8-9

Problem 8.21. For a ballistic pendulum (Fig. 8-9), assume m = 10 g, M = 3990 g, and /2 = 3.0 cm.
(a) Find the velocity ¥y of the combined block-bullet body just after the collision.
(b) Find the initial velocity of the bullet.

Solution

(a) Here we use the fact that from the time immediately after the collision through the rise time,
mechanical energy is conserved. This is a consequence of the fact that the tensions in the cords can
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do no work since the points of contact with the block move on the arcs of circles perpendicular to
the cords. At the moment just after the collision we have 1(m + M)sz = (m + M)gh. Solving for V;
we get

Vr = (2gh)"* = 2(9.8 m/s?) (0.030 m)]/>  or ¥, =0.767 m/s

Observe that momentum is not conserved when the block is rising owing to the combined actions
of the external forces of gravity and cord tension.

(b) During the collision process we assume that conservation of momentum holds in the horizontal
direction. This follows since the block does not move an appreciable distance during the collision
time, and the tensions in the cords and force of gravity do not act in the horizontal direction. Then
my; = (m + M)V;. Substituting the known values, we get v; = 307 m/s.

Problem 8.22. Suppose that the bullet in Problem 8.21 passes straight through the block and
emerges out the other side with velocity v,= 250 m/s. Assume that the block still rises through a

height 2 = 3.0 cm. Find the initial velocity of the bullet. (Ignore the effect of any splinters that emerge
with the bullet.)

Solution

The velocity of the block just after the bullet leaves it is again determined by conservation of
mechanical energy, and we again have ¥, = 0.767 m/s. Then, applying momentum conservation during
the brief penetration time, we have mv; = mv,+ MV}, so

10v; = 10(250 m/s) + 3990(0.767 m/s) or v =355m/s

Problem 8.23. How much kinetic energy was lost in the brief collision time of (a) Problem
8.21(h)? (b) Problem 8.22?

Solution

(@)  Euw=210.010kg) (307 m/s)’* =471 7] Eyr = 1(4.000 kg) (0.767 m/s)* = 1.18

for aloss of Ej; — Epr= 470 J. (Thus almost all the kinetic energy was lost to thermal energy even
though momentum was conserved!)

(b) Here, Ej = 1(0.010 kg) (556 m/s)* = 1546 J
and Eyr = 4(0.010 kg) (250 m/s)* +1(3.990) (0.767 m/s)* = 314
for a loss of 1232 .

Collisions in Two Dimensions

Much of the discussion for one-dimensional collisions carries over to the two-dimensional case.
Conservation of momentum, (8.9), is valid as a vector equation or can be expressed as a pair of
component equations. Analogous to (8.12), we have as the definition of the coefficient of restitution

L var| v = vy
|Vabi| lvai _Vbi|

(8.12 bis)

(See Eq. (3.11).] It can be shown that in a two-dimensional elastic collision,

| Varr | = | Vapi | (8.11 bis)
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or e =1 for an elastic collision. For a sticky collision we again have e = 0, just as in the one-
dimensional case.

Problem 8.24. Two pucks of equal mass m have an elastic collision on a frictionless horizontal
table, as shown in Fig. 8-10. Assume that puck B is initially at rest, and puck A4 has initial speed
v = 4.5 ft/s and final speed v = 2.5 ft/s. Choose your x axis along v4;.

(@ Show that the y components of the two final velocities are equal and opposite.
() Find the final speed of puck B.
(¢) The angle 6 can be shown to be 56.2°. Find the angle ¢.

Var

Vai = (Vap)i

vBi=0

BEFORE AFTER v
Fig. 8-10

Solution
(@) The initial momentum in the y direction is zero, so
0 = myipy + mvgrny = Ve = ~Viry

(b) From kinetic energy conservation, we have

%vaiz = %vafZ + %mvaZ
or var? = vl —vgr? = (4.5 f/s)? — (2.5 fi/s)’ = 14.0 £ /s

Solving, we get vgr= 3.74 fi/s.

() From part (@) vsrsin @ = —(—vgssin §) = vprsin ¢ = 2.5 sin 56.2°=374 sin ¢ = sin ¢ =
0.556 = ¢ = 33.7°. (Alternatively,
mvy; = mvyg cos 0 + mvpr cos @ = 4.5 =
2.5¢0856.2° +3.74cos ¢ = cosp = 0.831 = ¢ = 33.8°
which is our previous result to within rounding errors.) One can in fact show that the sum of the

angles, 0 + ¢, which represents the angle between v, and vy, is exactly 90° for any elastic
collision between objects of equal mass, one of which is initially at rest.
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Problem 8.25. Two blocks, of masses m, = 5.0 kg and mp = 12.0 kg, are initially moving at right
angles to each other on a frictionless horizontal surface, as shown in Fig. 8-11. Assume the blocks
have a totally inelastic collision and that v,; = 30 m/s and vg = 15 m/s.

(@) Find the magnitude and direction of the final velocity v of the combination.

(b)) How much thermal energy is generated in this collision?

y
|
|
1
I
I
|
|
1
|
|
|
|
A pr— :—- ——————————————————— x
va; =30 m/s I
|
T v = 15 m/s
B
Fig. 8-11

Solution
(a) We solve the x and y components of the momentum conservation equation. For the x direction, we
have m4v4; + 0 = (m, + mg)vs. Substituting, we get
5.0(30 m/s) = 17.0vg or  v;=28.82m/s
For the y direction, 0 + mpvg; = (m,4 + mg)vy, so
12.0(15 m/s) = 17.0vy, or v =10.6m/s

vr = [(8.82) + (10.6)4]'/* m/s = 13.8 m/s

Letting 6 equal the angle of v, with the x axis, we have tan 6 = 10.6/8.82 = 1.20, from which we
get 0 = 50.2°.

(b) Ex =350 kg)(30 m/s)’ + X(12.0 kg)(15 m/s)® = 3600 I; Ey-= 1(17.0 kg)(13.8 m/s)> = 1619 J.
The thermal energy generated equals Ey; — Er= 1981 J.

Recoil

In addition to collision problems, another class of problems that involves impulse and momentum
is related to recoil. In recoil problems a system that is initially at rest, or moving as a unit, breaks up
into two or more parts moving with different velocities as a consequence of rapid expenditure of some
internal energy of the system. One example is a rifle and bullet. Initially both are at rest, with the
bullet within the rifle barrel. When the rifle is fired, the gunpowder in the bullet casing explodes and
drives the bullet forward. The forward impulse on the bullet is equal and opposite to the impulse
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imparted to the rifle. If the rifle is resting against the shoulder, the person firing it feels the “kick” of
this impulse. In a rocket the burning fuel hurls hot gas out the back, and the reaction impulse pushes
the rocket in the opposite direction (forward). If no external forces act on the rocket we have
momentum conservation, and the increase in forward momentum of the rocket just balances the
backward momentum gained by the ejected gases.

Problem 8.26. Two blocks on a frictionless horizontal surface are pressed back to back so that they
compress a spring of negligible mass held between them, as shown in Fig. 8-12. They are held in
position by a connecting cord. Assume that m, = 14 kg and mpz = 8.0 kg and that the stored potential
energy in the spring is 1000 J. When the cord is cut, the two blocks move in opposite directions with
speeds v, and vg.

(a) Find the relationship between v, and vj.

(b) Find the values of v4 and vg.

Coi Compressed spring
4 (oowe) B
- X
my mpg
Fig. §-12

Solution

(a) Considering the spring to be part of the two-block system, we see that there are no external forces
acting on the system in the horizontal direction. We thus have momentum conservation in that
direction. Choosing positive to the right, we have, since the system starts from rest

0= —myvy +mpvp or m4vy = MgVy or 14v4 = 8.0vg or vg = 1.75v,

(b) All the spring energy goes into kinetic energy of the two blocks, so %m Vit %vaBz = 1000 ], or,
using the results of part (a) we get

114 kg)vy? + 1(8.0 kg) (1.75v4)* = 1000 J
or (19.25kg)v42=1000] or v4=519m/s and vz=90.8m/s

Problem 8.27. A machine gun fires bullets of mass m = 25 g at a muzzle velocity of 1200 m/s.
(@) What is the recoil impulse on the gun due to each bullet that is fired?
(b) If 300 bullets are fired per minute, what is the total recoil impulse imparted to the gun in 1 min?
(c) What is the average recoil force acting on the gun?

Solution

(@) The impulse 7 on the gun is equal and opposite to that acting on the bullet. The impulse on the
bullet equals its change in momentum. Since the bullet starts from rest, we have

I =mv—0=(0.025kg) (1200 m/s) =30N -s
(b) The total impulse in 1 min is just 300/ = 9000 N - s.
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(¢) Over the 1 min period, F,,# = 9000 N - s so that
F,,(60s) =9000N -s or F,=150N

8.4 CENTER OF MASS

The concept of center of mass (CM) turns out to be useful in understanding the motion of large
extended objects as well as of systems of particles.

Systems of Particles

The CM of a system of particles is defined as the position of the average displacement of the
particles, weighted according to mass. The situation is depicted in Fig. 8-13, which shows a system of
N particles. The ith particle has mass m; and displacement from the origin r;. Then, the average
displacement weighted according to the mass of each particle is just

Z m;xY;
- 8.14
¢ °
]
) )
0 ¢ [
0 e '
+ "
Roy 0
o T, 0
) ()
y
' 0
' .
0
[ ]
X
Fig, 8-13

where the sums are over all i from 1 to N. The sum in the denominator is just the total mass of the
system M. Thus Eq. (8.14) can be rewritten as

MRcM = E mr; (815)

If a (small) amount of time At elapses, the displacements r; will change by (small) amounts Ar;. In
other words, r; — r; + Ar; in the time A¢. The corresponding change ARy, in the displacement of the
CM is given by Recy — Rem + ARcy. Examining Eq. (8.15) with the new values yields
M ARcem = S m; Ar;. Dividing by Ar we get

ARcum _ Ar; |
M A S m; A (8.16a)
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In the limit of infinitesimal Az, the quantity Ar;/At = v;, the velocity of the ith particle. Similarly,
ARep/At = Ve, the velocity of the CM. Thus

MVey =3 mv; (8.16b)

The right side of (8.16b) is just the total momentum of the system of particles. Therefore Eq. (8.16b)
states that the total mass of the system times the velocity of the CM equals the total momentum of the
system. Thus, if momentum is conserved, Vcy is constant. If we now consider the small change in the
velocity of each particle in a (small) time A¢, we could redo the steps that lead from (8.15) to (8.1 6b),
this time starting with Eq. (8.16b), to get

AVCM AVf
= | —— A7
M =5 2m; At (8.17a)
MACM = Z m;a; (81 7b)

where the a’s are accelerations. From Newton’s second law the right side of Eq. (8.17b) is just 1 F;,
where F, is the resultant force on the ith particle and includes the forces due to all the other particles in
the system on the ith particle, as well as the net external force on the ith particle, (Fexy);. In the 3" F; all
the internal forces cancel in pairs due to Newton’s third law, so S F; = 3 (Fexy); = (F. xt)7» the resultant
external force on the system. Equation (I7b) thus becomes

(Fext)7 = MAcwm (8.18)

In other words, the CM accelerates as if it were a particle of mass M acted on by a force equal to the
resultant of all the external forces acting on the system of particles. We now can deduce our general
rule for momentum conservation for an arbitrary system of particles: If (Fex)r = 0, then Acy = 0 and
Vo = constant. But, from Eq. (8.16b) this is the same as saying the momentum of the system of
particles is constant. Thus it follows that the momentum of a system of particles is conserved as long
as the resultant external force on the system equals zero.

Note that Egs. (8.15), (8.16b), and (8.18) are vector equations; they can therefore be broken into
component equations. For example, Eq. (8.15) can be expressed as

WCM = Z m;x; MYCM = Zmiyi MZCM = ijzi (8.1961, b, C)

where x;, y;, and z; are the components of r;, etc.

Rigid Bodies

In the case of an extended rigid body, Eq. (8.18) indicates that the CM of the body moves as if it
were a particle having a mass equal to the total mass of the body acted on by the resultant force on the
body. Thus, for any body, even for an irregular body, rotating and translating in space, we can describe
the motion by studying the motion of its center of mass. To do this, we need to find the location of the
cM of rigid bodies. This can be rather difficult when dealing with irregular objects; even for simple
objects, such as a uniform cone, one needs calculus to find the CM. We will illustrate how to find the
CM in some simple cases.

Problem 8.28. Find the center of mass of the three-particle system in the xy plane shown in
Fig. 8-14.
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Solution
We use Eqgs. (8.19). For the x equation,
MXcm = maxyq + mpxg + mexc
(30 g)Xcm = (5.0 g) (6.0 cm) + (10 g) (12 cm) + (15 g) (12 cm) = 330 g - cm
or Xem =11cm
Similarly, for the y equation,

MYceym = myys + mpyg + meye

(30 g)Yem = (5.0 g) (6.0 cm) + (10 g) (6.0 cm) + (15 g) (15 cm) =315 g-em
or YeM = 10.5cm

Problem 8.29. Find the CM of (a) a uniform sphere, (b) a uniform cylinder, and (c) a uniform donut
(torus). )

Solution

The CM of all three objects appear at their geometric centers by symmetry. To see this we consider
the sphere. The CM of the uniform sphere must be at its center since if it were anywhere else it would
change location upon rotation of the sphere. Since the mass distribution of the sphere is the same in the
rotated position as in the original position, the CM of the same mass distribution would be in two
different locations, which is impossible. Thus the CM must be at the center. Similar reasoning can be
used for the uniform cylinder and the uniform donut. Note that in the case of the donut the CM is not in
the object itself. The CM is a geometric point fixed in relation to a rigid body, but it is not necessarily in

the body.

Problem 8.30. What can you say about the location of the CM of a uniform cone?

Solution

By symmetry, the CM must lie along the central symmetry axis of the cone. It is also clear that it will
be closer to the base of the cone than to the apex, since there is more mass toward the base and the cM
location is weighted by mass. To obtain the exact location one can use the calculus. The CM turns out to

be one-fourth the way from the base to the apex.
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Problems for Review and Mind Stretching

Problem 8.31. A rifle bullet of mass m = 20 g is fired with a muzzle velocity of 600 m/s. The
length of the barrel is 80 cm.

(@) What is the total impulse imparted to the bullet?

(b) If the rifle were free to “kick” backward, what would its velocity be when the bullet has left the
muzzle, assuming the mass of the rifle M was 3.0 kg?

Solutien
(@) I=mv,— mv;=(0.020 kg)(600 m/s) — 0 =12 N-s.

(b) Choosing the direction of the bullet as positive, from conservation of momentum (noting that the
momentum before firing is zero), we have

O0=mv+MV=12N-s+ (3.0kg)V  or V=-40m/s

Problem 8.32. Show that when two objects 4 and B of equal mass m have an elastic collision in
which one of the objects (say, B) is initially at rest, the final velocities of the two objects must be at
right angles to each other. (See Problem 8.24 and the accompanying comments.)

Solution

The situation is similar to that in Fig. 8-10. From momentum conservation we have
mv; = mve+ mvge Or

Vai = Var + Vpr (i)

This vector equation implies that the three velocities form a triangle, as shown in Fig. 8-15. Since the

collision is elastic we also have %mv,,,-2 = %vafz + %mva2 or

vait = VAfZ + VBf2 (ii)

Equation (#) implies that v4; is the hypotenuse of a right triangle whose other sides are v4rand v Thus
the triangle in Fig. 8-15 is a right triangle, and v 4 and vz, are at right angles.

Vir
Vuf

Fig. 8-15

Problem 8.33. A ball is dropped from rest at a height 2 = 20 ft onto a horizontal concrete floor.

(@) If the collision with the floor is perfectly elastic (coefficient of restitution e = 1), describe the
subsequent events.

(b) Repeat parts (a) if e = 0.7.
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Solution

(@) Assume the ball hits the floor with speed v,,. During the very brief collision period between the ball
and the earth, we can ignore gravity and assume momentum is conserved in the vertical direction.
Since e = 1, immediately after the collision the ball has the same magnitude and opposite direction
relative to the earth. Since the velocity gained by the earth in the collision is so small, it contributes
negligibly to the kinetic energy. Thus, the ball will have the same kinetic energy as before and will
rise to the exact height from which it was dropped: # = 20 ft. The ball will repeat the bounce again
and again.

(b) In this situation the ball loses some kinetic energy to thermal energy during the collision so that its
rebound velocity is only v, =0.7v,. Therefore, it will rebound only to a height given by
vy = Qgh)\/2. Then & = (v,/v.)* = 2gh,/2gh, = H,/h, or (0.70)* = K./h,. Solving, we get
h}, = (0.49)h, = (0.49)(20 ft) = 9.8 ft. By the same reasoning, on each succeeding bounce the ball
will rise to 0.49 times the previous height.

Problem 8.34. A bullet of mass m = 15 g is fired into a block of mass M = 985 g, which is attached
to an uncompressed spring of force constant £ = 1000 N/m. The spring is anchored to a wall, and the
block rests on a horizontal frictionless surface as shown in Fig. 8-16. After the bullet embeds itself in
the block, the block compresses the spring a maximum distance of x = 12 c¢m. Find the initial velocity
of the bullet.

D M mwmka

Fig. 8-16

Solution

This is similar to the earlier ballistic pendulum problems, except that now instead of rising against
gravity the block compresses the spring. If we assume the collision of the bullet with the block is very
rapid, the spring will not start to compress until after the collision is complete. If ¥ is the velocity of the
bullet-block combination just after the collision, we have, from conservation of mechanical energy,

sm+M)Ve2 40 =0+ 12
Substituting the known values we get
L(1.00 kg)¥;2 = §(1000 N/m) (0.12m)*  or ¥ =3.79m/s

Next we note that, during the brief collision process, the spring is negligibly compressed and exerts
negligible horizontal impulse. We then have conservation of momentum from just before to just after the
collision:

mv; = (m+M)V; or (0.015 kg)v; = (1.00 kg) (3.79 m/s) sothat v, =253 m/s

Problem 8.35. A projectile is fired from ground level with a velocity vy of 600 fi/s, at an angle 6, of
30° above the horizontal. At the highest point in the trajectory the projectile suddenly explodes into
two equal-mass fragments. One of the fragments continues to move horizontally immediately after the
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explosion, while the other falls vertically downward. Find the total horizontal distance traveled by the
horizontally moving fragment.

Solution

The situation is depicted in Fig. 8-17. During the short explosion time, momentum is conserved.
Just before the collision, the projectile, being at the highest point, is moving horizontally. Immediately
after the collision, the first fragment continues to move horizontally, so the second fragment gains no
vertical velocity either. The second fragment falls vertically, so it has lost all its horizontal momentum,
and all the original momentum appears in the first fragment, which has half the original mass and thus
double the velocity. To find how far this fragment travels horizontally, we first calculate the horizontal
distance to the highest point. vo = 600 fi/s, so

vox = (600 ft/s) cos 30° = 520 ft/s voy = (600 ft/s) sin 30° = 300 ft/s

Explosion point First £
..._....)ﬁ—...'_.._.____/lrst agment
. I . )

—
... —
——
.. " —
| ~

Second fragment f' ., ~

.

Path if no explosion

Fig. 8-17

The time to reach the highest point is given by v, = 0 = v, — gt = ¢ = (300 f/s)/(32 fi/s?) = 9.38 .
The horizontal distance to this point is just x; = vo, ¢ = (520 ft/s)(9.38 s) = 4880 ft. After the explosion,
the first fragment has the doubled velocity of 1040 fi/s. Since the time of fall depends only on the height,
it is the same as that of the original projectile had it not exploded. This is just the time it took to rise to
that height, namely, 9.38 s. Then, the horizontal distance traveled by the fragment from the highest point
until it reaches ground level is ’

x; = (1040 ft/5)(9.38 s) = 9760 ft
The total distance traveled by the first fragment is then
X7 = X1 +x2 = 4880 ft + 9760 ft = 14,640 fi

Problem 8.36. Find the center of mass of the object shown in Fig. 8-18, which is made up of a
uniform rod glued symmetrically to a rectangular block. Assume Lg = 3.0 ft, Ly = 0.60 ft, M = 1.5
slugs, and My = 6.0 slugs.

Solution

By symmetry (as explained in Problem 8.29) the CM lies somewhere along the symmetry axis
(dotted line). Assume this is the x axis and measure x from the left end of the rod. To find the x
coordinate of the CM, we note that the CM of the rod is located at its midpoint, at Xy = 1.5 &, and the
CM of the block is located at its midpoint, at Xz = 3.0-ft + 0.30 ft = 3.3 ft. We now show that the CM of
the composite object is given by

_ M X, + MpXp

Xom = i
M= @
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Lp
Fig. 8-18

In other words, the CM of a composite of different objects is the same as if each object were treated as a
particle having the mass of the object, and located at its center of mass. To show this, we apply Eq.
(8.19) to our two-object composite

Qoma+ D mp)Xom = > muxa + > mpaxs; (ii)
where the sums go over all the respective particles in 4 and B. We know, however, that
D maixy = MuXy and > Mg =My > mpxp = MpXp and > mp; = Mg

(iii)
Then substituting from (jii) into (i) gives us (i). We can now solve for Xcn by substituting into (7):
_ (1.5 slugs) (1.5 ft) + (6.0 slugs) (3.3 ft)

=294 ft
7.5 slugs 2

Acum

Supplementary Problems

Problem 8.37. A block of mass m = 3.5 kg, initially moving at a speed of v; = 12 m/s to the right on a
horizontal frictionless surface, is acted on by a variable horizontal force F as follows: For the first 10 s,
F =10 N to the right; for the next 5 s, F = 25 N to the left; and for the last 8 s, F = 15 N to right. Find the
velocity of the block at the end of the 23-s interval.

Ans. 39 m/s

Problem 8.38. A baseball of mass 0.2 kg is pitched at 35 m/s and popped straight up by the batter. The ball
rises to a maximum height of 120 m. Find (a) the speed with which the ball leaves the bat, and (b) the
magnitude and direction of the impulse of the bat on the ball.

Ans.  (a) 48.5 m/s; (b) 12.0 N -5, 54 ° above horizontal toward the pitcher

Problem 8.39. In Problem 8.38, assume the average force exerted on the baseball by the bat is one-fourth of
the peak force. If the peak force is F = 12,000 N, find the time of contact of the ball with the bat.

Ans.  0.0040 s
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Problem 8.40. Suppose that in Fig. 8-7 the initial velocities are v,; = —20 m/s and v;; = —30 m/s and the
surface is frictionless. If the collision is elastic, find the final velocities of the two blocks.

Ans. vgr= —26.7 m/s and v5r= —16.7 m/s

Problem 8.41. Assume the same initial velocities as in Problem 8.40, and that the mass of block B is
unchanged. For what mass of block 4 would the final velocity of block B be —25 m/s?

Ans. 1.67 kg

Problem 8.42. Assume that in Problem 8.40 the collision is inelastic and the coefficient of restitution is 0.5.
Find (a) the final velocities, (b) the loss in kinetic energy.

Ans. (@) var= —25 m/s, vpr= —20 m/s; (b) 12517

Problem 8.43. Assume that in Fig. 8-7 the surface is frictionless and the velocities are as shown, but the
masses are my = 15 kg; mg = 10 kg. If the collision is totally inelastic, find the final velocity and the loss in
kinetic energy.

Ans. (@) 22 m/s; (b) 1200 ]

Problem 8.44. In Fig. 8-9, assume that the masses are m = 25 g and M = 8.2 kg and that v; = 550 m/s. If the
bullet embeds itself in the block, find (a) the velocity of the block just after the collision and (b) the height
through which the block rises.

Ans.  (a) 1.67 m/s; (b) 14.2 cm

Problem 8.45. Suppose that in Problem 8.44 the bullet passes through the block and continues in a straight
line. If the block rises through half the distance as that in Problem 8.44, what is the final velocity of the bullet?

Ans. 161 m/s

Problem 8.46. In Fig. 8-10 assume the two pucks are on a frictionless horizontal surface and that M, = 50 g
and My = 100 g. Assume that § = 30° and ¢ = 20° after the collision. If v,,= 30 cm/s: () find vz, (b) find
vy, (¢) was the collision elastic?

Ans.  (a) 21.9 cm/s; (b) 67.1 cs; (¢) no

Problem 8.47. Assume that Fig. 8-11 represents a bird’s-eye view of a collision between two automobiles at
an intersection. Assume M, = 2000 kg, M = 1500 kg, v4; = 20 m/s, vz; = 30 m/s. The two cars stick together
after the collision.

(a) Find the magnitude and direction of the velocity immediately after the collision, ignoring the effects of
pavement friction over the short collision time.

(b) If the coefficient of kinetic friction between the locked wreckage and the pavement is 0.85, how far will it
skid?

Ans.  (a) 17.2 m/s, 48.4° with x axis; (b) 17.8 m

Problem 8.48. A ball of mass 40 g is dropped on a concrete floor from a height of 2.5 m. It is observed to
rebound to a height of 1.5 m.
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(@) Evaluate the coefficient of restitution

() How much kinetic energy is lost in the brief collision of the ball with the floor?

Ans.  (a) 0.775; (b) 0.392

Problem 8.49. A 50-g cart is sliding without friction on a horizontal air track at a speed of 30 cm/s. A steel
ball of mass 15 g is dropped vertically so that it lands in the cart. What is the new speed of the cart after the steel
ball comes to rest in it?

Ans. 23.1 cm/s

Problem 8.50. In Fig. 8-12 the spring is initially compressed 8.0 in and the blocks start at rest on a frictionless
surface. The masses are m, = 2.5 slugs and m;, = 3.5 slugs, and after the system is released, Ve = 20 fi/s. Find
varand the force constant of the spring.

Ans.  —28 ft/s, 7560 1b/ft

Problem 8.51. A boy, of mass 40 kg, is stranded on a frozen pond; the ice is so smooth as to be absolutely
frictionless. He is trying to reach the closest bank, 50 m away, but keeps slipping in place. Suddenly he gets an
idea: he takes off a boot, of mass 0.50 kg, and hurls it directly away from the bank at a speed of 12 my/s relative
to the ice. how long will it take him to reach the bank?

Ans. 333 s

Problem 8.52. A uranium 238 nucleus is unstable and decays into thorium 234 by emitting an « particle
(helium nucleus). The relative masses of the thorium and a particle are 234 and 4, respectively. The thorium
nucleus is observed to recoil at a speed of 2.39x10% m/s when the o particle is emitted from a uranium nucleus
at rest. What is the speed of the o particle?

Ans. 1.4 x 10° m/s

Problem 8.53. A uniform iron rod of length 1 m is bent at its midpoint to make a 90 © angle. Find the location
of the CM of the bent rod.

Ans.  17.7 cm from the midpoint along the symmetry axis (the line at 45 ° to each half of the rod)

Problem 8.54. Two identical rods are rigidly connected to a disk at right angles to each other, as shown in Fig.
8-19. Find the center of mass of the system.

Ans.  10.2 cm from the center of the disk and midway between the rods (i.e., along a 45 ° line to
the rods)

Problem 8.55. A boy is in a cart which rests on a sheet of frictionless ice. The boy and cart are initially at rest.
The boy runs from one end of the cart to the other, hurling himself against that end to get the cart moving. Will
he succeed and if not why?

Ans.  No. The cM of the boy-cart combination is initially at rest, and there is no net external force
on the system, so the CM remains at rest. Therefore, when the boy runs across the cart, the
cart moves in the opposite direction at a speed that keeps the cM fixed. When he hits the
other side, both he and the cart once more come to rest.
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Fig. 8-19

Problem 8.56. The earth and the moon are separated by a distance (center to center) of 3.8 x 10° km. The cM
of the system is known to be within the earth, at a distance of 4.62 x 10® km from its center. Find the ratio of
the earth’s mass to that of the moon.

Ans. 813



Chapter 9

Rigid Bodies I: Equilibrium and Center of Gravity

In Sections 4.2 and 4.3, we discussed the concepts of translational and rotational equilibrium, as
well as the general requirement for translational equilibrium for particles and rigid bodies. The
requirements for rotational equilibrium of rigid bodies were also discussed for two simple cases: that
of a body acted on by only two forces and that of a body acted on by three forces. It would be useful to
review those two sections now. To deal with the general case of equilibrium of rigid bodies, when an
arbitrary number of forces are acting, we must use the concept of forque, or moment.

9.1 THE TORQUE OR MOMENT OF A FORCE

Definitions

The words torque and moment are synonymous, and we will use them interchangeably. In this
chapter, as in Chapter 4, we deal almost exclusively with situations in which the forces acting on a
rigid body are coplanar (in the same plane), allowing an algebraic definition of torque rather than the
more general vector one. An important feature of the definition of the moment of a force is that it
depends on the choice of a particular point in the plane relative to which the moment is defined. This
will become clear from the definition. ‘

In Fig. 9-1 we have a typical, rigid body and have displayed one of the coplanar forces F acting on
it. We pick some arbitrary point 4 and define I', the moment of the force F about the point 4, as
follows: First, draw the line of action through the force F (represented by the dotted line in Fig. 9-1.
Next, draw the perpendicular line from the point 4 to that line of action (represented by the dashed
line of length d, in Fig. 9-1). Then, by definition

T, = +dF (9.1)

Fig. 9-1

218
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where the choice of sign is determined by which way the force F would tend to rotate the body about
A: clockwise or counterclockwise. (If point 4 is outside the body, as in Fig. 9-1, imagine that it is
rigidly linked to the body and has a pin through it about which the whole system can rotate.) If point 4

“ were pinned, the force F would tend to rotate the body counterclockwise about the point. It is usual for
such a counterclockwise moment to be considered positive, while clockwise moments are considered
negative.

The distance d4 from point 4 to the line of action of F is given a special name. It is called the
moment arm of the force F about 4.

If more than one force is acting on a body, the total moment about A4 is the algebraic sum of the
individual moments about 4. In Fig. 9-2 we show three coplanar forces F;, F,, and F; acting on a
rigid body. The total torque is given as I'y = d 1 F1 — d.oF> + dF3, where the signs have been
chosen as explained above.

Note that the units of torque are force times length, the same as the units of work, although torque
has a quite different physical meaning. Typical units are N-m, dyn - cm, and Ib - ft.

Problem 9.1.

(@) Show that the torque I'4 of the force F shown in Fig. 9-1 would not change if one slides F to a
different location along its line of action. '

(b) Show that if the force F were replaced by —F acting anywhere along the same line of action, the
magnitude of the torque remains the same but the sign changes.
Solution
(@) From the definition, the torque depends only on the magnitude of the force and the moment arm to
the line of action. Since F and d, are unchanged, from Eq. (9.1) we see that I", is unchanged.

(b) The magnitude of —F is the same as that of F, and d; is unchanged, so the magnitude of Iy is
unchanged. Now, however, the force —F tends to rotate the object about 4 in the direction opposite
to that of the force F, so the sign of the torque must change.
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Problem 9.2.

(a) Find the sign of the torques of F; and F, about 4 as shown in Fig. 9-3.

(b)) What is the value of the torque of F5 about 4?

(¢) What are the signs of the torques of each of the three forces about point B?

Fig. 9-3

Solution

(a) F, has aline of action that passes very close to point 4, as shown. This might make it less obvious
which way F, tends to rotate the object about A. To help visualize the situation we use the results
of Problem 9.1, which allow us to slide F, along its line of action until it is as close to point 4 as
possible. Then it becomes obvious that F; tends to rotate the object clockwise about 4. Similarly,
F, also tends to rotate the object clockwise about 4. Recall that a clockwise rotation has a negative
sign.

(b) The line of action of F; passes right through 4. Then the moment arm d 43 = 0, and from Eq. (9.1)

I'43 = 0. Thus, any force whose line of action passes through a given point has zero torque about
that point.

(c) For point B it is not hard to see that F, and F; have counterclockwise moments (+), while F; has a
clockwise moment (—).

Problem 9.3. In Fig. 9-4 we have a force F acting at a given point in the body. Let r 4 represent the
relative displacement from point A4 to the point of application of F. If F= 15N, r, = 3.0 m, and
6 = 30°, find the moment of F about point 4.

Solution

Clearly F gives rise to a counterclockwise moment about 4. To find the magnitude of the moment
we must find the moment arm d,. From the triangle we can see that d, = r4 sin 6, so

T, = dyF = rF sin 6 = (3.0 m)(15 N)(0.50) = 225N -m
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Fig. 9-4

Another View of Torque

Problem 9.3 gives us a way of expressing the torque in terms of r,, the displacement from an
arbitrary point 4 to the point of application of the force F (Fig. 9-4). The torque due to F about 4 is

FA = :i:rAF sin9 (92)

where 6 is the angle between the vectors r, and F when their two tails are together. This leads us to yet
another expression for the torque. In Fig. 9-5 we reproduce Fig. 9-4 but now break F into components
F,, parallel, and F,, perpendicular, to r4. As can be seen from Fig. 9-5, F;, = F sin #. Thus, the torque
from Eq. (9.2) can be reexpressed as £r4F;. We thus have three equivalent expressions for the torque:

FA = :i:rAFsinB = :l:dAF = :EFAF; (93)

Fig. 9-5
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Note the symmetry between the last two expressions of Eq. (9.3): F, is the component of F
perpendicular to ry, and d4 (as can be seen in Fig. 9-4) is the component of r, perpendicular to F.

Problem 9.4. Figure 9-6(a) shows a ladder leaning against a smooth wall, with the various forces
acting on the ladder drawn in. Find the moment of the force F about point 4 by (a) finding the
moment arm d4 and using Eq. (9.1), and (b) finding the component of F perpendicular to r, and using
the right side of Eq. (9.3).

Solution

(@) d, is just the perpendicular distance from 4 to the line of action of F and is shown in Fig. 9-6(b).
Thus, d; = (20 m) sin 37° = 12 m. From Eq. (9.1): T, = (12 m)(30 N) = 360 N-m.

(b) Here we note that r, is along the ladder from 4 to the contact point with the wall. Then,
Fy=Fsin37°=(30N) sin 37° = 18 N, and from Eq. (9.3); Ty = r,F,= (20 m)(18 N) =
360 N-m.

9.2 THE LAWS OF EQUILIBRIUM FOR RIGID BODIES

Translational and Rotational Equilibrium

We are now able to express the necessary and sufficient conditions for translational and rotational
equilibrium of a rigid body acted on by any number of coplanar forces. Two conditions must hold:

1. The vector sum of the forces must vanish.
2. The algebraic sum of the torques about a given point must vanish.

Mathematically:
(1) XF=0 2) XTau=0 (9.4a, b)
The first condition (4a) can be expressed in component form:
D Fp=0 > Fy=0 (9.5a, b)

Note. Equation (9.4a) [or Egs. (9.5)] is the statement of Newton’s first law applied to a particle.
From our discussion of the center of mass of a system of particles in Chap. 8 these same
equations are statements of the law of translational equilibrium for the CM of a rigid body.
Equation (9.4b) can also be derived from Newton’s laws for particles, as will be
demonstrated in the next chapter. ‘

Problem 9.5. Suppose the ladder in Fig. 9-6(a) is at rest under the action of the forces shown. The
ladder is uniform so that we can consider its weight W to act at its center. Calculate the values of the
weight ¥, the normal force &V, and the frictional force f.

Solution

Since the ladder is at rest, it is in both translational and rotational equilibrium. Therefore, Eqs. (9.4)
must hold. If we take moments about 4, the friction and normal forces don’t contribute since their lines
of action pass through 4. Thus the only two forces contributing are F and W. The moment of F was
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already calculated in Problem 9.4: T = 360 N - m. We note that the moment is clockwise for W, and
hence negative, and that the moment arm is just half the floor distance from A to the wall:

dgw =420 m) cos37° = 8.0 m
Then Iy = —~d W = —(8.0 m)W, and Eq. (9.4b) yields
T4r+Tuw =360N - m— (8.0m)W =0 o W =45N

From the first condition of equilibrium, Egs. (9.5), we have, in the horizontal and vertical directions,
respectively,

F—f=30N—f/=0 or f=30N
N—-—W=N-45N=0 or N=45N

Problem 9.6. In Fig. 9-7 we have a light rod of length 5.0 ft free to pivot about a horizontal axis
through point 4. A weight of 10 1b hangs from one end.

(a) What force F must be applied at the other end to keep the rod from rotating?
(b) What then is the force N exerted by the pivot on the rod?

-— 1.0ft —p | - 4.0 ft >

Fy

w=101b
Fig. 9-7

Solution

(a} Since the rod is light, we may neglect its weight. By taking moments about 4, we get
(1.0f)F — (4.0 f)(10b) =0 or F=401b

(b) For translational equilibrium Egs. (9.5) must be obeyed. Taking the y components we héve
N-—F-w=N-40b-101b=20 N=50Db

Choice of Points about Which to Take Moments

In Problems 9.5 and 9.6 we made specific choices of the point about which moments were to be
taken for use in Eq. (9.4h). Would we have gotten different results if we had taken moments about
some other point? Is there a “correct” point about which to take moments in applying the laws of
equilibrium?

The following result can be proved: If the first condition of equilibrium, Eq. (9.4a), holds, and if
Eq. (9.4b) holds about a particular point 4, then Eq. (9.4b) will also hold about every other point as
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well. Thus, once the vector sum of forces adds up to zero, the sum of the moments about one point
will be zero if, and only if, the sum of the moments about every other point is zero.

This result is particularly useful for two reasons. One is that you can always check your solution to
an equilibrium problem by taking moments about a different point and checking that they add up to
zero. The other is that you have complete flexibility in picking the point about which to calculate
moments for Eq. (9.4b). This means that you can pick the point that is most convenient for solving the
problem. For example, in Problem 9.5, point 4 is a particularly convenient choice since it eliminates
the forces f and N from the moment equation and hence leaves just one unknown, the weight W.

Problem 9.7. Check your answer to Problem 9.5 by taking moments about point C in Fig. 9-6(a).
Solution

The sum of the moments about point C must add up to zero. The forces, as determined in Problem
9.5 are F=30N, W=45N, f=30N, N=45N. Referring to Fig. 9.6(z), we note that F has
no moment about C; W and f have counterclockwise (positive) moments about C; N has a
clockwise (negative) moment about C. The moment arms are easily obtained by looking at
perpendicular distances from C to the lines of action of the forces: dep = %(20 m) cos 37° = 8.0 m;
dcy = (20 m) cos 37° = 16 m; dgr= (20 m) sin 37° = 12 m. Then

T'c=dowW + dcff —dcyN = (80 m)(45 N) + (12 m)(30 N) — (16 m) (45 N)
=360N- m+360N - m—720N - m=0

Note. In getting the moments of the forces acting on the ladder at point 4 we treated f and N as
separate forces even though they are acting at the same point in the body. We could have
replaced them by their vector sum and considered the moment of that single force. There
was no point in doing so since the moment arms to the individual forces f and N are easily
obtained, while getting the moment arm to the vector sum of f and N would have been
harder. Actually, the reverse process is often more useful: If one is given a single force
acting at a point, it is sometimes easier to break the force into a sum of two forces whose
moment arms are easier to calculate.

Problem 9.8. Check the results of Problem 9.6 (Fig. 9-7) by taking moments (@) about point B
at the left end of the rod, and (b) about point C, which is 1 ft from the right end of the rod.

Solution

(a) The force F contributes zero moment about the left end of the rod. Then
Iy = (1.0 ff)N — (5.0 ft)w = (1.0 ft)(50 Ib) — (5.0 ft)(10 Ib) = 501b - £ —501b - ft =0

(b) About point C all three forces contribute:
e = (4.0 ft)F — 3.0 ft)N — (1.0 ft)w
= (4.0 f1)(40 1b) — (3.0 ft)(50 1b) — (1.0 ft)(10 1b)
=160Ib - fi—150b - ft—10b - ft=0

Problem 9.9. A uniform rectangular block of weight w = 40 N moves at a constant speed along a
frictionless horizontal surface, under the action of forces F; and F», as shown in Fig. 9-8.

(a) Find the magnitude of the force F, and of the normal force N.
(b) Find the point of application of the normal force, as measured from the left end of the block.
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1.0m . | -
Y -@— : l
w=40N
.
Fig. 9-8

Solution

(@) Since the block is undergoing translation at constant velocity and is not rotating, it is in
equilibrium. We first consider the first condition of equilibrium, Egs. (9.5). For the x direction

Ficos30°—F, =0 or F,=173N
For the y direction .
F1sin30°+N —-40N=0 or N=30N
Thus, part (a) is solved without resort to the second condition of equilibrium.

(b) Here we need to find the location of the line of action of the normal force. Cléarly only a moment
equation will give us such information. We take moments about the point 4 at the left lower corner
of the block. Since it will be difficult to find the distance of the line of action of the moment arm of
F, from 4, we replace F; by a pair of forces, one horizontal and one vertical, corresponding to the
components F, and F,. These forces have magnitudes F;, = 17.3 N and Fi,, =10 N. Then

Iy = (1.0m)F, — (2.0 m)w+ (4.0 m)Fy, — (2.0 m)Fy, +xN =0
Substituting we get
Fy=(1.0m)(17.3N) — (2.0 m)(40 N) + (4.0 m)(10 N) — (2.0 m)(17.3 N) + x(30 N) = 0

or x=191m

Problem 9.10. Check the results of Problem 9.9 by taking moments about point B.
Solution

The force F, does not contribute a moment about point B, so
I'p=(2.0m)w— (1.0m)F, — (4.0m —x)N =0
= (2.0 m)(40N) — (1.0 m)(17.3 N) — (2.09 m)(30 N) = 80 — 17.3 — 62.7 = 0

Problem 9.11. A weight /7 = 500 N hangs from one end of a uniform horizontal beam of weight
w = 100 N and length L whose other end is pivoted at point 4 on the wall [Fig. 9-9(a)]. The beam is
supported by a wire making an angle of 40° with the beam. Find (a) the tension in the wire, (b) the
vertical and horizontal components of the force exerted by the pivot on the beam.
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Solution

(a) The forces acting on the beam are shown in Fig. 9-9(b). Since the beam is in equilibrium, Eqs.
(9.4b) and (9.5a, b) must hold. If we take moments about point B, the forces T, W, and F, do not
contribute since their lines of action pass through B. The only unknown force in the equation will
then be F), so we can solve for it.

L
I's= (§>W—LF),=0 or %(IOON)—Fyz() or F,=350N
To find T we use Eq. (9.5b6):
F,—w— W+ Tsin40° =0 or 50 N — 100 N — 500 N + (0.643)T =0
or T=855N -~

(b) We already obtained F, = 50 N. To get F, we use Eq. (9.5a)
. Fy—Tcos40° =0 or F, = (855 N)(0.766) = 655 N

Problem 9.12. If the beam in Problem 9.11 could be considered weightless, what would then be the
values of T, F), and F,?

Solution

We could redo the formal steps of Problem 9.11 with w set equal to zero, but it is easier to approach
the problem more directly. First we note that if-w = 0, the only force contributing any moment about
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point B is F,. Since the sum of the moments must be zero, we have F, = 0. Then, from translational
equilibrium,

T,—W=0 or (0.643)T =500N=T =778 N
Finally from Eg. (9.52) ‘
T,—F,=0 or F,=(0.766)(778 N) = 596 N
Problem 9.13. The uniform boom of length L (Fig. 9-10) weighs w = 800 N and supports a load
of W= 1000 N on one end.
(a) Find the tension T in the support wire.

(b) Find the magpitude and direction of the force F exerted on the boom by the pivot at point 4.

W=1000N -

Solution

(a) We take moments about point 4, which eliminates the force F from the moment equation. Then
I = (L sin 30°)T — (L cos 30°)W — YL cos 30°)w = 0. Dividing out L we get

(0.50)7 — (0.866)(1000 N) — (0.433)(800N) =0 or 7 =2425N

(b) Breaking F into x and y components, we get from Eq. (9.5a):
F,.—-T=0 or F, =2425N
from Eq. (9.5b):
Fp-w—W=0 or F,=1800N
Then
F = [(2425 N)* + (1800 N)*]'/? = 3020 N
If 0 is the angle of F above the positive x axis,

F, 1800
F, 2425

=(0.742 or 0 =36.6°

Problem 9.14. A uniform ladder of length L =60 ft and weight w = 50 Ib leans against a
frictionless wall. The ladder makes an angle of 50° with the floor, and the coefficient of friction
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between ladder and floor is g, = 0.50. A painter, weighing (with bucket) W = 160 Ib, starts to climb
the ladder. What distance x along the ladder can the painter go before the ladder starts to slip?

Solution

The situation is depicted in Fig. 9-11, with all the forces on the ladder drawn in. So long as the
ladder is in translational equilibrium

N=w+W=2100b and f=F

W=1601b

ps =0.50 £ ' A

Fig. 9-11

independent of the position of the painter. In the moment equation (9.4b), about point 4, only F appears
as an unknown; furthermore, as the painter climbs the ladder, the clockwise torque about 4 due to W is
increasing, because the moment arm is increasing. This can be balanced only by an increasing
counterclockwise torque due to F. Since the moment arm from 4 to the line of action of F is fixed, the
torque due to F can increase only if F increases. Since /= F, this means that f must keep increasing as
the painter climbs the ladder, until it reaches its maximum value,

Sonax = N = (0.50)(210 Ib) = 105 Ib = Fax
Thus, just before slipping takes place, (9.4) gives
I, = [(60 ft) sin 50°] Fnax — [(30 ft) cos 50°Iw — [Ximax cO8 S0°| W
= (60 )(0.766) (105 1b) — (30 ft)(0.643)(50 Ib) — Xmax(0.643)(160 Ib) = 0

whence xpax = 37.5 ft.
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-

9.3 EQUIVALENT SETS OF COPLANAR FORCES

We have seen that to have translational and rotational equilibrium for a rigid body acted on by a
set of coplanar forces, the set of forces must obey precisely two conditions, as expressed by Egs.
(9.4a, b). Nothing further need be known about the details of the set of forces to ensure equilibrium.
The body will still be in equilibrium if our original set of forces is replaced by any other set of forces
obeying the same equations. This leads us to an intriguing question. Suppose a rigid body acted on by
a set of coplanar forces is not in equilibrium and we want to fully describe its translational and
rotational motion. What do we need to know about the set of forces to completely describe the body’s
motion? -

Our discussion of center of mass in Chap. 8 indicated that the acceleration of the CM is completely
determined by the resultant external force acting on the body. In Chap. 10 we will see that the
rotational motion of the body depends only on the resultant external torque acting on the body. From
these results we can deduce that if we have two different sets of coplanar forces, and each set adds up
to the same resultant force and gives rise to the same resultant torque (about any given point), then
each of the sets will affect the motion of the object in precisely the same way. Let us state without
proof that:

One can always replace one set of forces acting on a rigid body by any other set of
forces having the same vector sum and the same resultant torque (about any chosen
point) to get the same effect on the motion of the body.

Center of Gravity

The above result turns out to be extremely useful. It explains why we are justified in assuming that
the weight of a rigid body is a single force acting at a particular point in the body, even though there
are myriad forces due to gravity on the individual molecules making up the body. It also explains why
we can assume that the normal force acting on the surface of one object by another can be assumed to
be a single force acting at a given point on the object, even though, in reality, there are myriad forces
acting between the molecules of the two surfaces. Indeed it can be shown that, except for one special
case (discussed below), any set of coplanar forces acting on a rigid body can be replaced by a single
force (their resultant), acting along a particular line of action.

Problem 9.15. Find the single force F that can replace the two parallel forces F; and F, acting on
the body shown in Fig. 9-12, and find its point of application.

Solution

The single replacement force must equal the vector sum of the original forces. Since the forces are
parallel, the force F points in the same direction and has magnitude F=F +F, =
30 N + 20 N = 50 N. Further, the moment of F about the origin must equal the combined moments
of the original two forces: I' = I'| + I's = xF = x1F| + x2F,

x(50N) = (6.0m)(30N) + (120m)(20N) or x=840m

The force F can act anywhere along its line of action.

Problem 9.16. Find the single force that can replace the three forces shown in Fig. 9-13, and
find its line of action.
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Fi=30N 4 F=20N
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|
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| |
\ |
L .
1 ! I x
X1 X X9
(6.0 m) (12.0m)
Fig. 9-12
y1=5,0m Fp=15N
yp————_———_———f - — == » F
y2=10.0 m F2 =25N
Fig. 9-13
Solution

Again, our single force is parallel to F; and F, and has magnitude

F=F+F,-F;=15N+25N-10N=30N

The line of action is determined by equating moments about the origin:

yF = y1F1 +y2F2 — y3F3

Substituting, we get

Y30 N) = (5.0 m)(15 N) + (10 m)(25 N) — (13m)(10N)  or

y=65m

231
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Problem 9.17. Figure 9-14 depicts a flat irregular plate in the xy plane, where y is the vertical
direction upward from the earth’s surface. The weight vectors wy, Wa, ... , W, ..., represent the pull of
gravity on the various individual molecules of the plate. Show that (a) the single force W which can
replace these forces is just the weight of the object; () the line of action of W passes through the M
of the plate.

Earth

A

W

Fig. 9-14

Solution

(a) Since all the individual w’s are parallel, their resultant W must point in the same direction and must
be of magnitude
W=w+w+ -+ +w;+ -« =Zw, (@)

where W equals the total weight of the plate.

(b)) We equate moments about the origin. Let x; be the moment arm of w; and X the moment arm
of W. Then, XW = Zx;w;. Dividing by W, using Eq. (i), and recalling that w; = m,g, we get

__ Zmix,- _ Zmixi ()

N Zmi - M .

where M is the total mass of the plate. Comparing Eq. (ii) to Eq. (8./9a), we sce that X = Xcpy.

The results of Problem 9.17 can be extended to any arbitrary orientation of the plate, in three
dimensions as well as in two dimensions. For example, by considering the object to be rotated by 90°
in the x, y plane and redoing the problem we find that the single force W which replaces all the
individual weights is still the total weight of the object, and its line of action of W still passes through
the center of mass. Thus, no matter what the orientation, one can always assume the weight of a rigid
body acts at the CM. The point in a body where the total weight can be assumed to be acting is often
called the center of gravity (CG). Thus the center of gravity and the center of mass are one and the
same point.
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Problem 9.18. Locate the CG of the composite object, made of three copper strips shown in
Fig. 9-15.

y
10.0cm
I 1.0cm
—————— Symmetry axis
1.0cm
"~ 10.0cm 1.0 cm
0 X

1.0cm 1.0cm

Fig. 9-15

Solution
The CM or CG of each strip lies at its geometric center. By symmetry we also know that the overall
CG of the composite lies somewhere along a horizontal line through the CG of strip B. The total weight of

the object passes through this overall CG, and it must have a moment about the origin equal to the sum of
the moments of the weights of the individual strips:

XcegW = xqwq + XpWp + XcWe
_ X4Wy + XBWB + xcwc

and Xcg = i
o wq +wp + wc )

From Fig. 9-15, we have x4 = x¢ = 6.0 cm and xg = 1.5 cm. While we are not given the weights of the
strips, we do know they are all made of the same material, so their weights are proportional to their
areas, and wg = 0.60w,; wc=wy. Substituting this into () and dividing out w,, we get
Xeg = (x4 + 0.60xz + x0)/(1.0 + 0.60 + 1.0) = [6.0 cm + 0.60(1.5 cm) + 6.0 cm]/2.6 =4.96 cm.
Thus the overall CG is 3.46 cm to the right of the CG of strip B.

Problem 9.19. A ladder consists of two wood segments of equal length and a crosspiece of
negligible weight, as shown in Fig. 9-16. When the ladder is open, both segments make an angle of
60° with the floor. Each segment is uniform but of different weight, as shown. Find the CG of the open
ladder.
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10.0m
Fig. 9-16

Solution

The CGs of the two segments are at the same height above the ground. If the earth were tilted by 90°
and pulling in the direction of the x axis, the weights of both segments would have a common line of
action. The overall weight would, of course, have to have the same line of action. Thus we know that the
overall CG must lie along the horizontal line between the two individual cGs. To find where along the
line it acts, we go back to the actual situation with the earth pulling downward. Then, taking moments

about point 4, we get

Xiw1 + 2w,

Xog =
w1+ Wy

(@)

where x; and x, are the moment arms to the weights w; and w,, of left and right segments, respectively.
We have x; = (5.0 m) cos 60° = 2.5 m; x, = (10 m) cos 60° + (5.0 m) cos 60° = 7.5 m. Substituting
into Eq. (i), we get

_ (2.5m)(40N) + (7.5 m)(10 N)
B 50N

XCG =35m

Couples

We return to the exceptional case in which a set of coplanar forces cannot be replaced by a

single force. As long as the resultant of the set of coplanar forces is not zero, we can always find
a point of application, far or near as needed, so that the torque of the resultant matches the torque of
the set itself. But, what happens if the resultant force is zero, while the resultant torque is not zero?
Then the zero resultant force can never give rise to the needed torque! Figure 9-17(a) depicts such a
situation. Clearly the resultant of the three forces acting on the body is F=F, + F, — W=
201b + 10 Ib — 30 Ib = 0. The sum of the torques about the origin is

I = (5.0 f1)(20 Ib) + (15 ft)(10 Ib) — (10 ft)(30 Ib) = —50 Ib - ft



CHAP 9] RIGID BODIES I: EQUILIBRIUM AND CENTER OF GRAVITY 235

|
| 1
1 +—d—"

1 Xeg X o X x+d
(5.01ft) (10.0 ft) (15.0 ft)

(@) ®)
Fig. 9-17

For such situations, we can’t replace the system by a single force, but we can replace the system by a
pair of equal and opposite forces displaced a distance d from each other. Figure 9-17(d) shows such a
pair of forces for the case at hand. Clearly the pair of forces sums to zero. In addition the torque due to
the pairis xF — (x + d)F = —dF. For any choice of x one gets the same torque, so the location of the
pair is unimportant. Furthermore, one has complete flexibility in the choice of F, as long as the
product dF gives the desired result. A pair of equal and opposite forces giving rise to a torque is called
a couple. In picking the couple for this example we chose the upward force to the left of the
downward force to assure that the torque about the origin came out negative. As we saw earlier, the
torque due to a couple does not depend on the absolute location of the couple, but rather only on the
choice of d and F.

In Fig. 9-18 we depict three objects that are tilted slightly from their equilibrium positions on a
horizontal table: a cylinder (a) and a cone (b) with broad support bases initially touching the table
surface, and an inverted cone (c) with just the apex touching the table surface. In each case the objects

i

(/
N
i
N I N
|
(a) cylinder (b) cone (¢) cone (inverted)

Fig. 9-18
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‘

are acted on by two forces, the weight downward acting at the CG (or CM) and a normal force upward.
In equilibrium these are equal and opposite. Furthermore, before tilting, they also have a common line
of action. That is, the normal force appears directly under the CG to assure equilibrium. After a slight
tilt to the left, for our first two cases, the normal force acts on the leftmost edge of the broad base, a
point which is to the left of the CG. We have, in each case, a couple that gives a clockwise moment and
tends to return the object to its equilibrium position. Similarly, had the tilt been to the right, we would
have a counterclockwise couple that again tends to return the object to its equilibrium position. For a
situation in which every slight tilt from equilibrium gives rise to a couple that restores equilibrium, we
say that the equilibrium is stable.

Case (c) is quite different. Here, a slight tilt either way gives rise to a moment that tends to make
the cone tilt even more in the same direction, so the cone falls over on its side. Whenever a slight tilt
of an object away from equilibrium gives rise to a couple that continues the motion away from
equilibrium, we say the equilibrium is unstable.

Problem 9.20. Determine the kind of equilibrium we have for the three objects in Fig. 9-19.

CG
W[

(@)

CG
W[

®

wy

(©)

Fig. 9-19
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Solution

(@) In the equilibrium position, the CG is between the two edges of the base touching the ground. A
slight tilt to the left will therefore put the normal force under the left edge, while the CG will still be
to the right of that point; the couple will therefore restore the object to the equilibrium position.
The same reasoning holds for a slight tilt in the other direction. Thus we have stable equilibrium.

(b) The CG lies to the left of the right edge on the ground. A slight tilt to the right will leave it so, and
we get a couple that restores equilibrium. The result is even more obvious for a tilt to the left. We
thus again have stable equilibrium.

(¢) The CG is directly over the right edge on the ground. Now even the slightest tilt to the right will put
the CG to the right of the normal force, and the object will topple. We thus have unstable
equilibrium.

Problem 9.21. What kind of equilibrium do we have for the two objects shown in Fig. 9-20, a
uniform cylinder and a uniform cone lying on their sides?

s

Fig. 9-20

Solution

A slight motion of either object leaves the normal force directly below the CG. Thus if one moves
the cylinder by rolling it slightly to a new position and then releasing it from rest, it will stay in
equilibrium in the new position. It will neither return to its original position nor move further away. It is
thus in neither stable nor unstable equilibrium. It is said to be in neutral equilibrium.

Problem 9.22.

(@) Two identical heavy lead weights are suspended from the ends of a light, thin, bent aluminum
rod, that is balanced at its center on a pivot. [Fig. 9-21(a)]. Describe the nature of the equilibrium
of the system.

(b) A plastic horse and rider are connected rigidly by a stiff curved wire to a heavy iron ball, as
shown in Fig. 9-21(b). The horse is supported by one foot on a narrow platform. Describe what
happens when the horse and rider are tilted in any direction.

Solution

(a) In the equilibrium position the CG is located directly below the pivot point midway along and
slightly dbove the line between the centers of the two weights. Although the CG is located outside
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@ ®)
Fig. 9-21

the body, it maintains a geometrically fixed position relative to the body as the body moves. When
the system is not touched, it is acted on by only two forces: gravity at the CG and the upward
normal force at the pivot. At equilibrium these forces are equal and opposite and have a common
line of action. When the body is rotated slightly in the counterclockwise direction about the pivot,
the CG moves to the right, and the two forces form a clockwise couple, which returns the object to
the equilibrium position when the object is let go. Similarly, after a clockwise rotation, the .object
will again return to the equilibrium position. The equilibrium is therefore stable. A slight:tap on
either side will set up oscillations about the equilibrium position because the object picks up speed
as it returns to equilibrium and overshoots the equilibrium position, where the process is reversed.
If friction is low, these oscillations can last a long time.

(b) The situation here is essentially the same as in part (@) because the heavy ball lowers the CG to
below the pivot, as shown. Tilting the hotse in any direction and letting go leads to oscillations
about the equilibrium position.

Problems for Review and Mind Stretching

Problem 9.23. Show that the statement of Chap. 4, that for a body to be in équilibrium under the
action of three forces the forces must be concurrent, follows from Egs. (9.4a, b).

Solution

From Eq. (9.4a) we have that the vector sum of the three forces addsup to zero, so the three vectors
form a triangle and therefore are in the same plane. For them to be concurrent, their lines of action must
pass through a common point. Consider the point of intersection of the lines of action of two of the
forces, and call it point 4. In taking moments about 4, these two forces don’t contribute. Equation (9.4b)
then implies that the third force must have zero moment about 4, so its line of action passes through A4 as
well.

Problem 9.24. A uniform horizontal rod 2.0 m long and weighing w = 20 N has weights of 80 and
40 N hanging from its ends (Fig. 9-22). Find (a) the magnitude and direction of the fourth force F
necessary to keep the rod in equilibrium; (b) the point of application of the force F on the rod.
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20m

Y

A

w=20N

- Fig. 9-22

Solution

(a) From the first condition of equilibrium, Eq. (9.4a), we must have that F is vertically upward and
balances the other three forces:

F=8N+20N+40N=140N

(b) From the second condition of equilibrium, Eq. (9.4b),
x(140 N) — (0 m)(80 N) — (1.0 m)(20 N) — (2.0 m){40N) =0 or x=0714m

Problem 9.25. A large wooden crate 8.0 ft high, 3.5 ft wide, and of weight w-= 100 1b rests on a
horizontal surface with coefficient of static friction y, = 0.60. Assume the CG of the crate is at its
geometric center. A horizontal force F is applied to the crate to get it moving. Below what height A
must be force F be applied if the crate is to start to slide before it starts to tip over?

Solution

The situation is depicted in Fig. 9-23. The crate is acted on by the four forces: w, N, f, and F, where
f is the retarding frictional force and N is the normal force of the floor on the crate. Let x represent the

3.5 ft

8.0ft
h
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distance from the left edge of the crate, point 4, to the point of application of N. To just get the crate to
slide, we must have

F = fonax = 4;N (7)

From equilibrium in the vertical direction, N = w = 100 Ib. Then (i) gives F = 0.60(100 1b) = 60 Ib.
The question of whether the crate tips or not can be resolved by examining where the normal force acts.
If N acts at the extreme right edge, the entire crate loses contact with the floor, except at that edge; this is
the condition for just starting to tip. Taking moments about A, we see that f does not contribute, while w
contributes a fixed clockwise moment. For fixed F = 60 Ib, the clockwise moment of F increases with
the height # at which it is applied. To balance the clockwise moments of F and w, we have only the
counterclockwise moment due to N. For fixed N =100 lb, this moment can get larger only by
increasing the moment arm x. We therefore set x equal to its maximum possible value, 3.5 fi, to
determine A,

T = (3.5 f9)(100 1b) — himge (60 Ib) — (1.75 £)(1001b) =0 or  Fipay = 2.92 ft

Problem 9.26. A uniform door, of height 3.50 m and width 1.50 m and weighing 200 N, is
supported by two small hinges, as shown in Fig. 9-24. The hinges are symmetrically placed, 20 cm
from the top and bottom of the door. If the top hinge supports the full weight of the door, find the
horizontal forces exerted by each hinge on the door.

~ 15m
20 cm{ 3
35m
w=200N
20 cm{ '
Fig. 9-24

Solution

Since the only horizontal forces on the door are the hinge forces, they must be equal and opposite;
let their common magnitude be F. The top hinge also exerts a vertical force of 200 N on the door to
balance the weight of the door. If we calculate moments about the lower hinge, the only forces
contributing are the weight w = 200 N and the horizontal force F due to the upper hinge. Since the
weight gives a clockwise moment, force F must be to the left. Then

I'=(350m—040m)F — (0.75m)(200N) =0 or F=484N
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Problem 9.27. Find the CG of the uniform disk of radius R = 2.0 m with a small disk of radius
r = R/3, cut out, as shown in Fig 9-25.

r=R/3

Symmetry axis

Center of large disk

Fig. 9-25

Solution .

At first this seems to be a formidable problem, but consider the disk with the piece missing. We
know, by symmetry, that the CG (or CM) lies along the x axis, as shown, but we don’t know where along
the axis. If we put the cutout piece back in place, the CG of the combination would be just that of the
whole disk and would be at its center. Assume that X is the moment arm from point 4 to the CG of the
disk with the piece missing, and W is its weight. Similarly let x be the moment arm to the CG of the
cutout piece and w be its weight. Then let X7 be the CG for the combined (complete) disk. We have

R
x=R—r:R—§=1.33m and Xr=R=20m (@)
Also, the weights of the two pieces are proportional to their areas:
W= gnr? W =orn(R—r?) (ii)

where ¢ is the proportionality constant, Note that in the second term, for #, we have subtracted out the
area of the cutout. Then, solving for the CG of the combination of the two pieces, we get

Xr(w+ W) =xw+XW (i)
Substituting and simplifying common terms, we get
8X
XT(RZ):er —|-X(R2—r2) or XT:g+_9—

so that X = 2.08 m.

Supplementary Problems

Problem 9.28. Find the sign of the torques of the three forces in Fig. 9-2 about point B. Use the standard
convention.

Ans. T’y is positive; I'; is negative; I'3 is positive
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Problem 9.29. Assume that the moment of the force in Fig. 9-4 about 4 is 100 N-m. If d, = 20 m and
rq = 60 m, find (a) F; (b) 6.

Ans. (@) F=5.0N; (b) 0 =19.5°

}

Problem 9.30. Assume that the rod of Fig. 9-7 is free to pivot about point 4 and that a 10-Ib weight hangs at
one end as shown. If the rod is uniform and has a weight of 3.0 Ib, find the value of (a) the force F necessary for
equilibrium; () the pivot force N necessary for equilibrium. ’

Ans.  (a) 44.5 1b; (b) 57.5 1b.
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